Prédiction du prix de CENNZnet jusqu'à $0.00179 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000599 | $0.00179 |
| 2027 | $0.000577 | $0.001516 |
| 2028 | $0.001042 | $0.002552 |
| 2029 | $0.002289 | $0.007529 |
| 2030 | $0.001946 | $0.005628 |
| 2031 | $0.0023016 | $0.005138 |
| 2032 | $0.003513 | $0.009531 |
| 2033 | $0.008164 | $0.025387 |
| 2034 | $0.006563 | $0.014703 |
| 2035 | $0.00776 | $0.017323 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur CENNZnet aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.00, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Centrality pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'CENNZnet'
'name_with_ticker' => 'CENNZnet <small>CENNZ</small>'
'name_lang' => 'Centrality'
'name_lang_with_ticker' => 'Centrality <small>CENNZ</small>'
'name_with_lang' => 'Centrality/CENNZnet'
'name_with_lang_with_ticker' => 'Centrality/CENNZnet <small>CENNZ</small>'
'image' => '/uploads/coins/centrality.png?1717489736'
'price_for_sd' => 0.001735
'ticker' => 'CENNZ'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$34.39K'
'current_supply' => '0'
'max_supply' => '1.2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.00008696 USD 19.95x'
'price' => '$0.001735'
'change_24h_pct' => '0%'
'ath_price' => '$0.5401'
'ath_days' => 2814
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 avr. 2018'
'ath_pct' => '-99.68%'
'fdv' => '$2.08M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.085595'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00175'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001534'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000599'
'current_year_max_price_prediction' => '$0.00179'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001946'
'grand_prediction_max_price' => '$0.005628'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0017688759078745
107 => 0.0017754802484126
108 => 0.0017903601648708
109 => 0.0016632129079079
110 => 0.0017202982934369
111 => 0.0017538306092579
112 => 0.0016023303864625
113 => 0.0017508359369636
114 => 0.0016609995570413
115 => 0.0016305077403985
116 => 0.0016715609545166
117 => 0.0016555624770492
118 => 0.0016418079255849
119 => 0.0016341326495346
120 => 0.001664277599105
121 => 0.0016628713011765
122 => 0.0016135483127967
123 => 0.0015492084851174
124 => 0.0015708030431694
125 => 0.0015629575377791
126 => 0.0015345244141541
127 => 0.0015536849064489
128 => 0.0014693117952857
129 => 0.0013241522428623
130 => 0.0014200490895505
131 => 0.0014163571652687
201 => 0.0014144955296304
202 => 0.0014865593595225
203 => 0.0014796320850738
204 => 0.0014670590141174
205 => 0.001534293499846
206 => 0.0015097520081236
207 => 0.0015853831029094
208 => 0.0016351986334478
209 => 0.0016225638035397
210 => 0.0016694155507905
211 => 0.0015713005381721
212 => 0.0016038904096728
213 => 0.0016106071370215
214 => 0.0015334638367287
215 => 0.0014807654728447
216 => 0.0014772510927789
217 => 0.001385879392086
218 => 0.0014346894170695
219 => 0.001477640219159
220 => 0.0014570701180751
221 => 0.0014505582385862
222 => 0.0014838260186406
223 => 0.0014864112100701
224 => 0.0014274685715112
225 => 0.0014397246125382
226 => 0.0014908343410181
227 => 0.0014384367785146
228 => 0.0013366368736636
301 => 0.0013113890897667
302 => 0.0013080205699859
303 => 0.0012395465776307
304 => 0.0013130762674137
305 => 0.0012809785873502
306 => 0.0013823747740815
307 => 0.0013244578160192
308 => 0.0013219611317143
309 => 0.0013181870272035
310 => 0.0012592486333583
311 => 0.0012721523958801
312 => 0.001315046467801
313 => 0.0013303515558986
314 => 0.0013287551098191
315 => 0.0013148362634478
316 => 0.0013212082400406
317 => 0.0013006818832914
318 => 0.0012934335995041
319 => 0.0012705560220738
320 => 0.0012369323033433
321 => 0.001241607887659
322 => 0.0011749905027294
323 => 0.0011386938157676
324 => 0.0011286473711992
325 => 0.0011152128456525
326 => 0.0011301648366076
327 => 0.001174801784048
328 => 0.0011209601551782
329 => 0.0010286524590321
330 => 0.0010342003088551
331 => 0.0010466646802361
401 => 0.0010234374066277
402 => 0.0010014547414747
403 => 0.0010205668853152
404 => 0.00098145489758728
405 => 0.0010513911770933
406 => 0.0010494995967268
407 => 0.0010755675168961
408 => 0.0010918683223456
409 => 0.001054300243233
410 => 0.0010448519729311
411 => 0.001050234137095
412 => 0.00096127895238432
413 => 0.0010682979805035
414 => 0.0010692234855028
415 => 0.0010612987498089
416 => 0.0011182830784406
417 => 0.0012385377857112
418 => 0.0011932931276016
419 => 0.0011757730284545
420 => 0.0011424673071688
421 => 0.001186845203284
422 => 0.0011834376732654
423 => 0.0011680275302538
424 => 0.0011587074276778
425 => 0.001175880002444
426 => 0.0011565795556238
427 => 0.0011531126650341
428 => 0.0011321070800746
429 => 0.0011246090419373
430 => 0.0011190577930059
501 => 0.0011129464133869
502 => 0.0011264265939655
503 => 0.001095878731309
504 => 0.0010590410035891
505 => 0.0010559783451189
506 => 0.0010644346144268
507 => 0.0010606933447533
508 => 0.0010559604333591
509 => 0.001046924016576
510 => 0.0010442431047489
511 => 0.0010529547675933
512 => 0.0010431198081635
513 => 0.0010576318265402
514 => 0.0010536853605283
515 => 0.0010316407221927
516 => 0.0010041649408561
517 => 0.0010039203487698
518 => 0.00099800073675013
519 => 0.00099046122082347
520 => 0.00098836389997342
521 => 0.0010189573138691
522 => 0.0010822847650493
523 => 0.0010698520710852
524 => 0.001078835966628
525 => 0.0011230278410104
526 => 0.0011370751089806
527 => 0.0011271046909032
528 => 0.0011134565676902
529 => 0.0011140570158461
530 => 0.0011606967844328
531 => 0.0011636056495901
601 => 0.001170955413407
602 => 0.0011804019369547
603 => 0.0011287134747113
604 => 0.0011116224939227
605 => 0.0011035238390536
606 => 0.0010785831166306
607 => 0.0011054795475079
608 => 0.0010898081490557
609 => 0.0010919227561181
610 => 0.0010905456154946
611 => 0.0010912976273969
612 => 0.0010513716284779
613 => 0.0010659185640352
614 => 0.0010417314622466
615 => 0.0010093476480811
616 => 0.0010092390861808
617 => 0.0010171649788197
618 => 0.0010124503477379
619 => 0.00099976339672096
620 => 0.0010015655182322
621 => 0.00098577703751244
622 => 0.0010034825256512
623 => 0.0010039902556978
624 => 0.00099717267833989
625 => 0.0010244504257042
626 => 0.0010356261410559
627 => 0.0010311386655923
628 => 0.0010353112878147
629 => 0.0010703687056496
630 => 0.0010760845944191
701 => 0.0010786232146401
702 => 0.0010752217998467
703 => 0.0010359520730569
704 => 0.0010376938524278
705 => 0.001024913831093
706 => 0.0010141160597905
707 => 0.0010145479140157
708 => 0.0010200993720772
709 => 0.0010443429150205
710 => 0.0010953620219097
711 => 0.0010972981597216
712 => 0.0010996448152309
713 => 0.0010900997879403
714 => 0.0010872209163758
715 => 0.0010910188910692
716 => 0.0011101789851595
717 => 0.0011594639490748
718 => 0.0011420433511951
719 => 0.0011278801339511
720 => 0.00114030509385
721 => 0.0011383923686636
722 => 0.001122247043192
723 => 0.0011217938976797
724 => 0.0010908058561267
725 => 0.0010793502827282
726 => 0.0010697771481616
727 => 0.0010593235351278
728 => 0.0010531262829131
729 => 0.0010626480789156
730 => 0.00106482582632
731 => 0.0010440062529479
801 => 0.0010411686220283
802 => 0.0010581703350656
803 => 0.0010506885150456
804 => 0.0010583837524764
805 => 0.0010601691135689
806 => 0.0010598816293126
807 => 0.0010520697499302
808 => 0.001057048808895
809 => 0.0010452718501144
810 => 0.0010324661762826
811 => 0.0010242969541995
812 => 0.001017168224442
813 => 0.0010211236580357
814 => 0.0010070232595079
815 => 0.0010025122582339
816 => 0.0010553620157501
817 => 0.0010944026998579
818 => 0.0010938350328492
819 => 0.0010903795059256
820 => 0.0010852452938452
821 => 0.0011098033855668
822 => 0.0011012478374656
823 => 0.0011074727135492
824 => 0.0011090572057697
825 => 0.0011138529865027
826 => 0.0011155670659034
827 => 0.0011103859274497
828 => 0.0010929973939761
829 => 0.0010496668218121
830 => 0.0010294963235011
831 => 0.0010228397230922
901 => 0.0010230816778744
902 => 0.0010164074848482
903 => 0.0010183733338108
904 => 0.0010157238428048
905 => 0.0010107063478202
906 => 0.0010208138418593
907 => 0.0010219786363895
908 => 0.0010196194265052
909 => 0.0010201751058376
910 => 0.0010006418556274
911 => 0.0010021269262169
912 => 0.000993857864461
913 => 0.00099230751506679
914 => 0.00097140404701739
915 => 0.00093437052336172
916 => 0.00095489069039808
917 => 0.00093010521419028
918 => 0.00092071857878914
919 => 0.00096515345085685
920 => 0.00096069342213275
921 => 0.00095305979168498
922 => 0.00094176806126475
923 => 0.000937579848613
924 => 0.00091213359436793
925 => 0.00091063009391664
926 => 0.00092324194462716
927 => 0.00091742200947154
928 => 0.00090924861633125
929 => 0.00087964541490069
930 => 0.00084636161520957
1001 => 0.00084736624390774
1002 => 0.00085795320132238
1003 => 0.00088873620785115
1004 => 0.00087670875464894
1005 => 0.00086798269935161
1006 => 0.00086634857149868
1007 => 0.0008868031028565
1008 => 0.00091575055008461
1009 => 0.00092933204466141
1010 => 0.00091587319601192
1011 => 0.00090041239535926
1012 => 0.00090135342265654
1013 => 0.00090761365567765
1014 => 0.00090827151765324
1015 => 0.00089820812582435
1016 => 0.00090104091167753
1017 => 0.00089673765093118
1018 => 0.00087032854767405
1019 => 0.0008698508907403
1020 => 0.00086336967089669
1021 => 0.00086317342213562
1022 => 0.00085214725036557
1023 => 0.00085060461271462
1024 => 0.00082871147942439
1025 => 0.00084312160605453
1026 => 0.00083345604967664
1027 => 0.0008188877763409
1028 => 0.0008163762005267
1029 => 0.00081630069952491
1030 => 0.00083125905883441
1031 => 0.00084294680891682
1101 => 0.00083362418616802
1102 => 0.00083150160567956
1103 => 0.00085416521217285
1104 => 0.00085128106166322
1105 => 0.00084878340592266
1106 => 0.00091315862368371
1107 => 0.00086220061556495
1108 => 0.00083998001544375
1109 => 0.00081247780321626
1110 => 0.00082143266219572
1111 => 0.00082331958255695
1112 => 0.00075718171979618
1113 => 0.00073034959711108
1114 => 0.00072114182375277
1115 => 0.00071584262000625
1116 => 0.00071825753369675
1117 => 0.00069410547618608
1118 => 0.00071033605827141
1119 => 0.00068942241798977
1120 => 0.00068591617813768
1121 => 0.00072331235766414
1122 => 0.00072851581757994
1123 => 0.00070631624099087
1124 => 0.00072057196294604
1125 => 0.00071540263999574
1126 => 0.00068978092232661
1127 => 0.00068880236117225
1128 => 0.0006759462838928
1129 => 0.00065582901237757
1130 => 0.00064663487947665
1201 => 0.00064184649523473
1202 => 0.0006438222758967
1203 => 0.00064282326073412
1204 => 0.00063630401103842
1205 => 0.00064319693649552
1206 => 0.00062558836030608
1207 => 0.00061857648338551
1208 => 0.0006154093812548
1209 => 0.00059978075637484
1210 => 0.00062465284863988
1211 => 0.00062955296414645
1212 => 0.0006344627343943
1213 => 0.00067719893235927
1214 => 0.00067506395268019
1215 => 0.00069436312920187
1216 => 0.00069361319869115
1217 => 0.00068810876092123
1218 => 0.00066488644340602
1219 => 0.00067414244526957
1220 => 0.00064565391023561
1221 => 0.00066699945771514
1222 => 0.00065725824125685
1223 => 0.00066370594263181
1224 => 0.00065211239419385
1225 => 0.0006585287425853
1226 => 0.00063071496331536
1227 => 0.00060474284758353
1228 => 0.00061519478512734
1229 => 0.00062655723656151
1230 => 0.00065119392636956
1231 => 0.00063652051716816
]
'min_raw' => 0.00059978075637484
'max_raw' => 0.0017903601648708
'avg_raw' => 0.0011950704606228
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000599'
'max' => '$0.00179'
'avg' => '$0.001195'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0011361992436252
'max_diff' => 5.4380164870781E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00064179762998002
102 => 0.00062412018543832
103 => 0.0005876465680364
104 => 0.00058785300474988
105 => 0.00058224233333354
106 => 0.00057739389405838
107 => 0.00063820593472733
108 => 0.00063064299617405
109 => 0.00061859244340232
110 => 0.00063472258715721
111 => 0.0006389876531858
112 => 0.00063910907361966
113 => 0.00065087721012396
114 => 0.00065715786668586
115 => 0.00065826485962682
116 => 0.00067678227668375
117 => 0.0006829890706306
118 => 0.0007085539764793
119 => 0.00065662499685709
120 => 0.00065555555369458
121 => 0.00063494957135863
122 => 0.00062188093159348
123 => 0.00063584439230406
124 => 0.00064821411229117
125 => 0.00063533393303909
126 => 0.00063701581253399
127 => 0.00061972522423739
128 => 0.00062590579595563
129 => 0.0006312293369323
130 => 0.00062828999050826
131 => 0.00062388964664549
201 => 0.00064719993631465
202 => 0.00064588467841776
203 => 0.00066759175605892
204 => 0.00068451397536823
205 => 0.00071484161757903
206 => 0.00068319314191631
207 => 0.00068203974567187
208 => 0.00069331437897191
209 => 0.00068298734454298
210 => 0.00068951367382495
211 => 0.00071379012503505
212 => 0.00071430304819479
213 => 0.000705710924405
214 => 0.00070518809289154
215 => 0.0007068383042529
216 => 0.00071650364373982
217 => 0.00071312627713721
218 => 0.00071703465127421
219 => 0.00072192213297968
220 => 0.00074213882956281
221 => 0.0007470130066657
222 => 0.00073517128327676
223 => 0.00073624045831263
224 => 0.00073181132870259
225 => 0.00072753284499612
226 => 0.00073715025154589
227 => 0.0007547262510462
228 => 0.0007546169116655
301 => 0.00075869420192096
302 => 0.00076123431997202
303 => 0.00075033027381683
304 => 0.00074323214072269
305 => 0.00074595401661693
306 => 0.00075030635544656
307 => 0.00074454261179383
308 => 0.00070896611594346
309 => 0.00071975775214911
310 => 0.00071796149620044
311 => 0.00071540340929735
312 => 0.00072625448295138
313 => 0.00072520787042608
314 => 0.00069385776192749
315 => 0.00069586469415839
316 => 0.00069397981012362
317 => 0.00070007025605096
318 => 0.00068265844047577
319 => 0.00068801419767633
320 => 0.00069137327838542
321 => 0.00069335180272874
322 => 0.00070049958934368
323 => 0.00069966087908386
324 => 0.00070044745393633
325 => 0.00071104573454058
326 => 0.00076464820094617
327 => 0.00076756566492545
328 => 0.00075319900527916
329 => 0.00075893820243802
330 => 0.00074792019891745
331 => 0.00075531665849502
401 => 0.00076037712828828
402 => 0.00073750983836488
403 => 0.0007361557858631
404 => 0.00072509230712268
405 => 0.00073103719393032
406 => 0.00072157845156688
407 => 0.0007238992960901
408 => 0.00071741001247558
409 => 0.00072908943097825
410 => 0.00074214883566239
411 => 0.00074544815701712
412 => 0.00073676906297997
413 => 0.00073048482691691
414 => 0.00071945177854621
415 => 0.00073779998387419
416 => 0.00074316555826352
417 => 0.00073777180079612
418 => 0.000736521949335
419 => 0.0007341534830746
420 => 0.0007370244306486
421 => 0.00074313633619308
422 => 0.00074025407440748
423 => 0.00074215785909578
424 => 0.0007349025950382
425 => 0.00075033388350982
426 => 0.00077484248334456
427 => 0.00077492128250059
428 => 0.00077203900517852
429 => 0.00077085963939786
430 => 0.00077381703084152
501 => 0.00077542129438115
502 => 0.00078498495601709
503 => 0.00079524714598554
504 => 0.00084313630882401
505 => 0.00082968922353055
506 => 0.00087217933773989
507 => 0.00090578350142867
508 => 0.00091585992078696
509 => 0.0009065900891095
510 => 0.00087487849568741
511 => 0.00087332257362598
512 => 0.00092071308248799
513 => 0.00090732309311166
514 => 0.00090573039648193
515 => 0.00088878679524512
516 => 0.00089880256208191
517 => 0.00089661196695227
518 => 0.00089315400537255
519 => 0.00091226339079279
520 => 0.00094803445439288
521 => 0.00094245919867189
522 => 0.00093829752890485
523 => 0.00092006230342952
524 => 0.00093104398215073
525 => 0.00092713361669831
526 => 0.00094393502826115
527 => 0.00093398224424816
528 => 0.00090722165077271
529 => 0.00091148336348775
530 => 0.00091083921418424
531 => 0.00092409576120539
601 => 0.00092011647483737
602 => 0.00091006219465562
603 => 0.0009479121927863
604 => 0.00094545442444045
605 => 0.00094893897803081
606 => 0.00095047298628468
607 => 0.00097351161315505
608 => 0.00098294980143
609 => 0.00098509243540716
610 => 0.00099405798429269
611 => 0.00098486936438346
612 => 0.0010216303953953
613 => 0.0010460743359526
614 => 0.0010744672307836
615 => 0.0011159568814223
616 => 0.0011315573738632
617 => 0.0011287392845383
618 => 0.0011601962641377
619 => 0.0012167237572285
620 => 0.0011401651070748
621 => 0.0012207815515856
622 => 0.0011952593160151
623 => 0.0011347465546029
624 => 0.0011308502461665
625 => 0.0011718301907625
626 => 0.0012627197637029
627 => 0.0012399529565423
628 => 0.0012627570020434
629 => 0.0012361548716582
630 => 0.0012348338516642
701 => 0.0012614649959476
702 => 0.001323690116154
703 => 0.0012941292940177
704 => 0.0012517466068744
705 => 0.0012830413235134
706 => 0.0012559309437714
707 => 0.0011948436704951
708 => 0.0012399355471939
709 => 0.0012097838933882
710 => 0.0012185837489188
711 => 0.0012819580404985
712 => 0.001274332678068
713 => 0.0012842006031426
714 => 0.0012667839736746
715 => 0.0012505140954011
716 => 0.0012201451593865
717 => 0.0012111544146031
718 => 0.0012136391330081
719 => 0.0012111531833
720 => 0.0011941620427048
721 => 0.001190492807511
722 => 0.0011843772547685
723 => 0.0011862727202833
724 => 0.0011747736919592
725 => 0.0011964747342272
726 => 0.001200502638901
727 => 0.0012162948477469
728 => 0.0012179344472579
729 => 0.0012619155241056
730 => 0.0012376914860498
731 => 0.0012539430621804
801 => 0.0012524893682456
802 => 0.0011360580496334
803 => 0.0011521012580559
804 => 0.0011770594557253
805 => 0.0011658158215053
806 => 0.0011499199533234
807 => 0.001137083187484
808 => 0.0011176341746107
809 => 0.0011450082867447
810 => 0.0011810023332887
811 => 0.0012188473156775
812 => 0.0012643155823161
813 => 0.0012541675945113
814 => 0.0012179973180597
815 => 0.0012196198902389
816 => 0.0012296499929922
817 => 0.0012166600985958
818 => 0.0012128291251454
819 => 0.0012291236760687
820 => 0.0012292358876856
821 => 0.0012142894443013
822 => 0.00119767920765
823 => 0.0011976096101519
824 => 0.0011946539789757
825 => 0.0012366806718785
826 => 0.0012597911035971
827 => 0.0012624406773493
828 => 0.0012596127661729
829 => 0.0012607011169489
830 => 0.0012472536659354
831 => 0.0012779905512345
901 => 0.0013061977567478
902 => 0.0012986376231112
903 => 0.0012873039080536
904 => 0.0012782760581045
905 => 0.0012965109485724
906 => 0.0012956989776042
907 => 0.001305951391415
908 => 0.0013054862827038
909 => 0.001302038781552
910 => 0.0012986377462323
911 => 0.0013121224668393
912 => 0.0013082390838624
913 => 0.0013043496689192
914 => 0.001296548851811
915 => 0.0012976091124139
916 => 0.001286277354282
917 => 0.0012810347644642
918 => 0.0012021987923364
919 => 0.0011811312445441
920 => 0.0011877595239491
921 => 0.0011899417256324
922 => 0.0011807731018344
923 => 0.0011939185531345
924 => 0.0011918698484738
925 => 0.0011998401598562
926 => 0.0011948606553352
927 => 0.0011950650159377
928 => 0.0012097086769918
929 => 0.0012139597940943
930 => 0.0012117976416252
1001 => 0.0012133119391004
1002 => 0.0012482082852692
1003 => 0.0012432471407663
1004 => 0.0012406116316284
1005 => 0.001241341685671
1006 => 0.0012502584503033
1007 => 0.001252754657563
1008 => 0.0012421780519981
1009 => 0.0012471660403252
1010 => 0.0012684042615516
1011 => 0.0012758364370016
1012 => 0.0012995563733915
1013 => 0.0012894797228248
1014 => 0.0013079758510472
1015 => 0.0013648266434079
1016 => 0.0014102429901213
1017 => 0.0013684762407738
1018 => 0.001451877577776
1019 => 0.0015168174818434
1020 => 0.0015143249801623
1021 => 0.0015030012058011
1022 => 0.0014290688515369
1023 => 0.0013610351968738
1024 => 0.0014179482378611
1025 => 0.0014180933209068
1026 => 0.0014132044402123
1027 => 0.0013828400220966
1028 => 0.0014121478242806
1029 => 0.0014144741711877
1030 => 0.0014131720355453
1031 => 0.0013898917073691
1101 => 0.001354346949168
1102 => 0.0013612923098383
1103 => 0.0013726689522979
1104 => 0.0013511305947057
1105 => 0.0013442477843999
1106 => 0.0013570442382666
1107 => 0.0013982770788724
1108 => 0.0013904822492015
1109 => 0.0013902786946974
1110 => 0.0014236282815519
1111 => 0.0013997571746554
1112 => 0.0013613799130785
1113 => 0.0013516891483965
1114 => 0.0013172934622565
1115 => 0.0013410506851866
1116 => 0.0013419056653457
1117 => 0.0013288940771398
1118 => 0.0013624357317505
1119 => 0.0013621266394983
1120 => 0.0013939694485347
1121 => 0.0014548409397994
1122 => 0.0014368382445283
1123 => 0.0014159030686156
1124 => 0.0014181793027068
1125 => 0.0014431439724624
1126 => 0.0014280497632402
1127 => 0.0014334777461171
1128 => 0.0014431357565602
1129 => 0.0014489626740555
1130 => 0.0014173408989504
1201 => 0.001409968350529
1202 => 0.0013948867038718
1203 => 0.0013909521837712
1204 => 0.0014032358702846
1205 => 0.0013999995528774
1206 => 0.001341833807574
1207 => 0.0013357551635586
1208 => 0.0013359415868923
1209 => 0.0013206565474919
1210 => 0.0012973431935765
1211 => 0.0013586092956981
1212 => 0.0013536887702792
1213 => 0.0013482568910351
1214 => 0.0013489222652486
1215 => 0.0013755158036787
1216 => 0.0013600902083834
1217 => 0.0014011016816814
1218 => 0.0013926709556891
1219 => 0.0013840240133871
1220 => 0.0013828287425686
1221 => 0.0013795004075048
1222 => 0.001368086308152
1223 => 0.0013543030973025
1224 => 0.0013452022276184
1225 => 0.0012408779478573
1226 => 0.0012602399273545
1227 => 0.0012825141198661
1228 => 0.0012902030818629
1229 => 0.0012770505803075
1230 => 0.0013686056490789
1231 => 0.00138533364239
]
'min_raw' => 0.00057739389405838
'max_raw' => 0.0015168174818434
'avg_raw' => 0.0010471056879509
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000577'
'max' => '$0.001516'
'avg' => '$0.001047'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.2386862316458E-5
'max_diff' => -0.00027354268302733
'year' => 2027
]
2 => [
'items' => [
101 => 0.0013346634595106
102 => 0.0013251851371438
103 => 0.0013692270463153
104 => 0.0013426643911804
105 => 0.0013546255531612
106 => 0.0013287720633646
107 => 0.0013813043586542
108 => 0.0013809041505798
109 => 0.0013604679012164
110 => 0.0013777404792369
111 => 0.0013747389437486
112 => 0.0013516664685496
113 => 0.0013820357972716
114 => 0.0013820508600798
115 => 0.0013623814143899
116 => 0.0013394118080195
117 => 0.0013353053849184
118 => 0.001332211746732
119 => 0.0013538647078108
120 => 0.0013732786850071
121 => 0.0014094032834362
122 => 0.0014184858657806
123 => 0.0014539357893324
124 => 0.0014328270858827
125 => 0.0014421843007185
126 => 0.0014523428810815
127 => 0.001457213278077
128 => 0.0014492772275328
129 => 0.0015043455505794
130 => 0.0015089950042944
131 => 0.0015105539259074
201 => 0.0014919851972145
202 => 0.0015084785743588
203 => 0.0015007618693962
204 => 0.0015208385919466
205 => 0.0015239868783949
206 => 0.0015213203917767
207 => 0.0015223197075877
208 => 0.0014753286085853
209 => 0.0014728918722042
210 => 0.0014396667987454
211 => 0.0014532062617672
212 => 0.0014278948846113
213 => 0.0014359213830435
214 => 0.0014394593870732
215 => 0.001437611334548
216 => 0.001453971762692
217 => 0.001440062056555
218 => 0.0014033520550919
219 => 0.0013666320520134
220 => 0.0013661710622863
221 => 0.0013565033336376
222 => 0.0013495153365574
223 => 0.0013508614727076
224 => 0.00135560543208
225 => 0.0013492396090147
226 => 0.0013505980801211
227 => 0.0013731577519332
228 => 0.001377681933227
229 => 0.0013623069974792
301 => 0.0013005744118592
302 => 0.0012854250805036
303 => 0.0012963141194577
304 => 0.0012911098601816
305 => 0.0010420264241596
306 => 0.0011005448827461
307 => 0.0010657752017531
308 => 0.0010817986704308
309 => 0.0010463078297021
310 => 0.0010632459191322
311 => 0.0010601180724944
312 => 0.0011542140222145
313 => 0.0011527448433844
314 => 0.0011534480615432
315 => 0.0011198816265999
316 => 0.0011733538688926
317 => 0.0011996962182456
318 => 0.0011948209504593
319 => 0.0011960479503276
320 => 0.0011749640273452
321 => 0.0011536522000048
322 => 0.0011300141036176
323 => 0.001173930764948
324 => 0.0011690479818905
325 => 0.0011802473294546
326 => 0.0012087304235551
327 => 0.0012129246673582
328 => 0.0012185617735633
329 => 0.0012165412722653
330 => 0.001264677810415
331 => 0.00125884815803
401 => 0.0012728959429724
402 => 0.0012439985835378
403 => 0.0012112984783749
404 => 0.0012175136993194
405 => 0.0012169151235628
406 => 0.001209294567168
407 => 0.0012024150695928
408 => 0.0011909626444166
409 => 0.0012271998123141
410 => 0.0012257286494743
411 => 0.001249545065811
412 => 0.0012453352828832
413 => 0.0012172213221825
414 => 0.0012182254177889
415 => 0.0012249784432941
416 => 0.0012483507416723
417 => 0.0012552892311383
418 => 0.0012520750463667
419 => 0.0012596827833121
420 => 0.0012656956284014
421 => 0.0012604379040799
422 => 0.0013348761929123
423 => 0.0013039642255697
424 => 0.0013190305033684
425 => 0.0013226237218477
426 => 0.0013134197682702
427 => 0.0013154157762323
428 => 0.0013184391844152
429 => 0.0013367967268582
430 => 0.0013849722300263
501 => 0.0014063088324376
502 => 0.0014705010535217
503 => 0.0014045371246272
504 => 0.0014006230980725
505 => 0.0014121860555091
506 => 0.0014498736847222
507 => 0.0014804159683803
508 => 0.0014905486058964
509 => 0.0014918878012157
510 => 0.0015108973028008
511 => 0.0015217931946031
512 => 0.0015085890493088
513 => 0.0014973999187035
514 => 0.0014573218417214
515 => 0.0014619609882611
516 => 0.0014939201074991
517 => 0.0015390642458055
518 => 0.0015778026129194
519 => 0.0015642377869245
520 => 0.0016677278339908
521 => 0.0016779884494385
522 => 0.0016765707641491
523 => 0.0016999459731232
524 => 0.0016535509435881
525 => 0.0016337161696004
526 => 0.0014998191357424
527 => 0.0015374387406675
528 => 0.001592121045748
529 => 0.0015848836376225
530 => 0.0015451718860108
531 => 0.0015777724879948
601 => 0.0015669937094638
602 => 0.0015584920396245
603 => 0.0015974398372882
604 => 0.0015546151338696
605 => 0.0015916938365722
606 => 0.001544140016826
607 => 0.001564299749907
608 => 0.0015528561103937
609 => 0.0015602615476385
610 => 0.0015169695128231
611 => 0.0015403288439548
612 => 0.0015159976878497
613 => 0.0015159861517137
614 => 0.0015154490400941
615 => 0.0015440745373509
616 => 0.0015450080137887
617 => 0.0015238537280653
618 => 0.0015208050650005
619 => 0.00153207757022
620 => 0.0015188804188817
621 => 0.001525055282931
622 => 0.0015190674492233
623 => 0.0015177194617326
624 => 0.0015069784680658
625 => 0.0015023509526643
626 => 0.0015041655206896
627 => 0.0014979714645453
628 => 0.0014942393216696
629 => 0.0015147066229395
630 => 0.0015037717695195
701 => 0.001513030699825
702 => 0.0015024789801718
703 => 0.0014659021226883
704 => 0.0014448663851564
705 => 0.0013757760920467
706 => 0.0013953700134663
707 => 0.001408360803639
708 => 0.0014040673475644
709 => 0.0014132913525595
710 => 0.0014138576315519
711 => 0.0014108588135004
712 => 0.0014073865663692
713 => 0.001405696468493
714 => 0.0014182930733908
715 => 0.0014256058265163
716 => 0.0014096646032271
717 => 0.0014059297976519
718 => 0.0014220472545363
719 => 0.001431878893925
720 => 0.0015044701952504
721 => 0.0014990923971814
722 => 0.001512589614995
723 => 0.0015110700354009
724 => 0.001525217269945
725 => 0.0015483420193572
726 => 0.0015013229380206
727 => 0.0015094838247431
728 => 0.0015074829637811
729 => 0.00152932783911
730 => 0.0015293960364263
731 => 0.0015162989424342
801 => 0.0015233990895634
802 => 0.0015194359822182
803 => 0.001526597852837
804 => 0.0014990205734095
805 => 0.0015326067229689
806 => 0.0015516479055254
807 => 0.0015519122923637
808 => 0.0015609376617753
809 => 0.0015701079598116
810 => 0.0015877095483277
811 => 0.0015696170610612
812 => 0.0015370704377368
813 => 0.0015394201988158
814 => 0.0015203381254691
815 => 0.0015206588985695
816 => 0.00151894658662
817 => 0.0015240853636772
818 => 0.0015001482459951
819 => 0.0015057662396702
820 => 0.0014979010156261
821 => 0.0015094667272821
822 => 0.0014970239334208
823 => 0.0015074819989054
824 => 0.0015119953532782
825 => 0.0015286497280793
826 => 0.0014945640687214
827 => 0.0014250611018944
828 => 0.0014396714681635
829 => 0.0014180615888321
830 => 0.0014200616654388
831 => 0.0014241021384942
901 => 0.001411005643361
902 => 0.0014135040419144
903 => 0.0014134147815372
904 => 0.001412645583828
905 => 0.0014092386796333
906 => 0.0014042979945154
907 => 0.0014239801633624
908 => 0.0014273245473817
909 => 0.0014347586987752
910 => 0.001456877690689
911 => 0.0014546674817951
912 => 0.0014582724242018
913 => 0.0014504028551688
914 => 0.0014204267121758
915 => 0.0014220545609599
916 => 0.0014017552605376
917 => 0.0014342396000243
918 => 0.0014265468796615
919 => 0.0014215873327996
920 => 0.0014202340744884
921 => 0.0014424078951049
922 => 0.0014490426497654
923 => 0.0014449083159028
924 => 0.0014364286765328
925 => 0.0014527120909036
926 => 0.0014570688456471
927 => 0.0014580441623632
928 => 0.0014868952505932
929 => 0.0014596566176997
930 => 0.0014662132273659
1001 => 0.0015173660243147
1002 => 0.0014709774960856
1003 => 0.0014955505340762
1004 => 0.0014943478117385
1005 => 0.0015069185464682
1006 => 0.0014933166445784
1007 => 0.001493485256454
1008 => 0.0015046472172787
1009 => 0.0014889722563707
1010 => 0.0014850909156124
1011 => 0.0014797288711535
1012 => 0.001491436699063
1013 => 0.0014984550123953
1014 => 0.0015550174634701
1015 => 0.0015915593864255
1016 => 0.0015899730051776
1017 => 0.0016044695602027
1018 => 0.0015979387293906
1019 => 0.0015768489539524
1020 => 0.0016128466290013
1021 => 0.0016014554584091
1022 => 0.0016023945326725
1023 => 0.0016023595802815
1024 => 0.0016099337128919
1025 => 0.0016045667457784
1026 => 0.0015939879026898
1027 => 0.0016010106324259
1028 => 0.0016218656290704
1029 => 0.0016866001785645
1030 => 0.00172282649008
1031 => 0.0016844193091241
1101 => 0.0017109120682549
1102 => 0.0016950258531117
1103 => 0.0016921388552462
1104 => 0.0017087782657799
1105 => 0.0017254468013989
1106 => 0.0017243850877401
1107 => 0.0017122845868194
1108 => 0.0017054493208881
1109 => 0.0017572082445016
1110 => 0.0017953433377297
1111 => 0.0017927427800325
1112 => 0.0018042207959614
1113 => 0.0018379206057306
1114 => 0.0018410016939962
1115 => 0.0018406135476927
1116 => 0.0018329767489483
1117 => 0.0018661585881393
1118 => 0.0018938394621714
1119 => 0.0018312090506873
1120 => 0.0018550578914881
1121 => 0.0018657644044853
1122 => 0.0018814847420444
1123 => 0.0019080075865411
1124 => 0.0019368184305016
1125 => 0.0019408925997325
1126 => 0.0019380017816962
1127 => 0.0019190002556272
1128 => 0.0019505254248737
1129 => 0.001968992129662
1130 => 0.0019799886297605
1201 => 0.002007873924367
1202 => 0.0018658305242647
1203 => 0.0017652851456572
1204 => 0.0017495835328947
1205 => 0.0017815133798826
1206 => 0.0017899330258975
1207 => 0.0017865390771462
1208 => 0.0016733661123376
1209 => 0.0017489877006567
1210 => 0.0018303501712443
1211 => 0.0018334756350987
1212 => 0.0018742073890839
1213 => 0.0018874713178325
1214 => 0.0019202657186236
1215 => 0.0019182144199252
1216 => 0.0019261993346449
1217 => 0.0019243637410303
1218 => 0.00198510846282
1219 => 0.0020521189116326
1220 => 0.0020497985528704
1221 => 0.0020401650080219
1222 => 0.0020544724648854
1223 => 0.002123634429336
1224 => 0.0021172671039473
1225 => 0.002123452418195
1226 => 0.0022049982720798
1227 => 0.0023110194818926
1228 => 0.0022617619855791
1229 => 0.0023686365791166
1230 => 0.0024359084705697
1231 => 0.0025522482507943
]
'min_raw' => 0.0010420264241596
'max_raw' => 0.0025522482507943
'avg_raw' => 0.001797137337477
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001042'
'max' => '$0.002552'
'avg' => '$0.001797'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0004646325301012
'max_diff' => 0.0010354307689509
'year' => 2028
]
3 => [
'items' => [
101 => 0.0025376819373247
102 => 0.0025829721600254
103 => 0.0025116051961327
104 => 0.002347732221392
105 => 0.0023217986958587
106 => 0.0023737182707178
107 => 0.0025013574792708
108 => 0.0023696984578111
109 => 0.0023963329063793
110 => 0.0023886621833998
111 => 0.0023882534431707
112 => 0.0024038533952489
113 => 0.0023812248511208
114 => 0.0022890320915456
115 => 0.0023312834899635
116 => 0.0023149681959556
117 => 0.0023330712310431
118 => 0.0024307658451513
119 => 0.0023875727275054
120 => 0.0023420722867893
121 => 0.0023991399368033
122 => 0.0024718066658433
123 => 0.0024672593125347
124 => 0.0024584355464697
125 => 0.0025081746537808
126 => 0.0025903290868677
127 => 0.0026125351000079
128 => 0.002628927124926
129 => 0.0026311873082167
130 => 0.0026544686008068
131 => 0.0025292792229088
201 => 0.0027279579807241
202 => 0.0027622643138089
203 => 0.0027558161450407
204 => 0.0027939461904333
205 => 0.0027827273638129
206 => 0.00276647304422
207 => 0.0028269172766604
208 => 0.0027576228417655
209 => 0.0026592681153589
210 => 0.0026053087672164
211 => 0.0026763667896269
212 => 0.0027197594443298
213 => 0.0027484392287973
214 => 0.0027571177142483
215 => 0.0025389973179466
216 => 0.0024214425218517
217 => 0.0024967937983801
218 => 0.0025887275562119
219 => 0.0025287685262422
220 => 0.0025311188066996
221 => 0.0024456329869187
222 => 0.0025962911544
223 => 0.0025743415266326
224 => 0.0026882162343181
225 => 0.0026610391214274
226 => 0.0027538995249542
227 => 0.0027294462686146
228 => 0.0028309503685172
301 => 0.0028714431020822
302 => 0.0029394367039285
303 => 0.0029894530742304
304 => 0.0030188236435324
305 => 0.0030170603447177
306 => 0.0031334411726517
307 => 0.0030648154644555
308 => 0.0029786054011234
309 => 0.002977046133067
310 => 0.0030216955464727
311 => 0.0031152684680027
312 => 0.0031395305651248
313 => 0.0031530897675199
314 => 0.0031323233770526
315 => 0.0030578350892544
316 => 0.0030256714242473
317 => 0.0030530757987044
318 => 0.0030195626036281
319 => 0.0030774157804716
320 => 0.0031568605490494
321 => 0.0031404555184968
322 => 0.0031952950760547
323 => 0.0032520482488374
324 => 0.0033332078348612
325 => 0.0033544259559786
326 => 0.0033894987033328
327 => 0.0034256000811575
328 => 0.0034371948707554
329 => 0.0034593329217498
330 => 0.0034592162432934
331 => 0.0035259307500274
401 => 0.0035995189169314
402 => 0.0036272967463676
403 => 0.0036911703334778
404 => 0.003581789053949
405 => 0.0036647560109532
406 => 0.0037395942829686
407 => 0.0036503690098521
408 => 0.0037733452620209
409 => 0.0037781201512224
410 => 0.0038502153091561
411 => 0.0037771330548293
412 => 0.0037337370454969
413 => 0.0038590196984123
414 => 0.0039196400277915
415 => 0.0039013806912379
416 => 0.0037624262384902
417 => 0.0036815487869543
418 => 0.0034698768961893
419 => 0.0037206113943456
420 => 0.0038427368543719
421 => 0.0037621099630521
422 => 0.0038027734772476
423 => 0.0040246204255097
424 => 0.0041090853798817
425 => 0.0040915172598269
426 => 0.0040944859829203
427 => 0.0041400617391521
428 => 0.0043421697413112
429 => 0.0042210619415906
430 => 0.0043136443166543
501 => 0.0043627496745575
502 => 0.0044083614676493
503 => 0.0042963533195711
504 => 0.0041506323646478
505 => 0.004104476421274
506 => 0.0037540932076927
507 => 0.0037358542397886
508 => 0.0037256161544068
509 => 0.0036610664742801
510 => 0.0036103481073461
511 => 0.0035700149789078
512 => 0.0034641688053942
513 => 0.0034998887818081
514 => 0.0033311920730407
515 => 0.0034391182490658
516 => 0.0031698742285486
517 => 0.0033941086494646
518 => 0.003272068048848
519 => 0.0033540150298906
520 => 0.0033537291245936
521 => 0.0032028387511802
522 => 0.0031158083327972
523 => 0.0031712675026654
524 => 0.0032307241351186
525 => 0.003240370773698
526 => 0.0033174578496504
527 => 0.0033389711955675
528 => 0.0032737847530764
529 => 0.0031642947446753
530 => 0.0031897267764257
531 => 0.0031152929534855
601 => 0.0029848505418383
602 => 0.0030785365591893
603 => 0.0031105250845963
604 => 0.0031246530397622
605 => 0.0029963779093194
606 => 0.0029560710783458
607 => 0.0029346120597424
608 => 0.0031477360361453
609 => 0.0031594114486728
610 => 0.003099678387445
611 => 0.0033696774883159
612 => 0.0033085683762823
613 => 0.0033768422265197
614 => 0.0031874190861103
615 => 0.003194655305166
616 => 0.0031049793548557
617 => 0.0031551918948803
618 => 0.0031197032900166
619 => 0.0031511352178563
620 => 0.0031699753858047
621 => 0.003259636621174
622 => 0.0033951324367477
623 => 0.0032462442225486
624 => 0.0031813714955035
625 => 0.0032216181705042
626 => 0.0033288003696758
627 => 0.0034911868879767
628 => 0.0033950508008093
629 => 0.0034377143637976
630 => 0.0034470344543407
701 => 0.0033761472628149
702 => 0.0034938005998406
703 => 0.0035568519789668
704 => 0.0036215296473056
705 => 0.0036776874544971
706 => 0.0035956959642787
707 => 0.0036834386118309
708 => 0.0036127335265661
709 => 0.0035493037557263
710 => 0.003549399952506
711 => 0.003509609530697
712 => 0.0034325105745264
713 => 0.0034182923440984
714 => 0.0034922573743497
715 => 0.0035515703240969
716 => 0.0035564556227279
717 => 0.0035892943193173
718 => 0.0036087279216935
719 => 0.003799203643681
720 => 0.0038758145547622
721 => 0.003969492926662
722 => 0.0040059859319407
723 => 0.0041158167943631
724 => 0.0040271194529305
725 => 0.0040079292251791
726 => 0.0037415154783436
727 => 0.0037851407144631
728 => 0.0038549889266997
729 => 0.0037426672496367
730 => 0.0038139095008469
731 => 0.003827974230353
801 => 0.0037388506020305
802 => 0.0037864553827222
803 => 0.0036600311990388
804 => 0.0033978881384745
805 => 0.0034940924400046
806 => 0.0035649311879485
807 => 0.0034638355602779
808 => 0.0036450455599364
809 => 0.0035391864190696
810 => 0.0035056341535497
811 => 0.0033747348035104
812 => 0.0034365142579509
813 => 0.0035200718546783
814 => 0.003468442974514
815 => 0.0035755806529703
816 => 0.0037273161782395
817 => 0.0038354519495531
818 => 0.0038437532713473
819 => 0.0037742292149267
820 => 0.0038856419590374
821 => 0.0038864534792461
822 => 0.0037607794487549
823 => 0.0036838048048349
824 => 0.0036663160037803
825 => 0.0037100064576962
826 => 0.0037630547344529
827 => 0.0038466970815101
828 => 0.0038972404000698
829 => 0.0040290305687686
830 => 0.0040646892096983
831 => 0.0041038672450555
901 => 0.0041562211823515
902 => 0.0042190855073493
903 => 0.0040815419431221
904 => 0.0040870068053421
905 => 0.0039589281427541
906 => 0.0038220577234405
907 => 0.0039259253105609
908 => 0.0040617183637946
909 => 0.0040305672873448
910 => 0.0040270621548855
911 => 0.0040329568154394
912 => 0.0040094699210953
913 => 0.0039032395684418
914 => 0.0038498913503764
915 => 0.0039187241622627
916 => 0.0039553057383843
917 => 0.0040120405727002
918 => 0.0040050468068437
919 => 0.004151189647165
920 => 0.0042079763357838
921 => 0.0041934478707957
922 => 0.0041961214580005
923 => 0.004298931045259
924 => 0.0044132764506947
925 => 0.0045203760120905
926 => 0.0046293222859754
927 => 0.0044979833005617
928 => 0.004431297463631
929 => 0.004500100225265
930 => 0.004463592511473
1001 => 0.0046733766638129
1002 => 0.0046879016633588
1003 => 0.0048976706459167
1004 => 0.0050967663891899
1005 => 0.0049717179200107
1006 => 0.00508963299414
1007 => 0.0052171677605678
1008 => 0.0054632030167771
1009 => 0.0053803469981105
1010 => 0.0053168805863312
1011 => 0.0052569051338672
1012 => 0.0053817045296098
1013 => 0.0055422569585136
1014 => 0.0055768384139474
1015 => 0.0056328735828829
1016 => 0.0055739594544017
1017 => 0.005644915032979
1018 => 0.0058954194048178
1019 => 0.0058277309122837
1020 => 0.0057316023714171
1021 => 0.0059293515142882
1022 => 0.006000916160363
1023 => 0.0065031943252117
1024 => 0.0071373412564092
1025 => 0.0068748002628602
1026 => 0.0067118325960194
1027 => 0.0067501338633717
1028 => 0.0069817028554167
1029 => 0.0070560754660291
1030 => 0.0068539050726083
1031 => 0.0069253150733834
1101 => 0.0073187911985305
1102 => 0.0075298785154464
1103 => 0.0072431935862656
1104 => 0.006452241236745
1105 => 0.0057229470480772
1106 => 0.0059163887074572
1107 => 0.0058944584264771
1108 => 0.0063171994358014
1109 => 0.0058261165641228
1110 => 0.0058343851402297
1111 => 0.0062658679859363
1112 => 0.0061507557601904
1113 => 0.0059642886969421
1114 => 0.0057243084639957
1115 => 0.0052806828079094
1116 => 0.0048877511928971
1117 => 0.0056583805766828
1118 => 0.0056251496363553
1119 => 0.0055770263102118
1120 => 0.0056841195650565
1121 => 0.006204134011632
1122 => 0.0061921459955159
1123 => 0.006115884353325
1124 => 0.0061737281367875
1125 => 0.0059541484020306
1126 => 0.0060107390994151
1127 => 0.0057228315241516
1128 => 0.0058529777722531
1129 => 0.005963888622371
1130 => 0.0059861556175954
1201 => 0.0060363242948168
1202 => 0.0056076384408284
1203 => 0.0058001058037138
1204 => 0.0059131623476558
1205 => 0.0054023687690933
1206 => 0.0059030656009342
1207 => 0.0056001759738504
1208 => 0.0054973706851686
1209 => 0.0056357844628118
1210 => 0.0055818444790524
1211 => 0.0055354700484782
1212 => 0.005509592319404
1213 => 0.0056112281215339
1214 => 0.0056064866898835
1215 => 0.0054401907909398
1216 => 0.0052232645698557
1217 => 0.005296072130012
1218 => 0.0052696204608327
1219 => 0.0051737561993937
1220 => 0.0052383571369085
1221 => 0.0049538873018795
1222 => 0.0044644717361675
1223 => 0.004787794650081
1224 => 0.004775347069603
1225 => 0.0047690704350732
1226 => 0.0050120386688902
1227 => 0.0049886828794396
1228 => 0.0049462918928862
1229 => 0.0051729776556822
1230 => 0.0050902343029079
1231 => 0.0053452298193726
]
'min_raw' => 0.0022890320915456
'max_raw' => 0.0075298785154464
'avg_raw' => 0.004909455303496
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002289'
'max' => '$0.007529'
'avg' => '$0.0049094'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.001247005667386
'max_diff' => 0.0049776302646521
'year' => 2029
]
4 => [
'items' => [
101 => 0.0055131863585922
102 => 0.0054705871474213
103 => 0.0056285510843617
104 => 0.0052977494691474
105 => 0.0054076284962644
106 => 0.0054302744114675
107 => 0.0051701803885568
108 => 0.0049925041754397
109 => 0.0049806551976819
110 => 0.0046725891294271
111 => 0.0048371555364664
112 => 0.0049819671644403
113 => 0.0049126136324771
114 => 0.0048906583761354
115 => 0.0050028230192711
116 => 0.005011539172668
117 => 0.0048128099515232
118 => 0.0048541320495352
119 => 0.0050264520674722
120 => 0.0048497900272108
121 => 0.0045065645405632
122 => 0.004421439874411
123 => 0.0044100826747874
124 => 0.0041792178288602
125 => 0.0044271283116427
126 => 0.0043189087423203
127 => 0.0046607730651403
128 => 0.0044655019974007
129 => 0.0044570842519537
130 => 0.0044443595950959
131 => 0.0042456446852997
201 => 0.0042891506215537
202 => 0.0044337709798034
203 => 0.0044853731528918
204 => 0.0044799906234745
205 => 0.0044330622611506
206 => 0.0044545458251104
207 => 0.004385339780226
208 => 0.004360901685378
209 => 0.0042837683358104
210 => 0.0041704036205776
211 => 0.0041861676795369
212 => 0.0039615625151695
213 => 0.0038391857009238
214 => 0.0038053134116411
215 => 0.0037600179707918
216 => 0.0038104296522116
217 => 0.003960926236959
218 => 0.003779395426122
219 => 0.0034681735838479
220 => 0.0034868785468648
221 => 0.0035289030452104
222 => 0.0034505906705632
223 => 0.0033764745802191
224 => 0.0034409125075449
225 => 0.0033090437102083
226 => 0.0035448387593579
227 => 0.0035384611640864
228 => 0.0036263509769413
301 => 0.0036813102806
302 => 0.0035546468789525
303 => 0.0035227913759725
304 => 0.0035409377182218
305 => 0.003241019102317
306 => 0.0036018412274508
307 => 0.0036049616321724
308 => 0.0035782428324932
309 => 0.0037703694749937
310 => 0.0041758166164722
311 => 0.0040232710927745
312 => 0.0039642008552859
313 => 0.00385190829064
314 => 0.0040015314657579
315 => 0.003990042740394
316 => 0.0039380863673286
317 => 0.0039066629907849
318 => 0.00396456152556
319 => 0.0038994887215916
320 => 0.0038877998579178
321 => 0.0038169780616637
322 => 0.0037916979025874
323 => 0.0037729814792394
324 => 0.0037523765361711
325 => 0.0037978259061479
326 => 0.0036948316544178
327 => 0.0035706306834824
328 => 0.0035603047166222
329 => 0.0035888156189914
330 => 0.0035762016670801
331 => 0.0035602443258734
401 => 0.0035297774157865
402 => 0.0035207385343863
403 => 0.0035501105138952
404 => 0.0035169512615225
405 => 0.0035658795446764
406 => 0.0035525737589839
407 => 0.0034782487217279
408 => 0.0033856122066537
409 => 0.0033847875473578
410 => 0.0033648291621394
411 => 0.0033394091578005
412 => 0.0033323378941243
413 => 0.0034354857250375
414 => 0.003648998648073
415 => 0.0036070809523499
416 => 0.0036373707834081
417 => 0.0037863667732667
418 => 0.0038337281179771
419 => 0.0038001121573166
420 => 0.0037540965570224
421 => 0.0037561210099022
422 => 0.003913370245977
423 => 0.0039231776879451
424 => 0.0039479579297979
425 => 0.0039798075434743
426 => 0.0038055362842473
427 => 0.0037479128492646
428 => 0.0037206076689433
429 => 0.0036365182819885
430 => 0.0037272014765401
501 => 0.0036743642625164
502 => 0.0036814938078645
503 => 0.0036768506821035
504 => 0.0036793861427358
505 => 0.0035447728498361
506 => 0.0035938188587024
507 => 0.0035122703563324
508 => 0.0034030860659079
509 => 0.0034027200418814
510 => 0.0034294427422816
511 => 0.0034135470344242
512 => 0.0033707720932961
513 => 0.0033768480717913
514 => 0.0033236161067281
515 => 0.0033833113961458
516 => 0.0033850232434463
517 => 0.0033620373053961
518 => 0.0034540061351065
519 => 0.0034916858396783
520 => 0.0034765560028472
521 => 0.0034906242899932
522 => 0.0036088228218543
523 => 0.0036280943399111
524 => 0.0036366534752269
525 => 0.0036251853677719
526 => 0.0034927847421755
527 => 0.0034986572729316
528 => 0.0034555685387285
529 => 0.0034191630989058
530 => 0.0034206191255774
531 => 0.0034393362540221
601 => 0.0035210750516855
602 => 0.0036930895326027
603 => 0.0036996173564126
604 => 0.0037075292693002
605 => 0.0036753475433775
606 => 0.0036656412269015
607 => 0.0036784463637461
608 => 0.0037430459586869
609 => 0.0039092136554935
610 => 0.0038504788934748
611 => 0.0038027266176925
612 => 0.0038446182374746
613 => 0.0038381693509666
614 => 0.0037837342589082
615 => 0.0037822064471758
616 => 0.0036777281015642
617 => 0.0036391048360484
618 => 0.0036068283444821
619 => 0.0035715832582908
620 => 0.0035506887897706
621 => 0.0035827921897837
622 => 0.003590134617203
623 => 0.0035199399720029
624 => 0.0035103727012403
625 => 0.0035676951637673
626 => 0.003542469685206
627 => 0.0035684147154681
628 => 0.0035744341850412
629 => 0.0035734649117998
630 => 0.003547126615054
701 => 0.0035639138599805
702 => 0.0035242070212108
703 => 0.0034810317978232
704 => 0.0034534886952133
705 => 0.0034294536851238
706 => 0.0034427897056445
707 => 0.0033952492275495
708 => 0.0033800400718062
709 => 0.0035582267191243
710 => 0.0036898551113275
711 => 0.0036879411823743
712 => 0.0036762906320943
713 => 0.003658980277606
714 => 0.0037417795984366
715 => 0.0037129339706839
716 => 0.0037339215750068
717 => 0.003739263801154
718 => 0.0037554331107259
719 => 0.0037612122490987
720 => 0.0037437436790663
721 => 0.0036851170244315
722 => 0.0035390249751366
723 => 0.0034710187318219
724 => 0.0034485755387945
725 => 0.0034493913062353
726 => 0.0034268887984703
727 => 0.0034335167954988
728 => 0.0034245838515906
729 => 0.0034076670169396
730 => 0.0034417451387752
731 => 0.0034456723248571
801 => 0.0034377180840174
802 => 0.0034395915956829
803 => 0.0033737338788313
804 => 0.0033787408980081
805 => 0.0033508611789705
806 => 0.003345634067746
807 => 0.0032751565657839
808 => 0.0031502954551808
809 => 0.0032194806310162
810 => 0.0031359146675149
811 => 0.003104266970906
812 => 0.0032540822444259
813 => 0.0032390449461934
814 => 0.0032133076281757
815 => 0.0031752367707004
816 => 0.0031611159193334
817 => 0.0030753220965454
818 => 0.0030702529398028
819 => 0.0031127746750046
820 => 0.0030931523572926
821 => 0.003065595191672
822 => 0.0029657859312193
823 => 0.00285356727676
824 => 0.0028569544525569
825 => 0.0028926491186381
826 => 0.0029964361743507
827 => 0.0029558847761495
828 => 0.0029264642714808
829 => 0.0029209546953335
830 => 0.0029899185758961
831 => 0.003087516915272
901 => 0.0031333078724673
902 => 0.0030879304245788
903 => 0.0030358032557397
904 => 0.0030389759949729
905 => 0.0030600828076791
906 => 0.0030623008352602
907 => 0.0030283714071055
908 => 0.0030379223423883
909 => 0.0030234135983379
910 => 0.0029343734628818
911 => 0.0029327630091808
912 => 0.0029109111239737
913 => 0.0029102494575741
914 => 0.0028730739496286
915 => 0.0028678728390849
916 => 0.0027940586116672
917 => 0.0028426433596836
918 => 0.0028100552615279
919 => 0.0027609373108521
920 => 0.002752469357642
921 => 0.0027522148007431
922 => 0.0028026479535144
923 => 0.0028420540189299
924 => 0.0028106221454475
925 => 0.0028034657171369
926 => 0.0028798776487515
927 => 0.0028701535339433
928 => 0.0028617325132332
929 => 0.0030787780544488
930 => 0.0029069695723019
1001 => 0.0028320512676005
1002 => 0.0027393256389324
1003 => 0.0027695175711899
1004 => 0.0027758794549284
1005 => 0.0025528910330323
1006 => 0.0024624246580405
1007 => 0.0024313800072968
1008 => 0.0024135133718868
1009 => 0.0024216554219982
1010 => 0.0023402250738582
1011 => 0.0023949476145419
1012 => 0.0023244358161886
1013 => 0.0023126142837295
1014 => 0.0024386981139208
1015 => 0.0024562419423209
1016 => 0.0023813945199259
1017 => 0.0024294586818005
1018 => 0.0024120299485629
1019 => 0.0023256445385903
1020 => 0.0023223452513374
1021 => 0.0022790000892071
1022 => 0.0022111733037504
1023 => 0.0021801746427611
1024 => 0.0021640302709752
1025 => 0.0021706917534216
1026 => 0.0021673235040519
1027 => 0.0021453433985434
1028 => 0.0021685833779707
1029 => 0.0021092148339565
1030 => 0.0020855738013652
1031 => 0.0020748956954115
1101 => 0.0020222026954729
1102 => 0.0021060606910585
1103 => 0.0021225817726041
1104 => 0.0021391354057839
1105 => 0.0022832234809689
1106 => 0.0022760252479213
1107 => 0.0023410937689897
1108 => 0.0023385653259143
1109 => 0.0023200067296654
1110 => 0.0022417110648325
1111 => 0.0022729183213489
1112 => 0.0021768672364759
1113 => 0.0022488352401016
1114 => 0.0022159920487025
1115 => 0.0022377309240523
1116 => 0.002198642466058
1117 => 0.0022202756326349
1118 => 0.0021264995339303
1119 => 0.0020389327324252
1120 => 0.0020741721695851
1121 => 0.0021124814678964
1122 => 0.002195545787663
1123 => 0.0021460733640758
1124 => 0.0021638655183572
1125 => 0.0021042647798851
1126 => 0.0019812914323079
1127 => 0.0019819874481003
1128 => 0.0019630706776956
1129 => 0.0019467238261722
1130 => 0.0021517558670486
1201 => 0.0021262568916887
1202 => 0.0020856276116761
1203 => 0.0021400115175164
1204 => 0.0021543914854092
1205 => 0.0021548008628793
1206 => 0.0021944779567286
1207 => 0.0022156536288285
1208 => 0.0022193859328167
1209 => 0.0022818186972689
1210 => 0.0023027453364052
1211 => 0.0023889392013588
1212 => 0.002213857020997
1213 => 0.0022102513187085
1214 => 0.0021407768105991
1215 => 0.0020967149792076
1216 => 0.002143793761891
1217 => 0.0021854991364538
1218 => 0.00214207271284
1219 => 0.0021477432869821
1220 => 0.0020894468613498
1221 => 0.0021102850904116
1222 => 0.0021282337804922
1223 => 0.0021183235688049
1224 => 0.0021034875022494
1225 => 0.0021820797713414
1226 => 0.0021776452875137
1227 => 0.0022508322153206
1228 => 0.0023078866591936
1229 => 0.0024101384223157
1230 => 0.0023034333769928
1231 => 0.0022995446210271
]
'min_raw' => 0.0019467238261722
'max_raw' => 0.0056285510843617
'avg_raw' => 0.003787637455267
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001946'
'max' => '$0.005628'
'avg' => '$0.003787'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00034230826537336
'max_diff' => -0.0019013274310847
'year' => 2030
]
5 => [
'items' => [
101 => 0.002337557834368
102 => 0.0023027395167803
103 => 0.0023247434916082
104 => 0.0024065932417908
105 => 0.002408322598035
106 => 0.0023793536527948
107 => 0.0023775908898442
108 => 0.0023831546926631
109 => 0.0024157420595557
110 => 0.0024043550322548
111 => 0.0024175323885317
112 => 0.0024340108743348
113 => 0.0025021728783495
114 => 0.002518606506756
115 => 0.0024786813095875
116 => 0.0024822861078684
117 => 0.0024673529881561
118 => 0.0024529277816256
119 => 0.002485353539274
120 => 0.0025446122487064
121 => 0.0025442436033506
122 => 0.0025579904721142
123 => 0.0025665546574687
124 => 0.0025297909045603
125 => 0.0025058590532575
126 => 0.0025150360478703
127 => 0.002529710262105
128 => 0.0025102773979681
129 => 0.0023903287583369
130 => 0.0024267135132522
131 => 0.0024206573109107
201 => 0.002412032542317
202 => 0.0024486176947394
203 => 0.0024450889675382
204 => 0.0023393898879405
205 => 0.0023461564000765
206 => 0.0023398013819549
207 => 0.0023603357456203
208 => 0.0023016305937543
209 => 0.0023196879030831
210 => 0.0023310132782173
211 => 0.002337684011177
212 => 0.0023617832727918
213 => 0.0023589555025939
214 => 0.0023616074946259
215 => 0.0023973403376314
216 => 0.0025780647955226
217 => 0.0025879012290196
218 => 0.0025394630329739
219 => 0.002558813136893
220 => 0.0025216651687709
221 => 0.002546602848641
222 => 0.0025636645758598
223 => 0.0024865659113398
224 => 0.0024820006287931
225 => 0.0024446993377924
226 => 0.0024647429387231
227 => 0.0024328521284564
228 => 0.0024406770178027
301 => 0.002418797945029
302 => 0.0024581759199417
303 => 0.0025022066146128
304 => 0.0025133305069115
305 => 0.0024840683354103
306 => 0.0024628805947723
307 => 0.0024256819018877
308 => 0.0024875441571818
309 => 0.0025056345658478
310 => 0.0024874491359664
311 => 0.0024832351745033
312 => 0.0024752497251454
313 => 0.0024849293253343
314 => 0.0025055360415971
315 => 0.0024958182947539
316 => 0.0025022370377485
317 => 0.002477775408432
318 => 0.0025298030748922
319 => 0.0026124355303708
320 => 0.002612701207227
321 => 0.0026029834080014
322 => 0.0025990070939313
323 => 0.002608978145662
324 => 0.002614387032192
325 => 0.0026466315851111
326 => 0.0026812312750729
327 => 0.0028426929310974
328 => 0.002797355144185
329 => 0.0029406135308068
330 => 0.0030539123148514
331 => 0.0030878856662309
401 => 0.0030566317815314
402 => 0.0029497139302761
403 => 0.002944468030415
404 => 0.0031042484397429
405 => 0.0030591031557014
406 => 0.0030537332678158
407 => 0.0029966067332814
408 => 0.0030303755904501
409 => 0.0030229898460281
410 => 0.0030113310871349
411 => 0.0030757597142539
412 => 0.0031963643526375
413 => 0.0031775669887223
414 => 0.0031635356285442
415 => 0.0031020542927113
416 => 0.0031390797892362
417 => 0.0031258957191004
418 => 0.0031825428512216
419 => 0.0031489863450406
420 => 0.0030587611357732
421 => 0.0030731297977352
422 => 0.0030709580033854
423 => 0.0031156533772097
424 => 0.003102236935395
425 => 0.0030683382277948
426 => 0.0031959521390949
427 => 0.003187665601521
428 => 0.0031994140172346
429 => 0.0032045860331636
430 => 0.0032822623721626
501 => 0.0033140838828849
502 => 0.0033213079229328
503 => 0.003351535896955
504 => 0.0033205558234021
505 => 0.0034444982060319
506 => 0.0035269126582422
507 => 0.0036226412854933
508 => 0.0037625265393366
509 => 0.0038151246887926
510 => 0.0038056233038812
511 => 0.0039116827068568
512 => 0.004102269096436
513 => 0.0038441462622886
514 => 0.004115950233417
515 => 0.0040299002342855
516 => 0.003825877234318
517 => 0.0038127405583933
518 => 0.003950907302727
519 => 0.0042573478436028
520 => 0.0041805879637333
521 => 0.0042574733952678
522 => 0.0041677824553726
523 => 0.0041633285442322
524 => 0.004253117306511
525 => 0.0044629136437061
526 => 0.0043632472680028
527 => 0.0042203510792342
528 => 0.00432586340131
529 => 0.0042344588632235
530 => 0.0040284988563954
531 => 0.0041805292668998
601 => 0.0040788708609723
602 => 0.00410854018828
603 => 0.0043222110369929
604 => 0.0042965015951728
605 => 0.0043297719935182
606 => 0.0042710506112765
607 => 0.0042161955807507
608 => 0.0041138045926863
609 => 0.0040834916689352
610 => 0.0040918690705152
611 => 0.004083487517511
612 => 0.0040262007007107
613 => 0.004013829618077
614 => 0.0039932106050313
615 => 0.0039996012993515
616 => 0.0039608315225205
617 => 0.0040339981016452
618 => 0.0040475784634724
619 => 0.0041008229981731
620 => 0.0041063510223976
621 => 0.0042546362936503
622 => 0.0041729632580771
623 => 0.0042277565816503
624 => 0.0042228553510551
625 => 0.0038302990313792
626 => 0.0038843898286768
627 => 0.0039685381346446
628 => 0.0039306294368664
629 => 0.0038770354074773
630 => 0.0038337553552154
701 => 0.0037681816504262
702 => 0.0038604753806856
703 => 0.0039818318216326
704 => 0.0041094288220087
705 => 0.0042627282574738
706 => 0.0042285136080801
707 => 0.0041065629956955
708 => 0.0041120336110821
709 => 0.0041458508027942
710 => 0.0041020544669112
711 => 0.0040891380724532
712 => 0.0041440762885404
713 => 0.0041444546178411
714 => 0.0040940616404437
715 => 0.0040380590678839
716 => 0.00403782441506
717 => 0.0040278592981937
718 => 0.0041695552275255
719 => 0.0042474736615837
720 => 0.0042564068844766
721 => 0.0042468723845068
722 => 0.0042505418351344
723 => 0.0042052028151715
724 => 0.004308834369938
725 => 0.0044039369326903
726 => 0.0043784474143027
727 => 0.0043402350026913
728 => 0.0043097969762837
729 => 0.0043712771826155
730 => 0.0043685395658064
731 => 0.0044031062947703
801 => 0.0044015381482774
802 => 0.0043899146574473
803 => 0.0043784478294142
804 => 0.0044239125064138
805 => 0.0044108194095783
806 => 0.004397705975547
807 => 0.0043714049760309
808 => 0.0043749797186785
809 => 0.0043367739049787
810 => 0.004319098147382
811 => 0.0040532971632014
812 => 0.0039822664549307
813 => 0.004004614161716
814 => 0.0040119716070477
815 => 0.00398105895178
816 => 0.0040253797586244
817 => 0.004018472407825
818 => 0.0040453448691202
819 => 0.0040285561219696
820 => 0.0040292451380088
821 => 0.0040786172636404
822 => 0.0040929502017553
823 => 0.0040856603537491
824 => 0.0040907659134113
825 => 0.0042084213809046
826 => 0.0041916945358371
827 => 0.0041828087327734
828 => 0.0041852701609487
829 => 0.0042153336554549
830 => 0.0042237497925107
831 => 0.0041880900284139
901 => 0.0042049073793086
902 => 0.0042765135249787
903 => 0.0043015716234064
904 => 0.004381545045018
905 => 0.0043475709141032
906 => 0.0044099319017633
907 => 0.0046016083174031
908 => 0.0047547327012153
909 => 0.0046139131897288
910 => 0.0048951066203272
911 => 0.00511405604085
912 => 0.005105652397411
913 => 0.0050674735015515
914 => 0.0048182054073578
915 => 0.0045888251907029
916 => 0.0047807114819332
917 => 0.0047812006395513
918 => 0.0047647174369591
919 => 0.0046623416813061
920 => 0.0047611549825747
921 => 0.0047689984235922
922 => 0.0047646081823617
923 => 0.0046861169305352
924 => 0.0045662752966042
925 => 0.004589692065014
926 => 0.0046280492093583
927 => 0.0045554311329759
928 => 0.0045322252574874
929 => 0.0045753693951191
930 => 0.0047143887960066
1001 => 0.0046881079835534
1002 => 0.0046874216853311
1003 => 0.0047998621458049
1004 => 0.0047193790422758
1005 => 0.0045899874254545
1006 => 0.0045573143357414
1007 => 0.0044413468784904
1008 => 0.0045214460142756
1009 => 0.0045243286395747
1010 => 0.0044804591614985
1011 => 0.0045935471918219
1012 => 0.0045925050657137
1013 => 0.0046998653195738
1014 => 0.0049050978022844
1015 => 0.0048444004582697
1016 => 0.004773816051033
1017 => 0.0047814905331929
1018 => 0.0048656606602517
1019 => 0.0048147694800148
1020 => 0.0048330703032539
1021 => 0.0048656329597638
1022 => 0.0048852788189216
1023 => 0.0047786637963927
1024 => 0.0047538067346552
1025 => 0.0047029579099835
1026 => 0.0046896924007649
1027 => 0.0047311077074645
1028 => 0.0047201962373735
1029 => 0.0045240863660804
1030 => 0.0045035917933853
1031 => 0.0045042203326703
1101 => 0.0044526857551645
1102 => 0.0043740831547525
1103 => 0.004580646095518
1104 => 0.004564056200528
1105 => 0.004545742240415
1106 => 0.0045479855960308
1107 => 0.0046376475675495
1108 => 0.0045856390960306
1109 => 0.0047239121415846
1110 => 0.0046954873602869
1111 => 0.0046663335906054
1112 => 0.0046623036515899
1113 => 0.0046510819375453
1114 => 0.0046125985046704
1115 => 0.0045661274469783
1116 => 0.0045354432294358
1117 => 0.0041837066365325
1118 => 0.0042489869022177
1119 => 0.0043240858974051
1120 => 0.0043500097696035
1121 => 0.0043056651923308
1122 => 0.0046143494988646
1123 => 0.0046707490962242
1124 => 0.004499911036967
1125 => 0.004467954211352
1126 => 0.0046164445830316
1127 => 0.0045268867366991
1128 => 0.004567214629419
1129 => 0.0044800477835366
1130 => 0.0046571640847933
1201 => 0.0046558147553287
1202 => 0.0045869125137867
1203 => 0.0046451482165158
1204 => 0.0046350283300564
1205 => 0.0045572378690543
1206 => 0.0046596301811594
1207 => 0.0046596809664687
1208 => 0.0045933640570485
1209 => 0.004515920425484
1210 => 0.0045020753332971
1211 => 0.0044916449161608
1212 => 0.0045646493861996
1213 => 0.0046301049657574
1214 => 0.0047519015715
1215 => 0.0047825241319997
1216 => 0.0049020460242893
1217 => 0.0048308765568462
1218 => 0.0048624250599648
1219 => 0.0048966754229083
1220 => 0.0049130963064188
1221 => 0.0048863393579316
1222 => 0.0050720060538309
1223 => 0.0050876820116453
1224 => 0.005092938024704
1225 => 0.0050303322594887
1226 => 0.0050859408320617
1227 => 0.0050599234225171
1228 => 0.0051276134943075
1229 => 0.0051382281618745
1230 => 0.005129237916073
1231 => 0.0051326071790999
]
'min_raw' => 0.0023016305937543
'max_raw' => 0.0051382281618745
'avg_raw' => 0.0037199293778144
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0023016'
'max' => '$0.005138'
'avg' => '$0.003719'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00035490676758215
'max_diff' => -0.00049032292248726
'year' => 2031
]
6 => [
'items' => [
101 => 0.0049741734079995
102 => 0.0049659577811632
103 => 0.0048539371262962
104 => 0.0048995863711694
105 => 0.0048142472959043
106 => 0.0048413091957607
107 => 0.0048532378233622
108 => 0.0048470069852469
109 => 0.004902167310983
110 => 0.0048552697655972
111 => 0.0047314994326539
112 => 0.0046076953785662
113 => 0.0046061411195158
114 => 0.0045735456973975
115 => 0.0045499851773554
116 => 0.0045545237693699
117 => 0.0045705183596067
118 => 0.0045490555426942
119 => 0.004553635722875
120 => 0.0046296972314557
121 => 0.0046449508245557
122 => 0.0045931131552383
123 => 0.0043849774327892
124 => 0.0043339004044312
125 => 0.0043706135595134
126 => 0.0043530670360141
127 => 0.0035132648410157
128 => 0.0037105639097686
129 => 0.0035933355027589
130 => 0.0036473597461286
131 => 0.0035276998987206
201 => 0.0035848078498137
202 => 0.0035742620964952
203 => 0.0038915131605459
204 => 0.0038865597215454
205 => 0.0038889306706648
206 => 0.0037757590917198
207 => 0.0039560444899223
208 => 0.0040448595599301
209 => 0.0040284222542082
210 => 0.0040325591699306
211 => 0.0039614732515631
212 => 0.0038896189377407
213 => 0.003809921445412
214 => 0.0039579895352509
215 => 0.0039415268912674
216 => 0.0039792862734932
217 => 0.0040753190138794
218 => 0.0040894601996941
219 => 0.0041084660968349
220 => 0.0041016538356418
221 => 0.0042639495347993
222 => 0.0042442944547698
223 => 0.0042916575424884
224 => 0.0041942280776052
225 => 0.0040839773900001
226 => 0.0041049324413473
227 => 0.0041029143013927
228 => 0.0040772210634573
229 => 0.0040540263570714
301 => 0.004015413706007
302 => 0.0041375898475719
303 => 0.0041326297193442
304 => 0.0042129284298324
305 => 0.0041987348527736
306 => 0.0041039466714171
307 => 0.004107332049858
308 => 0.0041301003468299
309 => 0.0042089016826136
310 => 0.0042322952842783
311 => 0.0042214584359134
312 => 0.0042471084521802
313 => 0.0042673811792021
314 => 0.0042496543945698
315 => 0.0045006282824833
316 => 0.0043964064263832
317 => 0.0044472034338754
318 => 0.0044593182208489
319 => 0.0044282864487627
320 => 0.0044350161289638
321 => 0.0044452097607403
322 => 0.0045071034967694
323 => 0.0046695305692068
324 => 0.0047414684139108
325 => 0.0049578969690536
326 => 0.0047354949773312
327 => 0.0047222985635334
328 => 0.0047612838818308
329 => 0.0048883503549889
330 => 0.0049913257967365
331 => 0.00502548869156
401 => 0.0050300038820788
402 => 0.0050940957438739
403 => 0.0051308320038124
404 => 0.0050863133060687
405 => 0.0050485883710328
406 => 0.0049134623363256
407 => 0.004929103542779
408 => 0.0050368559446043
409 => 0.0051890625587674
410 => 0.0053196716681184
411 => 0.0052739369102107
412 => 0.0056228608293392
413 => 0.0056574552106944
414 => 0.0056526753857614
415 => 0.0057314865348227
416 => 0.0055750624535474
417 => 0.0055081881282283
418 => 0.0050567449301838
419 => 0.0051835820547055
420 => 0.0053679472640811
421 => 0.0053435458372862
422 => 0.0052096548941415
423 => 0.0053195700998318
424 => 0.0052832286954643
425 => 0.0052545647220334
426 => 0.0053858799411049
427 => 0.0052414934636039
428 => 0.0053665068985181
429 => 0.0052061758751422
430 => 0.0052741458227324
501 => 0.0052355627931438
502 => 0.0052605307418459
503 => 0.0051145686239124
504 => 0.0051933262397192
505 => 0.0051112920481638
506 => 0.0051112531532758
507 => 0.0051094422439505
508 => 0.0052059551065201
509 => 0.0052091023875036
510 => 0.0051377792362418
511 => 0.005127500455868
512 => 0.0051655064942369
513 => 0.0051210113771041
514 => 0.0051418303623616
515 => 0.0051216419629589
516 => 0.0051170971290206
517 => 0.0050808831189605
518 => 0.0050652811277016
519 => 0.005071399070488
520 => 0.0050505153777424
521 => 0.005037932197467
522 => 0.0051069391326797
523 => 0.0050700715109274
524 => 0.00510128864089
525 => 0.0050657127813817
526 => 0.0049423913526617
527 => 0.0048714678949043
528 => 0.0046385251479547
529 => 0.0047045874220251
530 => 0.0047483867780801
531 => 0.0047339110911652
601 => 0.0047650104680055
602 => 0.0047669197171649
603 => 0.0047568089927334
604 => 0.0047451020691059
605 => 0.0047394037861174
606 => 0.0047818741189975
607 => 0.00480652957672
608 => 0.00475278262942
609 => 0.0047401904716673
610 => 0.0047945316028379
611 => 0.0048276796614601
612 => 0.0050724263020415
613 => 0.005054294680386
614 => 0.0050998014925902
615 => 0.005094678123895
616 => 0.0051423765128888
617 => 0.0052203432200503
618 => 0.0050618151045567
619 => 0.0050893301039166
620 => 0.0050825840614877
621 => 0.0051562355838193
622 => 0.0051564655158327
623 => 0.0051123077490285
624 => 0.005136246390791
625 => 0.0051228844976814
626 => 0.0051470312444986
627 => 0.0050540525215244
628 => 0.005167290569674
629 => 0.0052314892460762
630 => 0.0052323806447603
701 => 0.0052628103078627
702 => 0.005293728607942
703 => 0.0053530735925278
704 => 0.0052920735085315
705 => 0.0051823402956605
706 => 0.0051902626791937
707 => 0.0051259261366373
708 => 0.005127007645541
709 => 0.0051212344662536
710 => 0.0051385602118798
711 => 0.0050578545483782
712 => 0.0050767960062898
713 => 0.0050502778542925
714 => 0.005089272458633
715 => 0.0050473207104017
716 => 0.0050825808083417
717 => 0.0050977978977219
718 => 0.0051539492851353
719 => 0.0050390271048254
720 => 0.004804692999626
721 => 0.0048539528695653
722 => 0.0047810936526458
723 => 0.0047878370505663
724 => 0.0048014597875695
725 => 0.0047573040398598
726 => 0.0047657275650153
727 => 0.0047654266174213
728 => 0.0047628332136414
729 => 0.0047513465982862
730 => 0.0047346887334636
731 => 0.0048010485398964
801 => 0.004812324364115
802 => 0.004837389124574
803 => 0.0049119648501103
804 => 0.0049045129765125
805 => 0.0049166672915258
806 => 0.0048901344900954
807 => 0.0047890678311267
808 => 0.0047945562369551
809 => 0.0047261157283296
810 => 0.0048356389468932
811 => 0.0048097024031015
812 => 0.0047929809445918
813 => 0.0047884183397142
814 => 0.0048631789240495
815 => 0.0048855484626113
816 => 0.0048716092673435
817 => 0.004843019571178
818 => 0.0048979202396007
819 => 0.0049126093423973
820 => 0.0049158976908002
821 => 0.0050131711490862
822 => 0.0049213341965451
823 => 0.0049434402638025
824 => 0.0051159054900899
825 => 0.0049595033284216
826 => 0.0050423530416417
827 => 0.0050382979793087
828 => 0.0050806810891107
829 => 0.0050348213272347
830 => 0.0050353898139456
831 => 0.0050730231441692
901 => 0.005020173919077
902 => 0.0050070877077238
903 => 0.0049890092004647
904 => 0.0050284829596761
905 => 0.0050521456930788
906 => 0.0052428499459416
907 => 0.0053660535904615
908 => 0.0053607049953264
909 => 0.0054095811427107
910 => 0.0053875619906599
911 => 0.0053164563403289
912 => 0.0054378250150336
913 => 0.005399418888076
914 => 0.005402585042519
915 => 0.0054024671980925
916 => 0.0054280039149974
917 => 0.0054099088106645
918 => 0.0053742415026001
919 => 0.0053979191262168
920 => 0.0054682332034532
921 => 0.0056864902566942
922 => 0.0058086297952093
923 => 0.0056791373031127
924 => 0.0057684594901874
925 => 0.0057148980066921
926 => 0.0057051642918249
927 => 0.0057612652261655
928 => 0.0058174643577652
929 => 0.0058138847160378
930 => 0.0057730870323538
1001 => 0.0057500414560436
1002 => 0.0059245502806989
1003 => 0.0060531254100247
1004 => 0.0060443574481833
1005 => 0.0060830563802574
1006 => 0.0061966776417398
1007 => 0.0062070657459417
1008 => 0.0062057570835801
1009 => 0.006180009083429
1010 => 0.0062918839709437
1011 => 0.0063852119703597
1012 => 0.0061740491653253
1013 => 0.0062544571971583
1014 => 0.0062905549532331
1015 => 0.0063435571688726
1016 => 0.0064329807908592
1017 => 0.0065301185627808
1018 => 0.006543854908792
1019 => 0.0065341083139524
1020 => 0.0064700433421666
1021 => 0.0065763326512979
1022 => 0.0066385944357961
1023 => 0.0066756699036291
1024 => 0.0067696871212841
1025 => 0.0062907778806855
1026 => 0.0059517821168562
1027 => 0.0058988430331761
1028 => 0.0060064967415663
1029 => 0.0060348841659465
1030 => 0.0060234412307736
1031 => 0.0056418706784373
1101 => 0.0058968341431859
1102 => 0.0061711533933184
1103 => 0.0061816911129163
1104 => 0.0063190210652776
1105 => 0.0063637413271114
1106 => 0.0064743099390106
1107 => 0.0064673938422317
1108 => 0.0064943155396983
1109 => 0.0064881267076695
1110 => 0.0066929317782447
1111 => 0.0069188621849364
1112 => 0.0069110389333673
1113 => 0.0068785587643182
1114 => 0.006926797354048
1115 => 0.0071599817459276
1116 => 0.007138513863827
1117 => 0.0071593680826579
1118 => 0.0074343056223804
1119 => 0.0077917635334286
1120 => 0.0076256884455592
1121 => 0.0079860235994166
1122 => 0.008212835478224
1123 => 0.0086050831698355
1124 => 0.0085559718269852
1125 => 0.008708670974883
1126 => 0.0084680522734364
1127 => 0.0079155430978523
1128 => 0.007828106405896
1129 => 0.0080031568774423
1130 => 0.0084335013805636
1201 => 0.0079896037975729
1202 => 0.0080794037004785
1203 => 0.0080535413224005
1204 => 0.0080521632261808
1205 => 0.008104759553766
1206 => 0.0080284658373637
1207 => 0.007717631511763
1208 => 0.0078600850514276
1209 => 0.0078050768985822
1210 => 0.0078661125452936
1211 => 0.0081954967575794
1212 => 0.008049868145789
1213 => 0.0078964602331755
1214 => 0.0080888677995339
1215 => 0.0083338687499211
1216 => 0.008318537030755
1217 => 0.0082887870874111
1218 => 0.0084564859603842
1219 => 0.0087334753673762
1220 => 0.0088083444910525
1221 => 0.0088636113475186
1222 => 0.0088712317132841
1223 => 0.0089497262166994
1224 => 0.0085276414886733
1225 => 0.0091975007919553
1226 => 0.0093131669891423
1227 => 0.0092914265379439
1228 => 0.0094199846481396
1229 => 0.0093821595909155
1230 => 0.0093273570175675
1231 => 0.0095311489673219
]
'min_raw' => 0.0035132648410157
'max_raw' => 0.0095311489673219
'avg_raw' => 0.0065222069041688
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.003513'
'max' => '$0.009531'
'avg' => '$0.006522'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0012116342472614
'max_diff' => 0.0043929208054475
'year' => 2032
]
7 => [
'items' => [
101 => 0.0092975179420908
102 => 0.0089659081151034
103 => 0.0087839804055195
104 => 0.0090235574891893
105 => 0.0091698588540985
106 => 0.0092665547497891
107 => 0.0092958148693998
108 => 0.0085604067245888
109 => 0.0081640625221413
110 => 0.0084181146118146
111 => 0.0087280756949548
112 => 0.0085259196392061
113 => 0.0085338437738594
114 => 0.0082456223640388
115 => 0.0087535768943196
116 => 0.0086795721918277
117 => 0.0090635087192675
118 => 0.0089718791857109
119 => 0.0092849645195079
120 => 0.009202518658487
121 => 0.0095447468180988
122 => 0.0096812708964254
123 => 0.009910516072212
124 => 0.010079149756716
125 => 0.010178174681706
126 => 0.010172229596642
127 => 0.010564615683472
128 => 0.010333239316994
129 => 0.010042576069476
130 => 0.010037318888359
131 => 0.010187857502979
201 => 0.01050334514097
202 => 0.010585146495343
203 => 0.010630862292891
204 => 0.010560846957567
205 => 0.01030970449465
206 => 0.010201262452483
207 => 0.010293658214277
208 => 0.010180666137261
209 => 0.010375722162169
210 => 0.010643575746085
211 => 0.010588265040214
212 => 0.010773160437297
213 => 0.010964507721714
214 => 0.011238142932374
215 => 0.011309681309123
216 => 0.011427931525529
217 => 0.011549649841383
218 => 0.011588742484034
219 => 0.011663382468591
220 => 0.011662989079029
221 => 0.011887921696341
222 => 0.01213602933882
223 => 0.01222968423015
224 => 0.012445038488604
225 => 0.012076251867915
226 => 0.012355980756023
227 => 0.012608303215164
228 => 0.012307473977342
301 => 0.012722096997457
302 => 0.012738195869772
303 => 0.012981269728268
304 => 0.012734867805366
305 => 0.012588555130089
306 => 0.013010954341349
307 => 0.013215340014227
308 => 0.01315377738621
309 => 0.012685282747281
310 => 0.012412598772744
311 => 0.011698932214571
312 => 0.012544301080828
313 => 0.012956055595835
314 => 0.01268421640256
315 => 0.012821316279706
316 => 0.013569288754631
317 => 0.013854068245451
318 => 0.013794836102119
319 => 0.013804845359298
320 => 0.013958507203431
321 => 0.014639928443441
322 => 0.014231605041206
323 => 0.014543752982629
324 => 0.014709315125226
325 => 0.014863098470149
326 => 0.014485455178744
327 => 0.013994146805308
328 => 0.013838528819718
329 => 0.012657187352154
330 => 0.012595693398461
331 => 0.012561174978796
401 => 0.012343541225534
402 => 0.012172540710373
403 => 0.012036554751874
404 => 0.011679686987929
405 => 0.011800119382297
406 => 0.01123134665066
407 => 0.011595227288294
408 => 0.010687452275103
409 => 0.011443474280768
410 => 0.011032005875187
411 => 0.011308295843128
412 => 0.011307331893458
413 => 0.010798594464665
414 => 0.010505165332817
415 => 0.010692149796063
416 => 0.010892611983508
417 => 0.010925136298986
418 => 0.011185040757607
419 => 0.01125757450538
420 => 0.01103779386335
421 => 0.010668640655677
422 => 0.010754386526331
423 => 0.010503427695485
424 => 0.010063631997418
425 => 0.010379500945866
426 => 0.010487352492643
427 => 0.010534985879867
428 => 0.010102497321696
429 => 0.0099666000269347
430 => 0.0098942494474928
501 => 0.010612811813776
502 => 0.010652176282264
503 => 0.010450782095905
504 => 0.011361102915226
505 => 0.011155069277503
506 => 0.011385259330307
507 => 0.010746605987315
508 => 0.010771003405078
509 => 0.010468654677632
510 => 0.010637949762052
511 => 0.010518297453019
512 => 0.010624272392238
513 => 0.010687793333855
514 => 0.01099009244885
515 => 0.011446926051072
516 => 0.010944939041856
517 => 0.010726216113355
518 => 0.010861910588053
519 => 0.011223282855782
520 => 0.011770780339698
521 => 0.011446650809806
522 => 0.011590493991096
523 => 0.01162191732707
524 => 0.011382916211655
525 => 0.011779592651731
526 => 0.011992174778561
527 => 0.012210240053016
528 => 0.012399580020776
529 => 0.012123139987041
530 => 0.012418970449259
531 => 0.012180583317818
601 => 0.011966725416906
602 => 0.011967049751065
603 => 0.011832893565858
604 => 0.011572949052251
605 => 0.011525011295678
606 => 0.011774389559244
607 => 0.011974367310414
608 => 0.011990838435829
609 => 0.012101556394105
610 => 0.012167078141327
611 => 0.012809280336598
612 => 0.013067579372112
613 => 0.013383422543387
614 => 0.013506461258544
615 => 0.013876763679347
616 => 0.013577714400057
617 => 0.013513013207374
618 => 0.012614780659504
619 => 0.012761866188898
620 => 0.0129973643131
621 => 0.012618663936833
622 => 0.012858862160763
623 => 0.012906282378261
624 => 0.012605795842959
625 => 0.012766298684721
626 => 0.012340050722777
627 => 0.011456217091841
628 => 0.011780576611219
629 => 0.012019414395716
630 => 0.011678563428753
701 => 0.01228952559428
702 => 0.011932614109998
703 => 0.011819490304253
704 => 0.011378154006495
705 => 0.011586447750445
706 => 0.011868168021617
707 => 0.011694097647529
708 => 0.012055319810558
709 => 0.01256690672784
710 => 0.012931494030622
711 => 0.012959482516631
712 => 0.012725077306394
713 => 0.013100713151753
714 => 0.013103449248795
715 => 0.012679730480713
716 => 0.012420205094539
717 => 0.012361240380754
718 => 0.012508545796502
719 => 0.0126874017653
720 => 0.012969407778125
721 => 0.013139818105471
722 => 0.013584157860535
723 => 0.013704383458036
724 => 0.013836474939566
725 => 0.014012989894394
726 => 0.014224941355172
727 => 0.013761203625395
728 => 0.013779628789914
729 => 0.013347802636832
730 => 0.012886334462128
731 => 0.013236531283908
801 => 0.013694367043654
802 => 0.013589339014505
803 => 0.013577521215697
804 => 0.013597395475307
805 => 0.013518207771223
806 => 0.013160044720486
807 => 0.012980177478625
808 => 0.013212252109653
809 => 0.013335589447591
810 => 0.013526874902586
811 => 0.013503294932712
812 => 0.013996025722223
813 => 0.014187486007621
814 => 0.014138502273568
815 => 0.014147516459494
816 => 0.014494146160872
817 => 0.014879669678639
818 => 0.015240763327338
819 => 0.015608083296127
820 => 0.015165264737009
821 => 0.014940428781941
822 => 0.015172402096445
823 => 0.015049313790509
824 => 0.015756615706784
825 => 0.015805587756856
826 => 0.016512838527153
827 => 0.01718410372602
828 => 0.016762494081577
829 => 0.017160052986571
830 => 0.017590045355775
831 => 0.018419570399718
901 => 0.018140215547961
902 => 0.017926234109564
903 => 0.017724022684229
904 => 0.018144792560191
905 => 0.018686106283653
906 => 0.018802700075048
907 => 0.018991626559365
908 => 0.018792993461937
909 => 0.01903222514907
910 => 0.019876818128382
911 => 0.019648601649943
912 => 0.019324497562931
913 => 0.019991222604526
914 => 0.020232507805251
915 => 0.02192597370598
916 => 0.024064044359237
917 => 0.02317886906946
918 => 0.022629412202667
919 => 0.022758547599654
920 => 0.023539298623965
921 => 0.023790051073174
922 => 0.02310841947667
923 => 0.02334918327997
924 => 0.024675815507529
925 => 0.025387511134157
926 => 0.024420932879722
927 => 0.021754181810783
928 => 0.019295315535996
929 => 0.019947517596261
930 => 0.019873578122813
1001 => 0.021298878950584
1002 => 0.019643158762409
1003 => 0.019671036844047
1004 => 0.021125811383517
1005 => 0.020737702477536
1006 => 0.02010901575508
1007 => 0.019299905644816
1008 => 0.017804190772367
1009 => 0.016479394398743
1010 => 0.019077625169802
1011 => 0.018965584734378
1012 => 0.018803333580422
1013 => 0.019164405966143
1014 => 0.020917670979021
1015 => 0.020877252545709
1016 => 0.020620131094645
1017 => 0.020815155449113
1018 => 0.020074827042812
1019 => 0.020265626530081
1020 => 0.019294926039015
1021 => 0.01973372320101
1022 => 0.020107666875731
1023 => 0.020182741604762
1024 => 0.020351888802679
1025 => 0.018906544516066
1026 => 0.019555461667677
1027 => 0.019936639698933
1028 => 0.018214463486341
1029 => 0.019902597812429
1030 => 0.018881384287637
1031 => 0.01853476907921
1101 => 0.019001440794276
1102 => 0.018819578373062
1103 => 0.018663223742621
1104 => 0.018575975172322
1105 => 0.018918647375189
1106 => 0.018902661307343
1107 => 0.018341983073645
1108 => 0.017610601173955
1109 => 0.017856076946284
1110 => 0.017766893296849
1111 => 0.017443680246378
1112 => 0.017661486817503
1113 => 0.016702376907653
1114 => 0.015052278157951
1115 => 0.016142383935896
1116 => 0.016100416049252
1117 => 0.016079253937714
1118 => 0.016898438301529
1119 => 0.016819692626747
1120 => 0.016676768455938
1121 => 0.017441055331899
1122 => 0.017162080341064
1123 => 0.018021815528043
1124 => 0.018588092726373
1125 => 0.018444466511728
1126 => 0.018977052953813
1127 => 0.017861732212287
1128 => 0.01823219702372
1129 => 0.018308549307915
1130 => 0.017431624150487
1201 => 0.016832576393005
1202 => 0.016792626737226
1203 => 0.015753960479619
1204 => 0.016308807610611
1205 => 0.01679705012475
1206 => 0.016563219849627
1207 => 0.016489196170004
1208 => 0.016867367095422
1209 => 0.016896754215142
1210 => 0.016226724771221
1211 => 0.016366045109685
1212 => 0.016947034081159
1213 => 0.016351405678268
1214 => 0.015194196986797
1215 => 0.014907193231651
1216 => 0.014868901640186
1217 => 0.014090524693673
1218 => 0.014926372194932
1219 => 0.014561502361312
1220 => 0.015714121793905
1221 => 0.01505575175563
1222 => 0.015027370739147
1223 => 0.014984468670144
1224 => 0.014314487477934
1225 => 0.014461170779502
1226 => 0.014948768414411
1227 => 0.015122748743728
1228 => 0.015104601170001
1229 => 0.014946378919992
1230 => 0.015018812255817
1231 => 0.014785479243678
]
'min_raw' => 0.0081640625221413
'max_raw' => 0.025387511134157
'avg_raw' => 0.016775786828149
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.008164'
'max' => '$0.025387'
'avg' => '$0.016775'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0046507976811255
'max_diff' => 0.015856362166835
'year' => 2033
]
8 => [
'items' => [
101 => 0.014703084500685
102 => 0.014443024027339
103 => 0.01406080697506
104 => 0.014113956600453
105 => 0.013356684607356
106 => 0.01294408263405
107 => 0.012829879845846
108 => 0.012677163104596
109 => 0.012847129608134
110 => 0.013354539350946
111 => 0.012742495548133
112 => 0.01169318937809
113 => 0.011756254466841
114 => 0.01189794299707
115 => 0.011633907358351
116 => 0.011384019785136
117 => 0.011601276756027
118 => 0.011156671899021
119 => 0.011951671369914
120 => 0.011930168862186
121 => 0.012226495502498
122 => 0.012411794631919
123 => 0.011984740129908
124 => 0.011877337077531
125 => 0.011938518737362
126 => 0.010927322184189
127 => 0.012143859170874
128 => 0.012154379833253
129 => 0.012064295534688
130 => 0.012712063923732
131 => 0.014079057268642
201 => 0.013564739385107
202 => 0.013365579955262
203 => 0.012986977733541
204 => 0.013491442714808
205 => 0.013452707675126
206 => 0.013277533135858
207 => 0.013171587027931
208 => 0.013366795980272
209 => 0.013147398478454
210 => 0.013107988658488
211 => 0.012869208027797
212 => 0.012783974206467
213 => 0.01272087047841
214 => 0.012651399474264
215 => 0.012804635198315
216 => 0.012457382887778
217 => 0.012038630642834
218 => 0.012003815924629
219 => 0.012099942422534
220 => 0.012057413602987
221 => 0.012003612313003
222 => 0.011900890998514
223 => 0.011870415778798
224 => 0.011969445458399
225 => 0.011857646723919
226 => 0.012022611846636
227 => 0.011977750461193
228 => 0.011727158408876
301 => 0.011414827930629
302 => 0.011412047534237
303 => 0.011344756445023
304 => 0.011259051125626
305 => 0.011235209866442
306 => 0.011582979979918
307 => 0.012302853706928
308 => 0.012161525269198
309 => 0.012263649549379
310 => 0.012765999931755
311 => 0.012925682012109
312 => 0.012812343453751
313 => 0.012657198644653
314 => 0.01266402422888
315 => 0.013194201007097
316 => 0.013227267482426
317 => 0.013310815797934
318 => 0.013418198994113
319 => 0.012830631276399
320 => 0.012636349842215
321 => 0.012544288520375
322 => 0.012260775281323
323 => 0.012566520003052
324 => 0.012388375646995
325 => 0.012412413406905
326 => 0.012396758784229
327 => 0.012405307266771
328 => 0.01195144915136
329 => 0.012116811194535
330 => 0.01184186472526
331 => 0.01147374226709
401 => 0.01147250819153
402 => 0.011562605641648
403 => 0.011509012152804
404 => 0.01136479345234
405 => 0.011385279038048
406 => 0.0112058037513
407 => 0.011407070587364
408 => 0.011412842200055
409 => 0.011335343505092
410 => 0.011645422835519
411 => 0.011772462590196
412 => 0.011721451288988
413 => 0.011768883501317
414 => 0.012167398103845
415 => 0.012232373372468
416 => 0.012261231094765
417 => 0.012222565569803
418 => 0.011776167616688
419 => 0.011795967264139
420 => 0.011650690588414
421 => 0.011527947106305
422 => 0.011532856201885
423 => 0.011595962307225
424 => 0.011871550370367
425 => 0.012451509202447
426 => 0.01247351821618
427 => 0.012500193782873
428 => 0.012391690847068
429 => 0.012358965323396
430 => 0.012402138736294
501 => 0.012619940780836
502 => 0.013180186772078
503 => 0.012982158421202
504 => 0.012821158289444
505 => 0.012962398810319
506 => 0.01294065593921
507 => 0.012757124225799
508 => 0.012751973101875
509 => 0.0123997170652
510 => 0.012269496028923
511 => 0.012160673584135
512 => 0.012041842315307
513 => 0.011971395155886
514 => 0.012079634010418
515 => 0.012104389517094
516 => 0.011867723369969
517 => 0.011835466648627
518 => 0.012028733333163
519 => 0.011943683871007
520 => 0.01203115935196
521 => 0.012051454413892
522 => 0.012048186441486
523 => 0.011959385035126
524 => 0.012015984403444
525 => 0.011882110024289
526 => 0.01173654174424
527 => 0.011643678250793
528 => 0.011562642536205
529 => 0.011607605860482
530 => 0.011447319819414
531 => 0.011396041088956
601 => 0.011996809810984
602 => 0.012440604125298
603 => 0.012434151180206
604 => 0.012394870536521
605 => 0.012336507467794
606 => 0.012615671158838
607 => 0.012518416110932
608 => 0.012589177284215
609 => 0.012607188972652
610 => 0.012661704928779
611 => 0.01268118969729
612 => 0.012622293193809
613 => 0.012424629334525
614 => 0.011932069790506
615 => 0.011702781993127
616 => 0.011627113200901
617 => 0.011629863617783
618 => 0.011553994841778
619 => 0.011576341596512
620 => 0.011546223552447
621 => 0.011489187263325
622 => 0.011604084030353
623 => 0.011617324812415
624 => 0.011590506534077
625 => 0.011596823209461
626 => 0.011374779319057
627 => 0.011391660833791
628 => 0.011297662414556
629 => 0.011280038844117
630 => 0.01104241902567
701 => 0.010621441073747
702 => 0.010854703724431
703 => 0.010572955244097
704 => 0.010466252825408
705 => 0.010971365479849
706 => 0.010920666178988
707 => 0.010833891014369
708 => 0.010705532460368
709 => 0.010657923024098
710 => 0.010368663160635
711 => 0.01035157214476
712 => 0.010494937143766
713 => 0.010428779129613
714 => 0.010335868221743
715 => 0.0099993543316672
716 => 0.0096210013033016
717 => 0.0096324214029856
718 => 0.0097527684618003
719 => 0.010102693766316
720 => 0.0099659718960727
721 => 0.0098667786105083
722 => 0.0098482026898613
723 => 0.010080719228083
724 => 0.010409778843387
725 => 0.010564166252593
726 => 0.010411173018885
727 => 0.010235422629741
728 => 0.010246119741579
729 => 0.010317282834249
730 => 0.010324761069097
731 => 0.010210365633196
801 => 0.010242567278327
802 => 0.010193650034793
803 => 0.0098934450015189
804 => 0.0098880152444274
805 => 0.0098143400878019
806 => 0.0098121092333396
807 => 0.0096867694127904
808 => 0.0096692335054623
809 => 0.0094203636841786
810 => 0.0095841705541948
811 => 0.0094742975060346
812 => 0.0093086929060253
813 => 0.0092801426105636
814 => 0.0092792843542065
815 => 0.0094493232499051
816 => 0.0095821835506971
817 => 0.0094762087947481
818 => 0.0094520803970529
819 => 0.0097097085594022
820 => 0.0096769230274104
821 => 0.0096485309681495
822 => 0.010380315163994
823 => 0.0098010508711501
824 => 0.0095484585762204
825 => 0.0092358276452691
826 => 0.0093376218528089
827 => 0.0093590713880055
828 => 0.0086072503550286
829 => 0.0083022366555832
830 => 0.0081975674481323
831 => 0.0081373288394389
901 => 0.0081647803298493
902 => 0.0078902322258098
903 => 0.0080747330923309
904 => 0.0078369976412062
905 => 0.0077971405191671
906 => 0.0082222409555491
907 => 0.0082813911978709
908 => 0.0080290378875861
909 => 0.0081910895650789
910 => 0.0081323273741332
911 => 0.0078410729331736
912 => 0.0078299491558516
913 => 0.0076838079154667
914 => 0.0074551251727847
915 => 0.0073506110230018
916 => 0.0072961791463614
917 => 0.0073186387995194
918 => 0.007307282511606
919 => 0.007233175051282
920 => 0.0073115302644847
921 => 0.0071113650733614
922 => 0.0070316576814156
923 => 0.0069956557016711
924 => 0.0068179975734706
925 => 0.0071007306603657
926 => 0.0071564326402617
927 => 0.0072122443702652
928 => 0.0076980473756595
929 => 0.007673778030375
930 => 0.007893161092096
1001 => 0.0078846362697371
1002 => 0.0078220646667643
1003 => 0.0075580853663512
1004 => 0.0076633028105173
1005 => 0.0073394598717953
1006 => 0.0075821050206651
1007 => 0.0074713719078246
1008 => 0.0075446660438263
1009 => 0.0074128765786295
1010 => 0.0074858143101231
1011 => 0.0071696416461022
1012 => 0.006874404061109
1013 => 0.0069932162838326
1014 => 0.007122378757759
1015 => 0.0074024359112177
1016 => 0.0072356361810391
1017 => 0.0072956236714074
1018 => 0.0070946756204581
1019 => 0.0066800623933766
1020 => 0.006682409059215
1021 => 0.0066186298470686
1022 => 0.0065635152958568
1023 => 0.0072547951365516
1024 => 0.0071688235608441
1025 => 0.0070318391066359
1026 => 0.0072151982421395
1027 => 0.0072636813078674
1028 => 0.0072650615525895
1029 => 0.0073988356446686
1030 => 0.0074702309015916
1031 => 0.007482814625069
1101 => 0.0076933110493361
1102 => 0.0077638666742354
1103 => 0.0080544753077901
1104 => 0.0074641735128526
1105 => 0.0074520166358447
1106 => 0.0072177784811986
1107 => 0.0070692209403634
1108 => 0.0072279503431162
1109 => 0.0073685629252309
1110 => 0.007222147706081
1111 => 0.007241266442708
1112 => 0.0070447159735622
1113 => 0.0071149735177227
1114 => 0.0071754887794669
1115 => 0.0071420758088544
1116 => 0.0070920549746414
1117 => 0.0073570342970222
1118 => 0.0073420831251912
1119 => 0.0075888379620404
1120 => 0.0077812010029721
1121 => 0.0081259499613284
1122 => 0.007766186451114
1123 => 0.0077530752388713
1124 => 0.0078812394416478
1125 => 0.0077638470529638
1126 => 0.0078380349903646
1127 => 0.008113997137672
1128 => 0.0081198277829892
1129 => 0.0080221569615648
1130 => 0.0080162136832047
1201 => 0.008034972432861
1202 => 0.0081448430155167
1203 => 0.0081064508579548
1204 => 0.0081508792346559
1205 => 0.0082064376000321
1206 => 0.0084362505554869
1207 => 0.0084916576810189
1208 => 0.0083570470912769
1209 => 0.0083692009203598
1210 => 0.008318852864653
1211 => 0.0082702172736995
1212 => 0.0083795429795053
1213 => 0.0085793378556675
1214 => 0.0085780949421122
1215 => 0.0086244434699244
1216 => 0.0086533182187795
1217 => 0.0085293666590855
1218 => 0.0084486787515499
1219 => 0.008479619629604
1220 => 0.0085290947674172
1221 => 0.0084635755092205
1222 => 0.0080591602961574
1223 => 0.0081818340376569
1224 => 0.0081614151286319
1225 => 0.0081323361191561
1226 => 0.0082556855148419
1227 => 0.0082437881647151
1228 => 0.0078874163381775
1229 => 0.0079102301062669
1230 => 0.0078888037189766
1231 => 0.007958036759738
]
'min_raw' => 0.0065635152958568
'max_raw' => 0.014703084500685
'avg_raw' => 0.010633299898271
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.006563'
'max' => '$0.014703'
'avg' => '$0.010633'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0016005472262845
'max_diff' => -0.010684426633472
'year' => 2034
]
9 => [
'items' => [
101 => 0.0077601082415592
102 => 0.0078209897206821
103 => 0.0078591740136595
104 => 0.0078816648555688
105 => 0.0079629171986598
106 => 0.0079533831740091
107 => 0.0079623245503011
108 => 0.0080828003252818
109 => 0.0086921254528405
110 => 0.0087252896751334
111 => 0.0085619769153187
112 => 0.0086272171416629
113 => 0.0085019701735511
114 => 0.0085860493023263
115 => 0.008643574106856
116 => 0.0083836305765701
117 => 0.0083682384077262
118 => 0.0082424745008241
119 => 0.0083100529007615
120 => 0.0082025308074022
121 => 0.0082289129681494
122 => 0.0081551461467449
123 => 0.0082879117384455
124 => 0.008436364299654
125 => 0.0084738692791846
126 => 0.0083752098249486
127 => 0.0083037738781068
128 => 0.0081783558879165
129 => 0.0083869288007252
130 => 0.0084479218765748
131 => 0.0083866084300633
201 => 0.0083724007647813
202 => 0.0083454772647447
203 => 0.0083781127125897
204 => 0.0084475896951848
205 => 0.0084148256332314
206 => 0.0084364668733801
207 => 0.0083539927822831
208 => 0.0085294076922094
209 => 0.0088080087850694
210 => 0.0088089045331388
211 => 0.0087761402945749
212 => 0.0087627338740699
213 => 0.0087963519711367
214 => 0.008814588409709
215 => 0.0089233031711185
216 => 0.009039958441498
217 => 0.0095843376876774
218 => 0.009431478173719
219 => 0.0099144838261957
220 => 0.01029647858687
221 => 0.01041102211299
222 => 0.010305647458649
223 => 0.0099451664583759
224 => 0.009927479540737
225 => 0.010466190346298
226 => 0.010313979869209
227 => 0.010295874917289
228 => 0.010103268817659
301 => 0.01021712287727
302 => 0.010192221324295
303 => 0.010152913004698
304 => 0.010370138619293
305 => 0.01077676557795
306 => 0.01071338895312
307 => 0.010666081242641
308 => 0.010458792626391
309 => 0.010583626672962
310 => 0.010539175660017
311 => 0.01073016542094
312 => 0.01061702731751
313 => 0.010312826725142
314 => 0.010361271672135
315 => 0.010353949315855
316 => 0.010504642889235
317 => 0.010459408418951
318 => 0.010345116559544
319 => 0.010775375771211
320 => 0.010747437131233
321 => 0.01078704773506
322 => 0.010804485547863
323 => 0.011066376747987
324 => 0.011173665193094
325 => 0.011198021548482
326 => 0.011299937273348
327 => 0.011195485792404
328 => 0.011613366188821
329 => 0.011891232268442
330 => 0.012213988018778
331 => 0.012685620918588
401 => 0.012862959251764
402 => 0.01283092466917
403 => 0.013188511351133
404 => 0.013831086669916
405 => 0.012960807513027
406 => 0.013877213578434
407 => 0.013587089998543
408 => 0.012899212209722
409 => 0.012854920989668
410 => 0.013320759814683
411 => 0.014353945493241
412 => 0.014095144199057
413 => 0.014354368799445
414 => 0.014051969533567
415 => 0.014036952861195
416 => 0.01433968194207
417 => 0.015047024940435
418 => 0.014710992796268
419 => 0.014229208319141
420 => 0.014584950479655
421 => 0.014276773697835
422 => 0.013582365155146
423 => 0.014094946298585
424 => 0.013752197885438
425 => 0.013852230093902
426 => 0.014572636278359
427 => 0.014485955100287
428 => 0.014598128571174
429 => 0.01440014533115
430 => 0.014215197765876
501 => 0.013869979400907
502 => 0.013767777262099
503 => 0.013796022256418
504 => 0.013767763265282
505 => 0.013574616762802
506 => 0.013532906793982
507 => 0.013463388351924
508 => 0.013484935024009
509 => 0.013354220014604
510 => 0.01360090624445
511 => 0.013646693382501
512 => 0.013826211048659
513 => 0.013844849168287
514 => 0.014344803313262
515 => 0.014069436971598
516 => 0.014254176487572
517 => 0.014237651646428
518 => 0.012914120607233
519 => 0.013096491506821
520 => 0.013380203395439
521 => 0.013252391574179
522 => 0.013071695562278
523 => 0.01292577384436
524 => 0.012704687520453
525 => 0.013015862275765
526 => 0.013425023989255
527 => 0.01385522618456
528 => 0.014372085934256
529 => 0.014256728855035
530 => 0.01384556385106
531 => 0.013864008412782
601 => 0.01397802543568
602 => 0.013830363031488
603 => 0.013786814505779
604 => 0.013972042536981
605 => 0.013973318100632
606 => 0.013803414659012
607 => 0.013614598075652
608 => 0.013613806927273
609 => 0.013580208840016
610 => 0.014057946558652
611 => 0.01432065399917
612 => 0.014350772983852
613 => 0.014318626751526
614 => 0.01433099856051
615 => 0.014178134889235
616 => 0.014527535911455
617 => 0.014848180841623
618 => 0.014762241150758
619 => 0.014633405337105
620 => 0.014530781405956
621 => 0.014738066214015
622 => 0.014728836147809
623 => 0.014845380287883
624 => 0.014840093172497
625 => 0.014800903761637
626 => 0.014762242550335
627 => 0.014915529883082
628 => 0.01487138559297
629 => 0.014827172734583
630 => 0.014738497078437
701 => 0.014750549572854
702 => 0.01462173600452
703 => 0.014562140953701
704 => 0.013665974377904
705 => 0.013426489385764
706 => 0.013501836239458
707 => 0.013526642380074
708 => 0.013422418204586
709 => 0.013571848899242
710 => 0.013548560283766
711 => 0.013639162663198
712 => 0.013582558230027
713 => 0.013584881295709
714 => 0.013751342864328
715 => 0.013799667365876
716 => 0.013775089134362
717 => 0.013792302885222
718 => 0.014188986508318
719 => 0.014132590782342
720 => 0.014102631676925
721 => 0.01411093055387
722 => 0.014212291724564
723 => 0.014240667318243
724 => 0.014120437933905
725 => 0.014177138806597
726 => 0.014418563926105
727 => 0.014503049054455
728 => 0.014772685028984
729 => 0.014658138874607
730 => 0.014868393298408
731 => 0.015514643716158
801 => 0.016030913266983
802 => 0.015556130452302
803 => 0.016504193735863
804 => 0.017242396993716
805 => 0.017214063523138
806 => 0.017085340710182
807 => 0.016244915927266
808 => 0.015471544511998
809 => 0.016118502539954
810 => 0.016120151769016
811 => 0.016064577500656
812 => 0.015719410492825
813 => 0.016052566436976
814 => 0.016079011145978
815 => 0.016064209141153
816 => 0.015799570405535
817 => 0.015395515969662
818 => 0.015474467239262
819 => 0.015603791029429
820 => 0.015358954114873
821 => 0.015280713885481
822 => 0.015426177357734
823 => 0.015894890973851
824 => 0.015806283379797
825 => 0.015803969477425
826 => 0.016183070340255
827 => 0.015911715937555
828 => 0.015475463067608
829 => 0.015365303464478
830 => 0.014974311085767
831 => 0.01524437091441
901 => 0.015254089886865
902 => 0.015106180878661
903 => 0.015487465068451
904 => 0.015483951467518
905 => 0.015845924059061
906 => 0.016537879703394
907 => 0.016333234370296
908 => 0.016095254113251
909 => 0.016121129165668
910 => 0.016404914625617
911 => 0.01623333145834
912 => 0.016295033961613
913 => 0.016404821231489
914 => 0.016471058617269
915 => 0.01611159862519
916 => 0.016027791306077
917 => 0.015856350943545
918 => 0.015811625353046
919 => 0.015951259951108
920 => 0.015914471167882
921 => 0.015253273044863
922 => 0.015184174162136
923 => 0.015186293326219
924 => 0.015012540900129
925 => 0.014747526744981
926 => 0.015443968121537
927 => 0.015388034132308
928 => 0.015326287337147
929 => 0.015333850967232
930 => 0.015636152564206
1001 => 0.015460802371365
1002 => 0.015926999598366
1003 => 0.015831163463666
1004 => 0.015732869493734
1005 => 0.015719282272981
1006 => 0.015681447480605
1007 => 0.01555169789984
1008 => 0.015395017484325
1009 => 0.015291563502577
1010 => 0.014105659022139
1011 => 0.014325755995619
1012 => 0.014578957501138
1013 => 0.014666361646202
1014 => 0.014516850807887
1015 => 0.015557601499016
1016 => 0.015747756679208
1017 => 0.01517176423489
1018 => 0.015064019566175
1019 => 0.015564665221559
1020 => 0.01526271468992
1021 => 0.015398682995829
1022 => 0.015104793889141
1023 => 0.015701953864694
1024 => 0.015697404506196
1025 => 0.015465095788237
1026 => 0.015661441525875
1027 => 0.015627321622129
1028 => 0.015365045651704
1029 => 0.015710268480769
1030 => 0.015710439706985
1031 => 0.015486847616776
1101 => 0.015225741006015
1102 => 0.015179061311073
1103 => 0.01514389443147
1104 => 0.015390034099215
1105 => 0.015610722155657
1106 => 0.016021367915485
1107 => 0.016124614016209
1108 => 0.016527590420815
1109 => 0.016287637592437
1110 => 0.016394005573348
1111 => 0.016509483063296
1112 => 0.016564847218521
1113 => 0.016474634298586
1114 => 0.017100622526645
1115 => 0.017153475112877
1116 => 0.017171196127867
1117 => 0.016960116419449
1118 => 0.017147604604345
1119 => 0.017059885091588
1120 => 0.0172881068946
1121 => 0.017323894987394
1122 => 0.017293583745995
1123 => 0.017304943451525
1124 => 0.016770772930767
1125 => 0.016743073371292
1126 => 0.016365387912376
1127 => 0.016519297528594
1128 => 0.016231570878154
1129 => 0.016322811962921
1130 => 0.01636303016371
1201 => 0.016342022457981
1202 => 0.016527999347371
1203 => 0.016369880998821
1204 => 0.015952580679934
1205 => 0.015535166667854
1206 => 0.015529926374951
1207 => 0.015420028633539
1208 => 0.015340592695274
1209 => 0.015355894875125
1210 => 0.015409821752816
1211 => 0.015337458367109
1212 => 0.015352900764366
1213 => 0.015609347450991
1214 => 0.0156607760051
1215 => 0.015486001683806
1216 => 0.014784257563996
1217 => 0.014612047796803
1218 => 0.014735828762394
1219 => 0.014676669433357
1220 => 0.011845217699803
1221 => 0.012510425285084
1222 => 0.012115181526225
1223 => 0.012297328034598
1224 => 0.011893886504678
1225 => 0.012086429948938
1226 => 0.012050874205344
1227 => 0.013120508317553
1228 => 0.013103807452125
1229 => 0.013111801272615
1230 => 0.012730235392815
1231 => 0.013338080199979
]
'min_raw' => 0.0077601082415592
'max_raw' => 0.017323894987394
'avg_raw' => 0.012542001614477
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.00776'
'max' => '$0.017323'
'avg' => '$0.012542'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0011965929457024
'max_diff' => 0.0026208104867092
'year' => 2035
]
10 => [
'items' => [
101 => 0.013637526409381
102 => 0.013582106885523
103 => 0.013596054785711
104 => 0.013356383648875
105 => 0.013114121813115
106 => 0.012845416153427
107 => 0.013344638056103
108 => 0.013289133102528
109 => 0.013416441495978
110 => 0.013740222584982
111 => 0.013787900580262
112 => 0.013851980289422
113 => 0.013829012275192
114 => 0.014376203556025
115 => 0.014309935081432
116 => 0.014469623038461
117 => 0.014141132795299
118 => 0.013769414904581
119 => 0.013840066323233
120 => 0.013833262023474
121 => 0.01374663547793
122 => 0.013668432905948
123 => 0.013538247657035
124 => 0.013950173048387
125 => 0.013933449629762
126 => 0.01420418233845
127 => 0.014156327702432
128 => 0.013836742731089
129 => 0.013848156770862
130 => 0.013924921673735
131 => 0.014190605879063
201 => 0.014269479040365
202 => 0.014232941849498
203 => 0.014319422670168
204 => 0.014387773584719
205 => 0.014328006492687
206 => 0.015174182478225
207 => 0.014822791213845
208 => 0.014994056871139
209 => 0.015034902721248
210 => 0.01493027693509
211 => 0.014952966521739
212 => 0.01498733506297
213 => 0.015196014115275
214 => 0.015743648330294
215 => 0.015986191796253
216 => 0.016715895780476
217 => 0.015966051937773
218 => 0.01592155930731
219 => 0.016053001029818
220 => 0.016481414515568
221 => 0.016828603406936
222 => 0.01694378599201
223 => 0.016959009272085
224 => 0.017175099458878
225 => 0.017298958324104
226 => 0.017148860426465
227 => 0.017021668174121
228 => 0.016566081313907
229 => 0.016618816733499
301 => 0.016982111479285
302 => 0.017495286705663
303 => 0.017935644436677
304 => 0.017781446507292
305 => 0.018957867861724
306 => 0.019074505233765
307 => 0.019058389720287
308 => 0.019324107011766
309 => 0.018796712300565
310 => 0.018571240843736
311 => 0.017049168582771
312 => 0.017476808803582
313 => 0.018098408978959
314 => 0.018016137864867
315 => 0.017564715202087
316 => 0.017935301992107
317 => 0.017812774410006
318 => 0.017716131822329
319 => 0.018158870251565
320 => 0.017672061161928
321 => 0.0180935526859
322 => 0.017552985446634
323 => 0.017782150870445
324 => 0.017652065492405
325 => 0.017736246674661
326 => 0.017244125203299
327 => 0.017509662003672
328 => 0.017233077999399
329 => 0.017232946862569
330 => 0.017226841255345
331 => 0.017552241109811
401 => 0.017562852387383
402 => 0.01732238140328
403 => 0.017287725777609
404 => 0.017415865789466
405 => 0.017265847395503
406 => 0.017336040057834
407 => 0.017267973459739
408 => 0.017252650234806
409 => 0.017130552171506
410 => 0.017077948968681
411 => 0.017098576039926
412 => 0.017028165211782
413 => 0.016985740140954
414 => 0.017218401840934
415 => 0.01709410008018
416 => 0.01719935081336
417 => 0.0170794043192
418 => 0.016663617512244
419 => 0.016424494122697
420 => 0.015639111387813
421 => 0.015861844957162
422 => 0.016009517544075
423 => 0.015960711754981
424 => 0.016065565475288
425 => 0.016072002642128
426 => 0.016037913628799
427 => 0.015998442918437
428 => 0.0159792307595
429 => 0.016122422451989
430 => 0.01620555004909
501 => 0.016024338463776
502 => 0.015981883124756
503 => 0.016165098042475
504 => 0.016276859036443
505 => 0.017102039422828
506 => 0.017040907394507
507 => 0.017194336789038
508 => 0.01717706299378
509 => 0.017337881442467
510 => 0.017600751639124
511 => 0.017066263029658
512 => 0.017159031771036
513 => 0.017136287017993
514 => 0.017384608267719
515 => 0.017385383499556
516 => 0.017236502505778
517 => 0.017317213307823
518 => 0.017272162752307
519 => 0.017353575195073
520 => 0.017040090938998
521 => 0.017421880924363
522 => 0.017638331244061
523 => 0.01764133665696
524 => 0.017743932390641
525 => 0.017848175598005
526 => 0.018048261356871
527 => 0.017842595314787
528 => 0.017472622126264
529 => 0.01749933299547
530 => 0.017282417850407
531 => 0.017286064233184
601 => 0.017266599556146
602 => 0.01732501451717
603 => 0.017052909737985
604 => 0.017116772185784
605 => 0.017027364384887
606 => 0.017158837415937
607 => 0.017017394167798
608 => 0.017136276049784
609 => 0.017187581529053
610 => 0.017376899852082
611 => 0.016989431697556
612 => 0.016199357901192
613 => 0.016365440991907
614 => 0.016119791055194
615 => 0.016142526892092
616 => 0.016188456901008
617 => 0.016039582714749
618 => 0.016067983217922
619 => 0.016066968552098
620 => 0.016058224710188
621 => 0.016019496784548
622 => 0.015963333630284
623 => 0.016187070350765
624 => 0.016225087579371
625 => 0.016309595169224
626 => 0.016561032434581
627 => 0.016535907922473
628 => 0.016576887044127
629 => 0.016487429851644
630 => 0.016146676554682
701 => 0.016165181098121
702 => 0.015934429144926
703 => 0.01630369432298
704 => 0.016216247454755
705 => 0.016159869889934
706 => 0.016144486749039
707 => 0.016396547278743
708 => 0.016471967739795
709 => 0.016424970769746
710 => 0.016328578613055
711 => 0.016513680049684
712 => 0.016563205385324
713 => 0.016574292281549
714 => 0.016902256537576
715 => 0.016592621840233
716 => 0.016667153989388
717 => 0.017248632540953
718 => 0.016721311733238
719 => 0.017000645325742
720 => 0.016986973399971
721 => 0.017129871013763
722 => 0.016975251624771
723 => 0.016977168317407
724 => 0.017104051717732
725 => 0.016925866865518
726 => 0.016881745790291
727 => 0.016820792840866
728 => 0.016953881376017
729 => 0.017033661933763
730 => 0.017676634636836
731 => 0.018092024326139
801 => 0.018073991164214
802 => 0.018238780507544
803 => 0.018164541399076
804 => 0.017924803734547
805 => 0.018334006695004
806 => 0.018204517756537
807 => 0.018215192667295
808 => 0.018214795346583
809 => 0.018300894170545
810 => 0.018239885262927
811 => 0.018119630443576
812 => 0.018199461204718
813 => 0.018436530025293
814 => 0.019172398918516
815 => 0.01958420090013
816 => 0.019147607922149
817 => 0.019448763912147
818 => 0.019268177630999
819 => 0.019235359731738
820 => 0.01942450794871
821 => 0.019613987244596
822 => 0.01960191823259
823 => 0.019464365993646
824 => 0.019386666224125
825 => 0.019975034910268
826 => 0.020408534935619
827 => 0.020378973140111
828 => 0.020509449291472
829 => 0.020892531307343
830 => 0.020927555525934
831 => 0.020923143279414
901 => 0.020836332099236
902 => 0.021213526093347
903 => 0.021528187959331
904 => 0.020816237819241
905 => 0.021087339112476
906 => 0.021209045217347
907 => 0.021387745887872
908 => 0.021689243872758
909 => 0.022016750652734
910 => 0.022063063702352
911 => 0.022030202377365
912 => 0.021814202852115
913 => 0.022172564678734
914 => 0.022382484632149
915 => 0.022507487160474
916 => 0.022824472773871
917 => 0.021209796832817
918 => 0.020066848947138
919 => 0.019888361130422
920 => 0.020251323124401
921 => 0.020347033307646
922 => 0.02030845265279
923 => 0.019021960895183
924 => 0.019881588017564
925 => 0.020806474521744
926 => 0.020842003179088
927 => 0.021305020701545
928 => 0.021455798186587
929 => 0.021828587981259
930 => 0.021805269878103
1001 => 0.021896038260724
1002 => 0.021875172181449
1003 => 0.022565686775926
1004 => 0.023327426916045
1005 => 0.023301050277178
1006 => 0.023191541119535
1007 => 0.02335418089272
1008 => 0.024140378350357
1009 => 0.024067997887015
1010 => 0.024138309341798
1011 => 0.025065280452499
1012 => 0.026270474756512
1013 => 0.025710541002768
1014 => 0.026925436131795
1015 => 0.027690148216694
1016 => 0.029012638694822
1017 => 0.028847056373557
1018 => 0.029361892211809
1019 => 0.028550629460421
1020 => 0.02668780619998
1021 => 0.026393007288414
1022 => 0.026983202174866
1023 => 0.028434138712834
1024 => 0.026937507019841
1025 => 0.027240273662116
1026 => 0.027153076848773
1027 => 0.027148430501152
1028 => 0.027325762691764
1029 => 0.027068533100256
1030 => 0.026020533469734
1031 => 0.026500825524502
1101 => 0.026315361696637
1102 => 0.026521147640897
1103 => 0.02763168950949
1104 => 0.027140692477374
1105 => 0.026623466989399
1106 => 0.027272182532843
1107 => 0.028098220342494
1108 => 0.028046528380899
1109 => 0.02794622436984
1110 => 0.028511632828431
1111 => 0.029445521952887
1112 => 0.029697948430557
1113 => 0.029884284495741
1114 => 0.029909977090956
1115 => 0.030174626789532
1116 => 0.028751538659978
1117 => 0.031010016069076
1118 => 0.031399992728448
1119 => 0.031326693279363
1120 => 0.031760135923528
1121 => 0.031632606102236
1122 => 0.0314478354
1123 => 0.032134934186896
1124 => 0.031347230873732
1125 => 0.030229185189786
1126 => 0.029615803215136
1127 => 0.030423554079467
1128 => 0.030916819345694
1129 => 0.031242836309106
1130 => 0.03134148884525
1201 => 0.028862008940463
1202 => 0.027525706790042
1203 => 0.028382261147726
1204 => 0.029427316580325
1205 => 0.028745733324284
1206 => 0.028772450097513
1207 => 0.027800691491326
1208 => 0.029513295654421
1209 => 0.029263783633126
1210 => 0.030558252440982
1211 => 0.030249317071226
1212 => 0.031304906133042
1213 => 0.031026934156424
1214 => 0.032180780290162
1215 => 0.032641080752047
1216 => 0.033413996867599
1217 => 0.033982557108533
1218 => 0.034316426556834
1219 => 0.034296382287471
1220 => 0.035619339374738
1221 => 0.034839237800976
1222 => 0.033859246368508
1223 => 0.033841521415328
1224 => 0.034349072864789
1225 => 0.03541276146292
1226 => 0.035688560440376
1227 => 0.035842694443585
1228 => 0.035606632852227
1229 => 0.034759888504293
1230 => 0.034394268587946
1231 => 0.034705787349702
]
'min_raw' => 0.012845416153427
'max_raw' => 0.035842694443585
'avg_raw' => 0.024344055298506
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.012845'
'max' => '$0.035842'
'avg' => '$0.024344'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0050853079118683
'max_diff' => 0.018518799456191
'year' => 2036
]
11 => [
'items' => [
101 => 0.034324826673187
102 => 0.034982471679539
103 => 0.035885558738655
104 => 0.035699074832141
105 => 0.036322462572387
106 => 0.03696760330124
107 => 0.037890183518583
108 => 0.038131380150442
109 => 0.03853006901102
110 => 0.038940450811023
111 => 0.039072254385084
112 => 0.039323908304215
113 => 0.039322581963841
114 => 0.040080957987402
115 => 0.04091747022634
116 => 0.041233234231237
117 => 0.041959316149167
118 => 0.040715926309656
119 => 0.041659051785958
120 => 0.042509774573544
121 => 0.041495507795
122 => 0.042893438255373
123 => 0.042947716727371
124 => 0.043767257212166
125 => 0.042936495925867
126 => 0.042443192525946
127 => 0.04386734095768
128 => 0.044556441523541
129 => 0.044348878825017
130 => 0.042769316440617
131 => 0.041849943382279
201 => 0.039443766754789
202 => 0.042293986909146
203 => 0.043682246004271
204 => 0.04276572118494
205 => 0.043227962992746
206 => 0.045749804413725
207 => 0.046709958349694
208 => 0.046510253042995
209 => 0.046543999952398
210 => 0.04706208158822
211 => 0.049359540874224
212 => 0.047982850015361
213 => 0.049035278593339
214 => 0.049593482916285
215 => 0.050111974200503
216 => 0.048838723477318
217 => 0.047182242994224
218 => 0.046657566090907
219 => 0.042674590854387
220 => 0.042467259696142
221 => 0.042350878434241
222 => 0.041617111040416
223 => 0.041040570864674
224 => 0.04058208471136
225 => 0.039378880129508
226 => 0.039784926355442
227 => 0.037867269380283
228 => 0.039094118355399
301 => 0.036033491519598
302 => 0.038582472495471
303 => 0.037195178038247
304 => 0.038126708955108
305 => 0.038123458931494
306 => 0.036408215171407
307 => 0.035418898366813
308 => 0.036049329539486
309 => 0.036725201800281
310 => 0.036834859800688
311 => 0.037711145828879
312 => 0.037955698423642
313 => 0.037214692644441
314 => 0.035970066831319
315 => 0.036259165020815
316 => 0.03541303980123
317 => 0.033930237899643
318 => 0.0349952121126
319 => 0.035358841132514
320 => 0.035519440423197
321 => 0.034061275053935
322 => 0.033603087836603
323 => 0.033359152806658
324 => 0.035781835993004
325 => 0.03591455604685
326 => 0.035235541486649
327 => 0.038304751685561
328 => 0.037610094891168
329 => 0.038386196725551
330 => 0.036232932390302
331 => 0.036315189987664
401 => 0.035295800143765
402 => 0.035866590340694
403 => 0.035463174226931
404 => 0.035820476133441
405 => 0.036034641422992
406 => 0.037053863995048
407 => 0.038594110380044
408 => 0.03690162613086
409 => 0.03616418650667
410 => 0.036621689902
411 => 0.037840081732855
412 => 0.039686007724931
413 => 0.0385931823849
414 => 0.039078159713428
415 => 0.039184105684572
416 => 0.038378296737426
417 => 0.039715719050207
418 => 0.040432454532825
419 => 0.041167676830482
420 => 0.041806049751076
421 => 0.040874012876913
422 => 0.041871425934505
423 => 0.041067687077192
424 => 0.040346650233186
425 => 0.040347743748448
426 => 0.039895426803535
427 => 0.039019005727165
428 => 0.038857380233971
429 => 0.039698176460618
430 => 0.040372415410689
501 => 0.040427948960004
502 => 0.040801242286412
503 => 0.041022153431753
504 => 0.043187382970235
505 => 0.044058256202331
506 => 0.045123143505751
507 => 0.045537977124193
508 => 0.04678647758962
509 => 0.045778212065538
510 => 0.045560067477115
511 => 0.042531613729378
512 => 0.043027522860913
513 => 0.043821521228614
514 => 0.042544706470014
515 => 0.0433545515521
516 => 0.043514432126168
517 => 0.042501320793096
518 => 0.043042467330047
519 => 0.041605342566672
520 => 0.038625435772677
521 => 0.03971903653832
522 => 0.040524294803871
523 => 0.039375091971302
524 => 0.04143499356839
525 => 0.040231641580371
526 => 0.039850236771251
527 => 0.038362240630242
528 => 0.039064517530575
529 => 0.040014357093911
530 => 0.03942746667447
531 => 0.040645352416849
601 => 0.042370203426321
602 => 0.043599434972324
603 => 0.043693800106997
604 => 0.042903486575034
605 => 0.044169969053718
606 => 0.044179193995925
607 => 0.042750596586237
608 => 0.041875588627267
609 => 0.041676784977956
610 => 0.042173435471685
611 => 0.042776460857811
612 => 0.043727263819084
613 => 0.044301814135399
614 => 0.045799936642408
615 => 0.046205285638266
616 => 0.046650641290578
617 => 0.047245773784663
618 => 0.047960382932651
619 => 0.046396858799574
620 => 0.046458980528154
621 => 0.045003048503898
622 => 0.043447176334207
623 => 0.044627889368799
624 => 0.046171514597854
625 => 0.045817405264754
626 => 0.045777560730983
627 => 0.045844568184834
628 => 0.045577581311807
629 => 0.044370009580099
630 => 0.043763574616234
701 => 0.044546030437679
702 => 0.044961870883675
703 => 0.045606803150317
704 => 0.045527301635584
705 => 0.047188577893785
706 => 0.047834099613335
707 => 0.047668947534042
708 => 0.047699339491239
709 => 0.048868025730348
710 => 0.050167845186895
711 => 0.051385297634234
712 => 0.052623742554468
713 => 0.051130748865798
714 => 0.050372698745741
715 => 0.051154812971452
716 => 0.050739812154235
717 => 0.053124529947202
718 => 0.053289642633138
719 => 0.055674187983866
720 => 0.057937405468084
721 => 0.056515919115999
722 => 0.057856316720864
723 => 0.059306066014745
724 => 0.062102867615988
725 => 0.061161003229356
726 => 0.060439549870092
727 => 0.059757779931626
728 => 0.061176434945645
729 => 0.063001511957613
730 => 0.063394616065621
731 => 0.064031594897921
801 => 0.063361889541824
802 => 0.064168475877617
803 => 0.067016080074965
804 => 0.066246632284344
805 => 0.065153892726758
806 => 0.067401802753749
807 => 0.068215312653988
808 => 0.073924951172309
809 => 0.081133605655092
810 => 0.078149175364643
811 => 0.076296643176397
812 => 0.076732032183286
813 => 0.079364388772044
814 => 0.080209818161532
815 => 0.077911649643918
816 => 0.078723401616337
817 => 0.083196234794057
818 => 0.085595766288235
819 => 0.082336880219067
820 => 0.073345742803528
821 => 0.065055503485519
822 => 0.067254448266997
823 => 0.067005156169979
824 => 0.071810657422137
825 => 0.066228281209011
826 => 0.066322274107638
827 => 0.071227148036576
828 => 0.069918611763163
829 => 0.067798950584896
830 => 0.065070979357878
831 => 0.060028072237938
901 => 0.055561428769939
902 => 0.064321545217243
903 => 0.063943793066797
904 => 0.063396751973219
905 => 0.064614132730948
906 => 0.070525388130921
907 => 0.070389114561085
908 => 0.069522211637175
909 => 0.070179749864429
910 => 0.067683680954508
911 => 0.068326974747027
912 => 0.065054190269255
913 => 0.066533625536761
914 => 0.067794402743996
915 => 0.068047522434474
916 => 0.068617814021732
917 => 0.063744734848702
918 => 0.065932604331305
919 => 0.067217772676687
920 => 0.061411335337427
921 => 0.067102998079609
922 => 0.063659905381922
923 => 0.062491268006811
924 => 0.064064684276132
925 => 0.06345152242578
926 => 0.062924361872919
927 => 0.062630197226655
928 => 0.063785540483228
929 => 0.063731642339375
930 => 0.061841276529159
1001 => 0.0593753713909
1002 => 0.060203010095876
1003 => 0.059902321195204
1004 => 0.058812585829528
1005 => 0.059546935890844
1006 => 0.056313229866869
1007 => 0.050749806726034
1008 => 0.054425174465129
1009 => 0.054283676805205
1010 => 0.054212327268663
1011 => 0.05697426454489
1012 => 0.056708768004515
1013 => 0.056226889183985
1014 => 0.058803735747095
1015 => 0.057863152088083
1016 => 0.060761809295777
1017 => 0.062671052406158
1018 => 0.062186806595821
1019 => 0.063982458969308
1020 => 0.060222077220044
1021 => 0.06147112519682
1022 => 0.061728552253727
1023 => 0.0587719378605
1024 => 0.056752206521972
1025 => 0.056617513468315
1026 => 0.05311557766343
1027 => 0.054986283503761
1028 => 0.056632427228185
1029 => 0.0558440521301
1030 => 0.055594476126082
1031 => 0.056869505804178
1101 => 0.056968586530057
1102 => 0.054709535479916
1103 => 0.055179263728083
1104 => 0.057138108608763
1105 => 0.055129905862968
1106 => 0.051228295965945
1107 => 0.050260642767506
1108 => 0.050131539993447
1109 => 0.047507187773737
1110 => 0.050325305981239
1111 => 0.049095121862792
1112 => 0.052981258753097
1113 => 0.050761518203125
1114 => 0.050665829624555
1115 => 0.050521182303584
1116 => 0.048262293937455
1117 => 0.048756846929792
1118 => 0.05040081639887
1119 => 0.050987403226078
1120 => 0.050926217414236
1121 => 0.050392760051607
1122 => 0.050636974100475
1123 => 0.049850275559256
1124 => 0.049572475930637
1125 => 0.048695663887909
1126 => 0.047406992410608
1127 => 0.047586190083409
1128 => 0.045032994687641
1129 => 0.043641878327691
1130 => 0.043256835653876
1201 => 0.042741940498409
1202 => 0.04331499443177
1203 => 0.045025761805877
1204 => 0.042962213393158
1205 => 0.039424404380643
1206 => 0.039637032730429
1207 => 0.040114745502473
1208 => 0.039224530912155
1209 => 0.038382017512466
1210 => 0.039114514558223
1211 => 0.037615498241508
1212 => 0.040295894462713
1213 => 0.040223397256653
1214 => 0.041222483213327
1215 => 0.041847232165344
1216 => 0.040407388095821
1217 => 0.040045271206088
1218 => 0.040251549443775
1219 => 0.036842229665266
1220 => 0.040943869051774
1221 => 0.040979340199513
1222 => 0.040675614697415
1223 => 0.042859611046822
1224 => 0.047468524549615
1225 => 0.045734465896748
1226 => 0.045062985974158
1227 => 0.043786502150465
1228 => 0.045487341055426
1229 => 0.045356743164745
1230 => 0.044766129975307
1231 => 0.04440892527551
]
'min_raw' => 0.033359152806658
'max_raw' => 0.085595766288235
'avg_raw' => 0.059477459547447
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.033359'
'max' => '$0.085595'
'avg' => '$0.059477'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.020513736653231
'max_diff' => 0.04975307184465
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0010471056879509
]
1 => [
'year' => 2028
'avg' => 0.001797137337477
]
2 => [
'year' => 2029
'avg' => 0.004909455303496
]
3 => [
'year' => 2030
'avg' => 0.003787637455267
]
4 => [
'year' => 2031
'avg' => 0.0037199293778144
]
5 => [
'year' => 2032
'avg' => 0.0065222069041688
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0010471056879509
'min' => '$0.001047'
'max_raw' => 0.0065222069041688
'max' => '$0.006522'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0065222069041688
]
1 => [
'year' => 2033
'avg' => 0.016775786828149
]
2 => [
'year' => 2034
'avg' => 0.010633299898271
]
3 => [
'year' => 2035
'avg' => 0.012542001614477
]
4 => [
'year' => 2036
'avg' => 0.024344055298506
]
5 => [
'year' => 2037
'avg' => 0.059477459547447
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0065222069041688
'min' => '$0.006522'
'max_raw' => 0.059477459547447
'max' => '$0.059477'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.059477459547447
]
]
]
]
'prediction_2025_max_price' => '$0.00179'
'last_price' => 0.0017359756272936
'sma_50day_nextmonth' => '$0.001628'
'sma_200day_nextmonth' => '$0.00224'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.001621'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001596'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001572'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001675'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001922'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002068'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002588'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00165'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001624'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001625'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00169'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001858'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002165'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003311'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002256'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005113'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.012034'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.0340096'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0017085'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001765'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001932'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002587'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005589'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.012214'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.026139'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '50.35'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 65.84
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001575'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001618'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 74.82
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 29.18
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.77
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000184'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -25.18
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 66.02
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000025'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutre'
'overall_action_dir' => 0
'last_updated' => 1767692400
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Centrality pour 2026
La prévision du prix de Centrality pour 2026 suggère que le prix moyen pourrait varier entre $0.000599 à la baisse et $0.00179 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Centrality pourrait potentiellement gagner 3.13% d'ici 2026 si CENNZ atteint l'objectif de prix prévu.
Prévision du prix de Centrality de 2027 à 2032
La prévision du prix de CENNZ pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.001047 à la baisse et $0.006522 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Centrality atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Centrality | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000577 | $0.001047 | $0.001516 |
| 2028 | $0.001042 | $0.001797 | $0.002552 |
| 2029 | $0.002289 | $0.0049094 | $0.007529 |
| 2030 | $0.001946 | $0.003787 | $0.005628 |
| 2031 | $0.0023016 | $0.003719 | $0.005138 |
| 2032 | $0.003513 | $0.006522 | $0.009531 |
Prévision du prix de Centrality de 2032 à 2037
La prévision du prix de Centrality pour 2032-2037 est actuellement estimée entre $0.006522 à la baisse et $0.059477 à la hausse. Par rapport au prix actuel, Centrality pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Centrality | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.003513 | $0.006522 | $0.009531 |
| 2033 | $0.008164 | $0.016775 | $0.025387 |
| 2034 | $0.006563 | $0.010633 | $0.014703 |
| 2035 | $0.00776 | $0.012542 | $0.017323 |
| 2036 | $0.012845 | $0.024344 | $0.035842 |
| 2037 | $0.033359 | $0.059477 | $0.085595 |
Centrality Histogramme des prix potentiels
Prévision du prix de Centrality basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Centrality est Neutre, avec 17 indicateurs techniques montrant des signaux haussiers et 17 indiquant des signaux baissiers. La prévision du prix de CENNZ a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Centrality et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Centrality devrait augmenter au cours du prochain mois, atteignant $0.00224 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Centrality devrait atteindre $0.001628 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 50.35, ce qui suggère que le marché de CENNZ est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de CENNZ pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.001621 | BUY |
| SMA 5 | $0.001596 | BUY |
| SMA 10 | $0.001572 | BUY |
| SMA 21 | $0.001675 | BUY |
| SMA 50 | $0.001922 | SELL |
| SMA 100 | $0.002068 | SELL |
| SMA 200 | $0.002588 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.00165 | BUY |
| EMA 5 | $0.001624 | BUY |
| EMA 10 | $0.001625 | BUY |
| EMA 21 | $0.00169 | BUY |
| EMA 50 | $0.001858 | SELL |
| EMA 100 | $0.002165 | SELL |
| EMA 200 | $0.003311 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.002256 | SELL |
| SMA 50 | $0.005113 | SELL |
| SMA 100 | $0.012034 | SELL |
| SMA 200 | $0.0340096 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.002587 | SELL |
| EMA 50 | $0.005589 | SELL |
| EMA 100 | $0.012214 | SELL |
| EMA 200 | $0.026139 | SELL |
Oscillateurs de Centrality
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 50.35 | NEUTRAL |
| Stoch RSI (14) | 65.84 | NEUTRAL |
| Stochastique Rapide (14) | 74.82 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | 29.18 | NEUTRAL |
| Indice Directionnel Moyen (14) | 18.77 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000184 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -25.18 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 66.02 | NEUTRAL |
| VWMA (10) | 0.001575 | BUY |
| Moyenne Mobile de Hull (9) | 0.001618 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000025 | SELL |
Prévision du cours de Centrality basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Centrality
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Centrality par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.002439 | $0.003427 | $0.004816 | $0.006767 | $0.00951 | $0.013363 |
| Action Amazon.com | $0.003622 | $0.007557 | $0.01577 | $0.0329054 | $0.068659 | $0.143261 |
| Action Apple | $0.002462 | $0.003492 | $0.004954 | $0.007026 | $0.009967 | $0.014137 |
| Action Netflix | $0.002739 | $0.004321 | $0.006819 | $0.010759 | $0.016977 | $0.026787 |
| Action Google | $0.002248 | $0.002911 | $0.00377 | $0.004882 | $0.006322 | $0.008187 |
| Action Tesla | $0.003935 | $0.008921 | $0.020223 | $0.045845 | $0.103927 | $0.235595 |
| Action Kodak | $0.0013018 | $0.000976 | $0.000732 | $0.000548 | $0.000411 | $0.0003087 |
| Action Nokia | $0.00115 | $0.000761 | $0.0005046 | $0.000334 | $0.000221 | $0.000146 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Centrality
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Centrality maintenant ?", "Devrais-je acheter CENNZ aujourd'hui ?", " Centrality sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Centrality/CENNZnet avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Centrality en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Centrality afin de prendre une décision responsable concernant cet investissement.
Le cours de Centrality est de $0.001735 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Centrality basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Centrality présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001781 | $0.001827 | $0.001874 | $0.001923 |
| Si Centrality présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001826 | $0.001921 | $0.002021 | $0.002126 |
| Si Centrality présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001961 | $0.002216 | $0.0025046 | $0.00283 |
| Si Centrality présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002187 | $0.002755 | $0.003472 | $0.004374 |
| Si Centrality présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002638 | $0.00401 | $0.006094 | $0.009263 |
| Si Centrality présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003992 | $0.00918 | $0.021112 | $0.048551 |
| Si Centrality présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006248 | $0.022489 | $0.080948 | $0.291358 |
Boîte à questions
Est-ce que CENNZ est un bon investissement ?
La décision d'acquérir Centrality dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Centrality a connu une baisse de 0% au cours des 24 heures précédentes, et Centrality a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Centrality dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Centrality peut monter ?
Il semble que la valeur moyenne de Centrality pourrait potentiellement s'envoler jusqu'à $0.00179 pour la fin de cette année. En regardant les perspectives de Centrality sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.005628. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Centrality la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Centrality, le prix de Centrality va augmenter de 0.86% durant la prochaine semaine et atteindre $0.00175 d'ici 13 janvier 2026.
Quel sera le prix de Centrality le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Centrality, le prix de Centrality va diminuer de -11.62% durant le prochain mois et atteindre $0.001534 d'ici 5 février 2026.
Jusqu'où le prix de Centrality peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Centrality en 2026, CENNZ devrait fluctuer dans la fourchette de $0.000599 et $0.00179. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Centrality ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Centrality dans 5 ans ?
L'avenir de Centrality semble suivre une tendance haussière, avec un prix maximum de $0.005628 prévue après une période de cinq ans. Selon la prévision de Centrality pour 2030, la valeur de Centrality pourrait potentiellement atteindre son point le plus élevé d'environ $0.005628, tandis que son point le plus bas devrait être autour de $0.001946.
Combien vaudra Centrality en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Centrality, il est attendu que la valeur de CENNZ en 2026 augmente de 3.13% jusqu'à $0.00179 si le meilleur scénario se produit. Le prix sera entre $0.00179 et $0.000599 durant 2026.
Combien vaudra Centrality en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Centrality, le valeur de CENNZ pourrait diminuer de -12.62% jusqu'à $0.001516 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001516 et $0.000577 tout au long de l'année.
Combien vaudra Centrality en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Centrality suggère que la valeur de CENNZ en 2028 pourrait augmenter de 47.02%, atteignant $0.002552 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002552 et $0.001042 durant l'année.
Combien vaudra Centrality en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Centrality pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.007529 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.007529 et $0.002289.
Combien vaudra Centrality en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Centrality, il est prévu que la valeur de CENNZ en 2030 augmente de 224.23%, atteignant $0.005628 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.005628 et $0.001946 au cours de 2030.
Combien vaudra Centrality en 2031 ?
Notre simulation expérimentale indique que le prix de Centrality pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.005138 dans des conditions idéales. Il est probable que le prix fluctue entre $0.005138 et $0.0023016 durant l'année.
Combien vaudra Centrality en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Centrality, CENNZ pourrait connaître une 449.04% hausse en valeur, atteignant $0.009531 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.009531 et $0.003513 tout au long de l'année.
Combien vaudra Centrality en 2033 ?
Selon notre prédiction expérimentale de prix de Centrality, la valeur de CENNZ est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.025387. Tout au long de l'année, le prix de CENNZ pourrait osciller entre $0.025387 et $0.008164.
Combien vaudra Centrality en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Centrality suggèrent que CENNZ pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.014703 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.014703 et $0.006563.
Combien vaudra Centrality en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Centrality, CENNZ pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.017323 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.017323 et $0.00776.
Combien vaudra Centrality en 2036 ?
Notre récente simulation de prédiction de prix de Centrality suggère que la valeur de CENNZ pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.035842 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.035842 et $0.012845.
Combien vaudra Centrality en 2037 ?
Selon la simulation expérimentale, la valeur de Centrality pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.085595 sous des conditions favorables. Il est prévu que le prix chute entre $0.085595 et $0.033359 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Centrality ?
Les traders de Centrality utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Centrality
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Centrality. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de CENNZ sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de CENNZ au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de CENNZ.
Comment lire les graphiques de Centrality et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Centrality dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de CENNZ au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Centrality ?
L'action du prix de Centrality est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de CENNZ. La capitalisation boursière de Centrality peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de CENNZ, de grands détenteurs de Centrality, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Centrality.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


