Prédiction du prix de Bitcat jusqu'à $0.000425 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000142 | $0.000425 |
| 2027 | $0.000137 | $0.00036 |
| 2028 | $0.000247 | $0.0006058 |
| 2029 | $0.000543 | $0.001787 |
| 2030 | $0.000462 | $0.001336 |
| 2031 | $0.000546 | $0.001219 |
| 2032 | $0.000834 | $0.002262 |
| 2033 | $0.001938 | $0.006026 |
| 2034 | $0.001558 | $0.00349 |
| 2035 | $0.001842 | $0.004112 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur Bitcat aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,957.92, soit un rendement de 39.58% sur les 90 prochains jours.
Prévision du prix à long terme de Bitcat pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'Bitcat'
'name_with_ticker' => 'Bitcat <small>BITCAT</small>'
'name_lang' => 'Bitcat'
'name_lang_with_ticker' => 'Bitcat <small>BITCAT</small>'
'name_with_lang' => 'Bitcat'
'name_with_lang_with_ticker' => 'Bitcat <small>BITCAT</small>'
'image' => '/uploads/coins/bitcat.jpeg?1717141290'
'price_for_sd' => 0.0004121
'ticker' => 'BITCAT'
'marketcap' => '$41.21K'
'low24h' => '$0.0004069'
'high24h' => '$0.0004139'
'volume24h' => '$3.84'
'current_supply' => '99.99M'
'max_supply' => '99.99M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0004121'
'change_24h_pct' => '0.7158%'
'ath_price' => '$0.03122'
'ath_days' => 415
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 nov. 2024'
'ath_pct' => '-98.68%'
'fdv' => '$41.21K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.020319'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000415'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000364'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000142'
'current_year_max_price_prediction' => '$0.000425'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000462'
'grand_prediction_max_price' => '$0.001336'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00041991926773014
107 => 0.00042148709384515
108 => 0.00042501948613745
109 => 0.00039483558075434
110 => 0.00040838726811845
111 => 0.00041634761482348
112 => 0.00038038247881026
113 => 0.00041563669972123
114 => 0.00039431014611474
115 => 0.00038707159350662
116 => 0.00039681735098667
117 => 0.00039301941981863
118 => 0.00038975418162236
119 => 0.00038793212260492
120 => 0.00039508833129827
121 => 0.0003947544856092
122 => 0.00038304553922663
123 => 0.00036777169598828
124 => 0.00037289809912588
125 => 0.00037103562880571
126 => 0.00036428579610193
127 => 0.00036883436836637
128 => 0.00034880475809353
129 => 0.00031434485466766
130 => 0.00033711012240618
131 => 0.00033623368436209
201 => 0.00033579174455696
202 => 0.00035289921407667
203 => 0.00035125472561882
204 => 0.00034826996296496
205 => 0.00036423097859511
206 => 0.00035840499318415
207 => 0.00037635930744593
208 => 0.00038818518003099
209 => 0.00038518575621651
210 => 0.00039630804654216
211 => 0.00037301620110029
212 => 0.00038075281784944
213 => 0.00038234732383895
214 => 0.0003640340221398
215 => 0.00035152378426826
216 => 0.00035068949402938
217 => 0.0003289984655771
218 => 0.00034058563789245
219 => 0.00035078187002018
220 => 0.00034589866609057
221 => 0.00034435278960803
222 => 0.00035225033729765
223 => 0.00035286404439106
224 => 0.00033887145762365
225 => 0.00034178095950019
226 => 0.00035391406598979
227 => 0.00034147523634699
228 => 0.00031730862222232
301 => 0.00031131496778982
302 => 0.00031051530380355
303 => 0.00029426003761989
304 => 0.00031171549243877
305 => 0.00030409571863322
306 => 0.00032816649278604
307 => 0.0003144173956841
308 => 0.00031382469958801
309 => 0.00031292875250915
310 => 0.00029893717340828
311 => 0.00030200044002013
312 => 0.00031218320478661
313 => 0.00031581652997234
314 => 0.00031543754438851
315 => 0.00031213330368406
316 => 0.00031364596815811
317 => 0.00030877314883997
318 => 0.00030705245491977
319 => 0.00030162147159346
320 => 0.00029363942645123
321 => 0.00029474937878499
322 => 0.00027893485874251
323 => 0.00027031826888327
324 => 0.00026793331037506
325 => 0.0002647440441836
326 => 0.00026829354647769
327 => 0.00027889005819422
328 => 0.00026610841688872
329 => 0.00024419518939833
330 => 0.00024551221170882
331 => 0.00024847116981307
401 => 0.00024295717096127
402 => 0.00023773863380288
403 => 0.0002422757284688
404 => 0.00023299080510415
405 => 0.00024959320844244
406 => 0.00024914415995984
407 => 0.00025533250923862
408 => 0.00025920221104036
409 => 0.0002502838012182
410 => 0.00024804084526587
411 => 0.00024931853491298
412 => 0.00022820117113509
413 => 0.00025360677009257
414 => 0.00025382647876735
415 => 0.00025194519970492
416 => 0.00026547289683991
417 => 0.00029402055718928
418 => 0.00028327977903887
419 => 0.0002791206250973
420 => 0.00027121407041403
421 => 0.00028174908508472
422 => 0.00028094016032984
423 => 0.00027728189581268
424 => 0.00027506936601821
425 => 0.00027914602000437
426 => 0.000274564223475
427 => 0.00027374120691897
428 => 0.00026875462204031
429 => 0.00026697463811378
430 => 0.00026565680887778
501 => 0.00026420600837617
502 => 0.00026740611276576
503 => 0.00026015425521016
504 => 0.00025140922590647
505 => 0.00025068217134239
506 => 0.00025268963291709
507 => 0.00025180148060822
508 => 0.00025067791921083
509 => 0.00024853273451948
510 => 0.00024789630404617
511 => 0.00024996439433225
512 => 0.00024762964097642
513 => 0.00025107469673354
514 => 0.00025013783219123
515 => 0.00024490458301527
516 => 0.00023838201694501
517 => 0.00023832395242544
518 => 0.00023691867626476
519 => 0.00023512884578944
520 => 0.00023463095589698
521 => 0.00024189362701102
522 => 0.00025692713886362
523 => 0.00025397570076551
524 => 0.00025610841726694
525 => 0.00026659927162687
526 => 0.0002699339987569
527 => 0.00026756708842735
528 => 0.00026432711558358
529 => 0.00026446965794557
530 => 0.00027554162595918
531 => 0.00027623217102304
601 => 0.00027797695562112
602 => 0.00028021949690573
603 => 0.00026794900290514
604 => 0.00026389171878161
605 => 0.00026196915247433
606 => 0.0002560483923747
607 => 0.00026243342453454
608 => 0.00025871313972934
609 => 0.00025921513325259
610 => 0.00025888820931202
611 => 0.00025906673189007
612 => 0.00024958856773235
613 => 0.00025304191259378
614 => 0.00024730005697441
615 => 0.0002396123568536
616 => 0.00023958658498714
617 => 0.00024146813870055
618 => 0.00024034891692661
619 => 0.00023733711991076
620 => 0.00023776493146158
621 => 0.00023401685211192
622 => 0.00023822001615579
623 => 0.00023834054786093
624 => 0.00023672210075614
625 => 0.0002431976548906
626 => 0.00024585069470303
627 => 0.00024478539814816
628 => 0.00024577595065688
629 => 0.00025409834634343
630 => 0.00025545525997192
701 => 0.00025605791137301
702 => 0.00025525043833155
703 => 0.00024592806877239
704 => 0.00024634155550412
705 => 0.00024330766421947
706 => 0.00024074434578754
707 => 0.00024084686508198
708 => 0.00024216474396407
709 => 0.00024791999833471
710 => 0.00026003159186696
711 => 0.00026049121798805
712 => 0.00026104829825505
713 => 0.00025878237284305
714 => 0.0002580989480568
715 => 0.00025900056175676
716 => 0.00026354903949014
717 => 0.00027524895912005
718 => 0.00027111342611148
719 => 0.00026775117340211
720 => 0.00027070077548505
721 => 0.00027024670736413
722 => 0.00026641391546553
723 => 0.00026630634176244
724 => 0.00025894998869134
725 => 0.00025623051245701
726 => 0.00025395791456633
727 => 0.00025147629699738
728 => 0.00025000511091794
729 => 0.00025226552137808
730 => 0.00025278250399471
731 => 0.00024784007701839
801 => 0.00024716644248441
802 => 0.00025120253504297
803 => 0.00024942640118864
804 => 0.00025125319890382
805 => 0.00025167703164372
806 => 0.0002516087848109
807 => 0.00024975429707931
808 => 0.0002509362922578
809 => 0.00024814052129094
810 => 0.0002451005402757
811 => 0.00024316122178549
812 => 0.0002414689091895
813 => 0.00024240790257554
814 => 0.00023906056260774
815 => 0.0002379896811834
816 => 0.00025053585888706
817 => 0.0002598038552509
818 => 0.00025966909491324
819 => 0.00025884877601528
820 => 0.00025762994852853
821 => 0.00026345987466788
822 => 0.00026142884497398
823 => 0.0002629065887745
824 => 0.00026328273659244
825 => 0.00026442122274889
826 => 0.00026482813369362
827 => 0.00026359816620081
828 => 0.00025947024506704
829 => 0.00024918385807266
830 => 0.0002443955171592
831 => 0.00024281528490164
901 => 0.00024287272334291
902 => 0.00024128831471607
903 => 0.00024175499406489
904 => 0.00024112602268361
905 => 0.00023993490305199
906 => 0.00024233435429477
907 => 0.00024261086869807
908 => 0.0002420508081067
909 => 0.00024218272265045
910 => 0.00023754566015889
911 => 0.00023789820594895
912 => 0.00023593518619052
913 => 0.00023556714365037
914 => 0.00023060480064075
915 => 0.00022181329069609
916 => 0.00022668464061795
917 => 0.0002208007349278
918 => 0.00021857241068721
919 => 0.00022912095106661
920 => 0.00022806217018349
921 => 0.00022624999755256
922 => 0.00022356941654156
923 => 0.00022257516296956
924 => 0.00021653439300854
925 => 0.00021617747209299
926 => 0.00021917144080018
927 => 0.00021778982725798
928 => 0.00021584951858678
929 => 0.00020882191726559
930 => 0.00020092056662175
1001 => 0.00020115905873156
1002 => 0.00020367233136152
1003 => 0.00021098001049409
1004 => 0.00020812477383286
1005 => 0.00020605326687507
1006 => 0.00020566533589115
1007 => 0.00021052110434348
1008 => 0.00021739303401846
1009 => 0.0002206171896712
1010 => 0.0002174221493384
1011 => 0.00021375185903726
1012 => 0.0002139752526014
1013 => 0.00021546138990156
1014 => 0.00021561756191896
1015 => 0.00021322858024486
1016 => 0.00021390106459258
1017 => 0.00021287949937514
1018 => 0.00020661015552135
1019 => 0.00020649676297134
1020 => 0.00020495816488279
1021 => 0.00020491157674415
1022 => 0.00020229403757426
1023 => 0.00020192782575019
1024 => 0.00019673054285509
1025 => 0.00020015141019547
1026 => 0.00019785687198714
1027 => 0.00019439846168035
1028 => 0.0001938022304399
1029 => 0.00019378430700884
1030 => 0.00019733532110753
1031 => 0.00020010991452823
1101 => 0.00019789678646165
1102 => 0.00019739290010058
1103 => 0.00020277308816262
1104 => 0.00020208841019023
1105 => 0.00020149548348183
1106 => 0.00021677772808805
1107 => 0.00020468063899381
1108 => 0.00019940561767101
1109 => 0.00019287677708467
1110 => 0.00019500260050086
1111 => 0.00019545054272949
1112 => 0.00017974985803132
1113 => 0.00017338009220466
1114 => 0.00017119422861251
1115 => 0.00016993623321166
1116 => 0.00017050951751274
1117 => 0.00016477598116974
1118 => 0.00016862901241618
1119 => 0.0001636642545869
1120 => 0.0001628318967801
1121 => 0.00017170949879432
1122 => 0.0001729447652524
1123 => 0.00016767473477503
1124 => 0.00017105894748194
1125 => 0.00016983178491034
1126 => 0.00016374936111016
1127 => 0.00016351705726028
1128 => 0.00016046511080488
1129 => 0.00015568940557548
1130 => 0.00015350678013636
1201 => 0.00015237004985725
1202 => 0.00015283908692484
1203 => 0.0001526019274307
1204 => 0.00015105430131052
1205 => 0.00015269063554832
1206 => 0.00014851047775075
1207 => 0.00014684590523393
1208 => 0.00014609405644588
1209 => 0.00014238392579963
1210 => 0.0001482883935604
1211 => 0.0001494516480918
1212 => 0.00015061719459397
1213 => 0.00016076248114297
1214 => 0.00016025565129727
1215 => 0.00016483714626631
1216 => 0.00016465911779664
1217 => 0.00016335240121617
1218 => 0.00015783957890762
1219 => 0.0001600368916232
1220 => 0.00015327390462286
1221 => 0.00015834119432193
1222 => 0.00015602869491835
1223 => 0.00015755933594742
1224 => 0.00015480710536482
1225 => 0.00015633030340605
1226 => 0.00014972749889509
1227 => 0.00014356189294672
1228 => 0.0001460431127656
1229 => 0.00014874048247063
1230 => 0.00015458906726815
1231 => 0.00015110569841252
]
'min_raw' => 0.00014238392579963
'max_raw' => 0.00042501948613745
'avg_raw' => 0.00028370170596854
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000142'
'max' => '$0.000425'
'avg' => '$0.000283'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00026972607420037
'max_diff' => 1.2909486137454E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00015235844957377
102 => 0.00014816194289162
103 => 0.00013950335093347
104 => 0.00013955235762363
105 => 0.00013822042188855
106 => 0.00013706943494764
107 => 0.00015150580522845
108 => 0.00014971041437879
109 => 0.0001468496940348
110 => 0.00015067888189573
111 => 0.00015169137994355
112 => 0.00015172020433957
113 => 0.00015451388095726
114 => 0.00015600486666892
115 => 0.0001562676593629
116 => 0.00016066356988222
117 => 0.00016213702110484
118 => 0.00016820595816017
119 => 0.00015587836694822
120 => 0.00015562448831961
121 => 0.00015073276642162
122 => 0.00014763035905885
123 => 0.00015094519090798
124 => 0.00015388167940663
125 => 0.0001508240113047
126 => 0.00015122327820792
127 => 0.00014711860860175
128 => 0.0001485858348433
129 => 0.00014984960773924
130 => 0.00014915182662724
131 => 0.00014810721452959
201 => 0.00015364092083701
202 => 0.00015332868744037
203 => 0.0001584818019732
204 => 0.0001624990232543
205 => 0.00016969860195422
206 => 0.00016218546625833
207 => 0.00016191165773156
208 => 0.00016458818000099
209 => 0.00016213661134322
210 => 0.00016368591810966
211 => 0.00016944898468196
212 => 0.00016957074919731
213 => 0.00016753103668046
214 => 0.00016740691998844
215 => 0.00016779866908931
216 => 0.00017009315580918
217 => 0.0001692913916468
218 => 0.00017021921343369
219 => 0.0001713794687855
220 => 0.00017617877685868
221 => 0.00017733587378714
222 => 0.00017452472813695
223 => 0.0001747785431141
224 => 0.00017372709747326
225 => 0.00017271141415878
226 => 0.00017499452192109
227 => 0.00017916694623132
228 => 0.00017914098979624
301 => 0.00018010891113587
302 => 0.00018071191811177
303 => 0.00017812337074313
304 => 0.00017643832158967
305 => 0.00017708447665757
306 => 0.00017811769268257
307 => 0.000176749418626
308 => 0.00016830379730265
309 => 0.00017086565930378
310 => 0.00017043924019814
311 => 0.00016983196753737
312 => 0.0001724079395898
313 => 0.00017215948080121
314 => 0.00016471717546742
315 => 0.00016519360770839
316 => 0.00016474614888999
317 => 0.00016619197987371
318 => 0.00016205853172529
319 => 0.00016332995253655
320 => 0.00016412737575054
321 => 0.00016459706414967
322 => 0.00016629390071569
323 => 0.00016609479652948
324 => 0.00016628152411992
325 => 0.00016879748479909
326 => 0.00018152235054086
327 => 0.00018221493690735
328 => 0.00017880438833719
329 => 0.00018016683522087
330 => 0.00017755123513858
331 => 0.00017930710499682
401 => 0.00018050842655957
402 => 0.00017507988541835
403 => 0.00017475844244291
404 => 0.00017213204684865
405 => 0.00017354332307436
406 => 0.00017129788112491
407 => 0.00017184883403708
408 => 0.00017030832166345
409 => 0.00017308093722304
410 => 0.00017618115223956
411 => 0.00017696438898393
412 => 0.0001749040303141
413 => 0.00017341219485289
414 => 0.00017079302322416
415 => 0.00017514876401479
416 => 0.00017642251536076
417 => 0.00017514207354122
418 => 0.00017484536719343
419 => 0.00017428310920049
420 => 0.00017496465288459
421 => 0.00017641557823738
422 => 0.00017573134863539
423 => 0.00017618329434208
424 => 0.00017446094335257
425 => 0.00017812422766001
426 => 0.00018394240475762
427 => 0.00018396111114835
428 => 0.00018327687785811
429 => 0.00018299690433775
430 => 0.00018369896921629
501 => 0.00018407981061269
502 => 0.0001863501596932
503 => 0.00018878633471129
504 => 0.00020015490053426
505 => 0.00019696265274322
506 => 0.00020704952066037
507 => 0.00021502692356696
508 => 0.0002174189978891
509 => 0.00021521840206852
510 => 0.0002076902826402
511 => 0.00020732091718626
512 => 0.00021857110590221
513 => 0.00021539241229867
514 => 0.00021501431680905
515 => 0.00021099201960188
516 => 0.00021336969542252
517 => 0.00021284966284214
518 => 0.00021202876597316
519 => 0.0002165652058086
520 => 0.00022505701620978
521 => 0.00022373348792306
522 => 0.00022274553545374
523 => 0.0002184166153218
524 => 0.00022102359214054
525 => 0.00022009529762874
526 => 0.00022408383996169
527 => 0.00022172111584068
528 => 0.00021536833056829
529 => 0.00021638003256197
530 => 0.00021622711584089
531 => 0.00021937413112499
601 => 0.00021842947525042
602 => 0.0002160426566202
603 => 0.000225027992125
604 => 0.00022444453441638
605 => 0.00022527174405021
606 => 0.00022563590731332
607 => 0.00023110512269573
608 => 0.00023334568524253
609 => 0.00023385433216722
610 => 0.00023598269329535
611 => 0.00023380137660346
612 => 0.00024252819862347
613 => 0.0002483310260426
614 => 0.00025507130870069
615 => 0.00026492067328134
616 => 0.00026862412547538
617 => 0.00026795512998484
618 => 0.00027542280580064
619 => 0.00028884205324454
620 => 0.00027066754356422
621 => 0.00028980534638875
622 => 0.00028374653897106
623 => 0.00026938121557702
624 => 0.00026845625810648
625 => 0.00027818462189376
626 => 0.00029976119645364
627 => 0.00029435650924587
628 => 0.00029977003658573
629 => 0.00029345486938735
630 => 0.00029314126810754
701 => 0.00029946332301063
702 => 0.00031423514888895
703 => 0.00030721760812777
704 => 0.00029715624267503
705 => 0.00030458539835315
706 => 0.00029814957616886
707 => 0.00028364786751446
708 => 0.00029435237638342
709 => 0.00028719457614961
710 => 0.00028928360278742
711 => 0.00030432823423647
712 => 0.00030251802437737
713 => 0.00030486060355597
714 => 0.0003007260126217
715 => 0.00029686365272395
716 => 0.00028965427115219
717 => 0.00028751992868701
718 => 0.00028810978415879
719 => 0.00028751963638393
720 => 0.00028348605365217
721 => 0.00028261500184528
722 => 0.00028116321067215
723 => 0.00028161318146288
724 => 0.00027888338932091
725 => 0.00028403507109664
726 => 0.00028499126863068
727 => 0.00028874023301246
728 => 0.00028912946293128
729 => 0.00029957027537135
730 => 0.00029381965133008
731 => 0.00029767766642195
801 => 0.00029733256923909
802 => 0.00026969255569444
803 => 0.00027350110569098
804 => 0.00027942601429679
805 => 0.0002767568510009
806 => 0.00027298327858853
807 => 0.00026993591653939
808 => 0.00026531885142618
809 => 0.00027181728191014
810 => 0.00028036202696552
811 => 0.00028934617176686
812 => 0.00030014003308119
813 => 0.00029773096889023
814 => 0.00028914438803765
815 => 0.00028952957578219
816 => 0.00029191065485318
817 => 0.0002888269411124
818 => 0.000287917493729
819 => 0.00029178571074822
820 => 0.00029181234903289
821 => 0.00028826416369487
822 => 0.00028432100500273
823 => 0.00028430448302383
824 => 0.00028360283602095
825 => 0.00029357969083044
826 => 0.00029906595220187
827 => 0.00029969494322655
828 => 0.00029902361609437
829 => 0.00029928198326352
830 => 0.00029608964865301
831 => 0.00030338637891522
901 => 0.00031008258017565
902 => 0.00030828785519438
903 => 0.00030559730731227
904 => 0.00030345415632982
905 => 0.00030778299693323
906 => 0.00030759024047539
907 => 0.00031002409469928
908 => 0.00030991368101306
909 => 0.00030909526737945
910 => 0.00030828788442251
911 => 0.00031148906658437
912 => 0.00031056717753116
913 => 0.00030964385652963
914 => 0.00030779199490768
915 => 0.00030804369365827
916 => 0.00030535361033718
917 => 0.00030410905470301
918 => 0.00028539392407156
919 => 0.0002803926296323
920 => 0.00028196613867363
921 => 0.00028248417870618
922 => 0.00028030760895688
923 => 0.00028342825086248
924 => 0.00028294190212707
925 => 0.00028483400055206
926 => 0.00028365189960149
927 => 0.00028370041343683
928 => 0.00028717672028196
929 => 0.00028818590694836
930 => 0.00028767262646469
1001 => 0.00028803211052123
1002 => 0.00029631626887538
1003 => 0.00029513852646989
1004 => 0.00029451287429025
1005 => 0.0002946861842198
1006 => 0.00029680296429364
1007 => 0.00029739554714241
1008 => 0.00029488473197212
1009 => 0.00029606884692128
1010 => 0.00030111065808824
1011 => 0.00030287500665487
1012 => 0.00030850596034422
1013 => 0.00030611383113477
1014 => 0.00031050468782765
1015 => 0.00032400068434823
1016 => 0.00033478222022079
1017 => 0.00032486707426657
1018 => 0.00034466599187621
1019 => 0.00036008228922136
1020 => 0.00035949058605207
1021 => 0.00035680239802456
1022 => 0.00033925135336057
1023 => 0.00032310062038943
1024 => 0.00033661139431614
1025 => 0.00033664583605739
1026 => 0.00033548524859497
1027 => 0.00032827693954207
1028 => 0.00033523441506485
1029 => 0.00033578667420601
1030 => 0.00033547755594452
1031 => 0.00032995096229443
1101 => 0.00032151287527599
1102 => 0.00032316165728147
1103 => 0.00032586239584068
1104 => 0.000320749334315
1105 => 0.00031911540134623
1106 => 0.00032215319360365
1107 => 0.00033194159320621
1108 => 0.00033009115296169
1109 => 0.00033004283048869
1110 => 0.00033795979856356
1111 => 0.00033229295801059
1112 => 0.00032318245370269
1113 => 0.00032088193121215
1114 => 0.00031271662618839
1115 => 0.00031835643145212
1116 => 0.00031855939800321
1117 => 0.00031547053429768
1118 => 0.00032343309796869
1119 => 0.00032335972154268
1120 => 0.00033091899067711
1121 => 0.0003453694741303
1122 => 0.00034109575510809
1123 => 0.00033612588486456
1124 => 0.00033666624755959
1125 => 0.00034259269259524
1126 => 0.0003390094286391
1127 => 0.00034029799534114
1128 => 0.00034259074219521
1129 => 0.00034397401329798
1130 => 0.00033646721613523
1201 => 0.00033471702262498
1202 => 0.00033113674093746
1203 => 0.0003302027122743
1204 => 0.00033311877700377
1205 => 0.00033235049697364
1206 => 0.00031854233945052
1207 => 0.00031709931016149
1208 => 0.00031714356580961
1209 => 0.00031351500005005
1210 => 0.00030798056631114
1211 => 0.00032252472773312
1212 => 0.00032135662802552
1213 => 0.00032006713635208
1214 => 0.00032022509172434
1215 => 0.00032653821925025
1216 => 0.00032287628646464
1217 => 0.00033261213495417
1218 => 0.00033061073719112
1219 => 0.00032855801112741
1220 => 0.00032827426185784
1221 => 0.00032748413745366
1222 => 0.00032477450687942
1223 => 0.00032150246513747
1224 => 0.00031934197976003
1225 => 0.00029457609597545
1226 => 0.00029917249994935
1227 => 0.00030446024374592
1228 => 0.00030628555171519
1229 => 0.00030316323612628
1230 => 0.00032489779492961
1231 => 0.0003288689082624
]
'min_raw' => 0.00013706943494764
'max_raw' => 0.00036008228922136
'avg_raw' => 0.0002485758620845
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000137'
'max' => '$0.00036'
'avg' => '$0.000248'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.3144908519889E-6
'max_diff' => -6.493719691609E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00031684014694807
102 => 0.00031459005683725
103 => 0.00032504531046268
104 => 0.00031873951442377
105 => 0.00032157901399398
106 => 0.00031544156904641
107 => 0.0003279123833483
108 => 0.00032781737663765
109 => 0.0003229659482081
110 => 0.00032706634229561
111 => 0.00032635379791716
112 => 0.00032087654716874
113 => 0.00032808602196662
114 => 0.00032808959777618
115 => 0.00032342020339188
116 => 0.00031796737301289
117 => 0.00031699253573124
118 => 0.00031625812679047
119 => 0.00032139839441464
120 => 0.00032600714229327
121 => 0.00033458287948991
122 => 0.00033673902357563
123 => 0.00034515459748486
124 => 0.00034014353296877
125 => 0.0003423648729646
126 => 0.0003447764517578
127 => 0.00034593265131414
128 => 0.00034404868618218
129 => 0.00035712153645162
130 => 0.00035822528555614
131 => 0.0003585953630835
201 => 0.00035418727152621
202 => 0.00035810268855576
203 => 0.00035627079459261
204 => 0.00036103687376991
205 => 0.00036178425584127
206 => 0.00036115124981572
207 => 0.00036138848068179
208 => 0.00035023310918564
209 => 0.00034965464432429
210 => 0.00034176723489382
211 => 0.00034498141253752
212 => 0.00033897266149216
213 => 0.00034087809834564
214 => 0.00034171799675498
215 => 0.00034127928148976
216 => 0.00034516313731899
217 => 0.00034186106644482
218 => 0.00033314635849717
219 => 0.00032442927623317
220 => 0.00032431984036613
221 => 0.0003220247864753
222 => 0.00032036588287232
223 => 0.00032068544655902
224 => 0.0003218116306723
225 => 0.00032030042700436
226 => 0.00032062291892689
227 => 0.00032597843359325
228 => 0.00032705244386581
229 => 0.00032340253731676
301 => 0.00030874763584333
302 => 0.00030515128626272
303 => 0.00030773627102255
304 => 0.00030650081480169
305 => 0.00024737007895276
306 => 0.00026126196824186
307 => 0.00025300787935026
308 => 0.00025681174326388
309 => 0.00024838645589151
310 => 0.00025240744463275
311 => 0.00025166491483524
312 => 0.00027400266172123
313 => 0.00027365388852818
314 => 0.00027382082779903
315 => 0.00026585238144338
316 => 0.00027854633285482
317 => 0.00028479982977983
318 => 0.00028364247393044
319 => 0.00028393375546348
320 => 0.000278928573664
321 => 0.00027386928889963
322 => 0.0002682577634776
323 => 0.00027868328410623
324 => 0.00027752414418189
325 => 0.00028018279412293
326 => 0.0002869444894822
327 => 0.00028794017480903
328 => 0.00028927838598554
329 => 0.00028879873253912
330 => 0.00030022602360058
331 => 0.00029884210325334
401 => 0.00030217695310912
402 => 0.00029531691394011
403 => 0.00028755412845948
404 => 0.00028902958019477
405 => 0.00028888748232783
406 => 0.00028707841338932
407 => 0.00028544526684057
408 => 0.00028272653797308
409 => 0.00029132899840596
410 => 0.00029097975422233
411 => 0.00029663361160346
412 => 0.00029563423739271
413 => 0.00028896017182492
414 => 0.00028919853738234
415 => 0.00029080166031057
416 => 0.0002963500870693
417 => 0.00029799723789699
418 => 0.00029723421200599
419 => 0.00029904023769327
420 => 0.00030046764675889
421 => 0.00029921949829513
422 => 0.00031689064842975
423 => 0.00030955235486557
424 => 0.00031312898808923
425 => 0.00031398199403833
426 => 0.0003117970372365
427 => 0.00031227087612938
428 => 0.00031298861293872
429 => 0.00031734657029777
430 => 0.00032878311139306
501 => 0.00033384827759299
502 => 0.00034908708001639
503 => 0.0003334276860506
504 => 0.00033249852241769
505 => 0.00033524349090189
506 => 0.00034419028111548
507 => 0.00035144081425432
508 => 0.00035384623438977
509 => 0.00035416415036982
510 => 0.00035867687845323
511 => 0.00036126349003324
512 => 0.00035812891456737
513 => 0.00035547269006378
514 => 0.00034595842359464
515 => 0.00034705972584493
516 => 0.00035464660624054
517 => 0.00036536352166436
518 => 0.00037455975000301
519 => 0.00037133955135973
520 => 0.00039590739390198
521 => 0.00039834319513941
522 => 0.00039800664616728
523 => 0.00040355576388197
524 => 0.00039254189527649
525 => 0.00038783325306399
526 => 0.00035604699595088
527 => 0.00036497763765509
528 => 0.00037795884985035
529 => 0.00037624073773926
530 => 0.00036681343445426
531 => 0.0003745525985481
601 => 0.00037199378887264
602 => 0.00036997554951649
603 => 0.00037922149526194
604 => 0.0003690551981123
605 => 0.00037785743325947
606 => 0.00036656847563577
607 => 0.00037135426095588
608 => 0.00036863761774579
609 => 0.00037039561884199
610 => 0.0003601183803555
611 => 0.00036566372877695
612 => 0.00035988767562975
613 => 0.00035988493702849
614 => 0.00035975743033513
615 => 0.00036655293124787
616 => 0.00036677453228867
617 => 0.00036175264684672
618 => 0.00036102891469794
619 => 0.00036370493177535
620 => 0.00036057201662769
621 => 0.00036203788790695
622 => 0.00036061641637543
623 => 0.00036029641319292
624 => 0.00035774657339058
625 => 0.00035664803229443
626 => 0.00035707879856415
627 => 0.00035560837121037
628 => 0.00035472238554203
629 => 0.00035958118548577
630 => 0.00035698532467926
701 => 0.00035918333258728
702 => 0.00035667842516538
703 => 0.00034799532470483
704 => 0.00034300158180785
705 => 0.00032660000996172
706 => 0.0003312514753912
707 => 0.00033433540178323
708 => 0.00033331616412906
709 => 0.00033550588100283
710 => 0.00033564031183473
711 => 0.00033492841255755
712 => 0.00033410412439452
713 => 0.00033370290650275
714 => 0.00033669325595635
715 => 0.0003384292544647
716 => 0.00033464491505428
717 => 0.00033375829727896
718 => 0.00033758447336199
719 => 0.00033991843856233
720 => 0.00035715112625989
721 => 0.00035587447309441
722 => 0.00035907862200924
723 => 0.0003587178840131
724 => 0.0003620763425368
725 => 0.00036756600283257
726 => 0.00035640398851811
727 => 0.00035834132824968
728 => 0.00035786633728721
729 => 0.00036305216406618
730 => 0.00036306835365134
731 => 0.00035995919144608
801 => 0.00036164471871795
802 => 0.00036070390363481
803 => 0.00036240408364882
804 => 0.00035585742261304
805 => 0.00036383054908623
806 => 0.0003683507980196
807 => 0.00036841356168043
808 => 0.00037055612379993
809 => 0.00037273309100218
810 => 0.00037691158997301
811 => 0.00037261655493377
812 => 0.00036489020501141
813 => 0.00036544802251984
814 => 0.00036091806638732
815 => 0.00036099421576831
816 => 0.00036058772440465
817 => 0.00036180763558625
818 => 0.00035612512451585
819 => 0.00035745879850603
820 => 0.00035559164710979
821 => 0.0003583372694272
822 => 0.0003553834336813
823 => 0.00035786610823218
824 => 0.00035893754826638
825 => 0.00036289118505903
826 => 0.00035479947831242
827 => 0.00033829994049569
828 => 0.00034176834338233
829 => 0.00033663830307583
830 => 0.00033711310783764
831 => 0.0003380722890211
901 => 0.00033496326898093
902 => 0.00033555637202811
903 => 0.00033553518221367
904 => 0.00033535257984042
905 => 0.00033454380365192
906 => 0.0003333709181671
907 => 0.00033804333294351
908 => 0.00033883726726199
909 => 0.00034060208490434
910 => 0.00034585298512072
911 => 0.00034532829636435
912 => 0.00034618408549511
913 => 0.0003443159026277
914 => 0.00033719976748278
915 => 0.00033758620785791
916 => 0.00033276729018777
917 => 0.00034047885434511
918 => 0.00033865265416498
919 => 0.00033747529102871
920 => 0.00033715403658879
921 => 0.00034241795277116
922 => 0.00034399299899471
923 => 0.00034301153588562
924 => 0.00034099852641501
925 => 0.00034486409969139
926 => 0.00034589836402471
927 => 0.00034612989766674
928 => 0.00035297895236233
929 => 0.00034651268374072
930 => 0.00034806917886712
1001 => 0.0003602125095222
1002 => 0.00034920018428313
1003 => 0.00035503365856642
1004 => 0.00035474814035619
1005 => 0.00035773234840552
1006 => 0.00035450334819364
1007 => 0.00035454337552119
1008 => 0.00035719315010122
1009 => 0.00035347201959292
1010 => 0.00035255061534869
1011 => 0.00035127770198451
1012 => 0.0003540570617466
1013 => 0.00035572316222434
1014 => 0.000369150708459
1015 => 0.00037782551569708
1016 => 0.0003774489194367
1017 => 0.00038089030429793
1018 => 0.00037933992889847
1019 => 0.00037433335776526
1020 => 0.00038287896420335
1021 => 0.00038017477676298
1022 => 0.00038039770668997
1023 => 0.00038038940922696
1024 => 0.00038218745747063
1025 => 0.00038091337550129
1026 => 0.00037840202915787
1027 => 0.00038006917806026
1028 => 0.0003850200142837
1029 => 0.00040038756183148
1030 => 0.00040898744503214
1031 => 0.00039986983806446
1101 => 0.00040615904126114
1102 => 0.00040238776041537
1103 => 0.0004017024064998
1104 => 0.00040565249087578
1105 => 0.00040960948935156
1106 => 0.00040935744565522
1107 => 0.00040648486795593
1108 => 0.00040486222170256
1109 => 0.00041714944275945
1110 => 0.00042620245792681
1111 => 0.00042558510298458
1112 => 0.00042830990692501
1113 => 0.0004363100155691
1114 => 0.00043704144524289
1115 => 0.00043694930191571
1116 => 0.00043513637715243
1117 => 0.00044301352305792
1118 => 0.00044958477675748
1119 => 0.00043471673745016
1120 => 0.00044037829218146
1121 => 0.00044291994650425
1122 => 0.00044665184912495
1123 => 0.00045294819438557
1124 => 0.00045978769536171
1125 => 0.00046075487579105
1126 => 0.00046006861499259
1127 => 0.00045555778024317
1128 => 0.00046304164382348
1129 => 0.00046742551559063
1130 => 0.00047003601090484
1201 => 0.00047665579267669
1202 => 0.00044293564289606
1203 => 0.00041906684488115
1204 => 0.0004153393874015
1205 => 0.00042291931876139
1206 => 0.00042491808621218
1207 => 0.00042411238555901
1208 => 0.00039724588333704
1209 => 0.00041519794082745
1210 => 0.00043451284523526
1211 => 0.00043525480937598
1212 => 0.00044492425437814
1213 => 0.00044807302203478
1214 => 0.00045585819266464
1215 => 0.00045537122812207
1216 => 0.00045726679328132
1217 => 0.00045683103567782
1218 => 0.00047125142490856
1219 => 0.00048715925567858
1220 => 0.00048660841808282
1221 => 0.00048432147919672
1222 => 0.00048771797342361
1223 => 0.00050413655956502
1224 => 0.0005026249992556
1225 => 0.0005040933513418
1226 => 0.00052345178971349
1227 => 0.00054862051330243
1228 => 0.00053692711429683
1229 => 0.00056229842545406
1230 => 0.00057826832095212
1231 => 0.000605886603898
]
'min_raw' => 0.00024737007895276
'max_raw' => 0.000605886603898
'avg_raw' => 0.00042662834142538
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000247'
'max' => '$0.0006058'
'avg' => '$0.000426'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00011030064400512
'max_diff' => 0.00024580431467663
'year' => 2028
]
3 => [
'items' => [
101 => 0.00060242865885026
102 => 0.00061318025372877
103 => 0.00059623821551991
104 => 0.00055733587124151
105 => 0.00055117942634727
106 => 0.00056350478493156
107 => 0.00059380547632016
108 => 0.00056255050832873
109 => 0.00056887334764684
110 => 0.00056705236949787
111 => 0.00056695533731097
112 => 0.00057065866122651
113 => 0.00056528679673463
114 => 0.0005434008544147
115 => 0.00055343105280526
116 => 0.00054955791151698
117 => 0.00055385545053813
118 => 0.00057704749619541
119 => 0.00056679373998101
120 => 0.00055599224075666
121 => 0.00056953971782856
122 => 0.00058679031155929
123 => 0.00058571080040592
124 => 0.00058361609756772
125 => 0.00059542382779157
126 => 0.00061492673878101
127 => 0.00062019829725242
128 => 0.00062408965394374
129 => 0.00062462620628647
130 => 0.00063015302888194
131 => 0.00060043391084745
201 => 0.00064759891440927
202 => 0.00065574300761746
203 => 0.0006542122556324
204 => 0.00066326407247748
205 => 0.00066060079833923
206 => 0.00065674213196781
207 => 0.00067109118704392
208 => 0.0006546411533082
209 => 0.000631292401422
210 => 0.00061848281435128
211 => 0.00063535151192592
212 => 0.00064565263689833
213 => 0.00065246102523049
214 => 0.00065452123942607
215 => 0.00060274092138099
216 => 0.00057483420182278
217 => 0.0005927220891084
218 => 0.00061454654615289
219 => 0.00060031267488662
220 => 0.00060087061569198
221 => 0.00058057685586185
222 => 0.00061634209359543
223 => 0.00061113139929065
224 => 0.00063816449056144
225 => 0.00063171282637555
226 => 0.00065375726288832
227 => 0.00064795222396499
228 => 0.00067204861598039
301 => 0.0006816613191391
302 => 0.00069780254384035
303 => 0.0007096760944372
304 => 0.0007166484704525
305 => 0.00071622987514927
306 => 0.00074385790254582
307 => 0.00072756662003983
308 => 0.00070710092965183
309 => 0.00070673076988113
310 => 0.00071733024093416
311 => 0.00073954382443842
312 => 0.00074530348344658
313 => 0.00074852234708501
314 => 0.00074359254537331
315 => 0.00072590952581979
316 => 0.00071827408763152
317 => 0.00072477970218786
318 => 0.00071682389461929
319 => 0.000730557850488
320 => 0.00074941750531041
321 => 0.00074552306116874
322 => 0.00075854160404665
323 => 0.00077201442633463
324 => 0.00079128116730876
325 => 0.00079631820684475
326 => 0.00080464424165628
327 => 0.00081321446643731
328 => 0.00081596699166294
329 => 0.00082122241637708
330 => 0.00082119471769469
331 => 0.00083703229380166
401 => 0.00085450163069654
402 => 0.00086109590095828
403 => 0.00087625906181497
404 => 0.00085029268022842
405 => 0.00086998847894211
406 => 0.00088775458239968
407 => 0.0008665731014471
408 => 0.00089576683828813
409 => 0.00089690036493524
410 => 0.00091401527152174
411 => 0.00089666603487696
412 => 0.00088636411353801
413 => 0.00091610537443559
414 => 0.00093049623374299
415 => 0.0009261615898029
416 => 0.00089317473539108
417 => 0.00087397497125066
418 => 0.00082372548513725
419 => 0.00088324817205484
420 => 0.00091223993655181
421 => 0.00089309965372493
422 => 0.00090275289905905
423 => 0.00095541787552667
424 => 0.00097546928876084
425 => 0.00097129873497809
426 => 0.00097200348991422
427 => 0.00098282286853648
428 => 0.0010308019516882
429 => 0.0010020517729173
430 => 0.001024030207339
501 => 0.0010356874897072
502 => 0.0010465154232381
503 => 0.0010199254406897
504 => 0.0009853322640785
505 => 0.00097437515292298
506 => 0.00089119652981154
507 => 0.00088686672125214
508 => 0.00088443626850112
509 => 0.00086911260770031
510 => 0.00085707240781482
511 => 0.00084749759384192
512 => 0.00082237042269555
513 => 0.0008308501053416
514 => 0.00079080263898247
515 => 0.00081642358876398
516 => 0.00075250686547492
517 => 0.00080573861192574
518 => 0.00077676699248307
519 => 0.00079622065574961
520 => 0.00079615278375112
521 => 0.00076033242188786
522 => 0.00073967198471701
523 => 0.00075283761939852
524 => 0.00076695222486648
525 => 0.00076924227211642
526 => 0.00078754222653453
527 => 0.00079264935045642
528 => 0.00077717452654428
529 => 0.00075118233345324
530 => 0.00075721972708948
531 => 0.00073954963712767
601 => 0.00070858348413979
602 => 0.00073082391583285
603 => 0.00073841777705561
604 => 0.00074177165878431
605 => 0.00071132000380744
606 => 0.00070175143267611
607 => 0.00069665720569388
608 => 0.00074725140719123
609 => 0.00075002307175921
610 => 0.00073584284395556
611 => 0.00079993881825243
612 => 0.00078543192522362
613 => 0.00080163967901188
614 => 0.00075667189689796
615 => 0.00075838972673186
616 => 0.00073710125803845
617 => 0.00074902137801077
618 => 0.00074059662141773
619 => 0.00074805835011392
620 => 0.00075253087952856
621 => 0.00077381585499374
622 => 0.00080598165215502
623 => 0.00077063658945062
624 => 0.00075523623947969
625 => 0.0007647905299868
626 => 0.00079023486465691
627 => 0.00082878433415365
628 => 0.0008059622723312
629 => 0.00081609031582427
630 => 0.00081830284276221
701 => 0.00080147469929299
702 => 0.00082940481180678
703 => 0.00084437278600674
704 => 0.00085972683035007
705 => 0.00087305831684283
706 => 0.00085359408739668
707 => 0.00087442360299175
708 => 0.00085763869032659
709 => 0.00084258088847357
710 => 0.00084260372494339
711 => 0.0008331577458816
712 => 0.00081485497117944
713 => 0.00081147965870942
714 => 0.00082903846043345
715 => 0.00084311895659141
716 => 0.00084427869369601
717 => 0.00085207437985107
718 => 0.00085668778661569
719 => 0.00090190544453126
720 => 0.00092009236060499
721 => 0.00094233097731924
722 => 0.00095099417182921
723 => 0.00097706728137707
724 => 0.00095601112786275
725 => 0.00095145549660051
726 => 0.00088821066128652
727 => 0.00089856699952614
728 => 0.00091514849628579
729 => 0.00088848408406074
730 => 0.00090539651631587
731 => 0.00090873538869733
801 => 0.0008875780375366
802 => 0.00089887909294672
803 => 0.00086886684030684
804 => 0.00080663583724855
805 => 0.00082947409270286
806 => 0.00084629073599089
807 => 0.0008222913125417
808 => 0.00086530935016842
809 => 0.00084017910065944
810 => 0.0008322140180298
811 => 0.0008011393909346
812 => 0.00081580541875145
813 => 0.00083564143137102
814 => 0.00082338508175611
815 => 0.00084881884750721
816 => 0.00088483984274835
817 => 0.00091051054904453
818 => 0.00091248122711952
819 => 0.00089597668277482
820 => 0.0009224253204178
821 => 0.00092261796986839
822 => 0.00089278379856126
823 => 0.000874510534753
824 => 0.00087035881076849
825 => 0.00088073063127524
826 => 0.00089332393611411
827 => 0.00091318006789313
828 => 0.00092517871246947
829 => 0.0009564648139352
830 => 0.000964929935949
831 => 0.00097423053857754
901 => 0.00098665901188889
902 => 0.0010015825806943
903 => 0.00096893066174728
904 => 0.00097022798335784
905 => 0.00093982296853096
906 => 0.00090733084966824
907 => 0.00093198831768525
908 => 0.00096422467707198
909 => 0.00095682962061065
910 => 0.00095599752569145
911 => 0.00095739687854166
912 => 0.00095182124746978
913 => 0.00092660287477422
914 => 0.00091393836588187
915 => 0.0009302788134138
916 => 0.00093896303404737
917 => 0.00095243150290641
918 => 0.00095077122983464
919 => 0.00098546455920758
920 => 0.00099894533793007
921 => 0.00099549637785781
922 => 0.00099613106951497
923 => 0.0010205373754661
924 => 0.0010476822072235
925 => 0.0010731069242403
926 => 0.0010989700384067
927 => 0.0010677910448245
928 => 0.0010519602747365
929 => 0.0010682935885402
930 => 0.0010596269023279
1001 => 0.0011094282520098
1002 => 0.0011128763894093
1003 => 0.0011626741378868
1004 => 0.0012099381309975
1005 => 0.0011802524637471
1006 => 0.0012082447108924
1007 => 0.0012385206084215
1008 => 0.0012969277268425
1009 => 0.0012772582641455
1010 => 0.0012621917639794
1011 => 0.0012479539941232
1012 => 0.0012775805330116
1013 => 0.001315694601996
1014 => 0.0013239040074032
1015 => 0.0013372063803972
1016 => 0.0013232205617308
1017 => 0.001340064939827
1018 => 0.0013995329963015
1019 => 0.001383464202503
1020 => 0.0013606439321217
1021 => 0.0014075882513355
1022 => 0.0014245772179675
1023 => 0.0015438146829819
1024 => 0.0016943569080167
1025 => 0.0016320314383387
1026 => 0.0015933440080793
1027 => 0.0016024364718684
1028 => 0.0016574093962752
1029 => 0.0016750649548412
1030 => 0.0016270710604227
1031 => 0.0016440233152986
1101 => 0.0017374319063736
1102 => 0.0017875426185789
1103 => 0.0017194855406375
1104 => 0.0015317187617801
1105 => 0.0013585892164559
1106 => 0.0014045109680009
1107 => 0.0013993048664936
1108 => 0.0014996607446446
1109 => 0.0013830809670853
1110 => 0.0013850438715538
1111 => 0.0014874750029863
1112 => 0.0014601481332343
1113 => 0.0014158821039971
1114 => 0.001358912407457
1115 => 0.0012535986543437
1116 => 0.0011603193263199
1117 => 0.0013432615695208
1118 => 0.0013353727673351
1119 => 0.0013239486127152
1120 => 0.0013493718325991
1121 => 0.0014728197718485
1122 => 0.0014699738972869
1123 => 0.0014518698953034
1124 => 0.0014656016212465
1125 => 0.0014134748660473
1126 => 0.0014269091177663
1127 => 0.0013585617918514
1128 => 0.0013894576376014
1129 => 0.0014157871289792
1130 => 0.0014210731641881
1201 => 0.0014329828714253
1202 => 0.0013312157270532
1203 => 0.0013769061871499
1204 => 0.0014037450518396
1205 => 0.0012824860847654
1206 => 0.0014013481519378
1207 => 0.0013294441874811
1208 => 0.0013050389019832
1209 => 0.0013378974037543
1210 => 0.0013250924136582
1211 => 0.0013140834351078
1212 => 0.0013079402359184
1213 => 0.0013320678931585
1214 => 0.0013309423091095
1215 => 0.0012914647788881
1216 => 0.0012399679500243
1217 => 0.0012572519761168
1218 => 0.0012509725273988
1219 => 0.0012282149951797
1220 => 0.0012435508241405
1221 => 0.0011760195946829
1222 => 0.0010598356243689
1223 => 0.0011365903139696
1224 => 0.001133635341913
1225 => 0.0011321453110047
1226 => 0.0011898243388958
1227 => 0.0011842798312457
1228 => 0.0011742164955687
1229 => 0.0012280301741283
1230 => 0.0012083874575579
1231 => 0.0012689216816217
]
'min_raw' => 0.0005434008544147
'max_raw' => 0.0017875426185789
'avg_raw' => 0.0011654717364968
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000543'
'max' => '$0.001787'
'avg' => '$0.001165'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00029603077546195
'max_diff' => 0.0011816560146809
'year' => 2029
]
4 => [
'items' => [
101 => 0.0013087934366983
102 => 0.0012986806698947
103 => 0.0013361802482611
104 => 0.0012576501651691
105 => 0.0012837347086922
106 => 0.0012891106969607
107 => 0.0012273661216881
108 => 0.0011851869812673
109 => 0.0011823741134787
110 => 0.0011092412966326
111 => 0.0011483082570843
112 => 0.0011826855655811
113 => 0.001166221502598
114 => 0.0011610094721075
115 => 0.0011876366055322
116 => 0.0011897057618453
117 => 0.0011425287786278
118 => 0.0011523383673394
119 => 0.0011932459829756
120 => 0.0011513076003835
121 => 0.0010698281736031
122 => 0.0010496201492203
123 => 0.0010469240262599
124 => 0.0009921182614152
125 => 0.001050970546038
126 => 0.001025279946657
127 => 0.001106436242281
128 => 0.0010600802014705
129 => 0.0010580818852018
130 => 0.0010550611370724
131 => 0.001007887551273
201 => 0.0010182155685253
202 => 0.0010525474708734
203 => 0.0010647974804077
204 => 0.0010635197040519
205 => 0.0010523792258222
206 => 0.0010574792797073
207 => 0.0010410502291668
208 => 0.0010352487894798
209 => 0.001016937850016
210 => 0.00099002582753041
211 => 0.00099376810931806
212 => 0.00094044835086032
213 => 0.00091139691655877
214 => 0.00090335586243586
215 => 0.00089260302880391
216 => 0.00090457042360678
217 => 0.00094029730268388
218 => 0.00089720310663668
219 => 0.00082332113022014
220 => 0.00082776156289153
221 => 0.00083773789672787
222 => 0.00081914706462391
223 => 0.00080155240224779
224 => 0.00081684953368375
225 => 0.00078554476630717
226 => 0.00084152092830503
227 => 0.00084000692999437
228 => 0.00086087138164454
301 => 0.00087391835144304
302 => 0.00084384931006413
303 => 0.00083628702747267
304 => 0.00084059484732335
305 => 0.00076939618097895
306 => 0.00085505293162637
307 => 0.00085579369476294
308 => 0.00084945083105726
309 => 0.00089506040642153
310 => 0.00099131083642344
311 => 0.00095509755299214
312 => 0.00094107467509526
313 => 0.00091441717396262
314 => 0.00094993671145606
315 => 0.00094720936516767
316 => 0.00093487527093618
317 => 0.00092741557226026
318 => 0.00094116029579749
319 => 0.00092571244890788
320 => 0.00092293759112806
321 => 0.00090612497205741
322 => 0.00090012363197461
323 => 0.00089568047869754
324 => 0.00089078900351471
325 => 0.00090157837888836
326 => 0.00087712823483112
327 => 0.00084764375797527
328 => 0.00084519244275117
329 => 0.00085196073960676
330 => 0.0008489662720886
331 => 0.00084517810639275
401 => 0.00083794546643382
402 => 0.00083579969665891
403 => 0.00084277240744787
404 => 0.00083490062350143
405 => 0.00084651586951266
406 => 0.00084335716529849
407 => 0.00082571290032793
408 => 0.00080372161343105
409 => 0.00080352584484938
410 => 0.00079878785816039
411 => 0.00079275331975089
412 => 0.0007910746492169
413 => 0.00081556125194138
414 => 0.0008662477867587
415 => 0.00085629680714808
416 => 0.00086348740973416
417 => 0.00089885805765674
418 => 0.00091010132299884
419 => 0.00090212111957035
420 => 0.00089119732491993
421 => 0.00089167791644536
422 => 0.00092900782962337
423 => 0.00093133605051848
424 => 0.00093721871360789
425 => 0.00094477959811818
426 => 0.00090340877089665
427 => 0.00088972935420364
428 => 0.00088324728766935
429 => 0.00086328503161918
430 => 0.00088481261333479
501 => 0.00087226941337207
502 => 0.00087396191958376
503 => 0.00087285967269305
504 => 0.00087346157402899
505 => 0.00084150528182696
506 => 0.00085314847513211
507 => 0.00083378940802782
508 => 0.00080786979033243
509 => 0.00080778289868533
510 => 0.00081412668839598
511 => 0.00081035315404357
512 => 0.00080019867012767
513 => 0.00080164106664012
514 => 0.0007890041554302
515 => 0.00080317541645966
516 => 0.00080358179751878
517 => 0.00079812509010863
518 => 0.00081995787298168
519 => 0.00082890278193863
520 => 0.00082531106022727
521 => 0.00082865077716857
522 => 0.00085671031527688
523 => 0.00086128524431201
524 => 0.00086331712558657
525 => 0.00086059467385135
526 => 0.00082916365401557
527 => 0.0008305577534003
528 => 0.0008203287771146
529 => 0.00081168637005615
530 => 0.00081203202101503
531 => 0.00081647534167735
601 => 0.00083587958360701
602 => 0.00087671466680544
603 => 0.00087826432836276
604 => 0.00088014256337705
605 => 0.00087250283764864
606 => 0.00087019862326662
607 => 0.0008732384768047
608 => 0.00088857398704735
609 => 0.00092802108294188
610 => 0.0009140778446698
611 => 0.00090274177491517
612 => 0.00091268656427244
613 => 0.00091115564190073
614 => 0.00089823311641762
615 => 0.00089787042416712
616 => 0.00087306796618372
617 => 0.0008638990621919
618 => 0.00085623683973577
619 => 0.00084786989284105
620 => 0.00084290968625927
621 => 0.00085053081794247
622 => 0.00085227386092899
623 => 0.0008356101233091
624 => 0.00083333891744613
625 => 0.0008469468852983
626 => 0.00084095852600273
627 => 0.00084711770204239
628 => 0.00084854668371602
629 => 0.00084831658475432
630 => 0.00084206404989107
701 => 0.00084604922915964
702 => 0.00083662309215036
703 => 0.00082637358391278
704 => 0.00081983503622413
705 => 0.00081412928615329
706 => 0.00081729516791273
707 => 0.00080600937750748
708 => 0.00080239882601876
709 => 0.00084469914009282
710 => 0.00087594683690433
711 => 0.00087549248301725
712 => 0.00087272672057995
713 => 0.00086861735861254
714 => 0.0008882733616238
715 => 0.00088142560320886
716 => 0.00088640791960509
717 => 0.00088767612823509
718 => 0.0008915146137981
719 => 0.0008928865424579
720 => 0.00088873962118228
721 => 0.00087482204687754
722 => 0.00084014077495337
723 => 0.00082399654925237
724 => 0.00081866868586769
725 => 0.00081886234358267
726 => 0.00081352039927741
727 => 0.00081509384128446
728 => 0.0008129732203591
729 => 0.00080895727735975
730 => 0.00081704719474915
731 => 0.00081797948236549
801 => 0.00081609119897949
802 => 0.00081653595807374
803 => 0.00080090177813406
804 => 0.00080209041087922
805 => 0.00079547195271002
806 => 0.00079423107158999
807 => 0.00077750018567333
808 => 0.00074785899609128
809 => 0.00076428309245963
810 => 0.00074444509362409
811 => 0.00073693214287034
812 => 0.00077249728323504
813 => 0.00076892752956587
814 => 0.00076281766301886
815 => 0.00075377989698807
816 => 0.00075042770165352
817 => 0.00073006082397684
818 => 0.00072885744019063
819 => 0.00073895181471915
820 => 0.00073429360820046
821 => 0.00072775172204745
822 => 0.00070405767354162
823 => 0.00067741771819121
824 => 0.00067822181099045
825 => 0.00068669548513343
826 => 0.00071133383553478
827 => 0.00070170720578518
828 => 0.000694722975449
829 => 0.00069341503905223
830 => 0.00070978660140817
831 => 0.00073295579209019
901 => 0.00074382625797676
902 => 0.00073305395642412
903 => 0.00072067931642235
904 => 0.0007214325034207
905 => 0.00072644311908698
906 => 0.00072696966394722
907 => 0.00071891504543961
908 => 0.00072118237336931
909 => 0.00071773809491529
910 => 0.00069660056440064
911 => 0.00069621825350147
912 => 0.00069103076262445
913 => 0.00069087368746233
914 => 0.00068204847140028
915 => 0.00068081376266736
916 => 0.00066329076052383
917 => 0.00067482445359924
918 => 0.00066708825783032
919 => 0.00065542798602246
920 => 0.00065341775076776
921 => 0.00065335732066858
922 => 0.00066532981262618
923 => 0.00067468454805999
924 => 0.00066722283226787
925 => 0.00066552394422129
926 => 0.00068366362390521
927 => 0.00068135518431858
928 => 0.0006793560905244
929 => 0.00073088124518652
930 => 0.00069009506471349
1001 => 0.00067230996203346
1002 => 0.00065029752016752
1003 => 0.00065746488223544
1004 => 0.00065897515073361
1005 => 0.00060603919608691
1006 => 0.00058456308587949
1007 => 0.00057719329416645
1008 => 0.00057295187484203
1009 => 0.00057488474288856
1010 => 0.00055555372480541
1011 => 0.00056854448866281
1012 => 0.00055180546101308
1013 => 0.0005489991085541
1014 => 0.00057893056355943
1015 => 0.0005830953506664
1016 => 0.00056532707497014
1017 => 0.00057673718438968
1018 => 0.00057259972010177
1019 => 0.00055209240359822
1020 => 0.00055130917494939
1021 => 0.00054101932439494
1022 => 0.00052491770078491
1023 => 0.00051755882673088
1024 => 0.00051372626123087
1025 => 0.00051530765245139
1026 => 0.00051450805265893
1027 => 0.00050929012314297
1028 => 0.00051480713827089
1029 => 0.00050071344440708
1030 => 0.00049510122194991
1031 => 0.00049256631126857
1101 => 0.00048005734676169
1102 => 0.0004999646720539
1103 => 0.00050388666592235
1104 => 0.00050781638733027
1105 => 0.00054202192925154
1106 => 0.00054031311704101
1107 => 0.00055575994719889
1108 => 0.00055515971178385
1109 => 0.00055075402560077
1110 => 0.00053216716029453
1111 => 0.00053957555352658
1112 => 0.00051677367067827
1113 => 0.00053385839168555
1114 => 0.00052606163849283
1115 => 0.00053122230158826
1116 => 0.00052194296402445
1117 => 0.00052707853256672
1118 => 0.00050481671616493
1119 => 0.00048402894524116
1120 => 0.00049239455109375
1121 => 0.00050148892137859
1122 => 0.00052120783335857
1123 => 0.00050946341206079
1124 => 0.00051368715006521
1125 => 0.0004995383347956
1126 => 0.00047034528748512
1127 => 0.00047051051696254
1128 => 0.00046601980263893
1129 => 0.0004621391698083
1130 => 0.00051081240012524
1201 => 0.00050475911452542
1202 => 0.00049511399615655
1203 => 0.00050802437037506
1204 => 0.00051143807823362
1205 => 0.00051153526169724
1206 => 0.00052095433746208
1207 => 0.00052598129988623
1208 => 0.00052686732380159
1209 => 0.00054168844303015
1210 => 0.00054665628670028
1211 => 0.00056711813170197
1212 => 0.00052555479724597
1213 => 0.00052469882772436
1214 => 0.00050820604581618
1215 => 0.00049774606278945
1216 => 0.00050892224980293
1217 => 0.00051882282579521
1218 => 0.00050851368431001
1219 => 0.00050985984055012
1220 => 0.00049602066039405
1221 => 0.0005009675161059
1222 => 0.00050522841465837
1223 => 0.00050287579692173
1224 => 0.00049935381430201
1225 => 0.00051801109146852
1226 => 0.00051695837477233
1227 => 0.00053433246019873
1228 => 0.00054787680222138
1229 => 0.0005721506844667
1230 => 0.0005468196229176
1231 => 0.0005458964583529
]
'min_raw' => 0.0004621391698083
'max_raw' => 0.0013361802482611
'avg_raw' => 0.0008991597090347
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000462'
'max' => '$0.001336'
'avg' => '$0.000899'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -8.12616846064E-5
'max_diff' => -0.0004513623703178
'year' => 2030
]
5 => [
'items' => [
101 => 0.0005549205400531
102 => 0.00054665490516039
103 => 0.00055187850109256
104 => 0.00057130908240555
105 => 0.00057171961997039
106 => 0.00056484258681163
107 => 0.00056442411871894
108 => 0.00056574492816358
109 => 0.00057348095033555
110 => 0.00057077774648471
111 => 0.00057390596241765
112 => 0.00057781784434273
113 => 0.00059399904658844
114 => 0.00059790027966868
115 => 0.00058842230584114
116 => 0.0005892780607574
117 => 0.0005857330383697
118 => 0.00058230859116218
119 => 0.00059000624838432
120 => 0.00060407386825562
121 => 0.00060398635432251
122 => 0.0006072497686972
123 => 0.00060928284881704
124 => 0.00060055538063706
125 => 0.00059487411976979
126 => 0.00059705267669432
127 => 0.00060053623665945
128 => 0.00059592300514788
129 => 0.00056744800320178
130 => 0.00057608549980206
131 => 0.00057464779801577
201 => 0.00057260033584158
202 => 0.00058128540546495
203 => 0.0005804477093124
204 => 0.00055535545727437
205 => 0.00055696178183823
206 => 0.00055545314319141
207 => 0.00056032786329771
208 => 0.00054639165427718
209 => 0.0005506783383101
210 => 0.00055336690635037
211 => 0.00055495049358065
212 => 0.00056067149653234
213 => 0.00056000020286753
214 => 0.0005606297679756
215 => 0.00056911250506417
216 => 0.00061201527833432
217 => 0.00061435038162378
218 => 0.00060285147900257
219 => 0.00060744506379392
220 => 0.00059862638550109
221 => 0.00060454642331908
222 => 0.00060859676284148
223 => 0.00059029405737523
224 => 0.00058921028994109
225 => 0.00058035521382597
226 => 0.00058511343015309
227 => 0.00057754276584879
228 => 0.00057940034205847
301 => 0.00057420639703562
302 => 0.00058355446397261
303 => 0.00059400705535091
304 => 0.00059664779271841
305 => 0.00058970114961343
306 => 0.00058467132219934
307 => 0.00057584060218835
308 => 0.00059052628637206
309 => 0.00059482082796549
310 => 0.00059050372897331
311 => 0.00058950336280635
312 => 0.00058760767072757
313 => 0.00058990554284237
314 => 0.00059479743896968
315 => 0.00059249051109518
316 => 0.00059401427759912
317 => 0.00058820725098728
318 => 0.00060055826979218
319 => 0.0006201746600889
320 => 0.0006202377299913
321 => 0.0006179307896816
322 => 0.0006169868394106
323 => 0.00061935390016519
324 => 0.00062063793352264
325 => 0.0006282925739583
326 => 0.00063650630812008
327 => 0.00067483622152015
328 => 0.00066407333521704
329 => 0.00069808191464233
330 => 0.00072497828550639
331 => 0.00073304333109277
401 => 0.00072562386864302
402 => 0.00070024228839392
403 => 0.00069899694697768
404 => 0.00073692774369661
405 => 0.00072621055628296
406 => 0.00072493578094192
407 => 0.00071137432508012
408 => 0.00071939082511342
409 => 0.00071763749896118
410 => 0.00071486978785421
411 => 0.00073016471148353
412 => 0.00075879544313036
413 => 0.0007543330751059
414 => 0.00075100212437893
415 => 0.00073640686791856
416 => 0.00074519647227625
417 => 0.00074206666251826
418 => 0.00075551431146495
419 => 0.00074754822213083
420 => 0.00072612936304766
421 => 0.00072954038695414
422 => 0.0007290248175527
423 => 0.00073963519930062
424 => 0.00073645022606576
425 => 0.0007284029004116
426 => 0.00075869758640215
427 => 0.00075673041800182
428 => 0.00075951941303618
429 => 0.00076074721490284
430 => 0.00077918705641304
501 => 0.00078674126947066
502 => 0.00078845620808985
503 => 0.00079563212623078
504 => 0.00078827766470939
505 => 0.00081770075443714
506 => 0.00083726539222121
507 => 0.00085999072579445
508 => 0.00089319854613879
509 => 0.00090568499377777
510 => 0.00090342942877365
511 => 0.0009286072191631
512 => 0.00097385114882213
513 => 0.00091257452053119
514 => 0.00097709895891282
515 => 0.00095667126669166
516 => 0.00090823757591378
517 => 0.00090511901722339
518 => 0.00093791887494488
519 => 0.0010106658025018
520 => 0.00099244352223765
521 => 0.0010106956076244
522 => 0.00098940358050415
523 => 0.00098834625189434
524 => 0.0010096615013919
525 => 0.0010594657436766
526 => 0.0010358056150512
527 => 0.0010018830189652
528 => 0.0010269309360211
529 => 0.001005232112192
530 => 0.00095633858898669
531 => 0.00099242958800335
601 => 0.00096829656477338
602 => 0.00097533986393397
603 => 0.0010260638892471
604 => 0.0010199606403223
605 => 0.0010278588095766
606 => 0.0010139187475738
607 => 0.0010008965315172
608 => 0.00097658959820502
609 => 0.00096939351356863
610 => 0.00097138225247413
611 => 0.00096939252804839
612 => 0.0009557930222525
613 => 0.00095285621027069
614 => 0.00094796139496967
615 => 0.00094947850290656
616 => 0.00094027481811191
617 => 0.00095764407289773
618 => 0.00096086795964333
619 => 0.0009735078548008
620 => 0.00097482017064729
621 => 0.0010100220987432
622 => 0.00099063346829235
623 => 0.0010036410355326
624 => 0.0010024775162867
625 => 0.00090928728085673
626 => 0.00092212807307457
627 => 0.00094210431610294
628 => 0.00093310504569582
629 => 0.00092038218284511
630 => 0.00091010778893641
701 => 0.00089454103155402
702 => 0.00091645094363664
703 => 0.00094526014816589
704 => 0.00097555081961658
705 => 0.0010119430766412
706 => 0.0010038207485258
707 => 0.00097487049168543
708 => 0.00097616917905912
709 => 0.00098419715338859
710 => 0.00097380019721354
711 => 0.00097073393186482
712 => 0.00098377589561538
713 => 0.000983865708452
714 => 0.00097190275385847
715 => 0.00095860811902535
716 => 0.00095855241401997
717 => 0.00095618676216235
718 => 0.0009898244247143
719 => 0.0010083217379666
720 => 0.0010104424251211
721 => 0.0010081789988243
722 => 0.0010090501017738
723 => 0.00099828692275275
724 => 0.0010228883582732
725 => 0.0010454650683366
726 => 0.0010394140277586
727 => 0.001030342657726
728 => 0.0010231168745586
729 => 0.001037711862883
730 => 0.0010370619710276
731 => 0.0010452678804697
801 => 0.0010448956130178
802 => 0.0010421362743123
803 => 0.0010394141263032
804 => 0.0010502071354613
805 => 0.0010470989221542
806 => 0.0010439858809333
807 => 0.0010377422001821
808 => 0.0010385908200927
809 => 0.0010295210163601
810 => 0.0010253249101474
811 => 0.00096222554057474
812 => 0.00094536332719355
813 => 0.00095066852278528
814 => 0.00095241513092342
815 => 0.00094507667405041
816 => 0.00095559813611141
817 => 0.00095395837739418
818 => 0.00096033771933612
819 => 0.00095635218344963
820 => 0.00095651575123262
821 => 0.00096823636246895
822 => 0.00097163890577391
823 => 0.00096990834478711
824 => 0.0009711203703821
825 => 0.00099905098865459
826 => 0.00099508014790713
827 => 0.00099297071790184
828 => 0.00099355504442941
829 => 0.0010006919162372
830 => 0.0010026898506847
831 => 0.00099422446203852
901 => 0.00099821678826187
902 => 0.0010152156066193
903 => 0.0010211642309946
904 => 0.0010401493844989
905 => 0.0010320841538561
906 => 0.0010468882337559
907 => 0.0010923909282854
908 => 0.0011287416292226
909 => 0.0010953120223845
910 => 0.0011620654554217
911 => 0.0012140425782524
912 => 0.0012120476097058
913 => 0.0012029841960877
914 => 0.0011438096236283
915 => 0.0010893562998079
916 => 0.0011349088173939
917 => 0.0011350249401292
918 => 0.00113111193847
919 => 0.0011068086212301
920 => 0.0011302662357106
921 => 0.0011321282159625
922 => 0.0011310860021619
923 => 0.0011124527058162
924 => 0.0010840031063051
925 => 0.0010895620899509
926 => 0.0010986678185628
927 => 0.0010814287746464
928 => 0.0010759198555646
929 => 0.0010861619842524
930 => 0.0011191642569167
1001 => 0.0011129253684387
1002 => 0.0011127624458472
1003 => 0.0011394550564567
1004 => 0.0011203489078862
1005 => 0.001089632206537
1006 => 0.0010818758343428
1007 => 0.0010543459383718
1008 => 0.0010733609355771
1009 => 0.0010740452514748
1010 => 0.001063630931834
1011 => 0.0010904772711792
1012 => 0.001090229877436
1013 => 0.001115716481094
1014 => 0.001164437294957
1015 => 0.001150028152892
1016 => 0.0011332718883807
1017 => 0.0011350937589339
1018 => 0.0011550751821428
1019 => 0.0011429939575392
1020 => 0.00114733845014
1021 => 0.0011550686062329
1022 => 0.0011597324013328
1023 => 0.0011344227105908
1024 => 0.0011285218109764
1025 => 0.0011164506412996
1026 => 0.00111330149845
1027 => 0.0011231332142785
1028 => 0.0011205429045173
1029 => 0.0010739877373734
1030 => 0.0010691224633763
1031 => 0.0010692716743838
1101 => 0.001057037711587
1102 => 0.0010383779818345
1103 => 0.0010874146375096
1104 => 0.0010834763077913
1105 => 0.0010791286965849
1106 => 0.0010796612541505
1107 => 0.0011009464043727
1108 => 0.001088599942318
1109 => 0.0011214250352357
1110 => 0.0011146771829444
1111 => 0.0011077562737038
1112 => 0.0011067995932307
1113 => 0.0011041356336374
1114 => 0.0010949999249759
1115 => 0.0010839680077963
1116 => 0.001076683780506
1117 => 0.00099318387422747
1118 => 0.0010086809711362
1119 => 0.0010265089685248
1120 => 0.0010326631217821
1121 => 0.001022136016781
1122 => 0.0010954155992448
1123 => 0.0011088044851006
1124 => 0.0010682486765081
1125 => 0.0010606623406032
1126 => 0.0010959129581638
1127 => 0.001074652526562
1128 => 0.0010842260976105
1129 => 0.001063533273467
1130 => 0.0011055794945703
1201 => 0.0011052591728122
1202 => 0.001088902243146
1203 => 0.0011027270080924
1204 => 0.0011003246149722
1205 => 0.0010818576816645
1206 => 0.001106164929295
1207 => 0.0011061769853866
1208 => 0.0010904337962132
1209 => 0.001072049197886
1210 => 0.00106876246593
1211 => 0.0010662863549114
1212 => 0.0010836171260883
1213 => 0.0010991558413336
1214 => 0.0011280695380309
1215 => 0.0011353391283531
1216 => 0.0011637128233446
1217 => 0.0011468176694673
1218 => 0.0011543070723523
1219 => 0.0011624378786246
1220 => 0.0011663360861521
1221 => 0.0011599841661754
1222 => 0.0012040601935761
1223 => 0.0012077815607433
1224 => 0.0012090293029648
1225 => 0.0011941671145162
1226 => 0.001207368216397
1227 => 0.0012011918580015
1228 => 0.0012172610267048
1229 => 0.001219780877539
1230 => 0.0012176466535288
1231 => 0.0012184464939566
]
'min_raw' => 0.00054639165427718
'max_raw' => 0.001219780877539
'avg_raw' => 0.00088308626590807
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000546'
'max' => '$0.001219'
'avg' => '$0.000883'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 8.4252484468875E-5
'max_diff' => -0.00011639937072214
'year' => 2031
]
6 => [
'items' => [
101 => 0.0011808353801142
102 => 0.001178885045447
103 => 0.0011522920938709
104 => 0.0011631289182033
105 => 0.0011428699945363
106 => 0.0011492943079211
107 => 0.0011521260840481
108 => 0.0011506469249013
109 => 0.0011637416159916
110 => 0.0011526084534962
111 => 0.0011232262072092
112 => 0.0010938359557489
113 => 0.0010934669850826
114 => 0.0010857290506541
115 => 0.0010801359413357
116 => 0.0010812133726166
117 => 0.0010850103809822
118 => 0.0010799152523069
119 => 0.0010810025563394
120 => 0.0010990590479471
121 => 0.001102680148566
122 => 0.0010903742338076
123 => 0.0010409642103174
124 => 0.0010288388666172
125 => 0.0010375543232129
126 => 0.0010333888963074
127 => 0.00083402549201661
128 => 0.00088086296665556
129 => 0.00085303372967545
130 => 0.00086585872243751
131 => 0.00083745227782679
201 => 0.00085100932210435
202 => 0.00084850583105027
203 => 0.00092381910424808
204 => 0.00092264319107711
205 => 0.00092320603848411
206 => 0.00089633986525689
207 => 0.00093913840870396
208 => 0.00096022251019183
209 => 0.00095632040414161
210 => 0.00095730248016688
211 => 0.0009404271602793
212 => 0.00092336942846825
213 => 0.00090444977872369
214 => 0.0009396001494097
215 => 0.00093569202822625
216 => 0.00094465585212346
217 => 0.00096745338011372
218 => 0.00097081040270967
219 => 0.0009753222751222
220 => 0.00097370509003926
221 => 0.0010122329996809
222 => 0.001007567015608
223 => 0.0010188106947286
224 => 0.00099568159371759
225 => 0.00096950882048926
226 => 0.00097448340902754
227 => 0.00097400431614819
228 => 0.00096790491391684
229 => 0.00096239864630508
301 => 0.00095323226211277
302 => 0.00098223605806684
303 => 0.00098105855691825
304 => 0.0010001209318185
305 => 0.00099675147189283
306 => 0.00097424939386267
307 => 0.00097505305998166
308 => 0.00098045810086065
309 => 0.0009991650090565
310 => 0.0010047184930725
311 => 0.0010021458980082
312 => 0.0010082350397055
313 => 0.0010130476490288
314 => 0.0010088394293403
315 => 0.0010684189457794
316 => 0.0010436773766845
317 => 0.0010557362453106
318 => 0.001058612214423
319 => 0.0010512454800168
320 => 0.0010528430609265
321 => 0.00105526296069
322 => 0.0010699561181889
323 => 0.0011085152149655
324 => 0.0011255927764472
325 => 0.0011769714627569
326 => 0.0011241747226973
327 => 0.0011210419826367
328 => 0.0011302968355288
329 => 0.0011604615633789
330 => 0.0011849072420725
331 => 0.0011930172840003
401 => 0.0011940891599232
402 => 0.001209304137725
403 => 0.0012180250792585
404 => 0.0012074566392262
405 => 0.0011985009928607
406 => 0.0011664229791951
407 => 0.0011701360966224
408 => 0.0011957157935753
409 => 0.0012318486221579
410 => 0.0012628543480618
411 => 0.0012519972235089
412 => 0.0013348294199121
413 => 0.0013430418938463
414 => 0.0013419071954896
415 => 0.0013606164332917
416 => 0.0013234824063246
417 => 0.0013076068903583
418 => 0.0012004373052558
419 => 0.0012305475872791
420 => 0.0012743146505147
421 => 0.0012685219155774
422 => 0.0012367371043587
423 => 0.0012628302364323
424 => 0.0012542030309611
425 => 0.0012473983960628
426 => 0.0012785717476749
427 => 0.0012442953670467
428 => 0.0012739727173978
429 => 0.0012359112085997
430 => 0.0012520468179393
501 => 0.0012428874656865
502 => 0.0012488146891221
503 => 0.001214164262031
504 => 0.0012328607913977
505 => 0.0012133864249408
506 => 0.0012133771915555
507 => 0.0012129472938366
508 => 0.0012358587996106
509 => 0.0012366059429913
510 => 0.001219674305607
511 => 0.001217234192138
512 => 0.001226256570548
513 => 0.0012156937283945
514 => 0.0012206360157564
515 => 0.0012158434252439
516 => 0.0012147645121722
517 => 0.0012061675492545
518 => 0.0012024637412511
519 => 0.0012039160998046
520 => 0.0011989584513194
521 => 0.001195971288781
522 => 0.0012123530720219
523 => 0.0012036009460756
524 => 0.0012110116831975
525 => 0.0012025662129375
526 => 0.0011732905335
527 => 0.0011564537806709
528 => 0.0011011547360705
529 => 0.0011168374765209
530 => 0.0011272351496645
531 => 0.0011237987187526
601 => 0.0011311815020736
602 => 0.001131634745009
603 => 0.0011292345268928
604 => 0.0011264553818012
605 => 0.0011251026476669
606 => 0.0011351848196293
607 => 0.0011410378598037
608 => 0.0011282786952674
609 => 0.0011252894015362
610 => 0.0011381896213352
611 => 0.0011460587479604
612 => 0.0012041599576806
613 => 0.0011998556324001
614 => 0.001210658644173
615 => 0.0012094423908331
616 => 0.0012207656682258
617 => 0.0012392744411888
618 => 0.0012016409306207
619 => 0.0012081728067864
620 => 0.0012065713415936
621 => 0.0012240557186418
622 => 0.0012241103029584
623 => 0.0012136275455087
624 => 0.0012193104183855
625 => 0.0012161383946471
626 => 0.0012218706702671
627 => 0.0011997981455117
628 => 0.001226680098082
629 => 0.0012419204329546
630 => 0.001242132045019
701 => 0.0012493558427939
702 => 0.0012566956397072
703 => 0.0012707837407209
704 => 0.0012563027302163
705 => 0.0012302528020165
706 => 0.0012321335226918
707 => 0.0012168604593196
708 => 0.0012171172022742
709 => 0.0012157466882612
710 => 0.0012198597039815
711 => 0.0012007007211674
712 => 0.0012051972961394
713 => 0.0011989020648466
714 => 0.001208159122183
715 => 0.0011982000587355
716 => 0.0012065705693186
717 => 0.0012101830041995
718 => 0.00122351296668
719 => 0.0011962312124388
720 => 0.0011406018687288
721 => 0.0011522958312173
722 => 0.0011349995421559
723 => 0.0011366003795602
724 => 0.0011398343258881
725 => 0.0011293520477578
726 => 0.0011313517360905
727 => 0.0011312802931517
728 => 0.0011306646365014
729 => 0.0011279377911149
730 => 0.0011239833258146
731 => 0.0011397366984508
801 => 0.0011424135034364
802 => 0.0011483637093332
803 => 0.0011660674860188
804 => 0.0011642984612441
805 => 0.0011671838140478
806 => 0.0011608851050779
807 => 0.0011368925586041
808 => 0.0011381954693093
809 => 0.0011219481519383
810 => 0.001147948228899
811 => 0.0011417910674905
812 => 0.0011378215054757
813 => 0.0011367383737022
814 => 0.001154486034626
815 => 0.0011597964129349
816 => 0.001156487341539
817 => 0.0011497003395651
818 => 0.0011627333897521
819 => 0.0011662204841619
820 => 0.0011670011160011
821 => 0.0011900931820931
822 => 0.0011682917059748
823 => 0.0011735395379645
824 => 0.0012144816250884
825 => 0.0011773528016889
826 => 0.0011970207675152
827 => 0.0011960581229351
828 => 0.0012061195887242
829 => 0.0011952327890682
830 => 0.0011953677439977
831 => 0.0012043016439956
901 => 0.0011917555926859
902 => 0.001188649013946
903 => 0.0011843572976667
904 => 0.0011937281031533
905 => 0.0011993454772375
906 => 0.0012446173868489
907 => 0.0012738651051078
908 => 0.0012725953845228
909 => 0.0012841982538523
910 => 0.0012789710549493
911 => 0.001262091050826
912 => 0.0012909031595672
913 => 0.0012817858028117
914 => 0.001282537426625
915 => 0.0012825094511491
916 => 0.0012885716963384
917 => 0.0012842760400252
918 => 0.0012758088604918
919 => 0.0012814297694128
920 => 0.0012981218593965
921 => 0.0013499346188817
922 => 0.0013789297255174
923 => 0.0013481890770549
924 => 0.0013693935647306
925 => 0.0013566784280567
926 => 0.0013543677094805
927 => 0.0013676856947402
928 => 0.0013810269913701
929 => 0.0013801772084508
930 => 0.0013704921121806
1001 => 0.0013650212470478
1002 => 0.0014064484707075
1003 => 0.0014369713434056
1004 => 0.0014348898881155
1005 => 0.0014440767548404
1006 => 0.0014710496796837
1007 => 0.0014735157458957
1008 => 0.0014732050782349
1009 => 0.0014670926758211
1010 => 0.0014936510232062
1011 => 0.0015158064638446
1012 => 0.0014656778312666
1013 => 0.0014847661583203
1014 => 0.0014933355233222
1015 => 0.001505917893561
1016 => 0.001527146461204
1017 => 0.0015502063162638
1018 => 0.0015534672326077
1019 => 0.0015511534564125
1020 => 0.0015359448621184
1021 => 0.0015611772306861
1022 => 0.0015759577604212
1023 => 0.001584759227632
1024 => 0.0016070782840542
1025 => 0.0014933884448031
1026 => 0.0014129131258296
1027 => 0.0014003457426941
1028 => 0.0014259020104879
1029 => 0.0014326409944978
1030 => 0.0014299245184934
1031 => 0.0013393422304927
1101 => 0.0013998688456943
1102 => 0.0014649903944287
1103 => 0.0014674919783315
1104 => 0.0015000931872553
1105 => 0.0015107094772497
1106 => 0.0015369577235715
1107 => 0.0015353158886174
1108 => 0.001541706918896
1109 => 0.0015402377317122
1110 => 0.001588857080803
1111 => 0.0016424914428934
1112 => 0.0016406342554811
1113 => 0.0016329236813576
1114 => 0.0016443751987792
1115 => 0.001699731608264
1116 => 0.0016946352771471
1117 => 0.0016995859287228
1118 => 0.0017648542552559
1119 => 0.0018497123640602
1120 => 0.0018102872529058
1121 => 0.0018958283998408
1122 => 0.001949672017495
1123 => 0.0020427889866939
1124 => 0.0020311302835395
1125 => 0.0020673800363247
1126 => 0.0020102587716482
1127 => 0.0018790968018387
1128 => 0.0018583399180485
1129 => 0.0018998957250445
1130 => 0.0020020566215878
1201 => 0.0018966783148526
1202 => 0.0019179962090601
1203 => 0.0019118566540942
1204 => 0.0019115295033015
1205 => 0.0019240155184406
1206 => 0.0019059039022546
1207 => 0.0018321139196953
1208 => 0.0018659314338551
1209 => 0.0018528728675876
1210 => 0.001867362320442
1211 => 0.0019455559215924
1212 => 0.0019109846666212
1213 => 0.0018745666578497
1214 => 0.0019202429226523
1215 => 0.0019784045038134
1216 => 0.0019747648565908
1217 => 0.0019677024197243
1218 => 0.0020075130065634
1219 => 0.0020732684326141
1220 => 0.0020910418600489
1221 => 0.0021041618408195
1222 => 0.0021059708645039
1223 => 0.002124604932755
1224 => 0.0020244048513791
1225 => 0.0021834249538432
1226 => 0.0022108833326971
1227 => 0.0022057222955057
1228 => 0.0022362411279766
1229 => 0.0022272617132756
1230 => 0.0022142519502009
1231 => 0.002262630791209
]
'min_raw' => 0.00083402549201661
'max_raw' => 0.002262630791209
'avg_raw' => 0.0015483281416128
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.000834'
'max' => '$0.002262'
'avg' => '$0.001548'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00028763383773943
'max_diff' => 0.0010428499136701
'year' => 2032
]
7 => [
'items' => [
101 => 0.0022071683539644
102 => 0.0021284464068222
103 => 0.0020852579896765
104 => 0.0021421319812842
105 => 0.0021768629433303
106 => 0.0021998178999387
107 => 0.0022067640559386
108 => 0.0020321830984633
109 => 0.0019380936450879
110 => 0.0019984039059637
111 => 0.0020719865866242
112 => 0.0020239960958728
113 => 0.0020258772322522
114 => 0.0019574554041199
115 => 0.0020780404001878
116 => 0.0020604721805402
117 => 0.0021516161351498
118 => 0.0021298638989063
119 => 0.0022041882557025
120 => 0.0021846161616776
121 => 0.0022658588297139
122 => 0.002298268729551
123 => 0.0023526899955756
124 => 0.0023927225003977
125 => 0.002416230352929
126 => 0.0024148190296388
127 => 0.0025079688529335
128 => 0.0024530416565436
129 => 0.0023840401525315
130 => 0.0023827921330209
131 => 0.0024185289897076
201 => 0.0024934236373951
202 => 0.0025128427298677
203 => 0.0025236953533585
204 => 0.0025070741826997
205 => 0.002447454647686
206 => 0.002421711234745
207 => 0.0024436453684293
208 => 0.0024168218077551
209 => 0.0024631267988406
210 => 0.0025267134418134
211 => 0.0025135830514883
212 => 0.0025574759777269
213 => 0.0026029005387132
214 => 0.0026678597010684
215 => 0.0026848424315388
216 => 0.0027129142392111
217 => 0.0027418093504143
218 => 0.0027510896813877
219 => 0.0027688087127335
220 => 0.0027687153246919
221 => 0.0028221128182808
222 => 0.0028810119072921
223 => 0.0029032449498768
224 => 0.0029543686053632
225 => 0.0028668211369293
226 => 0.0029332268974092
227 => 0.0029931265556062
228 => 0.0029217117137308
301 => 0.0030201404357319
302 => 0.003023962199963
303 => 0.0030816663024439
304 => 0.003023172139811
305 => 0.0029884384927596
306 => 0.0030887132303443
307 => 0.0031372330172369
308 => 0.0031226184625578
309 => 0.0030114009798397
310 => 0.0029466676345555
311 => 0.0027772479838171
312 => 0.002977932878501
313 => 0.0030756806366429
314 => 0.0030111478367602
315 => 0.0030436944273722
316 => 0.0032212580724841
317 => 0.0032888628121481
318 => 0.0032748014988908
319 => 0.0032771776293623
320 => 0.0033136559197722
321 => 0.0034754207484109
322 => 0.0033784875134112
323 => 0.0034525893395495
324 => 0.0034918926809392
325 => 0.003528399814821
326 => 0.0034387498322055
327 => 0.0033221165220425
328 => 0.0032851738567806
329 => 0.0030047313216143
330 => 0.0029901330697587
331 => 0.0029819386286199
401 => 0.0029302738363661
402 => 0.0028896794618323
403 => 0.0028573973080305
404 => 0.0027726792961874
405 => 0.0028012691382611
406 => 0.0026662463094065
407 => 0.0027526291303925
408 => 0.0025371294353003
409 => 0.0027166039849811
410 => 0.0026189241472962
411 => 0.0026845135312108
412 => 0.0026842846960292
413 => 0.0025635138451094
414 => 0.0024938557387222
415 => 0.0025382445952462
416 => 0.0025858329730317
417 => 0.0025935540272209
418 => 0.0026552536012036
419 => 0.0026724726260742
420 => 0.0026202981768367
421 => 0.0025326636831133
422 => 0.0025530191772753
423 => 0.0024934432352827
424 => 0.0023890386884964
425 => 0.0024640238567268
426 => 0.0024896270900258
427 => 0.0025009349364347
428 => 0.0023982650556135
429 => 0.0023660039499879
430 => 0.0023488284080498
501 => 0.0025194102907724
502 => 0.0025287551513748
503 => 0.0024809455233029
504 => 0.0026970495756829
505 => 0.0026481385729973
506 => 0.0027027841464837
507 => 0.0025511721295363
508 => 0.0025569639127563
509 => 0.0024851883542431
510 => 0.0025253778709659
511 => 0.0024969732159148
512 => 0.0025221309551753
513 => 0.0025372104003587
514 => 0.0026089741812091
515 => 0.0027174234120826
516 => 0.0025982550654613
517 => 0.0025463317103162
518 => 0.0025785446678202
519 => 0.0026643320186271
520 => 0.0027943042464734
521 => 0.0027173580716536
522 => 0.0027515054774078
523 => 0.0027589651664528
524 => 0.0027022279058429
525 => 0.0027963962302013
526 => 0.0028468618002471
527 => 0.0028986290327358
528 => 0.0029435770702207
529 => 0.0028779520616939
530 => 0.0029481802277931
531 => 0.0028915887228573
601 => 0.0028408202926077
602 => 0.0028408972873601
603 => 0.0028090495094561
604 => 0.0027473404266888
605 => 0.0027359603250393
606 => 0.0027951610509683
607 => 0.0028426344268337
608 => 0.0028465445614521
609 => 0.0028728282616013
610 => 0.002888382684606
611 => 0.0030408371752644
612 => 0.0031021556325769
613 => 0.0031771346814797
614 => 0.003206343246615
615 => 0.003294250555822
616 => 0.0032232582641547
617 => 0.0032078986352901
618 => 0.0029946642574156
619 => 0.0030295813748469
620 => 0.0030854870488552
621 => 0.0029955861213886
622 => 0.0030526075675251
623 => 0.0030638648088718
624 => 0.0029925313222743
625 => 0.003030633619604
626 => 0.0029294452144401
627 => 0.0027196290427992
628 => 0.0027966298155795
629 => 0.0028533283025256
630 => 0.0027724125707804
701 => 0.0029174508880624
702 => 0.0028327224973049
703 => 0.0028058676651147
704 => 0.0027010973903021
705 => 0.002750544927036
706 => 0.002817423428489
707 => 0.0027761002900513
708 => 0.00286185200701
709 => 0.0029832993073711
710 => 0.0030698498859201
711 => 0.0030764941646383
712 => 0.0030208479410697
713 => 0.0031100213694679
714 => 0.0031106709005409
715 => 0.0030100829090236
716 => 0.0029484733242955
717 => 0.0029344754970176
718 => 0.0029694448139935
719 => 0.0030119040204942
720 => 0.0030788503550981
721 => 0.0031193046230058
722 => 0.0032247878984233
723 => 0.0032533286483088
724 => 0.0032846862794183
725 => 0.0033265897449158
726 => 0.0033769055990736
727 => 0.0032668173746595
728 => 0.0032711913850456
729 => 0.0031686787547464
730 => 0.0030591293074734
731 => 0.0031422636824222
801 => 0.0032509508187653
802 => 0.0032260178695996
803 => 0.0032232124034845
804 => 0.0032279304193187
805 => 0.0032091317898817
806 => 0.0031241062856481
807 => 0.0030814070097098
808 => 0.0031364999694173
809 => 0.0031657794255963
810 => 0.003211189308693
811 => 0.003205591582115
812 => 0.0033225625643067
813 => 0.0033680139509675
814 => 0.0033563855412852
815 => 0.0033585254485201
816 => 0.0034408130130283
817 => 0.0035323337084898
818 => 0.0036180549170089
819 => 0.0037052542121262
820 => 0.0036001320584159
821 => 0.0035467575117949
822 => 0.0036018264196397
823 => 0.0035726060819863
824 => 0.003740514809458
825 => 0.0037521404454418
826 => 0.0039200370312014
827 => 0.0040793908838408
828 => 0.0039793035841188
829 => 0.0040736813997256
830 => 0.0041757587020407
831 => 0.0043726823796518
901 => 0.0043063654128909
902 => 0.0042555676556714
903 => 0.0042075640205519
904 => 0.004307451964873
905 => 0.0044359562094932
906 => 0.0044636347929861
907 => 0.0045084846722772
908 => 0.0044613305081849
909 => 0.0045181225049732
910 => 0.0047186232093039
911 => 0.0046644461491251
912 => 0.0045875060142741
913 => 0.0047457820640509
914 => 0.0048030615511825
915 => 0.0052050789893727
916 => 0.0057126426115999
917 => 0.0055025079391554
918 => 0.0053720705669656
919 => 0.0054027264434461
920 => 0.0055880714961705
921 => 0.0056475984445477
922 => 0.0054857836786889
923 => 0.0055429393895716
924 => 0.0058578729759605
925 => 0.006026824740779
926 => 0.0057973655509062
927 => 0.0051642967465305
928 => 0.0045805783969511
929 => 0.0047354067884394
930 => 0.004717854053729
1001 => 0.0050562109035388
1002 => 0.0046631540441574
1003 => 0.0046697721136189
1004 => 0.0050151258247567
1005 => 0.0049229913754866
1006 => 0.0047737453673578
1007 => 0.0045816680579759
1008 => 0.0042265953865828
1009 => 0.0039120976195959
1010 => 0.0045289001651673
1011 => 0.0045023025178196
1012 => 0.0044637851829097
1013 => 0.0045495013437408
1014 => 0.0049657146897801
1015 => 0.0049561196250028
1016 => 0.0048950807183344
1017 => 0.0049413781910701
1018 => 0.0047656291965423
1019 => 0.0048109237141623
1020 => 0.0045804859329822
1021 => 0.0046846534340074
1022 => 0.0047734251524542
1023 => 0.0047912473892201
1024 => 0.0048314017986797
1025 => 0.0044882867662738
1026 => 0.004642335342496
1027 => 0.0047328244486269
1028 => 0.0043239913751056
1029 => 0.0047247431332619
1030 => 0.0044823138969217
1031 => 0.0044000297729429
1101 => 0.0045108145057714
1102 => 0.0044676415876464
1103 => 0.0044305240478414
1104 => 0.0044098118228699
1105 => 0.0044911599037944
1106 => 0.0044873649185873
1107 => 0.0043542636692128
1108 => 0.0041806385153047
1109 => 0.0042389128160076
1110 => 0.0042177412162378
1111 => 0.0041410126074811
1112 => 0.0041927184255356
1113 => 0.0039650321705394
1114 => 0.0035733098029202
1115 => 0.00383209359775
1116 => 0.0038221307031517
1117 => 0.0038171069599139
1118 => 0.0040115758294698
1119 => 0.0039928821348222
1120 => 0.0039589528959875
1121 => 0.0041403894704023
1122 => 0.0040741626800746
1123 => 0.0042782580428702
1124 => 0.0044126884488679
1125 => 0.0043785925495388
1126 => 0.0045050249961382
1127 => 0.0042402553381983
1128 => 0.004328201197851
1129 => 0.0043463267176377
1130 => 0.0041381505712377
1201 => 0.0039959406544553
1202 => 0.0039864568743177
1203 => 0.0037398844763509
1204 => 0.0038716014610819
1205 => 0.003987506956826
1206 => 0.0039319972189944
1207 => 0.0039144244943032
1208 => 0.0040041997336918
1209 => 0.0040111760386652
1210 => 0.0038521155459555
1211 => 0.0038851892591806
1212 => 0.0040231121413764
1213 => 0.0038817139564229
1214 => 0.0036070003803207
1215 => 0.003538867615235
1216 => 0.0035297774484365
1217 => 0.0033449959858464
1218 => 0.0035434205723875
1219 => 0.003456802922914
1220 => 0.003730427039762
1221 => 0.003574134411694
1222 => 0.0035673969488761
1223 => 0.0035572122856559
1224 => 0.0033981632475785
1225 => 0.0034329848788238
1226 => 0.0035487372845673
1227 => 0.0035900390469807
1228 => 0.0035857309347857
1229 => 0.0035481700346306
1230 => 0.0035653652223787
1231 => 0.0035099735314417
]
'min_raw' => 0.0019380936450879
'max_raw' => 0.006026824740779
'avg_raw' => 0.0039824591929334
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.001938'
'max' => '$0.006026'
'avg' => '$0.003982'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0011040681530713
'max_diff' => 0.00376419394957
'year' => 2033
]
8 => [
'items' => [
101 => 0.0034904135724935
102 => 0.0034286769616624
103 => 0.0033379411989147
104 => 0.0033505585632396
105 => 0.0031707872749326
106 => 0.0030728383358786
107 => 0.0030457273604947
108 => 0.0030094734311657
109 => 0.0030498223382805
110 => 0.0031702780054599
111 => 0.0030249829147461
112 => 0.0027758846729829
113 => 0.0027908559017556
114 => 0.0028244918078102
115 => 0.0027618115194012
116 => 0.00270248988678
117 => 0.002754065233428
118 => 0.0026485190245888
119 => 0.0028372465628954
120 => 0.002832142011887
121 => 0.0029024879673351
122 => 0.002946476736921
123 => 0.0028450968645586
124 => 0.0028196001008198
125 => 0.0028341242162087
126 => 0.0025940729416965
127 => 0.0028828706568676
128 => 0.002885368191501
129 => 0.0028639827836727
130 => 0.0030177586513722
131 => 0.003342273696114
201 => 0.0032201780826947
202 => 0.0031728989708193
203 => 0.0030830213445833
204 => 0.0032027779451374
205 => 0.0031935825067088
206 => 0.0031519972468684
207 => 0.003126846351963
208 => 0.0031731876469947
209 => 0.0031211041526722
210 => 0.0031117485259331
211 => 0.0030550636069168
212 => 0.0030348296698275
213 => 0.0030198492683428
214 => 0.003003357318252
215 => 0.0030397344506144
216 => 0.0029572990828709
217 => 0.0028578901106109
218 => 0.0028496253301875
219 => 0.0028724451155835
220 => 0.002862349059279
221 => 0.0028495769941542
222 => 0.0028251916435659
223 => 0.0028179570309569
224 => 0.002841466012201
225 => 0.0028149257430351
226 => 0.0028540873559126
227 => 0.0028434375641208
228 => 0.0027839486928893
301 => 0.0027098035337339
302 => 0.0027091434862927
303 => 0.0026931690333751
304 => 0.0026728231658094
305 => 0.002667163410903
306 => 0.0027497217015886
307 => 0.0029206148925461
308 => 0.0028870644700337
309 => 0.0029113080886845
310 => 0.0030305626976552
311 => 0.0030684701517358
312 => 0.0030415643387167
313 => 0.0030047340023778
314 => 0.0030063543502596
315 => 0.0031322147588306
316 => 0.0031400645181296
317 => 0.00315989832745
318 => 0.0031853903774605
319 => 0.0030459057450642
320 => 0.0029997846366174
321 => 0.0029779298967336
322 => 0.0029106257567402
323 => 0.0029832075015022
324 => 0.0029409172270896
325 => 0.0029466236299493
326 => 0.0029429073276009
327 => 0.0029449366799784
328 => 0.0028371938097022
329 => 0.0028764496488323
330 => 0.0028111792024833
331 => 0.0027237894017734
401 => 0.0027234964405186
402 => 0.0027448849704373
403 => 0.0027321622359084
404 => 0.0026979256844225
405 => 0.0027027888249691
406 => 0.0026601825965439
407 => 0.0027079619925106
408 => 0.002709332134624
409 => 0.0026909344646156
410 => 0.0027645452163883
411 => 0.0027947036014502
412 => 0.0027825938609344
413 => 0.0027938539497736
414 => 0.0028884586415601
415 => 0.0029038833342134
416 => 0.002910733963792
417 => 0.0029015550276912
418 => 0.0027955831498711
419 => 0.0028002834532797
420 => 0.0027657957455681
421 => 0.002736657266777
422 => 0.0027378226531174
423 => 0.0027528036189532
424 => 0.0028182263753799
425 => 0.0029559047093979
426 => 0.0029611295015323
427 => 0.0029674621020172
428 => 0.0029417042333352
429 => 0.0029339354136711
430 => 0.0029441844921106
501 => 0.0029958892355848
502 => 0.0031288878735015
503 => 0.0030818772721814
504 => 0.0030436569215445
505 => 0.0030771864731856
506 => 0.0030720248615237
507 => 0.0030284556646355
508 => 0.0030272328223906
509 => 0.0029436096036473
510 => 0.0029126960036864
511 => 0.0028868622857163
512 => 0.0028586525400992
513 => 0.0028419288572981
514 => 0.0028676240348584
515 => 0.0028735008259829
516 => 0.0028173178711724
517 => 0.0028096603420349
518 => 0.0028555405557264
519 => 0.0028353503842675
520 => 0.0028561164763052
521 => 0.0028609343877861
522 => 0.0028601585930718
523 => 0.0028390777352423
524 => 0.0028525140453826
525 => 0.0028207331663439
526 => 0.0027861762337231
527 => 0.002764131063684
528 => 0.0027448937289574
529 => 0.0027555677203442
530 => 0.0027175168900442
531 => 0.0027053436636193
601 => 0.0028479621258336
602 => 0.0029533159172781
603 => 0.0029517840314259
604 => 0.0029424590702691
605 => 0.0029286040694895
606 => 0.0029948756559803
607 => 0.0029717879603891
608 => 0.0029885861879732
609 => 0.0029928620419128
610 => 0.003005803763983
611 => 0.0030104293172445
612 => 0.0029964476826349
613 => 0.0029495236091725
614 => 0.0028325932795111
615 => 0.0027781618954063
616 => 0.0027601986320253
617 => 0.0027608515625321
618 => 0.0027428408243443
619 => 0.0027481457939253
620 => 0.0027409959724184
621 => 0.0027274559402119
622 => 0.0027547316615103
623 => 0.002757874934299
624 => 0.0027515084550273
625 => 0.0027530079913657
626 => 0.0027002962621555
627 => 0.0027043038204435
628 => 0.00268198922664
629 => 0.0026778055093083
630 => 0.0026213961593271
701 => 0.0025214588191695
702 => 0.0025768338067691
703 => 0.0025099486086503
704 => 0.0024846181706465
705 => 0.0026045285244649
706 => 0.0025924928507371
707 => 0.0025718930090966
708 => 0.0025414215499271
709 => 0.0025301193893138
710 => 0.0024614510392569
711 => 0.0024573937468042
712 => 0.0024914276352938
713 => 0.0024757221667904
714 => 0.0024536657408857
715 => 0.0023737796020826
716 => 0.0022839611326764
717 => 0.002286672187689
718 => 0.0023152417716751
719 => 0.002398311690248
720 => 0.0023658548359374
721 => 0.0023423070157355
722 => 0.0023378972168566
723 => 0.0023930950823657
724 => 0.0024712116263713
725 => 0.0025078621610596
726 => 0.0024715425942768
727 => 0.002429820631541
728 => 0.0024323600540918
729 => 0.0024492536946407
730 => 0.0024510289773992
731 => 0.0024238722687453
801 => 0.00243151672316
802 => 0.0024199040978805
803 => 0.0023486374379751
804 => 0.0023473484500864
805 => 0.0023298584624155
806 => 0.0023293288725398
807 => 0.0022995740404297
808 => 0.002295411133732
809 => 0.0022363311085882
810 => 0.0022752177600486
811 => 0.0022491346358898
812 => 0.0022098212153954
813 => 0.002203043566884
814 => 0.0022028398225855
815 => 0.0022432059151133
816 => 0.0022747460587552
817 => 0.0022495883630017
818 => 0.0022438604433401
819 => 0.0023050196398664
820 => 0.0022972365746299
821 => 0.0022904964903306
822 => 0.0024642171466454
823 => 0.0023267036915804
824 => 0.0022667399761784
825 => 0.0021925234915678
826 => 0.002216688753189
827 => 0.0022217807288742
828 => 0.0020433034619125
829 => 0.0019708952569341
830 => 0.0019460474896311
831 => 0.0019317472482524
901 => 0.0019382640478198
902 => 0.0018730881707039
903 => 0.0019168874380353
904 => 0.0018604506376326
905 => 0.0018509888243839
906 => 0.0019519048146818
907 => 0.0019659466851891
908 => 0.0019060397031378
909 => 0.0019445096836741
910 => 0.0019305599339589
911 => 0.0018614180845921
912 => 0.0018587773745193
913 => 0.0018240844249605
914 => 0.0017697966767799
915 => 0.0017449857191265
916 => 0.0017320639569621
917 => 0.0017373957278713
918 => 0.0017346998213447
919 => 0.0017171072076774
920 => 0.0017357082093669
921 => 0.0016881903365148
922 => 0.0016692683366676
923 => 0.0016607217083236
924 => 0.0016185468611407
925 => 0.0016856657982484
926 => 0.0016988890744008
927 => 0.001712138404492
928 => 0.0018274647772342
929 => 0.001821703397561
930 => 0.0018737834639015
1001 => 0.0018717597282926
1002 => 0.0018569056497311
1003 => 0.0017942387356577
1004 => 0.001819216650677
1005 => 0.0017423385106773
1006 => 0.0017999408403705
1007 => 0.0017736535426293
1008 => 0.0017910530785615
1009 => 0.0017597671441025
1010 => 0.0017770820719967
1011 => 0.0017020248037277
1012 => 0.0016319373827023
1013 => 0.0016601426069023
1014 => 0.0016908049112663
1015 => 0.0017572885997373
1016 => 0.0017176914633625
1017 => 0.0017319320909364
1018 => 0.0016842283724161
1019 => 0.0015858019752154
1020 => 0.0015863590579345
1021 => 0.0015712183010608
1022 => 0.0015581344765352
1023 => 0.0017222396708051
1024 => 0.0017018305957785
1025 => 0.0016693114057971
1026 => 0.0017128396338484
1027 => 0.001724349188231
1028 => 0.0017246768490637
1029 => 0.0017564339206237
1030 => 0.0017733826754081
1031 => 0.0017763699668989
1101 => 0.0018263404051555
1102 => 0.0018430898369331
1103 => 0.0019120783759567
1104 => 0.001771944691979
1105 => 0.001769058730975
1106 => 0.0017134521652823
1107 => 0.001678185602215
1108 => 0.0017158668970274
1109 => 0.0017492473802215
1110 => 0.0017144893899429
1111 => 0.001719028049692
1112 => 0.0016723682875752
1113 => 0.0016890469569861
1114 => 0.0017034128739422
1115 => 0.0016954808589886
1116 => 0.0016836062486892
1117 => 0.0017465105612656
1118 => 0.001742961253426
1119 => 0.0018015391954611
1120 => 0.0018472048902262
1121 => 0.0019290459789646
1122 => 0.0018436405363936
1123 => 0.0018405280226104
1124 => 0.0018709533441039
1125 => 0.0018430851789749
1126 => 0.0018606968973601
1127 => 0.0019262084588567
1128 => 0.0019275926149193
1129 => 0.0019044062174855
1130 => 0.0019029953230945
1201 => 0.001907448524353
1202 => 0.0019335310632177
1203 => 0.0019244170227029
1204 => 0.0019349640211259
1205 => 0.0019481532041551
1206 => 0.002002709257262
1207 => 0.0020158625369674
1208 => 0.0019839068864769
1209 => 0.0019867921239239
1210 => 0.0019748398334383
1211 => 0.0019632940705908
1212 => 0.0019892472593486
1213 => 0.0020366772219145
1214 => 0.002036382162579
1215 => 0.0020473849919876
1216 => 0.0020542396635567
1217 => 0.0020248143952556
1218 => 0.0020056596275886
1219 => 0.0020130047843616
1220 => 0.0020247498499984
1221 => 0.0020091960178717
1222 => 0.0019131905607492
1223 => 0.0019423124835878
1224 => 0.0019374651716382
1225 => 0.0019305620099687
1226 => 0.0019598443285761
1227 => 0.0019570199775117
1228 => 0.0018724196978804
1229 => 0.0018778355332974
1230 => 0.0018727490527699
1231 => 0.0018891845119504
]
'min_raw' => 0.0015581344765352
'max_raw' => 0.0034904135724935
'avg_raw' => 0.0025242740245143
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.001558'
'max' => '$0.00349'
'avg' => '$0.002524'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00037995916855269
'max_diff' => -0.0025364111682855
'year' => 2034
]
9 => [
'items' => [
101 => 0.0018421976102426
102 => 0.0018566504647463
103 => 0.0018657151596039
104 => 0.0018710543345133
105 => 0.0018903430953926
106 => 0.0018880797819335
107 => 0.0018902024046502
108 => 0.0019188025449901
109 => 0.0020634522404464
110 => 0.0020713252042185
111 => 0.0020325558512033
112 => 0.0020480434430412
113 => 0.0020183106534765
114 => 0.0020382704743037
115 => 0.0020519264767891
116 => 0.0019902176274556
117 => 0.0019865636298852
118 => 0.0019567081225214
119 => 0.0019727507810763
120 => 0.0019472257578074
121 => 0.0019534887056902
122 => 0.001935976957416
123 => 0.0019674946177553
124 => 0.0020027362593638
125 => 0.0020116396897688
126 => 0.0019882185975412
127 => 0.0019712601832432
128 => 0.001941486794185
129 => 0.0019910006037321
130 => 0.0020054799505497
131 => 0.0019909245498873
201 => 0.0019875517455121
202 => 0.0019811602873155
203 => 0.0019889077235828
204 => 0.0020054010929173
205 => 0.0019976231245239
206 => 0.0020027606096779
207 => 0.0019831818140224
208 => 0.0020248241362437
209 => 0.0020909621657018
210 => 0.0020911748102811
211 => 0.0020833967999616
212 => 0.0020802142057183
213 => 0.0020881949163154
214 => 0.0020925241244284
215 => 0.0021183322790871
216 => 0.0021460254572782
217 => 0.0022752574364156
218 => 0.0022389696138039
219 => 0.0023536319137395
220 => 0.0024443149059523
221 => 0.0024715067702303
222 => 0.0024464915345706
223 => 0.0023609157646754
224 => 0.0023567170091436
225 => 0.0024846033385252
226 => 0.0024484695929099
227 => 0.0024441715988456
228 => 0.0023984482035769
301 => 0.0024254763931334
302 => 0.0024195649315978
303 => 0.0024102334003652
304 => 0.0024618013032389
305 => 0.0025583318139201
306 => 0.002543286628573
307 => 0.0025320560956375
308 => 0.0024828471694731
309 => 0.0025124819342356
310 => 0.0025019295621202
311 => 0.0025472692494289
312 => 0.0025204110230643
313 => 0.0024481958442484
314 => 0.0024596963494991
315 => 0.0024579580712663
316 => 0.0024937317141226
317 => 0.0024829933544935
318 => 0.0024558612342042
319 => 0.0025580018831288
320 => 0.0025513694375237
321 => 0.0025607727290035
322 => 0.0025649123487194
323 => 0.0026270835617996
324 => 0.0026525531185417
325 => 0.0026583351538295
326 => 0.0026825292628482
327 => 0.0026577331823568
328 => 0.0027569351836284
329 => 0.0028228987258768
330 => 0.0028995187746511
331 => 0.003011481259438
401 => 0.0030535801894287
402 => 0.0030459753945388
403 => 0.0031308640726941
404 => 0.0032834071403698
405 => 0.0030768087098893
406 => 0.0032943573588454
407 => 0.0032254839683058
408 => 0.0030621863983159
409 => 0.0030516719599604
410 => 0.0031622589702814
411 => 0.003407530315568
412 => 0.0033460926254182
413 => 0.0034076308056196
414 => 0.0033358432496218
415 => 0.0033322783923935
416 => 0.0034041442442576
417 => 0.0035720627243417
418 => 0.0034922909487839
419 => 0.0033779185476798
420 => 0.0034623693488234
421 => 0.0033892102493201
422 => 0.0032243623221967
423 => 0.0033460456451745
424 => 0.0032646794724407
425 => 0.0032884264473081
426 => 0.0034594460400896
427 => 0.0034388685102244
428 => 0.0034654977392979
429 => 0.0034184978469914
430 => 0.0033745925363744
501 => 0.0032926400136566
502 => 0.0032683779118904
503 => 0.0032750830839596
504 => 0.0032683745891402
505 => 0.0032225229058621
506 => 0.0032126212392238
507 => 0.0031961180276913
508 => 0.0032012330630216
509 => 0.0031702021971557
510 => 0.0032287638523487
511 => 0.0032396334115961
512 => 0.0032822497006088
513 => 0.0032866742651082
514 => 0.0034053600234038
515 => 0.0033399899021677
516 => 0.0033838458232776
517 => 0.0033799229369056
518 => 0.0030657255518191
519 => 0.003109019179297
520 => 0.0031763704773639
521 => 0.0031460288088773
522 => 0.0031031327884942
523 => 0.0030684919520958
524 => 0.0030160075427448
525 => 0.0030898783410325
526 => 0.0031870105854973
527 => 0.0032891376991205
528 => 0.0034118367345051
529 => 0.0033844517381815
530 => 0.0032868439260016
531 => 0.0032912225411535
601 => 0.0033182894171006
602 => 0.0032832353534641
603 => 0.0032728972257611
604 => 0.0033168691171069
605 => 0.0033171719273561
606 => 0.0032768379907172
607 => 0.0032320142011756
608 => 0.0032318263878607
609 => 0.0032238504274582
610 => 0.0033372621552587
611 => 0.00339962713833
612 => 0.0034067771831329
613 => 0.0033991458833462
614 => 0.0034020828677586
615 => 0.0033657940582281
616 => 0.0034487395157027
617 => 0.003524858469937
618 => 0.003504456964158
619 => 0.0034738722067502
620 => 0.0034495099743135
621 => 0.0034987179964387
622 => 0.0034965268406741
623 => 0.0035241936372765
624 => 0.0035229385115715
625 => 0.0035136352084749
626 => 0.0035044572964082
627 => 0.0035408466803286
628 => 0.0035303671221552
629 => 0.0035198712863333
630 => 0.0034988202807606
701 => 0.0035016814620381
702 => 0.00347110198552
703 => 0.003456954520461
704 => 0.0032442105904896
705 => 0.0031873584607928
706 => 0.0032052452981273
707 => 0.0032111341094093
708 => 0.0031863919897073
709 => 0.0032218658336309
710 => 0.0032163372726315
711 => 0.0032378456693802
712 => 0.0032244081568776
713 => 0.0032249596370779
714 => 0.0032644764961682
715 => 0.0032759484084788
716 => 0.0032701137012879
717 => 0.0032742001302024
718 => 0.0033683701597615
719 => 0.0033549821929462
720 => 0.0033478701024077
721 => 0.0033498402000918
722 => 0.0033739026616723
723 => 0.0033806388371532
724 => 0.0033520971882981
725 => 0.0033655575948955
726 => 0.0034228702978071
727 => 0.0034429265002081
728 => 0.0035069362707489
729 => 0.0034797437825402
730 => 0.0035296567715106
731 => 0.0036830722830135
801 => 0.0038056312091479
802 => 0.0036929209557128
803 => 0.0039179848157736
804 => 0.0040932293143241
805 => 0.0040865031385848
806 => 0.0040559452067842
807 => 0.0038564340043005
808 => 0.0036728408212305
809 => 0.0038264243146469
810 => 0.0038268158305563
811 => 0.0038136228722654
812 => 0.0037316825413875
813 => 0.0038107715263668
814 => 0.0038170493227854
815 => 0.0038135354261918
816 => 0.003750711966627
817 => 0.0036547921555878
818 => 0.0036735346570652
819 => 0.0037042352568221
820 => 0.0036461126166664
821 => 0.0036275389113617
822 => 0.0036620709633151
823 => 0.0037733404297479
824 => 0.0037523055816589
825 => 0.0037517562767668
826 => 0.0038417522770552
827 => 0.0037773345632011
828 => 0.0036737710600307
829 => 0.0036476199096454
830 => 0.0035548009433032
831 => 0.0036189113339655
901 => 0.0036212185527919
902 => 0.0035861059470185
903 => 0.0036766202544726
904 => 0.0036757861491947
905 => 0.0037617160128456
906 => 0.0039259816383632
907 => 0.0038774002098771
908 => 0.0038209052941922
909 => 0.0038270478579613
910 => 0.0038944166213685
911 => 0.0038536839291332
912 => 0.0038683316892594
913 => 0.0038943944502292
914 => 0.0039101187610242
915 => 0.0038247853716213
916 => 0.0038048900765836
917 => 0.0037641912852362
918 => 0.0037535737302526
919 => 0.0037867220465969
920 => 0.0037779886363875
921 => 0.0036210246399836
922 => 0.0036046210290199
923 => 0.0036051241043492
924 => 0.003563876444632
925 => 0.0035009638629905
926 => 0.0036662943712292
927 => 0.0036530160176186
928 => 0.0036383577428955
929 => 0.0036401532979102
930 => 0.0037119176679657
1001 => 0.0036702907091459
1002 => 0.0037809628016927
1003 => 0.0037582119465727
1004 => 0.0037348776178657
1005 => 0.0037316521028574
1006 => 0.0037226703770966
1007 => 0.0036918686975098
1008 => 0.0036546738185147
1009 => 0.003630114537637
1010 => 0.0033485887738417
1011 => 0.003400838318042
1012 => 0.0034609466559488
1013 => 0.0034816958133251
1014 => 0.0034462029438349
1015 => 0.0036932701723288
1016 => 0.0037384117357737
1017 => 0.0036016749955878
1018 => 0.0035760971344233
1019 => 0.0036949470526485
1020 => 0.0036232660231471
1021 => 0.0036555439863425
1022 => 0.003585776685016
1023 => 0.0037275384550391
1024 => 0.0037264584678675
1025 => 0.0036713099374937
1026 => 0.0037179210977248
1027 => 0.0037098212615903
1028 => 0.0036475587066232
1029 => 0.0037295122890873
1030 => 0.0037295529370418
1031 => 0.0036764736755894
1101 => 0.0036144887187576
1102 => 0.0036034072724953
1103 => 0.0035950588913196
1104 => 0.0036534907963384
1105 => 0.0037058806596664
1106 => 0.0038033652067712
1107 => 0.0038278751380891
1108 => 0.0039235390317413
1109 => 0.0038665758408618
1110 => 0.0038918268855819
1111 => 0.0039192404666038
1112 => 0.0039323835454468
1113 => 0.0039109676037686
1114 => 0.00405957300744
1115 => 0.0040721198566618
1116 => 0.004076326706676
1117 => 0.0040262178006769
1118 => 0.0040707262373396
1119 => 0.0040499022137896
1120 => 0.0041040805379863
1121 => 0.0041125763910039
1122 => 0.0041053807057467
1123 => 0.0041080774235924
1124 => 0.0039812689273486
1125 => 0.0039746932378502
1126 => 0.0038850332449505
1127 => 0.0039215703547903
1128 => 0.003853265979214
1129 => 0.0038749260003223
1130 => 0.0038844735312426
1201 => 0.0038794864429074
1202 => 0.0039236361081609
1203 => 0.0038860998735147
1204 => 0.0037870355787553
1205 => 0.003687944293995
1206 => 0.0036867002836328
1207 => 0.0036606112974619
1208 => 0.0036417537388965
1209 => 0.003645386373684
1210 => 0.0036581882524873
1211 => 0.0036410096704279
1212 => 0.0036446755918865
1213 => 0.0037055543140059
1214 => 0.0037177631075598
1215 => 0.0036762728567802
1216 => 0.0035096835128853
1217 => 0.0034688020700357
1218 => 0.0034981868404417
1219 => 0.0034841428128092
1220 => 0.0028119751761343
1221 => 0.0029698909919676
1222 => 0.0028760627765139
1223 => 0.0029193031350236
1224 => 0.0028235288237439
1225 => 0.0028692373450483
1226 => 0.0028607966501713
1227 => 0.0031147206089626
1228 => 0.003110755935607
1229 => 0.0031126536149365
1230 => 0.0030220724361645
1231 => 0.0031663707134952
]
'min_raw' => 0.0018421976102426
'max_raw' => 0.0041125763910039
'avg_raw' => 0.0029773870006233
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.001842'
'max' => '$0.004112'
'avg' => '$0.002977'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00028406313370743
'max_diff' => 0.00062216281851043
'year' => 2035
]
10 => [
'items' => [
101 => 0.0032374572337065
102 => 0.0032243010107219
103 => 0.0032276121486074
104 => 0.0031707158294093
105 => 0.0031132044956755
106 => 0.0030494155756339
107 => 0.0031679275045223
108 => 0.003154751001096
109 => 0.0031849731591997
110 => 0.0032618366164914
111 => 0.0032731550525535
112 => 0.0032883671454012
113 => 0.0032829146929858
114 => 0.0034128142302755
115 => 0.003397082539205
116 => 0.0034349913883685
117 => 0.0033570100094878
118 => 0.0032687666772238
119 => 0.0032855388497953
120 => 0.0032839235547034
121 => 0.0032633589942337
122 => 0.0032447942285453
123 => 0.0032138891242645
124 => 0.003311677447304
125 => 0.003307707419971
126 => 0.0033719775478396
127 => 0.0033606171784521
128 => 0.0032847498513285
129 => 0.0032874594677589
130 => 0.0033056829404503
131 => 0.0033687545875072
201 => 0.0033874785465989
202 => 0.0033788048627269
203 => 0.0033993348290897
204 => 0.0034155608774287
205 => 0.0034013725709405
206 => 0.0036022490703241
207 => 0.0035188311427193
208 => 0.0035594884602157
209 => 0.0035691849908717
210 => 0.0035443475314923
211 => 0.003549733887069
212 => 0.0035578927480736
213 => 0.0036074317544247
214 => 0.003737436441317
215 => 0.0037950146321697
216 => 0.0039682414602082
217 => 0.0037902335649465
218 => 0.0037796713131116
219 => 0.0038108746957904
220 => 0.0039125771817709
221 => 0.0039949974942294
222 => 0.0040223410668138
223 => 0.004025954971324
224 => 0.0040772533312586
225 => 0.0041066565945153
226 => 0.0040710243610817
227 => 0.0040408297740971
228 => 0.0039326765114082
229 => 0.003945195546056
301 => 0.00403143928025
302 => 0.0041532636345296
303 => 0.0042578016041653
304 => 0.0042211960507149
305 => 0.0045004705840476
306 => 0.0045281595132934
307 => 0.0045243337985619
308 => 0.0045874133000489
309 => 0.0044622133355143
310 => 0.0044086879250406
311 => 0.0040473581865263
312 => 0.0041488771046003
313 => 0.0042964408140179
314 => 0.004276910203741
315 => 0.0041697454935726
316 => 0.0042577203101229
317 => 0.0042286330845445
318 => 0.0042056907829008
319 => 0.0043107939143148
320 => 0.0041952287039264
321 => 0.0042952879626415
322 => 0.0041669609283588
323 => 0.0042213632617996
324 => 0.0041904818661939
325 => 0.0042104659138323
326 => 0.0040936395796791
327 => 0.0041566762337892
328 => 0.0040910170476229
329 => 0.0040909859166196
330 => 0.0040895364864458
331 => 0.0041667842277931
401 => 0.0041693032738651
402 => 0.0041122170762946
403 => 0.0041039900633707
404 => 0.0041344096421025
405 => 0.0040987962823079
406 => 0.0041154595492079
407 => 0.0040993009956871
408 => 0.0040956633649384
409 => 0.0040666781042406
410 => 0.0040541904569656
411 => 0.0040590871852291
412 => 0.0040423721272292
413 => 0.0040323007001742
414 => 0.0040875330261104
415 => 0.0040580246224283
416 => 0.004083010440036
417 => 0.0040545359474105
418 => 0.0039558309502245
419 => 0.0038990646625564
420 => 0.0037126200728302
421 => 0.0037654955271928
422 => 0.0038005520081388
423 => 0.0037889658413952
424 => 0.0038138574108116
425 => 0.0038153855510129
426 => 0.0038072930480561
427 => 0.0037979229663459
428 => 0.0037933621287675
429 => 0.0038273548754533
430 => 0.0038470888090476
501 => 0.0038040703949969
502 => 0.0037939917824764
503 => 0.0038374857741934
504 => 0.0038640170840151
505 => 0.0040599093690835
506 => 0.0040453970358819
507 => 0.0040818201443164
508 => 0.0040777194612648
509 => 0.0041158966815604
510 => 0.0041783003018465
511 => 0.0040514162934782
512 => 0.004073438970012
513 => 0.0040680395183038
514 => 0.004126989316242
515 => 0.0041271733510765
516 => 0.0040918300024518
517 => 0.0041109902051216
518 => 0.004100295505624
519 => 0.0041196222730915
520 => 0.0040452032148243
521 => 0.0041358375947529
522 => 0.004187221447822
523 => 0.0041879349126717
524 => 0.004212290451219
525 => 0.0042370370889607
526 => 0.0042845361051279
527 => 0.0042357123671799
528 => 0.0041478832155064
529 => 0.0041542241965708
530 => 0.0041027299970801
531 => 0.0041035956238768
601 => 0.004098974840196
602 => 0.0041128421598584
603 => 0.0040482463116631
604 => 0.0040634068281222
605 => 0.0040421820162996
606 => 0.0040733928314163
607 => 0.0040398151536833
608 => 0.0040680369145247
609 => 0.0040802164909377
610 => 0.004125159390109
611 => 0.0040331770509338
612 => 0.0038456188346987
613 => 0.0038850458456748
614 => 0.0038267301995162
615 => 0.0038321275345915
616 => 0.0038430310104231
617 => 0.0038076892778575
618 => 0.003814431366685
619 => 0.0038141904918288
620 => 0.0038121147624486
621 => 0.0038029210128458
622 => 0.0037895882569938
623 => 0.0038427018527022
624 => 0.0038517268875994
625 => 0.0038717884222106
626 => 0.0039314779413445
627 => 0.0039255135508072
628 => 0.0039352417192337
629 => 0.00391400518218
630 => 0.0038331126366375
701 => 0.0038375054910463
702 => 0.0037827265261786
703 => 0.003870387600919
704 => 0.0038496283013508
705 => 0.003836244645872
706 => 0.0038325927914759
707 => 0.0038924302693825
708 => 0.0039103345806097
709 => 0.0038991778153666
710 => 0.003876294964358
711 => 0.003920236803002
712 => 0.0039319937852659
713 => 0.0039346257400139
714 => 0.0040124822530793
715 => 0.0039389770542163
716 => 0.0039566704861615
717 => 0.0040947095913848
718 => 0.0039695271710417
719 => 0.0040358390909985
720 => 0.0040325934675872
721 => 0.0040665164019641
722 => 0.0040298107968321
723 => 0.0040302658067989
724 => 0.004060387074387
725 => 0.0040180871864588
726 => 0.0040076131393431
727 => 0.0039931433182693
728 => 0.0040247376432161
729 => 0.0040436770121333
730 => 0.0041963144161722
731 => 0.0042949251402925
801 => 0.0042906441886912
802 => 0.0043297640727219
803 => 0.004312140206669
804 => 0.0042552280942432
805 => 0.0043523701304613
806 => 0.0043216303256065
807 => 0.0043241644777699
808 => 0.0043240701564998
809 => 0.0043445094394079
810 => 0.0043300263342347
811 => 0.0043014786472782
812 => 0.0043204299341447
813 => 0.0043767084809292
814 => 0.004551398816985
815 => 0.0046491578433809
816 => 0.0045455136008461
817 => 0.0046170060114949
818 => 0.0045741360404562
819 => 0.0045663452914473
820 => 0.0046112478085824
821 => 0.0046562289216296
822 => 0.0046533638191872
823 => 0.0046207098409207
824 => 0.0046022644371619
825 => 0.0047419392140869
826 => 0.0048448492104274
827 => 0.0048378314385944
828 => 0.0048688056011638
829 => 0.0049597467004626
830 => 0.0049680612148715
831 => 0.0049670137771629
901 => 0.0049464053856705
902 => 0.0050359487081241
903 => 0.0051106473230798
904 => 0.0049416351384737
905 => 0.0050059927658398
906 => 0.0050348849782376
907 => 0.0050773073179708
908 => 0.0051488809159104
909 => 0.0052266288272321
910 => 0.0052376232343554
911 => 0.0052298221763706
912 => 0.0051785453388779
913 => 0.0052636180311716
914 => 0.0053134516191171
915 => 0.0053431263803172
916 => 0.0054183766373114
917 => 0.0050350634067053
918 => 0.0047637352501787
919 => 0.0047213634405109
920 => 0.0048075281816594
921 => 0.0048302491367493
922 => 0.0048210903482422
923 => 0.0045156858399947
924 => 0.0047197555489799
925 => 0.0049393173971796
926 => 0.0049477516619627
927 => 0.0050576689139932
928 => 0.0050934624769147
929 => 0.0051819602719828
930 => 0.005176424710806
1001 => 0.0051979725155976
1002 => 0.005193019048432
1003 => 0.0053569425783863
1004 => 0.0055377745748057
1005 => 0.0055315129377802
1006 => 0.0055055161987879
1007 => 0.0055441257892942
1008 => 0.0057307637887335
1009 => 0.0057135811525581
1010 => 0.005730272619989
1011 => 0.0059503293397846
1012 => 0.0062364343782222
1013 => 0.0061035098633917
1014 => 0.0063919178125751
1015 => 0.0065734553287376
1016 => 0.0068874056916111
1017 => 0.0068480975599412
1018 => 0.0069703161323337
1019 => 0.0067777278003975
1020 => 0.0063355060617483
1021 => 0.0062655227788502
1022 => 0.0064056310834711
1023 => 0.0067500736788131
1024 => 0.0063947833603767
1025 => 0.0064666581290652
1026 => 0.0064459581908477
1027 => 0.0064448551791091
1028 => 0.0064869526508963
1029 => 0.0064258880724125
1030 => 0.0061770999943617
1031 => 0.0062911181044151
1101 => 0.0062470902365241
1102 => 0.0062959424384441
1103 => 0.0065595776240256
1104 => 0.0064430182242022
1105 => 0.0063202323650049
1106 => 0.0064742330808017
1107 => 0.0066703289123984
1108 => 0.0066580575876752
1109 => 0.0066342460886963
1110 => 0.0067684702617107
1111 => 0.0069901692715379
1112 => 0.0070500936230354
1113 => 0.0070943285542114
1114 => 0.0071004278038653
1115 => 0.0071632538659629
1116 => 0.0068254222958579
1117 => 0.0073615696737445
1118 => 0.0074541475151331
1119 => 0.0074367467179105
1120 => 0.0075396430923428
1121 => 0.0075093683687557
1122 => 0.0074655050442367
1123 => 0.0076286176843984
1124 => 0.0074416222049643
1125 => 0.0071762056639838
1126 => 0.007030592900258
1127 => 0.0072223475337788
1128 => 0.0073394453971554
1129 => 0.0074168396360245
1130 => 0.0074402590859434
1201 => 0.006851647198962
1202 => 0.006534418037791
1203 => 0.0067377582930619
1204 => 0.0069858474382872
1205 => 0.0068240441481299
1206 => 0.0068303865307699
1207 => 0.0065996975601622
1208 => 0.0070062582933808
1209 => 0.0069470258142649
1210 => 0.0072543240206989
1211 => 0.0071809848375113
1212 => 0.0074315745956106
1213 => 0.0073655859141257
1214 => 0.0076395012415919
1215 => 0.0077487734816797
1216 => 0.0079322585796531
1217 => 0.008067230964641
1218 => 0.0081464893307163
1219 => 0.0081417309557078
1220 => 0.0084557920884591
1221 => 0.0082706012109359
1222 => 0.0080379578226281
1223 => 0.0080337500377141
1224 => 0.008154239345101
1225 => 0.0084067518787567
1226 => 0.0084722247048257
1227 => 0.0085088150826311
1228 => 0.0084527756453019
1229 => 0.0082517642205003
1230 => 0.008164968506422
1231 => 0.0082389209695306
]
'min_raw' => 0.0030494155756339
'max_raw' => 0.0085088150826311
'avg_raw' => 0.0057791153291325
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.003049'
'max' => '$0.0085088'
'avg' => '$0.005779'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0012072179653913
'max_diff' => 0.0043962386916272
'year' => 2036
]
11 => [
'items' => [
101 => 0.0081484834619563
102 => 0.0083046039723124
103 => 0.0085189907785729
104 => 0.0084747207508575
105 => 0.0086227088161768
106 => 0.0087758608949839
107 => 0.0089948752461682
108 => 0.0090521337076458
109 => 0.0091467797671238
110 => 0.0092442016519377
111 => 0.0092754909357465
112 => 0.0093352318870321
113 => 0.0093349170227298
114 => 0.0095149504004587
115 => 0.0097135327912633
116 => 0.0097884930465991
117 => 0.0099608600204111
118 => 0.0096656876182171
119 => 0.0098895792759775
120 => 0.010091535155649
121 => 0.009850755030241
122 => 0.010182614338542
123 => 0.010195499683474
124 => 0.01039005309376
125 => 0.010192835940511
126 => 0.010075729024452
127 => 0.010413812303177
128 => 0.010577400152229
129 => 0.010528126160773
130 => 0.010153148652832
131 => 0.0099348956596684
201 => 0.0093636854787015
202 => 0.0100403086125
203 => 0.010369872003606
204 => 0.010152295163265
205 => 0.010262028265844
206 => 0.010860696492437
207 => 0.011088630592226
208 => 0.011041221892849
209 => 0.011049233182631
210 => 0.01117222228558
211 => 0.011717623699395
212 => 0.011390806529932
213 => 0.011640646010381
214 => 0.011773159969948
215 => 0.011896246320677
216 => 0.011593985145127
217 => 0.011200747796835
218 => 0.01107619302165
219 => 0.010130661434464
220 => 0.010081442409116
221 => 0.010053814278699
222 => 0.0098796228244945
223 => 0.0097427560565449
224 => 0.0096339145211342
225 => 0.0093482818293825
226 => 0.0094446744780131
227 => 0.0089894355835368
228 => 0.0092806812955469
301 => 0.0085541090278354
302 => 0.0091592200025971
303 => 0.0088298856100542
304 => 0.0090510247972267
305 => 0.0090502532634352
306 => 0.0086430659076076
307 => 0.0084082087385495
308 => 0.0085578688674511
309 => 0.0087183164056694
310 => 0.0087443484789349
311 => 0.0089523729003442
312 => 0.0090104280448895
313 => 0.0088345182465816
314 => 0.0085390524325482
315 => 0.0086076824022904
316 => 0.0084068179544032
317 => 0.0080548107356202
318 => 0.0083076284656066
319 => 0.0083939515542348
320 => 0.0084320767478909
321 => 0.0080859180765201
322 => 0.007977147506505
323 => 0.0079192389677024
324 => 0.0084943676949487
325 => 0.0085258745449069
326 => 0.0083646810459009
327 => 0.0090932909464029
328 => 0.0089283840859913
329 => 0.0091126254522328
330 => 0.0086014549518816
331 => 0.0086209823533774
401 => 0.0083789860466405
402 => 0.0085144878082141
403 => 0.0084187195305595
404 => 0.0085035406049335
405 => 0.0085543820071828
406 => 0.008796338604707
407 => 0.0091619827582806
408 => 0.0087601983575784
409 => 0.0085851351405338
410 => 0.0086937433757953
411 => 0.0089829814185227
412 => 0.0094211918590776
413 => 0.0091617624584621
414 => 0.0092768928210583
415 => 0.0093020436834923
416 => 0.0091107500480769
417 => 0.0094282451282738
418 => 0.0095983933210767
419 => 0.009772930159685
420 => 0.0099244756062374
421 => 0.0097032163081975
422 => 0.0099399954733747
423 => 0.0097491932633911
424 => 0.0095780239562659
425 => 0.0095782835494492
426 => 0.009470906542705
427 => 0.0092628500617646
428 => 0.00922448125452
429 => 0.0094240806352522
430 => 0.0095841404364677
501 => 0.0095973237283306
502 => 0.009685941058453
503 => 0.0097383838815884
504 => 0.010252394840876
505 => 0.010459134300823
506 => 0.010711931399069
507 => 0.010810410115699
508 => 0.011106795746183
509 => 0.010867440278303
510 => 0.010815654217211
511 => 0.010096719624658
512 => 0.010214445123913
513 => 0.010402935007042
514 => 0.010099827753406
515 => 0.010292079540165
516 => 0.010330034115321
517 => 0.010089528284913
518 => 0.010217992840577
519 => 0.0098768290678184
520 => 0.0091694191962337
521 => 0.0094290326776847
522 => 0.0096201955849856
523 => 0.0093473825460507
524 => 0.0098363893590188
525 => 0.0095507216740324
526 => 0.0094601787323589
527 => 0.0091069384360011
528 => 0.0092736542584161
529 => 0.009499139795373
530 => 0.0093598159490409
531 => 0.0096489338497608
601 => 0.010058401902108
602 => 0.010350213220454
603 => 0.010372614870041
604 => 0.010184999742185
605 => 0.010485654181919
606 => 0.010487844121281
607 => 0.010148704685051
608 => 0.0099409836686961
609 => 0.0098937890167316
610 => 0.010011690510395
611 => 0.01015484468952
612 => 0.01038055893068
613 => 0.010516953319358
614 => 0.010872597547036
615 => 0.010968824677926
616 => 0.011074549120531
617 => 0.011215829580063
618 => 0.011385472995297
619 => 0.01101430286057
620 => 0.01102905014197
621 => 0.010683421651713
622 => 0.010314068041734
623 => 0.010594361391131
624 => 0.010960807659605
625 => 0.01087674448073
626 => 0.010867285655852
627 => 0.010883192775638
628 => 0.010819811884013
629 => 0.010533142460198
630 => 0.010389178870204
701 => 0.010574928630325
702 => 0.010673646361059
703 => 0.010826748952336
704 => 0.010807875826358
705 => 0.011202251659471
706 => 0.011355494182912
707 => 0.011316288187798
708 => 0.011323503034444
709 => 0.011600941303318
710 => 0.011909509717837
711 => 0.012198524757223
712 => 0.012492523268771
713 => 0.012138096588143
714 => 0.011958140577718
715 => 0.012143809245305
716 => 0.012045290836808
717 => 0.012611406834492
718 => 0.012650603477887
719 => 0.013216678538941
720 => 0.013753951178846
721 => 0.013416499859961
722 => 0.013734701254528
723 => 0.014078862006093
724 => 0.014742803933931
725 => 0.014519211650393
726 => 0.014347943465342
727 => 0.01418609585803
728 => 0.014522875036262
729 => 0.014956136068879
730 => 0.015049456345582
731 => 0.01520067084493
801 => 0.015041687288495
802 => 0.015233165470757
803 => 0.01590916759392
804 => 0.015726505853006
805 => 0.015467096816567
806 => 0.01600073556887
807 => 0.016193857358861
808 => 0.01754928721968
809 => 0.019260573408979
810 => 0.018552089689699
811 => 0.018112310982514
812 => 0.018215669410393
813 => 0.018840573196032
814 => 0.019041272458524
815 => 0.018495702677885
816 => 0.01868840714761
817 => 0.019750227722082
818 => 0.020319860393003
819 => 0.019546222714017
820 => 0.017411787040612
821 => 0.015443739871092
822 => 0.015965754602767
823 => 0.015906574332199
824 => 0.017047368074653
825 => 0.015722149430895
826 => 0.015744462714143
827 => 0.016908846863071
828 => 0.016598209134735
829 => 0.016095015798305
830 => 0.015447413739315
831 => 0.01425026143733
901 => 0.013189910258401
902 => 0.015269503104574
903 => 0.015179827279553
904 => 0.015049963395709
905 => 0.015338961416463
906 => 0.016742253771722
907 => 0.016709903340919
908 => 0.016504106405486
909 => 0.016660201567201
910 => 0.016067651561747
911 => 0.016220365190266
912 => 0.015443428122365
913 => 0.015794636124814
914 => 0.016093936171401
915 => 0.016154025086966
916 => 0.01628940848195
917 => 0.015132572194667
918 => 0.015651957724728
919 => 0.015957048063796
920 => 0.014578638812606
921 => 0.015929801344824
922 => 0.015112434248634
923 => 0.014835007579746
924 => 0.01520852604122
925 => 0.015062965533525
926 => 0.014937821156608
927 => 0.014867988444036
928 => 0.015142259178414
929 => 0.015129464120831
930 => 0.014680703965732
1001 => 0.01409531463721
1002 => 0.014291790510612
1003 => 0.014220408983834
1004 => 0.01396171312239
1005 => 0.014136042897946
1006 => 0.013368382792679
1007 => 0.012047663481069
1008 => 0.012920171113045
1009 => 0.01288658051832
1010 => 0.012869642617247
1011 => 0.013525307988338
1012 => 0.013462280891681
1013 => 0.013347886094086
1014 => 0.013959612172223
1015 => 0.013736323924826
1016 => 0.014424445689975
1017 => 0.014877687189427
1018 => 0.01476273048434
1019 => 0.015189006305281
1020 => 0.014296316917909
1021 => 0.014592832523912
1022 => 0.014653943979357
1023 => 0.013952063567374
1024 => 0.013472592904164
1025 => 0.013440617677293
1026 => 0.012609281622413
1027 => 0.01305337463262
1028 => 0.013444158103784
1029 => 0.013257003147119
1030 => 0.013197755478934
1031 => 0.01350043896644
1101 => 0.013523960065728
1102 => 0.012987676509308
1103 => 0.013099186842579
1104 => 0.01356420346937
1105 => 0.013087469616694
1106 => 0.012161253614976
1107 => 0.011931539240612
1108 => 0.011900891108595
1109 => 0.011277887506443
1110 => 0.011946889853529
1111 => 0.011654852400877
1112 => 0.012577395214656
1113 => 0.012050443707122
1114 => 0.012027727880837
1115 => 0.01199338957772
1116 => 0.011457144641393
1117 => 0.011574548202305
1118 => 0.011964815519844
1119 => 0.012104067295418
1120 => 0.012089542194369
1121 => 0.011962902997078
1122 => 0.0120208777731
1123 => 0.011834120819782
1124 => 0.011768173052555
1125 => 0.011560023758826
1126 => 0.011254101799753
1127 => 0.011296642124491
1128 => 0.010690530674733
1129 => 0.010360288988136
1130 => 0.010268882441802
1201 => 0.0101466497879
1202 => 0.010282688945308
1203 => 0.01068881363715
1204 => 0.010198941094629
1205 => 0.0093590889810406
1206 => 0.0094095655241057
1207 => 0.0095229713297527
1208 => 0.009311640361184
1209 => 0.0091116333350974
1210 => 0.0092855232171967
1211 => 0.0089296668050944
1212 => 0.0095659748770311
1213 => 0.009548764526918
1214 => 0.0097859408271088
1215 => 0.0099342520349658
1216 => 0.0095924427171792
1217 => 0.0095064785981066
1218 => 0.0095554476671818
1219 => 0.0087460980353189
1220 => 0.0097197996952308
1221 => 0.0097282203076196
1222 => 0.009656117912045
1223 => 0.010174583986282
1224 => 0.011268709116546
1225 => 0.010857055231459
1226 => 0.010697650404849
1227 => 0.010394621712939
1228 => 0.010798389452846
1229 => 0.010767386390179
1230 => 0.010627178783237
1231 => 0.010542380785084
]
'min_raw' => 0.0079192389677024
'max_raw' => 0.020319860393003
'avg_raw' => 0.014119549680353
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.007919'
'max' => '$0.020319'
'avg' => '$0.014119'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0048698233920685
'max_diff' => 0.011811045310372
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0002485758620845
]
1 => [
'year' => 2028
'avg' => 0.00042662834142538
]
2 => [
'year' => 2029
'avg' => 0.0011654717364968
]
3 => [
'year' => 2030
'avg' => 0.0008991597090347
]
4 => [
'year' => 2031
'avg' => 0.00088308626590807
]
5 => [
'year' => 2032
'avg' => 0.0015483281416128
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0002485758620845
'min' => '$0.000248'
'max_raw' => 0.0015483281416128
'max' => '$0.001548'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0015483281416128
]
1 => [
'year' => 2033
'avg' => 0.0039824591929334
]
2 => [
'year' => 2034
'avg' => 0.0025242740245143
]
3 => [
'year' => 2035
'avg' => 0.0029773870006233
]
4 => [
'year' => 2036
'avg' => 0.0057791153291325
]
5 => [
'year' => 2037
'avg' => 0.014119549680353
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0015483281416128
'min' => '$0.001548'
'max_raw' => 0.014119549680353
'max' => '$0.014119'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.014119549680353
]
]
]
]
'prediction_2025_max_price' => '$0.000425'
'last_price' => 0.00041211
'sma_50day_nextmonth' => '$0.000383'
'sma_200day_nextmonth' => '$0.000515'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.00038'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000376'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000379'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000392'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000443'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000554'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000523'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000389'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000383'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000383'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000394'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000442'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.000496'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.000578'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000542'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.000484'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000396'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0004019'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000434'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000487'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.000582'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0007039'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.000351'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '52.50'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 84.64
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000370'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000377'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 94.27
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 72.15
'cci_20_action' => 'NEUTRAL'
'adx_14' => 25.94
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000024'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -5.73
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.28
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000089'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 12
'buy_signals' => 19
'sell_pct' => 38.71
'buy_pct' => 61.29
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767690441
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de Bitcat pour 2026
La prévision du prix de Bitcat pour 2026 suggère que le prix moyen pourrait varier entre $0.000142 à la baisse et $0.000425 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, Bitcat pourrait potentiellement gagner 3.13% d'ici 2026 si BITCAT atteint l'objectif de prix prévu.
Prévision du prix de Bitcat de 2027 à 2032
La prévision du prix de BITCAT pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.000248 à la baisse et $0.001548 à la hausse. Compte tenu de la volatilité des prix sur le marché, si Bitcat atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de Bitcat | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000137 | $0.000248 | $0.00036 |
| 2028 | $0.000247 | $0.000426 | $0.0006058 |
| 2029 | $0.000543 | $0.001165 | $0.001787 |
| 2030 | $0.000462 | $0.000899 | $0.001336 |
| 2031 | $0.000546 | $0.000883 | $0.001219 |
| 2032 | $0.000834 | $0.001548 | $0.002262 |
Prévision du prix de Bitcat de 2032 à 2037
La prévision du prix de Bitcat pour 2032-2037 est actuellement estimée entre $0.001548 à la baisse et $0.014119 à la hausse. Par rapport au prix actuel, Bitcat pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de Bitcat | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.000834 | $0.001548 | $0.002262 |
| 2033 | $0.001938 | $0.003982 | $0.006026 |
| 2034 | $0.001558 | $0.002524 | $0.00349 |
| 2035 | $0.001842 | $0.002977 | $0.004112 |
| 2036 | $0.003049 | $0.005779 | $0.0085088 |
| 2037 | $0.007919 | $0.014119 | $0.020319 |
Bitcat Histogramme des prix potentiels
Prévision du prix de Bitcat basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour Bitcat est Haussier, avec 19 indicateurs techniques montrant des signaux haussiers et 12 indiquant des signaux baissiers. La prévision du prix de BITCAT a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de Bitcat et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de Bitcat devrait augmenter au cours du prochain mois, atteignant $0.000515 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour Bitcat devrait atteindre $0.000383 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 52.50, ce qui suggère que le marché de BITCAT est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de BITCAT pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.00038 | BUY |
| SMA 5 | $0.000376 | BUY |
| SMA 10 | $0.000379 | BUY |
| SMA 21 | $0.000392 | BUY |
| SMA 50 | $0.000443 | SELL |
| SMA 100 | $0.000554 | SELL |
| SMA 200 | $0.000523 | SELL |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.000389 | BUY |
| EMA 5 | $0.000383 | BUY |
| EMA 10 | $0.000383 | BUY |
| EMA 21 | $0.000394 | BUY |
| EMA 50 | $0.000442 | SELL |
| EMA 100 | $0.000496 | SELL |
| EMA 200 | $0.000578 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.000542 | SELL |
| SMA 50 | $0.000484 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.000487 | SELL |
| EMA 50 | $0.000582 | SELL |
| EMA 100 | $0.0007039 | SELL |
| EMA 200 | $0.000351 | BUY |
Oscillateurs de Bitcat
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 52.50 | NEUTRAL |
| Stoch RSI (14) | 84.64 | NEUTRAL |
| Stochastique Rapide (14) | 94.27 | SELL |
| Indice de Canal des Matières Premières (20) | 72.15 | NEUTRAL |
| Indice Directionnel Moyen (14) | 25.94 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.000024 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Plage de Pourcentage de Williams (14) | -5.73 | SELL |
| Oscillateur Ultime (7, 14, 28) | 68.28 | NEUTRAL |
| VWMA (10) | 0.000370 | BUY |
| Moyenne Mobile de Hull (9) | 0.000377 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | -0.000089 | SELL |
Prévision du cours de Bitcat basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de Bitcat
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de Bitcat par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.000579 | $0.000813 | $0.001143 | $0.0016066 | $0.002257 | $0.003172 |
| Action Amazon.com | $0.000859 | $0.001794 | $0.003743 | $0.007811 | $0.016299 | $0.0340093 |
| Action Apple | $0.000584 | $0.000829 | $0.001176 | $0.001668 | $0.002366 | $0.003356 |
| Action Netflix | $0.00065 | $0.001025 | $0.001618 | $0.002554 | $0.00403 | $0.006359 |
| Action Google | $0.000533 | $0.000691 | $0.000894 | $0.001159 | $0.0015009 | $0.001943 |
| Action Tesla | $0.000934 | $0.002117 | $0.00480091 | $0.010883 | $0.024671 | $0.055928 |
| Action Kodak | $0.000309 | $0.000231 | $0.000173 | $0.00013 | $0.000097 | $0.000073 |
| Action Nokia | $0.000273 | $0.00018 | $0.000119 | $0.000079 | $0.000052 | $0.000034 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à Bitcat
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans Bitcat maintenant ?", "Devrais-je acheter BITCAT aujourd'hui ?", " Bitcat sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de Bitcat avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme Bitcat en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de Bitcat afin de prendre une décision responsable concernant cet investissement.
Le cours de Bitcat est de $0.0004121 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de Bitcat basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Bitcat présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000422 | $0.000433 | $0.000445 | $0.000456 |
| Si Bitcat présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000433 | $0.000456 | $0.000479 | $0.0005047 |
| Si Bitcat présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000465 | $0.000526 | $0.000594 | $0.000671 |
| Si Bitcat présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000519 | $0.000654 | $0.000824 | $0.001038 |
| Si Bitcat présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000626 | $0.000951 | $0.001446 | $0.002199 |
| Si Bitcat présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.000947 | $0.002179 | $0.005011 | $0.011525 |
| Si Bitcat présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.001483 | $0.005338 | $0.019216 | $0.069166 |
Boîte à questions
Est-ce que BITCAT est un bon investissement ?
La décision d'acquérir Bitcat dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de Bitcat a connu une hausse de 0.7158% au cours des 24 heures précédentes, et Bitcat a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans Bitcat dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que Bitcat peut monter ?
Il semble que la valeur moyenne de Bitcat pourrait potentiellement s'envoler jusqu'à $0.000425 pour la fin de cette année. En regardant les perspectives de Bitcat sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.001336. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de Bitcat la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de Bitcat, le prix de Bitcat va augmenter de 0.86% durant la prochaine semaine et atteindre $0.000415 d'ici 13 janvier 2026.
Quel sera le prix de Bitcat le mois prochain ?
Basé sur notre nouveau pronostic expérimental de Bitcat, le prix de Bitcat va diminuer de -11.62% durant le prochain mois et atteindre $0.000364 d'ici 5 février 2026.
Jusqu'où le prix de Bitcat peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de Bitcat en 2026, BITCAT devrait fluctuer dans la fourchette de $0.000142 et $0.000425. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de Bitcat ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera Bitcat dans 5 ans ?
L'avenir de Bitcat semble suivre une tendance haussière, avec un prix maximum de $0.001336 prévue après une période de cinq ans. Selon la prévision de Bitcat pour 2030, la valeur de Bitcat pourrait potentiellement atteindre son point le plus élevé d'environ $0.001336, tandis que son point le plus bas devrait être autour de $0.000462.
Combien vaudra Bitcat en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de Bitcat, il est attendu que la valeur de BITCAT en 2026 augmente de 3.13% jusqu'à $0.000425 si le meilleur scénario se produit. Le prix sera entre $0.000425 et $0.000142 durant 2026.
Combien vaudra Bitcat en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de Bitcat, le valeur de BITCAT pourrait diminuer de -12.62% jusqu'à $0.00036 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.00036 et $0.000137 tout au long de l'année.
Combien vaudra Bitcat en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de Bitcat suggère que la valeur de BITCAT en 2028 pourrait augmenter de 47.02%, atteignant $0.0006058 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0006058 et $0.000247 durant l'année.
Combien vaudra Bitcat en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de Bitcat pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.001787 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.001787 et $0.000543.
Combien vaudra Bitcat en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de Bitcat, il est prévu que la valeur de BITCAT en 2030 augmente de 224.23%, atteignant $0.001336 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.001336 et $0.000462 au cours de 2030.
Combien vaudra Bitcat en 2031 ?
Notre simulation expérimentale indique que le prix de Bitcat pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.001219 dans des conditions idéales. Il est probable que le prix fluctue entre $0.001219 et $0.000546 durant l'année.
Combien vaudra Bitcat en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de Bitcat, BITCAT pourrait connaître une 449.04% hausse en valeur, atteignant $0.002262 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.002262 et $0.000834 tout au long de l'année.
Combien vaudra Bitcat en 2033 ?
Selon notre prédiction expérimentale de prix de Bitcat, la valeur de BITCAT est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.006026. Tout au long de l'année, le prix de BITCAT pourrait osciller entre $0.006026 et $0.001938.
Combien vaudra Bitcat en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de Bitcat suggèrent que BITCAT pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.00349 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.00349 et $0.001558.
Combien vaudra Bitcat en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de Bitcat, BITCAT pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.004112 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.004112 et $0.001842.
Combien vaudra Bitcat en 2036 ?
Notre récente simulation de prédiction de prix de Bitcat suggère que la valeur de BITCAT pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.0085088 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.0085088 et $0.003049.
Combien vaudra Bitcat en 2037 ?
Selon la simulation expérimentale, la valeur de Bitcat pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.020319 sous des conditions favorables. Il est prévu que le prix chute entre $0.020319 et $0.007919 au cours de l'année.
Prévisions liées
Prévision du cours de SolPod
Prévision du cours de zuzalu
Prévision du cours de SOFT COQ INU
Prévision du cours de All Street Bets
Prévision du cours de MagicRing
Prévision du cours de AI INU
Prévision du cours de Wall Street Baby On Solana
Prévision du cours de Meta Masters Guild Games
Prévision du cours de Morfey
Prévision du cours de PANTIESPrévision du cours de Celer Bridged BUSD (zkSync)
Prévision du cours de Bridged BUSD
Prévision du cours de Multichain Bridged BUSD (Moonriver)
Prévision du cours de tooker kurlson
Prévision du cours de dogwifsaudihatPrévision du cours de Harmony Horizen Bridged BUSD (Harmony)
Prévision du cours de IoTeX Bridged BUSD (IoTeX)
Prévision du cours de MIMANY
Prévision du cours de The Open League MEME
Prévision du cours de Sandwich Cat
Prévision du cours de Hege
Prévision du cours de DexNet
Prévision du cours de SolDocs
Prévision du cours de Secret Society
Prévision du cours de duk
Comment lire et prédire les mouvements de prix de Bitcat ?
Les traders de Bitcat utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de Bitcat
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de Bitcat. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BITCAT sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BITCAT au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BITCAT.
Comment lire les graphiques de Bitcat et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de Bitcat dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BITCAT au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de Bitcat ?
L'action du prix de Bitcat est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BITCAT. La capitalisation boursière de Bitcat peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BITCAT, de grands détenteurs de Bitcat, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de Bitcat.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


