Prédiction du prix de Dog [OLD] jusqu'à $0.000292 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000097 | $0.000292 |
| 2027 | $0.000094 | $0.000247 |
| 2028 | $0.00017 | $0.000416 |
| 2029 | $0.000373 | $0.001228 |
| 2030 | $0.000317 | $0.000918 |
| 2031 | $0.000375 | $0.000838 |
| 2032 | $0.000573 | $0.001555 |
| 2033 | $0.001332 | $0.004143 |
| 2034 | $0.001071 | $0.002399 |
| 2035 | $0.001266 | $0.002827 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Dog [OLD] aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,964.85, soit un rendement de 39.65% sur les 90 prochains jours.
Prévision du prix à long terme de Dog pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Dog [OLD]'
'name_with_ticker' => 'Dog [OLD] <small>DOG</small>'
'name_lang' => 'Dog'
'name_lang_with_ticker' => 'Dog <small>DOG</small>'
'name_with_lang' => 'Dog/Dog [OLD]'
'name_with_lang_with_ticker' => 'Dog/Dog [OLD] <small>DOG</small>'
'image' => '/uploads/coins/dog.png?1666222017'
'price_for_sd' => 0.0002833
'ticker' => 'DOG'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$7.74'
'current_supply' => '0'
'max_supply' => '5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0002833'
'change_24h_pct' => '0%'
'ath_price' => '$0.003652'
'ath_days' => 1468
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '30 déc. 2021'
'ath_pct' => '24.94%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.01397'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000285'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00025'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000097'
'current_year_max_price_prediction' => '$0.000292'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000317'
'grand_prediction_max_price' => '$0.000918'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00028870914396316
107 => 0.0002897870791053
108 => 0.00029221572202127
109 => 0.00027146323421158
110 => 0.0002807804919771
111 => 0.00028625350800535
112 => 0.00026152622247968
113 => 0.00028576472907479
114 => 0.00027110197956893
115 => 0.00026612522215953
116 => 0.00027282577037335
117 => 0.00027021456021793
118 => 0.0002679695950617
119 => 0.00026671686593113
120 => 0.00027163700902684
121 => 0.00027140747847058
122 => 0.00026335716940738
123 => 0.000252855869407
124 => 0.00025638045038055
125 => 0.00025509993706974
126 => 0.00025045919164184
127 => 0.0002535864937345
128 => 0.0002398154380098
129 => 0.00021612305239265
130 => 0.00023177496804874
131 => 0.00023117238632199
201 => 0.00023086853729046
202 => 0.00024263051931883
203 => 0.0002414998761419
204 => 0.00023944774770447
205 => 0.00025042150269379
206 => 0.00024641593450486
207 => 0.0002587601518326
208 => 0.00026689085173856
209 => 0.00026482864324182
210 => 0.00027247560580247
211 => 0.00025646164960753
212 => 0.00026178084348708
213 => 0.00026287712197357
214 => 0.00025028608826064
215 => 0.00024168486334855
216 => 0.00024111125970805
217 => 0.00022619792103229
218 => 0.00023416450617662
219 => 0.00024117477142393
220 => 0.00023781739838903
221 => 0.00023675455438484
222 => 0.00024218439389948
223 => 0.0002426063389332
224 => 0.0002329859474487
225 => 0.00023498633147651
226 => 0.00024332826540862
227 => 0.00023477613614461
228 => 0.00021816074596703
301 => 0.00021403989947724
302 => 0.00021349010259324
303 => 0.00020231404008449
304 => 0.00021431527414429
305 => 0.00020907641386411
306 => 0.00022562591071801
307 => 0.00021617292687179
308 => 0.00021576542763162
309 => 0.00021514943276296
310 => 0.00020552973408435
311 => 0.00020763583673122
312 => 0.00021463684269791
313 => 0.00021713488049881
314 => 0.00021687431469035
315 => 0.00021460253394929
316 => 0.00021564254353915
317 => 0.00021229231028686
318 => 0.0002111092731964
319 => 0.00020737528271891
320 => 0.00020188734825821
321 => 0.00020265047920443
322 => 0.00019177744504162
323 => 0.00018585323895413
324 => 0.00018421349678889
325 => 0.00018202076503599
326 => 0.00018446117167501
327 => 0.00019174664310197
328 => 0.00018295881886208
329 => 0.00016789271059698
330 => 0.00016879820937511
331 => 0.00017083259628457
401 => 0.00016704152973761
402 => 0.00016345360341101
403 => 0.00016657301425432
404 => 0.00016018930556941
405 => 0.00017160403698062
406 => 0.00017129530048536
407 => 0.0001755500064732
408 => 0.00017821056144276
409 => 0.00017207884360283
410 => 0.00017053673314802
411 => 0.0001714151893481
412 => 0.00015689626514624
413 => 0.00017436350061399
414 => 0.00017451455799165
415 => 0.00017322111301447
416 => 0.00018252187666065
417 => 0.00020214938893502
418 => 0.00019476472930255
419 => 0.00019190516589034
420 => 0.0001864691337534
421 => 0.00019371232381622
422 => 0.00019315615983076
423 => 0.00019064097536959
424 => 0.00018911978395963
425 => 0.00019192262577477
426 => 0.00018877248084105
427 => 0.00018820662825076
428 => 0.0001847781772073
429 => 0.00018355437616937
430 => 0.00018264832260181
501 => 0.00018165084665091
502 => 0.00018385103004307
503 => 0.00017886512501819
504 => 0.00017285261233248
505 => 0.00017235273695895
506 => 0.00017373293681475
507 => 0.00017312230112236
508 => 0.00017234981347018
509 => 0.00017087492416769
510 => 0.00017043735601767
511 => 0.00017185924022736
512 => 0.00017025401585562
513 => 0.00017262261185722
514 => 0.00017197848480518
515 => 0.00016838044345332
516 => 0.00016389595176336
517 => 0.00016385603038078
518 => 0.00016288985400223
519 => 0.00016165928311854
520 => 0.00016131696645035
521 => 0.00016631030617384
522 => 0.0001766463699634
523 => 0.00017461715332047
524 => 0.00017608347030748
525 => 0.00018329629861629
526 => 0.00018558903983834
527 => 0.00018396170642548
528 => 0.0001817341120804
529 => 0.00018183211492635
530 => 0.00018944447914216
531 => 0.00018991925296078
601 => 0.0001911188532326
602 => 0.00019266067858889
603 => 0.0001842242859507
604 => 0.00018143476159176
605 => 0.00018011293019358
606 => 0.00017604220110031
607 => 0.00018043213342947
608 => 0.00017787430785691
609 => 0.00017821944591441
610 => 0.00017799467430169
611 => 0.00017811741480122
612 => 0.00017160084633056
613 => 0.00017397514138051
614 => 0.00017002741535786
615 => 0.00016474185336657
616 => 0.00016472413430942
617 => 0.00016601776811874
618 => 0.00016524826410906
619 => 0.00016317754860478
620 => 0.00016347168396866
621 => 0.00016089474867728
622 => 0.00016378457056995
623 => 0.00016386744032155
624 => 0.00016275470148321
625 => 0.00016720687082745
626 => 0.00016903092824041
627 => 0.00016829849969984
628 => 0.0001689795391015
629 => 0.00017470147643335
630 => 0.00017563440188407
701 => 0.00017604874574368
702 => 0.00017549357986184
703 => 0.00016908412561202
704 => 0.0001693684121631
705 => 0.00016728250607834
706 => 0.00016552013524409
707 => 0.00016559062083504
708 => 0.00016649670853602
709 => 0.00017045364666753
710 => 0.00017878078969106
711 => 0.00017909679868174
712 => 0.00017947981079708
713 => 0.00017792190803754
714 => 0.00017745202965814
715 => 0.00017807192052647
716 => 0.00018119915762572
717 => 0.0001892432604816
718 => 0.00018639993728477
719 => 0.00018408827126678
720 => 0.00018611622558524
721 => 0.00018580403791355
722 => 0.00018316885978987
723 => 0.00018309489911667
724 => 0.00017803714977992
725 => 0.00017616741500951
726 => 0.00017460492468813
727 => 0.00017289872604702
728 => 0.00017188723430028
729 => 0.00017344134533805
730 => 0.0001737967889201
731 => 0.00017039869797479
801 => 0.00016993555073532
802 => 0.00017271050515415
803 => 0.00017148935117515
804 => 0.00017274533832571
805 => 0.0001730367381183
806 => 0.00017298981604018
807 => 0.00017171479103747
808 => 0.00017252745395241
809 => 0.00017060526389211
810 => 0.00016851517090514
811 => 0.00016718182179685
812 => 0.00016601829785677
813 => 0.00016666388856314
814 => 0.00016436247557516
815 => 0.00016362620724201
816 => 0.00017225214204232
817 => 0.00017862421282374
818 => 0.00017853156039096
819 => 0.00017796756253469
820 => 0.00017712957612306
821 => 0.00018113785370022
822 => 0.00017974144994038
823 => 0.0001807574503491
824 => 0.00018101606509452
825 => 0.00018179881403914
826 => 0.0001820785795073
827 => 0.00018123293395292
828 => 0.00017839484418552
829 => 0.00017132259432265
830 => 0.00016803044292031
831 => 0.00016694397812242
901 => 0.00016698346905433
902 => 0.00016589413285689
903 => 0.00016621499118766
904 => 0.00016578255142359
905 => 0.00016496361512885
906 => 0.00016661332155464
907 => 0.00016680343485213
908 => 0.00016641837365983
909 => 0.00016650906951003
910 => 0.00016332092729955
911 => 0.00016356331482754
912 => 0.00016221367027061
913 => 0.0001619606281864
914 => 0.0001585488442735
915 => 0.00015250437452581
916 => 0.0001558535975169
917 => 0.00015180820711568
918 => 0.00015027615647307
919 => 0.00015752864593243
920 => 0.00015680069714345
921 => 0.00015555476524846
922 => 0.00015371177230081
923 => 0.00015302818828904
924 => 0.00014887494822994
925 => 0.00014862955265057
926 => 0.00015068801057078
927 => 0.00014973810306782
928 => 0.00014840407317555
929 => 0.00014357235213422
930 => 0.0001381398979559
1001 => 0.00013830386960035
1002 => 0.00014003183220007
1003 => 0.00014505611650626
1004 => 0.00014309304170683
1005 => 0.00014166880841616
1006 => 0.00014140209233311
1007 => 0.0001447406025204
1008 => 0.00014946529387491
1009 => 0.00015168201334944
1010 => 0.00014948531167296
1011 => 0.00014696185906583
1012 => 0.00014711544993347
1013 => 0.00014813722116597
1014 => 0.00014824459487544
1015 => 0.00014660208664332
1016 => 0.00014706444308962
1017 => 0.00014636208136893
1018 => 0.00014205168878557
1019 => 0.00014197372745214
1020 => 0.00014091588759771
1021 => 0.00014088385662733
1022 => 0.00013908420714443
1023 => 0.00013883242374138
1024 => 0.00013525911046216
1025 => 0.00013761107608353
1026 => 0.00013603350102846
1027 => 0.00013365572330812
1028 => 0.0001332457935329
1029 => 0.00013323347054885
1030 => 0.00013567491660626
1031 => 0.00013758254636487
1101 => 0.00013606094362196
1102 => 0.00013571450417243
1103 => 0.00013941357113392
1104 => 0.00013894283114532
1105 => 0.00013853517335115
1106 => 0.00014904224958499
1107 => 0.00014072507886852
1108 => 0.00013709831770863
1109 => 0.00013260951207001
1110 => 0.00013407108982047
1111 => 0.00013437906572753
1112 => 0.00012358429733468
1113 => 0.00011920486114209
1114 => 0.00011770200367637
1115 => 0.00011683708795756
1116 => 0.00011723124091155
1117 => 0.0001132892346816
1118 => 0.00011593832806289
1119 => 0.00011252488387725
1120 => 0.00011195260885121
1121 => 0.00011805626989974
1122 => 0.00011890555867758
1123 => 0.000115282228898
1124 => 0.0001176089931803
1125 => 0.00011676527610709
1126 => 0.00011258339758063
1127 => 0.00011242368058074
1128 => 0.00011032536093629
1129 => 0.00010704189700749
1130 => 0.00010554126588493
1201 => 0.00010475972416722
1202 => 0.00010508220351189
1203 => 0.00010491914808719
1204 => 0.00010385510114611
1205 => 0.00010498013801233
1206 => 0.00010210613371647
1207 => 0.00010096168204844
1208 => 0.00010044475978107
1209 => 9.7893915546981E-5
1210 => 0.00010195344308899
1211 => 0.00010275322115535
1212 => 0.00010355457503156
1213 => 0.00011052981341644
1214 => 0.00011018135021855
1215 => 0.00011333128781902
1216 => 0.00011320888703623
1217 => 0.00011231047380697
1218 => 0.00010852021617453
1219 => 0.00011003094531197
1220 => 0.00010538115584636
1221 => 0.00010886509426895
1222 => 0.00010727517026562
1223 => 0.0001083275393641
1224 => 0.00010643528483674
1225 => 0.00010748253662146
1226 => 0.00010294287820469
1227 => 9.8703809049826E-5
1228 => 0.00010040973422389
1229 => 0.0001022642699843
1230 => 0.00010628537603979
1231 => 0.00010389043844654
]
'min_raw' => 9.7893915546981E-5
'max_raw' => 0.00029221572202127
'avg_raw' => 0.00019505481878413
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000097'
'max' => '$0.000292'
'avg' => '$0.000195'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00018544608445302
'max_diff' => 8.8757220212716E-6
'year' => 2026
]
1 => [
'items' => [
101 => 0.00010475174856769
102 => 0.00010186650384342
103 => 9.5913419847829E-5
104 => 9.5947113656741E-5
105 => 9.5031361379005E-5
106 => 9.4240017709019E-5
107 => 0.0001041655258388
108 => 0.0001029311320038
109 => 0.00010096428698119
110 => 0.00010359698720326
111 => 0.00010429311492855
112 => 0.00010431293270625
113 => 0.00010623368282844
114 => 0.00010725878751297
115 => 0.00010743946665668
116 => 0.00011046180847451
117 => 0.00011147485758619
118 => 0.00011564746350514
119 => 0.0001071718145425
120 => 0.00010699726412967
121 => 0.00010363403469438
122 => 0.00010150102141597
123 => 0.00010378008393843
124 => 0.00010579902221027
125 => 0.00010369676873426
126 => 0.00010397127865723
127 => 0.00010114917512611
128 => 0.00010215794434617
129 => 0.00010302683229438
130 => 0.00010254708344025
131 => 0.00010182887618552
201 => 0.00010563349229565
202 => 0.0001054188209443
203 => 0.0001089617669338
204 => 0.00011172374669111
205 => 0.00011667370817915
206 => 0.00011150816531905
207 => 0.00011131991240606
208 => 0.0001131601148273
209 => 0.00011147457586079
210 => 0.0001125397783048
211 => 0.00011650208759746
212 => 0.00011658580494908
213 => 0.00011518343144559
214 => 0.00011509809689045
215 => 0.00011536743806208
216 => 0.00011694497771705
217 => 0.00011639373688871
218 => 0.00011703164673097
219 => 0.00011782936275675
220 => 0.00012112905446395
221 => 0.0001219245989635
222 => 0.00011999183827212
223 => 0.00012016634492235
224 => 0.00011944343936831
225 => 0.00011874512166108
226 => 0.00012031483788581
227 => 0.00012318352513936
228 => 0.00012316567918484
301 => 0.00012383115886835
302 => 0.00012424574719805
303 => 0.00012246603058979
304 => 0.0001213075005198
305 => 0.00012175175466782
306 => 0.00012246212672509
307 => 0.0001215213905838
308 => 0.00011571473132837
309 => 0.00011747610081564
310 => 0.00011718292280639
311 => 0.00011676540166955
312 => 0.00011853647230927
313 => 0.00011836564822551
314 => 0.00011324880371003
315 => 0.00011357636749435
316 => 0.00011326872394868
317 => 0.00011426278318269
318 => 0.00011142089339993
319 => 0.00011229503955668
320 => 0.00011284329583159
321 => 0.00011316622298941
322 => 0.0001143328573167
323 => 0.00011419596624363
324 => 0.00011432434797539
325 => 0.00011605415870271
326 => 0.00012480294776212
327 => 0.00012527912504751
328 => 0.0001229342539406
329 => 0.00012387098369727
330 => 0.00012207266740473
331 => 0.00012327988917959
401 => 0.00012410583965783
402 => 0.00012037352826778
403 => 0.00012015252500977
404 => 0.00011834678642619
405 => 0.00011931708805874
406 => 0.0001177732683942
407 => 0.00011815206773936
408 => 0.00011709291174716
409 => 0.00011899918165726
410 => 0.00012113068762116
411 => 0.00012166919020336
412 => 0.00012025262174953
413 => 0.00011922693283254
414 => 0.00011742616097725
415 => 0.00012042088470542
416 => 0.00012129663318609
417 => 0.00012041628477147
418 => 0.00012021228880781
419 => 0.00011982571682528
420 => 0.00012029430188134
421 => 0.00012129186367179
422 => 0.00012082143195349
423 => 0.00012113216039136
424 => 0.00011994798400795
425 => 0.00012246661975004
426 => 0.00012646681945117
427 => 0.00012647968074731
428 => 0.00012600924649321
429 => 0.00012581675493208
430 => 0.00012629944902512
501 => 0.00012656129076945
502 => 0.0001281222349554
503 => 0.00012979719025769
504 => 0.0001376134758132
505 => 0.00013541869410658
506 => 0.00014235376764434
507 => 0.00014783851040611
508 => 0.00014948314494163
509 => 0.00014797015855499
510 => 0.00014279431385619
511 => 0.0001425403622226
512 => 0.00015027525938787
513 => 0.00014808979665794
514 => 0.0001478298428203
515 => 0.00014506437318676
516 => 0.00014669910825026
517 => 0.00014634156771176
518 => 0.00014577717248025
519 => 0.00014889613310478
520 => 0.00015473454896236
521 => 0.00015382457709864
522 => 0.00015314532531475
523 => 0.00015016904172497
524 => 0.00015196142922303
525 => 0.00015132319436589
526 => 0.00015406545634599
527 => 0.00015244100109752
528 => 0.0001480732396283
529 => 0.00014876882003861
530 => 0.0001486636844589
531 => 0.00015082736723922
601 => 0.00015017788337447
602 => 0.00014853686231047
603 => 0.00015471459389168
604 => 0.00015431344636514
605 => 0.00015488218184268
606 => 0.00015513255678862
607 => 0.00015889283313826
608 => 0.00016043329804328
609 => 0.00016078301054636
610 => 0.0001622463330623
611 => 0.0001607466017491
612 => 0.00016674659629219
613 => 0.00017073624255396
614 => 0.00017537042199232
615 => 0.00018214220370177
616 => 0.000184688456267
617 => 0.00018422849853171
618 => 0.00018936278613854
619 => 0.00019858898683921
620 => 0.00018609337748049
621 => 0.00019925128447693
622 => 0.0001950856430372
623 => 0.00018520898212029
624 => 0.00018457304159542
625 => 0.00019126163103875
626 => 0.00020609627867116
627 => 0.00020238036769242
628 => 0.00020610235657034
629 => 0.00020176045883917
630 => 0.00020154484702043
701 => 0.00020589148028883
702 => 0.00021604762584309
703 => 0.00021122282178769
704 => 0.00020430528208377
705 => 0.0002094130857523
706 => 0.00020498823350971
707 => 0.00019501780296898
708 => 0.00020237752620533
709 => 0.00019745628887003
710 => 0.00019889256755184
711 => 0.00020923627645183
712 => 0.00020799169403092
713 => 0.0002096022989288
714 => 0.00020675962344091
715 => 0.00020410411628644
716 => 0.00019914741498207
717 => 0.00019767998008827
718 => 0.00019808552630014
719 => 0.00019767977911971
720 => 0.00019490655029435
721 => 0.00019430767179356
722 => 0.00019330951472143
723 => 0.00019361888533569
724 => 0.00019174205801894
725 => 0.00019528401893796
726 => 0.00019594143809618
727 => 0.00019851898187802
728 => 0.00019878659102412
729 => 0.00020596501376748
730 => 0.00020201125914893
731 => 0.00020466377909781
801 => 0.00020442651274709
802 => 0.00018542303931101
803 => 0.00018804155028144
804 => 0.00019211513161741
805 => 0.00019027998874717
806 => 0.00018768552608593
807 => 0.0001855903583807
808 => 0.00018241596506538
809 => 0.00018688386269787
810 => 0.00019275867297666
811 => 0.0001989355859077
812 => 0.00020635674206698
813 => 0.00020470042640401
814 => 0.00019879685255535
815 => 0.00019906168256564
816 => 0.00020069875748247
817 => 0.00019857859672124
818 => 0.00019795331992229
819 => 0.00020061285405207
820 => 0.00020063116880197
821 => 0.00019819166761618
822 => 0.00019548060847219
823 => 0.00019546924903538
824 => 0.00019498684224643
825 => 0.00020184627793525
826 => 0.00020561827399693
827 => 0.00020605072726653
828 => 0.00020558916644628
829 => 0.0002057668028873
830 => 0.00020357196148927
831 => 0.00020858871806517
901 => 0.00021319259000502
902 => 0.00021195865397776
903 => 0.00021010880845856
904 => 0.00020863531740189
905 => 0.00021161154631303
906 => 0.00021147901952463
907 => 0.00021315237919996
908 => 0.00021307646593929
909 => 0.00021251377801872
910 => 0.00021195867407312
911 => 0.00021415959847132
912 => 0.0002135257675904
913 => 0.00021289095219506
914 => 0.00021161773273432
915 => 0.00021179078440497
916 => 0.00020994125828768
917 => 0.00020908558287727
918 => 0.000196218277757
919 => 0.00019277971337754
920 => 0.00019386155572975
921 => 0.00019421772632212
922 => 0.00019272125869754
923 => 0.00019486680886019
924 => 0.00019453242714004
925 => 0.00019583331080639
926 => 0.00019502057516946
927 => 0.00019505393012349
928 => 0.00019744401233819
929 => 0.00019813786337325
930 => 0.00019778496513675
1001 => 0.00019803212296495
1002 => 0.000203727770797
1003 => 0.00020291803181185
1004 => 0.00020248787411468
1005 => 0.00020260703073654
1006 => 0.0002040623908737
1007 => 0.00020446981225239
1008 => 0.0002027435392419
1009 => 0.00020355765957311
1010 => 0.00020702408061615
1011 => 0.00020823713179877
1012 => 0.00021210860887611
1013 => 0.00021046393660364
1014 => 0.0002134828037395
1015 => 0.00022276177210751
1016 => 0.00023017445409565
1017 => 0.00022335744539732
1018 => 0.00023696989186917
1019 => 0.00024756913403698
1020 => 0.00024716231746862
1021 => 0.00024531409443178
1022 => 0.00023324713901916
1023 => 0.00022214294674029
1024 => 0.00023143207509047
1025 => 0.00023145575498896
1026 => 0.00023065781062556
1027 => 0.00022570184671532
1028 => 0.00023048535382416
1029 => 0.00023086505124731
1030 => 0.00023065252166004
1031 => 0.00022685279574993
1101 => 0.00022105131659193
1102 => 0.00022218491173262
1103 => 0.0002240417636978
1104 => 0.00022052635554782
1105 => 0.00021940296963782
1106 => 0.00022149155777743
1107 => 0.0002282214239379
1108 => 0.00022694918172373
1109 => 0.00022691595833798
1110 => 0.00023235915004489
1111 => 0.00022846299949703
1112 => 0.00022219920999762
1113 => 0.00022061752053979
1114 => 0.00021500358851816
1115 => 0.00021888115136164
1116 => 0.00021902069794528
1117 => 0.00021689699640364
1118 => 0.00022237153667334
1119 => 0.00022232108782098
1120 => 0.00022751834902927
1121 => 0.00023745356045735
1122 => 0.00023451522955601
1123 => 0.00023109827040723
1124 => 0.0002314697886087
1125 => 0.0002355444262938
1126 => 0.00023308080733446
1127 => 0.0002339667418892
1128 => 0.00023554308532574
1129 => 0.00023649413245941
1130 => 0.00023133294756195
1201 => 0.00023012962847434
1202 => 0.00022766805992871
1203 => 0.0002270258826425
1204 => 0.00022903077886061
1205 => 0.00022850255954117
1206 => 0.00021900896959528
1207 => 0.0002180168366241
1208 => 0.00021804726392588
1209 => 0.0002155524983965
1210 => 0.00021174738215185
1211 => 0.0002217470004511
1212 => 0.0002209438911571
1213 => 0.00022005732065225
1214 => 0.00022016592048039
1215 => 0.00022450641586558
1216 => 0.0002219887093419
1217 => 0.0002286824447791
1218 => 0.00022730641400532
1219 => 0.00022589509323443
1220 => 0.00022570000571401
1221 => 0.00022515676762544
1222 => 0.00022329380208977
1223 => 0.00022104415925857
1224 => 0.00021955875020069
1225 => 0.00020253134122852
1226 => 0.00020569152928987
1227 => 0.00020932703759425
1228 => 0.00021058200049254
1229 => 0.00020843529961423
1230 => 0.00022337856692474
1231 => 0.00022610884585928
]
'min_raw' => 9.4240017709019E-5
'max_raw' => 0.00024756913403698
'avg_raw' => 0.000170904575873
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000094'
'max' => '$0.000247'
'avg' => '$0.00017'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.653897837962E-6
'max_diff' => -4.4646587984288E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00021783865287488
102 => 0.00021629163743725
103 => 0.00022347998899928
104 => 0.00021914453426714
105 => 0.00022109678926756
106 => 0.00021687708178304
107 => 0.00022545120161585
108 => 0.0002253858811883
109 => 0.00022205035491806
110 => 0.00022486951888097
111 => 0.0002243796197662
112 => 0.00022061381882213
113 => 0.00022557058422271
114 => 0.00022557304271651
115 => 0.000222362671202
116 => 0.00021861366011374
117 => 0.00021794342547885
118 => 0.00021743849371481
119 => 0.00022097260700649
120 => 0.00022414128193292
121 => 0.00023003740038987
122 => 0.00023151982465827
123 => 0.0002373058252684
124 => 0.00023386054362032
125 => 0.00023538779235105
126 => 0.00023704583689077
127 => 0.00023784076441569
128 => 0.000236545472672
129 => 0.0002455335132324
130 => 0.00024629237924214
131 => 0.00024654682045104
201 => 0.00024351610374472
202 => 0.00024620808952801
203 => 0.00024494859852921
204 => 0.00024822544421142
205 => 0.00024873929545525
206 => 0.00024830408173251
207 => 0.0002484671862279
208 => 0.00024079747920861
209 => 0.00024039976443873
210 => 0.00023497689533089
211 => 0.00023718675457616
212 => 0.00023305552863844
213 => 0.00023436558293964
214 => 0.00023494304239295
215 => 0.00023464141034507
216 => 0.00023731169670224
217 => 0.00023504140779519
218 => 0.00022904974209941
219 => 0.00022305644397832
220 => 0.00022298120300245
221 => 0.00022140327339766
222 => 0.00022026271930563
223 => 0.00022048243048708
224 => 0.00022125672134792
225 => 0.00022021771611321
226 => 0.00022043944055894
227 => 0.00022412154370025
228 => 0.00022485996322569
229 => 0.00022235052515913
301 => 0.00021227476921174
302 => 0.00020980215342913
303 => 0.00021157942061957
304 => 0.0002107300013732
305 => 0.00017007555791045
306 => 0.00017962671636614
307 => 0.00017395174233846
308 => 0.00017656703146341
309 => 0.00017077435250856
310 => 0.00017353892252613
311 => 0.00017302840738982
312 => 0.00018838638754724
313 => 0.0001881465938113
314 => 0.00018826137038309
315 => 0.00018278278556251
316 => 0.00019151031994148
317 => 0.00019580981720855
318 => 0.00019501409469183
319 => 0.00019521436090612
320 => 0.00019177312383091
321 => 0.00018829468908015
322 => 0.00018443656961429
323 => 0.00019160447870388
324 => 0.00019080752957341
325 => 0.00019263544414547
326 => 0.0001972843455628
327 => 0.00019796891395596
328 => 0.00019888898081858
329 => 0.00019855920234315
330 => 0.00020641586354854
331 => 0.00020546437003664
401 => 0.00020775719563694
402 => 0.00020304067942004
403 => 0.00019770349362478
404 => 0.00019871791815871
405 => 0.00019862022091861
406 => 0.00019737642292041
407 => 0.0001962535777016
408 => 0.00019438435677196
409 => 0.00020029884838598
410 => 0.00020005873082758
411 => 0.00020394595499193
412 => 0.0002032588503624
413 => 0.00019867019748337
414 => 0.00019883408211864
415 => 0.00019993628505107
416 => 0.00020375102198494
417 => 0.00020488349563401
418 => 0.00020435888871849
419 => 0.00020560059437531
420 => 0.00020658198789804
421 => 0.00020572384229197
422 => 0.0002178733744051
423 => 0.0002128280416093
424 => 0.00021528710170877
425 => 0.00021587357305287
426 => 0.00021437133903712
427 => 0.00021469711980417
428 => 0.00021519058889631
429 => 0.00021818683659259
430 => 0.00022604985751889
501 => 0.00022953233596175
502 => 0.00024000954417957
503 => 0.00022924316460551
504 => 0.0002286043321973
505 => 0.0002304915937787
506 => 0.00023664282412768
507 => 0.00024162781856985
508 => 0.00024328162881754
509 => 0.0002435002071432
510 => 0.0002466028651111
511 => 0.00024838125079716
512 => 0.0002462261208258
513 => 0.00024439987382658
514 => 0.0002378584837575
515 => 0.00023861566746961
516 => 0.00024383191238309
517 => 0.00025120016555866
518 => 0.00025752289331938
519 => 0.00025530889442689
520 => 0.000272200143137
521 => 0.00027387484145204
522 => 0.00027364345229438
523 => 0.00027745866428458
524 => 0.00026988624543845
525 => 0.00026664888967303
526 => 0.00024479472915659
527 => 0.00025093485684209
528 => 0.00025985989303001
529 => 0.00025867863102337
530 => 0.0002521970311768
531 => 0.00025751797644468
601 => 0.00025575870553778
602 => 0.00025437109558128
603 => 0.0002607280057934
604 => 0.0002537383218877
605 => 0.00025979016558622
606 => 0.00025202861344456
607 => 0.00025531900778734
608 => 0.00025345122081991
609 => 0.0002546599078952
610 => 0.00024759394795061
611 => 0.00025140656842023
612 => 0.00024743533040434
613 => 0.00024743344752045
614 => 0.00024734578222115
615 => 0.00025201792613567
616 => 0.00025217028458099
617 => 0.00024871756316894
618 => 0.00024821997207181
619 => 0.00025005982715592
620 => 0.00024790583871124
621 => 0.00024891367634747
622 => 0.00024793636508654
623 => 0.00024771635173638
624 => 0.00024596324793013
625 => 0.00024520796260781
626 => 0.000245504129444
627 => 0.00024449315934761
628 => 0.00024388401329616
629 => 0.00024722460773953
630 => 0.00024543986288763
701 => 0.00024695106999413
702 => 0.00024522885876673
703 => 0.00023925892432085
704 => 0.00023582555189012
705 => 0.00022454889913507
706 => 0.00022774694386776
707 => 0.00022986725083415
708 => 0.0002291664893944
709 => 0.00023067199612565
710 => 0.00023076442201173
711 => 0.00023027496642658
712 => 0.00022970823956211
713 => 0.00022943238826645
714 => 0.00023148835782357
715 => 0.00023268191735223
716 => 0.00023008005200427
717 => 0.00022947047135721
718 => 0.00023210110087692
719 => 0.00023370578336427
720 => 0.00024555385725772
721 => 0.00024467611367492
722 => 0.00024687907781927
723 => 0.00024663105786385
724 => 0.00024894011524684
725 => 0.00025271444818757
726 => 0.00024504017399898
727 => 0.00024637216264169
728 => 0.0002460455897866
729 => 0.00024961102658638
730 => 0.00024962215749089
731 => 0.00024748450002265
801 => 0.00024864335881571
802 => 0.00024799651562905
803 => 0.00024916544869345
804 => 0.00024466439087423
805 => 0.00025014619343887
806 => 0.00025325402225346
807 => 0.00025329717445957
808 => 0.00025477026065243
809 => 0.00025626700153978
810 => 0.00025913986533438
811 => 0.0002561868789278
812 => 0.00025087474384978
813 => 0.00025125826284432
814 => 0.00024814375999171
815 => 0.00024819611534734
816 => 0.00024791663835581
817 => 0.00024875536984545
818 => 0.00024484844527024
819 => 0.00024576539265899
820 => 0.00024448166094511
821 => 0.00024636937205965
822 => 0.00024433850695023
823 => 0.00024604543230329
824 => 0.00024678208470019
825 => 0.00024950034790378
826 => 0.00024393701726491
827 => 0.00023259300948788
828 => 0.00023497765745541
829 => 0.00023145057580138
830 => 0.000231777020637
831 => 0.00023243649115828
901 => 0.00023029893143349
902 => 0.00023070671046673
903 => 0.00023069214173017
904 => 0.00023056659622913
905 => 0.00023001053438823
906 => 0.00022920413470546
907 => 0.0002324165828449
908 => 0.00023296244038245
909 => 0.00023417581407099
910 => 0.00023778599112883
911 => 0.00023742524930692
912 => 0.0002380136341855
913 => 0.0002367291932992
914 => 0.00023183660216585
915 => 0.00023210229340336
916 => 0.00022878911941424
917 => 0.00023409108876306
918 => 0.00023283551243868
919 => 0.00023202603421435
920 => 0.00023180516058108
921 => 0.00023542428656956
922 => 0.00023650718578816
923 => 0.00023583239566579
924 => 0.00023444838143804
925 => 0.0002371060979024
926 => 0.00023781719070821
927 => 0.00023797637816334
928 => 0.00024268534217161
929 => 0.00023823955694134
930 => 0.00023930970163357
1001 => 0.00024765866503608
1002 => 0.0002400873073082
1003 => 0.00024409802435808
1004 => 0.00024390172062926
1005 => 0.00024595346775671
1006 => 0.00024373341747879
1007 => 0.00024376093766269
1008 => 0.00024558275011449
1009 => 0.00024302434309155
1010 => 0.00024239084553371
1011 => 0.00024151567319476
1012 => 0.00024342657997933
1013 => 0.0002445720821738
1014 => 0.00025380398858259
1015 => 0.00025976822114875
1016 => 0.00025950929808351
1017 => 0.00026187537021615
1018 => 0.00026080943304966
1019 => 0.00025736724075904
1020 => 0.00026324264326849
1021 => 0.00026138342007722
1022 => 0.00026153669217815
1023 => 0.0002615309873829
1024 => 0.00026276720826898
1025 => 0.00026189123247321
1026 => 0.00026016459426268
1027 => 0.00026131081728566
1028 => 0.00026471468988169
1029 => 0.00027528041486334
1030 => 0.00028119313454031
1031 => 0.00027492446171456
1101 => 0.00027924850828888
1102 => 0.00027665562115962
1103 => 0.00027618441643652
1104 => 0.00027890023722973
1105 => 0.00028162081170772
1106 => 0.00028144752287484
1107 => 0.00027947252550686
1108 => 0.0002783568996074
1109 => 0.00028680479268026
1110 => 0.00029302905639024
1111 => 0.00029260460333322
1112 => 0.00029447800108741
1113 => 0.00029997835483572
1114 => 0.00030048123824979
1115 => 0.00030041788649826
1116 => 0.00029917143748603
1117 => 0.00030458725006244
1118 => 0.00030910521619584
1119 => 0.00029888292055308
1120 => 0.00030277543691416
1121 => 0.0003045229129177
1122 => 0.00030708872614366
1123 => 0.00031141768313608
1124 => 0.00031612007862898
1125 => 0.00031678504891082
1126 => 0.00031631322067409
1127 => 0.00031321186443935
1128 => 0.00031835728169893
1129 => 0.00032137134645471
1130 => 0.00032316615304113
1201 => 0.00032771748391695
1202 => 0.00030453370473459
1203 => 0.00028812307352072
1204 => 0.00028556031648429
1205 => 0.00029077178369332
1206 => 0.00029214600603567
1207 => 0.00029159205873259
1208 => 0.00027312040131207
1209 => 0.00028546306703077
1210 => 0.00029874273754327
1211 => 0.00029925286377082
1212 => 0.00030590094449419
1213 => 0.00030806583209176
1214 => 0.00031341840845794
1215 => 0.00031308360334888
1216 => 0.00031438687051595
1217 => 0.00031408727196369
1218 => 0.0003240017925641
1219 => 0.00033493898110691
1220 => 0.0003345602610458
1221 => 0.00033298791078983
1222 => 0.00033532311904551
1223 => 0.00034661146972204
1224 => 0.00034557221928388
1225 => 0.00034658176256142
1226 => 0.00035989136419262
1227 => 0.00037719573958194
1228 => 0.00036915611988271
1229 => 0.00038659978129178
1230 => 0.00039757964150002
1231 => 0.00041656817439144
]
'min_raw' => 0.00017007555791045
'max_raw' => 0.00041656817439144
'avg_raw' => 0.00029332186615095
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00017'
'max' => '$0.000416'
'avg' => '$0.000293'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 7.5835540201428E-5
'max_diff' => 0.00016899904035446
'year' => 2028
]
3 => [
'items' => [
101 => 0.00041419071655294
102 => 0.00042158281306328
103 => 0.0004099345708316
104 => 0.0003831878521695
105 => 0.00037895508155889
106 => 0.00038742919551214
107 => 0.00040826197777427
108 => 0.00038677309706113
109 => 0.00039112026964222
110 => 0.00038986828364642
111 => 0.0003898015706333
112 => 0.0003923477350026
113 => 0.00038865439078593
114 => 0.00037360704202728
115 => 0.00038050315328879
116 => 0.00037784023355226
117 => 0.00038079494153375
118 => 0.00039674028189563
119 => 0.0003896904668322
120 => 0.00038226405934336
121 => 0.00039157842238612
122 => 0.00040343880730195
123 => 0.00040269660572908
124 => 0.00040125642446152
125 => 0.00040937465086133
126 => 0.00042278358245666
127 => 0.00042640796278542
128 => 0.00042908340624692
129 => 0.00042945230469828
130 => 0.00043325218801633
131 => 0.00041281925772128
201 => 0.00044524684285439
202 => 0.00045084619101291
203 => 0.00044979374562832
204 => 0.00045601718544993
205 => 0.00045418609158098
206 => 0.0004515331238547
207 => 0.00046139859973557
208 => 0.000450088627741
209 => 0.0004340355463806
210 => 0.00042522850845234
211 => 0.00043682632643976
212 => 0.00044390870917661
213 => 0.00044858971364152
214 => 0.00045000618276427
215 => 0.00041440540793499
216 => 0.0003952185648115
217 => 0.00040751711127605
218 => 0.00042252218676314
219 => 0.00041273590376932
220 => 0.0004131195075348
221 => 0.00039916683977554
222 => 0.00042375668826122
223 => 0.00042017415417003
224 => 0.00043876034737249
225 => 0.00043432460320121
226 => 0.00044948092224595
227 => 0.0004454897554979
228 => 0.00046205686552591
301 => 0.00046866593425268
302 => 0.00047976358926434
303 => 0.00048792706946649
304 => 0.00049272082118369
305 => 0.0004924330223115
306 => 0.00051142825485267
307 => 0.00050022742986602
308 => 0.00048615655385103
309 => 0.00048590205609696
310 => 0.00049318956217098
311 => 0.00050846217567247
312 => 0.00051242214214592
313 => 0.00051463522317601
314 => 0.00051124581254052
315 => 0.00049908811978787
316 => 0.00049383848969818
317 => 0.00049831132663102
318 => 0.00049284143141741
319 => 0.00050228400513763
320 => 0.0005152506756804
321 => 0.00051257310948909
322 => 0.00052152381182349
323 => 0.00053078684709824
324 => 0.00054403340357007
325 => 0.00054749654395038
326 => 0.00055322098330759
327 => 0.00055911331178653
328 => 0.00056100576889126
329 => 0.00056461905669914
330 => 0.00056460001288882
331 => 0.0005754888989002
401 => 0.00058749967737147
402 => 0.00059203346819422
403 => 0.00060245867019644
404 => 0.00058460587711029
405 => 0.00059814742574424
406 => 0.00061036224157901
407 => 0.00059579923458305
408 => 0.00061587094698153
409 => 0.00061665028609049
410 => 0.0006284173813617
411 => 0.00061648917600164
412 => 0.00060940624573502
413 => 0.00062985440002082
414 => 0.00063974861776889
415 => 0.00063676839886136
416 => 0.00061408878582347
417 => 0.00060088827826105
418 => 0.00056634000378246
419 => 0.00060726392727674
420 => 0.00062719677664359
421 => 0.00061403716455903
422 => 0.00062067410744556
423 => 0.00065688311579852
424 => 0.00067066916181965
425 => 0.00066780176061899
426 => 0.00066828630422046
427 => 0.00067572500441903
428 => 0.00070871229766651
429 => 0.00068894554691315
430 => 0.00070405648721807
501 => 0.00071207127546925
502 => 0.00071951585746595
503 => 0.00070123431696636
504 => 0.00067745030138556
505 => 0.00066991690526606
506 => 0.00061272870048483
507 => 0.00060975180607018
508 => 0.0006080807850261
509 => 0.00059754523371383
510 => 0.00058926717631276
511 => 0.00058268415772287
512 => 0.00056540835108722
513 => 0.00057123842869013
514 => 0.00054370439865398
515 => 0.000561319695325
516 => 0.00051737471855491
517 => 0.00055397340104108
518 => 0.00053405440210175
519 => 0.00054742947416975
520 => 0.00054738280980331
521 => 0.00052275506155567
522 => 0.00050855029033442
523 => 0.00051760212341457
524 => 0.00052730640701189
525 => 0.00052888089437642
526 => 0.00054146275136807
527 => 0.00054497407720832
528 => 0.00053433459598422
529 => 0.00051646405658839
530 => 0.00052061497530643
531 => 0.00050846617209909
601 => 0.00048717586177518
602 => 0.00050246693434296
603 => 0.00050768797881861
604 => 0.00050999388949539
605 => 0.00048905731450049
606 => 0.00048247858808194
607 => 0.00047897612933756
608 => 0.0005137614076668
609 => 0.000515667023737
610 => 0.00050591762249489
611 => 0.00054998584058539
612 => 0.00054001184560641
613 => 0.00055115524168602
614 => 0.00052023832294064
615 => 0.00052141939087187
616 => 0.0005067828260722
617 => 0.0005149783243444
618 => 0.00050918601031885
619 => 0.0005143162090735
620 => 0.00051739122905443
621 => 0.00053202539213784
622 => 0.00055414049967631
623 => 0.00052983953617951
624 => 0.00051925125838775
625 => 0.00052582016637902
626 => 0.00054331403400036
627 => 0.00056981813894129
628 => 0.00055412717537144
629 => 0.0005610905585539
630 => 0.00056261174799991
701 => 0.00055104181237455
702 => 0.00057024473897098
703 => 0.00058053574333831
704 => 0.00059109218439589
705 => 0.00060025804638142
706 => 0.00058687570969638
707 => 0.00060119672823198
708 => 0.00058965651529236
709 => 0.00057930375128024
710 => 0.00057931945214981
711 => 0.00057282501205526
712 => 0.00056024121601995
713 => 0.00055792057096097
714 => 0.00056999285962295
715 => 0.00057967369187986
716 => 0.0005804710515926
717 => 0.00058583085774915
718 => 0.0005890027358222
719 => 0.00062009145289725
720 => 0.00063259559208419
721 => 0.00064788541679074
722 => 0.00065384166520125
723 => 0.00067176783748363
724 => 0.00065729099747308
725 => 0.0006541588420732
726 => 0.00061067581172241
727 => 0.00061779615550639
728 => 0.00062919651291552
729 => 0.00061086379941707
730 => 0.00062249168652287
731 => 0.00062478727774987
801 => 0.0006102408608275
802 => 0.00061801073061931
803 => 0.00059737626005809
804 => 0.00055459027474704
805 => 0.00057029237200366
806 => 0.00058185440085331
807 => 0.00056535396009698
808 => 0.00059493036149746
809 => 0.00057765243838015
810 => 0.00057217616623854
811 => 0.00055081127618211
812 => 0.00056089468187871
813 => 0.00057453263246382
814 => 0.00056610596458415
815 => 0.00058359256570502
816 => 0.00060835825639833
817 => 0.00062600776240877
818 => 0.00062736267232546
819 => 0.00061601522238582
820 => 0.00063419958333255
821 => 0.00063433203654973
822 => 0.00061382000311652
823 => 0.00060125649685015
824 => 0.00059840204179259
825 => 0.00060553303017526
826 => 0.00061419136652489
827 => 0.00062784314973391
828 => 0.00063609263641042
829 => 0.00065760292247312
830 => 0.00066342298913346
831 => 0.00066981747785921
901 => 0.0006783624867841
902 => 0.00068862296089376
903 => 0.00066617362767095
904 => 0.00066706558153069
905 => 0.00064616107326578
906 => 0.000623821608175
907 => 0.00064077447752527
908 => 0.00066293809905504
909 => 0.00065785373978749
910 => 0.00065728164550585
911 => 0.00065824374940184
912 => 0.00065441030855375
913 => 0.0006370717976718
914 => 0.00062836450605171
915 => 0.00063959913370863
916 => 0.00064556983831254
917 => 0.00065482988045304
918 => 0.00065368838480345
919 => 0.00067754125890144
920 => 0.00068680976450246
921 => 0.000684438484148
922 => 0.00068487485680127
923 => 0.00070165504347037
924 => 0.000720318062155
925 => 0.00073779844195538
926 => 0.00075558023508811
927 => 0.00073414358943141
928 => 0.00072325938279543
929 => 0.00073448910576538
930 => 0.00072853045668773
1001 => 0.00076277062173801
1002 => 0.00076514133647626
1003 => 0.00079937902557289
1004 => 0.00083187466947377
1005 => 0.00081146473775956
1006 => 0.00083071038408254
1007 => 0.00085152611970142
1008 => 0.00089168305094162
1009 => 0.00087815960923779
1010 => 0.00086780086483201
1011 => 0.00085801190142164
1012 => 0.00087838118032445
1013 => 0.00090458593222573
1014 => 0.00091023018479928
1015 => 0.00091937603023885
1016 => 0.00090976029205991
1017 => 0.00092134138955763
1018 => 0.00096222775271666
1019 => 0.00095117989647718
1020 => 0.0009354901645856
1021 => 0.0009677660215316
1022 => 0.00097944652869114
1023 => 0.0010614264450659
1024 => 0.0011649294759104
1025 => 0.0011220785415032
1026 => 0.0010954795837257
1027 => 0.0011017309697391
1028 => 0.0011395267728048
1029 => 0.0011516655851707
1030 => 0.0011186681086607
1031 => 0.0011303233752073
1101 => 0.0011945450397998
1102 => 0.0012289979023759
1103 => 0.0011822062873607
1104 => 0.0010531100773162
1105 => 0.00093407747589384
1106 => 0.00096565028189894
1107 => 0.0009620709055162
1108 => 0.001031069072305
1109 => 0.00095091640875964
1110 => 0.00095226597405078
1111 => 0.0010226909498584
1112 => 0.0010039027737027
1113 => 0.00097346833453818
1114 => 0.00093429968098051
1115 => 0.00086189280221722
1116 => 0.00079776001048138
1117 => 0.00092353918397521
1118 => 0.00091811535729957
1119 => 0.00091026085250717
1120 => 0.00092774020297648
1121 => 0.0010126149672553
1122 => 0.0010106583292258
1123 => 0.00099821119636811
1124 => 0.0010076522369367
1125 => 0.00097181327447974
1126 => 0.0009810497911429
1127 => 0.00093405862052162
1128 => 0.00095530059216708
1129 => 0.00097340303590053
1130 => 0.00097703736949128
1201 => 0.00098522570864492
1202 => 0.0009152572471021
1203 => 0.00094667103216872
1204 => 0.00096512368782175
1205 => 0.000881753918268
1206 => 0.00096347573553192
1207 => 0.00091403925185242
1208 => 0.00089725976678053
1209 => 0.00091985113290077
1210 => 0.00091104725555289
1211 => 0.0009034781987902
1212 => 0.00089925453506372
1213 => 0.00091584314102433
1214 => 0.0009150692627286
1215 => 0.00088792708366737
1216 => 0.00085252121753874
1217 => 0.00086440458836945
1218 => 0.00086008724833946
1219 => 0.00084444065112283
1220 => 0.00085498456846948
1221 => 0.00080855449262925
1222 => 0.00072867396037148
1223 => 0.00078144548678784
1224 => 0.00077941384042519
1225 => 0.00077838939220131
1226 => 0.00081804573580534
1227 => 0.00081423369339532
1228 => 0.00080731479909352
1229 => 0.00084431358020311
1230 => 0.00083080852739428
1231 => 0.00087242791796048
]
'min_raw' => 0.00037360704202728
'max_raw' => 0.0012289979023759
'avg_raw' => 0.00080130247220161
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000373'
'max' => '$0.001228'
'avg' => '$0.0008013'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00020353148411683
'max_diff' => 0.00081242972798449
'year' => 2029
]
4 => [
'items' => [
101 => 0.00089984114036079
102 => 0.00089288826043522
103 => 0.00091867052860232
104 => 0.00086467835723235
105 => 0.00088261239077152
106 => 0.00088630857022845
107 => 0.00084385702098739
108 => 0.00081485739067793
109 => 0.00081292344595628
110 => 0.00076264208339489
111 => 0.0007895019814182
112 => 0.00081313758014062
113 => 0.00080181796254914
114 => 0.00079823450978363
115 => 0.00081654159280652
116 => 0.00081796420994697
117 => 0.00078552838838269
118 => 0.00079227282279478
119 => 0.00082039823546215
120 => 0.00079156413455794
121 => 0.00073554418652471
122 => 0.00072165046487609
123 => 0.00071979678629607
124 => 0.00068211591126006
125 => 0.00072257890979207
126 => 0.00070491572659191
127 => 0.0007607135106838
128 => 0.00072884211566003
129 => 0.0007274682035211
130 => 0.00072539133381403
131 => 0.00069295784809319
201 => 0.0007000587202105
202 => 0.00072366310062183
203 => 0.00073208540947496
204 => 0.00073120689365964
205 => 0.00072354742628049
206 => 0.00072705389122384
207 => 0.00071575834590792
208 => 0.00071176965376042
209 => 0.0006991802441667
210 => 0.00068067728997711
211 => 0.00068325023924238
212 => 0.00064659104543147
213 => 0.0006266171709926
214 => 0.00062108866579936
215 => 0.00061369571760282
216 => 0.00062192371897005
217 => 0.00064648719454139
218 => 0.0006168584315703
219 => 0.00056606199567245
220 => 0.00056911494802283
221 => 0.00057597402552443
222 => 0.00056319217997753
223 => 0.00055109523586636
224 => 0.00056161254731492
225 => 0.00054008942778742
226 => 0.00057857499169141
227 => 0.00057753406504236
228 => 0.00059187910333446
301 => 0.00060084935016833
302 => 0.00058017583536815
303 => 0.00057497650230304
304 => 0.00057793827871344
305 => 0.00052898671208798
306 => 0.00058787871599091
307 => 0.00058838801648621
308 => 0.00058402707644018
309 => 0.00061538525043186
310 => 0.00068156077841406
311 => 0.00065666288288271
312 => 0.0006470216651901
313 => 0.00062869370330875
314 => 0.00065311462430895
315 => 0.00065123947860185
316 => 0.00064275935858644
317 => 0.00063763055554154
318 => 0.00064708053240946
319 => 0.00063645959882934
320 => 0.00063455178731461
321 => 0.00062299252525477
322 => 0.00061886639461233
323 => 0.00061581157175065
324 => 0.00061244851194064
325 => 0.00061986658385923
326 => 0.00060305625696307
327 => 0.00058278465066296
328 => 0.00058109928594093
329 => 0.00058575272611725
330 => 0.0005836939252471
331 => 0.00058108942919444
401 => 0.00057611673693761
402 => 0.00057464144536977
403 => 0.00057943542725554
404 => 0.00057402330121301
405 => 0.00058200918800252
406 => 0.00057983746867504
407 => 0.00056770642105
408 => 0.00055258664422012
409 => 0.00055245204649153
410 => 0.00054919451537494
411 => 0.00054504555972487
412 => 0.00054389141517827
413 => 0.00056072680867989
414 => 0.00059557556938732
415 => 0.00058873392380029
416 => 0.00059367771389696
417 => 0.00061799626812371
418 => 0.00062572640522795
419 => 0.00062023973700969
420 => 0.00061272924714958
421 => 0.00061305967058704
422 => 0.00063872528801894
423 => 0.00064032602109608
424 => 0.00064437055716595
425 => 0.00064956892900149
426 => 0.00062112504221168
427 => 0.00061171996607716
428 => 0.00060726331923087
429 => 0.00059353857188367
430 => 0.00060833953522671
501 => 0.00059971564772716
502 => 0.0006008793047848
503 => 0.00060012147159945
504 => 0.00060053529976311
505 => 0.00057856423419196
506 => 0.00058656933572088
507 => 0.00057325930181408
508 => 0.0005554386605343
509 => 0.00055537891949601
510 => 0.00055974049620275
511 => 0.00055714605970907
512 => 0.00055016449781363
513 => 0.00055115619572883
514 => 0.00054246787847806
515 => 0.00055221111475014
516 => 0.00055249051590345
517 => 0.00054873883922103
518 => 0.00056374963900568
519 => 0.0005698995759251
520 => 0.00056743014196403
521 => 0.00056972631385538
522 => 0.00058901822506261
523 => 0.00059216364835448
524 => 0.00059356063760573
525 => 0.00059168885707466
526 => 0.00057007893457759
527 => 0.00057103742653282
528 => 0.00056400464853474
529 => 0.00055806269222225
530 => 0.00055830033931329
531 => 0.00056135527725816
601 => 0.00057469637043316
602 => 0.00060277191451955
603 => 0.00060383736089467
604 => 0.00060512871298259
605 => 0.00059987613505949
606 => 0.00059829190729748
607 => 0.00060038191263945
608 => 0.00061092561085632
609 => 0.00063804686525624
610 => 0.00062846040258363
611 => 0.00062066645920862
612 => 0.00062750384878055
613 => 0.00062645128624918
614 => 0.00061756659922294
615 => 0.00061731723564949
616 => 0.00060026468063986
617 => 0.0005939607393207
618 => 0.00058869269411257
619 => 0.0005829401262711
620 => 0.00057952981122686
621 => 0.00058476960509529
622 => 0.00058596800794841
623 => 0.00057451110707917
624 => 0.0005729495738254
625 => 0.0005823055263896
626 => 0.00057818832049117
627 => 0.0005824229688595
628 => 0.0005834054436051
629 => 0.00058324724254274
630 => 0.00057894840672669
701 => 0.00058168835648271
702 => 0.00057520755849138
703 => 0.00056816066406019
704 => 0.00056366518445013
705 => 0.00055974228225151
706 => 0.00056191893639172
707 => 0.00055415956182323
708 => 0.00055167718173341
709 => 0.00058076012315619
710 => 0.00060224400467951
711 => 0.00060193162053361
712 => 0.00060003006238413
713 => 0.00059720473269097
714 => 0.00061071892039137
715 => 0.00060601084762126
716 => 0.00060943636393416
717 => 0.00061030830160426
718 => 0.00061294739432082
719 => 0.00061389064312931
720 => 0.00061103949010164
721 => 0.00060147067230177
722 => 0.00057762608812037
723 => 0.00056652636981671
724 => 0.00056286327789607
725 => 0.00056299642433019
726 => 0.00055932365128549
727 => 0.00056040544754929
728 => 0.00055894744669274
729 => 0.00055618634579872
730 => 0.0005617484461921
731 => 0.00056238942644788
801 => 0.00056109116575392
802 => 0.00056139695314507
803 => 0.00055064790909345
804 => 0.000551465135567
805 => 0.00054691471471417
806 => 0.0005460615656604
807 => 0.00053455849799491
808 => 0.00051417914622917
809 => 0.00052547128537893
810 => 0.00051183196920106
811 => 0.00050666655349514
812 => 0.00053111882806002
813 => 0.00052866449789423
814 => 0.00052446375152208
815 => 0.0005182499721254
816 => 0.00051594522090342
817 => 0.0005019422820742
818 => 0.00050111491374539
819 => 0.00050805514834031
820 => 0.00050485246887365
821 => 0.00050035469395289
822 => 0.00048406420912204
823 => 0.000465748310578
824 => 0.00046630115242541
825 => 0.00047212709897286
826 => 0.00048906682429551
827 => 0.00048244818055173
828 => 0.00047764627857543
829 => 0.00047674702667991
830 => 0.00048800304686368
831 => 0.00050393267363285
901 => 0.00051140649810763
902 => 0.00050400016503654
903 => 0.00049549216838977
904 => 0.0004960100107234
905 => 0.00049945498377158
906 => 0.00049981700172965
907 => 0.00049427917054879
908 => 0.00049583803758817
909 => 0.00049346997600956
910 => 0.00047893718647273
911 => 0.00047867433439399
912 => 0.00047510775346876
913 => 0.00047499975881579
914 => 0.00046893211493668
915 => 0.00046808320961435
916 => 0.00045603553441271
917 => 0.00046396535071415
918 => 0.00045864644627319
919 => 0.00045062960267793
920 => 0.00044924749582038
921 => 0.0004492059480193
922 => 0.0004574374538582
923 => 0.00046386916077581
924 => 0.00045873897089316
925 => 0.00045757092610143
926 => 0.0004700425886227
927 => 0.00046845545588514
928 => 0.00046708100917032
929 => 0.00050250635027334
930 => 0.00047446442851647
1001 => 0.00046223655005353
1002 => 0.00044710222844451
1003 => 0.00045203003987428
1004 => 0.00045306840214714
1005 => 0.00041667308684396
1006 => 0.0004019075119582
1007 => 0.00039684052308636
1008 => 0.00039392439935391
1009 => 0.00039525331355717
1010 => 0.00038196256433079
1011 => 0.00039089416761962
1012 => 0.00037938550222865
1013 => 0.00037745603702341
1014 => 0.00039803495639254
1015 => 0.00040089839280245
1016 => 0.00038868208347781
1017 => 0.00039652693170506
1018 => 0.00039368228068631
1019 => 0.0003795827852649
1020 => 0.00037904428824867
1021 => 0.00037196965706744
1022 => 0.00036089922918734
1023 => 0.0003558397465869
1024 => 0.00035320472412015
1025 => 0.0003542919857455
1026 => 0.00035374223299697
1027 => 0.00035015472444572
1028 => 0.00035394786478774
1029 => 0.0003442579586477
1030 => 0.00034039935994585
1031 => 0.00033865652043104
1101 => 0.00033005617100157
1102 => 0.00034374315153661
1103 => 0.00034643965912605
1104 => 0.00034914147966844
1105 => 0.00037265898287868
1106 => 0.00037148411487807
1107 => 0.00038210434941965
1108 => 0.00038169166663473
1109 => 0.00037866260370707
1110 => 0.00036588348547197
1111 => 0.0003709770142346
1112 => 0.00035529992441334
1113 => 0.00036704626604592
1114 => 0.00036168572626376
1115 => 0.00036523386215335
1116 => 0.00035885399390135
1117 => 0.00036238487641031
1118 => 0.00034707910110934
1119 => 0.00033278678349137
1120 => 0.0003385384293196
1121 => 0.00034479112611538
1122 => 0.00035834856592613
1123 => 0.0003502738666213
1124 => 0.0003531778338295
1125 => 0.00034345002980026
1126 => 0.00032337879147808
1127 => 0.00032349239250726
1128 => 0.00032040486976709
1129 => 0.00031773679933388
1130 => 0.00035120134297029
1201 => 0.00034703949797295
1202 => 0.0003404081426585
1203 => 0.00034928447526648
1204 => 0.00035163151849437
1205 => 0.00035169833551551
1206 => 0.00035817427865498
1207 => 0.00036163049066939
1208 => 0.00036223966301701
1209 => 0.00037242969946898
1210 => 0.00037584526527785
1211 => 0.00038991349745562
1212 => 0.00036133725522718
1213 => 0.0003607487463236
1214 => 0.00034940938346936
1215 => 0.00034221778027896
1216 => 0.00034990179869249
1217 => 0.00035670879003376
1218 => 0.00034962089566474
1219 => 0.00035054642503572
1220 => 0.00034103150594756
1221 => 0.00034443264180303
1222 => 0.00034736215818423
1223 => 0.00034574465142754
1224 => 0.00034332316552457
1225 => 0.00035615069436968
1226 => 0.00035542691492075
1227 => 0.00036737220468493
1228 => 0.00037668441227198
1229 => 0.00039337355302418
1230 => 0.00037595756462467
1231 => 0.00037532285678511
]
'min_raw' => 0.00031773679933388
'max_raw' => 0.00091867052860232
'avg_raw' => 0.0006182036639681
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000317'
'max' => '$0.000918'
'avg' => '$0.000618'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -5.5870242693401E-5
'max_diff' => -0.00031032737377362
'year' => 2030
]
5 => [
'items' => [
101 => 0.00038152722772717
102 => 0.00037584431542099
103 => 0.00037943571983103
104 => 0.00039279492225083
105 => 0.0003930771811468
106 => 0.00038834898096918
107 => 0.00038806126955867
108 => 0.00038896937212363
109 => 0.00039428815721063
110 => 0.00039242961027148
111 => 0.00039458036784212
112 => 0.00039726992311778
113 => 0.00040839506408572
114 => 0.00041107729790911
115 => 0.00040456086029708
116 => 0.00040514922165199
117 => 0.00040271189510487
118 => 0.00040035746819998
119 => 0.00040564987604575
120 => 0.00041532185540644
121 => 0.00041526168652481
122 => 0.00041750539774008
123 => 0.00041890321123928
124 => 0.00041290277243868
125 => 0.00040899670742174
126 => 0.00041049454129861
127 => 0.0004128896102863
128 => 0.00040971785270583
129 => 0.00039014029561814
130 => 0.00039607887581936
131 => 0.00039509040569214
201 => 0.00039368270402891
202 => 0.00039965399234291
203 => 0.00039907804701797
204 => 0.00038182624848734
205 => 0.00038293065265595
206 => 0.00038189341096274
207 => 0.00038524495107319
208 => 0.00037566332125621
209 => 0.00037861056605465
210 => 0.00038045905036353
211 => 0.00038154782182219
212 => 0.00038548121090843
213 => 0.00038501967309816
214 => 0.00038545252107011
215 => 0.00039128469870879
216 => 0.00042078185184355
217 => 0.00042238731680688
218 => 0.00041448142015624
219 => 0.00041763966993125
220 => 0.00041157652099653
221 => 0.00041564675349598
222 => 0.0004184315031994
223 => 0.00040584775476619
224 => 0.00040510262685183
225 => 0.00039901445314467
226 => 0.00040228589284311
227 => 0.00039708079705805
228 => 0.00039835794549719
301 => 0.00039478692712157
302 => 0.00040121404921501
303 => 0.00040840057038928
304 => 0.00041021616944222
305 => 0.00040544010999847
306 => 0.00040198192820354
307 => 0.00039591050016754
308 => 0.00040600742030201
309 => 0.00040896006744739
310 => 0.00040599191130353
311 => 0.00040530412466951
312 => 0.00040400077024083
313 => 0.0004055806374729
314 => 0.00040894398669692
315 => 0.00040735789331418
316 => 0.00040840553593685
317 => 0.00040441300258362
318 => 0.0004129047588336
319 => 0.000426391711411
320 => 0.00042643507416888
321 => 0.0004248489722365
322 => 0.00042419997349882
323 => 0.00042582741033415
324 => 0.00042671022805636
325 => 0.00043197306036093
326 => 0.00043762028910423
327 => 0.00046397344157026
328 => 0.00045657358181164
329 => 0.00047995566643556
330 => 0.00049844785958938
331 => 0.00050399285975061
401 => 0.0004988917205147
402 => 0.00048144099874677
403 => 0.00048058478308377
404 => 0.00050666352890975
405 => 0.00049929508873168
406 => 0.00049841863621868
407 => 0.00048909466227027
408 => 0.00049460628567042
409 => 0.00049340081278217
410 => 0.00049149791485431
411 => 0.00050201370835879
412 => 0.00052169833504781
413 => 0.00051863030137707
414 => 0.00051634015656385
415 => 0.00050630540864343
416 => 0.00051234856823361
417 => 0.00051019671485265
418 => 0.00051944244257717
419 => 0.00051396547829111
420 => 0.00049923926555027
421 => 0.00050158446346748
422 => 0.00050122999152018
423 => 0.00050852499907752
424 => 0.00050633521888203
425 => 0.00050080240179229
426 => 0.00052163105513378
427 => 0.00052027855824085
428 => 0.0005221960896112
429 => 0.00052304024622206
430 => 0.00053571828046898
501 => 0.0005409120654481
502 => 0.00054209114556836
503 => 0.00054702483959678
504 => 0.00054196839076644
505 => 0.0005621977912747
506 => 0.00057564916219445
507 => 0.00059127362171896
508 => 0.00061410515654307
509 => 0.00062269002484044
510 => 0.00062113924522269
511 => 0.00063844985435363
512 => 0.00066955663416869
513 => 0.00062742681480019
514 => 0.00067178961689442
515 => 0.00065774486594457
516 => 0.00062444501409675
517 => 0.00062230089621721
518 => 0.00064485194250778
519 => 0.0006948679927225
520 => 0.00068233953942106
521 => 0.00069488848478391
522 => 0.00068024947344167
523 => 0.00067952252314125
524 => 0.0006941775006779
525 => 0.00072841965449352
526 => 0.00071215249076366
527 => 0.00068882952268472
528 => 0.00070605083936864
529 => 0.00069113214109941
530 => 0.00065751613841811
531 => 0.00068232995914894
601 => 0.00066573766388316
602 => 0.00067058017773665
603 => 0.00070545471446765
604 => 0.0007012585179416
605 => 0.00070668878480364
606 => 0.00069710450592696
607 => 0.00068815127815407
608 => 0.00067143941364056
609 => 0.00066649185444307
610 => 0.00066785918181073
611 => 0.00066649117686353
612 => 0.00065714104225819
613 => 0.0006551218815804
614 => 0.00065175652532262
615 => 0.00065279958994818
616 => 0.00064647173561386
617 => 0.00065841370414414
618 => 0.00066063023873563
619 => 0.00066932060755443
620 => 0.00067022287047439
621 => 0.00069442542393512
622 => 0.00068109506419634
623 => 0.000690038220397
624 => 0.00068923826033016
625 => 0.00062516672286027
626 => 0.00063399521541566
627 => 0.00064772957929826
628 => 0.00064154226698564
629 => 0.0006327948549837
630 => 0.00062573085078557
701 => 0.0006150281620939
702 => 0.0006300919909005
703 => 0.00064989932392158
704 => 0.00067072521712689
705 => 0.00069574616324648
706 => 0.00069016177934851
707 => 0.00067025746794339
708 => 0.00067115036081291
709 => 0.00067666987319192
710 => 0.00066952160316052
711 => 0.00066741343877746
712 => 0.00067638024377875
713 => 0.00067644199323673
714 => 0.00066821704466831
715 => 0.00065907651948422
716 => 0.00065903822034995
717 => 0.00065741175218044
718 => 0.00068053881851581
719 => 0.00069325636659012
720 => 0.00069471441298148
721 => 0.00069315822845087
722 => 0.00069375714211395
723 => 0.00068635708110156
724 => 0.00070327142615596
725 => 0.00071879370183323
726 => 0.00071463340036667
727 => 0.0007083965170466
728 => 0.00070342853907315
729 => 0.00071346310264074
730 => 0.00071301627932094
731 => 0.00071865812829653
801 => 0.0007184021814381
802 => 0.00071650503982828
803 => 0.00071463346811957
804 => 0.00072205403839173
805 => 0.00071991703332406
806 => 0.00071777670889726
807 => 0.00071348396059205
808 => 0.00071406741638173
809 => 0.00070783160994749
810 => 0.00070494664055993
811 => 0.00066156362298038
812 => 0.00064997026310214
813 => 0.00065361777012443
814 => 0.00065481862414365
815 => 0.00064977317906734
816 => 0.00065700705123827
817 => 0.000655879659923
818 => 0.00066026568002887
819 => 0.00065752548508558
820 => 0.00065763794364187
821 => 0.00066569627269892
822 => 0.00066803563990677
823 => 0.00066684581886385
824 => 0.00066767912873763
825 => 0.00068688240306081
826 => 0.0006841523115382
827 => 0.00068270200482955
828 => 0.00068310374969942
829 => 0.00068801059801184
830 => 0.00068938424763533
831 => 0.00068356399765595
901 => 0.00068630886119269
902 => 0.00069799614175708
903 => 0.00070208602851182
904 => 0.00071513898377596
905 => 0.00070959385638197
906 => 0.00071977217770112
907 => 0.00075105686739074
908 => 0.00077604924225067
909 => 0.00075306522147591
910 => 0.00079896053514643
911 => 0.00083469662013066
912 => 0.0008333250096674
913 => 0.00082709359665986
914 => 0.00078640901399829
915 => 0.00074897045446016
916 => 0.00078028939923901
917 => 0.00078036923767005
918 => 0.00077767891253815
919 => 0.00076096953420043
920 => 0.00077709746239168
921 => 0.00077837763876347
922 => 0.00077766108042164
923 => 0.00076485003922731
924 => 0.00074528994719976
925 => 0.0007491119423617
926 => 0.00075537244840354
927 => 0.00074352000438795
928 => 0.00073973243036006
929 => 0.00074677425109335
930 => 0.00076946446471762
1001 => 0.00076517501126741
1002 => 0.00076506299630278
1003 => 0.00078341509717413
1004 => 0.0007702789535815
1005 => 0.00074916014996041
1006 => 0.00074382737352329
1007 => 0.00072489960976017
1008 => 0.00073797308360974
1009 => 0.00073844357465933
1010 => 0.00073128336663958
1011 => 0.00074974116137906
1012 => 0.0007495710695511
1013 => 0.00076709399857604
1014 => 0.00080059125756014
1015 => 0.00079068446977854
1016 => 0.00077916395344398
1017 => 0.00078041655299881
1018 => 0.00079415447843621
1019 => 0.00078584821511043
1020 => 0.00078883520531571
1021 => 0.00079414995726879
1022 => 0.00079735647907996
1023 => 0.00077995518385575
1024 => 0.00077589810953883
1025 => 0.00076759875932598
1026 => 0.00076543361377015
1027 => 0.00077219326134689
1028 => 0.0007704123330323
1029 => 0.00073840403170844
1030 => 0.00073505898612759
1031 => 0.00073516157389993
1101 => 0.00072675029773864
1102 => 0.00071392108265507
1103 => 0.00074763549390204
1104 => 0.00074492775484603
1105 => 0.00074193862049055
1106 => 0.00074230477239333
1107 => 0.00075693905562822
1108 => 0.00074845043230297
1109 => 0.00077101882867116
1110 => 0.00076637944484595
1111 => 0.00076162107833163
1112 => 0.00076096332713596
1113 => 0.0007591317619927
1114 => 0.00075285064362108
1115 => 0.00074526581575065
1116 => 0.00074025765540406
1117 => 0.00068284855723863
1118 => 0.00069350335192477
1119 => 0.00070576072199608
1120 => 0.00070999191702637
1121 => 0.00070275416513728
1122 => 0.00075313643418028
1123 => 0.00076234176023006
1124 => 0.00073445822717671
1125 => 0.00072924235661958
1126 => 0.00075347838578565
1127 => 0.00073886109746444
1128 => 0.00074544326150046
1129 => 0.00073121622310583
1130 => 0.00076012446674808
1201 => 0.00075990423436608
1202 => 0.00074865827466695
1203 => 0.00075816328279564
1204 => 0.00075651155372652
1205 => 0.00074381489292378
1206 => 0.00076052697354215
1207 => 0.00076053526252563
1208 => 0.00074971127082347
1209 => 0.00073707121819181
1210 => 0.00073481147532599
1211 => 0.00073310906263033
1212 => 0.00074502457233712
1213 => 0.0007557079810814
1214 => 0.00077558715611287
1215 => 0.00078058525303333
1216 => 0.00080009315805603
1217 => 0.00078847715043767
1218 => 0.00079362637616241
1219 => 0.00079921658908906
1220 => 0.00080189674273937
1221 => 0.00079752957619117
1222 => 0.00082783338246548
1223 => 0.00083039195219967
1224 => 0.0008312498185
1225 => 0.00082103154552674
1226 => 0.00083010776354356
1227 => 0.00082586130170624
1228 => 0.00083690941570588
1229 => 0.00083864190105042
1230 => 0.00083717454759854
1231 => 0.00083772446579232
]
'min_raw' => 0.00037566332125621
'max_raw' => 0.00083864190105042
'avg_raw' => 0.00060715261115331
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000375'
'max' => '$0.000838'
'avg' => '$0.0006071'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 5.7926521922329E-5
'max_diff' => -8.0028627551897E-5
'year' => 2031
]
6 => [
'items' => [
101 => 0.00081186551309495
102 => 0.00081052458998075
103 => 0.00079224100817105
104 => 0.00079969170290391
105 => 0.00078576298622191
106 => 0.00079017992576345
107 => 0.00079212687062722
108 => 0.00079110989711854
109 => 0.00080011295400518
110 => 0.00079245851644852
111 => 0.00077225719723048
112 => 0.00075205037417652
113 => 0.00075179669397319
114 => 0.00074647659414314
115 => 0.0007426311363909
116 => 0.00074337190797892
117 => 0.00074598248367548
118 => 0.00074247940498565
119 => 0.00074322696443472
120 => 0.00075564143225189
121 => 0.00075813106523669
122 => 0.00074967031959194
123 => 0.00071569920494849
124 => 0.00070736260820489
125 => 0.00071335478862229
126 => 0.00071049091232862
127 => 0.00057342161779133
128 => 0.00060562401536528
129 => 0.00058649044421693
130 => 0.00059530807409537
131 => 0.00057577765256714
201 => 0.00058509859339751
202 => 0.0005833773559724
203 => 0.00063515785833309
204 => 0.00063434937701048
205 => 0.00063473635423573
206 => 0.00061626492301057
207 => 0.00064569041450627
208 => 0.0006601864697235
209 => 0.00065750363570281
210 => 0.00065817884722643
211 => 0.00064657647616786
212 => 0.00063484869054911
213 => 0.00062184077140465
214 => 0.00064600787734766
215 => 0.00064332090771305
216 => 0.00064948384931368
217 => 0.00066515794501813
218 => 0.00066746601515071
219 => 0.00067056808481503
220 => 0.00066945621366073
221 => 0.00069594549544927
222 => 0.00069273746864277
223 => 0.00070046789023413
224 => 0.0006845658265122
225 => 0.00066657113197308
226 => 0.00066999133511408
227 => 0.00066966194204807
228 => 0.00066546839025794
229 => 0.00066168263920817
301 => 0.00065538043033907
302 => 0.00067532155175234
303 => 0.00067451197863973
304 => 0.00068761802630717
305 => 0.00068530140507659
306 => 0.00066983044152543
307 => 0.00067038299001529
308 => 0.00067409914415533
309 => 0.00068696079606432
310 => 0.00069077901003895
311 => 0.00068901026119638
312 => 0.00069319675851147
313 => 0.00069650559529207
314 => 0.00069361229746736
315 => 0.00073457529324002
316 => 0.00071756460146511
317 => 0.00072585549427657
318 => 0.00072783282335933
319 => 0.0007227679364926
320 => 0.00072386632909399
321 => 0.00072553009459103
322 => 0.00073563215289038
323 => 0.00076214287692199
324 => 0.00077388429613099
325 => 0.00080920893513268
326 => 0.00077290933471413
327 => 0.00077075546664797
328 => 0.00077711850083407
329 => 0.00079785780342085
330 => 0.0008146650602238
331 => 0.00082024099693925
401 => 0.00082097794902487
402 => 0.00083143877698431
403 => 0.00083743472848777
404 => 0.00083016855732295
405 => 0.00082401123806059
406 => 0.00080195648473744
407 => 0.00080450938248769
408 => 0.00082209631640006
409 => 0.00084693889641651
410 => 0.00086825641450055
411 => 0.00086079176265803
412 => 0.00091774178699349
413 => 0.00092338814928637
414 => 0.00092260800458624
415 => 0.00093547125818077
416 => 0.00090994031935166
417 => 0.00089902534836358
418 => 0.00082534252037366
419 => 0.00084604438955533
420 => 0.00087613577218903
421 => 0.00087215306486057
422 => 0.00085029989844701
423 => 0.00086823983691421
424 => 0.00086230833222321
425 => 0.00085762990837506
426 => 0.00087906267498051
427 => 0.00085549646768829
428 => 0.00087590068124408
429 => 0.00084973206630422
430 => 0.00086082586055888
501 => 0.00085452848639348
502 => 0.00085860365925564
503 => 0.00083478028197291
504 => 0.00084763479807488
505 => 0.00083424549184134
506 => 0.00083423914356684
507 => 0.00083394357388964
508 => 0.00084969603329612
509 => 0.00085020972043184
510 => 0.0008385686291298
511 => 0.00083689096600515
512 => 0.00084309416587581
513 => 0.00083583184344789
514 => 0.0008392298384034
515 => 0.0008359347652535
516 => 0.0008351929748826
517 => 0.00082928226300202
518 => 0.00082673576580546
519 => 0.00082773431297138
520 => 0.00082432575670775
521 => 0.00082227197826604
522 => 0.00083353502566473
523 => 0.00082751763378965
524 => 0.00083261277405832
525 => 0.0008268062186642
526 => 0.00080667816787241
527 => 0.00079510231301178
528 => 0.00075708229093739
529 => 0.00076786472203399
530 => 0.00077501348500628
531 => 0.00077265081888658
601 => 0.0007777267399421
602 => 0.00077803836026998
603 => 0.00077638812659195
604 => 0.0007744773674008
605 => 0.00077354731549817
606 => 0.00078047916040319
607 => 0.00078450332968573
608 => 0.00077573095900865
609 => 0.00077367571529752
610 => 0.00078254506638791
611 => 0.00078795536542939
612 => 0.00082790197376722
613 => 0.00082494259999571
614 => 0.00083237004741444
615 => 0.00083153383081856
616 => 0.00083931897899854
617 => 0.00085204440602372
618 => 0.00082617005479618
619 => 0.00083066094750154
620 => 0.00082955988432004
621 => 0.00084158100342133
622 => 0.00084161853204301
623 => 0.00083441127064236
624 => 0.00083831844397211
625 => 0.00083613756700714
626 => 0.00084007870644605
627 => 0.00082490307575475
628 => 0.00084338535582865
629 => 0.00085386361765873
630 => 0.00085400910833441
701 => 0.00085897572128124
702 => 0.00086402208768205
703 => 0.0008737081485425
704 => 0.00086375194870177
705 => 0.0008458417144048
706 => 0.00084713477547134
707 => 0.00083663401165612
708 => 0.00083681053139297
709 => 0.00083586825520356
710 => 0.00083869609697923
711 => 0.00082552362800117
712 => 0.00082861518014157
713 => 0.00082428698904091
714 => 0.00083065153885936
715 => 0.00082380433535248
716 => 0.00082955935335404
717 => 0.00083204302834164
718 => 0.00084120784251559
719 => 0.0008224506848473
720 => 0.00078420357061373
721 => 0.00079224357772706
722 => 0.00078035177567751
723 => 0.00078145240723248
724 => 0.00078367585813773
725 => 0.00077646892628594
726 => 0.00077784378176674
727 => 0.00077779466225426
728 => 0.00077737137683218
729 => 0.00077549657551262
730 => 0.00077277774268112
731 => 0.00078360873586921
801 => 0.00078544913266763
802 => 0.00078954010677357
803 => 0.0008017120707786
804 => 0.00080049580453982
805 => 0.00080247958523768
806 => 0.00079814900311272
807 => 0.00078165329051685
808 => 0.00078254908707407
809 => 0.00077137848965133
810 => 0.00078925444948254
811 => 0.00078502118624337
812 => 0.00078229197389407
813 => 0.00078154728301859
814 => 0.00079374941896807
815 => 0.0007974004892892
816 => 0.00079512538727929
817 => 0.00079045908668162
818 => 0.00079941976329707
819 => 0.00080181726233876
820 => 0.00080235397395784
821 => 0.00081823057488109
822 => 0.00080324129958241
823 => 0.00080684936712739
824 => 0.00083499848014497
825 => 0.00080947111895009
826 => 0.00082299353150311
827 => 0.00082233167977587
828 => 0.00082924928846451
829 => 0.00082176423395354
830 => 0.00082185702017496
831 => 0.00082799938805106
901 => 0.00081937354015096
902 => 0.00081723765890532
903 => 0.00081428695426195
904 => 0.00082072970990139
905 => 0.00082459185052646
906 => 0.00085571786753482
907 => 0.00087582669404104
908 => 0.00087495371684915
909 => 0.00088293109423821
910 => 0.00087933721266004
911 => 0.00086773162102605
912 => 0.00088754095079414
913 => 0.00088127244999796
914 => 0.00088178921758737
915 => 0.00088176998347188
916 => 0.00088593798849949
917 => 0.00088298457494538
918 => 0.00087716309366853
919 => 0.00088102766461726
920 => 0.00089250405872557
921 => 0.00092812713817656
922 => 0.00094806228538035
923 => 0.00092692701728358
924 => 0.00094150584220422
925 => 0.0009327637422183
926 => 0.00093117504259591
927 => 0.00094033162201277
928 => 0.00094950422880977
929 => 0.00094891997341107
930 => 0.00094226113189502
1001 => 0.00093849972128445
1002 => 0.00096698238259267
1003 => 0.0009879679222551
1004 => 0.00098653684913896
1005 => 0.00099285314046367
1006 => 0.0010113979671485
1007 => 0.0010130934736893
1008 => 0.0010128798788359
1009 => 0.0010086773889669
1010 => 0.0010269371791882
1011 => 0.0010421698174413
1012 => 0.0010077046339838
1013 => 0.0010208285246621
1014 => 0.0010267202620129
1015 => 0.0010353710804435
1016 => 0.0010499664611816
1017 => 0.0010658209158967
1018 => 0.0010680629096286
1019 => 0.0010664721077865
1020 => 0.0010560156687113
1021 => 0.0010733638022435
1022 => 0.0010835259320029
1023 => 0.0010895772477184
1024 => 0.0011049223775301
1025 => 0.0010267566473769
1026 => 0.00097142705848571
1027 => 0.0009627865442114
1028 => 0.00098035736975966
1029 => 0.00098499065633203
1030 => 0.00098312298432435
1031 => 0.00092084450168113
1101 => 0.00096245866088911
1102 => 0.001007231997179
1103 => 0.0010089519233711
1104 => 0.0010313663916841
1105 => 0.0010386654613669
1106 => 0.0010567120462904
1107 => 0.0010555832274899
1108 => 0.0010599772837349
1109 => 0.0010589671662986
1110 => 0.0010923946647126
1111 => 0.0011292701594948
1112 => 0.0011279932783674
1113 => 0.0011226919897014
1114 => 0.0011305653073745
1115 => 0.0011686247698079
1116 => 0.0011651208643975
1117 => 0.0011685246100417
1118 => 0.0012133988611881
1119 => 0.001271741770966
1120 => 0.0012446356318418
1121 => 0.00130344815416
1122 => 0.0013404675194415
1123 => 0.0014044886838219
1124 => 0.0013964729187306
1125 => 0.0014213958882149
1126 => 0.0013821230262765
1127 => 0.0012919445969109
1128 => 0.0012776735152747
1129 => 0.0013062445821118
1130 => 0.001376483762007
1201 => 0.0013040325003769
1202 => 0.0013186892962439
1203 => 0.0013144681380482
1204 => 0.0013142432104667
1205 => 0.0013228277814053
1206 => 0.0013103754135178
1207 => 0.0012596422266057
1208 => 0.0012828929471949
1209 => 0.0012739147273841
1210 => 0.0012838767316349
1211 => 0.001337637559933
1212 => 0.0013138686162443
1213 => 0.0012888299649005
1214 => 0.0013202339902072
1215 => 0.0013602221060166
1216 => 0.0013577197215948
1217 => 0.0013528640499009
1218 => 0.0013802352170044
1219 => 0.0014254443660597
1220 => 0.0014376642173843
1221 => 0.0014466846618083
1222 => 0.0014479284286927
1223 => 0.0014607400005989
1224 => 0.0013918489495275
1225 => 0.0015011808168254
1226 => 0.0015200594100759
1227 => 0.0015165110169823
1228 => 0.0015374937788476
1229 => 0.0015313201180255
1230 => 0.0015223754521121
1231 => 0.00155563759283
]
'min_raw' => 0.00057342161779133
'max_raw' => 0.00155563759283
'avg_raw' => 0.0010645296053107
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.000573'
'max' => '$0.001555'
'avg' => '$0.001064'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00019775829653512
'max_diff' => 0.00071699569177956
'year' => 2032
]
7 => [
'items' => [
101 => 0.0015175052326133
102 => 0.0014633811480163
103 => 0.0014336876047534
104 => 0.0014727904578318
105 => 0.0014966692057053
106 => 0.001512451539076
107 => 0.0015172272636181
108 => 0.0013971967657145
109 => 0.001332506984541
110 => 0.0013739723926033
111 => 0.001424563052229
112 => 0.0013915679158589
113 => 0.0013928612627365
114 => 0.001345818869242
115 => 0.0014287252602199
116 => 0.0014166464964069
117 => 0.0014793111444356
118 => 0.0014643557232683
119 => 0.0015154563111081
120 => 0.0015019998137627
121 => 0.0015578569819008
122 => 0.0015801399185435
123 => 0.0016175564372288
124 => 0.0016450801806864
125 => 0.00166124264929
126 => 0.0016602723152989
127 => 0.0017243160680163
128 => 0.0016865517045572
129 => 0.0016391107636754
130 => 0.0016382527067291
131 => 0.0016628230422551
201 => 0.0017143157249752
202 => 0.0017276670284164
203 => 0.0017351285856218
204 => 0.0017237009510231
205 => 0.0016827104410846
206 => 0.0016650109467197
207 => 0.0016800914287223
208 => 0.0016616492951137
209 => 0.0016934855916709
210 => 0.0017372036267099
211 => 0.0017281760253542
212 => 0.0017583539431927
213 => 0.0017895849133459
214 => 0.0018342466033358
215 => 0.0018459228229167
216 => 0.0018652231698772
217 => 0.0018850895667331
218 => 0.0018914701179889
219 => 0.0019036525701048
220 => 0.0019035883625688
221 => 0.0019403010019939
222 => 0.0019807961801755
223 => 0.0019960821724736
224 => 0.0020312314688884
225 => 0.0019710395305563
226 => 0.0020166958072164
227 => 0.0020578789116145
228 => 0.0020087787167709
301 => 0.0020764518964846
302 => 0.0020790794927022
303 => 0.0021187530759614
304 => 0.0020785362987893
305 => 0.002054655704881
306 => 0.0021235980847001
307 => 0.00215695713063
308 => 0.002146909114511
309 => 0.0020704432157137
310 => 0.002025936782837
311 => 0.0019094548633489
312 => 0.002047432728627
313 => 0.0021146377219344
314 => 0.0020702691710166
315 => 0.0020926460873351
316 => 0.0022147272870293
317 => 0.0022612079037005
318 => 0.002251540260357
319 => 0.0022531739329391
320 => 0.002278254030012
321 => 0.0023894729922951
322 => 0.0023228280120597
323 => 0.0023737756023099
324 => 0.0024007980204734
325 => 0.0024258979484394
326 => 0.0023642604582686
327 => 0.002284070989191
328 => 0.0022586716182092
329 => 0.0020658575930363
330 => 0.0020558207856772
331 => 0.0020501868215602
401 => 0.0020146654747421
402 => 0.0019867554262589
403 => 0.0019645603194714
404 => 0.001906313731241
405 => 0.0019259702449223
406 => 0.0018331373402908
407 => 0.0018925285428779
408 => 0.0017443649855572
409 => 0.0018677599987977
410 => 0.0018006017031737
411 => 0.0018456966924687
412 => 0.0018455393602992
413 => 0.0017625051876278
414 => 0.0017146128097099
415 => 0.0017451316969184
416 => 0.0017778503665983
417 => 0.001783158860675
418 => 0.0018255794699595
419 => 0.0018374181501829
420 => 0.0018015463964109
421 => 0.0017412946251567
422 => 0.0017552897374225
423 => 0.0017143291992065
424 => 0.0016425474315075
425 => 0.0016941023502584
426 => 0.0017117054662297
427 => 0.00171948000507
428 => 0.0016488908807297
429 => 0.0016267102452976
430 => 0.001614901461107
501 => 0.0017321824556246
502 => 0.0017386073732512
503 => 0.0017057365862819
504 => 0.0018543156603188
505 => 0.0018206876398851
506 => 0.0018582583777746
507 => 0.0017540198276742
508 => 0.0017580018806638
509 => 0.0017086536805494
510 => 0.0017362853751656
511 => 0.001716756184022
512 => 0.0017340530073023
513 => 0.0017444206518591
514 => 0.0017937607544194
515 => 0.0018683233835129
516 => 0.0017863909884443
517 => 0.0017506918706195
518 => 0.0017728394025385
519 => 0.0018318211986067
520 => 0.0019211816388726
521 => 0.0018682784596887
522 => 0.0018917559922563
523 => 0.0018968847886796
524 => 0.0018578759429315
525 => 0.0019226199506569
526 => 0.0019573167903764
527 => 0.0019929085684292
528 => 0.0020238119120534
529 => 0.0019786924295949
530 => 0.0020269767434493
531 => 0.0019880681098114
601 => 0.0019531630431377
602 => 0.0019532159797156
603 => 0.0019313195215095
604 => 0.0018888923746039
605 => 0.0018810681577653
606 => 0.0019217707218494
607 => 0.0019544103236977
608 => 0.0019570986776391
609 => 0.0019751696383056
610 => 0.0019858638466824
611 => 0.0020906816268458
612 => 0.0021328402051257
613 => 0.0021843909166253
614 => 0.0022044728239933
615 => 0.0022649121654087
616 => 0.0022161024885725
617 => 0.0022055422079617
618 => 0.0020589361352457
619 => 0.0020829428714399
620 => 0.0021213799723924
621 => 0.0020595699488832
622 => 0.0020987741820935
623 => 0.0021065139281884
624 => 0.0020574696679362
625 => 0.0020836663264143
626 => 0.0020140957682644
627 => 0.0018698398315661
628 => 0.0019227805487522
629 => 0.0019617627362539
630 => 0.00190613034822
701 => 0.0020058492505001
702 => 0.001947595526404
703 => 0.0019291318925375
704 => 0.0018570986740632
705 => 0.0018910955803702
706 => 0.0019370768829392
707 => 0.0019086657838518
708 => 0.0019676230804062
709 => 0.0020511223356641
710 => 0.0021106288774274
711 => 0.0021151970508083
712 => 0.0020769383310832
713 => 0.0021382481736066
714 => 0.0021386947488759
715 => 0.0020695369960514
716 => 0.0020271782575184
717 => 0.0020175542630001
718 => 0.002041596888202
719 => 0.0020707890737105
720 => 0.0021168170139368
721 => 0.0021446307342274
722 => 0.002217154165488
723 => 0.0022367769265774
724 => 0.0022583363917652
725 => 0.002287146485949
726 => 0.0023217403907731
727 => 0.00224605089645
728 => 0.0022490581811623
729 => 0.0021785771720411
730 => 0.0021032581057958
731 => 0.0021604158884218
801 => 0.0022351420858241
802 => 0.0022179998135749
803 => 0.002216070957762
804 => 0.0022193147582193
805 => 0.0022063900447577
806 => 0.002147932044783
807 => 0.0021185748031622
808 => 0.0021564531346841
809 => 0.0021765837821175
810 => 0.0022078046607097
811 => 0.0022039560284304
812 => 0.0022843776588063
813 => 0.0023156270725465
814 => 0.002307632135274
815 => 0.002309103396141
816 => 0.0023656789670511
817 => 0.0024286026375567
818 => 0.0024875389584948
819 => 0.002547491515527
820 => 0.0024752163680366
821 => 0.0024385195054524
822 => 0.0024763813004797
823 => 0.0024562912990949
824 => 0.0025717344061339
825 => 0.0025797274363919
826 => 0.0026951621955803
827 => 0.0028047235277655
828 => 0.0027359100180151
829 => 0.0028007980582812
830 => 0.0028709797642285
831 => 0.0030063716615722
901 => 0.0029607764336912
902 => 0.0029258512037027
903 => 0.002892847030121
904 => 0.0029615234760795
905 => 0.003049874626672
906 => 0.0030689046182929
907 => 0.0030997404747349
908 => 0.0030673203421152
909 => 0.0031063668208952
910 => 0.0032442180488806
911 => 0.0032069694302325
912 => 0.0031540704037379
913 => 0.0032628907088597
914 => 0.0033022723542551
915 => 0.0035786733659675
916 => 0.0039276410608107
917 => 0.0037831661437002
918 => 0.0036934859004733
919 => 0.0037145628848754
920 => 0.0038419940737302
921 => 0.0038829209271266
922 => 0.0037716676312628
923 => 0.0038109641761695
924 => 0.0040274920021563
925 => 0.0041436522337539
926 => 0.0039858910368439
927 => 0.0035506341514691
928 => 0.0031493074251829
929 => 0.003255757344972
930 => 0.0032436892275935
1001 => 0.00347632136422
1002 => 0.0032060810629967
1003 => 0.0032106312165994
1004 => 0.0034480739394496
1005 => 0.0033847282917919
1006 => 0.0032821164552842
1007 => 0.0031500566051464
1008 => 0.0029059317581092
1009 => 0.0026897035731633
1010 => 0.0031137768382192
1011 => 0.0030954900279028
1012 => 0.0030690080166112
1013 => 0.0031279408670877
1014 => 0.0034141020606204
1015 => 0.0034075051188961
1016 => 0.0033655387414352
1017 => 0.0033973698688646
1018 => 0.0032765363047446
1019 => 0.0033076778655474
1020 => 0.003149243852979
1021 => 0.0032208626434487
1022 => 0.0032818962963683
1023 => 0.0032941497058106
1024 => 0.0033217572629587
1025 => 0.0030858537098251
1026 => 0.0031917674794177
1027 => 0.0032539818962751
1028 => 0.0029728948975332
1029 => 0.0032484257100736
1030 => 0.0030817471538031
1031 => 0.003025173948377
1101 => 0.0031013423165302
1102 => 0.0030716594293847
1103 => 0.0030461398260547
1104 => 0.003031899448914
1105 => 0.0030878290920897
1106 => 0.0030852199073852
1107 => 0.0029937081556738
1108 => 0.0028743348060625
1109 => 0.0029144004204887
1110 => 0.0028998442071505
1111 => 0.0028470906122241
1112 => 0.0028826401657112
1113 => 0.0027260979233715
1114 => 0.0024567751317837
1115 => 0.0026346980174868
1116 => 0.0026278481799301
1117 => 0.0026243941812186
1118 => 0.0027580983123971
1119 => 0.0027452457452634
1120 => 0.0027219182100631
1121 => 0.0028466621837465
1122 => 0.0028011289553088
1123 => 0.0029414516363758
1124 => 0.0030338772296286
1125 => 0.0030104351095249
1126 => 0.0030973618267108
1127 => 0.0029153234513239
1128 => 0.0029757892975155
1129 => 0.0029882512246135
1130 => 0.0028451228624748
1201 => 0.0027473485841969
1202 => 0.0027408281545441
1203 => 0.0025713010301358
1204 => 0.0026618610516196
1205 => 0.002741550122897
1206 => 0.0027033852418769
1207 => 0.0026913033806893
1208 => 0.0027530269892607
1209 => 0.0027578234422736
1210 => 0.0026484638052729
1211 => 0.0026712031367747
1212 => 0.0027660299292363
1213 => 0.0026688137449051
1214 => 0.0024799385789232
1215 => 0.0024330949263563
1216 => 0.002426845119604
1217 => 0.0022998014186254
1218 => 0.0024362252432124
1219 => 0.002376672587849
1220 => 0.0025647987125917
1221 => 0.0024573420790793
1222 => 0.0024527098383794
1223 => 0.0024457075271596
1224 => 0.0023363557656181
1225 => 0.0023602968517287
1226 => 0.0024398806682907
1227 => 0.0024682770706159
1228 => 0.0024653150932085
1229 => 0.0024394906641728
1230 => 0.0024513129555429
1231 => 0.0024132292358804
]
'min_raw' => 0.001332506984541
'max_raw' => 0.0041436522337539
'avg_raw' => 0.0027380796091474
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.001332'
'max' => '$0.004143'
'avg' => '$0.002738'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.00075908536674968
'max_diff' => 0.0025880146409239
'year' => 2033
]
8 => [
'items' => [
101 => 0.0023997810818235
102 => 0.0023573350084138
103 => 0.0022949510065286
104 => 0.0023036258846141
105 => 0.0021800268532174
106 => 0.0021126835410154
107 => 0.0020940437997684
108 => 0.0020691179587646
109 => 0.002096859239835
110 => 0.0021796767126908
111 => 0.0020797812697196
112 => 0.0019085175395961
113 => 0.0019188107815958
114 => 0.0019419366402779
115 => 0.0018988417556166
116 => 0.0018580560639641
117 => 0.0018935159138082
118 => 0.001820949213625
119 => 0.0019507059793036
120 => 0.0019471964224311
121 => 0.0019955617205715
122 => 0.0020258055340545
123 => 0.001956103335527
124 => 0.0019385734210921
125 => 0.0019485592570444
126 => 0.0017835156324774
127 => 0.0019820741353446
128 => 0.0019837912775227
129 => 0.0019690880636864
130 => 0.0020748143366572
131 => 0.002297929749477
201 => 0.0022139847563775
202 => 0.0021814787177985
203 => 0.0021196847146981
204 => 0.0022020215548645
205 => 0.0021956993701945
206 => 0.0021671080534995
207 => 0.002149815935952
208 => 0.0021816771927386
209 => 0.0021458679736433
210 => 0.0021394356539222
211 => 0.0021004627948456
212 => 0.0020865512573073
213 => 0.0020762517087483
214 => 0.0020649129177975
215 => 0.0020899234651843
216 => 0.0020332462743943
217 => 0.0019648991384351
218 => 0.0019592168136064
219 => 0.0019749062120537
220 => 0.0019679648211791
221 => 0.0019591835808974
222 => 0.0019424178017712
223 => 0.0019374437532487
224 => 0.0019536069978817
225 => 0.0019353596370668
226 => 0.0019622846119344
227 => 0.0019549625085972
228 => 0.0019140618345667
301 => 0.0018630844513556
302 => 0.0018626306457164
303 => 0.0018516476521232
304 => 0.0018376591584782
305 => 0.0018337678795595
306 => 0.0018905295841599
307 => 0.0020080246139477
308 => 0.0019849575281826
309 => 0.002001625861658
310 => 0.0020836175651007
311 => 0.0021096802620486
312 => 0.0020911815770838
313 => 0.0020658594361547
314 => 0.0020669734818436
315 => 0.0021535069029314
316 => 0.0021589038862606
317 => 0.0021725403220006
318 => 0.0021900669955829
319 => 0.0020941664453823
320 => 0.0020624565745533
321 => 0.0020474306785579
322 => 0.0020011567346456
323 => 0.0020510592159269
324 => 0.0020219831771216
325 => 0.0020259065281353
326 => 0.0020233514406407
327 => 0.002024746691187
328 => 0.0019506697096431
329 => 0.0019776594683462
330 => 0.0019327837597525
331 => 0.0018727002234803
401 => 0.0018724988023987
402 => 0.0018872041627811
403 => 0.0018784568390048
404 => 0.0018549180156373
405 => 0.0018582615943965
406 => 0.0018289683261866
407 => 0.0018618183275289
408 => 0.0018627603480245
409 => 0.001850111308156
410 => 0.0019007212676505
411 => 0.0019214562093492
412 => 0.0019131303403391
413 => 0.0019208720441844
414 => 0.0019859160697378
415 => 0.0019965210839728
416 => 0.0020012311307681
417 => 0.001994920292024
418 => 0.0019220609295685
419 => 0.0019252925521154
420 => 0.001901581050082
421 => 0.0018815473295202
422 => 0.0018823485732797
423 => 0.0018926485098498
424 => 0.0019376289369347
425 => 0.0020322875939938
426 => 0.0020358798208346
427 => 0.0020402337045584
428 => 0.0020225242713674
429 => 0.0020171829368605
430 => 0.0020242295357905
501 => 0.0020597783504661
502 => 0.002151219553221
503 => 0.0021188981250148
504 => 0.0020926203007702
505 => 0.0021156730370833
506 => 0.0021121242490212
507 => 0.0020821689064032
508 => 0.0020813281597053
509 => 0.002023834279919
510 => 0.0020025801016343
511 => 0.0019848185194119
512 => 0.0019654233353029
513 => 0.0019539252200307
514 => 0.0019715915508888
515 => 0.0019756320497779
516 => 0.001937004308602
517 => 0.0019317394902142
518 => 0.0019632837374961
519 => 0.0019494022903554
520 => 0.001963679702983
521 => 0.0019669921851819
522 => 0.001966458799255
523 => 0.001951964974166
524 => 0.0019612029060656
525 => 0.001939352443163
526 => 0.0019155933465898
527 => 0.0019004365232201
528 => 0.0018872101845692
529 => 0.001894548925972
530 => 0.0018683876528721
531 => 0.001860018135085
601 => 0.0019580733025981
602 => 0.0020305077091106
603 => 0.0020294544841528
604 => 0.0020230432480892
605 => 0.0020135174517706
606 => 0.0020590814791329
607 => 0.0020432078830813
608 => 0.0020547572504922
609 => 0.0020576970492237
610 => 0.0020665949345731
611 => 0.0020697751637865
612 => 0.0020601623022925
613 => 0.0020279003650067
614 => 0.0019475066846635
615 => 0.0019100832094451
616 => 0.0018977328392857
617 => 0.0018981817517843
618 => 0.0018857987410393
619 => 0.0018894460926713
620 => 0.0018845303409891
621 => 0.001875221096551
622 => 0.0018939741063607
623 => 0.0018961352160449
624 => 0.0018917580394735
625 => 0.0018927890230122
626 => 0.0018565478705179
627 => 0.0018593032066304
628 => 0.0018439611450248
629 => 0.0018410846934251
630 => 0.0018023012976723
701 => 0.0017335908903532
702 => 0.0017716631258886
703 => 0.0017256772191283
704 => 0.001708261659438
705 => 0.0017907042103368
706 => 0.001782429264827
707 => 0.0017682661551465
708 => 0.0017473159640784
709 => 0.0017395453344209
710 => 0.0016923334485042
711 => 0.0016895439184186
712 => 0.0017129434039071
713 => 0.0017021453464813
714 => 0.0016869807843113
715 => 0.0016320562773388
716 => 0.0015703029466223
717 => 0.0015721668915091
718 => 0.0015918094770484
719 => 0.0016489229436676
720 => 0.0016266077241865
721 => 0.0016104177764153
722 => 0.0016073858858658
723 => 0.0016453363437856
724 => 0.0016990441926089
725 => 0.0017242427136314
726 => 0.0016992717445885
727 => 0.0016705864398846
728 => 0.001672332381467
729 => 0.0016839473486193
730 => 0.0016851679174402
731 => 0.0016664967329749
801 => 0.0016717525620348
802 => 0.0016637684770897
803 => 0.0016147701625194
804 => 0.0016138839383841
805 => 0.001601858961784
806 => 0.0016014948502716
807 => 0.0015810373653038
808 => 0.0015781752217409
809 => 0.0015375556436567
810 => 0.0015642915729591
811 => 0.0015463585152823
812 => 0.0015193291673828
813 => 0.001514669297617
814 => 0.0015145292163048
815 => 0.0015422823129461
816 => 0.0015639672618662
817 => 0.0015466704684984
818 => 0.0015427323239329
819 => 0.001584781404867
820 => 0.0015794302760322
821 => 0.0015747962329724
822 => 0.0016942352438196
823 => 0.0015996899467918
824 => 0.0015584628008308
825 => 0.0015074363788814
826 => 0.0015240508391657
827 => 0.0015275517500648
828 => 0.0014048424034803
829 => 0.0013550592368535
830 => 0.0013379755301062
831 => 0.001328143615345
901 => 0.0013326241423631
902 => 0.0012878134534159
903 => 0.0013179269774888
904 => 0.0012791247086138
905 => 0.0012726193819634
906 => 0.0013420026453907
907 => 0.0013516569211654
908 => 0.0013104687813619
909 => 0.0013369182348699
910 => 0.001327327295353
911 => 0.0012797898621444
912 => 0.0012779742818575
913 => 0.001254121668895
914 => 0.0012167969483847
915 => 0.0011997385495555
916 => 0.0011908543873374
917 => 0.0011945201658175
918 => 0.0011926666360433
919 => 0.0011805711004909
920 => 0.0011933599379826
921 => 0.0011606897429038
922 => 0.0011476802079818
923 => 0.0011418041028765
924 => 0.0011128074243178
925 => 0.0011589540347861
926 => 0.0011680454983881
927 => 0.0011771548749818
928 => 0.0012564457789948
929 => 0.0012524846295041
930 => 0.0012882914917421
1001 => 0.0012869001029201
1002 => 0.0012766874057771
1003 => 0.0012336017164379
1004 => 0.00125077490428
1005 => 0.0011979185014081
1006 => 0.0012375221123258
1007 => 0.0012194486781893
1008 => 0.001231411466064
1009 => 0.0012099012948242
1010 => 0.0012218059117215
1011 => 0.0011702014216792
1012 => 0.0011220138749724
1013 => 0.0011414059504494
1014 => 0.0011624873542457
1015 => 0.0012081972091179
1016 => 0.0011809727966541
1017 => 0.0011907637248451
1018 => 0.0011579657543869
1019 => 0.0010902941730546
1020 => 0.0010906771868558
1021 => 0.0010802673883734
1022 => 0.0010712718026291
1023 => 0.0011840998479191
1024 => 0.0011700678969398
1025 => 0.0011477098195107
1026 => 0.0011776369946242
1027 => 0.0011855502147324
1028 => 0.0011857754929842
1029 => 0.0012076095874148
1030 => 0.0012192624475264
1031 => 0.0012213163146275
1101 => 0.0012556727339709
1102 => 0.0012671885525627
1103 => 0.0013146205795627
1104 => 0.00121827378376
1105 => 0.0012162895849032
1106 => 0.0011780581313511
1107 => 0.0011538111390929
1108 => 0.0011797183436552
1109 => 0.0012026685902112
1110 => 0.0011787712594851
1111 => 0.0011818917463778
1112 => 0.0011498115323616
1113 => 0.001161278699358
1114 => 0.0011711557683695
1115 => 0.0011657022314087
1116 => 0.0011575380226241
1117 => 0.0012007869317148
1118 => 0.0011983466587701
1119 => 0.0012386210372035
1120 => 0.0012700177952408
1121 => 0.0013262863984855
1122 => 0.001267567177651
1123 => 0.0012654272158561
1124 => 0.0012863456856626
1125 => 0.001267185350054
1126 => 0.0012792940207663
1127 => 0.0013243355044344
1128 => 0.0013252871600088
1129 => 0.0013093457029976
1130 => 0.0013083756638897
1201 => 0.0013114373950891
1202 => 0.0013293700503557
1203 => 0.0013231038295907
1204 => 0.0013303552589013
1205 => 0.0013394232822919
1206 => 0.0013769324717979
1207 => 0.001385975810401
1208 => 0.0013640051860289
1209 => 0.001365988887415
1210 => 0.0013577712707927
1211 => 0.001349833156102
1212 => 0.0013676768786582
1213 => 0.0014002866323488
1214 => 0.0014000837687635
1215 => 0.0014076485977767
1216 => 0.0014123614235815
1217 => 0.001392130525228
1218 => 0.0013789609543106
1219 => 0.0013840110058019
1220 => 0.0013920861481123
1221 => 0.0013813923459847
1222 => 0.0013153852454022
1223 => 0.001335407583169
1224 => 0.0013320748871223
1225 => 0.0013273287226821
1226 => 0.0013474613381348
1227 => 0.0013455194982606
1228 => 0.0012873538550324
1229 => 0.0012910774307939
1230 => 0.0012875802980074
1231 => 0.0012988802494868
]
'min_raw' => 0.0010712718026291
'max_raw' => 0.0023997810818235
'avg_raw' => 0.0017355264422263
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.001071'
'max' => '$0.002399'
'avg' => '$0.001735'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00026123518191192
'max_diff' => -0.0017438711519303
'year' => 2034
]
9 => [
'items' => [
101 => 0.0012665751155908
102 => 0.0012765119571988
103 => 0.0012827442511033
104 => 0.0012864151200917
105 => 0.0012996768160165
106 => 0.0012981207090656
107 => 0.0012995800862235
108 => 0.001319243680322
109 => 0.0014186953915413
110 => 0.0014241083287551
111 => 0.0013974530462254
112 => 0.0014081013058438
113 => 0.0013876589758949
114 => 0.0014013820489413
115 => 0.0014107710269914
116 => 0.0013683440405796
117 => 0.0013658317897932
118 => 0.0013453050870768
119 => 0.0013563349744247
120 => 0.0013387856305772
121 => 0.0013430916257074
122 => 0.0013310516879334
123 => 0.0013527211787988
124 => 0.0013769510366847
125 => 0.0013830724556528
126 => 0.0013669696377844
127 => 0.0013553101364202
128 => 0.0013348398929033
129 => 0.0013688823640811
130 => 0.001378837420079
131 => 0.0013688300744099
201 => 0.0013665111537536
202 => 0.0013621168033
203 => 0.0013674434359757
204 => 0.0013787832027061
205 => 0.0013734355781286
206 => 0.001376967778375
207 => 0.0013635066734249
208 => 0.0013921372224972
209 => 0.0014376094247408
210 => 0.0014377556253065
211 => 0.0014324079719034
212 => 0.0014302198273476
213 => 0.001435706844262
214 => 0.0014386833258488
215 => 0.0014564273324028
216 => 0.0014754673583878
217 => 0.0015643188518454
218 => 0.0015393697080275
219 => 0.001618204038822
220 => 0.0016805517591239
221 => 0.001699247114307
222 => 0.0016820482672229
223 => 0.0016232119404119
224 => 0.001620325149525
225 => 0.0017082514618372
226 => 0.0016834082513288
227 => 0.0016804532304892
228 => 0.0016490168013431
301 => 0.0016675996244459
302 => 0.0016635352884398
303 => 0.0016571195352199
304 => 0.0016925742672095
305 => 0.0017589423604283
306 => 0.0017485982707041
307 => 0.0017408768875735
308 => 0.0017070440343561
309 => 0.0017274189688343
310 => 0.0017201638449228
311 => 0.0017513364614622
312 => 0.0017328704939823
313 => 0.0016832200395752
314 => 0.0016911270380896
315 => 0.0016899319111708
316 => 0.0017145275384715
317 => 0.0017071445416568
318 => 0.0016884902625498
319 => 0.0017587155215008
320 => 0.001754155483798
321 => 0.0017606205746909
322 => 0.0017634667076415
323 => 0.0018062115852571
324 => 0.0018237227939327
325 => 0.0018276981448789
326 => 0.0018443324387552
327 => 0.0018272842684938
328 => 0.001895489104679
329 => 0.0019408413408797
330 => 0.0019935202970315
331 => 0.0020704984107378
401 => 0.0020994428935787
402 => 0.0020942143318255
403 => 0.0021525782590986
404 => 0.0022574569390511
405 => 0.0021154133116402
406 => 0.0022649855962128
407 => 0.0022176327378122
408 => 0.0021053599623858
409 => 0.0020981309192574
410 => 0.0021741633462899
411 => 0.0023427959515979
412 => 0.0023005553965834
413 => 0.0023428650420137
414 => 0.0022935085932102
415 => 0.0022910576295183
416 => 0.0023404679094609
417 => 0.0024559177217611
418 => 0.0024010718435088
419 => 0.002322436828273
420 => 0.0023804996998268
421 => 0.0023302002670218
422 => 0.0022168615669875
423 => 0.0023005230960271
424 => 0.0022445810141015
425 => 0.002260907887652
426 => 0.002378489823103
427 => 0.0023643420535463
428 => 0.0023826505774008
429 => 0.0023503365120151
430 => 0.0023201500794844
501 => 0.002263804861492
502 => 0.0022471238202301
503 => 0.0022517338599139
504 => 0.0022471215357234
505 => 0.0022155969040959
506 => 0.0022087891628975
507 => 0.0021974426293127
508 => 0.0022009593945222
509 => 0.0021796245918374
510 => 0.0022198877724988
511 => 0.0022273609736275
512 => 0.0022566611588423
513 => 0.0022597032012709
514 => 0.0023413038000321
515 => 0.0022963595614768
516 => 0.0023265120369985
517 => 0.0023238149157818
518 => 0.0021077932538701
519 => 0.0021375591329063
520 => 0.0021838654996392
521 => 0.0021630045441928
522 => 0.0021335120339035
523 => 0.0021096952505565
524 => 0.0020736103883946
525 => 0.002124399138939
526 => 0.0021911809451234
527 => 0.0022613968980825
528 => 0.0023457567648314
529 => 0.0023269286246302
530 => 0.0022598198490532
531 => 0.0022628302997026
601 => 0.0022814397210484
602 => 0.0022573388295613
603 => 0.0022502310061565
604 => 0.0022804632152607
605 => 0.0022806714078694
606 => 0.0022529404195235
607 => 0.0022221225006942
608 => 0.002221993372489
609 => 0.0022165096214992
610 => 0.0022944841403291
611 => 0.0023373622415724
612 => 0.0023422781467785
613 => 0.0023370313619842
614 => 0.0023390506412141
615 => 0.002314100818855
616 => 0.0023711287141278
617 => 0.0024234631503044
618 => 0.0024094364034469
619 => 0.002388408315888
620 => 0.0023716584312974
621 => 0.0024054906629564
622 => 0.0024039841669375
623 => 0.00242300605466
624 => 0.0024221431119571
625 => 0.0024157467665654
626 => 0.0024094366318806
627 => 0.0024344556026408
628 => 0.0024272505408542
629 => 0.0024200342876166
630 => 0.0024055609869955
701 => 0.002407528148926
702 => 0.0023865036921628
703 => 0.0023767768164505
704 => 0.0022305079437755
705 => 0.0021914201215235
706 => 0.00220371794611
707 => 0.0022077667092767
708 => 0.0021907556389402
709 => 0.0022151451440173
710 => 0.0022113440654859
711 => 0.002226131838495
712 => 0.0022168930799294
713 => 0.0022172722418035
714 => 0.002244441460834
715 => 0.0022523288007046
716 => 0.0022483172359878
717 => 0.0022511267984071
718 => 0.0023158719785175
719 => 0.0023066672843401
720 => 0.0023017774740147
721 => 0.0023031319848924
722 => 0.0023196757665629
723 => 0.0023243071221737
724 => 0.0023046837430113
725 => 0.0023139382420657
726 => 0.0023533427244684
727 => 0.0023671320632088
728 => 0.00241114101321
729 => 0.0023924452290528
730 => 0.002426762150008
731 => 0.0025322406655238
801 => 0.002616504202276
802 => 0.0025390119715408
803 => 0.0026937512258894
804 => 0.0028142379314275
805 => 0.0028096134509879
806 => 0.0027886038069696
807 => 0.0026514328960193
808 => 0.0025252061786597
809 => 0.0026308001876005
810 => 0.0026310693684449
811 => 0.0026219987494302
812 => 0.002565661913753
813 => 0.0026200383496658
814 => 0.0026243545536823
815 => 0.0026219386272044
816 => 0.0025787453073794
817 => 0.0025127970914664
818 => 0.0025256832149981
819 => 0.0025467909482128
820 => 0.002506829605703
821 => 0.002494059535428
822 => 0.0025178015256745
823 => 0.0025943031650888
824 => 0.0025798409733014
825 => 0.0025794633070275
826 => 0.002641338696418
827 => 0.0025970492711592
828 => 0.0025258457502829
829 => 0.0025078659222026
830 => 0.0024440496451809
831 => 0.0024881277750256
901 => 0.0024897140684479
902 => 0.0024655729271996
903 => 0.0025278046708458
904 => 0.0025272311943724
905 => 0.0025863109729918
906 => 0.0026992493203607
907 => 0.0026658478936851
908 => 0.0026270056685264
909 => 0.0026312288953792
910 => 0.0026775472701428
911 => 0.0026495421234151
912 => 0.0026596129694372
913 => 0.0026775320267112
914 => 0.0026883430388697
915 => 0.0026296733571017
916 => 0.0026159946477863
917 => 0.0025880128091015
918 => 0.0025807128696944
919 => 0.0026035034934429
920 => 0.0025974989692898
921 => 0.0024895807466282
922 => 0.0024783026919087
923 => 0.0024786485737456
924 => 0.0024502893689113
925 => 0.0024070347745498
926 => 0.002520705265934
927 => 0.0025115759346584
928 => 0.0025014978594842
929 => 0.0025027323661883
930 => 0.0025520728738478
1001 => 0.0025234528876499
1002 => 0.0025995438116804
1003 => 0.0025839018052023
1004 => 0.0025678586402807
1005 => 0.0025656409862018
1006 => 0.0025594657364455
1007 => 0.0025382885073219
1008 => 0.002512715730601
1009 => 0.0024958303683338
1010 => 0.0023022715856939
1011 => 0.0023381949698722
1012 => 0.0023795215488499
1013 => 0.0023937873183071
1014 => 0.0023693847324893
1015 => 0.0025392520701455
1016 => 0.0025702884696177
1017 => 0.0024762771911622
1018 => 0.0024586915194184
1019 => 0.0025404049838573
1020 => 0.0024911217757359
1021 => 0.0025133140013353
1022 => 0.0024653465480877
1023 => 0.0025628127098367
1024 => 0.0025620701809846
1025 => 0.0025241536426912
1026 => 0.0025562004412155
1027 => 0.002550631521339
1028 => 0.00250782384299
1029 => 0.002564169789595
1030 => 0.0025641977364815
1031 => 0.0025277038927507
1101 => 0.0024850870728028
1102 => 0.0024774681919605
1103 => 0.0024717283886984
1104 => 0.0025119023615892
1105 => 0.0025479222200623
1106 => 0.0026149462466006
1107 => 0.0026317976793239
1108 => 0.0026975699431064
1109 => 0.0026584057624173
1110 => 0.0026757667364557
1111 => 0.0026946145296341
1112 => 0.0027036508547885
1113 => 0.0026889266478654
1114 => 0.0027910980464634
1115 => 0.0027997244429559
1116 => 0.0028026167990818
1117 => 0.0027681651783354
1118 => 0.0027987662810604
1119 => 0.0027844490384974
1120 => 0.0028216985262018
1121 => 0.0028275397214992
1122 => 0.0028225924368889
1123 => 0.0028244465244733
1124 => 0.0027372612600396
1125 => 0.0027327402441399
1126 => 0.0026710958715495
1127 => 0.0026962164090323
1128 => 0.002649254768267
1129 => 0.0026641467883122
1130 => 0.0026707110488517
1201 => 0.0026672822516643
1202 => 0.002697636686531
1203 => 0.002671829215893
1204 => 0.0026037190577383
1205 => 0.0025355903430165
1206 => 0.0025347350424996
1207 => 0.0025167979544851
1208 => 0.0025038327251921
1209 => 0.0025063302883202
1210 => 0.0025151320265457
1211 => 0.0025033211521658
1212 => 0.0025058416010413
1213 => 0.0025476978460373
1214 => 0.0025560918174662
1215 => 0.0025275658228145
1216 => 0.0024130298380066
1217 => 0.002384922420043
1218 => 0.0024051254746809
1219 => 0.0023954697158074
1220 => 0.0019333310194024
1221 => 0.0020419036511225
1222 => 0.0019773934801326
1223 => 0.002007122734895
1224 => 0.0019412745551421
1225 => 0.001972700757919
1226 => 0.0019668974857673
1227 => 0.0021414790646756
1228 => 0.00213875321345
1229 => 0.0021400579341829
1230 => 0.0020777802141731
1231 => 0.002176990313173
]
'min_raw' => 0.0012665751155908
'max_raw' => 0.0028275397214992
'avg_raw' => 0.002047057418545
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.001266'
'max' => '$0.002827'
'avg' => '$0.002047'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00019530331296174
'max_diff' => 0.00042775863967568
'year' => 2035
]
10 => [
'items' => [
101 => 0.0022258647754202
102 => 0.0022168194132099
103 => 0.0022190959360036
104 => 0.0021799777319279
105 => 0.0021404366839065
106 => 0.002096579576327
107 => 0.0021780606613073
108 => 0.002169001355586
109 => 0.0021897801434754
110 => 0.0022426264514733
111 => 0.0022504082710696
112 => 0.0022608671155225
113 => 0.0022571183642974
114 => 0.0023464288272701
115 => 0.0023356127409147
116 => 0.0023616763970307
117 => 0.0023080614789456
118 => 0.0022473911099575
119 => 0.0022589225636384
120 => 0.0022578119919188
121 => 0.0022436731392739
122 => 0.002230909215297
123 => 0.0022096608780886
124 => 0.0022768937611781
125 => 0.0022741642289063
126 => 0.0023183521836521
127 => 0.0023105415334319
128 => 0.002258380099671
129 => 0.0022602430554823
130 => 0.002272772328619
131 => 0.002316136286002
201 => 0.0023290096609967
202 => 0.0023230462007838
203 => 0.0023371612687736
204 => 0.002348317242995
205 => 0.0023385622873754
206 => 0.0024766718875679
207 => 0.0024193191526003
208 => 0.0024472724765657
209 => 0.002453939179621
210 => 0.0024368625599307
211 => 0.0024405658672736
212 => 0.0024461753688073
213 => 0.0024802351636667
214 => 0.0025696179206589
215 => 0.0026092049352818
216 => 0.0027283044219635
217 => 0.0026059177847952
218 => 0.0025986558682319
219 => 0.0026201092822432
220 => 0.0026900332888864
221 => 0.0027467001286427
222 => 0.0027654997885783
223 => 0.0027679844739874
224 => 0.0028032538858043
225 => 0.0028234696549222
226 => 0.0027989712515321
227 => 0.0027782114197488
228 => 0.002703852279106
229 => 0.0027124595521087
301 => 0.0027717551276747
302 => 0.0028555136206537
303 => 0.0029273871212156
304 => 0.0029022195263632
305 => 0.003094230509534
306 => 0.0031132676142208
307 => 0.0031106373018964
308 => 0.003154006659474
309 => 0.0030679273166985
310 => 0.0030311267299532
311 => 0.0027826999310144
312 => 0.0028524977283188
313 => 0.0029539529257815
314 => 0.0029405249499599
315 => 0.0028668454736572
316 => 0.0029273312287259
317 => 0.0029073327465357
318 => 0.0028915591138946
319 => 0.0029638211828928
320 => 0.0028843660696671
321 => 0.0029531603002471
322 => 0.002864930987943
323 => 0.0029023344898166
324 => 0.0028811024531493
325 => 0.0028948421829736
326 => 0.0028145200031698
327 => 0.0028578599016812
328 => 0.0028127169209033
329 => 0.0028126955172526
330 => 0.0028116989834499
331 => 0.0028648095001405
401 => 0.002866541432183
402 => 0.0028272926801032
403 => 0.0028216363217477
404 => 0.0028425508432052
405 => 0.0028180654161003
406 => 0.0028295219933333
407 => 0.0028184124241537
408 => 0.0028159114261281
409 => 0.00279598304835
410 => 0.002787397355261
411 => 0.0027907640267473
412 => 0.0027792718413266
413 => 0.0027723473839202
414 => 0.0028103215345857
415 => 0.002790033477758
416 => 0.0028072120989052
417 => 0.0027876348919931
418 => 0.002719771763453
419 => 0.00268074296059
420 => 0.002552555801693
421 => 0.0025889095209405
422 => 0.0026130120744122
423 => 0.0026050461806336
424 => 0.0026221600028618
425 => 0.0026232106525539
426 => 0.0026176467744927
427 => 0.0026112045164749
428 => 0.002608068781551
429 => 0.0026314399806142
430 => 0.0026450077483088
501 => 0.0026154310881037
502 => 0.0026085016904391
503 => 0.0026384053268786
504 => 0.002656646527832
505 => 0.0027913293068262
506 => 0.0027813515715386
507 => 0.0028063937290787
508 => 0.0028035743664429
509 => 0.0028298225370734
510 => 0.0028727272027497
511 => 0.0027854900210966
512 => 0.0028006313793968
513 => 0.0027969190680066
514 => 0.0028374491103443
515 => 0.0028375756407125
516 => 0.0028132758557053
517 => 0.0028264491633767
518 => 0.0028190961844253
519 => 0.0028323840112051
520 => 0.0027812183128007
521 => 0.0028435326104615
522 => 0.0028788608017905
523 => 0.0028793513337614
524 => 0.0028960966160694
525 => 0.0029131107927158
526 => 0.002945768023166
527 => 0.0029122000002833
528 => 0.0028518143948984
529 => 0.0028561740405629
530 => 0.00282076998222
531 => 0.002821365130837
601 => 0.0028181881808768
602 => 0.0028277224468571
603 => 0.0027833105480251
604 => 0.0027937339319117
605 => 0.0027791411334312
606 => 0.0028005996575028
607 => 0.0027775138328229
608 => 0.0027969172778176
609 => 0.002805291161443
610 => 0.0028361909722974
611 => 0.0027729499056358
612 => 0.0026439970896691
613 => 0.002671104534987
614 => 0.0026310104941179
615 => 0.0026347213502491
616 => 0.0026422178702125
617 => 0.0026179191963023
618 => 0.0026225546175452
619 => 0.0026223890076794
620 => 0.002620961871326
621 => 0.0026146408477827
622 => 0.0026054741130684
623 => 0.0026419915627979
624 => 0.0026481965890961
625 => 0.002661989593917
626 => 0.0027030282203794
627 => 0.0026989274938383
628 => 0.0027056159489643
629 => 0.0026910150889784
630 => 0.0026353986422675
701 => 0.0026384188829027
702 => 0.0026007564337858
703 => 0.0026610264804164
704 => 0.0026467537378485
705 => 0.0026375520078653
706 => 0.002635041230586
707 => 0.0026761815838656
708 => 0.0026884914223629
709 => 0.0026808207570939
710 => 0.0026650879988382
711 => 0.0026952995456616
712 => 0.0027033828810687
713 => 0.0027051924417644
714 => 0.002758721510246
715 => 0.0027081841220588
716 => 0.0027203489736939
717 => 0.002815255673541
718 => 0.002729188393009
719 => 0.0027747801510362
720 => 0.0027725486717288
721 => 0.0027958718723945
722 => 0.002770635488521
723 => 0.0027709483237447
724 => 0.0027916577458854
725 => 0.0027625750974527
726 => 0.0027553738247106
727 => 0.0027454253179938
728 => 0.002767147518451
729 => 0.0027801689952145
730 => 0.0028851125347073
731 => 0.0029529108472264
801 => 0.0029499675436747
802 => 0.0029768638285046
803 => 0.002964746805847
804 => 0.0029256177433764
805 => 0.0029924062817328
806 => 0.0029712715936457
807 => 0.002973013911653
808 => 0.0029729490624897
809 => 0.0029870017824411
810 => 0.0029770441424427
811 => 0.002957416611875
812 => 0.0029704462826443
813 => 0.0030091397466368
814 => 0.0031292454461297
815 => 0.0031964581867549
816 => 0.0031251991547493
817 => 0.0031743526808303
818 => 0.0031448780803738
819 => 0.0031395216686775
820 => 0.0031703937154734
821 => 0.0032013197997004
822 => 0.0031993499418323
823 => 0.0031768991927555
824 => 0.0031642173342686
825 => 0.0032602486154652
826 => 0.0033310028276007
827 => 0.0033261778646753
828 => 0.0033474736818659
829 => 0.0034099988597924
830 => 0.003415715378471
831 => 0.0034149952285102
901 => 0.0034008262405083
902 => 0.0034623903980973
903 => 0.0035137483014764
904 => 0.0033975465291673
905 => 0.0034417946428697
906 => 0.0034616590466959
907 => 0.0034908258850158
908 => 0.0035400352301911
909 => 0.0035934896311857
910 => 0.003601048669584
911 => 0.0035956851701071
912 => 0.0035604305557198
913 => 0.0036189209991317
914 => 0.0036531833291127
915 => 0.0036735857625369
916 => 0.0037253229390595
917 => 0.0034617817224913
918 => 0.003275234150556
919 => 0.0032461020534187
920 => 0.0033053433185105
921 => 0.003320964767675
922 => 0.0033146677811044
923 => 0.003104691528728
924 => 0.0032449965719055
925 => 0.0033959530011814
926 => 0.0034017518524193
927 => 0.0034773237972649
928 => 0.0035019331203053
929 => 0.0035627784413472
930 => 0.0035589725499497
1001 => 0.0035737874173629
1002 => 0.0035703817359023
1003 => 0.0036830848806386
1004 => 0.0038074131858616
1005 => 0.0038031080919916
1006 => 0.00378523442713
1007 => 0.0038117798673621
1008 => 0.0039401000021832
1009 => 0.0039282863404572
1010 => 0.0039397623065387
1011 => 0.0040910589772987
1012 => 0.0042877661709871
1013 => 0.0041963759304395
1014 => 0.0043946664555945
1015 => 0.0045194798302504
1016 => 0.0047353316557741
1017 => 0.0047083059441259
1018 => 0.0047923354758084
1019 => 0.0046599242798394
1020 => 0.0043558814091766
1021 => 0.0043077654610648
1022 => 0.0044040948076744
1023 => 0.0046409111066339
1024 => 0.0043966366196625
1025 => 0.004446053030233
1026 => 0.0044318211006643
1027 => 0.0044310627416194
1028 => 0.0044600062218945
1029 => 0.004418022194165
1030 => 0.0042469717124128
1031 => 0.0043253631401931
1101 => 0.0042950924452616
1102 => 0.0043286800381178
1103 => 0.0045099384241863
1104 => 0.0044297997710452
1105 => 0.0043453802098966
1106 => 0.0044512610737773
1107 => 0.0045860837981096
1108 => 0.0045776468343206
1109 => 0.0045612755981927
1110 => 0.0046535593990758
1111 => 0.0048059852015179
1112 => 0.0048471852834215
1113 => 0.0048775983415842
1114 => 0.004881791788472
1115 => 0.0049249868976291
1116 => 0.0046927159091223
1117 => 0.0050613359330246
1118 => 0.0051249864282299
1119 => 0.005113022773174
1120 => 0.0051837676197724
1121 => 0.0051629526912796
1122 => 0.0051327951256558
1123 => 0.0052449407553746
1124 => 0.0051163748405877
1125 => 0.0049338917105461
1126 => 0.0048337778562983
1127 => 0.0049656158555261
1128 => 0.0050461247211424
1129 => 0.0050993359599892
1130 => 0.0051154376487132
1201 => 0.0047107464447694
1202 => 0.0044926403310468
1203 => 0.0046324438493513
1204 => 0.0048030137904062
1205 => 0.0046917683844874
1206 => 0.004696128993784
1207 => 0.0045375222797223
1208 => 0.0048170469652436
1209 => 0.0047763225697358
1210 => 0.0049876008056704
1211 => 0.0049371775590508
1212 => 0.0051094667586817
1213 => 0.005064097238379
1214 => 0.0052524235805796
1215 => 0.0053275520572156
1216 => 0.0054537044623011
1217 => 0.0055465026850146
1218 => 0.0056009955763392
1219 => 0.0055977240275418
1220 => 0.0058136520112203
1221 => 0.0056863268231942
1222 => 0.0055263763787907
1223 => 0.0055234833798886
1224 => 0.0056063239815605
1225 => 0.0057799351564556
1226 => 0.005824950008166
1227 => 0.0058501071692332
1228 => 0.0058115781013318
1229 => 0.0056733757352079
1230 => 0.0056137006542176
1231 => 0.0056645455521749
]
'min_raw' => 0.002096579576327
'max_raw' => 0.0058501071692332
'avg_raw' => 0.0039733433727801
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.002096'
'max' => '$0.00585'
'avg' => '$0.003973'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.00083000446073617
'max_diff' => 0.0030225674477339
'year' => 2036
]
11 => [
'items' => [
101 => 0.005602366611125
102 => 0.0057097049077067
103 => 0.0058571033151364
104 => 0.0058266661268786
105 => 0.005928413083826
106 => 0.0060337104801745
107 => 0.0061842904861549
108 => 0.0062236576756796
109 => 0.0062887301429639
110 => 0.0063557110869914
111 => 0.0063772235610259
112 => 0.0064182975488866
113 => 0.0064180810686959
114 => 0.0065418602957122
115 => 0.0066783926162348
116 => 0.0067299304065016
117 => 0.0068484387134097
118 => 0.0066454973908559
119 => 0.0067994307152349
120 => 0.0069382824270257
121 => 0.0067727376920445
122 => 0.0070009025422398
123 => 0.0070097616663402
124 => 0.0071435239222198
125 => 0.0070079302501383
126 => 0.0069274151604866
127 => 0.00715985920745
128 => 0.0072723315598567
129 => 0.0072384539719814
130 => 0.0069806438555079
131 => 0.0068305873097242
201 => 0.0064378603856622
202 => 0.0069030623917542
203 => 0.007129648718793
204 => 0.0069800570516601
205 => 0.0070555023873343
206 => 0.0074671076755406
207 => 0.0076238203198207
208 => 0.0075912251853145
209 => 0.0075967332264845
210 => 0.0076812925248023
211 => 0.0080562750211999
212 => 0.0078315768173323
213 => 0.008003350174908
214 => 0.0080944581443912
215 => 0.0081790843039496
216 => 0.0079712692024467
217 => 0.0077009048088015
218 => 0.007615269056209
219 => 0.0069651831084932
220 => 0.0069313433117344
221 => 0.006912348008363
222 => 0.0067925853075447
223 => 0.0066984846304662
224 => 0.0066236522783192
225 => 0.0064272698394536
226 => 0.0064935431477038
227 => 0.0061805505283524
228 => 0.0063807921144361
301 => 0.0058812483364802
302 => 0.0062972832387854
303 => 0.0060708543562465
304 => 0.0062228952610861
305 => 0.0062223648046922
306 => 0.0059424092942698
307 => 0.0057809367983806
308 => 0.0058838333573647
309 => 0.0059941466365348
310 => 0.0060120445949417
311 => 0.0061550686408568
312 => 0.0061949835777802
313 => 0.0060740394554522
314 => 0.0058708964020242
315 => 0.0059180819001358
316 => 0.0057799805857674
317 => 0.005537963344327
318 => 0.0057117843523451
319 => 0.0057711344868527
320 => 0.0057973468873539
321 => 0.0055593507262653
322 => 0.0054845671653032
323 => 0.0054447530249419
324 => 0.0058401740862555
325 => 0.0058618361446068
326 => 0.005751009991375
327 => 0.0062519547129499
328 => 0.0061385754942243
329 => 0.0062652478601238
330 => 0.0059138003107572
331 => 0.0059272260804299
401 => 0.0057608451783629
402 => 0.0058540073659445
403 => 0.0057881633345193
404 => 0.0058464807818346
405 => 0.0058814360193035
406 => 0.0060477896199017
407 => 0.0062991827296867
408 => 0.006022941939376
409 => 0.0059025798711966
410 => 0.0059772518213531
411 => 0.0061761130647745
412 => 0.0064773980280775
413 => 0.0062990312658772
414 => 0.0063781874060777
415 => 0.0063954795012999
416 => 0.0062639584543498
417 => 0.0064822473966783
418 => 0.0065992302142483
419 => 0.0067192303788919
420 => 0.0068234231595237
421 => 0.0066712996742731
422 => 0.0068340936095362
423 => 0.0067029104347121
424 => 0.0065852255654276
425 => 0.0065854040447961
426 => 0.0065115786071923
427 => 0.0063685325192312
428 => 0.0063421526258904
429 => 0.0064793841624623
430 => 0.0065894308589182
501 => 0.0065984948319264
502 => 0.0066594223374877
503 => 0.0066954786076757
504 => 0.0070488790716405
505 => 0.0071910196617291
506 => 0.0073648264847058
507 => 0.007432534037471
508 => 0.0076363094967932
509 => 0.0074717442635569
510 => 0.0074361395401823
511 => 0.0069418469303115
512 => 0.007022787317487
513 => 0.0071523806869408
514 => 0.0069439838772415
515 => 0.0070761636866623
516 => 0.0071022587809932
517 => 0.006936902633392
518 => 0.0070252264964432
519 => 0.0067906645023796
520 => 0.0063042955401734
521 => 0.0064827888643691
522 => 0.0066142200311805
523 => 0.0064266515507947
524 => 0.0067628607919836
525 => 0.0065664542940485
526 => 0.0065042028633776
527 => 0.0062613378380931
528 => 0.0063759607812953
529 => 0.0065309899532187
530 => 0.0064351999490457
531 => 0.0066339785906462
601 => 0.0069155021594798
602 => 0.0071161326196489
603 => 0.0071315345351424
604 => 0.0070025425904505
605 => 0.0072092530050349
606 => 0.0072107586647342
607 => 0.0069775884726462
608 => 0.0068347730282894
609 => 0.0068023250588452
610 => 0.0068833864483158
611 => 0.0069818099398911
612 => 0.0071369963539322
613 => 0.007230772253784
614 => 0.0074752900657034
615 => 0.0075414495747337
616 => 0.0076141388168483
617 => 0.0077112740608453
618 => 0.0078279098262292
619 => 0.0075727174116471
620 => 0.0075828566820167
621 => 0.0073452250389373
622 => 0.0070912815484823
623 => 0.0072839930032347
624 => 0.007535937594993
625 => 0.0074781412272696
626 => 0.0074716379552281
627 => 0.0074825746549447
628 => 0.0074389980811341
629 => 0.0072419028528123
630 => 0.0071429228630305
701 => 0.0072706323023375
702 => 0.007338504185636
703 => 0.0074437675575817
704 => 0.0074307916251492
705 => 0.0077019387668204
706 => 0.0078072983470099
707 => 0.0077803428578068
708 => 0.0077853033165403
709 => 0.0079760518038438
710 => 0.0081882033521439
711 => 0.0083869112729893
712 => 0.008589045504777
713 => 0.0083453647989236
714 => 0.0082216387646277
715 => 0.0083492924499886
716 => 0.0082815576076804
717 => 0.0086707821030428
718 => 0.0086977311626133
719 => 0.0090869275126145
720 => 0.0094563211934048
721 => 0.0092243116408756
722 => 0.0094430861989709
723 => 0.0096797087205024
724 => 0.010136191955157
725 => 0.0099824644609994
726 => 0.0098647116096913
727 => 0.0097534357341829
728 => 0.0099849831665682
729 => 0.010282865239271
730 => 0.010347026184653
731 => 0.010450991427538
801 => 0.010341684686909
802 => 0.010473332616254
803 => 0.010938107655872
804 => 0.010812521337484
805 => 0.010634168576366
806 => 0.011001063832675
807 => 0.011133841799664
808 => 0.012065747108355
809 => 0.013242316055665
810 => 0.012755208785711
811 => 0.012452845584396
812 => 0.012523908108856
813 => 0.012953551259042
814 => 0.013091539002689
815 => 0.012716440748227
816 => 0.012848931792977
817 => 0.013578970475782
818 => 0.013970612806662
819 => 0.013438709916745
820 => 0.011971210939038
821 => 0.010618109861627
822 => 0.010977013198292
823 => 0.010936324697981
824 => 0.011720660188475
825 => 0.010809526145325
826 => 0.010824867305878
827 => 0.011625422023689
828 => 0.011411847749959
829 => 0.011065884779044
830 => 0.01062063577418
831 => 0.0097975518081414
901 => 0.0090685233860266
902 => 0.010498316007012
903 => 0.010436660749286
904 => 0.010347374799302
905 => 0.010546071019244
906 => 0.011510883462376
907 => 0.011488641412768
908 => 0.01134714884116
909 => 0.011454469709667
910 => 0.011047070911906
911 => 0.011152066858387
912 => 0.010617895523503
913 => 0.010859363275836
914 => 0.011065142497888
915 => 0.011106455723329
916 => 0.011199536529751
917 => 0.010404171230101
918 => 0.010761266898946
919 => 0.010971027149053
920 => 0.010023322707927
921 => 0.010952294079354
922 => 0.010390325689762
923 => 0.010199585177853
924 => 0.010456392148987
925 => 0.010356314222583
926 => 0.010270273098234
927 => 0.010222260672473
928 => 0.010410831369323
929 => 0.010402034320924
930 => 0.010093496060883
1001 => 0.0096910204782875
1002 => 0.0098261044946172
1003 => 0.0097770272050653
1004 => 0.0095991647766325
1005 => 0.0097190225782047
1006 => 0.009191229478726
1007 => 0.0082831888833711
1008 => 0.0088830683146982
1009 => 0.0088599736091353
1010 => 0.008848328211329
1011 => 0.0092991210245217
1012 => 0.0092557876970929
1013 => 0.0091771372834885
1014 => 0.0095977203001082
1015 => 0.0094442018414022
1016 => 0.0099173095576363
1017 => 0.010228928898237
1018 => 0.010149892153631
1019 => 0.010442971649652
1020 => 0.0098292165575221
1021 => 0.010033081379547
1022 => 0.010075097636822
1023 => 0.0095925303709686
1024 => 0.0092628775653726
1025 => 0.0092408934815564
1026 => 0.0086693209456078
1027 => 0.0089746503807393
1028 => 0.0092433276482644
1029 => 0.0091146520873181
1030 => 0.0090739172487955
1031 => 0.0092820227044987
1101 => 0.0092981942807096
1102 => 0.0089294806293157
1103 => 0.0090061478730833
1104 => 0.0093258630244629
1105 => 0.0089980918715731
1106 => 0.0083612860626221
1107 => 0.0082033494174731
1108 => 0.0081822777576604
1109 => 0.0077539410499031
1110 => 0.0082139034993054
1111 => 0.008013117563914
1112 => 0.0086473979280306
1113 => 0.0082851003857611
1114 => 0.0082694824628287
1115 => 0.0082458736816654
1116 => 0.0078771865829321
1117 => 0.0079579056262672
1118 => 0.0082262280201706
1119 => 0.0083219684731834
1120 => 0.0083119819595558
1121 => 0.0082249130940577
1122 => 0.008264772774818
1123 => 0.0081363708550557
1124 => 0.0080910294647328
1125 => 0.0079479195647417
1126 => 0.0077375875468737
1127 => 0.0077668355039995
1128 => 0.0073501127402368
1129 => 0.0071230600613878
1130 => 0.0070602148723886
1201 => 0.0069761756591777
1202 => 0.0070697073251406
1203 => 0.0073489322170055
1204 => 0.007012127756551
1205 => 0.0064347001331878
1206 => 0.0064694045172408
1207 => 0.0065473749643836
1208 => 0.0064020775519591
1209 => 0.0062645657449868
1210 => 0.0063841211044636
1211 => 0.0061394574083508
1212 => 0.0065769414031642
1213 => 0.0065651086871392
1214 => 0.0067281756665769
1215 => 0.0068301447952906
1216 => 0.006595138966503
1217 => 0.0065360356360863
1218 => 0.0065697035791882
1219 => 0.0060132474759827
1220 => 0.0066827013313113
1221 => 0.0066884907960519
1222 => 0.0066389178840572
1223 => 0.0069953813949507
1224 => 0.0077476305866933
1225 => 0.0074646041816061
1226 => 0.007355007803038
1227 => 0.0071466650072655
1228 => 0.0074242694124612
1229 => 0.0074029537254455
1230 => 0.0073065561050263
1231 => 0.0072482545234178
]
'min_raw' => 0.0054447530249419
'max_raw' => 0.013970612806662
'avg_raw' => 0.0097076829158018
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.005444'
'max' => '$0.01397'
'avg' => '$0.0097076'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0033481734486149
'max_diff' => 0.0081205056374285
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.000170904575873
]
1 => [
'year' => 2028
'avg' => 0.00029332186615095
]
2 => [
'year' => 2029
'avg' => 0.00080130247220161
]
3 => [
'year' => 2030
'avg' => 0.0006182036639681
]
4 => [
'year' => 2031
'avg' => 0.00060715261115331
]
5 => [
'year' => 2032
'avg' => 0.0010645296053107
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.000170904575873
'min' => '$0.00017'
'max_raw' => 0.0010645296053107
'max' => '$0.001064'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0010645296053107
]
1 => [
'year' => 2033
'avg' => 0.0027380796091474
]
2 => [
'year' => 2034
'avg' => 0.0017355264422263
]
3 => [
'year' => 2035
'avg' => 0.002047057418545
]
4 => [
'year' => 2036
'avg' => 0.0039733433727801
]
5 => [
'year' => 2037
'avg' => 0.0097076829158018
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0010645296053107
'min' => '$0.001064'
'max_raw' => 0.0097076829158018
'max' => '$0.0097076'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.0097076829158018
]
]
]
]
'prediction_2025_max_price' => '$0.000292'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutre'
'overall_action_dir' => 0
'last_updated' => 1767704076
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Dog pour 2026
La prévision du prix de Dog pour 2026 suggère que le prix moyen pourrait varier entre $0.000097 à la baisse et $0.000292 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Dog pourrait potentiellement gagner 3.13% d'ici 2026 si DOG atteint l'objectif de prix prévu.
Prévision du prix de Dog de 2027 à 2032
La prévision du prix de DOG pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.00017 à la baisse et $0.001064 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Dog atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Dog | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000094 | $0.00017 | $0.000247 |
| 2028 | $0.00017 | $0.000293 | $0.000416 |
| 2029 | $0.000373 | $0.0008013 | $0.001228 |
| 2030 | $0.000317 | $0.000618 | $0.000918 |
| 2031 | $0.000375 | $0.0006071 | $0.000838 |
| 2032 | $0.000573 | $0.001064 | $0.001555 |
Prévision du prix de Dog de 2032 à 2037
La prévision du prix de Dog pour 2032-2037 est actuellement estimée entre $0.001064 à la baisse et $0.0097076 à la hausse. Par rapport au prix actuel, Dog pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Dog | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.000573 | $0.001064 | $0.001555 |
| 2033 | $0.001332 | $0.002738 | $0.004143 |
| 2034 | $0.001071 | $0.001735 | $0.002399 |
| 2035 | $0.001266 | $0.002047 | $0.002827 |
| 2036 | $0.002096 | $0.003973 | $0.00585 |
| 2037 | $0.005444 | $0.0097076 | $0.01397 |
Dog Histogramme des prix potentiels
Prévision du prix de Dog basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Dog est Neutre, avec 0 indicateurs techniques montrant des signaux haussiers et 0 indiquant des signaux baissiers. La prévision du prix de DOG a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Dog et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Dog devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Dog devrait atteindre — d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à —, ce qui suggère que le marché de DOG est dans un état —.
Moyennes Mobiles et Oscillateurs Populaires de DOG pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Oscillateurs de Dog
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Stochastique Rapide (14) | — | — |
| Indice de Canal des Matières Premières (20) | — | — |
| Indice Directionnel Moyen (14) | — | — |
| Oscillateur Impressionnant (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Plage de Pourcentage de Williams (14) | — | — |
| Oscillateur Ultime (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Moyenne Mobile de Hull (9) | — | — |
| Nuage Ichimoku B/L (9, 26, 52, 26) | — | — |
Prévision du cours de Dog basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Dog
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Dog par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.000398 | $0.000559 | $0.000786 | $0.0011046 | $0.001552 | $0.002181 |
| Action Amazon.com | $0.000591 | $0.001233 | $0.002573 | $0.00537 | $0.0112062 | $0.023382 |
| Action Apple | $0.0004018 | $0.00057 | $0.0008085 | $0.001146 | $0.001626 | $0.0023075 |
| Action Netflix | $0.000447 | $0.0007054 | $0.001113 | $0.001756 | $0.00277 | $0.004372 |
| Action Google | $0.000366 | $0.000475 | $0.000615 | $0.000796 | $0.001031 | $0.001336 |
| Action Tesla | $0.000642 | $0.001456 | $0.00330079 | $0.007482 | $0.016962 | $0.038452 |
| Action Kodak | $0.000212 | $0.000159 | $0.000119 | $0.000089 | $0.000067 | $0.00005 |
| Action Nokia | $0.000187 | $0.000124 | $0.000082 | $0.000054 | $0.000036 | $0.000023 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Dog
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Dog maintenant ?", "Devrais-je acheter DOG aujourd'hui ?", " Dog sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Dog/Dog [OLD] avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Dog en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Dog afin de prendre une décision responsable concernant cet investissement.
Le cours de Dog est de $0.0002833 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Dog basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Dog présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00029 | $0.000298 | $0.000306 | $0.000313 |
| Si Dog présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000298 | $0.000313 | $0.000329 | $0.000347 |
| Si Dog présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00032 | $0.000361 | $0.0004087 | $0.000461 |
| Si Dog présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000356 | $0.000449 | $0.000566 | $0.000713 |
| Si Dog présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00043 | $0.000654 | $0.000994 | $0.001511 |
| Si Dog présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000651 | $0.001498 | $0.003445 | $0.007924 |
| Si Dog présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001019 | $0.00367 | $0.013212 | $0.047554 |
Boîte à questions
Est-ce que DOG est un bon investissement ?
La décision d'acquérir Dog dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Dog a connu une baisse de 0% au cours des 24 heures précédentes, et Dog a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Dog dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Dog peut monter ?
Il semble que la valeur moyenne de Dog pourrait potentiellement s'envoler jusqu'à $0.000292 pour la fin de cette année. En regardant les perspectives de Dog sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.000918. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Dog la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Dog, le prix de Dog va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000285 d'ici 13 janvier 2026.
Quel sera le prix de Dog le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Dog, le prix de Dog va diminuer de -11.62% durant le prochain mois et atteindre $0.00025 d'ici 5 février 2026.
Jusqu'où le prix de Dog peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Dog en 2026, DOG devrait fluctuer dans la fourchette de $0.000097 et $0.000292. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Dog ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Dog dans 5 ans ?
L'avenir de Dog semble suivre une tendance haussière, avec un prix maximum de $0.000918 prévue après une période de cinq ans. Selon la prévision de Dog pour 2030, la valeur de Dog pourrait potentiellement atteindre son point le plus élevé d'environ $0.000918, tandis que son point le plus bas devrait être autour de $0.000317.
Combien vaudra Dog en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Dog, il est attendu que la valeur de DOG en 2026 augmente de 3.13% jusqu'à $0.000292 si le meilleur scénario se produit. Le prix sera entre $0.000292 et $0.000097 durant 2026.
Combien vaudra Dog en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Dog, le valeur de DOG pourrait diminuer de -12.62% jusqu'à $0.000247 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000247 et $0.000094 tout au long de l'année.
Combien vaudra Dog en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Dog suggère que la valeur de DOG en 2028 pourrait augmenter de 47.02%, atteignant $0.000416 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.000416 et $0.00017 durant l'année.
Combien vaudra Dog en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Dog pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.001228 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.001228 et $0.000373.
Combien vaudra Dog en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Dog, il est prévu que la valeur de DOG en 2030 augmente de 224.23%, atteignant $0.000918 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.000918 et $0.000317 au cours de 2030.
Combien vaudra Dog en 2031 ?
Notre simulation expérimentale indique que le prix de Dog pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.000838 dans des conditions idéales. Il est probable que le prix fluctue entre $0.000838 et $0.000375 durant l'année.
Combien vaudra Dog en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Dog, DOG pourrait connaître une 449.04% hausse en valeur, atteignant $0.001555 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.001555 et $0.000573 tout au long de l'année.
Combien vaudra Dog en 2033 ?
Selon notre prédiction expérimentale de prix de Dog, la valeur de DOG est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.004143. Tout au long de l'année, le prix de DOG pourrait osciller entre $0.004143 et $0.001332.
Combien vaudra Dog en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Dog suggèrent que DOG pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.002399 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.002399 et $0.001071.
Combien vaudra Dog en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Dog, DOG pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.002827 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.002827 et $0.001266.
Combien vaudra Dog en 2036 ?
Notre récente simulation de prédiction de prix de Dog suggère que la valeur de DOG pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.00585 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.00585 et $0.002096.
Combien vaudra Dog en 2037 ?
Selon la simulation expérimentale, la valeur de Dog pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.01397 sous des conditions favorables. Il est prévu que le prix chute entre $0.01397 et $0.005444 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Dog ?
Les traders de Dog utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Dog
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Dog. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de DOG sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de DOG au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de DOG.
Comment lire les graphiques de Dog et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Dog dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de DOG au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Dog ?
L'action du prix de Dog est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de DOG. La capitalisation boursière de Dog peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de DOG, de grands détenteurs de Dog, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Dog.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


