Prédiction du prix de END jusqu'à $0.006336 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.002122 | $0.006336 |
| 2027 | $0.002043 | $0.005368 |
| 2028 | $0.003688 | $0.009033 |
| 2029 | $0.0081019 | $0.026651 |
| 2030 | $0.00689 | $0.019921 |
| 2031 | $0.008146 | $0.018186 |
| 2032 | $0.012435 | $0.033735 |
| 2033 | $0.028896 | $0.089857 |
| 2034 | $0.023231 | $0.05204 |
| 2035 | $0.027466 | $0.061317 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur END aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.49, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de END pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'END'
'name_with_ticker' => 'END <small>END</small>'
'name_lang' => 'END'
'name_lang_with_ticker' => 'END <small>END</small>'
'name_with_lang' => 'END'
'name_with_lang_with_ticker' => 'END <small>END</small>'
'image' => '/uploads/coins/end.png?1750419225'
'price_for_sd' => 0.006144
'ticker' => 'END'
'marketcap' => '$742.46K'
'low24h' => '$0.005944'
'high24h' => '$0.006237'
'volume24h' => '$1.57K'
'current_supply' => '120.81M'
'max_supply' => '500M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006144'
'change_24h_pct' => '2.7189%'
'ath_price' => '$0.08762'
'ath_days' => 183
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 juil. 2025'
'ath_pct' => '-92.99%'
'fdv' => '$3.07M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.302962'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006197'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00543'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002122'
'current_year_max_price_prediction' => '$0.006336'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00689'
'grand_prediction_max_price' => '$0.019921'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062608535270351
107 => 0.0062842292814152
108 => 0.0063368960496292
109 => 0.0058868642816203
110 => 0.0060889153332178
111 => 0.006207601396408
112 => 0.0056713734450787
113 => 0.0061970018939145
114 => 0.0058790302297696
115 => 0.0057711058711847
116 => 0.0059164118020662
117 => 0.005859785939487
118 => 0.0058111023480237
119 => 0.0057839360674968
120 => 0.0058906327063059
121 => 0.0058856551805754
122 => 0.0057110787705586
123 => 0.0054833509603366
124 => 0.0055597838883576
125 => 0.0055320150890451
126 => 0.0054313773780899
127 => 0.0054991950442301
128 => 0.0052005603642839
129 => 0.0046867749191164
130 => 0.0050261973218679
131 => 0.0050131299285825
201 => 0.0050065407563289
202 => 0.0052616073110504
203 => 0.0052370885472006
204 => 0.0051925867507247
205 => 0.0054305600676989
206 => 0.0053436966058105
207 => 0.0056113893277449
208 => 0.0057877090676906
209 => 0.0057429886782943
210 => 0.0059088182459406
211 => 0.0055615447486464
212 => 0.0056768950742531
213 => 0.005700668616492
214 => 0.005427623513907
215 => 0.0052411001201951
216 => 0.0052286611363568
217 => 0.0049052552761672
218 => 0.0050780160762396
219 => 0.0052300384309757
220 => 0.0051572315204684
221 => 0.0051341830276464
222 => 0.0052519327788659
223 => 0.0052610829429941
224 => 0.0050524582311807
225 => 0.0050958379150521
226 => 0.0052767384080682
227 => 0.005091279686771
228 => 0.0047309636858005
301 => 0.0046416003358014
302 => 0.0046296776176182
303 => 0.0043873171249239
304 => 0.0046475720221558
305 => 0.0045339637851165
306 => 0.0048928508446881
307 => 0.0046878564810107
308 => 0.0046790195837096
309 => 0.004665661317348
310 => 0.0044570516295002
311 => 0.0045027238933016
312 => 0.0046545454542596
313 => 0.0047087170976017
314 => 0.004703066551386
315 => 0.0046538014457849
316 => 0.0046763547588509
317 => 0.0046037026793702
318 => 0.0045780477179833
319 => 0.0044970736028932
320 => 0.0043780640233809
321 => 0.0043946130353402
322 => 0.004158823917776
323 => 0.0040303534922514
324 => 0.0039947945716792
325 => 0.0039472436969804
326 => 0.0040001655695044
327 => 0.0041581559568313
328 => 0.0039675860301846
329 => 0.003640867257875
330 => 0.0036605036127925
331 => 0.0037046206722061
401 => 0.0036224088238525
402 => 0.0035446022089033
403 => 0.0036122487479514
404 => 0.0034738136970664
405 => 0.0037213498867242
406 => 0.0037146547265062
407 => 0.0038069209104753
408 => 0.003864616848804
409 => 0.0037316463902383
410 => 0.0036982046794994
411 => 0.0037172545977773
412 => 0.0034024018828611
413 => 0.0037811907264861
414 => 0.0037844665081354
415 => 0.00375641727687
416 => 0.0039581106423069
417 => 0.0043837465531168
418 => 0.0042236052023053
419 => 0.0041615936309731
420 => 0.0040437095885404
421 => 0.0042007830758201
422 => 0.0041887222827252
423 => 0.0041341788024297
424 => 0.004101190735361
425 => 0.0041619722604045
426 => 0.0040936592317688
427 => 0.0040813883347094
428 => 0.0040070400493968
429 => 0.0039805010941716
430 => 0.0039608527082692
501 => 0.0039392217660011
502 => 0.0039869342345495
503 => 0.0038788115037209
504 => 0.0037484260897435
505 => 0.003737585953361
506 => 0.0037675165229876
507 => 0.0037542744739967
508 => 0.0037375225555251
509 => 0.0037055385810492
510 => 0.0036960496190516
511 => 0.0037268841421537
512 => 0.0036920737633359
513 => 0.003743438373501
514 => 0.0037294700416696
515 => 0.0036514440755397
516 => 0.0035541948328293
517 => 0.003553329110582
518 => 0.0035323769207608
519 => 0.0035056911568406
520 => 0.0034982677878056
521 => 0.0036065517451143
522 => 0.0038306962960773
523 => 0.0037866913573987
524 => 0.0038184894354015
525 => 0.0039749045074606
526 => 0.0040246241553029
527 => 0.0039893343269388
528 => 0.0039410274332923
529 => 0.0039431526914511
530 => 0.0041082319705324
531 => 0.0041185277626783
601 => 0.0041445419078827
602 => 0.0041779774360668
603 => 0.0039950285419679
604 => 0.0039345358149914
605 => 0.0039058710049412
606 => 0.0038175944846642
607 => 0.0039127931435261
608 => 0.0038573249618203
609 => 0.0038648095145953
610 => 0.0038599351897818
611 => 0.0038625969007304
612 => 0.0037212806953144
613 => 0.0037727688932069
614 => 0.0036871597779105
615 => 0.0035725387826027
616 => 0.0035721545328351
617 => 0.0036002078590532
618 => 0.0035835206428919
619 => 0.0035386157732694
620 => 0.0035449942980543
621 => 0.0034891117091396
622 => 0.0035517794561355
623 => 0.0035535765428833
624 => 0.0035294460467547
625 => 0.0036259943574843
626 => 0.0036655502791662
627 => 0.003649667069689
628 => 0.0036644358708479
629 => 0.0037885199612712
630 => 0.0038087510821786
701 => 0.0038177364096929
702 => 0.0038056972611516
703 => 0.0036667039002365
704 => 0.0036728688468385
705 => 0.0036276345591794
706 => 0.0035894163527793
707 => 0.0035909448806072
708 => 0.0036105940067159
709 => 0.0036964028928387
710 => 0.0038769826349741
711 => 0.0038838355041861
712 => 0.0038921413815832
713 => 0.0038583572040093
714 => 0.003848167572782
715 => 0.0038616103265378
716 => 0.0039294265832521
717 => 0.0041038684074553
718 => 0.0040422090162042
719 => 0.0039920789713314
720 => 0.0040360565356479
721 => 0.0040292865343289
722 => 0.0039721409101082
723 => 0.0039705370227658
724 => 0.003860856299325
725 => 0.0038203098331783
726 => 0.0037864261712156
727 => 0.0037494260969078
728 => 0.0037274912126044
729 => 0.003761193164121
730 => 0.0037689011991827
731 => 0.0036952112931822
801 => 0.0036851676312879
802 => 0.003745344399235
803 => 0.0037188628472775
804 => 0.0037460997801766
805 => 0.0037524189822433
806 => 0.003751401445167
807 => 0.0037237516635366
808 => 0.0037413748098195
809 => 0.0036996908151476
810 => 0.0036543657316756
811 => 0.0036254511522729
812 => 0.0036002193467816
813 => 0.0036142194189493
814 => 0.0035643117179837
815 => 0.0035483452400012
816 => 0.0037354044843922
817 => 0.0038735871594495
818 => 0.0038715779286278
819 => 0.0038593472527331
820 => 0.0038411749492555
821 => 0.0039280971660644
822 => 0.0038978152037928
823 => 0.003919847861488
824 => 0.0039254560975792
825 => 0.0039424305391345
826 => 0.003948497442988
827 => 0.0039301590458071
828 => 0.0038686131450215
829 => 0.0037152466118726
830 => 0.0036438540766867
831 => 0.0036202933509386
901 => 0.0036211497385714
902 => 0.0035975267445773
903 => 0.0036044847750169
904 => 0.0035951070255457
905 => 0.0035773478367686
906 => 0.0036131228390864
907 => 0.0036172455748363
908 => 0.0036088952618159
909 => 0.003610862062818
910 => 0.0035417250374741
911 => 0.0035469813753533
912 => 0.003517713418099
913 => 0.0035122260289443
914 => 0.003438239181658
915 => 0.0033071607571252
916 => 0.0033797909284069
917 => 0.0032920638948462
918 => 0.0032588403379552
919 => 0.0034161154889537
920 => 0.0034003294259271
921 => 0.0033733105480622
922 => 0.0033333439964725
923 => 0.0033185200137183
924 => 0.0032284541872062
925 => 0.0032231326176933
926 => 0.0032677716732946
927 => 0.0032471722850708
928 => 0.003218242942406
929 => 0.0031134637957949
930 => 0.0029956573438208
1001 => 0.0029992131801009
1002 => 0.0030366852206069
1003 => 0.0031456402321713
1004 => 0.0031030696242123
1005 => 0.0030721841596966
1006 => 0.0030664002406064
1007 => 0.0031387980974743
1008 => 0.0032412562327624
1009 => 0.003289327297468
1010 => 0.0032416903322847
1011 => 0.0031869675516385
1012 => 0.0031902982737355
1013 => 0.0032124560756569
1014 => 0.0032147845473444
1015 => 0.0031791656427365
1016 => 0.0031891921557447
1017 => 0.0031739609656416
1018 => 0.0030804871800939
1019 => 0.0030787965357219
1020 => 0.0030558565612801
1021 => 0.0030551619479709
1022 => 0.0030161353288006
1023 => 0.0030106752350004
1024 => 0.0029331855138912
1025 => 0.0029841894829857
1026 => 0.0029499786983457
1027 => 0.0028984149763848
1028 => 0.0028895253712832
1029 => 0.0028892581390194
1030 => 0.0029422025520359
1031 => 0.0029835707966939
1101 => 0.0029505738095914
1102 => 0.0029430610352479
1103 => 0.0030232778102162
1104 => 0.0030130694944093
1105 => 0.0030042291587572
1106 => 0.003232082230518
1107 => 0.0030517187446224
1108 => 0.0029730699699841
1109 => 0.0028757271763719
1110 => 0.002907422480817
1111 => 0.0029141011471645
1112 => 0.0026800092758845
1113 => 0.0025850382328606
1114 => 0.002552447749803
1115 => 0.0025336914660416
1116 => 0.0025422389400782
1117 => 0.0024567538623644
1118 => 0.0025142012483808
1119 => 0.0024401783969543
1120 => 0.0024277682250214
1121 => 0.0025601302530436
1122 => 0.0025785476559952
1123 => 0.0024999732931653
1124 => 0.0025504307541359
1125 => 0.0025321341773768
1126 => 0.0024414473062835
1127 => 0.0024379837348552
1128 => 0.0023924802507383
1129 => 0.002321276109306
1130 => 0.0022887339060092
1201 => 0.0022717856439879
1202 => 0.002278778827213
1203 => 0.0022752428597795
1204 => 0.0022521682804552
1205 => 0.0022765654676562
1206 => 0.0022142407359716
1207 => 0.0021894225256302
1208 => 0.0021782127157972
1209 => 0.0021228959291494
1210 => 0.0022109295361927
1211 => 0.0022282732657984
1212 => 0.0022456511679092
1213 => 0.0023969139413858
1214 => 0.0023893572806871
1215 => 0.0024576658131606
1216 => 0.0024550114692
1217 => 0.0024355287692137
1218 => 0.0023533344627201
1219 => 0.0023860956483158
1220 => 0.0022852618112708
1221 => 0.0023608133780194
1222 => 0.0023263347980642
1223 => 0.0023491561354542
1224 => 0.0023081213131099
1225 => 0.0023308316780815
1226 => 0.0022323861074979
1227 => 0.0021404590188534
1228 => 0.002177453162843
1229 => 0.0022176700281531
1230 => 0.0023048704392122
1231 => 0.0022529345937732
]
'min_raw' => 0.0021228959291494
'max_raw' => 0.0063368960496292
'avg_raw' => 0.0042298959893893
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002122'
'max' => '$0.006336'
'avg' => '$0.004229'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040215240708506
'max_diff' => 0.00019247604962922
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022716126877048
102 => 0.0022090441997091
103 => 0.0020799475371688
104 => 0.0020806782102589
105 => 0.0020608195012507
106 => 0.0020436586772487
107 => 0.0022589000503792
108 => 0.0022321313831679
109 => 0.0021894790153631
110 => 0.0022465709046075
111 => 0.0022616669062938
112 => 0.0022620966682393
113 => 0.0023037494368771
114 => 0.0023259795269657
115 => 0.0023298976766946
116 => 0.0023954392081137
117 => 0.0024174078649317
118 => 0.0025078936532442
119 => 0.0023240934591347
120 => 0.0023203082150901
121 => 0.00224737430457
122 => 0.0022011184654787
123 => 0.0022505414814462
124 => 0.0022943235266789
125 => 0.0022487347347574
126 => 0.0022546876685504
127 => 0.0021934884401368
128 => 0.0022153642846033
129 => 0.0022342067088524
130 => 0.0022238030296886
131 => 0.0022082282184366
201 => 0.0022907338982537
202 => 0.0022860786044561
203 => 0.0023629097902992
204 => 0.0024228051939147
205 => 0.0025301484647778
206 => 0.0024181301657009
207 => 0.0024140477736501
208 => 0.0024539538107827
209 => 0.0024174017555253
210 => 0.0024405013927139
211 => 0.0025264267561077
212 => 0.0025282422236368
213 => 0.0024978308034266
214 => 0.0024959802657431
215 => 0.0025018211116589
216 => 0.0025360311286235
217 => 0.0025240770975284
218 => 0.0025379106049507
219 => 0.0025552096178084
220 => 0.0026267656696174
221 => 0.0026440175914566
222 => 0.0026021043654831
223 => 0.0026058886605061
224 => 0.0025902119634482
225 => 0.0025750684705187
226 => 0.0026091088310946
227 => 0.002671318259112
228 => 0.002670931257489
301 => 0.0026853626356105
302 => 0.0026943532646243
303 => 0.0026557589033546
304 => 0.0026306353933221
305 => 0.0026402693457191
306 => 0.002655674245402
307 => 0.0026352737443739
308 => 0.0025093524015976
309 => 0.0025475488931094
310 => 0.0025411911292088
311 => 0.0025321369002839
312 => 0.0025705437678638
313 => 0.0025668393317915
314 => 0.0024558770893343
315 => 0.0024629805320803
316 => 0.002456309073215
317 => 0.0024778659216608
318 => 0.0024162376149657
319 => 0.0024351940670321
320 => 0.0024470833760625
321 => 0.0024540862704193
322 => 0.0024793855267659
323 => 0.0024764169510366
324 => 0.0024792009959305
325 => 0.0025167131143365
326 => 0.0027064365366293
327 => 0.0027167627639035
328 => 0.0026659126441649
329 => 0.0026862262640262
330 => 0.0026472285559928
331 => 0.0026734079786576
401 => 0.0026913192747596
402 => 0.0026103815718188
403 => 0.002605588966332
404 => 0.0025664303008852
405 => 0.0025874719496361
406 => 0.0025539931735254
407 => 0.0025622076941451
408 => 0.0025392391783633
409 => 0.0025805779337846
410 => 0.0026268010857387
411 => 0.0026384788793299
412 => 0.0026077596319977
413 => 0.0025855168724322
414 => 0.0025464659138555
415 => 0.0026114085282758
416 => 0.0026303997278226
417 => 0.0026113087755894
418 => 0.0026068849848114
419 => 0.0025985019092808
420 => 0.0026086634939146
421 => 0.0026302962976713
422 => 0.0026200946669148
423 => 0.0026268330237591
424 => 0.0026011533560321
425 => 0.0026557716796941
426 => 0.0027425187222848
427 => 0.0027427976282113
428 => 0.0027325959424642
429 => 0.0027284216324549
430 => 0.0027388891811215
501 => 0.0027445673968718
502 => 0.0027784175298394
503 => 0.0028147400711624
504 => 0.0029842415227505
505 => 0.0029366461934156
506 => 0.0030870379649511
507 => 0.0032059783303082
508 => 0.0032416433452469
509 => 0.0032088332096719
510 => 0.0030965915082384
511 => 0.0030910843948887
512 => 0.0032588208840544
513 => 0.0032114276430472
514 => 0.0032057903678335
515 => 0.0031458192838858
516 => 0.0031812696220621
517 => 0.0031735161130779
518 => 0.0031612768198316
519 => 0.00322891359558
520 => 0.0033555236018046
521 => 0.0033357902449934
522 => 0.0033210602095379
523 => 0.0032565174820208
524 => 0.0032953866201262
525 => 0.0032815460645361
526 => 0.0033410138747845
527 => 0.0033057864613666
528 => 0.0032110685926341
529 => 0.0032261527254239
530 => 0.0032238727890978
531 => 0.0032707937171313
601 => 0.0032567092191847
602 => 0.0032211225648256
603 => 0.0033550908625676
604 => 0.003346391706483
605 => 0.0033587251209069
606 => 0.0033641546713599
607 => 0.0034456988134092
608 => 0.0034791048392853
609 => 0.003486688592014
610 => 0.0035184217328815
611 => 0.003485899042561
612 => 0.0036160129921284
613 => 0.0037025311762313
614 => 0.0038030264992519
615 => 0.0039498771767813
616 => 0.004005094389977
617 => 0.0039951198946433
618 => 0.0041064604023625
619 => 0.0043065368197734
620 => 0.0040355610590058
621 => 0.0043208991930746
622 => 0.0042305644342156
623 => 0.0040163823460138
624 => 0.0040025915445745
625 => 0.00414763814141
626 => 0.0044693375329734
627 => 0.004388755484071
628 => 0.0044694693363377
629 => 0.0043753123403
630 => 0.0043706366518292
701 => 0.0044648963412025
702 => 0.0046851392432512
703 => 0.0045805100961696
704 => 0.0044304985577087
705 => 0.0045412647432702
706 => 0.0044453088224102
707 => 0.0042290932763417
708 => 0.0043886938644969
709 => 0.0042819734963606
710 => 0.0043131201733496
711 => 0.0045374305137154
712 => 0.0045104409001111
713 => 0.0045453679592861
714 => 0.0044837226140425
715 => 0.0044261361410063
716 => 0.0043186467126567
717 => 0.0042868243920871
718 => 0.0042956189366454
719 => 0.0042868200339476
720 => 0.0042266806866648
721 => 0.004213693600345
722 => 0.0041920478875014
723 => 0.0041987567990201
724 => 0.0041580565261974
725 => 0.0042348663501193
726 => 0.004249122930285
727 => 0.0043050187147276
728 => 0.0043108220004956
729 => 0.0044664909645415
730 => 0.0043807511150557
731 => 0.0044382728085132
801 => 0.0044331275268352
802 => 0.004021024321322
803 => 0.0040778085070243
804 => 0.0041661468801181
805 => 0.0041263505627792
806 => 0.0040700878809661
807 => 0.0040246527487879
808 => 0.003955813877557
809 => 0.004052703266881
810 => 0.0041801025108041
811 => 0.0043140530555622
812 => 0.0044749858583017
813 => 0.0044390675301946
814 => 0.0043110445287575
815 => 0.0043167875470811
816 => 0.0043522886265633
817 => 0.0043063115030207
818 => 0.004292751951708
819 => 0.004350425752434
820 => 0.0043508229202026
821 => 0.0042979206830459
822 => 0.0042391295274535
823 => 0.0042388831903649
824 => 0.0042284218720824
825 => 0.0043771733855825
826 => 0.0044589716775332
827 => 0.0044683497198808
828 => 0.0044583404605628
829 => 0.004462192627221
830 => 0.0044145960034373
831 => 0.0045233877710666
901 => 0.0046232258554339
902 => 0.0045964671160939
903 => 0.0045563519618443
904 => 0.0045243983092768
905 => 0.0045889398510507
906 => 0.0045860659177933
907 => 0.0046223538568638
908 => 0.0046207076263383
909 => 0.0046085053572873
910 => 0.0045964675518754
911 => 0.0046441960896419
912 => 0.004630451037262
913 => 0.0046166846350193
914 => 0.0045890740077907
915 => 0.004592826750595
916 => 0.0045527185227924
917 => 0.0045341626213832
918 => 0.0042551263860226
919 => 0.0041805587861622
920 => 0.0042040192710418
921 => 0.0042117430718153
922 => 0.0041792911567951
923 => 0.0042258188667211
924 => 0.0042185675724142
925 => 0.0042467781166972
926 => 0.0042291533933886
927 => 0.0042298767181809
928 => 0.0042817072714442
929 => 0.0042967539015595
930 => 0.0042891010640416
1001 => 0.0042944608491152
1002 => 0.0044179748339115
1003 => 0.0044004150950284
1004 => 0.0043910868337253
1005 => 0.0043936708258567
1006 => 0.0044252312971419
1007 => 0.0044340665059639
1008 => 0.004396631105346
1009 => 0.0044142858566888
1010 => 0.0044894575471853
1011 => 0.0045157633845098
1012 => 0.0045997189897315
1013 => 0.0045640531564415
1014 => 0.0046295193370265
1015 => 0.0048307400570793
1016 => 0.0049914890916721
1017 => 0.0048436576362257
1018 => 0.0051388527669894
1019 => 0.0053687045195155
1020 => 0.0053598824264154
1021 => 0.0053198024567957
1022 => 0.0050581223474698
1023 => 0.0048173204094374
1024 => 0.0050187614555918
1025 => 0.0050192749702452
1026 => 0.0050019710057313
1027 => 0.0048944975682733
1028 => 0.00499823116307
1029 => 0.0050064651591198
1030 => 0.0050018563109282
1031 => 0.0049194566784139
1101 => 0.0047936476695622
1102 => 0.0048182304487476
1103 => 0.0048584975425284
1104 => 0.0047822635334056
1105 => 0.0047579021483094
1106 => 0.0048031945981465
1107 => 0.0049491363085781
1108 => 0.0049215468736038
1109 => 0.0049208264019589
1110 => 0.0050388657045204
1111 => 0.0049543750383622
1112 => 0.0048185405163181
1113 => 0.0047842405080648
1114 => 0.0046624985860195
1115 => 0.004746586165206
1116 => 0.0047496123274827
1117 => 0.0047035584197165
1118 => 0.0048222775371158
1119 => 0.0048211835195489
1120 => 0.0049338896525108
1121 => 0.0051493414482437
1122 => 0.0050856217505065
1123 => 0.0050115226747216
1124 => 0.0050195792988039
1125 => 0.0051079405795444
1126 => 0.0050545153321169
1127 => 0.0050737274235859
1128 => 0.005107911499743
1129 => 0.0051285356016315
1130 => 0.0050166118079291
1201 => 0.0049905170176831
1202 => 0.0049371362348667
1203 => 0.0049232101850294
1204 => 0.0049666877188068
1205 => 0.0049552329247404
1206 => 0.0047493579902612
1207 => 0.0047278429141308
1208 => 0.0047285027507993
1209 => 0.0046744020688833
1210 => 0.00459188554331
1211 => 0.0048087340457109
1212 => 0.0047913180761753
1213 => 0.0047720921936969
1214 => 0.0047744472545991
1215 => 0.0048685738398137
1216 => 0.0048139756668828
1217 => 0.0049591338580842
1218 => 0.0049292936978278
1219 => 0.0048986882500581
1220 => 0.0048944576449116
1221 => 0.0048826771586544
1222 => 0.0048422774879524
1223 => 0.0047934924579359
1224 => 0.0047612803554321
1225 => 0.0043920294475588
1226 => 0.0044605602682264
1227 => 0.0045393987306236
1228 => 0.0045666134519178
1229 => 0.0045200607879427
1230 => 0.004844115670868
1231 => 0.004903323620649
]
'min_raw' => 0.0020436586772487
'max_raw' => 0.0053687045195155
'avg_raw' => 0.0037061815983821
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002043'
'max' => '$0.005368'
'avg' => '$0.0037061'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.9237251900651E-5
'max_diff' => -0.00096819153011371
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047239788787233
102 => 0.0046904308001066
103 => 0.0048463150773169
104 => 0.0047522978020812
105 => 0.0047946337753631
106 => 0.004703126557667
107 => 0.0048890621593579
108 => 0.0048876456416003
109 => 0.0048153124929965
110 => 0.0048764479748804
111 => 0.0048658241804328
112 => 0.0047841602338078
113 => 0.0048916510521272
114 => 0.004891704366232
115 => 0.0048220852833592
116 => 0.0047407854361406
117 => 0.0047262509436745
118 => 0.0047153011560357
119 => 0.0047919407988381
120 => 0.0048606556629288
121 => 0.0049885169891422
122 => 0.0050206643644624
123 => 0.0051461377105091
124 => 0.0050714244421246
125 => 0.0051045438663006
126 => 0.0051404996862723
127 => 0.0051577382285982
128 => 0.0051296489489493
129 => 0.0053245607022496
130 => 0.0053410172261699
131 => 0.005346534956292
201 => 0.0052808118097378
202 => 0.005339189346572
203 => 0.0053118764303481
204 => 0.0053829370506159
205 => 0.0053940802632215
206 => 0.0053846423585759
207 => 0.0053881793901405
208 => 0.0052218565934882
209 => 0.0052132318790592
210 => 0.005095633285837
211 => 0.0051435555818199
212 => 0.0050539671464552
213 => 0.0050823765621725
214 => 0.0050948991619259
215 => 0.005088358066466
216 => 0.0051462650365328
217 => 0.0050970322823636
218 => 0.0049670989494969
219 => 0.0048371302163806
220 => 0.0048354985648066
221 => 0.0048012800915158
222 => 0.0047765464027525
223 => 0.004781310988683
224 => 0.004798102010957
225 => 0.0047755704780135
226 => 0.0047803787229447
227 => 0.0048602276259713
228 => 0.004876240754017
229 => 0.0048218218881848
301 => 0.0046033222892638
302 => 0.0045497019396238
303 => 0.0045882431836073
304 => 0.0045698229513572
305 => 0.0036882037818032
306 => 0.0038953271284479
307 => 0.0037722614691158
308 => 0.0038289757869148
309 => 0.0037033576164348
310 => 0.0037633091916002
311 => 0.0037522383247482
312 => 0.0040852865369275
313 => 0.0040800864471871
314 => 0.0040825754549632
315 => 0.0039637686287358
316 => 0.0041530311288729
317 => 0.0042462686420999
318 => 0.0042290128598376
319 => 0.0042333557684718
320 => 0.004158730209392
321 => 0.0040832979934985
322 => 0.0039996320571378
323 => 0.0041550730254737
324 => 0.0041377906432606
325 => 0.0041774302100527
326 => 0.0042782447891684
327 => 0.0042930901189006
328 => 0.004313042392607
329 => 0.0043058909227828
330 => 0.0044762679477126
331 => 0.0044556341658098
401 => 0.0045053556434514
402 => 0.0044030747915651
403 => 0.0042873342990682
404 => 0.0043093327828501
405 => 0.0043072141519612
406 => 0.0042802415490951
407 => 0.0042558918892541
408 => 0.004215356566093
409 => 0.0043436163266739
410 => 0.0043384092146241
411 => 0.0044227063061041
412 => 0.0044078059763667
413 => 0.0043082979276516
414 => 0.0043118518770785
415 => 0.0043357538949442
416 => 0.0044184790516861
417 => 0.0044430375105652
418 => 0.004431661053927
419 => 0.0044585882829518
420 => 0.0044798704668614
421 => 0.0044612609975846
422 => 0.0047247318386467
423 => 0.0046153203763148
424 => 0.0046686467617753
425 => 0.0046813647904903
426 => 0.0046487878273681
427 => 0.0046558526041757
428 => 0.0046665538160028
429 => 0.0047315294787048
430 => 0.0049020444184944
501 => 0.0049775643245928
502 => 0.0052047696881762
503 => 0.0049712934476791
504 => 0.0049574399337888
505 => 0.0049983664807148
506 => 0.0051317600812685
507 => 0.0052398630654935
508 => 0.0052757270619717
509 => 0.0052804670811564
510 => 0.0053477503227429
511 => 0.0053863158220621
512 => 0.0053395803674894
513 => 0.005299976963145
514 => 0.005158122484539
515 => 0.0051745425266946
516 => 0.0052876603341741
517 => 0.0054474458998445
518 => 0.0055845585380444
519 => 0.0055365464710047
520 => 0.0059028446512806
521 => 0.005939161619661
522 => 0.005934143788899
523 => 0.0060168792475592
524 => 0.0058526662109018
525 => 0.0057824619562531
526 => 0.005308539668682
527 => 0.0054416925004506
528 => 0.0056352379612178
529 => 0.005609621493727
530 => 0.0054690636066329
531 => 0.0055844519122829
601 => 0.005546300929909
602 => 0.0055162096672251
603 => 0.0056540635750586
604 => 0.0055024875406693
605 => 0.0056337258743251
606 => 0.0054654113539247
607 => 0.0055367657860827
608 => 0.0054962615593643
609 => 0.0055224727580624
610 => 0.005369242626056
611 => 0.0054519218858354
612 => 0.005365802897025
613 => 0.0053657620654112
614 => 0.0053638609839601
615 => 0.0054651795923856
616 => 0.0054684835885689
617 => 0.0053936089838585
618 => 0.0053828183835586
619 => 0.00542271688845
620 => 0.0053760061886572
621 => 0.0053978618310966
622 => 0.005376668173802
623 => 0.0053718970351382
624 => 0.0053338797905233
625 => 0.0053175009162372
626 => 0.0053239234948764
627 => 0.0053019999229147
628 => 0.0052887901777976
629 => 0.0053612332331718
630 => 0.0053225298310299
701 => 0.0053553013817087
702 => 0.0053179540636108
703 => 0.0051884919876316
704 => 0.0051140369786994
705 => 0.0048694951183155
706 => 0.0049388468865671
707 => 0.0049848271806676
708 => 0.0049696306937417
709 => 0.0050022786279183
710 => 0.0050042829459212
711 => 0.0049936687697141
712 => 0.0049813789134264
713 => 0.0049753968910573
714 => 0.0050199819848179
715 => 0.0050458651324112
716 => 0.0049894419183175
717 => 0.0049762227487
718 => 0.0050332697333598
719 => 0.0050680683610472
720 => 0.0053250018762316
721 => 0.0053059674115424
722 => 0.0053537401825872
723 => 0.0053483617017005
724 => 0.0053984351765547
725 => 0.0054802841453119
726 => 0.0053138623064969
727 => 0.005342747383281
728 => 0.0053356654295073
729 => 0.0054129843438197
730 => 0.0054132257250306
731 => 0.0053668691735341
801 => 0.0053919998121495
802 => 0.0053779725790974
803 => 0.0054033216851168
804 => 0.0053057131946617
805 => 0.0054245897998505
806 => 0.0054919851747534
807 => 0.0054929209595993
808 => 0.0055248658324204
809 => 0.005557323673329
810 => 0.0056196236724709
811 => 0.0055555861601663
812 => 0.0054403889094567
813 => 0.005448705778873
814 => 0.005381165672931
815 => 0.005382301034314
816 => 0.0053762403862717
817 => 0.005394428847271
818 => 0.0053097045390252
819 => 0.0053295891648259
820 => 0.0053017505722607
821 => 0.0053426868676175
822 => 0.0052986461808256
823 => 0.0053356620143748
824 => 0.0053516368210403
825 => 0.0054105842015491
826 => 0.0052899396047958
827 => 0.0050439371050946
828 => 0.0050956498130238
829 => 0.005019162656051
830 => 0.005026241833636
831 => 0.0050405428990004
901 => 0.0049941884671369
902 => 0.0050030314319405
903 => 0.0050027154990107
904 => 0.0049999929597027
905 => 0.0049879343816819
906 => 0.0049704470578348
907 => 0.0050401111737272
908 => 0.0050519484645117
909 => 0.0050782612955956
910 => 0.0051565504327374
911 => 0.005148727501752
912 => 0.0051614870267596
913 => 0.0051336330553097
914 => 0.0050275338994844
915 => 0.0050332955941042
916 => 0.004961447169871
917 => 0.0050764239698507
918 => 0.0050491959459959
919 => 0.0050316418618879
920 => 0.0050268520674016
921 => 0.0051053352681716
922 => 0.0051288186719154
923 => 0.0051141853906149
924 => 0.0050841721037464
925 => 0.0051418064871656
926 => 0.0051572270167691
927 => 0.0051606791046601
928 => 0.0052627961817819
929 => 0.005166386314892
930 => 0.005189593128084
1001 => 0.0053706460599315
1002 => 0.0052064560343426
1003 => 0.0052934311527716
1004 => 0.0052891741733211
1005 => 0.0053336677008319
1006 => 0.0052855244053965
1007 => 0.0052861211992426
1008 => 0.0053256284374195
1009 => 0.005270147646568
1010 => 0.0052564098225251
1011 => 0.0052374311170019
1012 => 0.0052788704261897
1013 => 0.0053037114179091
1014 => 0.0055039115674689
1015 => 0.0056332499943206
1016 => 0.0056276350721051
1017 => 0.0056789449504605
1018 => 0.0056558293803168
1019 => 0.0055811831067434
1020 => 0.0057085951935899
1021 => 0.0056682766781635
1022 => 0.0056716004875883
1023 => 0.0056714767752355
1024 => 0.0056982850632882
1025 => 0.0056792889342594
1026 => 0.0056418456140308
1027 => 0.0056667022374051
1028 => 0.0057405175224214
1029 => 0.0059696424320413
1030 => 0.006097863766966
1031 => 0.0059619233466794
1101 => 0.0060556932282783
1102 => 0.0059994647129441
1103 => 0.0059892463190544
1104 => 0.0060481407342384
1105 => 0.0061071382362997
1106 => 0.0061033803504716
1107 => 0.0060605511935303
1108 => 0.0060363580895238
1109 => 0.0062195563783456
1110 => 0.0063545337568481
1111 => 0.0063453292045341
1112 => 0.0063859551049675
1113 => 0.0065052340051518
1114 => 0.0065161393729328
1115 => 0.0065147655472494
1116 => 0.0064877354553467
1117 => 0.0066051810229006
1118 => 0.0067031561816122
1119 => 0.0064814787700457
1120 => 0.0065658906263998
1121 => 0.0066037858282974
1122 => 0.0066594272276827
1123 => 0.0067533035950271
1124 => 0.0068552782294398
1125 => 0.0068696985608407
1126 => 0.0068594666456353
1127 => 0.0067922116330149
1128 => 0.0069037934947996
1129 => 0.0069691555325165
1130 => 0.0070080771301933
1201 => 0.0071067758259652
1202 => 0.0066040198561632
1203 => 0.0062481441921444
1204 => 0.0061925690683009
1205 => 0.0063055832680204
1206 => 0.006335384211215
1207 => 0.0063233714883805
1208 => 0.0059228010737274
1209 => 0.0061904601479678
1210 => 0.0064784388064362
1211 => 0.006489501239538
1212 => 0.006633669377317
1213 => 0.0066806164326295
1214 => 0.0067966906800915
1215 => 0.0067894302043091
1216 => 0.0068176924364214
1217 => 0.0068111954386924
1218 => 0.0070261985397992
1219 => 0.0072633788885894
1220 => 0.0072551660872981
1221 => 0.007221068605969
1222 => 0.0072717091802273
1223 => 0.0075165047179697
1224 => 0.0074939678676229
1225 => 0.0075158604980504
1226 => 0.0078044882331206
1227 => 0.0081797453455285
1228 => 0.0080054007416169
1229 => 0.0083836783657966
1230 => 0.0086217840785825
1231 => 0.0090335632882554
]
'min_raw' => 0.0036882037818032
'max_raw' => 0.0090335632882554
'avg_raw' => 0.0063608835350293
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003688'
'max' => '$0.009033'
'avg' => '$0.00636'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016445451045545
'max_diff' => 0.0036648587687399
'year' => 2028
]
3 => [
'items' => [
101 => 0.008982006503149
102 => 0.0091423091276992
103 => 0.0088897090975827
104 => 0.0083096883695465
105 => 0.0082178978691045
106 => 0.0084016647754949
107 => 0.0088534377831431
108 => 0.0083874368357604
109 => 0.008481708220495
110 => 0.0084545580553495
111 => 0.0084531113384296
112 => 0.0085083266390367
113 => 0.0084282339656698
114 => 0.0081019220059761
115 => 0.0082514688541352
116 => 0.0081937216342315
117 => 0.0082577964800551
118 => 0.0086035819964888
119 => 0.0084507019771763
120 => 0.0082896552957949
121 => 0.0084916435733667
122 => 0.0087488440614183
123 => 0.0087327489171098
124 => 0.0087015176099028
125 => 0.0088775668534106
126 => 0.009168348626097
127 => 0.0092469457707984
128 => 0.009304964576169
129 => 0.0093129643891939
130 => 0.0093953674352061
131 => 0.0089522654885572
201 => 0.009655479657554
202 => 0.0097769053186404
203 => 0.0097540823269342
204 => 0.0098890418388588
205 => 0.0098493333268582
206 => 0.009791801923044
207 => 0.010005741456156
208 => 0.0097604770454732
209 => 0.0094123550924398
210 => 0.0092213685039342
211 => 0.009472875050127
212 => 0.0096264613215181
213 => 0.0097279720769861
214 => 0.0097586891702563
215 => 0.008986662231326
216 => 0.0085705825298196
217 => 0.0088372848481218
218 => 0.0091626800832611
219 => 0.0089504579015963
220 => 0.0089587766093279
221 => 0.0086562035492821
222 => 0.0091894510852191
223 => 0.0091117614045508
224 => 0.0095148156052887
225 => 0.0094186234855705
226 => 0.0097472985397983
227 => 0.0096607473829196
228 => 0.010020016396113
301 => 0.010163338532296
302 => 0.010403998705257
303 => 0.01058102930815
304 => 0.010684985064225
305 => 0.010678743950559
306 => 0.011090668446678
307 => 0.010847770962862
308 => 0.010542634476648
309 => 0.010537115520305
310 => 0.010695150030333
311 => 0.011026347008701
312 => 0.011112221566472
313 => 0.011160213729043
314 => 0.011086712061446
315 => 0.010823064251383
316 => 0.010709222463723
317 => 0.010806218965124
318 => 0.010687600578915
319 => 0.010892369191952
320 => 0.011173560233868
321 => 0.011115495395662
322 => 0.011309597444217
323 => 0.01151047264434
324 => 0.011797733202386
325 => 0.011872833749487
326 => 0.011996972098026
327 => 0.012124751235997
328 => 0.012165790451369
329 => 0.012244147047234
330 => 0.012243734069296
331 => 0.012479866944944
401 => 0.01274032881921
402 => 0.012838647147039
403 => 0.013064724720577
404 => 0.012677574798595
405 => 0.012971232461676
406 => 0.013236119024504
407 => 0.01292031034431
408 => 0.013355579035972
409 => 0.013372479532929
410 => 0.013627656971788
411 => 0.013368985751422
412 => 0.013215387606477
413 => 0.013658819695687
414 => 0.013873382515676
415 => 0.013808754448125
416 => 0.013316931662982
417 => 0.013030669706758
418 => 0.012281466951511
419 => 0.013168929978251
420 => 0.013601187330925
421 => 0.013315812220865
422 => 0.013459738827101
423 => 0.014244955722364
424 => 0.014543915477052
425 => 0.014481733937963
426 => 0.014492241594474
427 => 0.0146535548516
428 => 0.01536890667053
429 => 0.014940251278902
430 => 0.015267942264391
501 => 0.015441748381516
502 => 0.015603189189422
503 => 0.015206741589096
504 => 0.014690969086043
505 => 0.014527602283669
506 => 0.013287437290298
507 => 0.013222881316629
508 => 0.013186644092363
509 => 0.01295817351922
510 => 0.012778658232087
511 => 0.012635901010784
512 => 0.012261263431169
513 => 0.012387692616687
514 => 0.01179059850772
515 => 0.012172598158922
516 => 0.011219621543669
517 => 0.012013288786704
518 => 0.011581331789942
519 => 0.011871379295822
520 => 0.011870367347398
521 => 0.011336297929427
522 => 0.011028257834886
523 => 0.011224552972227
524 => 0.011434996941385
525 => 0.011469140767362
526 => 0.011741986866524
527 => 0.011818132347993
528 => 0.01158740798425
529 => 0.011199873221511
530 => 0.011289888708168
531 => 0.011026433673922
601 => 0.010564738860057
602 => 0.010896336135793
603 => 0.011009558025032
604 => 0.011059563261429
605 => 0.010605539438001
606 => 0.010462875295343
607 => 0.01038692210286
608 => 0.011141264447293
609 => 0.011182589023753
610 => 0.010971166647879
611 => 0.01192681583472
612 => 0.011710522991392
613 => 0.011952175090423
614 => 0.011281720746252
615 => 0.011307333005085
616 => 0.010989929174047
617 => 0.011167654110497
618 => 0.011042043853756
619 => 0.011153295691944
620 => 0.011219979585045
621 => 0.011537331333238
622 => 0.0120169124339
623 => 0.011489929564806
624 => 0.011260315582208
625 => 0.011402766805614
626 => 0.011782133185546
627 => 0.01235689267055
628 => 0.012016623487315
629 => 0.012167629172689
630 => 0.012200617197168
701 => 0.0119497152989
702 => 0.012366143781422
703 => 0.012589311188264
704 => 0.012818234769696
705 => 0.013017002701161
706 => 0.012726797657135
707 => 0.013037358653502
708 => 0.012787101311826
709 => 0.012562594605214
710 => 0.012562935089216
711 => 0.012422098752639
712 => 0.012149210604
713 => 0.012098885842536
714 => 0.01236068160699
715 => 0.012570617017931
716 => 0.012587908303899
717 => 0.012704139334266
718 => 0.012772923660763
719 => 0.01344710356819
720 => 0.013718264304066
721 => 0.014049834519084
722 => 0.014178999804108
723 => 0.01456774100371
724 => 0.014253800913015
725 => 0.014185877999617
726 => 0.013242919005659
727 => 0.013397328488094
728 => 0.013644552967772
729 => 0.01324699564627
730 => 0.013499154261682
731 => 0.013548935713813
801 => 0.013233486800613
802 => 0.013401981694896
803 => 0.012954509210934
804 => 0.012026666111249
805 => 0.01236717673603
806 => 0.012617907170506
807 => 0.012260083925669
808 => 0.012901468242367
809 => 0.012526784765412
810 => 0.012408028091196
811 => 0.011944715965268
812 => 0.012163381454186
813 => 0.012459129658938
814 => 0.012276391652821
815 => 0.012655600453763
816 => 0.013192661247191
817 => 0.013575402751111
818 => 0.013604784891261
819 => 0.01335870774593
820 => 0.013753047941767
821 => 0.013755920279583
822 => 0.013311102927752
823 => 0.013038654776509
824 => 0.012976753983311
825 => 0.013131394301085
826 => 0.013319156195041
827 => 0.01361520436962
828 => 0.01379410008122
829 => 0.014260565218121
830 => 0.014386777309562
831 => 0.014525446132942
901 => 0.014710750444858
902 => 0.014933255782363
903 => 0.014446426771137
904 => 0.014465769395316
905 => 0.014012440960668
906 => 0.013527994514374
907 => 0.013895628980009
908 => 0.014376262139464
909 => 0.014266004361633
910 => 0.014253598109265
911 => 0.01427446198454
912 => 0.014191331220738
913 => 0.013815333857029
914 => 0.013626510334842
915 => 0.013870140852481
916 => 0.013999619629859
917 => 0.014200429921837
918 => 0.01417567581476
919 => 0.014692941561443
920 => 0.0148939353893
921 => 0.014842512567123
922 => 0.014851975603963
923 => 0.015215865328581
924 => 0.015620585541987
925 => 0.015999659429376
926 => 0.016385269669232
927 => 0.015920401474462
928 => 0.015684370074243
929 => 0.015927894230419
930 => 0.015798676885301
1001 => 0.016541198078702
1002 => 0.016592608635108
1003 => 0.017335076135775
1004 => 0.018039766205294
1005 => 0.017597162998463
1006 => 0.018014517887218
1007 => 0.01846592122685
1008 => 0.019336751506553
1009 => 0.019043486504528
1010 => 0.018818850109025
1011 => 0.01860656980071
1012 => 0.019048291423764
1013 => 0.019616559235147
1014 => 0.019738958678917
1015 => 0.019937292538012
1016 => 0.019728768736284
1017 => 0.019979912687322
1018 => 0.020866561192727
1019 => 0.020626980939904
1020 => 0.020286738466447
1021 => 0.020986662306837
1022 => 0.021239962023789
1023 => 0.023017752091451
1024 => 0.025262285488719
1025 => 0.024333033923849
1026 => 0.023756217490774
1027 => 0.023891783034815
1028 => 0.024711410649247
1029 => 0.024974649025322
1030 => 0.02425907637544
1031 => 0.024511828732588
1101 => 0.025904519070539
1102 => 0.026651652753994
1103 => 0.025636944858421
1104 => 0.022837406018434
1105 => 0.020256103354386
1106 => 0.020940781058465
1107 => 0.020863159854845
1108 => 0.022359431881316
1109 => 0.020621267030108
1110 => 0.02065053326843
1111 => 0.022177746615829
1112 => 0.021770312277808
1113 => 0.021110320830462
1114 => 0.020260922022342
1115 => 0.018690729765651
1116 => 0.01729996669585
1117 => 0.020027573349337
1118 => 0.019909953990607
1119 => 0.019739623728955
1120 => 0.020118675294603
1121 => 0.021959242101724
1122 => 0.021916811079487
1123 => 0.02164688656451
1124 => 0.021851621930114
1125 => 0.02107442973099
1126 => 0.021274729857042
1127 => 0.020255694462855
1128 => 0.020716341019705
1129 => 0.021108904785233
1130 => 0.021187717773169
1201 => 0.021365287459279
1202 => 0.019847973933222
1203 => 0.020529203160437
1204 => 0.020929361508879
1205 => 0.019121431532732
1206 => 0.020893624546189
1207 => 0.019821560880451
1208 => 0.019457686370444
1209 => 0.019947595461347
1210 => 0.01975667741217
1211 => 0.019592537284572
1212 => 0.019500944273086
1213 => 0.019860679440152
1214 => 0.019843897364632
1215 => 0.019255300809725
1216 => 0.018487500598113
1217 => 0.018745199551313
1218 => 0.018651575105675
1219 => 0.018312268036889
1220 => 0.018540920033159
1221 => 0.017534052359713
1222 => 0.015801788859977
1223 => 0.016946175188568
1224 => 0.01690211755977
1225 => 0.016879901705476
1226 => 0.017739876402898
1227 => 0.017657209678733
1228 => 0.017507168764898
1229 => 0.018309512417843
1230 => 0.018016646191473
1231 => 0.018919190893184
]
'min_raw' => 0.0081019220059761
'max_raw' => 0.026651652753994
'avg_raw' => 0.017376787379985
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0081019'
'max' => '$0.026651'
'avg' => '$0.017376'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0044137182241729
'max_diff' => 0.017618089465739
'year' => 2029
]
4 => [
'items' => [
101 => 0.019513665206662
102 => 0.019362887291535
103 => 0.019921993256705
104 => 0.018751136414716
105 => 0.019140048091002
106 => 0.019220202248476
107 => 0.01829961162171
108 => 0.017670734977163
109 => 0.01762879607469
110 => 0.016538410637585
111 => 0.017120885736803
112 => 0.017633439719657
113 => 0.017387966137666
114 => 0.017310256534922
115 => 0.017707258042184
116 => 0.017738108459386
117 => 0.017034715677795
118 => 0.01718097331064
119 => 0.017790891952913
120 => 0.017165604925745
121 => 0.015950774372013
122 => 0.015649479598341
123 => 0.015609281321569
124 => 0.014792145999381
125 => 0.015669613555815
126 => 0.015286575452763
127 => 0.016496588230803
128 => 0.015805435421415
129 => 0.015775641205192
130 => 0.01573060287751
131 => 0.015027260750267
201 => 0.015181247976409
202 => 0.015693124969022
203 => 0.015875768446694
204 => 0.015856717235619
205 => 0.015690616492505
206 => 0.015766656562129
207 => 0.015521705003754
208 => 0.015435207510265
209 => 0.015162197627807
210 => 0.014760948521498
211 => 0.014816744670734
212 => 0.014021765198595
213 => 0.01358861818942
214 => 0.013468728806067
215 => 0.013308407712124
216 => 0.013486837500226
217 => 0.014019513121635
218 => 0.013376993308778
219 => 0.01227543815716
220 => 0.012341643498731
221 => 0.012490387244698
222 => 0.012213204258126
223 => 0.011950873823541
224 => 0.012178948852872
225 => 0.011712205413586
226 => 0.012546790959443
227 => 0.012524217759326
228 => 0.012835299640398
301 => 0.013029825524675
302 => 0.01258150633992
303 => 0.012468755277338
304 => 0.012532983406834
305 => 0.01147143549618
306 => 0.012748548528654
307 => 0.012759593055192
308 => 0.012665023113647
309 => 0.013345046376998
310 => 0.014780107567244
311 => 0.014240179822271
312 => 0.014031103480015
313 => 0.013633649200552
314 => 0.014163233429436
315 => 0.014122569623459
316 => 0.013938672471538
317 => 0.013827450900263
318 => 0.014032380055578
319 => 0.013802057910069
320 => 0.013760685723907
321 => 0.013510015289144
322 => 0.013420537348711
323 => 0.013354291443835
324 => 0.013281361211754
325 => 0.013442227130643
326 => 0.013077683794766
327 => 0.012638080268323
328 => 0.012601531991675
329 => 0.012702444996857
330 => 0.012657798504153
331 => 0.012601318241445
401 => 0.012493482038449
402 => 0.012461489340576
403 => 0.012565450088013
404 => 0.012448084465445
405 => 0.01262126383478
406 => 0.012574168628772
407 => 0.012311098636366
408 => 0.011983216024843
409 => 0.011980297181843
410 => 0.011909655411026
411 => 0.011819682494828
412 => 0.011794654087844
413 => 0.012159741010055
414 => 0.012915460012899
415 => 0.012767094289818
416 => 0.012874303729875
417 => 0.013401668065874
418 => 0.013569301329889
419 => 0.013450319209702
420 => 0.013287449145094
421 => 0.013294614601357
422 => 0.013851190916247
423 => 0.013885903898296
424 => 0.013973612405102
425 => 0.014086342622769
426 => 0.01346951765323
427 => 0.013265562200762
428 => 0.013168916792364
429 => 0.012871286340981
430 => 0.013192255265892
501 => 0.013005240418606
502 => 0.013030475110842
503 => 0.013014040984418
504 => 0.013023015128716
505 => 0.012546557675774
506 => 0.01272015372976
507 => 0.0124315166205
508 => 0.012045063932238
509 => 0.012043768407319
510 => 0.012138352155284
511 => 0.012082090040932
512 => 0.011930690137842
513 => 0.011952195779488
514 => 0.011763783729365
515 => 0.011975072413683
516 => 0.011981131417122
517 => 0.011899773764687
518 => 0.0122252931351
519 => 0.012358658686757
520 => 0.012305107337074
521 => 0.012354901381306
522 => 0.012773259555443
523 => 0.012841470192074
524 => 0.012871764851124
525 => 0.01283117402127
526 => 0.012362548200738
527 => 0.01238333374863
528 => 0.01223082318963
529 => 0.012101967838442
530 => 0.012107121376732
531 => 0.012173369777266
601 => 0.012462680427814
602 => 0.013071517636099
603 => 0.013094622563099
604 => 0.013122626408641
605 => 0.013008720695215
606 => 0.012974365642115
607 => 0.013019688824946
608 => 0.013248336069238
609 => 0.013836478858678
610 => 0.013628589916154
611 => 0.013459572969897
612 => 0.013607846398406
613 => 0.013585020866292
614 => 0.013392350404452
615 => 0.013386942786297
616 => 0.013017146569553
617 => 0.012880441328075
618 => 0.012766200196087
619 => 0.012641451862295
620 => 0.012567496868422
621 => 0.012681125350955
622 => 0.012707113529323
623 => 0.012458662866378
624 => 0.012424799959075
625 => 0.012627690133616
626 => 0.012538405732309
627 => 0.0126302369532
628 => 0.012651542584161
629 => 0.012648111886866
630 => 0.012554888717652
701 => 0.012614306385754
702 => 0.012473765887434
703 => 0.012320949204012
704 => 0.012223461680804
705 => 0.012138390886962
706 => 0.012185593107729
707 => 0.012017325809479
708 => 0.011963493714218
709 => 0.012594177016741
710 => 0.013060069553303
711 => 0.013053295291308
712 => 0.01301205871361
713 => 0.012950789523686
714 => 0.013243853846372
715 => 0.013141756096354
716 => 0.013216040740045
717 => 0.013234949299581
718 => 0.013292179814402
719 => 0.013312634804322
720 => 0.013250805617881
721 => 0.013043299316385
722 => 0.012526213342164
723 => 0.012285508425317
724 => 0.0122060717935
725 => 0.012208959164195
726 => 0.012129312590639
727 => 0.01215277207606
728 => 0.012121154338984
729 => 0.012061277994115
730 => 0.012181895912161
731 => 0.012195796003582
801 => 0.012167642340233
802 => 0.012174273547129
803 => 0.01194117323919
804 => 0.011958895349335
805 => 0.011860216388029
806 => 0.011841715272376
807 => 0.011592263451154
808 => 0.011150323391238
809 => 0.011395201084591
810 => 0.011099423266035
811 => 0.010987407724383
812 => 0.011517671876574
813 => 0.011464448062933
814 => 0.011373352029813
815 => 0.011238602010753
816 => 0.01118862191792
817 => 0.010884958695639
818 => 0.010867016652486
819 => 0.011017520345045
820 => 0.010948068069445
821 => 0.010850530770869
822 => 0.010497260562623
823 => 0.010100067884809
824 => 0.010112056635088
825 => 0.010238396235868
826 => 0.010605745664353
827 => 0.010462215887434
828 => 0.010358083387465
829 => 0.010338582500433
830 => 0.01058267692952
831 => 0.010928121686042
901 => 0.011090196636912
902 => 0.010929585282889
903 => 0.010745083607318
904 => 0.010756313369412
905 => 0.010831019945598
906 => 0.010838870550461
907 => 0.010718778926743
908 => 0.010752584015379
909 => 0.010701230994539
910 => 0.010386077600433
911 => 0.010380377474896
912 => 0.010303033749448
913 => 0.01030069181218
914 => 0.010169110840895
915 => 0.010150701753436
916 => 0.0098894397485571
917 => 0.010061403191343
918 => 0.0099460591424081
919 => 0.009772208453753
920 => 0.0097422365295006
921 => 0.0097413355372654
922 => 0.0099198413222115
923 => 0.010059317247314
924 => 0.0099480656015223
925 => 0.009922735758298
926 => 0.01019319221566
927 => 0.010158774166195
928 => 0.010128968357332
929 => 0.010897190896967
930 => 0.010289082811693
1001 => 0.010023912976918
1002 => 0.0096957149519977
1003 => 0.0098025778838298
1004 => 0.0098250954737099
1005 => 0.0090358383859171
1006 => 0.0087156368836953
1007 => 0.0086057557946719
1008 => 0.0085425176744483
1009 => 0.0085713360799285
1010 => 0.0082831171720386
1011 => 0.0084768050448414
1012 => 0.0082272318331466
1013 => 0.0081853900720244
1014 => 0.008631657890723
1015 => 0.0086937534506361
1016 => 0.0084288345004684
1017 => 0.0085989553529583
1018 => 0.0085372671669887
1019 => 0.0082315100495425
1020 => 0.0082198323766532
1021 => 0.008066414203001
1022 => 0.0078263444688477
1023 => 0.0077166261584086
1024 => 0.0076594839097139
1025 => 0.0076830619152056
1026 => 0.0076711401541302
1027 => 0.0075933425989229
1028 => 0.0076755994189281
1029 => 0.0074654672346795
1030 => 0.0073817909057617
1031 => 0.0073439962492656
1101 => 0.0071574918409877
1102 => 0.0074543032934446
1103 => 0.0075127788887108
1104 => 0.0075713696989636
1105 => 0.0080813627005697
1106 => 0.0080558848914347
1107 => 0.0082861918778186
1108 => 0.0082772425718351
1109 => 0.0082115552885926
1110 => 0.0079344314456261
1111 => 0.008044888070175
1112 => 0.0077049197485841
1113 => 0.0079596471307188
1114 => 0.0078434001911823
1115 => 0.0079203439235276
1116 => 0.0077819921550341
1117 => 0.0078585617361229
1118 => 0.0075266456216499
1119 => 0.0072167070241408
1120 => 0.0073414353634502
1121 => 0.0074770293326952
1122 => 0.0077710316067193
1123 => 0.0075959262777767
1124 => 0.00765890077553
1125 => 0.0074479467498599
1126 => 0.0070126883388642
1127 => 0.0070151518542015
1128 => 0.0069481968302897
1129 => 0.0068903379140364
1130 => 0.0076160392312187
1201 => 0.0075257868007869
1202 => 0.00738198136484
1203 => 0.0075744706554558
1204 => 0.0076253678791105
1205 => 0.0076268168515149
1206 => 0.0077672520690804
1207 => 0.0078422023698696
1208 => 0.0078554126852369
1209 => 0.00807639053438
1210 => 0.0081504593946445
1211 => 0.0084555385474563
1212 => 0.0078358433604962
1213 => 0.0078230811459225
1214 => 0.007577179374521
1215 => 0.007421224583545
1216 => 0.0075878577324843
1217 => 0.0077354719547514
1218 => 0.0075817661598799
1219 => 0.0076018368917837
1220 => 0.0073954994203937
1221 => 0.0074692553573352
1222 => 0.0075327839062269
1223 => 0.0074977071755644
1224 => 0.0074451956120297
1225 => 0.0077233692718959
1226 => 0.0077076736238348
1227 => 0.007966715331087
1228 => 0.0081686568661403
1229 => 0.008530572198323
1230 => 0.0081528946821174
1231 => 0.0081391306122947
]
'min_raw' => 0.0068903379140364
'max_raw' => 0.019921993256705
'avg_raw' => 0.01340616558537
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00689'
'max' => '$0.019921'
'avg' => '$0.0134061'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012115840919396
'max_diff' => -0.0067296594972898
'year' => 2030
]
5 => [
'items' => [
101 => 0.0082736766026378
102 => 0.0081504387963544
103 => 0.008228320835901
104 => 0.0085180241977004
105 => 0.0085241451732267
106 => 0.0084216109467306
107 => 0.00841537172973
108 => 0.0084350645495301
109 => 0.0085504060101933
110 => 0.0085101021597525
111 => 0.0085567427958513
112 => 0.0086150676254796
113 => 0.0088563238500375
114 => 0.0089144899090093
115 => 0.0087731765413517
116 => 0.0087859355562325
117 => 0.0087330804775898
118 => 0.0086820231338932
119 => 0.0087967925861969
120 => 0.0090065360160812
121 => 0.0090052312130896
122 => 0.009053887611993
123 => 0.0090842001454185
124 => 0.0089540765618257
125 => 0.0088693708936835
126 => 0.0089018524368109
127 => 0.0089537911316276
128 => 0.0088850094180941
129 => 0.0084604568193761
130 => 0.0085892389573021
131 => 0.0085678033124264
201 => 0.0085372763474599
202 => 0.0086667677829874
203 => 0.0086542780181343
204 => 0.0082801610705534
205 => 0.0083041108237181
206 => 0.0082816175343674
207 => 0.0083542979539534
208 => 0.0081465138151799
209 => 0.0082104268168191
210 => 0.0082505124523
211 => 0.0082741231995507
212 => 0.0083594214086609
213 => 0.00834941264833
214 => 0.0083587992500658
215 => 0.0084852739762839
216 => 0.0091249397406104
217 => 0.0091597553368198
218 => 0.0089883106078789
219 => 0.009056799395493
220 => 0.0089253159001253
221 => 0.0090135816514285
222 => 0.0090739708367632
223 => 0.0088010837204084
224 => 0.0087849251164006
225 => 0.0086528989418762
226 => 0.0087238423297208
227 => 0.0086109662986499
228 => 0.0086386621284387
301 => 0.0085612221738701
302 => 0.0087005986739525
303 => 0.0088564432579633
304 => 0.0088958157543735
305 => 0.0087922436672437
306 => 0.0087172506504285
307 => 0.0085855876171366
308 => 0.0088045461758031
309 => 0.0088685763309984
310 => 0.0088042098526564
311 => 0.0087892947331892
312 => 0.0087610306087499
313 => 0.0087952911008021
314 => 0.008868227609022
315 => 0.0088338320986713
316 => 0.0088565509392289
317 => 0.0087699701465902
318 => 0.0089541196381463
319 => 0.0092465933487259
320 => 0.0092475336995297
321 => 0.0092131380037743
322 => 0.0091990640261369
323 => 0.0092343560972872
324 => 0.0092535005981297
325 => 0.0093676286847707
326 => 0.0094900926688001
327 => 0.010061578647043
328 => 0.0099011076711904
329 => 0.01040816402894
330 => 0.010809179774893
331 => 0.010929426862811
401 => 0.010818805199989
402 => 0.010440374467141
403 => 0.010421806849988
404 => 0.010987342134198
405 => 0.010827552513252
406 => 0.010808546046287
407 => 0.01060634934971
408 => 0.010725872639935
409 => 0.010699731143061
410 => 0.010658465511361
411 => 0.010886507623046
412 => 0.011313382098661
413 => 0.011246849708433
414 => 0.011197186365476
415 => 0.010979576053423
416 => 0.011110626066302
417 => 0.011063961666813
418 => 0.011264461540976
419 => 0.011145689857138
420 => 0.010826341949716
421 => 0.010877199156557
422 => 0.010869512192053
423 => 0.011027709376833
424 => 0.010980222508658
425 => 0.010860239618905
426 => 0.01131192308811
427 => 0.011282593276015
428 => 0.011324176243837
429 => 0.011342482352268
430 => 0.011617414120418
501 => 0.011730044868994
502 => 0.011755614020799
503 => 0.011862604520771
504 => 0.011752951999694
505 => 0.012191640264926
506 => 0.012483342363136
507 => 0.012822169361059
508 => 0.013317286673136
509 => 0.013503455362568
510 => 0.013469825655154
511 => 0.013845217950475
512 => 0.014519789560665
513 => 0.013606175864314
514 => 0.014568213304999
515 => 0.014263643358534
516 => 0.013541513494446
517 => 0.013495016844551
518 => 0.013984051572611
519 => 0.015068683531602
520 => 0.014796995527668
521 => 0.015069127915847
522 => 0.014751671029874
523 => 0.014735906619749
524 => 0.015053709743472
525 => 0.015796274064598
526 => 0.015443509590238
527 => 0.014937735214846
528 => 0.015311191142915
529 => 0.014987669056307
530 => 0.01425868324705
531 => 0.014796787772972
601 => 0.014436972600822
602 => 0.014541985796882
603 => 0.015298263770274
604 => 0.015207266403652
605 => 0.01532502542219
606 => 0.015117183836761
607 => 0.01492302702236
608 => 0.014560618910007
609 => 0.014453327734443
610 => 0.014482979155437
611 => 0.014453313040671
612 => 0.014250549032512
613 => 0.014206762164256
614 => 0.014133782132148
615 => 0.014156401695735
616 => 0.014019177884311
617 => 0.014278147568354
618 => 0.014326214623745
619 => 0.014514671163512
620 => 0.014534237346652
621 => 0.015059086127393
622 => 0.014770008238686
623 => 0.014963946644214
624 => 0.014946598967805
625 => 0.01355716423829
626 => 0.013748616084931
627 => 0.014046455077405
628 => 0.013912279015006
629 => 0.013722585455139
630 => 0.01356939773482
701 => 0.013337302674289
702 => 0.013663972014996
703 => 0.014093507460614
704 => 0.014545131074394
705 => 0.0150877272548
706 => 0.014966626103849
707 => 0.014534987616223
708 => 0.014554350603466
709 => 0.014674044971546
710 => 0.014519029889502
711 => 0.014473312915554
712 => 0.014667764161358
713 => 0.014669103240219
714 => 0.014490739654129
715 => 0.014292521168382
716 => 0.014291690625689
717 => 0.014256419560713
718 => 0.014757945673978
719 => 0.015033734326264
720 => 0.015065353050793
721 => 0.015031606134178
722 => 0.015044593983016
723 => 0.014884118642839
724 => 0.015250917683
725 => 0.015587528754917
726 => 0.015497309796997
727 => 0.015362058753693
728 => 0.015254324783129
729 => 0.015471931097367
730 => 0.015462241430738
731 => 0.015584588750857
801 => 0.015579038369704
802 => 0.015537897567663
803 => 0.015497311266264
804 => 0.015658231363644
805 => 0.015611888959896
806 => 0.015565474573595
807 => 0.015472383416182
808 => 0.015485036050555
809 => 0.015349808360251
810 => 0.015287245843119
811 => 0.014346455693912
812 => 0.01409504582484
813 => 0.01417414448757
814 => 0.014200185821136
815 => 0.014090771923925
816 => 0.014247643346402
817 => 0.014223195101377
818 => 0.014318308921024
819 => 0.01425888593587
820 => 0.014261324675909
821 => 0.01443607500493
822 => 0.014486805768885
823 => 0.01446100369289
824 => 0.014479074582474
825 => 0.014895510605685
826 => 0.014836306720059
827 => 0.014804855835797
828 => 0.014813567945677
829 => 0.014919976278097
830 => 0.014949764801495
831 => 0.014823548734655
901 => 0.014883072961423
902 => 0.015136519564252
903 => 0.015225211531406
904 => 0.015508273716004
905 => 0.015388023868958
906 => 0.015608747667503
907 => 0.016287177373943
908 => 0.016829153967212
909 => 0.016330729893912
910 => 0.017326000887148
911 => 0.018100962118526
912 => 0.0180712178157
913 => 0.017936085399833
914 => 0.017053812641319
915 => 0.016241932094989
916 => 0.016921104646263
917 => 0.016922835996769
918 => 0.016864494472287
919 => 0.016502140274341
920 => 0.016851885331646
921 => 0.016879646824208
922 => 0.01686410777075
923 => 0.01658629165677
924 => 0.016162117799722
925 => 0.01624500035606
926 => 0.016380763674101
927 => 0.016123735389855
928 => 0.016041599279145
929 => 0.016194305935989
930 => 0.016686358602034
1001 => 0.016593338895785
1002 => 0.016590909775333
1003 => 0.01698888752516
1004 => 0.016704021345257
1005 => 0.016246045770522
1006 => 0.016130400897946
1007 => 0.015719939508021
1008 => 0.016003446652055
1009 => 0.016013649569451
1010 => 0.015858375604036
1011 => 0.016258645397052
1012 => 0.016254956840443
1013 => 0.016634953436615
1014 => 0.017361364208293
1015 => 0.017146528798605
1016 => 0.016896698591163
1017 => 0.016923862061753
1018 => 0.017221778288957
1019 => 0.017041651337223
1020 => 0.017106426244956
1021 => 0.017221680244376
1022 => 0.017291215843822
1023 => 0.016913856959084
1024 => 0.01682587655189
1025 => 0.016645899515698
1026 => 0.016598946866385
1027 => 0.01674553440702
1028 => 0.016706913769077
1029 => 0.016012792053752
1030 => 0.015940252472443
1031 => 0.015942477157839
1101 => 0.015760072931571
1102 => 0.015481862704481
1103 => 0.016212982570204
1104 => 0.01615426341297
1105 => 0.016089442007886
1106 => 0.016097382260143
1107 => 0.016414736613903
1108 => 0.016230655061943
1109 => 0.0167200660382
1110 => 0.016619457854522
1111 => 0.016516269450563
1112 => 0.01650200566994
1113 => 0.016462286938036
1114 => 0.01632607662765
1115 => 0.016161594492887
1116 => 0.016052989140318
1117 => 0.014808033924148
1118 => 0.015039090370698
1119 => 0.015304899750996
1120 => 0.015396656083911
1121 => 0.015239700527115
1122 => 0.016332274189687
1123 => 0.016531897926141
1124 => 0.015927224607289
1125 => 0.01581411491798
1126 => 0.016339689642088
1127 => 0.016022703834554
1128 => 0.016165442524277
1129 => 0.015856919550985
1130 => 0.016483814413695
1201 => 0.016479038525177
1202 => 0.01623516226452
1203 => 0.016441284810035
1204 => 0.016405465945325
1205 => 0.016130130247684
1206 => 0.016492543046417
1207 => 0.016492722798644
1208 => 0.016257997200089
1209 => 0.015983889089017
1210 => 0.015934885032902
1211 => 0.015897967059388
1212 => 0.016156362965906
1213 => 0.016388039927706
1214 => 0.016819133316027
1215 => 0.016927520436377
1216 => 0.017350562582843
1217 => 0.017098661582171
1218 => 0.017210326033105
1219 => 0.017331553590494
1220 => 0.017389674539503
1221 => 0.017294969572036
1222 => 0.017952128156591
1223 => 0.018007612475947
1224 => 0.018026215888289
1225 => 0.017804625711038
1226 => 0.018001449652264
1227 => 0.017909362248288
1228 => 0.018148948090815
1229 => 0.018186518210109
1230 => 0.018154697655663
1231 => 0.018166623004531
]
'min_raw' => 0.0081465138151799
'max_raw' => 0.018186518210109
'avg_raw' => 0.013166516012644
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008146'
'max' => '$0.018186'
'avg' => '$0.013166'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012561759011435
'max_diff' => -0.0017354750465957
'year' => 2031
]
6 => [
'items' => [
101 => 0.017605854083331
102 => 0.017576775256475
103 => 0.017180283388954
104 => 0.017341856755689
105 => 0.017039803090992
106 => 0.017135587419565
107 => 0.017177808238933
108 => 0.017155754478906
109 => 0.017350991871421
110 => 0.017185000203419
111 => 0.016746920900003
112 => 0.016308722242174
113 => 0.016303221014974
114 => 0.016187851043217
115 => 0.0161044596847
116 => 0.016120523818818
117 => 0.016177135922726
118 => 0.016101169286306
119 => 0.016117380619792
120 => 0.016386596771219
121 => 0.016440586150426
122 => 0.016257109144869
123 => 0.015520422491952
124 => 0.015339637739487
125 => 0.015469582234441
126 => 0.015407477135351
127 => 0.012435036552514
128 => 0.013133367376617
129 => 0.012718442914009
130 => 0.012909659196136
131 => 0.012486128763982
201 => 0.012688259685337
202 => 0.012650933484802
203 => 0.013773828784849
204 => 0.01375629631923
205 => 0.013764688182724
206 => 0.013364122673271
207 => 0.014002234406369
208 => 0.014316591191849
209 => 0.014258412117192
210 => 0.014273054536864
211 => 0.014021449254236
212 => 0.013767124271842
213 => 0.013485038726033
214 => 0.014009118803319
215 => 0.01395085004507
216 => 0.014084497612056
217 => 0.014424401004194
218 => 0.014474453069854
219 => 0.014541723553678
220 => 0.014517611873866
221 => 0.015092049908761
222 => 0.015022481672471
223 => 0.015190121105783
224 => 0.014845274072627
225 => 0.01445504692143
226 => 0.014529216345386
227 => 0.014522073233426
228 => 0.014431133219696
229 => 0.014349036641503
301 => 0.014212368969379
302 => 0.014644805706989
303 => 0.014627249565164
304 => 0.014911463094524
305 => 0.014861225592506
306 => 0.014525727258833
307 => 0.014537709647455
308 => 0.014618296969475
309 => 0.014897210611116
310 => 0.014980011169844
311 => 0.014941654652009
312 => 0.015032441684665
313 => 0.015104196053591
314 => 0.015041452928653
315 => 0.01592976326424
316 => 0.015560874880124
317 => 0.015740668511833
318 => 0.015783548233591
319 => 0.015673712727973
320 => 0.015697532116227
321 => 0.015733611999037
322 => 0.015952681982292
323 => 0.016527585006766
324 => 0.016782205642808
325 => 0.017548244389101
326 => 0.016761062943475
327 => 0.016714354854172
328 => 0.016852341564533
329 => 0.017302087402044
330 => 0.017666564160868
331 => 0.017787482128939
401 => 0.017803463434557
402 => 0.018030313581132
403 => 0.018160339854644
404 => 0.018002768006587
405 => 0.017869242363818
406 => 0.017390970085235
407 => 0.017446331403773
408 => 0.017827715989323
409 => 0.018366444179853
410 => 0.018828729012443
411 => 0.018666852976323
412 => 0.019901852865245
413 => 0.02002429805971
414 => 0.020007380092962
415 => 0.02028632846824
416 => 0.019732672750162
417 => 0.019495974204109
418 => 0.017898112123365
419 => 0.018347046192107
420 => 0.018999598225996
421 => 0.018913230517366
422 => 0.01843932978759
423 => 0.018828369516243
424 => 0.018699740815554
425 => 0.01859828602251
426 => 0.019063070097423
427 => 0.018552020914778
428 => 0.018994500119467
429 => 0.018427015962593
430 => 0.01866759241242
501 => 0.018531029584125
502 => 0.018619402470543
503 => 0.018102776382297
504 => 0.018381535279125
505 => 0.018091179095715
506 => 0.018091041429078
507 => 0.018084631800236
508 => 0.018426234562382
509 => 0.018437374216192
510 => 0.018184929258833
511 => 0.018148547996546
512 => 0.018283068591412
513 => 0.018125580205824
514 => 0.01819926803022
515 => 0.018127812134958
516 => 0.018111725907843
517 => 0.017983548113344
518 => 0.017928325595152
519 => 0.017949979767444
520 => 0.017876062913921
521 => 0.017831525335983
522 => 0.01807577215499
523 => 0.017945280932483
524 => 0.018055772503633
525 => 0.01792985341316
526 => 0.017493362985243
527 => 0.017242332724345
528 => 0.016417842768693
529 => 0.016651667097339
530 => 0.016806692869141
531 => 0.016755456852485
601 => 0.016865531641967
602 => 0.016872289340051
603 => 0.016836502903911
604 => 0.016795066795387
605 => 0.016774897989318
606 => 0.016925219745763
607 => 0.017012486584978
608 => 0.016822251779318
609 => 0.01677768242602
610 => 0.016970020317693
611 => 0.017087346320504
612 => 0.017953615605473
613 => 0.01788943957883
614 => 0.018050508811796
615 => 0.018032374887973
616 => 0.018201201104462
617 => 0.018477160617139
618 => 0.017916057768373
619 => 0.018013445821442
620 => 0.017989568519848
621 => 0.018250254637687
622 => 0.018251068471292
623 => 0.01809477412141
624 => 0.018179503824067
625 => 0.018132210028482
626 => 0.018217676309244
627 => 0.017888582468868
628 => 0.018289383242961
629 => 0.018516611454841
630 => 0.018519766518784
701 => 0.01862747088782
702 => 0.018736904764577
703 => 0.018946953561331
704 => 0.01873104661764
705 => 0.018342651044057
706 => 0.01837069194996
707 => 0.018142975767277
708 => 0.018146803717448
709 => 0.018126369819432
710 => 0.018187693485569
711 => 0.017902039565056
712 => 0.017969081969244
713 => 0.017875222210781
714 => 0.018013241788658
715 => 0.017864755538316
716 => 0.01798955700549
717 => 0.018043417181489
718 => 0.018242162390449
719 => 0.017835400709358
720 => 0.01700598610627
721 => 0.017180339111519
722 => 0.016922457321622
723 => 0.016946325263102
724 => 0.016994542303447
725 => 0.016838255100056
726 => 0.016868069773287
727 => 0.016867004583357
728 => 0.016857825351998
729 => 0.016817169014298
730 => 0.016758209281022
731 => 0.016993086711546
801 => 0.01703299696388
802 => 0.017121712510982
803 => 0.017385669802829
804 => 0.017359294244832
805 => 0.017402313874236
806 => 0.017308402264791
807 => 0.016950681553319
808 => 0.016970107508999
809 => 0.0167278655304
810 => 0.017115517838955
811 => 0.017023716655529
812 => 0.016964531835372
813 => 0.016948382708848
814 => 0.017212994299766
815 => 0.017292170235048
816 => 0.01724283310548
817 => 0.017141641213342
818 => 0.017335959560944
819 => 0.017387950953129
820 => 0.017399589908471
821 => 0.017743884763573
822 => 0.017418832166232
823 => 0.017497075557157
824 => 0.018107508157593
825 => 0.017553930022938
826 => 0.01784717270713
827 => 0.0178328200037
828 => 0.017982833038142
829 => 0.017820514556324
830 => 0.017822526688443
831 => 0.017955728100264
901 => 0.017768670740363
902 => 0.017722352707458
903 => 0.017658364676735
904 => 0.017798080200862
905 => 0.017881833338787
906 => 0.018556822120556
907 => 0.018992895656807
908 => 0.018973964554536
909 => 0.019146959391753
910 => 0.019069023633135
911 => 0.018817348510146
912 => 0.019246927256577
913 => 0.019110990566868
914 => 0.019122197022405
915 => 0.01912177991757
916 => 0.019212165932435
917 => 0.019148119157147
918 => 0.019021876388787
919 => 0.019105682229927
920 => 0.019354555616978
921 => 0.020127066246752
922 => 0.020559373429579
923 => 0.020101040811525
924 => 0.02041719251414
925 => 0.020227614148941
926 => 0.020193162120517
927 => 0.020391728753186
928 => 0.02059064295046
929 => 0.020577972976023
930 => 0.02043357148316
1001 => 0.020352002743893
1002 => 0.020969668565152
1003 => 0.021424754220593
1004 => 0.021393720429824
1005 => 0.021530693489545
1006 => 0.021932850629304
1007 => 0.021969618838166
1008 => 0.021964986888957
1009 => 0.021873853046926
1010 => 0.022269828977722
1011 => 0.022600159065725
1012 => 0.021852758195606
1013 => 0.022137358662752
1014 => 0.022265124981708
1015 => 0.022452723844494
1016 => 0.022769234571234
1017 => 0.023113049170798
1018 => 0.023161668324912
1019 => 0.023127170708427
1020 => 0.022900415737782
1021 => 0.023276621775186
1022 => 0.023496994448781
1023 => 0.023628221332767
1024 => 0.023960990876485
1025 => 0.022265914022997
1026 => 0.021066054375312
1027 => 0.020878678965142
1028 => 0.021259714229896
1029 => 0.021360190190512
1030 => 0.021319688456774
1031 => 0.019969137336838
1101 => 0.020871568592999
1102 => 0.021842508746053
1103 => 0.02187980651161
1104 => 0.02236587945363
1105 => 0.022524164728355
1106 => 0.022915517157718
1107 => 0.022891037956708
1108 => 0.02298632604548
1109 => 0.022964420964031
1110 => 0.02368931893045
1111 => 0.024488989035799
1112 => 0.024461299002846
1113 => 0.024346336963935
1114 => 0.024517075195659
1115 => 0.025342420442236
1116 => 0.025266435877819
1117 => 0.0253402484098
1118 => 0.026313376969934
1119 => 0.027578582524032
1120 => 0.026990767519593
1121 => 0.028266156940015
1122 => 0.029068946974682
1123 => 0.030457289329601
1124 => 0.030283462029035
1125 => 0.030823933519678
1126 => 0.029972274882169
1127 => 0.028016694501841
1128 => 0.027707216420993
1129 => 0.028326799376084
1130 => 0.029849983613154
1201 => 0.028278828883906
1202 => 0.028596671439356
1203 => 0.028505132762004
1204 => 0.028500255054903
1205 => 0.028686417295908
1206 => 0.02841637925576
1207 => 0.027316195701279
1208 => 0.027820403340875
1209 => 0.027625704557188
1210 => 0.027841737373445
1211 => 0.029007577384075
1212 => 0.028492131725221
1213 => 0.027949151595023
1214 => 0.028630169175228
1215 => 0.029497338577858
1216 => 0.029443072675095
1217 => 0.029337774142346
1218 => 0.029931336458199
1219 => 0.030911727506546
1220 => 0.031176723267384
1221 => 0.031372337720435
1222 => 0.031399309648577
1223 => 0.031677137271404
1224 => 0.030183188121887
1225 => 0.032554123789506
1226 => 0.032963518883527
1227 => 0.032886569573539
1228 => 0.033341594990565
1229 => 0.033207714969996
1230 => 0.033013743825322
1231 => 0.03373505589799
]
'min_raw' => 0.012435036552514
'max_raw' => 0.03373505589799
'avg_raw' => 0.023085046225252
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012435'
'max' => '$0.033735'
'avg' => '$0.023085'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042885227373344
'max_diff' => 0.015548537687881
'year' => 2032
]
7 => [
'items' => [
101 => 0.032908129813559
102 => 0.031734412343808
103 => 0.031090487726403
104 => 0.031938459606519
105 => 0.032456286443565
106 => 0.03279853704288
107 => 0.032902101867439
108 => 0.030299159141636
109 => 0.02889631737825
110 => 0.029795522864967
111 => 0.03089261561861
112 => 0.030177093716247
113 => 0.030205140820158
114 => 0.029184994623237
115 => 0.030982875920803
116 => 0.030720939738309
117 => 0.032079865116442
118 => 0.031755546668893
119 => 0.032863697561582
120 => 0.032571884293356
121 => 0.0337831848547
122 => 0.034266405443274
123 => 0.035077808018768
124 => 0.035674679056304
125 => 0.036025173145869
126 => 0.036004130795402
127 => 0.03739296299372
128 => 0.036574017168473
129 => 0.035545228201251
130 => 0.035526620654622
131 => 0.036059445038798
201 => 0.037176098774801
202 => 0.037465630841895
203 => 0.03762743976871
204 => 0.037379623764684
205 => 0.036490716765755
206 => 0.036106891230478
207 => 0.03643392170703
208 => 0.036033991536256
209 => 0.036724383211599
210 => 0.03767243844155
211 => 0.037476668785582
212 => 0.038131097394056
213 => 0.03880836215593
214 => 0.039776881183273
215 => 0.040030087921176
216 => 0.04044862903034
217 => 0.040879445315262
218 => 0.041017811895155
219 => 0.041281996628798
220 => 0.041280604244846
221 => 0.042076742721363
222 => 0.042954908115318
223 => 0.04328639522196
224 => 0.044048631545378
225 => 0.042743328553471
226 => 0.043733415867073
227 => 0.044626499407434
228 => 0.043561728393103
301 => 0.04502926717653
302 => 0.045086248381977
303 => 0.04594659693301
304 => 0.045074468853699
305 => 0.044556601984135
306 => 0.046051664232347
307 => 0.046775077760236
308 => 0.046557179718301
309 => 0.044898964860223
310 => 0.04393381268864
311 => 0.041407823291658
312 => 0.044399966847005
313 => 0.04585735269079
314 => 0.044895190582966
315 => 0.045380449184525
316 => 0.048027862769
317 => 0.049035826454633
318 => 0.048826177054219
319 => 0.048861604351766
320 => 0.049405483260699
321 => 0.051817341862491
322 => 0.050372100281852
323 => 0.051476933318081
324 => 0.052062932776726
325 => 0.052607241732019
326 => 0.051270590968431
327 => 0.049531627964302
328 => 0.048980825384193
329 => 0.044799522523486
330 => 0.044581867551108
331 => 0.044459691219492
401 => 0.043689386730836
402 => 0.04308413840691
403 => 0.042602822468294
404 => 0.041339705712261
405 => 0.041765970538241
406 => 0.03975282606208
407 => 0.041040764556468
408 => 0.037827737363441
409 => 0.040503641885413
410 => 0.039047268712552
411 => 0.040025184129097
412 => 0.040021772274334
413 => 0.03822111994411
414 => 0.037182541258692
415 => 0.037844364019128
416 => 0.038553890553871
417 => 0.038669008846999
418 => 0.03958892851983
419 => 0.03984565832691
420 => 0.039067755025889
421 => 0.037761154516501
422 => 0.038064648014447
423 => 0.037176390972643
424 => 0.035619754673196
425 => 0.036737758039721
426 => 0.037119493544191
427 => 0.037288089689957
428 => 0.035757316670337
429 => 0.035276314552874
430 => 0.035020233061535
501 => 0.037563550942292
502 => 0.037702879637016
503 => 0.036990054335719
504 => 0.04021209229045
505 => 0.039482845868084
506 => 0.040297592791578
507 => 0.038037109160577
508 => 0.038123462679426
509 => 0.037053313502653
510 => 0.037652525534252
511 => 0.037229021783823
512 => 0.037604115123627
513 => 0.037828944524938
514 => 0.038898918100762
515 => 0.040515859264926
516 => 0.038739099729008
517 => 0.037964940155543
518 => 0.038445224400882
519 => 0.039724284637337
520 => 0.041662126369455
521 => 0.040514885061342
522 => 0.041024011272462
523 => 0.041135232700143
524 => 0.040289299432722
525 => 0.041693317135652
526 => 0.042445741628871
527 => 0.043217573466604
528 => 0.04388773342507
529 => 0.042909286857668
530 => 0.043956364939595
531 => 0.043112604839725
601 => 0.042355664803826
602 => 0.042356812769409
603 => 0.04188197322776
604 => 0.040961911782183
605 => 0.040792238335343
606 => 0.041674901033197
607 => 0.042382712928407
608 => 0.042441011706286
609 => 0.042832892740163
610 => 0.043064803899315
611 => 0.045337848526943
612 => 0.046252085879786
613 => 0.047369998009215
614 => 0.047805487785703
615 => 0.049116155881205
616 => 0.048057684946829
617 => 0.047828678102082
618 => 0.044649426018658
619 => 0.045170028369214
620 => 0.046003562963109
621 => 0.044663170697102
622 => 0.045513341074113
623 => 0.045681182715605
624 => 0.04461762468081
625 => 0.045185716980824
626 => 0.043677032259616
627 => 0.040548744469089
628 => 0.041696799814231
629 => 0.042542154979507
630 => 0.041335728927118
701 => 0.043498200930888
702 => 0.042234929428769
703 => 0.041834533010323
704 => 0.040272443830337
705 => 0.041009689792964
706 => 0.042006825513762
707 => 0.041390711567779
708 => 0.042669240515669
709 => 0.044479978477098
710 => 0.045770418179722
711 => 0.045869482116636
712 => 0.045039815840594
713 => 0.046369361342811
714 => 0.046379045630297
715 => 0.044879312872444
716 => 0.043960734908806
717 => 0.043752032062763
718 => 0.044273412690781
719 => 0.04490646502537
720 => 0.045904612115386
721 => 0.046507771497147
722 => 0.048080491273763
723 => 0.048506024151905
724 => 0.048973555771477
725 => 0.049598322196636
726 => 0.050348514476862
727 => 0.048707136476196
728 => 0.048772351484074
729 => 0.047243923016279
730 => 0.045610577999626
731 => 0.046850083267935
801 => 0.048470571521774
802 => 0.048098829725863
803 => 0.048057001179827
804 => 0.048127345191988
805 => 0.047847064017823
806 => 0.046579362654781
807 => 0.045942730966492
808 => 0.04676414826645
809 => 0.0472006950043
810 => 0.04787774092383
811 => 0.047794280723542
812 => 0.049538278302826
813 => 0.050215943026386
814 => 0.050042567391191
815 => 0.050074472680585
816 => 0.051301352293104
817 => 0.052665894749263
818 => 0.053943968826692
819 => 0.055244080672811
820 => 0.053676745098085
821 => 0.052880948753059
822 => 0.053702007447921
823 => 0.053266342147189
824 => 0.055769804191915
825 => 0.055943138472207
826 => 0.058446419488133
827 => 0.060822331257405
828 => 0.059330063644006
829 => 0.060737204790231
830 => 0.062259142665775
831 => 0.065195207753221
901 => 0.064206444323785
902 => 0.063449067032735
903 => 0.062733349152313
904 => 0.064222644444457
905 => 0.066138599045727
906 => 0.066551277316055
907 => 0.06721997376922
908 => 0.066516921213029
909 => 0.067363670578262
910 => 0.070353067918059
911 => 0.069545306368706
912 => 0.068398155114475
913 => 0.070757997209472
914 => 0.071612014889998
915 => 0.077605958224458
916 => 0.085173559281664
917 => 0.082040522752433
918 => 0.080095745876283
919 => 0.080552814572902
920 => 0.083316246299532
921 => 0.084203772863186
922 => 0.08179116971442
923 => 0.082643341933152
924 => 0.087338894642089
925 => 0.089857908019066
926 => 0.086436749504498
927 => 0.076997908847921
928 => 0.068294866695285
929 => 0.07060330537726
930 => 0.070341600069917
1001 => 0.075386385673539
1002 => 0.069526041522898
1003 => 0.069624714688705
1004 => 0.074773821116089
1005 => 0.073400127799295
1006 => 0.071174920555436
1007 => 0.068311113170727
1008 => 0.063017100349972
1009 => 0.05832804556016
1010 => 0.067524361827807
1011 => 0.06712779994793
1012 => 0.06655351957869
1013 => 0.067831518396807
1014 => 0.074037117891288
1015 => 0.073894058737375
1016 => 0.072983989389601
1017 => 0.073674268968904
1018 => 0.071053911207731
1019 => 0.071729237067223
1020 => 0.068293488088943
1021 => 0.069846590116678
1022 => 0.071170146260082
1023 => 0.071435869751454
1024 => 0.072034558345693
1025 => 0.066918829857146
1026 => 0.069215641758606
1027 => 0.070564803568543
1028 => 0.064469241428323
1029 => 0.070444313903757
1030 => 0.066829776405629
1031 => 0.065602948090233
1101 => 0.067254710794573
1102 => 0.0666110172623
1103 => 0.066057607362204
1104 => 0.065748795129161
1105 => 0.066961667360831
1106 => 0.066905085421528
1107 => 0.064920591042159
1108 => 0.062331899022612
1109 => 0.063200749035291
1110 => 0.062885087680172
1111 => 0.061741090208097
1112 => 0.062512006377494
1113 => 0.059117281719215
1114 => 0.053276834387078
1115 => 0.057135212792427
1116 => 0.05698666942093
1117 => 0.056911767117115
1118 => 0.059811231850988
1119 => 0.059532515218859
1120 => 0.059026641802344
1121 => 0.061731799446092
1122 => 0.060744380516619
1123 => 0.063787372992096
1124 => 0.065791684644859
1125 => 0.065283326377029
1126 => 0.067168391174131
1127 => 0.063220765584753
1128 => 0.064532008454296
1129 => 0.064802253792404
1130 => 0.061698418220679
1201 => 0.059578116706822
1202 => 0.059436716769055
1203 => 0.055760406139574
1204 => 0.0577242616037
1205 => 0.05945237314227
1206 => 0.058624741822168
1207 => 0.058362738471006
1208 => 0.059701256770499
1209 => 0.059805271106004
1210 => 0.057433733233554
1211 => 0.057926851054073
1212 => 0.059983234339656
1213 => 0.057875035471413
1214 => 0.053779149442746
1215 => 0.052763313077581
1216 => 0.05262778178089
1217 => 0.049872752991566
1218 => 0.052831196120912
1219 => 0.051539756413606
1220 => 0.055619398975163
1221 => 0.053289129023564
1222 => 0.053188675743402
1223 => 0.053036825877145
1224 => 0.050665458789368
1225 => 0.051184637473351
1226 => 0.052910466492055
1227 => 0.053526261728785
1228 => 0.053462029240532
1229 => 0.052902008988341
1230 => 0.053158383392026
1231 => 0.052332512110992
]
'min_raw' => 0.02889631737825
'max_raw' => 0.089857908019066
'avg_raw' => 0.059377112698658
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.028896'
'max' => '$0.089857'
'avg' => '$0.059377'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016461280825736
'max_diff' => 0.056122852121076
'year' => 2033
]
8 => [
'items' => [
101 => 0.052040879772635
102 => 0.051120407892984
103 => 0.049767568516745
104 => 0.049955689129457
105 => 0.047275360335448
106 => 0.045814974952657
107 => 0.04541075952627
108 => 0.04487022576478
109 => 0.045471814252935
110 => 0.04726776730074
111 => 0.045101466892394
112 => 0.041387496790588
113 => 0.041610712722004
114 => 0.04211221264649
115 => 0.041177670854964
116 => 0.040293205479433
117 => 0.041062176364513
118 => 0.039488518271976
119 => 0.042302381708733
120 => 0.04222627458853
121 => 0.043275108869605
122 => 0.043930966469808
123 => 0.04241942703776
124 => 0.042039278958238
125 => 0.042255828581101
126 => 0.038676745685421
127 => 0.042982621439592
128 => 0.04301985883192
129 => 0.042701009671336
130 => 0.044993755581433
131 => 0.04983216457712
201 => 0.048011760488392
202 => 0.047306845003231
203 => 0.045966800150651
204 => 0.047752330352724
205 => 0.047615229491815
206 => 0.046995207404827
207 => 0.04662021611203
208 => 0.047311149066869
209 => 0.046534601872709
210 => 0.046395112658548
211 => 0.045549959786494
212 => 0.045248278663176
213 => 0.045024925969743
214 => 0.044779036600456
215 => 0.04532140727729
216 => 0.044092323968779
217 => 0.042610169987237
218 => 0.0424869449208
219 => 0.042827180163291
220 => 0.042676651396023
221 => 0.042486224246975
222 => 0.042122646959693
223 => 0.042014781345156
224 => 0.042365292263444
225 => 0.041969585872753
226 => 0.04255347220746
227 => 0.042394687432324
228 => 0.041507728585968
301 => 0.040402249469184
302 => 0.040392408386223
303 => 0.040154234723861
304 => 0.039850884755193
305 => 0.039766499733617
306 => 0.040997415781406
307 => 0.043545375162112
308 => 0.043045149768179
309 => 0.043406613880456
310 => 0.045184659558678
311 => 0.045749846812086
312 => 0.045348690286811
313 => 0.044799562492757
314 => 0.044823721328825
315 => 0.046700257233393
316 => 0.046817294475956
317 => 0.047113009830265
318 => 0.047493087629701
319 => 0.045413419179558
320 => 0.044725769131845
321 => 0.044399922389866
322 => 0.043396440543131
323 => 0.044478609682803
324 => 0.043848076068219
325 => 0.043933156594922
326 => 0.043877747790293
327 => 0.043908004744347
328 => 0.042301595176556
329 => 0.042886886392658
330 => 0.04191372622679
331 => 0.040610774007048
401 => 0.040606406054333
402 => 0.040925301764224
403 => 0.04073561011759
404 => 0.040225154773918
405 => 0.040297662546206
406 => 0.039662418164705
407 => 0.040374792715591
408 => 0.040395221068711
409 => 0.040120918063316
410 => 0.0412184293477
411 => 0.041668080616396
412 => 0.041487528502105
413 => 0.041655412598742
414 => 0.043065936391679
415 => 0.043295913315396
416 => 0.043398053873488
417 => 0.043261199056675
418 => 0.041681194384342
419 => 0.041751274310259
420 => 0.041237074312644
421 => 0.04080262949972
422 => 0.040820005013874
423 => 0.04104336612159
424 => 0.042018797178938
425 => 0.044071534334325
426 => 0.04414943420884
427 => 0.044243851129253
428 => 0.043859810063793
429 => 0.043743979603672
430 => 0.04389678987895
501 => 0.044667690026721
502 => 0.046650654504137
503 => 0.045949742420074
504 => 0.045379889985384
505 => 0.04587980420172
506 => 0.045802846326572
507 => 0.045153244412656
508 => 0.045135012250499
509 => 0.0438882184874
510 => 0.043427307221302
511 => 0.043042135268741
512 => 0.042621537551712
513 => 0.042372193126495
514 => 0.042755299488643
515 => 0.042842920446448
516 => 0.042005251690056
517 => 0.041891080533852
518 => 0.042575138922658
519 => 0.042274110330012
520 => 0.042583725702698
521 => 0.042655559124993
522 => 0.04264399228954
523 => 0.042329683865903
524 => 0.042530014682317
525 => 0.042056172580008
526 => 0.04154094046253
527 => 0.041212254471673
528 => 0.040925432350781
529 => 0.041084577933652
530 => 0.040517252989554
531 => 0.040335754321942
601 => 0.042462147109302
602 => 0.044032936323899
603 => 0.044010096426618
604 => 0.043871064425865
605 => 0.043664491074356
606 => 0.044652577899392
607 => 0.044308348206969
608 => 0.04455880406956
609 => 0.044622555598189
610 => 0.044815512274616
611 => 0.044884477701253
612 => 0.04467601628239
613 => 0.043976394299268
614 => 0.042233002835392
615 => 0.041421449402762
616 => 0.041153623252503
617 => 0.04116335822439
618 => 0.040894824240901
619 => 0.040973919533887
620 => 0.040867318125857
621 => 0.040665440848698
622 => 0.041072112580663
623 => 0.041118977709362
624 => 0.041024055667756
625 => 0.041046413244783
626 => 0.04026049928202
627 => 0.040320250613694
628 => 0.039987547606104
629 => 0.039925169802975
630 => 0.039084125571553
701 => 0.037594093804279
702 => 0.038419716044232
703 => 0.037422480478423
704 => 0.037044812259067
705 => 0.038832634870042
706 => 0.03865318706638
707 => 0.038346050430597
708 => 0.037891731333389
709 => 0.037723219960903
710 => 0.036699398205894
711 => 0.036638905354732
712 => 0.037146339062027
713 => 0.036912175865838
714 => 0.036583322053851
715 => 0.035392246882212
716 => 0.034053084037853
717 => 0.034093504946447
718 => 0.034519467731227
719 => 0.035758011976883
720 => 0.035274091313072
721 => 0.034923001319128
722 => 0.034857252716988
723 => 0.035680234126785
724 => 0.036844925241582
725 => 0.03739137225415
726 => 0.036849859860538
727 => 0.036227799579853
728 => 0.036265661506789
729 => 0.036517539944248
730 => 0.036544008806656
731 => 0.036139111512761
801 => 0.036253087729293
802 => 0.036079947434177
803 => 0.035017385762643
804 => 0.034998167391424
805 => 0.034737397621108
806 => 0.0347295016161
807 => 0.034285867184724
808 => 0.034223799661075
809 => 0.033342936570894
810 => 0.03392272332435
811 => 0.033533832810303
812 => 0.032947683075635
813 => 0.032846630640445
814 => 0.032843592882219
815 => 0.03344543759904
816 => 0.033915690418423
817 => 0.033540597727293
818 => 0.033455196392389
819 => 0.034367059221052
820 => 0.03425101636429
821 => 0.034150523998731
822 => 0.036740639926696
823 => 0.034690361060445
824 => 0.033796322448934
825 => 0.032689779893861
826 => 0.033050075729465
827 => 0.033125995355873
828 => 0.03046495998021
829 => 0.029385378259714
830 => 0.029014906496419
831 => 0.02880169475894
901 => 0.028898858025054
902 => 0.027927107854301
903 => 0.028580140040311
904 => 0.027738686532437
905 => 0.027597614113515
906 => 0.029102237221682
907 => 0.029311596737302
908 => 0.028418404000762
909 => 0.02899197833239
910 => 0.028783992306462
911 => 0.027753110837712
912 => 0.027713738748256
913 => 0.027196478664473
914 => 0.026387066794641
915 => 0.026017143850708
916 => 0.02582448476969
917 => 0.025903979661369
918 => 0.025863784611552
919 => 0.025601484722519
920 => 0.025878819334154
921 => 0.025170344004
922 => 0.024888223418958
923 => 0.024760796095843
924 => 0.024131983462012
925 => 0.025132703996685
926 => 0.02532985854876
927 => 0.025527401556207
928 => 0.027246878567697
929 => 0.027160978355394
930 => 0.027937474439508
1001 => 0.027907301229564
1002 => 0.027685831967972
1003 => 0.026751489583241
1004 => 0.027123901804743
1005 => 0.025977674872669
1006 => 0.026836506026034
1007 => 0.026444571353285
1008 => 0.026703992518927
1009 => 0.026237529872039
1010 => 0.026495689560598
1011 => 0.025376611207009
1012 => 0.024331631586285
1013 => 0.024752161890521
1014 => 0.025209326424699
1015 => 0.026200575618155
1016 => 0.025610195776161
1017 => 0.025822518692076
1018 => 0.025111272466189
1019 => 0.023643768344745
1020 => 0.023652074258702
1021 => 0.023426330720933
1022 => 0.023231255345205
1023 => 0.025678008002932
1024 => 0.025373715632508
1025 => 0.024888865565039
1026 => 0.025537856647523
1027 => 0.025709460190605
1028 => 0.02571434550223
1029 => 0.026187832643127
1030 => 0.0264405328151
1031 => 0.026485072315676
1101 => 0.027230114562242
1102 => 0.027479842895947
1103 => 0.028508438559598
1104 => 0.026419092971026
1105 => 0.026376064273561
1106 => 0.025546989282968
1107 => 0.025021176816776
1108 => 0.02558299211238
1109 => 0.026080683768849
1110 => 0.025562453950044
1111 => 0.025630123823952
1112 => 0.024934442633138
1113 => 0.025183115924012
1114 => 0.025397306862022
1115 => 0.025279043215614
1116 => 0.025101996812916
1117 => 0.02603987872862
1118 => 0.025986959755347
1119 => 0.026860336957062
1120 => 0.027541196941602
1121 => 0.028761419752178
1122 => 0.027488053637688
1123 => 0.027441647115304
1124 => 0.027895278315447
1125 => 0.027479773447374
1126 => 0.027742358181255
1127 => 0.028719113292005
1128 => 0.028739750588345
1129 => 0.028394049285002
1130 => 0.028373013329276
1201 => 0.028439409046141
1202 => 0.028828290833651
1203 => 0.028692403587965
1204 => 0.028849655748917
1205 => 0.029046301984118
1206 => 0.029859714189187
1207 => 0.030055825118035
1208 => 0.029579377232793
1209 => 0.02962239514227
1210 => 0.029444190554402
1211 => 0.029272047155419
1212 => 0.029659000376808
1213 => 0.030366164994482
1214 => 0.030361765760097
1215 => 0.030525814206081
1216 => 0.030628015028879
1217 => 0.030189294281857
1218 => 0.029903703207755
1219 => 0.030013216998198
1220 => 0.030188331934016
1221 => 0.029956429584652
1222 => 0.028525020856759
1223 => 0.028959218826058
1224 => 0.028886947052771
1225 => 0.028784023259061
1226 => 0.029220612674745
1227 => 0.029178502560536
1228 => 0.027917141151756
1229 => 0.027997889416669
1230 => 0.027922051721192
1231 => 0.028167098830211
]
'min_raw' => 0.023231255345205
'max_raw' => 0.052040879772635
'avg_raw' => 0.03763606755892
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023231'
'max' => '$0.05204'
'avg' => '$0.037636'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056650620330459
'max_diff' => -0.037817028246431
'year' => 2034
]
9 => [
'items' => [
101 => 0.027466540099311
102 => 0.0276820272466
103 => 0.027817178765314
104 => 0.027896784048119
105 => 0.028184372915465
106 => 0.02815062768122
107 => 0.028182275264324
108 => 0.028608693633952
109 => 0.030765371418416
110 => 0.030882754631783
111 => 0.03030471675827
112 => 0.030535631487446
113 => 0.030092325702929
114 => 0.030389919845966
115 => 0.03059352620056
116 => 0.0296734682354
117 => 0.02961898837383
118 => 0.029173852908648
119 => 0.029413043493875
120 => 0.029032474074366
121 => 0.029125852498161
122 => 0.028864758284647
123 => 0.029334675885632
124 => 0.029860116781345
125 => 0.029992863901892
126 => 0.029643663378962
127 => 0.029390819186924
128 => 0.028946908077761
129 => 0.029685142145504
130 => 0.029901024284188
131 => 0.029684008208533
201 => 0.029633720841909
202 => 0.029538426373024
203 => 0.029653938013969
204 => 0.029899848543697
205 => 0.029783881679132
206 => 0.02986047983625
207 => 0.029568566648991
208 => 0.03018943951668
209 => 0.031175535051761
210 => 0.031178705510149
211 => 0.031062738020479
212 => 0.031015286622261
213 => 0.031134276304158
214 => 0.031198823325375
215 => 0.031583614137653
216 => 0.031996510009971
217 => 0.033923314885494
218 => 0.033382275786681
219 => 0.03509185169838
220 => 0.036443904283884
221 => 0.036849325736183
222 => 0.036476357076622
223 => 0.035200451439633
224 => 0.035137849422053
225 => 0.037044591117179
226 => 0.036505849254004
227 => 0.036441767623642
228 => 0.03576004734421
301 => 0.036163028462053
302 => 0.036074890580204
303 => 0.035935760621854
304 => 0.036704620522791
305 => 0.038143857620749
306 => 0.037919539021952
307 => 0.03775209559379
308 => 0.037018407233636
309 => 0.037460251501677
310 => 0.037302919220797
311 => 0.037978918544989
312 => 0.037578471520556
313 => 0.036501767754523
314 => 0.036673236378126
315 => 0.036647319240615
316 => 0.037180692094075
317 => 0.037020586802594
318 => 0.036616056112856
319 => 0.038138938464813
320 => 0.038040050955594
321 => 0.038180250834835
322 => 0.038241971157502
323 => 0.039168922808941
324 => 0.039548665241392
325 => 0.039634873421885
326 => 0.039995599362379
327 => 0.039625898231871
328 => 0.041104966346339
329 => 0.042088460336443
330 => 0.043230839216087
331 => 0.044900161801742
401 => 0.045527842536046
402 => 0.045414457629546
403 => 0.046680118962274
404 => 0.048954484243116
405 => 0.045874171879396
406 => 0.049117748277976
407 => 0.048090869439076
408 => 0.045656158184805
409 => 0.04549939148339
410 => 0.047148206212362
411 => 0.050805118588683
412 => 0.049889103514771
413 => 0.05080661686119
414 => 0.049736288806002
415 => 0.049683137996628
416 => 0.050754633416567
417 => 0.053258240869428
418 => 0.052068870814895
419 => 0.050363617196221
420 => 0.051622749931565
421 => 0.050531972628977
422 => 0.048074146076901
423 => 0.049888403055308
424 => 0.048675261080911
425 => 0.049029320403215
426 => 0.051579164392146
427 => 0.051272360417347
428 => 0.051669393170019
429 => 0.050968640753709
430 => 0.050314027498361
501 => 0.049092143245037
502 => 0.048730403555793
503 => 0.048830375391869
504 => 0.048730354014716
505 => 0.048046721004677
506 => 0.047899090521248
507 => 0.047653033247694
508 => 0.047729296685573
509 => 0.047266637024696
510 => 0.048139771395134
511 => 0.048301832828321
512 => 0.048937227209762
513 => 0.049003195962283
514 => 0.050772760270322
515 => 0.049798113985774
516 => 0.050451990860361
517 => 0.05039350195817
518 => 0.045708925760376
519 => 0.046354419028066
520 => 0.047358603985646
521 => 0.046906220023397
522 => 0.046266654942321
523 => 0.045750171848042
524 => 0.044967647147101
525 => 0.046069035636619
526 => 0.047517244380727
527 => 0.049039924925942
528 => 0.050869325831035
529 => 0.050461024845592
530 => 0.049005725548526
531 => 0.049071009211895
601 => 0.049474567130672
602 => 0.048951922958753
603 => 0.048797784989228
604 => 0.049453390940608
605 => 0.049457905738481
606 => 0.04885654045503
607 => 0.04818823299116
608 => 0.048185432758485
609 => 0.048066513900373
610 => 0.04975744420668
611 => 0.050687284902811
612 => 0.05079388964011
613 => 0.050680109554609
614 => 0.050723898993748
615 => 0.050182845180311
616 => 0.051419533753304
617 => 0.052554441483707
618 => 0.052250261968192
619 => 0.051794253632768
620 => 0.051431021029267
621 => 0.052164695910505
622 => 0.052132026522955
623 => 0.052544529054754
624 => 0.052525815557181
625 => 0.052387106470742
626 => 0.05225026692193
627 => 0.052792820265329
628 => 0.05263657361557
629 => 0.052480084271608
630 => 0.052166220934971
701 => 0.052208880175138
702 => 0.051752950575984
703 => 0.051542016681495
704 => 0.048370077009576
705 => 0.04752243108312
706 => 0.047789117747007
707 => 0.047876917921275
708 => 0.047508021327794
709 => 0.048036924281086
710 => 0.047954495316062
711 => 0.048275178199638
712 => 0.048074829456412
713 => 0.048083051838719
714 => 0.048672234773691
715 => 0.048843277086276
716 => 0.048756283585614
717 => 0.048817210851515
718 => 0.050221253978409
719 => 0.050021643944536
720 => 0.049915605092417
721 => 0.049944978579136
722 => 0.050303741701082
723 => 0.050404175787486
724 => 0.049978629506012
725 => 0.050179319592409
726 => 0.051033832508922
727 => 0.05133286366846
728 => 0.052287227586603
729 => 0.05188179683171
730 => 0.052625982528948
731 => 0.05491335565066
801 => 0.056740667574464
802 => 0.055060196012475
803 => 0.058415821653771
804 => 0.061028657551429
805 => 0.060928372557771
806 => 0.060472764183031
807 => 0.057498119979384
808 => 0.054760808033741
809 => 0.057050685708676
810 => 0.057056523077787
811 => 0.056859820554718
812 => 0.055638118077582
813 => 0.056817307956707
814 => 0.056910907767124
815 => 0.056858516763489
816 => 0.055921840338702
817 => 0.054491708564792
818 => 0.054771152890162
819 => 0.055228888395629
820 => 0.054362299590151
821 => 0.054085371958334
822 => 0.05460023311352
823 => 0.056259223031111
824 => 0.055945600597065
825 => 0.055937410647864
826 => 0.057279220417325
827 => 0.056318774203063
828 => 0.05477467757801
829 => 0.054384772816052
830 => 0.05300087358242
831 => 0.053956737712369
901 => 0.053991137560714
902 => 0.053467620545435
903 => 0.054817158098533
904 => 0.0548047218724
905 => 0.056085906926909
906 => 0.05853505156
907 => 0.057810718976907
908 => 0.056968398989931
909 => 0.057059982527515
910 => 0.058064427887381
911 => 0.057457117293549
912 => 0.057675510417411
913 => 0.058064097323232
914 => 0.058298541451584
915 => 0.057026249625336
916 => 0.056729617539884
917 => 0.056122812396765
918 => 0.05596450826148
919 => 0.056458738389146
920 => 0.056328526211914
921 => 0.053988246386663
922 => 0.053743674123731
923 => 0.053751174805866
924 => 0.053136186221945
925 => 0.052198181017292
926 => 0.054663202689738
927 => 0.054465226951485
928 => 0.054246677058558
929 => 0.054273448173413
930 => 0.055343430534086
1001 => 0.054722786729491
1002 => 0.056372870005525
1003 => 0.056033662490016
1004 => 0.055685755581681
1005 => 0.055637664249446
1006 => 0.055503749771759
1007 => 0.055044507200391
1008 => 0.054489944199263
1009 => 0.054123773670494
1010 => 0.049926320239179
1011 => 0.050705343180568
1012 => 0.05160153806446
1013 => 0.051910900947104
1014 => 0.051381714329082
1015 => 0.055065402713501
1016 => 0.055738448078239
1017 => 0.053699749766785
1018 => 0.053318392552215
1019 => 0.055090404428999
1020 => 0.054021664647657
1021 => 0.054502918105755
1022 => 0.053462711360914
1023 => 0.055576331158942
1024 => 0.055560228917363
1025 => 0.054737983077661
1026 => 0.05543293963088
1027 => 0.055312173827718
1028 => 0.054383860299797
1029 => 0.05560576035358
1030 => 0.055606366400762
1031 => 0.054814972657216
1101 => 0.053890798023121
1102 => 0.053725577426575
1103 => 0.053601105901342
1104 => 0.054472305740791
1105 => 0.05525342079267
1106 => 0.056706882249373
1107 => 0.057072316992981
1108 => 0.05849863312565
1109 => 0.057649331314718
1110 => 0.058025815807204
1111 => 0.058434542980781
1112 => 0.058630501818238
1113 => 0.058311197408333
1114 => 0.06052685345751
1115 => 0.060713922714008
1116 => 0.060776645417569
1117 => 0.060029538664034
1118 => 0.060693144323686
1119 => 0.060382665211844
1120 => 0.061190445607274
1121 => 0.061317115887535
1122 => 0.06120983066658
1123 => 0.061250037812889
1124 => 0.059359366243428
1125 => 0.059261324948464
1126 => 0.057924524934942
1127 => 0.058469280821579
1128 => 0.05745088580234
1129 => 0.057773829353572
1130 => 0.057916179793835
1201 => 0.057841824002158
1202 => 0.058500080502064
1203 => 0.057940428004225
1204 => 0.05646341304704
1205 => 0.054985995678117
1206 => 0.054967447906528
1207 => 0.054578469991873
1208 => 0.054297310204436
1209 => 0.054351471554176
1210 => 0.054542343215034
1211 => 0.054286216396521
1212 => 0.054340874039211
1213 => 0.055248555089816
1214 => 0.05543058405123
1215 => 0.054811978517039
1216 => 0.05232818803291
1217 => 0.051718659617988
1218 => 0.05215677655516
1219 => 0.051947384877536
1220 => 0.04192559392333
1221 => 0.044280065052694
1222 => 0.04288111825791
1223 => 0.043525817303394
1224 => 0.042097854881436
1225 => 0.042779353395117
1226 => 0.042653505503981
1227 => 0.046439425406133
1228 => 0.046380313474224
1229 => 0.046408607227895
1230 => 0.045058072646182
1231 => 0.047209510905861
]
'min_raw' => 0.027466540099311
'max_raw' => 0.061317115887535
'avg_raw' => 0.044391827993423
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027466'
'max' => '$0.061317'
'avg' => '$0.044391'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.004235284754106
'max_diff' => 0.0092762361149008
'year' => 2035
]
10 => [
'items' => [
101 => 0.048269386755796
102 => 0.048073231943655
103 => 0.048122599883882
104 => 0.047274295106983
105 => 0.046416820672438
106 => 0.045465749560158
107 => 0.047232722130832
108 => 0.047036264944201
109 => 0.047486867047268
110 => 0.048632875065158
111 => 0.048801629099053
112 => 0.049028436231943
113 => 0.048947142020033
114 => 0.050883899960664
115 => 0.050649345794914
116 => 0.051214553848534
117 => 0.050051877999799
118 => 0.04873619991475
119 => 0.04898626730596
120 => 0.048962183805272
121 => 0.048655573199752
122 => 0.048378778854574
123 => 0.047917994256177
124 => 0.049375984908795
125 => 0.049316793150902
126 => 0.050275038908293
127 => 0.050105659662772
128 => 0.048974503607047
129 => 0.049014903066868
130 => 0.049286608849486
131 => 0.050226985665408
201 => 0.050506153530109
202 => 0.050376831852263
203 => 0.050682926671411
204 => 0.050924851535975
205 => 0.05071330870966
206 => 0.053708309025941
207 => 0.052464576083928
208 => 0.053070762866027
209 => 0.053215334841698
210 => 0.052845016766038
211 => 0.052925325496553
212 => 0.053046971340463
213 => 0.053785581083987
214 => 0.055723906769447
215 => 0.056582378020908
216 => 0.059165131137153
217 => 0.056511093933971
218 => 0.056353614349832
219 => 0.056818846177739
220 => 0.058335195669158
221 => 0.059564054508488
222 => 0.059971737880061
223 => 0.060025619967733
224 => 0.060790461075081
225 => 0.061228853734371
226 => 0.060697589247331
227 => 0.060247398220275
228 => 0.058634869841126
229 => 0.058821524391782
301 => 0.060107389149386
302 => 0.061923748856558
303 => 0.06348237444533
304 => 0.062936598087728
305 => 0.067100486438169
306 => 0.067513318960157
307 => 0.067456278854091
308 => 0.068396772776895
309 => 0.066530083868386
310 => 0.065732038194604
311 => 0.06034473463021
312 => 0.061858347186548
313 => 0.064058471928534
314 => 0.063767277168887
315 => 0.062169487771754
316 => 0.063481162378795
317 => 0.06304748173385
318 => 0.062705419815756
319 => 0.064272471774513
320 => 0.062549433774913
321 => 0.064041283306432
322 => 0.062127970851051
323 => 0.062939091148157
324 => 0.062478660038045
325 => 0.062776615394602
326 => 0.0610347744684
327 => 0.06197462955138
328 => 0.060995673406991
329 => 0.060995209254314
330 => 0.060973598743168
331 => 0.062125336305686
401 => 0.062162894426251
402 => 0.061311758627372
403 => 0.061189096661513
404 => 0.061642642239031
405 => 0.061111659151533
406 => 0.061360102796205
407 => 0.061119184256436
408 => 0.061064948418613
409 => 0.060632788035373
410 => 0.060446601459776
411 => 0.060519610013505
412 => 0.06027039418114
413 => 0.06012023262761
414 => 0.06094372783066
415 => 0.060503767563372
416 => 0.060876297609779
417 => 0.060451752604858
418 => 0.058980094652346
419 => 0.058133728601356
420 => 0.055353903151826
421 => 0.05614225820095
422 => 0.056664938414132
423 => 0.056492192606793
424 => 0.05686331744471
425 => 0.056886101495607
426 => 0.05676544502763
427 => 0.056625740294764
428 => 0.056557739756961
429 => 0.057064560053948
430 => 0.057358786295136
501 => 0.056717396366084
502 => 0.056567127679706
503 => 0.057215608310086
504 => 0.057611181120003
505 => 0.060531868495266
506 => 0.060315494540811
507 => 0.06085855070525
508 => 0.06079741091501
509 => 0.061366620290974
510 => 0.062297037054844
511 => 0.060405239625278
512 => 0.060733590245617
513 => 0.060653086256233
514 => 0.061532007703049
515 => 0.061534751599868
516 => 0.06100779428712
517 => 0.061293466395267
518 => 0.061134012061504
519 => 0.06142216759416
520 => 0.060312604734732
521 => 0.061663932527605
522 => 0.062430048308525
523 => 0.062440685826886
524 => 0.062803818626771
525 => 0.063172782582688
526 => 0.063880976766082
527 => 0.063153031431286
528 => 0.061843528638039
529 => 0.061938070510043
530 => 0.06117030950149
531 => 0.061183215702751
601 => 0.061114321388942
602 => 0.061321078410805
603 => 0.060357976274075
604 => 0.060584014420545
605 => 0.06026755969181
606 => 0.060732902334839
607 => 0.060232270574834
608 => 0.060653047434772
609 => 0.060834640778547
610 => 0.061504724126503
611 => 0.060133298719513
612 => 0.057336869477322
613 => 0.057924712807458
614 => 0.05705524634809
615 => 0.057135718779196
616 => 0.057298285897124
617 => 0.056771352679268
618 => 0.056871874931661
619 => 0.056868283569442
620 => 0.056837335150043
621 => 0.056700259468952
622 => 0.056501472611774
623 => 0.057293378267406
624 => 0.057427938469592
625 => 0.05772704913057
626 => 0.05861699956894
627 => 0.058528072533671
628 => 0.058673116217743
629 => 0.058356486669799
630 => 0.05715040631581
701 => 0.057215902281659
702 => 0.056399166538018
703 => 0.057706163361332
704 => 0.057396649262056
705 => 0.057197103508745
706 => 0.057142655601175
707 => 0.058034812054547
708 => 0.058301759248235
709 => 0.058135415671288
710 => 0.057794240141954
711 => 0.058449398017767
712 => 0.058624690626442
713 => 0.058663932176982
714 => 0.059824746318861
715 => 0.058728808792477
716 => 0.05899261184776
717 => 0.061050727979172
718 => 0.059184300648593
719 => 0.060172988831897
720 => 0.06012459769021
721 => 0.060630377109404
722 => 0.060083109015241
723 => 0.060089893059163
724 => 0.060538990918942
725 => 0.059908313970108
726 => 0.059752149488347
727 => 0.059536409375265
728 => 0.060007470019485
729 => 0.060289849571454
730 => 0.062565621375401
731 => 0.064035873748553
801 => 0.06397204621552
802 => 0.064555310387309
803 => 0.064292544535831
804 => 0.063444004287277
805 => 0.064892359023099
806 => 0.064434038982949
807 => 0.0644718223302
808 => 0.064470416032128
809 => 0.064775158791795
810 => 0.064559220617307
811 => 0.064133584309793
812 => 0.064416141554336
813 => 0.065255235554563
814 => 0.067859809077816
815 => 0.069317362927439
816 => 0.067772062505911
817 => 0.068837990044283
818 => 0.068198813350076
819 => 0.068082655930879
820 => 0.068752137196404
821 => 0.069422790300259
822 => 0.069380072596856
823 => 0.068893212881875
824 => 0.068618198182491
825 => 0.070700701622915
826 => 0.0722350546833
827 => 0.072130422091015
828 => 0.072592236325018
829 => 0.073948137199428
830 => 0.074072103782681
831 => 0.07405648684253
901 => 0.073749222731362
902 => 0.075084283228197
903 => 0.07619801418281
904 => 0.073678099967341
905 => 0.074637650312492
906 => 0.075068423377212
907 => 0.07570092604083
908 => 0.076768064054108
909 => 0.077927258980906
910 => 0.078091181853481
911 => 0.077974870730958
912 => 0.077210350515902
913 => 0.078478755436877
914 => 0.079221757291828
915 => 0.079664197893156
916 => 0.080786153643029
917 => 0.075071083685007
918 => 0.071025673111312
919 => 0.070393923833792
920 => 0.071678610831941
921 => 0.072017372548166
922 => 0.071880818125127
923 => 0.067327340731795
924 => 0.07036995071768
925 => 0.073643543232579
926 => 0.073769295253202
927 => 0.075408124113751
928 => 0.075941793968611
929 => 0.077261266007563
930 => 0.077178732672273
1001 => 0.077500003116372
1002 => 0.077426148604902
1003 => 0.079870192709442
1004 => 0.082566336300812
1005 => 0.082472977421454
1006 => 0.082085374880872
1007 => 0.082661030749691
1008 => 0.08544373987229
1009 => 0.085187552608287
1010 => 0.085436416713287
1011 => 0.088717387595446
1012 => 0.092983116454918
1013 => 0.091001257127518
1014 => 0.095301321603317
1015 => 0.098007984254209
1016 => 0.10268887743478
1017 => 0.10210280655469
1018 => 0.10392504391991
1019 => 0.10105361736264
1020 => 0.094460241576102
1021 => 0.093416814619453
1022 => 0.095505781810443
1023 => 0.10064130381105
1024 => 0.095344045946872
1025 => 0.096415674313632
1026 => 0.096107045271913
1027 => 0.096090599741869
1028 => 0.096718258734853
1029 => 0.095807806629038
1030 => 0.092098460962743
1031 => 0.093798432222295
1101 => 0.093141991679657
1102 => 0.093870361402598
1103 => 0.097801072394787
1104 => 0.096063211368694
1105 => 0.09423251595007
1106 => 0.096528614268859
1107 => 0.099452336453663
1108 => 0.099269375173772
1109 => 0.098914353818901
1110 => 0.10091559060799
1111 => 0.10422104747621
1112 => 0.10511449918529
1113 => 0.10577402697112
1114 => 0.10586496470997
1115 => 0.10680167993764
1116 => 0.10176472607584
1117 => 0.10975850121266
1118 => 0.11113880535521
1119 => 0.11087936538415
1120 => 0.11241351534652
1121 => 0.11196212950996
1122 => 0.11130814225306
1123 => 0.11374009626646
1124 => 0.11095205723867
1125 => 0.10699478684306
1126 => 0.1048237500381
1127 => 0.10768274643542
1128 => 0.10942863577004
1129 => 0.1105825575608
1130 => 0.11093173359747
1201 => 0.10215573046576
1202 => 0.097425951517225
1203 => 0.10045768559621
1204 => 0.10415661041169
1205 => 0.10174417836173
1206 => 0.10183874113075
1207 => 0.098399247003499
1208 => 0.10446092932231
1209 => 0.10357779319523
1210 => 0.10815950498474
1211 => 0.10706604269564
1212 => 0.11080225079897
1213 => 0.10981838199139
1214 => 0.11390236640427
1215 => 0.11553157835603
1216 => 0.11826727878962
1217 => 0.12027967116488
1218 => 0.12146138645857
1219 => 0.12139044070484
1220 => 0.12607298542663
1221 => 0.12331185239984
1222 => 0.1198432185691
1223 => 0.1197804819265
1224 => 0.12157693653836
1225 => 0.12534181257157
1226 => 0.12631799015026
1227 => 0.12686354024416
1228 => 0.12602801128462
1229 => 0.12303099927623
1230 => 0.1217369046862
1231 => 0.12283951077043
]
'min_raw' => 0.045465749560158
'max_raw' => 0.12686354024416
'avg_raw' => 0.086164644902158
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045465'
'max' => '$0.126863'
'avg' => '$0.086164'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017999209460847
'max_diff' => 0.065546424356623
'year' => 2036
]
11 => [
'items' => [
101 => 0.12149111827744
102 => 0.12381882201246
103 => 0.12701525641134
104 => 0.12635520534805
105 => 0.12856165709226
106 => 0.13084510252204
107 => 0.13411053204256
108 => 0.13496423623773
109 => 0.13637537680889
110 => 0.13782790399214
111 => 0.13829441657669
112 => 0.13918513385096
113 => 0.13918043933125
114 => 0.14186467578944
115 => 0.14482547172671
116 => 0.14594310365044
117 => 0.14851303663249
118 => 0.14411211646193
119 => 0.14745026496543
120 => 0.15046135847486
121 => 0.1468714086601
122 => 0.15181931812871
123 => 0.15201143424117
124 => 0.1549121594486
125 => 0.15197171873916
126 => 0.15022569443212
127 => 0.15526640118388
128 => 0.15770544040028
129 => 0.15697078193874
130 => 0.15137999477186
131 => 0.1481259168406
201 => 0.13960936722973
202 => 0.14969758813137
203 => 0.15461126625512
204 => 0.15136726953258
205 => 0.15300335278741
206 => 0.16192929252398
207 => 0.16532771246387
208 => 0.16462086487312
209 => 0.16474031048026
210 => 0.16657403619413
211 => 0.17470578586067
212 => 0.169833052968
213 => 0.17355807468663
214 => 0.17553381277462
215 => 0.17736898841983
216 => 0.17286237704841
217 => 0.16699934186947
218 => 0.16514227251483
219 => 0.15104471799071
220 => 0.15031087905515
221 => 0.14989895302303
222 => 0.14730181765859
223 => 0.14526118067738
224 => 0.14363839038593
225 => 0.13937970405497
226 => 0.14081688567662
227 => 0.13402942852199
228 => 0.13837180307681
301 => 0.12753885756913
302 => 0.13656085649064
303 => 0.13165059265761
304 => 0.13494770276037
305 => 0.13493619945383
306 => 0.12886517440495
307 => 0.12536353385581
308 => 0.12759491549961
309 => 0.12998713374905
310 => 0.13037526311164
311 => 0.13347683651533
312 => 0.1343424189842
313 => 0.13171966369334
314 => 0.127314368852
315 => 0.12833761836956
316 => 0.125342797737
317 => 0.12009448977254
318 => 0.12386391617928
319 => 0.12515096408452
320 => 0.12571939776098
321 => 0.12055828965017
322 => 0.11893655742865
323 => 0.11807316080156
324 => 0.12664813460532
325 => 0.12711789102719
326 => 0.124714550756
327 => 0.13557787667588
328 => 0.13311917144851
329 => 0.13586614758489
330 => 0.12824476920104
331 => 0.12853591611885
401 => 0.12492783345393
402 => 0.12694811865411
403 => 0.12552024619146
404 => 0.12678489957479
405 => 0.12754292759839
406 => 0.13115041821245
407 => 0.13660204823866
408 => 0.13061157941392
409 => 0.12800144636189
410 => 0.12962075822743
411 => 0.13393319911577
412 => 0.14046676781139
413 => 0.13659876364326
414 => 0.13831531821011
415 => 0.13869030901877
416 => 0.13583818594648
417 => 0.1405719296573
418 => 0.14310878136879
419 => 0.14571106629728
420 => 0.14797055738632
421 => 0.14467165647137
422 => 0.14820195332924
423 => 0.14535715724308
424 => 0.14280508106418
425 => 0.14280895151029
426 => 0.14120799684338
427 => 0.13810594544298
428 => 0.13753387957074
429 => 0.1405098384821
430 => 0.14289627570464
501 => 0.14309283410456
502 => 0.14441408837053
503 => 0.14519599303513
504 => 0.15285972169609
505 => 0.15594213676121
506 => 0.15971125555571
507 => 0.16117953974207
508 => 0.16559854873398
509 => 0.16202984007865
510 => 0.16125772751284
511 => 0.15053865714528
512 => 0.15229390431748
513 => 0.15510422439632
514 => 0.15058499828828
515 => 0.15345140707137
516 => 0.15401729688399
517 => 0.15043143671443
518 => 0.15234679956686
519 => 0.14726016369631
520 => 0.13671292300047
521 => 0.14058367175128
522 => 0.14343384571182
523 => 0.13936629604621
524 => 0.1466572213859
525 => 0.1423980133177
526 => 0.14104804883813
527 => 0.13578135610622
528 => 0.13826703234209
529 => 0.14162894504255
530 => 0.13955167385796
531 => 0.14386232346982
601 => 0.14996735292846
602 => 0.15431816048148
603 => 0.15465216146121
604 => 0.15185488368609
605 => 0.15633753917271
606 => 0.15637019042411
607 => 0.15131373672301
608 => 0.14821668698554
609 => 0.14751303076893
610 => 0.14927090195793
611 => 0.1514052821023
612 => 0.15477060470469
613 => 0.15680419867154
614 => 0.16210673320219
615 => 0.16354144701061
616 => 0.16511776250801
617 => 0.16722420613023
618 => 0.16975353177977
619 => 0.16421951125317
620 => 0.1644393882054
621 => 0.15928618491476
622 => 0.1537792481546
623 => 0.1579583267062
624 => 0.16342191599289
625 => 0.1621685625738
626 => 0.16202753471046
627 => 0.16226470445873
628 => 0.16131971691142
629 => 0.15704557325784
630 => 0.15489912507257
701 => 0.15766859084891
702 => 0.15914043865429
703 => 0.16142314624182
704 => 0.16114175434954
705 => 0.16702176395012
706 => 0.16930655787864
707 => 0.16872200981988
708 => 0.16882958073063
709 => 0.17296609100224
710 => 0.17756674116249
711 => 0.18187585714682
712 => 0.18625927500693
713 => 0.18097489368886
714 => 0.17829181075088
715 => 0.18106006746509
716 => 0.1795911914865
717 => 0.18803178855643
718 => 0.18861619718425
719 => 0.19705618390294
720 => 0.2050667363139
721 => 0.20003545186853
722 => 0.20477972648649
723 => 0.20991104629219
724 => 0.21981019472403
725 => 0.21647650978843
726 => 0.21392295937326
727 => 0.21150986656959
728 => 0.21653112962633
729 => 0.22299090433219
730 => 0.22438227793288
731 => 0.22663683471162
801 => 0.22426644393286
802 => 0.2271213185359
803 => 0.23720028038008
804 => 0.23447685592033
805 => 0.23060915537515
806 => 0.23856552775734
807 => 0.24144490799284
808 => 0.26165390642874
809 => 0.28716860174614
810 => 0.27660535034621
811 => 0.27004839932829
812 => 0.27158943835046
813 => 0.28090654135343
814 => 0.28389889912792
815 => 0.27576463916928
816 => 0.2786377973015
817 => 0.2944691810927
818 => 0.30296221056507
819 => 0.29142753577555
820 => 0.25960382550309
821 => 0.23026091125848
822 => 0.2380439734448
823 => 0.23716161572941
824 => 0.25417046260771
825 => 0.23441190314766
826 => 0.23474458661531
827 => 0.25210515843437
828 => 0.2474736555086
829 => 0.23997121392692
830 => 0.23031568738472
831 => 0.21246655354338
901 => 0.19665707794018
902 => 0.22766310030284
903 => 0.22632606423777
904 => 0.22438983787791
905 => 0.22869870012021
906 => 0.24962131207698
907 => 0.24913897815149
908 => 0.24607061580646
909 => 0.24839794160186
910 => 0.23956322246253
911 => 0.24184013074755
912 => 0.23025626319095
913 => 0.23549265511157
914 => 0.2399551170568
915 => 0.24085102236018
916 => 0.24286954275476
917 => 0.22562150698687
918 => 0.23336536867093
919 => 0.2379141619086
920 => 0.21736254857429
921 => 0.23750792259145
922 => 0.22532125705756
923 => 0.22118491973779
924 => 0.22675395301786
925 => 0.22458369533256
926 => 0.22271783521654
927 => 0.22167665321225
928 => 0.22576593662136
929 => 0.22557516666258
930 => 0.21888430530956
1001 => 0.21015634942895
1002 => 0.21308573790787
1003 => 0.21202146361032
1004 => 0.20816439626186
1005 => 0.21076359395063
1006 => 0.19931804275314
1007 => 0.17962656680583
1008 => 0.19263535898284
1009 => 0.19213453463487
1010 => 0.19188199628804
1011 => 0.20165774407246
1012 => 0.20071803148786
1013 => 0.19901244394513
1014 => 0.2081330718091
1015 => 0.204803919949
1016 => 0.21506358153502
1017 => 0.22182125820888
1018 => 0.22010729281645
1019 => 0.2264629203909
1020 => 0.21315322510189
1021 => 0.21757417198461
1022 => 0.21848532300997
1023 => 0.20802052467702
1024 => 0.20087178008833
1025 => 0.20039504032592
1026 => 0.18800010236681
1027 => 0.19462137817612
1028 => 0.2004478268813
1029 => 0.19765741010221
1030 => 0.19677404751127
1031 => 0.20128695541038
1101 => 0.20163764700458
1102 => 0.19364184149213
1103 => 0.1953044226524
1104 => 0.20223766247184
1105 => 0.19512972279781
1106 => 0.18132015708653
1107 => 0.17789519385795
1108 => 0.17743824062866
1109 => 0.16814946871548
1110 => 0.17812406627798
1111 => 0.17376988713935
1112 => 0.18752468686719
1113 => 0.17966801903112
1114 => 0.17932933378363
1115 => 0.17881736135773
1116 => 0.17082213165772
1117 => 0.17257257883867
1118 => 0.17839133186877
1119 => 0.18046752850285
1120 => 0.18025096418414
1121 => 0.17836281680451
1122 => 0.17922720100603
1123 => 0.17644271832153
1124 => 0.17545945953163
1125 => 0.1723560243241
1126 => 0.16779483191488
1127 => 0.1684290936948
1128 => 0.15939217803122
1129 => 0.15446838675229
1130 => 0.1531055462208
1201 => 0.15128309890508
1202 => 0.15331139649446
1203 => 0.15936657758457
1204 => 0.15206274451157
1205 => 0.13954083501222
1206 => 0.14029342310943
1207 => 0.14198426511844
1208 => 0.13883339222068
1209 => 0.13585135545568
1210 => 0.13844399448256
1211 => 0.13313829635427
1212 => 0.14262543338897
1213 => 0.14236883291957
1214 => 0.14590505092549
1215 => 0.14811632061509
1216 => 0.14302005988763
1217 => 0.14173836409643
1218 => 0.14246847626892
1219 => 0.13040134840255
1220 => 0.14491890913438
1221 => 0.14504445760245
1222 => 0.1439694353962
1223 => 0.1516995883065
1224 => 0.16801262204239
1225 => 0.16187500256068
1226 => 0.15949833078684
1227 => 0.15498027600742
1228 => 0.16100031574545
1229 => 0.16053807062082
1230 => 0.15844762286598
1231 => 0.15718331354125
]
'min_raw' => 0.11807316080156
'max_raw' => 0.30296221056507
'avg_raw' => 0.21051768568332
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.118073'
'max' => '$0.302962'
'avg' => '$0.210517'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0726074112414
'max_diff' => 0.17609867032092
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037061815983821
]
1 => [
'year' => 2028
'avg' => 0.0063608835350293
]
2 => [
'year' => 2029
'avg' => 0.017376787379985
]
3 => [
'year' => 2030
'avg' => 0.01340616558537
]
4 => [
'year' => 2031
'avg' => 0.013166516012644
]
5 => [
'year' => 2032
'avg' => 0.023085046225252
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037061815983821
'min' => '$0.0037061'
'max_raw' => 0.023085046225252
'max' => '$0.023085'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023085046225252
]
1 => [
'year' => 2033
'avg' => 0.059377112698658
]
2 => [
'year' => 2034
'avg' => 0.03763606755892
]
3 => [
'year' => 2035
'avg' => 0.044391827993423
]
4 => [
'year' => 2036
'avg' => 0.086164644902158
]
5 => [
'year' => 2037
'avg' => 0.21051768568332
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023085046225252
'min' => '$0.023085'
'max_raw' => 0.21051768568332
'max' => '$0.210517'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21051768568332
]
]
]
]
'prediction_2025_max_price' => '$0.006336'
'last_price' => 0.00614442
'sma_50day_nextmonth' => '$0.00555'
'sma_200day_nextmonth' => '$0.0091078'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.005968'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005867'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005595'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00539'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005375'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006678'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.005983'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00587'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005689'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005538'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005782'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.007257'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009355'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00771'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005864'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005745'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006082'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.008428'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005456'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.002728'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001364'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '69.44'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 113.3
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005590'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006087'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 212.11
'cci_20_action' => 'SELL'
'adx_14' => 15.96
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000441'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 87.85
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001172'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 6
'buy_signals' => 25
'sell_pct' => 19.35
'buy_pct' => 80.65
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767694246
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de END pour 2026
La prévision du prix de END pour 2026 suggère que le prix moyen pourrait varier entre $0.002122 à la baisse et $0.006336 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, END pourrait potentiellement gagner 3.13% d'ici 2026 si END atteint l'objectif de prix prévu.
Prévision du prix de END de 2027 à 2032
La prévision du prix de END pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0037061 à la baisse et $0.023085 à la hausse. Compte tenu de la volatilité des prix sur le marché, si END atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de END | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.002043 | $0.0037061 | $0.005368 |
| 2028 | $0.003688 | $0.00636 | $0.009033 |
| 2029 | $0.0081019 | $0.017376 | $0.026651 |
| 2030 | $0.00689 | $0.0134061 | $0.019921 |
| 2031 | $0.008146 | $0.013166 | $0.018186 |
| 2032 | $0.012435 | $0.023085 | $0.033735 |
Prévision du prix de END de 2032 à 2037
La prévision du prix de END pour 2032-2037 est actuellement estimée entre $0.023085 à la baisse et $0.210517 à la hausse. Par rapport au prix actuel, END pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de END | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.012435 | $0.023085 | $0.033735 |
| 2033 | $0.028896 | $0.059377 | $0.089857 |
| 2034 | $0.023231 | $0.037636 | $0.05204 |
| 2035 | $0.027466 | $0.044391 | $0.061317 |
| 2036 | $0.045465 | $0.086164 | $0.126863 |
| 2037 | $0.118073 | $0.210517 | $0.302962 |
END Histogramme des prix potentiels
Prévision du prix de END basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour END est Haussier, avec 25 indicateurs techniques montrant des signaux haussiers et 6 indiquant des signaux baissiers. La prévision du prix de END a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de END et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de END devrait augmenter au cours du prochain mois, atteignant $0.0091078 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour END devrait atteindre $0.00555 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 69.44, ce qui suggère que le marché de END est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de END pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.005968 | BUY |
| SMA 5 | $0.005867 | BUY |
| SMA 10 | $0.005595 | BUY |
| SMA 21 | $0.00539 | BUY |
| SMA 50 | $0.005375 | BUY |
| SMA 100 | $0.006678 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.005983 | BUY |
| EMA 5 | $0.00587 | BUY |
| EMA 10 | $0.005689 | BUY |
| EMA 21 | $0.005538 | BUY |
| EMA 50 | $0.005782 | BUY |
| EMA 100 | $0.007257 | SELL |
| EMA 200 | $0.009355 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.00771 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.008428 | SELL |
| EMA 50 | $0.005456 | BUY |
| EMA 100 | $0.002728 | BUY |
| EMA 200 | $0.001364 | BUY |
Oscillateurs de END
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 69.44 | NEUTRAL |
| Stoch RSI (14) | 113.3 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 212.11 | SELL |
| Indice Directionnel Moyen (14) | 15.96 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000441 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 87.85 | SELL |
| VWMA (10) | 0.005590 | BUY |
| Moyenne Mobile de Hull (9) | 0.006087 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001172 | NEUTRAL |
Prévision du cours de END basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de END
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de END par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.008633 | $0.012132 | $0.017047 | $0.023954 | $0.03366 | $0.047298 |
| Action Amazon.com | $0.01282 | $0.026751 | $0.055817 | $0.116467 | $0.243015 | $0.507067 |
| Action Apple | $0.008715 | $0.012362 | $0.017534 | $0.024871 | $0.035278 | $0.050039 |
| Action Netflix | $0.009694 | $0.015297 | $0.024136 | $0.038083 | $0.060089 | $0.094812 |
| Action Google | $0.007956 | $0.0103042 | $0.013343 | $0.01728 | $0.022378 | $0.028979 |
| Action Tesla | $0.013928 | $0.031575 | $0.07158 | $0.162266 | $0.367846 | $0.833879 |
| Action Kodak | $0.0046076 | $0.003455 | $0.002591 | $0.001943 | $0.001457 | $0.001092 |
| Action Nokia | $0.00407 | $0.002696 | $0.001786 | $0.001183 | $0.000783 | $0.000519 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à END
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans END maintenant ?", "Devrais-je acheter END aujourd'hui ?", " END sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de END avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme END en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de END afin de prendre une décision responsable concernant cet investissement.
Le cours de END est de $0.006144 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de END basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si END présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0063041 | $0.006467 | $0.006636 | $0.0068086 |
| Si END présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006463 | $0.006799 | $0.007153 | $0.007525 |
| Si END présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006942 | $0.007845 | $0.008864 | $0.010017 |
| Si END présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007741 | $0.009753 | $0.012289 | $0.015483 |
| Si END présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.009338 | $0.014193 | $0.021572 | $0.032786 |
| Si END présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01413 | $0.032494 | $0.074726 | $0.171844 |
| Si END présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.022115 | $0.0796016 | $0.286511 | $1.03 |
Boîte à questions
Est-ce que END est un bon investissement ?
La décision d'acquérir END dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de END a connu une hausse de 2.7189% au cours des 24 heures précédentes, et END a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans END dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que END peut monter ?
Il semble que la valeur moyenne de END pourrait potentiellement s'envoler jusqu'à $0.006336 pour la fin de cette année. En regardant les perspectives de END sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.019921. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de END la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de END, le prix de END va augmenter de 0.86% durant la prochaine semaine et atteindre $0.006197 d'ici 13 janvier 2026.
Quel sera le prix de END le mois prochain ?
Basé sur notre nouveau pronostic expérimental de END, le prix de END va diminuer de -11.62% durant le prochain mois et atteindre $0.00543 d'ici 5 février 2026.
Jusqu'où le prix de END peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de END en 2026, END devrait fluctuer dans la fourchette de $0.002122 et $0.006336. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de END ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera END dans 5 ans ?
L'avenir de END semble suivre une tendance haussière, avec un prix maximum de $0.019921 prévue après une période de cinq ans. Selon la prévision de END pour 2030, la valeur de END pourrait potentiellement atteindre son point le plus élevé d'environ $0.019921, tandis que son point le plus bas devrait être autour de $0.00689.
Combien vaudra END en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de END, il est attendu que la valeur de END en 2026 augmente de 3.13% jusqu'à $0.006336 si le meilleur scénario se produit. Le prix sera entre $0.006336 et $0.002122 durant 2026.
Combien vaudra END en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de END, le valeur de END pourrait diminuer de -12.62% jusqu'à $0.005368 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.005368 et $0.002043 tout au long de l'année.
Combien vaudra END en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de END suggère que la valeur de END en 2028 pourrait augmenter de 47.02%, atteignant $0.009033 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.009033 et $0.003688 durant l'année.
Combien vaudra END en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de END pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.026651 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.026651 et $0.0081019.
Combien vaudra END en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de END, il est prévu que la valeur de END en 2030 augmente de 224.23%, atteignant $0.019921 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.019921 et $0.00689 au cours de 2030.
Combien vaudra END en 2031 ?
Notre simulation expérimentale indique que le prix de END pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.018186 dans des conditions idéales. Il est probable que le prix fluctue entre $0.018186 et $0.008146 durant l'année.
Combien vaudra END en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de END, END pourrait connaître une 449.04% hausse en valeur, atteignant $0.033735 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.033735 et $0.012435 tout au long de l'année.
Combien vaudra END en 2033 ?
Selon notre prédiction expérimentale de prix de END, la valeur de END est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.089857. Tout au long de l'année, le prix de END pourrait osciller entre $0.089857 et $0.028896.
Combien vaudra END en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de END suggèrent que END pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.05204 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.05204 et $0.023231.
Combien vaudra END en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de END, END pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.061317 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.061317 et $0.027466.
Combien vaudra END en 2036 ?
Notre récente simulation de prédiction de prix de END suggère que la valeur de END pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.126863 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.126863 et $0.045465.
Combien vaudra END en 2037 ?
Selon la simulation expérimentale, la valeur de END pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.302962 sous des conditions favorables. Il est prévu que le prix chute entre $0.302962 et $0.118073 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de END ?
Les traders de END utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de END
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de END. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de END sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de END au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de END.
Comment lire les graphiques de END et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de END dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de END au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de END ?
L'action du prix de END est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de END. La capitalisation boursière de END peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de END, de grands détenteurs de END, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de END.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


