Prédiction du prix de Divo jusqu'à $0.0006062 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000203 | $0.0006062 |
| 2027 | $0.000195 | $0.000513 |
| 2028 | $0.000352 | $0.000864 |
| 2029 | $0.000775 | $0.002549 |
| 2030 | $0.000659 | $0.0019058 |
| 2031 | $0.000779 | $0.001739 |
| 2032 | $0.001189 | $0.003227 |
| 2033 | $0.002764 | $0.008596 |
| 2034 | $0.002222 | $0.004978 |
| 2035 | $0.002627 | $0.005865 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Divo aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,960.53, soit un rendement de 39.61% sur les 90 prochains jours.
Prévision du prix à long terme de Divo pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Divo'
'name_with_ticker' => 'Divo <small>DVO</small>'
'name_lang' => 'Divo'
'name_lang_with_ticker' => 'Divo <small>DVO</small>'
'name_with_lang' => 'Divo'
'name_with_lang_with_ticker' => 'Divo <small>DVO</small>'
'image' => '/uploads/coins/divo.png?1747472888'
'price_for_sd' => 0.0005877
'ticker' => 'DVO'
'marketcap' => '$495.53K'
'low24h' => '$0.000572'
'high24h' => '$0.0005915'
'volume24h' => '$76.98K'
'current_supply' => '843.03M'
'max_supply' => '6B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0005877'
'change_24h_pct' => '2.6769%'
'ath_price' => '$0.009353'
'ath_days' => 199
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21 juin 2025'
'ath_pct' => '-93.71%'
'fdv' => '$3.53M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.028982'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000592'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000519'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000203'
'current_year_max_price_prediction' => '$0.0006062'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000659'
'grand_prediction_max_price' => '$0.0019058'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0005989385008172
107 => 0.00060117471976458
108 => 0.00060621303523718
109 => 0.00056316118115891
110 => 0.00058249019970403
111 => 0.00059384418721517
112 => 0.00054254645857823
113 => 0.00059283019605479
114 => 0.00056241174416114
115 => 0.00055208726471862
116 => 0.00056598781614124
117 => 0.00056057075773311
118 => 0.00055591348901415
119 => 0.00055331465304693
120 => 0.00056352168386383
121 => 0.00056304551367618
122 => 0.00054634483016043
123 => 0.00052455946932108
124 => 0.00053187135149886
125 => 0.00052921487615441
126 => 0.00051958746681399
127 => 0.0005260751782916
128 => 0.00049750658029986
129 => 0.00044835579232159
130 => 0.00048082630838939
131 => 0.0004795762288419
201 => 0.00047894588204747
202 => 0.00050334657745327
203 => 0.00050100101360983
204 => 0.00049674379226615
205 => 0.00051950927960546
206 => 0.0005111995704876
207 => 0.00053680813597515
208 => 0.00055367559346343
209 => 0.00054939746063931
210 => 0.00056526138593453
211 => 0.00053203980249631
212 => 0.0005430746798959
213 => 0.00054534895283428
214 => 0.00051922835702549
215 => 0.00050138477686269
216 => 0.00050019481349754
217 => 0.00046925650449206
218 => 0.00048578349943748
219 => 0.00050032657105593
220 => 0.00049336156833864
221 => 0.00049115665655189
222 => 0.00050242107268341
223 => 0.00050329641429003
224 => 0.00048333853289457
225 => 0.00048748840842059
226 => 0.00050479407922351
227 => 0.00048705234991813
228 => 0.00045258306797282
301 => 0.00044403420947527
302 => 0.00044289363416498
303 => 0.00041970845190112
304 => 0.00044460548507804
305 => 0.00043373726289731
306 => 0.00046806984654494
307 => 0.00044845925889475
308 => 0.00044761388565634
309 => 0.00044633598001718
310 => 0.00042637953587486
311 => 0.00043074872884384
312 => 0.00044527259171961
313 => 0.00045045486961671
314 => 0.00044991431557489
315 => 0.00044520141686805
316 => 0.0004473589577621
317 => 0.0004404087668053
318 => 0.00043795450972274
319 => 0.00043020819927359
320 => 0.00041882326288621
321 => 0.00042040640811875
322 => 0.0003978498701047
323 => 0.00038555987102857
324 => 0.00038215816126388
325 => 0.0003776092527993
326 => 0.00038267197257914
327 => 0.00039778597026659
328 => 0.00037955528244204
329 => 0.00034830004690092
330 => 0.00035017853981327
331 => 0.00035439895565777
401 => 0.00034653423865239
402 => 0.00033909094404245
403 => 0.00034556228481221
404 => 0.00033231902948295
405 => 0.00035599933979391
406 => 0.0003553588537633
407 => 0.00036418540906667
408 => 0.00036970483523701
409 => 0.00035698434484981
410 => 0.0003537851759173
411 => 0.00035560756793538
412 => 0.00032548748730487
413 => 0.00036172395588657
414 => 0.00036203733037162
415 => 0.00035935402777548
416 => 0.00037864882861978
417 => 0.00041936687660057
418 => 0.00040404710907051
419 => 0.00039811483204045
420 => 0.00038683756906983
421 => 0.00040186385240056
422 => 0.0004007100682873
423 => 0.00039549221896749
424 => 0.00039233644741818
425 => 0.00039815105325901
426 => 0.00039161595340711
427 => 0.00039044206990117
428 => 0.00038332961305305
429 => 0.00038079078955444
430 => 0.00037891114570954
501 => 0.0003768418425263
502 => 0.00038140620971031
503 => 0.00037106275317884
504 => 0.00035858955858344
505 => 0.00035755254741467
506 => 0.0003604158264266
507 => 0.00035914903860987
508 => 0.00035754648252197
509 => 0.00035448676651998
510 => 0.00035357901414268
511 => 0.00035652876899006
512 => 0.00035319866774876
513 => 0.0003581124135303
514 => 0.00035677614656768
515 => 0.00034931186793908
516 => 0.00034000861313795
517 => 0.00033992579465598
518 => 0.00033792142366947
519 => 0.00033536855585896
520 => 0.00033465840643578
521 => 0.00034501728654262
522 => 0.00036645985834859
523 => 0.00036225016842582
524 => 0.0003652921008214
525 => 0.00038025539749648
526 => 0.00038501177954746
527 => 0.00038163581222876
528 => 0.00037701457994232
529 => 0.00037721789070978
530 => 0.00039301004037467
531 => 0.00039399497737823
601 => 0.00039648359543349
602 => 0.00039968217291788
603 => 0.00038218054380539
604 => 0.00037639356555247
605 => 0.00037365137420691
606 => 0.00036520648622419
607 => 0.00037431357390358
608 => 0.00036900726391717
609 => 0.0003697232664237
610 => 0.00036925696885202
611 => 0.00036951159885706
612 => 0.00035599272066457
613 => 0.0003609182893466
614 => 0.00035272857608298
615 => 0.00034176346936145
616 => 0.00034172671047885
617 => 0.00034441040481469
618 => 0.00034281403841077
619 => 0.00033851825746413
620 => 0.00033912845287209
621 => 0.00033378249902062
622 => 0.00033977754846127
623 => 0.00033994946502791
624 => 0.00033764104444071
625 => 0.00034687724526144
626 => 0.00035066132427372
627 => 0.00034914187239206
628 => 0.00035055471547915
629 => 0.00036242510004772
630 => 0.00036436049067359
701 => 0.00036522006334487
702 => 0.00036406834983691
703 => 0.00035077168431829
704 => 0.00035136144797583
705 => 0.00034703415357115
706 => 0.00034337804579824
707 => 0.0003435242709354
708 => 0.00034540398559142
709 => 0.00035361280973804
710 => 0.00037088779621799
711 => 0.00037154336932706
712 => 0.00037233794305966
713 => 0.00036910601236841
714 => 0.00036813123114651
715 => 0.00036941721919057
716 => 0.0003759047958368
717 => 0.00039259260433079
718 => 0.00038669401826776
719 => 0.00038189837598156
720 => 0.00038610544716244
721 => 0.00038545780153025
722 => 0.00037999102062711
723 => 0.00037983758629484
724 => 0.00036934508590612
725 => 0.00036546624741508
726 => 0.00036222479964594
727 => 0.00035868522330218
728 => 0.00035658684379793
729 => 0.00035981090841289
730 => 0.00036054829013635
731 => 0.00035349881650872
801 => 0.00035253799930197
802 => 0.00035829475163975
803 => 0.00035576141956925
804 => 0.00035836701442737
805 => 0.00035897153478483
806 => 0.000358874193084
807 => 0.00035622910345106
808 => 0.00035791500470539
809 => 0.00035392734564756
810 => 0.0003495913653492
811 => 0.00034682528005996
812 => 0.00034441150377713
813 => 0.00034575080714834
814 => 0.00034097643517709
815 => 0.00033944901749436
816 => 0.0003573438592944
817 => 0.00037056297133406
818 => 0.00037037076020966
819 => 0.00036920072442257
820 => 0.00036746228857604
821 => 0.00037577761842658
822 => 0.00037288072377692
823 => 0.0003749884566782
824 => 0.00037552496316284
825 => 0.00037714880670645
826 => 0.00037772919119922
827 => 0.00037597486615912
828 => 0.00037008713705178
829 => 0.00035541547590476
830 => 0.00034858577803543
831 => 0.00034633186398093
901 => 0.00034641378947602
902 => 0.00034415391858996
903 => 0.00034481955184621
904 => 0.00034392243850775
905 => 0.00034222352287971
906 => 0.00034564590389573
907 => 0.00034604030142614
908 => 0.00034524147680259
909 => 0.00034542962891931
910 => 0.00033881570221881
911 => 0.00033931854470116
912 => 0.00033651865386132
913 => 0.00033599370808204
914 => 0.00032891582785333
915 => 0.00031637633707302
916 => 0.00032332443220313
917 => 0.00031493211033598
918 => 0.00031175381088046
919 => 0.00032679938617591
920 => 0.00032528922771555
921 => 0.0003227044928815
922 => 0.00031888113135602
923 => 0.00031746300937495
924 => 0.00030884694914081
925 => 0.00030833786633729
926 => 0.00031260821844252
927 => 0.0003106375978798
928 => 0.00030787010027737
929 => 0.00029784650449811
930 => 0.0002865766641437
1001 => 0.00028691682978431
1002 => 0.00029050155631821
1003 => 0.00030092463218177
1004 => 0.00029685215612084
1005 => 0.00029389752801235
1006 => 0.00029334421498342
1007 => 0.00030027008597971
1008 => 0.00031007164445428
1009 => 0.00031467031639303
1010 => 0.00031011317216547
1011 => 0.00030487817025091
1012 => 0.00030519680056079
1013 => 0.0003073165052635
1014 => 0.00030753925625674
1015 => 0.00030413180817726
1016 => 0.00030509098485239
1017 => 0.00030363390777391
1018 => 0.00029469182843282
1019 => 0.00029453009457318
1020 => 0.00029233556409237
1021 => 0.00029226911458157
1022 => 0.00028853567078243
1023 => 0.00028801333618685
1024 => 0.00028060035691981
1025 => 0.00028547960232195
1026 => 0.00028220686067808
1027 => 0.00027727406705906
1028 => 0.00027642365157986
1029 => 0.00027639808706364
1030 => 0.00028146296315791
1031 => 0.00028542041629587
1101 => 0.00028226379142015
1102 => 0.00028154508912456
1103 => 0.00028921894936301
1104 => 0.00028824238069888
1105 => 0.00028739667853393
1106 => 0.00030919402239731
1107 => 0.0002919397238615
1108 => 0.00028441586485895
1109 => 0.00027510366060123
1110 => 0.00027813576126375
1111 => 0.00027877466942417
1112 => 0.00025638049683533
1113 => 0.00024729518380505
1114 => 0.00024417744674586
1115 => 0.00024238314498996
1116 => 0.00024320083083155
1117 => 0.00023502298350337
1118 => 0.00024051863215702
1119 => 0.00023343730762704
1120 => 0.00023225010052497
1121 => 0.00024491238599234
1122 => 0.00024667426904313
1123 => 0.00023915752857431
1124 => 0.00024398449280503
1125 => 0.00024223416847515
1126 => 0.00023355869661147
1127 => 0.00023322735739873
1128 => 0.00022887431057512
1129 => 0.00022206263521212
1130 => 0.00021894951678958
1201 => 0.00021732817768579
1202 => 0.00021799717379928
1203 => 0.00021765890889268
1204 => 0.00021545150156591
1205 => 0.00021778543489675
1206 => 0.00021182319968428
1207 => 0.00020944898958168
1208 => 0.00020837661395959
1209 => 0.00020308478703507
1210 => 0.0002115064369581
1211 => 0.00021316560808609
1212 => 0.00021482804829374
1213 => 0.00022929845530524
1214 => 0.00022857555466389
1215 => 0.00023511022439479
1216 => 0.00023485629914553
1217 => 0.00023299250548365
1218 => 0.00022512946660333
1219 => 0.00022826353375584
1220 => 0.00021861736220261
1221 => 0.00022584492980619
1222 => 0.00022254656978236
1223 => 0.00022472975096428
1224 => 0.00022080419434967
1225 => 0.00022297675946246
1226 => 0.00021355905911172
1227 => 0.00020476494303483
1228 => 0.00020830395206042
1229 => 0.00021215125960602
1230 => 0.0002204932026406
1231 => 0.00021552481018874
]
'min_raw' => 0.00020308478703507
'max_raw' => 0.00060621303523718
'avg_raw' => 0.00040464891113612
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000203'
'max' => '$0.0006062'
'avg' => '$0.0004046'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00038471521296493
'max_diff' => 1.8413035237183E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00021731163199015
102 => 0.00021132607806579
103 => 0.00019897617063088
104 => 0.00019904606976577
105 => 0.00019714630556427
106 => 0.00019550463192405
107 => 0.00021609548982864
108 => 0.00021353469115491
109 => 0.00020945439361737
110 => 0.00021491603401595
111 => 0.00021636017842522
112 => 0.00021640129118633
113 => 0.00022038596303579
114 => 0.00022251258311614
115 => 0.0002228874091226
116 => 0.00022915737637226
117 => 0.00023125898669147
118 => 0.00023991522216531
119 => 0.00022233215426019
120 => 0.00022197004254754
121 => 0.00021499289049678
122 => 0.00021056787036178
123 => 0.0002152958754112
124 => 0.00021948424244793
125 => 0.00021512303473564
126 => 0.00021569251639275
127 => 0.00020983795136277
128 => 0.0002119306828781
129 => 0.00021373322518048
130 => 0.00021273796726964
131 => 0.00021124801800609
201 => 0.00021914084411442
202 => 0.00021869549993315
203 => 0.00022604548106052
204 => 0.00023177531695149
205 => 0.00024204420719879
206 => 0.00023132808489637
207 => 0.00023093754680695
208 => 0.00023475511927539
209 => 0.00023125840224102
210 => 0.00023346820670417
211 => 0.00024168817353633
212 => 0.00024186184848264
213 => 0.00023895256936443
214 => 0.00023877553946569
215 => 0.00023933429834437
216 => 0.00024260696654931
217 => 0.00024146339571957
218 => 0.00024278676483541
219 => 0.00024444165817893
220 => 0.00025128699870795
221 => 0.0002529373871347
222 => 0.00024892779888598
223 => 0.00024928981981138
224 => 0.0002477901237407
225 => 0.00024634143612756
226 => 0.00024959787431807
227 => 0.00025554907911667
228 => 0.00025551205698049
301 => 0.00025689262081887
302 => 0.00025775270065298
303 => 0.00025406060838808
304 => 0.00025165719208562
305 => 0.00025257881482934
306 => 0.00025405250966687
307 => 0.00025210091545549
308 => 0.00024005477191648
309 => 0.00024370880235558
310 => 0.00024310059301756
311 => 0.00024223442895942
312 => 0.00024590858482173
313 => 0.00024555420352565
314 => 0.00023493910785895
315 => 0.00023561865184294
316 => 0.00023498043317934
317 => 0.00023704264824869
318 => 0.00023114703585966
319 => 0.00023296048652297
320 => 0.00023409786577895
321 => 0.00023476779089849
322 => 0.0002371880198022
323 => 0.00023690403387452
324 => 0.0002371703668382
325 => 0.00024075892738566
326 => 0.00025890863518944
327 => 0.00025989648374012
328 => 0.00025503195618791
329 => 0.00025697523899646
330 => 0.00025324456095328
331 => 0.00025574899011704
401 => 0.00025746245694527
402 => 0.00024971962982919
403 => 0.00024926114985791
404 => 0.00024551507397937
405 => 0.00024752800296792
406 => 0.00024432528821243
407 => 0.00024511112238722
408 => 0.00024291386152671
409 => 0.00024686849360535
410 => 0.00025129038675696
411 => 0.00025240753159291
412 => 0.00024946880449062
413 => 0.00024734097239701
414 => 0.00024360520019209
415 => 0.00024981787262598
416 => 0.00025163464737341
417 => 0.00024980832988166
418 => 0.00024938513221299
419 => 0.00024858317339557
420 => 0.00024955527156721
421 => 0.00025162475282797
422 => 0.00025064882368271
423 => 0.00025129344207681
424 => 0.00024883682148611
425 => 0.00025406183062424
426 => 0.00026236040260253
427 => 0.00026238708386839
428 => 0.00026141114946252
429 => 0.00026101181813043
430 => 0.00026201318605551
501 => 0.0002625563870766
502 => 0.00026579462732684
503 => 0.00026926938813252
504 => 0.00028548458065574
505 => 0.00028093141948136
506 => 0.00029531850293408
507 => 0.00030669681801621
508 => 0.00031010867719592
509 => 0.00030696992729096
510 => 0.00029623243341805
511 => 0.00029570560074272
512 => 0.00031175194984184
513 => 0.00030721812125199
514 => 0.00030667883676775
515 => 0.00030094176099096
516 => 0.0003043330833257
517 => 0.0003035913513834
518 => 0.0003024204912257
519 => 0.00030889089799883
520 => 0.00032100292186093
521 => 0.00031911514935618
522 => 0.00031770601475263
523 => 0.0003115315971128
524 => 0.00031524997563808
525 => 0.00031392593226608
526 => 0.0003196148628509
527 => 0.00031624486639769
528 => 0.00030718377304128
529 => 0.00030862678202404
530 => 0.00030840867411923
531 => 0.000312897319345
601 => 0.00031154993946325
602 => 0.00030814557657264
603 => 0.00032096152428011
604 => 0.00032012932792204
605 => 0.00032130919209122
606 => 0.000321828604787
607 => 0.00032962944631421
608 => 0.00033282520148882
609 => 0.00033355069386302
610 => 0.00033658641411033
611 => 0.00033347516237779
612 => 0.00034592238759282
613 => 0.00035419906604509
614 => 0.00036381285398138
615 => 0.00037786118209888
616 => 0.00038314348342537
617 => 0.00038218928297078
618 => 0.00039284056501812
619 => 0.0004119806820925
620 => 0.00038605804786841
621 => 0.00041335464465145
622 => 0.0004047128572643
623 => 0.00038422333482849
624 => 0.00038290405113923
625 => 0.000396779793621
626 => 0.00042755485495486
627 => 0.00041984605113859
628 => 0.0004275674637963
629 => 0.0004185600257841
630 => 0.00041811273056614
701 => 0.00042712999263703
702 => 0.00044819931697102
703 => 0.00043819007075175
704 => 0.00042383936192857
705 => 0.00043443570200185
706 => 0.0004252561715854
707 => 0.00040457212036834
708 => 0.00041984015636159
709 => 0.00040963085550154
710 => 0.00041261047224879
711 => 0.00043406890413773
712 => 0.00043148696884088
713 => 0.00043482823219577
714 => 0.00042893098983048
715 => 0.00042342203555153
716 => 0.00041313916328955
717 => 0.00041009491175226
718 => 0.00041093623335647
719 => 0.00041009449483506
720 => 0.00040434132230896
721 => 0.00040309892524971
722 => 0.00040102820905363
723 => 0.00040167001058912
724 => 0.00039777645833111
725 => 0.00040512439589092
726 => 0.00040648823785183
727 => 0.00041183545404072
728 => 0.00041239061976416
729 => 0.00042728254073737
730 => 0.00041908032091389
731 => 0.00042458307811707
801 => 0.00042409085971886
802 => 0.00038466740490934
803 => 0.00039009960914601
804 => 0.00039855041421866
805 => 0.00039474333798823
806 => 0.00038936102291703
807 => 0.00038501451491557
808 => 0.00037842911084008
809 => 0.00038769794061484
810 => 0.00039988546613849
811 => 0.00041269971552392
812 => 0.00042809519653763
813 => 0.00042465910439853
814 => 0.00041241190771524
815 => 0.00041296130801187
816 => 0.00041635748446459
817 => 0.00041195912738315
818 => 0.00041066196601371
819 => 0.00041617927441169
820 => 0.00041621726908237
821 => 0.00041115642770097
822 => 0.00040553222862974
823 => 0.00040550866303027
824 => 0.00040450789112887
825 => 0.00041873806088213
826 => 0.00042656321541398
827 => 0.0004274603567702
828 => 0.00042650283065266
829 => 0.00042687134445245
830 => 0.00042231805944588
831 => 0.00043272551873618
901 => 0.000442276432572
902 => 0.00043971658363849
903 => 0.00043587900618318
904 => 0.00043282219089726
905 => 0.00043899649510411
906 => 0.00043872156305704
907 => 0.00044219301367168
908 => 0.00044203552861973
909 => 0.00044086821034589
910 => 0.0004397166253271
911 => 0.00044428252975732
912 => 0.0004429676226076
913 => 0.00044165067304389
914 => 0.00043900932907897
915 => 0.00043936833159188
916 => 0.00043553141674843
917 => 0.00043375628437657
918 => 0.00040706255264192
919 => 0.00039992911527958
920 => 0.00040217343988828
921 => 0.00040291232982333
922 => 0.00039980784874149
923 => 0.00040425887713709
924 => 0.00040356518907644
925 => 0.00040626392352648
926 => 0.00040457787140753
927 => 0.00040464706757461
928 => 0.00040960538735225
929 => 0.0004110448086779
930 => 0.00041031270737412
1001 => 0.00041082544603232
1002 => 0.00042264129199716
1003 => 0.00042096145655044
1004 => 0.00042006907744974
1005 => 0.00042031627255926
1006 => 0.00042333547453787
1007 => 0.00042418068624957
1008 => 0.00042059946483514
1009 => 0.00042228838955698
1010 => 0.0004294796166661
1011 => 0.00043199613916608
1012 => 0.00044002767098672
1013 => 0.00043661573352022
1014 => 0.00044287849240517
1015 => 0.00046212807808568
1016 => 0.00047750597909728
1017 => 0.00046336382580837
1018 => 0.00049160338265229
1019 => 0.00051359192837912
1020 => 0.00051274797137028
1021 => 0.00050891375981858
1022 => 0.00048388038510433
1023 => 0.00046084430046568
1024 => 0.00048011496342973
1025 => 0.00048016408831267
1026 => 0.00047850872127375
1027 => 0.00046822737876497
1028 => 0.00047815095284055
1029 => 0.00047893865011354
1030 => 0.00047849774910628
1031 => 0.00047061506791067
1101 => 0.00045857967068799
1102 => 0.00046093135849663
1103 => 0.00046478347110032
1104 => 0.00045749061830667
1105 => 0.00045516010994956
1106 => 0.00045949296838278
1107 => 0.0004734543410415
1108 => 0.00047081502441309
1109 => 0.00047074610118961
1110 => 0.00048203821697037
1111 => 0.00047395549906245
1112 => 0.00046096102081105
1113 => 0.00045767974367645
1114 => 0.00044603342038179
1115 => 0.00045407757736419
1116 => 0.00045436707225325
1117 => 0.00044996136968328
1118 => 0.00046131851929339
1119 => 0.00046121386116034
1120 => 0.0004719957844265
1121 => 0.00049260677220594
1122 => 0.00048651108891445
1123 => 0.0004794224724549
1124 => 0.00048019320161007
1125 => 0.00048864619812061
1126 => 0.0004835353234672
1127 => 0.00048537322962685
1128 => 0.00048864341622951
1129 => 0.00049061640100107
1130 => 0.00047990931946395
1201 => 0.00047741298657874
1202 => 0.00047230636558938
1203 => 0.00047097414349285
1204 => 0.00047513337973554
1205 => 0.00047403756793357
1206 => 0.00045434274132881
1207 => 0.00045228452236763
1208 => 0.00045234764500471
1209 => 0.00044717215556385
1210 => 0.00043927829190674
1211 => 0.0004600228942795
1212 => 0.00045835681238845
1213 => 0.00045651758692522
1214 => 0.00045674288154999
1215 => 0.00046574741034019
1216 => 0.00046052432890227
1217 => 0.0004744107469512
1218 => 0.00047155611686428
1219 => 0.00046862827628713
1220 => 0.00046822355953516
1221 => 0.00046709659070458
1222 => 0.00046323179525788
1223 => 0.00045856482251779
1224 => 0.00045548328286852
1225 => 0.00042015925169098
1226 => 0.00042671518640709
1227 => 0.00043425719170573
1228 => 0.00043686066171213
1229 => 0.00043240724611155
1230 => 0.00046340764324968
1231 => 0.00046907171453407
]
'min_raw' => 0.00019550463192405
'max_raw' => 0.00051359192837912
'avg_raw' => 0.00035454828015159
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000195'
'max' => '$0.000513'
'avg' => '$0.000354'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.5801551110118E-6
'max_diff' => -9.2621106858066E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00045191487315541
102 => 0.00044870552864268
103 => 0.00046361804734164
104 => 0.0004546239755849
105 => 0.00045867400554624
106 => 0.00044992005601776
107 => 0.00046770740562503
108 => 0.00046757189582299
109 => 0.00046065221508025
110 => 0.00046650068186008
111 => 0.00046548436683339
112 => 0.00045767206431725
113 => 0.00046795506954935
114 => 0.00046796016979165
115 => 0.00046130012752359
116 => 0.00045352265622523
117 => 0.00045213222805275
118 => 0.00045108472720254
119 => 0.00045841638455006
120 => 0.00046498992560235
121 => 0.00047722165578163
122 => 0.00048029700336744
123 => 0.00049230028973235
124 => 0.00048515291713145
125 => 0.00048832125483146
126 => 0.00049176093359355
127 => 0.00049341004208209
128 => 0.00049072290829605
129 => 0.00050936895277053
130 => 0.00051094325022422
131 => 0.00051147109854282
201 => 0.00050518375725681
202 => 0.00051076838788934
203 => 0.0005081555241599
204 => 0.00051495346970944
205 => 0.00051601947437213
206 => 0.00051511660634704
207 => 0.00051545497305272
208 => 0.0004995438634814
209 => 0.00049871878851234
210 => 0.00048746883276452
211 => 0.00049205327288723
212 => 0.00048348288181576
213 => 0.00048620064110933
214 => 0.00048739860351018
215 => 0.00048677285593575
216 => 0.00049231247025333
217 => 0.00048760266641495
218 => 0.00047517271972201
219 => 0.00046273938649841
220 => 0.00046258329612776
221 => 0.00045930981895654
222 => 0.000456943694529
223 => 0.00045739949403652
224 => 0.00045900579095188
225 => 0.0004568503336322
226 => 0.00045731030973581
227 => 0.00046494897786055
228 => 0.00046648085827648
229 => 0.00046127493007884
301 => 0.00044037237715346
302 => 0.00043524283823548
303 => 0.00043892984908655
304 => 0.00043716769537365
305 => 0.00035282844970622
306 => 0.00037264270445407
307 => 0.00036086974711141
308 => 0.00036629526750263
309 => 0.0003542781266483
310 => 0.0003600133361363
311 => 0.00035895425236018
312 => 0.0003908149876483
313 => 0.00039031752608979
314 => 0.00039055563461277
315 => 0.00037919009442241
316 => 0.0003972957085537
317 => 0.0004062151851316
318 => 0.00040456442740121
319 => 0.00040497988755777
320 => 0.00039784090558273
321 => 0.00039062475556333
322 => 0.00038262093463428
323 => 0.00039749104461828
324 => 0.0003958377422293
325 => 0.00039962982307019
326 => 0.00040927415233223
327 => 0.00041069431645131
328 => 0.00041260303142923
329 => 0.00041191889298123
330 => 0.00042821784638184
331 => 0.00042624393558107
401 => 0.00043100049267803
402 => 0.00042121589384872
403 => 0.00041014369151072
404 => 0.00041224815519761
405 => 0.00041204547842153
406 => 0.00040946517044051
407 => 0.00040713578376862
408 => 0.00040325801126053
409 => 0.00041552785727846
410 => 0.0004150297239375
411 => 0.00042309392371094
412 => 0.00042166849806953
413 => 0.00041214915677535
414 => 0.00041248914191197
415 => 0.000414775705347
416 => 0.00042268952750318
417 => 0.00042503888873323
418 => 0.00042395057100561
419 => 0.00042652653834195
420 => 0.00042856247789395
421 => 0.00042678222100381
422 => 0.00045198690433866
423 => 0.00044152016255364
424 => 0.00044662157967254
425 => 0.0004478382375961
426 => 0.00044472179390845
427 => 0.00044539763895282
428 => 0.00044642136003829
429 => 0.00045263719400411
430 => 0.00046894934089646
501 => 0.00047617387971454
502 => 0.00049790926120121
503 => 0.00047557398233614
504 => 0.00047424869932085
505 => 0.00047816389787224
506 => 0.00049092486772871
507 => 0.00050126643522043
508 => 0.00050469732977677
509 => 0.00050515077913029
510 => 0.00051158736539955
511 => 0.00051527669661386
512 => 0.00051080579452743
513 => 0.00050701717313215
514 => 0.00049344680155524
515 => 0.00049501760901616
516 => 0.00050583891472711
517 => 0.00052112464641555
518 => 0.00053424139441355
519 => 0.00052964836642947
520 => 0.00056468992777556
521 => 0.00056816415545108
522 => 0.00056768412952156
523 => 0.0005755989372008
524 => 0.00055988965578006
525 => 0.0005531736336197
526 => 0.00050783631608049
527 => 0.00052057425302386
528 => 0.00053908959244385
529 => 0.00053663901784265
530 => 0.00052319268343941
531 => 0.00053423119416314
601 => 0.00053058151731173
602 => 0.00052770286575379
603 => 0.00054089052659477
604 => 0.00052639015178087
605 => 0.00053894494011287
606 => 0.00052284329421442
607 => 0.00052966934699441
608 => 0.00052579454929746
609 => 0.00052830201828473
610 => 0.00051364340582117
611 => 0.0005215528372888
612 => 0.00051331434746832
613 => 0.00051331044135146
614 => 0.00051312857623205
615 => 0.0005228211229708
616 => 0.00052313719657198
617 => 0.00051597438988742
618 => 0.0005149421175401
619 => 0.00051875896944396
620 => 0.00051429043549964
621 => 0.00051638123440757
622 => 0.00051435376366863
623 => 0.00051389733730023
624 => 0.00051026045434225
625 => 0.00050869358516577
626 => 0.00050930799494311
627 => 0.00050721069762309
628 => 0.00050594700012522
629 => 0.00051287719499292
630 => 0.00050917467143837
701 => 0.00051230973015652
702 => 0.00050873693507124
703 => 0.00049635207071292
704 => 0.00048922940425288
705 => 0.00046583554355755
706 => 0.00047247001343075
707 => 0.00047686867382054
708 => 0.00047541491658795
709 => 0.00047853814965291
710 => 0.00047872989079726
711 => 0.00047771449589024
712 => 0.00047653879866807
713 => 0.00047596653428045
714 => 0.00048023172417835
715 => 0.00048270781047378
716 => 0.00047731013823714
717 => 0.00047604553915355
718 => 0.00048150288379845
719 => 0.00048483186087923
720 => 0.00050941115725307
721 => 0.00050759024358762
722 => 0.00051216037955165
723 => 0.00051164585237655
724 => 0.00051643608294661
725 => 0.00052426608542618
726 => 0.0005083455010821
727 => 0.00051110876403184
728 => 0.00051043127576963
729 => 0.00051782791496955
730 => 0.00051785100646977
731 => 0.00051341635177988
801 => 0.00051582045003132
802 => 0.00051447854834035
803 => 0.00051690354606483
804 => 0.00050756592417546
805 => 0.00051893813970271
806 => 0.00052538545309729
807 => 0.00052547497405002
808 => 0.00052853094943001
809 => 0.00053163599740623
810 => 0.00053759586660391
811 => 0.00053146977988903
812 => 0.0005204495462515
813 => 0.00052124517152499
814 => 0.00051478401257545
815 => 0.00051489262582469
816 => 0.00051431283978805
817 => 0.00051605282132828
818 => 0.00050794775227589
819 => 0.0005098499957823
820 => 0.0005071868437338
821 => 0.00051110297485939
822 => 0.00050688986512792
823 => 0.00051043094906427
824 => 0.00051195916350241
825 => 0.00051759830767925
826 => 0.00050605695894795
827 => 0.0004825233676042
828 => 0.00048747041382188
829 => 0.00048015334388385
830 => 0.00048083056656466
831 => 0.0004821986641591
901 => 0.00047776421224185
902 => 0.00047861016592202
903 => 0.00047857994250368
904 => 0.00047831949341244
905 => 0.00047716592120211
906 => 0.00047549301326981
907 => 0.00048215736357815
908 => 0.00048328976655893
909 => 0.00048580695811014
910 => 0.00049329641273921
911 => 0.00049254803960827
912 => 0.00049376866723454
913 => 0.00049110404397991
914 => 0.00048095417079512
915 => 0.00048150535774157
916 => 0.0004746320476872
917 => 0.00048563119211874
918 => 0.00048302644953574
919 => 0.00048134715504762
920 => 0.00048088894398799
921 => 0.00048839696352646
922 => 0.00049064348064616
923 => 0.00048924360193532
924 => 0.0004863724098584
925 => 0.00049188594743782
926 => 0.0004933611374966
927 => 0.00049369137814785
928 => 0.00050346030962261
929 => 0.00049423735289799
930 => 0.00049645741024992
1001 => 0.00051377766396629
1002 => 0.00049807058387717
1003 => 0.00050639097451006
1004 => 0.00050598373468581
1005 => 0.00051024016498693
1006 => 0.00050563458316522
1007 => 0.00050569167487164
1008 => 0.00050947109662347
1009 => 0.00050416358039533
1010 => 0.00050284936473748
1011 => 0.00050103378521874
1012 => 0.00050499803667626
1013 => 0.00050737442613736
1014 => 0.00052652637992817
1015 => 0.00053889941551223
1016 => 0.00053836226940597
1017 => 0.00054327077932184
1018 => 0.00054105945064794
1019 => 0.00053391848704089
1020 => 0.00054610724117039
1021 => 0.00054225020936468
1022 => 0.00054256817838045
1023 => 0.0005425563435578
1024 => 0.00054512093252102
1025 => 0.00054330368619945
1026 => 0.00053972170716313
1027 => 0.0005420995920114
1028 => 0.00054916105990138
1029 => 0.00057108007290418
1030 => 0.00058334624296884
1031 => 0.00057034163406443
1101 => 0.00057931203914804
1102 => 0.00057393299258002
1103 => 0.00057295545980584
1104 => 0.00057858953710607
1105 => 0.0005842334761128
1106 => 0.00058387398159749
1107 => 0.00057977677169808
1108 => 0.00057746236178876
1109 => 0.00059498784900634
1110 => 0.00060790032944937
1111 => 0.00060701978484952
1112 => 0.00061090622234481
1113 => 0.00062231692303394
1114 => 0.0006233601745014
1115 => 0.00062322874879536
1116 => 0.00062064294118123
1117 => 0.00063187825787641
1118 => 0.00064125095673012
1119 => 0.00062004440142973
1120 => 0.00062811958007392
1121 => 0.00063174478793331
1122 => 0.00063706766862159
1123 => 0.00064604826056111
1124 => 0.0006558035653918
1125 => 0.00065718307245633
1126 => 0.00065620424617856
1127 => 0.00064977036040605
1128 => 0.00066044473135678
1129 => 0.00066669752751491
1130 => 0.00067042092453439
1201 => 0.00067986283986159
1202 => 0.00063176717598288
1203 => 0.00059772267457994
1204 => 0.00059240613407731
1205 => 0.00060321752825203
1206 => 0.00060606840667666
1207 => 0.00060491922115839
1208 => 0.00056659903963872
1209 => 0.00059220438625215
1210 => 0.0006197535862495
1211 => 0.00062081186321905
1212 => 0.00063460356876433
1213 => 0.00063909471343099
1214 => 0.00065019884411511
1215 => 0.00064950427771749
1216 => 0.00065220795683376
1217 => 0.00065158642782613
1218 => 0.00067215449166788
1219 => 0.00069484412047237
1220 => 0.00069405845077547
1221 => 0.00069079654818333
1222 => 0.00069564102976971
1223 => 0.00071905915826434
1224 => 0.00071690319226041
1225 => 0.00071899752958848
1226 => 0.00074660882287153
1227 => 0.00078250743180017
1228 => 0.00076582892379141
1229 => 0.00080201648705903
1230 => 0.00082479463991569
1231 => 0.00086418709997632
]
'min_raw' => 0.00035282844970622
'max_raw' => 0.00086418709997632
'avg_raw' => 0.00060850777484127
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000352'
'max' => '$0.000864'
'avg' => '$0.0006085'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00015732381778217
'max_diff' => 0.0003505951715972
'year' => 2028
]
3 => [
'items' => [
101 => 0.00085925496996478
102 => 0.00087459016559115
103 => 0.00085042542787751
104 => 0.00079493830558774
105 => 0.00078615725608921
106 => 0.00080373713955685
107 => 0.00084695556764211
108 => 0.00080237603745512
109 => 0.00081139441835144
110 => 0.0008087971240466
111 => 0.00080865872527089
112 => 0.00081394084363142
113 => 0.0008062788554527
114 => 0.00077506253724725
115 => 0.00078936879192189
116 => 0.00078384445994923
117 => 0.00078997411813912
118 => 0.00082305335532664
119 => 0.00080842823605551
120 => 0.0007930218609516
121 => 0.00081234487428023
122 => 0.00083694971035536
123 => 0.00083540998393292
124 => 0.00083242227111767
125 => 0.00084926385182568
126 => 0.00087708120903516
127 => 0.00088460012890969
128 => 0.00089015044184352
129 => 0.00089091573622379
130 => 0.00089879874396837
131 => 0.00085640982455201
201 => 0.00092368212829043
202 => 0.00093529819678616
203 => 0.00093311485734567
204 => 0.0009460256285998
205 => 0.00094222695218218
206 => 0.00093672326604712
207 => 0.00095718958468471
208 => 0.00093372660191347
209 => 0.00090042385177708
210 => 0.00088215330439854
211 => 0.00090621343502961
212 => 0.00092090611722316
213 => 0.000930617045523
214 => 0.00093355556655903
215 => 0.00085970035570053
216 => 0.00081989649324557
217 => 0.00084541031272699
218 => 0.00087653893336407
219 => 0.00085623690349265
220 => 0.00085703270462679
221 => 0.00082808734530973
222 => 0.00087909995538908
223 => 0.00087166784718411
224 => 0.0009102256376987
225 => 0.00090102351154679
226 => 0.00093246589290664
227 => 0.00092418606014565
228 => 0.00095855518301733
301 => 0.00097226595663769
302 => 0.00099528847945781
303 => 0.0010122239409628
304 => 0.0010221687678823
305 => 0.0010215717177762
306 => 0.0010609780765243
307 => 0.0010377415235238
308 => 0.0010085509365202
309 => 0.0010080229708964
310 => 0.0010231411895394
311 => 0.0010548248283344
312 => 0.0010630399348958
313 => 0.0010676310587381
314 => 0.0010605995927554
315 => 0.0010353779798522
316 => 0.001024487415277
317 => 0.0010337664918251
318 => 0.0010224189785669
319 => 0.0010420079700003
320 => 0.0010689078392212
321 => 0.0010633531226007
322 => 0.0010819217074534
323 => 0.0011011382393038
324 => 0.0011286187429184
325 => 0.0011358031641633
326 => 0.0011476787392821
327 => 0.0011599026070026
328 => 0.001163828583872
329 => 0.0011713244918746
330 => 0.0011712849847394
331 => 0.0011938744080382
401 => 0.001218791241473
402 => 0.0012281967692686
403 => 0.0012498242618108
404 => 0.00121278793875
405 => 0.0012408804152342
406 => 0.0012662205322233
407 => 0.0012360090000985
408 => 0.0012776485587483
409 => 0.0012792653284534
410 => 0.001303676631483
411 => 0.0012789310992227
412 => 0.0012642372811571
413 => 0.0013066577833424
414 => 0.0013271837281166
415 => 0.0013210011465049
416 => 0.0012739513951685
417 => 0.0012465664218319
418 => 0.0011748946644432
419 => 0.0012597929570596
420 => 0.0013011444388759
421 => 0.0012738443048203
422 => 0.001287612904484
423 => 0.0013627299197655
424 => 0.0013913296157182
425 => 0.001385381078887
426 => 0.0013863862836902
427 => 0.0014018181605051
428 => 0.0014702516007919
429 => 0.0014292446970973
430 => 0.0014605929384724
501 => 0.0014772199326633
502 => 0.0014926640115003
503 => 0.001454738235028
504 => 0.0014053973570778
505 => 0.0013897690298419
506 => 0.0012711298445154
507 => 0.0012649541596952
508 => 0.0012614875606633
509 => 0.0012396311441272
510 => 0.0012224579877061
511 => 0.0012088012561216
512 => 0.0011729619141987
513 => 0.0011850566400228
514 => 0.0011279362092497
515 => 0.0011644798366346
516 => 0.0010733142498997
517 => 0.0011492396595325
518 => 0.0011079169109741
519 => 0.0011356640252593
520 => 0.0011355672181915
521 => 0.0010844759835619
522 => 0.0010550076256744
523 => 0.0010737860102459
524 => 0.0010939179291367
525 => 0.0010971842652448
526 => 0.0011232858235835
527 => 0.0011305702074647
528 => 0.0011084981842293
529 => 0.0010714250457495
530 => 0.0010800362902701
531 => 0.001054833119079
601 => 0.0010106655309926
602 => 0.0010423874638484
603 => 0.0010532187264402
604 => 0.0010580024290442
605 => 0.0010145686788431
606 => 0.0010009208515372
607 => 0.000993654862796
608 => 0.0010658182940162
609 => 0.0010697715696782
610 => 0.0010495460524546
611 => 0.0011409673081672
612 => 0.0011202758623825
613 => 0.0011433932768513
614 => 0.0010792549100886
615 => 0.0010817050820727
616 => 0.0010513409513843
617 => 0.0010683428356379
618 => 0.0010563264518438
619 => 0.0010669692514061
620 => 0.0010733485015818
621 => 0.0011037076498151
622 => 0.0011495863122388
623 => 0.0010991730054575
624 => 0.001077207205761
625 => 0.0010908346643523
626 => 0.0011271263823866
627 => 0.0011821101929473
628 => 0.001149558670443
629 => 0.0011640044833697
630 => 0.0011671602508447
701 => 0.001143157963273
702 => 0.0011829951915266
703 => 0.0012043442857848
704 => 0.0012262440389211
705 => 0.0012452589809522
706 => 0.0012174967959326
707 => 0.0012472063134565
708 => 0.001223265686768
709 => 0.001201788469692
710 => 0.0012018210417649
711 => 0.001188348069761
712 => 0.0011622424887998
713 => 0.0011574282191391
714 => 0.0011824726578894
715 => 0.0012025559260499
716 => 0.001204210080208
717 => 0.0012153292093773
718 => 0.0012219093954835
719 => 0.0012864041646538
720 => 0.0013123444943428
721 => 0.0013440638384612
722 => 0.0013564203105996
723 => 0.0013936088616958
724 => 0.0013635760863792
725 => 0.0013570783065244
726 => 0.0012668710458475
727 => 0.0012816424797298
728 => 0.0013052929706068
729 => 0.001267261033731
730 => 0.0012913835439336
731 => 0.0012961458384322
801 => 0.0012659687230691
802 => 0.0012820876242607
803 => 0.001239280601617
804 => 0.0011505193883543
805 => 0.0011830940081307
806 => 0.0012070798927846
807 => 0.0011728490779452
808 => 0.0012342064886292
809 => 0.0011983627559817
810 => 0.001187002013535
811 => 0.0011426797068534
812 => 0.0011635981294851
813 => 0.0011918905956174
814 => 0.0011744091408999
815 => 0.0012106857842924
816 => 0.0012620631859636
817 => 0.0012986777819717
818 => 0.001301488596008
819 => 0.0012779478637622
820 => 0.001315672037421
821 => 0.0013159468168417
822 => 0.0012733937948468
823 => 0.0012473303058111
824 => 0.0012414086262642
825 => 0.0012562021427861
826 => 0.0012741642028776
827 => 0.0013024853653335
828 => 0.0013195992506601
829 => 0.0013642231870887
830 => 0.0013762971448177
831 => 0.0013895627637667
901 => 0.0014072897216478
902 => 0.0014285754796829
903 => 0.0013820034529011
904 => 0.0013838538463462
905 => 0.0013404866198406
906 => 0.0012941425188299
907 => 0.0013293119146233
908 => 0.0013752912212344
909 => 0.0013647435174952
910 => 0.0013635566853545
911 => 0.0013655526078154
912 => 0.0013575999836518
913 => 0.001321630559298
914 => 0.001303566939568
915 => 0.0013268736175405
916 => 0.001339260079622
917 => 0.0013584704020975
918 => 0.0013561023243717
919 => 0.0014055860520303
920 => 0.0014248139322882
921 => 0.0014198946177109
922 => 0.001420799889983
923 => 0.0014556110487467
924 => 0.0014943282167527
925 => 0.0015305919537706
926 => 0.001567480984629
927 => 0.0015230098181259
928 => 0.0015004301023758
929 => 0.0015237266053818
930 => 0.0015113651529648
1001 => 0.001582397725198
1002 => 0.0015873158663823
1003 => 0.001658343302152
1004 => 0.0017257567964872
1005 => 0.0016834155885335
1006 => 0.0017233414405439
1007 => 0.0017665245046957
1008 => 0.0018498316416443
1009 => 0.0018217767287004
1010 => 0.001800287105062
1011 => 0.0017799795145607
1012 => 0.0018222363866546
1013 => 0.0018765991775333
1014 => 0.0018883084020082
1015 => 0.0019072818189257
1016 => 0.001887333590996
1017 => 0.001911359034312
1018 => 0.0019961794065323
1019 => 0.0019732601932282
1020 => 0.0019407112258891
1021 => 0.0020076687635218
1022 => 0.0020319004361003
1023 => 0.0022019710044813
1024 => 0.002416692122327
1025 => 0.002327796169604
1026 => 0.0022726155830944
1027 => 0.0022855843298251
1028 => 0.0023639932132939
1029 => 0.0023891756580905
1030 => 0.0023207210922241
1031 => 0.002344900402156
1101 => 0.0024781307771381
1102 => 0.0025496045987738
1103 => 0.0024525335487776
1104 => 0.0021847183717317
1105 => 0.0019377805475062
1106 => 0.0020032795782459
1107 => 0.0019958540208316
1108 => 0.0021389934379221
1109 => 0.0019727135775708
1110 => 0.0019755133039707
1111 => 0.0021216126926193
1112 => 0.0020826358805055
1113 => 0.002019498436654
1114 => 0.0019382415207184
1115 => 0.0017880305962564
1116 => 0.0016549845915189
1117 => 0.0019159184454741
1118 => 0.0019046665032141
1119 => 0.0018883720233773
1120 => 0.0019246336250073
1121 => 0.0021007096694877
1122 => 0.0020966505467599
1123 => 0.0020708284789482
1124 => 0.0020904142897981
1125 => 0.002016064949316
1126 => 0.0020352264672612
1127 => 0.0019377414312932
1128 => 0.0019818087388855
1129 => 0.0020193629720559
1130 => 0.0020269025403648
1201 => 0.0020438895727447
1202 => 0.0018987372409353
1203 => 0.0019639063764692
1204 => 0.0020021871380731
1205 => 0.0018292332644806
1206 => 0.0019987683960813
1207 => 0.0018962104617733
1208 => 0.0018614007585007
1209 => 0.0019082674381276
1210 => 0.0018900034474977
1211 => 0.0018743011408516
1212 => 0.0018655389839432
1213 => 0.0018999527009745
1214 => 0.0018983472599417
1215 => 0.0018420397394638
1216 => 0.0017685888743886
1217 => 0.0017932413956503
1218 => 0.0017842849035573
1219 => 0.0017518254208019
1220 => 0.0017736991930061
1221 => 0.0016773781702812
1222 => 0.001511662857014
1223 => 0.0016211394689556
1224 => 0.0016169247384835
1225 => 0.0016147994802567
1226 => 0.0016970681284195
1227 => 0.0016891598961593
1228 => 0.0016748063771694
1229 => 0.0017515618071694
1230 => 0.0017235450427132
1231 => 0.0018098861091874
]
'min_raw' => 0.00077506253724725
'max_raw' => 0.0025496045987738
'avg_raw' => 0.0016623335680105
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000775'
'max' => '$0.002549'
'avg' => '$0.001662'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00042223408754102
'max_diff' => 0.0016854174987975
'year' => 2029
]
4 => [
'items' => [
101 => 0.0018667559197574
102 => 0.0018523318962512
103 => 0.001905818227968
104 => 0.0017938093399491
105 => 0.0018310141995324
106 => 0.0018386820695288
107 => 0.0017506146570777
108 => 0.0016904537807598
109 => 0.0016864417361936
110 => 0.0015821310673379
111 => 0.0016378529846743
112 => 0.0016868859660008
113 => 0.0016634029730585
114 => 0.0016559689590274
115 => 0.0016939477244712
116 => 0.0016968989998123
117 => 0.0016296096092728
118 => 0.0016436012043438
119 => 0.0017019484816992
120 => 0.0016421310026581
121 => 0.0015259154120111
122 => 0.0014970923387244
123 => 0.0014932468094333
124 => 0.001415076348693
125 => 0.0014990184343043
126 => 0.0014623754644269
127 => 0.0015781301672194
128 => 0.0015120117017892
129 => 0.0015091614668939
130 => 0.0015048529188109
131 => 0.0014375683740706
201 => 0.0014522994132129
202 => 0.0015012676309222
203 => 0.0015187400426674
204 => 0.0015169175269751
205 => 0.001501027659941
206 => 0.0015083019596999
207 => 0.0014848689056422
208 => 0.0014765942065376
209 => 0.0014504769800282
210 => 0.0014120918721273
211 => 0.0014174295568104
212 => 0.0013413786140489
213 => 0.0012999420241034
214 => 0.0012884729221319
215 => 0.001273135959649
216 => 0.0012902052728545
217 => 0.0013411631712834
218 => 0.0012796971344569
219 => 0.0011743179256592
220 => 0.0011806513956653
221 => 0.0011948808223451
222 => 0.0011683643798644
223 => 0.0011432687924128
224 => 0.0011650873696326
225 => 0.0011204368096755
226 => 0.0012002766291954
227 => 0.0011981171858259
228 => 0.0012278765332815
301 => 0.0012464856639689
302 => 0.0012035976425122
303 => 0.0011928114210974
304 => 0.0011989557430217
305 => 0.001097403788259
306 => 0.0012195775720317
307 => 0.0012206341359871
308 => 0.001211587193942
309 => 0.0012766409621086
310 => 0.0014139247037191
311 => 0.0013622730378995
312 => 0.0013422719517143
313 => 0.0013042498722555
314 => 0.0013549120356067
315 => 0.0013510219719142
316 => 0.0013334296286338
317 => 0.0013227897245264
318 => 0.0013423940740816
319 => 0.0013203605286648
320 => 0.0013164026984666
321 => 0.0012924225536273
322 => 0.0012838627329467
323 => 0.0012775253824911
324 => 0.0012705485823347
325 => 0.0012859376649695
326 => 0.0012510639791166
327 => 0.0012090097326875
328 => 0.0012055133771302
329 => 0.0012151671222267
330 => 0.0012108960586583
331 => 0.0012054929289211
401 => 0.0011951768827978
402 => 0.0011921163322805
403 => 0.0012020616366937
404 => 0.0011908339678584
405 => 0.0012074010048277
406 => 0.001202895687468
407 => 0.0011777293509324
408 => 0.0011463627778379
409 => 0.0011460835495437
410 => 0.001139325672822
411 => 0.0011307185007633
412 => 0.001128324182402
413 => 0.0011632498699161
414 => 0.0012355449978325
415 => 0.0012213517343468
416 => 0.0012316078217994
417 => 0.0012820576212434
418 => 0.0012980940954083
419 => 0.0012867117858908
420 => 0.0012711309785929
421 => 0.0012718164550401
422 => 0.001325060790208
423 => 0.0013283815740816
424 => 0.0013367721236047
425 => 0.0013475563509108
426 => 0.0012885483864333
427 => 0.0012690371852197
428 => 0.0012597916956445
429 => 0.0012313191662075
430 => 0.0012620243481551
501 => 0.0012441337535612
502 => 0.0012465478060016
503 => 0.0012449756511829
504 => 0.0012458341540226
505 => 0.0012002543123387
506 => 0.0012168612110423
507 => 0.0011892490209865
508 => 0.0011522793981156
509 => 0.0011521554629765
510 => 0.0011612037257993
511 => 0.0011558214650137
512 => 0.0011413379396303
513 => 0.0011433952560507
514 => 0.0011253709993979
515 => 0.0011455837271481
516 => 0.0011461633558553
517 => 0.0011383803546768
518 => 0.0011695208505948
519 => 0.0011822791371807
520 => 0.0011771561990769
521 => 0.0011819196981866
522 => 0.0012219415285233
523 => 0.0012284668331431
524 => 0.0012313649424178
525 => 0.0012274818599156
526 => 0.0011826512237761
527 => 0.0011846396531234
528 => 0.001170049877916
529 => 0.0011577230552984
530 => 0.0011582160635574
531 => 0.0011645536527576
601 => 0.0011922302764898
602 => 0.001250474099508
603 => 0.0012526844100158
604 => 0.0012553633708307
605 => 0.0012444666908589
606 => 0.0012411801479123
607 => 0.0012455159463876
608 => 0.0012673892639985
609 => 0.0013236533754416
610 => 0.001303765880704
611 => 0.001287597037915
612 => 0.0013017814721296
613 => 0.0012995978896636
614 => 0.0012811662561701
615 => 0.0012806489416064
616 => 0.0012452727439829
617 => 0.0012321949691985
618 => 0.0012212662017342
619 => 0.0012093322729659
620 => 0.0012022574399631
621 => 0.0012131275989095
622 => 0.0012156137328724
623 => 0.0011918459403584
624 => 0.0011886064780637
625 => 0.0012080157704941
626 => 0.0011994744645469
627 => 0.0012082594095278
628 => 0.0012102975921193
629 => 0.0012099693977787
630 => 0.001201051293407
701 => 0.0012067354271918
702 => 0.0011932907562689
703 => 0.0011786716959645
704 => 0.0011693456462899
705 => 0.0011612074310279
706 => 0.0011657229858511
707 => 0.001149625857414
708 => 0.0011444760620558
709 => 0.0012048097705626
710 => 0.0012493789297332
711 => 0.0012487308765076
712 => 0.0012447860191621
713 => 0.0012389247613318
714 => 0.0012669604764807
715 => 0.0012571933939147
716 => 0.0012642997625485
717 => 0.0012661086316192
718 => 0.0012715835334996
719 => 0.0012735403403381
720 => 0.0012676255109824
721 => 0.0012477746212288
722 => 0.001198308091329
723 => 0.0011752812881283
724 => 0.0011676820595303
725 => 0.0011679582770568
726 => 0.0011603389645853
727 => 0.0011625831935818
728 => 0.0011595585133267
729 => 0.0011538305006723
730 => 0.0011653692972108
731 => 0.0011666990360206
801 => 0.0011640057430301
802 => 0.001164640111028
803 => 0.0011423407953876
804 => 0.0011440361639242
805 => 0.0011345961364756
806 => 0.0011328262451302
807 => 0.0011089626777773
808 => 0.0010666849091322
809 => 0.0010901108969638
810 => 0.0010618155978555
811 => 0.0010510997393395
812 => 0.0011018269468966
813 => 0.0010967353422116
814 => 0.0010880207282582
815 => 0.0010751299979364
816 => 0.0010703487006671
817 => 0.0010412990520336
818 => 0.0010395826438185
819 => 0.0010539804340878
820 => 0.0010473363492762
821 => 0.0010380055378891
822 => 0.0010042102848942
823 => 0.00096621323130425
824 => 0.00096736012351117
825 => 0.00097944627929783
826 => 0.0010145884072877
827 => 0.0010008577699171
828 => 0.00099089603496378
829 => 0.00098903050145567
830 => 0.0010123815590685
831 => 0.0010454281977885
901 => 0.001060932941299
902 => 0.0010455682113661
903 => 0.001027918036915
904 => 0.0010289923212508
905 => 0.0010361390536491
906 => 0.0010368900741748
907 => 0.0010254016250744
908 => 0.0010286355562022
909 => 0.0010237229191022
910 => 0.00099357407428768
911 => 0.00099302877728801
912 => 0.00098562976455473
913 => 0.00098540572538972
914 => 0.00097281815896019
915 => 0.00097105707140296
916 => 0.00094606369424646
917 => 0.00096251441077779
918 => 0.00095148013382995
919 => 0.00093484887574677
920 => 0.00093198164058453
921 => 0.00093189544803327
922 => 0.00094897203140343
923 => 0.00096231486095863
924 => 0.00095167207980164
925 => 0.00094924892483384
926 => 0.00097512188039961
927 => 0.00097182931096664
928 => 0.00096897796707248
929 => 0.0010424692337498
930 => 0.00098429516157965
1001 => 0.00095892794565351
1002 => 0.00092753119884126
1003 => 0.00093775413791947
1004 => 0.00093990826138947
1005 => 0.00086440474499498
1006 => 0.00083377297779711
1007 => 0.00082326130962859
1008 => 0.00081721169598444
1009 => 0.00081996858088834
1010 => 0.00079239639766232
1011 => 0.00081092536079203
1012 => 0.00078705018073692
1013 => 0.00078304742910412
1014 => 0.00082573920860992
1015 => 0.00083167952032639
1016 => 0.00080633630503373
1017 => 0.00082261075194548
1018 => 0.00081670941126355
1019 => 0.00078745945217304
1020 => 0.00078634231888392
1021 => 0.00077166571759808
1022 => 0.00074869967853575
1023 => 0.00073820358242317
1024 => 0.00073273712443645
1025 => 0.00073499269154092
1026 => 0.00073385220779141
1027 => 0.00072640977987293
1028 => 0.0007342787990479
1029 => 0.00071417670675908
1030 => 0.0007061718916361
1031 => 0.00070255630235536
1101 => 0.00068471453841576
1102 => 0.00071310871911209
1103 => 0.00071870273040973
1104 => 0.00072430776363771
1105 => 0.00077309575116851
1106 => 0.0007706584411849
1107 => 0.00079269053641869
1108 => 0.00079183440971233
1109 => 0.00078555049925537
1110 => 0.00075903971469056
1111 => 0.0007696064409088
1112 => 0.00073708370004292
1113 => 0.00076145194883105
1114 => 0.00075033129772654
1115 => 0.00075769204550625
1116 => 0.00074445675730647
1117 => 0.00075178171226788
1118 => 0.00072002927801254
1119 => 0.00069037930167371
1120 => 0.00070231131768922
1121 => 0.00071528278368963
1122 => 0.00074340822704659
1123 => 0.00072665694501305
1124 => 0.00073268133946841
1125 => 0.00071250062651441
1126 => 0.00067086205135462
1127 => 0.00067109772116809
1128 => 0.00066469253352543
1129 => 0.00065915751622946
1130 => 0.00072858103126256
1201 => 0.00071994711974483
1202 => 0.00070619011171973
1203 => 0.0007246044136431
1204 => 0.0007294734473459
1205 => 0.00072961206189037
1206 => 0.00074304666123173
1207 => 0.0007502167093085
1208 => 0.0007514804613588
1209 => 0.00077262009369616
1210 => 0.00077970581961715
1211 => 0.00080889092187624
1212 => 0.00074960838082352
1213 => 0.0007483874959025
1214 => 0.00072486354063418
1215 => 0.00070994427630399
1216 => 0.00072588507542685
1217 => 0.00074000644731363
1218 => 0.00072530233102187
1219 => 0.00072722237818874
1220 => 0.00070748330343749
1221 => 0.00071453909385127
1222 => 0.00072061649107323
1223 => 0.00071726090954016
1224 => 0.00071223744157317
1225 => 0.00073884865585692
1226 => 0.00073734714685684
1227 => 0.00076212812138704
1228 => 0.00078144666313781
1229 => 0.00081606894355761
1230 => 0.00077993878903925
1231 => 0.00077862206260425
]
'min_raw' => 0.00065915751622946
'max_raw' => 0.001905818227968
'avg_raw' => 0.0012824878720987
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000659'
'max' => '$0.0019058'
'avg' => '$0.001282'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00011590502101779
'max_diff' => -0.00064378637080586
'year' => 2030
]
5 => [
'items' => [
101 => 0.000791493274716
102 => 0.00077970384910164
103 => 0.00078715435913277
104 => 0.00081486855120716
105 => 0.00081545410841424
106 => 0.0008056452707478
107 => 0.00080504840208437
108 => 0.00080693229665514
109 => 0.00081796632599849
110 => 0.00081411069710445
111 => 0.00081857252847321
112 => 0.00082415211692184
113 => 0.00084723166044183
114 => 0.00085279606024908
115 => 0.000839277453528
116 => 0.00084049803235349
117 => 0.00083544170234575
118 => 0.00083055735091391
119 => 0.00084153665963045
120 => 0.00086160156210879
121 => 0.00086147673939184
122 => 0.00086613140676085
123 => 0.00086903122597039
124 => 0.00085658307912563
125 => 0.00084847979326074
126 => 0.00085158710868682
127 => 0.00085655577372164
128 => 0.00084997583758202
129 => 0.00080936142360536
130 => 0.00082168124234707
131 => 0.00081963062210009
201 => 0.00081671028950445
202 => 0.00082909796251558
203 => 0.00082790314123373
204 => 0.00079211360507115
205 => 0.00079440473505741
206 => 0.00079225293627407
207 => 0.00079920583835965
208 => 0.00077932836957154
209 => 0.00078544254509397
210 => 0.0007892772986648
211 => 0.00079153599797798
212 => 0.00079969596870182
213 => 0.00079873849031941
214 => 0.00079963645050121
215 => 0.00081173553293227
216 => 0.00087292853996485
217 => 0.00087625914032287
218 => 0.00085985804605011
219 => 0.0008664099597148
220 => 0.00085383171822461
221 => 0.00086227557600387
222 => 0.0008680526490457
223 => 0.00084194716683691
224 => 0.00084040136960368
225 => 0.00082777121323653
226 => 0.00083455794385961
227 => 0.00082375976745509
228 => 0.00082640926224058
301 => 0.00081900104384153
302 => 0.00083233436199825
303 => 0.00084724308348563
304 => 0.0008510096152966
305 => 0.00084110149169585
306 => 0.00083392735723174
307 => 0.00082133194041958
308 => 0.00084227839928538
309 => 0.00084840378218951
310 => 0.00084224622525664
311 => 0.00084081938477002
312 => 0.00083811552462611
313 => 0.00084139302148152
314 => 0.00084837042203872
315 => 0.0008450800087883
316 => 0.00084725338470982
317 => 0.0008389707168725
318 => 0.0008565871999802
319 => 0.00088456641479278
320 => 0.00088465637254346
321 => 0.00088136594155649
322 => 0.00088001956808995
323 => 0.00088339574996263
324 => 0.00088522719013033
325 => 0.00089614514322071
326 => 0.00090786054187713
327 => 0.00096253119557775
328 => 0.00094717989478677
329 => 0.0009956869511217
330 => 0.0010340497348297
331 => 0.0010455530562625
401 => 0.0010349705418174
402 => 0.00099876833155698
403 => 0.00099699207840984
404 => 0.0010510934647178
405 => 0.0010358073450854
406 => 0.0010339891097951
407 => 0.0010146461582638
408 => 0.0010260802382899
409 => 0.0010235794372604
410 => 0.0010196318004919
411 => 0.0010414472286769
412 => 0.0010822837627624
413 => 0.0010759190059626
414 => 0.0010711680102641
415 => 0.0010503505301073
416 => 0.0010628873029142
417 => 0.0010584231982438
418 => 0.0010776038248989
419 => 0.0010662416465713
420 => 0.0010356915376948
421 => 0.0010405567432279
422 => 0.001039821377199
423 => 0.0010549551579649
424 => 0.0010504123726225
425 => 0.0010389343254518
426 => 0.0010821441879284
427 => 0.0010793383798051
428 => 0.0010833163742269
429 => 0.001085067610395
430 => 0.0011113686922414
501 => 0.0011221434039331
502 => 0.001124589452125
503 => 0.001134824594886
504 => 0.0011243347924491
505 => 0.001166301481299
506 => 0.0011942068805601
507 => 0.0012266204378005
508 => 0.0012739853568717
509 => 0.0012917950045924
510 => 0.0012885778511396
511 => 0.001324489392211
512 => 0.0013890216332475
513 => 0.0013016216621005
514 => 0.001393654043942
515 => 0.001364517654416
516 => 0.0012954357989908
517 => 0.001290987741923
518 => 0.0013377707764738
519 => 0.001441531044407
520 => 0.001415540274129
521 => 0.0014415735559963
522 => 0.0014112043498589
523 => 0.0014096962628024
524 => 0.0014400985914395
525 => 0.0015111352894448
526 => 0.0014773884169933
527 => 0.0014290040002614
528 => 0.0014647303006313
529 => 0.0014337808729379
530 => 0.0013640431501453
531 => 0.0014155203994768
601 => 0.0013810990288365
602 => 0.00139114501473
603 => 0.0014634936160235
604 => 0.0014547884409052
605 => 0.0014660537435857
606 => 0.0014461707792188
607 => 0.0014275969552445
608 => 0.001392927533486
609 => 0.0013826636268851
610 => 0.0013855002014129
611 => 0.0013826622212197
612 => 0.0013632649983743
613 => 0.0013590761699476
614 => 0.0013520946057198
615 => 0.0013542584844058
616 => 0.0013411311011288
617 => 0.0013659051856283
618 => 0.0013705034740199
619 => 0.0013885319867315
620 => 0.0013904037667285
621 => 0.0014406129180104
622 => 0.0014129585612148
623 => 0.0014315114913156
624 => 0.0014298519426204
625 => 0.0012969330122724
626 => 0.0013152480681207
627 => 0.0013437405474395
628 => 0.0013309047241271
629 => 0.0013127578730833
630 => 0.0012981033178928
701 => 0.0012759001682741
702 => 0.0013071506749888
703 => 0.0013482417681976
704 => 0.0013914459046629
705 => 0.0014433528437788
706 => 0.0014317678192315
707 => 0.0013904755405418
708 => 0.0013923278819998
709 => 0.0014037783280236
710 => 0.0013889489600401
711 => 0.0013845754899181
712 => 0.0014031774803881
713 => 0.001403305582073
714 => 0.0013862426020189
715 => 0.0013672802221812
716 => 0.0013672007691173
717 => 0.0013638265967801
718 => 0.0014118046076219
719 => 0.0014381876624609
720 => 0.0014412124371798
721 => 0.0014379840710222
722 => 0.001439226541027
723 => 0.0014238748227271
724 => 0.0014589642983499
725 => 0.0014911658711709
726 => 0.0014825351617687
727 => 0.001469596501447
728 => 0.0014592902352905
729 => 0.001480107333
730 => 0.0014791803804082
731 => 0.0014908846185244
801 => 0.0014903536466765
802 => 0.0014864179516167
803 => 0.0014825353023247
804 => 0.0014979295678925
805 => 0.0014934962666333
806 => 0.0014890560792328
807 => 0.0014801506036423
808 => 0.0014813610056793
809 => 0.0014684245793998
810 => 0.0014624395966723
811 => 0.0013724398164321
812 => 0.0013483889343243
813 => 0.0013559558314362
814 => 0.0013584470504399
815 => 0.0013479800757245
816 => 0.0013629870287212
817 => 0.0013606482109929
818 => 0.0013697471826109
819 => 0.0013640625401754
820 => 0.0013642958398839
821 => 0.001381013161193
822 => 0.0013858662706896
823 => 0.0013833979400302
824 => 0.0013851266742147
825 => 0.0014249646238411
826 => 0.0014193009413502
827 => 0.0014162922229082
828 => 0.0014171256584786
829 => 0.0014273051087434
830 => 0.0014301547990402
831 => 0.0014180804610086
901 => 0.0014237747886252
902 => 0.001448020512899
903 => 0.0014565051442057
904 => 0.0014835840144826
905 => 0.0014720804291005
906 => 0.0014931957579329
907 => 0.0015580970800179
908 => 0.0016099447469293
909 => 0.0015622634897421
910 => 0.0016574751272643
911 => 0.0017316110443735
912 => 0.0017287655843951
913 => 0.0017158382724524
914 => 0.0016314365018289
915 => 0.0015537687341416
916 => 0.0016187411197596
917 => 0.0016189067477323
918 => 0.0016133255621865
919 => 0.0015786612980977
920 => 0.0016121193209354
921 => 0.0016147750972865
922 => 0.0016132885687578
923 => 0.0015867115587556
924 => 0.0015461333767347
925 => 0.0015540622563712
926 => 0.0015670499229604
927 => 0.0015424615605959
928 => 0.001534604088959
929 => 0.0015492126236771
930 => 0.0015962843663479
1001 => 0.001587385726064
1002 => 0.001587153346604
1003 => 0.0016252255033492
1004 => 0.0015979740556053
1005 => 0.0015541622649352
1006 => 0.0015430992099844
1007 => 0.0015038328178761
1008 => 0.0015309542547674
1009 => 0.0015319303069978
1010 => 0.0015170761731868
1011 => 0.0015553675960281
1012 => 0.0015550147338256
1013 => 0.0015913667408873
1014 => 0.0016608581251989
1015 => 0.0016403061033946
1016 => 0.0016164063380898
1017 => 0.0016190049052471
1018 => 0.0016475047731517
1019 => 0.0016302731024279
1020 => 0.0016364697313636
1021 => 0.0016474953938117
1022 => 0.0016541474497184
1023 => 0.0016180477767714
1024 => 0.0016096312161605
1025 => 0.001592413886962
1026 => 0.0015879222071508
1027 => 0.0016019453625316
1028 => 0.0015982507565341
1029 => 0.0015318482735873
1030 => 0.0015249088446594
1031 => 0.0015251216670374
1101 => 0.0015076721430464
1102 => 0.0014810574305945
1103 => 0.0015509993058362
1104 => 0.0015453819944184
1105 => 0.0015391809173585
1106 => 0.0015399405139154
1107 => 0.0015702999114077
1108 => 0.0015526899276759
1109 => 0.0015995089556466
1110 => 0.0015898843710046
1111 => 0.0015800129520835
1112 => 0.0015786484212978
1113 => 0.001574848767203
1114 => 0.0015618183395231
1115 => 0.0015460833150922
1116 => 0.0015356936890185
1117 => 0.0014165962516583
1118 => 0.0014387000432744
1119 => 0.0014641284407048
1120 => 0.0014729062215999
1121 => 0.0014578912199749
1122 => 0.0015624112233047
1123 => 0.0015815080350929
1124 => 0.0015236625465323
1125 => 0.0015128420174384
1126 => 0.0015631206153907
1127 => 0.0015327964745168
1128 => 0.0015464514332956
1129 => 0.0015169368812791
1130 => 0.0015769081723531
1201 => 0.0015764512915945
1202 => 0.0015531211048537
1203 => 0.0015728396189288
1204 => 0.0015694130418594
1205 => 0.0015430733184887
1206 => 0.0015777431885652
1207 => 0.0015777603843882
1208 => 0.0015553055868922
1209 => 0.0015290832994041
1210 => 0.001524395373744
1211 => 0.0015208636514933
1212 => 0.0015455828461204
1213 => 0.0015677459987282
1214 => 0.0016089861310198
1215 => 0.0016193548801193
1216 => 0.0016598247981412
1217 => 0.0016357269324037
1218 => 0.0016464092041655
1219 => 0.0016580063212626
1220 => 0.0016635664056688
1221 => 0.0016545065464995
1222 => 0.0017173729872705
1223 => 0.0017226808410495
1224 => 0.0017244605185089
1225 => 0.0017032623083949
1226 => 0.0017220912804789
1227 => 0.0017132818279908
1228 => 0.0017362015760285
1229 => 0.0017397956851748
1230 => 0.001736751602592
1231 => 0.0017378924295642
]
'min_raw' => 0.00077932836957154
'max_raw' => 0.0017397956851748
'avg_raw' => 0.0012595620273732
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000779'
'max' => '$0.001739'
'avg' => '$0.001259'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00012017085334208
'max_diff' => -0.00016602254279313
'year' => 2031
]
6 => [
'items' => [
101 => 0.0016842470127663
102 => 0.0016814652149032
103 => 0.0016435352036526
104 => 0.0016589919636017
105 => 0.0016300962917387
106 => 0.0016392594069449
107 => 0.0016432984208184
108 => 0.0016411886691829
109 => 0.0016598658656181
110 => 0.001643986433149
111 => 0.0016020780000426
112 => 0.0015601581490116
113 => 0.0015596318794291
114 => 0.0015485951225995
115 => 0.0015406175688945
116 => 0.001542154328757
117 => 0.0015475700709552
118 => 0.0015403027961127
119 => 0.0015418536376605
120 => 0.0015676079405579
121 => 0.0015727727823326
122 => 0.001555220631948
123 => 0.0014847462153904
124 => 0.0014674516167955
125 => 0.0014798826312987
126 => 0.0014739414070261
127 => 0.0011895857518802
128 => 0.0012563908951497
129 => 0.0012166975475073
130 => 0.001234990068304
131 => 0.0011944734389037
201 => 0.001213810098112
202 => 0.001210239323218
203 => 0.0013176600166873
204 => 0.0013159827903111
205 => 0.0013167855898206
206 => 0.0012784658775521
207 => 0.0013395102196894
208 => 0.0013695828577097
209 => 0.0013640172127695
210 => 0.0013654179656938
211 => 0.0013413483895372
212 => 0.0013170186359313
213 => 0.0012900331948601
214 => 0.001340168808869
215 => 0.0013345945844347
216 => 0.0013473798497444
217 => 0.0013798963791969
218 => 0.0013846845616771
219 => 0.0013911199274874
220 => 0.0013888133069449
221 => 0.0014437663662917
222 => 0.0014371111882128
223 => 0.0014531482525574
224 => 0.0014201587944656
225 => 0.0013828280912465
226 => 0.0013899234374958
227 => 0.0013892400985948
228 => 0.0013805404100855
229 => 0.0013726867202886
301 => 0.0013596125395401
302 => 0.0014009811820429
303 => 0.0013993016907053
304 => 0.0014264907032659
305 => 0.0014216847811958
306 => 0.0013895896574033
307 => 0.0013907359410284
308 => 0.0013984452492924
309 => 0.0014251272532174
310 => 0.0014330482886317
311 => 0.0014293789494291
312 => 0.0014380640031518
313 => 0.0014449283154961
314 => 0.0014389260550975
315 => 0.0015239054046957
316 => 0.0014886160540029
317 => 0.0015058158379889
318 => 0.0015099178851225
319 => 0.0014994105776465
320 => 0.0015016892363995
321 => 0.0015051407835131
322 => 0.0015260979017045
323 => 0.0015810954438298
324 => 0.0016054534808562
325 => 0.0016787358370544
326 => 0.0016034308849614
327 => 0.0015989626007471
328 => 0.0016121629660135
329 => 0.0016551874668271
330 => 0.0016900547836506
331 => 0.0017016222841847
401 => 0.0017031511203389
402 => 0.0017248525203338
403 => 0.0017372913581037
404 => 0.0017222173995709
405 => 0.0017094437980236
406 => 0.001663690342799
407 => 0.0016689864298238
408 => 0.0017054712175477
409 => 0.0017570081291509
410 => 0.0018012321608083
411 => 0.001785746446285
412 => 0.001903891516887
413 => 0.0019156051180579
414 => 0.0019139866771222
415 => 0.0019406720038069
416 => 0.0018877070647099
417 => 0.0018650635270986
418 => 0.0017122055956647
419 => 0.0017551524394036
420 => 0.0018175781989578
421 => 0.0018093159155963
422 => 0.0017639806603626
423 => 0.0018011977699519
424 => 0.0017888926296351
425 => 0.0017791870549264
426 => 0.0018236501741849
427 => 0.001774761148116
428 => 0.0018170904935246
429 => 0.001762802670197
430 => 0.0017858171837245
501 => 0.0017727530327595
502 => 0.001781207139516
503 => 0.0017317846041635
504 => 0.0017584518045755
505 => 0.0017306751609527
506 => 0.001730661991207
507 => 0.0017300488202595
508 => 0.0017627279183012
509 => 0.0017637935825151
510 => 0.0017396436796869
511 => 0.001736163301397
512 => 0.001749032084075
513 => 0.0017339661098986
514 => 0.0017410153843916
515 => 0.0017341796252418
516 => 0.001732640751874
517 => 0.0017203787470621
518 => 0.0017150959382383
519 => 0.0017171674636994
520 => 0.0017100962793563
521 => 0.0017058356350137
522 => 0.0017292012708609
523 => 0.0017167179541948
524 => 0.0017272880235459
525 => 0.0017152420954712
526 => 0.0016734856606035
527 => 0.0016494710933448
528 => 0.0015705970587033
529 => 0.0015929656370847
530 => 0.0016077960276935
531 => 0.0016028945836858
601 => 0.0016134247820215
602 => 0.0016140712506766
603 => 0.001610647775855
604 => 0.0016066838305858
605 => 0.0016047544012488
606 => 0.0016191347867756
607 => 0.0016274830845954
608 => 0.0016092844557962
609 => 0.0016050207716944
610 => 0.0016234205901843
611 => 0.0016346444688339
612 => 0.00171751528263
613 => 0.0017113759450748
614 => 0.0017267844775542
615 => 0.0017250497132602
616 => 0.0017412003100704
617 => 0.0017675997101036
618 => 0.0017139223484478
619 => 0.0017232388824077
620 => 0.0017209546834309
621 => 0.0017458929689103
622 => 0.0017459708235155
623 => 0.0017310190756108
624 => 0.0017391246607144
625 => 0.0017346003454747
626 => 0.0017427763946107
627 => 0.0017112939504787
628 => 0.0017496361691116
629 => 0.0017713737363585
630 => 0.0017716755625008
701 => 0.0017819789968558
702 => 0.0017924478828951
703 => 0.0018125419979999
704 => 0.001791887468931
705 => 0.0017547319818139
706 => 0.0017574144879722
707 => 0.0017356302394701
708 => 0.0017359964366231
709 => 0.0017340416475212
710 => 0.0017399081167657
711 => 0.0017125813105777
712 => 0.00171899485737
713 => 0.0017100158543031
714 => 0.0017232193638086
715 => 0.001709014570199
716 => 0.001720953581921
717 => 0.0017261060635957
718 => 0.0017451188319004
719 => 0.0017062063688616
720 => 0.0016268612225833
721 => 0.0016435405342979
722 => 0.0016188705221403
723 => 0.0016211538256909
724 => 0.001625766462248
725 => 0.0016108153980055
726 => 0.0016136675899008
727 => 0.0016135656895357
728 => 0.0016126875672406
729 => 0.0016087982179936
730 => 0.0016031578921012
731 => 0.0016256272144559
801 => 0.0016294451901674
802 => 0.001637932077227
803 => 0.001663183296406
804 => 0.0016606601041452
805 => 0.0016647755354087
806 => 0.0016557915720677
807 => 0.0016215705659836
808 => 0.0016234289312562
809 => 0.0016002550865287
810 => 0.0016373394699154
811 => 0.0016285573984395
812 => 0.0016228955398282
813 => 0.0016213506492494
814 => 0.0016466644613165
815 => 0.0016542387506324
816 => 0.0016495189618224
817 => 0.0016398385372749
818 => 0.0016584278141668
819 => 0.0016634015204444
820 => 0.0016645149498568
821 => 0.001697451584369
822 => 0.0016663557418456
823 => 0.0016738408202071
824 => 0.0017322372648733
825 => 0.0016792797477196
826 => 0.0017073325256495
827 => 0.0017059594881494
828 => 0.0017203103400841
829 => 0.0017047822994208
830 => 0.001704974788095
831 => 0.0017177173724021
901 => 0.00169982271088
902 => 0.0016953917410339
903 => 0.0016892703879268
904 => 0.001702636138491
905 => 0.0017106483014733
906 => 0.0017752204508257
907 => 0.0018169370041552
908 => 0.0018151259785555
909 => 0.0018316753624381
910 => 0.001824219713424
911 => 0.0018001434560567
912 => 0.001841238691596
913 => 0.0018282344395737
914 => 0.0018293064943102
915 => 0.0018292665923794
916 => 0.0018379132831228
917 => 0.0018317863102735
918 => 0.0018197094178667
919 => 0.0018277266226513
920 => 0.0018515348546583
921 => 0.0019254363373339
922 => 0.0019667925861035
923 => 0.0019229466392295
924 => 0.0019531909862626
925 => 0.0019350551552055
926 => 0.0019317593352081
927 => 0.0019507550201846
928 => 0.001969783954593
929 => 0.0019685718937355
930 => 0.0019547578645016
1001 => 0.0019469546699054
1002 => 0.0020060430736499
1003 => 0.0020495784029842
1004 => 0.0020466095853882
1005 => 0.0020597129807459
1006 => 0.002098184954789
1007 => 0.002101702349949
1008 => 0.0021012592390053
1009 => 0.0020925410080989
1010 => 0.0021304216627615
1011 => 0.0021620223713277
1012 => 0.002090522989538
1013 => 0.0021177490181279
1014 => 0.0021299716595297
1015 => 0.0021479181234019
1016 => 0.0021781968161309
1017 => 0.0022110875074612
1018 => 0.0022157386118434
1019 => 0.0022124384307084
1020 => 0.0021907461356269
1021 => 0.002226735522548
1022 => 0.0022478172613515
1023 => 0.0022603709543619
1024 => 0.002292205031101
1025 => 0.0021300471424019
1026 => 0.0020152637290107
1027 => 0.0019973386415171
1028 => 0.0020337900118046
1029 => 0.0020434019474552
1030 => 0.0020395273882468
1031 => 0.0019103282208236
1101 => 0.001996658434639
1102 => 0.0020895424858538
1103 => 0.0020931105405432
1104 => 0.0021396102386952
1105 => 0.0021547524465006
1106 => 0.0021921907983677
1107 => 0.0021898490192651
1108 => 0.0021989646621704
1109 => 0.0021968691337274
1110 => 0.0022662157969863
1111 => 0.0023427154646399
1112 => 0.0023400665244031
1113 => 0.0023290687920749
1114 => 0.0023454022999743
1115 => 0.0024243581551955
1116 => 0.0024170891652885
1117 => 0.002424150369812
1118 => 0.0025172437728748
1119 => 0.0026382784392385
1120 => 0.0025820456850307
1121 => 0.0027040545811225
1122 => 0.0027808527137986
1123 => 0.0029136671431867
1124 => 0.0028970381225025
1125 => 0.002948741805226
1126 => 0.0028672687048963
1127 => 0.0026801899981092
1128 => 0.0026505840766516
1129 => 0.002709855881151
1130 => 0.0028555698288548
1201 => 0.0027052668303859
1202 => 0.0027356729312211
1203 => 0.0027269159721351
1204 => 0.002726449351
1205 => 0.0027442583818383
1206 => 0.0027184254537508
1207 => 0.0026131774574674
1208 => 0.0026614119939338
1209 => 0.0026427863229914
1210 => 0.0026634528935377
1211 => 0.002774981851234
1212 => 0.0027256722405182
1213 => 0.0026737285712166
1214 => 0.0027388774597438
1215 => 0.0028218343824259
1216 => 0.0028166430872923
1217 => 0.0028065698049403
1218 => 0.0028633523701389
1219 => 0.0029571405321166
1220 => 0.0029824910954277
1221 => 0.0030012043629946
1222 => 0.0030037846064288
1223 => 0.0030303627174137
1224 => 0.0028874455161016
1225 => 0.003114258784958
1226 => 0.0031534231708993
1227 => 0.0031460618895398
1228 => 0.0031895914562244
1229 => 0.0031767839534673
1230 => 0.0031582278914078
1231 => 0.0032272315136072
]
'min_raw' => 0.0011895857518802
'max_raw' => 0.0032272315136072
'avg_raw' => 0.0022084086327437
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001189'
'max' => '$0.003227'
'avg' => '$0.0022084'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00041025738230869
'max_diff' => 0.0014874358284324
'year' => 2032
]
7 => [
'items' => [
101 => 0.0031481244290608
102 => 0.0030358418818522
103 => 0.0029742414557566
104 => 0.0030553618660039
105 => 0.0031048992698298
106 => 0.0031376403425881
107 => 0.003147547771422
108 => 0.0028985397716064
109 => 0.0027643382703226
110 => 0.0028503598940222
111 => 0.002955312211831
112 => 0.002886862500677
113 => 0.0028895455997618
114 => 0.0027919542999239
115 => 0.0029639468763932
116 => 0.0029388890046869
117 => 0.0030688892874258
118 => 0.0030378636766327
119 => 0.0031438738606244
120 => 0.0031159578263912
121 => 0.0032318357237286
122 => 0.0032780625542454
123 => 0.0033556845973146
124 => 0.0034127836881749
125 => 0.0034463133664596
126 => 0.003444300370342
127 => 0.0035771616601255
128 => 0.0034988179993601
129 => 0.0034003998972556
130 => 0.0033986198242937
131 => 0.0034495919539689
201 => 0.0035564155542473
202 => 0.0035841133595793
203 => 0.0035995926541558
204 => 0.0035758855756737
205 => 0.0034908491468536
206 => 0.0034541308480336
207 => 0.0034854159024598
208 => 0.0034471569692519
209 => 0.0035132026215294
210 => 0.0036038974086965
211 => 0.0035851692937926
212 => 0.0036477745740405
213 => 0.0037125644528296
214 => 0.0038052168893936
215 => 0.0038294396672212
216 => 0.0038694789978605
217 => 0.0039106926213233
218 => 0.0039239293264412
219 => 0.0039492023036198
220 => 0.0039490691025549
221 => 0.0040252309203501
222 => 0.0041092397639132
223 => 0.0041409511575491
224 => 0.0042138697586384
225 => 0.0040889992096456
226 => 0.0041837149554661
227 => 0.0042691509290852
228 => 0.0041672906392248
301 => 0.0043076813183937
302 => 0.0043131323703337
303 => 0.0043954367828409
304 => 0.0043120054931473
305 => 0.0042624642596494
306 => 0.0044054879444721
307 => 0.004474692600354
308 => 0.0044538475947962
309 => 0.0042952160732565
310 => 0.0042028857236945
311 => 0.0039612393896961
312 => 0.0042474799106619
313 => 0.0043868993186739
314 => 0.004294855010671
315 => 0.00434127680573
316 => 0.0045945390672542
317 => 0.0046909649389256
318 => 0.0046709090316857
319 => 0.0046742981498609
320 => 0.0047263277999614
321 => 0.0049570559217586
322 => 0.0048187982829417
323 => 0.0049244910674023
324 => 0.0049805501391765
325 => 0.0050326209292465
326 => 0.004904751525977
327 => 0.0047383953110979
328 => 0.0046857033146869
329 => 0.0042857030182352
330 => 0.0042648812656916
331 => 0.0042531933850253
401 => 0.0041795029507074
402 => 0.0041216024548422
403 => 0.0040755578308227
404 => 0.0039547229873067
405 => 0.0039955011998493
406 => 0.0038029156794767
407 => 0.0039261250705993
408 => 0.0036187539299447
409 => 0.0038747417494646
410 => 0.0037354192176378
411 => 0.003828970550692
412 => 0.0038286441589041
413 => 0.0036563864942741
414 => 0.0035570318682413
415 => 0.0036203445028893
416 => 0.0036882206729952
417 => 0.003699233353232
418 => 0.0037872365795235
419 => 0.0038117963883585
420 => 0.0037373790210007
421 => 0.0036123843462522
422 => 0.0036414177583713
423 => 0.0035564435070714
424 => 0.0034075294001557
425 => 0.0035144821115334
426 => 0.0035510004695765
427 => 0.0035671290568933
428 => 0.0034206891356425
429 => 0.0033746745330201
430 => 0.0033501767446838
501 => 0.0035934807913325
502 => 0.0036068095362358
503 => 0.0035386177928161
504 => 0.0038468509392793
505 => 0.0037770882851855
506 => 0.0038550302620735
507 => 0.0036387832805353
508 => 0.0036470442064453
509 => 0.0035446694198735
510 => 0.003601992459668
511 => 0.0035614783827491
512 => 0.0035973613245299
513 => 0.0036188694118824
514 => 0.0037212273997591
515 => 0.0038759105132663
516 => 0.0037059385297084
517 => 0.0036318793024286
518 => 0.0036778252305081
519 => 0.0038001852916674
520 => 0.0039855670478199
521 => 0.0038758173170221
522 => 0.0039245223838789
523 => 0.0039351622742495
524 => 0.003854236885915
525 => 0.0039885508823186
526 => 0.0040605308441562
527 => 0.0041343673908473
528 => 0.004198477595486
529 => 0.0041048754503984
530 => 0.0042050431629826
531 => 0.0041243256686213
601 => 0.004051913731758
602 => 0.0040520235507759
603 => 0.004006598485012
604 => 0.0039185816961677
605 => 0.003902350049885
606 => 0.0039867891236785
607 => 0.0040545012644509
608 => 0.0040600783606842
609 => 0.0040975672809912
610 => 0.0041197528378622
611 => 0.0043372014550009
612 => 0.0044246610876434
613 => 0.0045316050709125
614 => 0.0045732657794285
615 => 0.0046986495758709
616 => 0.0045973919770696
617 => 0.0045754842586287
618 => 0.0042713441811867
619 => 0.0043211471018296
620 => 0.0044008863830459
621 => 0.0042726590525642
622 => 0.0043539897798919
623 => 0.0043700461882867
624 => 0.0042683019369412
625 => 0.0043226479376944
626 => 0.0041783210721601
627 => 0.0038790564445351
628 => 0.0039888840493985
629 => 0.00406975413415
630 => 0.003954342552
701 => 0.0041612133459588
702 => 0.0040403636988081
703 => 0.0040020601624674
704 => 0.0038526244110057
705 => 0.0039231523333861
706 => 0.0040185423582681
707 => 0.0039596024131717
708 => 0.004081911649124
709 => 0.0042551341459142
710 => 0.004378582812705
711 => 0.004388059668473
712 => 0.0043086904461448
713 => 0.0044358801314533
714 => 0.0044368065694546
715 => 0.0042933360848416
716 => 0.0042054612118631
717 => 0.0041854958558321
718 => 0.0042353732296362
719 => 0.0042959335693055
720 => 0.0043914203458461
721 => 0.0044491210050782
722 => 0.0045995737222907
723 => 0.004640281913751
724 => 0.0046850078742133
725 => 0.0047447755503664
726 => 0.0048165419697058
727 => 0.0046595211298557
728 => 0.0046657598605464
729 => 0.0045195442285796
730 => 0.0043632918563803
731 => 0.0044818679297464
801 => 0.0046368903721585
802 => 0.0046013280525846
803 => 0.0045973265651603
804 => 0.004604055957088
805 => 0.004577243129486
806 => 0.0044559697039721
807 => 0.0043950669488908
808 => 0.0044736470408955
809 => 0.0045154088625985
810 => 0.0045801778060463
811 => 0.0045721936666598
812 => 0.0047390315093045
813 => 0.0048038596500418
814 => 0.0047872738374886
815 => 0.0047903260261583
816 => 0.0049076942783675
817 => 0.0050382319134461
818 => 0.0051604976346554
819 => 0.0052848715777044
820 => 0.0051349339349612
821 => 0.0050588048468444
822 => 0.0051373506332392
823 => 0.0050956731333661
824 => 0.0053351644099862
825 => 0.0053517462663625
826 => 0.0055912202250374
827 => 0.0058185095278484
828 => 0.0056757531890636
829 => 0.005810365986651
830 => 0.0059559607023841
831 => 0.0062368365309245
901 => 0.0061422474332029
902 => 0.0060697936667482
903 => 0.0060013252075427
904 => 0.0061437972020877
905 => 0.0063270851470241
906 => 0.0063665636148533
907 => 0.0064305338146721
908 => 0.0063632769714665
909 => 0.0064442804310093
910 => 0.0067302582379191
911 => 0.0066529845100962
912 => 0.0065432433942159
913 => 0.0067689954071707
914 => 0.0068506941830703
915 => 0.0074240989783147
916 => 0.0081480462184815
917 => 0.0078483273073586
918 => 0.0076622821073558
919 => 0.0077060071424076
920 => 0.0079703681673558
921 => 0.0080552725381697
922 => 0.0078244731900059
923 => 0.0079059954215868
924 => 0.0083551909326868
925 => 0.0085961699124745
926 => 0.0082688880901279
927 => 0.007365930522459
928 => 0.0065333624074345
929 => 0.0067541969625698
930 => 0.0067291611773116
1001 => 0.0072117657157073
1002 => 0.0066511415572437
1003 => 0.0066605810302714
1004 => 0.0071531653194341
1005 => 0.0070217522761181
1006 => 0.0068088799760572
1007 => 0.0065349166108035
1008 => 0.0060284699915881
1009 => 0.0055798960976402
1010 => 0.0064596528040701
1011 => 0.0064217160951551
1012 => 0.0063667781187409
1013 => 0.0064890366403408
1014 => 0.0070826893175432
1015 => 0.0070690037018675
1016 => 0.0069819427974011
1017 => 0.0070479777261193
1018 => 0.0067973037337787
1019 => 0.0068619081293456
1020 => 0.0065332305243914
1021 => 0.0066818065286199
1022 => 0.006808423247707
1023 => 0.0068338434286563
1024 => 0.0068911163943217
1025 => 0.0064017251734143
1026 => 0.0066214474638304
1027 => 0.0067505137242554
1028 => 0.0061673876641845
1029 => 0.006738987196941
1030 => 0.0063932059610555
1031 => 0.0062758426161361
1101 => 0.0064338568986251
1102 => 0.0063722785790652
1103 => 0.0063193371559078
1104 => 0.0062897949321369
1105 => 0.0064058231817969
1106 => 0.0064004103252665
1107 => 0.0062105655887099
1108 => 0.0059629208689333
1109 => 0.0060460385655512
1110 => 0.0060158411271373
1111 => 0.0059064017147785
1112 => 0.0059801506649433
1113 => 0.0056553976119071
1114 => 0.0050966768633531
1115 => 0.0054657849039273
1116 => 0.0054515746458774
1117 => 0.0054444091893848
1118 => 0.0057217836804793
1119 => 0.0056951205232789
1120 => 0.0056467266318737
1121 => 0.0059055129230119
1122 => 0.0058110524455797
1123 => 0.0061021573793383
1124 => 0.0062938979161984
1125 => 0.0062452663138941
1126 => 0.0064255992155735
1127 => 0.0060479534294071
1128 => 0.0061733922110524
1129 => 0.0061992449700989
1130 => 0.0059023195403496
1201 => 0.0056994829455457
1202 => 0.0056859560571788
1203 => 0.0053342653543933
1204 => 0.0055221356890732
1205 => 0.0056874538089887
1206 => 0.0056082792587535
1207 => 0.0055832149614215
1208 => 0.0057112630207081
1209 => 0.0057212134515721
1210 => 0.0054943425733727
1211 => 0.0055415162130167
1212 => 0.0057382381322972
1213 => 0.0055365593253873
1214 => 0.0051447303476074
1215 => 0.0050475513436585
1216 => 0.0050345858731673
1217 => 0.004771028707094
1218 => 0.0050540453093819
1219 => 0.0049305009781098
1220 => 0.0053207760403099
1221 => 0.0050978530178683
1222 => 0.0050882432519215
1223 => 0.0050737166812466
1224 => 0.0048468621409979
1225 => 0.0048965288679542
1226 => 0.0050616286328132
1227 => 0.0051205380888968
1228 => 0.0051143933499964
1229 => 0.0050608195538955
1230 => 0.0050853453634083
1231 => 0.0050063391856092
]
'min_raw' => 0.0027643382703226
'max_raw' => 0.0085961699124745
'avg_raw' => 0.0056802540913986
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.002764'
'max' => '$0.008596'
'avg' => '$0.00568'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0015747525184424
'max_diff' => 0.0053689383988673
'year' => 2033
]
8 => [
'items' => [
101 => 0.004978440459857
102 => 0.0048903844072339
103 => 0.0047609663359833
104 => 0.0047789627125578
105 => 0.00452255164933
106 => 0.0043828452933184
107 => 0.0043441764152745
108 => 0.0042924667754707
109 => 0.0043500171566845
110 => 0.0045218252690043
111 => 0.0043145882344223
112 => 0.0039592948746192
113 => 0.0039806486109338
114 => 0.0040286241164515
115 => 0.003939222079309
116 => 0.0038546105540979
117 => 0.003928173410519
118 => 0.0037776309302208
119 => 0.0040468164559703
120 => 0.0040395357418825
121 => 0.0041398714595607
122 => 0.004202613442921
123 => 0.0040580134842337
124 => 0.0040216469856637
125 => 0.0040423629960144
126 => 0.0036999734904011
127 => 0.0041118909322918
128 => 0.0041154532114345
129 => 0.0040849508146922
130 => 0.0043042841359748
131 => 0.0047671458556595
201 => 0.0045929986581445
202 => 0.0045255635996399
203 => 0.0043973695041277
204 => 0.0045681805249854
205 => 0.0045550649036506
206 => 0.0044957510900227
207 => 0.0044598779104702
208 => 0.0045259753437274
209 => 0.0044516877070217
210 => 0.0044383436061816
211 => 0.0043574928736156
212 => 0.0043286328405634
213 => 0.0043072660210427
214 => 0.0042837432522106
215 => 0.0043356286187453
216 => 0.0042180495520892
217 => 0.00407626072412
218 => 0.0040644725172508
219 => 0.0040970207928466
220 => 0.0040826206038296
221 => 0.0040644035746859
222 => 0.004029622304938
223 => 0.0040193034451881
224 => 0.0040528347333764
225 => 0.0040149798640073
226 => 0.0040708367858228
227 => 0.0040556467937934
228 => 0.0039707967331061
301 => 0.0038650421419737
302 => 0.0038641007042849
303 => 0.0038413160510977
304 => 0.0038122963695683
305 => 0.0038042237580471
306 => 0.0039219781519347
307 => 0.0041657262231894
308 => 0.0041178726444051
309 => 0.0041524517593088
310 => 0.0043225467804269
311 => 0.0043766148727047
312 => 0.0043382386214789
313 => 0.004285706841857
314 => 0.004288017973557
315 => 0.0044675349669763
316 => 0.0044787312216558
317 => 0.0045070205451824
318 => 0.0045433803204758
319 => 0.0043444308484355
320 => 0.0042786474713152
321 => 0.0042474756577127
322 => 0.0041514785368273
323 => 0.0042550032015311
324 => 0.0041946838127763
325 => 0.0042028229591231
326 => 0.0041975223293873
327 => 0.0042004168316501
328 => 0.0040467412131298
329 => 0.0041027325315659
330 => 0.0040096361049712
331 => 0.0038849904403251
401 => 0.0038845725843508
402 => 0.0039150794341876
403 => 0.0038969327661715
404 => 0.0038481005491339
405 => 0.0038550369350825
406 => 0.0037942668953642
407 => 0.0038624155181814
408 => 0.0038643697768363
409 => 0.0038381288449711
410 => 0.0039431212011187
411 => 0.003986136655098
412 => 0.0039688643116091
413 => 0.0039849247814343
414 => 0.0041198611766495
415 => 0.0041418616967573
416 => 0.0041516328745164
417 => 0.0041385407907522
418 => 0.0039873911710326
419 => 0.003994095299405
420 => 0.0039449048536676
421 => 0.0039033441105809
422 => 0.003905006322347
423 => 0.003926373946812
424 => 0.004019687616045
425 => 0.0042160607318048
426 => 0.004223512948001
427 => 0.0042325452514273
428 => 0.0041958063341206
429 => 0.0041847255251168
430 => 0.0041993439723923
501 => 0.0042730913898637
502 => 0.0044627897698288
503 => 0.0043957376928204
504 => 0.0043412233104847
505 => 0.004389047120765
506 => 0.0043816850200278
507 => 0.0043195414808492
508 => 0.0043177973186799
509 => 0.0041985239985049
510 => 0.0041544313677583
511 => 0.0041175842652302
512 => 0.0040773481911875
513 => 0.0040534948977696
514 => 0.0040901443975875
515 => 0.00409852657182
516 => 0.0040183917999445
517 => 0.004007469726646
518 => 0.0040729095111887
519 => 0.0040441119018526
520 => 0.0040737309572012
521 => 0.0040806028321096
522 => 0.0040794963019766
523 => 0.0040494282904453
524 => 0.0040685927443544
525 => 0.0040232630976607
526 => 0.0039739739151742
527 => 0.0039425304875724
528 => 0.0039150919266244
529 => 0.0039303164349769
530 => 0.0038760438425856
531 => 0.0038586809479882
601 => 0.0040621002585838
602 => 0.0042123682904469
603 => 0.004210183333751
604 => 0.0041968829717896
605 => 0.0041771213317948
606 => 0.0042716457028105
607 => 0.004238715302023
608 => 0.0042626749200229
609 => 0.0042687736483859
610 => 0.0042872326623212
611 => 0.0042938301731972
612 => 0.004273887913064
613 => 0.0042069592523151
614 => 0.0040401793931149
615 => 0.0039625429184436
616 => 0.0039369215886643
617 => 0.00393785287534
618 => 0.0039121638313789
619 => 0.0039197304061277
620 => 0.0039095324854711
621 => 0.0038902200908897
622 => 0.0039291239490324
623 => 0.0039336072562688
624 => 0.0039245266309118
625 => 0.0039266654469068
626 => 0.0038514817473368
627 => 0.0038571978007247
628 => 0.0038253700891
629 => 0.0038194027768591
630 => 0.0037389450934277
701 => 0.0035964026447012
702 => 0.003675384998226
703 => 0.0035799854217676
704 => 0.0035438561566233
705 => 0.0037148864785627
706 => 0.0036977197778827
707 => 0.0036683378485039
708 => 0.0036248758512221
709 => 0.0036087553736592
710 => 0.0035108124551096
711 => 0.0035050254649766
712 => 0.003553568620091
713 => 0.0035311676242736
714 => 0.0034997081422256
715 => 0.0033857650872441
716 => 0.0032576553681959
717 => 0.0032615221953449
718 => 0.0033022715134081
719 => 0.0034207556514711
720 => 0.0033744618489335
721 => 0.0033408751640323
722 => 0.0033345853875623
723 => 0.0034133151086228
724 => 0.0035247341583098
725 => 0.0035770094835622
726 => 0.0035252062238623
727 => 0.0034656974284046
728 => 0.0034693194530469
729 => 0.0034934151602965
730 => 0.0034959472784335
731 => 0.0034572131701936
801 => 0.0034681165947768
802 => 0.0034515532958048
803 => 0.0033499043605876
804 => 0.0033480658536817
805 => 0.0033231195656689
806 => 0.0033223642019822
807 => 0.0032799243429292
808 => 0.0032739867132748
809 => 0.0031897197972098
810 => 0.0032451845365475
811 => 0.0032079817014292
812 => 0.0031519082536444
813 => 0.003142241170111
814 => 0.0031419505659066
815 => 0.0031995254589881
816 => 0.0032445117404001
817 => 0.003208628860674
818 => 0.0032004590245208
819 => 0.0032876915006029
820 => 0.0032765903728798
821 => 0.0032669768678661
822 => 0.0035147578044651
823 => 0.0033186198585594
824 => 0.003233092518982
825 => 0.0031272361950536
826 => 0.0031617035478986
827 => 0.0031689663255738
828 => 0.0029144009485626
829 => 0.0028111238068133
830 => 0.0027756829836819
831 => 0.0027552862889101
901 => 0.0027645813188432
902 => 0.0026716197780683
903 => 0.002734091470911
904 => 0.0026535946344434
905 => 0.0026400990778502
906 => 0.0027840373930988
907 => 0.0028040655687903
908 => 0.0027186191490242
909 => 0.0027734895830328
910 => 0.0027535928009052
911 => 0.0026549745216647
912 => 0.0026512080287846
913 => 0.0026017248428619
914 => 0.0025242932387256
915 => 0.002488904917868
916 => 0.0024704743731099
917 => 0.0024780791750812
918 => 0.0024742339544937
919 => 0.0024491412891529
920 => 0.0024756722366986
921 => 0.0024078966290636
922 => 0.0023809078359981
923 => 0.0023687176243057
924 => 0.0023085628715112
925 => 0.0024042958341473
926 => 0.0024231564337987
927 => 0.0024420541946577
928 => 0.0026065463008863
929 => 0.002598328740109
930 => 0.0026726114874215
1001 => 0.0026697249964582
1002 => 0.0026485383536239
1003 => 0.0025591553925398
1004 => 0.0025947818477298
1005 => 0.0024851291562353
1006 => 0.0025672884083612
1007 => 0.0025297943567433
1008 => 0.0025546116317936
1009 => 0.0025099879335698
1010 => 0.0025346845306342
1011 => 0.0024276289816581
1012 => 0.0023276620163365
1013 => 0.0023678916413996
1014 => 0.0024116258446588
1015 => 0.0025064527405925
1016 => 0.0024499746236793
1017 => 0.0024702862901953
1018 => 0.0024022456074985
1019 => 0.0022618582442348
1020 => 0.0022626528214649
1021 => 0.0022410572841317
1022 => 0.0022223955868758
1023 => 0.0024564618148049
1024 => 0.0024273519793224
1025 => 0.0023809692662822
1026 => 0.0024430543708623
1027 => 0.0024594706579364
1028 => 0.0024599380065508
1029 => 0.002505233696204
1030 => 0.0025294080138916
1031 => 0.0025336688421615
1101 => 0.0026049425885089
1102 => 0.0026288326081611
1103 => 0.0027272322180664
1104 => 0.0025273569919324
1105 => 0.0025232406931817
1106 => 0.0024439280356044
1107 => 0.0023936266942854
1108 => 0.0024473722114792
1109 => 0.0024949834027182
1110 => 0.0024454074480319
1111 => 0.0024518810211084
1112 => 0.0023853293524464
1113 => 0.002409118442446
1114 => 0.0024296088114901
1115 => 0.0024182952340722
1116 => 0.0024013582610942
1117 => 0.0024910798279874
1118 => 0.0024860173855617
1119 => 0.0025695681713426
1120 => 0.0026347019836329
1121 => 0.0027514334193187
1122 => 0.0026296180808332
1123 => 0.0026251786457267
1124 => 0.0026685748360007
1125 => 0.0026288259644305
1126 => 0.0026539458791785
1127 => 0.0027473862127004
1128 => 0.0027493604597064
1129 => 0.0027162892786828
1130 => 0.002714276894312
1201 => 0.0027206285763866
1202 => 0.0027578305766891
1203 => 0.0027448310546814
1204 => 0.0027598744306563
1205 => 0.0027786864026653
1206 => 0.0028565006950052
1207 => 0.0028752614574493
1208 => 0.0028296825310502
1209 => 0.0028337977977785
1210 => 0.0028167500281357
1211 => 0.0028002820962687
1212 => 0.0028372996021574
1213 => 0.0029049498217499
1214 => 0.0029045289732448
1215 => 0.0029202225092579
1216 => 0.0029299994521818
1217 => 0.0028880296559928
1218 => 0.002860708861946
1219 => 0.0028711853928509
1220 => 0.0028879375939169
1221 => 0.0028657528798257
1222 => 0.0027288185474956
1223 => 0.0027703556765255
1224 => 0.0027634418671931
1225 => 0.0027535957619558
1226 => 0.0027953616663925
1227 => 0.002791333243021
1228 => 0.0026706663231032
1229 => 0.0026783910278135
1230 => 0.0026711360879817
1231 => 0.0026945782827993
]
'min_raw' => 0.0022223955868758
'max_raw' => 0.004978440459857
'avg_raw' => 0.0036004180233664
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002222'
'max' => '$0.004978'
'avg' => '$0.00360041'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00054194268344683
'max_diff' => -0.0036177294526175
'year' => 2034
]
9 => [
'items' => [
101 => 0.0026275600089796
102 => 0.0026481743786316
103 => 0.0026611035180296
104 => 0.0026687188804614
105 => 0.0026962307914678
106 => 0.0026930025862524
107 => 0.002696030121699
108 => 0.0027368230228462
109 => 0.0029431395184159
110 => 0.0029543688700581
111 => 0.0028990714356296
112 => 0.0029211616699901
113 => 0.0028787532506212
114 => 0.0029072223066553
115 => 0.0029267001117582
116 => 0.0028386836558646
117 => 0.0028334718925687
118 => 0.0027908884385675
119 => 0.0028137703746976
120 => 0.0027773635690452
121 => 0.0027862965256963
122 => 0.0027613192001386
123 => 0.0028062734132065
124 => 0.0028565392085949
125 => 0.0028692383335664
126 => 0.0028358324030834
127 => 0.0028116443078556
128 => 0.0027691779806895
129 => 0.0028398004291906
130 => 0.0028604525853124
131 => 0.0028396919522064
201 => 0.0028348812598869
202 => 0.0028257650066342
203 => 0.0028368153161098
204 => 0.0028603401092349
205 => 0.0028492462512318
206 => 0.0028565739398915
207 => 0.0028286483470005
208 => 0.0028880435497417
209 => 0.0029823774259287
210 => 0.0029826807247658
211 => 0.0029715868069627
212 => 0.0029670474148194
213 => 0.0029784304477207
214 => 0.0029846052761132
215 => 0.0030214159172245
216 => 0.0030609152017376
217 => 0.0032452411276724
218 => 0.0031934831452621
219 => 0.0033570280723498
220 => 0.0034863708760253
221 => 0.0035251551273722
222 => 0.0034894754410731
223 => 0.0033674171616224
224 => 0.0033614284001228
225 => 0.0035438350012984
226 => 0.0034922967817147
227 => 0.0034861664744885
228 => 0.0034209503629189
301 => 0.0034595011620291
302 => 0.0034510695367576
303 => 0.0034377598037773
304 => 0.0035113120430075
305 => 0.0036489952687928
306 => 0.0036275360468691
307 => 0.0036115177331677
308 => 0.003541330145389
309 => 0.003583598750197
310 => 0.0035685477096267
311 => 0.0036332165315432
312 => 0.0035949081540297
313 => 0.0034919063290121
314 => 0.0035083097091446
315 => 0.0035058303712366
316 => 0.0035568549696956
317 => 0.0035415386517466
318 => 0.0035028396143389
319 => 0.0036485246824952
320 => 0.003639064704512
321 => 0.0036524767904401
322 => 0.0036583812054481
323 => 0.003747057139176
324 => 0.0037833848319109
325 => 0.0037916318541675
326 => 0.0038261403525811
327 => 0.0037907732512904
328 => 0.0039322668727688
329 => 0.0040263518746702
330 => 0.0041356364459487
331 => 0.00429533057751
401 => 0.0043553770482303
402 => 0.0043445301907498
403 => 0.0044656084587357
404 => 0.0046831834148876
405 => 0.0043885083100942
406 => 0.0046988019109687
407 => 0.0046005665394437
408 => 0.0043676522407369
409 => 0.0043526553057794
410 => 0.0045103875730543
411 => 0.0048602225607018
412 => 0.0047725928640917
413 => 0.004860365891493
414 => 0.0047579739926905
415 => 0.0047528893718883
416 => 0.0048553929455112
417 => 0.0050948981324599
418 => 0.0049811181958583
419 => 0.0048179867567547
420 => 0.0049384404727825
421 => 0.0048340923164941
422 => 0.0045989667151664
423 => 0.0047725258553142
424 => 0.0046564718009771
425 => 0.0046903425438055
426 => 0.0049342709042844
427 => 0.0049049207985972
428 => 0.004942902553103
429 => 0.0048758657505558
430 => 0.0048132428062432
501 => 0.0046963524302428
502 => 0.004661746952535
503 => 0.0046713106615988
504 => 0.0046617422132357
505 => 0.0045963431221415
506 => 0.0045822201946464
507 => 0.004558681363415
508 => 0.0045659770314822
509 => 0.004521717142239
510 => 0.0046052446978006
511 => 0.0046207481481551
512 => 0.0046815325374727
513 => 0.0046878433744161
514 => 0.004857127033454
515 => 0.0047638884387522
516 => 0.0048264409379111
517 => 0.0048208456536194
518 => 0.0043727001998478
519 => 0.0044344506893567
520 => 0.0045305150726615
521 => 0.0044872381981949
522 => 0.0044260548229281
523 => 0.0043766459669552
524 => 0.0043017864978413
525 => 0.0044071497630703
526 => 0.0045456912527125
527 => 0.0046913570152217
528 => 0.0048663648844777
529 => 0.0048273051653759
530 => 0.0046880853648389
531 => 0.0046943306633908
601 => 0.0047329366416047
602 => 0.0046829383920948
603 => 0.0046681929322325
604 => 0.0047309108418516
605 => 0.0047313427456259
606 => 0.0046738137170745
607 => 0.0046098807295406
608 => 0.0046096128479885
609 => 0.0045982365903762
610 => 0.0047599978036473
611 => 0.004848950115043
612 => 0.0048591483541907
613 => 0.004848263692293
614 => 0.0048524527666607
615 => 0.0048006933765899
616 => 0.0049189999935213
617 => 0.0050275698445293
618 => 0.0049984708052026
619 => 0.0049548472085797
620 => 0.0049200989126725
621 => 0.0049902852110036
622 => 0.0049871599256224
623 => 0.005026621581595
624 => 0.0050248313729385
625 => 0.0050115619022629
626 => 0.0049984712790972
627 => 0.0050503741202522
628 => 0.0050354269355337
629 => 0.0050204565337088
630 => 0.0049904311009951
701 => 0.0049945120559705
702 => 0.0049508959915766
703 => 0.0049307172044526
704 => 0.0046272766617889
705 => 0.0045461874335833
706 => 0.0045716997555002
707 => 0.0045800990743024
708 => 0.0045448089382687
709 => 0.0045954059280489
710 => 0.0045875204407871
711 => 0.004618198258867
712 => 0.0045990320900067
713 => 0.0045998186762622
714 => 0.0046561822922221
715 => 0.0046725448897232
716 => 0.0046642227405718
717 => 0.0046700512885709
718 => 0.0048043677171333
719 => 0.0047852722161894
720 => 0.0047751281119003
721 => 0.0047779380981144
722 => 0.0048122588253888
723 => 0.0048218667551834
724 => 0.0047811572815065
725 => 0.0048003561046312
726 => 0.0048821022568028
727 => 0.0049107087836314
728 => 0.0050020070853563
729 => 0.0049632219440857
730 => 0.0050344137494696
731 => 0.0052532330881447
801 => 0.0054280411170249
802 => 0.0052672804294193
803 => 0.0055882931127896
804 => 0.0058382475333278
805 => 0.0058286538663467
806 => 0.0057850685315759
807 => 0.0055005020691752
808 => 0.0052386397678272
809 => 0.0054576987021655
810 => 0.005458257128439
811 => 0.0054394397717056
812 => 0.0053225667851486
813 => 0.0054353728451103
814 => 0.0054443269804986
815 => 0.0054393150457779
816 => 0.0053497088010079
817 => 0.0052128966272463
818 => 0.0052396293985173
819 => 0.0052834182231928
820 => 0.0052005168427762
821 => 0.0051740248285613
822 => 0.0052232785232987
823 => 0.0053819841901574
824 => 0.0053519818031571
825 => 0.0053511983195834
826 => 0.0054795612541629
827 => 0.005387681095459
828 => 0.0052399665843732
829 => 0.0052026667222089
830 => 0.0050702773397239
831 => 0.0051617191577611
901 => 0.0051650099860015
902 => 0.0051149282367753
903 => 0.0052440304423066
904 => 0.0052428407427546
905 => 0.0053654040725792
906 => 0.0055996991265193
907 => 0.0055304065501098
908 => 0.0054498268227565
909 => 0.0054585880733533
910 => 0.0055546773677911
911 => 0.0054965795868687
912 => 0.0055174719539605
913 => 0.0055546457446912
914 => 0.0055770736156124
915 => 0.0054553610478731
916 => 0.0054269840261479
917 => 0.0053689345986795
918 => 0.0053537905865969
919 => 0.0054010706340289
920 => 0.0053886140119593
921 => 0.0051647334046307
922 => 0.0051413366355049
923 => 0.0051420541810111
924 => 0.0050832218925886
925 => 0.0049934885313771
926 => 0.0052293024469402
927 => 0.0052103632893068
928 => 0.005189455925054
929 => 0.0051920169578792
930 => 0.0052943757861499
1001 => 0.0052350024965082
1002 => 0.0053928561181116
1003 => 0.0053604061590242
1004 => 0.005327123980931
1005 => 0.0053225233701186
1006 => 0.0053097125710547
1007 => 0.0052657795743764
1008 => 0.0052127278409234
1009 => 0.0051776984912354
1010 => 0.0047761531660579
1011 => 0.0048506776427291
1012 => 0.0049364112600196
1013 => 0.0049660061611524
1014 => 0.00491538203486
1015 => 0.0052677785234401
1016 => 0.0053321647576807
1017 => 0.0051371346543557
1018 => 0.0051006524850502
1019 => 0.0052701702883861
1020 => 0.0051679303302659
1021 => 0.0052139689771472
1022 => 0.0051144586043833
1023 => 0.0053166559993012
1024 => 0.0053151155939252
1025 => 0.0052364562404668
1026 => 0.0053029385873738
1027 => 0.0052913856435485
1028 => 0.0052025794272235
1029 => 0.0053194713147594
1030 => 0.0053195292916773
1031 => 0.0052438213741755
1101 => 0.0051554111011276
1102 => 0.005139605432464
1103 => 0.0051276979843189
1104 => 0.0052110404748433
1105 => 0.0052857650912424
1106 => 0.0054248090765575
1107 => 0.0054597680380693
1108 => 0.0055962151921999
1109 => 0.0055149675554065
1110 => 0.005550983580464
1111 => 0.0055900840704417
1112 => 0.0056088302832099
1113 => 0.0055782843354813
1114 => 0.0057902429297353
1115 => 0.0058081387293339
1116 => 0.0058141390361412
1117 => 0.0057426677907303
1118 => 0.0058061509847085
1119 => 0.0057764493005885
1120 => 0.0058537248313031
1121 => 0.0058658426212227
1122 => 0.0058555792842637
1123 => 0.0058594256620505
1124 => 0.005678556393913
1125 => 0.0056691773681986
1126 => 0.0055412936870785
1127 => 0.0055934072324034
1128 => 0.0054959834572857
1129 => 0.0055268775399516
1130 => 0.0055404953572211
1201 => 0.0055333821822838
1202 => 0.0055963536540655
1203 => 0.0055428150388293
1204 => 0.0054015178306577
1205 => 0.0052601821261562
1206 => 0.0052584077715158
1207 => 0.0052211965753029
1208 => 0.0051942996960116
1209 => 0.0051994809891812
1210 => 0.0052177405421174
1211 => 0.0051932384176009
1212 => 0.0051984671881557
1213 => 0.0052852996184821
1214 => 0.0053027132431235
1215 => 0.0052435349426497
1216 => 0.0050059255268592
1217 => 0.0049476155802261
1218 => 0.0049895276135295
1219 => 0.0049694963610911
1220 => 0.0040107714166891
1221 => 0.0042360096214083
1222 => 0.0041021807285309
1223 => 0.0041638552395401
1224 => 0.0040272505947361
1225 => 0.0040924454912994
1226 => 0.0040804063744406
1227 => 0.0044425827423459
1228 => 0.0044369278565184
1229 => 0.0044396345511141
1230 => 0.0043104369658041
1231 => 0.0045162522272997
]
'min_raw' => 0.0026275600089796
'max_raw' => 0.0058658426212227
'avg_raw' => 0.0042467013151012
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.002627'
'max' => '$0.005865'
'avg' => '$0.004246'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00040516442210388
'max_diff' => 0.00088740216136571
'year' => 2035
]
10 => [
'items' => [
101 => 0.0046176442259899
102 => 0.004598879265493
103 => 0.0046036020017749
104 => 0.0045224497452786
105 => 0.0044404202823471
106 => 0.0043494369837122
107 => 0.0045184727067002
108 => 0.00449967881984
109 => 0.0045427852344703
110 => 0.0046524169837511
111 => 0.0046685606752832
112 => 0.0046902579604155
113 => 0.0046824810282135
114 => 0.0048677591045011
115 => 0.0048453207069585
116 => 0.0048993907890685
117 => 0.0047881645278613
118 => 0.0046623014556117
119 => 0.0046862239108725
120 => 0.0046839199860587
121 => 0.0046545883788566
122 => 0.0046281091153793
123 => 0.0045840286021758
124 => 0.0047235058686401
125 => 0.004717843346337
126 => 0.0048095130004614
127 => 0.0047933094986634
128 => 0.0046850985479869
129 => 0.00468896332326
130 => 0.0047149557943187
131 => 0.0048049160334298
201 => 0.0048316223573581
202 => 0.0048192509240515
203 => 0.0048485331890489
204 => 0.0048716766973687
205 => 0.0048514396573701
206 => 0.0051379534676093
207 => 0.0050189729579248
208 => 0.005076963230484
209 => 0.0050907935687908
210 => 0.0050553674480386
211 => 0.0050630501051155
212 => 0.0050746872371882
213 => 0.0051453456243498
214 => 0.005330773677431
215 => 0.0054128984998893
216 => 0.0056599750802222
217 => 0.0054060791766168
218 => 0.0053910140444226
219 => 0.0054355199975384
220 => 0.005580580105906
221 => 0.0056981376989348
222 => 0.0057371383346027
223 => 0.0057422929124365
224 => 0.0058154606976627
225 => 0.005857399107656
226 => 0.0058065762040325
227 => 0.0057635091145914
228 => 0.0056092481458973
229 => 0.0056271042730623
301 => 0.0057501152821599
302 => 0.0059238755778226
303 => 0.0060729799881787
304 => 0.0060207688204853
305 => 0.0064191031746456
306 => 0.0064585963988106
307 => 0.0064531397121998
308 => 0.0065431111542276
309 => 0.006364536164168
310 => 0.00628819189619
311 => 0.0057728207081608
312 => 0.0059176189902794
313 => 0.0061280917970438
314 => 0.006100234931836
315 => 0.0059473839536095
316 => 0.0060728640370052
317 => 0.0060313763973096
318 => 0.0059986533745579
319 => 0.0061485638854535
320 => 0.0059837311207394
321 => 0.0061264474641253
322 => 0.0059434122775214
323 => 0.0060210073167014
324 => 0.0059769606196131
325 => 0.0060054642307894
326 => 0.0058388327022771
327 => 0.0059287430303106
328 => 0.0058350921370331
329 => 0.005835047734316
330 => 0.0058329803856563
331 => 0.0059431602462856
401 => 0.0059467532075852
402 => 0.0058653301241076
403 => 0.0058535957857108
404 => 0.0058969837849793
405 => 0.0058461878011709
406 => 0.0058699549222888
407 => 0.0058469076830576
408 => 0.0058417192640576
409 => 0.0058003770587285
410 => 0.0057825656999451
411 => 0.0057895499926662
412 => 0.0057657090009592
413 => 0.0057513439410895
414 => 0.0058301228136849
415 => 0.0057880344399878
416 => 0.0058236721667836
417 => 0.0057830584792601
418 => 0.0056422737437625
419 => 0.0055613069536062
420 => 0.0052953776390031
421 => 0.0053707948627403
422 => 0.0054207965601028
423 => 0.0054042709994227
424 => 0.0054397742983065
425 => 0.0054419539125121
426 => 0.0054304114281317
427 => 0.005417046709903
428 => 0.0054105415041846
429 => 0.0054590259779948
430 => 0.0054871728469539
501 => 0.0054258148993695
502 => 0.0054114395907394
503 => 0.0054734758634124
504 => 0.0055113179539057
505 => 0.0057907226884747
506 => 0.0057700234832724
507 => 0.0058219744263162
508 => 0.0058161255473817
509 => 0.0058705784121259
510 => 0.0059595858324849
511 => 0.0057786088600288
512 => 0.0058100202047343
513 => 0.0058023188684064
514 => 0.0058864000390357
515 => 0.0058866625312727
516 => 0.0058362516693144
517 => 0.0058635802154048
518 => 0.0058483261706966
519 => 0.0058758922911922
520 => 0.0057697470327672
521 => 0.0058990204998562
522 => 0.0059723102254974
523 => 0.0059733278534091
524 => 0.0060080666016998
525 => 0.0060433631818958
526 => 0.0061111118938977
527 => 0.0060414737070887
528 => 0.0059162013881601
529 => 0.0059252456449597
530 => 0.0058517985302072
531 => 0.0058530331894755
601 => 0.0058464424815394
602 => 0.0058662216921811
603 => 0.0057740874572216
604 => 0.0057957111780113
605 => 0.0057654378422773
606 => 0.0058099543964147
607 => 0.0057620619430129
608 => 0.0058023151545889
609 => 0.0058196871062899
610 => 0.0058837899820583
611 => 0.0057525938961415
612 => 0.0054850761957629
613 => 0.0055413116597211
614 => 0.0054581349913266
615 => 0.0054658333086624
616 => 0.0054813851348589
617 => 0.0054309765779152
618 => 0.0054405929420239
619 => 0.0054402493778286
620 => 0.0054372887272021
621 => 0.0054241755146702
622 => 0.005405158762129
623 => 0.0054809156512056
624 => 0.0054937882228796
625 => 0.0055224023551367
626 => 0.0056075386035823
627 => 0.0055990314847116
628 => 0.0056129069485467
629 => 0.0055826168889021
630 => 0.0054672383776553
701 => 0.0054735039859188
702 => 0.0053953717504739
703 => 0.0055204043382111
704 => 0.0054907949710854
705 => 0.0054717056194792
706 => 0.0054664969130318
707 => 0.0055518441977701
708 => 0.0055773814430186
709 => 0.0055614683455205
710 => 0.0055288301182927
711 => 0.0055915051631957
712 => 0.0056082743611639
713 => 0.0056120283661648
714 => 0.005723076528985
715 => 0.0056182347248752
716 => 0.0056434711891624
717 => 0.0058403588794642
718 => 0.0056618089130045
719 => 0.0057563908123776
720 => 0.0057517615205837
721 => 0.0058001464198261
722 => 0.0057477925465965
723 => 0.0057484415356007
724 => 0.0057914040482509
725 => 0.0057310709475637
726 => 0.0057161316233672
727 => 0.0056954930539873
728 => 0.0057405566151814
729 => 0.0057675701820678
730 => 0.0059852796918929
731 => 0.0061259299639998
801 => 0.0061198239647489
802 => 0.0061756213679502
803 => 0.0061504841267624
804 => 0.0060693093440978
805 => 0.0062078647998961
806 => 0.006164020056275
807 => 0.0061676345636678
808 => 0.0061675000315221
809 => 0.0061966529530561
810 => 0.0061759954363232
811 => 0.0061352773503922
812 => 0.0061623079160667
813 => 0.006242579032516
814 => 0.0064917430409934
815 => 0.0066311785211213
816 => 0.0064833488500093
817 => 0.0065853197776242
818 => 0.0065241735570118
819 => 0.0065130614697841
820 => 0.0065771067479186
821 => 0.0066412641288343
822 => 0.0066371775810299
823 => 0.0065906026170031
824 => 0.0065642936016203
825 => 0.0067635142802656
826 => 0.0069102966826557
827 => 0.0069002871068544
828 => 0.0069444661191529
829 => 0.0070741770656667
830 => 0.0070860362090254
831 => 0.0070845422295415
901 => 0.0070551481053533
902 => 0.0071828653772909
903 => 0.0072894093725129
904 => 0.0070483442148816
905 => 0.007140138671133
906 => 0.0071813481599769
907 => 0.0072418559159041
908 => 0.0073439426424308
909 => 0.0074548359046056
910 => 0.0074705174277599
911 => 0.0074593906366519
912 => 0.0073862535492768
913 => 0.0075075942799802
914 => 0.007578672834236
915 => 0.0076209984866916
916 => 0.0077283292990018
917 => 0.0071816026557506
918 => 0.0067946023635801
919 => 0.0067341666796057
920 => 0.0068570650194835
921 => 0.0068894723316134
922 => 0.0068764089847292
923 => 0.0064408049713641
924 => 0.0067318733146257
925 => 0.0070450383782538
926 => 0.0070570683237526
927 => 0.0072138453025775
928 => 0.0072648983133883
929 => 0.0073911243305707
930 => 0.0073832288588283
1001 => 0.0074139628853176
1002 => 0.0074068976648669
1003 => 0.0076407047816735
1004 => 0.007898628752204
1005 => 0.0078896976652525
1006 => 0.0078526180428708
1007 => 0.0079076876051227
1008 => 0.0081738927835227
1009 => 0.0081493848765466
1010 => 0.0081731922205953
1011 => 0.0084870631285952
1012 => 0.0088951399566111
1013 => 0.0087055472997541
1014 => 0.0091169088113165
1015 => 0.0093758390775083
1016 => 0.0098236321989978
1017 => 0.0097675662947597
1018 => 0.0099418888708979
1019 => 0.0096671966248662
1020 => 0.0090364477035152
1021 => 0.0089366292723015
1022 => 0.0091364682993965
1023 => 0.0096277530475026
1024 => 0.0091209959943447
1025 => 0.0092235122861967
1026 => 0.0091939875872467
1027 => 0.0091924143415115
1028 => 0.0092524587323696
1029 => 0.0091653612117252
1030 => 0.0088105102440752
1031 => 0.0089731363513993
1101 => 0.0089103386014144
1102 => 0.008980017386905
1103 => 0.0093560450544812
1104 => 0.0091897942592658
1105 => 0.0090146625516242
1106 => 0.0092343165778439
1107 => 0.0095140116345339
1108 => 0.0094965088205466
1109 => 0.0094625460458025
1110 => 0.0096539924288019
1111 => 0.0099702057649898
1112 => 0.010055676959113
1113 => 0.010118770047234
1114 => 0.010127469518119
1115 => 0.010217079474929
1116 => 0.0097352241525449
1117 => 0.010499940924091
1118 => 0.010631986385662
1119 => 0.01060716731161
1120 => 0.010753930284825
1121 => 0.010710748895088
1122 => 0.010648185836311
1123 => 0.010880836366236
1124 => 0.010614121307607
1125 => 0.010235552860376
1126 => 0.010027862722991
1127 => 0.010301365849786
1128 => 0.010468384665376
1129 => 0.010578773478089
1130 => 0.010612177066117
1201 => 0.0097726292095554
1202 => 0.0093201594783274
1203 => 0.0096101873884685
1204 => 0.0099640414554978
1205 => 0.009733258475336
1206 => 0.0097423047312284
1207 => 0.009413268850218
1208 => 0.0099931538299222
1209 => 0.0099086694659797
1210 => 0.010346974495564
1211 => 0.010242369482636
1212 => 0.010599790219359
1213 => 0.010505669360906
1214 => 0.010896359782116
1215 => 0.011052216768657
1216 => 0.011313924906263
1217 => 0.01150643847763
1218 => 0.011619486128934
1219 => 0.011612699171981
1220 => 0.012060650286565
1221 => 0.011796509164515
1222 => 0.011464685661937
1223 => 0.011458684021665
1224 => 0.011630540115625
1225 => 0.011990703342149
1226 => 0.012084088426625
1227 => 0.01213627794902
1228 => 0.012056347878742
1229 => 0.011769641621921
1230 => 0.01164584331386
1231 => 0.011751323059111
]
'min_raw' => 0.0043494369837122
'max_raw' => 0.01213627794902
'avg_raw' => 0.008242857466366
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.004349'
'max' => '$0.012136'
'avg' => '$0.008242'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0017218769747325
'max_diff' => 0.006270435327797
'year' => 2036
]
11 => [
'items' => [
101 => 0.011622330394647
102 => 0.011845007922461
103 => 0.012150791729502
104 => 0.012087648582548
105 => 0.012298726655865
106 => 0.012517170255688
107 => 0.01282955441435
108 => 0.012911223200976
109 => 0.013046218599683
110 => 0.013185173208631
111 => 0.013229801684093
112 => 0.013315011291154
113 => 0.013314562194464
114 => 0.013571347080609
115 => 0.013854588761992
116 => 0.013961505939654
117 => 0.014207356094241
118 => 0.013786346320128
119 => 0.014105687070004
120 => 0.01439374042001
121 => 0.014050311341088
122 => 0.01452364831767
123 => 0.014542026919866
124 => 0.014819521992944
125 => 0.014538227574756
126 => 0.014371195847159
127 => 0.014853410186134
128 => 0.015086738515154
129 => 0.015016458123564
130 => 0.014481620873394
131 => 0.014170322653547
201 => 0.013355595167263
202 => 0.014320675068374
203 => 0.014790737336439
204 => 0.014480403525679
205 => 0.014636917848786
206 => 0.015490809245722
207 => 0.015815915804301
208 => 0.015748295912783
209 => 0.015759722561331
210 => 0.015935144159239
211 => 0.016713060130802
212 => 0.01624691484869
213 => 0.016603265450734
214 => 0.01679227252514
215 => 0.016967832829327
216 => 0.016536712208647
217 => 0.015975830615563
218 => 0.015798175870825
219 => 0.014449546944209
220 => 0.014379344951781
221 => 0.014339938446092
222 => 0.014091486001887
223 => 0.013896270437595
224 => 0.01374102777298
225 => 0.013333624661646
226 => 0.013471111252277
227 => 0.01282179572445
228 => 0.013237204788825
301 => 0.01220088152814
302 => 0.01306396233415
303 => 0.012594226690907
304 => 0.012909641541845
305 => 0.012908541089144
306 => 0.012327762346198
307 => 0.01199278128781
308 => 0.012206244255873
309 => 0.012435093502348
310 => 0.012472223522647
311 => 0.012768932544278
312 => 0.012851737654476
313 => 0.012600834304775
314 => 0.01217940603201
315 => 0.012277294208018
316 => 0.011990797587048
317 => 0.01148872327873
318 => 0.01184932181234
319 => 0.011972446006113
320 => 0.012026824664314
321 => 0.011533092245707
322 => 0.011377950800329
323 => 0.011295354796572
324 => 0.012115671376795
325 => 0.012160610170819
326 => 0.011930696946884
327 => 0.012969926520336
328 => 0.012734716861386
329 => 0.012997503678199
330 => 0.012268411882061
331 => 0.012296264170525
401 => 0.011951100430019
402 => 0.012144369060853
403 => 0.012007773021919
404 => 0.0121287548654
405 => 0.012201270883555
406 => 0.012546377986088
407 => 0.013067902902908
408 => 0.012494830493277
409 => 0.012245134637853
410 => 0.012400044542216
411 => 0.012812590031321
412 => 0.01343761756513
413 => 0.013067588685264
414 => 0.013231801218651
415 => 0.013267674351888
416 => 0.012994828755089
417 => 0.013447677771467
418 => 0.013690363238283
419 => 0.013939308310555
420 => 0.014155460341526
421 => 0.01383987417427
422 => 0.014177596610734
423 => 0.013905451942979
424 => 0.013661310042205
425 => 0.013661680304691
426 => 0.013508526523991
427 => 0.013211771775267
428 => 0.013157045646567
429 => 0.01344173787921
430 => 0.013670034089335
501 => 0.013688837658666
502 => 0.013815234170873
503 => 0.01389003432481
504 => 0.014623177519271
505 => 0.014918053776962
506 => 0.015278622883144
507 => 0.015419084870563
508 => 0.015841825094286
509 => 0.015500428030348
510 => 0.015426564628076
511 => 0.014401135122599
512 => 0.014569049146675
513 => 0.014837895700515
514 => 0.014405568303249
515 => 0.014679780528764
516 => 0.01473391583069
517 => 0.014390877983722
518 => 0.014574109319578
519 => 0.014087501215849
520 => 0.013078509629823
521 => 0.013448801067538
522 => 0.013721460204447
523 => 0.013332341997449
524 => 0.014029821322538
525 => 0.013622368299717
526 => 0.013493225252677
527 => 0.012989392183353
528 => 0.01322718199776
529 => 0.013548796126569
530 => 0.013350075986621
531 => 0.013762450114992
601 => 0.014346481856929
602 => 0.014762697655925
603 => 0.014794649536799
604 => 0.014527050662338
605 => 0.014955879566455
606 => 0.014959003116859
607 => 0.014475282361197
608 => 0.014179006091722
609 => 0.014111691499927
610 => 0.014279856548034
611 => 0.014484039961417
612 => 0.014805980295198
613 => 0.01500052209633
614 => 0.015507783936685
615 => 0.015645034446349
616 => 0.015795831144714
617 => 0.01599734203771
618 => 0.016239307531085
619 => 0.015709900806685
620 => 0.015730935122783
621 => 0.015237958911157
622 => 0.014711143129095
623 => 0.015110930639166
624 => 0.01563359962708
625 => 0.015513698783755
626 => 0.015500207489529
627 => 0.015522896104244
628 => 0.015432494783972
629 => 0.015023612962812
630 => 0.014818275071961
701 => 0.015083213338441
702 => 0.01522401623603
703 => 0.015442389250888
704 => 0.015415470167511
705 => 0.015977975602234
706 => 0.016196548204886
707 => 0.016140627979879
708 => 0.016150918647075
709 => 0.016546633903788
710 => 0.016986750654303
711 => 0.01739897806968
712 => 0.017818313502181
713 => 0.01731278827136
714 => 0.017056113735611
715 => 0.017320936338333
716 => 0.017180417737681
717 => 0.017987879297553
718 => 0.018043786184034
719 => 0.018851189355244
720 => 0.019617511108503
721 => 0.019136198145361
722 => 0.019590054590792
723 => 0.020080937339985
724 => 0.021027929806033
725 => 0.020709016059065
726 => 0.020464733126903
727 => 0.020233886936376
728 => 0.020714241213061
729 => 0.02133220931617
730 => 0.021465313726755
731 => 0.021680993721701
801 => 0.02145423257911
802 => 0.02172734139844
803 => 0.022691535540769
804 => 0.022431001772335
805 => 0.022061001938264
806 => 0.022822140611443
807 => 0.023097593738415
808 => 0.025030868039426
809 => 0.027471706704031
810 => 0.026461183469474
811 => 0.025833919088403
812 => 0.025981341096865
813 => 0.026872652749575
814 => 0.027158913763608
815 => 0.026380757647378
816 => 0.026655615542853
817 => 0.028170109570356
818 => 0.028982587025325
819 => 0.027879133511197
820 => 0.024834749029317
821 => 0.022027687501462
822 => 0.022772246622277
823 => 0.022687836724336
824 => 0.02431497161991
825 => 0.022424788128122
826 => 0.022456613970478
827 => 0.024117396292526
828 => 0.023674328042021
829 => 0.022956614220096
830 => 0.022032927606632
831 => 0.020325407470973
901 => 0.018813009269099
902 => 0.021779170427479
903 => 0.021651264164716
904 => 0.021466036941588
905 => 0.02187824008298
906 => 0.023879781531674
907 => 0.023833639522924
908 => 0.023540107605117
909 => 0.023762748977702
910 => 0.022917584111027
911 => 0.023135402341215
912 => 0.022027242848574
913 => 0.022528177220076
914 => 0.022955074328576
915 => 0.023040780243427
916 => 0.023233880045838
917 => 0.021583863376345
918 => 0.022324672419003
919 => 0.022759828327145
920 => 0.020793778103054
921 => 0.022720965835548
922 => 0.021555140257085
923 => 0.021159441545642
924 => 0.021692197731259
925 => 0.021484582127601
926 => 0.021306086423174
927 => 0.021206482753158
928 => 0.021597680097721
929 => 0.021579430274015
930 => 0.020939355490178
1001 => 0.020104404027449
1002 => 0.020384641144688
1003 => 0.020282828372758
1004 => 0.019913845753175
1005 => 0.020162495487643
1006 => 0.019067567895797
1007 => 0.01718380188341
1008 => 0.018428275412506
1009 => 0.018380364535363
1010 => 0.018356205698522
1011 => 0.019291393160916
1012 => 0.019201496464852
1013 => 0.019038333081226
1014 => 0.01991084912968
1015 => 0.019592369034998
1016 => 0.020573849643462
1017 => 0.021220316250383
1018 => 0.021056351407864
1019 => 0.021664356376317
1020 => 0.02039109724187
1021 => 0.020814022852044
1022 => 0.020901187234151
1023 => 0.01990008241708
1024 => 0.019216204676099
1025 => 0.019170597827553
1026 => 0.017984848068851
1027 => 0.018618266018912
1028 => 0.01917564760235
1029 => 0.018908705078441
1030 => 0.018824199050053
1031 => 0.019255922021968
1101 => 0.019289470594343
1102 => 0.018524559588875
1103 => 0.018683608808493
1104 => 0.019346870494033
1105 => 0.018666896315771
1106 => 0.017345817560561
1107 => 0.017018171763926
1108 => 0.016974457774944
1109 => 0.016085856388554
1110 => 0.017040066622756
1111 => 0.016623528284283
1112 => 0.017939367904625
1113 => 0.017187767370475
1114 => 0.017155367373653
1115 => 0.01710639002641
1116 => 0.016341534105483
1117 => 0.016508988943036
1118 => 0.017065634327156
1119 => 0.017264251671269
1120 => 0.017243534255054
1121 => 0.017062906461097
1122 => 0.017145596940206
1123 => 0.016879222095722
1124 => 0.016785159594021
1125 => 0.016488272464725
1126 => 0.016051930401822
1127 => 0.01611260644191
1128 => 0.015248098640189
1129 => 0.01477706890691
1130 => 0.01464669408481
1201 => 0.014472351423959
1202 => 0.014666386552261
1203 => 0.015245649598206
1204 => 0.014546935467286
1205 => 0.013349039098919
1206 => 0.013421034711774
1207 => 0.01358278747817
1208 => 0.013281362268093
1209 => 0.012996088603456
1210 => 0.013244110909874
1211 => 0.012736546427009
1212 => 0.013644124221006
1213 => 0.013619576785136
1214 => 0.013957865662504
1215 => 0.014169404639909
1216 => 0.013681875783548
1217 => 0.013559263594591
1218 => 0.013629109069834
1219 => 0.012474718946787
1220 => 0.013863527361279
1221 => 0.013875537834119
1222 => 0.013772696873893
1223 => 0.014512194479961
1224 => 0.016072765083851
1225 => 0.01548561564886
1226 => 0.015258253640946
1227 => 0.014826038297701
1228 => 0.015401939580168
1229 => 0.015357719347134
1230 => 0.015157738683329
1231 => 0.015036789753882
]
'min_raw' => 0.011295354796572
'max_raw' => 0.028982587025325
'avg_raw' => 0.020138970910949
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.011295'
'max' => '$0.028982'
'avg' => '$0.020138'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0069459178128602
'max_diff' => 0.016846309076306
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00035454828015159
]
1 => [
'year' => 2028
'avg' => 0.00060850777484127
]
2 => [
'year' => 2029
'avg' => 0.0016623335680105
]
3 => [
'year' => 2030
'avg' => 0.0012824878720987
]
4 => [
'year' => 2031
'avg' => 0.0012595620273732
]
5 => [
'year' => 2032
'avg' => 0.0022084086327437
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00035454828015159
'min' => '$0.000354'
'max_raw' => 0.0022084086327437
'max' => '$0.0022084'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0022084086327437
]
1 => [
'year' => 2033
'avg' => 0.0056802540913986
]
2 => [
'year' => 2034
'avg' => 0.0036004180233664
]
3 => [
'year' => 2035
'avg' => 0.0042467013151012
]
4 => [
'year' => 2036
'avg' => 0.008242857466366
]
5 => [
'year' => 2037
'avg' => 0.020138970910949
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0022084086327437
'min' => '$0.0022084'
'max_raw' => 0.020138970910949
'max' => '$0.020138'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.020138970910949
]
]
]
]
'prediction_2025_max_price' => '$0.0006062'
'last_price' => 0.0005878
'sma_50day_nextmonth' => '$0.000541'
'sma_200day_nextmonth' => '$0.00079'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.000575'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000568'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000552'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000542'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000547'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000627'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.00123'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000576'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000569'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000559'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000552'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000572'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000747'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001224'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000653'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000571'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000566'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0006075'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001018'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0009091'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.000454'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000227'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '65.03'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 112.57
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000551'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000582'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 228.73
'cci_20_action' => 'SELL'
'adx_14' => 13.51
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000015'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 85.7
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000066'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 9
'buy_signals' => 23
'sell_pct' => 28.13
'buy_pct' => 71.88
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767708243
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Divo pour 2026
La prévision du prix de Divo pour 2026 suggère que le prix moyen pourrait varier entre $0.000203 à la baisse et $0.0006062 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Divo pourrait potentiellement gagner 3.13% d'ici 2026 si DVO atteint l'objectif de prix prévu.
Prévision du prix de Divo de 2027 à 2032
La prévision du prix de DVO pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000354 à la baisse et $0.0022084 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Divo atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Divo | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000195 | $0.000354 | $0.000513 |
| 2028 | $0.000352 | $0.0006085 | $0.000864 |
| 2029 | $0.000775 | $0.001662 | $0.002549 |
| 2030 | $0.000659 | $0.001282 | $0.0019058 |
| 2031 | $0.000779 | $0.001259 | $0.001739 |
| 2032 | $0.001189 | $0.0022084 | $0.003227 |
Prévision du prix de Divo de 2032 à 2037
La prévision du prix de Divo pour 2032-2037 est actuellement estimée entre $0.0022084 à la baisse et $0.020138 à la hausse. Par rapport au prix actuel, Divo pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Divo | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.001189 | $0.0022084 | $0.003227 |
| 2033 | $0.002764 | $0.00568 | $0.008596 |
| 2034 | $0.002222 | $0.00360041 | $0.004978 |
| 2035 | $0.002627 | $0.004246 | $0.005865 |
| 2036 | $0.004349 | $0.008242 | $0.012136 |
| 2037 | $0.011295 | $0.020138 | $0.028982 |
Divo Histogramme des prix potentiels
Prévision du prix de Divo basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Divo est Haussier, avec 23 indicateurs techniques montrant des signaux haussiers et 9 indiquant des signaux baissiers. La prévision du prix de DVO a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Divo et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Divo devrait augmenter au cours du prochain mois, atteignant $0.00079 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Divo devrait atteindre $0.000541 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 65.03, ce qui suggère que le marché de DVO est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de DVO pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.000575 | BUY |
| SMA 5 | $0.000568 | BUY |
| SMA 10 | $0.000552 | BUY |
| SMA 21 | $0.000542 | BUY |
| SMA 50 | $0.000547 | BUY |
| SMA 100 | $0.000627 | SELL |
| SMA 200 | $0.00123 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000576 | BUY |
| EMA 5 | $0.000569 | BUY |
| EMA 10 | $0.000559 | BUY |
| EMA 21 | $0.000552 | BUY |
| EMA 50 | $0.000572 | BUY |
| EMA 100 | $0.000747 | SELL |
| EMA 200 | $0.001224 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.000653 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.001018 | SELL |
| EMA 50 | $0.0009091 | SELL |
| EMA 100 | $0.000454 | BUY |
| EMA 200 | $0.000227 | BUY |
Oscillateurs de Divo
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 65.03 | NEUTRAL |
| Stoch RSI (14) | 112.57 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 228.73 | SELL |
| Indice Directionnel Moyen (14) | 13.51 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.000015 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 85.7 | SELL |
| VWMA (10) | 0.000551 | BUY |
| Moyenne Mobile de Hull (9) | 0.000582 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000066 | NEUTRAL |
Prévision du cours de Divo basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Divo
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Divo par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.000825 | $0.00116 | $0.00163 | $0.002291 | $0.00322 | $0.004524 |
| Action Amazon.com | $0.001226 | $0.002559 | $0.005339 | $0.011141 | $0.023247 | $0.048508 |
| Action Apple | $0.000833 | $0.001182 | $0.001677 | $0.002379 | $0.003374 | $0.004787 |
| Action Netflix | $0.000927 | $0.001463 | $0.0023089 | $0.003643 | $0.005748 | $0.00907 |
| Action Google | $0.000761 | $0.000985 | $0.001276 | $0.001653 | $0.00214 | $0.002772 |
| Action Tesla | $0.001332 | $0.00302 | $0.006847 | $0.015523 | $0.035189 | $0.079772 |
| Action Kodak | $0.00044 | $0.00033 | $0.000247 | $0.000185 | $0.000139 | $0.0001045 |
| Action Nokia | $0.000389 | $0.000257 | $0.00017 | $0.000113 | $0.000074 | $0.000049 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Divo
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Divo maintenant ?", "Devrais-je acheter DVO aujourd'hui ?", " Divo sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Divo avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Divo en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Divo afin de prendre une décision responsable concernant cet investissement.
Le cours de Divo est de $0.0005877 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Divo basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Divo présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000603 | $0.000618 | $0.000634 | $0.000651 |
| Si Divo présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000618 | $0.00065 | $0.000684 | $0.000719 |
| Si Divo présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000664 | $0.00075 | $0.000848 | $0.000958 |
| Si Divo présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00074 | $0.000933 | $0.001175 | $0.001481 |
| Si Divo présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000893 | $0.001357 | $0.002063 | $0.003136 |
| Si Divo présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001351 | $0.0031085 | $0.007148 | $0.016439 |
| Si Divo présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002115 | $0.007615 | $0.0274088 | $0.098653 |
Boîte à questions
Est-ce que DVO est un bon investissement ?
La décision d'acquérir Divo dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Divo a connu une hausse de 2.6769% au cours des 24 heures précédentes, et Divo a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Divo dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Divo peut monter ?
Il semble que la valeur moyenne de Divo pourrait potentiellement s'envoler jusqu'à $0.0006062 pour la fin de cette année. En regardant les perspectives de Divo sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.0019058. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Divo la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Divo, le prix de Divo va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000592 d'ici 13 janvier 2026.
Quel sera le prix de Divo le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Divo, le prix de Divo va diminuer de -11.62% durant le prochain mois et atteindre $0.000519 d'ici 5 février 2026.
Jusqu'où le prix de Divo peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Divo en 2026, DVO devrait fluctuer dans la fourchette de $0.000203 et $0.0006062. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Divo ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Divo dans 5 ans ?
L'avenir de Divo semble suivre une tendance haussière, avec un prix maximum de $0.0019058 prévue après une période de cinq ans. Selon la prévision de Divo pour 2030, la valeur de Divo pourrait potentiellement atteindre son point le plus élevé d'environ $0.0019058, tandis que son point le plus bas devrait être autour de $0.000659.
Combien vaudra Divo en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Divo, il est attendu que la valeur de DVO en 2026 augmente de 3.13% jusqu'à $0.0006062 si le meilleur scénario se produit. Le prix sera entre $0.0006062 et $0.000203 durant 2026.
Combien vaudra Divo en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Divo, le valeur de DVO pourrait diminuer de -12.62% jusqu'à $0.000513 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.000513 et $0.000195 tout au long de l'année.
Combien vaudra Divo en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Divo suggère que la valeur de DVO en 2028 pourrait augmenter de 47.02%, atteignant $0.000864 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.000864 et $0.000352 durant l'année.
Combien vaudra Divo en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Divo pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.002549 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.002549 et $0.000775.
Combien vaudra Divo en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Divo, il est prévu que la valeur de DVO en 2030 augmente de 224.23%, atteignant $0.0019058 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0019058 et $0.000659 au cours de 2030.
Combien vaudra Divo en 2031 ?
Notre simulation expérimentale indique que le prix de Divo pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.001739 dans des conditions idéales. Il est probable que le prix fluctue entre $0.001739 et $0.000779 durant l'année.
Combien vaudra Divo en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Divo, DVO pourrait connaître une 449.04% hausse en valeur, atteignant $0.003227 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.003227 et $0.001189 tout au long de l'année.
Combien vaudra Divo en 2033 ?
Selon notre prédiction expérimentale de prix de Divo, la valeur de DVO est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.008596. Tout au long de l'année, le prix de DVO pourrait osciller entre $0.008596 et $0.002764.
Combien vaudra Divo en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Divo suggèrent que DVO pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.004978 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.004978 et $0.002222.
Combien vaudra Divo en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Divo, DVO pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.005865 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.005865 et $0.002627.
Combien vaudra Divo en 2036 ?
Notre récente simulation de prédiction de prix de Divo suggère que la valeur de DVO pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.012136 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.012136 et $0.004349.
Combien vaudra Divo en 2037 ?
Selon la simulation expérimentale, la valeur de Divo pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.028982 sous des conditions favorables. Il est prévu que le prix chute entre $0.028982 et $0.011295 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de Divo ?
Les traders de Divo utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Divo
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Divo. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de DVO sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de DVO au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de DVO.
Comment lire les graphiques de Divo et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Divo dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de DVO au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Divo ?
L'action du prix de Divo est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de DVO. La capitalisation boursière de Divo peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de DVO, de grands détenteurs de Divo, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Divo.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


