Prédiction du prix de Cabal jusqu'à $0.005418 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.001815 | $0.005418 |
| 2027 | $0.001747 | $0.00459 |
| 2028 | $0.003153 | $0.007724 |
| 2029 | $0.006927 | $0.022789 |
| 2030 | $0.005891 | $0.017035 |
| 2031 | $0.006966 | $0.015551 |
| 2032 | $0.010633 | $0.028846 |
| 2033 | $0.024709 | $0.076836 |
| 2034 | $0.019864 | $0.044499 |
| 2035 | $0.023486 | $0.052431 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Cabal aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.14, soit un rendement de 39.55% sur les 90 prochains jours.
Prévision du prix à long terme de Cabal pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Cabal'
'name_with_ticker' => 'Cabal <small>CABAL</small>'
'name_lang' => 'Cabal'
'name_lang_with_ticker' => 'Cabal <small>CABAL</small>'
'name_with_lang' => 'Cabal'
'name_with_lang_with_ticker' => 'Cabal <small>CABAL</small>'
'image' => '/uploads/coins/cabal.png?1717498349'
'price_for_sd' => 0.005254
'ticker' => 'CABAL'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$90.77'
'current_supply' => '0'
'max_supply' => '1M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005254'
'change_24h_pct' => '0%'
'ath_price' => '$1.05'
'ath_days' => 741
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 déc. 2023'
'ath_pct' => '-99.50%'
'fdv' => '$5.25K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.25906'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005299'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004643'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001815'
'current_year_max_price_prediction' => '$0.005418'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005891'
'grand_prediction_max_price' => '$0.017035'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0053536114838697
107 => 0.0053735999257895
108 => 0.00541863490607
109 => 0.005033815930364
110 => 0.0052065883527644
111 => 0.005308075964338
112 => 0.0048495512430979
113 => 0.0052990124048684
114 => 0.0050271170881419
115 => 0.0049348317339143
116 => 0.0050590818057109
117 => 0.0050106614318946
118 => 0.0049690324378271
119 => 0.0049458027438606
120 => 0.0050370382836079
121 => 0.0050327820366287
122 => 0.0048835029855468
123 => 0.004688774548803
124 => 0.0047541318039173
125 => 0.0047303869004067
126 => 0.004644332306931
127 => 0.0047023227126624
128 => 0.0044469623140941
129 => 0.0040076280208358
130 => 0.0042978657121355
131 => 0.0042866918767384
201 => 0.004281057522238
202 => 0.0044991631256692
203 => 0.0044781973044517
204 => 0.004440144133644
205 => 0.0046436334306075
206 => 0.0045693570998985
207 => 0.004798259249439
208 => 0.0049490290095892
209 => 0.0049107889215243
210 => 0.005052588609679
211 => 0.004755637503072
212 => 0.0048542727490763
213 => 0.0048746013365753
214 => 0.0046411224042698
215 => 0.0044816275720916
216 => 0.0044709910851595
217 => 0.0041944490259042
218 => 0.0043421755617889
219 => 0.0044721688000279
220 => 0.0044099121267942
221 => 0.0043902035239136
222 => 0.0044908905017561
223 => 0.0044987147422601
224 => 0.0043203212295929
225 => 0.0043574148898642
226 => 0.0045121016195037
227 => 0.0043535171811626
228 => 0.0040454135220867
301 => 0.0039689995547696
302 => 0.0039588045229406
303 => 0.0037515637831083
304 => 0.0039741059014533
305 => 0.0038769603030377
306 => 0.0041838420844496
307 => 0.0040085528567471
308 => 0.004000996488487
309 => 0.0039895739295837
310 => 0.0038111932638028
311 => 0.0038502472929261
312 => 0.0039800688338285
313 => 0.0040263906221668
314 => 0.0040215588801399
315 => 0.0039794326374542
316 => 0.0039987178156345
317 => 0.0039365935373144
318 => 0.0039146561616345
319 => 0.0038454157696383
320 => 0.0037436515215503
321 => 0.0037578024644034
322 => 0.0035561808608772
323 => 0.0034463267104077
324 => 0.0034159205294122
325 => 0.0033752601134232
326 => 0.0034205132315914
327 => 0.0035556096922068
328 => 0.0033926546983916
329 => 0.0031132797914593
330 => 0.0031300706993976
331 => 0.0031677948842697
401 => 0.003097496115331
402 => 0.003030964230259
403 => 0.0030888083064267
404 => 0.0029704334754251
405 => 0.0031820999170538
406 => 0.0031763749329961
407 => 0.0032552710930703
408 => 0.0033046064810769
409 => 0.0031909043842432
410 => 0.0031623086143727
411 => 0.0031785980644962
412 => 0.002909369739153
413 => 0.0032332693950763
414 => 0.0032360704927509
415 => 0.0032120857938648
416 => 0.003384552361364
417 => 0.0037485106124587
418 => 0.0036115748782102
419 => 0.0035585492230046
420 => 0.0034577474136974
421 => 0.0035920598395801
422 => 0.0035817467408725
423 => 0.0035351069973905
424 => 0.0035068991350077
425 => 0.0035588729863483
426 => 0.0035004589996574
427 => 0.0034899662425387
428 => 0.0034263915506318
429 => 0.0034036982780852
430 => 0.003386897082537
501 => 0.0033684006170897
502 => 0.0034091992108344
503 => 0.0033167442299069
504 => 0.003205252586382
505 => 0.0031959832625792
506 => 0.003221576680566
507 => 0.0032102534983127
508 => 0.0031959290515389
509 => 0.0031685797816167
510 => 0.0031604658374555
511 => 0.0031868322196533
512 => 0.0031570661114075
513 => 0.003200987625568
514 => 0.0031890434040046
515 => 0.0031223239532925
516 => 0.0030391668150007
517 => 0.0030384265420419
518 => 0.003020510473002
519 => 0.0029976916653807
520 => 0.002991343995124
521 => 0.0030839368396721
522 => 0.0032756012568159
523 => 0.0032379729455898
524 => 0.0032651632567551
525 => 0.0033989126764484
526 => 0.0034414275949836
527 => 0.0034112515128284
528 => 0.0033699446303946
529 => 0.0033717619235857
530 => 0.0035129200453055
531 => 0.003521723904209
601 => 0.0035439684154259
602 => 0.0035725588986376
603 => 0.0034161205957481
604 => 0.0033643936935879
605 => 0.0033398826176451
606 => 0.0032643979907216
607 => 0.0033458016892958
608 => 0.0032983712401906
609 => 0.0033047712282297
610 => 0.0033006032276233
611 => 0.0033028792377934
612 => 0.0031820407519696
613 => 0.0032260679451199
614 => 0.0031528641972929
615 => 0.0030548525964588
616 => 0.0030545240272055
617 => 0.0030785122276567
618 => 0.00306424310737
619 => 0.003025845271571
620 => 0.0030312995029136
621 => 0.0029835146971407
622 => 0.0030371014435062
623 => 0.0030386381196494
624 => 0.0030180043034089
625 => 0.003100562079731
626 => 0.0031343860680509
627 => 0.0031208044481822
628 => 0.0031334331453951
629 => 0.0032395365718029
630 => 0.0032568360599244
701 => 0.0032645193498079
702 => 0.0032542247592048
703 => 0.003135372521253
704 => 0.0031406441234049
705 => 0.0031019646045772
706 => 0.0030692844871151
707 => 0.003070591520429
708 => 0.0030873933489224
709 => 0.0031607679193674
710 => 0.0033151803772017
711 => 0.0033210402171025
712 => 0.0033281425140058
713 => 0.0032992539031715
714 => 0.0032905408217171
715 => 0.0033020356251926
716 => 0.0033600248257339
717 => 0.0035091887934403
718 => 0.0034564642849264
719 => 0.0034135984387987
720 => 0.0034512033424018
721 => 0.0034454143622491
722 => 0.0033965495439365
723 => 0.0033951780712358
724 => 0.0033013908618663
725 => 0.0032667198659939
726 => 0.0032377461867638
727 => 0.0032061076854216
728 => 0.0031873513212938
729 => 0.0032161696212092
730 => 0.0032227607073679
731 => 0.0031597489909453
801 => 0.0031511607268332
802 => 0.0032026174546663
803 => 0.0031799732672471
804 => 0.0032032633755565
805 => 0.0032086668804632
806 => 0.0032077967917199
807 => 0.003184153659386
808 => 0.0031992230868873
809 => 0.0031635793984341
810 => 0.0031248222407501
811 => 0.003100097588804
812 => 0.0030785220507319
813 => 0.003090493413232
814 => 0.0030478176918037
815 => 0.0030341648696262
816 => 0.0031941179039227
817 => 0.0033122769301424
818 => 0.0033105588511051
819 => 0.0033001004868193
820 => 0.0032845614788923
821 => 0.0033588880505175
822 => 0.00333299415917
823 => 0.0033518341286323
824 => 0.0033566296915715
825 => 0.0033711444162573
826 => 0.0033763321827497
827 => 0.0033606511492741
828 => 0.0033080236856531
829 => 0.0031768810499785
830 => 0.0031158337990593
831 => 0.0030956871894335
901 => 0.0030964194804295
902 => 0.0030762196256679
903 => 0.0030821693881892
904 => 0.0030741505410711
905 => 0.003058964784597
906 => 0.003089555735562
907 => 0.0030930810576863
908 => 0.0030859407641964
909 => 0.0030876225617957
910 => 0.0030285039813589
911 => 0.0030329986386307
912 => 0.0030079718157878
913 => 0.0030032795882076
914 => 0.0029400139593957
915 => 0.0028279297274558
916 => 0.0028900352722301
917 => 0.0028150205075038
918 => 0.0027866112794428
919 => 0.0029210961465423
920 => 0.002907597595915
921 => 0.0028844939449202
922 => 0.002850318829876
923 => 0.0028376429472719
924 => 0.0027606282972666
925 => 0.0027560778608871
926 => 0.0027942484010002
927 => 0.0027766340101061
928 => 0.0027518967341992
929 => 0.0026623008284421
930 => 0.0025615653661862
1001 => 0.0025646059365911
1002 => 0.0025966480128848
1003 => 0.0026898146711715
1004 => 0.0026534128459794
1005 => 0.0026270029041396
1006 => 0.002622057115913
1007 => 0.0026839640102784
1008 => 0.0027715752357009
1009 => 0.0028126804624784
1010 => 0.0027719464311262
1011 => 0.0027251533691847
1012 => 0.002728001446047
1013 => 0.0027469484254503
1014 => 0.0027489394850897
1015 => 0.0027184820121703
1016 => 0.0027270556123915
1017 => 0.0027140315296691
1018 => 0.0026341027580426
1019 => 0.0026326571000208
1020 => 0.0026130412904381
1021 => 0.0026124473315198
1022 => 0.0025790759460266
1023 => 0.0025744070585106
1024 => 0.0025081461471156
1025 => 0.0025517592796523
1026 => 0.0025225058801389
1027 => 0.0024784141068929
1028 => 0.0024708126685661
1029 => 0.002470584160151
1030 => 0.0025158565525345
1031 => 0.0025512302453884
1101 => 0.0025230147555479
1102 => 0.0025165906354455
1103 => 0.0025851834312704
1104 => 0.0025764543727645
1105 => 0.0025688950643947
1106 => 0.0027637306113926
1107 => 0.0026095030727365
1108 => 0.0025422510628822
1109 => 0.0024590139298773
1110 => 0.0024861163601018
1111 => 0.0024918272403676
1112 => 0.0022916569401117
1113 => 0.0022104478742275
1114 => 0.0021825799831151
1115 => 0.0021665416177858
1116 => 0.0021738505022635
1117 => 0.0021007528180944
1118 => 0.0021498756707801
1119 => 0.0020865792550831
1120 => 0.0020759674050071
1121 => 0.0021891492371947
1122 => 0.0022048978279449
1123 => 0.0021377094471008
1124 => 0.0021808552644136
1125 => 0.0021652099912842
1126 => 0.0020876642904585
1127 => 0.0020847026150745
1128 => 0.0020457929082633
1129 => 0.0019849067515077
1130 => 0.0019570801440767
1201 => 0.001942587805325
1202 => 0.001948567626744
1203 => 0.001945544046049
1204 => 0.0019258131367852
1205 => 0.0019466749986718
1206 => 0.0018933815622681
1207 => 0.0018721596864777
1208 => 0.001862574257527
1209 => 0.001815273265263
1210 => 0.0018905501788018
1211 => 0.0019053806790825
1212 => 0.0019202404000302
1213 => 0.002049584125717
1214 => 0.0020431224787033
1215 => 0.0021015326207578
1216 => 0.0020992629100469
1217 => 0.0020826033913514
1218 => 0.0020123196223329
1219 => 0.0020403334799759
1220 => 0.0019541111804706
1221 => 0.0020187147898065
1222 => 0.0019892324004168
1223 => 0.0020087467642972
1224 => 0.001973658178501
1225 => 0.0019930776506528
1226 => 0.0019088975408744
1227 => 0.0018302913388093
1228 => 0.0018619247691784
1229 => 0.0018963139257111
1230 => 0.0019708783792682
1231 => 0.001926468405873
]
'min_raw' => 0.001815273265263
'max_raw' => 0.00541863490607
'avg_raw' => 0.0036169540856665
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001815'
'max' => '$0.005418'
'avg' => '$0.003616'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.003438776734737
'max_diff' => 0.00016458490606996
'year' => 2026
]
1 => [
'items' => [
101 => 0.0019424399116329
102 => 0.0018889380409349
103 => 0.0017785483996311
104 => 0.0017791731930126
105 => 0.0017621921516671
106 => 0.0017475180526719
107 => 0.001931569425543
108 => 0.0019086797279048
109 => 0.001872207990448
110 => 0.0019210268603632
111 => 0.0019339353444284
112 => 0.0019343028308226
113 => 0.0019699198181153
114 => 0.0019889286106181
115 => 0.0019922789926856
116 => 0.0020483230917466
117 => 0.0020671083345123
118 => 0.0021444820908772
119 => 0.0019873158473813
120 => 0.0019840791120226
121 => 0.0019217138419779
122 => 0.0018821608017597
123 => 0.0019244220724808
124 => 0.0019618597891009
125 => 0.0019228771361905
126 => 0.0019279674476919
127 => 0.0018756364211595
128 => 0.0018943423007412
129 => 0.001910454324191
130 => 0.001901558211863
131 => 0.0018882403011312
201 => 0.0019587903232722
202 => 0.0019548096145352
203 => 0.0020205074170909
204 => 0.0020717235522779
205 => 0.0021635120225124
206 => 0.0020677259687816
207 => 0.0020642351442685
208 => 0.0020983585138293
209 => 0.0020671031104022
210 => 0.0020868554464683
211 => 0.0021603296158023
212 => 0.0021618820092212
213 => 0.0021358774193079
214 => 0.0021342950376484
215 => 0.0021392895036003
216 => 0.0021685422466798
217 => 0.0021583204394018
218 => 0.0021701493735684
219 => 0.0021849416368748
220 => 0.0022461287096997
221 => 0.0022608807058099
222 => 0.0022250410032951
223 => 0.0022282769271521
224 => 0.0022148718945897
225 => 0.002201922801099
226 => 0.0022310304722029
227 => 0.0022842253132578
228 => 0.0022838943909124
301 => 0.0022962345600772
302 => 0.0023039223832354
303 => 0.00227092061841
304 => 0.0022494376830171
305 => 0.0022576756074414
306 => 0.0022708482279946
307 => 0.0022534039041322
308 => 0.0021457294562568
309 => 0.0021783910054719
310 => 0.0021729545266143
311 => 0.0021652123196228
312 => 0.0021980537599228
313 => 0.0021948861228886
314 => 0.0021000030956896
315 => 0.0021060771992436
316 => 0.0021003724820447
317 => 0.0021188055903896
318 => 0.0020661076620593
319 => 0.0020823171898877
320 => 0.0020924836537869
321 => 0.0020984717791259
322 => 0.0021201049939465
323 => 0.0021175665858769
324 => 0.0021199472029368
325 => 0.0021520235495587
326 => 0.0023142547034996
327 => 0.0023230845872657
328 => 0.002279603010223
329 => 0.0022969730426154
330 => 0.0022636263788305
331 => 0.0022860122176325
401 => 0.0023013280400022
402 => 0.0022321187837769
403 => 0.0022280206607876
404 => 0.0021945363634592
405 => 0.0022125289281959
406 => 0.0021839014639886
407 => 0.0021909256423589
408 => 0.0021712854272787
409 => 0.0022066339040952
410 => 0.0022461589937741
411 => 0.0022561445923201
412 => 0.0022298767816161
413 => 0.0022108571555333
414 => 0.0021774649575863
415 => 0.0022329969269659
416 => 0.0022492361671185
417 => 0.0022329116291506
418 => 0.0022291288770052
419 => 0.002221960568525
420 => 0.0022306496675361
421 => 0.0022491477247291
422 => 0.0022404243825624
423 => 0.002246186303749
424 => 0.0022242278018528
425 => 0.0022709315433673
426 => 0.0023451083247598
427 => 0.0023453468152411
428 => 0.0023366234260523
429 => 0.0023330540031443
430 => 0.0023420047298315
501 => 0.0023468601318813
502 => 0.0023758051407053
503 => 0.0024068642883935
504 => 0.0025518037784864
505 => 0.002511105349653
506 => 0.0026397042877523
507 => 0.0027414093513067
508 => 0.0027719062528432
509 => 0.0027438505384197
510 => 0.0026478734549168
511 => 0.0026431643613173
512 => 0.0027865946445501
513 => 0.0027460690200137
514 => 0.0027412486259265
515 => 0.0026899677770237
516 => 0.002720281109982
517 => 0.0027136511393942
518 => 0.0027031854064722
519 => 0.0027610211341115
520 => 0.0028692844532212
521 => 0.002852410599651
522 => 0.0028398150507163
523 => 0.002784625021794
524 => 0.0028178617463445
525 => 0.0028060267853395
526 => 0.0028568772884685
527 => 0.0028267545768915
528 => 0.0027457619985497
529 => 0.0027586603336057
530 => 0.0027567107762098
531 => 0.0027968325292695
601 => 0.0027847889748841
602 => 0.0027543590789239
603 => 0.0028689144209662
604 => 0.0028614758342443
605 => 0.0028720220495183
606 => 0.0028766648196345
607 => 0.002946392637644
608 => 0.0029749578936412
609 => 0.0029814427068578
610 => 0.003008577490739
611 => 0.0029807675687156
612 => 0.0030920270849474
613 => 0.0031660081710687
614 => 0.0032519410096306
615 => 0.003377511983339
616 => 0.0034247278310498
617 => 0.0034161987107735
618 => 0.0035114051899175
619 => 0.003682489116618
620 => 0.0034507796638363
621 => 0.00369477028025
622 => 0.0036175256681005
623 => 0.0034343800822655
624 => 0.0034225876656823
625 => 0.0035466159827738
626 => 0.0038216988527996
627 => 0.0037527937138222
628 => 0.0038218115569224
629 => 0.0037412985768475
630 => 0.0037373004287701
701 => 0.0038179012211885
702 => 0.0040062293659945
703 => 0.0039167617237721
704 => 0.0037884879202804
705 => 0.0038832033006172
706 => 0.0038011520726748
707 => 0.0036162676914279
708 => 0.003752741023361
709 => 0.003661485192834
710 => 0.0036881184956086
711 => 0.003879924678096
712 => 0.0038568460507629
713 => 0.0038867119315553
714 => 0.0038339994336829
715 => 0.0037847576486722
716 => 0.0036928442002067
717 => 0.0036656331593943
718 => 0.0036731533121241
719 => 0.0036656294327801
720 => 0.0036142047030918
721 => 0.0036030995376118
722 => 0.00358459044195
723 => 0.0035903271846474
724 => 0.0035555246697764
725 => 0.0036212042059046
726 => 0.003633394906576
727 => 0.0036811909957514
728 => 0.003686153344287
729 => 0.0038192647723055
730 => 0.0037459492345996
731 => 0.0037951356270517
801 => 0.0037907359331505
802 => 0.0034383494024565
803 => 0.0034869051572535
804 => 0.0035624426740823
805 => 0.0035284131251396
806 => 0.0034803033046227
807 => 0.00344145204507
808 => 0.0033825884141023
809 => 0.0034654378443134
810 => 0.0035743760349863
811 => 0.0036889161965778
812 => 0.0038265286957614
813 => 0.0037958151879297
814 => 0.0036863436266269
815 => 0.0036912544408979
816 => 0.0037216111623871
817 => 0.0036822964498596
818 => 0.0036707017736208
819 => 0.0037200182319203
820 => 0.0037203578472648
821 => 0.0036751215191601
822 => 0.0036248496186323
823 => 0.0036246389775335
824 => 0.0036156935784036
825 => 0.0037428899434804
826 => 0.0038128350832696
827 => 0.0038208541808242
828 => 0.0038122953341113
829 => 0.0038155892945226
830 => 0.0037748897588153
831 => 0.0038679168283699
901 => 0.0039532876668168
902 => 0.0039304064584311
903 => 0.0038961042743054
904 => 0.0038687809324323
905 => 0.0039239699474341
906 => 0.0039215124674716
907 => 0.0039525420270189
908 => 0.0039511343469624
909 => 0.0039407002731674
910 => 0.0039304068310647
911 => 0.0039712191654839
912 => 0.0039594658685972
913 => 0.0039476943155941
914 => 0.0039240846639118
915 => 0.0039272936076902
916 => 0.0038929973463203
917 => 0.0038771303265204
918 => 0.0036385284190342
919 => 0.0035747661928116
920 => 0.003594827087181
921 => 0.0036014316544883
922 => 0.0035736822519228
923 => 0.0036134677669652
924 => 0.0036072672365891
925 => 0.0036313898730934
926 => 0.0036163190970886
927 => 0.0036169376069928
928 => 0.0036612575457946
929 => 0.0036741238125793
930 => 0.0036675799254491
1001 => 0.0036721630396838
1002 => 0.0037777789728099
1003 => 0.0037627637645268
1004 => 0.0037547872343906
1005 => 0.0037569967877509
1006 => 0.0037839839230958
1007 => 0.0037915388475494
1008 => 0.0037595281017644
1009 => 0.0037746245545285
1010 => 0.0038389033343731
1011 => 0.0038613972694549
1012 => 0.0039331871125345
1013 => 0.0039026895112315
1014 => 0.0039586691783283
1015 => 0.004130731590109
1016 => 0.0042681869504526
1017 => 0.0041417773204976
1018 => 0.0043941965849341
1019 => 0.0045907411896909
1020 => 0.0045831974803982
1021 => 0.0045489253824002
1022 => 0.0043251645752933
1023 => 0.0041192565445078
1024 => 0.0042915073555767
1025 => 0.0042919464583178
1026 => 0.0042771499608853
1027 => 0.0041852501861179
1028 => 0.0042739520479277
1029 => 0.0042809928796003
1030 => 0.0042770518861719
1031 => 0.0042065925443281
1101 => 0.0040990141523958
1102 => 0.0041200347126731
1103 => 0.0041544668192151
1104 => 0.0040892796582411
1105 => 0.0040684484104806
1106 => 0.0041071776633745
1107 => 0.0042319713857589
1108 => 0.004208379855423
1109 => 0.004207763785225
1110 => 0.0043086983563681
1111 => 0.0042364509864734
1112 => 0.0041202998492553
1113 => 0.0040909701552625
1114 => 0.0039868695004371
1115 => 0.0040587721935188
1116 => 0.0040613598434369
1117 => 0.0040219794732638
1118 => 0.0041234953492573
1119 => 0.0041225598625885
1120 => 0.0042189340782002
1121 => 0.0044031653819473
1122 => 0.0043486791199574
1123 => 0.0042853175253516
1124 => 0.0042922066875117
1125 => 0.0043677637925069
1126 => 0.0043220802420259
1127 => 0.0043385083652959
1128 => 0.0043677389265748
1129 => 0.0043853744499484
1130 => 0.0042896692070935
1201 => 0.0042673557368731
1202 => 0.004221710207766
1203 => 0.0042098021412361
1204 => 0.0042469794722687
1205 => 0.0042371845590361
1206 => 0.0040611423614812
1207 => 0.0040427449723471
1208 => 0.0040433091940064
1209 => 0.0039970480842808
1210 => 0.0039264887880106
1211 => 0.0041119144057319
1212 => 0.0040970221335991
1213 => 0.0040805822177347
1214 => 0.0040825960136232
1215 => 0.0041630829896187
1216 => 0.0041163964788516
1217 => 0.0042405202194947
1218 => 0.0042150041099196
1219 => 0.0041888336084151
1220 => 0.0041852160479342
1221 => 0.0041751426376172
1222 => 0.0041405971654894
1223 => 0.004098881432034
1224 => 0.0040713370914518
1225 => 0.0037555932567999
1226 => 0.0038141934759139
1227 => 0.0038816076864265
1228 => 0.00390487880175
1229 => 0.003865071948677
1230 => 0.0041421689826743
1231 => 0.0041927972809591
]
'min_raw' => 0.0017475180526719
'max_raw' => 0.0045907411896909
'avg_raw' => 0.0031691296211814
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001747'
'max' => '$0.00459'
'avg' => '$0.003169'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.7755212591036E-5
'max_diff' => -0.00082789371637907
'year' => 2027
]
2 => [
'items' => [
101 => 0.0040394408630524
102 => 0.0040107541387633
103 => 0.0041440496795429
104 => 0.0040636561737357
105 => 0.0040998573644781
106 => 0.0040216101910856
107 => 0.0041806024064719
108 => 0.0041793911521755
109 => 0.0041175395893882
110 => 0.0041698161067148
111 => 0.0041607317753674
112 => 0.0040909015133142
113 => 0.004182816150333
114 => 0.0041828617388462
115 => 0.0041233309544324
116 => 0.0040538120312014
117 => 0.0040413836896913
118 => 0.0040320206038763
119 => 0.0040975546193352
120 => 0.0041563122126761
121 => 0.0042656455266408
122 => 0.004293134519467
123 => 0.0044004258885135
124 => 0.0043365391021683
125 => 0.0043648592870827
126 => 0.0043956048539421
127 => 0.0044103454093253
128 => 0.0043863264653502
129 => 0.0045529941243688
130 => 0.0045670659813551
131 => 0.0045717841532816
201 => 0.0045155847564055
202 => 0.0045655029744641
203 => 0.0045421478933521
204 => 0.004602911326177
205 => 0.0046124398083104
206 => 0.004604369522929
207 => 0.004607394013555
208 => 0.0044651725687725
209 => 0.0044577976365826
210 => 0.0043572399128725
211 => 0.0043982179285695
212 => 0.0043216114923513
213 => 0.0043459041824098
214 => 0.0043566121687184
215 => 0.0043510189243437
216 => 0.0044005347640941
217 => 0.0043584361848885
218 => 0.0042473311127176
219 => 0.0041361957700442
220 => 0.0041348005563458
221 => 0.0041055405823216
222 => 0.0040843909803336
223 => 0.004088465143999
224 => 0.0041028230281571
225 => 0.0040835564740052
226 => 0.0040876679701726
227 => 0.004155946201307
228 => 0.0041696389136229
229 => 0.0041231057270853
301 => 0.0039362682684299
302 => 0.0038904178874296
303 => 0.0039233742320401
304 => 0.0039076232219767
305 => 0.0031537569176233
306 => 0.0033308666235742
307 => 0.0032256340503755
308 => 0.0032741300616233
309 => 0.0031667148542302
310 => 0.0032179790213116
311 => 0.0032085124015193
312 => 0.0034932995676311
313 => 0.0034888530077442
314 => 0.0034909813406553
315 => 0.0033893904654645
316 => 0.0035512274881364
317 => 0.0036309542249756
318 => 0.0036161989278451
319 => 0.0036199125182424
320 => 0.0035561007315021
321 => 0.0034915991782367
322 => 0.0034200570289474
323 => 0.0035529734994499
324 => 0.0035381954568899
325 => 0.0035720909695508
326 => 0.0036582968017372
327 => 0.0036709909379908
328 => 0.0036880519858468
329 => 0.0036819368146785
330 => 0.0038276250013312
331 => 0.003809981200646
401 => 0.0038524976838295
402 => 0.0037650380521876
403 => 0.0036660691772404
404 => 0.0036848799248315
405 => 0.003683068298572
406 => 0.0036600042170007
407 => 0.0036391829954228
408 => 0.0036045215278384
409 => 0.0037141955402074
410 => 0.0037097429755934
411 => 0.0037818248211526
412 => 0.0037690836547843
413 => 0.0036839950274847
414 => 0.0036870339844549
415 => 0.0037074724305519
416 => 0.0037782101258559
417 => 0.0037992098900116
418 => 0.0037894819625588
419 => 0.0038125072452799
420 => 0.0038307054899263
421 => 0.0038147926646224
422 => 0.0040400847137471
423 => 0.0039465277476437
424 => 0.0039921267619573
425 => 0.0040030018581861
426 => 0.0039751455278746
427 => 0.0039811865684588
428 => 0.0039903370988588
429 => 0.0040458973275898
430 => 0.0041917034442617
501 => 0.0042562799807999
502 => 0.0044505616771253
503 => 0.0042509177983892
504 => 0.0042390717568335
505 => 0.0042740677570869
506 => 0.004388131679636
507 => 0.0044805697753826
508 => 0.0045112368246234
509 => 0.0045152899814384
510 => 0.0045728234045211
511 => 0.0046058004896972
512 => 0.0045658373336796
513 => 0.0045319727432715
514 => 0.0044106739838573
515 => 0.004424714645545
516 => 0.0045214408811194
517 => 0.004658072386015
518 => 0.0047753164313006
519 => 0.0047342616530091
520 => 0.0050474806312167
521 => 0.0050785350135212
522 => 0.0050742443019951
523 => 0.0051449908063965
524 => 0.0050045734024349
525 => 0.0049445422417822
526 => 0.0045392946520971
527 => 0.0046531526949643
528 => 0.00481865204692
529 => 0.004796747587098
530 => 0.0046765575338973
531 => 0.0047752252563675
601 => 0.0047426026216939
602 => 0.0047168717962125
603 => 0.0048347496959089
604 => 0.0047051381030355
605 => 0.0048173590721334
606 => 0.004673434518488
607 => 0.0047344491877781
608 => 0.0046998143105416
609 => 0.0047222273208045
610 => 0.0045912013207804
611 => 0.0046618997699171
612 => 0.0045882600328614
613 => 0.0045882251180378
614 => 0.0045865995167608
615 => 0.0046732363408383
616 => 0.0046760615645611
617 => 0.0046120368206669
618 => 0.0046028098548172
619 => 0.0046369267836119
620 => 0.0045969847952312
621 => 0.0046156734002026
622 => 0.0045975508540374
623 => 0.0045934710871764
624 => 0.0045609628107126
625 => 0.0045469573513784
626 => 0.0045524492528596
627 => 0.004533702561835
628 => 0.0045224070023953
629 => 0.0045843525456832
630 => 0.0045512575407805
701 => 0.0045792802615326
702 => 0.0045473448344863
703 => 0.0044366427307404
704 => 0.0043729767802226
705 => 0.0041638707683371
706 => 0.0042231729739126
707 => 0.0042624903975618
708 => 0.0042494959892803
709 => 0.0042774130064374
710 => 0.0042791268845582
711 => 0.0042700507777001
712 => 0.0042595418086798
713 => 0.0042544266237431
714 => 0.0042925510214687
715 => 0.0043146835175566
716 => 0.0042664364270242
717 => 0.004255132808761
718 => 0.0043039132810841
719 => 0.0043336693410216
720 => 0.0045533713691145
721 => 0.0045370951332452
722 => 0.0045779452912272
723 => 0.0045733461903352
724 => 0.0046161636638409
725 => 0.0046861521370082
726 => 0.0045438460019741
727 => 0.0045685454264401
728 => 0.0045624896979541
729 => 0.0046286045536676
730 => 0.0046288109570304
731 => 0.0045891717983482
801 => 0.0046106608293417
802 => 0.0045986662417619
803 => 0.0046203420826844
804 => 0.004536877754192
805 => 0.0046385282968783
806 => 0.0046961576043651
807 => 0.0046969577873555
808 => 0.0047242736217297
809 => 0.0047520280914805
810 => 0.0048053003792621
811 => 0.0047505423562878
812 => 0.0046520380035432
813 => 0.0046591496996442
814 => 0.0046013966336714
815 => 0.0046023674731443
816 => 0.0045971850559517
817 => 0.004612737880061
818 => 0.0045402907244728
819 => 0.004557293927084
820 => 0.0045334893438577
821 => 0.0045684936799252
822 => 0.0045308348007406
823 => 0.0045624867776985
824 => 0.0045761467216738
825 => 0.0046265522090204
826 => 0.0045233898692761
827 => 0.004313034875061
828 => 0.0043572540451528
829 => 0.0042918504192462
830 => 0.004297903773833
831 => 0.0043101325134827
901 => 0.0042704951672836
902 => 0.0042780567238221
903 => 0.0042777865718126
904 => 0.0042754585477435
905 => 0.0042651473431302
906 => 0.0042501940564312
907 => 0.004309763348261
908 => 0.0043198853317267
909 => 0.0043423852471225
910 => 0.004409329733502
911 => 0.004402640400653
912 => 0.0044135509800675
913 => 0.0043897332464659
914 => 0.0042990086101839
915 => 0.0043039353944234
916 => 0.0042424983160104
917 => 0.0043408141628981
918 => 0.0043175316726493
919 => 0.0043025212997244
920 => 0.0042984255804017
921 => 0.0043655360092144
922 => 0.0043856165013422
923 => 0.0043731036861998
924 => 0.0043474395372857
925 => 0.0043967222901254
926 => 0.0044099082757129
927 => 0.0044128601316055
928 => 0.0045001797206068
929 => 0.004417740326631
930 => 0.0044375843081381
1001 => 0.004592401387142
1002 => 0.004452003659782
1003 => 0.0045263754672076
1004 => 0.0045227353542463
1005 => 0.0045607814543204
1006 => 0.0045196144635578
1007 => 0.0045201247777464
1008 => 0.0045539071371463
1009 => 0.0045064659060499
1010 => 0.0044947187900628
1011 => 0.0044784902334612
1012 => 0.004513924693091
1013 => 0.0045351660490763
1014 => 0.0047063557782606
1015 => 0.0048169521505138
1016 => 0.0048121508703171
1017 => 0.004856025583695
1018 => 0.004836259623472
1019 => 0.0047724301239149
1020 => 0.0048813792964806
1021 => 0.0048469032196538
1022 => 0.004849745385539
1023 => 0.0048496395999828
1024 => 0.0048725631771216
1025 => 0.0048563197218037
1026 => 0.0048243022040157
1027 => 0.0048455569265184
1028 => 0.004908675853649
1029 => 0.0051045989401875
1030 => 0.0052142400950501
1031 => 0.0050979984049953
1101 => 0.0051781803662568
1102 => 0.0051300997612539
1103 => 0.0051213620850508
1104 => 0.0051717222821235
1105 => 0.0052221706280545
1106 => 0.0052189572865129
1107 => 0.0051823343779182
1108 => 0.0051616470261249
1109 => 0.0053182985846747
1110 => 0.0054337167845245
1111 => 0.0054258460370681
1112 => 0.0054605849566362
1113 => 0.0055625794989222
1114 => 0.0055719046016316
1115 => 0.0055707298530253
1116 => 0.0055476166129862
1117 => 0.0056480434855318
1118 => 0.005731821349452
1119 => 0.0055422665657228
1120 => 0.0056144465459126
1121 => 0.0056468504645135
1122 => 0.005694429030829
1123 => 0.0057747020472969
1124 => 0.0058618998345471
1125 => 0.0058742305577394
1126 => 0.005865481319555
1127 => 0.0058079720348612
1128 => 0.0059033848941563
1129 => 0.0059592755094245
1130 => 0.0059925570917828
1201 => 0.006076953647116
1202 => 0.0056470505800831
1203 => 0.0053427438216685
1204 => 0.0052952219270992
1205 => 0.0053918595684121
1206 => 0.0054173421437555
1207 => 0.005407070149587
1208 => 0.0050645452266312
1209 => 0.005293418604267
1210 => 0.0055396671143828
1211 => 0.005549126522535
1212 => 0.0056724036755125
1213 => 0.0057125477698232
1214 => 0.0058118020362759
1215 => 0.0058055936548853
1216 => 0.0058297604892862
1217 => 0.0058242049525687
1218 => 0.0060080525807207
1219 => 0.0062108638162094
1220 => 0.0062038411080247
1221 => 0.0061746845933695
1222 => 0.0062179869895569
1223 => 0.0064273099191541
1224 => 0.0064080388181283
1225 => 0.0064267590512663
1226 => 0.0066735625821847
1227 => 0.0069944422797715
1228 => 0.0068453614444476
1229 => 0.0071688239602458
1230 => 0.0073724264679296
1231 => 0.0077245359520766
]
'min_raw' => 0.0031537569176233
'max_raw' => 0.0077245359520766
'avg_raw' => 0.0054391464348499
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003153'
'max' => '$0.007724'
'avg' => '$0.005439'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0014062388649513
'max_diff' => 0.0031337947623857
'year' => 2028
]
3 => [
'items' => [
101 => 0.0076804501104856
102 => 0.0078175237487652
103 => 0.007601527253045
104 => 0.0071055556387772
105 => 0.0070270662323163
106 => 0.0071842040117194
107 => 0.0075705119091018
108 => 0.0071720378012778
109 => 0.0072526485943168
110 => 0.0072294326804986
111 => 0.0072281956031125
112 => 0.0072754098153822
113 => 0.0072069231379572
114 => 0.0069278960936099
115 => 0.0070557725437176
116 => 0.0070063933051995
117 => 0.0070611832518014
118 => 0.0073568619965191
119 => 0.0072261353753785
120 => 0.0070884254993752
121 => 0.0072611442441512
122 => 0.007481074558851
123 => 0.0074673117150098
124 => 0.0074406060455356
125 => 0.0075911445060986
126 => 0.0078397899393181
127 => 0.0079069978007791
128 => 0.0079566092701054
129 => 0.0079634498535328
130 => 0.0080339121142344
131 => 0.0076550187796657
201 => 0.0082563322322972
202 => 0.0083601624546178
203 => 0.0083406466761433
204 => 0.008456049598409
205 => 0.0084220951311888
206 => 0.0083729004354796
207 => 0.0085558386141761
208 => 0.0083461147546503
209 => 0.0080484381395532
210 => 0.007885126861135
211 => 0.0081001883265011
212 => 0.0082315188587893
213 => 0.0083183199864412
214 => 0.008344585955222
215 => 0.0076844311906573
216 => 0.0073286443864187
217 => 0.0075566996488316
218 => 0.0078349428085089
219 => 0.0076534731248649
220 => 0.0076605863928962
221 => 0.0074018583134138
222 => 0.0078578345025724
223 => 0.0077914026071753
224 => 0.008136051398011
225 => 0.0080537981980987
226 => 0.0083348459078363
227 => 0.0082608366269279
228 => 0.0085680450141752
301 => 0.0086905987571832
302 => 0.0088963855656606
303 => 0.0090477631796797
304 => 0.0091366550100239
305 => 0.0091313182779549
306 => 0.0094835519955131
307 => 0.0092758520783778
308 => 0.009014932031344
309 => 0.0090102128108854
310 => 0.0091453470005098
311 => 0.0094285511897083
312 => 0.0095019819155141
313 => 0.0095430196736357
314 => 0.0094801689185378
315 => 0.0092547255444747
316 => 0.009157380238578
317 => 0.009240321259567
318 => 0.0091388915181007
319 => 0.0093139877080305
320 => 0.0095544321753322
321 => 0.0095047813436549
322 => 0.0096707566298835
323 => 0.0098425235900208
324 => 0.010088158057554
325 => 0.010152376003185
326 => 0.010258525825324
327 => 0.010367788860705
328 => 0.010402881202947
329 => 0.010469883372803
330 => 0.010469530238295
331 => 0.010671445786922
401 => 0.010894164889862
402 => 0.010978236195263
403 => 0.011171553526313
404 => 0.010840504371537
405 => 0.011091608958253
406 => 0.011318111581027
407 => 0.011048065816549
408 => 0.011420260990288
409 => 0.011434712485472
410 => 0.011652912905144
411 => 0.011431724977664
412 => 0.011300384292384
413 => 0.011679559929517
414 => 0.011863031076405
415 => 0.011807768073825
416 => 0.011387213895517
417 => 0.011142433325325
418 => 0.010501795358485
419 => 0.011260658703707
420 => 0.011630278902817
421 => 0.011386256668495
422 => 0.011509327289561
423 => 0.012180760692317
424 => 0.012436399059993
425 => 0.012383228066564
426 => 0.012392213089184
427 => 0.012530150912218
428 => 0.013141843183295
429 => 0.01277530299555
430 => 0.013055509235082
501 => 0.013204129614171
502 => 0.013342176504973
503 => 0.013003176971332
504 => 0.012562143558957
505 => 0.012422449763934
506 => 0.011361993466444
507 => 0.011306792110832
508 => 0.011275805917154
509 => 0.011080442349101
510 => 0.010926940099196
511 => 0.010804869410898
512 => 0.010484519471412
513 => 0.010592628172017
514 => 0.010082057230705
515 => 0.010408702425433
516 => 0.0095938188749326
517 => 0.010272478110185
518 => 0.0099031147432862
519 => 0.010151132310163
520 => 0.010150267000237
521 => 0.0096935880255755
522 => 0.0094301851236379
523 => 0.0095980357045468
524 => 0.0097779848512769
525 => 0.0098071809949123
526 => 0.010040489760801
527 => 0.010105601222406
528 => 0.0099083104539806
529 => 0.0095769322246002
530 => 0.0096539038293526
531 => 0.0094286252965243
601 => 0.0090338333329565
602 => 0.0093173798135973
603 => 0.0094141950487468
604 => 0.0094569541720311
605 => 0.0090687216180254
606 => 0.008946730520618
607 => 0.0088817834839628
608 => 0.0095268162770937
609 => 0.0095621526295806
610 => 0.0093813668542008
611 => 0.010198535701728
612 => 0.010013585224142
613 => 0.010220220221573
614 => 0.0096469194629995
615 => 0.0096688203240289
616 => 0.009397410557368
617 => 0.0095493818910909
618 => 0.0094419734506803
619 => 0.0095371041091361
620 => 0.0095941250335761
621 => 0.0098654902645649
622 => 0.010275576665223
623 => 0.0098249573482882
624 => 0.0096286160589121
625 => 0.0097504250905757
626 => 0.010074818593702
627 => 0.010566291356337
628 => 0.010275329589046
629 => 0.010404453480519
630 => 0.010432661306483
701 => 0.010218116871273
702 => 0.010574201915686
703 => 0.010765030783817
704 => 0.010960781716049
705 => 0.011130746765689
706 => 0.01088259448906
707 => 0.011148152996284
708 => 0.010934159716848
709 => 0.010742185622976
710 => 0.010742476768433
711 => 0.010622048615052
712 => 0.010388703892954
713 => 0.010345671546049
714 => 0.010569531249036
715 => 0.01074904553124
716 => 0.010763831187337
717 => 0.010863219517742
718 => 0.010922036507894
719 => 0.011498522969206
720 => 0.011730390592892
721 => 0.012013913934105
722 => 0.012124362254008
723 => 0.012456772099001
724 => 0.012188324152161
725 => 0.012130243750246
726 => 0.011323926196725
727 => 0.011455960650944
728 => 0.011667360551577
729 => 0.011327412103223
730 => 0.011543031148357
731 => 0.011585598915302
801 => 0.011315860785031
802 => 0.011459939575106
803 => 0.011077309025052
804 => 0.010283916965606
805 => 0.010575085187851
806 => 0.010789483005588
807 => 0.010483510884618
808 => 0.011031954068701
809 => 0.010711564882725
810 => 0.010610016892163
811 => 0.010213841976511
812 => 0.010400821286528
813 => 0.010653713480612
814 => 0.010497455506541
815 => 0.010821714264991
816 => 0.011280951143607
817 => 0.011608230691338
818 => 0.011633355151167
819 => 0.011422936328002
820 => 0.011760133834998
821 => 0.01176258995071
822 => 0.011382229785326
823 => 0.011149261301883
824 => 0.011096330372275
825 => 0.011228562212156
826 => 0.011389116077116
827 => 0.011642264773274
828 => 0.011795237228532
829 => 0.012194108261523
830 => 0.012302031326522
831 => 0.012420606054726
901 => 0.0125790584587
902 => 0.012769321196033
903 => 0.012353037158412
904 => 0.012369576899278
905 => 0.01198193896729
906 => 0.01156769224406
907 => 0.011882053870409
908 => 0.012293039879086
909 => 0.012198759234596
910 => 0.012188150736112
911 => 0.01220599128801
912 => 0.012134906760983
913 => 0.011813394079754
914 => 0.011651932424017
915 => 0.011860259153179
916 => 0.011970975538173
917 => 0.012142686995815
918 => 0.012121519934272
919 => 0.012563830208693
920 => 0.012735698606565
921 => 0.012691727315726
922 => 0.012699819091469
923 => 0.013010978616311
924 => 0.013357052002772
925 => 0.013681195397599
926 => 0.014010927981099
927 => 0.013613422482008
928 => 0.0134115937043
929 => 0.013619829484529
930 => 0.013509336648409
1001 => 0.014144261259062
1002 => 0.014188222061527
1003 => 0.014823100759904
1004 => 0.015425676244613
1005 => 0.015047209378929
1006 => 0.015404086586747
1007 => 0.015790078383628
1008 => 0.016534719184724
1009 => 0.016283950359695
1010 => 0.01609186536977
1011 => 0.015910345982439
1012 => 0.016288059012083
1013 => 0.016773980790607
1014 => 0.0168786436876
1015 => 0.017048237565033
1016 => 0.016869930339865
1017 => 0.017084681752683
1018 => 0.017842848606483
1019 => 0.017637985230063
1020 => 0.017347046302114
1021 => 0.017945546218071
1022 => 0.018162141011046
1023 => 0.019682316699719
1024 => 0.021601601301995
1025 => 0.02080700487395
1026 => 0.020313773229597
1027 => 0.020429694365631
1028 => 0.021130552130498
1029 => 0.02135564540046
1030 => 0.020743764298401
1031 => 0.020959891047886
1101 => 0.022150770686666
1102 => 0.022789639404879
1103 => 0.02192196987403
1104 => 0.019528104050692
1105 => 0.017320850434884
1106 => 0.017906313487722
1107 => 0.017839940146564
1108 => 0.019119391753172
1109 => 0.017633099306288
1110 => 0.017658124659284
1111 => 0.018964033970154
1112 => 0.018615639754968
1113 => 0.018051285745325
1114 => 0.017324970843706
1115 => 0.015982310572067
1116 => 0.014793078926624
1117 => 0.017125436047028
1118 => 0.01702486056688
1119 => 0.016879212367175
1120 => 0.017203336674838
1121 => 0.01877719230856
1122 => 0.01874090984213
1123 => 0.018510099302174
1124 => 0.01868516706246
1125 => 0.018020595520506
1126 => 0.01819187073888
1127 => 0.017320500794634
1128 => 0.017714396401057
1129 => 0.018050074895084
1130 => 0.018117467322565
1201 => 0.018269305902823
1202 => 0.016971861859027
1203 => 0.017554376143736
1204 => 0.017896548711795
1205 => 0.01635060060096
1206 => 0.017865990288246
1207 => 0.016949276244777
1208 => 0.016638129729841
1209 => 0.017057047521766
1210 => 0.016893794850842
1211 => 0.0167534397909
1212 => 0.016675119255847
1213 => 0.016982726247967
1214 => 0.016968376014115
1215 => 0.016465071271061
1216 => 0.015808530751075
1217 => 0.01602888729979
1218 => 0.015948829699788
1219 => 0.015658690629745
1220 => 0.015854209331429
1221 => 0.014993243918962
1222 => 0.013511997675901
1223 => 0.014490554315867
1224 => 0.014452880949693
1225 => 0.014433884330117
1226 => 0.015169242599732
1227 => 0.01509855486971
1228 => 0.014970255947545
1229 => 0.015656334319426
1230 => 0.015405906484633
1231 => 0.016177666063246
]
'min_raw' => 0.0069278960936099
'max_raw' => 0.022789639404879
'avg_raw' => 0.014858767749244
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006927'
'max' => '$0.022789'
'avg' => '$0.014858'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0037741391759866
'max_diff' => 0.015065103452802
'year' => 2029
]
4 => [
'items' => [
101 => 0.016685996836001
102 => 0.016557067709253
103 => 0.017035155258005
104 => 0.016033963869615
105 => 0.016366519488011
106 => 0.016435058740061
107 => 0.015647868218814
108 => 0.015110120256552
109 => 0.015074258598244
110 => 0.014141877737915
111 => 0.014639948067588
112 => 0.015078229346149
113 => 0.014868326625719
114 => 0.014801877695097
115 => 0.015141350870633
116 => 0.015167730843763
117 => 0.014566264660768
118 => 0.01469132852617
119 => 0.015212865635032
120 => 0.014678187129153
121 => 0.013639394131468
122 => 0.013381759105605
123 => 0.013347385844
124 => 0.012648659220569
125 => 0.013398975509963
126 => 0.013071442342416
127 => 0.014106115694248
128 => 0.013515115824746
129 => 0.013489639001588
130 => 0.013451127046748
131 => 0.012849704177928
201 => 0.012981377563782
202 => 0.013419079952785
203 => 0.013575257096252
204 => 0.013558966540666
205 => 0.013416934972291
206 => 0.013481956296974
207 => 0.013272499955239
208 => 0.013198536561516
209 => 0.012965087745691
210 => 0.01262198247831
211 => 0.012669693370126
212 => 0.011989912057066
213 => 0.011619531118987
214 => 0.011517014556869
215 => 0.011379925125542
216 => 0.011532499172918
217 => 0.011987986322017
218 => 0.011438572183214
219 => 0.010496640179159
220 => 0.010553251897577
221 => 0.010680441620691
222 => 0.010443424413111
223 => 0.010219107517483
224 => 0.010414132858827
225 => 0.010015023851438
226 => 0.010728672037468
227 => 0.010709369854012
228 => 0.010975373766056
301 => 0.011141711471207
302 => 0.010758356913306
303 => 0.010661944278694
304 => 0.010716865297079
305 => 0.0098091432012629
306 => 0.01090119350516
307 => 0.010910637601537
308 => 0.010829771514684
309 => 0.011411254588239
310 => 0.012638365242558
311 => 0.012176676853991
312 => 0.011997897155333
313 => 0.011658036817496
314 => 0.012110880538754
315 => 0.012076109206424
316 => 0.011918860054991
317 => 0.011823755277557
318 => 0.01199898874605
319 => 0.011802041911588
320 => 0.011766664848381
321 => 0.011552318335974
322 => 0.011475806383189
323 => 0.011419159979376
324 => 0.011356797854739
325 => 0.011494353162016
326 => 0.011182634738818
327 => 0.010806732878576
328 => 0.010775480706211
329 => 0.010861770701829
330 => 0.010823593802303
331 => 0.010775297929904
401 => 0.010683087956897
402 => 0.01065573122766
403 => 0.010744627326082
404 => 0.010644268813928
405 => 0.010792353265422
406 => 0.010752082488502
407 => 0.010527133202223
408 => 0.010246763104626
409 => 0.010244267222661
410 => 0.010183861945033
411 => 0.010106926741979
412 => 0.010085525128529
413 => 0.010397708368549
414 => 0.011043918332532
415 => 0.010917051854108
416 => 0.011008725886569
417 => 0.011459671393151
418 => 0.011603013409289
419 => 0.011501272641476
420 => 0.011362003603396
421 => 0.011368130734269
422 => 0.011844055196993
423 => 0.011873738021952
424 => 0.011948736944582
425 => 0.012045131754854
426 => 0.011517689094488
427 => 0.011343288232398
428 => 0.011260647428549
429 => 0.011006145738708
430 => 0.011280603991875
501 => 0.011120688921229
502 => 0.011142266927736
503 => 0.01112821422269
504 => 0.011135887949885
505 => 0.010728472558256
506 => 0.010876913313843
507 => 0.010630101767122
508 => 0.010299648811958
509 => 0.010298541017781
510 => 0.010379418910405
511 => 0.01033130957512
512 => 0.010201848590872
513 => 0.010220237912646
514 => 0.010059128103754
515 => 0.010239799560433
516 => 0.010244980571337
517 => 0.010175412219275
518 => 0.010453761526145
519 => 0.010567801464281
520 => 0.010522010084655
521 => 0.010564588619016
522 => 0.010922323729054
523 => 0.010980650161068
524 => 0.01100655490934
525 => 0.010971845978376
526 => 0.010571127360124
527 => 0.01058890093483
528 => 0.010458490236585
529 => 0.010348306938908
530 => 0.01035271369298
531 => 0.010409362230812
601 => 0.010656749717916
602 => 0.011177362100238
603 => 0.011197118959584
604 => 0.011221064849461
605 => 0.011123664881094
606 => 0.011094288118643
607 => 0.011133043651102
608 => 0.011328558289404
609 => 0.011831475020822
610 => 0.011653710659259
611 => 0.011509185466242
612 => 0.011635973024231
613 => 0.011616455073472
614 => 0.011451703926898
615 => 0.011447079910935
616 => 0.011130869786532
617 => 0.011013974103296
618 => 0.010916287320894
619 => 0.010809615904689
620 => 0.010746377513505
621 => 0.010843540423699
622 => 0.010865762730858
623 => 0.010653314329602
624 => 0.010624358397534
625 => 0.010797848348018
626 => 0.010721501889167
627 => 0.010800026115396
628 => 0.010818244409449
629 => 0.010815310844504
630 => 0.010735596373129
701 => 0.010786404000064
702 => 0.010666228815881
703 => 0.010535556352811
704 => 0.010452195462555
705 => 0.010379452029588
706 => 0.010419814314071
707 => 0.010275930139752
708 => 0.010229898696571
709 => 0.010769191519266
710 => 0.011167572925766
711 => 0.011161780302339
712 => 0.011126519196969
713 => 0.011074128346845
714 => 0.011324725572395
715 => 0.011237422509863
716 => 0.01130094278227
717 => 0.011317111357535
718 => 0.011366048765198
719 => 0.011383539682126
720 => 0.011330669982948
721 => 0.011153232815018
722 => 0.010711076262755
723 => 0.010505251194097
724 => 0.010437325493153
725 => 0.010439794463373
726 => 0.010371689242735
727 => 0.010391749282475
728 => 0.010364713179558
729 => 0.01031351334137
730 => 0.01041665286834
731 => 0.010428538738013
801 => 0.010404464739992
802 => 0.010410135038017
803 => 0.010210812616547
804 => 0.010225966667346
805 => 0.010141586986814
806 => 0.010125766813927
807 => 0.0099124623293223
808 => 0.0095345625158656
809 => 0.0097439556961431
810 => 0.0094910381795047
811 => 0.0093952544836279
812 => 0.0098486796024874
813 => 0.0098031682966091
814 => 0.0097252727242344
815 => 0.0096100489378326
816 => 0.0095673113146312
817 => 0.009307651045147
818 => 0.0092923089311922
819 => 0.0094210035721656
820 => 0.0093616154234686
821 => 0.0092782119706472
822 => 0.0089761331190007
823 => 0.0086364964748794
824 => 0.0086467479702856
825 => 0.0087547800676162
826 => 0.0090688979607181
827 => 0.0089461666655884
828 => 0.0088571237027925
829 => 0.0088404486324825
830 => 0.0090491720490369
831 => 0.0093445594123691
901 => 0.0094831485543249
902 => 0.0093458109236616
903 => 0.0091880448483387
904 => 0.009197647338326
905 => 0.0092615284022202
906 => 0.0092682413988059
907 => 0.0091655519023853
908 => 0.0091944583941205
909 => 0.0091505467899097
910 => 0.0088810613559225
911 => 0.0088761872189692
912 => 0.0088100511474291
913 => 0.008808048573467
914 => 0.008695534617361
915 => 0.0086797931371295
916 => 0.0084563898481722
917 => 0.0086034345694914
918 => 0.0085048046906248
919 => 0.0083561461987365
920 => 0.0083305174187022
921 => 0.0083297469866267
922 => 0.0084823860183655
923 => 0.0086016508935347
924 => 0.0085065203995948
925 => 0.0084848610301519
926 => 0.0087161264302715
927 => 0.0086866958000753
928 => 0.0086612090641327
929 => 0.0093181107138197
930 => 0.0087981217994175
1001 => 0.0085713769528085
1002 => 0.0082907371474514
1003 => 0.0083821148831844
1004 => 0.0084013695147216
1005 => 0.0077264813719648
1006 => 0.0074526793365003
1007 => 0.007358720795941
1008 => 0.0073046463274703
1009 => 0.0073292887417768
1010 => 0.0070828347960832
1011 => 0.0072484559235613
1012 => 0.0070350476388241
1013 => 0.0069992690453973
1014 => 0.0073808694947209
1015 => 0.0074339669679668
1016 => 0.0072074366510079
1017 => 0.0073529057864225
1018 => 0.007300156655749
1019 => 0.007038705911347
1020 => 0.0070287204160123
1021 => 0.0068975336229095
1022 => 0.0066922516944722
1023 => 0.0065984323447269
1024 => 0.0065495704128026
1025 => 0.0065697317982146
1026 => 0.0065595375848017
1027 => 0.0064930134466509
1028 => 0.0065633506705302
1029 => 0.0063836681288662
1030 => 0.006312117092975
1031 => 0.0062797991500343
1101 => 0.0061203205521663
1102 => 0.0063741219218287
1103 => 0.0064241239889576
1104 => 0.0064742245756051
1105 => 0.006910315977249
1106 => 0.0068885300832043
1107 => 0.007085463955207
1108 => 0.0070778114670791
1109 => 0.0070216427366667
1110 => 0.0067846761023647
1111 => 0.0068791267792734
1112 => 0.0065884222766426
1113 => 0.0068062378559983
1114 => 0.0067068359217764
1115 => 0.0067726299620485
1116 => 0.0066543263452298
1117 => 0.0067198004514139
1118 => 0.0064359813340282
1119 => 0.0061709550356563
1120 => 0.0062776093547211
1121 => 0.0063935547969454
1122 => 0.006644954058037
1123 => 0.0064952227321297
1124 => 0.0065490717788942
1125 => 0.0063686864864546
1126 => 0.0059965001036403
1127 => 0.0059986066381477
1128 => 0.0059413538716728
1129 => 0.0058918791223977
1130 => 0.0065124211760889
1201 => 0.0064352469623943
1202 => 0.0063122799531832
1203 => 0.0064768761815269
1204 => 0.0065203980367944
1205 => 0.0065216370428294
1206 => 0.0066417222021854
1207 => 0.0067058116732602
1208 => 0.0067171077203168
1209 => 0.0069060643131751
1210 => 0.0069694000707035
1211 => 0.0072302710923509
1212 => 0.0067003741294077
1213 => 0.0066894612501643
1214 => 0.0064791923880045
1215 => 0.0063458365514035
1216 => 0.0064883233762274
1217 => 0.0066145472516302
1218 => 0.0064831145156609
1219 => 0.006500276856282
1220 => 0.0063238391466923
1221 => 0.0063869073257048
1222 => 0.0064412301376715
1223 => 0.0064112362738508
1224 => 0.0063663340079917
1225 => 0.0066041983332852
1226 => 0.0065907770958544
1227 => 0.0068122818240449
1228 => 0.0069849605996244
1229 => 0.0072944318354864
1230 => 0.006971482467764
1231 => 0.0069597129091968
]
'min_raw' => 0.0058918791223977
'max_raw' => 0.017035155258005
'avg_raw' => 0.011463517190201
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005891'
'max' => '$0.017035'
'avg' => '$0.011463'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010360169712122
'max_diff' => -0.005754484146874
'year' => 2030
]
5 => [
'items' => [
101 => 0.0070747622320885
102 => 0.0069693824572516
103 => 0.0070359788373623
104 => 0.0072837021290745
105 => 0.0072889361318711
106 => 0.0072012598413959
107 => 0.0071959247311525
108 => 0.0072127639218117
109 => 0.0073113915874657
110 => 0.0072769280505642
111 => 0.0073168101279767
112 => 0.007366683276477
113 => 0.0075729797644512
114 => 0.0076227171492883
115 => 0.0075018810900115
116 => 0.0075127912332202
117 => 0.0074675952300267
118 => 0.007423936457246
119 => 0.0075220750026053
120 => 0.0077014251231672
121 => 0.0077003093953755
122 => 0.0077419151372777
123 => 0.0077678351698022
124 => 0.0076565674155836
125 => 0.007584136199016
126 => 0.0076119109363661
127 => 0.0076563233462439
128 => 0.0075975085904182
129 => 0.0072344766718165
130 => 0.0073445973653515
131 => 0.0073262678973205
201 => 0.0073001645059048
202 => 0.0074108917147924
203 => 0.0074002118053744
204 => 0.0070803070546514
205 => 0.0071007863188643
206 => 0.0070815524665376
207 => 0.0071437009782809
208 => 0.0069660262336634
209 => 0.0070206777884501
210 => 0.0070549547312858
211 => 0.0070751441139439
212 => 0.0071480820080943
213 => 0.0071395235880618
214 => 0.0071475500046885
215 => 0.0072556976468234
216 => 0.0078026713089525
217 => 0.0078324418785529
218 => 0.0076858407057666
219 => 0.0077444049827144
220 => 0.007631974377574
221 => 0.0077074497960244
222 => 0.0077590881604603
223 => 0.0075257443210607
224 => 0.0075119272132804
225 => 0.0073990325670388
226 => 0.0074596957552494
227 => 0.0073631762609687
228 => 0.0073868587687566
301 => 0.0073206404123777
302 => 0.0074398202699165
303 => 0.0075730818693224
304 => 0.0076067490119924
305 => 0.0075181852542439
306 => 0.007454059256998
307 => 0.0073414751302509
308 => 0.0075287050421323
309 => 0.0075834567740946
310 => 0.0075284174545928
311 => 0.0075156636416314
312 => 0.0074914951891151
313 => 0.0075207910930843
314 => 0.0075831585844038
315 => 0.0075537472272442
316 => 0.0075731739468095
317 => 0.0074991393245729
318 => 0.0076566042498401
319 => 0.0079066964471623
320 => 0.0079075005344709
321 => 0.0078780890187732
322 => 0.0078660544602297
323 => 0.0078962324601755
324 => 0.0079126027871798
325 => 0.0080101929053059
326 => 0.008114910990217
327 => 0.0086035846004173
328 => 0.0084663670061321
329 => 0.0088999473044249
330 => 0.0092428530270192
331 => 0.0093456754597753
401 => 0.009251083659809
402 => 0.008927490221873
403 => 0.0089116131840238
404 => 0.0093951983979257
405 => 0.0092585634253925
406 => 0.0092423111301785
407 => 0.0090694141677882
408 => 0.0091716176862663
409 => 0.00914926427754
410 => 0.0091139783282993
411 => 0.0093089755219966
412 => 0.0096739928610785
413 => 0.0096171014856717
414 => 0.0095746347130454
415 => 0.0093885576772889
416 => 0.0095006176146249
417 => 0.0094607152173063
418 => 0.0096321612388742
419 => 0.0095306004136917
420 => 0.0092575282810913
421 => 0.0093010159182655
422 => 0.0092944428493916
423 => 0.0094297161410435
424 => 0.0093891104565791
425 => 0.009286513937802
426 => 0.009672745271496
427 => 0.0096476655570175
428 => 0.0096832228581271
429 => 0.0096988762817216
430 => 0.0099339684883817
501 => 0.010030278243339
502 => 0.010052142243854
503 => 0.010143629062199
504 => 0.010049865968471
505 => 0.010424985195337
506 => 0.01067441759239
507 => 0.01096414615724
508 => 0.011387517462184
509 => 0.011546708989246
510 => 0.01151795246475
511 => 0.011838947756288
512 => 0.012415769159858
513 => 0.011634544562367
514 => 0.012457175960486
515 => 0.012196740357578
516 => 0.011579252228118
517 => 0.011539493272288
518 => 0.011957663402742
519 => 0.012885124504707
520 => 0.012652806017842
521 => 0.012885504494526
522 => 0.012614049360966
523 => 0.012600569325582
524 => 0.012872320524588
525 => 0.013507282013453
526 => 0.013205635611269
527 => 0.012773151527005
528 => 0.013092491044628
529 => 0.012815849600986
530 => 0.012192499001397
531 => 0.012652628368273
601 => 0.012344952964373
602 => 0.012434749004155
603 => 0.013081436939891
604 => 0.013003625736539
605 => 0.0131043206388
606 => 0.012926596771954
607 => 0.012760574655839
608 => 0.012450682047145
609 => 0.012358938123232
610 => 0.012384292843201
611 => 0.012358925558692
612 => 0.012185543492188
613 => 0.012148101651435
614 => 0.012085696943147
615 => 0.012105038771678
616 => 0.011987699662956
617 => 0.012209142804611
618 => 0.012250244603053
619 => 0.012411392454724
620 => 0.012428123359272
621 => 0.012876917832379
622 => 0.012629729378276
623 => 0.012795564734513
624 => 0.012780730859348
625 => 0.011592635068271
626 => 0.011756344185624
627 => 0.012011024197473
628 => 0.011896291197346
629 => 0.011734085578553
630 => 0.011603095844462
701 => 0.011404633002927
702 => 0.011683965641246
703 => 0.012051258356922
704 => 0.012437438508666
705 => 0.012901408657462
706 => 0.012797855921458
707 => 0.012428764909466
708 => 0.012445322062642
709 => 0.012547671868582
710 => 0.01241511957043
711 => 0.012376027309976
712 => 0.012542301192298
713 => 0.012543446229143
714 => 0.012390928790639
715 => 0.012221433568137
716 => 0.012220723376966
717 => 0.012190563339252
718 => 0.012619414764675
719 => 0.012855239686888
720 => 0.012882276634169
721 => 0.012853419884917
722 => 0.01286452570242
723 => 0.012727304376232
724 => 0.013040951636178
725 => 0.013328785378404
726 => 0.013251639786816
727 => 0.013135987578135
728 => 0.013043865023355
729 => 0.013229938640607
730 => 0.013221653075338
731 => 0.013326271401766
801 => 0.013321525310175
802 => 0.013286346101891
803 => 0.013251641043177
804 => 0.013389242678097
805 => 0.013349615617055
806 => 0.013309927004241
807 => 0.013230325415221
808 => 0.013241144593211
809 => 0.013125512353514
810 => 0.013072015588459
811 => 0.012267552598716
812 => 0.01205257380127
813 => 0.012120210507243
814 => 0.012142478267036
815 => 0.012048919218885
816 => 0.012183058860586
817 => 0.012162153339516
818 => 0.012243484492679
819 => 0.012192672319171
820 => 0.012194757668496
821 => 0.012344185436485
822 => 0.012387564953244
823 => 0.012365501780905
824 => 0.01238095407053
825 => 0.012737045562934
826 => 0.012686420739879
827 => 0.012659527311621
828 => 0.012666976975041
829 => 0.012757965986038
830 => 0.012783437941302
831 => 0.012675511476969
901 => 0.012726410221463
902 => 0.012943130615511
903 => 0.013018970488115
904 => 0.013261014956265
905 => 0.013158190164198
906 => 0.01334692952019
907 => 0.013927049954522
908 => 0.014390490298748
909 => 0.013964291405716
910 => 0.014815340579114
911 => 0.015478004436357
912 => 0.015452570293792
913 => 0.01533701952259
914 => 0.014582594338949
915 => 0.013888361037116
916 => 0.014469116672802
917 => 0.014470597138351
918 => 0.014420709714199
919 => 0.014110863207333
920 => 0.014409927727391
921 => 0.014433666382951
922 => 0.014420379048455
923 => 0.014182820458115
924 => 0.013820112398831
925 => 0.013890984685415
926 => 0.014007074936594
927 => 0.013787291872148
928 => 0.013717057865932
929 => 0.013847636246054
930 => 0.014268386993893
1001 => 0.014188846502257
1002 => 0.014186769378572
1003 => 0.014527077332208
1004 => 0.014283490280458
1005 => 0.013891878611913
1006 => 0.013792991500883
1007 => 0.013442008875063
1008 => 0.013684433824874
1009 => 0.013693158267237
1010 => 0.013560384599748
1011 => 0.013902652463273
1012 => 0.013899498404655
1013 => 0.014224430801223
1014 => 0.014845579504425
1015 => 0.014661875268017
1016 => 0.014448247228038
1017 => 0.014471474519247
1018 => 0.014726220573967
1019 => 0.014572195293996
1020 => 0.014627583858576
1021 => 0.014726136736741
1022 => 0.014785596135068
1023 => 0.014462919226856
1024 => 0.014387687804131
1025 => 0.014233790715877
1026 => 0.014193641838177
1027 => 0.014318987805392
1028 => 0.014285963571569
1029 => 0.013692425011639
1030 => 0.013630396929709
1031 => 0.013632299242426
1101 => 0.013476326681138
1102 => 0.013238431087471
1103 => 0.013863606503621
1104 => 0.01381339616838
1105 => 0.013757967844245
1106 => 0.013764757497682
1107 => 0.014036124956672
1108 => 0.013878718126073
1109 => 0.014297209983694
1110 => 0.014211180638783
1111 => 0.014122944965795
1112 => 0.014110748108063
1113 => 0.014076784901877
1114 => 0.01396031243071
1115 => 0.013819664922866
1116 => 0.013726797255508
1117 => 0.012662244872449
1118 => 0.012859819602528
1119 => 0.013087111319981
1120 => 0.013165571510032
1121 => 0.013031359925671
1122 => 0.01396561192209
1123 => 0.014136308764512
1124 => 0.013619256894536
1125 => 0.013522537600752
1126 => 0.013971952822888
1127 => 0.013700900505164
1128 => 0.013822955347238
1129 => 0.013559139539102
1130 => 0.014095192893759
1201 => 0.014091109065332
1202 => 0.013882572203056
1203 => 0.014058826131053
1204 => 0.014028197673667
1205 => 0.013792760069761
1206 => 0.014102656685746
1207 => 0.014102810390601
1208 => 0.013902098194643
1209 => 0.013667710291313
1210 => 0.013625807270193
1211 => 0.013594238972658
1212 => 0.013815191481216
1213 => 0.014013296809489
1214 => 0.01438192171093
1215 => 0.014474602769463
1216 => 0.014836343111048
1217 => 0.014620944350452
1218 => 0.014716427831143
1219 => 0.014820088656397
1220 => 0.014869787468024
1221 => 0.014788805921463
1222 => 0.015350737570208
1223 => 0.015398181818503
1224 => 0.015414089464565
1225 => 0.015224609274281
1226 => 0.015392912031644
1227 => 0.015314168745075
1228 => 0.015519036901212
1229 => 0.015551162843982
1230 => 0.01552395331337
1231 => 0.015534150594678
]
'min_raw' => 0.0069660262336634
'max_raw' => 0.015551162843982
'avg_raw' => 0.011258594538823
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006966'
'max' => '$0.015551'
'avg' => '$0.011258'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0010741471112657
'max_diff' => -0.0014839924140222
'year' => 2031
]
6 => [
'items' => [
101 => 0.01505464106401
102 => 0.01502977596523
103 => 0.014690738579026
104 => 0.014828898819942
105 => 0.014570614871742
106 => 0.014652519372335
107 => 0.014688622095782
108 => 0.014669764081865
109 => 0.014836710192669
110 => 0.014694771893649
111 => 0.014320173385716
112 => 0.013945472818671
113 => 0.013940768758276
114 => 0.013842116712987
115 => 0.013770809353267
116 => 0.013784545680513
117 => 0.013832954289388
118 => 0.013767995756917
119 => 0.013781857953301
120 => 0.014012062776604
121 => 0.014058228712172
122 => 0.013901338824917
123 => 0.013271403288486
124 => 0.013116815527772
125 => 0.013227930144565
126 => 0.013174824514436
127 => 0.010633111636043
128 => 0.011230249375062
129 => 0.010875450407419
130 => 0.011038958095224
131 => 0.010676800224008
201 => 0.010849640942473
202 => 0.010817723572905
203 => 0.011777903386656
204 => 0.011762911499548
205 => 0.011770087322553
206 => 0.011427566593999
207 => 0.011973211415037
208 => 0.012242015674634
209 => 0.012192267160176
210 => 0.012204787789476
211 => 0.011989641895284
212 => 0.011772170405095
213 => 0.011530961053853
214 => 0.011979098214084
215 => 0.011929273011822
216 => 0.012043554099268
217 => 0.012334203081183
218 => 0.012377002247839
219 => 0.01243452476185
220 => 0.012413907035308
221 => 0.012905104928232
222 => 0.012845617622371
223 => 0.01298896491383
224 => 0.012694088659513
225 => 0.012360408187842
226 => 0.01242382993667
227 => 0.012417721912253
228 => 0.012339959750952
229 => 0.012269759548711
301 => 0.012152895990764
302 => 0.012522669580661
303 => 0.012507657448197
304 => 0.012750686423093
305 => 0.012707728691123
306 => 0.012420846443484
307 => 0.012431092499082
308 => 0.012500002147065
309 => 0.01273849922553
310 => 0.012809301396538
311 => 0.012776503009949
312 => 0.012854134358217
313 => 0.012915491010603
314 => 0.012861839809093
315 => 0.013621427682105
316 => 0.013305993838949
317 => 0.013459734099329
318 => 0.013496400245539
319 => 0.013402480683027
320 => 0.013422848473129
321 => 0.013453700125242
322 => 0.0136410253155
323 => 0.014132620817717
324 => 0.014350345119246
325 => 0.015005379422721
326 => 0.014332266146872
327 => 0.014292326390703
328 => 0.0144103178489
329 => 0.014794892327463
330 => 0.015106553821094
331 => 0.015209949918715
401 => 0.015223615419899
402 => 0.015417593372678
403 => 0.015528777917736
404 => 0.015394039347084
405 => 0.015279862516172
406 => 0.014870895279998
407 => 0.014918234351166
408 => 0.015244353607615
409 => 0.015705016265678
410 => 0.016100312750076
411 => 0.015961893698713
412 => 0.017017933351991
413 => 0.017122635370079
414 => 0.0171081689366
415 => 0.017346695715553
416 => 0.016873268634466
417 => 0.016670869385084
418 => 0.015304548842977
419 => 0.015688429183819
420 => 0.016246421803733
421 => 0.016172569388123
422 => 0.015767340232355
423 => 0.016100005347424
424 => 0.015990015856982
425 => 0.015903262582403
426 => 0.016300696151201
427 => 0.015863701616636
428 => 0.016242062448968
429 => 0.015756810767861
430 => 0.015962525985281
501 => 0.015845752078548
502 => 0.015921319107476
503 => 0.015479555800451
504 => 0.015717920557723
505 => 0.015469639042878
506 => 0.015469521325113
507 => 0.015464040496911
508 => 0.015756142598078
509 => 0.015765668037111
510 => 0.015549804143006
511 => 0.015518694783438
512 => 0.015633722390837
513 => 0.015499055188351
514 => 0.015562065124809
515 => 0.015500963695137
516 => 0.015487208476325
517 => 0.015377604552572
518 => 0.015330384168597
519 => 0.015348900497873
520 => 0.015285694720231
521 => 0.01524761095295
522 => 0.015456464677044
523 => 0.015344882557396
524 => 0.015439363116895
525 => 0.015331690594948
526 => 0.014958450723195
527 => 0.01474379652601
528 => 0.014038781007622
529 => 0.014238722534068
530 => 0.014371283972956
531 => 0.014327472418194
601 => 0.014421596590643
602 => 0.014427375050387
603 => 0.014396774322441
604 => 0.014361342599676
605 => 0.014344096396531
606 => 0.014472635465223
607 => 0.014547256721025
608 => 0.014384588286791
609 => 0.014346477348623
610 => 0.014510944116805
611 => 0.014611268750386
612 => 0.015352009477207
613 => 0.015297133011603
614 => 0.015434862171306
615 => 0.01541935598155
616 => 0.015563718082894
617 => 0.015799689106617
618 => 0.015319894036853
619 => 0.015403169870899
620 => 0.015382752559511
621 => 0.01560566341154
622 => 0.015606359314889
623 => 0.015472713123874
624 => 0.015545164892185
625 => 0.015504724302724
626 => 0.015577805913753
627 => 0.015296400102948
628 => 0.015639122004629
629 => 0.01583342323837
630 => 0.015836121111189
701 => 0.015928218353913
702 => 0.016021794486433
703 => 0.016201405724041
704 => 0.0160167852265
705 => 0.015684670923867
706 => 0.015708648503795
707 => 0.015513930009677
708 => 0.015517203262742
709 => 0.015499730381352
710 => 0.0155521678137
711 => 0.015307907170536
712 => 0.015365234655265
713 => 0.015284975840935
714 => 0.015402995403911
715 => 0.015276025863481
716 => 0.015382742713665
717 => 0.015428798168485
718 => 0.015598743788272
719 => 0.01525092475726
720 => 0.014541698207747
721 => 0.014690786226995
722 => 0.014470273335916
723 => 0.014490682643537
724 => 0.014531912693049
725 => 0.014398272612948
726 => 0.014423766928748
727 => 0.014422856092387
728 => 0.014415006996701
729 => 0.014380242050442
730 => 0.014329826000331
731 => 0.01453066802673
801 => 0.014564795000679
802 => 0.01464065503633
803 => 0.014866363046073
804 => 0.014843809493338
805 => 0.014880595273587
806 => 0.014800292121848
807 => 0.014494407676431
808 => 0.014511018673472
809 => 0.014303879274203
810 => 0.014635358016178
811 => 0.014556859474772
812 => 0.014506250954465
813 => 0.014492441950815
814 => 0.014718709447057
815 => 0.014786412228241
816 => 0.014744224398372
817 => 0.014657695928494
818 => 0.014823856170505
819 => 0.01486831364153
820 => 0.014878266029764
821 => 0.015172670120541
822 => 0.014894719948016
823 => 0.01496162531713
824 => 0.015483601907975
825 => 0.015010241167925
826 => 0.015260990909134
827 => 0.01524871801414
828 => 0.015376993096834
829 => 0.01523819571329
830 => 0.015239916273206
831 => 0.015353815856532
901 => 0.015193864433649
902 => 0.015154258211942
903 => 0.015099542500318
904 => 0.015219012254914
905 => 0.015290628969643
906 => 0.015867807093673
907 => 0.016240690484317
908 => 0.016224502632919
909 => 0.016372429292307
910 => 0.0163057869774
911 => 0.01609058136321
912 => 0.016457911105103
913 => 0.016341672605039
914 => 0.016351255165755
915 => 0.016350898502366
916 => 0.016428186943163
917 => 0.016373420999477
918 => 0.016265471702863
919 => 0.016337133483738
920 => 0.016549943353381
921 => 0.017210511718559
922 => 0.017580174527079
923 => 0.017188257553324
924 => 0.017458596633843
925 => 0.017296489517195
926 => 0.017267029831831
927 => 0.017436822752298
928 => 0.017606912872796
929 => 0.01759607886744
930 => 0.017472602174183
1001 => 0.017402853323267
1002 => 0.01793101498998
1003 => 0.018320155509015
1004 => 0.018293618734448
1005 => 0.018410743427166
1006 => 0.018754625147515
1007 => 0.018786065382357
1008 => 0.018782104635413
1009 => 0.018704176732906
1010 => 0.019042772945274
1011 => 0.019325235862665
1012 => 0.018686138675029
1013 => 0.018929498517684
1014 => 0.019038750591617
1015 => 0.019199165049779
1016 => 0.019469811129283
1017 => 0.019763804556953
1018 => 0.019805378451099
1019 => 0.019775879783708
1020 => 0.019581983215193
1021 => 0.019903674331819
1022 => 0.020092113443354
1023 => 0.020204324621921
1024 => 0.020488873500606
1025 => 0.019039425295231
1026 => 0.018013433813217
1027 => 0.017853210427804
1028 => 0.018179030982515
1029 => 0.018264947264422
1030 => 0.018230314518915
1031 => 0.017075467826843
1101 => 0.017847130398971
1102 => 0.018677374443349
1103 => 0.018709267498368
1104 => 0.019124905026568
1105 => 0.019260253643308
1106 => 0.019594896332365
1107 => 0.019573964341051
1108 => 0.019655444510508
1109 => 0.01963671363059
1110 => 0.020256568744736
1111 => 0.020940360985014
1112 => 0.020916683434059
1113 => 0.020818380209257
1114 => 0.020964377261279
1115 => 0.021670124132876
1116 => 0.021605150270303
1117 => 0.021668266843333
1118 => 0.022500382179096
1119 => 0.023582250482615
1120 => 0.023079614037829
1121 => 0.024170190493274
1122 => 0.024856650563004
1123 => 0.026043812272304
1124 => 0.025895173779405
1125 => 0.026357327121041
1126 => 0.025629079855326
1127 => 0.02395687693019
1128 => 0.023692244416351
1129 => 0.024222045410619
1130 => 0.025524509457799
1201 => 0.024181026182697
1202 => 0.024452811099494
1203 => 0.024374537025172
1204 => 0.024370366132395
1205 => 0.024529552145454
1206 => 0.024298644530928
1207 => 0.023357885369865
1208 => 0.023789029749452
1209 => 0.02362254419924
1210 => 0.02380727232952
1211 => 0.024804173860966
1212 => 0.024363419930749
1213 => 0.023899121469208
1214 => 0.024481454776058
1215 => 0.025222965187112
1216 => 0.025176562798211
1217 => 0.025086522769048
1218 => 0.025594073699096
1219 => 0.026432399137065
1220 => 0.026658995134284
1221 => 0.02682626366688
1222 => 0.0268493271715
1223 => 0.027086895602973
1224 => 0.025809430271987
1225 => 0.027836800559899
1226 => 0.028186871403647
1227 => 0.028121072593972
1228 => 0.028510161603566
1229 => 0.028395681746708
1230 => 0.02822981839546
1231 => 0.028846607237271
]
'min_raw' => 0.010633111636043
'max_raw' => 0.028846607237271
'avg_raw' => 0.019739859436657
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.010633'
'max' => '$0.028846'
'avg' => '$0.019739'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0036670854023801
'max_diff' => 0.013295444393289
'year' => 2032
]
7 => [
'items' => [
101 => 0.028139508602428
102 => 0.02713587111151
103 => 0.026585255734294
104 => 0.027310350479888
105 => 0.027753140538702
106 => 0.028045796600842
107 => 0.028134354148418
108 => 0.025908596269154
109 => 0.024709036218422
110 => 0.025477940457957
111 => 0.026416056697126
112 => 0.025804218988912
113 => 0.025828201868712
114 => 0.024955882084919
115 => 0.026493237641908
116 => 0.02626925786845
117 => 0.027431265329363
118 => 0.027153942923124
119 => 0.028101514898628
120 => 0.027851987440883
121 => 0.028887761967092
122 => 0.029300960468072
123 => 0.02999478506043
124 => 0.030505165254943
125 => 0.030804870267178
126 => 0.030786877102408
127 => 0.031974457673329
128 => 0.031274182901562
129 => 0.030394472746131
130 => 0.03037856156487
131 => 0.030834175919956
201 => 0.031789018616524
202 => 0.032036595435348
203 => 0.03217495710202
204 => 0.031963051393108
205 => 0.0312029533175
206 => 0.030874746822237
207 => 0.031154388265259
208 => 0.030812410810307
209 => 0.031402759839481
210 => 0.032213435148285
211 => 0.032046033902774
212 => 0.032605631168319
213 => 0.033184755466808
214 => 0.034012929223747
215 => 0.034229444510996
216 => 0.03458733604748
217 => 0.034955723999768
218 => 0.035074040281709
219 => 0.035299942775321
220 => 0.035298752157671
221 => 0.035979524527161
222 => 0.036730437532474
223 => 0.037013889808304
224 => 0.037665672686925
225 => 0.036549517348483
226 => 0.037396133994159
227 => 0.038159803400749
228 => 0.037249325251819
301 => 0.038504207265918
302 => 0.038552931490901
303 => 0.03928860944009
304 => 0.038542858899746
305 => 0.038100034609409
306 => 0.039378451743201
307 => 0.039997037524481
308 => 0.039810714452941
309 => 0.038392786678621
310 => 0.037567491896184
311 => 0.035407536263071
312 => 0.037966097013633
313 => 0.039212297320991
314 => 0.038389559320885
315 => 0.038804500512327
316 => 0.041068285107702
317 => 0.041930187712423
318 => 0.041750917995795
319 => 0.041781211626874
320 => 0.042246278627743
321 => 0.044308641826669
322 => 0.043072825992667
323 => 0.044017560892625
324 => 0.044518644877068
325 => 0.044984079607532
326 => 0.043841119011669
327 => 0.042354144069878
328 => 0.041883156686851
329 => 0.038307754241168
330 => 0.038121639016685
331 => 0.038017166901314
401 => 0.037358484991773
402 => 0.036840941439033
403 => 0.036429371590735
404 => 0.035349289403639
405 => 0.035713785435638
406 => 0.033992359860079
407 => 0.035093666939746
408 => 0.032346230155879
409 => 0.034634377150008
410 => 0.033389042770381
411 => 0.03422525131314
412 => 0.03422233386031
413 => 0.032682608812931
414 => 0.031794527538845
415 => 0.032360447491333
416 => 0.032967158603182
417 => 0.033065595439858
418 => 0.03385221223315
419 => 0.034071740071887
420 => 0.03340656047174
421 => 0.032289295635295
422 => 0.032548810774704
423 => 0.031789268472828
424 => 0.030458199804165
425 => 0.031414196560228
426 => 0.031740615884959
427 => 0.031884781254458
428 => 0.030575828093097
429 => 0.030164526591041
430 => 0.029945553122501
501 => 0.032120326219293
502 => 0.032239465198808
503 => 0.031629933335056
504 => 0.034385075157401
505 => 0.033761501709389
506 => 0.034458186030022
507 => 0.032525262495911
508 => 0.032599102777941
509 => 0.031684025800419
510 => 0.032196407762366
511 => 0.031834272706503
512 => 0.032155012363298
513 => 0.032347262391121
514 => 0.033262189213515
515 => 0.034644824144652
516 => 0.03312552965637
517 => 0.032463551291128
518 => 0.032874238945817
519 => 0.033967954290039
520 => 0.035624989022794
521 => 0.034643991110071
522 => 0.035079341325313
523 => 0.03517444597996
524 => 0.034451094437635
525 => 0.035651660025938
526 => 0.036295052878086
527 => 0.036955040813
528 => 0.037528089844443
529 => 0.03669142711835
530 => 0.03758677616616
531 => 0.036865282884008
601 => 0.036218028823313
602 => 0.036219010440548
603 => 0.035812978513401
604 => 0.035026240491239
605 => 0.034881153929225
606 => 0.035635912547232
607 => 0.036241157482967
608 => 0.036291008354802
609 => 0.036626103049833
610 => 0.036824408638602
611 => 0.038768072991915
612 => 0.039549830873652
613 => 0.040505749613521
614 => 0.040878133835329
615 => 0.041998876835836
616 => 0.04109378584063
617 => 0.040897963710528
618 => 0.038179407783539
619 => 0.038624571164287
620 => 0.039337320688742
621 => 0.038191160760675
622 => 0.038918135425385
623 => 0.039061655623627
624 => 0.038152214684903
625 => 0.038637986384899
626 => 0.037347920770981
627 => 0.034672944049693
628 => 0.035654638039711
629 => 0.036377495250988
630 => 0.035345888882844
701 => 0.037195003369062
702 => 0.036114788859685
703 => 0.035772412719653
704 => 0.034436681331481
705 => 0.035067095129682
706 => 0.035919738818405
707 => 0.035392904149242
708 => 0.036486165192378
709 => 0.038034514391529
710 => 0.039137960236633
711 => 0.039222669107078
712 => 0.038513227353806
713 => 0.039650112291021
714 => 0.039658393256623
715 => 0.038375982403134
716 => 0.037590512895865
717 => 0.037412052571171
718 => 0.037857881451463
719 => 0.038399200016689
720 => 0.039252708520062
721 => 0.03976846583316
722 => 0.041113287369176
723 => 0.041477157517767
724 => 0.041876940492532
725 => 0.042411173835322
726 => 0.04305265793796
727 => 0.0416491272411
728 => 0.041704892132195
729 => 0.040397943780484
730 => 0.039001282031329
731 => 0.040061174202593
801 => 0.041446842224974
802 => 0.041128968449612
803 => 0.041093201156312
804 => 0.041153351822623
805 => 0.040913685376788
806 => 0.039829682924727
807 => 0.039285303679516
808 => 0.039987691791795
809 => 0.040360979813773
810 => 0.040939916981724
811 => 0.040868550755893
812 => 0.042359830727223
813 => 0.042939297030116
814 => 0.042791044753074
815 => 0.04281832673994
816 => 0.04386742280241
817 => 0.045034233386937
818 => 0.046127105473565
819 => 0.04723882190003
820 => 0.045898604356895
821 => 0.045218124541618
822 => 0.04592020601322
823 => 0.045547671701875
824 => 0.047688364355713
825 => 0.04783658127047
826 => 0.049977119127863
827 => 0.052008744445036
828 => 0.050732716983668
829 => 0.051935953406199
830 => 0.053237351698471
831 => 0.055747960148527
901 => 0.054902475546818
902 => 0.054254847592342
903 => 0.053642842304678
904 => 0.054916328155204
905 => 0.056554647357472
906 => 0.056907525622015
907 => 0.057479323220445
908 => 0.056878147961779
909 => 0.05760219734356
910 => 0.060158409824667
911 => 0.05946769864796
912 => 0.058486777739674
913 => 0.060504661992251
914 => 0.061234926458932
915 => 0.066360304928572
916 => 0.072831306965316
917 => 0.070152269631214
918 => 0.068489304705942
919 => 0.068880140909436
920 => 0.071243131796012
921 => 0.072002049471199
922 => 0.069939049615431
923 => 0.070667736040811
924 => 0.074682869887518
925 => 0.07683686037536
926 => 0.073911451973353
927 => 0.065840366215594
928 => 0.058398456544371
929 => 0.060372386102739
930 => 0.060148603748986
1001 => 0.064462364169125
1002 => 0.059451225414829
1003 => 0.059535600139669
1004 => 0.063938564556946
1005 => 0.062763929136336
1006 => 0.060861170190887
1007 => 0.058412348790392
1008 => 0.053885475943014
1009 => 0.049875898420902
1010 => 0.057739603292318
1011 => 0.057400506039043
1012 => 0.056909442964904
1013 => 0.058002250697827
1014 => 0.063308614850014
1015 => 0.063186285981281
1016 => 0.062408092131142
1017 => 0.062998345307787
1018 => 0.060757695955189
1019 => 0.061335162311991
1020 => 0.058397277707857
1021 => 0.059725324245824
1022 => 0.060857087724762
1023 => 0.061084305999204
1024 => 0.061596240373573
1025 => 0.057221817195266
1026 => 0.059185804776009
1027 => 0.060339463478945
1028 => 0.055127191488616
1029 => 0.060236433620428
1030 => 0.057145668219945
1031 => 0.056096616021282
1101 => 0.057509026604664
1102 => 0.056958608826706
1103 => 0.056485391942834
1104 => 0.056221328790735
1105 => 0.057258447241103
1106 => 0.057210064425768
1107 => 0.05551313734495
1108 => 0.053299565143619
1109 => 0.054042512632416
1110 => 0.053772592844566
1111 => 0.052794368713052
1112 => 0.053453573666461
1113 => 0.050550768667643
1114 => 0.045556643541852
1115 => 0.048855915574139
1116 => 0.048728897189814
1117 => 0.048664848760611
1118 => 0.051144160507694
1119 => 0.050905831890666
1120 => 0.05047326311704
1121 => 0.0527864242483
1122 => 0.051942089318982
1123 => 0.054544130620811
1124 => 0.056258003311675
1125 => 0.055823309759298
1126 => 0.057435215308922
1127 => 0.054059628642015
1128 => 0.055180863127731
1129 => 0.055411948001273
1130 => 0.052757880199003
1201 => 0.050944825399872
1202 => 0.050823915315107
1203 => 0.047680328147755
1204 => 0.049359607038406
1205 => 0.050837302968896
1206 => 0.050129601292028
1207 => 0.049905564083117
1208 => 0.051050121595698
1209 => 0.051139063516898
1210 => 0.049111178287902
1211 => 0.049532839841784
1212 => 0.05129123861687
1213 => 0.049488532704238
1214 => 0.045986169586333
1215 => 0.045117535109134
1216 => 0.045001643257766
1217 => 0.042645837663333
1218 => 0.045175581418438
1219 => 0.044071280476417
1220 => 0.047559753920704
1221 => 0.045567156598386
1222 => 0.045481259710374
1223 => 0.045351413965811
1224 => 0.04332367477358
1225 => 0.04376762078713
1226 => 0.045243364951058
1227 => 0.045769927094196
1228 => 0.04571500234867
1229 => 0.045236132999566
1230 => 0.045455356935378
1231 => 0.044749160255444
]
'min_raw' => 0.024709036218422
'max_raw' => 0.07683686037536
'avg_raw' => 0.050772948296891
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.024709'
'max' => '$0.076836'
'avg' => '$0.050772'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.014075924582379
'max_diff' => 0.047990253138089
'year' => 2033
]
8 => [
'items' => [
101 => 0.044499787509547
102 => 0.043712698528117
103 => 0.042555895164296
104 => 0.042716755767122
105 => 0.040424825609327
106 => 0.03917606041742
107 => 0.038830418670761
108 => 0.038368212081765
109 => 0.038882626134873
110 => 0.040418332859156
111 => 0.038565944731314
112 => 0.035390155216048
113 => 0.035581025577198
114 => 0.036009854608782
115 => 0.035210734545413
116 => 0.034454434470497
117 => 0.035111976025072
118 => 0.03376635214176
119 => 0.036172466826286
120 => 0.036107388167128
121 => 0.037004238928385
122 => 0.03756505811463
123 => 0.036272551457704
124 => 0.035947489528797
125 => 0.036132659576743
126 => 0.033072211155566
127 => 0.036754134999673
128 => 0.036785976429972
129 => 0.036513330772258
130 => 0.0384738415526
131 => 0.042611130797767
201 => 0.041054516161661
202 => 0.040451747925634
203 => 0.039305885068326
204 => 0.040832679291085
205 => 0.040715445316477
206 => 0.040185268823637
207 => 0.039864616426515
208 => 0.040455428299951
209 => 0.039791408297171
210 => 0.039672132058623
211 => 0.038949447826846
212 => 0.038691482436139
213 => 0.038500495130758
214 => 0.038290236873558
215 => 0.038754014195847
216 => 0.037703033768551
217 => 0.036435654402114
218 => 0.03633028552103
219 => 0.036621218265831
220 => 0.036492502183652
221 => 0.036329669277949
222 => 0.036018776916059
223 => 0.035926541793451
224 => 0.036226261195808
225 => 0.035887895465273
226 => 0.036387172532413
227 => 0.036251396796411
228 => 0.035492964572263
301 => 0.034547677213401
302 => 0.034539262173099
303 => 0.034335601562215
304 => 0.034076209153675
305 => 0.034004052119714
306 => 0.035056599709378
307 => 0.037235341719885
308 => 0.036807602530345
309 => 0.037116687931263
310 => 0.038637082190715
311 => 0.039120369805944
312 => 0.038777343703949
313 => 0.038307788418609
314 => 0.038328446468131
315 => 0.039933059022188
316 => 0.040033136738926
317 => 0.04028600084283
318 => 0.040611002675733
319 => 0.03883269292144
320 => 0.038244688238624
321 => 0.037966058998649
322 => 0.037107988782609
323 => 0.038033343945227
324 => 0.037494179119628
325 => 0.037566930875095
326 => 0.037519551198907
327 => 0.037545423705905
328 => 0.036171794268195
329 => 0.036672272639459
330 => 0.035840130277856
331 => 0.034725985068034
401 => 0.034722250062621
402 => 0.034994935524316
403 => 0.034832731541517
404 => 0.034396244794448
405 => 0.03445824567671
406 => 0.033915052707703
407 => 0.034524199137974
408 => 0.034541667277963
409 => 0.034307112721879
410 => 0.035245586843719
411 => 0.035630080457159
412 => 0.035475691623698
413 => 0.035619248125034
414 => 0.036825377024797
415 => 0.037022028662551
416 => 0.037109368329964
417 => 0.03699234474592
418 => 0.0356412939472
419 => 0.035701218795234
420 => 0.035261530021116
421 => 0.034890039340248
422 => 0.034904897019271
423 => 0.035095891519645
424 => 0.03592997570446
425 => 0.037685256699454
426 => 0.03775186833012
427 => 0.037832603569686
428 => 0.037504212776091
429 => 0.037405166970466
430 => 0.037535833953977
501 => 0.038195025207407
502 => 0.039890644079907
503 => 0.039291299123788
504 => 0.038804022345104
505 => 0.039231495448887
506 => 0.039165689315204
507 => 0.038610219321973
508 => 0.038594629129313
509 => 0.037528504617803
510 => 0.037134382660378
511 => 0.036805024853237
512 => 0.036445374725942
513 => 0.0362321620749
514 => 0.036559753610317
515 => 0.036634677670417
516 => 0.035918393052906
517 => 0.035820766106302
518 => 0.036405699587038
519 => 0.036148292170685
520 => 0.036413042081801
521 => 0.036474466332163
522 => 0.036464575613134
523 => 0.036195812707407
524 => 0.036367114168893
525 => 0.035961935145057
526 => 0.035521363812557
527 => 0.035240306750986
528 => 0.034995047187956
529 => 0.035131131448095
530 => 0.034646015908705
531 => 0.034490817684208
601 => 0.036309081088146
602 => 0.037652251814261
603 => 0.03763272157995
604 => 0.037513836301346
605 => 0.037337196892338
606 => 0.038182102934419
607 => 0.037887754563787
608 => 0.038101917597051
609 => 0.038156431077411
610 => 0.03832142696405
611 => 0.038380398811648
612 => 0.038202144929625
613 => 0.03760390312968
614 => 0.03611314144334
615 => 0.035419187854115
616 => 0.035190171610959
617 => 0.035198495916434
618 => 0.034968874410099
619 => 0.035036508234629
620 => 0.034945354126046
621 => 0.034772730296936
622 => 0.035120472413089
623 => 0.035160546452533
624 => 0.035079379287414
625 => 0.035098497093094
626 => 0.03442646763286
627 => 0.03447756057315
628 => 0.034193068589037
629 => 0.034139729771617
630 => 0.033420558809329
701 => 0.032146443204138
702 => 0.032852426930808
703 => 0.031999697865325
704 => 0.031676756447272
705 => 0.033205510892638
706 => 0.033052066347371
707 => 0.032789435986615
708 => 0.032400950946093
709 => 0.032256858065624
710 => 0.031381395338157
711 => 0.031329668329806
712 => 0.031763571297021
713 => 0.031563340007341
714 => 0.031282139443111
715 => 0.030263659504312
716 => 0.029118550845984
717 => 0.029153114478483
718 => 0.029517352237193
719 => 0.030576422644797
720 => 0.030162625514442
721 => 0.029862410948594
722 => 0.029806189784828
723 => 0.030509915356345
724 => 0.031505834475106
725 => 0.031973097443195
726 => 0.031510054032807
727 => 0.03097813469498
728 => 0.031010510160397
729 => 0.031225889627349
730 => 0.031248522964024
731 => 0.030902298157291
801 => 0.030999758412363
802 => 0.030851707372956
803 => 0.029943118417396
804 => 0.029926684924356
805 => 0.029703702541686
806 => 0.029696950723757
807 => 0.029317602065272
808 => 0.029264528565637
809 => 0.028511308779398
810 => 0.02900708032366
811 => 0.028674542800943
812 => 0.028173330316537
813 => 0.028086921095307
814 => 0.028084323529775
815 => 0.028598956682199
816 => 0.02900106653564
817 => 0.028680327433522
818 => 0.028607301357237
819 => 0.029387028800174
820 => 0.029287801375687
821 => 0.029201871066029
822 => 0.031416660841358
823 => 0.029663481911984
824 => 0.028898995830822
825 => 0.027952799133415
826 => 0.028260885549229
827 => 0.028325803883772
828 => 0.026050371391282
829 => 0.025127228712466
830 => 0.024810440932994
831 => 0.024628125087187
901 => 0.024711208707499
902 => 0.023880272022728
903 => 0.024438675217319
904 => 0.023719154285637
905 => 0.023598524259916
906 => 0.024885116817304
907 => 0.025064138655499
908 => 0.024300375876031
909 => 0.024790835222412
910 => 0.024612987845519
911 => 0.02373148840686
912 => 0.023697821612174
913 => 0.023255516180058
914 => 0.022563393826006
915 => 0.022247075338081
916 => 0.022082333923167
917 => 0.022150309441707
918 => 0.022115938939448
919 => 0.021891648163106
920 => 0.022128795024203
921 => 0.021522982789948
922 => 0.021281743476907
923 => 0.021172781275916
924 => 0.020635088048764
925 => 0.021490797086426
926 => 0.021659382546784
927 => 0.021828300172578
928 => 0.023298612780149
929 => 0.023225160117335
930 => 0.023889136416276
1001 => 0.023863335518273
1002 => 0.023673958722113
1003 => 0.022875009170081
1004 => 0.023193456221614
1005 => 0.022213325694654
1006 => 0.02294770612785
1007 => 0.0226125655666
1008 => 0.02283439476697
1009 => 0.022435525863171
1010 => 0.022656276383427
1011 => 0.021699360413544
1012 => 0.020805805745037
1013 => 0.021165398228131
1014 => 0.021556316381643
1015 => 0.022403926542549
1016 => 0.021899096923345
1017 => 0.022080652744132
1018 => 0.021472471136573
1019 => 0.020217618761691
1020 => 0.020224721089856
1021 => 0.020031689390426
1022 => 0.019864881819028
1023 => 0.021957082677911
1024 => 0.021696884428307
1025 => 0.02128229257147
1026 => 0.021837240247072
1027 => 0.021983977220706
1028 => 0.021988154616057
1029 => 0.022393030114904
1030 => 0.022609112241217
1031 => 0.022647197652533
1101 => 0.023284277997883
1102 => 0.023497818926351
1103 => 0.024377363789269
1104 => 0.022590779182481
1105 => 0.022553985648199
1106 => 0.021845049498924
1107 => 0.021395430985217
1108 => 0.021875835263223
1109 => 0.022301407871813
1110 => 0.021858273226152
1111 => 0.021916137255792
1112 => 0.021321265199423
1113 => 0.021533903968243
1114 => 0.021717057121487
1115 => 0.02161593071551
1116 => 0.02146453959119
1117 => 0.022266515771074
1118 => 0.022221265132035
1119 => 0.022968083788096
1120 => 0.023550282336009
1121 => 0.02459368621431
1122 => 0.023504839873429
1123 => 0.023465157984995
1124 => 0.023853054809612
1125 => 0.023497759541368
1126 => 0.023722293886522
1127 => 0.024557510260018
1128 => 0.024575157065873
1129 => 0.024279550331173
1130 => 0.024261562634501
1201 => 0.024318337141484
1202 => 0.0246508672022
1203 => 0.024534670981369
1204 => 0.024669136189843
1205 => 0.024837286992044
1206 => 0.02553283000441
1207 => 0.025700523069942
1208 => 0.025293115859586
1209 => 0.025329900169136
1210 => 0.025177518688885
1211 => 0.025030320088296
1212 => 0.025361201045789
1213 => 0.02596589249909
1214 => 0.025962130744942
1215 => 0.026102407408586
1216 => 0.026189798607921
1217 => 0.025814651606106
1218 => 0.025570444702463
1219 => 0.025664089168609
1220 => 0.025813828709287
1221 => 0.025615530653706
1222 => 0.024391543194061
1223 => 0.024762822800695
1224 => 0.024701023719506
1225 => 0.024613014312868
1226 => 0.024986338828359
1227 => 0.024950330768109
1228 => 0.02387174956601
1229 => 0.02394079683512
1230 => 0.023875948559136
1231 => 0.024085486605549
]
'min_raw' => 0.019864881819028
'max_raw' => 0.044499787509547
'avg_raw' => 0.032182334664287
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.019864'
'max' => '$0.044499'
'avg' => '$0.032182'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0048441543993941
'max_diff' => -0.032337072865814
'year' => 2034
]
9 => [
'items' => [
101 => 0.023486443799217
102 => 0.02367070533183
103 => 0.02378627243774
104 => 0.023854342350949
105 => 0.024100257553439
106 => 0.024071402242769
107 => 0.024098463866813
108 => 0.024463091192898
109 => 0.026307251083248
110 => 0.02640762463717
111 => 0.025913348547754
112 => 0.026110802096311
113 => 0.025731734461426
114 => 0.025986205104257
115 => 0.026160307455228
116 => 0.025373572409145
117 => 0.025326987065585
118 => 0.024946354883729
119 => 0.025150885058149
120 => 0.024825462844406
121 => 0.024905310072873
122 => 0.024682050261123
123 => 0.025083873471687
124 => 0.025533174258112
125 => 0.025646685380189
126 => 0.025348086487616
127 => 0.025131881210767
128 => 0.024752295967066
129 => 0.025383554686949
130 => 0.025568153973904
131 => 0.025382585065481
201 => 0.025339584694639
202 => 0.025258099069593
203 => 0.0253568722552
204 => 0.025567148606543
205 => 0.025467986162444
206 => 0.025533484703788
207 => 0.025283871805985
208 => 0.025814775795374
209 => 0.026657979099525
210 => 0.026660690136026
211 => 0.026561527157405
212 => 0.026520951803049
213 => 0.026622699036827
214 => 0.026677892737262
215 => 0.027006924634048
216 => 0.027359988968509
217 => 0.029007586163401
218 => 0.028544947464042
219 => 0.030006793711346
220 => 0.031162924295986
221 => 0.031509597306856
222 => 0.031190674449081
223 => 0.030099656580508
224 => 0.0300461260389
225 => 0.031676567350412
226 => 0.031215893000967
227 => 0.031161097252954
228 => 0.030578163072974
301 => 0.030922749371145
302 => 0.030847383292959
303 => 0.030728414251508
304 => 0.031385860904328
305 => 0.032616542347739
306 => 0.032424729103526
307 => 0.032281549414681
308 => 0.031654177697144
309 => 0.032031995599647
310 => 0.031897461881191
311 => 0.032475504112886
312 => 0.032133084700033
313 => 0.031212402939684
314 => 0.031359024544626
315 => 0.031336862984001
316 => 0.031792946331285
317 => 0.031656041431115
318 => 0.031310130104998
319 => 0.032612336012358
320 => 0.032527778003983
321 => 0.032647661927206
322 => 0.032700438537742
323 => 0.03349306832611
324 => 0.03381778338908
325 => 0.033891499393312
326 => 0.034199953588769
327 => 0.033883824771934
328 => 0.035148565435303
329 => 0.03598954417678
330 => 0.036966384261376
331 => 0.038393810174832
401 => 0.03893053552272
402 => 0.038833580892666
403 => 0.039915838929262
404 => 0.041860632563781
405 => 0.03922667928998
406 => 0.04200023848303
407 => 0.041122161664791
408 => 0.039040257324674
409 => 0.038906207229211
410 => 0.040316097019744
411 => 0.043443096878284
412 => 0.042659818879859
413 => 0.043444378040488
414 => 0.042529148105301
415 => 0.042483699224855
416 => 0.043399927365368
417 => 0.045540744356671
418 => 0.044523722451428
419 => 0.043065572166259
420 => 0.044142247645496
421 => 0.04320953170377
422 => 0.041107861636305
423 => 0.042659219921935
424 => 0.041621870816474
425 => 0.041924624433959
426 => 0.044104977959604
427 => 0.043842632054899
428 => 0.044182131948164
429 => 0.04358292352281
430 => 0.043023168367033
501 => 0.041978343800812
502 => 0.041669022755982
503 => 0.041754507964568
504 => 0.041668980393758
505 => 0.041084410651391
506 => 0.040958172871184
507 => 0.040747771040236
508 => 0.040812983365531
509 => 0.04041736636812
510 => 0.041163977380876
511 => 0.041302554963957
512 => 0.04184587619685
513 => 0.041902285609648
514 => 0.043415427509559
515 => 0.042582014378405
516 => 0.043141139860211
517 => 0.043091126414425
518 => 0.039085378504611
519 => 0.03963733522357
520 => 0.040496006664711
521 => 0.040109176344379
522 => 0.039562288775784
523 => 0.039120647741887
524 => 0.038451516415419
525 => 0.039393305907893
526 => 0.040631658942351
527 => 0.041933692286195
528 => 0.04349800003622
529 => 0.043148864756964
530 => 0.041904448640918
531 => 0.041960272238838
601 => 0.042305351755398
602 => 0.041858442427672
603 => 0.041726640142219
604 => 0.042287244145339
605 => 0.042291104717006
606 => 0.04177688152466
607 => 0.041205416548219
608 => 0.041203022089102
609 => 0.041101335416241
610 => 0.042547237938504
611 => 0.043342338128516
612 => 0.043433495083933
613 => 0.043336202539116
614 => 0.043373646578213
615 => 0.042910995296482
616 => 0.043968478931542
617 => 0.044938930489366
618 => 0.044678828741196
619 => 0.044288899245046
620 => 0.043978301619814
621 => 0.044605661811626
622 => 0.044577726449841
623 => 0.044930454441612
624 => 0.044914452662449
625 => 0.044795843505588
626 => 0.044678832977102
627 => 0.045142766496276
628 => 0.045009161093299
629 => 0.044875348164227
630 => 0.04460696584924
701 => 0.044643443463205
702 => 0.044253581293881
703 => 0.044073213215472
704 => 0.041360910079741
705 => 0.040636094054812
706 => 0.040864135931245
707 => 0.040939213238072
708 => 0.040623772375146
709 => 0.041076033542473
710 => 0.041005549118608
711 => 0.041279762779857
712 => 0.041108445989282
713 => 0.041115476890125
714 => 0.041619283042616
715 => 0.041765540112028
716 => 0.041691152586086
717 => 0.041743251059401
718 => 0.042943838387555
719 => 0.042773153262113
720 => 0.042682480191102
721 => 0.042707597251443
722 => 0.043014373054669
723 => 0.043100253530234
724 => 0.04273637192055
725 => 0.042907980591251
726 => 0.043638668530716
727 => 0.043894367956173
728 => 0.044710437779545
729 => 0.044363756814092
730 => 0.045000104730181
731 => 0.046956021277248
801 => 0.048518542754176
802 => 0.047081583430062
803 => 0.04995095513653
804 => 0.052185172596939
805 => 0.052099419609525
806 => 0.051709832116922
807 => 0.04916623493799
808 => 0.046825578891039
809 => 0.048783637063819
810 => 0.048788628556779
811 => 0.048620429623222
812 => 0.047575760492532
813 => 0.048584077401925
814 => 0.048664113936524
815 => 0.048619314760581
816 => 0.047818369387437
817 => 0.046595473842095
818 => 0.046834424704457
819 => 0.04722583109147
820 => 0.046484817144927
821 => 0.046248018289388
822 => 0.046688272414661
823 => 0.048106862936878
824 => 0.047838686615988
825 => 0.047831683448464
826 => 0.048979055473689
827 => 0.048157784722008
828 => 0.046837438640058
829 => 0.04650403384114
830 => 0.045320671413365
831 => 0.046138024057222
901 => 0.046167439123769
902 => 0.045719783433871
903 => 0.046873763432122
904 => 0.046863129303284
905 => 0.047958661564367
906 => 0.050052907784432
907 => 0.049433536125561
908 => 0.048713274273739
909 => 0.048791586707727
910 => 0.049650480817017
911 => 0.049131173831895
912 => 0.049317920244482
913 => 0.049650198153955
914 => 0.049850669666737
915 => 0.048762741942119
916 => 0.048509093947912
917 => 0.047990219170113
918 => 0.047854854425841
919 => 0.048277467105681
920 => 0.04816612359567
921 => 0.046164966901327
922 => 0.045955834892437
923 => 0.045962248672578
924 => 0.04543637629254
925 => 0.04463429468915
926 => 0.046742117253055
927 => 0.046572829602216
928 => 0.046385949137513
929 => 0.046408840928114
930 => 0.04732377526237
1001 => 0.04679306714321
1002 => 0.048204041659347
1003 => 0.047913987716606
1004 => 0.047616494984707
1005 => 0.047575372427308
1006 => 0.047460863106414
1007 => 0.047068168038027
1008 => 0.046593965145634
1009 => 0.046280855321326
1010 => 0.042691642637167
1011 => 0.043357779633857
1012 => 0.044124109528251
1013 => 0.044388643536922
1014 => 0.043936139809895
1015 => 0.047086035643213
1016 => 0.047661551965111
1017 => 0.045918275486079
1018 => 0.045592179634362
1019 => 0.047107414432962
1020 => 0.046193542619486
1021 => 0.046605059041137
1022 => 0.045715585624975
1023 => 0.047522926936251
1024 => 0.047509158023584
1025 => 0.046806061432843
1026 => 0.047400313856739
1027 => 0.047297047874253
1028 => 0.046503253554957
1029 => 0.047548091632038
1030 => 0.047548609858689
1031 => 0.046871894676738
1101 => 0.046081639496222
1102 => 0.04594036053494
1103 => 0.045833925815772
1104 => 0.046578882624789
1105 => 0.047246808570333
1106 => 0.048489653162108
1107 => 0.048802133821739
1108 => 0.050021766639296
1109 => 0.049295534679285
1110 => 0.049617463900879
1111 => 0.049966963610589
1112 => 0.05013452662385
1113 => 0.049861491685668
1114 => 0.051756083472229
1115 => 0.051916045067807
1116 => 0.051969678807142
1117 => 0.051330833116514
1118 => 0.051898277613487
1119 => 0.05163278912514
1120 => 0.052323516416993
1121 => 0.052431831276004
1122 => 0.052340092443834
1123 => 0.052374473289718
1124 => 0.050757773428783
1125 => 0.050673939012222
1126 => 0.049530850793798
1127 => 0.049996667692087
1128 => 0.049125845327921
1129 => 0.049401992070062
1130 => 0.049523714922776
1201 => 0.049460133812229
1202 => 0.050023004280611
1203 => 0.049544449395647
1204 => 0.04828146437252
1205 => 0.047018135249968
1206 => 0.04700227518192
1207 => 0.046669662923563
1208 => 0.046429245181745
1209 => 0.046475558168097
1210 => 0.046638771172698
1211 => 0.046419758945213
1212 => 0.046466496308148
1213 => 0.047242647942304
1214 => 0.047398299617273
1215 => 0.046869334408691
1216 => 0.044745462766918
1217 => 0.044224259338699
1218 => 0.04459889002699
1219 => 0.044419840687293
1220 => 0.035850278261068
1221 => 0.037863569838993
1222 => 0.036667340348312
1223 => 0.03721861793349
1224 => 0.035997577385629
1225 => 0.036580321935287
1226 => 0.036472710295389
1227 => 0.039710023575064
1228 => 0.039659477380981
1229 => 0.039683671169243
1230 => 0.038528838618889
1231 => 0.040368518228724
]
'min_raw' => 0.023486443799217
'max_raw' => 0.052431831276004
'avg_raw' => 0.03795913753761
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.023486'
'max' => '$0.052431'
'avg' => '$0.037959'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0036215619801886
'max_diff' => 0.0079320437664572
'year' => 2035
]
10 => [
'items' => [
101 => 0.041274810557268
102 => 0.041107079967444
103 => 0.041149294143289
104 => 0.040423914740015
105 => 0.039690694427468
106 => 0.038877440259056
107 => 0.040388365982712
108 => 0.040220376834604
109 => 0.040605683499777
110 => 0.041585626834769
111 => 0.04172992721329
112 => 0.041923868385371
113 => 0.041854354280852
114 => 0.043510462271187
115 => 0.043309896666205
116 => 0.043793202067549
117 => 0.042799006188516
118 => 0.041673979181451
119 => 0.04188781003559
120 => 0.041867216404818
121 => 0.041605035848812
122 => 0.041368350965734
123 => 0.040974337320962
124 => 0.042221054796068
125 => 0.042170440343352
126 => 0.042989829499956
127 => 0.042844994507404
128 => 0.041877750980012
129 => 0.041912296271817
130 => 0.042144629961109
131 => 0.04294873951249
201 => 0.043187453975293
202 => 0.043076871924996
203 => 0.04333861143573
204 => 0.043545479673035
205 => 0.043364590901336
206 => 0.045925594447929
207 => 0.04486208722284
208 => 0.045380433244513
209 => 0.04550405571641
210 => 0.045187399354146
211 => 0.045256070780507
212 => 0.0453600892796
213 => 0.045991669237181
214 => 0.047649117795009
215 => 0.048383190478638
216 => 0.050591684365841
217 => 0.048322235961047
218 => 0.048187576284618
219 => 0.048585392723829
220 => 0.049882012428438
221 => 0.050932800913727
222 => 0.051281408075739
223 => 0.051327482267076
224 => 0.051981492477977
225 => 0.052356358934297
226 => 0.051902078436197
227 => 0.051517123279209
228 => 0.050138261689268
229 => 0.050297868672819
301 => 0.051397402514856
302 => 0.052950558828954
303 => 0.054283328524822
304 => 0.053816639029042
305 => 0.057377150450402
306 => 0.057730160614445
307 => 0.05768138602396
308 => 0.058485595712605
309 => 0.056889403255099
310 => 0.056207000054742
311 => 0.051600354953576
312 => 0.052894634324392
313 => 0.054775945400235
314 => 0.054526946824793
315 => 0.053160688433926
316 => 0.054282292095317
317 => 0.053911454849072
318 => 0.053618960126907
319 => 0.054958935152037
320 => 0.053485577568766
321 => 0.054761247531282
322 => 0.05312518760924
323 => 0.053818770827348
324 => 0.053425059447904
325 => 0.053679838961856
326 => 0.052190403129294
327 => 0.052994066550533
328 => 0.05215696808877
329 => 0.052156571195106
330 => 0.052138092200166
331 => 0.053122934828168
401 => 0.05315505051091
402 => 0.052427250320802
403 => 0.052322362943032
404 => 0.052710186552349
405 => 0.052256146677003
406 => 0.052468589076984
407 => 0.05226258134088
408 => 0.052216204660296
409 => 0.051846667379061
410 => 0.051687460557667
411 => 0.05174988965459
412 => 0.051536786962385
413 => 0.051408384882071
414 => 0.052112549794558
415 => 0.051736342887747
416 => 0.052054890690523
417 => 0.051691865265323
418 => 0.05043346097893
419 => 0.049709739366442
420 => 0.047332730323587
421 => 0.04800684713947
422 => 0.048453787285825
423 => 0.048306073570121
424 => 0.048623419789073
425 => 0.048642902269538
426 => 0.048539729778794
427 => 0.048420269251729
428 => 0.048362122473734
429 => 0.048795500918141
430 => 0.049047091691967
501 => 0.0484986437088
502 => 0.048370150019946
503 => 0.048924661211572
504 => 0.049262912718133
505 => 0.051760371795475
506 => 0.051575351960339
507 => 0.052039715438222
508 => 0.051987435236851
509 => 0.052474162140575
510 => 0.053269754922027
511 => 0.051652092346095
512 => 0.051932862634713
513 => 0.051864024243877
514 => 0.052615583744634
515 => 0.05261793003136
516 => 0.052167332567475
517 => 0.052411608762756
518 => 0.052275260491917
519 => 0.052521660245897
520 => 0.05157288090764
521 => 0.052728391727236
522 => 0.053383491902475
523 => 0.053392587969044
524 => 0.05370310025291
525 => 0.054018598716978
526 => 0.05462417054463
527 => 0.054001709647379
528 => 0.052881963088572
529 => 0.052962805173359
530 => 0.05230629817563
531 => 0.052317334176869
601 => 0.052258423137346
602 => 0.052435219601572
603 => 0.05161167778941
604 => 0.051804961406652
605 => 0.051534363210645
606 => 0.051932274407082
607 => 0.051504187736793
608 => 0.05186399104792
609 => 0.052019270229334
610 => 0.052592253751673
611 => 0.051419557604665
612 => 0.049028350776367
613 => 0.049531011442255
614 => 0.048787536834263
615 => 0.04885634823984
616 => 0.04899535823036
617 => 0.048544781369846
618 => 0.048630737235523
619 => 0.048627666287139
620 => 0.048601202513025
621 => 0.048483990069502
622 => 0.048314008836618
623 => 0.048991161750965
624 => 0.049106223226303
625 => 0.049361990632878
626 => 0.050122980946158
627 => 0.050046940068474
628 => 0.050170965894882
629 => 0.049900218212208
630 => 0.048868907448316
701 => 0.048924912584581
702 => 0.048226527637934
703 => 0.049344131359609
704 => 0.049079468046668
705 => 0.048908837887078
706 => 0.048862279867157
707 => 0.049625156528231
708 => 0.049853421181851
709 => 0.049711181967986
710 => 0.049419445190568
711 => 0.049979666047446
712 => 0.050129557514926
713 => 0.05016311268671
714 => 0.051155716633402
715 => 0.050218588220876
716 => 0.050444164344026
717 => 0.052204044863302
718 => 0.05060807607923
719 => 0.051453496338504
720 => 0.051412117416167
721 => 0.05184460581335
722 => 0.051376640744208
723 => 0.051382441732091
724 => 0.051766462129487
725 => 0.051227174739787
726 => 0.051093639598082
727 => 0.050909161756213
728 => 0.051311962374947
729 => 0.051553423128774
730 => 0.053499419471232
731 => 0.054756621856674
801 => 0.054702043385487
802 => 0.055200788445523
803 => 0.054976099227996
804 => 0.054250518474578
805 => 0.055488996345515
806 => 0.055097090127036
807 => 0.055129398399521
808 => 0.055128195884006
809 => 0.055388779258258
810 => 0.055204132055485
811 => 0.054840173465172
812 => 0.055081786162658
813 => 0.055799289496071
814 => 0.058026441858678
815 => 0.059272785826637
816 => 0.057951410386852
817 => 0.058862877471294
818 => 0.058316322009558
819 => 0.058216996623544
820 => 0.058789465309462
821 => 0.059362936026032
822 => 0.059326408420569
823 => 0.058910098128386
824 => 0.058674935007814
825 => 0.060455668942207
826 => 0.061767683371057
827 => 0.061678212782866
828 => 0.062073106861748
829 => 0.063232528090959
830 => 0.063338531037819
831 => 0.063325177102964
901 => 0.06306243773891
902 => 0.064204038508941
903 => 0.065156381955855
904 => 0.063001621167402
905 => 0.063822125867755
906 => 0.064190476862754
907 => 0.064731325408227
908 => 0.065643827561183
909 => 0.066635046928535
910 => 0.066775216215246
911 => 0.066675759398607
912 => 0.066022023580431
913 => 0.067106627639895
914 => 0.067741963260833
915 => 0.068120291083705
916 => 0.069079667494761
917 => 0.064192751673097
918 => 0.060733549759048
919 => 0.060193345428688
920 => 0.061291872176961
921 => 0.061581544919894
922 => 0.061464778200436
923 => 0.057571131949295
924 => 0.060172846186984
925 => 0.062972071948391
926 => 0.063079601610092
927 => 0.064480952555303
928 => 0.06493728986638
929 => 0.066065561056542
930 => 0.065994987386402
1001 => 0.066269703466491
1002 => 0.066206550997098
1003 => 0.068296435791343
1004 => 0.070601889070291
1005 => 0.070522058554134
1006 => 0.0701906223684
1007 => 0.070682861622482
1008 => 0.073062336473745
1009 => 0.072843272559748
1010 => 0.073056074492376
1011 => 0.075861609443341
1012 => 0.079509203962288
1013 => 0.077814530095735
1014 => 0.081491484756886
1015 => 0.083805932809089
1016 => 0.08780853139698
1017 => 0.087307386340562
1018 => 0.088865568598403
1019 => 0.086410232097445
1020 => 0.080772283185869
1021 => 0.079880056189411
1022 => 0.081666317231106
1023 => 0.086057665701312
1024 => 0.081528018040297
1025 => 0.082444359862695
1026 => 0.082180453356199
1027 => 0.082166390899998
1028 => 0.082703097657037
1029 => 0.08192457651321
1030 => 0.078752741319978
1031 => 0.080206374697294
1101 => 0.079645057041104
1102 => 0.08026788082965
1103 => 0.083629003944364
1104 => 0.082142971296182
1105 => 0.080577556616811
1106 => 0.082540934018068
1107 => 0.085040988139542
1108 => 0.08488453924565
1109 => 0.084580963000933
1110 => 0.086292206397664
1111 => 0.089118679141791
1112 => 0.089882663366841
1113 => 0.090446620902804
1114 => 0.090524381118872
1115 => 0.091325359672083
1116 => 0.087018296118882
1117 => 0.09385371659105
1118 => 0.095034004881913
1119 => 0.094812159601168
1120 => 0.096124000362339
1121 => 0.095738023532215
1122 => 0.095178803663274
1123 => 0.097258350306261
1124 => 0.094874317890836
1125 => 0.091490484018476
1126 => 0.089634045831454
1127 => 0.092078753390721
1128 => 0.09357165098863
1129 => 0.094558361334727
1130 => 0.094856939289269
1201 => 0.087352641201879
1202 => 0.083308240740228
1203 => 0.085900655067001
1204 => 0.089063579464543
1205 => 0.087000725914153
1206 => 0.08708158586783
1207 => 0.084140498813351
1208 => 0.089323800408477
1209 => 0.088568636964496
1210 => 0.092486426247733
1211 => 0.091551414393065
1212 => 0.094746219465841
1213 => 0.093904920220602
1214 => 0.097397106351183
1215 => 0.098790233945837
1216 => 0.10112951200026
1217 => 0.10285029445966
1218 => 0.10386077083315
1219 => 0.10380010562189
1220 => 0.10780411643097
1221 => 0.10544309114634
1222 => 0.1024770869379
1223 => 0.1024234412794
1224 => 0.10395957688755
1225 => 0.10717889570402
1226 => 0.10801361823394
1227 => 0.10848011425323
1228 => 0.10776565936085
1229 => 0.10520293563058
1230 => 0.10409636451716
1231 => 0.10503919516625
]
'min_raw' => 0.038877440259056
'max_raw' => 0.10848011425323
'avg_raw' => 0.073678777256142
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.038877'
'max' => '$0.10848'
'avg' => '$0.073678'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.015390996459839
'max_diff' => 0.056048282977224
'year' => 2036
]
11 => [
'items' => [
101 => 0.10388619430077
102 => 0.10587659726949
103 => 0.10860984567266
104 => 0.10804544068584
105 => 0.10993216193646
106 => 0.11188471994198
107 => 0.11467696558475
108 => 0.11540696199232
109 => 0.11661361829477
110 => 0.11785566399593
111 => 0.11825457560107
112 => 0.11901622163029
113 => 0.11901220737976
114 => 0.12130747895351
115 => 0.12383923457799
116 => 0.12479491371596
117 => 0.12699244519726
118 => 0.12322924954622
119 => 0.12608367667601
120 => 0.12865844139802
121 => 0.12558870075135
122 => 0.12981962307495
123 => 0.12998390020129
124 => 0.13246428977038
125 => 0.12994993975697
126 => 0.12845692674509
127 => 0.13276719936791
128 => 0.13485280451777
129 => 0.13422460327341
130 => 0.12944396078574
131 => 0.12666142180651
201 => 0.11937898058618
202 => 0.12800534678971
203 => 0.13220699813289
204 => 0.1294330795238
205 => 0.13083208272102
206 => 0.13846459053672
207 => 0.14137055534465
208 => 0.14076613497883
209 => 0.14086827207105
210 => 0.14243627793442
211 => 0.1493896794492
212 => 0.14522304008296
213 => 0.14840827975745
214 => 0.15009771939556
215 => 0.15166696508494
216 => 0.14781339363703
217 => 0.1427999538035
218 => 0.14121198695834
219 => 0.12915726798609
220 => 0.12852976751259
221 => 0.12817753248161
222 => 0.12595674043589
223 => 0.12421180621409
224 => 0.12282416973567
225 => 0.11918259723294
226 => 0.12041152105313
227 => 0.11460761453904
228 => 0.11832074824893
301 => 0.10905757331222
302 => 0.11677222065625
303 => 0.11257348884886
304 => 0.11539282433299
305 => 0.11538298793708
306 => 0.11019169743968
307 => 0.10719746942024
308 => 0.10910550805132
309 => 0.11115107692414
310 => 0.11148296359163
311 => 0.11413509703005
312 => 0.11487525046529
313 => 0.11263255100204
314 => 0.10886561460103
315 => 0.10974058801231
316 => 0.10717973811199
317 => 0.10269194716334
318 => 0.10591515697197
319 => 0.10701570251517
320 => 0.10750176612374
321 => 0.10308853915202
322 => 0.10170180742169
323 => 0.10096352308427
324 => 0.10829592241791
325 => 0.10869760780536
326 => 0.10664252857056
327 => 0.11593168158246
328 => 0.11382926016598
329 => 0.11617817999394
330 => 0.10966119334628
331 => 0.1099101510125
401 => 0.10682490509415
402 => 0.10855243665222
403 => 0.10733147302792
404 => 0.10841286917413
405 => 0.1090610535654
406 => 0.11214579322526
407 => 0.11680744342808
408 => 0.11168503598708
409 => 0.10945312971081
410 => 0.11083779181189
411 => 0.1145253294557
412 => 0.12011213774766
413 => 0.11680463479382
414 => 0.11827244843969
415 => 0.11859310042283
416 => 0.11615427019509
417 => 0.12020206089686
418 => 0.12237130481814
419 => 0.12459650021958
420 => 0.1265285750381
421 => 0.12370770824315
422 => 0.12672644006912
423 => 0.12429387509529
424 => 0.12211161283982
425 => 0.12211492243086
426 => 0.12074595744024
427 => 0.11809341527023
428 => 0.11760424579678
429 => 0.12014896717296
430 => 0.12218959273064
501 => 0.12235766842551
502 => 0.12348746358537
503 => 0.12415606472316
504 => 0.13070926479266
505 => 0.13334501607153
506 => 0.13656796284312
507 => 0.13782348224597
508 => 0.14160214551996
509 => 0.13855056803819
510 => 0.13789034005469
511 => 0.12872453894333
512 => 0.13022543836184
513 => 0.13262852314612
514 => 0.12876416492631
515 => 0.13121521076413
516 => 0.13169909913276
517 => 0.12863285551272
518 => 0.13027066871475
519 => 0.12592112242792
520 => 0.11690225165119
521 => 0.12021210147822
522 => 0.12264926503432
523 => 0.11917113213967
524 => 0.125405550731
525 => 0.12176353209447
526 => 0.12060918703441
527 => 0.1161056754014
528 => 0.11823115953612
529 => 0.12110590726233
530 => 0.11932964739283
531 => 0.12301565332881
601 => 0.12823602075603
602 => 0.13195636546293
603 => 0.13224196733382
604 => 0.12985003493102
605 => 0.13368312187162
606 => 0.1337110417253
607 => 0.1293873039977
608 => 0.12673903871421
609 => 0.1261373472698
610 => 0.12764049046649
611 => 0.1294655838028
612 => 0.13234324731198
613 => 0.13408215910212
614 => 0.13861631880324
615 => 0.13984313241381
616 => 0.14119102862519
617 => 0.14299223363939
618 => 0.14515504207842
619 => 0.14042294034257
620 => 0.14061095556628
621 => 0.13620448795027
622 => 0.13149554535118
623 => 0.13506904580591
624 => 0.13974092228762
625 => 0.13866918866075
626 => 0.13854859673419
627 => 0.13875139890525
628 => 0.13794334675013
629 => 0.13428855680038
630 => 0.1324531441678
701 => 0.13482129472752
702 => 0.13607986135576
703 => 0.13803178843761
704 => 0.13779117222459
705 => 0.14281912676577
706 => 0.14477283786302
707 => 0.14427299496033
708 => 0.14436497808382
709 => 0.14790207870398
710 => 0.15183606205383
711 => 0.15552075659578
712 => 0.15926898614518
713 => 0.1547503491275
714 => 0.1524560639207
715 => 0.15482318061997
716 => 0.15356715517976
717 => 0.16078464992056
718 => 0.16128437359684
719 => 0.16850134643062
720 => 0.17535111303102
721 => 0.17104889735562
722 => 0.17510569296147
723 => 0.17949344816459
724 => 0.18795813983904
725 => 0.18510752947453
726 => 0.18292400661008
727 => 0.18086058805387
728 => 0.18515423451086
729 => 0.1906779420851
730 => 0.19186769579118
731 => 0.19379555131593
801 => 0.19176864695862
802 => 0.1942098300008
803 => 0.20282827884991
804 => 0.20049949789373
805 => 0.19719225456573
806 => 0.20399569220748
807 => 0.20645782984233
808 => 0.22373840119522
809 => 0.24555583635303
810 => 0.23652327493669
811 => 0.23091647258664
812 => 0.23223420413403
813 => 0.24020119288688
814 => 0.24275993681471
815 => 0.23580438876694
816 => 0.23826120592537
817 => 0.25179851001723
818 => 0.25906083933381
819 => 0.24919762066095
820 => 0.22198539152345
821 => 0.19689447348938
822 => 0.20354971481078
823 => 0.20279521698112
824 => 0.21733936141475
825 => 0.2004439572381
826 => 0.20072843251376
827 => 0.21557333445176
828 => 0.21161296912075
829 => 0.20519768448978
830 => 0.19694131216677
831 => 0.18167864430566
901 => 0.1681600737501
902 => 0.19467310375042
903 => 0.19352981368599
904 => 0.1918741602466
905 => 0.19555863781555
906 => 0.21344941503316
907 => 0.2130369747115
908 => 0.210413239814
909 => 0.21240331960921
910 => 0.20484881387979
911 => 0.20679578201916
912 => 0.19689049895977
913 => 0.20136810058378
914 => 0.20518392017022
915 => 0.20595000244637
916 => 0.20767602493167
917 => 0.19292735177354
918 => 0.19954907302325
919 => 0.20343871388607
920 => 0.18586517496147
921 => 0.20309134152477
922 => 0.19267061018669
923 => 0.18913365745641
924 => 0.19389569834964
925 => 0.19203992638231
926 => 0.19044444261939
927 => 0.18955413526579
928 => 0.1930508525305
929 => 0.19288772649062
930 => 0.18716641836198
1001 => 0.17970320513851
1002 => 0.18220810446793
1003 => 0.181298051058
1004 => 0.17799990010117
1005 => 0.18022245562581
1006 => 0.17043544590492
1007 => 0.15359740436464
1008 => 0.16472113036931
1009 => 0.16429287901841
1010 => 0.16407693526764
1011 => 0.17243610792295
1012 => 0.17163256635107
1013 => 0.1701741305298
1014 => 0.17797311478359
1015 => 0.17512638061982
1016 => 0.18389934453765
1017 => 0.18967778597367
1018 => 0.1882121863125
1019 => 0.19364683841271
1020 => 0.1822658122893
1021 => 0.18604613263998
1022 => 0.18682525142496
1023 => 0.17787687652851
1024 => 0.17176403568979
1025 => 0.17135637889734
1026 => 0.16075755528436
1027 => 0.1664193613077
1028 => 0.17140151630678
1029 => 0.16901545069307
1030 => 0.16826009360145
1031 => 0.17211904916557
1101 => 0.17241892306262
1102 => 0.16558176643064
1103 => 0.16700342779902
1104 => 0.1729319920367
1105 => 0.16685404319136
1106 => 0.15504558141215
1107 => 0.15211691962616
1108 => 0.15172618215796
1109 => 0.14378341911923
1110 => 0.15231262681064
1111 => 0.14858939908478
1112 => 0.16035103085964
1113 => 0.15363284986874
1114 => 0.15334324251368
1115 => 0.15290545852034
1116 => 0.1460687942615
1117 => 0.14756558924151
1118 => 0.15254116372336
1119 => 0.15431650475235
1120 => 0.15413132213808
1121 => 0.15251678069399
1122 => 0.1532559094993
1123 => 0.15087491808783
1124 => 0.15003414046439
1125 => 0.1473804150107
1126 => 0.14348017170414
1127 => 0.1440225244575
1128 => 0.13629512191304
1129 => 0.13208482288253
1130 => 0.13091946760173
1201 => 0.1293611058167
1202 => 0.13109548871199
1203 => 0.13627323115253
1204 => 0.1300277752499
1205 => 0.11932037917264
1206 => 0.1199639119214
1207 => 0.12140973894127
1208 => 0.11871544985484
1209 => 0.11616553134908
1210 => 0.11838247860841
1211 => 0.11384561373737
1212 => 0.12195799738581
1213 => 0.12173858014281
1214 => 0.12476237510051
1215 => 0.12665321614208
1216 => 0.12229543970832
1217 => 0.12119947071991
1218 => 0.12182378446472
1219 => 0.11150526893904
1220 => 0.12391913224316
1221 => 0.12402648784851
1222 => 0.12310724397802
1223 => 0.12971724295243
1224 => 0.14366640249882
1225 => 0.13841816757383
1226 => 0.13638589238213
1227 => 0.13252253575712
1228 => 0.13767022907652
1229 => 0.13727496654612
1230 => 0.13548743948477
1231 => 0.13440633754064
]
'min_raw' => 0.10096352308427
'max_raw' => 0.25906083933381
'avg_raw' => 0.18001218120904
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.100963'
'max' => '$0.25906'
'avg' => '$0.180012'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.06208608282521
'max_diff' => 0.15058072508058
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0031691296211814
]
1 => [
'year' => 2028
'avg' => 0.0054391464348499
]
2 => [
'year' => 2029
'avg' => 0.014858767749244
]
3 => [
'year' => 2030
'avg' => 0.011463517190201
]
4 => [
'year' => 2031
'avg' => 0.011258594538823
]
5 => [
'year' => 2032
'avg' => 0.019739859436657
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0031691296211814
'min' => '$0.003169'
'max_raw' => 0.019739859436657
'max' => '$0.019739'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.019739859436657
]
1 => [
'year' => 2033
'avg' => 0.050772948296891
]
2 => [
'year' => 2034
'avg' => 0.032182334664287
]
3 => [
'year' => 2035
'avg' => 0.03795913753761
]
4 => [
'year' => 2036
'avg' => 0.073678777256142
]
5 => [
'year' => 2037
'avg' => 0.18001218120904
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.019739859436657
'min' => '$0.019739'
'max_raw' => 0.18001218120904
'max' => '$0.180012'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.18001218120904
]
]
]
]
'prediction_2025_max_price' => '$0.005418'
'last_price' => 0.005254050981791
'sma_50day_nextmonth' => '$0.005296'
'sma_200day_nextmonth' => '$0.01374'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.005473'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.005531'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.005738'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.005993'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.008346'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011758'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.015826'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005424'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.005518'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0057094'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.006213'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00814'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.011249'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.018587'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.009791'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.018123'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.048978'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005547'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.00583'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.006868'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.009975'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.022115'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.04943'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.027666'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '27.15'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 13.22
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.005791'
'vwma_10_action' => 'SELL'
'hma_9' => '0.005421'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -138.29
'cci_20_action' => 'BUY'
'adx_14' => 36.95
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001136'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 7.04
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.001778'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 31
'buy_signals' => 1
'sell_pct' => 96.88
'buy_pct' => 3.13
'overall_action' => 'bearish'
'overall_action_label' => 'Baissier'
'overall_action_dir' => -1
'last_updated' => 1767695602
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Cabal pour 2026
La prévision du prix de Cabal pour 2026 suggère que le prix moyen pourrait varier entre $0.001815 à la baisse et $0.005418 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Cabal pourrait potentiellement gagner 3.13% d'ici 2026 si CABAL atteint l'objectif de prix prévu.
Prévision du prix de Cabal de 2027 à 2032
La prévision du prix de CABAL pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.003169 à la baisse et $0.019739 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Cabal atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Cabal | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.001747 | $0.003169 | $0.00459 |
| 2028 | $0.003153 | $0.005439 | $0.007724 |
| 2029 | $0.006927 | $0.014858 | $0.022789 |
| 2030 | $0.005891 | $0.011463 | $0.017035 |
| 2031 | $0.006966 | $0.011258 | $0.015551 |
| 2032 | $0.010633 | $0.019739 | $0.028846 |
Prévision du prix de Cabal de 2032 à 2037
La prévision du prix de Cabal pour 2032-2037 est actuellement estimée entre $0.019739 à la baisse et $0.180012 à la hausse. Par rapport au prix actuel, Cabal pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Cabal | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.010633 | $0.019739 | $0.028846 |
| 2033 | $0.024709 | $0.050772 | $0.076836 |
| 2034 | $0.019864 | $0.032182 | $0.044499 |
| 2035 | $0.023486 | $0.037959 | $0.052431 |
| 2036 | $0.038877 | $0.073678 | $0.10848 |
| 2037 | $0.100963 | $0.180012 | $0.25906 |
Cabal Histogramme des prix potentiels
Prévision du prix de Cabal basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Cabal est Baissier, avec 1 indicateurs techniques montrant des signaux haussiers et 31 indiquant des signaux baissiers. La prévision du prix de CABAL a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Cabal et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Cabal devrait augmenter au cours du prochain mois, atteignant $0.01374 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Cabal devrait atteindre $0.005296 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 27.15, ce qui suggère que le marché de CABAL est dans un état BUY.
Moyennes Mobiles et Oscillateurs Populaires de CABAL pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.005473 | SELL |
| SMA 5 | $0.005531 | SELL |
| SMA 10 | $0.005738 | SELL |
| SMA 21 | $0.005993 | SELL |
| SMA 50 | $0.008346 | SELL |
| SMA 100 | $0.011758 | SELL |
| SMA 200 | $0.015826 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.005424 | SELL |
| EMA 5 | $0.005518 | SELL |
| EMA 10 | $0.0057094 | SELL |
| EMA 21 | $0.006213 | SELL |
| EMA 50 | $0.00814 | SELL |
| EMA 100 | $0.011249 | SELL |
| EMA 200 | $0.018587 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.009791 | SELL |
| SMA 50 | $0.018123 | SELL |
| SMA 100 | $0.048978 | SELL |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.009975 | SELL |
| EMA 50 | $0.022115 | SELL |
| EMA 100 | $0.04943 | SELL |
| EMA 200 | $0.027666 | SELL |
Oscillateurs de Cabal
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 27.15 | BUY |
| Stoch RSI (14) | 13.22 | NEUTRAL |
| Stochastique Rapide (14) | 0 | BUY |
| Indice de Canal des Matières Premières (20) | -138.29 | BUY |
| Indice Directionnel Moyen (14) | 36.95 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.001136 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -100 | BUY |
| Oscillateur Ultime (7, 14, 28) | 7.04 | BUY |
| VWMA (10) | 0.005791 | SELL |
| Moyenne Mobile de Hull (9) | 0.005421 | SELL |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.001778 | SELL |
Prévision du cours de Cabal basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Cabal
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Cabal par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.007382 | $0.010374 | $0.014577 | $0.020483 | $0.028782 | $0.040444 |
| Action Amazon.com | $0.010962 | $0.022874 | $0.047729 | $0.09959 | $0.2078011 | $0.433589 |
| Action Apple | $0.007452 | $0.01057 | $0.014993 | $0.021267 | $0.030166 | $0.042788 |
| Action Netflix | $0.00829 | $0.01308 | $0.020638 | $0.032564 | $0.051382 | $0.081073 |
| Action Google | $0.0068039 | $0.008811 | $0.01141 | $0.014776 | $0.019135 | $0.02478 |
| Action Tesla | $0.01191 | $0.02700028 | $0.0612075 | $0.138752 | $0.314542 | $0.713044 |
| Action Kodak | $0.003939 | $0.002954 | $0.002215 | $0.001661 | $0.001245 | $0.000934 |
| Action Nokia | $0.00348 | $0.0023057 | $0.001527 | $0.001011 | $0.00067 | $0.000444 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Cabal
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Cabal maintenant ?", "Devrais-je acheter CABAL aujourd'hui ?", " Cabal sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Cabal avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Cabal en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Cabal afin de prendre une décision responsable concernant cet investissement.
Le cours de Cabal est de $0.005254 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Cabal basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Cabal présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.00539 | $0.00553 | $0.005674 | $0.005821 |
| Si Cabal présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005527 | $0.005814 | $0.006116 | $0.006434 |
| Si Cabal présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.005936 | $0.0067084 | $0.00758 | $0.008565 |
| Si Cabal présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.006619 | $0.00834 | $0.0105083 | $0.013239 |
| Si Cabal présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007985 | $0.012136 | $0.018446 | $0.028035 |
| Si Cabal présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.012082 | $0.027785 | $0.063897 | $0.146943 |
| Si Cabal présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.018911 | $0.068066 | $0.244994 | $0.881813 |
Boîte à questions
Est-ce que CABAL est un bon investissement ?
La décision d'acquérir Cabal dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Cabal a connu une baisse de 0% au cours des 24 heures précédentes, et Cabal a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Cabal dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Cabal peut monter ?
Il semble que la valeur moyenne de Cabal pourrait potentiellement s'envoler jusqu'à $0.005418 pour la fin de cette année. En regardant les perspectives de Cabal sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.017035. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Cabal la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Cabal, le prix de Cabal va augmenter de 0.86% durant la prochaine semaine et atteindre $0.005299 d'ici 13 janvier 2026.
Quel sera le prix de Cabal le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Cabal, le prix de Cabal va diminuer de -11.62% durant le prochain mois et atteindre $0.004643 d'ici 5 février 2026.
Jusqu'où le prix de Cabal peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Cabal en 2026, CABAL devrait fluctuer dans la fourchette de $0.001815 et $0.005418. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Cabal ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Cabal dans 5 ans ?
L'avenir de Cabal semble suivre une tendance haussière, avec un prix maximum de $0.017035 prévue après une période de cinq ans. Selon la prévision de Cabal pour 2030, la valeur de Cabal pourrait potentiellement atteindre son point le plus élevé d'environ $0.017035, tandis que son point le plus bas devrait être autour de $0.005891.
Combien vaudra Cabal en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Cabal, il est attendu que la valeur de CABAL en 2026 augmente de 3.13% jusqu'à $0.005418 si le meilleur scénario se produit. Le prix sera entre $0.005418 et $0.001815 durant 2026.
Combien vaudra Cabal en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Cabal, le valeur de CABAL pourrait diminuer de -12.62% jusqu'à $0.00459 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.00459 et $0.001747 tout au long de l'année.
Combien vaudra Cabal en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Cabal suggère que la valeur de CABAL en 2028 pourrait augmenter de 47.02%, atteignant $0.007724 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.007724 et $0.003153 durant l'année.
Combien vaudra Cabal en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Cabal pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.022789 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.022789 et $0.006927.
Combien vaudra Cabal en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Cabal, il est prévu que la valeur de CABAL en 2030 augmente de 224.23%, atteignant $0.017035 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.017035 et $0.005891 au cours de 2030.
Combien vaudra Cabal en 2031 ?
Notre simulation expérimentale indique que le prix de Cabal pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.015551 dans des conditions idéales. Il est probable que le prix fluctue entre $0.015551 et $0.006966 durant l'année.
Combien vaudra Cabal en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Cabal, CABAL pourrait connaître une 449.04% hausse en valeur, atteignant $0.028846 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.028846 et $0.010633 tout au long de l'année.
Combien vaudra Cabal en 2033 ?
Selon notre prédiction expérimentale de prix de Cabal, la valeur de CABAL est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.076836. Tout au long de l'année, le prix de CABAL pourrait osciller entre $0.076836 et $0.024709.
Combien vaudra Cabal en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Cabal suggèrent que CABAL pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.044499 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.044499 et $0.019864.
Combien vaudra Cabal en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Cabal, CABAL pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.052431 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.052431 et $0.023486.
Combien vaudra Cabal en 2036 ?
Notre récente simulation de prédiction de prix de Cabal suggère que la valeur de CABAL pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.10848 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.10848 et $0.038877.
Combien vaudra Cabal en 2037 ?
Selon la simulation expérimentale, la valeur de Cabal pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.25906 sous des conditions favorables. Il est prévu que le prix chute entre $0.25906 et $0.100963 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Cabal ?
Les traders de Cabal utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Cabal
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Cabal. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de CABAL sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de CABAL au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de CABAL.
Comment lire les graphiques de Cabal et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Cabal dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de CABAL au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Cabal ?
L'action du prix de Cabal est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de CABAL. La capitalisation boursière de Cabal peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de CABAL, de grands détenteurs de Cabal, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Cabal.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


