Neos Credits Preisvorhersage bis zu $0.031633 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.010597 | $0.031633 |
| 2027 | $0.0102018 | $0.02680028 |
| 2028 | $0.018411 | $0.045095 |
| 2029 | $0.040444 | $0.133043 |
| 2030 | $0.034396 | $0.099449 |
| 2031 | $0.040666 | $0.090786 |
| 2032 | $0.062075 | $0.1684036 |
| 2033 | $0.144248 | $0.448565 |
| 2034 | $0.115969 | $0.259785 |
| 2035 | $0.137111 | $0.306091 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Neos Credits eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.54 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Neos Credits Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Neos Credits'
'name_with_ticker' => 'Neos Credits <small>NCR</small>'
'name_lang' => 'Neos Credits'
'name_lang_with_ticker' => 'Neos Credits <small>NCR</small>'
'name_with_lang' => 'Neos Credits'
'name_with_lang_with_ticker' => 'Neos Credits <small>NCR</small>'
'image' => '/uploads/coins/neos-credits.png?1717108404'
'price_for_sd' => 0.03067
'ticker' => 'NCR'
'marketcap' => '$1.25M'
'low24h' => '$0.03049'
'high24h' => '$0.03101'
'volume24h' => '$120.46'
'current_supply' => '40.65M'
'max_supply' => '50M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03067'
'change_24h_pct' => '0.0199%'
'ath_price' => '$9.42'
'ath_days' => 1499
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29.11.2021'
'ath_pct' => '-99.67%'
'fdv' => '$1.53M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.51'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.030935'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.027109'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010597'
'current_year_max_price_prediction' => '$0.031633'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.034396'
'grand_prediction_max_price' => '$0.099449'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.031253850015202
107 => 0.031370540546011
108 => 0.03163345027029
109 => 0.029386915461787
110 => 0.030395543636008
111 => 0.030988018192684
112 => 0.028311196591214
113 => 0.030935106036261
114 => 0.02934780828886
115 => 0.02880905559298
116 => 0.029534415122712
117 => 0.02925174180854
118 => 0.029008715892149
119 => 0.028873103255088
120 => 0.029405727238713
121 => 0.029380879693253
122 => 0.028509403478182
123 => 0.027372598281536
124 => 0.027754147419889
125 => 0.027615527040883
126 => 0.027113148904982
127 => 0.027451691111212
128 => 0.025960922567263
129 => 0.023396132770805
130 => 0.025090511471981
131 => 0.025025279735115
201 => 0.024992386935364
202 => 0.02626566570011
203 => 0.026143269326419
204 => 0.025921118709661
205 => 0.027109068934692
206 => 0.02667545112237
207 => 0.028011759046741
208 => 0.028891937872709
209 => 0.028668696051641
210 => 0.029496508491737
211 => 0.027762937541416
212 => 0.028338760272318
213 => 0.028457436539101
214 => 0.027094409813316
215 => 0.026163294886856
216 => 0.026101200136749
217 => 0.024486775169808
218 => 0.025349187955965
219 => 0.026108075518717
220 => 0.025744627268212
221 => 0.02562957040981
222 => 0.026217370946598
223 => 0.026263048082478
224 => 0.025221604543778
225 => 0.025438153633701
226 => 0.026341199336973
227 => 0.025415399198955
228 => 0.023616720759382
301 => 0.023170623637692
302 => 0.023111106058458
303 => 0.021901255284027
304 => 0.02320043398046
305 => 0.022633307663643
306 => 0.024424852903252
307 => 0.023401531870637
308 => 0.023357418546207
309 => 0.023290734786313
310 => 0.022249366246454
311 => 0.02247735977426
312 => 0.023235244985081
313 => 0.02350566696649
314 => 0.023477459738327
315 => 0.023231530934085
316 => 0.023344115881308
317 => 0.022981440539108
318 => 0.022853372327342
319 => 0.022449153823074
320 => 0.021855064290012
321 => 0.021937676083347
322 => 0.020760629266368
323 => 0.020119311689875
324 => 0.019941803437131
325 => 0.019704431982982
326 => 0.019968615174499
327 => 0.020757294840623
328 => 0.019805979835552
329 => 0.018175016986346
330 => 0.018273040632608
331 => 0.018493270662279
401 => 0.018082873458955
402 => 0.017694466948036
403 => 0.018032154896864
404 => 0.017341094437052
405 => 0.018576782017267
406 => 0.018543360131197
407 => 0.019003948046693
408 => 0.019291963122469
409 => 0.018628181618794
410 => 0.018461242365676
411 => 0.018556338551218
412 => 0.016984610433578
413 => 0.018875504327672
414 => 0.018891856856589
415 => 0.018751836576092
416 => 0.019758679199898
417 => 0.021883431178217
418 => 0.021084014016023
419 => 0.02077445552831
420 => 0.020185984616881
421 => 0.020970087166415
422 => 0.020909880324516
423 => 0.020637602152682
424 => 0.020472927464797
425 => 0.020776345626426
426 => 0.020435330596791
427 => 0.020374074927003
428 => 0.020002932214909
429 => 0.019870451152609
430 => 0.019772367448305
501 => 0.019664386927372
502 => 0.01990256504948
503 => 0.019362822089841
504 => 0.01871194499217
505 => 0.018657831604086
506 => 0.018807243426283
507 => 0.018741139817363
508 => 0.018657515125439
509 => 0.018497852814726
510 => 0.018450484417783
511 => 0.018604408727969
512 => 0.018430637156114
513 => 0.018687046576213
514 => 0.018617317401726
515 => 0.018227815901302
516 => 0.017742352819849
517 => 0.017738031180131
518 => 0.017633438955551
519 => 0.017500225032002
520 => 0.017463167965992
521 => 0.018003715759702
522 => 0.019122633515448
523 => 0.018902963186562
524 => 0.019061697511903
525 => 0.019842513287442
526 => 0.020090711142537
527 => 0.019914546183879
528 => 0.019673400723087
529 => 0.019684009899528
530 => 0.02050807693875
531 => 0.020559472989165
601 => 0.020689334227569
602 => 0.020856242617701
603 => 0.019942971404451
604 => 0.019640994907513
605 => 0.019497901690246
606 => 0.019057229965107
607 => 0.019532456640331
608 => 0.019255562407913
609 => 0.01929292489992
610 => 0.019268592527986
611 => 0.019281879648409
612 => 0.018576436617405
613 => 0.018833462980909
614 => 0.018406106800501
615 => 0.017833924847916
616 => 0.017832006693379
617 => 0.017972047415664
618 => 0.017888745714255
619 => 0.017664582977645
620 => 0.017696424236362
621 => 0.017417461305052
622 => 0.01773029538701
623 => 0.017739266349106
624 => 0.017618808187365
625 => 0.018100772253404
626 => 0.018298233324506
627 => 0.018218945181984
628 => 0.01829267025706
629 => 0.018912091480479
630 => 0.019013084167139
701 => 0.019057938447351
702 => 0.018997839653921
703 => 0.018303992139937
704 => 0.01833476722765
705 => 0.018108960053606
706 => 0.017918176786513
707 => 0.01792580711667
708 => 0.018023894516045
709 => 0.018452247941863
710 => 0.019353692473685
711 => 0.01938790163472
712 => 0.019429364135847
713 => 0.019260715306382
714 => 0.019209849205664
715 => 0.019276954722166
716 => 0.019615489892616
717 => 0.020486294262417
718 => 0.020178493839061
719 => 0.019928247303674
720 => 0.02014778098119
721 => 0.020113985492298
722 => 0.019828717555474
723 => 0.019820711034601
724 => 0.019273190658159
725 => 0.019070784841424
726 => 0.018901639391147
727 => 0.018716936975099
728 => 0.018607439191584
729 => 0.018775677552915
730 => 0.018814155656689
731 => 0.018446299539336
801 => 0.018396162109816
802 => 0.018696561355972
803 => 0.018564366847751
804 => 0.018700332177723
805 => 0.018731877300565
806 => 0.018726797809241
807 => 0.018588771560216
808 => 0.018676745375343
809 => 0.018468661076312
810 => 0.018242400654367
811 => 0.018098060601689
812 => 0.017972104761797
813 => 0.018041992382365
814 => 0.017792855776015
815 => 0.017713151961514
816 => 0.018646941826252
817 => 0.019336742439266
818 => 0.019326712465162
819 => 0.019265657577302
820 => 0.019174942398474
821 => 0.019608853512255
822 => 0.01945768755654
823 => 0.019567673419661
824 => 0.019595669437917
825 => 0.019680404953318
826 => 0.01971069061681
827 => 0.019619146306991
828 => 0.019311912422043
829 => 0.018546314791674
830 => 0.018189927028045
831 => 0.01807231312994
901 => 0.018076588171756
902 => 0.017958663433856
903 => 0.017993397554184
904 => 0.017946584324296
905 => 0.017857931392226
906 => 0.018036518313627
907 => 0.018057098792667
908 => 0.018015414471257
909 => 0.018025232637943
910 => 0.017680104260277
911 => 0.017706343621251
912 => 0.017560239525008
913 => 0.017532846768274
914 => 0.01716350833571
915 => 0.016509171765962
916 => 0.01687173774359
917 => 0.016433809027107
918 => 0.016267958786472
919 => 0.017053068030634
920 => 0.016974264838061
921 => 0.0168393880273
922 => 0.016639877113394
923 => 0.016565876574709
924 => 0.016116272727383
925 => 0.016089707733539
926 => 0.0163125435406
927 => 0.016209712482953
928 => 0.016065298732851
929 => 0.015542246768967
930 => 0.014954163185008
1001 => 0.014971913731846
1002 => 0.015158972178219
1003 => 0.015702869839318
1004 => 0.015490359613602
1005 => 0.015336181006571
1006 => 0.015307307988065
1007 => 0.015668714264414
1008 => 0.016180179862404
1009 => 0.016420148077583
1010 => 0.016182346864284
1011 => 0.015909173634572
1012 => 0.015925800423302
1013 => 0.016036410999788
1014 => 0.016048034607427
1015 => 0.015870226917547
1016 => 0.015920278740733
1017 => 0.015844245444478
1018 => 0.015377629245705
1019 => 0.015369189638325
1020 => 0.015254674497943
1021 => 0.015251207025004
1022 => 0.015056388204074
1023 => 0.015029131704307
1024 => 0.014642307110694
1025 => 0.014896916229623
1026 => 0.014726137800224
1027 => 0.014468734424561
1028 => 0.014424357985576
1029 => 0.014423023976234
1030 => 0.014687319688698
1031 => 0.014893827780342
1101 => 0.01472910856412
1102 => 0.014691605191534
1103 => 0.015092043093928
1104 => 0.015041083720776
1105 => 0.014996953232279
1106 => 0.016134383727908
1107 => 0.015234018735809
1108 => 0.014841408208217
1109 => 0.014355478125605
1110 => 0.014513699410775
1111 => 0.014547038960315
1112 => 0.013378464707113
1113 => 0.012904374278126
1114 => 0.012741684308619
1115 => 0.012648053931068
1116 => 0.012690722469854
1117 => 0.012263985478505
1118 => 0.01255075979427
1119 => 0.012181241630941
1120 => 0.012119290708343
1121 => 0.012780034958891
1122 => 0.012871973661343
1123 => 0.012479734593568
1124 => 0.012731615572817
1125 => 0.012640280028333
1126 => 0.01218757595927
1127 => 0.012170285993698
1128 => 0.011943135005159
1129 => 0.011587687693195
1130 => 0.011425238733703
1201 => 0.011340633905153
1202 => 0.011375543506328
1203 => 0.011357892143722
1204 => 0.011242705062879
1205 => 0.011364494532363
1206 => 0.011053372764716
1207 => 0.010929481569961
1208 => 0.010873522791543
1209 => 0.010597384315256
1210 => 0.011036843430367
1211 => 0.011123422412204
1212 => 0.011210171981381
1213 => 0.011965267754618
1214 => 0.011927545303666
1215 => 0.012268537888697
1216 => 0.012255287543888
1217 => 0.012158030934923
1218 => 0.011747721299637
1219 => 0.011911263407196
1220 => 0.011407906220216
1221 => 0.011785055649663
1222 => 0.0116129404002
1223 => 0.011726863310688
1224 => 0.011522019645617
1225 => 0.011635388587655
1226 => 0.011143953500666
1227 => 0.010685058331114
1228 => 0.010869731143327
1229 => 0.0110704916101
1230 => 0.011505791454879
1231 => 0.011246530458474
]
'min_raw' => 0.010597384315256
'max_raw' => 0.03163345027029
'avg_raw' => 0.021115417292773
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010597'
'max' => '$0.031633'
'avg' => '$0.021115'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.020075235684744
'max_diff' => 0.00096083027029046
'year' => 2026
]
1 => [
'items' => [
101 => 0.011339770516525
102 => 0.011027431930252
103 => 0.010382988211664
104 => 0.010386635693125
105 => 0.01028750206699
106 => 0.010201836140263
107 => 0.011276309702667
108 => 0.011142681930269
109 => 0.010929763563722
110 => 0.011214763258384
111 => 0.011290121701206
112 => 0.011292267050132
113 => 0.01150019547045
114 => 0.011611166905648
115 => 0.011630726102079
116 => 0.011957905964041
117 => 0.012067572338164
118 => 0.01251927261261
119 => 0.011601751754685
120 => 0.011582856016408
121 => 0.01121877378855
122 => 0.01098786708373
123 => 0.011234584168178
124 => 0.011453141824759
125 => 0.011225564984167
126 => 0.011255281715139
127 => 0.010949778400355
128 => 0.011058981460123
129 => 0.011153041846436
130 => 0.011101107229728
131 => 0.011023358594852
201 => 0.011435222589318
202 => 0.011411983608642
203 => 0.011795520829
204 => 0.01209451551928
205 => 0.012630367455954
206 => 0.012071178025441
207 => 0.012050798940016
208 => 0.01225000776895
209 => 0.01206754184033
210 => 0.012182854008708
211 => 0.012611788882909
212 => 0.012620851600894
213 => 0.01246903939799
214 => 0.012459801611647
215 => 0.012488958805858
216 => 0.012659733403062
217 => 0.012600059511425
218 => 0.012669115649585
219 => 0.012755471407778
220 => 0.01311267543775
221 => 0.013198796120067
222 => 0.01298956751049
223 => 0.013008458511301
224 => 0.012930201267866
225 => 0.012854605751267
226 => 0.013024533432742
227 => 0.013335079610574
228 => 0.013333147718919
301 => 0.013405188396021
302 => 0.013450069141039
303 => 0.013257408128711
304 => 0.013131992894027
305 => 0.013180085075384
306 => 0.013256985520684
307 => 0.013155147297411
308 => 0.012526554607317
309 => 0.012717229474835
310 => 0.012685491853355
311 => 0.012640293620941
312 => 0.012832018674676
313 => 0.012813526325527
314 => 0.012259608673863
315 => 0.012295068684741
316 => 0.012261765114572
317 => 0.012369375763058
318 => 0.012061730512164
319 => 0.012156360119316
320 => 0.012215710921825
321 => 0.012250669000457
322 => 0.012376961551455
323 => 0.012362142578259
324 => 0.012376040383274
325 => 0.012563298896407
326 => 0.013510388196469
327 => 0.013561936177436
328 => 0.013308095066363
329 => 0.013409499583442
330 => 0.013214825085381
331 => 0.013345511380135
401 => 0.013434923623935
402 => 0.013030886887192
403 => 0.013006962453819
404 => 0.012811484464854
405 => 0.012916523263684
406 => 0.012749398982188
407 => 0.012790405435108
408 => 0.012675747817866
409 => 0.012882108700798
410 => 0.013112852233156
411 => 0.013171147161768
412 => 0.013017798302135
413 => 0.012906763621579
414 => 0.012711823299619
415 => 0.013036013399566
416 => 0.013130816464305
417 => 0.013035515439426
418 => 0.013013432109593
419 => 0.012971584239463
420 => 0.013022310333069
421 => 0.013130300146455
422 => 0.013079374144721
423 => 0.013113011666067
424 => 0.012984820121557
425 => 0.013257471907523
426 => 0.013690508560861
427 => 0.01369190084451
428 => 0.013640974568266
429 => 0.013620136633249
430 => 0.01367239008314
501 => 0.013700735436158
502 => 0.013869713511463
503 => 0.014051033718648
504 => 0.014897176009379
505 => 0.014659582640035
506 => 0.015410330417601
507 => 0.016004074437258
508 => 0.016182112307474
509 => 0.016018325844204
510 => 0.015458021200931
511 => 0.015430529982057
512 => 0.016267861673627
513 => 0.016031277118537
514 => 0.016003136138515
515 => 0.015703763656016
516 => 0.015880729871177
517 => 0.015842024763983
518 => 0.01578092685876
519 => 0.016118566069712
520 => 0.016750596531354
521 => 0.016652088656763
522 => 0.01657855709803
523 => 0.016256363212375
524 => 0.016450395896149
525 => 0.016381304573908
526 => 0.01667816474069
527 => 0.016502311354146
528 => 0.016029484757845
529 => 0.016104783951763
530 => 0.016093402630083
531 => 0.016327629423763
601 => 0.016257320354167
602 => 0.016079673655824
603 => 0.016748436319947
604 => 0.016705010592392
605 => 0.016766578345561
606 => 0.016793682374552
607 => 0.017200746423284
608 => 0.017367507539452
609 => 0.017405365232387
610 => 0.017563775394979
611 => 0.017401423843233
612 => 0.018050945804912
613 => 0.018482840008772
614 => 0.018984507351627
615 => 0.019717578175008
616 => 0.019993219585884
617 => 0.01994342743218
618 => 0.020499233364046
619 => 0.021498004268738
620 => 0.020145307587971
621 => 0.021569700477422
622 => 0.021118754134029
623 => 0.020049568466021
624 => 0.019980725513872
625 => 0.020704790461748
626 => 0.022310696827468
627 => 0.021908435496894
628 => 0.022311354782898
629 => 0.021841328033457
630 => 0.02181798724365
701 => 0.022288526632797
702 => 0.023387967563307
703 => 0.022865664389149
704 => 0.022116814715001
705 => 0.022669753661
706 => 0.022190746773892
707 => 0.021111410191651
708 => 0.021908127895236
709 => 0.021375385456062
710 => 0.021530868021959
711 => 0.022650613389644
712 => 0.022515882664526
713 => 0.022690236698558
714 => 0.02238250639213
715 => 0.022095037761311
716 => 0.021558456214186
717 => 0.021399600871233
718 => 0.021443502773008
719 => 0.021399579115631
720 => 0.021099366671453
721 => 0.021034535822716
722 => 0.020926481567851
723 => 0.020959972099687
724 => 0.020756798488152
725 => 0.021140229070929
726 => 0.021211397165871
727 => 0.021490425968558
728 => 0.021519395664496
729 => 0.022296486908254
730 => 0.02186847810968
731 => 0.022155623364265
801 => 0.022129938389979
802 => 0.020072740961501
803 => 0.020356204616339
804 => 0.020797185107471
805 => 0.020598523993951
806 => 0.020317663658975
807 => 0.020090853879703
808 => 0.019747213871616
809 => 0.020230880583977
810 => 0.020866850878511
811 => 0.021535524920676
812 => 0.022338892969078
813 => 0.02215959057291
814 => 0.021520506513822
815 => 0.021549175357862
816 => 0.021726394870939
817 => 0.021496879499413
818 => 0.021429190935678
819 => 0.021717095501711
820 => 0.021719078142227
821 => 0.021454992969427
822 => 0.021161510626936
823 => 0.021160280925205
824 => 0.021108058577062
825 => 0.021850618273179
826 => 0.02225895102479
827 => 0.022305765716701
828 => 0.022255800023024
829 => 0.022275029835453
830 => 0.022037430004289
831 => 0.022580512760289
901 => 0.023078899202512
902 => 0.022945320989523
903 => 0.02274506825899
904 => 0.022585557313642
905 => 0.02290774528013
906 => 0.022893398757153
907 => 0.023074546231722
908 => 0.023066328335917
909 => 0.023005415253521
910 => 0.022945323164921
911 => 0.023183581503717
912 => 0.023114966928456
913 => 0.023046245775807
914 => 0.022908414983488
915 => 0.022927148477291
916 => 0.022726930323216
917 => 0.022634300243781
918 => 0.02124136609972
919 => 0.020869128580991
920 => 0.020986242081977
921 => 0.021024798887352
922 => 0.020862800642166
923 => 0.021095064511828
924 => 0.02105886643377
925 => 0.021199691980328
926 => 0.021111710292773
927 => 0.021115321091919
928 => 0.021374056475346
929 => 0.021449168457894
930 => 0.021410965897342
1001 => 0.021437721661245
1002 => 0.022054296947496
1003 => 0.021966639658759
1004 => 0.021920073471192
1005 => 0.021932972623387
1006 => 0.022090520828547
1007 => 0.022134625724179
1008 => 0.021947750182191
1009 => 0.022035881768107
1010 => 0.022411134875374
1011 => 0.022542452225431
1012 => 0.022961554170909
1013 => 0.022783512215527
1014 => 0.023110315930107
1015 => 0.024114799133127
1016 => 0.024917249820651
1017 => 0.024179283005727
1018 => 0.025652881501886
1019 => 0.026800289306294
1020 => 0.026756249883654
1021 => 0.026556172792934
1022 => 0.025249879513029
1023 => 0.024047808961125
1024 => 0.025053392020405
1025 => 0.025055955458423
1026 => 0.024969574981823
1027 => 0.024433073260384
1028 => 0.024950905884852
1029 => 0.024992009558091
1030 => 0.024969002431426
1031 => 0.024557667819494
1101 => 0.023929635894416
1102 => 0.02405235182928
1103 => 0.024253363033925
1104 => 0.023872806888202
1105 => 0.023751196140934
1106 => 0.023977293657497
1107 => 0.024705826965152
1108 => 0.024568101963446
1109 => 0.024564505407061
1110 => 0.02515375136885
1111 => 0.024731978427446
1112 => 0.02405389967021
1113 => 0.023882675841247
1114 => 0.023274946598623
1115 => 0.023694707351161
1116 => 0.023709813793359
1117 => 0.023479915119045
1118 => 0.024072554680586
1119 => 0.024067093402695
1120 => 0.02462971646362
1121 => 0.025705240444538
1122 => 0.02538715508006
1123 => 0.025017256408761
1124 => 0.025057474650509
1125 => 0.025498569495403
1126 => 0.025231873482964
1127 => 0.025327779228508
1128 => 0.025498424330571
1129 => 0.025601378757525
1130 => 0.025042661092849
1201 => 0.024912397278657
1202 => 0.024645923231208
1203 => 0.024576405126202
1204 => 0.024793442677686
1205 => 0.02473626095092
1206 => 0.023708544155388
1207 => 0.023601142032092
1208 => 0.023604435901879
1209 => 0.02333436815616
1210 => 0.022922450020253
1211 => 0.024004946287063
1212 => 0.023918006687312
1213 => 0.023822032097778
1214 => 0.023833788437373
1215 => 0.024303663377592
1216 => 0.024031112183012
1217 => 0.024755734204067
1218 => 0.02460677370067
1219 => 0.02445399292244
1220 => 0.024432873965072
1221 => 0.024374066400097
1222 => 0.024172393378467
1223 => 0.023928861086178
1224 => 0.023768059972403
1225 => 0.021924778949646
1226 => 0.022266881185597
1227 => 0.022660438624459
1228 => 0.022796293075272
1229 => 0.022563904636315
1230 => 0.024181569490461
1231 => 0.02447713244752
]
'min_raw' => 0.010201836140263
'max_raw' => 0.026800289306294
'avg_raw' => 0.018501062723279
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0102018'
'max' => '$0.02680028'
'avg' => '$0.018501'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00039554817499341
'max_diff' => -0.004833160963996
'year' => 2027
]
2 => [
'items' => [
101 => 0.023581852971494
102 => 0.02341438273555
103 => 0.024192548811249
104 => 0.023723219540668
105 => 0.023934558482473
106 => 0.023477759286511
107 => 0.024405939986258
108 => 0.024398868804454
109 => 0.024037785548341
110 => 0.024342970643816
111 => 0.024289937223241
112 => 0.023882275116398
113 => 0.024418863602179
114 => 0.024419129743373
115 => 0.024071594959991
116 => 0.023665750418147
117 => 0.023593194999686
118 => 0.023538534238324
119 => 0.023921115285944
120 => 0.02426413625694
121 => 0.024902413241852
122 => 0.025062891240946
123 => 0.025689247555036
124 => 0.025316282866731
125 => 0.025481613282355
126 => 0.025661102835931
127 => 0.025747156728425
128 => 0.025606936528512
129 => 0.026579925702838
130 => 0.02666207580077
131 => 0.02668962001801
201 => 0.026361533542889
202 => 0.026652951122392
203 => 0.026516606487679
204 => 0.026871337349573
205 => 0.026926963678149
206 => 0.026879850156809
207 => 0.026897506831501
208 => 0.026067232218266
209 => 0.026024178099522
210 => 0.025437132135471
211 => 0.025676357705047
212 => 0.025229136969105
213 => 0.025370955271356
214 => 0.025433467427694
215 => 0.025400814624757
216 => 0.025689883159819
217 => 0.025444115852216
218 => 0.024795495519564
219 => 0.024146698470736
220 => 0.024138553352287
221 => 0.02396773654155
222 => 0.023844267274046
223 => 0.023868051835275
224 => 0.023951871731314
225 => 0.023839395509312
226 => 0.023863398013965
227 => 0.024261999519063
228 => 0.024341936208214
229 => 0.024070280105197
301 => 0.022979541651794
302 => 0.022711871699419
303 => 0.02290426755306
304 => 0.0228123147269
305 => 0.018411318412773
306 => 0.019445267215876
307 => 0.018830929946656
308 => 0.019114044824611
309 => 0.018486965554602
310 => 0.018786240650291
311 => 0.018730975467894
312 => 0.020393534546514
313 => 0.020367575973277
314 => 0.020380000968588
315 => 0.019786923569212
316 => 0.020731711970225
317 => 0.021197148710056
318 => 0.021111008756711
319 => 0.021132688327156
320 => 0.020760161479066
321 => 0.020383607842781
322 => 0.019965951908952
323 => 0.020741905010173
324 => 0.020655632271278
325 => 0.020853510894351
326 => 0.021356771946765
327 => 0.021430879048436
328 => 0.021530479744602
329 => 0.021494779985087
330 => 0.022345293091678
331 => 0.022242290342604
401 => 0.02249049733196
402 => 0.021979916723345
403 => 0.021402146299941
404 => 0.021511961568692
405 => 0.021501385475233
406 => 0.021366739666821
407 => 0.021245187451407
408 => 0.021042837259867
409 => 0.021683103208092
410 => 0.021657109579857
411 => 0.022077916206694
412 => 0.022003534547903
413 => 0.021506795626218
414 => 0.021524536753984
415 => 0.021643854364308
416 => 0.022056813975986
417 => 0.022179408505166
418 => 0.022122617834703
419 => 0.022257037139296
420 => 0.02236327667693
421 => 0.02227037918953
422 => 0.023585611707649
423 => 0.023039435468435
424 => 0.023305637967158
425 => 0.023369125694547
426 => 0.023206503215843
427 => 0.023241770208399
428 => 0.023295190092442
429 => 0.023619545167666
430 => 0.024470746737951
501 => 0.024847738119105
502 => 0.025981935289734
503 => 0.024816434232873
504 => 0.024747278223482
505 => 0.024951581383386
506 => 0.025617475189508
507 => 0.026157119575146
508 => 0.026336150750693
509 => 0.026359812676025
510 => 0.026695687063119
511 => 0.026888203998115
512 => 0.026654903078152
513 => 0.026457204976109
514 => 0.025749074913779
515 => 0.025831042896668
516 => 0.026395721015034
517 => 0.027193362116602
518 => 0.027877821162159
519 => 0.027638147460211
520 => 0.029466688622809
521 => 0.02964798101016
522 => 0.029622932264113
523 => 0.030035943302422
524 => 0.029216200499613
525 => 0.028865744569643
526 => 0.026499949549739
527 => 0.027164641450807
528 => 0.028130810164997
529 => 0.028002934112727
530 => 0.027301276566719
531 => 0.027877288891991
601 => 0.027686841203685
602 => 0.027536627210237
603 => 0.02822478663464
604 => 0.027468127079477
605 => 0.028123261907119
606 => 0.027283044714167
607 => 0.027639242269492
608 => 0.027437047309752
609 => 0.027567892228786
610 => 0.026802975505714
611 => 0.02721570600218
612 => 0.026785804560129
613 => 0.02678560073087
614 => 0.02677611063271
615 => 0.027281887772808
616 => 0.027298381147189
617 => 0.026924611076469
618 => 0.026870744969893
619 => 0.027069916198276
620 => 0.026836738852867
621 => 0.026945841065183
622 => 0.026840043447733
623 => 0.026816226175607
624 => 0.026626446099127
625 => 0.026544683624068
626 => 0.026576744797298
627 => 0.026467303484396
628 => 0.026401361134707
629 => 0.026762993039612
630 => 0.026569787701011
701 => 0.026733381550517
702 => 0.026546945711815
703 => 0.025900677868647
704 => 0.025529002397882
705 => 0.024308262351198
706 => 0.024654462714114
707 => 0.024883993912898
708 => 0.024808133853069
709 => 0.024971110615527
710 => 0.0249811160651
711 => 0.024928130658273
712 => 0.024866780345019
713 => 0.024836918405412
714 => 0.025059484837815
715 => 0.025188692143066
716 => 0.024907030439427
717 => 0.024841041043131
718 => 0.025125816576478
719 => 0.025299529487311
720 => 0.026582128020047
721 => 0.026487108978003
722 => 0.026725588126988
723 => 0.026698739034573
724 => 0.026948703175417
725 => 0.027357288902968
726 => 0.02652651987649
727 => 0.026670712653655
728 => 0.026635359914592
729 => 0.0270213318497
730 => 0.027022536811951
731 => 0.026791127356126
801 => 0.026916578176318
802 => 0.02684655497005
803 => 0.02697309636798
804 => 0.026485839940767
805 => 0.027079265673032
806 => 0.027415699823717
807 => 0.027420371212226
808 => 0.027579838329544
809 => 0.027741866156452
810 => 0.028052864460552
811 => 0.027733192582545
812 => 0.027158133993441
813 => 0.027199651366146
814 => 0.02686249472576
815 => 0.026868162389798
816 => 0.026837907954984
817 => 0.026928703791307
818 => 0.026505764520947
819 => 0.026605027522341
820 => 0.026466058739105
821 => 0.02667041056266
822 => 0.026450561781082
823 => 0.026635342866431
824 => 0.026715088257277
825 => 0.027009350466296
826 => 0.026407099013552
827 => 0.025179067532569
828 => 0.025437214638314
829 => 0.0250553947919
830 => 0.025090733672376
831 => 0.025162123835079
901 => 0.02493072496035
902 => 0.024974868573432
903 => 0.024973291452939
904 => 0.024959700680558
905 => 0.024899504896193
906 => 0.02481220909949
907 => 0.025159968685326
908 => 0.0252190598155
909 => 0.025350412078034
910 => 0.025741227314245
911 => 0.025702175656089
912 => 0.025765870530778
913 => 0.025626824976964
914 => 0.025097183596825
915 => 0.025125945671948
916 => 0.024767282134283
917 => 0.02534124024499
918 => 0.025205319388498
919 => 0.0251176903281
920 => 0.025093779927092
921 => 0.025485563918682
922 => 0.025602791829427
923 => 0.025529743262323
924 => 0.025379918520026
925 => 0.025667626316945
926 => 0.025744604785983
927 => 0.025761837426344
928 => 0.026271600479988
929 => 0.025790327518282
930 => 0.025906174703606
1001 => 0.02680998137347
1002 => 0.025990353440699
1003 => 0.026424528636572
1004 => 0.026403278020072
1005 => 0.026625387358594
1006 => 0.026385058571428
1007 => 0.026388037734776
1008 => 0.026585255780393
1009 => 0.026308298603786
1010 => 0.026239720112001
1011 => 0.026144979416768
1012 => 0.02635184225879
1013 => 0.026475847176981
1014 => 0.027475235746023
1015 => 0.02812088633928
1016 => 0.028092856944244
1017 => 0.028348993146041
1018 => 0.028233601441193
1019 => 0.027860971187445
1020 => 0.028497005593174
1021 => 0.028295737694391
1022 => 0.028312329975427
1023 => 0.028311712409898
1024 => 0.028445537967443
1025 => 0.02835071029499
1026 => 0.028163795218724
1027 => 0.028287878169311
1028 => 0.028656360172086
1029 => 0.029800139615111
1030 => 0.03044021374449
1031 => 0.029761606348822
1101 => 0.030229700643438
1102 => 0.029949010865719
1103 => 0.02989800118331
1104 => 0.030191998992226
1105 => 0.030486511405388
1106 => 0.030467752237881
1107 => 0.030253951349306
1108 => 0.030133180652346
1109 => 0.031047696830876
1110 => 0.03172149677284
1111 => 0.03167554813401
1112 => 0.031878350482507
1113 => 0.032473784450135
1114 => 0.032528223469913
1115 => 0.032521365404688
1116 => 0.032386432614043
1117 => 0.032972714682044
1118 => 0.033461801497821
1119 => 0.032355199571592
1120 => 0.032776579098617
1121 => 0.032965749944299
1122 => 0.033243508870221
1123 => 0.033712134736053
1124 => 0.034221186723219
1125 => 0.034293172255675
1126 => 0.034242095075572
1127 => 0.033906361605985
1128 => 0.034463372364594
1129 => 0.034789656203478
1130 => 0.034983950762661
1201 => 0.035476649437216
1202 => 0.032966918199041
1203 => 0.031190405686924
1204 => 0.030912977605006
1205 => 0.031477138518908
1206 => 0.031625903252805
1207 => 0.031565936375106
1208 => 0.029566310029268
1209 => 0.030902449986127
1210 => 0.032340024233869
1211 => 0.03239524731543
1212 => 0.03311492704211
1213 => 0.033349284261786
1214 => 0.033928720772341
1215 => 0.033892476860842
1216 => 0.034033560430314
1217 => 0.034001127760919
1218 => 0.03507441188197
1219 => 0.036258403651724
1220 => 0.036217405781601
1221 => 0.036047192956344
1222 => 0.03629998802745
1223 => 0.037521994418105
1224 => 0.037409491651907
1225 => 0.037518778506305
1226 => 0.03895959291015
1227 => 0.040832856588606
1228 => 0.039962537537365
1229 => 0.041850879450998
1230 => 0.043039490588926
1231 => 0.045095070647288
]
'min_raw' => 0.018411318412773
'max_raw' => 0.045095070647288
'avg_raw' => 0.031753194530031
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.018411'
'max' => '$0.045095'
'avg' => '$0.031753'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0082094822725105
'max_diff' => 0.018294781340993
'year' => 2028
]
3 => [
'items' => [
101 => 0.044837701900036
102 => 0.045637924132213
103 => 0.044376958127976
104 => 0.041481525298973
105 => 0.041023311970512
106 => 0.041940666657901
107 => 0.044195893642686
108 => 0.041869641534479
109 => 0.042340239306252
110 => 0.042204707116322
111 => 0.042197485181896
112 => 0.04247311704523
113 => 0.042073298651473
114 => 0.040444366589351
115 => 0.041190896554065
116 => 0.040902625483375
117 => 0.041222483728337
118 => 0.04294862675682
119 => 0.042185457777818
120 => 0.041381521253252
121 => 0.042389836062854
122 => 0.043673767310038
123 => 0.043593421200035
124 => 0.043437516164562
125 => 0.044316344686603
126 => 0.045767911932419
127 => 0.046160264726094
128 => 0.046449891537085
129 => 0.046489826181035
130 => 0.046901177832969
131 => 0.044689236326558
201 => 0.048199644303919
202 => 0.048805794788546
203 => 0.0486918636198
204 => 0.049365574372751
205 => 0.04916735157884
206 => 0.048880157850668
207 => 0.049948132696482
208 => 0.048723785716882
209 => 0.046985979320338
210 => 0.046032584361281
211 => 0.047288091751545
212 => 0.048054786303609
213 => 0.048561522631592
214 => 0.048714860738261
215 => 0.044860943049111
216 => 0.042783895162732
217 => 0.044115259044498
218 => 0.04573961486608
219 => 0.044680212947953
220 => 0.044721739497431
221 => 0.043211310768109
222 => 0.04587325429341
223 => 0.045485431512243
224 => 0.047497456786985
225 => 0.047017270807656
226 => 0.048657999312838
227 => 0.048225940510624
228 => 0.050019392442533
301 => 0.050734848973944
302 => 0.051936211842102
303 => 0.052819939258345
304 => 0.053338880900174
305 => 0.0533077255905
306 => 0.055364030911128
307 => 0.05415149950539
308 => 0.052628274288072
309 => 0.052600723949604
310 => 0.053389623873922
311 => 0.055042941691166
312 => 0.055471622946382
313 => 0.055711197286275
314 => 0.055344280845086
315 => 0.054028164907065
316 => 0.053459872717887
317 => 0.053944074128076
318 => 0.053351937411316
319 => 0.054374131508663
320 => 0.055777822333198
321 => 0.055487965728727
322 => 0.056456912899744
323 => 0.057459671285531
324 => 0.058893660813904
325 => 0.059268558777099
326 => 0.059888250854168
327 => 0.060526117559715
328 => 0.060730983154547
329 => 0.061122135141142
330 => 0.061120073577095
331 => 0.062298836416264
401 => 0.063599048331114
402 => 0.064089848228995
403 => 0.065218415531307
404 => 0.063285783575812
405 => 0.064751707114531
406 => 0.066074006840902
407 => 0.064497506595104
408 => 0.066670344906489
409 => 0.066754711294363
410 => 0.068028543586865
411 => 0.066737270521675
412 => 0.065970516697455
413 => 0.068184106258088
414 => 0.06925519251906
415 => 0.068932572620466
416 => 0.066477419262457
417 => 0.065048414701615
418 => 0.061308434131496
419 => 0.065738602671939
420 => 0.067896408538201
421 => 0.066471831066551
422 => 0.067190305080528
423 => 0.071110066334806
424 => 0.072602457634689
425 => 0.072292050676916
426 => 0.072344504343046
427 => 0.073149771599645
428 => 0.076720770084181
429 => 0.07458094501715
430 => 0.076216761103179
501 => 0.077084392056835
502 => 0.07789029604019
503 => 0.075911250565641
504 => 0.073336541481205
505 => 0.07252102303523
506 => 0.066330184912349
507 => 0.066007924902606
508 => 0.065827030593659
509 => 0.064686517563759
510 => 0.063790386735069
511 => 0.06307775022889
512 => 0.061207579225401
513 => 0.061838707039633
514 => 0.058858044795095
515 => 0.060764966870966
516 => 0.056007757958077
517 => 0.059969702901957
518 => 0.057813396396535
519 => 0.059261298221249
520 => 0.059256246628183
521 => 0.056590200311194
522 => 0.055052480434522
523 => 0.05603237538889
524 => 0.057082900564131
525 => 0.057253344739423
526 => 0.058615378050636
527 => 0.058995492270987
528 => 0.057843728437486
529 => 0.055909175377265
530 => 0.056358527930697
531 => 0.055043374319369
601 => 0.052738618202169
602 => 0.054393934282723
603 => 0.054959131971735
604 => 0.055208755469804
605 => 0.052942292531567
606 => 0.052230120669069
607 => 0.051850966345175
608 => 0.055616603472961
609 => 0.055822893575266
610 => 0.054767484245391
611 => 0.059538034494445
612 => 0.058458312048367
613 => 0.059664626559058
614 => 0.056317753896363
615 => 0.05644560893924
616 => 0.054861145784706
617 => 0.055748339277379
618 => 0.055121299512339
619 => 0.055676662810588
620 => 0.05600954528171
621 => 0.057593748441431
622 => 0.059987791957301
623 => 0.057357121317888
624 => 0.056210900448399
625 => 0.056922009429239
626 => 0.058815786354063
627 => 0.061684955335828
628 => 0.059986349551216
629 => 0.06074016195423
630 => 0.060904836429509
701 => 0.05965234740974
702 => 0.061731136392519
703 => 0.062845176296441
704 => 0.063987950719789
705 => 0.06498018973177
706 => 0.063531501484956
707 => 0.06508180557035
708 => 0.063832534143033
709 => 0.062711808525423
710 => 0.06271350820357
711 => 0.062010460652455
712 => 0.060648217432477
713 => 0.060396998882152
714 => 0.061703869506346
715 => 0.062751855985841
716 => 0.062838173171809
717 => 0.063418392334347
718 => 0.063761760058004
719 => 0.06712723053563
720 => 0.068480850602363
721 => 0.070136031597248
722 => 0.070780817875645
723 => 0.072721393404945
724 => 0.071154221059197
725 => 0.070815153464218
726 => 0.066107951987552
727 => 0.066878755965654
728 => 0.068112887506116
729 => 0.066128302362096
730 => 0.067387064847445
731 => 0.067635571226288
801 => 0.066060866918313
802 => 0.066901984528159
803 => 0.064668225530398
804 => 0.060036481799293
805 => 0.061736292847345
806 => 0.062987925928924
807 => 0.061201691196265
808 => 0.064403447817726
809 => 0.062533047697141
810 => 0.061940220653955
811 => 0.059627391000385
812 => 0.060718957567892
813 => 0.062195316980174
814 => 0.061283098508588
815 => 0.063176088807422
816 => 0.065857067912644
817 => 0.067767693278091
818 => 0.067914367369321
819 => 0.066685963261296
820 => 0.068654488683976
821 => 0.068668827242592
822 => 0.066448322524147
823 => 0.065088275747921
824 => 0.0647792702588
825 => 0.06555122655472
826 => 0.06648852400896
827 => 0.067966380854773
828 => 0.06885941879514
829 => 0.071187988112895
830 => 0.071818032204965
831 => 0.072510259644717
901 => 0.073435288979261
902 => 0.074546023868035
903 => 0.07211579916557
904 => 0.072212356523505
905 => 0.06994936492932
906 => 0.067531033865111
907 => 0.069366245693623
908 => 0.071765541031403
909 => 0.07121514002993
910 => 0.071153208673593
911 => 0.071257360036627
912 => 0.070842375655933
913 => 0.068965416682093
914 => 0.068022819635815
915 => 0.069239010307666
916 => 0.069885361523336
917 => 0.07088779589109
918 => 0.070764224696442
919 => 0.073346387974185
920 => 0.074349738543352
921 => 0.074093038531968
922 => 0.074140277511893
923 => 0.0759567957911
924 => 0.077977137713054
925 => 0.079869454530563
926 => 0.08179440047423
927 => 0.07947380300722
928 => 0.078295546728026
929 => 0.079511206449076
930 => 0.078866160289438
1001 => 0.082572786855841
1002 => 0.082829425637145
1003 => 0.086535784172258
1004 => 0.090053559767045
1005 => 0.087844107943455
1006 => 0.089927521497204
1007 => 0.092180903118784
1008 => 0.096528041864802
1009 => 0.095064078469328
1010 => 0.093942705451626
1011 => 0.092883013368333
1012 => 0.095088064372285
1013 => 0.09792482726232
1014 => 0.098535838818656
1015 => 0.0995259109643
1016 => 0.098484971163418
1017 => 0.099738668497823
1018 => 0.1041647709908
1019 => 0.10296879902691
1020 => 0.1012703265761
1021 => 0.1047643094069
1022 => 0.10602876821085
1023 => 0.1149034022992
1024 => 0.1261079944286
1025 => 0.12146921971371
1026 => 0.11858978255586
1027 => 0.11926651858911
1028 => 0.12335805633539
1029 => 0.12467212840058
1030 => 0.12110002753959
1031 => 0.12236175395233
1101 => 0.12931399053668
1102 => 0.13304364240973
1103 => 0.12797827420705
1104 => 0.11400312423128
1105 => 0.10111739771529
1106 => 0.10453527263916
1107 => 0.1041477916918
1108 => 0.11161710259251
1109 => 0.1029402754911
1110 => 0.10308637100653
1111 => 0.11071013934653
1112 => 0.10867624865789
1113 => 0.10538160622334
1114 => 0.10114145225113
1115 => 0.093303135466732
1116 => 0.086360519703154
1117 => 0.099976588004454
1118 => 0.099389438380088
1119 => 0.098539158713307
1120 => 0.10043136410186
1121 => 0.10961937635679
1122 => 0.10940756293562
1123 => 0.1080601140183
1124 => 0.10908214214622
1125 => 0.10520243975109
1126 => 0.10620232739749
1127 => 0.10111535655038
1128 => 0.10341487982394
1129 => 0.10537453740038
1130 => 0.10576796767207
1201 => 0.10665438616325
1202 => 0.099080037208333
1203 => 0.10248069751789
1204 => 0.10447826685098
1205 => 0.095453175931903
1206 => 0.10429986982138
1207 => 0.098948184644433
1208 => 0.097131742315762
1209 => 0.099577342613238
1210 => 0.098624289798887
1211 => 0.097804910954247
1212 => 0.097347683480223
1213 => 0.099143462427634
1214 => 0.099059687193317
1215 => 0.096121444289678
1216 => 0.092288626199983
1217 => 0.09357504575885
1218 => 0.093107677472866
1219 => 0.091413874512752
1220 => 0.09255529319732
1221 => 0.087529062969259
1222 => 0.078881695102596
1223 => 0.084594411191355
1224 => 0.084374477836177
1225 => 0.084263577465313
1226 => 0.08855652571814
1227 => 0.088143857798798
1228 => 0.087394861484336
1229 => 0.091400118608067
1230 => 0.089938145879594
1231 => 0.094443601344649
]
'min_raw' => 0.040444366589351
'max_raw' => 0.13304364240973
'avg_raw' => 0.086744004499543
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.040444'
'max' => '$0.133043'
'avg' => '$0.086744'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.022033048176578
'max_diff' => 0.087948571762447
'year' => 2029
]
4 => [
'items' => [
101 => 0.097411185708524
102 => 0.096658510322548
103 => 0.099449537760352
104 => 0.093604682267284
105 => 0.09554610880718
106 => 0.095946234126352
107 => 0.09135069435688
108 => 0.088211375373952
109 => 0.088002018588648
110 => 0.082558872097056
111 => 0.085466557017321
112 => 0.088025199418976
113 => 0.086799808267255
114 => 0.086411886036139
115 => 0.088393696584843
116 => 0.088547700237537
117 => 0.085036400635543
118 => 0.085766511011194
119 => 0.088811192648412
120 => 0.085689792845785
121 => 0.079625422907043
122 => 0.078121375315762
123 => 0.077920707641987
124 => 0.073841611286912
125 => 0.078221882967694
126 => 0.07630977699505
127 => 0.082350096852086
128 => 0.078899898544632
129 => 0.078751167391422
130 => 0.078526338439228
131 => 0.075015291701066
201 => 0.075783987798063
202 => 0.078339250700202
203 => 0.079250997290782
204 => 0.079155894651664
205 => 0.078326728517962
206 => 0.078706316527954
207 => 0.077483531290542
208 => 0.077051740373138
209 => 0.075688889464363
210 => 0.073685875125636
211 => 0.073964406554637
212 => 0.069995911032407
213 => 0.067833664047897
214 => 0.067235182580542
215 => 0.066434868150133
216 => 0.067325580225013
217 => 0.069984668783208
218 => 0.066777243824917
219 => 0.061278338708628
220 => 0.061608832275796
221 => 0.0623513531968
222 => 0.060967670372776
223 => 0.059658130703534
224 => 0.060796669199628
225 => 0.058466710611072
226 => 0.062632917560718
227 => 0.06252023333839
228 => 0.064073137652709
301 => 0.065044200589257
302 => 0.062806214905873
303 => 0.062243367558659
304 => 0.062563990987618
305 => 0.05726479990444
306 => 0.063640080686374
307 => 0.063695214379315
308 => 0.063223126227715
309 => 0.066617766429383
310 => 0.073781516069735
311 => 0.071086225293873
312 => 0.070042527239864
313 => 0.068058456476255
314 => 0.070702112966299
315 => 0.070499121395329
316 => 0.069581116529137
317 => 0.069025904321714
318 => 0.070048899837626
319 => 0.068899143856303
320 => 0.068692616088876
321 => 0.067441282522694
322 => 0.066994613371617
323 => 0.066663917314571
324 => 0.066299853449286
325 => 0.067102887617041
326 => 0.065283106544966
327 => 0.063088628967381
328 => 0.062906181901382
329 => 0.063409934291517
330 => 0.063187061358837
331 => 0.062905114871525
401 => 0.062366802243691
402 => 0.062207096386242
403 => 0.062726062944684
404 => 0.062140179957833
405 => 0.06300468221963
406 => 0.062769585439513
407 => 0.061456353936707
408 => 0.059819581263637
409 => 0.0598050105536
410 => 0.059452370566032
411 => 0.059003230522088
412 => 0.058878290036794
413 => 0.060700784663129
414 => 0.064473293996968
415 => 0.063732660146238
416 => 0.064267844006601
417 => 0.066900418908649
418 => 0.067737235305721
419 => 0.067143282848162
420 => 0.066330244090863
421 => 0.066366013669943
422 => 0.069144413227202
423 => 0.069317698599534
424 => 0.069755534831437
425 => 0.070318278121937
426 => 0.067239120463905
427 => 0.066220985621154
428 => 0.065738536848688
429 => 0.064252781360664
430 => 0.065855041275449
501 => 0.064921473038714
502 => 0.065047443289082
503 => 0.064965404998273
504 => 0.06501020345246
505 => 0.062631753020968
506 => 0.063498335350529
507 => 0.062057474151227
508 => 0.060128322749621
509 => 0.060121855557676
510 => 0.060594012630192
511 => 0.060313155127951
512 => 0.059557374810928
513 => 0.059664729837779
514 => 0.0587241868383
515 => 0.059778928786996
516 => 0.059809175012037
517 => 0.059403041909606
518 => 0.061028017407914
519 => 0.061693771195425
520 => 0.061426445687191
521 => 0.061675014925132
522 => 0.063763436826498
523 => 0.064103940720656
524 => 0.064255170058017
525 => 0.064052542780001
526 => 0.061713187443719
527 => 0.06181694780059
528 => 0.061055623147948
529 => 0.060412384042881
530 => 0.060438110233739
531 => 0.060768818748974
601 => 0.062213042230803
602 => 0.065252325406687
603 => 0.065367663981525
604 => 0.065507457698892
605 => 0.064938846395667
606 => 0.064767347785738
607 => 0.064993598719782
608 => 0.066134993682726
609 => 0.069070971413129
610 => 0.068033200795845
611 => 0.067189477130132
612 => 0.06792965025123
613 => 0.067815706400905
614 => 0.06685390563513
615 => 0.066826911091012
616 => 0.064980907915183
617 => 0.064298482572538
618 => 0.063728196877572
619 => 0.063105459786354
620 => 0.062736280364344
621 => 0.063303507745598
622 => 0.063433239358928
623 => 0.062192986776378
624 => 0.062023944932267
625 => 0.063036761963889
626 => 0.062591058949897
627 => 0.063049475552691
628 => 0.063155832136764
629 => 0.063138706277128
630 => 0.062673341141855
701 => 0.06296995100169
702 => 0.062268380259526
703 => 0.06150552744994
704 => 0.061018874884834
705 => 0.060594205976684
706 => 0.060829836968827
707 => 0.059989855506354
708 => 0.059721128531022
709 => 0.062869466255111
710 => 0.06519517718223
711 => 0.065161360424267
712 => 0.064955509607132
713 => 0.064649657048182
714 => 0.066112618663001
715 => 0.065602952089239
716 => 0.065973777105718
717 => 0.066068167635889
718 => 0.066353859342108
719 => 0.066455969571049
720 => 0.066147321539075
721 => 0.065111461045587
722 => 0.062530195182476
723 => 0.061328608955204
724 => 0.060932065486203
725 => 0.060946479088158
726 => 0.060548887601088
727 => 0.060665996112831
728 => 0.06050816203987
729 => 0.060209262489846
730 => 0.06081138076389
731 => 0.060880769285854
801 => 0.060740227685914
802 => 0.06077333032038
803 => 0.059609705898984
804 => 0.059698173736483
805 => 0.059205573575337
806 => 0.059113216983506
807 => 0.057867966671732
808 => 0.055661825242506
809 => 0.056884241749628
810 => 0.055407734506797
811 => 0.054848558841202
812 => 0.057495609472473
813 => 0.057229919006849
814 => 0.056775172422571
815 => 0.05610250744693
816 => 0.055853009464201
817 => 0.0543371387026
818 => 0.054247572971149
819 => 0.054998879452551
820 => 0.054652177362262
821 => 0.054165276321145
822 => 0.052401770106589
823 => 0.050419005244586
824 => 0.050478852452554
825 => 0.051109533064505
826 => 0.052943322002623
827 => 0.05222682893963
828 => 0.051707005001617
829 => 0.051609657603878
830 => 0.052828164097169
831 => 0.054552606070179
901 => 0.0553616756617
902 => 0.054559912268311
903 => 0.053638889651992
904 => 0.05369494803104
905 => 0.054067879312246
906 => 0.054107069116937
907 => 0.053507578076368
908 => 0.053676331292749
909 => 0.053419979725949
910 => 0.051846750633682
911 => 0.051818295908166
912 => 0.051432200117177
913 => 0.05142050929007
914 => 0.05076366403349
915 => 0.050671766841538
916 => 0.049367560716941
917 => 0.050225993137651
918 => 0.049650201739563
919 => 0.048782348287186
920 => 0.048632730024883
921 => 0.048628232319248
922 => 0.049519323766359
923 => 0.050215580215272
924 => 0.049660217877451
925 => 0.049533772638375
926 => 0.050883876983979
927 => 0.050712063899526
928 => 0.050563274876466
929 => 0.054398201205341
930 => 0.051362557773003
1001 => 0.050038843968035
1002 => 0.048400496767952
1003 => 0.048933950877563
1004 => 0.049046357496529
1005 => 0.045106427814611
1006 => 0.043507998833343
1007 => 0.042959478242498
1008 => 0.042643796887523
1009 => 0.042787656845062
1010 => 0.041348883284902
1011 => 0.042315762912448
1012 => 0.04106990662585
1013 => 0.040861034765035
1014 => 0.043088780137449
1015 => 0.043398757891721
1016 => 0.042076296489458
1017 => 0.042925530796764
1018 => 0.042617586631695
1019 => 0.04109126325606
1020 => 0.041032968929985
1021 => 0.040267113512952
1022 => 0.039068698084126
1023 => 0.038520990075374
1024 => 0.038235738988996
1025 => 0.038353439146669
1026 => 0.038293926345265
1027 => 0.037905565060099
1028 => 0.038316186759532
1029 => 0.037267217998082
1030 => 0.036849510185157
1031 => 0.036660841256807
1101 => 0.035729821104631
1102 => 0.037211488193283
1103 => 0.037503395275298
1104 => 0.037795877504439
1105 => 0.040341735623012
1106 => 0.040214551745928
1107 => 0.041364232053703
1108 => 0.04131955759107
1109 => 0.040991650143706
1110 => 0.039608262561436
1111 => 0.040159656195216
1112 => 0.038462552296037
1113 => 0.03973413792915
1114 => 0.039153839348883
1115 => 0.039537938395434
1116 => 0.03884729367692
1117 => 0.039229524980167
1118 => 0.037572617273483
1119 => 0.036025420170301
1120 => 0.03664805745012
1121 => 0.037324935380494
1122 => 0.038792579198832
1123 => 0.037918462648429
1124 => 0.03823282801396
1125 => 0.037179756663556
1126 => 0.035006969672713
1127 => 0.035019267411117
1128 => 0.034685031469314
1129 => 0.034396202816349
1130 => 0.038018865449345
1201 => 0.03756833008511
1202 => 0.036850460946814
1203 => 0.037811357315409
1204 => 0.038065433566742
1205 => 0.038072666760428
1206 => 0.038773711946631
1207 => 0.039147859888176
1208 => 0.039213805084524
1209 => 0.040316914832097
1210 => 0.040686662669114
1211 => 0.042209601681116
1212 => 0.039116116049362
1213 => 0.039052407748501
1214 => 0.037824879097868
1215 => 0.037046361021176
1216 => 0.03787818489663
1217 => 0.038615067295
1218 => 0.037847776088037
1219 => 0.037947968121265
1220 => 0.036917942365912
1221 => 0.037286128106234
1222 => 0.037603259265775
1223 => 0.037428158079584
1224 => 0.037166023128864
1225 => 0.03855465134163
1226 => 0.038476299495788
1227 => 0.03976942201194
1228 => 0.040777503485359
1229 => 0.042584165701844
1230 => 0.040698819495511
1231 => 0.04063010998618
]
'min_raw' => 0.034396202816349
'max_raw' => 0.099449537760352
'avg_raw' => 0.06692287028835
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.034396'
'max' => '$0.099449'
'avg' => '$0.066922'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0060481637730022
'max_diff' => -0.033594104649383
'year' => 2030
]
5 => [
'items' => [
101 => 0.041301756461244
102 => 0.040686559843538
103 => 0.041075342870063
104 => 0.042521526745709
105 => 0.042552082332135
106 => 0.042040236890855
107 => 0.042009091049237
108 => 0.04210739656521
109 => 0.042683175042783
110 => 0.042481980350833
111 => 0.042714807941984
112 => 0.0430059624099
113 => 0.044210300736137
114 => 0.044500662629325
115 => 0.04379523376426
116 => 0.043858926092423
117 => 0.043595076332434
118 => 0.043340200770311
119 => 0.043913123812375
120 => 0.044960151932578
121 => 0.044953638424983
122 => 0.045196528597552
123 => 0.045347847162851
124 => 0.044698277108626
125 => 0.044275430888679
126 => 0.044437577035811
127 => 0.044696852256158
128 => 0.044353497576276
129 => 0.042234153434683
130 => 0.042877027063014
131 => 0.042770021456345
201 => 0.042617632460123
202 => 0.043264046864605
203 => 0.043201698618354
204 => 0.041334126582473
205 => 0.041453682484887
206 => 0.04134139717288
207 => 0.041704213987389
208 => 0.040666966544892
209 => 0.040986016872236
210 => 0.041186122246635
211 => 0.041303985849438
212 => 0.041729790002591
213 => 0.041679826799832
214 => 0.041726684219756
215 => 0.042358039370754
216 => 0.045551217069576
217 => 0.045725014686373
218 => 0.044869171657771
219 => 0.04521106406694
220 => 0.044554705404986
221 => 0.044995323371976
222 => 0.045296782994509
223 => 0.043934544927637
224 => 0.043853882030169
225 => 0.043194814342537
226 => 0.043548959986368
227 => 0.042985488803059
228 => 0.043123744922058
301 => 0.042737168760386
302 => 0.04343292888485
303 => 0.044210896814194
304 => 0.044407442236031
305 => 0.043890415849303
306 => 0.043516054671612
307 => 0.042858799765826
308 => 0.043951829322029
309 => 0.044271464473735
310 => 0.04395015041465
311 => 0.043875694926309
312 => 0.043734601910441
313 => 0.043905628476615
314 => 0.044269723672054
315 => 0.044098023101668
316 => 0.044211434353382
317 => 0.04377922761102
318 => 0.044698492143343
319 => 0.046158505453728
320 => 0.046163199635257
321 => 0.045991498139341
322 => 0.045921241586572
323 => 0.0460974177411
324 => 0.046192986077808
325 => 0.04676270745637
326 => 0.047374041194269
327 => 0.050226869003236
328 => 0.049425806370253
329 => 0.051957004917854
330 => 0.053958854334011
331 => 0.054559121443651
401 => 0.054006903947532
402 => 0.052117797723513
403 => 0.052025109159706
404 => 0.054848231418465
405 => 0.054050570073174
406 => 0.05395569079429
407 => 0.052946335568025
408 => 0.053542989517824
409 => 0.053412492546618
410 => 0.053206496693438
411 => 0.05434487086638
412 => 0.056475805694764
413 => 0.05614367951798
414 => 0.055895762733901
415 => 0.054809463553557
416 => 0.05546365829383
417 => 0.055230712077093
418 => 0.056231596855515
419 => 0.05563869488509
420 => 0.054044527003962
421 => 0.054298403493478
422 => 0.054260030572816
423 => 0.055049742560899
424 => 0.054812690623933
425 => 0.054213742377576
426 => 0.056468522391183
427 => 0.056322109518844
428 => 0.056529689497178
429 => 0.056621072623264
430 => 0.057993517483866
501 => 0.058555764229917
502 => 0.058683404084786
503 => 0.059217495007811
504 => 0.058670115416075
505 => 0.060860024058052
506 => 0.062316185520254
507 => 0.064007591991986
508 => 0.066479191454387
509 => 0.067408535715823
510 => 0.067240657993233
511 => 0.06911459649765
512 => 0.072482022334776
513 => 0.067921311033305
514 => 0.072723751108026
515 => 0.071203354027206
516 => 0.067598519899358
517 => 0.067366411079728
518 => 0.069807646604091
519 => 0.075222072036917
520 => 0.073865819875899
521 => 0.075224290379589
522 => 0.073639562377626
523 => 0.073560867275192
524 => 0.075147323677713
525 => 0.078854165535439
526 => 0.077093183917722
527 => 0.074568384958318
528 => 0.07643265721972
529 => 0.074817652056641
530 => 0.071178593412742
531 => 0.073864782775432
601 => 0.07206860444687
602 => 0.072592824773236
603 => 0.076368124458512
604 => 0.075913870412176
605 => 0.076501717210927
606 => 0.07546418299776
607 => 0.074494962438534
608 => 0.072685840289475
609 => 0.072150248409782
610 => 0.072298266736752
611 => 0.072150175059251
612 => 0.071137987843543
613 => 0.070919406110682
614 => 0.070555093646295
615 => 0.070668009312615
616 => 0.069982995296197
617 => 0.071275758276296
618 => 0.071515706477191
619 => 0.072456471566621
620 => 0.072554144919074
621 => 0.075174162302184
622 => 0.07373110075517
623 => 0.074699231028847
624 => 0.074612632344774
625 => 0.067676647585722
626 => 0.068632365088808
627 => 0.070119161602935
628 => 0.069449361788626
629 => 0.068502421560211
630 => 0.067737716554043
701 => 0.066579110274598
702 => 0.068209826363855
703 => 0.070354044613904
704 => 0.072608525832394
705 => 0.075317137296948
706 => 0.074712606749773
707 => 0.072557890225135
708 => 0.072654549234409
709 => 0.073252057195822
710 => 0.072478230096469
711 => 0.072250013377971
712 => 0.073220703723206
713 => 0.073227388334132
714 => 0.072337006736198
715 => 0.071347510528207
716 => 0.071343364502966
717 => 0.071167293210153
718 => 0.073670885069473
719 => 0.075047607450411
720 => 0.075205446452687
721 => 0.075036983627962
722 => 0.075101818283148
723 => 0.074300733863688
724 => 0.076131775292369
725 => 0.077812119978556
726 => 0.07736175170733
727 => 0.07668658564514
728 => 0.076148783356201
729 => 0.077235062579659
730 => 0.0771866922758
731 => 0.077797443633623
801 => 0.077769736424161
802 => 0.077564363714046
803 => 0.077361759041836
804 => 0.078165063665755
805 => 0.077933724834744
806 => 0.077702026670631
807 => 0.077237320531288
808 => 0.077300481813576
809 => 0.076625432328326
810 => 0.076313123548286
811 => 0.07161674883003
812 => 0.070361724046841
813 => 0.070756580392017
814 => 0.07088657735329
815 => 0.070340388959288
816 => 0.071123482812
817 => 0.071001438464557
818 => 0.071476241626904
819 => 0.071179605224627
820 => 0.071191779286047
821 => 0.072064123695597
822 => 0.072317368988908
823 => 0.07218856638879
824 => 0.072278775314818
825 => 0.074357601940323
826 => 0.07406205927131
827 => 0.07390505811878
828 => 0.073948548510996
829 => 0.074479733284358
830 => 0.074628436019286
831 => 0.07399837208224
901 => 0.074295513877307
902 => 0.075560705927794
903 => 0.076003451541796
904 => 0.077416483011739
905 => 0.076816202128676
906 => 0.077918043669087
907 => 0.081304728918849
908 => 0.084010247437153
909 => 0.081522140797439
910 => 0.086490481010599
911 => 0.090359046532619
912 => 0.09021056454445
913 => 0.089535990664154
914 => 0.08513173166847
915 => 0.08107886687684
916 => 0.084469260368768
917 => 0.084477903179019
918 => 0.084186665371272
919 => 0.082377812360086
920 => 0.084123721207399
921 => 0.084262305111489
922 => 0.084184734977633
923 => 0.082797891615037
924 => 0.08068043813185
925 => 0.081094183473997
926 => 0.081771906784611
927 => 0.080488835169726
928 => 0.080078816044719
929 => 0.080841119607437
930 => 0.083297420518766
1001 => 0.082833071059861
1002 => 0.082820945018906
1003 => 0.084807628918915
1004 => 0.083385591999728
1005 => 0.081099402127758
1006 => 0.080522109033945
1007 => 0.078473107462137
1008 => 0.079888360146078
1009 => 0.079939292570648
1010 => 0.079164173139185
1011 => 0.081162298797694
1012 => 0.081143885717988
1013 => 0.083040808648986
1014 => 0.086667012841337
1015 => 0.085594565826987
1016 => 0.084347426631202
1017 => 0.084483025241203
1018 => 0.085970207307024
1019 => 0.085071023080965
1020 => 0.085394375997991
1021 => 0.085969717873657
1022 => 0.086316835912182
1023 => 0.084433080297303
1024 => 0.083993886753028
1025 => 0.083095450897428
1026 => 0.082861065752801
1027 => 0.083592823010708
1028 => 0.083400030826615
1029 => 0.079935011897583
1030 => 0.079572898140315
1031 => 0.079584003652271
1101 => 0.078673451392052
1102 => 0.077284640637636
1103 => 0.080934352378661
1104 => 0.080641229448174
1105 => 0.080317644418828
1106 => 0.080357281738573
1107 => 0.081941497905144
1108 => 0.081022572523698
1109 => 0.083465686259179
1110 => 0.082963455521885
1111 => 0.08244834446127
1112 => 0.082377140422027
1113 => 0.0821788666109
1114 => 0.081498911938113
1115 => 0.08067782581178
1116 => 0.080135673629913
1117 => 0.073920922967914
1118 => 0.07507434454124
1119 => 0.076401250923666
1120 => 0.076859293689636
1121 => 0.07607577984285
1122 => 0.081529849840357
1123 => 0.082526360985628
1124 => 0.079507863725789
1125 => 0.078943226132904
1126 => 0.081566867386945
1127 => 0.079984490983659
1128 => 0.080697034981168
1129 => 0.079156904599282
1130 => 0.082286330631984
1201 => 0.082262489648838
1202 => 0.081045072240824
1203 => 0.082074025097563
1204 => 0.081895219217418
1205 => 0.080520757962137
1206 => 0.082329903505359
1207 => 0.082330800818977
1208 => 0.081159063032701
1209 => 0.079790729824714
1210 => 0.079546104165714
1211 => 0.079361811592491
1212 => 0.080651710305495
1213 => 0.081808229458167
1214 => 0.083960224875876
1215 => 0.084501287654038
1216 => 0.086613091697793
1217 => 0.08535561521161
1218 => 0.085913038250888
1219 => 0.086518199812328
1220 => 0.086808336518962
1221 => 0.086335574325096
1222 => 0.089616075258271
1223 => 0.089893050048982
1224 => 0.089985917300485
1225 => 0.088879750843349
1226 => 0.089862285558769
1227 => 0.089402590103554
1228 => 0.090598589970948
1229 => 0.090786138021448
1230 => 0.09062729149489
1231 => 0.090686822206364
]
'min_raw' => 0.040666966544892
'max_raw' => 0.090786138021448
'avg_raw' => 0.06572655228317
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.040666'
'max' => '$0.090786'
'avg' => '$0.065726'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0062707637285427
'max_diff' => -0.0086633997389032
'year' => 2031
]
6 => [
'items' => [
101 => 0.08788749337992
102 => 0.087742333412633
103 => 0.085763066958592
104 => 0.086569632668613
105 => 0.08506179673343
106 => 0.085539947040907
107 => 0.08575071114046
108 => 0.085640619935611
109 => 0.086615234683696
110 => 0.085786613047185
111 => 0.083599744310424
112 => 0.081412279762738
113 => 0.081384817927212
114 => 0.080808897123762
115 => 0.080392611868025
116 => 0.080472803176793
117 => 0.080755407808408
118 => 0.080376186373088
119 => 0.080457112493329
120 => 0.081801025297233
121 => 0.082070537425709
122 => 0.081154629907963
123 => 0.077477129059388
124 => 0.076574661126836
125 => 0.077223337180038
126 => 0.076913311806695
127 => 0.062075045465867
128 => 0.065561076043529
129 => 0.063489795048695
130 => 0.064444336626171
131 => 0.062330095086059
201 => 0.063339121965894
202 => 0.06315279154495
203 => 0.068758225554686
204 => 0.068670704412647
205 => 0.068712596151825
206 => 0.066712994292484
207 => 0.069898414349521
208 => 0.071467666813618
209 => 0.071177239946816
210 => 0.071250334132189
211 => 0.069994333854859
212 => 0.06872475697999
213 => 0.06731660083928
214 => 0.06993278089536
215 => 0.069641906332807
216 => 0.07030906792594
217 => 0.07200584770072
218 => 0.072255704967996
219 => 0.072591515669017
220 => 0.072471151437335
221 => 0.075338715757137
222 => 0.07499143479721
223 => 0.075828281991082
224 => 0.074106823821538
225 => 0.072158830500389
226 => 0.07252908034604
227 => 0.072493422308543
228 => 0.072039454564811
229 => 0.071629632784039
301 => 0.070947394985624
302 => 0.073106096332004
303 => 0.073018456999592
304 => 0.074437235921754
305 => 0.074186452965979
306 => 0.072511663010313
307 => 0.072571478461223
308 => 0.072973766114922
309 => 0.074366088277612
310 => 0.07477942429202
311 => 0.074587950581554
312 => 0.075041154651846
313 => 0.075399348670387
314 => 0.075086138305723
315 => 0.079520536567163
316 => 0.077679065243845
317 => 0.078576585553955
318 => 0.078790638859419
319 => 0.078242345818528
320 => 0.078361250946195
321 => 0.078541359814904
322 => 0.079634945596769
323 => 0.08250483111998
324 => 0.083775883882238
325 => 0.087599908830131
326 => 0.083670340644241
327 => 0.08343717633026
328 => 0.084125998697866
329 => 0.086371106156429
330 => 0.088190554879374
331 => 0.08879417098729
401 => 0.088873948820567
402 => 0.090006372766657
403 => 0.0906554570541
404 => 0.089868866713895
405 => 0.089202313760014
406 => 0.086814803814807
407 => 0.087091164591938
408 => 0.088995016292578
409 => 0.091684318956036
410 => 0.093992020415536
411 => 0.093183943795935
412 => 0.099348997990303
413 => 0.099960237931687
414 => 0.099875784335541
415 => 0.10126827988671
416 => 0.098504459794425
417 => 0.09732287315848
418 => 0.08934643007434
419 => 0.091587485226098
420 => 0.094844990501733
421 => 0.094413847463484
422 => 0.092048160058953
423 => 0.093990225829503
424 => 0.093348118151748
425 => 0.09284166118523
426 => 0.095161838730362
427 => 0.092610708211849
428 => 0.094819541023297
429 => 0.091986690095165
430 => 0.093187635021866
501 => 0.092505920598301
502 => 0.092947073378125
503 => 0.090368103241505
504 => 0.091759652926264
505 => 0.090310210199628
506 => 0.090309522975052
507 => 0.090277526446527
508 => 0.091982789386601
509 => 0.092038397949855
510 => 0.090778206060631
511 => 0.090596592721497
512 => 0.091268112423681
513 => 0.090481938723712
514 => 0.090849784449809
515 => 0.090493080396025
516 => 0.090412778800182
517 => 0.08977292202231
518 => 0.089497254129174
519 => 0.089605350613159
520 => 0.08923636158576
521 => 0.089014032349837
522 => 0.090233299565556
523 => 0.089581894277296
524 => 0.090133462362663
525 => 0.089504880915946
526 => 0.087325943761724
527 => 0.086072813962488
528 => 0.081957003665744
529 => 0.083124242360254
530 => 0.08389812282231
531 => 0.083642355334217
601 => 0.084191842867519
602 => 0.084225576939311
603 => 0.084046932940872
604 => 0.083840086076393
605 => 0.083739404462114
606 => 0.084489802728052
607 => 0.084925434178673
608 => 0.083975792079862
609 => 0.083753304223016
610 => 0.084713444816091
611 => 0.085299130023212
612 => 0.089623500524501
613 => 0.089303137190233
614 => 0.090107186291117
615 => 0.090016662701497
616 => 0.09085943425429
617 => 0.092237009561274
618 => 0.089436013786061
619 => 0.089922169801492
620 => 0.08980297557349
621 => 0.091104306900407
622 => 0.091108369514764
623 => 0.090328156377957
624 => 0.090751122576933
625 => 0.090515034448135
626 => 0.090941677606097
627 => 0.089298858542588
628 => 0.091299634830582
629 => 0.092433946058699
630 => 0.092449695971202
701 => 0.092987350490879
702 => 0.09353363862172
703 => 0.094582191117202
704 => 0.093504395061724
705 => 0.091565544879251
706 => 0.091705523599978
707 => 0.090568776447392
708 => 0.090587885372397
709 => 0.090485880433126
710 => 0.090792004934451
711 => 0.089366035655754
712 => 0.089700707795278
713 => 0.089232164840108
714 => 0.089921151280612
715 => 0.089179915764168
716 => 0.089802918094424
717 => 0.090071785247309
718 => 0.091063910829748
719 => 0.089033378008969
720 => 0.084892984132414
721 => 0.085763345122689
722 => 0.084476012852691
723 => 0.084595160355499
724 => 0.084835857273356
725 => 0.084055679811452
726 => 0.084204513084966
727 => 0.084199195713112
728 => 0.084153373475155
729 => 0.083950419185431
730 => 0.083656095312048
731 => 0.084828591035494
801 => 0.085027820906486
802 => 0.085470684230342
803 => 0.086788345085076
804 => 0.086656679693105
805 => 0.086871431410154
806 => 0.086402629617616
807 => 0.084616906726099
808 => 0.084713880070481
809 => 0.083504620912152
810 => 0.085439760754878
811 => 0.084981494097523
812 => 0.084686046602325
813 => 0.084605431015958
814 => 0.085926358097086
815 => 0.086321600182755
816 => 0.086075311838676
817 => 0.085570167259591
818 => 0.086540194184023
819 => 0.08679973246685
820 => 0.086857833516972
821 => 0.08857653524285
822 => 0.086953889851054
823 => 0.087344476724567
824 => 0.09039172401378
825 => 0.087628291213846
826 => 0.089092143199876
827 => 0.089020495262678
828 => 0.089769352404681
829 => 0.088959067119532
830 => 0.088969111576759
831 => 0.089634045986881
901 => 0.088700265529418
902 => 0.088469048356366
903 => 0.088149623487803
904 => 0.088847076002385
905 => 0.089265167241812
906 => 0.092634675577419
907 => 0.094811531630469
908 => 0.094717028568157
909 => 0.095580609655372
910 => 0.095191558466085
911 => 0.093935209549361
912 => 0.096079643954781
913 => 0.09540105518196
914 => 0.095456997215906
915 => 0.095454915050608
916 => 0.095906117261274
917 => 0.095586399142942
918 => 0.094956201913318
919 => 0.095374556244416
920 => 0.096616919043366
921 => 0.10047325129165
922 => 0.1026313059074
923 => 0.10034333369405
924 => 0.10192154628965
925 => 0.10097518110694
926 => 0.10080319840131
927 => 0.10179443254035
928 => 0.10278740170352
929 => 0.10272415386055
930 => 0.10200330923762
1001 => 0.10159612240088
1002 => 0.10467947754627
1003 => 0.10695124109381
1004 => 0.10679632204996
1005 => 0.10748008432713
1006 => 0.10948763152086
1007 => 0.10967117647685
1008 => 0.10964805403113
1009 => 0.10919311870676
1010 => 0.11116980963193
1011 => 0.11281879997828
1012 => 0.10908781432352
1013 => 0.11050852481866
1014 => 0.11114632753237
1015 => 0.11208281114362
1016 => 0.11366281596869
1017 => 0.11537912028429
1018 => 0.11562182453284
1019 => 0.11544961425403
1020 => 0.11431766542115
1021 => 0.11619566608305
1022 => 0.11729575482626
1023 => 0.11795083249775
1024 => 0.11961200047814
1025 => 0.11115026638479
1026 => 0.10516063041805
1027 => 0.10422526227045
1028 => 0.10612737018013
1029 => 0.10662894086688
1030 => 0.10642675835197
1031 => 0.099684878517523
1101 => 0.10418976766839
1102 => 0.10903664961288
1103 => 0.10922283808791
1104 => 0.11164928853285
1105 => 0.11243944026128
1106 => 0.11439305091159
1107 => 0.1142708520335
1108 => 0.11474652513811
1109 => 0.11463717612887
1110 => 0.1182558284773
1111 => 0.12224773939269
1112 => 0.12210951221119
1113 => 0.12153562778696
1114 => 0.12238794401878
1115 => 0.12650802388263
1116 => 0.1261287129517
1117 => 0.12649718121147
1118 => 0.13135498756848
1119 => 0.13767082684749
1120 => 0.1347364854025
1121 => 0.14110316200413
1122 => 0.14511064744184
1123 => 0.15204117912462
1124 => 0.15117344242435
1125 => 0.15387144754987
1126 => 0.14962001262875
1127 => 0.1398578586931
1128 => 0.13831296046476
1129 => 0.14140588584095
1130 => 0.14900954107507
1201 => 0.14116641967852
1202 => 0.14275307292214
1203 => 0.14229611668123
1204 => 0.1422717674251
1205 => 0.14320107949633
1206 => 0.14185306386735
1207 => 0.1363610056915
1208 => 0.13887798358859
1209 => 0.13790605754732
1210 => 0.13898448195199
1211 => 0.14480429368798
1212 => 0.14223121619252
1213 => 0.13952068807089
1214 => 0.14292029184976
1215 => 0.14724915569085
1216 => 0.14697826317139
1217 => 0.14645261845935
1218 => 0.14941565017926
1219 => 0.15430971049372
1220 => 0.15563255533079
1221 => 0.15660905234515
1222 => 0.15674369478537
1223 => 0.15813059559952
1224 => 0.15067288037783
1225 => 0.16250846596236
1226 => 0.16455214464136
1227 => 0.16416801775151
1228 => 0.16643948059207
1229 => 0.16577115860293
1230 => 0.16480286489717
1231 => 0.16840361665345
]
'min_raw' => 0.062075045465867
'max_raw' => 0.16840361665345
'avg_raw' => 0.11523933105966
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.062075'
'max' => '$0.1684036'
'avg' => '$0.115239'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.021408078920975
'max_diff' => 0.077617478632003
'year' => 2032
]
7 => [
'items' => [
101 => 0.16427564533055
102 => 0.15841650973484
103 => 0.15520207206647
104 => 0.15943510288947
105 => 0.16202006710066
106 => 0.16372856400965
107 => 0.16424555414201
108 => 0.1512518015811
109 => 0.14424888961732
110 => 0.14873767589756
111 => 0.15421430495892
112 => 0.15064245742688
113 => 0.15078246708773
114 => 0.14568995117205
115 => 0.15466487961857
116 => 0.15335730803494
117 => 0.16014099172386
118 => 0.15852201116903
119 => 0.16405384187626
120 => 0.16259712545921
121 => 0.16864387386246
122 => 0.17105608550969
123 => 0.17510656429616
124 => 0.1780861129799
125 => 0.17983576095668
126 => 0.17973071865492
127 => 0.18666369561007
128 => 0.18257556131938
129 => 0.17743990115101
130 => 0.17734701326136
131 => 0.18000684443543
201 => 0.18558112088723
202 => 0.18702644966876
203 => 0.18783419128226
204 => 0.1865971068835
205 => 0.18215973011018
206 => 0.18024369331748
207 => 0.18187621217779
208 => 0.17987978189557
209 => 0.18332618066209
210 => 0.18805882227957
211 => 0.18708155050046
212 => 0.19034842353727
213 => 0.19372929344531
214 => 0.19856408925817
215 => 0.19982808391562
216 => 0.20191741901898
217 => 0.20406803115116
218 => 0.2047587498074
219 => 0.20607754603956
220 => 0.20607059533244
221 => 0.21004487654329
222 => 0.21442863179211
223 => 0.21608339791437
224 => 0.21988844136817
225 => 0.21337243779816
226 => 0.21831490135647
227 => 0.22277312720394
228 => 0.2174578465575
301 => 0.22478372262707
302 => 0.22506816979405
303 => 0.22936298430436
304 => 0.22500936701126
305 => 0.22242420295986
306 => 0.22988747471142
307 => 0.23349871682115
308 => 0.23241098130843
309 => 0.22413326034857
310 => 0.21931527170178
311 => 0.20670566609252
312 => 0.22164228863111
313 => 0.22891748176241
314 => 0.22411441935592
315 => 0.2265368046563
316 => 0.23975255339409
317 => 0.24478425485707
318 => 0.24373769612702
319 => 0.24391454732458
320 => 0.24662956210216
321 => 0.25866943281193
322 => 0.25145486320062
323 => 0.2569701313437
324 => 0.25989540968001
325 => 0.26261257122631
326 => 0.25594008123633
327 => 0.2472592697977
328 => 0.24450969241942
329 => 0.22363684945761
330 => 0.22255032733528
331 => 0.22194042954303
401 => 0.21809511023465
402 => 0.21507374257986
403 => 0.21267103884459
404 => 0.20636562673515
405 => 0.20849351822477
406 => 0.19844400736412
407 => 0.20487332827997
408 => 0.18883406629245
409 => 0.2021920402849
410 => 0.19492190235336
411 => 0.19980360444466
412 => 0.19978657264594
413 => 0.1907978113508
414 => 0.18561328142643
415 => 0.18891706567917
416 => 0.19245898465282
417 => 0.19303364908985
418 => 0.19762583949273
419 => 0.19890742112537
420 => 0.19502416894714
421 => 0.18850168823842
422 => 0.19001671174511
423 => 0.18558257952342
424 => 0.17781193336135
425 => 0.18339294709742
426 => 0.18529855056676
427 => 0.18614017361866
428 => 0.17849863558301
429 => 0.17609749842634
430 => 0.17481915315162
501 => 0.18751526163634
502 => 0.18821078311898
503 => 0.18465239687698
504 => 0.20073664011085
505 => 0.19709628050008
506 => 0.20116345409507
507 => 0.1898792392416
508 => 0.19031031144522
509 => 0.18496818329602
510 => 0.18795941809844
511 => 0.18584530975209
512 => 0.18771775588636
513 => 0.18884009237886
514 => 0.19418134393739
515 => 0.20225302879793
516 => 0.19338353906959
517 => 0.18951897538152
518 => 0.19191652895847
519 => 0.19830153007979
520 => 0.2079751336208
521 => 0.20224816562511
522 => 0.20478969677137
523 => 0.20534490826198
524 => 0.20112205408584
525 => 0.20813083627769
526 => 0.21188689959354
527 => 0.21573984334782
528 => 0.21908524645263
529 => 0.21420089288431
530 => 0.219427851347
531 => 0.21521584550845
601 => 0.21143724084212
602 => 0.21144297142566
603 => 0.20907259752186
604 => 0.20447969939692
605 => 0.20363269851498
606 => 0.20803890406724
607 => 0.21157226365094
608 => 0.2118632880699
609 => 0.21381953748601
610 => 0.21497722573949
611 => 0.22632414442445
612 => 0.23088796898617
613 => 0.23646852727147
614 => 0.23864246922663
615 => 0.24518525511032
616 => 0.23990142413015
617 => 0.23875823406074
618 => 0.22288757563585
619 => 0.22548639506383
620 => 0.22964735571681
621 => 0.22295618834444
622 => 0.22720019394779
623 => 0.22803805055422
624 => 0.22272882503753
625 => 0.22556471178409
626 => 0.21803343736706
627 => 0.20241718999962
628 => 0.20814822162515
629 => 0.21236818994592
630 => 0.20634577483384
701 => 0.2171407208226
702 => 0.21083453622888
703 => 0.20883577846292
704 => 0.20103791180929
705 => 0.20471820470239
706 => 0.20969585353702
707 => 0.20662024527101
708 => 0.21300259422789
709 => 0.22204170246113
710 => 0.22848350927634
711 => 0.22897803121538
712 => 0.22483638100074
713 => 0.23147340190136
714 => 0.23152174535282
715 => 0.22403515866389
716 => 0.21944966600241
717 => 0.21840783242176
718 => 0.22101053696973
719 => 0.22417070077672
720 => 0.22915339831304
721 => 0.23216433807891
722 => 0.24001527210924
723 => 0.24213950975393
724 => 0.24447340289682
725 => 0.24759220388173
726 => 0.25133712410826
727 => 0.24314345185103
728 => 0.24346900172473
729 => 0.23583916756791
730 => 0.22768559554244
731 => 0.23387314035267
801 => 0.24196253209744
802 => 0.24010681669321
803 => 0.23989801080141
804 => 0.24024916439349
805 => 0.2388500155807
806 => 0.23252171735531
807 => 0.22934368560376
808 => 0.23344415736562
809 => 0.23562337561606
810 => 0.23900315307467
811 => 0.23858652416445
812 => 0.24729246793624
813 => 0.25067533443189
814 => 0.24980985242129
815 => 0.24996912194022
816 => 0.25609364014382
817 => 0.26290536398946
818 => 0.26928544225703
819 => 0.27577553190154
820 => 0.26795147552258
821 => 0.26397890221405
822 => 0.26807758383822
823 => 0.26590276567531
824 => 0.27839991593234
825 => 0.27926519150146
826 => 0.29176143807228
827 => 0.30362186409336
828 => 0.29617254301112
829 => 0.30319691726688
830 => 0.31079435073011
831 => 0.32545103251985
901 => 0.32051517772135
902 => 0.3167343903004
903 => 0.31316156445624
904 => 0.32059604786781
905 => 0.33016039200802
906 => 0.33222046012968
907 => 0.33555855749334
908 => 0.33204895627857
909 => 0.33627588437187
910 => 0.35119879794754
911 => 0.34716649497119
912 => 0.34143997651973
913 => 0.35322018357586
914 => 0.35748339471508
915 => 0.38740484315113
916 => 0.42518190779503
917 => 0.40954195497488
918 => 0.39983373156129
919 => 0.40211539434562
920 => 0.41591029951923
921 => 0.42034078523259
922 => 0.40829719778367
923 => 0.41255119647512
924 => 0.43599114750893
925 => 0.44856592919491
926 => 0.43148768664686
927 => 0.38436949278971
928 => 0.34092436618837
929 => 0.35244797012259
930 => 0.35114155105552
1001 => 0.3763248542479
1002 => 0.34707032587878
1003 => 0.34756289710909
1004 => 0.37326696434192
1005 => 0.36640955988347
1006 => 0.3553014428908
1007 => 0.3410054677354
1008 => 0.31457803544298
1009 => 0.29117052167812
1010 => 0.33707804659949
1011 => 0.33509843064746
1012 => 0.33223165338628
1013 => 0.33861135596334
1014 => 0.36958938076738
1015 => 0.36887523702956
1016 => 0.36433221892893
1017 => 0.36777805811793
1018 => 0.35469737062058
1019 => 0.35806856163036
1020 => 0.34091748425835
1021 => 0.34867048752276
1022 => 0.35527760986064
1023 => 0.35660408749009
1024 => 0.35959270932086
1025 => 0.33405526299519
1026 => 0.34552082665538
1027 => 0.35225577112771
1028 => 0.32182704698234
1029 => 0.35165429308717
1030 => 0.33361071287035
1031 => 0.32748645073928
1101 => 0.33573196288858
1102 => 0.33251867878497
1103 => 0.32975608580307
1104 => 0.32821451145179
1105 => 0.33426910555027
1106 => 0.33398665149877
1107 => 0.32408016040758
1108 => 0.31115754661936
1109 => 0.31549479997703
1110 => 0.31391903517022
1111 => 0.30820826023265
1112 => 0.31205663301898
1113 => 0.29511034688488
1114 => 0.26595514238248
1115 => 0.28521596352484
1116 => 0.2844744428626
1117 => 0.28410053451941
1118 => 0.29857450927789
1119 => 0.29718317057628
1120 => 0.29465787720882
1121 => 0.3081618812396
1122 => 0.30323273811388
1123 => 0.31842319577516
1124 => 0.32842861364809
1125 => 0.32589091603416
1126 => 0.33530105990402
1127 => 0.31559472153437
1128 => 0.3221403766597
1129 => 0.32348942710915
1130 => 0.30799524392603
1201 => 0.29741081079484
1202 => 0.29670494977636
1203 => 0.2783530013516
1204 => 0.28815646406836
1205 => 0.29678310556425
1206 => 0.29265161374214
1207 => 0.29134370685607
1208 => 0.29802551948661
1209 => 0.29854475355386
1210 => 0.28670616179463
1211 => 0.28916777990082
1212 => 0.29943313661358
1213 => 0.28890911924985
1214 => 0.2684626726006
1215 => 0.26339167113734
1216 => 0.26271510606504
1217 => 0.24896214791049
1218 => 0.26373053970305
1219 => 0.2572837409173
1220 => 0.27764910103697
1221 => 0.26601651655823
1222 => 0.26551505909111
1223 => 0.26475703258173
1224 => 0.25291929337056
1225 => 0.25551100593023
1226 => 0.26412625320755
1227 => 0.26720027049381
1228 => 0.26687962530617
1229 => 0.26408403379586
1230 => 0.26536384127354
1231 => 0.26124113547346
]
'min_raw' => 0.14424888961732
'max_raw' => 0.44856592919491
'avg_raw' => 0.29640740940611
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.144248'
'max' => '$0.448565'
'avg' => '$0.2964074'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.082173844151456
'max_diff' => 0.28016231254145
'year' => 2033
]
8 => [
'items' => [
101 => 0.25978532224876
102 => 0.25519037525861
103 => 0.2484370725696
104 => 0.24937616072892
105 => 0.23599610100421
106 => 0.22870593433267
107 => 0.22668811228084
108 => 0.22398979630255
109 => 0.22699289425054
110 => 0.23595819697612
111 => 0.22514413979399
112 => 0.20660419727313
113 => 0.20771847940915
114 => 0.21022194053548
115 => 0.20555675728863
116 => 0.20114155286464
117 => 0.20498021489444
118 => 0.19712459684061
119 => 0.21117125444662
120 => 0.21079133172368
121 => 0.21602705703973
122 => 0.21930106352775
123 => 0.21175553854505
124 => 0.20985785941717
125 => 0.21093886369311
126 => 0.19307227097847
127 => 0.21456697524265
128 => 0.21475286233772
129 => 0.21316118417445
130 => 0.22460645062059
131 => 0.24875953269006
201 => 0.23967217166005
202 => 0.23615327080229
203 => 0.22946383769939
204 => 0.23837711012977
205 => 0.23769270987583
206 => 0.23459759237641
207 => 0.2327256556554
208 => 0.23617475646057
209 => 0.23229827389613
210 => 0.23160195110895
211 => 0.22738299262525
212 => 0.22587701639694
213 => 0.22476205155215
214 => 0.22353458481222
215 => 0.22624207057486
216 => 0.2201065516373
217 => 0.21270771727094
218 => 0.21209258424988
219 => 0.21379102060409
220 => 0.21303958895106
221 => 0.21208898668422
222 => 0.21027402807569
223 => 0.20973556862699
224 => 0.21148530061187
225 => 0.20950995521665
226 => 0.21242468494992
227 => 0.21163203974183
228 => 0.20720438804322
301 => 0.20168589470015
302 => 0.20163676853396
303 => 0.20044781819534
304 => 0.19893351117922
305 => 0.19851226560999
306 => 0.20465693348519
307 => 0.21737621209242
308 => 0.21487911335528
309 => 0.21668352310584
310 => 0.2255594331886
311 => 0.22838081809598
312 => 0.22637826591689
313 => 0.2236370489821
314 => 0.22375764861532
315 => 0.23312521670428
316 => 0.2337094604355
317 => 0.23518565586011
318 => 0.23708298415351
319 => 0.22670138912953
320 => 0.22326867642329
321 => 0.22164206670343
322 => 0.21663273834342
323 => 0.22203486951233
324 => 0.21888727902253
325 => 0.2193119965166
326 => 0.21903539869141
327 => 0.21918643980743
328 => 0.21116732811955
329 => 0.21408907094651
330 => 0.20923110681535
331 => 0.20272683817578
401 => 0.20270503358661
402 => 0.20429694412156
403 => 0.20335001344391
404 => 0.20080184733817
405 => 0.20116380230648
406 => 0.19799269591712
407 => 0.20154883203689
408 => 0.20165080929633
409 => 0.20028150318618
410 => 0.20576022153089
411 => 0.20800485690693
412 => 0.20710355029185
413 => 0.20794161883212
414 => 0.21498287908153
415 => 0.21613091173391
416 => 0.21664079200332
417 => 0.2159576199885
418 => 0.20807032014365
419 => 0.20842015543116
420 => 0.20585329621079
421 => 0.20368457065854
422 => 0.20377130830716
423 => 0.2048863151556
424 => 0.20975561545705
425 => 0.22000277088052
426 => 0.22039164293827
427 => 0.22086296721646
428 => 0.21894585450846
429 => 0.21836763497143
430 => 0.2191304557919
501 => 0.22297874859912
502 => 0.23287760250059
503 => 0.22937868640959
504 => 0.22653401316373
505 => 0.22902955851875
506 => 0.22864538887207
507 => 0.22540261043948
508 => 0.22531159644928
509 => 0.21908766785815
510 => 0.21678682317001
511 => 0.21486406513335
512 => 0.2127644635522
513 => 0.21151974935561
514 => 0.21343219607406
515 => 0.21386959526597
516 => 0.20968799709223
517 => 0.20911806071269
518 => 0.21253284404743
519 => 0.21103012521776
520 => 0.21257570879971
521 => 0.21293429744849
522 => 0.21287655641704
523 => 0.21130754537271
524 => 0.21230758622378
525 => 0.20994219148447
526 => 0.20737017997627
527 => 0.20572939687602
528 => 0.20429759600275
529 => 0.205092042344
530 => 0.20225998619763
531 => 0.20135395443838
601 => 0.21196879488507
602 => 0.2198100916518
603 => 0.21969607609132
604 => 0.2190020356893
605 => 0.21797083243286
606 => 0.22290330965794
607 => 0.22118493322072
608 => 0.22243519565396
609 => 0.22275343991656
610 => 0.22371666945044
611 => 0.22406094121642
612 => 0.2230203128275
613 => 0.21952783685224
614 => 0.21082491877653
615 => 0.20677368691921
616 => 0.20543671292769
617 => 0.20548530939301
618 => 0.2041448019354
619 => 0.204539641459
620 => 0.20400749286239
621 => 0.20299973216098
622 => 0.20502981596048
623 => 0.20526376420683
624 => 0.20478991839033
625 => 0.20490152623359
626 => 0.20097828525519
627 => 0.20127656074594
628 => 0.1996157249104
629 => 0.19930433821291
630 => 0.19510588984616
701 => 0.18766772998965
702 => 0.1917891925898
703 => 0.18681104533416
704 => 0.1849257455372
705 => 0.19385046155171
706 => 0.19295466759694
707 => 0.19142145773865
708 => 0.18915352080931
709 => 0.18831232094115
710 => 0.18320145683369
711 => 0.18289947971683
712 => 0.18543256197342
713 => 0.18426363167004
714 => 0.18262201081557
715 => 0.17667622648912
716 => 0.16999119632465
717 => 0.17019297536472
718 => 0.17231935908063
719 => 0.17850210651654
720 => 0.17608640013072
721 => 0.17433377743076
722 => 0.1740055638827
723 => 0.17811384359824
724 => 0.18392792010694
725 => 0.18665575472219
726 => 0.18395255346404
727 => 0.18084726140938
728 => 0.18103626614821
729 => 0.18229363000003
730 => 0.18242576116268
731 => 0.18040453526428
801 => 0.18097349851528
802 => 0.18010919130992
803 => 0.17480493958599
804 => 0.17470900249227
805 => 0.1734072535766
806 => 0.17336783713679
807 => 0.17115323749476
808 => 0.17084339969603
809 => 0.16644617769019
810 => 0.16934044253045
811 => 0.16739912163133
812 => 0.16447309312504
813 => 0.16396864470767
814 => 0.16395348037911
815 => 0.16695785740706
816 => 0.16930533463564
817 => 0.16743289173952
818 => 0.16700657278785
819 => 0.17155854385033
820 => 0.17097926404049
821 => 0.17047761146112
822 => 0.18340733332493
823 => 0.17317244955095
824 => 0.16870945603875
825 => 0.16318565406792
826 => 0.16498423184305
827 => 0.16536321860688
828 => 0.15207947060718
829 => 0.14669025569809
830 => 0.14484088022957
831 => 0.14377653850111
901 => 0.14426157239193
902 => 0.13941064688189
903 => 0.14267054905154
904 => 0.13847005759837
905 => 0.13776583153666
906 => 0.14527683059597
907 => 0.14632194223645
908 => 0.14186317128742
909 => 0.14472642404615
910 => 0.14368816879364
911 => 0.13854206296819
912 => 0.13834551957785
913 => 0.13576338456901
914 => 0.13172284328003
915 => 0.12987620748877
916 => 0.12891446353545
917 => 0.1293112978346
918 => 0.12911064626962
919 => 0.12780125908216
920 => 0.12918569881049
921 => 0.12564902739461
922 => 0.1242406963399
923 => 0.12360458587552
924 => 0.12046558643071
925 => 0.1254611304668
926 => 0.12644531557411
927 => 0.12743143983012
928 => 0.13601497822302
929 => 0.13558616890174
930 => 0.13946239632752
1001 => 0.13931177325768
1002 => 0.13820621040513
1003 => 0.13354202258646
1004 => 0.13540108471983
1005 => 0.12967918043574
1006 => 0.13396642017705
1007 => 0.13200990299853
1008 => 0.13330491975091
1009 => 0.13097636286317
1010 => 0.1322650823886
1011 => 0.12667870237391
1012 => 0.12146221931869
1013 => 0.12356148437874
1014 => 0.12584362557911
1015 => 0.13079188918025
1016 => 0.1278447442017
1017 => 0.12890464897988
1018 => 0.1253541453989
1019 => 0.11802844236013
1020 => 0.11806990504376
1021 => 0.11694300523036
1022 => 0.11596919926151
1023 => 0.12818325925489
1024 => 0.126664247819
1025 => 0.12424390189921
1026 => 0.12748363109357
1027 => 0.12834026691397
1028 => 0.12836465413149
1029 => 0.13072827692219
1030 => 0.13198974282928
1031 => 0.13221208166291
1101 => 0.13593129319352
1102 => 0.13717792384099
1103 => 0.14231261904816
1104 => 0.13188271626044
1105 => 0.13166791927611
1106 => 0.12752922072719
1107 => 0.12490439267723
1108 => 0.12770894494941
1109 => 0.130193395403
1110 => 0.12760641952816
1111 => 0.12794422396337
1112 => 0.1244714202151
1113 => 0.1257127841445
1114 => 0.12678201399028
1115 => 0.12619164811587
1116 => 0.12530784182784
1117 => 0.1299896987981
1118 => 0.12972553007949
1119 => 0.13408538292563
1120 => 0.13748419999527
1121 => 0.14357548779527
1122 => 0.13721891142995
1123 => 0.1369872525221
1124 => 0.13925175550564
1125 => 0.13717757715739
1126 => 0.13848838627528
1127 => 0.14336429618135
1128 => 0.14346731647431
1129 => 0.14174159383313
1130 => 0.14163658345358
1201 => 0.14196802736415
1202 => 0.14390930470086
1203 => 0.14323096274999
1204 => 0.14401595722905
1205 => 0.14499760484539
1206 => 0.14905811559652
1207 => 0.15003709099182
1208 => 0.14765868832178
1209 => 0.14787343145304
1210 => 0.14698384356583
1211 => 0.14612451281329
1212 => 0.14805616284982
1213 => 0.15158629125825
1214 => 0.15156433051264
1215 => 0.1523832516875
1216 => 0.15289343279514
1217 => 0.15070336200578
1218 => 0.14927770645305
1219 => 0.14982439350879
1220 => 0.15069855801621
1221 => 0.14954091374073
1222 => 0.14239539699946
1223 => 0.14456289032138
1224 => 0.14420211344761
1225 => 0.14368832330738
1226 => 0.14586775460331
1227 => 0.14565754313806
1228 => 0.13936089362937
1229 => 0.13976398470149
1230 => 0.13938540693254
1231 => 0.14060866915372
]
'min_raw' => 0.11596919926151
'max_raw' => 0.25978532224876
'avg_raw' => 0.18787726075514
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.115969'
'max' => '$0.259785'
'avg' => '$0.187877'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.02827969035581
'max_diff' => -0.18878060694615
'year' => 2034
]
9 => [
'items' => [
101 => 0.13711151698304
102 => 0.13818721743706
103 => 0.13886188667776
104 => 0.13925927204358
105 => 0.14069490047464
106 => 0.14052644604821
107 => 0.14068442911097
108 => 0.14281308708237
109 => 0.15357910863449
110 => 0.15416507943369
111 => 0.1512795449097
112 => 0.15243225903738
113 => 0.1502192999831
114 => 0.15170487422178
115 => 0.15272126638638
116 => 0.1481283856355
117 => 0.14785642504498
118 => 0.1456343323215
119 => 0.14682835908533
120 => 0.1449285766505
121 => 0.14539471680844
122 => 0.14409134828948
123 => 0.14643715212553
124 => 0.1490601253153
125 => 0.14972279192739
126 => 0.1479796013669
127 => 0.14671741651926
128 => 0.14450143571633
129 => 0.14818666117795
130 => 0.14926433340814
131 => 0.14818100062451
201 => 0.14792996874725
202 => 0.14745426379345
203 => 0.148030891802
204 => 0.14925846417373
205 => 0.14867956371293
206 => 0.1490619376662
207 => 0.14760472245862
208 => 0.15070408701034
209 => 0.15562662382118
210 => 0.15564245058195
211 => 0.15506354700065
212 => 0.15482667212783
213 => 0.15542066233305
214 => 0.15574287765263
215 => 0.15766373305713
216 => 0.15972488743641
217 => 0.16934339557242
218 => 0.16664255697691
219 => 0.17517666960279
220 => 0.18192604467402
221 => 0.18394988714348
222 => 0.18208804730073
223 => 0.17571879377326
224 => 0.17540628780908
225 => 0.18492464160859
226 => 0.182235270692
227 => 0.18191537857898
228 => 0.1785122669627
301 => 0.1805239274115
302 => 0.18008394776207
303 => 0.1793894183609
304 => 0.18322752636372
305 => 0.19041212191473
306 => 0.1892923353214
307 => 0.18845646657488
308 => 0.18479393304536
309 => 0.18699959628661
310 => 0.1862142018531
311 => 0.18958875476309
312 => 0.18758974437471
313 => 0.18221489606224
314 => 0.18307085837173
315 => 0.18294148139061
316 => 0.18560405049436
317 => 0.18480481333844
318 => 0.18278541750862
319 => 0.19038756574821
320 => 0.1898939245269
321 => 0.19059379491662
322 => 0.19090189950639
323 => 0.19552919317494
324 => 0.19742484733407
325 => 0.19785519401629
326 => 0.19965591885231
327 => 0.19781039034195
328 => 0.20519382022291
329 => 0.21010337025867
330 => 0.21580606526835
331 => 0.2241392354174
401 => 0.22727258447957
402 => 0.22670657301701
403 => 0.23302468751886
404 => 0.24437819883489
405 => 0.22900144226329
406 => 0.24519320427087
407 => 0.24006707936215
408 => 0.22791312941863
409 => 0.22713055832793
410 => 0.23536135433994
411 => 0.25361646770983
412 => 0.24904376885845
413 => 0.25362394700702
414 => 0.24828092590623
415 => 0.24801559987406
416 => 0.253364448398
417 => 0.26586232452476
418 => 0.25992505205282
419 => 0.25141251608535
420 => 0.257698040174
421 => 0.25225293751062
422 => 0.23998359722176
423 => 0.24904027220182
424 => 0.2429843315619
425 => 0.24475177699214
426 => 0.25748046346406
427 => 0.25594891423183
428 => 0.25793088075597
429 => 0.25443276171795
430 => 0.25116496693371
501 => 0.24506538529928
502 => 0.24325959988306
503 => 0.24375865400675
504 => 0.24325935257662
505 => 0.23984669271021
506 => 0.23910972913698
507 => 0.23788142422782
508 => 0.23826212728034
509 => 0.23595255469783
510 => 0.24031119534306
511 => 0.24112019745503
512 => 0.24429205263616
513 => 0.24462136516329
514 => 0.25345493669422
515 => 0.24858955393712
516 => 0.25185367274752
517 => 0.25156169923804
518 => 0.22817654236791
519 => 0.23139881065563
520 => 0.23641164890782
521 => 0.23415337206995
522 => 0.2309606969766
523 => 0.2283824406583
524 => 0.22447611869584
525 => 0.22997419184374
526 => 0.23720357337832
527 => 0.24480471420931
528 => 0.25393698687126
529 => 0.25189876992449
530 => 0.24463399272417
531 => 0.24495988532245
601 => 0.24697442513103
602 => 0.24436541303868
603 => 0.24359596443868
604 => 0.24686871470907
605 => 0.24689125234151
606 => 0.24388926861962
607 => 0.24055311306996
608 => 0.2405391344564
609 => 0.23994549779977
610 => 0.24838653254867
611 => 0.25302824817569
612 => 0.25356041339183
613 => 0.25299242921657
614 => 0.25321102378314
615 => 0.25051011173301
616 => 0.25668359574903
617 => 0.26234899517643
618 => 0.26083054710629
619 => 0.25855417758902
620 => 0.25674093962371
621 => 0.26040340586719
622 => 0.26024032201062
623 => 0.26229951285482
624 => 0.26220609606367
625 => 0.26151366763285
626 => 0.26083057183509
627 => 0.26353896945956
628 => 0.26275899443925
629 => 0.26197780790229
630 => 0.26041101870875
701 => 0.26062397138177
702 => 0.25834799491179
703 => 0.25729502405519
704 => 0.24146086880218
705 => 0.23722946512262
706 => 0.23856075085837
707 => 0.2389990446894
708 => 0.23715753238537
709 => 0.23979778798366
710 => 0.23938630694539
711 => 0.24098713895694
712 => 0.23998700861617
713 => 0.24002805431421
714 => 0.24296922439615
715 => 0.24382305858357
716 => 0.24338879162456
717 => 0.24369293731685
718 => 0.25070184642378
719 => 0.24970540368107
720 => 0.24917606333385
721 => 0.24932269422761
722 => 0.25111362077713
723 => 0.25161498243004
724 => 0.24949067787663
725 => 0.25049251218447
726 => 0.25475819551558
727 => 0.2562509432647
728 => 0.26101507752032
729 => 0.2589911886128
730 => 0.26270612429441
731 => 0.2741245700648
801 => 0.28324641464253
802 => 0.27485758939268
803 => 0.29160869529978
804 => 0.30465183405189
805 => 0.3041512166621
806 => 0.30187684372744
807 => 0.28702757702795
808 => 0.27336306042098
809 => 0.28479400878873
810 => 0.28482314862692
811 => 0.28384122002452
812 => 0.27774254580722
813 => 0.2836289993814
814 => 0.28409624468966
815 => 0.28383471156759
816 => 0.27915887234429
817 => 0.27201973008984
818 => 0.27341470139767
819 => 0.27569969285653
820 => 0.27137372732575
821 => 0.26999131921917
822 => 0.2725614789032
823 => 0.2808430689192
824 => 0.27927748229866
825 => 0.27923659850497
826 => 0.28593484197969
827 => 0.2811403452232
828 => 0.27343229645318
829 => 0.27148591248207
830 => 0.264577560626
831 => 0.26934918385969
901 => 0.26952090608512
902 => 0.26690753680483
903 => 0.27364435696717
904 => 0.27358227598338
905 => 0.27997788408417
906 => 0.29220388469218
907 => 0.28858805470744
908 => 0.28438323783637
909 => 0.28484041801718
910 => 0.28985455618383
911 => 0.28682289378663
912 => 0.28791310072217
913 => 0.28985290602506
914 => 0.29102323872696
915 => 0.28467202515178
916 => 0.28319125345374
917 => 0.28016211423979
918 => 0.27937186836044
919 => 0.28183903904513
920 => 0.28118902673614
921 => 0.26950647349701
922 => 0.26828558168241
923 => 0.26832302469133
924 => 0.26525303417327
925 => 0.26057056175109
926 => 0.27287581970069
927 => 0.27188753527536
928 => 0.27079654575694
929 => 0.27093018574785
930 => 0.27627148115988
1001 => 0.27317326007902
1002 => 0.28141038861095
1003 => 0.27971708261553
1004 => 0.27798034971076
1005 => 0.27774028032114
1006 => 0.2770717863239
1007 => 0.27477927167167
1008 => 0.27201092247034
1009 => 0.27018301853732
1010 => 0.24922955278035
1011 => 0.25311839414414
1012 => 0.25759215165414
1013 => 0.25913647481913
1014 => 0.2564948031815
1015 => 0.2748835809691
1016 => 0.27824338786957
1017 => 0.26806631361328
1018 => 0.26616259854713
1019 => 0.27500838821191
1020 => 0.26967329569024
1021 => 0.27207568752607
1022 => 0.26688303041507
1023 => 0.27743410877388
1024 => 0.27735372723468
1025 => 0.27324911944619
1026 => 0.27671830584188
1027 => 0.27611544933314
1028 => 0.27148135724914
1029 => 0.27758101775862
1030 => 0.27758404311413
1031 => 0.27363344735958
1101 => 0.26902001641488
1102 => 0.26819524392635
1103 => 0.26757388864883
1104 => 0.27192287221757
1105 => 0.2758221572864
1106 => 0.28307776008472
1107 => 0.28490199101709
1108 => 0.29202208579206
1109 => 0.28778241602469
1110 => 0.28966180671965
1111 => 0.29170215117508
1112 => 0.29268036733819
1113 => 0.29108641659437
1114 => 0.30214685452783
1115 => 0.30308069437248
1116 => 0.3033938027947
1117 => 0.29966428535439
1118 => 0.30297696974582
1119 => 0.30142707442364
1120 => 0.30545947147861
1121 => 0.30609180282506
1122 => 0.30555624067046
1123 => 0.30575695262049
1124 => 0.29631882003924
1125 => 0.29582940307478
1126 => 0.28915616803702
1127 => 0.29187556064097
1128 => 0.28679178651176
1129 => 0.28840390365681
1130 => 0.28911450953353
1201 => 0.28874332935006
1202 => 0.29202931101865
1203 => 0.28923555531864
1204 => 0.28186237469035
1205 => 0.27448718524393
1206 => 0.27439459574813
1207 => 0.2724528385498
1208 => 0.27104930374597
1209 => 0.27131967434226
1210 => 0.27227249558857
1211 => 0.270993924043
1212 => 0.27126677210747
1213 => 0.27579786795483
1214 => 0.27670654691272
1215 => 0.27361850077002
1216 => 0.26121954990414
1217 => 0.25817681626124
1218 => 0.26036387286373
1219 => 0.25931860067222
1220 => 0.20929034972945
1221 => 0.22104374520892
1222 => 0.21406027672261
1223 => 0.21727858029504
1224 => 0.21015026733092
1225 => 0.21355227190429
1226 => 0.2129240458809
1227 => 0.23182315800363
1228 => 0.23152807436272
1229 => 0.23166931528614
1230 => 0.22492751800963
1231 => 0.23566738413086
]
'min_raw' => 0.13711151698304
'max_raw' => 0.30609180282506
'avg_raw' => 0.22160165990405
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.137111'
'max' => '$0.306091'
'avg' => '$0.2216016'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.021142317721524
'max_diff' => 0.046306480576301
'year' => 2035
]
10 => [
'items' => [
101 => 0.24095822837527
102 => 0.23997903391689
103 => 0.24022547606615
104 => 0.23599078343999
105 => 0.23171031636734
106 => 0.22696261962462
107 => 0.23578325333955
108 => 0.23480254944369
109 => 0.23705193133467
110 => 0.24277274281072
111 => 0.24361515403182
112 => 0.24474736325587
113 => 0.24434154684519
114 => 0.25400974015635
115 => 0.25283885815358
116 => 0.25566034689452
117 => 0.24985633048753
118 => 0.24328853500073
119 => 0.24453685820536
120 => 0.24441663464237
121 => 0.24288605069936
122 => 0.24150430795265
123 => 0.23920409558297
124 => 0.246482307888
125 => 0.24618682576
126 => 0.25097033795205
127 => 0.25012480570754
128 => 0.24447813444191
129 => 0.24467980641084
130 => 0.24603614732211
131 => 0.25073045870245
201 => 0.25212404993322
202 => 0.25147848295012
203 => 0.25300649211481
204 => 0.25421416825663
205 => 0.25315815764451
206 => 0.26810904098276
207 => 0.26190039184877
208 => 0.26492644423717
209 => 0.26564813990127
210 => 0.26379953163331
211 => 0.26420042857293
212 => 0.26480767819858
213 => 0.26849477901386
214 => 0.27817079842437
215 => 0.2824562415544
216 => 0.29534920865111
217 => 0.2821003951587
218 => 0.2813142653951
219 => 0.28363667809952
220 => 0.29120621464447
221 => 0.29734061304373
222 => 0.2993757468947
223 => 0.2996447234295
224 => 0.30346276982706
225 => 0.30565120281979
226 => 0.30299915856981
227 => 0.30075182874855
228 => 0.29270217227767
229 => 0.29363394193266
301 => 0.30005291086404
302 => 0.30912008255501
303 => 0.31690065914429
304 => 0.31417617240319
305 => 0.33496208304984
306 => 0.33702292118763
307 => 0.33673817999186
308 => 0.34143307596357
309 => 0.33211466355867
310 => 0.32813086171983
311 => 0.30123772696418
312 => 0.30879360087381
313 => 0.31977650734237
314 => 0.31832287848747
315 => 0.31034679823607
316 => 0.31689460857218
317 => 0.3147296977061
318 => 0.31302214268379
319 => 0.32084478326683
320 => 0.31224346860942
321 => 0.319690702649
322 => 0.31013954796146
323 => 0.31418861762913
324 => 0.3118901698543
325 => 0.31337754725178
326 => 0.30468236937822
327 => 0.30937407629528
328 => 0.30448717894557
329 => 0.30448486191993
330 => 0.30437698339008
331 => 0.3101263964502
401 => 0.31031388460368
402 => 0.30606505966537
403 => 0.30545273761264
404 => 0.30771681317256
405 => 0.30506617365422
406 => 0.30630639120193
407 => 0.30510373858031
408 => 0.30483299614345
409 => 0.30267567434348
410 => 0.30174624079525
411 => 0.30211069563807
412 => 0.3008666233702
413 => 0.30011702482875
414 => 0.30422786937307
415 => 0.30203161096404
416 => 0.3038912612731
417 => 0.30177195503934
418 => 0.29442551629535
419 => 0.2902005016865
420 => 0.27632375991433
421 => 0.28025918666687
422 => 0.2828683786753
423 => 0.28200604073208
424 => 0.2838586763146
425 => 0.28397241309288
426 => 0.28337010237962
427 => 0.28267270373445
428 => 0.28233324864254
429 => 0.28486326878728
430 => 0.28633203063787
501 => 0.28313024599983
502 => 0.28238011265687
503 => 0.28561729370129
504 => 0.28759197226834
505 => 0.30217188933134
506 => 0.3010917619828
507 => 0.30380266966335
508 => 0.30349746306079
509 => 0.30633892619146
510 => 0.3109835175182
511 => 0.30153976470279
512 => 0.30317887365114
513 => 0.30277700198956
514 => 0.30716453141431
515 => 0.30717822880226
516 => 0.30454768573877
517 => 0.30597374580917
518 => 0.30517775819979
519 => 0.30661621539413
520 => 0.30107733622354
521 => 0.30782309316826
522 => 0.31164750266893
523 => 0.31170060459856
524 => 0.31351334434949
525 => 0.31535519292324
526 => 0.31889046086935
527 => 0.31525659621899
528 => 0.30871962746259
529 => 0.30919157549252
530 => 0.30535895310243
531 => 0.30542338017722
601 => 0.30507946340271
602 => 0.30611158353186
603 => 0.30130382855074
604 => 0.3024321990352
605 => 0.30085247374922
606 => 0.30317543963688
607 => 0.30067631234178
608 => 0.30277680819487
609 => 0.30368331257253
610 => 0.30702833324172
611 => 0.30018225006919
612 => 0.28622262304131
613 => 0.28915710588669
614 => 0.28481677525972
615 => 0.28521848938405
616 => 0.28603001584753
617 => 0.28339959306447
618 => 0.28390139483733
619 => 0.28388346694688
620 => 0.2837289740724
621 => 0.28304469951478
622 => 0.28205236602663
623 => 0.28600551721927
624 => 0.2866772346391
625 => 0.28817037925521
626 => 0.29261296482309
627 => 0.29216904576147
628 => 0.29289309616899
629 => 0.29131249819475
630 => 0.28529180879081
701 => 0.28561876119186
702 => 0.28154165951178
703 => 0.28806611859868
704 => 0.28652104056825
705 => 0.2855249187107
706 => 0.28525311763287
707 => 0.28970671551107
708 => 0.29103930179783
709 => 0.29020892345046
710 => 0.28850579323401
711 => 0.29177630673485
712 => 0.29265135817578
713 => 0.29284724992275
714 => 0.29864197278748
715 => 0.29317111055955
716 => 0.29448800147351
717 => 0.3047620084611
718 => 0.2954449018394
719 => 0.30038038101319
720 => 0.30013881499062
721 => 0.30266363912842
722 => 0.29993170571723
723 => 0.29996557130605
724 => 0.30220744409402
725 => 0.29905913808721
726 => 0.2982795732452
727 => 0.29720260999931
728 => 0.2995541198468
729 => 0.30096374365073
730 => 0.31232427625578
731 => 0.31966369842188
801 => 0.3193450747493
802 => 0.32225669867815
803 => 0.32094498543079
804 => 0.31670911734257
805 => 0.32393922766007
806 => 0.32165131823495
807 => 0.32183993070815
808 => 0.32183291054247
809 => 0.32335417029767
810 => 0.3222762183397
811 => 0.32015146438106
812 => 0.32156197521692
813 => 0.32575068813258
814 => 0.33875258154821
815 => 0.34602861335576
816 => 0.33831455529734
817 => 0.34363560925069
818 => 0.34044487296406
819 => 0.3398650212646
820 => 0.3432070363701
821 => 0.34655490123063
822 => 0.34634165671224
823 => 0.34391127873825
824 => 0.3425384198893
825 => 0.35293416703498
826 => 0.36059357644498
827 => 0.36007125607255
828 => 0.36237660832877
829 => 0.3691451938549
830 => 0.36976402848873
831 => 0.36968606954862
901 => 0.36815222333995
902 => 0.37481677480232
903 => 0.38037646088385
904 => 0.36779718225972
905 => 0.37258720688494
906 => 0.37473760326416
907 => 0.3778950231427
908 => 0.38322211972282
909 => 0.38900875955142
910 => 0.38982705387046
911 => 0.38924643489211
912 => 0.38542999037193
913 => 0.39176180072135
914 => 0.39547082672481
915 => 0.39767946683033
916 => 0.40328021065524
917 => 0.37475088338011
918 => 0.35455640753521
919 => 0.35140274852026
920 => 0.35781583813867
921 => 0.35950691872762
922 => 0.35882524626265
923 => 0.33609452769779
924 => 0.35128307599125
925 => 0.36762467686559
926 => 0.36825242430844
927 => 0.3764333713929
928 => 0.37909742311195
929 => 0.38568415781618
930 => 0.38527215576706
1001 => 0.3868759208497
1002 => 0.38650724303054
1003 => 0.3987077820695
1004 => 0.41216678842706
1005 => 0.41170074583392
1006 => 0.40976585443029
1007 => 0.41263949811269
1008 => 0.42653063502847
1009 => 0.4252517617422
1010 => 0.42649407820564
1011 => 0.44287251149951
1012 => 0.46416680458651
1013 => 0.45427346753553
1014 => 0.47573916220511
1015 => 0.48925067915203
1016 => 0.51261745059481
1017 => 0.5096918157264
1018 => 0.51878832837578
1019 => 0.50445431871352
1020 => 0.47154053514766
1021 => 0.46633180290946
1022 => 0.47675981675644
1023 => 0.50239607124854
1024 => 0.4759524398708
1025 => 0.48130195205826
1026 => 0.47976129218839
1027 => 0.47967919697131
1028 => 0.48281243750197
1029 => 0.47826750869341
1030 => 0.45975065111029
1031 => 0.46823681782011
1101 => 0.46495990131425
1102 => 0.46859588448781
1103 => 0.48821778608197
1104 => 0.47954247565948
1105 => 0.47040374085438
1106 => 0.48186574234758
1107 => 0.49646080901946
1108 => 0.49554747597699
1109 => 0.493775228131
1110 => 0.50376529644695
1111 => 0.52026596248953
1112 => 0.52472602621579
1113 => 0.52801835407653
1114 => 0.52847231046419
1115 => 0.53314834338941
1116 => 0.50800413583844
1117 => 0.54790863897088
1118 => 0.55479904432221
1119 => 0.5535039336942
1120 => 0.56116232924961
1121 => 0.55890903500246
1122 => 0.55564436516939
1123 => 0.56778455111216
1124 => 0.55386680759126
1125 => 0.53411232285852
1126 => 0.52327462183473
1127 => 0.53754658079526
1128 => 0.54626196810972
1129 => 0.55202228472184
1130 => 0.55376535304819
1201 => 0.50995600909424
1202 => 0.48634520248067
1203 => 0.50147945882152
1204 => 0.51994429606794
1205 => 0.50790156273522
1206 => 0.50837361508196
1207 => 0.49120384212415
1208 => 0.52146343999107
1209 => 0.51705487110514
1210 => 0.53992653428398
1211 => 0.53446802830979
1212 => 0.55311898175928
1213 => 0.54820756065451
1214 => 0.56859459506656
1215 => 0.57672753505044
1216 => 0.59038400707442
1217 => 0.6004297634871
1218 => 0.60632882379733
1219 => 0.60597466634312
1220 => 0.62934968219241
1221 => 0.61556625200693
1222 => 0.59825101518891
1223 => 0.59793783718374
1224 => 0.6069056436906
1225 => 0.62569970593141
1226 => 0.63057273282796
1227 => 0.63329609007258
1228 => 0.6291251736517
1229 => 0.61416424805271
1230 => 0.60770419623268
1231 => 0.61320834754906
]
'min_raw' => 0.22696261962462
'max_raw' => 0.63329609007258
'avg_raw' => 0.4301293548486
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.226962'
'max' => '$0.633296'
'avg' => '$0.430129'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.089851102641581
'max_diff' => 0.32720428724753
'year' => 2036
]
11 => [
'items' => [
101 => 0.60647724346624
102 => 0.61809701752743
103 => 0.63405344916326
104 => 0.63075850912903
105 => 0.64177299965845
106 => 0.65317183859819
107 => 0.66947269023592
108 => 0.67373433647281
109 => 0.6807786756465
110 => 0.6880296146011
111 => 0.69035842077503
112 => 0.69480483434719
113 => 0.69478139955285
114 => 0.70818096613069
115 => 0.72296110301609
116 => 0.72854026252936
117 => 0.7413692321935
118 => 0.71940007122438
119 => 0.73606393218299
120 => 0.75109515189115
121 => 0.73317431209063
122 => 0.7578740147355
123 => 0.75883304821847
124 => 0.77331331519433
125 => 0.75863479053081
126 => 0.74991872944112
127 => 0.7750816712205
128 => 0.7872572261223
129 => 0.78358984989793
130 => 0.75568093574973
131 => 0.73943675064584
201 => 0.69692258495967
202 => 0.74728245069023
203 => 0.77181127227016
204 => 0.75561741202757
205 => 0.76378465319333
206 => 0.8083424727569
207 => 0.82530720554154
208 => 0.82177865971477
209 => 0.82237492587469
210 => 0.8315287877536
211 => 0.8721220524485
212 => 0.84779762729881
213 => 0.86639273890693
214 => 0.87625551905421
215 => 0.88541661891372
216 => 0.86291985305411
217 => 0.83365189121389
218 => 0.82438149911364
219 => 0.75400725177255
220 => 0.75034396657858
221 => 0.7482876535903
222 => 0.73532289107046
223 => 0.7251361390772
224 => 0.7170352556823
225 => 0.69577611852553
226 => 0.70295045324742
227 => 0.66906782574629
228 => 0.69074473009493
301 => 0.63666723847848
302 => 0.681704580418
303 => 0.65719280279698
304 => 0.67365180222735
305 => 0.67359437832886
306 => 0.64328814204703
307 => 0.62580813743469
308 => 0.63694707670563
309 => 0.64888890381418
310 => 0.65082642508542
311 => 0.66630931564523
312 => 0.67063025759686
313 => 0.65753760175794
314 => 0.63554660266343
315 => 0.6406546101918
316 => 0.62570462382516
317 => 0.59950534776055
318 => 0.61832212522563
319 => 0.62474700036751
320 => 0.62758459124723
321 => 0.60182061224487
322 => 0.59372501067913
323 => 0.5894149803342
324 => 0.63222079650442
325 => 0.63456579574289
326 => 0.6225684480894
327 => 0.67679759711838
328 => 0.66452387052889
329 => 0.67823663026538
330 => 0.6401911120482
331 => 0.64164450207918
401 => 0.6236331440487
402 => 0.63371830102639
403 => 0.62659043713434
404 => 0.63290352000606
405 => 0.63668755584955
406 => 0.65469595839341
407 => 0.68191020744775
408 => 0.65200610358066
409 => 0.63897645729111
410 => 0.64705997656764
411 => 0.66858745363473
412 => 0.70120268336265
413 => 0.68189381092105
414 => 0.69046276062472
415 => 0.69233469492893
416 => 0.6780970472438
417 => 0.70172764574117
418 => 0.71439147545055
419 => 0.72738194432205
420 => 0.7386612044585
421 => 0.72219326538824
422 => 0.73981632077975
423 => 0.72561524902224
424 => 0.71287541957594
425 => 0.71289474063844
426 => 0.70490285952756
427 => 0.68941758283342
428 => 0.68656186022425
429 => 0.70141768987516
430 => 0.71333065840288
501 => 0.71431186755009
502 => 0.72090749903746
503 => 0.72481072581128
504 => 0.76306765437419
505 => 0.77845490752011
506 => 0.79727014940113
507 => 0.80459974648272
508 => 0.82665920589232
509 => 0.80884440083737
510 => 0.80499005570336
511 => 0.75148102276986
512 => 0.76024312391509
513 => 0.7742720932656
514 => 0.75171235530726
515 => 0.76602131650595
516 => 0.7688462085518
517 => 0.75094578404402
518 => 0.76050717420531
519 => 0.73511495669154
520 => 0.68246368840063
521 => 0.70178626165394
522 => 0.71601417947621
523 => 0.69570918645422
524 => 0.73210510053439
525 => 0.71084335889292
526 => 0.70410440753616
527 => 0.67781335568381
528 => 0.69022172012273
529 => 0.70700421069703
530 => 0.69663458269606
531 => 0.71815311780556
601 => 0.74862910230431
602 => 0.77034810373438
603 => 0.77201541897826
604 => 0.75805155611882
605 => 0.78042873546726
606 => 0.78059172878909
607 => 0.75535017907058
608 => 0.73988987041353
609 => 0.73637725575789
610 => 0.74515245585637
611 => 0.75580716876722
612 => 0.77260668139178
613 => 0.78275827502951
614 => 0.80922824724747
615 => 0.81639026277607
616 => 0.82425914645457
617 => 0.8347744017229
618 => 0.84740066172865
619 => 0.81977512364946
620 => 0.82087273777779
621 => 0.79514821922006
622 => 0.76765788187199
623 => 0.78851962120025
624 => 0.81579357025106
625 => 0.80953689620377
626 => 0.80883289256119
627 => 0.81001683141368
628 => 0.80529950350589
629 => 0.7839632042113
630 => 0.77324824827786
701 => 0.78707327510879
702 => 0.79442066158828
703 => 0.80581581725853
704 => 0.80441112379962
705 => 0.83376382105581
706 => 0.84516939163007
707 => 0.84225135860529
708 => 0.84278834690824
709 => 0.86343758763189
710 => 0.88640379015683
711 => 0.90791466947878
712 => 0.92979645983884
713 => 0.90341710749898
714 => 0.89002329923306
715 => 0.90384229048977
716 => 0.89650973921258
717 => 0.93864475382732
718 => 0.94156209082021
719 => 0.98369405859381
720 => 1.0236823129924
721 => 0.99856640686862
722 => 1.022249575098
723 => 1.0478648524552
724 => 1.0972808784061
725 => 1.0806392993426
726 => 1.0678921105868
727 => 1.0558460788064
728 => 1.0809119586876
729 => 1.1131588127175
730 => 1.120104476219
731 => 1.1313591045391
801 => 1.119526239011
802 => 1.1337776221923
803 => 1.1840912671972
804 => 1.170496076186
805 => 1.1511887194142
806 => 1.1909065099717
807 => 1.2052802239755
808 => 1.3061624764265
809 => 1.4335304873838
810 => 1.380799294504
811 => 1.3480673414586
812 => 1.3557601268365
813 => 1.4022706127589
814 => 1.4172083046681
815 => 1.3766025087277
816 => 1.3909451623206
817 => 1.4699745937562
818 => 1.5123713481537
819 => 1.4547908610381
820 => 1.2959285807615
821 => 1.1494503031832
822 => 1.1883029383998
823 => 1.1838982553039
824 => 1.2688055202591
825 => 1.1701718353766
826 => 1.1718325736699
827 => 1.258495630946
828 => 1.2353754130457
829 => 1.1979236210609
830 => 1.1497237427114
831 => 1.0606218096331
901 => 0.98170174271443
902 => 1.1364821681479
903 => 1.1298077547532
904 => 1.1201422150652
905 => 1.1416518277203
906 => 1.2460964011638
907 => 1.2436886156918
908 => 1.2283715129821
909 => 1.2399894003887
910 => 1.1958869492269
911 => 1.2072531550854
912 => 1.1494271002757
913 => 1.1755668920791
914 => 1.1978432663358
915 => 1.2023155782752
916 => 1.2123919254365
917 => 1.1262906421819
918 => 1.1649475905624
919 => 1.1876549260697
920 => 1.0850623581478
921 => 1.1856270008621
922 => 1.1247918103985
923 => 1.1041434330413
924 => 1.131943752936
925 => 1.1211099412363
926 => 1.1117956661197
927 => 1.1065981405651
928 => 1.1270116272864
929 => 1.1260593137315
930 => 1.0926588873684
1001 => 1.0490893927533
1002 => 1.0637127452661
1003 => 1.0583999442035
1004 => 1.0391456677879
1005 => 1.0521207253219
1006 => 0.99498513846884
1007 => 0.89668633093762
1008 => 0.96162553416665
1009 => 0.95912544548259
1010 => 0.9578647873981
1011 => 1.006664803837
1012 => 1.0019738082643
1013 => 0.99345960536556
1014 => 1.0389892977748
1015 => 1.0223703475846
1016 => 1.0735860361536
1017 => 1.1073200010681
1018 => 1.0987639763863
1019 => 1.1304909334388
1020 => 1.0640496377729
1021 => 1.0861187710311
1022 => 1.090667188809
1023 => 1.0384274684378
1024 => 1.0027413131545
1025 => 1.0003614534491
1026 => 0.93848657804289
1027 => 0.97153963704832
1028 => 1.0006249611446
1029 => 0.98669534801481
1030 => 0.98228564863327
1031 => 1.0048138464264
1101 => 1.0065644803359
1102 => 0.96664984167559
1103 => 0.97494935898529
1104 => 1.0095597258467
1105 => 0.97407726654144
1106 => 0.90514064413816
1107 => 0.88804340865877
1108 => 0.88576232228125
1109 => 0.83939326366231
1110 => 0.88918592768712
1111 => 0.86745009547986
1112 => 0.93611332898734
1113 => 0.89689325825617
1114 => 0.89520255939511
1115 => 0.89264682009502
1116 => 0.85273505586001
1117 => 0.86147319570254
1118 => 0.89052010339538
1119 => 0.90088436729702
1120 => 0.89980328966017
1121 => 0.8903777577012
1122 => 0.89469271796548
1123 => 0.88079272752241
1124 => 0.87588435159368
1125 => 0.86039216700744
1126 => 0.8376229354909
1127 => 0.84078913678508
1128 => 0.7956773312573
1129 => 0.77109802534102
1130 => 0.76429479741345
1201 => 0.75519723670222
1202 => 0.76532239110346
1203 => 0.79554953518024
1204 => 0.7590891863773
1205 => 0.69658047575076
1206 => 0.70033735576908
1207 => 0.70877794974254
1208 => 0.69304895871311
1209 => 0.6781627887379
1210 => 0.6911051057782
1211 => 0.66461934104796
1212 => 0.71197862787296
1213 => 0.71069769188721
1214 => 0.72835030533691
1215 => 0.73938884679511
1216 => 0.7139485825042
1217 => 0.70755042483283
1218 => 0.7111951062225
1219 => 0.65095664147942
1220 => 0.72342753761843
1221 => 0.72405426893766
1222 => 0.7186878148828
1223 => 0.75727632978893
1224 => 0.8387101323005
1225 => 0.80807146012853
1226 => 0.79620724020477
1227 => 0.77365334945702
1228 => 0.80370506976088
1229 => 0.80139756652141
1230 => 0.79096216177791
1231 => 0.78465079642859
]
'min_raw' => 0.5894149803342
'max_raw' => 1.5123713481537
'avg_raw' => 1.050893164244
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.589414'
'max' => '$1.51'
'avg' => '$1.05'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.36245236070959
'max_diff' => 0.87907525808112
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.018501062723279
]
1 => [
'year' => 2028
'avg' => 0.031753194530031
]
2 => [
'year' => 2029
'avg' => 0.086744004499543
]
3 => [
'year' => 2030
'avg' => 0.06692287028835
]
4 => [
'year' => 2031
'avg' => 0.06572655228317
]
5 => [
'year' => 2032
'avg' => 0.11523933105966
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.018501062723279
'min' => '$0.018501'
'max_raw' => 0.11523933105966
'max' => '$0.115239'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11523933105966
]
1 => [
'year' => 2033
'avg' => 0.29640740940611
]
2 => [
'year' => 2034
'avg' => 0.18787726075514
]
3 => [
'year' => 2035
'avg' => 0.22160165990405
]
4 => [
'year' => 2036
'avg' => 0.4301293548486
]
5 => [
'year' => 2037
'avg' => 1.050893164244
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11523933105966
'min' => '$0.115239'
'max_raw' => 1.050893164244
'max' => '$1.05'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.050893164244
]
]
]
]
'prediction_2025_max_price' => '$0.031633'
'last_price' => 0.03067262
'sma_50day_nextmonth' => '$0.029269'
'sma_200day_nextmonth' => '$0.0323035'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.030766'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.030729'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.03074'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.030869'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.03103'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.031962'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.033813'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.030732'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.030738'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.030763'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.030851'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.031175'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.031956'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.033962'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.032596'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.036349'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.050942'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.1044094'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.030764'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.030879'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.031313'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.032556'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.038712'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.093798'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.290612'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '41.10'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 65.66
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.030747'
'vwma_10_action' => 'SELL'
'hma_9' => '0.030775'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 19.8
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -88.89
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.42
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000246'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -80.2
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 38.99
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0009019'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 31
'buy_signals' => 1
'sell_pct' => 96.88
'buy_pct' => 3.13
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767675547
'last_updated_date' => '6. Januar 2026'
]
Neos Credits Preisprognose für 2026
Die Preisprognose für Neos Credits im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.010597 am unteren Ende und $0.031633 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Neos Credits im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn NCR das prognostizierte Preisziel erreicht.
Neos Credits Preisprognose 2027-2032
Die Preisprognose für NCR für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.018501 am unteren Ende und $0.115239 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Neos Credits, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Neos Credits Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.0102018 | $0.018501 | $0.02680028 |
| 2028 | $0.018411 | $0.031753 | $0.045095 |
| 2029 | $0.040444 | $0.086744 | $0.133043 |
| 2030 | $0.034396 | $0.066922 | $0.099449 |
| 2031 | $0.040666 | $0.065726 | $0.090786 |
| 2032 | $0.062075 | $0.115239 | $0.1684036 |
Neos Credits Preisprognose 2032-2037
Die Preisprognose für Neos Credits für die Jahre 2032-2037 wird derzeit zwischen $0.115239 am unteren Ende und $1.05 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Neos Credits bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Neos Credits Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.062075 | $0.115239 | $0.1684036 |
| 2033 | $0.144248 | $0.2964074 | $0.448565 |
| 2034 | $0.115969 | $0.187877 | $0.259785 |
| 2035 | $0.137111 | $0.2216016 | $0.306091 |
| 2036 | $0.226962 | $0.430129 | $0.633296 |
| 2037 | $0.589414 | $1.05 | $1.51 |
Neos Credits Potenzielles Preishistogramm
Neos Credits Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Neos Credits Bärisch, mit 1 technischen Indikatoren, die bullische Signale zeigen, und 31 anzeigen bärische Signale. Die Preisprognose für NCR wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Neos Credits
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Neos Credits im nächsten Monat steigen, und bis zum 04.02.2026 $0.0323035 erreichen. Der kurzfristige 50-Tage-SMA für Neos Credits wird voraussichtlich bis zum 04.02.2026 $0.029269 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 41.10, was darauf hindeutet, dass sich der NCR-Markt in einem NEUTRAL Zustand befindet.
Beliebte NCR Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.030766 | SELL |
| SMA 5 | $0.030729 | SELL |
| SMA 10 | $0.03074 | SELL |
| SMA 21 | $0.030869 | SELL |
| SMA 50 | $0.03103 | SELL |
| SMA 100 | $0.031962 | SELL |
| SMA 200 | $0.033813 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.030732 | SELL |
| EMA 5 | $0.030738 | SELL |
| EMA 10 | $0.030763 | SELL |
| EMA 21 | $0.030851 | SELL |
| EMA 50 | $0.031175 | SELL |
| EMA 100 | $0.031956 | SELL |
| EMA 200 | $0.033962 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.032596 | SELL |
| SMA 50 | $0.036349 | SELL |
| SMA 100 | $0.050942 | SELL |
| SMA 200 | $0.1044094 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.032556 | SELL |
| EMA 50 | $0.038712 | SELL |
| EMA 100 | $0.093798 | SELL |
| EMA 200 | $0.290612 | SELL |
Neos Credits Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 41.10 | NEUTRAL |
| Stoch RSI (14) | 65.66 | NEUTRAL |
| Stochastic Fast (14) | 19.8 | BUY |
| Commodity Channel Index (20) | -88.89 | NEUTRAL |
| Average Directional Index (14) | 15.42 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.000246 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Prozentbereich (14) | -80.2 | BUY |
| Ultimate Oscillator (7, 14, 28) | 38.99 | NEUTRAL |
| VWMA (10) | 0.030747 | SELL |
| Hull Moving Average (9) | 0.030775 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.0009019 | SELL |
Auf weltweiten Geldflüssen basierende Neos Credits-Preisprognose
Definition weltweiter Geldflüsse, die für Neos Credits-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Neos Credits-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.04310015 | $0.060562 | $0.085101 | $0.119581 | $0.168031 | $0.236112 |
| Amazon.com aktie | $0.06400024 | $0.13354 | $0.278639 | $0.581398 | $1.21 | $2.53 |
| Apple aktie | $0.0435067 | $0.061711 | $0.087532 | $0.124158 | $0.1761086 | $0.249796 |
| Netflix aktie | $0.048396 | $0.076362 | $0.120487 | $0.19011 | $0.299964 | $0.473297 |
| Google aktie | $0.03972 | $0.051438 | $0.066612 | $0.086262 | $0.11171 | $0.144664 |
| Tesla aktie | $0.069532 | $0.157624 | $0.357323 | $0.810026 | $1.83 | $4.16 |
| Kodak aktie | $0.0230012 | $0.017248 | $0.012934 | $0.009699 | $0.007273 | $0.005454 |
| Nokia aktie | $0.020319 | $0.01346 | $0.008917 | $0.0059072 | $0.003913 | $0.002592 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Neos Credits Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Neos Credits investieren?", "Sollte ich heute NCR kaufen?", "Wird Neos Credits auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Neos Credits-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Neos Credits.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Neos Credits zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Neos Credits-Preis entspricht heute $0.03067 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Neos Credits-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Neos Credits 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.031469 | $0.032287 | $0.033127 | $0.033988 |
| Wenn die Wachstumsrate von Neos Credits 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.032267 | $0.033944 | $0.0357092 | $0.037565 |
| Wenn die Wachstumsrate von Neos Credits 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.034659 | $0.039163 | $0.044253 | $0.0500048 |
| Wenn die Wachstumsrate von Neos Credits 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.038645 | $0.04869 | $0.061346 | $0.077292 |
| Wenn die Wachstumsrate von Neos Credits 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.046618 | $0.070853 | $0.107687 | $0.16367 |
| Wenn die Wachstumsrate von Neos Credits 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.070536 | $0.16221 | $0.373028 | $0.857839 |
| Wenn die Wachstumsrate von Neos Credits 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.11040061 | $0.397367 | $1.43 | $5.14 |
Fragefeld
Ist NCR eine gute Investition?
Die Entscheidung, Neos Credits zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Neos Credits in den letzten 2026 Stunden um 0.0199% gestiegen, und Neos Credits hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Neos Credits investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Neos Credits steigen?
Es scheint, dass der Durchschnittswert von Neos Credits bis zum Ende dieses Jahres potenziell auf $0.031633 steigen könnte. Betrachtet man die Aussichten von Neos Credits in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.099449 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Neos Credits nächste Woche kosten?
Basierend auf unserer neuen experimentellen Neos Credits-Prognose wird der Preis von Neos Credits in der nächsten Woche um 0.86% steigen und $0.030935 erreichen bis zum 13. Januar 2026.
Wie viel wird Neos Credits nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Neos Credits-Prognose wird der Preis von Neos Credits im nächsten Monat um -11.62% fallen und $0.027109 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Neos Credits in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Neos Credits im Jahr 2026 wird erwartet, dass NCR innerhalb der Spanne von $0.010597 bis $0.031633 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Neos Credits-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Neos Credits in 5 Jahren sein?
Die Zukunft von Neos Credits scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.099449 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Neos Credits-Prognose für 2030 könnte der Wert von Neos Credits seinen höchsten Gipfel von ungefähr $0.099449 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.034396 liegen wird.
Wie viel wird Neos Credits im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Neos Credits-Preisprognosesimulation wird der Wert von NCR im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.031633 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.031633 und $0.010597 während des Jahres 2026 liegen.
Wie viel wird Neos Credits im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Neos Credits könnte der Wert von NCR um -12.62% fallen und bis zu $0.02680028 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.02680028 und $0.0102018 im Laufe des Jahres schwanken.
Wie viel wird Neos Credits im Jahr 2028 kosten?
Unser neues experimentelles Neos Credits-Preisprognosemodell deutet darauf hin, dass der Wert von NCR im Jahr 2028 um 47.02% steigen, und im besten Fall $0.045095 erreichen wird. Der Preis wird voraussichtlich zwischen $0.045095 und $0.018411 im Laufe des Jahres liegen.
Wie viel wird Neos Credits im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Neos Credits im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.133043 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.133043 und $0.040444.
Wie viel wird Neos Credits im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Neos Credits-Preisprognosen wird der Wert von NCR im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.099449 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.099449 und $0.034396 während des Jahres 2030 liegen.
Wie viel wird Neos Credits im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Neos Credits im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.090786 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.090786 und $0.040666 während des Jahres schwanken.
Wie viel wird Neos Credits im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Neos Credits-Preisprognose könnte NCR eine 449.04% Steigerung im Wert erfahren und $0.1684036 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.1684036 und $0.062075 liegen.
Wie viel wird Neos Credits im Jahr 2033 kosten?
Laut unserer experimentellen Neos Credits-Preisprognose wird der Wert von NCR voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.448565 beträgt. Im Laufe des Jahres könnte der Preis von NCR zwischen $0.448565 und $0.144248 liegen.
Wie viel wird Neos Credits im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Neos Credits-Preisprognosesimulation deuten darauf hin, dass NCR im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.259785 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.259785 und $0.115969.
Wie viel wird Neos Credits im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Neos Credits könnte NCR um 897.93% steigen, wobei der Wert im Jahr 2035 $0.306091 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.306091 und $0.137111.
Wie viel wird Neos Credits im Jahr 2036 kosten?
Unsere jüngste Neos Credits-Preisprognosesimulation deutet darauf hin, dass der Wert von NCR im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.633296 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.633296 und $0.226962.
Wie viel wird Neos Credits im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Neos Credits um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $1.51 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $1.51 und $0.589414 liegen.
Verwandte Prognosen
FlokiFork-Preisprognose
VinuChain-Preisprognose
AI Power Grid-Preisprognose
dotmoovs-Preisprognose
Eve AI-Preisprognose
Bullieverse-Preisprognose
Wownero-Preisprognose
Metronome-Preisprognose
Bag-Preisprognose
Titanium22-PreisprognoseAri10-Preisprognose
Horizon Protocol-Preisprognose
REV3AL-Preisprognose
Real Smurf Cat-Preisprognose
Blink Galaxy-Preisprognose
Reddex-Preisprognose
ION-Preisprognose
Baby Grok-Preisprognose
OneFinity-Preisprognose
Husky Axax-Preisprognose
Amulet Protocol-Preisprognose
Coupon Assets-Preisprognose
Witch Token-Preisprognose
Super Trump-Preisprognose
AngelBlock-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Neos Credits?
Neos Credits-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Neos Credits Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Neos Credits. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von NCR über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von NCR über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von NCR einzuschätzen.
Wie liest man Neos Credits-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Neos Credits in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von NCR innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Neos Credits?
Die Preisentwicklung von Neos Credits wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von NCR. Die Marktkapitalisierung von Neos Credits kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von NCR-„Walen“, großen Inhabern von Neos Credits, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Neos Credits-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


