Prédiction du prix de BitBoard jusqu'à $0.002067 d'ici 2026
| Année | Prix min. | Prix max. |
|---|---|---|
| 2026 | $0.000692 | $0.002067 |
| 2027 | $0.000666 | $0.001752 |
| 2028 | $0.0012036 | $0.002948 |
| 2029 | $0.002643 | $0.008697 |
| 2030 | $0.002248 | $0.0065013 |
| 2031 | $0.002658 | $0.005934 |
| 2032 | $0.004058 | $0.011009 |
| 2033 | $0.00943 | $0.029324 |
| 2034 | $0.007581 | $0.016983 |
| 2035 | $0.008963 | $0.02001 |
Calculateur de profit d’investissement
Si vous ouvrez une position short de $10,000.00 sur BitBoard aujourd’hui et la fermez le Apr 06, 2026, notre prévision indique que vous pourriez gagner environ $3,955.62, soit un rendement de 39.56% sur les 90 prochains jours.
Prévision du prix à long terme de BitBoard pour 2027, 2028, 2029, 2030, 2031, 2032 et 2037
[
'name' => 'BitBoard'
'name_with_ticker' => 'BitBoard <small>BB</small>'
'name_lang' => 'BitBoard'
'name_lang_with_ticker' => 'BitBoard <small>BB</small>'
'name_with_lang' => 'BitBoard'
'name_with_lang_with_ticker' => 'BitBoard <small>BB</small>'
'image' => '/uploads/coins/bitboard.png?1733904709'
'price_for_sd' => 0.002005
'ticker' => 'BB'
'marketcap' => '$10.75M'
'low24h' => '$0.001813'
'high24h' => '$0.002004'
'volume24h' => '$316.36K'
'current_supply' => '5.36B'
'max_supply' => '8.1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002005'
'change_24h_pct' => '10.5485%'
'ath_price' => '$0.06481'
'ath_days' => 391
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '11 déc. 2024'
'ath_pct' => '-96.91%'
'fdv' => '$16.24M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.098868'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0020223'
'next_week_prediction_price_date' => '13 janvier 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001772'
'next_month_prediction_price_date' => '5 février 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000692'
'current_year_max_price_prediction' => '$0.002067'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002248'
'grand_prediction_max_price' => '$0.0065013'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0020431669167806
107 => 0.0020507953603782
108 => 0.0020679826333218
109 => 0.0019211192678197
110 => 0.0019870566072483
111 => 0.0020257886166693
112 => 0.0018507959890223
113 => 0.002022329575065
114 => 0.0019185627033678
115 => 0.0018833426685877
116 => 0.0019307618055324
117 => 0.0019122825217484
118 => 0.0018963951186909
119 => 0.0018875296748046
120 => 0.0019223490555176
121 => 0.0019207246897892
122 => 0.0018637534247921
123 => 0.0017894367320492
124 => 0.001814379853496
125 => 0.0018053177836314
126 => 0.0017724756734117
127 => 0.0017946072903283
128 => 0.0016971508499828
129 => 0.0015294821097133
130 => 0.0016402492153677
131 => 0.0016359848022915
201 => 0.0016338344918427
202 => 0.001717072910364
203 => 0.0017090714570602
204 => 0.0016945487409634
205 => 0.0017722089523418
206 => 0.0017438619305114
207 => 0.0018312207723942
208 => 0.0018887609556738
209 => 0.0018741669039642
210 => 0.0019282837244545
211 => 0.0018149544926361
212 => 0.0018525979174666
213 => 0.0018603561751526
214 => 0.0017712506373882
215 => 0.0017103805937764
216 => 0.0017063212558368
217 => 0.0016007809886226
218 => 0.0016571597474771
219 => 0.0017067707221576
220 => 0.0016830109152528
221 => 0.0016754892701908
222 => 0.0017139157235668
223 => 0.0017169017880945
224 => 0.0016488192004154
225 => 0.0016629757262891
226 => 0.0017220107925087
227 => 0.0016614881940887
228 => 0.001543902671669
301 => 0.0015147398363619
302 => 0.0015108489765543
303 => 0.0014317570542677
304 => 0.0015166886364647
305 => 0.0014796137248108
306 => 0.0015967329264997
307 => 0.0015298350666179
308 => 0.0015269512335854
309 => 0.0015225918969906
310 => 0.0014545142122324
311 => 0.0014694188986318
312 => 0.0015189643462715
313 => 0.0015366427201588
314 => 0.0015347987209277
315 => 0.0015187215465487
316 => 0.0015260815946509
317 => 0.0015023723153028
318 => 0.001494000075299
319 => 0.0014675749828809
320 => 0.0014287373971445
321 => 0.0014341380016459
322 => 0.0013571905818949
323 => 0.0013152655437059
324 => 0.0013036612456984
325 => 0.0012881434934256
326 => 0.0013054140171087
327 => 0.0013569725995227
328 => 0.001294782010368
329 => 0.0011881606074248
330 => 0.0011945687354157
331 => 0.001208965896421
401 => 0.0011821368821344
402 => 0.0011567454717006
403 => 0.0011788212430025
404 => 0.0011336443490104
405 => 0.0012144253082248
406 => 0.0012122404096641
407 => 0.0012423505557982
408 => 0.0012611790480983
409 => 0.0012177854691434
410 => 0.001206872101385
411 => 0.0012130888516451
412 => 0.0011103398178277
413 => 0.0012339537676507
414 => 0.0012350227862219
415 => 0.0012258692001949
416 => 0.0012916898123231
417 => 0.0014305918338775
418 => 0.0013783313060478
419 => 0.0013580944500894
420 => 0.0013196241721194
421 => 0.0013708835333754
422 => 0.0013669476142015
423 => 0.0013491478950443
424 => 0.0013383825693595
425 => 0.0013582180120166
426 => 0.0013359247385052
427 => 0.0013319202540043
428 => 0.0013076574348513
429 => 0.0012989967123016
430 => 0.0012925846581191
501 => 0.0012855256164996
502 => 0.0013010961033086
503 => 0.0012658113317312
504 => 0.0012232613562177
505 => 0.0012197237861508
506 => 0.0012294913281317
507 => 0.0012251699179132
508 => 0.0012197030969013
509 => 0.0012092654467895
510 => 0.0012061688189664
511 => 0.0012162313571211
512 => 0.0012048713382269
513 => 0.0012216336649176
514 => 0.0012170752395596
515 => 0.0011916122460623
516 => 0.001159875928557
517 => 0.001159593408762
518 => 0.0011527558712135
519 => 0.0011440472391148
520 => 0.0011416246968915
521 => 0.0011769620831178
522 => 0.0012501094150474
523 => 0.0012357488435223
524 => 0.0012461258281797
525 => 0.0012971703222151
526 => 0.0013133958319074
527 => 0.0013018793494501
528 => 0.0012861148779567
529 => 0.0012868084346964
530 => 0.0013406804060192
531 => 0.0013440403347899
601 => 0.0013525297908394
602 => 0.0013634411409829
603 => 0.0013037375995615
604 => 0.0012839964032645
605 => 0.0012746419292591
606 => 0.0012458337699594
607 => 0.0012769008999392
608 => 0.0012587994137271
609 => 0.0012612419226519
610 => 0.0012596512355104
611 => 0.0012605198582515
612 => 0.0012144027283004
613 => 0.0012312053866096
614 => 0.0012032677082414
615 => 0.001165862293058
616 => 0.0011657368969903
617 => 0.0011748918193642
618 => 0.001169446113304
619 => 0.0011547918583181
620 => 0.0011568734260727
621 => 0.0011386367022136
622 => 0.0011590876945357
623 => 0.0011596741558183
624 => 0.0011517994098013
625 => 0.0011833069851665
626 => 0.0011962156645014
627 => 0.0011910323379796
628 => 0.0011958519884949
629 => 0.0012363455901032
630 => 0.0012429478140251
701 => 0.0012458800857728
702 => 0.0012419512300825
703 => 0.0011965921371972
704 => 0.0011986040058484
705 => 0.0011838422485816
706 => 0.0011713701192468
707 => 0.0011718689390125
708 => 0.0011782812347539
709 => 0.0012062841063328
710 => 0.0012652144987112
711 => 0.0012674508640244
712 => 0.0012701614040234
713 => 0.0012591362756393
714 => 0.0012558109914223
715 => 0.0012601978996331
716 => 0.0012823290565976
717 => 0.0013392564008608
718 => 0.0013191344753487
719 => 0.0013027750366909
720 => 0.0013171266748668
721 => 0.0013149173526615
722 => 0.0012962684498654
723 => 0.001295745037276
724 => 0.0012599518303953
725 => 0.0012467198967834
726 => 0.0012356623026643
727 => 0.0012235876985519
728 => 0.0012164294684898
729 => 0.0012274277632227
730 => 0.0012299432033561
731 => 0.0012058952397053
801 => 0.00120261759112
802 => 0.0012222556773485
803 => 0.001213613687781
804 => 0.0012225021883623
805 => 0.0012245643967412
806 => 0.0012242323336955
807 => 0.0012152091040609
808 => 0.0012209602415534
809 => 0.0012073570868869
810 => 0.0011925656993148
811 => 0.0011831297155798
812 => 0.0011748955682694
813 => 0.0011794643517687
814 => 0.0011631774728208
815 => 0.0011579669724552
816 => 0.0012190118855756
817 => 0.0012641064192411
818 => 0.0012634507268622
819 => 0.0012594593681361
820 => 0.0012535290186866
821 => 0.0012818952145975
822 => 0.0012720129991422
823 => 0.0012792031365727
824 => 0.0012810333283179
825 => 0.001286572767512
826 => 0.0012885526408931
827 => 0.0012825680884251
828 => 0.0012624831993911
829 => 0.0012124335655324
830 => 0.0011891353258647
831 => 0.0011814465187115
901 => 0.0011817259922484
902 => 0.0011740168644761
903 => 0.0011762875481039
904 => 0.0011732272133763
905 => 0.0011674316797766
906 => 0.0011791064939003
907 => 0.0011804519074696
908 => 0.0011777268663495
909 => 0.0011783687121812
910 => 0.0011558065355871
911 => 0.0011575218888711
912 => 0.0011479705838093
913 => 0.0011461798292529
914 => 0.001122034961784
915 => 0.0010792588292084
916 => 0.001102960959035
917 => 0.0010743321192283
918 => 0.0010634899437958
919 => 0.001114815115989
920 => 0.0011096634922395
921 => 0.0011008461517373
922 => 0.0010878034674399
923 => 0.0010829658089628
924 => 0.0010535737274731
925 => 0.001051837086498
926 => 0.0010664045957373
927 => 0.0010596821914608
928 => 0.0010502413898829
929 => 0.0010160477635666
930 => 0.00097760280646654
1001 => 0.000978763218065
1002 => 0.00099099184362469
1003 => 0.0010265482216943
1004 => 0.0010126557296509
1005 => 0.0010025765672755
1006 => 0.0010006890431411
1007 => 0.0010243153594827
1008 => 0.0010577515469724
1009 => 0.00107343905805
1010 => 0.0010578932110089
1011 => 0.0010400349789759
1012 => 0.0010411219268126
1013 => 0.0010483529038095
1014 => 0.0010491127772513
1015 => 0.0010374889040537
1016 => 0.0010407609562716
1017 => 0.0010357904097499
1018 => 0.0010052861749211
1019 => 0.001004734450043
1020 => 0.00099724821886883
1021 => 0.00099702153876409
1022 => 0.00098428559200886
1023 => 0.00098250374501836
1024 => 0.00095721574971913
1025 => 0.00097386038480418
1026 => 0.00096269603747169
1027 => 0.00094586873263833
1028 => 0.00094296769894246
1029 => 0.00094288049036646
1030 => 0.00096015836991382
1031 => 0.000973658482722
1101 => 0.00096289024607341
1102 => 0.00096043852732203
1103 => 0.00098661646936752
1104 => 0.00098328508762499
1105 => 0.00098040013252107
1106 => 0.001054757703114
1107 => 0.00099589788379611
1108 => 0.00097023164297247
1109 => 0.00093846479606628
1110 => 0.00094880824160128
1111 => 0.00095098775755234
1112 => 0.00087459421714749
1113 => 0.00084360136731945
1114 => 0.00083296578919938
1115 => 0.00082684486362627
1116 => 0.00082963424627168
1117 => 0.00080173704632774
1118 => 0.00082048442606717
1119 => 0.00079632780900733
1120 => 0.00079227787354482
1121 => 0.00083547289727843
1122 => 0.00084148323248929
1123 => 0.00081584127521496
1124 => 0.00083230756284088
1125 => 0.0008263366580492
1126 => 0.00079674190487313
1127 => 0.00079561160298607
1128 => 0.00078076199614819
1129 => 0.00075752523689739
1130 => 0.00074690541439429
1201 => 0.00074137451862915
1202 => 0.00074365667401685
1203 => 0.00074250274641772
1204 => 0.00073497258828668
1205 => 0.00074293436626731
1206 => 0.00072259531356061
1207 => 0.00071449613888992
1208 => 0.00071083792959059
1209 => 0.00069278584964121
1210 => 0.00072151473663707
1211 => 0.00072717468929224
1212 => 0.00073284579380259
1213 => 0.00078220888673766
1214 => 0.00077974284611328
1215 => 0.00080203465234721
1216 => 0.00080116843374896
1217 => 0.00079481044950773
1218 => 0.00076798715983159
1219 => 0.00077867844501733
1220 => 0.00074577233101023
1221 => 0.0007704278290226
1222 => 0.00075917608936797
1223 => 0.00076662360452714
1224 => 0.00075323230075558
1225 => 0.00076064360117614
1226 => 0.00072851687403718
1227 => 0.00069851738827006
1228 => 0.00071059005708234
1229 => 0.00072371442875842
1230 => 0.00075217141057988
1231 => 0.00073522266697202
]
'min_raw' => 0.00069278584964121
'max_raw' => 0.0020679826333218
'avg_raw' => 0.0013803842414815
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000692'
'max' => '$0.002067'
'avg' => '$0.00138'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0013123841503588
'max_diff' => 6.2812633321781E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00074131807607635
102 => 0.00072089947593599
103 => 0.00067877007156163
104 => 0.00067900851941515
105 => 0.00067252782839112
106 => 0.00066692756514997
107 => 0.00073716943405868
108 => 0.00072843374730026
109 => 0.00071451457374913
110 => 0.00073314594067329
111 => 0.00073807236980759
112 => 0.0007382126183193
113 => 0.00075180558268198
114 => 0.00075906015019901
115 => 0.00076033879916699
116 => 0.0007817276222871
117 => 0.00078889687367156
118 => 0.00081842600549372
119 => 0.00075844465083004
120 => 0.00075720937430256
121 => 0.00073340812221408
122 => 0.00071831299185665
123 => 0.0007344416987041
124 => 0.00074872953118289
125 => 0.00073385208499637
126 => 0.0007357947653883
127 => 0.00071582300941491
128 => 0.00072296197241693
129 => 0.00072911100907645
130 => 0.00072571587245673
131 => 0.00072063318861055
201 => 0.00074755809185593
202 => 0.00074603888329528
203 => 0.00077111197219822
204 => 0.00079065823799186
205 => 0.000825688640607
206 => 0.00078913258930191
207 => 0.00078780034149521
208 => 0.00080082327750498
209 => 0.00078889487992791
210 => 0.00079643321544233
211 => 0.00082447409821342
212 => 0.00082506655788012
213 => 0.00081514209512159
214 => 0.0008145381906608
215 => 0.0008164442922953
216 => 0.00082760838910458
217 => 0.00082370731064138
218 => 0.00082822173740222
219 => 0.00083386709719402
220 => 0.00085721869887583
221 => 0.00086284869098484
222 => 0.00084917072897618
223 => 0.00085040569579991
224 => 0.00084528976254022
225 => 0.00084034783511381
226 => 0.00085145656625784
227 => 0.0008717579907662
228 => 0.00087163169665798
301 => 0.00087634123254061
302 => 0.00087927523437959
303 => 0.00086668035066607
304 => 0.00085848154449528
305 => 0.00086162548848475
306 => 0.00086665272339011
307 => 0.00085999522396032
308 => 0.00081890205342593
309 => 0.00083136709632417
310 => 0.00082929230367645
311 => 0.00082633754664268
312 => 0.00083887124366618
313 => 0.00083766233801211
314 => 0.00080145092022037
315 => 0.00080376905769974
316 => 0.0008015918938384
317 => 0.0008086267556802
318 => 0.000788514974302
319 => 0.00079470122279902
320 => 0.00079858117986387
321 => 0.00080086650438231
322 => 0.00080912266360458
323 => 0.00080815389861208
324 => 0.00080906244381244
325 => 0.00082130414839384
326 => 0.00088321848932086
327 => 0.00088658835029123
328 => 0.00086999392240441
329 => 0.00087662306903458
330 => 0.00086389655713965
331 => 0.00087243994983493
401 => 0.0008782851221384
402 => 0.00085187191246104
403 => 0.00085030789360426
404 => 0.00083752885486767
405 => 0.00084439558644296
406 => 0.0008334701227712
407 => 0.00083615084939976
408 => 0.00082865530404478
409 => 0.00084214579333555
410 => 0.00085723025657274
411 => 0.00086104118768996
412 => 0.00085101626862956
413 => 0.00084375756655547
414 => 0.00083101367687848
415 => 0.00085220704942742
416 => 0.00085840463741706
417 => 0.0008521744961361
418 => 0.00085073083627003
419 => 0.00084799510343246
420 => 0.00085131123492417
421 => 0.00085837088402186
422 => 0.00085504168387864
423 => 0.0008572406792262
424 => 0.00084886037655546
425 => 0.00086668452009665
426 => 0.00089499354965381
427 => 0.00089508456781283
428 => 0.00089175534972397
429 => 0.00089039310541102
430 => 0.00089380908520403
501 => 0.00089566211411091
502 => 0.00090670876637794
503 => 0.00091856226437852
504 => 0.00097387736746082
505 => 0.00095834510786227
506 => 0.0010074239580271
507 => 0.0010462389564164
508 => 0.0010578778772592
509 => 0.0010471706177374
510 => 0.001010541661308
511 => 0.0010087444699579
512 => 0.0010634835952099
513 => 0.0010480172851154
514 => 0.0010461776167431
515 => 0.0010266066534301
516 => 0.0010381755166591
517 => 0.0010356452365659
518 => 0.0010316510656533
519 => 0.0010537236508001
520 => 0.0010950415597616
521 => 0.0010886017761731
522 => 0.0010837947764572
523 => 0.0010627319029987
524 => 0.0010754164573838
525 => 0.0010708997305239
526 => 0.0010903064554997
527 => 0.0010788103415357
528 => 0.0010479001126049
529 => 0.0010528226684436
530 => 0.0010520786340314
531 => 0.0010673908095118
601 => 0.0010627944745041
602 => 0.0010511811258526
603 => 0.0010949003396406
604 => 0.0010920614570763
605 => 0.0010960863434936
606 => 0.0010978582229683
607 => 0.0011244693379821
608 => 0.0011353710603425
609 => 0.0011378459421798
610 => 0.0011482017352528
611 => 0.0011375882806143
612 => 0.0011800496664333
613 => 0.0012082840103124
614 => 0.001241079653654
615 => 0.001289002903214
616 => 0.0013070224883635
617 => 0.0013037674115933
618 => 0.0013401022724692
619 => 0.0014053952097846
620 => 0.0013169649810212
621 => 0.0014100822266345
622 => 0.0013806023817636
623 => 0.0013107061998946
624 => 0.0013062057098041
625 => 0.0013535402156771
626 => 0.0014585235939262
627 => 0.0014322264483865
628 => 0.0014585666066356
629 => 0.0014278394128981
630 => 0.0014263135487399
701 => 0.0014570742554202
702 => 0.0015289483232575
703 => 0.0014948036477872
704 => 0.0014458488828825
705 => 0.0014819963194676
706 => 0.0014506820646102
707 => 0.0013801222841085
708 => 0.0014322063394549
709 => 0.0013973792149133
710 => 0.0014075436213663
711 => 0.0014807450570089
712 => 0.0014719372666054
713 => 0.001483335362967
714 => 0.0014632180212289
715 => 0.001444425251832
716 => 0.0014093471521832
717 => 0.0013989622562067
718 => 0.0014018322678452
719 => 0.0013989608339714
720 => 0.0013793349596023
721 => 0.0013750967539009
722 => 0.0013680328920518
723 => 0.0013702222782119
724 => 0.00135694015133
725 => 0.0013820062689837
726 => 0.0013866587613021
727 => 0.0014048997913896
728 => 0.0014067936356456
729 => 0.0014575946447947
730 => 0.0014296143026317
731 => 0.0014483859318612
801 => 0.0014467068206575
802 => 0.0013122210620995
803 => 0.0013307520130509
804 => 0.0013595803573985
805 => 0.0013465932273458
806 => 0.0013282324639717
807 => 0.0013134051631052
808 => 0.0012909402861232
809 => 0.0013225591690756
810 => 0.0013641346378648
811 => 0.0014078480581441
812 => 0.0014603668683929
813 => 0.0014486452813317
814 => 0.0014068662555178
815 => 0.0014087404320962
816 => 0.0014203258542427
817 => 0.0014053216799164
818 => 0.0014008966559913
819 => 0.0014197179239062
820 => 0.0014198475356344
821 => 0.001402583419757
822 => 0.0013833975142591
823 => 0.0013833171246145
824 => 0.001379903178045
825 => 0.0014284467464087
826 => 0.0014551408007003
827 => 0.0014582012310053
828 => 0.0014549348093566
829 => 0.0014561919254095
830 => 0.0014406592433805
831 => 0.001476162348425
901 => 0.001508743508507
902 => 0.00150001106161
903 => 0.0014869198823211
904 => 0.0014764921274608
905 => 0.0014975546139638
906 => 0.0014966167345952
907 => 0.0015084589404968
908 => 0.0015079217096332
909 => 0.0015039396211964
910 => 0.001500011203823
911 => 0.0015155869346606
912 => 0.0015111013743179
913 => 0.0015066088466611
914 => 0.0014975983946738
915 => 0.0014988230647467
916 => 0.0014857341458344
917 => 0.0014796786130374
918 => 0.0013886179290252
919 => 0.0013642835387634
920 => 0.001371939633312
921 => 0.0013744602184278
922 => 0.0013638698606005
923 => 0.0013790537132851
924 => 0.0013766873259279
925 => 0.0013858935548445
926 => 0.0013801419027054
927 => 0.0013803779525154
928 => 0.001397292335075
929 => 0.001402202652291
930 => 0.0013997052253238
1001 => 0.0014014543375649
1002 => 0.001441761890905
1003 => 0.001436031445783
1004 => 0.001432987261024
1005 => 0.0014338305210066
1006 => 0.0014441299650886
1007 => 0.0014470132471028
1008 => 0.0014347965786041
1009 => 0.0014405580300918
1010 => 0.0014650895592895
1011 => 0.0014736742061444
1012 => 0.0015010722780409
1013 => 0.0014894330901373
1014 => 0.0015107973232665
1015 => 0.0015764636923019
1016 => 0.0016289225316544
1017 => 0.0015806792150326
1018 => 0.0016770131929107
1019 => 0.0017520230129771
1020 => 0.0017491440111476
1021 => 0.0017360643140106
1022 => 0.0016506676281042
1023 => 0.0015720843245402
1024 => 0.0016378225947948
1025 => 0.0016379901751649
1026 => 0.0016323431994496
1027 => 0.0015972703182684
1028 => 0.0016311227392094
1029 => 0.0016338098214498
1030 => 0.001632305769948
1031 => 0.001605415474179
1101 => 0.0015643589626972
1102 => 0.0015723813067654
1103 => 0.0015855220700004
1104 => 0.0015606438637461
1105 => 0.0015526937694242
1106 => 0.001567474507336
1107 => 0.0016151011245767
1108 => 0.0016060975884696
1109 => 0.0016058624697556
1110 => 0.0016443834153155
1111 => 0.001616810731635
1112 => 0.0015724824942152
1113 => 0.0015612890296491
1114 => 0.0015215597712605
1115 => 0.0015490009115402
1116 => 0.0015499884693264
1117 => 0.0015349592372369
1118 => 0.0015737020335684
1119 => 0.0015733450118797
1120 => 0.0016101255308923
1121 => 0.0016804360691123
1122 => 0.0016596417831892
1123 => 0.0016354602910725
1124 => 0.0016380894897456
1125 => 0.0016669253097746
1126 => 0.0016494905147273
1127 => 0.001655760188586
1128 => 0.0016669158198723
1129 => 0.001673646289206
1130 => 0.0016371210787845
1201 => 0.0016286053050325
1202 => 0.0016111850205663
1203 => 0.001606640393514
1204 => 0.0016208288517256
1205 => 0.0016170906942725
1206 => 0.0015499054689185
1207 => 0.0015428842390539
1208 => 0.0015430995701499
1209 => 0.0015254443538141
1210 => 0.0014985159111648
1211 => 0.0015692822506336
1212 => 0.0015635987232
1213 => 0.0015573245487833
1214 => 0.0015580930993494
1215 => 0.0015888103688191
1216 => 0.0015709928012674
1217 => 0.0016183637248454
1218 => 0.0016086256870581
1219 => 0.0015986379053465
1220 => 0.0015972572896787
1221 => 0.0015934128458372
1222 => 0.0015802288174502
1223 => 0.0015643083109357
1224 => 0.0015537962135241
1225 => 0.0014332948736189
1226 => 0.0014556592213813
1227 => 0.0014813873649074
1228 => 0.0014902686169536
1229 => 0.0014750766207647
1230 => 0.0015808286900561
1231 => 0.0016001506121679
]
'min_raw' => 0.00066692756514997
'max_raw' => 0.0017520230129771
'avg_raw' => 0.0012094752890635
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000666'
'max' => '$0.001752'
'avg' => '$0.0012094'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.5858284491234E-5
'max_diff' => -0.00031595962034466
'year' => 2027
]
2 => [
'items' => [
101 => 0.0015416232497534
102 => 0.0015306751699021
103 => 0.0015815464443485
104 => 0.0015508648470969
105 => 0.0015646807684606
106 => 0.0015348183033772
107 => 0.0015954965269431
108 => 0.0015950342605433
109 => 0.0015714290610964
110 => 0.0015913800140275
111 => 0.0015879130449869
112 => 0.0015612628329483
113 => 0.0015963413861998
114 => 0.0015963587847246
115 => 0.0015736392934782
116 => 0.0015471079016386
117 => 0.0015423647154211
118 => 0.0015387913617637
119 => 0.0015638019425115
120 => 0.0015862263510038
121 => 0.0016279526157258
122 => 0.0016384435900685
123 => 0.0016793905613518
124 => 0.0016550086336245
125 => 0.0016658168263872
126 => 0.0016775506485433
127 => 0.001683176274382
128 => 0.0016740096189656
129 => 0.0017376171198144
130 => 0.0017429875417695
131 => 0.001744788197797
201 => 0.0017233401063944
202 => 0.0017423910315482
203 => 0.0017334777345691
204 => 0.0017566676571236
205 => 0.001760304133084
206 => 0.0017572241673169
207 => 0.0017583784421846
208 => 0.0017041006613423
209 => 0.0017012860720675
210 => 0.0016629089475918
211 => 0.001678547909485
212 => 0.0016493116198205
213 => 0.0016585827484403
214 => 0.0016626693735973
215 => 0.0016605347525292
216 => 0.0016794321129259
217 => 0.0016633654961131
218 => 0.0016209630527475
219 => 0.0015785490568646
220 => 0.001578016583696
221 => 0.0015668497272492
222 => 0.00155877813535
223 => 0.0015603330103049
224 => 0.0015658125924515
225 => 0.0015584596520743
226 => 0.0015600287747073
227 => 0.0015860866654247
228 => 0.0015913123895717
229 => 0.001573553337098
301 => 0.0015022481787969
302 => 0.0014847497140943
303 => 0.0014973272635129
304 => 0.0014913160049887
305 => 0.0012036084084679
306 => 0.0012712010406434
307 => 0.0012310397938336
308 => 0.0012495479440937
309 => 0.0012085537108053
310 => 0.0012281183076224
311 => 0.0012245054409749
312 => 0.0013331923933017
313 => 0.0013314953960351
314 => 0.0013323076588235
315 => 0.0012935362395934
316 => 0.0013553001631858
317 => 0.0013857272929063
318 => 0.0013800960409869
319 => 0.0013815133057744
320 => 0.0013571600011013
321 => 0.0013325434520465
322 => 0.001305239910685
323 => 0.0013559665157149
324 => 0.0013503265831676
325 => 0.0013632625592475
326 => 0.001396162388622
327 => 0.0014010070134717
328 => 0.001407518238399
329 => 0.0014051844277631
330 => 0.0014607852654465
331 => 0.0014540516371369
401 => 0.001470277743966
402 => 0.0014368994111409
403 => 0.001399128659249
404 => 0.0014063076443647
405 => 0.0014056162503683
406 => 0.0013968140112491
407 => 0.0013888677433469
408 => 0.0013756394461369
409 => 0.001417495735929
410 => 0.001415796447002
411 => 0.0014433059595227
412 => 0.0014384433859715
413 => 0.0014059699297231
414 => 0.0014071297255659
415 => 0.0014149299099875
416 => 0.0014419264373317
417 => 0.0014499408447112
418 => 0.0014462282518941
419 => 0.0014550156837141
420 => 0.0014619609115322
421 => 0.0014558878973974
422 => 0.001541868970692
423 => 0.0015061636344806
424 => 0.0015235661669139
425 => 0.0015277165683576
426 => 0.0015170854023331
427 => 0.0015193909215703
428 => 0.0015228831549983
429 => 0.0015440873125233
430 => 0.0015997331573415
501 => 0.0016243783232174
502 => 0.0016985245207262
503 => 0.0016223318852687
504 => 0.0016178109295971
505 => 0.0016311668987691
506 => 0.0016746985658788
507 => 0.0017099768933497
508 => 0.0017216807498273
509 => 0.0017232276076704
510 => 0.0017451848204801
511 => 0.0017577702853848
512 => 0.001742518637313
513 => 0.0017295944624862
514 => 0.0016833016724643
515 => 0.0016886601889604
516 => 0.0017255750538335
517 => 0.0017777194747415
518 => 0.0018224648125829
519 => 0.0018067965548033
520 => 0.0019263343015953
521 => 0.0019381859809218
522 => 0.0019365484620496
523 => 0.0019635483513217
524 => 0.0019099590695483
525 => 0.0018870486133467
526 => 0.0017323888157794
527 => 0.0017758419104046
528 => 0.0018390035353532
529 => 0.0018306438574473
530 => 0.0017847741970946
531 => 0.0018224300163323
601 => 0.0018099798248859
602 => 0.0018001598423333
603 => 0.0018451470861042
604 => 0.001795681763604
605 => 0.0018385100809223
606 => 0.0017835823209594
607 => 0.001806868126085
608 => 0.001793649976888
609 => 0.0018022037393739
610 => 0.0017521986186635
611 => 0.0017791801679932
612 => 0.0017510760975043
613 => 0.0017510627725157
614 => 0.0017504423736019
615 => 0.0017835066878996
616 => 0.0017845849140018
617 => 0.0017601503357784
618 => 0.0017566289313166
619 => 0.0017696494092548
620 => 0.0017544058396577
621 => 0.0017615382099303
622 => 0.0017546218718874
623 => 0.0017530648585136
624 => 0.001740658311047
625 => 0.0017353132292733
626 => 0.0017374091735626
627 => 0.0017302546351699
628 => 0.0017259437669974
629 => 0.0017495848334195
630 => 0.0017369543653081
701 => 0.001747649033035
702 => 0.0017354611093855
703 => 0.0016932124559908
704 => 0.0016689148086522
705 => 0.0015891110188419
706 => 0.0016117432746358
707 => 0.0016267484836419
708 => 0.0016217892621549
709 => 0.001632443588873
710 => 0.0016330976780026
711 => 0.0016296338477786
712 => 0.0016256231761233
713 => 0.0016236710029655
714 => 0.0016382209022979
715 => 0.0016466676085875
716 => 0.0016282544571095
717 => 0.0016239405133456
718 => 0.0016425572261077
719 => 0.0016539134101381
720 => 0.00173776109253
721 => 0.001731549385394
722 => 0.0017471395513195
723 => 0.0017453843378869
724 => 0.001761725315485
725 => 0.0017884359076455
726 => 0.0017341258053841
727 => 0.0017435521612347
728 => 0.0017412410364665
729 => 0.0017664732906762
730 => 0.0017665520630197
731 => 0.0017514240661764
801 => 0.0017596251986888
802 => 0.0017550475515067
803 => 0.001763319978671
804 => 0.0017314664242581
805 => 0.0017702606151543
806 => 0.00179225442155
807 => 0.0017925598055731
808 => 0.0018029846952511
809 => 0.0018135769869327
810 => 0.0018339079684215
811 => 0.0018130099668937
812 => 0.0017754164965245
813 => 0.001778130623659
814 => 0.0017560895857365
815 => 0.001756460099566
816 => 0.0017544822677064
817 => 0.0017604178900014
818 => 0.0017327689595628
819 => 0.0017392581082729
820 => 0.0017301732620784
821 => 0.0017435324125533
822 => 0.001729160174989
823 => 0.0017412399219721
824 => 0.0017464531403201
825 => 0.0017656900282566
826 => 0.0017263188709998
827 => 0.0016460384161601
828 => 0.0016629143410738
829 => 0.0016379535225512
830 => 0.001640263741338
831 => 0.0016449307509559
901 => 0.0016298034458336
902 => 0.0016326892589348
903 => 0.0016325861573836
904 => 0.001631697683916
905 => 0.0016277624876094
906 => 0.0016220556744101
907 => 0.0016447898617319
908 => 0.0016486528431626
909 => 0.0016572397723609
910 => 0.0016827886490852
911 => 0.0016802357138164
912 => 0.0016843996571601
913 => 0.0016753097922205
914 => 0.0016406853941022
915 => 0.001642565665503
916 => 0.0016191186510053
917 => 0.0016566401794841
918 => 0.0016477545862803
919 => 0.0016420259865377
920 => 0.0016404628850228
921 => 0.0016660750924708
922 => 0.0016737386663615
923 => 0.0016689632413961
924 => 0.0016591687054709
925 => 0.001677977109942
926 => 0.0016830094455156
927 => 0.0016841359998651
928 => 0.0017174608864341
929 => 0.001685998490831
930 => 0.001693571802162
1001 => 0.0017526566152693
1002 => 0.0016990748429279
1003 => 0.0017274583027532
1004 => 0.0017260690800952
1005 => 0.0017405890976979
1006 => 0.0017248780148442
1007 => 0.0017250727725457
1008 => 0.0017379655645058
1009 => 0.0017198599634252
1010 => 0.001715376761978
1011 => 0.001709183251288
1012 => 0.0017227065552945
1013 => 0.00173081316444
1014 => 0.0017961464805045
1015 => 0.0018383547822434
1016 => 0.0018365224085484
1017 => 0.0018532668740605
1018 => 0.0018457233389856
1019 => 0.0018213632743446
1020 => 0.0018629429342933
1021 => 0.0018497853901187
1022 => 0.001850870082074
1023 => 0.0018508297097853
1024 => 0.0018595783264089
1025 => 0.0018533791297321
1026 => 0.0018411598767477
1027 => 0.0018492715871274
1028 => 0.0018733604669657
1029 => 0.0019481330891209
1030 => 0.0019899768390844
1031 => 0.0019456140428325
1101 => 0.0019762149056456
1102 => 0.0019578652921601
1103 => 0.001954530621536
1104 => 0.0019737502247686
1105 => 0.0019930034693724
1106 => 0.0019917771209252
1107 => 0.0019778002540079
1108 => 0.0019699050765362
1109 => 0.0020296900054305
1110 => 0.0020737385226301
1111 => 0.0020707347090621
1112 => 0.0020839925652588
1113 => 0.0021229180411024
1114 => 0.0021264768987835
1115 => 0.0021260285645151
1116 => 0.0021172075644239
1117 => 0.0021555347505036
1118 => 0.002187507963434
1119 => 0.002115165757766
1120 => 0.0021427127226554
1121 => 0.002155079442702
1122 => 0.0021732374567709
1123 => 0.0022038730701418
1124 => 0.0022371514719576
1125 => 0.0022418574028535
1126 => 0.0022385183196833
1127 => 0.0022165703191143
1128 => 0.0022529839434751
1129 => 0.0022743141906211
1130 => 0.0022870158646625
1201 => 0.0023192251966745
1202 => 0.0021551558153549
1203 => 0.0020390193524795
1204 => 0.0020208829667707
1205 => 0.0020577640202877
1206 => 0.0020674892599793
1207 => 0.002063569028054
1208 => 0.0019328468804226
1209 => 0.002020194741717
1210 => 0.0021141736960529
1211 => 0.0021177838104303
1212 => 0.0021648316399782
1213 => 0.0021801523418347
1214 => 0.0022180320113207
1215 => 0.0022156626276808
1216 => 0.0022248857244035
1217 => 0.0022227654941887
1218 => 0.0022929296054061
1219 => 0.0023703310395502
1220 => 0.0023676508740072
1221 => 0.0023565235020768
1222 => 0.0023730495468924
1223 => 0.0024529361217708
1224 => 0.0024455814461123
1225 => 0.0024527258870448
1226 => 0.0025469166610366
1227 => 0.0026693780657073
1228 => 0.0026124824483138
1229 => 0.0027359295667849
1230 => 0.0028136329842119
1231 => 0.0029480130099686
]
'min_raw' => 0.0012036084084679
'max_raw' => 0.0029480130099686
'avg_raw' => 0.0020758107092182
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0012036'
'max' => '$0.002948'
'avg' => '$0.002075'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00053668084331791
'max_diff' => 0.0011959899969914
'year' => 2028
]
3 => [
'items' => [
101 => 0.0029311879689083
102 => 0.0029835011268091
103 => 0.0029010676339183
104 => 0.0027117836716832
105 => 0.0026818287601096
106 => 0.0027417992516591
107 => 0.0028892308532986
108 => 0.0027371561058589
109 => 0.0027679206292034
110 => 0.0027590604444106
111 => 0.0027585883228163
112 => 0.0027766072838115
113 => 0.0027504698410822
114 => 0.0026439811973666
115 => 0.0026927843152399
116 => 0.0026739390877108
117 => 0.0026948492726591
118 => 0.002807692916809
119 => 0.0027578020518738
120 => 0.0027052460784694
121 => 0.0027711629322227
122 => 0.0028550977385391
123 => 0.0028498452492051
124 => 0.0028396532245271
125 => 0.0028971051340002
126 => 0.0029919988566197
127 => 0.0030176482485298
128 => 0.0030365821052592
129 => 0.0030391927642121
130 => 0.0030660841739419
131 => 0.0029214822863167
201 => 0.0031509691956178
202 => 0.0031905952454061
203 => 0.0031831471903774
204 => 0.0032271898769981
205 => 0.0032142314013391
206 => 0.0031954566032319
207 => 0.0032652736296738
208 => 0.0031852340428017
209 => 0.0030716279259405
210 => 0.0030093013633563
211 => 0.0030913780087076
212 => 0.0031414993519435
213 => 0.0031746263715062
214 => 0.00318465058761
215 => 0.0029327073192243
216 => 0.0027969238709786
217 => 0.0028839595045437
218 => 0.0029901489843716
219 => 0.0029208923983946
220 => 0.0029236071254449
221 => 0.0028248654341523
222 => 0.0029988854330513
223 => 0.0029735321829502
224 => 0.0031050648893234
225 => 0.0030736735533316
226 => 0.0031809333693086
227 => 0.003152688265094
228 => 0.0032699321135265
301 => 0.0033167038589167
302 => 0.0033952408988677
303 => 0.0034530130651589
304 => 0.0034869379862106
305 => 0.0034849012611998
306 => 0.0036193286997351
307 => 0.0035400615357678
308 => 0.0034404832959888
309 => 0.0034386822397965
310 => 0.0034902552212126
311 => 0.0035983380419043
312 => 0.0036263623447686
313 => 0.003642024106924
314 => 0.0036180375729931
315 => 0.0035319987476355
316 => 0.0034948476190728
317 => 0.00352650145698
318 => 0.0034877915332648
319 => 0.0035546157216836
320 => 0.003646379605259
321 => 0.0036274307261744
322 => 0.0036907739879795
323 => 0.0037563276000423
324 => 0.003850072209489
325 => 0.0038745805217512
326 => 0.003915091829953
327 => 0.0039567912733641
328 => 0.0039701840107563
329 => 0.0039957549019602
330 => 0.0039956201307415
331 => 0.0040726797325041
401 => 0.0041576788595855
402 => 0.0041897640623244
403 => 0.0042635422168342
404 => 0.0041371997127311
405 => 0.0042330319534114
406 => 0.0043194750333415
407 => 0.0042164140298189
408 => 0.0043584596130407
409 => 0.004363974921155
410 => 0.0044472495256054
411 => 0.0043628347605111
412 => 0.0043127095424596
413 => 0.0044574191688069
414 => 0.0045274395986859
415 => 0.0045063488753612
416 => 0.0043458474294827
417 => 0.0042524287037507
418 => 0.0040079338793833
419 => 0.0042975485602368
420 => 0.0044386114231045
421 => 0.0043454821107462
422 => 0.0043924511188911
423 => 0.0046486987975779
424 => 0.0047462613228133
425 => 0.0047259689995778
426 => 0.0047293980681646
427 => 0.0047820410358965
428 => 0.0050154889458317
429 => 0.0048756015469183
430 => 0.0049825402219068
501 => 0.0050392601095245
502 => 0.0050919447021776
503 => 0.0049625679937582
504 => 0.0047942507970258
505 => 0.0047409376753454
506 => 0.0043362222360103
507 => 0.0043151550398029
508 => 0.0043033293841702
509 => 0.0042287702981787
510 => 0.0041701872800419
511 => 0.0041235998889714
512 => 0.00400134066263
513 => 0.004042599562563
514 => 0.0038477438732583
515 => 0.0039724056380138
516 => 0.0036614112529284
517 => 0.0039204166180756
518 => 0.0037794517733549
519 => 0.0038741058753475
520 => 0.0038737756361026
521 => 0.0036994874242238
522 => 0.0035989616209143
523 => 0.0036630205753059
524 => 0.0037316968594199
525 => 0.0037428393554626
526 => 0.0038318799504507
527 => 0.0038567292665907
528 => 0.0037814346785829
529 => 0.0036549665855486
530 => 0.0036843422391304
531 => 0.0035983663242321
601 => 0.0034476968403887
602 => 0.0035559102941219
603 => 0.003592859125036
604 => 0.0036091778336962
605 => 0.0034610117008434
606 => 0.0034144546850578
607 => 0.0033896681205047
608 => 0.0036358401983879
609 => 0.0036493260605164
610 => 0.0035803304831583
611 => 0.003892197035246
612 => 0.0038216120295568
613 => 0.0039004727746579
614 => 0.0036816767064689
615 => 0.0036900350109217
616 => 0.0035864534458784
617 => 0.00364445220098
618 => 0.0036034605502613
619 => 0.0036397664747226
620 => 0.0036615280961498
621 => 0.0037650926644774
622 => 0.0039215991590878
623 => 0.0037496235715433
624 => 0.0036746913453143
625 => 0.0037211788770319
626 => 0.0038449813000512
627 => 0.0040325483082548
628 => 0.0039215048642604
629 => 0.0039707840590652
630 => 0.0039815493708512
701 => 0.0038996700463015
702 => 0.0040355673157424
703 => 0.0041083957664632
704 => 0.0041831026871783
705 => 0.0042479686131949
706 => 0.0041532631002043
707 => 0.0042546115746062
708 => 0.0041729425946523
709 => 0.0040996770768497
710 => 0.0040997881903976
711 => 0.0040538276608416
712 => 0.0039647733434274
713 => 0.0039483503609579
714 => 0.0040337847897584
715 => 0.0041022951109859
716 => 0.0041079379491845
717 => 0.0041458687832035
718 => 0.0041683158600572
719 => 0.0043883277285452
720 => 0.0044768183220847
721 => 0.0045850229448235
722 => 0.0046271747434587
723 => 0.0047540365450944
724 => 0.0046515853370618
725 => 0.0046294193737556
726 => 0.0043216941391665
727 => 0.0043720841290914
728 => 0.0044527633648719
729 => 0.0043230245100485
730 => 0.004405313951666
731 => 0.0044215596305701
801 => 0.0043186160334068
802 => 0.0043736026565819
803 => 0.0042275744878262
804 => 0.0039247821741178
805 => 0.0040359044101453
806 => 0.0041177277792018
807 => 0.0040009557428096
808 => 0.0042102650983408
809 => 0.0040879908938615
810 => 0.0040492358412385
811 => 0.0038980385637823
812 => 0.0039693978586248
813 => 0.0040659123266658
814 => 0.0040062776064276
815 => 0.0041300286051201
816 => 0.0043052930224545
817 => 0.0044301968834234
818 => 0.0044397854509312
819 => 0.0043594806362369
820 => 0.004488169614283
821 => 0.0044891069729951
822 => 0.0043439452800492
823 => 0.0042550345513836
824 => 0.004234833846761
825 => 0.0042852991674897
826 => 0.0043465733832665
827 => 0.0044431857434599
828 => 0.0045015665693199
829 => 0.0046537928003651
830 => 0.0046949808538178
831 => 0.0047402340371248
901 => 0.0048007062455879
902 => 0.0048733186366039
903 => 0.0047144468588867
904 => 0.0047207591307895
905 => 0.0045728199311087
906 => 0.0044147256796226
907 => 0.0045346995097739
908 => 0.004691549333247
909 => 0.0046555678104386
910 => 0.0046515191540869
911 => 0.0046583278710669
912 => 0.004631198977916
913 => 0.0045084959996385
914 => 0.0044468753321088
915 => 0.004526381714331
916 => 0.0045686358180601
917 => 0.0046341682479989
918 => 0.0046260899927872
919 => 0.0047948944946404
920 => 0.0048604868196774
921 => 0.0048437054960791
922 => 0.0048467936634863
923 => 0.0049655454348679
924 => 0.0050976218278088
925 => 0.005221328798813
926 => 0.0053471688430565
927 => 0.0051954637581005
928 => 0.0051184372718286
929 => 0.0051979089440515
930 => 0.0051557401561253
1001 => 0.0053980545196245
1002 => 0.0054148318404112
1003 => 0.0056571286818239
1004 => 0.0058870972364958
1005 => 0.005742658107621
1006 => 0.0058788577004687
1007 => 0.0060261686646492
1008 => 0.0063103554148959
1009 => 0.0062146513152232
1010 => 0.0061413434747484
1011 => 0.0060720679197206
1012 => 0.0062162193525488
1013 => 0.0064016678680069
1014 => 0.0064416117020328
1015 => 0.0065063359728737
1016 => 0.0064382863161918
1017 => 0.0065202446322414
1018 => 0.0068095935022054
1019 => 0.006731408883388
1020 => 0.0066203741558626
1021 => 0.0068487872993383
1022 => 0.0069314491280286
1023 => 0.0075116131321125
1024 => 0.0082440941526481
1025 => 0.0079408422004166
1026 => 0.0077526039277873
1027 => 0.0077968443869267
1028 => 0.008064321659579
1029 => 0.0081502268702506
1030 => 0.0079167068943432
1031 => 0.0079991900976371
1101 => 0.0084536806573563
1102 => 0.0086975002608427
1103 => 0.0083663604899666
1104 => 0.0074527589953133
1105 => 0.0066103766935062
1106 => 0.0068338144129149
1107 => 0.0068084835096136
1108 => 0.0072967769171798
1109 => 0.0067295442060866
1110 => 0.006739094950192
1111 => 0.007237485748315
1112 => 0.0071045236279571
1113 => 0.0068891420214792
1114 => 0.0066119492175891
1115 => 0.0060995326823671
1116 => 0.0056456710673289
1117 => 0.0065357982125065
1118 => 0.0064974143114152
1119 => 0.0064418287344597
1120 => 0.0065655284209866
1121 => 0.0071661789859929
1122 => 0.0071523320463534
1123 => 0.0070642448811373
1124 => 0.0071310582195891
1125 => 0.0068774293202109
1126 => 0.0069427952626033
1127 => 0.0066102432558458
1128 => 0.0067605706514988
1129 => 0.0068886799092845
1130 => 0.006914399739475
1201 => 0.0069723478301812
1202 => 0.0064771877397181
1203 => 0.0066995000831995
1204 => 0.0068300877571453
1205 => 0.0062400878954382
1206 => 0.0068184253568735
1207 => 0.0064685681041749
1208 => 0.0063498212979294
1209 => 0.0065096982288369
1210 => 0.0064473940333768
1211 => 0.0063938285447454
1212 => 0.0063639380817171
1213 => 0.0064813340548026
1214 => 0.0064758573923396
1215 => 0.0062837747947953
1216 => 0.006033210876587
1217 => 0.006117308352018
1218 => 0.0060867549507759
1219 => 0.0059760254832073
1220 => 0.0060506437748216
1221 => 0.0057220625820054
1222 => 0.0051567557179293
1223 => 0.0055302147481555
1224 => 0.005515836981737
1225 => 0.0055085870599291
1226 => 0.0057892311994946
1227 => 0.0057622537410373
1228 => 0.0057132893897732
1229 => 0.005975126214498
1230 => 0.0058795522512712
1231 => 0.0061740886858785
]
'min_raw' => 0.0026439811973666
'max_raw' => 0.0086975002608427
'avg_raw' => 0.0056707407291046
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002643'
'max' => '$0.008697'
'avg' => '$0.00567'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0014403727888987
'max_diff' => 0.0057494872508741
'year' => 2029
]
4 => [
'items' => [
101 => 0.0063680894311331
102 => 0.0063188845668698
103 => 0.0065013432054687
104 => 0.0061192457879989
105 => 0.0062461632229948
106 => 0.0062723207304475
107 => 0.0059718951887248
108 => 0.0057666675868768
109 => 0.0057529812455995
110 => 0.0053971448661006
111 => 0.005587229787818
112 => 0.0057544966526808
113 => 0.0056743888048446
114 => 0.0056490290533735
115 => 0.0057785865237801
116 => 0.0057886542488154
117 => 0.0055591090510811
118 => 0.0056068387664411
119 => 0.0058058796138972
120 => 0.0056018234477714
121 => 0.0052053756493745
122 => 0.0051070511140524
123 => 0.0050939328085597
124 => 0.004827268870549
125 => 0.0051136216296597
126 => 0.004988620976531
127 => 0.0053834965420267
128 => 0.0051579457367757
129 => 0.005148222692364
130 => 0.0051335248846752
131 => 0.0049039962174808
201 => 0.0049542484082886
202 => 0.0051212943441585
203 => 0.005180898215984
204 => 0.0051746810438325
205 => 0.0051204757279412
206 => 0.0051452906439801
207 => 0.0050653531533288
208 => 0.0050371255616248
209 => 0.0049480315175964
210 => 0.0048170878857323
211 => 0.004835296400867
212 => 0.0045758628028793
213 => 0.0044345096095124
214 => 0.0043953849085936
215 => 0.0043430657233912
216 => 0.0044012944997783
217 => 0.0045751278600923
218 => 0.0043654479467489
219 => 0.0040059664426573
220 => 0.0040275718935799
221 => 0.004076112927087
222 => 0.0039856570322776
223 => 0.0039000481192283
224 => 0.003974478123454
225 => 0.0038221610712095
226 => 0.0040945197151474
227 => 0.0040871531771052
228 => 0.0041886716370197
301 => 0.0042521532133727
302 => 0.0041058487322834
303 => 0.0040690535509388
304 => 0.0040900137584804
305 => 0.0037435882172565
306 => 0.0041603612795352
307 => 0.0041639655502846
308 => 0.0041331035959115
309 => 0.0043550223851502
310 => 0.0048233402486501
311 => 0.004647140230359
312 => 0.004578910257603
313 => 0.0044492050295179
314 => 0.0046220295448069
315 => 0.0046087593185151
316 => 0.0045487463226399
317 => 0.0045124502754826
318 => 0.0045793268552674
319 => 0.0045041635271569
320 => 0.0044906621280781
321 => 0.0044088583393277
322 => 0.0043796581085791
323 => 0.0043580394202275
324 => 0.0043342393685608
325 => 0.0043867363519341
326 => 0.0042677712810568
327 => 0.0041243110678685
328 => 0.0041123839034029
329 => 0.0041453158531394
330 => 0.0041307459168763
331 => 0.0041123141481535
401 => 0.0040771228820682
402 => 0.0040666823851631
403 => 0.0041006089350956
404 => 0.0040623078382625
405 => 0.0041188231930085
406 => 0.0041034541436548
407 => 0.0040176038833092
408 => 0.0039106026730813
409 => 0.0039096501378677
410 => 0.0038865969026412
411 => 0.0038572351415032
412 => 0.0038490673712607
413 => 0.0039682098361003
414 => 0.0042148311726844
415 => 0.0041664135031645
416 => 0.0042014002314349
417 => 0.0043735003068879
418 => 0.0044282057456446
419 => 0.0043893771209844
420 => 0.0043362261047043
421 => 0.0043385644796747
422 => 0.0045201975922106
423 => 0.0045315258266437
424 => 0.0045601486204293
425 => 0.0045969369992444
426 => 0.0043956423409741
427 => 0.0043290835193723
428 => 0.0042975442571545
429 => 0.0042004155367544
430 => 0.0043051605345188
501 => 0.0042441301099495
502 => 0.00425236519932
503 => 0.0042470020865641
504 => 0.0042499307087809
505 => 0.0040944435853558
506 => 0.0041510949209693
507 => 0.0040569010878046
508 => 0.003930786118951
509 => 0.0039303633373538
510 => 0.0039612297973137
511 => 0.0039428692191249
512 => 0.0038934613753122
513 => 0.0039004795263274
514 => 0.0038389931385892
515 => 0.0039079450870458
516 => 0.0039099223822056
517 => 0.0038833721262118
518 => 0.0039896021163444
519 => 0.0040331246299772
520 => 0.0040156486827205
521 => 0.0040318984709303
522 => 0.0041684254759257
523 => 0.0041906853348308
524 => 0.0042005716937527
525 => 0.0041873252824889
526 => 0.0040343939339555
527 => 0.0040411770895773
528 => 0.0039914067943192
529 => 0.0039493561394907
530 => 0.0039510379451572
531 => 0.0039726574479415
601 => 0.0040670710845679
602 => 0.0042657590168602
603 => 0.0042732990786517
604 => 0.0042824378535021
605 => 0.0042452658634052
606 => 0.004234054435504
607 => 0.0042488452028208
608 => 0.0043234619436746
609 => 0.0045153964593981
610 => 0.0044475539826662
611 => 0.004392396993052
612 => 0.0044407845431612
613 => 0.0044333356590961
614 => 0.0043704595812941
615 => 0.0043686948592055
616 => 0.0042480155632055
617 => 0.0042034031752089
618 => 0.0041661217246196
619 => 0.004125411353833
620 => 0.0041012768814067
621 => 0.004138358399975
622 => 0.0041468393820072
623 => 0.0040657599935835
624 => 0.00405470917254
625 => 0.004120920351347
626 => 0.0040917832801556
627 => 0.0041217514804405
628 => 0.0041287043599691
629 => 0.0041275847862266
630 => 0.0040971623375314
701 => 0.0041165526991192
702 => 0.0040706887134191
703 => 0.0040208185175181
704 => 0.0039890044395563
705 => 0.0039612424370095
706 => 0.0039766464095595
707 => 0.003921734060073
708 => 0.003904166494305
709 => 0.0041099836809102
710 => 0.0042620230495632
711 => 0.0042598123369287
712 => 0.0042463551923159
713 => 0.0042263606051033
714 => 0.0043219992150814
715 => 0.0042886806357194
716 => 0.0043129226860657
717 => 0.0043190933053145
718 => 0.004337769911309
719 => 0.0043444451926435
720 => 0.0043242678561697
721 => 0.0042565502505094
722 => 0.0040878044156008
723 => 0.0040092527739302
724 => 0.0039833294237978
725 => 0.0039842716883397
726 => 0.003958279825821
727 => 0.0039659355942063
728 => 0.0039556174620064
729 => 0.003936077415844
730 => 0.0039754398667714
731 => 0.0039799760225542
801 => 0.0039707883561615
802 => 0.0039729523841953
803 => 0.0038968824305673
804 => 0.0039026658639263
805 => 0.0038704629720598
806 => 0.0038644253180464
807 => 0.0037830192116343
808 => 0.0036387964941214
809 => 0.0037187098796615
810 => 0.0036221857474515
811 => 0.0035856305960043
812 => 0.0037586769974629
813 => 0.0037413079383165
814 => 0.0037115796592064
815 => 0.0036676053384863
816 => 0.0036512948351765
817 => 0.0035521973803442
818 => 0.0035463421740483
819 => 0.0035954575485196
820 => 0.0035727924931579
821 => 0.0035409621715025
822 => 0.0034256759730544
823 => 0.0032960561160503
824 => 0.0032999685247719
825 => 0.0033411981896217
826 => 0.0034610790007505
827 => 0.0034142394938834
828 => 0.0033802568942299
829 => 0.003373892974828
830 => 0.0034535507499105
831 => 0.0035662831904722
901 => 0.0036191747293375
902 => 0.0035667608206619
903 => 0.0035065505445406
904 => 0.0035102152650605
905 => 0.003534595008856
906 => 0.0035371569752179
907 => 0.0034979662751793
908 => 0.0035089982276794
909 => 0.0034922396830489
910 => 0.003389392525586
911 => 0.0033875323466393
912 => 0.0033622919955635
913 => 0.0033615277277641
914 => 0.0033185875940834
915 => 0.0033125799725503
916 => 0.0032273197308475
917 => 0.0032834382801281
918 => 0.0032457969036268
919 => 0.0031890624705362
920 => 0.0031792814328869
921 => 0.0031789874030842
922 => 0.0032372409802811
923 => 0.0032827575531617
924 => 0.0032464516914867
925 => 0.0032381855505428
926 => 0.0033264463098348
927 => 0.0033152143237002
928 => 0.0033054874961462
929 => 0.0035561892368801
930 => 0.0033577392465884
1001 => 0.0032712037236918
1002 => 0.0031640995814572
1003 => 0.0031989732302347
1004 => 0.0032063216204327
1005 => 0.0029487554653311
1006 => 0.0028442609082842
1007 => 0.0028084023141
1008 => 0.0027877651861809
1009 => 0.0027971697845184
1010 => 0.0027031124271871
1011 => 0.0027663205268788
1012 => 0.0026848748059004
1013 => 0.0026712201657311
1014 => 0.0028168552040292
1015 => 0.0028371194688208
1016 => 0.0027506658196061
1017 => 0.0028061830579764
1018 => 0.002786051735596
1019 => 0.0026862709590232
1020 => 0.0026824600672958
1021 => 0.0026323935810754
1022 => 0.0025540492249227
1023 => 0.0025182437519011
1024 => 0.0024995959506741
1025 => 0.0025072903968988
1026 => 0.0025033998494337
1027 => 0.002478011395556
1028 => 0.0025048550858913
1029 => 0.0024362805496633
1030 => 0.0024089736167948
1031 => 0.0023966397087341
1101 => 0.0023357758608287
1102 => 0.0024326373091221
1103 => 0.0024517202346643
1104 => 0.0024708407594648
1105 => 0.0026372718737165
1106 => 0.002628957445578
1107 => 0.0027041158266599
1108 => 0.0027011953101784
1109 => 0.0026797589224088
1110 => 0.0025893223285234
1111 => 0.0026253687429689
1112 => 0.0025144234821624
1113 => 0.002597551215103
1114 => 0.0025596151892861
1115 => 0.0025847250066141
1116 => 0.0025395752909973
1117 => 0.0025645630078057
1118 => 0.0024562455042402
1119 => 0.0023551001434792
1120 => 0.0023958039892666
1121 => 0.0024400537246869
1122 => 0.0025359984257009
1123 => 0.0024788545533036
1124 => 0.0024994056506667
1125 => 0.0024305629147123
1126 => 0.0022885206864831
1127 => 0.0022893246300691
1128 => 0.0022674745278142
1129 => 0.0022485928492988
1130 => 0.0024854182144552
1201 => 0.002455965236643
1202 => 0.0024090357712097
1203 => 0.002471852725595
1204 => 0.0024884625253736
1205 => 0.0024889353830227
1206 => 0.0025347650114019
1207 => 0.0025592242922833
1208 => 0.0025635353465512
1209 => 0.0026356492570206
1210 => 0.0026598208886045
1211 => 0.0027593804182011
1212 => 0.002557149093188
1213 => 0.0025529842721314
1214 => 0.0024727366889647
1215 => 0.0024218424030563
1216 => 0.0024762214642628
1217 => 0.0025243938890097
1218 => 0.0024742335404817
1219 => 0.0024807834230567
1220 => 0.0024134472534089
1221 => 0.0024375167655967
1222 => 0.0024582486720063
1223 => 0.0024468017318521
1224 => 0.002429665108403
1225 => 0.0025204442995315
1226 => 0.0025153221818015
1227 => 0.002599857851585
1228 => 0.0026657594513849
1229 => 0.0027838668995465
1230 => 0.0026606156203094
1231 => 0.0026561238538145
]
'min_raw' => 0.0022485928492988
'max_raw' => 0.0065013432054687
'avg_raw' => 0.0043749680273838
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002248'
'max' => '$0.0065013'
'avg' => '$0.004374'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00039538834806778
'max_diff' => -0.0021961570553739
'year' => 2030
]
5 => [
'items' => [
101 => 0.0027000315918038
102 => 0.0026598141665586
103 => 0.0026852301910552
104 => 0.0027797719850699
105 => 0.0027817695042004
106 => 0.0027483084851061
107 => 0.0027462723790533
108 => 0.0027526989337938
109 => 0.0027903394656386
110 => 0.0027771867072353
111 => 0.0027924074122467
112 => 0.0028114411369312
113 => 0.0028901726923582
114 => 0.0029091546038272
115 => 0.0028630383999502
116 => 0.0028672021768191
117 => 0.002849953450651
118 => 0.0028332913972985
119 => 0.0028707452599374
120 => 0.0029391929300675
121 => 0.0029387671206641
122 => 0.0029546456497017
123 => 0.0029645378417473
124 => 0.0029220733119604
125 => 0.0028944304645332
126 => 0.0029050304911969
127 => 0.0029219801646707
128 => 0.0028995339405314
129 => 0.0027609854470411
130 => 0.002803012209454
131 => 0.0027960169011848
201 => 0.0027860547315509
202 => 0.0028283129661405
203 => 0.0028242370563247
204 => 0.0027021477330393
205 => 0.0027099634953982
206 => 0.002702623035435
207 => 0.002726341563293
208 => 0.0026585332882167
209 => 0.0026793906569345
210 => 0.0026924722030686
211 => 0.0027001773342387
212 => 0.0027280135514832
213 => 0.002724747292674
214 => 0.0027278105162496
215 => 0.0027690842779343
216 => 0.002977832801091
217 => 0.0029891945226288
218 => 0.0029332452504224
219 => 0.0029555958811183
220 => 0.0029126875577279
221 => 0.0029414922026806
222 => 0.0029611996091987
223 => 0.00287214562866
224 => 0.0028668724298881
225 => 0.0028237870085837
226 => 0.0028469386735097
227 => 0.0028101027099488
228 => 0.0028191409669394
301 => 0.0027938692124528
302 => 0.0028393533389725
303 => 0.0028902116599403
304 => 0.0029030604802727
305 => 0.0028692607657431
306 => 0.0028447875449139
307 => 0.0028018206311179
308 => 0.0028732755663407
309 => 0.0028941711669495
310 => 0.0028731658106462
311 => 0.0028682984106147
312 => 0.00285907469635
313 => 0.0028702552651992
314 => 0.0028940573650211
315 => 0.0028828327343008
316 => 0.0028902468006441
317 => 0.0028619920250957
318 => 0.0029220873694867
319 => 0.003017533239112
320 => 0.0030178401131898
321 => 0.0030066154219647
322 => 0.0030020225201547
323 => 0.0030135397345229
324 => 0.0030197873508568
325 => 0.0030570319102278
326 => 0.0030969968063215
327 => 0.0032834955383407
328 => 0.0032311274406764
329 => 0.003396600210583
330 => 0.0035274676876292
331 => 0.0035667091218541
401 => 0.0035306088488193
402 => 0.0034071117648658
403 => 0.0034010524087531
404 => 0.0035856091913036
405 => 0.0035334634469969
406 => 0.003527260876638
407 => 0.0034612760074274
408 => 0.0035002812375159
409 => 0.0034917502215234
410 => 0.0034782835954275
411 => 0.0035527028573086
412 => 0.0036920090720965
413 => 0.0036702968921164
414 => 0.0036540897569603
415 => 0.0035830748085323
416 => 0.0036258416692489
417 => 0.003610613209293
418 => 0.0036760443374831
419 => 0.0036372843866203
420 => 0.0035330683916971
421 => 0.003549665132389
422 => 0.0035471565684214
423 => 0.0035987826371154
424 => 0.0035832857727313
425 => 0.0035441305569346
426 => 0.0036915329385989
427 => 0.0036819614478288
428 => 0.0036955316333934
429 => 0.0037015056487509
430 => 0.0037912268809487
501 => 0.0038279827990209
502 => 0.0038363270359262
503 => 0.00387124231529
504 => 0.0038354583119685
505 => 0.0039786198388166
506 => 0.004073813900464
507 => 0.0041843867017089
508 => 0.004345963283495
509 => 0.0044067175729135
510 => 0.0043957428543206
511 => 0.0045182483745827
512 => 0.0047383880713491
513 => 0.0044402393810719
514 => 0.0047541906758953
515 => 0.0046547973206962
516 => 0.0044191374635292
517 => 0.0044039637469749
518 => 0.0045635553383156
519 => 0.0049175141277878
520 => 0.0048288514655924
521 => 0.0049176591481406
522 => 0.0048140602691503
523 => 0.0048089157116085
524 => 0.0049126275818251
525 => 0.0051549560196258
526 => 0.0050398348623724
527 => 0.0048747804545836
528 => 0.0049966540607638
529 => 0.0048910758642208
530 => 0.0046531786379327
531 => 0.0048287836669255
601 => 0.0047113615849813
602 => 0.0047456315909938
603 => 0.0049924353420241
604 => 0.0049627392617384
605 => 0.0050011687394111
606 => 0.0049333417171933
607 => 0.0048699805831023
608 => 0.0047517123210618
609 => 0.0047166989192264
610 => 0.0047263753638435
611 => 0.0047166941240611
612 => 0.0046505241183908
613 => 0.0046362347119664
614 => 0.0046124184085592
615 => 0.0046198000768561
616 => 0.0045750184587452
617 => 0.0046595306244749
618 => 0.004675216827153
619 => 0.0047367177336413
620 => 0.0047431029617744
621 => 0.0049143821109338
622 => 0.004820044433806
623 => 0.0048833342923465
624 => 0.0048776730516914
625 => 0.0044242449272172
626 => 0.0044867233221396
627 => 0.0045839200978383
628 => 0.0045401330821331
629 => 0.0044782284865097
630 => 0.0044282372064294
701 => 0.0043524953052369
702 => 0.004459100576671
703 => 0.0045992751724001
704 => 0.0047466580208454
705 => 0.0049237288563456
706 => 0.0048842087071937
707 => 0.0047433478047436
708 => 0.0047496667219285
709 => 0.0047887277815637
710 => 0.0047381401602647
711 => 0.0047232208831559
712 => 0.00478667810199
713 => 0.0047871150969807
714 => 0.0047289079249579
715 => 0.0046642213050546
716 => 0.0046639502657553
717 => 0.0046524399065422
718 => 0.0048161079364839
719 => 0.0049061088042476
720 => 0.004916427258693
721 => 0.0049054142900503
722 => 0.0049096527445918
723 => 0.0048572832226739
724 => 0.0049769844200789
725 => 0.0050868340760392
726 => 0.0050573920216462
727 => 0.0050132541966765
728 => 0.0049780962931225
729 => 0.0050491099369032
730 => 0.0050459478111314
731 => 0.0050858746351251
801 => 0.0050840633237603
802 => 0.005070637434575
803 => 0.005057392501127
804 => 0.0051099071651089
805 => 0.0050947837852418
806 => 0.0050796369145886
807 => 0.0050492575466237
808 => 0.005053386607278
809 => 0.0050092564033261
810 => 0.0049888397517172
811 => 0.0046818222979162
812 => 0.0045997772021759
813 => 0.0046255902594777
814 => 0.0046340885881772
815 => 0.0045983824573674
816 => 0.0046495758767963
817 => 0.0046415974366055
818 => 0.0046726368801563
819 => 0.0046532447834018
820 => 0.0046540406418168
821 => 0.004711068663541
822 => 0.0047276241408621
823 => 0.0047192038914775
824 => 0.0047251011455172
825 => 0.0048610008757869
826 => 0.0048416802799713
827 => 0.004831416598518
828 => 0.0048342597084238
829 => 0.0048689850032308
830 => 0.0048787061898459
831 => 0.0048375168390619
901 => 0.0048569419750044
902 => 0.004939651738431
903 => 0.0049685954746632
904 => 0.0050609699869346
905 => 0.0050217276522957
906 => 0.0050937586558939
907 => 0.005315157403776
908 => 0.0054920260432124
909 => 0.0053293703329811
910 => 0.0056541670652205
911 => 0.0059070679105929
912 => 0.0058973611549191
913 => 0.0058532620428265
914 => 0.0055653411540868
915 => 0.00530039205961
916 => 0.0055220332274726
917 => 0.0055225982363904
918 => 0.0055035590635072
919 => 0.0053853083958942
920 => 0.0054994441965975
921 => 0.0055085038819769
922 => 0.0055034328673292
923 => 0.0054127703577237
924 => 0.0052743454627887
925 => 0.0053013933559166
926 => 0.0053456983566222
927 => 0.0052618197472951
928 => 0.0052350154492309
929 => 0.0052848497390586
930 => 0.0054454262042699
1001 => 0.0054150701536779
1002 => 0.0054142774345185
1003 => 0.0055441534919202
1004 => 0.005451190263828
1005 => 0.0053017345164683
1006 => 0.0052639949691809
1007 => 0.0051300450007157
1008 => 0.005222564721048
1009 => 0.0052258943410731
1010 => 0.0051752222357757
1011 => 0.0053058462785433
1012 => 0.0053046425549933
1013 => 0.005428650642778
1014 => 0.0056657075313117
1015 => 0.0055955981445113
1016 => 0.005514068555542
1017 => 0.0055229330824332
1018 => 0.0056201550629136
1019 => 0.0055613724341533
1020 => 0.0055825110773025
1021 => 0.0056201230670455
1022 => 0.0056428153143106
1023 => 0.0055196680172657
1024 => 0.0054909564915083
1025 => 0.0054322227861851
1026 => 0.0054169002587827
1027 => 0.0054647376362496
1028 => 0.0054521341774066
1029 => 0.0052256144994029
1030 => 0.0052019419327079
1031 => 0.0052026679365318
1101 => 0.0051431421420081
1102 => 0.0050523510175319
1103 => 0.0052909446717991
1104 => 0.0052717822622454
1105 => 0.0052506284451508
1106 => 0.0052532196670429
1107 => 0.0053567850856711
1108 => 0.0052967119126877
1109 => 0.0054564262888634
1110 => 0.0054235938145753
1111 => 0.00538991931121
1112 => 0.0053852644690944
1113 => 0.0053723026582724
1114 => 0.0053278517860863
1115 => 0.0052741746868382
1116 => 0.0052387324164839
1117 => 0.0048324537358586
1118 => 0.0049078566957683
1119 => 0.0049946009279484
1120 => 0.0050245446892912
1121 => 0.0049733238134691
1122 => 0.0053298742984586
1123 => 0.0053950195078722
1124 => 0.0051976904192417
1125 => 0.0051607782036525
1126 => 0.0053322942571675
1127 => 0.0052288491099131
1128 => 0.0052754304533877
1129 => 0.0051747470674283
1130 => 0.0053793279345989
1201 => 0.0053777693711577
1202 => 0.0052981827931599
1203 => 0.0053654488238983
1204 => 0.0053537596957218
1205 => 0.0052639066451754
1206 => 0.0053821764365692
1207 => 0.0053822350969102
1208 => 0.0053056347459487
1209 => 0.0052161823059987
1210 => 0.005200190322508
1211 => 0.0051881425111684
1212 => 0.0052724674303424
1213 => 0.0053480728891967
1214 => 0.0054887559039417
1215 => 0.0055241269563946
1216 => 0.0056621825289025
1217 => 0.0055799771572778
1218 => 0.0056164177337813
1219 => 0.00565597913441
1220 => 0.0056749463246937
1221 => 0.0056440403059619
1222 => 0.0058584974360073
1223 => 0.0058766041885798
1224 => 0.0058826752260946
1225 => 0.0058103614884727
1226 => 0.005874593012722
1227 => 0.0058445412096503
1228 => 0.0059227276526116
1229 => 0.0059349882852025
1230 => 0.0059246039655826
1231 => 0.0059284956838879
]
'min_raw' => 0.0026585332882167
'max_raw' => 0.0059349882852025
'avg_raw' => 0.0042967607867096
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002658'
'max' => '$0.005934'
'avg' => '$0.004296'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0004099404389179
'max_diff' => -0.00056635492026624
'year' => 2031
]
6 => [
'items' => [
101 => 0.0057454943562243
102 => 0.0057360047719761
103 => 0.0056066136174008
104 => 0.0056593414693013
105 => 0.005560769277485
106 => 0.005592027534916
107 => 0.005605805876952
108 => 0.0055986088529865
109 => 0.0056623226229356
110 => 0.0056081529026156
111 => 0.0054651901043645
112 => 0.0053221883559947
113 => 0.0053203930855306
114 => 0.0052827432493753
115 => 0.0052555293137465
116 => 0.0052607716832149
117 => 0.0052792464769943
118 => 0.0052544555251467
119 => 0.0052597459316566
120 => 0.0053476019295141
121 => 0.0053652208233242
122 => 0.0053053449380115
123 => 0.0050649346184321
124 => 0.0050059373229837
125 => 0.0050483434089848
126 => 0.005028076031178
127 => 0.0040580497824051
128 => 0.0042859430609515
129 => 0.0041505366133637
130 => 0.0042129381341633
131 => 0.0040747232145057
201 => 0.0041406866186309
202 => 0.0041285055864868
203 => 0.0044949512345372
204 => 0.0044892296897724
205 => 0.0044919682904739
206 => 0.0043612477436052
207 => 0.0045694891242166
208 => 0.0046720763164236
209 => 0.0046530901574158
210 => 0.0046578685645974
211 => 0.0045757596975983
212 => 0.0044927632837875
213 => 0.0044007074878149
214 => 0.0045717357782918
215 => 0.0045527203519411
216 => 0.0045963348984553
217 => 0.0047072589701843
218 => 0.0047235929611059
219 => 0.0047455460105476
220 => 0.0047376774050472
221 => 0.0049251395112233
222 => 0.0049024366132506
223 => 0.0049571440652953
224 => 0.0048446066857749
225 => 0.0047172599587015
226 => 0.00474146440824
227 => 0.0047391333251095
228 => 0.0047094559613662
229 => 0.0046826645643434
301 => 0.0046380644367297
302 => 0.0047791858400764
303 => 0.0047734565688185
304 => 0.0048662068109351
305 => 0.0048498123047132
306 => 0.0047403257797472
307 => 0.0047442361124055
308 => 0.0047705349787745
309 => 0.0048615556555527
310 => 0.0048885767895807
311 => 0.0048760595236929
312 => 0.004905686963593
313 => 0.004929103284082
314 => 0.0049086276929224
315 => 0.0051985188845419
316 => 0.0050781358506381
317 => 0.0051368097037431
318 => 0.0051508030719822
319 => 0.0051149593534865
320 => 0.0051227325725609
321 => 0.0051345068813832
322 => 0.0052059981789059
323 => 0.0053936120297793
324 => 0.0054767049272005
325 => 0.0057266940088233
326 => 0.0054698052187786
327 => 0.0054545625010888
328 => 0.0054995930836362
329 => 0.0056463631385805
330 => 0.0057653064827027
331 => 0.0058047668519541
401 => 0.0058099821911704
402 => 0.0058840124671619
403 => 0.0059264452407773
404 => 0.0058750232444669
405 => 0.0058314484867014
406 => 0.0056753691130831
407 => 0.0056934357255695
408 => 0.0058178967698028
409 => 0.0059937053255012
410 => 0.0061445673560531
411 => 0.0060917407310264
412 => 0.0064947705901946
413 => 0.0065347293545018
414 => 0.0065292083452961
415 => 0.0066202403570493
416 => 0.006439560352066
417 => 0.0063623161494254
418 => 0.0058408698439248
419 => 0.0059873749862521
420 => 0.0062003288145701
421 => 0.0061721435768563
422 => 0.0060174908144596
423 => 0.0061444500380647
424 => 0.0061024733483589
425 => 0.0060693645915735
426 => 0.0062210422248559
427 => 0.0060542664364881
428 => 0.0061986650985043
429 => 0.0060134723208556
430 => 0.0060919820385997
501 => 0.0060474161257204
502 => 0.0060762557331462
503 => 0.0059076599774251
504 => 0.0059986301547816
505 => 0.0059038753189649
506 => 0.0059038303928352
507 => 0.0059017386745828
508 => 0.0060132173187139
509 => 0.0060168526332968
510 => 0.005934469746849
511 => 0.0059225970858493
512 => 0.0059664965362787
513 => 0.0059151017771102
514 => 0.0059391490614504
515 => 0.0059158301448555
516 => 0.0059105805655585
517 => 0.0058687510245774
518 => 0.0058507297081956
519 => 0.005857796330701
520 => 0.0058336743049964
521 => 0.0058191399119776
522 => 0.005898847417986
523 => 0.0058562629129173
524 => 0.0058923207318364
525 => 0.0058512282963186
526 => 0.0057087840116917
527 => 0.0056268627972818
528 => 0.0053577987482139
529 => 0.0054341049787566
530 => 0.005484696088551
531 => 0.0054679757270658
601 => 0.005503897533457
602 => 0.0055061028406246
603 => 0.0054944242951873
604 => 0.0054809020356853
605 => 0.0054743201475876
606 => 0.0055233761490283
607 => 0.0055518548090137
608 => 0.0054897735832406
609 => 0.0054752288206506
610 => 0.0055379963675056
611 => 0.0055762845348276
612 => 0.00585898285007
613 => 0.0058380396457733
614 => 0.0058906029786617
615 => 0.0058846851540286
616 => 0.0059397799008912
617 => 0.0060298365272344
618 => 0.00584672622565
619 => 0.0058785078425272
620 => 0.0058707157240136
621 => 0.0059557880307417
622 => 0.0059560536171973
623 => 0.005905048519637
624 => 0.0059326992104877
625 => 0.0059172653534118
626 => 0.0059451564191587
627 => 0.0058377599365115
628 => 0.0059685572596419
629 => 0.0060427109134636
630 => 0.0060437405370188
701 => 0.0060788887804105
702 => 0.0061146014313454
703 => 0.0061831487548986
704 => 0.0061126896836957
705 => 0.0059859406736538
706 => 0.005995091542782
707 => 0.0059207786445702
708 => 0.0059220278578148
709 => 0.0059153594596122
710 => 0.0059353718245919
711 => 0.0058421515252316
712 => 0.0058640301431654
713 => 0.0058333999499371
714 => 0.0058784412584691
715 => 0.0058299842560836
716 => 0.0058707119664182
717 => 0.0058882886960535
718 => 0.0059531472068081
719 => 0.0058204046013104
720 => 0.0055497334428162
721 => 0.0056066318019022
722 => 0.0055224746595443
723 => 0.0055302637234783
724 => 0.0055459988722455
725 => 0.0054949961068709
726 => 0.0055047258272225
727 => 0.0055043782131445
728 => 0.0055013826628171
729 => 0.0054881148737229
730 => 0.0054688739545843
731 => 0.0055455238543901
801 => 0.0055585481659884
802 => 0.0055874995973006
803 => 0.0056736394189424
804 => 0.0056650320194435
805 => 0.0056790710451438
806 => 0.0056484239308659
807 => 0.0055316853552116
808 => 0.0055380248215159
809 => 0.0054589715751188
810 => 0.0055854780280543
811 => 0.0055555196301956
812 => 0.0055362052562052
813 => 0.0055309351503155
814 => 0.0056172884959138
815 => 0.0056431267703396
816 => 0.0056270260916595
817 => 0.0055940031299548
818 => 0.0056574169787901
819 => 0.0056743838495229
820 => 0.0056781821061659
821 => 0.0057905392879026
822 => 0.0056844616244924
823 => 0.0057099955723965
824 => 0.0059092041449576
825 => 0.0057285494585486
826 => 0.0058242462750197
827 => 0.0058195624138357
828 => 0.0058685176669386
829 => 0.0058155466541845
830 => 0.0058162032933727
831 => 0.005859672241612
901 => 0.0057986279434761
902 => 0.0057835125167897
903 => 0.0057626306630812
904 => 0.0058082254267064
905 => 0.0058355574254258
906 => 0.0060558332619637
907 => 0.0061981414981657
908 => 0.0061919635223209
909 => 0.0062484186568562
910 => 0.0062229851016783
911 => 0.0061408534429759
912 => 0.0062810421694921
913 => 0.006236680590677
914 => 0.0062403377053352
915 => 0.0062402015873449
916 => 0.0062696981591005
917 => 0.0062487971346906
918 => 0.0062075990701325
919 => 0.0062349482680193
920 => 0.006316165608226
921 => 0.00656826672428
922 => 0.0067093458487193
923 => 0.0065597735838446
924 => 0.0066629465293027
925 => 0.0066010795263072
926 => 0.006589836451479
927 => 0.0066546366856475
928 => 0.0067195503440478
929 => 0.0067154156246371
930 => 0.0066682916419918
1001 => 0.0066416724999222
1002 => 0.0068432415617398
1003 => 0.0069917542128477
1004 => 0.0069816266456836
1005 => 0.0070263264334847
1006 => 0.0071575663929811
1007 => 0.0071695653301247
1008 => 0.007168053739837
1009 => 0.0071383131221669
1010 => 0.0072675359059535
1011 => 0.0073753358256467
1012 => 0.0071314290284654
1013 => 0.0072243055438576
1014 => 0.0072660008039116
1015 => 0.0073272218160971
1016 => 0.0074305119254871
1017 => 0.007542712380633
1018 => 0.007558578755206
1019 => 0.0075473208031705
1020 => 0.0074733215868917
1021 => 0.0075960926637421
1022 => 0.0076680090812251
1023 => 0.0077108336620583
1024 => 0.0078194296737204
1025 => 0.0072662582996429
1026 => 0.0068746961066697
1027 => 0.0068135480160104
1028 => 0.0069378950628961
1029 => 0.0069706843875108
1030 => 0.0069574670518729
1031 => 0.0065167282044045
1101 => 0.0068112276171915
1102 => 0.0071280842231363
1103 => 0.0071402559758098
1104 => 0.007298881017905
1105 => 0.0073505358338713
1106 => 0.0074782497842175
1107 => 0.0074702612418506
1108 => 0.0075013575563871
1109 => 0.0074942090521882
1110 => 0.0077307722518594
1111 => 0.0079917365910718
1112 => 0.0079827002258207
1113 => 0.007945183514469
1114 => 0.0080009022283761
1115 => 0.0082702453930815
1116 => 0.0082454485906117
1117 => 0.0082695365720245
1118 => 0.0085871073427277
1119 => 0.0089999945185572
1120 => 0.0088081669721897
1121 => 0.0092243775509177
1122 => 0.0094863600478522
1123 => 0.0099394316868046
1124 => 0.0098827048861829
1125 => 0.010059082350434
1126 => 0.0097811520738295
1127 => 0.0091429679797697
1128 => 0.0090419729040141
1129 => 0.0092441676032794
1130 => 0.0097412435415528
1201 => 0.0092285129130401
1202 => 0.0093322376514064
1203 => 0.009302364919779
1204 => 0.0093007731288615
1205 => 0.0093615253139005
1206 => 0.0092734011008805
1207 => 0.0089143672037937
1208 => 0.0090789103230285
1209 => 0.0090153723226824
1210 => 0.0090858724711381
1211 => 0.009466332695881
1212 => 0.0092981221614832
1213 => 0.0091209260278093
1214 => 0.0093431693024063
1215 => 0.009626161362043
1216 => 0.0096084522275365
1217 => 0.0095740891047501
1218 => 0.0097677922287028
1219 => 0.010087733039783
1220 => 0.010174211755391
1221 => 0.010238048575274
1222 => 0.010246850594204
1223 => 0.010337516859606
1224 => 0.0098499814996964
1225 => 0.010623712636669
1226 => 0.010757314630133
1227 => 0.010732202992597
1228 => 0.010880695985501
1229 => 0.010837005580085
1230 => 0.010773705037452
1231 => 0.01100909801657
]
'min_raw' => 0.0040580497824051
'max_raw' => 0.01100909801657
'avg_raw' => 0.0075335738994875
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004058'
'max' => '$0.011009'
'avg' => '$0.007533'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0013995164941884
'max_diff' => 0.0050741097313674
'year' => 2032
]
7 => [
'items' => [
101 => 0.010739238961245
102 => 0.010356208006522
103 => 0.010146069649268
104 => 0.010422796789478
105 => 0.010591784397558
106 => 0.010703474456869
107 => 0.010737271801331
108 => 0.009887827481851
109 => 0.0094300241059932
110 => 0.0097234708211917
111 => 0.010081496066344
112 => 0.0098479926513825
113 => 0.0098571455431685
114 => 0.0095242310370509
115 => 0.010110951613027
116 => 0.010025471360204
117 => 0.010468943063062
118 => 0.010363104982092
119 => 0.0107247389403
120 => 0.01062950859943
121 => 0.011024804420124
122 => 0.011182498625206
123 => 0.011447291738682
124 => 0.011642074630857
125 => 0.011756454870745
126 => 0.011749587910171
127 => 0.012202819404617
128 => 0.011935564627045
129 => 0.011599829639299
130 => 0.011593757252601
131 => 0.011767639160156
201 => 0.01213204793622
202 => 0.012226533829921
203 => 0.012279338554497
204 => 0.012198466280663
205 => 0.011908380373931
206 => 0.011783122750173
207 => 0.011889845874677
208 => 0.011759332664231
209 => 0.011984635081001
210 => 0.012294023421225
211 => 0.012230135952423
212 => 0.012443702182084
213 => 0.012664720761961
214 => 0.01298078725775
215 => 0.013063418743658
216 => 0.013200005447669
217 => 0.013340598032492
218 => 0.013385752581661
219 => 0.013471966626657
220 => 0.013471512236084
221 => 0.013731324063556
222 => 0.014017904554961
223 => 0.014126082056112
224 => 0.014374830255068
225 => 0.013948857681533
226 => 0.01427196277178
227 => 0.014563411651027
228 => 0.014215934282161
301 => 0.0146948508833
302 => 0.014713446129673
303 => 0.014994212272625
304 => 0.014709601998459
305 => 0.014540601326167
306 => 0.015028499934701
307 => 0.015264578702708
308 => 0.015193469856512
309 => 0.014652328025879
310 => 0.014337360269786
311 => 0.013513028899348
312 => 0.014489485016097
313 => 0.01496508830695
314 => 0.014651096328253
315 => 0.014809455618485
316 => 0.015673412557819
317 => 0.016002351423248
318 => 0.015933934438695
319 => 0.015945495782845
320 => 0.016122985223968
321 => 0.016910071151127
322 => 0.016438431019065
323 => 0.016798982228008
324 => 0.016990217289168
325 => 0.017167847071618
326 => 0.016731644466389
327 => 0.016164151286074
328 => 0.015984402374125
329 => 0.014619876014077
330 => 0.014548846491199
331 => 0.014508975467593
401 => 0.014257594303624
402 => 0.014060077567839
403 => 0.013903004926218
404 => 0.013490799408741
405 => 0.013629906670469
406 => 0.012972937109589
407 => 0.013393242953068
408 => 0.012344703670819
409 => 0.013217958342589
410 => 0.012742685526762
411 => 0.013061818440169
412 => 0.013060705015498
413 => 0.012473080140734
414 => 0.012134150376389
415 => 0.012350129613574
416 => 0.012581676500289
417 => 0.012619244203641
418 => 0.012919450786259
419 => 0.013003231990549
420 => 0.012749371030181
421 => 0.012322975024795
422 => 0.012422017091789
423 => 0.012132143292063
424 => 0.011624150607877
425 => 0.01198899982236
426 => 0.012113575385473
427 => 0.012168595051056
428 => 0.011669042589514
429 => 0.011512072360286
430 => 0.011428502727352
501 => 0.012258489075121
502 => 0.01230395760084
503 => 0.01207133419466
504 => 0.013122814048851
505 => 0.012884831774082
506 => 0.013150716282072
507 => 0.012413030062319
508 => 0.01244121066934
509 => 0.012091978190963
510 => 0.012287525043131
511 => 0.012149318830788
512 => 0.012271726789908
513 => 0.012345097615897
514 => 0.012694272788661
515 => 0.013221945362174
516 => 0.012642117661816
517 => 0.012389478429484
518 => 0.012546214388326
519 => 0.012963622901144
520 => 0.013596018164813
521 => 0.01322162744058
522 => 0.013387775686428
523 => 0.013424071686725
524 => 0.013148009827374
525 => 0.013606196959338
526 => 0.013851743165663
527 => 0.014103622764725
528 => 0.014322322763084
529 => 0.014003016513909
530 => 0.014344719971279
531 => 0.014069367303418
601 => 0.013822347494912
602 => 0.013822722121996
603 => 0.013667762987736
604 => 0.013367510139001
605 => 0.013312138906989
606 => 0.013600187048531
607 => 0.013831174379787
608 => 0.013850199602744
609 => 0.013978086057885
610 => 0.014053767944703
611 => 0.014795553320048
612 => 0.015093905534382
613 => 0.015458724974552
614 => 0.015600842706595
615 => 0.016028566128018
616 => 0.015683144727221
617 => 0.015608410634356
618 => 0.014570893521249
619 => 0.014740786890398
620 => 0.015012802566676
621 => 0.014575378959561
622 => 0.01485282355724
623 => 0.014907596997902
624 => 0.014560515472774
625 => 0.014745906711852
626 => 0.014253562545531
627 => 0.013232677119579
628 => 0.013607333496653
629 => 0.013883206698152
630 => 0.013489501624692
701 => 0.014195202730378
702 => 0.013782946713064
703 => 0.013652281347354
704 => 0.013142509170154
705 => 0.013383102014862
706 => 0.013708507282287
707 => 0.013507444659441
708 => 0.013924679791551
709 => 0.014515596011165
710 => 0.014936718098931
711 => 0.014969046623736
712 => 0.014698293334291
713 => 0.015132177208551
714 => 0.015135337578893
715 => 0.01464591479626
716 => 0.014346146067015
717 => 0.014278037981012
718 => 0.014448185333225
719 => 0.014654775629746
720 => 0.014980510947397
721 => 0.015177345977803
722 => 0.015690587343868
723 => 0.015829455741742
724 => 0.015982030008738
725 => 0.016185916281606
726 => 0.016430734027552
727 => 0.015895086736905
728 => 0.015916369002334
729 => 0.015417581661825
730 => 0.014884555855152
731 => 0.015289055999812
801 => 0.015817886130557
802 => 0.015696571914258
803 => 0.0156829215867
804 => 0.015705877651368
805 => 0.015614410694031
806 => 0.01520070903592
807 => 0.014992950653126
808 => 0.015261011971746
809 => 0.015403474632557
810 => 0.015624421795423
811 => 0.015597185393971
812 => 0.016166321557523
813 => 0.016387470660895
814 => 0.016330891256749
815 => 0.016341303228771
816 => 0.016741683116969
817 => 0.017186987897048
818 => 0.017604074586734
819 => 0.018028353081772
820 => 0.017516868796132
821 => 0.017257168619849
822 => 0.017525112911283
823 => 0.017382937898659
824 => 0.018199917693045
825 => 0.018256483601433
826 => 0.019073404318881
827 => 0.019848759356849
828 => 0.01936177274943
829 => 0.019820979185868
830 => 0.020317648386525
831 => 0.021275803856267
901 => 0.020953130802374
902 => 0.020705968300023
903 => 0.020472400929582
904 => 0.020958417549694
905 => 0.021583670167163
906 => 0.021718343592371
907 => 0.021936565990415
908 => 0.021707131821837
909 => 0.021983460006545
910 => 0.022959019923321
911 => 0.022695415022303
912 => 0.022321053686254
913 => 0.023091164546779
914 => 0.023369864673472
915 => 0.025325928118999
916 => 0.027795539019926
917 => 0.026773103890603
918 => 0.026138445412056
919 => 0.026287605208815
920 => 0.027189423508229
921 => 0.027479058923719
922 => 0.026691730021103
923 => 0.026969827899802
924 => 0.028502174553412
925 => 0.029324229369508
926 => 0.028207768512559
927 => 0.025127497287716
928 => 0.022287346543919
929 => 0.023040682414829
930 => 0.022955277505801
1001 => 0.024601592820968
1002 => 0.022689128132593
1003 => 0.022721329133157
1004 => 0.024401688505563
1005 => 0.023953397433657
1006 => 0.023227223309953
1007 => 0.022292648418654
1008 => 0.020565000294373
1009 => 0.019034774171666
1010 => 0.022035899988325
1011 => 0.021906485985917
1012 => 0.021719075332351
1013 => 0.022136137461913
1014 => 0.024161272777915
1015 => 0.024114586854157
1016 => 0.023817594826582
1017 => 0.02404286066193
1018 => 0.023187733119872
1019 => 0.023408118958353
1020 => 0.02228689664953
1021 => 0.022793735959498
1022 => 0.023225665266425
1023 => 0.023312381469614
1024 => 0.023507757503236
1025 => 0.021838290687266
1026 => 0.022587832274666
1027 => 0.023028117734714
1028 => 0.021038892008494
1029 => 0.022988797137955
1030 => 0.021809228984229
1031 => 0.021408865836335
1101 => 0.02194790207114
1102 => 0.021737839126207
1103 => 0.021557239341463
1104 => 0.021456461558477
1105 => 0.02185227027806
1106 => 0.021833805328198
1107 => 0.021186185439798
1108 => 0.020341391695745
1109 => 0.020624932205659
1110 => 0.020521919280201
1111 => 0.020148587149409
1112 => 0.020400167929269
1113 => 0.019292333496883
1114 => 0.017386361936186
1115 => 0.01864550513067
1116 => 0.018597029487367
1117 => 0.018572585869818
1118 => 0.019518797180311
1119 => 0.019427840795616
1120 => 0.019262754066748
1121 => 0.020145555202171
1122 => 0.01982332091239
1123 => 0.020816371065546
1124 => 0.021470458122871
1125 => 0.021304560487634
1126 => 0.021919732526525
1127 => 0.020631464406336
1128 => 0.021059375399517
1129 => 0.021147567262153
1130 => 0.020134661573193
1201 => 0.019442722385029
1202 => 0.019396577929863
1203 => 0.018196850732679
1204 => 0.018837735317555
1205 => 0.01940168723064
1206 => 0.019131598028708
1207 => 0.019046095856062
1208 => 0.019482907912952
1209 => 0.019516851950815
1210 => 0.01874292429032
1211 => 0.018903848358038
1212 => 0.019574928471825
1213 => 0.018886938860985
1214 => 0.017550287429588
1215 => 0.01721877939395
1216 => 0.01717455011109
1217 => 0.016275474026206
1218 => 0.017240932346059
1219 => 0.016819483916768
1220 => 0.018150834455169
1221 => 0.017390374167811
1222 => 0.017357592244735
1223 => 0.017308037559944
1224 => 0.016534165633319
1225 => 0.016703594403123
1226 => 0.017266801438683
1227 => 0.017467760053953
1228 => 0.017446798423975
1229 => 0.017264041416953
1230 => 0.0173477066389
1231 => 0.017078191808112
]
'min_raw' => 0.0094300241059932
'max_raw' => 0.029324229369508
'avg_raw' => 0.01937712673775
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.00943'
'max' => '$0.029324'
'avg' => '$0.019377'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0053719743235881
'max_diff' => 0.018315131352938
'year' => 2033
]
8 => [
'items' => [
101 => 0.016983020511894
102 => 0.016682633722105
103 => 0.016241148125083
104 => 0.016302539405137
105 => 0.015427840916446
106 => 0.014951258756045
107 => 0.014819347095298
108 => 0.014642949309579
109 => 0.014839271694571
110 => 0.015425363005528
111 => 0.014718412538306
112 => 0.013506395549065
113 => 0.013579239835295
114 => 0.01374289931879
115 => 0.013437920954012
116 => 0.013149284526643
117 => 0.013400230482427
118 => 0.012886682906347
119 => 0.013804959089857
120 => 0.013780122292532
121 => 0.014122398867927
122 => 0.014336431434743
123 => 0.013843155662098
124 => 0.013719098139237
125 => 0.013789766942358
126 => 0.012621769043463
127 => 0.014026948521102
128 => 0.014039100571576
129 => 0.013935047337694
130 => 0.014683262029487
131 => 0.016262228403186
201 => 0.015668157739625
202 => 0.015438115622814
203 => 0.015000805390595
204 => 0.015583495310114
205 => 0.015538753815674
206 => 0.015336415810107
207 => 0.015214041153007
208 => 0.015439520210925
209 => 0.015186101802465
210 => 0.015140580892833
211 => 0.014864773707703
212 => 0.014766323091039
213 => 0.014693434173893
214 => 0.014613190638032
215 => 0.014790187882698
216 => 0.014389088840359
217 => 0.013905402715522
218 => 0.013865189447798
219 => 0.01397622181557
220 => 0.013927098258219
221 => 0.013864954263105
222 => 0.013746304452522
223 => 0.013711103588275
224 => 0.013825489320048
225 => 0.013696354497978
226 => 0.01388689996228
227 => 0.013835082139351
228 => 0.013545631992723
301 => 0.013184869941853
302 => 0.013181658402877
303 => 0.013103932810785
304 => 0.013004937583136
305 => 0.012977399375508
306 => 0.013379096513976
307 => 0.014210597568821
308 => 0.014047354015621
309 => 0.01416531421268
310 => 0.014745561632713
311 => 0.014930004838893
312 => 0.014799091419923
313 => 0.014619889057649
314 => 0.014627773052122
315 => 0.015240161772256
316 => 0.015278355705559
317 => 0.015374859453187
318 => 0.015498894040845
319 => 0.014820215046542
320 => 0.014595807332523
321 => 0.014489470507955
322 => 0.014161994245815
323 => 0.01451514931884
324 => 0.014309380981396
325 => 0.014337146160165
326 => 0.014319064051068
327 => 0.014328938105342
328 => 0.013804702412949
329 => 0.01399570634624
330 => 0.013678125261322
331 => 0.013252919838766
401 => 0.013251494401094
402 => 0.013355562825876
403 => 0.013293658854617
404 => 0.013127076859658
405 => 0.013150739045797
406 => 0.012943433396695
407 => 0.013175909704988
408 => 0.013182576293669
409 => 0.013093060251907
410 => 0.01345122208038
411 => 0.013597961273738
412 => 0.01353903989743
413 => 0.013593827192903
414 => 0.014054137522256
415 => 0.014129188190689
416 => 0.014162520740037
417 => 0.014117859539627
418 => 0.01360224082072
419 => 0.013625110703484
420 => 0.013457306678171
421 => 0.013315529959533
422 => 0.013321200284758
423 => 0.013394091947821
424 => 0.013712414115456
425 => 0.014382304351128
426 => 0.014407726195888
427 => 0.014438538213345
428 => 0.014313210253468
429 => 0.014275410141542
430 => 0.014325278246209
501 => 0.014576853797572
502 => 0.015223974417774
503 => 0.014995238770862
504 => 0.01480927312944
505 => 0.014972415132944
506 => 0.014947300700254
507 => 0.014735309614077
508 => 0.014729359730346
509 => 0.014322481058323
510 => 0.014172067277455
511 => 0.014046370263885
512 => 0.013909112406471
513 => 0.01382774134767
514 => 0.013952764276472
515 => 0.013981358499517
516 => 0.013707993680665
517 => 0.013670735065973
518 => 0.013893970678037
519 => 0.01379573300823
520 => 0.013896772887804
521 => 0.013920215006569
522 => 0.01391644028553
523 => 0.013813868875727
524 => 0.013879244833612
525 => 0.013724611203703
526 => 0.013556470356397
527 => 0.01344920697136
528 => 0.013355605441493
529 => 0.013407541010416
530 => 0.013222400190264
531 => 0.013163169915749
601 => 0.013857096930086
602 => 0.014369708276549
603 => 0.014362254704555
604 => 0.014316883001945
605 => 0.01424946985518
606 => 0.014571922105996
607 => 0.014459586189448
608 => 0.014541319954717
609 => 0.014562124628333
610 => 0.014625094109402
611 => 0.014647600286475
612 => 0.014579570987817
613 => 0.014351256352441
614 => 0.013782317988588
615 => 0.013517475644395
616 => 0.013430073259514
617 => 0.013433250170203
618 => 0.013345616791028
619 => 0.013371428748648
620 => 0.013336640445546
621 => 0.013270759815667
622 => 0.013403473067168
623 => 0.013418767033094
624 => 0.013387790174388
625 => 0.013395086345992
626 => 0.0131386111863
627 => 0.013158110435657
628 => 0.013049536137395
629 => 0.013029179765353
630 => 0.012754713393992
701 => 0.012268456432588
702 => 0.012537889991311
703 => 0.012212452140466
704 => 0.012089203895162
705 => 0.012672641919394
706 => 0.012614080923813
707 => 0.012513849955231
708 => 0.012365587462734
709 => 0.012310595462062
710 => 0.011976481474332
711 => 0.011956740237508
712 => 0.012122336151664
713 => 0.012045919335088
714 => 0.011938601183305
715 => 0.011549905716212
716 => 0.011112883318553
717 => 0.011126074277713
718 => 0.011265082971318
719 => 0.011669269495849
720 => 0.011511346828217
721 => 0.011396772120896
722 => 0.011375315722318
723 => 0.011643887472537
724 => 0.012023972766618
725 => 0.012202300282672
726 => 0.01202558313015
727 => 0.011822579980459
728 => 0.011834935841555
729 => 0.011917133849901
730 => 0.011925771698361
731 => 0.011793637516974
801 => 0.011830832515054
802 => 0.011774329911788
803 => 0.011427573539842
804 => 0.01142130181665
805 => 0.011336202210773
806 => 0.011333625428528
807 => 0.011188849769839
808 => 0.011168594654402
809 => 0.010881133796821
810 => 0.011070341403792
811 => 0.010943430874881
812 => 0.010752146772644
813 => 0.010719169321319
814 => 0.010718177979311
815 => 0.010914583981965
816 => 0.011068046285298
817 => 0.010945638537866
818 => 0.010917768666551
819 => 0.011215345978673
820 => 0.011177476553228
821 => 0.011144681875024
822 => 0.011989940297345
823 => 0.011320852299741
824 => 0.011029091742578
825 => 0.010667982649261
826 => 0.010785561590915
827 => 0.010810337201516
828 => 0.0099419349268958
829 => 0.0095896242322352
830 => 0.0094687244783761
831 => 0.0093991449607586
901 => 0.0094308532206615
902 => 0.0091137322735441
903 => 0.0093268427947034
904 => 0.009052242860066
905 => 0.0090062052873986
906 => 0.0094972239869344
907 => 0.0095655463704852
908 => 0.0092740618561568
909 => 0.009461242101412
910 => 0.0093933679424824
911 => 0.0090569500877958
912 => 0.009044101400269
913 => 0.0088752987464466
914 => 0.0086111552798492
915 => 0.0084904346276988
916 => 0.0084275622639141
917 => 0.0084535046265696
918 => 0.0084403873741616
919 => 0.0083547884293478
920 => 0.0084452938054798
921 => 0.0082140899688661
922 => 0.0081220227381906
923 => 0.008080438106038
924 => 0.007875231393447
925 => 0.0082018065290185
926 => 0.0082661459448113
927 => 0.0083306121291286
928 => 0.0088917462506775
929 => 0.0088637135757135
930 => 0.0091171153049218
1001 => 0.0091072685797007
1002 => 0.0090349943016946
1003 => 0.0087300810113287
1004 => 0.0088516140143118
1005 => 0.008477554321552
1006 => 0.0087578252769543
1007 => 0.0086299213173036
1008 => 0.0087145808195366
1009 => 0.0085623554010821
1010 => 0.0086466032328883
1011 => 0.0082814032071307
1012 => 0.0079403845615813
1013 => 0.0080776204195052
1014 => 0.0082268114918926
1015 => 0.0085502957500066
1016 => 0.0083576311945611
1017 => 0.0084269206541527
1018 => 0.0081948125634362
1019 => 0.0077159072738896
1020 => 0.0077186178258195
1021 => 0.0076449486805416
1022 => 0.0075812877831502
1023 => 0.008379761036394
1024 => 0.008280458265359
1025 => 0.00812223229614
1026 => 0.0083340240435897
1027 => 0.0083900251432024
1028 => 0.0083916194157801
1029 => 0.0085461372075832
1030 => 0.0086286033807673
1031 => 0.0086431384012199
1101 => 0.0088862754851999
1102 => 0.0089677718286943
1103 => 0.0093034437337535
1104 => 0.0086216067021317
1105 => 0.0086075647171608
1106 => 0.0083370043878069
1107 => 0.0081654107495412
1108 => 0.0083487535510238
1109 => 0.0085111702443492
1110 => 0.0083420511272033
1111 => 0.0083641345136032
1112 => 0.0081371059163745
1113 => 0.0082182579571954
1114 => 0.0082881570271108
1115 => 0.0082495628691809
1116 => 0.0081917855467815
1117 => 0.008497853927672
1118 => 0.0084805843501305
1119 => 0.0087656022628974
1120 => 0.0089877941077257
1121 => 0.0093860016152011
1122 => 0.0089704513221237
1123 => 0.0089553070177811
1124 => 0.0091033450219524
1125 => 0.0089677491648472
1126 => 0.0090534410659278
1127 => 0.0093721953251454
1128 => 0.0093789301003563
1129 => 0.0092661139383062
1130 => 0.0092592490645927
1201 => 0.009280916642588
1202 => 0.0094078243236809
1203 => 0.0093634788804279
1204 => 0.0094147965500496
1205 => 0.0094789700817155
1206 => 0.0097444190176993
1207 => 0.0098084178574919
1208 => 0.0096529338563899
1209 => 0.0096669723208089
1210 => 0.0096088170362655
1211 => 0.0095526397600802
1212 => 0.0096789180729125
1213 => 0.0099096941716199
1214 => 0.0099082585254872
1215 => 0.0099617940947409
1216 => 0.0099951463108735
1217 => 0.0098519741839183
1218 => 0.0097587743938556
1219 => 0.0097945131238224
1220 => 0.0098516601313275
1221 => 0.0097759811194966
1222 => 0.0093088552005473
1223 => 0.0094505513642372
1224 => 0.0094269661940108
1225 => 0.0093933780435537
1226 => 0.009535854631848
1227 => 0.0095221124173331
1228 => 0.0091104797398723
1229 => 0.0091368311283444
1230 => 0.0091120822550838
1231 => 0.0091920509277318
]
'min_raw' => 0.0075812877831502
'max_raw' => 0.016983020511894
'avg_raw' => 0.012282154147522
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.007581'
'max' => '$0.016983'
'avg' => '$0.012282'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0018487363228429
'max_diff' => -0.012341208857613
'year' => 2034
]
9 => [
'items' => [
101 => 0.0089634305940894
102 => 0.0090337526689363
103 => 0.0090778580150518
104 => 0.0091038364027471
105 => 0.0091976881526496
106 => 0.0091866757330314
107 => 0.009197003605184
108 => 0.0093361609743461
109 => 0.010039971194525
110 => 0.01007827803194
111 => 0.0098896411544428
112 => 0.009964997866305
113 => 0.0098203294582308
114 => 0.0099174463297651
115 => 0.0099838912267678
116 => 0.0096836395138315
117 => 0.0096658605560089
118 => 0.0095205950499531
119 => 0.0095986525046486
120 => 0.0094744574816984
121 => 0.0095049305961729
122 => 0.0094197251115038
123 => 0.0095730780196654
124 => 0.0097445503996228
125 => 0.0097878710944496
126 => 0.0096739129970922
127 => 0.0095913998244009
128 => 0.0094465338746838
129 => 0.0096874491776116
130 => 0.0097579001539485
131 => 0.0096870791286248
201 => 0.0096706683495873
202 => 0.0096395699529649
203 => 0.0096772660214424
204 => 0.0097575164628013
205 => 0.0097196718366494
206 => 0.0097446688789592
207 => 0.0096494059305122
208 => 0.0098520215798497
209 => 0.010173823993109
210 => 0.010174858640488
211 => 0.010137013810339
212 => 0.010121528521221
213 => 0.010160359613569
214 => 0.010181423888234
215 => 0.010306996520485
216 => 0.010441740957925
217 => 0.011070534453853
218 => 0.010893971756354
219 => 0.011451874753034
220 => 0.011893103588771
221 => 0.01202540882401
222 => 0.011903694233032
223 => 0.011487315192192
224 => 0.011466885650007
225 => 0.01208913172772
226 => 0.01191331871009
227 => 0.011892406311075
228 => 0.011669933717615
301 => 0.011801442574117
302 => 0.011772679658081
303 => 0.011727275987989
304 => 0.011978185725208
305 => 0.012447866354415
306 => 0.012374662223716
307 => 0.012320018735992
308 => 0.012080586879261
309 => 0.012224778336054
310 => 0.012173434520096
311 => 0.012394040137044
312 => 0.012263358256577
313 => 0.011911986753565
314 => 0.011967943823555
315 => 0.011959486024996
316 => 0.012133546920015
317 => 0.012081298159787
318 => 0.011949283615999
319 => 0.012446261037086
320 => 0.012413990087694
321 => 0.012459742915765
322 => 0.012479884725635
323 => 0.012782386124126
324 => 0.012906311268123
325 => 0.012934444445425
326 => 0.013052163747508
327 => 0.01293151548195
328 => 0.013414194564937
329 => 0.013735147990018
330 => 0.014107951909362
331 => 0.01465271863577
401 => 0.014857555964274
402 => 0.014820553934307
403 => 0.015233589848933
404 => 0.015975806206244
405 => 0.014970577080898
406 => 0.016029085790774
407 => 0.015693974154298
408 => 0.014899430492614
409 => 0.014848271247856
410 => 0.01538634544039
411 => 0.016579742211709
412 => 0.016280809855888
413 => 0.016580231157954
414 => 0.016230940304395
415 => 0.016213595069461
416 => 0.016563266880828
417 => 0.017380294127705
418 => 0.016992155108522
419 => 0.016435662648931
420 => 0.016846568021111
421 => 0.016490603760232
422 => 0.015688516652348
423 => 0.016280581267949
424 => 0.015884684520526
425 => 0.016000228238453
426 => 0.016832344316339
427 => 0.016732221908342
428 => 0.016861789575375
429 => 0.016633106034437
430 => 0.016419479547116
501 => 0.01602072984442
502 => 0.015902679715574
503 => 0.015935304524189
504 => 0.015902663548339
505 => 0.01567956675438
506 => 0.015631389022966
507 => 0.015551090693227
508 => 0.015575978503261
509 => 0.015424994151248
510 => 0.015709932818457
511 => 0.015762819945961
512 => 0.015970174546043
513 => 0.015991702788496
514 => 0.016569182398215
515 => 0.016251116333333
516 => 0.016464502510159
517 => 0.016445415242035
518 => 0.01491665066303
519 => 0.015127300933612
520 => 0.015455006648943
521 => 0.015307375668381
522 => 0.015098660002196
523 => 0.014930110911126
524 => 0.014674741803124
525 => 0.015034168918707
526 => 0.015506777354885
527 => 0.01600368891836
528 => 0.01660069560294
529 => 0.016467450660866
530 => 0.015992528293661
531 => 0.016013832964123
601 => 0.016145530053839
602 => 0.015974970356714
603 => 0.015924668972312
604 => 0.016138619416052
605 => 0.016140092775173
606 => 0.015943843230803
607 => 0.015725747775524
608 => 0.015724833947603
609 => 0.015686025967888
610 => 0.016237844157774
611 => 0.016541288367099
612 => 0.016576077756673
613 => 0.016538946763993
614 => 0.016553237009399
615 => 0.01637666950993
616 => 0.016780250454252
617 => 0.01715061623878
618 => 0.017051350296815
619 => 0.016902536538326
620 => 0.016783999211847
621 => 0.017023426669867
622 => 0.017012765342056
623 => 0.017147381416752
624 => 0.017141274454024
625 => 0.01709600813127
626 => 0.017051351913418
627 => 0.01722840876949
628 => 0.017177419238387
629 => 0.017126350506459
630 => 0.017023924346346
701 => 0.017037845762624
702 => 0.016889057698928
703 => 0.016820221532583
704 => 0.015785090751819
705 => 0.015508469983325
706 => 0.015595500508228
707 => 0.015624153216773
708 => 0.015503767503825
709 => 0.01567636969164
710 => 0.0156494698235
711 => 0.015754121474536
712 => 0.015688739666415
713 => 0.015691422958626
714 => 0.015883696915439
715 => 0.015939514863093
716 => 0.01591112540441
717 => 0.015931008408138
718 => 0.016389203836959
719 => 0.016324063099245
720 => 0.016289458380638
721 => 0.016299044124185
722 => 0.01641612288007
723 => 0.016448898539454
724 => 0.016310025767537
725 => 0.016375518969587
726 => 0.016654380711591
727 => 0.016751966539085
728 => 0.017063413656591
729 => 0.016931105385543
730 => 0.017173962943219
731 => 0.01792042427927
801 => 0.018516749245704
802 => 0.0179683441624
803 => 0.019063419021729
804 => 0.019916091878875
805 => 0.019883364874417
806 => 0.019734681639095
807 => 0.018763936260715
808 => 0.017870641890531
809 => 0.018617920562472
810 => 0.018619825529486
811 => 0.018555633628838
812 => 0.018156943246983
813 => 0.018541760067761
814 => 0.018572305429545
815 => 0.018555208149613
816 => 0.018249533168624
817 => 0.017782823970833
818 => 0.017874017830937
819 => 0.018023395234093
820 => 0.017740592646529
821 => 0.017650220084189
822 => 0.017818239871662
823 => 0.018359634635213
824 => 0.01825728709125
825 => 0.018254614383258
826 => 0.018692500578445
827 => 0.018379068564446
828 => 0.017875168077556
829 => 0.017747926558986
830 => 0.017296304888217
831 => 0.017608241584838
901 => 0.017619467631219
902 => 0.017448623090396
903 => 0.017889031170466
904 => 0.017884972732476
905 => 0.018303074658411
906 => 0.019102328508885
907 => 0.018865949816407
908 => 0.018591067114982
909 => 0.018620954486298
910 => 0.018948745181309
911 => 0.018750555444372
912 => 0.018821825855602
913 => 0.018948637305006
914 => 0.019025145800982
915 => 0.018609946091126
916 => 0.01851314317746
917 => 0.018315118389306
918 => 0.018263457418385
919 => 0.018424744476413
920 => 0.018382251034979
921 => 0.01761852412549
922 => 0.017538710414113
923 => 0.017541158186693
924 => 0.017340462814498
925 => 0.017034354199492
926 => 0.017838789362931
927 => 0.017774181961244
928 => 0.017702860389997
929 => 0.01771159687552
930 => 0.018060774915132
1001 => 0.017858234018243
1002 => 0.018396722188421
1003 => 0.018286025209069
1004 => 0.018172489269894
1005 => 0.01815679514471
1006 => 0.018113093494559
1007 => 0.017963224275523
1008 => 0.017782248187793
1009 => 0.017662752098793
1010 => 0.016292955161593
1011 => 0.016547181505395
1012 => 0.016839645740479
1013 => 0.016940603222453
1014 => 0.016767908463491
1015 => 0.017970043317194
1016 => 0.018189684939025
1017 => 0.01752437613963
1018 => 0.017399924027642
1019 => 0.017978202376936
1020 => 0.017629429840659
1021 => 0.017786482092389
1022 => 0.017447021027137
1023 => 0.018136779704183
1024 => 0.018131524898726
1025 => 0.017863193194449
1026 => 0.018089985313447
1027 => 0.018050574601691
1028 => 0.017747628768435
1029 => 0.018146383627452
1030 => 0.018146581404887
1031 => 0.017888317973555
1101 => 0.017586722826894
1102 => 0.01753280473803
1103 => 0.017492184700947
1104 => 0.01777649205332
1105 => 0.018031401136452
1106 => 0.018505723742839
1107 => 0.018624979715712
1108 => 0.019090443717155
1109 => 0.018813282567327
1110 => 0.018936144515208
1111 => 0.019069528539516
1112 => 0.019133477745805
1113 => 0.019029275945861
1114 => 0.019752333132728
1115 => 0.019813381313199
1116 => 0.019833850240046
1117 => 0.01959003942487
1118 => 0.019806600493379
1119 => 0.019705278741172
1120 => 0.01996888979242
1121 => 0.02001022737121
1122 => 0.019975215912601
1123 => 0.019988337112579
1124 => 0.019371335359616
1125 => 0.019339340563782
1126 => 0.018903089252329
1127 => 0.019080864886353
1128 => 0.018748521859554
1129 => 0.018853911256864
1130 => 0.018900365899012
1201 => 0.018876100630232
1202 => 0.019090916053968
1203 => 0.0189082790599
1204 => 0.018426270004253
1205 => 0.017944129625561
1206 => 0.017938076745849
1207 => 0.017811137694624
1208 => 0.017719384010636
1209 => 0.017737059025309
1210 => 0.017799348082405
1211 => 0.017715763657402
1212 => 0.017733600632314
1213 => 0.018029813263001
1214 => 0.018089216593593
1215 => 0.017887340865861
1216 => 0.017076780688486
1217 => 0.016877867187823
1218 => 0.017020842267474
1219 => 0.016952509388175
1220 => 0.013681998165367
1221 => 0.014450356264987
1222 => 0.013993823973168
1223 => 0.014204215057279
1224 => 0.013738213805796
1225 => 0.013960614028222
1226 => 0.013919544827896
1227 => 0.015155041914716
1228 => 0.015135751327076
1229 => 0.015144984710544
1230 => 0.014704251260159
1231 => 0.015406351613839
]
'min_raw' => 0.0089634305940894
'max_raw' => 0.02001022737121
'avg_raw' => 0.01448682898265
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.008963'
'max' => '$0.02001'
'avg' => '$0.014486'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0013821428109391
'max_diff' => 0.0030272068593156
'year' => 2035
]
10 => [
'items' => [
101 => 0.015752231494774
102 => 0.015688218334108
103 => 0.015704329067538
104 => 0.015427493289793
105 => 0.015147665086005
106 => 0.014837292542753
107 => 0.01541392636491
108 => 0.015349814527354
109 => 0.015496864015997
110 => 0.015870852268302
111 => 0.015925923459098
112 => 0.015999939698003
113 => 0.01597341014519
114 => 0.016605451724349
115 => 0.016528907318768
116 => 0.01671335731289
117 => 0.016333929680728
118 => 0.015904571299335
119 => 0.015986178290855
120 => 0.015978318881329
121 => 0.015878259577462
122 => 0.015787930511883
123 => 0.015637558067752
124 => 0.016113358731917
125 => 0.016094042093866
126 => 0.016406756010778
127 => 0.016351480788423
128 => 0.015982339325395
129 => 0.015995523284963
130 => 0.016084191749054
131 => 0.016391074315673
201 => 0.016482177955603
202 => 0.016439975119735
203 => 0.01653986610188
204 => 0.016618815861284
205 => 0.016549780976129
206 => 0.017527169368231
207 => 0.01712128956455
208 => 0.01731911255677
209 => 0.017366292174774
210 => 0.017245442575338
211 => 0.017271650526156
212 => 0.017311348430406
213 => 0.017552386331367
214 => 0.018184939528367
215 => 0.018465093033384
216 => 0.019307948675756
217 => 0.018441830184717
218 => 0.018390438297814
219 => 0.018542262050807
220 => 0.01903710753821
221 => 0.019438133327277
222 => 0.019571176717243
223 => 0.019588760597534
224 => 0.019838358841668
225 => 0.019981423900474
226 => 0.019808051049745
227 => 0.019661135711645
228 => 0.019134903206378
229 => 0.019195816051746
301 => 0.019615445151971
302 => 0.02020819597207
303 => 0.020716837840926
304 => 0.020538729186411
305 => 0.021897572495243
306 => 0.022032296258937
307 => 0.022013681790935
308 => 0.022320602574213
309 => 0.021711427322737
310 => 0.021450993100516
311 => 0.019692900475302
312 => 0.020186852791321
313 => 0.020904841491457
314 => 0.020809812994675
315 => 0.020288390408743
316 => 0.020716442295138
317 => 0.020574914955075
318 => 0.020463286469994
319 => 0.0209746782004
320 => 0.020412381986004
321 => 0.020899232156584
322 => 0.020274841776995
323 => 0.020539542771743
324 => 0.020389285684977
325 => 0.02048652043493
326 => 0.019918088073537
327 => 0.020224800377829
328 => 0.019905327833302
329 => 0.019905176361719
330 => 0.019898123987592
331 => 0.02027398201947
401 => 0.020286238736396
402 => 0.020008479082948
403 => 0.019968449577465
404 => 0.020116459639549
405 => 0.019943178620745
406 => 0.020024255718826
407 => 0.019945634363451
408 => 0.019927935040338
409 => 0.019786903822475
410 => 0.019726143696085
411 => 0.019749969307238
412 => 0.019668640213429
413 => 0.019619636492607
414 => 0.019888375914115
415 => 0.01974479928212
416 => 0.019866370736083
417 => 0.019727824720752
418 => 0.01924756386999
419 => 0.018971360776051
420 => 0.018064192549166
421 => 0.018321464332972
422 => 0.018492035791802
423 => 0.018435661925676
424 => 0.018556774803905
425 => 0.01856421015099
426 => 0.018524835119678
427 => 0.018479243877673
428 => 0.018457052582419
429 => 0.018622448316257
430 => 0.018718466106714
501 => 0.018509154919647
502 => 0.018460116237092
503 => 0.018671741403604
504 => 0.018800832632925
505 => 0.019753969740131
506 => 0.019683358264637
507 => 0.019860579211325
508 => 0.019840626852405
509 => 0.020026382638044
510 => 0.020330014841313
511 => 0.019712645675168
512 => 0.019819799615392
513 => 0.019793527943795
514 => 0.020080355165487
515 => 0.020081250608765
516 => 0.019909283361278
517 => 0.020002509595991
518 => 0.019950473269302
519 => 0.02004450994476
520 => 0.019682415205332
521 => 0.020123407512243
522 => 0.020373421733346
523 => 0.020376893181048
524 => 0.020495397937615
525 => 0.02061580563362
526 => 0.020846917720801
527 => 0.020609360042945
528 => 0.020182016906256
529 => 0.020212869700415
530 => 0.019962318575733
531 => 0.019966530385404
601 => 0.019944047415291
602 => 0.020011520501039
603 => 0.019697221753312
604 => 0.019770987041192
605 => 0.019667715206191
606 => 0.019819575122591
607 => 0.019656198955888
608 => 0.019793515274799
609 => 0.019852776445933
610 => 0.020071451443219
611 => 0.01962390048099
612 => 0.01871131377247
613 => 0.018903150562645
614 => 0.018619408881522
615 => 0.01864567025439
616 => 0.018698722407052
617 => 0.018526763022692
618 => 0.018559567454165
619 => 0.018558395449031
620 => 0.01854829574196
621 => 0.018503562464701
622 => 0.018438690362467
623 => 0.018697120851188
624 => 0.01874103322707
625 => 0.018838644999063
626 => 0.019129071421819
627 => 0.019100050973459
628 => 0.019147384528781
629 => 0.01904405564328
630 => 0.018650463385034
701 => 0.018671837338287
702 => 0.018405303798737
703 => 0.018831829137208
704 => 0.018730822307199
705 => 0.018665702546803
706 => 0.018647934016849
707 => 0.018939080350532
708 => 0.01902619589673
709 => 0.018971911334446
710 => 0.018860572113469
711 => 0.019074376332231
712 => 0.019131581321496
713 => 0.019144387408953
714 => 0.019523207491706
715 => 0.019165559243413
716 => 0.019251648731495
717 => 0.019923294342183
718 => 0.019314204454048
719 => 0.019636852952118
720 => 0.01962106098712
721 => 0.019786117040903
722 => 0.019607521573084
723 => 0.019609735477953
724 => 0.019756294071846
725 => 0.019550478958704
726 => 0.019499516242306
727 => 0.019429111614603
728 => 0.01958283754349
729 => 0.019674989285432
730 => 0.020417664647487
731 => 0.020897466801486
801 => 0.020876637324593
802 => 0.02106697975225
803 => 0.020981228745254
804 => 0.020704316123689
805 => 0.021176972202803
806 => 0.021027404042601
807 => 0.021039734260003
808 => 0.021039275328695
809 => 0.021138725079754
810 => 0.021068255816693
811 => 0.020929353665679
812 => 0.021021563395814
813 => 0.021295393328735
814 => 0.022145369842648
815 => 0.022621027960526
816 => 0.022116734626698
817 => 0.022464589415615
818 => 0.0222560004956
819 => 0.02221809368385
820 => 0.022436572197557
821 => 0.02265543312898
822 => 0.022641492633811
823 => 0.02248261083623
824 => 0.022392862540254
825 => 0.023072466705274
826 => 0.023573187477307
827 => 0.023539041677529
828 => 0.02368975013294
829 => 0.024132234819263
830 => 0.024172690073582
831 => 0.024167593641391
901 => 0.024067321072493
902 => 0.024503004710076
903 => 0.024866459665672
904 => 0.024044110869946
905 => 0.024357250526022
906 => 0.024497829006364
907 => 0.024704239923262
908 => 0.025052489738556
909 => 0.025430781406666
910 => 0.025484275996293
911 => 0.025446319025001
912 => 0.025196825500856
913 => 0.025610756758061
914 => 0.025853227980648
915 => 0.025997614044844
916 => 0.026363753080094
917 => 0.0244986971712
918 => 0.023178517899592
919 => 0.02297235284271
920 => 0.023391597592919
921 => 0.023502149090135
922 => 0.023457585920227
923 => 0.021971604124584
924 => 0.022964529456087
925 => 0.024032833625252
926 => 0.024073871539195
927 => 0.024608686943466
928 => 0.024782844761921
929 => 0.025213441262216
930 => 0.025186507333884
1001 => 0.025291350729419
1002 => 0.02526724904842
1003 => 0.026064838392426
1004 => 0.026944697882029
1005 => 0.026914231145686
1006 => 0.026787740934031
1007 => 0.026975600468125
1008 => 0.027883709752869
1009 => 0.027800105602084
1010 => 0.027881319913187
1011 => 0.028952031938696
1012 => 0.030344109878867
1013 => 0.029697349913317
1014 => 0.031100632938393
1015 => 0.031983925217842
1016 => 0.033511487881022
1017 => 0.033320229512187
1018 => 0.03391489844719
1019 => 0.032977837115146
1020 => 0.030826154885433
1021 => 0.030485642936272
1022 => 0.031167356481628
1023 => 0.032843282712251
1024 => 0.031114575600511
1025 => 0.031464290797743
1026 => 0.031363572797413
1027 => 0.0313582059632
1028 => 0.031563036196641
1029 => 0.031265919259808
1030 => 0.030055411408833
1031 => 0.030610180023367
1101 => 0.030395957219119
1102 => 0.030633653391801
1103 => 0.031916401602406
1104 => 0.031349268041599
1105 => 0.030751838905479
1106 => 0.031501147622312
1107 => 0.032455275109252
1108 => 0.032395567525851
1109 => 0.03227970985822
1110 => 0.032932793464547
1111 => 0.034011496246656
1112 => 0.034303065274082
1113 => 0.034518295569261
1114 => 0.03454797219062
1115 => 0.034853659834541
1116 => 0.033209900329974
1117 => 0.03581858887846
1118 => 0.036269037327217
1119 => 0.036184371688026
1120 => 0.036685026181051
1121 => 0.036537720928825
1122 => 0.036324298729834
1123 => 0.037117942593543
1124 => 0.036208093947558
1125 => 0.034916678341342
1126 => 0.034208182198467
1127 => 0.035141187072158
1128 => 0.035710940591138
1129 => 0.036087511424055
1130 => 0.036201461530565
1201 => 0.03333750070113
1202 => 0.031793984656614
1203 => 0.032783360744702
1204 => 0.033990467855258
1205 => 0.033203194789026
1206 => 0.033234054402717
1207 => 0.032111609901993
1208 => 0.03408977928742
1209 => 0.033801576646986
1210 => 0.035296772455376
1211 => 0.034939931976008
1212 => 0.036159206114582
1213 => 0.035838130371569
1214 => 0.037170897829713
1215 => 0.037702574852005
1216 => 0.038595343321353
1217 => 0.039252067441628
1218 => 0.039637708406184
1219 => 0.039614555969175
1220 => 0.04114265759631
1221 => 0.040241589454593
1222 => 0.03910963550314
1223 => 0.039089162027428
1224 => 0.039675417018796
1225 => 0.040904046649503
1226 => 0.041222612436911
1227 => 0.041400647252528
1228 => 0.041127980734974
1229 => 0.040149935847275
1230 => 0.039727621023567
1231 => 0.040087445489005
]
'min_raw' => 0.014837292542753
'max_raw' => 0.041400647252528
'avg_raw' => 0.028118969897641
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.014837'
'max' => '$0.04140064'
'avg' => '$0.028118'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0058738619486636
'max_diff' => 0.021390419881318
'year' => 2036
]
11 => [
'items' => [
101 => 0.039647411087843
102 => 0.040407033916095
103 => 0.041450158305965
104 => 0.041234757244417
105 => 0.041954810698438
106 => 0.042699990271517
107 => 0.043765630529129
108 => 0.044044228353013
109 => 0.044504739961767
110 => 0.044978757677358
111 => 0.04513099939247
112 => 0.045421676064449
113 => 0.045420144054906
114 => 0.046296117770711
115 => 0.047262343905893
116 => 0.047627071903737
117 => 0.048465743823561
118 => 0.047029547551432
119 => 0.048118918921676
120 => 0.04910155916637
121 => 0.047930014957143
122 => 0.04954471571477
123 => 0.049607410886198
124 => 0.050554033539626
125 => 0.04959445012942
126 => 0.049024652563539
127 => 0.050669636786202
128 => 0.051465592835032
129 => 0.051225844395419
130 => 0.049401346932127
131 => 0.048339411152113
201 => 0.045560120383703
202 => 0.048852310355311
203 => 0.050455840055983
204 => 0.049397194177586
205 => 0.049931113580896
206 => 0.052844004721408
207 => 0.05395304507198
208 => 0.053722372431839
209 => 0.053761352310828
210 => 0.05435977035349
211 => 0.057013485509492
212 => 0.05542331787538
213 => 0.056638941449214
214 => 0.057283703809519
215 => 0.057882595022767
216 => 0.056411907484542
217 => 0.054498564606002
218 => 0.053892528599699
219 => 0.049291932708609
220 => 0.049052451713103
221 => 0.048918023773308
222 => 0.048070474628113
223 => 0.047404533163239
224 => 0.046874951785549
225 => 0.045485172104106
226 => 0.045954181949182
227 => 0.043739163206524
228 => 0.045156253702632
301 => 0.041621030305852
302 => 0.044565269400421
303 => 0.042962853919372
304 => 0.04403883281807
305 => 0.044035078829056
306 => 0.042053860537132
307 => 0.040911135173321
308 => 0.041639324250678
309 => 0.042420000745325
310 => 0.042546662880071
311 => 0.043558830333123
312 => 0.043841304512803
313 => 0.042985394560913
314 => 0.041547770658738
315 => 0.041881697902503
316 => 0.040904368148384
317 => 0.039191635346736
318 => 0.040421749946326
319 => 0.040841765154946
320 => 0.041027267798812
321 => 0.039342991797083
322 => 0.038813755709928
323 => 0.038531994857848
324 => 0.041330351777147
325 => 0.04148365208612
326 => 0.040699346030936
327 => 0.04424448377132
328 => 0.043442109916545
329 => 0.044338558098696
330 => 0.041851397505192
331 => 0.041946410389269
401 => 0.040768948705788
402 => 0.041428248570519
403 => 0.040962276676354
404 => 0.041374983656777
405 => 0.041622358519189
406 => 0.042799626992794
407 => 0.044578711915317
408 => 0.042623782341281
409 => 0.041771991530766
410 => 0.042300437758956
411 => 0.043707759702456
412 => 0.045839924486343
413 => 0.044577640020466
414 => 0.045137820431442
415 => 0.045260194930548
416 => 0.044329433097722
417 => 0.045874243002744
418 => 0.046702119180858
419 => 0.047551348834766
420 => 0.04828871114838
421 => 0.047212147836035
422 => 0.048364224899534
423 => 0.047435854155332
424 => 0.04660300962458
425 => 0.04660427270595
426 => 0.046081817165892
427 => 0.045069493723395
428 => 0.044882805748771
429 => 0.04585398016886
430 => 0.046632770083211
501 => 0.046696914950709
502 => 0.047128093062964
503 => 0.047383259828309
504 => 0.049884241011087
505 => 0.050890156332002
506 => 0.052120170545414
507 => 0.05259933040134
508 => 0.054041429779363
509 => 0.052876817410025
510 => 0.052624846198163
511 => 0.04912678481419
512 => 0.049699592169851
513 => 0.050616712013952
514 => 0.049141907782623
515 => 0.050077331614261
516 => 0.050262004093612
517 => 0.049091794499183
518 => 0.04971685400534
519 => 0.048056881274217
520 => 0.044614894784674
521 => 0.045878074917651
522 => 0.046808200677357
523 => 0.045480796534577
524 => 0.047860117082875
525 => 0.046470167137705
526 => 0.04602961973445
527 => 0.044310887247862
528 => 0.045122062821451
529 => 0.046219189399646
530 => 0.045541292728976
531 => 0.046948030107313
601 => 0.048940345398193
602 => 0.050360187918901
603 => 0.050469185797387
604 => 0.049556322178632
605 => 0.051019191953504
606 => 0.051029847362763
607 => 0.049379724280709
608 => 0.048369033080875
609 => 0.04813940191376
610 => 0.048713065591055
611 => 0.049409599199448
612 => 0.050507838565025
613 => 0.051171481612621
614 => 0.052901910711677
615 => 0.053370115210591
616 => 0.053884530004163
617 => 0.054571946808023
618 => 0.055397366931108
619 => 0.053591394692993
620 => 0.053663149336766
621 => 0.051981452994021
622 => 0.050184319272148
623 => 0.051548119751169
624 => 0.053331107458714
625 => 0.052922088108577
626 => 0.052876065076179
627 => 0.052953463050947
628 => 0.052645075818267
629 => 0.051250251794218
630 => 0.050549779901401
701 => 0.051453567352574
702 => 0.05193389015992
703 => 0.052678828945564
704 => 0.052586999516483
705 => 0.054505881827717
706 => 0.055251501469873
707 => 0.055060740058546
708 => 0.05509584474916
709 => 0.056445753495848
710 => 0.057947129652073
711 => 0.059353366546411
712 => 0.060783851114611
713 => 0.059059346134882
714 => 0.058183748858857
715 => 0.059087141744702
716 => 0.058607788763297
717 => 0.061362293179778
718 => 0.061553009089212
719 => 0.064307314323672
720 => 0.066921477967741
721 => 0.065279568620507
722 => 0.066827815181727
723 => 0.068502370068081
724 => 0.071732858130595
725 => 0.07064494340108
726 => 0.06981161776807
727 => 0.069024129071475
728 => 0.070662768038779
729 => 0.072770850892319
730 => 0.073224911748005
731 => 0.073960663798813
801 => 0.073187110480869
802 => 0.07411877024823
803 => 0.077407938619061
804 => 0.07651917629097
805 => 0.075256990909407
806 => 0.07785347344309
807 => 0.078793130378459
808 => 0.085388134853039
809 => 0.093714600428243
810 => 0.090267389005588
811 => 0.088127593634729
812 => 0.088630496303506
813 => 0.091671039662923
814 => 0.092647565687945
815 => 0.089993031323227
816 => 0.090930657737434
817 => 0.096097071465109
818 => 0.09886868667161
819 => 0.095104460943598
820 => 0.084719111451371
821 => 0.075143344925667
822 => 0.07768326941067
823 => 0.077395320797104
824 => 0.082945987824253
825 => 0.076497979603378
826 => 0.076606547524979
827 => 0.08227199646799
828 => 0.080760551820379
829 => 0.078312205062453
830 => 0.075161220566503
831 => 0.06933633429495
901 => 0.064177070085265
902 => 0.074295575308044
903 => 0.07385924696353
904 => 0.073227378860436
905 => 0.074633532948602
906 => 0.081461418056936
907 => 0.081304013205481
908 => 0.080302683849189
909 => 0.081062183340625
910 => 0.078179061129478
911 => 0.078922107370763
912 => 0.075141828075325
913 => 0.076850672195272
914 => 0.078306952009919
915 => 0.0785993217433
916 => 0.079258045681377
917 => 0.073629321752884
918 => 0.076156453546126
919 => 0.077640906714428
920 => 0.07093409329517
921 => 0.077508334577178
922 => 0.07353133819207
923 => 0.072181485886483
924 => 0.073998884186437
925 => 0.073290642301467
926 => 0.072681737518129
927 => 0.072341958186714
928 => 0.07367645491927
929 => 0.073614199051627
930 => 0.071430703382512
1001 => 0.068582422292821
1002 => 0.069538398918161
1003 => 0.069191083647846
1004 => 0.067932368303664
1005 => 0.068780590467773
1006 => 0.065045449332452
1007 => 0.058619333144876
1008 => 0.062864622335651
1009 => 0.062701183319792
1010 => 0.062618769956627
1011 => 0.065808987452319
1012 => 0.065502321650949
1013 => 0.064945720218581
1014 => 0.067922145881867
1015 => 0.066835710476193
1016 => 0.070183848400105
1017 => 0.072389148580777
1018 => 0.071829813120971
1019 => 0.073903908600034
1020 => 0.069560422688807
1021 => 0.071003154478109
1022 => 0.071300499500344
1023 => 0.0678854172512
1024 => 0.065552495968653
1025 => 0.065396916716357
1026 => 0.061351952708776
1027 => 0.063512739831817
1028 => 0.065414143080646
1029 => 0.06450351847931
1030 => 0.064215241934663
1031 => 0.06568798428171
1101 => 0.065802428975261
1102 => 0.063193077833998
1103 => 0.063735644563671
1104 => 0.065998238020619
1105 => 0.063678633013772
1106 => 0.059172019390796
1107 => 0.058054316903489
1108 => 0.057905194788339
1109 => 0.054873896996662
1110 => 0.058129007128194
1111 => 0.056708064324252
1112 => 0.061196805616395
1113 => 0.058632860663925
1114 => 0.058522334121516
1115 => 0.058355257041946
1116 => 0.055746093811315
1117 => 0.056317334737849
1118 => 0.0582162265801
1119 => 0.058893772581963
1120 => 0.058823098982998
1121 => 0.058206920974136
1122 => 0.058489004111251
1123 => 0.057580316042324
1124 => 0.057259439372479
1125 => 0.056246664338368
1126 => 0.054758164824468
1127 => 0.054965149811374
1128 => 0.052016042787254
1129 => 0.050409212759557
1130 => 0.04996446338557
1201 => 0.049369725935319
1202 => 0.050031640563112
1203 => 0.052007688337591
1204 => 0.049624155479648
1205 => 0.045537755580096
1206 => 0.045783355176945
1207 => 0.046335144551892
1208 => 0.045306888702131
1209 => 0.044333730835304
1210 => 0.045179812645717
1211 => 0.043448351138218
1212 => 0.046544383402918
1213 => 0.046460644406688
1214 => 0.047614653777617
1215 => 0.048336279519915
1216 => 0.046673165813026
1217 => 0.046254897213281
1218 => 0.046493162016944
1219 => 0.042555175553809
1220 => 0.047292836269166
1221 => 0.047333807755768
1222 => 0.04698298501297
1223 => 0.049505643085034
1224 => 0.054829238453871
1225 => 0.052826287734987
1226 => 0.052050684677129
1227 => 0.050576262697179
1228 => 0.052540842442948
1229 => 0.052389993370691
1230 => 0.051707796658134
1231 => 0.051295201957796
]
'min_raw' => 0.038531994857848
'max_raw' => 0.09886868667161
'avg_raw' => 0.068700340764729
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.038531'
'max' => '$0.098868'
'avg' => '$0.06870034'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.023694702315095
'max_diff' => 0.057468039419082
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0012094752890635
]
1 => [
'year' => 2028
'avg' => 0.0020758107092182
]
2 => [
'year' => 2029
'avg' => 0.0056707407291046
]
3 => [
'year' => 2030
'avg' => 0.0043749680273838
]
4 => [
'year' => 2031
'avg' => 0.0042967607867096
]
5 => [
'year' => 2032
'avg' => 0.0075335738994875
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0012094752890635
'min' => '$0.0012094'
'max_raw' => 0.0075335738994875
'max' => '$0.007533'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0075335738994875
]
1 => [
'year' => 2033
'avg' => 0.01937712673775
]
2 => [
'year' => 2034
'avg' => 0.012282154147522
]
3 => [
'year' => 2035
'avg' => 0.01448682898265
]
4 => [
'year' => 2036
'avg' => 0.028118969897641
]
5 => [
'year' => 2037
'avg' => 0.068700340764729
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0075335738994875
'min' => '$0.007533'
'max_raw' => 0.068700340764729
'max' => '$0.06870034'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.068700340764729
]
]
]
]
'prediction_2025_max_price' => '$0.002067'
'last_price' => 0.00200517
'sma_50day_nextmonth' => '$0.001967'
'sma_200day_nextmonth' => '$0.00209'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'augmenter'
'sma_200day_date_nextmonth' => '4 févr. 2026'
'sma_50day_date_nextmonth' => '4 févr. 2026'
'daily_sma3' => '$0.00184'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001842'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001928'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002192'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.002638'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002227'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001964'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.001896'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001888'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001953'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002152'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.002338'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002294'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002135'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002464'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001521'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002047'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.002172'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002276'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0022033'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001853'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.001011'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.0005059'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '42.02'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 62.97
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001924'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001769'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 58.54
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -34.92
'cci_20_action' => 'NEUTRAL'
'adx_14' => 27.45
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000669'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -41.46
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 44.6
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000445'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 18
'sell_pct' => 41.94
'buy_pct' => 58.06
'overall_action' => 'bullish'
'overall_action_label' => 'Haussier'
'overall_action_dir' => 1
'last_updated' => 1767708422
'last_updated_date' => '6 janvier 2026'
]
Prévision du prix de BitBoard pour 2026
La prévision du prix de BitBoard pour 2026 suggère que le prix moyen pourrait varier entre $0.000692 à la baisse et $0.002067 à la hausse. Sur le marché des cryptomonnaies, comparé au prix moyen d'aujourd'hui, BitBoard pourrait potentiellement gagner 3.13% d'ici 2026 si BB atteint l'objectif de prix prévu.
Prévision du prix de BitBoard de 2027 à 2032
La prévision du prix de BB pour 2027-2032 se situe actuellement dans une fourchette de prix comprise entre $0.0012094 à la baisse et $0.007533 à la hausse. Compte tenu de la volatilité des prix sur le marché, si BitBoard atteint l'objectif de prix le plus élevé, il pourrait gagner 275.71% d'ici 2032 par rapport au prix actuel.
| Prévision du Prix de BitBoard | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2027 | $0.000666 | $0.0012094 | $0.001752 |
| 2028 | $0.0012036 | $0.002075 | $0.002948 |
| 2029 | $0.002643 | $0.00567 | $0.008697 |
| 2030 | $0.002248 | $0.004374 | $0.0065013 |
| 2031 | $0.002658 | $0.004296 | $0.005934 |
| 2032 | $0.004058 | $0.007533 | $0.011009 |
Prévision du prix de BitBoard de 2032 à 2037
La prévision du prix de BitBoard pour 2032-2037 est actuellement estimée entre $0.007533 à la baisse et $0.06870034 à la hausse. Par rapport au prix actuel, BitBoard pourrait potentiellement gagner 3326.16% d'ici 2037 s'il atteint l'objectif de prix le plus élevé. Veuillez noter que ces informations sont à titre général seulement et ne doivent pas être considérées comme un conseil en investissement à long terme.
| Prévision du Prix de BitBoard | Potentiel Bas ($) | Prix Moyen ($) | Potentiel Haut ($) |
|---|---|---|---|
| 2032 | $0.004058 | $0.007533 | $0.011009 |
| 2033 | $0.00943 | $0.019377 | $0.029324 |
| 2034 | $0.007581 | $0.012282 | $0.016983 |
| 2035 | $0.008963 | $0.014486 | $0.02001 |
| 2036 | $0.014837 | $0.028118 | $0.04140064 |
| 2037 | $0.038531 | $0.06870034 | $0.098868 |
BitBoard Histogramme des prix potentiels
Prévision du prix de BitBoard basée sur l'analyse technique
Au 6 janvier 2026, le sentiment global de prévision du prix pour BitBoard est Haussier, avec 18 indicateurs techniques montrant des signaux haussiers et 13 indiquant des signaux baissiers. La prévision du prix de BB a été mise à jour pour la dernière fois le 6 janvier 2026.
Moyennes Mobiles Simples sur 50 et 200 jours de BitBoard et Indice de Force Relative sur 14 jours - RSI (14)
Selon nos indicateurs techniques, le SMA sur 200 jours de BitBoard devrait augmenter au cours du prochain mois, atteignant $0.00209 d'ici le 4 févr. 2026. Le SMA à court terme sur 50 jours pour BitBoard devrait atteindre $0.001967 d'ici le 4 févr. 2026.
Le Relative Strength Index (RSI), un oscillateur de momentum, est un outil couramment utilisé pour identifier si une cryptomonnaie est survendue (en dessous de 30) ou surachetée (au-dessus de 70). Actuellement, le RSI est à 42.02, ce qui suggère que le marché de BB est dans un état NEUTRAL.
Moyennes Mobiles et Oscillateurs Populaires de BB pour le Samedi 19 Octobre 2024
Les moyennes mobiles (MA) sont des indicateurs largement utilisés sur les marchés financiers, conçus pour lisser les mouvements de prix sur une période donnée. En tant qu'indicateurs retardés, ils sont basés sur des données historiques de prix. Le tableau ci-dessous met en évidence deux types : la moyenne mobile simple (SMA) et la moyenne mobile exponentielle (EMA).
Moyenne Mobile Simple Quotidienne (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 3 | $0.00184 | BUY |
| SMA 5 | $0.001842 | BUY |
| SMA 10 | $0.001928 | BUY |
| SMA 21 | $0.002192 | SELL |
| SMA 50 | $0.002638 | SELL |
| SMA 100 | $0.002227 | SELL |
| SMA 200 | $0.001964 | BUY |
Moyenne Mobile Exponentielle Quotidienne (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 3 | $0.001896 | BUY |
| EMA 5 | $0.001888 | BUY |
| EMA 10 | $0.001953 | BUY |
| EMA 21 | $0.002152 | SELL |
| EMA 50 | $0.002338 | SELL |
| EMA 100 | $0.002294 | SELL |
| EMA 200 | $0.002135 | SELL |
Moyenne Mobile Simple Hebdomadaire (SMA)
| Période | Valeur | Action |
|---|---|---|
| SMA 21 | $0.002464 | SELL |
| SMA 50 | $0.001521 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Moyenne Mobile Exponentielle Hebdomadaire (EMA)
| Période | Valeur | Action |
|---|---|---|
| EMA 21 | $0.0022033 | SELL |
| EMA 50 | $0.001853 | BUY |
| EMA 100 | $0.001011 | BUY |
| EMA 200 | $0.0005059 | BUY |
Oscillateurs de BitBoard
Un oscillateur est un outil d'analyse technique qui établit des limites hautes et basses entre deux extrêmes, créant un indicateur de tendance qui fluctue à l'intérieur de ces limites. Les traders utilisent cet indicateur pour identifier les conditions de surachat ou de survente à court terme.
| Période | Valeur | Action |
|---|---|---|
| RSI (14) | 42.02 | NEUTRAL |
| Stoch RSI (14) | 62.97 | NEUTRAL |
| Stochastique Rapide (14) | 58.54 | NEUTRAL |
| Indice de Canal des Matières Premières (20) | -34.92 | NEUTRAL |
| Indice Directionnel Moyen (14) | 27.45 | SELL |
| Oscillateur Impressionnant (5, 34) | -0.000669 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Plage de Pourcentage de Williams (14) | -41.46 | NEUTRAL |
| Oscillateur Ultime (7, 14, 28) | 44.6 | NEUTRAL |
| VWMA (10) | 0.001924 | BUY |
| Moyenne Mobile de Hull (9) | 0.001769 | BUY |
| Nuage Ichimoku B/L (9, 26, 52, 26) | 0.000445 | NEUTRAL |
Prévision du cours de BitBoard basée sur les flux monétaires mondiaux
Définitions des flux monétaires mondiaux utilisés pour la prédiction du cours de BitBoard
M0 : le total de toutes les devises physiques, plus les comptes à la banque centrale qui peuvent être échangés contre des devises physiques.
M1 : M0 plus le montant des comptes à vue, y compris les comptes de "chèques" et les comptes "courants".
M2 : M1 plus la plupart des comptes d'épargne, comptes du marché monétaire et comptes de certificats de dépôt (CD) de moins de 100 000 $.
Prédictions du cours de BitBoard par des sociétés Internet ou des niches technologiques
| Comparaison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Action Facebook | $0.002817 | $0.003959 | $0.005563 | $0.007817 | $0.010984 | $0.015435 |
| Action Amazon.com | $0.004183 | $0.008729 | $0.018215 | $0.0380079 | $0.0793058 | $0.165476 |
| Action Apple | $0.002844 | $0.004034 | $0.005722 | $0.008116 | $0.011512 | $0.01633 |
| Action Netflix | $0.003163 | $0.004992 | $0.007876 | $0.012428 | $0.0196096 | $0.030941 |
| Action Google | $0.002596 | $0.003362 | $0.004354 | $0.005639 | $0.0073028 | $0.009457 |
| Action Tesla | $0.004545 | $0.0103044 | $0.023359 | $0.052954 | $0.120042 | $0.272128 |
| Action Kodak | $0.0015036 | $0.001127 | $0.000845 | $0.000634 | $0.000475 | $0.000356 |
| Action Nokia | $0.001328 | $0.000879 | $0.000582 | $0.000386 | $0.000255 | $0.000169 |
Ce calcul montre la valeur potentielle des cryptomonnaies si l'on suppose que leur capitalisation se comportera comme celle de certaines sociétés Internet ou niches technologiques. En extrapolant les données, vous pourrez obtenir une potentielle image des cours futurs pour 2024, 2025, 2026, 2027, 2028, 2029 et 2030.
Aperçu des prévisions relatives à BitBoard
Vous vous posez peut-être des questions telles que : "Devrais-je investir dans BitBoard maintenant ?", "Devrais-je acheter BB aujourd'hui ?", " BitBoard sera-t-il un bon ou un mauvais investissement à court ou à long terme ?".
Nous mettons régulièrement à jour les prévisions de BitBoard avec de nouvelles valeurs. Regardez nos prévisions similaires. Nous faisons une prévision des cours futurs pour une grande quantité de devises numériques comme BitBoard en utilisant des méthodes d'analyse technique.
Si vous souhaitez trouver des cryptomonnaies ayant un bon rendement, vous devriez consulter un maximum d'informations disponibles à propos de BitBoard afin de prendre une décision responsable concernant cet investissement.
Le cours de BitBoard est de $0.002005 USD actuellement, mais ce cours peut subir une hausse ou une baisse, ce qui pourrait causer la perte de votre investissement, car les cryptomonnaies sont des actifs à haut risque.
Prévision du cours de BitBoard basée sur le modèle de croissance du Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BitBoard présente 1 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002057 | $0.00211 | $0.002165 | $0.002221 |
| Si BitBoard présente 2 % de la précédente croissance annuelle moyenne du Bitcoin | $0.0021094 | $0.002219 | $0.002334 | $0.002455 |
| Si BitBoard présente 5 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002265 | $0.00256 | $0.002892 | $0.003268 |
| Si BitBoard présente 10 % de la précédente croissance annuelle moyenne du Bitcoin | $0.002526 | $0.003183 | $0.00401 | $0.005052 |
| Si BitBoard présente 20 % de la précédente croissance annuelle moyenne du Bitcoin | $0.003047 | $0.004631 | $0.007039 | $0.010699 |
| Si BitBoard présente 50 % de la précédente croissance annuelle moyenne du Bitcoin | $0.004611 | $0.0106042 | $0.024386 | $0.056079 |
| Si BitBoard présente 100 % de la précédente croissance annuelle moyenne du Bitcoin | $0.007217 | $0.025977 | $0.0935003 | $0.336537 |
Boîte à questions
Est-ce que BB est un bon investissement ?
La décision d'acquérir BitBoard dépend entièrement de votre tolérance individuelle au risque. Comme vous pouvez le discerner, la valeur de BitBoard a connu une hausse de 10.5485% au cours des 24 heures précédentes, et BitBoard a enregistré une déclin de sur une période de 30 jours précédents. Par conséquent, la détermination de si investir ou non dans BitBoard dépendra de la mesure dans laquelle cet investissement s'aligne avec vos aspirations de trading.
Est-ce que BitBoard peut monter ?
Il semble que la valeur moyenne de BitBoard pourrait potentiellement s'envoler jusqu'à $0.002067 pour la fin de cette année. En regardant les perspectives de BitBoard sur une période de cinq ans plus longue, la monnaie numérique pourrait potentiellement croître jusqu'à $0.0065013. Cependant, compte tenu de l'imprévisibilité du marché, il est essentiel de mener des recherches approfondies avant d'investir des fonds dans un projet, un réseau ou un actif particulier.
Quel sera le prix de BitBoard la semaine prochaine ?
Basé sur notre nouveau pronostic expérimental de BitBoard, le prix de BitBoard va augmenter de 0.86% durant la prochaine semaine et atteindre $0.0020223 d'ici 13 janvier 2026.
Quel sera le prix de BitBoard le mois prochain ?
Basé sur notre nouveau pronostic expérimental de BitBoard, le prix de BitBoard va diminuer de -11.62% durant le prochain mois et atteindre $0.001772 d'ici 5 février 2026.
Jusqu'où le prix de BitBoard peut-il monter cette année en 2026 ?
Selon notre prédiction la plus récente sur la valeur de BitBoard en 2026, BB devrait fluctuer dans la fourchette de $0.000692 et $0.002067. Cependant, il est crucial de garder à l'esprit que le marché des cryptomonnaies est exceptionnellement instable, et cette prévision de prix de BitBoard ne prend pas en compte les fluctuations de prix soudaines et extrêmes.
Où sera BitBoard dans 5 ans ?
L'avenir de BitBoard semble suivre une tendance haussière, avec un prix maximum de $0.0065013 prévue après une période de cinq ans. Selon la prévision de BitBoard pour 2030, la valeur de BitBoard pourrait potentiellement atteindre son point le plus élevé d'environ $0.0065013, tandis que son point le plus bas devrait être autour de $0.002248.
Combien vaudra BitBoard en 2026 ?
Basé sur notre nouvelle simulation expérimentale de prédiction de prix de BitBoard, il est attendu que la valeur de BB en 2026 augmente de 3.13% jusqu'à $0.002067 si le meilleur scénario se produit. Le prix sera entre $0.002067 et $0.000692 durant 2026.
Combien vaudra BitBoard en 2027 ?
Selon notre dernière simulation expérimentale pour la prédiction de prix de BitBoard, le valeur de BB pourrait diminuer de -12.62% jusqu'à $0.001752 en 2027, en supposant les conditions les plus favorables. Il est prévu que le prix fluctue entre $0.001752 et $0.000666 tout au long de l'année.
Combien vaudra BitBoard en 2028 ?
Notre nouveau modèle expérimental de prédiction de prix de BitBoard suggère que la valeur de BB en 2028 pourrait augmenter de 47.02%, atteignant $0.002948 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.002948 et $0.0012036 durant l'année.
Combien vaudra BitBoard en 2029 ?
Basé sur notre modèle de prévision expérimental, la valeur de BitBoard pourrait connaître un 333.75% croissance en 2029, atteignant potentiellement $0.008697 sous des conditions optimales. Le range de prix prévu pour 2029 se situe entre $0.008697 et $0.002643.
Combien vaudra BitBoard en 2030 ?
En utilisant notre nouvelle simulation expérimentale pour les prédictions de prix de BitBoard, il est prévu que la valeur de BB en 2030 augmente de 224.23%, atteignant $0.0065013 dans le meilleur scénario. Il est prévu que le prix oscille entre $0.0065013 et $0.002248 au cours de 2030.
Combien vaudra BitBoard en 2031 ?
Notre simulation expérimentale indique que le prix de BitBoard pourrait augmenter de 195.98% en 2031, atteignant potentiellement $0.005934 dans des conditions idéales. Il est probable que le prix fluctue entre $0.005934 et $0.002658 durant l'année.
Combien vaudra BitBoard en 2032 ?
Basé sur les résultats de notre dernière prédiction expérimentale de prix de BitBoard, BB pourrait connaître une 449.04% hausse en valeur, atteignant $0.011009 si le scénario le plus positif se réalise en 2032. Il est prévu que le prix reste dans une fourchette de $0.011009 et $0.004058 tout au long de l'année.
Combien vaudra BitBoard en 2033 ?
Selon notre prédiction expérimentale de prix de BitBoard, la valeur de BB est anticipée à augmenter de 1362.43% en 2033, avec le prix potentiel le plus élevé étant $0.029324. Tout au long de l'année, le prix de BB pourrait osciller entre $0.029324 et $0.00943.
Combien vaudra BitBoard en 2034 ?
Les résultats de notre nouvelle simulation de prédiction de prix de BitBoard suggèrent que BB pourrait augmenter de 746.96% en 2034, atteignant potentiellement $0.016983 dans les meilleures circonstances. La fourchette de prix prévue pour l'année est entre $0.016983 et $0.007581.
Combien vaudra BitBoard en 2035 ?
Basé sur notre prédiction expérimentale pour le prix de BitBoard, BB pourrait augmenter de 897.93%, avec la valeur potentiellement atteignant $0.02001 en 2035. La fourchette de prix attendue pour l'année se situe entre $0.02001 et $0.008963.
Combien vaudra BitBoard en 2036 ?
Notre récente simulation de prédiction de prix de BitBoard suggère que la valeur de BB pourrait augmenter de 1964.7% en 2036, pouvant atteindre $0.04140064 si les conditions sont optimales. La fourchette de prix attendue pour 2036 est entre $0.04140064 et $0.014837.
Combien vaudra BitBoard en 2037 ?
Selon la simulation expérimentale, la valeur de BitBoard pourrait augmenter de 4830.69% en 2037, avec un maximum de $0.098868 sous des conditions favorables. Il est prévu que le prix chute entre $0.098868 et $0.038531 au cours de l'année.
Prévisions liées
Comment lire et prédire les mouvements de prix de BitBoard ?
Les traders de BitBoard utilisent des indicateurs et des modèles graphiques pour prédire la direction du marché. Ils identifient également des niveaux clés de support et de résistance pour évaluer quand une tendance baissière pourrait ralentir ou une tendance haussière pourrait s'arrêter.
Indicateurs de prédiction du prix de BitBoard
Les moyennes mobiles sont des outils populaires pour la prédiction du prix de BitBoard. Une moyenne mobile simple (SMA) calcule le prix de clôture moyen de BB sur une période spécifique, comme une SMA de 12 jours. Une moyenne mobile exponentielle (EMA) donne plus de poids aux prix récents, réagissant plus rapidement aux changements de prix.
Les moyennes mobiles couramment utilisées sur le marché des cryptomonnaies incluent les moyennes sur 50 jours, 100 jours et 200 jours, qui aident à identifier les niveaux clés de résistance et de support. Un mouvement de prix de BB au-dessus de ces moyennes est considéré comme haussier, tandis qu'une chute en dessous indique une faiblesse.
Les traders utilisent également le RSI et les niveaux de retracement de Fibonacci pour évaluer la direction future de BB.
Comment lire les graphiques de BitBoard et prédire les mouvements de prix ?
La plupart des traders préfèrent les graphiques en chandeliers aux simples graphiques linéaires parce qu'ils fournissent des informations plus détaillées. Les chandeliers peuvent représenter l'action des prix de BitBoard dans différentes périodes, comme 5 minutes pour les tendances à court terme et hebdomadaire pour les tendances à long terme. Les options populaires incluent les graphiques de 1 heure, 4 heures et 1 jour.
Par exemple, un graphique en chandeliers de 1 heure montre les prix d'ouverture, de clôture, les plus hauts et les plus bas de BB au sein de chaque heure. La couleur du chandelier est cruciale : le vert indique que le prix a clôturé plus haut qu'il n'a ouvert, tandis que le rouge signifie le contraire. Certains graphiques utilisent des chandeliers creux et pleins pour transmettre la même information.
Qu'est-ce qui affecte le prix de BitBoard ?
L'action du prix de BitBoard est déterminée par l'offre et la demande, influencée par des facteurs tels que les réductions de récompenses de bloc, les hard forks et les mises à jour de protocole. Les événements du monde réel, tels que les réglementations, l'adoption par les entreprises et les gouvernements et les piratages d'échanges de cryptomonnaies, impactent également le prix de BB. La capitalisation boursière de BitBoard peut changer rapidement.
Les traders surveillent souvent l'activité des « baleines » de BB, de grands détenteurs de BitBoard, car leurs actions peuvent influencer significativement les mouvements de prix sur le marché relativement petit de BitBoard.
Modèles de prédiction de prix haussiers et baissiers
Les traders identifient souvent des modèles de chandeliers pour obtenir un avantage dans les prédictions de prix des cryptomonnaies. Certaines formations indiquent des tendances haussières, tandis que d'autres suggèrent des mouvements baissiers.
Modèles de chandeliers haussiers couramment suivis :
- Marteau
- Englobante haussière
- Ligne pénétrante
- Étoile du matin
- Trois soldats blancs
Modèles de chandeliers baissiers courants :
- Harami baissier
- Nuage sombre
- Étoile du soir
- Étoile filante
- Pendu


