Prédiction du prix de EquityPay jusqu'à $0.014021 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.004697 | $0.014021 |
| 2027 | $0.004522 | $0.011879 |
| 2028 | $0.00816 | $0.019988 |
| 2029 | $0.017927 | $0.058972 |
| 2030 | $0.015246 | $0.044081 |
| 2031 | $0.018026 | $0.040241 |
| 2032 | $0.027515 | $0.074646 |
| 2033 | $0.063939 | $0.19883 |
| 2034 | $0.0514044 | $0.115152 |
| 2035 | $0.060775 | $0.135677 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur EquityPay aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.80, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de EquityPay pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'EquityPay'
'name_with_ticker' => 'EquityPay <small>EQPAY</small>'
'name_lang' => 'EquityPay'
'name_lang_with_ticker' => 'EquityPay <small>EQPAY</small>'
'name_with_lang' => 'EquityPay'
'name_with_lang_with_ticker' => 'EquityPay <small>EQPAY</small>'
'image' => '/uploads/coins/equitypay.png?1717136438'
'price_for_sd' => 0.01359
'ticker' => 'EQPAY'
'marketcap' => '$177.75K'
'low24h' => '$0.01359'
'high24h' => '$0.02244'
'volume24h' => '$451.56'
'current_supply' => '13.07M'
'max_supply' => '13.08M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01359'
'change_24h_pct' => '-4.0233%'
'ath_price' => '$0.5907'
'ath_days' => 892
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 juil. 2023'
'ath_pct' => '-97.70%'
'fdv' => '$177.77K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.670372'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013712'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0120163'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004697'
'current_year_max_price_prediction' => '$0.014021'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015246'
'grand_prediction_max_price' => '$0.044081'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013853555532546
107 => 0.013905279680064
108 => 0.014021816825522
109 => 0.013026019677002
110 => 0.01347310336162
111 => 0.013735723140256
112 => 0.012549197426187
113 => 0.01371226934186
114 => 0.013008685064095
115 => 0.012769877992741
116 => 0.01309140025388
117 => 0.012966102716024
118 => 0.012858379250693
119 => 0.012798267706114
120 => 0.013034358169578
121 => 0.013023344267268
122 => 0.012637054445857
123 => 0.012133155121014
124 => 0.012302280274363
125 => 0.012240835520594
126 => 0.012018151806406
127 => 0.012168213742835
128 => 0.011507416919412
129 => 0.010370550329944
130 => 0.011121599222112
131 => 0.011092684656748
201 => 0.01107810462172
202 => 0.011642497106717
203 => 0.011588243792035
204 => 0.011489773494636
205 => 0.012016343322173
206 => 0.011824138251759
207 => 0.012416468989567
208 => 0.012806616323037
209 => 0.012707662339325
210 => 0.0130745977922
211 => 0.012306176576311
212 => 0.012561415280521
213 => 0.012614019623713
214 => 0.012009845532239
215 => 0.011597120305279
216 => 0.011569596238053
217 => 0.010853987571544
218 => 0.011236259945002
219 => 0.011572643814139
220 => 0.011411542045265
221 => 0.011360542038018
222 => 0.011621090014491
223 => 0.011641336823705
224 => 0.011179707427955
225 => 0.011275694797233
226 => 0.011675978083696
227 => 0.011265608685435
228 => 0.010468327978076
301 => 0.010270591339383
302 => 0.010244209626772
303 => 0.0097079321799446
304 => 0.010283805047095
305 => 0.01003242110815
306 => 0.010826539959233
307 => 0.010372943530439
308 => 0.010353389894986
309 => 0.010323831707103
310 => 0.0098622355552768
311 => 0.0099632957765609
312 => 0.010299235344016
313 => 0.010419102366314
314 => 0.010406599253846
315 => 0.010297589056864
316 => 0.01034749336682
317 => 0.010186734196637
318 => 0.010129966787733
319 => 0.0099507932301254
320 => 0.0096874575984006
321 => 0.0097240760331232
322 => 0.0092023392411601
323 => 0.0089180693462313
324 => 0.008839387185932
325 => 0.0087341701128259
326 => 0.0088512717343112
327 => 0.0092008612263813
328 => 0.0087791821293967
329 => 0.0080562428949662
330 => 0.008099692774784
331 => 0.0081973117543494
401 => 0.0080153994317434
402 => 0.0078432346851407
403 => 0.0079929179641443
404 => 0.0076865990801765
405 => 0.0082343289280212
406 => 0.0082195143706321
407 => 0.008423674186522
408 => 0.0085513395091792
409 => 0.0082571122725935
410 => 0.0081831149182673
411 => 0.0082252671742837
412 => 0.007528584277642
413 => 0.0083667403305841
414 => 0.0083739887389351
415 => 0.0083119234659973
416 => 0.008758215689024
417 => 0.0097000314816455
418 => 0.0093456824960088
419 => 0.0092084678585155
420 => 0.0089476227323374
421 => 0.0092951833755186
422 => 0.009268496140913
423 => 0.009147806345193
424 => 0.0090748127801664
425 => 0.0092093056618327
426 => 0.0090581476237611
427 => 0.0090309954865784
428 => 0.0088664830770675
429 => 0.0088077596317098
430 => 0.0087642831306147
501 => 0.0087164197748217
502 => 0.0088219944108958
503 => 0.0085827483960518
504 => 0.008294241155726
505 => 0.0082702549003845
506 => 0.0083364830602755
507 => 0.0083071820296304
508 => 0.0082701146183227
509 => 0.0081993428354276
510 => 0.0081783463592425
511 => 0.0082465747208019
512 => 0.0081695488785619
513 => 0.0082832047046018
514 => 0.0082522966087826
515 => 0.008079646498044
516 => 0.0078644605368058
517 => 0.007862544930383
518 => 0.0078161834680099
519 => 0.0077571351751853
520 => 0.0077407092909634
521 => 0.0079803120558872
522 => 0.0084762826085722
523 => 0.0083789117215107
524 => 0.0084492721663825
525 => 0.0087953759168601
526 => 0.008905391891434
527 => 0.0088273051585526
528 => 0.0087204152224046
529 => 0.0087251178371195
530 => 0.0090903931067214
531 => 0.0091131748772307
601 => 0.00917073706163
602 => 0.0092447207356544
603 => 0.0088399048981534
604 => 0.0087060510475777
605 => 0.008642623667246
606 => 0.0084472918853098
607 => 0.0086579404656467
608 => 0.008535204558756
609 => 0.0085517658258511
610 => 0.0085409802789292
611 => 0.0085468699168641
612 => 0.0082341758263659
613 => 0.0083481051182259
614 => 0.0081586755735591
615 => 0.0079050506777147
616 => 0.0079042004381314
617 => 0.0079662747720792
618 => 0.0079293505292782
619 => 0.0078299883413095
620 => 0.0078441022711342
621 => 0.0077204493944954
622 => 0.0078591159691657
623 => 0.0078630924303544
624 => 0.007809698245887
625 => 0.0080233332364664
626 => 0.0081108596664163
627 => 0.0080757144703856
628 => 0.0081083937857729
629 => 0.0083829579214713
630 => 0.0084277238556632
701 => 0.0084476059265597
702 => 0.0084209665854281
703 => 0.008113412314149
704 => 0.0081270536539019
705 => 0.0080269625539657
706 => 0.0079423961218599
707 => 0.0079457783356516
708 => 0.0079892564746207
709 => 0.0081791280574577
710 => 0.0085787016099969
711 => 0.0085938651342313
712 => 0.0086122437679546
713 => 0.0085374886282407
714 => 0.0085149417627926
715 => 0.0085446868981583
716 => 0.0086947457159128
717 => 0.0090807377357487
718 => 0.0089443023763985
719 => 0.0088333783055039
720 => 0.0089306886205932
721 => 0.0089157084603287
722 => 0.0087892608321955
723 => 0.0087857118684207
724 => 0.0085430184422809
725 => 0.0084533002084989
726 => 0.0083783249370573
727 => 0.0082964538979221
728 => 0.0082479180015807
729 => 0.0083224911975315
730 => 0.0083395469697696
731 => 0.0081764913735067
801 => 0.0081542674982472
802 => 0.0082874222179549
803 => 0.0082288257903198
804 => 0.008289093669264
805 => 0.0083030763341474
806 => 0.0083008248030531
807 => 0.0082396434028452
808 => 0.0082786386028821
809 => 0.0081864033297662
810 => 0.0080861113235427
811 => 0.008022131271985
812 => 0.0079663001912785
813 => 0.0079972785197759
814 => 0.0078868464351019
815 => 0.007851516988656
816 => 0.0082654279065293
817 => 0.0085711883518546
818 => 0.0085667424738852
819 => 0.0085396793351331
820 => 0.0084994690005047
821 => 0.00869180407948
822 => 0.0086247983838263
823 => 0.0086735506259276
824 => 0.0086859601176675
825 => 0.0087235199116645
826 => 0.008736944309645
827 => 0.008696366455104
828 => 0.0085601822190966
829 => 0.0082208240509748
830 => 0.0080628519076343
831 => 0.0080107184690977
901 => 0.008012613420573
902 => 0.0079603421994481
903 => 0.0079757384167012
904 => 0.0079549880234029
905 => 0.0079156917985552
906 => 0.0079948520886254
907 => 0.0080039745746269
908 => 0.0079854976170295
909 => 0.0079898496094193
910 => 0.0078368682921245
911 => 0.0078484991294204
912 => 0.0077837371493811
913 => 0.0077715950588411
914 => 0.0076078824127724
915 => 0.0073178417297343
916 => 0.0074785524230677
917 => 0.0072844365048641
918 => 0.0072109218653042
919 => 0.0075589287351085
920 => 0.0075239984975882
921 => 0.0074642131147627
922 => 0.0073757780731982
923 => 0.0073429766560412
924 => 0.0071436856290619
925 => 0.0071319104520116
926 => 0.007230684466293
927 => 0.0071851036573084
928 => 0.0071210909386919
929 => 0.006889243360728
930 => 0.0066285699210015
1001 => 0.006636438013612
1002 => 0.0067193533847872
1003 => 0.0069604410091404
1004 => 0.0068662439034474
1005 => 0.0067979028224798
1006 => 0.00678510459234
1007 => 0.0069453012374501
1008 => 0.0071720130525158
1009 => 0.0072783811637536
1010 => 0.0071729735959645
1011 => 0.0070518870576348
1012 => 0.007059257034162
1013 => 0.0071082861861893
1014 => 0.0071134384568325
1015 => 0.0070346235682772
1016 => 0.0070568094977447
1017 => 0.0070231070421596
1018 => 0.0068162751344443
1019 => 0.0068125342011048
1020 => 0.0067617743153364
1021 => 0.0067602373261686
1022 => 0.0066738820978296
1023 => 0.0066618004044395
1024 => 0.0064903368571848
1025 => 0.0066031946832273
1026 => 0.0065274955788198
1027 => 0.0064133991728642
1028 => 0.0063937289094719
1029 => 0.0063931375976018
1030 => 0.0065102890950287
1031 => 0.0066018256997709
1101 => 0.0065288123971506
1102 => 0.0065121886834473
1103 => 0.0066896864546165
1104 => 0.0066670982453071
1105 => 0.0066475370017235
1106 => 0.0071517134960736
1107 => 0.006752618459413
1108 => 0.0065785902438807
1109 => 0.0063631972800977
1110 => 0.006433330315211
1111 => 0.0064481083761781
1112 => 0.0059301271257798
1113 => 0.0057199821970037
1114 => 0.0056478683765923
1115 => 0.0056063658534058
1116 => 0.0056252790743778
1117 => 0.0054361239909376
1118 => 0.0055632393353457
1119 => 0.0053994470219677
1120 => 0.0053719867076036
1121 => 0.0056648676538976
1122 => 0.0057056203265887
1123 => 0.0055317567640253
1124 => 0.005643405317145
1125 => 0.0056029199997528
1126 => 0.0054022547710681
1127 => 0.0053945908353259
1128 => 0.0052939040772957
1129 => 0.0051363487977768
1130 => 0.005064341807264
1201 => 0.0050268399414116
1202 => 0.0050423139421591
1203 => 0.005034489813869
1204 => 0.0049834320843313
1205 => 0.00503741638316
1206 => 0.0048995088075051
1207 => 0.0048445928996824
1208 => 0.0048197886581583
1209 => 0.0046973877471007
1210 => 0.0048921820285256
1211 => 0.00493055895592
1212 => 0.0049690114977166
1213 => 0.0053037146213909
1214 => 0.0052869937991933
1215 => 0.0054381418884885
1216 => 0.005432268551682
1217 => 0.0053891586681783
1218 => 0.0052072851609078
1219 => 0.0052797766993223
1220 => 0.0050566590117689
1221 => 0.0052238339538119
1222 => 0.005147542291656
1223 => 0.0051980396660945
1224 => 0.0051072408336893
1225 => 0.0051574926565342
1226 => 0.0049396595490954
1227 => 0.0047362500583635
1228 => 0.0048181079753272
1229 => 0.0049070968926551
1230 => 0.0051000475393763
1231 => 0.0049851277259974
]
'min_raw' => 0.0046973877471007
'max_raw' => 0.014021816825522
'avg_raw' => 0.0093596022863114
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004697'
'max' => '$0.014021'
'avg' => '$0.009359'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0088985322528993
'max_diff' => 0.00042589682552216
'year' => 2026
]
1 => [
'items' => [
101 => 0.0050264572364877
102 => 0.0048880102948217
103 => 0.004602354708751
104 => 0.004603971488346
105 => 0.0045600295997743
106 => 0.0045220573924275
107 => 0.004998327648981
108 => 0.00493909591386
109 => 0.0048447178960025
110 => 0.0049710466233381
111 => 0.0050044499439521
112 => 0.0050054008895304
113 => 0.0050975670679781
114 => 0.0051467561739373
115 => 0.0051554259670604
116 => 0.0053004514402298
117 => 0.005349062065904
118 => 0.0055492823534225
119 => 0.0051425828219618
120 => 0.0051342071127474
121 => 0.0049728243275996
122 => 0.0048704728138979
123 => 0.0049798324233083
124 => 0.0050767101081705
125 => 0.0049758345873137
126 => 0.0049890068007391
127 => 0.0048535896558219
128 => 0.0049019949131609
129 => 0.0049436880416736
130 => 0.0049206675467177
131 => 0.0048862047515642
201 => 0.0050687672427903
202 => 0.0050584663515672
203 => 0.0052284727404905
204 => 0.0053610048779297
205 => 0.0055985261611742
206 => 0.005350660319844
207 => 0.0053416271034085
208 => 0.0054299282430395
209 => 0.0053490485474595
210 => 0.0054001617231939
211 => 0.0055902910383567
212 => 0.0055943081711843
213 => 0.0055270160205397
214 => 0.0055229212870574
215 => 0.0055358454806842
216 => 0.005611542886436
217 => 0.00558509188692
218 => 0.0056157016532173
219 => 0.0056539796346854
220 => 0.0058123135955654
221 => 0.0058504873774965
222 => 0.0057577448782407
223 => 0.0057661184875297
224 => 0.0057314302469695
225 => 0.0056979218412307
226 => 0.0057732438438219
227 => 0.0059108962840148
228 => 0.0059100399553285
301 => 0.0059419726458722
302 => 0.0059618664475362
303 => 0.0058764676876414
304 => 0.0058208762351493
305 => 0.0058421935354108
306 => 0.0058762803627593
307 => 0.0058311396367124
308 => 0.0055525101643326
309 => 0.005637028547333
310 => 0.0056229605556639
311 => 0.005602926024801
312 => 0.0056879099124692
313 => 0.0056797130091841
314 => 0.0054341839321566
315 => 0.0054499019070508
316 => 0.0054351397942695
317 => 0.0054828392007099
318 => 0.0053464726229757
319 => 0.0053884180638438
320 => 0.0054147258511422
321 => 0.0054302213399669
322 => 0.005486201670958
323 => 0.0054796330252387
324 => 0.0054857933547173
325 => 0.0055687974073175
326 => 0.0059886034218183
327 => 0.0060114525369378
328 => 0.0058989351374181
329 => 0.0059438836192186
330 => 0.0058575923633139
331 => 0.0059155202615039
401 => 0.0059551530582364
402 => 0.0057760600707508
403 => 0.0057654553463357
404 => 0.0056788079357224
405 => 0.0057253673462258
406 => 0.0056512879763748
407 => 0.0056694644625499
408 => 0.0056186414226068
409 => 0.0057101127757381
410 => 0.0058123919617501
411 => 0.0058382317232642
412 => 0.0057702584354374
413 => 0.0057210412953929
414 => 0.0056346322106084
415 => 0.005778332444357
416 => 0.0058203547718903
417 => 0.0057781117189599
418 => 0.005768323080567
419 => 0.0057497736285001
420 => 0.0057722584345119
421 => 0.0058201259092698
422 => 0.0057975524921474
423 => 0.0058124626318492
424 => 0.0057556405545754
425 => 0.0058764959581844
426 => 0.0060684434245521
427 => 0.0060690605670431
428 => 0.0060464870282416
429 => 0.0060372504225177
430 => 0.0060604122432049
501 => 0.0060729765807801
502 => 0.0061478776617311
503 => 0.0062282495057821
504 => 0.0066033098329857
505 => 0.0064979943939351
506 => 0.0068307702286688
507 => 0.0070939527084092
508 => 0.0071728696265083
509 => 0.007100269775185
510 => 0.0068519096055752
511 => 0.0068397238707894
512 => 0.0072108788191454
513 => 0.0071060105462613
514 => 0.0070935367988898
515 => 0.0069608372015859
516 => 0.0070392790987573
517 => 0.0070221227051727
518 => 0.0069950404985799
519 => 0.0071447021740732
520 => 0.0074248554702066
521 => 0.0073811909517432
522 => 0.007348597414249
523 => 0.0072057820207857
524 => 0.0072917887866236
525 => 0.0072611634246598
526 => 0.0073927494149912
527 => 0.0073148007893054
528 => 0.0071052160659534
529 => 0.0071385931239475
530 => 0.007133548248777
531 => 0.0072373714223019
601 => 0.0072062062826593
602 => 0.0071274627550791
603 => 0.007423897936697
604 => 0.0074046490848618
605 => 0.0074319395558639
606 => 0.0074439536651849
607 => 0.0076243885364618
608 => 0.0076983069299521
609 => 0.007715087699398
610 => 0.00778530445616
611 => 0.0077133406425238
612 => 0.0080012472063984
613 => 0.0081926882715613
614 => 0.0084150569202152
615 => 0.0087399972829565
616 => 0.0088621778652137
617 => 0.0088401070366249
618 => 0.0090864731111623
619 => 0.0095291874706959
620 => 0.0089295922663746
621 => 0.0095609674724558
622 => 0.0093610813717878
623 => 0.0088871550229013
624 => 0.0088566397532577
625 => 0.0091775881791216
626 => 0.0098894208975466
627 => 0.009711114875121
628 => 0.0098897125423229
629 => 0.0096813688767583
630 => 0.0096710228577047
701 => 0.0098795937555182
702 => 0.010366931026867
703 => 0.010135415356814
704 => 0.0098034808738208
705 => 0.01004857613059
706 => 0.0098362519366814
707 => 0.0093578261020047
708 => 0.0097109785278661
709 => 0.0094748355578946
710 => 0.009543754630583
711 => 0.010040092029847
712 => 0.0099803714008219
713 => 0.010057655424762
714 => 0.0099212511453828
715 => 0.009793828039462
716 => 0.0095559833496967
717 => 0.0094855692626587
718 => 0.0095050291830826
719 => 0.0094855596192886
720 => 0.0093524877012704
721 => 0.0093237508332443
722 => 0.0092758547942097
723 => 0.0092906997794638
724 => 0.0092006412135983
725 => 0.0093706003344357
726 => 0.0094021462449378
727 => 0.0095258283196688
728 => 0.0095386694029669
729 => 0.0098831222205887
730 => 0.009693403396937
731 => 0.0098206831633777
801 => 0.0098092980630636
802 => 0.0088974264439521
803 => 0.0090230743075542
804 => 0.0092185429528475
805 => 0.0091304845930944
806 => 0.0090059906748862
807 => 0.0089054551609916
808 => 0.0087531335771571
809 => 0.0089675232813272
810 => 0.0092494229445077
811 => 0.0095458188436304
812 => 0.0099019190957978
813 => 0.0098224416649779
814 => 0.0095391617971143
815 => 0.0095518695250506
816 => 0.0096304236988461
817 => 0.0095286889063817
818 => 0.0094986853299848
819 => 0.0096263016681854
820 => 0.0096271804917699
821 => 0.0095101223179792
822 => 0.0093800335792304
823 => 0.0093794885026651
824 => 0.009356340468113
825 => 0.0096854868606815
826 => 0.0098664840961404
827 => 0.0098872351374941
828 => 0.0098650873857216
829 => 0.009873611176366
830 => 0.0097682928730544
831 => 0.010009019283252
901 => 0.010229933642624
902 => 0.010170723875165
903 => 0.010081960016581
904 => 0.010011255327771
905 => 0.010154068097509
906 => 0.010147708869681
907 => 0.010228004148416
908 => 0.010224361490765
909 => 0.010197361208584
910 => 0.01017072483943
911 => 0.010276335032287
912 => 0.010245920992792
913 => 0.010215459711893
914 => 0.010154364949662
915 => 0.010162668742526
916 => 0.010073920210273
917 => 0.010032861078396
918 => 0.0094154302496008
919 => 0.0092504325570125
920 => 0.0093023441899385
921 => 0.0093194348473827
922 => 0.009247627640118
923 => 0.0093505807295776
924 => 0.0093345355996396
925 => 0.0093969578141412
926 => 0.0093579591245781
927 => 0.009359559644401
928 => 0.0094742464750088
929 => 0.0095075405498469
930 => 0.0094906069146681
1001 => 0.0095024666522963
1002 => 0.0097757693002552
1003 => 0.0097369144034422
1004 => 0.009716273513917
1005 => 0.0097219911813779
1006 => 0.0097918258676062
1007 => 0.0098113757669177
1008 => 0.0097285414697881
1009 => 0.0097676066031738
1010 => 0.0099339409830264
1011 => 0.0099921486022643
1012 => 0.010177919381629
1013 => 0.010099000652743
1014 => 0.010243859395137
1015 => 0.010689105783271
1016 => 0.011044799406819
1017 => 0.010717688850943
1018 => 0.01137087489328
1019 => 0.011879473921212
1020 => 0.011859953043404
1021 => 0.011771267038776
1022 => 0.011192240567281
1023 => 0.010659411775412
1024 => 0.011105145684916
1025 => 0.011106281952317
1026 => 0.011067993014189
1027 => 0.010830183707891
1028 => 0.011059717765811
1029 => 0.011077937345784
1030 => 0.011067739225977
1031 => 0.010885411388411
1101 => 0.010607030480266
1102 => 0.010661425443368
1103 => 0.010750525502556
1104 => 0.010581840502293
1105 => 0.010527935423725
1106 => 0.010628155220644
1107 => 0.010951084287943
1108 => 0.010890036418371
1109 => 0.010888442211783
1110 => 0.011149630886138
1111 => 0.010962676163343
1112 => 0.010662111538049
1113 => 0.010586215006202
1114 => 0.010316833448175
1115 => 0.010502896249808
1116 => 0.010509592318798
1117 => 0.010407687623859
1118 => 0.010670380542415
1119 => 0.010667959780924
1120 => 0.010917347610412
1121 => 0.011394083474601
1122 => 0.011253089220813
1123 => 0.011089128243789
1124 => 0.011106955348136
1125 => 0.011302474681783
1126 => 0.011184259229388
1127 => 0.011226770330296
1128 => 0.01130241033614
1129 => 0.011348045829701
1130 => 0.011100389102903
1201 => 0.011042648473096
1202 => 0.010924531408717
1203 => 0.01089371687138
1204 => 0.010989920755723
1205 => 0.010964574431132
1206 => 0.010509029540128
1207 => 0.01046142256439
1208 => 0.010462882602369
1209 => 0.010343172598288
1210 => 0.010160586108371
1211 => 0.010640412502199
1212 => 0.010601875727609
1213 => 0.01055933411097
1214 => 0.010564545216269
1215 => 0.010772821591005
1216 => 0.010652010775449
1217 => 0.010973206129107
1218 => 0.010907178020411
1219 => 0.010839456539874
1220 => 0.010830095368417
1221 => 0.010804028376135
1222 => 0.010714634960501
1223 => 0.010606687039411
1224 => 0.010535410471619
1225 => 0.0097183592603784
1226 => 0.0098699992126164
1227 => 0.01004444715525
1228 => 0.010104665885991
1229 => 0.010001657580049
1230 => 0.010718702356263
1231 => 0.010849713346492
]
'min_raw' => 0.0045220573924275
'max_raw' => 0.011879473921212
'avg_raw' => 0.0082007656568196
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004522'
'max' => '$0.011879'
'avg' => '$0.00820076'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001753303546732
'max_diff' => -0.0021423429043105
'year' => 2027
]
2 => [
'items' => [
101 => 0.010452872511451
102 => 0.01037863979412
103 => 0.010723569040852
104 => 0.010515534539187
105 => 0.010609212462549
106 => 0.010406732031325
107 => 0.010818156635396
108 => 0.010815022269237
109 => 0.010654968805808
110 => 0.0107902448971
111 => 0.010766737347256
112 => 0.010586037381239
113 => 0.010823885146627
114 => 0.010824003116151
115 => 0.010669955137463
116 => 0.010490060823793
117 => 0.010457899969423
118 => 0.010433671085858
119 => 0.01060325364245
120 => 0.010755300832418
121 => 0.011038222957255
122 => 0.011109356301503
123 => 0.011386994479717
124 => 0.011221674462548
125 => 0.011294958684907
126 => 0.011374519074963
127 => 0.011412663251692
128 => 0.011350509362641
129 => 0.011781795733841
130 => 0.011818209517844
131 => 0.011830418744642
201 => 0.011684991406878
202 => 0.011814164920504
203 => 0.011753728911256
204 => 0.011910966617713
205 => 0.011935623497798
206 => 0.01191473999756
207 => 0.011922566480481
208 => 0.011554539646792
209 => 0.011535455513968
210 => 0.011275242008778
211 => 0.011381280935544
212 => 0.011183046244533
213 => 0.011245908507096
214 => 0.011273617593461
215 => 0.011259143939221
216 => 0.011387276217364
217 => 0.011278337605247
218 => 0.010990830696704
219 => 0.010703245457097
220 => 0.010699635058675
221 => 0.010623918941388
222 => 0.010569190056687
223 => 0.010579732781492
224 => 0.010616886718813
225 => 0.010567030602308
226 => 0.010577669932534
227 => 0.010754353703766
228 => 0.010789786374036
229 => 0.010669372316022
301 => 0.010185892497428
302 => 0.010067245337228
303 => 0.010152526563104
304 => 0.01011176762995
305 => 0.0081609856684754
306 => 0.0086192929539659
307 => 0.0083469823275723
308 => 0.008472475592624
309 => 0.0081945169575709
310 => 0.0083271733872785
311 => 0.0083026765885486
312 => 0.009039621141319
313 => 0.0090281147657616
314 => 0.0090336222588371
315 => 0.0087707352646469
316 => 0.0091895213845515
317 => 0.0093958304862783
318 => 0.0093576481622876
319 => 0.0093672578306302
320 => 0.0092021318901503
321 => 0.0090352210388883
322 => 0.008850091217443
323 => 0.009194039542951
324 => 0.0091557983605482
325 => 0.009243509874237
326 => 0.009466584949263
327 => 0.0094994336014404
328 => 0.009543582523085
329 => 0.0095277582774096
330 => 0.0099047560088121
331 => 0.0098590990960282
401 => 0.0099691191194472
402 => 0.0097427995840349
403 => 0.0094866975472684
404 => 0.0095353741718514
405 => 0.0095306862214714
406 => 0.0094710032325546
407 => 0.0094171240987673
408 => 0.0093274305213632
409 => 0.0096112342724215
410 => 0.009599712358415
411 => 0.0097862387534196
412 => 0.0097532684012818
413 => 0.0095330843204918
414 => 0.0095409482380125
415 => 0.0095938368626087
416 => 0.0097768849962079
417 => 0.0098312261451275
418 => 0.0098060531598276
419 => 0.0098656357488502
420 => 0.0099127273978358
421 => 0.009871549734927
422 => 0.01045453860571
423 => 0.010212440980718
424 => 0.010330437678635
425 => 0.010358579195811
426 => 0.010286495291316
427 => 0.01030212770907
428 => 0.010325806562388
429 => 0.01046957992294
430 => 0.010846882822186
501 => 0.011013987707874
502 => 0.011516731001277
503 => 0.01100011197333
504 => 0.010969457938194
505 => 0.011060017186729
506 => 0.011355180720739
507 => 0.011594383041752
508 => 0.011673740251546
509 => 0.011684228616865
510 => 0.011833108018004
511 => 0.011918442914301
512 => 0.011815030142789
513 => 0.011727398646701
514 => 0.011413513504935
515 => 0.011449846564775
516 => 0.011700145317313
517 => 0.012053707047795
518 => 0.012357099794377
519 => 0.012250862228829
520 => 0.01306137986193
521 => 0.013141739374584
522 => 0.013130636288269
523 => 0.013313707217195
524 => 0.012950348705024
525 => 0.012795005901332
526 => 0.011746345570815
527 => 0.012040976349391
528 => 0.012469239489111
529 => 0.012412557256664
530 => 0.012101541117094
531 => 0.012356863860746
601 => 0.012272446177014
602 => 0.012205862447362
603 => 0.01251089542079
604 => 0.012175499136442
605 => 0.012465893654609
606 => 0.012093459681313
607 => 0.01225134751308
608 => 0.012161722743594
609 => 0.01221972095345
610 => 0.011880664603729
611 => 0.012063611179911
612 => 0.011873053424688
613 => 0.0118729630755
614 => 0.011868756502492
615 => 0.01209294685645
616 => 0.012100257695844
617 => 0.011934580685536
618 => 0.01191070403999
619 => 0.011998988512832
620 => 0.011895630516874
621 => 0.011943991072655
622 => 0.011897095308842
623 => 0.011886538084632
624 => 0.011802416325963
625 => 0.011766174359352
626 => 0.0117803857683
627 => 0.011731874903075
628 => 0.011702645352063
629 => 0.011862942009099
630 => 0.011777301971593
701 => 0.0118498164451
702 => 0.011767177050483
703 => 0.01148071290447
704 => 0.011315964344794
705 => 0.010774860128215
706 => 0.010928316612799
707 => 0.011030058420841
708 => 0.01099643275389
709 => 0.011068673697906
710 => 0.011073108705152
711 => 0.011049622437843
712 => 0.011022428349077
713 => 0.011009191770592
714 => 0.011107846382087
715 => 0.011165118704622
716 => 0.011040269572407
717 => 0.011011019167555
718 => 0.011137248533333
719 => 0.011214248373537
720 => 0.011782771931133
721 => 0.01174065386968
722 => 0.011846361938676
723 => 0.01183446083233
724 => 0.011945259729254
725 => 0.012126369098618
726 => 0.011758123111725
727 => 0.011822037882062
728 => 0.011806367456383
729 => 0.011977453054939
730 => 0.011977987165503
731 => 0.011875412802809
801 => 0.011931020028904
802 => 0.011899981600802
803 => 0.011956072235478
804 => 0.011740091357291
805 => 0.012003132753227
806 => 0.01215226027471
807 => 0.01215433091049
808 => 0.012225016172124
809 => 0.012296836491758
810 => 0.012434689341064
811 => 0.012292991850611
812 => 0.012038091859258
813 => 0.012056494815311
814 => 0.011907047043645
815 => 0.011909559287687
816 => 0.011896148732105
817 => 0.011936394818907
818 => 0.01174892311011
819 => 0.011792922345452
820 => 0.011731323158314
821 => 0.011821903977459
822 => 0.011724453989605
823 => 0.011806359899629
824 => 0.011841707775171
825 => 0.011972142196908
826 => 0.011705188719462
827 => 0.011160852507787
828 => 0.01127527857892
829 => 0.011106033431741
830 => 0.011121697714474
831 => 0.011153342058547
901 => 0.011050772386021
902 => 0.011070339447197
903 => 0.011069640374081
904 => 0.011063616139633
905 => 0.01103693380638
906 => 0.010998239144225
907 => 0.011152386768662
908 => 0.011178579453817
909 => 0.011236802548331
910 => 0.0114100349845
911 => 0.011392724979025
912 => 0.011420958316141
913 => 0.01135932509974
914 => 0.011124556702614
915 => 0.011137305756083
916 => 0.010978324855038
917 => 0.011232737049253
918 => 0.011172488883586
919 => 0.011133646499243
920 => 0.011123047994803
921 => 0.011296709840675
922 => 0.011348672186776
923 => 0.011316292739749
924 => 0.011249881549238
925 => 0.011377410667725
926 => 0.011411532079811
927 => 0.011419170605628
928 => 0.011645127752304
929 => 0.011431799100056
930 => 0.011483149426957
1001 => 0.011883770018837
1002 => 0.011520462423864
1003 => 0.011712914559648
1004 => 0.011703495029074
1005 => 0.011801947029515
1006 => 0.011695419091439
1007 => 0.011696739632904
1008 => 0.01178415833958
1009 => 0.0116613945321
1010 => 0.011630996486937
1011 => 0.011589001805259
1012 => 0.011680695656358
1013 => 0.011735661973136
1014 => 0.012178650118055
1015 => 0.012464840662387
1016 => 0.012452416376084
1017 => 0.012565951095606
1018 => 0.012514802664603
1019 => 0.012349630888617
1020 => 0.012631558969672
1021 => 0.012542345128454
1022 => 0.012549699809129
1023 => 0.012549426067547
1024 => 0.012608745472748
1025 => 0.01256671223762
1026 => 0.012483860416559
1027 => 0.012538861321912
1028 => 0.012702194347626
1029 => 0.013209185071112
1030 => 0.013492903796708
1031 => 0.013192104847583
1101 => 0.013399591934831
1102 => 0.013275173617691
1103 => 0.013252563108342
1104 => 0.013382880332309
1105 => 0.013513425659325
1106 => 0.013505110486357
1107 => 0.01341034128252
1108 => 0.013356808563952
1109 => 0.013762176243726
1110 => 0.014060844244926
1111 => 0.01404047708954
1112 => 0.01413037108966
1113 => 0.014394302654331
1114 => 0.014418433248906
1115 => 0.014415393348625
1116 => 0.014355583152203
1117 => 0.014615458053466
1118 => 0.014832250268163
1119 => 0.014341738819814
1120 => 0.014528519158079
1121 => 0.014612370869613
1122 => 0.014735490059826
1123 => 0.014943212770888
1124 => 0.01516885473083
1125 => 0.015200762978004
1126 => 0.015178122549684
1127 => 0.015029305611521
1128 => 0.015276205736557
1129 => 0.015420834039283
1130 => 0.015506956883797
1201 => 0.015725350088008
1202 => 0.014612888709236
1203 => 0.013825433252424
1204 => 0.013702460711848
1205 => 0.013952530208766
1206 => 0.014018471540836
1207 => 0.013991890672562
1208 => 0.013105537963601
1209 => 0.01369779424827
1210 => 0.014335012212251
1211 => 0.0143594903494
1212 => 0.014678494985768
1213 => 0.014782375971811
1214 => 0.015039216516981
1215 => 0.015023151070951
1216 => 0.015085687656474
1217 => 0.015071311578445
1218 => 0.015547054604214
1219 => 0.016071869810161
1220 => 0.016053697128389
1221 => 0.015978248733203
1222 => 0.016090302465918
1223 => 0.016631968001071
1224 => 0.016582100118607
1225 => 0.016630542518684
1226 => 0.017269196711561
1227 => 0.0180995380098
1228 => 0.017713761111865
1229 => 0.018550785976073
1230 => 0.01907764875931
1231 => 0.019988803464291
]
'min_raw' => 0.0081609856684754
'max_raw' => 0.019988803464291
'avg_raw' => 0.014074894566383
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00816'
'max' => '$0.019988'
'avg' => '$0.014074'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0036389282760479
'max_diff' => 0.0081093295430791
'year' => 2028
]
3 => [
'items' => [
101 => 0.019874722407696
102 => 0.020229428247983
103 => 0.019670493506955
104 => 0.018387066362209
105 => 0.018183959103791
106 => 0.018590584978639
107 => 0.019590235013979
108 => 0.018559102441573
109 => 0.018767699218021
110 => 0.018707623332371
111 => 0.018704422143731
112 => 0.018826598493953
113 => 0.018649375325666
114 => 0.017927336256228
115 => 0.018258242506748
116 => 0.018130463711999
117 => 0.018272243811314
118 => 0.019037372532754
119 => 0.018699090886614
120 => 0.018342738652176
121 => 0.018789683435053
122 => 0.019358797730546
123 => 0.01932318358073
124 => 0.019254077244529
125 => 0.019643626043406
126 => 0.020287046532061
127 => 0.020460960504671
128 => 0.020589340243738
129 => 0.020607041640762
130 => 0.020789377031464
131 => 0.019808913681224
201 => 0.02136493419814
202 => 0.021633615957212
203 => 0.021583114922224
204 => 0.021881743389576
205 => 0.021793879319008
206 => 0.021666578066205
207 => 0.022139967707054
208 => 0.021597264684395
209 => 0.020826966068141
210 => 0.020404365012484
211 => 0.020960880172827
212 => 0.021300724561546
213 => 0.021525340084327
214 => 0.021593308605804
215 => 0.019885024260082
216 => 0.018964353743531
217 => 0.019554492989131
218 => 0.020274503597998
219 => 0.019804913985937
220 => 0.019823321009679
221 => 0.019153809628859
222 => 0.020333740499275
223 => 0.020161834496236
224 => 0.021053683144098
225 => 0.020840836306753
226 => 0.021568104257719
227 => 0.021376590232827
228 => 0.022171554242751
301 => 0.022488686909101
302 => 0.023021202013661
303 => 0.023412922292302
304 => 0.023642947932335
305 => 0.023629138055712
306 => 0.024540614239841
307 => 0.024003148578612
308 => 0.023327965037179
309 => 0.023315753097091
310 => 0.023665440220624
311 => 0.024398288499572
312 => 0.024588305395795
313 => 0.024694498918202
314 => 0.024531859842013
315 => 0.02394847938726
316 => 0.023696578664704
317 => 0.023911205378588
318 => 0.023648735350592
319 => 0.024101832254997
320 => 0.024724031081022
321 => 0.024595549483889
322 => 0.025025044200068
323 => 0.025469526047151
324 => 0.02610515505141
325 => 0.026271332010397
326 => 0.026546016204459
327 => 0.026828756469206
328 => 0.026919565022178
329 => 0.027092946726043
330 => 0.02709203291888
331 => 0.02761453035341
401 => 0.028190861204095
402 => 0.028408412758139
403 => 0.0289086605608
404 => 0.028052003729517
405 => 0.02870178777661
406 => 0.029287909252237
407 => 0.028589111066042
408 => 0.029552241566617
409 => 0.029589637741453
410 => 0.030154275582703
411 => 0.029581906959075
412 => 0.02924203629743
413 => 0.030223230162812
414 => 0.030697998966953
415 => 0.030554994739349
416 => 0.029466725506293
417 => 0.028833306134591
418 => 0.027175525461375
419 => 0.029139238279595
420 => 0.030095705511061
421 => 0.029464248487229
422 => 0.029782718680388
423 => 0.031520188789961
424 => 0.032181704914827
425 => 0.032044114185202
426 => 0.032067364753572
427 => 0.032424306847183
428 => 0.034007184661855
429 => 0.033058687584483
430 => 0.033783778060627
501 => 0.034168363434665
502 => 0.034525587763247
503 => 0.033648357714157
504 => 0.03250709430936
505 => 0.032145608282082
506 => 0.029401462530866
507 => 0.029258617827295
508 => 0.029178434766542
509 => 0.028672891910618
510 => 0.028275673705704
511 => 0.02795979104139
512 => 0.027130820599682
513 => 0.027410573789076
514 => 0.02608936792457
515 => 0.02693462861602
516 => 0.024825952154638
517 => 0.026582120571336
518 => 0.025626317945307
519 => 0.026268113702456
520 => 0.026265874537521
521 => 0.025084125067078
522 => 0.024402516635009
523 => 0.024836864056521
524 => 0.025302518970922
525 => 0.025378069914132
526 => 0.025981803665491
527 => 0.026150292778281
528 => 0.025639762900521
529 => 0.024782254521957
530 => 0.024981434160614
531 => 0.024398480265989
601 => 0.023376875988658
602 => 0.024110610016137
603 => 0.024361139073126
604 => 0.024471786977018
605 => 0.023467156502307
606 => 0.023151479795564
607 => 0.022983416165678
608 => 0.024652569343281
609 => 0.02474400932225
610 => 0.024276189461533
611 => 0.026390779592474
612 => 0.025912182720114
613 => 0.026446892685621
614 => 0.024963360696108
615 => 0.025020033615948
616 => 0.024317705797457
617 => 0.02471096244625
618 => 0.024433021322137
619 => 0.024679191195266
620 => 0.024826744402223
621 => 0.025528956975629
622 => 0.026590138710945
623 => 0.025424069833888
624 => 0.02491599692574
625 => 0.025231202500444
626 => 0.026070636483187
627 => 0.027342421936877
628 => 0.026589499351225
629 => 0.026923633609283
630 => 0.02699662708007
701 => 0.026441449840119
702 => 0.02736289211361
703 => 0.027856700513758
704 => 0.028363245753059
705 => 0.028803064791269
706 => 0.028160920445314
707 => 0.028848106943262
708 => 0.028294355930662
709 => 0.027797584026633
710 => 0.027798337424553
711 => 0.027486705152475
712 => 0.026882878357133
713 => 0.026771523431706
714 => 0.027350805816351
715 => 0.02781533543059
716 => 0.027853596314565
717 => 0.028110783777401
718 => 0.028262984668666
719 => 0.029754760310139
720 => 0.030354764813755
721 => 0.031088438963273
722 => 0.031374246392119
723 => 0.032234424285313
724 => 0.031539760776326
725 => 0.031389465956518
726 => 0.029302955749675
727 => 0.029644621679157
728 => 0.030191661798117
729 => 0.029311976239749
730 => 0.029869934250829
731 => 0.029980086981383
801 => 0.029282084861092
802 => 0.029654917952431
803 => 0.028664783799143
804 => 0.026611720929762
805 => 0.027365177759483
806 => 0.027919975596984
807 => 0.02712821067679
808 => 0.028547418650704
809 => 0.027718346650743
810 => 0.027455570629229
811 => 0.02643038768289
812 => 0.026914234570652
813 => 0.02756864441437
814 => 0.027164295214262
815 => 0.028003380517824
816 => 0.029191749083544
817 => 0.030038651292047
818 => 0.030103665927589
819 => 0.029559164545563
820 => 0.030431731485222
821 => 0.030438087182774
822 => 0.029453828110298
823 => 0.028850974908784
824 => 0.028714005392986
825 => 0.029056182097905
826 => 0.029471647786981
827 => 0.030126721381839
828 => 0.030522568635651
829 => 0.03155472833243
830 => 0.031834001152041
831 => 0.032140837310565
901 => 0.032550865043121
902 => 0.033043208465006
903 => 0.031965989087048
904 => 0.032008789021122
905 => 0.031005697251485
906 => 0.029933749837717
907 => 0.030747224304635
908 => 0.031810733958158
909 => 0.031566763668566
910 => 0.031539312027126
911 => 0.031585478073578
912 => 0.03140153244255
913 => 0.030569553170756
914 => 0.030151738388927
915 => 0.030690826053406
916 => 0.030977327155044
917 => 0.031421665378164
918 => 0.031366891313323
919 => 0.032511458857639
920 => 0.032956203195434
921 => 0.032842418562143
922 => 0.032863357673048
923 => 0.033668546052868
924 => 0.034564081130848
925 => 0.035402867907638
926 => 0.036256117843719
927 => 0.035227491742861
928 => 0.034705218845684
929 => 0.035244071161353
930 => 0.034958148537763
1001 => 0.036601144743066
1002 => 0.036714902235563
1003 => 0.038357779633539
1004 => 0.03991706591442
1005 => 0.038937706138914
1006 => 0.039861198295883
1007 => 0.040860030357066
1008 => 0.042786939457748
1009 => 0.042138024262117
1010 => 0.041640965392062
1011 => 0.041171247161631
1012 => 0.042148656233489
1013 => 0.043406077389943
1014 => 0.043676913863614
1015 => 0.044115772418455
1016 => 0.04365436630911
1017 => 0.0442100791456
1018 => 0.046171989651004
1019 => 0.045641864114181
1020 => 0.044889000629959
1021 => 0.046437740550088
1022 => 0.046998223506609
1023 => 0.050931986422673
1024 => 0.055898524599845
1025 => 0.053842345182448
1026 => 0.052566008265574
1027 => 0.052865977716156
1028 => 0.054679589330532
1029 => 0.055262063819914
1030 => 0.053678697366776
1031 => 0.05423796916584
1101 => 0.057319611765069
1102 => 0.058972814148624
1103 => 0.056727543257054
1104 => 0.050532929915948
1105 => 0.044821213510463
1106 => 0.046336217903139
1107 => 0.04616446342107
1108 => 0.049475303951198
1109 => 0.045629220795452
1110 => 0.045693978971965
1111 => 0.049073284178015
1112 => 0.048171743484999
1113 => 0.046711363022921
1114 => 0.04483187590399
1115 => 0.04135747013313
1116 => 0.038280092050907
1117 => 0.044315539147993
1118 => 0.044055279694418
1119 => 0.043678385437352
1120 => 0.044517122822235
1121 => 0.048589793483466
1122 => 0.048495905242776
1123 => 0.047898636157709
1124 => 0.048351659494644
1125 => 0.04663194584162
1126 => 0.047075155207156
1127 => 0.044820308745402
1128 => 0.045839593516822
1129 => 0.046708229702339
1130 => 0.04688262127696
1201 => 0.047275534399236
1202 => 0.043918134788665
1203 => 0.045425508645738
1204 => 0.046310949564938
1205 => 0.042310495279376
1206 => 0.046231873446154
1207 => 0.043859689930985
1208 => 0.043054535216937
1209 => 0.044138569968336
1210 => 0.043716120571457
1211 => 0.043352923387082
1212 => 0.043150253117681
1213 => 0.043946248598559
1214 => 0.043909114457955
1215 => 0.042606711355174
1216 => 0.040907779600337
1217 => 0.041477996862794
1218 => 0.041270831585528
1219 => 0.040520037895863
1220 => 0.041025982191521
1221 => 0.038798059565991
1222 => 0.034965034486108
1223 => 0.037497248262612
1224 => 0.037399760786736
1225 => 0.037350603180693
1226 => 0.039253491848488
1227 => 0.039070573010191
1228 => 0.038738573527534
1229 => 0.040513940465007
1230 => 0.039865907650774
1231 => 0.041862992088506
]
'min_raw' => 0.017927336256228
'max_raw' => 0.058972814148624
'avg_raw' => 0.038450075202426
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.017927'
'max' => '$0.058972'
'avg' => '$0.03845'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0097663505877523
'max_diff' => 0.038984010684333
'year' => 2029
]
4 => [
'items' => [
101 => 0.043178401062519
102 => 0.042844770797687
103 => 0.044081919295669
104 => 0.041491133516844
105 => 0.042351688628285
106 => 0.042529047844076
107 => 0.040492032712582
108 => 0.039100500794332
109 => 0.03900770148001
110 => 0.036594976898674
111 => 0.037883834895191
112 => 0.039017976595558
113 => 0.038474810734034
114 => 0.038302860648894
115 => 0.039181316342451
116 => 0.039249579873305
117 => 0.037693164135597
118 => 0.038016792252743
119 => 0.039366375299939
120 => 0.037982786222627
121 => 0.035294698653403
122 => 0.034628015770517
123 => 0.034539067984536
124 => 0.032730971130864
125 => 0.03467256670862
126 => 0.033825008207403
127 => 0.036502435357437
128 => 0.034973103328667
129 => 0.034907176881544
130 => 0.03480751938741
131 => 0.033251215733914
201 => 0.033591947325773
202 => 0.034724591031998
203 => 0.035128731066524
204 => 0.035086575949901
205 => 0.034719040459926
206 => 0.03488729632515
207 => 0.034345285559033
208 => 0.034153890276538
209 => 0.033549794117565
210 => 0.032661939649699
211 => 0.032785401258983
212 => 0.03102632923838
213 => 0.030067893440537
214 => 0.029802611043675
215 => 0.029447864335677
216 => 0.029842680628288
217 => 0.031021346008362
218 => 0.029599625492184
219 => 0.027162185389296
220 => 0.027308679692675
221 => 0.02763780889782
222 => 0.02702447880144
223 => 0.026444013338111
224 => 0.026948680963824
225 => 0.025915905460025
226 => 0.02776261488331
227 => 0.027712666568754
228 => 0.02840100564201
301 => 0.028831438190656
302 => 0.027839430520218
303 => 0.027589943273777
304 => 0.027732062547913
305 => 0.025383147521039
306 => 0.02820904917172
307 => 0.028233487686543
308 => 0.028024230285574
309 => 0.029528935674637
310 => 0.032704333374939
311 => 0.031509621030009
312 => 0.03104699229968
313 => 0.030167534745146
314 => 0.03133935971954
315 => 0.031249381844824
316 => 0.030842467772262
317 => 0.030596364871527
318 => 0.031049817012058
319 => 0.030540177133182
320 => 0.030448631806969
321 => 0.029893966732413
322 => 0.02969597653645
323 => 0.029549392477575
324 => 0.029388017831806
325 => 0.029743970088316
326 => 0.028937335445646
327 => 0.027964613141955
328 => 0.027883741807405
329 => 0.02810703467238
330 => 0.028008244201827
331 => 0.027883268836639
401 => 0.02764465682948
402 => 0.027573865744095
403 => 0.027803902428645
404 => 0.02754420442376
405 => 0.02792740297645
406 => 0.027823194173461
407 => 0.02724109227106
408 => 0.026515577778941
409 => 0.026509119178143
410 => 0.026352808270899
411 => 0.02615372282902
412 => 0.026098341813548
413 => 0.026906179264019
414 => 0.028578378609955
415 => 0.028250085866008
416 => 0.028487311018303
417 => 0.029654223977231
418 => 0.030025150516577
419 => 0.029761875644825
420 => 0.029401488762285
421 => 0.029417343956123
422 => 0.03064889503029
423 => 0.030725705360135
424 => 0.0309197802837
425 => 0.031169221406049
426 => 0.029804356546575
427 => 0.029353058943982
428 => 0.029139209102835
429 => 0.028480634362408
430 => 0.029190850758028
501 => 0.028777038078798
502 => 0.02883287554708
503 => 0.02879651132261
504 => 0.028816368648109
505 => 0.02776209869039
506 => 0.028146219252185
507 => 0.027507544316793
508 => 0.026652430272929
509 => 0.026649563630812
510 => 0.026858851581608
511 => 0.026734358919036
512 => 0.026399352365054
513 => 0.026446938464861
514 => 0.026030034158105
515 => 0.026497558195997
516 => 0.026510965112522
517 => 0.026330942891727
518 => 0.027051228177984
519 => 0.027346329647461
520 => 0.027227835165284
521 => 0.027338015758709
522 => 0.028263727911672
523 => 0.028414659384258
524 => 0.028481693174407
525 => 0.028391876775883
526 => 0.027354936077512
527 => 0.027400928806897
528 => 0.027063464675325
529 => 0.02677834304524
530 => 0.026789746415177
531 => 0.026936335996258
601 => 0.027576501294204
602 => 0.028923691423924
603 => 0.028974816304564
604 => 0.029036781151317
605 => 0.028784738978535
606 => 0.028708720647505
607 => 0.028809008448129
608 => 0.02931494222896
609 => 0.03061634127294
610 => 0.030156339933278
611 => 0.029782351683785
612 => 0.030110440205098
613 => 0.030059933548885
614 => 0.029633606542342
615 => 0.029621640963195
616 => 0.02880338313265
617 => 0.028500891843528
618 => 0.028248107481256
619 => 0.027972073556758
620 => 0.027808431393575
621 => 0.028059860130257
622 => 0.028117364857154
623 => 0.027567611530176
624 => 0.027492682183117
625 => 0.027941622617177
626 => 0.027744060670333
627 => 0.027947258031963
628 => 0.027994401562855
629 => 0.027986810368574
630 => 0.027780533006224
701 => 0.027912008045706
702 => 0.027601030382735
703 => 0.027262888881589
704 => 0.027047175670817
705 => 0.026858937284213
706 => 0.02696338288158
707 => 0.02659105339798
708 => 0.026471937702664
709 => 0.027867467260612
710 => 0.028898359949539
711 => 0.028883370361563
712 => 0.028792125099773
713 => 0.028656553149177
714 => 0.029305024296349
715 => 0.029079109915264
716 => 0.029243481503281
717 => 0.029285320971086
718 => 0.029411956438888
719 => 0.02945721773394
720 => 0.0293204066643
721 => 0.028861252004521
722 => 0.027717082247468
723 => 0.027184468136933
724 => 0.027008696609066
725 => 0.027015085570266
726 => 0.026838849498784
727 => 0.026890758920182
728 => 0.026820797520431
729 => 0.026688307554782
730 => 0.026955201999549
731 => 0.026985959098014
801 => 0.026923662745454
802 => 0.026938335791643
803 => 0.026422548599569
804 => 0.026461762779552
805 => 0.026243413242312
806 => 0.026202475336323
807 => 0.02565050672005
808 => 0.024672614307193
809 => 0.025214461630229
810 => 0.024559986259265
811 => 0.024312126519361
812 => 0.02548545597797
813 => 0.025367686243419
814 => 0.02516611565114
815 => 0.024867950734168
816 => 0.024757358466102
817 => 0.024085434854585
818 => 0.024045734023044
819 => 0.024378757508375
820 => 0.024225078628533
821 => 0.024009255278492
822 => 0.023227564982306
823 => 0.02234868628063
824 => 0.022375214104199
825 => 0.022654769067082
826 => 0.02346761282479
827 => 0.023150020706314
828 => 0.02291960398041
829 => 0.022876453853949
830 => 0.023416568027511
831 => 0.024180942740518
901 => 0.024539570253941
902 => 0.024184181279818
903 => 0.023775929561848
904 => 0.023800777952264
905 => 0.023966083161431
906 => 0.023983454401624
907 => 0.02371772450218
908 => 0.023792525912352
909 => 0.023678895730317
910 => 0.022981547512912
911 => 0.022968934694974
912 => 0.022797794196164
913 => 0.022792612129875
914 => 0.022501459448401
915 => 0.022460725175619
916 => 0.021882623854847
917 => 0.022263131894832
918 => 0.022007907079179
919 => 0.021623223080543
920 => 0.021556903414182
921 => 0.021554909764928
922 => 0.021949894217759
923 => 0.022258516271529
924 => 0.022012346824118
925 => 0.021956298812737
926 => 0.022554744940733
927 => 0.022478587215988
928 => 0.022412635117523
929 => 0.024112501368703
930 => 0.022766924588677
1001 => 0.022180176309747
1002 => 0.021453963894096
1003 => 0.021690422318513
1004 => 0.021740247582835
1005 => 0.019993837632821
1006 => 0.019285319333602
1007 => 0.019042182553259
1008 => 0.018902253898722
1009 => 0.018966021143708
1010 => 0.018328271573503
1011 => 0.018756849832085
1012 => 0.018204612611917
1013 => 0.01811202824482
1014 => 0.019099496803545
1015 => 0.019236897284784
1016 => 0.018650704144835
1017 => 0.019027135036731
1018 => 0.018890635962549
1019 => 0.01821407913404
1020 => 0.018188239639606
1021 => 0.017848767205182
1022 => 0.017317558580126
1023 => 0.017074781984244
1024 => 0.016948341825226
1025 => 0.017000513499107
1026 => 0.016974133904313
1027 => 0.01680198920444
1028 => 0.016984001037005
1029 => 0.016519036017285
1030 => 0.016333883199954
1031 => 0.016250253967879
1101 => 0.015837570750489
1102 => 0.016494333270416
1103 => 0.016623723760518
1104 => 0.016753369189856
1105 => 0.017881844139549
1106 => 0.0178254687201
1107 => 0.018335075055981
1108 => 0.018315272690875
1109 => 0.018169924708806
1110 => 0.017556725481041
1111 => 0.017801135764003
1112 => 0.017048878902837
1113 => 0.017612520891717
1114 => 0.017355298226244
1115 => 0.017525553649778
1116 => 0.017219419046952
1117 => 0.017388846576144
1118 => 0.016654407045792
1119 => 0.015968597746192
1120 => 0.016244587428372
1121 => 0.016544619776151
1122 => 0.017195166352956
1123 => 0.016807706178703
1124 => 0.016947051508856
1125 => 0.016480267978972
1126 => 0.015517160226698
1127 => 0.015522611311983
1128 => 0.015374458166739
1129 => 0.015246432218534
1130 => 0.016852210640632
1201 => 0.016652506710244
1202 => 0.016334304633774
1203 => 0.016760230757976
1204 => 0.016872852385572
1205 => 0.016876058564982
1206 => 0.017186803270455
1207 => 0.017352647775471
1208 => 0.017381878588291
1209 => 0.017870842096437
1210 => 0.018034736214783
1211 => 0.018709792893086
1212 => 0.017338577027911
1213 => 0.017310337739522
1214 => 0.016766224412009
1215 => 0.01642113913761
1216 => 0.016789852695981
1217 => 0.017116482574278
1218 => 0.016776373712805
1219 => 0.016820784750024
1220 => 0.016364216391412
1221 => 0.016527418096078
1222 => 0.016667989389779
1223 => 0.016590374183796
1224 => 0.01647418046382
1225 => 0.017089702649095
1226 => 0.017054972475151
1227 => 0.017628160884873
1228 => 0.018075002239348
1229 => 0.018875821829013
1230 => 0.018040124839528
1231 => 0.018009668719637
]
'min_raw' => 0.015246432218534
'max_raw' => 0.044081919295669
'avg_raw' => 0.029664175757102
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015246'
'max' => '$0.044081'
'avg' => '$0.029664'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026809040376934
'max_diff' => -0.014890894852955
'year' => 2030
]
5 => [
'items' => [
101 => 0.018307382176891
102 => 0.018034690636403
103 => 0.018207022277
104 => 0.018848056537476
105 => 0.018861600581272
106 => 0.018634720397185
107 => 0.018620914717365
108 => 0.018664489538516
109 => 0.018919708627032
110 => 0.018830527235414
111 => 0.018933730199591
112 => 0.019062787086594
113 => 0.019596621090225
114 => 0.019725326661214
115 => 0.019412638849899
116 => 0.019440871058243
117 => 0.019323917233339
118 => 0.019210941303909
119 => 0.019464894694459
120 => 0.019928999507156
121 => 0.019926112335203
122 => 0.02003377563084
123 => 0.020100848972092
124 => 0.019812921090755
125 => 0.019625490627407
126 => 0.019697363393565
127 => 0.019812289511837
128 => 0.019660094402345
129 => 0.018720675682927
130 => 0.019005635312098
131 => 0.01895820409599
201 => 0.01889065627642
202 => 0.019177185387079
203 => 0.019149548955363
204 => 0.018321730529872
205 => 0.018374724779622
206 => 0.018324953285722
207 => 0.018485775164802
208 => 0.018026005727161
209 => 0.018167427709585
210 => 0.018256126251213
211 => 0.018308370373646
212 => 0.018497111968004
213 => 0.018474965320353
214 => 0.01849573530129
215 => 0.01877558925979
216 => 0.020190994547599
217 => 0.020268031934499
218 => 0.019888671666304
219 => 0.020040218610898
220 => 0.019749281616952
221 => 0.019944589570096
222 => 0.020078214311353
223 => 0.019474389800172
224 => 0.019438635231409
225 => 0.019146497436997
226 => 0.019303475740183
227 => 0.019053711972674
228 => 0.019114995264855
301 => 0.018943641837336
302 => 0.019252043890744
303 => 0.019596885307288
304 => 0.019684005867308
305 => 0.019454829181656
306 => 0.019288890157765
307 => 0.018997555895525
308 => 0.019482051266438
309 => 0.019623732477622
310 => 0.019481307075351
311 => 0.019448303997588
312 => 0.019385763224863
313 => 0.019461572318171
314 => 0.019622960851318
315 => 0.019546852999464
316 => 0.019597123576461
317 => 0.019405543975742
318 => 0.019813016406864
319 => 0.020460180691068
320 => 0.020462261430063
321 => 0.02038615316796
322 => 0.020355011306882
323 => 0.020433103002436
324 => 0.020475464543785
325 => 0.020727998767638
326 => 0.020998978051239
327 => 0.022263520130282
328 => 0.021908441774633
329 => 0.023030418735105
330 => 0.023917756840363
331 => 0.024183830739538
401 => 0.023939055272042
402 => 0.023101691620249
403 => 0.023060606564637
404 => 0.024311981386231
405 => 0.023958410682533
406 => 0.023916354572381
407 => 0.023468948615281
408 => 0.023733420948233
409 => 0.023675576969441
410 => 0.023584267419094
411 => 0.024088862207064
412 => 0.025033418604656
413 => 0.024886200632098
414 => 0.024776309244828
415 => 0.024294797174714
416 => 0.024584774990537
417 => 0.024481519444482
418 => 0.024925170797924
419 => 0.024662361564226
420 => 0.023955732036706
421 => 0.024068265118045
422 => 0.024051255969186
423 => 0.024401303047428
424 => 0.024296227603242
425 => 0.024030738302308
426 => 0.025030190213576
427 => 0.024965291365702
428 => 0.025057303094045
429 => 0.025097809502419
430 => 0.02570615826849
501 => 0.02595537929296
502 => 0.026011956828742
503 => 0.026248697526543
504 => 0.026006066504515
505 => 0.026976763585613
506 => 0.027622220502798
507 => 0.028371951927018
508 => 0.029467511046612
509 => 0.029879451410068
510 => 0.029805038070545
511 => 0.030635678491578
512 => 0.032128320864075
513 => 0.030106743770305
514 => 0.032235469358817
515 => 0.031561539414813
516 => 0.029963663641061
517 => 0.029860779278949
518 => 0.030942879304653
519 => 0.033342873013397
520 => 0.03274170180986
521 => 0.033343856314122
522 => 0.03264141109958
523 => 0.032606528774005
524 => 0.033309740117939
525 => 0.034952831753094
526 => 0.034172260507601
527 => 0.033053120223264
528 => 0.033879475993467
529 => 0.033163610149701
530 => 0.031550564045464
531 => 0.03274124210557
601 => 0.031945069595336
602 => 0.032177435060681
603 => 0.033850871255471
604 => 0.033649518985151
605 => 0.033910087467663
606 => 0.033450190916293
607 => 0.033020575018284
608 => 0.032218665040954
609 => 0.031981259030351
610 => 0.032046869510708
611 => 0.031981226517056
612 => 0.031532565254673
613 => 0.031435676897779
614 => 0.031274192058179
615 => 0.031324242962407
616 => 0.031020604219903
617 => 0.031593633261973
618 => 0.031699992501696
619 => 0.032116995251858
620 => 0.032160289860734
621 => 0.033321636584273
622 => 0.032681986324586
623 => 0.033111118943531
624 => 0.033072733282939
625 => 0.029998294454262
626 => 0.03042192499885
627 => 0.031080961183641
628 => 0.030784066275695
629 => 0.030364326338569
630 => 0.030025363834307
701 => 0.029511800979656
702 => 0.030234630835477
703 => 0.031185075231496
704 => 0.032184394699089
705 => 0.033385011561397
706 => 0.033117047854451
707 => 0.03216195000198
708 => 0.032204794993942
709 => 0.032469645875371
710 => 0.032126639919681
711 => 0.032025480767076
712 => 0.032455748161207
713 => 0.03245871117628
714 => 0.032064041370604
715 => 0.031625438105407
716 => 0.031623600341711
717 => 0.031545555127074
718 => 0.032655295169886
719 => 0.033265539986059
720 => 0.033335503570775
721 => 0.033260830879367
722 => 0.033289569434637
723 => 0.032934481421932
724 => 0.033746107320895
725 => 0.034490935507265
726 => 0.034291305642385
727 => 0.033992032095871
728 => 0.033753646301107
729 => 0.034235149525148
730 => 0.034213708944538
731 => 0.034484430082831
801 => 0.034472148608237
802 => 0.034381115271766
803 => 0.034291308893472
804 => 0.034647381032155
805 => 0.034544837974558
806 => 0.034442135639269
807 => 0.034236150382907
808 => 0.034264147200299
809 => 0.033964925327583
810 => 0.033826491597803
811 => 0.031744780450877
812 => 0.031188479210544
813 => 0.031363502905309
814 => 0.031421125250114
815 => 0.031179022237402
816 => 0.03152613576647
817 => 0.031472038490649
818 => 0.031682499345021
819 => 0.031551012540357
820 => 0.031556408804685
821 => 0.031943083461258
822 => 0.032055336759093
823 => 0.031998243825819
824 => 0.032038229759252
825 => 0.032959688718228
826 => 0.03282868672086
827 => 0.032759094520725
828 => 0.032778372035764
829 => 0.033013824556085
830 => 0.033079738406544
831 => 0.032800456790466
901 => 0.032932167615116
902 => 0.033492975589885
903 => 0.033689226642072
904 => 0.034315565794802
905 => 0.034049485790432
906 => 0.034537887154127
907 => 0.036039066437832
908 => 0.03723831232336
909 => 0.036135436246096
910 => 0.038337698591826
911 => 0.040052475723748
912 => 0.039986659721315
913 => 0.039687648664854
914 => 0.03773542048987
915 => 0.035938951017167
916 => 0.037441774013206
917 => 0.037445605018081
918 => 0.037316511189934
919 => 0.036514720510434
920 => 0.037288610612269
921 => 0.037350039198197
922 => 0.037315655525257
923 => 0.036700924491182
924 => 0.035762343823435
925 => 0.035945740239268
926 => 0.036246147309588
927 => 0.035677414053993
928 => 0.035495669318067
929 => 0.035833567360504
930 => 0.036922345257089
1001 => 0.036716518102601
1002 => 0.036711143123784
1003 => 0.037591758974983
1004 => 0.03696142807432
1005 => 0.035948053455389
1006 => 0.03569216299934
1007 => 0.034783924268831
1008 => 0.035411247995028
1009 => 0.035433824259131
1010 => 0.035090245465386
1011 => 0.03597593298093
1012 => 0.035967771214552
1013 => 0.036808599693372
1014 => 0.038415947944121
1015 => 0.03794057597357
1016 => 0.037387770092144
1017 => 0.0374478754191
1018 => 0.038107082503214
1019 => 0.037708510851924
1020 => 0.037851839996668
1021 => 0.038106865557387
1022 => 0.038260728810097
1023 => 0.037425736864856
1024 => 0.037231060300138
1025 => 0.036832820370916
1026 => 0.036728927006882
1027 => 0.037053285119685
1028 => 0.036967828216703
1029 => 0.035431926811553
1030 => 0.03527141656904
1031 => 0.035276339189022
1101 => 0.034872728552378
1102 => 0.034257125453843
1103 => 0.035874893641042
1104 => 0.035744964214958
1105 => 0.035601532184301
1106 => 0.035619101789645
1107 => 0.036321320128457
1108 => 0.03591399802907
1109 => 0.036996930589069
1110 => 0.036774312210666
1111 => 0.036545984510872
1112 => 0.036514422667729
1113 => 0.036426535983313
1114 => 0.036125139841253
1115 => 0.035761185888617
1116 => 0.035520871963934
1117 => 0.032766126760542
1118 => 0.033277391446676
1119 => 0.03386555486483
1120 => 0.03406858651986
1121 => 0.033721286824569
1122 => 0.03613885335004
1123 => 0.036580566050494
1124 => 0.035242589468612
1125 => 0.034992308679365
1126 => 0.036155261716916
1127 => 0.035453858870046
1128 => 0.035769700529044
1129 => 0.035087023618441
1130 => 0.036474170395813
1201 => 0.036463602661476
1202 => 0.035923971234947
1203 => 0.036380064021412
1204 => 0.036300806675872
1205 => 0.035691564124375
1206 => 0.036493484471381
1207 => 0.036493882213869
1208 => 0.035974498698434
1209 => 0.035367972460078
1210 => 0.03525953989417
1211 => 0.035177850521624
1212 => 0.035749609951047
1213 => 0.036262247667623
1214 => 0.037216139364502
1215 => 0.037455970401006
1216 => 0.038392046902934
1217 => 0.037834658922773
1218 => 0.038081741794996
1219 => 0.038349985204799
1220 => 0.038478590959784
1221 => 0.038269034783402
1222 => 0.039723146895356
1223 => 0.039845918510449
1224 => 0.039887082771019
1225 => 0.039396764348338
1226 => 0.039832281868134
1227 => 0.039628517643446
1228 => 0.040158655548754
1229 => 0.040241787941447
1230 => 0.040171377762356
1231 => 0.040197765295953
]
'min_raw' => 0.018026005727161
'max_raw' => 0.040241787941447
'avg_raw' => 0.029133896834304
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.018026'
'max' => '$0.040241'
'avg' => '$0.029133'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0027795735086265
'max_diff' => -0.0038401313542224
'year' => 2031
]
6 => [
'items' => [
101 => 0.038956937131354
102 => 0.03889259364513
103 => 0.038015265644854
104 => 0.038372783289848
105 => 0.037704421188799
106 => 0.037916365695934
107 => 0.038009788815198
108 => 0.03796098987941
109 => 0.03839299680108
110 => 0.038025702664477
111 => 0.037056353049234
112 => 0.036086739335336
113 => 0.036074566624988
114 => 0.035819284449222
115 => 0.035634762193406
116 => 0.035670307726155
117 => 0.035795574819839
118 => 0.035627481442198
119 => 0.035663352686869
120 => 0.036259054357246
121 => 0.036378518078891
122 => 0.035972533675254
123 => 0.034342447711383
124 => 0.033942420527088
125 => 0.034229952134275
126 => 0.034092530545447
127 => 0.027515332963089
128 => 0.029060547974113
129 => 0.028142433685106
130 => 0.028565542989888
131 => 0.027628386045354
201 => 0.028075646459889
202 => 0.02799305379266
203 => 0.030477713804151
204 => 0.030438919255609
205 => 0.030457488153034
206 => 0.029571146297939
207 => 0.03098311293991
208 => 0.031678698480423
209 => 0.031549964109284
210 => 0.031582363777027
211 => 0.031025630139974
212 => 0.0304628785516
213 => 0.029838700433246
214 => 0.030998346226402
215 => 0.030869413410016
216 => 0.031165138902241
217 => 0.031917252092295
218 => 0.032028003616531
219 => 0.032176854788235
220 => 0.032123502239127
221 => 0.033394576411691
222 => 0.033240640942576
223 => 0.033611581132887
224 => 0.032848529018119
225 => 0.031985063120687
226 => 0.032149179758962
227 => 0.032133374006954
228 => 0.031932148642887
229 => 0.031750491381603
301 => 0.031448083223179
302 => 0.032404947384417
303 => 0.03236610044691
304 => 0.032994987210525
305 => 0.032883825366376
306 => 0.032141459365231
307 => 0.032167973112193
308 => 0.032346290802585
309 => 0.032963450365027
310 => 0.033146665342588
311 => 0.033061792865127
312 => 0.03326267972394
313 => 0.033421452506329
314 => 0.0332826191409
315 => 0.035248206821726
316 => 0.034431957776352
317 => 0.034829791881643
318 => 0.03492467297158
319 => 0.034681637054841
320 => 0.034734342842718
321 => 0.034814177749884
322 => 0.035298919672921
323 => 0.036571022740175
324 => 0.037134428529164
325 => 0.038829462643288
326 => 0.037087645521376
327 => 0.036984293301717
328 => 0.037289620130797
329 => 0.038284784593371
330 => 0.039091271919242
331 => 0.039358830292604
401 => 0.039394192548551
402 => 0.039896149843921
403 => 0.040183862404678
404 => 0.039835199025476
405 => 0.039539743318179
406 => 0.038481457647955
407 => 0.038603957095899
408 => 0.039447856815381
409 => 0.040639914874593
410 => 0.0416628247019
411 => 0.041304637332384
412 => 0.044037354120917
413 => 0.044308291828353
414 => 0.04427085699765
415 => 0.044888093416126
416 => 0.043663004823462
417 => 0.043139255715125
418 => 0.039603624195661
419 => 0.040596992436095
420 => 0.042040911512036
421 => 0.041849803407917
422 => 0.040801190778901
423 => 0.04166202923519
424 => 0.041377409120633
425 => 0.041152917427383
426 => 0.042181357394018
427 => 0.041050545404717
428 => 0.042029630797417
429 => 0.040773943653938
430 => 0.041306273502117
501 => 0.041004097334393
502 => 0.041199642348228
503 => 0.040056490192988
504 => 0.040673307347506
505 => 0.040030828571453
506 => 0.04003052395286
507 => 0.040016341198269
508 => 0.040772214629108
509 => 0.040796863634551
510 => 0.0402382720271
511 => 0.040157770249625
512 => 0.040455427513638
513 => 0.04010694881404
514 => 0.040269999804283
515 => 0.040111887462432
516 => 0.040076293043925
517 => 0.039792670661377
518 => 0.039670478340615
519 => 0.039718393098094
520 => 0.039554835329068
521 => 0.039456285857087
522 => 0.039996737227838
523 => 0.039707995862192
524 => 0.039952483472419
525 => 0.039673858983769
526 => 0.038708025115197
527 => 0.038152563843874
528 => 0.036328193198989
529 => 0.036845582450753
530 => 0.037188612059951
531 => 0.037075240776158
601 => 0.037318806162609
602 => 0.037333759099181
603 => 0.03725457350919
604 => 0.037162886740284
605 => 0.037118258691776
606 => 0.037450879602277
607 => 0.037643977236327
608 => 0.037223039670378
609 => 0.037124419888219
610 => 0.037550011007993
611 => 0.037809621345199
612 => 0.039726438212682
613 => 0.039584434227902
614 => 0.039940836362825
615 => 0.03990071095187
616 => 0.040274277168582
617 => 0.040884900052044
618 => 0.039643332997122
619 => 0.039858826107698
620 => 0.039805992173447
621 => 0.040382819213793
622 => 0.04038462000485
623 => 0.040038783379515
624 => 0.040226267024668
625 => 0.040121618797289
626 => 0.040310732288219
627 => 0.03958253767811
628 => 0.040469400109473
629 => 0.040972193959903
630 => 0.040979175253004
701 => 0.041217495547689
702 => 0.04145964276967
703 => 0.041924423275683
704 => 0.041446680293617
705 => 0.040587267176221
706 => 0.04064931402741
707 => 0.040145440431128
708 => 0.040153910637314
709 => 0.040108696012872
710 => 0.040244388504419
711 => 0.039612314549353
712 => 0.039760661043236
713 => 0.039552975083084
714 => 0.039858374638981
715 => 0.039529815201191
716 => 0.039805966695325
717 => 0.039925144525625
718 => 0.040364913285151
719 => 0.039464860997844
720 => 0.037629593455843
721 => 0.03801538894364
722 => 0.037444767113607
723 => 0.037497580336487
724 => 0.037604271451867
725 => 0.03725845063976
726 => 0.037324422352644
727 => 0.037322065378824
728 => 0.037301754251783
729 => 0.037211792902321
730 => 0.03708133114729
731 => 0.037601050625323
801 => 0.03768936109204
802 => 0.037885664320198
803 => 0.038469729573446
804 => 0.03841136768144
805 => 0.038506558348714
806 => 0.038298757656527
807 => 0.037507219614611
808 => 0.037550203938491
809 => 0.037014188730925
810 => 0.037871957206214
811 => 0.037668826309275
812 => 0.037537866498574
813 => 0.03750213290089
814 => 0.03808764593893
815 => 0.038262840616704
816 => 0.038153671050393
817 => 0.037929761084903
818 => 0.038359734411682
819 => 0.038474777134809
820 => 0.038500530957905
821 => 0.039262361253749
822 => 0.038543108808564
823 => 0.038716240020875
824 => 0.040066960316837
825 => 0.038842043395059
826 => 0.039490909207432
827 => 0.039459150602451
828 => 0.039791088395639
829 => 0.039431922014871
830 => 0.039436374312618
831 => 0.039731112585555
901 => 0.039317205837543
902 => 0.039214716705951
903 => 0.039073128704698
904 => 0.03938228092554
905 => 0.039567603700183
906 => 0.041061169159222
907 => 0.042026080560622
908 => 0.041984191211914
909 => 0.042366981445526
910 => 0.042194530939327
911 => 0.041637642764666
912 => 0.042588182973534
913 => 0.042287392279157
914 => 0.042312189098541
915 => 0.042311266159685
916 => 0.042511265675867
917 => 0.042369547688965
918 => 0.042090206989729
919 => 0.042275646382167
920 => 0.04282633508191
921 => 0.044535689703104
922 => 0.045492267195061
923 => 0.044478102536974
924 => 0.045177659737916
925 => 0.044758174695068
926 => 0.044681941784184
927 => 0.045121315403247
928 => 0.045561458087666
929 => 0.045533422901458
930 => 0.045213901914146
1001 => 0.045033412615959
1002 => 0.046400138050185
1003 => 0.047407118068563
1004 => 0.047338448782189
1005 => 0.047641532679794
1006 => 0.048531396377195
1007 => 0.04861275436155
1008 => 0.048602505125513
1009 => 0.048400850872461
1010 => 0.049277037245955
1011 => 0.050007967333756
1012 => 0.048354173739231
1013 => 0.048983916690278
1014 => 0.049266628590054
1015 => 0.049681733535766
1016 => 0.050382085158849
1017 => 0.05114285278061
1018 => 0.05125043366372
1019 => 0.051174099878934
1020 => 0.050672353181851
1021 => 0.051504794191428
1022 => 0.051992418611694
1023 => 0.052282787794876
1024 => 0.053019115730601
1025 => 0.0492683745225
1026 => 0.046613413471473
1027 => 0.046198802965253
1028 => 0.047041929733405
1029 => 0.047264255538356
1030 => 0.047174636285153
1031 => 0.044186236243724
1101 => 0.046183069657498
1102 => 0.048331494512198
1103 => 0.048414024260602
1104 => 0.04948957066431
1105 => 0.049839812661494
1106 => 0.050705768491569
1107 => 0.050651602718623
1108 => 0.050862449182879
1109 => 0.050813979232099
1110 => 0.052417980058798
1111 => 0.054187431167076
1112 => 0.054126160701706
1113 => 0.053871781169696
1114 => 0.054249578152887
1115 => 0.056075841322534
1116 => 0.055907708275143
1117 => 0.056071035209144
1118 => 0.05822430240984
1119 => 0.061023856069432
1120 => 0.059723182323959
1121 => 0.062545270092847
1122 => 0.064321624750916
1123 => 0.067393646453548
1124 => 0.067009014206353
1125 => 0.068204929711651
1126 => 0.066320442208701
1127 => 0.061993277984166
1128 => 0.061308487681914
1129 => 0.062679455208675
1130 => 0.066049845096161
1201 => 0.062573309636919
1202 => 0.063276608232474
1203 => 0.063074058189641
1204 => 0.06306326515864
1205 => 0.063475191253493
1206 => 0.062877670968289
1207 => 0.060443265834519
1208 => 0.061558939361286
1209 => 0.061128124233558
1210 => 0.061606145737168
1211 => 0.064185830641084
1212 => 0.063045290453055
1213 => 0.061843824014928
1214 => 0.063350729555086
1215 => 0.065269538136631
1216 => 0.065149462544028
1217 => 0.064916465706675
1218 => 0.066229856679516
1219 => 0.068399193779201
1220 => 0.068985556880143
1221 => 0.069418398133593
1222 => 0.069478079629531
1223 => 0.070092836129534
1224 => 0.066787135490434
1225 => 0.072033367301099
1226 => 0.072939246610572
1227 => 0.072768978845241
1228 => 0.073775825572492
1229 => 0.073479585724098
1230 => 0.073050380662385
1231 => 0.074646446887517
]
'min_raw' => 0.027515332963089
'max_raw' => 0.074646446887517
'avg_raw' => 0.051080889925303
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.027515'
'max' => '$0.074646'
'avg' => '$0.05108'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0094893272359279
'max_diff' => 0.034404658946071
'year' => 2032
]
7 => [
'items' => [
101 => 0.072816685756306
102 => 0.070219570191072
103 => 0.068794741226863
104 => 0.070671070944607
105 => 0.07181688002835
106 => 0.07257418694556
107 => 0.07280334756113
108 => 0.067043747620924
109 => 0.06393964269521
110 => 0.065929338363958
111 => 0.068356904401289
112 => 0.066773650238525
113 => 0.066835710804209
114 => 0.064578406439983
115 => 0.068556625749731
116 => 0.067977032658391
117 => 0.070983962641542
118 => 0.070266334668942
119 => 0.072718369341852
120 => 0.072072666435844
121 => 0.074752943097919
122 => 0.075822178024015
123 => 0.077617589878057
124 => 0.078938302146531
125 => 0.079713849651779
126 => 0.079667288688569
127 => 0.082740394280595
128 => 0.080928291279109
129 => 0.078651862829357
130 => 0.078610689420741
131 => 0.079789683972108
201 => 0.082260533110414
202 => 0.082901188342584
203 => 0.083259227217573
204 => 0.082710878217105
205 => 0.080743970283584
206 => 0.079894669410339
207 => 0.080618298360959
208 => 0.079733362336496
209 => 0.081261010183914
210 => 0.083358796966392
211 => 0.082925612291358
212 => 0.08437368371332
213 => 0.085872285293494
214 => 0.088015352859551
215 => 0.088575630078881
216 => 0.089501747016998
217 => 0.090455025559887
218 => 0.090761192936286
219 => 0.091345761455989
220 => 0.091342680491339
221 => 0.093104317071463
222 => 0.095047456772684
223 => 0.095780947026107
224 => 0.097467567418965
225 => 0.094579289102423
226 => 0.09677008138367
227 => 0.098746230860443
228 => 0.096390183987155
301 => 0.099637445713466
302 => 0.099763529527845
303 => 0.10166724543137
304 => 0.09973746465531
305 => 0.098591566990562
306 => 0.10189973061247
307 => 0.10350044678293
308 => 0.10301829804532
309 => 0.099349122345543
310 => 0.097213504709922
311 => 0.091624181427625
312 => 0.098244976296303
313 => 0.1014697723456
314 => 0.099340770902829
315 => 0.10041451539395
316 => 0.10627251717466
317 => 0.10850286497523
318 => 0.10803896822402
319 => 0.10811735913858
320 => 0.10932081432809
321 => 0.11465759739326
322 => 0.11145967327495
323 => 0.11390436643946
324 => 0.11520102287893
325 => 0.11640542964335
326 => 0.1134477872866
327 => 0.10959993803685
328 => 0.10838116265774
329 => 0.099129083667378
330 => 0.098647472776187
331 => 0.098377129988658
401 => 0.096672656954035
402 => 0.095333408043278
403 => 0.09426838758632
404 => 0.091473455865232
405 => 0.092416663275018
406 => 0.087962125459189
407 => 0.090811980894629
408 => 0.08370243098199
409 => 0.089623475410652
410 => 0.086400920124986
411 => 0.088564779328964
412 => 0.088557229828049
413 => 0.08457287898134
414 => 0.082274788564239
415 => 0.083739221221033
416 => 0.085309209275925
417 => 0.085563934555757
418 => 0.087599465049806
419 => 0.088167537857113
420 => 0.086446250730188
421 => 0.083555101362534
422 => 0.084226649420544
423 => 0.082261179664278
424 => 0.078816769517123
425 => 0.081290605018441
426 => 0.08213528122546
427 => 0.082508338358621
428 => 0.079121156572073
429 => 0.078056830515445
430 => 0.077490192253457
501 => 0.083117858728298
502 => 0.083426155001529
503 => 0.081848867678981
504 => 0.088978355941419
505 => 0.08736473317169
506 => 0.089167545152654
507 => 0.084165713473113
508 => 0.084356790179132
509 => 0.081988842904129
510 => 0.083314735151836
511 => 0.082377637246658
512 => 0.083207616160944
513 => 0.083705102100035
514 => 0.086072660818191
515 => 0.089650509128152
516 => 0.085719026496824
517 => 0.084006023214486
518 => 0.085068760816552
519 => 0.087898971096778
520 => 0.092186884547119
521 => 0.089648353482217
522 => 0.090774910461767
523 => 0.091021013044768
524 => 0.089149194219037
525 => 0.092255901177158
526 => 0.093920810674857
527 => 0.09562866331502
528 => 0.097111543909528
529 => 0.094946509414054
530 => 0.097263406669715
531 => 0.095396396469074
601 => 0.093721495311133
602 => 0.09372403544482
603 => 0.092673345482042
604 => 0.090637501283703
605 => 0.090262060378076
606 => 0.092215151382109
607 => 0.093781345408937
608 => 0.09391034465055
609 => 0.094777470137757
610 => 0.095290626068983
611 => 0.10032025179666
612 => 0.10234320887158
613 => 0.10481684249017
614 => 0.10578046219096
615 => 0.10868061201357
616 => 0.10633850549316
617 => 0.10583177601493
618 => 0.098796961177068
619 => 0.09994891171267
620 => 0.10179329566686
621 => 0.098827374389144
622 => 0.10070856877888
623 => 0.10107995640056
624 => 0.09872659351905
625 => 0.099983626316874
626 => 0.096645319890104
627 => 0.089723275085716
628 => 0.092263607391797
629 => 0.09413414703568
630 => 0.091464656327984
701 => 0.096249615097972
702 => 0.093454340966143
703 => 0.092568373263175
704 => 0.089111897383602
705 => 0.090743220946803
706 => 0.092949609424335
707 => 0.091586317865412
708 => 0.094415352549435
709 => 0.098422020138003
710 => 0.1012774100628
711 => 0.10149661144571
712 => 0.09966078702033
713 => 0.10260270737807
714 => 0.10262413605611
715 => 0.099305637874481
716 => 0.09727307621571
717 => 0.096811273930291
718 => 0.097964946580939
719 => 0.099365718158545
720 => 0.10157434451939
721 => 0.10290897117279
722 => 0.10638896965357
723 => 0.10733055746309
724 => 0.10836507699417
725 => 0.1097475141217
726 => 0.11140748434291
727 => 0.10777556400107
728 => 0.107919866967
729 => 0.10453787303203
730 => 0.10092372748554
731 => 0.10366641344573
801 => 0.10725211049445
802 => 0.10642954762963
803 => 0.1063369925039
804 => 0.10649264455272
805 => 0.10587245901504
806 => 0.10306738281325
807 => 0.10165869110542
808 => 0.1034762628041
809 => 0.10444222127115
810 => 0.1059403386131
811 => 0.10575566402929
812 => 0.1096146534161
813 => 0.11111414000204
814 => 0.1107305071667
815 => 0.11080110484104
816 => 0.11351585368006
817 => 0.11653521271974
818 => 0.11936324089991
819 => 0.12224003263141
820 => 0.11877194791599
821 => 0.11701106837923
822 => 0.11882784658297
823 => 0.11786383849506
824 => 0.12340331491157
825 => 0.12378685623982
826 => 0.12932593208913
827 => 0.13458317465101
828 => 0.13128119479118
829 => 0.13439481307456
830 => 0.13776244510507
831 => 0.14425915367051
901 => 0.14207129078263
902 => 0.1403954220987
903 => 0.13881173429012
904 => 0.14210713721641
905 => 0.14634662043574
906 => 0.14725976451592
907 => 0.14873940677369
908 => 0.14718374386169
909 => 0.14905736848855
910 => 0.15567208673374
911 => 0.15388473147415
912 => 0.15134639967385
913 => 0.15656808444413
914 => 0.15845779186371
915 => 0.17172074818178
916 => 0.18846577839874
917 => 0.18153322593512
918 => 0.17722996690888
919 => 0.17824133485472
920 => 0.1843560530349
921 => 0.18631990644293
922 => 0.18098147589906
923 => 0.18286709981671
924 => 0.19325707299343
925 => 0.19883096025249
926 => 0.19126087268175
927 => 0.17037530130812
928 => 0.15111785066772
929 => 0.15622579375186
930 => 0.15564671152405
1001 => 0.16680944152688
1002 => 0.15384210364233
1003 => 0.15406044035571
1004 => 0.16545400379347
1005 => 0.1624143964034
1006 => 0.157490621715
1007 => 0.15115379967192
1008 => 0.13943959804021
1009 => 0.12906400298031
1010 => 0.1494129342496
1011 => 0.14853545133114
1012 => 0.14726472602952
1013 => 0.15009258768143
1014 => 0.16382388116055
1015 => 0.163507330402
1016 => 0.1614935959817
1017 => 0.16302099579126
1018 => 0.15722286114351
1019 => 0.15871717246331
1020 => 0.15111480018915
1021 => 0.15455138996018
1022 => 0.1574800575059
1023 => 0.15806803087536
1024 => 0.15939276489943
1025 => 0.14807305770624
1026 => 0.15315527390684
1027 => 0.15614059978543
1028 => 0.14265278885886
1029 => 0.15587398913003
1030 => 0.14787600678808
1031 => 0.14516137145556
1101 => 0.14881627030479
1102 => 0.14739195266874
1103 => 0.146167408004
1104 => 0.14548409104073
1105 => 0.14816784537914
1106 => 0.14804264503147
1107 => 0.14365150203956
1108 => 0.1379234350125
1109 => 0.13984596232417
1110 => 0.13914749012805
1111 => 0.13661613678461
1112 => 0.13832196330132
1113 => 0.13081036662076
1114 => 0.11788705495066
1115 => 0.12642459049167
1116 => 0.12609590466039
1117 => 0.12593016635955
1118 => 0.13234588835846
1119 => 0.13172916472416
1120 => 0.13060980528892
1121 => 0.13659557887077
1122 => 0.13441069099338
1123 => 0.14114400060717
1124 => 0.14557899380198
1125 => 0.14445413607077
1126 => 0.14862526860667
1127 => 0.13989025347047
1128 => 0.14279167511074
1129 => 0.1433896540896
1130 => 0.13652171535391
1201 => 0.13183006833788
1202 => 0.1315171889706
1203 => 0.12338251959358
1204 => 0.12772799431402
1205 => 0.13155183224006
1206 => 0.1297205106153
1207 => 0.12914076889808
1208 => 0.13210254360072
1209 => 0.13233269886101
1210 => 0.12708513453585
1211 => 0.1281762693278
1212 => 0.1327264827963
1213 => 0.12806161562304
1214 => 0.11899854070712
1215 => 0.11675077282115
1216 => 0.11645087915058
1217 => 0.11035475437114
1218 => 0.11690097941941
1219 => 0.11404337675792
1220 => 0.12307050932625
1221 => 0.1179142596167
1222 => 0.11769198399739
1223 => 0.11735598179805
1224 => 0.11210879537264
1225 => 0.11325759572371
1226 => 0.11707638305791
1227 => 0.11843896940047
1228 => 0.1182968404816
1229 => 0.11705766891664
1230 => 0.11762495531349
1231 => 0.11579752817354
]
'min_raw' => 0.06393964269521
'max_raw' => 0.19883096025249
'avg_raw' => 0.13138530147385
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.063939'
'max' => '$0.19883'
'avg' => '$0.131385'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.036424309732122
'max_diff' => 0.12418451336497
'year' => 2033
]
8 => [
'items' => [
101 => 0.11515222561582
102 => 0.1131154732392
103 => 0.11012200991276
104 => 0.11053826934828
105 => 0.10460743521633
106 => 0.10137600200805
107 => 0.10048158388561
108 => 0.099285530591966
109 => 0.1006166812877
110 => 0.10459063390841
111 => 0.099797203926755
112 => 0.091579204443234
113 => 0.092073120214984
114 => 0.093182802309196
115 => 0.091114917067913
116 => 0.089157837231493
117 => 0.090859359366354
118 => 0.087377284649214
119 => 0.093603594402954
120 => 0.093435190173146
121 => 0.095755973416928
122 => 0.097207206806532
123 => 0.093862583685885
124 => 0.093021420015865
125 => 0.093500585071066
126 => 0.08558105406195
127 => 0.095108778775374
128 => 0.095191174934343
129 => 0.094485648997091
130 => 0.099558868271491
131 => 0.11026494331725
201 => 0.10623688723416
202 => 0.10467710217015
203 => 0.10171194962327
204 => 0.10566283933865
205 => 0.10535947265199
206 => 0.10398753344651
207 => 0.10315778033433
208 => 0.10468662588515
209 => 0.1029683394516
210 => 0.10265968799278
211 => 0.10078959596844
212 => 0.10012205819951
213 => 0.099627839810845
214 => 0.099083753925818
215 => 0.10028387181043
216 => 0.097564246795239
217 => 0.094284645635043
218 => 0.094011982284349
219 => 0.094764829768422
220 => 0.094431750799623
221 => 0.094010387630391
222 => 0.093205890588896
223 => 0.092967213502044
224 => 0.093742798244652
225 => 0.092867208289647
226 => 0.09415918896411
227 => 0.093807841709208
228 => 0.091845244504206
301 => 0.089399121740223
302 => 0.089377346116708
303 => 0.088850332979653
304 => 0.088179102512659
305 => 0.087992381552413
306 => 0.090716061918088
307 => 0.096353998762139
308 => 0.095247136855257
309 => 0.096046958018751
310 => 0.099981286531035
311 => 0.1012318912557
312 => 0.10034424164433
313 => 0.099129172108438
314 => 0.099182629001436
315 => 0.10333488943214
316 => 0.10359386082194
317 => 0.10424819797662
318 => 0.10508920613604
319 => 0.1004874689705
320 => 0.098965887594766
321 => 0.098244877924821
322 => 0.09602444720725
323 => 0.098418991370808
324 => 0.097023793031307
325 => 0.097212052954068
326 => 0.097089448432398
327 => 0.097156398791711
328 => 0.093601854022485
329 => 0.094896943315018
330 => 0.092743606179482
331 => 0.089860529478437
401 => 0.089850864394398
402 => 0.090556493332527
403 => 0.090136757628865
404 => 0.089007259642702
405 => 0.089167699500556
406 => 0.087762077523
407 => 0.089338367458239
408 => 0.089383569813345
409 => 0.088776612327185
410 => 0.091205104458514
411 => 0.09220005966618
412 => 0.091800547246501
413 => 0.092172028809797
414 => 0.09529313196467
415 => 0.095802007962192
416 => 0.09602801706583
417 => 0.095725194807424
418 => 0.092229076845978
419 => 0.09238414454421
420 => 0.091246360663621
421 => 0.090285053181234
422 => 0.090323500439136
423 => 0.090817737446308
424 => 0.092976099443245
425 => 0.097518245023409
426 => 0.097690616127911
427 => 0.097899534934987
428 => 0.097049757152428
429 => 0.09679345604193
430 => 0.097131583363606
501 => 0.098837374428847
502 => 0.1032251321664
503 => 0.10167420553346
504 => 0.10041327803927
505 => 0.10151945139529
506 => 0.10134916467761
507 => 0.099911773409846
508 => 0.09987143062434
509 => 0.097112617219723
510 => 0.096092746719177
511 => 0.095240466592938
512 => 0.09430979894442
513 => 0.093758067966117
514 => 0.094605777506036
515 => 0.09479965870762
516 => 0.09294612698316
517 => 0.092693497458151
518 => 0.094207131475606
519 => 0.093541037578488
520 => 0.094226131670008
521 => 0.094385079375869
522 => 0.094359485134349
523 => 0.093664006605361
524 => 0.09410728388027
525 => 0.093058800977795
526 => 0.091918733298394
527 => 0.091191441147662
528 => 0.090556782284844
529 => 0.090908927908525
530 => 0.089653593059352
531 => 0.089251986176203
601 => 0.093957111513585
602 => 0.097432838188931
603 => 0.097382299746533
604 => 0.097074659975865
605 => 0.096617569679101
606 => 0.098803935426599
607 => 0.098042249317934
608 => 0.098596439602992
609 => 0.098737504289832
610 => 0.099164464610932
611 => 0.099317066227246
612 => 0.098855798154109
613 => 0.097307726161511
614 => 0.093450077942224
615 => 0.091654332282624
616 => 0.091061706304447
617 => 0.091083247133196
618 => 0.090489054913783
619 => 0.090664071152228
620 => 0.090428191408416
621 => 0.089981492239077
622 => 0.090881345493583
623 => 0.090985045198452
624 => 0.090775008696405
625 => 0.090824479896069
626 => 0.08908546736688
627 => 0.089217680712537
628 => 0.088481500003056
629 => 0.08834347499482
630 => 0.086482474267839
701 => 0.083185441723624
702 => 0.085012317803812
703 => 0.082805708396595
704 => 0.081970031978493
705 => 0.085925994167439
706 => 0.08552892528498
707 => 0.084849315959905
708 => 0.083844032125124
709 => 0.083471162572032
710 => 0.081205725203597
711 => 0.081071871078231
712 => 0.082194683009982
713 => 0.081676543937079
714 => 0.08094888044411
715 => 0.078313357034644
716 => 0.075350156130591
717 => 0.075439596539868
718 => 0.076382135615134
719 => 0.079122695095183
720 => 0.078051911094168
721 => 0.0772750450156
722 => 0.077129561351593
723 => 0.078950593997323
724 => 0.081527736709166
725 => 0.082736874409244
726 => 0.081538655670524
727 => 0.080162206500162
728 => 0.08024598458331
729 => 0.080803322637256
730 => 0.08086189098639
731 => 0.079965964077745
801 => 0.080218162254606
802 => 0.079835050162469
803 => 0.07748389196019
804 => 0.077441366963914
805 => 0.076864354823528
806 => 0.076846883125236
807 => 0.075865241532014
808 => 0.075727903087355
809 => 0.073778794122627
810 => 0.075061703545656
811 => 0.074201195260456
812 => 0.072904206301276
813 => 0.072680604915848
814 => 0.072673883188196
815 => 0.07400560084785
816 => 0.075046141649439
817 => 0.074216164170493
818 => 0.074027194386974
819 => 0.076044897289685
820 => 0.075788126203545
821 => 0.075565764098943
822 => 0.081296981845669
823 => 0.076760275786638
824 => 0.074782012998771
825 => 0.072333537136872
826 => 0.073130773223794
827 => 0.073298762581143
828 => 0.067410619504223
829 => 0.065021800591237
830 => 0.064202047961043
831 => 0.063730268732765
901 => 0.063945264451322
902 => 0.061795047249123
903 => 0.06324002877031
904 => 0.061378122426542
905 => 0.061065967768842
906 => 0.064395286957436
907 => 0.064858542272928
908 => 0.062882151174893
909 => 0.064151314208486
910 => 0.063691098049819
911 => 0.061410039466811
912 => 0.061322919807271
913 => 0.060178364793403
914 => 0.058387357826223
915 => 0.057568819583089
916 => 0.05714251775919
917 => 0.057318418200188
918 => 0.057229477554577
919 => 0.056649079680196
920 => 0.057262745281347
921 => 0.05569508325454
922 => 0.055070827603954
923 => 0.054788865809205
924 => 0.053397475529154
925 => 0.055611796218781
926 => 0.056048045289915
927 => 0.056485153906483
928 => 0.06028988598698
929 => 0.060099812324299
930 => 0.061817985665302
1001 => 0.061751220608788
1002 => 0.061261169739372
1003 => 0.059193725730758
1004 => 0.060017772063946
1005 => 0.057481485535628
1006 => 0.059381843853363
1007 => 0.05851459967801
1008 => 0.059088627725307
1009 => 0.058056473538244
1010 => 0.058627710281967
1011 => 0.056151496128454
1012 => 0.053839242193178
1013 => 0.054769760675633
1014 => 0.055781340683759
1015 => 0.057974703887167
1016 => 0.05666835485807
1017 => 0.057138167367459
1018 => 0.055564374106671
1019 => 0.052317189077845
1020 => 0.052335567792464
1021 => 0.051836059119551
1022 => 0.051404410696693
1023 => 0.056818404758664
1024 => 0.056145089014477
1025 => 0.055072248497502
1026 => 0.056508288162461
1027 => 0.05688799984289
1028 => 0.05689880970062
1029 => 0.057946507170626
1030 => 0.058505663498178
1031 => 0.058604217224432
1101 => 0.060252791830488
1102 => 0.060805372293213
1103 => 0.063081373015063
1104 => 0.058458222990393
1105 => 0.058363012257984
1106 => 0.056528496185497
1107 => 0.055365017089774
1108 => 0.056608160594581
1109 => 0.057709416033828
1110 => 0.056562715261732
1111 => 0.056712450174393
1112 => 0.055173098076749
1113 => 0.055723344018408
1114 => 0.056197289949498
1115 => 0.055935604863605
1116 => 0.05554384962432
1117 => 0.057619125646362
1118 => 0.057502030440126
1119 => 0.05943457518224
1120 => 0.060941132006319
1121 => 0.063641151164313
1122 => 0.060823540417764
1123 => 0.060720855483171
1124 => 0.061724617189996
1125 => 0.060805218622525
1126 => 0.061386246780607
1127 => 0.063547538545386
1128 => 0.063593203234656
1129 => 0.062828260853741
1130 => 0.062781714040345
1201 => 0.062928629592152
1202 => 0.063789118567912
1203 => 0.063488437279626
1204 => 0.06383639327875
1205 => 0.064271517583745
1206 => 0.066071376198087
1207 => 0.066505316016612
1208 => 0.065451067229596
1209 => 0.065546254091141
1210 => 0.06515193610502
1211 => 0.064771029871218
1212 => 0.065627251457917
1213 => 0.067192013236689
1214 => 0.067182278934874
1215 => 0.067545273252926
1216 => 0.067771415705866
1217 => 0.066800646751457
1218 => 0.066168711858301
1219 => 0.066411035907399
1220 => 0.066798517339038
1221 => 0.066285380901463
1222 => 0.063118065100827
1223 => 0.064078826385823
1224 => 0.063918908729173
1225 => 0.063691166539452
1226 => 0.064657219440863
1227 => 0.06456404128182
1228 => 0.061772993663841
1229 => 0.061951667476812
1230 => 0.061783859410194
1231 => 0.062326081603738
]
'min_raw' => 0.051404410696693
'max_raw' => 0.11515222561582
'avg_raw' => 0.083278318156257
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0514044'
'max' => '$0.115152'
'avg' => '$0.083278'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012535231998517
'max_diff' => -0.083678734636666
'year' => 2034
]
9 => [
'items' => [
101 => 0.060775936844652
102 => 0.061252750932163
103 => 0.061551804257995
104 => 0.061727948964346
105 => 0.062364304427242
106 => 0.062289635458458
107 => 0.062359662899302
108 => 0.063303210059163
109 => 0.068075347807453
110 => 0.068335084735965
111 => 0.067056045105658
112 => 0.067566996210024
113 => 0.066586081822364
114 => 0.067244576222355
115 => 0.067695101366885
116 => 0.065659264869758
117 => 0.065538715844867
118 => 0.064553752874598
119 => 0.065083016183667
120 => 0.06424092020356
121 => 0.064447541101812
122 => 0.063869811057415
123 => 0.064909610112424
124 => 0.066072267024362
125 => 0.06636600007503
126 => 0.065593314878751
127 => 0.06503383987421
128 => 0.064051586068758
129 => 0.065685096038178
130 => 0.066162784133551
131 => 0.065682586945971
201 => 0.065571314765093
202 => 0.065360454183394
203 => 0.065616049834303
204 => 0.066160182541595
205 => 0.065903579605389
206 => 0.066073070365515
207 => 0.065427146366029
208 => 0.066800968116375
209 => 0.068982927684133
210 => 0.06898994304093
211 => 0.068733338721539
212 => 0.068628341762661
213 => 0.068891633366408
214 => 0.069034458260654
215 => 0.06988589502775
216 => 0.070799520601581
217 => 0.075063012508582
218 => 0.073865841041734
219 => 0.077648664697894
220 => 0.080640387071742
221 => 0.081537473799494
222 => 0.080712196221154
223 => 0.077888966206271
224 => 0.077750445072811
225 => 0.081969542652013
226 => 0.080777454338977
227 => 0.080635659227335
228 => 0.079127198806086
301 => 0.080018885741502
302 => 0.079823860728468
303 => 0.079516004204444
304 => 0.081217280761768
305 => 0.084401918603072
306 => 0.083905562930161
307 => 0.083535056445609
308 => 0.08191160488312
309 => 0.082889285334772
310 => 0.082541152052174
311 => 0.084036953565055
312 => 0.083150873884885
313 => 0.080768423097555
314 => 0.081147836238098
315 => 0.081090488705178
316 => 0.082270696868976
317 => 0.081916427672772
318 => 0.081021311958801
319 => 0.084391033857145
320 => 0.084172222860445
321 => 0.084482446826608
322 => 0.084619017010508
323 => 0.08667010734887
324 => 0.087510373432926
325 => 0.087701128544936
326 => 0.088499316336278
327 => 0.087681268905555
328 => 0.090954041886382
329 => 0.093130244947034
330 => 0.095658016788368
331 => 0.099351770849574
401 => 0.10074065654572
402 => 0.10048976677615
403 => 0.10329032894912
404 => 0.10832287692096
405 => 0.10150698860731
406 => 0.10868413555185
407 => 0.10641193369336
408 => 0.10102458396203
409 => 0.10067770215201
410 => 0.10432607793848
411 => 0.11241782428972
412 => 0.11039093360456
413 => 0.11242113955677
414 => 0.11005279647278
415 => 0.1099351882767
416 => 0.11230611441942
417 => 0.11784591258434
418 => 0.11521416213242
419 => 0.1114409025279
420 => 0.11422701870145
421 => 0.11181342702904
422 => 0.10637492946932
423 => 0.11038938367946
424 => 0.10770503247421
425 => 0.10848846886386
426 => 0.11413057583018
427 => 0.11345170259283
428 => 0.11433022742393
429 => 0.11277965409203
430 => 0.11133117409707
501 => 0.10862747862094
502 => 0.10782704768103
503 => 0.10804825799633
504 => 0.10782693806018
505 => 0.10631424528953
506 => 0.10598757942973
507 => 0.10544312201851
508 => 0.10561187213656
509 => 0.10458813291683
510 => 0.10652014033978
511 => 0.10687873794227
512 => 0.10828469182864
513 => 0.1084306626252
514 => 0.11234622418625
515 => 0.11018959867676
516 => 0.11163644926262
517 => 0.11150702932793
518 => 0.10114134416658
519 => 0.1025696441246
520 => 0.10479163063406
521 => 0.10379062872338
522 => 0.10237544622005
523 => 0.10123261047133
524 => 0.099501097451056
525 => 0.10193816877632
526 => 0.10514265841541
527 => 0.10851193377066
528 => 0.11255989734632
529 => 0.11165643899972
530 => 0.10843625990732
531 => 0.10858071478906
601 => 0.10947367802709
602 => 0.10831720949957
603 => 0.10797614435386
604 => 0.10942682091349
605 => 0.10943681092567
606 => 0.10810615412087
607 => 0.10662737258996
608 => 0.10662117644135
609 => 0.10635804155126
610 => 0.11009960758517
611 => 0.11215709058883
612 => 0.1123929776994
613 => 0.11214121350684
614 => 0.11223810755239
615 => 0.11104090352611
616 => 0.11377735691037
617 => 0.11628859714296
618 => 0.11561553111581
619 => 0.11460650945912
620 => 0.11380277510851
621 => 0.11542619684585
622 => 0.11535390843139
623 => 0.11626666365029
624 => 0.11622525580123
625 => 0.11591833055157
626 => 0.11561554207707
627 => 0.11681606415281
628 => 0.11647033307479
629 => 0.11612406498092
630 => 0.11542957130766
701 => 0.11552396453217
702 => 0.11451511709731
703 => 0.11404837811222
704 => 0.10702974363993
705 => 0.10515413516843
706 => 0.1057442397751
707 => 0.10593851753367
708 => 0.10512225032322
709 => 0.10629256782116
710 => 0.10611017507878
711 => 0.1068197585432
712 => 0.10637644160116
713 => 0.1063946354831
714 => 0.1076983360845
715 => 0.10807680591542
716 => 0.10788431310479
717 => 0.10801912847109
718 => 0.11112589168548
719 => 0.11068420930509
720 => 0.11044957434357
721 => 0.11051456983143
722 => 0.11130841444247
723 => 0.11153064759125
724 => 0.11058903012382
725 => 0.11103310236488
726 => 0.11292390560618
727 => 0.11358557973044
728 => 0.11569732591347
729 => 0.11480021860162
730 => 0.11644689789842
731 => 0.12150822866242
801 => 0.12555156989415
802 => 0.1218331461993
803 => 0.12925822745498
804 => 0.13503971827717
805 => 0.13481781502984
806 => 0.1338096783767
807 => 0.12722760478452
808 => 0.12117068253181
809 => 0.12623755518671
810 => 0.12625047168712
811 => 0.12581522283247
812 => 0.1231119295773
813 => 0.12572115408692
814 => 0.12592826485318
815 => 0.12581233789927
816 => 0.12373972929874
817 => 0.12057523904782
818 => 0.12119357286813
819 => 0.12220641627947
820 => 0.12028889240054
821 => 0.11967612733435
822 => 0.12081537417572
823 => 0.1244862648701
824 => 0.12379230424835
825 => 0.123774182132
826 => 0.12674323995696
827 => 0.12461803531707
828 => 0.12120137203779
829 => 0.12033861949952
830 => 0.1172764292084
831 => 0.11939149494962
901 => 0.11946761240027
902 => 0.11830921250925
903 => 0.12129536980464
904 => 0.12126785183946
905 => 0.12410276376057
906 => 0.12952205060944
907 => 0.12791930082132
908 => 0.12605547719641
909 => 0.12625812650266
910 => 0.12848068921112
911 => 0.12713687706142
912 => 0.12762012127984
913 => 0.12847995776312
914 => 0.12899871846202
915 => 0.12618348482137
916 => 0.12552711919154
917 => 0.12418442546594
918 => 0.1238341417355
919 => 0.12492773775877
920 => 0.12463961384396
921 => 0.11946121502328
922 => 0.11892004353418
923 => 0.11893664049114
924 => 0.1175758390505
925 => 0.11550029022375
926 => 0.12095470861586
927 => 0.12051664248444
928 => 0.12003305137897
929 => 0.12009228853006
930 => 0.12245986668668
1001 => 0.12108655179028
1002 => 0.12473773452425
1003 => 0.12398716111875
1004 => 0.12321733833756
1005 => 0.12311092537983
1006 => 0.12281460928727
1007 => 0.12179843115151
1008 => 0.12057133498974
1009 => 0.11976109981449
1010 => 0.11047328403108
1011 => 0.11219704861574
1012 => 0.11418008264431
1013 => 0.11486461804446
1014 => 0.1136936728741
1015 => 0.12184466720383
1016 => 0.1233339324128
1017 => 0.11882285095245
1018 => 0.11797901179745
1019 => 0.12189998915834
1020 => 0.11953516048974
1021 => 0.12060004269441
1022 => 0.11829834982733
1023 => 0.12297521203474
1024 => 0.1229395821806
1025 => 0.1211201771502
1026 => 0.12265792582315
1027 => 0.12239070414909
1028 => 0.12033660035076
1029 => 0.12304033078898
1030 => 0.12304167180555
1031 => 0.12129053402106
1101 => 0.11924558846213
1102 => 0.11888000049566
1103 => 0.11860457907275
1104 => 0.12053230590802
1105 => 0.12226069976067
1106 => 0.12547681221529
1107 => 0.12628541929933
1108 => 0.12944146658036
1109 => 0.12756219408966
1110 => 0.12839525124413
1111 => 0.12929965262844
1112 => 0.12973325591034
1113 => 0.12902672263092
1114 => 0.13392936313924
1115 => 0.13434329621117
1116 => 0.13448208438968
1117 => 0.13282894159467
1118 => 0.13429731931953
1119 => 0.13361031400963
1120 => 0.13539771097042
1121 => 0.1356779976365
1122 => 0.13544060480182
1123 => 0.13552957221365
1124 => 0.13134603342485
1125 => 0.13112909486873
1126 => 0.12817112226272
1127 => 0.1293765179639
1128 => 0.12712308847666
1129 => 0.12783767417996
1130 => 0.12815265674915
1201 => 0.12798812773011
1202 => 0.12944466922828
1203 => 0.12820631140306
1204 => 0.12493808149744
1205 => 0.12166896116477
1206 => 0.12162792002196
1207 => 0.12076721834313
1208 => 0.12014508867472
1209 => 0.12026493292009
1210 => 0.12068727967231
1211 => 0.12012054111369
1212 => 0.12024148351955
1213 => 0.12224993329179
1214 => 0.12265271357
1215 => 0.12128390880822
1216 => 0.11578796017206
1217 => 0.1144392405912
1218 => 0.11540867347965
1219 => 0.11494534699845
1220 => 0.092769866144254
1221 => 0.09797966643739
1222 => 0.09488418001131
1223 => 0.09631072257293
1224 => 0.093151032504226
1225 => 0.094659002218557
1226 => 0.094380535274557
1227 => 0.10275773997672
1228 => 0.10262694144776
1229 => 0.10268954778187
1230 => 0.099701184335004
1231 => 0.10446172844877
]
'min_raw' => 0.060775936844652
'max_raw' => 0.1356779976365
'avg_raw' => 0.098226967240576
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.060775'
'max' => '$0.135677'
'avg' => '$0.098226'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0093715261479594
'max_diff' => 0.02052577202068
'year' => 2035
]
10 => [
'items' => [
101 => 0.10680694366285
102 => 0.1063729067426
103 => 0.10648214448447
104 => 0.10460507815724
105 => 0.10270772188698
106 => 0.10060326178223
107 => 0.10451308853773
108 => 0.10407838254549
109 => 0.10507544168942
110 => 0.10761124382055
111 => 0.10798465031694
112 => 0.1084865124348
113 => 0.10830663059052
114 => 0.11259214590689
115 => 0.11207314172534
116 => 0.11332379247518
117 => 0.11075110899565
118 => 0.10783987343719
119 => 0.10839320414139
120 => 0.10833991394497
121 => 0.10766146858092
122 => 0.10704899844159
123 => 0.106029408222
124 => 0.10925554254774
125 => 0.10912456738573
126 => 0.11124490301673
127 => 0.11087011309811
128 => 0.10836717429491
129 => 0.10845656724392
130 => 0.10905777778682
131 => 0.1111385743403
201 => 0.11175629642881
202 => 0.11147014294544
203 => 0.1121474470154
204 => 0.11268276053639
205 => 0.11221467415181
206 => 0.11884179025066
207 => 0.1160897496055
208 => 0.11743107506737
209 => 0.11775097328648
210 => 0.11693156072497
211 => 0.1171092619686
212 => 0.117378430932
213 => 0.11901277216912
214 => 0.12330175647577
215 => 0.12520131842908
216 => 0.13091624428835
217 => 0.12504358625204
218 => 0.12469512702764
219 => 0.12572455774912
220 => 0.12907982421485
221 => 0.13179895254117
222 => 0.13270104427729
223 => 0.13282027059213
224 => 0.13451265465901
225 => 0.13548269764505
226 => 0.13430715471917
227 => 0.13331100517396
228 => 0.12974292114966
229 => 0.13015593659104
301 => 0.13300120341447
302 => 0.13702031038794
303 => 0.14046912228799
304 => 0.13926146856382
305 => 0.14847501400855
306 => 0.14938849940544
307 => 0.14926228526011
308 => 0.15134334093907
309 => 0.14721286921595
310 => 0.14544701253019
311 => 0.13352638401241
312 => 0.13687559438979
313 => 0.14174386836554
314 => 0.14109953404976
315 => 0.13756406335924
316 => 0.14046644031644
317 => 0.13950682372867
318 => 0.13874993431136
319 => 0.14221739146226
320 => 0.13840477988956
321 => 0.14170583464861
322 => 0.13747219777509
323 => 0.13926698502431
324 => 0.13824817697756
325 => 0.13890747064422
326 => 0.1350532533405
327 => 0.13713289544175
328 => 0.13496673339185
329 => 0.134965706349
330 => 0.13491788820169
331 => 0.13746636824716
401 => 0.13754947408995
402 => 0.13566614348581
403 => 0.1353947261226
404 => 0.13639829836998
405 => 0.13522337810428
406 => 0.13577311590174
407 => 0.13524002910214
408 => 0.13512002003502
409 => 0.13416376737038
410 => 0.13375178742973
411 => 0.13391333537988
412 => 0.13336188894237
413 => 0.13302962251708
414 => 0.13485179204667
415 => 0.13387828037312
416 => 0.13470258742058
417 => 0.13376318550416
418 => 0.1305068091839
419 => 0.12863403272656
420 => 0.12248303972384
421 => 0.12422745370913
422 => 0.12538400198611
423 => 0.12500176278747
424 => 0.12582296049308
425 => 0.12587337536271
426 => 0.1256063956175
427 => 0.12529726727476
428 => 0.12514680069339
429 => 0.12626825531599
430 => 0.12691929747084
501 => 0.12550007707832
502 => 0.12516757359736
503 => 0.1266024837715
504 => 0.1274777781488
505 => 0.1339404600454
506 => 0.13346168369631
507 => 0.13466331837741
508 => 0.13452803275291
509 => 0.13578753733411
510 => 0.13784629501803
511 => 0.13366026500892
512 => 0.13438681507648
513 => 0.1342086817784
514 => 0.13615349441771
515 => 0.13615956591048
516 => 0.13499355358262
517 => 0.13562566778195
518 => 0.13527283897703
519 => 0.13591044831518
520 => 0.13345528934628
521 => 0.13644540795237
522 => 0.13814061252304
523 => 0.13816415044015
524 => 0.13896766395268
525 => 0.13978408021776
526 => 0.14135112014373
527 => 0.13974037632474
528 => 0.13684280499713
529 => 0.13705200028789
530 => 0.13535315527869
531 => 0.13538171317022
601 => 0.13522926890713
602 => 0.13568676561613
603 => 0.13355568414663
604 => 0.13405584470797
605 => 0.13335561699315
606 => 0.13438529291818
607 => 0.13327753183438
608 => 0.13420859587713
609 => 0.13461041225272
610 => 0.13609312332914
611 => 0.13305853420284
612 => 0.12687080155069
613 => 0.12817153797318
614 => 0.12624764663368
615 => 0.12642571010192
616 => 0.12678542664636
617 => 0.12561946763391
618 => 0.12584189586989
619 => 0.1258339491681
620 => 0.1257654687852
621 => 0.12546215781459
622 => 0.12502229689895
623 => 0.1267745674048
624 => 0.12707231230897
625 => 0.12773416234816
626 => 0.12970337912762
627 => 0.12950660793403
628 => 0.12982754991474
629 => 0.12912693537285
630 => 0.12645820960111
701 => 0.12660313425014
702 => 0.12479592155445
703 => 0.12768794785637
704 => 0.12700307785519
705 => 0.12656153771009
706 => 0.12644105939066
707 => 0.12841515747762
708 => 0.12900583856544
709 => 0.12863776575065
710 => 0.1278828376691
711 => 0.12933252276012
712 => 0.12972039733317
713 => 0.12980722814581
714 => 0.13237579217754
715 => 0.129950782342
716 => 0.13053450631194
717 => 0.13508855409405
718 => 0.13095866117131
719 => 0.13314635756009
720 => 0.13303928120608
721 => 0.13415843265097
722 => 0.13294747812202
723 => 0.13296248935472
724 => 0.1339562200199
725 => 0.13256070452093
726 => 0.1322151552582
727 => 0.13173778142662
728 => 0.13278010972351
729 => 0.13340493839704
730 => 0.1384405986196
731 => 0.14169386477738
801 => 0.14155263191359
802 => 0.14284323591178
803 => 0.14226180699002
804 => 0.14038421962846
805 => 0.14358903230725
806 => 0.14257489548062
807 => 0.14265849968844
808 => 0.14265538793564
809 => 0.14332970026797
810 => 0.1428518881807
811 => 0.14191007151028
812 => 0.14253529336885
813 => 0.14439197876789
814 => 0.15015518721658
815 => 0.15338035501682
816 => 0.14996102806536
817 => 0.15231963400986
818 => 0.15090531090039
819 => 0.15064828631893
820 => 0.15212966515169
821 => 0.15361363694199
822 => 0.15351911435433
823 => 0.15244182703737
824 => 0.15183329476717
825 => 0.15644130499039
826 => 0.15983640842745
827 => 0.1596048851341
828 => 0.16062675365552
829 => 0.1636269912396
830 => 0.16390129536409
831 => 0.16386673934921
901 => 0.163186847956
902 => 0.16614097148761
903 => 0.16860535331054
904 => 0.16302947274242
905 => 0.16515269506912
906 => 0.16610587797753
907 => 0.1675054332837
908 => 0.16986671767791
909 => 0.17243169882978
910 => 0.17279441528824
911 => 0.17253705060338
912 => 0.17084537658333
913 => 0.1736520095663
914 => 0.17529606934407
915 => 0.1762750693181
916 => 0.17875765036217
917 => 0.16611176451067
918 => 0.15716037796367
919 => 0.15576248969477
920 => 0.15860515045882
921 => 0.15935473743251
922 => 0.15905257986332
923 => 0.14897698048021
924 => 0.15570944374921
925 => 0.16295300814506
926 => 0.16323126295385
927 => 0.16685754274621
928 => 0.16803840809283
929 => 0.17095803863303
930 => 0.17077541494781
1001 => 0.17148629852288
1002 => 0.17132287869976
1003 => 0.17673087947474
1004 => 0.18269670742543
1005 => 0.18249012977366
1006 => 0.18163247142128
1007 => 0.18290624032705
1008 => 0.18906361410914
1009 => 0.18849674180119
1010 => 0.18904740996229
1011 => 0.19630730066575
1012 => 0.20574619128766
1013 => 0.20136087894466
1014 => 0.21087574488934
1015 => 0.21686484864015
1016 => 0.22722238429228
1017 => 0.22592556981669
1018 => 0.22995768243896
1019 => 0.22360400125204
1020 => 0.20901466495607
1021 => 0.20670584664149
1022 => 0.21132815937586
1023 => 0.22269166419463
1024 => 0.21097028216984
1025 => 0.21334150248749
1026 => 0.21265859087649
1027 => 0.21262220141893
1028 => 0.21401103900748
1029 => 0.21199645764838
1030 => 0.20378869077514
1031 => 0.20755026196447
1101 => 0.20609773868279
1102 => 0.2077094215566
1103 => 0.216407009318
1104 => 0.21256159844409
1105 => 0.20851077046424
1106 => 0.21359140770167
1107 => 0.22006080480128
1108 => 0.21965596155741
1109 => 0.21887039645296
1110 => 0.22329858581592
1111 => 0.23061265730579
1112 => 0.23258962143918
1113 => 0.2340489759452
1114 => 0.23425019627558
1115 => 0.23632289073627
1116 => 0.22517749023489
1117 => 0.24286552706476
1118 => 0.24591976240312
1119 => 0.24534569274459
1120 => 0.24874034678131
1121 => 0.24774155344965
1122 => 0.24629445861794
1123 => 0.25167570732976
1124 => 0.24550653992604
1125 => 0.23675018347303
1126 => 0.23194627314182
1127 => 0.23827244978635
1128 => 0.24213562511003
1129 => 0.24468893825488
1130 => 0.24546156926976
1201 => 0.22604267594893
1202 => 0.2155769694702
1203 => 0.22228536733349
1204 => 0.23047007571561
1205 => 0.22513202376657
1206 => 0.22534126529671
1207 => 0.21773060603276
1208 => 0.23114345018598
1209 => 0.22918931161263
1210 => 0.23932738598797
1211 => 0.23690785317516
1212 => 0.24517505927047
1213 => 0.24299802684133
1214 => 0.25203476673846
1215 => 0.25563976694338
1216 => 0.26169312336094
1217 => 0.26614599698329
1218 => 0.26876080954423
1219 => 0.26860382600599
1220 => 0.27896501606688
1221 => 0.27285538428038
1222 => 0.26518024682688
1223 => 0.2650414278051
1224 => 0.2690164902498
1225 => 0.27734713062878
1226 => 0.27950714447316
1227 => 0.28071429753766
1228 => 0.27886550059808
1229 => 0.27223393317509
1230 => 0.26937045598465
1231 => 0.27181022151382
]
'min_raw' => 0.10060326178223
'max_raw' => 0.28071429753766
'avg_raw' => 0.19065877965994
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.1006032'
'max' => '$0.280714'
'avg' => '$0.190658'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.039827324937574
'max_diff' => 0.14503629990116
'year' => 2036
]
11 => [
'items' => [
101 => 0.26882659792308
102 => 0.27397716929762
103 => 0.28105000389754
104 => 0.27958949152168
105 => 0.28447176542194
106 => 0.28952440527852
107 => 0.29674990720168
108 => 0.29863892096395
109 => 0.30176138888024
110 => 0.30497543404337
111 => 0.30600769872882
112 => 0.30797861230627
113 => 0.30796822461885
114 => 0.31390770534228
115 => 0.32045913651062
116 => 0.32293215011069
117 => 0.32861870852129
118 => 0.31888067652392
119 => 0.32626708565637
120 => 0.33292981158766
121 => 0.32498623506043
122 => 0.33593460468726
123 => 0.33635970507033
124 => 0.34277821615228
125 => 0.33627182553279
126 => 0.33240835155207
127 => 0.34356205617193
128 => 0.34895898249907
129 => 0.34733338436769
130 => 0.33496250232222
131 => 0.32776211835966
201 => 0.3089173246793
202 => 0.33123979682819
203 => 0.34211242185647
204 => 0.33493434485003
205 => 0.33855454936827
206 => 0.35830521136457
207 => 0.36582498469209
208 => 0.36426092440715
209 => 0.36452522484868
210 => 0.36858275804267
211 => 0.38657609474918
212 => 0.37579407031236
213 => 0.38403652399956
214 => 0.38840829171487
215 => 0.39246903321012
216 => 0.38249713550833
217 => 0.36952384311457
218 => 0.3654146568317
219 => 0.33422062655617
220 => 0.33259684181152
221 => 0.33168536222864
222 => 0.3259386123899
223 => 0.32142324118391
224 => 0.31783245035592
225 => 0.30840914292237
226 => 0.3115892325571
227 => 0.29657044730514
228 => 0.30617893387628
301 => 0.28220858997289
302 => 0.30217180465825
303 => 0.291306734521
304 => 0.29860233690304
305 => 0.29857688323361
306 => 0.28514336617544
307 => 0.27739519388663
308 => 0.28233263083244
309 => 0.28762595517257
310 => 0.28848477923788
311 => 0.29534771241476
312 => 0.29726300954618
313 => 0.29145956982132
314 => 0.28171185787467
315 => 0.28397602903824
316 => 0.27734931053027
317 => 0.2657362412381
318 => 0.27407695034847
319 => 0.27692483515385
320 => 0.27818262332432
321 => 0.26676250344549
322 => 0.2631740538367
323 => 0.26126359337498
324 => 0.28023766380604
325 => 0.28127710621579
326 => 0.27595917188514
327 => 0.29999673932692
328 => 0.29455629749924
329 => 0.30063460396137
330 => 0.28377057923707
331 => 0.28441480769195
401 => 0.27643110812948
402 => 0.28090144641347
403 => 0.27774195540008
404 => 0.28054028725687
405 => 0.28221759583387
406 => 0.29019998534981
407 => 0.30226295072423
408 => 0.28900768254536
409 => 0.28323217238089
410 => 0.28681526640422
411 => 0.29635751796297
412 => 0.31081451753335
413 => 0.30225568281346
414 => 0.30605394832371
415 => 0.30688370036463
416 => 0.30057273250746
417 => 0.31104721192012
418 => 0.31666057053188
419 => 0.32241871494665
420 => 0.32741835040245
421 => 0.32011878544308
422 => 0.32793036630115
423 => 0.32163561105919
424 => 0.31598856486733
425 => 0.3159971291054
426 => 0.31245465453906
427 => 0.30559066368626
428 => 0.30432483846049
429 => 0.31090982114105
430 => 0.31619035365068
501 => 0.31662528360022
502 => 0.3195488577211
503 => 0.32127899877063
504 => 0.33823673306875
505 => 0.34505727408519
506 => 0.35339730253385
507 => 0.35664621363285
508 => 0.36642427124176
509 => 0.35852769558756
510 => 0.35681922177298
511 => 0.33310085239204
512 => 0.33698473404944
513 => 0.34320320332178
514 => 0.33320339265994
515 => 0.33954597088574
516 => 0.34079813018169
517 => 0.33286360292012
518 => 0.33710177676121
519 => 0.32584644357025
520 => 0.30250828623052
521 => 0.3110731939608
522 => 0.31737984896706
523 => 0.30837947466818
524 => 0.32451229723635
525 => 0.31508783534108
526 => 0.31210073337423
527 => 0.30044698362281
528 => 0.30594710491152
529 => 0.31338609770864
530 => 0.30878966503575
531 => 0.31832795298983
601 => 0.33183671250129
602 => 0.34146385898969
603 => 0.34220291175631
604 => 0.33601330153299
605 => 0.34593219141743
606 => 0.34600443970154
607 => 0.33481589139204
608 => 0.32796296785057
609 => 0.32640596920327
610 => 0.33029565709179
611 => 0.33501845626444
612 => 0.34246499424138
613 => 0.34696478118397
614 => 0.35869783902767
615 => 0.36187246806704
616 => 0.36536042289392
617 => 0.37002140618807
618 => 0.37561811168429
619 => 0.36337283867919
620 => 0.36385936620373
621 => 0.35245673752873
622 => 0.34027139348712
623 => 0.34951855069012
624 => 0.36160797863527
625 => 0.35883465050702
626 => 0.35852259443864
627 => 0.35904738618852
628 => 0.35695638734825
629 => 0.34749887708975
630 => 0.34274937464507
701 => 0.348877444526
702 => 0.35213424093871
703 => 0.35718524815231
704 => 0.35656260489941
705 => 0.36957345704309
706 => 0.37462908075838
707 => 0.37333563586967
708 => 0.37357366085769
709 => 0.38272662610615
710 => 0.39290660591332
711 => 0.40244150036938
712 => 0.41214080454334
713 => 0.40044791479135
714 => 0.39451098649247
715 => 0.4006363810498
716 => 0.39738616047651
717 => 0.41606289196867
718 => 0.41735602833486
719 => 0.43603140928674
720 => 0.45375656963308
721 => 0.44262371399878
722 => 0.4531214954271
723 => 0.4644757019385
724 => 0.48637980845261
725 => 0.47900327597442
726 => 0.47335296770112
727 => 0.46801345368495
728 => 0.47912413472862
729 => 0.49341784839385
730 => 0.49649657741386
731 => 0.50148529459126
801 => 0.49624026847053
802 => 0.50255732471228
803 => 0.52485930910081
804 => 0.51883311605396
805 => 0.51027495316858
806 => 0.52788022793797
807 => 0.53425150843824
808 => 0.57896849165464
809 => 0.63542553013179
810 => 0.61205194548535
811 => 0.59754320723444
812 => 0.60095310487528
813 => 0.62156930413577
814 => 0.62819057301279
815 => 0.61019168171681
816 => 0.61654919440523
817 => 0.6515797143753
818 => 0.6703724644256
819 => 0.64484938565423
820 => 0.574432223584
821 => 0.50950438423763
822 => 0.526726170971
823 => 0.5247737548097
824 => 0.56240967837117
825 => 0.51868939334279
826 => 0.51942553081575
827 => 0.55783972541933
828 => 0.54759147688512
829 => 0.53099062675619
830 => 0.50962558881518
831 => 0.4701303401544
901 => 0.43514829700906
902 => 0.50375613950046
903 => 0.50079764457697
904 => 0.49651330550336
905 => 0.50604763849776
906 => 0.55234365315093
907 => 0.5512763801676
908 => 0.54448693397511
909 => 0.54963666907268
910 => 0.53008785329498
911 => 0.53512602823916
912 => 0.50949409933616
913 => 0.52108080168422
914 => 0.53095500878763
915 => 0.53293740205378
916 => 0.53740383530591
917 => 0.49923865218734
918 => 0.51637369893667
919 => 0.52643893356515
920 => 0.48096383733732
921 => 0.5255400371263
922 => 0.49857428125911
923 => 0.48942169870572
924 => 0.5017444453528
925 => 0.49694225900017
926 => 0.49281362116802
927 => 0.49050977031868
928 => 0.49955823544438
929 => 0.49913611373101
930 => 0.48433106855397
1001 => 0.46501849065137
1002 => 0.47150042570924
1003 => 0.46914547793425
1004 => 0.46061084340338
1005 => 0.46636215660149
1006 => 0.44103628395003
1007 => 0.39746443637751
1008 => 0.4262493335257
1009 => 0.42514114629744
1010 => 0.42458234804466
1011 => 0.4462134026954
1012 => 0.44413407590407
1013 => 0.44036007741698
1014 => 0.46054153096156
1015 => 0.45317502893893
1016 => 0.47587685240651
1017 => 0.49082974160413
1018 => 0.48703720522832
1019 => 0.50110046979227
1020 => 0.47164975640131
1021 => 0.48143210203225
1022 => 0.48344822990904
1023 => 0.46029249495751
1024 => 0.4444742794826
1025 => 0.44341938485129
1026 => 0.41599277910217
1027 => 0.43064385051352
1028 => 0.44353618705298
1029 => 0.43736175833631
1030 => 0.43540711866042
1031 => 0.44539294885491
1101 => 0.44616893338387
1102 => 0.42847640388836
1103 => 0.43215524102001
1104 => 0.44749660341482
1105 => 0.43176867804955
1106 => 0.40121188820684
1107 => 0.39363338184518
1108 => 0.39262226939694
1109 => 0.37206875908519
1110 => 0.3941398138783
1111 => 0.38450520699361
1112 => 0.41494081470202
1113 => 0.39755615880842
1114 => 0.39680674103912
1115 => 0.39567388616513
1116 => 0.37798263078499
1117 => 0.38185589137531
1118 => 0.39473119949177
1119 => 0.39932525447845
1120 => 0.39884605690536
1121 => 0.3946681034579
1122 => 0.39658074915156
1123 => 0.39041945096234
1124 => 0.38824376833539
1125 => 0.38137671549609
1126 => 0.37128404489409
1127 => 0.37268749264325
1128 => 0.35269127128976
1129 => 0.34179626861659
1130 => 0.33878067547048
1201 => 0.3347480982852
1202 => 0.33923616579384
1203 => 0.35263462450706
1204 => 0.33647324065733
1205 => 0.30876568163624
1206 => 0.31043095314479
1207 => 0.31417232380095
1208 => 0.30720030433483
1209 => 0.30060187302739
1210 => 0.30633867370156
1211 => 0.29459861568203
1212 => 0.31559105372383
1213 => 0.31502326710542
1214 => 0.32284794984374
1215 => 0.32774088453867
1216 => 0.31646425417328
1217 => 0.31362821213164
1218 => 0.31524375056948
1219 => 0.28854249884825
1220 => 0.32066588792406
1221 => 0.32094369232674
1222 => 0.31856496237104
1223 => 0.33566967535554
1224 => 0.3717659548466
1225 => 0.35818508253259
1226 => 0.35292615828856
1227 => 0.34292893945642
1228 => 0.35624963997413
1229 => 0.35522681800967
1230 => 0.35060122919266
1231 => 0.34780365864342
]
'min_raw' => 0.26126359337498
'max_raw' => 0.6703724644256
'avg_raw' => 0.46581802890029
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.261263'
'max' => '$0.670372'
'avg' => '$0.465818'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.16066033159276
'max_diff' => 0.38965816688794
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0082007656568196
]
1 => [
'year' => 2028
'avg' => 0.014074894566383
]
2 => [
'year' => 2029
'avg' => 0.038450075202426
]
3 => [
'year' => 2030
'avg' => 0.029664175757102
]
4 => [
'year' => 2031
'avg' => 0.029133896834304
]
5 => [
'year' => 2032
'avg' => 0.051080889925303
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0082007656568196
'min' => '$0.00820076'
'max_raw' => 0.051080889925303
'max' => '$0.05108'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.051080889925303
]
1 => [
'year' => 2033
'avg' => 0.13138530147385
]
2 => [
'year' => 2034
'avg' => 0.083278318156257
]
3 => [
'year' => 2035
'avg' => 0.098226967240576
]
4 => [
'year' => 2036
'avg' => 0.19065877965994
]
5 => [
'year' => 2037
'avg' => 0.46581802890029
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.051080889925303
'min' => '$0.05108'
'max_raw' => 0.46581802890029
'max' => '$0.465818'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.46581802890029
]
]
]
]
'prediction_2025_max_price' => '$0.014021'
'last_price' => 0.01359592
'sma_50day_nextmonth' => '$0.011713'
'sma_200day_nextmonth' => '$0.016527'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.014788'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.014573'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.013448'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.010353'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.015039'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.015318'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.020562'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.014327'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.014327'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0134061'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0124086'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.013564'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.015594'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.019141'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.014959'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.024761'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.032238'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.01355'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013525'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.014469'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.017129'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023731'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.041874'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.033605'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.67'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 57.35
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0148095'
'vwma_10_action' => 'SELL'
'hma_9' => '0.015280'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 43.4
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 56.2
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.72
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.003422'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -56.6
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 57.4
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001215'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 24
'buy_signals' => 8
'sell_pct' => 75
'buy_pct' => 25
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767712101
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de EquityPay pour 2026
La prévision du prix de EquityPay pour 2026 suggère que le prix moyen pourrait varier entre $0.004697 à la baisse et $0.014021 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, EquityPay pourrait potentiellement gagner 3.13% d'ici 2026 si EQPAY atteint l'objectif de prix prévu.
Prévision du prix de EquityPay de 2027 à 2032
La prévision du prix de EQPAY pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.00820076 à la baisse et $0.05108 à la hausse. Compte tenu de la volatilité des prix sur le marché, si EquityPay atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de EquityPay | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.004522 | $0.00820076 | $0.011879 |
| 2028 | $0.00816 | $0.014074 | $0.019988 |
| 2029 | $0.017927 | $0.03845 | $0.058972 |
| 2030 | $0.015246 | $0.029664 | $0.044081 |
| 2031 | $0.018026 | $0.029133 | $0.040241 |
| 2032 | $0.027515 | $0.05108 | $0.074646 |
Prévision du prix de EquityPay de 2032 à 2037
La prévision du prix de EquityPay pour 2032-2037 est actuellement estimée entre $0.05108 à la baisse et $0.465818 à la hausse. Par rapport au prix actuel, EquityPay pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de EquityPay | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.027515 | $0.05108 | $0.074646 |
| 2033 | $0.063939 | $0.131385 | $0.19883 |
| 2034 | $0.0514044 | $0.083278 | $0.115152 |
| 2035 | $0.060775 | $0.098226 | $0.135677 |
| 2036 | $0.1006032 | $0.190658 | $0.280714 |
| 2037 | $0.261263 | $0.465818 | $0.670372 |
EquityPay Histogramme des prix potentiels
Prévision du prix de EquityPay basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour EquityPay est Baissier, avec 8 indicateurs techniques montrant des signaux haussiers et 24 indiquant des signaux baissiers. La prévision du prix de EQPAY a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de EquityPay et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de EquityPay devrait augmenter au cours du prochain mois, atteignant $0.016527 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour EquityPay devrait atteindre $0.011713 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 51.67, ce qui suggère que le marché de EQPAY est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de EQPAY pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.014788 | SELL |
| SMA 5 | $0.014573 | SELL |
| SMA 10 | $0.013448 | BUY |
| SMA 21 | $0.010353 | BUY |
| SMA 50 | $0.015039 | SELL |
| SMA 100 | $0.015318 | SELL |
| SMA 200 | $0.020562 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.014327 | SELL |
| EMA 5 | $0.014327 | SELL |
| EMA 10 | $0.0134061 | BUY |
| EMA 21 | $0.0124086 | BUY |
| EMA 50 | $0.013564 | BUY |
| EMA 100 | $0.015594 | SELL |
| EMA 200 | $0.019141 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.014959 | SELL |
| SMA 50 | $0.024761 | SELL |
| SMA 100 | $0.032238 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.017129 | SELL |
| EMA 50 | $0.023731 | SELL |
| EMA 100 | $0.041874 | SELL |
| EMA 200 | $0.033605 | SELL |
Oscillateurs de EquityPay
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 51.67 | NEUTRAL |
| Stoch RSI (14) | 57.35 | NEUTRAL |
| Stochastique Rapide (14) | 43.4 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 56.2 | NEUTRAL |
| Indice Directionnel Moyen (14) | 15.72 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.003422 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -56.6 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 57.4 | NEUTRAL |
| VWMA (10) | 0.0148095 | SELL |
| Moyenne Mobile de Hull (9) | 0.015280 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001215 | SELL |
Prévision du cours de EquityPay basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de EquityPay
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de EquityPay par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.0191045 | $0.026845 | $0.037721 | $0.0530054 | $0.074481 | $0.104658 |
| Action Amazon.com | $0.028368 | $0.059192 | $0.1235096 | $0.25771 | $0.537727 | $1.12 |
| Action Apple | $0.019284 | $0.027353 | $0.038799 | $0.055034 | $0.078061 | $0.110724 |
| Action Netflix | $0.021452 | $0.033848 | $0.0534072 | $0.084268 | $0.132962 | $0.209793 |
| Action Google | $0.0176066 | $0.02280054 | $0.029526 | $0.038236 | $0.049516 | $0.064123 |
| Action Tesla | $0.03082 | $0.069868 | $0.158387 | $0.359051 | $0.813942 | $1.84 |
| Action Kodak | $0.010195 | $0.007645 | $0.005733 | $0.004299 | $0.003224 | $0.002417 |
| Action Nokia | $0.0090067 | $0.005966 | $0.003952 | $0.002618 | $0.001734 | $0.001149 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à EquityPay
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans EquityPay maintenant ?", "Devrais-je acheter EQPAY aujourd'hui ?", " EquityPay sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de EquityPay avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme EquityPay en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de EquityPay afin de prendre une décision responsable concernant cet investissement.
Le cours de EquityPay est de $0.01359 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de EquityPay basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si EquityPay présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.013949 | $0.014311 | $0.014683 | $0.015065 |
| Si EquityPay présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0143027 | $0.015046 | $0.015828 | $0.016651 |
| Si EquityPay présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015362 | $0.017359 | $0.019615 | $0.022165 |
| Si EquityPay présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017129 | $0.021582 | $0.027192 | $0.03426 |
| Si EquityPay présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.020663 | $0.0314064 | $0.047733 | $0.072548 |
| Si EquityPay présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.031266 | $0.0719011 | $0.165348 | $0.380245 |
| Si EquityPay présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.048936 | $0.176136 | $0.633972 | $2.28 |
Boîte à questions
Est-ce que EQPAY est un bon investissement ?
La décision d'acquérir EquityPay dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de EquityPay a connu une baisse de -4.0233% au cours des 24 heures précédentes, et EquityPay a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans EquityPay dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que EquityPay peut monter ?
Il semble que la valeur moyenne de EquityPay pourrait potentiellement s'envoler jusqu'à $0.014021 pour la fin de cette année. En regardant les perspectives de EquityPay sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.044081. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de EquityPay la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de EquityPay, le prix de EquityPay va augmenter de 0.86% durant la prochaine semaine et atteindre $0.013712 d'ici 13 janvier 2026.
Quel sera le prix de EquityPay le mois prochain ?
Basé sur notre nouveau pronostic expérimental de EquityPay, le prix de EquityPay va diminuer de -11.62% durant le prochain mois et atteindre $0.0120163 d'ici 5 février 2026.
Jusqu'où le prix de EquityPay peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de EquityPay en 2026, EQPAY devrait fluctuer dans la fourchette de $0.004697 et $0.014021. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de EquityPay ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera EquityPay dans 5 ans ?
L'avenir de EquityPay semble suivre une tendance haussière, avec un prix maximum de $0.044081 prévue après une période de cinq ans. Selon la prévision de EquityPay pour 2030, la valeur de EquityPay pourrait potentiellement atteindre son point le plus élevé d'environ $0.044081, tandis que son point le plus bas devrait être autour de $0.015246.
Combien vaudra EquityPay en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de EquityPay, il est attendu que la valeur de EQPAY en 2026 augmente de 3.13% jusqu'à $0.014021 si le meilleur scénario se produit. Le prix sera entre $0.014021 et $0.004697 durant 2026.
Combien vaudra EquityPay en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de EquityPay, le valeur de EQPAY pourrait diminuer de -12.62% jusqu'à $0.011879 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.011879 et $0.004522 tout au long de l'année.
Combien vaudra EquityPay en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de EquityPay suggère que la valeur de EQPAY en 2028 pourrait augmenter de 47.02%, atteignant $0.019988 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.019988 et $0.00816 durant l'année.
Combien vaudra EquityPay en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de EquityPay pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.058972 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.058972 et $0.017927.
Combien vaudra EquityPay en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de EquityPay, il est prévu que la valeur de EQPAY en 2030 augmente de 224.23%, atteignant $0.044081 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.044081 et $0.015246 au cours de 2030.
Combien vaudra EquityPay en 2031 ?
Notre simulation expérimentale indique que le prix de EquityPay pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.040241 dans des conditions idéales. Il est probable que le prix fluctue entre $0.040241 et $0.018026 durant l'année.
Combien vaudra EquityPay en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de EquityPay, EQPAY pourrait connaître une 449.04% hausse en valeur, atteignant $0.074646 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.074646 et $0.027515 tout au long de l'année.
Combien vaudra EquityPay en 2033 ?
Selon notre prédiction expérimentale de prix de EquityPay, la valeur de EQPAY est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.19883. Tout au long de l'année, le prix de EQPAY pourrait osciller entre $0.19883 et $0.063939.
Combien vaudra EquityPay en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de EquityPay suggèrent que EQPAY pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.115152 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.115152 et $0.0514044.
Combien vaudra EquityPay en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de EquityPay, EQPAY pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.135677 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.135677 et $0.060775.
Combien vaudra EquityPay en 2036 ?
Notre récente simulation de prédiction de prix de EquityPay suggère que la valeur de EQPAY pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.280714 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.280714 et $0.1006032.
Combien vaudra EquityPay en 2037 ?
Selon la simulation expérimentale, la valeur de EquityPay pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.670372 sous des conditions favorables. Il est prévu que le prix chute entre $0.670372 et $0.261263 au cours de l'année.
Prévisions liées
Prévision du cours de KCAL
Prévision du cours de Town Star
Prévision du cours de MyBit Token
Prévision du cours de Rare
Prévision du cours de Gameflip
Prévision du cours de Smoothy
Prévision du cours de Kitsumon
Prévision du cours de HyperChainX
Prévision du cours de Wrapped OptiDoge
Prévision du cours de Pancake Hunny
Prévision du cours de Savanna
Prévision du cours de Tholana
Prévision du cours de Flare Token
Prévision du cours de Cramer Coin
Prévision du cours de LakeViewMeta
Prévision du cours de XMax
Prévision du cours de Xena Finance
Prévision du cours de YES
Prévision du cours de APY.vision
Prévision du cours de GG Token
Prévision du cours de AuroraPrévision du cours de GovWorld
Prévision du cours de NFTrade
Prévision du cours de Zillion Aakar XO
Prévision du cours de Bridge Mutual
Comment lire et prédire les mouvements de prix de EquityPay ?
Les traders de EquityPay utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de EquityPay
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de EquityPay. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de EQPAY sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de EQPAY au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de EQPAY.
Comment lire les graphiques de EquityPay et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de EquityPay dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de EQPAY au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de EquityPay ?
L'action du prix de EquityPay est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de EQPAY. La capitalisation boursière de EquityPay peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de EQPAY, de grands détenteurs de EquityPay, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de EquityPay.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


