Prédiction du prix de CDK jusqu'à $0.003681 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001233 | $0.003681 |
| 2027 | $0.001187 | $0.003118 |
| 2028 | $0.002142 | $0.005247 |
| 2029 | $0.0047064 | $0.015482 |
| 2030 | $0.0040026 | $0.011572 |
| 2031 | $0.004732 | $0.010564 |
| 2032 | $0.007223 | $0.019596 |
| 2033 | $0.016786 | $0.052199 |
| 2034 | $0.013495 | $0.03023 |
| 2035 | $0.015955 | $0.035619 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur CDK aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,956.87, soit un rendement de 39.57% sur les 90 prochains jours.
Prévision du prix à long terme de CDK pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'CDK'
'name_with_ticker' => 'CDK <small>CDK</small>'
'name_lang' => 'CDK'
'name_lang_with_ticker' => 'CDK <small>CDK</small>'
'name_with_lang' => 'CDK'
'name_with_lang_with_ticker' => 'CDK <small>CDK</small>'
'image' => '/uploads/coins/cdk.png?1754585682'
'price_for_sd' => 0.003569
'ticker' => 'CDK'
'marketcap' => '$0'
'low24h' => '$0.003448'
'high24h' => '$0.003667'
'volume24h' => '$172.83'
'current_supply' => '0'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003569'
'change_24h_pct' => '3.3257%'
'ath_price' => '$0.005073'
'ath_days' => 6
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '31 déc. 2025'
'ath_pct' => '-29.65%'
'fdv' => '$35.79M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.175993'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003599'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003154'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001233'
'current_year_max_price_prediction' => '$0.003681'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0040026'
'grand_prediction_max_price' => '$0.011572'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0036369771155272
107 => 0.0036505562678538
108 => 0.0036811507914146
109 => 0.0034197239373218
110 => 0.0035370969197203
111 => 0.0036060425505182
112 => 0.0032945436823097
113 => 0.0035998852194389
114 => 0.0034151730774143
115 => 0.0033524790021278
116 => 0.0034368883151847
117 => 0.0034039939237957
118 => 0.0033757132577029
119 => 0.0033599321600996
120 => 0.0034219130436926
121 => 0.0034190215613898
122 => 0.0033176088058605
123 => 0.0031853200003853
124 => 0.0032297204657348
125 => 0.0032135893604168
126 => 0.0031551281537902
127 => 0.0031945239484235
128 => 0.0030210448066137
129 => 0.002722582959791
130 => 0.0029197559979357
131 => 0.0029121650504501
201 => 0.0029083373505058
202 => 0.003056507439209
203 => 0.0030422643040458
204 => 0.0030164128742553
205 => 0.0031546533720091
206 => 0.0031041937307319
207 => 0.0032596984553616
208 => 0.0033621239244177
209 => 0.0033361455123483
210 => 0.0034324771610608
211 => 0.0032307433627801
212 => 0.0032977512384138
213 => 0.003311561468713
214 => 0.0031529475057253
215 => 0.0030445946571063
216 => 0.0030373687574163
217 => 0.0028494998498532
218 => 0.0029498579038486
219 => 0.0030381688382661
220 => 0.0029958747538854
221 => 0.0029824857102703
222 => 0.0030508874303705
223 => 0.0030562028298434
224 => 0.0029350111585606
225 => 0.0029602107446614
226 => 0.0030652972077843
227 => 0.0029575628354148
228 => 0.0027482525482105
301 => 0.0026963407030427
302 => 0.0026894147059721
303 => 0.0025486256646967
304 => 0.0026998097007629
305 => 0.0026338138175398
306 => 0.0028422940218896
307 => 0.0027232112472667
308 => 0.0027180778268605
309 => 0.0027103179090074
310 => 0.0025891349652596
311 => 0.0026156663283625
312 => 0.0027038606201573
313 => 0.0027353293370495
314 => 0.0027320468920621
315 => 0.0027034284200133
316 => 0.0027165298099669
317 => 0.0026743256680994
318 => 0.0026594225072027
319 => 0.0026123840319755
320 => 0.0025432504681018
321 => 0.0025528639141793
322 => 0.0024158922343646
323 => 0.0023412627935643
324 => 0.002320606347951
325 => 0.0022929836855846
326 => 0.0023237264011664
327 => 0.0024155042108053
328 => 0.0023048007006323
329 => 0.0021150072973891
330 => 0.0021264142043163
331 => 0.0021520421374405
401 => 0.0021042846536092
402 => 0.0020590862031448
403 => 0.0020983825887574
404 => 0.002017964621801
405 => 0.0021617602645458
406 => 0.0021578709953922
407 => 0.0022114691187445
408 => 0.0022449851252209
409 => 0.0021677415812287
410 => 0.0021483150388034
411 => 0.002159381280256
412 => 0.0019764809594024
413 => 0.0021965222604698
414 => 0.0021984251867789
415 => 0.0021821311764208
416 => 0.0022992963762262
417 => 0.0025465514925578
418 => 0.0024535241719798
419 => 0.0024175011816864
420 => 0.0023490214508059
421 => 0.0024402666262801
422 => 0.0024332604204501
423 => 0.0024015757006625
424 => 0.0023824126832726
425 => 0.0024177211303837
426 => 0.0023780375759342
427 => 0.0023709093191239
428 => 0.0023277198384736
429 => 0.0023123031588776
430 => 0.0023008892630604
501 => 0.0022883236852719
502 => 0.0023160402187264
503 => 0.0022532309075049
504 => 0.0021774890354444
505 => 0.002171191918321
506 => 0.0021885788123469
507 => 0.0021808864060425
508 => 0.0021711550900391
509 => 0.0021525753576224
510 => 0.0021470631479075
511 => 0.0021649751553368
512 => 0.002144753543284
513 => 0.0021745916333962
514 => 0.0021664773239025
515 => 0.0021211514506799
516 => 0.0020646586308571
517 => 0.002064155726263
518 => 0.0020519844408989
519 => 0.0020364824790228
520 => 0.0020321701878657
521 => 0.0020950731567677
522 => 0.0022252804198672
523 => 0.002199717618525
524 => 0.002218189362276
525 => 0.0023090520593741
526 => 0.0023379345784449
527 => 0.0023174344505284
528 => 0.0022893726110434
529 => 0.0022906071895645
530 => 0.0023865029899812
531 => 0.002392483893425
601 => 0.0024075957069149
602 => 0.0024270186578474
603 => 0.0023207422630594
604 => 0.0022856015809273
605 => 0.0022689499762023
606 => 0.0022176694786312
607 => 0.002272971098804
608 => 0.0022407492129808
609 => 0.0022450970462347
610 => 0.0022422655141243
611 => 0.002243811722124
612 => 0.0021617200707331
613 => 0.0021916299538897
614 => 0.0021418989720245
615 => 0.0020753147698717
616 => 0.0020750915562787
617 => 0.0020913879454258
618 => 0.0020816942154833
619 => 0.0020556086374567
620 => 0.0020593139706949
621 => 0.0020268513525932
622 => 0.0020632555202871
623 => 0.0020642994615562
624 => 0.0020502818740456
625 => 0.0021063675171852
626 => 0.002129345850941
627 => 0.0021201191745558
628 => 0.0021286984827294
629 => 0.0022007798683299
630 => 0.0022125322793142
701 => 0.0022177519239527
702 => 0.0022107582916075
703 => 0.0021300159981365
704 => 0.0021335972621947
705 => 0.0021073203227418
706 => 0.0020851190778998
707 => 0.0020860070112633
708 => 0.0020974213370719
709 => 0.0021472683673195
710 => 0.0022521685038325
711 => 0.0022561493873322
712 => 0.0022609743342643
713 => 0.0022413488502672
714 => 0.0022354296165031
715 => 0.0022432386137218
716 => 0.0022826335896089
717 => 0.0023839681632223
718 => 0.0023481497569987
719 => 0.0023190288351923
720 => 0.0023445757345607
721 => 0.0023406429896461
722 => 0.0023074466647927
723 => 0.0023065149545179
724 => 0.0022428005936171
725 => 0.0022192468450979
726 => 0.0021995635698677
727 => 0.0021780699471613
728 => 0.0021653278071482
729 => 0.0021849055254074
730 => 0.00218938318121
731 => 0.0021465761580763
801 => 0.0021407417190005
802 => 0.0021756988581453
803 => 0.0021603155245412
804 => 0.0021761376646414
805 => 0.0021798085368644
806 => 0.0021792174418891
807 => 0.0021631554748418
808 => 0.002173392893663
809 => 0.0021491783462294
810 => 0.0021228486628028
811 => 0.0021060519651739
812 => 0.002091394618734
813 => 0.0020995273664288
814 => 0.0020705356058778
815 => 0.0020612605581887
816 => 0.0021699246865156
817 => 0.0022501960464469
818 => 0.0022490288690826
819 => 0.0022419239770508
820 => 0.0022313675486662
821 => 0.0022818613211207
822 => 0.0022642703004524
823 => 0.0022770692377675
824 => 0.0022803271044839
825 => 0.0022901876858278
826 => 0.0022937119961127
827 => 0.002283059082641
828 => 0.0022473066038863
829 => 0.0021582148260733
830 => 0.0021167423630027
831 => 0.0021030557594109
901 => 0.0021035532414569
902 => 0.0020898304657705
903 => 0.0020938724382218
904 => 0.0020884248327037
905 => 0.0020781083857698
906 => 0.0020988903549016
907 => 0.0021012852832466
908 => 0.0020964345233252
909 => 0.0020975770528868
910 => 0.0020574148325241
911 => 0.0020604682789105
912 => 0.0020434663014178
913 => 0.0020402786355998
914 => 0.0019972991170296
915 => 0.0019211546699017
916 => 0.0019633460851309
917 => 0.0019123847885448
918 => 0.001893084973338
919 => 0.0019844472967899
920 => 0.0019752770535117
921 => 0.0019595815832284
922 => 0.0019363647114568
923 => 0.0019277533478775
924 => 0.001875433428796
925 => 0.0018723420888607
926 => 0.0018982732535142
927 => 0.0018863069132635
928 => 0.0018695016395441
929 => 0.0018086346416558
930 => 0.0017401999836589
1001 => 0.0017422655958189
1002 => 0.0017640333872556
1003 => 0.0018273261766446
1004 => 0.0018025965888539
1005 => 0.0017846549891725
1006 => 0.0017812950668747
1007 => 0.0018233515289058
1008 => 0.0018828702337809
1009 => 0.0019107950784524
1010 => 0.0018831224054731
1011 => 0.001851333528757
1012 => 0.0018532683703873
1013 => 0.0018661400049289
1014 => 0.0018674926317241
1015 => 0.0018468013409313
1016 => 0.0018526258180895
1017 => 0.0018437779046848
1018 => 0.0017894782764519
1019 => 0.0017884961683631
1020 => 0.001775170163895
1021 => 0.0017747666577758
1022 => 0.0017520957998478
1023 => 0.0017489239901075
1024 => 0.0017039096256689
1025 => 0.0017335382166584
1026 => 0.0017136649133935
1027 => 0.0016837111577349
1028 => 0.0016785471189691
1029 => 0.001678391881728
1030 => 0.0017091476912522
1031 => 0.0017331788171172
1101 => 0.0017140106180123
1102 => 0.001709646390636
1103 => 0.0017562449212647
1104 => 0.0017503148334871
1105 => 0.0017451794157168
1106 => 0.0018775409865662
1107 => 0.0017727664749367
1108 => 0.0017270788075462
1109 => 0.0016705316432977
1110 => 0.0016889436851125
1111 => 0.0016928233728521
1112 => 0.001556837636227
1113 => 0.0015016682398141
1114 => 0.00148273618198
1115 => 0.0014718405150365
1116 => 0.0014768058072819
1117 => 0.0014271468797855
1118 => 0.0014605185003459
1119 => 0.0014175180666987
1120 => 0.0014103089040622
1121 => 0.001487199006155
1122 => 0.0014978978146757
1123 => 0.001452253373667
1124 => 0.0014815644939584
1125 => 0.0014709358742856
1126 => 0.0014182551857149
1127 => 0.0014162431709044
1128 => 0.0013898098531953
1129 => 0.0013484468294795
1130 => 0.0013295428177232
1201 => 0.0013196974442684
1202 => 0.0013237598372384
1203 => 0.0013217057670415
1204 => 0.0013083015695802
1205 => 0.0013224740799496
1206 => 0.0012862691724415
1207 => 0.0012718520865489
1208 => 0.0012653402233251
1209 => 0.0012332062840349
1210 => 0.0012843456714733
1211 => 0.0012944207750357
1212 => 0.0013045157296645
1213 => 0.0013923854175896
1214 => 0.0013879956962981
1215 => 0.001427676638893
1216 => 0.0014261347104323
1217 => 0.0014148170628156
1218 => 0.0013670697691833
1219 => 0.0013861009894115
1220 => 0.0013275258516575
1221 => 0.001371414327585
1222 => 0.0013513854599982
1223 => 0.0013646425473067
1224 => 0.0013408051089827
1225 => 0.0013539977315749
1226 => 0.0012968099558521
1227 => 0.0012434088155358
1228 => 0.0012648989932755
1229 => 0.0012882612741785
1230 => 0.0013389166517747
1231 => 0.0013087467267762
]
'min_raw' => 0.0012332062840349
'max_raw' => 0.0036811507914146
'avg_raw' => 0.0024571785377248
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001233'
'max' => '$0.003681'
'avg' => '$0.002457'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0023361337159651
'max_diff' => 0.00011181079141458
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013195969726569
102 => 0.001283250465266
103 => 0.001208257238652
104 => 0.0012086816921704
105 => 0.0011971456180721
106 => 0.0011871767657567
107 => 0.0013122121055886
108 => 0.0012966619845643
109 => 0.0012718849018616
110 => 0.0013050500116613
111 => 0.0013138193930934
112 => 0.0013140690450544
113 => 0.0013382654530489
114 => 0.001351179080333
115 => 0.0013534551631127
116 => 0.00139152873389
117 => 0.001404290492612
118 => 0.0014568543706763
119 => 0.0013500834492805
120 => 0.0013478845724169
121 => 0.0013055167127693
122 => 0.0012786463463714
123 => 0.0013073565497451
124 => 0.0013327898706007
125 => 0.0013063069969434
126 => 0.001309765101159
127 => 0.0012742140070044
128 => 0.0012869218503302
129 => 0.0012978675569338
130 => 0.0012918239811062
131 => 0.0012827764555799
201 => 0.0013307046283283
202 => 0.0013280003329898
203 => 0.001372632149317
204 => 0.0014074258417959
205 => 0.0014697823588345
206 => 0.001404710082586
207 => 0.0014023385902006
208 => 0.0014255203086669
209 => 0.0014042869436117
210 => 0.0014177056973757
211 => 0.00146762039015
212 => 0.0014686750089538
213 => 0.0014510087851909
214 => 0.0014499337938695
215 => 0.0014533267853904
216 => 0.0014731996427069
217 => 0.0014662554557293
218 => 0.0014742914447051
219 => 0.0014843405719707
220 => 0.0015259080230831
221 => 0.0015359297948203
222 => 0.0015115820851917
223 => 0.0015137804107614
224 => 0.0015046736990007
225 => 0.0014958767295467
226 => 0.0015156510321852
227 => 0.0015517889589219
228 => 0.0015515641467552
301 => 0.0015599474433372
302 => 0.0015651701676568
303 => 0.0015427504116092
304 => 0.0015281559748195
305 => 0.0015337524105528
306 => 0.0015427012331649
307 => 0.0015308504279889
308 => 0.0014577017686158
309 => 0.0014798903991151
310 => 0.0014761971260315
311 => 0.0014709374560429
312 => 0.0014932482955896
313 => 0.0014910963606877
314 => 0.0014266375557082
315 => 0.0014307639992669
316 => 0.0014268884984082
317 => 0.0014394110345355
318 => 0.0014036106855654
319 => 0.0014146226317896
320 => 0.0014215292212308
321 => 0.0014255972554706
322 => 0.0014402937846219
323 => 0.0014385693165527
324 => 0.0014401865892655
325 => 0.0014619776622571
326 => 0.0015721894316554
327 => 0.0015781880150952
328 => 0.0015486487963589
329 => 0.0015604491316087
330 => 0.0015377950683787
331 => 0.001553002892794
401 => 0.0015634077000222
402 => 0.0015163903768876
403 => 0.0015136063161515
404 => 0.001490858751544
405 => 0.0015030820042761
406 => 0.0014836339302963
407 => 0.0014884058073862
408 => 0.001475063223038
409 => 0.0014990772183826
410 => 0.0015259285965755
411 => 0.0015327123151001
412 => 0.0015148672722364
413 => 0.0015019462851574
414 => 0.0014792612882845
415 => 0.0015169869436523
416 => 0.0015280190749504
417 => 0.0015169289965631
418 => 0.0015143591830778
419 => 0.0015094893911667
420 => 0.0015153923324527
421 => 0.001527958991594
422 => 0.0015220327872127
423 => 0.0015259471496129
424 => 0.0015110296366166
425 => 0.0015427578334813
426 => 0.001593149845909
427 => 0.0015933118644689
428 => 0.0015873856281431
429 => 0.0015849607399212
430 => 0.0015910414180255
501 => 0.0015943399364546
502 => 0.0016140037344382
503 => 0.0016351037731149
504 => 0.0017335684469509
505 => 0.0017059199605505
506 => 0.0017932836768675
507 => 0.0018623770337155
508 => 0.0018830951103479
509 => 0.0018640354547069
510 => 0.0017988334023416
511 => 0.0017956342785897
512 => 0.00189307367242
513 => 0.001865542580656
514 => 0.0018622678448939
515 => 0.0018274301891382
516 => 0.0018480235584174
517 => 0.0018435194864696
518 => 0.0018364095885531
519 => 0.0018757003025912
520 => 0.0019492490117643
521 => 0.0019377857557043
522 => 0.0019292289668206
523 => 0.0018917356087761
524 => 0.0019143149847636
525 => 0.0019062749014539
526 => 0.0019408202017153
527 => 0.0019203563311125
528 => 0.0018653340055583
529 => 0.0018740964922588
530 => 0.0018727720600217
531 => 0.0019000287816109
601 => 0.0018918469903432
602 => 0.0018711744339636
603 => 0.0019489976302722
604 => 0.0019439442247792
605 => 0.0019511087983989
606 => 0.001954262865278
607 => 0.0020016324734725
608 => 0.0020210382862914
609 => 0.0020254437455479
610 => 0.0020438777668264
611 => 0.0020249850903055
612 => 0.0021005692666393
613 => 0.0021508283334423
614 => 0.0022092068258419
615 => 0.0022945134938973
616 => 0.0023265895902169
617 => 0.0023207953305188
618 => 0.0023854738726468
619 => 0.0025016997751277
620 => 0.0023442879084359
621 => 0.0025100429862882
622 => 0.0024575668423745
623 => 0.0023331468491608
624 => 0.0023251356684132
625 => 0.0024093943323634
626 => 0.002596271939409
627 => 0.0025494612183923
628 => 0.0025963485049791
629 => 0.0025416519946108
630 => 0.0025389358518526
701 => 0.0025936920175554
702 => 0.0027216327833231
703 => 0.0026608529212948
704 => 0.0025737100852435
705 => 0.002638054999291
706 => 0.0025823134799024
707 => 0.0024567122356508
708 => 0.0025494254231162
709 => 0.0024874307549776
710 => 0.0025055240949583
711 => 0.0026358276663745
712 => 0.0026201491959212
713 => 0.0026404385884751
714 => 0.0026046283416834
715 => 0.0025711759244224
716 => 0.0025087345033956
717 => 0.0024902486769544
718 => 0.0024953574943324
719 => 0.0024902461452782
720 => 0.00245531074408
721 => 0.0024477664475175
722 => 0.0024351922893901
723 => 0.0024390895467781
724 => 0.0024154464507988
725 => 0.0024600658578246
726 => 0.0024683476129535
727 => 0.0025008178964371
728 => 0.0025041890689844
729 => 0.0025946183463006
730 => 0.0025448114199571
731 => 0.0025782262062715
801 => 0.0025752372732714
802 => 0.0023358434076882
803 => 0.0023688297701756
804 => 0.0024201461985152
805 => 0.002397028217106
806 => 0.0023643448001679
807 => 0.0023379511886164
808 => 0.0022979621682306
809 => 0.0023542459465025
810 => 0.0024282531298176
811 => 0.0025060660132837
812 => 0.0025995530942661
813 => 0.0025786878661004
814 => 0.002504318337333
815 => 0.0025076545000665
816 => 0.0025282773453536
817 => 0.0025015688869237
818 => 0.0024936920411217
819 => 0.0025271951876976
820 => 0.002527425905455
821 => 0.0024966945962065
822 => 0.002462542369747
823 => 0.0024623992706711
824 => 0.002456322211844
825 => 0.0025427330898758
826 => 0.0025902503356682
827 => 0.0025956981113204
828 => 0.0025898836569612
829 => 0.0025921214096766
830 => 0.0025644721713211
831 => 0.0026276701310748
901 => 0.0026856668285753
902 => 0.0026701224747264
903 => 0.0026468192785469
904 => 0.0026282571603559
905 => 0.0026657498295932
906 => 0.002664080340051
907 => 0.0026851602780178
908 => 0.002684203970268
909 => 0.0026771155799864
910 => 0.0026701227278752
911 => 0.0026978485960599
912 => 0.0026898639912865
913 => 0.0026818669842165
914 => 0.0026658277622571
915 => 0.0026680077589046
916 => 0.0026447085863505
917 => 0.0026339293230294
918 => 0.0024718350657484
919 => 0.0024285181836203
920 => 0.0024421465565342
921 => 0.0024466333707581
922 => 0.0024277818081438
923 => 0.0024548101063635
924 => 0.0024505977747161
925 => 0.0024669854930249
926 => 0.0024567471580975
927 => 0.0024571673429342
928 => 0.0024872761029123
929 => 0.0024960168040258
930 => 0.0024915712128934
1001 => 0.0024946847525366
1002 => 0.0025664349594711
1003 => 0.0025562343744875
1004 => 0.0025508155170202
1005 => 0.0025523165775717
1006 => 0.0025706502937853
1007 => 0.0025757827333413
1008 => 0.0025540362262924
1009 => 0.0025642920047317
1010 => 0.0026079598076743
1011 => 0.0026232410673206
1012 => 0.0026720115126909
1013 => 0.0026512929606721
1014 => 0.0026893227595806
1015 => 0.0028062133961115
1016 => 0.0028995937247892
1017 => 0.0028137173154319
1018 => 0.0029851983971353
1019 => 0.0031187210167416
1020 => 0.0031135961962076
1021 => 0.0030903134390454
1022 => 0.0029383014865061
1023 => 0.0027984178214089
1024 => 0.0029154364470369
1025 => 0.0029157347515787
1026 => 0.0029056827478586
1027 => 0.0028432506160615
1028 => 0.0029035102450015
1029 => 0.0029082934355159
1030 => 0.0029056161207809
1031 => 0.0028577495517119
1101 => 0.0027846661479644
1102 => 0.0027989464701197
1103 => 0.0028223379291208
1104 => 0.0027780530172622
1105 => 0.0027639013046059
1106 => 0.0027902120309074
1107 => 0.0028749906731083
1108 => 0.0028589637618895
1109 => 0.0028585452344677
1110 => 0.00292711515713
1111 => 0.0028780338908193
1112 => 0.002799126590714
1113 => 0.002779201456778
1114 => 0.0027084806544837
1115 => 0.0027573277645272
1116 => 0.0027590856850569
1117 => 0.0027323326220914
1118 => 0.0028012974543291
1119 => 0.002800661931259
1120 => 0.0028661337754081
1121 => 0.0029912913513194
1122 => 0.0029542760974922
1123 => 0.0029112313845393
1124 => 0.0029159115383377
1125 => 0.0029672412739024
1126 => 0.0029362061440361
1127 => 0.0029473665931206
1128 => 0.002967224381226
1129 => 0.0029792050778312
1130 => 0.0029141877004686
1201 => 0.0028990290396648
1202 => 0.002868019739627
1203 => 0.0028599299920632
1204 => 0.0028851864199137
1205 => 0.0028785322434978
1206 => 0.0027589379386434
1207 => 0.0027464396683696
1208 => 0.0027468229724755
1209 => 0.0027153954776119
1210 => 0.0026674610044818
1211 => 0.0027934299378489
1212 => 0.0027833128695655
1213 => 0.0027721444091794
1214 => 0.0027735124818503
1215 => 0.0028281913263417
1216 => 0.0027964748351889
1217 => 0.0028807983251494
1218 => 0.0028634639506096
1219 => 0.0028456850147715
1220 => 0.0028432274242791
1221 => 0.0028363840508089
1222 => 0.0028129155768727
1223 => 0.002784575984358
1224 => 0.0027658637306464
1225 => 0.0025513630885176
1226 => 0.0025911731600039
1227 => 0.0026369710184467
1228 => 0.0026527802556577
1229 => 0.0026257374614423
1230 => 0.0028139833912161
1231 => 0.0028483777365687
]
'min_raw' => 0.0011871767657567
'max_raw' => 0.0031187210167416
'avg_raw' => 0.0021529488912492
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001187'
'max' => '$0.003118'
'avg' => '$0.002152'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.6029518278222E-5
'max_diff' => -0.00056242977467297
'year' => 2027
]
2 => [
'items' => [
101 => 0.002744195021008
102 => 0.0027247066886789
103 => 0.0028152610430391
104 => 0.0027606456975403
105 => 0.0027852389842743
106 => 0.0027320817501641
107 => 0.0028400931459572
108 => 0.0028392702800898
109 => 0.0027972514075783
110 => 0.0028327654708922
111 => 0.0028265940284333
112 => 0.0027791548248556
113 => 0.0028415970533264
114 => 0.0028416280238927
115 => 0.0028011857726694
116 => 0.0027539580771877
117 => 0.002745514880704
118 => 0.0027391540663374
119 => 0.0027836746138651
120 => 0.0028235915975663
121 => 0.0028978672079748
122 => 0.0029165418611765
123 => 0.0029894302758647
124 => 0.0029460287737904
125 => 0.0029652680975164
126 => 0.0029861551049894
127 => 0.0029961691044663
128 => 0.0029798518296996
129 => 0.0030930775397788
130 => 0.0031026372588556
131 => 0.0031058425499708
201 => 0.0030676634775893
202 => 0.0031015754297872
203 => 0.0030857091503996
204 => 0.0031269888015867
205 => 0.0031334619779779
206 => 0.0031279794278645
207 => 0.0031300341162232
208 => 0.0030334159470546
209 => 0.0030284057852818
210 => 0.0029600918740043
211 => 0.0029879302978008
212 => 0.0029358876988436
213 => 0.0029523909430711
214 => 0.0029596654158779
215 => 0.0029558656441063
216 => 0.0029895042405138
217 => 0.0029609045616562
218 => 0.0028854253069285
219 => 0.0028099254879282
220 => 0.0028089776492015
221 => 0.0027890998795412
222 => 0.002774731892872
223 => 0.0027774996768362
224 => 0.0027872537085338
225 => 0.0027741649708179
226 => 0.0027769581166254
227 => 0.0028233429476638
228 => 0.0028326450947271
229 => 0.0028010327644226
301 => 0.0026741046966127
302 => 0.0026429562303971
303 => 0.0026653451302119
304 => 0.0026546446781303
305 => 0.0021425054417734
306 => 0.0022628249586868
307 => 0.0021913351874016
308 => 0.002224280963096
309 => 0.0021513084188003
310 => 0.002186134741757
311 => 0.0021797035915606
312 => 0.0023731738142439
313 => 0.0023701530428263
314 => 0.0023715989262483
315 => 0.0023025831432897
316 => 0.0024125271595254
317 => 0.0024666895353821
318 => 0.002456665521096
319 => 0.0024591883495329
320 => 0.0024158377984564
321 => 0.0023720186543423
322 => 0.0023234164798019
323 => 0.0024137133126877
324 => 0.0024036738462891
325 => 0.0024267007701214
326 => 0.0024852647207988
327 => 0.0024938884849988
328 => 0.0025054789115373
329 => 0.002501324568686
330 => 0.0026002978696913
331 => 0.0025883115498927
401 => 0.0026171951319078
402 => 0.0025577794123001
403 => 0.0024905448857721
404 => 0.0025033239712028
405 => 0.0025020932425129
406 => 0.002486424653726
407 => 0.0024722797523591
408 => 0.0024487324768844
409 => 0.0025232395408273
410 => 0.0025202146900971
411 => 0.0025691835074148
412 => 0.0025605277932962
413 => 0.0025027228159995
414 => 0.0025047873320722
415 => 0.0025186721948337
416 => 0.0025667278633858
417 => 0.0025809940576915
418 => 0.0025743853880796
419 => 0.0025900276188592
420 => 0.0026023906002824
421 => 0.0025915802189822
422 => 0.0027446324211163
423 => 0.0026810744760279
424 => 0.0027120521762306
425 => 0.0027194401751978
426 => 0.0027005159711963
427 => 0.0027046199534193
428 => 0.0027108363682189
429 => 0.0027485812215832
430 => 0.0028476346383725
501 => 0.0028915047223891
502 => 0.0030234900346647
503 => 0.0028878619226126
504 => 0.0028798143117283
505 => 0.0029035888520437
506 => 0.0029810782024137
507 => 0.003043876042684
508 => 0.003064709709196
509 => 0.0030674632221519
510 => 0.0031065485655243
511 => 0.0031289515554469
512 => 0.0031018025767923
513 => 0.0030787966599991
514 => 0.0029963923216454
515 => 0.0030059308481894
516 => 0.003071641837176
517 => 0.0031644624794775
518 => 0.003244112246914
519 => 0.0032162216744324
520 => 0.0034290070547915
521 => 0.0034501038561037
522 => 0.0034471889603036
523 => 0.0034952506133179
524 => 0.0033998580196699
525 => 0.003359075837741
526 => 0.0030837708003381
527 => 0.0031611202863017
528 => 0.003273552306726
529 => 0.0032586715072244
530 => 0.0031770203686758
531 => 0.0032440503072036
601 => 0.0032218881133063
602 => 0.0032044078714693
603 => 0.0032844882480364
604 => 0.0031964365844803
605 => 0.003272673924026
606 => 0.0031748987474843
607 => 0.0032163490762181
608 => 0.003192819864902
609 => 0.0032080461482552
610 => 0.0031190336068964
611 => 0.0031670626135563
612 => 0.0031170354423147
613 => 0.0031170117229218
614 => 0.0031159073703438
615 => 0.0031747641154553
616 => 0.0031766834318003
617 => 0.0031331882082354
618 => 0.0031269198669966
619 => 0.003150097209927
620 => 0.0031229626115112
621 => 0.0031356587193268
622 => 0.0031233471636832
623 => 0.0031205755731868
624 => 0.0030984910685641
625 => 0.0030889764567465
626 => 0.0030927073812015
627 => 0.0030799718126131
628 => 0.003072298171873
629 => 0.0031143808900579
630 => 0.0030918977913437
701 => 0.0031109350327269
702 => 0.0030892396934794
703 => 0.003014034195438
704 => 0.0029707827182307
705 => 0.0028287265039838
706 => 0.002869013470124
707 => 0.0028957237703549
708 => 0.0028868960162879
709 => 0.0029058614479111
710 => 0.0029070257713819
711 => 0.0029008599162315
712 => 0.0028937206458623
713 => 0.002890245643873
714 => 0.0029161454616855
715 => 0.0029311811776735
716 => 0.0028984045063208
717 => 0.0028907253908172
718 => 0.0029238644152044
719 => 0.0029440792009368
720 => 0.0030933338210781
721 => 0.0030822765567319
722 => 0.0031100281203622
723 => 0.0031069037201799
724 => 0.0031359917800352
725 => 0.0031835384643673
726 => 0.0030868627608581
727 => 0.003103642320193
728 => 0.0030995283597407
729 => 0.0031444435012205
730 => 0.0031445837213896
731 => 0.0031176548503947
801 => 0.0031322534282321
802 => 0.0031241049025743
803 => 0.0031388303897772
804 => 0.0030821288802253
805 => 0.0031511851983098
806 => 0.0031903356807728
807 => 0.0031908792852598
808 => 0.0032094363032299
809 => 0.0032282913082374
810 => 0.0032644818484246
811 => 0.0032272819737141
812 => 0.0031603630204446
813 => 0.0031651943527237
814 => 0.0031259597949065
815 => 0.0031266193349117
816 => 0.0031230986586748
817 => 0.0031336644730859
818 => 0.0030844474823212
819 => 0.0030959986116802
820 => 0.0030798269629343
821 => 0.0031036071661869
822 => 0.0030780235984955
823 => 0.0030995263758644
824 => 0.0031088062617484
825 => 0.0031430492404421
826 => 0.0030729658827004
827 => 0.0029300611720388
828 => 0.002960101474772
829 => 0.0029156695074147
830 => 0.0029197818551581
831 => 0.0029280894520749
901 => 0.0029011618123908
902 => 0.0029062987574551
903 => 0.0029061152296293
904 => 0.0029045336859761
905 => 0.0028975287668995
906 => 0.0028873702483574
907 => 0.002927838659602
908 => 0.0029347150312512
909 => 0.0029500003536251
910 => 0.0029954791048768
911 => 0.0029909347051639
912 => 0.0029983468096409
913 => 0.0029821662271849
914 => 0.0029205324259712
915 => 0.0029238794379062
916 => 0.0028821421454437
917 => 0.0029489330372186
918 => 0.0029331160724496
919 => 0.0029229187723676
920 => 0.0029201363445629
921 => 0.0029657278288424
922 => 0.0029793695154977
923 => 0.0029708689318336
924 => 0.002953433986737
925 => 0.0029869142355014
926 => 0.0029958721376525
927 => 0.0029978774815894
928 => 0.003057198063199
929 => 0.0030011928431319
930 => 0.0030146738562461
1001 => 0.0031198488722379
1002 => 0.0030244696458934
1003 => 0.0030749941492987
1004 => 0.0030725212377738
1005 => 0.0030983678640599
1006 => 0.0030704010600118
1007 => 0.0030707477420659
1008 => 0.0030936977952059
1009 => 0.0030614685846347
1010 => 0.0030534881788569
1011 => 0.0030424633054315
1012 => 0.0030665357132188
1013 => 0.0030809660329859
1014 => 0.003197263812407
1015 => 0.003272397481736
1016 => 0.0032691357309995
1017 => 0.0032989420269898
1018 => 0.0032855140176518
1019 => 0.0032421514333694
1020 => 0.0033161660772356
1021 => 0.0032927447470121
1022 => 0.0032946755730188
1023 => 0.0032946037075784
1024 => 0.0033101768446488
1025 => 0.0032991418497774
1026 => 0.0032773907421668
1027 => 0.0032918301424804
1028 => 0.0033347099992317
1029 => 0.0034678103903025
1030 => 0.0035422951324913
1031 => 0.0034633263152969
1101 => 0.003517797947963
1102 => 0.0034851343785906
1103 => 0.0034791984363786
1104 => 0.003513410647115
1105 => 0.0035476827417973
1106 => 0.0035454997575284
1107 => 0.0035206199766806
1108 => 0.0035065660197807
1109 => 0.0036129872898474
1110 => 0.0036913966687935
1111 => 0.0036860496748125
1112 => 0.003709649567309
1113 => 0.0037789395815957
1114 => 0.0037852745921314
1115 => 0.0037844765264124
1116 => 0.0037687745418098
1117 => 0.0038369995593205
1118 => 0.0038939140692329
1119 => 0.0037651399860483
1120 => 0.0038141754711485
1121 => 0.0038361890802346
1122 => 0.0038685115895165
1123 => 0.0039230450805567
1124 => 0.0039822829161204
1125 => 0.0039906597955789
1126 => 0.0039847159987325
1127 => 0.0039456470537797
1128 => 0.0040104658003079
1129 => 0.0040484351018375
1130 => 0.0040710449519864
1201 => 0.0041283797700435
1202 => 0.00383632502879
1203 => 0.0036295941668682
1204 => 0.0035973101575493
1205 => 0.0036629609600053
1206 => 0.0036802725530576
1207 => 0.0036732942716051
1208 => 0.0034405998913646
1209 => 0.0035960850697946
1210 => 0.0037633740482202
1211 => 0.0037698002991873
1212 => 0.0038535486596347
1213 => 0.0038808205587577
1214 => 0.0039482489660664
1215 => 0.0039440313008305
1216 => 0.0039604490449898
1217 => 0.0039566748899233
1218 => 0.0040815718157364
1219 => 0.0042193516722812
1220 => 0.0042145807939621
1221 => 0.0041947733094465
1222 => 0.0042241908016302
1223 => 0.0043663943789711
1224 => 0.0043533025523355
1225 => 0.0043660201467529
1226 => 0.0045336861786803
1227 => 0.0047516758704009
1228 => 0.0046503977727895
1229 => 0.0048701421026187
1230 => 0.0050084595100998
1231 => 0.0052476651640515
]
'min_raw' => 0.0021425054417734
'max_raw' => 0.0052476651640515
'avg_raw' => 0.0036950853029125
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002142'
'max' => '$0.005247'
'avg' => '$0.003695'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00095532867601668
'max_diff' => 0.0021289441473099
'year' => 2028
]
3 => [
'items' => [
101 => 0.0052177154380641
102 => 0.0053108364437753
103 => 0.0051640991778501
104 => 0.0048271607547916
105 => 0.0047738389595942
106 => 0.0048805905439024
107 => 0.005143028897257
108 => 0.0048723254262165
109 => 0.004927088385843
110 => 0.0049113166497865
111 => 0.0049104762409976
112 => 0.00494255122628
113 => 0.0048960247872092
114 => 0.0047064677044881
115 => 0.0047933405984322
116 => 0.0047597948021014
117 => 0.0047970163641353
118 => 0.0049978857830922
119 => 0.0049090766248425
120 => 0.0048155233908965
121 => 0.0049328599073893
122 => 0.0050822696140861
123 => 0.0050729198231561
124 => 0.0050547773208424
125 => 0.0051570456564741
126 => 0.0053259629851268
127 => 0.0053716206602969
128 => 0.0054053242226773
129 => 0.0054099713745032
130 => 0.0054578399264989
131 => 0.0052004386579899
201 => 0.0056089410816471
202 => 0.0056794781655609
203 => 0.0056662201172477
204 => 0.0057446191173637
205 => 0.0057215521427389
206 => 0.005688131715605
207 => 0.0058124108067345
208 => 0.0056699348575601
209 => 0.0054677081849302
210 => 0.0053567626327354
211 => 0.005502864685588
212 => 0.005592084111006
213 => 0.0056510524757861
214 => 0.0056688962673389
215 => 0.0052204199857369
216 => 0.0049787161435882
217 => 0.0051336455352653
218 => 0.0053226700857668
219 => 0.0051993886170678
220 => 0.0052042210172381
221 => 0.0050284540406734
222 => 0.0053382215630631
223 => 0.0052930910406058
224 => 0.0055272282709484
225 => 0.0054713495418585
226 => 0.005662279364048
227 => 0.0056120011431103
228 => 0.0058207032272049
301 => 0.0059039601389336
302 => 0.0060437614516297
303 => 0.0061465998663427
304 => 0.0062069885504475
305 => 0.0062033630403661
306 => 0.0064426530923125
307 => 0.0063015521088374
308 => 0.0061242960186442
309 => 0.0061210900152084
310 => 0.0062128934560577
311 => 0.0064052882830337
312 => 0.0064551734624377
313 => 0.0064830524722632
314 => 0.0064403547982402
315 => 0.0062871997934765
316 => 0.006221068238933
317 => 0.0062774142394196
318 => 0.0062085079226915
319 => 0.006327459557062
320 => 0.0064908055577507
321 => 0.0064570752545486
322 => 0.0065698306010237
323 => 0.006686520522417
324 => 0.0068533923508817
325 => 0.0068970188260883
326 => 0.0069691317306385
327 => 0.0070433595972758
328 => 0.0070671995875426
329 => 0.0071127175260765
330 => 0.0071124776240721
331 => 0.0072496489955546
401 => 0.0074009532661435
402 => 0.0074580671255889
403 => 0.007589397296107
404 => 0.0073644989814528
405 => 0.0075350869365636
406 => 0.0076889615421671
407 => 0.0075055058938613
408 => 0.0077583567653669
409 => 0.0077681743917351
410 => 0.0079164088938715
411 => 0.0077661448276618
412 => 0.0076769185048064
413 => 0.0079345115556233
414 => 0.0080591527188086
415 => 0.0080216097860938
416 => 0.0077359062144107
417 => 0.0075696144812885
418 => 0.007134396940428
419 => 0.0076499309175759
420 => 0.0079010324795124
421 => 0.007735255922027
422 => 0.0078188639749761
423 => 0.0082750024018645
424 => 0.0084486703820476
425 => 0.0084125486562003
426 => 0.0084186526332543
427 => 0.0085123607230642
428 => 0.0089279139992693
429 => 0.0086789048437177
430 => 0.0088692630129419
501 => 0.0089702282995109
502 => 0.0090640104845328
503 => 0.008833711078283
504 => 0.0085340949345222
505 => 0.0084391939247631
506 => 0.0077187727104839
507 => 0.0076812716576499
508 => 0.007660221180296
509 => 0.0075275008982287
510 => 0.0074232191116686
511 => 0.0073402903632616
512 => 0.0071226605628209
513 => 0.0071961042318798
514 => 0.0068492477528468
515 => 0.0070711542362933
516 => 0.006517562920614
517 => 0.0069786102183665
518 => 0.0067276831354481
519 => 0.0068961739229655
520 => 0.0068955860744807
521 => 0.0065853411146083
522 => 0.006406398296401
523 => 0.0065204276247214
524 => 0.0066426761163401
525 => 0.006662510522812
526 => 0.0068210088832078
527 => 0.0068652423686834
528 => 0.0067312128426283
529 => 0.0065060909710708
530 => 0.0065583816473504
531 => 0.0064053386275152
601 => 0.0061371366219687
602 => 0.00632976398471
603 => 0.0063955354355771
604 => 0.0064245838551969
605 => 0.0061608379859504
606 => 0.0060779633076318
607 => 0.0060338415242808
608 => 0.0064720446913299
609 => 0.0064960504500085
610 => 0.0063732335945363
611 => 0.006928377427243
612 => 0.0068027312804292
613 => 0.0069431088104736
614 => 0.006553636816563
615 => 0.0065685151712239
616 => 0.006384132887741
617 => 0.0064873746460628
618 => 0.0064144066989182
619 => 0.0064790337322454
620 => 0.0065177709095544
621 => 0.0067021229377189
622 => 0.0069807152223994
623 => 0.0066745868923095
624 => 0.0065412023950509
625 => 0.0066239533869673
626 => 0.0068443301832387
627 => 0.0071782123104705
628 => 0.0069805473711452
629 => 0.0070682677146494
630 => 0.0070874307072987
701 => 0.006941679898994
702 => 0.0071835863506695
703 => 0.0073132259833669
704 => 0.0074462094213723
705 => 0.007561675214481
706 => 0.0073930929118644
707 => 0.007573500140988
708 => 0.0074281237604773
709 => 0.0072977061184253
710 => 0.0072979039081542
711 => 0.0072160910161972
712 => 0.0070575682289428
713 => 0.0070283341947972
714 => 0.0071804133322742
715 => 0.0073023663985829
716 => 0.0073124110372399
717 => 0.0073799305209231
718 => 0.0074198878558609
719 => 0.0078115240576138
720 => 0.0079690433777433
721 => 0.0081616550207097
722 => 0.0082366881106424
723 => 0.0084625108104886
724 => 0.0082801406399399
725 => 0.0082406837063795
726 => 0.007692911702595
727 => 0.007782609337528
728 => 0.00792622390559
729 => 0.0076952798539258
730 => 0.0078417606987137
731 => 0.0078706791203633
801 => 0.0076874324634221
802 => 0.007785312420515
803 => 0.0075253722738609
804 => 0.006986381207262
805 => 0.0071841864018054
806 => 0.0073298376054979
807 => 0.0071219753791648
808 => 0.0074945603744877
809 => 0.0072769039119355
810 => 0.0072079172626592
811 => 0.006938775748316
812 => 0.0070658001828791
813 => 0.0072376025494403
814 => 0.0071314486610743
815 => 0.0073517339185203
816 => 0.0076637165909961
817 => 0.0078860540222916
818 => 0.0079031223294916
819 => 0.0077601742566196
820 => 0.0079892494556794
821 => 0.0079909180184175
822 => 0.0077325202580783
823 => 0.0075742530686353
824 => 0.0075382944301968
825 => 0.0076281261591224
826 => 0.0077371984618901
827 => 0.0079091750831906
828 => 0.0080130969536429
829 => 0.0082840700758813
830 => 0.0083573876333508
831 => 0.0084379414005153
901 => 0.0085455860753087
902 => 0.0086748411069264
903 => 0.00839203845624
904 => 0.0084032747327618
905 => 0.0081399328201118
906 => 0.0078585142193949
907 => 0.0080720758580152
908 => 0.0083512792915971
909 => 0.008287229715441
910 => 0.0082800228297094
911 => 0.0082921428124866
912 => 0.0082438515237286
913 => 0.0080254318144345
914 => 0.0079157428038067
915 => 0.0080572696121676
916 => 0.0081324848121779
917 => 0.008249137027939
918 => 0.0082347571801169
919 => 0.0085352407603843
920 => 0.0086519995935244
921 => 0.008622127687615
922 => 0.0086276248372099
923 => 0.0088390111274812
924 => 0.0090741161571693
925 => 0.0092943230423132
926 => 0.0095183269439875
927 => 0.0092482814974981
928 => 0.0091111690738585
929 => 0.0092526340960422
930 => 0.0091775707640071
1001 => 0.009608906935111
1002 => 0.0096387717157415
1003 => 0.010070076696331
1004 => 0.010479436481752
1005 => 0.010222324934971
1006 => 0.010464769543027
1007 => 0.010726993153438
1008 => 0.011232865042168
1009 => 0.011062505186831
1010 => 0.010932012207523
1011 => 0.010808696972614
1012 => 0.011065296400717
1013 => 0.011395407465697
1014 => 0.011466510227329
1015 => 0.011581723864519
1016 => 0.011460590812667
1017 => 0.011606482231254
1018 => 0.012121543046805
1019 => 0.011982369067876
1020 => 0.011784719644462
1021 => 0.012191310691373
1022 => 0.012338454410667
1023 => 0.013371186092438
1024 => 0.014675052500692
1025 => 0.014135243246027
1026 => 0.01380016622212
1027 => 0.013878917270871
1028 => 0.014355045144502
1029 => 0.014507962305969
1030 => 0.014092280747395
1031 => 0.014239106501244
1101 => 0.015048130840541
1102 => 0.015482146441966
1103 => 0.014892694959159
1104 => 0.013266421696081
1105 => 0.011766923476413
1106 => 0.012164657927554
1107 => 0.012119567183932
1108 => 0.012988762908664
1109 => 0.011979049814506
1110 => 0.011996050793458
1111 => 0.012883220565284
1112 => 0.012646538880101
1113 => 0.012263144862005
1114 => 0.011769722677035
1115 => 0.010857586132089
1116 => 0.010049681357421
1117 => 0.011634168669902
1118 => 0.011565842695785
1119 => 0.011466896559921
1120 => 0.011687090478196
1121 => 0.012756289642207
1122 => 0.012731641140816
1123 => 0.012574839950747
1124 => 0.012693772271432
1125 => 0.012242295451159
1126 => 0.01235865130768
1127 => 0.011766685948234
1128 => 0.012034279013361
1129 => 0.012262322270633
1130 => 0.012308105330769
1201 => 0.012411256902995
1202 => 0.011529838012181
1203 => 0.011925569217058
1204 => 0.012158024224923
1205 => 0.011107784042602
1206 => 0.012137264353298
1207 => 0.011514494470272
1208 => 0.011303117018283
1209 => 0.011587708910525
1210 => 0.011476803173343
1211 => 0.011381452933119
1212 => 0.011328245860748
1213 => 0.011537218737149
1214 => 0.011527469902688
1215 => 0.011185549717009
1216 => 0.01073952877324
1217 => 0.010889228042107
1218 => 0.010834840894289
1219 => 0.010637734854517
1220 => 0.01077056052665
1221 => 0.010185663488111
1222 => 0.0091793785336075
1223 => 0.0098441611978941
1224 => 0.0098185677884635
1225 => 0.0098056624308598
1226 => 0.010305228229828
1227 => 0.010257206505201
1228 => 0.010170046604773
1229 => 0.010636134094594
1230 => 0.010466005891048
1231 => 0.01099030092713
]
'min_raw' => 0.0047064677044881
'max_raw' => 0.015482146441966
'avg_raw' => 0.010094307073227
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0047064'
'max' => '$0.015482'
'avg' => '$0.010094'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0025639622627147
'max_diff' => 0.010234481277914
'year' => 2029
]
4 => [
'items' => [
101 => 0.011335635547171
102 => 0.011248047517124
103 => 0.011572836396419
104 => 0.010892676810912
105 => 0.011118598541951
106 => 0.011165160697604
107 => 0.010630382647318
108 => 0.010265063453245
109 => 0.010240700827944
110 => 0.0096072876895063
111 => 0.0099456518753274
112 => 0.010243398356388
113 => 0.010100800898021
114 => 0.010055658802679
115 => 0.010286279977652
116 => 0.010304201218085
117 => 0.0098955950370222
118 => 0.00998055720094
119 => 0.010334863548262
120 => 0.0099716295900439
121 => 0.0092659253431571
122 => 0.0090909009328046
123 => 0.0090675494501236
124 => 0.0085928693678866
125 => 0.0091025969008161
126 => 0.0088800871728438
127 => 0.0095829927374325
128 => 0.0091814968486976
129 => 0.0091641891633939
130 => 0.0091380260585719
131 => 0.0087294493030032
201 => 0.0088189016460654
202 => 0.0091162548583804
203 => 0.0092223538344581
204 => 0.00921128684201
205 => 0.0091147976654196
206 => 0.0091589699163581
207 => 0.0090166757054527
208 => 0.0089664286579841
209 => 0.0088078351546339
210 => 0.0085747465172827
211 => 0.0086071589219221
212 => 0.0081453493403697
213 => 0.0078937309702504
214 => 0.0078240863216782
215 => 0.0077309545869572
216 => 0.007834605798929
217 => 0.0081440410918485
218 => 0.0077707964782281
219 => 0.0071308947682414
220 => 0.007169353951351
221 => 0.0072557603171645
222 => 0.0070947426261064
223 => 0.0069423528947104
224 => 0.0070748434023895
225 => 0.006803708612193
226 => 0.007288525661198
227 => 0.0072754127187064
228 => 0.0074561225336903
301 => 0.0075691240895384
302 => 0.0073086920879967
303 => 0.0072431941438919
304 => 0.0072805047495696
305 => 0.0066638435481192
306 => 0.007405728157461
307 => 0.00741214400637
308 => 0.0073572076128362
309 => 0.0077522382641931
310 => 0.0085858761517062
311 => 0.0082722280454174
312 => 0.0081507740185982
313 => 0.0079198898248326
314 => 0.0082275293044784
315 => 0.0082039073923651
316 => 0.0080970801474445
317 => 0.0080324706963953
318 => 0.0081515155909874
319 => 0.0080177197165438
320 => 0.007993686301029
321 => 0.0078480699516231
322 => 0.0077960915400069
323 => 0.0077576087933665
324 => 0.007715243070552
325 => 0.0078086912982004
326 => 0.0075969253202109
327 => 0.0073415563104304
328 => 0.0073203251403981
329 => 0.0073789462675208
330 => 0.0073530107825986
331 => 0.0073202009712744
401 => 0.007257558106236
402 => 0.0072389733063321
403 => 0.0072993648899565
404 => 0.0072311863130926
405 => 0.0073317875171346
406 => 0.0073044295561537
407 => 0.0071516102100325
408 => 0.006961140723797
409 => 0.0069594451458462
410 => 0.0069184088074694
411 => 0.0068661428606917
412 => 0.006851603669981
413 => 0.0070636854213789
414 => 0.0075026882996998
415 => 0.0074165015302369
416 => 0.0074787803039493
417 => 0.0077851302310464
418 => 0.0078825096606068
419 => 0.007813392048063
420 => 0.0077187795970244
421 => 0.0077229420647038
422 => 0.0080462614510395
423 => 0.0080664264845736
424 => 0.0081173770188279
425 => 0.0081828628539641
426 => 0.0078245445689554
427 => 0.0077060653057029
428 => 0.0076499232577945
429 => 0.0074770274799437
430 => 0.0076634807533921
501 => 0.007554842415679
502 => 0.0075695014390505
503 => 0.0075599547308491
504 => 0.0075651678790727
505 => 0.0072883901449522
506 => 0.0073892334042562
507 => 0.0072215619267914
508 => 0.0069970686404726
509 => 0.0069963160602594
510 => 0.0070512604740465
511 => 0.0070185773867508
512 => 0.0069306280391971
513 => 0.0069431208289079
514 => 0.0068336708455103
515 => 0.0069564100385483
516 => 0.0069599297594227
517 => 0.006912668484454
518 => 0.0071017651460737
519 => 0.0071792382026275
520 => 0.0071481298190086
521 => 0.0071770555555042
522 => 0.007420082979618
523 => 0.0074597070537784
524 => 0.0074773054501011
525 => 0.0074537259303695
526 => 0.0071814976506853
527 => 0.0071935721324933
528 => 0.0071049775965306
529 => 0.0070301245495043
530 => 0.0070331182788328
531 => 0.0070716024752193
601 => 0.0072396652179075
602 => 0.0075933433520548
603 => 0.0076067651787104
604 => 0.0076230328241592
605 => 0.0075568641346553
606 => 0.0075369070247518
607 => 0.0075632356040816
608 => 0.0076960585157545
609 => 0.0080377151056459
610 => 0.0079169508483019
611 => 0.0078187676272736
612 => 0.0079049007821218
613 => 0.0078916412580669
614 => 0.0077797175311302
615 => 0.0077765762048886
616 => 0.0075617587887171
617 => 0.0074823456811144
618 => 0.0074159821444334
619 => 0.0073435148948419
620 => 0.0073005538801598
621 => 0.0073665615241435
622 => 0.007381658253302
623 => 0.0072373313861156
624 => 0.0072176601674241
625 => 0.0073355206026804
626 => 0.007283654619404
627 => 0.0073370000694183
628 => 0.0073493766714104
629 => 0.0073473837534323
630 => 0.0072932297101216
701 => 0.007327745882431
702 => 0.0072461048451529
703 => 0.0071573324792003
704 => 0.0071007012404364
705 => 0.0070512829735711
706 => 0.0070787031002345
707 => 0.0069809553553968
708 => 0.0069496838845498
709 => 0.007316052579891
710 => 0.0075866930742669
711 => 0.0075827578542932
712 => 0.0075588032147602
713 => 0.0075232114794353
714 => 0.0076934547586283
715 => 0.0076341454042793
716 => 0.0076772979150306
717 => 0.0076882820401219
718 => 0.0077215276785667
719 => 0.0077334101367515
720 => 0.0076974930952191
721 => 0.0075769511169393
722 => 0.0072765719678534
723 => 0.0071367446630959
724 => 0.0070905993235179
725 => 0.0070922766189691
726 => 0.0070460093226489
727 => 0.00705963711497
728 => 0.0070412701326261
729 => 0.007006487511517
730 => 0.0070765553713958
731 => 0.0070846300395196
801 => 0.0070682753637753
802 => 0.007072127481961
803 => 0.0069367177519716
804 => 0.0069470126596482
805 => 0.0068896893054912
806 => 0.0068789418676301
807 => 0.0067340334200365
808 => 0.0064773071003092
809 => 0.006619558402465
810 => 0.0064477388330208
811 => 0.006382668158581
812 => 0.0066907026108131
813 => 0.0066597844953547
814 => 0.0066068661214718
815 => 0.0065285888173434
816 => 0.0064995550038096
817 => 0.0063231547437662
818 => 0.0063127320753441
819 => 0.0064001608074292
820 => 0.0063598154558109
821 => 0.0063031553021593
822 => 0.0060979379691807
823 => 0.0058672057417889
824 => 0.0058741700974028
825 => 0.0059475617260104
826 => 0.0061609577843967
827 => 0.0060775802525959
828 => 0.0060170888966274
829 => 0.006005760684018
830 => 0.0061475569820442
831 => 0.0063482284509941
901 => 0.0064423790144543
902 => 0.0063490786654604
903 => 0.0062419002481836
904 => 0.0062484237018263
905 => 0.0062918213163523
906 => 0.0062963817920297
907 => 0.0062266196605019
908 => 0.0062462572918929
909 => 0.0062164259341073
910 => 0.006033350946441
911 => 0.0060300397004512
912 => 0.0059851101459949
913 => 0.0059837496969421
914 => 0.0059073133166093
915 => 0.005896619338621
916 => 0.0057448502661137
917 => 0.0058447451292371
918 => 0.0057777408997697
919 => 0.0056767497212623
920 => 0.0056593388040218
921 => 0.0056588154108252
922 => 0.005762510769938
923 => 0.0058435333885915
924 => 0.0057789064670282
925 => 0.0057641921697285
926 => 0.0059213023691486
927 => 0.0059013086641811
928 => 0.0058839942446249
929 => 0.0063302605219336
930 => 0.0059770059408519
1001 => 0.0058229667804337
1002 => 0.0056323140681729
1003 => 0.0056943915526394
1004 => 0.0057074721907245
1005 => 0.0052489867854719
1006 => 0.0050629793136617
1007 => 0.0049991485588801
1008 => 0.0049624130570689
1009 => 0.0049791538865396
1010 => 0.00481172534541
1011 => 0.0049242400940616
1012 => 0.0047792611298256
1013 => 0.0047549549346691
1014 => 0.0050141952821703
1015 => 0.005050267062065
1016 => 0.0048963736424108
1017 => 0.0049951981309103
1018 => 0.0049593629976173
1019 => 0.0047817463780526
1020 => 0.0047749627296446
1021 => 0.0046858409534732
1022 => 0.0045463826311412
1023 => 0.0044826464356691
1024 => 0.0044494520716843
1025 => 0.0044631487132097
1026 => 0.0044562232721303
1027 => 0.0044110300845384
1028 => 0.0044588136927418
1029 => 0.0043367463193322
1030 => 0.0042881381076768
1031 => 0.004266182906174
1101 => 0.0041578410863371
1102 => 0.0043302611015236
1103 => 0.0043642300166054
1104 => 0.0043982658609435
1105 => 0.0046945246486489
1106 => 0.0046797243968338
1107 => 0.0048135114652275
1108 => 0.0048083127457683
1109 => 0.0047701545066556
1110 => 0.0046091711725648
1111 => 0.0046733362602814
1112 => 0.0044758460937584
1113 => 0.0046238191545434
1114 => 0.0045562904291039
1115 => 0.0046009876245445
1116 => 0.0045206180369586
1117 => 0.0045650978851076
1118 => 0.004372285306535
1119 => 0.0041922396336101
1120 => 0.0042646952682559
1121 => 0.0043434628294228
1122 => 0.004514250971634
1123 => 0.0044125309631046
1124 => 0.0044491133246312
1125 => 0.0043265685373306
1126 => 0.0040737236379417
1127 => 0.0040751547126133
1128 => 0.0040362600333679
1129 => 0.0040026493517837
1130 => 0.0044242147297154
1201 => 0.0043717864110072
1202 => 0.0042882487467943
1203 => 0.0044000672299981
1204 => 0.0044296338117551
1205 => 0.004430475530772
1206 => 0.0045120554096646
1207 => 0.0045555946056536
1208 => 0.0045632685776564
1209 => 0.0046916362797439
1210 => 0.0047346634402727
1211 => 0.0049118862250591
1212 => 0.0045519006090654
1213 => 0.0045444869421991
1214 => 0.0044016407453678
1215 => 0.0043110454290284
1216 => 0.0044078438841853
1217 => 0.0044935941011474
1218 => 0.0044043052436366
1219 => 0.0044159644834369
1220 => 0.0042961014873964
1221 => 0.0043389468684027
1222 => 0.0043758510824214
1223 => 0.0043554747445697
1224 => 0.0043249703805798
1225 => 0.0044865635612391
1226 => 0.0044774458406975
1227 => 0.0046279251255386
1228 => 0.0047452344889492
1229 => 0.0049554738397379
1230 => 0.0047360781171646
1231 => 0.0047280824650151
]
'min_raw' => 0.0040026493517837
'max_raw' => 0.011572836396419
'avg_raw' => 0.0077877428741014
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0040026'
'max' => '$0.011572'
'avg' => '$0.007787'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00070381835270439
'max_diff' => -0.0039093100455464
'year' => 2030
]
5 => [
'items' => [
101 => 0.0048062412473202
102 => 0.0047346514745703
103 => 0.0047798937397533
104 => 0.0049481846113742
105 => 0.0049517403323023
106 => 0.0048921774254695
107 => 0.0048885530171756
108 => 0.0048999927249797
109 => 0.0049669954509007
110 => 0.0049435826396781
111 => 0.0049706765375648
112 => 0.0050045578717485
113 => 0.0051447054353206
114 => 0.0051784945384305
115 => 0.0050964045355148
116 => 0.0051038163436553
117 => 0.0050731124291439
118 => 0.0050434528324448
119 => 0.0051101232743882
120 => 0.0052319648174505
121 => 0.0052312068475347
122 => 0.005259471717264
123 => 0.0052770804969465
124 => 0.0052014907241345
125 => 0.0051522845615469
126 => 0.0051711533353525
127 => 0.005201324915576
128 => 0.0051613690985284
129 => 0.0049147432863756
130 => 0.0049895538032649
131 => 0.0049771016752071
201 => 0.0049593683306224
202 => 0.0050345908838472
203 => 0.005027335485082
204 => 0.0048100081237235
205 => 0.0048239207162808
206 => 0.0048108541945568
207 => 0.0048530747994056
208 => 0.0047323714233523
209 => 0.0047694989688767
210 => 0.0047927850173804
211 => 0.004806500678841
212 => 0.0048560510529537
213 => 0.0048502368884598
214 => 0.0048556896363253
215 => 0.0049291597603206
216 => 0.0053007464355871
217 => 0.0053209710784621
218 => 0.0052213775401302
219 => 0.0052611631942981
220 => 0.0051847834384618
221 => 0.0052360576802546
222 => 0.0052711382142647
223 => 0.0051126160266717
224 => 0.005103229371523
225 => 0.0050265343692645
226 => 0.0050677459192512
227 => 0.0050021753800071
228 => 0.0050182640967775
301 => 0.0049732786420982
302 => 0.0050542435040062
303 => 0.0051447748002869
304 => 0.0051676465809166
305 => 0.0051074807730005
306 => 0.0050639167629492
307 => 0.0049874327121763
308 => 0.0051146273931699
309 => 0.0051518229940801
310 => 0.005114432020513
311 => 0.0051057677149286
312 => 0.0050893488715022
313 => 0.0051092510501784
314 => 0.0051516204188494
315 => 0.0051316398070235
316 => 0.0051448373531476
317 => 0.0050945419165731
318 => 0.0052015157474946
319 => 0.0053714159356524
320 => 0.0053719621925388
321 => 0.00535198147301
322 => 0.0053438057930694
323 => 0.0053643072238374
324 => 0.0053754284090163
325 => 0.0054417262768006
326 => 0.0055128665303568
327 => 0.005844847052779
328 => 0.0057516282505244
329 => 0.006046181119627
330 => 0.006279134196184
331 => 0.00634898663804
401 => 0.0062847256783439
402 => 0.0060648924065321
403 => 0.006054106337447
404 => 0.0063826300567471
405 => 0.0062898070587053
406 => 0.0062787660584485
407 => 0.0061613084697811
408 => 0.0062307404520889
409 => 0.0062155546590524
410 => 0.00619158314183
411 => 0.0063240545273995
412 => 0.0065720291353835
413 => 0.0065333799672381
414 => 0.0065045301561008
415 => 0.0063781186817511
416 => 0.0064542466243346
417 => 0.0064271389221153
418 => 0.0065436108138223
419 => 0.0064746154453434
420 => 0.0062891038332012
421 => 0.0063186471688891
422 => 0.0063141817531328
423 => 0.0064060796929744
424 => 0.006378494212481
425 => 0.0063087952453353
426 => 0.0065711815851317
427 => 0.0065541436756949
428 => 0.006578299535868
429 => 0.006588933692561
430 => 0.0067486436338292
501 => 0.0068140716866186
502 => 0.0068289250000811
503 => 0.0068910765898439
504 => 0.006827378611909
505 => 0.0070822159395372
506 => 0.0072516678922395
507 => 0.0074484950552211
508 => 0.0077361124424911
509 => 0.0078442592407142
510 => 0.0078247234895997
511 => 0.0080427917100959
512 => 0.0084346554549435
513 => 0.0079039303562466
514 => 0.0084627851738756
515 => 0.0082858581909034
516 => 0.0078663674970568
517 => 0.0078393572418435
518 => 0.0081234412101035
519 => 0.0087535121096356
520 => 0.0085956864955078
521 => 0.0087537702558008
522 => 0.0085693571523057
523 => 0.0085601994873615
524 => 0.0087448137229818
525 => 0.0091761749473069
526 => 0.0089712513989637
527 => 0.0086774432430984
528 => 0.0088943866132281
529 => 0.0087064501888606
530 => 0.0082829768246676
531 => 0.0085955658092351
601 => 0.0083865464572765
602 => 0.0084475494162579
603 => 0.0088868770047927
604 => 0.0088340159470236
605 => 0.008902423050579
606 => 0.0087816863033293
607 => 0.0086688991429606
608 => 0.008458373532448
609 => 0.0083960472779623
610 => 0.0084132720124384
611 => 0.0083960387422393
612 => 0.0082782515979877
613 => 0.0082528154754012
614 => 0.0082104208233749
615 => 0.0082235606987564
616 => 0.0081438463499541
617 => 0.008294283795969
618 => 0.0083222063115996
619 => 0.0084316821393674
620 => 0.0084430482829783
621 => 0.0087479369050207
622 => 0.0085800093754449
623 => 0.0086926696604497
624 => 0.0086825922641592
625 => 0.0078754591323995
626 => 0.0079866749565601
627 => 0.0081596918775057
628 => 0.0080817479891386
629 => 0.0079715535670485
630 => 0.0078825656629596
701 => 0.0077477398887846
702 => 0.0079375045768363
703 => 0.0081870249623995
704 => 0.0084493765317276
705 => 0.0087645747523195
706 => 0.0086942261787951
707 => 0.0084434841202409
708 => 0.0084547322258205
709 => 0.0085242635885469
710 => 0.0084342141562257
711 => 0.0084076568206605
712 => 0.0085206150184558
713 => 0.0085213928994833
714 => 0.0084177801447604
715 => 0.0083026335288198
716 => 0.0083021510602947
717 => 0.0082816618321724
718 => 0.0085730021404716
719 => 0.0087332098522086
720 => 0.0087515774081716
721 => 0.0087319735693472
722 => 0.0087395183088622
723 => 0.0086462969713385
724 => 0.0088593733049888
725 => 0.0090549132198117
726 => 0.0090025043455382
727 => 0.0089239359926417
728 => 0.0088613525151951
729 => 0.0089877616671833
730 => 0.0089821328666317
731 => 0.009053205349241
801 => 0.0090499810908953
802 => 0.009026082088165
803 => 0.0090025051990468
804 => 0.0090959848993899
805 => 0.0090690642469291
806 => 0.0090421017792594
807 => 0.0089880244226006
808 => 0.0089953744335003
809 => 0.0089168196465377
810 => 0.0088804766076663
811 => 0.008333964502184
812 => 0.0081879186098009
813 => 0.0082338676205829
814 => 0.0082489952279979
815 => 0.0081854358684698
816 => 0.0082765636629732
817 => 0.0082623614927281
818 => 0.0083176138291602
819 => 0.008283094568135
820 => 0.0082845112506483
821 => 0.0083860250370409
822 => 0.0084154949211013
823 => 0.008400506300217
824 => 0.0084110038165045
825 => 0.0086529146486239
826 => 0.0086185226641694
827 => 0.0086002526078857
828 => 0.0086053135383361
829 => 0.0086671269425693
830 => 0.0086844313208679
831 => 0.0086111114540598
901 => 0.0086456895271036
902 => 0.0087929185735132
903 => 0.0088444404073142
904 => 0.0090088733689238
905 => 0.0089390193242692
906 => 0.009067239446445
907 => 0.0094613443885526
908 => 0.0097761826862957
909 => 0.0094866443764482
910 => 0.010064804815838
911 => 0.010514985650092
912 => 0.010497706959858
913 => 0.010419207518536
914 => 0.009906688607414
915 => 0.0094350610641732
916 => 0.0098295975304574
917 => 0.0098306032850471
918 => 0.0097967122526962
919 => 0.0095862179614702
920 => 0.0097893875076344
921 => 0.0098055143684055
922 => 0.009796487614852
923 => 0.009635102135299
924 => 0.0093886963370438
925 => 0.0094368434402107
926 => 0.0095157093773725
927 => 0.0093663997051673
928 => 0.0093186862179057
929 => 0.0094073946685874
930 => 0.0096932317798236
1001 => 0.009639195929686
1002 => 0.0096377848352629
1003 => 0.009868973116918
1004 => 0.0097034922008068
1005 => 0.0094374507293701
1006 => 0.0093702717491764
1007 => 0.0091318316266724
1008 => 0.0092965230685805
1009 => 0.0093024500203802
1010 => 0.0092122502007529
1011 => 0.0094447699476132
1012 => 0.0094426272372116
1013 => 0.0096633701308584
1014 => 0.010085347636266
1015 => 0.0099605481236653
1016 => 0.0098154198686586
1017 => 0.0098311993339479
1018 => 0.010004261121132
1019 => 0.0098996240139841
1020 => 0.0099372522472703
1021 => 0.010004204166294
1022 => 0.010044597921364
1023 => 0.0098253872942179
1024 => 0.0097742788109738
1025 => 0.0096697287908964
1026 => 0.0096424536421768
1027 => 0.0097276074520221
1028 => 0.0097051724316563
1029 => 0.0093019518830318
1030 => 0.0092598130922025
1031 => 0.0092611054287569
1101 => 0.0091551454356266
1102 => 0.0089935310127905
1103 => 0.0094182440665078
1104 => 0.009384133664439
1105 => 0.0093464784204904
1106 => 0.0093510909730162
1107 => 0.0095354445147739
1108 => 0.0094285101504774
1109 => 0.0097128126841573
1110 => 0.0096543686301492
1111 => 0.0095944257066853
1112 => 0.0095861397687565
1113 => 0.0095630668573128
1114 => 0.0094839412589203
1115 => 0.0093883923441499
1116 => 0.0093253026743133
1117 => 0.0086020987834197
1118 => 0.0087363212188861
1119 => 0.0088907318961301
1120 => 0.0089440338431528
1121 => 0.008852857174388
1122 => 0.0094875414695314
1123 => 0.0096035044062242
1124 => 0.0092522451069067
1125 => 0.009186538833827
1126 => 0.0094918491618556
1127 => 0.0093077097113847
1128 => 0.0093906276946568
1129 => 0.0092114043685346
1130 => 0.0095755723305661
1201 => 0.0095727979808436
1202 => 0.0094311284185069
1203 => 0.0095508665624826
1204 => 0.0095300591133558
1205 => 0.0093701145263944
1206 => 0.0095806428592607
1207 => 0.0095807472786873
1208 => 0.0094443934051001
1209 => 0.0092851619324513
1210 => 0.0092566951060213
1211 => 0.0092352491762862
1212 => 0.0093853533106014
1213 => 0.0095199362080648
1214 => 0.0097703616143146
1215 => 0.0098333245114067
1216 => 0.010079072890435
1217 => 0.0099327416959949
1218 => 0.0099976084191838
1219 => 0.010068030423164
1220 => 0.010101793321555
1221 => 0.010046778490443
1222 => 0.010428526877142
1223 => 0.010460758137447
1224 => 0.010471565000229
1225 => 0.010342841592117
1226 => 0.010457178106609
1227 => 0.010403683837906
1228 => 0.010542861063936
1229 => 0.010564685830082
1230 => 0.010546201029595
1231 => 0.01055312855485
]
'min_raw' => 0.0047323714233523
'max_raw' => 0.010564685830082
'avg_raw' => 0.0076485286267169
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004732'
'max' => '$0.010564'
'avg' => '$0.007648'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0007297220715686
'max_diff' => -0.0010081505663375
'year' => 2031
]
6 => [
'items' => [
101 => 0.010227373651833
102 => 0.010210481541617
103 => 0.0099801564202204
104 => 0.010074015609667
105 => 0.0098985503537846
106 => 0.0099541921939173
107 => 0.0099787185868729
108 => 0.0099659073910535
109 => 0.010079322267413
110 => 0.0099828964533789
111 => 0.0097284128762711
112 => 0.0094738599652828
113 => 0.0094706642608396
114 => 0.0094036449726085
115 => 0.0093552023024123
116 => 0.0093645340792881
117 => 0.0093974204781614
118 => 0.0093532908851256
119 => 0.0093627081712269
120 => 0.0095190978675583
121 => 0.0095504607058373
122 => 0.0094438775271134
123 => 0.0090159306846574
124 => 0.0089109114560954
125 => 0.008986397194964
126 => 0.008950319873689
127 => 0.0072236066818921
128 => 0.007629272333606
129 => 0.0073882395784615
130 => 0.0074993185614159
131 => 0.0072532865335427
201 => 0.0073707059128872
202 => 0.0073490228409915
203 => 0.008001321204428
204 => 0.0079911364626901
205 => 0.0079960113595955
206 => 0.0077633198288225
207 => 0.0081340037556074
208 => 0.0083166159873046
209 => 0.0082828193232846
210 => 0.0082913252154979
211 => 0.0081451658059045
212 => 0.007997426502169
213 => 0.0078335608774104
214 => 0.0081380029538085
215 => 0.0081041541919126
216 => 0.0081817910733017
217 => 0.0083792435218149
218 => 0.0084083191449073
219 => 0.0084473970771995
220 => 0.0084333904202294
221 => 0.008767085814664
222 => 0.0087266731006049
223 => 0.008824056113956
224 => 0.0086237318670257
225 => 0.0083970459666719
226 => 0.0084401315454087
227 => 0.008435982057704
228 => 0.0083831543166629
229 => 0.0083354637941389
301 => 0.0082560725108578
302 => 0.0085072782788583
303 => 0.0084970797834331
304 => 0.0086621815699133
305 => 0.0086329982254397
306 => 0.0084381047086695
307 => 0.0084450653687485
308 => 0.008491879152959
309 => 0.0086539021946221
310 => 0.0087020016647576
311 => 0.0086797200737584
312 => 0.0087324589469377
313 => 0.0087741416019616
314 => 0.0087376936466513
315 => 0.0092537198319099
316 => 0.0090394297825704
317 => 0.0091438732615979
318 => 0.0091687824159293
319 => 0.0091049781408926
320 => 0.0091188150034882
321 => 0.0091397740800013
322 => 0.0092670334883806
323 => 0.0096009989987744
324 => 0.0097489100499477
325 => 0.010193907745205
326 => 0.009736628096169
327 => 0.0097094950142065
328 => 0.0097896525367654
329 => 0.010050913291672
330 => 0.010262640594548
331 => 0.010332882755753
401 => 0.010342166416928
402 => 0.01047394538096
403 => 0.010549478625611
404 => 0.010457943948596
405 => 0.010380377893906
406 => 0.010102545913859
407 => 0.010134705722061
408 => 0.010356254909224
409 => 0.010669206185273
410 => 0.010937750937155
411 => 0.010843715924775
412 => 0.011561136690857
413 => 0.011632266029413
414 => 0.011622438254711
415 => 0.011784481473406
416 => 0.011462858683824
417 => 0.011325358710129
418 => 0.010397148555342
419 => 0.010657937747637
420 => 0.01103701015425
421 => 0.010986838499786
422 => 0.010711545985469
423 => 0.010937542103097
424 => 0.010862820719057
425 => 0.010803884863272
426 => 0.011073881443901
427 => 0.010777009112651
428 => 0.01103404862565
429 => 0.010704392791495
430 => 0.010844145468791
501 => 0.010764815090082
502 => 0.010816151567472
503 => 0.010516039569624
504 => 0.010677972718856
505 => 0.010509302618229
506 => 0.01050922264664
507 => 0.01050549924482
508 => 0.01070393887021
509 => 0.010710409979269
510 => 0.010563762796281
511 => 0.010542628646152
512 => 0.010620772676033
513 => 0.010529286482997
514 => 0.010572092296911
515 => 0.010530583027493
516 => 0.010521238416628
517 => 0.010446778967402
518 => 0.01041469978937
519 => 0.010427278861655
520 => 0.01038434000299
521 => 0.010358467787478
522 => 0.01050035260996
523 => 0.010424549272926
524 => 0.010488734661387
525 => 0.010415587310393
526 => 0.010162026723067
527 => 0.010016201347941
528 => 0.0095372489035592
529 => 0.0096730792226471
530 => 0.009763134864729
531 => 0.0097333714755581
601 => 0.0097973147523997
602 => 0.009801240350272
603 => 0.0097804517391463
604 => 0.0097563811906487
605 => 0.0097446649788249
606 => 0.0098319880228473
607 => 0.0098826819890608
608 => 0.009772173153201
609 => 0.0097462824791419
610 => 0.0098580130135563
611 => 0.0099261685750044
612 => 0.010429390947435
613 => 0.010392110608699
614 => 0.01048567694303
615 => 0.010475142809677
616 => 0.010573215234343
617 => 0.010733522200172
618 => 0.010407573316109
619 => 0.010464146771918
620 => 0.010450276267025
621 => 0.0106017108024
622 => 0.010602183564489
623 => 0.010511390995816
624 => 0.010560611120235
625 => 0.010533137797068
626 => 0.010582785805273
627 => 0.010391612707046
628 => 0.010624440904826
629 => 0.01075643948985
630 => 0.010758272290331
701 => 0.010820838572027
702 => 0.010884409537824
703 => 0.011006428470808
704 => 0.010881006496009
705 => 0.010655384572929
706 => 0.010671673747021
707 => 0.010539391696071
708 => 0.010541615381246
709 => 0.010529745175507
710 => 0.010565368556476
711 => 0.010399430035892
712 => 0.010438375475
713 => 0.010383851632185
714 => 0.010464028247732
715 => 0.010377771463073
716 => 0.010450269578248
717 => 0.010481557361407
718 => 0.010597009954841
719 => 0.010360719021151
720 => 0.009878905811867
721 => 0.009980188789879
722 => 0.0098303833097931
723 => 0.0098442483773247
724 => 0.0098722580203478
725 => 0.0097814696031252
726 => 0.0097987891720594
727 => 0.0097981703951811
728 => 0.0097928381103346
729 => 0.0097692205366
730 => 0.0097349703820902
731 => 0.0098714124560155
801 => 0.0098945966231237
802 => 0.0099461321546946
803 => 0.010099466939765
804 => 0.010084145178853
805 => 0.010109135606594
806 => 0.010054581643151
807 => 0.0098467789792243
808 => 0.0098580636636443
809 => 0.0097173434681022
810 => 0.0099425336229125
811 => 0.0098892056218886
812 => 0.0098548247127093
813 => 0.0098454435631029
814 => 0.0099991584354468
815 => 0.010045152334438
816 => 0.010016492023122
817 => 0.0099577088884598
818 => 0.010070589884685
819 => 0.010100792077209
820 => 0.0101075532343
821 => 0.010307556716828
822 => 0.010118731207212
823 => 0.010164183384141
824 => 0.010518788293643
825 => 0.010197210572857
826 => 0.010367557463596
827 => 0.010359219869737
828 => 0.010446363574814
829 => 0.010352071542386
830 => 0.010353240405136
831 => 0.010430618111619
901 => 0.010321955078007
902 => 0.010295048582753
903 => 0.010257877452267
904 => 0.010339039255804
905 => 0.010387692086391
906 => 0.010779798169361
907 => 0.011033116581169
908 => 0.011022119360833
909 => 0.011122613368773
910 => 0.011077339897776
911 => 0.010931139917389
912 => 0.011180685456722
913 => 0.011101718806648
914 => 0.011108228721336
915 => 0.011107986421986
916 => 0.011160492340901
917 => 0.011123287085253
918 => 0.01104995170733
919 => 0.011098635153614
920 => 0.011243207584427
921 => 0.011691964845695
922 => 0.011943095354343
923 => 0.011676846473745
924 => 0.011860501386367
925 => 0.01175037388173
926 => 0.011730360438128
927 => 0.011845709295246
928 => 0.011961260055269
929 => 0.011953899971395
930 => 0.011870016053216
1001 => 0.011822632156312
1002 => 0.012181438898438
1003 => 0.012445801593923
1004 => 0.012427773830401
1005 => 0.012507342515644
1006 => 0.012740958636486
1007 => 0.012762317566804
1008 => 0.012759626832513
1009 => 0.012706686495148
1010 => 0.012936711905004
1011 => 0.013128603148817
1012 => 0.012694432336641
1013 => 0.012859758898205
1014 => 0.012933979318179
1015 => 0.013042956914909
1016 => 0.013226820387358
1017 => 0.013426544885814
1018 => 0.013454788119764
1019 => 0.013434748193714
1020 => 0.013303024518099
1021 => 0.013521565447519
1022 => 0.013649581598558
1023 => 0.013725812286904
1024 => 0.013919120628973
1025 => 0.012934437678226
1026 => 0.012237430143769
1027 => 0.012128582352352
1028 => 0.012349928616425
1029 => 0.012408295861058
1030 => 0.012384768097933
1031 => 0.011600222748749
1101 => 0.012124451883454
1102 => 0.01268847835396
1103 => 0.012710144907762
1104 => 0.012992508352134
1105 => 0.01308445746409
1106 => 0.013311797047033
1107 => 0.013297576894222
1108 => 0.013352930464906
1109 => 0.013340205637596
1110 => 0.013761304342999
1111 => 0.014225838748822
1112 => 0.014209753399478
1113 => 0.014142971082519
1114 => 0.01424215421128
1115 => 0.014721603500622
1116 => 0.014677463493077
1117 => 0.01472034175057
1118 => 0.015285639483282
1119 => 0.016020606948472
1120 => 0.015679140771364
1121 => 0.016420024121442
1122 => 0.016886370917778
1123 => 0.017692869480882
1124 => 0.017591891888692
1125 => 0.017905855860948
1126 => 0.017411120924013
1127 => 0.016275109506382
1128 => 0.016095331351064
1129 => 0.016455251770717
1130 => 0.017340081001913
1201 => 0.016427385349387
1202 => 0.016612022491196
1203 => 0.016558846981934
1204 => 0.016556013485026
1205 => 0.01666415653731
1206 => 0.01650728939961
1207 => 0.015868184460763
1208 => 0.016161082487968
1209 => 0.016047980493546
1210 => 0.016173475588669
1211 => 0.016850720858938
1212 => 0.016551294581441
1213 => 0.016235873321514
1214 => 0.016631481579044
1215 => 0.017135226836625
1216 => 0.017103703363722
1217 => 0.017042534650503
1218 => 0.017387339484232
1219 => 0.017956856051216
1220 => 0.018110794090769
1221 => 0.018224428004442
1222 => 0.018240096201277
1223 => 0.018401488366406
1224 => 0.017533642018446
1225 => 0.018910936460534
1226 => 0.019148757163692
1227 => 0.019104056728156
1228 => 0.019368384430691
1229 => 0.019290612515258
1230 => 0.019177933211837
1231 => 0.019596948844469
]
'min_raw' => 0.0072236066818921
'max_raw' => 0.019596948844469
'avg_raw' => 0.01341027776318
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007223'
'max' => '$0.019596'
'avg' => '$0.01341'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0024912352585398
'max_diff' => 0.0090322630143872
'year' => 2032
]
7 => [
'items' => [
101 => 0.019116581234474
102 => 0.018434759888687
103 => 0.018060699213491
104 => 0.018553292485203
105 => 0.018854102007102
106 => 0.019052917965997
107 => 0.019113079555031
108 => 0.017601010459996
109 => 0.016786089080969
110 => 0.017308444341833
111 => 0.017945753811121
112 => 0.017530101732165
113 => 0.017546394506727
114 => 0.01695378387358
115 => 0.017998186702595
116 => 0.017846025995218
117 => 0.018635436014257
118 => 0.018447036977802
119 => 0.019090770203609
120 => 0.018921253671404
121 => 0.019624907319043
122 => 0.019905613809749
123 => 0.020376963696119
124 => 0.020723690591273
125 => 0.020927295255936
126 => 0.020915071595571
127 => 0.021721854712406
128 => 0.021246122895264
129 => 0.020648491611552
130 => 0.020637682347133
131 => 0.020947204057468
201 => 0.021595876649195
202 => 0.021764068014428
203 => 0.021858064042505
204 => 0.02171410585348
205 => 0.021197733061978
206 => 0.020974765908677
207 => 0.02116474038327
208 => 0.020932417925536
209 => 0.021333471665753
210 => 0.021884204111529
211 => 0.021770480039309
212 => 0.022150642562276
213 => 0.022544070779284
214 => 0.023106690799572
215 => 0.023253780506634
216 => 0.023496914199087
217 => 0.023747178633879
218 => 0.023827556825518
219 => 0.023981023733246
220 => 0.023980214886889
221 => 0.024442697742842
222 => 0.024952830654859
223 => 0.025145394019542
224 => 0.025588182858623
225 => 0.024829922488868
226 => 0.025405071689594
227 => 0.025923870665568
228 => 0.025305337138841
301 => 0.026157841505606
302 => 0.026190942318351
303 => 0.026690725291707
304 => 0.026184099501379
305 => 0.025883266724289
306 => 0.026751759679691
307 => 0.027171996063538
308 => 0.027045417444726
309 => 0.02608214790561
310 => 0.025521483717271
311 => 0.024054117392341
312 => 0.025792276189728
313 => 0.026638882637148
314 => 0.026079955399436
315 => 0.026361845787282
316 => 0.027899748340104
317 => 0.028485282060403
318 => 0.02836349513977
319 => 0.028384075124574
320 => 0.028700018491858
321 => 0.030101085375587
322 => 0.02926153362238
323 => 0.029903339480303
324 => 0.030243750993141
325 => 0.030559944177606
326 => 0.029783473650444
327 => 0.028773296903223
328 => 0.028453331523043
329 => 0.026024381100898
330 => 0.025897943683028
331 => 0.025826970528932
401 => 0.025379494831708
402 => 0.025027901507599
403 => 0.024748301442444
404 => 0.024014547375831
405 => 0.024262167833736
406 => 0.02309271699793
407 => 0.023840890199886
408 => 0.021974418428562
409 => 0.023528871582229
410 => 0.022682853403
411 => 0.023250931856766
412 => 0.023248949884557
413 => 0.022202937341736
414 => 0.021599619136762
415 => 0.021984076978467
416 => 0.022396246303077
417 => 0.022463119389291
418 => 0.022997507677368
419 => 0.023146643961932
420 => 0.022694754057194
421 => 0.021935739949731
422 => 0.022112041615626
423 => 0.021596046389129
424 => 0.020691784602163
425 => 0.021341241204459
426 => 0.021562994243073
427 => 0.021660933017917
428 => 0.020771695405604
429 => 0.020492277641528
430 => 0.020343517968475
501 => 0.021820950540549
502 => 0.021901887631963
503 => 0.021487802028939
504 => 0.023359508219815
505 => 0.022935883463498
506 => 0.023409176106889
507 => 0.022096044087353
508 => 0.022146207498866
509 => 0.021524549756943
510 => 0.021872636553235
511 => 0.021626620024977
512 => 0.021844514579955
513 => 0.021975119677796
514 => 0.0225966754118
515 => 0.023535968750292
516 => 0.022503835712197
517 => 0.022054120567081
518 => 0.022333121313817
519 => 0.023076137068663
520 => 0.024201843971531
521 => 0.02353540282807
522 => 0.023831158090633
523 => 0.023895767458268
524 => 0.023404358432072
525 => 0.024219962923265
526 => 0.024657051996054
527 => 0.025105414941897
528 => 0.025494715924927
529 => 0.024926328921615
530 => 0.025534584490235
531 => 0.025044437873489
601 => 0.024604725687842
602 => 0.024605392549722
603 => 0.024329554672495
604 => 0.023795084027559
605 => 0.023696519440382
606 => 0.024209264870212
607 => 0.024620438147763
608 => 0.024654304348289
609 => 0.024881951001587
610 => 0.025016669946062
611 => 0.026337098743438
612 => 0.026868186128903
613 => 0.027517589730879
614 => 0.027770569032231
615 => 0.028531946031199
616 => 0.027917072268516
617 => 0.027784040462222
618 => 0.025937188907242
619 => 0.026239610745908
620 => 0.026723817288978
621 => 0.025945173294793
622 => 0.026439043689962
623 => 0.026536544167573
624 => 0.025918715269823
625 => 0.026248724378922
626 => 0.025372318026036
627 => 0.023555072013843
628 => 0.024221986037564
629 => 0.024713059239855
630 => 0.024012237231296
701 => 0.025268433556081
702 => 0.024534589596298
703 => 0.024301996291768
704 => 0.0233945668853
705 => 0.023822838634992
706 => 0.024402082308711
707 => 0.024044177062658
708 => 0.024786884187962
709 => 0.025838755550149
710 => 0.026588381722866
711 => 0.026645928712262
712 => 0.026163969304258
713 => 0.026936312331408
714 => 0.026941938007175
715 => 0.026070731917435
716 => 0.025537123038366
717 => 0.025415885978319
718 => 0.025718759924242
719 => 0.026086504808209
720 => 0.026666335993948
721 => 0.027016715835771
722 => 0.027930320636137
723 => 0.028177515900014
724 => 0.028449108550093
725 => 0.02881204008667
726 => 0.029247832450068
727 => 0.028294343568628
728 => 0.028332227459413
729 => 0.027444351814968
730 => 0.026495529354632
731 => 0.027215567329638
801 => 0.02815692119932
802 => 0.027940973581511
803 => 0.027916675063098
804 => 0.027957538431222
805 => 0.027794720979584
806 => 0.027058303680122
807 => 0.026688479522548
808 => 0.027165647038023
809 => 0.027419240336216
810 => 0.027812541426052
811 => 0.027764058765151
812 => 0.028777160135116
813 => 0.029170820692889
814 => 0.029070105476526
815 => 0.029088639500184
816 => 0.029801343136353
817 => 0.030594016158455
818 => 0.031336459046072
819 => 0.032091703840019
820 => 0.03118122676321
821 => 0.030718942654025
822 => 0.03119590185309
823 => 0.030942820588379
824 => 0.032397100604186
825 => 0.032497791797173
826 => 0.033951966651982
827 => 0.035332151749116
828 => 0.034465282218191
829 => 0.035282701141192
830 => 0.036166806351561
831 => 0.037872388743263
901 => 0.03729800859685
902 => 0.036858042406382
903 => 0.036442276482291
904 => 0.037307419369343
905 => 0.03842041187254
906 => 0.038660139797619
907 => 0.039048590619363
908 => 0.038640182077806
909 => 0.039132065181386
910 => 0.040868628681413
911 => 0.040399393894636
912 => 0.039733005064156
913 => 0.041103855166095
914 => 0.041599960488942
915 => 0.045081887457057
916 => 0.04947796408553
917 => 0.047657959495147
918 => 0.046528223914715
919 => 0.046793738573803
920 => 0.048399036941936
921 => 0.048914607828157
922 => 0.047513108431466
923 => 0.048008141711614
924 => 0.050735823755829
925 => 0.052199137658033
926 => 0.050211760829563
927 => 0.044728666980323
928 => 0.039673004041089
929 => 0.041013993512043
930 => 0.040861966921785
1001 => 0.043792520993029
1002 => 0.040388202800157
1003 => 0.040445522787664
1004 => 0.043436677613591
1005 => 0.04263868878741
1006 => 0.041346049087683
1007 => 0.039682441741418
1008 => 0.036607109696793
1009 => 0.033883202342891
1010 => 0.039225411942293
1011 => 0.038995046150189
1012 => 0.038661442344925
1013 => 0.039403841513838
1014 => 0.043008721144403
1015 => 0.042925617001062
1016 => 0.042396950841231
1017 => 0.042797939464013
1018 => 0.041275753843358
1019 => 0.041668055737323
1020 => 0.03967220319825
1021 => 0.040574411900075
1022 => 0.041343275663441
1023 => 0.041497636447159
1024 => 0.041845419174734
1025 => 0.038873653845653
1026 => 0.040207889231964
1027 => 0.040991627520473
1028 => 0.037450669420348
1029 => 0.040921634163881
1030 => 0.038821922022854
1031 => 0.038109248185572
1101 => 0.039068769619834
1102 => 0.038694843183737
1103 => 0.038373363191678
1104 => 0.038193971832381
1105 => 0.038898538475187
1106 => 0.038865669599161
1107 => 0.037712861821038
1108 => 0.036209071068932
1109 => 0.036713792605588
1110 => 0.036530422539531
1111 => 0.035865865764933
1112 => 0.036313696792121
1113 => 0.034341675590481
1114 => 0.030948915609801
1115 => 0.033190276776087
1116 => 0.033103986809317
1117 => 0.033060475495133
1118 => 0.034744796464924
1119 => 0.034582887867575
1120 => 0.034289022177972
1121 => 0.035860468691091
1122 => 0.035286869574865
1123 => 0.037054566894127
1124 => 0.038218886676087
1125 => 0.037923577517583
1126 => 0.039018625900162
1127 => 0.036725420370398
1128 => 0.037487131259949
1129 => 0.0376441188186
1130 => 0.035841077285049
1201 => 0.034609378116458
1202 => 0.034527237824312
1203 => 0.032391641204577
1204 => 0.033532459680906
1205 => 0.034536332729799
1206 => 0.034055555443075
1207 => 0.033903355716911
1208 => 0.03468091110979
1209 => 0.034741333823128
1210 => 0.033363689555703
1211 => 0.033650145423221
1212 => 0.034844714010095
1213 => 0.033620045359779
1214 => 0.031240714220703
1215 => 0.030650607201385
1216 => 0.030571876047178
1217 => 0.028971459008811
1218 => 0.030690040974122
1219 => 0.029939833891131
1220 => 0.032309729077441
1221 => 0.030956057657023
1222 => 0.030897703587638
1223 => 0.030809492853081
1224 => 0.029431947795763
1225 => 0.02973354261576
1226 => 0.030736089731619
1227 => 0.031093809837059
1228 => 0.031056496699347
1229 => 0.030731176703813
1230 => 0.030880106531861
1231 => 0.030400351665128
]
'min_raw' => 0.016786089080969
'max_raw' => 0.052199137658033
'avg_raw' => 0.034492613369501
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.016786'
'max' => '$0.052199'
'avg' => '$0.034492'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0095624823990764
'max_diff' => 0.032602188813565
'year' => 2033
]
8 => [
'items' => [
101 => 0.030230940236451
102 => 0.029696231167261
103 => 0.028910356552703
104 => 0.029019637237906
105 => 0.027462613991187
106 => 0.026614265088896
107 => 0.026379453293801
108 => 0.026065453147939
109 => 0.026414920445798
110 => 0.027458203139959
111 => 0.026199782866031
112 => 0.0240423095743
113 => 0.024171977395288
114 => 0.024463302490328
115 => 0.02392042010303
116 => 0.023406627484117
117 => 0.023853328480949
118 => 0.022939178605775
119 => 0.02457377313534
120 => 0.024529561934214
121 => 0.025138837692188
122 => 0.025519830327247
123 => 0.024641765651267
124 => 0.024420934759798
125 => 0.024546730071783
126 => 0.022467613777183
127 => 0.024968929534308
128 => 0.024990561016845
129 => 0.024805339130509
130 => 0.026137212551719
131 => 0.028947880892208
201 => 0.027890394403644
202 => 0.027480903672573
203 => 0.026702461493473
204 => 0.027739689477801
205 => 0.027660046551882
206 => 0.027299871037192
207 => 0.027082035762092
208 => 0.027483403935658
209 => 0.027032301803642
210 => 0.026951271465274
211 => 0.026460315776644
212 => 0.026285066932863
213 => 0.026155319665785
214 => 0.026012480673436
215 => 0.026327547897299
216 => 0.025613564117479
217 => 0.024752569671709
218 => 0.024680987299632
219 => 0.024878632522523
220 => 0.02479118922435
221 => 0.024680568654763
222 => 0.0244693638617
223 => 0.024406703911275
224 => 0.024610318351871
225 => 0.024380449519898
226 => 0.024719633503077
227 => 0.024627394227558
228 => 0.024112153132605
301 => 0.023469971961607
302 => 0.023464255202164
303 => 0.023325898322261
304 => 0.023149680033608
305 => 0.023100660137033
306 => 0.023815708568946
307 => 0.025295837423408
308 => 0.025005252712795
309 => 0.025215229946532
310 => 0.026248110114408
311 => 0.026576431659986
312 => 0.026343396803657
313 => 0.02602440431935
314 => 0.026038438369745
315 => 0.027128532254215
316 => 0.027196520072653
317 => 0.027368303356144
318 => 0.02758909342138
319 => 0.02638099830649
320 => 0.025981537198476
321 => 0.02579225036424
322 => 0.025209320178019
323 => 0.025837960407202
324 => 0.025471678666715
325 => 0.025521102587473
326 => 0.025488915194242
327 => 0.025506491687448
328 => 0.024573316232856
329 => 0.024913316322252
330 => 0.02434800022953
331 => 0.023591105441086
401 => 0.023588568064353
402 => 0.023773816991533
403 => 0.023663623680855
404 => 0.023367096315151
405 => 0.023409216627879
406 => 0.0230401983673
407 => 0.023454022126005
408 => 0.023465889110672
409 => 0.023306544422438
410 => 0.023944097019396
411 => 0.024205302838564
412 => 0.024100418751274
413 => 0.0241979438914
414 => 0.025017327819432
415 => 0.025150923151929
416 => 0.025210257373811
417 => 0.025130757376767
418 => 0.02421292072544
419 => 0.024253630683869
420 => 0.023954928020398
421 => 0.023702555746276
422 => 0.023712649313723
423 => 0.02384240146872
424 => 0.024409036739459
425 => 0.025601487261756
426 => 0.025646739887407
427 => 0.025701587389809
428 => 0.025478495033396
429 => 0.025411208243995
430 => 0.025499976887409
501 => 0.025947798607513
502 => 0.027099717654034
503 => 0.026692552528907
504 => 0.026361520944276
505 => 0.026651924889472
506 => 0.02660721947837
507 => 0.026229860818738
508 => 0.026219269617994
509 => 0.025494997701299
510 => 0.02522725086457
511 => 0.025003501567296
512 => 0.024759173175797
513 => 0.024614327115354
514 => 0.024836876495551
515 => 0.024887776171929
516 => 0.02440116806263
517 => 0.024334845175411
518 => 0.024732219861631
519 => 0.024557350077847
520 => 0.02473720798703
521 => 0.024778936564754
522 => 0.024772217302649
523 => 0.024589633164713
524 => 0.024706006849496
525 => 0.024430748392318
526 => 0.02413144616262
527 => 0.023940509987261
528 => 0.023773892850251
529 => 0.023866341721709
530 => 0.023536778375459
531 => 0.023431344428194
601 => 0.024666582063582
602 => 0.025579065385886
603 => 0.025565797516997
604 => 0.025485032777352
605 => 0.025365032756768
606 => 0.025939019858574
607 => 0.025739054229539
608 => 0.025884545932349
609 => 0.025921579676982
610 => 0.026033669668135
611 => 0.026073732205512
612 => 0.025952635392337
613 => 0.025546219696595
614 => 0.024533470423649
615 => 0.024062032903228
616 => 0.023906450669077
617 => 0.023912105787795
618 => 0.023756112367972
619 => 0.023802059421245
620 => 0.023740133857931
621 => 0.023622861822416
622 => 0.02385910050398
623 => 0.023886324811314
624 => 0.023831183880195
625 => 0.023844171565605
626 => 0.02338762820694
627 => 0.023422338206939
628 => 0.02322906851621
629 => 0.023192832779099
630 => 0.022704263830853
701 => 0.021838693119833
702 => 0.02231830331672
703 => 0.02173900164228
704 => 0.021519611320316
705 => 0.022558170982295
706 => 0.022453928397394
707 => 0.022275510405204
708 => 0.022011593009189
709 => 0.021913703479783
710 => 0.021318957687174
711 => 0.021283816932901
712 => 0.021578589007206
713 => 0.021442561837402
714 => 0.02125152817348
715 => 0.020559623607526
716 => 0.019781693793665
717 => 0.019805174604853
718 => 0.020052619604743
719 => 0.02077209931443
720 => 0.02049098614473
721 => 0.020287035314711
722 => 0.020248841454988
723 => 0.020726917573684
724 => 0.021403495441683
725 => 0.021720930639772
726 => 0.021406361999117
727 => 0.02104500248231
728 => 0.021066996761719
729 => 0.021213314849018
730 => 0.021228690811167
731 => 0.020993482914084
801 => 0.021059692559375
802 => 0.020959114053842
803 => 0.020341863951037
804 => 0.020330699853999
805 => 0.020179216724268
806 => 0.020174629875303
807 => 0.019916919282394
808 => 0.019880863788976
809 => 0.01936916376484
810 => 0.019705966270297
811 => 0.019480056832561
812 => 0.019139558023245
813 => 0.019080855900177
814 => 0.019079091243473
815 => 0.0194287073865
816 => 0.019701880802109
817 => 0.019483986623951
818 => 0.019434376343286
819 => 0.019964084349714
820 => 0.0198966741775
821 => 0.019838297403112
822 => 0.021342915314375
823 => 0.020151892830811
824 => 0.01963253904679
825 => 0.018989740116456
826 => 0.019199038689446
827 => 0.019243140974011
828 => 0.017697325419773
829 => 0.017070188241938
830 => 0.016854978395671
831 => 0.016731122086523
901 => 0.016787564961892
902 => 0.016223067945986
903 => 0.016602419276593
904 => 0.016113612576564
905 => 0.016031662542589
906 => 0.016905709473773
907 => 0.017027327998139
908 => 0.016508465589279
909 => 0.016841659251961
910 => 0.016720838598134
911 => 0.016121991764475
912 => 0.016099120220249
913 => 0.015798639929603
914 => 0.015328446459192
915 => 0.015113555426238
916 => 0.015001638310507
917 => 0.015047817493679
918 => 0.015024467885561
919 => 0.014872095898307
920 => 0.01503320166951
921 => 0.014621642997587
922 => 0.014457757018274
923 => 0.014383733523544
924 => 0.01401845151378
925 => 0.014599777632962
926 => 0.014714306201795
927 => 0.014829060427287
928 => 0.015827917614164
929 => 0.015778017531849
930 => 0.016229089973653
1001 => 0.016211562128033
1002 => 0.016082908960742
1003 => 0.015540142410357
1004 => 0.015756479483457
1005 => 0.015090627598702
1006 => 0.015589529104287
1007 => 0.015361851291763
1008 => 0.01551255100685
1009 => 0.015241579331078
1010 => 0.015391546244597
1011 => 0.014741465174195
1012 => 0.014134428617541
1013 => 0.01437871784844
1014 => 0.01464428818029
1015 => 0.015220112325802
1016 => 0.014877156215181
1017 => 0.015000496201167
1018 => 0.014587327894979
1019 => 0.013734843663622
1020 => 0.013739668631792
1021 => 0.013608532505176
1022 => 0.013495211745592
1023 => 0.014916548850044
1024 => 0.014739783113091
1025 => 0.014458130045784
1026 => 0.014835133868822
1027 => 0.014934819663489
1028 => 0.014937657577921
1029 => 0.015212709835333
1030 => 0.01535950527442
1031 => 0.015385378606807
1101 => 0.015818179276741
1102 => 0.015963248352525
1103 => 0.016560767344732
1104 => 0.015347050707016
1105 => 0.01532205501157
1106 => 0.014840439085751
1107 => 0.014534990651549
1108 => 0.014861353401363
1109 => 0.01515046624474
1110 => 0.014849422627693
1111 => 0.014888732568702
1112 => 0.014484606108984
1113 => 0.014629062302416
1114 => 0.01475348743655
1115 => 0.014684787190853
1116 => 0.014581939597914
1117 => 0.015126762288582
1118 => 0.015096021257198
1119 => 0.015603372672168
1120 => 0.015998889381184
1121 => 0.016707726030811
1122 => 0.015968018034435
1123 => 0.015941060134975
1124 => 0.016204577926388
1125 => 0.015963208009324
1126 => 0.016115745465102
1127 => 0.016683149888466
1128 => 0.016695138249827
1129 => 0.016494317750891
1130 => 0.01648209780528
1201 => 0.016520667578836
1202 => 0.01674657194726
1203 => 0.016667634019593
1204 => 0.016758982987953
1205 => 0.016873216271673
1206 => 0.017345733567047
1207 => 0.017459655887261
1208 => 0.01718288371109
1209 => 0.017207873139712
1210 => 0.017104352748258
1211 => 0.01700435334722
1212 => 0.017229137397013
1213 => 0.017639934666153
1214 => 0.017637379117662
1215 => 0.017732676099345
1216 => 0.01779204532945
1217 => 0.017537189132905
1218 => 0.017371287120276
1219 => 0.017434904508538
1220 => 0.017536630097774
1221 => 0.017401916270972
1222 => 0.016570400126434
1223 => 0.01682262900723
1224 => 0.016780645788103
1225 => 0.016720856578733
1226 => 0.016974474668801
1227 => 0.016950012585309
1228 => 0.016217278213177
1229 => 0.01626418549033
1230 => 0.016220130800062
1231 => 0.016362480517059
]
'min_raw' => 0.013495211745592
'max_raw' => 0.030230940236451
'avg_raw' => 0.021863075991022
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.013495'
'max' => '$0.03023'
'avg' => '$0.021863'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0032908773353762
'max_diff' => -0.021968197421582
'year' => 2034
]
9 => [
'items' => [
101 => 0.015955520657454
102 => 0.016080698769352
103 => 0.016159209307662
104 => 0.016205452617874
105 => 0.016372515163691
106 => 0.016352912302168
107 => 0.016371296622295
108 => 0.016619006274866
109 => 0.01787183669388
110 => 0.017940025489372
111 => 0.017604238921487
112 => 0.01773837903226
113 => 0.017480859352794
114 => 0.017653734038852
115 => 0.017772010508511
116 => 0.017237541885376
117 => 0.017205894122187
118 => 0.016947311567398
119 => 0.017086259185477
120 => 0.016865183534426
121 => 0.016919427766296
122 => 0.016767756165061
123 => 0.01704073484977
124 => 0.017345967435873
125 => 0.017423081241123
126 => 0.017220228019091
127 => 0.017073348917661
128 => 0.016815477600535
129 => 0.017244323347954
130 => 0.017369730913336
131 => 0.0172436646354
201 => 0.0172144523242
202 => 0.017159095047261
203 => 0.017226196632193
204 => 0.017369047916803
205 => 0.01730168188903
206 => 0.01734617833721
207 => 0.017176603761284
208 => 0.017537273500911
209 => 0.018110103847337
210 => 0.018111945590568
211 => 0.018044579199667
212 => 0.01801701432394
213 => 0.018086136329138
214 => 0.018123632181425
215 => 0.018347160071429
216 => 0.018587014403148
217 => 0.019706309912634
218 => 0.019392016212504
219 => 0.020385121775708
220 => 0.021170539337584
221 => 0.021406051722244
222 => 0.021189391410071
223 => 0.020448208185889
224 => 0.020411842200909
225 => 0.021519482857323
226 => 0.02120652363873
227 => 0.021169298135507
228 => 0.020773281674687
301 => 0.021007376450624
302 => 0.020956176489164
303 => 0.02087535484521
304 => 0.021321991370515
305 => 0.022158055074367
306 => 0.022027746705566
307 => 0.021930477553087
308 => 0.02150427244155
309 => 0.021760943115053
310 => 0.021669547604422
311 => 0.02206224071912
312 => 0.02182961801719
313 => 0.021204152664846
314 => 0.021303760083767
315 => 0.021288704622779
316 => 0.021598544943065
317 => 0.021505538569625
318 => 0.021270543635666
319 => 0.022155197499519
320 => 0.022097752998304
321 => 0.022179196167386
322 => 0.02221504996913
323 => 0.022753523186707
324 => 0.022974118434728
325 => 0.023024197418092
326 => 0.023233745842262
327 => 0.023018983662404
328 => 0.023878185504676
329 => 0.02444950459397
330 => 0.025113121115996
331 => 0.026082843217982
401 => 0.026447467698759
402 => 0.026381601549934
403 => 0.027116833780374
404 => 0.02843802975518
405 => 0.026648653030881
406 => 0.028532871066514
407 => 0.027936349390776
408 => 0.026522007228567
409 => 0.02643094026732
410 => 0.027388749200418
411 => 0.029513077228336
412 => 0.028980957151271
413 => 0.029513947586155
414 => 0.028892185932409
415 => 0.028861310225682
416 => 0.02948375001043
417 => 0.030938114494921
418 => 0.030247200444377
419 => 0.029256605733847
420 => 0.029988045452742
421 => 0.029354404676684
422 => 0.027926634663341
423 => 0.028980550249077
424 => 0.028275826910683
425 => 0.02848150264598
426 => 0.029962726283597
427 => 0.029784501536688
428 => 0.030015140862356
429 => 0.029608068489433
430 => 0.029227798703702
501 => 0.02851799690943
502 => 0.028307859590952
503 => 0.02836593398583
504 => 0.028307830812166
505 => 0.027910703231686
506 => 0.027824943568492
507 => 0.027682007039285
508 => 0.027726309046531
509 => 0.027457546554065
510 => 0.027964756906512
511 => 0.028058899617448
512 => 0.028428005014125
513 => 0.028466326760868
514 => 0.029494280036728
515 => 0.028928100646438
516 => 0.029307942663021
517 => 0.029273966017846
518 => 0.026552660311883
519 => 0.026927632227881
520 => 0.027510970856505
521 => 0.027248177595007
522 => 0.026876649407401
523 => 0.026576620475828
524 => 0.026122045964962
525 => 0.026761850859676
526 => 0.027603126260559
527 => 0.028487662893351
528 => 0.029550375700513
529 => 0.029313190573295
530 => 0.028467796216628
531 => 0.028505719989907
601 => 0.028740149833864
602 => 0.028436541885743
603 => 0.028347001974711
604 => 0.028727848425067
605 => 0.028730471105261
606 => 0.028381133468702
607 => 0.027992908613778
608 => 0.027991281937461
609 => 0.027922201074334
610 => 0.028904475264495
611 => 0.029444626749962
612 => 0.029506554247273
613 => 0.02944045853598
614 => 0.029465896152012
615 => 0.029151593904045
616 => 0.029869995639461
617 => 0.030529272114448
618 => 0.030352571935764
619 => 0.030087673248506
620 => 0.029876668684856
621 => 0.030302865966389
622 => 0.030283888072339
623 => 0.030523513909579
624 => 0.030512643097456
625 => 0.030432065941176
626 => 0.030352574813428
627 => 0.030667748149679
628 => 0.030576983290367
629 => 0.03048607744816
630 => 0.030303751864624
701 => 0.030328532939534
702 => 0.030063679990769
703 => 0.029941146897824
704 => 0.028098543177934
705 => 0.027606139255166
706 => 0.027761059553075
707 => 0.02781206333765
708 => 0.027597768519429
709 => 0.027905012240936
710 => 0.027857128632391
711 => 0.028043415742267
712 => 0.027927031643662
713 => 0.027931808087665
714 => 0.028274068905955
715 => 0.028373428677586
716 => 0.028322893495802
717 => 0.028358286604879
718 => 0.029173905865044
719 => 0.029057950888284
720 => 0.028996352117949
721 => 0.029013415398305
722 => 0.029221823606352
723 => 0.029280166525938
724 => 0.029032963475965
725 => 0.029149545863396
726 => 0.02964593887257
727 => 0.02981964833237
728 => 0.03037404554278
729 => 0.030138527754173
730 => 0.030570830848132
731 => 0.031899583175976
801 => 0.032961082478125
802 => 0.031984883851554
803 => 0.03393419213883
804 => 0.035452008252141
805 => 0.035393751941657
806 => 0.035129085594582
807 => 0.033401092302807
808 => 0.031810967112788
809 => 0.033141174354521
810 => 0.03314456532634
811 => 0.033030299344572
812 => 0.032320603145462
813 => 0.033005603455199
814 => 0.03305997629223
815 => 0.033029541962397
816 => 0.03248541955051
817 => 0.031654645198189
818 => 0.03181697651804
819 => 0.032082878531424
820 => 0.031579470547116
821 => 0.031418601193564
822 => 0.031717687928464
823 => 0.032681407705507
824 => 0.032499222064105
825 => 0.032494464460738
826 => 0.033273931893389
827 => 0.032716001431211
828 => 0.03181902403584
829 => 0.03159252541383
830 => 0.03078860789345
831 => 0.031343876588233
901 => 0.031363859720032
902 => 0.031059744730608
903 => 0.031843701291158
904 => 0.03183647699344
905 => 0.032580727071147
906 => 0.034003453692158
907 => 0.0335826834222
908 => 0.033093373377914
909 => 0.033146574946824
910 => 0.033730064845103
911 => 0.033377273532825
912 => 0.033504139748468
913 => 0.033729872817891
914 => 0.033866063183311
915 => 0.033126979249091
916 => 0.032954663429553
917 => 0.032602165737412
918 => 0.032510205669214
919 => 0.032797307684357
920 => 0.03272166644683
921 => 0.031362180215183
922 => 0.031220106339866
923 => 0.031224463542787
924 => 0.030867212028057
925 => 0.030322317717907
926 => 0.031754267431034
927 => 0.031639261828946
928 => 0.031512304544968
929 => 0.031527856087847
930 => 0.032149416925037
1001 => 0.031788880249892
1002 => 0.032747426091563
1003 => 0.032550377883041
1004 => 0.032348276131501
1005 => 0.032320339513269
1006 => 0.032242547581437
1007 => 0.031975770102083
1008 => 0.031653620264923
1009 => 0.031440909038289
1010 => 0.029002576627658
1011 => 0.029455116939944
1012 => 0.029975723318881
1013 => 0.030155434554692
1014 => 0.029848026050199
1015 => 0.031987908463518
1016 => 0.032378885600851
1017 => 0.031194590349061
1018 => 0.030973057061907
1019 => 0.032002432148942
1020 => 0.031381593135474
1021 => 0.031661156905224
1022 => 0.03105689294823
1023 => 0.032284710657614
1024 => 0.032275356743826
1025 => 0.031797707923355
1026 => 0.032201413435619
1027 => 0.032131259668159
1028 => 0.031591995326244
1029 => 0.032301806299122
1030 => 0.032302158356508
1031 => 0.031842431751786
1101 => 0.031305571724564
1102 => 0.031209593831765
1103 => 0.031137287382356
1104 => 0.031643373951136
1105 => 0.032097129586212
1106 => 0.032941456327526
1107 => 0.033153740131001
1108 => 0.033982297948498
1109 => 0.033488932109927
1110 => 0.033707634796008
1111 => 0.033945067499133
1112 => 0.03405890146831
1113 => 0.033873415124204
1114 => 0.035160506462779
1115 => 0.035269176407215
1116 => 0.035305612499592
1117 => 0.034871612541963
1118 => 0.035257106083293
1119 => 0.035076746421509
1120 => 0.035545992156114
1121 => 0.03561957587893
1122 => 0.035557253083522
1123 => 0.035580609718584
1124 => 0.034482304319581
1125 => 0.03442535139062
1126 => 0.033648794163043
1127 => 0.033965246973302
1128 => 0.033373653612501
1129 => 0.033561253961298
1130 => 0.033643946407526
1201 => 0.033600752566371
1202 => 0.033983138740392
1203 => 0.03365803237614
1204 => 0.032800023228445
1205 => 0.031941780316731
1206 => 0.031931005776084
1207 => 0.031705045566676
1208 => 0.03154171772195
1209 => 0.031573180459211
1210 => 0.031684059249067
1211 => 0.031535273245117
1212 => 0.031567024282702
1213 => 0.032094303062663
1214 => 0.032200045061604
1215 => 0.031840692433136
1216 => 0.030397839775502
1217 => 0.030043760114196
1218 => 0.030298265553038
1219 => 0.030176628345521
1220 => 0.024354894264113
1221 => 0.025722624331537
1222 => 0.024909965569198
1223 => 0.025284476115516
1224 => 0.024454961956134
1225 => 0.024850849591553
1226 => 0.024777743600792
1227 => 0.026977013075136
1228 => 0.026942674507291
1229 => 0.026959110562562
1230 => 0.026174574820557
1231 => 0.027424361560038
]
'min_raw' => 0.015955520657454
'max_raw' => 0.03561957587893
'avg_raw' => 0.025787548268192
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.015955'
'max' => '$0.035619'
'avg' => '$0.025787'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0024603089118616
'max_diff' => 0.005388635642479
'year' => 2035
]
10 => [
'items' => [
101 => 0.028040051448783
102 => 0.027926103636432
103 => 0.027954781845892
104 => 0.027461995191924
105 => 0.026963881814551
106 => 0.026411397419945
107 => 0.027437845135988
108 => 0.02732372167201
109 => 0.027585479838048
110 => 0.0282512045539
111 => 0.028349235047151
112 => 0.028480989024208
113 => 0.02843376460232
114 => 0.029558841922525
115 => 0.029422587635549
116 => 0.029750921264127
117 => 0.029075514079409
118 => 0.028311226739662
119 => 0.028456492776512
120 => 0.028442502489008
121 => 0.028264390071773
122 => 0.028103598145437
123 => 0.027835924890933
124 => 0.028682882676373
125 => 0.028648497737011
126 => 0.029205149937167
127 => 0.029106756253759
128 => 0.028449659154937
129 => 0.028473127506371
130 => 0.028630963448271
131 => 0.029177235445326
201 => 0.029339406167085
202 => 0.02926428222738
203 => 0.029442095020415
204 => 0.029582631002018
205 => 0.029459744175974
206 => 0.031199562487371
207 => 0.03047706862477
208 => 0.030829207106322
209 => 0.030913190059252
210 => 0.030698069491293
211 => 0.030744721439593
212 => 0.030815386429373
213 => 0.031244450409692
214 => 0.032370438444712
215 => 0.032869130880563
216 => 0.034369471678871
217 => 0.032827721415899
218 => 0.032736240335691
219 => 0.033006497019418
220 => 0.033887355895228
221 => 0.034601209279204
222 => 0.034838035629859
223 => 0.034869336141675
224 => 0.035313638119421
225 => 0.035568303727324
226 => 0.03525968817302
227 => 0.034998168804144
228 => 0.034061438885807
229 => 0.034169867924485
301 => 0.034916836477075
302 => 0.035971973553837
303 => 0.036877390934001
304 => 0.036560345324449
305 => 0.038979179526011
306 => 0.039218997057045
307 => 0.039185862028485
308 => 0.039732202053812
309 => 0.038647828363749
310 => 0.038184237602496
311 => 0.035054712260066
312 => 0.035933981229609
313 => 0.037212050314496
314 => 0.037042893078598
315 => 0.036114725146268
316 => 0.036876686835394
317 => 0.036624758472224
318 => 0.036426052119674
319 => 0.037336364441825
320 => 0.036335438650051
321 => 0.037202065314054
322 => 0.036090607653366
323 => 0.036561793562088
324 => 0.036294325651599
325 => 0.03646741016932
326 => 0.035455561615423
327 => 0.036001530533871
328 => 0.035432847513437
329 => 0.03543257788364
330 => 0.035420024174445
331 => 0.036089077226059
401 => 0.036110895022052
402 => 0.035616463806026
403 => 0.03554520854333
404 => 0.035808676595914
405 => 0.03550022450873
406 => 0.035644547298949
407 => 0.035504595899022
408 => 0.035473089891071
409 => 0.035222044659411
410 => 0.03511388747098
411 => 0.035156298691431
412 => 0.035011527331548
413 => 0.03492429735061
414 => 0.035402671935689
415 => 0.035147095692457
416 => 0.035363501210935
417 => 0.035116879810076
418 => 0.034261982586869
419 => 0.033770322153428
420 => 0.032155500547805
421 => 0.032613461951979
422 => 0.032917090836743
423 => 0.03281674149214
424 => 0.033032330714388
425 => 0.033045566141691
426 => 0.032975475887866
427 => 0.032894320353055
428 => 0.032854818326891
429 => 0.033149234066513
430 => 0.033320152312941
501 => 0.032947564057359
502 => 0.03286027184214
503 => 0.033236979139695
504 => 0.033466770373586
505 => 0.035163419736101
506 => 0.035037726471221
507 => 0.035353191900013
508 => 0.035317675333943
509 => 0.035648333360901
510 => 0.036188819488469
511 => 0.035089860068825
512 => 0.035280601424918
513 => 0.035233836049265
514 => 0.035744408158101
515 => 0.035746002108494
516 => 0.035439888624279
517 => 0.035605837710196
518 => 0.035513209483012
519 => 0.035680601208989
520 => 0.035036047761037
521 => 0.035821044285398
522 => 0.036266086730652
523 => 0.036272266145436
524 => 0.036483212732411
525 => 0.03669754668198
526 => 0.037108942033625
527 => 0.036686073088908
528 => 0.035925373022824
529 => 0.035980293110549
530 => 0.035534294940133
531 => 0.035541792249954
601 => 0.035501771022555
602 => 0.035621877738635
603 => 0.03506240443103
604 => 0.035193711698066
605 => 0.035009880755281
606 => 0.03528020181235
607 => 0.034989381040616
608 => 0.035233813497585
609 => 0.035339302442948
610 => 0.035728558922355
611 => 0.034931887542113
612 => 0.033307420667888
613 => 0.033648903299607
614 => 0.033143823664413
615 => 0.033190570707624
616 => 0.033285007174647
617 => 0.032978907687336
618 => 0.033037301823212
619 => 0.033035215573765
620 => 0.033017237403116
621 => 0.032937609104344
622 => 0.032822132317145
623 => 0.033282156295465
624 => 0.033360323333537
625 => 0.033534078976325
626 => 0.034051057909681
627 => 0.033999399523036
628 => 0.03408365649494
629 => 0.033899723998356
630 => 0.033199102808609
701 => 0.033237149910003
702 => 0.032762701945962
703 => 0.03352194627518
704 => 0.033342147196486
705 => 0.033226229560789
706 => 0.03319460035992
707 => 0.033712860784057
708 => 0.033867932425696
709 => 0.033771302185098
710 => 0.033573110742476
711 => 0.03395369690235
712 => 0.034055525703091
713 => 0.034078321416276
714 => 0.034752647121415
715 => 0.034116008732369
716 => 0.034269253920253
717 => 0.035464829130362
718 => 0.034380607392895
719 => 0.034954943828261
720 => 0.034926833048453
721 => 0.035220644134301
722 => 0.03490273196371
723 => 0.034906672866079
724 => 0.035167557205825
725 => 0.03480119220139
726 => 0.034710475074089
727 => 0.034585150012452
728 => 0.034858792699612
729 => 0.03502282911477
730 => 0.036344842149475
731 => 0.037198922861013
801 => 0.037161844964847
802 => 0.037500667528886
803 => 0.037348024860528
804 => 0.036855101419296
805 => 0.037696461627869
806 => 0.03743022005387
807 => 0.037452168685747
808 => 0.037451351756572
809 => 0.037628379128039
810 => 0.037502939011035
811 => 0.037255683664255
812 => 0.037419823302371
813 => 0.037907259346582
814 => 0.039420275784177
815 => 0.040266979827457
816 => 0.039369303137619
817 => 0.0399885084979
818 => 0.03961720592716
819 => 0.039549729204762
820 => 0.039938635929935
821 => 0.040328223384848
822 => 0.040303408348203
823 => 0.040020587861474
824 => 0.039860829744824
825 => 0.041070571726988
826 => 0.041961889012029
827 => 0.041901107148656
828 => 0.042169378526263
829 => 0.042957031588239
830 => 0.043029044713036
831 => 0.043019972714515
901 => 0.042841480670912
902 => 0.043617027400102
903 => 0.044264002126039
904 => 0.042800164919948
905 => 0.043357574964991
906 => 0.043607814292841
907 => 0.043975239868788
908 => 0.044595148403086
909 => 0.045268533493952
910 => 0.045363757529093
911 => 0.045296191519271
912 => 0.044852075950282
913 => 0.045588901951863
914 => 0.046020517342893
915 => 0.046277534430908
916 => 0.046929287002551
917 => 0.043609359685738
918 => 0.041259350119805
919 => 0.040892362191535
920 => 0.041638646574759
921 => 0.041835435815109
922 => 0.041756110319077
923 => 0.039110960899097
924 => 0.040878436027265
925 => 0.042780090651644
926 => 0.042853140950499
927 => 0.043805149017186
928 => 0.044115161867829
929 => 0.044881653144062
930 => 0.04483370890604
1001 => 0.045020337334263
1002 => 0.044977434690569
1003 => 0.04639719837601
1004 => 0.047963408557999
1005 => 0.04790917567964
1006 => 0.047684014435422
1007 => 0.048018417278784
1008 => 0.04963491403188
1009 => 0.049486092914687
1010 => 0.049630659953487
1011 => 0.051536600727153
1012 => 0.054014594849831
1013 => 0.052863317793305
1014 => 0.055361257734918
1015 => 0.056933578518057
1016 => 0.059652744731492
1017 => 0.059312291729394
1018 => 0.060370843182121
1019 => 0.058702809800953
1020 => 0.054872667992625
1021 => 0.054266533390263
1022 => 0.055480030213964
1023 => 0.058463293743745
1024 => 0.055386076628878
1025 => 0.05600859364344
1026 => 0.055829308701367
1027 => 0.055819755368716
1028 => 0.056184367219796
1029 => 0.055655478712929
1030 => 0.053500691790724
1031 => 0.054488217938931
1101 => 0.054106886668208
1102 => 0.054530002143205
1103 => 0.056813381855669
1104 => 0.055803845255815
1105 => 0.054740380455963
1106 => 0.056074201316709
1107 => 0.057772613623014
1108 => 0.057666330033226
1109 => 0.057460095445942
1110 => 0.058622629016366
1111 => 0.06054279388433
1112 => 0.061061806732293
1113 => 0.061444931405909
1114 => 0.061497757825456
1115 => 0.062041902778229
1116 => 0.059115898224983
1117 => 0.063759542596112
1118 => 0.064561371700918
1119 => 0.064410661061626
1120 => 0.065301860365492
1121 => 0.065039646922751
1122 => 0.064659740784247
1123 => 0.066072481244403
1124 => 0.06445288830911
1125 => 0.062154080038543
1126 => 0.060892908356038
1127 => 0.062553720963379
1128 => 0.063567921268309
1129 => 0.064238243154614
1130 => 0.06444108215239
1201 => 0.059343035629185
1202 => 0.0565954713038
1203 => 0.058356628535483
1204 => 0.060505361906715
1205 => 0.059103961902614
1206 => 0.059158894129573
1207 => 0.057160866005167
1208 => 0.060682143061067
1209 => 0.060169122612624
1210 => 0.062830673606663
1211 => 0.062195473101654
1212 => 0.064365864616478
1213 => 0.063794327792885
1214 => 0.066166745193429
1215 => 0.067113166725143
1216 => 0.06870235577564
1217 => 0.069871369710349
1218 => 0.070557837052484
1219 => 0.070516624128136
1220 => 0.073236749734344
1221 => 0.071632786698314
1222 => 0.069617831099997
1223 => 0.069581386910327
1224 => 0.070624960966836
1225 => 0.072812005898721
1226 => 0.073379074829349
1227 => 0.073695989000603
1228 => 0.073210623915465
1229 => 0.07146963699692
1230 => 0.070717887672496
1231 => 0.07135839987718
]
'min_raw' => 0.026411397419945
'max_raw' => 0.073695989000603
'avg_raw' => 0.050053693210274
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.026411'
'max' => '$0.073695'
'avg' => '$0.050053'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010455876762491
'max_diff' => 0.038076413121673
'year' => 2036
]
11 => [
'items' => [
101 => 0.070575108490693
102 => 0.071927289176516
103 => 0.07378412206836
104 => 0.073400693418907
105 => 0.074682437907192
106 => 0.076008908609114
107 => 0.07790582128839
108 => 0.078401744505226
109 => 0.079221486724384
110 => 0.08006527073919
111 => 0.080336271424129
112 => 0.080853695818251
113 => 0.080850968736286
114 => 0.082410261974651
115 => 0.08413021070386
116 => 0.084779451532232
117 => 0.086272345017725
118 => 0.083715817241046
119 => 0.085654972926931
120 => 0.087404139895815
121 => 0.085318710925822
122 => 0.088192988918326
123 => 0.088304590619521
124 => 0.089989643807921
125 => 0.088281519584347
126 => 0.087267240872914
127 => 0.090195425508293
128 => 0.091612281816402
129 => 0.09118551316564
130 => 0.08793778266118
131 => 0.08604746420587
201 => 0.081100136193125
202 => 0.086960459932887
203 => 0.089814852678538
204 => 0.087930390473539
205 => 0.08888080359712
206 => 0.094065949426887
207 => 0.096040117245532
208 => 0.095629504139729
209 => 0.095698890995343
210 => 0.096764116116603
211 => 0.10148791093446
212 => 0.098657303582893
213 => 0.10082119684233
214 => 0.10196891802464
215 => 0.10303498542197
216 => 0.1004170608282
217 => 0.097011179396654
218 => 0.095932393778108
219 => 0.087743017845943
220 => 0.087316725264017
221 => 0.087077434319794
222 => 0.085568738764848
223 => 0.084383317325152
224 => 0.08344062618443
225 => 0.08096672311977
226 => 0.081801592781907
227 => 0.077858707640537
228 => 0.080381225826716
301 => 0.074088285936799
302 => 0.07932923327284
303 => 0.076476823914467
304 => 0.078392140083311
305 => 0.078385457725631
306 => 0.074858753407246
307 => 0.072824623956843
308 => 0.074120850412142
309 => 0.075510508066808
310 => 0.075735975345907
311 => 0.077537702768957
312 => 0.078040526164728
313 => 0.07651694780096
314 => 0.073957878744975
315 => 0.07455229212053
316 => 0.072812578188759
317 => 0.069763796440462
318 => 0.071953484718712
319 => 0.072701140570704
320 => 0.073031347987957
321 => 0.070033221293456
322 => 0.069091144793547
323 => 0.068589591169783
324 => 0.073570858237578
325 => 0.073843743292126
326 => 0.072447624770998
327 => 0.078758212871888
328 => 0.07732993242943
329 => 0.07892567162086
330 => 0.074498355337044
331 => 0.074667484781258
401 => 0.072571522301609
402 => 0.073745121237949
403 => 0.072915659336603
404 => 0.073650306041623
405 => 0.074090650247551
406 => 0.076186268800381
407 => 0.079353161870475
408 => 0.075873253271309
409 => 0.074357007261443
410 => 0.075297677758272
411 => 0.077802807251438
412 => 0.081598206668803
413 => 0.079351253824191
414 => 0.080348413340896
415 => 0.080566248334757
416 => 0.078909428493856
417 => 0.0816592959796
418 => 0.083132972305094
419 => 0.084644659280703
420 => 0.085957214725116
421 => 0.084040858259935
422 => 0.086091634376588
423 => 0.084439070837283
424 => 0.082956550503648
425 => 0.082958798875036
426 => 0.082028792213581
427 => 0.080226787118631
428 => 0.079894469731404
429 => 0.081623226746819
430 => 0.083009526159283
501 => 0.08312370841882
502 => 0.083891235004195
503 => 0.084345449331268
504 => 0.088797367211017
505 => 0.090587965410448
506 => 0.092777474994423
507 => 0.09363041237138
508 => 0.096197448081047
509 => 0.094124358261044
510 => 0.09367583223814
511 => 0.087449043277469
512 => 0.088468679620948
513 => 0.090101215787131
514 => 0.087475963197549
515 => 0.089141081715789
516 => 0.089469811383322
517 => 0.087386758119121
518 => 0.088499406870949
519 => 0.085544541663457
520 => 0.079417569857283
521 => 0.081666117050708
522 => 0.08332180463787
523 => 0.080958934306183
524 => 0.085194287920022
525 => 0.082720081774262
526 => 0.081935877208896
527 => 0.078876415610289
528 => 0.080320363715355
529 => 0.082273324202802
530 => 0.081066621677586
531 => 0.083570710604706
601 => 0.087117168341631
602 => 0.089644585320174
603 => 0.089838609012725
604 => 0.088213649219308
605 => 0.090817657658613
606 => 0.090836625017233
607 => 0.08789929286001
608 => 0.086100193268845
609 => 0.085691434056395
610 => 0.086712594711061
611 => 0.087952472262481
612 => 0.08990741358772
613 => 0.091088743687166
614 => 0.094169026057451
615 => 0.095002462148233
616 => 0.095918155729969
617 => 0.097141804744611
618 => 0.098611109123855
619 => 0.095396354789613
620 => 0.095524082972364
621 => 0.092530548247621
622 => 0.089331527077928
623 => 0.091759185382106
624 => 0.094933025676969
625 => 0.094204943206546
626 => 0.094123019055248
627 => 0.094260792753866
628 => 0.093711842348118
629 => 0.091228960007967
630 => 0.08998207204041
701 => 0.091590875633605
702 => 0.092445883143779
703 => 0.093771925227567
704 => 0.093608462551388
705 => 0.097024204552704
706 => 0.098351458607739
707 => 0.098011890224058
708 => 0.098074378978824
709 => 0.10047730904755
710 => 0.10314986148423
711 => 0.10565305951554
712 => 0.10819942006784
713 => 0.10512968303589
714 => 0.10357105988613
715 => 0.10517916112601
716 => 0.10432587997247
717 => 0.10922908658035
718 => 0.10956857396754
719 => 0.11447142601777
720 => 0.11912481643421
721 => 0.11620210528779
722 => 0.11895809025706
723 => 0.12193891270007
724 => 0.12768940281366
725 => 0.12575284004808
726 => 0.12426946331946
727 => 0.12286767947854
728 => 0.12578456912458
729 => 0.12953710105577
730 => 0.13034536049244
731 => 0.13165504955872
801 => 0.13027807164669
802 => 0.13193648987259
803 => 0.13779143495592
804 => 0.13620937711137
805 => 0.13396260064363
806 => 0.13858451747201
807 => 0.14025717120496
808 => 0.15199673107834
809 => 0.16681841035551
810 => 0.16068213781036
811 => 0.15687315542532
812 => 0.15776835663607
813 => 0.16318073216259
814 => 0.16491901540149
815 => 0.16019376233599
816 => 0.16186280160213
817 => 0.17105937205488
818 => 0.17599303704147
819 => 0.16929245731007
820 => 0.15080582357996
821 => 0.13376030300522
822 => 0.13828154263144
823 => 0.13776897436823
824 => 0.14764954202418
825 => 0.136171645555
826 => 0.13636490389484
827 => 0.14644979122621
828 => 0.14375931618494
829 => 0.13940109118809
830 => 0.1337921228708
831 => 0.12342342616952
901 => 0.1142395823487
902 => 0.13225121499425
903 => 0.13147452064254
904 => 0.13034975212162
905 => 0.13285280275227
906 => 0.14500690611137
907 => 0.14472671468995
908 => 0.14294427982179
909 => 0.14429624095963
910 => 0.13916408586399
911 => 0.14048675908914
912 => 0.13375760290768
913 => 0.13679946253608
914 => 0.13939174039462
915 => 0.13991217855405
916 => 0.14108475230149
917 => 0.13106523801246
918 => 0.13556370577075
919 => 0.13820613412931
920 => 0.12626754667294
921 => 0.13797014664079
922 => 0.13089082056009
923 => 0.1284879909604
924 => 0.13172308446766
925 => 0.13046236538165
926 => 0.1293784731434
927 => 0.12877364265083
928 => 0.13114913827832
929 => 0.13103831856797
930 => 0.12715154665756
1001 => 0.12208141114552
1002 => 0.12378311504488
1003 => 0.12316487006469
1004 => 0.12092427050126
1005 => 0.12243416407598
1006 => 0.11578535691253
1007 => 0.10434642976273
1008 => 0.1119033354217
1009 => 0.11161240277416
1010 => 0.11146570134053
1011 => 0.11714450708572
1012 => 0.11659862094566
1013 => 0.11560783225611
1014 => 0.12090607388999
1015 => 0.11897214442222
1016 => 0.12493205935079
1017 => 0.12885764478588
1018 => 0.12786198934016
1019 => 0.13155402141586
1020 => 0.12382231886577
1021 => 0.12639048031084
1022 => 0.12691977482536
1023 => 0.12084069441065
1024 => 0.11668793466926
1025 => 0.11641099293943
1026 => 0.1092106798334
1027 => 0.11305702897575
1028 => 0.11644165704827
1029 => 0.11482068285928
1030 => 0.11430753085627
1031 => 0.11692911315055
1101 => 0.11713283254715
1102 => 0.11248800871547
1103 => 0.11345381467252
1104 => 0.11748138606528
1105 => 0.1133523302071
1106 => 0.10533024915211
1107 => 0.10334066213653
1108 => 0.10307521455328
1109 => 0.09767929677088
1110 => 0.10347361585449
1111 => 0.1009442402964
1112 => 0.10893450737784
1113 => 0.10437050967358
1114 => 0.1041737648545
1115 => 0.10387635620426
1116 => 0.099231866866391
1117 => 0.10024871485869
1118 => 0.10362887245541
1119 => 0.10483495076612
1120 => 0.10470914691721
1121 => 0.10361230783915
1122 => 0.10411443515236
1123 => 0.10249690812376
1124 => 0.10192572566404
1125 => 0.10012291670507
1126 => 0.097473285574075
1127 => 0.097841733033972
1128 => 0.092592120449767
1129 => 0.089731852895864
1130 => 0.088940168534664
1201 => 0.087881495120101
1202 => 0.089059748513862
1203 => 0.092577248956895
1204 => 0.088334397143249
1205 => 0.081060325310203
1206 => 0.081497509421784
1207 => 0.08247973231938
1208 => 0.080649366447765
1209 => 0.078917078761245
1210 => 0.080423162359732
1211 => 0.077341042231676
1212 => 0.082852191811853
1213 => 0.082703130660527
1214 => 0.084757346416813
1215 => 0.08604188968597
1216 => 0.083081433326386
1217 => 0.082336886557875
1218 => 0.082761014234983
1219 => 0.075751128488475
1220 => 0.084184489199911
1221 => 0.084257421253547
1222 => 0.083632932731986
1223 => 0.088123436960026
1224 => 0.097599801504582
1225 => 0.094034411977039
1226 => 0.092653785387506
1227 => 0.090029213231571
1228 => 0.09352629979768
1229 => 0.093257778112451
1230 => 0.092043421218024
1231 => 0.091308974379249
]
'min_raw' => 0.068589591169783
'max_raw' => 0.17599303704147
'avg_raw' => 0.12229131410563
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.068589'
'max' => '$0.175993'
'avg' => '$0.122291'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.042178193749838
'max_diff' => 0.10229704804087
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0021529488912492
]
1 => [
'year' => 2028
'avg' => 0.0036950853029125
]
2 => [
'year' => 2029
'avg' => 0.010094307073227
]
3 => [
'year' => 2030
'avg' => 0.0077877428741014
]
4 => [
'year' => 2031
'avg' => 0.0076485286267169
]
5 => [
'year' => 2032
'avg' => 0.01341027776318
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0021529488912492
'min' => '$0.002152'
'max_raw' => 0.01341027776318
'max' => '$0.01341'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.01341027776318
]
1 => [
'year' => 2033
'avg' => 0.034492613369501
]
2 => [
'year' => 2034
'avg' => 0.021863075991022
]
3 => [
'year' => 2035
'avg' => 0.025787548268192
]
4 => [
'year' => 2036
'avg' => 0.050053693210274
]
5 => [
'year' => 2037
'avg' => 0.12229131410563
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.01341027776318
'min' => '$0.01341'
'max_raw' => 0.12229131410563
'max' => '$0.122291'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12229131410563
]
]
]
]
'prediction_2025_max_price' => '$0.003681'
'last_price' => 0.00356934
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuer'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.003637'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.003961'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.003711'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.003981'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.002974'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001416'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000594'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000297'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.000148'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.004151'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.00249'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001245'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.000593'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.000249'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.000124'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000062'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 10
'buy_signals' => 11
'sell_pct' => 47.62
'buy_pct' => 52.38
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767681150
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de CDK pour 2026
La prévision du prix de CDK pour 2026 suggère que le prix moyen pourrait varier entre $0.001233 à la baisse et $0.003681 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, CDK pourrait potentiellement gagner 3.13% d'ici 2026 si CDK atteint l'objectif de prix prévu.
Prévision du prix de CDK de 2027 à 2032
La prévision du prix de CDK pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.002152 à la baisse et $0.01341 à la hausse. Compte tenu de la volatilité des prix sur le marché, si CDK atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de CDK | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001187 | $0.002152 | $0.003118 |
| 2028 | $0.002142 | $0.003695 | $0.005247 |
| 2029 | $0.0047064 | $0.010094 | $0.015482 |
| 2030 | $0.0040026 | $0.007787 | $0.011572 |
| 2031 | $0.004732 | $0.007648 | $0.010564 |
| 2032 | $0.007223 | $0.01341 | $0.019596 |
Prévision du prix de CDK de 2032 à 2037
La prévision du prix de CDK pour 2032-2037 est actuellement estimée entre $0.01341 à la baisse et $0.122291 à la hausse. Par rapport au prix actuel, CDK pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de CDK | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.007223 | $0.01341 | $0.019596 |
| 2033 | $0.016786 | $0.034492 | $0.052199 |
| 2034 | $0.013495 | $0.021863 | $0.03023 |
| 2035 | $0.015955 | $0.025787 | $0.035619 |
| 2036 | $0.026411 | $0.050053 | $0.073695 |
| 2037 | $0.068589 | $0.122291 | $0.175993 |
CDK Histogramme des prix potentiels
Prévision du prix de CDK basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour CDK est Haussier, avec 11 indicateurs techniques montrant des signaux haussiers et 10 indiquant des signaux baissiers. La prévision du prix de CDK a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de CDK et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de CDK devrait diminuer au cours du prochain mois, atteignant — d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour CDK devrait atteindre — d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à —, ce qui suggère que le marché de CDK est dans un état —.
Moyennes Mobiles et Oscillateurs Populaires de CDK pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.003637 | SELL |
| SMA 5 | $0.003961 | SELL |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.003711 | SELL |
| EMA 5 | $0.003981 | SELL |
| EMA 10 | $0.002974 | BUY |
| EMA 21 | $0.001416 | BUY |
| EMA 50 | $0.000594 | BUY |
| EMA 100 | $0.000297 | BUY |
| EMA 200 | $0.000148 | BUY |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.000593 | BUY |
| EMA 50 | $0.000249 | BUY |
| EMA 100 | $0.000124 | BUY |
| EMA 200 | $0.000062 | BUY |
Oscillateurs de CDK
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Stochastique Rapide (14) | — | — |
| Indice de Canal des Matières Premières (20) | — | — |
| Indice Directionnel Moyen (14) | — | — |
| Oscillateur Impressionnant (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | -0 | SELL |
| Plage de Pourcentage de Williams (14) | — | — |
| Oscillateur Ultime (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Moyenne Mobile de Hull (9) | — | — |
| Nuage Ichimoku B/L (9, 26, 52, 26) | — | — |
Prévision du cours de CDK basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de CDK
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de CDK par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.005015 | $0.007047 | $0.0099031 | $0.013915 | $0.019553 | $0.027476 |
| Action Amazon.com | $0.007447 | $0.015539 | $0.032425 | $0.067656 | $0.141169 | $0.294559 |
| Action Apple | $0.005062 | $0.007181 | $0.010186 | $0.014448 | $0.020493 | $0.029068 |
| Action Netflix | $0.005631 | $0.008886 | $0.014021 | $0.022122 | $0.0349065 | $0.055077 |
| Action Google | $0.004622 | $0.005985 | $0.007751 | $0.010038 | $0.012999 | $0.016834 |
| Action Tesla | $0.008091 | $0.018342 | $0.041581 | $0.094261 | $0.213684 | $0.4844067 |
| Action Kodak | $0.002676 | $0.0020071 | $0.0015051 | $0.001128 | $0.000846 | $0.000634 |
| Action Nokia | $0.002364 | $0.001566 | $0.001037 | $0.000687 | $0.000455 | $0.0003016 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à CDK
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans CDK maintenant ?", "Devrais-je acheter CDK aujourd'hui ?", " CDK sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de CDK avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme CDK en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de CDK afin de prendre une décision responsable concernant cet investissement.
Le cours de CDK est de $0.003569 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de CDK basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si CDK présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003662 | $0.003757 | $0.003854 | $0.003955 |
| Si CDK présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003754 | $0.00395 | $0.004155 | $0.004371 |
| Si CDK présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004033 | $0.004557 | $0.005149 | $0.005819 |
| Si CDK présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004497 | $0.005666 | $0.007138 | $0.008994 |
| Si CDK présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005424 | $0.008245 | $0.012531 | $0.019046 |
| Si CDK présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0082082 | $0.018876 | $0.0434089 | $0.099825 |
| Si CDK présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012847 | $0.046241 | $0.166436 | $0.59906 |
Boîte à questions
Est-ce que CDK est un bon investissement ?
La décision d'acquérir CDK dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de CDK a connu une hausse de 3.3257% au cours des 24 heures précédentes, et CDK a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans CDK dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que CDK peut monter ?
Il semble que la valeur moyenne de CDK pourrait potentiellement s'envoler jusqu'à $0.003681 pour la fin de cette année. En regardant les perspectives de CDK sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.011572. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de CDK la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de CDK, le prix de CDK va augmenter de 0.86% durant la prochaine semaine et atteindre $0.003599 d'ici 13 janvier 2026.
Quel sera le prix de CDK le mois prochain ?
Basé sur notre nouveau pronostic expérimental de CDK, le prix de CDK va diminuer de -11.62% durant le prochain mois et atteindre $0.003154 d'ici 5 février 2026.
Jusqu'où le prix de CDK peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de CDK en 2026, CDK devrait fluctuer dans la fourchette de $0.001233 et $0.003681. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de CDK ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera CDK dans 5 ans ?
L'avenir de CDK semble suivre une tendance haussière, avec un prix maximum de $0.011572 prévue après une période de cinq ans. Selon la prévision de CDK pour 2030, la valeur de CDK pourrait potentiellement atteindre son point le plus élevé d'environ $0.011572, tandis que son point le plus bas devrait être autour de $0.0040026.
Combien vaudra CDK en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de CDK, il est attendu que la valeur de CDK en 2026 augmente de 3.13% jusqu'à $0.003681 si le meilleur scénario se produit. Le prix sera entre $0.003681 et $0.001233 durant 2026.
Combien vaudra CDK en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de CDK, le valeur de CDK pourrait diminuer de -12.62% jusqu'à $0.003118 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.003118 et $0.001187 tout au long de l'année.
Combien vaudra CDK en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de CDK suggère que la valeur de CDK en 2028 pourrait augmenter de 47.02%, atteignant $0.005247 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.005247 et $0.002142 durant l'année.
Combien vaudra CDK en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de CDK pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.015482 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.015482 et $0.0047064.
Combien vaudra CDK en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de CDK, il est prévu que la valeur de CDK en 2030 augmente de 224.23%, atteignant $0.011572 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.011572 et $0.0040026 au cours de 2030.
Combien vaudra CDK en 2031 ?
Notre simulation expérimentale indique que le prix de CDK pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.010564 dans des conditions idéales. Il est probable que le prix fluctue entre $0.010564 et $0.004732 durant l'année.
Combien vaudra CDK en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de CDK, CDK pourrait connaître une 449.04% hausse en valeur, atteignant $0.019596 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.019596 et $0.007223 tout au long de l'année.
Combien vaudra CDK en 2033 ?
Selon notre prédiction expérimentale de prix de CDK, la valeur de CDK est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.052199. Tout au long de l'année, le prix de CDK pourrait osciller entre $0.052199 et $0.016786.
Combien vaudra CDK en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de CDK suggèrent que CDK pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.03023 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.03023 et $0.013495.
Combien vaudra CDK en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de CDK, CDK pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.035619 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.035619 et $0.015955.
Combien vaudra CDK en 2036 ?
Notre récente simulation de prédiction de prix de CDK suggère que la valeur de CDK pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.073695 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.073695 et $0.026411.
Combien vaudra CDK en 2037 ?
Selon la simulation expérimentale, la valeur de CDK pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.175993 sous des conditions favorables. Il est prévu que le prix chute entre $0.175993 et $0.068589 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de CDK ?
Les traders de CDK utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de CDK
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de CDK. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de CDK sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de CDK au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de CDK.
Comment lire les graphiques de CDK et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de CDK dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de CDK au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de CDK ?
L'action du prix de CDK est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de CDK. La capitalisation boursière de CDK peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de CDK, de grands détenteurs de CDK, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de CDK.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


