Neos Credits (NCR) Price Prediction
Neos Credits Price Prediction up to $0.0316038 by 2026
| Year | Min. Price | Max. Price |
|---|---|---|
| 2026 | $0.010587 | $0.0316038 |
| 2027 | $0.010192 | $0.026775 |
| 2028 | $0.018394 | $0.045052 |
| 2029 | $0.0404065 | $0.132919 |
| 2030 | $0.034364 | $0.099356 |
| 2031 | $0.040628 | $0.0907012 |
| 2032 | $0.062017 | $0.168246 |
| 2033 | $0.144114 | $0.448146 |
| 2034 | $0.11586 | $0.259542 |
| 2035 | $0.136983 | $0.3058056 |
Investment Profit Calculator
If you open a short on $10,000.00 of Neos Credits today and close it on Apr 06, 2026, our forecast suggests you could make around $3,954.43 in profit, equal to a 39.54% ROI over the next 90 days.
Long-term Neos Credits price prediction for 2027, 2028, 2029, 2030, 2031, 2032 and 2037
[
'name' => 'Neos Credits'
'name_with_ticker' => 'Neos Credits <small>NCR</small>'
'name_lang' => 'Neos Credits'
'name_lang_with_ticker' => 'Neos Credits <small>NCR</small>'
'name_with_lang' => 'Neos Credits'
'name_with_lang_with_ticker' => 'Neos Credits <small>NCR</small>'
'image' => '/uploads/coins/neos-credits.png?1717108404'
'price_for_sd' => 0.03064
'ticker' => 'NCR'
'marketcap' => '$1.25M'
'low24h' => '$0.03049'
'high24h' => '$0.03101'
'volume24h' => '$103.71'
'current_supply' => '40.65M'
'max_supply' => '50M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03064'
'change_24h_pct' => '-0.1828%'
'ath_price' => '$9.42'
'ath_days' => 1499
'ath_exchange' => null
'ath_pair' => null
'ath_date' => 'Nov 29, 2021'
'ath_pct' => '-99.67%'
'fdv' => '$1.53M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.51'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.030906'
'next_week_prediction_price_date' => 'January 13, 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0270837'
'next_month_prediction_price_date' => 'February 5, 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010587'
'current_year_max_price_prediction' => '$0.0316038'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.034364'
'grand_prediction_max_price' => '$0.099356'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.031224636733782
107 => 0.031341218192803
108 => 0.031603882172774
109 => 0.029359447222481
110 => 0.030367132622015
111 => 0.030959053386887
112 => 0.028284733836931
113 => 0.030906190687977
114 => 0.029320376603414
115 => 0.028782127484985
116 => 0.02950680901402
117 => 0.029224399917379
118 => 0.028981601159706
119 => 0.028846115281112
120 => 0.029378241415854
121 => 0.02935341709564
122 => 0.02848275545797
123 => 0.027347012844338
124 => 0.027728205344953
125 => 0.027589714535781
126 => 0.02708780597767
127 => 0.027426031745166
128 => 0.025936656637258
129 => 0.023374264175082
130 => 0.025067059123799
131 => 0.02500188835968
201 => 0.024969026305152
202 => 0.026241114923697
203 => 0.026118832955102
204 => 0.025896889984713
205 => 0.027083729820969
206 => 0.026650517315487
207 => 0.02798557617968
208 => 0.028864932293831
209 => 0.028641899139092
210 => 0.029468937814747
211 => 0.027736987250267
212 => 0.028312271753991
213 => 0.028430837092899
214 => 0.027069084401618
215 => 0.026138839797451
216 => 0.026076803087918
217 => 0.024463887139894
218 => 0.025325493820325
219 => 0.026083672043398
220 => 0.025720563511553
221 => 0.02560561419793
222 => 0.026192865311767
223 => 0.026238499752778
224 => 0.02519802966161
225 => 0.025414376340967
226 => 0.026316577958525
227 => 0.025391643175015
228 => 0.023594645977893
301 => 0.023148965827577
302 => 0.02308950388001
303 => 0.021880783965014
304 => 0.023178748306324
305 => 0.02261215208806
306 => 0.02440202275269
307 => 0.023379658228322
308 => 0.023335586137051
309 => 0.023268964707124
310 => 0.022228569544696
311 => 0.022456349964706
312 => 0.023213526772756
313 => 0.023483695988076
314 => 0.023455515125487
315 => 0.02320981619332
316 => 0.023322295906284
317 => 0.022959959560298
318 => 0.022832011055152
319 => 0.0224281703779
320 => 0.021834636146175
321 => 0.021917170721454
322 => 0.020741224101727
323 => 0.020100505971089
324 => 0.019923163637057
325 => 0.019686014056344
326 => 0.01994995031323
327 => 0.020737892792703
328 => 0.019787466991136
329 => 0.018158028618968
330 => 0.018255960641563
331 => 0.018475984820056
401 => 0.01806597121904
402 => 0.017677927755512
403 => 0.018015300064088
404 => 0.017324885545294
405 => 0.018559418116158
406 => 0.018526027469854
407 => 0.01898618486929
408 => 0.019273930734537
409 => 0.018610769673971
410 => 0.018443986460617
411 => 0.018538993758818
412 => 0.016968734750929
413 => 0.018857861207877
414 => 0.018874198451925
415 => 0.018734309049763
416 => 0.019740210567852
417 => 0.021862976519571
418 => 0.021064306580472
419 => 0.020755037440126
420 => 0.020167116578254
421 => 0.020950486219412
422 => 0.020890335653441
423 => 0.020618311982696
424 => 0.020453791217864
425 => 0.020756925771549
426 => 0.020416229492021
427 => 0.02035503107851
428 => 0.019984235277164
429 => 0.019851878046218
430 => 0.019753886021718
501 => 0.019646006431242
502 => 0.019883961925914
503 => 0.019344723469334
504 => 0.018694454752897
505 => 0.01864039194513
506 => 0.018789664110625
507 => 0.018723622289399
508 => 0.018640075762299
509 => 0.01848056268952
510 => 0.018433238568284
511 => 0.018587019003901
512 => 0.018413409858046
513 => 0.018669579609735
514 => 0.018599915611794
515 => 0.018210778182259
516 => 0.017725768867929
517 => 0.01772145126769
518 => 0.017616956806492
519 => 0.017483867399309
520 => 0.017446844970904
521 => 0.017986887509268
522 => 0.019104759401567
523 => 0.018885294400702
524 => 0.019043880355505
525 => 0.019823966294849
526 => 0.020071932156964
527 => 0.019895931861428
528 => 0.019655011801673
529 => 0.019665611061613
530 => 0.020488907837257
531 => 0.020540255847277
601 => 0.020669995703103
602 => 0.020836748082319
603 => 0.019924330512666
604 => 0.019622636276134
605 => 0.019479676809506
606 => 0.019039416984569
607 => 0.019514199460739
608 => 0.019237564044087
609 => 0.019274891613005
610 => 0.019250581984779
611 => 0.0192638566856
612 => 0.018559073039145
613 => 0.018815859157575
614 => 0.018388902431198
615 => 0.01781725530272
616 => 0.0178153389411
617 => 0.017955248765943
618 => 0.017872024927454
619 => 0.017648071717962
620 => 0.017679883214341
621 => 0.017401181032431
622 => 0.017713722705291
623 => 0.01772268528214
624 => 0.017602339713829
625 => 0.01808385328331
626 => 0.018281129785603
627 => 0.018201915754489
628 => 0.018275571918012
629 => 0.018894414162313
630 => 0.018995312450114
701 => 0.019040124804588
702 => 0.018980082186092
703 => 0.018286883218213
704 => 0.018317629540148
705 => 0.018092033430294
706 => 0.017901428490199
707 => 0.017909051688212
708 => 0.018007047404328
709 => 0.018435000443981
710 => 0.019335602386721
711 => 0.019369779572116
712 => 0.019411203317834
713 => 0.019242712126092
714 => 0.019191893570419
715 => 0.019258936362734
716 => 0.019597155101026
717 => 0.020467145521406
718 => 0.020159632802137
719 => 0.019909620174651
720 => 0.020128948651877
721 => 0.020095184751962
722 => 0.019810183457887
723 => 0.019802184420789
724 => 0.019255175817034
725 => 0.01905295919101
726 => 0.018883971842651
727 => 0.01869944206977
728 => 0.018590046634912
729 => 0.01875812774219
730 => 0.018796569880102
731 => 0.018429057601484
801 => 0.018378967035913
802 => 0.018679085495936
803 => 0.018547014551224
804 => 0.018682852793062
805 => 0.018714368430367
806 => 0.018709293686894
807 => 0.018571396452363
808 => 0.018659288037499
809 => 0.018451398236911
810 => 0.018225349302811
811 => 0.018081144166202
812 => 0.017955306058474
813 => 0.018025128354395
814 => 0.017776224618484
815 => 0.017696595303924
816 => 0.018629512346078
817 => 0.019318668195666
818 => 0.019308647596677
819 => 0.019247649777422
820 => 0.019157019390966
821 => 0.019590524923755
822 => 0.019439500264348
823 => 0.019549383322599
824 => 0.019577353172702
825 => 0.019662009484982
826 => 0.019692266840166
827 => 0.019600808097715
828 => 0.019293861387305
829 => 0.01852897936858
830 => 0.018172924724105
831 => 0.018055420760868
901 => 0.01805969180676
902 => 0.017941877294275
903 => 0.017976578948278
904 => 0.017929809475178
905 => 0.017841239407876
906 => 0.018019659402323
907 => 0.018040220644586
908 => 0.017998575285922
909 => 0.018008384275471
910 => 0.017663578492698
911 => 0.017689793327484
912 => 0.017543825796178
913 => 0.017516458643723
914 => 0.01714746543543
915 => 0.016493740480518
916 => 0.016855967564156
917 => 0.016418448183957
918 => 0.016252752965175
919 => 0.017037128359995
920 => 0.016958398825542
921 => 0.016823648085465
922 => 0.016624323656375
923 => 0.016550392286722
924 => 0.01610120868854
925 => 0.016074668525258
926 => 0.016297296045494
927 => 0.01619456110505
928 => 0.016050282339903
929 => 0.015527719277841
930 => 0.014940185381399
1001 => 0.014957919336626
1002 => 0.015144802937628
1003 => 0.015688192212226
1004 => 0.015475880621911
1005 => 0.015321846127142
1006 => 0.015293000096532
1007 => 0.015654068562875
1008 => 0.016165056088933
1009 => 0.016404800003457
1010 => 0.016167221065294
1011 => 0.015894303173291
1012 => 0.015910914420797
1013 => 0.016021421608488
1014 => 0.016033034351427
1015 => 0.015855392860145
1016 => 0.0159053978994
1017 => 0.015829435672215
1018 => 0.015363255624199
1019 => 0.015354823905403
1020 => 0.015240415803451
1021 => 0.015236951571592
1022 => 0.015042314849733
1023 => 0.015015083826885
1024 => 0.014628620802029
1025 => 0.014882991935307
1026 => 0.014712373134188
1027 => 0.014455210355996
1028 => 0.014410875396105
1029 => 0.014409542633675
1030 => 0.014673591306333
1031 => 0.014879906372831
1101 => 0.014715341121282
1102 => 0.014677872803468
1103 => 0.015077936412611
1104 => 0.015027024671687
1105 => 0.014982935432392
1106 => 0.016119302760534
1107 => 0.015219779348461
1108 => 0.014827535797796
1109 => 0.014342059918818
1110 => 0.014500133312995
1111 => 0.014533441699729
1112 => 0.013365959724391
1113 => 0.012892312432397
1114 => 0.012729774530806
1115 => 0.012636231670492
1116 => 0.012678860326574
1117 => 0.012252522210493
1118 => 0.012539028475481
1119 => 0.012169855704419
1120 => 0.012107962687958
1121 => 0.012768089334348
1122 => 0.01285994210079
1123 => 0.012468069662734
1124 => 0.01271971520635
1125 => 0.0126284650341
1126 => 0.012176184111989
1127 => 0.012158910307518
1128 => 0.011931971639245
1129 => 0.011576856567384
1130 => 0.011414559450534
1201 => 0.011330033702951
1202 => 0.011364910673778
1203 => 0.011347275810075
1204 => 0.011232196395731
1205 => 0.011353872027398
1206 => 0.011043041068331
1207 => 0.010919265675896
1208 => 0.0108633592027
1209 => 0.010587478835766
1210 => 0.011026527184114
1211 => 0.011113025239724
1212 => 0.011199693723224
1213 => 0.011954083701005
1214 => 0.011916396509599
1215 => 0.012257070365503
1216 => 0.012243832405921
1217 => 0.012146666703667
1218 => 0.011736740588838
1219 => 0.011900129831979
1220 => 0.011397243137919
1221 => 0.01177404004208
1222 => 0.011602085670436
1223 => 0.011715902096056
1224 => 0.011511249900377
1225 => 0.011624512875348
1226 => 0.011133537137575
1227 => 0.010675070901858
1228 => 0.010859571098574
1229 => 0.011060143912562
1230 => 0.011495036878289
1231 => 0.011236018215691
]
'min_raw' => 0.010587478835766
'max_raw' => 0.031603882172774
'avg_raw' => 0.02109568050427
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010587'
'max' => '$0.0316038'
'avg' => '$0.021095'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.020056471164234
'max_diff' => 0.00095993217277386
'year' => 2026
]
1 => [
'items' => [
101 => 0.011329171121341
102 => 0.011017124481021
103 => 0.010373283130324
104 => 0.010376927202448
105 => 0.010277886237489
106 => 0.010192300383547
107 => 0.011265769624931
108 => 0.011132266755727
109 => 0.010919547406075
110 => 0.011204280708716
111 => 0.011279568713259
112 => 0.011281712056906
113 => 0.011489446124482
114 => 0.011600313833586
115 => 0.011619854747843
116 => 0.011946728791566
117 => 0.012056292659449
118 => 0.0125075707252
119 => 0.011590907483058
120 => 0.011572029406813
121 => 0.011208287490199
122 => 0.01097759661615
123 => 0.01122408309171
124 => 0.011442436460296
125 => 0.011215072338018
126 => 0.011244761292469
127 => 0.010939543534643
128 => 0.011048644521236
129 => 0.011142616988379
130 => 0.011090730915469
131 => 0.011013054953008
201 => 0.011424533974141
202 => 0.011401316715169
203 => 0.011784495439511
204 => 0.012083210656508
205 => 0.0126185617271
206 => 0.012059894976455
207 => 0.012039534939562
208 => 0.012238557566041
209 => 0.012056262190122
210 => 0.01217146657508
211 => 0.01260000051963
212 => 0.012609054766604
213 => 0.012457384464061
214 => 0.012448155312367
215 => 0.012477285253062
216 => 0.012647900225568
217 => 0.012588282111706
218 => 0.012657273702413
219 => 0.012743548743029
220 => 0.013100418890875
221 => 0.013186459075343
222 => 0.012977426033807
223 => 0.012996299377014
224 => 0.012918115281395
225 => 0.01284259042467
226 => 0.013012359273068
227 => 0.013322615180329
228 => 0.013320685094432
301 => 0.013392658434404
302 => 0.013437497228946
303 => 0.013245016298764
304 => 0.013119718290936
305 => 0.013167765520057
306 => 0.013244594085754
307 => 0.013142851051671
308 => 0.012514845913355
309 => 0.012705342555196
310 => 0.012673634599184
311 => 0.012628478614003
312 => 0.012820024460442
313 => 0.012801549396274
314 => 0.012248149496894
315 => 0.012283576362951
316 => 0.012250303921956
317 => 0.01235781398571
318 => 0.012050456293861
319 => 0.012144997449788
320 => 0.012204292776517
321 => 0.012239218179489
322 => 0.012365392683596
323 => 0.012350587561839
324 => 0.01236447237644
325 => 0.012551555857196
326 => 0.013497759903561
327 => 0.013549259702123
328 => 0.013295655858837
329 => 0.013396965592115
330 => 0.013202473058224
331 => 0.013333037199212
401 => 0.013422365868506
402 => 0.013018706788881
403 => 0.012994804717911
404 => 0.012799509444148
405 => 0.012904450062179
406 => 0.012737481993394
407 => 0.012778450117179
408 => 0.012663899671541
409 => 0.012870067666924
410 => 0.013100595521029
411 => 0.013158835960797
412 => 0.013005630437854
413 => 0.012894699542506
414 => 0.012699941433185
415 => 0.013023828509454
416 => 0.013118542960834
417 => 0.013023331014762
418 => 0.013001268326435
419 => 0.012959459571921
420 => 0.013010138251347
421 => 0.013118027125591
422 => 0.013067148724893
423 => 0.013100754804916
424 => 0.012972683082306
425 => 0.013245080017961
426 => 0.013677711907676
427 => 0.013679102889943
428 => 0.013628224214991
429 => 0.013607405757397
430 => 0.013659610365474
501 => 0.013687929223811
502 => 0.013856749353645
503 => 0.014037900079047
504 => 0.014883251472245
505 => 0.014645880183763
506 => 0.015395926229988
507 => 0.015989115271262
508 => 0.016166986727727
509 => 0.016003353357278
510 => 0.015443572436272
511 => 0.015416106913712
512 => 0.016252655943103
513 => 0.016016292525927
514 => 0.015988177849556
515 => 0.015689085193465
516 => 0.015865885996561
517 => 0.015827217067413
518 => 0.015766176271003
519 => 0.016103499887259
520 => 0.016734939583804
521 => 0.016636523785494
522 => 0.016563060957433
523 => 0.016241168229576
524 => 0.016435019549089
525 => 0.016365992807188
526 => 0.016662575495849
527 => 0.016486886481197
528 => 0.016014501840572
529 => 0.016089730651592
530 => 0.016078359968145
531 => 0.016312367827734
601 => 0.016242124476718
602 => 0.016064643826494
603 => 0.016732781391568
604 => 0.016689396254468
605 => 0.016750906459652
606 => 0.01677798515424
607 => 0.017184668716196
608 => 0.017351273959107
609 => 0.017389096266083
610 => 0.017547358361137
611 => 0.017385158560985
612 => 0.01803407340809
613 => 0.018465563916183
614 => 0.018966762345632
615 => 0.019699147960495
616 => 0.019974531726629
617 => 0.019924786114142
618 => 0.020480072528729
619 => 0.02147790987242
620 => 0.020126477570563
621 => 0.021549539065952
622 => 0.021099014226547
623 => 0.020030827936913
624 => 0.01996204933295
625 => 0.020685437490188
626 => 0.022289842799411
627 => 0.021887957466465
628 => 0.022290500139845
629 => 0.021820912729035
630 => 0.021797593756094
701 => 0.02226769332744
702 => 0.023366106599684
703 => 0.022844291627447
704 => 0.022096141910464
705 => 0.022648564018985
706 => 0.022170004864332
707 => 0.021091677148624
708 => 0.021887650152325
709 => 0.021355405672756
710 => 0.021510742907567
711 => 0.022629441638229
712 => 0.022494836847246
713 => 0.022669027910847
714 => 0.022361585242966
715 => 0.022074385311908
716 => 0.021538305312839
717 => 0.02137959845354
718 => 0.021423459319775
719 => 0.021379576718273
720 => 0.021079644885623
721 => 0.02101487463492
722 => 0.02090692137943
723 => 0.020940380607337
724 => 0.020737396904177
725 => 0.021120469090612
726 => 0.021191570664035
727 => 0.021470338655752
728 => 0.02149928127343
729 => 0.022275646162349
730 => 0.021848037427814
731 => 0.022134914284902
801 => 0.022109253318615
802 => 0.020053978772834
803 => 0.020337177471401
804 => 0.020777745773726
805 => 0.020579270350705
806 => 0.02029867253865
807 => 0.020072074760713
808 => 0.019728755956325
809 => 0.020211970580647
810 => 0.020847346427483
811 => 0.021515395453435
812 => 0.02231801258581
813 => 0.022138877785358
814 => 0.021500391084434
815 => 0.021529033131423
816 => 0.021706086995676
817 => 0.021476786154428
818 => 0.02140916085986
819 => 0.02169679631866
820 => 0.021698777105983
821 => 0.021434938776194
822 => 0.021141730754539
823 => 0.021140502202223
824 => 0.021088328666823
825 => 0.021830194285078
826 => 0.022238145364044
827 => 0.022284916297802
828 => 0.022234997307551
829 => 0.022254209145685
830 => 0.022016831401423
831 => 0.022559406532622
901 => 0.02305732712813
902 => 0.022923873772012
903 => 0.022723808219679
904 => 0.022564446370783
905 => 0.022886333185004
906 => 0.022872000071864
907 => 0.023052978226105
908 => 0.023044768011648
909 => 0.022983911865309
910 => 0.022923875945377
911 => 0.023161911581757
912 => 0.023093361141215
913 => 0.023024704222904
914 => 0.022887002262384
915 => 0.022905718245806
916 => 0.022705687237611
917 => 0.022613143740424
918 => 0.021221511585627
919 => 0.020849622000972
920 => 0.020966626034815
921 => 0.021005146800765
922 => 0.020843299976934
923 => 0.02107534674727
924 => 0.021039182503911
925 => 0.021179876419444
926 => 0.021091976969239
927 => 0.021095584393336
928 => 0.021354077934251
929 => 0.021429119708889
930 => 0.021390952856647
1001 => 0.021417683611674
1002 => 0.022033682578932
1003 => 0.021946107224326
1004 => 0.021899584562633
1005 => 0.021912471657864
1006 => 0.022069872601165
1007 => 0.022113936271516
1008 => 0.021927235403938
1009 => 0.022015284612393
1010 => 0.022390186966885
1011 => 0.022521381573322
1012 => 0.022940091780084
1013 => 0.022762216242271
1014 => 0.0230887144902
1015 => 0.024092258792878
1016 => 0.024893959421841
1017 => 0.024156682391767
1018 => 0.025628903500898
1019 => 0.026775238811931
1020 => 0.026731240553372
1021 => 0.02653135047668
1022 => 0.02522627820197
1023 => 0.024025331237249
1024 => 0.025029974368139
1025 => 0.025032535410087
1026 => 0.024946235674169
1027 => 0.024410235426173
1028 => 0.024927584027387
1029 => 0.024968649280617
1030 => 0.024945663658941
1031 => 0.024534713525521
1101 => 0.023907268628069
1102 => 0.024029869859141
1103 => 0.024230693176633
1104 => 0.023850492740487
1105 => 0.023728995663982
1106 => 0.02395488184497
1107 => 0.024682734185367
1108 => 0.024545137916576
1109 => 0.024541544721928
1110 => 0.025130239909713
1111 => 0.024708861203632
1112 => 0.024031416253288
1113 => 0.023860352468925
1114 => 0.023253191276809
1115 => 0.023672559674837
1116 => 0.023687651996895
1117 => 0.023457968211136
1118 => 0.024050053826643
1119 => 0.024044597653461
1120 => 0.02460669482507
1121 => 0.025681213503131
1122 => 0.025363425456175
1123 => 0.024993872532808
1124 => 0.025034053182169
1125 => 0.025474735731368
1126 => 0.025208289002318
1127 => 0.025304105103817
1128 => 0.025474590702222
1129 => 0.02557744889666
1130 => 0.025019253470887
1201 => 0.024889111415566
1202 => 0.024622886444033
1203 => 0.024553433318284
1204 => 0.024770268002632
1205 => 0.024713139724189
1206 => 0.023686383545667
1207 => 0.023579081812194
1208 => 0.023582372603168
1209 => 0.023312557292431
1210 => 0.022901024180462
1211 => 0.02398250862735
1212 => 0.0238956502909
1213 => 0.02379976540976
1214 => 0.023811510760588
1215 => 0.024280946504073
1216 => 0.024008650065779
1217 => 0.024732594775494
1218 => 0.024583773506946
1219 => 0.024431135534415
1220 => 0.024410036317144
1221 => 0.02435128372018
1222 => 0.024149799204309
1223 => 0.023906494544052
1224 => 0.023745843732662
1225 => 0.02190428564283
1226 => 0.022246068112453
1227 => 0.022639257689301
1228 => 0.02277498515562
1229 => 0.022542813932426
1230 => 0.024158966739301
1231 => 0.024454253430753
]
'min_raw' => 0.010192300383547
'max_raw' => 0.026775238811931
'avg_raw' => 0.018483769597739
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.010192'
'max' => '$0.026775'
'avg' => '$0.018483'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0003951784522186
'max_diff' => -0.0048286433608426
'year' => 2027
]
2 => [
'items' => [
101 => 0.02355981078127
102 => 0.023392497081405
103 => 0.024169935797609
104 => 0.02370104521372
105 => 0.023912186614935
106 => 0.02345581439368
107 => 0.024383127513786
108 => 0.024376062941485
109 => 0.024015317193447
110 => 0.024320217029408
111 => 0.024267233179694
112 => 0.023859952118637
113 => 0.024396039049875
114 => 0.024396304942305
115 => 0.024049095003107
116 => 0.023643629808154
117 => 0.023571142207957
118 => 0.023516532538547
119 => 0.023898755983894
120 => 0.024241456329809
121 => 0.024879136710938
122 => 0.025039464709666
123 => 0.02566523556234
124 => 0.025292619487803
125 => 0.025457795367459
126 => 0.025637117150381
127 => 0.025723090607454
128 => 0.025583001472744
129 => 0.026555081184506
130 => 0.026637154495931
131 => 0.026664672967321
201 => 0.026336893157859
202 => 0.026628038346481
203 => 0.02649182115444
204 => 0.026846220445904
205 => 0.026901794780003
206 => 0.026854725296135
207 => 0.02687236546696
208 => 0.026042866919583
209 => 0.025999853043948
210 => 0.025413355797541
211 => 0.02565235776062
212 => 0.025205555046305
213 => 0.025347240789592
214 => 0.025409694515202
215 => 0.025377072233161
216 => 0.025665870573017
217 => 0.025420332986537
218 => 0.024772318925698
219 => 0.024124128313862
220 => 0.024115990808735
221 => 0.023945333662153
222 => 0.023821979802589
223 => 0.023845742132155
224 => 0.023929483680912
225 => 0.023817112591542
226 => 0.023841092660818
227 => 0.024239321589163
228 => 0.024319183560704
229 => 0.024047781377321
301 => 0.022958062447893
302 => 0.022690642689259
303 => 0.022882858708601
304 => 0.022790991831652
305 => 0.018394109172125
306 => 0.019427091533098
307 => 0.018813328490974
308 => 0.019096178738665
309 => 0.018469685605825
310 => 0.018768680966135
311 => 0.018713467440648
312 => 0.020374472508923
313 => 0.02034853819942
314 => 0.020360951580966
315 => 0.019768428536876
316 => 0.020712333834866
317 => 0.021177335526392
318 => 0.02109127608891
319 => 0.021112935395247
320 => 0.02074075675167
321 => 0.020364555083778
322 => 0.019947289537064
323 => 0.020722517347279
324 => 0.020636325248363
325 => 0.020834018912337
326 => 0.02133680956169
327 => 0.021410847394723
328 => 0.021510354993137
329 => 0.021474688602539
330 => 0.022324406726153
331 => 0.022221500254763
401 => 0.022469475242601
402 => 0.02195937187871
403 => 0.021382141503011
404 => 0.021491854126349
405 => 0.021481287918468
406 => 0.021346767964819
407 => 0.021225329365458
408 => 0.021023168312636
409 => 0.021662835797972
410 => 0.021636866466238
411 => 0.022057279760976
412 => 0.021982967627454
413 => 0.021486693012531
414 => 0.021504417557491
415 => 0.02162362364047
416 => 0.022036197254731
417 => 0.022158677193598
418 => 0.022101939605933
419 => 0.022236233267479
420 => 0.02234237350197
421 => 0.022249562846767
422 => 0.023563566004098
423 => 0.023017900281193
424 => 0.023283853957819
425 => 0.023347282342605
426 => 0.023184811868732
427 => 0.023220045896884
428 => 0.023273415848835
429 => 0.023597467746176
430 => 0.024447873689969
501 => 0.024824512693566
502 => 0.02595764971893
503 => 0.024793238067386
504 => 0.024724146698798
505 => 0.024928258894525
506 => 0.025593530283149
507 => 0.026132670257865
508 => 0.026311534091209
509 => 0.026335173899506
510 => 0.026670734341503
511 => 0.026863071329024
512 => 0.026629988477729
513 => 0.026432475166048
514 => 0.025725006999861
515 => 0.025806898366469
516 => 0.026371048674637
517 => 0.027167944213211
518 => 0.027851763488157
519 => 0.027612313811579
520 => 0.029439145818744
521 => 0.029620268750315
522 => 0.029595243417577
523 => 0.030007868410402
524 => 0.029188891829264
525 => 0.028838763473903
526 => 0.026475179785904
527 => 0.027139250392906
528 => 0.028104516019683
529 => 0.027976759494419
530 => 0.027275757794629
531 => 0.027851231715508
601 => 0.027660962040532
602 => 0.027510888453583
603 => 0.028198404648594
604 => 0.02744245235057
605 => 0.028096974817237
606 => 0.027257542983569
607 => 0.027613407597532
608 => 0.027411401631412
609 => 0.027542124248412
610 => 0.026777922500533
611 => 0.02719026721374
612 => 0.0267607676048
613 => 0.026760563966063
614 => 0.026751082738391
615 => 0.027256387123615
616 => 0.027272865081476
617 => 0.026899444377323
618 => 0.026845628619927
619 => 0.027044613681001
620 => 0.026811654288753
621 => 0.026920654522157
622 => 0.026814955794783
623 => 0.026791160784895
624 => 0.026601558097722
625 => 0.026519872046854
626 => 0.026551903252189
627 => 0.02644256423516
628 => 0.026376683522435
629 => 0.026737977406436
630 => 0.026544952658768
701 => 0.026708393595492
702 => 0.026522132020205
703 => 0.025876468249954
704 => 0.025505140187913
705 => 0.024285541178973
706 => 0.024631417945
707 => 0.024860734598712
708 => 0.024784945446028
709 => 0.024947769872502
710 => 0.024957765969882
711 => 0.024904830089037
712 => 0.024843537120525
713 => 0.024813703093167
714 => 0.025036061490533
715 => 0.025165148024444
716 => 0.024883749592773
717 => 0.024817821877415
718 => 0.025102331228267
719 => 0.025275881767931
720 => 0.026557281443187
721 => 0.026462351216378
722 => 0.026700607456553
723 => 0.026673783460249
724 => 0.026923513957148
725 => 0.027331717775596
726 => 0.026501725277109
727 => 0.026645783275865
728 => 0.026610463581355
729 => 0.026996074744694
730 => 0.026997278580655
731 => 0.026766085425527
801 => 0.026891418985603
802 => 0.026821461230715
803 => 0.026947884349155
804 => 0.026461083365322
805 => 0.027053954416711
806 => 0.027390074099082
807 => 0.027394741121198
808 => 0.027554059183031
809 => 0.027715935560933
810 => 0.028026643171856
811 => 0.027707270094302
812 => 0.027132749018124
813 => 0.027174227584133
814 => 0.026837386087379
815 => 0.026843048453795
816 => 0.0268128222981
817 => 0.02690353326666
818 => 0.026480989321801
819 => 0.026580159541091
820 => 0.026441320653345
821 => 0.026645481467238
822 => 0.026425838180481
823 => 0.026610446549129
824 => 0.026690117401173
825 => 0.026984104560408
826 => 0.026382416038028
827 => 0.025155532410165
828 => 0.025413438223268
829 => 0.025031975267624
830 => 0.025067281116501
831 => 0.025138604550116
901 => 0.024907421966194
902 => 0.024951524317806
903 => 0.024949948671463
904 => 0.024936370602511
905 => 0.024876231083738
906 => 0.024789016883276
907 => 0.025136451414802
908 => 0.025195487311915
909 => 0.025326716798195
910 => 0.025717166735556
911 => 0.02567815157937
912 => 0.025741786917832
913 => 0.025602871331266
914 => 0.025073725012142
915 => 0.02510246020307
916 => 0.024744131911746
917 => 0.025317553538154
918 => 0.025181759728225
919 => 0.025094212575573
920 => 0.025070324523853
921 => 0.025461742311087
922 => 0.025578860647749
923 => 0.02550588035986
924 => 0.025356195660225
925 => 0.025643634533833
926 => 0.025720541050338
927 => 0.025737757583181
928 => 0.026247044156277
929 => 0.025766221045149
930 => 0.025881959946968
1001 => 0.026784921819836
1002 => 0.025966060001366
1003 => 0.026399829369407
1004 => 0.026378598616069
1005 => 0.026600500346803
1006 => 0.026360396197322
1007 => 0.026363372576017
1008 => 0.026560406279984
1009 => 0.026283707977978
1010 => 0.026215193587184
1011 => 0.026120541447012
1012 => 0.026327210932299
1013 => 0.026451099941871
1014 => 0.027449554372575
1015 => 0.028094601469864
1016 => 0.02806659827418
1017 => 0.028322495062946
1018 => 0.028207211215861
1019 => 0.027834929263281
1020 => 0.028470369161387
1021 => 0.028269289389692
1022 => 0.028285866161758
1023 => 0.028285249173474
1024 => 0.028418949642953
1025 => 0.028324210606859
1026 => 0.028137470241956
1027 => 0.028261437210986
1028 => 0.028629574790005
1029 => 0.029772285131119
1030 => 0.030411760976905
1031 => 0.029733787882254
1101 => 0.030201444644523
1102 => 0.029921017230304
1103 => 0.029870055227147
1104 => 0.030163778233416
1105 => 0.030458015362924
1106 => 0.030439273729796
1107 => 0.030225672683017
1108 => 0.030105014871617
1109 => 0.031018676242868
1110 => 0.03169184637739
1111 => 0.031645940687206
1112 => 0.03184855347435
1113 => 0.032443430883984
1114 => 0.032497819019075
1115 => 0.03249096736415
1116 => 0.032356160696513
1117 => 0.032941894760891
1118 => 0.033430524422405
1119 => 0.032324956847895
1120 => 0.032745942507326
1121 => 0.032934936533156
1122 => 0.033212435835074
1123 => 0.033680623671694
1124 => 0.034189199842953
1125 => 0.034261118089824
1126 => 0.034210088652064
1127 => 0.033874668995857
1128 => 0.034431159111025
1129 => 0.034757137969191
1130 => 0.034951250919336
1201 => 0.035443489063587
1202 => 0.032936103695918
1203 => 0.031161251707543
1204 => 0.030884082940385
1205 => 0.031447716527525
1206 => 0.03159634220956
1207 => 0.031536431383492
1208 => 0.029538674108093
1209 => 0.030873565161775
1210 => 0.03230979569471
1211 => 0.032364967158713
1212 => 0.033083974193664
1213 => 0.033318112357338
1214 => 0.033897007262881
1215 => 0.033860797228923
1216 => 0.034001748926193
1217 => 0.033969346571933
1218 => 0.035041627483746
1219 => 0.036224512564732
1220 => 0.036183553015722
1221 => 0.036013499290069
1222 => 0.036266058071132
1223 => 0.037486922240378
1224 => 0.037374524631624
1225 => 0.037483709334523
1226 => 0.038923176994954
1227 => 0.040794689715401
1228 => 0.039925184159949
1229 => 0.041811761021797
1230 => 0.042999261153189
1231 => 0.045052919840625
]
'min_raw' => 0.018394109172125
'max_raw' => 0.045052919840625
'avg_raw' => 0.031723514506375
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.018394'
'max' => '$0.045052'
'avg' => '$0.031723'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0082018087885775
'max_diff' => 0.018277681028694
'year' => 2028
]
3 => [
'items' => [
101 => 0.044795791658476
102 => 0.045595265915051
103 => 0.044335478548158
104 => 0.041442752108736
105 => 0.040984967076786
106 => 0.041901464303714
107 => 0.044154583305625
108 => 0.041830505568174
109 => 0.042300663467575
110 => 0.042165257960918
111 => 0.042158042776905
112 => 0.042433417004422
113 => 0.042033972324855
114 => 0.040406562841575
115 => 0.041152395017378
116 => 0.040864393396498
117 => 0.041183952666807
118 => 0.042908482252402
119 => 0.04214602661496
120 => 0.041342841537781
121 => 0.0423502138656
122 => 0.043632945009602
123 => 0.0435526739999
124 => 0.043396914690399
125 => 0.044274921762766
126 => 0.045725132214381
127 => 0.046117118272035
128 => 0.046406474365993
129 => 0.046446371682638
130 => 0.046857338840132
131 => 0.044647464857231
201 => 0.048154591621683
202 => 0.048760175531482
203 => 0.048646350855321
204 => 0.049319431884197
205 => 0.049121394371084
206 => 0.048834469085717
207 => 0.049901445684925
208 => 0.048678243114505
209 => 0.046942061062715
210 => 0.045989557251316
211 => 0.047243891106457
212 => 0.048009869021573
213 => 0.048516131698119
214 => 0.04866932647815
215 => 0.04481901108382
216 => 0.042743904634557
217 => 0.044074024077391
218 => 0.045696861597588
219 => 0.044638449912868
220 => 0.04467993764707
221 => 0.043170920730358
222 => 0.045830376110829
223 => 0.045442915831435
224 => 0.047453060446337
225 => 0.046973323301573
226 => 0.048612518201661
227 => 0.048180863249065
228 => 0.04997263882379
301 => 0.050687426610935
302 => 0.051887666553388
303 => 0.052770567940911
304 => 0.053289024522877
305 => 0.053257898334378
306 => 0.055312281606171
307 => 0.054100883565479
308 => 0.052579082121773
309 => 0.052551557534879
310 => 0.053339720066667
311 => 0.054991492511465
312 => 0.055419773074089
313 => 0.055659123481487
314 => 0.055292550000709
315 => 0.053977664249218
316 => 0.053409903248346
317 => 0.053893652070709
318 => 0.053302068829969
319 => 0.054323307472426
320 => 0.055725686253323
321 => 0.055436100580674
322 => 0.056404142067228
323 => 0.057405963164876
324 => 0.058838612329114
325 => 0.059213159871491
326 => 0.059832272716272
327 => 0.060469543201527
328 => 0.06067421730647
329 => 0.061065003679451
330 => 0.061062944042368
331 => 0.062240605080302
401 => 0.06353960167427
402 => 0.064029942816652
403 => 0.065157455235992
404 => 0.06322662973062
405 => 0.06469118305617
406 => 0.066012246815963
407 => 0.064437220140471
408 => 0.066608027478488
409 => 0.066692315008268
410 => 0.067964956637181
411 => 0.066674890537642
412 => 0.065908853405773
413 => 0.068120373902442
414 => 0.069190459008538
415 => 0.06886814066594
416 => 0.066415282163955
417 => 0.064987613307749
418 => 0.061251128534303
419 => 0.06567715615258
420 => 0.067832945096447
421 => 0.066409699191391
422 => 0.067127501640631
423 => 0.07104359905546
424 => 0.072534595402496
425 => 0.072224478585164
426 => 0.072276883222336
427 => 0.073081397787699
428 => 0.076649058424781
429 => 0.074511233473315
430 => 0.076145520545938
501 => 0.077012340516397
502 => 0.077817491213361
503 => 0.075840295572109
504 => 0.073267993093612
505 => 0.072453236920759
506 => 0.066268185435244
507 => 0.065946226645106
508 => 0.065765501419851
509 => 0.064626054438713
510 => 0.063730761232334
511 => 0.063018790834516
512 => 0.061150367898282
513 => 0.06178090579113
514 => 0.058803029600948
515 => 0.060708169257975
516 => 0.055955406955109
517 => 0.05991364863003
518 => 0.057759357645535
519 => 0.059205906102153
520 => 0.059200859230861
521 => 0.056537304893622
522 => 0.055001022338863
523 => 0.055980001375767
524 => 0.05702954461478
525 => 0.057199829474223
526 => 0.058560589679486
527 => 0.058940348603332
528 => 0.057789661334829
529 => 0.055856916520406
530 => 0.05630584905958
531 => 0.054991924735285
601 => 0.052689322896328
602 => 0.054343091736638
603 => 0.054907761129803
604 => 0.055157151302331
605 => 0.052892806849324
606 => 0.052181300660879
607 => 0.051802500736267
608 => 0.055564618085942
609 => 0.055770715366857
610 => 0.054716292538477
611 => 0.05948238370723
612 => 0.058403670488356
613 => 0.059608857444993
614 => 0.056265113137139
615 => 0.056392848672647
616 => 0.054809866531429
617 => 0.055696230755607
618 => 0.055069777090811
619 => 0.055624621285515
620 => 0.055957192608113
621 => 0.057539914997538
622 => 0.059931720777355
623 => 0.057303509051698
624 => 0.056158359566144
625 => 0.056868803866417
626 => 0.058760810659297
627 => 0.061627297800558
628 => 0.059930279719502
629 => 0.060683387526638
630 => 0.060847908079064
701 => 0.059596589773117
702 => 0.06167343569136
703 => 0.062786434291212
704 => 0.063928140552052
705 => 0.064919452108456
706 => 0.063472117964814
707 => 0.065020972965711
708 => 0.063772869244701
709 => 0.062653191180364
710 => 0.062654889269804
711 => 0.061952498864159
712 => 0.060591528946335
713 => 0.060340545212464
714 => 0.061646194291814
715 => 0.062693201208025
716 => 0.06277943771247
717 => 0.063359114538442
718 => 0.063702161312906
719 => 0.067064486052131
720 => 0.068416840876856
721 => 0.070070474757764
722 => 0.070714658348076
723 => 0.072653420002317
724 => 0.071087712507994
725 => 0.070748961842836
726 => 0.066046160233751
727 => 0.066816243733783
728 => 0.068049221719339
729 => 0.066066491586599
730 => 0.067324077494256
731 => 0.067572351591739
801 => 0.065999119175389
802 => 0.066839450584321
803 => 0.064607779503096
804 => 0.059980365108473
805 => 0.061678587326397
806 => 0.062929050494208
807 => 0.061144485372746
808 => 0.064343249280759
809 => 0.062474597441588
810 => 0.061882324519677
811 => 0.059571656690763
812 => 0.06066220296025
813 => 0.062137182404848
814 => 0.061225816592852
815 => 0.06311703749501
816 => 0.065795510662658
817 => 0.067704350147759
818 => 0.067850887141271
819 => 0.066623631234664
820 => 0.068590316657244
821 => 0.068604641813468
822 => 0.066386212622652
823 => 0.065027437095543
824 => 0.064718720436896
825 => 0.065489955177663
826 => 0.066426376530742
827 => 0.067902852009206
828 => 0.068795055218215
829 => 0.071121447999295
830 => 0.071750903182947
831 => 0.072442483590893
901 => 0.073366648291409
902 => 0.074476344965343
903 => 0.072048391817842
904 => 0.072144858922663
905 => 0.069883982569009
906 => 0.067467911942663
907 => 0.069301408380604
908 => 0.071698461073402
909 => 0.071148574537166
910 => 0.071086701068677
911 => 0.071190755080407
912 => 0.070776158589701
913 => 0.068900954027899
914 => 0.067959238036363
915 => 0.069174291922816
916 => 0.069820038987639
917 => 0.070821536370117
918 => 0.070698080678681
919 => 0.073277830382978
920 => 0.074280243110486
921 => 0.07402378303913
922 => 0.074070977864316
923 => 0.075885798225996
924 => 0.077904251714459
925 => 0.079794799764801
926 => 0.081717946442537
927 => 0.079399518060834
928 => 0.078222363109388
929 => 0.079436886541325
930 => 0.078792443312684
1001 => 0.08249560525873
1002 => 0.082752004157238
1003 => 0.086454898322525
1004 => 0.089969385817818
1005 => 0.087761999190608
1006 => 0.08984346535719
1007 => 0.092094740720774
1008 => 0.096437816153393
1009 => 0.094975221138923
1010 => 0.093854896279625
1011 => 0.092796194700959
1012 => 0.094999184622021
1013 => 0.097833295961844
1014 => 0.098443736399661
1015 => 0.099432883115119
1016 => 0.09839291629092
1017 => 0.09964544178208
1018 => 0.10406740715346
1019 => 0.10287255307635
1020 => 0.10117566820446
1021 => 0.1046663851751
1022 => 0.10592966207696
1023 => 0.11479600095742
1024 => 0.12599012004421
1025 => 0.12135568123773
1026 => 0.11847893551814
1027 => 0.11915503899957
1028 => 0.12324275234521
1029 => 0.1245555961343
1030 => 0.12098683415117
1031 => 0.1222473812158
1101 => 0.12919311947615
1102 => 0.13291928520686
1103 => 0.12785865165373
1104 => 0.11389656438827
1105 => 0.10102288228777
1106 => 0.10443756249028
1107 => 0.10405044372518
1108 => 0.11151277298743
1109 => 0.10284405620177
1110 => 0.10299001516028
1111 => 0.11060665748893
1112 => 0.10857466789795
1113 => 0.10528310499813
1114 => 0.1010469143396
1115 => 0.093215924107095
1116 => 0.086279797674846
1117 => 0.099883138903004
1118 => 0.099296538093175
1119 => 0.098447053191173
1120 => 0.10033748991671
1121 => 0.1095169140461
1122 => 0.10930529860902
1123 => 0.10795910916547
1124 => 0.10898018199363
1125 => 0.10510410599454
1126 => 0.10610305903612
1127 => 0.10102084303075
1128 => 0.10331821691727
1129 => 0.10527604278247
1130 => 0.10566910531101
1201 => 0.1065546952581
1202 => 0.098987426121742
1203 => 0.10238490780062
1204 => 0.10438060998597
1205 => 0.095363954908268
1206 => 0.10420237970584
1207 => 0.098855696801733
1208 => 0.097040952319596
1209 => 0.099484266690388
1210 => 0.098532104703889
1211 => 0.097713491740725
1212 => 0.097256691641724
1213 => 0.099050792056867
1214 => 0.098967095128087
1215 => 0.096031598629027
1216 => 0.092202363112149
1217 => 0.093487580241985
1218 => 0.093020648809741
1219 => 0.091328429063935
1220 => 0.092468780853217
1221 => 0.087447248692053
1222 => 0.0788079636053
1223 => 0.084515339962068
1224 => 0.084295612180763
1225 => 0.084184815469568
1226 => 0.088473751061382
1227 => 0.088061468866809
1228 => 0.087313172646579
1229 => 0.091314686017029
1230 => 0.089854079808865
1231 => 0.094355323980324
]
'min_raw' => 0.040406562841575
'max_raw' => 0.13291928520686
'avg_raw' => 0.08666292402422
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0404065'
'max' => '$0.132919'
'avg' => '$0.086662'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.02201245366945
'max_diff' => 0.08786636536624
'year' => 2029
]
4 => [
'items' => [
101 => 0.097320134513866
102 => 0.096568162660987
103 => 0.099356581297956
104 => 0.093517189048882
105 => 0.095456800918271
106 => 0.095856552236367
107 => 0.091265307963177
108 => 0.088128923332621
109 => 0.087919762235166
110 => 0.082481703506207
111 => 0.085386670584741
112 => 0.087942921398144
113 => 0.0867186756316
114 => 0.086331115995215
115 => 0.08831107412608
116 => 0.088464933830043
117 => 0.084956916274369
118 => 0.085686344208662
119 => 0.088728179951967
120 => 0.085609697752477
121 => 0.079550996240044
122 => 0.078048354496858
123 => 0.077847874389135
124 => 0.073772590805597
125 => 0.078148768203299
126 => 0.076238449494939
127 => 0.082273123405516
128 => 0.0788261500324
129 => 0.078677557899663
130 => 0.078452939097305
131 => 0.074945174169109
201 => 0.075713151758293
202 => 0.078266026231031
203 => 0.079176920603093
204 => 0.079081906857349
205 => 0.078253515753399
206 => 0.078632748958738
207 => 0.077411106670731
208 => 0.07697971935255
209 => 0.075618142313942
210 => 0.073617000212444
211 => 0.073895271295375
212 => 0.069930485164995
213 => 0.067770259254037
214 => 0.067172337193204
215 => 0.066372770824575
216 => 0.067262650342105
217 => 0.069919253424037
218 => 0.066714826477443
219 => 0.061221061241924
220 => 0.061551245893499
221 => 0.062293072772886
222 => 0.060910683290825
223 => 0.059602367661209
224 => 0.060739841954158
225 => 0.058412061200841
226 => 0.06257437395582
227 => 0.062461795060545
228 => 0.064013247859907
301 => 0.064983403134364
302 => 0.06274750931824
303 => 0.062185188069984
304 => 0.062505511809066
305 => 0.057211273931984
306 => 0.063580595676183
307 => 0.063635677835119
308 => 0.063164030948963
309 => 0.066555498147002
310 => 0.073712551760011
311 => 0.071019780298982
312 => 0.069977057799824
313 => 0.067994841566698
314 => 0.070636027004984
315 => 0.070433225172235
316 => 0.069516078374232
317 => 0.068961385129128
318 => 0.069983424441056
319 => 0.068834743147972
320 => 0.068628408424083
321 => 0.06737824449171
322 => 0.066931992846687
323 => 0.066601605894502
324 => 0.066237882323298
325 => 0.067040165887108
326 => 0.065222085782323
327 => 0.063029659404543
328 => 0.062847382873613
329 => 0.063350664401428
330 => 0.063127999790273
331 => 0.06284631684112
401 => 0.062308507379401
402 => 0.062148950800589
403 => 0.062667432275878
404 => 0.062082096919625
405 => 0.062945791122643
406 => 0.062710914089803
407 => 0.061398910077416
408 => 0.059763667311884
409 => 0.059749110221233
410 => 0.059396799849734
411 => 0.058948079621412
412 => 0.058823255919221
413 => 0.06064404704188
414 => 0.06441303017409
415 => 0.063673088601115
416 => 0.064207772219852
417 => 0.066837886428212
418 => 0.067673920644756
419 => 0.067080523360409
420 => 0.066268244558444
421 => 0.066303980703345
422 => 0.069079783263175
423 => 0.069252906663963
424 => 0.069690333646028
425 => 0.070252550934832
426 => 0.067176271395788
427 => 0.066159088213702
428 => 0.065677090390855
429 => 0.064192723653119
430 => 0.065793485919781
501 => 0.064860790298471
502 => 0.064986642803205
503 => 0.064904681194395
504 => 0.064949437775025
505 => 0.062573210504577
506 => 0.0634389828311
507 => 0.061999468418951
508 => 0.06007212021416
509 => 0.060065659067163
510 => 0.060537374809813
511 => 0.060256779827846
512 => 0.059501705946128
513 => 0.059608960627178
514 => 0.058669296762504
515 => 0.059723052833513
516 => 0.059753270787109
517 => 0.059347517301289
518 => 0.060970973918995
519 => 0.061636105419884
520 => 0.061369029783435
521 => 0.061617366681262
522 => 0.063703836514108
523 => 0.064044022135923
524 => 0.064195110117732
525 => 0.063992672237429
526 => 0.061655503519619
527 => 0.061759166890663
528 => 0.060998553855672
529 => 0.060355915992532
530 => 0.060381618136866
531 => 0.060712017535594
601 => 0.062154891087511
602 => 0.065191333415478
603 => 0.065306564182213
604 => 0.065446227233016
605 => 0.064878147416377
606 => 0.064706809107887
607 => 0.064932848562955
608 => 0.066073176652786
609 => 0.069006410095889
610 => 0.067969609493022
611 => 0.067126674464128
612 => 0.06786615573812
613 => 0.067752318392234
614 => 0.066791416631107
615 => 0.066764447319055
616 => 0.064920169620576
617 => 0.06423838214762
618 => 0.063668629504309
619 => 0.063046474491584
620 => 0.062677640145215
621 => 0.06324433733345
622 => 0.063373947685363
623 => 0.062134854379117
624 => 0.061965970540082
625 => 0.06297784088165
626 => 0.062532554470655
627 => 0.062990542586935
628 => 0.063096799758461
629 => 0.063079689906535
630 => 0.062614759752638
701 => 0.062911092368315
702 => 0.062210177391233
703 => 0.061448037627682
704 => 0.060961839941521
705 => 0.060537567975582
706 => 0.060772978721117
707 => 0.059933782397589
708 => 0.059665306604008
709 => 0.062810701545819
710 => 0.065134238608028
711 => 0.065100453458922
712 => 0.064894795052573
713 => 0.064589228377023
714 => 0.066050822547212
715 => 0.065541632363816
716 => 0.0659121107665
717 => 0.066006413068913
718 => 0.06629183773628
719 => 0.066393852521785
720 => 0.066085492986166
721 => 0.065050600721683
722 => 0.062471747593197
723 => 0.061271284500405
724 => 0.06087511168449
725 => 0.060889511813909
726 => 0.060492291959518
727 => 0.060609291008782
728 => 0.060451604464883
729 => 0.060152984299213
730 => 0.060754539767376
731 => 0.060823863431205
801 => 0.060683453196883
802 => 0.06071652488999
803 => 0.059553988119801
804 => 0.059642373265541
805 => 0.059150233542618
806 => 0.059057963277402
807 => 0.057813876913359
808 => 0.055609797586255
809 => 0.056831071488627
810 => 0.055355944351659
811 => 0.054797291353065
812 => 0.057441867760041
813 => 0.057176425637912
814 => 0.056722104109744
815 => 0.056050067880682
816 => 0.055800803106174
817 => 0.054286349243903
818 => 0.054196867230423
819 => 0.054947471458259
820 => 0.054601093433827
821 => 0.054114647503909
822 => 0.05235278965598
823 => 0.050371878103821
824 => 0.050431669372014
825 => 0.051061760480587
826 => 0.052893835358123
827 => 0.052178012008252
828 => 0.051658673954795
829 => 0.051561417548627
830 => 0.052778785091898
831 => 0.054501615212012
901 => 0.055309928558218
902 => 0.054508914580969
903 => 0.05358875285356
904 => 0.053644758834289
905 => 0.054017341532954
906 => 0.054056494706548
907 => 0.053457564016159
908 => 0.053626159497247
909 => 0.05337004754478
910 => 0.05179828896524
911 => 0.051769860836637
912 => 0.051384125933187
913 => 0.051372446033611
914 => 0.050716214736761
915 => 0.050624403442019
916 => 0.049321416371731
917 => 0.050179046407203
918 => 0.049603793207007
919 => 0.048736750945798
920 => 0.048587272533158
921 => 0.048582779031574
922 => 0.049473037566732
923 => 0.050168643217886
924 => 0.049613799982711
925 => 0.049487472933246
926 => 0.050836315323021
927 => 0.050664662833951
928 => 0.050516012885456
929 => 0.054347354670921
930 => 0.051314548684397
1001 => 0.049992072167759
1002 => 0.04835525634694
1003 => 0.048888211831741
1004 => 0.049000513383133
1005 => 0.045064266392292
1006 => 0.043467331478336
1007 => 0.042919323595089
1008 => 0.042603937310586
1009 => 0.042747662800805
1010 => 0.041310234076462
1011 => 0.042276209952097
1012 => 0.041031518179641
1013 => 0.040822841553412
1014 => 0.043048504630286
1015 => 0.043358192645298
1016 => 0.042036967360732
1017 => 0.042885407880367
1018 => 0.042577751553742
1019 => 0.041052854847598
1020 => 0.040994615009804
1021 => 0.040229475445372
1022 => 0.03903218018725
1023 => 0.038484984126568
1024 => 0.03819999966719
1025 => 0.038317589809366
1026 => 0.038258132635164
1027 => 0.037870134355116
1028 => 0.038280372242402
1029 => 0.037232383962385
1030 => 0.036815066585067
1031 => 0.036626574007422
1101 => 0.035696424088952
1102 => 0.037176706248784
1103 => 0.037468340482374
1104 => 0.037760549325495
1105 => 0.040304027805411
1106 => 0.04017696280835
1107 => 0.041325568498618
1108 => 0.041280935793645
1109 => 0.040953334844601
1110 => 0.039571240328329
1111 => 0.040122118569049
1112 => 0.038426600969599
1113 => 0.039696998039097
1114 => 0.039117241869628
1115 => 0.039500981895017
1116 => 0.038810982728924
1117 => 0.039192856756807
1118 => 0.037537497778075
1119 => 0.035991746855264
1120 => 0.036613802149885
1121 => 0.037290047395791
1122 => 0.038756319392998
1123 => 0.037883019887943
1124 => 0.038197091413071
1125 => 0.03714500437883
1126 => 0.034974248313386
1127 => 0.034986534556973
1128 => 0.034652611028796
1129 => 0.034364052346818
1130 => 0.037983328841372
1201 => 0.03753321459698
1202 => 0.036816016458037
1203 => 0.037776014667333
1204 => 0.038029853431091
1205 => 0.03803707986384
1206 => 0.038737469776203
1207 => 0.039111267997983
1208 => 0.039177151554706
1209 => 0.040279230214734
1210 => 0.040648632444806
1211 => 0.042170147950714
1212 => 0.039079553830447
1213 => 0.039015905078363
1214 => 0.037789523810849
1215 => 0.03701173342267
1216 => 0.037842779784156
1217 => 0.038578973411291
1218 => 0.037812399398975
1219 => 0.037912497781723
1220 => 0.036883434801588
1221 => 0.037251276395073
1222 => 0.037568111128995
1223 => 0.037393173611608
1224 => 0.037131283681008
1225 => 0.038518613929307
1226 => 0.038440335319707
1227 => 0.039732249141508
1228 => 0.040739388351245
1229 => 0.042544361862763
1230 => 0.040660777908097
1231 => 0.040592132622221
]
'min_raw' => 0.034364052346818
'max_raw' => 0.099356581297956
'avg_raw' => 0.066860316822387
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.034364'
'max' => '$0.099356'
'avg' => '$0.06686'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0060425104947568
'max_diff' => -0.033562703908908
'year' => 2030
]
5 => [
'items' => [
101 => 0.041263151302711
102 => 0.040648529715342
103 => 0.041036949342543
104 => 0.042481781455877
105 => 0.042512308481695
106 => 0.042000941467391
107 => 0.041969824738097
108 => 0.042068038366937
109 => 0.042643278658696
110 => 0.042442272025406
111 => 0.042674881990314
112 => 0.042965764313282
113 => 0.044168976932624
114 => 0.044459067421691
115 => 0.043754297927933
116 => 0.04381793072225
117 => 0.04355432758523
118 => 0.043299690257806
119 => 0.04387207778306
120 => 0.044918127235767
121 => 0.044911619816412
122 => 0.045154282957144
123 => 0.04530546008349
124 => 0.044656497188792
125 => 0.044234046207371
126 => 0.044396040794902
127 => 0.044655073668148
128 => 0.044312039925266
129 => 0.042194676755515
130 => 0.042836949483534
131 => 0.04273004389606
201 => 0.042577797339333
202 => 0.043223607533905
203 => 0.043161317565174
204 => 0.041295491167268
205 => 0.041414935319603
206 => 0.041302754961783
207 => 0.041665232647842
208 => 0.040628954730745
209 => 0.040947706838605
210 => 0.04114762517254
211 => 0.041265378607073
212 => 0.041690784756891
213 => 0.041640868255229
214 => 0.041687681877061
215 => 0.042318446894181
216 => 0.04550863989836
217 => 0.045682275064813
218 => 0.044827232001118
219 => 0.045168804840086
220 => 0.044513059683037
221 => 0.044953265800074
222 => 0.045254443645328
223 => 0.043893478875794
224 => 0.043812891374731
225 => 0.043154439724157
226 => 0.043508254344568
227 => 0.042945309843323
228 => 0.043083436732966
301 => 0.042697221907839
302 => 0.043392331698463
303 => 0.044169572453521
304 => 0.044365934162416
305 => 0.043849391045344
306 => 0.043475379786733
307 => 0.04281873922358
308 => 0.043910747114293
309 => 0.044230083499874
310 => 0.043909069776205
311 => 0.043834683882142
312 => 0.043693722747306
313 => 0.043864589453264
314 => 0.044228344325337
315 => 0.044056804245165
316 => 0.044170109490266
317 => 0.043738306735803
318 => 0.044656712022513
319 => 0.046115360644078
320 => 0.04612005043791
321 => 0.045948509433073
322 => 0.045878318549796
323 => 0.046054330030737
324 => 0.046149809038779
325 => 0.046718997893158
326 => 0.047329760211391
327 => 0.050179921454108
328 => 0.049379607582258
329 => 0.051908440193647
330 => 0.053908418461439
331 => 0.0545081244955
401 => 0.053956423162513
402 => 0.052069082704688
403 => 0.051976480777794
404 => 0.054796964236373
405 => 0.054000048472998
406 => 0.05390525787871
407 => 0.052896846106716
408 => 0.053492942358192
409 => 0.05336256736379
410 => 0.053156764056963
411 => 0.054294074180354
412 => 0.056423017202966
413 => 0.056091201467791
414 => 0.055843516413972
415 => 0.05475823260817
416 => 0.055411815866176
417 => 0.055179087386563
418 => 0.056179036628125
419 => 0.055586688849011
420 => 0.053994011052302
421 => 0.054247650240963
422 => 0.054209313187848
423 => 0.054998287024358
424 => 0.054761456662172
425 => 0.05416306825864
426 => 0.056415740707161
427 => 0.056269464688377
428 => 0.056476850639659
429 => 0.056568148349038
430 => 0.057939310371912
501 => 0.058501031580392
502 => 0.058628552129031
503 => 0.05916214383201
504 => 0.05861527588137
505 => 0.060803137594171
506 => 0.062257937967914
507 => 0.063947763465359
508 => 0.0664170526994
509 => 0.067345528293602
510 => 0.067177807487972
511 => 0.069049994403614
512 => 0.072414272674645
513 => 0.067857824314944
514 => 0.07265577550163
515 => 0.071136799550935
516 => 0.06753533489705
517 => 0.067303443031818
518 => 0.069742396709294
519 => 0.075151761225343
520 => 0.073796776766578
521 => 0.075153977494508
522 => 0.073570730753416
523 => 0.07349210920807
524 => 0.075077082734166
525 => 0.0787804597703
526 => 0.077021124159445
527 => 0.074498685154495
528 => 0.076361214862252
529 => 0.074747719260405
530 => 0.071112062080461
531 => 0.073795740635498
601 => 0.07200124121251
602 => 0.072524971544974
603 => 0.076296742420452
604 => 0.075842912969847
605 => 0.076430210302406
606 => 0.075393645882686
607 => 0.074425331263463
608 => 0.072617900118694
609 => 0.072082808862006
610 => 0.072230688834788
611 => 0.072082735580036
612 => 0.071071494465687
613 => 0.070853117043325
614 => 0.070489145105386
615 => 0.070601955228322
616 => 0.069917581501251
617 => 0.07120913612306
618 => 0.071448860042008
619 => 0.072388745789044
620 => 0.072486327845253
621 => 0.075103896272311
622 => 0.073662183569138
623 => 0.074629408921912
624 => 0.074542891182482
625 => 0.067613389556695
626 => 0.068568213741218
627 => 0.070053620532
628 => 0.069384446786174
629 => 0.068438391672117
630 => 0.06767440144325
701 => 0.066516878124505
702 => 0.068146069967373
703 => 0.070288283995507
704 => 0.072540657928197
705 => 0.075246737626939
706 => 0.07464277214042
707 => 0.072490069650539
708 => 0.072586638311685
709 => 0.073183587776522
710 => 0.07241048398098
711 => 0.072182480578896
712 => 0.073152263610306
713 => 0.07315894197306
714 => 0.072269392623575
715 => 0.071280821307434
716 => 0.071276679157524
717 => 0.071100772440283
718 => 0.073602024167634
719 => 0.074977459712604
720 => 0.07513515118121
721 => 0.074966845820347
722 => 0.075031619873942
723 => 0.074231284235978
724 => 0.076060614172203
725 => 0.077739388223662
726 => 0.077289440916095
727 => 0.076614905938272
728 => 0.07607760633843
729 => 0.077162870205999
730 => 0.07711454511434
731 => 0.077724725596853
801 => 0.077697044285593
802 => 0.077491863539373
803 => 0.077289448243745
804 => 0.07809200201092
805 => 0.077860879414593
806 => 0.077629397821036
807 => 0.077165126047098
808 => 0.077228228291914
809 => 0.076553809782066
810 => 0.076241792920119
811 => 0.071549807949565
812 => 0.070295956250401
813 => 0.070690443519463
814 => 0.070820318971296
815 => 0.070274641104965
816 => 0.071057002992141
817 => 0.070935072720751
818 => 0.071409432079906
819 => 0.071113072946595
820 => 0.0711252356288
821 => 0.071996764649439
822 => 0.07224977323188
823 => 0.072121091024821
824 => 0.072211215631678
825 => 0.074288099157462
826 => 0.073992832735092
827 => 0.073835978333086
828 => 0.073879428074404
829 => 0.074410116344127
830 => 0.074558680085144
831 => 0.073929205075066
901 => 0.07422606912877
902 => 0.075490078591787
903 => 0.075932410367103
904 => 0.077344121062615
905 => 0.076744401268005
906 => 0.077845212906276
907 => 0.081228732587981
908 => 0.08393172223148
909 => 0.081445941249547
910 => 0.086409637506178
911 => 0.090274587041903
912 => 0.090126243841312
913 => 0.089452300491865
914 => 0.085052158200441
915 => 0.081003081661447
916 => 0.084390306119187
917 => 0.084398940850919
918 => 0.084107975266018
919 => 0.082300813007557
920 => 0.084045089936675
921 => 0.084183544305025
922 => 0.084106046676737
923 => 0.082720499610291
924 => 0.080605025331729
925 => 0.08101838394203
926 => 0.081695473777991
927 => 0.08041360146278
928 => 0.080003965586688
929 => 0.080765556616758
930 => 0.083219561599434
1001 => 0.082755646172542
1002 => 0.082743531465916
1003 => 0.084728358392918
1004 => 0.083307650665644
1005 => 0.081023597717863
1006 => 0.080446844225592
1007 => 0.078399757875732
1008 => 0.079813687709052
1009 => 0.079864572526582
1010 => 0.079090177606886
1011 => 0.081086435597663
1012 => 0.081068039728843
1013 => 0.082963189587296
1014 => 0.086586004330875
1015 => 0.085514559743312
1016 => 0.084268586260816
1017 => 0.084404058125461
1018 => 0.085889850107558
1019 => 0.08499150635785
1020 => 0.08531455703372
1021 => 0.085889361131669
1022 => 0.086236154715544
1023 => 0.084354159865591
1024 => 0.083915376839847
1025 => 0.08301778076109
1026 => 0.082783614698567
1027 => 0.083514687975758
1028 => 0.083322075996418
1029 => 0.079860295854704
1030 => 0.079498520568732
1031 => 0.079509615700257
1101 => 0.078599914542203
1102 => 0.077212401922877
1103 => 0.080858702242393
1104 => 0.080565853296795
1105 => 0.080242570725564
1106 => 0.080282170995915
1107 => 0.081864906380033
1108 => 0.080946839927192
1109 => 0.083387670060202
1110 => 0.082885908762925
1111 => 0.082371279181692
1112 => 0.082300141697565
1113 => 0.082102053214922
1114 => 0.081422734102464
1115 => 0.080602415453421
1116 => 0.080060770026538
1117 => 0.07385182835319
1118 => 0.075004171812011
1119 => 0.076329837921973
1120 => 0.076787452550859
1121 => 0.076004671062182
1122 => 0.081453643086746
1123 => 0.082449222783235
1124 => 0.079433546942514
1125 => 0.078869437121948
1126 => 0.081490626032669
1127 => 0.079909728692192
1128 => 0.080621606667809
1129 => 0.079082915860959
1130 => 0.082209416788328
1201 => 0.082185598089583
1202 => 0.08096931861361
1203 => 0.08199730969798
1204 => 0.081818670949452
1205 => 0.080445494416643
1206 => 0.082252948933708
1207 => 0.082253845408599
1208 => 0.081083202857171
1209 => 0.07971614864371
1210 => 0.079471751638723
1211 => 0.079287631325583
1212 => 0.080576324357557
1213 => 0.081731762500386
1214 => 0.083881746426784
1215 => 0.084422303468238
1216 => 0.086532133587955
1217 => 0.085275832477428
1218 => 0.085832734487902
1219 => 0.08643733039887
1220 => 0.086727195911867
1221 => 0.08625487561348
1222 => 0.089532310230123
1223 => 0.08980902612977
1224 => 0.089901806577338
1225 => 0.088796674064884
1226 => 0.089778290395428
1227 => 0.089319024622083
1228 => 0.090513906576622
1229 => 0.090701279324112
1230 => 0.090542581272967
1231 => 0.090602056340498
]
'min_raw' => 0.040628954730745
'max_raw' => 0.090701279324112
'avg_raw' => 0.065665117027429
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.040628'
'max' => '$0.0907012'
'avg' => '$0.065665'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0062649023839266
'max_diff' => -0.008655301973844
'year' => 2031
]
6 => [
'items' => [
101 => 0.087805344074278
102 => 0.087660319789442
103 => 0.085682903375249
104 => 0.086488715180357
105 => 0.084982288634273
106 => 0.085459992009949
107 => 0.085670559106222
108 => 0.085560570804707
109 => 0.086534274570788
110 => 0.085706427455081
111 => 0.083521602806066
112 => 0.081336182903037
113 => 0.081308746736359
114 => 0.080733364251756
115 => 0.080317468101948
116 => 0.080397584455109
117 => 0.080679924933392
118 => 0.080301057960083
119 => 0.080381908437881
120 => 0.081724565073253
121 => 0.081993825286087
122 => 0.081078773876119
123 => 0.077404710423806
124 => 0.076503086036918
125 => 0.077151155766224
126 => 0.076841420176652
127 => 0.06201702330951
128 => 0.065499795460058
129 => 0.06343045051197
130 => 0.064384099870032
131 => 0.06227183453231
201 => 0.063279918264783
202 => 0.063093762008719
203 => 0.06869395656408
204 => 0.068606517228913
205 => 0.068648369811471
206 => 0.066650636999681
207 => 0.069833079613219
208 => 0.071400865281582
209 => 0.071110709879632
210 => 0.071183735743151
211 => 0.06992890946165
212 => 0.06866051927279
213 => 0.067253679349493
214 => 0.069867414036309
215 => 0.069576811357074
216 => 0.070243349347695
217 => 0.071938543125709
218 => 0.072188166848936
219 => 0.072523663664388
220 => 0.072403411938338
221 => 0.075268295917529
222 => 0.074921339564536
223 => 0.075757404549094
224 => 0.074037555443455
225 => 0.072091382930848
226 => 0.072461286700322
227 => 0.072425661992743
228 => 0.071972118577132
229 => 0.071562679860815
301 => 0.07088107975679
302 => 0.073037763343761
303 => 0.072950205928696
304 => 0.074367658704226
305 => 0.07411711015775
306 => 0.07244388564475
307 => 0.072503645185569
308 => 0.072905556817036
309 => 0.074296577562488
310 => 0.074709527227652
311 => 0.074518232489549
312 => 0.074971012945534
313 => 0.075328872156597
314 => 0.075015954552746
315 => 0.079446207938458
316 => 0.077606457856522
317 => 0.078503139245558
318 => 0.07871699247329
319 => 0.078169211927304
320 => 0.078288005913178
321 => 0.078467946432353
322 => 0.079560510028817
323 => 0.082427713041765
324 => 0.083697577738488
325 => 0.087518028332601
326 => 0.083592133152795
327 => 0.083359186779795
328 => 0.084047365298349
329 => 0.08629037423286
330 => 0.088108122299164
331 => 0.088711174201159
401 => 0.08879087746531
402 => 0.089922242923584
403 => 0.090570720505551
404 => 0.089784865399084
405 => 0.089118935478813
406 => 0.086733657162666
407 => 0.087009759622658
408 => 0.088911831774362
409 => 0.091598620720134
410 => 0.093904165148353
411 => 0.093096843845926
412 => 0.099256135503421
413 => 0.099866804112811
414 => 0.099782429456273
415 => 0.10117362342814
416 => 0.098412386705712
417 => 0.097231904510433
418 => 0.089262917086201
419 => 0.091501877501637
420 => 0.094756337955009
421 => 0.094325597910405
422 => 0.091962121737189
423 => 0.093902372239737
424 => 0.093260864746352
425 => 0.092754881170148
426 => 0.095072890022478
427 => 0.092524144070786
428 => 0.094730912264451
429 => 0.091900709229982
430 => 0.093100531621632
501 => 0.092419454403252
502 => 0.092860194833228
503 => 0.090283635285394
504 => 0.091673884274958
505 => 0.090225796356714
506 => 0.090225109774494
507 => 0.090193143153439
508 => 0.091896812167448
509 => 0.091952368752831
510 => 0.090693354777377
511 => 0.09051191119402
512 => 0.091182803220124
513 => 0.090397364364456
514 => 0.09076486626153
515 => 0.090408495622538
516 => 0.090328269085387
517 => 0.089689010387947
518 => 0.089413600164305
519 => 0.089521595609442
520 => 0.089152951479722
521 => 0.088930830057125
522 => 0.090148957611769
523 => 0.089498161198448
524 => 0.090049213727693
525 => 0.089421219822245
526 => 0.087244319342041
527 => 0.08599236085557
528 => 0.081880397647246
529 => 0.083046545312252
530 => 0.083819702420619
531 => 0.083564174000916
601 => 0.084113147922809
602 => 0.084146850463032
603 => 0.083968373444898
604 => 0.08376171992222
605 => 0.083661132416037
606 => 0.084410829277325
607 => 0.084846053538939
608 => 0.083897299079951
609 => 0.083675019184695
610 => 0.084634262324902
611 => 0.085219400086291
612 => 0.089539728555884
613 => 0.089219664668379
614 => 0.09002296221665
615 => 0.08993252324032
616 => 0.090774507046243
617 => 0.09215079472002
618 => 0.089352417063145
619 => 0.08983811866376
620 => 0.089719035847777
621 => 0.091019150807486
622 => 0.091023209624478
623 => 0.090243725760573
624 => 0.090666296608877
625 => 0.090430429153979
626 => 0.090856673524379
627 => 0.089215390020028
628 => 0.091214296162721
629 => 0.092347547138962
630 => 0.092363282329866
701 => 0.092900434298568
702 => 0.093446211808514
703 => 0.094493784211651
704 => 0.093416995582761
705 => 0.091479957662649
706 => 0.091619805543887
707 => 0.090484120920059
708 => 0.090503211983764
709 => 0.090401302389515
710 => 0.090707140753253
711 => 0.089282504342085
712 => 0.089616863660264
713 => 0.089148758656809
714 => 0.089837101094901
715 => 0.089096558418595
716 => 0.089718978422437
717 => 0.089987594262546
718 => 0.090978792495432
719 => 0.088950157633679
720 => 0.084813633824058
721 => 0.085683181279343
722 => 0.084397052291497
723 => 0.084516088425961
724 => 0.084756560362037
725 => 0.083977112139691
726 => 0.084125806297279
727 => 0.084120493895625
728 => 0.084074714488165
729 => 0.083871949901814
730 => 0.083577901135855
731 => 0.084749300916
801 => 0.084948344564869
802 => 0.085390793940015
803 => 0.08670722316417
804 => 0.086575680841138
805 => 0.086790231827642
806 => 0.086321868228757
807 => 0.084537814470014
808 => 0.084634697172455
809 => 0.083426568320572
810 => 0.085359899369028
811 => 0.084902061058031
812 => 0.084606889720516
813 => 0.084526349486332
814 => 0.085846041883908
815 => 0.086240914532907
816 => 0.085994856396968
817 => 0.085490183981497
818 => 0.086459304212209
819 => 0.086718599902047
820 => 0.086776646644545
821 => 0.088493741882993
822 => 0.086872613193825
823 => 0.087262834981941
824 => 0.090307233979101
825 => 0.087546384187022
826 => 0.089008867896183
827 => 0.088937286929018
828 => 0.089685444106875
829 => 0.088875916203362
830 => 0.088885951271936
831 => 0.089550264161316
901 => 0.088617356517643
902 => 0.08838635546556
903 => 0.088067229166568
904 => 0.088764029765415
905 => 0.089181730210843
906 => 0.092548089033823
907 => 0.094722910358082
908 => 0.094628495628713
909 => 0.09549126951818
910 => 0.095102581978872
911 => 0.093847407383854
912 => 0.095989837365314
913 => 0.095311882876102
914 => 0.095367772620478
915 => 0.095365692401401
916 => 0.095816472868917
917 => 0.095497053594259
918 => 0.094867445416192
919 => 0.095285408707376
920 => 0.096526610257583
921 => 0.10037933795414
922 => 0.10253537541498
923 => 0.10024954179179
924 => 0.10182627921654
925 => 0.10088079861068
926 => 0.10070897665899
927 => 0.1016992842817
928 => 0.10269132530682
929 => 0.10262813658223
930 => 0.10190796573987
1001 => 0.10150115950468
1002 => 0.10458163260765
1003 => 0.10685127271543
1004 => 0.10669649847594
1005 => 0.10737962163377
1006 => 0.10938529235336
1007 => 0.10956866574808
1008 => 0.10954556491513
1009 => 0.10909105482329
1010 => 0.11106589811599
1011 => 0.11271334713482
1012 => 0.10898584886909
1013 => 0.11040523141215
1014 => 0.11104243796537
1015 => 0.11197804623617
1016 => 0.11355657421517
1017 => 0.11527127428422
1018 => 0.11551375167472
1019 => 0.11534170236255
1020 => 0.1142108115734
1021 => 0.11608705684958
1022 => 0.11718611732901
1023 => 0.11784058269295
1024 => 0.11950019796327
1025 => 0.11104637313611
1026 => 0.1050623357411
1027 => 0.10412784189132
1028 => 0.106028171882
1029 => 0.1065292737457
1030 => 0.10632728021277
1031 => 0.099591702079804
1101 => 0.10409238046641
1102 => 0.10893473198261
1103 => 0.10912074642545
1104 => 0.11154492884325
1105 => 0.11233434200909
1106 => 0.11428612660027
1107 => 0.11416404194268
1108 => 0.11463927043096
1109 => 0.11453002363131
1110 => 0.11814529358975
1111 => 0.1221334732267
1112 => 0.1219953752475
1113 => 0.12142202723869
1114 => 0.12227354680214
1115 => 0.12638977558677
1116 => 0.1260108192015
1117 => 0.12637894305036
1118 => 0.13123220876792
1119 => 0.13754214456976
1120 => 0.13461054588261
1121 => 0.14097127148892
1122 => 0.14497501109052
1123 => 0.15189906473708
1124 => 0.15103213911885
1125 => 0.1537276223924
1126 => 0.14948016132938
1127 => 0.13972713217516
1128 => 0.13818367797841
1129 => 0.14127371236679
1130 => 0.14887026038948
1201 => 0.14103447003573
1202 => 0.14261964021894
1203 => 0.14216311109954
1204 => 0.14213878460289
1205 => 0.14306722803697
1206 => 0.14172047241148
1207 => 0.1362335477165
1208 => 0.13874817296956
1209 => 0.13777715539713
1210 => 0.13885457178789
1211 => 0.14466894368854
1212 => 0.14209827127395
1213 => 0.13939027670965
1214 => 0.14278670284538
1215 => 0.14711152045481
1216 => 0.14684088114126
1217 => 0.14631572775451
1218 => 0.14927598989949
1219 => 0.15416547568757
1220 => 0.15548708404854
1221 => 0.15646266832152
1222 => 0.15659718491013
1223 => 0.15798278937443
1224 => 0.15053204495261
1225 => 0.16235656769873
1226 => 0.16439833613113
1227 => 0.16401456828847
1228 => 0.16628390797034
1229 => 0.16561621066835
1230 => 0.16464882203625
1231 => 0.1682462081344
]
'min_raw' => 0.06201702330951
'max_raw' => 0.1682462081344
'avg_raw' => 0.11513161572196
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.062017'
'max' => '$0.168246'
'avg' => '$0.115131'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.021388068578766
'max_diff' => 0.077544928810293
'year' => 2032
]
7 => [
'items' => [
101 => 0.16412209526696
102 => 0.15826843626299
103 => 0.15505700316116
104 => 0.15928607732857
105 => 0.16186862534825
106 => 0.16357552530836
107 => 0.16409203220495
108 => 0.15111042503252
109 => 0.14411405875953
110 => 0.14859864932702
111 => 0.15407015932926
112 => 0.15050165043828
113 => 0.15064152923073
114 => 0.14555377333983
115 => 0.15452031283234
116 => 0.15321396344875
117 => 0.15999130636171
118 => 0.15837383908395
119 => 0.16390049913454
120 => 0.16244514432467
121 => 0.16848624077263
122 => 0.17089619770188
123 => 0.17494289046594
124 => 0.17791965413618
125 => 0.17966766669976
126 => 0.17956272258207
127 => 0.18648921921538
128 => 0.18240490614408
129 => 0.17727404632784
130 => 0.17718124526142
131 => 0.1798385902651
201 => 0.1854076563858
202 => 0.18685163420429
203 => 0.18765862081374
204 => 0.18642269272995
205 => 0.18198946361641
206 => 0.18007521776216
207 => 0.18170621069102
208 => 0.17971164649185
209 => 0.1831548238755
210 => 0.18788304184625
211 => 0.18690668353269
212 => 0.1901705029911
213 => 0.19354821276674
214 => 0.19837848944834
215 => 0.19964130263753
216 => 0.20172868481879
217 => 0.20387728675264
218 => 0.20456735978734
219 => 0.20588492332768
220 => 0.20587797911745
221 => 0.20984854552852
222 => 0.21422820323812
223 => 0.21588142263419
224 => 0.2196829094764
225 => 0.2131729964791
226 => 0.21811084026804
227 => 0.22256489896791
228 => 0.21725458656664
301 => 0.22457361506769
302 => 0.22485779635911
303 => 0.22914859646399
304 => 0.22479904853986
305 => 0.22221630086676
306 => 0.22967259662471
307 => 0.23328046327087
308 => 0.23219374447525
309 => 0.2239237607827
310 => 0.21911027555734
311 => 0.20651245627063
312 => 0.22143511740104
313 => 0.22870351033766
314 => 0.22390493740091
315 => 0.22632505847389
316 => 0.23952845432117
317 => 0.24455545260325
318 => 0.24350987210195
319 => 0.24368655799495
320 => 0.24639903502148
321 => 0.25842765194552
322 => 0.25121982586348
323 => 0.2567299388311
324 => 0.25965248288094
325 => 0.26236710466959
326 => 0.25570085152171
327 => 0.24702815412303
328 => 0.2442811468018
329 => 0.22342781389188
330 => 0.22234230735249
331 => 0.22173297963771
401 => 0.21789125458715
402 => 0.21487271103447
403 => 0.21247225313004
404 => 0.20617273475141
405 => 0.20829863727989
406 => 0.19825851979602
407 => 0.20468183116229
408 => 0.18865756123091
409 => 0.20200304939351
410 => 0.1947397069315
411 => 0.19961684604777
412 => 0.19959983016885
413 => 0.19061947075742
414 => 0.18543978686423
415 => 0.18874048303728
416 => 0.19227909134439
417 => 0.19285321863691
418 => 0.19744111667419
419 => 0.19872150039986
420 => 0.19484187793569
421 => 0.18832549385392
422 => 0.18983910125322
423 => 0.18540911365859
424 => 0.17764573079602
425 => 0.18322152790358
426 => 0.18512535018659
427 => 0.18596618656514
428 => 0.17833179115034
429 => 0.17593289836023
430 => 0.17465574796743
501 => 0.1873399892745
502 => 0.18803486064636
503 => 0.18447980046303
504 => 0.20054900959634
505 => 0.19691205266555
506 => 0.20097542463332
507 => 0.18970175724662
508 => 0.19013242652279
509 => 0.18479529171339
510 => 0.18778373057918
511 => 0.18567159831072
512 => 0.18754229425115
513 => 0.18866358168468
514 => 0.19399984072277
515 => 0.20206398089998
516 => 0.19320278157104
517 => 0.18934183012871
518 => 0.19173714268872
519 => 0.19811617568661
520 => 0.20778073721511
521 => 0.20205912227281
522 => 0.20459827782488
523 => 0.20515297035384
524 => 0.20093406332109
525 => 0.20793629433519
526 => 0.21168884682168
527 => 0.21553818919148
528 => 0.21888046531506
529 => 0.21400067720013
530 => 0.21922274997326
531 => 0.21501468113805
601 => 0.21123960837071
602 => 0.21124533359782
603 => 0.20887717530586
604 => 0.20428857020803
605 => 0.20344236102616
606 => 0.20784444805469
607 => 0.21137450497239
608 => 0.21166525736796
609 => 0.21361967825847
610 => 0.21477628440934
611 => 0.22611259701765
612 => 0.23067215572761
613 => 0.23624749781012
614 => 0.23841940776032
615 => 0.24495607803761
616 => 0.2396771859063
617 => 0.2385350643879
618 => 0.22267924042374
619 => 0.22527563070961
620 => 0.22943270207169
621 => 0.22274778899936
622 => 0.22698782768887
623 => 0.22782490114248
624 => 0.22252063821118
625 => 0.22535387422646
626 => 0.21782963936581
627 => 0.20222798865858
628 => 0.2079536634324
629 => 0.21216968730722
630 => 0.20615290140586
701 => 0.21693775725229
702 => 0.21063746711142
703 => 0.20864057760402
704 => 0.20084999969316
705 => 0.20452685258024
706 => 0.20949984875748
707 => 0.20642711529281
708 => 0.21280349860526
709 => 0.22183415789501
710 => 0.22826994348995
711 => 0.22876400319446
712 => 0.22462622422106
713 => 0.23125704143288
714 => 0.23130533969724
715 => 0.22382575079463
716 => 0.2192445442383
717 => 0.21820368446976
718 => 0.22080395624415
719 => 0.2239611662149
720 => 0.22893920637477
721 => 0.23194733178559
722 => 0.23979092747055
723 => 0.24191317956939
724 => 0.24424489119939
725 => 0.24736077701029
726 => 0.25110219682301
727 => 0.24291618327193
728 => 0.24324142885096
729 => 0.23561872637527
730 => 0.22747277557388
731 => 0.23365453682503
801 => 0.24173636733567
802 => 0.2398823864869
803 => 0.23967377576802
804 => 0.24002460113339
805 => 0.23862676011877
806 => 0.23230437701605
807 => 0.22912931580208
808 => 0.23322595481261
809 => 0.23540313612628
810 => 0.23877975447362
811 => 0.23836351499054
812 => 0.24706132123095
813 => 0.25044102572796
814 => 0.24957635269192
815 => 0.24973547334007
816 => 0.25585426689619
817 => 0.26265962375646
818 => 0.26903373850204
819 => 0.27551776179584
820 => 0.26770101863943
821 => 0.26373215853429
822 => 0.26782700908038
823 => 0.26565422374143
824 => 0.27813969278904
825 => 0.27900415957656
826 => 0.29148872578264
827 => 0.3033380657467
828 => 0.29589570761825
829 => 0.30291351612221
830 => 0.31050384818956
831 => 0.32514683023447
901 => 0.32021558902807
902 => 0.31643833554636
903 => 0.3128688492577
904 => 0.32029638358441
905 => 0.32985178783796
906 => 0.33190993039365
907 => 0.33524490760483
908 => 0.33173858684888
909 => 0.33596156399086
910 => 0.35087052897224
911 => 0.3468419950292
912 => 0.34112082921093
913 => 0.35289002519151
914 => 0.35714925146529
915 => 0.3870427320288
916 => 0.42478448607832
917 => 0.4091591520761
918 => 0.39946000303454
919 => 0.4017395331262
920 => 0.41552154406608
921 => 0.41994788856081
922 => 0.40791555837169
923 => 0.41216558080867
924 => 0.4355836222894
925 => 0.44814665020309
926 => 0.43108437085654
927 => 0.38401021883925
928 => 0.34060570082562
929 => 0.35211853353376
930 => 0.35081333558945
1001 => 0.37597309970032
1002 => 0.34674591582698
1003 => 0.34723802664612
1004 => 0.37291806803415
1005 => 0.36606707325919
1006 => 0.35496933913286
1007 => 0.34068672656623
1008 => 0.31428399625506
1009 => 0.29089836172385
1010 => 0.33676297642954
1011 => 0.33478521084404
1012 => 0.3319211131878
1013 => 0.33829485259403
1014 => 0.36924392193319
1015 => 0.36853044571256
1016 => 0.36399167401569
1017 => 0.36743429234487
1018 => 0.35436583149494
1019 => 0.35773387141929
1020 => 0.34059882532821
1021 => 0.34834458178411
1022 => 0.35494552837967
1023 => 0.35627076613742
1024 => 0.35925659447393
1025 => 0.33374301825085
1026 => 0.34519786493577
1027 => 0.35192651418917
1028 => 0.32152623207194
1029 => 0.35132559835607
1030 => 0.33329888365139
1031 => 0.32718034592845
1101 => 0.33541815091634
1102 => 0.33220787030103
1103 => 0.32944785954199
1104 => 0.32790772611544
1105 => 0.33395666092519
1106 => 0.33367447088627
1107 => 0.32377723948987
1108 => 0.31086670459603
1109 => 0.31519990388027
1110 => 0.31362561195635
1111 => 0.30792017493635
1112 => 0.31176495061074
1113 => 0.29483450433719
1114 => 0.26570655149158
1115 => 0.28494936935472
1116 => 0.28420854179914
1117 => 0.28383498295177
1118 => 0.29829542874349
1119 => 0.29690539053986
1120 => 0.29438245758899
1121 => 0.3078738392942
1122 => 0.30294930348711
1123 => 0.31812556247801
1124 => 0.32812162818831
1125 => 0.32558630258533
1126 => 0.33498765070104
1127 => 0.31529973203994
1128 => 0.32183926887697
1129 => 0.32318705835567
1130 => 0.30770735773817
1201 => 0.29713281798087
1202 => 0.29642761673764
1203 => 0.27809282205982
1204 => 0.28788712138342
1205 => 0.29650569947254
1206 => 0.29237806939653
1207 => 0.2910713850239
1208 => 0.29774695209838
1209 => 0.29826570083243
1210 => 0.28643817472151
1211 => 0.28889749192901
1212 => 0.29915325351176
1213 => 0.2886390730507
1214 => 0.2682117378965
1215 => 0.26314547634826
1216 => 0.26246954366799
1217 => 0.24872944053888
1218 => 0.26348402817018
1219 => 0.25704325527075
1220 => 0.27738957968774
1221 => 0.26576786830028
1222 => 0.26526687955039
1223 => 0.26450956157586
1224 => 0.25268288721612
1225 => 0.25527217727653
1226 => 0.26387937179737
1227 => 0.26695051576939
1228 => 0.26663017029197
1229 => 0.26383719184858
1230 => 0.2651158030776
1231 => 0.26099695081124
]
'min_raw' => 0.14411405875953
'max_raw' => 0.44814665020309
'avg_raw' => 0.29613035448131
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.144114'
'max' => '$0.448146'
'avg' => '$0.29613'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.08209703545002
'max_diff' => 0.27990044206868
'year' => 2033
]
8 => [
'items' => [
101 => 0.2595424983495
102 => 0.25495184630156
103 => 0.24820485599108
104 => 0.24914306637545
105 => 0.23577551312434
106 => 0.22849216064339
107 => 0.2264762246697
108 => 0.22378043083393
109 => 0.22678072175669
110 => 0.23573764452552
111 => 0.22493369534914
112 => 0.20641108229515
113 => 0.20752432290069
114 => 0.21002544401724
115 => 0.20536462136312
116 => 0.20095354387419
117 => 0.20478861786879
118 => 0.19694034253852
119 => 0.21097387059532
120 => 0.2105943029899
121 => 0.21582513442192
122 => 0.21909608066383
123 => 0.21155760855765
124 => 0.20966170320914
125 => 0.21074169705974
126 => 0.19289180442527
127 => 0.21436641737768
128 => 0.21455213072225
129 => 0.21296194031624
130 => 0.22439650875911
131 => 0.24852701470489
201 => 0.23944814772074
202 => 0.23593253601426
203 => 0.22924935559036
204 => 0.23815429669722
205 => 0.23747053615894
206 => 0.23437831169633
207 => 0.23250812469301
208 => 0.23595400158968
209 => 0.23208114241168
210 => 0.23138547048426
211 => 0.22717045550261
212 => 0.22566588692512
213 => 0.22455196424895
214 => 0.22332564483426
215 => 0.2260305998833
216 => 0.21990081587572
217 => 0.21250889727271
218 => 0.21189433922254
219 => 0.21359118803156
220 => 0.2128404587491
221 => 0.21189074501956
222 => 0.21007748287071
223 => 0.20953952672537
224 => 0.21128762321852
225 => 0.20931412419811
226 => 0.21222612950479
227 => 0.21143422518997
228 => 0.20701071206102
301 => 0.20149737690802
302 => 0.20144829666055
303 => 0.20026045764552
304 => 0.19874756606708
305 => 0.19832671424023
306 => 0.20446563863385
307 => 0.2171730284061
308 => 0.21467826373174
309 => 0.21648098688273
310 => 0.22534860056493
311 => 0.22816734829605
312 => 0.2261666679222
313 => 0.22342801322988
314 => 0.22354850013743
315 => 0.23290731226824
316 => 0.23349100990109
317 => 0.2349658255113
318 => 0.23686138035326
319 => 0.2264894891084
320 => 0.22305998499253
321 => 0.22143489568079
322 => 0.21643024958933
323 => 0.22182733133304
324 => 0.21868268292706
325 => 0.21910700343352
326 => 0.21883066414704
327 => 0.21898156408343
328 => 0.21096994793823
329 => 0.21388895978339
330 => 0.20903553643915
331 => 0.20253734740354
401 => 0.20251556319533
402 => 0.20410598575582
403 => 0.2031599401836
404 => 0.20061415587382
405 => 0.20097577251926
406 => 0.19780763019427
407 => 0.20136044235858
408 => 0.20146232429888
409 => 0.20009429809264
410 => 0.20556789542535
411 => 0.2078104327186
412 => 0.20690996856369
413 => 0.20774725375304
414 => 0.21478193246715
415 => 0.2159288920421
416 => 0.2164382957214
417 => 0.21575576227419
418 => 0.20787583476619
419 => 0.20822534305921
420 => 0.20566088310743
421 => 0.20349418468431
422 => 0.2035808412584
423 => 0.20469480589896
424 => 0.20955955481746
425 => 0.21979713212383
426 => 0.22018564069904
427 => 0.22065652442578
428 => 0.21874120366192
429 => 0.21816352459238
430 => 0.21892563239672
501 => 0.22277032816675
502 => 0.23265992951199
503 => 0.22916428389231
504 => 0.22632226959056
505 => 0.22881548233475
506 => 0.22843167177523
507 => 0.22519192439957
508 => 0.22510099548105
509 => 0.21888288445727
510 => 0.21658419039132
511 => 0.21466322957554
512 => 0.21256559051266
513 => 0.21132203976269
514 => 0.21323269889835
515 => 0.21366968924893
516 => 0.20949199965619
517 => 0.20892259600179
518 => 0.21233418750492
519 => 0.21083287328135
520 => 0.21237701219109
521 => 0.21273526566353
522 => 0.21267757860319
523 => 0.21111003412894
524 => 0.21210914023198
525 => 0.20974595645043
526 => 0.20717634902672
527 => 0.20553709958259
528 => 0.2041066370277
529 => 0.20490034079212
530 => 0.20207093179653
531 => 0.20116574691409
601 => 0.21177066556487
602 => 0.21960463299429
603 => 0.21949072400527
604 => 0.21879733232965
605 => 0.21776709294905
606 => 0.22269495973909
607 => 0.22097818948525
608 => 0.22222728328587
609 => 0.22254523008244
610 => 0.22350755927618
611 => 0.22385150924795
612 => 0.22281185354464
613 => 0.21932264202106
614 => 0.2106278586486
615 => 0.20658041351759
616 => 0.20524468920883
617 => 0.20529324025055
618 => 0.20395398577847
619 => 0.20434845624167
620 => 0.2038168050496
621 => 0.20280998631204
622 => 0.20483817257222
623 => 0.20507190214484
624 => 0.2045984992367
625 => 0.204710002759
626 => 0.20079042887258
627 => 0.2010884255623
628 => 0.19942914212636
629 => 0.19911804648508
630 => 0.19492352244938
701 => 0.18749231511414
702 => 0.19160992534261
703 => 0.18663643121023
704 => 0.18475289362157
705 => 0.19366926761612
706 => 0.19277431096878
707 => 0.19124253421685
708 => 0.18897671715049
709 => 0.18813630356013
710 => 0.18303021662769
711 => 0.18272852177181
712 => 0.18525923633147
713 => 0.18409139863876
714 => 0.18245131222347
715 => 0.17651108548019
716 => 0.16983230387925
717 => 0.17003389431446
718 => 0.17215829047857
719 => 0.17833525883957
720 => 0.17592181043829
721 => 0.17417082593203
722 => 0.17384291916841
723 => 0.17794735883443
724 => 0.18375600086856
725 => 0.18648128574993
726 => 0.18378061120062
727 => 0.18067822169302
728 => 0.18086704976726
729 => 0.1821232383487
730 => 0.18225524600706
731 => 0.18023590936841
801 => 0.18080434080386
802 => 0.17994084147496
803 => 0.17464154768736
804 => 0.17454570026698
805 => 0.17324516810885
806 => 0.17320578851196
807 => 0.17099325887803
808 => 0.17068371068775
809 => 0.16629059880862
810 => 0.16918215835103
811 => 0.16724265202367
812 => 0.16431935850505
813 => 0.16381538160058
814 => 0.16380023144626
815 => 0.16680180025342
816 => 0.16914708327192
817 => 0.16727639056661
818 => 0.16685047009946
819 => 0.17139818638976
820 => 0.17081944803846
821 => 0.1703182643587
822 => 0.18323590068414
823 => 0.17301058355683
824 => 0.16855176164862
825 => 0.1630331228299
826 => 0.16483001945667
827 => 0.16520865197783
828 => 0.15193732042822
829 => 0.14655314287138
830 => 0.14470549603232
831 => 0.14364214915455
901 => 0.14412672967942
902 => 0.13928033837723
903 => 0.14253719348422
904 => 0.13834062827178
905 => 0.13763706045711
906 => 0.14514103891162
907 => 0.14618517367596
908 => 0.14173057038405
909 => 0.14459114683222
910 => 0.14355386204713
911 => 0.13841256633747
912 => 0.13821620665817
913 => 0.13563648519635
914 => 0.13159972064111
915 => 0.12975481091851
916 => 0.12879396591674
917 => 0.12919042929097
918 => 0.12898996527698
919 => 0.12768180198662
920 => 0.1290649476655
921 => 0.12553158201122
922 => 0.12412456733742
923 => 0.12348905145176
924 => 0.12035298606064
925 => 0.12534386071252
926 => 0.12632712589232
927 => 0.12731232840827
928 => 0.1358878436833
929 => 0.13545943517432
930 => 0.13933203945215
1001 => 0.13918155717117
1002 => 0.1380770276991
1003 => 0.13341719954274
1004 => 0.13527452399241
1005 => 0.12955796802861
1006 => 0.13384120044471
1007 => 0.13188651204206
1008 => 0.13318031832954
1009 => 0.13085393796685
1010 => 0.13214145291345
1011 => 0.12656029454318
1012 => 0.12134868738604
1013 => 0.12344599024237
1014 => 0.12572599830288
1015 => 0.1306696367133
1016 => 0.12772524646019
1017 => 0.12878416053493
1018 => 0.12523697564461
1019 => 0.11791812001262
1020 => 0.11795954394067
1021 => 0.11683369745163
1022 => 0.11586080170882
1023 => 0.12806344510002
1024 => 0.12654585349908
1025 => 0.12412776990046
1026 => 0.12736447088803
1027 => 0.1282203060025
1028 => 0.12824467042505
1029 => 0.13060608391424
1030 => 0.13186637071673
1031 => 0.13208850172806
1101 => 0.13580423687502
1102 => 0.13704970228455
1103 => 0.14217959804154
1104 => 0.13175944418667
1105 => 0.1315448479752
1106 => 0.12741001790857
1107 => 0.12478764331124
1108 => 0.12758957414079
1109 => 0.13007170235408
1110 => 0.12748714455107
1111 => 0.12782463323715
1112 => 0.12435507555274
1113 => 0.12559527916705
1114 => 0.12666350959317
1115 => 0.12607369553955
1116 => 0.12519071535396
1117 => 0.1298681961464
1118 => 0.1296042743489
1119 => 0.13396005199764
1120 => 0.13735569215949
1121 => 0.1434412863728
1122 => 0.13709065156201
1123 => 0.13685920918802
1124 => 0.13912159551831
1125 => 0.13704935592499
1126 => 0.13835893981669
1127 => 0.14323029216176
1128 => 0.14333321616063
1129 => 0.1416091065694
1130 => 0.14150419434408
1201 => 0.14183532845077
1202 => 0.14377479125643
1203 => 0.14309708335846
1204 => 0.14388134409546
1205 => 0.1448620741561
1206 => 0.14891878950784
1207 => 0.14989684984519
1208 => 0.14752067029156
1209 => 0.1477352127003
1210 => 0.14684645631965
1211 => 0.14598792879203
1212 => 0.14791777329624
1213 => 0.15144460205888
1214 => 0.15142266184019
1215 => 0.15224081756137
1216 => 0.1527505217977
1217 => 0.15056249808908
1218 => 0.14913817511063
1219 => 0.1496843511726
1220 => 0.15055769858984
1221 => 0.14940113637587
1222 => 0.14226229861947
1223 => 0.14442776596404
1224 => 0.14406732631196
1225 => 0.14355401641644
1226 => 0.14573141057647
1227 => 0.14552139559795
1228 => 0.13923063162957
1229 => 0.13963334592849
1230 => 0.13925512201992
1231 => 0.14047724084585
]
'min_raw' => 0.11586080170882
'max_raw' => 0.2595424983495
'avg_raw' => 0.18770165002916
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.11586'
'max' => '$0.259542'
'avg' => '$0.1877016'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.028253257050715
'max_diff' => -0.18860415185359
'year' => 2034
]
9 => [
'items' => [
101 => 0.13698335749774
102 => 0.13805805248395
103 => 0.13873209110467
104 => 0.13912910503048
105 => 0.1405633915655
106 => 0.14039509459509
107 => 0.14055292998952
108 => 0.14267959828334
109 => 0.15343555672909
110 => 0.15402097981561
111 => 0.15113814242916
112 => 0.1522897791036
113 => 0.15007888852394
114 => 0.15156307418174
115 => 0.15257851631458
116 => 0.14798992857457
117 => 0.1477182221883
118 => 0.14549820647676
119 => 0.14669111717202
120 => 0.14479311048255
121 => 0.14525881493469
122 => 0.14395666468712
123 => 0.14630027587722
124 => 0.14892079734812
125 => 0.14958284455919
126 => 0.14784128337609
127 => 0.14658027830506
128 => 0.14436636880121
129 => 0.1480481496463
130 => 0.14912481456564
131 => 0.14804249438383
201 => 0.14779169714854
202 => 0.14731643684085
203 => 0.14789252586952
204 => 0.14911895081727
205 => 0.14854059146042
206 => 0.148922608005
207 => 0.14746675487082
208 => 0.15056322241597
209 => 0.15548115808317
210 => 0.15549697005051
211 => 0.15491860757609
212 => 0.15468195411255
213 => 0.15527538910927
214 => 0.15559730325102
215 => 0.15751636321305
216 => 0.15957559101104
217 => 0.16918510863276
218 => 0.16648679453769
219 => 0.17501293024444
220 => 0.18175599660833
221 => 0.1837779473723
222 => 0.18191784780958
223 => 0.17555454768612
224 => 0.17524233382433
225 => 0.1847517907248
226 => 0.1820649335897
227 => 0.18174534048299
228 => 0.17834540978865
301 => 0.18035518991861
302 => 0.1799156215225
303 => 0.1792217413048
304 => 0.18305626179027
305 => 0.19023414182906
306 => 0.18911540191129
307 => 0.18828031445952
308 => 0.18462120433616
309 => 0.18682480592225
310 => 0.18604014560465
311 => 0.18941154428681
312 => 0.18741440239312
313 => 0.18204457800431
314 => 0.1828997402374
315 => 0.18277048418621
316 => 0.1854305645604
317 => 0.18463207445932
318 => 0.18261456617867
319 => 0.19020960861543
320 => 0.18971642880543
321 => 0.19041564501941
322 => 0.19072346162078
323 => 0.19534643011237
324 => 0.19724031238489
325 => 0.19767025681782
326 => 0.1994692984986
327 => 0.19762549502192
328 => 0.20500202353825
329 => 0.20990698456924
330 => 0.21560434921373
331 => 0.22392973026657
401 => 0.22706015055651
402 => 0.22649466815044
403 => 0.23280687704844
404 => 0.24414977612563
405 => 0.22878739235984
406 => 0.244964019768
407 => 0.23984268629872
408 => 0.22770009677191
409 => 0.22691825715811
410 => 0.23514135976403
411 => 0.25337940989966
412 => 0.24881098519494
413 => 0.25338688220588
414 => 0.24804885527953
415 => 0.24778377725022
416 => 0.25312762615277
417 => 0.26561382039162
418 => 0.25968209754674
419 => 0.25117751833048
420 => 0.25745716727785
421 => 0.25201715420556
422 => 0.2397592821899
423 => 0.24880749180666
424 => 0.24275721171411
425 => 0.24452300509569
426 => 0.257239793939
427 => 0.25570967626093
428 => 0.25768979022144
429 => 0.25419494090974
430 => 0.25093020056546
501 => 0.24483632027006
502 => 0.24303222273926
503 => 0.24353081039214
504 => 0.24303197566398
505 => 0.23962250564435
506 => 0.23888623091823
507 => 0.23765907411776
508 => 0.23803942132339
509 => 0.23573200752112
510 => 0.24008657410202
511 => 0.24089482003174
512 => 0.2440637104486
513 => 0.24439271516407
514 => 0.25321802986869
515 => 0.24835719483277
516 => 0.25161826263917
517 => 0.2513265620402
518 => 0.22796326350651
519 => 0.23118251990832
520 => 0.23619067261124
521 => 0.23393450660697
522 => 0.23074481573846
523 => 0.22816896934174
524 => 0.2242662986569
525 => 0.22975923270167
526 => 0.23698185686213
527 => 0.24457589283192
528 => 0.25369962946868
529 => 0.25166331766336
530 => 0.24440533092184
531 => 0.2447309189051
601 => 0.24674357570347
602 => 0.24413700228042
603 => 0.24336827289161
604 => 0.24663796409009
605 => 0.24666048065639
606 => 0.24366130291825
607 => 0.24032826570603
608 => 0.24031430015842
609 => 0.23972121837982
610 => 0.24815436321041
611 => 0.25279174018012
612 => 0.25332340797619
613 => 0.25275595470133
614 => 0.25297434494541
615 => 0.25027595746436
616 => 0.25644367106408
617 => 0.26210377498684
618 => 0.26058674622506
619 => 0.2583125044528
620 => 0.25650096133887
621 => 0.26016000423908
622 => 0.25999707281861
623 => 0.26205433891684
624 => 0.26196100944328
625 => 0.26126922823214
626 => 0.26058677093074
627 => 0.26329263698929
628 => 0.26251339101931
629 => 0.2617329346651
630 => 0.26016760996485
701 => 0.2603803635889
702 => 0.25810651449655
703 => 0.25705452786218
704 => 0.24123517295003
705 => 0.23700772440517
706 => 0.23833776577503
707 => 0.2387756499285
708 => 0.23693585890415
709 => 0.23957364662953
710 => 0.23916255020663
711 => 0.24076188590474
712 => 0.23976269039565
713 => 0.23980369772787
714 => 0.24274211866917
715 => 0.24359515476937
716 => 0.24316129372396
717 => 0.24346515512828
718 => 0.25046751293884
719 => 0.24947200158097
720 => 0.24894315601339
721 => 0.2490896498498
722 => 0.25087890240265
723 => 0.25137979542787
724 => 0.24925747648285
725 => 0.2502583743663
726 => 0.25452007052119
727 => 0.25601142298428
728 => 0.2607711041567
729 => 0.25874910699807
730 => 0.26246057029272
731 => 0.27386834312938
801 => 0.28298166142915
802 => 0.27460067729688
803 => 0.29133612578031
804 => 0.30436707298217
805 => 0.30386692352439
806 => 0.3015946764685
807 => 0.28675928952484
808 => 0.27310754527613
809 => 0.28452780902386
810 => 0.28455692162475
811 => 0.28357591084069
812 => 0.27748293711425
813 => 0.2833638885623
814 => 0.28383069713176
815 => 0.28356940846728
816 => 0.27889793979695
817 => 0.27176547056908
818 => 0.27315913798349
819 => 0.27544199363833
820 => 0.27112007163013
821 => 0.26973895567402
822 => 0.27230671300449
823 => 0.28058056213674
824 => 0.27901643888543
825 => 0.27897559330622
826 => 0.2856675758668
827 => 0.28087756057365
828 => 0.27317671659272
829 => 0.27123215192589
830 => 0.26433025737433
831 => 0.26909742052479
901 => 0.26926898223976
902 => 0.26665805570148
903 => 0.27338857889167
904 => 0.27332655593558
905 => 0.27971618599849
906 => 0.29193075884332
907 => 0.28831830861048
908 => 0.28411742202315
909 => 0.28457417487315
910 => 0.28958362627547
911 => 0.28655479760297
912 => 0.28764398551135
913 => 0.28958197765912
914 => 0.29075121643951
915 => 0.28440593940621
916 => 0.28292655180006
917 => 0.27990024395238
918 => 0.27911073672363
919 => 0.28157560131958
920 => 0.2809261965835
921 => 0.26925456314194
922 => 0.26803481250694
923 => 0.26807222051751
924 => 0.26500509954983
925 => 0.26032700388073
926 => 0.27262075998454
927 => 0.2716333993184
928 => 0.27054342955862
929 => 0.27067694463491
930 => 0.27601324748552
1001 => 0.27291792234242
1002 => 0.28114735154918
1003 => 0.27945562830355
1004 => 0.27772051874013
1005 => 0.27748067374574
1006 => 0.27681280459642
1007 => 0.27452243278022
1008 => 0.27175667118215
1009 => 0.26993047580894
1010 => 0.24899659546278
1011 => 0.25288180188824
1012 => 0.25735137773304
1013 => 0.25889425740396
1014 => 0.25625505496282
1015 => 0.27462664457872
1016 => 0.27798331103459
1017 => 0.26781574938983
1018 => 0.2659138137449
1019 => 0.27475133516296
1020 => 0.26942122940482
1021 => 0.27182137570134
1022 => 0.26663357221809
1023 => 0.27717478838004
1024 => 0.27709448197425
1025 => 0.27299371080309
1026 => 0.27645965451608
1027 => 0.27585736150327
1028 => 0.27122760095078
1029 => 0.2773215600475
1030 => 0.27732458257519
1031 => 0.2733776794814
1101 => 0.26876856075604
1102 => 0.26794455919047
1103 => 0.26732378469985
1104 => 0.27166870323082
1105 => 0.27556434359948
1106 => 0.28281316451442
1107 => 0.28463569032017
1108 => 0.29174912987243
1109 => 0.28751342296614
1110 => 0.28939105697611
1111 => 0.29142949430148
1112 => 0.29240679611631
1113 => 0.29081433525395
1114 => 0.30186443488714
1115 => 0.30279740186249
1116 => 0.30311021761919
1117 => 0.29938418619556
1118 => 0.30269377418826
1119 => 0.30114532756851
1120 => 0.30517395550223
1121 => 0.30580569580234
1122 => 0.30527063424296
1123 => 0.30547115858556
1124 => 0.29604184791979
1125 => 0.29555288841819
1126 => 0.28888589091893
1127 => 0.29160274167984
1128 => 0.28652371940437
1129 => 0.28813432968765
1130 => 0.28884427135406
1201 => 0.28847343811636
1202 => 0.29175634834553
1203 => 0.28896520399649
1204 => 0.28159891515275
1205 => 0.27423061936854
1206 => 0.27413811641705
1207 => 0.27219817419829
1208 => 0.27079595129227
1209 => 0.2710660691705
1210 => 0.27201799980541
1211 => 0.27074062335325
1212 => 0.27101321638395
1213 => 0.2755400769714
1214 => 0.27644790657812
1215 => 0.27336274686256
1216 => 0.26097538541817
1217 => 0.25793549584837
1218 => 0.26012050818751
1219 => 0.25907621302222
1220 => 0.20909472397831
1221 => 0.22083713344327
1222 => 0.21386019247374
1223 => 0.21707548786612
1224 => 0.20995383780633
1225 => 0.21335266249252
1226 => 0.21272502367819
1227 => 0.23160647061469
1228 => 0.23131166279135
1229 => 0.2314527716955
1230 => 0.2247172760433
1231 => 0.23544710350589
]
'min_raw' => 0.13698335749774
'max_raw' => 0.30580569580234
'avg_raw' => 0.22139452665004
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.136983'
'max' => '$0.3058056'
'avg' => '$0.221394'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.021122555788925
'max_diff' => 0.046263197452847
'year' => 2035
]
10 => [
'items' => [
101 => 0.24073300234608
102 => 0.2397547231504
103 => 0.24000093494775
104 => 0.2357702005305
105 => 0.23149373445259
106 => 0.22675047542876
107 => 0.23556286441049
108 => 0.23458307718822
109 => 0.23683035655979
110 => 0.24254582073702
111 => 0.24338744454805
112 => 0.24451859548499
113 => 0.2441131583949
114 => 0.25377231475055
115 => 0.25260252718272
116 => 0.25542137865035
117 => 0.24962278731466
118 => 0.24306113081098
119 => 0.24430828719562
120 => 0.24418817600678
121 => 0.24265902271566
122 => 0.24127857149749
123 => 0.23898050915897
124 => 0.24625191844729
125 => 0.24595671250933
126 => 0.25073575350542
127 => 0.24989101158824
128 => 0.24424961832185
129 => 0.244451101786
130 => 0.24580617491207
131 => 0.25049609847332
201 => 0.25188838710065
202 => 0.25124342353537
203 => 0.25277000445484
204 => 0.25397655176987
205 => 0.25292152822128
206 => 0.26785843682162
207 => 0.26165559097312
208 => 0.26467881488056
209 => 0.26539983596861
210 => 0.263552955613
211 => 0.26395347783031
212 => 0.26456015985375
213 => 0.26824381429958
214 => 0.27791078943946
215 => 0.28219222692358
216 => 0.29507314283698
217 => 0.28183671314101
218 => 0.28105131818065
219 => 0.28337156010304
220 => 0.29093402132763
221 => 0.29706268584429
222 => 0.29909591743561
223 => 0.29936464255539
224 => 0.30317912018738
225 => 0.30536550763024
226 => 0.30271594227214
227 => 0.3004707130522
228 => 0.2924285806745
229 => 0.29335947939521
301 => 0.29977244845312
302 => 0.30883114496941
303 => 0.31660444897712
304 => 0.31388250884061
305 => 0.33464899069187
306 => 0.33670790254395
307 => 0.33642342749858
308 => 0.34111393510479
309 => 0.33180423271173
310 => 0.32782415457171
311 => 0.30095615709398
312 => 0.30850496845385
313 => 0.31947760909156
314 => 0.31802533895787
315 => 0.31005671402724
316 => 0.31659840406054
317 => 0.31443551675797
318 => 0.31272955780416
319 => 0.320544886488
320 => 0.31195161156411
321 => 0.31939188460069
322 => 0.30984965747151
323 => 0.31389494243388
324 => 0.31159864304082
325 => 0.313084630172
326 => 0.30439757976683
327 => 0.30908490129923
328 => 0.3042025717806
329 => 0.30420025692071
330 => 0.30409247922598
331 => 0.30983651825309
401 => 0.31002383115954
402 => 0.30577897763975
403 => 0.30516722793048
404 => 0.30742918723667
405 => 0.3047810252972
406 => 0.30602008360135
407 => 0.30481855511098
408 => 0.30454806573974
409 => 0.3023927604097
410 => 0.30146419561217
411 => 0.30182830979545
412 => 0.30058540037418
413 => 0.29983650248988
414 => 0.30394350458731
415 => 0.30174929904264
416 => 0.30360721111825
417 => 0.3014898858209
418 => 0.29415031386555
419 => 0.28992924841947
420 => 0.2760654773745
421 => 0.2799972256449
422 => 0.28260397881586
423 => 0.28174244690841
424 => 0.2835933508142
425 => 0.2837069812816
426 => 0.28310523355409
427 => 0.2824084867743
428 => 0.28206934897441
429 => 0.28459700428441
430 => 0.28606439326882
501 => 0.28286560137042
502 => 0.28211616918448
503 => 0.28535032440391
504 => 0.28732315721945
505 => 0.30188944629038
506 => 0.30081032854751
507 => 0.30351870231595
508 => 0.303213780993
509 => 0.3060525881801
510 => 0.31069283816158
511 => 0.30125791251494
512 => 0.30289548937201
513 => 0.30249399334383
514 => 0.30687742170162
515 => 0.30689110628648
516 => 0.3042630220175
517 => 0.30568774913551
518 => 0.30489250554358
519 => 0.30632961819782
520 => 0.30079591627215
521 => 0.30753536789141
522 => 0.31135620267886
523 => 0.31140925497359
524 => 0.31322030033882
525 => 0.31506042731857
526 => 0.31859239081492
527 => 0.31496192277363
528 => 0.30843106418631
529 => 0.30890257108177
530 => 0.30507353108156
531 => 0.30513789793574
601 => 0.30479430262363
602 => 0.30582545801993
603 => 0.30102219689473
604 => 0.3021495126802
605 => 0.300571263979
606 => 0.30289205856756
607 => 0.30039526723136
608 => 0.30249379973029
609 => 0.30339945678937
610 => 0.3067413508348
611 => 0.29990166676364
612 => 0.28595508793663
613 => 0.28888682789199
614 => 0.28455055421481
615 => 0.28495189285299
616 => 0.28576266077468
617 => 0.28313469667371
618 => 0.28363602940751
619 => 0.28361811827443
620 => 0.28346376980596
621 => 0.28278013484651
622 => 0.28178872890225
623 => 0.28573818504553
624 => 0.28640927460448
625 => 0.28790102356361
626 => 0.292339456603
627 => 0.29189595247691
628 => 0.29261932610738
629 => 0.29104020553363
630 => 0.28502514372738
701 => 0.28535179052279
702 => 0.2812784997498
703 => 0.28779686036054
704 => 0.28625322652976
705 => 0.28525803575713
706 => 0.28498648873444
707 => 0.28943592379084
708 => 0.29076726449607
709 => 0.28993766231152
710 => 0.28823612402766
711 => 0.29150358054732
712 => 0.29237781406905
713 => 0.29257352271408
714 => 0.29836282919427
715 => 0.29289708063515
716 => 0.2942127406382
717 => 0.30447714441027
718 => 0.2951687465799
719 => 0.30009961251269
720 => 0.29985827228427
721 => 0.30238073644408
722 => 0.29965135659795
723 => 0.29968519053228
724 => 0.30192496781966
725 => 0.29877960456549
726 => 0.29800076839041
727 => 0.29692481179268
728 => 0.29927412366075
729 => 0.30068242987543
730 => 0.31203234367877
731 => 0.31936490561469
801 => 0.31904657976279
802 => 0.32195548216808
803 => 0.320644994992
804 => 0.31641308621141
805 => 0.32363643847359
806 => 0.32135066757994
807 => 0.3215391037552
808 => 0.32153209015135
809 => 0.32305192797006
810 => 0.32197498358441
811 => 0.31985221565422
812 => 0.32126140807171
813 => 0.32544620575616
814 => 0.33843594617395
815 => 0.34570517700292
816 => 0.33799832935053
817 => 0.34331440966235
818 => 0.34012665578835
819 => 0.33954734608198
820 => 0.34288623737305
821 => 0.34623097295133
822 => 0.34601792775468
823 => 0.34358982147893
824 => 0.34221824585467
825 => 0.3526042759931
826 => 0.36025652607769
827 => 0.35973469392326
828 => 0.36203789134402
829 => 0.36880015020659
830 => 0.3694184064096
831 => 0.36934052033848
901 => 0.36780810783096
902 => 0.37446642987144
903 => 0.38002091925964
904 => 0.36745339861113
905 => 0.37223894595316
906 => 0.3743873323357
907 => 0.37754180094279
908 => 0.38286391823327
909 => 0.38864514923263
910 => 0.38946267868391
911 => 0.38888260241584
912 => 0.38506972516393
913 => 0.39139561710786
914 => 0.39510117624819
915 => 0.39730775191605
916 => 0.40290326067054
917 => 0.3744006000386
918 => 0.35422500016916
919 => 0.35107428891035
920 => 0.35748138415074
921 => 0.35917088407
922 => 0.358489848771
923 => 0.33578037683265
924 => 0.35095472824043
925 => 0.36728105445949
926 => 0.36790821514062
927 => 0.37608151541327
928 => 0.37874307701694
929 => 0.38532365503538
930 => 0.38491203808862
1001 => 0.38651430411625
1002 => 0.38614597090388
1003 => 0.39833510597884
1004 => 0.4117815320706
1005 => 0.41131592509206
1006 => 0.40938284225048
1007 => 0.41225379990984
1008 => 0.42613195264313
1009 => 0.42485427473231
1010 => 0.42609542999032
1011 => 0.44245855420129
1012 => 0.46373294330282
1013 => 0.45384885365141
1014 => 0.47529448412478
1015 => 0.48879337172374
1016 => 0.51213830201511
1017 => 0.50921540176642
1018 => 0.51830341181584
1019 => 0.50398280029359
1020 => 0.47109978156539
1021 => 0.46589591798051
1022 => 0.47631418466025
1023 => 0.50192647669278
1024 => 0.47550756243773
1025 => 0.48085207438346
1026 => 0.47931285458355
1027 => 0.47923083610167
1028 => 0.48236114796155
1029 => 0.47782046734271
1030 => 0.45932091764874
1031 => 0.46779915225496
1101 => 0.46452529871523
1102 => 0.46815788329951
1103 => 0.487761444109
1104 => 0.4790942425846
1105 => 0.46996404984492
1106 => 0.48141533769244
1107 => 0.49599676221177
1108 => 0.49508428287069
1109 => 0.49331369156221
1110 => 0.50329442206292
1111 => 0.51977966477043
1112 => 0.5242355596312
1113 => 0.52752481012066
1114 => 0.52797834219082
1115 => 0.53265000438202
1116 => 0.50752929936948
1117 => 0.54739650336984
1118 => 0.55428046819142
1119 => 0.55298656811607
1120 => 0.56063780529373
1121 => 0.55838661722291
1122 => 0.55512499890888
1123 => 0.56725383730029
1124 => 0.55334910283132
1125 => 0.53361308281002
1126 => 0.52278551189212
1127 => 0.53704413071204
1128 => 0.54575137166815
1129 => 0.5515063040556
1130 => 0.55324774311882
1201 => 0.50947934819013
1202 => 0.48589061083003
1203 => 0.50101072103243
1204 => 0.51945829901362
1205 => 0.50742682214235
1206 => 0.50789843325711
1207 => 0.49074470905519
1208 => 0.52097602297796
1209 => 0.51657157482478
1210 => 0.5394218596348
1211 => 0.5339684557799
1212 => 0.55260197599952
1213 => 0.54769514564843
1214 => 0.56806312409862
1215 => 0.5761884621434
1216 => 0.58983216932848
1217 => 0.5998685358737
1218 => 0.60576208227416
1219 => 0.60540825585441
1220 => 0.62876142284617
1221 => 0.61499087616864
1222 => 0.597691824073
1223 => 0.5973789387984
1224 => 0.6063383630082
1225 => 0.62511485825393
1226 => 0.62998333028425
1227 => 0.63270414198004
1228 => 0.62853712415581
1229 => 0.61359018268132
1230 => 0.60713616913535
1231 => 0.61263517566729
]
'min_raw' => 0.22675047542876
'max_raw' => 0.63270414198004
'avg_raw' => 0.4297273087044
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.22675'
'max' => '$0.6327041'
'avg' => '$0.429727'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.089767117931023
'max_diff' => 0.32689844617769
'year' => 2036
]
11 => [
'items' => [
101 => 0.60591036321375
102 => 0.61751927615768
103 => 0.63346079315971
104 => 0.63016893293839
105 => 0.64117312811502
106 => 0.65256131244775
107 => 0.66884692751891
108 => 0.67310459035309
109 => 0.68014234511357
110 => 0.68738650654412
111 => 0.68971313595998
112 => 0.69415539342558
113 => 0.69413198053598
114 => 0.70751902240697
115 => 0.72228534415285
116 => 0.72785928877079
117 => 0.74067626707063
118 => 0.71872764089264
119 => 0.73537592597629
120 => 0.75039309585535
121 => 0.73248900684029
122 => 0.75716562242983
123 => 0.75812375949476
124 => 0.77259049162247
125 => 0.75792568712051
126 => 0.74921777301897
127 => 0.77435719474885
128 => 0.78652136903957
129 => 0.78285742074787
130 => 0.7549745933366
131 => 0.73874559183251
201 => 0.69627116455571
202 => 0.74658395842379
203 => 0.77108985267261
204 => 0.75491112899068
205 => 0.76307073615569
206 => 0.80758690708648
207 => 0.8245357827683
208 => 0.82101053510807
209 => 0.82160624393213
210 => 0.83075154960619
211 => 0.87130687137679
212 => 0.84700518250685
213 => 0.86558291308101
214 => 0.87543647439055
215 => 0.8845890112798
216 => 0.8621132733688
217 => 0.83287266858077
218 => 0.82361094160731
219 => 0.75330247376831
220 => 0.74964261268309
221 => 0.74758822175081
222 => 0.73463557752219
223 => 0.72445834718634
224 => 0.71636503576693
225 => 0.69512576973504
226 => 0.70229339853561
227 => 0.66844244146011
228 => 0.69009908419275
301 => 0.63607213934031
302 => 0.68106738443276
303 => 0.65657851821169
304 => 0.67302213325319
305 => 0.6729647630294
306 => 0.6426868542851
307 => 0.62522318840522
308 => 0.63635171599992
309 => 0.64828238096506
310 => 0.65021809121608
311 => 0.6656865097656
312 => 0.67000341289023
313 => 0.65692299488567
314 => 0.6349525509946
315 => 0.64005578401802
316 => 0.62511977155088
317 => 0.59894498420763
318 => 0.6177441734455
319 => 0.62416304319331
320 => 0.62699798174888
321 => 0.60125808459144
322 => 0.59317005006421
323 => 0.5888640483471
324 => 0.63162985349936
325 => 0.63397266084395
326 => 0.62198652722946
327 => 0.67616498773877
328 => 0.6639027335224
329 => 0.6776026758073
330 => 0.63959271911071
331 => 0.64104475064371
401 => 0.62305022800696
402 => 0.63312595828911
403 => 0.62600475688163
404 => 0.63231193885261
405 => 0.63609243772054
406 => 0.65408400763318
407 => 0.68127281926091
408 => 0.65139666705422
409 => 0.63837919970338
410 => 0.64645516323483
411 => 0.66796251835709
412 => 0.70054726230856
413 => 0.6812564380602
414 => 0.68981737828218
415 => 0.69168756287097
416 => 0.67746322325536
417 => 0.70107173399958
418 => 0.7137237267026
419 => 0.72670205325491
420 => 0.73797077055582
421 => 0.7215182242304
422 => 0.73912480717847
423 => 0.7249370093026
424 => 0.71220908790035
425 => 0.71222839090326
426 => 0.70424397988237
427 => 0.68877317742887
428 => 0.68592012409175
429 => 0.70076206785236
430 => 0.71266390121107
501 => 0.71364419321243
502 => 0.72023365969809
503 => 0.72413323808741
504 => 0.76235440752241
505 => 0.77772727805126
506 => 0.7965249331404
507 => 0.80384767917541
508 => 0.82588651939103
509 => 0.80808836600983
510 => 0.80423762357017
511 => 0.75077860605675
512 => 0.75953251717974
513 => 0.77354837351444
514 => 0.75100972236534
515 => 0.76530530883708
516 => 0.76812756042852
517 => 0.75024386762382
518 => 0.75979632065956
519 => 0.73442783750157
520 => 0.68182578286969
521 => 0.70113029512348
522 => 0.71534491397083
523 => 0.69505890022579
524 => 0.73142079468662
525 => 0.71017892660446
526 => 0.70344627421191
527 => 0.67717979686466
528 => 0.68957656308313
529 => 0.70634336689821
530 => 0.69598343149065
531 => 0.71748185301346
601 => 0.74792935130935
602 => 0.76962805177487
603 => 0.77129380856278
604 => 0.75734299786347
605 => 0.77969926104199
606 => 0.77986210201236
607 => 0.75464414581897
608 => 0.73919828806469
609 => 0.73568895668455
610 => 0.74445595451708
611 => 0.75510070836284
612 => 0.7718845183175
613 => 0.78202662316067
614 => 0.8084718536349
615 => 0.81562717475705
616 => 0.82348870331248
617 => 0.83399412986815
618 => 0.84660858798432
619 => 0.81900887176765
620 => 0.82010545994524
621 => 0.79440498634836
622 => 0.76694034448936
623 => 0.7877825841444
624 => 0.81503103996642
625 => 0.80878021409398
626 => 0.80807686849055
627 => 0.80925970070372
628 => 0.80454678212879
629 => 0.78323042608329
630 => 0.77252548552469
701 => 0.78633758996689
702 => 0.79367810877187
703 => 0.80506261327789
704 => 0.80365923279978
705 => 0.83298449380076
706 => 0.84437940347588
707 => 0.84146409796531
708 => 0.84200058434
709 => 0.86263052401497
710 => 0.88557525980423
711 => 0.90706603269542
712 => 0.92892736993052
713 => 0.9025726746311
714 => 0.88919138568968
715 => 0.90299746019916
716 => 0.89567176272986
717 => 0.93776739333147
718 => 0.94068200346073
719 => 0.98277459006911
720 => 1.0227254670524
721 => 0.99763303701352
722 => 1.0212940683524
723 => 1.0468854028575
724 => 1.0962552391623
725 => 1.0796292151466
726 => 1.0668939413136
727 => 1.0548591690778
728 => 1.0799016196342
729 => 1.1121183322121
730 => 1.1190575035335
731 => 1.1303016120417
801 => 1.1184798068095
802 => 1.1327178690825
803 => 1.182984485428
804 => 1.1694020019757
805 => 1.1501126919804
806 => 1.1897933579279
807 => 1.2041536366797
808 => 1.3049415934957
809 => 1.4321905523188
810 => 1.3795086478043
811 => 1.3468072896378
812 => 1.3544928844935
813 => 1.4009598966066
814 => 1.4158836261081
815 => 1.375315784805
816 => 1.3896450321783
817 => 1.4686005940261
818 => 1.5109577197597
819 => 1.4534310536925
820 => 1.2947172635538
821 => 1.1483759006642
822 => 1.18719221994
823 => 1.1827916539448
824 => 1.2676195552432
825 => 1.1690780642374
826 => 1.1707372502222
827 => 1.2573193026852
828 => 1.2342206954802
829 => 1.1968039100543
830 => 1.1486490846057
831 => 1.0596304359818
901 => 0.98078413642701
902 => 1.1354198870724
903 => 1.1287517123177
904 => 1.1190952071048
905 => 1.1405847145131
906 => 1.2449316625851
907 => 1.242526127694
908 => 1.227223342031
909 => 1.2388303700838
910 => 1.1947691419175
911 => 1.2061247236715
912 => 1.1483527194447
913 => 1.1744680781272
914 => 1.1967236304375
915 => 1.2011917620629
916 => 1.2112586907633
917 => 1.1252378872262
918 => 1.1638587025762
919 => 1.1865448133134
920 => 1.0840481396752
921 => 1.1845187836275
922 => 1.1237404564156
923 => 1.1031113793001
924 => 1.1308857139619
925 => 1.1200620287328
926 => 1.1107564597609
927 => 1.1055637923846
928 => 1.1259581984188
929 => 1.1250067750007
930 => 1.0916375683451
1001 => 1.0481087985658
1002 => 1.0627184824869
1003 => 1.0574106473518
1004 => 1.038174368098
1005 => 1.0511372977179
1006 => 0.99405511606059
1007 => 0.89584818939288
1008 => 0.96072669330908
1009 => 0.95822894148254
1010 => 0.95696946174757
1011 => 1.0057238643305
1012 => 1.0010372534776
1013 => 0.99253100888812
1014 => 1.0380181442454
1015 => 1.0214147279517
1016 => 1.0725825447121
1017 => 1.1062849781574
1018 => 1.0977369508762
1019 => 1.1294342524295
1020 => 1.063055060097
1021 => 1.0851035651189
1022 => 1.089647731446
1023 => 1.0374568400559
1024 => 1.0018040409734
1025 => 0.99942640574625
1026 => 0.9376093653955
1027 => 0.97063152938115
1028 => 0.99968966713853
1029 => 0.98577307415533
1030 => 0.98136749656324
1031 => 1.003874637028
1101 => 1.0056236346028
1102 => 0.96574630454831
1103 => 0.97403806421744
1104 => 1.0086160804281
1105 => 0.97316678692699
1106 => 0.9042946002636
1107 => 0.88721334573861
1108 => 0.88493439151499
1109 => 0.83860867451181
1110 => 0.88835479684316
1111 => 0.86663928133234
1112 => 0.93523833463922
1113 => 0.89605492329443
1114 => 0.89436580474625
1115 => 0.89181245432085
1116 => 0.85193799600495
1117 => 0.86066796822211
1118 => 0.88968772548425
1119 => 0.90004230180635
1120 => 0.89896223466341
1121 => 0.88954551284199
1122 => 0.89385643987042
1123 => 0.87996944188531
1124 => 0.8750656538639
1125 => 0.85958794997518
1126 => 0.83684000108358
1127 => 0.84000324289823
1128 => 0.79493360381937
1129 => 0.77037727242241
1130 => 0.76358040353898
1201 => 0.75449134640735
1202 => 0.76460703672705
1203 => 0.79480592719456
1204 => 0.75837965823873
1205 => 0.69592937511965
1206 => 0.69968274354521
1207 => 0.70811544801236
1208 => 0.69240115902575
1209 => 0.67752890330023
1210 => 0.69045912302933
1211 => 0.66399811480423
1212 => 0.7113131344374
1213 => 0.71003339575514
1214 => 0.7276695091332
1215 => 0.73869773275797
1216 => 0.71328124773265
1217 => 0.70688907048227
1218 => 0.71053034515235
1219 => 0.65034818589554
1220 => 0.72275134277418
1221 => 0.72337748828148
1222 => 0.71801605030407
1223 => 0.75656849614527
1224 => 0.83792618167961
1225 => 0.80731614777627
1226 => 0.79546301745573
1227 => 0.77293020805179
1228 => 0.8029538387167
1229 => 0.80064849232324
1230 => 0.79022284165533
1231 => 0.78391737560137
]
'min_raw' => 0.5888640483471
'max_raw' => 1.5109577197597
'avg_raw' => 1.0499108840534
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.588864'
'max' => '$1.51'
'avg' => '$1.04'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.36211357291834
'max_diff' => 0.87825357777962
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.018483769597739
]
1 => [
'year' => 2028
'avg' => 0.031723514506375
]
2 => [
'year' => 2029
'avg' => 0.08666292402422
]
3 => [
'year' => 2030
'avg' => 0.066860316822387
]
4 => [
'year' => 2031
'avg' => 0.065665117027429
]
5 => [
'year' => 2032
'avg' => 0.11513161572196
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.018483769597739
'min' => '$0.018483'
'max_raw' => 0.11513161572196
'max' => '$0.115131'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11513161572196
]
1 => [
'year' => 2033
'avg' => 0.29613035448131
]
2 => [
'year' => 2034
'avg' => 0.18770165002916
]
3 => [
'year' => 2035
'avg' => 0.22139452665004
]
4 => [
'year' => 2036
'avg' => 0.4297273087044
]
5 => [
'year' => 2037
'avg' => 1.0499108840534
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11513161572196
'min' => '$0.115131'
'max_raw' => 1.0499108840534
'max' => '$1.04'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0499108840534
]
]
]
]
'prediction_2025_max_price' => '$0.0316038'
'last_price' => 0.03064395
'sma_50day_nextmonth' => '$0.029252'
'sma_200day_nextmonth' => '$0.032299'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'INCREASE'
'sma_200day_date_nextmonth' => 'Feb 4, 2026'
'sma_50day_date_nextmonth' => 'Feb 4, 2026'
'daily_sma3' => '$0.030756'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.030724'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.030737'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.030868'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.031029'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.031962'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.033813'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.030718'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.030728'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.030757'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.030848'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.031174'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.031955'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.033962'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.032595'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.036348'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.050941'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.1044092'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.030749'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.030869'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0313085'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.032553'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.038711'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.093798'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.290612'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '40.28'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 63.01
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.030744'
'vwma_10_action' => 'SELL'
'hma_9' => '0.030766'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 11.48
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -101.72
'cci_20_action' => 'BUY'
'adx_14' => 15.54
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000251'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -88.52
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 37.69
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0009019'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 31
'buy_signals' => 1
'sell_pct' => 96.88
'buy_pct' => 3.13
'overall_action' => 'bearish'
'overall_action_label' => 'BEARISH'
'overall_action_dir' => -1
'last_updated' => 1767690472
'last_updated_date' => 'January 6, 2026'
]
Neos Credits price prediction 2026
The Neos Credits price forecast for 2026 suggests that the average price could range between $0.010587 on the lower end and $0.0316038 on the high end. In the crypto market, compared to today’s average price, Neos Credits could potentially gain 3.13% by 2026 if NCR reaches the forecast price target.
Neos Credits price prediction 2027-2032
The NCR price prediction for 2027-2032 is currently within a price range of $0.018483 on the lower end and $0.115131 on the high end. Considering the price volatility in the market, if Neos Credits reaches the upper price target, it could gain 275.71% by 2032 compared to today’s price.
| Neos Credits Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2027 | $0.010192 | $0.018483 | $0.026775 |
| 2028 | $0.018394 | $0.031723 | $0.045052 |
| 2029 | $0.0404065 | $0.086662 | $0.132919 |
| 2030 | $0.034364 | $0.06686 | $0.099356 |
| 2031 | $0.040628 | $0.065665 | $0.0907012 |
| 2032 | $0.062017 | $0.115131 | $0.168246 |
Neos Credits price prediction 2032-2037
The Neos Credits price prediction for 2032-2037 is currently estimated to be between $0.115131 on the lower end and $1.04 on the high end. Compared to the current price, Neos Credits could potentially gain 3326.16% by 2037 if it reaches the upper price target. Please note that this information is for general purposes only and should not be considered long-term investment advice.
| Neos Credits Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2032 | $0.062017 | $0.115131 | $0.168246 |
| 2033 | $0.144114 | $0.29613 | $0.448146 |
| 2034 | $0.11586 | $0.1877016 | $0.259542 |
| 2035 | $0.136983 | $0.221394 | $0.3058056 |
| 2036 | $0.22675 | $0.429727 | $0.6327041 |
| 2037 | $0.588864 | $1.04 | $1.51 |
Neos Credits potential price histogram
Neos Credits Price Forecast Based on Technical Analysis
As of January 6, 2026, the overall price prediction sentiment for Neos Credits is BEARISH, with 1 technical indicators showing bullish signals and 31 indicating bearish signals. The NCR price prediction was last updated on January 6, 2026.
Neos Credits's 50-Day, 200-Day Simple Moving Averages and 14-Day Relative Strength Index - RSI (14)
According to our technical indicators, Neos Credits's 200-day SMA is projected to INCREASE over the next month, reaching $0.032299 by Feb 4, 2026. The short-term 50-day SMA for Neos Credits is expected to reach $0.029252 by Feb 4, 2026.
The Relative Strength Index (RSI) momentum oscillator is a commonly used tool to identify if a cryptocurrency is oversold (below 30) or overbought (above 70). Right now, the RSI stands at 40.28, suggesting that the NCR market is in a NEUTRAL state.
Popular NCR Moving Averages and Oscillators for Sat, Oct 19, 2024
Moving averages (MA) are widely used indicators across financial markets, designed to smooth out price movements over a set period. As lagging indicators, they are based on historical price data. The table below highlights two types: the simple moving average (SMA) and the exponential moving average (EMA).
Daily Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 3 | $0.030756 | SELL |
| SMA 5 | $0.030724 | SELL |
| SMA 10 | $0.030737 | SELL |
| SMA 21 | $0.030868 | SELL |
| SMA 50 | $0.031029 | SELL |
| SMA 100 | $0.031962 | SELL |
| SMA 200 | $0.033813 | SELL |
Daily Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 3 | $0.030718 | SELL |
| EMA 5 | $0.030728 | SELL |
| EMA 10 | $0.030757 | SELL |
| EMA 21 | $0.030848 | SELL |
| EMA 50 | $0.031174 | SELL |
| EMA 100 | $0.031955 | SELL |
| EMA 200 | $0.033962 | SELL |
Weekly Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 21 | $0.032595 | SELL |
| SMA 50 | $0.036348 | SELL |
| SMA 100 | $0.050941 | SELL |
| SMA 200 | $0.1044092 | SELL |
Weekly Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 21 | $0.032553 | SELL |
| EMA 50 | $0.038711 | SELL |
| EMA 100 | $0.093798 | SELL |
| EMA 200 | $0.290612 | SELL |
Neos Credits Oscillators
An oscillator is a technical analysis tool that sets high and low boundaries between two extremes, creating a trend indicator that fluctuates within these limits. Traders use this indicator to identify short-term overbought or oversold conditions.
| Period | Value | Action |
|---|---|---|
| RSI (14) | 40.28 | NEUTRAL |
| Stoch RSI (14) | 63.01 | NEUTRAL |
| Stochastic Fast (14) | 11.48 | BUY |
| Commodity Channel Index (20) | -101.72 | BUY |
| Average Directional Index (14) | 15.54 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.000251 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -88.52 | BUY |
| Ultimate Oscillator (7, 14, 28) | 37.69 | NEUTRAL |
| VWMA (10) | 0.030744 | SELL |
| Hull Moving Average (9) | 0.030766 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.0009019 | SELL |
Neos Credits price prediction based on worldwide money flows
Worldwide money flows definitions used for Neos Credits price prediction
M0: The total of all physical currency, plus accounts at the central bank which can be exchanged for physical currency.
M1: Measure M0 plus the amount in demand accounts, including "checking" or "current" accounts.
M2: Measure M1 plus most savings accounts, money market accounts, and certificate of deposit (CD) accounts of under $100,000.
Neos Credits price predictions by Internet companies or technological niches
| Comparison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.043059 | $0.0605063 | $0.085021 | $0.119469 | $0.167874 | $0.235891 |
| Amazon.com stock | $0.06394 | $0.133415 | $0.278379 | $0.580855 | $1.21 | $2.52 |
| Apple stock | $0.043466 | $0.061653 | $0.08745 | $0.124041 | $0.175944 | $0.249563 |
| Netflix stock | $0.048351 | $0.07629 | $0.120375 | $0.189932 | $0.299684 | $0.472854 |
| Google stock | $0.039683 | $0.05139 | $0.06655 | $0.086182 | $0.1116056 | $0.144528 |
| Tesla stock | $0.069467 | $0.157477 | $0.356989 | $0.809268 | $1.83 | $4.15 |
| Kodak stock | $0.022979 | $0.017232 | $0.012922 | $0.00969 | $0.007266 | $0.005449 |
| Nokia stock | $0.02030033 | $0.013448 | $0.0089088 | $0.0059017 | $0.0039096 | $0.002589 |
This calculation shows how much cryptocurrency can cost if we assume that its capitalization will behave like the capitalization of some Internet companies or technological niches. If you extrapolate the data projections, you can get a potential picture of the future Neos Credits price for 2024, 2025, 2026, 2027, 2028, 2029 and 2030.
Neos Credits forecast and prediction overview
You may ask questions like: "Should I invest in Neos Credits now?", "Should I buy NCR today?", "Will Neos Credits be a good or bad investment in short-term, long-term period?".
We update Neos Credits forecast projection regularly with fresh values. Look at our similar predictions. We making a forecast of future prices for huge amounts of digital coins like Neos Credits with technical analysis methods.
If you are trying to find cryptocurrencies with good returns, you should explore the maximum of available sources of information about Neos Credits in order to make such a responsible decision about the investment by yourself.
Neos Credits price equal to $0.03064 USD today, but the price can go both up and down and your investment may be lost because cryptocurrency high-risk assets
Neos Credits price prediction based on Bitcoin's growth pattern
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| If Neos Credits has 1% of Bitcoin's previous average grow per year | $0.03144 | $0.032257 | $0.033096 | $0.033956 |
| If Neos Credits has 2% of Bitcoin's previous average grow per year | $0.032237 | $0.033912 | $0.035675 | $0.03753 |
| If Neos Credits has 5% of Bitcoin's previous average grow per year | $0.034626 | $0.039126 | $0.044212 | $0.049958 |
| If Neos Credits has 10% of Bitcoin's previous average grow per year | $0.0386092 | $0.048645 | $0.061289 | $0.07722 |
| If Neos Credits has 20% of Bitcoin's previous average grow per year | $0.046574 | $0.070787 | $0.107586 | $0.163517 |
| If Neos Credits has 50% of Bitcoin's previous average grow per year | $0.07047 | $0.162058 | $0.372679 | $0.857037 |
| If Neos Credits has 100% of Bitcoin's previous average grow per year | $0.110297 | $0.396995 | $1.42 | $5.14 |
Frequently Asked Questions about Neos Credits
Is NCR a good investment?
The determination to procure Neos Credits is entirely contingent on your individualistic risk tolerance. As you may discern, Neos Credits's value has experienced a fall of -0.1828% during the preceding 24 hours, and Neos Credits has incurred a decline of over the prior 30-day duration. Consequently, the determination of whether or not to invest in Neos Credits will hinge on whether such an investment aligns with your trading aspirations.
Can Neos Credits rise?
It appears that the mean value of Neos Credits may potentially surge to $0.0316038 by the end of this year. Looking at Neos Credits's prospects in a more extended five-year timeline, the digital currency could potentially growth to as much as $0.099356. However, given the market's unpredictability, it is vital to conduct thorough research before investing any funds into a particular project, network, or asset.
What will the price of Neos Credits be next week?
Based on the our new experimental Neos Credits forecast, the price of Neos Credits will increase by 0.86% over the next week and reach $0.030906 by January 13, 2026.
What will the price of Neos Credits be next month?
Based on the our new experimental Neos Credits forecast, the price of Neos Credits will decrease by -11.62% over the next month and reach $0.0270837 by February 5, 2026.
How high can Neos Credits’s price go this year in 2026?
As per our most recent prediction on Neos Credits's value in 2026, NCR is anticipated to fluctuate within the range of $0.010587 and $0.0316038. However, it is crucial to bear in mind that the cryptocurrency market is exceptionally unstable, and this projected Neos Credits price forecast fails to consider sudden and extreme price fluctuations.
Where will Neos Credits be in 5 years?
Neos Credits's future appears to be on an upward trend, with an maximum price of $0.099356 projected after a period of five years. Based on the Neos Credits forecast for 2030, Neos Credits's value may potentially reach its highest peak of approximately $0.099356, while its lowest peak is anticipated to be around $0.034364.
How much will be Neos Credits in 2026?
Based on the our new experimental Neos Credits price prediction simulation, NCR’s value in 2026 expected to grow by 3.13% to $0.0316038 if the best happened. The price will be between $0.0316038 and $0.010587 during 2026.
How much will be Neos Credits in 2027?
According to our latest experimental simulation for Neos Credits price prediction, NCR’s value could down by -12.62% to $0.026775 in 2027, assuming the most favorable conditions. The price is projected to fluctuate between $0.026775 and $0.010192 throughout the year.
How much will be Neos Credits in 2028?
Our new experimental Neos Credits price prediction model suggests that NCR’s value in 2028 could increase by 47.02% , reaching $0.045052 in the best-case scenario. The price is expected to range between $0.045052 and $0.018394 during the year.
How much will be Neos Credits in 2029?
Based on our experimental forecast model, Neos Credits's value may experience a 333.75% growth in 2029, potentially reaching $0.132919 under optimal conditions. The predicted price range for 2029 lies between $0.132919 and $0.0404065.
How much will be Neos Credits in 2030?
Using our new experimental simulation for Neos Credits price predictions, NCR’s value in 2030 is expected to rise by 224.23% , reaching $0.099356 in the best scenario. The price is forecasted to range between $0.099356 and $0.034364 over the course of 2030.
How much will be Neos Credits in 2031?
Our experimental simulation indicates that Neos Credits’s price could grow by 195.98% in 2031, potentially hitting $0.0907012 under ideal conditions. The price will likely fluctuate between $0.0907012 and $0.040628 during the year.
How much will be Neos Credits in 2032?
Based on the findings from our latest experimental Neos Credits price prediction, NCR could see a 449.04% rise in value, reaching $0.168246 if the most positive scenario plays out in 2032. The price is expected to stay within a range of $0.168246 and $0.062017 throughout the year.
How much will be Neos Credits in 2033?
According to our experimental Neos Credits price prediction, NCR’s value is anticipated to rise by 1362.43% in 2033, with the highest potential price being $0.448146. Throughout the year, NCR’s price could range from $0.448146 and $0.144114.
How much will be Neos Credits in 2034?
The results from our new Neos Credits price prediction simulation suggest that NCR may rise by 746.96% in 2034, potentially reaching $0.259542 under the best circumstances. The predicted price range for the year is between $0.259542 and $0.11586.
How much will be Neos Credits in 2035?
Based on our experimental forecast for Neos Credits’s price, NCR could grow by 897.93% , with the value potentially hitting $0.3058056 in 2035. The expected price range for the year lies between $0.3058056 and $0.136983.
How much will be Neos Credits in 2036?
Our recent Neos Credits price prediction simulation suggests that NCR’s value might rise by 1964.7% in 2036, possibly reaching $0.6327041 if conditions are optimal. The expected price range for 2036 is between $0.6327041 and $0.22675.
How much will be Neos Credits in 2037?
According to the experimental simulation, Neos Credits’s value could rise by 4830.69% in 2037, with a high of $1.51 under favorable conditions. The price is expected to fall between $1.51 and $0.588864 over the course of the year.
Related Predictions
FlokiFork Price Prediction
VinuChain Price Prediction
AI Power Grid Price Prediction
dotmoovs Price Prediction
Eve AI Price Prediction
Bullieverse Price Prediction
Wownero Price Prediction
Metronome Price Prediction
Bag Price Prediction
Titanium22 Price PredictionAri10 Price Prediction
Xpanse Price Prediction
REV3AL Price Prediction
Real Smurf Cat Price Prediction
Blink Galaxy Price Prediction
Reddex Price Prediction
Ion Price Prediction
Baby Grok Price Prediction
OneFinity Price Prediction
Husky Avax Price Prediction
Amulet Protocol Price Prediction
Coupon Assets Price Prediction
Witch Token Price Prediction
Super Trump Price Prediction
AngelBlock Price Prediction
How to read and predict Neos Credits price movements?
Neos Credits traders use indicators and chart patterns to predict market direction. They also identify key support and resistance levels to gauge when a downtrend might slow or an uptrend might stall.
Neos Credits Price Prediction Indicators
Moving averages are popular tools for Neos Credits price prediction. A simple moving average (SMA) calculates the average closing price of NCR over a specific period, like a 12-day SMA. An exponential moving average (EMA) gives more weight to recent prices, reacting faster to price changes.
Commonly used moving averages in the crypto market include the 50-day, 100-day, and 200-day averages, which help identify key resistance and support levels. A NCR price move above these averages is seen as bullish, while a drop below indicates weakness.
Traders also use RSI and Fibonacci retracement levels to gauge NCR's future direction.
How to read Neos Credits charts and predict price movements?
Most traders prefer candlestick charts over simple line charts because they provide more detailed information. Candlesticks can represent Neos Credits's price action in different time frames, such as 5-minute for short-term and weekly for long-term trends. Popular choices include 1-hour, 4-hour, and 1-day charts.
A 1-hour candlestick chart, for instance, shows NCR's opening, closing, highest, and lowest prices within each hour. The candle's color is crucial: green indicates the price closed higher than it opened, while red means the opposite. Some charts use hollow and filled candlesticks to convey the same information.
What affects the price of Neos Credits?
Neos Credits's price action is driven by supply and demand, influenced by factors like block reward halvings, hard forks, and protocol updates. Real-world events, such as regulations, adoption by companies and governments, and cryptocurrency exchange hacks, also impact NCR's price. Neos Credits's market capitalization can change rapidly.
Traders often monitor the activity of NCR "whales," large holders of Neos Credits, as their actions can significantly influence price movements in the relatively small Neos Credits market.
Bullish and bearish price prediction patterns
Traders often identify candlestick patterns to gain an edge in cryptocurrency price predictions. Certain formations indicate bullish trends, while others suggest bearish movements.
Commonly followed bullish candlestick patterns:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Three White Soldiers
Common bearish candlestick patterns:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


