Prédiction du prix de DexKit jusqu'à $0.326745 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.109461 | $0.326745 |
| 2027 | $0.105375 | $0.276823 |
| 2028 | $0.190172 | $0.465792 |
| 2029 | $0.417754 | $1.37 |
| 2030 | $0.355282 | $1.02 |
| 2031 | $0.420053 | $0.93774 |
| 2032 | $0.64118 | $1.73 |
| 2033 | $1.48 | $4.63 |
| 2034 | $1.19 | $2.68 |
| 2035 | $1.41 | $3.16 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur DexKit aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.44, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de DexKit pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'DexKit'
'name_with_ticker' => 'DexKit <small>KIT</small>'
'name_lang' => 'DexKit'
'name_lang_with_ticker' => 'DexKit <small>KIT</small>'
'name_with_lang' => 'DexKit'
'name_with_lang_with_ticker' => 'DexKit <small>KIT</small>'
'image' => '/uploads/coins/dexkit.png?1717500586'
'price_for_sd' => 0.3168
'ticker' => 'KIT'
'marketcap' => '$3.17M'
'low24h' => '$0.3128'
'high24h' => '$0.3196'
'volume24h' => '$294.01'
'current_supply' => '10M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.3168'
'change_24h_pct' => '0.4778%'
'ath_price' => '$9.79'
'ath_days' => 1755
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 mars 2021'
'ath_pct' => '-96.76%'
'fdv' => '$3.17M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$15.62'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.319532'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.2800126'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.109461'
'current_year_max_price_prediction' => '$0.326745'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.355282'
'grand_prediction_max_price' => '$1.02'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.32282459130215
107 => 0.32402990114075
108 => 0.32674552575175
109 => 0.30354081077909
110 => 0.31395904654717
111 => 0.32007878400425
112 => 0.29242958753524
113 => 0.319532248289
114 => 0.30313686831724
115 => 0.29757203010449
116 => 0.30506435164628
117 => 0.30214458665492
118 => 0.2996343441697
119 => 0.29823358573151
120 => 0.30373511977445
121 => 0.30347846663559
122 => 0.2944768891396
123 => 0.28273469824732
124 => 0.28667576293505
125 => 0.28524393718632
126 => 0.28005481596372
127 => 0.28355165713086
128 => 0.26815333834158
129 => 0.24166133119959
130 => 0.25916276258972
131 => 0.25848897651909
201 => 0.25814922302851
202 => 0.27130106501416
203 => 0.27003681887186
204 => 0.26774219974405
205 => 0.28001267348398
206 => 0.27553378550774
207 => 0.28933666289177
208 => 0.29842813065103
209 => 0.29612224034911
210 => 0.30467280971957
211 => 0.28676655710562
212 => 0.29271429594981
213 => 0.29394011668239
214 => 0.27986125774272
215 => 0.27024366517594
216 => 0.26960228140031
217 => 0.2529267012754
218 => 0.26183466157755
219 => 0.269673298007
220 => 0.26591919946005
221 => 0.26473076401059
222 => 0.27080222298168
223 => 0.27127402734226
224 => 0.26051683792138
225 => 0.26275359823787
226 => 0.27208126058808
227 => 0.26251856507896
228 => 0.24393980976219
301 => 0.23933202157225
302 => 0.23871725768932
303 => 0.22622057066989
304 => 0.23963993601209
305 => 0.23378202342359
306 => 0.2522870991021
307 => 0.24171709911925
308 => 0.24126144754598
309 => 0.24057266336343
310 => 0.22981624861417
311 => 0.23217121983844
312 => 0.23999950286015
313 => 0.24279272243422
314 => 0.24250136674847
315 => 0.23996114000264
316 => 0.24112404279882
317 => 0.23737792771014
318 => 0.23605509650369
319 => 0.23187987734273
320 => 0.22574345860985
321 => 0.2265967652715
322 => 0.21443891408037
323 => 0.20781467148544
324 => 0.20598116844128
325 => 0.20352933154326
326 => 0.206258109943
327 => 0.2144044724155
328 => 0.20457823092645
329 => 0.18773182912418
330 => 0.18874432657737
331 => 0.19101910774149
401 => 0.18678006809134
402 => 0.18276817281809
403 => 0.18625619026283
404 => 0.17911814773701
405 => 0.19188170607834
406 => 0.19153648759466
407 => 0.19629395285116
408 => 0.19926889350906
409 => 0.19241261844107
410 => 0.19068828380281
411 => 0.19167054317941
412 => 0.17543598369414
413 => 0.19496724298731
414 => 0.19513615012873
415 => 0.19368986463739
416 => 0.20408965725102
417 => 0.22603646344245
418 => 0.217779192145
419 => 0.21458172712128
420 => 0.20850334377386
421 => 0.21660242868561
422 => 0.21598054532979
423 => 0.21316815295253
424 => 0.21146720926757
425 => 0.21460125016089
426 => 0.21107886691799
427 => 0.21044615009894
428 => 0.20661257457823
429 => 0.2052441625339
430 => 0.20423104473434
501 => 0.20311570158392
502 => 0.20557587064755
503 => 0.20000080388716
504 => 0.19327781990467
505 => 0.19271887653022
506 => 0.19426216832988
507 => 0.19357937659309
508 => 0.19271560758607
509 => 0.19106643731818
510 => 0.19057716372864
511 => 0.19216706553284
512 => 0.19037215909294
513 => 0.19302064131862
514 => 0.19230040070044
515 => 0.18827719515537
516 => 0.18326279146475
517 => 0.18321815275383
518 => 0.18213780770396
519 => 0.18076182585197
520 => 0.18037905917895
521 => 0.1859624391625
522 => 0.19751986863195
523 => 0.19525086868125
524 => 0.1968904536821
525 => 0.20495558912935
526 => 0.20751925316095
527 => 0.20569962515503
528 => 0.20320880611076
529 => 0.20331838950759
530 => 0.21183027220406
531 => 0.21236114788695
601 => 0.21370249947063
602 => 0.21542651532157
603 => 0.2059932325093
604 => 0.20287408273545
605 => 0.20139605652876
606 => 0.19684430788029
607 => 0.20175297856023
608 => 0.19889290636526
609 => 0.19927882781834
610 => 0.19902749596575
611 => 0.19916474015225
612 => 0.19187813840366
613 => 0.19453299310833
614 => 0.19011878224428
615 => 0.18420864941572
616 => 0.18418883657812
617 => 0.18563533321503
618 => 0.18477490041398
619 => 0.1824594978701
620 => 0.18278838987306
621 => 0.17990694985065
622 => 0.18313824886194
623 => 0.18323091095544
624 => 0.18198668482605
625 => 0.18696494678628
626 => 0.18900454477326
627 => 0.18818556848099
628 => 0.18894708321337
629 => 0.19534515587312
630 => 0.19638832088414
701 => 0.19685162587442
702 => 0.19623085856359
703 => 0.18906402823648
704 => 0.18938190763721
705 => 0.187049519511
706 => 0.18507889732536
707 => 0.18515771187823
708 => 0.1861708678446
709 => 0.19059537937056
710 => 0.19990650303774
711 => 0.20025985337456
712 => 0.20068812429075
713 => 0.19894613124289
714 => 0.19842072947103
715 => 0.19911387002582
716 => 0.20261063851959
717 => 0.21160527644894
718 => 0.20842597067304
719 => 0.20584114558839
720 => 0.20810873405146
721 => 0.20775965658152
722 => 0.20481309143603
723 => 0.20473039116624
724 => 0.19907499057819
725 => 0.19698431774803
726 => 0.195237195047
727 => 0.19332938266727
728 => 0.19219836753811
729 => 0.19393612081368
730 => 0.19433356554829
731 => 0.19053393764054
801 => 0.19001606239682
802 => 0.19311892056696
803 => 0.19175346837249
804 => 0.19315786981608
805 => 0.19348370299773
806 => 0.19343123635091
807 => 0.1920055474387
808 => 0.19291423903669
809 => 0.19076491251345
810 => 0.18842784273783
811 => 0.18693693782558
812 => 0.1856359255498
813 => 0.18635780277568
814 => 0.18378444227499
815 => 0.18296117245931
816 => 0.1926063947695
817 => 0.19973142419365
818 => 0.199627823444
819 => 0.19899718052447
820 => 0.19806017306728
821 => 0.20254209058783
822 => 0.20098068014244
823 => 0.20211673670167
824 => 0.20240591077614
825 => 0.20328115360589
826 => 0.20359397768787
827 => 0.20264840604185
828 => 0.19947495210596
829 => 0.19156700662065
830 => 0.18788583665016
831 => 0.18667098924516
901 => 0.186715146641
902 => 0.18549708853622
903 => 0.18585586123761
904 => 0.18537232203209
905 => 0.18445661575752
906 => 0.18630126049362
907 => 0.1865138386154
908 => 0.18608327649213
909 => 0.18618468945874
910 => 0.18261981897357
911 => 0.18289084833407
912 => 0.18138172241408
913 => 0.18109877949687
914 => 0.17728384058578
915 => 0.17052512332054
916 => 0.17427010877004
917 => 0.16974669297168
918 => 0.16803360686791
919 => 0.17614309004362
920 => 0.17532912285483
921 => 0.17393596485065
922 => 0.1718751938029
923 => 0.1711108337754
924 => 0.16646682421528
925 => 0.16619243135564
926 => 0.16849412789244
927 => 0.16743197413725
928 => 0.16594030799588
929 => 0.1605376444396
930 => 0.15446326184191
1001 => 0.15464660927032
1002 => 0.15657875735674
1003 => 0.16219673850368
1004 => 0.16000169607751
1005 => 0.15840916761211
1006 => 0.15811093490178
1007 => 0.16184394166413
1008 => 0.16712692832196
1009 => 0.16960558746165
1010 => 0.16714931153221
1011 => 0.16432767399977
1012 => 0.16449941400216
1013 => 0.16564192329719
1014 => 0.16576198486988
1015 => 0.16392538890529
1016 => 0.1644423799114
1017 => 0.16365702329846
1018 => 0.15883729121455
1019 => 0.15875011754469
1020 => 0.15756727756262
1021 => 0.15753146163805
1022 => 0.15551915575529
1023 => 0.15523762025188
1024 => 0.15124206478342
1025 => 0.15387195149242
1026 => 0.15210796156327
1027 => 0.14944921265689
1028 => 0.14899084334328
1029 => 0.14897706420822
1030 => 0.1517070048497
1031 => 0.15384005054657
1101 => 0.15213864692332
1102 => 0.15175127029862
1103 => 0.15588743919044
1104 => 0.15536107399694
1105 => 0.15490524513406
1106 => 0.16665389481106
1107 => 0.15735392183315
1108 => 0.15329860279088
1109 => 0.14827937539187
1110 => 0.14991366114213
1111 => 0.15025802916236
1112 => 0.13818769205149
1113 => 0.13329075778887
1114 => 0.13161031448702
1115 => 0.13064319560882
1116 => 0.13108392382593
1117 => 0.12667610863648
1118 => 0.12963823334232
1119 => 0.1258214379716
1120 => 0.12518153980677
1121 => 0.13200644273984
1122 => 0.13295608811247
1123 => 0.12890460592113
1124 => 0.13150631336336
1125 => 0.13056289807837
1126 => 0.12588686597336
1127 => 0.12570827594152
1128 => 0.1233620074017
1129 => 0.119690551464
1130 => 0.11801259758216
1201 => 0.11713870463183
1202 => 0.11749928989497
1203 => 0.11731696695183
1204 => 0.11612718641989
1205 => 0.11738516377922
1206 => 0.11417155145827
1207 => 0.11289186513824
1208 => 0.11231386051598
1209 => 0.10946159461252
1210 => 0.11400081807333
1211 => 0.11489510227874
1212 => 0.11579114850029
1213 => 0.12359061910218
1214 => 0.12320097959198
1215 => 0.12672313100201
1216 => 0.12658626667504
1217 => 0.12558169203783
1218 => 0.12134355688795
1219 => 0.12303280202119
1220 => 0.11783356806804
1221 => 0.12172918765929
1222 => 0.11995138956281
1223 => 0.12112811233456
1224 => 0.11901225869013
1225 => 0.12018325945841
1226 => 0.1151071702396
1227 => 0.11036718954957
1228 => 0.1122746961479
1229 => 0.11434837397012
1230 => 0.11884463585199
1231 => 0.1161666993685
]
'min_raw' => 0.10946159461252
'max_raw' => 0.32674552575175
'avg_raw' => 0.21810356018213
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.109461'
'max' => '$0.326745'
'avg' => '$0.2181035'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.20735940538748
'max_diff' => 0.0099245257517516
'year' => 2026
]
1 => [
'items' => [
101 => 0.11712978659195
102 => 0.11390360561225
103 => 0.10724707273809
104 => 0.10728474799126
105 => 0.10626078542902
106 => 0.10537593227426
107 => 0.11647429258761
108 => 0.11509403604354
109 => 0.11289477788406
110 => 0.11583857232556
111 => 0.1166169583002
112 => 0.11663911785462
113 => 0.11878683428881
114 => 0.11993307093474
115 => 0.12013510011165
116 => 0.12351457832534
117 => 0.12464733484617
118 => 0.12931299864177
119 => 0.11983582076364
120 => 0.11964064452187
121 => 0.11587999755033
122 => 0.1134949357875
123 => 0.11604330476974
124 => 0.11830081180094
125 => 0.11595014458656
126 => 0.11625709209947
127 => 0.11310151342073
128 => 0.1142294843146
129 => 0.11520104480249
130 => 0.11466460620676
131 => 0.11386153166504
201 => 0.11811572196865
202 => 0.11787568387942
203 => 0.12183728369356
204 => 0.1249256340454
205 => 0.13046050998457
206 => 0.12468457840244
207 => 0.12447408049834
208 => 0.12653173127586
209 => 0.12464701983056
210 => 0.12583809240596
211 => 0.13026860977876
212 => 0.13036221962933
213 => 0.12879413402281
214 => 0.12869871587115
215 => 0.12899988386485
216 => 0.13076383421082
217 => 0.13014745575922
218 => 0.1308607445082
219 => 0.13175272301107
220 => 0.13544232428998
221 => 0.13633187466724
222 => 0.13417072842949
223 => 0.13436585573743
224 => 0.13355752771972
225 => 0.13277669298294
226 => 0.13453189543948
227 => 0.13773956242739
228 => 0.13771960769754
301 => 0.1384637240906
302 => 0.13892730243888
303 => 0.13693728480796
304 => 0.1356418565052
305 => 0.13613860614673
306 => 0.13693291964132
307 => 0.13588102098592
308 => 0.12938821519794
309 => 0.13135771771197
310 => 0.13102989618989
311 => 0.13056303847798
312 => 0.13254338848555
313 => 0.13235237889622
314 => 0.12663090012076
315 => 0.12699717062867
316 => 0.12665317424347
317 => 0.12776469693909
318 => 0.12458699395729
319 => 0.12556443399233
320 => 0.12617747521938
321 => 0.12653856121172
322 => 0.12784305141503
323 => 0.12768998454604
324 => 0.12783353656353
325 => 0.12976775116239
326 => 0.1395503448611
327 => 0.14008278985204
328 => 0.13746083598403
329 => 0.13850825483854
330 => 0.13649743968319
331 => 0.13784731336827
401 => 0.13877086266053
402 => 0.13459752099713
403 => 0.13435040278859
404 => 0.1323312882838
405 => 0.13341624605018
406 => 0.13169000023265
407 => 0.13211356057476
408 => 0.13092924893289
409 => 0.13306077409415
410 => 0.13544415042996
411 => 0.13604628541476
412 => 0.13446232750514
413 => 0.13331543759066
414 => 0.13130187670986
415 => 0.13465047332977
416 => 0.13562970502806
417 => 0.13464532984253
418 => 0.13441722860302
419 => 0.13398497716631
420 => 0.1345089327887
421 => 0.13562437192193
422 => 0.13509835142562
423 => 0.13544579723072
424 => 0.13412169210624
425 => 0.1369379435866
426 => 0.14141082870523
427 => 0.14142520976228
428 => 0.14089918643053
429 => 0.1406839490165
430 => 0.14122368087665
501 => 0.14151646326981
502 => 0.14326185713562
503 => 0.14513473429319
504 => 0.15387463478723
505 => 0.15142050570178
506 => 0.1591750653591
507 => 0.16530791524449
508 => 0.1671468887681
509 => 0.16545511965677
510 => 0.15966766891449
511 => 0.15938370897059
512 => 0.16803260377823
513 => 0.16558889485059
514 => 0.16529822344947
515 => 0.16220597083858
516 => 0.16403387511455
517 => 0.16363408563566
518 => 0.16300299838485
519 => 0.16649051241049
520 => 0.17301882733396
521 => 0.17200132823099
522 => 0.17124181235104
523 => 0.16791383485688
524 => 0.16991802063905
525 => 0.16920436846967
526 => 0.17227067108419
527 => 0.17045426134227
528 => 0.16557038135201
529 => 0.16634815533794
530 => 0.16623059636463
531 => 0.16864995170501
601 => 0.16792372128392
602 => 0.16608878821933
603 => 0.17299651426327
604 => 0.17254796495677
605 => 0.17318390532074
606 => 0.17346386593607
607 => 0.17766847705123
608 => 0.17939097169256
609 => 0.17978200813266
610 => 0.18141824481941
611 => 0.17974129707332
612 => 0.18645028370117
613 => 0.19091136832846
614 => 0.19609314768839
615 => 0.20366512006422
616 => 0.2065122517222
617 => 0.20599794287187
618 => 0.21173892590951
619 => 0.22205534481325
620 => 0.20808318609002
621 => 0.22279590315263
622 => 0.2181380267971
623 => 0.20709428574974
624 => 0.20638319902345
625 => 0.21386214868118
626 => 0.23044973919982
627 => 0.2262947359098
628 => 0.23045653529671
629 => 0.22560157524488
630 => 0.2253604855575
701 => 0.23022074072347
702 => 0.24157699183749
703 => 0.23618206261593
704 => 0.2284471086859
705 => 0.23415847829862
706 => 0.22921076137778
707 => 0.21806217037635
708 => 0.22629155865709
709 => 0.22078880107324
710 => 0.22239479827889
711 => 0.23396077624672
712 => 0.23256912717784
713 => 0.2343700499362
714 => 0.23119146840606
715 => 0.22822217204061
716 => 0.22267975987166
717 => 0.22103892486605
718 => 0.22149239263054
719 => 0.22103870014994
720 => 0.21793777147881
721 => 0.21726812622752
722 => 0.21615202147088
723 => 0.21649794900452
724 => 0.21439934553406
725 => 0.21835984387642
726 => 0.21909494726855
727 => 0.22197706768397
728 => 0.22227629898656
729 => 0.23030296331908
730 => 0.22588201148734
731 => 0.22884796766269
801 => 0.2285826646257
802 => 0.20733363710579
803 => 0.21026156561628
804 => 0.21481650354401
805 => 0.21276451018164
806 => 0.20986347165974
807 => 0.20752072750947
808 => 0.20397123056391
809 => 0.20896707935273
810 => 0.21553608926074
811 => 0.22244289991835
812 => 0.2307409803713
813 => 0.22888894541451
814 => 0.2222877730763
815 => 0.22258389684524
816 => 0.22441441746437
817 => 0.22204372694226
818 => 0.22134456402591
819 => 0.22431836321604
820 => 0.22433884213669
821 => 0.22161107618348
822 => 0.21857966350239
823 => 0.21856696177257
824 => 0.21802755116594
825 => 0.2256975351935
826 => 0.2299152508858
827 => 0.23039880519274
828 => 0.22988270382819
829 => 0.23008133076007
830 => 0.22762713492974
831 => 0.23323669882871
901 => 0.23838458939077
902 => 0.2370048447515
903 => 0.23493641139497
904 => 0.23328880459724
905 => 0.23661672095165
906 => 0.23646853407501
907 => 0.23833962705763
908 => 0.23825474347198
909 => 0.2376255652773
910 => 0.23700486722143
911 => 0.23946586485241
912 => 0.2387571370571
913 => 0.23804730841177
914 => 0.23662363839423
915 => 0.23681713879427
916 => 0.23474906258192
917 => 0.23379227589736
918 => 0.21940449981383
919 => 0.21555961591016
920 => 0.21676929465608
921 => 0.21716755230853
922 => 0.21549425390631
923 => 0.21789333398001
924 => 0.21751943989178
925 => 0.21897404306836
926 => 0.21806527015516
927 => 0.21810256651251
928 => 0.22077507387943
929 => 0.2215509141377
930 => 0.22115631552054
1001 => 0.22143267886595
1002 => 0.2278013555152
1003 => 0.22689593335449
1004 => 0.22641494587735
1005 => 0.22654818269564
1006 => 0.22817551612549
1007 => 0.22863108063674
1008 => 0.22670082179064
1009 => 0.22761114302115
1010 => 0.23148717528372
1011 => 0.23284356721119
1012 => 0.23717251913862
1013 => 0.23533350341886
1014 => 0.23870909636322
1015 => 0.24908451824971
1016 => 0.25737312317723
1017 => 0.2497505795448
1018 => 0.26497154694672
1019 => 0.27682325338721
1020 => 0.27636836515397
1021 => 0.27430174600116
1022 => 0.26080889331259
1023 => 0.24839256910146
1024 => 0.25877935152904
1025 => 0.25880582957351
1026 => 0.2579135957514
1027 => 0.25237200811109
1028 => 0.2577207605136
1029 => 0.2581453250555
1030 => 0.25790768181286
1031 => 0.25365895956197
1101 => 0.24717194597999
1102 => 0.2484394929062
1103 => 0.25051576062857
1104 => 0.24658495267529
1105 => 0.24532882135817
1106 => 0.24766420846546
1107 => 0.25518931232241
1108 => 0.25376673502821
1109 => 0.25372958578597
1110 => 0.2598159747172
1111 => 0.25545943376738
1112 => 0.24845548073218
1113 => 0.24668689022
1114 => 0.24040958536709
1115 => 0.24474534218799
1116 => 0.24490137835718
1117 => 0.24252672865673
1118 => 0.24864817046793
1119 => 0.24859176030398
1120 => 0.25440315824734
1121 => 0.26551236845366
1122 => 0.26222682834462
1123 => 0.25840610266355
1124 => 0.25882152148231
1125 => 0.26337764058314
1126 => 0.2606229069687
1127 => 0.26161352838314
1128 => 0.26337614115898
1129 => 0.26443956920987
1130 => 0.25866851055102
1201 => 0.257323000716
1202 => 0.25457055980332
1203 => 0.25385249934595
1204 => 0.25609430503776
1205 => 0.25550366844213
1206 => 0.24488826412136
1207 => 0.24377889530629
1208 => 0.24381291806403
1209 => 0.24102335743092
1210 => 0.23676860789416
1211 => 0.24794983563887
1212 => 0.24705182656979
1213 => 0.2460604940579
1214 => 0.24618192663414
1215 => 0.25103531863115
1216 => 0.24822010617072
1217 => 0.25570480990103
1218 => 0.25416617982487
1219 => 0.25258808969303
1220 => 0.25236994956701
1221 => 0.25176251950258
1222 => 0.24967941579686
1223 => 0.24716394289709
1224 => 0.24550300980213
1225 => 0.22646354930246
1226 => 0.22999716242375
1227 => 0.23406226222083
1228 => 0.23546551838091
1229 => 0.23306515161672
1230 => 0.24977419690712
1231 => 0.25282710049405
]
'min_raw' => 0.10537593227426
'max_raw' => 0.27682325338721
'avg_raw' => 0.19109959283073
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.105375'
'max' => '$0.276823'
'avg' => '$0.191099'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0040856623382542
'max_diff' => -0.049922272364544
'year' => 2027
]
2 => [
'items' => [
101 => 0.24357965639328
102 => 0.24184983717268
103 => 0.24988760356724
104 => 0.24503984785434
105 => 0.24722279195503
106 => 0.24250446081593
107 => 0.25209174541941
108 => 0.25201870637382
109 => 0.24828903612443
110 => 0.25144132787954
111 => 0.250893539613
112 => 0.2466827510872
113 => 0.25222523492632
114 => 0.25222798392916
115 => 0.24863825740414
116 => 0.2444462427151
117 => 0.24369680949966
118 => 0.24313221224402
119 => 0.24708393564058
120 => 0.25062703848122
121 => 0.25721987445797
122 => 0.25887747006444
123 => 0.26534717606889
124 => 0.26149478114751
125 => 0.26320249791929
126 => 0.26505646604635
127 => 0.26594532654388
128 => 0.26449697606203
129 => 0.27454709252418
130 => 0.2753956302812
131 => 0.2756801376513
201 => 0.27229129492661
202 => 0.27530138043465
203 => 0.27389306110899
204 => 0.27755711675198
205 => 0.27813168746181
206 => 0.27764504651153
207 => 0.27782742432381
208 => 0.26925142288541
209 => 0.26880671196881
210 => 0.26274304706582
211 => 0.26521403533414
212 => 0.26059464120407
213 => 0.26205949866774
214 => 0.26270519388006
215 => 0.26236791934403
216 => 0.26535374130339
217 => 0.2628151826748
218 => 0.2561155090763
219 => 0.2494140101562
220 => 0.24932987829618
221 => 0.2475654919218
222 => 0.2462901637366
223 => 0.24653583718977
224 => 0.24740162248242
225 => 0.24623984272148
226 => 0.24648776733721
227 => 0.25060496787131
228 => 0.2514306430759
229 => 0.24862467611859
301 => 0.23735831388591
302 => 0.23459352033448
303 => 0.236580799111
304 => 0.23563100785297
305 => 0.19017261358349
306 => 0.20085238902321
307 => 0.19450682910783
308 => 0.19743115506201
309 => 0.19095398156319
310 => 0.19404522825458
311 => 0.19347438786493
312 => 0.21064715073447
313 => 0.21037902166263
314 => 0.21050736086024
315 => 0.20438139657196
316 => 0.21414022402125
317 => 0.21894777333885
318 => 0.21805802390895
319 => 0.21828195467156
320 => 0.21443408225183
321 => 0.2105446166763
322 => 0.20623060076858
323 => 0.21424550909665
324 => 0.21335438810961
325 => 0.21539829903866
326 => 0.22059654000689
327 => 0.22136200073566
328 => 0.22239078771766
329 => 0.22202204081866
330 => 0.23080708796962
331 => 0.22974316079403
401 => 0.23230691917446
402 => 0.2270330736731
403 => 0.2210652168903
404 => 0.22219951136077
405 => 0.22209026968184
406 => 0.22069949772735
407 => 0.21944397099244
408 => 0.21735387272129
409 => 0.22396725292756
410 => 0.22369876176863
411 => 0.22804532154478
412 => 0.22727702488412
413 => 0.22214615175012
414 => 0.22232940188787
415 => 0.22356184713124
416 => 0.22782735419035
417 => 0.22909364710335
418 => 0.228507049773
419 => 0.22989548214365
420 => 0.23099284247846
421 => 0.23003329370644
422 => 0.24361848080891
423 => 0.23797696396803
424 => 0.24072660002285
425 => 0.24138237202013
426 => 0.2397026258385
427 => 0.24006690263809
428 => 0.24061868272999
429 => 0.24396898339839
430 => 0.25276114176958
501 => 0.25665512886193
502 => 0.2683703811552
503 => 0.25633178744082
504 => 0.25561746711047
505 => 0.25772773781521
506 => 0.26460583109676
507 => 0.27017987967501
508 => 0.27202911316299
509 => 0.27227351989595
510 => 0.27574280485412
511 => 0.27773133429381
512 => 0.27532154240894
513 => 0.27327949610225
514 => 0.26596513969978
515 => 0.2668117963697
516 => 0.2726444212364
517 => 0.28088334740051
518 => 0.28795320316348
519 => 0.28547758608464
520 => 0.30436479688292
521 => 0.30623738668623
522 => 0.30597865532349
523 => 0.31024469357416
524 => 0.30177747641016
525 => 0.29815757702795
526 => 0.27372100969196
527 => 0.28058668835875
528 => 0.29056635550808
529 => 0.28924550913904
530 => 0.28199800809792
531 => 0.28794770528404
601 => 0.28598054933008
602 => 0.28442897181181
603 => 0.29153704921109
604 => 0.28372142612686
605 => 0.29048838868918
606 => 0.28180968920773
607 => 0.28548889449492
608 => 0.28340039963078
609 => 0.28475191176418
610 => 0.27685099944823
611 => 0.28111413995011
612 => 0.27667363878744
613 => 0.27667153341172
614 => 0.27657350910244
615 => 0.28179773902813
616 => 0.28196810097845
617 => 0.27810738716999
618 => 0.27755099799451
619 => 0.27960826039164
620 => 0.27719974492248
621 => 0.27832667415148
622 => 0.2772338784608
623 => 0.27698786713303
624 => 0.27502760701797
625 => 0.27418307306193
626 => 0.27451423658706
627 => 0.27338380474931
628 => 0.27270267867757
629 => 0.27643801598308
630 => 0.27444237594382
701 => 0.27613215552555
702 => 0.27420643842498
703 => 0.2675310639594
704 => 0.26369198551344
705 => 0.2510828219555
706 => 0.25465876509892
707 => 0.25702961910258
708 => 0.25624605186851
709 => 0.25792945748756
710 => 0.25803280492051
711 => 0.25748551259347
712 => 0.25685181819125
713 => 0.25654337080175
714 => 0.2588422849369
715 => 0.26017688197025
716 => 0.25726756601978
717 => 0.25658595399824
718 => 0.2595274330519
719 => 0.2613217335754
720 => 0.27456984051051
721 => 0.27358837795793
722 => 0.2760516563626
723 => 0.27577432901632
724 => 0.27835623721543
725 => 0.28257656592516
726 => 0.27399545763581
727 => 0.27548484132244
728 => 0.27511967883738
729 => 0.27910642709862
730 => 0.27911887329152
731 => 0.27672861855606
801 => 0.27802441442561
802 => 0.27730113671953
803 => 0.27860819729126
804 => 0.27357526992717
805 => 0.2797048321857
806 => 0.28317989900601
807 => 0.28322815031219
808 => 0.28487530440518
809 => 0.28654890836039
810 => 0.28976124541224
811 => 0.28645931802352
812 => 0.28051947208735
813 => 0.28094830977836
814 => 0.27746578027929
815 => 0.27752432222934
816 => 0.27721182071196
817 => 0.27814966128963
818 => 0.27378107319462
819 => 0.27480637208871
820 => 0.27337094763284
821 => 0.27548172099001
822 => 0.27321087778103
823 => 0.27511950274497
824 => 0.27594320200748
825 => 0.27898267001914
826 => 0.2727619458844
827 => 0.26007746826766
828 => 0.26274389924713
829 => 0.25880003838487
830 => 0.25916505772301
831 => 0.25990245487844
901 => 0.25751230943633
902 => 0.25796827386455
903 => 0.2579519836066
904 => 0.25781160296431
905 => 0.25718983382302
906 => 0.25628814555488
907 => 0.25988019409016
908 => 0.26049055313196
909 => 0.2618473056744
910 => 0.26588408094667
911 => 0.26548071190325
912 => 0.26613862354868
913 => 0.26470240612072
914 => 0.25923167973032
915 => 0.25952876649378
916 => 0.25582408979297
917 => 0.26175256876191
918 => 0.26034862668997
919 => 0.259443496103
920 => 0.25919652283637
921 => 0.26324330449373
922 => 0.26445416499115
923 => 0.26369963798699
924 => 0.26215208108838
925 => 0.26512384782783
926 => 0.26591896723854
927 => 0.26609696515172
928 => 0.27136236603427
929 => 0.26639124256974
930 => 0.26758784139637
1001 => 0.27692336385754
1002 => 0.2684573331993
1003 => 0.27294197845399
1004 => 0.27272247840574
1005 => 0.27501667116591
1006 => 0.27253428763693
1007 => 0.27256505975588
1008 => 0.27460214750484
1009 => 0.27174142515214
1010 => 0.27103307006719
1011 => 0.27005448259065
1012 => 0.27219119254476
1013 => 0.27347205352716
1014 => 0.28379485235662
1015 => 0.29046385117727
1016 => 0.29017433235023
1017 => 0.29281999247282
1018 => 0.29162809835613
1019 => 0.28777915784754
1020 => 0.29434882996741
1021 => 0.29226991082192
1022 => 0.29244129439039
1023 => 0.29243491548541
1024 => 0.29381721497489
1025 => 0.29283772910071
1026 => 0.29090706190053
1027 => 0.29218872888847
1028 => 0.29599482163834
1029 => 0.30780905031911
1030 => 0.31442044920659
1031 => 0.30741103580457
1101 => 0.3122460353095
1102 => 0.30934675849302
1103 => 0.30881987364945
1104 => 0.3118566106422
1105 => 0.31489866304105
1106 => 0.3147048974544
1107 => 0.31249652362395
1108 => 0.31124906928254
1109 => 0.32069521148356
1110 => 0.32765496814644
1111 => 0.32718035940084
1112 => 0.32927512805292
1113 => 0.33542543360418
1114 => 0.33598774046565
1115 => 0.33591690272558
1116 => 0.33452316649877
1117 => 0.34057894103209
1118 => 0.345630774689
1119 => 0.33420055683118
1120 => 0.3385530341589
1121 => 0.34050700145937
1122 => 0.34337600517244
1123 => 0.34821649533725
1124 => 0.35347455153283
1125 => 0.35421809833054
1126 => 0.35369051629557
1127 => 0.35022268689045
1128 => 0.35597611472131
1129 => 0.35934633781014
1130 => 0.36135322853336
1201 => 0.36644236949266
1202 => 0.34051906849621
1203 => 0.32216926757926
1204 => 0.31930368119174
1205 => 0.32513096379438
1206 => 0.32666757174499
1207 => 0.32604816700684
1208 => 0.30539379778391
1209 => 0.31919494021231
1210 => 0.33404380903225
1211 => 0.33461421455754
1212 => 0.34204786876401
1213 => 0.34446857128942
1214 => 0.35045363727695
1215 => 0.35007926976988
1216 => 0.35153653809464
1217 => 0.35120153734315
1218 => 0.36228761178072
1219 => 0.37451719818336
1220 => 0.37409372649394
1221 => 0.37233557875466
1222 => 0.37494672795623
1223 => 0.38756897172587
1224 => 0.3864069177869
1225 => 0.38753575420509
1226 => 0.40241809096799
1227 => 0.42176724574747
1228 => 0.41277762072902
1229 => 0.43228252032414
1230 => 0.44455982070896
1231 => 0.46579214222797
]
'min_raw' => 0.19017261358349
'max_raw' => 0.46579214222797
'avg_raw' => 0.32798237790573
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.190172'
'max' => '$0.465792'
'avg' => '$0.327982'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.084796681309228
'max_diff' => 0.18896888884076
'year' => 2028
]
3 => [
'items' => [
101 => 0.4631337510024
102 => 0.47139933795977
103 => 0.45837467588564
104 => 0.42846741904493
105 => 0.42373448116951
106 => 0.43320994265318
107 => 0.45650444010878
108 => 0.43247631603023
109 => 0.43733717423702
110 => 0.43593724674646
111 => 0.4358626505598
112 => 0.43870968360012
113 => 0.43457991368387
114 => 0.41775448811366
115 => 0.42546548149963
116 => 0.42248789664099
117 => 0.42579174903531
118 => 0.44362127779507
119 => 0.4357384181275
120 => 0.42743446581924
121 => 0.43784946480833
122 => 0.4511113375034
123 => 0.45028143334402
124 => 0.44867107240179
125 => 0.45774859271736
126 => 0.47274199681478
127 => 0.47679465369394
128 => 0.47978624214921
129 => 0.48019873165389
130 => 0.4844476299129
131 => 0.46160023311397
201 => 0.49785963859663
202 => 0.50412063627763
203 => 0.50294382820537
204 => 0.50990266362473
205 => 0.50785519771574
206 => 0.50488874085117
207 => 0.5159199751776
208 => 0.50327355519705
209 => 0.48532355417466
210 => 0.47547582860301
211 => 0.48844410802912
212 => 0.49636338374406
213 => 0.5015975212311
214 => 0.50318136807213
215 => 0.46337381148928
216 => 0.44191974631942
217 => 0.45567155612194
218 => 0.47244971318023
219 => 0.46150702960437
220 => 0.4619359620833
221 => 0.44633457099077
222 => 0.47383009010943
223 => 0.46982422424756
224 => 0.49060666342521
225 => 0.48564676752597
226 => 0.50259403990571
227 => 0.49813125512318
228 => 0.51665602524453
301 => 0.52404605758406
302 => 0.53645507204883
303 => 0.54558319360289
304 => 0.55094340117258
305 => 0.55062159441573
306 => 0.57186140725163
307 => 0.55933703168484
308 => 0.54360346420427
309 => 0.54331889360731
310 => 0.55146753115188
311 => 0.56854483997575
312 => 0.57297273768904
313 => 0.57544732844585
314 => 0.57165740656067
315 => 0.558063094513
316 => 0.55219313949554
317 => 0.55719451123938
318 => 0.55107826336943
319 => 0.56163662310902
320 => 0.57613550617541
321 => 0.573141544157
322 => 0.58314991030468
323 => 0.59350751635671
324 => 0.60831935820031
325 => 0.61219172213914
326 => 0.61859259247721
327 => 0.62518119063147
328 => 0.62729727079091
329 => 0.63133752439641
330 => 0.63131623026558
331 => 0.64349180644618
401 => 0.65692184401958
402 => 0.66199137229745
403 => 0.67364847303701
404 => 0.65368609653405
405 => 0.6688277884228
406 => 0.68248597352757
407 => 0.66620212218478
408 => 0.68864561761007
409 => 0.68951704767938
410 => 0.70267460711652
411 => 0.68933689994359
412 => 0.68141701199977
413 => 0.70428143173924
414 => 0.7153448042287
415 => 0.71201242639816
416 => 0.686652866568
417 => 0.67189251502415
418 => 0.63326182797474
419 => 0.67902154550626
420 => 0.70130976908661
421 => 0.68659514545336
422 => 0.69401634571543
423 => 0.734504008013
424 => 0.74991908843391
425 => 0.74671285946591
426 => 0.74725465938248
427 => 0.7555723569741
428 => 0.79245760873509
429 => 0.77035511088646
430 => 0.78725164232694
501 => 0.796213501678
502 => 0.80453777609311
503 => 0.78409598904355
504 => 0.75750152444157
505 => 0.74907794114244
506 => 0.68513206612657
507 => 0.68180340562914
508 => 0.67993492762319
509 => 0.66815443809716
510 => 0.65889820027735
511 => 0.65153729630097
512 => 0.63222008611493
513 => 0.63873907749007
514 => 0.60795147626863
515 => 0.62764829248451
516 => 0.57851053754247
517 => 0.61943391999448
518 => 0.59716118348373
519 => 0.61211672702737
520 => 0.61206454854484
521 => 0.5845266512216
522 => 0.56864336674681
523 => 0.57876481380083
524 => 0.5896158084842
525 => 0.59137634586445
526 => 0.60544494371138
527 => 0.60937118696696
528 => 0.59747448660378
529 => 0.57749226679039
530 => 0.58213368070713
531 => 0.56854930864193
601 => 0.54474321911299
602 => 0.56184116822712
603 => 0.56767915979844
604 => 0.57025754945938
605 => 0.54684699455552
606 => 0.53949088993685
607 => 0.53557456156157
608 => 0.57447025812946
609 => 0.57660105218952
610 => 0.56569960851434
611 => 0.61497516764348
612 => 0.60382259101034
613 => 0.61628275155717
614 => 0.58171252104319
615 => 0.58303315040381
616 => 0.56666704926597
617 => 0.57583097231989
618 => 0.56935420687241
619 => 0.57509061789678
620 => 0.57852899901269
621 => 0.59489241463437
622 => 0.61962076391596
623 => 0.59244826601231
624 => 0.58060881955836
625 => 0.58795394555082
626 => 0.60751498399812
627 => 0.63715095855692
628 => 0.61960586513854
629 => 0.62739207966261
630 => 0.62909302115155
701 => 0.6161559188195
702 => 0.6376279679732
703 => 0.64913501355328
704 => 0.66093886127087
705 => 0.67118781150776
706 => 0.65622414492029
707 => 0.67223741312623
708 => 0.6593335456746
709 => 0.6477574425932
710 => 0.64777499876317
711 => 0.64051314020032
712 => 0.62644237418175
713 => 0.62384750904364
714 => 0.63734632518742
715 => 0.64817109739207
716 => 0.64906267747801
717 => 0.65505582756739
718 => 0.65860251205593
719 => 0.69336484152735
720 => 0.70734653800984
721 => 0.72444309180864
722 => 0.73110316302225
723 => 0.75114758960754
724 => 0.73496008721119
725 => 0.73145781924357
726 => 0.68283659682962
727 => 0.6907983192761
728 => 0.70354580510485
729 => 0.68304679817575
730 => 0.69604869985128
731 => 0.69861555065996
801 => 0.68235024976434
802 => 0.69103824975486
803 => 0.66796549759252
804 => 0.62012368686254
805 => 0.63768122958485
806 => 0.65060949083344
807 => 0.63215926798858
808 => 0.66523057831576
809 => 0.64591100155304
810 => 0.63978762322249
811 => 0.61589814121301
812 => 0.62717305713099
813 => 0.64242254235131
814 => 0.63300013342809
815 => 0.65255304672559
816 => 0.68024518652635
817 => 0.69998025444381
818 => 0.70149526790719
819 => 0.68880694138313
820 => 0.70914006561376
821 => 0.7092881702256
822 => 0.6863523230302
823 => 0.67230424433035
824 => 0.66911249129234
825 => 0.67708611616134
826 => 0.68676756876467
827 => 0.70203252114719
828 => 0.71125681216978
829 => 0.73530887097077
830 => 0.74181666845575
831 => 0.74896676485082
901 => 0.75852149864272
902 => 0.76999440634334
903 => 0.74489233744737
904 => 0.74588968944072
905 => 0.7225149904466
906 => 0.69753577230046
907 => 0.71649188516988
908 => 0.74127448112062
909 => 0.73558932622719
910 => 0.7349496301645
911 => 0.73602542150505
912 => 0.7317390003752
913 => 0.71235167646707
914 => 0.70261548377147
915 => 0.71517765631645
916 => 0.72185389194613
917 => 0.73220815117884
918 => 0.73093177017651
919 => 0.7576032299937
920 => 0.76796695277558
921 => 0.76531546899927
922 => 0.76580340582563
923 => 0.78456643088631
924 => 0.80543477366419
925 => 0.82498073049604
926 => 0.84486371730377
927 => 0.82089400066086
928 => 0.80872365679619
929 => 0.82128034508962
930 => 0.81461758953294
1001 => 0.85290375926329
1002 => 0.85555461058709
1003 => 0.89383801179159
1004 => 0.93017351823727
1005 => 0.90735183765695
1006 => 0.92887165453312
1007 => 0.95214709102112
1008 => 0.99704918430993
1009 => 0.98192773896494
1010 => 0.97034494881395
1011 => 0.95939926808889
1012 => 0.98217549209985
1013 => 1.0114767404309
1014 => 1.0177879486775
1015 => 1.0280145171042
1016 => 1.0172625308489
1017 => 1.030212114001
1018 => 1.0759298328632
1019 => 1.0635765016651
1020 => 1.0460327854668
1021 => 1.0821225337321
1022 => 1.095183273334
1023 => 1.1868503838223
1024 => 1.3025838973933
1025 => 1.2546694628277
1026 => 1.2249274271037
1027 => 1.2319175109893
1028 => 1.2741794723188
1029 => 1.2877526729702
1030 => 1.2508560346368
1031 => 1.2638885510573
1101 => 1.3356989978627
1102 => 1.3742229986188
1103 => 1.3219022311284
1104 => 1.1775513086941
1105 => 1.0444531657731
1106 => 1.0797567867633
1107 => 1.0757544517419
1108 => 1.1529058182986
1109 => 1.0632818788016
1110 => 1.0647909160893
1111 => 1.1435376912017
1112 => 1.1225294016632
1113 => 1.0884986631493
1114 => 1.044701627825
1115 => 0.96373875729252
1116 => 0.89202768504525
1117 => 1.0326696117958
1118 => 1.0266048761735
1119 => 1.0178222402491
1120 => 1.0373670461185
1121 => 1.1322710755304
1122 => 1.1300832304781
1123 => 1.1161652765036
1124 => 1.126721921926
1125 => 1.0866480321661
1126 => 1.0969759860228
1127 => 1.0444320823473
1128 => 1.0681841212358
1129 => 1.0884256484684
1130 => 1.0924894347413
1201 => 1.1016453527161
1202 => 1.0234090360843
1203 => 1.0585348453544
1204 => 1.0791679674574
1205 => 0.98594677115687
1206 => 1.0773252841355
1207 => 1.0220471158719
1208 => 1.003284875313
1209 => 1.0285457604883
1210 => 1.0187015689685
1211 => 1.01023811117
1212 => 1.0055153562978
1213 => 1.0240641624284
1214 => 1.0231988384518
1215 => 0.99284939145401
1216 => 0.95325977504709
1217 => 0.96654734979811
1218 => 0.96171984931939
1219 => 0.94422436482454
1220 => 0.95601420896121
1221 => 0.90409770208687
1222 => 0.81477805039477
1223 => 0.87378534823749
1224 => 0.87151363145814
1225 => 0.87036812884383
1226 => 0.91471048233071
1227 => 0.9104479881951
1228 => 0.9027115196005
1229 => 0.94408227851179
1230 => 0.92898139499394
1231 => 0.97551875978032
]
'min_raw' => 0.41775448811366
'max_raw' => 1.3742229986188
'avg_raw' => 0.89598874336622
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.417754'
'max' => '$1.37'
'avg' => '$0.895988'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.22758187453017
'max_diff' => 0.90843085639082
'year' => 2029
]
4 => [
'items' => [
101 => 1.0061712780767
102 => 0.99839680793163
103 => 1.0272256495458
104 => 0.96685346868325
105 => 0.98690668545431
106 => 0.99103962563827
107 => 0.94357176976864
108 => 0.91114538495084
109 => 0.90898291477135
110 => 0.85276003212837
111 => 0.882793842221
112 => 0.909222352219
113 => 0.89656514686518
114 => 0.89255825377342
115 => 0.91302860159016
116 => 0.91461932293219
117 => 0.87835070775673
118 => 0.88589210132938
119 => 0.91734096617969
120 => 0.88509967062463
121 => 0.82246009994687
122 => 0.80692462035897
123 => 0.80485190100624
124 => 0.76271844822942
125 => 0.80796277539082
126 => 0.78821241411228
127 => 0.85060356874551
128 => 0.81496607582948
129 => 0.81342981473763
130 => 0.81110753077678
131 => 0.77484152746076
201 => 0.78278147736222
202 => 0.8091750801232
203 => 0.81859261493354
204 => 0.81761028889723
205 => 0.80904573707069
206 => 0.81296654503928
207 => 0.80033625647241
208 => 0.79587623870272
209 => 0.78179919579706
210 => 0.76110983160809
211 => 0.76398681459381
212 => 0.72299577046885
213 => 0.70066167407019
214 => 0.6944798905457
215 => 0.68621335126224
216 => 0.69541361815419
217 => 0.72287964799109
218 => 0.6897497887645
219 => 0.63295096890994
220 => 0.63636467476368
221 => 0.64403425827866
222 => 0.62974204013786
223 => 0.61621565512253
224 => 0.62797574946305
225 => 0.60390934072506
226 => 0.64694256879602
227 => 0.64577864057593
228 => 0.66181876684381
301 => 0.67184898697565
302 => 0.6487325768941
303 => 0.64291886227201
304 => 0.64623061833935
305 => 0.59149466757403
306 => 0.65734567190992
307 => 0.65791515412994
308 => 0.65303890161945
309 => 0.68810252850665
310 => 0.76209771785812
311 => 0.7342577511745
312 => 0.72347727460716
313 => 0.70298358077215
314 => 0.73029021101216
315 => 0.72819348785952
316 => 0.71871131060463
317 => 0.71297646021467
318 => 0.72354309789827
319 => 0.71166713686987
320 => 0.70953388793959
321 => 0.69660872041979
322 => 0.69199502367287
323 => 0.68857922627801
324 => 0.6848187689756
325 => 0.69311340073716
326 => 0.67431667391578
327 => 0.65164966403505
328 => 0.64976514742391
329 => 0.65496846347565
330 => 0.65266638346408
331 => 0.64975412595049
401 => 0.6441938332509
402 => 0.64254421318379
403 => 0.64790467812002
404 => 0.64185302574154
405 => 0.65078256847655
406 => 0.64835422694676
407 => 0.63478970856032
408 => 0.61788329642289
409 => 0.61773279389247
410 => 0.61409033512953
411 => 0.60945111624759
412 => 0.60816059168559
413 => 0.62698534711926
414 => 0.66595202748945
415 => 0.65830193573915
416 => 0.66382991104168
417 => 0.69102207829188
418 => 0.69966565056372
419 => 0.6935306476994
420 => 0.68513267738822
421 => 0.68550214546149
422 => 0.71420055225329
423 => 0.71599043668272
424 => 0.72051289719727
425 => 0.72632553700565
426 => 0.69452056539333
427 => 0.68400413415872
428 => 0.67902086561037
429 => 0.66367432724909
430 => 0.68022425315897
501 => 0.67058132006977
502 => 0.671882481193
503 => 0.67103509830454
504 => 0.67149782666142
505 => 0.64693054013176
506 => 0.6558815681246
507 => 0.64099874800607
508 => 0.62107232254231
509 => 0.62100552217705
510 => 0.62588248657956
511 => 0.62298147731731
512 => 0.61517493598437
513 => 0.61628381833488
514 => 0.60656884212359
515 => 0.61746339234225
516 => 0.61777580905995
517 => 0.6135808137956
518 => 0.63036537156567
519 => 0.63724201857897
520 => 0.63448078283047
521 => 0.63704828291796
522 => 0.65861983158947
523 => 0.66213693525558
524 => 0.66369900037724
525 => 0.66160604004818
526 => 0.63744257122823
527 => 0.6385143238214
528 => 0.63065051441175
529 => 0.62400642412841
530 => 0.62427215289608
531 => 0.62768807897299
601 => 0.64260562849229
602 => 0.67399873201807
603 => 0.67519007734881
604 => 0.67663402264366
605 => 0.67076077146072
606 => 0.66898934270451
607 => 0.67132631447852
608 => 0.68311591359183
609 => 0.71344196335621
610 => 0.70272271196072
611 => 0.69400779372109
612 => 0.70165312654233
613 => 0.7004761874806
614 => 0.69054163736999
615 => 0.69026280763643
616 => 0.67119522970637
617 => 0.66414638029337
618 => 0.65825583412663
619 => 0.65182351148915
620 => 0.64801021501625
621 => 0.65386917151088
622 => 0.65520918418234
623 => 0.6423984734098
624 => 0.6406524208687
625 => 0.65111392382396
626 => 0.64651020641749
627 => 0.65124524393674
628 => 0.65234381325761
629 => 0.65216691829475
630 => 0.64736010858882
701 => 0.65042382575425
702 => 0.64317722131996
703 => 0.63529762740247
704 => 0.63027093739915
705 => 0.62588448367759
706 => 0.6283183431445
707 => 0.61964207855014
708 => 0.6168663668877
709 => 0.64938590731442
710 => 0.67340844147162
711 => 0.673059144311
712 => 0.67093288767771
713 => 0.66777370161604
714 => 0.68288479945406
715 => 0.67762039512323
716 => 0.68145068912961
717 => 0.68242565971117
718 => 0.68537660201919
719 => 0.68643131025225
720 => 0.68324324942999
721 => 0.67254372792164
722 => 0.64588153760283
723 => 0.63347021603621
724 => 0.62937427319232
725 => 0.62952315293539
726 => 0.62541638499301
727 => 0.62662601220447
728 => 0.62499572601342
729 => 0.62190835837615
730 => 0.62812770689287
731 => 0.62884442887218
801 => 0.6273927586127
802 => 0.62773467951004
803 => 0.615715469778
804 => 0.61662926418957
805 => 0.61154114078654
806 => 0.61058717898671
807 => 0.59772484609743
808 => 0.5749373589591
809 => 0.58756383886863
810 => 0.57231282668967
811 => 0.56653703728695
812 => 0.59387872599988
813 => 0.5911343787935
814 => 0.58643724931523
815 => 0.57948921584931
816 => 0.57691212265067
817 => 0.56125452018433
818 => 0.56032938550056
819 => 0.56808971607371
820 => 0.56450859053087
821 => 0.55947933399043
822 => 0.54126387660851
823 => 0.52078367158054
824 => 0.52140184023636
825 => 0.52791621240799
826 => 0.5468576280798
827 => 0.539456889287
828 => 0.53408756837914
829 => 0.53308205597429
830 => 0.54566814890378
831 => 0.563480107267
901 => 0.57183707961092
902 => 0.56355557382312
903 => 0.55404222588204
904 => 0.5546212592906
905 => 0.55847330914624
906 => 0.55887810512102
907 => 0.55268589359934
908 => 0.55442896487161
909 => 0.55178108021926
910 => 0.5355310169954
911 => 0.53523710488119
912 => 0.53124907729839
913 => 0.53112832140813
914 => 0.52434369162968
915 => 0.52339447502375
916 => 0.50992318080105
917 => 0.51879002745326
918 => 0.5128426122493
919 => 0.50387845468351
920 => 0.50233303054037
921 => 0.50228657322448
922 => 0.51149075869559
923 => 0.5186824711871
924 => 0.51294607008308
925 => 0.51164000274716
926 => 0.525585384944
927 => 0.52381070794447
928 => 0.52227384910832
929 => 0.56188524175885
930 => 0.53052973356044
1001 => 0.5168569422761
1002 => 0.49993426666908
1003 => 0.50544437517826
1004 => 0.50660543600148
1005 => 0.46590945170816
1006 => 0.44939909594872
1007 => 0.44373336403171
1008 => 0.44047265521178
1009 => 0.44195860116643
1010 => 0.42709734451135
1011 => 0.43708435476606
1012 => 0.42421576269352
1013 => 0.42205830135454
1014 => 0.44506893809289
1015 => 0.44827073376885
1016 => 0.43461087869529
1017 => 0.44338271698217
1018 => 0.44020192648167
1019 => 0.42443635776951
1020 => 0.42383422900837
1021 => 0.41592362081514
1022 => 0.40354505078832
1023 => 0.39788771212469
1024 => 0.3949413210294
1025 => 0.39615705941933
1026 => 0.39554234488718
1027 => 0.39153091675591
1028 => 0.39577227525205
1029 => 0.38493735694474
1030 => 0.3806228051719
1031 => 0.37867402223295
1101 => 0.36905740860058
1102 => 0.38436171741717
1103 => 0.38737685905264
1104 => 0.39039794144856
1105 => 0.41669440112446
1106 => 0.41538070431208
1107 => 0.42725588369974
1108 => 0.42679443606579
1109 => 0.42340744253928
1110 => 0.40911827398431
1111 => 0.41481368189038
1112 => 0.3972841016184
1113 => 0.41041845505376
1114 => 0.40442448464958
1115 => 0.40839188763072
1116 => 0.40125813934432
1117 => 0.40520625019126
1118 => 0.38809186098879
1119 => 0.37211068515748
1120 => 0.3785419768316
1121 => 0.38553352638879
1122 => 0.40069298724248
1123 => 0.39166413742086
1124 => 0.39491125323532
1125 => 0.38403395881749
1126 => 0.36159099348796
1127 => 0.36171801823443
1128 => 0.35826565696505
1129 => 0.35528231277532
1130 => 0.39270120943456
1201 => 0.38804757812977
1202 => 0.38063262569778
1203 => 0.39055783418649
1204 => 0.39318221684515
1205 => 0.39325692932999
1206 => 0.40049810523664
1207 => 0.40436272211607
1208 => 0.40504387759128
1209 => 0.41643802433636
1210 => 0.42025719203288
1211 => 0.435987803266
1212 => 0.40403483637443
1213 => 0.40337678604853
1214 => 0.39069750222399
1215 => 0.38265609997092
1216 => 0.39124810391598
1217 => 0.3988594464858
1218 => 0.39093400785417
1219 => 0.39196890282432
1220 => 0.38132964899348
1221 => 0.38513268161459
1222 => 0.3884083656317
1223 => 0.38659972545325
1224 => 0.38389210356695
1225 => 0.39823540319368
1226 => 0.3974260980169
1227 => 0.41078290838034
1228 => 0.42119549721331
1229 => 0.4398567178749
1230 => 0.4203827612831
1231 => 0.41967305290293
]
'min_raw' => 0.35528231277532
'max_raw' => 1.0272256495458
'avg_raw' => 0.69125398116057
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.355282'
'max' => '$1.02'
'avg' => '$0.691253'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.062472175338342
'max_diff' => -0.34699734907296
'year' => 2030
]
5 => [
'items' => [
101 => 0.42661056615991
102 => 0.42025612993574
103 => 0.42427191428174
104 => 0.43920971293298
105 => 0.4395253250798
106 => 0.43423841497719
107 => 0.43391670601697
108 => 0.43493211493463
109 => 0.44087939668113
110 => 0.43880123369739
111 => 0.44120613651482
112 => 0.44421350431319
113 => 0.45665325262477
114 => 0.45965243382813
115 => 0.45236597840115
116 => 0.45302386374322
117 => 0.45029852939586
118 => 0.44766589056464
119 => 0.45358367819119
120 => 0.46439855139311
121 => 0.46433127262821
122 => 0.46684011299996
123 => 0.46840309976721
124 => 0.46169361638595
125 => 0.45732598941929
126 => 0.45900081551764
127 => 0.46167889892185
128 => 0.45813234916395
129 => 0.43624140113657
130 => 0.4428817163689
131 => 0.44177644321942
201 => 0.44020239984874
202 => 0.44687928816289
203 => 0.44623528599662
204 => 0.42694492084425
205 => 0.42817982743386
206 => 0.4270200196041
207 => 0.43076759597643
208 => 0.42005374851314
209 => 0.42334925583398
210 => 0.42541616713215
211 => 0.42663359376554
212 => 0.43103177356257
213 => 0.43051569792699
214 => 0.43099969357646
215 => 0.43752103313905
216 => 0.47050373079313
217 => 0.47229890625422
218 => 0.46345880572923
219 => 0.46699025152569
220 => 0.46021064783879
221 => 0.4647618412132
222 => 0.4678756521322
223 => 0.45380493934065
224 => 0.45297176304731
225 => 0.44616417752435
226 => 0.44982218838303
227 => 0.44400203008657
228 => 0.44543009335203
301 => 0.4414371039655
302 => 0.448623689865
303 => 0.4566594095832
304 => 0.4586895497242
305 => 0.4533491250435
306 => 0.44948230562354
307 => 0.44269344453159
308 => 0.45398347182714
309 => 0.45728501986571
310 => 0.45396613020081
311 => 0.45319707094628
312 => 0.4517397050486
313 => 0.45350625801088
314 => 0.45726703892604
315 => 0.45549352409717
316 => 0.45666496188695
317 => 0.45220064901371
318 => 0.46169583750413
319 => 0.47677648196846
320 => 0.47682496870635
321 => 0.47505144431757
322 => 0.4743257563488
323 => 0.47614549999815
324 => 0.47713263627812
325 => 0.48301735355619
326 => 0.48933188965304
327 => 0.51879907436907
328 => 0.51052480681565
329 => 0.53666984610638
330 => 0.55734717767689
331 => 0.56354740530476
401 => 0.55784348763037
402 => 0.53833069338587
403 => 0.53737330260953
404 => 0.56653365530005
405 => 0.55829452003621
406 => 0.55731450111329
407 => 0.5468887555415
408 => 0.55305166242814
409 => 0.55170374428764
410 => 0.54957598956046
411 => 0.56133438658834
412 => 0.58334505614521
413 => 0.57991448688002
414 => 0.57735372606309
415 => 0.56613321758954
416 => 0.57289046988191
417 => 0.57048434176724
418 => 0.5808225951145
419 => 0.57469844285194
420 => 0.55823210048318
421 => 0.56085441977918
422 => 0.56045806149296
423 => 0.56861508693704
424 => 0.56616655036854
425 => 0.55997994543035
426 => 0.58326982606953
427 => 0.58175751076595
428 => 0.58390162810302
429 => 0.58484553486383
430 => 0.59902167479517
501 => 0.60482918573916
502 => 0.60614759239823
503 => 0.611664278626
504 => 0.6060103322193
505 => 0.62863014904159
506 => 0.64367100732551
507 => 0.66114173821777
508 => 0.68667117174113
509 => 0.69627047490638
510 => 0.6945364467096
511 => 0.71389257184362
512 => 0.74867509844695
513 => 0.70156698980663
514 => 0.75117194259232
515 => 0.73546758725709
516 => 0.69823284326655
517 => 0.69583536472236
518 => 0.72105116565702
519 => 0.77697738519918
520 => 0.7629685015138
521 => 0.77700029871435
522 => 0.76063146193712
523 => 0.75981861122374
524 => 0.77620530084801
525 => 0.81449369434705
526 => 0.79630431381462
527 => 0.7702253766023
528 => 0.78948165800668
529 => 0.77280008496949
530 => 0.73521183203842
531 => 0.76295778918446
601 => 0.74440485780027
602 => 0.74981958950626
603 => 0.78881509173557
604 => 0.78412304973803
605 => 0.79019498655423
606 => 0.7794781770039
607 => 0.76946698699814
608 => 0.75078035741165
609 => 0.74524816763079
610 => 0.74677706585888
611 => 0.74524740998476
612 => 0.73479241247011
613 => 0.73253465675225
614 => 0.72877163164127
615 => 0.72993795047284
616 => 0.72286236235237
617 => 0.73621545902679
618 => 0.73869391143665
619 => 0.74841118164045
620 => 0.74942006086881
621 => 0.7764825200697
622 => 0.761576972308
623 => 0.77157690062962
624 => 0.77068241291756
625 => 0.69903983307445
626 => 0.708911548469
627 => 0.72426883970797
628 => 0.71735040082113
629 => 0.70756934690051
630 => 0.69967062143268
701 => 0.68770324466277
702 => 0.7045470976533
703 => 0.72669497319178
704 => 0.74998176754203
705 => 0.77795932514263
706 => 0.77171505998085
707 => 0.74945874656347
708 => 0.75045714852512
709 => 0.75662887659539
710 => 0.74863592798377
711 => 0.74627865139731
712 => 0.75630502299086
713 => 0.75637406910163
714 => 0.74717721574384
715 => 0.73695659624307
716 => 0.73691377147417
717 => 0.73509511095348
718 => 0.76095499760357
719 => 0.77517532053169
720 => 0.7768056576382
721 => 0.77506558585457
722 => 0.77573527042311
723 => 0.76746077783468
724 => 0.78637381416728
725 => 0.80373028661152
726 => 0.79907838122951
727 => 0.79210451375457
728 => 0.78654949240381
729 => 0.79776979474039
730 => 0.79727017233974
731 => 0.80357869296617
801 => 0.80329250203078
802 => 0.80117118381957
803 => 0.79907845698847
804 => 0.80737588232267
805 => 0.80498635707899
806 => 0.80259312024261
807 => 0.79779311738101
808 => 0.79844551748951
809 => 0.79147285415111
810 => 0.7882469810434
811 => 0.73973758945531
812 => 0.72677429493288
813 => 0.73085281128183
814 => 0.73219556476254
815 => 0.72655392237346
816 => 0.73464258834037
817 => 0.73338197831745
818 => 0.73828627448446
819 => 0.7352222831591
820 => 0.73534803043185
821 => 0.74435857560791
822 => 0.74697437520612
823 => 0.74564395841838
824 => 0.74657573673249
825 => 0.76804817470223
826 => 0.76499548067285
827 => 0.76337379781218
828 => 0.76382301504737
829 => 0.76930968332289
830 => 0.77084565087906
831 => 0.76433764841306
901 => 0.76740685999834
902 => 0.78047517338752
903 => 0.78504834347125
904 => 0.79964370713236
905 => 0.79344333723722
906 => 0.80482438452547
907 => 0.83980584380463
908 => 0.86775145400968
909 => 0.84205151596393
910 => 0.8933700702535
911 => 0.93332892597733
912 => 0.93179523853969
913 => 0.92482748777926
914 => 0.87933539289883
915 => 0.83747288894093
916 => 0.87249265107752
917 => 0.87258192365308
918 => 0.86957369502806
919 => 0.85088984539745
920 => 0.86892353756051
921 => 0.87035498655566
922 => 0.86955375577139
923 => 0.8552288920662
924 => 0.83335747286573
925 => 0.83763109582472
926 => 0.8446313774111
927 => 0.83137838395636
928 => 0.82714324952039
929 => 0.83501717020416
930 => 0.86038858324381
1001 => 0.85559226457526
1002 => 0.85546701331138
1003 => 0.87598769853112
1004 => 0.86129931655482
1005 => 0.83768499989627
1006 => 0.83172207350541
1007 => 0.8105577019264
1008 => 0.82517600876093
1009 => 0.82570209559943
1010 => 0.81769579834164
1011 => 0.83833466679352
1012 => 0.83814447598733
1013 => 0.85773800989222
1014 => 0.89519348772309
1015 => 0.88411605985638
1016 => 0.87123421646811
1017 => 0.87263483001919
1018 => 0.8879961036657
1019 => 0.87870832695525
1020 => 0.88204827621701
1021 => 0.88799104825248
1022 => 0.8915764701722
1023 => 0.87211894298145
1024 => 0.86758246263218
1025 => 0.8583024159258
1026 => 0.85588142496038
1027 => 0.8634398293682
1028 => 0.86144845684911
1029 => 0.82565788003777
1030 => 0.82191756562409
1031 => 0.82203227572722
1101 => 0.81262707729178
1102 => 0.79828189217147
1103 => 0.83598018216115
1104 => 0.83295248188775
1105 => 0.8296101351113
1106 => 0.83001955352025
1107 => 0.84638310349117
1108 => 0.83689141812896
1109 => 0.86212661932105
1110 => 0.85693902059554
1111 => 0.85161837953732
1112 => 0.85088290487239
1113 => 0.84883491200074
1114 => 0.84181158241926
1115 => 0.83333048991296
1116 => 0.82773053802064
1117 => 0.76353766765335
1118 => 0.77545149100077
1119 => 0.78915725878281
1120 => 0.79388843489876
1121 => 0.78579543076501
1122 => 0.8421311435499
1123 => 0.85242422114014
1124 => 0.82124581771848
1125 => 0.81541361144411
1126 => 0.8425135020223
1127 => 0.82616895517676
1128 => 0.83352890362051
1129 => 0.81762072076168
1130 => 0.84994492016515
1201 => 0.84969866392354
1202 => 0.83712382028043
1203 => 0.84775199201877
1204 => 0.84590508563277
1205 => 0.83170811813018
1206 => 0.85039498935765
1207 => 0.85040425781264
1208 => 0.83830124420683
1209 => 0.8241675740056
1210 => 0.82164080759601
1211 => 0.81973722852969
1212 => 0.83306073986172
1213 => 0.84500655846047
1214 => 0.86723476525318
1215 => 0.87282346457003
1216 => 0.89463653006449
1217 => 0.88164791162142
1218 => 0.88740559794646
1219 => 0.89365638092675
1220 => 0.89665323615244
1221 => 0.8917700213823
1222 => 0.92565469071115
1223 => 0.92851559500195
1224 => 0.92947483146392
1225 => 0.91804911161618
1226 => 0.928197825064
1227 => 0.92344957813183
1228 => 0.93580319754836
1229 => 0.9377404028118
1230 => 0.93609965887174
1231 => 0.93671455839906
]
'min_raw' => 0.42005374851314
'max_raw' => 0.9377404028118
'avg_raw' => 0.67889707566247
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.420053'
'max' => '$0.93774'
'avg' => '$0.678897'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.064771435737821
'max_diff' => -0.089485246734026
'year' => 2031
]
6 => [
'items' => [
101 => 0.90779997079218
102 => 0.90630059688816
103 => 0.88585652731616
104 => 0.89418763678168
105 => 0.87861302695635
106 => 0.88355189616822
107 => 0.88572890265754
108 => 0.88459175801155
109 => 0.89465866521096
110 => 0.88609973755819
111 => 0.86351132026455
112 => 0.84091674877172
113 => 0.84063309233176
114 => 0.83468434048502
115 => 0.83038448246806
116 => 0.83121278766779
117 => 0.83413184322916
118 => 0.83021482165228
119 => 0.83105071680374
120 => 0.84493214585825
121 => 0.84771596745731
122 => 0.8382554539544
123 => 0.8002701270946
124 => 0.79094843260423
125 => 0.79764868174667
126 => 0.7944463942079
127 => 0.64118024412461
128 => 0.67718785265774
129 => 0.6557933543702
130 => 0.66565292349464
131 => 0.64381468082153
201 => 0.6542370348655
202 => 0.65231240663701
203 => 0.71021157561569
204 => 0.70930755972979
205 => 0.70974026429491
206 => 0.68908614799581
207 => 0.72198871608065
208 => 0.73819770425732
209 => 0.73519785193407
210 => 0.73595285013455
211 => 0.72297947962158
212 => 0.70986587487986
213 => 0.695320869052
214 => 0.72234369206311
215 => 0.71933921543925
216 => 0.72623040383783
217 => 0.74375663619182
218 => 0.74633744048162
219 => 0.74980606761906
220 => 0.74856281170398
221 => 0.77818221152585
222 => 0.77459510677233
223 => 0.78323899714784
224 => 0.76545785883187
225 => 0.7453368130262
226 => 0.74916116602731
227 => 0.7487928500798
228 => 0.74410376533462
229 => 0.73987066928981
301 => 0.73282375704261
302 => 0.75512123013951
303 => 0.75421599345174
304 => 0.76887072320415
305 => 0.76628035737196
306 => 0.74898126037457
307 => 0.7495991010081
308 => 0.75375437619269
309 => 0.76813583105066
310 => 0.77240522601662
311 => 0.77042747216242
312 => 0.77510866883731
313 => 0.77880849582138
314 => 0.77557331014297
315 => 0.82137671694642
316 => 0.80235594903924
317 => 0.81162653897155
318 => 0.81383752004492
319 => 0.80817413851741
320 => 0.80940232318024
321 => 0.81126268828413
322 => 0.82255846089816
323 => 0.8522018366955
324 => 0.86533068604686
325 => 0.90482947708644
326 => 0.86424051787063
327 => 0.86183213700458
328 => 0.86894706202002
329 => 0.89213703373191
330 => 0.91093032768111
331 => 0.9171651474952
401 => 0.91798918185929
402 => 0.9296861183135
403 => 0.93639058415411
404 => 0.92826580256799
405 => 0.92138090087385
406 => 0.89672003759088
407 => 0.89957459966519
408 => 0.91923970162414
409 => 0.94701781640989
410 => 0.97085432871631
411 => 0.96250761289293
412 => 1.0261871627623
413 => 1.0325007300242
414 => 1.0316283991707
415 => 1.0460116449781
416 => 1.0174638311474
417 => 1.005259087647
418 => 0.92286949476708
419 => 0.94601760973851
420 => 0.97966475429061
421 => 0.97521142853883
422 => 0.95077597277434
423 => 0.97083579223194
424 => 0.9642033885907
425 => 0.95897213666018
426 => 0.98293751588198
427 => 0.95658659698409
428 => 0.97940188371721
429 => 0.95014104248807
430 => 0.96254573998773
501 => 0.95550423373922
502 => 0.96006095125655
503 => 0.93342247375923
504 => 0.9477959496043
505 => 0.93282448990847
506 => 0.93281739148723
507 => 0.93248689568465
508 => 0.95010075162318
509 => 0.95067513883298
510 => 0.93765847268134
511 => 0.93578256773035
512 => 0.94271877153575
513 => 0.93459829347428
514 => 0.93839781404957
515 => 0.93471337708188
516 => 0.93388393271433
517 => 0.92727477887543
518 => 0.92442737367916
519 => 0.92554391462521
520 => 0.92173258476003
521 => 0.91943612065443
522 => 0.93203007117289
523 => 0.92530163144939
524 => 0.93099884128585
525 => 0.924506151632
526 => 0.90199966056154
527 => 0.88905593954509
528 => 0.84654326426581
529 => 0.8585998062382
530 => 0.8665933060393
531 => 0.86395145440272
601 => 0.86962717397895
602 => 0.86997561706465
603 => 0.8681303827733
604 => 0.86599383785308
605 => 0.86495388594426
606 => 0.87270483545599
607 => 0.87720452253252
608 => 0.86739556068357
609 => 0.86509745816432
610 => 0.87501486016123
611 => 0.88106446965026
612 => 0.92573138713527
613 => 0.92242231761574
614 => 0.93072743273766
615 => 0.92979240422731
616 => 0.93849748798369
617 => 0.95272662088248
618 => 0.92379481517111
619 => 0.92881637625603
620 => 0.92758520544279
621 => 0.94102680555145
622 => 0.94106876875979
623 => 0.93300985803693
624 => 0.93737872428069
625 => 0.934940142997
626 => 0.93934698897065
627 => 0.92237812297486
628 => 0.94304437008185
629 => 0.95476080048796
630 => 0.95492348313552
701 => 0.96047697816067
702 => 0.96611965074298
703 => 0.97695026939149
704 => 0.9658175906672
705 => 0.94579098538662
706 => 0.94723684160233
707 => 0.93549525025378
708 => 0.93569262852564
709 => 0.93463900784163
710 => 0.9378010028272
711 => 0.92307200305979
712 => 0.92652886986529
713 => 0.9216892360942
714 => 0.92880585583738
715 => 0.9211495494131
716 => 0.92758461173495
717 => 0.93036177130736
718 => 0.94060954991753
719 => 0.91963594418017
720 => 0.8768693422934
721 => 0.88585940050493
722 => 0.87256239825625
723 => 0.87379308643962
724 => 0.8762792724326
725 => 0.8682207301999
726 => 0.86975804610405
727 => 0.86970312236203
728 => 0.86922981922549
729 => 0.8671334811551
730 => 0.86409337620518
731 => 0.8762042186307
801 => 0.87826208675404
802 => 0.88283647267632
803 => 0.89644674234541
804 => 0.89508675545321
805 => 0.89730495049971
806 => 0.89246264316784
807 => 0.87401770718867
808 => 0.87501935595361
809 => 0.86252877980456
810 => 0.88251706056155
811 => 0.87778357184588
812 => 0.87473186087772
813 => 0.87389917326615
814 => 0.88754318016123
815 => 0.89162568086784
816 => 0.88908174039391
817 => 0.88386404426328
818 => 0.89388356330748
819 => 0.89656436391413
820 => 0.89716449630584
821 => 0.91491716299993
822 => 0.89815667316651
823 => 0.90219108965436
824 => 0.93366645541756
825 => 0.90512264197391
826 => 0.92024293655801
827 => 0.91950287682033
828 => 0.92723790788669
829 => 0.91886837850425
830 => 0.91897212885174
831 => 0.92584031242227
901 => 0.91619518728089
902 => 0.91380691865619
903 => 0.91050754265626
904 => 0.91771160944685
905 => 0.92203012167588
906 => 0.95683415864421
907 => 0.97931915378265
908 => 0.97834302084374
909 => 0.98726304866114
910 => 0.98324449443131
911 => 0.97026752278215
912 => 0.99241763101416
913 => 0.98540840996966
914 => 0.98598624163637
915 => 0.98596473471287
916 => 0.99062525395073
917 => 0.98732284894039
918 => 0.9808134696801
919 => 0.98513469941309
920 => 0.99796720685218
921 => 1.0377997036925
922 => 1.0600904966348
923 => 1.0364577699682
924 => 1.052759308368
925 => 1.0429841941602
926 => 1.0412077651242
927 => 1.0514463359134
928 => 1.0617028279655
929 => 1.0610495337618
930 => 1.0536038472087
1001 => 1.0493979678022
1002 => 1.0812462957415
1003 => 1.1047116012451
1004 => 1.1031114247231
1005 => 1.1101740834857
1006 => 1.1309102680524
1007 => 1.1328061248949
1008 => 1.1325672905085
1009 => 1.1278682115123
1010 => 1.148285678152
1011 => 1.165318288034
1012 => 1.1267805104941
1013 => 1.1414551916847
1014 => 1.1480431288599
1015 => 1.157716175186
1016 => 1.1740362257289
1017 => 1.191764129298
1018 => 1.1942710492393
1019 => 1.1924922695738
1020 => 1.1808002406183
1021 => 1.2001983242416
1022 => 1.211561266687
1023 => 1.218327638877
1024 => 1.2354860329338
1025 => 1.1480838137171
1026 => 1.0862161787835
1027 => 1.0765546542091
1028 => 1.0962017443518
1029 => 1.1013825253398
1030 => 1.0992941590196
1031 => 1.0296565111425
1101 => 1.0761880264048
1102 => 1.1262520243462
1103 => 1.1281751863992
1104 => 1.1532382705574
1105 => 1.1613998381299
1106 => 1.1815789059708
1107 => 1.1803166997832
1108 => 1.1852299816834
1109 => 1.1841005032607
1110 => 1.221477977232
1111 => 1.262710881631
1112 => 1.2612831172642
1113 => 1.2553553994113
1114 => 1.264159071249
1115 => 1.3067158473753
1116 => 1.302797901388
1117 => 1.3066038521848
1118 => 1.3567806896325
1119 => 1.4220177158863
1120 => 1.3917085675011
1121 => 1.4574706982746
1122 => 1.4988644736958
1123 => 1.5704507280905
1124 => 1.5614877764705
1125 => 1.5893557799821
1126 => 1.5454422224463
1127 => 1.4446078179499
1128 => 1.4286503874597
1129 => 1.4605975674075
1130 => 1.539136591949
1201 => 1.4581240940281
1202 => 1.4745128168466
1203 => 1.4697928635723
1204 => 1.4695413573208
1205 => 1.4791403279898
1206 => 1.4652165203858
1207 => 1.4084884233622
1208 => 1.4344865759273
1209 => 1.4244474406881
1210 => 1.4355866097031
1211 => 1.4957001107346
1212 => 1.4691224990017
1213 => 1.441125144031
1214 => 1.4762400402747
1215 => 1.5209533699805
1216 => 1.5181552901651
1217 => 1.5127258458166
1218 => 1.5433313393327
1219 => 1.5938826480533
1220 => 1.6075464636688
1221 => 1.6176328130118
1222 => 1.6190235501759
1223 => 1.6333490073048
1224 => 1.5563174138429
1225 => 1.6785685309785
1226 => 1.6996779217889
1227 => 1.6957102312111
1228 => 1.7191724306779
1229 => 1.7122692564162
1230 => 1.7022676399859
1231 => 1.7394602166937
]
'min_raw' => 0.64118024412461
'max_raw' => 1.7394602166937
'avg_raw' => 1.1903202304091
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.64118'
'max' => '$1.73'
'avg' => '$1.19'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.22112649561147
'max_diff' => 0.80171981388188
'year' => 2032
]
7 => [
'items' => [
101 => 1.6968219287844
102 => 1.6363022471084
103 => 1.6030999527973
104 => 1.6468234122988
105 => 1.6735238032779
106 => 1.6911710632513
107 => 1.6965111134564
108 => 1.5622971571625
109 => 1.4899632785673
110 => 1.5363284654372
111 => 1.5928971933728
112 => 1.556003171703
113 => 1.5574493475028
114 => 1.50484816818
115 => 1.5975512305644
116 => 1.5840451741305
117 => 1.6541146188015
118 => 1.6373919834883
119 => 1.6945308955374
120 => 1.6794843050614
121 => 1.7419418608837
122 => 1.766857870872
123 => 1.8086957295097
124 => 1.8394718286343
125 => 1.8575441426933
126 => 1.8564591487447
127 => 1.9280706606373
128 => 1.8858438539899
129 => 1.8327970327466
130 => 1.8318375831109
131 => 1.8593112835121
201 => 1.9168886225114
202 => 1.9318175887977
203 => 1.9401608443047
204 => 1.9273828580649
205 => 1.8815486858716
206 => 1.8617577227031
207 => 1.878620196722
208 => 1.8579988400057
209 => 1.8935970870289
210 => 1.9424810835669
211 => 1.9323867315901
212 => 1.9661306368188
213 => 2.0010520287682
214 => 2.0509911876736
215 => 2.0640471330532
216 => 2.0856281142925
217 => 2.1078420329708
218 => 2.1149765449684
219 => 2.1285985420808
220 => 2.1285267474321
221 => 2.1695775525965
222 => 2.2148578619305
223 => 2.2319501304625
224 => 2.2712528594787
225 => 2.2039483133704
226 => 2.2549995847325
227 => 2.3010491093972
228 => 2.2461469676928
301 => 2.321816779474
302 => 2.324754866794
303 => 2.3691164970678
304 => 2.3241474861252
305 => 2.2974450309738
306 => 2.3745340184682
307 => 2.4118349512364
308 => 2.4005996067215
309 => 2.3150980802062
310 => 2.2653325244413
311 => 2.1350864659458
312 => 2.2893685484448
313 => 2.36451485036
314 => 2.3149034694383
315 => 2.3399245642535
316 => 2.476431544448
317 => 2.5284045643337
318 => 2.5175945395163
319 => 2.5194212557623
320 => 2.5474649539156
321 => 2.6718261554738
322 => 2.59730604083
323 => 2.6542738762597
324 => 2.6844894107589
325 => 2.7125552831317
326 => 2.6436343708941
327 => 2.5539692767223
328 => 2.5255685775135
329 => 2.3099705953391
330 => 2.2987477840723
331 => 2.2924480800223
401 => 2.2527293370978
402 => 2.2215212850384
403 => 2.1967034833601
404 => 2.1315741605333
405 => 2.153553395096
406 => 2.0497508480563
407 => 2.1161600391159
408 => 1.9504886676404
409 => 2.0884647087566
410 => 2.0133706225778
411 => 2.0637942817979
412 => 2.0636183584011
413 => 1.9707724149412
414 => 1.9172208123989
415 => 1.9513459777984
416 => 1.9879308639656
417 => 1.9938666386599
418 => 2.041299898539
419 => 2.0545375017967
420 => 2.0144269459212
421 => 1.9470554967063
422 => 1.9627043477798
423 => 1.9169036889314
424 => 1.8366397959965
425 => 1.8942867251754
426 => 1.9139699213537
427 => 1.922663142113
428 => 1.8437328217819
429 => 1.8189312014732
430 => 1.8057270269266
501 => 1.9368665835161
502 => 1.9440507044569
503 => 1.9072957259915
504 => 2.0734317139051
505 => 2.0358300231384
506 => 2.0778403243627
507 => 1.9612843785684
508 => 1.9657369726611
509 => 1.9105575200302
510 => 1.9414543264111
511 => 1.9196174595116
512 => 1.9389581697838
513 => 1.9505509117761
514 => 2.0057213100018
515 => 2.0890946660829
516 => 1.9974806922776
517 => 1.9575631719543
518 => 1.9823277770582
519 => 2.0482791838914
520 => 2.148198941234
521 => 2.0890444338147
522 => 2.1152961996987
523 => 2.1210310426846
524 => 2.0774126989324
525 => 2.1498072117847
526 => 2.1886040193543
527 => 2.2284015160524
528 => 2.2629565673349
529 => 2.2125055207055
530 => 2.2664953724725
531 => 2.2229890824401
601 => 2.1839594426834
602 => 2.1840186345362
603 => 2.1595347713848
604 => 2.1120942013636
605 => 2.1033454323828
606 => 2.1488576334688
607 => 2.1853541087183
608 => 2.1883601332261
609 => 2.2085664571808
610 => 2.2205243515556
611 => 2.3377279723968
612 => 2.3848682382584
613 => 2.4425104630343
614 => 2.4649653581223
615 => 2.5325465418118
616 => 2.4779692473072
617 => 2.4661611063338
618 => 2.3022312603398
619 => 2.3290747634378
620 => 2.3720538019105
621 => 2.3029399688541
622 => 2.3467767881169
623 => 2.3554311048302
624 => 2.3005915072536
625 => 2.3298837057984
626 => 2.252092310995
627 => 2.0907903059103
628 => 2.149986787027
629 => 2.193575322449
630 => 2.1313691079742
701 => 2.2428713397074
702 => 2.1777340378021
703 => 2.15708864024
704 => 2.0765435837347
705 => 2.1145577499417
706 => 2.165972454047
707 => 2.1342041445108
708 => 2.2001281568341
709 => 2.2934941395759
710 => 2.360032298918
711 => 2.3651402725847
712 => 2.3223606938381
713 => 2.3909152417951
714 => 2.3914145868343
715 => 2.3140847766853
716 => 2.2667206985432
717 => 2.2559594803344
718 => 2.282843113281
719 => 2.3154848066706
720 => 2.3669516593932
721 => 2.3980520005953
722 => 2.4791451961039
723 => 2.5010866896844
724 => 2.5251937388842
725 => 2.5574081909538
726 => 2.5960899002793
727 => 2.511456522426
728 => 2.5148191643045
729 => 2.4360097346764
730 => 2.3517905567034
731 => 2.4157024147162
801 => 2.4992586672297
802 => 2.4800907705817
803 => 2.4779339906442
804 => 2.4815610962582
805 => 2.4671091281505
806 => 2.4017434120145
807 => 2.3689171585821
808 => 2.4112714003803
809 => 2.4337807949257
810 => 2.4686909028401
811 => 2.4643874951766
812 => 2.5543121840922
813 => 2.5892541990233
814 => 2.5803145363508
815 => 2.5819596494275
816 => 2.6452204984121
817 => 2.7155795730689
818 => 2.7814801311827
819 => 2.8485170093907
820 => 2.767701436217
821 => 2.726668272171
822 => 2.7690040234323
823 => 2.7465400778942
824 => 2.875624572195
825 => 2.8845621025098
826 => 3.0136372625325
827 => 3.1361449593781
828 => 3.0592000699427
829 => 3.1317556350064
830 => 3.2102303941647
831 => 3.361620936652
901 => 3.3106379279258
902 => 3.2715857422471
903 => 3.2346816154795
904 => 3.3114732449177
905 => 3.4102644494136
906 => 3.4315431286517
907 => 3.4660227180984
908 => 3.4297716457588
909 => 3.4734320694672
910 => 3.6275725505202
911 => 3.585922431904
912 => 3.5267725678784
913 => 3.6484516738605
914 => 3.6924868692999
915 => 4.0015489323046
916 => 4.391752553565
917 => 4.2302056921481
918 => 4.129928342182
919 => 4.1534958980346
920 => 4.2959850512927
921 => 4.3417480449395
922 => 4.2173484527575
923 => 4.2612884917703
924 => 4.50340242682
925 => 4.6332887850291
926 => 4.4568856645159
927 => 3.9701964512691
928 => 3.5214467697955
929 => 3.6404753927838
930 => 3.6269812408252
1001 => 3.8871024597075
1002 => 3.5849290903496
1003 => 3.5900169149228
1004 => 3.8555171651385
1005 => 3.7846862502076
1006 => 3.6699492393576
1007 => 3.5222844769503
1008 => 3.249312506303
1009 => 3.0075336195142
1010 => 3.4817176948593
1011 => 3.4612700152826
1012 => 3.4316587450793
1013 => 3.4975554226428
1014 => 3.8175309837927
1015 => 3.8101545114484
1016 => 3.7632291579031
1017 => 3.7988216249861
1018 => 3.6637097077909
1019 => 3.6985311252933
1020 => 3.5213756855532
1021 => 3.6014573429804
1022 => 3.6697030652633
1023 => 3.6834044044068
1024 => 3.7142742211048
1025 => 3.4504950172955
1026 => 3.5689241356553
1027 => 3.638490147384
1028 => 3.3241883755607
1029 => 3.6322774119123
1030 => 3.4459032082129
1031 => 3.3826450042308
1101 => 3.4678138422581
1102 => 3.4346234632494
1103 => 3.4060883243822
1104 => 3.3901652265984
1105 => 3.4527038215041
1106 => 3.4497863213019
1107 => 3.3474610418181
1108 => 3.2139818860434
1109 => 3.2587818720253
1110 => 3.242505617116
1111 => 3.1835183696459
1112 => 3.2232686522933
1113 => 3.0482285246717
1114 => 2.7470810828928
1115 => 2.9460283073276
1116 => 2.9383690555998
1117 => 2.9345069135592
1118 => 3.0840102542245
1119 => 3.0696389576484
1120 => 3.0435549136388
1121 => 3.1830393157223
1122 => 3.1321256326318
1123 => 3.2890296071442
1124 => 3.3923767126708
1125 => 3.3661645437806
1126 => 3.4633629960484
1127 => 3.2598139732191
1128 => 3.3274247936336
1129 => 3.3413592900165
1130 => 3.1813180998522
1201 => 3.0719902795011
1202 => 3.0646993603121
1203 => 2.875139986125
1204 => 2.9764010737459
1205 => 3.0655066403838
1206 => 3.0228319888356
1207 => 3.0093224690243
1208 => 3.0783396758825
1209 => 3.0837029039478
1210 => 2.9614207356899
1211 => 2.9868470706434
1212 => 3.0928791141758
1213 => 2.9841753351966
1214 => 2.7729816493013
1215 => 2.7206026952182
1216 => 2.7136143772078
1217 => 2.571558499507
1218 => 2.7241029073897
1219 => 2.657513185413
1220 => 2.8678693192702
1221 => 2.7477150237735
1222 => 2.742535412244
1223 => 2.7347056697333
1224 => 2.6124323075418
1225 => 2.6392024029842
1226 => 2.7281902774354
1227 => 2.7599421535597
1228 => 2.7566301727445
1229 => 2.7277541883034
1230 => 2.7409734661116
1231 => 2.6983895663898
]
'min_raw' => 1.4899632785673
'max_raw' => 4.6332887850291
'avg_raw' => 3.0616260317982
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$1.48'
'max' => '$4.63'
'avg' => '$3.06'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.84878303444272
'max_diff' => 2.8938285683354
'year' => 2033
]
8 => [
'items' => [
101 => 2.6833523050908
102 => 2.6358905721066
103 => 2.5661349362582
104 => 2.5758348852591
105 => 2.4376307180885
106 => 2.3623297527636
107 => 2.3414874380124
108 => 2.3136162236669
109 => 2.3446355658352
110 => 2.4372392030473
111 => 2.3255395696119
112 => 2.1340383829053
113 => 2.1455479305285
114 => 2.1714064668225
115 => 2.12321925551
116 => 2.0776141040488
117 => 2.1172640831814
118 => 2.0361225058583
119 => 2.1812120387836
120 => 2.1772877735266
121 => 2.2313681791247
122 => 2.2651857665867
123 => 2.1872471760606
124 => 2.1676458313116
125 => 2.1788116481121
126 => 1.9942655685648
127 => 2.2162868272535
128 => 2.2182068763183
129 => 2.2017662505301
130 => 2.3199857166445
131 => 2.5694656637222
201 => 2.475601272324
202 => 2.4392541429083
203 => 2.3701582233196
204 => 2.4622244336618
205 => 2.4551551851641
206 => 2.4231853625248
207 => 2.4038499140406
208 => 2.4394760707299
209 => 2.3994354389696
210 => 2.3922430412624
211 => 2.3486649365631
212 => 2.3331095358628
213 => 2.3215929364627
214 => 2.3089142921208
215 => 2.3368802222176
216 => 2.2735057453938
217 => 2.1970823390208
218 => 2.1907285596936
219 => 2.208271903046
220 => 2.2005102795609
221 => 2.1906914000265
222 => 2.1719444849826
223 => 2.1663826757535
224 => 2.1844558575417
225 => 2.1640522890348
226 => 2.1941588658067
227 => 2.1859715427976
228 => 2.1402378220133
301 => 2.0832366731239
302 => 2.0827292433349
303 => 2.0704484393073
304 => 2.0548069889469
305 => 2.0504558952845
306 => 2.1139248725316
307 => 2.2453037559665
308 => 2.219510937518
309 => 2.2381488922014
310 => 2.3298291825819
311 => 2.3589715899714
312 => 2.3382869994821
313 => 2.3099726562504
314 => 2.3112183436548
315 => 2.4079770258122
316 => 2.4140117461317
317 => 2.4292595375046
318 => 2.4488572584442
319 => 2.341624576101
320 => 2.3061676939598
321 => 2.2893662561283
322 => 2.2376243305821
323 => 2.2934235612662
324 => 2.2609117391079
325 => 2.265298694679
326 => 2.2624416841082
327 => 2.2640018050701
328 => 2.1811714833022
329 => 2.2113504991209
330 => 2.1611720320059
331 => 2.0939886973363
401 => 2.0937634752409
402 => 2.1102065012228
403 => 2.1004255459531
404 => 2.0741052468138
405 => 2.0778439210782
406 => 2.0450892005039
407 => 2.0818209371993
408 => 2.0828742719752
409 => 2.0687305525563
410 => 2.1253208609385
411 => 2.148505956456
412 => 2.1391962573466
413 => 2.1478527631487
414 => 2.2205827455721
415 => 2.2324409061387
416 => 2.2377075177563
417 => 2.2306509558811
418 => 2.1491821337151
419 => 2.1527956224103
420 => 2.1262822399521
421 => 2.1038812256862
422 => 2.104777148779
423 => 2.1162941820397
424 => 2.166589741754
425 => 2.2724337820877
426 => 2.2764504860473
427 => 2.281318848422
428 => 2.2615167720014
429 => 2.2555442762726
430 => 2.2634235397708
501 => 2.3031729963049
502 => 2.4054193903827
503 => 2.3692786859085
504 => 2.3398957306075
505 => 2.3656725039944
506 => 2.3617043717765
507 => 2.3282093424704
508 => 2.3272692485565
509 => 2.2629815783095
510 => 2.2392158903786
511 => 2.2193555027127
512 => 2.19766847785
513 => 2.1848116825557
514 => 2.2045655634367
515 => 2.2090835097152
516 => 2.1658913039303
517 => 2.1600043658825
518 => 2.1952760534949
519 => 2.1797542988378
520 => 2.1957188084237
521 => 2.1994227115886
522 => 2.1988262978709
523 => 2.1826198033467
524 => 2.1929493396718
525 => 2.1685169068799
526 => 2.1419503058513
527 => 2.1250024695529
528 => 2.1102132345782
529 => 2.1184191616975
530 => 2.0891665298602
531 => 2.0798080241963
601 => 2.1894499251868
602 => 2.2704435762975
603 => 2.2692658965334
604 => 2.2620970738437
605 => 2.2514456574695
606 => 2.3023937788535
607 => 2.2846444721032
608 => 2.2975585757683
609 => 2.3008457571543
610 => 2.310795065174
611 => 2.3143510876191
612 => 2.3036023179735
613 => 2.2675281341914
614 => 2.1776346980369
615 => 2.1357890608442
616 => 2.1219793035764
617 => 2.1224812620247
618 => 2.1086350071815
619 => 2.1127133497784
620 => 2.1072167260624
621 => 2.0968074505202
622 => 2.1177764182654
623 => 2.1201928964585
624 => 2.1152984888263
625 => 2.1164512990038
626 => 2.0759276942378
627 => 2.0790086158956
628 => 2.0618536526008
629 => 2.0586373037892
630 => 2.0152710504336
701 => 1.9384414465752
702 => 1.9810125051428
703 => 1.9295926527898
704 => 1.9101191755658
705 => 2.0023035879972
706 => 1.9930508297866
707 => 1.9772141298075
708 => 1.953788349881
709 => 1.9450995002349
710 => 1.8923088003407
711 => 1.8891896441636
712 => 1.9153541404999
713 => 1.903280125706
714 => 1.8863236361484
715 => 1.8249089498227
716 => 1.7558585086886
717 => 1.7579427074709
718 => 1.7799063680665
719 => 1.8437686734514
720 => 1.8188165659084
721 => 1.8007135255935
722 => 1.7973233703179
723 => 1.8397582613627
724 => 1.8998125225755
725 => 1.9279886382982
726 => 1.9000669633383
727 => 1.8679920465542
728 => 1.869944298118
729 => 1.8829317531479
730 => 1.8842965510388
731 => 1.863419077567
801 => 1.8692959640588
802 => 1.860368436084
803 => 1.8055802133816
804 => 1.8045892681683
805 => 1.7911433547377
806 => 1.7907362178227
807 => 1.767861364837
808 => 1.7646610147779
809 => 1.7192416057703
810 => 1.7491367983217
811 => 1.7290846727263
812 => 1.6988613896357
813 => 1.6936508842391
814 => 1.693494250155
815 => 1.7245268040866
816 => 1.748774164861
817 => 1.7294334880361
818 => 1.7250299908263
819 => 1.7720478205385
820 => 1.7660643731306
821 => 1.7608827462644
822 => 1.8944353221648
823 => 1.7887180371022
824 => 1.7426192666832
825 => 1.6855632843707
826 => 1.7041409999129
827 => 1.708055597541
828 => 1.5708462451932
829 => 1.515180428034
830 => 1.4960780173071
831 => 1.4850843098653
901 => 1.4900942803968
902 => 1.4399885160044
903 => 1.4736604183489
904 => 1.4302730617199
905 => 1.4229990301864
906 => 1.5005809985011
907 => 1.5113760761649
908 => 1.4653209210837
909 => 1.4948957862981
910 => 1.48417152905
911 => 1.4310168134201
912 => 1.4289866942626
913 => 1.4023155264381
914 => 1.3605803133485
915 => 1.3415062010613
916 => 1.3315722377731
917 => 1.3356711846349
918 => 1.3335986316718
919 => 1.3200738216582
920 => 1.3343738579502
921 => 1.2978431744072
922 => 1.2832963618727
923 => 1.2767259041343
924 => 1.2443028198623
925 => 1.2959023655501
926 => 1.3060681260846
927 => 1.3162539163077
928 => 1.4049142660652
929 => 1.4004850455428
930 => 1.4405230419469
1001 => 1.4389672390318
1002 => 1.4275477538848
1003 => 1.3793708244638
1004 => 1.3985732898598
1005 => 1.3394710860967
1006 => 1.3837544757152
1007 => 1.3635453860119
1008 => 1.376921762158
1009 => 1.3528698317481
1010 => 1.3661811631168
1011 => 1.3084788050322
1012 => 1.2545971549468
1013 => 1.2762807038446
1014 => 1.2998532013111
1015 => 1.350964381979
1016 => 1.3205229844313
1017 => 1.3314708621061
1018 => 1.294797304548
1019 => 1.2191292800216
1020 => 1.2195575528229
1021 => 1.2079176757671
1022 => 1.1978591225409
1023 => 1.3240195451315
1024 => 1.3083295022812
1025 => 1.2833294724614
1026 => 1.316793005837
1027 => 1.3256412951992
1028 => 1.3258931935581
1029 => 1.3503073236901
1030 => 1.3633371493181
1031 => 1.3656337125595
1101 => 1.4040498738244
1102 => 1.416926464359
1103 => 1.4699633184077
1104 => 1.3622316596478
1105 => 1.3600129970305
1106 => 1.3172639063767
1107 => 1.2901517572477
1108 => 1.319120298423
1109 => 1.3447824713041
1110 => 1.3180613016212
1111 => 1.3215505222671
1112 => 1.2856795351674
1113 => 1.2985017251687
1114 => 1.3095459225334
1115 => 1.3034479658965
1116 => 1.2943190296667
1117 => 1.3426784657755
1118 => 1.339949836868
1119 => 1.3849832555511
1120 => 1.4200900257852
1121 => 1.4830076341306
1122 => 1.4173498298531
1123 => 1.4149569984991
1124 => 1.4383473088067
1125 => 1.4169228834244
1126 => 1.43046238072
1127 => 1.4808262117964
1128 => 1.4818903201848
1129 => 1.4640651336536
1130 => 1.4629804694332
1201 => 1.4664039914927
1202 => 1.4864556671269
1203 => 1.4794489955346
1204 => 1.4875572932885
1205 => 1.4976968437884
1206 => 1.5396383237364
1207 => 1.5497502725596
1208 => 1.5251834793635
1209 => 1.5274015857264
1210 => 1.5182129306975
1211 => 1.5093368050731
1212 => 1.5292890392227
1213 => 1.5657521392933
1214 => 1.5655253042402
1215 => 1.5739840347152
1216 => 1.5792537537252
1217 => 1.5566322620642
1218 => 1.5419065028081
1219 => 1.5475532959313
1220 => 1.5565826411064
1221 => 1.5446252009855
1222 => 1.4708183413339
1223 => 1.4932066277518
1224 => 1.4894801221606
1225 => 1.4841731250401
1226 => 1.5066847201567
1227 => 1.5045134218904
1228 => 1.4394746089688
1229 => 1.4436381827542
1230 => 1.4397278096809
1231 => 1.4523630250677
]
'min_raw' => 1.1978591225409
'max_raw' => 2.6833523050908
'avg_raw' => 1.9406057138159
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$1.19'
'max' => '$2.68'
'avg' => '$1.94'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.29210415602638
'max_diff' => -1.9499364799383
'year' => 2034
]
9 => [
'items' => [
101 => 1.4162405403282
102 => 1.4273515733454
103 => 1.4343203090944
104 => 1.4384249479868
105 => 1.4532537182436
106 => 1.451513733207
107 => 1.4531455583307
108 => 1.4751327099714
109 => 1.5863361778905
110 => 1.5923887372927
111 => 1.5625837211766
112 => 1.5744902372371
113 => 1.5516323300698
114 => 1.5669769962859
115 => 1.5774754271986
116 => 1.5300350366361
117 => 1.5272259245926
118 => 1.5042736747115
119 => 1.5166069137157
120 => 1.4969838436687
121 => 1.5017986586724
122 => 1.4883360161741
123 => 1.5125660922856
124 => 1.5396590823516
125 => 1.5465038415768
126 => 1.5284982269093
127 => 1.5154609752622
128 => 1.4925718561076
129 => 1.530636971379
130 => 1.5417683710978
131 => 1.5305785028751
201 => 1.5279855659044
202 => 1.5230719550304
203 => 1.5290280116795
204 => 1.5417077471043
205 => 1.5357282180359
206 => 1.5396778023313
207 => 1.5246260597908
208 => 1.5566397507192
209 => 1.6074851964276
210 => 1.6076486728497
211 => 1.6016691115494
212 => 1.5992224038968
213 => 1.605357796661
214 => 1.6086859955486
215 => 1.6285267307094
216 => 1.6498166300268
217 => 1.74916730063
218 => 1.7212700298827
219 => 1.8094198552398
220 => 1.8791349222749
221 => 1.9000394226084
222 => 1.8808082659343
223 => 1.8150195177992
224 => 1.8117916079539
225 => 1.9101077729608
226 => 1.8823289531807
227 => 1.8790247509594
228 => 1.8438736218618
301 => 1.8646522927105
302 => 1.8601076925912
303 => 1.8529338189734
304 => 1.8925780754979
305 => 1.9667885846448
306 => 1.9552221808525
307 => 1.9465883969716
308 => 1.9087576692622
309 => 1.9315402171422
310 => 1.9234277882131
311 => 1.9582839311672
312 => 1.9376359242393
313 => 1.8821185012997
314 => 1.8909598338906
315 => 1.8896234842558
316 => 1.9171254650458
317 => 1.9088700530538
318 => 1.8880114825697
319 => 1.9665349411922
320 => 1.9614360645597
321 => 1.9686651058592
322 => 1.9718475534047
323 => 2.0196433989297
324 => 2.0392238275448
325 => 2.0436689276441
326 => 2.0622688204238
327 => 2.0432061453676
328 => 2.1194704370492
329 => 2.1701817408726
330 => 2.2290855298433
331 => 2.3151597973755
401 => 2.347524518199
402 => 2.3416781210676
403 => 2.4069386483585
404 => 2.5242103652401
405 => 2.3653820879761
406 => 2.5326286496002
407 => 2.4796803191445
408 => 2.3541407801336
409 => 2.3460575138352
410 => 2.4310743471974
411 => 2.6196335010278
412 => 2.5724015716135
413 => 2.6197107555439
414 => 2.5645220795138
415 => 2.5617814965822
416 => 2.6170303647326
417 => 2.7461223566249
418 => 2.6847955902178
419 => 2.5968686326332
420 => 2.6617925298187
421 => 2.6055494416536
422 => 2.4788180225684
423 => 2.5723654542472
424 => 2.5098129507611
425 => 2.5280690967523
426 => 2.6595451550975
427 => 2.6437256079149
428 => 2.6641975668198
429 => 2.6280650951971
430 => 2.5943116691337
501 => 2.531308392824
502 => 2.5126562287327
503 => 2.517811015853
504 => 2.5126536742762
505 => 2.477403920211
506 => 2.4697917391767
507 => 2.457104437289
508 => 2.4610367626594
509 => 2.4371809233095
510 => 2.4822018210307
511 => 2.4905580963706
512 => 2.5233205513008
513 => 2.526722058057
514 => 2.6179650286933
515 => 2.5677099337426
516 => 2.6014253902517
517 => 2.5984095624793
518 => 2.3568616026131
519 => 2.390144780287
520 => 2.441922959911
521 => 2.418596960174
522 => 2.3856194539893
523 => 2.3589883496031
524 => 2.3186395032878
525 => 2.3754297296456
526 => 2.4501028383389
527 => 2.5286158913228
528 => 2.622944180104
529 => 2.6018912041503
530 => 2.5268524895774
531 => 2.5302186714974
601 => 2.5510270835826
602 => 2.5240782992886
603 => 2.5161305766976
604 => 2.5499351885442
605 => 2.5501679823273
606 => 2.5191601491277
607 => 2.4847006169
608 => 2.4845562302017
609 => 2.4784244892814
610 => 2.5656129026018
611 => 2.6135577141852
612 => 2.6190545095663
613 => 2.6131877360598
614 => 2.6154456243386
615 => 2.58754759487
616 => 2.6513142173314
617 => 2.7098327759674
618 => 2.6941485521863
619 => 2.6706356710946
620 => 2.6519065287714
621 => 2.6897365614756
622 => 2.6880520496693
623 => 2.7093216674082
624 => 2.7083567546883
625 => 2.7012045822335
626 => 2.6941488076129
627 => 2.7221241564349
628 => 2.7140677052445
629 => 2.7059987401602
630 => 2.6898151953868
701 => 2.6920148079017
702 => 2.6685059866405
703 => 2.6576297302346
704 => 2.4940769296778
705 => 2.4503702771271
706 => 2.4641212797505
707 => 2.4686484668588
708 => 2.4496272756571
709 => 2.4768987776972
710 => 2.4726485429919
711 => 2.489183719926
712 => 2.4788532592515
713 => 2.479277224961
714 => 2.5096569071182
715 => 2.5184762580929
716 => 2.5139906650063
717 => 2.517132220647
718 => 2.5895280444197
719 => 2.5792356733674
720 => 2.5737680563804
721 => 2.5752826236521
722 => 2.59378130881
723 => 2.5989599306635
724 => 2.5770177459751
725 => 2.5873658071204
726 => 2.6314265381125
727 => 2.6468453003384
728 => 2.6960545879375
729 => 2.6751496079401
730 => 2.7135216034718
731 => 2.8314640357589
801 => 2.9256846116654
802 => 2.8390354762318
803 => 3.0120595649662
804 => 3.1467836368773
805 => 3.1416127026026
806 => 3.118120444441
807 => 2.964740670395
808 => 2.8235983155543
809 => 2.9416698885995
810 => 2.9419708773208
811 => 2.9318284244837
812 => 2.8688345209894
813 => 2.9296363731893
814 => 2.9344626034171
815 => 2.9317611978877
816 => 2.8834639197757
817 => 2.8097229029275
818 => 2.8241317211086
819 => 2.8477336592211
820 => 2.803050266494
821 => 2.7887712150555
822 => 2.8153186883804
823 => 2.9008601788191
824 => 2.8846890555598
825 => 2.8842667621789
826 => 2.9534536851057
827 => 2.9039307797626
828 => 2.8243134624493
829 => 2.8042090398043
830 => 2.7328518833764
831 => 2.7821385254866
901 => 2.7839122639929
902 => 2.7569184738064
903 => 2.8265038597517
904 => 2.8258626181699
905 => 2.8919235857071
906 => 3.0182073442718
907 => 2.9808590228179
908 => 2.9374269884528
909 => 2.9421492548279
910 => 2.993940861417
911 => 2.9626264737859
912 => 2.9738873459097
913 => 2.9939238167384
914 => 3.0060123170669
915 => 2.9404099056621
916 => 2.9251148454376
917 => 2.8938265200549
918 => 2.8856639799868
919 => 2.9111476681587
920 => 2.9044336166774
921 => 2.7837631881397
922 => 2.7711524569535
923 => 2.771539210075
924 => 2.7398289269
925 => 2.691463133718
926 => 2.8185655504288
927 => 2.8083574475697
928 => 2.7970884920577
929 => 2.7984688748082
930 => 2.8536397260017
1001 => 2.8216378461147
1002 => 2.9067200887993
1003 => 2.8892297375097
1004 => 2.8712908247066
1005 => 2.8688111205246
1006 => 2.8619061695715
1007 => 2.8382265235344
1008 => 2.8096319280184
1009 => 2.7907512992373
1010 => 2.5743205549909
1011 => 2.6144888422033
1012 => 2.6606987951866
1013 => 2.6766502857817
1014 => 2.6493641573092
1015 => 2.8393039461974
1016 => 2.8740077759326
1017 => 2.7688876119898
1018 => 2.7492239213441
1019 => 2.8405930944825
1020 => 2.7854863136529
1021 => 2.8103008936862
1022 => 2.7566653445038
1023 => 2.8656486395961
1024 => 2.8648183694845
1025 => 2.8224214061942
1026 => 2.8582550292453
1027 => 2.852028055418
1028 => 2.8041619882824
1029 => 2.8671660793015
1030 => 2.8671973285446
1031 => 2.8263911731672
1101 => 2.7787385173024
1102 => 2.7702193479393
1103 => 2.7638012982135
1104 => 2.8087224468873
1105 => 2.8489986083234
1106 => 2.9239425594488
1107 => 2.9427852493861
1108 => 3.0163295226403
1109 => 2.9725374887231
1110 => 2.9919499301568
1111 => 3.0130248813906
1112 => 3.0231289880178
1113 => 3.0066648884851
1114 => 3.1209094168793
1115 => 3.1305551554377
1116 => 3.133789288141
1117 => 3.0952666759561
1118 => 3.129483771906
1119 => 3.1134747258621
1120 => 3.1551258162271
1121 => 3.1616572390242
1122 => 3.1561253562772
1123 => 3.1581985329644
1124 => 3.0607109820958
1125 => 3.0556557382955
1126 => 2.9867271303741
1127 => 3.0148160475966
1128 => 2.962305163186
1129 => 2.9789569055546
1130 => 2.9862968349271
1201 => 2.9824628723602
1202 => 3.0164041528321
1203 => 2.9875471306855
1204 => 2.9113887047071
1205 => 2.8352095294164
1206 => 2.8342531619248
1207 => 2.8141965297449
1208 => 2.7996992582342
1209 => 2.8024919470455
1210 => 2.8123337466727
1211 => 2.7991272349485
1212 => 2.801945513812
1213 => 2.8487477210397
1214 => 2.8581335699211
1215 => 2.8262367881341
1216 => 2.6981666065755
1217 => 2.6667378627813
1218 => 2.6893282205615
1219 => 2.6785314845479
1220 => 2.1617839588412
1221 => 2.2831861249816
1222 => 2.211053080289
1223 => 2.2442953059652
1224 => 2.1706661460954
1225 => 2.2058058404202
1226 => 2.1993168219745
1227 => 2.394527912577
1228 => 2.3914799599014
1229 => 2.3929388535531
1230 => 2.3233020584264
1231 => 2.4342353639084
]
'min_raw' => 1.4162405403282
'max_raw' => 3.1616572390242
'avg_raw' => 2.2889488896762
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$1.41'
'max' => '$3.16'
'avg' => '$2.28'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.2183814177873
'max_diff' => 0.47830493393339
'year' => 2035
]
10 => [
'items' => [
101 => 2.4888850992214
102 => 2.4787708876706
103 => 2.4813164168158
104 => 2.4375757923595
105 => 2.3933623584101
106 => 2.3443228557616
107 => 2.4354321902169
108 => 2.4253023875136
109 => 2.4485365103269
110 => 2.5076274263508
111 => 2.5163287881999
112 => 2.5280235067656
113 => 2.5238317826465
114 => 2.6236956571064
115 => 2.6116014829862
116 => 2.6407449628844
117 => 2.5807946136127
118 => 2.5129551028724
119 => 2.5258491760234
120 => 2.5246073730914
121 => 2.5087977964915
122 => 2.4945256176311
123 => 2.47076646099
124 => 2.5459439482961
125 => 2.5428918796017
126 => 2.5923013241224
127 => 2.5835677248657
128 => 2.5252426115546
129 => 2.5273257043868
130 => 2.5413355047837
131 => 2.5898235839184
201 => 2.6042181471258
202 => 2.597550011924
203 => 2.6133329933441
204 => 2.6258072183345
205 => 2.6148995639463
206 => 2.7693289478759
207 => 2.7051991008893
208 => 2.736455542098
209 => 2.7439100191526
210 => 2.7248155329279
211 => 2.7289564432678
212 => 2.7352287941021
213 => 2.7733132801159
214 => 2.8732579912511
215 => 2.9175228234662
216 => 3.0506957551736
217 => 2.9138472453469
218 => 2.9057272211092
219 => 2.929715687547
220 => 3.0079022962458
221 => 3.0712651989014
222 => 3.0922863292058
223 => 3.0950646185966
224 => 3.134501656506
225 => 3.1571062311784
226 => 3.1297129628067
227 => 3.1065000360564
228 => 3.0233542137314
229 => 3.0329785690641
301 => 3.0992808332923
302 => 3.1929366866984
303 => 3.2733031521517
304 => 3.2451616170041
305 => 3.4598616653528
306 => 3.4811482981755
307 => 3.4782071737987
308 => 3.5267012912445
309 => 3.4304503437698
310 => 3.38930119895
311 => 3.1115189342977
312 => 3.1895644200737
313 => 3.3030081170997
314 => 3.2879934184063
315 => 3.2056075732673
316 => 3.2732406551004
317 => 3.2508790431644
318 => 3.2332415120463
319 => 3.3140424613019
320 => 3.2251984984753
321 => 3.3021218306084
322 => 3.2034668614777
323 => 3.2452901651662
324 => 3.221549235227
325 => 3.2369125264766
326 => 3.1470990397552
327 => 3.1955602170909
328 => 3.1450828954525
329 => 3.1450589626297
330 => 3.1439446729568
331 => 3.2033310180137
401 => 3.205267604594
402 => 3.1613810058692
403 => 3.1550562613554
404 => 3.1784421567556
405 => 3.1510633980177
406 => 3.1638737469113
407 => 3.1514514104355
408 => 3.1486548808404
409 => 3.1263716572362
410 => 3.1167714318175
411 => 3.1205359275715
412 => 3.1076857628325
413 => 3.0999430737664
414 => 3.1424044572209
415 => 3.1197190529285
416 => 3.1389275936586
417 => 3.1170370371856
418 => 3.0411548311885
419 => 2.9975141720798
420 => 2.8541797192355
421 => 2.8948291922563
422 => 2.921779834924
423 => 2.9128726476831
424 => 2.9320087325004
425 => 2.9331835326914
426 => 2.926962196448
427 => 2.9197586860806
428 => 2.9162524156129
429 => 2.9423852830457
430 => 2.9575562921824
501 => 2.9244846924688
502 => 2.9167364793767
503 => 2.9501736926202
504 => 2.9705703733827
505 => 3.121168004228
506 => 3.1100112453111
507 => 3.1380125207893
508 => 3.134860006885
509 => 3.1642098045392
510 => 3.2121843195538
511 => 3.1146387166437
512 => 3.1315692604358
513 => 3.1274182820813
514 => 3.1727375753102
515 => 3.1728790571969
516 => 3.1457078770396
517 => 3.1604378146049
518 => 3.1522159675507
519 => 3.167073956427
520 => 3.1098622399938
521 => 3.1795399349863
522 => 3.2190426981156
523 => 3.2195911940199
524 => 3.2383151902299
525 => 3.2573398547999
526 => 3.2938560417431
527 => 3.2563214381653
528 => 3.1888003402489
529 => 3.1936751454266
530 => 3.1540875504232
531 => 3.1547530250473
601 => 3.1512006693498
602 => 3.161861556207
603 => 3.1122017051453
604 => 3.1238567729308
605 => 3.1075396097791
606 => 3.1315337901098
607 => 3.1057200184541
608 => 3.1274162803539
609 => 3.1367796677473
610 => 3.1713307688086
611 => 3.1006167927347
612 => 2.9564262086046
613 => 2.9867368175306
614 => 2.9419050460822
615 => 2.9460543972163
616 => 2.9544367468716
617 => 2.9272668091046
618 => 2.9324499770074
619 => 2.9322647977765
620 => 2.9306690232067
621 => 2.9236010730407
622 => 2.9133511469487
623 => 2.9541836977384
624 => 2.961121943792
625 => 2.9765448053024
626 => 3.0224327797304
627 => 3.0178474889721
628 => 3.0253262884408
629 => 3.0090001111923
630 => 2.9468117217543
701 => 2.9501888504981
702 => 2.9080760009474
703 => 2.9754678850568
704 => 2.9595085973703
705 => 2.9492195407775
706 => 2.9464120763587
707 => 2.9924137981996
708 => 3.006178234363
709 => 2.9976011614429
710 => 2.9800093346506
711 => 3.0137908426486
712 => 3.0228293490614
713 => 3.02485273732
714 => 3.0847070925307
715 => 3.0281979308773
716 => 3.0418002477401
717 => 3.1479216409506
718 => 3.0516841810599
719 => 3.1026633099154
720 => 3.1001681468405
721 => 3.1262473441234
722 => 3.0980288914686
723 => 3.0983786930088
724 => 3.1215352534381
725 => 3.0890160406228
726 => 3.080963826211
727 => 3.0698397496722
728 => 3.0941287638285
729 => 3.1086889293176
730 => 3.2260331698966
731 => 3.3018429008581
801 => 3.2985518005031
802 => 3.3286262970659
803 => 3.3150774609136
804 => 3.2713246949752
805 => 3.3460053313506
806 => 3.3223732532309
807 => 3.3243214530381
808 => 3.324248940944
809 => 3.3399622069414
810 => 3.3288279178825
811 => 3.3068810912361
812 => 3.3214504189795
813 => 3.3647161137475
814 => 3.4990141578608
815 => 3.574169122559
816 => 3.4944897346186
817 => 3.5494515094704
818 => 3.5164940294421
819 => 3.5105046749208
820 => 3.545024731171
821 => 3.57960521021
822 => 3.5774025831907
823 => 3.5522989311357
824 => 3.5381185150714
825 => 3.6454973762981
826 => 3.7246122920988
827 => 3.7192171852343
828 => 3.7430294323514
829 => 3.8129429263722
830 => 3.819334940081
831 => 3.8185296932725
901 => 3.8026864203575
902 => 3.8715253346354
903 => 3.9289519680315
904 => 3.7990191604338
905 => 3.8484958726217
906 => 3.8707075627629
907 => 3.9033209138017
908 => 3.9583451036365
909 => 4.0181159682427
910 => 4.0265682238522
911 => 4.0205709440196
912 => 3.9811504520847
913 => 4.0465524453515
914 => 4.0848633991417
915 => 4.1076766953932
916 => 4.1655274189164
917 => 3.8708447345995
918 => 3.6622536839602
919 => 3.6296791793116
920 => 3.6959207154437
921 => 3.7133880802554
922 => 3.706347007402
923 => 3.4715588156389
924 => 3.6284430680725
925 => 3.7972373324885
926 => 3.803721407621
927 => 3.8882233457093
928 => 3.9157406406023
929 => 3.9837757766855
930 => 3.9795201603996
1001 => 3.9960856333604
1002 => 3.9922775180007
1003 => 4.1182982811068
1004 => 4.2573178970773
1005 => 4.2525040898315
1006 => 4.2325183752303
1007 => 4.2622005694838
1008 => 4.4056837114128
1009 => 4.3924740829745
1010 => 4.4053061118088
1011 => 4.5744808224986
1012 => 4.7944320112173
1013 => 4.6922426013191
1014 => 4.9139642165875
1015 => 5.0535262204411
1016 => 5.2948842751254
1017 => 5.2646650579654
1018 => 5.3586239774868
1019 => 5.2105663523082
1020 => 4.8705961175151
1021 => 4.8167945265053
1022 => 4.9245066741802
1023 => 5.1893064788412
1024 => 4.9161671859889
1025 => 4.9714229091955
1026 => 4.9555092571948
1027 => 4.9546612863083
1028 => 4.9870248860974
1029 => 4.9400797966315
1030 => 4.7488170568869
1031 => 4.8364716433935
1101 => 4.8026239980243
1102 => 4.8401804840705
1103 => 5.0428573497887
1104 => 4.9532490762417
1105 => 4.8588540392449
1106 => 4.9772463635745
1107 => 5.1280004764625
1108 => 5.1185665550092
1109 => 5.1002608043164
1110 => 5.2034493625135
1111 => 5.3738866292444
1112 => 5.4199551375693
1113 => 5.4539619685856
1114 => 5.4586509360326
1115 => 5.506950214914
1116 => 5.2472328193832
1117 => 5.6594109961064
1118 => 5.7305827810342
1119 => 5.717205435236
1120 => 5.7963098788167
1121 => 5.7730353448292
1122 => 5.7393141967438
1123 => 5.8647115658169
1124 => 5.7209536012205
1125 => 5.5169072691005
1126 => 5.4049634157206
1127 => 5.5523801121043
1128 => 5.6424023444521
1129 => 5.7019013135447
1130 => 5.7199056656419
1201 => 5.2673939414776
1202 => 5.0235152196039
1203 => 5.1798386842497
1204 => 5.3705640999869
1205 => 5.2461733300688
1206 => 5.2510492127467
1207 => 5.0737006641628
1208 => 5.386255511313
1209 => 5.3407188990833
1210 => 5.5769629238841
1211 => 5.5205813913886
1212 => 5.7132292226734
1213 => 5.6624985923642
1214 => 5.8730786024663
1215 => 5.9570846697222
1216 => 6.0981439311452
1217 => 6.2019076980625
1218 => 6.2628397666809
1219 => 6.2591816338315
1220 => 6.5006248459336
1221 => 6.3582542191403
1222 => 6.1794031577076
1223 => 6.1761683062741
1224 => 6.2687978053293
1225 => 6.4629238236868
1226 => 6.5132578758283
1227 => 6.5413877442776
1228 => 6.4983058715397
1229 => 6.3437727599503
1230 => 6.2770461458667
1231 => 6.333899154322
]
'min_raw' => 2.3443228557616
'max_raw' => 6.5413877442776
'avg_raw' => 4.4428553000196
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$2.34'
'max' => '$6.54'
'avg' => '$4.44'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.92808231543338
'max_diff' => 3.3797305052535
'year' => 2036
]
11 => [
'items' => [
101 => 6.2643728104158
102 => 6.3843947856446
103 => 6.5492105929442
104 => 6.5151767804892
105 => 6.6289467128921
106 => 6.7466866239831
107 => 6.9150599848736
108 => 6.9590790162579
109 => 7.0318408012422
110 => 7.1067365789924
111 => 7.1307910843079
112 => 7.1767185986299
113 => 7.176476537959
114 => 7.3148821936467
115 => 7.4675479179365
116 => 7.5251756946363
117 => 7.6576875895433
118 => 7.4307656132857
119 => 7.6028885389688
120 => 7.7581477264513
121 => 7.5730413225497
122 => 7.8281673760675
123 => 7.8380733425975
124 => 7.9876416762957
125 => 7.8360255162669
126 => 7.7459963244178
127 => 8.0059072279365
128 => 8.1316699270324
129 => 8.0937891785739
130 => 7.8055148124016
131 => 7.6377267666201
201 => 7.1985930869129
202 => 7.7187658996893
203 => 7.9721269031436
204 => 7.8048586686102
205 => 7.8892190366967
206 => 8.3494618510357
207 => 8.5246925162205
208 => 8.4882457628169
209 => 8.4944046641775
210 => 8.5889559504497
211 => 9.008248424125
212 => 8.7569986547753
213 => 8.9490696892939
214 => 9.0509434734389
215 => 9.1455695216405
216 => 8.9131978541271
217 => 8.6108857289099
218 => 8.5151307886539
219 => 7.7882271391824
220 => 7.7503886474448
221 => 7.7291487554089
222 => 7.5952342405648
223 => 7.4900141141701
224 => 7.4063391630881
225 => 7.1867511039936
226 => 7.2608556278629
227 => 6.910878093256
228 => 7.1347813174552
301 => 6.5762087217195
302 => 7.0414045775225
303 => 6.788219623069
304 => 6.958226510597
305 => 6.9576333725821
306 => 6.6445967919103
307 => 6.4640438250855
308 => 6.5790992027728
309 => 6.7024477007609
310 => 6.7224605795653
311 => 6.882385126932
312 => 6.9270166305354
313 => 6.7917810909714
314 => 6.5646335462191
315 => 6.6173947401812
316 => 6.4629746211739
317 => 6.1923593022977
318 => 6.3867199488048
319 => 6.4530832189566
320 => 6.4823930196878
321 => 6.2162739339525
322 => 6.132653539488
323 => 6.0881347431182
324 => 6.530280914031
325 => 6.5545026793622
326 => 6.4305807033155
327 => 6.9907197858104
328 => 6.8639430601244
329 => 7.0055837237675
330 => 6.6126072148458
331 => 6.6276194466996
401 => 6.4415780696481
402 => 6.5457488095077
403 => 6.4721242881546
404 => 6.5373328431623
405 => 6.576418582169
406 => 6.7624294316611
407 => 7.0435285226304
408 => 6.7346456136622
409 => 6.60006090694
410 => 6.6835565020573
411 => 6.9059162747756
412 => 7.2428027128311
413 => 7.0433591610308
414 => 7.1318688225486
415 => 7.1512042460695
416 => 7.0041419547736
417 => 7.2482251092786
418 => 7.3790312547059
419 => 7.5132112933963
420 => 7.6297160613519
421 => 7.4596168352611
422 => 7.6416473899445
423 => 7.4949628955881
424 => 7.3633717401862
425 => 7.3635713096504
426 => 7.2810222556267
427 => 7.1210730616056
428 => 7.0915759761673
429 => 7.245023539689
430 => 7.3680739540951
501 => 7.3782089755974
502 => 7.4463360075711
503 => 7.486652883329
504 => 7.8818130738908
505 => 8.0407497714713
506 => 8.235094556755
507 => 8.310802803295
508 => 8.5386574824716
509 => 8.3546463235842
510 => 8.3148343518745
511 => 7.7621334308894
512 => 7.8526381757379
513 => 7.9975450046491
514 => 7.7645228911257
515 => 7.9123217878593
516 => 7.9415004208832
517 => 7.7566048888752
518 => 7.855365581385
519 => 7.5930864625835
520 => 7.0492454906941
521 => 7.2488305597455
522 => 7.3957923501752
523 => 7.186059754974
524 => 7.5619973140998
525 => 7.3423823529849
526 => 7.2727749536888
527 => 7.0012116722048
528 => 7.1293790876359
529 => 7.3027273521872
530 => 7.1956182785933
531 => 7.4178856888089
601 => 7.7326756182274
602 => 7.9570136679954
603 => 7.9742355578399
604 => 7.8300012213211
605 => 8.0611376660837
606 => 8.0628212427464
607 => 7.8020983888341
608 => 7.6424070925237
609 => 7.6061248940087
610 => 7.6967649394433
611 => 7.8068186876765
612 => 7.9803427749317
613 => 8.085199746651
614 => 8.3586111170545
615 => 8.4325883945674
616 => 8.5138669940449
617 => 8.6224802683387
618 => 8.7528983520003
619 => 8.4675510096543
620 => 8.4788883915197
621 => 8.2131768972301
622 => 7.9292260586988
623 => 8.1447093501723
624 => 8.426425089233
625 => 8.3617991874242
626 => 8.3545274532834
627 => 8.3667564930975
628 => 8.3180306736183
629 => 8.0976455979772
630 => 7.9869695926738
701 => 8.1297698759755
702 => 8.2056618712409
703 => 8.3233637374201
704 => 8.3088544980285
705 => 8.6120418650484
706 => 8.7298513079623
707 => 8.6997106111146
708 => 8.705257224711
709 => 8.9185455937941
710 => 9.1557661263132
711 => 9.3779544590236
712 => 9.6039739742676
713 => 9.3314986269491
714 => 9.193152449524
715 => 9.3358903906891
716 => 9.2601516299249
717 => 9.6953690148518
718 => 9.7255025223064
719 => 10.160688436063
720 => 10.573731689192
721 => 10.31430662234
722 => 10.55893277562
723 => 10.823515905055
724 => 11.333939688801
725 => 11.162046915361
726 => 11.030379744808
727 => 10.905954904848
728 => 11.164863244919
729 => 11.497944688259
730 => 11.56968724094
731 => 11.685937584047
801 => 11.563714562685
802 => 11.710918729491
803 => 12.230614123106
804 => 12.090187840274
805 => 11.890759943999
806 => 12.301009545182
807 => 12.449477281045
808 => 13.49150160449
809 => 14.807100356716
810 => 14.262433834607
811 => 13.924341748055
812 => 14.003801408047
813 => 14.484213536531
814 => 14.638506664682
815 => 14.219084754338
816 => 14.367231663665
817 => 15.18353569954
818 => 15.621456624618
819 => 15.026701187735
820 => 13.385794525718
821 => 11.872803643928
822 => 12.274116956646
823 => 12.228620481186
824 => 13.105637331731
825 => 12.08683871987
826 => 12.103992675639
827 => 12.999145305877
828 => 12.760333930931
829 => 12.373490088168
830 => 11.875628032087
831 => 10.955283974755
901 => 10.140109577484
902 => 11.738854293985
903 => 11.669913514681
904 => 11.570077049797
905 => 11.792252298962
906 => 12.871072243359
907 => 12.846201951841
908 => 12.68798984614
909 => 12.807992333897
910 => 12.35245307186
911 => 12.469855912123
912 => 11.872563978442
913 => 12.142564877581
914 => 12.372660095022
915 => 12.418855116541
916 => 12.5229348588
917 => 11.633584856681
918 => 12.032876897688
919 => 12.267423563175
920 => 11.207733195624
921 => 12.246476891773
922 => 11.618103251769
923 => 11.404823800496
924 => 11.691976484204
925 => 11.580072804098
926 => 11.483864591147
927 => 11.430178755254
928 => 11.641031994284
929 => 11.631195438659
930 => 11.286198614756
1001 => 10.836164321845
1002 => 10.987210602418
1003 => 10.932334072619
1004 => 10.733454449416
1005 => 10.867475302638
1006 => 10.27731529145
1007 => 9.2619756660496
1008 => 9.932740123283
1009 => 9.9069164213308
1010 => 9.8938949397949
1011 => 10.397955890838
1012 => 10.34950206106
1013 => 10.261557885551
1014 => 10.731839285666
1015 => 10.560180248447
1016 => 11.089192953201
1017 => 11.437634934948
1018 => 11.34925877746
1019 => 11.67697014546
1020 => 10.990690403652
1021 => 11.218645005116
1022 => 11.265626132547
1023 => 10.726036086188
1024 => 10.35742970685
1025 => 10.332847863769
1026 => 9.6937351990839
1027 => 10.035144025821
1028 => 10.335569664893
1029 => 10.191689097749
1030 => 10.146140808501
1031 => 10.378837140051
1101 => 10.396919637922
1102 => 9.9846367701716
1103 => 10.070363433677
1104 => 10.427857871368
1105 => 10.061355491084
1106 => 9.3493012340157
1107 => 9.1727019333425
1108 => 9.1491403312618
1109 => 8.6701890215689
1110 => 9.1845031430559
1111 => 8.9599912462653
1112 => 9.6692216381612
1113 => 9.2641130419892
1114 => 9.2466496200885
1115 => 9.2202510965586
1116 => 8.8079979190765
1117 => 8.8982551648889
1118 => 9.1982839965359
1119 => 9.3053376637342
1120 => 9.2941710891806
1121 => 9.1968136915806
1122 => 9.2413834096514
1123 => 9.0978088186264
1124 => 9.0471096422888
1125 => 8.8870890958602
1126 => 8.6519030994144
1127 => 8.6846071546997
1128 => 8.2186421559771
1129 => 7.9647596940388
1130 => 7.8944883746913
1201 => 7.8005186296193
1202 => 7.9051025074412
1203 => 8.2173221356812
1204 => 7.8407190229345
1205 => 7.1950594017672
1206 => 7.2338646451498
1207 => 7.3210485056504
1208 => 7.1585819583865
1209 => 7.004821006185
1210 => 7.1385036791038
1211 => 6.8649291860348
1212 => 7.3541086761202
1213 => 7.340877741823
1214 => 7.5232136050701
1215 => 7.6372319622671
1216 => 7.3744565628095
1217 => 7.3083692604662
1218 => 7.3460155913814
1219 => 6.7238055995917
1220 => 7.4723657742902
1221 => 7.4788393537656
1222 => 7.4234086360729
1223 => 7.8219938198973
1224 => 8.6631328796032
1225 => 8.3466625306015
1226 => 8.2241156461012
1227 => 7.9911539290847
1228 => 8.3015615851111
1229 => 8.277727120242
1230 => 8.1699386311517
1231 => 8.1047478166294
]
'min_raw' => 6.0881347431182
'max_raw' => 15.621456624618
'avg_raw' => 10.854795683868
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$6.08'
'max' => '$15.62'
'avg' => '$10.85'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 3.7438118873566
'max_diff' => 9.0800688803407
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.19109959283073
]
1 => [
'year' => 2028
'avg' => 0.32798237790573
]
2 => [
'year' => 2029
'avg' => 0.89598874336622
]
3 => [
'year' => 2030
'avg' => 0.69125398116057
]
4 => [
'year' => 2031
'avg' => 0.67889707566247
]
5 => [
'year' => 2032
'avg' => 1.1903202304091
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.19109959283073
'min' => '$0.191099'
'max_raw' => 1.1903202304091
'max' => '$1.19'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 1.1903202304091
]
1 => [
'year' => 2033
'avg' => 3.0616260317982
]
2 => [
'year' => 2034
'avg' => 1.9406057138159
]
3 => [
'year' => 2035
'avg' => 2.2889488896762
]
4 => [
'year' => 2036
'avg' => 4.4428553000196
]
5 => [
'year' => 2037
'avg' => 10.854795683868
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 1.1903202304091
'min' => '$1.19'
'max_raw' => 10.854795683868
'max' => '$10.85'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 10.854795683868
]
]
]
]
'prediction_2025_max_price' => '$0.326745'
'last_price' => 0.316821
'sma_50day_nextmonth' => '$0.293883'
'sma_200day_nextmonth' => '$0.361561'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.313549'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.309715'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.301856'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.297573'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.299748'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.342628'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.36004'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.313579'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.310219'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.305156'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.302296'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.310527'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.329435'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.336612'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.366115'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.312673'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.3355095'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.312486'
'weekly_sma200_action' => 'BUY'
'weekly_ema3' => '$0.310496'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.309492'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.318923'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.33403'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.332372'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.36225'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.598555'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '62.66'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 112.29
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'SELL'
'vwma_10' => '0.3064065'
'vwma_10_action' => 'BUY'
'hma_9' => '0.317625'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 208.67
'cci_20_action' => 'SELL'
'adx_14' => 13.93
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.006734'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.43
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0342065'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 22
'sell_pct' => 37.14
'buy_pct' => 62.86
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767698592
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de DexKit pour 2026
La prévision du prix de DexKit pour 2026 suggère que le prix moyen pourrait varier entre $0.109461 à la baisse et $0.326745 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, DexKit pourrait potentiellement gagner 3.13% d'ici 2026 si KIT atteint l'objectif de prix prévu.
Prévision du prix de DexKit de 2027 à 2032
La prévision du prix de KIT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.191099 à la baisse et $1.19 à la hausse. Compte tenu de la volatilité des prix sur le marché, si DexKit atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de DexKit | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.105375 | $0.191099 | $0.276823 |
| 2028 | $0.190172 | $0.327982 | $0.465792 |
| 2029 | $0.417754 | $0.895988 | $1.37 |
| 2030 | $0.355282 | $0.691253 | $1.02 |
| 2031 | $0.420053 | $0.678897 | $0.93774 |
| 2032 | $0.64118 | $1.19 | $1.73 |
Prévision du prix de DexKit de 2032 à 2037
La prévision du prix de DexKit pour 2032-2037 est actuellement estimée entre $1.19 à la baisse et $10.85 à la hausse. Par rapport au prix actuel, DexKit pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de DexKit | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.64118 | $1.19 | $1.73 |
| 2033 | $1.48 | $3.06 | $4.63 |
| 2034 | $1.19 | $1.94 | $2.68 |
| 2035 | $1.41 | $2.28 | $3.16 |
| 2036 | $2.34 | $4.44 | $6.54 |
| 2037 | $6.08 | $10.85 | $15.62 |
DexKit Histogramme des prix potentiels
Prévision du prix de DexKit basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour DexKit est Haussier, avec 22 indicateurs techniques montrant des signaux haussiers et 13 indiquant des signaux baissiers. La prévision du prix de KIT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de DexKit et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de DexKit devrait augmenter au cours du prochain mois, atteignant $0.361561 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour DexKit devrait atteindre $0.293883 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 62.66, ce qui suggère que le marché de KIT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de KIT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.313549 | BUY |
| SMA 5 | $0.309715 | BUY |
| SMA 10 | $0.301856 | BUY |
| SMA 21 | $0.297573 | BUY |
| SMA 50 | $0.299748 | BUY |
| SMA 100 | $0.342628 | SELL |
| SMA 200 | $0.36004 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.313579 | BUY |
| EMA 5 | $0.310219 | BUY |
| EMA 10 | $0.305156 | BUY |
| EMA 21 | $0.302296 | BUY |
| EMA 50 | $0.310527 | BUY |
| EMA 100 | $0.329435 | SELL |
| EMA 200 | $0.336612 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.366115 | SELL |
| SMA 50 | $0.312673 | BUY |
| SMA 100 | $0.3355095 | SELL |
| SMA 200 | $0.312486 | BUY |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.33403 | SELL |
| EMA 50 | $0.332372 | SELL |
| EMA 100 | $0.36225 | SELL |
| EMA 200 | $0.598555 | SELL |
Oscillateurs de DexKit
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 62.66 | NEUTRAL |
| Stoch RSI (14) | 112.29 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 208.67 | SELL |
| Indice Directionnel Moyen (14) | 13.93 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | 0.006734 | BUY |
| Momentum (10) | 0.02 | SELL |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 83.43 | SELL |
| VWMA (10) | 0.3064065 | BUY |
| Moyenne Mobile de Hull (9) | 0.317625 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.0342065 | NEUTRAL |
Prévision du cours de DexKit basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de DexKit
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de DexKit par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.445186 | $0.625561 | $0.879018 | $1.23 | $1.73 | $2.43 |
| Action Amazon.com | $0.661065 | $1.37 | $2.87 | $6.00 | $12.53 | $26.14 |
| Action Apple | $0.449386 | $0.63742 | $0.904132 | $1.28 | $1.81 | $2.58 |
| Action Netflix | $0.499893 | $0.788754 | $1.24 | $1.96 | $3.09 | $4.88 |
| Action Google | $0.410281 | $0.531313 | $0.688048 | $0.891019 | $1.15 | $1.49 |
| Action Tesla | $0.7182092 | $1.62 | $3.69 | $8.36 | $18.96 | $42.99 |
| Action Kodak | $0.237582 | $0.178161 | $0.133602 | $0.100187 | $0.075129 | $0.056339 |
| Action Nokia | $0.20988 | $0.139037 | $0.0921063 | $0.061016 | $0.04042 | $0.026777 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à DexKit
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans DexKit maintenant ?", "Devrais-je acheter KIT aujourd'hui ?", " DexKit sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de DexKit avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme DexKit en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de DexKit afin de prendre une décision responsable concernant cet investissement.
Le cours de DexKit est de $0.3168 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de DexKit basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DexKit présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.325056 | $0.3335054 | $0.342174 | $0.351068 |
| Si DexKit présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.333291 | $0.350618 | $0.368845 | $0.38802 |
| Si DexKit présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.357996 | $0.404524 | $0.457098 | $0.5165062 |
| Si DexKit présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.399172 | $0.50293 | $0.633658 | $0.798366 |
| Si DexKit présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.481524 | $0.731852 | $1.11 | $1.69 |
| Si DexKit présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.72858 | $1.67 | $3.85 | $8.86 |
| Si DexKit présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $1.14 | $4.10 | $14.77 | $53.17 |
Boîte à questions
Est-ce que KIT est un bon investissement ?
La décision d'acquérir DexKit dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de DexKit a connu une hausse de 0.4778% au cours des 24 heures précédentes, et DexKit a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans DexKit dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que DexKit peut monter ?
Il semble que la valeur moyenne de DexKit pourrait potentiellement s'envoler jusqu'à $0.326745 pour la fin de cette année. En regardant les perspectives de DexKit sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $1.02. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de DexKit la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de DexKit, le prix de DexKit va augmenter de 0.86% durant la prochaine semaine et atteindre $0.319532 d'ici 13 janvier 2026.
Quel sera le prix de DexKit le mois prochain ?
Basé sur notre nouveau pronostic expérimental de DexKit, le prix de DexKit va diminuer de -11.62% durant le prochain mois et atteindre $0.2800126 d'ici 5 février 2026.
Jusqu'où le prix de DexKit peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de DexKit en 2026, KIT devrait fluctuer dans la fourchette de $0.109461 et $0.326745. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de DexKit ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera DexKit dans 5 ans ?
L'avenir de DexKit semble suivre une tendance haussière, avec un prix maximum de $1.02 prévue après une période de cinq ans. Selon la prévision de DexKit pour 2030, la valeur de DexKit pourrait potentiellement atteindre son point le plus élevé d'environ $1.02, tandis que son point le plus bas devrait être autour de $0.355282.
Combien vaudra DexKit en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de DexKit, il est attendu que la valeur de KIT en 2026 augmente de 3.13% jusqu'à $0.326745 si le meilleur scénario se produit. Le prix sera entre $0.326745 et $0.109461 durant 2026.
Combien vaudra DexKit en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de DexKit, le valeur de KIT pourrait diminuer de -12.62% jusqu'à $0.276823 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.276823 et $0.105375 tout au long de l'année.
Combien vaudra DexKit en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de DexKit suggère que la valeur de KIT en 2028 pourrait augmenter de 47.02%, atteignant $0.465792 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.465792 et $0.190172 durant l'année.
Combien vaudra DexKit en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de DexKit pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $1.37 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $1.37 et $0.417754.
Combien vaudra DexKit en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de DexKit, il est prévu que la valeur de KIT en 2030 augmente de 224.23%, atteignant $1.02 dans le meilleur scénario. Il est prévu que le prix oscille entre $1.02 et $0.355282 au cours de 2030.
Combien vaudra DexKit en 2031 ?
Notre simulation expérimentale indique que le prix de DexKit pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.93774 dans des conditions idéales. Il est probable que le prix fluctue entre $0.93774 et $0.420053 durant l'année.
Combien vaudra DexKit en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de DexKit, KIT pourrait connaître une 449.04% hausse en valeur, atteignant $1.73 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $1.73 et $0.64118 tout au long de l'année.
Combien vaudra DexKit en 2033 ?
Selon notre prédiction expérimentale de prix de DexKit, la valeur de KIT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $4.63. Tout au long de l'année, le prix de KIT pourrait osciller entre $4.63 et $1.48.
Combien vaudra DexKit en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de DexKit suggèrent que KIT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $2.68 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $2.68 et $1.19.
Combien vaudra DexKit en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de DexKit, KIT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $3.16 en 2035. La fourchette de prix attendue pour l'année se situe entre $3.16 et $1.41.
Combien vaudra DexKit en 2036 ?
Notre récente simulation de prédiction de prix de DexKit suggère que la valeur de KIT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $6.54 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $6.54 et $2.34.
Combien vaudra DexKit en 2037 ?
Selon la simulation expérimentale, la valeur de DexKit pourrait augmenter de 4830.69% en 2037, avec un maximum de $15.62 sous des conditions favorables. Il est prévu que le prix chute entre $15.62 et $6.08 au cours de l'année.
Prévisions liées
Prévision du cours de Carlive Chain
Prévision du cours de TOP Network
Prévision du cours de Changex
Prévision du cours de KCCPad
Prévision du cours de iETH v1
Prévision du cours de Traxx
Prévision du cours de Sao Paulo FC Fan Token
Prévision du cours de Curate
Prévision du cours de EGG
Prévision du cours de Nifty League
Prévision du cours de Signals
Prévision du cours de Points
Prévision du cours de DAOhaus
Prévision du cours de Teh Fund
Prévision du cours de Intrepid Token
Prévision du cours de Sync NetworkPrévision du cours de DogemonGo
Prévision du cours de VeroxPrévision du cours de Kuma Inu
Prévision du cours de Myriad
Prévision du cours de GUS
Prévision du cours de Etica
Prévision du cours de Liquidus
Prévision du cours de Coin of the champions
Prévision du cours de Dash Diamond
Comment lire et prédire les mouvements de prix de DexKit ?
Les traders de DexKit utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de DexKit
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de DexKit. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de KIT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de KIT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de KIT.
Comment lire les graphiques de DexKit et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de DexKit dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de KIT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de DexKit ?
L'action du prix de DexKit est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de KIT. La capitalisation boursière de DexKit peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de KIT, de grands détenteurs de DexKit, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de DexKit.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


