Prédiction du prix de Casper Network jusqu'à $0.005393 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.0018067 | $0.005393 |
| 2027 | $0.001739 | $0.004569 |
| 2028 | $0.003138 | $0.007688 |
| 2029 | $0.006895 | $0.022682 |
| 2030 | $0.005864 | $0.016955 |
| 2031 | $0.006933 | $0.015478 |
| 2032 | $0.010583 | $0.028711 |
| 2033 | $0.024593 | $0.076476 |
| 2034 | $0.019771 | $0.04429 |
| 2035 | $0.023376 | $0.052185 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Casper Network aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.31, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Casper Network pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Casper Network'
'name_with_ticker' => 'Casper Network <small>CSPR</small>'
'name_lang' => 'Casper Network'
'name_lang_with_ticker' => 'Casper Network <small>CSPR</small>'
'name_with_lang' => 'Casper Network'
'name_with_lang_with_ticker' => 'Casper Network <small>CSPR</small>'
'image' => '/uploads/coins/casper-network.png?1749840392'
'price_for_sd' => 0.005229
'ticker' => 'CSPR'
'marketcap' => '$71.66M'
'low24h' => '$0.004682'
'high24h' => '$0.005874'
'volume24h' => '$6.27M'
'current_supply' => '13.74B'
'max_supply' => '14.22B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.03 USD 0.17x'
'price' => '$0.005229'
'change_24h_pct' => '11.0323%'
'ath_price' => '$1.33'
'ath_days' => 1700
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 mai 2021'
'ath_pct' => '-99.61%'
'fdv' => '$74.19M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-57.94%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.257844'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005274'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004621'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0018067'
'current_year_max_price_prediction' => '$0.005393'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005864'
'grand_prediction_max_price' => '$0.016955'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0053284740003461
107 => 0.0053483685880273
108 => 0.005393192109916
109 => 0.005010180023016
110 => 0.00518214120539
111 => 0.0052831522894509
112 => 0.004826780536849
113 => 0.005274131287249
114 => 0.005003512634708
115 => 0.0049116605994798
116 => 0.0050353272643291
117 => 0.0049871342447676
118 => 0.0049457007165376
119 => 0.0049225800958669
120 => 0.0050133872459405
121 => 0.0050091509838516
122 => 0.0048605728614228
123 => 0.0046667587575336
124 => 0.0047318091325299
125 => 0.0047081757214433
126 => 0.0046225251908944
127 => 0.0046802433069998
128 => 0.0044260819341417
129 => 0.0039888105022979
130 => 0.0042776854041601
131 => 0.0042665640346738
201 => 0.0042609561358649
202 => 0.0044780376406985
203 => 0.0044571702629312
204 => 0.0044192957679495
205 => 0.0046218295960926
206 => 0.0045479020243559
207 => 0.0047757293809217
208 => 0.0049257912129054
209 => 0.0048877306783226
210 => 0.0050288645566151
211 => 0.0047333077617866
212 => 0.0048314798733481
213 => 0.0048517130094803
214 => 0.0046193303600918
215 => 0.0044605844240051
216 => 0.0044499978799043
217 => 0.0041747543032676
218 => 0.0043217872002184
219 => 0.0044511700649004
220 => 0.0043892057132336
221 => 0.0043695896506283
222 => 0.0044698038602742
223 => 0.0044775913626403
224 => 0.0043000354834096
225 => 0.0043369549731651
226 => 0.0044909153828
227 => 0.004333075565864
228 => 0.0040264185845453
301 => 0.0039503634133137
302 => 0.0039402162514965
303 => 0.0037339485951049
304 => 0.0039554457835274
305 => 0.0038587563250254
306 => 0.0041641971659156
307 => 0.0039897309957112
308 => 0.0039822101078148
309 => 0.003970841182685
310 => 0.0037932980900192
311 => 0.0038321687438608
312 => 0.0039613807173982
313 => 0.0040074850052334
314 => 0.0040026759502909
315 => 0.0039607475082366
316 => 0.0039799421343007
317 => 0.0039181095558971
318 => 0.0038962751855289
319 => 0.0038273599066303
320 => 0.0037260734849811
321 => 0.0037401579831371
322 => 0.0035394830788161
323 => 0.0034301447403188
324 => 0.0033998813292788
325 => 0.0033594118312412
326 => 0.0034044524667674
327 => 0.0035389145920257
328 => 0.003376724741233
329 => 0.0030986616183442
330 => 0.0031153736858263
331 => 0.0031529207396013
401 => 0.0030829520532903
402 => 0.0030167325637236
403 => 0.0030743050373448
404 => 0.0029564860265354
405 => 0.0031671586041706
406 => 0.0031614605013487
407 => 0.0032399862103863
408 => 0.0032890899477572
409 => 0.0031759217306409
410 => 0.0031474602300755
411 => 0.0031636731943006
412 => 0.0028957090104837
413 => 0.0032180878197246
414 => 0.003220875765054
415 => 0.0031970036845331
416 => 0.0033686604481248
417 => 0.0037309097603904
418 => 0.0035946169976713
419 => 0.0035418403204758
420 => 0.0034415118185478
421 => 0.0035751935904499
422 => 0.0035649289161283
423 => 0.003518508166084
424 => 0.0034904327516157
425 => 0.0035421625636128
426 => 0.0034840228554407
427 => 0.0034735793662807
428 => 0.0034103031845991
429 => 0.0033877164666216
430 => 0.0033709941598342
501 => 0.0033525845431613
502 => 0.0033931915701512
503 => 0.0033011707046927
504 => 0.0031902025618664
505 => 0.0031809767614823
506 => 0.0032064500074834
507 => 0.003195179992388
508 => 0.0031809228049859
509 => 0.0031537019515213
510 => 0.0031456261057799
511 => 0.0031718686865962
512 => 0.0031422423428921
513 => 0.003185957626858
514 => 0.0031740694884962
515 => 0.0031076633139899
516 => 0.0030248966338403
517 => 0.003024159836778
518 => 0.0030063278913043
519 => 0.0029836162276926
520 => 0.0029772983624483
521 => 0.0030694564441991
522 => 0.003260220915364
523 => 0.0032227692850674
524 => 0.0032498319261541
525 => 0.0033829533354205
526 => 0.0034252686283258
527 => 0.0033952342357142
528 => 0.0033541213066669
529 => 0.0033559300668933
530 => 0.0034964253911781
531 => 0.0035051879122187
601 => 0.0035273279759918
602 => 0.0035557842147215
603 => 0.0034000804562182
604 => 0.00334859643387
605 => 0.0033242004478566
606 => 0.0032490702533702
607 => 0.0033300917269478
608 => 0.0032828839839796
609 => 0.0032892539213521
610 => 0.0032851054912817
611 => 0.0032873708146158
612 => 0.0031670997168916
613 => 0.0032109201836395
614 => 0.0031380601585519
615 => 0.0030405087638812
616 => 0.0030401817374003
617 => 0.003064057303045
618 => 0.0030498551823486
619 => 0.0030116376407244
620 => 0.0030170662621304
621 => 0.0029695058263499
622 => 0.0030228409601436
623 => 0.0030243704209385
624 => 0.0030038334892436
625 => 0.003086003621683
626 => 0.0031196687919879
627 => 0.0031061509436026
628 => 0.0031187203437094
629 => 0.0032243255693902
630 => 0.0032415438290552
701 => 0.003249191042624
702 => 0.0032389447895035
703 => 0.0031206506133726
704 => 0.0031258974631096
705 => 0.0030873995610784
706 => 0.003054872890671
707 => 0.0030561737869074
708 => 0.003072896723668
709 => 0.0031459267692887
710 => 0.0032996141949412
711 => 0.0033054465204007
712 => 0.0033125154689985
713 => 0.0032837625024823
714 => 0.0032750903326522
715 => 0.0032865311631351
716 => 0.0033442480797092
717 => 0.0034927116591279
718 => 0.0034402347146122
719 => 0.0033975701418687
720 => 0.003434998474451
721 => 0.0034292366760229
722 => 0.003380601298821
723 => 0.0033792362657681
724 => 0.0032858894272469
725 => 0.0032513812264503
726 => 0.0032225435909706
727 => 0.0031910536458523
728 => 0.0031723853508336
729 => 0.0032010683365706
730 => 0.0032076284747758
731 => 0.003144912625169
801 => 0.0031363646866107
802 => 0.0031875798032152
803 => 0.0031650419398895
804 => 0.0031882226912321
805 => 0.0031936008243843
806 => 0.0031927348210779
807 => 0.0031692027033088
808 => 0.003184201373437
809 => 0.0031487250472651
810 => 0.0031101498709251
811 => 0.0030855413117386
812 => 0.0030640670799966
813 => 0.0030759822318567
814 => 0.0030335068910962
815 => 0.0030199181747273
816 => 0.0031791201614783
817 => 0.0032967243808011
818 => 0.0032950143688758
819 => 0.0032846051110597
820 => 0.0032691390653858
821 => 0.0033431166421361
822 => 0.0033173443336246
823 => 0.0033360958414152
824 => 0.0033408688871462
825 => 0.0033553154590245
826 => 0.0033604788667462
827 => 0.003344871462394
828 => 0.0032924911071041
829 => 0.0031619642418966
830 => 0.0031012036337919
831 => 0.0030811516210694
901 => 0.0030818804736477
902 => 0.0030617754657978
903 => 0.0030676972916529
904 => 0.0030597160964335
905 => 0.0030446016435466
906 => 0.0030750489569824
907 => 0.0030785577262195
908 => 0.0030714509594453
909 => 0.0030731248602893
910 => 0.0030142838667387
911 => 0.0030187574196824
912 => 0.0029938481084201
913 => 0.0029891779128446
914 => 0.0029262093430753
915 => 0.0028146513942887
916 => 0.0028764653271086
917 => 0.0028018027886164
918 => 0.0027735269539674
919 => 0.0029073803574015
920 => 0.0028939451882122
921 => 0.0028709500186878
922 => 0.002836935370348
923 => 0.0028243190064055
924 => 0.0027476659729466
925 => 0.0027431369028018
926 => 0.00278112821599
927 => 0.0027635965321549
928 => 0.0027389754082825
929 => 0.0026498001934201
930 => 0.0025495377270157
1001 => 0.002552564020649
1002 => 0.0025844556457627
1003 => 0.0026771848469525
1004 => 0.0026409539438162
1005 => 0.0026146680078891
1006 => 0.0026097454422423
1007 => 0.0026713616574014
1008 => 0.0027585615108477
1009 => 0.002799473731098
1010 => 0.0027589309633526
1011 => 0.0027123576147443
1012 => 0.002715192318674
1013 => 0.0027340503339483
1014 => 0.0027360320447157
1015 => 0.0027057175825893
1016 => 0.0027142509261099
1017 => 0.0027012879969968
1018 => 0.0026217345249575
1019 => 0.0026202956549151
1020 => 0.0026007719499036
1021 => 0.0026001807798751
1022 => 0.0025669660872341
1023 => 0.0025623191221313
1024 => 0.002496369333905
1025 => 0.0025397776842299
1026 => 0.0025106616418726
1027 => 0.0024667768982601
1028 => 0.0024592111519201
1029 => 0.0024589837164493
1030 => 0.0025040435356902
1031 => 0.002539251134007
1101 => 0.0025111681278951
1102 => 0.0025047741717696
1103 => 0.0025730448952364
1104 => 0.0025643568233738
1105 => 0.0025568330091728
1106 => 0.002750753720388
1107 => 0.0025972503456394
1108 => 0.0025303141125827
1109 => 0.0024474678133291
1110 => 0.0024744429861134
1111 => 0.0024801270513667
1112 => 0.0022808966358298
1113 => 0.002200068881059
1114 => 0.0021723318415513
1115 => 0.0021563687831705
1116 => 0.0021636433493261
1117 => 0.0020908888898823
1118 => 0.0021397810898762
1119 => 0.0020767818777793
1120 => 0.0020662198548541
1121 => 0.0021788702501882
1122 => 0.0021945448946049
1123 => 0.002127671991793
1124 => 0.0021706152211378
1125 => 0.0021550434092218
1126 => 0.002077861818452
1127 => 0.002074914049394
1128 => 0.0020361870402098
1129 => 0.0019755867698631
1130 => 0.0019478908201924
1201 => 0.0019334665291366
1202 => 0.0019394182727501
1203 => 0.0019364088890528
1204 => 0.0019167706248022
1205 => 0.0019375345313719
1206 => 0.0018844913303249
1207 => 0.0018633691002699
1208 => 0.0018538286789861
1209 => 0.0018067497850041
1210 => 0.0018816732414085
1211 => 0.001896434106181
1212 => 0.001911224054417
1213 => 0.0020399604562846
1214 => 0.0020335291494526
1215 => 0.0020916650310405
1216 => 0.002089405977587
1217 => 0.0020728246824193
1218 => 0.0020028709255974
1219 => 0.0020307532462608
1220 => 0.0019449357971335
1221 => 0.002009236065039
1222 => 0.0019798921080103
1223 => 0.0019993148436502
1224 => 0.0019643910136922
1225 => 0.0019837193031606
1226 => 0.0018999344548106
1227 => 0.001821697342306
1228 => 0.0018531822402615
1229 => 0.001887409925074
1230 => 0.0019616242667994
1231 => 0.0019174228171228
]
'min_raw' => 0.0018067497850041
'max_raw' => 0.005393192109916
'avg_raw' => 0.0035999709474601
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0018067'
'max' => '$0.005393'
'avg' => '$0.003599'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0034226302149959
'max_diff' => 0.00016381210991599
'year' => 2026
]
1 => [
'items' => [
101 => 0.0019333193298684
102 => 0.0018800686732148
103 => 0.0017701973582404
104 => 0.0017708192179512
105 => 0.0017539179098191
106 => 0.0017393127119616
107 => 0.0019224998853353
108 => 0.0018997176645656
109 => 0.0018634171774325
110 => 0.0019120068219842
111 => 0.0019248546952251
112 => 0.0019252204561142
113 => 0.0019606702064989
114 => 0.001979589744634
115 => 0.0019829243952323
116 => 0.0020387053434051
117 => 0.0020574023814642
118 => 0.0021344128351256
119 => 0.0019779845540067
120 => 0.0019747630164975
121 => 0.001912690577928
122 => 0.0018733232560607
123 => 0.0019153860921364
124 => 0.0019526480227498
125 => 0.0019138484099794
126 => 0.0019189148203027
127 => 0.0018668295102032
128 => 0.0018854475577221
129 => 0.0019014839283673
130 => 0.0018926295870713
131 => 0.0018793742095963
201 => 0.001949592969369
202 => 0.001945630951753
203 => 0.0020110202751756
204 => 0.0020619959288189
205 => 0.0021533534131358
206 => 0.0020580171156778
207 => 0.002054542682071
208 => 0.0020885058278944
209 => 0.0020573971818835
210 => 0.0020770567723284
211 => 0.002150185949179
212 => 0.0021517310534504
213 => 0.00212584856615
214 => 0.0021242736144455
215 => 0.002129244629255
216 => 0.0021583600182607
217 => 0.0021481862067165
218 => 0.0021599595990048
219 => 0.0021746824063418
220 => 0.0022355821798288
221 => 0.0022502649090413
222 => 0.0022145934891772
223 => 0.002217814218995
224 => 0.0022044721287634
225 => 0.0021915838367757
226 => 0.0022205548349803
227 => 0.0022734999036256
228 => 0.0022731705351014
301 => 0.002285452761922
302 => 0.0022931044874799
303 => 0.0022602576799803
304 => 0.0022388756161087
305 => 0.0022470748599732
306 => 0.0022601856294687
307 => 0.0022428232141283
308 => 0.0021356543435941
309 => 0.0021681625329402
310 => 0.0021627515806638
311 => 0.0021550457266278
312 => 0.0021877329623937
313 => 0.0021845801987631
314 => 0.0020901426877432
315 => 0.0020961882707969
316 => 0.0020905103396723
317 => 0.0021088568967314
318 => 0.0020564064075941
319 => 0.0020725398247933
320 => 0.0020826585528192
321 => 0.0020886185613623
322 => 0.0021101501990358
323 => 0.002107623709872
324 => 0.002109993148922
325 => 0.0021419188834502
326 => 0.0023033882931047
327 => 0.00231217671681
328 => 0.00226889930427
329 => 0.0022861877769706
330 => 0.0022529976899589
331 => 0.0022752784177241
401 => 0.0022905223257919
402 => 0.0022216380364685
403 => 0.0022175591559101
404 => 0.002184232081603
405 => 0.0022021401635937
406 => 0.0021736471175099
407 => 0.0021806383143744
408 => 0.0021610903184596
409 => 0.0021962728191391
410 => 0.0022356123217066
411 => 0.0022455510336192
412 => 0.0022194065614617
413 => 0.0022004762406149
414 => 0.0021672408332435
415 => 0.0022225120564016
416 => 0.002238675046413
417 => 0.0022224271590959
418 => 0.0022186621685811
419 => 0.0022115275183589
420 => 0.0022201758183534
421 => 0.0022385870192982
422 => 0.0022299046369342
423 => 0.0022356395034495
424 => 0.0022137841060616
425 => 0.0022602685536404
426 => 0.0023340970434869
427 => 0.0023343344141539
428 => 0.0023256519849886
429 => 0.0023220993220397
430 => 0.0023310080212572
501 => 0.0023358406251287
502 => 0.0023646497248221
503 => 0.0023955630365983
504 => 0.002539821974123
505 => 0.0024993146417275
506 => 0.0026273097531021
507 => 0.0027285372681143
508 => 0.0027588909737237
509 => 0.0027309669928153
510 => 0.0026354405625513
511 => 0.0026307535801497
512 => 0.0027735103971826
513 => 0.0027331750576944
514 => 0.0027283772974082
515 => 0.0026773372339076
516 => 0.0027075082328713
517 => 0.0027009093928161
518 => 0.0026904928009626
519 => 0.0027480569652554
520 => 0.002855811942023
521 => 0.002839017318374
522 => 0.0028264809109002
523 => 0.0027715500226433
524 => 0.002804630686632
525 => 0.002792851295804
526 => 0.0028434630341872
527 => 0.0028134817615563
528 => 0.0027328694778268
529 => 0.0027457072497123
530 => 0.0027437668463178
531 => 0.0027837002106777
601 => 0.0027717132059039
602 => 0.0027414261912512
603 => 0.0028554436472268
604 => 0.0028480399878342
605 => 0.0028585366841408
606 => 0.0028631576544761
607 => 0.0029325580707155
608 => 0.0029609892006832
609 => 0.0029674435649429
610 => 0.0029944509394697
611 => 0.0029667715968615
612 => 0.003077508702331
613 => 0.003151142415779
614 => 0.003236671763105
615 => 0.0033616531276697
616 => 0.0034086472768883
617 => 0.0034001582044603
618 => 0.0034949176486806
619 => 0.0036651982635605
620 => 0.0034345767852366
621 => 0.0036774217619044
622 => 0.0036005398460714
623 => 0.0034182542066782
624 => 0.0034065171605078
625 => 0.0035299631118847
626 => 0.0038037543508062
627 => 0.0037351727507709
628 => 0.0038038665257351
629 => 0.0037237315883546
630 => 0.0037197522132834
701 => 0.0037999745506911
702 => 0.0039874184147362
703 => 0.0038983708611565
704 => 0.0037706993577442
705 => 0.0038649700090752
706 => 0.0037833040465554
707 => 0.0035992877761344
708 => 0.0037351203077138
709 => 0.0036442929621344
710 => 0.0036708012102218
711 => 0.0038617067810816
712 => 0.0038387365177222
713 => 0.0038684621654983
714 => 0.0038159971752292
715 => 0.0037669866013482
716 => 0.0036755047256263
717 => 0.003648421452227
718 => 0.0036559062946405
719 => 0.0036484177431108
720 => 0.0035972344744063
721 => 0.0035861814524027
722 => 0.0035677592648195
723 => 0.0035734690710693
724 => 0.0035388299688117
725 => 0.0036042011115755
726 => 0.003616334571721
727 => 0.0036639062379236
728 => 0.0036688452861216
729 => 0.0038013316993555
730 => 0.00372836040929
731 => 0.003777315850704
801 => 0.0037729368152375
802 => 0.0034222048892222
803 => 0.0034705326540931
804 => 0.0035457154901442
805 => 0.0035118457244111
806 => 0.0034639617999692
807 => 0.0034252929636087
808 => 0.003366705722431
809 => 0.0034491661393202
810 => 0.003557592818842
811 => 0.0036715951656456
812 => 0.0038085615156005
813 => 0.0037779922207546
814 => 0.003669034675005
815 => 0.0036739224309138
816 => 0.0037041366146809
817 => 0.0036650065014544
818 => 0.0036534662671534
819 => 0.0037025511637003
820 => 0.0037028891844062
821 => 0.003657865260107
822 => 0.0036078294075396
823 => 0.0036076197554904
824 => 0.003598716358815
825 => 0.0037253154828442
826 => 0.003794932200445
827 => 0.003802913644925
828 => 0.0037943949856387
829 => 0.0037976734795045
830 => 0.0037571650454323
831 => 0.0038497553133184
901 => 0.0039347252993593
902 => 0.0039119515279813
903 => 0.0038778104072035
904 => 0.0038506153600447
905 => 0.0039055452391418
906 => 0.0039030992980932
907 => 0.0039339831606574
908 => 0.0039325820902576
909 => 0.0039221970088781
910 => 0.0039119518988653
911 => 0.0039525726020115
912 => 0.0039408744918539
913 => 0.0039291582113002
914 => 0.0039056594169768
915 => 0.003908853293399
916 => 0.003874718067567
917 => 0.0038589255501755
918 => 0.0036214439801542
919 => 0.0035579811447103
920 => 0.0035779478446461
921 => 0.0035845214007001
922 => 0.0035569022933851
923 => 0.0035965009985083
924 => 0.0035903295822602
925 => 0.0036143389527236
926 => 0.0035993389404238
927 => 0.0035999545461608
928 => 0.0036440663839947
929 => 0.0036568722381831
930 => 0.003650359077387
1001 => 0.0036549206719505
1002 => 0.0037600406933381
1003 => 0.0037450959878458
1004 => 0.0037371569109121
1005 => 0.0037393560894793
1006 => 0.0037662165087425
1007 => 0.0037737359596117
1008 => 0.0037418755178966
1009 => 0.0037569010863924
1010 => 0.0038208780500193
1011 => 0.0038432663665062
1012 => 0.0039147191257307
1013 => 0.0038843647236406
1014 => 0.0039400815423847
1015 => 0.0041113360479409
1016 => 0.0042481459968896
1017 => 0.0041223299139261
1018 => 0.0043735639625285
1019 => 0.0045691857067492
1020 => 0.004561677418381
1021 => 0.0045275662424636
1022 => 0.0043048560875414
1023 => 0.0040999148825607
1024 => 0.0042713569027903
1025 => 0.0042717939437573
1026 => 0.0042570669221751
1027 => 0.0041655986559475
1028 => 0.0042538840247794
1029 => 0.0042608917967519
1030 => 0.0042569693079642
1031 => 0.0041868408027062
1101 => 0.0040797675370915
1102 => 0.0041006893968954
1103 => 0.0041349598300486
1104 => 0.0040700787505283
1105 => 0.0040493453143383
1106 => 0.0040878927169131
1107 => 0.0042121004796795
1108 => 0.0041886197216151
1109 => 0.0041880065441288
1110 => 0.0042884671845194
1111 => 0.0042165590467629
1112 => 0.0041009532885486
1113 => 0.0040717613099469
1114 => 0.0039681494519838
1115 => 0.0040397145313317
1116 => 0.0040422900311326
1117 => 0.0040030945685511
1118 => 0.0041041337843186
1119 => 0.0041032026901577
1120 => 0.0041991243878262
1121 => 0.0043824906472241
1122 => 0.0043282602214145
1123 => 0.0042651961364515
1124 => 0.0042720529510644
1125 => 0.0043472552833072
1126 => 0.0043017862365309
1127 => 0.0043181372227731
1128 => 0.0043472305341312
1129 => 0.0043647832512197
1130 => 0.0042695273851963
1201 => 0.0042473186862115
1202 => 0.0042018874822827
1203 => 0.0041900353291913
1204 => 0.0042270380968381
1205 => 0.0042172891748902
1206 => 0.0040420735703471
1207 => 0.004023762564782
1208 => 0.0040243241371805
1209 => 0.0039782802430461
1210 => 0.0039080522526902
1211 => 0.00409260721825
1212 => 0.0040777848716705
1213 => 0.0040614221482052
1214 => 0.0040634264884653
1215 => 0.0041435355438666
1216 => 0.0040970682461296
1217 => 0.0042206091730039
1218 => 0.0041952128724187
1219 => 0.0041691652525526
1220 => 0.0041655646780571
1221 => 0.0041555385666872
1222 => 0.0041211553002478
1223 => 0.0040796354399083
1224 => 0.0040522204317234
1225 => 0.0037379591487032
1226 => 0.003796284214858
1227 => 0.003863381886972
1228 => 0.0038865437345087
1229 => 0.0038469237915461
1230 => 0.0041227197370824
1231 => 0.0041731103139677
]
'min_raw' => 0.0017393127119616
'max_raw' => 0.0045691857067492
'avg_raw' => 0.0031542492093554
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001739'
'max' => '$0.004569'
'avg' => '$0.003154'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.743707304257E-5
'max_diff' => -0.00082400640316677
'year' => 2027
]
2 => [
'items' => [
101 => 0.004020473969686
102 => 0.0039919219417718
103 => 0.004124591603279
104 => 0.0040445755791836
105 => 0.0040806067899343
106 => 0.0040027270203099
107 => 0.0041609726996043
108 => 0.0041597671326621
109 => 0.0040982059892758
110 => 0.0041502370461134
111 => 0.0041411953695665
112 => 0.0040716929903017
113 => 0.0041631760489962
114 => 0.0041632214234519
115 => 0.0041039701613973
116 => 0.0040347776590866
117 => 0.0040224076739274
118 => 0.0040130885517836
119 => 0.0040783148571595
120 => 0.0041367965586023
121 => 0.0042456165061438
122 => 0.004272976426454
123 => 0.0043797640168774
124 => 0.0043161772061737
125 => 0.0043443644157716
126 => 0.0043749656191144
127 => 0.0043896369613189
128 => 0.0043657307965043
129 => 0.0045316158799577
130 => 0.0045456216635888
131 => 0.0045503176816908
201 => 0.0044943821648922
202 => 0.0045440659956801
203 => 0.0045208205766099
204 => 0.004581298699267
205 => 0.004590782441123
206 => 0.0045827500491649
207 => 0.0045857603385207
208 => 0.0044442066839271
209 => 0.0044368663801814
210 => 0.0043367808177648
211 => 0.0043775664242447
212 => 0.0043013196878355
213 => 0.0043254983133793
214 => 0.0043361560211366
215 => 0.0043305890394237
216 => 0.0043798723812408
217 => 0.0043379714727747
218 => 0.0042273880861856
219 => 0.0041167745712267
220 => 0.0041153859086502
221 => 0.0040862633226522
222 => 0.0040652130270434
223 => 0.004069268060777
224 => 0.0040835585285606
225 => 0.0040643824390771
226 => 0.0040684746300209
227 => 0.0041364322658122
228 => 0.0041500606850185
229 => 0.0041037459915884
301 => 0.0039177858142884
302 => 0.0038721507203332
303 => 0.003904952320885
304 => 0.0038892752685149
305 => 0.0031389486871805
306 => 0.0033152267877135
307 => 0.0032104883262155
308 => 0.0032587566280587
309 => 0.0031518457807623
310 => 0.0032028692407698
311 => 0.0031934470707848
312 => 0.0034768970399937
313 => 0.0034724713585972
314 => 0.0034745896980798
315 => 0.0033734758352682
316 => 0.0035345529642677
317 => 0.003613905350159
318 => 0.0035992193354259
319 => 0.0036029154889365
320 => 0.0035394033256826
321 => 0.0034752046346508
322 => 0.0034039984061889
323 => 0.0035362907773153
324 => 0.0035215821239522
325 => 0.0035553184827608
326 => 0.0036411195418903
327 => 0.0036537540737736
328 => 0.0036707350127516
329 => 0.0036646485549136
330 => 0.0038096526735493
331 => 0.0037920917180145
401 => 0.0038344085682216
402 => 0.0037473595967585
403 => 0.0036488554227838
404 => 0.0036675778459123
405 => 0.0036657747260088
406 => 0.0036428189401127
407 => 0.0036220954830281
408 => 0.0035875967657802
409 => 0.0036967558120021
410 => 0.0036923241540733
411 => 0.0037640675447015
412 => 0.0037513862035298
413 => 0.003666697103535
414 => 0.0036697217913093
415 => 0.0036900642702067
416 => 0.003760469821937
417 => 0.0037813709832661
418 => 0.0037716887325712
419 => 0.0037946059017942
420 => 0.0038127186979399
421 => 0.0037968805901206
422 => 0.0040211147972278
423 => 0.0039279971208825
424 => 0.0039733820284246
425 => 0.00398420606145
426 => 0.0039564805284603
427 => 0.0039624932037889
428 => 0.0039716007685557
429 => 0.0040269001183756
430 => 0.0041720216132989
501 => 0.0042362949355251
502 => 0.0044296643966322
503 => 0.004230957930842
504 => 0.0042191675114911
505 => 0.0042539991906348
506 => 0.0043675275345409
507 => 0.0044595315941017
508 => 0.0044900546484996
509 => 0.004494088774019
510 => 0.0045513520532036
511 => 0.0045841742969353
512 => 0.0045443987849368
513 => 0.0045106932031878
514 => 0.0043899639930536
515 => 0.0044039387278614
516 => 0.0045002107926091
517 => 0.0046362007544616
518 => 0.0047528942890751
519 => 0.0047120322804337
520 => 0.0050237805622847
521 => 0.0050546891310527
522 => 0.0050504185662427
523 => 0.0051208328857079
524 => 0.0049810748011962
525 => 0.0049213255123821
526 => 0.0045179807325366
527 => 0.0046313041634534
528 => 0.0047960264255427
529 => 0.0047742248164784
530 => 0.0046545991067104
531 => 0.0047528035422471
601 => 0.004720334084722
602 => 0.004694724076413
603 => 0.0048120484892211
604 => 0.0046830454779174
605 => 0.0047947395218228
606 => 0.0046514907551871
607 => 0.0047122189346472
608 => 0.0046777466828941
609 => 0.0047000544545386
610 => 0.0045696436773275
611 => 0.004640010167168
612 => 0.0045667162000066
613 => 0.004566681449123
614 => 0.0045650634807356
615 => 0.0046512935080658
616 => 0.0046541054661612
617 => 0.0045903813456779
618 => 0.0045811977043584
619 => 0.0046151544396578
620 => 0.0045753999959053
621 => 0.0045940008499256
622 => 0.0045759633968245
623 => 0.0045719027862046
624 => 0.004539547149929
625 => 0.0045256074521847
626 => 0.004531073566852
627 => 0.0045124148995173
628 => 0.0045011723775346
629 => 0.0045628270601431
630 => 0.0045298874503682
701 => 0.0045577785925245
702 => 0.0045259931158946
703 => 0.0044158108056222
704 => 0.0043524437938277
705 => 0.0041443196236287
706 => 0.0042033433801199
707 => 0.0042424761917381
708 => 0.0042295427977317
709 => 0.0042573287326165
710 => 0.0042590345633504
711 => 0.0042500010726753
712 => 0.0042395414477353
713 => 0.0042344502807681
714 => 0.004272395668227
715 => 0.0042944242428298
716 => 0.0042464036929135
717 => 0.004235153149947
718 => 0.0042837045771996
719 => 0.0043133209197765
720 => 0.0045319913533788
721 => 0.0045157915413614
722 => 0.0045564498904726
723 => 0.0045518723843159
724 => 0.0045944888115675
725 => 0.0046641486590778
726 => 0.0045225107118896
727 => 0.0045470941620498
728 => 0.0045410668677853
729 => 0.0046068712861237
730 => 0.0046070767203349
731 => 0.0045676236843666
801 => 0.0045890118152174
802 => 0.0045770735473292
803 => 0.0045986476109569
804 => 0.0045155751829953
805 => 0.0046167484331381
806 => 0.0046741071465088
807 => 0.0046749035722996
808 => 0.0047020911472105
809 => 0.004729715297918
810 => 0.0047827374496447
811 => 0.0047282365388842
812 => 0.0046301947059828
813 => 0.004637273009645
814 => 0.004579791118887
815 => 0.0045807573998556
816 => 0.0045755993163165
817 => 0.0045910791132999
818 => 0.0045189721279287
819 => 0.0045358954932699
820 => 0.0045122026826891
821 => 0.0045470426585067
822 => 0.0045095606037813
823 => 0.0045410639612415
824 => 0.0045546597659685
825 => 0.0046048285781078
826 => 0.0045021506294373
827 => 0.0042927833414122
828 => 0.0043367948836881
829 => 0.00427169835563
830 => 0.0042777232871417
831 => 0.0042898946076562
901 => 0.0042504433756606
902 => 0.0042579694274742
903 => 0.0042577005439434
904 => 0.0042553834509376
905 => 0.0042451206618167
906 => 0.0042302375871604
907 => 0.0042895271758223
908 => 0.0042996016322694
909 => 0.0043219959009902
910 => 0.0043886260545257
911 => 0.0043819681309403
912 => 0.0043928274805427
913 => 0.0043691215813332
914 => 0.0042788229358159
915 => 0.0042837265867074
916 => 0.0042225779815149
917 => 0.0043204321936746
918 => 0.0042972590246227
919 => 0.0042823191317845
920 => 0.0042782426436065
921 => 0.0043450379604049
922 => 0.0043650241660793
923 => 0.0043525701039274
924 => 0.0043270264591108
925 => 0.0043760778084594
926 => 0.0043892018802348
927 => 0.0043921398759081
928 => 0.0044790494622904
929 => 0.0043969971563418
930 => 0.0044167479619134
1001 => 0.004570838108867
1002 => 0.0044310996085669
1003 => 0.0045051222087163
1004 => 0.004501499187634
1005 => 0.0045393666450822
1006 => 0.004498392950855
1007 => 0.0044989008689015
1008 => 0.0045325246057517
1009 => 0.0044853061314184
1010 => 0.0044736141731386
1011 => 0.0044574618165144
1012 => 0.0044927298962812
1013 => 0.0045138715150633
1014 => 0.0046842574356393
1015 => 0.0047943345108733
1016 => 0.0047895557747298
1017 => 0.0048332244776626
1018 => 0.0048135513270319
1019 => 0.0047500215341305
1020 => 0.0048584591439803
1021 => 0.0048241449470015
1022 => 0.0048269737677087
1023 => 0.0048268684788607
1024 => 0.0048496844200524
1025 => 0.0048335172346678
1026 => 0.0048016500527471
1027 => 0.0048228049752851
1028 => 0.0048856275321999
1029 => 0.0050806306764948
1030 => 0.0051897570194903
1031 => 0.0050740611336234
1101 => 0.0051538666064648
1102 => 0.0051060117603575
1103 => 0.0050973151112614
1104 => 0.0051474388457839
1105 => 0.0051976503152684
1106 => 0.0051944520617323
1107 => 0.0051580011132741
1108 => 0.0051374108973986
1109 => 0.0052933269102361
1110 => 0.0054082031725348
1111 => 0.0054003693815863
1112 => 0.0054349451871478
1113 => 0.0055364608216659
1114 => 0.0055457421390509
1115 => 0.0055445729063891
1116 => 0.0055215681928451
1117 => 0.0056215235184991
1118 => 0.0057049080097063
1119 => 0.0055162432663297
1120 => 0.0055880843308047
1121 => 0.005620336099222
1122 => 0.0056676912639272
1123 => 0.0057475873644319
1124 => 0.0058343757209741
1125 => 0.0058466485461751
1126 => 0.0058379403893862
1127 => 0.0057807011352504
1128 => 0.0058756659905793
1129 => 0.0059312941756311
1130 => 0.005964419486801
1201 => 0.0060484197644018
1202 => 0.0056205352751639
1203 => 0.0053176573664424
1204 => 0.0052703586073855
1205 => 0.0053665424938595
1206 => 0.0053919054176706
1207 => 0.0053816816548848
1208 => 0.0050407650321639
1209 => 0.0052685637519212
1210 => 0.0055136560205196
1211 => 0.0055230710127262
1212 => 0.0056457693270242
1213 => 0.0056857249277335
1214 => 0.0057845131531791
1215 => 0.0057783339227804
1216 => 0.0058023872836124
1217 => 0.0057968578325032
1218 => 0.0059798422178261
1219 => 0.0061817011682814
1220 => 0.0061747114346993
1221 => 0.0061456918222847
1222 => 0.0061887908952996
1223 => 0.0063971309646893
1224 => 0.0063779503496815
1225 => 0.0063965826833607
1226 => 0.0066422273667029
1227 => 0.0069616003975965
1228 => 0.0068132195602184
1229 => 0.0071351632818931
1230 => 0.007337809789184
1231 => 0.0076882659695036
]
'min_raw' => 0.0031389486871805
'max_raw' => 0.0076882659695036
'avg_raw' => 0.0054136073283421
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003138'
'max' => '$0.007688'
'avg' => '$0.005413'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001399635975219
'max_diff' => 0.0031190802627544
'year' => 2028
]
3 => [
'items' => [
101 => 0.0076443871296945
102 => 0.0077808171489267
103 => 0.007565834848646
104 => 0.0070721920321103
105 => 0.0069940711668047
106 => 0.0071504711174818
107 => 0.0075349651349376
108 => 0.0071383620325741
109 => 0.0072185943236453
110 => 0.0071954874184193
111 => 0.0071942561496378
112 => 0.0072412486710944
113 => 0.0071730835677565
114 => 0.0068953666740899
115 => 0.0070226426898613
116 => 0.0069734953078757
117 => 0.0070280279923688
118 => 0.0073223183995883
119 => 0.0071922055955495
120 => 0.0070551423260005
121 => 0.0072270500827894
122 => 0.0074459477310958
123 => 0.0074322495096617
124 => 0.0074056692346671
125 => 0.0075555008531136
126 => 0.0078029787902421
127 => 0.007869871082201
128 => 0.0079192496045724
129 => 0.0079260580685505
130 => 0.0079961894789611
131 => 0.0076190752097922
201 => 0.0082175652399445
202 => 0.0083209079351984
203 => 0.0083014837916066
204 => 0.0084163448480559
205 => 0.0083825498115047
206 => 0.0083335861058209
207 => 0.0085156653119404
208 => 0.0083069261951587
209 => 0.0080106472984111
210 => 0.0078481028359232
211 => 0.008062154496215
212 => 0.0081928683757817
213 => 0.0082792619352111
214 => 0.0083054045740941
215 => 0.0076483495170011
216 => 0.0072942332831721
217 => 0.0075212177291056
218 => 0.0077981544187741
219 => 0.0076175368124982
220 => 0.0076246166807098
221 => 0.0073671034396322
222 => 0.0078209386265951
223 => 0.0077548186572093
224 => 0.0080978491753468
225 => 0.0080159821892014
226 => 0.0082957102603745
227 => 0.0082220484845261
228 => 0.0085278143976985
301 => 0.0086497926987446
302 => 0.0088546132506075
303 => 0.0090052800823276
304 => 0.0090937545277108
305 => 0.0090884428538693
306 => 0.0094390226842714
307 => 0.0092322980066097
308 => 0.0089726030902009
309 => 0.00896790602849
310 => 0.0091024057056035
311 => 0.0093842801306491
312 => 0.0094573660679573
313 => 0.0094982111363457
314 => 0.0094356554922818
315 => 0.0092112706707711
316 => 0.0091143824424997
317 => 0.0091969340201091
318 => 0.0090959805344307
319 => 0.009270254573257
320 => 0.0095095700514915
321 => 0.009460152351592
322 => 0.0096253483132403
323 => 0.0097963087544243
324 => 0.010040789863631
325 => 0.010104706278687
326 => 0.010210357682251
327 => 0.010319107681197
328 => 0.010354035249963
329 => 0.010420722816127
330 => 0.010420371339735
331 => 0.01062133880896
401 => 0.010843012150959
402 => 0.010926688705815
403 => 0.011119098329752
404 => 0.010789603591597
405 => 0.01103952913545
406 => 0.011264968232048
407 => 0.010996190447321
408 => 0.011366638006375
409 => 0.011381021645641
410 => 0.011598197521512
411 => 0.011378048165453
412 => 0.011247324180567
413 => 0.01162471942677
414 => 0.011807329098568
415 => 0.011752325579296
416 => 0.011333746081773
417 => 0.011090114860495
418 => 0.010452484961459
419 => 0.011207785120429
420 => 0.011575669795456
421 => 0.011332793349339
422 => 0.011455286101481
423 => 0.012123566838761
424 => 0.012378004875543
425 => 0.012325083542549
426 => 0.012334026376666
427 => 0.012471316522936
428 => 0.013080136638566
429 => 0.012715317512941
430 => 0.012994208064969
501 => 0.013142130608151
502 => 0.01327952931007
503 => 0.012942121523461
504 => 0.012503158950588
505 => 0.012364121077364
506 => 0.011308644073344
507 => 0.011253701911581
508 => 0.011222861211265
509 => 0.011028414958278
510 => 0.010875633466741
511 => 0.010754135952258
512 => 0.010435290192026
513 => 0.010542891276289
514 => 0.01003471768276
515 => 0.010359829139333
516 => 0.0095487718137809
517 => 0.010224244455199
518 => 0.0098566154064476
519 => 0.010103468425333
520 => 0.010102607178405
521 => 0.0096480725058163
522 => 0.0093859063925638
523 => 0.0095529688435861
524 => 0.0097320730525158
525 => 0.0097611321078358
526 => 0.0099933453898113
527 => 0.010058151125403
528 => 0.0098617867210699
529 => 0.0095319644534559
530 => 0.0096085746437777
531 => 0.0093843538895021
601 => 0.008991415642161
602 => 0.009273630751445
603 => 0.009369991397877
604 => 0.0094125497488863
605 => 0.0090261401118889
606 => 0.008904721814583
607 => 0.0088400797318955
608 => 0.009482083821644
609 => 0.0095172542549227
610 => 0.0093373173456707
611 => 0.010150649237808
612 => 0.0099665671813979
613 => 0.010172231939606
614 => 0.009601623071996
615 => 0.0096234210991654
616 => 0.0093532857168259
617 => 0.0095045434804833
618 => 0.0093976393683955
619 => 0.0094923233479381
620 => 0.0095490765348792
621 => 0.0098191675906606
622 => 0.010227328461203
623 => 0.0097788249936699
624 => 0.0095834056101777
625 => 0.0097046426966159
626 => 0.010027513034237
627 => 0.010516678123162
628 => 0.010227082545154
629 => 0.010355600145022
630 => 0.010383675523243
701 => 0.010170138465431
702 => 0.01052455153907
703 => 0.01071448438448
704 => 0.010909316182806
705 => 0.011078483174229
706 => 0.010831496078111
707 => 0.011095807675167
708 => 0.010882819185218
709 => 0.010691746491388
710 => 0.010692036269793
711 => 0.010572173577827
712 => 0.010339924508472
713 => 0.010297094216743
714 => 0.010519902803187
715 => 0.010698574189464
716 => 0.010713290420616
717 => 0.010812212080526
718 => 0.010870752899887
719 => 0.011444532512006
720 => 0.011675311418555
721 => 0.011957503497061
722 => 0.012067433215113
723 => 0.012398282254465
724 => 0.012131094784943
725 => 0.012073287095224
726 => 0.011270755545652
727 => 0.011402170041936
728 => 0.011612577330099
729 => 0.011274225084336
730 => 0.011488831706321
731 => 0.011531199599491
801 => 0.011262728004497
802 => 0.011406130283356
803 => 0.011025296346519
804 => 0.010235629600327
805 => 0.010525430663897
806 => 0.010738821792667
807 => 0.010434286340975
808 => 0.010980154350983
809 => 0.01066126952854
810 => 0.010560198348996
811 => 0.010165883643119
812 => 0.010351985005728
813 => 0.010603689763371
814 => 0.010448165486967
815 => 0.010770901712594
816 => 0.011227982278691
817 => 0.01155372510971
818 => 0.011578731599511
819 => 0.01136930078224
820 => 0.011704915003486
821 => 0.011707359586689
822 => 0.0113287853741
823 => 0.011096910776799
824 => 0.011044228380424
825 => 0.011175839335561
826 => 0.01133563933182
827 => 0.011587599387152
828 => 0.011739853571652
829 => 0.01213685173545
830 => 0.012244268055745
831 => 0.012362286025155
901 => 0.012519994427681
902 => 0.012709363800517
903 => 0.012295034393555
904 => 0.0123114964733
905 => 0.011925678666318
906 => 0.011513377007688
907 => 0.011826262572461
908 => 0.01223531882698
909 => 0.012141480870226
910 => 0.012130922183156
911 => 0.012148678966073
912 => 0.012077928211142
913 => 0.011757925168734
914 => 0.011597221644161
915 => 0.011804570190701
916 => 0.011914766715165
917 => 0.012085671914462
918 => 0.012064604241277
919 => 0.012504837680787
920 => 0.012675899083412
921 => 0.01263213425649
922 => 0.012640188037903
923 => 0.012949886536398
924 => 0.013294334961079
925 => 0.013616956364766
926 => 0.013945140713507
927 => 0.013549501671846
928 => 0.013348620566114
929 => 0.013555878590765
930 => 0.013445904565517
1001 => 0.014077847935005
1002 => 0.0141216023228
1003 => 0.01475349999559
1004 => 0.015353246132042
1005 => 0.014976556329304
1006 => 0.015331757846804
1007 => 0.015715937247986
1008 => 0.016457081643725
1009 => 0.016207490285014
1010 => 0.016016307215837
1011 => 0.015835640139254
1012 => 0.016211579645532
1013 => 0.016695219814578
1014 => 0.016799391274743
1015 => 0.01696818883677
1016 => 0.016790718839882
1017 => 0.017004461903455
1018 => 0.017759068841327
1019 => 0.017555167385614
1020 => 0.017265594539707
1021 => 0.017861284243936
1022 => 0.018076862032212
1023 => 0.019589899849293
1024 => 0.021500172593832
1025 => 0.020709307134066
1026 => 0.02021839142212
1027 => 0.020333768259104
1028 => 0.021031335198596
1029 => 0.021255371559893
1030 => 0.020646363499923
1031 => 0.020861475442372
1101 => 0.022046763394608
1102 => 0.022682632352392
1103 => 0.021819036899127
1104 => 0.01943641129426
1105 => 0.017239521673219
1106 => 0.017822235727948
1107 => 0.017756174037864
1108 => 0.019029618074858
1109 => 0.01755030440333
1110 => 0.017575212251647
1111 => 0.018874989762725
1112 => 0.018528231406597
1113 => 0.017966527279125
1114 => 0.017243622734968
1115 => 0.015907266824517
1116 => 0.014723619127589
1117 => 0.01704502483905
1118 => 0.016944921603569
1119 => 0.016799957284125
1120 => 0.01712255969027
1121 => 0.018689025402221
1122 => 0.018652913297406
1123 => 0.01842318651113
1124 => 0.018597432253801
1125 => 0.017935981157969
1126 => 0.018106452166326
1127 => 0.017239173674678
1128 => 0.017631219773652
1129 => 0.017965322114342
1130 => 0.018032398105705
1201 => 0.018183523739231
1202 => 0.016892171747197
1203 => 0.017471950879518
1204 => 0.017812516801798
1205 => 0.016273827575042
1206 => 0.017782101863048
1207 => 0.016869692182015
1208 => 0.016560006632339
1209 => 0.016976957427009
1210 => 0.016814471296828
1211 => 0.016674775263604
1212 => 0.016596822476783
1213 => 0.016902985123208
1214 => 0.016888702269809
1215 => 0.016387760756647
1216 => 0.015734302973716
1217 => 0.015953624854689
1218 => 0.015873943159178
1219 => 0.015585166415503
1220 => 0.015779767073703
1221 => 0.014922844260131
1222 => 0.013448553098353
1223 => 0.014422514998583
1224 => 0.014385018524891
1225 => 0.014366111102526
1226 => 0.015098016552219
1227 => 0.015027660731163
1228 => 0.014899964227019
1229 => 0.015582821169064
1230 => 0.015333569199496
1231 => 0.016101705038555
]
'min_raw' => 0.0068953666740899
'max_raw' => 0.022682632352392
'avg_raw' => 0.014788999513241
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006895'
'max' => '$0.022682'
'avg' => '$0.014788'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0037564179869093
'max_diff' => 0.014994366382888
'year' => 2029
]
4 => [
'items' => [
101 => 0.016607648982071
102 => 0.016479325232423
103 => 0.016955167956739
104 => 0.015958677587858
105 => 0.016289671716146
106 => 0.016357889147248
107 => 0.015574394820396
108 => 0.015039171813593
109 => 0.015003478541028
110 => 0.014075475605504
111 => 0.014571207283083
112 => 0.015007430644582
113 => 0.014798513506724
114 => 0.0147323765821
115 => 0.015070255786654
116 => 0.015096511894588
117 => 0.014497869851206
118 => 0.014622346488553
119 => 0.015141434758809
120 => 0.014609266795986
121 => 0.013575351373363
122 => 0.013318926053553
123 => 0.013284714189034
124 => 0.012589268384362
125 => 0.013336061619568
126 => 0.013010066359586
127 => 0.014039881479846
128 => 0.013451656606163
129 => 0.013426299407529
130 => 0.013387968282701
131 => 0.012789369350115
201 => 0.012920424473404
202 => 0.013356071663478
203 => 0.013511515488813
204 => 0.013495301424317
205 => 0.01335393675458
206 => 0.013418652776481
207 => 0.013210179921381
208 => 0.013136563817257
209 => 0.01290421114294
210 => 0.012562716900757
211 => 0.012610203769638
212 => 0.011933614319046
213 => 0.011564972477043
214 => 0.011462937273798
215 => 0.011326491535674
216 => 0.011478349182987
217 => 0.011931697626141
218 => 0.01138486322046
219 => 0.010447353987893
220 => 0.010503699890208
221 => 0.010630292403462
222 => 0.010394388092507
223 => 0.010171124460136
224 => 0.010365234074531
225 => 0.009967999053727
226 => 0.010678296357914
227 => 0.010659084806421
228 => 0.010923839716931
301 => 0.01108939639579
302 => 0.01070784185063
303 => 0.010611881914356
304 => 0.010666545055193
305 => 0.0097630851007928
306 => 0.010850007763918
307 => 0.010859407516244
308 => 0.010778921130073
309 => 0.011357673893215
310 => 0.012579022740958
311 => 0.012119502175793
312 => 0.011941561923879
313 => 0.011603297374916
314 => 0.012054014802247
315 => 0.012019406736115
316 => 0.011862895936348
317 => 0.011768237716305
318 => 0.011942648389113
319 => 0.011746626303826
320 => 0.011711415350982
321 => 0.011498075286641
322 => 0.011421922590025
323 => 0.011365542165178
324 => 0.011303472857246
325 => 0.011440382283835
326 => 0.01113012751125
327 => 0.010755990670163
328 => 0.010724885240043
329 => 0.010810770067421
330 => 0.01077277242468
331 => 0.010724703321948
401 => 0.010632926313993
402 => 0.010605698036238
403 => 0.010694176729659
404 => 0.010594289443415
405 => 0.01074167857541
406 => 0.01070159688692
407 => 0.010477703833241
408 => 0.010198650192531
409 => 0.010196166029794
410 => 0.010136044380643
411 => 0.010059470421099
412 => 0.010038169297328
413 => 0.010348886704223
414 => 0.010992062437505
415 => 0.010865791651171
416 => 0.010957035235048
417 => 0.01140586336063
418 => 0.011548532325019
419 => 0.011447269273395
420 => 0.011308654162699
421 => 0.011314752524086
422 => 0.011788442318982
423 => 0.01181798577045
424 => 0.011892632541231
425 => 0.01198857473686
426 => 0.011463608644176
427 => 0.01129002666833
428 => 0.011207773898213
429 => 0.010954467202079
430 => 0.011227636756984
501 => 0.011068472555627
502 => 0.011089949244214
503 => 0.011075962522597
504 => 0.011083600218378
505 => 0.010678097815341
506 => 0.010825841578429
507 => 0.010580188916922
508 => 0.010251287578968
509 => 0.010250184986356
510 => 0.010330683122866
511 => 0.010282799681377
512 => 0.010153946571528
513 => 0.010172249547612
514 => 0.010011896217815
515 => 0.01019171934514
516 => 0.010196876028994
517 => 0.010127634329942
518 => 0.010404676668397
519 => 0.010518181140507
520 => 0.01047260477089
521 => 0.010514983380917
522 => 0.010871038772422
523 => 0.010929091337023
524 => 0.010954874451481
525 => 0.010920328493715
526 => 0.010521491419854
527 => 0.010539181540066
528 => 0.01040938317553
529 => 0.010299717235312
530 => 0.010304103297798
531 => 0.010360485846645
601 => 0.01060671174425
602 => 0.011124879629951
603 => 0.011144543722437
604 => 0.011168377176173
605 => 0.011071434542096
606 => 0.011042195716042
607 => 0.011080769274788
608 => 0.011275365888684
609 => 0.01177592121209
610 => 0.011598991529833
611 => 0.011455144944083
612 => 0.011581337180547
613 => 0.01156191087487
614 => 0.01139793330502
615 => 0.011393331000779
616 => 0.011078605617437
617 => 0.010962258809165
618 => 0.010865030707766
619 => 0.010758860159242
620 => 0.010695918699208
621 => 0.010792625388202
622 => 0.010814743352175
623 => 0.010603292486545
624 => 0.010574472514898
625 => 0.010747147856255
626 => 0.010671159876509
627 => 0.010749315398089
628 => 0.010767448149501
629 => 0.010764528358891
630 => 0.010685188180873
701 => 0.010735757244383
702 => 0.010616146333817
703 => 0.010486087433554
704 => 0.010403117958142
705 => 0.010330716086541
706 => 0.010370888852926
707 => 0.010227680276019
708 => 0.010181864970047
709 => 0.010718625583506
710 => 0.011115136419817
711 => 0.011109370995222
712 => 0.011074275455743
713 => 0.011022130602949
714 => 0.011271551167912
715 => 0.011184658030401
716 => 0.011247880048105
717 => 0.01126397270503
718 => 0.011312680330746
719 => 0.011330089120377
720 => 0.011277467666929
721 => 0.01110086364199
722 => 0.010660783202848
723 => 0.010455924570453
724 => 0.010388317809572
725 => 0.010390775186927
726 => 0.010322989749274
727 => 0.010342955598593
728 => 0.010316046441682
729 => 0.010265087008516
730 => 0.010367742251528
731 => 0.010379572311986
801 => 0.010355611351628
802 => 0.010361255025192
803 => 0.010162868507289
804 => 0.010177951403372
805 => 0.010093967921338
806 => 0.010078222030893
807 => 0.0098659191015905
808 => 0.0094897936885294
809 => 0.0096982036787425
810 => 0.0094464737174443
811 => 0.0093511397667693
812 => 0.0098024358617934
813 => 0.0097571382508582
814 => 0.0096796084313353
815 => 0.0095649256696307
816 => 0.0095223887177523
817 => 0.0092639476637015
818 => 0.0092486775874988
819 => 0.0093767679523818
820 => 0.0093176586563086
821 => 0.0092346468181809
822 => 0.0089339863552574
823 => 0.0085959444496731
824 => 0.008606147809947
825 => 0.0087136726506201
826 => 0.0090263156265776
827 => 0.0089041606070926
828 => 0.0088155357388889
829 => 0.0087989389651281
830 => 0.0090066823364439
831 => 0.0093006827304375
901 => 0.0094386211374113
902 => 0.009301928365352
903 => 0.0091449030688718
904 => 0.0091544604710834
905 => 0.0092180415862054
906 => 0.0092247230624162
907 => 0.0091225157368689
908 => 0.0091512865003276
909 => 0.00910758107978
910 => 0.0088393609945535
911 => 0.0088345097437469
912 => 0.0087686842091992
913 => 0.0087666910381738
914 => 0.008654705382959
915 => 0.0086390378156741
916 => 0.0084166835002017
917 => 0.0085630377839965
918 => 0.0084648710143718
919 => 0.0083169105373472
920 => 0.0082914020953385
921 => 0.0082906352807694
922 => 0.0084425576073163
923 => 0.0085612624831573
924 => 0.0084665786673582
925 => 0.0084450209978694
926 => 0.0086752005085474
927 => 0.0086459080676808
928 => 0.0086205410028063
929 => 0.0092743582197799
930 => 0.0087568108745516
1001 => 0.0085311306914624
1002 => 0.008251808609385
1003 => 0.0083427572877736
1004 => 0.0083619215106242
1005 => 0.0076902022548178
1006 => 0.0074176858363945
1007 => 0.0073241684711561
1008 => 0.00727034790532
1009 => 0.0072948746130077
1010 => 0.0070495778734389
1011 => 0.0072144213392627
1012 => 0.0070020150972134
1013 => 0.0069664044995042
1014 => 0.0073462131723725
1015 => 0.0073990613303921
1016 => 0.0071735946696449
1017 => 0.0073183807655813
1018 => 0.0072658793145175
1019 => 0.0070056561925905
1020 => 0.0069957175834046
1021 => 0.0068651467681066
1022 => 0.0066608287256572
1023 => 0.0065674498976729
1024 => 0.0065188173933065
1025 => 0.0065388841124367
1026 => 0.0065287377651927
1027 => 0.0064625259861721
1028 => 0.0065325329468614
1029 => 0.0063536940911735
1030 => 0.006282479017836
1031 => 0.0062503128213867
1101 => 0.0060915830433832
1102 => 0.0063441927076394
1103 => 0.0063939599937905
1104 => 0.0064438253368693
1105 => 0.0068778691038544
1106 => 0.0068561855038508
1107 => 0.0070521946875421
1108 => 0.0070445781311016
1109 => 0.0069886731367746
1110 => 0.0067528191616342
1111 => 0.0068468263524323
1112 => 0.0065574868311168
1113 => 0.0067742796736613
1114 => 0.0066753444738096
1115 => 0.0067408295830716
1116 => 0.0066230814520642
1117 => 0.0066882481294649
1118 => 0.0064057616635816
1119 => 0.0061419797764316
1120 => 0.0062481333080941
1121 => 0.00636353433714
1122 => 0.006613753171747
1123 => 0.0064647248981157
1124 => 0.0065183211006964
1125 => 0.0063387827939468
1126 => 0.0059683439845404
1127 => 0.0059704406279721
1128 => 0.0059134566875931
1129 => 0.0058642142433141
1130 => 0.0064818425880637
1201 => 0.0064050307401349
1202 => 0.0062826411133463
1203 => 0.0064464644923732
1204 => 0.0064897819940145
1205 => 0.006491015182389
1206 => 0.0066105364908336
1207 => 0.0066743250345759
1208 => 0.0066855680418858
1209 => 0.0068736374031522
1210 => 0.0069366757723538
1211 => 0.0071963218935713
1212 => 0.0066689130223051
1213 => 0.0066580513836724
1214 => 0.0064487698232759
1215 => 0.0063160401490619
1216 => 0.0064578579376245
1217 => 0.0065834891382324
1218 => 0.0064526735348744
1219 => 0.0064697552910049
1220 => 0.0062941460315243
1221 => 0.0063569180786049
1222 => 0.0064109858218587
1223 => 0.006381132791989
1224 => 0.0063364413613711
1225 => 0.0065731888124619
1226 => 0.0065598305934506
1227 => 0.0067802952627066
1228 => 0.0069521632379715
1229 => 0.0072601813747216
1230 => 0.0069387483916743
1231 => 0.0069270340961916
]
'min_raw' => 0.0058642142433141
'max_raw' => 0.016955167956739
'avg_raw' => 0.011409691100027
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005864'
'max' => '$0.016955'
'avg' => '$0.0114096'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010311524307758
'max_diff' => -0.0057274643956529
'year' => 2030
]
5 => [
'items' => [
101 => 0.0070415432135665
102 => 0.0069366582416045
103 => 0.0070029419233783
104 => 0.0072495020488461
105 => 0.0072547114757729
106 => 0.0071674468627819
107 => 0.0071621368031507
108 => 0.0071788969266459
109 => 0.0072770614934502
110 => 0.0072427597775163
111 => 0.0072824545916082
112 => 0.0073320935644586
113 => 0.0075374214026563
114 => 0.0075869252493116
115 => 0.0074666565667408
116 => 0.0074775154821856
117 => 0.007432531693455
118 => 0.0073890779171865
119 => 0.0074867556603238
120 => 0.0076652636557681
121 => 0.007664153166793
122 => 0.0077055635520365
123 => 0.0077313618789811
124 => 0.0076206165742056
125 => 0.0075485254530144
126 => 0.0075761697761563
127 => 0.0076203736508753
128 => 0.0075618350553499
129 => 0.0072005077260521
130 => 0.0073101113560819
131 => 0.0072918679527013
201 => 0.0072658871278136
202 => 0.0073760944253483
203 => 0.0073654646626486
204 => 0.0070470620008285
205 => 0.0070674451061833
206 => 0.0070483015649761
207 => 0.0071101582630167
208 => 0.006933317776914
209 => 0.0069877127194003
210 => 0.0070218287174068
211 => 0.0070419233023241
212 => 0.0071145187220313
213 => 0.0071060004874218
214 => 0.0071139892166078
215 => 0.0072216290595532
216 => 0.0077660344476376
217 => 0.0077956652317483
218 => 0.0076497524138373
219 => 0.0077080417065897
220 => 0.0075961390109721
221 => 0.0076712600402231
222 => 0.0077226559405693
223 => 0.007490407749768
224 => 0.007476655519187
225 => 0.0073642909613387
226 => 0.0074246693100725
227 => 0.0073286030158801
228 => 0.0073521743242186
301 => 0.0072862668911944
302 => 0.0074048871485989
303 => 0.0075375230281016
304 => 0.0075710320892136
305 => 0.0074828841759858
306 => 0.0074190592775784
307 => 0.0073070037812034
308 => 0.0074933545689946
309 => 0.0075478492182821
310 => 0.0074930683318009
311 => 0.0074803744034172
312 => 0.0074563194320676
313 => 0.0074854777793043
314 => 0.0075475524287187
315 => 0.0075182791703936
316 => 0.0075376146732458
317 => 0.0074639276750574
318 => 0.0076206532355095
319 => 0.0078695711435677
320 => 0.0078703714553443
321 => 0.0078410980392255
322 => 0.0078291199880542
323 => 0.0078591562894515
324 => 0.007875449750806
325 => 0.0079725816418094
326 => 0.0080768080307612
327 => 0.0085631871104634
328 => 0.0084266138111604
329 => 0.0088581582654931
330 => 0.0091994538998361
331 => 0.0093017935375263
401 => 0.0092076458863033
402 => 0.008885571857226
403 => 0.0088697693688242
404 => 0.0093510839444134
405 => 0.0092150905312053
406 => 0.0091989145474317
407 => 0.0090268294098359
408 => 0.0091285530393139
409 => 0.0091063045893515
410 => 0.0090711843226543
411 => 0.0092652659215689
412 => 0.0096285693489531
413 => 0.0095719451027573
414 => 0.0095296777296953
415 => 0.0093444744047851
416 => 0.0094560081730412
417 => 0.0094162931344538
418 => 0.0095869341440116
419 => 0.0094858501901107
420 => 0.009214060247347
421 => 0.0092573436915635
422 => 0.0092508014860444
423 => 0.0093854396120422
424 => 0.0093450245885414
425 => 0.0092429098040679
426 => 0.0096273276173344
427 => 0.0096023656627851
428 => 0.0096377560072388
429 => 0.00965333593135
430 => 0.0098873242800836
501 => 0.0099831818197678
502 => 0.010004943159499
503 => 0.01009600040831
504 => 0.010002677572197
505 => 0.010376035454705
506 => 0.010624296660537
507 => 0.010912664826515
508 => 0.011334048223065
509 => 0.011492492278182
510 => 0.011463870777803
511 => 0.011783358859885
512 => 0.012357471841565
513 => 0.011579915425919
514 => 0.012398684219649
515 => 0.012139471472694
516 => 0.011524882712703
517 => 0.011485310442085
518 => 0.011901517085873
519 => 0.012824623363391
520 => 0.012593395710658
521 => 0.012825001568996
522 => 0.012554821032775
523 => 0.012541404291891
524 => 0.012811879503406
525 => 0.013443859577947
526 => 0.013143629533951
527 => 0.012713176146457
528 => 0.013031016229186
529 => 0.012755673734815
530 => 0.012135250031485
531 => 0.012593218895229
601 => 0.012286988158246
602 => 0.012376362567419
603 => 0.013020014028174
604 => 0.012942568181526
605 => 0.013042790278381
606 => 0.0128659009007
607 => 0.012700658329051
608 => 0.012392220797994
609 => 0.012300907650835
610 => 0.012326143319607
611 => 0.012300895145291
612 => 0.012128327181352
613 => 0.012091061145969
614 => 0.012028949454336
615 => 0.012048200464753
616 => 0.011931412313067
617 => 0.012151815684963
618 => 0.012192724492974
619 => 0.012353115686924
620 => 0.012369768032757
621 => 0.012816455224881
622 => 0.012570427425733
623 => 0.01273548411442
624 => 0.01272071989061
625 => 0.011538202714728
626 => 0.011701143148127
627 => 0.011954627328971
628 => 0.011840433049091
629 => 0.011678989054686
630 => 0.011548614373124
701 => 0.011351083399063
702 => 0.011629104451808
703 => 0.011994672571924
704 => 0.012379039443563
705 => 0.012840831055121
706 => 0.012737764543268
707 => 0.0123704065706
708 => 0.012386885980899
709 => 0.012488755210956
710 => 0.012356825302236
711 => 0.012317916596577
712 => 0.012483409752283
713 => 0.012484549412693
714 => 0.012332748108448
715 => 0.012164048738125
716 => 0.012163341881604
717 => 0.012133323458098
718 => 0.01256016124363
719 => 0.012794878867506
720 => 0.012821788864817
721 => 0.012793067610279
722 => 0.012804121281245
723 => 0.012667544267562
724 => 0.012979718820186
725 => 0.013266201060538
726 => 0.013189417700323
727 => 0.013074308527963
728 => 0.01298261852777
729 => 0.013167818450228
730 => 0.013159571789212
731 => 0.01326369888809
801 => 0.013258975081417
802 => 0.013223961054483
803 => 0.013189418950784
804 => 0.013326374487488
805 => 0.013286933492356
806 => 0.013247431234465
807 => 0.01316820340877
808 => 0.013178971786117
809 => 0.013063882488979
810 => 0.013010636913995
811 => 0.012209951220234
812 => 0.011995981839702
813 => 0.012063300962566
814 => 0.012085464165753
815 => 0.011992344417136
816 => 0.012125854216152
817 => 0.012105046855397
818 => 0.012185996124195
819 => 0.012135422535459
820 => 0.012137498093181
821 => 0.012286224234229
822 => 0.012329400065701
823 => 0.012307440489342
824 => 0.012322820223894
825 => 0.012677239715247
826 => 0.012626852597274
827 => 0.012600085445103
828 => 0.012607500129185
829 => 0.012698061908065
830 => 0.012723414261662
831 => 0.012615994557994
901 => 0.01266665431123
902 => 0.012882357110827
903 => 0.012957840882965
904 => 0.013198748849362
905 => 0.013096406863439
906 => 0.013284260007859
907 => 0.013861656529949
908 => 0.014322920824595
909 => 0.013898723116686
910 => 0.01474577625215
911 => 0.015405328620664
912 => 0.015380013902218
913 => 0.015265005691047
914 => 0.0145141228546
915 => 0.01382314927347
916 => 0.014401178014373
917 => 0.014402651528507
918 => 0.014352998347035
919 => 0.014044606701338
920 => 0.014342266986242
921 => 0.014365894178714
922 => 0.014352669233907
923 => 0.014116226082214
924 => 0.013755221091577
925 => 0.013825760602624
926 => 0.013941305760685
927 => 0.01372255467123
928 => 0.013652650443553
929 => 0.013782615702628
930 => 0.014201390846704
1001 => 0.014122223831516
1002 => 0.01412015646081
1003 => 0.014458866523825
1004 => 0.014216423216913
1005 => 0.013826650331757
1006 => 0.013728227537782
1007 => 0.013378892924711
1008 => 0.013620179586247
1009 => 0.013628863063641
1010 => 0.013496712825008
1011 => 0.0138373735953
1012 => 0.01383423434633
1013 => 0.014157641047059
1014 => 0.014775873192842
1015 => 0.014593031525978
1016 => 0.014380406560531
1017 => 0.014403524789726
1018 => 0.014657074703342
1019 => 0.014503772637588
1020 => 0.014558901129293
1021 => 0.014656991259767
1022 => 0.014716171470922
1023 => 0.014395009668072
1024 => 0.014320131488883
1025 => 0.014166957012932
1026 => 0.014126996651293
1027 => 0.014251754065865
1028 => 0.01421888489487
1029 => 0.01362813325099
1030 => 0.013566396417293
1031 => 0.013568289797843
1101 => 0.013413049594087
1102 => 0.01317627102144
1103 => 0.013798510973041
1104 => 0.013748536396685
1105 => 0.013693368332113
1106 => 0.013700126105238
1107 => 0.01397021937856
1108 => 0.013813551639996
1109 => 0.014230078500305
1110 => 0.014144453099769
1111 => 0.014056631730804
1112 => 0.014044492142508
1113 => 0.014010688408024
1114 => 0.01389476282466
1115 => 0.013754775716701
1116 => 0.013662344102551
1117 => 0.012602790245827
1118 => 0.012799437278494
1119 => 0.013025661764636
1120 => 0.013103753550714
1121 => 0.01297017214684
1122 => 0.013900037432673
1123 => 0.0140699327808
1124 => 0.013555308689325
1125 => 0.013459043533773
1126 => 0.013906348560245
1127 => 0.013636568948467
1128 => 0.013758050691132
1129 => 0.013495473610451
1130 => 0.014029009966553
1201 => 0.014024945313437
1202 => 0.013817387620449
1203 => 0.013992813961269
1204 => 0.013962329317521
1205 => 0.013727997193329
1206 => 0.01403643871286
1207 => 0.014036591696006
1208 => 0.013836821929198
1209 => 0.013603534576791
1210 => 0.013561828308182
1211 => 0.013530408237234
1212 => 0.013750323279764
1213 => 0.01394749841924
1214 => 0.014314392469943
1215 => 0.014406638351477
1216 => 0.014766680168261
1217 => 0.014552292796484
1218 => 0.014647327941611
1219 => 0.014750502035189
1220 => 0.014799967489752
1221 => 0.014719366186005
1222 => 0.015278659326595
1223 => 0.01532588080396
1224 => 0.015341713756856
1225 => 0.015153123256676
1226 => 0.015320635760992
1227 => 0.015242262207654
1228 => 0.01544616842064
1229 => 0.015478143518441
1230 => 0.01545106174815
1231 => 0.015461211148885
]
'min_raw' => 0.006933317776914
'max_raw' => 0.015478143518441
'avg_raw' => 0.011205730647677
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006933'
'max' => '$0.015478'
'avg' => '$0.0112057'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0010691035335999
'max_diff' => -0.0014770244382979
'year' => 2031
]
6 => [
'items' => [
101 => 0.014983953119462
102 => 0.0149592047729
103 => 0.014621759311462
104 => 0.014759270831269
105 => 0.014502199636088
106 => 0.014583719560207
107 => 0.014619652766008
108 => 0.014600883298489
109 => 0.014767045526278
110 => 0.014625773687957
111 => 0.014252934079386
112 => 0.013879992890913
113 => 0.013875310918083
114 => 0.013777122086117
115 => 0.013706149544787
116 => 0.013719821374133
117 => 0.013768002683994
118 => 0.013703349159469
119 => 0.013717146266943
120 => 0.013946270180664
121 => 0.013992219347524
122 => 0.013836066125036
123 => 0.013209088403944
124 => 0.013055226498534
125 => 0.013165819384929
126 => 0.013112963108326
127 => 0.010583184653228
128 => 0.011177518576519
129 => 0.010824385540973
130 => 0.010987125490622
131 => 0.010626668104685
201 => 0.010798697262445
202 => 0.010766929758505
203 => 0.011722601119538
204 => 0.011707679625719
205 => 0.011714821755182
206 => 0.011373909307168
207 => 0.011916992093636
208 => 0.012184534202875
209 => 0.012135019278858
210 => 0.012147481118476
211 => 0.011933345425788
212 => 0.011716895056765
213 => 0.011476818286045
214 => 0.011922851251656
215 => 0.011873259999917
216 => 0.011987004489038
217 => 0.012276288750332
218 => 0.012318886956691
219 => 0.012376139378027
220 => 0.012355618460483
221 => 0.012844509970327
222 => 0.012785301982675
223 => 0.012927976197616
224 => 0.012634484512763
225 => 0.012302370812866
226 => 0.012365494769602
227 => 0.012359415424957
228 => 0.012282018390086
229 => 0.01221214780766
301 => 0.012095832973835
302 => 0.012463870319414
303 => 0.012448928675298
304 => 0.012690816525765
305 => 0.012648060498622
306 => 0.012362525285185
307 => 0.012372723231193
308 => 0.012441309319062
309 => 0.012678686552279
310 => 0.012749156276973
311 => 0.012716511892762
312 => 0.012793778728823
313 => 0.012854847285623
314 => 0.012801447999329
315 => 0.013557469284123
316 => 0.013243516537057
317 => 0.013396534921508
318 => 0.013433028904563
319 => 0.013339550334353
320 => 0.013359822489015
321 => 0.013390529279496
322 => 0.013576974898292
323 => 0.014066262150485
324 => 0.01428296414379
325 => 0.014934922782537
326 => 0.014264970059883
327 => 0.014225217837861
328 => 0.014342655275964
329 => 0.01472542401374
330 => 0.015035622124067
331 => 0.015138532733021
401 => 0.015152134068863
402 => 0.015345201212629
403 => 0.015455863698946
404 => 0.015321757783206
405 => 0.01520811706109
406 => 0.014801070100079
407 => 0.014848186894168
408 => 0.015172774881966
409 => 0.015631274532867
410 => 0.016024714932099
411 => 0.01588694581707
412 => 0.016938026914901
413 => 0.01704223731247
414 => 0.017027838805051
415 => 0.017265245599299
416 => 0.01679404145977
417 => 0.016592592560971
418 => 0.015232687475089
419 => 0.015614765334414
420 => 0.016170137941589
421 => 0.016096632294489
422 => 0.015693305862006
423 => 0.016024408972833
424 => 0.015914935929842
425 => 0.015828589998794
426 => 0.016224157447906
427 => 0.015789214788593
428 => 0.016165799055849
429 => 0.015682825837827
430 => 0.015887575134783
501 => 0.015771349531222
502 => 0.0158465617408
503 => 0.015406872700443
504 => 0.015644118233772
505 => 0.015397002506266
506 => 0.015396885341235
507 => 0.015391430247854
508 => 0.015682160805386
509 => 0.01569164151843
510 => 0.015476791197144
511 => 0.015445827909254
512 => 0.0155603154131
513 => 0.015426280530421
514 => 0.015488994608421
515 => 0.015428180075956
516 => 0.015414489443748
517 => 0.015305400157046
518 => 0.015258401492863
519 => 0.015276830880096
520 => 0.01521392188047
521 => 0.015176016932678
522 => 0.015383889999685
523 => 0.015272831805558
524 => 0.015366868738636
525 => 0.015259701784987
526 => 0.01488821443322
527 => 0.014674568128812
528 => 0.01397286295822
529 => 0.014171865674138
530 => 0.014303804680674
531 => 0.014260198839801
601 => 0.014353881059217
602 => 0.014359632386633
603 => 0.014329175342124
604 => 0.014293909986371
605 => 0.014276744761487
606 => 0.014404680284567
607 => 0.014478951161827
608 => 0.014317046525096
609 => 0.014279114533997
610 => 0.014442809060731
611 => 0.014542662627476
612 => 0.015279925261449
613 => 0.015225306464197
614 => 0.015362388926901
615 => 0.015346955545302
616 => 0.015490639805165
617 => 0.015725502844541
618 => 0.015247960616751
619 => 0.015330845435327
620 => 0.015310523991902
621 => 0.015532388182648
622 => 0.015533080818434
623 => 0.015400062153144
624 => 0.015472173729579
625 => 0.015431923025891
626 => 0.015504661487665
627 => 0.01522457699686
628 => 0.015565689673407
629 => 0.015759078580194
630 => 0.015761763785353
701 => 0.01585342859234
702 => 0.015946565345108
703 => 0.016125333231542
704 => 0.015941579605781
705 => 0.015611024721092
706 => 0.015634889716081
707 => 0.015441085508133
708 => 0.015444343391882
709 => 0.015426952553104
710 => 0.015479143769398
711 => 0.01523603003387
712 => 0.01529308834167
713 => 0.015213206376617
714 => 0.015330671787536
715 => 0.015204298423116
716 => 0.015310514192287
717 => 0.015356353397153
718 => 0.015525501049955
719 => 0.015179315177267
720 => 0.014473418748133
721 => 0.014621806735704
722 => 0.014402329246462
723 => 0.014422642723701
724 => 0.01446367918059
725 => 0.01433066659752
726 => 0.014356041206661
727 => 0.014355134647064
728 => 0.014347322406221
729 => 0.014312720696175
730 => 0.014262541370868
731 => 0.014462440358508
801 => 0.014496407091796
802 => 0.014571910932306
803 => 0.01479655914692
804 => 0.01477411149271
805 => 0.01481072454807
806 => 0.014730798453793
807 => 0.014426350265981
808 => 0.014442883267323
809 => 0.014236716475658
810 => 0.014566638783917
811 => 0.01448850882656
812 => 0.014438137934786
813 => 0.014424393770282
814 => 0.014649598844368
815 => 0.014716983732192
816 => 0.014674993992132
817 => 0.014588871810232
818 => 0.014754251859217
819 => 0.014798500583501
820 => 0.014808406241038
821 => 0.015101427979359
822 => 0.014824782901145
823 => 0.014891374121086
824 => 0.015410899809771
825 => 0.014939761699779
826 => 0.015189334064275
827 => 0.015177118795745
828 => 0.015304791572353
829 => 0.015166645901574
830 => 0.015168358382729
831 => 0.015281723159054
901 => 0.015122522776151
902 => 0.015083102522504
903 => 0.015028643724424
904 => 0.015147552517697
905 => 0.015218832961481
906 => 0.015793300988668
907 => 0.016164433533156
908 => 0.016148321690607
909 => 0.016295553771396
910 => 0.01622922437051
911 => 0.016015029238234
912 => 0.016380634210715
913 => 0.01626494149986
914 => 0.016274479066376
915 => 0.016274124077674
916 => 0.01635104961636
917 => 0.016296540822079
918 => 0.016189098393338
919 => 0.016260423691665
920 => 0.016472234328434
921 => 0.017129701044109
922 => 0.017497628128476
923 => 0.017107551371647
924 => 0.017376621095172
925 => 0.017215275140402
926 => 0.017185953780794
927 => 0.017354949451264
928 => 0.017524240926284
929 => 0.017513457791192
930 => 0.017390560873541
1001 => 0.017321139523154
1002 => 0.017846821246144
1003 => 0.018234134584889
1004 => 0.018207722411768
1005 => 0.018324297154224
1006 => 0.018666564203597
1007 => 0.018697856813162
1008 => 0.018693914663609
1009 => 0.018616352665758
1010 => 0.018953359024858
1011 => 0.019234495658683
1012 => 0.018598399304237
1013 => 0.018840616468897
1014 => 0.018949355557863
1015 => 0.019109016801898
1016 => 0.019378392082918
1017 => 0.019671005086369
1018 => 0.019712383773395
1019 => 0.019683023614798
1020 => 0.019490037473162
1021 => 0.019810218113138
1022 => 0.019997772422875
1023 => 0.02010945672222
1024 => 0.020392669522863
1025 => 0.018950027093457
1026 => 0.017928853077942
1027 => 0.017769382009488
1028 => 0.018093672698079
1029 => 0.018179185566491
1030 => 0.018144715436458
1031 => 0.016995291240917
1101 => 0.017763330528977
1102 => 0.018589676224352
1103 => 0.018621419527911
1104 => 0.019035105461089
1105 => 0.019169818558491
1106 => 0.019502889957755
1107 => 0.019482056251045
1108 => 0.019563153836443
1109 => 0.019544510905974
1110 => 0.020161455536652
1111 => 0.020842037081454
1112 => 0.020818470706674
1113 => 0.020720629057334
1114 => 0.020865940591085
1115 => 0.021568373680871
1116 => 0.021503704898225
1117 => 0.021566525112092
1118 => 0.022394733312344
1119 => 0.023471521783915
1120 => 0.022971245431075
1121 => 0.024056701166095
1122 => 0.024739938013753
1123 => 0.02592152549377
1124 => 0.025773584921831
1125 => 0.026233568256912
1126 => 0.025508740421931
1127 => 0.02384438920094
1128 => 0.023580999249337
1129 => 0.024108312602541
1130 => 0.025404661026908
1201 => 0.024067485977345
1202 => 0.024337994748331
1203 => 0.024260088204089
1204 => 0.024255936895428
1205 => 0.024414375462432
1206 => 0.024184552057393
1207 => 0.023248210160822
1208 => 0.023677330134123
1209 => 0.023511626304398
1210 => 0.023695487057517
1211 => 0.024687707712157
1212 => 0.024249023309154
1213 => 0.023786904926418
1214 => 0.024366503930648
1215 => 0.025104532634859
1216 => 0.025058348124915
1217 => 0.024968730871995
1218 => 0.025473898634497
1219 => 0.026308287777883
1220 => 0.026533819810493
1221 => 0.026700302946167
1222 => 0.026723258157821
1223 => 0.026959711104439
1224 => 0.025688244016658
1225 => 0.027706094938557
1226 => 0.028054522050762
1227 => 0.027989032194491
1228 => 0.028376294265653
1229 => 0.028262351940427
1230 => 0.028097267388177
1231 => 0.028711160143973
]
'min_raw' => 0.010583184653228
'max_raw' => 0.028711160143973
'avg_raw' => 0.019647172398601
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.010583'
'max' => '$0.028711'
'avg' => '$0.019647'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0036498668763141
'max_diff' => 0.013233016625532
'year' => 2032
]
7 => [
'items' => [
101 => 0.028007381638044
102 => 0.027008456652127
103 => 0.026460426648357
104 => 0.027182116765641
105 => 0.027622827736752
106 => 0.027914109654174
107 => 0.028002251386388
108 => 0.02578694438728
109 => 0.02459301678132
110 => 0.025358310688332
111 => 0.026292022072652
112 => 0.025683057202774
113 => 0.02570692747275
114 => 0.024838703601457
115 => 0.026368840620063
116 => 0.02614591252693
117 => 0.027302463868457
118 => 0.027026443608897
119 => 0.027969566330847
120 => 0.027721210510674
121 => 0.028752121634828
122 => 0.029163379993058
123 => 0.029853946783779
124 => 0.030361930526145
125 => 0.030660228295843
126 => 0.030642319616637
127 => 0.03182432399154
128 => 0.031127337307747
129 => 0.030251757765755
130 => 0.030235921294258
131 => 0.030689396346114
201 => 0.031639755649999
202 => 0.031886169990331
203 => 0.032023881990114
204 => 0.031812971268657
205 => 0.031056442176886
206 => 0.030729776750749
207 => 0.031008105158226
208 => 0.030667733432914
209 => 0.031255310522242
210 => 0.032062179365582
211 => 0.031895564140138
212 => 0.032452533858449
213 => 0.033028938921977
214 => 0.033853224050795
215 => 0.034068722706657
216 => 0.034424933790119
217 => 0.034791592004246
218 => 0.034909352740907
219 => 0.035134194526205
220 => 0.035133009499011
221 => 0.035810585352604
222 => 0.036557972501893
223 => 0.036840093848698
224 => 0.037488816329413
225 => 0.036377901815135
226 => 0.037220543235481
227 => 0.037980626889316
228 => 0.037074423822643
301 => 0.038323413631816
302 => 0.038371909075835
303 => 0.03910413270407
304 => 0.03836188377978
305 => 0.037921138737879
306 => 0.039193553159346
307 => 0.039809234417215
308 => 0.039623786211765
309 => 0.03821251621158
310 => 0.037391096539254
311 => 0.035241282816756
312 => 0.037787830036096
313 => 0.039028178902836
314 => 0.038209304007661
315 => 0.038622296873679
316 => 0.040875452037288
317 => 0.041733307642598
318 => 0.041554879673557
319 => 0.04158503106315
320 => 0.042047914376594
321 => 0.044100593902903
322 => 0.04287058075
323 => 0.04381087971768
324 => 0.044309610899638
325 => 0.044772860216031
326 => 0.04363526630642
327 => 0.042155273344589
328 => 0.041686497447699
329 => 0.038127883037596
330 => 0.037942641703271
331 => 0.037838660128928
401 => 0.037183071011178
402 => 0.036667957545599
403 => 0.036258320192834
404 => 0.035183309451109
405 => 0.03554609401917
406 => 0.033832751269041
407 => 0.034928887243435
408 => 0.032194350844121
409 => 0.034471754014657
410 => 0.03323226700975
411 => 0.034064549197649
412 => 0.034061645443501
413 => 0.032529150060271
414 => 0.031645238705587
415 => 0.032208501423136
416 => 0.032812363768199
417 => 0.032910338402049
418 => 0.033693261694843
419 => 0.033911758756982
420 => 0.033249702458049
421 => 0.032137683655333
422 => 0.032395980260755
423 => 0.031640004333122
424 => 0.030315185598139
425 => 0.03126669354272
426 => 0.031591580189851
427 => 0.031735068641608
428 => 0.030432261572212
429 => 0.03002289130569
430 => 0.029804946010743
501 => 0.031969507622624
502 => 0.032088087193945
503 => 0.031481417341608
504 => 0.034223622600967
505 => 0.033602977095583
506 => 0.034296390186937
507 => 0.03237254255115
508 => 0.032446036121641
509 => 0.031535255819834
510 => 0.032045231930484
511 => 0.031684797252774
512 => 0.032004030900426
513 => 0.032195378232579
514 => 0.033106009084301
515 => 0.034482151956217
516 => 0.032969991201917
517 => 0.032311121106727
518 => 0.032719880408157
519 => 0.033808460293534
520 => 0.035457714543261
521 => 0.034481322833088
522 => 0.034914628893856
523 => 0.035009286991689
524 => 0.034289331892593
525 => 0.035484260314698
526 => 0.036124632163685
527 => 0.036781521174463
528 => 0.037351879496909
529 => 0.036519145258259
530 => 0.037410290261378
531 => 0.036692184697133
601 => 0.036047969769617
602 => 0.036048946777742
603 => 0.035644821343232
604 => 0.034861777390789
605 => 0.034717372071909
606 => 0.035468586777105
607 => 0.036070989830375
608 => 0.036120606631158
609 => 0.036454127914035
610 => 0.036651502373699
611 => 0.038586040395973
612 => 0.039364127591869
613 => 0.040315557886575
614 => 0.040686193606036
615 => 0.041801674241354
616 => 0.040900833033427
617 => 0.040705930371535
618 => 0.038000139221188
619 => 0.038443212370476
620 => 0.039152615232686
621 => 0.038011837013097
622 => 0.038735398222476
623 => 0.038878244532329
624 => 0.037973073805719
625 => 0.03845656460092
626 => 0.037172556393897
627 => 0.034510139826341
628 => 0.03548722434543
629 => 0.036206687434572
630 => 0.035179924897207
701 => 0.037020357004236
702 => 0.03594521456154
703 => 0.035604446023144
704 => 0.034274986462105
705 => 0.034902440199324
706 => 0.035751080363185
707 => 0.035226719406927
708 => 0.036314847124355
709 => 0.037855926165296
710 => 0.038954190862714
711 => 0.039038501988975
712 => 0.038332391366555
713 => 0.03946393814532
714 => 0.039472180228266
715 => 0.038195790839314
716 => 0.037414009445548
717 => 0.037236387068002
718 => 0.03768012259203
719 => 0.038218899436297
720 => 0.039068400354135
721 => 0.039581735967227
722 => 0.040920242993999
723 => 0.04128240461744
724 => 0.041680310441058
725 => 0.042212035331023
726 => 0.042850507392889
727 => 0.04145356686976
728 => 0.041509069920967
729 => 0.040208258247788
730 => 0.038818154419732
731 => 0.039873069946338
801 => 0.041252231667844
802 => 0.040935850445092
803 => 0.040900251094451
804 => 0.040960119327793
805 => 0.040721578217883
806 => 0.039642665618506
807 => 0.039100842465449
808 => 0.039799932566721
809 => 0.040171467842626
810 => 0.040747686654274
811 => 0.040676655523235
812 => 0.042160933300658
813 => 0.042737678762735
814 => 0.042590122593206
815 => 0.042617276479537
816 => 0.043661446589672
817 => 0.044822778502105
818 => 0.045910519089341
819 => 0.047017015534222
820 => 0.045683090882626
821 => 0.045005806209581
822 => 0.045704591109984
823 => 0.04533380600572
824 => 0.047464447196825
825 => 0.047611968170111
826 => 0.049742455291607
827 => 0.051764541263593
828 => 0.050494505294022
829 => 0.051692092009651
830 => 0.052987379683282
831 => 0.055486199758568
901 => 0.054644685066762
902 => 0.054000098001055
903 => 0.053390966338584
904 => 0.054658472631258
905 => 0.056289099227876
906 => 0.05664032057884
907 => 0.057209433344284
908 => 0.056611080859217
909 => 0.057331730521116
910 => 0.059875940497124
911 => 0.059188472503244
912 => 0.05821215743594
913 => 0.060220566863475
914 => 0.060947402427806
915 => 0.066048715065022
916 => 0.072489332994221
917 => 0.069822874880155
918 => 0.068167718282689
919 => 0.068556719343933
920 => 0.070908614983
921 => 0.071663969216832
922 => 0.069610656023058
923 => 0.070335920955662
924 => 0.074332202040786
925 => 0.076476078626908
926 => 0.073564406261915
927 => 0.0655312176855
928 => 0.058124250946223
929 => 0.060088912065539
930 => 0.059866180465141
1001 => 0.064159685944889
1002 => 0.059172076618951
1003 => 0.059256055168563
1004 => 0.06363834579473
1005 => 0.06246922578715
1006 => 0.060575401104447
1007 => 0.058138077962239
1008 => 0.053632460708763
1009 => 0.049641709858928
1010 => 0.057468491290487
1011 => 0.05713098624308
1012 => 0.056642228918989
1013 => 0.057729905454688
1014 => 0.063011353969674
1015 => 0.062889599487023
1016 => 0.062115059588081
1017 => 0.062702541274947
1018 => 0.060472412724307
1019 => 0.06104716763089
1020 => 0.058123077644848
1021 => 0.059444888439324
1022 => 0.060571337807238
1023 => 0.060797489195215
1024 => 0.061307019819902
1025 => 0.056953136419444
1026 => 0.058907902242949
1027 => 0.06005614402747
1028 => 0.054868345871611
1029 => 0.059953597937971
1030 => 0.056877344995959
1031 => 0.055833218543671
1101 => 0.057238997258476
1102 => 0.056691163926152
1103 => 0.056220168996872
1104 => 0.055957345733614
1105 => 0.056989594471632
1106 => 0.0569414388342
1107 => 0.055252479547955
1108 => 0.053049301009838
1109 => 0.0537887600441
1110 => 0.053520107644487
1111 => 0.052546476691441
1112 => 0.053202586397145
1113 => 0.050313411302748
1114 => 0.045342735719091
1115 => 0.048626516265565
1116 => 0.048500094286592
1117 => 0.048436346592013
1118 => 0.050904016915661
1119 => 0.050666807352883
1120 => 0.050236269673678
1121 => 0.05253856952933
1122 => 0.051698199111714
1123 => 0.054288022722634
1124 => 0.055993848052076
1125 => 0.055561195570861
1126 => 0.05716553253817
1127 => 0.053805795686752
1128 => 0.054921765499547
1129 => 0.055151765331296
1130 => 0.052510159506488
1201 => 0.050705617770973
1202 => 0.050585275410496
1203 => 0.047456448722282
1204 => 0.04912784268412
1205 => 0.050598600203555
1206 => 0.04989422148714
1207 => 0.049671236228238
1208 => 0.050810419556364
1209 => 0.050898943857405
1210 => 0.04888058041229
1211 => 0.049300262085787
1212 => 0.051050404430542
1213 => 0.049256162989102
1214 => 0.045770244956059
1215 => 0.044905689087277
1216 => 0.044790341397455
1217 => 0.042445597312527
1218 => 0.044963462844463
1219 => 0.043864347065172
1220 => 0.047336440642524
1221 => 0.045353199412352
1222 => 0.045267705846773
1223 => 0.045138469783222
1224 => 0.043120251689166
1225 => 0.043562113187313
1226 => 0.045030928104561
1227 => 0.045555017814419
1228 => 0.04550035096394
1229 => 0.045023730110157
1230 => 0.045241924696325
1231 => 0.044539043910244
]
'min_raw' => 0.02459301678132
'max_raw' => 0.076476078626908
'avg_raw' => 0.050534547704114
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.024593'
'max' => '$0.076476'
'avg' => '$0.050534'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.014009832128092
'max_diff' => 0.047764918482935
'year' => 2033
]
8 => [
'items' => [
101 => 0.04429084207548
102 => 0.043507448811672
103 => 0.042356077131787
104 => 0.042516182425648
105 => 0.040235013855008
106 => 0.038992112146944
107 => 0.038648093335333
108 => 0.038188057002911
109 => 0.03870005566319
110 => 0.040228551591061
111 => 0.038384861213548
112 => 0.035223983381144
113 => 0.035413957524745
114 => 0.035840773021588
115 => 0.035045405166889
116 => 0.03429265624258
117 => 0.034947110359816
118 => 0.03360780475311
119 => 0.03600262170555
120 => 0.035937848618383
121 => 0.036830488283766
122 => 0.037388674185339
123 => 0.036102236397044
124 => 0.035778700772185
125 => 0.035963001367979
126 => 0.032916923054157
127 => 0.036581558699401
128 => 0.036613250620639
129 => 0.036341885150281
130 => 0.038293190498441
131 => 0.042411053410461
201 => 0.040861747742307
202 => 0.040261809759586
203 => 0.039121327215882
204 => 0.040640952490215
205 => 0.040524268978994
206 => 0.039996581890342
207 => 0.039677435092641
208 => 0.04026547285298
209 => 0.03960457070661
210 => 0.039485854520745
211 => 0.038766563598891
212 => 0.03850980946544
213 => 0.03831971892671
214 => 0.038110447921479
215 => 0.038572047611934
216 => 0.037526001984867
217 => 0.036264573503741
218 => 0.036159699374381
219 => 0.036449266066172
220 => 0.036321154360759
221 => 0.036159086024823
222 => 0.035849653434837
223 => 0.035757851395369
224 => 0.036056163487621
225 => 0.035719386528144
226 => 0.036216319277043
227 => 0.036081181065886
228 => 0.035326310003693
301 => 0.034385461171137
302 => 0.03437708564303
303 => 0.034174381305358
304 => 0.03391620685453
305 => 0.033844388628542
306 => 0.034891994059483
307 => 0.03706050594934
308 => 0.03663477517727
309 => 0.036942409290735
310 => 0.038455664652312
311 => 0.038936683026581
312 => 0.03859526757807
313 => 0.03812791705456
314 => 0.03814847810575
315 => 0.039745556321209
316 => 0.039845164130491
317 => 0.04009684092985
318 => 0.040420316740881
319 => 0.038650356907437
320 => 0.038065113156765
321 => 0.037787792199609
322 => 0.036933750988286
323 => 0.037854761214738
324 => 0.037318127997374
325 => 0.037390538152398
326 => 0.037343380943946
327 => 0.037369131968517
328 => 0.036001952305405
329 => 0.036500080717795
330 => 0.035671845618602
331 => 0.034562931794535
401 => 0.034559214326561
402 => 0.034830619414004
403 => 0.034669177047911
404 => 0.034234739791816
405 => 0.034296449553559
406 => 0.033755807106634
407 => 0.034362093335263
408 => 0.034379479454903
409 => 0.034146026232247
410 => 0.035080093818827
411 => 0.035462782071175
412 => 0.03530911815897
413 => 0.035452000601458
414 => 0.036652466212909
415 => 0.036848194487562
416 => 0.036935124058079
417 => 0.036818649949547
418 => 0.03547394290911
419 => 0.035533586384489
420 => 0.035095962136224
421 => 0.034726215762147
422 => 0.034741003678045
423 => 0.034931101377985
424 => 0.035761269182705
425 => 0.037508308386671
426 => 0.037574607247393
427 => 0.037654963400662
428 => 0.037328114541551
429 => 0.037229533798121
430 => 0.037359587244554
501 => 0.038015683314607
502 => 0.039703340535127
503 => 0.039106809758559
504 => 0.038621820951655
505 => 0.039047286887353
506 => 0.038981789741465
507 => 0.038428927916168
508 => 0.038413410926095
509 => 0.037352292322732
510 => 0.03696002093557
511 => 0.036632209603453
512 => 0.036274248186513
513 => 0.036062036659575
514 => 0.036388090013365
515 => 0.036462662273127
516 => 0.035749740916628
517 => 0.035652572370072
518 => 0.036234759339266
519 => 0.035978560560241
520 => 0.036242067357892
521 => 0.036303203195266
522 => 0.036293358917371
523 => 0.036025857967827
524 => 0.036196355096073
525 => 0.035793078560131
526 => 0.035354575897472
527 => 0.035074838518376
528 => 0.034830730553336
529 => 0.034966175839979
530 => 0.034483338124431
531 => 0.034328868621624
601 => 0.036138594505331
602 => 0.037475458473456
603 => 0.037456019941903
604 => 0.03733769288026
605 => 0.037161882868427
606 => 0.038002821717188
607 => 0.037709855437383
608 => 0.037923012884093
609 => 0.03797727040047
610 => 0.038141491561227
611 => 0.038200186510912
612 => 0.038022769606701
613 => 0.037427336806519
614 => 0.035943574880516
615 => 0.035252879698624
616 => 0.035024938784161
617 => 0.03503322400348
618 => 0.034804680667806
619 => 0.034871996922756
620 => 0.034781270821492
621 => 0.0346094575347
622 => 0.034955566853676
623 => 0.034995452728457
624 => 0.03491466667771
625 => 0.034933694717158
626 => 0.034264820721144
627 => 0.034315673758343
628 => 0.034032517585127
629 => 0.033979429216148
630 => 0.033263635067487
701 => 0.031995501977114
702 => 0.032698170809838
703 => 0.031849445670097
704 => 0.031528020599392
705 => 0.033049596892253
706 => 0.032896872834407
707 => 0.032635475634926
708 => 0.032248814696945
709 => 0.032105398393851
710 => 0.031234046336341
711 => 0.031182562208301
712 => 0.031614427816488
713 => 0.031415136697898
714 => 0.031135256489949
715 => 0.030121558747759
716 => 0.028981826861749
717 => 0.029016228203289
718 => 0.029378755710763
719 => 0.030432853332239
720 => 0.030020999155454
721 => 0.029722194224715
722 => 0.02966623704323
723 => 0.0303666583238
724 => 0.031357901178602
725 => 0.031822970148266
726 => 0.031362100923683
727 => 0.030832679173444
728 => 0.030864902622277
729 => 0.031079270791003
730 => 0.031101797854533
731 => 0.030757198720563
801 => 0.030854201358275
802 => 0.030706845481483
803 => 0.029802522737614
804 => 0.029786166406816
805 => 0.029564231021296
806 => 0.029557510906025
807 => 0.02917994345088
808 => 0.029127119153904
809 => 0.028377436055007
810 => 0.028870879740951
811 => 0.028539903623376
812 => 0.028041044544817
813 => 0.027955041051642
814 => 0.027952455682785
815 => 0.028464672413616
816 => 0.028864894190224
817 => 0.028545661094644
818 => 0.028472977906854
819 => 0.029249044197725
820 => 0.02915028268821
821 => 0.029064755857914
822 => 0.031269146253001
823 => 0.029524199244562
824 => 0.02876330275079
825 => 0.027821548849421
826 => 0.028128188668442
827 => 0.028192802183786
828 => 0.025928053814894
829 => 0.025009245683691
830 => 0.024693945357616
831 => 0.024512485562268
901 => 0.024595179069637
902 => 0.023768143986109
903 => 0.024323925240137
904 => 0.023607782765338
905 => 0.023487719148908
906 => 0.024768270606879
907 => 0.024946451861382
908 => 0.024186275273094
909 => 0.024674431704186
910 => 0.02449741939639
911 => 0.023620058972615
912 => 0.023586550257853
913 => 0.023146321637913
914 => 0.022457449092764
915 => 0.022142615854713
916 => 0.021978647970829
917 => 0.02204630431539
918 => 0.022012095197262
919 => 0.021788857561535
920 => 0.022024890917229
921 => 0.021421923229147
922 => 0.021181816637312
923 => 0.021073366060211
924 => 0.020538197531513
925 => 0.021389888651196
926 => 0.021557682531096
927 => 0.021725807016773
928 => 0.023189215881131
929 => 0.023116108109819
930 => 0.023776966757558
1001 => 0.023751287005748
1002 => 0.023562799414212
1003 => 0.022767601270228
1004 => 0.023084553077376
1005 => 0.022109024680221
1006 => 0.022839956884852
1007 => 0.022506389951117
1008 => 0.022727177569018
1009 => 0.022330181524415
1010 => 0.022549895527063
1011 => 0.021597472684763
1012 => 0.020708113635573
1013 => 0.021066017678976
1014 => 0.021455100305447
1015 => 0.022298730576046
1016 => 0.021796271346676
1017 => 0.021976974685644
1018 => 0.021371648749474
1019 => 0.020122688440348
1020 => 0.020129757420061
1021 => 0.019937632086582
1022 => 0.019771607747697
1023 => 0.021853984833455
1024 => 0.021595008325331
1025 => 0.021182363153642
1026 => 0.021734705113814
1027 => 0.02188075309493
1028 => 0.021884910875633
1029 => 0.022287885311765
1030 => 0.022502952840566
1031 => 0.022540859424673
1101 => 0.023174948406766
1102 => 0.023387486669727
1103 => 0.024262901695326
1104 => 0.02248470586334
1105 => 0.022448085090355
1106 => 0.021742477697906
1107 => 0.021294970334403
1108 => 0.021773118909944
1109 => 0.022196693274084
1110 => 0.021755639334109
1111 => 0.021813231667513
1112 => 0.021221152788527
1113 => 0.021432793127864
1114 => 0.021615086299133
1115 => 0.021514434724655
1116 => 0.021363754446071
1117 => 0.022161965006603
1118 => 0.022116926838565
1119 => 0.022860238863314
1120 => 0.023439703741358
1121 => 0.02447820839455
1122 => 0.023394474650472
1123 => 0.023354979085386
1124 => 0.023741054569387
1125 => 0.023387427563582
1126 => 0.023610907624462
1127 => 0.024442202301754
1128 => 0.024459766248349
1129 => 0.024165547513029
1130 => 0.024147644276246
1201 => 0.024204152202764
1202 => 0.024535120893376
1203 => 0.024419470263236
1204 => 0.02455330410035
1205 => 0.024720665362997
1206 => 0.025412942505013
1207 => 0.025579848180259
1208 => 0.025174353920081
1209 => 0.025210965511648
1210 => 0.025059299527275
1211 => 0.02491279208674
1212 => 0.02524211941737
1213 => 0.02584397158704
1214 => 0.025840227495929
1215 => 0.025979845500958
1216 => 0.026066826361433
1217 => 0.025693440834393
1218 => 0.025450380586055
1219 => 0.025543585351593
1220 => 0.025692621801424
1221 => 0.025495254839576
1222 => 0.02427701452178
1223 => 0.024646550812707
1224 => 0.024585041904495
1225 => 0.024497445739463
1226 => 0.024869017337529
1227 => 0.024833178350441
1228 => 0.02375966154595
1229 => 0.023828384608757
1230 => 0.023763840823018
1231 => 0.023972394999158
]
'min_raw' => 0.019771607747697
'max_raw' => 0.04429084207548
'avg_raw' => 0.032031224911589
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.019771'
'max' => '$0.04429'
'avg' => '$0.032031'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0048214090336223
'max_diff' => -0.032185236551428
'year' => 2034
]
9 => [
'items' => [
101 => 0.023376164953654
102 => 0.023559561299981
103 => 0.023674585769163
104 => 0.02374233606517
105 => 0.023987096591163
106 => 0.023958376768453
107 => 0.023985311326659
108 => 0.024348226572323
109 => 0.026183727347421
110 => 0.026283629604805
111 => 0.02579167435191
112 => 0.025988200772053
113 => 0.025610913020982
114 => 0.025864188815885
115 => 0.026037473682249
116 => 0.025254432691911
117 => 0.025208066086358
118 => 0.024829221134529
119 => 0.025032790952767
120 => 0.024708896734763
121 => 0.024788369046522
122 => 0.024566157534571
123 => 0.024966094014212
124 => 0.025413285142297
125 => 0.025526263281364
126 => 0.025229066437626
127 => 0.025013876336533
128 => 0.02463607340704
129 => 0.025264368098674
130 => 0.025448100613442
131 => 0.025263403029991
201 => 0.025220604564184
202 => 0.025139501548814
203 => 0.025237810952294
204 => 0.025447099966708
205 => 0.025348403132471
206 => 0.025413594130299
207 => 0.025165153271245
208 => 0.025693564440539
209 => 0.02653280854645
210 => 0.026535506853481
211 => 0.026436809487232
212 => 0.026396424651427
213 => 0.026497694138655
214 => 0.026552628681185
215 => 0.026880115633235
216 => 0.02723152218044
217 => 0.028871383205559
218 => 0.028410916791716
219 => 0.02986589904897
220 => 0.031016601108658
221 => 0.031361646342256
222 => 0.031044220962978
223 => 0.029958325887454
224 => 0.029905046694512
225 => 0.031527832390422
226 => 0.031069321103034
227 => 0.03101478264437
228 => 0.030434585588365
301 => 0.030777553907267
302 => 0.030702541704882
303 => 0.030584131273694
304 => 0.031238490934779
305 => 0.03246339380524
306 => 0.032272481205812
307 => 0.03212997380652
308 => 0.031505547866102
309 => 0.031881591752816
310 => 0.031747689727404
311 => 0.032323017804902
312 => 0.031982206196869
313 => 0.031065847429074
314 => 0.031211780583203
315 => 0.031189723080533
316 => 0.031643664922469
317 => 0.031507402849049
318 => 0.03116311572377
319 => 0.032459207220392
320 => 0.032375046247842
321 => 0.032494367265042
322 => 0.032546896066939
323 => 0.033335804121239
324 => 0.033658994508844
325 => 0.033732364385074
326 => 0.034039370256857
327 => 0.033724725799308
328 => 0.0349835279672
329 => 0.035820557955705
330 => 0.036792811360522
331 => 0.03821353490204
401 => 0.038747740096079
402 => 0.038651240709261
403 => 0.039728417083946
404 => 0.04166407908497
405 => 0.039042493342362
406 => 0.041803029495035
407 => 0.040929075621022
408 => 0.038856946707494
409 => 0.038723526034258
410 => 0.04012679579241
411 => 0.043239113056283
412 => 0.042459512881293
413 => 0.043240388202885
414 => 0.042329455661613
415 => 0.042284220182997
416 => 0.043196146242595
417 => 0.045326911187349
418 => 0.044314664632626
419 => 0.042863360983393
420 => 0.043934981013201
421 => 0.043006644569629
422 => 0.040914842737252
423 => 0.042458916735732
424 => 0.041426438425644
425 => 0.041727770486094
426 => 0.04389788632434
427 => 0.043636772245268
428 => 0.0439746780421
429 => 0.043378283155226
430 => 0.042821156288044
501 => 0.041781237617665
502 => 0.041473368966736
503 => 0.041558452785899
504 => 0.041473326803421
505 => 0.04089150186469
506 => 0.040765856824567
507 => 0.040556442919726
508 => 0.040621349045411
509 => 0.040227589638112
510 => 0.040970694994529
511 => 0.041108621896903
512 => 0.041649392005459
513 => 0.041705536552066
514 => 0.043211573607016
515 => 0.042382073705074
516 => 0.042938573854872
517 => 0.042888795243492
518 => 0.038901856024294
519 => 0.039451221071637
520 => 0.040305860685054
521 => 0.039920846697646
522 => 0.03937652699885
523 => 0.038936959657496
524 => 0.038270970187277
525 => 0.039208337577416
526 => 0.040440876017539
527 => 0.041736795760905
528 => 0.043293758420534
529 => 0.042946262479949
530 => 0.041707689426984
531 => 0.041763250909362
601 => 0.042106710130784
602 => 0.041661899232482
603 => 0.041530715814832
604 => 0.042088687543657
605 => 0.042092529988298
606 => 0.041580721292608
607 => 0.041011939587352
608 => 0.041009556371239
609 => 0.040908347160568
610 => 0.042347460555354
611 => 0.043138827411711
612 => 0.043229556346441
613 => 0.043132720631513
614 => 0.043169988854917
615 => 0.042709509917782
616 => 0.043762028217286
617 => 0.044727923092183
618 => 0.044469042632376
619 => 0.0440809440211
620 => 0.043771804783857
621 => 0.044396219252668
622 => 0.044368415059291
623 => 0.044719486843079
624 => 0.044703560199077
625 => 0.044585507962667
626 => 0.044469046848393
627 => 0.044930802002322
628 => 0.044797823933551
629 => 0.04466463931311
630 => 0.044397517167271
701 => 0.044433823503319
702 => 0.044045791902741
703 => 0.043866270729195
704 => 0.041166703010591
705 => 0.040445290305261
706 => 0.040672261428067
707 => 0.040746986214998
708 => 0.040433026481122
709 => 0.040883164089862
710 => 0.040813010620353
711 => 0.041085936731803
712 => 0.040915424346444
713 => 0.040922422234216
714 => 0.041423862802485
715 => 0.041569433132734
716 => 0.041495394887873
717 => 0.041547248736691
718 => 0.042742198796569
719 => 0.042572315110406
720 => 0.042482067788039
721 => 0.042507066913096
722 => 0.042812402273413
723 => 0.042897879503609
724 => 0.04253570647289
725 => 0.042706509367874
726 => 0.043433766416604
727 => 0.043688265224475
728 => 0.044500503252843
729 => 0.044155450102013
730 => 0.044788810093912
731 => 0.046735542780678
801 => 0.048290727554522
802 => 0.046860515365766
803 => 0.049716414151344
804 => 0.051940141010265
805 => 0.051854790669609
806 => 0.051467032456027
807 => 0.048935378547982
808 => 0.046605712876966
809 => 0.0485545771336
810 => 0.048559545189378
811 => 0.048392136021371
812 => 0.047352372056687
813 => 0.048355954489219
814 => 0.048435615218237
815 => 0.048391026393485
816 => 0.047593841799617
817 => 0.046376688269121
818 => 0.046614517155526
819 => 0.047004085723036
820 => 0.046266551152224
821 => 0.046030864168054
822 => 0.046469051112909
823 => 0.047880980749108
824 => 0.047614063630136
825 => 0.047607093345463
826 => 0.048749077970899
827 => 0.047931663434794
828 => 0.046617516939417
829 => 0.046285677617872
830 => 0.045107871580138
831 => 0.045921386405602
901 => 0.045950663355898
902 => 0.045505109599912
903 => 0.046653671171129
904 => 0.04664308697405
905 => 0.047733475245091
906 => 0.04981788808819
907 => 0.049201424642759
908 => 0.048484544726755
909 => 0.048562489450549
910 => 0.049417350686593
911 => 0.048900482068697
912 => 0.049086351627428
913 => 0.049417069350755
914 => 0.049616599564497
915 => 0.048533780123387
916 => 0.048281323114423
917 => 0.047764884674452
918 => 0.047630155525244
919 => 0.048050783858758
920 => 0.047939963153896
921 => 0.045948202741592
922 => 0.045740052696456
923 => 0.04574643636117
924 => 0.04522303317568
925 => 0.044424717686651
926 => 0.04652264312688
927 => 0.046354150353582
928 => 0.046168147372166
929 => 0.046190931676071
930 => 0.047101570004384
1001 => 0.046573353785624
1002 => 0.047977703176133
1003 => 0.047689011160051
1004 => 0.047392915283091
1005 => 0.047351985813595
1006 => 0.047238014162678
1007 => 0.046847162964703
1008 => 0.046375186656632
1009 => 0.046063547016156
1010 => 0.042491187212521
1011 => 0.043154196412615
1012 => 0.043916928062133
1013 => 0.044180219971091
1014 => 0.043729840941572
1015 => 0.046864946673881
1016 => 0.047437760701804
1017 => 0.04570266964749
1018 => 0.045378104954529
1019 => 0.046886225081117
1020 => 0.045976644284597
1021 => 0.046386228461576
1022 => 0.045500931501514
1023 => 0.04729978657643
1024 => 0.047286082314666
1025 => 0.046586287061539
1026 => 0.047177749217491
1027 => 0.047074968112725
1028 => 0.046284900995465
1029 => 0.047324833113265
1030 => 0.047325348906621
1031 => 0.046651811190347
1101 => 0.045865266594105
1102 => 0.045724650997651
1103 => 0.04561871603477
1104 => 0.046360174954638
1105 => 0.047024964703711
1106 => 0.048261973611379
1107 => 0.048572987041373
1108 => 0.049786893163978
1109 => 0.049064071171984
1110 => 0.049384488798923
1111 => 0.049732347458806
1112 => 0.049899123692433
1113 => 0.049627370769444
1114 => 0.051513066641544
1115 => 0.051672277149378
1116 => 0.051725659055489
1117 => 0.051089813017165
1118 => 0.051654593120815
1119 => 0.051390351213868
1120 => 0.052077835247227
1121 => 0.052185641521895
1122 => 0.052094333442571
1123 => 0.052128552855757
1124 => 0.050519444088467
1125 => 0.050436003310158
1126 => 0.049298282377228
1127 => 0.049761912067005
1128 => 0.048895178584316
1129 => 0.049170028700021
1130 => 0.049291180012155
1201 => 0.049227897441973
1202 => 0.049788124994041
1203 => 0.049311817127855
1204 => 0.048054762356728
1205 => 0.04679736510187
1206 => 0.046781579503589
1207 => 0.046450529001289
1208 => 0.046211240123051
1209 => 0.046257335650229
1210 => 0.046419782300337
1211 => 0.046201798428435
1212 => 0.046248316339568
1213 => 0.0470208236116
1214 => 0.047175744435736
1215 => 0.046649262943848
1216 => 0.044535363783
1217 => 0.044016607626613
1218 => 0.044389479264442
1219 => 0.044211270637569
1220 => 0.035681945952715
1221 => 0.03768578427016
1222 => 0.036495171585854
1223 => 0.037043860688238
1224 => 0.035828553445221
1225 => 0.036408561761299
1226 => 0.036301455403832
1227 => 0.039523568120397
1228 => 0.039473259262199
1229 => 0.039497339450332
1230 => 0.038347929330107
1231 => 0.040178970861512
]
'min_raw' => 0.023376164953654
'max_raw' => 0.052185641521895
'avg_raw' => 0.037780903237775
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.023376'
'max' => '$0.052185'
'avg' => '$0.03778'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0036045572059571
'max_diff' => 0.0078947994464149
'year' => 2035
]
10 => [
'items' => [
101 => 0.041081007762006
102 => 0.040914064738659
103 => 0.04095608070099
104 => 0.040234107262615
105 => 0.039504329731372
106 => 0.038694894137266
107 => 0.040198725421851
108 => 0.040031525054261
109 => 0.040415022540719
110 => 0.041390364624853
111 => 0.041533987451706
112 => 0.041727017987475
113 => 0.041657830281251
114 => 0.043306162140007
115 => 0.043106538275868
116 => 0.043587574352738
117 => 0.042598046646321
118 => 0.041478302119679
119 => 0.041691128946987
120 => 0.041670632012072
121 => 0.041409682505317
122 => 0.041174108958459
123 => 0.040781945375376
124 => 0.04202280898154
125 => 0.041972432185213
126 => 0.042787973961131
127 => 0.042643819030487
128 => 0.041681117122954
129 => 0.041715500209917
130 => 0.041946742993696
131 => 0.042747076908637
201 => 0.04298467050548
202 => 0.042874607684955
203 => 0.043135118217333
204 => 0.043341015120255
205 => 0.043160975698296
206 => 0.0457099542437
207 => 0.044651440637484
208 => 0.045167352804064
209 => 0.045290394815862
210 => 0.044975225289936
211 => 0.045043574274734
212 => 0.045147104362721
213 => 0.045775718783707
214 => 0.047425384915421
215 => 0.0481560108155
216 => 0.050354134884335
217 => 0.048095342505302
218 => 0.047961315113342
219 => 0.048357263635127
220 => 0.049647795158597
221 => 0.050693649744906
222 => 0.051040620047984
223 => 0.051086477901391
224 => 0.051737417256114
225 => 0.052110523554941
226 => 0.051658376097046
227 => 0.051275228468292
228 => 0.04990284122013
229 => 0.050061698780991
301 => 0.051156069843861
302 => 0.052701933428299
303 => 0.05402844520344
304 => 0.053563947013389
305 => 0.057107740318864
306 => 0.057459092950004
307 => 0.057410547376971
308 => 0.058210980958991
309 => 0.056622283304146
310 => 0.055943084277133
311 => 0.051358069334539
312 => 0.052646271513079
313 => 0.054518749033047
314 => 0.054270919611849
315 => 0.05291107638538
316 => 0.054027413640413
317 => 0.053658317632806
318 => 0.053367196297798
319 => 0.054700879570114
320 => 0.053234440027514
321 => 0.054504120176842
322 => 0.052875742252169
323 => 0.053566068801994
324 => 0.053174206064975
325 => 0.053427789280717
326 => 0.051945346983045
327 => 0.052745236862616
328 => 0.051912068934261
329 => 0.051911673904181
330 => 0.051893281675984
331 => 0.052873500048863
401 => 0.052905464934811
402 => 0.052181082076226
403 => 0.052076687189317
404 => 0.052462689801795
405 => 0.052010781836828
406 => 0.052222226729361
407 => 0.05201718628722
408 => 0.051971027364882
409 => 0.051603225218397
410 => 0.05144476594076
411 => 0.051506901906514
412 => 0.05129479982211
413 => 0.05116700064419
414 => 0.051867859202837
415 => 0.051493418747505
416 => 0.051810470832826
417 => 0.05144914996644
418 => 0.05019665442354
419 => 0.049476330991918
420 => 0.047110483017779
421 => 0.047781434568419
422 => 0.048226276140644
423 => 0.048079256003677
424 => 0.048395112147122
425 => 0.048414503149052
426 => 0.048311815097046
427 => 0.048192915487977
428 => 0.048135041733843
429 => 0.04856638528208
430 => 0.048816794730187
501 => 0.048270921943629
502 => 0.04814303158731
503 => 0.048694939112983
504 => 0.049031602384818
505 => 0.051517334829289
506 => 0.051333183740992
507 => 0.05179536683479
508 => 0.051743332111206
509 => 0.052227773625048
510 => 0.053019630759919
511 => 0.051409563797989
512 => 0.051689015750653
513 => 0.051620500585348
514 => 0.05236853119451
515 => 0.052370866464422
516 => 0.051922384747329
517 => 0.05216551396195
518 => 0.052029805904249
519 => 0.052275048706558
520 => 0.051330724290936
521 => 0.052480809495642
522 => 0.053132833696856
523 => 0.053141887053522
524 => 0.053450941350114
525 => 0.053764958414669
526 => 0.054367686824959
527 => 0.053748148646437
528 => 0.052633659774102
529 => 0.052714122270907
530 => 0.052060697852833
531 => 0.052071682035351
601 => 0.052013047608221
602 => 0.052189013937833
603 => 0.051369339004841
604 => 0.051561715073271
605 => 0.051292387450916
606 => 0.051688430285001
607 => 0.051262353663751
608 => 0.05162046754526
609 => 0.051775017624857
610 => 0.052345310745791
611 => 0.051178120906098
612 => 0.048798141811158
613 => 0.049298442271372
614 => 0.048558458592963
615 => 0.048626946899716
616 => 0.048765304179191
617 => 0.048316842968728
618 => 0.048402395235048
619 => 0.048399338706073
620 => 0.048372999190637
621 => 0.048256337109402
622 => 0.048087154010722
623 => 0.048761127404052
624 => 0.048875648616813
625 => 0.049130215086602
626 => 0.04988763222661
627 => 0.049811948393197
628 => 0.049935391865586
629 => 0.049665915458467
630 => 0.048639447137366
701 => 0.04869518930569
702 => 0.048000083573483
703 => 0.049112439670219
704 => 0.048849019064129
705 => 0.04867919008573
706 => 0.04863285067552
707 => 0.049392145306116
708 => 0.049619338160076
709 => 0.049477766819834
710 => 0.049187399870701
711 => 0.049744990252318
712 => 0.04989417791559
713 => 0.049927575531567
714 => 0.050915518780442
715 => 0.049982790584498
716 => 0.050207307531783
717 => 0.051958924663309
718 => 0.050370449631656
719 => 0.051211900283143
720 => 0.05117071565245
721 => 0.051601173332613
722 => 0.051135405558559
723 => 0.051141179308336
724 => 0.051523396566592
725 => 0.050986641360617
726 => 0.050853733223213
727 => 0.050670121583294
728 => 0.051071030881759
729 => 0.05131135787462
730 => 0.053248216936358
731 => 0.054499516221745
801 => 0.054445194019699
802 => 0.054941597259496
803 => 0.054717963053435
804 => 0.053995789210341
805 => 0.055228451900784
806 => 0.05483838584873
807 => 0.054870542420131
808 => 0.054869345550938
809 => 0.055128705375387
810 => 0.054944925169786
811 => 0.054582675519894
812 => 0.054823153742976
813 => 0.055537288092989
814 => 0.057753983027748
815 => 0.05899447488054
816 => 0.057679303860602
817 => 0.058586491219314
818 => 0.058042502067994
819 => 0.057943643056924
820 => 0.058513423758814
821 => 0.059084201786396
822 => 0.05904784569358
823 => 0.058633490155332
824 => 0.058399431225658
825 => 0.060171803856644
826 => 0.061477657819575
827 => 0.061388607333859
828 => 0.06178164721704
829 => 0.062935624470324
830 => 0.06304112968825
831 => 0.063027838455801
901 => 0.062766332764839
902 => 0.063902573233579
903 => 0.064850445022851
904 => 0.062705801753007
905 => 0.063522453834722
906 => 0.06388907526509
907 => 0.064427384296548
908 => 0.065335601863686
909 => 0.066322167034411
910 => 0.066461678166688
911 => 0.066362688342115
912 => 0.065712022091727
913 => 0.066791533473704
914 => 0.067423885923609
915 => 0.067800437336399
916 => 0.068755309067054
917 => 0.063891339394231
918 => 0.06044837990483
919 => 0.059910712063622
920 => 0.061004080761462
921 => 0.06129239336763
922 => 0.061176174917597
923 => 0.057300810992093
924 => 0.059890309074579
925 => 0.062676391280151
926 => 0.062783416044344
927 => 0.064178187050685
928 => 0.064632381663945
929 => 0.065755355140865
930 => 0.065685112844131
1001 => 0.06595853901535
1002 => 0.065895683073668
1003 => 0.067975754969697
1004 => 0.070270383164683
1005 => 0.070190927486761
1006 => 0.069861047534924
1007 => 0.070350975516293
1008 => 0.07271927772082
1009 => 0.072501242405097
1010 => 0.072713045142118
1011 => 0.075505406912918
1012 => 0.07913587442379
1013 => 0.077449157772011
1014 => 0.081108847566728
1015 => 0.083412428300682
1016 => 0.087396232985362
1017 => 0.086897441018188
1018 => 0.088448306947425
1019 => 0.086004499295922
1020 => 0.08039302295306
1021 => 0.079504985341933
1022 => 0.081282859128102
1023 => 0.085653588349013
1024 => 0.081145209310831
1025 => 0.08205724851853
1026 => 0.081794581165356
1027 => 0.08178058473837
1028 => 0.082314771428852
1029 => 0.081539905773004
1030 => 0.07838296369541
1031 => 0.079829771645595
1101 => 0.079271089614604
1102 => 0.079890988980493
1103 => 0.083236330192248
1104 => 0.081757275099557
1105 => 0.080199210708086
1106 => 0.082153369217158
1107 => 0.084641684520924
1108 => 0.084485970221147
1109 => 0.084183819396051
1110 => 0.085887027777013
1111 => 0.08870022902913
1112 => 0.089460626023219
1113 => 0.090021935538624
1114 => 0.090099330637396
1115 => 0.090896548255536
1116 => 0.086609708198087
1117 => 0.09341303346312
1118 => 0.094587779798323
1119 => 0.094366976175552
1120 => 0.095672657286248
1121 => 0.095288492781549
1122 => 0.094731898687803
1123 => 0.096801680974593
1124 => 0.094428842605606
1125 => 0.091060897272873
1126 => 0.089213175852931
1127 => 0.091646404470146
1128 => 0.093132292278704
1129 => 0.094114369599946
1130 => 0.094411545603967
1201 => 0.086942483388678
1202 => 0.082917073107819
1203 => 0.085497314946427
1204 => 0.088645388068308
1205 => 0.086592220492945
1206 => 0.086672700774739
1207 => 0.083745423375218
1208 => 0.088904387164204
1209 => 0.088152769533864
1210 => 0.092052163129657
1211 => 0.091121541553432
1212 => 0.094301345657214
1213 => 0.093463996669848
1214 => 0.096939785500852
1215 => 0.098326371768766
1216 => 0.10065466591751
1217 => 0.10236736857119
1218 => 0.10337310032822
1219 => 0.10331271996593
1220 => 0.10729793024082
1221 => 0.10494799097436
1222 => 0.10199591341752
1223 => 0.1019425196482
1224 => 0.10347144244615
1225 => 0.10667564519117
1226 => 0.1075064483437
1227 => 0.10797075396571
1228 => 0.107259653743
1229 => 0.10470896309092
1230 => 0.10360758779965
1231 => 0.10454599145773
]
'min_raw' => 0.038694894137266
'max_raw' => 0.10797075396571
'avg_raw' => 0.073332824051489
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.038694'
'max' => '$0.10797'
'avg' => '$0.073332'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.015318729183612
'max_diff' => 0.055785112443817
'year' => 2036
]
11 => [
'items' => [
101 => 0.10339840442184
102 => 0.10537946160183
103 => 0.10809987624094
104 => 0.10753812137565
105 => 0.10941598366732
106 => 0.11135937358232
107 => 0.11413850844388
108 => 0.11486507720776
109 => 0.11606606774551
110 => 0.1173022815137
111 => 0.11769932005914
112 => 0.11845738983623
113 => 0.11845339443431
114 => 0.12073788873153
115 => 0.12325775668626
116 => 0.1242089485041
117 => 0.12639616164019
118 => 0.12265063579373
119 => 0.12549166017377
120 => 0.12805433528002
121 => 0.12499900837165
122 => 0.12921006471496
123 => 0.12937357049032
124 => 0.13184231357513
125 => 0.12933976950472
126 => 0.12785376682412
127 => 0.13214380088323
128 => 0.13421961322963
129 => 0.13359436165737
130 => 0.12883616632003
131 => 0.12606669254509
201 => 0.11881844548449
202 => 0.12740430722874
203 => 0.13158623003135
204 => 0.12882533615024
205 => 0.13021777043227
206 => 0.13781444037665
207 => 0.14070676044351
208 => 0.14010517808845
209 => 0.14020683560356
210 => 0.14176747901232
211 => 0.14868823134878
212 => 0.14454115612699
213 => 0.1477114397461
214 => 0.14939294674637
215 => 0.15095482415963
216 => 0.1471193468691
217 => 0.14212944726848
218 => 0.14054893660323
219 => 0.12855081966504
220 => 0.12792626557323
221 => 0.12757568443557
222 => 0.1253653199533
223 => 0.12362857894003
224 => 0.12224745800521
225 => 0.11862298423464
226 => 0.11984613773466
227 => 0.11406948303083
228 => 0.11776518199827
301 => 0.10854550160875
302 => 0.11622392540143
303 => 0.11204490842616
304 => 0.11485100593075
305 => 0.11484121572091
306 => 0.10967430054094
307 => 0.1066941316959
308 => 0.10859321127386
309 => 0.11062917533057
310 => 0.11095950364896
311 => 0.11359918419257
312 => 0.11433586229255
313 => 0.1121036932574
314 => 0.10835444422537
315 => 0.10922530926425
316 => 0.10667648364368
317 => 0.1022097647828
318 => 0.10541784025011
319 => 0.10651321826378
320 => 0.10699699959692
321 => 0.10260449460336
322 => 0.10122427416847
323 => 0.1004894563901
324 => 0.10778742698942
325 => 0.10818722629309
326 => 0.1061417965296
327 => 0.11538733301619
328 => 0.1132947833627
329 => 0.11563267401276
330 => 0.10914628738995
331 => 0.10939407609402
401 => 0.10632331671782
402 => 0.10804273678027
403 => 0.10682750609963
404 => 0.10790382463087
405 => 0.10854896552067
406 => 0.11161922101546
407 => 0.11625898278736
408 => 0.11116062722854
409 => 0.10893920070177
410 => 0.1103173612252
411 => 0.11398758431097
412 => 0.11954816016118
413 => 0.11625618734084
414 => 0.11771710897718
415 => 0.11803625536284
416 => 0.11560887648058
417 => 0.11963766108294
418 => 0.12179671948114
419 => 0.1240114666435
420 => 0.12593446954878
421 => 0.12312684792352
422 => 0.12613140551929
423 => 0.12371026247291
424 => 0.12153824686714
425 => 0.12154154091825
426 => 0.12017900380066
427 => 0.11753891644462
428 => 0.11705204382995
429 => 0.11958481665666
430 => 0.1216158606092
501 => 0.12178314711717
502 => 0.1229076374081
503 => 0.1235730991791
504 => 0.13009552918633
505 => 0.13271890449161
506 => 0.13592671815695
507 => 0.13717634236207
508 => 0.14093726320442
509 => 0.13790001417717
510 => 0.13724288624493
511 => 0.12812012246923
512 => 0.12961397452644
513 => 0.1320057758053
514 => 0.12815956239137
515 => 0.13059909952622
516 => 0.1310807158331
517 => 0.12802886953133
518 => 0.1296589925036
519 => 0.12532986918703
520 => 0.11635334584553
521 => 0.1196476545195
522 => 0.12207337455585
523 => 0.11861157297485
524 => 0.12481671831857
525 => 0.12119180050897
526 => 0.12004287559007
527 => 0.11556050986012
528 => 0.11767601394258
529 => 0.1205372635052
530 => 0.11876934393146
531 => 0.12243804250142
601 => 0.12763389808266
602 => 0.1313367741884
603 => 0.131621035037
604 => 0.12924033377444
605 => 0.13305542274112
606 => 0.13308321149922
607 => 0.12877977555971
608 => 0.12614394500839
609 => 0.12554507876129
610 => 0.12704116406118
611 => 0.12885768780782
612 => 0.13172183946258
613 => 0.13345258632206
614 => 0.1379654562144
615 => 0.13918650941315
616 => 0.14052807667837
617 => 0.14232082426874
618 => 0.14447347740201
619 => 0.13976359489701
620 => 0.13995072730926
621 => 0.13556494993336
622 => 0.13087811782312
623 => 0.13443483917292
624 => 0.13908477920698
625 => 0.13801807782544
626 => 0.13789805212928
627 => 0.13809990205786
628 => 0.13729564405139
629 => 0.13365801489532
630 => 0.1318312203059
701 => 0.13418825139125
702 => 0.13544090851373
703 => 0.13738367046752
704 => 0.13714418404999
705 => 0.14214853020553
706 => 0.14409306779801
707 => 0.1435955718704
708 => 0.14368712309398
709 => 0.14720761552194
710 => 0.15112312714631
711 => 0.15479052047979
712 => 0.15852115049683
713 => 0.15402373040233
714 => 0.15174021784065
715 => 0.15409621991996
716 => 0.15284609205355
717 => 0.16002969758597
718 => 0.16052707484699
719 => 0.16771016092298
720 => 0.17452776495506
721 => 0.17024575001257
722 => 0.17428349723715
723 => 0.1786506500629
724 => 0.18707559640877
725 => 0.18423837087267
726 => 0.182065100577
727 => 0.18001137064877
728 => 0.18428485660898
729 => 0.18978262802619
730 => 0.19096679533246
731 => 0.19288559875534
801 => 0.1908682115763
802 => 0.19329793222554
803 => 0.20187591379072
804 => 0.19955806745187
805 => 0.19626635303831
806 => 0.20303784564592
807 => 0.2054884224971
808 => 0.22268785421575
809 => 0.24440284723363
810 => 0.23541269753589
811 => 0.22983222150819
812 => 0.23114376574536
813 => 0.23907334609659
814 => 0.2416200756331
815 => 0.23469718684254
816 => 0.2371424681992
817 => 0.25061620888913
818 => 0.25784443847992
819 => 0.24802753181488
820 => 0.22094307567018
821 => 0.1959699701708
822 => 0.20259396230283
823 => 0.20184300716147
824 => 0.21631886064942
825 => 0.19950278758326
826 => 0.19978592712647
827 => 0.21456112593435
828 => 0.21061935620344
829 => 0.20423419406309
830 => 0.19601658892067
831 => 0.18082558577843
901 => 0.16737049066288
902 => 0.19375903070781
903 => 0.19262110887663
904 => 0.19097322943451
905 => 0.19464040681377
906 => 0.212447179221
907 => 0.21203667548212
908 => 0.20942526013618
909 => 0.21140599566012
910 => 0.20388696154903
911 => 0.20582478784468
912 => 0.1959660143033
913 => 0.20042259168276
914 => 0.20422049437286
915 => 0.20498297956681
916 => 0.20670089764224
917 => 0.19202147577916
918 => 0.1986121052305
919 => 0.20248348257469
920 => 0.18499245889171
921 => 0.20213774127441
922 => 0.19176593970329
923 => 0.18824559447082
924 => 0.19298527555612
925 => 0.19113821722769
926 => 0.18955022493981
927 => 0.188664097958
928 => 0.19214439664753
929 => 0.19198203655381
930 => 0.18628759240087
1001 => 0.17885942213859
1002 => 0.18135255989999
1003 => 0.18044677957798
1004 => 0.17716411484304
1005 => 0.17937623452394
1006 => 0.16963517897741
1007 => 0.15287619920563
1008 => 0.1639476945843
1009 => 0.16352145405569
1010 => 0.1633065242527
1011 => 0.17162644703612
1012 => 0.17082667843377
1013 => 0.16937509058915
1014 => 0.17713745529392
1015 => 0.17430408775814
1016 => 0.18303585887807
1017 => 0.1887871680732
1018 => 0.18732845002595
1019 => 0.19273758412247
1020 => 0.18140999675858
1021 => 0.18517256689694
1022 => 0.18594802738776
1023 => 0.17704166891839
1024 => 0.17095753046802
1025 => 0.17055178779763
1026 => 0.16000273017062
1027 => 0.16563795160595
1028 => 0.17059671326774
1029 => 0.16822185124719
1030 => 0.16747004087847
1031 => 0.17131087700449
1101 => 0.17160934286602
1102 => 0.16480428959318
1103 => 0.16621927565661
1104 => 0.17212000276299
1105 => 0.16607059247324
1106 => 0.15431757644581
1107 => 0.15140266597285
1108 => 0.15101376318329
1109 => 0.14310829479615
1110 => 0.15159745422884
1111 => 0.14789170864114
1112 => 0.15959811455102
1113 => 0.15291147827801
1114 => 0.15262323075269
1115 => 0.15218750234145
1116 => 0.14538293912986
1117 => 0.14687270602064
1118 => 0.15182491806353
1119 => 0.15359192311109
1120 => 0.15340761000798
1121 => 0.15180064952285
1122 => 0.15253630780397
1123 => 0.15016649616013
1124 => 0.14932966634533
1125 => 0.14668840126163
1126 => 0.14280647125669
1127 => 0.14334627743314
1128 => 0.13565515833112
1129 => 0.13146462844576
1130 => 0.13030474500378
1201 => 0.12875370039031
1202 => 0.13047993962005
1203 => 0.13563337035704
1204 => 0.1294172395269
1205 => 0.11876011922951
1206 => 0.11940063031824
1207 => 0.12083966856515
1208 => 0.11815803031222
1209 => 0.11562008475866
1210 => 0.11782662250745
1211 => 0.11331106014711
1212 => 0.12138535270304
1213 => 0.12116696571734
1214 => 0.12417656267129
1215 => 0.12605852540974
1216 => 0.12172121059029
1217 => 0.12063038764254
1218 => 0.12125176996871
1219 => 0.11098170426327
1220 => 0.1233372791979
1221 => 0.12344413072301
1222 => 0.12252920309357
1223 => 0.12910816531068
1224 => 0.14299182761856
1225 => 0.13776823538931
1226 => 0.13574550259424
1227 => 0.13190028607219
1228 => 0.13702380878145
1229 => 0.13663040217679
1230 => 0.13485126831546
1231 => 0.1337752426049
]
'min_raw' => 0.1004894563901
'max_raw' => 0.25784443847992
'avg_raw' => 0.17916694743501
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.100489'
'max' => '$0.257844'
'avg' => '$0.179166'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.061794562252833
'max_diff' => 0.14987368451421
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0031542492093554
]
1 => [
'year' => 2028
'avg' => 0.0054136073283421
]
2 => [
'year' => 2029
'avg' => 0.014788999513241
]
3 => [
'year' => 2030
'avg' => 0.011409691100027
]
4 => [
'year' => 2031
'avg' => 0.011205730647677
]
5 => [
'year' => 2032
'avg' => 0.019647172398601
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0031542492093554
'min' => '$0.003154'
'max_raw' => 0.019647172398601
'max' => '$0.019647'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.019647172398601
]
1 => [
'year' => 2033
'avg' => 0.050534547704114
]
2 => [
'year' => 2034
'avg' => 0.032031224911589
]
3 => [
'year' => 2035
'avg' => 0.037780903237775
]
4 => [
'year' => 2036
'avg' => 0.073332824051489
]
5 => [
'year' => 2037
'avg' => 0.17916694743501
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.019647172398601
'min' => '$0.019647'
'max_raw' => 0.17916694743501
'max' => '$0.179166'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.17916694743501
]
]
]
]
'prediction_2025_max_price' => '$0.005393'
'last_price' => 0.00522938
'sma_50day_nextmonth' => '$0.004729'
'sma_200day_nextmonth' => '$0.007758'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.0049099'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004766'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.004582'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004618'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005297'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006719'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008727'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004955'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004827'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0047089'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004778'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00540071'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.006534'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.008262'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007547'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.010139'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.015968'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.027957'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005032'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005151'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005801'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007243'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.010343'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0184099'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.040752'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.46'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 122.55
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004656'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004949'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 213.85
'cci_20_action' => 'SELL'
'adx_14' => 20.61
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000179'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.33
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000876'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767682869
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Casper Network pour 2026
La prévision du prix de Casper Network pour 2026 suggère que le prix moyen pourrait varier entre $0.0018067 à la baisse et $0.005393 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Casper Network pourrait potentiellement gagner 3.13% d'ici 2026 si CSPR atteint l'objectif de prix prévu.
Prévision du prix de Casper Network de 2027 à 2032
La prévision du prix de CSPR pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.003154 à la baisse et $0.019647 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Casper Network atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Casper Network | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001739 | $0.003154 | $0.004569 |
| 2028 | $0.003138 | $0.005413 | $0.007688 |
| 2029 | $0.006895 | $0.014788 | $0.022682 |
| 2030 | $0.005864 | $0.0114096 | $0.016955 |
| 2031 | $0.006933 | $0.0112057 | $0.015478 |
| 2032 | $0.010583 | $0.019647 | $0.028711 |
Prévision du prix de Casper Network de 2032 à 2037
La prévision du prix de Casper Network pour 2032-2037 est actuellement estimée entre $0.019647 à la baisse et $0.179166 à la hausse. Par rapport au prix actuel, Casper Network pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Casper Network | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.010583 | $0.019647 | $0.028711 |
| 2033 | $0.024593 | $0.050534 | $0.076476 |
| 2034 | $0.019771 | $0.032031 | $0.04429 |
| 2035 | $0.023376 | $0.03778 | $0.052185 |
| 2036 | $0.038694 | $0.073332 | $0.10797 |
| 2037 | $0.100489 | $0.179166 | $0.257844 |
Casper Network Histogramme des prix potentiels
Prévision du prix de Casper Network basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Casper Network est Haussier, avec 18 indicateurs techniques montrant des signaux haussiers et 16 indiquant des signaux baissiers. La prévision du prix de CSPR a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Casper Network et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Casper Network devrait augmenter au cours du prochain mois, atteignant $0.007758 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Casper Network devrait atteindre $0.004729 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 56.46, ce qui suggère que le marché de CSPR est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de CSPR pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.0049099 | BUY |
| SMA 5 | $0.004766 | BUY |
| SMA 10 | $0.004582 | BUY |
| SMA 21 | $0.004618 | BUY |
| SMA 50 | $0.005297 | SELL |
| SMA 100 | $0.006719 | SELL |
| SMA 200 | $0.008727 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.004955 | BUY |
| EMA 5 | $0.004827 | BUY |
| EMA 10 | $0.0047089 | BUY |
| EMA 21 | $0.004778 | BUY |
| EMA 50 | $0.00540071 | SELL |
| EMA 100 | $0.006534 | SELL |
| EMA 200 | $0.008262 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.007547 | SELL |
| SMA 50 | $0.010139 | SELL |
| SMA 100 | $0.015968 | SELL |
| SMA 200 | $0.027957 | SELL |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.007243 | SELL |
| EMA 50 | $0.010343 | SELL |
| EMA 100 | $0.0184099 | SELL |
| EMA 200 | $0.040752 | SELL |
Oscillateurs de Casper Network
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 56.46 | NEUTRAL |
| Stoch RSI (14) | 122.55 | SELL |
| Stochastique Rapide (14) | 100 | SELL |
| Indice de Canal des Matières Premières (20) | 213.85 | SELL |
| Indice Directionnel Moyen (14) | 20.61 | NEUTRAL |
| Oscillateur Impressionnant (5, 34) | -0.000179 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -0 | SELL |
| Oscillateur Ultime (7, 14, 28) | 71.33 | SELL |
| VWMA (10) | 0.004656 | BUY |
| Moyenne Mobile de Hull (9) | 0.004949 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000876 | SELL |
Prévision du cours de Casper Network basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Casper Network
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Casper Network par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.007348 | $0.010325 | $0.0145088 | $0.020387 | $0.028647 | $0.040254 |
| Action Amazon.com | $0.010911 | $0.022767 | $0.0475053 | $0.099122 | $0.206825 | $0.431553 |
| Action Apple | $0.007417 | $0.010521 | $0.014923 | $0.021167 | $0.030024 | $0.042587 |
| Action Netflix | $0.008251 | $0.013019 | $0.020541 | $0.032411 | $0.051141 | $0.080692 |
| Action Google | $0.006772 | $0.008769 | $0.011356 | $0.0147069 | $0.019045 | $0.024663 |
| Action Tesla | $0.011854 | $0.026873 | $0.06092 | $0.1381014 | $0.313065 | $0.709696 |
| Action Kodak | $0.003921 | $0.00294 | $0.0022052 | $0.001653 | $0.00124 | $0.000929 |
| Action Nokia | $0.003464 | $0.002294 | $0.00152 | $0.0010071 | $0.000667 | $0.000441 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Casper Network
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Casper Network maintenant ?", "Devrais-je acheter CSPR aujourd'hui ?", " Casper Network sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Casper Network avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Casper Network en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Casper Network afin de prendre une décision responsable concernant cet investissement.
Le cours de Casper Network est de $0.005229 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision à court terme de Casper Network
basée sur l'historique des cours sur 4 heures
Prévision à long terme de Casper Network
basée sur l'historique des cours sur 1 mois
Prévision du cours de Casper Network basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Casper Network présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005365 | $0.0055047 | $0.005647 | $0.005794 |
| Si Casper Network présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0055012 | $0.005787 | $0.006088 | $0.0064045 |
| Si Casper Network présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005909 | $0.006676 | $0.007544 | $0.008525 |
| Si Casper Network présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006588 | $0.0083012 | $0.010459 | $0.013177 |
| Si Casper Network présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007947 | $0.012079 | $0.018359 | $0.0279041 |
| Si Casper Network présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012025 | $0.027655 | $0.063597 | $0.146253 |
| Si Casper Network présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.018822 | $0.067747 | $0.243843 | $0.877672 |
Boîte à questions
Est-ce que CSPR est un bon investissement ?
La décision d'acquérir Casper Network dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Casper Network a connu une hausse de 11.0323% au cours des 24 heures précédentes, et Casper Network a enregistré une déclin de -57.94% sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Casper Network dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Casper Network peut monter ?
Il semble que la valeur moyenne de Casper Network pourrait potentiellement s'envoler jusqu'à $0.005393 pour la fin de cette année. En regardant les perspectives de Casper Network sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.016955. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Casper Network la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Casper Network, le prix de Casper Network va augmenter de 0.86% durant la prochaine semaine et atteindre $0.005274 d'ici 13 janvier 2026.
Quel sera le prix de Casper Network le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Casper Network, le prix de Casper Network va diminuer de -11.62% durant le prochain mois et atteindre $0.004621 d'ici 5 février 2026.
Jusqu'où le prix de Casper Network peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Casper Network en 2026, CSPR devrait fluctuer dans la fourchette de $0.0018067 et $0.005393. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Casper Network ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Casper Network dans 5 ans ?
L'avenir de Casper Network semble suivre une tendance haussière, avec un prix maximum de $0.016955 prévue après une période de cinq ans. Selon la prévision de Casper Network pour 2030, la valeur de Casper Network pourrait potentiellement atteindre son point le plus élevé d'environ $0.016955, tandis que son point le plus bas devrait être autour de $0.005864.
Combien vaudra Casper Network en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Casper Network, il est attendu que la valeur de CSPR en 2026 augmente de 3.13% jusqu'à $0.005393 si le meilleur scénario se produit. Le prix sera entre $0.005393 et $0.0018067 durant 2026.
Combien vaudra Casper Network en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Casper Network, le valeur de CSPR pourrait diminuer de -12.62% jusqu'à $0.004569 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.004569 et $0.001739 tout au long de l'année.
Combien vaudra Casper Network en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Casper Network suggère que la valeur de CSPR en 2028 pourrait augmenter de 47.02%, atteignant $0.007688 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.007688 et $0.003138 durant l'année.
Combien vaudra Casper Network en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Casper Network pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.022682 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.022682 et $0.006895.
Combien vaudra Casper Network en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Casper Network, il est prévu que la valeur de CSPR en 2030 augmente de 224.23%, atteignant $0.016955 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.016955 et $0.005864 au cours de 2030.
Combien vaudra Casper Network en 2031 ?
Notre simulation expérimentale indique que le prix de Casper Network pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.015478 dans des conditions idéales. Il est probable que le prix fluctue entre $0.015478 et $0.006933 durant l'année.
Combien vaudra Casper Network en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Casper Network, CSPR pourrait connaître une 449.04% hausse en valeur, atteignant $0.028711 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.028711 et $0.010583 tout au long de l'année.
Combien vaudra Casper Network en 2033 ?
Selon notre prédiction expérimentale de prix de Casper Network, la valeur de CSPR est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.076476. Tout au long de l'année, le prix de CSPR pourrait osciller entre $0.076476 et $0.024593.
Combien vaudra Casper Network en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Casper Network suggèrent que CSPR pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.04429 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.04429 et $0.019771.
Combien vaudra Casper Network en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Casper Network, CSPR pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.052185 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.052185 et $0.023376.
Combien vaudra Casper Network en 2036 ?
Notre récente simulation de prédiction de prix de Casper Network suggère que la valeur de CSPR pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.10797 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.10797 et $0.038694.
Combien vaudra Casper Network en 2037 ?
Selon la simulation expérimentale, la valeur de Casper Network pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.257844 sous des conditions favorables. Il est prévu que le prix chute entre $0.257844 et $0.100489 au cours de l'année.
Prévisions liées
Prévision du cours de NEM
Prévision du cours de Gas
Prévision du cours de SafePal
Prévision du cours de LoopringPrévision du cours de Centrifuge
Prévision du cours de Yield Guild Games
Prévision du cours de Zcash
Prévision du cours de Decred
Prévision du cours de ZetaChain
Prévision du cours de Polymath Network
Prévision du cours de Pocket Network
Prévision du cours de cETH
Prévision du cours de Uniswap Protocol
Prévision du cours de Arkham
Prévision du cours de Chia
Prévision du cours de SPACE ID
Prévision du cours de SSV Network
Prévision du cours de Moonbeam
Prévision du cours de ZelCash
Prévision du cours de PAAL AI
Prévision du cours de Aragon
Prévision du cours de Kusama
Prévision du cours de GMX
Prévision du cours de API3
Prévision du cours de BENQI Liquid Staked AVAX
Comment lire et prédire les mouvements de prix de Casper Network ?
Les traders de Casper Network utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Casper Network
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Casper Network. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de CSPR sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de CSPR au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de CSPR.
Comment lire les graphiques de Casper Network et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Casper Network dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de CSPR au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Casper Network ?
L'action du prix de Casper Network est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de CSPR. La capitalisation boursière de Casper Network peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de CSPR, de grands détenteurs de Casper Network, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Casper Network.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


