Prédiction du prix de ESAB jusqu'à $0.025922 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.008684 | $0.025922 |
| 2027 | $0.008359 | $0.021961 |
| 2028 | $0.015087 | $0.036953 |
| 2029 | $0.033142 | $0.109023 |
| 2030 | $0.028186 | $0.081494 |
| 2031 | $0.033324 | $0.074395 |
| 2032 | $0.050867 | $0.137999 |
| 2033 | $0.118206 | $0.367581 |
| 2034 | $0.095031 | $0.212883 |
| 2035 | $0.112357 | $0.250829 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur ESAB aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.63, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de ESAB pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'ESAB'
'name_with_ticker' => 'ESAB <small>$ESAB</small>'
'name_lang' => 'ESAB'
'name_lang_with_ticker' => 'ESAB <small>$ESAB</small>'
'name_with_lang' => 'ESAB'
'name_with_lang_with_ticker' => 'ESAB <small>$ESAB</small>'
'image' => '/uploads/coins/esab.jpg?1717169871'
'price_for_sd' => 0.02513
'ticker' => '$ESAB'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$69.07'
'current_supply' => '0'
'max_supply' => '1M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02513'
'change_24h_pct' => '0%'
'ath_price' => '$2.89'
'ath_days' => 657
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20 mars 2024'
'ath_pct' => '-99.13%'
'fdv' => '$25.14K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.23'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.02535'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.022214'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008684'
'current_year_max_price_prediction' => '$0.025922'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.028186'
'grand_prediction_max_price' => '$0.081494'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.025611244081516
107 => 0.025706867170035
108 => 0.025922310871104
109 => 0.024081368033974
110 => 0.024907897320603
111 => 0.025393405841177
112 => 0.023199860682274
113 => 0.025350046506171
114 => 0.024049321314908
115 => 0.023607835648757
116 => 0.024202237936916
117 => 0.023970598787145
118 => 0.023771449048479
119 => 0.023660320072477
120 => 0.024096783511115
121 => 0.024076421970015
122 => 0.023362283070502
123 => 0.022430717988111
124 => 0.022743381807343
125 => 0.022629788110577
126 => 0.02221810989962
127 => 0.022495531307588
128 => 0.021273907826655
129 => 0.019172168122174
130 => 0.020560641748982
131 => 0.020507187024719
201 => 0.020480232728767
202 => 0.021523632284721
203 => 0.02142333349274
204 => 0.021241290203164
205 => 0.022214766531846
206 => 0.021859434576773
207 => 0.022954483935571
208 => 0.023675754266627
209 => 0.023492816780021
210 => 0.024171175012581
211 => 0.022750584950246
212 => 0.023222447984773
213 => 0.023319698302215
214 => 0.022202753985059
215 => 0.021439743615524
216 => 0.021388859522831
217 => 0.020065904691362
218 => 0.020772616483814
219 => 0.021394493615451
220 => 0.021096662729012
221 => 0.02100237836781
222 => 0.021484056721408
223 => 0.021521487254779
224 => 0.020668067127217
225 => 0.020845520196038
226 => 0.021585528992138
227 => 0.020826873873043
228 => 0.019352930902251
301 => 0.018987372666639
302 => 0.018938600459434
303 => 0.017947177531664
304 => 0.019011801015928
305 => 0.018547064334911
306 => 0.020015161941842
307 => 0.019176592462328
308 => 0.019140443408094
309 => 0.019085798810706
310 => 0.018232440141609
311 => 0.018419271456369
312 => 0.019040327201842
313 => 0.019261926888521
314 => 0.019238812225687
315 => 0.019037283689873
316 => 0.019129542421576
317 => 0.018832344901689
318 => 0.018727398271786
319 => 0.018396157839965
320 => 0.017909325912694
321 => 0.017977022878095
322 => 0.017012481443668
323 => 0.016486948078104
324 => 0.016341487368934
325 => 0.016146971229411
326 => 0.016363458484481
327 => 0.017009749018973
328 => 0.01623018551619
329 => 0.014893678570691
330 => 0.014974004915413
331 => 0.015154474362896
401 => 0.014818170741435
402 => 0.014499887587547
403 => 0.014776608966724
404 => 0.014210313355057
405 => 0.015222908482057
406 => 0.015195520621637
407 => 0.01557295346652
408 => 0.015808969970127
409 => 0.015265028340563
410 => 0.015128228491702
411 => 0.01520615590282
412 => 0.0139181893825
413 => 0.015467699123871
414 => 0.015481099348459
415 => 0.015366358490023
416 => 0.016191424591556
417 => 0.017932571410363
418 => 0.01727748193966
419 => 0.017023811496419
420 => 0.016541583798387
421 => 0.017184123574167
422 => 0.017134786544569
423 => 0.016911665786214
424 => 0.016776721655382
425 => 0.017025360354053
426 => 0.016745912569054
427 => 0.016695716068157
428 => 0.01639157988705
429 => 0.016283017107709
430 => 0.016202641547894
501 => 0.016114155954077
502 => 0.016309333124801
503 => 0.015867035978245
504 => 0.015333668978423
505 => 0.015289325283498
506 => 0.015411762123922
507 => 0.015357592936385
508 => 0.015289065942269
509 => 0.015158229248284
510 => 0.015119412796062
511 => 0.015245547434717
512 => 0.015103148781782
513 => 0.015313265751044
514 => 0.015256125561707
515 => 0.014936945108975
516 => 0.014539128089132
517 => 0.014535586683206
518 => 0.014449877658831
519 => 0.014340714329852
520 => 0.014310347589049
521 => 0.014753304264009
522 => 0.015670211324598
523 => 0.015490200528878
524 => 0.015620276777034
525 => 0.016260123176768
526 => 0.016463511106391
527 => 0.016319151171452
528 => 0.016121542388774
529 => 0.01613023617233
530 => 0.016805525202986
531 => 0.016847642151502
601 => 0.016954058092959
602 => 0.017090832650872
603 => 0.016342444470094
604 => 0.016094987156317
605 => 0.01597772815264
606 => 0.015616615806262
607 => 0.016006044512398
608 => 0.015779141082332
609 => 0.015809758107173
610 => 0.01578981872958
611 => 0.015800706978041
612 => 0.015222625441082
613 => 0.015433247970079
614 => 0.01508304716471
615 => 0.014614167598208
616 => 0.01461259574949
617 => 0.014727353359131
618 => 0.014659091042451
619 => 0.01447539890345
620 => 0.014501491504793
621 => 0.014272892861106
622 => 0.014529247519048
623 => 0.014536598853357
624 => 0.014437888346317
625 => 0.014832838067002
626 => 0.014994649289816
627 => 0.014929675919498
628 => 0.014990090584948
629 => 0.01549768079014
630 => 0.0155804401413
701 => 0.015617196378309
702 => 0.015567947889985
703 => 0.014999368402103
704 => 0.015024587320177
705 => 0.014839547632363
706 => 0.014683208595163
707 => 0.01468946133676
708 => 0.014769839924534
709 => 0.015120857931482
710 => 0.015859554633463
711 => 0.015887587633323
712 => 0.015921564446933
713 => 0.015783363670601
714 => 0.015741680994056
715 => 0.015796671203631
716 => 0.016074086846067
717 => 0.016787675196026
718 => 0.016535445414187
719 => 0.016330378675362
720 => 0.016510277490908
721 => 0.016482583478348
722 => 0.016248818142074
723 => 0.016242257127665
724 => 0.015793586708057
725 => 0.015627723469659
726 => 0.015489115733006
727 => 0.015337759703027
728 => 0.015248030774955
729 => 0.015385895189542
730 => 0.015417426412321
731 => 0.015115983460371
801 => 0.01507489789989
802 => 0.015321062721551
803 => 0.015212734761487
804 => 0.015324152754817
805 => 0.015350002684995
806 => 0.015345840250862
807 => 0.015232733419169
808 => 0.015304824340796
809 => 0.01513430781981
810 => 0.014948896713991
811 => 0.014830615979998
812 => 0.014727400351927
813 => 0.014784670381309
814 => 0.014580513183658
815 => 0.014515199187258
816 => 0.015280401558646
817 => 0.015845664777702
818 => 0.015837445626628
819 => 0.01578741365826
820 => 0.015713076301879
821 => 0.016068648605429
822 => 0.015944774324765
823 => 0.016034903213991
824 => 0.016057844798996
825 => 0.016127282067245
826 => 0.016152099922309
827 => 0.016077083127197
828 => 0.015825317600271
829 => 0.015197941844322
830 => 0.014905896736359
831 => 0.014809516986335
901 => 0.014813020207197
902 => 0.014716385736752
903 => 0.014744848919151
904 => 0.014706487403488
905 => 0.01463383997347
906 => 0.01478018460722
907 => 0.014797049462965
908 => 0.01476289087676
909 => 0.01477093646037
910 => 0.014488117955911
911 => 0.014509620032556
912 => 0.014389893737448
913 => 0.014367446500437
914 => 0.014064788852164
915 => 0.013528586957321
916 => 0.013825694857442
917 => 0.013466830293789
918 => 0.013330922845848
919 => 0.013974287566455
920 => 0.013909711592666
921 => 0.013799185596039
922 => 0.013635694611393
923 => 0.01357505421485
924 => 0.013206622361869
925 => 0.013184853442488
926 => 0.013367458217322
927 => 0.013283192396783
928 => 0.013164851270784
929 => 0.012736231708463
930 => 0.012254321409355
1001 => 0.012268867252105
1002 => 0.012422153951991
1003 => 0.012867855705439
1004 => 0.012693712319649
1005 => 0.012567369295192
1006 => 0.012543709044569
1007 => 0.012839866617209
1008 => 0.013258991629425
1009 => 0.013455635707763
1010 => 0.013260767398299
1011 => 0.013036913176843
1012 => 0.013050538146062
1013 => 0.013141178962186
1014 => 0.013150704030368
1015 => 0.013004997944786
1016 => 0.013046013354399
1017 => 0.012983707196669
1018 => 0.012601334421687
1019 => 0.012594418510705
1020 => 0.01250057806513
1021 => 0.012497736613733
1022 => 0.012338090606214
1023 => 0.012315755026182
1024 => 0.011998768188434
1025 => 0.012207409884964
1026 => 0.012067463989113
1027 => 0.011856532514165
1028 => 0.011820167848379
1029 => 0.011819074682614
1030 => 0.01203565414397
1031 => 0.01220487902786
1101 => 0.012069898407887
1102 => 0.012039165937209
1103 => 0.012367308321354
1104 => 0.012325549211887
1105 => 0.012289386092406
1106 => 0.013221463581584
1107 => 0.012483651517987
1108 => 0.012161923345418
1109 => 0.011763723637341
1110 => 0.011893379470188
1111 => 0.011920699859209
1112 => 0.010963101342176
1113 => 0.010574603743077
1114 => 0.01044128600729
1115 => 0.010364559765508
1116 => 0.010399524877355
1117 => 0.010049831471943
1118 => 0.010284831223775
1119 => 0.0099820262935356
1120 => 0.0099312600615685
1121 => 0.010472712787169
1122 => 0.010548052770816
1123 => 0.010226628994282
1124 => 0.010433035092599
1125 => 0.01035818937209
1126 => 0.0099872170149617
1127 => 0.0099730485996074
1128 => 0.0097869077111093
1129 => 0.0094956332645881
1130 => 0.0093625130265911
1201 => 0.0092931828508394
1202 => 0.0093217898325728
1203 => 0.0093073252672203
1204 => 0.0092129341940865
1205 => 0.0093127356530421
1206 => 0.0090577841662205
1207 => 0.0089562604298844
1208 => 0.0089104045135141
1209 => 0.0086841203944998
1210 => 0.009044239056856
1211 => 0.0091151869699956
1212 => 0.0091862746724409
1213 => 0.0098050445885919
1214 => 0.0097741325922066
1215 => 0.010053561984777
1216 => 0.010042703872419
1217 => 0.0099630060832021
1218 => 0.0096267742201455
1219 => 0.0097607902480031
1220 => 0.009348309744972
1221 => 0.0096573681837908
1222 => 0.0095163268189029
1223 => 0.0096096819564473
1224 => 0.009441821001649
1225 => 0.0095347221848434
1226 => 0.009132011352195
1227 => 0.0087559656429623
1228 => 0.0089072974138161
1229 => 0.0090718123556214
1230 => 0.0094285226670829
1231 => 0.0092160689483726
]
'min_raw' => 0.0086841203944998
'max_raw' => 0.025922310871104
'avg_raw' => 0.017303215632802
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008684'
'max' => '$0.025922'
'avg' => '$0.0173032'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0164508296055
'max_diff' => 0.00078736087110384
'year' => 2026
]
1 => [
'items' => [
101 => 0.0092924753393854
102 => 0.0090365267197681
103 => 0.0085084316093887
104 => 0.0085114205703625
105 => 0.008430184642808
106 => 0.0083599849407613
107 => 0.0092404718136584
108 => 0.009130969352576
109 => 0.008956491512169
110 => 0.0091900370350275
111 => 0.0092517901781372
112 => 0.0092535482033068
113 => 0.009423936988102
114 => 0.009514873513091
115 => 0.0095309014697618
116 => 0.0097990119041304
117 => 0.0098888789852686
118 => 0.010259028774011
119 => 0.0095071581842839
120 => 0.0094916739042706
121 => 0.0091933234994762
122 => 0.0090041049560223
123 => 0.00920627945503
124 => 0.0093853784615796
125 => 0.0091988886048463
126 => 0.0092232402431199
127 => 0.0089728928472365
128 => 0.009062380261325
129 => 0.0091394588775945
130 => 0.0090969005961621
131 => 0.0090331887890138
201 => 0.0093706943854607
202 => 0.009351650997014
203 => 0.0096659439676455
204 => 0.0099109578135587
205 => 0.010350066426899
206 => 0.0098918336976287
207 => 0.0098751338756639
208 => 0.010038377314105
209 => 0.0098888539935487
210 => 0.0099833475707707
211 => 0.010334842050743
212 => 0.010342268575228
213 => 0.010217864721583
214 => 0.010210294735783
215 => 0.010234187856704
216 => 0.01037413061223
217 => 0.010325230313442
218 => 0.010381818977203
219 => 0.010452583967752
220 => 0.010745297972396
221 => 0.010815870327937
222 => 0.010644416091543
223 => 0.010659896489398
224 => 0.010595767898463
225 => 0.010533820483148
226 => 0.010673069226082
227 => 0.010927549040734
228 => 0.010925965935015
301 => 0.010985000305633
302 => 0.011021778229462
303 => 0.010863900457305
304 => 0.010761127832958
305 => 0.010800537396724
306 => 0.010863554147416
307 => 0.010780101913794
308 => 0.010264996069041
309 => 0.01042124627725
310 => 0.010395238602359
311 => 0.010358200510673
312 => 0.010515311303275
313 => 0.010500157584054
314 => 0.010046244860632
315 => 0.010075302880469
316 => 0.010048011975061
317 => 0.010136194473628
318 => 0.0098840918492358
319 => 0.0099616369185617
320 => 0.010010272459103
321 => 0.010038919166118
322 => 0.010142410715085
323 => 0.010130267176309
324 => 0.010141655855665
325 => 0.010295106502028
326 => 0.011071207213431
327 => 0.011113448662783
328 => 0.01090543631709
329 => 0.010988533146332
330 => 0.010829005405466
331 => 0.010936097446652
401 => 0.011009367101389
402 => 0.010678275620577
403 => 0.010658670531849
404 => 0.010498484363249
405 => 0.010584559336847
406 => 0.010447607864843
407 => 0.010481210965714
408 => 0.010387253766214
409 => 0.010556358018622
410 => 0.010745442848957
411 => 0.010793213144286
412 => 0.010667550063681
413 => 0.010576561711722
414 => 0.010416816139109
415 => 0.010682476586527
416 => 0.010760163797207
417 => 0.010682068528681
418 => 0.010663972148549
419 => 0.010629679540897
420 => 0.010671247487374
421 => 0.010759740695974
422 => 0.010718008933011
423 => 0.010745573497667
424 => 0.010640525801654
425 => 0.010863952721417
426 => 0.011218808440617
427 => 0.011219949359778
428 => 0.011178217371866
429 => 0.01116114154154
430 => 0.011203961093647
501 => 0.011227188944115
502 => 0.011365659523866
503 => 0.011514243972851
504 => 0.012207622763785
505 => 0.012012924773891
506 => 0.012628131686497
507 => 0.013114680479749
508 => 0.013260575188645
509 => 0.013126358921337
510 => 0.012667212321097
511 => 0.012644684398415
512 => 0.013330843265868
513 => 0.013136971957745
514 => 0.013113911582538
515 => 0.012868588151445
516 => 0.013013604683119
517 => 0.012981887440378
518 => 0.01293182022105
519 => 0.013208501661544
520 => 0.013726424618626
521 => 0.013645701468714
522 => 0.013585445381944
523 => 0.01332142075
524 => 0.013480422550467
525 => 0.0134238050548
526 => 0.013667069746537
527 => 0.013522965132124
528 => 0.013135503191909
529 => 0.013197207782979
530 => 0.013187881258171
531 => 0.013379820477834
601 => 0.013322205088315
602 => 0.013176630928674
603 => 0.013724654414264
604 => 0.013689068817377
605 => 0.013739521057763
606 => 0.013761731694268
607 => 0.01409530393269
608 => 0.01423195780565
609 => 0.014262980627275
610 => 0.014392791237398
611 => 0.014259750821041
612 => 0.014792007342678
613 => 0.015145926871538
614 => 0.015557022616841
615 => 0.016157743992849
616 => 0.016383620787211
617 => 0.016342818166054
618 => 0.016798278257404
619 => 0.017616729917252
620 => 0.016508250646938
621 => 0.017675482010177
622 => 0.017305950036909
623 => 0.016429796375889
624 => 0.016373382409292
625 => 0.016966723840889
626 => 0.018282698029173
627 => 0.017953061420663
628 => 0.018283237196575
629 => 0.017898069615655
630 => 0.017878942798815
701 => 0.01826453046688
702 => 0.019165477070604
703 => 0.018737471110653
704 => 0.018123819615697
705 => 0.018576930330098
706 => 0.018184403895867
707 => 0.017299931978313
708 => 0.017952809353761
709 => 0.017516248845676
710 => 0.017643660410768
711 => 0.018561245665288
712 => 0.018450839379835
713 => 0.018593715336559
714 => 0.018341543012657
715 => 0.018105974298207
716 => 0.017666267799123
717 => 0.017536092382013
718 => 0.017572068184082
719 => 0.017536074554193
720 => 0.017290062809067
721 => 0.01723693659613
722 => 0.017148390580389
723 => 0.01717583469319
724 => 0.017009342278546
725 => 0.017323547864067
726 => 0.01738186718951
727 => 0.01761051981208
728 => 0.017634259285882
729 => 0.018271053585074
730 => 0.017920317985972
731 => 0.018155621706905
801 => 0.01813457392734
802 => 0.016448785282453
803 => 0.01668107208388
804 => 0.017042437451285
805 => 0.016879642843088
806 => 0.016649489355169
807 => 0.016463628073625
808 => 0.016182029226795
809 => 0.016578374196082
810 => 0.017099525684106
811 => 0.017647476547649
812 => 0.018305803607032
813 => 0.01815887267115
814 => 0.017635169581196
815 => 0.017658662519246
816 => 0.017803886618141
817 => 0.017615808215072
818 => 0.01756034022228
819 => 0.0177962661677
820 => 0.017797890860024
821 => 0.017581483927258
822 => 0.01734098722354
823 => 0.017339979533571
824 => 0.017297185468067
825 => 0.017905682584841
826 => 0.018240294473069
827 => 0.0182786571868
828 => 0.018237712356776
829 => 0.01825347039681
830 => 0.01805876711172
831 => 0.01850380108397
901 => 0.018912208266206
902 => 0.01880274641702
903 => 0.018638647544171
904 => 0.018507934887875
905 => 0.018771954669304
906 => 0.018760198284043
907 => 0.018908641185755
908 => 0.018901906958286
909 => 0.01885199119366
910 => 0.018802748199669
911 => 0.018997991104668
912 => 0.018941764283533
913 => 0.018885450126615
914 => 0.01877250346365
915 => 0.018787854790992
916 => 0.018623784252128
917 => 0.018547877713492
918 => 0.017406425497664
919 => 0.017101392167568
920 => 0.017197361862742
921 => 0.017228957578246
922 => 0.017096206682077
923 => 0.017286537366276
924 => 0.017256874530753
925 => 0.017372275271592
926 => 0.017300177898834
927 => 0.01730313680016
928 => 0.017515159800662
929 => 0.017576710979719
930 => 0.017545405553272
1001 => 0.017567330800868
1002 => 0.018072588877652
1003 => 0.018000757336377
1004 => 0.017962598261731
1005 => 0.017973168586192
1006 => 0.018102272857665
1007 => 0.018138415004846
1008 => 0.017985278187578
1009 => 0.018057498395875
1010 => 0.018365002876695
1011 => 0.018472612041736
1012 => 0.018816048841217
1013 => 0.018670150784695
1014 => 0.018937952981761
1015 => 0.019761085635045
1016 => 0.020418660954936
1017 => 0.019813927515315
1018 => 0.021021480848582
1019 => 0.021961734331767
1020 => 0.021925645837008
1021 => 0.02176169089376
1022 => 0.020691237301085
1023 => 0.019706189945542
1024 => 0.020530223885774
1025 => 0.020532324517752
1026 => 0.020461539271486
1027 => 0.020021898186268
1028 => 0.020446240714698
1029 => 0.020479923483619
1030 => 0.020461070089995
1031 => 0.020123998300751
1101 => 0.019609351979856
1102 => 0.019709912639069
1103 => 0.019874633050243
1104 => 0.019562782947613
1105 => 0.019463127944159
1106 => 0.019648405555721
1107 => 0.020245408624296
1108 => 0.020132548652385
1109 => 0.020129601422415
1110 => 0.020612464242326
1111 => 0.020266838671589
1112 => 0.019711181031022
1113 => 0.019570870148555
1114 => 0.019072861040533
1115 => 0.019416837705291
1116 => 0.019429216813086
1117 => 0.019240824309154
1118 => 0.019726468044425
1119 => 0.019721992751909
1120 => 0.020183039200018
1121 => 0.021064386847666
1122 => 0.020803728979773
1123 => 0.020500612238908
1124 => 0.020533569433156
1125 => 0.020895028508764
1126 => 0.020676482100343
1127 => 0.020755072912571
1128 => 0.020894909552157
1129 => 0.020979276468768
1130 => 0.020521430332189
1201 => 0.02041468449644
1202 => 0.020196319979195
1203 => 0.020139352752612
1204 => 0.020317206095583
1205 => 0.020270348023362
1206 => 0.01942817639701
1207 => 0.019340164776258
1208 => 0.019342863967014
1209 => 0.019121554561908
1210 => 0.018784004598777
1211 => 0.019671065747823
1212 => 0.019599822323142
1213 => 0.019521175096097
1214 => 0.019530808932655
1215 => 0.019915852112164
1216 => 0.019692507622903
1217 => 0.020286305553047
1218 => 0.020164238549809
1219 => 0.020039040988539
1220 => 0.02002173487196
1221 => 0.019973544492225
1222 => 0.019808281749263
1223 => 0.019608717056386
1224 => 0.01947694716015
1225 => 0.017966454207707
1226 => 0.018246792913547
1227 => 0.018569297040939
1228 => 0.018680624173361
1229 => 0.018490191409751
1230 => 0.019815801195472
1231 => 0.020058002877217
]
'min_raw' => 0.0083599849407613
'max_raw' => 0.021961734331767
'avg_raw' => 0.015160859636264
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.008359'
'max' => '$0.021961'
'avg' => '$0.01516'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00032413545373856
'max_diff' => -0.0039605765393367
'year' => 2027
]
2 => [
'items' => [
101 => 0.019324358184787
102 => 0.019187123217348
103 => 0.01982479829709
104 => 0.019440202271398
105 => 0.019613385838218
106 => 0.019239057693099
107 => 0.019999663584578
108 => 0.019993869042048
109 => 0.0196979761712
110 => 0.019948062799454
111 => 0.019904604093465
112 => 0.019570541771029
113 => 0.020010253956055
114 => 0.020010472047813
115 => 0.019725681592887
116 => 0.019393108690181
117 => 0.019333652510198
118 => 0.019288860265395
119 => 0.019602369691811
120 => 0.019883461263217
121 => 0.020406502989092
122 => 0.020538008106142
123 => 0.02105128133278
124 => 0.020745652117137
125 => 0.020881133589871
126 => 0.021028217893547
127 => 0.021098735517576
128 => 0.020983830833406
129 => 0.021781155426063
130 => 0.021848474051077
131 => 0.021871045403741
201 => 0.021602192037193
202 => 0.021840996752601
203 => 0.021729267934643
204 => 0.022019955279811
205 => 0.022065538767216
206 => 0.022026931175064
207 => 0.022041400093453
208 => 0.021361024211317
209 => 0.021325743132559
210 => 0.02084468312027
211 => 0.021040718631094
212 => 0.020674239639835
213 => 0.020790453903115
214 => 0.020841680043039
215 => 0.020814922414601
216 => 0.021051802184746
217 => 0.020850405988783
218 => 0.020318888315034
219 => 0.01978722582965
220 => 0.019780551240229
221 => 0.019640573892449
222 => 0.019539395908135
223 => 0.019558886377396
224 => 0.019627573333253
225 => 0.019535403697395
226 => 0.019555072762324
227 => 0.019881710294447
228 => 0.019947215122042
229 => 0.019724604123486
301 => 0.018830788841669
302 => 0.018611444329546
303 => 0.01876910481507
304 => 0.018693753257625
305 => 0.015087317866525
306 => 0.015934596366652
307 => 0.015431172252736
308 => 0.015663173245858
309 => 0.015149307586592
310 => 0.0153945512132
311 => 0.015349263670229
312 => 0.016711662425639
313 => 0.016690390442992
314 => 0.016700572215397
315 => 0.016214569690035
316 => 0.016988784909343
317 => 0.017370191166253
318 => 0.017299603018898
319 => 0.017317368534825
320 => 0.017012098111223
321 => 0.016703527900385
322 => 0.016361276047952
323 => 0.016997137686166
324 => 0.016926440726517
325 => 0.017088594115989
326 => 0.017500995840699
327 => 0.017561723561225
328 => 0.017643342233451
329 => 0.01761408774947
330 => 0.018311048244156
331 => 0.018226641729557
401 => 0.018430037144331
402 => 0.018011637344493
403 => 0.017538178256103
404 => 0.017628167350262
405 => 0.017619500676848
406 => 0.017509163977142
407 => 0.017409556938134
408 => 0.017243739282295
409 => 0.017768410881765
410 => 0.017747110172989
411 => 0.018091943888701
412 => 0.018030991179913
413 => 0.017623934072968
414 => 0.017638472197176
415 => 0.017736248069261
416 => 0.018074651478932
417 => 0.018175112651183
418 => 0.018128575033511
419 => 0.018238726122657
420 => 0.018325785052298
421 => 0.018249659383837
422 => 0.019327438314405
423 => 0.018879869359948
424 => 0.019098011354185
425 => 0.019150036934444
426 => 0.019016774504592
427 => 0.019045674353857
428 => 0.019089449750756
429 => 0.019355245388625
430 => 0.020052770050979
501 => 0.020361698975725
502 => 0.021291126888107
503 => 0.020336046729023
504 => 0.020279376224897
505 => 0.020446794257952
506 => 0.020992466832456
507 => 0.021434683201673
508 => 0.021581391883417
509 => 0.021600781857606
510 => 0.021876017097566
511 => 0.022033776804278
512 => 0.021842596300029
513 => 0.021680590840112
514 => 0.021100307391546
515 => 0.021167476780777
516 => 0.021630207263899
517 => 0.022283841325999
518 => 0.022844727350314
519 => 0.022648324613451
520 => 0.024146738856996
521 => 0.02429530050877
522 => 0.024274774092068
523 => 0.024613219643748
524 => 0.023941474146902
525 => 0.023654289932544
526 => 0.021715618259386
527 => 0.022260305922154
528 => 0.023052041428371
529 => 0.022947252265267
530 => 0.022372272777502
531 => 0.022844291176813
601 => 0.022688227132621
602 => 0.022565132945863
603 => 0.023129051278382
604 => 0.022508999907289
605 => 0.02304585594163
606 => 0.022357332524523
607 => 0.022649221764609
608 => 0.022483531314842
609 => 0.022590753342099
610 => 0.021963935561662
611 => 0.022302151220844
612 => 0.02194986467829
613 => 0.0219496976486
614 => 0.021941920903647
615 => 0.022356384458685
616 => 0.022369900100335
617 => 0.022063610906942
618 => 0.022019469849038
619 => 0.022182682475375
620 => 0.021991603235389
621 => 0.02208100800914
622 => 0.021994311214908
623 => 0.021974793940412
624 => 0.021819276976641
625 => 0.021752275992621
626 => 0.021778548804858
627 => 0.021688866152129
628 => 0.021634829109897
629 => 0.021931171575855
630 => 0.021772847750714
701 => 0.021906906178969
702 => 0.021754129680451
703 => 0.021224539775035
704 => 0.020919967020119
705 => 0.0199196207818
706 => 0.020203317734061
707 => 0.020391409106917
708 => 0.02032924490931
709 => 0.02046279766012
710 => 0.020470996714349
711 => 0.020427577353652
712 => 0.020377303296329
713 => 0.020352832665554
714 => 0.02053521669894
715 => 0.020641096769085
716 => 0.020410286592521
717 => 0.020356210997529
718 => 0.020589572829414
719 => 0.020731923412056
720 => 0.021782960134396
721 => 0.021705095939201
722 => 0.021900519789064
723 => 0.021878518062593
724 => 0.022083353390709
725 => 0.022418172582312
726 => 0.021737391548866
727 => 0.021855551596635
728 => 0.021826581481636
729 => 0.022142869600823
730 => 0.022143857017808
731 => 0.021954226490592
801 => 0.022057028275799
802 => 0.021999647139516
803 => 0.022103342608306
804 => 0.021704056015403
805 => 0.022190343985234
806 => 0.022466037928424
807 => 0.022469865939093
808 => 0.022600542680122
809 => 0.022733317817295
810 => 0.02298816813082
811 => 0.022726210180371
812 => 0.022254973328605
813 => 0.022288995107217
814 => 0.022012709113446
815 => 0.022017353530916
816 => 0.021992561266469
817 => 0.022066964718348
818 => 0.021720383389021
819 => 0.021801725334278
820 => 0.021687846134581
821 => 0.021855304045495
822 => 0.021675147015136
823 => 0.02182656751137
824 => 0.021891915577875
825 => 0.022133051350124
826 => 0.021639531065513
827 => 0.020633209796807
828 => 0.020844750727955
829 => 0.020531865074606
830 => 0.020560823833063
831 => 0.020619325133899
901 => 0.020429703277456
902 => 0.020465877151993
903 => 0.020464584766643
904 => 0.020453447687899
905 => 0.020404119719495
906 => 0.020332584406067
907 => 0.020617559077354
908 => 0.020665981827102
909 => 0.020773619601481
910 => 0.021093876606634
911 => 0.021061875379639
912 => 0.021114070708586
913 => 0.021000128598559
914 => 0.020566109280753
915 => 0.02058967861784
916 => 0.020295768606695
917 => 0.020766103661696
918 => 0.020654722112553
919 => 0.02058291370324
920 => 0.020563320113459
921 => 0.020884370973783
922 => 0.020980434423047
923 => 0.020920574128044
924 => 0.020797798916588
925 => 0.021033563617816
926 => 0.021096644305751
927 => 0.021110765745453
928 => 0.021528495592632
929 => 0.02113411220351
930 => 0.021229044205106
1001 => 0.021969676582017
1002 => 0.02129802521644
1003 => 0.021653813924399
1004 => 0.02163639991858
1005 => 0.021818409382338
1006 => 0.021621469830093
1007 => 0.021623911131873
1008 => 0.021785523205301
1009 => 0.021558568195062
1010 => 0.021502370942852
1011 => 0.021424734841415
1012 => 0.021594250428642
1013 => 0.021695867356654
1014 => 0.022514825167022
1015 => 0.023043909261533
1016 => 0.02302094032563
1017 => 0.023230833403735
1018 => 0.023136274649649
1019 => 0.022830919489364
1020 => 0.023352123513875
1021 => 0.023187192752417
1022 => 0.023200789444001
1023 => 0.023200283374461
1024 => 0.023309947912333
1025 => 0.023232240536643
1026 => 0.023079071322661
1027 => 0.02318075219501
1028 => 0.023482708034312
1029 => 0.024419988224639
1030 => 0.024944502636457
1031 => 0.024388411798448
1101 => 0.024771995812154
1102 => 0.024541982088889
1103 => 0.024500181753057
1104 => 0.0247411008603
1105 => 0.024982441664548
1106 => 0.024967069298662
1107 => 0.024791868267766
1108 => 0.024692901650974
1109 => 0.025442310029571
1110 => 0.025994461357083
1111 => 0.025956808338216
1112 => 0.026122996518077
1113 => 0.026610930154154
1114 => 0.026655540690854
1115 => 0.026649920788591
1116 => 0.026539348918753
1117 => 0.027019782949661
1118 => 0.027420569470677
1119 => 0.026513754725614
1120 => 0.026859057909457
1121 => 0.027014075633658
1122 => 0.027241687644471
1123 => 0.027625707258916
1124 => 0.028042854416374
1125 => 0.028101843598225
1126 => 0.028059987950809
1127 => 0.027784868186948
1128 => 0.02824131558424
1129 => 0.028508691764565
1130 => 0.028667908161153
1201 => 0.029071654451819
1202 => 0.027015032970349
1203 => 0.025559254065044
1204 => 0.025331913167279
1205 => 0.025794219822624
1206 => 0.025916126400812
1207 => 0.025866986012002
1208 => 0.024228374500455
1209 => 0.025323286216789
1210 => 0.026501319160772
1211 => 0.026546572203841
1212 => 0.027136320127106
1213 => 0.027328366225506
1214 => 0.027803190603762
1215 => 0.027773490209621
1216 => 0.02788910238962
1217 => 0.027862525151562
1218 => 0.028742037326212
1219 => 0.029712269863673
1220 => 0.029678673796051
1221 => 0.029539191389521
1222 => 0.029746346548503
1223 => 0.0307477305036
1224 => 0.030655539115866
1225 => 0.030745095196206
1226 => 0.031925783314792
1227 => 0.033460845819881
1228 => 0.032747655168511
1229 => 0.034295073666901
1230 => 0.035269091586507
1231 => 0.036953554863134
]
'min_raw' => 0.015087317866525
'max_raw' => 0.036953554863134
'avg_raw' => 0.026020436364829
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.015087'
'max' => '$0.036953'
'avg' => '$0.02602'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0067273329257637
'max_diff' => 0.014991820531366
'year' => 2028
]
3 => [
'items' => [
101 => 0.036742651764743
102 => 0.037398400957172
103 => 0.03636509120182
104 => 0.033992403137177
105 => 0.033616916168662
106 => 0.034368650588473
107 => 0.036216716306407
108 => 0.034310448422308
109 => 0.034696083932533
110 => 0.034585020879645
111 => 0.034579102801544
112 => 0.034804971772088
113 => 0.03447733704978
114 => 0.033142494250736
115 => 0.03375424483926
116 => 0.033518018558355
117 => 0.033780129228855
118 => 0.035194632414881
119 => 0.034569246838795
120 => 0.033910453936586
121 => 0.034736726433804
122 => 0.035788855260797
123 => 0.035723014929661
124 => 0.035595257168134
125 => 0.036315420980684
126 => 0.037504920610817
127 => 0.037826437581046
128 => 0.038063774835343
129 => 0.038096499632865
130 => 0.038433585385689
131 => 0.036620990336209
201 => 0.039497625230475
202 => 0.03999434061128
203 => 0.039900978706432
204 => 0.040453056947218
205 => 0.040290621523905
206 => 0.040055278080863
207 => 0.040930439522918
208 => 0.039927137551488
209 => 0.038503076715251
210 => 0.037721808775761
211 => 0.038750645421568
212 => 0.039378920059711
213 => 0.039794169629752
214 => 0.039919823898746
215 => 0.036761696930104
216 => 0.035059641651757
217 => 0.036150639571074
218 => 0.037481732329295
219 => 0.036613596048729
220 => 0.036647625347327
221 => 0.035409891153442
222 => 0.037591244341114
223 => 0.037273439529738
224 => 0.038922211453343
225 => 0.038528718801553
226 => 0.039873228300296
227 => 0.039519173889857
228 => 0.040988833952673
301 => 0.041575121141189
302 => 0.04255958857902
303 => 0.043283766833793
304 => 0.043709018156318
305 => 0.043683487661991
306 => 0.045368545261203
307 => 0.044374925666376
308 => 0.043126705277116
309 => 0.043104128908359
310 => 0.043750599935376
311 => 0.04510542585734
312 => 0.04545671250699
313 => 0.045653033820738
314 => 0.045352360894739
315 => 0.044273858037912
316 => 0.043808165972468
317 => 0.044204949104625
318 => 0.043719717429961
319 => 0.044557363432392
320 => 0.045707630305263
321 => 0.045470104744663
322 => 0.046264117081925
323 => 0.047085836318458
324 => 0.048260931732419
325 => 0.048568145187286
326 => 0.049075957345899
327 => 0.049598662864717
328 => 0.049766541790052
329 => 0.050087074748289
330 => 0.050085385381379
331 => 0.051051333025381
401 => 0.052116803189624
402 => 0.052518993510935
403 => 0.053443807977885
404 => 0.051860095612597
405 => 0.053061359634044
406 => 0.054144929850979
407 => 0.052853052767993
408 => 0.054633604358133
409 => 0.054702739141562
410 => 0.055746592290736
411 => 0.054688447145982
412 => 0.054060123936746
413 => 0.055874069498847
414 => 0.056751780617598
415 => 0.05648740688558
416 => 0.054475509731184
417 => 0.053304499292996
418 => 0.050239739105216
419 => 0.053870079935429
420 => 0.055638313055332
421 => 0.054470930434577
422 => 0.055059690325894
423 => 0.058271773386885
424 => 0.059494726649534
425 => 0.059240360919991
426 => 0.059283344541068
427 => 0.059943227923421
428 => 0.062869514245192
429 => 0.061116015650401
430 => 0.06245649962378
501 => 0.063167487489786
502 => 0.063827892643516
503 => 0.062206146309147
504 => 0.060096278156317
505 => 0.059427994346076
506 => 0.054354857239539
507 => 0.054090778421626
508 => 0.053942542978725
509 => 0.053007939479549
510 => 0.052273597138641
511 => 0.051689620844767
512 => 0.05015709265956
513 => 0.050674275934231
514 => 0.048231745870502
515 => 0.049794390047325
516 => 0.045896053088663
517 => 0.049142703947545
518 => 0.047375699492156
519 => 0.048562195460517
520 => 0.048558055887858
521 => 0.046373340631216
522 => 0.045113242465028
523 => 0.045916226060277
524 => 0.046777088215301
525 => 0.046916760203666
526 => 0.048032890458456
527 => 0.048344378421428
528 => 0.047400555351639
529 => 0.045815268720076
530 => 0.04618349464805
531 => 0.045105780378351
601 => 0.043217127574384
602 => 0.044573590990908
603 => 0.045036747240795
604 => 0.045241303426175
605 => 0.043384030306714
606 => 0.042800434769218
607 => 0.042489733401896
608 => 0.045575518082991
609 => 0.045744564333586
610 => 0.044879699814809
611 => 0.048788969449501
612 => 0.04790418133241
613 => 0.048892706437553
614 => 0.046150082004648
615 => 0.046254853951418
616 => 0.044956451592375
617 => 0.045683470154162
618 => 0.045169636867593
619 => 0.045624734238907
620 => 0.045897517726836
621 => 0.047195707030829
622 => 0.049157527184087
623 => 0.04700180083961
624 => 0.046062520000752
625 => 0.046645244550464
626 => 0.048197116816889
627 => 0.050548282739403
628 => 0.049156345191651
629 => 0.049774063438711
630 => 0.049909007395322
701 => 0.048882644179938
702 => 0.050586126215143
703 => 0.051499036076873
704 => 0.05243549269493
705 => 0.05324859173747
706 => 0.052061451328556
707 => 0.053331861735987
708 => 0.052308135205223
709 => 0.051389746676224
710 => 0.051391139492528
711 => 0.050815020952772
712 => 0.049698718686386
713 => 0.049492855421315
714 => 0.050563782123879
715 => 0.051422563922199
716 => 0.051493297304396
717 => 0.051968763033748
718 => 0.052250138754692
719 => 0.055008003331686
720 => 0.056117239278805
721 => 0.057473591998181
722 => 0.058001967822228
723 => 0.059592189619395
724 => 0.058307956366683
725 => 0.058030104424253
726 => 0.054172746501914
727 => 0.054804388645604
728 => 0.055815708662053
729 => 0.054189422796493
730 => 0.055220926858784
731 => 0.055424567610924
801 => 0.054134162225087
802 => 0.054823423496788
803 => 0.052992949910875
804 => 0.049197426506152
805 => 0.050590351717701
806 => 0.051616013526957
807 => 0.050152267661959
808 => 0.05277597547018
809 => 0.05124325953294
810 => 0.050757462164175
811 => 0.048862193429356
812 => 0.049756687316607
813 => 0.050966503107033
814 => 0.050218977604731
815 => 0.051770205263526
816 => 0.053967157325684
817 => 0.055532836195935
818 => 0.055653029578481
819 => 0.054646402957247
820 => 0.05625952854198
821 => 0.056271278400775
822 => 0.054451666151385
823 => 0.053337163780277
824 => 0.053083946496629
825 => 0.053716532917356
826 => 0.054484609614014
827 => 0.055695652489604
828 => 0.056427460335795
829 => 0.058335627077772
830 => 0.058851922286723
831 => 0.059419174190433
901 => 0.060177197667799
902 => 0.061087399205607
903 => 0.059095930058686
904 => 0.059175054840456
905 => 0.05732062634461
906 => 0.055338903544851
907 => 0.056842784124634
908 => 0.05880890792985
909 => 0.058357876956559
910 => 0.058307126758337
911 => 0.058392474514816
912 => 0.058052411890249
913 => 0.056514321242645
914 => 0.055741901748374
915 => 0.056738519961212
916 => 0.057268178186962
917 => 0.058089631904049
918 => 0.057988370394633
919 => 0.06010434695216
920 => 0.060926551458605
921 => 0.060716196361742
922 => 0.060754906762043
923 => 0.062243468747355
924 => 0.063899055821144
925 => 0.065449731589703
926 => 0.067027145584556
927 => 0.065125511446245
928 => 0.064159978907299
929 => 0.065156162027802
930 => 0.064627573241771
1001 => 0.067665001195927
1002 => 0.067875306117259
1003 => 0.070912514430802
1004 => 0.073795186784392
1005 => 0.071984631927542
1006 => 0.07369190360837
1007 => 0.075538457127088
1008 => 0.079100758457207
1009 => 0.077901100692495
1010 => 0.076982181645759
1011 => 0.076113807586779
1012 => 0.077920756153018
1013 => 0.080245366616776
1014 => 0.080746065445827
1015 => 0.081557388830564
1016 => 0.080704381495417
1017 => 0.081731734874926
1018 => 0.085358743746544
1019 => 0.08437869393294
1020 => 0.082986865646753
1021 => 0.08585004080926
1022 => 0.08688621277026
1023 => 0.094158610240025
1024 => 0.10334031245336
1025 => 0.099539027446731
1026 => 0.097179447176417
1027 => 0.097734004509933
1028 => 0.10108685133801
1029 => 0.10216367932515
1030 => 0.099236489651237
1031 => 0.10027042253006
1101 => 0.10596749434642
1102 => 0.10902379059195
1103 => 0.10487292977517
1104 => 0.093420869407208
1105 => 0.082861546737905
1106 => 0.085662354602301
1107 => 0.085344829909665
1108 => 0.091465622852162
1109 => 0.084355320069009
1110 => 0.08447503933249
1111 => 0.090722403791005
1112 => 0.089055714060415
1113 => 0.086355890150351
1114 => 0.082881258440252
1115 => 0.076458080359602
1116 => 0.070768892409999
1117 => 0.081926700120907
1118 => 0.081445555163256
1119 => 0.08074878596289
1120 => 0.082299370420003
1121 => 0.089828568402671
1122 => 0.089654996019535
1123 => 0.088550817075431
1124 => 0.089388327072747
1125 => 0.08620907059852
1126 => 0.087028437382253
1127 => 0.082859874087245
1128 => 0.084744238791169
1129 => 0.086350097540792
1130 => 0.086672497459924
1201 => 0.087398880939877
1202 => 0.08119201363397
1203 => 0.083978714830272
1204 => 0.085615640704508
1205 => 0.078219950052835
1206 => 0.085469451679283
1207 => 0.081083965883208
1208 => 0.079595466136233
1209 => 0.081599534950604
1210 => 0.080818547384623
1211 => 0.080147100136521
1212 => 0.079772421035152
1213 => 0.081243987991422
1214 => 0.08117533763401
1215 => 0.078767568474713
1216 => 0.075626731759637
1217 => 0.076680899655667
1218 => 0.076297910576163
1219 => 0.074909908745464
1220 => 0.075845254391375
1221 => 0.071726465534382
1222 => 0.064640303381941
1223 => 0.06932163915486
1224 => 0.069141412819916
1225 => 0.069050534529224
1226 => 0.072568428979955
1227 => 0.072230264600151
1228 => 0.071616492939492
1229 => 0.07489863634759
1230 => 0.073700609852576
1231 => 0.077392645219668
]
'min_raw' => 0.033142494250736
'max_raw' => 0.10902379059195
'avg_raw' => 0.071083142421345
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.033142'
'max' => '$0.109023'
'avg' => '$0.071083'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.018055176384211
'max_diff' => 0.07207023572882
'year' => 2029
]
4 => [
'items' => [
101 => 0.079824458498311
102 => 0.079207671989929
103 => 0.081494804132466
104 => 0.076705185554872
105 => 0.078296104720205
106 => 0.078623990955261
107 => 0.074858135207408
108 => 0.072285592474837
109 => 0.072114033203708
110 => 0.067653598623655
111 => 0.07003632677295
112 => 0.072133028940338
113 => 0.07112887131282
114 => 0.070810985006304
115 => 0.072434997205168
116 => 0.072561196861744
117 => 0.069683831317779
118 => 0.070282126728686
119 => 0.072777118050503
120 => 0.070219259348864
121 => 0.065249757715428
122 => 0.0640172526016
123 => 0.06385281369984
124 => 0.060510162079926
125 => 0.064099614486759
126 => 0.062532722319832
127 => 0.067482515900903
128 => 0.064655220353671
129 => 0.064533341293474
130 => 0.064349103218215
131 => 0.061471944885755
201 => 0.062101859707613
202 => 0.064195792514204
203 => 0.064942931329438
204 => 0.064864998629881
205 => 0.064185531101111
206 => 0.064496587856345
207 => 0.063494565668378
208 => 0.063140730778519
209 => 0.062023930536168
210 => 0.060382542703854
211 => 0.060610787749154
212 => 0.057358768960852
213 => 0.055586896527284
214 => 0.055096465590576
215 => 0.05444064084549
216 => 0.055170542740616
217 => 0.057349556400219
218 => 0.054721203623202
219 => 0.050215077144516
220 => 0.050485903023951
221 => 0.051094368366116
222 => 0.049960497226393
223 => 0.048887383351236
224 => 0.049820368801204
225 => 0.04791106360897
226 => 0.051325098776784
227 => 0.051232758693218
228 => 0.052505299881261
301 => 0.053301046001318
302 => 0.051467108820452
303 => 0.051005878578958
304 => 0.051268616286258
305 => 0.04692614724005
306 => 0.052150427516396
307 => 0.052195607309169
308 => 0.051808750494001
309 => 0.054590518459598
310 => 0.060460916522194
311 => 0.05825223663483
312 => 0.05739696902474
313 => 0.055771104672762
314 => 0.0579374723875
315 => 0.057771129147609
316 => 0.057018861933022
317 => 0.056563888374422
318 => 0.057402191106392
319 => 0.056460013388846
320 => 0.056290772381462
321 => 0.05526535601275
322 => 0.054899329022592
323 => 0.054628337211033
324 => 0.054330001853612
325 => 0.054988055311543
326 => 0.053496819601729
327 => 0.051698535523333
328 => 0.051549027659917
329 => 0.051961832015673
330 => 0.051779196817921
331 => 0.051548153272855
401 => 0.05110702822436
402 => 0.050976155845616
403 => 0.05140142758628
404 => 0.050921320585954
405 => 0.051629744617717
406 => 0.051437092479967
407 => 0.050360953299113
408 => 0.049019685442015
409 => 0.049007745344682
410 => 0.048718771384991
411 => 0.048350719599798
412 => 0.048248336013041
413 => 0.049741795368916
414 => 0.0528332115401
415 => 0.052226292574377
416 => 0.052664853726669
417 => 0.054822140536021
418 => 0.055507877140836
419 => 0.055021157541299
420 => 0.054354905733897
421 => 0.054384217432138
422 => 0.056661001546169
423 => 0.056803001778601
424 => 0.057161790554946
425 => 0.057622935526244
426 => 0.055099692523959
427 => 0.054265372913641
428 => 0.053870025995983
429 => 0.052652510508109
430 => 0.053965496579892
501 => 0.053200475823533
502 => 0.053303703260396
503 => 0.053236476256719
504 => 0.053273186746597
505 => 0.051324144484377
506 => 0.052034273046084
507 => 0.050853546580546
508 => 0.049272686385956
509 => 0.049267386788263
510 => 0.049654300081285
511 => 0.049424148914677
512 => 0.04880481804306
513 => 0.048892791070214
514 => 0.048122054782778
515 => 0.04898637241014
516 => 0.049011157947016
517 => 0.048678348580782
518 => 0.050009949138582
519 => 0.050555506973596
520 => 0.050336444719273
521 => 0.050540136981857
522 => 0.052251512797478
523 => 0.052530541727986
524 => 0.052654467947301
525 => 0.052488423230497
526 => 0.05057141779015
527 => 0.050656445133166
528 => 0.050032570906643
529 => 0.049505462927478
530 => 0.049526544482327
531 => 0.049797546502859
601 => 0.05098102822058
602 => 0.053471595725465
603 => 0.053566110941694
604 => 0.053680666140967
605 => 0.053214712574693
606 => 0.05307417652053
607 => 0.053259579851404
608 => 0.054194906058421
609 => 0.056600819001456
610 => 0.055750408681865
611 => 0.055059011854612
612 => 0.055665553271359
613 => 0.055572180974479
614 => 0.054784024822259
615 => 0.054761903904102
616 => 0.053249180259226
617 => 0.052689960770766
618 => 0.052222635109356
619 => 0.051712327686941
620 => 0.051409800341274
621 => 0.051874619840438
622 => 0.05198092955948
623 => 0.050964593600903
624 => 0.050826070765239
625 => 0.051656032648149
626 => 0.051290797367578
627 => 0.051666450911044
628 => 0.051753605755424
629 => 0.051739571818133
630 => 0.051358224238212
701 => 0.051601283813705
702 => 0.051026375458118
703 => 0.050401248969859
704 => 0.050002457217106
705 => 0.04965445852078
706 => 0.049847548423305
707 => 0.049159218177627
708 => 0.048939007478684
709 => 0.051518940698542
710 => 0.053424765107007
711 => 0.053397053665319
712 => 0.053228367390845
713 => 0.052977733803738
714 => 0.054176570650424
715 => 0.053758919864538
716 => 0.054062795707161
717 => 0.054140144862737
718 => 0.054374257460592
719 => 0.054457932591668
720 => 0.054205008229443
721 => 0.053356163177706
722 => 0.051240922014545
723 => 0.050256271543109
724 => 0.049931320486885
725 => 0.049943131840609
726 => 0.0496173219767
727 => 0.049713287583395
728 => 0.049583949055021
729 => 0.049339013172633
730 => 0.049832424322779
731 => 0.04988928536139
801 => 0.049774117303122
802 => 0.049801243549988
803 => 0.048847701216449
804 => 0.048920196969083
805 => 0.048516531406102
806 => 0.048440848979304
807 => 0.04742041758727
808 => 0.045612575462388
809 => 0.046614295491054
810 => 0.045404358559576
811 => 0.044946137110089
812 => 0.047115286183904
813 => 0.046897563779723
814 => 0.046524917665419
815 => 0.045973696396109
816 => 0.045769243065386
817 => 0.044527049349971
818 => 0.044453653918419
819 => 0.04506931866583
820 => 0.04478521056863
821 => 0.044386215200011
822 => 0.042941094420386
823 => 0.041316300201039
824 => 0.041365342525429
825 => 0.041882159336232
826 => 0.043384873915884
827 => 0.042797737332388
828 => 0.042371763004445
829 => 0.042291990817563
830 => 0.043290506750781
831 => 0.04470361599184
901 => 0.045366615231208
902 => 0.044709603120581
903 => 0.043954862983936
904 => 0.044000800518925
905 => 0.044306402358825
906 => 0.044338516791221
907 => 0.043847258550806
908 => 0.043985544867921
909 => 0.043775475307057
910 => 0.042486278799791
911 => 0.042462961323061
912 => 0.042146571709076
913 => 0.042136991557306
914 => 0.04159873389683
915 => 0.04152342792933
916 => 0.040454684674549
917 => 0.041158134721298
918 => 0.040686297362724
919 => 0.039975127168172
920 => 0.039852521158575
921 => 0.039848835473875
922 => 0.040579048248935
923 => 0.041149601759871
924 => 0.040694505175588
925 => 0.040590888505023
926 => 0.041697243463338
927 => 0.041556449710243
928 => 0.041434523228085
929 => 0.044577087558421
930 => 0.042089502673608
1001 => 0.041004773677448
1002 => 0.03966221556025
1003 => 0.040099359252975
1004 => 0.04019147185201
1005 => 0.03696286159444
1006 => 0.035653014815042
1007 => 0.035203524760887
1008 => 0.034944836879864
1009 => 0.035062724195644
1010 => 0.033883708464482
1011 => 0.034676026534943
1012 => 0.033655098571476
1013 => 0.033483936676013
1014 => 0.035309482343399
1015 => 0.035563496358333
1016 => 0.034479793654657
1017 => 0.035175706225948
1018 => 0.03492335865369
1019 => 0.033672599451168
1020 => 0.033624829649594
1021 => 0.032997242648081
1022 => 0.032015190515502
1023 => 0.031566366338937
1024 => 0.031332614810912
1025 => 0.031429065247102
1026 => 0.031380296955132
1027 => 0.031062050861887
1028 => 0.031398538448672
1029 => 0.030538951710708
1030 => 0.03019665734549
1031 => 0.03004205092189
1101 => 0.02927911821598
1102 => 0.030493283428796
1103 => 0.030732489271371
1104 => 0.030972166423351
1105 => 0.03305839239679
1106 => 0.03295417044277
1107 => 0.033896286148957
1108 => 0.033859677265054
1109 => 0.033590970604387
1110 => 0.032457341403133
1111 => 0.032909185797755
1112 => 0.031518478983317
1113 => 0.032560491087566
1114 => 0.032084960278652
1115 => 0.032399713642731
1116 => 0.031833758713951
1117 => 0.032146981539244
1118 => 0.030789213850598
1119 => 0.029521349487247
1120 => 0.030031575118327
1121 => 0.03058624873069
1122 => 0.031788922450501
1123 => 0.031072619904825
1124 => 0.031330229386648
1125 => 0.030467280745846
1126 => 0.028686771210779
1127 => 0.028696848701385
1128 => 0.028422956099923
1129 => 0.028186272903286
1130 => 0.031154895868889
1201 => 0.030785700676132
1202 => 0.030197436455546
1203 => 0.030984851491491
1204 => 0.031193056524952
1205 => 0.031198983829553
1206 => 0.031773461513655
1207 => 0.032080060356641
1208 => 0.032134099731593
1209 => 0.033038052779939
1210 => 0.033341045918316
1211 => 0.034589031774096
1212 => 0.032054047586901
1213 => 0.032001841255758
1214 => 0.030995932035834
1215 => 0.030357968505762
1216 => 0.031039613944539
1217 => 0.031643458749415
1218 => 0.031014695177132
1219 => 0.031096798425749
1220 => 0.030252734701831
1221 => 0.030554447766242
1222 => 0.030814323702452
1223 => 0.030670835485278
1224 => 0.030456026679261
1225 => 0.03159395036157
1226 => 0.031529744247855
1227 => 0.032589404941574
1228 => 0.033415486229391
1229 => 0.034895971576852
1230 => 0.033351007937329
1231 => 0.033294703321631
]
'min_raw' => 0.028186272903286
'max_raw' => 0.081494804132466
'avg_raw' => 0.054840538517876
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.028186'
'max' => '$0.081494'
'avg' => '$0.05484'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00495622134745
'max_diff' => -0.027528986459488
'year' => 2030
]
5 => [
'items' => [
101 => 0.033845089971628
102 => 0.033340961656987
103 => 0.033659553349922
104 => 0.034844641529712
105 => 0.034869680575513
106 => 0.03445024429735
107 => 0.034424721561706
108 => 0.034505278887057
109 => 0.034977105657802
110 => 0.034812234886331
111 => 0.035003027517094
112 => 0.035241616623383
113 => 0.03622852232668
114 => 0.036466461950591
115 => 0.035888392022037
116 => 0.035940585264211
117 => 0.035724371242558
118 => 0.035515511206794
119 => 0.035984998065632
120 => 0.036842994527946
121 => 0.036837656976484
122 => 0.037036695478672
123 => 0.037160694816612
124 => 0.036628398885112
125 => 0.036281893806769
126 => 0.036414765902497
127 => 0.036627231277143
128 => 0.036345866245036
129 => 0.03460915092591
130 => 0.035135959411928
131 => 0.035048272720236
201 => 0.0349233962082
202 => 0.035453106214581
203 => 0.03540201439223
204 => 0.033871615954037
205 => 0.033969587096685
206 => 0.033877573903712
207 => 0.034174887354335
208 => 0.033324905754954
209 => 0.03358635437021
210 => 0.03375033249077
211 => 0.033846916863519
212 => 0.034195845846414
213 => 0.034154903057594
214 => 0.034193300785174
215 => 0.03471067035297
216 => 0.037327348087087
217 => 0.03746976808278
218 => 0.036768439936317
219 => 0.037048606697743
220 => 0.036510747781541
221 => 0.036871816075329
222 => 0.037118849831799
223 => 0.036002551788172
224 => 0.035936451862743
225 => 0.035396373011466
226 => 0.035686580794512
227 => 0.035224839345007
228 => 0.035338134545686
301 => 0.035021351287691
302 => 0.035591498081164
303 => 0.036229010788121
304 => 0.036390071674038
305 => 0.035966389824261
306 => 0.035659616243028
307 => 0.035121022891883
308 => 0.036016715638173
309 => 0.03627864349293
310 => 0.036015339842658
311 => 0.035954326633592
312 => 0.035838706712659
313 => 0.035978855946388
314 => 0.036277216977581
315 => 0.036136515425134
316 => 0.036229451279367
317 => 0.035875275638065
318 => 0.036628575097214
319 => 0.037824995929731
320 => 0.037828842618342
321 => 0.037688140307461
322 => 0.037630567953322
323 => 0.037774937062816
324 => 0.037853251382386
325 => 0.038320114609724
326 => 0.038821077453308
327 => 0.041158852457106
328 => 0.040502414590798
329 => 0.042576627649024
330 => 0.044217060875225
331 => 0.044708955072312
401 => 0.044256435556402
402 => 0.042708390737101
403 => 0.042632436272929
404 => 0.044945868800629
405 => 0.044292218149631
406 => 0.044214468484594
407 => 0.043387343408732
408 => 0.04387627677
409 => 0.043769339871671
410 => 0.043600534746127
411 => 0.044533385540033
412 => 0.04627959895006
413 => 0.046007435214222
414 => 0.045804277610731
415 => 0.044914100130523
416 => 0.045450185801946
417 => 0.045259295962397
418 => 0.046079479854786
419 => 0.045593621086233
420 => 0.044287266103067
421 => 0.044495307439938
422 => 0.044463862410391
423 => 0.045110998890251
424 => 0.044916744581912
425 => 0.044425931139018
426 => 0.046273630582463
427 => 0.04615365125805
428 => 0.046323754508975
429 => 0.046398639220651
430 => 0.047523301311759
501 => 0.047984039385314
502 => 0.048088634994366
503 => 0.048526300529481
504 => 0.048077745477148
505 => 0.049872285500812
506 => 0.051065549902236
507 => 0.052451587909314
508 => 0.05447696196955
509 => 0.055238521351956
510 => 0.055100952465978
511 => 0.056636567963174
512 => 0.059396034876821
513 => 0.055658719625405
514 => 0.059594121660057
515 => 0.058348218812287
516 => 0.055394205573061
517 => 0.055204001945983
518 => 0.057204494008386
519 => 0.06164139286257
520 => 0.060530000022487
521 => 0.061643210703111
522 => 0.060344591312497
523 => 0.060280103914129
524 => 0.061580139657881
525 => 0.064617744034418
526 => 0.063174692058023
527 => 0.061105723198999
528 => 0.062633417607782
529 => 0.061309987329451
530 => 0.058327928507561
531 => 0.060529150161328
601 => 0.059057255928638
602 => 0.059486832915938
603 => 0.062580535665309
604 => 0.062208293165583
605 => 0.062690009428956
606 => 0.061839792832812
607 => 0.061045556465161
608 => 0.059563055304175
609 => 0.059124159796831
610 => 0.059245454725254
611 => 0.059124099689088
612 => 0.058294653914405
613 => 0.058115535178334
614 => 0.057816996104178
615 => 0.057909525846573
616 => 0.057348185046473
617 => 0.05840755111519
618 => 0.058604178792645
619 => 0.059375097073658
620 => 0.059455136367017
621 => 0.061602132806303
622 => 0.060419603246354
623 => 0.061212946169858
624 => 0.061141982111547
625 => 0.055458227997307
626 => 0.056241399166062
627 => 0.057459767731993
628 => 0.056910894344501
629 => 0.056134915791179
630 => 0.055508271504034
701 => 0.054558841331341
702 => 0.055895146067215
703 => 0.057652244694723
704 => 0.059499699287864
705 => 0.061719294931504
706 => 0.061223907022785
707 => 0.059458205491225
708 => 0.059537413572085
709 => 0.060027046760731
710 => 0.059392927293568
711 => 0.05920591308322
712 => 0.060001353880027
713 => 0.060006831643628
714 => 0.059277200560761
715 => 0.058466349133232
716 => 0.058462951636144
717 => 0.058318668456511
718 => 0.060370258969626
719 => 0.061498426312643
720 => 0.061627768880388
721 => 0.061489720527286
722 => 0.061542849859452
723 => 0.060886394140021
724 => 0.062386857248743
725 => 0.063763830577727
726 => 0.063394772310815
727 => 0.06284150150399
728 => 0.062400794657221
729 => 0.063290955783581
730 => 0.063251318309868
731 => 0.063751803916944
801 => 0.063729098998862
802 => 0.063560804513418
803 => 0.063394778321141
804 => 0.06405305340677
805 => 0.063863480753683
806 => 0.063673613641905
807 => 0.063292806082033
808 => 0.063344564153964
809 => 0.062791388877143
810 => 0.062535464682508
811 => 0.058686978843195
812 => 0.057658537674028
813 => 0.057982106201698
814 => 0.058088633362461
815 => 0.057641054447656
816 => 0.058282767637896
817 => 0.05818275731694
818 => 0.058571838971701
819 => 0.058328757645768
820 => 0.058338733788174
821 => 0.05905358413734
822 => 0.059261108234893
823 => 0.059155559803953
824 => 0.059229482306995
825 => 0.060932995188866
826 => 0.06069081013234
827 => 0.060562154147987
828 => 0.060597792734903
829 => 0.06103307679995
830 => 0.061154932572534
831 => 0.060638621101442
901 => 0.06088211657597
902 => 0.061918889402333
903 => 0.062281701215301
904 => 0.063439622362743
905 => 0.062947716878902
906 => 0.063850630683662
907 => 0.066625879893495
908 => 0.068842940994948
909 => 0.066804039982127
910 => 0.070875390353917
911 => 0.074045520618879
912 => 0.073923845739181
913 => 0.073371060201051
914 => 0.069761951176666
915 => 0.066440795243642
916 => 0.069219083205346
917 => 0.06922616563272
918 => 0.068987508232868
919 => 0.067505227619295
920 => 0.068935928080545
921 => 0.069049491887619
922 => 0.068985926354711
923 => 0.067849465283676
924 => 0.066114299281318
925 => 0.066453346564778
926 => 0.067008712931463
927 => 0.065957288537767
928 => 0.065621294735931
929 => 0.066245971138981
930 => 0.068258808666105
1001 => 0.067878293391176
1002 => 0.067868356599565
1003 => 0.0694963623093
1004 => 0.068331061566751
1005 => 0.066457623036802
1006 => 0.065984555100372
1007 => 0.06430548262279
1008 => 0.065465223963707
1009 => 0.065506960989919
1010 => 0.064871782509768
1011 => 0.066509164269798
1012 => 0.066494075508624
1013 => 0.06804852579766
1014 => 0.07102005092543
1015 => 0.070141224725277
1016 => 0.069119245470519
1017 => 0.069230362951922
1018 => 0.070449047461602
1019 => 0.069712202987188
1020 => 0.06997717739765
1021 => 0.070448646391097
1022 => 0.07073309534076
1023 => 0.069189435125486
1024 => 0.068829534087503
1025 => 0.068093302871887
1026 => 0.06790123389014
1027 => 0.06850087885329
1028 => 0.068342893591269
1029 => 0.065503453154479
1030 => 0.065206715830337
1031 => 0.065215816340425
1101 => 0.06446965622978
1102 => 0.063331582962099
1103 => 0.06632237155874
1104 => 0.06608216937837
1105 => 0.065817004761414
1106 => 0.065849485913982
1107 => 0.067147685876553
1108 => 0.066394664337593
1109 => 0.068396695516723
1110 => 0.06798513809286
1111 => 0.067563025774023
1112 => 0.067504676993704
1113 => 0.067342199763882
1114 => 0.06678500488771
1115 => 0.06611215859251
1116 => 0.065667887187472
1117 => 0.06057515473906
1118 => 0.061520336258423
1119 => 0.062607681440445
1120 => 0.062983028640016
1121 => 0.062340971281913
1122 => 0.066810357225593
1123 => 0.067626957105578
1124 => 0.065153422803612
1125 => 0.064690725529454
1126 => 0.066840691581857
1127 => 0.065543999229597
1128 => 0.066127899716422
1129 => 0.064865826240397
1130 => 0.067430262107326
1201 => 0.067410725402625
1202 => 0.066413101929979
1203 => 0.067256286457628
1204 => 0.067109762396197
1205 => 0.065983447952618
1206 => 0.067465968284158
1207 => 0.067466703595746
1208 => 0.066506512693529
1209 => 0.065385219932556
1210 => 0.065184759270646
1211 => 0.065033739089999
1212 => 0.066090758009688
1213 => 0.067038477867869
1214 => 0.068801949564266
1215 => 0.069245328247794
1216 => 0.070975864766996
1217 => 0.069945414528105
1218 => 0.070402199772441
1219 => 0.070898104771385
1220 => 0.071135859864181
1221 => 0.070748450699111
1222 => 0.07343668623068
1223 => 0.073663655674953
1224 => 0.073739756566339
1225 => 0.072833298670281
1226 => 0.073638445441093
1227 => 0.073261743930689
1228 => 0.074241816610067
1229 => 0.07439550452039
1230 => 0.074265336327953
1231 => 0.074314119296488
]
'min_raw' => 0.033324905754954
'max_raw' => 0.07439550452039
'avg_raw' => 0.053860205137672
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.033324'
'max' => '$0.074395'
'avg' => '$0.05386'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0051386328516682
'max_diff' => -0.0070992996120757
'year' => 2031
]
6 => [
'items' => [
101 => 0.072020184507539
102 => 0.071901231887261
103 => 0.070279304469291
104 => 0.070940251880796
105 => 0.069704642375021
106 => 0.070096466877491
107 => 0.070269179384738
108 => 0.070178964172301
109 => 0.070977620855765
110 => 0.070298599520039
111 => 0.068506550573616
112 => 0.066714013384655
113 => 0.066691509540417
114 => 0.066219566139473
115 => 0.065878437501336
116 => 0.06594415097923
117 => 0.066175733846471
118 => 0.065864977484097
119 => 0.065931293109757
120 => 0.067032574354414
121 => 0.067253428454052
122 => 0.066502879930216
123 => 0.063489319303381
124 => 0.062749783966611
125 => 0.063281347301058
126 => 0.063027294264256
127 => 0.050867945549885
128 => 0.053724604168157
129 => 0.05202727462014
130 => 0.052809482166244
131 => 0.051076948219074
201 => 0.051903804228548
202 => 0.051751114115545
203 => 0.056344536639053
204 => 0.056272816664395
205 => 0.056307145220927
206 => 0.054668553775057
207 => 0.057278874440935
208 => 0.058564812265041
209 => 0.058326819397926
210 => 0.058386717075224
211 => 0.057357476528748
212 => 0.056317110519226
213 => 0.055163184503485
214 => 0.057307036411165
215 => 0.057068676675804
216 => 0.057615388149597
217 => 0.059005829357428
218 => 0.059210577107053
219 => 0.059485760158896
220 => 0.059387126623674
221 => 0.061736977591737
222 => 0.061452395134688
223 => 0.062138156976214
224 => 0.06072749283932
225 => 0.059131192466955
226 => 0.05943459698075
227 => 0.059405376686247
228 => 0.059033368799724
229 => 0.058697536713368
301 => 0.058138470909688
302 => 0.059907437838701
303 => 0.059835621011896
304 => 0.06099825195994
305 => 0.060792745646679
306 => 0.059420324190795
307 => 0.059469340491582
308 => 0.05979899867081
309 => 0.060939949393086
310 => 0.061278661249306
311 => 0.061121756422171
312 => 0.061493138509733
313 => 0.061786663769275
314 => 0.061530000763138
315 => 0.065163807675667
316 => 0.06365479769745
317 => 0.064390278661209
318 => 0.06456568653736
319 => 0.06411638295103
320 => 0.064213820810549
321 => 0.064361412617495
322 => 0.065257561167827
323 => 0.067609314266572
324 => 0.068650889705081
325 => 0.071784520802263
326 => 0.068564401364343
327 => 0.068373332803076
328 => 0.068937794390271
329 => 0.070777567572856
330 => 0.072268530936233
331 => 0.072763169499606
401 => 0.072828544151348
402 => 0.073756518979184
403 => 0.074288416844793
404 => 0.073643838426924
405 => 0.073097625707952
406 => 0.071141159547016
407 => 0.071367625832425
408 => 0.072927753963083
409 => 0.075131526838725
410 => 0.077022593229515
411 => 0.076360407689778
412 => 0.081412415927833
413 => 0.081913301909033
414 => 0.081844095662014
415 => 0.082985188469016
416 => 0.080720351626626
417 => 0.079752089997357
418 => 0.073215723097572
419 => 0.07505217558147
420 => 0.07772156711789
421 => 0.07736826313834
422 => 0.075429679651552
423 => 0.077021122640103
424 => 0.076494941819065
425 => 0.076079921174249
426 => 0.077981211203859
427 => 0.075890664715613
428 => 0.077700712317485
429 => 0.07537930754554
430 => 0.076363432497545
501 => 0.075804795578019
502 => 0.076166302128918
503 => 0.074052942219154
504 => 0.075193259927551
505 => 0.074005501253468
506 => 0.074004938101205
507 => 0.073978718262643
508 => 0.075376111075374
509 => 0.075421680004829
510 => 0.074389004604878
511 => 0.074240179946323
512 => 0.074790462711161
513 => 0.074146225712821
514 => 0.074447660149565
515 => 0.074155355854833
516 => 0.074089552001219
517 => 0.073565215700017
518 => 0.073339317204532
519 => 0.073427897825299
520 => 0.073125526500182
521 => 0.07294333683955
522 => 0.073942476153497
523 => 0.07340867632322
524 => 0.073860663673739
525 => 0.073345567042471
526 => 0.071560017701577
527 => 0.070533129393787
528 => 0.067160392209348
529 => 0.068116896290988
530 => 0.068751059486689
531 => 0.068541468554293
601 => 0.068991750978004
602 => 0.069019394661778
603 => 0.068873003255743
604 => 0.068703500761456
605 => 0.068620996321313
606 => 0.069235916823521
607 => 0.069592898872325
608 => 0.068814706247387
609 => 0.068632386603436
610 => 0.06941918231244
611 => 0.069899127240416
612 => 0.073442770930827
613 => 0.073180246360423
614 => 0.073839131514292
615 => 0.073764951157384
616 => 0.074455567767275
617 => 0.075584434048091
618 => 0.073289133263215
619 => 0.07368751811394
620 => 0.073589843348592
621 => 0.074656230824963
622 => 0.074659559970264
623 => 0.074020207408175
624 => 0.074366810804394
625 => 0.074173346297191
626 => 0.074522962810003
627 => 0.073176740184732
628 => 0.07481629402656
629 => 0.075745815404361
630 => 0.075758721809593
701 => 0.076199307565533
702 => 0.076646968210574
703 => 0.077506213835705
704 => 0.076623004316445
705 => 0.075034196370011
706 => 0.075148903171926
707 => 0.074217385654253
708 => 0.074233044632018
709 => 0.074149455781495
710 => 0.074400312214189
711 => 0.073231789064827
712 => 0.073506039112372
713 => 0.073122087439803
714 => 0.073686683477989
715 => 0.07307927147197
716 => 0.073589796246863
717 => 0.073810121815542
718 => 0.07462312790724
719 => 0.072959189811191
720 => 0.069566307394641
721 => 0.070279532413323
722 => 0.069224616588076
723 => 0.069322253064051
724 => 0.069519494284249
725 => 0.068880170956275
726 => 0.069002133699859
727 => 0.06899777633242
728 => 0.068960226893867
729 => 0.068793914204423
730 => 0.068552727900765
731 => 0.069513539901306
801 => 0.069676800582848
802 => 0.070039708854198
803 => 0.071119477706701
804 => 0.071011583335633
805 => 0.07118756353134
806 => 0.070803399752199
807 => 0.069340073319957
808 => 0.069419538985503
809 => 0.068428600862786
810 => 0.070014368338467
811 => 0.069638837669118
812 => 0.069396730603617
813 => 0.069330669447689
814 => 0.070413114838327
815 => 0.070736999464459
816 => 0.070535176300542
817 => 0.070121231103227
818 => 0.070916128253984
819 => 0.071128809197508
820 => 0.071176420617391
821 => 0.072584825962121
822 => 0.07125513483073
823 => 0.071575204702049
824 => 0.074072298470106
825 => 0.071807778997864
826 => 0.073007345467121
827 => 0.072948632930694
828 => 0.07356229054525
829 => 0.072898295094976
830 => 0.072906526114374
831 => 0.073451412503332
901 => 0.072686217840818
902 => 0.072496744881423
903 => 0.07223498934505
904 => 0.072806522982586
905 => 0.073149131550047
906 => 0.07591030498551
907 => 0.077694148949626
908 => 0.07761670757859
909 => 0.078324376745687
910 => 0.078005565304403
911 => 0.076976039062288
912 => 0.078733314820228
913 => 0.078177239242875
914 => 0.07822308143784
915 => 0.078221375189054
916 => 0.078591116835023
917 => 0.07832912099253
918 => 0.077812700293654
919 => 0.078155524453913
920 => 0.079173589648
921 => 0.082333695248503
922 => 0.084102132208375
923 => 0.082227233123004
924 => 0.083520513406194
925 => 0.082745006079163
926 => 0.082604073328496
927 => 0.083416348919002
928 => 0.084230046290401
929 => 0.084178217285553
930 => 0.08358751477774
1001 => 0.083253841919597
1002 => 0.085780524590061
1003 => 0.087642141340742
1004 => 0.087515191558783
1005 => 0.088075506610071
1006 => 0.089720608930545
1007 => 0.089871016469635
1008 => 0.089852068576788
1009 => 0.089479267797748
1010 => 0.091099084675786
1011 => 0.092450364413411
1012 => 0.08939297518865
1013 => 0.090557188981275
1014 => 0.09107984206141
1015 => 0.09184725184723
1016 => 0.093142000788722
1017 => 0.094548441554378
1018 => 0.094747327699479
1019 => 0.094606208461951
1020 => 0.093678622969844
1021 => 0.095217567237953
1022 => 0.096119044697527
1023 => 0.096655853894758
1024 => 0.098017112702404
1025 => 0.091083069788901
1026 => 0.08617480957043
1027 => 0.085408313861179
1028 => 0.086967013026896
1029 => 0.087378029566503
1030 => 0.087212349314758
1031 => 0.081687656199373
1101 => 0.085379227495288
1102 => 0.089351047813562
1103 => 0.089503621607734
1104 => 0.091491997905908
1105 => 0.092139494734892
1106 => 0.093740398277362
1107 => 0.093640261324901
1108 => 0.094030055861553
1109 => 0.093940448847878
1110 => 0.096905785550289
1111 => 0.10017699228981
1112 => 0.10006372080222
1113 => 0.099593446130254
1114 => 0.10029188421187
1115 => 0.10366812013088
1116 => 0.10335729043053
1117 => 0.10365923500801
1118 => 0.10764000743283
1119 => 0.11281557784338
1120 => 0.11041100576891
1121 => 0.11562823527354
1122 => 0.11891220469325
1123 => 0.12459149023587
1124 => 0.12388041571486
1125 => 0.12609131990008
1126 => 0.12260744391653
1127 => 0.11460776045079
1128 => 0.11334177992078
1129 => 0.11587630500159
1130 => 0.12210718759744
1201 => 0.11568007233482
1202 => 0.11698026938176
1203 => 0.11660581254477
1204 => 0.11658585933127
1205 => 0.11734739233513
1206 => 0.11624274899414
1207 => 0.11174223330141
1208 => 0.11380479312168
1209 => 0.11300833972282
1210 => 0.11389206414839
1211 => 0.11866116039754
1212 => 0.11655262926474
1213 => 0.11433146299949
1214 => 0.11711729841236
1215 => 0.12066462420986
1216 => 0.12044263893661
1217 => 0.12001189472386
1218 => 0.1224399772981
1219 => 0.12645045834931
1220 => 0.12753447526203
1221 => 0.12833467438525
1222 => 0.12844500832487
1223 => 0.12958151647509
1224 => 0.12347022571443
1225 => 0.13316900110068
1226 => 0.13484371168662
1227 => 0.13452893550611
1228 => 0.13639030583979
1229 => 0.13584264346921
1230 => 0.13504916661984
1231 => 0.13799983452355
]
'min_raw' => 0.050867945549885
'max_raw' => 0.13799983452355
'avg_raw' => 0.094433890036716
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.050867'
'max' => '$0.137999'
'avg' => '$0.094433'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.01754303979493
'max_diff' => 0.063604330003158
'year' => 2032
]
7 => [
'items' => [
101 => 0.13461713187857
102 => 0.12981581134444
103 => 0.12718171194006
104 => 0.13065050652248
105 => 0.13276877832972
106 => 0.13416882124691
107 => 0.13459247338772
108 => 0.12394462781956
109 => 0.11820602961491
110 => 0.12188440527093
111 => 0.1263722774392
112 => 0.12344529535793
113 => 0.12356002751401
114 => 0.11938692026348
115 => 0.12674150483293
116 => 0.12567000372296
117 => 0.13122895337697
118 => 0.12990226542868
119 => 0.13443537307435
120 => 0.13324165391026
121 => 0.13819671542044
122 => 0.14017342360978
123 => 0.14349262430975
124 => 0.14593424185623
125 => 0.14736800638022
126 => 0.14728192853612
127 => 0.15296321787882
128 => 0.14961316004256
129 => 0.1454046978522
130 => 0.14532858004871
131 => 0.14750820225146
201 => 0.15207609243829
202 => 0.15326047990364
203 => 0.15392239091965
204 => 0.15290865115733
205 => 0.14927240347688
206 => 0.14770229016465
207 => 0.14904007219723
208 => 0.14740407972831
209 => 0.15022826170808
210 => 0.15410646677903
211 => 0.15330563276797
212 => 0.15598270079922
213 => 0.15875318457579
214 => 0.1627151008065
215 => 0.16375089241855
216 => 0.16546301656562
217 => 0.16722535471645
218 => 0.16779137023415
219 => 0.16887206948174
220 => 0.16886637366326
221 => 0.17212313358532
222 => 0.17571544063282
223 => 0.17707145338115
224 => 0.18018952992496
225 => 0.17484993311412
226 => 0.17890007863201
227 => 0.18255341127086
228 => 0.17819775748959
301 => 0.18420101148989
302 => 0.18443410423906
303 => 0.187953528011
304 => 0.18438591777813
305 => 0.18226748221006
306 => 0.18838332631832
307 => 0.19134259063502
308 => 0.19045123613954
309 => 0.18366798441732
310 => 0.17971984096763
311 => 0.16938678801981
312 => 0.18162673559117
313 => 0.18758845700902
314 => 0.18365254499909
315 => 0.18563759007857
316 => 0.19646735237918
317 => 0.20059062468807
318 => 0.19973301287167
319 => 0.19987793515115
320 => 0.20210277804634
321 => 0.21196895668698
322 => 0.20605691374928
323 => 0.21057644905513
324 => 0.21297359428495
325 => 0.21520019636877
326 => 0.20973236537573
327 => 0.20261879759218
328 => 0.20036563206786
329 => 0.18326119611805
330 => 0.18237083594606
331 => 0.18187104980085
401 => 0.17871996885145
402 => 0.17624408237893
403 => 0.17427516553222
404 => 0.16910813975809
405 => 0.17085185927722
406 => 0.16261669863536
407 => 0.16788526257785
408 => 0.15474174734853
409 => 0.16568805739317
410 => 0.15973047850352
411 => 0.16373083249935
412 => 0.16371687564111
413 => 0.15635095562139
414 => 0.15210244667685
415 => 0.15480976193076
416 => 0.1577122187899
417 => 0.15818313265025
418 => 0.16194624373
419 => 0.16299644714456
420 => 0.15981428176914
421 => 0.15446937720965
422 => 0.15571087663453
423 => 0.15207728773063
424 => 0.14570956294053
425 => 0.15028297405459
426 => 0.15184453768762
427 => 0.15253421314828
428 => 0.14627228715535
429 => 0.14430465405535
430 => 0.14325710270294
501 => 0.15366104119786
502 => 0.15423099243418
503 => 0.15131504132621
504 => 0.16449541683606
505 => 0.16151229192536
506 => 0.16484517333396
507 => 0.1555982235745
508 => 0.15595146950798
509 => 0.15157381530291
510 => 0.15402500914279
511 => 0.15229258434243
512 => 0.1538269769037
513 => 0.15474668547838
514 => 0.15912362135348
515 => 0.1657380349701
516 => 0.15846985309169
517 => 0.15530300216498
518 => 0.15726769866887
519 => 0.16249994436338
520 => 0.1704270644243
521 => 0.16573404980008
522 => 0.16781672999775
523 => 0.16827170296895
524 => 0.16481124772989
525 => 0.1705546563449
526 => 0.17363259568106
527 => 0.17678992455015
528 => 0.17953134474083
529 => 0.17552881796868
530 => 0.17981209535456
531 => 0.17636052988179
601 => 0.17326411883643
602 => 0.17326881481384
603 => 0.17132639093374
604 => 0.16756269990488
605 => 0.16686861753378
606 => 0.17047932168119
607 => 0.17337476447246
608 => 0.17361324700898
609 => 0.17521631291145
610 => 0.17616499079964
611 => 0.18546332376893
612 => 0.18920319020902
613 => 0.19377622809992
614 => 0.19555768408072
615 => 0.2009192278956
616 => 0.19658934582178
617 => 0.19565254859888
618 => 0.18264719705158
619 => 0.18477682263888
620 => 0.18818655868244
621 => 0.18270342234306
622 => 0.18618121030639
623 => 0.18686779931997
624 => 0.18251710746839
625 => 0.18484099996862
626 => 0.17866943047413
627 => 0.16587255832012
628 => 0.17056890292179
629 => 0.17402699332112
630 => 0.16909187194181
701 => 0.17793788599865
702 => 0.17277022720544
703 => 0.17113232745936
704 => 0.16474229659648
705 => 0.16775814518891
706 => 0.17183712359297
707 => 0.1693167891714
708 => 0.17454686152628
709 => 0.18195403879014
710 => 0.1872328344134
711 => 0.18763807479429
712 => 0.18424416286038
713 => 0.18968292839413
714 => 0.18972254386341
715 => 0.18358759412332
716 => 0.17982997156706
717 => 0.17897623181617
718 => 0.18110904109943
719 => 0.18369866530762
720 => 0.18778178091498
721 => 0.19024912216161
722 => 0.19668263955613
723 => 0.19842336489969
724 => 0.20033589429731
725 => 0.20289162337476
726 => 0.20596043140772
727 => 0.19924605413894
728 => 0.19951282886499
729 => 0.19326049371918
730 => 0.18657897694033
731 => 0.19164941531266
801 => 0.19827833899232
802 => 0.1967576565759
803 => 0.19658654873933
804 => 0.19687430465908
805 => 0.19572775977794
806 => 0.19054197977348
807 => 0.18793771351994
808 => 0.19129788140619
809 => 0.19308366109386
810 => 0.19585324965309
811 => 0.19551183940424
812 => 0.2026460021007
813 => 0.20541812199867
814 => 0.20470889510307
815 => 0.20483940992036
816 => 0.20985820058192
817 => 0.2154401279906
818 => 0.22066833960902
819 => 0.22598670102419
820 => 0.21957520875902
821 => 0.21631984839264
822 => 0.2196785493347
823 => 0.2178963753377
824 => 0.22813727575159
825 => 0.22884633347688
826 => 0.2390864933571
827 => 0.24880562445899
828 => 0.24270121235021
829 => 0.24845739802003
830 => 0.25468318213064
831 => 0.26669372977707
901 => 0.26264899986591
902 => 0.25955080014296
903 => 0.25662301637517
904 => 0.26271526962336
905 => 0.27055285610105
906 => 0.27224099716087
907 => 0.2749764305973
908 => 0.27210045681178
909 => 0.27556425045832
910 => 0.28779296409865
911 => 0.28448865772719
912 => 0.27979601148596
913 => 0.28944940644686
914 => 0.29294293255659
915 => 0.31746232836848
916 => 0.34841907842671
917 => 0.33560278062962
918 => 0.32764729100763
919 => 0.32951701977553
920 => 0.34082137694468
921 => 0.34445197768504
922 => 0.3345827533296
923 => 0.33806873021745
924 => 0.35727680560316
925 => 0.36758132177876
926 => 0.35358640473114
927 => 0.31497498364322
928 => 0.27937349003529
929 => 0.28881660929627
930 => 0.28774605262618
1001 => 0.30838273337192
1002 => 0.28440985111304
1003 => 0.28481349296839
1004 => 0.30587691841734
1005 => 0.30025755762609
1006 => 0.29115491281762
1007 => 0.27943994941599
1008 => 0.2577837560651
1009 => 0.2386022616866
1010 => 0.27622158939718
1011 => 0.27459937557999
1012 => 0.27225016957408
1013 => 0.27747807332959
1014 => 0.30286328999997
1015 => 0.30227807859179
1016 => 0.29855526219044
1017 => 0.30137898561947
1018 => 0.29065990044801
1019 => 0.29342245276573
1020 => 0.27936785057681
1021 => 0.28572111773824
1022 => 0.29113538263007
1023 => 0.29222237646667
1024 => 0.2946714290838
1025 => 0.2737445426123
1026 => 0.2831401002569
1027 => 0.2886591101284
1028 => 0.26372402274565
1029 => 0.28816622362326
1030 => 0.27338025207695
1031 => 0.26836167125629
1101 => 0.27511852918356
1102 => 0.27248537507805
1103 => 0.27022154380212
1104 => 0.26895828705259
1105 => 0.27391977778718
1106 => 0.27368831831415
1107 => 0.26557035648851
1108 => 0.25498080621741
1109 => 0.25853500687853
1110 => 0.25724373245754
1111 => 0.25256398737814
1112 => 0.25571757052708
1113 => 0.24183078633107
1114 => 0.21793929589408
1115 => 0.2337227462929
1116 => 0.23311510062164
1117 => 0.23280869811965
1118 => 0.24466952487184
1119 => 0.24352938005544
1120 => 0.24146000604936
1121 => 0.2525259817017
1122 => 0.24848675173022
1123 => 0.26093470674005
1124 => 0.26913373499277
1125 => 0.2670541962171
1126 => 0.27476542191814
1127 => 0.25861688848329
1128 => 0.26398078352364
1129 => 0.26508627485741
1130 => 0.25238942927988
1201 => 0.24371592184781
1202 => 0.24313749778732
1203 => 0.22809883118307
1204 => 0.23613236549519
1205 => 0.24320154323961
1206 => 0.23981595569038
1207 => 0.23874417981385
1208 => 0.24421965032723
1209 => 0.24464514128036
1210 => 0.23494390245763
1211 => 0.23696109720715
1212 => 0.24537313464339
1213 => 0.23674913544683
1214 => 0.21999411373017
1215 => 0.21583863668814
1216 => 0.2152842194501
1217 => 0.20401423613707
1218 => 0.21611632553428
1219 => 0.21083343919657
1220 => 0.2275220138387
1221 => 0.21798958950573
1222 => 0.21757866574495
1223 => 0.21695749421113
1224 => 0.20725695401646
1225 => 0.2093807558176
1226 => 0.21644059646874
1227 => 0.21895962714787
1228 => 0.21869687161023
1229 => 0.21640599939807
1230 => 0.21745474896563
1231 => 0.21407636119995
]
'min_raw' => 0.11820602961491
'max_raw' => 0.36758132177876
'avg_raw' => 0.24289367569683
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.118206'
'max' => '$0.367581'
'avg' => '$0.242893'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.067338084065027
'max_diff' => 0.22958148725521
'year' => 2033
]
8 => [
'items' => [
101 => 0.21288338216482
102 => 0.20911801217524
103 => 0.20358395850055
104 => 0.20435350260634
105 => 0.19338909421288
106 => 0.18741510259492
107 => 0.18576158045101
108 => 0.18355042153473
109 => 0.18601133673428
110 => 0.1933580334215
111 => 0.18449635852806
112 => 0.16930363849747
113 => 0.17021674685844
114 => 0.17226823024124
115 => 0.16844530452931
116 => 0.1648272261768
117 => 0.16797285176033
118 => 0.16153549600128
119 => 0.17304615392989
120 => 0.17273482289117
121 => 0.17702528435265
122 => 0.17970819795364
123 => 0.17352495070694
124 => 0.17196988074568
125 => 0.1728557192696
126 => 0.1582147816988
127 => 0.17582880739811
128 => 0.17598113422379
129 => 0.17467681946197
130 => 0.18405574437482
131 => 0.20384820130097
201 => 0.19640148285562
202 => 0.19351788839532
203 => 0.1880361732184
204 => 0.1953402332196
205 => 0.1947793953726
206 => 0.192243073937
207 => 0.19070909881894
208 => 0.1935354950082
209 => 0.19035887705275
210 => 0.18978826918032
211 => 0.18633100630093
212 => 0.18509692074842
213 => 0.1841832529357
214 => 0.18317739444905
215 => 0.18539606762629
216 => 0.1803682623159
217 => 0.1743052219934
218 => 0.17380114579359
219 => 0.1751929445001
220 => 0.1745771771797
221 => 0.17379819773656
222 => 0.17231091383719
223 => 0.17186966847504
224 => 0.17330350184021
225 => 0.17168478756861
226 => 0.17407328865229
227 => 0.17342374851932
228 => 0.16979547013744
301 => 0.1652732919129
302 => 0.16523303504111
303 => 0.16425873916049
304 => 0.16301782687016
305 => 0.16267263345922
306 => 0.16770793594755
307 => 0.17813086140448
308 => 0.17608459173782
309 => 0.17756323128213
310 => 0.18483667437682
311 => 0.18714868321655
312 => 0.18550767410504
313 => 0.18326135962016
314 => 0.18336018605726
315 => 0.19103652265771
316 => 0.19151528635549
317 => 0.19272496776477
318 => 0.19427975023162
319 => 0.18577246028221
320 => 0.18295949346569
321 => 0.18162655373057
322 => 0.17752161525898
323 => 0.18194843946976
324 => 0.17936911857765
325 => 0.17971715708814
326 => 0.17949049655161
327 => 0.17961426853127
328 => 0.17304293646641
329 => 0.1754371844918
330 => 0.17145628277755
331 => 0.16612630225936
401 => 0.16610843429573
402 => 0.16741293947658
403 => 0.16663696874972
404 => 0.16454885147576
405 => 0.16484545867889
406 => 0.16224686747471
407 => 0.16516097470009
408 => 0.16524454086814
409 => 0.16412245085387
410 => 0.16861203510388
411 => 0.17045142143426
412 => 0.16971283774937
413 => 0.17039960043401
414 => 0.17616962348082
415 => 0.17711038900121
416 => 0.17752821490188
417 => 0.1769683835463
418 => 0.17050506586313
419 => 0.17079174148653
420 => 0.1686883059743
421 => 0.16691112462104
422 => 0.16698220255508
423 => 0.16789590478806
424 => 0.17188609602741
425 => 0.180283218256
426 => 0.18060188290636
427 => 0.1809881137587
428 => 0.17941711877816
429 => 0.17894329165964
430 => 0.17956839193413
501 => 0.18272190954348
502 => 0.1908336130064
503 => 0.18796639524014
504 => 0.18563530256527
505 => 0.18768029929921
506 => 0.18736548808123
507 => 0.18470816458671
508 => 0.18463358236671
509 => 0.17953332898302
510 => 0.17764788143422
511 => 0.17607226033914
512 => 0.17435172323595
513 => 0.17333173116824
514 => 0.17489890256234
515 => 0.17525733320239
516 => 0.17183068555974
517 => 0.17136364614794
518 => 0.17416192058226
519 => 0.1729305043339
520 => 0.17419704648299
521 => 0.17449089512578
522 => 0.17444357872638
523 => 0.17315783873584
524 => 0.17397733106449
525 => 0.17203898740481
526 => 0.16993132980471
527 => 0.16858677556755
528 => 0.1674134736664
529 => 0.16806448975387
530 => 0.16574373627288
531 => 0.16500128052677
601 => 0.17369970550271
602 => 0.18012532555626
603 => 0.18003189449586
604 => 0.17946315694417
605 => 0.17861812830656
606 => 0.18266009043528
607 => 0.18125195165122
608 => 0.18227649027055
609 => 0.18253727834892
610 => 0.18332660531781
611 => 0.18360872186424
612 => 0.18275596971839
613 => 0.17989402936199
614 => 0.17276234609897
615 => 0.16944252828842
616 => 0.168346933115
617 => 0.16838675591873
618 => 0.16728826521524
619 => 0.16761181995832
620 => 0.16717574607978
621 => 0.16634992765143
622 => 0.16801349779301
623 => 0.1682052087546
624 => 0.16781691160537
625 => 0.16790836964058
626 => 0.16469343508885
627 => 0.16493785958034
628 => 0.16357687295173
629 => 0.1633217043658
630 => 0.15988124868331
701 => 0.15378598273976
702 => 0.15716335175427
703 => 0.15308396491469
704 => 0.15153903930575
705 => 0.15885247685327
706 => 0.15811841056668
707 => 0.15686200817498
708 => 0.15500352718046
709 => 0.15431419850145
710 => 0.15012605566274
711 => 0.14987859784095
712 => 0.15195435452119
713 => 0.15099646423569
714 => 0.14965122349342
715 => 0.1447788978898
716 => 0.13930079073977
717 => 0.13946614036047
718 => 0.14120862432109
719 => 0.14627513144257
720 => 0.14429555945875
721 => 0.14285935727151
722 => 0.14259039977392
723 => 0.14595696595692
724 => 0.15072136242329
725 => 0.15295671064795
726 => 0.15074154844585
727 => 0.14819688938088
728 => 0.14835177098735
729 => 0.14938212892701
730 => 0.14949040497799
731 => 0.14783409352187
801 => 0.14830033549487
802 => 0.14759207130383
803 => 0.14324545527076
804 => 0.14316683876999
805 => 0.14210010909682
806 => 0.14206780894626
807 => 0.14025303566402
808 => 0.13999913633689
809 => 0.13639579383613
810 => 0.13876752478206
811 => 0.13717669218499
812 => 0.13477893222174
813 => 0.13436555750031
814 => 0.13435313095702
815 => 0.13681509430996
816 => 0.13873875530685
817 => 0.13720436539911
818 => 0.13685501456002
819 => 0.14058516754522
820 => 0.14011047157675
821 => 0.13969938792952
822 => 0.15029476297608
823 => 0.1419076968593
824 => 0.13825045731539
825 => 0.13372392888885
826 => 0.13519778936927
827 => 0.13550835342801
828 => 0.12462286853024
829 => 0.12020662866292
830 => 0.11869114156294
831 => 0.11781895731106
901 => 0.11821642262684
902 => 0.11424128877298
903 => 0.11691264446542
904 => 0.11347051455768
905 => 0.11289343027698
906 => 0.1190483849501
907 => 0.11990481093614
908 => 0.116251031609
909 => 0.11859734943017
910 => 0.11774654197195
911 => 0.11352951999543
912 => 0.11336846077424
913 => 0.11125250738192
914 => 0.10794145005224
915 => 0.10642820800505
916 => 0.1056400984083
917 => 0.10596528778787
918 => 0.1058008620866
919 => 0.10472787316399
920 => 0.10586236455565
921 => 0.10296420785417
922 => 0.10181013850361
923 => 0.10128887215217
924 => 0.098716591267933
925 => 0.10281023405325
926 => 0.10361673325231
927 => 0.10442482150393
928 => 0.11145867802903
929 => 0.11110728643451
930 => 0.11428369531433
1001 => 0.11416026590631
1002 => 0.11325430263937
1003 => 0.10943219263987
1004 => 0.11095561756311
1005 => 0.10626675244218
1006 => 0.10977996900262
1007 => 0.10817668367987
1008 => 0.10923789662224
1009 => 0.10732974006614
1010 => 0.10838579269014
1011 => 0.10380798413156
1012 => 0.099533290911054
1013 => 0.10125355224906
1014 => 0.10312367305921
1015 => 0.10717857147356
1016 => 0.10476350743016
1017 => 0.10563205578385
1018 => 0.10272256419223
1019 => 0.096719451983549
1020 => 0.096753428946714
1021 => 0.095829980918316
1022 => 0.095031986996161
1023 => 0.10504090658733
1024 => 0.10379613921856
1025 => 0.10181276532756
1026 => 0.10446759009681
1027 => 0.10516956790354
1028 => 0.10518955222483
1029 => 0.10712644384553
1030 => 0.10816016325071
1031 => 0.10834236077626
1101 => 0.11139010159075
1102 => 0.11241166411109
1103 => 0.11661933555544
1104 => 0.10807245938137
1105 => 0.107896442091
1106 => 0.10450494892568
1107 => 0.10235401034285
1108 => 0.10465222553066
1109 => 0.10668813044939
1110 => 0.10456821016657
1111 => 0.10484502700155
1112 => 0.10199920722571
1113 => 0.10301645388731
1114 => 0.10389264375019
1115 => 0.10340886320797
1116 => 0.10268462032101
1117 => 0.10652120946321
1118 => 0.10630473406809
1119 => 0.10987745408011
1120 => 0.11266264481714
1121 => 0.11765420453029
1122 => 0.11244525175372
1123 => 0.11225541681083
1124 => 0.11411108382807
1125 => 0.11241138001814
1126 => 0.11348553415423
1127 => 0.11748114169261
1128 => 0.1175655625837
1129 => 0.11615140388777
1130 => 0.1160653522026
1201 => 0.11633695684935
1202 => 0.11792775374881
1203 => 0.11737188043189
1204 => 0.11801515110722
1205 => 0.11881957093684
1206 => 0.12214699241906
1207 => 0.12294922247349
1208 => 0.12100021934981
1209 => 0.12117619250982
1210 => 0.12044721184023
1211 => 0.11974302564751
1212 => 0.12132593337061
1213 => 0.1242187283467
1214 => 0.12420073241929
1215 => 0.12487180462585
1216 => 0.12528987705107
1217 => 0.1234952041543
1218 => 0.12232693809046
1219 => 0.12277492563804
1220 => 0.12349126748251
1221 => 0.12254262563249
1222 => 0.11668716868046
1223 => 0.11846334027167
1224 => 0.11816769846854
1225 => 0.11774666858961
1226 => 0.11953262285929
1227 => 0.11936036321312
1228 => 0.11420051802974
1229 => 0.11453083457731
1230 => 0.11422060567304
1231 => 0.11522301872958
]
'min_raw' => 0.095031986996161
'max_raw' => 0.21288338216482
'avg_raw' => 0.15395768458049
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.095031'
'max' => '$0.212883'
'avg' => '$0.153957'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.023174042618751
'max_diff' => -0.15469793961393
'year' => 2034
]
9 => [
'items' => [
101 => 0.11235724642345
102 => 0.11323873868354
103 => 0.1137916023656
104 => 0.11411724332163
105 => 0.1152936817489
106 => 0.11515564027786
107 => 0.11528510089724
108 => 0.11702944851665
109 => 0.12585176018783
110 => 0.12633193914676
111 => 0.12396736233579
112 => 0.12491196413256
113 => 0.12309853524447
114 => 0.12431590220596
115 => 0.12514879376325
116 => 0.12138511697172
117 => 0.12116225645818
118 => 0.119341342904
119 => 0.1203197987062
120 => 0.11876300517144
121 => 0.11914498785054
122 => 0.11807693097912
123 => 0.11999922069969
124 => 0.12214863930091
125 => 0.12269166732269
126 => 0.12126319438564
127 => 0.12022888583827
128 => 0.1184129807515
129 => 0.12143287138088
130 => 0.12231597943042
131 => 0.12142823279025
201 => 0.12122252249608
202 => 0.12083270186033
203 => 0.12130522478675
204 => 0.12231116983432
205 => 0.12183678472678
206 => 0.1221501244479
207 => 0.12095599654549
208 => 0.12349579826571
209 => 0.12752961463397
210 => 0.12754258401319
211 => 0.12706819634853
212 => 0.12687408713698
213 => 0.12736083766917
214 => 0.12762487986533
215 => 0.12919894183165
216 => 0.1308879730349
217 => 0.13876994467845
218 => 0.13655671858116
219 => 0.1435500727239
220 => 0.14908090787743
221 => 0.15073936350586
222 => 0.14921366236407
223 => 0.14399432117476
224 => 0.14373823539583
225 => 0.15153813468167
226 => 0.1493343058754
227 => 0.14907216745142
228 => 0.14628345751012
301 => 0.14793193047387
302 => 0.14757138525506
303 => 0.14700224698869
304 => 0.15014741856991
305 => 0.15603489899854
306 => 0.1551172799613
307 => 0.15443231991712
308 => 0.15143102439239
309 => 0.1532384746619
310 => 0.15259487624036
311 => 0.15536018349696
312 => 0.1537220767372
313 => 0.14931760970467
314 => 0.15001903559691
315 => 0.14991301648437
316 => 0.15209488230785
317 => 0.15143994034488
318 => 0.14978512855466
319 => 0.15601477623049
320 => 0.15561025756154
321 => 0.15618377254827
322 => 0.15643625158197
323 => 0.16022812834354
324 => 0.16178153892623
325 => 0.16213419032478
326 => 0.16360981023326
327 => 0.1620974755572
328 => 0.16814789253777
329 => 0.17217106677823
330 => 0.17684419068918
331 => 0.18367288074036
401 => 0.18624053136852
402 => 0.1857767082647
403 => 0.19095414312674
404 => 0.20025787848593
405 => 0.18765725918476
406 => 0.20092574190559
407 => 0.19672509346817
408 => 0.1867654315895
409 => 0.18612414678122
410 => 0.1928689454395
411 => 0.20782825970077
412 => 0.20408112114546
413 => 0.20783438867707
414 => 0.20345600273491
415 => 0.20323857896894
416 => 0.2076217402446
417 => 0.21786323547886
418 => 0.21299788498977
419 => 0.20602221203078
420 => 0.21117294039021
421 => 0.20671090280787
422 => 0.19665668328917
423 => 0.20407825577923
424 => 0.19911566160934
425 => 0.20056401041413
426 => 0.21099464522906
427 => 0.20973960365209
428 => 0.21136374366641
429 => 0.20849717905228
430 => 0.20581935568694
501 => 0.20082099951775
502 => 0.19934123267203
503 => 0.19975018699175
504 => 0.19934103001458
505 => 0.19654449567518
506 => 0.19594058435085
507 => 0.194934039019
508 => 0.1952460095057
509 => 0.1933534098066
510 => 0.19692513646986
511 => 0.19758808041251
512 => 0.20018728522074
513 => 0.20045714328646
514 => 0.20769589168002
515 => 0.20370891070707
516 => 0.2063837217631
517 => 0.20614446148595
518 => 0.18698128766275
519 => 0.18962180393747
520 => 0.19372961862129
521 => 0.19187905367424
522 => 0.18926278780462
523 => 0.18715001283961
524 => 0.18394894272527
525 => 0.18845438744009
526 => 0.19437856813944
527 => 0.20060739028538
528 => 0.20809091196513
529 => 0.20642067704401
530 => 0.20046749105301
531 => 0.20073454662776
601 => 0.20238537910837
602 => 0.20024740105203
603 => 0.19961686958492
604 => 0.20229875376726
605 => 0.20231722242969
606 => 0.19985722029259
607 => 0.19712337809283
608 => 0.1971119231942
609 => 0.19662546238053
610 => 0.20354254303298
611 => 0.20734623799609
612 => 0.20778232549365
613 => 0.20731688583294
614 => 0.20749601508571
615 => 0.20528272879537
616 => 0.21034164492541
617 => 0.21498420664129
618 => 0.21373990092757
619 => 0.21187450977423
620 => 0.21038863587118
621 => 0.21338987625777
622 => 0.21325623574774
623 => 0.21494365791479
624 => 0.21486710669827
625 => 0.21429969009065
626 => 0.21373992119181
627 => 0.2159593416023
628 => 0.21532018416688
629 => 0.21468003394342
630 => 0.21339611466818
701 => 0.21357062062133
702 => 0.21170555155406
703 => 0.21084268526379
704 => 0.19786724656385
705 => 0.19439978535853
706 => 0.19549071924041
707 => 0.19584988300041
708 => 0.19434083944018
709 => 0.19650442026406
710 => 0.19616722848446
711 => 0.1974790444483
712 => 0.19665947878652
713 => 0.19669311404715
714 => 0.19910328190862
715 => 0.19980296389239
716 => 0.19944709998832
717 => 0.19969633486843
718 => 0.20543984748513
719 => 0.20462330365823
720 => 0.20418953102451
721 => 0.20430968900851
722 => 0.20577727962438
723 => 0.20618812486934
724 => 0.20444734469684
725 => 0.20526830668952
726 => 0.20876385865877
727 => 0.20998710401691
728 => 0.21389111600898
729 => 0.21223262232647
730 => 0.21527685925864
731 => 0.22463380573131
801 => 0.23210878202512
802 => 0.22523448490887
803 => 0.23896132693996
804 => 0.24964964245971
805 => 0.24923940710774
806 => 0.24737565207168
807 => 0.23520728901602
808 => 0.22400977991213
809 => 0.23337697174889
810 => 0.23340085064726
811 => 0.23259620056113
812 => 0.22759858798294
813 => 0.23242229447636
814 => 0.23280518278068
815 => 0.23259086714848
816 => 0.2287592093023
817 => 0.22290897597993
818 => 0.22405209756764
819 => 0.22592455404736
820 => 0.22237960329591
821 => 0.22124677673468
822 => 0.22335291684108
823 => 0.23013933909561
824 => 0.22885640527946
825 => 0.22882290269277
826 => 0.23431183760688
827 => 0.23038294479467
828 => 0.22406651599165
829 => 0.22247153441542
830 => 0.21681042432816
831 => 0.22072057322962
901 => 0.22086129252748
902 => 0.2187197439349
903 => 0.22424029085719
904 => 0.22418941804543
905 => 0.22943035572316
906 => 0.2394490601567
907 => 0.2364860362652
908 => 0.23304036185547
909 => 0.23341500220199
910 => 0.23752388211222
911 => 0.23503955952189
912 => 0.23593293924668
913 => 0.237522529875
914 => 0.23848156936838
915 => 0.23327701117768
916 => 0.23206357970063
917 => 0.22958132475516
918 => 0.22893375077337
919 => 0.2309554956325
920 => 0.23042283729142
921 => 0.22084946561538
922 => 0.2198489950095
923 => 0.21987967801464
924 => 0.21736394710636
925 => 0.21352685362664
926 => 0.2236105061904
927 => 0.22280064776891
928 => 0.22190662674964
929 => 0.22201613922328
930 => 0.22639311103452
1001 => 0.22385424634163
1002 => 0.23060423423942
1003 => 0.22921663965084
1004 => 0.22779345849694
1005 => 0.22759673151031
1006 => 0.22704892818617
1007 => 0.22517030675905
1008 => 0.22290175849816
1009 => 0.22140386643803
1010 => 0.20423336342499
1011 => 0.20742010890799
1012 => 0.21108616910519
1013 => 0.21235167839445
1014 => 0.21018693718459
1015 => 0.22525578393627
1016 => 0.22800900744482
1017 => 0.21966931384909
1018 => 0.21810929768478
1019 => 0.22535805833629
1020 => 0.22098616953848
1021 => 0.22295483079644
1022 => 0.21869966195686
1023 => 0.22734583652541
1024 => 0.2272799671615
1025 => 0.22391640997163
1026 => 0.22675926547586
1027 => 0.22626524937276
1028 => 0.22246780158947
1029 => 0.22746622239352
1030 => 0.22746870154788
1031 => 0.22423135088267
1101 => 0.22045083405289
1102 => 0.21977496693554
1103 => 0.2192657918526
1104 => 0.22282960493903
1105 => 0.22602490860858
1106 => 0.23197057655464
1107 => 0.23346545874187
1108 => 0.23930008343856
1109 => 0.2358258485144
1110 => 0.23736593185741
1111 => 0.23903791018433
1112 => 0.23983951807922
1113 => 0.23853334103114
1114 => 0.24759691481244
1115 => 0.2483621581403
1116 => 0.24861873760881
1117 => 0.24556255152538
1118 => 0.24827716007672
1119 => 0.24700708463394
1120 => 0.25031146809895
1121 => 0.25082963761875
1122 => 0.2503907664699
1123 => 0.25055524165423
1124 => 0.24282108035588
1125 => 0.2424200232916
1126 => 0.23695158176256
1127 => 0.23918001210632
1128 => 0.2350140683901
1129 => 0.23633513205649
1130 => 0.23691744433308
1201 => 0.23661327744572
1202 => 0.23930600421445
1203 => 0.2370166363733
1204 => 0.23097461823357
1205 => 0.22493095395004
1206 => 0.22485508066802
1207 => 0.2232638905417
1208 => 0.22211375152138
1209 => 0.22233530910007
1210 => 0.22311610690557
1211 => 0.22206837013351
1212 => 0.22229195789543
1213 => 0.2260050045008
1214 => 0.22674962951727
1215 => 0.22421910276753
1216 => 0.21405867271407
1217 => 0.21156527769344
1218 => 0.2133574805881
1219 => 0.2125009230371
1220 => 0.17150482990798
1221 => 0.18113625388502
1222 => 0.17541358881012
1223 => 0.17805085616379
1224 => 0.17220949699925
1225 => 0.17499729976444
1226 => 0.17448249438796
1227 => 0.18996953912849
1228 => 0.1897277302266
1229 => 0.1898434713517
1230 => 0.18431884588914
1231 => 0.19311972426092
]
'min_raw' => 0.11235724642345
'max_raw' => 0.25082963761875
'avg_raw' => 0.1815934420211
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.112357'
'max' => '$0.250829'
'avg' => '$0.181593'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.017325259427288
'max_diff' => 0.037946255453928
'year' => 2035
]
10 => [
'items' => [
101 => 0.1974553534162
102 => 0.19665294384859
103 => 0.19685489304953
104 => 0.1933847366878
105 => 0.18987707005066
106 => 0.18598652792405
107 => 0.19321467430976
108 => 0.19241102782024
109 => 0.19425430372431
110 => 0.19894227333402
111 => 0.19963259466691
112 => 0.20056039353887
113 => 0.20022784368849
114 => 0.20815053028867
115 => 0.20719104066582
116 => 0.20950313459288
117 => 0.20474698196592
118 => 0.19936494381036
119 => 0.20038789331165
120 => 0.20028937504863
121 => 0.19903512448646
122 => 0.19790284316026
123 => 0.19601791377043
124 => 0.20198210927692
125 => 0.20173997383126
126 => 0.20565986524489
127 => 0.20496698636174
128 => 0.20033977160382
129 => 0.20050503348413
130 => 0.2016164990514
131 => 0.20546329407019
201 => 0.20660528474154
202 => 0.20607626916211
203 => 0.20732840979939
204 => 0.20831805070522
205 => 0.20745269346039
206 => 0.21970432717027
207 => 0.21461659467301
208 => 0.21709632009196
209 => 0.21768771999299
210 => 0.2161728615823
211 => 0.21650138012857
212 => 0.21699899621021
213 => 0.22002042361475
214 => 0.22794952338133
215 => 0.23146126769274
216 => 0.24202652372002
217 => 0.23116966621352
218 => 0.23052546521922
219 => 0.2324285868699
220 => 0.23863151060385
221 => 0.24365839767921
222 => 0.24532610613018
223 => 0.24554652133285
224 => 0.24867525325403
225 => 0.25046858404385
226 => 0.24829534290498
227 => 0.24645374858761
228 => 0.23985738632991
229 => 0.24062093322254
301 => 0.24588101413972
302 => 0.25331118825246
303 => 0.25968705061904
304 => 0.2574544458395
305 => 0.27448764433406
306 => 0.27617641639041
307 => 0.27594308269676
308 => 0.27979035676413
309 => 0.27215430122415
310 => 0.2688897395392
311 => 0.24685192218201
312 => 0.25304364994849
313 => 0.2620436898845
314 => 0.26085250085055
315 => 0.25431643127727
316 => 0.25968209242417
317 => 0.25790803704926
318 => 0.25650876596945
319 => 0.26291909804811
320 => 0.2558706746057
321 => 0.26197337646889
322 => 0.25414659820498
323 => 0.25746464419007
324 => 0.25558116081311
325 => 0.25680000538904
326 => 0.2496746649032
327 => 0.2535193256715
328 => 0.24951471437516
329 => 0.24951281566799
330 => 0.24942441365167
331 => 0.25413582108264
401 => 0.25428945990982
402 => 0.25080772269979
403 => 0.25030594997287
404 => 0.25216126673403
405 => 0.24998917671494
406 => 0.2510054839639
407 => 0.25001995962618
408 => 0.24979809733944
409 => 0.24803026089195
410 => 0.24726862834269
411 => 0.24756728409011
412 => 0.24654781805659
413 => 0.24593355289569
414 => 0.24930222085034
415 => 0.24750247745385
416 => 0.24902638436287
417 => 0.24728970010765
418 => 0.24126959584175
419 => 0.23780737021699
420 => 0.22643595132266
421 => 0.22966087161489
422 => 0.23179899710506
423 => 0.23109234664332
424 => 0.23261050527257
425 => 0.23270370788244
426 => 0.23221013903627
427 => 0.23163864954249
428 => 0.23136048006227
429 => 0.23343372746785
430 => 0.23463731736908
501 => 0.23201358660243
502 => 0.2313988831937
503 => 0.23405161985893
504 => 0.23566978769228
505 => 0.24761742980381
506 => 0.24673230988581
507 => 0.24895378718397
508 => 0.24870368293154
509 => 0.2510321450491
510 => 0.2548381965298
511 => 0.24709942968081
512 => 0.24844261201937
513 => 0.24811329472857
514 => 0.25170869455795
515 => 0.25171991900376
516 => 0.24956429720251
517 => 0.25073289475194
518 => 0.25008061565864
519 => 0.25125937214104
520 => 0.24672048856967
521 => 0.25224835881739
522 => 0.25538230503975
523 => 0.25542581988609
524 => 0.25691128552296
525 => 0.25842060464238
526 => 0.26131761125812
527 => 0.25833980870022
528 => 0.25298303178179
529 => 0.25336977377302
530 => 0.25022909742571
531 => 0.25028189276252
601 => 0.25000006711699
602 => 0.25084584709406
603 => 0.2469060897123
604 => 0.24783074289513
605 => 0.24653622302441
606 => 0.24843979798599
607 => 0.24639186599955
608 => 0.2481131359218
609 => 0.24885597895924
610 => 0.25159708575967
611 => 0.2459870022964
612 => 0.23454766234551
613 => 0.23695235029178
614 => 0.23339562793509
615 => 0.2337248161306
616 => 0.23438982867544
617 => 0.23223430543904
618 => 0.2326455113442
619 => 0.23263082017566
620 => 0.23250421962196
621 => 0.23194348477792
622 => 0.23113030831605
623 => 0.23436975305762
624 => 0.23492019784394
625 => 0.23614376841824
626 => 0.23978428449151
627 => 0.23942051108651
628 => 0.24001384060288
629 => 0.23871860560005
630 => 0.23378489836755
701 => 0.23405282240706
702 => 0.23071180534123
703 => 0.23605833110024
704 => 0.23479220322981
705 => 0.2339759223551
706 => 0.23375319255565
707 => 0.23740273276411
708 => 0.23849473239401
709 => 0.23781427150602
710 => 0.23641862637255
711 => 0.23909867761427
712 => 0.23981574626427
713 => 0.23997627149053
714 => 0.24472480844201
715 => 0.24024166195645
716 => 0.24132079987417
717 => 0.24973992585469
718 => 0.24210494035033
719 => 0.24614936245248
720 => 0.24595140903674
721 => 0.24802039852842
722 => 0.24578169150915
723 => 0.24580944296571
724 => 0.24764656546884
725 => 0.24506665823999
726 => 0.24442783692881
727 => 0.24354530986274
728 => 0.2454722754249
729 => 0.24662740413026
730 => 0.25593689314689
731 => 0.26195124761592
801 => 0.26169014862669
802 => 0.26407610463144
803 => 0.26300120959845
804 => 0.25953008999393
805 => 0.2654548679009
806 => 0.2635800202679
807 => 0.26373458042882
808 => 0.26372882769191
809 => 0.26497543746583
810 => 0.2640921001909
811 => 0.2623509517493
812 => 0.26350680734083
813 => 0.26693928522174
814 => 0.27759380188536
815 => 0.2835562105639
816 => 0.27723485739629
817 => 0.28159524216501
818 => 0.27898056506774
819 => 0.27850540045925
820 => 0.28124404432391
821 => 0.28398748182212
822 => 0.28381273671369
823 => 0.28182114196707
824 => 0.28069614062955
825 => 0.28921502766036
826 => 0.29549159850922
827 => 0.29506357845599
828 => 0.29695271977135
829 => 0.30249929710221
830 => 0.30300640662137
831 => 0.30294252247774
901 => 0.30168559862308
902 => 0.30714692431939
903 => 0.31170285829813
904 => 0.30139465706675
905 => 0.3053198851514
906 => 0.30708204650155
907 => 0.30966942217328
908 => 0.314034758626
909 => 0.31877667186197
910 => 0.31944723038597
911 => 0.31897143702401
912 => 0.31584401777542
913 => 0.32103267582101
914 => 0.32407207001511
915 => 0.3258819597024
916 => 0.33047153881243
917 => 0.30709292901014
918 => 0.29054438699978
919 => 0.28796009320101
920 => 0.29321535626313
921 => 0.29460112722267
922 => 0.29404252468649
923 => 0.27541563612621
924 => 0.28786202648767
925 => 0.30125329599437
926 => 0.30176770919378
927 => 0.30847165870708
928 => 0.31065473947278
929 => 0.31605229753773
930 => 0.31571467881117
1001 => 0.31702889830608
1002 => 0.31672678200331
1003 => 0.32672462172869
1004 => 0.33775372363935
1005 => 0.33737182091058
1006 => 0.33578625702051
1007 => 0.33814108977608
1008 => 0.34952430489827
1009 => 0.34847632086212
1010 => 0.34949434808617
1011 => 0.36291580024512
1012 => 0.38036559723107
1013 => 0.37225841460012
1014 => 0.38984866813032
1015 => 0.4009208003083
1016 => 0.42006890803028
1017 => 0.41767147063707
1018 => 0.42512568845794
1019 => 0.41337955734294
1020 => 0.38640806601815
1021 => 0.38213972427328
1022 => 0.39068505253814
1023 => 0.41169290823635
1024 => 0.39002344040159
1025 => 0.39440714552219
1026 => 0.39314463815255
1027 => 0.39307736450013
1028 => 0.39564492619118
1029 => 0.3919205440433
1030 => 0.3767467411693
1031 => 0.38370080560668
1101 => 0.3810155073658
1102 => 0.3839950459663
1103 => 0.40007438693796
1104 => 0.39296532701077
1105 => 0.38547650987062
1106 => 0.39486914846593
1107 => 0.40682920505857
1108 => 0.40608076621129
1109 => 0.4046284820244
1110 => 0.41281493194678
1111 => 0.42633654881376
1112 => 0.42999138751865
1113 => 0.43268931473072
1114 => 0.43306131331141
1115 => 0.43689312988834
1116 => 0.41628848641206
1117 => 0.44898858477369
1118 => 0.45463498843875
1119 => 0.45357369856918
1120 => 0.45984943860591
1121 => 0.45800295668694
1122 => 0.4553276940905
1123 => 0.46527607693691
1124 => 0.4538710587966
1125 => 0.43768307139829
1126 => 0.42880202134949
1127 => 0.44049730446762
1128 => 0.44763920575873
1129 => 0.45235954820192
1130 => 0.45378792097312
1201 => 0.41788796623123
1202 => 0.39853988172811
1203 => 0.41094178206837
1204 => 0.42607295641692
1205 => 0.41620443197456
1206 => 0.41659125944911
1207 => 0.40252133699692
1208 => 0.42731783235353
1209 => 0.42370519155142
1210 => 0.4424475784234
1211 => 0.43797455737935
1212 => 0.45325824629818
1213 => 0.44923353879366
1214 => 0.46593987462656
1215 => 0.47260448429629
1216 => 0.48379540119543
1217 => 0.49202748522167
1218 => 0.49686152241656
1219 => 0.49657130495539
1220 => 0.51572616862928
1221 => 0.50443121474075
1222 => 0.49024209064052
1223 => 0.48998545415166
1224 => 0.49733420258462
1225 => 0.51273516326941
1226 => 0.51672840830011
1227 => 0.51896008750377
1228 => 0.51554219311805
1229 => 0.50328233018869
1230 => 0.49798858353471
1231 => 0.50249900905851
]
'min_raw' => 0.18598652792405
'max_raw' => 0.51896008750377
'avg_raw' => 0.35247330771391
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.185986'
'max' => '$0.51896'
'avg' => '$0.352473'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.073629281500602
'max_diff' => 0.26813044988502
'year' => 2036
]
11 => [
'items' => [
101 => 0.49698314622819
102 => 0.50650507295109
103 => 0.51958071211543
104 => 0.51688064433468
105 => 0.52590656610896
106 => 0.53524744559068
107 => 0.54860532277469
108 => 0.55209756651134
109 => 0.55787011260991
110 => 0.56381195872794
111 => 0.56572031956381
112 => 0.56936397252907
113 => 0.56934476867939
114 => 0.58032516213635
115 => 0.59243687615385
116 => 0.59700876780863
117 => 0.60752158057323
118 => 0.58951875712675
119 => 0.60317410551243
120 => 0.61549157157186
121 => 0.60080618074629
122 => 0.62104657074211
123 => 0.62183245921994
124 => 0.63369844218536
125 => 0.62166999520263
126 => 0.61452754178045
127 => 0.63514753718605
128 => 0.64512490343905
129 => 0.64211963952515
130 => 0.61924943275216
131 => 0.60593799146097
201 => 0.57109938201666
202 => 0.61236721981938
203 => 0.63246757981374
204 => 0.61919737767567
205 => 0.62589009575255
206 => 0.66240339545891
207 => 0.67630529592602
208 => 0.67341379781048
209 => 0.67390241339389
210 => 0.6814036265486
211 => 0.71466813667011
212 => 0.69473527113999
213 => 0.70997319996754
214 => 0.71805534247324
215 => 0.72556248685522
216 => 0.70712731291042
217 => 0.68314342247472
218 => 0.6755467175985
219 => 0.61787791760013
220 => 0.61487600611731
221 => 0.61319094223478
222 => 0.60256685281242
223 => 0.59421922870946
224 => 0.58758088809536
225 => 0.57015989994768
226 => 0.57603897204905
227 => 0.54827355298444
228 => 0.56603688415595
301 => 0.52172260490935
302 => 0.55862885347183
303 => 0.53854246030048
304 => 0.55202993309323
305 => 0.55198287657125
306 => 0.52714816295266
307 => 0.5128240184247
308 => 0.52195192082196
309 => 0.53173775676562
310 => 0.53332547572397
311 => 0.54601306746137
312 => 0.54955390159641
313 => 0.53882500886151
314 => 0.52080428996985
315 => 0.52499009195955
316 => 0.51273919328098
317 => 0.49126996457081
318 => 0.50668953944723
319 => 0.51195446026089
320 => 0.51427974922812
321 => 0.49316722854924
322 => 0.48653321617681
323 => 0.48300132365449
324 => 0.51807892866989
325 => 0.52000055905585
326 => 0.51016922631012
327 => 0.55460778256604
328 => 0.54454996865446
329 => 0.55578701101793
330 => 0.52461027430248
331 => 0.52580126763006
401 => 0.5110417008396
402 => 0.51930607200765
403 => 0.51346508083919
404 => 0.51863839248737
405 => 0.52173925415894
406 => 0.53649639904972
407 => 0.55879735636176
408 => 0.53429217371045
409 => 0.5236149147086
410 => 0.53023902614216
411 => 0.54787990780495
412 => 0.57460674654418
413 => 0.5587839200828
414 => 0.56580582177734
415 => 0.56733979491494
416 => 0.55567262847519
417 => 0.57503693161269
418 => 0.58541441897939
419 => 0.59605957369919
420 => 0.60530246327193
421 => 0.59180766481213
422 => 0.60624903356749
423 => 0.59461183959543
424 => 0.58417207357149
425 => 0.5841879063872
426 => 0.57763888865973
427 => 0.56494934158343
428 => 0.56260919440998
429 => 0.57478293553428
430 => 0.58454512305839
501 => 0.5853491835806
502 => 0.59075403219326
503 => 0.59395256592786
504 => 0.6253025447227
505 => 0.63791176553462
506 => 0.65333008206309
507 => 0.65933638527963
508 => 0.67741320458256
509 => 0.66281470486796
510 => 0.65965622762584
511 => 0.61580777687948
512 => 0.62298795823276
513 => 0.63448412136382
514 => 0.61599734437521
515 => 0.62772294930498
516 => 0.63003783210039
517 => 0.61536917076719
518 => 0.62320433658069
519 => 0.60239645914479
520 => 0.55925091122849
521 => 0.57508496494133
522 => 0.58674415815882
523 => 0.5701050518693
524 => 0.59993000587093
525 => 0.5825068834552
526 => 0.57698459010678
527 => 0.55544015491487
528 => 0.56560829900409
529 => 0.57936085947856
530 => 0.5708633760121
531 => 0.58849693010857
601 => 0.61347074540628
602 => 0.63126857340385
603 => 0.63263486964099
604 => 0.62119205860042
605 => 0.63952923631997
606 => 0.63966280264051
607 => 0.61897839126328
608 => 0.60630930446602
609 => 0.6034308612897
610 => 0.61062177669618
611 => 0.61935287551587
612 => 0.63311938486012
613 => 0.64143819813739
614 => 0.66312925120686
615 => 0.66899822823623
616 => 0.67544645462886
617 => 0.68406327364878
618 => 0.69440997418924
619 => 0.6717719824447
620 => 0.6726714320592
621 => 0.65159124759101
622 => 0.62906404728251
623 => 0.6461593842615
624 => 0.66850926326417
625 => 0.66338217632653
626 => 0.66280527430917
627 => 0.6637754634831
628 => 0.65990980736713
629 => 0.6424255880225
630 => 0.63364512252463
701 => 0.64497416315253
702 => 0.65099504404868
703 => 0.6603329052426
704 => 0.65918181675211
705 => 0.68323514437458
706 => 0.6925815401538
707 => 0.69019033215865
708 => 0.69063037197739
709 => 0.70755157509362
710 => 0.7263714330697
711 => 0.74399871356329
712 => 0.76192994039068
713 => 0.74031314658256
714 => 0.72933747182529
715 => 0.74066156654846
716 => 0.73465284249018
717 => 0.76918075323242
718 => 0.77157139085807
719 => 0.80609680483938
720 => 0.83886553391745
721 => 0.81828408229627
722 => 0.83769146416611
723 => 0.85868212996539
724 => 0.89917652990499
725 => 0.8855394406155
726 => 0.87509364394018
727 => 0.86522241655573
728 => 0.88576287372956
729 => 0.91218784374187
730 => 0.91787952918731
731 => 0.9271022340001
801 => 0.91740568758814
802 => 0.92908410970179
803 => 0.97031407152169
804 => 0.95917337189102
805 => 0.94335178745862
806 => 0.97589888254781
807 => 0.98767754973695
808 => 1.0703464046063
809 => 1.1747192487589
810 => 1.1315082059307
811 => 1.1046857172356
812 => 1.1109896383168
813 => 1.1491030677576
814 => 1.1613438916342
815 => 1.1280691126726
816 => 1.1398223271331
817 => 1.204583694361
818 => 1.2393260900854
819 => 1.1921412501655
820 => 1.0619601482042
821 => 0.94192722688819
822 => 0.97376536277409
823 => 0.97015590621701
824 => 1.0397339161583
825 => 0.9589076698893
826 => 0.96026857658601
827 => 1.0312853860885
828 => 1.0123393188496
829 => 0.98164911635148
830 => 0.94215129933024
831 => 0.86913593146059
901 => 0.80446418395429
902 => 0.93130037382811
903 => 0.92583096668411
904 => 0.91791045461887
905 => 0.93553669713115
906 => 1.0211247274746
907 => 1.0191516463537
908 => 1.0065999109378
909 => 1.0161202916249
910 => 0.97998014758667
911 => 0.9892942856011
912 => 0.94190821306018
913 => 0.96332869686587
914 => 0.98158326896059
915 => 0.98524814457216
916 => 0.99350529645822
917 => 0.922948837651
918 => 0.95462661622665
919 => 0.97323434333338
920 => 0.88916395531024
921 => 0.97157254206907
922 => 0.92172060667712
923 => 0.90480011105415
924 => 0.92758132930469
925 => 0.91870346639699
926 => 0.91107080119456
927 => 0.90681164286576
928 => 0.92353965527765
929 => 0.92275927350434
930 => 0.89538899843119
1001 => 0.8596855903534
1002 => 0.87166882602873
1003 => 0.86731520416445
1004 => 0.8515371168999
1005 => 0.86216964266269
1006 => 0.81534938020154
1007 => 0.73479755214261
1008 => 0.78801255712756
1009 => 0.78596383732243
1010 => 0.78493077989463
1011 => 0.82492038538611
1012 => 0.82107630753528
1013 => 0.81409926859469
1014 => 0.8514089781083
1015 => 0.83779043224942
1016 => 0.87975958165353
1017 => 0.90740317784546
1018 => 0.90039186767453
1019 => 0.92639080350614
1020 => 0.87194489557595
1021 => 0.89002964219968
1022 => 0.89375688341445
1023 => 0.85094858208434
1024 => 0.82170524621219
1025 => 0.81975504910795
1026 => 0.76905113468556
1027 => 0.7961367565023
1028 => 0.81997098282185
1029 => 0.80855623802547
1030 => 0.80494267082873
1031 => 0.82340360194975
1101 => 0.82483817440503
1102 => 0.79212977039535
1103 => 0.79893088332941
1104 => 0.82729265485538
1105 => 0.79821623945576
1106 => 0.7417255139398
1107 => 0.72771503296646
1108 => 0.72584577654022
1109 => 0.68784824095525
1110 => 0.72865128029882
1111 => 0.71083966017188
1112 => 0.7671063547369
1113 => 0.7349671205657
1114 => 0.73358166241645
1115 => 0.73148733922134
1116 => 0.69878129068493
1117 => 0.70594183673659
1118 => 0.72974458239425
1119 => 0.73823767020203
1120 => 0.73735177156186
1121 => 0.72962793595499
1122 => 0.73316386834337
1123 => 0.72177339811986
1124 => 0.71775118601181
1125 => 0.70505597820217
1126 => 0.68639752986268
1127 => 0.68899210154321
1128 => 0.65202483313409
1129 => 0.63188310330338
1130 => 0.62630813794997
1201 => 0.61885306128555
1202 => 0.62715020869642
1203 => 0.65192010950738
1204 => 0.62204235390175
1205 => 0.57081903759677
1206 => 0.57389764618699
1207 => 0.5808143656421
1208 => 0.56792510469617
1209 => 0.55572650092453
1210 => 0.56633219719997
1211 => 0.5446282028165
1212 => 0.58343718967128
1213 => 0.58238751533779
1214 => 0.59685310570561
1215 => 0.6058987362264
1216 => 0.58505148643363
1217 => 0.57980845948771
1218 => 0.58279512591839
1219 => 0.53343218270083
1220 => 0.59281910011803
1221 => 0.59333268064595
1222 => 0.58893509236212
1223 => 0.62055679252141
1224 => 0.68728844291313
1225 => 0.66218131176135
1226 => 0.65245907171232
1227 => 0.63397708627221
1228 => 0.65860323451945
1229 => 0.65671233056182
1230 => 0.64816094576138
1231 => 0.64298904155213
]
'min_raw' => 0.48300132365449
'max_raw' => 1.2393260900854
'avg_raw' => 0.86116370686995
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.4830013'
'max' => '$1.23'
'avg' => '$0.861163'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.29701479573044
'max_diff' => 0.72036600258165
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.015160859636264
]
1 => [
'year' => 2028
'avg' => 0.026020436364829
]
2 => [
'year' => 2029
'avg' => 0.071083142421345
]
3 => [
'year' => 2030
'avg' => 0.054840538517876
]
4 => [
'year' => 2031
'avg' => 0.053860205137672
]
5 => [
'year' => 2032
'avg' => 0.094433890036716
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.015160859636264
'min' => '$0.01516'
'max_raw' => 0.094433890036716
'max' => '$0.094433'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.094433890036716
]
1 => [
'year' => 2033
'avg' => 0.24289367569683
]
2 => [
'year' => 2034
'avg' => 0.15395768458049
]
3 => [
'year' => 2035
'avg' => 0.1815934420211
]
4 => [
'year' => 2036
'avg' => 0.35247330771391
]
5 => [
'year' => 2037
'avg' => 0.86116370686995
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.094433890036716
'min' => '$0.094433'
'max_raw' => 0.86116370686995
'max' => '$0.861163'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.86116370686995
]
]
]
]
'prediction_2025_max_price' => '$0.025922'
'last_price' => 0.025134954370527
'sma_50day_nextmonth' => '$0.02457'
'sma_200day_nextmonth' => '$0.031121'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.025237'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.025397'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.026086'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.027134'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.03361'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.035467'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.036214'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.025269'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.025433'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.025968'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0278015'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.031567'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.034201'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.049541'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.035085'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.032634'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.025729'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0264036'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.028583'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.031697'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.050458'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.081295'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.040647'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '28.93'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 62.09
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.025440'
'vwma_10_action' => 'SELL'
'hma_9' => '0.025013'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 18.15
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -74.35
'cci_20_action' => 'NEUTRAL'
'adx_14' => 37.7
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.005210'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -81.85
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 15.76
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.002559'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 30
'buy_signals' => 2
'sell_pct' => 93.75
'buy_pct' => 6.25
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767708773
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de ESAB pour 2026
La prévision du prix de ESAB pour 2026 suggère que le prix moyen pourrait varier entre $0.008684 à la baisse et $0.025922 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, ESAB pourrait potentiellement gagner 3.13% d'ici 2026 si $ESAB atteint l'objectif de prix prévu.
Prévision du prix de ESAB de 2027 à 2032
La prévision du prix de $ESAB pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.01516 à la baisse et $0.094433 à la hausse. Compte tenu de la volatilité des prix sur le marché, si ESAB atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de ESAB | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.008359 | $0.01516 | $0.021961 |
| 2028 | $0.015087 | $0.02602 | $0.036953 |
| 2029 | $0.033142 | $0.071083 | $0.109023 |
| 2030 | $0.028186 | $0.05484 | $0.081494 |
| 2031 | $0.033324 | $0.05386 | $0.074395 |
| 2032 | $0.050867 | $0.094433 | $0.137999 |
Prévision du prix de ESAB de 2032 à 2037
La prévision du prix de ESAB pour 2032-2037 est actuellement estimée entre $0.094433 à la baisse et $0.861163 à la hausse. Par rapport au prix actuel, ESAB pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de ESAB | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.050867 | $0.094433 | $0.137999 |
| 2033 | $0.118206 | $0.242893 | $0.367581 |
| 2034 | $0.095031 | $0.153957 | $0.212883 |
| 2035 | $0.112357 | $0.181593 | $0.250829 |
| 2036 | $0.185986 | $0.352473 | $0.51896 |
| 2037 | $0.4830013 | $0.861163 | $1.23 |
ESAB Histogramme des prix potentiels
Prévision du prix de ESAB basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour ESAB est Baissier, avec 2 indicateurs techniques montrant des signaux haussiers et 30 indiquant des signaux baissiers. La prévision du prix de $ESAB a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de ESAB et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de ESAB devrait augmenter au cours du prochain mois, atteignant $0.031121 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour ESAB devrait atteindre $0.02457 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 28.93, ce qui suggère que le marché de $ESAB est dans un état BUY.
Moyennes Mobiles et Oscillateurs Populaires de $ESAB pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.025237 | SELL |
| SMA 5 | $0.025397 | SELL |
| SMA 10 | $0.026086 | SELL |
| SMA 21 | $0.027134 | SELL |
| SMA 50 | $0.03361 | SELL |
| SMA 100 | $0.035467 | SELL |
| SMA 200 | $0.036214 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.025269 | SELL |
| EMA 5 | $0.025433 | SELL |
| EMA 10 | $0.025968 | SELL |
| EMA 21 | $0.0278015 | SELL |
| EMA 50 | $0.031567 | SELL |
| EMA 100 | $0.034201 | SELL |
| EMA 200 | $0.049541 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.035085 | SELL |
| SMA 50 | $0.032634 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.031697 | SELL |
| EMA 50 | $0.050458 | SELL |
| EMA 100 | $0.081295 | SELL |
| EMA 200 | $0.040647 | SELL |
Oscillateurs de ESAB
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 28.93 | BUY |
| Stoch RSI (14) | 62.09 | NEUTRAL |
| Stochastique Rapide (14) | 18.15 | BUY |
| Indice de Canal des Matières Premières (20) | -74.35 | NEUTRAL |
| Indice Directionnel Moyen (14) | 37.7 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.005210 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -81.85 | BUY |
| Oscillateur Ultime (7, 14, 28) | 15.76 | BUY |
| VWMA (10) | 0.025440 | SELL |
| Moyenne Mobile de Hull (9) | 0.025013 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.002559 | SELL |
Prévision du cours de ESAB basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de ESAB
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de ESAB par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.035318 | $0.049628 | $0.069736 | $0.097991 | $0.137694 | $0.193484 |
| Action Amazon.com | $0.052445 | $0.10943 | $0.228333 | $0.476432 | $0.994104 | $2.07 |
| Action Apple | $0.035652 | $0.050569 | $0.071729 | $0.101742 | $0.144313 | $0.204698 |
| Action Netflix | $0.039659 | $0.062575 | $0.098734 | $0.155787 | $0.2458087 | $0.387847 |
| Action Google | $0.032549 | $0.042151 | $0.054586 | $0.070688 | $0.091541 | $0.118546 |
| Action Tesla | $0.056979 | $0.129167 | $0.292812 | $0.663783 | $1.50 | $3.41 |
| Action Kodak | $0.018848 | $0.014134 | $0.010599 | $0.007948 | $0.00596 | $0.004469 |
| Action Nokia | $0.01665 | $0.01103 | $0.0073072 | $0.00484 | $0.0032067 | $0.002124 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à ESAB
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans ESAB maintenant ?", "Devrais-je acheter $ESAB aujourd'hui ?", " ESAB sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de ESAB avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme ESAB en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de ESAB afin de prendre une décision responsable concernant cet investissement.
Le cours de ESAB est de $0.02513 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de ESAB basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si ESAB présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.025788 | $0.026458 | $0.027146 | $0.027851 |
| Si ESAB présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.026441 | $0.027816 | $0.029262 | $0.030783 |
| Si ESAB présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0284016 | $0.032092 | $0.036263 | $0.040976 |
| Si ESAB présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.031668 | $0.039899 | $0.050271 | $0.063338 |
| Si ESAB présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0382017 | $0.058061 | $0.088245 | $0.134121 |
| Si ESAB présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0578018 | $0.132924 | $0.305681 | $0.702963 |
| Si ESAB présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.090468 | $0.325626 | $1.17 | $4.21 |
Boîte à questions
Est-ce que $ESAB est un bon investissement ?
La décision d'acquérir ESAB dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de ESAB a connu une baisse de 0% au cours des 24 heures précédentes, et ESAB a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans ESAB dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que ESAB peut monter ?
Il semble que la valeur moyenne de ESAB pourrait potentiellement s'envoler jusqu'à $0.025922 pour la fin de cette année. En regardant les perspectives de ESAB sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.081494. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de ESAB la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de ESAB, le prix de ESAB va augmenter de 0.86% durant la prochaine semaine et atteindre $0.02535 d'ici 13 janvier 2026.
Quel sera le prix de ESAB le mois prochain ?
Basé sur notre nouveau pronostic expérimental de ESAB, le prix de ESAB va diminuer de -11.62% durant le prochain mois et atteindre $0.022214 d'ici 5 février 2026.
Jusqu'où le prix de ESAB peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de ESAB en 2026, $ESAB devrait fluctuer dans la fourchette de $0.008684 et $0.025922. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de ESAB ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera ESAB dans 5 ans ?
L'avenir de ESAB semble suivre une tendance haussière, avec un prix maximum de $0.081494 prévue après une période de cinq ans. Selon la prévision de ESAB pour 2030, la valeur de ESAB pourrait potentiellement atteindre son point le plus élevé d'environ $0.081494, tandis que son point le plus bas devrait être autour de $0.028186.
Combien vaudra ESAB en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de ESAB, il est attendu que la valeur de $ESAB en 2026 augmente de 3.13% jusqu'à $0.025922 si le meilleur scénario se produit. Le prix sera entre $0.025922 et $0.008684 durant 2026.
Combien vaudra ESAB en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de ESAB, le valeur de $ESAB pourrait diminuer de -12.62% jusqu'à $0.021961 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.021961 et $0.008359 tout au long de l'année.
Combien vaudra ESAB en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de ESAB suggère que la valeur de $ESAB en 2028 pourrait augmenter de 47.02%, atteignant $0.036953 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.036953 et $0.015087 durant l'année.
Combien vaudra ESAB en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de ESAB pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.109023 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.109023 et $0.033142.
Combien vaudra ESAB en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de ESAB, il est prévu que la valeur de $ESAB en 2030 augmente de 224.23%, atteignant $0.081494 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.081494 et $0.028186 au cours de 2030.
Combien vaudra ESAB en 2031 ?
Notre simulation expérimentale indique que le prix de ESAB pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.074395 dans des conditions idéales. Il est probable que le prix fluctue entre $0.074395 et $0.033324 durant l'année.
Combien vaudra ESAB en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de ESAB, $ESAB pourrait connaître une 449.04% hausse en valeur, atteignant $0.137999 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.137999 et $0.050867 tout au long de l'année.
Combien vaudra ESAB en 2033 ?
Selon notre prédiction expérimentale de prix de ESAB, la valeur de $ESAB est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.367581. Tout au long de l'année, le prix de $ESAB pourrait osciller entre $0.367581 et $0.118206.
Combien vaudra ESAB en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de ESAB suggèrent que $ESAB pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.212883 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.212883 et $0.095031.
Combien vaudra ESAB en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de ESAB, $ESAB pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.250829 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.250829 et $0.112357.
Combien vaudra ESAB en 2036 ?
Notre récente simulation de prédiction de prix de ESAB suggère que la valeur de $ESAB pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.51896 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.51896 et $0.185986.
Combien vaudra ESAB en 2037 ?
Selon la simulation expérimentale, la valeur de ESAB pourrait augmenter de 4830.69% en 2037, avec un maximum de $1.23 sous des conditions favorables. Il est prévu que le prix chute entre $1.23 et $0.4830013 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de ESAB ?
Les traders de ESAB utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de ESAB
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de ESAB. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de $ESAB sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de $ESAB au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de $ESAB.
Comment lire les graphiques de ESAB et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de ESAB dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de $ESAB au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de ESAB ?
L'action du prix de ESAB est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de $ESAB. La capitalisation boursière de ESAB peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de $ESAB, de grands détenteurs de ESAB, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de ESAB.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


