Prédiction du prix de DeBox jusqu'à $0.017059 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.005714 | $0.017059 |
| 2027 | $0.0055016 | $0.014452 |
| 2028 | $0.009928 | $0.024318 |
| 2029 | $0.02181 | $0.071747 |
| 2030 | $0.018549 | $0.053631 |
| 2031 | $0.02193 | $0.048959 |
| 2032 | $0.033475 | $0.090816 |
| 2033 | $0.07779 | $0.2419032 |
| 2034 | $0.06254 | $0.140097 |
| 2035 | $0.073941 | $0.165069 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur DeBox aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.43, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de DeBox pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'DeBox'
'name_with_ticker' => 'DeBox <small>BOX</small>'
'name_lang' => 'DeBox'
'name_lang_with_ticker' => 'DeBox <small>BOX</small>'
'name_with_lang' => 'DeBox'
'name_with_lang_with_ticker' => 'DeBox <small>BOX</small>'
'image' => '/uploads/coins/debox.jpg?1726522393'
'price_for_sd' => 0.01654
'ticker' => 'BOX'
'marketcap' => '$7.58M'
'low24h' => '$0.01514'
'high24h' => '$0.01656'
'volume24h' => '$26.47K'
'current_supply' => '458M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01654'
'change_24h_pct' => '8.5994%'
'ath_price' => '$0.1226'
'ath_days' => 476
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 sept. 2024'
'ath_pct' => '-86.53%'
'fdv' => '$16.54M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.815593'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016682'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014619'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005714'
'current_year_max_price_prediction' => '$0.017059'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.018549'
'grand_prediction_max_price' => '$0.053631'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.016854616470845
107 => 0.016917545490521
108 => 0.017059327785087
109 => 0.015847813601481
110 => 0.016391747901732
111 => 0.016711258343379
112 => 0.015267698544131
113 => 0.016682723807546
114 => 0.01582672383492
115 => 0.015536184587522
116 => 0.015927357408508
117 => 0.015774916979742
118 => 0.015643857650691
119 => 0.015570724293196
120 => 0.015857958440758
121 => 0.015844558624456
122 => 0.015374587809297
123 => 0.014761530039384
124 => 0.014967292349902
125 => 0.014892536973459
126 => 0.014621613845593
127 => 0.014804183322391
128 => 0.014000239742869
129 => 0.012617096599653
130 => 0.013530843326882
131 => 0.013495665071849
201 => 0.013477926600454
202 => 0.014164582011862
203 => 0.014098575937891
204 => 0.0139787742673
205 => 0.014619413593963
206 => 0.014385571621916
207 => 0.015106217479667
208 => 0.015580881450033
209 => 0.015460491313377
210 => 0.015906915071757
211 => 0.014972032697955
212 => 0.015282563121561
213 => 0.01534656301149
214 => 0.014611508204116
215 => 0.014109375347904
216 => 0.014075888811128
217 => 0.013205259636626
218 => 0.013670342714172
219 => 0.014079596575967
220 => 0.01388359573555
221 => 0.013821547724832
222 => 0.014138537555016
223 => 0.014163170379656
224 => 0.013601539367403
225 => 0.013718320239392
226 => 0.014205315888788
227 => 0.013706049198529
228 => 0.012736055574107
301 => 0.012495483744039
302 => 0.012463387027289
303 => 0.011810937144153
304 => 0.012511559904063
305 => 0.01220571929384
306 => 0.013171866117002
307 => 0.012620008233161
308 => 0.012596218742773
309 => 0.012560257438892
310 => 0.011998666872111
311 => 0.012121619515294
312 => 0.012530332827449
313 => 0.012676166341711
314 => 0.012660954711395
315 => 0.012528329909247
316 => 0.012589044864521
317 => 0.01239346083909
318 => 0.01232439604898
319 => 0.012106408573628
320 => 0.011786027205436
321 => 0.011830578199696
322 => 0.011195818876965
323 => 0.010849968308713
324 => 0.010754241429658
325 => 0.010626231446285
326 => 0.010768700497902
327 => 0.011194020683557
328 => 0.010680994302946
329 => 0.0098014465580062
330 => 0.0098543088761535
331 => 0.0099730748100675
401 => 0.0097517552779341
402 => 0.0095422949147103
403 => 0.009724403706477
404 => 0.0093517277320728
405 => 0.010018110921094
406 => 0.010000087123348
407 => 0.010248473567355
408 => 0.010403794708195
409 => 0.010045829764375
410 => 0.0099558025490438
411 => 0.010007086142405
412 => 0.0091594825797595
413 => 0.010179206273209
414 => 0.010188024886055
415 => 0.010112514568933
416 => 0.010655485955258
417 => 0.011801324937426
418 => 0.011370214221068
419 => 0.011203275121304
420 => 0.010885923770621
421 => 0.011308775602948
422 => 0.011276307179741
423 => 0.011129472656717
424 => 0.011040666679041
425 => 0.01120429441585
426 => 0.011020391391662
427 => 0.010987357355201
428 => 0.010787207035632
429 => 0.010715762477806
430 => 0.010662867771481
501 => 0.010604635897143
502 => 0.010733080901453
503 => 0.01044200762334
504 => 0.010091001784201
505 => 0.010061819446613
506 => 0.010142394446432
507 => 0.010106746007115
508 => 0.0100616487756
509 => 0.009975545879138
510 => 0.0099500009890548
511 => 0.010033009489206
512 => 0.0099392977322316
513 => 0.010077574534391
514 => 0.010039970895408
515 => 0.0098299200248347
516 => 0.0095681188693076
517 => 0.0095657882898769
518 => 0.0095093836603585
519 => 0.0094375438841741
520 => 0.009417559701911
521 => 0.0097090670119771
522 => 0.010312478419734
523 => 0.01019401432198
524 => 0.010279616773297
525 => 0.010700696109913
526 => 0.010834544568726
527 => 0.010739542103035
528 => 0.0106094968685
529 => 0.010615218198829
530 => 0.011059622132604
531 => 0.011087339060836
601 => 0.01115737079666
602 => 0.011247381368159
603 => 0.010754871292578
604 => 0.01059202101856
605 => 0.010514853524141
606 => 0.010277207508909
607 => 0.010533488362107
608 => 0.010384164483989
609 => 0.010404313376777
610 => 0.010391191383916
611 => 0.010398356879324
612 => 0.010017924653411
613 => 0.010156534161605
614 => 0.0099260689704771
615 => 0.0096175019504891
616 => 0.0096164675256405
617 => 0.009691988866636
618 => 0.0096470658178615
619 => 0.0095261790486866
620 => 0.0095433504436784
621 => 0.009392910954959
622 => 0.0095616165214038
623 => 0.0095664543933919
624 => 0.0095014935608564
625 => 0.0097614077628465
626 => 0.0098678948234717
627 => 0.0098251362119009
628 => 0.0098648947652982
629 => 0.010198937040075
630 => 0.01025340050615
701 => 0.010277589580126
702 => 0.010245179425437
703 => 0.0098710004448711
704 => 0.009887596873791
705 => 0.0097658232902799
706 => 0.009662937444397
707 => 0.0096670523386671
708 => 0.0097199490376747
709 => 0.009950952024591
710 => 0.010437084192186
711 => 0.010455532552589
712 => 0.010477892503573
713 => 0.010386943345709
714 => 0.010359512209431
715 => 0.010395700958759
716 => 0.010578266641293
717 => 0.011047875142869
718 => 0.010881884134315
719 => 0.010746930860556
720 => 0.010865321264784
721 => 0.010847095990028
722 => 0.010693256329817
723 => 0.010688938562934
724 => 0.010393671069475
725 => 0.010284517400059
726 => 0.010193300423885
727 => 0.010093693867182
728 => 0.010034643761526
729 => 0.010125371561606
730 => 0.010146122082944
731 => 0.0099477441624184
801 => 0.0099207059848823
802 => 0.010082705677069
803 => 0.010011415652495
804 => 0.010084739210676
805 => 0.010101750905132
806 => 0.010099011630512
807 => 0.01002457665725
808 => 0.010072019289525
809 => 0.009959803320866
810 => 0.0098377853092432
811 => 0.0097599454198186
812 => 0.0096920197923325
813 => 0.0097297088783224
814 => 0.0095953541685237
815 => 0.009552371392833
816 => 0.010055946793203
817 => 0.010427943355804
818 => 0.010422534378457
819 => 0.010389608619933
820 => 0.010340687621513
821 => 0.010574687765548
822 => 0.010493166794347
823 => 0.010552480112201
824 => 0.010567577840967
825 => 0.010613274118796
826 => 0.010629606610393
827 => 0.010580238477144
828 => 0.010414552992152
829 => 0.010001680516454
830 => 0.0098094872644884
831 => 0.009746060290108
901 => 0.0097483657401617
902 => 0.009684771135697
903 => 0.0097035025968221
904 => 0.0096782570979435
905 => 0.0096304482306094
906 => 0.0097267568154864
907 => 0.0097378554827169
908 => 0.0097153759082048
909 => 0.0097206706617748
910 => 0.0095345493859658
911 => 0.0095486997823314
912 => 0.0094699085772223
913 => 0.0094551361761065
914 => 0.0092559588707258
915 => 0.0089030874030318
916 => 0.0090986124501965
917 => 0.0088624456882037
918 => 0.0087730057569266
919 => 0.0091964004808291
920 => 0.009153903393691
921 => 0.0090811668535501
922 => 0.0089735743510586
923 => 0.0089336672452919
924 => 0.008691204303708
925 => 0.0086768782996297
926 => 0.0087970494805288
927 => 0.0087415946153817
928 => 0.0086637149823154
929 => 0.0083816428458812
930 => 0.0080645003736542
1001 => 0.0080740729114042
1002 => 0.0081749500311741
1003 => 0.0084682638620383
1004 => 0.0083536610739389
1005 => 0.0082705154362573
1006 => 0.0082549447576682
1007 => 0.0084498443996341
1008 => 0.0087256682257532
1009 => 0.008855078593758
1010 => 0.0087268368493165
1011 => 0.0085795196383281
1012 => 0.0085884861543587
1013 => 0.0086481363684406
1014 => 0.008654404762532
1015 => 0.0085585164026325
1016 => 0.0085855084142749
1017 => 0.0085445050803888
1018 => 0.0082928676960159
1019 => 0.0082883163736833
1020 => 0.0082265605013573
1021 => 0.0082246905580866
1022 => 0.0081196284135356
1023 => 0.0081049294932526
1024 => 0.0078963222284303
1025 => 0.0080336281618573
1026 => 0.0079415305505995
1027 => 0.0078027177268038
1028 => 0.0077787863436597
1029 => 0.0077780669373844
1030 => 0.0079205966694432
1031 => 0.0080319626189533
1101 => 0.0079431326279777
1102 => 0.0079229077609296
1103 => 0.0081388564284365
1104 => 0.0081113749920804
1105 => 0.0080875762454324
1106 => 0.0087009712273864
1107 => 0.0082154212353624
1108 => 0.0080036937246154
1109 => 0.0077416407241021
1110 => 0.0078269665024551
1111 => 0.0078449458976506
1112 => 0.0072147556700198
1113 => 0.0069590875731552
1114 => 0.0068713519169602
1115 => 0.0068208588064199
1116 => 0.0068438691509457
1117 => 0.0066137378768908
1118 => 0.0067683898990757
1119 => 0.0065691156682565
1120 => 0.0065357066949652
1121 => 0.0068920337050101
1122 => 0.0069416145268256
1123 => 0.0067300873374066
1124 => 0.0068659220361549
1125 => 0.0068166664861452
1126 => 0.0065725316529921
1127 => 0.0065632074981
1128 => 0.0064407092205781
1129 => 0.0062490231365969
1130 => 0.0061614174525932
1201 => 0.0061157916517367
1202 => 0.0061346177463992
1203 => 0.0061250986968499
1204 => 0.0060629804596069
1205 => 0.0061286592414956
1206 => 0.0059608770941164
1207 => 0.0058940648911173
1208 => 0.005863887369054
1209 => 0.0057149710560749
1210 => 0.0059519631334097
1211 => 0.0059986535581921
1212 => 0.0060454359775348
1213 => 0.0064526449981989
1214 => 0.0064323019862872
1215 => 0.0066161929065197
1216 => 0.0066090472435132
1217 => 0.0065565985742275
1218 => 0.0063353262658984
1219 => 0.0064235214641987
1220 => 0.0061520703524073
1221 => 0.0063554599822428
1222 => 0.0062626414489399
1223 => 0.0063240779427661
1224 => 0.0062136095873613
1225 => 0.0062747473363689
1226 => 0.0060097255900086
1227 => 0.005762252012214
1228 => 0.0058618426041227
1229 => 0.005970108967093
1230 => 0.006204858027769
1231 => 0.0060650434238681
]
'min_raw' => 0.0057149710560749
'max_raw' => 0.017059327785087
'avg_raw' => 0.011387149420581
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005714'
'max' => '$0.017059'
'avg' => '$0.011387'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010826198943925
'max_diff' => 0.00051815778508717
'year' => 2026
]
1 => [
'items' => [
101 => 0.0061153260424063
102 => 0.0059468876875118
103 => 0.005599351249327
104 => 0.0056013182678248
105 => 0.0055478573583029
106 => 0.0055016593270554
107 => 0.0060811028130126
108 => 0.0060090398558879
109 => 0.0058942169650763
110 => 0.0060479119673079
111 => 0.0060885513653656
112 => 0.0060897083118961
113 => 0.0062018402180821
114 => 0.0062616850365143
115 => 0.0062722329451453
116 => 0.0064486749222992
117 => 0.0065078159457152
118 => 0.0067514094512149
119 => 0.0062566076217828
120 => 0.0062464175037191
121 => 0.0060500747711784
122 => 0.0059255511061453
123 => 0.0060586010130579
124 => 0.0061764650674589
125 => 0.0060537371358934
126 => 0.0060697628128278
127 => 0.0059050105919416
128 => 0.0059639017585959
129 => 0.0060146267648155
130 => 0.0059866193978591
131 => 0.0059446910139535
201 => 0.006166801559102
202 => 0.0061542692116865
203 => 0.0063611036576281
204 => 0.0065223458991127
205 => 0.0068113208213515
206 => 0.0065097604253919
207 => 0.0064987703659691
208 => 0.0066061999596878
209 => 0.0065077994988042
210 => 0.0065699851934141
211 => 0.0068013017445627
212 => 0.0068061890987846
213 => 0.0067243196185672
214 => 0.0067193378532557
215 => 0.0067350617824854
216 => 0.006827157327112
217 => 0.0067949763140092
218 => 0.0068322169970953
219 => 0.006878787041544
220 => 0.0070714204906736
221 => 0.0071178637631013
222 => 0.0070050306891779
223 => 0.0070152182524149
224 => 0.0069730155854304
225 => 0.0069322483379213
226 => 0.0070238871567434
227 => 0.0071913588993063
228 => 0.0071903170662877
301 => 0.0072291672553768
302 => 0.0072533706013269
303 => 0.0071494721225767
304 => 0.0070818380333633
305 => 0.0071077732468366
306 => 0.007149244217976
307 => 0.0070943247698279
308 => 0.0067553364946949
309 => 0.0068581638827154
310 => 0.0068410483773464
311 => 0.0068166738163844
312 => 0.0069200675501797
313 => 0.0069100949723244
314 => 0.0066113775480491
315 => 0.0066305004683649
316 => 0.0066125404761706
317 => 0.006670572885219
318 => 0.0065046655582694
319 => 0.0065556975346362
320 => 0.0065877043118184
321 => 0.0066065565494664
322 => 0.0066746637589512
323 => 0.0066666721640086
324 => 0.0066741669901888
325 => 0.0067751520022181
326 => 0.007285899539191
327 => 0.0073136984007275
328 => 0.0071768066395658
329 => 0.0072314921980793
330 => 0.0071265078841504
331 => 0.0071969845574246
401 => 0.0072452029073655
402 => 0.0070273134558383
403 => 0.0070144114566096
404 => 0.0069089938350721
405 => 0.0069656392937271
406 => 0.0068755122960544
407 => 0.0068976263087747
408 => 0.0068357936013437
409 => 0.0069470801639503
410 => 0.007071515833128
411 => 0.0071029531972758
412 => 0.0070202550268393
413 => 0.0069603761013682
414 => 0.0068552484335852
415 => 0.0070300780880311
416 => 0.0070812036068283
417 => 0.0070298095474457
418 => 0.0070179004209044
419 => 0.0069953326476279
420 => 0.0070226882806897
421 => 0.0070809251662732
422 => 0.0070534617264984
423 => 0.0070716018123132
424 => 0.0070024705111626
425 => 0.0071495065172964
426 => 0.0073830350811787
427 => 0.0073837859136974
428 => 0.0073563223258844
429 => 0.0073450848174626
430 => 0.0073732641251886
501 => 0.0073885502436542
502 => 0.0074796769576385
503 => 0.0075774595523921
504 => 0.0080337682562187
505 => 0.0079056385981329
506 => 0.0083105028260942
507 => 0.0086306978653711
508 => 0.0087267103572182
509 => 0.0086383833824557
510 => 0.0083362215731228
511 => 0.0083213960732179
512 => 0.0087729533857866
513 => 0.0086453677623508
514 => 0.0086301918584172
515 => 0.008468745880658
516 => 0.008564180448987
517 => 0.0085433075089528
518 => 0.0085103585519697
519 => 0.0086924410603118
520 => 0.0090332832613105
521 => 0.008980159807887
522 => 0.0089405056142324
523 => 0.0087667524808001
524 => 0.0088713906762936
525 => 0.008834131019091
526 => 0.0089942221519963
527 => 0.008899387711316
528 => 0.0086444011757693
529 => 0.0086850086220018
530 => 0.0086788708881946
531 => 0.008805185015022
601 => 0.0087672686494578
602 => 0.0086714671092822
603 => 0.0090321182997218
604 => 0.009008699617462
605 => 0.0090419019546503
606 => 0.009056518650297
607 => 0.0092760406745308
608 => 0.0093659718239381
609 => 0.0093863877693199
610 => 0.0094718154057321
611 => 0.0093842622519031
612 => 0.0097345372915597
613 => 0.009967449753816
614 => 0.010237989564293
615 => 0.010633320941644
616 => 0.010781969196548
617 => 0.010755117219799
618 => 0.011054852958253
619 => 0.011593471417502
620 => 0.010863987410105
621 => 0.01163213584122
622 => 0.011388948916629
623 => 0.010812357093169
624 => 0.01077523137731
625 => 0.011165706054525
626 => 0.012031741306794
627 => 0.011814809298591
628 => 0.012032096129846
629 => 0.011778619499318
630 => 0.011766032248144
701 => 0.012019785335672
702 => 0.012612693256042
703 => 0.012331024927895
704 => 0.011927184311589
705 => 0.012225373938214
706 => 0.011967054487484
707 => 0.011384988465929
708 => 0.011814643414773
709 => 0.01152734538635
710 => 0.011611194224647
711 => 0.012215051948037
712 => 0.012142394189149
713 => 0.012236420057077
714 => 0.012070466861269
715 => 0.011915440407969
716 => 0.011626072020467
717 => 0.011540404306616
718 => 0.011564079780723
719 => 0.011540392574227
720 => 0.011378493620853
721 => 0.011343531557286
722 => 0.011285259919618
723 => 0.011303320736741
724 => 0.011193753009957
725 => 0.011400529948246
726 => 0.011438909570105
727 => 0.011589384582026
728 => 0.011605007396945
729 => 0.012024078163268
730 => 0.011793261027375
731 => 0.011948113089925
801 => 0.011934261663926
802 => 0.010824853586363
803 => 0.010977720231061
804 => 0.011215532758015
805 => 0.01110839853697
806 => 0.010956935813958
807 => 0.010834621544209
808 => 0.010649302918262
809 => 0.010910135325553
810 => 0.011253102204706
811 => 0.011613705602982
812 => 0.01204694695834
813 => 0.01195025253131
814 => 0.0116056064572
815 => 0.01162106702832
816 => 0.011716638195476
817 => 0.011592864850453
818 => 0.011556361674663
819 => 0.011711623219667
820 => 0.011712692420598
821 => 0.01157027622864
822 => 0.011412006693167
823 => 0.011411343538034
824 => 0.011383181002899
825 => 0.011783629551755
826 => 0.012003835763711
827 => 0.012029082051032
828 => 0.012002136487422
829 => 0.012012506765424
830 => 0.0118843736226
831 => 0.012177247990393
901 => 0.012446018472554
902 => 0.012373982241891
903 => 0.012265989691574
904 => 0.01217996842362
905 => 0.012353718364956
906 => 0.012345981553576
907 => 0.012443670996862
908 => 0.012439239239433
909 => 0.012406389953942
910 => 0.012373983415042
911 => 0.01250247167871
912 => 0.012465469122232
913 => 0.012428409090564
914 => 0.012354079523445
915 => 0.0123641821461
916 => 0.012256208242219
917 => 0.012206254573735
918 => 0.011455071255332
919 => 0.011254330527031
920 => 0.011317487646609
921 => 0.011338280610248
922 => 0.011250917988035
923 => 0.011376173546672
924 => 0.011356652600537
925 => 0.011432597182577
926 => 0.011385150304849
927 => 0.011387097541261
928 => 0.011526628691918
929 => 0.011567135178562
930 => 0.011546533252527
1001 => 0.011560962135329
1002 => 0.011893469649447
1003 => 0.011846197713931
1004 => 0.011821085440353
1005 => 0.011828041711754
1006 => 0.011913004510653
1007 => 0.011936789455547
1008 => 0.01183601097269
1009 => 0.011883538687799
1010 => 0.012085905666568
1011 => 0.012156722656158
1012 => 0.012382736492847
1013 => 0.012286721797946
1014 => 0.012462960925855
1015 => 0.013004659920702
1016 => 0.013437406560504
1017 => 0.013039434866531
1018 => 0.013834118960576
1019 => 0.014452894518453
1020 => 0.014429144881917
1021 => 0.014321247050865
1022 => 0.013616787529221
1023 => 0.012968533374505
1024 => 0.01351082550125
1025 => 0.013512207915405
1026 => 0.013465624540782
1027 => 0.013176299201779
1028 => 0.013455556646134
1029 => 0.013477723087953
1030 => 0.013465315775067
1031 => 0.013243490716012
1101 => 0.01290480485096
1102 => 0.012970983258291
1103 => 0.013079384839504
1104 => 0.01287415803133
1105 => 0.012808575630987
1106 => 0.012930505790786
1107 => 0.013323390170816
1108 => 0.013249117654595
1109 => 0.013247178099038
1110 => 0.013564947419877
1111 => 0.013337493165068
1112 => 0.012971817979941
1113 => 0.012879480173033
1114 => 0.01255174316471
1115 => 0.012778112283718
1116 => 0.012786258905314
1117 => 0.012662278852269
1118 => 0.012981878277952
1119 => 0.01297893311298
1120 => 0.013282345201569
1121 => 0.013862355158574
1122 => 0.013690817673731
1123 => 0.013491338242084
1124 => 0.013513027187268
1125 => 0.013750901383067
1126 => 0.013607077214147
1127 => 0.013658797388069
1128 => 0.013750823098389
1129 => 0.013806344494295
1130 => 0.013505038512823
1201 => 0.013434789675411
1202 => 0.013291085208057
1203 => 0.013253595394895
1204 => 0.013370639685063
1205 => 0.01333980264984
1206 => 0.012785574213314
1207 => 0.012727654257999
1208 => 0.012729430580338
1209 => 0.012583788098755
1210 => 0.01236164835614
1211 => 0.012945418336457
1212 => 0.012898533437182
1213 => 0.012846776136985
1214 => 0.012853116110936
1215 => 0.013106510873591
1216 => 0.012959529114509
1217 => 0.013350304210866
1218 => 0.013269972598829
1219 => 0.013187580784063
1220 => 0.013176191725547
1221 => 0.013144477906201
1222 => 0.013035719419472
1223 => 0.012904387011376
1224 => 0.012817669979732
1225 => 0.011823623016831
1226 => 0.01200811235104
1227 => 0.012220350513316
1228 => 0.012293614276443
1229 => 0.012168291539916
1230 => 0.013040667924961
1231 => 0.013200059496937
]
'min_raw' => 0.0055016593270554
'max_raw' => 0.014452894518453
'avg_raw' => 0.0099772769227543
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0055016'
'max' => '$0.014452'
'avg' => '$0.009977'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00021331172901942
'max_diff' => -0.0026064332666339
'year' => 2027
]
2 => [
'items' => [
101 => 0.012717252028568
102 => 0.012626938464135
103 => 0.01304658886721
104 => 0.01279348837398
105 => 0.012907459510584
106 => 0.012661116252125
107 => 0.013161666734778
108 => 0.013157853378752
109 => 0.012963127935554
110 => 0.013127708546723
111 => 0.013099108615402
112 => 0.01287926406962
113 => 0.013168636199009
114 => 0.013168779723975
115 => 0.012981360718594
116 => 0.012762496351604
117 => 0.012723368572132
118 => 0.012693891046378
119 => 0.012900209846254
120 => 0.01308519463708
121 => 0.01342940547119
122 => 0.013515948253133
123 => 0.013853730492535
124 => 0.01365259761529
125 => 0.013741757214666
126 => 0.013838552572184
127 => 0.013884959826109
128 => 0.013809341696188
129 => 0.014334056550696
130 => 0.014378358561265
131 => 0.014393212642197
201 => 0.014216281745532
202 => 0.014373437792963
203 => 0.014299909682831
204 => 0.014491209398696
205 => 0.014521207636781
206 => 0.014495800196341
207 => 0.0145053221106
208 => 0.01405757054832
209 => 0.014034352267738
210 => 0.013717769364511
211 => 0.013846779237639
212 => 0.01360560146343
213 => 0.013682081420038
214 => 0.013715793056183
215 => 0.01369818401058
216 => 0.013854073262301
217 => 0.013721535552268
218 => 0.013371746744274
219 => 0.013021862636553
220 => 0.01301747012659
221 => 0.012925351816995
222 => 0.012858767151467
223 => 0.012871593720266
224 => 0.012916796221707
225 => 0.01285613989991
226 => 0.012869084001519
227 => 0.013084042334327
228 => 0.013127150694959
229 => 0.012980651642008
301 => 0.012392436804695
302 => 0.012248087408193
303 => 0.012351842891825
304 => 0.012302254453358
305 => 0.0099288794954526
306 => 0.010486468737044
307 => 0.010155168143632
308 => 0.010307846699484
309 => 0.0099696745834826
310 => 0.010131068042357
311 => 0.010101264563649
312 => 0.010997851563863
313 => 0.010983852591069
314 => 0.010990553158536
315 => 0.010670717615102
316 => 0.011180224320274
317 => 0.01143122564451
318 => 0.011384771979578
319 => 0.011396463366237
320 => 0.011195566608026
321 => 0.010992498278294
322 => 0.01076726424863
323 => 0.011185721235979
324 => 0.011139195962285
325 => 0.011245908200874
326 => 0.011517307469094
327 => 0.011557272042285
328 => 0.011610984833934
329 => 0.011591732621664
330 => 0.012050398424695
331 => 0.011994850969574
401 => 0.012128704354323
402 => 0.011853357786413
403 => 0.011541777008687
404 => 0.01160099832819
405 => 0.011595294838894
406 => 0.011522682873997
407 => 0.011457132038789
408 => 0.011348008367
409 => 0.011693291811805
410 => 0.011679273934507
411 => 0.011906207073953
412 => 0.011866094437245
413 => 0.011598212432082
414 => 0.011607779890303
415 => 0.011672125644802
416 => 0.011894827035811
417 => 0.01196093997133
418 => 0.011930313825452
419 => 0.012002803641078
420 => 0.012060096635701
421 => 0.012009998759104
422 => 0.01271927904464
423 => 0.012424736419237
424 => 0.012568294445444
425 => 0.012602532188801
426 => 0.012514832929134
427 => 0.01253385175828
428 => 0.012562660102117
429 => 0.012737578724643
430 => 0.01319661580326
501 => 0.013399920200609
502 => 0.014011571510894
503 => 0.013383038600543
504 => 0.01334574405877
505 => 0.013455920929853
506 => 0.013815024998857
507 => 0.014106045117855
508 => 0.01420259328068
509 => 0.014215353714234
510 => 0.014396484486094
511 => 0.014500305266635
512 => 0.014374490446178
513 => 0.014267875559201
514 => 0.013885994267576
515 => 0.01393019806691
516 => 0.014234718409521
517 => 0.014664871329618
518 => 0.015033987284844
519 => 0.014904735742314
520 => 0.015890833774453
521 => 0.01598860136649
522 => 0.015975093046475
523 => 0.016197822170905
524 => 0.01575575021691
525 => 0.015566755891836
526 => 0.014290926907896
527 => 0.014649382811995
528 => 0.01517041951998
529 => 0.015101458357891
530 => 0.014723067573201
531 => 0.015033700241503
601 => 0.014930995366981
602 => 0.014849987771216
603 => 0.01522109927151
604 => 0.014813046932516
605 => 0.015166348885755
606 => 0.014713235476286
607 => 0.014905326152473
608 => 0.014796286194288
609 => 0.014866848410668
610 => 0.014454343135534
611 => 0.014676920968997
612 => 0.014445083165894
613 => 0.014444973244589
614 => 0.014439855412236
615 => 0.014712611559461
616 => 0.014721506127629
617 => 0.014519938922719
618 => 0.01449088993942
619 => 0.014598299255865
620 => 0.014472551076852
621 => 0.014531387858363
622 => 0.014474333183026
623 => 0.014461488973852
624 => 0.014359144129895
625 => 0.014315051157088
626 => 0.014332341147862
627 => 0.014273321495751
628 => 0.014237760020519
629 => 0.014432781339743
630 => 0.01432858931602
701 => 0.014416812417784
702 => 0.01431627105868
703 => 0.013967750904244
704 => 0.013767313277893
705 => 0.013108991013998
706 => 0.013295690391392
707 => 0.013419472271759
708 => 0.013378562361036
709 => 0.013466452679303
710 => 0.013471848431029
711 => 0.013443274392625
712 => 0.013410189316714
713 => 0.01339408533148
714 => 0.013514111243667
715 => 0.013583790325578
716 => 0.013431895439442
717 => 0.013396308592856
718 => 0.013549882709085
719 => 0.013643562831269
720 => 0.014335244219156
721 => 0.01428400222784
722 => 0.01441260957031
723 => 0.014398130357189
724 => 0.014532931340854
725 => 0.014753273978001
726 => 0.014305255787911
727 => 0.014383016254407
728 => 0.014363951183774
729 => 0.01457209862582
730 => 0.014572748439414
731 => 0.014447953650171
801 => 0.014515606929984
802 => 0.014477844725163
803 => 0.014546086133142
804 => 0.014283317859805
805 => 0.014603341252648
806 => 0.014784773894538
807 => 0.014787293086946
808 => 0.014873290719264
809 => 0.014960669294345
810 => 0.015128384860144
811 => 0.014955991798243
812 => 0.014645873462009
813 => 0.014668263004209
814 => 0.014486440737143
815 => 0.014489497202301
816 => 0.014473181551747
817 => 0.014522146047245
818 => 0.014294062813054
819 => 0.014347593492233
820 => 0.014272650227908
821 => 0.014382853342387
822 => 0.014264293008435
823 => 0.01436394199002
824 => 0.014406947187055
825 => 0.014565637289954
826 => 0.01424085435121
827 => 0.013578599953239
828 => 0.013717813856751
829 => 0.01351190555844
830 => 0.013530963155397
831 => 0.013569462534244
901 => 0.013444673451188
902 => 0.013468479275679
903 => 0.01346762876411
904 => 0.013460299514884
905 => 0.013427837054799
906 => 0.013380760065172
907 => 0.01356830030231
908 => 0.013600167043061
909 => 0.013671002860297
910 => 0.013881762203997
911 => 0.013860702375514
912 => 0.013895051829534
913 => 0.013820067164272
914 => 0.013534441478957
915 => 0.013549952327857
916 => 0.013356531793539
917 => 0.013666056662366
918 => 0.013592757087899
919 => 0.013545500375398
920 => 0.013532605943562
921 => 0.01374388771891
922 => 0.01380710653753
923 => 0.013767712812223
924 => 0.01368691513232
925 => 0.013842070563423
926 => 0.013883583611304
927 => 0.013892876851783
928 => 0.014167782527595
929 => 0.013908241025239
930 => 0.013970715244477
1001 => 0.014458121268917
1002 => 0.014016111262184
1003 => 0.01425025382075
1004 => 0.014238793760927
1005 => 0.014358573170937
1006 => 0.014228968353207
1007 => 0.014230574960253
1008 => 0.014336930961782
1009 => 0.01418757313904
1010 => 0.014150590041706
1011 => 0.014099498157616
1012 => 0.014211055417367
1013 => 0.014277928949287
1014 => 0.014816880503362
1015 => 0.015165067786472
1016 => 0.015149952058234
1017 => 0.015288081518876
1018 => 0.015225852931736
1019 => 0.015024900408789
1020 => 0.015367901861909
1021 => 0.015259361850352
1022 => 0.015268309757028
1023 => 0.015267976715495
1024 => 0.015340146334448
1025 => 0.015289007545172
1026 => 0.015188207742218
1027 => 0.015255123355548
1028 => 0.015453838804371
1029 => 0.016070657654849
1030 => 0.01641583765534
1031 => 0.016049877385399
1101 => 0.016302311879201
1102 => 0.016150941134527
1103 => 0.01612343256733
1104 => 0.0162819800842
1105 => 0.016440805117511
1106 => 0.016430688649508
1107 => 0.016315389831081
1108 => 0.01625026045415
1109 => 0.01674344191621
1110 => 0.017106809616329
1111 => 0.017082030375229
1112 => 0.017191397886804
1113 => 0.017512504283398
1114 => 0.017541862228066
1115 => 0.017538163801823
1116 => 0.017465397072778
1117 => 0.01778156802116
1118 => 0.018045323388798
1119 => 0.017448553677437
1120 => 0.017675795771234
1121 => 0.017777812068423
1122 => 0.017927602259567
1123 => 0.018180323419778
1124 => 0.018454845630745
1125 => 0.018493666081359
1126 => 0.018466121113919
1127 => 0.018285066336233
1128 => 0.018585451815204
1129 => 0.018761410583879
1130 => 0.01886619000388
1201 => 0.019131893179369
1202 => 0.017778442086344
1203 => 0.016820402131816
1204 => 0.016670790358652
1205 => 0.016975031782574
1206 => 0.017055257819782
1207 => 0.017022918804778
1208 => 0.015944557734775
1209 => 0.01666511301079
1210 => 0.017440369901774
1211 => 0.01747015067629
1212 => 0.017858260485773
1213 => 0.0179846449489
1214 => 0.01829712421625
1215 => 0.018277578552998
1216 => 0.018353662281967
1217 => 0.018336171950263
1218 => 0.018914973992756
1219 => 0.019553478598561
1220 => 0.019531369214382
1221 => 0.019439576622854
1222 => 0.019575904274236
1223 => 0.020234909453738
1224 => 0.020174238817153
1225 => 0.020233175172683
1226 => 0.021010179419221
1227 => 0.022020395467285
1228 => 0.021551048688926
1229 => 0.022569396147067
1230 => 0.023210391891688
1231 => 0.024318927751813
]
'min_raw' => 0.0099288794954526
'max_raw' => 0.024318927751813
'avg_raw' => 0.017123903623633
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009928'
'max' => '$0.024318'
'avg' => '$0.017123'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0044272201683972
'max_diff' => 0.0098660332333593
'year' => 2028
]
3 => [
'items' => [
101 => 0.024180133602471
102 => 0.024611678478005
103 => 0.023931663107936
104 => 0.022370210364476
105 => 0.022123104490822
106 => 0.022617816707594
107 => 0.023834018419215
108 => 0.0225795141876
109 => 0.022833298759786
110 => 0.022760208785924
111 => 0.022756314131829
112 => 0.022904957237922
113 => 0.022689342659831
114 => 0.021810890080364
115 => 0.02221347972078
116 => 0.022058020526673
117 => 0.022230514092786
118 => 0.023161390727336
119 => 0.022749827977874
120 => 0.022316280053959
121 => 0.022860045362535
122 => 0.023552445458385
123 => 0.02350911630475
124 => 0.023425039636515
125 => 0.023898975413242
126 => 0.024681778466241
127 => 0.024893366985909
128 => 0.025049557305391
129 => 0.02507109331159
130 => 0.025292927559999
131 => 0.024100068896878
201 => 0.025993166230034
202 => 0.026320051843711
203 => 0.02625861089636
204 => 0.026621930498513
205 => 0.026515032655031
206 => 0.026360154451583
207 => 0.026936093301292
208 => 0.02627582588597
209 => 0.025338659415276
210 => 0.024824511354403
211 => 0.025501582996102
212 => 0.025915047021144
213 => 0.026188320440445
214 => 0.02627101281201
215 => 0.024192667119263
216 => 0.023072554061209
217 => 0.0237905336893
218 => 0.024666518387877
219 => 0.024095202757648
220 => 0.02411759724871
221 => 0.02330305129911
222 => 0.024738587630288
223 => 0.024529442061596
224 => 0.025614489641941
225 => 0.025355534328841
226 => 0.026240348509307
227 => 0.026007347282238
228 => 0.026974522348878
301 => 0.027360354668181
302 => 0.028008227182295
303 => 0.028484804840994
304 => 0.028764660357659
305 => 0.02874785888215
306 => 0.029856785862643
307 => 0.029202890365204
308 => 0.028381443509085
309 => 0.028366586127089
310 => 0.028792025093865
311 => 0.029683628454748
312 => 0.029914808233923
313 => 0.030044006192357
314 => 0.029846135021602
315 => 0.029136378324245
316 => 0.028829908980874
317 => 0.029091029740698
318 => 0.028771701489796
319 => 0.029322951638535
320 => 0.030079935833431
321 => 0.029923621590625
322 => 0.030446156668385
323 => 0.030986925501574
324 => 0.031760249220482
325 => 0.031962424676698
326 => 0.032296613017781
327 => 0.032640602595906
328 => 0.032751082777621
329 => 0.032962023724501
330 => 0.032960911961588
331 => 0.033596596702975
401 => 0.034297776658244
402 => 0.034562455859004
403 => 0.035171071086656
404 => 0.034128838837723
405 => 0.03491938397084
406 => 0.03563247546954
407 => 0.034782298387478
408 => 0.035954069429246
409 => 0.035999566643508
410 => 0.036686520562076
411 => 0.03599016116116
412 => 0.035576665171754
413 => 0.036770412599677
414 => 0.037348029377357
415 => 0.037174046503118
416 => 0.035850028239569
417 => 0.035079392820369
418 => 0.033062491283851
419 => 0.035451598277519
420 => 0.036615262602928
421 => 0.035847014630087
422 => 0.036234474221272
423 => 0.038348328116584
424 => 0.039153146818015
425 => 0.038985750154225
426 => 0.039014037434822
427 => 0.039448302997621
428 => 0.041374075657487
429 => 0.040220108040635
430 => 0.041102273045376
501 => 0.041570170183009
502 => 0.042004779120633
503 => 0.040937516929394
504 => 0.039549024499787
505 => 0.039109230662384
506 => 0.035770627509701
507 => 0.035596838716785
508 => 0.035499285800982
509 => 0.034884228465978
510 => 0.034400961879048
511 => 0.034016650346583
512 => 0.033008102120257
513 => 0.033348457540398
514 => 0.031741042168008
515 => 0.03276940955996
516 => 0.030203935813224
517 => 0.03234053858297
518 => 0.031177682834804
519 => 0.031958509194792
520 => 0.031955784965181
521 => 0.03051803607522
522 => 0.029688772520544
523 => 0.030217211533004
524 => 0.030783740101902
525 => 0.030875657456174
526 => 0.031610176533659
527 => 0.03181516501975
528 => 0.031194040336897
529 => 0.030150772072133
530 => 0.030393099495622
531 => 0.029683861763042
601 => 0.028440949917131
602 => 0.029333630904023
603 => 0.02963843144136
604 => 0.029773048722752
605 => 0.028550787671688
606 => 0.028166726712866
607 => 0.027962255880972
608 => 0.029992993518938
609 => 0.030104241910876
610 => 0.02953507940878
611 => 0.032107747888458
612 => 0.031525473777756
613 => 0.032176016620031
614 => 0.030371110821896
615 => 0.030440060654013
616 => 0.029585589324277
617 => 0.030064036173134
618 => 0.029725885361424
619 => 0.030025382395851
620 => 0.030204899683413
621 => 0.031059230802812
622 => 0.032350293672022
623 => 0.030931622223006
624 => 0.03031348675692
625 => 0.030696974523554
626 => 0.031718252981527
627 => 0.033265542123638
628 => 0.032349515809412
629 => 0.03275603273253
630 => 0.032844838595552
701 => 0.032169394704579
702 => 0.033290446703341
703 => 0.033891227576888
704 => 0.034507504439062
705 => 0.035042600370802
706 => 0.034261349908091
707 => 0.035097399891046
708 => 0.034423691187473
709 => 0.033819304833642
710 => 0.033820221438261
711 => 0.033441081049828
712 => 0.032706448772474
713 => 0.032570971309249
714 => 0.033275742181864
715 => 0.033840901679652
716 => 0.033887450922821
717 => 0.034200352259739
718 => 0.034385524047788
719 => 0.036200459299501
720 => 0.036930441271671
721 => 0.03782304940939
722 => 0.03817077058367
723 => 0.039217286653311
724 => 0.038372139933196
725 => 0.038189287124077
726 => 0.035650781451925
727 => 0.03606646161353
728 => 0.03673200565943
729 => 0.035661756028107
730 => 0.036340583081674
731 => 0.036474597921571
801 => 0.03562538935517
802 => 0.036078988342621
803 => 0.034874363914679
804 => 0.032376551192693
805 => 0.033293227482938
806 => 0.033968209782462
807 => 0.033004926816324
808 => 0.034731574248927
809 => 0.033722902464038
810 => 0.033403201933013
811 => 0.032155936180014
812 => 0.032744597603768
813 => 0.033540770608215
814 => 0.033048828256513
815 => 0.03406968250181
816 => 0.035515484365033
817 => 0.036545848871755
818 => 0.036624947464494
819 => 0.035962492115732
820 => 0.037024081039857
821 => 0.037031813556206
822 => 0.035834336913076
823 => 0.035100889136736
824 => 0.034934248258765
825 => 0.035350549843806
826 => 0.035856016821559
827 => 0.036652997363888
828 => 0.037134596014022
829 => 0.038390349873385
830 => 0.038730120862443
831 => 0.039103426167292
901 => 0.039602277177662
902 => 0.040201275718384
903 => 0.038890701012289
904 => 0.038942772588579
905 => 0.037722383568405
906 => 0.03641822287886
907 => 0.037407918276299
908 => 0.03870181335479
909 => 0.038404992394158
910 => 0.038371593972584
911 => 0.038427760853721
912 => 0.03820396754267
913 => 0.037191758690954
914 => 0.036683433742385
915 => 0.037339302613564
916 => 0.037687867729231
917 => 0.038228461825557
918 => 0.038161822192628
919 => 0.039554334529198
920 => 0.040095422715801
921 => 0.039956989203199
922 => 0.039982464301106
923 => 0.040962078617212
924 => 0.042051611209771
925 => 0.043072102259191
926 => 0.044110189585772
927 => 0.042858734796341
928 => 0.042223323233269
929 => 0.042878905772616
930 => 0.042531044449246
1001 => 0.044529958795702
1002 => 0.044668359288068
1003 => 0.046667129090265
1004 => 0.04856419964163
1005 => 0.047372683617867
1006 => 0.048496229561215
1007 => 0.049711436102991
1008 => 0.052055766682233
1009 => 0.051266278617689
1010 => 0.050661543133103
1011 => 0.05009007102223
1012 => 0.051279213766314
1013 => 0.052809026909559
1014 => 0.053138534008246
1015 => 0.053672461389518
1016 => 0.053111102033644
1017 => 0.05378719754609
1018 => 0.056174111796444
1019 => 0.055529146496123
1020 => 0.054613192086322
1021 => 0.056497431645295
1022 => 0.057179330616892
1023 => 0.06196525471282
1024 => 0.068007681580593
1025 => 0.065506077180621
1026 => 0.063953250603289
1027 => 0.064318201682501
1028 => 0.066524691425554
1029 => 0.067233345900539
1030 => 0.065306978749684
1031 => 0.065987404193825
1101 => 0.069736615288999
1102 => 0.071747946752466
1103 => 0.069016288467223
1104 => 0.061479751597374
1105 => 0.054530720413394
1106 => 0.056373916402338
1107 => 0.056164955178222
1108 => 0.060193014776377
1109 => 0.055513764287015
1110 => 0.055592550864649
1111 => 0.059703906469504
1112 => 0.058607067280608
1113 => 0.056830328267145
1114 => 0.054543692574449
1115 => 0.050316635008299
1116 => 0.046572612241739
1117 => 0.053915503083911
1118 => 0.053598864278616
1119 => 0.053140324365307
1120 => 0.054160755323175
1121 => 0.059115678400204
1122 => 0.059001451385758
1123 => 0.058274797398985
1124 => 0.058825958043518
1125 => 0.056733707141336
1126 => 0.057272927838496
1127 => 0.05452961965135
1128 => 0.05576970952261
1129 => 0.056826516183196
1130 => 0.057038685766599
1201 => 0.057516714671653
1202 => 0.053432010016404
1203 => 0.055265922485983
1204 => 0.0563431742475
1205 => 0.051476111598211
1206 => 0.056246968067723
1207 => 0.053360904396004
1208 => 0.052381331038601
1209 => 0.053700197515368
1210 => 0.053186233966732
1211 => 0.052744358288567
1212 => 0.052497784067763
1213 => 0.05346621405032
1214 => 0.053421035634109
1215 => 0.051836496218487
1216 => 0.049769529144898
1217 => 0.050463271140676
1218 => 0.050211228169744
1219 => 0.049297791928896
1220 => 0.049913337666515
1221 => 0.047202785758609
1222 => 0.042539422083285
1223 => 0.045620182969897
1224 => 0.045501577026985
1225 => 0.045441770532218
1226 => 0.047756877192529
1227 => 0.047534333105739
1228 => 0.047130413409055
1229 => 0.049290373626909
1230 => 0.048501959091828
1231 => 0.050931666915121
]
'min_raw' => 0.021810890080364
'max_raw' => 0.071747946752466
'avg_raw' => 0.046779418416415
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.02181'
'max' => '$0.071747'
'avg' => '$0.046779'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.011882010584912
'max_diff' => 0.047429019000654
'year' => 2029
]
4 => [
'items' => [
101 => 0.052532029631191
102 => 0.052126125880085
103 => 0.053631274749774
104 => 0.050479253555097
105 => 0.051526228558828
106 => 0.051742008656052
107 => 0.049263720053102
108 => 0.047570744070587
109 => 0.047457841873892
110 => 0.044522454826671
111 => 0.04609051489368
112 => 0.047470342861914
113 => 0.046809512344106
114 => 0.046600313143918
115 => 0.047669066487907
116 => 0.047752117775988
117 => 0.045858539606353
118 => 0.046252274469642
119 => 0.047894214302532
120 => 0.046210901798637
121 => 0.042940500571105
122 => 0.042129395849843
123 => 0.042021179528401
124 => 0.039821399194811
125 => 0.042183597745766
126 => 0.041152434775289
127 => 0.044409866243798
128 => 0.042549238858941
129 => 0.042469030931168
130 => 0.042347784884396
131 => 0.040454343079493
201 => 0.040868886500263
202 => 0.042246891967646
203 => 0.042738579842751
204 => 0.042687292769097
205 => 0.042240138989087
206 => 0.042444843699778
207 => 0.041785418502794
208 => 0.041552561740991
209 => 0.04081760174844
210 => 0.039737413597271
211 => 0.03988762038487
212 => 0.037747485010799
213 => 0.036581425673423
214 => 0.036258675817253
215 => 0.035827081220937
216 => 0.036307425575336
217 => 0.037741422276178
218 => 0.036011718015592
219 => 0.033046261385464
220 => 0.033224490381827
221 => 0.03362491801999
222 => 0.032878723765366
223 => 0.032172513526702
224 => 0.032786506032573
225 => 0.031530002965464
226 => 0.033776760412636
227 => 0.033715991920155
228 => 0.034553444157912
301 => 0.035077120228432
302 => 0.033870216428025
303 => 0.033566683386038
304 => 0.033739589601562
305 => 0.030881835012311
306 => 0.034319904639611
307 => 0.034349637208517
308 => 0.034095048902379
309 => 0.035925714840425
310 => 0.039788990968728
311 => 0.038335471089338
312 => 0.037772624259167
313 => 0.036702652023575
314 => 0.038128326498837
315 => 0.038018856943123
316 => 0.037523794097089
317 => 0.037224378543118
318 => 0.037776060881892
319 => 0.037156018996146
320 => 0.037044642435854
321 => 0.036369821659379
322 => 0.036128941344567
323 => 0.035950603149201
324 => 0.035754270319253
325 => 0.036187331619026
326 => 0.035205957739782
327 => 0.034022517046681
328 => 0.033924126758056
329 => 0.034195790995514
330 => 0.034075599793462
331 => 0.033923551328821
401 => 0.033633249401886
402 => 0.033547123021483
403 => 0.033826991975212
404 => 0.033511036243826
405 => 0.033977246136485
406 => 0.033850462842252
407 => 0.03314226166683
408 => 0.032259580792597
409 => 0.032251723081331
410 => 0.032061550934864
411 => 0.031819338113765
412 => 0.031751960048014
413 => 0.032734797296293
414 => 0.034769240986386
415 => 0.034369831009909
416 => 0.034658445651094
417 => 0.036078144033316
418 => 0.036529423457205
419 => 0.036209116011268
420 => 0.035770659423566
421 => 0.03578994928822
422 => 0.037288288178232
423 => 0.037381737736902
424 => 0.037617854623691
425 => 0.03792133154984
426 => 0.036260799444062
427 => 0.035711738375367
428 => 0.035451562780271
429 => 0.034650322648003
430 => 0.035514391437517
501 => 0.035010935556982
502 => 0.035078868955768
503 => 0.035034627240689
504 => 0.035058786208733
505 => 0.03377613239814
506 => 0.034243464032421
507 => 0.033466434549968
508 => 0.032426079298617
509 => 0.032422591663019
510 => 0.032677217136917
511 => 0.032525755941547
512 => 0.032118177759229
513 => 0.032176072316312
514 => 0.031668855076745
515 => 0.03223765767266
516 => 0.032253968895838
517 => 0.032034948913524
518 => 0.032911267792164
519 => 0.03327029635175
520 => 0.033126132707529
521 => 0.033260181446161
522 => 0.03438642829766
523 => 0.034570055676049
524 => 0.034651610827786
525 => 0.034542337728446
526 => 0.033280767171126
527 => 0.033336723189955
528 => 0.032926155051187
529 => 0.032579268238533
530 => 0.032593141891857
531 => 0.032771486805691
601 => 0.033550329504193
602 => 0.035189358047905
603 => 0.035251557983025
604 => 0.03532694611889
605 => 0.035020304683285
606 => 0.034927818692143
607 => 0.035049831587119
608 => 0.035665364532111
609 => 0.037248682382193
610 => 0.03668903210773
611 => 0.036234027723117
612 => 0.036633189236724
613 => 0.036571741450436
614 => 0.036053060295294
615 => 0.036038502642791
616 => 0.035042987673677
617 => 0.034674968456375
618 => 0.034367424052637
619 => 0.034031593592404
620 => 0.033832502038439
621 => 0.034138397150822
622 => 0.034208358982269
623 => 0.033539513972912
624 => 0.033448352869604
625 => 0.033994546142267
626 => 0.033754186847106
627 => 0.034001402342803
628 => 0.03405875845838
629 => 0.034049522802749
630 => 0.033798560093511
701 => 0.033958516240563
702 => 0.033580172267562
703 => 0.03316878002235
704 => 0.032906337400547
705 => 0.032677321405062
706 => 0.032804392789845
707 => 0.032351406505412
708 => 0.03220648707621
709 => 0.033904326697069
710 => 0.03515853907985
711 => 0.035140302335082
712 => 0.035029290841415
713 => 0.034864350279685
714 => 0.035653298102669
715 => 0.035378444456651
716 => 0.035578423448919
717 => 0.035629326495544
718 => 0.035783394686658
719 => 0.035838460822373
720 => 0.035672012714352
721 => 0.035113392533909
722 => 0.033721364156258
723 => 0.033073371188753
724 => 0.032859522716299
725 => 0.032867295702117
726 => 0.03265288205313
727 => 0.032716036482103
728 => 0.032630919520049
729 => 0.032469728585923
730 => 0.032794439703887
731 => 0.032831859635339
801 => 0.032756068180397
802 => 0.032773919811727
803 => 0.032146398935764
804 => 0.03219410798506
805 => 0.031928457936008
806 => 0.03187865175427
807 => 0.031207111563064
808 => 0.030017380773034
809 => 0.030676607120673
810 => 0.029880354393977
811 => 0.02957880142118
812 => 0.031006306293293
813 => 0.030863024396955
814 => 0.030617788073567
815 => 0.030255032439548
816 => 0.030120482846231
817 => 0.029303002110458
818 => 0.029254700987499
819 => 0.029659866513984
820 => 0.029472896564406
821 => 0.02921031994414
822 => 0.028259294042505
823 => 0.027190026055211
824 => 0.027222300534568
825 => 0.027562414786888
826 => 0.028551342846165
827 => 0.028164951544776
828 => 0.02788462022229
829 => 0.027832122592316
830 => 0.028489240342663
831 => 0.029419199629828
901 => 0.0298555157207
902 => 0.029423139725763
903 => 0.028926449463556
904 => 0.028956680698375
905 => 0.029157795559797
906 => 0.029178929888122
907 => 0.028855635588009
908 => 0.028946641039784
909 => 0.028808395436825
910 => 0.027959982426651
911 => 0.027944637325643
912 => 0.027736423090439
913 => 0.027730118446146
914 => 0.027375894090588
915 => 0.027326335654608
916 => 0.026623001696765
917 => 0.027085938237709
918 => 0.026775424711303
919 => 0.026307407584274
920 => 0.026226721255168
921 => 0.026224295726683
922 => 0.026704844669428
923 => 0.027080322743524
924 => 0.026780826227037
925 => 0.02671263667573
926 => 0.027440722685283
927 => 0.027348067103916
928 => 0.027267827968017
929 => 0.029335931975545
930 => 0.027698866277418
1001 => 0.026985012192592
1002 => 0.026101482205405
1003 => 0.026389164024378
1004 => 0.026449782810561
1005 => 0.024325052459627
1006 => 0.023463049620871
1007 => 0.023167242730502
1008 => 0.022997001682999
1009 => 0.023074582666099
1010 => 0.02229867900837
1011 => 0.022820099098626
1012 => 0.022148232116536
1013 => 0.022035591430545
1014 => 0.023236972822869
1015 => 0.023404138025242
1016 => 0.022690959337759
1017 => 0.023148935508265
1018 => 0.022982866982495
1019 => 0.022159749347569
1020 => 0.022128312308359
1021 => 0.021715300813137
1022 => 0.021069017797899
1023 => 0.020773649117847
1024 => 0.020619818544768
1025 => 0.020683292037319
1026 => 0.020651197897164
1027 => 0.020441761923343
1028 => 0.020663202522027
1029 => 0.020097513297962
1030 => 0.019872251290872
1031 => 0.019770505668308
1101 => 0.019268423922094
1102 => 0.020067459257086
1103 => 0.020224879284062
1104 => 0.02038260947712
1105 => 0.021755543120715
1106 => 0.021686955235751
1107 => 0.022306956312169
1108 => 0.022282864210448
1109 => 0.022106029860102
1110 => 0.021359994823831
1111 => 0.021657351092493
1112 => 0.020742134716977
1113 => 0.021427877054178
1114 => 0.021114932888764
1115 => 0.021322070317058
1116 => 0.020949618544156
1117 => 0.021155748733437
1118 => 0.020262209412356
1119 => 0.019427834966768
1120 => 0.019763611600581
1121 => 0.020128639202252
1122 => 0.020920112049977
1123 => 0.020448717351381
1124 => 0.020618248710403
1125 => 0.020050347036886
1126 => 0.018878603671326
1127 => 0.018885235611524
1128 => 0.01870498842255
1129 => 0.018549228534755
1130 => 0.020502862703112
1201 => 0.020259897411891
1202 => 0.019872764018842
1203 => 0.020390957449508
1204 => 0.020527976017412
1205 => 0.020531876743415
1206 => 0.020909937293921
1207 => 0.021111708277497
1208 => 0.021147271287877
1209 => 0.021742157732637
1210 => 0.021941555822179
1211 => 0.022762848333126
1212 => 0.021094589419236
1213 => 0.021060232724732
1214 => 0.02039824949376
1215 => 0.019978409263136
1216 => 0.020426996313539
1217 => 0.020824383201958
1218 => 0.020410597412094
1219 => 0.020464629100756
1220 => 0.019909155485405
1221 => 0.02010771116543
1222 => 0.020278734065406
1223 => 0.020184305272301
1224 => 0.020042940798617
1225 => 0.020791802008848
1226 => 0.020749548324556
1227 => 0.021446905099768
1228 => 0.021990544574507
1229 => 0.02296484370042
1230 => 0.021948111771168
1231 => 0.021911058018523
]
'min_raw' => 0.018549228534755
'max_raw' => 0.053631274749774
'avg_raw' => 0.036090251642264
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.018549'
'max' => '$0.053631'
'avg' => '$0.03609'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032616615456088
'max_diff' => -0.018116672002693
'year' => 2030
]
5 => [
'items' => [
101 => 0.02227326439424
102 => 0.02194150037027
103 => 0.022151163781314
104 => 0.022931063683517
105 => 0.022947541739501
106 => 0.022671513071003
107 => 0.022654716701439
108 => 0.022707731026647
109 => 0.023018237585261
110 => 0.022909737052779
111 => 0.023035296615865
112 => 0.02319231077214
113 => 0.023841787895119
114 => 0.023998374630674
115 => 0.023617950044188
116 => 0.023652298124914
117 => 0.02351000888668
118 => 0.023372559265425
119 => 0.023681525941102
120 => 0.024246168613656
121 => 0.024242656000895
122 => 0.024373642125843
123 => 0.024455245396537
124 => 0.024104944421471
125 => 0.023876911367626
126 => 0.023964353750591
127 => 0.024104176025198
128 => 0.023919011271413
129 => 0.022776088634397
130 => 0.023122778352287
131 => 0.023065072230969
201 => 0.022982891696908
202 => 0.023331490889119
203 => 0.023297867646616
204 => 0.022290720994887
205 => 0.022355195255852
206 => 0.022294641888242
207 => 0.022490302207042
208 => 0.021930934070952
209 => 0.022102991942212
210 => 0.022210905026123
211 => 0.022274466661575
212 => 0.022504094873446
213 => 0.022477150653142
214 => 0.022502419982881
215 => 0.022842898001486
216 => 0.024564918981644
217 => 0.024658644784169
218 => 0.024197104653935
219 => 0.024381480832487
220 => 0.024027518888305
221 => 0.024265135912773
222 => 0.024427707446096
223 => 0.023693077947716
224 => 0.023649577956528
225 => 0.023294155085491
226 => 0.023485139204206
227 => 0.023181269739087
228 => 0.023255828676924
301 => 0.023047355386799
302 => 0.023422565802407
303 => 0.02384210934886
304 => 0.023948102616971
305 => 0.023669279961543
306 => 0.023467393983704
307 => 0.023112948711994
308 => 0.023702399098175
309 => 0.02387477235427
310 => 0.023701493694842
311 => 0.02366134124324
312 => 0.023585252420006
313 => 0.023677483846784
314 => 0.023873833572498
315 => 0.023781238667861
316 => 0.023842399233686
317 => 0.023609318225264
318 => 0.02410506038567
319 => 0.024892418243243
320 => 0.024894949727501
321 => 0.024802354323743
322 => 0.024764466279521
323 => 0.024859474782935
324 => 0.024911012998585
325 => 0.025218253077047
326 => 0.025547933922222
327 => 0.027086410575629
328 => 0.026654412487666
329 => 0.028019440498955
330 => 0.029099000429181
331 => 0.029422713248822
401 => 0.029124912686618
402 => 0.028106153050188
403 => 0.028056167842175
404 => 0.029578624848225
405 => 0.029148461011068
406 => 0.029097294391408
407 => 0.028552968005594
408 => 0.028874732315745
409 => 0.028804357741117
410 => 0.028693268032226
411 => 0.029307171921696
412 => 0.030456345199206
413 => 0.030277235767027
414 => 0.030143538884553
415 => 0.02955771806413
416 => 0.029910513045842
417 => 0.029784889510197
418 => 0.030324647941993
419 => 0.03000490700411
420 => 0.029145202096923
421 => 0.029282112937017
422 => 0.029261419138963
423 => 0.029687296036533
424 => 0.029559458362797
425 => 0.029236456781445
426 => 0.030452417449874
427 => 0.030373459727595
428 => 0.030485403725539
429 => 0.030534684935417
430 => 0.031274818766659
501 => 0.031578027915678
502 => 0.031646861700929
503 => 0.031934886941459
504 => 0.031639695370559
505 => 0.032820672122183
506 => 0.03360595275011
507 => 0.034518096609618
508 => 0.035850983949515
509 => 0.036352161919214
510 => 0.036261628604857
511 => 0.037272208573935
512 => 0.039088198314436
513 => 0.036628692052547
514 => 0.039218558118464
515 => 0.038398636423436
516 => 0.036454616834286
517 => 0.036329444891231
518 => 0.037645957527534
519 => 0.04056585584521
520 => 0.039834454433845
521 => 0.040567052155901
522 => 0.039712437998903
523 => 0.039669999202754
524 => 0.040525545453831
525 => 0.042524575902868
526 => 0.041574911469066
527 => 0.040213334635939
528 => 0.041218701781038
529 => 0.040347759717616
530 => 0.038385283487392
531 => 0.03983389514497
601 => 0.038865249783632
602 => 0.03914795199609
603 => 0.041183900470498
604 => 0.040938929763606
605 => 0.041255944542001
606 => 0.040696421755855
607 => 0.040173739244949
608 => 0.039198113523431
609 => 0.038909278845056
610 => 0.038989102358976
611 => 0.038909239288487
612 => 0.038363385663761
613 => 0.038245508625472
614 => 0.03804904173068
615 => 0.038109935036575
616 => 0.037740519795948
617 => 0.038437682680095
618 => 0.03856708225477
619 => 0.039074419263292
620 => 0.039127092674543
621 => 0.040540019021786
622 => 0.039761802932987
623 => 0.040283897473298
624 => 0.040237196423468
625 => 0.036496749633566
626 => 0.037012150198973
627 => 0.037813951737139
628 => 0.037452741231012
629 => 0.036942074085589
630 => 0.03652968298542
701 => 0.035904868299509
702 => 0.036784282971425
703 => 0.037940619749672
704 => 0.039156419283486
705 => 0.040617122761022
706 => 0.040291110749298
707 => 0.039129112448017
708 => 0.039181238842972
709 => 0.039503463705605
710 => 0.03908615323128
711 => 0.038963080225533
712 => 0.03948655536453
713 => 0.039490160250115
714 => 0.039009994115749
715 => 0.038476377326875
716 => 0.038474141453046
717 => 0.038379189499593
718 => 0.039729329740486
719 => 0.040471770358402
720 => 0.040556889978743
721 => 0.040466041129755
722 => 0.040501005246069
723 => 0.040068995409066
724 => 0.041056441787916
725 => 0.041962620233475
726 => 0.041719745052387
727 => 0.041355640629194
728 => 0.041065613918475
729 => 0.041651423976523
730 => 0.041625338776789
731 => 0.041954705555286
801 => 0.041939763575699
802 => 0.041829009916201
803 => 0.041719749007749
804 => 0.04215295615947
805 => 0.042028199456868
806 => 0.041903248972648
807 => 0.041652641647584
808 => 0.041686703345207
809 => 0.041322661789776
810 => 0.041154239508826
811 => 0.038621572504886
812 => 0.037944761124152
813 => 0.038157699762297
814 => 0.038227804690924
815 => 0.037933255510671
816 => 0.038355563371677
817 => 0.038289747138874
818 => 0.038545799599503
819 => 0.038385829138608
820 => 0.038392394382123
821 => 0.038862833398318
822 => 0.03899940384611
823 => 0.038929943014104
824 => 0.038978590999863
825 => 0.040099663298643
826 => 0.03994028266763
827 => 0.039855614883979
828 => 0.03987906843868
829 => 0.04016552644708
830 => 0.040245719049404
831 => 0.039905937358321
901 => 0.04006618036809
902 => 0.040748474765822
903 => 0.04098723919051
904 => 0.041749260620687
905 => 0.041425540373297
906 => 0.042019742897665
907 => 0.043846118879007
908 => 0.045305154388507
909 => 0.043963365036778
910 => 0.046642697942924
911 => 0.048728942937837
912 => 0.048648869380109
913 => 0.04828508430953
914 => 0.045909949848515
915 => 0.043724315706229
916 => 0.045552691473179
917 => 0.045557352379018
918 => 0.04540029327913
919 => 0.044424812698631
920 => 0.045366348669406
921 => 0.045441084375609
922 => 0.045399252253964
923 => 0.04465135358003
924 => 0.043509450539713
925 => 0.043732575660461
926 => 0.044098059159876
927 => 0.043406122647639
928 => 0.043185007006067
929 => 0.043596103052721
930 => 0.044920740170302
1001 => 0.044670325196323
1002 => 0.044663785849346
1003 => 0.045735167300501
1004 => 0.044968289400062
1005 => 0.04373538998278
1006 => 0.04342406661997
1007 => 0.042319078414543
1008 => 0.043082297703864
1009 => 0.043109764607354
1010 => 0.042691757202505
1011 => 0.043769308979913
1012 => 0.043759379150585
1013 => 0.044782354190817
1014 => 0.046737898255863
1015 => 0.04615954764935
1016 => 0.045486988818342
1017 => 0.045560114611306
1018 => 0.046362124070286
1019 => 0.045877210843292
1020 => 0.046051589020654
1021 => 0.04636186012803
1022 => 0.046549054390708
1023 => 0.045533180237663
1024 => 0.04529633137771
1025 => 0.044811821732901
1026 => 0.044685422210371
1027 => 0.045080045206443
1028 => 0.044976075989214
1029 => 0.043107456120473
1030 => 0.042912174947287
1031 => 0.042918163942071
1101 => 0.04242712014698
1102 => 0.041678160495453
1103 => 0.04364638174161
1104 => 0.043488306030305
1105 => 0.043313802679112
1106 => 0.043335178343931
1107 => 0.04418951647768
1108 => 0.043693957214996
1109 => 0.045011482735408
1110 => 0.044740639096854
1111 => 0.044462849340957
1112 => 0.044424450335009
1113 => 0.044317524978897
1114 => 0.043950838147617
1115 => 0.043508041764383
1116 => 0.043215669237806
1117 => 0.039864170500243
1118 => 0.040486189171164
1119 => 0.041201764953272
1120 => 0.041448778845766
1121 => 0.041026244489814
1122 => 0.043967522379367
1123 => 0.044504922192647
1124 => 0.042877103104499
1125 => 0.042572604616522
1126 => 0.043987485249545
1127 => 0.043134139265709
1128 => 0.043518400909979
1129 => 0.042687837414949
1130 => 0.044375478314531
1201 => 0.044362621318448
1202 => 0.043706090891412
1203 => 0.044260985912617
1204 => 0.044164559247387
1205 => 0.043423338012226
1206 => 0.044398976349778
1207 => 0.044399460254222
1208 => 0.043767563992402
1209 => 0.043029647498475
1210 => 0.04289772545817
1211 => 0.042798339922033
1212 => 0.043493958160534
1213 => 0.044117647298032
1214 => 0.045278178157265
1215 => 0.04556996318881
1216 => 0.046708819592157
1217 => 0.046030686053876
1218 => 0.046331293868096
1219 => 0.046657646174004
1220 => 0.046814111470665
1221 => 0.046559159666147
1222 => 0.048328272432543
1223 => 0.048477639754241
1224 => 0.048527721325184
1225 => 0.047931186454156
1226 => 0.048461049040354
1227 => 0.048213143883476
1228 => 0.048858124231636
1229 => 0.048959265385749
1230 => 0.048873602426416
1231 => 0.048905706225136
]
'min_raw' => 0.021930934070952
'max_raw' => 0.048959265385749
'avg_raw' => 0.035445099728351
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.02193'
'max' => '$0.048959'
'avg' => '$0.035445'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0033817055361967
'max_diff' => -0.0046720093640242
'year' => 2031
]
6 => [
'items' => [
101 => 0.047396080571895
102 => 0.047317798517865
103 => 0.046250417156521
104 => 0.046685382950954
105 => 0.045872235246715
106 => 0.046130092760079
107 => 0.046243753895013
108 => 0.046184383768336
109 => 0.046709975264353
110 => 0.04626311512149
111 => 0.045083777733864
112 => 0.043904119036555
113 => 0.043889309382539
114 => 0.043578726070243
115 => 0.043354231221624
116 => 0.043397476893851
117 => 0.043549880283399
118 => 0.04334537325957
119 => 0.043389015201873
120 => 0.044113762228849
121 => 0.04425910507645
122 => 0.043765173291186
123 => 0.041781965899336
124 => 0.041295281830877
125 => 0.041645100687921
126 => 0.041477909805473
127 => 0.033475910431148
128 => 0.035355861488811
129 => 0.034238858407453
130 => 0.034753624818184
131 => 0.033613453918663
201 => 0.034157603233391
202 => 0.034057118724112
203 => 0.037080024393039
204 => 0.037032825878889
205 => 0.037055417309923
206 => 0.03597706944503
207 => 0.03769490687414
208 => 0.038541175363155
209 => 0.038384553588545
210 => 0.038423971914931
211 => 0.03774663446846
212 => 0.037061975416991
213 => 0.036302583160639
214 => 0.037713440109221
215 => 0.03755657690067
216 => 0.037916364663486
217 => 0.038831406244779
218 => 0.038966149593529
219 => 0.039147246020682
220 => 0.039082335842869
221 => 0.040628759620811
222 => 0.04044147749767
223 => 0.040892773529696
224 => 0.039964423351905
225 => 0.038913907005927
226 => 0.03911357581933
227 => 0.039094346106964
228 => 0.038849529797709
229 => 0.03862852058019
301 => 0.038260602501982
302 => 0.039424749743063
303 => 0.039377487491057
304 => 0.040142608414666
305 => 0.04000736585943
306 => 0.039104182976097
307 => 0.039136440329468
308 => 0.039353386533239
309 => 0.040104239821541
310 => 0.040327144199499
311 => 0.040223886010425
312 => 0.040468290484885
313 => 0.040661457816324
314 => 0.040492549327657
315 => 0.042883937330709
316 => 0.041890866304852
317 => 0.042374882213111
318 => 0.042490317155243
319 => 0.042194632978306
320 => 0.042258756288627
321 => 0.042355885631208
322 => 0.04294563597948
323 => 0.044493311538984
324 => 0.045178766508905
325 => 0.047240991605663
326 => 0.045121849015647
327 => 0.044996107864239
328 => 0.045367576877397
329 => 0.04657832131789
330 => 0.047559515967467
331 => 0.04788503483921
401 => 0.047928057531841
402 => 0.048538752575315
403 => 0.048888791585445
404 => 0.048464598134163
405 => 0.048105138599106
406 => 0.046817599162294
407 => 0.046966635357959
408 => 0.047993346954003
409 => 0.049443637556427
410 => 0.050688137770326
411 => 0.05025235717063
412 => 0.053577055533152
413 => 0.053906685795621
414 => 0.05386114155157
415 => 0.054612088345035
416 => 0.053121611887662
417 => 0.052484404325514
418 => 0.048182857830625
419 => 0.049391416937887
420 => 0.051148128576481
421 => 0.050915621203783
422 => 0.049639850254799
423 => 0.05068716998366
424 => 0.050340893328583
425 => 0.050067770563691
426 => 0.051318998897111
427 => 0.049943221946889
428 => 0.051134404148988
429 => 0.049606700653594
430 => 0.050254347779702
501 => 0.049886711947756
502 => 0.050124617386778
503 => 0.048733827051464
504 => 0.049484263756873
505 => 0.048702606417312
506 => 0.048702235809958
507 => 0.048684980680864
508 => 0.049604597074458
509 => 0.049634585732038
510 => 0.048954987827709
511 => 0.04885704715238
512 => 0.049219185161855
513 => 0.048795216396855
514 => 0.048993588713571
515 => 0.048801224892243
516 => 0.048757919744261
517 => 0.04841285695737
518 => 0.048264194421079
519 => 0.04832248883212
520 => 0.048123499954407
521 => 0.048003601957842
522 => 0.048661129951559
523 => 0.04830983926912
524 => 0.048607289616257
525 => 0.048268307404467
526 => 0.047093247370884
527 => 0.046417457919535
528 => 0.044197878444218
529 => 0.044827348430038
530 => 0.045244687681871
531 => 0.04510675706163
601 => 0.045403085405972
602 => 0.045421277559636
603 => 0.04532493819418
604 => 0.04521338955082
605 => 0.045159093840259
606 => 0.045563769583139
607 => 0.04579869747264
608 => 0.045286573259071
609 => 0.045166589721211
610 => 0.045684375576282
611 => 0.04600022464876
612 => 0.048332276739674
613 => 0.04815951078835
614 => 0.048593119422568
615 => 0.048544301744622
616 => 0.048998792672554
617 => 0.049741693257526
618 => 0.048231168650007
619 => 0.048493343491862
620 => 0.04842906427514
621 => 0.049130847908389
622 => 0.049133038800289
623 => 0.048712284455465
624 => 0.048940382211754
625 => 0.048813064301728
626 => 0.049043144973192
627 => 0.04815720339374
628 => 0.049236184606029
629 => 0.049847897425384
630 => 0.049856391058474
701 => 0.050146338079995
702 => 0.050440941046459
703 => 0.051006405786076
704 => 0.050425170541778
705 => 0.049379584919395
706 => 0.04945507282411
707 => 0.048842046356272
708 => 0.048852351441948
709 => 0.048797342086982
710 => 0.048962429302146
711 => 0.048193430753809
712 => 0.048373913176051
713 => 0.048121236728008
714 => 0.04849279422261
715 => 0.048093059779073
716 => 0.048429033277756
717 => 0.048574028302089
718 => 0.0491090630634
719 => 0.048014034709804
720 => 0.045781197769919
721 => 0.046250567165214
722 => 0.045556332961402
723 => 0.045620586980101
724 => 0.045750390323823
725 => 0.045329655217807
726 => 0.045409918217148
727 => 0.045407050658009
728 => 0.045382339582534
729 => 0.045272890131899
730 => 0.045114166774563
731 => 0.045746471777715
801 => 0.045853912719022
802 => 0.046092740622432
803 => 0.046803330464463
804 => 0.046732325782382
805 => 0.046848137364812
806 => 0.046595321330621
807 => 0.045632314390833
808 => 0.04568461030083
809 => 0.045032479465186
810 => 0.046076064170774
811 => 0.045828929537846
812 => 0.045669600232291
813 => 0.045626125755095
814 => 0.046338477011901
815 => 0.046551623672676
816 => 0.046418804977421
817 => 0.046146389958515
818 => 0.046669507327086
819 => 0.046809471466366
820 => 0.046840804275472
821 => 0.047767667954775
822 => 0.046892605658974
823 => 0.047103241850944
824 => 0.048746565291945
825 => 0.047256297694091
826 => 0.048045725677608
827 => 0.048007087285799
828 => 0.04841093192938
829 => 0.047973960237684
830 => 0.047979377025508
831 => 0.048337963710202
901 => 0.047834393382999
902 => 0.047709702288258
903 => 0.047537442433928
904 => 0.047913565523857
905 => 0.048139034305685
906 => 0.049956147098648
907 => 0.051130084833313
908 => 0.051079121100211
909 => 0.051544834220655
910 => 0.051335026194452
911 => 0.05065750073328
912 => 0.051813954080072
913 => 0.051448003853084
914 => 0.051478172345167
915 => 0.051477049472385
916 => 0.051720374381408
917 => 0.051547956382965
918 => 0.051208102809689
919 => 0.051433713471932
920 => 0.052103696481505
921 => 0.054183344300812
922 => 0.055347142772164
923 => 0.054113282171528
924 => 0.054964382691795
925 => 0.054454025657758
926 => 0.054361278602867
927 => 0.054895832625429
928 => 0.055431322314045
929 => 0.055397213935865
930 => 0.05500847591963
1001 => 0.054788887678121
1002 => 0.056451683410286
1003 => 0.05767680298076
1004 => 0.057593258039359
1005 => 0.05796199824043
1006 => 0.05904463087548
1007 => 0.059143613235635
1008 => 0.059131143733339
1009 => 0.058885805625954
1010 => 0.059951798052774
1011 => 0.060841067689579
1012 => 0.058829016942594
1013 => 0.059595179527367
1014 => 0.059939134595889
1015 => 0.060444162683349
1016 => 0.06129622971943
1017 => 0.062221800520233
1018 => 0.062352686379834
1019 => 0.062259816598982
1020 => 0.061649377775174
1021 => 0.062662148389768
1022 => 0.063255405663405
1023 => 0.063608676793403
1024 => 0.06450451360037
1025 => 0.059941258745296
1026 => 0.056711160150392
1027 => 0.056206733611609
1028 => 0.057232504813819
1029 => 0.05750299249947
1030 => 0.057393959252547
1031 => 0.053758189616267
1101 => 0.056187592036914
1102 => 0.058801424771573
1103 => 0.05890183273208
1104 => 0.060210372051716
1105 => 0.060636486093028
1106 => 0.061690031759504
1107 => 0.061624132191216
1108 => 0.06188065379543
1109 => 0.061821683920957
1110 => 0.063773155417889
1111 => 0.065925918275328
1112 => 0.065851374942942
1113 => 0.065541889811851
1114 => 0.066001528006577
1115 => 0.068223409979542
1116 => 0.068018854692404
1117 => 0.068217562729881
1118 => 0.070837286795786
1119 => 0.074243300732867
1120 => 0.072660865300885
1121 => 0.076094294854757
1122 => 0.078255456760639
1123 => 0.081992962808551
1124 => 0.081525008643747
1125 => 0.082979992321113
1126 => 0.080687273023767
1127 => 0.075422726082041
1128 => 0.074589591376637
1129 => 0.076257548155187
1130 => 0.08035805713841
1201 => 0.076128408534833
1202 => 0.076984060938631
1203 => 0.076737632988774
1204 => 0.076724501890578
1205 => 0.077225662500702
1206 => 0.076498702896937
1207 => 0.073536938693665
1208 => 0.074894297774238
1209 => 0.074370156247492
1210 => 0.074951730348756
1211 => 0.078090245913876
1212 => 0.07670263336967
1213 => 0.075240896274839
1214 => 0.077074238977186
1215 => 0.079408714242176
1216 => 0.079262626975549
1217 => 0.078979156618551
1218 => 0.080577064178924
1219 => 0.083216339325673
1220 => 0.083929724792373
1221 => 0.084456331359367
1222 => 0.084528941507865
1223 => 0.085276871164346
1224 => 0.081255064898903
1225 => 0.087637774729471
1226 => 0.08873989239841
1227 => 0.088532739954747
1228 => 0.08975769735957
1229 => 0.089397283816901
1230 => 0.088875101140726
1231 => 0.090816919183284
]
'min_raw' => 0.033475910431148
'max_raw' => 0.090816919183284
'avg_raw' => 0.062146414807216
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.033475'
'max' => '$0.090816'
'avg' => '$0.062146'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011544976360196
'max_diff' => 0.041857653797534
'year' => 2032
]
7 => [
'items' => [
101 => 0.088590781494127
102 => 0.085431059307311
103 => 0.083697573223405
104 => 0.085980367535026
105 => 0.08737439036259
106 => 0.088295750775106
107 => 0.088574553879233
108 => 0.081567266270675
109 => 0.077790726891651
110 => 0.080211445335494
111 => 0.083164888906044
112 => 0.081238658370746
113 => 0.081314162960893
114 => 0.078567864422037
115 => 0.083407875388548
116 => 0.082702726501627
117 => 0.086361040174361
118 => 0.085487954256561
119 => 0.088471167041757
120 => 0.087685587137067
121 => 0.090946485400253
122 => 0.092247346002734
123 => 0.094431693417085
124 => 0.096038508266975
125 => 0.096982060680301
126 => 0.096925413332581
127 => 0.10066423807012
128 => 0.098459583746982
129 => 0.095690018319987
130 => 0.09563992561928
131 => 0.097074322798966
201 => 0.10008042577994
202 => 0.10085986454589
203 => 0.10129546448306
204 => 0.10062832801594
205 => 0.098235333757165
206 => 0.097202050968983
207 => 0.098082437841598
208 => 0.097005800348897
209 => 0.098864378712426
210 => 0.10141660377647
211 => 0.10088957939334
212 => 0.10265134289024
213 => 0.10447458276661
214 => 0.10708189767664
215 => 0.10776354634272
216 => 0.10889028566696
217 => 0.1100500705462
218 => 0.11042256219233
219 => 0.11113376432216
220 => 0.11113001593588
221 => 0.11327327142356
222 => 0.11563734859757
223 => 0.11652973300224
224 => 0.11858172173443
225 => 0.11506776294082
226 => 0.11773314105122
227 => 0.12013737882555
228 => 0.11727094743591
301 => 0.12122165531367
302 => 0.12137505234807
303 => 0.12369116544611
304 => 0.12134334110766
305 => 0.11994921051001
306 => 0.12397401330804
307 => 0.1259214886019
308 => 0.12533489319431
309 => 0.12087087317875
310 => 0.11827262205887
311 => 0.11147249771293
312 => 0.11952753874421
313 => 0.12345091426177
314 => 0.12086071258398
315 => 0.12216705964722
316 => 0.12929406563983
317 => 0.13200756808235
318 => 0.13144317854312
319 => 0.13153855108461
320 => 0.13300270774904
321 => 0.13949558472493
322 => 0.13560490233727
323 => 0.13857918324155
324 => 0.14015673110861
325 => 0.14162204548524
326 => 0.13802369649361
327 => 0.13334229732575
328 => 0.13185950169752
329 => 0.12060316807442
330 => 0.12001722702555
331 => 0.119688320559
401 => 0.1176146118121
402 => 0.11598524477367
403 => 0.11468951161019
404 => 0.11128912085054
405 => 0.1124366529124
406 => 0.10701713975823
407 => 0.11048435221852
408 => 0.10183467836574
409 => 0.10903838377678
410 => 0.10511773443385
411 => 0.1077503450221
412 => 0.10774116009177
413 => 0.10289368932884
414 => 0.10009776935692
415 => 0.10187943838186
416 => 0.10378952900566
417 => 0.10409943478306
418 => 0.10657591713528
419 => 0.10726705012798
420 => 0.10517288489419
421 => 0.10165543310088
422 => 0.10247245692793
423 => 0.10008121239514
424 => 0.095890648329318
425 => 0.098900384601622
426 => 0.099928040893749
427 => 0.10038191245664
428 => 0.096260973987437
429 => 0.094966085650486
430 => 0.094276697965059
501 => 0.10112347169303
502 => 0.10149855341357
503 => 0.099579582300097
504 => 0.10825351369731
505 => 0.10629033588
506 => 0.10848368649218
507 => 0.10239832057927
508 => 0.10263078975217
509 => 0.099749880006685
510 => 0.1013629969617
511 => 0.10022289789108
512 => 0.10123267305287
513 => 0.10183792812138
514 => 0.10471836513793
515 => 0.1090712737406
516 => 0.10428812390176
517 => 0.10220403702102
518 => 0.10349699280048
519 => 0.10694030442492
520 => 0.11215709779583
521 => 0.1090686511225
522 => 0.1104392513109
523 => 0.1107386664783
524 => 0.1084613602419
525 => 0.11224106532508
526 => 0.11426663998542
527 => 0.11634446045332
528 => 0.11814857374639
529 => 0.11551453326619
530 => 0.11833333415487
531 => 0.11606187822393
601 => 0.11402414743509
602 => 0.11402723783155
603 => 0.11274893954121
604 => 0.11027207552773
605 => 0.10981530380173
606 => 0.11219148800428
607 => 0.11409696270925
608 => 0.11425390673256
609 => 0.11530887543605
610 => 0.11593319504774
611 => 0.12205237596362
612 => 0.12451356114851
613 => 0.12752305180474
614 => 0.12869541802094
615 => 0.13222382001516
616 => 0.12937434884203
617 => 0.12875784782971
618 => 0.12019909872324
619 => 0.12160059340995
620 => 0.12384452162751
621 => 0.12023610027306
622 => 0.12252481307835
623 => 0.12297665346768
624 => 0.12011348749621
625 => 0.12164282815167
626 => 0.11758135278867
627 => 0.10915980280478
628 => 0.11225044091764
629 => 0.11452619086624
630 => 0.11127841509164
701 => 0.11709992746134
702 => 0.11369912011537
703 => 0.11262122745424
704 => 0.10841598388669
705 => 0.1104006969759
706 => 0.11308504984742
707 => 0.11142643186234
708 => 0.11486831322412
709 => 0.11974293514864
710 => 0.12321688102081
711 => 0.12348356744872
712 => 0.12125005298921
713 => 0.12482927416467
714 => 0.12485534488341
715 => 0.12081796877594
716 => 0.11834509839033
717 => 0.11778325703575
718 => 0.11918684689497
719 => 0.12089106410104
720 => 0.1235781396429
721 => 0.12520188311598
722 => 0.12943574492675
723 => 0.13058130653842
724 => 0.13183993143706
725 => 0.13352184244718
726 => 0.13554140784797
727 => 0.13112271372497
728 => 0.13129827667995
729 => 0.12718364989359
730 => 0.1227865810752
731 => 0.12612340820599
801 => 0.1304858658
802 => 0.12948511320785
803 => 0.12937250809771
804 => 0.12956187865891
805 => 0.12880734388595
806 => 0.12539461107222
807 => 0.12368075801801
808 => 0.12589206570849
809 => 0.127067277332
810 => 0.12888992807084
811 => 0.12866524789579
812 => 0.13336020046064
813 => 0.13518451705934
814 => 0.13471777880649
815 => 0.13480366987769
816 => 0.13810650793893
817 => 0.14177994314348
818 => 0.14522059996501
819 => 0.14872058386352
820 => 0.14450121666717
821 => 0.14235888221925
822 => 0.14456922452198
823 => 0.14339638578333
824 => 0.15013586506215
825 => 0.15060249198498
826 => 0.15734148392273
827 => 0.1637375897359
828 => 0.15972031027279
829 => 0.16350842386426
830 => 0.16760557756287
831 => 0.17550965178672
901 => 0.17284783765681
902 => 0.17080892974925
903 => 0.16888217162853
904 => 0.1728914494135
905 => 0.1780493212341
906 => 0.17916027742277
907 => 0.18096045086635
908 => 0.17906778860516
909 => 0.18134729182885
910 => 0.18939493987295
911 => 0.18722039433288
912 => 0.18413219009034
913 => 0.19048503531683
914 => 0.19278410530823
915 => 0.2089201825402
916 => 0.22929264659367
917 => 0.22085831270272
918 => 0.21562284948236
919 => 0.21685330752599
920 => 0.22429264174689
921 => 0.22668191978598
922 => 0.22018703844221
923 => 0.22248114033292
924 => 0.23512186730186
925 => 0.24190321175762
926 => 0.23269323513063
927 => 0.20728327488973
928 => 0.18385413108708
929 => 0.19006859505164
930 => 0.18936406769532
1001 => 0.20294495186064
1002 => 0.18716853214092
1003 => 0.18743416658812
1004 => 0.20129588905557
1005 => 0.19759781915134
1006 => 0.19160741951949
1007 => 0.18389786763376
1008 => 0.16964604792575
1009 => 0.15702281376897
1010 => 0.18177988290762
1011 => 0.18071231306856
1012 => 0.1791663137366
1013 => 0.18260676795527
1014 => 0.19931263705115
1015 => 0.19892751269687
1016 => 0.1964775480471
1017 => 0.19833582464095
1018 => 0.19128165464796
1019 => 0.19309967487562
1020 => 0.183850419791
1021 => 0.18803146937226
1022 => 0.19159456681231
1023 => 0.19230991137596
1024 => 0.19392161920426
1025 => 0.18014975227412
1026 => 0.18633291620498
1027 => 0.18996494573025
1028 => 0.17355530420071
1029 => 0.18964057987823
1030 => 0.1799100147105
1031 => 0.17660731474439
1101 => 0.18105396515112
1102 => 0.17932110116311
1103 => 0.1778312864634
1104 => 0.1769999442627
1105 => 0.18026507356251
1106 => 0.180112751378
1107 => 0.17477036610922
1108 => 0.16780144230958
1109 => 0.17014044188387
1110 => 0.16929066141029
1111 => 0.16621094735019
1112 => 0.16828630278061
1113 => 0.15914748777841
1114 => 0.1434246315614
1115 => 0.15381163198247
1116 => 0.15341174376514
1117 => 0.15321010199248
1118 => 0.1610156457333
1119 => 0.16026532280715
1120 => 0.15890347934901
1121 => 0.16618593602711
1122 => 0.16352774137674
1123 => 0.17171967093976
1124 => 0.17711540557075
1125 => 0.1757468727346
1126 => 0.18082158723489
1127 => 0.17019432770995
1128 => 0.17372427703249
1129 => 0.17445179469556
1130 => 0.16609607164213
1201 => 0.16038808491727
1202 => 0.16000742727854
1203 => 0.15011056490665
1204 => 0.15539738890103
1205 => 0.16004957523244
1206 => 0.15782153900394
1207 => 0.15711620929469
1208 => 0.16071958581192
1209 => 0.16099959902814
1210 => 0.15461526802381
1211 => 0.15594277260508
1212 => 0.16147868738825
1213 => 0.15580328175624
1214 => 0.14477689568549
1215 => 0.14204219948823
1216 => 0.14167734060507
1217 => 0.13426062762661
1218 => 0.14222494496459
1219 => 0.13874830701613
1220 => 0.14973096463881
1221 => 0.14345772950591
1222 => 0.14318730287749
1223 => 0.14277851336566
1224 => 0.13639464212455
1225 => 0.13779230421017
1226 => 0.14243834585272
1227 => 0.14409610585219
1228 => 0.14392318790262
1229 => 0.14241557771404
1230 => 0.14310575393816
1231 => 0.14088245584693
]
'min_raw' => 0.077790726891651
'max_raw' => 0.24190321175762
'avg_raw' => 0.15984696932463
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.07779'
'max' => '$0.2419032'
'avg' => '$0.159846'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.044314816460503
'max_diff' => 0.15108629257433
'year' => 2033
]
8 => [
'items' => [
101 => 0.14009736301697
102 => 0.13761939408881
103 => 0.13397746432082
104 => 0.13448389699231
105 => 0.12726828115915
106 => 0.12333683069153
107 => 0.12224865701777
108 => 0.12079350570332
109 => 0.12241302023075
110 => 0.12724784022609
111 => 0.12141602154743
112 => 0.11141777747738
113 => 0.11201868898217
114 => 0.1133687587212
115 => 0.11085291269412
116 => 0.10847187556844
117 => 0.11054199416957
118 => 0.10630560635257
119 => 0.11388070594931
120 => 0.11367582073419
121 => 0.11649934942283
122 => 0.11826495985649
123 => 0.11419579943008
124 => 0.11317241658702
125 => 0.11375538196459
126 => 0.10412026284488
127 => 0.11571195463167
128 => 0.1158122000636
129 => 0.11495383781467
130 => 0.12112605583781
131 => 0.1341513610297
201 => 0.12925071727482
202 => 0.12735303989019
203 => 0.12374555379482
204 => 0.12855231482558
205 => 0.12818323057557
206 => 0.12651409162598
207 => 0.12550459118124
208 => 0.12736462670365
209 => 0.12527411219591
210 => 0.12489859834682
211 => 0.12262339298446
212 => 0.12181124818534
213 => 0.12120996850849
214 => 0.1205480186648
215 => 0.12200811507236
216 => 0.11869934452115
217 => 0.11470929159917
218 => 0.11437756187168
219 => 0.11529349681526
220 => 0.11488826378606
221 => 0.11437562177184
222 => 0.11339684855694
223 => 0.11310646745227
224 => 0.11405006516959
225 => 0.1129847983619
226 => 0.11455665756473
227 => 0.1141291988365
228 => 0.11174144912853
301 => 0.10876542893425
302 => 0.10873893611211
303 => 0.1080977574429
304 => 0.1072811200058
305 => 0.10705395015294
306 => 0.11036765455501
307 => 0.11722692349649
308 => 0.11588028487488
309 => 0.11685336928807
310 => 0.1216399815039
311 => 0.12316150158887
312 => 0.12208156267174
313 => 0.12060327567424
314 => 0.1206683127997
315 => 0.12572006697805
316 => 0.12603513868955
317 => 0.12683122325851
318 => 0.12785441690311
319 => 0.12225581697383
320 => 0.1204046192465
321 => 0.11952741906276
322 => 0.11682598201601
323 => 0.11973925026722
324 => 0.11804181361583
325 => 0.11827085581279
326 => 0.11812169178154
327 => 0.11820314542903
328 => 0.11387858855459
329 => 0.11545422978762
330 => 0.11283442063706
331 => 0.10932679027185
401 => 0.10931503146493
402 => 0.11017351902756
403 => 0.10966285703269
404 => 0.1082886787348
405 => 0.10848387427608
406 => 0.1067737559401
407 => 0.10869151360476
408 => 0.10874650803251
409 => 0.10800806687065
410 => 0.11096263715262
411 => 0.11217312700784
412 => 0.11168706921616
413 => 0.11213902389744
414 => 0.11593624378932
415 => 0.11655535631601
416 => 0.11683032520409
417 => 0.11646190332046
418 => 0.11220843010641
419 => 0.11239708973062
420 => 0.11101283058581
421 => 0.10984327747808
422 => 0.1098900534689
423 => 0.11049135579753
424 => 0.11311727833259
425 => 0.11864337750103
426 => 0.11885308892495
427 => 0.11910726528845
428 => 0.11807340227929
429 => 0.11776157930299
430 => 0.11817295429707
501 => 0.12024826659624
502 => 0.12558653327152
503 => 0.12369963329763
504 => 0.12216555424752
505 => 0.12351135515921
506 => 0.12330417965759
507 => 0.12155540992987
508 => 0.12150632778807
509 => 0.11814987956507
510 => 0.11690907707966
511 => 0.11587216965039
512 => 0.11473989380678
513 => 0.11406864273246
514 => 0.11509998946077
515 => 0.11533587066007
516 => 0.11308081301376
517 => 0.11277345698929
518 => 0.11461498574207
519 => 0.11380459759709
520 => 0.11463810190086
521 => 0.11483148204901
522 => 0.11480034339123
523 => 0.11395420509538
524 => 0.11449350841295
525 => 0.11321789529284
526 => 0.11183085761562
527 => 0.11094601399306
528 => 0.11017387057489
529 => 0.11060230062053
530 => 0.10907502573607
531 => 0.10858641976256
601 => 0.11431080458367
602 => 0.11853946919852
603 => 0.11847798274029
604 => 0.11810369973882
605 => 0.11754759111916
606 => 0.12020758378693
607 => 0.11928089552971
608 => 0.11995513866423
609 => 0.12012676183986
610 => 0.1206462135029
611 => 0.12083187282406
612 => 0.12027068140683
613 => 0.11838725446685
614 => 0.11369393360329
615 => 0.11150918007192
616 => 0.11078817501662
617 => 0.11081438218099
618 => 0.11009147159355
619 => 0.11030440116013
620 => 0.11001742337989
621 => 0.1094739568915
622 => 0.11056874309632
623 => 0.11069490700778
624 => 0.11043937082586
625 => 0.11049955884725
626 => 0.10838382840183
627 => 0.10854468279247
628 => 0.107649025105
629 => 0.10748110008591
630 => 0.10521695544582
701 => 0.10120569502289
702 => 0.10342832267966
703 => 0.10074370101902
704 => 0.099726994117477
705 => 0.10453992645901
706 => 0.10405684154189
707 => 0.10323001015573
708 => 0.10200695420885
709 => 0.10155331086102
710 => 0.098797117485685
711 => 0.09863426687735
712 => 0.10000031073765
713 => 0.099369928498821
714 => 0.098484633091082
715 => 0.095278182865209
716 => 0.091673071192141
717 => 0.091781886852627
718 => 0.092928605800342
719 => 0.096262845796945
720 => 0.094960100547335
721 => 0.094014943921463
722 => 0.093837944496741
723 => 0.096053462870531
724 => 0.099188885534892
725 => 0.10065995569788
726 => 0.099202169843424
727 => 0.097527543946587
728 => 0.097629470665458
729 => 0.098307543462134
730 => 0.098378799325631
731 => 0.097288790021114
801 => 0.09759562125557
802 => 0.097129516553195
803 => 0.094269032855088
804 => 0.094217295775681
805 => 0.093515286944634
806 => 0.093494030396226
807 => 0.092299738250307
808 => 0.092132648523341
809 => 0.089761308979266
810 => 0.091322131848253
811 => 0.090275213814615
812 => 0.088697261394924
813 => 0.088425221803003
814 => 0.088417043964372
815 => 0.09003724827569
816 => 0.091303198817547
817 => 0.090293425402035
818 => 0.090063519568958
819 => 0.092518312383511
820 => 0.092205917621925
821 => 0.091935385773123
822 => 0.098908142824915
823 => 0.093388661527404
824 => 0.09098185264071
825 => 0.088002969602816
826 => 0.088972908940787
827 => 0.089177289410671
828 => 0.082013612688561
829 => 0.07910730993458
830 => 0.078109976351123
831 => 0.077535996773616
901 => 0.077797566474668
902 => 0.075181553120772
903 => 0.076939557359458
904 => 0.074674310921088
905 => 0.074294534983946
906 => 0.078345076225936
907 => 0.07890868537684
908 => 0.076504153639445
909 => 0.07804825227318
910 => 0.077488340644011
911 => 0.074713142069623
912 => 0.07460714989706
913 => 0.073214652805378
914 => 0.071035664497466
915 => 0.070039808370688
916 => 0.069521157853443
917 => 0.069735163165155
918 => 0.069626955530883
919 => 0.068920827522791
920 => 0.069667429961743
921 => 0.067760169247649
922 => 0.067000682663453
923 => 0.066657640193326
924 => 0.064964836531737
925 => 0.067658839950531
926 => 0.068189592562194
927 => 0.06872139092046
928 => 0.073350332555005
929 => 0.073119083712197
930 => 0.075209460628432
1001 => 0.075128232425424
1002 => 0.074532023067053
1003 => 0.072016713855763
1004 => 0.073019271276307
1005 => 0.069933555367887
1006 => 0.072245583534762
1007 => 0.071190470432005
1008 => 0.071888848733371
1009 => 0.070633101577282
1010 => 0.071328083901991
1011 => 0.068315453696043
1012 => 0.06550230199858
1013 => 0.066634396362656
1014 => 0.067865112407102
1015 => 0.070533618372077
1016 => 0.068944278234034
1017 => 0.069515865047279
1018 => 0.067601144905387
1019 => 0.063650530339894
1020 => 0.063672890389299
1021 => 0.063065174407215
1022 => 0.062540019070708
1023 => 0.069126833067705
1024 => 0.068307658625058
1025 => 0.067002411361601
1026 => 0.068749536692203
1027 => 0.069211504360221
1028 => 0.06922465593028
1029 => 0.070499313471655
1030 => 0.071179598429982
1031 => 0.071299501602411
1101 => 0.073305202784564
1102 => 0.073977487364983
1103 => 0.076746532406455
1104 => 0.071121881004155
1105 => 0.071006045009929
1106 => 0.068774122328511
1107 => 0.067358601678655
1108 => 0.068871044238438
1109 => 0.070210861877407
1110 => 0.068815754197281
1111 => 0.068997925807975
1112 => 0.067125107731891
1113 => 0.06779455206981
1114 => 0.068371167717517
1115 => 0.068052794448754
1116 => 0.067576174255976
1117 => 0.070101012110091
1118 => 0.069958550863442
1119 => 0.072309737918965
1120 => 0.074142656363744
1121 => 0.077427573890152
1122 => 0.073999591204722
1123 => 0.073874661890668
1124 => 0.07509586597484
1125 => 0.073977300405001
1126 => 0.074684195233568
1127 => 0.077313682204718
1128 => 0.077369239120928
1129 => 0.076438589193382
1130 => 0.076381959060713
1201 => 0.076560700559493
1202 => 0.077607595100735
1203 => 0.077241777980205
1204 => 0.077665110813439
1205 => 0.0781944950037
1206 => 0.080384252468867
1207 => 0.080912195580329
1208 => 0.079629567526595
1209 => 0.07974537447887
1210 => 0.079265636377845
1211 => 0.078802215383357
1212 => 0.079843918101766
1213 => 0.081747650294376
1214 => 0.08173580727521
1215 => 0.08217743614063
1216 => 0.082452567265135
1217 => 0.081271503070465
1218 => 0.080502673708669
1219 => 0.080797491807865
1220 => 0.081268912368782
1221 => 0.080644616473607
1222 => 0.076791173006596
1223 => 0.077960061595566
1224 => 0.077765501378629
1225 => 0.077488423970381
1226 => 0.078663750485338
1227 => 0.078550387375742
1228 => 0.075154722122704
1229 => 0.075372101594995
1230 => 0.075167941688398
1231 => 0.0758276241138
]
'min_raw' => 0.062540019070708
'max_raw' => 0.14009736301697
'avg_raw' => 0.10131869104384
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.06254'
'max' => '$0.140097'
'avg' => '$0.101318'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.015250707820943
'max_diff' => -0.10180584874065
'year' => 2034
]
9 => [
'items' => [
101 => 0.073941675389136
102 => 0.074521780514784
103 => 0.074885617011443
104 => 0.075099919503099
105 => 0.075874127051553
106 => 0.075783282731612
107 => 0.075868480041075
108 => 0.077016425452218
109 => 0.082822339414487
110 => 0.083138342501426
111 => 0.081582227728639
112 => 0.082203864887361
113 => 0.081010457479717
114 => 0.081811599867603
115 => 0.082359721142584
116 => 0.079882866498603
117 => 0.07973620324124
118 => 0.078537870216706
119 => 0.079181786507039
120 => 0.0781572693899
121 => 0.078408650054358
122 => 0.07770576780156
123 => 0.078970815914137
124 => 0.0803853362726
125 => 0.08074269997625
126 => 0.079802629926695
127 => 0.079121957257183
128 => 0.077926920277036
129 => 0.079914293408157
130 => 0.080495461875795
131 => 0.079911240777607
201 => 0.079775863983674
202 => 0.079519325203791
203 => 0.079830289898563
204 => 0.080492296707508
205 => 0.080180106521756
206 => 0.080386313639529
207 => 0.079600464746436
208 => 0.081271894051858
209 => 0.083926526040235
210 => 0.083935061116154
211 => 0.08362286924758
212 => 0.083495127061227
213 => 0.08381545486377
214 => 0.083989219556116
215 => 0.085025100931468
216 => 0.086136642918556
217 => 0.09132372436853
218 => 0.089867212653819
219 => 0.094469499897092
220 => 0.098109311574316
221 => 0.099200731946641
222 => 0.098196676559399
223 => 0.09476185731765
224 => 0.094593328698979
225 => 0.099726398789431
226 => 0.098276071379374
227 => 0.098103559548851
228 => 0.096268325135427
301 => 0.097353175971965
302 => 0.097115903180213
303 => 0.096741356470649
304 => 0.098811176295399
305 => 0.10268569423324
306 => 0.10208181427763
307 => 0.10163104590395
308 => 0.099655910107188
309 => 0.10084538301939
310 => 0.10042183449821
311 => 0.10224166773574
312 => 0.10116363884007
313 => 0.098265083722806
314 => 0.098726688178993
315 => 0.098656917594059
316 => 0.10009279128799
317 => 0.099661777645648
318 => 0.098572755262871
319 => 0.10267245155214
320 => 0.10240624007883
321 => 0.10278366708357
322 => 0.10294982212338
323 => 0.10544523500991
324 => 0.10646752582521
325 => 0.10669960373801
326 => 0.10767070094574
327 => 0.10667544195483
328 => 0.11065718752609
329 => 0.11330481598969
330 => 0.11638017269587
331 => 0.12087409542156
401 => 0.12256385193752
402 => 0.12225861254734
403 => 0.12566585346952
404 => 0.13178858966798
405 => 0.12349619258877
406 => 0.13222810684869
407 => 0.1294636836088
408 => 0.12290928583687
409 => 0.12248725989163
410 => 0.1269259741609
411 => 0.13677061519974
412 => 0.1343046442765
413 => 0.13677464864476
414 => 0.13389325734718
415 => 0.13375017198298
416 => 0.13663470590082
417 => 0.1433745766276
418 => 0.14017271668558
419 => 0.13558206533043
420 => 0.13897173085263
421 => 0.13603528887857
422 => 0.12941866325265
423 => 0.13430275859501
424 => 0.1310369031306
425 => 0.13199005337754
426 => 0.13885439580439
427 => 0.1380284599628
428 => 0.13909729742142
429 => 0.1372108272833
430 => 0.13544856670525
501 => 0.13215917646914
502 => 0.1311853501852
503 => 0.13145448073549
504 => 0.13118521681747
505 => 0.12934483321142
506 => 0.12894740254692
507 => 0.12828500069425
508 => 0.12849030672651
509 => 0.12724479745099
510 => 0.12959533078924
511 => 0.13003161048965
512 => 0.13174213263502
513 => 0.1319197247186
514 => 0.13668350454569
515 => 0.134059694669
516 => 0.13581997286313
517 => 0.13566251701307
518 => 0.12305133951126
519 => 0.12478904850164
520 => 0.12749237836757
521 => 0.12627453192725
522 => 0.12455278199281
523 => 0.12316237660636
524 => 0.12105577026965
525 => 0.12402077823479
526 => 0.1279194484155
527 => 0.13201860142816
528 => 0.13694346518574
529 => 0.13584429292678
530 => 0.13192653452588
531 => 0.13210228230582
601 => 0.13318868592721
602 => 0.13178169452733
603 => 0.13136674529578
604 => 0.13313167827477
605 => 0.13314383239821
606 => 0.13152491875206
607 => 0.12972579249244
608 => 0.12971825408772
609 => 0.12939811694732
610 => 0.13395020903327
611 => 0.13645339941212
612 => 0.13674038615497
613 => 0.13643408291774
614 => 0.13655196687701
615 => 0.13509541554959
616 => 0.13842465995719
617 => 0.14147990385375
618 => 0.1406610332237
619 => 0.13943342973995
620 => 0.13845558443574
621 => 0.1404306839464
622 => 0.14034273587429
623 => 0.14145321896365
624 => 0.14140284103625
625 => 0.14102942734068
626 => 0.14066104655948
627 => 0.14212163471707
628 => 0.14170100878401
629 => 0.1412797295027
630 => 0.1404347894094
701 => 0.14054963080105
702 => 0.13932223928035
703 => 0.13875439180125
704 => 0.13021532817231
705 => 0.1279334113487
706 => 0.12865134883411
707 => 0.12888771249554
708 => 0.12789461936955
709 => 0.12931845980753
710 => 0.12909655578349
711 => 0.12995985453151
712 => 0.12942050295382
713 => 0.1294426381307
714 => 0.13102875611881
715 => 0.13148921291858
716 => 0.13125502087388
717 => 0.13141904095436
718 => 0.13519881448046
719 => 0.1346614515554
720 => 0.1343759882115
721 => 0.13445506350866
722 => 0.13542087668383
723 => 0.13569125164144
724 => 0.13454565394715
725 => 0.1350859244424
726 => 0.13738632764063
727 => 0.13819133856846
728 => 0.14076054702294
729 => 0.13966910160744
730 => 0.14167249690424
731 => 0.14783025103883
801 => 0.15274949112572
802 => 0.14822555464563
803 => 0.15725911260375
804 => 0.16429303326107
805 => 0.16402305967063
806 => 0.16279653290651
807 => 0.15478860124461
808 => 0.14741958313779
809 => 0.15358407968918
810 => 0.15359979425863
811 => 0.15307025853784
812 => 0.14978135765481
813 => 0.15295581191622
814 => 0.15320778856756
815 => 0.15306674864881
816 => 0.15054515605303
817 => 0.14669515022747
818 => 0.14744743215017
819 => 0.14867968528569
820 => 0.14634677302522
821 => 0.14560126620186
822 => 0.14698730522496
823 => 0.1514534117501
824 => 0.15060912018191
825 => 0.15058707231702
826 => 0.15419930968105
827 => 0.15161372729802
828 => 0.14745692083436
829 => 0.14640727238074
830 => 0.14268172749833
831 => 0.14525497461855
901 => 0.14534758120134
902 => 0.14393824005155
903 => 0.14757128110134
904 => 0.14753780198848
905 => 0.15098683375847
906 => 0.15758008710549
907 => 0.15563013765648
908 => 0.15336255860118
909 => 0.15360910731764
910 => 0.1563131382031
911 => 0.15467821940273
912 => 0.15526614760241
913 => 0.15631224830336
914 => 0.15694338682946
915 => 0.15351829619641
916 => 0.15271974372882
917 => 0.15108618563396
918 => 0.15066002081882
919 => 0.15199051980177
920 => 0.15163998032698
921 => 0.14533979797665
922 => 0.14468139386716
923 => 0.14470158618121
924 => 0.14304599774248
925 => 0.14052082798666
926 => 0.1471568233349
927 => 0.14662386003774
928 => 0.14603550980576
929 => 0.1461075793521
930 => 0.14898804001802
1001 => 0.14731722736503
1002 => 0.1517593566438
1003 => 0.15084618840671
1004 => 0.14990960085005
1005 => 0.14978013592056
1006 => 0.14941962961714
1007 => 0.14818331936422
1008 => 0.14669040044309
1009 => 0.14570464605694
1010 => 0.13440483406908
1011 => 0.13650201344604
1012 => 0.13891462715532
1013 => 0.13974745173983
1014 => 0.13832284765833
1015 => 0.14823957141642
1016 => 0.15005145240695
1017 => 0.14456314670056
1018 => 0.14353650878894
1019 => 0.14830687762699
1020 => 0.14542976206377
1021 => 0.14672532702572
1022 => 0.14392502421413
1023 => 0.1496150233344
1024 => 0.14957167507446
1025 => 0.14735813690222
1026 => 0.14922900420774
1027 => 0.14890389497362
1028 => 0.14640481582887
1029 => 0.14969424860082
1030 => 0.14969588011843
1031 => 0.14756539775412
1101 => 0.14507746077516
1102 => 0.14463267640577
1103 => 0.14429759113181
1104 => 0.14664291658943
1105 => 0.14874572806109
1106 => 0.15265853887867
1107 => 0.1536423124843
1108 => 0.1574820463606
1109 => 0.15519567179051
1110 => 0.15620919202393
1111 => 0.15730951160849
1112 => 0.15783704528024
1113 => 0.15697745747114
1114 => 0.16294214467855
1115 => 0.16344574703215
1116 => 0.16361460054517
1117 => 0.16160334157876
1118 => 0.16338981028195
1119 => 0.16255398073735
1120 => 0.16472857701226
1121 => 0.16506958147481
1122 => 0.16478076282662
1123 => 0.16488900302542
1124 => 0.15979919473682
1125 => 0.15953526132618
1126 => 0.15593651054422
1127 => 0.15740302808849
1128 => 0.15466144383149
1129 => 0.15553082844083
1130 => 0.15591404489283
1201 => 0.15571387436565
1202 => 0.1574859427901
1203 => 0.15597932261965
1204 => 0.15200310427857
1205 => 0.14802580261945
1206 => 0.14797587083696
1207 => 0.14692871751532
1208 => 0.14617181745947
1209 => 0.1463176232627
1210 => 0.14683146193103
1211 => 0.14614195222196
1212 => 0.14628909407742
1213 => 0.14873262927909
1214 => 0.14922266283729
1215 => 0.14755733733806
1216 => 0.14087081515331
1217 => 0.13922992583731
1218 => 0.1404093645374
1219 => 0.13984566880434
1220 => 0.11286636923205
1221 => 0.11920475547695
1222 => 0.11543870160149
1223 => 0.11717427249511
1224 => 0.11333010670318
1225 => 0.11516474410908
1226 => 0.11482595357044
1227 => 0.12501789108576
1228 => 0.12485875800001
1229 => 0.12493492658702
1230 => 0.12129920147269
1231 => 0.12709101030052
]
'min_raw' => 0.073941675389136
'max_raw' => 0.16506958147481
'avg_raw' => 0.11950562843197
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.073941'
'max' => '$0.165069'
'avg' => '$0.1195056'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.011401656318428
'max_diff' => 0.024972218457839
'year' => 2035
]
10 => [
'items' => [
101 => 0.12994426359581
102 => 0.12941620234773
103 => 0.12954910398724
104 => 0.12726541349627
105 => 0.12495703770288
106 => 0.12239669369151
107 => 0.12715349639654
108 => 0.12662462113707
109 => 0.12783767069899
110 => 0.13092279727648
111 => 0.13137709388427
112 => 0.13198767313216
113 => 0.13176882393579
114 => 0.13698269967098
115 => 0.13635126491719
116 => 0.13787284099765
117 => 0.13474284355788
118 => 0.13120095435271
119 => 0.13187415169753
120 => 0.13180931737971
121 => 0.13098390210053
122 => 0.13023875409329
123 => 0.1289982926054
124 => 0.13292329630686
125 => 0.13276394832448
126 => 0.13534360693747
127 => 0.13488762722015
128 => 0.13184248307078
129 => 0.13195124098981
130 => 0.13268269026252
131 => 0.13521424454693
201 => 0.13596578221991
202 => 0.13561764002619
203 => 0.1364416667756
204 => 0.13709294392007
205 => 0.13652345715771
206 => 0.14458618877138
207 => 0.1412379804737
208 => 0.1428698739013
209 => 0.14325907086811
210 => 0.14226215102156
211 => 0.14247834723925
212 => 0.14280582559912
213 => 0.14479421007337
214 => 0.1500123062775
215 => 0.15232336556552
216 => 0.1592763014592
217 => 0.15213146426315
218 => 0.15170751919221
219 => 0.15295995290521
220 => 0.15704206231781
221 => 0.16035022858369
222 => 0.16144773818677
223 => 0.16159279219872
224 => 0.16365179317516
225 => 0.16483197413676
226 => 0.16340177629952
227 => 0.16218983338041
228 => 0.15784880427607
229 => 0.15835129021512
301 => 0.1618129200439
302 => 0.16670267606603
303 => 0.17089859542542
304 => 0.16942933070832
305 => 0.18063878336059
306 => 0.18175015480455
307 => 0.18159659920594
308 => 0.18412846874953
309 => 0.17910322331176
310 => 0.17695483352756
311 => 0.16245186919566
312 => 0.1665266106047
313 => 0.17244948654391
314 => 0.17166557170371
315 => 0.16736422087773
316 => 0.17089533246511
317 => 0.16972783654625
318 => 0.1688069840756
319 => 0.17302558775969
320 => 0.16838705971834
321 => 0.1724032136784
322 => 0.16725245468283
323 => 0.16943604218578
324 => 0.16819653231086
325 => 0.16899864710855
326 => 0.16430950039116
327 => 0.16683965013726
328 => 0.16420423784336
329 => 0.1642029883148
330 => 0.16414481144234
331 => 0.16724536231891
401 => 0.16734647117168
402 => 0.16505515938922
403 => 0.16472494556435
404 => 0.16594591914697
405 => 0.16451647885521
406 => 0.16518530497094
407 => 0.16453673691692
408 => 0.16439073058702
409 => 0.16322732730951
410 => 0.16272610118911
411 => 0.16292264486593
412 => 0.16225173997176
413 => 0.16184749550533
414 => 0.16406439704328
415 => 0.16287999598111
416 => 0.1638828705938
417 => 0.16273996839977
418 => 0.15877817145647
419 => 0.15649970013914
420 => 0.14901623297201
421 => 0.1511385349774
422 => 0.15254562340265
423 => 0.1520805806865
424 => 0.15307967238843
425 => 0.15314100850464
426 => 0.15281619360781
427 => 0.15244009956864
428 => 0.15225703778968
429 => 0.15362143031036
430 => 0.15441350609195
501 => 0.15268684355054
502 => 0.15228231067566
503 => 0.15402806183668
504 => 0.15509296903642
505 => 0.16295564547961
506 => 0.16237315301259
507 => 0.16383509479644
508 => 0.16367050258691
509 => 0.16520285048197
510 => 0.16770759167187
511 => 0.16261475249616
512 => 0.16349869327994
513 => 0.16328197141293
514 => 0.16564808392939
515 => 0.1656554706744
516 => 0.16423686802469
517 => 0.1650059155353
518 => 0.16457665431259
519 => 0.16535238736016
520 => 0.16236537347057
521 => 0.16600323395986
522 => 0.16806566643874
523 => 0.16809430331571
524 => 0.16907187994222
525 => 0.17006515441218
526 => 0.17197165826129
527 => 0.17001198305459
528 => 0.16648671812826
529 => 0.16674123086941
530 => 0.16467436933295
531 => 0.16470911364879
601 => 0.16452364576789
602 => 0.16508024883984
603 => 0.16248751654435
604 => 0.16309602563182
605 => 0.16224410934594
606 => 0.16349684138031
607 => 0.16214910879535
608 => 0.16328186690308
609 => 0.16377072775085
610 => 0.16557463480354
611 => 0.16188267025696
612 => 0.15435450462244
613 => 0.155937016309
614 => 0.15359635722096
615 => 0.15381299413108
616 => 0.15425063516702
617 => 0.1528320973823
618 => 0.15310270968836
619 => 0.15309304151252
620 => 0.15300972639628
621 => 0.15264070993195
622 => 0.15210556305098
623 => 0.15423742351523
624 => 0.15459966815014
625 => 0.15540489310091
626 => 0.15780069636512
627 => 0.15756129912209
628 => 0.15795176595797
629 => 0.15709937904764
630 => 0.15385253391514
701 => 0.15402885322688
702 => 0.15183014858419
703 => 0.15534866727984
704 => 0.15451543561053
705 => 0.15397824573284
706 => 0.15383166849768
707 => 0.15623341049478
708 => 0.156952049343
709 => 0.15650424183885
710 => 0.15558577558319
711 => 0.15734950231422
712 => 0.15782140118179
713 => 0.15792704193527
714 => 0.1610520275416
715 => 0.15810169391641
716 => 0.15881186854379
717 => 0.1643524482583
718 => 0.15932790700497
719 => 0.1619895185675
720 => 0.16185924653187
721 => 0.16322083694324
722 => 0.16174755637629
723 => 0.16176581945463
724 => 0.1629748194978
725 => 0.16127699698148
726 => 0.1608565922499
727 => 0.16027580612423
728 => 0.161543931382
729 => 0.16230411512166
730 => 0.1684306377699
731 => 0.17238865080404
801 => 0.17221682301971
802 => 0.17378700732034
803 => 0.17307962491167
804 => 0.17079530051601
805 => 0.17469436371572
806 => 0.1734605369756
807 => 0.17356225215295
808 => 0.17355846630897
809 => 0.17437885322814
810 => 0.17379753390855
811 => 0.17265169385843
812 => 0.17341235595782
813 => 0.17567125045132
814 => 0.18268292827048
815 => 0.18660675607046
816 => 0.18244670891002
817 => 0.18531625373604
818 => 0.18359554936379
819 => 0.18328284619284
820 => 0.18508513240127
821 => 0.18689057327314
822 => 0.18677557449474
823 => 0.18546491713218
824 => 0.18472456004477
825 => 0.19033079194845
826 => 0.19446136811542
827 => 0.19417969051257
828 => 0.1954229238451
829 => 0.19907309536117
830 => 0.19940682129916
831 => 0.19936477950157
901 => 0.19853760494356
902 => 0.2021316728358
903 => 0.20512990750311
904 => 0.19834613793276
905 => 0.20092930857908
906 => 0.20208897710678
907 => 0.20379171456359
908 => 0.20666451806515
909 => 0.20978514464135
910 => 0.21022643545515
911 => 0.20991331850505
912 => 0.2078551813911
913 => 0.2112698082276
914 => 0.21327001654556
915 => 0.21446109482495
916 => 0.21748147116497
917 => 0.20209613882481
918 => 0.19120563589381
919 => 0.18950492660037
920 => 0.19296338582567
921 => 0.19387535394269
922 => 0.19350774073823
923 => 0.18124948956819
924 => 0.18944038944486
925 => 0.19825310900174
926 => 0.19859164145085
927 => 0.20300347312629
928 => 0.20444014636691
929 => 0.20799224913764
930 => 0.2077700641422
1001 => 0.20863494464058
1002 => 0.20843612359164
1003 => 0.21501564599094
1004 => 0.2222738362659
1005 => 0.22202250821631
1006 => 0.22097905748927
1007 => 0.22252875975371
1008 => 0.2300199899524
1009 => 0.22933031752022
1010 => 0.23000027554193
1011 => 0.23883285813342
1012 => 0.25031647192259
1013 => 0.24498118038155
1014 => 0.25655722783682
1015 => 0.26384373609001
1016 => 0.27644499867489
1017 => 0.27486725853673
1018 => 0.27977283758869
1019 => 0.27204277440514
1020 => 0.25429298683218
1021 => 0.2514840150053
1022 => 0.25710764773721
1023 => 0.27093280006254
1024 => 0.25667224449094
1025 => 0.25955713631009
1026 => 0.2587262872721
1027 => 0.25868201485774
1028 => 0.26037171284469
1029 => 0.2579207177859
1030 => 0.2479349229908
1031 => 0.25251135389874
1101 => 0.25074417414692
1102 => 0.25270499183354
1103 => 0.2632867161855
1104 => 0.25860828361269
1105 => 0.25367993494224
1106 => 0.25986117786311
1107 => 0.26773202420688
1108 => 0.26723948078796
1109 => 0.26628374068807
1110 => 0.27167119759021
1111 => 0.28056969801578
1112 => 0.28297492692375
1113 => 0.28475041773086
1114 => 0.284995227916
1115 => 0.28751692497161
1116 => 0.27395712435412
1117 => 0.29547687617445
1118 => 0.29919274284268
1119 => 0.29849431391594
1120 => 0.3026243433301
1121 => 0.30140918390772
1122 => 0.29964860855737
1123 => 0.30619558366126
1124 => 0.2986900050183
1125 => 0.28803678106069
1126 => 0.28219221170066
1127 => 0.2898888121019
1128 => 0.2945888573926
1129 => 0.29769528835073
1130 => 0.2986352924817
1201 => 0.27500973307625
1202 => 0.26227686689031
1203 => 0.27043848813289
1204 => 0.28039622933385
1205 => 0.27390180859897
1206 => 0.27415637759621
1207 => 0.26489704033202
1208 => 0.28121547522439
1209 => 0.27883801652021
1210 => 0.29117227648314
1211 => 0.28822860635436
1212 => 0.29828671654092
1213 => 0.29563807904482
1214 => 0.30663242520779
1215 => 0.31101836755224
1216 => 0.318383047366
1217 => 0.32380053581663
1218 => 0.32698178865488
1219 => 0.32679079816706
1220 => 0.33939650680609
1221 => 0.33196336083157
1222 => 0.32262557762957
1223 => 0.32245668659177
1224 => 0.3272928568295
1225 => 0.33742814290926
1226 => 0.34005607512733
1227 => 0.34152473072812
1228 => 0.33927543355124
1229 => 0.33120728633426
1230 => 0.32772350127241
1231 => 0.33069178708008
]
'min_raw' => 0.12239669369151
'max_raw' => 0.34152473072812
'avg_raw' => 0.23196071220982
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.122396'
'max' => '$0.341524'
'avg' => '$0.23196'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.048455018302377
'max_diff' => 0.17645514925331
'year' => 2036
]
11 => [
'items' => [
101 => 0.32706182860501
102 => 0.33332815531944
103 => 0.34193316031353
104 => 0.34015626081013
105 => 0.34609616944233
106 => 0.35224334998006
107 => 0.36103409423615
108 => 0.36333232030501
109 => 0.36713120060313
110 => 0.37104149629706
111 => 0.37229737788853
112 => 0.37469524552381
113 => 0.37468260757776
114 => 0.38190874309179
115 => 0.38987939433855
116 => 0.39288813066321
117 => 0.39980655393906
118 => 0.38795899652963
119 => 0.39694550491961
120 => 0.40505156043427
121 => 0.39538718687625
122 => 0.40870727431574
123 => 0.40922446312705
124 => 0.41703340014296
125 => 0.40911754646602
126 => 0.40441713782095
127 => 0.41798704145725
128 => 0.42455309037889
129 => 0.42257534300742
130 => 0.40752458785703
131 => 0.39876440280226
201 => 0.3758373088004
202 => 0.40299544202235
203 => 0.41622337650116
204 => 0.40749033070237
205 => 0.41189477103234
206 => 0.43592396932809
207 => 0.44507273226375
208 => 0.44316985352781
209 => 0.44349140871013
210 => 0.44842791512842
211 => 0.47031910317083
212 => 0.45720139586205
213 => 0.46722939158849
214 => 0.47254820436317
215 => 0.47748861408895
216 => 0.46535652923497
217 => 0.44957286509566
218 => 0.4445735161096
219 => 0.4066220014072
220 => 0.40464646025186
221 => 0.40353752913635
222 => 0.39654587531446
223 => 0.39105235058562
224 => 0.38668369575975
225 => 0.37521904090589
226 => 0.3790880253706
227 => 0.36081575839298
228 => 0.37250570727588
301 => 0.3433427279803
302 => 0.36763052372027
303 => 0.35441178072956
304 => 0.36328781113087
305 => 0.36325684349697
306 => 0.34691325738017
307 => 0.33748661798994
308 => 0.34349363949969
309 => 0.3499336433961
310 => 0.35097851236152
311 => 0.35932814551452
312 => 0.36165834865275
313 => 0.35459772435711
314 => 0.34273839005531
315 => 0.345493042931
316 => 0.33743079503733
317 => 0.32330201571357
318 => 0.33344955168872
319 => 0.3369143666263
320 => 0.33844462628888
321 => 0.32455059452523
322 => 0.32018478809098
323 => 0.31786046937806
324 => 0.3409448450284
325 => 0.34220945923656
326 => 0.33573951414919
327 => 0.36498427944945
328 => 0.35836528837368
329 => 0.3657603230975
330 => 0.34524308705544
331 => 0.34602687310237
401 => 0.33631368475676
402 => 0.34175242119482
403 => 0.33790849757906
404 => 0.34131302503727
405 => 0.34335368475832
406 => 0.3530652792653
407 => 0.36774141452959
408 => 0.35161469089909
409 => 0.34458804647435
410 => 0.34894733715611
411 => 0.36055670270225
412 => 0.37814548577714
413 => 0.36773257218956
414 => 0.37235364641699
415 => 0.3733631455584
416 => 0.36568504858593
417 => 0.37842858816444
418 => 0.3852579545529
419 => 0.3922634713292
420 => 0.39834616525594
421 => 0.38946531387413
422 => 0.39896909787271
423 => 0.39131072561357
424 => 0.38444037398915
425 => 0.3844507934766
426 => 0.38014092154278
427 => 0.37179000159219
428 => 0.37024996382721
429 => 0.378261434766
430 => 0.38468587576979
501 => 0.38521502350186
502 => 0.38877192414125
503 => 0.39087686130066
504 => 0.41150810698612
505 => 0.41980616467143
506 => 0.42995287253484
507 => 0.43390558708476
508 => 0.44580184075341
509 => 0.43619464974949
510 => 0.43411607354372
511 => 0.40525965337849
512 => 0.40998489056398
513 => 0.41755045121552
514 => 0.40538440668706
515 => 0.41310096170293
516 => 0.41462437312205
517 => 0.40497100914938
518 => 0.41012728794442
519 => 0.39643374019491
520 => 0.36803989645038
521 => 0.37846019862934
522 => 0.38613304846885
523 => 0.37518294569231
524 => 0.39481058109175
525 => 0.38334452168803
526 => 0.37971033132497
527 => 0.36553205903625
528 => 0.37222365778478
529 => 0.38127414090663
530 => 0.37568199456892
531 => 0.38728653788466
601 => 0.40372166603841
602 => 0.41543431708957
603 => 0.41633346900071
604 => 0.40880301906149
605 => 0.42087061314778
606 => 0.42095851239621
607 => 0.4073462169693
608 => 0.3990087618139
609 => 0.39711447446044
610 => 0.4018467756663
611 => 0.40759266296121
612 => 0.41665232575624
613 => 0.42212689024185
614 => 0.43640165093567
615 => 0.44026399188995
616 => 0.4445075336101
617 => 0.45017821400802
618 => 0.45698731975834
619 => 0.44208938401926
620 => 0.4426813067794
621 => 0.42880855529512
622 => 0.41398353078037
623 => 0.42523387642167
624 => 0.43994220677691
625 => 0.43656809954216
626 => 0.43618844355149
627 => 0.43682691962
628 => 0.43428295295304
629 => 0.42277668600217
630 => 0.41699831077248
701 => 0.42445388903952
702 => 0.42841619707884
703 => 0.43456139129824
704 => 0.43380386640139
705 => 0.4496332267649
706 => 0.45578403754715
707 => 0.45421039694102
708 => 0.45449998468433
709 => 0.46563573380458
710 => 0.47802097706777
711 => 0.48962139176055
712 => 0.50142183183544
713 => 0.48719594074614
714 => 0.47997291058198
715 => 0.48742523397677
716 => 0.48347092628445
717 => 0.5061935512084
718 => 0.50776681645756
719 => 0.5304877982771
720 => 0.55205271558803
721 => 0.53850817740066
722 => 0.55128006685195
723 => 0.56509390660095
724 => 0.5917430446915
725 => 0.58276855251059
726 => 0.57589423214823
727 => 0.56939803262227
728 => 0.58291559259315
729 => 0.60030571754739
730 => 0.60405138390199
731 => 0.61012079435111
801 => 0.60373955139606
802 => 0.61142505566457
803 => 0.63855826291409
804 => 0.63122663080383
805 => 0.62081453458857
806 => 0.64223359581115
807 => 0.6499850708031
808 => 0.70438898177564
809 => 0.77307616669193
810 => 0.74463922111221
811 => 0.72698749133638
812 => 0.73113606653833
813 => 0.75621830126181
814 => 0.76427391898466
815 => 0.74237597307601
816 => 0.75011069776962
817 => 0.79272979129277
818 => 0.81559356758371
819 => 0.78454148836578
820 => 0.69887003334684
821 => 0.6198770392456
822 => 0.64082953838213
823 => 0.63845417521179
824 => 0.68424307436222
825 => 0.63105177380273
826 => 0.63194737888746
827 => 0.67868314398103
828 => 0.66621484310792
829 => 0.6460177925128
830 => 0.62002450006634
831 => 0.57197349489051
901 => 0.52941337960486
902 => 0.61288356668919
903 => 0.60928418044143
904 => 0.60407173575551
905 => 0.61567146735859
906 => 0.6719964713819
907 => 0.67069799773292
908 => 0.66243777086516
909 => 0.66870308014205
910 => 0.64491945350424
911 => 0.65104903563191
912 => 0.61986452635175
913 => 0.63396122692653
914 => 0.64597445871318
915 => 0.64838629285329
916 => 0.65382027832225
917 => 0.60738746744623
918 => 0.62823443633386
919 => 0.64048007745852
920 => 0.58515382535709
921 => 0.63938645534193
922 => 0.60657917551256
923 => 0.59544389198967
924 => 0.6104360842912
925 => 0.6045936123709
926 => 0.5995705980953
927 => 0.59676766982317
928 => 0.60777628122153
929 => 0.60726271634166
930 => 0.58925049141455
1001 => 0.56575427826934
1002 => 0.57364037863778
1003 => 0.57077528444134
1004 => 0.56039181346894
1005 => 0.56738901919927
1006 => 0.53657686636768
1007 => 0.48356615889727
1008 => 0.51858665601411
1009 => 0.51723840497008
1010 => 0.51655855565536
1011 => 0.54287549134322
1012 => 0.54034572521184
1013 => 0.53575417491185
1014 => 0.56030748604695
1015 => 0.551345197194
1016 => 0.57896485965796
1017 => 0.5971569556845
1018 => 0.59254285167951
1019 => 0.6096526059225
1020 => 0.57382205846259
1021 => 0.58572352905672
1022 => 0.58817640565144
1023 => 0.56000450199885
1024 => 0.54075962623708
1025 => 0.53947621243142
1026 => 0.50610824996774
1027 => 0.52393314617906
1028 => 0.53961831720069
1029 => 0.53210633749977
1030 => 0.52972826914047
1031 => 0.54187730464804
1101 => 0.54282138875643
1102 => 0.52129617103557
1103 => 0.52577194541473
1104 => 0.5444366686114
1105 => 0.52530164227892
1106 => 0.48812541180371
1107 => 0.47890519264426
1108 => 0.47767504544603
1109 => 0.4526690798208
1110 => 0.47952133177669
1111 => 0.46779960420233
1112 => 0.50482840116187
1113 => 0.483677750928
1114 => 0.48276598866969
1115 => 0.4813877262898
1116 => 0.45986405869273
1117 => 0.46457637399606
1118 => 0.48024082777019
1119 => 0.4858300813495
1120 => 0.48524707640978
1121 => 0.48016406340098
1122 => 0.48249104072717
1123 => 0.47499503598688
1124 => 0.47234804069723
1125 => 0.4639933954497
1126 => 0.45171437496549
1127 => 0.45342184807543
1128 => 0.42909389551572
1129 => 0.41583873577902
1130 => 0.4121698822641
1201 => 0.407263738012
1202 => 0.41272404431212
1203 => 0.42902497748276
1204 => 0.40936259364308
1205 => 0.37565281570581
1206 => 0.3776788307985
1207 => 0.38223068518251
1208 => 0.37374833465144
1209 => 0.3657205017435
1210 => 0.37270005113828
1211 => 0.35841677383811
1212 => 0.38395675100508
1213 => 0.38326596619767
1214 => 0.39278569030392
1215 => 0.39873856915196
1216 => 0.38501911067464
1217 => 0.38156870396895
1218 => 0.38353421244075
1219 => 0.35104873562611
1220 => 0.39013093379137
1221 => 0.39046891826403
1222 => 0.38757489001282
1223 => 0.40838495400832
1224 => 0.45230067986057
1225 => 0.43577781728898
1226 => 0.42937966549509
1227 => 0.41721677425789
1228 => 0.43342310467044
1229 => 0.43217871135289
1230 => 0.4265510928488
1231 => 0.42314749161828
]
'min_raw' => 0.31786046937806
'max_raw' => 0.81559356758371
'avg_raw' => 0.56672701848088
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.31786'
'max' => '$0.815593'
'avg' => '$0.566727'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19546377568654
'max_diff' => 0.47406883685559
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0099772769227543
]
1 => [
'year' => 2028
'avg' => 0.017123903623633
]
2 => [
'year' => 2029
'avg' => 0.046779418416415
]
3 => [
'year' => 2030
'avg' => 0.036090251642264
]
4 => [
'year' => 2031
'avg' => 0.035445099728351
]
5 => [
'year' => 2032
'avg' => 0.062146414807216
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0099772769227543
'min' => '$0.009977'
'max_raw' => 0.062146414807216
'max' => '$0.062146'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.062146414807216
]
1 => [
'year' => 2033
'avg' => 0.15984696932463
]
2 => [
'year' => 2034
'avg' => 0.10131869104384
]
3 => [
'year' => 2035
'avg' => 0.11950562843197
]
4 => [
'year' => 2036
'avg' => 0.23196071220982
]
5 => [
'year' => 2037
'avg' => 0.56672701848088
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.062146414807216
'min' => '$0.062146'
'max_raw' => 0.56672701848088
'max' => '$0.566727'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.56672701848088
]
]
]
]
'prediction_2025_max_price' => '$0.017059'
'last_price' => 0.01654117
'sma_50day_nextmonth' => '$0.015067'
'sma_200day_nextmonth' => '$0.022054'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.015047'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.014781'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015067'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.014855'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.01906'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.027927'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.021149'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.015471'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.015185'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.015047'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015713'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.019253'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.022183'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022448'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.025684'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.01624'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.015934'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0169054'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.019935'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.021631'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023311'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.015718'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.007859'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '50.97'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 102.75
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.015036'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014741'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 212.57
'cci_20_action' => 'SELL'
'adx_14' => 37.39
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001994'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 59.48
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.011675'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 12
'buy_signals' => 20
'sell_pct' => 37.5
'buy_pct' => 62.5
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767709648
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de DeBox pour 2026
La prévision du prix de DeBox pour 2026 suggère que le prix moyen pourrait varier entre $0.005714 à la baisse et $0.017059 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, DeBox pourrait potentiellement gagner 3.13% d'ici 2026 si BOX atteint l'objectif de prix prévu.
Prévision du prix de DeBox de 2027 à 2032
La prévision du prix de BOX pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.009977 à la baisse et $0.062146 à la hausse. Compte tenu de la volatilité des prix sur le marché, si DeBox atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de DeBox | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.0055016 | $0.009977 | $0.014452 |
| 2028 | $0.009928 | $0.017123 | $0.024318 |
| 2029 | $0.02181 | $0.046779 | $0.071747 |
| 2030 | $0.018549 | $0.03609 | $0.053631 |
| 2031 | $0.02193 | $0.035445 | $0.048959 |
| 2032 | $0.033475 | $0.062146 | $0.090816 |
Prévision du prix de DeBox de 2032 à 2037
La prévision du prix de DeBox pour 2032-2037 est actuellement estimée entre $0.062146 à la baisse et $0.566727 à la hausse. Par rapport au prix actuel, DeBox pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de DeBox | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.033475 | $0.062146 | $0.090816 |
| 2033 | $0.07779 | $0.159846 | $0.2419032 |
| 2034 | $0.06254 | $0.101318 | $0.140097 |
| 2035 | $0.073941 | $0.1195056 | $0.165069 |
| 2036 | $0.122396 | $0.23196 | $0.341524 |
| 2037 | $0.31786 | $0.566727 | $0.815593 |
DeBox Histogramme des prix potentiels
Prévision du prix de DeBox basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour DeBox est Haussier, avec 20 indicateurs techniques montrant des signaux haussiers et 12 indiquant des signaux baissiers. La prévision du prix de BOX a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de DeBox et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de DeBox devrait augmenter au cours du prochain mois, atteignant $0.022054 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour DeBox devrait atteindre $0.015067 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 50.97, ce qui suggère que le marché de BOX est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de BOX pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.015047 | BUY |
| SMA 5 | $0.014781 | BUY |
| SMA 10 | $0.015067 | BUY |
| SMA 21 | $0.014855 | BUY |
| SMA 50 | $0.01906 | SELL |
| SMA 100 | $0.027927 | SELL |
| SMA 200 | $0.021149 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.015471 | BUY |
| EMA 5 | $0.015185 | BUY |
| EMA 10 | $0.015047 | BUY |
| EMA 21 | $0.015713 | BUY |
| EMA 50 | $0.019253 | SELL |
| EMA 100 | $0.022183 | SELL |
| EMA 200 | $0.022448 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.025684 | SELL |
| SMA 50 | $0.01624 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.021631 | SELL |
| EMA 50 | $0.023311 | SELL |
| EMA 100 | $0.015718 | BUY |
| EMA 200 | $0.007859 | BUY |
Oscillateurs de DeBox
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 50.97 | NEUTRAL |
| Stoch RSI (14) | 102.75 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 212.57 | SELL |
| Indice Directionnel Moyen (14) | 37.39 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.001994 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 59.48 | NEUTRAL |
| VWMA (10) | 0.015036 | BUY |
| Moyenne Mobile de Hull (9) | 0.014741 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.011675 | SELL |
Prévision du cours de DeBox basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de DeBox
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de DeBox par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.023243 | $0.03266 | $0.045893 | $0.064487 | $0.090616 | $0.12733 |
| Action Amazon.com | $0.034514 | $0.072015 | $0.150265 | $0.313537 | $0.654214 | $1.36 |
| Action Apple | $0.023462 | $0.033279 | $0.0472045 | $0.066956 | $0.094972 | $0.13471 |
| Action Netflix | $0.026099 | $0.04118 | $0.064976 | $0.102523 | $0.161765 | $0.25524 |
| Action Google | $0.02142 | $0.027739 | $0.035922 | $0.046519 | $0.060243 | $0.078014 |
| Action Tesla | $0.037497 | $0.0850041 | $0.192698 | $0.436831 | $0.990264 | $2.24 |
| Action Kodak | $0.0124041 | $0.0093017 | $0.006975 | $0.00523 | $0.003922 | $0.002941 |
| Action Nokia | $0.010957 | $0.007259 | $0.0048088 | $0.003185 | $0.00211 | $0.001398 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à DeBox
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans DeBox maintenant ?", "Devrais-je acheter BOX aujourd'hui ?", " DeBox sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de DeBox avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme DeBox en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de DeBox afin de prendre une décision responsable concernant cet investissement.
Le cours de DeBox est de $0.01654 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de DeBox basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DeBox présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.016971 | $0.017412 | $0.017864 | $0.018329 |
| Si DeBox présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.017401 | $0.0183057 | $0.019257 | $0.020258 |
| Si DeBox présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.01869 | $0.02112 | $0.023865 | $0.026966 |
| Si DeBox présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.02084 | $0.026257 | $0.033083 | $0.041682 |
| Si DeBox présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.02514 | $0.0382098 | $0.058073 | $0.088264 |
| Si DeBox présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.038039 | $0.087476 | $0.201167 | $0.462616 |
| Si DeBox présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.059536 | $0.214292 | $0.7713083 | $2.77 |
Boîte à questions
Est-ce que BOX est un bon investissement ?
La décision d'acquérir DeBox dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de DeBox a connu une hausse de 8.5994% au cours des 24 heures précédentes, et DeBox a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans DeBox dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que DeBox peut monter ?
Il semble que la valeur moyenne de DeBox pourrait potentiellement s'envoler jusqu'à $0.017059 pour la fin de cette année. En regardant les perspectives de DeBox sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.053631. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de DeBox la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de DeBox, le prix de DeBox va augmenter de 0.86% durant la prochaine semaine et atteindre $0.016682 d'ici 13 janvier 2026.
Quel sera le prix de DeBox le mois prochain ?
Basé sur notre nouveau pronostic expérimental de DeBox, le prix de DeBox va diminuer de -11.62% durant le prochain mois et atteindre $0.014619 d'ici 5 février 2026.
Jusqu'où le prix de DeBox peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de DeBox en 2026, BOX devrait fluctuer dans la fourchette de $0.005714 et $0.017059. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de DeBox ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera DeBox dans 5 ans ?
L'avenir de DeBox semble suivre une tendance haussière, avec un prix maximum de $0.053631 prévue après une période de cinq ans. Selon la prévision de DeBox pour 2030, la valeur de DeBox pourrait potentiellement atteindre son point le plus élevé d'environ $0.053631, tandis que son point le plus bas devrait être autour de $0.018549.
Combien vaudra DeBox en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de DeBox, il est attendu que la valeur de BOX en 2026 augmente de 3.13% jusqu'à $0.017059 si le meilleur scénario se produit. Le prix sera entre $0.017059 et $0.005714 durant 2026.
Combien vaudra DeBox en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de DeBox, le valeur de BOX pourrait diminuer de -12.62% jusqu'à $0.014452 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.014452 et $0.0055016 tout au long de l'année.
Combien vaudra DeBox en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de DeBox suggère que la valeur de BOX en 2028 pourrait augmenter de 47.02%, atteignant $0.024318 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.024318 et $0.009928 durant l'année.
Combien vaudra DeBox en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de DeBox pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.071747 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.071747 et $0.02181.
Combien vaudra DeBox en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de DeBox, il est prévu que la valeur de BOX en 2030 augmente de 224.23%, atteignant $0.053631 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.053631 et $0.018549 au cours de 2030.
Combien vaudra DeBox en 2031 ?
Notre simulation expérimentale indique que le prix de DeBox pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.048959 dans des conditions idéales. Il est probable que le prix fluctue entre $0.048959 et $0.02193 durant l'année.
Combien vaudra DeBox en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de DeBox, BOX pourrait connaître une 449.04% hausse en valeur, atteignant $0.090816 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.090816 et $0.033475 tout au long de l'année.
Combien vaudra DeBox en 2033 ?
Selon notre prédiction expérimentale de prix de DeBox, la valeur de BOX est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.2419032. Tout au long de l'année, le prix de BOX pourrait osciller entre $0.2419032 et $0.07779.
Combien vaudra DeBox en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de DeBox suggèrent que BOX pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.140097 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.140097 et $0.06254.
Combien vaudra DeBox en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de DeBox, BOX pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.165069 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.165069 et $0.073941.
Combien vaudra DeBox en 2036 ?
Notre récente simulation de prédiction de prix de DeBox suggère que la valeur de BOX pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.341524 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.341524 et $0.122396.
Combien vaudra DeBox en 2037 ?
Selon la simulation expérimentale, la valeur de DeBox pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.815593 sous des conditions favorables. Il est prévu que le prix chute entre $0.815593 et $0.31786 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de DeBox ?
Les traders de DeBox utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de DeBox
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de DeBox. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BOX sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BOX au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BOX.
Comment lire les graphiques de DeBox et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de DeBox dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BOX au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de DeBox ?
L'action du prix de DeBox est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BOX. La capitalisation boursière de DeBox peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BOX, de grands détenteurs de DeBox, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de DeBox.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


