Prédiction du prix de DIAM jusqu'à $0.010363 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.003471 | $0.010363 |
| 2027 | $0.003342 | $0.008779 |
| 2028 | $0.006031 | $0.014773 |
| 2029 | $0.013249 | $0.043586 |
| 2030 | $0.011268 | $0.03258 |
| 2031 | $0.013322 | $0.029742 |
| 2032 | $0.020336 | $0.05517 |
| 2033 | $0.047257 | $0.146953 |
| 2034 | $0.037992 | $0.0851077 |
| 2035 | $0.044918 | $0.100278 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur DIAM aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.48, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de DIAM pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'DIAM'
'name_with_ticker' => 'DIAM <small>DIAM</small>'
'name_lang' => 'DIAM'
'name_lang_with_ticker' => 'DIAM <small>DIAM</small>'
'name_with_lang' => 'DIAM'
'name_with_lang_with_ticker' => 'DIAM <small>DIAM</small>'
'image' => '/uploads/coins/diam.jpg?1739417614'
'price_for_sd' => 0.01004
'ticker' => 'DIAM'
'marketcap' => '$18.17M'
'low24h' => '$0.01004'
'high24h' => '$0.0102'
'volume24h' => '$326.71K'
'current_supply' => '1.81B'
'max_supply' => '5.4B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01004'
'change_24h_pct' => '-1.0797%'
'ath_price' => '$0.0331'
'ath_days' => 327
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '13 févr. 2025'
'ath_pct' => '-69.64%'
'fdv' => '$54.29M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.495464'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.010134'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008881'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003471'
'current_year_max_price_prediction' => '$0.010363'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.011268'
'grand_prediction_max_price' => '$0.03258'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.010239005494942
107 => 0.010277234224701
108 => 0.010363365504855
109 => 0.009627383146277
110 => 0.0099578176179719
111 => 0.01015191691257
112 => 0.0092749692381841
113 => 0.010134582476649
114 => 0.0096145713308271
115 => 0.0094380717376299
116 => 0.0096757051878167
117 => 0.0095830992011728
118 => 0.0095034820118623
119 => 0.0094590542522302
120 => 0.0096335460314005
121 => 0.0096254057813394
122 => 0.0093399033632218
123 => 0.0089674770973547
124 => 0.0090924755766552
125 => 0.0090470624572583
126 => 0.0088824794541552
127 => 0.0089933885264191
128 => 0.0085050011019656
129 => 0.0076647559223628
130 => 0.0082198476254143
131 => 0.0081984771986704
201 => 0.0081877012604344
202 => 0.0086048373336699
203 => 0.0085647393251949
204 => 0.008491961047172
205 => 0.0088811428240059
206 => 0.0087390862402279
207 => 0.009176871158691
208 => 0.009465224620144
209 => 0.0093920888550623
210 => 0.0096632866792921
211 => 0.0090953552891568
212 => 0.0092839993155073
213 => 0.0093228785878888
214 => 0.0088763403812908
215 => 0.0085712998552818
216 => 0.0085509571299136
217 => 0.0080220588949878
218 => 0.0083045920629678
219 => 0.0085532095587733
220 => 0.0084341410717795
221 => 0.0083964475458672
222 => 0.0085890155950251
223 => 0.0086039797816785
224 => 0.008262794740148
225 => 0.0083337379142073
226 => 0.0086295827433558
227 => 0.0083262833835724
228 => 0.0077370222711824
301 => 0.0075908773681374
302 => 0.0075713789440862
303 => 0.0071750223761297
304 => 0.0076006434693779
305 => 0.0074148484562389
306 => 0.0080017726765789
307 => 0.0076665247096584
308 => 0.0076520728398561
309 => 0.0076302267190215
310 => 0.0072890662476978
311 => 0.0073637587090386
312 => 0.0076120478265188
313 => 0.0077006401808128
314 => 0.0076913992724442
315 => 0.0076108310743895
316 => 0.007647714782883
317 => 0.0075288995066895
318 => 0.0074869433597394
319 => 0.0073545182190176
320 => 0.0071598898455354
321 => 0.0071869541145933
322 => 0.006801344379441
323 => 0.0065912437298724
324 => 0.0065330906391538
325 => 0.00645532589586
326 => 0.0065418743738329
327 => 0.0068002519955106
328 => 0.006488593765897
329 => 0.0059542775915075
330 => 0.0059863909040187
331 => 0.0060585399827035
401 => 0.0059240906518884
402 => 0.0057968456437488
403 => 0.0059074748546123
404 => 0.0056810780477578
405 => 0.0060858989551883
406 => 0.0060749496841398
407 => 0.006225841884473
408 => 0.0063201978739609
409 => 0.0061027378663055
410 => 0.0060480472624546
411 => 0.0060792015159574
412 => 0.0055642911025124
413 => 0.0061837627184114
414 => 0.0061891199346698
415 => 0.006143248196605
416 => 0.0064730977080308
417 => 0.0071691830597818
418 => 0.0069072877504846
419 => 0.0068058739708972
420 => 0.0066130863017683
421 => 0.0068699644242834
422 => 0.0068502401923972
423 => 0.006761039735615
424 => 0.0067070910210307
425 => 0.0068064931818101
426 => 0.0066947739932752
427 => 0.0066747061571763
428 => 0.0065531169044382
429 => 0.0065097150731692
430 => 0.0064775820851743
501 => 0.0064422068227141
502 => 0.0065202358367351
503 => 0.0063434118253919
504 => 0.0061301794019836
505 => 0.006112451433184
506 => 0.0061613999136987
507 => 0.0061397438548567
508 => 0.0061123477523059
509 => 0.0060600411316519
510 => 0.006044522874658
511 => 0.0060949496815002
512 => 0.0060380207566408
513 => 0.0061220224863499
514 => 0.0060991786638968
515 => 0.0059715749286389
516 => 0.005812533429554
517 => 0.0058111176266113
518 => 0.0057768523965138
519 => 0.0057332104741728
520 => 0.0057210702897694
521 => 0.0058981579710434
522 => 0.0062647241714921
523 => 0.0061927584551582
524 => 0.0062447610605527
525 => 0.0065005624102232
526 => 0.0065818739670684
527 => 0.0065241609499894
528 => 0.0064451598126278
529 => 0.0064486354617342
530 => 0.0067186062633694
531 => 0.0067354440111145
601 => 0.006777987567603
602 => 0.0068326680604983
603 => 0.0065334732743746
604 => 0.0064345434142139
605 => 0.0063876649580501
606 => 0.0062432974573111
607 => 0.006398985429724
608 => 0.0063082727154227
609 => 0.0063205129597695
610 => 0.0063125414845811
611 => 0.0063168944490627
612 => 0.0060857857994944
613 => 0.0061699896446841
614 => 0.0060299844204519
615 => 0.005842533141529
616 => 0.0058419047391131
617 => 0.0058877831740675
618 => 0.0058604928857333
619 => 0.0057870554215235
620 => 0.0057974868666994
621 => 0.0057060964304757
622 => 0.0058085833203343
623 => 0.0058115222776197
624 => 0.0057720592425255
625 => 0.0059299544368181
626 => 0.00599464422675
627 => 0.0059686688116708
628 => 0.0059928217223828
629 => 0.0061957489555776
630 => 0.0062288349489243
701 => 0.0062435295616308
702 => 0.0062238407272672
703 => 0.0059965308596869
704 => 0.0060066130189103
705 => 0.0059326368241469
706 => 0.0058701347349911
707 => 0.0058726344907771
708 => 0.005904768689306
709 => 0.0060451006189275
710 => 0.0063404208917968
711 => 0.0063516280802759
712 => 0.0063652115196493
713 => 0.006309960845228
714 => 0.0062932967131448
715 => 0.00631528100474
716 => 0.0064261877720275
717 => 0.0067114700883844
718 => 0.0066106322644186
719 => 0.0065286495439002
720 => 0.0066005704921776
721 => 0.0065894988259253
722 => 0.0064960428206249
723 => 0.0064934198218211
724 => 0.0063140478679574
725 => 0.0062477381407157
726 => 0.0061923247694356
727 => 0.0061318148146003
728 => 0.0060959424850619
729 => 0.0061510586869151
730 => 0.0061636644143947
731 => 0.0060431518757764
801 => 0.0060267264620718
802 => 0.0061251396025513
803 => 0.006081831648638
804 => 0.0061263749532234
805 => 0.0061367093819727
806 => 0.006135045300922
807 => 0.0060898268231496
808 => 0.0061186477324473
809 => 0.0060504776900317
810 => 0.005976353007714
811 => 0.0059290660785262
812 => 0.0058878019611088
813 => 0.0059106976917366
814 => 0.005829078592644
815 => 0.0058029670001764
816 => 0.0061088838568682
817 => 0.0063348679280669
818 => 0.0063315820301721
819 => 0.0063115799718022
820 => 0.0062818609703339
821 => 0.0064240136419618
822 => 0.006374490493599
823 => 0.0064105227218305
824 => 0.0064196944361832
825 => 0.0064474544531854
826 => 0.0064573762732096
827 => 0.0064273856419494
828 => 0.0063267334203932
829 => 0.006075917654001
830 => 0.0059591622376812
831 => 0.0059206310055804
901 => 0.005922031542686
902 => 0.0058833984770396
903 => 0.005894777646285
904 => 0.0058794412663568
905 => 0.0058503978730416
906 => 0.0059089043440415
907 => 0.0059156466697987
908 => 0.0059019905603671
909 => 0.0059052070684966
910 => 0.0057921403150032
911 => 0.0058007365347033
912 => 0.0057528716910588
913 => 0.0057438976098947
914 => 0.0056228994532301
915 => 0.0054085336797356
916 => 0.0055273131272407
917 => 0.0053838442575723
918 => 0.0053295104227207
919 => 0.005586718346263
920 => 0.0055609018045766
921 => 0.0055167151073905
922 => 0.0054513537729377
923 => 0.005427110618195
924 => 0.0052798168844282
925 => 0.0052711139848557
926 => 0.0053441167365759
927 => 0.0053104284785283
928 => 0.0052631174054886
929 => 0.005091761494785
930 => 0.0048991007171619
1001 => 0.0049049159350159
1002 => 0.0049661977437966
1003 => 0.0051443828678044
1004 => 0.0050747628572206
1005 => 0.0050242527407445
1006 => 0.005014793714257
1007 => 0.0051331932345607
1008 => 0.0053007533612569
1009 => 0.0053793688237562
1010 => 0.0053014632880064
1011 => 0.0052119696032691
1012 => 0.0052174166691853
1013 => 0.0052536535583969
1014 => 0.0052574615430911
1015 => 0.0051992103544265
1016 => 0.0052156077228273
1017 => 0.0051906986208197
1018 => 0.0050378315077778
1019 => 0.0050350666264497
1020 => 0.004997550571594
1021 => 0.0049964146003628
1022 => 0.0049325904322348
1023 => 0.0049236609899181
1024 => 0.0047969342302499
1025 => 0.0048803461672275
1026 => 0.0048243978192261
1027 => 0.0047400704619071
1028 => 0.0047255323937203
1029 => 0.0047250953618354
1030 => 0.00481168070255
1031 => 0.0048793343671087
1101 => 0.0048253710646932
1102 => 0.0048130846667678
1103 => 0.0049442712527725
1104 => 0.0049275765639111
1105 => 0.0049131190710264
1106 => 0.0052857501897268
1107 => 0.0049907835825066
1108 => 0.0048621613056533
1109 => 0.0047029668133394
1110 => 0.0047548013427651
1111 => 0.0047657236397228
1112 => 0.0043828895826719
1113 => 0.0042275738534052
1114 => 0.0041742753480707
1115 => 0.0041436013047205
1116 => 0.0041575798514556
1117 => 0.0040177774783976
1118 => 0.0041117269852104
1119 => 0.0039906699473426
1120 => 0.0039703743409904
1121 => 0.0041868393207873
1122 => 0.004216959158156
1123 => 0.0040884585744412
1124 => 0.0041709767515409
1125 => 0.0041410545134361
1126 => 0.0039927451228021
1127 => 0.0039870807949699
1128 => 0.0039126643560769
1129 => 0.0037962170390714
1130 => 0.0037429974905012
1201 => 0.0037152802875326
1202 => 0.0037267169456749
1203 => 0.0037209342213506
1204 => 0.0036831980335491
1205 => 0.003723097215463
1206 => 0.0036211712931532
1207 => 0.0035805835696165
1208 => 0.003562251036523
1209 => 0.0034717859138358
1210 => 0.0036157561540537
1211 => 0.003644120105066
1212 => 0.0036725399418237
1213 => 0.0039199152177537
1214 => 0.0039075570480435
1215 => 0.0040192688835509
1216 => 0.0040149279670479
1217 => 0.0039830659419495
1218 => 0.0038486452991079
1219 => 0.003902222971527
1220 => 0.0037373192236399
1221 => 0.0038608763239218
1222 => 0.003804490023221
1223 => 0.0038418120589353
1224 => 0.0037747036735287
1225 => 0.0038118442248501
1226 => 0.0036508462500842
1227 => 0.0035005086065504
1228 => 0.0035610088629378
1229 => 0.0036267795606744
1230 => 0.0037693871914296
1231 => 0.0036844512630392
]
'min_raw' => 0.0034717859138358
'max_raw' => 0.010363365504855
'avg_raw' => 0.0069175757093456
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003471'
'max' => '$0.010363'
'avg' => '$0.006917'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0065768040861642
'max_diff' => 0.0003147755048554
'year' => 2026
]
1 => [
'items' => [
101 => 0.0037149974346714
102 => 0.0036126728730709
103 => 0.003401548074923
104 => 0.0034027430183525
105 => 0.0033702660677612
106 => 0.0033422012407379
107 => 0.0036942071761435
108 => 0.0036504296736855
109 => 0.0035806759529765
110 => 0.0036740440800482
111 => 0.0036987320947974
112 => 0.00369943492787
113 => 0.0037675539032014
114 => 0.0038039090125467
115 => 0.0038103167581409
116 => 0.0039175034376327
117 => 0.0039534309987718
118 => 0.0041014115384452
119 => 0.0038008245355178
120 => 0.0037946341439993
121 => 0.0036753579610702
122 => 0.0035997111201747
123 => 0.003680537564985
124 => 0.0037521387611769
125 => 0.0036775828098234
126 => 0.0036873182431082
127 => 0.0035872329698612
128 => 0.0036230087455972
129 => 0.0036538236631784
130 => 0.0036368094769072
131 => 0.0036113384165632
201 => 0.0037462682796185
202 => 0.0037386550079505
203 => 0.0038643047984517
204 => 0.0039622577954501
205 => 0.0041378070772638
206 => 0.0039546122501001
207 => 0.0039479359024648
208 => 0.00401319827152
209 => 0.0039534210074431
210 => 0.0039911981748987
211 => 0.004131720591554
212 => 0.0041346896087856
213 => 0.0040849547447936
214 => 0.0040819283737998
215 => 0.0040914804984693
216 => 0.0041474275910134
217 => 0.004127877957798
218 => 0.0041505012882911
219 => 0.0041787921094934
220 => 0.0042958149410457
221 => 0.0043240287495541
222 => 0.0042554838220613
223 => 0.0042616726615489
224 => 0.0042360349770663
225 => 0.0042112692950953
226 => 0.0042669389314287
227 => 0.0043686762860173
228 => 0.0043680433832146
301 => 0.0043916444719875
302 => 0.0044063477547711
303 => 0.0043432305016032
304 => 0.0043021434906765
305 => 0.0043178988651002
306 => 0.0043430920519111
307 => 0.0043097290541627
308 => 0.0041037971768156
309 => 0.0041662637534234
310 => 0.0041558662606164
311 => 0.0041410589664807
312 => 0.0042038695922997
313 => 0.0041978113542119
314 => 0.0040163436029948
315 => 0.0040279605796571
316 => 0.0040170500698223
317 => 0.0040523041591788
318 => 0.0039515171709238
319 => 0.0039825185697003
320 => 0.0040019623563929
321 => 0.004013414896129
322 => 0.0040547893227359
323 => 0.0040499345113154
324 => 0.0040544875408415
325 => 0.0041158348930559
326 => 0.004426108748687
327 => 0.0044429962700683
328 => 0.0043598359384659
329 => 0.0043930568506761
330 => 0.0043292799638474
331 => 0.0043720938152435
401 => 0.0044013859650148
402 => 0.0042690203727549
403 => 0.0042611825414268
404 => 0.0041971424246995
405 => 0.0042315539560112
406 => 0.0041768027354177
407 => 0.0041902367698349
408 => 0.0041526740384463
409 => 0.0042202794762807
410 => 0.0042958728606025
411 => 0.0043149707347554
412 => 0.0042647324500109
413 => 0.0042283566209916
414 => 0.0041644926481766
415 => 0.0042706998582693
416 => 0.0043017580831065
417 => 0.0042705367226361
418 => 0.004263302051215
419 => 0.0042495923619446
420 => 0.0042662106266036
421 => 0.0043015889333439
422 => 0.0042849051772199
423 => 0.0042959250920698
424 => 0.0042539285403489
425 => 0.0043432513960403
426 => 0.0044851175875939
427 => 0.0044855737105973
428 => 0.0044688898645416
429 => 0.0044620631941941
430 => 0.0044791818327076
501 => 0.0044884679918579
502 => 0.0045438265297894
503 => 0.0046032284465713
504 => 0.0048804312731056
505 => 0.0048025938286598
506 => 0.005048544667231
507 => 0.0052430598478215
508 => 0.0053013864453626
509 => 0.0052477287201033
510 => 0.0050641685405244
511 => 0.0050551622023942
512 => 0.0053294786077938
513 => 0.0052519716587811
514 => 0.0052427524538211
515 => 0.0051446756891394
516 => 0.0052026512041099
517 => 0.0051899711085364
518 => 0.005169954957342
519 => 0.0052805682012964
520 => 0.0054876263194667
521 => 0.0054553543699711
522 => 0.0054312648567253
523 => 0.0053257116220341
524 => 0.0053892782454867
525 => 0.0053666433884137
526 => 0.0054638970988345
527 => 0.0054062861552147
528 => 0.0052513844674122
529 => 0.0052760530717574
530 => 0.0052723244618369
531 => 0.0053490589897873
601 => 0.0053260251891646
602 => 0.0052678267425861
603 => 0.0054869186173288
604 => 0.0054726920096361
605 => 0.0054928620866891
606 => 0.0055017415783882
607 => 0.0056350989417123
608 => 0.0056897311865065
609 => 0.0057021336625468
610 => 0.0057540300696919
611 => 0.0057008424326605
612 => 0.0059136309029285
613 => 0.0060551228191052
614 => 0.0062194729608519
615 => 0.0064596326910973
616 => 0.0065499349712714
617 => 0.0065336226726223
618 => 0.0067157090391893
619 => 0.0070429141923577
620 => 0.006599760189231
621 => 0.0070664024305854
622 => 0.0069186688846163
623 => 0.0065683953047367
624 => 0.0065458418156467
625 => 0.0067830511507011
626 => 0.0073091586252992
627 => 0.007177374669974
628 => 0.0073093741766398
629 => 0.0071553897405475
630 => 0.0071477431154128
701 => 0.0073018954962785
702 => 0.0076620809365802
703 => 0.0074909703352422
704 => 0.0072456413301834
705 => 0.0074267884497767
706 => 0.0072698620504105
707 => 0.0069162629517049
708 => 0.007177273897267
709 => 0.0070027433111333
710 => 0.0070536806147234
711 => 0.0074205179473109
712 => 0.0073763791089227
713 => 0.0074334988529433
714 => 0.007332683999831
715 => 0.0072385070299808
716 => 0.007062718722082
717 => 0.007010676470372
718 => 0.0070250590764605
719 => 0.0070106693430667
720 => 0.0069123174003752
721 => 0.0068910783077151
722 => 0.0068556788894424
723 => 0.0068666506493803
724 => 0.0068000893865624
725 => 0.0069257042417583
726 => 0.006949019465797
727 => 0.007040431481999
728 => 0.0070499221807689
729 => 0.0073045033447229
730 => 0.0071642843176797
731 => 0.0072583553469486
801 => 0.0072499407486599
802 => 0.0065759867953351
803 => 0.0066688517037572
804 => 0.0068133203586483
805 => 0.0067482374254425
806 => 0.0066562253849504
807 => 0.0065819207288796
808 => 0.006469341576891
809 => 0.0066277945714238
810 => 0.0068361434096369
811 => 0.0070552062511339
812 => 0.0073183959016266
813 => 0.0072596550355019
814 => 0.0070502861036888
815 => 0.0070596782410259
816 => 0.0071177367383736
817 => 0.0070425457091376
818 => 0.0070203704067126
819 => 0.0071146901923453
820 => 0.0071153397208717
821 => 0.0070288233545963
822 => 0.006932676245809
823 => 0.0069322733859125
824 => 0.0069151649365747
825 => 0.007158433295678
826 => 0.0072922062959796
827 => 0.0073075431548782
828 => 0.007291174003178
829 => 0.007297473839999
830 => 0.0072196342786105
831 => 0.0073975524333398
901 => 0.0075608277264013
902 => 0.007517066459993
903 => 0.0074514621006163
904 => 0.0073992050684387
905 => 0.0075047563639643
906 => 0.0075000563309277
907 => 0.0075594016591546
908 => 0.007556709412271
909 => 0.007536753810479
910 => 0.0075170671726703
911 => 0.0075951224663051
912 => 0.0075726437952679
913 => 0.0075501302086459
914 => 0.0075049757640177
915 => 0.0075111130029786
916 => 0.0074455199711195
917 => 0.0074151736332486
918 => 0.0069588375227154
919 => 0.0068368896027683
920 => 0.0068752569008625
921 => 0.0068878884116015
922 => 0.0068348165205601
923 => 0.0069109079792633
924 => 0.0068990492060252
925 => 0.0069451847555444
926 => 0.0069163612671775
927 => 0.0069175441931941
928 => 0.0070023079266654
929 => 0.0070269151991028
930 => 0.0070143997417361
1001 => 0.007023165139071
1002 => 0.0072251600210101
1003 => 0.0071964428082311
1004 => 0.0071811873612975
1005 => 0.0071854132243557
1006 => 0.0072370272475102
1007 => 0.0072514763559723
1008 => 0.0071902544680976
1009 => 0.0072191270643388
1010 => 0.007342062914656
1011 => 0.0073850835047004
1012 => 0.0075223845770677
1013 => 0.0074640566411941
1014 => 0.007571120091864
1015 => 0.0079001966386032
1016 => 0.0081630857545034
1017 => 0.0079213220591693
1018 => 0.0084040844417931
1019 => 0.0087799842048165
1020 => 0.0087655565458178
1021 => 0.0087000097274165
1022 => 0.0082720578410267
1023 => 0.0078782501347676
1024 => 0.0082076870030118
1025 => 0.0082085268053382
1026 => 0.0081802278861929
1027 => 0.0080044657298126
1028 => 0.0081741117441375
1029 => 0.0081875776286908
1030 => 0.0081800403142086
1031 => 0.008045283881008
1101 => 0.0078395357146625
1102 => 0.0078797384138749
1103 => 0.0079455912552976
1104 => 0.0078209180881425
1105 => 0.0077810774570229
1106 => 0.0078551487702645
1107 => 0.0080938219749
1108 => 0.0080487021881034
1109 => 0.0080475239281268
1110 => 0.00824056550981
1111 => 0.0081023893983055
1112 => 0.0078802454986588
1113 => 0.00782415123428
1114 => 0.0076250543853593
1115 => 0.0077625712880675
1116 => 0.0077675202765793
1117 => 0.0076922036743547
1118 => 0.0078863570258359
1119 => 0.0078845678685219
1120 => 0.0080688875798405
1121 => 0.0084212376405596
1122 => 0.0083170303895115
1123 => 0.0081958486942592
1124 => 0.0082090245045371
1125 => 0.0083535306226144
1126 => 0.0082661589248711
1127 => 0.0082975783965567
1128 => 0.008353483065481
1129 => 0.0083872117402778
1130 => 0.0082041714672887
1201 => 0.0081614960238266
1202 => 0.0080741970435484
1203 => 0.0080514223691064
1204 => 0.00812252556699
1205 => 0.0081037923864608
1206 => 0.0077671043332583
1207 => 0.007731918558384
1208 => 0.0077329976558657
1209 => 0.0076445213519519
1210 => 0.0075095737517373
1211 => 0.0078642079877987
1212 => 0.00783572589554
1213 => 0.0078042838700253
1214 => 0.0078081353387451
1215 => 0.0079620700409499
1216 => 0.0078727801397823
1217 => 0.0081101719763634
1218 => 0.0080613713514141
1219 => 0.0080113191745765
1220 => 0.008004400439111
1221 => 0.0079851346212796
1222 => 0.0079190649634406
1223 => 0.0078392818814291
1224 => 0.0077866021799929
1225 => 0.0071827289128095
1226 => 0.0072948042786296
1227 => 0.0074237367710145
1228 => 0.0074682437507212
1229 => 0.0073921114821436
1230 => 0.0079220711294357
1231 => 0.0080188998638141
]
'min_raw' => 0.0033422012407379
'max_raw' => 0.0087799842048165
'avg_raw' => 0.0060610927227772
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003342'
'max' => '$0.008779'
'avg' => '$0.006061'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012958467309793
'max_diff' => -0.001583381300039
'year' => 2027
]
2 => [
'items' => [
101 => 0.0077255993113996
102 => 0.0076707347534255
103 => 0.0079256680407225
104 => 0.0077719121041555
105 => 0.007841148392977
106 => 0.0076914974067701
107 => 0.0079955766571787
108 => 0.0079932600827626
109 => 0.0078749663864124
110 => 0.0079749474085274
111 => 0.0079575732455228
112 => 0.0078240199536878
113 => 0.0079998105347445
114 => 0.0079998977246796
115 => 0.0078860426138692
116 => 0.0077530847705312
117 => 0.0077293150484665
118 => 0.0077114077559036
119 => 0.0078367442967435
120 => 0.0079491206473435
121 => 0.00815822517535
122 => 0.0082107990218919
123 => 0.008415998244984
124 => 0.0082938120986015
125 => 0.0083479756347174
126 => 0.0084067778150711
127 => 0.0084349697427113
128 => 0.0083890325094839
129 => 0.0087077913663158
130 => 0.0087347043803514
131 => 0.0087437280811609
201 => 0.0086362443881136
202 => 0.0087317150644112
203 => 0.008687047496628
204 => 0.0088032600989921
205 => 0.0088214837189197
206 => 0.0088060489611651
207 => 0.0088118334257704
208 => 0.00853982897438
209 => 0.0085257241086376
210 => 0.0083334032634046
211 => 0.008411775429401
212 => 0.0082652624215465
213 => 0.0083117232055884
214 => 0.0083322026764994
215 => 0.0083215053630952
216 => 0.0084162064740778
217 => 0.0083356911835838
218 => 0.0081231980940309
219 => 0.0079106471108779
220 => 0.0079079787064247
221 => 0.0078520177843969
222 => 0.007811568287525
223 => 0.0078193602956455
224 => 0.0078468203485899
225 => 0.0078099722593282
226 => 0.0078178356674178
227 => 0.0079484206353177
228 => 0.0079746085193407
229 => 0.0078856118571639
301 => 0.0075282774163669
302 => 0.0074405866482897
303 => 0.0075036170334001
304 => 0.007473492568994
305 => 0.006031691785358
306 => 0.00637042149294
307 => 0.0061691598028687
308 => 0.0062619104492587
309 => 0.0060564743801579
310 => 0.0061545192401597
311 => 0.0061364139345424
312 => 0.0066810812805935
313 => 0.0066725770491503
314 => 0.0066766475747082
315 => 0.0064823507841307
316 => 0.0067918708472535
317 => 0.0069443515603292
318 => 0.0069161314384817
319 => 0.0069232338351721
320 => 0.0068011911286655
321 => 0.0066778292148794
322 => 0.0065410018672282
323 => 0.0067952101667928
324 => 0.0067669465433616
325 => 0.006831773126582
326 => 0.0069966453800342
327 => 0.0070209234456438
328 => 0.007053553412027
329 => 0.0070418578918378
330 => 0.0073204926318035
331 => 0.0072867481263024
401 => 0.0073680626756031
402 => 0.0072007924783418
403 => 0.0070115103727078
404 => 0.0070474867128906
405 => 0.0070440219020276
406 => 0.0069999108830161
407 => 0.0069600894273894
408 => 0.0068937979233965
409 => 0.0071035540513265
410 => 0.0070950383355922
411 => 0.0072328978748937
412 => 0.0072085298622261
413 => 0.0070457943097673
414 => 0.0070516064418597
415 => 0.0070906958233971
416 => 0.0072259846192126
417 => 0.0072661475449743
418 => 0.0072475424775456
419 => 0.007291579292136
420 => 0.0073263841948628
421 => 0.0072959502520528
422 => 0.0077268307027363
423 => 0.0075478990987323
424 => 0.0076351091175258
425 => 0.0076559081931368
426 => 0.0076026317983167
427 => 0.0076141855406685
428 => 0.0076316863121251
429 => 0.0077379475694075
430 => 0.0080168078554589
501 => 0.0081403131778849
502 => 0.0085118850340488
503 => 0.0081300577801345
504 => 0.0081074017310455
505 => 0.0081743330427357
506 => 0.0083924850571794
507 => 0.0085692767749092
508 => 0.008627928787039
509 => 0.0086356806186812
510 => 0.0087457156925488
511 => 0.0088087857448571
512 => 0.0087323545403716
513 => 0.0086675870972507
514 => 0.0084355981552228
515 => 0.0084624515069474
516 => 0.0086474444711427
517 => 0.0089087579290997
518 => 0.0091329920610582
519 => 0.0090544730833948
520 => 0.0096535174572069
521 => 0.0097129102599935
522 => 0.0097047040950476
523 => 0.0098400097386297
524 => 0.0095714555906344
525 => 0.0094566434893749
526 => 0.0086815905535951
527 => 0.0088993488145508
528 => 0.0092158732353442
529 => 0.0091739800413465
530 => 0.0089441115462444
531 => 0.0091328176851919
601 => 0.0090704255342693
602 => 0.0090212142561839
603 => 0.0092466606611686
604 => 0.00899877307806
605 => 0.0092134003670786
606 => 0.0089381386488773
607 => 0.0090548317514708
608 => 0.0089885911026284
609 => 0.009031456920578
610 => 0.0087808642247372
611 => 0.0089160779606191
612 => 0.008775238888783
613 => 0.0087751721127251
614 => 0.0087720630824084
615 => 0.0089377596258475
616 => 0.0089431629841803
617 => 0.0088207129882252
618 => 0.0088030660307797
619 => 0.0088683160816007
620 => 0.0087919253611047
621 => 0.0088276680984273
622 => 0.0087930079722064
623 => 0.0087852052477402
624 => 0.0087230318116688
625 => 0.0086962457859151
626 => 0.008706749276804
627 => 0.0086708954474795
628 => 0.0086492922184218
629 => 0.0087677656564034
630 => 0.0087044700776947
701 => 0.0087580647011799
702 => 0.0086969868635378
703 => 0.0084852644679229
704 => 0.0083635006792812
705 => 0.0079635767006412
706 => 0.0080769946448794
707 => 0.0081521908592486
708 => 0.0081273385108481
709 => 0.0081807309717944
710 => 0.008184008835261
711 => 0.0081666504019356
712 => 0.0081465515598979
713 => 0.0081367685551296
714 => 0.0082096830576069
715 => 0.0082520123804844
716 => 0.0081597378053561
717 => 0.0081381191634621
718 => 0.0082314138535356
719 => 0.0082883235605859
720 => 0.0087085128626432
721 => 0.0086773838819532
722 => 0.0087555115147311
723 => 0.0087467155422465
724 => 0.0088286057481057
725 => 0.0089624616253022
726 => 0.0086902952002698
727 => 0.0087375338808485
728 => 0.008725952047271
729 => 0.00885239946935
730 => 0.0088527942243995
731 => 0.008776982678346
801 => 0.0088180813473635
802 => 0.0087951411978009
803 => 0.0088365971486076
804 => 0.0086769681354376
805 => 0.0088713790425915
806 => 0.0089815974993856
807 => 0.0089831278827651
808 => 0.0090353705565378
809 => 0.0090884521387824
810 => 0.0091903376134695
811 => 0.0090856106081918
812 => 0.0088972169206658
813 => 0.0089108183363972
814 => 0.0088003631863313
815 => 0.0088022199573592
816 => 0.0087923083680942
817 => 0.0088220537935882
818 => 0.0086834955836032
819 => 0.0087160149185404
820 => 0.0086704876591953
821 => 0.008737434913478
822 => 0.0086654107346474
823 => 0.0087259464621602
824 => 0.0087520716753636
825 => 0.0088484742745197
826 => 0.0086511719923695
827 => 0.008248859282875
828 => 0.0083334302919809
829 => 0.0082083431266039
830 => 0.00821992042
831 => 0.0082433083951726
901 => 0.0081675003155688
902 => 0.0081819621081701
903 => 0.0081814454311723
904 => 0.0081769929879369
905 => 0.008157272378585
906 => 0.0081286735934211
907 => 0.0082426023512722
908 => 0.0082619610672786
909 => 0.0083049930949234
910 => 0.0084330272202911
911 => 0.0084202335919143
912 => 0.0084411005305994
913 => 0.0083955481206126
914 => 0.0082220334656518
915 => 0.0082314561462204
916 => 0.0081139551685422
917 => 0.008301988330746
918 => 0.0082574595960196
919 => 0.008228751631065
920 => 0.0082209183968497
921 => 0.0083492698940496
922 => 0.0083876746736751
923 => 0.0083637433922614
924 => 0.0083146596358949
925 => 0.0084089149584285
926 => 0.0084341337064256
927 => 0.0084397792540706
928 => 0.0086067816139345
929 => 0.0084491128308221
930 => 0.0084870652740102
1001 => 0.0087831594017609
1002 => 0.0085146428860877
1003 => 0.0086568820730726
1004 => 0.0086499202050467
1005 => 0.0087226849599965
1006 => 0.0086439513712968
1007 => 0.00864492736849
1008 => 0.0087095375413741
1009 => 0.0086188042060646
1010 => 0.0085963373562561
1011 => 0.0085652995641565
1012 => 0.0086330694477112
1013 => 0.0086736944279341
1014 => 0.0090011019327703
1015 => 0.0092126221124907
1016 => 0.0092034394636442
1017 => 0.0092873516849024
1018 => 0.0092495484606778
1019 => 0.0091274718776696
1020 => 0.0093358417192112
1021 => 0.009269904782783
1022 => 0.0092753405437087
1023 => 0.0092751382244156
1024 => 0.0093189805228333
1025 => 0.0092879142363167
1026 => 0.0092266793967036
1027 => 0.0092673299409491
1028 => 0.0093880475245227
1029 => 0.0097627586080031
1030 => 0.0099724518945802
1031 => 0.0097501348088525
1101 => 0.0099034861576431
1102 => 0.0098115299930413
1103 => 0.0097948188224742
1104 => 0.0098911348020904
1105 => 0.0099876193700787
1106 => 0.0099814737202121
1107 => 0.00991143087839
1108 => 0.009871865454316
1109 => 0.010171468100794
1110 => 0.010392210227121
1111 => 0.010377157093979
1112 => 0.010443596728125
1113 => 0.010638665548877
1114 => 0.010656500197164
1115 => 0.010654253441404
1116 => 0.010610048404771
1117 => 0.010802118991688
1118 => 0.010962347654455
1119 => 0.010599816215996
1120 => 0.010737863441877
1121 => 0.010799837289178
1122 => 0.010890833283828
1123 => 0.011044358779503
1124 => 0.011211128188432
1125 => 0.011234711211388
1126 => 0.011217977928049
1127 => 0.011107989019858
1128 => 0.011290470097081
1129 => 0.011397363232411
1130 => 0.011461015648294
1201 => 0.01162242758422
1202 => 0.01080022001856
1203 => 0.010218220637219
1204 => 0.010127333029649
1205 => 0.01031215655362
1206 => 0.010360893042952
1207 => 0.010341247425213
1208 => 0.0096861542084438
1209 => 0.010123884099438
1210 => 0.010594844656773
1211 => 0.010612936169827
1212 => 0.01084870887215
1213 => 0.010925486128676
1214 => 0.01111531405748
1215 => 0.011103440268849
1216 => 0.01114966034869
1217 => 0.011139035152755
1218 => 0.011490651417878
1219 => 0.01187853637383
1220 => 0.011865105151204
1221 => 0.01180934209954
1222 => 0.011892159740275
1223 => 0.012292498583095
1224 => 0.012255641797748
1225 => 0.012291445025259
1226 => 0.012763467083053
1227 => 0.01337716290254
1228 => 0.013092039580335
1229 => 0.013710675147493
1230 => 0.014100073444557
1231 => 0.014773497534793
]
'min_raw' => 0.006031691785358
'max_raw' => 0.014773497534793
'avg_raw' => 0.010402594660075
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006031'
'max' => '$0.014773'
'avg' => '$0.0104025'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0026894905446201
'max_diff' => 0.0059935133299761
'year' => 2028
]
3 => [
'items' => [
101 => 0.014689181522011
102 => 0.014951340578526
103 => 0.01453823826185
104 => 0.01358967184101
105 => 0.013439557573946
106 => 0.013740090138107
107 => 0.01447892012156
108 => 0.013716821752656
109 => 0.013870993260126
110 => 0.013826591855603
111 => 0.01382422589345
112 => 0.013914525045774
113 => 0.01378354141564
114 => 0.013249890542969
115 => 0.01349445959309
116 => 0.013400019737668
117 => 0.013504807798216
118 => 0.014070305743113
119 => 0.013820285621887
120 => 0.013556909734161
121 => 0.013887241545158
122 => 0.014307867454882
123 => 0.014281545441389
124 => 0.014230469733464
125 => 0.014518380824799
126 => 0.01499392559765
127 => 0.015122463438858
128 => 0.015217347445397
129 => 0.01523043034682
130 => 0.015365192362458
131 => 0.014640543039971
201 => 0.015790580125073
202 => 0.015989159760537
203 => 0.015951835019352
204 => 0.016172547926662
205 => 0.016107608590385
206 => 0.01601352168079
207 => 0.016363398585857
208 => 0.015962292947808
209 => 0.015392973992393
210 => 0.0150806343536
211 => 0.015491948385683
212 => 0.015743123512194
213 => 0.015909134293079
214 => 0.015959369055069
215 => 0.014696795504064
216 => 0.014016338385612
217 => 0.014452503597083
218 => 0.014984655257593
219 => 0.014637586910628
220 => 0.014651191332742
221 => 0.014156363077928
222 => 0.015028436578297
223 => 0.014901382804586
224 => 0.015560538007354
225 => 0.015403225328163
226 => 0.015940740807762
227 => 0.015799194967878
228 => 0.016386743835516
301 => 0.016621132986067
302 => 0.0170147088496
303 => 0.017304224856957
304 => 0.017474234194036
305 => 0.017464027471127
306 => 0.018137689162949
307 => 0.017740454399228
308 => 0.01724143391495
309 => 0.017232408208779
310 => 0.017490857988762
311 => 0.018032497825371
312 => 0.018172937154465
313 => 0.018251423580342
314 => 0.018131218886979
315 => 0.017700049021032
316 => 0.017513872058997
317 => 0.017672500224717
318 => 0.017478511609115
319 => 0.017813390383235
320 => 0.018273250466349
321 => 0.01817829117767
322 => 0.018495725842632
323 => 0.018824237325767
324 => 0.019294023501024
325 => 0.019416843003368
326 => 0.019619858970335
327 => 0.019828829087616
328 => 0.019895944657383
329 => 0.020024089104808
330 => 0.020023413720317
331 => 0.020409585637748
401 => 0.020835545221424
402 => 0.020996335103274
403 => 0.021366062570584
404 => 0.020732917239612
405 => 0.021213165246203
406 => 0.021646360969536
407 => 0.021129887169616
408 => 0.021841725979845
409 => 0.021869365067784
410 => 0.022286682481038
411 => 0.021863651334363
412 => 0.02161245678983
413 => 0.022337646027759
414 => 0.022688542256746
415 => 0.022582849456887
416 => 0.021778522031262
417 => 0.021310368970323
418 => 0.020085122109862
419 => 0.021536479942803
420 => 0.02224339400654
421 => 0.021776691294615
422 => 0.022012068996034
423 => 0.023296213413503
424 => 0.023785132465481
425 => 0.023683440720472
426 => 0.023700624951389
427 => 0.023964436797328
428 => 0.025134323806059
429 => 0.024433300392659
430 => 0.024969206525357
501 => 0.025253449205787
502 => 0.025517469648386
503 => 0.024869118885879
504 => 0.024025624070021
505 => 0.023758453854336
506 => 0.021730286907619
507 => 0.02162471201016
508 => 0.021565449620969
509 => 0.021191808639954
510 => 0.020898229177753
511 => 0.020664763889505
512 => 0.020052081254505
513 => 0.02025884365833
514 => 0.019282355414945
515 => 0.019907077988444
516 => 0.018348579173868
517 => 0.01964654329769
518 => 0.01894012043628
519 => 0.019414464388535
520 => 0.019412809447171
521 => 0.018539391840184
522 => 0.018035622792234
523 => 0.018356644036572
524 => 0.018700804293201
525 => 0.018756643136945
526 => 0.019202855893166
527 => 0.019327384282116
528 => 0.018950057449922
529 => 0.01831628275003
530 => 0.018463494157953
531 => 0.018032639557751
601 => 0.017277583443479
602 => 0.017819877926764
603 => 0.018005041106363
604 => 0.018086819714987
605 => 0.017344308745382
606 => 0.017110995678035
607 => 0.016986781758665
608 => 0.018220433907907
609 => 0.018288016157455
610 => 0.017942255813602
611 => 0.019505125354161
612 => 0.019151399843447
613 => 0.019546597903768
614 => 0.018450136265681
615 => 0.018492022576837
616 => 0.01797294006579
617 => 0.018263591586871
618 => 0.018058168459906
619 => 0.018240109816241
620 => 0.018349164715056
621 => 0.018868162049772
622 => 0.019652469413575
623 => 0.018790641155001
624 => 0.018415130241133
625 => 0.018648095100143
626 => 0.019268511219438
627 => 0.020208473398687
628 => 0.01965199687007
629 => 0.019898951703886
630 => 0.019952900348819
701 => 0.019542575158498
702 => 0.020223602673736
703 => 0.02058857085181
704 => 0.020962952682991
705 => 0.021288017937065
706 => 0.020813416346785
707 => 0.02132130807985
708 => 0.020912036997959
709 => 0.020544878527836
710 => 0.020545435355679
711 => 0.020315111484042
712 => 0.019868829960069
713 => 0.019786528799861
714 => 0.020214669828752
715 => 0.020557998388816
716 => 0.020586276573456
717 => 0.020776360905165
718 => 0.020888850854647
719 => 0.021991405282236
720 => 0.022434861793821
721 => 0.022977112021985
722 => 0.023188349045404
723 => 0.023824096753228
724 => 0.023310678846255
725 => 0.023199597652532
726 => 0.02165748166484
727 => 0.021910003071433
728 => 0.022314314208081
729 => 0.021664148606566
730 => 0.022076529033235
731 => 0.022157941664871
801 => 0.021642056228215
802 => 0.021917612930027
803 => 0.021185816026883
804 => 0.019668420586293
805 => 0.020225291968632
806 => 0.020635336746914
807 => 0.020050152290149
808 => 0.021099072779134
809 => 0.020486315083583
810 => 0.02029210031165
811 => 0.019534399243774
812 => 0.019892004981223
813 => 0.020375671861543
814 => 0.020076821961815
815 => 0.020696980376289
816 => 0.021575290081392
817 => 0.022201225881496
818 => 0.022249277459952
819 => 0.021846842674927
820 => 0.022491746986234
821 => 0.022496444410084
822 => 0.021768989712418
823 => 0.021323427760583
824 => 0.021222195147655
825 => 0.021475094062571
826 => 0.021782160032993
827 => 0.02226631748424
828 => 0.022558883692057
829 => 0.023321741196916
830 => 0.023528148564892
831 => 0.023754927683494
901 => 0.024057974522037
902 => 0.024421859951321
903 => 0.023625699348055
904 => 0.023657332293052
905 => 0.022915958562885
906 => 0.022123694408453
907 => 0.022724924144546
908 => 0.023510952046247
909 => 0.023330636377113
910 => 0.02331034718082
911 => 0.02334446798123
912 => 0.023208515855263
913 => 0.022593609428132
914 => 0.022284807269945
915 => 0.022683240837839
916 => 0.022894990546937
917 => 0.023223395879232
918 => 0.023182912990231
919 => 0.024028849858066
920 => 0.024357555345104
921 => 0.024273458415419
922 => 0.024288934274387
923 => 0.024884039857648
924 => 0.025545919659032
925 => 0.026165857435761
926 => 0.026796484769196
927 => 0.026036238904936
928 => 0.025650232940511
929 => 0.026048492564773
930 => 0.02583717040223
1001 => 0.027051490230431
1002 => 0.027135567100664
1003 => 0.02834979911972
1004 => 0.029502249893864
1005 => 0.028778416210924
1006 => 0.029460958771751
1007 => 0.030199184199797
1008 => 0.031623340823256
1009 => 0.031143734974909
1010 => 0.030776364411457
1011 => 0.030429201004117
1012 => 0.031151592944153
1013 => 0.032080938634518
1014 => 0.03228111079506
1015 => 0.032605466166788
1016 => 0.032264446153703
1017 => 0.032675167197342
1018 => 0.034125192961358
1019 => 0.033733383200189
1020 => 0.033176950352768
1021 => 0.034321606431504
1022 => 0.03473585301666
1023 => 0.03764325249391
1024 => 0.041313964432621
1025 => 0.0397942655868
1026 => 0.038850939472825
1027 => 0.039072643485604
1028 => 0.04041306322418
1029 => 0.040843563501414
1030 => 0.039673315345546
1031 => 0.040086666777987
1101 => 0.042364273810551
1102 => 0.04358613690914
1103 => 0.041926682703149
1104 => 0.037348314363728
1105 => 0.033126849662921
1106 => 0.034246572196608
1107 => 0.034119630410324
1108 => 0.036566635029551
1109 => 0.033724038666966
1110 => 0.033771900699467
1111 => 0.036269506782797
1112 => 0.035603188299572
1113 => 0.034523837692373
1114 => 0.033134730116835
1115 => 0.030566836286553
1116 => 0.028292381110055
1117 => 0.032753111486911
1118 => 0.03256075668175
1119 => 0.03228219841849
1120 => 0.032902099690222
1121 => 0.035912164303704
1122 => 0.035842772571735
1123 => 0.03540133777692
1124 => 0.03573616217816
1125 => 0.034465141355984
1126 => 0.034792712362465
1127 => 0.033126180961344
1128 => 0.03387952275515
1129 => 0.034521521890731
1130 => 0.034650412722159
1201 => 0.034940810346694
1202 => 0.032459394440099
1203 => 0.033573477331617
1204 => 0.034227896654933
1205 => 0.031271206344211
1206 => 0.034169452393974
1207 => 0.032416198509818
1208 => 0.031821117808545
1209 => 0.032622315576888
1210 => 0.032310088027374
1211 => 0.032041653114919
1212 => 0.031891861821472
1213 => 0.032480173037572
1214 => 0.032452727616157
1215 => 0.031490136280331
1216 => 0.030234475122989
1217 => 0.030655916223065
1218 => 0.030502802720376
1219 => 0.029947899634596
1220 => 0.030321837315158
1221 => 0.028675205015492
1222 => 0.025842259728416
1223 => 0.027713790160519
1224 => 0.027641738274716
1225 => 0.027605406446602
1226 => 0.029011809841026
1227 => 0.028876616605899
1228 => 0.028631239560327
1229 => 0.029943393092727
1230 => 0.029464439402445
1231 => 0.030940461820211
]
'min_raw' => 0.013249890542969
'max_raw' => 0.04358613690914
'avg_raw' => 0.028418013726055
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.013249'
'max' => '$0.043586'
'avg' => '$0.028418'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0072181987576112
'max_diff' => 0.028812639374348
'year' => 2029
]
4 => [
'items' => [
101 => 0.031912665647695
102 => 0.031666083309546
103 => 0.032580445708364
104 => 0.03066562537482
105 => 0.031301651880366
106 => 0.031432736061664
107 => 0.029927201321817
108 => 0.028898735891128
109 => 0.028830148972266
110 => 0.027046931646718
111 => 0.027999511948398
112 => 0.028837743193426
113 => 0.02843629547643
114 => 0.028309209122138
115 => 0.028958465744546
116 => 0.029008918544614
117 => 0.027858589356315
118 => 0.028097779220751
119 => 0.029095240717451
120 => 0.028072645750256
121 => 0.026085910768936
122 => 0.025593173024809
123 => 0.025527432726784
124 => 0.024191088885186
125 => 0.025626100116988
126 => 0.024999679258397
127 => 0.026978535245013
128 => 0.025848223318276
129 => 0.02579949783024
130 => 0.025725842108599
131 => 0.024575595760467
201 => 0.024827426608739
202 => 0.025664550703316
203 => 0.025963246011139
204 => 0.025932089643394
205 => 0.025660448338561
206 => 0.025784804336885
207 => 0.025384210337781
208 => 0.025242752259054
209 => 0.024796271651483
210 => 0.024140068501768
211 => 0.024231317574464
212 => 0.022931207429986
213 => 0.022222838421206
214 => 0.02202677121573
215 => 0.021764581954354
216 => 0.022056386190461
217 => 0.022927524381297
218 => 0.021876746900872
219 => 0.020075262614153
220 => 0.020183534889365
221 => 0.020426790545439
222 => 0.019973485239643
223 => 0.019544469810738
224 => 0.019917463919049
225 => 0.019154151278218
226 => 0.020519033231314
227 => 0.02048211699952
228 => 0.0209908605879
301 => 0.021308988394184
302 => 0.0205758067958
303 => 0.020391413606541
304 => 0.020496452347346
305 => 0.01876039593852
306 => 0.02084898774165
307 => 0.020867049970294
308 => 0.020712390202746
309 => 0.021824500859876
310 => 0.024171401222431
311 => 0.023288402902189
312 => 0.022946479263826
313 => 0.022296482177353
314 => 0.023162564702071
315 => 0.023096063077164
316 => 0.022795317509346
317 => 0.022613425651546
318 => 0.022948566976651
319 => 0.022571897932521
320 => 0.022504237822022
321 => 0.022094291167325
322 => 0.021947958862983
323 => 0.021839620250504
324 => 0.021720350083298
325 => 0.021983430351881
326 => 0.021387255852179
327 => 0.020668327849246
328 => 0.020608556764711
329 => 0.02077358998424
330 => 0.020700575069876
331 => 0.020608207197392
401 => 0.020431851773925
402 => 0.02037953088702
403 => 0.020549548386976
404 => 0.020357608542162
405 => 0.020640826238689
406 => 0.020563806696384
407 => 0.020133581793954
408 => 0.019597362275866
409 => 0.019592588797396
410 => 0.019477061181801
411 => 0.019329919393646
412 => 0.01928898791433
413 => 0.019886051395612
414 => 0.02112195493326
415 => 0.020879317496154
416 => 0.021054647910948
417 => 0.021917100020841
418 => 0.022191247611737
419 => 0.021996664145261
420 => 0.021730306294963
421 => 0.021742024688587
422 => 0.02265225009506
423 => 0.022709019737156
424 => 0.022852458308153
425 => 0.02303681740762
426 => 0.022028061297091
427 => 0.021694512366497
428 => 0.021536458378591
429 => 0.021049713270433
430 => 0.02157462613921
501 => 0.021268781889584
502 => 0.021310050727986
503 => 0.021283174342837
504 => 0.021297850666502
505 => 0.020518651718991
506 => 0.020802550861973
507 => 0.020330513473622
508 => 0.019698508399303
509 => 0.019696389696684
510 => 0.019851072043263
511 => 0.019759060930797
512 => 0.019511461392973
513 => 0.019546631738684
514 => 0.019238502502279
515 => 0.019584044206844
516 => 0.019593953106523
517 => 0.019460900728482
518 => 0.01999325539993
519 => 0.020211361543182
520 => 0.020123783617697
521 => 0.020205216842465
522 => 0.020889400177108
523 => 0.021000951913667
524 => 0.021050495826352
525 => 0.020984113546664
526 => 0.020217722457849
527 => 0.020251715161585
528 => 0.020002299256087
529 => 0.019791569098742
530 => 0.019799997199902
531 => 0.01990833989378
601 => 0.020381478792161
602 => 0.021377171710743
603 => 0.021414957529161
604 => 0.021460755043374
605 => 0.021274473537084
606 => 0.021218289252313
607 => 0.02129241082632
608 => 0.021666340735493
609 => 0.022628189982866
610 => 0.022288208219093
611 => 0.022011797753015
612 => 0.022254284251492
613 => 0.022216955355723
614 => 0.021901861908963
615 => 0.021893018285364
616 => 0.021288253219563
617 => 0.02106468534457
618 => 0.020877855294461
619 => 0.020673841757064
620 => 0.020552895693499
621 => 0.020738723816138
622 => 0.020781224906439
623 => 0.02037490846857
624 => 0.02031952903948
625 => 0.020651335813593
626 => 0.020505320023309
627 => 0.020655500884633
628 => 0.020690344132688
629 => 0.020684733567243
630 => 0.02053227631238
701 => 0.020629448020289
702 => 0.020399607962804
703 => 0.02014969142115
704 => 0.019990260237925
705 => 0.019851135385084
706 => 0.019928329939424
707 => 0.01965314544837
708 => 0.019565108391313
709 => 0.020596528432082
710 => 0.021358449505832
711 => 0.021347370871666
712 => 0.021279932535373
713 => 0.021179732847008
714 => 0.021659010504184
715 => 0.021492039751883
716 => 0.021613524925055
717 => 0.021644448000344
718 => 0.02173804283581
719 => 0.02177149494474
720 => 0.021670379437568
721 => 0.021331023445277
722 => 0.020485380577488
723 => 0.020091731539763
724 => 0.019961820800571
725 => 0.019966542809205
726 => 0.019836288731103
727 => 0.019874654394683
728 => 0.019822946719003
729 => 0.019725024890695
730 => 0.019922283542463
731 => 0.019945015764488
801 => 0.0198989732381
802 => 0.019909817919828
803 => 0.019528605466356
804 => 0.019557588221244
805 => 0.01939620855908
806 => 0.019365951817885
807 => 0.018957998084869
808 => 0.018235248912991
809 => 0.018635722113171
810 => 0.018152006802407
811 => 0.017968816484738
812 => 0.018836010956645
813 => 0.018748968683896
814 => 0.018599990149316
815 => 0.018379619846826
816 => 0.018297882358008
817 => 0.017801271250893
818 => 0.017771928817367
819 => 0.018018062691681
820 => 0.017904480377635
821 => 0.017744967791727
822 => 0.017167229375103
823 => 0.016517660112201
824 => 0.016537266525201
825 => 0.016743882422064
826 => 0.017344646008145
827 => 0.017109917281747
828 => 0.016939618897545
829 => 0.016907727129334
830 => 0.017306919378428
831 => 0.017871860044259
901 => 0.018136917564832
902 => 0.017874253611861
903 => 0.017572519405519
904 => 0.017590884568557
905 => 0.017713059770513
906 => 0.017725898656775
907 => 0.017529500707224
908 => 0.017584785579615
909 => 0.017500802803098
910 => 0.016985400658636
911 => 0.016976078668201
912 => 0.016849590669968
913 => 0.016845760663651
914 => 0.016630573024746
915 => 0.016600466786542
916 => 0.01617319866854
917 => 0.016454427837696
918 => 0.01626579407622
919 => 0.015981478503471
920 => 0.015932462391564
921 => 0.015930988908051
922 => 0.016222917429466
923 => 0.016451016482954
924 => 0.016269075441262
925 => 0.016227650992848
926 => 0.016669955726718
927 => 0.016613668417636
928 => 0.016564923970985
929 => 0.017821275803957
930 => 0.016826775293804
1001 => 0.016393116307272
1002 => 0.015856380961831
1003 => 0.016031144696761
1004 => 0.016067969983524
1005 => 0.014777218231557
1006 => 0.014253560406537
1007 => 0.014073860774619
1008 => 0.01397044109587
1009 => 0.014017570742138
1010 => 0.013546217280683
1011 => 0.013862974602248
1012 => 0.013454822347144
1013 => 0.013386394293333
1014 => 0.014116221085821
1015 => 0.014217772220409
1016 => 0.013784523530791
1017 => 0.014062739326117
1018 => 0.013961854411243
1019 => 0.01346181894609
1020 => 0.013442721269333
1021 => 0.013191821050015
1022 => 0.012799210790639
1023 => 0.012619777366964
1024 => 0.012526326882002
1025 => 0.012564886373411
1026 => 0.012545389514615
1027 => 0.012418159322786
1028 => 0.01255268220028
1029 => 0.012209031836972
1030 => 0.012072187493324
1031 => 0.012010378078062
1101 => 0.011705368600849
1102 => 0.012190774317425
1103 => 0.012286405358571
1104 => 0.012382224822409
1105 => 0.013216267836397
1106 => 0.0131746014044
1107 => 0.013551245657284
1108 => 0.013536609954221
1109 => 0.013429184912066
1110 => 0.012975976329776
1111 => 0.013156617193011
1112 => 0.012600632693798
1113 => 0.013017214083879
1114 => 0.012827103734301
1115 => 0.012952937583453
1116 => 0.012726676976697
1117 => 0.012851898938547
1118 => 0.012309083026104
1119 => 0.011802209164691
1120 => 0.012006190003094
1121 => 0.012227940502477
1122 => 0.012708752086114
1123 => 0.012422384673509
1124 => 0.012525373223833
1125 => 0.012180378820324
1126 => 0.011468556823106
1127 => 0.011472585658306
1128 => 0.011363087351919
1129 => 0.011268464828187
1130 => 0.012455277415677
1201 => 0.012307678509692
1202 => 0.012072498970272
1203 => 0.012387296129449
1204 => 0.012470533494838
1205 => 0.012472903145612
1206 => 0.012702571026857
1207 => 0.012825144816248
1208 => 0.012846748977893
1209 => 0.013208136351334
1210 => 0.013329268632097
1211 => 0.013828195353277
1212 => 0.012814745286593
1213 => 0.012793873949389
1214 => 0.012391725971047
1215 => 0.012136677365474
1216 => 0.012409189367274
1217 => 0.012650597799271
1218 => 0.012399227203952
1219 => 0.012432050896978
1220 => 0.012094606410495
1221 => 0.012215226936174
1222 => 0.012319121582228
1223 => 0.012261757065322
1224 => 0.012175879607039
1225 => 0.012630805060832
1226 => 0.012605136383862
1227 => 0.013028773425125
1228 => 0.013359028793365
1229 => 0.01395090545346
1230 => 0.013333251303423
1231 => 0.013310741531243
]
'min_raw' => 0.011268464828187
'max_raw' => 0.032580445708364
'avg_raw' => 0.021924455268276
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.011268'
'max' => '$0.03258'
'avg' => '$0.021924'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0019814257147825
'max_diff' => -0.011005691200776
'year' => 2030
]
5 => [
'items' => [
101 => 0.013530778164985
102 => 0.013329234945635
103 => 0.013456603303229
104 => 0.013930384441944
105 => 0.013940394690831
106 => 0.013772710124504
107 => 0.013762506503404
108 => 0.013794712158635
109 => 0.013983341687249
110 => 0.013917428733952
111 => 0.01399370487222
112 => 0.014089089351105
113 => 0.014483639997957
114 => 0.014578764823168
115 => 0.014347660814472
116 => 0.014368526918896
117 => 0.014282087675697
118 => 0.014198588449847
119 => 0.014386282515475
120 => 0.014729297109545
121 => 0.014727163233558
122 => 0.014806735952132
123 => 0.014856309096587
124 => 0.014643504870825
125 => 0.014504977144883
126 => 0.014558097489757
127 => 0.014643038078022
128 => 0.014530552401783
129 => 0.013836238699603
130 => 0.014046849123913
131 => 0.014011793250985
201 => 0.013961869424994
202 => 0.014173639835241
203 => 0.014153214062555
204 => 0.013541382869653
205 => 0.013580550317541
206 => 0.013543764771886
207 => 0.013662626395513
208 => 0.013322816027888
209 => 0.013427339408312
210 => 0.013492895492668
211 => 0.013531508529979
212 => 0.013671005297954
213 => 0.013654636962298
214 => 0.013669987819228
215 => 0.013876824700354
216 => 0.014922934667243
217 => 0.014979872124629
218 => 0.014699491260563
219 => 0.014811497885489
220 => 0.014596469658786
221 => 0.014740819547936
222 => 0.014839580076002
223 => 0.014393300240227
224 => 0.014366874444685
225 => 0.014150958720001
226 => 0.014266979600354
227 => 0.014082382037515
228 => 0.014127675822487
301 => 0.014001030451064
302 => 0.014228966904784
303 => 0.014483835277787
304 => 0.014548225093864
305 => 0.014378843209323
306 => 0.014256199562105
307 => 0.014040877718919
308 => 0.014398962742897
309 => 0.014503677716352
310 => 0.01439841271972
311 => 0.014374020519915
312 => 0.01432779734536
313 => 0.014383826984908
314 => 0.014503107416118
315 => 0.014446856967523
316 => 0.014484011379825
317 => 0.014342417073593
318 => 0.014643575317879
319 => 0.015121887087483
320 => 0.015123424938034
321 => 0.015067174186229
322 => 0.015044157590529
323 => 0.015101874275463
324 => 0.015133183209377
325 => 0.015319828385022
326 => 0.015520106094762
327 => 0.016454714778106
328 => 0.01619228039972
329 => 0.017021520823702
330 => 0.017677342335679
331 => 0.017873994531522
401 => 0.017693083764547
402 => 0.017074197803335
403 => 0.017043832305526
404 => 0.017968709218491
405 => 0.017707389128532
406 => 0.017676305935345
407 => 0.01734563327572
408 => 0.017541101772164
409 => 0.017498349944642
410 => 0.017430864093407
411 => 0.017803804368169
412 => 0.018501915269916
413 => 0.018393108139037
414 => 0.018311888663252
415 => 0.017956008563
416 => 0.01817032787205
417 => 0.018094012871113
418 => 0.018421910545834
419 => 0.018227671227152
420 => 0.017705409371835
421 => 0.017788581293692
422 => 0.017776010025022
423 => 0.01803472584344
424 => 0.017957065776473
425 => 0.017760845650547
426 => 0.018499529202749
427 => 0.018451563201643
428 => 0.018519568024657
429 => 0.018549505850866
430 => 0.018999129512027
501 => 0.019183325939652
502 => 0.019225141753536
503 => 0.019400114113517
504 => 0.019220788281823
505 => 0.019938219465748
506 => 0.020415269339788
507 => 0.020969387317248
508 => 0.021779102615187
509 => 0.022083563057498
510 => 0.022028565003714
511 => 0.022642481901459
512 => 0.0237456769201
513 => 0.022251552258534
514 => 0.023824869155181
515 => 0.02332677519052
516 => 0.022145803360635
517 => 0.022069762697534
518 => 0.022869530532097
519 => 0.024643338614355
520 => 0.024199019808114
521 => 0.024644065360749
522 => 0.024124896083614
523 => 0.024099114953102
524 => 0.024618850467767
525 => 0.025833240827088
526 => 0.025256329488116
527 => 0.024429185619237
528 => 0.025039935780233
529 => 0.024510847468519
530 => 0.023318663419732
531 => 0.024198680045897
601 => 0.023610237989411
602 => 0.023781976664794
603 => 0.025018794343377
604 => 0.024869977168076
605 => 0.025062560373015
606 => 0.024722656057078
607 => 0.024405131828003
608 => 0.023812449274774
609 => 0.02363698518966
610 => 0.023685477150249
611 => 0.023636961159452
612 => 0.023305360717954
613 => 0.023233751634185
614 => 0.02311440002397
615 => 0.023151392078624
616 => 0.022926976133875
617 => 0.023350495388317
618 => 0.023429104293981
619 => 0.023737306288789
620 => 0.023769304842311
621 => 0.024627643010871
622 => 0.024154884771415
623 => 0.024472051814425
624 => 0.024443681408806
625 => 0.022171398601209
626 => 0.022484499123575
627 => 0.02297158528002
628 => 0.022752153626771
629 => 0.022441928608176
630 => 0.022191405272448
701 => 0.021811836801493
702 => 0.022346072135395
703 => 0.023048534789882
704 => 0.023787120454468
705 => 0.024674482736419
706 => 0.024476433805123
707 => 0.023770531833844
708 => 0.023802198080614
709 => 0.023997946357936
710 => 0.023744434553197
711 => 0.023669668972841
712 => 0.023987674715299
713 => 0.023989864646074
714 => 0.023698168676797
715 => 0.023374001986744
716 => 0.023372643716476
717 => 0.02331496138506
718 => 0.024135157642231
719 => 0.02458618265248
720 => 0.024637891943042
721 => 0.024582702205228
722 => 0.02460394254491
723 => 0.024341501029104
724 => 0.024941364509623
725 => 0.025491858559697
726 => 0.025344314394687
727 => 0.025123124716698
728 => 0.024946936484242
729 => 0.025302810046463
730 => 0.025286963556934
731 => 0.02548705047441
801 => 0.025477973376075
802 => 0.025410691671377
803 => 0.025344316797528
804 => 0.025607485669664
805 => 0.025531697260852
806 => 0.025455791131707
807 => 0.025303549769061
808 => 0.025324241898706
809 => 0.025103090412234
810 => 0.025000775615388
811 => 0.023462206558356
812 => 0.023051050632122
813 => 0.023180408656366
814 => 0.023222996676727
815 => 0.023044061090719
816 => 0.023300608756273
817 => 0.023260626074348
818 => 0.023416175300633
819 => 0.023318994897212
820 => 0.023322983214866
821 => 0.02360877006028
822 => 0.023691735197327
823 => 0.023649538459014
824 => 0.023679091608109
825 => 0.024360131455399
826 => 0.024263309367543
827 => 0.024211874563105
828 => 0.024226122355446
829 => 0.024400142638088
830 => 0.024448858816072
831 => 0.024242444946727
901 => 0.024339790920775
902 => 0.024754277723226
903 => 0.024899324646162
904 => 0.025362244797703
905 => 0.025165588089579
906 => 0.025526559988444
907 => 0.026636064541166
908 => 0.027522413549756
909 => 0.026707290371535
910 => 0.028334957449944
911 => 0.02960232974546
912 => 0.029553685885839
913 => 0.029332690211267
914 => 0.027889820547657
915 => 0.026562070371228
916 => 0.027672789773061
917 => 0.027675621225238
918 => 0.027580209443572
919 => 0.026987615062014
920 => 0.027559588443617
921 => 0.027604989613546
922 => 0.027579577031531
923 => 0.027125236308602
924 => 0.02643154200089
925 => 0.026567088208147
926 => 0.026789115660702
927 => 0.026368771373236
928 => 0.026234445903832
929 => 0.02648418250792
930 => 0.02728888588098
1001 => 0.027136761369632
1002 => 0.027132788783858
1003 => 0.027783641954235
1004 => 0.02731777154715
1005 => 0.0265687978799
1006 => 0.02637967215117
1007 => 0.025708403224536
1008 => 0.02617205106314
1009 => 0.026188736923435
1010 => 0.025934801740597
1011 => 0.02658940332047
1012 => 0.026583371051671
1013 => 0.027204817827173
1014 => 0.028392790657183
1015 => 0.028041448634757
1016 => 0.027632876088578
1017 => 0.027677299252835
1018 => 0.028164511719028
1019 => 0.027869931939989
1020 => 0.027975864882415
1021 => 0.028164351376832
1022 => 0.028278069958771
1023 => 0.027660936898924
1024 => 0.027517053661787
1025 => 0.027222719054759
1026 => 0.027145932649801
1027 => 0.027385662045732
1028 => 0.027322501819669
1029 => 0.026187334541488
1030 => 0.026068703244907
1031 => 0.026072341497406
1101 => 0.025774037461543
1102 => 0.025319052205679
1103 => 0.026514726292331
1104 => 0.026418696929725
1105 => 0.02631268794549
1106 => 0.02632567344118
1107 => 0.026844675037041
1108 => 0.026543627901233
1109 => 0.027344011052434
1110 => 0.027179476338267
1111 => 0.027010721929528
1112 => 0.026987394929855
1113 => 0.02692243887994
1114 => 0.0266996804157
1115 => 0.026430686184421
1116 => 0.02625307289305
1117 => 0.024217072011656
1118 => 0.02459494193237
1119 => 0.025029646832225
1120 => 0.025179705221684
1121 => 0.02492301996279
1122 => 0.026709815914236
1123 => 0.027036280752559
1124 => 0.026047397462503
1125 => 0.025862417774772
1126 => 0.026721943151768
1127 => 0.026203544276736
1128 => 0.026436979258421
1129 => 0.025932420510126
1130 => 0.026957644933014
1201 => 0.026949834440632
1202 => 0.026550998984385
1203 => 0.026888091980897
1204 => 0.026829513777302
1205 => 0.026379229529488
1206 => 0.026971919746827
1207 => 0.02697221371378
1208 => 0.026588343258573
1209 => 0.026140066606939
1210 => 0.026059925329449
1211 => 0.025999549642325
1212 => 0.026422130540485
1213 => 0.026801015252399
1214 => 0.027506025767785
1215 => 0.02768328216199
1216 => 0.028375125669197
1217 => 0.027963166545904
1218 => 0.028145782689496
1219 => 0.028344038345996
1220 => 0.028439089398332
1221 => 0.028284208809271
1222 => 0.029358926550112
1223 => 0.02944966565594
1224 => 0.029480089693234
1225 => 0.029117700917853
1226 => 0.02943958696854
1227 => 0.029288987145169
1228 => 0.029680806047744
1229 => 0.029742248254663
1230 => 0.029690208891273
1231 => 0.029709711617548
]
'min_raw' => 0.013322816027888
'max_raw' => 0.029742248254663
'avg_raw' => 0.021532532141276
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.013322'
'max' => '$0.029742'
'avg' => '$0.021532'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0020543511997018
'max_diff' => -0.0028381974537012
'year' => 2031
]
6 => [
'items' => [
101 => 0.028792629618941
102 => 0.02874507407932
103 => 0.028096650922205
104 => 0.028360888151631
105 => 0.027866909316438
106 => 0.028023555093624
107 => 0.028092603059632
108 => 0.028056536320627
109 => 0.028375827728125
110 => 0.028104364804826
111 => 0.027387929517605
112 => 0.026671299038069
113 => 0.026662302326153
114 => 0.02647362617047
115 => 0.026337247867672
116 => 0.026363519167071
117 => 0.026456102652773
118 => 0.026331866747176
119 => 0.026358378776555
120 => 0.026798655112981
121 => 0.026886949392344
122 => 0.026586890932266
123 => 0.025382112916825
124 => 0.025086457369879
125 => 0.02529896871392
126 => 0.025197401978952
127 => 0.020336269973607
128 => 0.021478320832073
129 => 0.020799752992355
130 => 0.021112468272302
131 => 0.02041982622224
201 => 0.02075039131301
202 => 0.020689348011049
203 => 0.02252573199572
204 => 0.022497059385663
205 => 0.022510783446777
206 => 0.021855698251976
207 => 0.022899266754795
208 => 0.023413366124793
209 => 0.023318220013718
210 => 0.023342166240033
211 => 0.022930690734297
212 => 0.022514767429113
213 => 0.022053444473527
214 => 0.022910525503765
215 => 0.022815232724064
216 => 0.023033800075439
217 => 0.023589678388966
218 => 0.02367153358221
219 => 0.023781547792022
220 => 0.023742115529149
221 => 0.024681552008599
222 => 0.024567780052337
223 => 0.024841937732504
224 => 0.024277974584006
225 => 0.023639796749606
226 => 0.02376109349232
227 => 0.02374941164059
228 => 0.02360068826026
229 => 0.023466427442369
301 => 0.023242921008332
302 => 0.023950128438353
303 => 0.023921417108207
304 => 0.024386220170008
305 => 0.024304061713978
306 => 0.02375538743703
307 => 0.02377498344617
308 => 0.023906776025157
309 => 0.024362911645811
310 => 0.024498323754102
311 => 0.024435595470302
312 => 0.024584068665246
313 => 0.02470141582479
314 => 0.024598805661776
315 => 0.026051549184368
316 => 0.025448268788863
317 => 0.025742303456034
318 => 0.025812428991601
319 => 0.025632803906826
320 => 0.025671758155822
321 => 0.025730763228653
322 => 0.026089030476504
323 => 0.02702922740033
324 => 0.027445634217756
325 => 0.028698414673131
326 => 0.027411057428231
327 => 0.027334670976933
328 => 0.027560334567291
329 => 0.028295849314875
330 => 0.028891914934405
331 => 0.029089664288254
401 => 0.029115800129851
402 => 0.029486791063799
403 => 0.029699436148567
404 => 0.029441743006387
405 => 0.029223375049987
406 => 0.028441208134989
407 => 0.02853174608517
408 => 0.02915546277975
409 => 0.030036499347576
410 => 0.030792520379001
411 => 0.030527788163789
412 => 0.032547508094039
413 => 0.032747755075307
414 => 0.032720087417256
415 => 0.033176279841331
416 => 0.032270830781513
417 => 0.031883733766192
418 => 0.029270588680742
419 => 0.030004775860951
420 => 0.031071960044685
421 => 0.030930714216232
422 => 0.03015569653609
423 => 0.030791932458593
424 => 0.030581572965677
425 => 0.03041565370579
426 => 0.031175762000361
427 => 0.030339991706952
428 => 0.031063622596677
429 => 0.030135558495602
430 => 0.030528997438249
501 => 0.030305662465902
502 => 0.030450187563915
503 => 0.029605296794064
504 => 0.030061179344912
505 => 0.029586330581146
506 => 0.029586105441005
507 => 0.029575623128226
508 => 0.030134280592995
509 => 0.030152498392864
510 => 0.029739649682316
511 => 0.029680151733217
512 => 0.029900146835173
513 => 0.029642590187591
514 => 0.029763099321953
515 => 0.029646240286506
516 => 0.029619932856199
517 => 0.029410310775674
518 => 0.029319999819705
519 => 0.029355413072567
520 => 0.029234529383765
521 => 0.029161692588708
522 => 0.029561134056414
523 => 0.029347728593641
524 => 0.029528426608579
525 => 0.02932249841465
526 => 0.028608661575849
527 => 0.028198126461167
528 => 0.026849754845382
529 => 0.027232151362969
530 => 0.027485680649747
531 => 0.027401889221979
601 => 0.027581905631802
602 => 0.027592957177332
603 => 0.027534432007449
604 => 0.027466667358262
605 => 0.027433683274659
606 => 0.027679519610489
607 => 0.027822235877909
608 => 0.027511125705459
609 => 0.027438236944948
610 => 0.027752786506158
611 => 0.027944661556787
612 => 0.029361359125353
613 => 0.029256405593601
614 => 0.029519818362209
615 => 0.029490162126862
616 => 0.029766260673308
617 => 0.030217565108795
618 => 0.029299937004745
619 => 0.029459205514415
620 => 0.029420156553891
621 => 0.029846482865707
622 => 0.029847813809918
623 => 0.029592209889405
624 => 0.029730776921415
625 => 0.029653432605535
626 => 0.029793204238042
627 => 0.029255003875197
628 => 0.029910473822003
629 => 0.030282083044291
630 => 0.030287242838703
701 => 0.030463382660794
702 => 0.03064235092137
703 => 0.030985864912694
704 => 0.030632770502594
705 => 0.029997588031873
706 => 0.030043446154632
707 => 0.029671038904453
708 => 0.029677299137609
709 => 0.029643881522397
710 => 0.029744170301209
711 => 0.029277011622419
712 => 0.029386652830588
713 => 0.029233154497094
714 => 0.029458871839016
715 => 0.029216037291521
716 => 0.0294201377233
717 => 0.029508220703619
718 => 0.029833248797289
719 => 0.029168030377814
720 => 0.027811604989177
721 => 0.028096742050937
722 => 0.027675001939561
723 => 0.027714035592547
724 => 0.027792889783738
725 => 0.027537297550602
726 => 0.027586056494048
727 => 0.027584314481476
728 => 0.027569302758249
729 => 0.02750281334697
730 => 0.027406390546086
731 => 0.027790509307433
801 => 0.027855778570031
802 => 0.028000864055636
803 => 0.02843254004837
804 => 0.028389405437075
805 => 0.028459759777735
806 => 0.028306176647097
807 => 0.02772115987349
808 => 0.027752929098898
809 => 0.027356766348999
810 => 0.027990733283425
811 => 0.027840601545399
812 => 0.027743810637228
813 => 0.027717400341172
814 => 0.028150146375197
815 => 0.02827963077104
816 => 0.028198944784925
817 => 0.028033455473417
818 => 0.028351243874036
819 => 0.028436270643625
820 => 0.028455305001669
821 => 0.029018365117683
822 => 0.028486773807337
823 => 0.028614733119301
824 => 0.029613035143644
825 => 0.028707712963827
826 => 0.02918728231357
827 => 0.029163809889458
828 => 0.029409141341045
829 => 0.02914368554974
830 => 0.029146976192419
831 => 0.029364813901235
901 => 0.02905890012644
902 => 0.028983151573726
903 => 0.028878505490672
904 => 0.029106996384619
905 => 0.029243966341786
906 => 0.030347843603204
907 => 0.031060998656998
908 => 0.0310300387153
909 => 0.031312954627836
910 => 0.031185498418026
911 => 0.030773908695299
912 => 0.031476442163975
913 => 0.031254131179237
914 => 0.031272458226711
915 => 0.031271776093089
916 => 0.031419593463175
917 => 0.031314851309206
918 => 0.03110839377217
919 => 0.031245449920224
920 => 0.031652457681475
921 => 0.032915822260922
922 => 0.033622817816934
923 => 0.03287326024072
924 => 0.033390295019817
925 => 0.033080258390687
926 => 0.033023915512384
927 => 0.033348651562227
928 => 0.033673956019537
929 => 0.033653235531936
930 => 0.033417081200498
1001 => 0.033283683610862
1002 => 0.034293814851052
1003 => 0.035038062341686
1004 => 0.034987309652323
1005 => 0.035211315517512
1006 => 0.035869003665946
1007 => 0.035929134427823
1008 => 0.035921559333916
1009 => 0.035772518966609
1010 => 0.036420098360341
1011 => 0.036960320483667
1012 => 0.035738020427768
1013 => 0.036203456287972
1014 => 0.036412405441024
1015 => 0.036719204790125
1016 => 0.0372368267176
1017 => 0.037799101423273
1018 => 0.037878613231684
1019 => 0.037822195798626
1020 => 0.037451360515479
1021 => 0.038066608207759
1022 => 0.038427005876563
1023 => 0.038641614440782
1024 => 0.03918582605218
1025 => 0.036413695839858
1026 => 0.034451444291766
1027 => 0.034145010377275
1028 => 0.03476815579231
1029 => 0.034932474268764
1030 => 0.034866237696943
1031 => 0.032657545179459
1101 => 0.03413338206827
1102 => 0.035721258468741
1103 => 0.035782255268113
1104 => 0.036577179395118
1105 => 0.036836039275912
1106 => 0.037476057391239
1107 => 0.037436024083867
1108 => 0.037591858310036
1109 => 0.037556034720112
1110 => 0.03874153350704
1111 => 0.040049314717295
1112 => 0.040004030412473
1113 => 0.039816021390534
1114 => 0.040095246848416
1115 => 0.04144501720775
1116 => 0.041320751982692
1117 => 0.041441465063949
1118 => 0.043032920387329
1119 => 0.045102038689602
1120 => 0.044140725502115
1121 => 0.046226498508543
1122 => 0.047539382054014
1123 => 0.049809878391213
1124 => 0.049525601067365
1125 => 0.050409488629765
1126 => 0.04901668532721
1127 => 0.045818527412555
1128 => 0.045312406680504
1129 => 0.046325673203088
1130 => 0.04881669007576
1201 => 0.046247222216992
1202 => 0.046767022218338
1203 => 0.046617319782982
1204 => 0.046609342776396
1205 => 0.046913792672944
1206 => 0.046472172218962
1207 => 0.044672931043437
1208 => 0.045497512671185
1209 => 0.04517910210505
1210 => 0.045532402367257
1211 => 0.047439018170281
1212 => 0.046596057875721
1213 => 0.045708067681934
1214 => 0.046821804445741
1215 => 0.048239974067541
1216 => 0.048151227561305
1217 => 0.047979022246044
1218 => 0.04894973459179
1219 => 0.050553066994932
1220 => 0.05098644130079
1221 => 0.051306349353427
1222 => 0.051350459268994
1223 => 0.051804818813502
1224 => 0.049361613029336
1225 => 0.053239043354782
1226 => 0.053908568460135
1227 => 0.053782725489301
1228 => 0.054526874465978
1229 => 0.054307926959802
1230 => 0.053990706375165
1231 => 0.055170340788224
]
'min_raw' => 0.020336269973607
'max_raw' => 0.055170340788224
'avg_raw' => 0.037753305380916
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.020336'
'max' => '$0.05517'
'avg' => '$0.037753'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0070134539457185
'max_diff' => 0.025428092533561
'year' => 2032
]
7 => [
'items' => [
101 => 0.05381798512524
102 => 0.051898486518478
103 => 0.05084541161943
104 => 0.052232185595625
105 => 0.053079040071145
106 => 0.053638757009403
107 => 0.053808127016729
108 => 0.049551272139446
109 => 0.047257063456586
110 => 0.048727624919143
111 => 0.050521811396194
112 => 0.049351646232866
113 => 0.049397514491852
114 => 0.047729166482941
115 => 0.050669423175665
116 => 0.050241052506986
117 => 0.052463440293865
118 => 0.05193304961275
119 => 0.053745320580353
120 => 0.05326808889877
121 => 0.05524905092736
122 => 0.056039310312971
123 => 0.057366278815464
124 => 0.058342402247631
125 => 0.058915600597265
126 => 0.058881187918366
127 => 0.061152485345901
128 => 0.059813180605972
129 => 0.058130698202729
130 => 0.058100267404218
131 => 0.058971648881818
201 => 0.060797825407032
202 => 0.061271326410232
203 => 0.061535948874826
204 => 0.061130670358726
205 => 0.059676951052368
206 => 0.059049242426407
207 => 0.059584068362196
208 => 0.058930022200843
209 => 0.060059089368279
210 => 0.061609539744902
211 => 0.061289377873275
212 => 0.062359631008775
213 => 0.063467230410104
214 => 0.065051147299407
215 => 0.065465241826543
216 => 0.066149724333295
217 => 0.066854281673533
218 => 0.067080566502865
219 => 0.067512614454118
220 => 0.06751033734815
221 => 0.068812342929433
222 => 0.070248495405344
223 => 0.070790609717994
224 => 0.072037171687575
225 => 0.069902477999408
226 => 0.071521667683477
227 => 0.072982217309453
228 => 0.071240889833971
301 => 0.073640904081656
302 => 0.073734091196345
303 => 0.075141105991301
304 => 0.073714826945194
305 => 0.072867907000459
306 => 0.075312933147232
307 => 0.076496004282053
308 => 0.076139653628093
309 => 0.073427807556252
310 => 0.071849396825891
311 => 0.067718391491845
312 => 0.072611745756173
313 => 0.074995155877226
314 => 0.073421635099828
315 => 0.07421522745371
316 => 0.078544810013304
317 => 0.080193234732287
318 => 0.079850373914097
319 => 0.079908311748402
320 => 0.08079777180574
321 => 0.084742127534577
322 => 0.082378578152408
323 => 0.08418542309457
324 => 0.085143767136829
325 => 0.086033930492373
326 => 0.083847970630175
327 => 0.081004068967583
328 => 0.08010328593217
329 => 0.073265179469221
330 => 0.072909226331433
331 => 0.072709419048709
401 => 0.071449662394434
402 => 0.070459838740563
403 => 0.069672694221208
404 => 0.067606991941171
405 => 0.068304105821357
406 => 0.06501180753255
407 => 0.067118103305842
408 => 0.061863515741583
409 => 0.06623969240601
410 => 0.0638579384079
411 => 0.065457222160562
412 => 0.065451642410211
413 => 0.062506853968183
414 => 0.060808361450988
415 => 0.061890706989263
416 => 0.063051067322988
417 => 0.063239331883215
418 => 0.064743769344393
419 => 0.065163625502033
420 => 0.063891441743174
421 => 0.061754626093751
422 => 0.062250959633536
423 => 0.060798303267646
424 => 0.058252578862045
425 => 0.060080962574232
426 => 0.060705253161929
427 => 0.060980975450507
428 => 0.058477547876022
429 => 0.057690916580062
430 => 0.057272120678568
501 => 0.061431465030582
502 => 0.061659323303374
503 => 0.060493568163856
504 => 0.065762891935917
505 => 0.064570281680218
506 => 0.065902719532441
507 => 0.062205922567122
508 => 0.062347145189595
509 => 0.060597022262414
510 => 0.061576974158379
511 => 0.060884375743635
512 => 0.061497803729258
513 => 0.061865489934583
514 => 0.063615325683813
515 => 0.066259672719466
516 => 0.063353958574758
517 => 0.062087897311315
518 => 0.062873354598556
519 => 0.06496513086083
520 => 0.068134278974231
521 => 0.066258079506048
522 => 0.067090704970094
523 => 0.06727259659306
524 => 0.065889156565901
525 => 0.068185288381351
526 => 0.069415804074992
527 => 0.070678058557322
528 => 0.071774038756762
529 => 0.070173886359509
530 => 0.071886278797406
531 => 0.070506392770417
601 => 0.069268492354213
602 => 0.069270369738161
603 => 0.068493816724237
604 => 0.066989147407781
605 => 0.066711663300058
606 => 0.068155170670815
607 => 0.069312726881505
608 => 0.069408068755338
609 => 0.070048951350961
610 => 0.070428219069435
611 => 0.074145558299945
612 => 0.075640702889899
613 => 0.077468937392856
614 => 0.078181137765408
615 => 0.080324605548826
616 => 0.078593581229775
617 => 0.078219063229694
618 => 0.07301971151009
619 => 0.073871105062902
620 => 0.075234268288213
621 => 0.073042189569591
622 => 0.074432558969588
623 => 0.074707047341198
624 => 0.072967703573542
625 => 0.073896762232455
626 => 0.071429457881077
627 => 0.066313453211962
628 => 0.068190983957035
629 => 0.069573478555424
630 => 0.067600488303168
701 => 0.07113699696507
702 => 0.069071041613144
703 => 0.068416232949929
704 => 0.065861590898585
705 => 0.067067283609629
706 => 0.068698000265173
707 => 0.067690406963206
708 => 0.069781314355684
709 => 0.072742596848064
710 => 0.074852983099556
711 => 0.075014992351175
712 => 0.073658155376364
713 => 0.075832495287717
714 => 0.07584833298019
715 => 0.073395668677745
716 => 0.071893425448989
717 => 0.071552112626668
718 => 0.072404778975145
719 => 0.073440073333086
720 => 0.075072443982759
721 => 0.076058851378733
722 => 0.078630878717376
723 => 0.07932679556941
724 => 0.080091397200989
725 => 0.081113140775189
726 => 0.082340005905692
727 => 0.079655694845623
728 => 0.079762347528221
729 => 0.077262754235901
730 => 0.074591580325118
731 => 0.076618668356874
801 => 0.079268816306173
802 => 0.078660869438451
803 => 0.078592462996604
804 => 0.078707503657425
805 => 0.078249131572851
806 => 0.076175931622383
807 => 0.075134783586177
808 => 0.076478130178075
809 => 0.077192059106191
810 => 0.078299300612553
811 => 0.078162809725861
812 => 0.081014944937193
813 => 0.082123198436225
814 => 0.081839659766332
815 => 0.081891837705332
816 => 0.083898277728242
817 => 0.086129851689581
818 => 0.088220015186495
819 => 0.090346219270167
820 => 0.087782997260143
821 => 0.086481551201008
822 => 0.087824311329808
823 => 0.087111823904749
824 => 0.091205987986634
825 => 0.091489459024682
826 => 0.095583327051903
827 => 0.099468895298473
828 => 0.097028439499988
829 => 0.099329679397416
830 => 0.10181865796933
831 => 0.10662030145676
901 => 0.10500327685405
902 => 0.10376466135037
903 => 0.10259417568435
904 => 0.10502977054598
905 => 0.10816312442589
906 => 0.10883801884073
907 => 0.10993160562228
908 => 0.10878183283891
909 => 0.11016660751316
910 => 0.11505547061411
911 => 0.11373445664904
912 => 0.11185840445506
913 => 0.11571769234185
914 => 0.11711435362548
915 => 0.12691685395118
916 => 0.13929291553347
917 => 0.1341691447728
918 => 0.1309886549186
919 => 0.13173614547657
920 => 0.13625546421029
921 => 0.13770692595156
922 => 0.13376135258993
923 => 0.13515499580368
924 => 0.14283410693142
925 => 0.14695370367607
926 => 0.14135873796118
927 => 0.12592244945335
928 => 0.11168948648132
929 => 0.11546470918018
930 => 0.11503671608493
1001 => 0.12328696300306
1002 => 0.11370295090286
1003 => 0.11386432108706
1004 => 0.1222851743743
1005 => 0.12003863508724
1006 => 0.11639952915721
1007 => 0.11171605598189
1008 => 0.10305822264847
1009 => 0.095389738223522
1010 => 0.11042940212734
1011 => 0.10978086447195
1012 => 0.10884168583906
1013 => 0.11093172625683
1014 => 0.12108036925718
1015 => 0.12084641018807
1016 => 0.11935808195736
1017 => 0.12048696580283
1018 => 0.11620163036103
1019 => 0.11730605887965
1020 => 0.11168723190727
1021 => 0.11422717636173
1022 => 0.11639172127029
1023 => 0.11682628570732
1024 => 0.11780538157335
1025 => 0.10943911459734
1026 => 0.11319532284888
1027 => 0.11540174328754
1028 => 0.10543305547541
1029 => 0.11520469438127
1030 => 0.10929347650256
1031 => 0.10728712037101
1101 => 0.10998841458482
1102 => 0.1089357176026
1103 => 0.10803067055373
1104 => 0.10752563874978
1105 => 0.10950917108944
1106 => 0.10941663693496
1107 => 0.10617119304024
1108 => 0.1019376437808
1109 => 0.10335856187379
1110 => 0.10284232900943
1111 => 0.10097143451362
1112 => 0.10223219151113
1113 => 0.096680455748611
1114 => 0.08712898292331
1115 => 0.093438978441229
1116 => 0.093196050477744
1117 => 0.093073555182648
1118 => 0.097815342418897
1119 => 0.097359528987777
1120 => 0.096532223146954
1121 => 0.10095624039307
1122 => 0.099341414586811
1123 => 0.1043179272209
1124 => 0.10759578030237
1125 => 0.10676441073347
1126 => 0.10984724739983
1127 => 0.1033912969568
1128 => 0.1055357047262
1129 => 0.10597766419545
1130 => 0.10090164870698
1201 => 0.097434105702248
1202 => 0.097202860116717
1203 => 0.091190618403374
1204 => 0.094402309397522
1205 => 0.097228464563569
1206 => 0.095874955557533
1207 => 0.095446475041154
1208 => 0.097635489073251
1209 => 0.097805594211183
1210 => 0.093927179039414
1211 => 0.09473362436706
1212 => 0.098096635443724
1213 => 0.094648885116526
1214 => 0.087950469417598
1215 => 0.086289169711421
1216 => 0.086067521706789
1217 => 0.081561945144297
1218 => 0.086400185701602
1219 => 0.084288164041553
1220 => 0.090960015159744
1221 => 0.087149089582888
1222 => 0.08698480819807
1223 => 0.086736472790079
1224 => 0.082858336919718
1225 => 0.083707402206935
1226 => 0.086529824537939
1227 => 0.087536896622504
1228 => 0.087431850753385
1229 => 0.08651599312875
1230 => 0.086935268059358
1231 => 0.085584637422798
]
'min_raw' => 0.047257063456586
'max_raw' => 0.14695370367607
'avg_raw' => 0.097105383566326
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.047257'
'max' => '$0.146953'
'avg' => '$0.0971053'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.026920793482979
'max_diff' => 0.091783362887843
'year' => 2033
]
8 => [
'items' => [
101 => 0.085107701634084
102 => 0.083602361093376
103 => 0.081389926359473
104 => 0.081697578978873
105 => 0.077314166855974
106 => 0.074925851286128
107 => 0.074264797013889
108 => 0.07338080761369
109 => 0.074364645968847
110 => 0.077301749200176
111 => 0.073758979561982
112 => 0.067685149513695
113 => 0.0680501970489
114 => 0.068870350476919
115 => 0.067341999989663
116 => 0.065895544518208
117 => 0.067153120195996
118 => 0.06457955833465
119 => 0.069181353132526
120 => 0.069056887479624
121 => 0.070772152007191
122 => 0.07184474211705
123 => 0.069372769168997
124 => 0.068751074657487
125 => 0.069105220105683
126 => 0.063251984715736
127 => 0.070293817800813
128 => 0.070354715865751
129 => 0.069833269661463
130 => 0.073582828387061
131 => 0.081495566814769
201 => 0.0785184763291
202 => 0.077365656910012
203 => 0.075174146351621
204 => 0.078094204051656
205 => 0.07786998918029
206 => 0.076856004501006
207 => 0.07624274340315
208 => 0.077372695779561
209 => 0.076102729799083
210 => 0.075874609012658
211 => 0.074492445244785
212 => 0.073999075664099
213 => 0.073633804468168
214 => 0.073231676772254
215 => 0.074118670265462
216 => 0.072108626316142
217 => 0.069684710360302
218 => 0.069483187975708
219 => 0.070039608997601
220 => 0.069793434116087
221 => 0.069482009385085
222 => 0.068887414762125
223 => 0.068711011238997
224 => 0.069284237110341
225 => 0.068637098522738
226 => 0.069591986760209
227 => 0.069332309995993
228 => 0.067881776700106
301 => 0.066073875157223
302 => 0.066057781041289
303 => 0.065668271619428
304 => 0.065172172807553
305 => 0.065034169467293
306 => 0.067047210680077
307 => 0.071214145745285
308 => 0.07039607668568
309 => 0.070987215420334
310 => 0.073895032923325
311 => 0.074819340666403
312 => 0.074163288923795
313 => 0.073265244835004
314 => 0.07330475421726
315 => 0.076373642725091
316 => 0.076565045536949
317 => 0.077048658693627
318 => 0.077670238269021
319 => 0.07426914661327
320 => 0.073144563106129
321 => 0.072611673050928
322 => 0.070970577935314
323 => 0.072740358320642
324 => 0.071709183079664
325 => 0.071848323849634
326 => 0.071757708240657
327 => 0.071807190490559
328 => 0.069180066837095
329 => 0.070137252618863
330 => 0.068545745607438
331 => 0.066414896374186
401 => 0.066407753020384
402 => 0.066929275351451
403 => 0.066619053461762
404 => 0.065784254333142
405 => 0.065902833609222
406 => 0.064863954375787
407 => 0.066028972357677
408 => 0.066062380904762
409 => 0.065613785522776
410 => 0.067408656465379
411 => 0.068144016555039
412 => 0.067848741464771
413 => 0.068123299267562
414 => 0.070430071148467
415 => 0.070806175616568
416 => 0.070973216377231
417 => 0.070749403886602
418 => 0.068165462822944
419 => 0.068280071596883
420 => 0.067439148457835
421 => 0.066728657019636
422 => 0.066757072951128
423 => 0.067122357907784
424 => 0.068717578737179
425 => 0.072074626929238
426 => 0.072202024454157
427 => 0.072356433970806
428 => 0.071728372866589
429 => 0.071538943627822
430 => 0.071788849689591
501 => 0.073049580485319
502 => 0.076292522377006
503 => 0.075146250123678
504 => 0.074214312938931
505 => 0.075031873098415
506 => 0.074906016120111
507 => 0.073843656565237
508 => 0.07381383967083
509 => 0.071774832028133
510 => 0.071021057328585
511 => 0.070391146770585
512 => 0.06970330088548
513 => 0.069295522787987
514 => 0.069922055277567
515 => 0.070065350670848
516 => 0.068695426432467
517 => 0.06850871082082
518 => 0.06962742052575
519 => 0.069135118094312
520 => 0.069641463353559
521 => 0.069758939797054
522 => 0.069740023383939
523 => 0.069226003104943
524 => 0.06955362430247
525 => 0.06877870250174
526 => 0.067936091432937
527 => 0.067398558067566
528 => 0.066929488912825
529 => 0.067189755742334
530 => 0.066261952017978
531 => 0.065965128933557
601 => 0.069442633612458
602 => 0.072011503708238
603 => 0.071974151319661
604 => 0.071746778260454
605 => 0.071408948015413
606 => 0.07302486609868
607 => 0.072461912549772
608 => 0.072871508292946
609 => 0.072975767600263
610 => 0.073291329122617
611 => 0.073404115243429
612 => 0.073063197251337
613 => 0.07191903483025
614 => 0.0690678908606
615 => 0.067740675646212
616 => 0.067302672518946
617 => 0.067318593100736
618 => 0.066879432382368
619 => 0.06700878489573
620 => 0.066834448857061
621 => 0.066504298576239
622 => 0.067169369892833
623 => 0.067246013166502
624 => 0.067090777574199
625 => 0.067127341175797
626 => 0.065842056773514
627 => 0.065939774155128
628 => 0.065395671356974
629 => 0.065293658641577
630 => 0.063918214148293
701 => 0.061481414854573
702 => 0.062831638209125
703 => 0.061200758266961
704 => 0.060583119320999
705 => 0.063506926028616
706 => 0.063213456928946
707 => 0.062711165398262
708 => 0.061968171537652
709 => 0.061692587887373
710 => 0.060018228867455
711 => 0.0599192988042
712 => 0.060749156345968
713 => 0.060366205644097
714 => 0.059828397823897
715 => 0.057880512415839
716 => 0.055690444294487
717 => 0.055756548684793
718 => 0.056453168606529
719 => 0.058478684980973
720 => 0.057687280691689
721 => 0.057113107799495
722 => 0.057005582476361
723 => 0.058351487014896
724 => 0.060256223912641
725 => 0.061149883848977
726 => 0.060264293992923
727 => 0.059246976049834
728 => 0.059308895479232
729 => 0.059720817702627
730 => 0.059764104904039
731 => 0.059101935505062
801 => 0.059288332312194
802 => 0.059005178517679
803 => 0.057267464203397
804 => 0.057236034461803
805 => 0.05680957134465
806 => 0.056796658210949
807 => 0.056071138062461
808 => 0.055969632778404
809 => 0.054529068487656
810 => 0.055477252266257
811 => 0.054841260369454
812 => 0.05388267056565
813 => 0.05371740932216
814 => 0.053712441369622
815 => 0.05469669876137
816 => 0.055465750645571
817 => 0.05485232372079
818 => 0.054712658300799
819 => 0.056203919591771
820 => 0.056014142999347
821 => 0.055849797694235
822 => 0.060085675614785
823 => 0.056732647710993
824 => 0.055270536160798
825 => 0.053460895469979
826 => 0.05405012360391
827 => 0.054174282629292
828 => 0.049822422980124
829 => 0.048056874062447
830 => 0.047451004207207
831 => 0.047102317539774
901 => 0.047261218432655
902 => 0.045672017328512
903 => 0.046739986753456
904 => 0.045363872929094
905 => 0.045133162968177
906 => 0.047593824953929
907 => 0.047936211694267
908 => 0.046475483488761
909 => 0.047413507467111
910 => 0.047073366933053
911 => 0.045387462450926
912 => 0.045323073300383
913 => 0.04447714569366
914 => 0.043153432793
915 => 0.04254846047744
916 => 0.042233385642885
917 => 0.042363391660309
918 => 0.04229765663965
919 => 0.041868691164969
920 => 0.042322244438529
921 => 0.041163603245734
922 => 0.040702222986956
923 => 0.040493828228007
924 => 0.039465467480501
925 => 0.041102046743882
926 => 0.04142447347585
927 => 0.041747535488083
928 => 0.044559569740768
929 => 0.04441908845623
930 => 0.045688970851291
1001 => 0.045639625556583
1002 => 0.045277434526781
1003 => 0.043749410149577
1004 => 0.044358453431915
1005 => 0.04248391287522
1006 => 0.043888446116663
1007 => 0.043247475799979
1008 => 0.043671733407834
1009 => 0.042908879975144
1010 => 0.043331074562241
1011 => 0.041500932815243
1012 => 0.039791972202686
1013 => 0.040479707840849
1014 => 0.041227355131643
1015 => 0.042848444955071
1016 => 0.041882937229938
1017 => 0.042230170317785
1018 => 0.041066997599615
1019 => 0.038667040038168
1020 => 0.038680623537332
1021 => 0.038311442352421
1022 => 0.037992415907322
1023 => 0.041993837406653
1024 => 0.041496197390098
1025 => 0.040703273153233
1026 => 0.041764633753834
1027 => 0.04204527434269
1028 => 0.042053263785721
1029 => 0.042827605082236
1030 => 0.043240871170995
1031 => 0.043313711110337
1101 => 0.044532153871155
1102 => 0.044940559812933
1103 => 0.046622726087343
1104 => 0.043205808430693
1105 => 0.04313543926012
1106 => 0.041779569274063
1107 => 0.040919655093449
1108 => 0.041838448333698
1109 => 0.042652373716774
1110 => 0.041804860204523
1111 => 0.041915527577237
1112 => 0.040777809931438
1113 => 0.04118449045522
1114 => 0.041534778508084
1115 => 0.041341370034272
1116 => 0.041051828187901
1117 => 0.042585641117245
1118 => 0.04249909738071
1119 => 0.043927419242722
1120 => 0.045040898274436
1121 => 0.047036451757454
1122 => 0.044953987667369
1123 => 0.044878094398881
1124 => 0.045619963272012
1125 => 0.044940446236674
1126 => 0.045369877546877
1127 => 0.046967263734398
1128 => 0.047001013987412
1129 => 0.04643565376468
1130 => 0.046401251543747
1201 => 0.046509835158886
1202 => 0.047145812784301
1203 => 0.046923582660362
1204 => 0.047180752985963
1205 => 0.047502348416057
1206 => 0.048832603468565
1207 => 0.049153323458168
1208 => 0.048374140157683
1209 => 0.048444491685571
1210 => 0.04815305574213
1211 => 0.047871532272448
1212 => 0.048504355919093
1213 => 0.049660853571517
1214 => 0.049653659059643
1215 => 0.049921944035904
1216 => 0.050089083353521
1217 => 0.049371599048849
1218 => 0.048904543149136
1219 => 0.049083642100625
1220 => 0.049370025224323
1221 => 0.048990771913385
1222 => 0.046649844791049
1223 => 0.047359932540962
1224 => 0.047241739217859
1225 => 0.047073417552962
1226 => 0.047787416276446
1227 => 0.047718549357755
1228 => 0.045655717774195
1229 => 0.045787773559334
1230 => 0.045663748523872
1231 => 0.046064498786585
]
'min_raw' => 0.037992415907322
'max_raw' => 0.085107701634084
'avg_raw' => 0.061550058770703
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.037992'
'max' => '$0.0851077'
'avg' => '$0.06155'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0092646475492633
'max_diff' => -0.061846002041984
'year' => 2034
]
9 => [
'items' => [
101 => 0.044918804407337
102 => 0.045271212282024
103 => 0.045492239197409
104 => 0.04562242574858
105 => 0.046092748841162
106 => 0.046037561854696
107 => 0.046089318340597
108 => 0.046786683326204
109 => 0.050313716116636
110 => 0.05050568472946
111 => 0.049560361070693
112 => 0.049937999226686
113 => 0.049213016547566
114 => 0.049699702277021
115 => 0.050032680292637
116 => 0.048528016668059
117 => 0.048438920253397
118 => 0.04771094531287
119 => 0.048102117811301
120 => 0.047479734239999
121 => 0.047632445398344
122 => 0.047205451686493
123 => 0.047973955354224
124 => 0.048833261868144
125 => 0.049050356628602
126 => 0.048479273779007
127 => 0.048065772159705
128 => 0.047339799532114
129 => 0.048547108191154
130 => 0.048900162035122
131 => 0.048545253749611
201 => 0.048463013744959
202 => 0.048307169084748
203 => 0.048496076926348
204 => 0.048898239228065
205 => 0.048708586913347
206 => 0.048833855608462
207 => 0.048356460519201
208 => 0.049371836566008
209 => 0.050984498091891
210 => 0.050989683062393
211 => 0.050800029725378
212 => 0.05072242766601
213 => 0.050917023498914
214 => 0.051022583755526
215 => 0.051651870996365
216 => 0.052327121277695
217 => 0.055478219705883
218 => 0.054593403876572
219 => 0.057389245861745
220 => 0.059600393877371
221 => 0.060263420485473
222 => 0.059653467203832
223 => 0.057566849976366
224 => 0.057464470580453
225 => 0.060582757665358
226 => 0.059701698737276
227 => 0.059596899581287
228 => 0.058482013622531
301 => 0.059141049305468
302 => 0.058996908534139
303 => 0.058769375274989
304 => 0.060026769449209
305 => 0.062380499094996
306 => 0.062013648256564
307 => 0.061739811123394
308 => 0.060539936518637
309 => 0.061262529032396
310 => 0.061005227678594
311 => 0.062110757582
312 => 0.061455866157709
313 => 0.05969502384935
314 => 0.059975443790768
315 => 0.059933058880749
316 => 0.060805337325508
317 => 0.060543500987674
318 => 0.059881931133464
319 => 0.06237245430295
320 => 0.062210733581342
321 => 0.062440016590079
322 => 0.062540954061337
323 => 0.064056891626663
324 => 0.064677922742585
325 => 0.064818907678579
326 => 0.065408839206435
327 => 0.064804229644751
328 => 0.0672230989708
329 => 0.068831505927684
330 => 0.07069975337597
331 => 0.07342976503549
401 => 0.074456274673489
402 => 0.074270844895316
403 => 0.076340708578372
404 => 0.080060207606338
405 => 0.075022661993415
406 => 0.080327209755939
407 => 0.078647851178273
408 => 0.074666122200997
409 => 0.074409745796362
410 => 0.077106218888597
411 => 0.083086736681257
412 => 0.081588684804667
413 => 0.083089186957465
414 => 0.081338771492362
415 => 0.08125184861086
416 => 0.083004173185325
417 => 0.087098575067805
418 => 0.085153478209798
419 => 0.082364704906529
420 => 0.084423891715545
421 => 0.082640033532833
422 => 0.078620501776716
423 => 0.08158753927263
424 => 0.079603565795475
425 => 0.08018259472994
426 => 0.084352611885136
427 => 0.083850864388526
428 => 0.084500172109707
429 => 0.083354160977165
430 => 0.082283605870002
501 => 0.080285335262017
502 => 0.079693745848543
503 => 0.07985723987927
504 => 0.079693664829021
505 => 0.078575650788908
506 => 0.078334215763393
507 => 0.077931813476689
508 => 0.078056534771659
509 => 0.077299900745716
510 => 0.078727825481238
511 => 0.078992860894981
512 => 0.080031985438453
513 => 0.080139870795719
514 => 0.083033817858278
515 => 0.081439880447025
516 => 0.082509231276428
517 => 0.082413578473126
518 => 0.074752418341593
519 => 0.07580805861273
520 => 0.077450303596454
521 => 0.076710474457297
522 => 0.075664529147886
523 => 0.074819872230497
524 => 0.073540130630049
525 => 0.075341342357419
526 => 0.077709744241398
527 => 0.080199937375955
528 => 0.083191741263208
529 => 0.08252400546401
530 => 0.080144007683339
531 => 0.08025077264519
601 => 0.080910751628892
602 => 0.080056018879584
603 => 0.079803941505448
604 => 0.080876120068597
605 => 0.080883503573102
606 => 0.079900030247121
607 => 0.078807079619011
608 => 0.078802500115972
609 => 0.078608020108351
610 => 0.081373369053678
611 => 0.082894031365294
612 => 0.083068372848651
613 => 0.082882296794384
614 => 0.082953910082577
615 => 0.082069070188955
616 => 0.084091551794655
617 => 0.085947580918746
618 => 0.085450125465211
619 => 0.084704369022902
620 => 0.084110338096106
621 => 0.085310190657432
622 => 0.085256763111619
623 => 0.085931370123511
624 => 0.085900766052733
625 => 0.085673921087887
626 => 0.085450133566559
627 => 0.08633742579283
628 => 0.086081899881141
629 => 0.085825977067133
630 => 0.085312684683818
701 => 0.085382449643594
702 => 0.08463682196665
703 => 0.084291860485694
704 => 0.079104467490447
705 => 0.077718226579161
706 => 0.078154366189388
707 => 0.078297954673434
708 => 0.077694660852327
709 => 0.078559629218328
710 => 0.078424824814715
711 => 0.078949269891235
712 => 0.078621619376184
713 => 0.07863506626761
714 => 0.079598616569922
715 => 0.079878339321919
716 => 0.079736070072614
717 => 0.079835710578122
718 => 0.082131883971945
719 => 0.081805441542835
720 => 0.081632025508609
721 => 0.081680062935236
722 => 0.08226678446787
723 => 0.0824310344632
724 => 0.081735095691346
725 => 0.082063304439326
726 => 0.083460775632335
727 => 0.083949811459869
728 => 0.085510579070842
729 => 0.084847537249268
730 => 0.086064579208544
731 => 0.08980535127118
801 => 0.092793738836552
802 => 0.090045494131097
803 => 0.09553328732604
804 => 0.099806321505482
805 => 0.099642315336564
806 => 0.098897212990317
807 => 0.094032477181514
808 => 0.089555874761128
809 => 0.09330074277236
810 => 0.093310289211059
811 => 0.092988601727736
812 => 0.090990628396694
813 => 0.092919076586674
814 => 0.093072149800899
815 => 0.092986469506386
816 => 0.091454628037972
817 => 0.089115789247331
818 => 0.089572792748633
819 => 0.090321373806385
820 => 0.088904153693692
821 => 0.088451265995292
822 => 0.089293270392028
823 => 0.092006383996894
824 => 0.091493485585891
825 => 0.091480091735595
826 => 0.09367448864064
827 => 0.092103774037119
828 => 0.089578557026312
829 => 0.088940906427563
830 => 0.086677676374916
831 => 0.088240897433629
901 => 0.088297154976583
902 => 0.087440994778458
903 => 0.089648029707822
904 => 0.089627691492407
905 => 0.09172294268404
906 => 0.095728276022033
907 => 0.094543701863505
908 => 0.093166170998439
909 => 0.09331594679826
910 => 0.094958617644116
911 => 0.093965421352184
912 => 0.094322581663573
913 => 0.094958077039209
914 => 0.095341487177792
915 => 0.093260779979665
916 => 0.092775667600051
917 => 0.09178329792267
918 => 0.091524407197298
919 => 0.092332671593053
920 => 0.092119722481174
921 => 0.088292426747937
922 => 0.087892453048942
923 => 0.087904719671259
924 => 0.086898966787422
925 => 0.08536495223122
926 => 0.089396250893669
927 => 0.089072481193085
928 => 0.088715064501426
929 => 0.088758846006763
930 => 0.090508696122743
1001 => 0.089493694685926
1002 => 0.092192242361169
1003 => 0.091637502084907
1004 => 0.091068534813786
1005 => 0.09098988620575
1006 => 0.090770882348375
1007 => 0.090019836633689
1008 => 0.089112903802356
1009 => 0.088514068189933
1010 => 0.081649549069272
1011 => 0.082923563888996
1012 => 0.084389201808983
1013 => 0.084895134145788
1014 => 0.084029701874232
1015 => 0.090054009174642
1016 => 0.091154708170097
1017 => 0.087820619116046
1018 => 0.087196947183992
1019 => 0.090094897002678
1020 => 0.088347079002053
1021 => 0.089134121340714
1022 => 0.087432966293672
1023 => 0.090889582014321
1024 => 0.090863248393945
1025 => 0.089518546807405
1026 => 0.090655079380229
1027 => 0.090457578877008
1028 => 0.088939414097659
1029 => 0.090937710545728
1030 => 0.090938701675835
1031 => 0.089644455635124
1101 => 0.088133059606464
1102 => 0.08786285769412
1103 => 0.087659296849689
1104 => 0.08908405785149
1105 => 0.090361494110594
1106 => 0.09273848628548
1107 => 0.093336118594187
1108 => 0.095668717281708
1109 => 0.094279768335458
1110 => 0.094895471413431
1111 => 0.095563904201088
1112 => 0.095884375460292
1113 => 0.095362184740854
1114 => 0.098985670638498
1115 => 0.099291603868998
1116 => 0.099394180634873
1117 => 0.098172361577501
1118 => 0.099257622870758
1119 => 0.09874986505172
1120 => 0.10007090983767
1121 => 0.10027806652806
1122 => 0.10010261218112
1123 => 0.10016836698439
1124 => 0.097076360997465
1125 => 0.096916024175412
1126 => 0.094729820229738
1127 => 0.095620714497204
1128 => 0.093955230365849
1129 => 0.094483372540289
1130 => 0.094716172578459
1201 => 0.094594571049805
1202 => 0.095671084322399
1203 => 0.094755828123562
1204 => 0.092340316532781
1205 => 0.089924146837483
1206 => 0.089893813795127
1207 => 0.089257678963293
1208 => 0.088797869993782
1209 => 0.088886445513909
1210 => 0.089198597199925
1211 => 0.08877972717033
1212 => 0.088869114328394
1213 => 0.090353536735766
1214 => 0.090651227063149
1215 => 0.089639559015584
1216 => 0.08557756582161
1217 => 0.08458074250307
1218 => 0.085297239336571
1219 => 0.084954799998463
1220 => 0.068565154049045
1221 => 0.072415658253806
1222 => 0.070127819406104
1223 => 0.071182160805529
1224 => 0.068846869775023
1225 => 0.06996139305787
1226 => 0.069755581303402
1227 => 0.075947078119956
1228 => 0.075850406413291
1229 => 0.075896678043518
1230 => 0.073688012572659
1231 => 0.07720647663954
]
'min_raw' => 0.044918804407337
'max_raw' => 0.10027806652806
'avg_raw' => 0.072598435467697
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.044918'
'max' => '$0.100278'
'avg' => '$0.072598'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.006926388500015
'max_diff' => 0.015170364893974
'year' => 2035
]
10 => [
'items' => [
101 => 0.078939798558761
102 => 0.078619006802383
103 => 0.078699743176276
104 => 0.077312424780383
105 => 0.075910110318118
106 => 0.074354727764819
107 => 0.077244436297755
108 => 0.076923150037863
109 => 0.077660065122909
110 => 0.079534247667151
111 => 0.079810228166117
112 => 0.080181148755447
113 => 0.080048200128097
114 => 0.083215575807925
115 => 0.082831985714081
116 => 0.083756327473845
117 => 0.081854886344032
118 => 0.0797032252192
119 => 0.080112185655929
120 => 0.08007279947722
121 => 0.079571368216901
122 => 0.079118698495592
123 => 0.078365130948515
124 => 0.080749530174478
125 => 0.080652727920328
126 => 0.082219843894702
127 => 0.081942840924079
128 => 0.080092947292134
129 => 0.080159016605098
130 => 0.080603364486616
131 => 0.082141257578023
201 => 0.082597808955299
202 => 0.082386316166918
203 => 0.082886903909739
204 => 0.083282548051058
205 => 0.082936590722444
206 => 0.087834616936177
207 => 0.085800614963039
208 => 0.086791973372251
209 => 0.087028406511426
210 => 0.086422787997084
211 => 0.086554124967272
212 => 0.086753064689924
213 => 0.087960987729475
214 => 0.091130927300607
215 => 0.092534871958153
216 => 0.096758708729788
217 => 0.092418293898197
218 => 0.092160751644512
219 => 0.092921592194734
220 => 0.095401431518214
221 => 0.097411108370431
222 => 0.09807783412335
223 => 0.098165952938041
224 => 0.099416774773608
225 => 0.10013372252331
226 => 0.09926489210289
227 => 0.098528649291922
228 => 0.095891518928856
229 => 0.096196773949049
301 => 0.098299678331336
302 => 0.10127015463177
303 => 0.10381913232292
304 => 0.10292656917632
305 => 0.1097361959335
306 => 0.11041134261164
307 => 0.11031805917083
308 => 0.11185614377894
309 => 0.10880335905733
310 => 0.10749823444392
311 => 0.098687833344364
312 => 0.10116319668175
313 => 0.10476128266563
314 => 0.10428506249353
315 => 0.10167203627492
316 => 0.10381715010822
317 => 0.10310790839102
318 => 0.1025485000222
319 => 0.10511125820641
320 => 0.10229340031057
321 => 0.10473317237757
322 => 0.10160413946543
323 => 0.10293064632959
324 => 0.10217765687757
325 => 0.10266493333594
326 => 0.099816325117003
327 => 0.10135336496589
328 => 0.099752379205971
329 => 0.099751620130266
330 => 0.099716278280882
331 => 0.10159983092757
401 => 0.10166125351175
402 => 0.10026930525996
403 => 0.10006870377056
404 => 0.10081043261637
405 => 0.09994206239702
406 => 0.1003483673572
407 => 0.099954368960354
408 => 0.099865671622349
409 => 0.099158916142512
410 => 0.098854426449151
411 => 0.098973824703651
412 => 0.098566256907025
413 => 0.098320682567186
414 => 0.099667427363671
415 => 0.098947915946439
416 => 0.099557151919734
417 => 0.098862850636455
418 => 0.096456099895941
419 => 0.095071952094145
420 => 0.090525823051225
421 => 0.091815099608342
422 => 0.092669891299563
423 => 0.092387382650714
424 => 0.092994320544776
425 => 0.093031581602126
426 => 0.092834259905767
427 => 0.092605786659858
428 => 0.092494578519112
429 => 0.09332343288911
430 => 0.093804610748848
501 => 0.092755681081415
502 => 0.092509931536421
503 => 0.09357045734319
504 => 0.094217377472674
505 => 0.09899387223576
506 => 0.098640014075836
507 => 0.099528128616089
508 => 0.099428140548085
509 => 0.10035902607401
510 => 0.10188063048733
511 => 0.098786783267773
512 => 0.0993237681679
513 => 0.099192111871181
514 => 0.10062950079662
515 => 0.10063398816795
516 => 0.099772201704247
517 => 0.10023939012711
518 => 0.099978618366112
519 => 0.10044986818365
520 => 0.098635288084373
521 => 0.10084525077348
522 => 0.10209815721135
523 => 0.10211555381845
524 => 0.10270942152633
525 => 0.10331282551202
526 => 0.10447100691715
527 => 0.10328052446124
528 => 0.10113896241418
529 => 0.10129357627677
530 => 0.10003797923215
531 => 0.10005908604531
601 => 0.099946416222476
602 => 0.10028454684218
603 => 0.098709488740664
604 => 0.099079151728908
605 => 0.098561621380622
606 => 0.099322643157994
607 => 0.098503909526948
608 => 0.099192048382528
609 => 0.099489026300432
610 => 0.10058488121098
611 => 0.098342050865649
612 => 0.093768767965263
613 => 0.09473012747662
614 => 0.093308201246163
615 => 0.093439805932447
616 => 0.09370566834347
617 => 0.092843921284575
618 => 0.093008315466642
619 => 0.093002442149634
620 => 0.092951829076686
621 => 0.092727655384417
622 => 0.092402559179214
623 => 0.093697642401409
624 => 0.093917702277213
625 => 0.094406868121475
626 => 0.095862293869634
627 => 0.09571686251609
628 => 0.095954067087609
629 => 0.09543625083983
630 => 0.093463825943048
701 => 0.093570938104566
702 => 0.092235247734084
703 => 0.09437271151566
704 => 0.093866531879039
705 => 0.093540194574417
706 => 0.093451150417357
707 => 0.094910183884435
708 => 0.095346749565332
709 => 0.09507471112983
710 => 0.094516752361986
711 => 0.095588198141948
712 => 0.095874871831998
713 => 0.095939047499081
714 => 0.097837443991823
715 => 0.096045146774471
716 => 0.09647657052859
717 => 0.099842415502884
718 => 0.096790058566056
719 => 0.098406960111177
720 => 0.098327821194492
721 => 0.099154973312011
722 => 0.098259970578095
723 => 0.098271065209633
724 => 0.099005520253851
725 => 0.097974110603911
726 => 0.09771871906984
727 => 0.097365897494669
728 => 0.098136270496336
729 => 0.098598074269861
730 => 0.10231987352698
731 => 0.10472432558174
801 => 0.10461994197675
802 => 0.10557381272843
803 => 0.10514408521834
804 => 0.10375638173189
805 => 0.10612502237085
806 => 0.10537548536455
807 => 0.10543727628467
808 => 0.10543497642353
809 => 0.10593335300706
810 => 0.10558020752209
811 => 0.10488412152157
812 => 0.10534621589369
813 => 0.10671847097712
814 => 0.11097799286202
815 => 0.11336167773997
816 => 0.11083449203932
817 => 0.11257771089527
818 => 0.11153240075409
819 => 0.11134243680615
820 => 0.11243730707055
821 => 0.1135340937604
822 => 0.1134642331898
823 => 0.11266802237358
824 => 0.1122182630866
825 => 0.11562399108801
826 => 0.11813327346439
827 => 0.11796215722876
828 => 0.11871740864284
829 => 0.1209348501536
830 => 0.12113758521546
831 => 0.12111204525748
901 => 0.12060954525344
902 => 0.12279290439196
903 => 0.12461430099786
904 => 0.12049323102112
905 => 0.1220624805195
906 => 0.12276696717738
907 => 0.12380136260292
908 => 0.12554656107061
909 => 0.12744230949755
910 => 0.12771038911095
911 => 0.12752017379645
912 => 0.12626987674843
913 => 0.12834422729817
914 => 0.12955933320071
915 => 0.13028290095846
916 => 0.13211774840193
917 => 0.12277131784714
918 => 0.11615544975272
919 => 0.11512228641548
920 => 0.11722326468889
921 => 0.11777727590461
922 => 0.11755395467822
923 => 0.11010719364954
924 => 0.11508308075981
925 => 0.12043671690598
926 => 0.12064237187373
927 => 0.12332251406776
928 => 0.12419527822887
929 => 0.12635314398933
930 => 0.12621816889849
1001 => 0.12674357487202
1002 => 0.12662279313747
1003 => 0.13061978506648
1004 => 0.13502906072322
1005 => 0.13487638152787
1006 => 0.13424249598403
1007 => 0.13518392411017
1008 => 0.13973476911463
1009 => 0.13931580023242
1010 => 0.1397227928138
1011 => 0.14508849554844
1012 => 0.15206467236578
1013 => 0.14882353783742
1014 => 0.15585586715262
1015 => 0.16028234568877
1016 => 0.16793748261063
1017 => 0.16697902176567
1018 => 0.16995911039336
1019 => 0.16526317681637
1020 => 0.15448036411886
1021 => 0.15277394273453
1022 => 0.15619024155943
1023 => 0.16458887886289
1024 => 0.15592573858253
1025 => 0.15767828057835
1026 => 0.15717354836565
1027 => 0.15714665333101
1028 => 0.15817312741324
1029 => 0.15668417321968
1030 => 0.15061790597739
1031 => 0.1533980405058
1101 => 0.15232449705135
1102 => 0.15351567355202
1103 => 0.15994396184758
1104 => 0.15710186236086
1105 => 0.15410794142502
1106 => 0.15786298268281
1107 => 0.16264444057615
1108 => 0.16234522553429
1109 => 0.1617646232909
1110 => 0.16503744773755
1111 => 0.17044319487584
1112 => 0.17190434660527
1113 => 0.17298293894
1114 => 0.17313165859999
1115 => 0.17466356352667
1116 => 0.16642612464617
1117 => 0.17949915170195
1118 => 0.1817565023394
1119 => 0.18133221397716
1120 => 0.18384116420685
1121 => 0.18310296740335
1122 => 0.18203343605461
1123 => 0.18601065583769
1124 => 0.18145109430148
1125 => 0.17497937073367
1126 => 0.17142885518819
1127 => 0.17610446047039
1128 => 0.1789596894601
1129 => 0.18084681419563
1130 => 0.18141785700036
1201 => 0.16706557357749
1202 => 0.15933048882669
1203 => 0.16428858946902
1204 => 0.1703378144425
1205 => 0.16639252089601
1206 => 0.16654716893361
1207 => 0.16092221714123
1208 => 0.17083549786291
1209 => 0.16939121624557
1210 => 0.1768841518312
1211 => 0.17509590261912
1212 => 0.18120610071512
1213 => 0.1795970807814
1214 => 0.18627603256715
1215 => 0.18894044725988
1216 => 0.19341441421202
1217 => 0.19670548251433
1218 => 0.19863806076956
1219 => 0.19852203602003
1220 => 0.20617987387389
1221 => 0.20166431443595
1222 => 0.19599170754624
1223 => 0.19588910798445
1224 => 0.19882703147409
1225 => 0.20498411312843
1226 => 0.2065805548195
1227 => 0.20747274793423
1228 => 0.20610632312156
1229 => 0.20120500698473
1230 => 0.19908864352708
1231 => 0.20089184650995
]
'min_raw' => 0.074354727764819
'max_raw' => 0.20747274793423
'avg_raw' => 0.14091373784952
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.074354'
'max' => '$0.207472'
'avg' => '$0.140913'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.029435923357482
'max_diff' => 0.10719468140617
'year' => 2036
]
11 => [
'items' => [
101 => 0.1986866842129
102 => 0.20249341299687
103 => 0.20772086469064
104 => 0.20664141658746
105 => 0.21024984975649
106 => 0.21398419846819
107 => 0.21932448484602
108 => 0.22072063345542
109 => 0.22302841401597
110 => 0.22540387827921
111 => 0.22616681338
112 => 0.22762349321228
113 => 0.22761581579052
114 => 0.23200561851094
115 => 0.23684770685244
116 => 0.23867548310675
117 => 0.24287835381938
118 => 0.23568108501017
119 => 0.24114029607822
120 => 0.24606464111451
121 => 0.24019363395532
122 => 0.24828544955504
123 => 0.24859963641833
124 => 0.25334348503416
125 => 0.24853468565059
126 => 0.24567923592685
127 => 0.25392281228697
128 => 0.25791161921741
129 => 0.25671015810797
130 => 0.24756697974172
131 => 0.24224525776319
201 => 0.22831728486187
202 => 0.24481557040713
203 => 0.25285140403464
204 => 0.24754616887394
205 => 0.2502218209019
206 => 0.26481931078337
207 => 0.27037708981276
208 => 0.26922111062645
209 => 0.2694164520799
210 => 0.27241532876334
211 => 0.28571399948923
212 => 0.2777451277295
213 => 0.28383703160189
214 => 0.28706815544981
215 => 0.29006940335224
216 => 0.282699287058
217 => 0.2731108740477
218 => 0.27007382115314
219 => 0.24701866779196
220 => 0.24581854693605
221 => 0.24514488273225
222 => 0.24089752521896
223 => 0.23756026566265
224 => 0.23490635295898
225 => 0.2279416934991
226 => 0.23029206161709
227 => 0.21919184807545
228 => 0.22629337133197
301 => 0.20857716249549
302 => 0.2233317476545
303 => 0.21530149776112
304 => 0.22069359459165
305 => 0.22067478207377
306 => 0.21074622224291
307 => 0.20501963613623
308 => 0.20866883968547
309 => 0.2125810755644
310 => 0.21321582267341
311 => 0.21828813861025
312 => 0.21970371295915
313 => 0.21541445659513
314 => 0.20821003344539
315 => 0.20988345662768
316 => 0.20498572426885
317 => 0.19640263669856
318 => 0.20256716003788
319 => 0.20467199934088
320 => 0.20560161628713
321 => 0.19716113543602
322 => 0.19450895310085
323 => 0.19309695347957
324 => 0.20712047335853
325 => 0.20788871343381
326 => 0.20395828859049
327 => 0.22172418158044
328 => 0.21770321283796
329 => 0.22219562008457
330 => 0.20973161101387
331 => 0.21020775294539
401 => 0.20430709130672
402 => 0.20761106754202
403 => 0.20527592363103
404 => 0.20734413891274
405 => 0.20858381862502
406 => 0.21448351202318
407 => 0.2233991126763
408 => 0.21360229456693
409 => 0.20933368062366
410 => 0.21198190470647
411 => 0.21903447441788
412 => 0.22971947854507
413 => 0.22339374104602
414 => 0.22620099593011
415 => 0.22681425623621
416 => 0.22214989159594
417 => 0.22989146032254
418 => 0.23404022989551
419 => 0.23829600901048
420 => 0.24199118277179
421 => 0.23659615724537
422 => 0.24236960790517
423 => 0.23771722582461
424 => 0.23354355814393
425 => 0.23354988787498
426 => 0.23093168517134
427 => 0.22585858751825
428 => 0.22492303047574
429 => 0.22978991635871
430 => 0.23369269794105
501 => 0.23401414972523
502 => 0.23617493014137
503 => 0.23745365773383
504 => 0.24998692648583
505 => 0.25502791085852
506 => 0.2611919311285
507 => 0.2635931644088
508 => 0.27082001569274
509 => 0.2649837463448
510 => 0.26372103275951
511 => 0.24619105542973
512 => 0.24906158823543
513 => 0.25365758822258
514 => 0.2462668417767
515 => 0.25095456928128
516 => 0.25188002599033
517 => 0.24601570704057
518 => 0.2491480931739
519 => 0.24082940429155
520 => 0.22358043736158
521 => 0.22991066335361
522 => 0.23457184041477
523 => 0.22791976602951
524 => 0.23984335189426
525 => 0.23287783918484
526 => 0.23067010605953
527 => 0.22205695202401
528 => 0.22612202917808
529 => 0.23162010423524
530 => 0.22822293306974
531 => 0.23527257332597
601 => 0.24525674399918
602 => 0.25237205858854
603 => 0.2529182840915
604 => 0.24834361349959
605 => 0.25567455231829
606 => 0.25572795020421
607 => 0.24745862126896
608 => 0.24239370333994
609 => 0.24124294332979
610 => 0.24411776745494
611 => 0.24760833466468
612 => 0.25311198627853
613 => 0.25643772768282
614 => 0.26510949742827
615 => 0.26745582968227
616 => 0.27003373746592
617 => 0.27347861726219
618 => 0.27761507870667
619 => 0.26856473655503
620 => 0.26892432352067
621 => 0.26049677021958
622 => 0.25149072088397
623 => 0.2583251897098
624 => 0.26726034854828
625 => 0.26521061323826
626 => 0.26497997614359
627 => 0.26536784376343
628 => 0.26382241027777
629 => 0.25683247189857
630 => 0.25332216860387
701 => 0.25785135542792
702 => 0.26025841665399
703 => 0.26399155869782
704 => 0.26353137014385
705 => 0.27314754313858
706 => 0.27688409718635
707 => 0.27592812676477
708 => 0.27610404832905
709 => 0.28286890095146
710 => 0.29039280836564
711 => 0.29743994052604
712 => 0.30460858604097
713 => 0.29596650407572
714 => 0.29157858782329
715 => 0.29610579734605
716 => 0.29370359624819
717 => 0.30750735629567
718 => 0.30846309869176
719 => 0.32226586057028
720 => 0.3353663251953
721 => 0.32713815808353
722 => 0.33489694906514
723 => 0.34328871409527
724 => 0.35947779035319
725 => 0.35402587900809
726 => 0.34984980036009
727 => 0.34590342621639
728 => 0.35411520434018
729 => 0.36467952571006
730 => 0.36695497934932
731 => 0.37064208353512
801 => 0.36676554432141
802 => 0.37143440881754
803 => 0.38791755209189
804 => 0.38346366127843
805 => 0.37713842032464
806 => 0.39015027888184
807 => 0.39485921991137
808 => 0.42790903414818
809 => 0.46963578984188
810 => 0.45236063899204
811 => 0.4416373953939
812 => 0.4441576119982
813 => 0.45939481063772
814 => 0.46428851523623
815 => 0.45098573917636
816 => 0.45568450457258
817 => 0.48157516387816
818 => 0.49546467192381
819 => 0.47660085438802
820 => 0.42455632995663
821 => 0.37656890158271
822 => 0.38929732848954
823 => 0.38785431988738
824 => 0.4156706033857
825 => 0.38335743745553
826 => 0.38390150829806
827 => 0.41229300308118
828 => 0.40471863902649
829 => 0.39244913930914
830 => 0.37665848250889
831 => 0.34746799295466
901 => 0.32161316231945
902 => 0.37232043920698
903 => 0.37013384922239
904 => 0.36696734289022
905 => 0.37401406008069
906 => 0.40823091851202
907 => 0.40744210917601
908 => 0.40242410663441
909 => 0.40623021733557
910 => 0.39178190970095
911 => 0.39550556756024
912 => 0.37656130012888
913 => 0.38512490019035
914 => 0.39242281447326
915 => 0.39388797881302
916 => 0.39718906888365
917 => 0.36898161565993
918 => 0.38164593403006
919 => 0.38908503458636
920 => 0.35547490763622
921 => 0.38842067044135
922 => 0.36849058665522
923 => 0.3617260168784
924 => 0.37083361891859
925 => 0.36728437754609
926 => 0.36423294823247
927 => 0.36253019824525
928 => 0.36921781601421
929 => 0.36890583065186
930 => 0.35796358997116
1001 => 0.34368988306598
1002 => 0.34848060762182
1003 => 0.3467400924774
1004 => 0.34043224106311
1005 => 0.34468297130346
1006 => 0.32596490657031
1007 => 0.29376144907727
1008 => 0.31503603951575
1009 => 0.31421699092617
1010 => 0.31380398948641
1011 => 0.32979125621444
1012 => 0.32825444940753
1013 => 0.32546513000455
1014 => 0.34038101302486
1015 => 0.33493651507551
1016 => 0.35171517487036
1017 => 0.36276668538693
1018 => 0.35996366484101
1019 => 0.37035766389843
1020 => 0.34859097623968
1021 => 0.35582099675198
1022 => 0.35731109395919
1023 => 0.34019695334372
1024 => 0.32850589000715
1025 => 0.32772622937048
1026 => 0.30745553667264
1027 => 0.31828397709251
1028 => 0.32781255655069
1029 => 0.32324910643786
1030 => 0.32180445446133
1031 => 0.32918486810263
1101 => 0.32975838945153
1102 => 0.31668204191761
1103 => 0.31940102864398
1104 => 0.33073965528689
1105 => 0.3191153243445
1106 => 0.29653114814712
1107 => 0.2909299601995
1108 => 0.29018265847691
1109 => 0.27499179252716
1110 => 0.29130425836128
1111 => 0.28418342987778
1112 => 0.30667804173653
1113 => 0.29382924008384
1114 => 0.29327535392516
1115 => 0.2924380737589
1116 => 0.27936266790917
1117 => 0.28222535080487
1118 => 0.29174134474909
1119 => 0.29513675859373
1120 => 0.29478258911192
1121 => 0.29169471118733
1122 => 0.29310832588871
1123 => 0.28855458039953
1124 => 0.28694655808929
1125 => 0.28187119735677
1126 => 0.27441181918416
1127 => 0.27544909147009
1128 => 0.26067011145767
1129 => 0.25261773876707
1130 => 0.25038894813487
1201 => 0.24740851615394
1202 => 0.25072559585775
1203 => 0.26062824446417
1204 => 0.24868354928073
1205 => 0.22820520721165
1206 => 0.2294359904634
1207 => 0.23220119500725
1208 => 0.22704825463345
1209 => 0.22217142902314
1210 => 0.22641143322193
1211 => 0.21773448972605
1212 => 0.23324976217414
1213 => 0.23283011753547
1214 => 0.23861325164611
1215 => 0.24222956408735
1216 => 0.23389513470534
1217 => 0.23179904825447
1218 => 0.2329930743587
1219 => 0.21325848258165
1220 => 0.23700051447308
1221 => 0.23720583655078
1222 => 0.23544774426681
1223 => 0.248089643296
1224 => 0.27476799335477
1225 => 0.26473052492852
1226 => 0.26084371376978
1227 => 0.25345488291578
1228 => 0.26330006132337
1229 => 0.26254410523037
1230 => 0.25912538509002
1231 => 0.25705773248208
]
'min_raw' => 0.19309695347957
'max_raw' => 0.49546467192381
'avg_raw' => 0.34428081270169
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.193096'
'max' => '$0.495464'
'avg' => '$0.34428'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11874222571475
'max_diff' => 0.28799192398958
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0060610927227772
]
1 => [
'year' => 2028
'avg' => 0.010402594660075
]
2 => [
'year' => 2029
'avg' => 0.028418013726055
]
3 => [
'year' => 2030
'avg' => 0.021924455268276
]
4 => [
'year' => 2031
'avg' => 0.021532532141276
]
5 => [
'year' => 2032
'avg' => 0.037753305380916
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0060610927227772
'min' => '$0.006061'
'max_raw' => 0.037753305380916
'max' => '$0.037753'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.037753305380916
]
1 => [
'year' => 2033
'avg' => 0.097105383566326
]
2 => [
'year' => 2034
'avg' => 0.061550058770703
]
3 => [
'year' => 2035
'avg' => 0.072598435467697
]
4 => [
'year' => 2036
'avg' => 0.14091373784952
]
5 => [
'year' => 2037
'avg' => 0.34428081270169
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.037753305380916
'min' => '$0.037753'
'max_raw' => 0.34428081270169
'max' => '$0.34428'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.34428081270169
]
]
]
]
'prediction_2025_max_price' => '$0.010363'
'last_price' => 0.01004859
'sma_50day_nextmonth' => '$0.009661'
'sma_200day_nextmonth' => '$0.011265'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.010148'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.010171'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.010223'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.010297'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.010772'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0122097'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.011678'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01012'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.010152'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.010215'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.010367'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0109078'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.011443'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011868'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.011992'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.010174'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.010348'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.010855'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.011429'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.011784'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.005892'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.002946'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '38.56'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 18.11
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.010221'
'vwma_10_action' => 'SELL'
'hma_9' => '0.010152'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -128.52
'cci_20_action' => 'BUY'
'adx_14' => 17.92
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000338'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 39.21
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001292'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 26
'buy_signals' => 3
'sell_pct' => 89.66
'buy_pct' => 10.34
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767708377
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de DIAM pour 2026
La prévision du prix de DIAM pour 2026 suggère que le prix moyen pourrait varier entre $0.003471 à la baisse et $0.010363 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, DIAM pourrait potentiellement gagner 3.13% d'ici 2026 si DIAM atteint l'objectif de prix prévu.
Prévision du prix de DIAM de 2027 à 2032
La prévision du prix de DIAM pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.006061 à la baisse et $0.037753 à la hausse. Compte tenu de la volatilité des prix sur le marché, si DIAM atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de DIAM | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.003342 | $0.006061 | $0.008779 |
| 2028 | $0.006031 | $0.0104025 | $0.014773 |
| 2029 | $0.013249 | $0.028418 | $0.043586 |
| 2030 | $0.011268 | $0.021924 | $0.03258 |
| 2031 | $0.013322 | $0.021532 | $0.029742 |
| 2032 | $0.020336 | $0.037753 | $0.05517 |
Prévision du prix de DIAM de 2032 à 2037
La prévision du prix de DIAM pour 2032-2037 est actuellement estimée entre $0.037753 à la baisse et $0.34428 à la hausse. Par rapport au prix actuel, DIAM pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de DIAM | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.020336 | $0.037753 | $0.05517 |
| 2033 | $0.047257 | $0.0971053 | $0.146953 |
| 2034 | $0.037992 | $0.06155 | $0.0851077 |
| 2035 | $0.044918 | $0.072598 | $0.100278 |
| 2036 | $0.074354 | $0.140913 | $0.207472 |
| 2037 | $0.193096 | $0.34428 | $0.495464 |
DIAM Histogramme des prix potentiels
Prévision du prix de DIAM basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour DIAM est Baissier, avec 3 indicateurs techniques montrant des signaux haussiers et 26 indiquant des signaux baissiers. La prévision du prix de DIAM a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de DIAM et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de DIAM devrait augmenter au cours du prochain mois, atteignant $0.011265 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour DIAM devrait atteindre $0.009661 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 38.56, ce qui suggère que le marché de DIAM est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de DIAM pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.010148 | SELL |
| SMA 5 | $0.010171 | SELL |
| SMA 10 | $0.010223 | SELL |
| SMA 21 | $0.010297 | SELL |
| SMA 50 | $0.010772 | SELL |
| SMA 100 | $0.0122097 | SELL |
| SMA 200 | $0.011678 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.01012 | SELL |
| EMA 5 | $0.010152 | SELL |
| EMA 10 | $0.010215 | SELL |
| EMA 21 | $0.010367 | SELL |
| EMA 50 | $0.0109078 | SELL |
| EMA 100 | $0.011443 | SELL |
| EMA 200 | $0.011868 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.011992 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.011429 | SELL |
| EMA 50 | $0.011784 | SELL |
| EMA 100 | $0.005892 | BUY |
| EMA 200 | $0.002946 | BUY |
Oscillateurs de DIAM
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 38.56 | NEUTRAL |
| Stoch RSI (14) | 18.11 | NEUTRAL |
| Stochastique Rapide (14) | 0 | BUY |
| Indice de Canal des Matières Premières (20) | -128.52 | BUY |
| Indice Directionnel Moyen (14) | 17.92 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000338 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -100 | BUY |
| Oscillateur Ultime (7, 14, 28) | 39.21 | NEUTRAL |
| VWMA (10) | 0.010221 | SELL |
| Moyenne Mobile de Hull (9) | 0.010152 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001292 | SELL |
Prévision du cours de DIAM basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de DIAM
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de DIAM par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.014119 | $0.01984 | $0.027879 | $0.039175 | $0.055048 | $0.077352 |
| Action Amazon.com | $0.020966 | $0.043748 | $0.091284 | $0.19047 | $0.397428 | $0.829258 |
| Action Apple | $0.014253 | $0.020217 | $0.028676 | $0.040675 | $0.057694 | $0.081835 |
| Action Netflix | $0.015855 | $0.025016 | $0.039472 | $0.062281 | $0.09827 | $0.155055 |
| Action Google | $0.013012 | $0.016851 | $0.021822 | $0.02826 | $0.036597 | $0.047393 |
| Action Tesla | $0.022779 | $0.051639 | $0.117062 | $0.26537 | $0.601575 | $1.36 |
| Action Kodak | $0.007535 | $0.00565 | $0.004237 | $0.003177 | $0.002382 | $0.001786 |
| Action Nokia | $0.006656 | $0.0044098 | $0.002921 | $0.001935 | $0.001282 | $0.000849 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à DIAM
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans DIAM maintenant ?", "Devrais-je acheter DIAM aujourd'hui ?", " DIAM sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de DIAM avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme DIAM en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de DIAM afin de prendre une décision responsable concernant cet investissement.
Le cours de DIAM est de $0.01004 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de DIAM basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DIAM présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0103097 | $0.010577 | $0.010852 | $0.011134 |
| Si DIAM présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01057 | $0.01112 | $0.011698 | $0.0123068 |
| Si DIAM présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.011354 | $0.01283 | $0.014497 | $0.016381 |
| Si DIAM présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01266 | $0.015951 | $0.020097 | $0.025321 |
| Si DIAM présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015272 | $0.023212 | $0.035279 | $0.053619 |
| Si DIAM présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0231083 | $0.053141 | $0.122207 | $0.281034 |
| Si DIAM présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.036168 | $0.13018 | $0.468561 | $1.68 |
Boîte à questions
Est-ce que DIAM est un bon investissement ?
La décision d'acquérir DIAM dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de DIAM a connu une baisse de -1.0797% au cours des 24 heures précédentes, et DIAM a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans DIAM dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que DIAM peut monter ?
Il semble que la valeur moyenne de DIAM pourrait potentiellement s'envoler jusqu'à $0.010363 pour la fin de cette année. En regardant les perspectives de DIAM sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.03258. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de DIAM la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de DIAM, le prix de DIAM va augmenter de 0.86% durant la prochaine semaine et atteindre $0.010134 d'ici 13 janvier 2026.
Quel sera le prix de DIAM le mois prochain ?
Basé sur notre nouveau pronostic expérimental de DIAM, le prix de DIAM va diminuer de -11.62% durant le prochain mois et atteindre $0.008881 d'ici 5 février 2026.
Jusqu'où le prix de DIAM peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de DIAM en 2026, DIAM devrait fluctuer dans la fourchette de $0.003471 et $0.010363. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de DIAM ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera DIAM dans 5 ans ?
L'avenir de DIAM semble suivre une tendance haussière, avec un prix maximum de $0.03258 prévue après une période de cinq ans. Selon la prévision de DIAM pour 2030, la valeur de DIAM pourrait potentiellement atteindre son point le plus élevé d'environ $0.03258, tandis que son point le plus bas devrait être autour de $0.011268.
Combien vaudra DIAM en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de DIAM, il est attendu que la valeur de DIAM en 2026 augmente de 3.13% jusqu'à $0.010363 si le meilleur scénario se produit. Le prix sera entre $0.010363 et $0.003471 durant 2026.
Combien vaudra DIAM en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de DIAM, le valeur de DIAM pourrait diminuer de -12.62% jusqu'à $0.008779 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.008779 et $0.003342 tout au long de l'année.
Combien vaudra DIAM en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de DIAM suggère que la valeur de DIAM en 2028 pourrait augmenter de 47.02%, atteignant $0.014773 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.014773 et $0.006031 durant l'année.
Combien vaudra DIAM en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de DIAM pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.043586 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.043586 et $0.013249.
Combien vaudra DIAM en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de DIAM, il est prévu que la valeur de DIAM en 2030 augmente de 224.23%, atteignant $0.03258 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.03258 et $0.011268 au cours de 2030.
Combien vaudra DIAM en 2031 ?
Notre simulation expérimentale indique que le prix de DIAM pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.029742 dans des conditions idéales. Il est probable que le prix fluctue entre $0.029742 et $0.013322 durant l'année.
Combien vaudra DIAM en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de DIAM, DIAM pourrait connaître une 449.04% hausse en valeur, atteignant $0.05517 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.05517 et $0.020336 tout au long de l'année.
Combien vaudra DIAM en 2033 ?
Selon notre prédiction expérimentale de prix de DIAM, la valeur de DIAM est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.146953. Tout au long de l'année, le prix de DIAM pourrait osciller entre $0.146953 et $0.047257.
Combien vaudra DIAM en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de DIAM suggèrent que DIAM pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.0851077 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.0851077 et $0.037992.
Combien vaudra DIAM en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de DIAM, DIAM pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.100278 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.100278 et $0.044918.
Combien vaudra DIAM en 2036 ?
Notre récente simulation de prédiction de prix de DIAM suggère que la valeur de DIAM pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.207472 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.207472 et $0.074354.
Combien vaudra DIAM en 2037 ?
Selon la simulation expérimentale, la valeur de DIAM pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.495464 sous des conditions favorables. Il est prévu que le prix chute entre $0.495464 et $0.193096 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de DIAM ?
Les traders de DIAM utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de DIAM
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de DIAM. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de DIAM sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de DIAM au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de DIAM.
Comment lire les graphiques de DIAM et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de DIAM dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de DIAM au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de DIAM ?
L'action du prix de DIAM est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de DIAM. La capitalisation boursière de DIAM peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de DIAM, de grands détenteurs de DIAM, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de DIAM.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


