Prédiction du prix de Casper Network jusqu'à $0.00528 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001768 | $0.00528 |
| 2027 | $0.0017028 | $0.004473 |
| 2028 | $0.003073 | $0.007526 |
| 2029 | $0.00675 | $0.0222066 |
| 2030 | $0.005741 | $0.016599 |
| 2031 | $0.006787 | $0.015153 |
| 2032 | $0.010361 | $0.0281086 |
| 2033 | $0.024076 | $0.074871 |
| 2034 | $0.019356 | $0.043361 |
| 2035 | $0.022885 | $0.05109 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Casper Network aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,954.46, soit un rendement de 39.54% sur les 90 prochains jours.
Prévision du prix à long terme de Casper Network pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Casper Network'
'name_with_ticker' => 'Casper Network <small>CSPR</small>'
'name_lang' => 'Casper Network'
'name_lang_with_ticker' => 'Casper Network <small>CSPR</small>'
'name_with_lang' => 'Casper Network'
'name_with_lang_with_ticker' => 'Casper Network <small>CSPR</small>'
'image' => '/uploads/coins/casper-network.png?1749840392'
'price_for_sd' => 0.005119
'ticker' => 'CSPR'
'marketcap' => '$70.53M'
'low24h' => '$0.004682'
'high24h' => '$0.005874'
'volume24h' => '$8.41M'
'current_supply' => '13.74B'
'max_supply' => '14.22B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.03 USD 0.17x'
'price' => '$0.005119'
'change_24h_pct' => '8.1421%'
'ath_price' => '$1.33'
'ath_days' => 1700
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 mai 2021'
'ath_pct' => '-99.61%'
'fdv' => '$73.02M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-58.83%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.252433'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005163'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004524'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001768'
'current_year_max_price_prediction' => '$0.00528'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005741'
'grand_prediction_max_price' => '$0.016599'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0052166544850694
107 => 0.005236131579271
108 => 0.0052800144670325
109 => 0.0049050399957611
110 => 0.0050733925246899
111 => 0.0051722838629368
112 => 0.0047254891990395
113 => 0.0051634521689859
114 => 0.0048985125244592
115 => 0.0048085880298469
116 => 0.0049296595151911
117 => 0.0048824778396066
118 => 0.00484191380554
119 => 0.0048192783775522
120 => 0.0049081799142168
121 => 0.004904032551271
122 => 0.0047585723822432
123 => 0.0045688255214613
124 => 0.0046325107961681
125 => 0.0046093733388145
126 => 0.0045255202085736
127 => 0.0045820270938904
128 => 0.0043331993684355
129 => 0.00390510419973
130 => 0.0041879169810865
131 => 0.0041770289966454
201 => 0.0041715387811594
202 => 0.0043840647699776
203 => 0.0043636352999616
204 => 0.0043265556118364
205 => 0.004524839211023
206 => 0.0044524630300291
207 => 0.0046755093658793
208 => 0.0048224221084027
209 => 0.0047851602847694
210 => 0.0049233324292036
211 => 0.0046339779762712
212 => 0.0047300899186496
213 => 0.0047498984567684
214 => 0.0045223924221878
215 => 0.0043669778139117
216 => 0.0043566134313959
217 => 0.0040871459180975
218 => 0.0042310932886358
219 => 0.0043577610177625
220 => 0.0042970970053237
221 => 0.0042778925912713
222 => 0.0043760037777354
223 => 0.0043836278571892
224 => 0.0042097980376801
225 => 0.0042459427616305
226 => 0.004396672269064
227 => 0.0042421447647752
228 => 0.0039419230658666
301 => 0.0038674639336475
302 => 0.0038575297128554
303 => 0.003655590640849
304 => 0.0038724396489026
305 => 0.0037777792456951
306 => 0.0040768103252218
307 => 0.003906005376332
308 => 0.0038986423163688
309 => 0.0038875119713085
310 => 0.0037136946700346
311 => 0.0037517496123479
312 => 0.0038782500365284
313 => 0.0039233868130052
314 => 0.003918678677424
315 => 0.0038776301154378
316 => 0.0038964219369124
317 => 0.003835886932438
318 => 0.003814510762431
319 => 0.0037470416899099
320 => 0.0036478807921108
321 => 0.0036616697231389
322 => 0.0034652060377388
323 => 0.0033581621948158
324 => 0.0033285338699098
325 => 0.0032889136355927
326 => 0.0033330090808014
327 => 0.0034646494808024
328 => 0.0033058632293324
329 => 0.0030336353387476
330 => 0.0030499966988255
331 => 0.0030867558171891
401 => 0.0030182554433044
402 => 0.002953425588223
403 => 0.0030097898874038
404 => 0.0028944433414462
405 => 0.0031006948961934
406 => 0.0030951163696508
407 => 0.00317199419475
408 => 0.0032200674764763
409 => 0.003109274126007
410 => 0.003081409897981
411 => 0.0030972826286231
412 => 0.0028349417480529
413 => 0.0031505553479332
414 => 0.0031532847874511
415 => 0.003129913669208
416 => 0.0032979681676676
417 => 0.0036526155769298
418 => 0.0035191829559064
419 => 0.0034675138120238
420 => 0.003369290731733
421 => 0.003500167154311
422 => 0.0034901178870473
423 => 0.0034446712894092
424 => 0.0034171850453556
425 => 0.0034678292927985
426 => 0.0034109096626424
427 => 0.0034006853330195
428 => 0.0033387370196851
429 => 0.0033166242902935
430 => 0.003300252905785
501 => 0.0032822296200601
502 => 0.0033219844972461
503 => 0.003231894715353
504 => 0.0031232552700002
505 => 0.0031142230756142
506 => 0.0031391617584326
507 => 0.003128128247752
508 => 0.00311417025141
509 => 0.0030875206351588
510 => 0.0030796142632961
511 => 0.0031053061362237
512 => 0.0030763015096176
513 => 0.0031190994161386
514 => 0.0031074607536811
515 => 0.0030424481312957
516 => 0.0029614183330479
517 => 0.0029606969978777
518 => 0.0029432392607608
519 => 0.0029210042077539
520 => 0.0029148189246765
521 => 0.0030050430433397
522 => 0.0031918042687917
523 => 0.0031551385714181
524 => 0.0031816332954223
525 => 0.003311961114731
526 => 0.003353388409395
527 => 0.0033239842969017
528 => 0.0032837341341543
529 => 0.0032855049370422
530 => 0.0034230519277029
531 => 0.0034316305647919
601 => 0.0034533060131424
602 => 0.0034811650897538
603 => 0.0033287288181147
604 => 0.0032783252023564
605 => 0.0032544411729239
606 => 0.0031808876065546
607 => 0.0032602088218777
608 => 0.003213991746582
609 => 0.0032202280090395
610 => 0.0032161666349329
611 => 0.003218384419824
612 => 0.0031006372446805
613 => 0.0031435381266935
614 => 0.003072207089584
615 => 0.002976702838179
616 => 0.0029763826744402
617 => 0.0029997572046708
618 => 0.0029858531194442
619 => 0.0029484375836061
620 => 0.0029537522838756
621 => 0.0029071899171247
622 => 0.002959405798238
623 => 0.0029609031628709
624 => 0.002940797204424
625 => 0.003021242973682
626 => 0.0030542016709845
627 => 0.0030409674984234
628 => 0.003053273126158
629 => 0.0031566621966797
630 => 0.0031735191263561
701 => 0.0031810058610121
702 => 0.0031709746283753
703 => 0.0030551628885732
704 => 0.0030602996317029
705 => 0.0030226096188993
706 => 0.0029907655297559
707 => 0.0029920391263214
708 => 0.0030084111275829
709 => 0.0030799086172971
710 => 0.0032303708693935
711 => 0.0032360808018741
712 => 0.003243001406611
713 => 0.0032148518291286
714 => 0.0032063616472047
715 => 0.0032175623886642
716 => 0.0032740680996222
717 => 0.0034194161293571
718 => 0.0033680404281803
719 => 0.0033262711834131
720 => 0.0033629140719814
721 => 0.0033572731865028
722 => 0.0033096584362766
723 => 0.0033083220488236
724 => 0.0032169341197829
725 => 0.003183150083219
726 => 0.003154917613575
727 => 0.0031240884937509
728 => 0.0031058119581178
729 => 0.0031338930233872
730 => 0.0031403154952597
731 => 0.0030789157552751
801 => 0.003070547197595
802 => 0.0031206875506719
803 => 0.0030986226507035
804 => 0.0031213169475042
805 => 0.00312658221903
806 => 0.0031257343890448
807 => 0.0031026960993403
808 => 0.0031173800181863
809 => 0.0030826481726286
810 => 0.0030448825071391
811 => 0.0030207903654409
812 => 0.0029997667764504
813 => 0.0030114318855205
814 => 0.0029698479016503
815 => 0.00295654434829
816 => 0.0031124054368799
817 => 0.0032275416988103
818 => 0.0032258675719629
819 => 0.0032156767553296
820 => 0.0032005352689442
821 => 0.0032729604055826
822 => 0.0032477289361641
823 => 0.0032660869383259
824 => 0.003270759820359
825 => 0.0032849032268912
826 => 0.0032899582790595
827 => 0.0032746784004472
828 => 0.0032233972615443
829 => 0.0030956095390627
830 => 0.0030361240092911
831 => 0.0030164927936566
901 => 0.0030172063510599
902 => 0.0029975232524156
903 => 0.003003320807101
904 => 0.0029955070994927
905 => 0.0029807098276214
906 => 0.00301051819568
907 => 0.0030139533324146
908 => 0.0030069957031263
909 => 0.0030086344766935
910 => 0.0029510282778284
911 => 0.002955407952014
912 => 0.0029310213696063
913 => 0.0029264491793895
914 => 0.0028648020226455
915 => 0.0027555851485752
916 => 0.0028161018987486
917 => 0.0027430061744819
918 => 0.0027153237161212
919 => 0.0028463681684955
920 => 0.0028332149400844
921 => 0.0028107023306156
922 => 0.0027774014891724
923 => 0.0027650498831513
924 => 0.0026900054350107
925 => 0.002685571408668
926 => 0.002722765463537
927 => 0.0027056016869842
928 => 0.0026814972442736
929 => 0.002594193396204
930 => 0.0024960349656629
1001 => 0.0024989977516791
1002 => 0.0025302201221316
1003 => 0.0026210033751328
1004 => 0.002585532787619
1005 => 0.0025597984693997
1006 => 0.002554979205168
1007 => 0.002615302386841
1008 => 0.0027006723270056
1009 => 0.0027407259928861
1010 => 0.0027010340264464
1011 => 0.0026554380325678
1012 => 0.0026582132494437
1013 => 0.002676675524
1014 => 0.0026786156480134
1015 => 0.0026489373433423
1016 => 0.0026572916122656
1017 => 0.0026446007138408
1018 => 0.0025667166936336
1019 => 0.0025653080186809
1020 => 0.0025461940240726
1021 => 0.0025456152599122
1022 => 0.002513097586874
1023 => 0.0025085481396319
1024 => 0.002443982326133
1025 => 0.0024864797401013
1026 => 0.0024579747060257
1027 => 0.002415010896016
1028 => 0.0024076039189763
1029 => 0.0024073812563023
1030 => 0.0024514954826501
1031 => 0.0024859642396819
1101 => 0.0024584705632975
1102 => 0.0024522107861273
1103 => 0.0025190488293924
1104 => 0.0025105430791446
1105 => 0.0025031771542863
1106 => 0.0026930283852096
1107 => 0.0025427463216575
1108 => 0.0024772147641485
1109 => 0.0023961070176258
1110 => 0.0024225161088744
1111 => 0.0024280808924307
1112 => 0.0022330313828139
1113 => 0.0021538998210543
1114 => 0.0021267448510683
1115 => 0.0021111167819265
1116 => 0.0021182386892794
1117 => 0.0020470110024893
1118 => 0.0020948771860094
1119 => 0.0020332000299757
1120 => 0.0020228596540518
1121 => 0.0021331460493736
1122 => 0.0021484917569989
1123 => 0.0020830222007319
1124 => 0.0021250642544137
1125 => 0.0021098192213204
1126 => 0.0020342573077917
1127 => 0.0020313713984907
1128 => 0.0019934570864117
1129 => 0.0019341285296655
1130 => 0.0019070137872348
1201 => 0.0018928921939559
1202 => 0.0018987190385671
1203 => 0.0018957728076273
1204 => 0.0018765466578375
1205 => 0.0018968748280279
1206 => 0.0018449447533713
1207 => 0.0018242657792139
1208 => 0.0018149255663356
1209 => 0.0017688346360943
1210 => 0.001842185802838
1211 => 0.0018566369067401
1212 => 0.0018711164837812
1213 => 0.0019971513162962
1214 => 0.0019908549722345
1215 => 0.0020477708561084
1216 => 0.0020455592095227
1217 => 0.0020293258774656
1218 => 0.0019608401197705
1219 => 0.0019881373221465
1220 => 0.0019041207761602
1221 => 0.001967071684983
1222 => 0.0019383435190891
1223 => 0.0019573586631963
1224 => 0.0019231677195651
1225 => 0.0019420903994801
1226 => 0.001860063799576
1227 => 0.0017834685147309
1228 => 0.0018142926933083
1229 => 0.0018478021005943
1230 => 0.0019204590336287
1231 => 0.0018771851637201
]
'min_raw' => 0.0017688346360943
'max_raw' => 0.0052800144670325
'avg_raw' => 0.0035244245515634
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001768'
'max' => '$0.00528'
'avg' => '$0.003524'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0033508053639057
'max_diff' => 0.00016037446703248
'year' => 2026
]
1 => [
'items' => [
101 => 0.0018927480837054
102 => 0.001840614906956
103 => 0.0017330492722162
104 => 0.0017336580820272
105 => 0.0017171114525673
106 => 0.0017028127488664
107 => 0.001882155688238
108 => 0.0018598515587348
109 => 0.0018243128474638
110 => 0.0018718828247523
111 => 0.0018844610817845
112 => 0.0018848191670792
113 => 0.0019195249945501
114 => 0.0019380475008926
115 => 0.0019413121729167
116 => 0.0019959225423111
117 => 0.0020142272178039
118 => 0.0020896215855842
119 => 0.001936475995639
120 => 0.0019333220629944
121 => 0.0018725522318866
122 => 0.0018340110442651
123 => 0.0018751911799765
124 => 0.0019116711585677
125 => 0.001873685766509
126 => 0.0018786458567965
127 => 0.0018276535714782
128 => 0.0018458809140694
129 => 0.0018615807569972
130 => 0.0018529122265266
131 => 0.0018399350168505
201 => 0.0019086802163354
202 => 0.0019048013427659
203 => 0.0019688184529715
204 => 0.0020187243682843
205 => 0.0021081646902743
206 => 0.0020148290516483
207 => 0.0020114275300012
208 => 0.0020446779497228
209 => 0.0020142221273379
210 => 0.0020334691557859
211 => 0.0021050636964334
212 => 0.0021065763762601
213 => 0.0020812370401853
214 => 0.0020796951392823
215 => 0.0020845618359574
216 => 0.0021130662303921
217 => 0.0021031059191251
218 => 0.0021146322434875
219 => 0.0021290460886002
220 => 0.0021886678633296
221 => 0.0022030424713683
222 => 0.002168119626214
223 => 0.002171272768117
224 => 0.0021582106653757
225 => 0.0021455928377953
226 => 0.0021739558715103
227 => 0.0022257898731012
228 => 0.0022254674164675
301 => 0.0022374918973275
302 => 0.0022449830492872
303 => 0.002212825541218
304 => 0.0021918921859293
305 => 0.002199919366371
306 => 0.0022127550027065
307 => 0.0021957569425018
308 => 0.0020908370406507
309 => 0.002122663036563
310 => 0.0021173656346315
311 => 0.002109821490095
312 => 0.002141822775088
313 => 0.0021387361730827
314 => 0.0020462804596104
315 => 0.0020521991744151
316 => 0.0020466403962611
317 => 0.0020646019456957
318 => 0.0020132521447236
319 => 0.0020290469976565
320 => 0.0020389533813484
321 => 0.0020447883174473
322 => 0.0020658681076899
323 => 0.002063394637607
324 => 0.0020657143533166
325 => 0.0020969701173881
326 => 0.0022550510463785
327 => 0.0022636550425575
328 => 0.0022212858186082
329 => 0.0022382114878799
330 => 0.0022057179041151
331 => 0.0022275310645845
401 => 0.0022424550749835
402 => 0.0021750163417127
403 => 0.0021710230576022
404 => 0.0021383953612585
405 => 0.0021559276371464
406 => 0.0021280325255935
407 => 0.002134877010239
408 => 0.0021157392344788
409 => 0.0021501834205541
410 => 0.0021886973726717
411 => 0.0021984275179386
412 => 0.0021728316948322
413 => 0.0021542986320562
414 => 0.0021217606789919
415 => 0.0021758720200934
416 => 0.0021916958252447
417 => 0.0021757889043813
418 => 0.0021721029232442
419 => 0.0021651179956497
420 => 0.0021735848086532
421 => 0.0021916096454035
422 => 0.0021831094652585
423 => 0.0021887239839982
424 => 0.0021673272282292
425 => 0.0022128361866912
426 => 0.0022851153650561
427 => 0.0022853477544334
428 => 0.0022768475284693
429 => 0.0022733694191447
430 => 0.0022820911668208
501 => 0.0022868223571502
502 => 0.0023150268898394
503 => 0.002345291477133
504 => 0.0024865231005586
505 => 0.0024468658258482
506 => 0.0025721749240583
507 => 0.0026712781513925
508 => 0.0027009948760111
509 => 0.0026736568876419
510 => 0.0025801351062
511 => 0.0025755464814333
512 => 0.0027153075067851
513 => 0.0026758186156627
514 => 0.0026711215377163
515 => 0.0026211525642051
516 => 0.002650690416328
517 => 0.0026442300547746
518 => 0.0026340320580108
519 => 0.0026903882222367
520 => 0.0027958819307181
521 => 0.0027794397469375
522 => 0.0027671664194763
523 => 0.0027133882712531
524 => 0.0027457747282677
525 => 0.0027342425312465
526 => 0.0027837921681626
527 => 0.0027544400609124
528 => 0.0026755194484741
529 => 0.0026880878161306
530 => 0.0026861881326434
531 => 0.0027252834841977
601 => 0.0027135480300674
602 => 0.0026838965968771
603 => 0.0027955213646911
604 => 0.0027882730731589
605 => 0.0027985494933615
606 => 0.0028030734913435
607 => 0.0028710175204629
608 => 0.0028988520152266
609 => 0.0029051709328494
610 => 0.0029316115500779
611 => 0.0029045130662059
612 => 0.0030129263225854
613 => 0.0030850148119889
614 => 0.0031687493020708
615 => 0.0032911078977896
616 => 0.0033371158616602
617 => 0.0033288049347883
618 => 0.0034215758256029
619 => 0.0035882830542158
620 => 0.003362501232033
621 => 0.0036002500390326
622 => 0.0035249815116785
623 => 0.0033465211873449
624 => 0.0033350304463669
625 => 0.0034558858499725
626 => 0.0037239315032683
627 => 0.0036567891072663
628 => 0.0037240413241751
629 => 0.0036455880408392
630 => 0.0036416921740654
701 => 0.0037202310233145
702 => 0.0039037413255147
703 => 0.0038165624597202
704 => 0.0036915701784689
705 => 0.0037838625338495
706 => 0.0037039103543645
707 => 0.0035237557167788
708 => 0.0036567377647415
709 => 0.0035678164563795
710 => 0.0035937684214763
711 => 0.0037806677856068
712 => 0.0037581795596402
713 => 0.0037872814063946
714 => 0.0037359174086011
715 => 0.0036879353353029
716 => 0.0035983732322963
717 => 0.0035718583089543
718 => 0.003579186079859
719 => 0.003571854677675
720 => 0.003521745504161
721 => 0.0035109244329116
722 => 0.0034928888400805
723 => 0.0034984788244513
724 => 0.0034645666334302
725 => 0.0035285659445032
726 => 0.0035404447805984
727 => 0.0035870181420977
728 => 0.0035918535429898
729 => 0.0037215596918351
730 => 0.0036501197246744
731 => 0.0036980478224758
801 => 0.0036937606822917
802 => 0.0033503889637123
803 => 0.0033977025569382
804 => 0.0034713076601742
805 => 0.0034381486609358
806 => 0.0033912695940234
807 => 0.0033534122339951
808 => 0.0032960544624385
809 => 0.003376784424446
810 => 0.0034829357398116
811 => 0.0035945457155238
812 => 0.0037286377883667
813 => 0.0036987099987119
814 => 0.0035920389574945
815 => 0.0035968241424803
816 => 0.0036264042731614
817 => 0.0035880953162911
818 => 0.0035767972570303
819 => 0.0036248520933125
820 => 0.0036251830205595
821 => 0.003581103935888
822 => 0.0035321180996631
823 => 0.0035319128472207
824 => 0.0035231962908115
825 => 0.0036471386968605
826 => 0.0037152944881968
827 => 0.0037231084398349
828 => 0.0037147685469932
829 => 0.0037179782407495
830 => 0.0036783198874813
831 => 0.003768967122733
901 => 0.0038521539898825
902 => 0.0038298581324582
903 => 0.0037964334726364
904 => 0.0037698091211385
905 => 0.0038235862813794
906 => 0.003821191669087
907 => 0.0038514274251686
908 => 0.0038500557566225
909 => 0.0038398886090766
910 => 0.0038298584955591
911 => 0.0038696267619033
912 => 0.003858174139855
913 => 0.0038467037287213
914 => 0.0038236980631607
915 => 0.003826824915194
916 => 0.0037934060266109
917 => 0.0037779449196081
918 => 0.0035454469666684
919 => 0.0034833159165532
920 => 0.0035028636097136
921 => 0.0035092992178576
922 => 0.0034822597052243
923 => 0.0035210274204596
924 => 0.0035149855131053
925 => 0.0035384910402231
926 => 0.0035238058073713
927 => 0.0035244084944499
928 => 0.0035675946330454
929 => 0.0035801317528066
930 => 0.0035737552725091
1001 => 0.0035782211407365
1002 => 0.0036811351891125
1003 => 0.0036665041024395
1004 => 0.0036587316292528
1005 => 0.0036608846574435
1006 => 0.0036871814033057
1007 => 0.003694543056398
1008 => 0.0036633512149517
1009 => 0.0036780614676956
1010 => 0.0037406958568704
1011 => 0.0037626143482822
1012 => 0.0038325676513958
1013 => 0.0038028502449123
1014 => 0.0038573978306519
1015 => 0.0040250585125732
1016 => 0.0041589974665287
1017 => 0.0040358216692099
1018 => 0.0042817835011262
1019 => 0.0044733000684023
1020 => 0.0044659493435627
1021 => 0.0044325540002001
1022 => 0.0042145174800876
1023 => 0.0040138770235388
1024 => 0.0041817212850857
1025 => 0.0041821491546259
1026 => 0.0041677311837053
1027 => 0.0040781824045939
1028 => 0.0041646150803004
1029 => 0.0041714757922206
1030 => 0.0041676356179559
1031 => 0.0040989787789694
1101 => 0.0039941524757418
1102 => 0.0040146352844738
1103 => 0.0040481865430147
1104 => 0.003984667011071
1105 => 0.0039643686718308
1106 => 0.0040021071463954
1107 => 0.0041237083745657
1108 => 0.004100720366768
1109 => 0.0041001200569826
1110 => 0.0041984725027734
1111 => 0.0041280733773734
1112 => 0.0040148936382869
1113 => 0.0039863142615102
1114 => 0.003884876727328
1115 => 0.0039549399934958
1116 => 0.0039574614457139
1117 => 0.0039190885108631
1118 => 0.0040180073904648
1119 => 0.0040170958355749
1120 => 0.0041110045896245
1121 => 0.00429052285685
1122 => 0.004237430471674
1123 => 0.0041756898041494
1124 => 0.0041824027265923
1125 => 0.004256026916887
1126 => 0.0042115120507581
1127 => 0.0042275199069867
1128 => 0.0042560026870794
1129 => 0.004273187055497
1130 => 0.0041799301604295
1201 => 0.0041581875171963
1202 => 0.004113709699772
1203 => 0.0041021062674238
1204 => 0.0041383325216558
1205 => 0.0041287881835581
1206 => 0.0039572495274185
1207 => 0.0039393227834199
1208 => 0.0039398725710648
1209 => 0.00389479492091
1210 => 0.0038260406845482
1211 => 0.0040067227126048
1212 => 0.0039922114171085
1213 => 0.0039761920699657
1214 => 0.0039781543485855
1215 => 0.0040565822930828
1216 => 0.0040110901245683
1217 => 0.004132038510584
1218 => 0.0041071751584604
1219 => 0.0040816741551729
1220 => 0.004078149139739
1221 => 0.0040683334291167
1222 => 0.0040346717051277
1223 => 0.0039940231506549
1224 => 0.0039671834540745
1225 => 0.0036595170318598
1226 => 0.0037166181302096
1227 => 0.0037823077389322
1228 => 0.0038049835286286
1229 => 0.003766195021236
1230 => 0.0040362033118183
1231 => 0.0040855364283723
]
'min_raw' => 0.0017028127488664
'max_raw' => 0.0044733000684023
'avg_raw' => 0.0030880564086343
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0017028'
'max' => '$0.004473'
'avg' => '$0.003088'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.6021887227867E-5
'max_diff' => -0.00080671439863019
'year' => 2027
]
2 => [
'items' => [
101 => 0.0039361032004106
102 => 0.0039081503447775
103 => 0.00403803589638
104 => 0.0039596990309007
105 => 0.0039949741166294
106 => 0.0039187286757243
107 => 0.0040736535252367
108 => 0.0040724732574535
109 => 0.0040122039918568
110 => 0.004063143162433
111 => 0.004054291227994
112 => 0.0039862473755719
113 => 0.0040758106367261
114 => 0.0040758550589862
115 => 0.0040178472012162
116 => 0.0039501067228937
117 => 0.0039379963253284
118 => 0.0039288727675658
119 => 0.0039927302807041
120 => 0.0040499847273066
121 => 0.0041565210578528
122 => 0.0041833068225929
123 => 0.0042878534456028
124 => 0.0042256010218831
125 => 0.0042531967150142
126 => 0.0042831557435571
127 => 0.0042975192035474
128 => 0.004274114716279
129 => 0.0044365186549202
130 => 0.0044502305232697
131 => 0.00445482799412
201 => 0.0044000662997657
202 => 0.0044487075014865
203 => 0.0044259498940286
204 => 0.0044851588663886
205 => 0.0044944435892728
206 => 0.0044865797593035
207 => 0.0044895268768963
208 => 0.004350943765284
209 => 0.0043437574998627
210 => 0.0042457722609298
211 => 0.0042857019700653
212 => 0.0042110552927173
213 => 0.0042347265230503
214 => 0.0042451605758334
215 => 0.0042397104187868
216 => 0.0042879595359098
217 => 0.0042469379297118
218 => 0.004138675166379
219 => 0.0040303829069287
220 => 0.0040290233858243
221 => 0.0040005119454282
222 => 0.0039799033961526
223 => 0.0039838733338706
224 => 0.0039978639121961
225 => 0.0039790902383068
226 => 0.0039830965534805
227 => 0.0040496280793025
228 => 0.004062970502325
229 => 0.0040176277356734
301 => 0.0038355699846375
302 => 0.003790892555876
303 => 0.0038230058056779
304 => 0.0038076577406307
305 => 0.0030730769721912
306 => 0.0032456558275455
307 => 0.0031431153319181
308 => 0.0031903707099646
309 => 0.0030857034166616
310 => 0.0031356561351087
311 => 0.0031264316919927
312 => 0.0034039333844229
313 => 0.0033996005771867
314 => 0.0034016744627236
315 => 0.0033026825025667
316 => 0.0034603793830212
317 => 0.0035380665369295
318 => 0.0035236887123177
319 => 0.0035273073010144
320 => 0.003465127958247
321 => 0.0034022764946789
322 => 0.0033325645488109
323 => 0.0034620807275766
324 => 0.0034476807394128
325 => 0.0034807091313084
326 => 0.0035647096312456
327 => 0.0035770790239483
328 => 0.0035937036131786
329 => 0.0035877448813583
330 => 0.0037297060480611
331 => 0.0037125136140835
401 => 0.0037539424333688
402 => 0.0036687202088868
403 => 0.0035722831725177
404 => 0.0035906127003673
405 => 0.0035888474194386
406 => 0.0035663733671216
407 => 0.0035460847975726
408 => 0.0035123100455425
409 => 0.0036191783586885
410 => 0.0036148397003392
411 => 0.0036850775358753
412 => 0.0036726623161903
413 => 0.0035897504406148
414 => 0.0035927116544712
415 => 0.0036126272407668
416 => 0.003681555312328
417 => 0.0037020178569483
418 => 0.0036925387909888
419 => 0.0037149750370143
420 => 0.0037327077310735
421 => 0.0037172019903708
422 => 0.0039367305800075
423 => 0.0038455670041104
424 => 0.0038899994966906
425 => 0.0039005963843595
426 => 0.0038734526794241
427 => 0.0038793391770814
428 => 0.0038882556170576
429 => 0.003942394494575
430 => 0.0040844705743912
501 => 0.0041473951029972
502 => 0.00433670665195
503 => 0.0041421700968482
504 => 0.0041306271027408
505 => 0.0041647278293682
506 => 0.0042758737492661
507 => 0.0043659470779379
508 => 0.0043958295975134
509 => 0.0043997790657819
510 => 0.0044558406590577
511 => 0.0044879741188366
512 => 0.0044490333070678
513 => 0.0044160350463666
514 => 0.0042978393724298
515 => 0.0043115208435242
516 => 0.0044057726121019
517 => 0.0045389087866194
518 => 0.0046531534748135
519 => 0.0046131489668373
520 => 0.0049183551239144
521 => 0.0049486150677332
522 => 0.0049444341219186
523 => 0.0050133707772213
524 => 0.0048765455551511
525 => 0.0048180501218523
526 => 0.0044231696448763
527 => 0.0045341149519412
528 => 0.0046953804713495
529 => 0.0046740363751411
530 => 0.0045569210443072
531 => 0.0046530646323331
601 => 0.0046212765554437
602 => 0.0045962039803126
603 => 0.0047110663075462
604 => 0.0045847704604685
605 => 0.0046941205736636
606 => 0.0045538779224088
607 => 0.00461333170406
608 => 0.004579582862139
609 => 0.0046014224989644
610 => 0.0044737484283401
611 => 0.0045426382577361
612 => 0.0044708823849484
613 => 0.0044708483633219
614 => 0.004469264348453
615 => 0.0045536848145734
616 => 0.0045564377629428
617 => 0.0044940509109276
618 => 0.0044850599908864
619 => 0.0045183041346106
620 => 0.0044793839489646
621 => 0.0044975944588676
622 => 0.0044799355267582
623 => 0.0044759601291864
624 => 0.0044442834849757
625 => 0.0044306363156823
626 => 0.0044359877224065
627 => 0.0044177206124177
628 => 0.0044067140178991
629 => 0.0044670748597713
630 => 0.0044348264969084
701 => 0.0044621323356559
702 => 0.0044310138861315
703 => 0.004323143782417
704 => 0.004261106545065
705 => 0.0040573499187121
706 => 0.0041151350451865
707 => 0.004153446643822
708 => 0.0041407846607015
709 => 0.0041679874999814
710 => 0.0041696575333809
711 => 0.0041608136130309
712 => 0.0041505734862419
713 => 0.0041455891588356
714 => 0.0041827382517395
715 => 0.0042043045505512
716 => 0.0041572917252882
717 => 0.0041462772781084
718 => 0.0041938098400985
719 => 0.0042228046754538
720 => 0.0044368862489267
721 => 0.0044210263944895
722 => 0.0044608315167877
723 => 0.0044563500708763
724 => 0.0044980721804981
725 => 0.0045662701966507
726 => 0.0044276045613473
727 => 0.0044516721209391
728 => 0.0044457713111283
729 => 0.004510194805367
730 => 0.004510395928484
731 => 0.0044717708254957
801 => 0.0044927101204464
802 => 0.0044810223804444
803 => 0.0045021437063207
804 => 0.0044208145764642
805 => 0.0045198646776924
806 => 0.0045760197024413
807 => 0.0045767994150144
808 => 0.0046034164510716
809 => 0.0046304609012604
810 => 0.0046823703683226
811 => 0.0046290131743979
812 => 0.0045330287767455
813 => 0.0045399585402283
814 => 0.004483682923004
815 => 0.0044846289262966
816 => 0.0044795790865813
817 => 0.0044947340357011
818 => 0.0044241402355592
819 => 0.0044407084593517
820 => 0.0044175128490189
821 => 0.0044516216982123
822 => 0.004414926214875
823 => 0.0044457684655792
824 => 0.0044590789585463
825 => 0.0045081949641494
826 => 0.0044076717409124
827 => 0.0042026980839081
828 => 0.0042457860316758
829 => 0.0041820555724422
830 => 0.0041879540690832
831 => 0.0041998699710369
901 => 0.0041612466341645
902 => 0.0041686147496785
903 => 0.0041683515087437
904 => 0.0041660830405819
905 => 0.0041560356189574
906 => 0.00414146486978
907 => 0.0041995102498626
908 => 0.0042093732910271
909 => 0.0042312976097635
910 => 0.0042965295109156
911 => 0.0042900113057164
912 => 0.0043006427688341
913 => 0.0042774343445412
914 => 0.0041890306413228
915 => 0.0041938313877306
916 => 0.0041339660030985
917 => 0.0042297667172828
918 => 0.0042070798436563
919 => 0.0041924534686424
920 => 0.0041884625267075
921 => 0.0042538561251253
922 => 0.0042734229146909
923 => 0.004261230204512
924 => 0.0042362226002169
925 => 0.004284244593298
926 => 0.0042970932527613
927 => 0.0042999695937748
928 => 0.0043850553582108
929 => 0.0043047249428219
930 => 0.0043240612722217
1001 => 0.0044749177944001
1002 => 0.0043381117455613
1003 => 0.0044105809607702
1004 => 0.0044070339697973
1005 => 0.0044441067680736
1006 => 0.0044039929182647
1007 => 0.0044044901775091
1008 => 0.0044374083108496
1009 => 0.0043911807293895
1010 => 0.0043797341301201
1011 => 0.0043639207352114
1012 => 0.004398448704473
1013 => 0.0044191466604796
1014 => 0.0045859569849191
1015 => 0.004693724061982
1016 => 0.0046890456089513
1017 => 0.0047317979119552
1018 => 0.0047125376078857
1019 => 0.0046503410054339
1020 => 0.0047565030217516
1021 => 0.0047229089177812
1022 => 0.0047256783748957
1023 => 0.0047255752955636
1024 => 0.0047479124378563
1025 => 0.0047320845253729
1026 => 0.0047008860851661
1027 => 0.0047215970657456
1028 => 0.0047831012737556
1029 => 0.0049740122225981
1030 => 0.005080848518804
1031 => 0.0049675805434189
1101 => 0.0050457112761209
1102 => 0.0049988606773263
1103 => 0.0049903465298407
1104 => 0.0050394184037934
1105 => 0.0050885761715654
1106 => 0.0050854450342732
1107 => 0.00504975901915
1108 => 0.0050296008947061
1109 => 0.0051822449664628
1110 => 0.0052947105183093
1111 => 0.005287041121652
1112 => 0.0053208913442759
1113 => 0.0054202766448477
1114 => 0.0054293631911949
1115 => 0.005428218495207
1116 => 0.0054056965420026
1117 => 0.0055035542772276
1118 => 0.0055851889215954
1119 => 0.0054004833605575
1120 => 0.0054708168202274
1121 => 0.0055023917762758
1122 => 0.0055487531796221
1123 => 0.0056269726381407
1124 => 0.0057119397167787
1125 => 0.0057239549933147
1126 => 0.0057154295796284
1127 => 0.0056593915072291
1128 => 0.0057523634985428
1129 => 0.0058068243105928
1130 => 0.0058392544778551
1201 => 0.0059214919861671
1202 => 0.0055025867724549
1203 => 0.0052060648412495
1204 => 0.0051597586598632
1205 => 0.0052539241006129
1206 => 0.0052787547763833
1207 => 0.0052687455621153
1208 => 0.004934983169949
1209 => 0.0051580014699421
1210 => 0.0053979504088235
1211 => 0.0054071678247887
1212 => 0.0055272912806884
1213 => 0.0055664084019562
1214 => 0.0056631235288967
1215 => 0.0056570739713739
1216 => 0.0056806225657101
1217 => 0.005675209151677
1218 => 0.0058543535585617
1219 => 0.0060519764425573
1220 => 0.0060451333904869
1221 => 0.0060167227627446
1222 => 0.0060589173896737
1223 => 0.0062628853845125
1224 => 0.0062441072800683
1225 => 0.0062623486090207
1226 => 0.0065028383700681
1227 => 0.0068155092686993
1228 => 0.0066702422446402
1229 => 0.0069854298873884
1230 => 0.0071838238011194
1231 => 0.0075269255606036
]
'min_raw' => 0.0030730769721912
'max_raw' => 0.0075269255606036
'avg_raw' => 0.0053000012663974
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003073'
'max' => '$0.007526'
'avg' => '$0.0053000012'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0013702642233248
'max_diff' => 0.0030536254922013
'year' => 2028
]
3 => [
'items' => [
101 => 0.0074839675305044
102 => 0.0076175345276746
103 => 0.0074070636910154
104 => 0.0069237801068718
105 => 0.0068472986297458
106 => 0.0070004164837714
107 => 0.0073768417868718
108 => 0.0069885615113929
109 => 0.007067110105425
110 => 0.0070444881050595
111 => 0.0070432826747973
112 => 0.007089289045065
113 => 0.0070225544054608
114 => 0.0067506654783813
115 => 0.0068752705714103
116 => 0.0068271545609638
117 => 0.0068805428618404
118 => 0.0071686575026616
119 => 0.0070412751521594
120 => 0.0069070881936071
121 => 0.0070753884181015
122 => 0.0072896924381146
123 => 0.0072762816776835
124 => 0.0072502591971842
125 => 0.0073969465572658
126 => 0.0076392311007567
127 => 0.0077047196392841
128 => 0.0077530619395709
129 => 0.0077597275260306
130 => 0.0078283872092042
131 => 0.0074591867883115
201 => 0.0080451173380075
202 => 0.0081462913579352
203 => 0.0081272748354223
204 => 0.0082397255005184
205 => 0.0082066396622491
206 => 0.0081587034736058
207 => 0.0083369616967255
208 => 0.0081326030286157
209 => 0.0078425416272746
210 => 0.0076834082057349
211 => 0.0078929679321453
212 => 0.0080209387444376
213 => 0.0081055193108905
214 => 0.0081311133391941
215 => 0.0074878467660066
216 => 0.0071411617602582
217 => 0.0073633828741913
218 => 0.0076345079700716
219 => 0.0074576806747144
220 => 0.0074646119699141
221 => 0.0072125027161306
222 => 0.0076568140449272
223 => 0.007592081621568
224 => 0.0079279135484651
225 => 0.0078477645638915
226 => 0.0081216224633559
227 => 0.0080495065004493
228 => 0.0083488558305254
301 => 0.0084682743828524
302 => 0.0086687967182229
303 => 0.0088163017643942
304 => 0.0089029195488279
305 => 0.0088977193419456
306 => 0.0092409421566808
307 => 0.0090385556541233
308 => 0.0087843105080747
309 => 0.0087797120155159
310 => 0.008911389179336
311 => 0.0091873483908372
312 => 0.0092589005993363
313 => 0.0092988885225554
314 => 0.0092376456261557
315 => 0.0090179695828008
316 => 0.008923114581063
317 => 0.0090039337907575
318 => 0.0089050988421749
319 => 0.0090757156916172
320 => 0.009310009067694
321 => 0.0092616284120306
322 => 0.0094233576902802
323 => 0.0095907304788524
324 => 0.0098300810836928
325 => 0.0098926561949253
326 => 0.0099960904742743
327 => 0.010102558324115
328 => 0.010136752928095
329 => 0.010202041037055
330 => 0.010201696936494
331 => 0.010398447047242
401 => 0.01061546851224
402 => 0.010697389091219
403 => 0.010885760945452
404 => 0.010563180746414
405 => 0.010807861532919
406 => 0.011028569727104
407 => 0.010765432319266
408 => 0.011128105932818
409 => 0.011142187727396
410 => 0.011354806106849
411 => 0.01113927664652
412 => 0.011011295940971
413 => 0.011380771442516
414 => 0.011559548999345
415 => 0.011505699744288
416 => 0.011095904254441
417 => 0.010857385702394
418 => 0.010233136644896
419 => 0.010972586619055
420 => 0.011332751131417
421 => 0.011094971515363
422 => 0.011214893722886
423 => 0.011869150402226
424 => 0.012118248985736
425 => 0.012066438221696
426 => 0.012075193387941
427 => 0.012209602462144
428 => 0.012805646317588
429 => 0.012448483023217
430 => 0.01272152097911
501 => 0.012866339326404
502 => 0.013000854678185
503 => 0.012670527488225
504 => 0.012240776667557
505 => 0.012104656542939
506 => 0.011071329018671
507 => 0.011017539833519
508 => 0.010987346333914
509 => 0.010796980589859
510 => 0.010647405260598
511 => 0.010528457405394
512 => 0.010216302712502
513 => 0.010321645757956
514 => 0.009824136329233
515 => 0.010142425231078
516 => 0.0093483881700517
517 => 0.010009685829413
518 => 0.0096497715789378
519 => 0.0098914443182693
520 => 0.0098906011448487
521 => 0.0094456050093276
522 => 0.0091889405251914
523 => 0.0093524971240141
524 => 0.0095278427810911
525 => 0.0095562920240182
526 => 0.0097836322454084
527 => 0.0098470780145367
528 => 0.0096548343720782
529 => 0.0093319335168779
530 => 0.0094069360209566
531 => 0.0091874206018401
601 => 0.0088027282733772
602 => 0.0090790210197629
603 => 0.0091733595111135
604 => 0.0092150247632393
605 => 0.0088367240404084
606 => 0.0087178537399867
607 => 0.0086545681894606
608 => 0.0092830996440575
609 => 0.0093175320159698
610 => 0.0091413711330195
611 => 0.0099376350282155
612 => 0.0097574159851784
613 => 0.0099587648109884
614 => 0.0094001303298505
615 => 0.009421470919331
616 => 0.0091570044034457
617 => 0.0093050879806825
618 => 0.009200427281248
619 => 0.0092931242910322
620 => 0.0093486864964927
621 => 0.0096131096160252
622 => 0.01001270511669
623 => 0.009573613619701
624 => 0.009382295166557
625 => 0.0095009880588717
626 => 0.0098170828722722
627 => 0.01029598269517
628 => 0.010012464361257
629 => 0.010138284983394
630 => 0.010165771191961
701 => 0.0099567152689533
702 => 0.010303690885245
703 => 0.010489637936841
704 => 0.010680381135458
705 => 0.010845998110313
706 => 0.010604194107397
707 => 0.01086295905176
708 => 0.010654440184765
709 => 0.010467377204787
710 => 0.010467660902112
711 => 0.010350313562217
712 => 0.010122938304455
713 => 0.010081006818362
714 => 0.010299139704384
715 => 0.010474061621712
716 => 0.010488469028642
717 => 0.010585314789888
718 => 0.010642627113802
719 => 0.01120436580049
720 => 0.011430301747222
721 => 0.011706571946137
722 => 0.01181419475835
723 => 0.012138100838197
724 => 0.011876520372355
725 => 0.011819925793152
726 => 0.011034235592315
727 => 0.011162892318687
728 => 0.011368884151136
729 => 0.011037632321761
730 => 0.011247735363838
731 => 0.011289214154935
801 => 0.011026376511353
802 => 0.011166769453335
803 => 0.010793927423039
804 => 0.01002083205409
805 => 0.010304551561392
806 => 0.01051346461772
807 => 0.010215319927546
808 => 0.010749732744889
809 => 0.010437539809517
810 => 0.010338589636908
811 => 0.0099525497352757
812 => 0.010134745708808
813 => 0.010381168371805
814 => 0.010228907815782
815 => 0.010544871331566
816 => 0.010992359934309
817 => 0.011311266961031
818 => 0.011335748682658
819 => 0.011130712829588
820 => 0.011459284092654
821 => 0.011461677375596
822 => 0.011091047648604
823 => 0.010864039004496
824 => 0.010812462162925
825 => 0.010941311225406
826 => 0.011097757774107
827 => 0.011344430377298
828 => 0.011493489465209
829 => 0.011882156511648
830 => 0.011987318670457
831 => 0.012102859999813
901 => 0.01225725884746
902 => 0.012442654251112
903 => 0.012037019662488
904 => 0.012053136280891
905 => 0.011675414968358
906 => 0.0112717655752
907 => 0.011578085148999
908 => 0.011978557243757
909 => 0.011886688502737
910 => 0.011876351392665
911 => 0.011893735544532
912 => 0.011824469513956
913 => 0.011511181824778
914 => 0.011353850708557
915 => 0.01155684798793
916 => 0.011664732007547
917 => 0.011832050713498
918 => 0.01181142515132
919 => 0.012242420169133
920 => 0.012409891800442
921 => 0.012367045390638
922 => 0.012374930161199
923 => 0.012678129550196
924 => 0.013015349628472
925 => 0.013331200731886
926 => 0.013652498040399
927 => 0.013265161594539
928 => 0.013068496034922
929 => 0.013271404692033
930 => 0.013163738502424
1001 => 0.013782420363785
1002 => 0.013825256553531
1003 => 0.014443893677151
1004 => 0.015031053973405
1005 => 0.014662269111397
1006 => 0.015010016625836
1007 => 0.015386133914972
1008 => 0.016111725188547
1009 => 0.015867371574215
1010 => 0.015680200535147
1011 => 0.015503324807631
1012 => 0.015871375118361
1013 => 0.016344865963366
1014 => 0.016446851356342
1015 => 0.01661210665438
1016 => 0.016438360914949
1017 => 0.016647618520628
1018 => 0.017386389821128
1019 => 0.017186767294418
1020 => 0.016903271215568
1021 => 0.017486460204962
1022 => 0.017697514033134
1023 => 0.019178800328994
1024 => 0.021048985466401
1025 => 0.020274716539217
1026 => 0.019794102830611
1027 => 0.019907058452443
1028 => 0.020589986754862
1029 => 0.020809321650538
1030 => 0.020213093794818
1031 => 0.020423691553069
1101 => 0.021584105906545
1102 => 0.022206630976636
1103 => 0.021361158315182
1104 => 0.019028532774162
1105 => 0.016877745495465
1106 => 0.017448231132989
1107 => 0.017383555765924
1108 => 0.018630276224096
1109 => 0.017182006363176
1110 => 0.017206391513339
1111 => 0.018478892830285
1112 => 0.018139411295119
1113 => 0.017589494685661
1114 => 0.016881760495289
1115 => 0.015573448386897
1116 => 0.014414639867512
1117 => 0.016687330231689
1118 => 0.016589327690567
1119 => 0.016447405487859
1120 => 0.0167632379924
1121 => 0.018296830983831
1122 => 0.018261476701623
1123 => 0.018036570796125
1124 => 0.018207159943215
1125 => 0.017559589583389
1126 => 0.017726483210019
1127 => 0.016877404799772
1128 => 0.01726122370185
1129 => 0.017588314811597
1130 => 0.017653983194545
1201 => 0.017801937414438
1202 => 0.016537684804665
1203 => 0.017105297109947
1204 => 0.017438716161219
1205 => 0.015932316757682
1206 => 0.017408939488454
1207 => 0.016515676979437
1208 => 0.016212490267524
1209 => 0.016620691233303
1210 => 0.016461614919951
1211 => 0.016324850447005
1212 => 0.016248533521189
1213 => 0.01654827125896
1214 => 0.016534288135229
1215 => 0.016043859019647
1216 => 0.015404114230818
1217 => 0.015618833580856
1218 => 0.015540824027983
1219 => 0.015258107344937
1220 => 0.015448624253967
1221 => 0.014609684204999
1222 => 0.013166331455058
1223 => 0.01411985449276
1224 => 0.014083144893042
1225 => 0.014064634248216
1226 => 0.014781180457607
1227 => 0.014712301073108
1228 => 0.014587284315773
1229 => 0.015255811314149
1230 => 0.015011789966785
1231 => 0.015763806260702
]
'min_raw' => 0.0067506654783813
'max_raw' => 0.022206630976636
'avg_raw' => 0.014478648227509
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00675'
'max' => '$0.0222066'
'avg' => '$0.014478'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0036775885061901
'max_diff' => 0.014679705416032
'year' => 2029
]
4 => [
'items' => [
101 => 0.01625913282924
102 => 0.016133501989322
103 => 0.016599359021153
104 => 0.015623780281009
105 => 0.015947828405059
106 => 0.016014614274315
107 => 0.015247561794762
108 => 0.014723570592258
109 => 0.014688626352988
110 => 0.013780097818281
111 => 0.014265426428136
112 => 0.014692495520545
113 => 0.014487962567181
114 => 0.014423213544394
115 => 0.014754002259462
116 => 0.014779707375637
117 => 0.014193628002751
118 => 0.014315492463094
119 => 0.014823687521005
120 => 0.014302687251529
121 => 0.013290468832849
122 => 0.013039424670002
123 => 0.013005930751016
124 => 0.012325079070811
125 => 0.013056200641378
126 => 0.012737046482985
127 => 0.013745250645293
128 => 0.01316936983489
129 => 0.013144544764152
130 => 0.013107018028685
131 => 0.012520980861904
201 => 0.012649285756824
202 => 0.013075790768926
203 => 0.013227972562167
204 => 0.013212098754343
205 => 0.013073700661688
206 => 0.013137058599793
207 => 0.012932960605788
208 => 0.012860889356173
209 => 0.012633412667628
210 => 0.012299084777506
211 => 0.012345575121179
212 => 0.011683184089196
213 => 0.011322278299219
214 => 0.011222384333215
215 => 0.011088801947018
216 => 0.011237472819185
217 => 0.011681307618627
218 => 0.011145948685694
219 => 0.010228113346243
220 => 0.010283276814059
221 => 0.010407212748062
222 => 0.010176258954966
223 => 0.0099576805722838
224 => 0.010147716742202
225 => 0.0097588178092666
226 => 0.010454209326121
227 => 0.010435400934402
228 => 0.010694599889162
301 => 0.010856682314872
302 => 0.01048313479842
303 => 0.010389188608212
304 => 0.010442704627771
305 => 0.0095582040328725
306 => 0.010622317320307
307 => 0.010631519816205
308 => 0.010552722459329
309 => 0.011119329934076
310 => 0.012315048435095
311 => 0.011865171037346
312 => 0.011690964911322
313 => 0.011359798938405
314 => 0.011801057934627
315 => 0.011767176128429
316 => 0.011613949751512
317 => 0.011521277960658
318 => 0.01169202857678
319 => 0.011500120069707
320 => 0.011465648028543
321 => 0.011256784965043
322 => 0.011182230354038
323 => 0.011127033088154
324 => 0.011066266321987
325 => 0.011200302666016
326 => 0.010896558676496
327 => 0.010530273201525
328 => 0.010499820527545
329 => 0.010583903037831
330 => 0.010546702786236
331 => 0.010499642427052
401 => 0.010409791385245
402 => 0.010383134500504
403 => 0.010469756443829
404 => 0.010371965320189
405 => 0.010516261450078
406 => 0.010477020887017
407 => 0.010257826291609
408 => 0.0099846286694964
409 => 0.0099821966376082
410 => 0.009923336658058
411 => 0.0098483696244436
412 => 0.0098275155107055
413 => 0.010131712426025
414 => 0.010761390936889
415 => 0.010637769978277
416 => 0.01072709879006
417 => 0.011166508132056
418 => 0.011306183148377
419 => 0.011207045130177
420 => 0.011071338896297
421 => 0.011077309281867
422 => 0.011541058564104
423 => 0.011569982037991
424 => 0.011643062325436
425 => 0.01173699114729
426 => 0.011223041614698
427 => 0.011053102305101
428 => 0.01097257563234
429 => 0.01072458464798
430 => 0.010992021663472
501 => 0.010836197567339
502 => 0.010857223561617
503 => 0.01084353035526
504 => 0.010851007771861
505 => 0.01045401495002
506 => 0.01059865826897
507 => 0.010358160697182
508 => 0.010036161445676
509 => 0.010035081991278
510 => 0.010113890851908
511 => 0.010067012257814
512 => 0.0099408631664664
513 => 0.0099587820494854
514 => 0.0098017937791044
515 => 0.009977843267874
516 => 0.0099828917372766
517 => 0.0099151030946198
518 => 0.010186331622217
519 => 0.010297454171275
520 => 0.010252834234505
521 => 0.010294323517564
522 => 0.010642906987222
523 => 0.01069974130254
524 => 0.010724983351139
525 => 0.010691162349946
526 => 0.010300694983486
527 => 0.010318013871584
528 => 0.010190939361983
529 => 0.010083574792153
530 => 0.010087868811894
531 => 0.010143068157203
601 => 0.01038412693557
602 => 0.010891420923452
603 => 0.010910672359465
604 => 0.010934005661517
605 => 0.010839097395694
606 => 0.010810472154572
607 => 0.010848236236414
608 => 0.011038749186011
609 => 0.011528800216138
610 => 0.011355583452683
611 => 0.011214755527715
612 => 0.011338299584848
613 => 0.011319280945623
614 => 0.011158744490879
615 => 0.011154238767278
616 => 0.010846117984016
617 => 0.010732212746015
618 => 0.010637025003482
619 => 0.010533082473575
620 => 0.01047146185766
621 => 0.010566139129774
622 => 0.010587792942094
623 => 0.010380779431943
624 => 0.010352564255451
625 => 0.010521615956537
626 => 0.010447222605772
627 => 0.0105237380119
628 => 0.010541490242459
629 => 0.010538631724471
630 => 0.01046095652225
701 => 0.010510464379838
702 => 0.01039336353764
703 => 0.010266033959727
704 => 0.010184805621932
705 => 0.010113923123831
706 => 0.010153252853492
707 => 0.010013049548573
708 => 0.0099681956895943
709 => 0.010493692231649
710 => 0.010881882177304
711 => 0.010876237741754
712 => 0.010841878691975
713 => 0.010790828113482
714 => 0.01103501451822
715 => 0.010949944857471
716 => 0.011011840143474
717 => 0.011027595091499
718 => 0.011075280574083
719 => 0.011092324035401
720 => 0.011040806857853
721 => 0.010867908917707
722 => 0.010437063689506
723 => 0.010236504072734
724 => 0.010170316058615
725 => 0.010172721867219
726 => 0.01010635892591
727 => 0.010125905786304
728 => 0.010099561325567
729 => 0.01004967129034
730 => 0.010150172284404
731 => 0.010161754087738
801 => 0.010138295954826
802 => 0.010143821194324
803 => 0.0099495978729132
804 => 0.0099643642502091
805 => 0.0098821431850048
806 => 0.0098667277264687
807 => 0.0096588800334392
808 => 0.0092906477172327
809 => 0.0094946841655869
810 => 0.0092482368278413
811 => 0.0091549034867504
812 => 0.0095967290071619
813 => 0.0095523819792449
814 => 0.0094764791446407
815 => 0.0093642030327244
816 => 0.0093225587306628
817 => 0.0090695411343205
818 => 0.0090545915049322
819 => 0.0091799938577292
820 => 0.0091221249867449
821 => 0.0090408551752276
822 => 0.0087465041561007
823 => 0.0084155561543289
824 => 0.0084255453942374
825 => 0.0085308137960945
826 => 0.0088368958718723
827 => 0.0087173043095923
828 => 0.008630539259003
829 => 0.0086142907731755
830 => 0.0088176745918161
831 => 0.00910550530542
901 => 0.0092405490363936
902 => 0.0091067248003378
903 => 0.0089529947235654
904 => 0.008962351561022
905 => 0.0090245984086834
906 => 0.0090311396722495
907 => 0.008931077195978
908 => 0.0089592441969291
909 => 0.0089164559468398
910 => 0.0086538645350225
911 => 0.0086491150890691
912 => 0.0085846709217506
913 => 0.008582719577976
914 => 0.0084730839730163
915 => 0.0084577451940073
916 => 0.0082400570459543
917 => 0.0083833400442232
918 => 0.0082872333316795
919 => 0.0081423778465945
920 => 0.0081174047063665
921 => 0.0081166539836153
922 => 0.0082653881777038
923 => 0.008381601998568
924 => 0.008288905149091
925 => 0.0082677998733181
926 => 0.0084931490026694
927 => 0.0084644712718565
928 => 0.0084396365419241
929 => 0.0090797332219716
930 => 0.0085730467523472
1001 => 0.0083521025309384
1002 => 0.0080786421007752
1003 => 0.0081676821957435
1004 => 0.0081864442520245
1005 => 0.0075288212124297
1006 => 0.0072620236271678
1007 => 0.0071704687499608
1008 => 0.0071177776237322
1009 => 0.0071417896316081
1010 => 0.0069016405126368
1011 => 0.0070630246922853
1012 => 0.0068550758545559
1013 => 0.0068202125551865
1014 => 0.0071920508369645
1015 => 0.0072437899616261
1016 => 0.0070230547817334
1017 => 0.0071648025010041
1018 => 0.0071134028075558
1019 => 0.0068586405405294
1020 => 0.0068489104958334
1021 => 0.0067210797455663
1022 => 0.006521049374309
1023 => 0.0064296301271129
1024 => 0.006382018189435
1025 => 0.0064016638028591
1026 => 0.0063917303795462
1027 => 0.0063269080732029
1028 => 0.0063954459182675
1029 => 0.0062203600459205
1030 => 0.0061506394407892
1031 => 0.0061191482609571
1101 => 0.0059637494716824
1102 => 0.0062110580515738
1103 => 0.0062597809573238
1104 => 0.0063085998622494
1105 => 0.0067335350995447
1106 => 0.006712306535944
1107 => 0.0069042024121651
1108 => 0.006896745691289
1109 => 0.0068420138788836
1110 => 0.0066111093652916
1111 => 0.0067031437889322
1112 => 0.0064198761382915
1113 => 0.0066321195224794
1114 => 0.0065352605054317
1115 => 0.0065993713913842
1116 => 0.0064840942377961
1117 => 0.0065478933742687
1118 => 0.0062713349657777
1119 => 0.0060130886152106
1120 => 0.0061170144853598
1121 => 0.0062299937915767
1122 => 0.006474961714047
1123 => 0.0063290608403652
1124 => 0.006381532311664
1125 => 0.0062057616664312
1126 => 0.0058430966189132
1127 => 0.0058451492636969
1128 => 0.0057893611472238
1129 => 0.0057411520693926
1130 => 0.0063458193108083
1201 => 0.0062706193809637
1202 => 0.0061507981346799
1203 => 0.0063111836343378
1204 => 0.0063535921061075
1205 => 0.0063547994156795
1206 => 0.006471812536081
1207 => 0.0065342624594151
1208 => 0.0065452695290762
1209 => 0.0067293922022637
1210 => 0.0067911076936794
1211 => 0.0070453050685174
1212 => 0.0065289640197335
1213 => 0.0065183303156215
1214 => 0.0063134405872276
1215 => 0.0061834962823018
1216 => 0.0063223379849581
1217 => 0.0064453327797291
1218 => 0.0063172623783478
1219 => 0.0063339856690545
1220 => 0.0061620616189363
1221 => 0.0062235163770751
1222 => 0.0062764494936342
1223 => 0.006247222937935
1224 => 0.0062034693694721
1225 => 0.0064352486091721
1226 => 0.006422170716118
1227 => 0.0066380088727083
1228 => 0.0068062701505051
1229 => 0.0071078244406181
1230 => 0.0067931368185045
1231 => 0.0067816683507847
]
'min_raw' => 0.0057411520693926
'max_raw' => 0.016599359021153
'avg_raw' => 0.011170255545273
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005741'
'max' => '$0.016599'
'avg' => '$0.01117'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010095134089886
'max_diff' => -0.0056072719554824
'year' => 2030
]
5 => [
'items' => [
101 => 0.0068937744623461
102 => 0.0067910905308178
103 => 0.0068559832310149
104 => 0.0070973692233791
105 => 0.0071024693290267
106 => 0.0070170359883146
107 => 0.0070118373617681
108 => 0.0070282457693902
109 => 0.0071243503253401
110 => 0.0070907684404965
111 => 0.0071296302478268
112 => 0.0071782275329665
113 => 0.0073792465091263
114 => 0.0074277115037319
115 => 0.007309966693059
116 => 0.00732059773113
117 => 0.0072765579397711
118 => 0.0072340160531352
119 => 0.0073296440015489
120 => 0.007504405956847
121 => 0.0075033187717933
122 => 0.0075438601485354
123 => 0.0075691170903829
124 => 0.0074606958067621
125 => 0.0073901175378861
126 => 0.0074171817371851
127 => 0.0074604579812458
128 => 0.0074031478344988
129 => 0.0070494030601344
130 => 0.0071567066273729
131 => 0.007138846066908
201 => 0.0071134104568877
202 => 0.0072213050235
203 => 0.0072108983293397
204 => 0.0068991774363159
205 => 0.0069191327965113
206 => 0.0069003909878636
207 => 0.0069609496058177
208 => 0.0067878201667119
209 => 0.0068410736161363
210 => 0.0068744736803951
211 => 0.006894146574835
212 => 0.0069652185593818
213 => 0.006956879082305
214 => 0.0069647001657776
215 => 0.0070700811565522
216 => 0.0076030620455013
217 => 0.0076320710193307
218 => 0.0074892202226608
219 => 0.0075462862983231
220 => 0.0074367319120304
221 => 0.0075102765054992
222 => 0.0075605938485205
223 => 0.007333219450876
224 => 0.0073197558146951
225 => 0.0072097492584796
226 => 0.0072688605507
227 => 0.007174810234525
228 => 0.0071978868923739
301 => 0.0071333625452414
302 => 0.0072494935234106
303 => 0.0073793460019333
304 => 0.0074121518660379
305 => 0.0073258537613912
306 => 0.0072633682463048
307 => 0.0071536642658212
308 => 0.007336104430278
309 => 0.0073894554941285
310 => 0.0073358241998518
311 => 0.007323396657101
312 => 0.0072998464860443
313 => 0.0073283929372196
314 => 0.007389164932777
315 => 0.0073605059819547
316 => 0.0073794357238785
317 => 0.0073072950679298
318 => 0.0074607316987184
319 => 0.0077044259949468
320 => 0.0077052095119572
321 => 0.0076765504066524
322 => 0.0076648237182308
323 => 0.0076942296994534
324 => 0.0077101812379702
325 => 0.0078052747891094
326 => 0.007907313958176
327 => 0.0083834862370325
328 => 0.0082497789665637
329 => 0.0086722673399808
330 => 0.0090064007901045
331 => 0.0091065928019117
401 => 0.0090144208654475
402 => 0.0086991056498339
403 => 0.0086836347810653
404 => 0.0091548488358422
405 => 0.0090217092823967
406 => 0.0090058727561609
407 => 0.0088373988732455
408 => 0.0089369878039448
409 => 0.0089152062439194
410 => 0.0088808229858289
411 => 0.0090708317281783
412 => 0.0094265111316588
413 => 0.0093710751610861
414 => 0.0093296947806542
415 => 0.0091483779992492
416 => 0.0092575712002243
417 => 0.009218689592815
418 => 0.0093857496531228
419 => 0.0092867869742299
420 => 0.009020700619333
421 => 0.0090630757483825
422 => 0.0090566708328735
423 => 0.0091884835401894
424 => 0.0091489166372457
425 => 0.0090489447600477
426 => 0.009425295458125
427 => 0.0094008573371645
428 => 0.0094355050053543
429 => 0.0094507579804062
430 => 0.0096798360182827
501 => 0.0097736819607211
502 => 0.0097949866326591
503 => 0.0098841330196699
504 => 0.0097927685893398
505 => 0.010158291452395
506 => 0.010401342827477
507 => 0.010683659506943
508 => 0.011096200055213
509 => 0.011251319117576
510 => 0.011223298247377
511 => 0.011536081782816
512 => 0.012098146843211
513 => 0.011336907666138
514 => 0.012138494368029
515 => 0.011884721272974
516 => 0.011283029829781
517 => 0.011244287994316
518 => 0.011651760425427
519 => 0.012555495059864
520 => 0.012329119784011
521 => 0.012555865328719
522 => 0.012291354606518
523 => 0.01227821941969
524 => 0.01254301863334
525 => 0.013161736429488
526 => 0.012867806796828
527 => 0.012446386593907
528 => 0.012757556713719
529 => 0.012487992358503
530 => 0.011880588419888
531 => 0.012328946679104
601 => 0.012029142279674
602 => 0.012116641141906
603 => 0.012746785396969
604 => 0.012670964773045
605 => 0.012769083681203
606 => 0.012595906376523
607 => 0.012434131466396
608 => 0.012132166583083
609 => 0.012042769667823
610 => 0.012067475759037
611 => 0.012042757424711
612 => 0.011873810847698
613 => 0.011837326850477
614 => 0.011776518590043
615 => 0.011795365612629
616 => 0.011681028292928
617 => 0.0118968064385
618 => 0.011936856763748
619 => 0.012093882103692
620 => 0.012110184995396
621 => 0.012547498332022
622 => 0.012306633494961
623 => 0.012468226422931
624 => 0.012453772030482
625 => 0.011296070307843
626 => 0.011455591390734
627 => 0.011703756135239
628 => 0.011591958254219
629 => 0.011433902207132
630 => 0.01130626347468
701 => 0.011112877743285
702 => 0.01138506444658
703 => 0.011742961017583
704 => 0.012119261843056
705 => 0.012571362628655
706 => 0.012470458996343
707 => 0.012110810133344
708 => 0.012126943718615
709 => 0.012226675194425
710 => 0.01209751387169
711 => 0.012059421676088
712 => 0.012221441911694
713 => 0.012222557656012
714 => 0.012073941944539
715 => 0.011908782777625
716 => 0.011908090754685
717 => 0.011878702276181
718 => 0.012296582751557
719 => 0.012526374760533
720 => 0.012552720044034
721 => 0.012524601513045
722 => 0.012535423219638
723 => 0.012401712312737
724 => 0.012707335795176
725 => 0.012987806125692
726 => 0.012912634085739
727 => 0.012799940511514
728 => 0.012710174651586
729 => 0.01289148810194
730 => 0.01288341449941
731 => 0.012985356462032
801 => 0.012980731785762
802 => 0.012946452537963
803 => 0.012912635309959
804 => 0.01304671679647
805 => 0.013008103481638
806 => 0.012969430189662
807 => 0.01289186498202
808 => 0.01290240738196
809 => 0.01278973326587
810 => 0.01273760506415
811 => 0.011953721983325
812 => 0.01174424281001
813 => 0.011810149222277
814 => 0.011831847324454
815 => 0.011740681719773
816 => 0.011871389778364
817 => 0.011851019065886
818 => 0.011930269591667
819 => 0.011880757303817
820 => 0.011882789305381
821 => 0.012028394386816
822 => 0.012070664161404
823 => 0.01204916541289
824 => 0.012064222399415
825 => 0.012411204298745
826 => 0.012361874568516
827 => 0.012335669132511
828 => 0.012342928217375
829 => 0.01243158953203
830 => 0.012456409859405
831 => 0.012351244388224
901 => 0.012400841032387
902 => 0.012612017248483
903 => 0.012685916972578
904 => 0.012921769418009
905 => 0.012821575107247
906 => 0.013005486100959
907 => 0.013570765795752
908 => 0.014022350330332
909 => 0.013607054529812
910 => 0.014436332018625
911 => 0.015082043496456
912 => 0.015057260014448
913 => 0.014944665282712
914 => 0.014209539932329
915 => 0.013533066624806
916 => 0.014098965271123
917 => 0.014100407863151
918 => 0.014051796667561
919 => 0.013749876706691
920 => 0.014041290507373
921 => 0.014064421876611
922 => 0.014051474460965
923 => 0.013819993134855
924 => 0.013466563934784
925 => 0.013535623154488
926 => 0.013648743565133
927 => 0.013434583028393
928 => 0.01336614576046
929 => 0.01349338366227
930 => 0.013903370692973
1001 => 0.013825865019712
1002 => 0.013823841033358
1003 => 0.01415544317109
1004 => 0.013918087604694
1005 => 0.013536494212407
1006 => 0.013440136848256
1007 => 0.013098133119618
1008 => 0.013334356313164
1009 => 0.013342857565359
1010 => 0.013213480536397
1011 => 0.01354699244527
1012 => 0.013543919074316
1013 => 0.013860538995094
1014 => 0.01446579736661
1015 => 0.014286792683197
1016 => 0.014078629712042
1017 => 0.01410126279874
1018 => 0.014349491896595
1019 => 0.014199406917512
1020 => 0.01425337852242
1021 => 0.014349410204107
1022 => 0.014407348502001
1023 => 0.014092926369292
1024 => 0.014019619529609
1025 => 0.013869659462821
1026 => 0.013830537680533
1027 => 0.013952677025912
1028 => 0.013920497623652
1029 => 0.013342143068031
1030 => 0.013281701799034
1031 => 0.013283555446464
1101 => 0.013131573001746
1102 => 0.012899763293585
1103 => 0.013508945365994
1104 => 0.013460019520082
1105 => 0.013406009172754
1106 => 0.013412625132123
1107 => 0.01367705042266
1108 => 0.013523670400351
1109 => 0.01393145632815
1110 => 0.013847627800562
1111 => 0.013761649387555
1112 => 0.013749764551911
1113 => 0.013716670198236
1114 => 0.013603177345621
1115 => 0.013466127906225
1116 => 0.013375635995316
1117 => 0.012338317172235
1118 => 0.012530837511993
1119 => 0.012752314614103
1120 => 0.012828767622238
1121 => 0.012697989461437
1122 => 0.013608341264512
1123 => 0.013774671311302
1124 => 0.013270846750134
1125 => 0.013176601745761
1126 => 0.013614519951308
1127 => 0.01335040174004
1128 => 0.013469334154402
1129 => 0.013212267327104
1130 => 0.013734607273742
1201 => 0.013730627918508
1202 => 0.013527425881683
1203 => 0.01369917085174
1204 => 0.013669325936756
1205 => 0.013439911337645
1206 => 0.013741880125734
1207 => 0.013742029898485
1208 => 0.013546452356034
1209 => 0.013318060603881
1210 => 0.013277229552968
1211 => 0.013246468840985
1212 => 0.01346176890492
1213 => 0.013654806269018
1214 => 0.014014000945584
1215 => 0.014104311021527
1216 => 0.014456797260217
1217 => 0.014246908867321
1218 => 0.014339949673382
1219 => 0.014440958629787
1220 => 0.014489386037969
1221 => 0.014410476175095
1222 => 0.014958032392905
1223 => 0.015004262914377
1224 => 0.015019763608334
1225 => 0.014835130732479
1226 => 0.014999127940101
1227 => 0.014922399077671
1228 => 0.015122026261821
1229 => 0.015153330353264
1230 => 0.015126816901487
1231 => 0.015136753314213
]
'min_raw' => 0.0067878201667119
'max_raw' => 0.015153330353264
'avg_raw' => 0.010970575259988
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006787'
'max' => '$0.015153'
'avg' => '$0.01097'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0010466680973192
'max_diff' => -0.0014460286678894
'year' => 2031
]
6 => [
'items' => [
101 => 0.014669510677848
102 => 0.014645281682251
103 => 0.014314917608078
104 => 0.014449543410232
105 => 0.014197866925888
106 => 0.014277676131629
107 => 0.014312855269069
108 => 0.014294479684069
109 => 0.014457154951094
110 => 0.014318847741761
111 => 0.01395383227652
112 => 0.013588717363059
113 => 0.013584133642736
114 => 0.013488005330836
115 => 0.01341852216811
116 => 0.013431907090299
117 => 0.013479077301914
118 => 0.01341578054966
119 => 0.01342928812098
120 => 0.013653603805372
121 => 0.01369858871613
122 => 0.013545712412634
123 => 0.01293189199415
124 => 0.012781258923802
125 => 0.012889530987585
126 => 0.012837783914711
127 => 0.010361093567125
128 => 0.010942955227023
129 => 0.010597232786867
130 => 0.010756557593215
131 => 0.010403664506208
201 => 0.010572083584039
202 => 0.010540982730044
203 => 0.011476599060621
204 => 0.011461990698518
205 => 0.011468982948399
206 => 0.011135224643333
207 => 0.011666910685829
208 => 0.011928838349175
209 => 0.011880362509669
210 => 0.011892562834102
211 => 0.011682920838738
212 => 0.011471012741169
213 => 0.011235974048543
214 => 0.011672646887782
215 => 0.011624096322313
216 => 0.011735453851558
217 => 0.012018667401823
218 => 0.012060371672924
219 => 0.012116422636206
220 => 0.012096332355848
221 => 0.012574964340799
222 => 0.012516998849306
223 => 0.012656679005994
224 => 0.012369346326127
225 => 0.01204420212499
226 => 0.012106001407862
227 => 0.012100049639963
228 => 0.012024276803488
229 => 0.01195587247475
301 => 0.011841998540203
302 => 0.012202312519282
303 => 0.012187684429742
304 => 0.012424496196101
305 => 0.01238263741613
306 => 0.012103094238905
307 => 0.012113078178167
308 => 0.012180224967825
309 => 0.012412620773497
310 => 0.012481611671334
311 => 0.012449652338644
312 => 0.012525297708568
313 => 0.012585084724646
314 => 0.01253280603729
315 => 0.013272962004247
316 => 0.012965597643273
317 => 0.013115404894184
318 => 0.013151133040811
319 => 0.013059616144508
320 => 0.013079462882342
321 => 0.013109525282248
322 => 0.013292058287653
323 => 0.013771077710189
324 => 0.013983232151634
325 => 0.014621509256239
326 => 0.013965615678605
327 => 0.013926697668065
328 => 0.014041670648727
329 => 0.014416406877623
330 => 0.014720095393959
331 => 0.014820846395038
401 => 0.014834162303048
402 => 0.015023177878873
403 => 0.015131518082005
404 => 0.015000226416365
405 => 0.014888970476546
406 => 0.01449046550971
407 => 0.014536593544714
408 => 0.014854369962922
409 => 0.015303247870579
410 => 0.015688431813135
411 => 0.015553553821468
412 => 0.016582577688866
413 => 0.016684601202133
414 => 0.016670504851415
415 => 0.016902929597772
416 => 0.01644161380873
417 => 0.016244392371342
418 => 0.014913025273544
419 => 0.015287085122267
420 => 0.015830803080151
421 => 0.015758839969587
422 => 0.015363977454949
423 => 0.015688132274509
424 => 0.015580956553904
425 => 0.015496422616338
426 => 0.015883688972038
427 => 0.015457873705921
428 => 0.015826555247139
429 => 0.015353717357005
430 => 0.015554169932772
501 => 0.015440383355966
502 => 0.015514017216318
503 => 0.015083555173289
504 => 0.015315822042832
505 => 0.015073892107894
506 => 0.015073777401604
507 => 0.015068436784882
508 => 0.015353066280455
509 => 0.015362348038087
510 => 0.015152006410807
511 => 0.015121692896162
512 => 0.01523377784776
513 => 0.015102555724534
514 => 0.01516395373009
515 => 0.015104415407575
516 => 0.015091012077109
517 => 0.01498421205956
518 => 0.014938199675472
519 => 0.014956242316866
520 => 0.01489465348017
521 => 0.014857543978295
522 => 0.015061054770926
523 => 0.014952327164025
524 => 0.015044390705795
525 => 0.014939472680603
526 => 0.014575781094679
527 => 0.014366618217645
528 => 0.013679638526063
529 => 0.0138744651144
530 => 0.01400363534403
531 => 0.013960944583908
601 => 0.014052660855782
602 => 0.014058291489986
603 => 0.014028473595063
604 => 0.013993948292652
605 => 0.013977143284806
606 => 0.014102394045199
607 => 0.014175106327353
608 => 0.014016599304648
609 => 0.013979463326978
610 => 0.014139722678345
611 => 0.0142374807901
612 => 0.014959271761762
613 => 0.014905799155227
614 => 0.015040004904161
615 => 0.015024895396386
616 => 0.01516556440192
617 => 0.015395498774812
618 => 0.014927977904061
619 => 0.015009123361568
620 => 0.01498922836931
621 => 0.01520643667804
622 => 0.015207114778671
623 => 0.015076887547228
624 => 0.015147485842089
625 => 0.01510807981066
626 => 0.015179291835496
627 => 0.014905084995966
628 => 0.015239039327715
629 => 0.015428369914274
630 => 0.015430998769652
701 => 0.015520739965061
702 => 0.015611922217056
703 => 0.015786938609459
704 => 0.015607041104862
705 => 0.01528342300676
706 => 0.015306787188163
707 => 0.015117050015653
708 => 0.015120239531802
709 => 0.015103213644633
710 => 0.015154309613675
711 => 0.014916297687795
712 => 0.014972158611068
713 => 0.014893952991365
714 => 0.015008953357824
715 => 0.014885231973756
716 => 0.014989218775342
717 => 0.01503409603169
718 => 0.015199694073751
719 => 0.0148607730083
720 => 0.014169690012906
721 => 0.014314964037109
722 => 0.014100092344285
723 => 0.01411997953753
724 => 0.014160154832908
725 => 0.014029933556048
726 => 0.014054775671929
727 => 0.014053888136738
728 => 0.014046239837951
729 => 0.014012364254456
730 => 0.013963237956307
731 => 0.014158942007854
801 => 0.014192195939756
802 => 0.014266115311083
803 => 0.014486049220163
804 => 0.014464072636247
805 => 0.014499917356414
806 => 0.01442166853355
807 => 0.014123609275999
808 => 0.014139795327691
809 => 0.013937955003736
810 => 0.014260953800201
811 => 0.014184463421822
812 => 0.014135149577282
813 => 0.01412169383791
814 => 0.01434217292061
815 => 0.01440814371774
816 => 0.014367035144104
817 => 0.014282720260248
818 => 0.01444462976271
819 => 0.014487949915155
820 => 0.014497647699702
821 => 0.014784520294996
822 => 0.014513680691022
823 => 0.014578874475613
824 => 0.015087497772603
825 => 0.01462624662745
826 => 0.014870581646166
827 => 0.014858622718458
828 => 0.014983616246186
829 => 0.014848369600896
830 => 0.014850046145156
831 => 0.014961031929984
901 => 0.014805172411585
902 => 0.014766579402972
903 => 0.014713263437981
904 => 0.014829676897013
905 => 0.014899461500774
906 => 0.015461874155947
907 => 0.015825218380322
908 => 0.015809444649289
909 => 0.015953587023737
910 => 0.015888649563856
911 => 0.015678949376261
912 => 0.016036882026271
913 => 0.01592361715927
914 => 0.015932954577289
915 => 0.015932607038124
916 => 0.016007918272893
917 => 0.015954553360886
918 => 0.015849365641523
919 => 0.015919194158541
920 => 0.016126559889934
921 => 0.016770229482933
922 => 0.017130435514663
923 => 0.016748544627535
924 => 0.017011967847753
925 => 0.016854007782913
926 => 0.016825301740226
927 => 0.016990750989347
928 => 0.017156489835476
929 => 0.017145932987486
930 => 0.01702561509598
1001 => 0.016957650572022
1002 => 0.017472300717219
1003 => 0.017851486177363
1004 => 0.017825628271073
1005 => 0.017939756659997
1006 => 0.018274841139735
1007 => 0.018305477065146
1008 => 0.018301617642703
1009 => 0.018225683305042
1010 => 0.018555617491562
1011 => 0.018830854394597
1012 => 0.018208106699827
1013 => 0.01844524086963
1014 => 0.01855169803844
1015 => 0.018708008746672
1016 => 0.018971731112175
1017 => 0.019258203550015
1018 => 0.019298713893736
1019 => 0.019269969866268
1020 => 0.01908103359272
1021 => 0.019394495152531
1022 => 0.01957811358269
1023 => 0.019687454155817
1024 => 0.01996472365673
1025 => 0.018552355481672
1026 => 0.017552611088113
1027 => 0.017396486564574
1028 => 0.017713971922483
1029 => 0.017797690279465
1030 => 0.01776394351474
1031 => 0.016638640307005
1101 => 0.017390562076072
1102 => 0.018199566676211
1103 => 0.018230643837677
1104 => 0.018635648455995
1105 => 0.018767534561419
1106 => 0.019093616364334
1107 => 0.019073219858779
1108 => 0.019152615588694
1109 => 0.019134363885329
1110 => 0.019738361760604
1111 => 0.020404661111584
1112 => 0.020381589283762
1113 => 0.020285800868762
1114 => 0.020428062999388
1115 => 0.021115755334578
1116 => 0.021052443644399
1117 => 0.021113945558531
1118 => 0.021924773578361
1119 => 0.022978965343081
1120 => 0.022489187429246
1121 => 0.02355186457247
1122 => 0.024220763504035
1123 => 0.025377555040736
1124 => 0.025232719043023
1125 => 0.025683049499332
1126 => 0.024973432378931
1127 => 0.023344008033208
1128 => 0.023086145393312
1129 => 0.023602392928506
1130 => 0.024871537119085
1201 => 0.023562423061444
1202 => 0.023827255130311
1203 => 0.023750983476661
1204 => 0.023746919284372
1205 => 0.023902032973792
1206 => 0.023677032477103
1207 => 0.022760339976775
1208 => 0.023180454747572
1209 => 0.023018228258999
1210 => 0.023198230642857
1211 => 0.024169629269907
1212 => 0.023740150781637
1213 => 0.023287730082244
1214 => 0.023855166039474
1215 => 0.024577707005177
1216 => 0.024532491690074
1217 => 0.024444755080239
1218 => 0.024939321756138
1219 => 0.025756201010285
1220 => 0.025977000190194
1221 => 0.026139989630762
1222 => 0.026162463120887
1223 => 0.026393954036373
1224 => 0.025149169040583
1225 => 0.027124674797248
1226 => 0.027465790069179
1227 => 0.027401674535835
1228 => 0.027780809804261
1229 => 0.027669258590557
1230 => 0.027507638383748
1231 => 0.028108648428588
]
'min_raw' => 0.010361093567125
'max_raw' => 0.028108648428588
'avg_raw' => 0.019234870997857
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.010361'
'max' => '$0.0281086'
'avg' => '$0.019234'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0035732734004132
'max_diff' => 0.012955318075324
'year' => 2032
]
7 => [
'items' => [
101 => 0.027419638911189
102 => 0.026441676645127
103 => 0.025905147204066
104 => 0.026611692452651
105 => 0.027043154980931
106 => 0.027328324265954
107 => 0.027414616319298
108 => 0.025245798156358
109 => 0.024076925454703
110 => 0.024826159455311
111 => 0.025740276645421
112 => 0.025144091073437
113 => 0.02516746041913
114 => 0.024317456468293
115 => 0.025815483134157
116 => 0.025597233249328
117 => 0.026729514037898
118 => 0.026459286140585
119 => 0.027382617168777
120 => 0.027139473164862
121 => 0.028148750331116
122 => 0.028551378317824
123 => 0.029227453371548
124 => 0.029724776933188
125 => 0.030016814840867
126 => 0.029999281980296
127 => 0.031156481663227
128 => 0.03047412143968
129 => 0.029616916178949
130 => 0.02960141204023
131 => 0.030045370791455
201 => 0.030975786539889
202 => 0.031217029806459
203 => 0.03135185188146
204 => 0.031145367180406
205 => 0.030404714062943
206 => 0.030084903802019
207 => 0.030357391410122
208 => 0.030024162480539
209 => 0.030599409100522
210 => 0.031389345575806
211 => 0.031226226817408
212 => 0.031771508370604
213 => 0.03233581741287
214 => 0.033142804688015
215 => 0.03335378104439
216 => 0.033702516938766
217 => 0.034061480727852
218 => 0.034176770222561
219 => 0.034396893640191
220 => 0.034395733481124
221 => 0.035059090216164
222 => 0.035790793237361
223 => 0.036066994188899
224 => 0.036702103047152
225 => 0.035614501384263
226 => 0.036439459739032
227 => 0.03718359282508
228 => 0.036296406682887
301 => 0.03751918609204
302 => 0.03756666384562
303 => 0.038283521556488
304 => 0.037556848933203
305 => 0.037125353049118
306 => 0.038371065498532
307 => 0.038973826513229
308 => 0.038792269990171
309 => 0.037410615885143
310 => 0.036606433934085
311 => 0.034501734653052
312 => 0.036994841867678
313 => 0.038209161666988
314 => 0.037407471090221
315 => 0.037811797185587
316 => 0.040017669258723
317 => 0.040857522524534
318 => 0.040682838916263
319 => 0.040712357570524
320 => 0.04116552714834
321 => 0.043175130621423
322 => 0.041970929638108
323 => 0.042891496169302
324 => 0.043379761338098
325 => 0.043833289238189
326 => 0.04271956805453
327 => 0.041270633158403
328 => 0.040811694654651
329 => 0.037327758761956
330 => 0.037146404768775
331 => 0.037044605276813
401 => 0.036402773879822
402 => 0.035898470214203
403 => 0.035497429215708
404 => 0.034444977874677
405 => 0.034800149307242
406 => 0.033122761533304
407 => 0.034195894788097
408 => 0.031518743398949
409 => 0.033748354627814
410 => 0.032534878603926
411 => 0.033349695117634
412 => 0.033346852299578
413 => 0.03184651676003
414 => 0.030981154532023
415 => 0.031532597024111
416 => 0.032123787149189
417 => 0.03221970575798
418 => 0.032986199186785
419 => 0.033200111027043
420 => 0.032551948164472
421 => 0.031463265386946
422 => 0.031716141565955
423 => 0.030976030004326
424 => 0.029679012960553
425 => 0.030610553245136
426 => 0.030928622055228
427 => 0.031069099361745
428 => 0.029793632062608
429 => 0.029392852545476
430 => 0.029179480893422
501 => 0.03129861857526
502 => 0.031414709721154
503 => 0.030820771005126
504 => 0.03350543032115
505 => 0.032897809235058
506 => 0.033576670859003
507 => 0.031693195703232
508 => 0.031765146990618
509 => 0.030873479667848
510 => 0.031372753787368
511 => 0.031019882932047
512 => 0.031332417372433
513 => 0.031519749227373
514 => 0.032411270236309
515 => 0.033758534365666
516 => 0.03227810672718
517 => 0.031633063204977
518 => 0.032033244578289
519 => 0.033098980310704
520 => 0.034713624499321
521 => 0.033757722641917
522 => 0.034181935653967
523 => 0.034274607325176
524 => 0.033569760684937
525 => 0.03473961320033
526 => 0.035366546667193
527 => 0.036009650678594
528 => 0.036568039872328
529 => 0.03575278079428
530 => 0.036625224870589
531 => 0.035922188952195
601 => 0.035291493054879
602 => 0.035292449560215
603 => 0.034896804810831
604 => 0.034130193254454
605 => 0.033988818321527
606 => 0.034724268576301
607 => 0.035314030033231
608 => 0.035362605611591
609 => 0.035689127857186
610 => 0.035882360358682
611 => 0.037776301560192
612 => 0.038538060378943
613 => 0.039469524643155
614 => 0.039832382468515
615 => 0.040924454431119
616 => 0.040042517627568
617 => 0.039851705052477
618 => 0.037202695685218
619 => 0.037636470820706
620 => 0.038330986665698
621 => 0.037214147995695
622 => 0.037922525070986
623 => 0.038062373711127
624 => 0.037176198245052
625 => 0.037649542850864
626 => 0.036392479914722
627 => 0.033785934902518
628 => 0.034742515030049
629 => 0.035446879985301
630 => 0.034441664346583
701 => 0.036243474471767
702 => 0.035190894193545
703 => 0.034857276778113
704 => 0.033555716297315
705 => 0.034170002742594
706 => 0.035000833955569
707 => 0.034487476860446
708 => 0.035552769913782
709 => 0.037061508980586
710 => 0.038136726286555
711 => 0.038219268120281
712 => 0.037527975426508
713 => 0.03863577638005
714 => 0.038643845500583
715 => 0.037394241499487
716 => 0.03662886600664
717 => 0.036454971084301
718 => 0.036889394694411
719 => 0.037416865156107
720 => 0.038248539059897
721 => 0.038751102181761
722 => 0.040061520264697
723 => 0.040416081825308
724 => 0.040805637484072
725 => 0.041326203978697
726 => 0.041951277526003
727 => 0.040583652189954
728 => 0.040637990494127
729 => 0.03936447671726
730 => 0.038003544606327
731 => 0.039036322435942
801 => 0.040386542063487
802 => 0.040076800189068
803 => 0.040041947900744
804 => 0.040100559782487
805 => 0.039867024524399
806 => 0.038810753207288
807 => 0.038280300364443
808 => 0.038964719864666
809 => 0.039328458369027
810 => 0.03989258506796
811 => 0.039823044545047
812 => 0.041276174338714
813 => 0.041840816636169
814 => 0.041696356974074
815 => 0.041722941028515
816 => 0.042745198937226
817 => 0.043882159975086
818 => 0.044947074022265
819 => 0.046030350330178
820 => 0.044724418459995
821 => 0.044061346794996
822 => 0.044745467499076
823 => 0.044382463423795
824 => 0.046468392514362
825 => 0.046612817718817
826 => 0.048698595972968
827 => 0.050678247906012
828 => 0.049434863996016
829 => 0.050607319019901
830 => 0.051875424719894
831 => 0.054321806357915
901 => 0.053497951086973
902 => 0.05286689086089
903 => 0.052270541996502
904 => 0.053511449315577
905 => 0.055107856757589
906 => 0.055451707630398
907 => 0.056008877405491
908 => 0.055423081514459
909 => 0.056128608141907
910 => 0.058619427160906
911 => 0.057946385874905
912 => 0.056990559051997
913 => 0.058956821446695
914 => 0.059668404163685
915 => 0.064662664330281
916 => 0.070968124093206
917 => 0.068357622347474
918 => 0.066737199673534
919 => 0.067118037438849
920 => 0.069420577890986
921 => 0.070160080805232
922 => 0.068149856962372
923 => 0.06885990200778
924 => 0.072772320018069
925 => 0.074871206755191
926 => 0.072020636648082
927 => 0.06415602677782
928 => 0.056904497304522
929 => 0.058827929461469
930 => 0.05860987194592
1001 => 0.062813277013889
1002 => 0.057930334062823
1003 => 0.058012550299114
1004 => 0.062302877332405
1005 => 0.061158291634749
1006 => 0.059304209392007
1007 => 0.056918034156744
1008 => 0.052506968539867
1009 => 0.048599964711335
1010 => 0.056262498948332
1011 => 0.055932076538619
1012 => 0.055453575923496
1013 => 0.056518427263278
1014 => 0.061689043105933
1015 => 0.061569843675109
1016 => 0.060811557712295
1017 => 0.061386710931864
1018 => 0.059203382251791
1019 => 0.059766075766116
1020 => 0.056903348625204
1021 => 0.058197420850942
1022 => 0.059300231364224
1023 => 0.059521636902154
1024 => 0.060020474884358
1025 => 0.05575795894321
1026 => 0.057671703459892
1027 => 0.058795849069831
1028 => 0.053716918307359
1029 => 0.058695454938665
1030 => 0.055683758023917
1031 => 0.054661542856881
1101 => 0.056037820912687
1102 => 0.055501484015865
1103 => 0.055040373046737
1104 => 0.054783065203072
1105 => 0.055793651912989
1106 => 0.055746506835059
1107 => 0.054092990831206
1108 => 0.051936046610115
1109 => 0.052659987889994
1110 => 0.052396973236028
1111 => 0.051443774200492
1112 => 0.052086115260753
1113 => 0.049257570312733
1114 => 0.044391205744637
1115 => 0.047606075239099
1116 => 0.047482306260667
1117 => 0.047419896329266
1118 => 0.049835781901887
1119 => 0.049603550248043
1120 => 0.049182047522297
1121 => 0.051436032972387
1122 => 0.050613297962721
1123 => 0.053148773401762
1124 => 0.054818801510184
1125 => 0.054395228362139
1126 => 0.055965897870056
1127 => 0.052676666034927
1128 => 0.053769216909481
1129 => 0.053994390130516
1130 => 0.05140821914181
1201 => 0.049641546218669
1202 => 0.049523729276242
1203 => 0.046460561890042
1204 => 0.048096881182726
1205 => 0.049536774444796
1206 => 0.048847177312496
1207 => 0.048628871461538
1208 => 0.04974414870932
1209 => 0.049830815303176
1210 => 0.047854807778738
1211 => 0.048265682315089
1212 => 0.04997909743388
1213 => 0.048222508650265
1214 => 0.044809743580852
1215 => 0.043963330658469
1216 => 0.043850403572138
1217 => 0.041554864596779
1218 => 0.044019892017223
1219 => 0.042943841489572
1220 => 0.046343072213358
1221 => 0.044401449854372
1222 => 0.044317750395147
1223 => 0.044191226386488
1224 => 0.042215361162876
1225 => 0.042647950074061
1226 => 0.044085941499993
1227 => 0.044599033040898
1228 => 0.044545513389547
1229 => 0.044078894557512
1230 => 0.044292510269343
1231 => 0.04360437963289
]
'min_raw' => 0.024076925454703
'max_raw' => 0.074871206755191
'avg_raw' => 0.049474066104947
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.024076'
'max' => '$0.074871'
'avg' => '$0.049474'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.013715831887578
'max_diff' => 0.046762558326603
'year' => 2033
]
8 => [
'items' => [
101 => 0.043361386382957
102 => 0.042594432845612
103 => 0.041467223022037
104 => 0.041623968461585
105 => 0.039390670850589
106 => 0.038173851782043
107 => 0.037837052301287
108 => 0.037386669959801
109 => 0.037887924185179
110 => 0.039384344199056
111 => 0.037579344179105
112 => 0.034484798250928
113 => 0.034670785734061
114 => 0.035088644388482
115 => 0.034309967550381
116 => 0.033573015272511
117 => 0.034213735487291
118 => 0.032902535582844
119 => 0.035247096632603
120 => 0.035183682826763
121 => 0.036057590199431
122 => 0.036604062413944
123 => 0.035344620881971
124 => 0.035027874742572
125 => 0.035208307738883
126 => 0.032226152229325
127 => 0.035813884471926
128 => 0.035844911329344
129 => 0.035579240539181
130 => 0.037489597199561
131 => 0.041521045608147
201 => 0.0400042525522
202 => 0.039416904435625
203 => 0.038300355236666
204 => 0.039788090750147
205 => 0.039673855875001
206 => 0.039157242447301
207 => 0.038844793034297
208 => 0.03942049065798
209 => 0.038773457727759
210 => 0.038657232834215
211 => 0.037953036433272
212 => 0.03770167035703
213 => 0.037515568921353
214 => 0.037310689526621
215 => 0.037762602418635
216 => 0.036738508351239
217 => 0.035503551299139
218 => 0.035400877982678
219 => 0.035684368036558
220 => 0.035558944791068
221 => 0.035400277504432
222 => 0.035097338443778
223 => 0.035007462895751
224 => 0.035299514825422
225 => 0.034969805224509
226 => 0.035456309700867
227 => 0.035324007402818
228 => 0.03458497752072
301 => 0.03366387266372
302 => 0.033655672898409
303 => 0.033457222367883
304 => 0.033204465780021
305 => 0.033134154679565
306 => 0.034159775817916
307 => 0.036282780880043
308 => 0.035865984187142
309 => 0.036167162512806
310 => 0.03764866178793
311 => 0.038119585857254
312 => 0.037785335107296
313 => 0.037327792065064
314 => 0.037347921636852
315 => 0.038911484719855
316 => 0.039009002231436
317 => 0.039255397522861
318 => 0.039572085103642
319 => 0.037839268371698
320 => 0.037266306124607
321 => 0.0369948048252
322 => 0.036158685907252
323 => 0.03706036847684
324 => 0.036534996657439
325 => 0.036605887265133
326 => 0.036559719663873
327 => 0.036584930296
328 => 0.035246441280007
329 => 0.035734116328523
330 => 0.034923261974234
331 => 0.033837619016513
401 => 0.033833979560643
402 => 0.034099689136516
403 => 0.03394163468357
404 => 0.033516314214644
405 => 0.033576728979799
406 => 0.033047432065638
407 => 0.033640995208408
408 => 0.033658016475472
409 => 0.033429462333902
410 => 0.034343928251269
411 => 0.034718585683747
412 => 0.034568146451662
413 => 0.034708030466183
414 => 0.035883303971456
415 => 0.036074924833594
416 => 0.036160030162792
417 => 0.036046000295962
418 => 0.03472951230838
419 => 0.034787904148768
420 => 0.034359463567592
421 => 0.033997476424455
422 => 0.034011954011808
423 => 0.034198062458415
424 => 0.035010808959865
425 => 0.036721186058144
426 => 0.036786093618755
427 => 0.036864763475701
428 => 0.036544773631196
429 => 0.036448261632203
430 => 0.036575585870736
501 => 0.037217913581494
502 => 0.038870154843836
503 => 0.038286142432241
504 => 0.037811331250919
505 => 0.038227868665113
506 => 0.038163745995126
507 => 0.037622486129661
508 => 0.03760729476796
509 => 0.036568444034886
510 => 0.036184404572355
511 => 0.035863472452609
512 => 0.035513022955991
513 => 0.035305264747222
514 => 0.035624475780308
515 => 0.035697483120368
516 => 0.034999522617673
517 => 0.034904393180208
518 => 0.035474362793233
519 => 0.03522354041715
520 => 0.035481517451047
521 => 0.035541370335797
522 => 0.035531732642824
523 => 0.035269845275426
524 => 0.035436764473812
525 => 0.035041950808622
526 => 0.034612650246823
527 => 0.034338783234766
528 => 0.034099797943558
529 => 0.034232400873027
530 => 0.033759695641809
531 => 0.033608467724666
601 => 0.0353802160052
602 => 0.036689025509534
603 => 0.036669994900995
604 => 0.036554150965792
605 => 0.036382030376165
606 => 0.03720532188829
607 => 0.036918503587699
608 => 0.03712718786585
609 => 0.037180306773091
610 => 0.037341081706918
611 => 0.037398544926688
612 => 0.037224851165769
613 => 0.036641913689218
614 => 0.035189288921686
615 => 0.034513088171114
616 => 0.034289930660411
617 => 0.034298042012089
618 => 0.034074294722152
619 => 0.034140198326688
620 => 0.034051376138002
621 => 0.033883168401025
622 => 0.034222014519265
623 => 0.034261063377822
624 => 0.034181972644916
625 => 0.034200601375641
626 => 0.033545763887267
627 => 0.033595549759276
628 => 0.033318335697448
629 => 0.033266361402721
630 => 0.032565588394209
701 => 0.03132406743096
702 => 0.032011990561956
703 => 0.031181076156343
704 => 0.030866396280529
705 => 0.032356041869869
706 => 0.032206522769036
707 => 0.031950611062802
708 => 0.031572064312608
709 => 0.031431657640695
710 => 0.030578591149502
711 => 0.03052818743027
712 => 0.030950990218038
713 => 0.030755881279239
714 => 0.030481874435631
715 => 0.029489449423713
716 => 0.028373635129688
717 => 0.028407314549466
718 => 0.028762234315932
719 => 0.029794211404385
720 => 0.029391000102542
721 => 0.029098465676737
722 => 0.029043682772337
723 => 0.029729405516689
724 => 0.030699846863303
725 => 0.031155156230732
726 => 0.03070395847556
727 => 0.030185646788631
728 => 0.03021719401939
729 => 0.030427063612216
730 => 0.030449117939026
731 => 0.030111750314137
801 => 0.030206717324401
802 => 0.030062453751845
803 => 0.029177108473356
804 => 0.029161095384728
805 => 0.028943817375266
806 => 0.028937238283491
807 => 0.028567594186856
808 => 0.028515878422508
809 => 0.027781927632846
810 => 0.028265016265209
811 => 0.027940985773912
812 => 0.027452595392461
813 => 0.027368396706613
814 => 0.027365865592443
815 => 0.027867333312103
816 => 0.028259156322936
817 => 0.027946622423037
818 => 0.027875464512245
819 => 0.028635244835227
820 => 0.028538555863576
821 => 0.028454823837704
822 => 0.030612954484607
823 => 0.028904625676549
824 => 0.028159696808236
825 => 0.027237705875543
826 => 0.02753791077231
827 => 0.027601168354986
828 => 0.025383946363218
829 => 0.024484419677295
830 => 0.024175736016634
831 => 0.023998084205777
901 => 0.024079042366796
902 => 0.023269362845508
903 => 0.023813480874677
904 => 0.023112366849748
905 => 0.022994822801846
906 => 0.02424850152978
907 => 0.024422943600887
908 => 0.023678719530641
909 => 0.024156631862671
910 => 0.023983334207599
911 => 0.023124385437386
912 => 0.023091579912363
913 => 0.022660589612979
914 => 0.021986173250611
915 => 0.021677946876002
916 => 0.021517419903961
917 => 0.021583656461233
918 => 0.021550165231004
919 => 0.021331612299419
920 => 0.021562692429214
921 => 0.020972378186491
922 => 0.020737310298553
923 => 0.020631135587106
924 => 0.020107197719469
925 => 0.020941015863106
926 => 0.021105288541567
927 => 0.021269884887951
928 => 0.022702583708523
929 => 0.022631010124212
930 => 0.023278000468634
1001 => 0.023252859613588
1002 => 0.023068327486811
1003 => 0.022289816797997
1004 => 0.022600117282939
1005 => 0.021645060621688
1006 => 0.022360654009838
1007 => 0.022034087071381
1008 => 0.022250241399449
1009 => 0.021861576427732
1010 => 0.022076679670664
1011 => 0.021144243687745
1012 => 0.020273548086623
1013 => 0.020623941413704
1014 => 0.021004859032577
1015 => 0.0218307854863
1016 => 0.021338870504208
1017 => 0.021515781733133
1018 => 0.020923158730816
1019 => 0.019700408202644
1020 => 0.019707328837843
1021 => 0.019519235308153
1022 => 0.019356695036395
1023 => 0.021395372857346
1024 => 0.021141831043584
1025 => 0.020737845346085
1026 => 0.02127859625594
1027 => 0.021421579379377
1028 => 0.02142564990789
1029 => 0.021820167812919
1030 => 0.022030722089554
1031 => 0.022067833193406
1101 => 0.022688615641092
1102 => 0.022896693729238
1103 => 0.023753737925998
1104 => 0.022012858030243
1105 => 0.021977005754407
1106 => 0.021286205730183
1107 => 0.020848089433704
1108 => 0.021316203927828
1109 => 0.021730889465621
1110 => 0.021299091165774
1111 => 0.021355474907975
1112 => 0.020775820969647
1113 => 0.020983019977346
1114 => 0.021161487675498
1115 => 0.021062948302425
1116 => 0.020915430091576
1117 => 0.021696889980534
1118 => 0.021652796951033
1119 => 0.022380510365316
1120 => 0.022947815011035
1121 => 0.023964526353999
1122 => 0.022903535065255
1123 => 0.022864868325635
1124 => 0.023242841907763
1125 => 0.022896635863452
1126 => 0.02311542613283
1127 => 0.023929275859118
1128 => 0.023946471221387
1129 => 0.02365842674841
1130 => 0.023640899216052
1201 => 0.023696221307949
1202 => 0.02402024452814
1203 => 0.023907020858777
1204 => 0.024038046155436
1205 => 0.024201895295239
1206 => 0.024879644808058
1207 => 0.025043047921089
1208 => 0.024646063071225
1209 => 0.024681906358317
1210 => 0.02453342312699
1211 => 0.024389990186018
1212 => 0.024712406490625
1213 => 0.025301628624402
1214 => 0.025297963104089
1215 => 0.025434651186283
1216 => 0.025519806729105
1217 => 0.025154256801646
1218 => 0.024916297240513
1219 => 0.025007546078011
1220 => 0.025153454956313
1221 => 0.024960229795289
1222 => 0.023767554590848
1223 => 0.024129336059488
1224 => 0.024069117932896
1225 => 0.023983359997855
1226 => 0.024347134062147
1227 => 0.024312047166213
1228 => 0.023261058411726
1229 => 0.023328339301863
1230 => 0.023265149985496
1231 => 0.023469327593996
]
'min_raw' => 0.019356695036395
'max_raw' => 0.043361386382957
'avg_raw' => 0.031359040709676
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.019356'
'max' => '$0.043361'
'avg' => '$0.031359'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0047202304183085
'max_diff' => -0.031509820372234
'year' => 2034
]
9 => [
'items' => [
101 => 0.022885609602539
102 => 0.023065157325311
103 => 0.023177767973878
104 => 0.023244096510999
105 => 0.023483720668986
106 => 0.023455603539778
107 => 0.023481972868756
108 => 0.023837272236619
109 => 0.025634254515248
110 => 0.025732060295856
111 => 0.025250428861359
112 => 0.025442831119681
113 => 0.025073460857452
114 => 0.025321421589052
115 => 0.025491070024093
116 => 0.024724461367661
117 => 0.024679067778276
118 => 0.024308172993583
119 => 0.024507470842322
120 => 0.024190373634955
121 => 0.024268178198053
122 => 0.02405062985675
123 => 0.024442173557653
124 => 0.024879980255003
125 => 0.024990587516264
126 => 0.024699627431307
127 => 0.024488953154593
128 => 0.024119078525106
129 => 0.024734188277137
130 => 0.024914065113761
131 => 0.024733243460691
201 => 0.024691343132643
202 => 0.024611942086705
203 => 0.024708188439892
204 => 0.024913085465879
205 => 0.024816459812277
206 => 0.024880282758806
207 => 0.024637055500575
208 => 0.025154377813882
209 => 0.025976010147809
210 => 0.025978651830113
211 => 0.025882025655663
212 => 0.025842488306918
213 => 0.02594163262567
214 => 0.02599541435148
215 => 0.026316028898366
216 => 0.026660061081021
217 => 0.028265509164473
218 => 0.027814705766944
219 => 0.029239154815116
220 => 0.03036570907066
221 => 0.030703513433651
222 => 0.030392749314623
223 => 0.029329642050576
224 => 0.029277480936381
225 => 0.030866212021176
226 => 0.030417322721228
227 => 0.030363928767353
228 => 0.029795907308633
301 => 0.030131678341563
302 => 0.030058240291197
303 => 0.029942314735983
304 => 0.0305829424768
305 => 0.031782140418378
306 => 0.031595234173176
307 => 0.031455717331464
308 => 0.030844395143824
309 => 0.031212547644537
310 => 0.03108145559053
311 => 0.031644710247618
312 => 0.031311050666377
313 => 0.030413921943286
314 => 0.030556792649414
315 => 0.030535198029598
316 => 0.030979613775183
317 => 0.030846211199435
318 => 0.030509149035649
319 => 0.031778041690183
320 => 0.03169564685915
321 => 0.031812463891475
322 => 0.031863890361791
323 => 0.032636242960209
324 => 0.032952651107255
325 => 0.033024481296138
326 => 0.033325044563947
327 => 0.033017003008229
328 => 0.034249388861011
329 => 0.035068853541403
330 => 0.036020703936946
331 => 0.0374116131981
401 => 0.037934607946924
402 => 0.037840133626694
403 => 0.038894705154273
404 => 0.040789746747525
405 => 0.038223175714003
406 => 0.040925781244423
407 => 0.040070167536574
408 => 0.038041522827095
409 => 0.037910902023954
410 => 0.039284723774263
411 => 0.042331728191003
412 => 0.041568488143448
413 => 0.042332976578298
414 => 0.041441160210851
415 => 0.041396874011389
416 => 0.042289663047902
417 => 0.044375713295113
418 => 0.043384709017087
419 => 0.04196386138032
420 => 0.043012993164471
421 => 0.042104138120476
422 => 0.040056233333846
423 => 0.041567904508168
424 => 0.040557093043815
425 => 0.040852101566806
426 => 0.042976676918018
427 => 0.042721042390831
428 => 0.04305185714013
429 => 0.042467977766546
430 => 0.041922542362292
501 => 0.040904446675686
502 => 0.040603038734393
503 => 0.040686337045845
504 => 0.040602997455887
505 => 0.040033382276014
506 => 0.039910373932153
507 => 0.039705354636601
508 => 0.039768898689108
509 => 0.039383402432958
510 => 0.040110913515903
511 => 0.040245945983703
512 => 0.040775367880481
513 => 0.040830334218094
514 => 0.042304766664771
515 => 0.041492674049972
516 => 0.042037495888683
517 => 0.041988761895366
518 => 0.038085489709338
519 => 0.038623326177711
520 => 0.039460030940117
521 => 0.039083096578779
522 => 0.038550199580905
523 => 0.038119856682992
524 => 0.037467843187833
525 => 0.038385539661459
526 => 0.039592212938137
527 => 0.040860937443705
528 => 0.042385226807022
529 => 0.042045023165814
530 => 0.040832441914331
531 => 0.040886837423482
601 => 0.041223089057205
602 => 0.040787612639851
603 => 0.040659182142863
604 => 0.041205444679104
605 => 0.04120920648897
606 => 0.040708138241721
607 => 0.040151292579424
608 => 0.040148959375767
609 => 0.040049874068652
610 => 0.041458787266868
611 => 0.042233547068695
612 => 0.042322372031387
613 => 0.042227568440985
614 => 0.042264054580311
615 => 0.041813238922295
616 => 0.042843669831289
617 => 0.043789295132437
618 => 0.043535847351391
619 => 0.043155893097879
620 => 0.04285324123388
621 => 0.043464552190647
622 => 0.043437331476035
623 => 0.043781035920376
624 => 0.043765443501448
625 => 0.043649868624194
626 => 0.043535851478934
627 => 0.043987916571977
628 => 0.043857729085124
629 => 0.043727339381145
630 => 0.04346582286815
701 => 0.043501367305595
702 => 0.043121478656542
703 => 0.042945724784968
704 => 0.040302808248998
705 => 0.039596534590797
706 => 0.039818742661193
707 => 0.039891899327598
708 => 0.039584528126434
709 => 0.040025219471719
710 => 0.039956538192364
711 => 0.04022373687313
712 => 0.040056802737806
713 => 0.040063653772948
714 => 0.040554571470827
715 => 0.040697086967034
716 => 0.040624602435422
717 => 0.040675368116739
718 => 0.04184524181583
719 => 0.041678923186274
720 => 0.041590569729176
721 => 0.04161504424061
722 => 0.041913972053103
723 => 0.041997655519747
724 => 0.041643082791242
725 => 0.041810301339766
726 => 0.042522296696186
727 => 0.042771454775486
728 => 0.043566647761949
729 => 0.043228835647872
730 => 0.043848904403427
731 => 0.045754784360989
801 => 0.047277333147951
802 => 0.045877134361471
803 => 0.048673101313308
804 => 0.050850162642951
805 => 0.050766603403034
806 => 0.050386982403875
807 => 0.047908455960246
808 => 0.045627678974071
809 => 0.047535645769913
810 => 0.047540509569652
811 => 0.047376613529797
812 => 0.046358669302345
813 => 0.047341191277204
814 => 0.047419180303573
815 => 0.047375527187762
816 => 0.046595071735271
817 => 0.045403460511595
818 => 0.045636298492387
819 => 0.046017691854691
820 => 0.04529563465286
821 => 0.045064893625886
822 => 0.045493885095306
823 => 0.046876184993702
824 => 0.046614869205028
825 => 0.046608045193726
826 => 0.047726064952811
827 => 0.046925804089071
828 => 0.045639235324975
829 => 0.045314359744284
830 => 0.044161270295243
831 => 0.044957713284859
901 => 0.044986375850176
902 => 0.044550172164213
903 => 0.045674630850035
904 => 0.045664268765288
905 => 0.046731774933888
906 => 0.048772445791245
907 => 0.04816891900341
908 => 0.047467083012687
909 => 0.047543392044679
910 => 0.048380313778901
911 => 0.047874291793326
912 => 0.048056260827449
913 => 0.048380038346974
914 => 0.048575381363447
915 => 0.047515285190767
916 => 0.047268126062654
917 => 0.046762525227601
918 => 0.046630623407222
919 => 0.047042424737666
920 => 0.046933929636249
921 => 0.044983966872548
922 => 0.04478018491425
923 => 0.044786434615978
924 => 0.044274015192535
925 => 0.043492452577033
926 => 0.045546352465895
927 => 0.045381395560509
928 => 0.045199295903613
929 => 0.045221602072536
930 => 0.046113130401165
1001 => 0.045595998947301
1002 => 0.046970877673578
1003 => 0.046688243940093
1004 => 0.046398361717819
1005 => 0.046358291164672
1006 => 0.046246711240685
1007 => 0.045864062164274
1008 => 0.045401990410863
1009 => 0.045096890615292
1010 => 0.041599497779988
1011 => 0.042248593546822
1012 => 0.042995319059624
1013 => 0.043253085714329
1014 => 0.042812158014547
1015 => 0.045881472677348
1016 => 0.046442266042893
1017 => 0.044743586359009
1018 => 0.044425832746789
1019 => 0.045902304551265
1020 => 0.045011811561828
1021 => 0.045412800500446
1022 => 0.044546081744378
1023 => 0.04630718734308
1024 => 0.046293770669077
1025 => 0.045608660814808
1026 => 0.046187710972206
1027 => 0.046087086757633
1028 => 0.045313599419515
1029 => 0.046331708271343
1030 => 0.046332213240631
1031 => 0.04567280990147
1101 => 0.044902771163282
1102 => 0.044765106424397
1103 => 0.044661394536302
1104 => 0.045387293733629
1105 => 0.046038132684124
1106 => 0.047249182614337
1107 => 0.047553669340629
1108 => 0.048742101304176
1109 => 0.048034447933586
1110 => 0.048348141507123
1111 => 0.048688700255863
1112 => 0.048851976643642
1113 => 0.04858592653165
1114 => 0.05043205054915
1115 => 0.050587919980005
1116 => 0.050640181651906
1117 => 0.050017679020304
1118 => 0.050570607055722
1119 => 0.050311910339002
1120 => 0.050984967327889
1121 => 0.051090511257769
1122 => 0.051001119303995
1123 => 0.051034620613236
1124 => 0.049459279442894
1125 => 0.049377589692625
1126 => 0.048263744151267
1127 => 0.048717644442501
1128 => 0.047869099604046
1129 => 0.0481381819133
1130 => 0.048256790831309
1201 => 0.048194836263538
1202 => 0.04874330728394
1203 => 0.048276994871372
1204 => 0.047046319745745
1205 => 0.045815309323502
1206 => 0.04579985499041
1207 => 0.045475751675373
1208 => 0.045241484341084
1209 => 0.045286612540748
1210 => 0.045445650202528
1211 => 0.045232240783066
1212 => 0.045277782502841
1213 => 0.046034078493988
1214 => 0.046185748261356
1215 => 0.045670315130635
1216 => 0.043600776734144
1217 => 0.043092906820601
1218 => 0.043457953642957
1219 => 0.043283484773897
1220 => 0.034933150350015
1221 => 0.036894937560645
1222 => 0.035729310216087
1223 => 0.036266484924395
1224 => 0.035076681243339
1225 => 0.035644517922892
1226 => 0.035539659222254
1227 => 0.038694155003443
1228 => 0.038644901890687
1229 => 0.038668476749347
1230 => 0.037543187321554
1231 => 0.039335803934966
]
'min_raw' => 0.022885609602539
'max_raw' => 0.051090511257769
'avg_raw' => 0.036988060430154
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.022885'
'max' => '$0.05109'
'avg' => '$0.036988'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0035289145661448
'max_diff' => 0.0077291248748119
'year' => 2035
]
10 => [
'items' => [
101 => 0.040218911339141
102 => 0.040055471661771
103 => 0.040096605907395
104 => 0.03938978328329
105 => 0.038675320337386
106 => 0.037882870975319
107 => 0.039355143940338
108 => 0.039191452319166
109 => 0.039566902003749
110 => 0.040521776261809
111 => 0.040662385123523
112 => 0.040851364859581
113 => 0.040783629076698
114 => 0.042397370230977
115 => 0.042201935529386
116 => 0.042672876929818
117 => 0.041704114738721
118 => 0.040607868363743
119 => 0.040816228960632
120 => 0.040796162159622
121 => 0.040540688751156
122 => 0.040310058780981
123 => 0.03992612486023
124 => 0.041140948597014
125 => 0.041091628971829
126 => 0.041890056375778
127 => 0.04174892657662
128 => 0.040806427237523
129 => 0.040840088785803
130 => 0.041066478875172
131 => 0.041850017559354
201 => 0.042082625188201
202 => 0.041974872066708
203 => 0.042229915712797
204 => 0.042431491811699
205 => 0.042255230567299
206 => 0.044750718085933
207 => 0.043714417683414
208 => 0.04421950328907
209 => 0.044339963229882
210 => 0.044031407624492
211 => 0.044098322286753
212 => 0.044199679766925
213 => 0.044815102538698
214 => 0.046430149965844
215 => 0.047145443477328
216 => 0.049297439298586
217 => 0.047086048308565
218 => 0.046954833518863
219 => 0.04734247295032
220 => 0.04860592230929
221 => 0.049629829344972
222 => 0.049969518379322
223 => 0.050014413892866
224 => 0.050651693103406
225 => 0.051016969662334
226 => 0.050574310645139
227 => 0.050199203476398
228 => 0.048855616157982
229 => 0.049011140048555
301 => 0.050082545428985
302 => 0.051595968634304
303 => 0.052894643189315
304 => 0.052439892623528
305 => 0.055909318436616
306 => 0.05625329783465
307 => 0.056205771004027
308 => 0.056989407263746
309 => 0.055434048872952
310 => 0.054769103027238
311 => 0.050280305903927
312 => 0.051541474799922
313 => 0.053374657856103
314 => 0.053132029204534
315 => 0.051800722668012
316 => 0.052893633273926
317 => 0.052532282849136
318 => 0.052247270776662
319 => 0.053552966332976
320 => 0.052117300433791
321 => 0.053360335990532
322 => 0.051766130031456
323 => 0.052441969885807
324 => 0.052058330497782
325 => 0.052306592198909
326 => 0.050855259366938
327 => 0.051638363333957
328 => 0.050822679667303
329 => 0.050822292927039
330 => 0.050804286664889
331 => 0.051763934881412
401 => 0.0517952289753
402 => 0.051086047493342
403 => 0.050983843362295
404 => 0.051361745602129
405 => 0.050919321052036
406 => 0.051126328714438
407 => 0.050925591103248
408 => 0.050880400838789
409 => 0.050520317123084
410 => 0.050365183157651
411 => 0.050426015182807
412 => 0.05021836411989
413 => 0.050093246843415
414 => 0.050779397689442
415 => 0.050412814971656
416 => 0.050723213630405
417 => 0.050369475183327
418 => 0.049143263609249
419 => 0.048438056366044
420 => 0.046121856372484
421 => 0.046778727817421
422 => 0.047214234264996
423 => 0.04707029938667
424 => 0.047379527200718
425 => 0.047398511277056
426 => 0.047297978162505
427 => 0.047181573694944
428 => 0.047124914437706
429 => 0.047547206121098
430 => 0.047792360656991
501 => 0.047257943163335
502 => 0.047132736621867
503 => 0.047673062213952
504 => 0.048002660512988
505 => 0.050436229167783
506 => 0.050255942541512
507 => 0.050708426593987
508 => 0.050657483833613
509 => 0.051131759206969
510 => 0.051906998998679
511 => 0.050330719741678
512 => 0.050604307317057
513 => 0.050537229961634
514 => 0.051269562939519
515 => 0.051271849203139
516 => 0.050832779000152
517 => 0.051070806080292
518 => 0.050937945894089
519 => 0.051178042207688
520 => 0.050253534703703
521 => 0.051379485049139
522 => 0.052017826340364
523 => 0.052026689709812
524 => 0.052329258415663
525 => 0.052636685744405
526 => 0.053226765730648
527 => 0.052620228733855
528 => 0.051529127721811
529 => 0.051607901690646
530 => 0.050968189566503
531 => 0.050978943242883
601 => 0.050921539275584
602 => 0.051093812902617
603 => 0.05029133907705
604 => 0.050479678079949
605 => 0.050216002372979
606 => 0.050603734137565
607 => 0.050186598853227
608 => 0.050537197614902
609 => 0.050688504417908
610 => 0.051246829778403
611 => 0.050104133743522
612 => 0.047774099174678
613 => 0.048263900689988
614 => 0.047539445775766
615 => 0.047606496836272
616 => 0.04774195064959
617 => 0.047302900522896
618 => 0.047386657451009
619 => 0.047383665064149
620 => 0.047357878290802
621 => 0.047243664395928
622 => 0.047078031651831
623 => 0.047737861525244
624 => 0.047849979478366
625 => 0.04809920379968
626 => 0.048840726329439
627 => 0.048766630742411
628 => 0.04888748371905
629 => 0.048623662349606
630 => 0.047618734752942
701 => 0.047673307156294
702 => 0.046992788412039
703 => 0.048081801405375
704 => 0.047823908754284
705 => 0.047657643684434
706 => 0.047612276719691
707 => 0.048355637340374
708 => 0.048578062488833
709 => 0.04843946206271
710 => 0.048155188545111
711 => 0.048701077736821
712 => 0.048847134655307
713 => 0.048879831412984
714 => 0.049847042396824
715 => 0.048933887762607
716 => 0.049153693159039
717 => 0.050868552115788
718 => 0.049313411676377
719 => 0.050137204250903
720 => 0.05009688389119
721 => 0.050518308296697
722 => 0.050062314789482
723 => 0.050067967375507
724 => 0.050442163697835
725 => 0.049916672449788
726 => 0.049786553426771
727 => 0.049606794928404
728 => 0.049999291033256
729 => 0.050234574697043
730 => 0.052130788230355
731 => 0.053355828650718
801 => 0.053302646415256
802 => 0.053788632494407
803 => 0.053569691314627
804 => 0.052862672491353
805 => 0.054069467410922
806 => 0.053687587003926
807 => 0.053719068760694
808 => 0.053717897008135
809 => 0.053971814094223
810 => 0.053791890567571
811 => 0.053437242827768
812 => 0.053672674548166
813 => 0.054371822589368
814 => 0.056541999561741
815 => 0.057756459346502
816 => 0.056468887557778
817 => 0.057357037336366
818 => 0.056824463949337
819 => 0.056727679522228
820 => 0.057285503216935
821 => 0.057844303308175
822 => 0.057808710158122
823 => 0.057403049986584
824 => 0.057173902848928
825 => 0.058909081745184
826 => 0.060187531997944
827 => 0.060100350261545
828 => 0.060485142092991
829 => 0.061614902811279
830 => 0.061718193972737
831 => 0.061705181660514
901 => 0.061449163739522
902 => 0.062561559884644
903 => 0.063489540319653
904 => 0.061389902987881
905 => 0.062189417397549
906 => 0.062548345174795
907 => 0.063075357640864
908 => 0.063964516008667
909 => 0.064930377833711
910 => 0.065066961285908
911 => 0.064970048790454
912 => 0.064333036953078
913 => 0.065389894487169
914 => 0.066008976844281
915 => 0.066377626220493
916 => 0.06731245970116
917 => 0.062550561790553
918 => 0.059179853767743
919 => 0.058653469036368
920 => 0.059723893086677
921 => 0.060006155372272
922 => 0.059892375798876
923 => 0.056098337467837
924 => 0.058633494209749
925 => 0.061361109702013
926 => 0.061465888521635
927 => 0.062831389868812
928 => 0.063276053081245
929 => 0.064375460646076
930 => 0.064306692403559
1001 => 0.0645743806502
1002 => 0.064512843758012
1003 => 0.066549264764286
1004 => 0.068795739545651
1005 => 0.068717951267325
1006 => 0.06839499393842
1007 => 0.068874640644251
1008 => 0.071193243365489
1009 => 0.070979783581769
1010 => 0.071187141579191
1011 => 0.073920904858254
1012 => 0.077475185994326
1013 => 0.075823865562629
1014 => 0.079406755744758
1015 => 0.081661995193561
1016 => 0.085562198624154
1017 => 0.085073873945737
1018 => 0.086592194520252
1019 => 0.084199670854934
1020 => 0.078705952910556
1021 => 0.07783655101675
1022 => 0.079577115624911
1023 => 0.083856123872264
1024 => 0.079442354427505
1025 => 0.080335254237674
1026 => 0.080078099032276
1027 => 0.08006439632422
1028 => 0.08058737295779
1029 => 0.07982876807417
1030 => 0.076738075307889
1031 => 0.078154521589109
1101 => 0.077607563656593
1102 => 0.078214454261134
1103 => 0.081489592553121
1104 => 0.080041575844689
1105 => 0.07851620786968
1106 => 0.080429357816592
1107 => 0.082865455128659
1108 => 0.082713008536957
1109 => 0.082417198431325
1110 => 0.084084664508662
1111 => 0.086838829946704
1112 => 0.087583269797474
1113 => 0.08813280007591
1114 => 0.088208571016916
1115 => 0.088989058800656
1116 => 0.084792179279237
1117 => 0.09145273486324
1118 => 0.092602828818462
1119 => 0.092386658821391
1120 => 0.093664939849269
1121 => 0.093288837144007
1122 => 0.09274392333279
1123 => 0.094770270660148
1124 => 0.092447226967129
1125 => 0.089149958907957
1126 => 0.087341012438128
1127 => 0.089723179073148
1128 => 0.091177885110997
1129 => 0.092139353265333
1130 => 0.092430292947901
1201 => 0.085117971089501
1202 => 0.081177035167786
1203 => 0.083703129910683
1204 => 0.086785139838764
1205 => 0.084775058558472
1206 => 0.084853849939072
1207 => 0.081988002273444
1208 => 0.087038703766287
1209 => 0.086302859041865
1210 => 0.09012042277385
1211 => 0.089209330551349
1212 => 0.092322405577812
1213 => 0.091502628592839
1214 => 0.094905477024348
1215 => 0.09626296539212
1216 => 0.098542399637804
1217 => 0.1002191607479
1218 => 0.10120378694307
1219 => 0.10114467367955
1220 => 0.10504625320366
1221 => 0.1027456280691
1222 => 0.09985550068438
1223 => 0.099803227398226
1224 => 0.10130006532419
1225 => 0.10443702697959
1226 => 0.1052503954959
1227 => 0.10570495753474
1228 => 0.10500877994883
1229 => 0.10251161625256
1230 => 0.10143335362942
1231 => 0.10235206462461
]
'min_raw' => 0.037882870975319
'max_raw' => 0.10570495753474
'avg_raw' => 0.071793914255029
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.037882'
'max' => '$0.1057049'
'avg' => '$0.071793'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.01499726137278
'max_diff' => 0.05461444627697
'year' => 2036
]
11 => [
'items' => [
101 => 0.10122856002322
102 => 0.10316804416493
103 => 0.10583137014296
104 => 0.10528140386043
105 => 0.10711985868737
106 => 0.10902246602217
107 => 0.11174327996237
108 => 0.11245460147779
109 => 0.11363038889364
110 => 0.1148406603706
111 => 0.11522936695126
112 => 0.11597152842233
113 => 0.11596761686503
114 => 0.11820417041131
115 => 0.12067115823315
116 => 0.12160238902499
117 => 0.12374370288248
118 => 0.12007677794213
119 => 0.12285818263198
120 => 0.1253670792853
121 => 0.12237586926554
122 => 0.12649855541524
123 => 0.12665862997622
124 => 0.12907556579782
125 => 0.12662553831375
126 => 0.12517071981448
127 => 0.12937072631054
128 => 0.13140297715503
129 => 0.13079084666166
130 => 0.12613250338255
131 => 0.12342114778837
201 => 0.11632500721696
202 => 0.12473069225426
203 => 0.12882485623873
204 => 0.12612190048691
205 => 0.12748511414658
206 => 0.13492236585023
207 => 0.1377539897726
208 => 0.13716503179129
209 => 0.13726455599506
210 => 0.13879244886595
211 => 0.14556796728149
212 => 0.14150791959161
213 => 0.14461167392344
214 => 0.14625789402962
215 => 0.14778699500908
216 => 0.14403200628084
217 => 0.13914682111715
218 => 0.13759947790968
219 => 0.12585314480683
220 => 0.12524169715708
221 => 0.12489847306252
222 => 0.12273449369633
223 => 0.12103419867834
224 => 0.11968206095212
225 => 0.11613364777603
226 => 0.1173311330582
227 => 0.1116757030669
228 => 0.1152938467592
301 => 0.10626764393795
302 => 0.11378493386255
303 => 0.10969361472582
304 => 0.11244082549046
305 => 0.11243124073091
306 => 0.10737275470924
307 => 0.10445512553985
308 => 0.10631435240241
309 => 0.10830759118469
310 => 0.10863098747105
311 => 0.11121527358113
312 => 0.11193649228541
313 => 0.10975116594096
314 => 0.10608059594713
315 => 0.10693318563991
316 => 0.10443784783694
317 => 0.10006486431902
318 => 0.10320561742656
319 => 0.10427800862664
320 => 0.10475163767337
321 => 0.10045131062405
322 => 0.099100054500505
323 => 0.09838065707847
324 => 0.10552547772626
325 => 0.10591688712986
326 => 0.1039143812813
327 => 0.1129658976022
328 => 0.11091726068769
329 => 0.11320609004943
330 => 0.10685582206171
331 => 0.10709841085061
401 => 0.10409209221767
402 => 0.10577542976983
403 => 0.10458570104446
404 => 0.10563943273068
405 => 0.1062710351587
406 => 0.10927686048434
407 => 0.11381925555945
408 => 0.10882789041613
409 => 0.10665308114553
410 => 0.10800232058542
411 => 0.11159552301455
412 => 0.11703940862733
413 => 0.11381651877615
414 => 0.11524678256389
415 => 0.1155592315735
416 => 0.11318279191511
417 => 0.11712703134725
418 => 0.11924078130188
419 => 0.1214090513764
420 => 0.12329169952857
421 => 0.12054299662736
422 => 0.12348450274273
423 => 0.12111416805947
424 => 0.11898773280788
425 => 0.11899095773241
426 => 0.11765701383683
427 => 0.11507232945139
428 => 0.11459567399454
429 => 0.11707529587601
430 => 0.11906371780388
501 => 0.11922749375776
502 => 0.12032838630584
503 => 0.12097988317569
504 => 0.12736543816734
505 => 0.12993376120906
506 => 0.13307425800861
507 => 0.13429765850073
508 => 0.13797965536868
509 => 0.13500614386065
510 => 0.13436280594162
511 => 0.12543148591198
512 => 0.12689398906649
513 => 0.12923559772743
514 => 0.12547009817633
515 => 0.12785844094298
516 => 0.12832995039713
517 => 0.12534214794247
518 => 0.12693806232883
519 => 0.1226997868743
520 => 0.11391163838249
521 => 0.11713681506875
522 => 0.11951163069257
523 => 0.11612247598472
524 => 0.12219740462014
525 => 0.11864855672331
526 => 0.11752374231476
527 => 0.11313544028169
528 => 0.11520654992006
529 => 0.11800775536139
530 => 0.11627693607374
531 => 0.11986864597945
601 => 0.12495546507997
602 => 0.12858063529632
603 => 0.12885893085162
604 => 0.12652818927004
605 => 0.13026321752911
606 => 0.13029042313235
607 => 0.12607729599809
608 => 0.12349677908715
609 => 0.12291048021552
610 => 0.1243751697475
611 => 0.12615357323592
612 => 0.12895761986816
613 => 0.13065204652136
614 => 0.13507021257845
615 => 0.13626564163475
616 => 0.13757905573618
617 => 0.1393341820176
618 => 0.14144166112358
619 => 0.13683061681854
620 => 0.13701382220484
621 => 0.13272008159224
622 => 0.12813160396299
623 => 0.13161368652178
624 => 0.13616604626537
625 => 0.13512172991028
626 => 0.13500422298689
627 => 0.13520183703833
628 => 0.13441445661078
629 => 0.13085316411863
630 => 0.12906470532394
701 => 0.13137227345359
702 => 0.13259864321645
703 => 0.13450063576797
704 => 0.13426617503981
705 => 0.13916550359344
706 => 0.14106923452137
707 => 0.14058217868477
708 => 0.14067180868036
709 => 0.14411842259134
710 => 0.14795176611057
711 => 0.15154219817056
712 => 0.15519453987463
713 => 0.15079149939705
714 => 0.14855590698433
715 => 0.15086246770191
716 => 0.14963857411797
717 => 0.15667142968173
718 => 0.157158369342
719 => 0.16419071635026
720 => 0.1708652510574
721 => 0.16667309539455
722 => 0.17062610936578
723 => 0.17490161626962
724 => 0.18314976276312
725 => 0.1803720771974
726 => 0.17824441358594
727 => 0.17623378175391
728 => 0.18041758741755
729 => 0.1857999865659
730 => 0.18695930379048
731 => 0.18883784058756
801 => 0.18686278884198
802 => 0.18924152112472
803 => 0.1976394913507
804 => 0.19537028566471
805 => 0.19214764879758
806 => 0.19877703974136
807 => 0.20117619055281
808 => 0.2180146873926
809 => 0.23927398521644
810 => 0.2304724963213
811 => 0.22500912814181
812 => 0.22629314925681
813 => 0.23405632514943
814 => 0.23654961085526
815 => 0.22977200081971
816 => 0.23216596726406
817 => 0.24535695774205
818 => 0.25243350091585
819 => 0.24282260477929
820 => 0.21630652351217
821 => 0.19185748560733
822 => 0.19834247141422
823 => 0.19760727527625
824 => 0.21177934893528
825 => 0.19531616585957
826 => 0.19559336364038
827 => 0.21005850077419
828 => 0.20619945018212
829 => 0.19994828245283
830 => 0.19190312604971
831 => 0.17703091035164
901 => 0.16385817416545
902 => 0.18969294332654
903 => 0.18857890110283
904 => 0.1869656028711
905 => 0.19055582350872
906 => 0.2079889158231
907 => 0.20758702661984
908 => 0.20503041255438
909 => 0.20696958179007
910 => 0.19960833671007
911 => 0.20150549717962
912 => 0.19185361275481
913 => 0.19621666761312
914 => 0.19993487025442
915 => 0.2006813544836
916 => 0.20236322156835
917 => 0.18799185147341
918 => 0.19444417472478
919 => 0.19823431013403
920 => 0.18111034046873
921 => 0.19789582431151
922 => 0.18774167789347
923 => 0.18429520808903
924 => 0.18893542564284
925 => 0.18712712834936
926 => 0.18557246052321
927 => 0.18470492916363
928 => 0.18811219281302
929 => 0.18795323989122
930 => 0.18237829523943
1001 => 0.17510600720498
1002 => 0.17754682577406
1003 => 0.17666005350512
1004 => 0.17344627640658
1005 => 0.17561197413807
1006 => 0.16607533736312
1007 => 0.14966804946306
1008 => 0.16050720641865
1009 => 0.1600899106666
1010 => 0.15987949122556
1011 => 0.16802481810539
1012 => 0.16724183287056
1013 => 0.16582070700233
1014 => 0.17342017631554
1015 => 0.17064626778893
1016 => 0.1791948002529
1017 => 0.18482541661809
1018 => 0.18339731017652
1019 => 0.1886929320831
1020 => 0.17760305730413
1021 => 0.18128666885716
1022 => 0.18204585609297
1023 => 0.17332640004385
1024 => 0.16736993893832
1025 => 0.16697271089121
1026 => 0.15664502818512
1027 => 0.16216199292457
1028 => 0.16701669358778
1029 => 0.16469166871009
1030 => 0.16395563529196
1031 => 0.16771587039903
1101 => 0.16800807287108
1102 => 0.161345825542
1103 => 0.16273111772765
1104 => 0.16850801642748
1105 => 0.16258555470241
1106 => 0.15107917899923
1107 => 0.14822543873676
1108 => 0.14784469718087
1109 => 0.14010512725604
1110 => 0.14841613930678
1111 => 0.14478815982536
1112 => 0.15624890353732
1113 => 0.14970258819425
1114 => 0.14942038962376
1115 => 0.14899380509494
1116 => 0.14233203754303
1117 => 0.14379054125949
1118 => 0.14863882974937
1119 => 0.15036875370244
1120 => 0.15018830846129
1121 => 0.1486150704908
1122 => 0.1493352907774
1123 => 0.14701521029286
1124 => 0.14619594158546
1125 => 0.14361010418732
1126 => 0.13980963756786
1127 => 0.14033811576091
1128 => 0.13280839694158
1129 => 0.12870580649638
1130 => 0.12757026353242
1201 => 0.12605176802341
1202 => 0.12774178164073
1203 => 0.13278706619422
1204 => 0.12670138260588
1205 => 0.11626790495473
1206 => 0.11689497473935
1207 => 0.11830381436669
1208 => 0.11567845104155
1209 => 0.11319376498434
1210 => 0.11535399792213
1211 => 0.11093319589924
1212 => 0.11883804717052
1213 => 0.11862424309672
1214 => 0.12157068281794
1215 => 0.12341315204264
1216 => 0.11916685698619
1217 => 0.1180989252627
1218 => 0.11870726770719
1219 => 0.10865272219927
1220 => 0.12074901194267
1221 => 0.12085362115868
1222 => 0.1199578935411
1223 => 0.12639879439841
1224 => 0.1399911041747
1225 => 0.13487713048746
1226 => 0.1328968453051
1227 => 0.12913232172583
1228 => 0.13414832587991
1229 => 0.13376317502273
1230 => 0.13202137678244
1231 => 0.13096793177197
]
'min_raw' => 0.09838065707847
'max_raw' => 0.25243350091585
'avg_raw' => 0.17540707899716
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.09838'
'max' => '$0.252433'
'avg' => '$0.175407'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.060497786103151
'max_diff' => 0.14672854338111
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0030880564086343
]
1 => [
'year' => 2028
'avg' => 0.0053000012663974
]
2 => [
'year' => 2029
'avg' => 0.014478648227509
]
3 => [
'year' => 2030
'avg' => 0.011170255545273
]
4 => [
'year' => 2031
'avg' => 0.010970575259988
]
5 => [
'year' => 2032
'avg' => 0.019234870997857
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0030880564086343
'min' => '$0.003088'
'max_raw' => 0.019234870997857
'max' => '$0.019234'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.019234870997857
]
1 => [
'year' => 2033
'avg' => 0.049474066104947
]
2 => [
'year' => 2034
'avg' => 0.031359040709676
]
3 => [
'year' => 2035
'avg' => 0.036988060430154
]
4 => [
'year' => 2036
'avg' => 0.071793914255029
]
5 => [
'year' => 2037
'avg' => 0.17540707899716
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.019234870997857
'min' => '$0.019234'
'max_raw' => 0.17540707899716
'max' => '$0.175407'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.17540707899716
]
]
]
]
'prediction_2025_max_price' => '$0.00528'
'last_price' => 0.00511964
'sma_50day_nextmonth' => '$0.004666'
'sma_200day_nextmonth' => '$0.007743'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.004873'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004744'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.004571'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004612'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005295'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006718'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008726'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004901'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00479'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.004688'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004768'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005396'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.006531'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.008261'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007542'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.010137'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.015967'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.027956'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.004977'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005115'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005781'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007233'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.010338'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0184078'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.040751'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.74'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 118.97
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004666'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004916'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 184.81
'cci_20_action' => 'SELL'
'adx_14' => 20.36
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000198'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 69.89
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000876'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767676974
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Casper Network pour 2026
La prévision du prix de Casper Network pour 2026 suggère que le prix moyen pourrait varier entre $0.001768 à la baisse et $0.00528 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Casper Network pourrait potentiellement gagner 3.13% d'ici 2026 si CSPR atteint l'objectif de prix prévu.
Prévision du prix de Casper Network de 2027 à 2032
La prévision du prix de CSPR pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.003088 à la baisse et $0.019234 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Casper Network atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Casper Network | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.0017028 | $0.003088 | $0.004473 |
| 2028 | $0.003073 | $0.0053000012 | $0.007526 |
| 2029 | $0.00675 | $0.014478 | $0.0222066 |
| 2030 | $0.005741 | $0.01117 | $0.016599 |
| 2031 | $0.006787 | $0.01097 | $0.015153 |
| 2032 | $0.010361 | $0.019234 | $0.0281086 |
Prévision du prix de Casper Network de 2032 à 2037
La prévision du prix de Casper Network pour 2032-2037 est actuellement estimée entre $0.019234 à la baisse et $0.175407 à la hausse. Par rapport au prix actuel, Casper Network pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Casper Network | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.010361 | $0.019234 | $0.0281086 |
| 2033 | $0.024076 | $0.049474 | $0.074871 |
| 2034 | $0.019356 | $0.031359 | $0.043361 |
| 2035 | $0.022885 | $0.036988 | $0.05109 |
| 2036 | $0.037882 | $0.071793 | $0.1057049 |
| 2037 | $0.09838 | $0.175407 | $0.252433 |
Casper Network Histogramme des prix potentiels
Prévision du prix de Casper Network basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Casper Network est Haussier, avec 18 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de CSPR a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Casper Network et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Casper Network devrait augmenter au cours du prochain mois, atteignant $0.007743 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Casper Network devrait atteindre $0.004666 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 54.74, ce qui suggère que le marché de CSPR est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de CSPR pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.004873 | BUY |
| SMA 5 | $0.004744 | BUY |
| SMA 10 | $0.004571 | BUY |
| SMA 21 | $0.004612 | BUY |
| SMA 50 | $0.005295 | SELL |
| SMA 100 | $0.006718 | SELL |
| SMA 200 | $0.008726 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.004901 | BUY |
| EMA 5 | $0.00479 | BUY |
| EMA 10 | $0.004688 | BUY |
| EMA 21 | $0.004768 | BUY |
| EMA 50 | $0.005396 | SELL |
| EMA 100 | $0.006531 | SELL |
| EMA 200 | $0.008261 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.007542 | SELL |
| SMA 50 | $0.010137 | SELL |
| SMA 100 | $0.015967 | SELL |
| SMA 200 | $0.027956 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.007233 | SELL |
| EMA 50 | $0.010338 | SELL |
| EMA 100 | $0.0184078 | SELL |
| EMA 200 | $0.040751 | SELL |
Oscillateurs de Casper Network
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 54.74 | NEUTRAL |
| Stoch RSI (14) | 118.97 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 184.81 | SELL |
| Indice Directionnel Moyen (14) | 20.36 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000198 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 69.89 | NEUTRAL |
| VWMA (10) | 0.004666 | BUY |
| Moyenne Mobile de Hull (9) | 0.004916 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000876 | SELL |
Prévision du cours de Casper Network basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Casper Network
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Casper Network par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.007193 | $0.0101087 | $0.0142044 | $0.019959 | $0.028046 | $0.03941 |
| Action Amazon.com | $0.010682 | $0.022289 | $0.0465084 | $0.097042 | $0.202485 | $0.422497 |
| Action Apple | $0.007261 | $0.01030033 | $0.01461 | $0.020723 | $0.029394 | $0.041694 |
| Action Netflix | $0.008077 | $0.012745 | $0.02011 | $0.031731 | $0.050067 | $0.078999 |
| Action Google | $0.006629 | $0.008585 | $0.011118 | $0.014398 | $0.018645 | $0.024146 |
| Action Tesla | $0.0116058 | $0.0263095 | $0.059641 | $0.1352033 | $0.306495 | $0.6948029 |
| Action Kodak | $0.003839 | $0.002878 | $0.002158 | $0.001618 | $0.001214 | $0.00091 |
| Action Nokia | $0.003391 | $0.002246 | $0.001488 | $0.000985 | $0.000653 | $0.000432 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Casper Network
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Casper Network maintenant ?", "Devrais-je acheter CSPR aujourd'hui ?", " Casper Network sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Casper Network avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Casper Network en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Casper Network afin de prendre une décision responsable concernant cet investissement.
Le cours de Casper Network est de $0.005119 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Casper Network
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Casper Network
basée sur l'historique des cours sur 1 mois
Prévision du cours de Casper Network basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Casper Network présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005252 | $0.005389 | $0.005529 | $0.005673 |
| Si Casper Network présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005385 | $0.005665 | $0.00596 | $0.00627 |
| Si Casper Network présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005785 | $0.006536 | $0.007386 | $0.008346 |
| Si Casper Network présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00645 | $0.008127 | $0.010239 | $0.0129011 |
| Si Casper Network présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007781 | $0.011826 | $0.017974 | $0.027318 |
| Si Casper Network présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.011773 | $0.027074 | $0.062263 | $0.143183 |
| Si Casper Network présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.018427 | $0.066325 | $0.238726 | $0.859254 |
Boîte à questions
Est-ce que CSPR est un bon investissement ?
La décision d'acquérir Casper Network dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Casper Network a connu une hausse de 8.1421% au cours des 24 heures précédentes, et Casper Network a enregistré une déclin de -58.83% sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Casper Network dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Casper Network peut monter ?
Il semble que la valeur moyenne de Casper Network pourrait potentiellement s'envoler jusqu'à $0.00528 pour la fin de cette année. En regardant les perspectives de Casper Network sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.016599. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Casper Network la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Casper Network, le prix de Casper Network va augmenter de 0.86% durant la prochaine semaine et atteindre $0.005163 d'ici 13 janvier 2026.
Quel sera le prix de Casper Network le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Casper Network, le prix de Casper Network va diminuer de -11.62% durant le prochain mois et atteindre $0.004524 d'ici 5 février 2026.
Jusqu'où le prix de Casper Network peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Casper Network en 2026, CSPR devrait fluctuer dans la fourchette de $0.001768 et $0.00528. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Casper Network ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Casper Network dans 5 ans ?
L'avenir de Casper Network semble suivre une tendance haussière, avec un prix maximum de $0.016599 prévue après une période de cinq ans. Selon la prévision de Casper Network pour 2030, la valeur de Casper Network pourrait potentiellement atteindre son point le plus élevé d'environ $0.016599, tandis que son point le plus bas devrait être autour de $0.005741.
Combien vaudra Casper Network en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Casper Network, il est attendu que la valeur de CSPR en 2026 augmente de 3.13% jusqu'à $0.00528 si le meilleur scénario se produit. Le prix sera entre $0.00528 et $0.001768 durant 2026.
Combien vaudra Casper Network en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Casper Network, le valeur de CSPR pourrait diminuer de -12.62% jusqu'à $0.004473 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.004473 et $0.0017028 tout au long de l'année.
Combien vaudra Casper Network en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Casper Network suggère que la valeur de CSPR en 2028 pourrait augmenter de 47.02%, atteignant $0.007526 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.007526 et $0.003073 durant l'année.
Combien vaudra Casper Network en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Casper Network pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.0222066 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.0222066 et $0.00675.
Combien vaudra Casper Network en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Casper Network, il est prévu que la valeur de CSPR en 2030 augmente de 224.23%, atteignant $0.016599 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.016599 et $0.005741 au cours de 2030.
Combien vaudra Casper Network en 2031 ?
Notre simulation expérimentale indique que le prix de Casper Network pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.015153 dans des conditions idéales. Il est probable que le prix fluctue entre $0.015153 et $0.006787 durant l'année.
Combien vaudra Casper Network en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Casper Network, CSPR pourrait connaître une 449.04% hausse en valeur, atteignant $0.0281086 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.0281086 et $0.010361 tout au long de l'année.
Combien vaudra Casper Network en 2033 ?
Selon notre prédiction expérimentale de prix de Casper Network, la valeur de CSPR est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.074871. Tout au long de l'année, le prix de CSPR pourrait osciller entre $0.074871 et $0.024076.
Combien vaudra Casper Network en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Casper Network suggèrent que CSPR pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.043361 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.043361 et $0.019356.
Combien vaudra Casper Network en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Casper Network, CSPR pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.05109 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.05109 et $0.022885.
Combien vaudra Casper Network en 2036 ?
Notre récente simulation de prédiction de prix de Casper Network suggère que la valeur de CSPR pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.1057049 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.1057049 et $0.037882.
Combien vaudra Casper Network en 2037 ?
Selon la simulation expérimentale, la valeur de Casper Network pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.252433 sous des conditions favorables. Il est prévu que le prix chute entre $0.252433 et $0.09838 au cours de l'année.
Prévisions liées
Prévision du cours de NEM
Prévision du cours de Gas
Prévision du cours de SafePal
Prévision du cours de LoopringPrévision du cours de Centrifuge
Prévision du cours de Yield Guild Games
Prévision du cours de Zcash
Prévision du cours de Decred
Prévision du cours de ZetaChain
Prévision du cours de Polymath Network
Prévision du cours de Pocket Network
Prévision du cours de cETH
Prévision du cours de Uniswap Protocol
Prévision du cours de Arkham
Prévision du cours de Chia
Prévision du cours de SPACE ID
Prévision du cours de SSV Network
Prévision du cours de Moonbeam
Prévision du cours de ZelCash
Prévision du cours de PAAL AI
Prévision du cours de Aragon
Prévision du cours de Kusama
Prévision du cours de GMX
Prévision du cours de API3
Prévision du cours de BENQI Liquid Staked AVAX
Comment lire et prédire les mouvements de prix de Casper Network ?
Les traders de Casper Network utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Casper Network
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Casper Network. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de CSPR sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de CSPR au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de CSPR.
Comment lire les graphiques de Casper Network et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Casper Network dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de CSPR au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Casper Network ?
L'action du prix de Casper Network est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de CSPR. La capitalisation boursière de Casper Network peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de CSPR, de grands détenteurs de Casper Network, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Casper Network.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


