Prédiction du prix de Dexhunter jusqu'à $0.014096 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.004722 | $0.014096 |
| 2027 | $0.004546 | $0.011942 |
| 2028 | $0.0082044 | $0.020095 |
| 2029 | $0.018022 | $0.059286 |
| 2030 | $0.015327 | $0.044316 |
| 2031 | $0.018122 | $0.040456 |
| 2032 | $0.027661 | $0.075044 |
| 2033 | $0.06428 | $0.19989 |
| 2034 | $0.051678 | $0.115765 |
| 2035 | $0.061099 | $0.13640079 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Dexhunter aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.65, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Dexhunter pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Dexhunter'
'name_with_ticker' => 'Dexhunter <small>HUNT</small>'
'name_lang' => 'Dexhunter'
'name_lang_with_ticker' => 'Dexhunter <small>HUNT</small>'
'name_with_lang' => 'Dexhunter'
'name_with_lang_with_ticker' => 'Dexhunter <small>HUNT</small>'
'image' => '/uploads/coins/dexhunter.png?1717375032'
'price_for_sd' => 0.01366
'ticker' => 'HUNT'
'marketcap' => '$0'
'low24h' => '$0.01156'
'high24h' => '$0.01381'
'volume24h' => '$25.8K'
'current_supply' => '0'
'max_supply' => '0'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01366'
'change_24h_pct' => '18.2038%'
'ath_price' => '$0.4392'
'ath_days' => 401
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 déc. 2024'
'ath_pct' => '-96.92%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.673943'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013785'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0120803'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004722'
'current_year_max_price_prediction' => '$0.014096'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015327'
'grand_prediction_max_price' => '$0.044316'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013927358042948
107 => 0.013979357742249
108 => 0.014096515719946
109 => 0.013095413627923
110 => 0.013544879076428
111 => 0.013808897918208
112 => 0.012616051185961
113 => 0.013785319173606
114 => 0.013077986667752
115 => 0.012837907391488
116 => 0.013161142508938
117 => 0.013035177469312
118 => 0.012926880125156
119 => 0.012866448346332
120 => 0.01310379654243
121 => 0.013092723965389
122 => 0.012704376249274
123 => 0.01219779248468
124 => 0.012367818624123
125 => 0.01230604653366
126 => 0.012082176509063
127 => 0.012233037875471
128 => 0.011568720766998
129 => 0.010425797710069
130 => 0.011180847690157
131 => 0.01115177908726
201 => 0.011137121379523
202 => 0.01170452057151
203 => 0.011649978231327
204 => 0.011550983349815
205 => 0.012080358390431
206 => 0.011887129379507
207 => 0.012482615660694
208 => 0.012874841439122
209 => 0.012775360294538
210 => 0.013144250534941
211 => 0.012371735682971
212 => 0.012628334128879
213 => 0.012681218712951
214 => 0.012073825984602
215 => 0.011658902032717
216 => 0.011631231335606
217 => 0.010911810383079
218 => 0.011296119248956
219 => 0.011634295147146
220 => 0.011472335135423
221 => 0.011421063434129
222 => 0.011682999436564
223 => 0.011703354107283
224 => 0.011239265457791
225 => 0.011335764183796
226 => 0.011738179912818
227 => 0.011325624339918
228 => 0.010524096252341
301 => 0.01032530620463
302 => 0.010298783947838
303 => 0.0097596495722059
304 => 0.010338590306169
305 => 0.010085867161147
306 => 0.010884216548184
307 => 0.010428203659942
308 => 0.010408545855752
309 => 0.010378830201544
310 => 0.0099147749730778
311 => 0.010016373575864
312 => 0.010354102805428
313 => 0.010474608399329
314 => 0.010462038678612
315 => 0.010352447747956
316 => 0.010402617914814
317 => 0.010241002326919
318 => 0.010183932499096
319 => 0.010003804424194
320 => 0.0097390659157379
321 => 0.0097758794290743
322 => 0.0092513631712242
323 => 0.0089655788757627
324 => 0.0088864775493555
325 => 0.0087806999498117
326 => 0.0088984254106874
327 => 0.0092498772825677
328 => 0.008825951760406
329 => 0.0080991611875777
330 => 0.0081428425393955
331 => 0.0082409815678205
401 => 0.0080581001376052
402 => 0.0078850182119814
403 => 0.0080354989037308
404 => 0.0077275481569126
405 => 0.0082781959443214
406 => 0.0082633024648446
407 => 0.0084685499081598
408 => 0.0085968953465664
409 => 0.0083011006633684
410 => 0.008226709100458
411 => 0.0082690859155998
412 => 0.007568691556828
413 => 0.0084113127465842
414 => 0.0084185997696238
415 => 0.0083562038542786
416 => 0.0088048736248133
417 => 0.0097517067842521
418 => 0.0093954700633956
419 => 0.0092575244377681
420 => 0.0089952897026125
421 => 0.0093447019172495
422 => 0.009317872510845
423 => 0.0091965397603338
424 => 0.0091231573342435
425 => 0.009258366704343
426 => 0.0091064033969923
427 => 0.0090791066113197
428 => 0.0089137177893394
429 => 0.0088546815046043
430 => 0.0088109733896887
501 => 0.0087628550498373
502 => 0.0088689921172063
503 => 0.0086284715590541
504 => 0.0083384273444436
505 => 0.0083143133063206
506 => 0.0083808942857061
507 => 0.0083514371586989
508 => 0.0083141722769295
509 => 0.0082430234691449
510 => 0.0082219151377289
511 => 0.0082905069745242
512 => 0.0082130707899349
513 => 0.0083273320984637
514 => 0.0082962593449104
515 => 0.0081226894694541
516 => 0.0079063571408371
517 => 0.00790443132934
518 => 0.0078578228839956
519 => 0.0077984600212228
520 => 0.0077819466308378
521 => 0.0080228258395964
522 => 0.0085214385928188
523 => 0.0084235489785693
524 => 0.0084942842569958
525 => 0.0088422318175758
526 => 0.0089528338839359
527 => 0.008874331156987
528 => 0.008766871782502
529 => 0.0087715994496138
530 => 0.009138820662394
531 => 0.0091617237989923
601 => 0.0092195926363446
602 => 0.0092939704460737
603 => 0.0088869980196026
604 => 0.0087524310849254
605 => 0.008688665805786
606 => 0.0084922934263054
607 => 0.0087040642018798
608 => 0.0085806744398814
609 => 0.0085973239343695
610 => 0.0085864809292422
611 => 0.0085924019432425
612 => 0.0082780420270426
613 => 0.008392578258235
614 => 0.0082021395592102
615 => 0.0079471635189631
616 => 0.0079463087498701
617 => 0.0080087137744962
618 => 0.0079715928239398
619 => 0.0078717013004591
620 => 0.0078858904198948
621 => 0.0077615788031447
622 => 0.0079009841009028
623 => 0.0079049817460263
624 => 0.0078513031129316
625 => 0.0080660762083518
626 => 0.0081540689207837
627 => 0.008118736494573
628 => 0.0081515899035717
629 => 0.0084276167339865
630 => 0.0084726211512391
701 => 0.0084926091405577
702 => 0.0084658278827719
703 => 0.0081566351673221
704 => 0.0081703491790412
705 => 0.0080697248604359
706 => 0.0079847079147438
707 => 0.0079881081467164
708 => 0.0080318179082314
709 => 0.0082227010003112
710 => 0.0086244032144202
711 => 0.0086396475198052
712 => 0.0086581240626395
713 => 0.0085829706773659
714 => 0.0085603036972464
715 => 0.0085902072948681
716 => 0.0087410655259884
717 => 0.0091291138540401
718 => 0.0089919516580302
719 => 0.0088804366576174
720 => 0.0089782653772077
721 => 0.0089632054126336
722 => 0.0088360841558158
723 => 0.0088325162855274
724 => 0.0085885299505697
725 => 0.0084983337578359
726 => 0.0084229590681195
727 => 0.0083406518746553
728 => 0.0082918574114076
729 => 0.008366827883643
730 => 0.0083839745176678
731 => 0.0082200502698655
801 => 0.0081977080006109
802 => 0.0083315720799169
803 => 0.0082726634895703
804 => 0.0083332524356046
805 => 0.0083473095908069
806 => 0.0083450460650556
807 => 0.0082835387311251
808 => 0.0083227416715973
809 => 0.0082300150304216
810 => 0.0081291887352342
811 => 0.0080648678406048
812 => 0.008008739329112
813 => 0.0080398826894965
814 => 0.007928862296279
815 => 0.0078933446380896
816 => 0.0083094605974594
817 => 0.0086168499306463
818 => 0.0086123803680022
819 => 0.0085851730548846
820 => 0.0085447485063937
821 => 0.0087381082184773
822 => 0.0086707455611369
823 => 0.0087197575226904
824 => 0.0087322331239313
825 => 0.0087699930114769
826 => 0.0087834889257025
827 => 0.0087426948993978
828 => 0.0086057851645485
829 => 0.0082646191222912
830 => 0.0081058054086603
831 => 0.0080533942379105
901 => 0.0080552992844242
902 => 0.0080027495970723
903 => 0.0080182278351092
904 => 0.0079973668975457
905 => 0.0079578613286031
906 => 0.008037443331938
907 => 0.0080466144164647
908 => 0.0080280390259522
909 => 0.0080324142028569
910 => 0.0078786179030664
911 => 0.0078903107017115
912 => 0.0078252037130068
913 => 0.0078129969375011
914 => 0.0076484121395696
915 => 0.0073568263130861
916 => 0.007518393165879
917 => 0.0073232431274426
918 => 0.0072493368508811
919 => 0.007599197669339
920 => 0.0075640813467944
921 => 0.0075039774672965
922 => 0.0074150713027731
923 => 0.0073820951415278
924 => 0.0071817424247853
925 => 0.00716990451744
926 => 0.007269204733836
927 => 0.0072233811006811
928 => 0.0071590273649646
929 => 0.006925944657633
930 => 0.00666388252356
1001 => 0.0066717925321239
1002 => 0.0067551496211331
1003 => 0.0069975215996626
1004 => 0.0069028226745733
1005 => 0.0068341175178761
1006 => 0.0068212511072962
1007 => 0.0069823011733595
1008 => 0.007210220757871
1009 => 0.0073171555275106
1010 => 0.007211186418455
1011 => 0.007089454811754
1012 => 0.007096864050604
1013 => 0.0071461543972751
1014 => 0.0071513341157823
1015 => 0.0070720993540313
1016 => 0.0070944034753439
1017 => 0.0070605214755384
1018 => 0.0068525877052735
1019 => 0.0068488268427345
1020 => 0.0067977965421265
1021 => 0.0067962513649048
1022 => 0.0067094360934655
1023 => 0.0066972900368655
1024 => 0.0065249130461125
1025 => 0.0066383721034318
1026 => 0.0065622697246499
1027 => 0.0064475654890892
1028 => 0.0064277904356439
1029 => 0.0064271959736583
1030 => 0.0065449715761813
1031 => 0.006636995826944
1101 => 0.006563593558111
1102 => 0.006546881284341
1103 => 0.0067253246453316
1104 => 0.0067026161010982
1105 => 0.0066829506482465
1106 => 0.0071898130589219
1107 => 0.0067885919099052
1108 => 0.0066136365880313
1109 => 0.006397096154098
1110 => 0.0064676028112783
1111 => 0.0064824595999045
1112 => 0.0059617188906417
1113 => 0.0057504544497478
1114 => 0.0056779564549656
1115 => 0.0056362328339972
1116 => 0.0056552468120048
1117 => 0.005465084036353
1118 => 0.005592876566593
1119 => 0.0054282116769378
1120 => 0.0054006050723212
1121 => 0.0056950462930902
1122 => 0.0057360160688595
1123 => 0.0055612262771159
1124 => 0.0056734696193122
1125 => 0.0056327686231326
1126 => 0.005431034383854
1127 => 0.0054233296197702
1128 => 0.0053221064698016
1129 => 0.0051637118407649
1130 => 0.0050913212449998
1201 => 0.0050536195942013
1202 => 0.0050691760301113
1203 => 0.0050613102200804
1204 => 0.0050099804889901
1205 => 0.0050642523801821
1206 => 0.0049256101248803
1207 => 0.0048704016617025
1208 => 0.0048454652797117
1209 => 0.0047224122981809
1210 => 0.0049182443137057
1211 => 0.0049568256877909
1212 => 0.0049954830791013
1213 => 0.0053319692779369
1214 => 0.0053151593783432
1215 => 0.0054671126839171
1216 => 0.0054612080578867
1217 => 0.0054178685136567
1218 => 0.0052350261055592
1219 => 0.0053079038305743
1220 => 0.0050835975206908
1221 => 0.005251663059402
1222 => 0.0051749649661189
1223 => 0.0052257313569117
1224 => 0.0051344488088454
1225 => 0.0051849683399093
1226 => 0.0049659747628611
1227 => 0.0047614816419362
1228 => 0.0048437756433227
1229 => 0.0049332386342904
1230 => 0.0051272171934546
1231 => 0.0050116851639048
]
'min_raw' => 0.0047224122981809
'max_raw' => 0.014096515719946
'avg_raw' => 0.0094094640090634
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004722'
'max' => '$0.014096'
'avg' => '$0.0094094'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0089459377018191
'max_diff' => 0.00042816571994582
'year' => 2026
]
1 => [
'items' => [
101 => 0.0050532348504806
102 => 0.0049140503557851
103 => 0.0046268729871429
104 => 0.0046284983798621
105 => 0.0045843223981955
106 => 0.0045461479002367
107 => 0.0050249554072802
108 => 0.0049654081249528
109 => 0.0048705273239197
110 => 0.0049975290465156
111 => 0.0050311103177584
112 => 0.005032066329341
113 => 0.0051247235077581
114 => 0.005174174660489
115 => 0.0051828906404914
116 => 0.0053286887127215
117 => 0.00537755830341
118 => 0.0055788452311725
119 => 0.0051699790756758
120 => 0.0051615587462651
121 => 0.0049993162212006
122 => 0.0048964194468518
123 => 0.0050063616513723
124 => 0.0051037554359699
125 => 0.0050023425175722
126 => 0.0050155849037713
127 => 0.0048794463465623
128 => 0.00492810947485
129 => 0.0049700247165627
130 => 0.004946881583753
131 => 0.0049122351937965
201 => 0.005095770256297
202 => 0.005085414488791
203 => 0.0052563265584442
204 => 0.0053895647387783
205 => 0.0056283513771105
206 => 0.0053791650717818
207 => 0.0053700837323898
208 => 0.0054588552816396
209 => 0.0053775447129483
210 => 0.0054289301856158
211 => 0.0056200723830475
212 => 0.0056241109164813
213 => 0.0055564602781087
214 => 0.0055523437306156
215 => 0.005565336775732
216 => 0.0056414374468088
217 => 0.0056148455339971
218 => 0.0056456183687277
219 => 0.0056841002697686
220 => 0.0058432777284617
221 => 0.0058816548748598
222 => 0.0057884183053814
223 => 0.0057968365236797
224 => 0.0057619634872937
225 => 0.0057282765711027
226 => 0.005803999839121
227 => 0.0059423855997692
228 => 0.0059415247091344
301 => 0.00597362751577
302 => 0.0059936272983499
303 => 0.0059077735907811
304 => 0.0058518859840822
305 => 0.0058733168487114
306 => 0.005907585267957
307 => 0.0058622040622082
308 => 0.0055820902377077
309 => 0.0056670588783208
310 => 0.0056529159417685
311 => 0.0056327746802782
312 => 0.0057182113054577
313 => 0.0057099707345351
314 => 0.0054631336422319
315 => 0.0054789353520201
316 => 0.005464094596541
317 => 0.005512048113627
318 => 0.0053749550656557
319 => 0.0054171239638759
320 => 0.0054435719015307
321 => 0.0054591499399921
322 => 0.0055154284968754
323 => 0.0055088248577898
324 => 0.0055150180053979
325 => 0.0055984642482677
326 => 0.0060205067094106
327 => 0.0060434775493864
328 => 0.0059303607321555
329 => 0.0059755486695087
330 => 0.0058887977113062
331 => 0.0059470342107284
401 => 0.0059868781445864
402 => 0.00580683106903
403 => 0.0057961698497114
404 => 0.0057090608394453
405 => 0.0057558682874558
406 => 0.0056813942720965
407 => 0.0056996675904752
408 => 0.0056485737992492
409 => 0.0057405324507837
410 => 0.0058433565121292
411 => 0.0058693339306702
412 => 0.0058009985264705
413 => 0.0057515191903073
414 => 0.0056646497755113
415 => 0.0058091155483282
416 => 0.0058513617428145
417 => 0.0058088936470533
418 => 0.0057990528613192
419 => 0.0057804045901351
420 => 0.005803009180207
421 => 0.0058511316609665
422 => 0.005828437987723
423 => 0.0058434275587114
424 => 0.0057863027712822
425 => 0.0059078020119307
426 => 0.0061007720464652
427 => 0.00610139247668
428 => 0.0060786986811092
429 => 0.0060694128689062
430 => 0.0060926980803366
501 => 0.0061053293523282
502 => 0.0061806294563164
503 => 0.0062614294679843
504 => 0.0066384878666313
505 => 0.0065326113771148
506 => 0.006867160019699
507 => 0.0071317445602787
508 => 0.0072110818951188
509 => 0.007138095280176
510 => 0.0068884120131159
511 => 0.0068761613608571
512 => 0.007249293575401
513 => 0.0071438666342543
514 => 0.0071313264350706
515 => 0.0069979199027573
516 => 0.0070767796860749
517 => 0.0070595318946601
518 => 0.0070323054121211
519 => 0.0071827643852709
520 => 0.0074644101514423
521 => 0.0074205130175273
522 => 0.0073877458433891
523 => 0.0072441696246966
524 => 0.0073306345772589
525 => 0.0072998460637786
526 => 0.0074321330565636
527 => 0.0073537691725534
528 => 0.0071430679214848
529 => 0.0071766227901979
530 => 0.0071715510392949
531 => 0.0072759273134896
601 => 0.0072445961467548
602 => 0.0071654331261427
603 => 0.0074634475168324
604 => 0.0074440961199441
605 => 0.0074715319763865
606 => 0.0074836100888744
607 => 0.0076650061968846
608 => 0.0077393183783084
609 => 0.0077561885445094
610 => 0.0078267793693516
611 => 0.0077544321804806
612 => 0.0080438725186362
613 => 0.0082363334541977
614 => 0.0084598867348016
615 => 0.008786558163221
616 => 0.0089093896421863
617 => 0.0088872012349331
618 => 0.0091348797837113
619 => 0.0095799526302807
620 => 0.0089771631823445
621 => 0.0096119019347084
622 => 0.0094109509741213
623 => 0.0089344998615227
624 => 0.0089038220268609
625 => 0.0092264802520239
626 => 0.009942105140732
627 => 0.0097628492226609
628 => 0.0099423983391973
629 => 0.0097329447574448
630 => 0.0097225436216974
701 => 0.0099322256462408
702 => 0.010422159125758
703 => 0.010189410094521
704 => 0.0098557072858394
705 => 0.010102108246779
706 => 0.0098886529310807
707 => 0.0094076783624305
708 => 0.0097627121490387
709 => 0.0095253111667139
710 => 0.0095945973942866
711 => 0.010093578948402
712 => 0.01003354016767
713 => 0.010111235909379
714 => 0.0099741049589136
715 => 0.0098460030276127
716 => 0.0096068912598652
717 => 0.0095361020535029
718 => 0.0095556656434126
719 => 0.0095360923587593
720 => 0.0094023115222552
721 => 0.0093734215633495
722 => 0.0093252703661419
723 => 0.0093401944355832
724 => 0.0092496560977033
725 => 0.0094205206474578
726 => 0.0094522346135455
727 => 0.0095765755839358
728 => 0.0095894850759671
729 => 0.0099357729086213
730 => 0.009745043389526
731 => 0.0098730012177295
801 => 0.0098615554651892
802 => 0.0089448260018588
803 => 0.0090711432335332
804 => 0.0092676532054876
805 => 0.0091791257294851
806 => 0.0090539685906567
807 => 0.0089528974905515
808 => 0.0087997644388415
809 => 0.0090152962684635
810 => 0.0092986977051617
811 => 0.0095966726040853
812 => 0.0099546699210533
813 => 0.0098747690874542
814 => 0.0095899800932624
815 => 0.0096027555195033
816 => 0.00968172817758
817 => 0.0095794514099481
818 => 0.0095492879944938
819 => 0.0096775841874873
820 => 0.0096784676928581
821 => 0.0095607859111374
822 => 0.0094300041462935
823 => 0.0094294561659235
824 => 0.0094061848140715
825 => 0.0097370846792417
826 => 0.0099190461473354
827 => 0.0099399077364067
828 => 0.0099176419961744
829 => 0.0099262111958942
830 => 0.0098203318268578
831 => 0.010062340666923
901 => 0.010284431910761
902 => 0.010224906713125
903 => 0.010135669979864
904 => 0.010064588623597
905 => 0.010208162204587
906 => 0.010201769099031
907 => 0.010282492137495
908 => 0.010278830074191
909 => 0.010251685952503
910 => 0.010224907682527
911 => 0.010331080496102
912 => 0.010300504430875
913 => 0.010269880872575
914 => 0.01020846063817
915 => 0.010216808668108
916 => 0.010127587342826
917 => 0.010086309475261
918 => 0.0094655893865315
919 => 0.009299712696209
920 => 0.0093519008797158
921 => 0.0093690825847919
922 => 0.0092968928365867
923 => 0.0094003943914881
924 => 0.009384263783792
925 => 0.0094470185422477
926 => 0.0094078120936595
927 => 0.0094094211399853
928 => 0.0095247189455871
929 => 0.0095581903890652
930 => 0.0095411665427646
1001 => 0.0095530894611702
1002 => 0.0098278480834797
1003 => 0.0097887861936734
1004 => 0.0097680353432462
1005 => 0.0097737834706284
1006 => 0.0098439901895197
1007 => 0.0098636442376646
1008 => 0.0097803686546094
1009 => 0.0098196419009887
1010 => 0.0099868623995543
1011 => 0.010045380110192
1012 => 0.010232140552452
1013 => 0.010152801397178
1014 => 0.010298431850402
1015 => 0.010746050214533
1016 => 0.011103638736635
1017 => 0.010774785553739
1018 => 0.011431451335957
1019 => 0.011942759840525
1020 => 0.011923134968491
1021 => 0.011833976503941
1022 => 0.01125186536533
1023 => 0.010716198016791
1024 => 0.011164306499481
1025 => 0.011165448820157
1026 => 0.011126955904087
1027 => 0.010887879708306
1028 => 0.011118636570701
1029 => 0.011136953212452
1030 => 0.01112670076386
1031 => 0.010943401605098
1101 => 0.010663537669017
1102 => 0.010718222412228
1103 => 0.010807797137145
1104 => 0.010638213495631
1105 => 0.010584021246732
1106 => 0.010684774947932
1107 => 0.011009424366068
1108 => 0.010948051274135
1109 => 0.010946448574677
1110 => 0.011209028688205
1111 => 0.011021077995254
1112 => 0.010718912161964
1113 => 0.010642611303981
1114 => 0.010371794660557
1115 => 0.010558848680786
1116 => 0.010565580421968
1117 => 0.010463132846734
1118 => 0.010727225218074
1119 => 0.010724791560379
1120 => 0.010975507962004
1121 => 0.01145478355713
1122 => 0.011313038179932
1123 => 0.011148203728103
1124 => 0.01116612580338
1125 => 0.011362686733722
1126 => 0.011243841508188
1127 => 0.011286579079908
1128 => 0.011362622045289
1129 => 0.011408500654343
1130 => 0.011159524577569
1201 => 0.011101476344171
1202 => 0.010982730030799
1203 => 0.010951751334145
1204 => 0.011048467728663
1205 => 0.011022986375748
1206 => 0.010565014645188
1207 => 0.010517154051214
1208 => 0.010518621867302
1209 => 0.010398274128107
1210 => 0.010214714939067
1211 => 0.010697097528114
1212 => 0.010658355455273
1213 => 0.010615587205256
1214 => 0.010620826071851
1215 => 0.010830212004293
1216 => 0.010708757589233
1217 => 0.011031664057656
1218 => 0.010965284195206
1219 => 0.010897201939757
1220 => 0.010887790898218
1221 => 0.010861585038375
1222 => 0.010771715394204
1223 => 0.010663192398539
1224 => 0.0105915361167
1225 => 0.0097701322011745
1226 => 0.0099225799900092
1227 => 0.01009795727501
1228 => 0.010158496811012
1229 => 0.010054939745473
1230 => 0.010775804458339
1231 => 0.010907513387805
]
'min_raw' => 0.0045461479002367
'max_raw' => 0.011942759840525
'avg_raw' => 0.0082444538703809
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004546'
'max' => '$0.011942'
'avg' => '$0.008244'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001762643979442
'max_diff' => -0.0021537558794206
'year' => 2027
]
2 => [
'items' => [
101 => 0.010508558449292
102 => 0.010433930269519
103 => 0.010780697069381
104 => 0.010571554298547
105 => 0.010665731275447
106 => 0.010462172163441
107 => 0.010875788563584
108 => 0.010872637499612
109 => 0.010711731378006
110 => 0.01084772813015
111 => 0.010824095347749
112 => 0.01064243273275
113 => 0.010881547592506
114 => 0.010881666190493
115 => 0.010726797546848
116 => 0.010545944876176
117 => 0.010513612690209
118 => 0.010489254731301
119 => 0.010659740710726
120 => 0.010812597906783
121 => 0.011097027252131
122 => 0.011168539547427
123 => 0.011447656796807
124 => 0.011281456064773
125 => 0.011355130696624
126 => 0.011435114931411
127 => 0.011473462314891
128 => 0.011410977311345
129 => 0.011844561288876
130 => 0.011881169061249
131 => 0.01189344333067
201 => 0.011747241252979
202 => 0.011877102916991
203 => 0.011816344944966
204 => 0.011974420309124
205 => 0.011999208544631
206 => 0.011978213791023
207 => 0.011986081968229
208 => 0.011616094532862
209 => 0.011596908732498
210 => 0.011335308983186
211 => 0.011441912814679
212 => 0.011242622061358
213 => 0.011305819212158
214 => 0.011333675914067
215 => 0.011319125153844
216 => 0.011447940035364
217 => 0.01133842107093
218 => 0.011049382517204
219 => 0.010760265215117
220 => 0.010756635582899
221 => 0.010680516100603
222 => 0.010625495656882
223 => 0.010636094546298
224 => 0.010673446415034
225 => 0.01062332469837
226 => 0.010634020707856
227 => 0.010811645732461
228 => 0.010847267164381
229 => 0.010726211620522
301 => 0.010240156143698
302 => 0.010120876910507
303 => 0.010206612457914
304 => 0.01016563638833
305 => 0.0082044619607724
306 => 0.0086652108020156
307 => 0.0083914494861011
308 => 0.008517611295627
309 => 0.0082381718822274
310 => 0.0083715350169762
311 => 0.00834690771563
312 => 0.0090877782177997
313 => 0.0090762105439424
314 => 0.0090817473772702
315 => 0.0088174598963907
316 => 0.0092384770296188
317 => 0.0094458852087334
318 => 0.0094074994747692
319 => 0.0094171603370198
320 => 0.0092511547155864
321 => 0.009083354674556
322 => 0.008897238604812
323 => 0.0092430192577548
324 => 0.0092045743518202
325 => 0.0092927531339937
326 => 0.0095170166043386
327 => 0.009550040252241
328 => 0.0095944243699145
329 => 0.0095785158232052
330 => 0.0099575219472494
331 => 0.0099116218048647
401 => 0.01002222794164
402 => 0.0097947027265859
403 => 0.009537236348861
404 => 0.0095861722900565
405 => 0.0095814593654014
406 => 0.0095214584252987
407 => 0.0094672922593973
408 => 0.0093771208543942
409 => 0.0096624365226812
410 => 0.0096508532275963
411 => 0.0098383733109126
412 => 0.0098052273147136
413 => 0.0095838702398951
414 => 0.0095917760511269
415 => 0.0096449464310644
416 => 0.0098289697231168
417 => 0.0098836003654591
418 => 0.0098582932752715
419 => 0.0099181932806162
420 => 0.0099655358025208
421 => 0.0099241387724692
422 => 0.01051023341939
423 => 0.010266846059612
424 => 0.010385471365289
425 => 0.010413762801713
426 => 0.010341294882219
427 => 0.010357010579076
428 => 0.010380815577542
429 => 0.010525354866734
430 => 0.010904667784352
501 => 0.011072662893495
502 => 0.011578084468084
503 => 0.011058713238285
504 => 0.011027895898881
505 => 0.011118937586734
506 => 0.011415673555324
507 => 0.011656150186875
508 => 0.01173593015899
509 => 0.011746474399329
510 => 0.011896146930689
511 => 0.011981936434437
512 => 0.011877972748603
513 => 0.011789874410311
514 => 0.011474317097716
515 => 0.011510843715883
516 => 0.011762475893348
517 => 0.01211792116508
518 => 0.012422930186003
519 => 0.012316126657513
520 => 0.013130962188348
521 => 0.013211749802926
522 => 0.013200587566768
523 => 0.013384633775584
524 => 0.013019339531442
525 => 0.012863169164828
526 => 0.011808922271008
527 => 0.012105122646
528 => 0.012535667286288
529 => 0.012478683088686
530 => 0.012166010062418
531 => 0.012422692995474
601 => 0.012337825590588
602 => 0.012270887147203
603 => 0.012577545133007
604 => 0.0122403620808
605 => 0.01253230362741
606 => 0.012157885574133
607 => 0.012316614527035
608 => 0.012226512296512
609 => 0.012284819482174
610 => 0.011943956866206
611 => 0.01212787805981
612 => 0.011936305139875
613 => 0.011936214309367
614 => 0.011931985326542
615 => 0.012157370017281
616 => 0.012164719803955
617 => 0.011998160176961
618 => 0.011974156332561
619 => 0.012062911126232
620 => 0.01195900250776
621 => 0.01200762069635
622 => 0.011960475103165
623 => 0.0119498616371
624 => 0.011865291733768
625 => 0.011828856694115
626 => 0.011843143811978
627 => 0.011794374513196
628 => 0.011764989246617
629 => 0.011926139857403
630 => 0.011840043586857
701 => 0.011912944369148
702 => 0.011829864726916
703 => 0.011541874490862
704 => 0.011376248260667
705 => 0.010832261401471
706 => 0.010986535399925
707 => 0.011088819220509
708 => 0.011055014418416
709 => 0.011127640214033
710 => 0.011132098848041
711 => 0.011108487461554
712 => 0.011081148500808
713 => 0.011067841406656
714 => 0.011167021584167
715 => 0.011224599015463
716 => 0.011099084770285
717 => 0.011069678538771
718 => 0.011196580370477
719 => 0.011273990414509
720 => 0.011845542686696
721 => 0.011803200248283
722 => 0.011909471459416
723 => 0.011897506951907
724 => 0.012008896111506
725 => 0.012190970310879
726 => 0.011820762554807
727 => 0.01188501782044
728 => 0.011869263913178
729 => 0.012041260941773
730 => 0.012041797897722
731 => 0.01193867708719
801 => 0.011994580551524
802 => 0.011963376771364
803 => 0.012019766219556
804 => 0.011802634739203
805 => 0.012067077444378
806 => 0.012216999417901
807 => 0.012219081084649
808 => 0.012290142910244
809 => 0.012362345840673
810 => 0.01250093307808
811 => 0.01235848071784
812 => 0.012102222789225
813 => 0.012120723783963
814 => 0.011970479854178
815 => 0.011973005481781
816 => 0.011959523483697
817 => 0.011999983974825
818 => 0.011811513541715
819 => 0.011855747175657
820 => 0.011793819829107
821 => 0.011884883202483
822 => 0.011786914066045
823 => 0.011869256316166
824 => 0.01190479250163
825 => 0.01203592179103
826 => 0.011767546163382
827 => 0.011220310091175
828 => 0.011335345748149
829 => 0.011165198975629
830 => 0.01118094670722
831 => 0.011212759631267
901 => 0.01110964353589
902 => 0.011129314837326
903 => 0.011128612040014
904 => 0.01112255571246
905 => 0.01109573123352
906 => 0.011056830431995
907 => 0.011211799252234
908 => 0.011238131474559
909 => 0.011296664742914
910 => 0.011470820046043
911 => 0.011453417824395
912 => 0.011481801569914
913 => 0.011419840012815
914 => 0.011183820926144
915 => 0.011196637898072
916 => 0.011036810052748
917 => 0.011292577585567
918 => 0.011232008457829
919 => 0.011192959147151
920 => 0.011182304180943
921 => 0.011356891181383
922 => 0.011409130348231
923 => 0.011376578405091
924 => 0.011309813420021
925 => 0.011438021928652
926 => 0.011472325116879
927 => 0.01148000433567
928 => 0.011707165231423
929 => 0.0114927001063
930 => 0.011544323993517
1001 => 0.011947078824896
1002 => 0.011581835769203
1003 => 0.011775313161696
1004 => 0.011765843450141
1005 => 0.011864819937222
1006 => 0.011757724489293
1007 => 0.011759052065723
1008 => 0.011846936481003
1009 => 0.01172351866978
1010 => 0.011692958684092
1011 => 0.01165074028274
1012 => 0.011742922617564
1013 => 0.011798181758242
1014 => 0.012243529848743
1015 => 0.012531245025547
1016 => 0.012518754550927
1017 => 0.012632894107764
1018 => 0.01258147319201
1019 => 0.01241542149089
1020 => 0.012698851496855
1021 => 0.012609162383752
1022 => 0.012616556245264
1023 => 0.01261628104537
1024 => 0.012675916464824
1025 => 0.012633659304635
1026 => 0.012550366104293
1027 => 0.012605660017811
1028 => 0.012769863173023
1029 => 0.013279554805172
1030 => 0.013564784995038
1031 => 0.013262383589596
1101 => 0.013470976029754
1102 => 0.013345894894745
1103 => 0.013323163931673
1104 => 0.013454175398952
1105 => 0.013585416184461
1106 => 0.013577056713794
1107 => 0.013481782642803
1108 => 0.01342796473759
1109 => 0.013835491946182
1110 => 0.014135751051428
1111 => 0.014115275393413
1112 => 0.014205648288851
1113 => 0.014470985904986
1114 => 0.014495245051286
1115 => 0.014492188956443
1116 => 0.014432060131158
1117 => 0.014693319472686
1118 => 0.01491126661181
1119 => 0.014418142045393
1120 => 0.01460591742481
1121 => 0.014690215842375
1122 => 0.014813990929575
1123 => 0.015022820248793
1124 => 0.015249664278705
1125 => 0.015281742511753
1126 => 0.015258981470321
1127 => 0.015109371734699
1128 => 0.015357587179041
1129 => 0.015502985964968
1130 => 0.015589567614596
1201 => 0.015809124272239
1202 => 0.014690736440704
1203 => 0.013899085946061
1204 => 0.013775458289751
1205 => 0.014026859990275
1206 => 0.014093152613812
1207 => 0.014066430140388
1208 => 0.013175355534954
1209 => 0.013770766966365
1210 => 0.014411379602949
1211 => 0.014435988143297
1212 => 0.01475669222375
1213 => 0.014861126618449
1214 => 0.015119335438858
1215 => 0.015103184406839
1216 => 0.015166054145609
1217 => 0.015151601481418
1218 => 0.015629878948943
1219 => 0.016157490020515
1220 => 0.016139220526807
1221 => 0.016063370192857
1222 => 0.016176020873176
1223 => 0.016720572041277
1224 => 0.016670438495973
1225 => 0.01671913896487
1226 => 0.01736119548162
1227 => 0.018195960284869
1228 => 0.017808128224744
1229 => 0.018649612199546
1230 => 0.019179281756536
1231 => 0.020095290486494
]
'min_raw' => 0.0082044619607724
'max_raw' => 0.020095290486494
'avg_raw' => 0.014149876223633
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0082044'
'max' => '$0.020095'
'avg' => '$0.014149'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0036583140605357
'max_diff' => 0.0081525306459691
'year' => 2028
]
3 => [
'items' => [
101 => 0.019980601682065
102 => 0.020337197158656
103 => 0.019775284785862
104 => 0.0184850203967
105 => 0.018280831118181
106 => 0.018689623224671
107 => 0.019694598729127
108 => 0.018657972969632
109 => 0.018867681010674
110 => 0.018807285080746
111 => 0.018804066838306
112 => 0.018926894062691
113 => 0.018748726767484
114 => 0.018022841155127
115 => 0.018355510253599
116 => 0.018227050738597
117 => 0.018369586147783
118 => 0.019138790965088
119 => 0.018798707179805
120 => 0.018440456538172
121 => 0.018889782344961
122 => 0.019461928502102
123 => 0.019426124623834
124 => 0.019356650135133
125 => 0.019748274190374
126 => 0.020395122394549
127 => 0.020569962864891
128 => 0.020699026525641
129 => 0.02071682222391
130 => 0.020900128976046
131 => 0.019914442370561
201 => 0.021478752327694
202 => 0.0217488654441
203 => 0.021698095373257
204 => 0.021998314734046
205 => 0.021909982582272
206 => 0.021782003153241
207 => 0.02225791469858
208 => 0.02171232051593
209 => 0.020937918262057
210 => 0.020513065869642
211 => 0.021072545771839
212 => 0.021414200624953
213 => 0.021640012749531
214 => 0.021708343361989
215 => 0.019990958415855
216 => 0.019065383180424
217 => 0.019658666294593
218 => 0.020382512640093
219 => 0.019910421367563
220 => 0.01992892645166
221 => 0.019255848360436
222 => 0.020442065116098
223 => 0.020269243312451
224 => 0.021165843135487
225 => 0.020951862392056
226 => 0.021683004741937
227 => 0.021490470457965
228 => 0.022289669506286
301 => 0.022608491644112
302 => 0.023143843634225
303 => 0.023537650737426
304 => 0.023768901800756
305 => 0.023755018354314
306 => 0.024671350276048
307 => 0.024131021356001
308 => 0.023452240886672
309 => 0.023439963889507
310 => 0.023791513912966
311 => 0.024528266319097
312 => 0.024719295498695
313 => 0.02482605474941
314 => 0.024662549240623
315 => 0.024076060923634
316 => 0.023822818241922
317 => 0.024038588343887
318 => 0.023774720050519
319 => 0.02423023075324
320 => 0.02485574423991
321 => 0.024726578178461
322 => 0.025158360956228
323 => 0.025605210706343
324 => 0.026244225918286
325 => 0.026411288157352
326 => 0.026687435685721
327 => 0.026971682202151
328 => 0.027062974522569
329 => 0.027237279888592
330 => 0.027236361213274
331 => 0.027761642165887
401 => 0.028341043323217
402 => 0.028559753846942
403 => 0.029062666636477
404 => 0.028201446108564
405 => 0.028854691771974
406 => 0.029443935712171
407 => 0.028741414794993
408 => 0.029709676212942
409 => 0.029747271609674
410 => 0.030314917465007
411 => 0.029739499642839
412 => 0.029397818376834
413 => 0.03038423938916
414 => 0.030861537445053
415 => 0.030717771386238
416 => 0.029623704580046
417 => 0.028986910772109
418 => 0.027320298548387
419 => 0.029294472719676
420 => 0.030256035371061
421 => 0.029621214365075
422 => 0.029941381155162
423 => 0.031688107347444
424 => 0.032353147589319
425 => 0.032214823867991
426 => 0.032238198299893
427 => 0.032597041943075
428 => 0.034188352275746
429 => 0.033234802238125
430 => 0.033963755513048
501 => 0.034350389701631
502 => 0.034709517083344
503 => 0.033827613737231
504 => 0.032680270441672
505 => 0.032316858657773
506 => 0.029558093926984
507 => 0.029414488242039
508 => 0.029333878019381
509 => 0.028825641968068
510 => 0.028426307649307
511 => 0.028108742172695
512 => 0.027275355528987
513 => 0.027556599056917
514 => 0.026228354688156
515 => 0.027078118365199
516 => 0.024958208281076
517 => 0.026723732392602
518 => 0.025762837887229
519 => 0.026408052704412
520 => 0.026405801610698
521 => 0.02521775656672
522 => 0.024532516979221
523 => 0.024969178314299
524 => 0.025437313927723
525 => 0.025513267356003
526 => 0.026120217398397
527 => 0.026289604108881
528 => 0.025776354468204
529 => 0.024914277856532
530 => 0.02511451859155
531 => 0.024528459107117
601 => 0.023501412403101
602 => 0.024239055276441
603 => 0.024490918985266
604 => 0.024602156347443
605 => 0.023592173871154
606 => 0.023274815449318
607 => 0.023105856488428
608 => 0.02478390180166
609 => 0.024875828911892
610 => 0.024405516818762
611 => 0.026531372076534
612 => 0.026050225559026
613 => 0.026587784102842
614 => 0.025096348843671
615 => 0.025153323679055
616 => 0.024447254326053
617 => 0.024842605984163
618 => 0.02456318417499
619 => 0.024810665477129
620 => 0.024959004749228
621 => 0.025664958243196
622 => 0.026731793247514
623 => 0.025559512332672
624 => 0.025048732750703
625 => 0.025365617530623
626 => 0.026209523458138
627 => 0.027488084137073
628 => 0.026731150481712
629 => 0.027067064784394
630 => 0.027140447115743
701 => 0.026582312261487
702 => 0.027508663365264
703 => 0.028005102447442
704 => 0.028514346222162
705 => 0.028956508323066
706 => 0.028310943060028
707 => 0.029001790429624
708 => 0.028445089400707
709 => 0.027945671027075
710 => 0.027946428438596
711 => 0.027633135997478
712 => 0.027026092415424
713 => 0.026914144265174
714 => 0.027496512680269
715 => 0.02796351699868
716 => 0.028001981711145
717 => 0.028260539297366
718 => 0.028413551013536
719 => 0.02991327384135
720 => 0.030516474769055
721 => 0.031254057445443
722 => 0.031541387465778
723 => 0.032406147813473
724 => 0.031707783600308
725 => 0.031556688109872
726 => 0.029459062367318
727 => 0.02980254846515
728 => 0.030352502849258
729 => 0.029468130912551
730 => 0.030029061352032
731 => 0.030139800902917
801 => 0.029438080292551
802 => 0.029812899590105
803 => 0.028817490661979
804 => 0.026753490442009
805 => 0.027510961187535
806 => 0.028068714618138
807 => 0.027272731702165
808 => 0.028699500270254
809 => 0.027866011527258
810 => 0.027601835610244
811 => 0.026571191172456
812 => 0.02705761567395
813 => 0.027715511777147
814 => 0.027309008474002
815 => 0.028152563864806
816 => 0.029347263266189
817 => 0.030198677205195
818 => 0.030264038195383
819 => 0.029716636072906
820 => 0.030593851467648
821 => 0.030600241024121
822 => 0.029610738475322
823 => 0.029004673673755
824 => 0.028866974475668
825 => 0.029210974070008
826 => 0.029628653083364
827 => 0.030287216473726
828 => 0.030685172537871
829 => 0.031722830893575
830 => 0.032003591492632
831 => 0.0323120622697
901 => 0.032724274356729
902 => 0.033219240656216
903 => 0.032136282571385
904 => 0.032179310514982
905 => 0.031170874940963
906 => 0.030093216905833
907 => 0.030911025022526
908 => 0.031980200346647
909 => 0.03173493034596
910 => 0.031707332460471
911 => 0.031753744448848
912 => 0.031568818878099
913 => 0.030732407375264
914 => 0.030312366754753
915 => 0.030854326319003
916 => 0.031142353707557
917 => 0.031589059068576
918 => 0.031533993204024
919 => 0.032684658241355
920 => 0.033131771880557
921 => 0.033017381078578
922 => 0.033038431739111
923 => 0.033847909625955
924 => 0.034748215517951
925 => 0.035591470791632
926 => 0.036449266274676
927 => 0.035415160339538
928 => 0.034890105120463
929 => 0.035431828082121
930 => 0.035144382253362
1001 => 0.03679613124738
1002 => 0.036910494763977
1003 => 0.038562124317743
1004 => 0.040129717436655
1005 => 0.039145140285014
1006 => 0.040073552192682
1007 => 0.041077705365359
1008 => 0.043014879753434
1009 => 0.042362507570147
1010 => 0.041862800701725
1011 => 0.041390580125632
1012 => 0.042373196181576
1013 => 0.043637316039873
1014 => 0.043909595349761
1015 => 0.044350791850481
1016 => 0.043886927676915
1017 => 0.044445600981012
1018 => 0.046417963237964
1019 => 0.045885013545613
1020 => 0.045128139306535
1021 => 0.046685129880714
1022 => 0.047248598716861
1023 => 0.051203318099867
1024 => 0.05619631468222
1025 => 0.054129181311342
1026 => 0.052846044922062
1027 => 0.053147612409945
1028 => 0.05497088573822
1029 => 0.055556463263459
1030 => 0.053964661689181
1031 => 0.054526912915632
1101 => 0.057624972452697
1102 => 0.059286981996683
1103 => 0.057029749798289
1104 => 0.050802135686047
1105 => 0.045059991062446
1106 => 0.046583066388768
1107 => 0.046410396913293
1108 => 0.049738875395071
1109 => 0.045872302871708
1110 => 0.045937406036624
1111 => 0.049334713928485
1112 => 0.048428370427539
1113 => 0.046960210031711
1114 => 0.045070710258099
1115 => 0.041577795169004
1116 => 0.03848402286745
1117 => 0.044551622804008
1118 => 0.044289976861529
1119 => 0.043911074763063
1120 => 0.044754280381709
1121 => 0.048848647517765
1122 => 0.048754259103106
1123 => 0.048153808166436
1124 => 0.048609244909768
1125 => 0.0468803697686
1126 => 0.047325940258234
1127 => 0.0450590814774
1128 => 0.046083796318723
1129 => 0.046957060018885
1130 => 0.047132380635583
1201 => 0.047527386937096
1202 => 0.044152101339126
1203 => 0.045667505479436
1204 => 0.046557663437702
1205 => 0.042535897398032
1206 => 0.046478166054061
1207 => 0.044093345126198
1208 => 0.043283901084473
1209 => 0.044373710850512
1210 => 0.043949010924812
1211 => 0.043583878867912
1212 => 0.043380128906396
1213 => 0.04418036492066
1214 => 0.044143032954106
1215 => 0.042833691515652
1216 => 0.041125708984773
1217 => 0.041698963984752
1218 => 0.041490695068965
1219 => 0.040735901650931
1220 => 0.041244541280581
1221 => 0.039004749768226
1222 => 0.03515130488545
1223 => 0.037697008609221
1224 => 0.037599001785048
1225 => 0.037549582300045
1226 => 0.039462608290375
1227 => 0.039278714982424
1228 => 0.038944946827804
1229 => 0.040729771737027
1230 => 0.040078286635878
1231 => 0.042086010208425
]
'min_raw' => 0.018022841155127
'max_raw' => 0.059286981996683
'avg_raw' => 0.038654911575905
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.018022'
'max' => '$0.059286'
'avg' => '$0.038654'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0098183791943542
'max_diff' => 0.039191691510188
'year' => 2029
]
4 => [
'items' => [
101 => 0.043408426804723
102 => 0.043073019180207
103 => 0.04431675838082
104 => 0.041712170622139
105 => 0.042577310197649
106 => 0.04275561426513
107 => 0.040707747274698
108 => 0.039308802201852
109 => 0.039215508514634
110 => 0.036789930544824
111 => 0.038085654717715
112 => 0.03922583836915
113 => 0.038679778881939
114 => 0.038506912761351
115 => 0.039390048281348
116 => 0.039458675474796
117 => 0.037893968191397
118 => 0.038219320383451
119 => 0.039576093109618
120 => 0.038185133191872
121 => 0.035482725283705
122 => 0.034812490758767
123 => 0.034723069118268
124 => 0.032905339929666
125 => 0.034857279034575
126 => 0.034005205306566
127 => 0.036696896003935
128 => 0.035159416713425
129 => 0.035093139054132
130 => 0.034992950651292
131 => 0.033428356049215
201 => 0.033770902831895
202 => 0.034909580508874
203 => 0.035315873532142
204 => 0.035273493841155
205 => 0.034904000367053
206 => 0.035073152587384
207 => 0.034528254349158
208 => 0.034335839440165
209 => 0.03372852505949
210 => 0.032835940694779
211 => 0.03296006002523
212 => 0.031191616841333
213 => 0.030228075136362
214 => 0.029961379491702
215 => 0.029604742929683
216 => 0.030001662540355
217 => 0.031186607063986
218 => 0.029757312568483
219 => 0.027306887409295
220 => 0.027454162136683
221 => 0.027785044722866
222 => 0.027168447212521
223 => 0.026584889416087
224 => 0.027092245574546
225 => 0.026053968131214
226 => 0.027910515591464
227 => 0.027860301185578
228 => 0.028552307270634
301 => 0.028985032877014
302 => 0.027987740450887
303 => 0.027736924102681
304 => 0.027879800493587
305 => 0.025518372013015
306 => 0.028359328184211
307 => 0.028383896891153
308 => 0.028173524706223
309 => 0.029686246162703
310 => 0.032878560265532
311 => 0.03167748328951
312 => 0.031212389981651
313 => 0.03032824726343
314 => 0.03150631494026
315 => 0.031415857723398
316 => 0.031006775883867
317 => 0.030759361910906
318 => 0.031215229742214
319 => 0.030702874841741
320 => 0.030610841823045
321 => 0.03005322186266
322 => 0.029854176906894
323 => 0.029706811945853
324 => 0.029544577603529
325 => 0.029902426136417
326 => 0.029091494281997
327 => 0.028113589962198
328 => 0.028032287799078
329 => 0.028256770219611
330 => 0.028157453459276
331 => 0.028031812308639
401 => 0.027791929135742
402 => 0.027720760922637
403 => 0.027952023089321
404 => 0.027690941586556
405 => 0.028076181565731
406 => 0.027971417607696
407 => 0.027386214654333
408 => 0.02665683510456
409 => 0.026650342096642
410 => 0.026493198469065
411 => 0.026293052432644
412 => 0.026237376384033
413 => 0.027049517454012
414 => 0.028730625163532
415 => 0.028400583494655
416 => 0.02863907242445
417 => 0.029812201917868
418 => 0.030185104506591
419 => 0.029920427081797
420 => 0.029558120298147
421 => 0.02957405995789
422 => 0.030812171915344
423 => 0.030889391439432
424 => 0.031084500264838
425 => 0.031335270243232
426 => 0.029963134293478
427 => 0.02950943247805
428 => 0.029294443387482
429 => 0.028632360199782
430 => 0.029346360154994
501 => 0.028930342957618
502 => 0.028986477890715
503 => 0.028949919941894
504 => 0.028969883053988
505 => 0.027909996648612
506 => 0.028296163548742
507 => 0.027654086178974
508 => 0.026794416657422
509 => 0.026791534743747
510 => 0.027001937641254
511 => 0.026876781764751
512 => 0.026539990519132
513 => 0.026587830125962
514 => 0.02616870483093
515 => 0.026638719525288
516 => 0.026652197864929
517 => 0.026471216605727
518 => 0.027195339091915
519 => 0.027492012665334
520 => 0.027372886923534
521 => 0.027483654485725
522 => 0.028414298216046
523 => 0.028566033750921
524 => 0.028633424652426
525 => 0.028543129771993
526 => 0.027500664944708
527 => 0.027546902692701
528 => 0.027207640777157
529 => 0.026921000209063
530 => 0.026932464328555
531 => 0.027079834841221
601 => 0.0277234105132
602 => 0.029077777574022
603 => 0.02912917481395
604 => 0.029191469768107
605 => 0.028938084882616
606 => 0.028861661576585
607 => 0.028962483643769
608 => 0.029471112702576
609 => 0.030779444733272
610 => 0.030316992813066
611 => 0.029941012203445
612 => 0.030270848561727
613 => 0.030220072839712
614 => 0.029791474647028
615 => 0.02977944532325
616 => 0.028956828360358
617 => 0.028652725599259
618 => 0.028398594570387
619 => 0.028121090121118
620 => 0.027956576181558
621 => 0.028209344362971
622 => 0.028267155436725
623 => 0.027714473390434
624 => 0.027639144869755
625 => 0.028090476959227
626 => 0.027891862534007
627 => 0.028096142395746
628 => 0.02814353707595
629 => 0.028135905440845
630 => 0.027928529170194
701 => 0.028060704621058
702 => 0.027748070276366
703 => 0.027408127382675
704 => 0.027191264995691
705 => 0.027002023800425
706 => 0.027107025814321
707 => 0.026732712807392
708 => 0.026612962543043
709 => 0.028015926552347
710 => 0.029052311150424
711 => 0.029037241707915
712 => 0.028945510352185
713 => 0.028809216164596
714 => 0.02946114193383
715 => 0.029234024031496
716 => 0.02939927128178
717 => 0.029441333642382
718 => 0.029568643739553
719 => 0.029614146156619
720 => 0.029476606248785
721 => 0.029015005519008
722 => 0.027864740388085
723 => 0.027329288864559
724 => 0.027152580943145
725 => 0.027159003940473
726 => 0.026981829000663
727 => 0.027034014960861
728 => 0.026963680853401
729 => 0.026830485069521
730 => 0.027098801350003
731 => 0.027129722301789
801 => 0.027067094075784
802 => 0.027081845290183
803 => 0.026563310327725
804 => 0.026602733414722
805 => 0.026383220656679
806 => 0.026342064660812
807 => 0.025787155523642
808 => 0.02480405355178
809 => 0.025348787476209
810 => 0.02469082549668
811 => 0.024441645325282
812 => 0.025621225501215
813 => 0.025502828368012
814 => 0.025300183941966
815 => 0.025000430601046
816 => 0.024889249171085
817 => 0.024213745998408
818 => 0.024173833667297
819 => 0.024508631279795
820 => 0.02435413370131
821 => 0.024137160588307
822 => 0.023351305967224
823 => 0.022467745185603
824 => 0.022494414331735
825 => 0.022775458577136
826 => 0.023592632624619
827 => 0.023273348587013
828 => 0.023041704354367
829 => 0.022998324352793
830 => 0.023541315894682
831 => 0.0243097626867
901 => 0.024670300728487
902 => 0.024313018478779
903 => 0.023902591867757
904 => 0.023927572633836
905 => 0.02409375847898
906 => 0.024111222261564
907 => 0.023844076730326
908 => 0.023919276632555
909 => 0.023805041104645
910 => 0.023103977880725
911 => 0.0230912978701
912 => 0.022919245648778
913 => 0.022914035975894
914 => 0.022621332226988
915 => 0.02258038094915
916 => 0.02199919988985
917 => 0.02238173502306
918 => 0.022125150539698
919 => 0.021738417201112
920 => 0.021671744227771
921 => 0.021669739957682
922 => 0.022066828624418
923 => 0.022377094810793
924 => 0.02212961393664
925 => 0.02207326733881
926 => 0.022674901588908
927 => 0.022598338146565
928 => 0.022532034699277
929 => 0.024240956704873
930 => 0.022888211588597
1001 => 0.022298337505909
1002 => 0.021568256314532
1003 => 0.021805974431833
1004 => 0.021856065131954
1005 => 0.020100351473719
1006 => 0.019388058661234
1007 => 0.019143626610177
1008 => 0.019002952509032
1009 => 0.019067059463398
1010 => 0.018425912388547
1011 => 0.01885677382644
1012 => 0.018301594654433
1013 => 0.018208517059536
1014 => 0.019201246192588
1015 => 0.019339378652013
1016 => 0.018750062665716
1017 => 0.01912849893051
1018 => 0.018991272680238
1019 => 0.018311111607876
1020 => 0.018285134457838
1021 => 0.017943853540544
1022 => 0.017409814989987
1023 => 0.017165745042215
1024 => 0.017038631294303
1025 => 0.017091080904089
1026 => 0.017064560776396
1027 => 0.016891499004298
1028 => 0.017074480474594
1029 => 0.016607038431151
1030 => 0.016420899243015
1031 => 0.016336824490131
1101 => 0.015921942771615
1102 => 0.016582204084511
1103 => 0.016712283880905
1104 => 0.016842619974681
1105 => 0.017977106686771
1106 => 0.017920430936661
1107 => 0.018432752115445
1108 => 0.018412844256535
1109 => 0.018266721957294
1110 => 0.017650256012744
1111 => 0.017895968350792
1112 => 0.017139703966454
1113 => 0.01770634866418
1114 => 0.017447755687786
1115 => 0.01761891811874
1116 => 0.017311152634791
1117 => 0.017481482760933
1118 => 0.016743130626272
1119 => 0.01605366779182
1120 => 0.016331127763078
1121 => 0.016632758483233
1122 => 0.017286770738605
1123 => 0.016897246434789
1124 => 0.017037334103986
1125 => 0.016568063862569
1126 => 0.015599825314108
1127 => 0.015605305439142
1128 => 0.015456363032685
1129 => 0.015327655047558
1130 => 0.016941987986828
1201 => 0.016741220167003
1202 => 0.016421322921954
1203 => 0.016849518096663
1204 => 0.016962739697228
1205 => 0.016965962957025
1206 => 0.017278363103176
1207 => 0.017445091117177
1208 => 0.017474477652286
1209 => 0.017966046032106
1210 => 0.018130813269078
1211 => 0.018809466199434
1212 => 0.017430945410053
1213 => 0.017402555681557
1214 => 0.01685554368089
1215 => 0.01650862002215
1216 => 0.01687929784061
1217 => 0.017207667785198
1218 => 0.016865747050396
1219 => 0.01691039468002
1220 => 0.0164513940295
1221 => 0.016615465164073
1222 => 0.016756785327936
1223 => 0.016678756639866
1224 => 0.016561943917194
1225 => 0.017180745194423
1226 => 0.01714583000126
1227 => 0.017722071976796
1228 => 0.018171293804185
1229 => 0.018976379626873
1230 => 0.018136230600825
1231 => 0.018105612231025
]
'min_raw' => 0.015327655047558
'max_raw' => 0.04431675838082
'avg_raw' => 0.029822206714189
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015327'
'max' => '$0.044316'
'avg' => '$0.029822'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026951861075681
'max_diff' => -0.014970223615863
'year' => 2030
]
5 => [
'items' => [
101 => 0.018404911707153
102 => 0.018130767447888
103 => 0.018304017156605
104 => 0.018948466420368
105 => 0.018962082617802
106 => 0.018733993767312
107 => 0.018720114540031
108 => 0.018763921498786
109 => 0.019020500224501
110 => 0.018930843733868
111 => 0.019034596494653
112 => 0.019164340910733
113 => 0.019701018826132
114 => 0.01983041005462
115 => 0.019516056451054
116 => 0.019544439061788
117 => 0.019426862184855
118 => 0.019313284394971
119 => 0.019568590679925
120 => 0.020035167933735
121 => 0.020032265380855
122 => 0.020140502234773
123 => 0.020207932898082
124 => 0.019918471128899
125 => 0.019730042160965
126 => 0.019802297817318
127 => 0.019917836185349
128 => 0.019764830281753
129 => 0.018820406965526
130 => 0.019106884669674
131 => 0.01905920077166
201 => 0.018991293102328
202 => 0.019279348649115
203 => 0.019251564988911
204 => 0.018419336498595
205 => 0.018472613066386
206 => 0.01842257642314
207 => 0.018584255054003
208 => 0.018122036271237
209 => 0.018264211655725
210 => 0.018353382724064
211 => 0.018405905168361
212 => 0.018595652252136
213 => 0.018573387621908
214 => 0.01859426825146
215 => 0.018875613085326
216 => 0.020298558709133
217 => 0.020376006499884
218 => 0.019994625253027
219 => 0.020146979538734
220 => 0.019854492626396
221 => 0.02005084105014
222 => 0.020185177654957
223 => 0.019578136369233
224 => 0.019542191323958
225 => 0.019248497214089
226 => 0.019406311793048
227 => 0.019155217450655
228 => 0.019216827219371
301 => 0.019044560934997
302 => 0.019354605948994
303 => 0.019701284450767
304 => 0.019788869131064
305 => 0.019558471544779
306 => 0.019391648508368
307 => 0.019098762211354
308 => 0.019585838650684
309 => 0.01972827464493
310 => 0.019585090495043
311 => 0.019551911598879
312 => 0.019489037650601
313 => 0.019565250604231
314 => 0.019727498907916
315 => 0.019650985604154
316 => 0.019701523989279
317 => 0.019508923780136
318 => 0.019918566952789
319 => 0.02056917889696
320 => 0.020571270720746
321 => 0.020494757004549
322 => 0.020463449240392
323 => 0.020541956956451
324 => 0.020584544171858
325 => 0.020838423729739
326 => 0.021110846610354
327 => 0.022382125326769
328 => 0.022025155350304
329 => 0.023153109456217
330 => 0.024045174707484
331 => 0.024312666071054
401 => 0.024066586603011
402 => 0.023224762035789
403 => 0.023183458106385
404 => 0.024441499418979
405 => 0.024086045126229
406 => 0.024043764969152
407 => 0.023593975531312
408 => 0.023859856796581
409 => 0.023801704663624
410 => 0.023709908676851
411 => 0.024217191609536
412 => 0.025166779974062
413 => 0.025018777722268
414 => 0.02490830090693
415 => 0.024424223661437
416 => 0.024715746285791
417 => 0.024611940663006
418 => 0.025057955495164
419 => 0.024793746189032
420 => 0.024083352210362
421 => 0.024196484792955
422 => 0.024179385030687
423 => 0.024531296926453
424 => 0.024425661710334
425 => 0.024158758059355
426 => 0.025163534384266
427 => 0.025098289798586
428 => 0.025190791704091
429 => 0.025231513903611
430 => 0.02584310354644
501 => 0.026093652254421
502 => 0.026150531197605
503 => 0.026388533092054
504 => 0.026144609493656
505 => 0.027120477801827
506 => 0.027769373283266
507 => 0.028523098776813
508 => 0.0296244943052
509 => 0.030038629212352
510 => 0.029963819448153
511 => 0.030798884967722
512 => 0.032299479143925
513 => 0.030267132434793
514 => 0.032407198454432
515 => 0.031729678260865
516 => 0.030123290069984
517 => 0.030019857608564
518 => 0.031107722341979
519 => 0.033520501617592
520 => 0.032916127774567
521 => 0.033521490156689
522 => 0.032815302782228
523 => 0.032780234626871
524 => 0.033487192212151
525 => 0.035139037144408
526 => 0.034354307535574
527 => 0.033229205217716
528 => 0.034059963260691
529 => 0.033340283760839
530 => 0.031718644422063
531 => 0.03291566562128
601 => 0.032115251634564
602 => 0.032348854988236
603 => 0.034031206135716
604 => 0.033828781194703
605 => 0.034090737812419
606 => 0.033628391238747
607 => 0.033196486633575
608 => 0.032390304614364
609 => 0.032151633862769
610 => 0.032217593872036
611 => 0.032151601176264
612 => 0.031700549745711
613 => 0.031603145232228
614 => 0.031440800109033
615 => 0.03149111765112
616 => 0.031185861323773
617 => 0.031761943082652
618 => 0.031868868933515
619 => 0.032288093196395
620 => 0.032331618450091
621 => 0.033499152054929
622 => 0.032856094164989
623 => 0.033287512916508
624 => 0.033248922762701
625 => 0.030158105373075
626 => 0.030583992738853
627 => 0.031246539829185
628 => 0.030948063263052
629 => 0.0305260872313
630 => 0.030185318960736
701 => 0.029669020185488
702 => 0.03039570079701
703 => 0.031351208527294
704 => 0.032355851702959
705 => 0.033562864651691
706 => 0.033293473412713
707 => 0.032333287435463
708 => 0.032376360676986
709 => 0.032642622507386
710 => 0.03229778924458
711 => 0.032196091183433
712 => 0.032628650755465
713 => 0.032631629555507
714 => 0.032234857212156
715 => 0.031793917361093
716 => 0.031792069807017
717 => 0.031713608819494
718 => 0.032829260817606
719 => 0.033442756611428
720 => 0.033513092915492
721 => 0.033438022417754
722 => 0.033466914072892
723 => 0.033109934387924
724 => 0.033925884088723
725 => 0.034674680223238
726 => 0.034473986863492
727 => 0.03417311898699
728 => 0.033933463231597
729 => 0.034417531583891
730 => 0.034395976782157
731 => 0.034668140142239
801 => 0.034655793240134
802 => 0.03456427493872
803 => 0.034473990131899
804 => 0.034831959185613
805 => 0.03472886984695
806 => 0.034625620382071
807 => 0.034418537773553
808 => 0.034446683739328
809 => 0.034145867811907
810 => 0.034006696599482
811 => 0.031913895483038
812 => 0.031354630640475
813 => 0.031530586744831
814 => 0.031588516063083
815 => 0.031345123286882
816 => 0.03169408600548
817 => 0.031639700535429
818 => 0.03185128258496
819 => 0.031719095306238
820 => 0.031724520318266
821 => 0.032113254919688
822 => 0.032226106228276
823 => 0.032168709141906
824 => 0.032208908093742
825 => 0.033135275971893
826 => 0.033003576083197
827 => 0.032933613142204
828 => 0.032952993354994
829 => 0.033189700209413
830 => 0.033255965204935
831 => 0.032975195762549
901 => 0.033107608254687
902 => 0.033671403840564
903 => 0.033868700387554
904 => 0.034498376257832
905 => 0.034230878756542
906 => 0.034721881997181
907 => 0.036231058563564
908 => 0.037436693231866
909 => 0.036327941765936
910 => 0.038541936297624
911 => 0.040265848619196
912 => 0.040199681992967
913 => 0.039899078004891
914 => 0.037936449659362
915 => 0.036130409794666
916 => 0.037641238829987
917 => 0.037645090243903
918 => 0.037515308689881
919 => 0.036709246604039
920 => 0.037487259476535
921 => 0.037549015313025
922 => 0.037514448466793
923 => 0.03689644255549
924 => 0.035952861755516
925 => 0.036137235185217
926 => 0.036439242624185
927 => 0.035867479536868
928 => 0.035684766586123
929 => 0.036024464724119
930 => 0.03711904290366
1001 => 0.036912119239278
1002 => 0.036906715626156
1003 => 0.037792022811675
1004 => 0.037158333928092
1005 => 0.036139560724612
1006 => 0.035882307054765
1007 => 0.034969229833646
1008 => 0.035599895522542
1009 => 0.035622592057933
1010 => 0.035277182905372
1011 => 0.036167588773683
1012 => 0.036159383526854
1013 => 0.037004691379392
1014 => 0.038620602510313
1015 => 0.038142698074742
1016 => 0.037586947212028
1017 => 0.037647372740105
1018 => 0.038310091640198
1019 => 0.037909396664801
1020 => 0.038053489371698
1021 => 0.038309873538628
1022 => 0.038464556472198
1023 => 0.037625116246399
1024 => 0.037429402574698
1025 => 0.037029041088562
1026 => 0.03692459424993
1027 => 0.037250680326572
1028 => 0.037164768166168
1029 => 0.035620684502019
1030 => 0.035459319167915
1031 => 0.035464268012335
1101 => 0.035058507207228
1102 => 0.034439624585687
1103 => 0.036066011163535
1104 => 0.035935389560068
1105 => 0.03579119341915
1106 => 0.035808856623641
1107 => 0.036514815913729
1108 => 0.036105323873679
1109 => 0.037194025576578
1110 => 0.03697022123583
1111 => 0.036740677158234
1112 => 0.036708947174627
1113 => 0.036620592288533
1114 => 0.036317590508711
1115 => 0.035951697651992
1116 => 0.03571010349489
1117 => 0.032940682845107
1118 => 0.033454671208728
1119 => 0.03404596796956
1120 => 0.034250081241926
1121 => 0.033900931365335
1122 => 0.036331377073932
1123 => 0.036775442925251
1124 => 0.035430338495909
1125 => 0.035178724377431
1126 => 0.036347872853651
1127 => 0.035642733399902
1128 => 0.035960257652749
1129 => 0.035273943894574
1130 => 0.036668480465434
1201 => 0.036657856433252
1202 => 0.03611535021015
1203 => 0.036573872754993
1204 => 0.036494193179141
1205 => 0.035881704989394
1206 => 0.036687897433524
1207 => 0.036688297294919
1208 => 0.036166146850286
1209 => 0.035556389444385
1210 => 0.035447379222037
1211 => 0.035365254662961
1212 => 0.035940060045543
1213 => 0.036455428754196
1214 => 0.037414402150262
1215 => 0.037655510846679
1216 => 0.038596574140309
1217 => 0.038036216768493
1218 => 0.038284615933576
1219 => 0.038554288365481
1220 => 0.038683579246212
1221 => 0.038472906694193
1222 => 0.039934765346305
1223 => 0.040058191006735
1224 => 0.040099574563049
1225 => 0.039606644050612
1226 => 0.040044481717479
1227 => 0.039839631972812
1228 => 0.040372594099539
1229 => 0.040456169366212
1230 => 0.040385384088616
1231 => 0.040411912197404
]
'min_raw' => 0.018122036271237
'max_raw' => 0.040456169366212
'avg_raw' => 0.029289102818724
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.018122'
'max' => '$0.040456'
'avg' => '$0.029289'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0027943812236785
'max_diff' => -0.0038605890146077
'year' => 2031
]
6 => [
'items' => [
101 => 0.039164473727364
102 => 0.03909978746193
103 => 0.038217785642813
104 => 0.038577207903532
105 => 0.037905285214676
106 => 0.038118358820883
107 => 0.038212279636259
108 => 0.038163220732266
109 => 0.03859752909888
110 => 0.03822827826392
111 => 0.037253764600004
112 => 0.036278985430492
113 => 0.036266747872057
114 => 0.036010105723006
115 => 0.035824600455596
116 => 0.035860335351252
117 => 0.035986269784519
118 => 0.035817280917398
119 => 0.035853343260151
120 => 0.03645221843199
121 => 0.03657231857672
122 => 0.036164171358772
123 => 0.034525401383347
124 => 0.034123243120835
125 => 0.034412306504784
126 => 0.034274152825322
127 => 0.027661916317986
128 => 0.029215363204694
129 => 0.028292357814684
130 => 0.028717721163837
131 => 0.027775571671723
201 => 0.028225214791645
202 => 0.028142182125733
203 => 0.030640078749725
204 => 0.030601077529686
205 => 0.03061974534982
206 => 0.029728681656072
207 => 0.031148170315228
208 => 0.03184746147189
209 => 0.031718041289823
210 => 0.031750613561401
211 => 0.031190914018596
212 => 0.030625164464837
213 => 0.029997661141486
214 => 0.031163484754517
215 => 0.031033865070021
216 => 0.031331165990565
217 => 0.032087285938408
218 => 0.032198627472948
219 => 0.032348271624485
220 => 0.032294634848555
221 => 0.033572480457133
222 => 0.033417724922437
223 => 0.033790641234848
224 => 0.033023524086991
225 => 0.032155458218763
226 => 0.032320449161102
227 => 0.032304559206581
228 => 0.032102261847893
229 => 0.031919636837796
301 => 0.031615617650261
302 => 0.032577579345995
303 => 0.032538525457896
304 => 0.033170762511031
305 => 0.033059008470667
306 => 0.032312687638259
307 => 0.032339342632793
308 => 0.03251861028099
309 => 0.03313905765824
310 => 0.033323248683087
311 => 0.033237924061635
312 => 0.033439881111739
313 => 0.03359949972969
314 => 0.033459926752623
315 => 0.035435985774537
316 => 0.034615388298284
317 => 0.035015341798529
318 => 0.035110728351675
319 => 0.034866397701555
320 => 0.034919384270741
321 => 0.034999644485083
322 => 0.035486968790002
323 => 0.036765848774535
324 => 0.037332256014054
325 => 0.039036320140188
326 => 0.037285223777581
327 => 0.037181320966181
328 => 0.037488274373105
329 => 0.038488740408652
330 => 0.039299524161467
331 => 0.039568507907512
401 => 0.03960405854999
402 => 0.040108689939273
403 => 0.040397935240791
404 => 0.040047414415491
405 => 0.039750384717109
406 => 0.038686461206187
407 => 0.038809613249544
408 => 0.039658008704266
409 => 0.040856417254305
410 => 0.041884776463396
411 => 0.041524680910309
412 => 0.04427195579252
413 => 0.044544336875479
414 => 0.044506702616949
415 => 0.045127227259671
416 => 0.043895612211514
417 => 0.043369072917009
418 => 0.039814605909329
419 => 0.040813266153662
420 => 0.04226487746806
421 => 0.042072751267336
422 => 0.041018552329139
423 => 0.041883976758969
424 => 0.041597840378143
425 => 0.041372152742776
426 => 0.042406071552092
427 => 0.041269235350206
428 => 0.042253536657311
429 => 0.040991160049655
430 => 0.041526325796463
501 => 0.04122253983552
502 => 0.041419126582858
503 => 0.040269884474851
504 => 0.040889987620056
505 => 0.040244086145301
506 => 0.040243779903903
507 => 0.040229521593049
508 => 0.040989421813733
509 => 0.041014202132648
510 => 0.040452634721417
511 => 0.040371704084127
512 => 0.040670947067652
513 => 0.040320611905806
514 => 0.04048453152305
515 => 0.040325576864024
516 => 0.04028979282218
517 => 0.040004659488613
518 => 0.039881816208608
519 => 0.03992998622398
520 => 0.039765557128172
521 => 0.039666482650288
522 => 0.040209813185729
523 => 0.039919533598534
524 => 0.040165323675796
525 => 0.039885214861576
526 => 0.038914235673886
527 => 0.038355815275127
528 => 0.0365217255994
529 => 0.037041871156255
530 => 0.03738672819858
531 => 0.037272752948149
601 => 0.037517615888641
602 => 0.037532648484493
603 => 0.037453041046457
604 => 0.037360865831555
605 => 0.03731600003455
606 => 0.037650392927568
607 => 0.037844519257112
608 => 0.037421339216369
609 => 0.037322194053741
610 => 0.037750052439342
611 => 0.038011045807393
612 => 0.039938074197576
613 => 0.039795313710212
614 => 0.040153614518166
615 => 0.040113275345764
616 => 0.040488831674295
617 => 0.041102707549496
618 => 0.039854526252818
619 => 0.040071167367059
620 => 0.040018051968821
621 => 0.04059795195918
622 => 0.040599762343651
623 => 0.040252083331279
624 => 0.040440565764334
625 => 0.040335360040947
626 => 0.040525481002513
627 => 0.039793407056866
628 => 0.040684994100164
629 => 0.041190466501115
630 => 0.041197484985892
701 => 0.041437074892265
702 => 0.041680512113252
703 => 0.042147768660023
704 => 0.041667480581767
705 => 0.040803489084086
706 => 0.040865866479543
707 => 0.040359308580575
708 => 0.040367823910373
709 => 0.040322368412549
710 => 0.04045878378325
711 => 0.039823342559433
712 => 0.039972479344561
713 => 0.039763686972038
714 => 0.040070713493218
715 => 0.039740403709731
716 => 0.040018026354968
717 => 0.040137839085316
718 => 0.040579950639684
719 => 0.039675103473681
720 => 0.037830058849432
721 => 0.038217909598453
722 => 0.037644247875632
723 => 0.037697342452164
724 => 0.037804601946696
725 => 0.037456938831794
726 => 0.037523261997993
727 => 0.037520892467788
728 => 0.0375004731366
729 => 0.037410032533027
730 => 0.037278875764719
731 => 0.037801363961735
801 => 0.037890144887759
802 => 0.03808749388868
803 => 0.038674670652314
804 => 0.038615997847046
805 => 0.03871169562675
806 => 0.038502787910975
807 => 0.037707033081937
808 => 0.037750246397646
809 => 0.037211375658311
810 => 0.038073713752328
811 => 0.037869500709358
812 => 0.037737843232071
813 => 0.037701919269595
814 => 0.038290551530854
815 => 0.038466679529103
816 => 0.038356928380105
817 => 0.038131825571556
818 => 0.03856408950964
819 => 0.03867974510372
820 => 0.03870563612602
821 => 0.039471524945916
822 => 0.038748440803089
823 => 0.038922494343106
824 => 0.040280410376542
825 => 0.039048967913819
826 => 0.039701290450768
827 => 0.039669362657107
828 => 0.040003068793618
829 => 0.03964198901376
830 => 0.039646465030382
831 => 0.039942773472393
901 => 0.039526661705098
902 => 0.039423626579723
903 => 0.039281284291968
904 => 0.039592083469791
905 => 0.039778393520659
906 => 0.041279915700994
907 => 0.042249967507221
908 => 0.042207854999983
909 => 0.042592684484827
910 => 0.042419315277271
911 => 0.041859460373584
912 => 0.042815064427145
913 => 0.042512671320426
914 => 0.042537600240737
915 => 0.042536672385078
916 => 0.042737737365381
917 => 0.042595264399501
918 => 0.042314435559202
919 => 0.042500862849126
920 => 0.043054485251224
921 => 0.044772946174545
922 => 0.045734619673815
923 => 0.044715052222376
924 => 0.045418336197826
925 => 0.044996616418259
926 => 0.044919977389235
927 => 0.045361691698095
928 => 0.04580417916938
929 => 0.045775994630385
930 => 0.045454771448215
1001 => 0.045273320623344
1002 => 0.046647327059754
1003 => 0.047659671596511
1004 => 0.047590636485948
1005 => 0.047895335012552
1006 => 0.048789939310633
1007 => 0.048871730716104
1008 => 0.048861426878969
1009 => 0.04865869834646
1010 => 0.049539552456968
1011 => 0.050274376453108
1012 => 0.048611772548574
1013 => 0.049244870350337
1014 => 0.049529088350686
1015 => 0.049946404698879
1016 => 0.050650487328621
1017 => 0.051415307813215
1018 => 0.051523461815567
1019 => 0.051446721375253
1020 => 0.050942301706185
1021 => 0.051779177406634
1022 => 0.052269399564807
1023 => 0.052561315641464
1024 => 0.053301566241663
1025 => 0.049530843584297
1026 => 0.046861738670337
1027 => 0.04644491939568
1028 => 0.047292537781303
1029 => 0.047516047989962
1030 => 0.04742595130511
1031 => 0.044421631060046
1101 => 0.046429102271348
1102 => 0.048588972501735
1103 => 0.048671941913633
1104 => 0.049753218111722
1105 => 0.050105325964828
1106 => 0.050975895030401
1107 => 0.050921440698319
1108 => 0.051133410412006
1109 => 0.051084682245633
1110 => 0.052697228119662
1111 => 0.054476105684095
1112 => 0.054414508810523
1113 => 0.054158774113911
1114 => 0.054538583747625
1115 => 0.056374576030224
1116 => 0.056205547282019
1117 => 0.056369744313066
1118 => 0.058534482686242
1119 => 0.061348950501814
1120 => 0.060041347633532
1121 => 0.062878469605114
1122 => 0.064664287496851
1123 => 0.067752674883594
1124 => 0.067365993572145
1125 => 0.068568280118171
1126 => 0.066673753321827
1127 => 0.062323536850384
1128 => 0.061635098441819
1129 => 0.063013369569804
1130 => 0.066401714648226
1201 => 0.062906658525188
1202 => 0.063613703826908
1203 => 0.063410074732447
1204 => 0.063399224203371
1205 => 0.063813344765906
1206 => 0.063212641290873
1207 => 0.060765267269096
1208 => 0.061886884360811
1209 => 0.061453774137223
1210 => 0.0619343422208
1211 => 0.064527769966509
1212 => 0.063381153740535
1213 => 0.06217328669001
1214 => 0.063688220018525
1215 => 0.065617250733294
1216 => 0.065496535457966
1217 => 0.065262297368757
1218 => 0.066582685213318
1219 => 0.068763579095195
1220 => 0.069353065947924
1221 => 0.069788213091081
1222 => 0.069848212530251
1223 => 0.070466244043147
1224 => 0.067142932834311
1225 => 0.072417113071419
1226 => 0.073327818302079
1227 => 0.07315664346358
1228 => 0.074168853999123
1229 => 0.073871035982264
1230 => 0.073439544402049
1231 => 0.075044113404241
]
'min_raw' => 0.027661916317986
'max_raw' => 0.075044113404241
'avg_raw' => 0.051353014861114
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.027661'
'max' => '$0.075044'
'avg' => '$0.051353'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.009539880046749
'max_diff' => 0.034587944038029
'year' => 2032
]
7 => [
'items' => [
101 => 0.073204604525269
102 => 0.070593653259297
103 => 0.069161233756024
104 => 0.071047559307919
105 => 0.072199472498772
106 => 0.072960813842486
107 => 0.07319119527308
108 => 0.067400912023199
109 => 0.064280270495345
110 => 0.066280565936472
111 => 0.068721064427663
112 => 0.067129375741969
113 => 0.067191766924983
114 => 0.064922437147611
115 => 0.068921849758334
116 => 0.068339168981306
117 => 0.071362117883271
118 => 0.070640666867136
119 => 0.073105764346488
120 => 0.072456621565762
121 => 0.075151176955472
122 => 0.076226108052602
123 => 0.07803108466435
124 => 0.079358832807529
125 => 0.080138511912978
126 => 0.080091702903989
127 => 0.083181179954367
128 => 0.081359423275866
129 => 0.079070867532586
130 => 0.079029474779491
131 => 0.080214750228021
201 => 0.082698762403701
202 => 0.083342830619948
203 => 0.083702776887428
204 => 0.083151506648963
205 => 0.081174120340927
206 => 0.080320294958694
207 => 0.08104777892206
208 => 0.080158128548273
209 => 0.081693914685236
210 => 0.083802877077504
211 => 0.083367384683242
212 => 0.084823170464592
213 => 0.086329755595158
214 => 0.088484239996841
215 => 0.089047501999767
216 => 0.089978552671668
217 => 0.090936909647268
218 => 0.091244708079386
219 => 0.091832390790543
220 => 0.091829293412567
221 => 0.093600314818249
222 => 0.095553806272684
223 => 0.096291204073302
224 => 0.097986809655471
225 => 0.095083144517113
226 => 0.097285607879459
227 => 0.099272284963528
228 => 0.096903686642818
301 => 0.10016824761529
302 => 0.1002950031202
303 => 0.10220886075322
304 => 0.10026879939139
305 => 0.099116797147633
306 => 0.1024425844604
307 => 0.10405182817973
308 => 0.10356711087501
309 => 0.09987838825263
310 => 0.097731393469648
311 => 0.092112293998219
312 => 0.09876836004916
313 => 0.10201033566246
314 => 0.099869992318996
315 => 0.1009494570051
316 => 0.10683866631491
317 => 0.10908089592202
318 => 0.10861452783811
319 => 0.10869333636722
320 => 0.10990320276387
321 => 0.11526841665221
322 => 0.11205345612563
323 => 0.11451117298593
324 => 0.11581473714667
325 => 0.11702556018759
326 => 0.11405216148365
327 => 0.11018381345772
328 => 0.1089585452557
329 => 0.099657177355045
330 => 0.099173000762022
331 => 0.098901217768306
401 => 0.097187664437396
402 => 0.095841280901059
403 => 0.094770586724949
404 => 0.091960765470489
405 => 0.092908997660702
406 => 0.088430729036365
407 => 0.09129576660212
408 => 0.084148341746103
409 => 0.090100929553071
410 => 0.086861206640695
411 => 0.089036593444287
412 => 0.089029003724663
413 => 0.085023426912235
414 => 0.082713093801082
415 => 0.084185327979019
416 => 0.085763679883861
417 => 0.086019762170209
418 => 0.088066136614037
419 => 0.088637235734637
420 => 0.086906778737148
421 => 0.084000227252631
422 => 0.084675352871103
423 => 0.082699412401972
424 => 0.079236652733273
425 => 0.081723667181316
426 => 0.082572843260185
427 => 0.082947887793107
428 => 0.079542661359576
429 => 0.078472665283098
430 => 0.077903008350118
501 => 0.083560655281065
502 => 0.083870593951358
503 => 0.082284903893227
504 => 0.089452373317281
505 => 0.087830154240925
506 => 0.089642570402538
507 => 0.084614092297559
508 => 0.084806186932913
509 => 0.082425624813079
510 => 0.083758580530968
511 => 0.082816490392733
512 => 0.083650890881488
513 => 0.084151027094085
514 => 0.086531198587099
515 => 0.090128107288199
516 => 0.086175680337768
517 => 0.084453551315668
518 => 0.085521950475358
519 => 0.088367238229605
520 => 0.092677994824889
521 => 0.090125940158419
522 => 0.0912584986827
523 => 0.091505912336234
524 => 0.089624121707378
525 => 0.092747379129533
526 => 0.094421158155364
527 => 0.0961381090961
528 => 0.097628889490067
529 => 0.09545232113381
530 => 0.097781561273823
531 => 0.095904604887207
601 => 0.094220780972227
602 => 0.094223334638053
603 => 0.093167047299444
604 => 0.091120357480119
605 => 0.09074291647558
606 => 0.092706412246736
607 => 0.094280949911462
608 => 0.094410636375056
609 => 0.095282381328914
610 => 0.09579827101292
611 => 0.1008546912342
612 => 0.1028884252761
613 => 0.10537523676592
614 => 0.10634398999022
615 => 0.10925958987811
616 => 0.10690500617519
617 => 0.10639557718004
618 => 0.099323285537468
619 => 0.10048137289774
620 => 0.10233558250035
621 => 0.099353860770867
622 => 0.10124507691049
623 => 0.10161844303789
624 => 0.099252543007469
625 => 0.10051627243822
626 => 0.097160181739809
627 => 0.090201260894287
628 => 0.092755126397747
629 => 0.094635631030128
630 => 0.091951919055172
701 => 0.096762368896284
702 => 0.093952203406947
703 => 0.09306151585856
704 => 0.089586626179262
705 => 0.091226640347121
706 => 0.093444782991891
707 => 0.092074228724184
708 => 0.094918334619435
709 => 0.098946347062448
710 => 0.10181694860163
711 => 0.1020373177434
712 => 0.10019171326908
713 => 0.10314930621768
714 => 0.10317084905343
715 => 0.099834672125289
716 => 0.097791282332714
717 => 0.097327019872512
718 => 0.098486838522113
719 => 0.099895072477063
720 => 0.10211546492709
721 => 0.10345720158176
722 => 0.10695573917501
723 => 0.10790234313681
724 => 0.10894237389844
725 => 0.11033217572959
726 => 0.11200098916575
727 => 0.10834972037302
728 => 0.10849479208898
729 => 0.10509478114445
730 => 0.10146138183933
731 => 0.1042186790023
801 => 0.10782347825501
802 => 0.10699653332349
803 => 0.10690348512574
804 => 0.10705996638493
805 => 0.10643647691206
806 => 0.10361645713387
807 => 0.10220026085552
808 => 0.10402751536479
809 => 0.10499861981473
810 => 0.10650471812738
811 => 0.10631905972047
812 => 0.1101986072307
813 => 0.11170608208174
814 => 0.11132040550636
815 => 0.11139137927806
816 => 0.11412059048949
817 => 0.11715603466171
818 => 0.11999912869112
819 => 0.12289124605157
820 => 0.11940468569229
821 => 0.11763442536299
822 => 0.11946088215011
823 => 0.11849173846962
824 => 0.12406072552439
825 => 0.1244463101052
826 => 0.13001489445881
827 => 0.13530014410508
828 => 0.13198057349734
829 => 0.1351107790637
830 => 0.13849635159311
831 => 0.1450276702917
901 => 0.14282815192858
902 => 0.14114335533327
903 => 0.13955123069159
904 => 0.14286418932827
905 => 0.14712625768855
906 => 0.14804426639177
907 => 0.1495317911973
908 => 0.14796784075016
909 => 0.14985144680025
910 => 0.1565014038555
911 => 0.15470452675838
912 => 0.15215267241805
913 => 0.15740217484451
914 => 0.15930194936572
915 => 0.17263556187521
916 => 0.1894697984525
917 => 0.18250031396995
918 => 0.17817413004777
919 => 0.17919088588793
920 => 0.18533817921109
921 => 0.18731249472115
922 => 0.18194562457744
923 => 0.18384129384254
924 => 0.19428661787137
925 => 0.19989019908672
926 => 0.19227978313491
927 => 0.17128294735736
928 => 0.15192290585515
929 => 0.15705806065557
930 => 0.1564758934636
1001 => 0.16769809105187
1002 => 0.15466167183388
1003 => 0.15488117169975
1004 => 0.16633543244962
1005 => 0.1632796320573
1006 => 0.15832962677908
1007 => 0.15195904637169
1008 => 0.14018243928126
1009 => 0.12975156996628
1010 => 0.15020890677869
1011 => 0.14932674921608
1012 => 0.14804925433701
1013 => 0.15089218095101
1014 => 0.1646966256098
1015 => 0.16437838847979
1016 => 0.16235392622466
1017 => 0.16388946300239
1018 => 0.15806043975773
1019 => 0.15956271177227
1020 => 0.15191983912566
1021 => 0.15537473675649
1022 => 0.15831900629091
1023 => 0.1589101119906
1024 => 0.16024190331461
1025 => 0.14886189226614
1026 => 0.15397118312733
1027 => 0.15697241283247
1028 => 0.14341274783899
1029 => 0.1567043818532
1030 => 0.14866379159203
1031 => 0.14593469449177
1101 => 0.14960906420606
1102 => 0.14817715875496
1103 => 0.14694609053241
1104 => 0.1462591333118
1105 => 0.14895718490458
1106 => 0.14883131757291
1107 => 0.14441678149786
1108 => 0.13865819914747
1109 => 0.14059096840329
1110 => 0.13988877521284
1111 => 0.13734393650594
1112 => 0.13905885052939
1113 => 0.13150723706824
1114 => 0.11851507860703
1115 => 0.12709809644708
1116 => 0.12676765959677
1117 => 0.12660103835272
1118 => 0.13305093904233
1119 => 0.13243092991555
1120 => 0.1313056072793
1121 => 0.13732326907324
1122 => 0.13512674156948
1123 => 0.1418959217691
1124 => 0.1463545416517
1125 => 0.14522369142823
1126 => 0.1494170449782
1127 => 0.14063549550329
1128 => 0.14355237398424
1129 => 0.14415353859655
1130 => 0.1372490120608
1201 => 0.13253237107647
1202 => 0.13221782489646
1203 => 0.1240398194228
1204 => 0.12840844393628
1205 => 0.13225265272217
1206 => 0.13041157503638
1207 => 0.12982874484169
1208 => 0.13280629790591
1209 => 0.13303767928002
1210 => 0.12776215942967
1211 => 0.12885910706054
1212 => 0.13343356103366
1213 => 0.12874384255726
1214 => 0.11963248561878
1215 => 0.11737274312367
1216 => 0.11707125181951
1217 => 0.11094265095034
1218 => 0.11752374992258
1219 => 0.11465092385871
1220 => 0.12372614697273
1221 => 0.1185424282014
1222 => 0.11831896844573
1223 => 0.11798117625063
1224 => 0.11270603631322
1225 => 0.11386095670688
1226 => 0.11770008799475
1227 => 0.11906993328917
1228 => 0.11892704720215
1229 => 0.11768127415701
1230 => 0.11825158267768
1231 => 0.11641442022392
]
'min_raw' => 0.064280270495345
'max_raw' => 0.19989019908672
'avg_raw' => 0.13208523479103
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.06428'
'max' => '$0.19989'
'avg' => '$0.132085'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.036618354177359
'max_diff' => 0.12484608568247
'year' => 2033
]
8 => [
'items' => [
101 => 0.11576567992427
102 => 0.11371807708849
103 => 0.11070866658462
104 => 0.11112714357297
105 => 0.1051647139097
106 => 0.10191606577906
107 => 0.10101688279299
108 => 0.099814457724574
109 => 0.101152699904
110 => 0.1051478230956
111 => 0.10032885691386
112 => 0.092067077406434
113 => 0.092563624432217
114 => 0.093679218173018
115 => 0.091600316617427
116 => 0.089632810764043
117 => 0.091343397474765
118 => 0.087842772584354
119 => 0.094102251966591
120 => 0.093932950591289
121 => 0.096266097421379
122 => 0.097725062015226
123 => 0.094362620971804
124 => 0.09351697614239
125 => 0.093998693869639
126 => 0.08603697287772
127 => 0.095615454958133
128 => 0.09569829006892
129 => 0.094989005559711
130 => 0.10008925156507
131 => 0.11085236144301
201 => 0.10680284656184
202 => 0.10523475200262
203 => 0.10225380309926
204 => 0.10622574052175
205 => 0.10592075769958
206 => 0.10454150971642
207 => 0.10370733623269
208 => 0.10524432645362
209 => 0.1035168861352
210 => 0.10320659038713
211 => 0.1013265357589
212 => 0.10065544179366
213 => 0.10015859053882
214 => 0.099611606126834
215 => 0.10081811743965
216 => 0.098084004075024
217 => 0.09478693138572
218 => 0.094512815466425
219 => 0.095269673620116
220 => 0.094934820228571
221 => 0.094511212317214
222 => 0.093702429451684
223 => 0.093462480852393
224 => 0.094242197393578
225 => 0.093361942878878
226 => 0.094660806365262
227 => 0.09430758736636
228 => 0.092334534751533
301 => 0.089875380675819
302 => 0.089853489046295
303 => 0.089323668334503
304 => 0.08864886199896
305 => 0.088461146313889
306 => 0.091199336633202
307 => 0.096867308647041
308 => 0.09575455011765
309 => 0.096558632195216
310 => 0.10051392018756
311 => 0.10177118730067
312 => 0.10087880888379
313 => 0.09965726626726
314 => 0.099711007942954
315 => 0.10388538884973
316 => 0.10414573986648
317 => 0.10480356289341
318 => 0.10564905138376
319 => 0.10102279922969
320 => 0.099493111882529
321 => 0.09876826115362
322 => 0.096536001461116
323 => 0.09894330216
324 => 0.097540671133654
325 => 0.097729933979807
326 => 0.097606676302962
327 => 0.097673983329167
328 => 0.094100502314535
329 => 0.095402490979634
330 => 0.093237682299052
331 => 0.090339246486931
401 => 0.090329529913766
402 => 0.091038917972572
403 => 0.090616946196837
404 => 0.08948143099822
405 => 0.089642725572703
406 => 0.088229615378106
407 => 0.089814302735513
408 => 0.08985974589864
409 => 0.089249554947534
410 => 0.091690984466334
411 => 0.092691240132204
412 => 0.092289599376629
413 => 0.0926630599461
414 => 0.095800790258349
415 => 0.096312377208017
416 => 0.096539590337523
417 => 0.096235154843957
418 => 0.092720411896196
419 => 0.09287630569177
420 => 0.091732460457005
421 => 0.090766031769069
422 => 0.090804683848336
423 => 0.09130155382087
424 => 0.093471414131965
425 => 0.098037757236414
426 => 0.098211046619274
427 => 0.098421078406509
428 => 0.097566773574307
429 => 0.097309107062318
430 => 0.097649035701001
501 => 0.099363914084117
502 => 0.10377504687043
503 => 0.1022158579341
504 => 0.10094821305863
505 => 0.10206027936902
506 => 0.1018890854772
507 => 0.10044403674679
508 => 0.10040347904182
509 => 0.097629968518143
510 => 0.096604664827321
511 => 0.095747844320618
512 => 0.094812218695165
513 => 0.094257548461941
514 => 0.095109774033285
515 => 0.095304688104688
516 => 0.09344128199859
517 => 0.093187306631851
518 => 0.094709004282505
519 => 0.094039361881059
520 => 0.094728105697279
521 => 0.094887900170577
522 => 0.094862169579997
523 => 0.094162986004947
524 => 0.09460862476573
525 => 0.093554556245171
526 => 0.092408415045035
527 => 0.091677248366469
528 => 0.091039208464233
529 => 0.09139323008509
530 => 0.090131207648529
531 => 0.08972746127158
601 => 0.094457652380766
602 => 0.097951895411246
603 => 0.097901087733711
604 => 0.097591809063389
605 => 0.097132283694177
606 => 0.099330296941152
607 => 0.098564553076568
608 => 0.099121695718094
609 => 0.099263511903566
610 => 0.099692746784685
611 => 0.0998461613607
612 => 0.099382435958708
613 => 0.097826116870332
614 => 0.093947917672478
615 => 0.092142605476879
616 => 0.091546822382478
617 => 0.091568477966406
618 => 0.09097112028688
619 => 0.091147068895194
620 => 0.090909932541323
621 => 0.090460853656537
622 => 0.091365500729426
623 => 0.091469752877206
624 => 0.091258597440666
625 => 0.091308332189909
626 => 0.089560055361027
627 => 0.089692973051269
628 => 0.088952870461636
629 => 0.08881411014815
630 => 0.086943195249664
701 => 0.083628598313545
702 => 0.085465206771864
703 => 0.083246842020444
704 => 0.08240671367537
705 => 0.086383750594187
706 => 0.085984566393371
707 => 0.085301336562775
708 => 0.08429069724575
709 => 0.083915841292198
710 => 0.081638335183392
711 => 0.081503767972461
712 => 0.082632561497823
713 => 0.082111662125282
714 => 0.081380122126215
715 => 0.078730558404615
716 => 0.075751571541136
717 => 0.075841488429301
718 => 0.076789048724553
719 => 0.079544208078912
720 => 0.078467719654423
721 => 0.077686714951175
722 => 0.077540456247172
723 => 0.079371190141109
724 => 0.08196206215164
725 => 0.083177641331486
726 => 0.081973039281947
727 => 0.080589257307816
728 => 0.080673481704753
729 => 0.081233788884381
730 => 0.081292669246643
731 => 0.080391969436569
801 => 0.080645511157225
802 => 0.080260358099207
803 => 0.077896674493088
804 => 0.077853922951975
805 => 0.077273836875486
806 => 0.077256272099631
807 => 0.076269400974271
808 => 0.076131330881915
809 => 0.074171838363716
810 => 0.075461582273084
811 => 0.074596489773274
812 => 0.07329259132137
813 => 0.073067798736792
814 => 0.073061041200255
815 => 0.074399853364002
816 => 0.075445937473456
817 => 0.074611538427687
818 => 0.074421561939111
819 => 0.076450013818077
820 => 0.076191874826729
821 => 0.07596832812504
822 => 0.08173007798003
823 => 0.077169203374857
824 => 0.075180401721381
825 => 0.072718882012013
826 => 0.073520365241443
827 => 0.073689249534122
828 => 0.06776973835537
829 => 0.065368193407378
830 => 0.064544073681539
831 => 0.064069781127977
901 => 0.064285922200426
902 => 0.062124250074107
903 => 0.06357692949375
904 => 0.061705104153954
905 => 0.06139128654429
906 => 0.06473834212651
907 => 0.065204065357561
908 => 0.063217145365032
909 => 0.064493069653363
910 => 0.06403040176974
911 => 0.06173719122694
912 => 0.06164960745192
913 => 0.060498955011791
914 => 0.058698406753207
915 => 0.057875507883874
916 => 0.057446935007989
917 => 0.057623772529298
918 => 0.057534358067207
919 => 0.05695086821979
920 => 0.057567803022252
921 => 0.055991789537022
922 => 0.0553642082684
923 => 0.055080744369138
924 => 0.053681941689044
925 => 0.055908058803448
926 => 0.05634663191887
927 => 0.056786069158812
928 => 0.060611070315957
929 => 0.060419984067487
930 => 0.062147310690878
1001 => 0.062080189954643
1002 => 0.061587528420816
1003 => 0.059509070448488
1004 => 0.060337506751307
1005 => 0.057787708578816
1006 => 0.059698190739069
1007 => 0.058826326464772
1008 => 0.059403412550912
1009 => 0.058365759734277
1010 => 0.058940039646638
1011 => 0.056450633874527
1012 => 0.054126061791414
1013 => 0.055061537456148
1014 => 0.056078506488333
1015 => 0.058283554468999
1016 => 0.056970246082965
1017 => 0.057442561440271
1018 => 0.055860384057932
1019 => 0.052595900191539
1020 => 0.052614376815701
1021 => 0.052112207093504
1022 => 0.051678259135545
1023 => 0.05712109534942
1024 => 0.056444192627717
1025 => 0.055365636731521
1026 => 0.056809326658687
1027 => 0.057191061189869
1028 => 0.057201928635317
1029 => 0.058255207539146
1030 => 0.05881734267893
1031 => 0.058916421433751
1101 => 0.060573778546523
1102 => 0.061129302789655
1103 => 0.063417428526384
1104 => 0.058769649439739
1105 => 0.058673931488006
1106 => 0.0568296423366
1107 => 0.055659964999721
1108 => 0.056909731144559
1109 => 0.058016853338794
1110 => 0.056864043709266
1111 => 0.057014576309743
1112 => 0.05546702357011
1113 => 0.056020200855404
1114 => 0.056496671654528
1115 => 0.056233592484911
1116 => 0.055839750234819
1117 => 0.057926081944322
1118 => 0.057808362932872
1119 => 0.05975120298532
1120 => 0.061265785740028
1121 => 0.063980188800518
1122 => 0.061147567701865
1123 => 0.061044335730381
1124 => 0.062053444810566
1125 => 0.061129148300313
1126 => 0.061713271789162
1127 => 0.06388607747595
1128 => 0.06393198543625
1129 => 0.063162967952168
1130 => 0.063116173168373
1201 => 0.06326387138832
1202 => 0.064128944475822
1203 => 0.063826661358038
1204 => 0.06417647103481
1205 => 0.064613913392089
1206 => 0.066423360453513
1207 => 0.066859612014168
1208 => 0.065799746892277
1209 => 0.065895440845977
1210 => 0.065499022196442
1211 => 0.065116086748102
1212 => 0.065976869712739
1213 => 0.067549967499345
1214 => 0.067540181339658
1215 => 0.067905109449499
1216 => 0.068132456638703
1217 => 0.067156516074328
1218 => 0.066521214653249
1219 => 0.066764829643371
1220 => 0.067154375317819
1221 => 0.066638505231312
1222 => 0.063454316083125
1223 => 0.064420195663895
1224 => 0.064259426072556
1225 => 0.06403047062424
1226 => 0.06500167001163
1227 => 0.064907995461459
1228 => 0.062102079002021
1229 => 0.062281704669981
1230 => 0.062113002633829
1231 => 0.062658113425825
]
'min_raw' => 0.051678259135545
'max_raw' => 0.11576567992427
'avg_raw' => 0.083721969529908
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.051678'
'max' => '$0.115765'
'avg' => '$0.083721'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0126020113598
'max_diff' => -0.084124519162445
'year' => 2034
]
9 => [
'items' => [
101 => 0.061099710528644
102 => 0.061579064763813
103 => 0.061879711246445
104 => 0.06205679433439
105 => 0.062696539875057
106 => 0.062621473119775
107 => 0.06269187362015
108 => 0.063640447370399
109 => 0.068438007887955
110 => 0.068699128521705
111 => 0.067413275020735
112 => 0.067926948132034
113 => 0.066940808086301
114 => 0.067602810505566
115 => 0.068055735747788
116 => 0.0660090536707
117 => 0.065887862440952
118 => 0.064897652244461
119 => 0.065429735115683
120 => 0.064583153009457
121 => 0.06479087464614
122 => 0.064210066841127
123 => 0.065255405252469
124 => 0.066424256025516
125 => 0.066719553890104
126 => 0.065942752342098
127 => 0.065380296827626
128 => 0.064392810228576
129 => 0.06603502245037
130 => 0.066515255349533
131 => 0.066032499991392
201 => 0.065920635026497
202 => 0.065708651120159
203 => 0.06596560841434
204 => 0.066512639898028
205 => 0.066254669952406
206 => 0.066425063646335
207 => 0.065775698594292
208 => 0.067156839151264
209 => 0.06935042274531
210 => 0.069357475475252
211 => 0.069099504139076
212 => 0.068993947826382
213 => 0.069258642072309
214 => 0.069402227842398
215 => 0.070258200497101
216 => 0.071176693259052
217 => 0.075462898209292
218 => 0.074259349010791
219 => 0.078062325030117
220 => 0.081069985306771
221 => 0.081971851114696
222 => 0.081142177007471
223 => 0.078303906704767
224 => 0.078164647623033
225 => 0.082406221742085
226 => 0.081207782777051
227 => 0.081065232275561
228 => 0.079548735782585
301 => 0.080445173031678
302 => 0.08024910905536
303 => 0.079939612476965
304 => 0.081649952301875
305 => 0.084851555771018
306 => 0.084352555845905
307 => 0.083980075549749
308 => 0.082347975319375
309 => 0.083330864200844
310 => 0.082980876296149
311 => 0.08448464644253
312 => 0.083593846320401
313 => 0.081198703423193
314 => 0.081580137824068
315 => 0.081522484781715
316 => 0.082708980307995
317 => 0.082352823801635
318 => 0.081452939507741
319 => 0.08484061303842
320 => 0.084620636362568
321 => 0.084932512995257
322 => 0.085069810734072
323 => 0.087131827914692
324 => 0.087976570376403
325 => 0.088168341704509
326 => 0.088970781708407
327 => 0.088148376266206
328 => 0.091438584400153
329 => 0.09362638082026
330 => 0.09616761894519
331 => 0.099881050866126
401 => 0.10127733561956
402 => 0.10102510927652
403 => 0.10384059097816
404 => 0.10889994901136
405 => 0.10204775018761
406 => 0.10926313218746
407 => 0.1069788255519
408 => 0.1015627756119
409 => 0.1012140458468
410 => 0.1048818577478
411 => 0.1130167115304
412 => 0.11097902292261
413 => 0.11302004445898
414 => 0.11063908442156
415 => 0.11052084968739
416 => 0.11290440654437
417 => 0.1184737170616
418 => 0.11582794639735
419 => 0.11203458538055
420 => 0.11483554412412
421 => 0.11240909444395
422 => 0.10694162419402
423 => 0.11097746474053
424 => 0.1082788131012
425 => 0.10906642311777
426 => 0.11473858746951
427 => 0.11405609764802
428 => 0.11493930267388
429 => 0.11338046892074
430 => 0.11192427238978
501 => 0.10920617342618
502 => 0.10840147832372
503 => 0.10862386710014
504 => 0.10840136811889
505 => 0.10688061672937
506 => 0.1065522106116
507 => 0.10600485269417
508 => 0.10617450180037
509 => 0.10514530878041
510 => 0.10708760865121
511 => 0.10744811662272
512 => 0.10886156049433
513 => 0.109008308926
514 => 0.1129447299893
515 => 0.1107766154165
516 => 0.11223117385794
517 => 0.1121010644601
518 => 0.101680157837
519 => 0.10311606682523
520 => 0.10534989059784
521 => 0.10434355601616
522 => 0.10292083436368
523 => 0.10177191034779
524 => 0.10003117298021
525 => 0.10248122739718
526 => 0.10570278842125
527 => 0.10909001302995
528 => 0.11315954145756
529 => 0.11225127008705
530 => 0.1090139360267
531 => 0.10915916046778
601 => 0.11005688081878
602 => 0.10889425139774
603 => 0.10855136928425
604 => 0.1100097740817
605 => 0.11001981731401
606 => 0.10868207165664
607 => 0.10719541216335
608 => 0.10718918300579
609 => 0.10692464630839
610 => 0.11068614491236
611 => 0.11275458881413
612 => 0.11299173257401
613 => 0.11273862714963
614 => 0.11283603738208
615 => 0.11163245545069
616 => 0.11438348683472
617 => 0.11690810528151
618 => 0.11623145360716
619 => 0.11521705655562
620 => 0.11440904044407
621 => 0.11604111069041
622 => 0.11596843717145
623 => 0.11688605494181
624 => 0.11684442649933
625 => 0.11653586615651
626 => 0.11623146462683
627 => 0.11743838228402
628 => 0.11709080938126
629 => 0.11674269660177
630 => 0.1160445031291
701 => 0.1161393992178
702 => 0.11512517731621
703 => 0.11465595185689
704 => 0.10759992677809
705 => 0.10571432631477
706 => 0.10630757460546
707 => 0.10650288734645
708 => 0.10568227160835
709 => 0.1068588237779
710 => 0.10667545936855
711 => 0.10738882302073
712 => 0.1069431443815
713 => 0.10696143518831
714 => 0.10827208103759
715 => 0.10865256710352
716 => 0.10845904881949
717 => 0.1085945823922
718 => 0.11171789637033
719 => 0.1112738610006
720 => 0.11103797606038
721 => 0.11110331780089
722 => 0.11190139148691
723 => 0.11212480854578
724 => 0.11117817476808
725 => 0.11162461273007
726 => 0.11352548891081
727 => 0.11419068799379
728 => 0.116313684153
729 => 0.11541179765132
730 => 0.11706724935788
731 => 0.12215554351879
801 => 0.12622042497769
802 => 0.12248219199975
803 => 0.1299468291395
804 => 0.13575911989139
805 => 0.13553603449146
806 => 0.13452252715816
807 => 0.12790538866487
808 => 0.12181619916737
809 => 0.12691006474267
810 => 0.12692305005359
811 => 0.12648548248314
812 => 0.12376778788327
813 => 0.12639091260201
814 => 0.1265991267164
815 => 0.12648258218094
816 => 0.12439893210319
817 => 0.12121758355737
818 => 0.12183921144815
819 => 0.12285745061412
820 => 0.120929711446
821 => 0.12031368197595
822 => 0.12145899796518
823 => 0.12514944471851
824 => 0.12445178713709
825 => 0.12443356847819
826 => 0.12741844346434
827 => 0.12528191715059
828 => 0.12184705216658
829 => 0.12097970345782
830 => 0.1179011998578
831 => 0.12002753325959
901 => 0.12010405621328
902 => 0.11893948513972
903 => 0.12194155069088
904 => 0.12191388612833
905 => 0.12476390057067
906 => 0.13021205776788
907 => 0.12860076959713
908 => 0.1267270167622
909 => 0.12693074564889
910 => 0.12916514869011
911 => 0.12781417760493
912 => 0.12829999622647
913 => 0.12916441334544
914 => 0.12968593765559
915 => 0.12685570632646
916 => 0.12619584401803
917 => 0.12484599731518
918 => 0.12449384750649
919 => 0.12559326948048
920 => 0.12530361063349
921 => 0.12009762475533
922 => 0.11955357026523
923 => 0.11957025563971
924 => 0.11820220475598
925 => 0.11611559878845
926 => 0.12159907468635
927 => 0.12115867483055
928 => 0.12067250747399
929 => 0.12073206020114
930 => 0.12311225123617
1001 => 0.12173162023332
1002 => 0.12540225403537
1003 => 0.12464768207502
1004 => 0.12387375819115
1005 => 0.1237667783361
1006 => 0.12346888366889
1007 => 0.12244729201332
1008 => 0.12121365870107
1009 => 0.12039910713283
1010 => 0.11106181205731
1011 => 0.11279475971078
1012 => 0.11478835802295
1013 => 0.11547654017147
1014 => 0.11429935698567
1015 => 0.12249377438051
1016 => 0.12399097340191
1017 => 0.1194558599062
1018 => 0.11860752533861
1019 => 0.12254939105353
1020 => 0.12017196415395
1021 => 0.12124251934126
1022 => 0.11892856458867
1023 => 0.12363034200076
1024 => 0.12359452233451
1025 => 0.12176542472675
1026 => 0.12331136549971
1027 => 0.12304272024668
1028 => 0.12097767355238
1029 => 0.12369580766433
1030 => 0.12369715582494
1031 => 0.12193668914548
1101 => 0.11988084947958
1102 => 0.11951331390408
1103 => 0.1192364252194
1104 => 0.12117442169841
1105 => 0.12291202328153
1106 => 0.12614526903975
1107 => 0.12695818384339
1108 => 0.13013104444081
1109 => 0.12824176043882
1110 => 0.12907925556658
1111 => 0.12998847499868
1112 => 0.13042438822986
1113 => 0.12971409101204
1114 => 0.13464284952135
1115 => 0.13505898775279
1116 => 0.13519851530221
1117 => 0.13353656566422
1118 => 0.13501276592691
1119 => 0.13432210071061
1120 => 0.1361190197311
1121 => 0.13640079957773
1122 => 0.13616214207225
1123 => 0.13625158344316
1124 => 0.13204575754804
1125 => 0.13182766328788
1126 => 0.12885393257533
1127 => 0.1300657498214
1128 => 0.12780031556378
1129 => 0.12851870810343
1130 => 0.12883536868981
1201 => 0.12866996316982
1202 => 0.1301342641503
1203 => 0.12888930917996
1204 => 0.1256036683237
1205 => 0.12231713229678
1206 => 0.12227587251412
1207 => 0.12141058559041
1208 => 0.12078514162977
1209 => 0.12090562432541
1210 => 0.12133022105963
1211 => 0.1207604632957
1212 => 0.12088205000209
1213 => 0.12290119945607
1214 => 0.12330612547916
1215 => 0.12193002863791
1216 => 0.1164048012505
1217 => 0.11504889659065
1218 => 0.1160234939714
1219 => 0.11555769919551
1220 => 0.093264082159413
1221 => 0.098501636796148
1222 => 0.09538965968155
1223 => 0.09682380191114
1224 => 0.093647279119702
1225 => 0.0951632822916
1226 => 0.094883331861322
1227 => 0.10330516472668
1228 => 0.10317366939034
1229 => 0.10323660924927
1230 => 0.10023232579372
1231 => 0.1050182309136
]
'min_raw' => 0.061099710528644
'max_raw' => 0.13640079957773
'avg_raw' => 0.098750255053187
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.061099'
'max' => '$0.13640079'
'avg' => '$0.09875'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0094214513930989
'max_diff' => 0.020635119653459
'year' => 2035
]
10 => [
'items' => [
101 => 0.10737593987123
102 => 0.10693959069156
103 => 0.10704941037931
104 => 0.10516234429377
105 => 0.1032548801739
106 => 0.10113920890834
107 => 0.10506986461488
108 => 0.10463284279884
109 => 0.10563521360934
110 => 0.10818452480411
111 => 0.10855992056143
112 => 0.10906445626615
113 => 0.10888361613131
114 => 0.11319196181696
115 => 0.11267019272704
116 => 0.11392750611052
117 => 0.11134111708811
118 => 0.10841437240696
119 => 0.10897065088835
120 => 0.10891707679729
121 => 0.10823501712852
122 => 0.10761928415651
123 => 0.10659426223979
124 => 0.10983758325898
125 => 0.1097059103486
126 => 0.11183754171462
127 => 0.11146075516512
128 => 0.1089444823722
129 => 0.10903435154726
130 => 0.10963876493922
131 => 0.11173064658988
201 => 0.11235165948995
202 => 0.11206398157155
203 => 0.11274489386617
204 => 0.11328305918081
205 => 0.11281247914395
206 => 0.11947490010037
207 => 0.1167081984169
208 => 0.11805666956684
209 => 0.11837827199044
210 => 0.11755449414494
211 => 0.11773314206236
212 => 0.1180037449786
213 => 0.11964679289653
214 => 0.12395862605293
215 => 0.12586830760626
216 => 0.13161367878148
217 => 0.12570973513731
218 => 0.12535941955441
219 => 0.12639433439666
220 => 0.12976747548581
221 => 0.13250108951554
222 => 0.13340798699518
223 => 0.13352784846836
224 => 0.13522924842957
225 => 0.1362044591581
226 => 0.13502265372301
227 => 0.13402119735697
228 => 0.13043410495913
229 => 0.13084932067151
301 => 0.13370974518018
302 => 0.13775026327685
303 => 0.14121744814805
304 => 0.14000336084975
305 => 0.14926598992373
306 => 0.15018434176197
307 => 0.15005745523179
308 => 0.15214959738838
309 => 0.1479971212649
310 => 0.14622185727167
311 => 0.13423772359032
312 => 0.13760477632832
313 => 0.14249898522308
314 => 0.14185121832351
315 => 0.13829691300156
316 => 0.14121475188874
317 => 0.14025002310338
318 => 0.13948910148373
319 => 0.14297503093525
320 => 0.13914210830922
321 => 0.14246074888785
322 => 0.13820455801881
323 => 0.14000890669826
324 => 0.13898467112128
325 => 0.13964747706518
326 => 0.13577272706051
327 => 0.13786344810879
328 => 0.13568574619125
329 => 0.135684713677
330 => 0.13563664078647
331 => 0.13819869743504
401 => 0.13828224601037
402 => 0.13638888227602
403 => 0.136116018982
404 => 0.13712493759344
405 => 0.13594375813565
406 => 0.13649642456969
407 => 0.13596049783893
408 => 0.13583984944349
409 => 0.13487850250199
410 => 0.13446432780681
411 => 0.13462673637676
412 => 0.13407235220017
413 => 0.13373831568083
414 => 0.13557019251519
415 => 0.13459149462029
416 => 0.1354201930263
417 => 0.13447578660258
418 => 0.13120206247968
419 => 0.1293193091176
420 => 0.12313554772383
421 => 0.12488925478417
422 => 0.12605196437952
423 => 0.12566768886519
424 => 0.12649326136485
425 => 0.1265439448113
426 => 0.12627554277595
427 => 0.12596476760344
428 => 0.12581349943641
429 => 0.12694092842178
430 => 0.12759543889531
501 => 0.12616865784246
502 => 0.12583438300456
503 => 0.12727693742374
504 => 0.1281568947861
505 => 0.13465400554443
506 => 0.13417267859406
507 => 0.13538071478384
508 => 0.13524470844769
509 => 0.13651092282984
510 => 0.13858064820253
511 => 0.13437231781554
512 => 0.13510273845761
513 => 0.13492365618405
514 => 0.13687882948886
515 => 0.13688493332651
516 => 0.13571270926212
517 => 0.13634819094459
518 => 0.13599348250296
519 => 0.1366344885987
520 => 0.13416625017918
521 => 0.13717229814428
522 => 0.13887653363504
523 => 0.13890019694649
524 => 0.13970799104346
525 => 0.14052875663026
526 => 0.14210414470051
527 => 0.14048481991202
528 => 0.13757181225563
529 => 0.13778212199946
530 => 0.13607422667635
531 => 0.13610293670529
601 => 0.13594968032077
602 => 0.13640961426731
603 => 0.13426717981612
604 => 0.13477000489958
605 => 0.1340660468382
606 => 0.13510120819026
607 => 0.13398754569374
608 => 0.13492356982515
609 => 0.13532752681058
610 => 0.13681813678337
611 => 0.13376738138878
612 => 0.12754668462123
613 => 0.12885435050042
614 => 0.12692020995015
615 => 0.12709922202187
616 => 0.12746085489631
617 => 0.12628868443135
618 => 0.12651229761673
619 => 0.1265043085802
620 => 0.12643546337947
621 => 0.12613053657017
622 => 0.12568833236874
623 => 0.12744993780394
624 => 0.12774926889452
625 => 0.12841464482959
626 => 0.13039435228356
627 => 0.13019653282419
628 => 0.13051918456987
629 => 0.12981483762066
630 => 0.12713189465673
701 => 0.1272775913677
702 => 0.12546075104728
703 => 0.12836818413778
704 => 0.12767966560571
705 => 0.127235773229
706 => 0.12711465308139
707 => 0.12909926784721
708 => 0.12969309569017
709 => 0.12932306202874
710 => 0.12856411219355
711 => 0.1300215202405
712 => 0.13041146115076
713 => 0.1304987545401
714 => 0.13308100216902
715 => 0.13064307349736
716 => 0.13122990715956
717 => 0.13580821587296
718 => 0.13165632163332
719 => 0.13385567261035
720 => 0.13374802582489
721 => 0.13487313936276
722 => 0.13365573367518
723 => 0.13367082487773
724 => 0.13466984947756
725 => 0.13326689960213
726 => 0.13291950948325
727 => 0.13243959252206
728 => 0.1334874736494
729 => 0.13411563099365
730 => 0.13917811785758
731 => 0.14244871524913
801 => 0.14230672999077
802 => 0.14360420946686
803 => 0.14301968307933
804 => 0.14113209318374
805 => 0.14435397896846
806 => 0.14333443949674
807 => 0.14341848909205
808 => 0.14341536076192
809 => 0.14409326538092
810 => 0.14361290782931
811 => 0.1426660737874
812 => 0.14329462641131
813 => 0.14516120299267
814 => 0.15095511397476
815 => 0.15419746331944
816 => 0.15075992047299
817 => 0.15313109149794
818 => 0.1517092338176
819 => 0.15145083998048
820 => 0.15294011061231
821 => 0.15443198801523
822 => 0.15433696187423
823 => 0.15325393548846
824 => 0.15264216136391
825 => 0.15727471999433
826 => 0.16068791027965
827 => 0.16045515358451
828 => 0.16148246594033
829 => 0.16449868679058
830 => 0.16477445222462
831 => 0.16473971211833
901 => 0.16405619871692
902 => 0.16702605984977
903 => 0.16950357025653
904 => 0.16389798511309
905 => 0.16603251855322
906 => 0.16699077938486
907 => 0.16839779058889
908 => 0.17077165433254
909 => 0.17335029999441
910 => 0.17371494876441
911 => 0.17345621301205
912 => 0.17175552688033
913 => 0.17457711173319
914 => 0.17622992996569
915 => 0.17721414539907
916 => 0.17970995198028
917 => 0.16699669727752
918 => 0.15799762370915
919 => 0.15659228842326
920 => 0.15945009298921
921 => 0.16020367326269
922 => 0.15989990599936
923 => 0.14977063053818
924 => 0.15653895988425
925 => 0.16382111316333
926 => 0.16410085032828
927 => 0.16774644852243
928 => 0.16893360473257
929 => 0.17186878911833
930 => 0.17168519253584
1001 => 0.17239986322479
1002 => 0.17223557280977
1003 => 0.17767238380842
1004 => 0.18366999371417
1005 => 0.18346231555436
1006 => 0.18260008816991
1007 => 0.18388064286744
1008 => 0.19007081903311
1009 => 0.18950092680733
1010 => 0.19005452856137
1011 => 0.19735309512374
1012 => 0.20684226986381
1013 => 0.20243359549948
1014 => 0.2119991503082
1015 => 0.21802016001201
1016 => 0.22843287371074
1017 => 0.22712915067196
1018 => 0.23118274370285
1019 => 0.22479521433734
1020 => 0.21012815578146
1021 => 0.20780703762175
1022 => 0.21245397495757
1023 => 0.22387801695616
1024 => 0.21209419122032
1025 => 0.21447804381939
1026 => 0.21379149411049
1027 => 0.21375491079415
1028 => 0.21515114718371
1029 => 0.21312583347786
1030 => 0.20487434109324
1031 => 0.20865595142676
1101 => 0.20719569006914
1102 => 0.20881595891511
1103 => 0.21755988162712
1104 => 0.21369398496706
1105 => 0.20962157687563
1106 => 0.21472928036198
1107 => 0.22123314209745
1108 => 0.22082614211861
1109 => 0.22003639204686
1110 => 0.22448817185134
1111 => 0.23184120783923
1112 => 0.23382870391987
1113 => 0.23529583289402
1114 => 0.23549812519221
1115 => 0.23758186158752
1116 => 0.22637708582075
1117 => 0.24415935272167
1118 => 0.24722985899025
1119 => 0.2466527310712
1120 => 0.25006546956207
1121 => 0.24906135532523
1122 => 0.24760655133676
1123 => 0.25301646775508
1124 => 0.24681443513922
1125 => 0.2380114306552
1126 => 0.23318192829158
1127 => 0.23954180658884
1128 => 0.24342556233581
1129 => 0.2459924778313
1130 => 0.24676922490926
1201 => 0.22724688066762
1202 => 0.21672541988023
1203 => 0.22346955561615
1204 => 0.23169786666937
1205 => 0.22633137713739
1206 => 0.22654173336694
1207 => 0.21889052958298
1208 => 0.23237482843011
1209 => 0.23041027950889
1210 => 0.24060236278741
1211 => 0.23816994031641
1212 => 0.24648118857566
1213 => 0.24429255836874
1214 => 0.253377439993
1215 => 0.25700164523626
1216 => 0.26308724990221
1217 => 0.26756384546735
1218 => 0.27019258800683
1219 => 0.27003476816493
1220 => 0.28045115574067
1221 => 0.27430897590812
1222 => 0.26659295043779
1223 => 0.26645339188078
1224 => 0.27044963080879
1225 => 0.27882465128729
1226 => 0.28099617224577
1227 => 0.28220975621722
1228 => 0.28035111011978
1229 => 0.27368421412554
1230 => 0.27080548223715
1231 => 0.27325824521095
]
'min_raw' => 0.10113920890834
'max_raw' => 0.28220975621722
'avg_raw' => 0.19167448256278
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.101139'
'max' => '$0.2822097'
'avg' => '$0.191674'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.040039498379697
'max_diff' => 0.14580895663949
'year' => 2036
]
11 => [
'items' => [
101 => 0.27025872686232
102 => 0.27543673704826
103 => 0.28254725099684
104 => 0.28107895798448
105 => 0.28598724138602
106 => 0.29106679834014
107 => 0.2983307929217
108 => 0.30022987009027
109 => 0.30336897243446
110 => 0.30660013988805
111 => 0.30763790379173
112 => 0.3096193170831
113 => 0.309608874057
114 => 0.31557999637502
115 => 0.32216632920207
116 => 0.32465251737032
117 => 0.330369369974
118 => 0.3205794602326
119 => 0.32800521922983
120 => 0.33470343972414
121 => 0.32671754511561
122 => 0.33772424035866
123 => 0.33815160539324
124 => 0.34460431002426
125 => 0.3380632576921
126 => 0.33417920169703
127 => 0.3453923258211
128 => 0.35081800337463
129 => 0.34918374513988
130 => 0.33674695928013
131 => 0.32950821647091
201 => 0.31056303028999
202 => 0.33300442169243
203 => 0.3439349688202
204 => 0.33671865180369
205 => 0.34035814235872
206 => 0.3602140227182
207 => 0.36777385638604
208 => 0.36620146383036
209 => 0.36646717228849
210 => 0.37054632131497
211 => 0.38863551452678
212 => 0.37779605065005
213 => 0.38608241463685
214 => 0.39047747221674
215 => 0.39455984663616
216 => 0.38453482530974
217 => 0.37149241986088
218 => 0.3673613425723
219 => 0.33600113129447
220 => 0.33436869610696
221 => 0.33345236076836
222 => 0.32767499607673
223 => 0.32313556998247
224 => 0.31952564981423
225 => 0.31005214127937
226 => 0.31324917231213
227 => 0.29815037698245
228 => 0.30781005116592
301 => 0.28371200924659
302 => 0.30378157463419
303 => 0.29285862264489
304 => 0.30019309113386
305 => 0.30016750186425
306 => 0.2866624199807
307 => 0.27887297059415
308 => 0.28383671091317
309 => 0.28915823455735
310 => 0.29002163386487
311 => 0.29692112817553
312 => 0.29884662873351
313 => 0.29301227214982
314 => 0.28321263089083
315 => 0.28548886404927
316 => 0.27882684280184
317 => 0.26715190681666
318 => 0.27553704966604
319 => 0.27840010610353
320 => 0.27966459493105
321 => 0.26818363626508
322 => 0.2645760697885
323 => 0.26265543166678
324 => 0.28173058329876
325 => 0.28277556316488
326 => 0.27742929842454
327 => 0.30159492200448
328 => 0.29612549712882
329 => 0.30223618475656
330 => 0.28528231974849
331 => 0.28592998022321
401 => 0.27790374883065
402 => 0.28239790209751
403 => 0.27922157942181
404 => 0.28203481892563
405 => 0.2837210630848
406 => 0.29174597745177
407 => 0.30387320626567
408 => 0.29054732285265
409 => 0.28474104461943
410 => 0.28834322697957
411 => 0.29793631329467
412 => 0.31247033012308
413 => 0.30386589963631
414 => 0.30768439977364
415 => 0.30851857218039
416 => 0.30217398369278
417 => 0.31270426415045
418 => 0.31834752699556
419 => 0.32413634696593
420 => 0.32916261714716
421 => 0.32182416497089
422 => 0.32967736072529
423 => 0.32334907122291
424 => 0.31767194133272
425 => 0.31768055119535
426 => 0.3141192046856
427 => 0.30721864706442
428 => 0.30594607836553
429 => 0.31256614144488
430 => 0.31787480511221
501 => 0.31831205207864
502 => 0.32125120105386
503 => 0.32299055914176
504 => 0.34003863294578
505 => 0.34689550925882
506 => 0.35527996782039
507 => 0.35854618695231
508 => 0.36837633553502
509 => 0.36043769218885
510 => 0.35872011676449
511 => 0.33487539171992
512 => 0.33877996411016
513 => 0.34503156124214
514 => 0.33497847825402
515 => 0.34135484550925
516 => 0.34261367547536
517 => 0.33463687834095
518 => 0.33889763034749
519 => 0.32758233624303
520 => 0.30411984875601
521 => 0.31273038460613
522 => 0.31907063726684
523 => 0.31002231497249
524 => 0.32624108246668
525 => 0.31676641331989
526 => 0.31376339806469
527 => 0.30204756490188
528 => 0.30757698717095
529 => 0.31505560996357
530 => 0.31043469056095
531 => 0.32002379215592
601 => 0.33360451733439
602 => 0.34328295084273
603 => 0.34402594078991
604 => 0.33780335644873
605 => 0.34777508756748
606 => 0.34784772074229
607 => 0.33659956730463
608 => 0.32971013595405
609 => 0.32814484265571
610 => 0.33205525220879
611 => 0.33680321130766
612 => 0.34428941947579
613 => 0.34881317828407
614 => 0.3606087420398
615 => 0.36380028338679
616 => 0.36730681971225
617 => 0.37199263361882
618 => 0.37761915463168
619 => 0.36530864697356
620 => 0.36579776639247
621 => 0.35433439211181
622 => 0.34208413267875
623 => 0.35138055257205
624 => 0.36353438493161
625 => 0.36074628235953
626 => 0.36043256386441
627 => 0.36096015135496
628 => 0.35885801306653
629 => 0.34935011949685
630 => 0.34457531486872
701 => 0.35073603102158
702 => 0.3540101774749
703 => 0.35908809308842
704 => 0.35846213280726
705 => 0.37154229809935
706 => 0.37662485480819
707 => 0.37532451930721
708 => 0.37556381233371
709 => 0.38476553848052
710 => 0.39499975043508
711 => 0.40458544045374
712 => 0.41433641605569
713 => 0.40258123438049
714 => 0.39661267808463
715 => 0.40277070466155
716 => 0.39950316907933
717 => 0.41827939774873
718 => 0.41957942308359
719 => 0.43835429401794
720 => 0.45617388220469
721 => 0.44498171813568
722 => 0.45553542474661
723 => 0.46695011890266
724 => 0.48897091589707
725 => 0.48155508617033
726 => 0.47587467682052
727 => 0.47050671743248
728 => 0.48167658877943
729 => 0.49604644982422
730 => 0.49914158026045
731 => 0.50415687399797
801 => 0.49888390587391
802 => 0.50523461518095
803 => 0.5276554096779
804 => 0.521597113091
805 => 0.51299335801782
806 => 0.53069242195717
807 => 0.53709764439345
808 => 0.5820528498923
809 => 0.63881065384151
810 => 0.6153125503147
811 => 0.60072651917655
812 => 0.6041545824793
813 => 0.62488061110864
814 => 0.63153715369312
815 => 0.61344237630068
816 => 0.61983375757939
817 => 0.6550508968118
818 => 0.6739437621089
819 => 0.64828471338511
820 => 0.57749241560882
821 => 0.51221868400921
822 => 0.52953221694387
823 => 0.52756939961055
824 => 0.5654058222882
825 => 0.52145262472101
826 => 0.52219268384379
827 => 0.56081152367293
828 => 0.55050867930104
829 => 0.53381939090719
830 => 0.51234053428395
831 => 0.47263488126213
901 => 0.43746647710664
902 => 0.50643981645532
903 => 0.50346556064272
904 => 0.49915839746607
905 => 0.50874352303198
906 => 0.55528617199465
907 => 0.55421321329221
908 => 0.54738759745561
909 => 0.55256476690945
910 => 0.53291180807069
911 => 0.53797682305299
912 => 0.51220834431663
913 => 0.5238567728922
914 => 0.53378358318984
915 => 0.53577653732603
916 => 0.54026676475763
917 => 0.50189826298071
918 => 0.51912459383852
919 => 0.52924344932856
920 => 0.48352609209745
921 => 0.52833976416861
922 => 0.50123035272699
923 => 0.49202901131401
924 => 0.50441740534204
925 => 0.49958963614121
926 => 0.49543900367845
927 => 0.49312287944732
928 => 0.50221954876434
929 => 0.50179517826783
930 => 0.48691126167774
1001 => 0.46749579923202
1002 => 0.47401226571964
1003 => 0.47164477235249
1004 => 0.46306467097722
1005 => 0.46884662333876
1006 => 0.44338583131766
1007 => 0.39958186198216
1008 => 0.42852010587706
1009 => 0.42740601496585
1010 => 0.42684423980843
1011 => 0.44859053030113
1012 => 0.44650012624254
1013 => 0.4427060224069
1014 => 0.4629949892849
1015 => 0.45558924344932
1016 => 0.47841200710143
1017 => 0.49344455532651
1018 => 0.48963181484464
1019 => 0.50376999910894
1020 => 0.4741623919461
1021 => 0.48399685139457
1022 => 0.48602371985693
1023 => 0.462744626583
1024 => 0.44684214219898
1025 => 0.44578162779217
1026 => 0.41820891136761
1027 => 0.43293803392242
1028 => 0.44589905223814
1029 => 0.43969173028056
1030 => 0.43772667758726
1031 => 0.44776570562941
1101 => 0.44854582408674
1102 => 0.43075904058625
1103 => 0.43445747611018
1104 => 0.44988056705872
1105 => 0.43406885378985
1106 => 0.40334927773714
1107 => 0.3957303981447
1108 => 0.39471389916326
1109 => 0.3740508934476
1110 => 0.39623952811016
1111 => 0.38655359446151
1112 => 0.41715134280228
1113 => 0.39967407304905
1114 => 0.39892066288136
1115 => 0.39778177291166
1116 => 0.37999627031418
1117 => 0.38389016505537
1118 => 0.39683406423201
1119 => 0.4014525932817
1120 => 0.40097084286333
1121 => 0.39677063206453
1122 => 0.39869346705966
1123 => 0.39249934558022
1124 => 0.39031207236635
1125 => 0.38340843644645
1126 => 0.3732619988223
1127 => 0.37467292320566
1128 => 0.3545701753124
1129 => 0.34361713132657
1130 => 0.34058547311009
1201 => 0.3365314130413
1202 => 0.3410433899823
1203 => 0.3545132267534
1204 => 0.33826574582217
1205 => 0.31041057939387
1206 => 0.3120847223591
1207 => 0.31584602454448
1208 => 0.30883686280553
1209 => 0.30220327945398
1210 => 0.30797064197853
1211 => 0.29616804075468
1212 => 0.31727231251479
1213 => 0.31670150110771
1214 => 0.32456786854047
1215 => 0.32948686953028
1216 => 0.31815016479425
1217 => 0.31529901421084
1218 => 0.31692315916072
1219 => 0.29007966096685
1220 => 0.32237418204923
1221 => 0.32265346640861
1222 => 0.32026206416515
1223 => 0.33745789966004
1224 => 0.37374647606984
1225 => 0.36009325391987
1226 => 0.35480631363258
1227 => 0.3447558362817
1228 => 0.35814750061345
1229 => 0.35711922973528
1230 => 0.35246899886404
1231 => 0.34965652472351
]
'min_raw' => 0.26265543166678
'max_raw' => 0.6739437621089
'avg_raw' => 0.46829959688784
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.262655'
'max' => '$0.673943'
'avg' => '$0.468299'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.16151622275844
'max_diff' => 0.39173400589167
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0082444538703809
]
1 => [
'year' => 2028
'avg' => 0.014149876223633
]
2 => [
'year' => 2029
'avg' => 0.038654911575905
]
3 => [
'year' => 2030
'avg' => 0.029822206714189
]
4 => [
'year' => 2031
'avg' => 0.029289102818724
]
5 => [
'year' => 2032
'avg' => 0.051353014861114
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0082444538703809
'min' => '$0.008244'
'max_raw' => 0.051353014861114
'max' => '$0.051353'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.051353014861114
]
1 => [
'year' => 2033
'avg' => 0.13208523479103
]
2 => [
'year' => 2034
'avg' => 0.083721969529908
]
3 => [
'year' => 2035
'avg' => 0.098750255053187
]
4 => [
'year' => 2036
'avg' => 0.19167448256278
]
5 => [
'year' => 2037
'avg' => 0.46829959688784
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.051353014861114
'min' => '$0.051353'
'max_raw' => 0.46829959688784
'max' => '$0.468299'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.46829959688784
]
]
]
]
'prediction_2025_max_price' => '$0.014096'
'last_price' => 0.01366835
'sma_50day_nextmonth' => '$0.01151'
'sma_200day_nextmonth' => '$0.034099'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.012065'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.011415'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.010536'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.009952'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.011849'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.023594'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0407029'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.012383'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.011728'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.010947'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.010758'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.014096'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.023154'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.041584'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.031797'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.064237'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.111074'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.012177'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.012378'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0166088'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.029678'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.064526'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.112767'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.071694'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '64.50'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 119.18
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012251'
'vwma_10_action' => 'BUY'
'hma_9' => '0.012431'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 306.52
'cci_20_action' => 'SELL'
'adx_14' => 26.46
'adx_14_action' => 'SELL'
'ao_5_34' => '0.000716'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.05
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.008468'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 20
'sell_pct' => 41.18
'buy_pct' => 58.82
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767709090
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Dexhunter pour 2026
La prévision du prix de Dexhunter pour 2026 suggère que le prix moyen pourrait varier entre $0.004722 à la baisse et $0.014096 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Dexhunter pourrait potentiellement gagner 3.13% d'ici 2026 si HUNT atteint l'objectif de prix prévu.
Prévision du prix de Dexhunter de 2027 à 2032
La prévision du prix de HUNT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.008244 à la baisse et $0.051353 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Dexhunter atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Dexhunter | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.004546 | $0.008244 | $0.011942 |
| 2028 | $0.0082044 | $0.014149 | $0.020095 |
| 2029 | $0.018022 | $0.038654 | $0.059286 |
| 2030 | $0.015327 | $0.029822 | $0.044316 |
| 2031 | $0.018122 | $0.029289 | $0.040456 |
| 2032 | $0.027661 | $0.051353 | $0.075044 |
Prévision du prix de Dexhunter de 2032 à 2037
La prévision du prix de Dexhunter pour 2032-2037 est actuellement estimée entre $0.051353 à la baisse et $0.468299 à la hausse. Par rapport au prix actuel, Dexhunter pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Dexhunter | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.027661 | $0.051353 | $0.075044 |
| 2033 | $0.06428 | $0.132085 | $0.19989 |
| 2034 | $0.051678 | $0.083721 | $0.115765 |
| 2035 | $0.061099 | $0.09875 | $0.13640079 |
| 2036 | $0.101139 | $0.191674 | $0.2822097 |
| 2037 | $0.262655 | $0.468299 | $0.673943 |
Dexhunter Histogramme des prix potentiels
Prévision du prix de Dexhunter basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Dexhunter est Haussier, avec 20 indicateurs techniques montrant des signaux haussiers et 14 indiquant des signaux baissiers. La prévision du prix de HUNT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Dexhunter et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Dexhunter devrait augmenter au cours du prochain mois, atteignant $0.034099 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Dexhunter devrait atteindre $0.01151 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 64.50, ce qui suggère que le marché de HUNT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de HUNT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.012065 | BUY |
| SMA 5 | $0.011415 | BUY |
| SMA 10 | $0.010536 | BUY |
| SMA 21 | $0.009952 | BUY |
| SMA 50 | $0.011849 | BUY |
| SMA 100 | $0.023594 | SELL |
| SMA 200 | $0.0407029 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.012383 | BUY |
| EMA 5 | $0.011728 | BUY |
| EMA 10 | $0.010947 | BUY |
| EMA 21 | $0.010758 | BUY |
| EMA 50 | $0.014096 | SELL |
| EMA 100 | $0.023154 | SELL |
| EMA 200 | $0.041584 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.031797 | SELL |
| SMA 50 | $0.064237 | SELL |
| SMA 100 | $0.111074 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.029678 | SELL |
| EMA 50 | $0.064526 | SELL |
| EMA 100 | $0.112767 | SELL |
| EMA 200 | $0.071694 | SELL |
Oscillateurs de Dexhunter
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 64.50 | NEUTRAL |
| Stoch RSI (14) | 119.18 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 306.52 | SELL |
| Indice Directionnel Moyen (14) | 26.46 | SELL |
| Oscillateur Impressionnant (5, 34) | 0.000716 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 79.05 | SELL |
| VWMA (10) | 0.012251 | BUY |
| Moyenne Mobile de Hull (9) | 0.012431 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.008468 | SELL |
Prévision du cours de Dexhunter basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Dexhunter
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Dexhunter par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.0192063 | $0.026988 | $0.037922 | $0.053287 | $0.074878 | $0.105216 |
| Action Amazon.com | $0.028519 | $0.0595083 | $0.124167 | $0.259083 | $0.540592 | $1.12 |
| Action Apple | $0.019387 | $0.027499 | $0.0390062 | $0.055327 | $0.078477 | $0.111314 |
| Action Netflix | $0.021566 | $0.034028 | $0.053691 | $0.084717 | $0.13367 | $0.210911 |
| Action Google | $0.01770045 | $0.022922 | $0.029683 | $0.03844 | $0.04978 | $0.064465 |
| Action Tesla | $0.030985 | $0.07024 | $0.15923 | $0.360964 | $0.818278 | $1.85 |
| Action Kodak | $0.010249 | $0.007686 | $0.005763 | $0.004322 | $0.003241 | $0.00243 |
| Action Nokia | $0.009054 | $0.005998 | $0.003973 | $0.002632 | $0.001743 | $0.001155 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Dexhunter
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Dexhunter maintenant ?", "Devrais-je acheter HUNT aujourd'hui ?", " Dexhunter sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Dexhunter avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Dexhunter en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Dexhunter afin de prendre une décision responsable concernant cet investissement.
Le cours de Dexhunter est de $0.01366 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Dexhunter basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Dexhunter présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014023 | $0.014388 | $0.014762 | $0.015145 |
| Si Dexhunter présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.014378 | $0.015126 | $0.015912 | $0.01674 |
| Si Dexhunter présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.015444 | $0.017452 | $0.01972 | $0.022283 |
| Si Dexhunter présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017221 | $0.021697 | $0.027337 | $0.034443 |
| Si Dexhunter présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.020774 | $0.031573 | $0.047987 | $0.072934 |
| Si Dexhunter présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.031432 | $0.072284 | $0.166229 | $0.38227 |
| Si Dexhunter présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.049196 | $0.177075 | $0.637349 | $2.29 |
Boîte à questions
Est-ce que HUNT est un bon investissement ?
La décision d'acquérir Dexhunter dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Dexhunter a connu une hausse de 18.2038% au cours des 24 heures précédentes, et Dexhunter a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Dexhunter dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Dexhunter peut monter ?
Il semble que la valeur moyenne de Dexhunter pourrait potentiellement s'envoler jusqu'à $0.014096 pour la fin de cette année. En regardant les perspectives de Dexhunter sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.044316. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Dexhunter la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Dexhunter, le prix de Dexhunter va augmenter de 0.86% durant la prochaine semaine et atteindre $0.013785 d'ici 13 janvier 2026.
Quel sera le prix de Dexhunter le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Dexhunter, le prix de Dexhunter va diminuer de -11.62% durant le prochain mois et atteindre $0.0120803 d'ici 5 février 2026.
Jusqu'où le prix de Dexhunter peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Dexhunter en 2026, HUNT devrait fluctuer dans la fourchette de $0.004722 et $0.014096. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Dexhunter ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Dexhunter dans 5 ans ?
L'avenir de Dexhunter semble suivre une tendance haussière, avec un prix maximum de $0.044316 prévue après une période de cinq ans. Selon la prévision de Dexhunter pour 2030, la valeur de Dexhunter pourrait potentiellement atteindre son point le plus élevé d'environ $0.044316, tandis que son point le plus bas devrait être autour de $0.015327.
Combien vaudra Dexhunter en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Dexhunter, il est attendu que la valeur de HUNT en 2026 augmente de 3.13% jusqu'à $0.014096 si le meilleur scénario se produit. Le prix sera entre $0.014096 et $0.004722 durant 2026.
Combien vaudra Dexhunter en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Dexhunter, le valeur de HUNT pourrait diminuer de -12.62% jusqu'à $0.011942 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.011942 et $0.004546 tout au long de l'année.
Combien vaudra Dexhunter en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Dexhunter suggère que la valeur de HUNT en 2028 pourrait augmenter de 47.02%, atteignant $0.020095 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.020095 et $0.0082044 durant l'année.
Combien vaudra Dexhunter en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Dexhunter pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.059286 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.059286 et $0.018022.
Combien vaudra Dexhunter en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Dexhunter, il est prévu que la valeur de HUNT en 2030 augmente de 224.23%, atteignant $0.044316 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.044316 et $0.015327 au cours de 2030.
Combien vaudra Dexhunter en 2031 ?
Notre simulation expérimentale indique que le prix de Dexhunter pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.040456 dans des conditions idéales. Il est probable que le prix fluctue entre $0.040456 et $0.018122 durant l'année.
Combien vaudra Dexhunter en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Dexhunter, HUNT pourrait connaître une 449.04% hausse en valeur, atteignant $0.075044 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.075044 et $0.027661 tout au long de l'année.
Combien vaudra Dexhunter en 2033 ?
Selon notre prédiction expérimentale de prix de Dexhunter, la valeur de HUNT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.19989. Tout au long de l'année, le prix de HUNT pourrait osciller entre $0.19989 et $0.06428.
Combien vaudra Dexhunter en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Dexhunter suggèrent que HUNT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.115765 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.115765 et $0.051678.
Combien vaudra Dexhunter en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Dexhunter, HUNT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.13640079 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.13640079 et $0.061099.
Combien vaudra Dexhunter en 2036 ?
Notre récente simulation de prédiction de prix de Dexhunter suggère que la valeur de HUNT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.2822097 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.2822097 et $0.101139.
Combien vaudra Dexhunter en 2037 ?
Selon la simulation expérimentale, la valeur de Dexhunter pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.673943 sous des conditions favorables. Il est prévu que le prix chute entre $0.673943 et $0.262655 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Dexhunter ?
Les traders de Dexhunter utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Dexhunter
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Dexhunter. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de HUNT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de HUNT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de HUNT.
Comment lire les graphiques de Dexhunter et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Dexhunter dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de HUNT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Dexhunter ?
L'action du prix de Dexhunter est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de HUNT. La capitalisation boursière de Dexhunter peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de HUNT, de grands détenteurs de Dexhunter, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Dexhunter.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


