Prédiction du prix de END jusqu'à $0.006334 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002121 | $0.006334 |
| 2027 | $0.002042 | $0.005366 |
| 2028 | $0.003686 | $0.009029 |
| 2029 | $0.008098 | $0.026639 |
| 2030 | $0.006887 | $0.019912 |
| 2031 | $0.008142 | $0.018178 |
| 2032 | $0.012429 | $0.033719 |
| 2033 | $0.028883 | $0.089817 |
| 2034 | $0.02322 | $0.052017 |
| 2035 | $0.027454 | $0.061289 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur END aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.00, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de END pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'END'
'name_with_ticker' => 'END <small>END</small>'
'name_lang' => 'END'
'name_lang_with_ticker' => 'END <small>END</small>'
'name_with_lang' => 'END'
'name_with_lang_with_ticker' => 'END <small>END</small>'
'image' => '/uploads/coins/end.png?1750419225'
'price_for_sd' => 0.006141
'ticker' => 'END'
'marketcap' => '$741.99K'
'low24h' => '$0.005891'
'high24h' => '$0.006237'
'volume24h' => '$1.69K'
'current_supply' => '120.81M'
'max_supply' => '500M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006141'
'change_24h_pct' => '3.959%'
'ath_price' => '$0.08762'
'ath_days' => 183
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 juil. 2025'
'ath_pct' => '-92.94%'
'fdv' => '$3.07M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.302824'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006194'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005428'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002121'
'current_year_max_price_prediction' => '$0.006334'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006887'
'grand_prediction_max_price' => '$0.019912'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062580106580026
107 => 0.0062813757981417
108 => 0.0063340186519288
109 => 0.0058841912300799
110 => 0.0060861505362508
111 => 0.0062047827075983
112 => 0.005668798241575
113 => 0.0061941880180265
114 => 0.0058763607354412
115 => 0.0057684853821262
116 => 0.0059137253338678
117 => 0.0058571251834236
118 => 0.0058084636977441
119 => 0.0057813097526244
120 => 0.0058879579436349
121 => 0.0058829826780521
122 => 0.0057084855380371
123 => 0.0054808611323008
124 => 0.0055572593543823
125 => 0.005529503164063
126 => 0.0054289111497258
127 => 0.0054966980218629
128 => 0.0051981989431219
129 => 0.00468464679278
130 => 0.0050239150738236
131 => 0.0050108536140563
201 => 0.0050042674337516
202 => 0.0052592181702694
203 => 0.0052347105396674
204 => 0.0051902289501455
205 => 0.0054280942104513
206 => 0.0053412701907005
207 => 0.0056088413612608
208 => 0.0057850810396101
209 => 0.0057403809564243
210 => 0.0059061352257521
211 => 0.0055590194151164
212 => 0.0056743173635405
213 => 0.0056980801109146
214 => 0.005425158990062
215 => 0.0052387202911249
216 => 0.0052262869554626
217 => 0.0049030279443409
218 => 0.0050757102988265
219 => 0.0052276636246925
220 => 0.0051548897736571
221 => 0.0051318517464763
222 => 0.0052495480310047
223 => 0.0052586940403131
224 => 0.0050501640588317
225 => 0.0050935240452673
226 => 0.0052743423967021
227 => 0.0050889678867433
228 => 0.0047288154946477
301 => 0.0046394927219116
302 => 0.0046275754174833
303 => 0.0043853249735445
304 => 0.0046454616966993
305 => 0.0045319050458115
306 => 0.0048906291453485
307 => 0.0046857278635689
308 => 0.0046768949788423
309 => 0.0046635427780757
310 => 0.0044550278137378
311 => 0.0045006793391106
312 => 0.0046524319623731
313 => 0.0047065790079688
314 => 0.0047009310274995
315 => 0.0046516882917307
316 => 0.0046742313640021
317 => 0.0046016122736891
318 => 0.0045759689614639
319 => 0.0044950316143325
320 => 0.0043760760735622
321 => 0.004392617571103
322 => 0.0041569355184266
323 => 0.0040285234275352
324 => 0.0039929806532206
325 => 0.0039454513699724
326 => 0.0039983492122341
327 => 0.0041562678607832
328 => 0.0039657844663228
329 => 0.0036392140473768
330 => 0.0036588414860044
331 => 0.0037029385131617
401 => 0.003620763994785
402 => 0.0035429927095261
403 => 0.0036106085322749
404 => 0.0034722363406658
405 => 0.0037196601314367
406 => 0.0037129680112935
407 => 0.0038051922999083
408 => 0.0038628620402121
409 => 0.003729951959612
410 => 0.0036965254337682
411 => 0.0037155667020397
412 => 0.0034008569524603
413 => 0.0037794737992372
414 => 0.0037827480934505
415 => 0.0037547115985143
416 => 0.0039563133809393
417 => 0.0043817560230289
418 => 0.0042216873876841
419 => 0.0041597039739786
420 => 0.0040418734592146
421 => 0.0041988756240539
422 => 0.0041868203074095
423 => 0.0041323015937007
424 => 0.0040993285055409
425 => 0.0041600824314855
426 => 0.0040918004217824
427 => 0.0040795350965756
428 => 0.0040052205706278
429 => 0.0039786936659599
430 => 0.0039590542018103
501 => 0.0039374330815155
502 => 0.0039851238852384
503 => 0.0038770502497546
504 => 0.0037467240399503
505 => 0.0037358888257542
506 => 0.0037658058047914
507 => 0.0037525697686246
508 => 0.0037358254567053
509 => 0.0037038560052094
510 => 0.0036943713518698
511 => 0.0037251918739238
512 => 0.0036903973014729
513 => 0.0037417385884827
514 => 0.003727776599259
515 => 0.0036497860624204
516 => 0.0035525809777244
517 => 0.003551715648576
518 => 0.0035307729725266
519 => 0.0035040993258252
520 => 0.0034966793275232
521 => 0.0036049141162789
522 => 0.0038289568898085
523 => 0.0037849719324754
524 => 0.0038167555719083
525 => 0.0039730996204939
526 => 0.0040227966921097
527 => 0.0039875228878165
528 => 0.0039392379289064
529 => 0.0039413622220481
530 => 0.0041063665434949
531 => 0.0041166576606251
601 => 0.004142659993573
602 => 0.0041760803396694
603 => 0.0039932145172703
604 => 0.003932749258258
605 => 0.0039040974640531
606 => 0.0038158610275418
607 => 0.0039110164594989
608 => 0.0038555734642593
609 => 0.0038630546185195
610 => 0.0038581825069933
611 => 0.0038608430093374
612 => 0.0037195909714447
613 => 0.0037710557900642
614 => 0.0036854855473435
615 => 0.0035709165980509
616 => 0.0035705325227599
617 => 0.0035985731107895
618 => 0.0035818934718011
619 => 0.0035370089921562
620 => 0.003543384620641
621 => 0.0034875274063627
622 => 0.0035501666977819
623 => 0.0035519629685257
624 => 0.003527843429344
625 => 0.0036243479003318
626 => 0.0036638858608356
627 => 0.0036480098634557
628 => 0.0036627719585373
629 => 0.0037867997060328
630 => 0.0038070216405846
701 => 0.0038160028881265
702 => 0.0038039692062076
703 => 0.0036650389580806
704 => 0.003671201105362
705 => 0.0036259873572596
706 => 0.0035877865046204
707 => 0.0035893143383889
708 => 0.0036089545424087
709 => 0.0036947244652457
710 => 0.0038752222114432
711 => 0.0038820719689693
712 => 0.0038903740749124
713 => 0.0038566052377376
714 => 0.0038464202333215
715 => 0.0038598568831191
716 => 0.0039276423464702
717 => 0.0041020049617831
718 => 0.004040373568244
719 => 0.0039902662859469
720 => 0.0040342238813478
721 => 0.0040274569540869
722 => 0.0039703372780096
723 => 0.0039687341189451
724 => 0.0038591031982878
725 => 0.0038185751430961
726 => 0.0037847068667055
727 => 0.0037477235930408
728 => 0.0037257986687218
729 => 0.0037594853171757
730 => 0.0037671898522458
731 => 0.0036935334066595
801 => 0.003683494305296
802 => 0.0037436437487466
803 => 0.0037171742212812
804 => 0.003744398786692
805 => 0.0037507151193953
806 => 0.0037496980443526
807 => 0.0037220608176729
808 => 0.0037396759618046
809 => 0.003698010894606
810 => 0.0036527063919183
811 => 0.0036238049417738
812 => 0.0035985845933016
813 => 0.0036125783084492
814 => 0.0035626932690995
815 => 0.003546734041024
816 => 0.0037337083473261
817 => 0.003871828277704
818 => 0.0038698199592148
819 => 0.0038575948369094
820 => 0.0038394307849392
821 => 0.0039263135329317
822 => 0.0038960453208065
823 => 0.0039180679741213
824 => 0.0039236736636778
825 => 0.0039406403976396
826 => 0.0039467045466909
827 => 0.0039283744764356
828 => 0.0038668565218294
829 => 0.0037135596279022
830 => 0.0036421995099621
831 => 0.0036186494824451
901 => 0.0036195054812174
902 => 0.0035958932137286
903 => 0.0036028480847317
904 => 0.0035934745934201
905 => 0.0035757234685671
906 => 0.0036114822265109
907 => 0.0036156030902481
908 => 0.0036072565688586
909 => 0.0036092224767943
910 => 0.0035401168445357
911 => 0.0035453707956668
912 => 0.0035161161281291
913 => 0.0035106312306361
914 => 0.0034366779785962
915 => 0.0033056590729122
916 => 0.003378256264974
917 => 0.0032905690656733
918 => 0.0032573605946202
919 => 0.0034145643316086
920 => 0.0033987854365679
921 => 0.003371778827179
922 => 0.0033318304232223
923 => 0.0033170131716017
924 => 0.0032269882413265
925 => 0.0032216690881815
926 => 0.0032662878745035
927 => 0.0032456978398546
928 => 0.0032167816331516
929 => 0.0031120500636623
930 => 0.0029942971041254
1001 => 0.0029978513258051
1002 => 0.0030353063513621
1003 => 0.0031442118896674
1004 => 0.0031016606117666
1005 => 0.0030707891714299
1006 => 0.0030650078786469
1007 => 0.0031373728617821
1008 => 0.0032397844738512
1009 => 0.0032878337109033
1010 => 0.0032402183762617
1011 => 0.003185520443617
1012 => 0.0031888496533313
1013 => 0.0032109973940481
1014 => 0.0032133248084452
1015 => 0.0031777220773319
1016 => 0.0031877440375961
1017 => 0.0031725197635275
1018 => 0.0030790884216704
1019 => 0.0030773985449702
1020 => 0.0030544689868946
1021 => 0.0030537746889888
1022 => 0.0030147657906558
1023 => 0.0030093081761233
1024 => 0.0029318536408122
1025 => 0.0029828344505079
1026 => 0.0029486391999767
1027 => 0.002897098891582
1028 => 0.0028882133229881
1029 => 0.0028879462120665
1030 => 0.0029408665845857
1031 => 0.0029822160451433
1101 => 0.0029492340409999
1102 => 0.0029417246779858
1103 => 0.0030219050288812
1104 => 0.0030117013483696
1105 => 0.0030028650268533
1106 => 0.0032306146372508
1107 => 0.0030503330490974
1108 => 0.0029717199865493
1109 => 0.0028744213934303
1110 => 0.0029061023059719
1111 => 0.0029127779397339
1112 => 0.0026787923626723
1113 => 0.0025838644431994
1114 => 0.0025512887585195
1115 => 0.0025325409914337
1116 => 0.0025410845843143
1117 => 0.0024556383228544
1118 => 0.0025130596237062
1119 => 0.0024390703838745
1120 => 0.0024266658470349
1121 => 0.0025589677733619
1122 => 0.0025773768135137
1123 => 0.0024988381289858
1124 => 0.0025492726787108
1125 => 0.0025309844098878
1126 => 0.0024403387170295
1127 => 0.0024368767183068
1128 => 0.0023913938959807
1129 => 0.0023202220862501
1130 => 0.0022876946594086
1201 => 0.0022707540930935
1202 => 0.0022777441009202
1203 => 0.0022742097390653
1204 => 0.0022511456372273
1205 => 0.0022755317463847
1206 => 0.0022132353145236
1207 => 0.0021884283734
1208 => 0.0021772236536112
1209 => 0.0021219319846856
1210 => 0.002209925618263
1211 => 0.0022272614725923
1212 => 0.00224463148391
1213 => 0.00239582557342
1214 => 0.0023882723439782
1215 => 0.0024565498595606
1216 => 0.0024538967208594
1217 => 0.0024344228673929
1218 => 0.0023522658829109
1219 => 0.002385012192618
1220 => 0.0022842241412461
1221 => 0.0023597414022552
1222 => 0.0023252784780069
1223 => 0.0023480894529003
1224 => 0.0023070732632592
1225 => 0.0023297733161235
1226 => 0.0022313724467716
1227 => 0.0021394870995083
1228 => 0.0021764644455476
1229 => 0.0022166630495647
1230 => 0.0023038238654876
1231 => 0.002251911602585
]
'min_raw' => 0.0021219319846856
'max_raw' => 0.0063340186519288
'avg_raw' => 0.0042279753183072
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002121'
'max' => '$0.006334'
'avg' => '$0.004227'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040196980153144
'max_diff' => 0.00019238865192879
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022705812153448
102 => 0.002208041137855
103 => 0.0020790030943037
104 => 0.0020797334356168
105 => 0.002059883743863
106 => 0.0020427307120853
107 => 0.002257874350453
108 => 0.0022311178381044
109 => 0.0021884848374826
110 => 0.0022455508029829
111 => 0.0022606399500199
112 => 0.0022610695168232
113 => 0.0023027033721665
114 => 0.0023249233682265
115 => 0.0023288397388391
116 => 0.0023943515097808
117 => 0.0024163101912793
118 => 0.0025067548926627
119 => 0.0023230381568033
120 => 0.0023192546315264
121 => 0.0022463538381452
122 => 0.0022001190024669
123 => 0.0022495195768997
124 => 0.0022932817419963
125 => 0.0022477136506013
126 => 0.0022536638813426
127 => 0.0021924924416947
128 => 0.002214358352985
129 => 0.0022331922214447
130 => 0.0022227932662849
131 => 0.0022072255270956
201 => 0.0022896937435156
202 => 0.0022850405635496
203 => 0.002361836862616
204 => 0.0024217050694943
205 => 0.0025289995989423
206 => 0.002417032164073
207 => 0.0024129516257161
208 => 0.0024528395426936
209 => 0.002416304084647
210 => 0.0024393932329713
211 => 0.0025252795801904
212 => 0.0025270942233693
213 => 0.0024966966120886
214 => 0.0024948469146796
215 => 0.0025006851084395
216 => 0.0025348795916438
217 => 0.0025229309885219
218 => 0.0025367582145562
219 => 0.0025540493724421
220 => 0.0026255729327572
221 => 0.0026428170210073
222 => 0.0026009228265942
223 => 0.0026047054032803
224 => 0.0025890358245485
225 => 0.0025738992078328
226 => 0.0026079241116844
227 => 0.0026701052922343
228 => 0.0026697184663373
301 => 0.0026841432915954
302 => 0.0026931298382296
303 => 0.0026545530015217
304 => 0.0026294408993345
305 => 0.0026390704772377
306 => 0.0026544683820097
307 => 0.0026340771442478
308 => 0.0025082129786414
309 => 0.0025463921262523
310 => 0.0025400372492249
311 => 0.0025309871315585
312 => 0.0025693765597119
313 => 0.0025656738057149
314 => 0.0024547619479411
315 => 0.0024618621652231
316 => 0.0024551937356707
317 => 0.002476740795787
318 => 0.0024151404726893
319 => 0.0024340883171896
320 => 0.0024459722276352
321 => 0.0024529719421842
322 => 0.0024782597108843
323 => 0.0024752924830976
324 => 0.0024780752638389
325 => 0.0025155703490976
326 => 0.0027052076235769
327 => 0.0027155291620158
328 => 0.0026647021318175
329 => 0.0026850065278629
330 => 0.0026460265275391
331 => 0.0026721940628998
401 => 0.0026900972260102
402 => 0.0026091962744945
403 => 0.0026044058451886
404 => 0.0025652649605375
405 => 0.0025862970548959
406 => 0.0025528334805105
407 => 0.0025610442711586
408 => 0.0025380861847028
409 => 0.0025794061694138
410 => 0.0026256083327971
411 => 0.0026372808238465
412 => 0.002606575525219
413 => 0.0025843428654349
414 => 0.0025453096387474
415 => 0.0026102227646409
416 => 0.0026292053408438
417 => 0.0026101230572492
418 => 0.0026057012751842
419 => 0.002597322006161
420 => 0.0026074789767188
421 => 0.0026291019576571
422 => 0.0026189049591604
423 => 0.0026256402563154
424 => 0.0025999722489686
425 => 0.0026545657720598
426 => 0.0027412734253756
427 => 0.0027415522046591
428 => 0.0027313551511968
429 => 0.0027271827366186
430 => 0.0027376455322799
501 => 0.0027433211697198
502 => 0.0027771559323398
503 => 0.0028134619806675
504 => 0.0029828864666429
505 => 0.0029353127489441
506 => 0.0030856362320093
507 => 0.0032045225900525
508 => 0.0032401714105593
509 => 0.0032073761730997
510 => 0.0030951854373142
511 => 0.0030896808245824
512 => 0.0032573411495528
513 => 0.0032099694284193
514 => 0.003204334712926
515 => 0.0031443908600798
516 => 0.0031798251013025
517 => 0.0031720751129582
518 => 0.0031598413772142
519 => 0.0032274474410965
520 => 0.0033539999574494
521 => 0.0033342755609738
522 => 0.0033195522139932
523 => 0.0032550387934261
524 => 0.0032938902822016
525 => 0.0032800560111999
526 => 0.0033394968188686
527 => 0.0033042854011808
528 => 0.0032096105410403
529 => 0.0032246878245701
530 => 0.0032224089234959
531 => 0.0032693085461191
601 => 0.0032552304435278
602 => 0.0032196599480195
603 => 0.0033535674147065
604 => 0.0033448722086523
605 => 0.0033572000228363
606 => 0.0033626271078904
607 => 0.0034441342231486
608 => 0.003477525080333
609 => 0.0034851053895032
610 => 0.0035168241212868
611 => 0.0034843161985613
612 => 0.0036143710672196
613 => 0.0037008499659655
614 => 0.0038012996570222
615 => 0.0039480836539877
616 => 0.0040032757946746
617 => 0.0039933058284652
618 => 0.0041045957797419
619 => 0.0043045813483493
620 => 0.004033728629687
621 => 0.0043189372001202
622 => 0.0042286434596124
623 => 0.0040145586251833
624 => 0.0040007740857404
625 => 0.0041457548211918
626 => 0.0044673081385445
627 => 0.0043867626795752
628 => 0.0044674398820607
629 => 0.0043733256399394
630 => 0.004368652074561
701 => 0.0044628689633878
702 => 0.004683011859627
703 => 0.0045784302215568
704 => 0.0044284867989135
705 => 0.0045392026888153
706 => 0.0044432903387105
707 => 0.0042271729697479
708 => 0.0043867010879807
709 => 0.0042800291784177
710 => 0.0043111617126188
711 => 0.0045353702002712
712 => 0.0045083928418547
713 => 0.0045433040416817
714 => 0.0044816866877723
715 => 0.004424126363056
716 => 0.0043166857424873
717 => 0.0042848778714955
718 => 0.0042936684227103
719 => 0.0042848735153348
720 => 0.0042247614755569
721 => 0.0042117802862902
722 => 0.0041901444021267
723 => 0.0041968502673264
724 => 0.0041561684752978
725 => 0.0042329434221428
726 => 0.0042471935288158
727 => 0.0043030639326303
728 => 0.0043088645832973
729 => 0.0044644628626554
730 => 0.0043787619451078
731 => 0.00443625751966
801 => 0.0044311145743027
802 => 0.0040191984927073
803 => 0.0040759568943848
804 => 0.0041642551556273
805 => 0.004124476908623
806 => 0.0040682397740353
807 => 0.0040228252726112
808 => 0.0039540176590827
809 => 0.004050863053791
810 => 0.0041782044494728
811 => 0.0043120941712371
812 => 0.0044729538991348
813 => 0.0044370518804817
814 => 0.0043090870105157
815 => 0.004314827421104
816 => 0.0043503123805924
817 => 0.0043043561339064
818 => 0.0042908027395862
819 => 0.0043484503523394
820 => 0.0043488473397658
821 => 0.0042959691239556
822 => 0.0042372046636939
823 => 0.0042369584384597
824 => 0.0042265018703535
825 => 0.0043751858401761
826 => 0.0044569469899336
827 => 0.0044663207739887
828 => 0.0044563160595803
829 => 0.0044601664770832
830 => 0.0044125914655233
831 => 0.0045213338340178
901 => 0.004621126584854
902 => 0.0045943799958687
903 => 0.0045542830567282
904 => 0.0045223439133724
905 => 0.0045868561487347
906 => 0.0045839835204457
907 => 0.0046202549822327
908 => 0.004618609499212
909 => 0.0046064127708517
910 => 0.0045943804314523
911 => 0.0046420872970967
912 => 0.00462834848594
913 => 0.0046145883346147
914 => 0.0045869902445581
915 => 0.0045907412833525
916 => 0.0045506512675138
917 => 0.0045321037917925
918 => 0.0042531942585611
919 => 0.0041786605176497
920 => 0.0042021103498147
921 => 0.004209830643438
922 => 0.0041773934638758
923 => 0.0042239000469402
924 => 0.0042166520452323
925 => 0.0042448497799387
926 => 0.0042272330594974
927 => 0.0042279560558493
928 => 0.0042797630743862
929 => 0.0042948028722702
930 => 0.0042871535096803
1001 => 0.0042925108610335
1002 => 0.0044159687617702
1003 => 0.0043984169962469
1004 => 0.0043890929706322
1005 => 0.004391675789449
1006 => 0.0044232219300545
1007 => 0.0044320531270686
1008 => 0.0043946347247626
1009 => 0.0044122814596033
1010 => 0.004487419016851
1011 => 0.0045137129094702
1012 => 0.0045976303929264
1013 => 0.0045619807544399
1014 => 0.0046274172087621
1015 => 0.0048285465604174
1016 => 0.0049892226036121
1017 => 0.0048414582740719
1018 => 0.0051365193654284
1019 => 0.0053662667490491
1020 => 0.0053574486618014
1021 => 0.0053173868913144
1022 => 0.0050558256032125
1023 => 0.0048151330062419
1024 => 0.0050164825839553
1025 => 0.0050169958654368
1026 => 0.0049996997581431
1027 => 0.004892275121205
1028 => 0.0049959616136341
1029 => 0.0050041918708691
1030 => 0.0049995851154195
1031 => 0.0049172228981494
1101 => 0.0047914710154601
1102 => 0.0048160426323302
1103 => 0.0048562914420106
1104 => 0.0047800920485042
1105 => 0.0047557417251948
1106 => 0.0048010136090655
1107 => 0.0049468890516685
1108 => 0.0049193121442433
1109 => 0.0049185919997434
1110 => 0.005036577704137
1111 => 0.0049521254026998
1112 => 0.0048163525591081
1113 => 0.0047820681254774
1114 => 0.0046603814828503
1115 => 0.0047444308803458
1116 => 0.0047474556685314
1117 => 0.0047014226724871
1118 => 0.0048200878830348
1119 => 0.004818994362229
1120 => 0.0049316493186583
1121 => 0.0051470032840817
1122 => 0.0050833125195809
1123 => 0.005009247090002
1124 => 0.0050173000558089
1125 => 0.0051056212142965
1126 => 0.0050522202256989
1127 => 0.0050714235935235
1128 => 0.0051055921476993
1129 => 0.0051262068847911
1130 => 0.0050143339123841
1201 => 0.0049882509710132
1202 => 0.0049348944268368
1203 => 0.0049209747004082
1204 => 0.0049644324923191
1205 => 0.0049529828995371
1206 => 0.004747201446797
1207 => 0.0047256961400284
1208 => 0.0047263556770845
1209 => 0.0046722795606934
1210 => 0.004589800503442
1211 => 0.0048065505413301
1212 => 0.0047891424798728
1213 => 0.004769925327301
1214 => 0.0047722793188395
1215 => 0.0048663631639463
1216 => 0.0048117897824363
1217 => 0.004956882061582
1218 => 0.0049270554508628
1219 => 0.0048964639001247
1220 => 0.0048922352159713
1221 => 0.0048804600788856
1222 => 0.0048400787524832
1223 => 0.0047913158743109
1224 => 0.0047591183983733
1225 => 0.0043900351564526
1226 => 0.0044585348592947
1227 => 0.00453733752347
1228 => 0.0045645398873615
1229 => 0.0045180083615789
1230 => 0.0048419161007341
1231 => 0.0049010971659304
]
'min_raw' => 0.0020427307120853
'max_raw' => 0.0053662667490491
'avg_raw' => 0.0037044987305672
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002042'
'max' => '$0.005366'
'avg' => '$0.0037044'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.9201272600278E-5
'max_diff' => -0.00096775190287972
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047218338591655
102 => 0.0046883010137423
103 => 0.0048441145084975
104 => 0.0047501399237351
105 => 0.0047924566734994
106 => 0.0047009910065334
107 => 0.0048868421803485
108 => 0.0048854263057899
109 => 0.0048131260015367
110 => 0.0048742337236004
111 => 0.0048636147531047
112 => 0.0047819878876706
113 => 0.004889429897578
114 => 0.0048894831874745
115 => 0.0048198957165749
116 => 0.0047386327852204
117 => 0.004724104892439
118 => 0.004713160076776
119 => 0.0047897649197757
120 => 0.0048584485824722
121 => 0.0049862518506263
122 => 0.005018384628771
123 => 0.0051438010010699
124 => 0.0050691216577782
125 => 0.0051022260434
126 => 0.0051381655368938
127 => 0.0051553962517058
128 => 0.0051273197265707
129 => 0.0053221429761893
130 => 0.0053385920276872
131 => 0.0053441072523708
201 => 0.00527841394876
202 => 0.0053367649780755
203 => 0.0053094644638418
204 => 0.0053804928175767
205 => 0.0053916309703778
206 => 0.0053821973512065
207 => 0.0053857327767094
208 => 0.0052194855023363
209 => 0.0052108647041358
210 => 0.0050933195089683
211 => 0.0051412200448493
212 => 0.0050516722889522
213 => 0.0050800688047913
214 => 0.0050925857184012
215 => 0.00508604759306
216 => 0.0051439282692786
217 => 0.0050947178702518
218 => 0.0049648435362815
219 => 0.0048349338181358
220 => 0.0048333029074466
221 => 0.0047990999717558
222 => 0.0047743775138315
223 => 0.0047791399363041
224 => 0.0047959233342698
225 => 0.0047734020322312
226 => 0.0047782080938801
227 => 0.0048580207398736
228 => 0.0048740265968299
229 => 0.0048196324410005
301 => 0.0046012320563065
302 => 0.0045476360540868
303 => 0.0045861597976274
304 => 0.0045677479294618
305 => 0.0036865290771848
306 => 0.0038935583752233
307 => 0.0037705485963795
308 => 0.0038272371618785
309 => 0.0037016760309068
310 => 0.0037616003838292
311 => 0.0037505345439314
312 => 0.004083431528735
313 => 0.0040782338002021
314 => 0.0040807216777931
315 => 0.0039619687982434
316 => 0.0041511453598582
317 => 0.0042443405366788
318 => 0.0042270925897586
319 => 0.004231433526406
320 => 0.0041568418525928
321 => 0.004081443888245
322 => 0.0039978159421197
323 => 0.0041531863292939
324 => 0.0041359117945011
325 => 0.0041755333621344
326 => 0.0042763021643215
327 => 0.004291140753227
328 => 0.0043110839671942
329 => 0.0043039357446416
330 => 0.0044742354063867
331 => 0.004453610993676
401 => 0.0045033098942602
402 => 0.0044010754850938
403 => 0.0042853875469428
404 => 0.0043073760418616
405 => 0.0043052583729807
406 => 0.0042782980175784
407 => 0.0042539594142002
408 => 0.0042134424969344
409 => 0.0043416440185388
410 => 0.0043364392708851
411 => 0.0044206980855407
412 => 0.0044058045216039
413 => 0.0043063416565604
414 => 0.0043098939922436
415 => 0.0043337851569076
416 => 0.0044164727505943
417 => 0.0044410200582012
418 => 0.0044296487672766
419 => 0.0044565637694404
420 => 0.0044778362897377
421 => 0.0044592352704723
422 => 0.004722586477192
423 => 0.0046132246953799
424 => 0.0046665268669007
425 => 0.0046792391207338
426 => 0.0046466769498503
427 => 0.004653738518751
428 => 0.0046644348714732
429 => 0.0047293810306421
430 => 0.0048998185446239
501 => 0.004975304159359
502 => 0.0052024063556843
503 => 0.0049690361298657
504 => 0.0049551889064477
505 => 0.0049960968698351
506 => 0.005129429900287
507 => 0.0052374837981334
508 => 0.005273331509828
509 => 0.0052780693767097
510 => 0.0053453220669595
511 => 0.0053838700548223
512 => 0.0053371558214418
513 => 0.005297570399836
514 => 0.0051557803331672
515 => 0.0051721929194657
516 => 0.0052852593634832
517 => 0.0054449723752384
518 => 0.005582022754631
519 => 0.0055340324884556
520 => 0.0059001643435254
521 => 0.005936464821441
522 => 0.0059314492691281
523 => 0.0060141471600553
524 => 0.0058500086876973
525 => 0.0057798363107311
526 => 0.0053061292173008
527 => 0.0054392215882935
528 => 0.0056326791657722
529 => 0.0056070743299642
530 => 0.0054665802660633
531 => 0.0055819161772851
601 => 0.0055437825181477
602 => 0.0055137049190192
603 => 0.0056514962314567
604 => 0.0054999890232765
605 => 0.0056311677654736
606 => 0.0054629296717355
607 => 0.0055342517039491
608 => 0.0054937658690061
609 => 0.0055199651659715
610 => 0.0053668046112512
611 => 0.005449446328816
612 => 0.0053633664440998
613 => 0.0053633256310265
614 => 0.0053614254128004
615 => 0.0054626980154324
616 => 0.0054660005113684
617 => 0.005391159905009
618 => 0.0053803742044026
619 => 0.0054202545925589
620 => 0.005373565102718
621 => 0.0053954108211544
622 => 0.0053742267872749
623 => 0.0053694578150446
624 => 0.0053314578329397
625 => 0.0053150863958177
626 => 0.0053215060581532
627 => 0.0052995924410393
628 => 0.0052863886940781
629 => 0.0053587988551963
630 => 0.0053201130271284
701 => 0.005352869697212
702 => 0.0053155393374304
703 => 0.0051861360463637
704 => 0.0051117148452563
705 => 0.0048672840241227
706 => 0.0049366043017807
707 => 0.004982563717585
708 => 0.0049673741309358
709 => 0.0050000072406479
710 => 0.0050020106485491
711 => 0.0049914012919265
712 => 0.0049791170161003
713 => 0.0049731377099912
714 => 0.005017702558975
715 => 0.0050435739537939
716 => 0.0049871763598186
717 => 0.0049739631926364
718 => 0.0050309842739419
719 => 0.0050657671005983
720 => 0.0053225839498472
721 => 0.0053035581281474
722 => 0.005351309206985
723 => 0.005345933168308
724 => 0.0053959839062733
725 => 0.0054777957098264
726 => 0.0053114494382628
727 => 0.0053403213991849
728 => 0.0053332426611178
729 => 0.0054105264671903
730 => 0.0054107677387971
731 => 0.0053644322364441
801 => 0.0053895514639773
802 => 0.0053755306002783
803 => 0.0054008681960159
804 => 0.0053033040266991
805 => 0.0054221266535257
806 => 0.0054894914261754
807 => 0.005490426786109
808 => 0.0055223571537051
809 => 0.0055548002564649
810 => 0.0056170719670135
811 => 0.0055530635322557
812 => 0.0054379185892218
813 => 0.005446231682193
814 => 0.0053787222442221
815 => 0.005379857090071
816 => 0.0053737991939903
817 => 0.0053919793961456
818 => 0.0053072935587107
819 => 0.005327169155489
820 => 0.005299343203608
821 => 0.0053402609109999
822 => 0.0052962402217856
823 => 0.0053332392475359
824 => 0.0053492068005126
825 => 0.0054081274147535
826 => 0.0052875375991553
827 => 0.0050416468019378
828 => 0.0050933360286506
829 => 0.0050168836022412
830 => 0.0050239595653803
831 => 0.0050382541370525
901 => 0.0049919207533701
902 => 0.005000759702844
903 => 0.00500044391337
904 => 0.0049977226102869
905 => 0.0049856695077109
906 => 0.0049681901243421
907 => 0.005037822607813
908 => 0.0050496545236327
909 => 0.0050759554068356
910 => 0.0051542089951881
911 => 0.005146389616365
912 => 0.0051591433476483
913 => 0.0051313020238659
914 => 0.0050252510445397
915 => 0.0050310101229438
916 => 0.0049591943229621
917 => 0.0050741189153662
918 => 0.0050469032549544
919 => 0.0050293571416386
920 => 0.0050245695220567
921 => 0.0051030170859187
922 => 0.0051264898265411
923 => 0.0051118631897823
924 => 0.0050818635310627
925 => 0.0051394717444072
926 => 0.0051548852720028
927 => 0.0051583357924025
928 => 0.0052604065011697
929 => 0.0051640404111584
930 => 0.0051872366868207
1001 => 0.0053682074078688
1002 => 0.0052040919361306
1003 => 0.0052910275617221
1004 => 0.0052867725152406
1005 => 0.005331245839552
1006 => 0.005283124404568
1007 => 0.0052837209274276
1008 => 0.0053232102265322
1009 => 0.0052677546278724
1010 => 0.0052540230417704
1011 => 0.005235052953918
1012 => 0.005276473446737
1013 => 0.0053013031588942
1014 => 0.0055014124034676
1015 => 0.0056306921015522
1016 => 0.0056250797289074
1017 => 0.0056763663089595
1018 => 0.0056532612349148
1019 => 0.0055786488560139
1020 => 0.0057060030887875
1021 => 0.0056657028808105
1022 => 0.0056690251809914
1023 => 0.0056689015248127
1024 => 0.0056956976400121
1025 => 0.0056767101365654
1026 => 0.0056392838182448
1027 => 0.0056641291549592
1028 => 0.0057379109226304
1029 => 0.005966931793383
1030 => 0.0060950949067791
1031 => 0.0059592162130302
1101 => 0.0060529435164899
1102 => 0.005996740532867
1103 => 0.0059865267788488
1104 => 0.0060453944518149
1105 => 0.0061043651648497
1106 => 0.0061006089853668
1107 => 0.0060577992758831
1108 => 0.006033617157252
1109 => 0.0062167322611311
1110 => 0.0063516483503848
1111 => 0.0063424479775866
1112 => 0.0063830554309962
1113 => 0.0065022801701479
1114 => 0.0065131805861229
1115 => 0.0065118073842532
1116 => 0.0064847895659185
1117 => 0.0066021818049022
1118 => 0.0067001124759823
1119 => 0.0064785357215939
1120 => 0.0065629092490123
1121 => 0.0066007872438157
1122 => 0.0066564033780817
1123 => 0.006750237118935
1124 => 0.0068521654496721
1125 => 0.0068665792332256
1126 => 0.0068563519640313
1127 => 0.0067891274899296
1128 => 0.0069006586856801
1129 => 0.0069659910444223
1130 => 0.0070048949689489
1201 => 0.0071035488485525
1202 => 0.0066010211654164
1203 => 0.0062453070940463
1204 => 0.0061897572052284
1205 => 0.0063027200885311
1206 => 0.0063325074999959
1207 => 0.0063205002317846
1208 => 0.0059201117043491
1209 => 0.0061876492424937
1210 => 0.0064754971383422
1211 => 0.0064865545483192
1212 => 0.0066306572235966
1213 => 0.0066775829616352
1214 => 0.006793604503203
1215 => 0.0067863473241886
1216 => 0.0068145967232544
1217 => 0.0068081026756206
1218 => 0.0070230081501569
1219 => 0.0072600808023422
1220 => 0.0072518717302419
1221 => 0.007217789731574
1222 => 0.0072684073114402
1223 => 0.0075130916947448
1224 => 0.0074905650777175
1225 => 0.0075124477673469
1226 => 0.0078009444450706
1227 => 0.0081760311642853
1228 => 0.0080017657251192
1229 => 0.0083798715845804
1230 => 0.0086178691805808
1231 => 0.0090294614134529
]
'min_raw' => 0.0036865290771848
'max_raw' => 0.0090294614134529
'avg_raw' => 0.0063579952453188
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003686'
'max' => '$0.009029'
'avg' => '$0.006357'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016437983650995
'max_diff' => 0.0036631946644038
'year' => 2028
]
3 => [
'items' => [
101 => 0.0089779280387628
102 => 0.0091381578746166
103 => 0.0088856725427278
104 => 0.0083059151850065
105 => 0.0082141663639251
106 => 0.0083978498271803
107 => 0.0088494176980228
108 => 0.0083836283479338
109 => 0.0084778569268115
110 => 0.0084507190897556
111 => 0.0084492730297473
112 => 0.0085044632587139
113 => 0.008424406953069
114 => 0.0080982431620174
115 => 0.0082477221053611
116 => 0.0081900011067676
117 => 0.0082540468580926
118 => 0.0085996753635161
119 => 0.0084468647625139
120 => 0.0082858912076832
121 => 0.0084877877683323
122 => 0.0087448714692239
123 => 0.008728783633246
124 => 0.0086975665072549
125 => 0.0088735358119908
126 => 0.0091641855492457
127 => 0.0092427470053005
128 => 0.0093007394660419
129 => 0.0093087356465875
130 => 0.0093911012758055
131 => 0.008948200528689
201 => 0.0096510953888607
202 => 0.0097724659141338
203 => 0.0097496532856753
204 => 0.0098845515164638
205 => 0.009844861034928
206 => 0.0097873557544284
207 => 0.010001198143905
208 => 0.0097560451005611
209 => 0.0094080812194448
210 => 0.0092171813523192
211 => 0.0094685736968032
212 => 0.0096220902291958
213 => 0.0097235548916221
214 => 0.0097542580371656
215 => 0.0089825816529109
216 => 0.008566690880932
217 => 0.0088332720975731
218 => 0.009158519580328
219 => 0.0089463937625002
220 => 0.0089547086929517
221 => 0.0086522730224135
222 => 0.0091852784263632
223 => 0.0091076240222888
224 => 0.0095104952079951
225 => 0.009414346766283
226 => 0.0097428725788572
227 => 0.0096563607223075
228 => 0.010015466602033
301 => 0.010158723659858
302 => 0.010399274556129
303 => 0.010576224774644
304 => 0.010680133327474
305 => 0.010673895047713
306 => 0.011085632501062
307 => 0.010842845309833
308 => 0.010537847377102
309 => 0.010532330926755
310 => 0.010690293677971
311 => 0.011021340269554
312 => 0.011107175834219
313 => 0.011155146204964
314 => 0.011081677912308
315 => 0.010818149816944
316 => 0.010704359721483
317 => 0.010801312179632
318 => 0.010682747654536
319 => 0.010887423288182
320 => 0.011168486649534
321 => 0.01111044817686
322 => 0.011304462089396
323 => 0.011505246078012
324 => 0.011792376199506
325 => 0.011867442645662
326 => 0.011991524626637
327 => 0.012119245743868
328 => 0.012160266324542
329 => 0.012238587340987
330 => 0.01223817455057
331 => 0.012474200205239
401 => 0.012734543811446
402 => 0.01283281749582
403 => 0.013058792414197
404 => 0.012671818285582
405 => 0.012965342607375
406 => 0.013230108893022
407 => 0.012914443612241
408 => 0.01334951466122
409 => 0.01336640748416
410 => 0.013621469054466
411 => 0.013362915289077
412 => 0.013209386888521
413 => 0.013652617628291
414 => 0.013867083021628
415 => 0.013802484299777
416 => 0.013310884836864
417 => 0.013024752863755
418 => 0.012275890299395
419 => 0.013162950355335
420 => 0.013595011432687
421 => 0.013309765903052
422 => 0.013453627156458
423 => 0.014238487507876
424 => 0.014537311513752
425 => 0.014475158209467
426 => 0.014485661094761
427 => 0.014646901104292
428 => 0.015361928103048
429 => 0.014933467351197
430 => 0.015261009541869
501 => 0.01543473673876
502 => 0.015596104241154
503 => 0.015199836655997
504 => 0.014684298350034
505 => 0.01452100572771
506 => 0.013281403856704
507 => 0.013216877196001
508 => 0.01318065642599
509 => 0.0129522895946
510 => 0.012772855820067
511 => 0.01263016342061
512 => 0.012255695952876
513 => 0.012382067730628
514 => 0.011785244744495
515 => 0.012167070940915
516 => 0.011214527044252
517 => 0.012007833906388
518 => 0.011576073048564
519 => 0.011865988852422
520 => 0.011864977363494
521 => 0.011331150450703
522 => 0.011023250228088
523 => 0.011219456233594
524 => 0.011429804646349
525 => 0.011463932968621
526 => 0.011736655176412
527 => 0.011812766082463
528 => 0.011582146483852
529 => 0.011194787689225
530 => 0.011284762302503
531 => 0.011021426895422
601 => 0.010559941723563
602 => 0.01089138843075
603 => 0.011004558909267
604 => 0.01105454143976
605 => 0.010600723775167
606 => 0.01045812441209
607 => 0.010382205707713
608 => 0.011136205527524
609 => 0.011177511339712
610 => 0.010966184964507
611 => 0.011921400219222
612 => 0.011705205588098
613 => 0.011946747960034
614 => 0.011276598049417
615 => 0.01130219867848
616 => 0.010984938971165
617 => 0.01116258320796
618 => 0.011037029987134
619 => 0.011148231309141
620 => 0.011214884923052
621 => 0.011532092571171
622 => 0.012011455908192
623 => 0.011484712326485
624 => 0.011255202604828
625 => 0.011397589145332
626 => 0.011776783266174
627 => 0.012351281769838
628 => 0.012011167092809
629 => 0.012162104210953
630 => 0.012195077256542
701 => 0.011944289285431
702 => 0.012360528680054
703 => 0.012583594753155
704 => 0.012812414387137
705 => 0.013011092063943
706 => 0.012721018793473
707 => 0.013031438773246
708 => 0.012781295066052
709 => 0.012556890301317
710 => 0.012557230630715
711 => 0.012416458243767
712 => 0.012143694005593
713 => 0.012093392095119
714 => 0.012355068985834
715 => 0.012564909071293
716 => 0.012582192505798
717 => 0.012698370759081
718 => 0.012767123852643
719 => 0.013440997634846
720 => 0.013712035244625
721 => 0.014043454903383
722 => 0.014172561538258
723 => 0.01456112622194
724 => 0.014247328682186
725 => 0.014179436610581
726 => 0.013236905786506
727 => 0.013391245156147
728 => 0.013638357378476
729 => 0.013240980576035
730 => 0.013493024693652
731 => 0.013542783541494
801 => 0.013227477864347
802 => 0.013395896250065
803 => 0.012948626950168
804 => 0.012021205156683
805 => 0.012361561165627
806 => 0.012612177750804
807 => 0.012254516982955
808 => 0.012895610065941
809 => 0.012521096721708
810 => 0.012402393971397
811 => 0.011939292221848
812 => 0.012157858421214
813 => 0.012453472335423
814 => 0.012270817305248
815 => 0.012649853918652
816 => 0.013186670848605
817 => 0.01356923856089
818 => 0.013598607359477
819 => 0.013352641950524
820 => 0.013746803088102
821 => 0.013749674121673
822 => 0.01330505874829
823 => 0.013032734307722
824 => 0.012970861621849
825 => 0.013125431722013
826 => 0.013313108358828
827 => 0.013609022106657
828 => 0.013787836586989
829 => 0.014254089915821
830 => 0.014380244698072
831 => 0.014518850556026
901 => 0.014704070726717
902 => 0.014926475031107
903 => 0.014439867074584
904 => 0.014459200915848
905 => 0.014006078324279
906 => 0.013521851850836
907 => 0.013889319384497
908 => 0.014369734302603
909 => 0.014259526589578
910 => 0.014247125970523
911 => 0.014267980372128
912 => 0.014184887355555
913 => 0.013809060721166
914 => 0.013620322938174
915 => 0.013863842830377
916 => 0.013993262815259
917 => 0.014193981925202
918 => 0.014169239058235
919 => 0.014686269929791
920 => 0.014887172492275
921 => 0.014835773019686
922 => 0.01484523175964
923 => 0.015208956252661
924 => 0.015613492694547
925 => 0.015992394455659
926 => 0.016377829601271
927 => 0.015913172489446
928 => 0.015677248264128
929 => 0.015920661843163
930 => 0.015791503171833
1001 => 0.016533687208248
1002 => 0.016585074420635
1003 => 0.017327204788696
1004 => 0.018031574879227
1005 => 0.017589172645466
1006 => 0.018006338025668
1007 => 0.01845753639635
1008 => 0.019327971257692
1009 => 0.01903483941866
1010 => 0.018810305023923
1011 => 0.018598121105838
1012 => 0.019039642156124
1013 => 0.019607651933845
1014 => 0.019729995799636
1015 => 0.019928239601171
1016 => 0.019719810483955
1017 => 0.019970840397928
1018 => 0.020857086302383
1019 => 0.02061761483589
1020 => 0.020277526856511
1021 => 0.020977132882117
1022 => 0.021230317583135
1023 => 0.023007300408731
1024 => 0.025250814629547
1025 => 0.024321985010421
1026 => 0.023745430492684
1027 => 0.023880934480408
1028 => 0.024700189926101
1029 => 0.024963308773389
1030 => 0.024248061043954
1031 => 0.024500698633707
1101 => 0.025892756592029
1102 => 0.026639551024102
1103 => 0.025625303877474
1104 => 0.02282703622555
1105 => 0.020246905654951
1106 => 0.020931272467068
1107 => 0.020853686508949
1108 => 0.022349279122398
1109 => 0.020611903520613
1110 => 0.020641156469999
1111 => 0.022167676354835
1112 => 0.021760427020737
1113 => 0.021100735256052
1114 => 0.020251722134892
1115 => 0.01868224285622
1116 => 0.017292111290932
1117 => 0.020018479418641
1118 => 0.019900913467395
1119 => 0.019730660547694
1120 => 0.020109539997199
1121 => 0.021949271057189
1122 => 0.021906859301628
1123 => 0.021637057351416
1124 => 0.021841699752727
1125 => 0.021064860453671
1126 => 0.021265069629339
1127 => 0.020246496949087
1128 => 0.020706934339914
1129 => 0.021099319853807
1130 => 0.021178097055088
1201 => 0.021355586112038
1202 => 0.019838961553327
1203 => 0.020519881454431
1204 => 0.020919858102762
1205 => 0.019112749054325
1206 => 0.020884137367173
1207 => 0.019812560493945
1208 => 0.019448851208627
1209 => 0.019938537846253
1210 => 0.019747706487334
1211 => 0.019583640890929
1212 => 0.01949208946913
1213 => 0.019851661291061
1214 => 0.019834886835787
1215 => 0.019246557545225
1216 => 0.018479105969057
1217 => 0.018736687908758
1218 => 0.018643105975221
1219 => 0.018303952975773
1220 => 0.018532501147912
1221 => 0.017526090663396
1222 => 0.015794613733452
1223 => 0.016938480429946
1224 => 0.016894442806418
1225 => 0.016872237039688
1226 => 0.01773182124795
1227 => 0.017649192060308
1228 => 0.017499219275629
1229 => 0.018301198607972
1230 => 0.018008465363523
1231 => 0.018910600246289
]
'min_raw' => 0.0080982431620174
'max_raw' => 0.026639551024102
'avg_raw' => 0.01736889709306
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008098'
'max' => '$0.026639'
'avg' => '$0.017368'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0044117140848326
'max_diff' => 0.017610089610649
'year' => 2029
]
4 => [
'items' => [
101 => 0.019504804626505
102 => 0.019354095175185
103 => 0.019912947266817
104 => 0.018742622076406
105 => 0.019131357159364
106 => 0.019211474921198
107 => 0.018291302307499
108 => 0.017662711217298
109 => 0.017620791358045
110 => 0.016530901032825
111 => 0.01711311164727
112 => 0.01762543289447
113 => 0.017380070774796
114 => 0.017302396457692
115 => 0.017699217698272
116 => 0.017730054107209
117 => 0.017026980715546
118 => 0.017173171937111
119 => 0.017782813633308
120 => 0.017157810530547
121 => 0.015943531595559
122 => 0.015642373630963
123 => 0.015602193607043
124 => 0.014785429321918
125 => 0.0156624984462
126 => 0.01527963426946
127 => 0.016489097616365
128 => 0.015798258639095
129 => 0.015768477951547
130 => 0.015723460074442
131 => 0.015020437314126
201 => 0.015174354619208
202 => 0.015685999183568
203 => 0.01586855972822
204 => 0.015849517167738
205 => 0.015683491846076
206 => 0.015759497388145
207 => 0.015514657055052
208 => 0.015428198837526
209 => 0.015155312920807
210 => 0.01475424600989
211 => 0.014810016823739
212 => 0.014015398328345
213 => 0.013582447998459
214 => 0.01346261305334
215 => 0.01330236475648
216 => 0.013480713524875
217 => 0.014013147273986
218 => 0.013370919210437
219 => 0.012269864242542
220 => 0.012336039522219
221 => 0.012484715728036
222 => 0.012207658602087
223 => 0.011945447284019
224 => 0.012173418751203
225 => 0.011706887246354
226 => 0.012541093831516
227 => 0.012518530881224
228 => 0.012829471509183
301 => 0.01302390906499
302 => 0.012575793448762
303 => 0.012463093583114
304 => 0.01252729254851
305 => 0.01146622665547
306 => 0.012742759788562
307 => 0.012753799300107
308 => 0.012659272299984
309 => 0.013338986784816
310 => 0.014773396356078
311 => 0.014233713776378
312 => 0.014024732369526
313 => 0.013627458562335
314 => 0.014156802322632
315 => 0.01411615698089
316 => 0.013932343331246
317 => 0.013821172262408
318 => 0.014026008365433
319 => 0.013795790802422
320 => 0.01375443740215
321 => 0.013503880789442
322 => 0.013414443478305
323 => 0.013348227653741
324 => 0.013275330537129
325 => 0.013436123411546
326 => 0.013071745604052
327 => 0.012632341688611
328 => 0.012595810007459
329 => 0.01269667719102
330 => 0.012652050970973
331 => 0.012595596354286
401 => 0.012487809116532
402 => 0.0124558309456
403 => 0.012559744487525
404 => 0.012442432157228
405 => 0.012615532890915
406 => 0.012568459069453
407 => 0.012305508529376
408 => 0.011977774799681
409 => 0.011974857282042
410 => 0.01190424758757
411 => 0.011814315525422
412 => 0.011789298483099
413 => 0.012154219630101
414 => 0.012909595483223
415 => 0.012761297128643
416 => 0.012868457888053
417 => 0.013395582763452
418 => 0.013563139910144
419 => 0.013444211816231
420 => 0.013281415706117
421 => 0.013288577908758
422 => 0.01384490149875
423 => 0.013879598718657
424 => 0.013967267399616
425 => 0.014079946429814
426 => 0.013463401542311
427 => 0.013259538700002
428 => 0.013162937175435
429 => 0.012865441869266
430 => 0.01318626505165
501 => 0.012999335122293
502 => 0.013024558356199
503 => 0.013008131692028
504 => 0.013017101761432
505 => 0.012540860653774
506 => 0.012714377882909
507 => 0.012425871835252
508 => 0.012039594623764
509 => 0.012038299687105
510 => 0.012132840487378
511 => 0.012076603919994
512 => 0.011925272763137
513 => 0.011946768639705
514 => 0.01175844214194
515 => 0.011969634886295
516 => 0.011975691138519
517 => 0.011894370428196
518 => 0.012219741989858
519 => 0.012353046984149
520 => 0.012299519950556
521 => 0.01234929138478
522 => 0.012767459594802
523 => 0.012835639258994
524 => 0.012865920162132
525 => 0.012825347763378
526 => 0.012356934732017
527 => 0.012377710841804
528 => 0.012225269533354
529 => 0.012096472691582
530 => 0.012101623889803
531 => 0.012167842208891
601 => 0.012457021492001
602 => 0.013065582245256
603 => 0.013088676680989
604 => 0.013116667810811
605 => 0.013002813818612
606 => 0.012968474365128
607 => 0.013013776968038
608 => 0.013242320390356
609 => 0.013830196121493
610 => 0.013622401575209
611 => 0.013453461374566
612 => 0.013601667476481
613 => 0.013578852308769
614 => 0.013386269332906
615 => 0.013380864170191
616 => 0.013011235867009
617 => 0.012874592699351
618 => 0.012760403440893
619 => 0.012635711751643
620 => 0.012561790338552
621 => 0.012675367225741
622 => 0.012701343603643
623 => 0.01245300575482
624 => 0.012419158223665
625 => 0.012621956271759
626 => 0.012532712411866
627 => 0.012624501934907
628 => 0.012645797891609
629 => 0.012642368752092
630 => 0.012549187912772
701 => 0.012608578601062
702 => 0.01246810191804
703 => 0.012315354624169
704 => 0.012217911367172
705 => 0.01213287920147
706 => 0.0121800599891
707 => 0.01201186909607
708 => 0.011958061444376
709 => 0.012588458372202
710 => 0.013054139360697
711 => 0.013047368174694
712 => 0.013006150321311
713 => 0.01294490895192
714 => 0.013237840202736
715 => 0.013135788812297
716 => 0.01321003972552
717 => 0.013228939699237
718 => 0.013286144227369
719 => 0.01330658992928
720 => 0.01324478881765
721 => 0.013037376738649
722 => 0.012520525557926
723 => 0.012279929938087
724 => 0.012200529376102
725 => 0.012203415435727
726 => 0.012123805027333
727 => 0.012147253860493
728 => 0.0121156504801
729 => 0.012055801323314
730 => 0.012176364472319
731 => 0.012190258252118
801 => 0.012162117372518
802 => 0.012168745568379
803 => 0.011935751104417
804 => 0.011953465167475
805 => 0.011854831013376
806 => 0.011836338298535
807 => 0.011586999746031
808 => 0.01114526035807
809 => 0.01139002685968
810 => 0.011094383345113
811 => 0.010982418666416
812 => 0.011512442041287
813 => 0.01145924239501
814 => 0.011368187725914
815 => 0.011233498892866
816 => 0.011183541494519
817 => 0.010880016156756
818 => 0.010862082260557
819 => 0.011012517613825
820 => 0.010943096874456
821 => 0.010845603864692
822 => 0.010492494066034
823 => 0.010095481741707
824 => 0.010107465048248
825 => 0.010233747281939
826 => 0.010600929907878
827 => 0.0104574653036
828 => 0.010353380087129
829 => 0.010333888054875
830 => 0.010577871647877
831 => 0.010923159548118
901 => 0.01108516090553
902 => 0.010924622480389
903 => 0.01074020458159
904 => 0.01075142924458
905 => 0.010826101898712
906 => 0.010833948938847
907 => 0.010713911845195
908 => 0.010747701583937
909 => 0.01069637188099
910 => 0.01038136158875
911 => 0.010375664051472
912 => 0.01029835544553
913 => 0.010296014571666
914 => 0.010164493347422
915 => 0.010146092618987
916 => 0.009884949245483
917 => 0.010056834604738
918 => 0.0099415429301362
919 => 0.0097677711819542
920 => 0.0097378128670691
921 => 0.0097369122839479
922 => 0.009915337014679
923 => 0.010054749607876
924 => 0.0099435484781766
925 => 0.0099182301364874
926 => 0.010188563787545
927 => 0.010154161366302
928 => 0.010124369091377
929 => 0.010892242803802
930 => 0.010284410842485
1001 => 0.010019361413515
1002 => 0.0096913124136432
1003 => 0.009798126822168
1004 => 0.0098206341874743
1005 => 0.0090317354780598
1006 => 0.0087116793699014
1007 => 0.0086018481746415
1008 => 0.0085386387689842
1009 => 0.008567444088876
1010 => 0.0082793560526962
1011 => 0.0084729559775453
1012 => 0.0082234960896892
1013 => 0.0081816733276774
1014 => 0.0086277385093143
1015 => 0.0086898058734641
1016 => 0.0084250072151825
1017 => 0.008595050820808
1018 => 0.0085333906456253
1019 => 0.0082277723634732
1020 => 0.0082160999930709
1021 => 0.008062751482089
1022 => 0.0078227907565253
1023 => 0.0077131222659368
1024 => 0.0076560059638528
1025 => 0.0076795732632672
1026 => 0.007667656915512
1027 => 0.0075898946858813
1028 => 0.0076721141554893
1029 => 0.0074620773860714
1030 => 0.007378439052108
1031 => 0.0073406615570513
1101 => 0.0071542418349275
1102 => 0.0074509185140531
1103 => 0.0075093675572752
1104 => 0.0075679317631682
1105 => 0.0080776931919855
1106 => 0.0080522269515727
1107 => 0.0082824293623429
1108 => 0.0082734841199754
1109 => 0.008207826663392
1110 => 0.0079308286541936
1111 => 0.0080412351236453
1112 => 0.0077014211716478
1113 => 0.007956032889587
1114 => 0.0078398387343591
1115 => 0.0079167475288237
1116 => 0.00777845858179
1117 => 0.0078549933948891
1118 => 0.0075232279937397
1119 => 0.0072134301302115
1120 => 0.0073381018340586
1121 => 0.0074736342340792
1122 => 0.0077675030103371
1123 => 0.0075924771915627
1124 => 0.0076554230944529
1125 => 0.0074445648567875
1126 => 0.0070095040838059
1127 => 0.0070119664805335
1128 => 0.0069450418589244
1129 => 0.0068872092146994
1130 => 0.0076125810123054
1201 => 0.0075223695628419
1202 => 0.0073786294247045
1203 => 0.0075710313116075
1204 => 0.0076219054243332
1205 => 0.0076233537388019
1206 => 0.0077637251888749
1207 => 0.0078386414569418
1208 => 0.0078518457738942
1209 => 0.00807272328351
1210 => 0.0081467585112883
1211 => 0.0084516991366499
1212 => 0.0078322853350071
1213 => 0.0078195289153789
1214 => 0.0075737388007232
1215 => 0.0074178548242206
1216 => 0.0075844123099589
1217 => 0.0077319595049589
1218 => 0.0075783235033581
1219 => 0.0075983851217341
1220 => 0.0073921413421075
1221 => 0.0074658637886522
1222 => 0.0075293634911026
1223 => 0.0074943026877495
1224 => 0.0074418149681679
1225 => 0.0077198623175749
1226 => 0.007704173796445
1227 => 0.0079630978804938
1228 => 0.0081649477198488
1229 => 0.0085266987169475
1230 => 0.008149192692969
1231 => 0.0081354348730047
]
'min_raw' => 0.0068872092146994
'max_raw' => 0.019912947266817
'avg_raw' => 0.013400078240758
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006887'
'max' => '$0.019912'
'avg' => '$0.013400078'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012110339473179
'max_diff' => -0.0067266037572855
'year' => 2030
]
5 => [
'items' => [
101 => 0.0082699197699796
102 => 0.0081467379223513
103 => 0.0082245845979596
104 => 0.0085141564140021
105 => 0.0085202746101738
106 => 0.0084177869414475
107 => 0.0084115505574914
108 => 0.0084312344353626
109 => 0.0085465235228685
110 => 0.0085062379732181
111 => 0.0085528574311789
112 => 0.0086111557772213
113 => 0.0088523024544393
114 => 0.0089104421019183
115 => 0.0087691929004954
116 => 0.0087819461218836
117 => 0.0087291150431741
118 => 0.0086780808831123
119 => 0.0087927982219908
120 => 0.0090024464135662
121 => 0.0090011422030472
122 => 0.0090497765085142
123 => 0.0090800752779118
124 => 0.0089500107796025
125 => 0.0088653435738074
126 => 0.0088978103680235
127 => 0.0089497254790099
128 => 0.008880974997225
129 => 0.0084566151753274
130 => 0.0085853388370807
131 => 0.0085639129254995
201 => 0.0085333998219279
202 => 0.0086628324592116
203 => 0.0086503483655926
204 => 0.0082764012934895
205 => 0.0083003401717773
206 => 0.0082778570959662
207 => 0.0083505045135162
208 => 0.0081428147233951
209 => 0.0082066987040243
210 => 0.0082467661377997
211 => 0.008270366164106
212 => 0.0083556256418139
213 => 0.0083456214261661
214 => 0.0083550037657227
215 => 0.0084814210634958
216 => 0.0091207963744544
217 => 0.0091555961619278
218 => 0.0089842292809846
219 => 0.0090526869698591
220 => 0.0089212631772709
221 => 0.0090094888496983
222 => 0.009069850614084
223 => 0.0087970874077247
224 => 0.0087809361408627
225 => 0.0086489699155323
226 => 0.0087198810900758
227 => 0.0086070563126832
228 => 0.0086347395666122
301 => 0.0085573347752441
302 => 0.0086966479885664
303 => 0.0088524218081454
304 => 0.0088917764266656
305 => 0.0087882513685675
306 => 0.0087132924038707
307 => 0.0085816891548811
308 => 0.0088005482909205
309 => 0.0088645493719098
310 => 0.0088002121204882
311 => 0.0087853037735371
312 => 0.0087570524830035
313 => 0.0087912974183762
314 => 0.0088642008082778
315 => 0.0088298209159144
316 => 0.0088525294405161
317 => 0.0087659879616632
318 => 0.0089500538363635
319 => 0.0092423947432525
320 => 0.0092433346670707
321 => 0.0092089545893869
322 => 0.0091948870023278
323 => 0.0092301630483889
324 => 0.0092492988562779
325 => 0.009363375120719
326 => 0.0094857834974632
327 => 0.010057009980769
328 => 0.0098966118700566
329 => 0.010403437988461
330 => 0.010804271644985
331 => 0.010924464132245
401 => 0.010813892699459
402 => 0.010435633800851
403 => 0.010417074614706
404 => 0.010982353106014
405 => 0.010822636040824
406 => 0.010803638204136
407 => 0.010601533319118
408 => 0.01072100233734
409 => 0.01069487271055
410 => 0.010653625816357
411 => 0.010881564380841
412 => 0.01130824502534
413 => 0.011241742845509
414 => 0.011192102053213
415 => 0.010974590551587
416 => 0.011105581058518
417 => 0.011058937847958
418 => 0.011259346681038
419 => 0.011140628927921
420 => 0.010821426026969
421 => 0.010872260141052
422 => 0.010864576666973
423 => 0.011022702019074
424 => 0.010975236713286
425 => 0.010855308304227
426 => 0.011306786677283
427 => 0.011277470182991
428 => 0.011319034269213
429 => 0.01133733206538
430 => 0.011612138995118
501 => 0.011724718601391
502 => 0.011750276142998
503 => 0.011857218061738
504 => 0.011747615330638
505 => 0.01218610440046
506 => 0.012477674045346
507 => 0.012816347191917
508 => 0.013311239685818
509 => 0.013497323841536
510 => 0.01346370940438
511 => 0.013838931245126
512 => 0.014513196552232
513 => 0.013599997700929
514 => 0.014561598308771
515 => 0.014257166658541
516 => 0.013535364692338
517 => 0.013488889155201
518 => 0.013977701827007
519 => 0.015061841286597
520 => 0.014790276648177
521 => 0.01506228546906
522 => 0.014744972730901
523 => 0.01472921547893
524 => 0.015046874297623
525 => 0.015789101442179
526 => 0.015436497147769
527 => 0.014930952429612
528 => 0.015304238782352
529 => 0.014980863597587
530 => 0.014252208799297
531 => 0.014790068987816
601 => 0.01443041719713
602 => 0.014535382709793
603 => 0.01529131727965
604 => 0.01520036123225
605 => 0.015318066779889
606 => 0.015110319569197
607 => 0.014916250915682
608 => 0.01455400736217
609 => 0.014446764904367
610 => 0.014476402861524
611 => 0.014446750217267
612 => 0.014244078278267
613 => 0.014200311292337
614 => 0.01412736439831
615 => 0.01414997369102
616 => 0.014012812188883
617 => 0.014271664282427
618 => 0.014319709511985
619 => 0.014508080479193
620 => 0.014527637777905
621 => 0.015052248240286
622 => 0.014763301613327
623 => 0.014957151957143
624 => 0.014939812157802
625 => 0.013551008329641
626 => 0.013742373243641
627 => 0.014040076996208
628 => 0.013905961859205
629 => 0.013716354433591
630 => 0.0135632362713
701 => 0.013331246598294
702 => 0.013657767608083
703 => 0.014087108014317
704 => 0.014538526559127
705 => 0.015080876362601
706 => 0.014959830200114
707 => 0.014528387706802
708 => 0.014547741901883
709 => 0.014667381920279
710 => 0.014512437226014
711 => 0.014466741010796
712 => 0.014661103962021
713 => 0.014662442432846
714 => 0.014484159836402
715 => 0.014286031355827
716 => 0.014285201190259
717 => 0.014249946140834
718 => 0.014751244525874
719 => 0.015026907950663
720 => 0.015058512318061
721 => 0.015024780724927
722 => 0.015037762676365
723 => 0.01487736020331
724 => 0.015243992690839
725 => 0.01558045091759
726 => 0.015490272925439
727 => 0.015355083295648
728 => 0.015247398243904
729 => 0.015464905749529
730 => 0.015455220482692
731 => 0.015577512248499
801 => 0.015571964387611
802 => 0.015530842266396
803 => 0.01549027439404
804 => 0.015651121422347
805 => 0.015604800061319
806 => 0.015558406750423
807 => 0.01546535786296
808 => 0.015478004752144
809 => 0.015342838464749
810 => 0.015280304355411
811 => 0.014339941391279
812 => 0.014088645680017
813 => 0.014167708426376
814 => 0.014193737935341
815 => 0.014084373719755
816 => 0.014241173911543
817 => 0.014216736767745
818 => 0.014311807399011
819 => 0.014252411396083
820 => 0.014254849028761
821 => 0.014429520008809
822 => 0.01448022773742
823 => 0.014454437377387
824 => 0.014472500061512
825 => 0.014888746993402
826 => 0.014829569990514
827 => 0.014798133387172
828 => 0.01480684154114
829 => 0.014913201556672
830 => 0.01494297655398
831 => 0.014816817798136
901 => 0.014876314996707
902 => 0.015129646516904
903 => 0.015218298211651
904 => 0.015501231866055
905 => 0.015381036620919
906 => 0.015601660195294
907 => 0.016279781846803
908 => 0.016821512344477
909 => 0.016323314590856
910 => 0.017318133660872
911 => 0.018092743005199
912 => 0.018063012208384
913 => 0.017927941152164
914 => 0.017046069007702
915 => 0.016234557112396
916 => 0.016913421271435
917 => 0.016915151835786
918 => 0.01685683680247
919 => 0.016494647138884
920 => 0.016844233387268
921 => 0.016871982274154
922 => 0.016856450276523
923 => 0.01657876031065
924 => 0.016154779058447
925 => 0.01623762398026
926 => 0.01637332565218
927 => 0.016116414076901
928 => 0.016034315261778
929 => 0.01618695257903
930 => 0.016678781818464
1001 => 0.016585804349722
1002 => 0.016583376332262
1003 => 0.016981173372124
1004 => 0.016696436541557
1005 => 0.01623866892003
1006 => 0.016123076558382
1007 => 0.015712801546874
1008 => 0.015996179958672
1009 => 0.016006378243224
1010 => 0.015851174783139
1011 => 0.016251262825441
1012 => 0.016247575943697
1013 => 0.016627399994616
1014 => 0.017353480924575
1015 => 0.017138743065314
1016 => 0.016889026298405
1017 => 0.016916177434863
1018 => 0.017213958387091
1019 => 0.017033913225696
1020 => 0.017098658721053
1021 => 0.017213860387029
1022 => 0.017283364412409
1023 => 0.016906176875217
1024 => 0.016818236417332
1025 => 0.016638341103407
1026 => 0.016591409773908
1027 => 0.016737930753462
1028 => 0.016699327652012
1029 => 0.016005521116897
1030 => 0.015933014473674
1031 => 0.015935238148906
1101 => 0.01575291674702
1102 => 0.015474832846993
1103 => 0.016205620732737
1104 => 0.016146928238142
1105 => 0.016082136266547
1106 => 0.016090072913369
1107 => 0.016407283165871
1108 => 0.016223285199918
1109 => 0.016712473949078
1110 => 0.01661191144861
1111 => 0.016508769899463
1112 => 0.016494512595603
1113 => 0.016454811898804
1114 => 0.016318663437505
1115 => 0.016154255989231
1116 => 0.016045699951151
1117 => 0.014801310032447
1118 => 0.015032261563075
1119 => 0.015297950247169
1120 => 0.015389664916237
1121 => 0.015232780628334
1122 => 0.016324858185412
1123 => 0.016524391278611
1124 => 0.015919992524089
1125 => 0.015806934194556
1126 => 0.016332270270674
1127 => 0.016015428397052
1128 => 0.016158102273343
1129 => 0.015849719391238
1130 => 0.016476329599471
1201 => 0.016471555879543
1202 => 0.016227790355907
1203 => 0.01643381930725
1204 => 0.016398016706831
1205 => 0.016122806031014
1206 => 0.016485054268778
1207 => 0.016485233939385
1208 => 0.016250614922805
1209 => 0.015976631276147
1210 => 0.015927649471329
1211 => 0.015890748261179
1212 => 0.016149026837732
1213 => 0.016380598601853
1214 => 0.016811496243374
1215 => 0.016919834148327
1216 => 0.017342684203825
1217 => 0.017090897583972
1218 => 0.01720251133137
1219 => 0.017323683842899
1220 => 0.017381778400898
1221 => 0.017287116436165
1222 => 0.017943976624379
1223 => 0.01799943574994
1224 => 0.018018030715021
1225 => 0.017796541155338
1226 => 0.017993275724614
1227 => 0.017901230134814
1228 => 0.018140707188472
1229 => 0.018178260248282
1230 => 0.018146454142612
1231 => 0.01815837407653
]
'min_raw' => 0.0081428147233951
'max_raw' => 0.018178260248282
'avg_raw' => 0.013160537485839
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008142'
'max' => '$0.018178'
'avg' => '$0.01316'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012556055086957
'max_diff' => -0.0017346870185345
'year' => 2031
]
6 => [
'items' => [
101 => 0.017597859783967
102 => 0.01756879416095
103 => 0.017172482328699
104 => 0.01733398232973
105 => 0.017032065818699
106 => 0.017127806654431
107 => 0.01717000830257
108 => 0.017147964556505
109 => 0.017343113297476
110 => 0.017177197001397
111 => 0.016739316616879
112 => 0.016301316932144
113 => 0.016295818202889
114 => 0.016180500617235
115 => 0.016097147124276
116 => 0.016113203964144
117 => 0.016169790362165
118 => 0.016093858219955
119 => 0.016110062192353
120 => 0.016379156100661
121 => 0.016433120964882
122 => 0.016249727270825
123 => 0.015513375125601
124 => 0.015332672462164
125 => 0.015462557953153
126 => 0.015400481054157
127 => 0.012429390168969
128 => 0.01312740390163
129 => 0.01271266784399
130 => 0.012903797300439
131 => 0.01248045918097
201 => 0.012682498320632
202 => 0.012645189068825
203 => 0.013767574495215
204 => 0.013750049990573
205 => 0.013758438043569
206 => 0.013358054419106
207 => 0.013995876404476
208 => 0.014310090449806
209 => 0.014251937792551
210 => 0.014266573563532
211 => 0.014015082527447
212 => 0.01376087302653
213 => 0.013478915567452
214 => 0.014002757675424
215 => 0.013944515375301
216 => 0.014078102256866
217 => 0.014417851308893
218 => 0.014467880647385
219 => 0.014535120585666
220 => 0.014511019854257
221 => 0.015085197053773
222 => 0.015015660406369
223 => 0.015183223719555
224 => 0.014838533271272
225 => 0.014448483310722
226 => 0.014522619056528
227 => 0.014515479188045
228 => 0.014424580467494
229 => 0.014342521166938
301 => 0.014205915551575
302 => 0.014638155932409
303 => 0.014620607762311
304 => 0.014904692238685
305 => 0.014854477548036
306 => 0.014519131554267
307 => 0.014531108502039
308 => 0.014611659231731
309 => 0.014890446226909
310 => 0.014973209188344
311 => 0.014934870087074
312 => 0.015025615896015
313 => 0.015097337683397
314 => 0.015034623048262
315 => 0.015922530028311
316 => 0.015553809145536
317 => 0.015733521138257
318 => 0.015776381389597
319 => 0.015666595757045
320 => 0.015690404329617
321 => 0.015726467829615
322 => 0.015945438339649
323 => 0.016520080317606
324 => 0.016774585337923
325 => 0.017540276248602
326 => 0.016753452238866
327 => 0.01670676535833
328 => 0.016844689412994
329 => 0.017294231034177
330 => 0.017658542294848
331 => 0.017779405357634
401 => 0.017795379406613
402 => 0.018022126547223
403 => 0.018152093779637
404 => 0.017994593480311
405 => 0.017861128467601
406 => 0.017383073358361
407 => 0.017438409538956
408 => 0.017819620949009
409 => 0.018358104518947
410 => 0.018820179441622
411 => 0.018658376908638
412 => 0.019892816020516
413 => 0.020015205616227
414 => 0.019998295331429
415 => 0.020277117044472
416 => 0.019723712725135
417 => 0.019487121656915
418 => 0.017889985118241
419 => 0.018338715339256
420 => 0.018990971068502
421 => 0.018904642576903
422 => 0.018430957031479
423 => 0.018819820108659
424 => 0.01869124981447
425 => 0.018589841089057
426 => 0.019054414119223
427 => 0.018543596988948
428 => 0.018985875276873
429 => 0.018418648797826
430 => 0.018659116008979
501 => 0.018522615189838
502 => 0.018610947948734
503 => 0.018094556445166
504 => 0.018373188765796
505 => 0.01808296442457
506 => 0.018082826820443
507 => 0.018076420102025
508 => 0.018417867752426
509 => 0.018429002348048
510 => 0.018176672018502
511 => 0.018140307275874
512 => 0.018274766788903
513 => 0.018117349914149
514 => 0.018191004279076
515 => 0.018119580829829
516 => 0.018103501906996
517 => 0.017975382314255
518 => 0.017920184870981
519 => 0.017941829210752
520 => 0.017867945920693
521 => 0.017823428565956
522 => 0.018067564479683
523 => 0.017937132509393
524 => 0.018047573909578
525 => 0.017921711995252
526 => 0.017485419764771
527 => 0.017234503489315
528 => 0.016410387910248
529 => 0.01664410606616
530 => 0.016799061445328
531 => 0.016747848693437
601 => 0.016857873501202
602 => 0.016864628130814
603 => 0.01682885794424
604 => 0.016787440650631
605 => 0.016767281002622
606 => 0.01691753450239
607 => 0.017004761716305
608 => 0.016814613290663
609 => 0.016770064174994
610 => 0.0169623147317
611 => 0.017079587460232
612 => 0.017945463397854
613 => 0.017881316511653
614 => 0.018042312607828
615 => 0.018024186918085
616 => 0.018192936475566
617 => 0.018468770683163
618 => 0.017907922614661
619 => 0.018005266446686
620 => 0.01798139998707
621 => 0.018241967735027
622 => 0.018242781199094
623 => 0.01808655781787
624 => 0.018171249047266
625 => 0.0181239767264
626 => 0.018209404199443
627 => 0.017880459790879
628 => 0.018281078573156
629 => 0.018508203607403
630 => 0.018511357238723
701 => 0.018619012702381
702 => 0.01872839688844
703 => 0.018938350308227
704 => 0.018722541401515
705 => 0.018334322186913
706 => 0.018362350360267
707 => 0.01813473757679
708 => 0.018138563788802
709 => 0.018118139169217
710 => 0.018179434990085
711 => 0.017893910776597
712 => 0.017960922738805
713 => 0.017867105599292
714 => 0.018005062506546
715 => 0.017856643679434
716 => 0.017981388477941
717 => 0.018035224197621
718 => 0.01823387916224
719 => 0.017827302179638
720 => 0.016998264189272
721 => 0.017172538025961
722 => 0.016914773332584
723 => 0.016938630436335
724 => 0.016986825582743
725 => 0.016830609344764
726 => 0.016860410480031
727 => 0.016859345773772
728 => 0.016850170710432
729 => 0.016809532833577
730 => 0.016750599872177
731 => 0.016985370651784
801 => 0.017025262782048
802 => 0.017113938046036
803 => 0.017377775482657
804 => 0.017351411901023
805 => 0.017394411996482
806 => 0.017300543029531
807 => 0.016942984748489
808 => 0.016962401883415
809 => 0.016720269899758
810 => 0.017107746186827
811 => 0.017015986687612
812 => 0.016956828741537
813 => 0.016940686947856
814 => 0.01720517838645
815 => 0.017284318370273
816 => 0.017235003643242
817 => 0.017133857699359
818 => 0.017328087812727
819 => 0.017380055597154
820 => 0.017391689267589
821 => 0.017735827788547
822 => 0.017410922788009
823 => 0.017489130650916
824 => 0.018099286071902
825 => 0.01754595930076
826 => 0.017839068832094
827 => 0.017824722645803
828 => 0.017974667563748
829 => 0.017812422785968
830 => 0.017814434004437
831 => 0.017947574933423
901 => 0.017760602510755
902 => 0.017714305509503
903 => 0.01765034653386
904 => 0.017789998617286
905 => 0.017873713725379
906 => 0.018548396014639
907 => 0.018984271542752
908 => 0.018965349036536
909 => 0.019138265321897
910 => 0.01906036495161
911 => 0.018808804106876
912 => 0.019238187794261
913 => 0.019102312829396
914 => 0.019113514196411
915 => 0.019113097280971
916 => 0.019203442254211
917 => 0.019139424560676
918 => 0.019013239115435
919 => 0.019097006902814
920 => 0.019345767283796
921 => 0.020117927139265
922 => 0.020550038024143
923 => 0.020091913521421
924 => 0.020407921668867
925 => 0.020218429385615
926 => 0.020183993000841
927 => 0.020382469470256
928 => 0.020581293346456
929 => 0.020568629125082
930 => 0.020424293200679
1001 => 0.020342761499373
1002 => 0.020960146856789
1003 => 0.021415025871249
1004 => 0.02138400617201
1005 => 0.021520917036302
1006 => 0.021922891568358
1007 => 0.02195964308186
1008 => 0.021955013235883
1009 => 0.021863920775044
1010 => 0.022259716904841
1011 => 0.022589896999689
1012 => 0.021842835502273
1013 => 0.022127306740736
1014 => 0.022255015044773
1015 => 0.022442528724446
1016 => 0.022758895732995
1017 => 0.023102554216484
1018 => 0.023151151294073
1019 => 0.023116669341939
1020 => 0.022890017334042
1021 => 0.023266052547374
1022 => 0.023486325156233
1023 => 0.02361749245396
1024 => 0.023950110896837
1025 => 0.022255803727782
1026 => 0.021056488900994
1027 => 0.020869198572475
1028 => 0.021250060820347
1029 => 0.021350491157791
1030 => 0.021310007814696
1031 => 0.019960069940213
1101 => 0.020862091428942
1102 => 0.021832590706693
1103 => 0.021869871536435
1104 => 0.02235572376706
1105 => 0.022513937169107
1106 => 0.022905111896868
1107 => 0.022880643811142
1108 => 0.022975888632402
1109 => 0.022953993497405
1110 => 0.023678562309025
1111 => 0.024477869307752
1112 => 0.024450191848026
1113 => 0.024335282009988
1114 => 0.024505942714514
1115 => 0.025330913196143
1116 => 0.025254963134078
1117 => 0.025328742149964
1118 => 0.026301428841104
1119 => 0.027566059902655
1120 => 0.026978511807682
1121 => 0.028253322111363
1122 => 0.02905574762274
1123 => 0.030443459572321
1124 => 0.030269711201608
1125 => 0.030809937280078
1126 => 0.029958665355652
1127 => 0.028003972946729
1128 => 0.027694635390755
1129 => 0.02831393701149
1130 => 0.029836429615497
1201 => 0.028265988301298
1202 => 0.028583686533814
1203 => 0.028492189421477
1204 => 0.028487313929198
1205 => 0.028673391639418
1206 => 0.028403476215583
1207 => 0.027303792222024
1208 => 0.027807770915793
1209 => 0.027613160539084
1210 => 0.027829095261208
1211 => 0.028994405898255
1212 => 0.02847919428808
1213 => 0.027936460709154
1214 => 0.02861716905935
1215 => 0.029483944705917
1216 => 0.029429703443701
1217 => 0.029324452723912
1218 => 0.029917745520613
1219 => 0.030897691402285
1220 => 0.031162566836359
1221 => 0.031358092466653
1222 => 0.031385052147638
1223 => 0.031662753617131
1224 => 0.030169482825885
1225 => 0.032539341921506
1226 => 0.032948551121284
1227 => 0.032871636751709
1228 => 0.033326455555106
1229 => 0.033192636325507
1230 => 0.032998753257413
1231 => 0.033719737803531
]
'min_raw' => 0.012429390168969
'max_raw' => 0.033719737803531
'avg_raw' => 0.02307456398625
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012429'
'max' => '$0.033719'
'avg' => '$0.023074'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042865754455743
'max_diff' => 0.015541477555249
'year' => 2032
]
7 => [
'items' => [
101 => 0.032893187201859
102 => 0.031720002682613
103 => 0.031076370452396
104 => 0.031923957293477
105 => 0.03244154900062
106 => 0.032783644194027
107 => 0.032887161992852
108 => 0.030285401186613
109 => 0.02888319641232
110 => 0.029781993596331
111 => 0.030878588192494
112 => 0.030163391187535
113 => 0.030191425556083
114 => 0.029171742577479
115 => 0.030968807510144
116 => 0.03070699026515
117 => 0.032065298595327
118 => 0.031741127411224
119 => 0.032848775125258
120 => 0.032557094360836
121 => 0.033767844906301
122 => 0.034250846078649
123 => 0.035061880220152
124 => 0.035658480236144
125 => 0.036008815176675
126 => 0.035987782380919
127 => 0.037375983951475
128 => 0.036557409985386
129 => 0.035529088160909
130 => 0.035510489063418
131 => 0.036043071507748
201 => 0.037159218204205
202 => 0.037448618803322
203 => 0.037610354257473
204 => 0.037362650779389
205 => 0.036474147406926
206 => 0.03609049615551
207 => 0.036417378137163
208 => 0.03601762956289
209 => 0.036707707751725
210 => 0.037655332497742
211 => 0.037459651735004
212 => 0.038113783186738
213 => 0.038790740422647
214 => 0.03975881967405
215 => 0.040011911438237
216 => 0.040430262500221
217 => 0.040860883164168
218 => 0.040999186915875
219 => 0.041263251691018
220 => 0.041261859939307
221 => 0.04205763691281
222 => 0.042935403557745
223 => 0.043266740145864
224 => 0.044028630360236
225 => 0.042723920067941
226 => 0.043713557812078
227 => 0.04460623582953
228 => 0.043541948296329
301 => 0.045008820713655
302 => 0.045065776045615
303 => 0.045925733937732
304 => 0.045054001866074
305 => 0.044536370144591
306 => 0.046030753529105
307 => 0.046753838576237
308 => 0.04653603947538
309 => 0.044878577563788
310 => 0.043913863639356
311 => 0.0413890212197
312 => 0.044379806130859
313 => 0.045836530218692
314 => 0.044874805000319
315 => 0.045359843260251
316 => 0.048006054732257
317 => 0.049013560731292
318 => 0.048804006526492
319 => 0.048839417737547
320 => 0.049383049687099
321 => 0.051793813134996
322 => 0.050349227795957
323 => 0.051453559160072
324 => 0.052039292533636
325 => 0.052583354334277
326 => 0.051247310504399
327 => 0.04950913711211
328 => 0.048958584635217
329 => 0.044779180380885
330 => 0.044561624239214
331 => 0.044439503384268
401 => 0.043669548668174
402 => 0.043064575169671
403 => 0.042583477782435
404 => 0.041320934570487
405 => 0.041747005842175
406 => 0.039734775475578
407 => 0.041022129155061
408 => 0.037810560902971
409 => 0.040485250375578
410 => 0.039029538498845
411 => 0.040007009872826
412 => 0.040003599567285
413 => 0.038203764860206
414 => 0.037165657762754
415 => 0.037827180008983
416 => 0.038536384368641
417 => 0.038651450389946
418 => 0.039570952354371
419 => 0.039827565588013
420 => 0.039050015509951
421 => 0.037744008289338
422 => 0.038047363979833
423 => 0.037159510269369
424 => 0.035603580792579
425 => 0.036721076506732
426 => 0.037102638676362
427 => 0.037271158267588
428 => 0.035741080326873
429 => 0.035260296618292
430 => 0.03500433140601
501 => 0.037546494441088
502 => 0.037685759870758
503 => 0.036973258242418
504 => 0.040193833164692
505 => 0.03946491787163
506 => 0.040279294842563
507 => 0.038019837630545
508 => 0.038106151938807
509 => 0.037036488685229
510 => 0.037635428632308
511 => 0.037212117182448
512 => 0.037587040203424
513 => 0.037811767516331
514 => 0.038881255248694
515 => 0.040497462207539
516 => 0.038721509445752
517 => 0.037947701395329
518 => 0.03842776755775
519 => 0.039706247010655
520 => 0.041643208825965
521 => 0.040496488446312
522 => 0.041005383478228
523 => 0.041116554403537
524 => 0.040271005249477
525 => 0.041674385429354
526 => 0.042426468268791
527 => 0.043197949640438
528 => 0.043867805299022
529 => 0.042889803015363
530 => 0.043936405649998
531 => 0.043093028676718
601 => 0.042336432344976
602 => 0.042337579789302
603 => 0.041862955858292
604 => 0.040943312185496
605 => 0.040773715782367
606 => 0.041655977689108
607 => 0.042363468187801
608 => 0.042421740493925
609 => 0.042813443586175
610 => 0.043045249441307
611 => 0.045317261946372
612 => 0.046231084170982
613 => 0.047348488689467
614 => 0.047783780722884
615 => 0.04909385368264
616 => 0.048035863368714
617 => 0.047806960509224
618 => 0.044629152030456
619 => 0.04514951799083
620 => 0.045982674101236
621 => 0.044642890467846
622 => 0.045492674807549
623 => 0.0456604402371
624 => 0.044597365132658
625 => 0.045165199478704
626 => 0.043657199806755
627 => 0.0405303324795
628 => 0.041677866526552
629 => 0.042522837840966
630 => 0.041316959591086
701 => 0.043478449680063
702 => 0.042215751792295
703 => 0.04181553718206
704 => 0.040254157300723
705 => 0.040991068501691
706 => 0.041987751452552
707 => 0.04137191726575
708 => 0.042649865671333
709 => 0.044459781430029
710 => 0.045749635182023
711 => 0.045848654136924
712 => 0.045019364587881
713 => 0.046348306382677
714 => 0.046357986272813
715 => 0.044858934499397
716 => 0.043940773634935
717 => 0.043732165554702
718 => 0.044253309439147
719 => 0.044886074323331
720 => 0.045883768184176
721 => 0.046486653689042
722 => 0.048058659339967
723 => 0.048483998996173
724 => 0.048951318323418
725 => 0.049575801060559
726 => 0.050325652700586
727 => 0.048685020001286
728 => 0.048750205396951
729 => 0.047222470943469
730 => 0.045589867580641
731 => 0.046828810026146
801 => 0.048448562464036
802 => 0.048076989465116
803 => 0.04803517991219
804 => 0.048105491983209
805 => 0.047825338076463
806 => 0.046558212339242
807 => 0.045921869726636
808 => 0.046742914045212
809 => 0.047179262560056
810 => 0.047856001052991
811 => 0.04777257874952
812 => 0.049515784430912
813 => 0.050193141446897
814 => 0.050019844536467
815 => 0.050051735338609
816 => 0.051278057861262
817 => 0.052641980718915
818 => 0.05391947446058
819 => 0.055218995964234
820 => 0.053652372070391
821 => 0.052856937073027
822 => 0.053677622949338
823 => 0.053242155471377
824 => 0.055744480767784
825 => 0.05591773634209
826 => 0.058419880691896
827 => 0.06079471362967
828 => 0.059303123611006
829 => 0.060709625815916
830 => 0.062230872624333
831 => 0.065165604531171
901 => 0.064177290070061
902 => 0.063420256681713
903 => 0.062704863787683
904 => 0.064193482834736
905 => 0.066108567457499
906 => 0.06652105834279
907 => 0.067189451160607
908 => 0.066486717839857
909 => 0.067333082721164
910 => 0.070321122663748
911 => 0.069513727895104
912 => 0.068367097528443
913 => 0.070725868088707
914 => 0.071579497984978
915 => 0.077570719646457
916 => 0.085134884479096
917 => 0.082003270569399
918 => 0.080059376759101
919 => 0.080516237914299
920 => 0.08327841484804
921 => 0.084165538412044
922 => 0.08175403075525
923 => 0.082605816027697
924 => 0.087299236624562
925 => 0.089817106191819
926 => 0.086397501124486
927 => 0.076962946367217
928 => 0.068263856009479
929 => 0.070571246497496
930 => 0.070309660022818
1001 => 0.075352154938005
1002 => 0.069494471796895
1003 => 0.069593100158125
1004 => 0.074739868528064
1005 => 0.073366798964912
1006 => 0.071142602122069
1007 => 0.068280095107876
1008 => 0.062988486142288
1009 => 0.058301560514035
1010 => 0.067493701005548
1011 => 0.067097319192731
1012 => 0.066523299587279
1013 => 0.067800718103805
1014 => 0.074003499818481
1015 => 0.073860505623513
1016 => 0.072950849511403
1017 => 0.073640815655097
1018 => 0.071021647721142
1019 => 0.071696666935068
1020 => 0.068262478029122
1021 => 0.069814874839007
1022 => 0.071137829994582
1023 => 0.071403432828749
1024 => 0.072001849576145
1025 => 0.066888443989106
1026 => 0.069184212975986
1027 => 0.070532762171314
1028 => 0.064439967846181
1029 => 0.070412327217334
1030 => 0.066799430974136
1031 => 0.065573159725314
1101 => 0.067224172412901
1102 => 0.066580771162886
1103 => 0.066027612549912
1104 => 0.065718940539401
1105 => 0.066931262041544
1106 => 0.066874705794431
1107 => 0.064891112515462
1108 => 0.062303595944653
1109 => 0.063172051438153
1110 => 0.06285653341555
1111 => 0.061713055399005
1112 => 0.062483621518095
1113 => 0.059090438304214
1114 => 0.05325264294705
1115 => 0.0571092693765
1116 => 0.056960793454169
1117 => 0.056885925161282
1118 => 0.059784073333689
1119 => 0.059505483258567
1120 => 0.058999839544258
1121 => 0.061703768855662
1122 => 0.060716798284018
1123 => 0.063758409026311
1124 => 0.065761810580235
1125 => 0.065253683142909
1126 => 0.067137891987654
1127 => 0.063192058898689
1128 => 0.064502706371497
1129 => 0.064772828999164
1130 => 0.061670402787679
1201 => 0.059551064040238
1202 => 0.059409728308015
1203 => 0.055735086982822
1204 => 0.057698050718072
1205 => 0.059425377572132
1206 => 0.058598122055016
1207 => 0.058336237671853
1208 => 0.059674148189642
1209 => 0.059778115295303
1210 => 0.057407654268294
1211 => 0.057900548178547
1212 => 0.059955997721097
1213 => 0.057848756123815
1214 => 0.053754729916257
1215 => 0.052739354812442
1216 => 0.052603885056517
1217 => 0.049850107244556
1218 => 0.052807207032084
1219 => 0.051516353729481
1220 => 0.055594143845608
1221 => 0.053264932000903
1222 => 0.053164524333615
1223 => 0.053012743417906
1224 => 0.050642453098021
1225 => 0.051161396038268
1226 => 0.052886441408888
1227 => 0.053501957031153
1228 => 0.05343775370898
1229 => 0.052877987745477
1230 => 0.053134245737103
1231 => 0.052308749459873
]
'min_raw' => 0.02888319641232
'max_raw' => 0.089817106191819
'avg_raw' => 0.059350151302069
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.028883'
'max' => '$0.089817'
'avg' => '$0.05935'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.01645380624335
'max_diff' => 0.056097368388288
'year' => 2033
]
8 => [
'items' => [
101 => 0.052017249543164
102 => 0.05109719562266
103 => 0.049744970530904
104 => 0.049933005723591
105 => 0.047253893987878
106 => 0.04579417172304
107 => 0.045390139838963
108 => 0.044849851517921
109 => 0.045451166842478
110 => 0.047246304400944
111 => 0.045080987645755
112 => 0.041368703948295
113 => 0.041591818523936
114 => 0.042093090732089
115 => 0.041158973288443
116 => 0.040274909522566
117 => 0.041043531240636
118 => 0.03947058769985
119 => 0.042283173444166
120 => 0.042207100881963
121 => 0.043255458918308
122 => 0.043911018712908
123 => 0.04240016562636
124 => 0.042020190160875
125 => 0.042236641454937
126 => 0.038659183715298
127 => 0.042963104298216
128 => 0.043000324782141
129 => 0.042681620401562
130 => 0.044973325243326
131 => 0.049809537260112
201 => 0.047989959763219
202 => 0.047285364359402
203 => 0.045945927981688
204 => 0.047730647427129
205 => 0.047593608819679
206 => 0.046973868266444
207 => 0.04659904724614
208 => 0.047289666468691
209 => 0.046513471881721
210 => 0.0463740460055
211 => 0.045529276892453
212 => 0.04522773275364
213 => 0.045004481478082
214 => 0.044758703759909
215 => 0.045300828162207
216 => 0.044072302944195
217 => 0.042590821965086
218 => 0.042467652851519
219 => 0.042807733603216
220 => 0.042657273186624
221 => 0.042466932504931
222 => 0.042103520307378
223 => 0.041995703671437
224 => 0.042346055433049
225 => 0.041950528720965
226 => 0.0425341499301
227 => 0.04237543725445
228 => 0.04148888114996
301 => 0.040383903998656
302 => 0.040374067384241
303 => 0.040136001869519
304 => 0.03983278964313
305 => 0.039748442938304
306 => 0.0409788000634
307 => 0.043525602490859
308 => 0.043025604234532
309 => 0.04338690421661
310 => 0.045164142536702
311 => 0.045729073155239
312 => 0.045328098783317
313 => 0.044779220332007
314 => 0.04480336819826
315 => 0.04667905202319
316 => 0.04679603612259
317 => 0.047091617201273
318 => 0.047471522418585
319 => 0.045392798284581
320 => 0.044705460478485
321 => 0.044379761693907
322 => 0.043376735498698
323 => 0.044458413257264
324 => 0.043828165949407
325 => 0.043913207843551
326 => 0.043857824198426
327 => 0.04388806741369
328 => 0.04228238726913
329 => 0.042867412721744
330 => 0.041894694439221
331 => 0.040592333851674
401 => 0.040587967882318
402 => 0.040906718791067
403 => 0.040717113277819
404 => 0.040206889716871
405 => 0.040279364565517
406 => 0.039644408629764
407 => 0.040356459712365
408 => 0.040376878789573
409 => 0.040102700337087
410 => 0.041199713273948
411 => 0.041649160369258
412 => 0.04146869023836
413 => 0.041636498103778
414 => 0.043046381419439
415 => 0.043276253917413
416 => 0.043378348096489
417 => 0.043241555421414
418 => 0.041662268182629
419 => 0.041732316287317
420 => 0.041218349772764
421 => 0.040784102228423
422 => 0.040801469852868
423 => 0.041024729538889
424 => 0.041999717681747
425 => 0.044051522749701
426 => 0.04412938725218
427 => 0.044223761300652
428 => 0.043839894616919
429 => 0.043724116751996
430 => 0.043876857640632
501 => 0.044647407745371
502 => 0.04662947181707
503 => 0.045928877996523
504 => 0.045359284315026
505 => 0.045858971535053
506 => 0.045782048604208
507 => 0.045132741655372
508 => 0.045114517771903
509 => 0.043868290141099
510 => 0.04340758816122
511 => 0.043022591103889
512 => 0.042602184367885
513 => 0.042352953162621
514 => 0.042735885567464
515 => 0.042823466739175
516 => 0.041986178343473
517 => 0.041872059029025
518 => 0.042555806807081
519 => 0.042254914902645
520 => 0.042564389688117
521 => 0.042636190492973
522 => 0.042624628909678
523 => 0.042310463204232
524 => 0.042510703056327
525 => 0.042037076111749
526 => 0.041522077945988
527 => 0.041193541201751
528 => 0.040906849318329
529 => 0.041065922637882
530 => 0.040498855299318
531 => 0.040317439044901
601 => 0.042442866299977
602 => 0.044012942265495
603 => 0.043990112739138
604 => 0.043851143868717
605 => 0.043644664316078
606 => 0.044632302480013
607 => 0.044288229092147
608 => 0.044538571230113
609 => 0.044602293811052
610 => 0.044795162871541
611 => 0.04486409698301
612 => 0.044655730220332
613 => 0.04395642591493
614 => 0.042213826073727
615 => 0.041402641143588
616 => 0.041134936605289
617 => 0.041144667156813
618 => 0.040876255106689
619 => 0.040955314484835
620 => 0.040848761481361
621 => 0.040646975870723
622 => 0.041053462945042
623 => 0.041100306793668
624 => 0.041005427853363
625 => 0.041027775278473
626 => 0.040242218176074
627 => 0.040301942376429
628 => 0.039969390439468
629 => 0.039907040960261
630 => 0.039066378622233
701 => 0.037577023434461
702 => 0.038402270783693
703 => 0.037405488033158
704 => 0.037027991301807
705 => 0.038815002115235
706 => 0.038635635793532
707 => 0.038328638619441
708 => 0.037874525815143
709 => 0.037706090958704
710 => 0.036682734090975
711 => 0.036622268707833
712 => 0.037129472004439
713 => 0.036895415134855
714 => 0.036566710645691
715 => 0.035376176306177
716 => 0.03403762153619
717 => 0.034078024090841
718 => 0.034503793458477
719 => 0.0357417753177
720 => 0.035258074387998
721 => 0.034907143813671
722 => 0.034841425066033
723 => 0.035664032784231
724 => 0.036828195047125
725 => 0.037374393934213
726 => 0.036833127425416
727 => 0.036211349603968
728 => 0.036249194338919
729 => 0.036500958405805
730 => 0.036527415249482
731 => 0.036122701807513
801 => 0.036236626270804
802 => 0.036063564593593
803 => 0.035001485399992
804 => 0.03498227575527
805 => 0.034721624392819
806 => 0.034713731973154
807 => 0.034270298983097
808 => 0.03420825964248
809 => 0.033327796526263
810 => 0.033907320015645
811 => 0.033518606085316
812 => 0.032932722503965
813 => 0.032831715953707
814 => 0.032828679574837
815 => 0.033430251011714
816 => 0.033900290303153
817 => 0.033525367930557
818 => 0.033440005373882
819 => 0.034351454152514
820 => 0.034235463987393
821 => 0.034135017252455
822 => 0.036723957085126
823 => 0.034674609190072
824 => 0.03378097653514
825 => 0.032674936428423
826 => 0.033035068664309
827 => 0.033110953817853
828 => 0.030451126739913
829 => 0.029372035225653
830 => 0.029001731682665
831 => 0.028788616758352
901 => 0.02888573590549
902 => 0.027914426977845
903 => 0.028567162641189
904 => 0.027726091212549
905 => 0.027585082850454
906 => 0.02908902275362
907 => 0.029298287205256
908 => 0.028405500041208
909 => 0.028978813929639
910 => 0.028770922344035
911 => 0.027740508968172
912 => 0.027701154756422
913 => 0.027184129545195
914 => 0.026375085205434
915 => 0.026005330232606
916 => 0.025812758632397
917 => 0.025892217427788
918 => 0.025852040629359
919 => 0.025589859842974
920 => 0.025867068525137
921 => 0.025158914892746
922 => 0.024876922410346
923 => 0.024749552948222
924 => 0.024121025839672
925 => 0.025121291976648
926 => 0.025318357006653
927 => 0.025515810315644
928 => 0.027234506563308
929 => 0.02714864535576
930 => 0.027924788855891
1001 => 0.027894629346712
1002 => 0.027673260647784
1003 => 0.026739342520388
1004 => 0.027111585640478
1005 => 0.025965879176266
1006 => 0.026824320359721
1007 => 0.026432563652953
1008 => 0.026691867023091
1009 => 0.026225616183141
1010 => 0.026483658648994
1011 => 0.025365088435898
1012 => 0.024320583309617
1013 => 0.024740922663438
1014 => 0.025197879612677
1015 => 0.026188678709094
1016 => 0.025598566941183
1017 => 0.02581079344752
1018 => 0.025099870177579
1019 => 0.023633032406499
1020 => 0.023641334548985
1021 => 0.023415693514702
1022 => 0.023220706716951
1023 => 0.025666348376421
1024 => 0.025362194176193
1025 => 0.024877564264846
1026 => 0.025526260659611
1027 => 0.025697786282582
1028 => 0.025702669375932
1029 => 0.026175941520275
1030 => 0.026428526948549
1031 => 0.02647304622505
1101 => 0.027217750169895
1102 => 0.027467365109324
1103 => 0.028495493718005
1104 => 0.026407096839676
1105 => 0.026364087680275
1106 => 0.025535389148195
1107 => 0.025009815437945
1108 => 0.025571375629784
1109 => 0.026068841299143
1110 => 0.025550846793222
1111 => 0.025618485940235
1112 => 0.024923120637743
1113 => 0.025171681013405
1114 => 0.025385774693624
1115 => 0.025267564747252
1116 => 0.025090598736107
1117 => 0.026028054787279
1118 => 0.025975159842952
1119 => 0.026848140469825
1120 => 0.027528691295916
1121 => 0.028748360039282
1122 => 0.02747557212281
1123 => 0.02742918667226
1124 => 0.027882611891846
1125 => 0.027467295692285
1126 => 0.02772976119418
1127 => 0.028706072789226
1128 => 0.028726700714778
1129 => 0.028381156384207
1130 => 0.028360129980288
1201 => 0.028426495548815
1202 => 0.028815200756568
1203 => 0.028679375213275
1204 => 0.028836555970656
1205 => 0.029033112914599
1206 => 0.029846155773163
1207 => 0.030042177653819
1208 => 0.029565946109517
1209 => 0.029608944485829
1210 => 0.029430820815412
1211 => 0.029258755581672
1212 => 0.02964553309901
1213 => 0.030352376614076
1214 => 0.030347979377254
1215 => 0.030511953333674
1216 => 0.030614107750091
1217 => 0.030175586213228
1218 => 0.029890124817614
1219 => 0.029999588881073
1220 => 0.030174624302361
1221 => 0.029942827253018
1222 => 0.028512068485633
1223 => 0.028946069298434
1224 => 0.028873830341628
1225 => 0.02877095328258
1226 => 0.02920734445588
1227 => 0.029165253462632
1228 => 0.027904464800886
1229 => 0.027985176400392
1230 => 0.027909373140577
1231 => 0.028154308980927
]
'min_raw' => 0.023220706716951
'max_raw' => 0.052017249543164
'avg_raw' => 0.037618978130057
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.02322'
'max' => '$0.052017'
'avg' => '$0.037618'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056624896953685
'max_diff' => -0.037799856648655
'year' => 2034
]
9 => [
'items' => [
101 => 0.027454068353096
102 => 0.027669457654024
103 => 0.027804547804417
104 => 0.02788411694081
105 => 0.028171575222528
106 => 0.028137845311
107 => 0.028169478523869
108 => 0.028595703269485
109 => 0.030751401770141
110 => 0.030868731683251
111 => 0.030290956279697
112 => 0.030521766157301
113 => 0.030078661664873
114 => 0.030376120679182
115 => 0.030579634582132
116 => 0.029659994388173
117 => 0.029605539264302
118 => 0.029160605922013
119 => 0.029399687897847
120 => 0.029019291283693
121 => 0.029112627307098
122 => 0.02885165164877
123 => 0.029321355874024
124 => 0.029846558182516
125 => 0.029979245026509
126 => 0.029630203065242
127 => 0.029377473682299
128 => 0.028933764140085
129 => 0.029671662997499
130 => 0.029887447110467
131 => 0.029670529575415
201 => 0.029620265042802
202 => 0.029525013844326
203 => 0.02964047303484
204 => 0.029886271903846
205 => 0.029770357696415
206 => 0.029846921072568
207 => 0.029555140434483
208 => 0.030175731382103
209 => 0.03116137916027
210 => 0.031164548179047
211 => 0.031048633346795
212 => 0.031001203494858
213 => 0.031120139147048
214 => 0.031184656859365
215 => 0.031569272949479
216 => 0.031981981337952
217 => 0.033907911308178
218 => 0.033367117879272
219 => 0.035075917522943
220 => 0.036427356181223
221 => 0.036832593543591
222 => 0.036459794238104
223 => 0.035184467952255
224 => 0.035121894360406
225 => 0.037027770260334
226 => 0.036489273023958
227 => 0.036425220491175
228 => 0.035743809760827
301 => 0.036146607896823
302 => 0.036058510035789
303 => 0.035919443252251
304 => 0.036687954036571
305 => 0.038126537619388
306 => 0.037902320877054
307 => 0.037734953480018
308 => 0.037001598266121
309 => 0.037443241905704
310 => 0.037285981064775
311 => 0.037961673437601
312 => 0.037561408244357
313 => 0.036485193377766
314 => 0.036656584142521
315 => 0.036630678773219
316 => 0.037163809437788
317 => 0.037003776845401
318 => 0.036599429841124
319 => 0.038121620697096
320 => 0.038022778089779
321 => 0.038162914308388
322 => 0.038224606605676
323 => 0.039151137355695
324 => 0.0395307073583
325 => 0.0396168763942
326 => 0.039977438539678
327 => 0.039607905279556
328 => 0.041086301792792
329 => 0.042069349207266
330 => 0.043211209366335
331 => 0.044879773961811
401 => 0.045507169684796
402 => 0.04539383626304
403 => 0.046658922896266
404 => 0.048932255454876
405 => 0.045853341770201
406 => 0.049095445356351
407 => 0.048069032792861
408 => 0.045635427069202
409 => 0.045478731550925
410 => 0.047126797601731
411 => 0.050782049481938
412 => 0.04986645034347
413 => 0.050783547074124
414 => 0.049713705023355
415 => 0.049660578348198
416 => 0.050731587233651
417 => 0.053234057872167
418 => 0.052045227875517
419 => 0.050340748562245
420 => 0.05159930956253
421 => 0.050509027549761
422 => 0.048052317024272
423 => 0.049865750202064
424 => 0.048653159079678
425 => 0.04900705763408
426 => 0.051555743814019
427 => 0.051249079149861
428 => 0.051645931621664
429 => 0.050945497396369
430 => 0.050291181381605
501 => 0.049069851949902
502 => 0.048708276515987
503 => 0.0488082029578
504 => 0.048708226997406
505 => 0.048024904404964
506 => 0.047877340956186
507 => 0.047631395409987
508 => 0.047707624218887
509 => 0.047245174638124
510 => 0.048117912543982
511 => 0.04827990038985
512 => 0.048915006257432
513 => 0.048980945055487
514 => 0.050749705856536
515 => 0.049775502130136
516 => 0.050429082098508
517 => 0.050370619754404
518 => 0.045688170684572
519 => 0.046333370852797
520 => 0.047337099839588
521 => 0.046884921291561
522 => 0.046245646618136
523 => 0.045729398043605
524 => 0.044947228664064
525 => 0.046048117045535
526 => 0.047495668200743
527 => 0.049017657341606
528 => 0.050846227569675
529 => 0.050438111981674
530 => 0.048983473493119
531 => 0.049048727513102
601 => 0.049452102188123
602 => 0.048929695333517
603 => 0.0487756273535
604 => 0.049430935613543
605 => 0.049435448361379
606 => 0.048834356140177
607 => 0.048166352135027
608 => 0.048163553173854
609 => 0.048044688313291
610 => 0.049734850817989
611 => 0.05066426930087
612 => 0.0507708256321
613 => 0.050657097210782
614 => 0.050700866766428
615 => 0.050160058629578
616 => 0.051396185658745
617 => 0.052530578061001
618 => 0.052226536664438
619 => 0.051770735388958
620 => 0.051407667718674
621 => 0.052141009459775
622 => 0.052108354906431
623 => 0.05252067013299
624 => 0.052501965132665
625 => 0.052363319029933
626 => 0.052226541615927
627 => 0.052768848601845
628 => 0.052612672899085
629 => 0.05245625461232
630 => 0.052142533791773
701 => 0.052185173661637
702 => 0.051729451086673
703 => 0.051518612971049
704 => 0.048348113583434
705 => 0.047500852548007
706 => 0.047767418117341
707 => 0.047855178424138
708 => 0.047486449335725
709 => 0.048015112129777
710 => 0.047932720593317
711 => 0.048253257864248
712 => 0.048053000093481
713 => 0.048061218742246
714 => 0.048650134146614
715 => 0.048821098793928
716 => 0.04873414479445
717 => 0.048795044395076
718 => 0.050198449987373
719 => 0.049998930590533
720 => 0.04989293988753
721 => 0.049922300036615
722 => 0.050280900254803
723 => 0.050381288737049
724 => 0.049955935683598
725 => 0.050156534642542
726 => 0.051010659549929
727 => 0.051309554928231
728 => 0.052263485497851
729 => 0.051858238837113
730 => 0.052602086621563
731 => 0.054888421114566
801 => 0.05671490330989
802 => 0.055035194800501
803 => 0.058389296751109
804 => 0.061000946237006
805 => 0.060900706779807
806 => 0.0604453052834
807 => 0.057472011778001
808 => 0.054735942765023
809 => 0.057024780674006
810 => 0.05703061539254
811 => 0.056834002186288
812 => 0.055612854448235
813 => 0.056791508891995
814 => 0.056885066201497
815 => 0.056832698987072
816 => 0.055896447879439
817 => 0.054466965486211
818 => 0.05474628292415
819 => 0.055203810585417
820 => 0.054337615272371
821 => 0.054060813385228
822 => 0.05457544075714
823 => 0.056233677376313
824 => 0.055920197348969
825 => 0.055912011118583
826 => 0.05725321161178
827 => 0.056293201507833
828 => 0.054749806011541
829 => 0.054360078293842
830 => 0.052976807448058
831 => 0.053932237548283
901 => 0.05396662177667
902 => 0.053443342475036
903 => 0.054792267242912
904 => 0.054779836663702
905 => 0.056060439969845
906 => 0.058508472518552
907 => 0.057784468833534
908 => 0.056942531319234
909 => 0.057034073271434
910 => 0.058038062542271
911 => 0.057431027710277
912 => 0.057649321668259
913 => 0.058037732128221
914 => 0.058272069802405
915 => 0.057000355686371
916 => 0.056703858292805
917 => 0.056097328682015
918 => 0.055939096427971
919 => 0.056433102140304
920 => 0.056302949088584
921 => 0.053963731915417
922 => 0.053719270705539
923 => 0.053726767981836
924 => 0.053112058646102
925 => 0.052174479361963
926 => 0.05463838174073
927 => 0.054440495897423
928 => 0.054222045241561
929 => 0.054248804200442
930 => 0.055318300713665
1001 => 0.054697938725127
1002 => 0.056347272746985
1003 => 0.05600821925561
1004 => 0.055660470321547
1005 => 0.055612400826168
1006 => 0.055478547155098
1007 => 0.055019513112244
1008 => 0.054465201921828
1009 => 0.054099197660303
1010 => 0.049903650168861
1011 => 0.050682319378895
1012 => 0.051578107327108
1013 => 0.051887329737187
1014 => 0.051358383407208
1015 => 0.055040399137318
1016 => 0.055713138891995
1017 => 0.053675366293349
1018 => 0.053294182241849
1019 => 0.055065389500274
1020 => 0.053997135002162
1021 => 0.054478169937252
1022 => 0.05343843551963
1023 => 0.055551095585213
1024 => 0.055535000655187
1025 => 0.054713128173083
1026 => 0.055407769167017
1027 => 0.055287058200046
1028 => 0.054359166191934
1029 => 0.055580511416921
1030 => 0.055581117188915
1031 => 0.054790082793939
1101 => 0.053866327800303
1102 => 0.05370118222556
1103 => 0.053576767219177
1104 => 0.05444757147246
1105 => 0.055228331843019
1106 => 0.05668113332572
1107 => 0.057046402136182
1108 => 0.05847207062074
1109 => 0.057623154452724
1110 => 0.057999467994701
1111 => 0.058408009577316
1112 => 0.058603879435642
1113 => 0.058284720012457
1114 => 0.060499369997534
1115 => 0.060686354311397
1116 => 0.060749048534427
1117 => 0.060002281020046
1118 => 0.060665585355929
1119 => 0.0603552472235
1120 => 0.061162660829664
1121 => 0.061289273592685
1122 => 0.061182037086786
1123 => 0.061222225976215
1124 => 0.059332412904981
1125 => 0.059234416127679
1126 => 0.057898223115638
1127 => 0.058442731644685
1128 => 0.057424799048604
1129 => 0.057747595960689
1130 => 0.057889881763814
1201 => 0.05781555973491
1202 => 0.058473517339943
1203 => 0.057914118963806
1204 => 0.056437774675574
1205 => 0.054961028158328
1206 => 0.054942488808735
1207 => 0.054553687517485
1208 => 0.05427265539642
1209 => 0.054326792153087
1210 => 0.054517577144751
1211 => 0.054261566625876
1212 => 0.054316199450141
1213 => 0.055223468349538
1214 => 0.055405414656966
1215 => 0.054787090013314
1216 => 0.052304427345227
1217 => 0.051695175699191
1218 => 0.052133093700376
1219 => 0.051923797101341
1220 => 0.04190655674699
1221 => 0.044259958780418
1222 => 0.042861647206137
1223 => 0.043506053512788
1224 => 0.042078739486473
1225 => 0.042759928551768
1226 => 0.04263413780445
1227 => 0.046418338631974
1228 => 0.04635925354105
1229 => 0.046387534447362
1230 => 0.045037613103592
1231 => 0.047188074458576
]
'min_raw' => 0.027454068353096
'max_raw' => 0.061289273592685
'avg_raw' => 0.04437167097289
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027454'
'max' => '$0.061289'
'avg' => '$0.044371'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042333616361447
'max_diff' => 0.009272024049521
'year' => 2035
]
10 => [
'items' => [
101 => 0.04824746905013
102 => 0.048051403306107
103 => 0.048100748829807
104 => 0.047252829243102
105 => 0.046395744162421
106 => 0.045445104903498
107 => 0.047211275144014
108 => 0.0470149071628
109 => 0.047465304660735
110 => 0.048610792310165
111 => 0.048779469717828
112 => 0.049006173864285
113 => 0.04892491656568
114 => 0.050860795081621
115 => 0.050626347420003
116 => 0.051191298829307
117 => 0.050029150917402
118 => 0.048714070242989
119 => 0.048964024085968
120 => 0.048939951520888
121 => 0.048633480138205
122 => 0.048356811477181
123 => 0.047896236107487
124 => 0.049353564729527
125 => 0.049294399848867
126 => 0.050252210495106
127 => 0.050082908159707
128 => 0.048952265728603
129 => 0.048992646844221
130 => 0.049264229253252
131 => 0.050204179071782
201 => 0.050483220174585
202 => 0.050353957217901
203 => 0.050659913048415
204 => 0.050901728062029
205 => 0.050690281291075
206 => 0.053683921665998
207 => 0.052440753466451
208 => 0.053046664997002
209 => 0.0531911713268
210 => 0.052821021401662
211 => 0.05290129366635
212 => 0.053022884274468
213 => 0.05376115863708
214 => 0.055698604185983
215 => 0.056556685630954
216 => 0.059138265995143
217 => 0.05648543391202
218 => 0.056328025834718
219 => 0.056793046414566
220 => 0.058308707376379
221 => 0.059537008227133
222 => 0.059944506481705
223 => 0.059998364103109
224 => 0.060762857918657
225 => 0.061201051516763
226 => 0.060670028261266
227 => 0.060220041652684
228 => 0.05860824547514
229 => 0.058794815271466
301 => 0.060080096155787
302 => 0.061895631107558
303 => 0.063453548970395
304 => 0.062908020433749
305 => 0.06707001808523
306 => 0.067482663152139
307 => 0.067425648946305
308 => 0.068365715818542
309 => 0.06649987451844
310 => 0.065702191213674
311 => 0.060317333865025
312 => 0.061830259134518
313 => 0.064029384864713
314 => 0.063738322328023
315 => 0.062141258439957
316 => 0.063452337454223
317 => 0.063018853730875
318 => 0.062676947133015
319 => 0.06424328753967
320 => 0.062521031920835
321 => 0.064012204047458
322 => 0.062099760370863
323 => 0.062910512362152
324 => 0.062450290320235
325 => 0.062748110384048
326 => 0.061007060376465
327 => 0.061946488698957
328 => 0.060967977069695
329 => 0.060967513127777
330 => 0.060945912429327
331 => 0.062097127021768
401 => 0.062134668088298
402 => 0.061283918765095
403 => 0.061161312496419
404 => 0.06161465213226
405 => 0.061083910148529
406 => 0.061332240982267
407 => 0.061091431836505
408 => 0.061037220625577
409 => 0.060605256473628
410 => 0.060419154439867
411 => 0.060492129842563
412 => 0.060243027171761
413 => 0.060092933802166
414 => 0.060916055080319
415 => 0.06047629458602
416 => 0.060848655477514
417 => 0.060424303245965
418 => 0.058953313529949
419 => 0.058107331788834
420 => 0.055328768576099
421 => 0.056116765656433
422 => 0.056639208535937
423 => 0.056466541167378
424 => 0.056837497488445
425 => 0.056860271193776
426 => 0.056739669512345
427 => 0.05660002821528
428 => 0.056532058554517
429 => 0.057038648719347
430 => 0.057332741361071
501 => 0.05669164266828
502 => 0.056541442214482
503 => 0.057189628388924
504 => 0.057585021580888
505 => 0.060504382758109
506 => 0.060288107052689
507 => 0.060830916631331
508 => 0.060769804602868
509 => 0.061338755517633
510 => 0.062268749806677
511 => 0.060377811386558
512 => 0.06070601291256
513 => 0.060625545477664
514 => 0.061504067832159
515 => 0.061506810483056
516 => 0.06098009244609
517 => 0.061265634838953
518 => 0.061106252908703
519 => 0.061394277598425
520 => 0.060285218558786
521 => 0.061635932753542
522 => 0.062401700663868
523 => 0.062412333352046
524 => 0.062775301264031
525 => 0.063144097684291
526 => 0.063851970297583
527 => 0.063124355501305
528 => 0.061815447314675
529 => 0.061909946258002
530 => 0.061142533867092
531 => 0.061155434208027
601 => 0.061086571177095
602 => 0.061293234316689
603 => 0.06033056949625
604 => 0.06055650500546
605 => 0.060240193969489
606 => 0.060705325314142
607 => 0.060204920876261
608 => 0.060625506673831
609 => 0.060807017561421
610 => 0.061476796644281
611 => 0.060105993961142
612 => 0.057310834495038
613 => 0.057898410902846
614 => 0.057029339242568
615 => 0.057109775133516
616 => 0.057272268434507
617 => 0.056745574481493
618 => 0.056846051089694
619 => 0.056842461358206
620 => 0.056811526991573
621 => 0.056674513552508
622 => 0.056475816958582
623 => 0.057267363033199
624 => 0.057401862135563
625 => 0.057700836979207
626 => 0.058590383317317
627 => 0.058501496661193
628 => 0.058646474485204
629 => 0.058329988709404
630 => 0.057124456000952
701 => 0.057189922227014
702 => 0.056373557338998
703 => 0.057679960693582
704 => 0.057370587135535
705 => 0.057171131990068
706 => 0.057116708805688
707 => 0.058008460157113
708 => 0.058275286137949
709 => 0.058109018092717
710 => 0.057767997481133
711 => 0.058422857869068
712 => 0.058598070882537
713 => 0.058637294614645
714 => 0.05979758166504
715 => 0.058702141771581
716 => 0.058965825041673
717 => 0.061023006643218
718 => 0.059157426802273
719 => 0.060145666051417
720 => 0.06009729688272
721 => 0.060602846642389
722 => 0.060055827046535
723 => 0.060062608010023
724 => 0.060511501947702
725 => 0.05988111137068
726 => 0.059725017798606
727 => 0.059509375646751
728 => 0.059980222396218
729 => 0.060262473727957
730 => 0.062537212171011
731 => 0.0640067969459
801 => 0.063942998395068
802 => 0.06452599772379
803 => 0.064263351186539
804 => 0.063415196235099
805 => 0.064862893315729
806 => 0.064404781385199
807 => 0.064442547576146
808 => 0.064441141916633
809 => 0.064745746301595
810 => 0.064529906178268
811 => 0.064104463139655
812 => 0.064386892083281
813 => 0.065225605075657
814 => 0.06782899593885
815 => 0.069285887956234
816 => 0.067741289210076
817 => 0.068806732742174
818 => 0.068167846279263
819 => 0.068051741603726
820 => 0.068720918877542
821 => 0.069391267457592
822 => 0.069348569151039
823 => 0.068861930504704
824 => 0.068587040681387
825 => 0.070668598518386
826 => 0.072202254874275
827 => 0.072097669792566
828 => 0.072559274330338
829 => 0.07391455953013
830 => 0.074038469823812
831 => 0.074022859974853
901 => 0.073715735383261
902 => 0.075050189668478
903 => 0.076163414910695
904 => 0.07364464491399
905 => 0.074603759555615
906 => 0.075034337018984
907 => 0.075666552481787
908 => 0.07673320593915
909 => 0.077891874509702
910 => 0.078055722949733
911 => 0.077939464640661
912 => 0.077175291571699
913 => 0.078443120547388
914 => 0.079185785027099
915 => 0.079628024729193
916 => 0.080749471032032
917 => 0.075036996118812
918 => 0.070993422446809
919 => 0.070361960028015
920 => 0.071646063687667
921 => 0.071984671582183
922 => 0.071848179164482
923 => 0.067296769371009
924 => 0.070337997797388
925 => 0.073610103870423
926 => 0.07373579879076
927 => 0.075373883507433
928 => 0.075907311038543
929 => 0.077226183944136
930 => 0.077143688084801
1001 => 0.077464812649461
1002 => 0.077390991673148
1003 => 0.079833926009305
1004 => 0.082528845361345
1005 => 0.082435528873502
1006 => 0.082048102331808
1007 => 0.082623496812266
1008 => 0.08540494238868
1009 => 0.085148871451761
1010 => 0.085397622554908
1011 => 0.088677103644903
1012 => 0.092940895562643
1013 => 0.090959936139144
1014 => 0.095258048082419
1015 => 0.097963481717587
1016 => 0.10264224944255
1017 => 0.10205644467997
1018 => 0.10387785462091
1019 => 0.1010077318938
1020 => 0.094417349964852
1021 => 0.093374396797627
1022 => 0.095462415450192
1023 => 0.10059560556164
1024 => 0.095300753026109
1025 => 0.096371894798017
1026 => 0.096063405895648
1027 => 0.096046967833034
1028 => 0.096674341824571
1029 => 0.09576430312822
1030 => 0.09205664176645
1031 => 0.093755841119164
1101 => 0.093099698646826
1102 => 0.093827737638546
1103 => 0.097756663810741
1104 => 0.096019591896112
1105 => 0.094189727742314
1106 => 0.09648478347054
1107 => 0.099407178079283
1108 => 0.099224299876716
1109 => 0.098869439726577
1110 => 0.10086976781304
1111 => 0.10417372377073
1112 => 0.10506676978972
1113 => 0.10572599810342
1114 => 0.10581689455013
1115 => 0.10675318444302
1116 => 0.1017185177135
1117 => 0.10970866311266
1118 => 0.11108834049979
1119 => 0.11082901833278
1120 => 0.11236247168286
1121 => 0.11191129080731
1122 => 0.11125760050675
1123 => 0.11368845024152
1124 => 0.11090167718006
1125 => 0.1069462036643
1126 => 0.10477615266315
1127 => 0.10763385087448
1128 => 0.10937894745221
1129 => 0.11053234528111
1130 => 0.11088136276723
1201 => 0.10210934455985
1202 => 0.097381713264512
1203 => 0.10041207072242
1204 => 0.10410931596517
1205 => 0.1016979793295
1206 => 0.10179249916035
1207 => 0.098354566805996
1208 => 0.10441349669354
1209 => 0.10353076157255
1210 => 0.1081103929418
1211 => 0.10701742716169
1212 => 0.11075193876305
1213 => 0.1097685167013
1214 => 0.11385064669724
1215 => 0.11547911887187
1216 => 0.11821357710455
1217 => 0.12022505571175
1218 => 0.12140623442335
1219 => 0.121335320884
1220 => 0.12601573940026
1221 => 0.12325586012259
1222 => 0.11978880129623
1223 => 0.11972609314049
1224 => 0.12152173203526
1225 => 0.12528489854924
1226 => 0.12626063287447
1227 => 0.12680593525015
1228 => 0.12597078567969
1229 => 0.1229751345261
1230 => 0.12168162754628
1231 => 0.12278373296959
]
'min_raw' => 0.045445104903498
'max_raw' => 0.12680593525015
'avg_raw' => 0.086125520076824
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045445'
'max' => '$0.1268059'
'avg' => '$0.086125'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017991036550403
'max_diff' => 0.065516661657465
'year' => 2036
]
11 => [
'items' => [
101 => 0.12143595274188
102 => 0.12376259953525
103 => 0.1269575825275
104 => 0.12629783117393
105 => 0.12850328103345
106 => 0.13078568961797
107 => 0.1340496364032
108 => 0.13490295295646
109 => 0.13631345277028
110 => 0.13776532040375
111 => 0.13823162115869
112 => 0.1391219339845
113 => 0.13911724159644
114 => 0.14180025922198
115 => 0.14475971074909
116 => 0.14587683518911
117 => 0.14844560124034
118 => 0.14404667939791
119 => 0.14738331214657
120 => 0.15039303840719
121 => 0.14680471868282
122 => 0.1517503814516
123 => 0.1519424103298
124 => 0.15484181840341
125 => 0.15190271286143
126 => 0.15015748137255
127 => 0.15519589928796
128 => 0.15763383100855
129 => 0.15689950613376
130 => 0.15131125757854
131 => 0.14805865722814
201 => 0.1395459747314
202 => 0.14962961486931
203 => 0.15454106183666
204 => 0.15129853811741
205 => 0.15293387847506
206 => 0.16185576520551
207 => 0.16525264202308
208 => 0.16454611539099
209 => 0.1646655067614
210 => 0.16649839983448
211 => 0.17462645711319
212 => 0.1697559367849
213 => 0.17347926708096
214 => 0.17545410804453
215 => 0.17728845039058
216 => 0.17278388533854
217 => 0.16692351239105
218 => 0.16506728627686
219 => 0.15097613303669
220 => 0.15024262731576
221 => 0.14983088832711
222 => 0.14723493224527
223 => 0.14519522185717
224 => 0.14357316842696
225 => 0.13931641583992
226 => 0.14075294487976
227 => 0.13396856970934
228 => 0.13830897251988
301 => 0.12748094593343
302 => 0.13649884823118
303 => 0.13159081400422
304 => 0.13488642698646
305 => 0.13487492890323
306 => 0.12880666052787
307 => 0.12530660997049
308 => 0.12753697840966
309 => 0.12992811042331
310 => 0.13031606354779
311 => 0.13341622861843
312 => 0.13428141805182
313 => 0.13165985367682
314 => 0.12725655915001
315 => 0.12827934404013
316 => 0.12528588326733
317 => 0.12003995840481
318 => 0.12380767322614
319 => 0.12509413672086
320 => 0.12566231228834
321 => 0.12050354768459
322 => 0.11888255184387
323 => 0.11801954725974
324 => 0.12659062742066
325 => 0.12706017053999
326 => 0.12465792155477
327 => 0.13551631475857
328 => 0.13305872595678
329 => 0.13580445477226
330 => 0.12818653703168
331 => 0.12847755174825
401 => 0.12487110740732
402 => 0.12689047525554
403 => 0.12546325114768
404 => 0.12672733028919
405 => 0.12748501411462
406 => 0.13109086667353
407 => 0.13654002127524
408 => 0.13055227254581
409 => 0.12794332467826
410 => 0.12956190126201
411 => 0.13387238399806
412 => 0.14040298599274
413 => 0.13653673817128
414 => 0.13825251330129
415 => 0.13862733383768
416 => 0.13577650583041
417 => 0.14050810008774
418 => 0.14304379988965
419 => 0.14564490319727
420 => 0.14790336831801
421 => 0.14460596533672
422 => 0.14813465919085
423 => 0.14529115484274
424 => 0.1427402374864
425 => 0.14274410617506
426 => 0.14114387845447
427 => 0.13804323560417
428 => 0.13747142949018
429 => 0.14044603710632
430 => 0.14283139071807
501 => 0.14302785986661
502 => 0.14434851418997
503 => 0.14513006381471
504 => 0.15279031260238
505 => 0.15587132803369
506 => 0.15963873538245
507 => 0.16110635286424
508 => 0.16552335531443
509 => 0.1619562671045
510 => 0.16118450513224
511 => 0.15047030197857
512 => 0.15222475214477
513 => 0.1550337961401
514 => 0.15051662207942
515 => 0.15338172931078
516 => 0.15394736216952
517 => 0.15036313023336
518 => 0.15227762337598
519 => 0.14719329719683
520 => 0.13665084569208
521 => 0.14051983684999
522 => 0.14336871663055
523 => 0.13930301391934
524 => 0.14659062866475
525 => 0.14233335457739
526 => 0.14098400307689
527 => 0.1357197017949
528 => 0.13820424935846
529 => 0.14156463551347
530 => 0.1394883075565
531 => 0.14379699982943
601 => 0.14989925717416
602 => 0.15424808915372
603 => 0.15458193847345
604 => 0.1517859308597
605 => 0.15626655090461
606 => 0.15629918733003
607 => 0.15124502961551
608 => 0.14814938615703
609 => 0.14744604944997
610 => 0.14920312244148
611 => 0.15133653342674
612 => 0.15470032793534
613 => 0.15673299850712
614 => 0.16203312531314
615 => 0.16346718766031
616 => 0.16504278739931
617 => 0.16714827454757
618 => 0.16967645170489
619 => 0.16414494401389
620 => 0.16436472112647
621 => 0.15921385775354
622 => 0.15370942153104
623 => 0.15788660248626
624 => 0.16334771091811
625 => 0.16209492660985
626 => 0.16195396278311
627 => 0.16219102483958
628 => 0.16124646638327
629 => 0.15697426349233
630 => 0.15482878994591
701 => 0.15759699818947
702 => 0.15906817767215
703 => 0.16134984874945
704 => 0.16106858462894
705 => 0.16694592429049
706 => 0.16922968076144
707 => 0.16864539812872
708 => 0.16875292019469
709 => 0.17288755219892
710 => 0.17748611333955
711 => 0.18179327268133
712 => 0.1861747001606
713 => 0.18089271832432
714 => 0.17821085369521
715 => 0.18097785342565
716 => 0.17950964442034
717 => 0.18794640886395
718 => 0.18853055212903
719 => 0.19696670649855
720 => 0.20497362155379
721 => 0.19994462166638
722 => 0.20468674204908
723 => 0.20981573187372
724 => 0.21971038539406
725 => 0.21637821418652
726 => 0.21382582326332
727 => 0.21141382617396
728 => 0.21643280922316
729 => 0.22288965073574
730 => 0.2242803925547
731 => 0.22653392560566
801 => 0.22416461115148
802 => 0.22701818944012
803 => 0.23709257472483
804 => 0.23437038689184
805 => 0.23050444255547
806 => 0.2384572021835
807 => 0.24133527497731
808 => 0.26153509710272
809 => 0.28703820694909
810 => 0.27647975201025
811 => 0.2699257783105
812 => 0.27146611759227
813 => 0.28077898997342
814 => 0.28376998900644
815 => 0.27563942257548
816 => 0.27851127609128
817 => 0.29433547131777
818 => 0.30282464435582
819 => 0.2912952071221
820 => 0.25948594705839
821 => 0.23015635656619
822 => 0.23793588469339
823 => 0.23705392763063
824 => 0.25405505129294
825 => 0.23430546361231
826 => 0.23463799601821
827 => 0.25199068491335
828 => 0.24736128501653
829 => 0.23986225007242
830 => 0.23021110782021
831 => 0.21237007874439
901 => 0.19656778175804
902 => 0.22755972519993
903 => 0.22622329624352
904 => 0.22428794906697
905 => 0.22859485478195
906 => 0.24950796639737
907 => 0.2490258514855
908 => 0.24595888239336
909 => 0.24828515141872
910 => 0.23945444386493
911 => 0.24173031827301
912 => 0.2301517106092
913 => 0.23538572483862
914 => 0.23984616051142
915 => 0.24074165901061
916 => 0.24275926285458
917 => 0.2255190589113
918 => 0.23325940433604
919 => 0.23780613210078
920 => 0.21726385064828
921 => 0.23740007724494
922 => 0.22521894531664
923 => 0.22108448618571
924 => 0.22665099073193
925 => 0.22448171849667
926 => 0.22261670561272
927 => 0.2215759963785
928 => 0.22566342296455
929 => 0.22547273962878
930 => 0.21878491639868
1001 => 0.21006092362556
1002 => 0.21298898195552
1003 => 0.21192519091355
1004 => 0.20806987494568
1005 => 0.2106678924154
1006 => 0.19922753830532
1007 => 0.17954500367678
1008 => 0.19254788894473
1009 => 0.19204729200633
1010 => 0.19179486832973
1011 => 0.20156617723524
1012 => 0.20062689134643
1013 => 0.19892207826072
1014 => 0.20803856471643
1015 => 0.20471092452605
1016 => 0.21496592750217
1017 => 0.22172053571426
1018 => 0.22000734858299
1019 => 0.22636009025431
1020 => 0.21305643850559
1021 => 0.21747537796665
1022 => 0.21838611526519
1023 => 0.20792606868868
1024 => 0.20078057013418
1025 => 0.20030404684524
1026 => 0.18791473706209
1027 => 0.19453300634524
1028 => 0.20035680943181
1029 => 0.19756765969872
1030 => 0.1966846982167
1031 => 0.20119555693736
1101 => 0.20154608929284
1102 => 0.19355391443998
1103 => 0.19521574067115
1104 => 0.20214583231076
1105 => 0.19504112014262
1106 => 0.18123782494805
1107 => 0.17781441689432
1108 => 0.17735767115402
1109 => 0.16807311699836
1110 => 0.17804318539013
1111 => 0.1736909833559
1112 => 0.18743953743464
1113 => 0.17958643707984
1114 => 0.17924790561934
1115 => 0.17873616566502
1116 => 0.17074456636314
1117 => 0.17249421871762
1118 => 0.17831032962349
1119 => 0.18038558351789
1120 => 0.18016911753465
1121 => 0.17828182750709
1122 => 0.17914581921721
1123 => 0.17636260088422
1124 => 0.17537978856316
1125 => 0.17227776253407
1126 => 0.16771864122787
1127 => 0.16835261500822
1128 => 0.15931980274165
1129 => 0.1543982472112
1130 => 0.15303602550543
1201 => 0.15121440570931
1202 => 0.15324178230855
1203 => 0.15929421391942
1204 => 0.15199369730171
1205 => 0.13947747363235
1206 => 0.14022972000149
1207 => 0.14191979424898
1208 => 0.13877035206973
1209 => 0.13578966935972
1210 => 0.13838113114564
1211 => 0.13307784217848
1212 => 0.1425606713839
1213 => 0.14230418742922
1214 => 0.14583879974278
1215 => 0.14804906535999
1216 => 0.1429551186943
1217 => 0.14167400488338
1218 => 0.14240378553346
1219 => 0.13034213699414
1220 => 0.14485310572959
1221 => 0.14497859718979
1222 => 0.14390406311944
1223 => 0.15163070599517
1224 => 0.16793633246331
1225 => 0.16180149989369
1226 => 0.15942590729644
1227 => 0.15490990403251
1228 => 0.16092721024795
1229 => 0.1604651750152
1230 => 0.15837567647107
1231 => 0.15711194123194
]
'min_raw' => 0.11801954725974
'max_raw' => 0.30282464435582
'avg_raw' => 0.21042209580778
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.118019'
'max' => '$0.302824'
'avg' => '$0.210422'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.072574442356238
'max_diff' => 0.17601870910567
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037044987305672
]
1 => [
'year' => 2028
'avg' => 0.0063579952453188
]
2 => [
'year' => 2029
'avg' => 0.01736889709306
]
3 => [
'year' => 2030
'avg' => 0.013400078240758
]
4 => [
'year' => 2031
'avg' => 0.013160537485839
]
5 => [
'year' => 2032
'avg' => 0.02307456398625
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037044987305672
'min' => '$0.0037044'
'max_raw' => 0.02307456398625
'max' => '$0.023074'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.02307456398625
]
1 => [
'year' => 2033
'avg' => 0.059350151302069
]
2 => [
'year' => 2034
'avg' => 0.037618978130057
]
3 => [
'year' => 2035
'avg' => 0.04437167097289
]
4 => [
'year' => 2036
'avg' => 0.086125520076824
]
5 => [
'year' => 2037
'avg' => 0.21042209580778
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.02307456398625
'min' => '$0.023074'
'max_raw' => 0.21042209580778
'max' => '$0.210422'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21042209580778
]
]
]
]
'prediction_2025_max_price' => '$0.006334'
'last_price' => 0.00614163
'sma_50day_nextmonth' => '$0.005548'
'sma_200day_nextmonth' => '$0.0091074'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.005967'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005866'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005595'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00539'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005375'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006678'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.005981'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005869'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005689'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005538'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005782'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.007257'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009355'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00771'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005863'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005744'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006081'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.008427'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005456'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.002728'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001364'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '69.39'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 113.21
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005596'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006087'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 211.55
'cci_20_action' => 'SELL'
'adx_14' => 15.95
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000440'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 87.83
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001172'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 6
'buy_signals' => 25
'sell_pct' => 19.35
'buy_pct' => 80.65
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767679291
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de END pour 2026
La prévision du prix de END pour 2026 suggère que le prix moyen pourrait varier entre $0.002121 à la baisse et $0.006334 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, END pourrait potentiellement gagner 3.13% d'ici 2026 si END atteint l'objectif de prix prévu.
Prévision du prix de END de 2027 à 2032
La prévision du prix de END pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0037044 à la baisse et $0.023074 à la hausse. Compte tenu de la volatilité des prix sur le marché, si END atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de END | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002042 | $0.0037044 | $0.005366 |
| 2028 | $0.003686 | $0.006357 | $0.009029 |
| 2029 | $0.008098 | $0.017368 | $0.026639 |
| 2030 | $0.006887 | $0.013400078 | $0.019912 |
| 2031 | $0.008142 | $0.01316 | $0.018178 |
| 2032 | $0.012429 | $0.023074 | $0.033719 |
Prévision du prix de END de 2032 à 2037
La prévision du prix de END pour 2032-2037 est actuellement estimée entre $0.023074 à la baisse et $0.210422 à la hausse. Par rapport au prix actuel, END pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de END | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.012429 | $0.023074 | $0.033719 |
| 2033 | $0.028883 | $0.05935 | $0.089817 |
| 2034 | $0.02322 | $0.037618 | $0.052017 |
| 2035 | $0.027454 | $0.044371 | $0.061289 |
| 2036 | $0.045445 | $0.086125 | $0.1268059 |
| 2037 | $0.118019 | $0.210422 | $0.302824 |
END Histogramme des prix potentiels
Prévision du prix de END basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour END est Haussier, avec 25 indicateurs techniques montrant des signaux haussiers et 6 indiquant des signaux baissiers. La prévision du prix de END a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de END et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de END devrait augmenter au cours du prochain mois, atteignant $0.0091074 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour END devrait atteindre $0.005548 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 69.39, ce qui suggère que le marché de END est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de END pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.005967 | BUY |
| SMA 5 | $0.005866 | BUY |
| SMA 10 | $0.005595 | BUY |
| SMA 21 | $0.00539 | BUY |
| SMA 50 | $0.005375 | BUY |
| SMA 100 | $0.006678 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.005981 | BUY |
| EMA 5 | $0.005869 | BUY |
| EMA 10 | $0.005689 | BUY |
| EMA 21 | $0.005538 | BUY |
| EMA 50 | $0.005782 | BUY |
| EMA 100 | $0.007257 | SELL |
| EMA 200 | $0.009355 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.00771 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.008427 | SELL |
| EMA 50 | $0.005456 | BUY |
| EMA 100 | $0.002728 | BUY |
| EMA 200 | $0.001364 | BUY |
Oscillateurs de END
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 69.39 | NEUTRAL |
| Stoch RSI (14) | 113.21 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 211.55 | SELL |
| Indice Directionnel Moyen (14) | 15.95 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000440 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 87.83 | SELL |
| VWMA (10) | 0.005596 | BUY |
| Moyenne Mobile de Hull (9) | 0.006087 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001172 | NEUTRAL |
Prévision du cours de END basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de END
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de END par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.00863 | $0.012126 | $0.017039 | $0.023943 | $0.033645 | $0.047277 |
| Action Amazon.com | $0.012814 | $0.026739 | $0.055792 | $0.116414 | $0.2429055 | $0.506836 |
| Action Apple | $0.008711 | $0.012356 | $0.017526 | $0.02486 | $0.035262 | $0.050017 |
| Action Netflix | $0.00969 | $0.01529 | $0.024125 | $0.038066 | $0.060062 | $0.094769 |
| Action Google | $0.007953 | $0.010299 | $0.013337 | $0.017272 | $0.022367 | $0.028966 |
| Action Tesla | $0.013922 | $0.031561 | $0.071547 | $0.162192 | $0.367679 | $0.83350052 |
| Action Kodak | $0.0046055 | $0.003453 | $0.002589 | $0.001942 | $0.001456 | $0.001092 |
| Action Nokia | $0.004068 | $0.002695 | $0.001785 | $0.001182 | $0.000783 | $0.000519 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à END
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans END maintenant ?", "Devrais-je acheter END aujourd'hui ?", " END sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de END avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme END en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de END afin de prendre une décision responsable concernant cet investissement.
Le cours de END est de $0.006141 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de END basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si END présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0063012 | $0.006465 | $0.006633 | $0.0068055 |
| Si END présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00646 | $0.006796 | $0.00715 | $0.007521 |
| Si END présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006939 | $0.007841 | $0.00886 | $0.010012 |
| Si END présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007738 | $0.009749 | $0.012283 | $0.015476 |
| Si END présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009334 | $0.014187 | $0.021562 | $0.032771 |
| Si END présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014123 | $0.032479 | $0.074692 | $0.171766 |
| Si END présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0221056 | $0.079565 | $0.286381 | $1.03 |
Boîte à questions
Est-ce que END est un bon investissement ?
La décision d'acquérir END dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de END a connu une hausse de 3.959% au cours des 24 heures précédentes, et END a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans END dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que END peut monter ?
Il semble que la valeur moyenne de END pourrait potentiellement s'envoler jusqu'à $0.006334 pour la fin de cette année. En regardant les perspectives de END sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.019912. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de END la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de END, le prix de END va augmenter de 0.86% durant la prochaine semaine et atteindre $0.006194 d'ici 13 janvier 2026.
Quel sera le prix de END le mois prochain ?
Basé sur notre nouveau pronostic expérimental de END, le prix de END va diminuer de -11.62% durant le prochain mois et atteindre $0.005428 d'ici 5 février 2026.
Jusqu'où le prix de END peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de END en 2026, END devrait fluctuer dans la fourchette de $0.002121 et $0.006334. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de END ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera END dans 5 ans ?
L'avenir de END semble suivre une tendance haussière, avec un prix maximum de $0.019912 prévue après une période de cinq ans. Selon la prévision de END pour 2030, la valeur de END pourrait potentiellement atteindre son point le plus élevé d'environ $0.019912, tandis que son point le plus bas devrait être autour de $0.006887.
Combien vaudra END en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de END, il est attendu que la valeur de END en 2026 augmente de 3.13% jusqu'à $0.006334 si le meilleur scénario se produit. Le prix sera entre $0.006334 et $0.002121 durant 2026.
Combien vaudra END en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de END, le valeur de END pourrait diminuer de -12.62% jusqu'à $0.005366 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.005366 et $0.002042 tout au long de l'année.
Combien vaudra END en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de END suggère que la valeur de END en 2028 pourrait augmenter de 47.02%, atteignant $0.009029 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.009029 et $0.003686 durant l'année.
Combien vaudra END en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de END pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.026639 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.026639 et $0.008098.
Combien vaudra END en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de END, il est prévu que la valeur de END en 2030 augmente de 224.23%, atteignant $0.019912 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.019912 et $0.006887 au cours de 2030.
Combien vaudra END en 2031 ?
Notre simulation expérimentale indique que le prix de END pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.018178 dans des conditions idéales. Il est probable que le prix fluctue entre $0.018178 et $0.008142 durant l'année.
Combien vaudra END en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de END, END pourrait connaître une 449.04% hausse en valeur, atteignant $0.033719 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.033719 et $0.012429 tout au long de l'année.
Combien vaudra END en 2033 ?
Selon notre prédiction expérimentale de prix de END, la valeur de END est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.089817. Tout au long de l'année, le prix de END pourrait osciller entre $0.089817 et $0.028883.
Combien vaudra END en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de END suggèrent que END pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.052017 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.052017 et $0.02322.
Combien vaudra END en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de END, END pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.061289 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.061289 et $0.027454.
Combien vaudra END en 2036 ?
Notre récente simulation de prédiction de prix de END suggère que la valeur de END pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.1268059 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.1268059 et $0.045445.
Combien vaudra END en 2037 ?
Selon la simulation expérimentale, la valeur de END pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.302824 sous des conditions favorables. Il est prévu que le prix chute entre $0.302824 et $0.118019 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de END ?
Les traders de END utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de END
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de END. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de END sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de END au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de END.
Comment lire les graphiques de END et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de END dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de END au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de END ?
L'action du prix de END est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de END. La capitalisation boursière de END peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de END, de grands détenteurs de END, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de END.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


