Xrpturbo (XRT) Price Prediction
Xrpturbo Price Prediction up to $0.007218 by 2026
| Year | Min. Price | Max. Price |
|---|---|---|
| 2026 | $0.002418 | $0.007218 |
| 2027 | $0.002327 | $0.006115 |
| 2028 | $0.0042013 | $0.01029 |
| 2029 | $0.009229 | $0.030359 |
| 2030 | $0.007848 | $0.022693 |
| 2031 | $0.009279 | $0.020716 |
| 2032 | $0.014164 | $0.038428 |
| 2033 | $0.032916 | $0.102358 |
| 2034 | $0.026463 | $0.05928 |
| 2035 | $0.031287 | $0.069847 |
Investment Profit Calculator
If you open a short on $10,000.00 of Xrpturbo today and close it on Apr 06, 2026, our forecast suggests you could make around $3,955.05 in profit, equal to a 39.55% ROI over the next 90 days.
Long-term Xrpturbo price prediction for 2027, 2028, 2029, 2030, 2031, 2032 and 2037
[
'name' => 'Xrpturbo'
'name_with_ticker' => 'Xrpturbo <small>XRT</small>'
'name_lang' => 'Xrpturbo'
'name_lang_with_ticker' => 'Xrpturbo <small>XRT</small>'
'name_with_lang' => 'Xrpturbo'
'name_with_lang_with_ticker' => 'Xrpturbo <small>XRT</small>'
'image' => '/uploads/coins/xrpturbo.png?1744168417'
'price_for_sd' => 0.006999
'ticker' => 'XRT'
'marketcap' => '$699.91K'
'low24h' => '$0.006904'
'high24h' => '$0.008298'
'volume24h' => '$1.81K'
'current_supply' => '100M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006999'
'change_24h_pct' => '-6.6076%'
'ath_price' => '$0.09998'
'ath_days' => 246
'ath_exchange' => null
'ath_pair' => null
'ath_date' => 'May 5, 2025'
'ath_pct' => '-93.00%'
'fdv' => '$699.91K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.34511'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0070591'
'next_week_prediction_price_date' => 'January 13, 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006186'
'next_month_prediction_price_date' => 'February 5, 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002418'
'current_year_max_price_prediction' => '$0.007218'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.007848'
'grand_prediction_max_price' => '$0.022693'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.007131861726905
107 => 0.0071584895097275
108 => 0.0072184832640748
109 => 0.0067058432017742
110 => 0.0069360035394257
111 => 0.0070712011746887
112 => 0.0064603733400383
113 => 0.0070591270723589
114 => 0.0066969192788107
115 => 0.006573980513502
116 => 0.0067395013650395
117 => 0.006674997728221
118 => 0.0066195412890652
119 => 0.0065885956431536
120 => 0.006710135888653
121 => 0.0067044658909284
122 => 0.0065056024593463
123 => 0.006246193219558
124 => 0.006333259475249
125 => 0.0063016274883059
126 => 0.0061869890870168
127 => 0.0062642415279923
128 => 0.0059240608745019
129 => 0.0053387977412233
130 => 0.0057254404941617
131 => 0.00571055516876
201 => 0.0057030493126967
202 => 0.0059936006555091
203 => 0.0059656708480577
204 => 0.0059149779740439
205 => 0.0061860580726317
206 => 0.0060871101901053
207 => 0.0063920442489986
208 => 0.0065928935420841
209 => 0.0065419516645636
210 => 0.0067308513954994
211 => 0.006335265305931
212 => 0.0064666631367264
213 => 0.0064937440475439
214 => 0.0061827129862938
215 => 0.0059702405099705
216 => 0.0059560710181633
217 => 0.0055876730247294
218 => 0.0057844682592171
219 => 0.0059576399216261
220 => 0.005874704133996
221 => 0.0058484491412686
222 => 0.0059825802051002
223 => 0.0059930033375148
224 => 0.005755354813868
225 => 0.0058047694672842
226 => 0.0060108367865321
227 => 0.0057995770995534
228 => 0.0053891340368278
301 => 0.0052873384824526
302 => 0.0052737570790346
303 => 0.0049976794620617
304 => 0.0052941409481503
305 => 0.0051647275647988
306 => 0.0055735428921959
307 => 0.0053400297697072
308 => 0.0053299634857135
309 => 0.0053147468210542
310 => 0.0050771154115029
311 => 0.0051291415879307
312 => 0.0053020845221872
313 => 0.0053637925094715
314 => 0.0053573558608391
315 => 0.0053012370074606
316 => 0.0053269279311623
317 => 0.0052441685146081
318 => 0.0052149444421346
319 => 0.0051227052306935
320 => 0.0049871390716078
321 => 0.0050059903775042
322 => 0.0047373983435402
323 => 0.0045910551481784
324 => 0.0045505492804746
325 => 0.0044963831413243
326 => 0.0045566674900222
327 => 0.0047366374560548
328 => 0.0045195554942613
329 => 0.0041473836972955
330 => 0.0041697518564431
331 => 0.0042200064688815
401 => 0.00412635733107
402 => 0.0040377262815078
403 => 0.0041147837882378
404 => 0.0039570896916093
405 => 0.0042390630470666
406 => 0.0042314364580227
407 => 0.0043365386878218
408 => 0.0044022612690301
409 => 0.0042507919972834
410 => 0.0042126978850555
411 => 0.0042343980226614
412 => 0.0038757430856904
413 => 0.0043072289277985
414 => 0.0043109604352789
415 => 0.0042790090027679
416 => 0.0045087618930596
417 => 0.0049936121532988
418 => 0.0048111919823403
419 => 0.0047405533784663
420 => 0.0046062693408653
421 => 0.0047851948479714
422 => 0.0047714561606984
423 => 0.0047093246066073
424 => 0.0046717472488308
425 => 0.0047409846827187
426 => 0.0046631679645554
427 => 0.0046491899437128
428 => 0.0045644983456436
429 => 0.0045342672983551
430 => 0.0045118854344753
501 => 0.0044872452015403
502 => 0.0045415954154316
503 => 0.0044184306803878
504 => 0.0042699060839128
505 => 0.0042575578707743
506 => 0.0042916523729157
507 => 0.0042765680937553
508 => 0.0042574856530491
509 => 0.0042210520769473
510 => 0.0042102430131981
511 => 0.0042453672265708
512 => 0.0042057140375419
513 => 0.004264224477975
514 => 0.0042483128757076
515 => 0.0041594319588895
516 => 0.0040486534286041
517 => 0.0040476672673188
518 => 0.004023800214682
519 => 0.0039934019347137
520 => 0.0039849458286449
521 => 0.0041082942199518
522 => 0.0043636216984505
523 => 0.0043134948049525
524 => 0.0043497166227155
525 => 0.0045278921160587
526 => 0.0045845287474685
527 => 0.004544329408006
528 => 0.0044893020727624
529 => 0.0044917229962446
530 => 0.0046797680586792
531 => 0.0046914961985625
601 => 0.0047211294244062
602 => 0.004759216493964
603 => 0.0045508158006448
604 => 0.0044819073423305
605 => 0.0044492546918854
606 => 0.0043486971666807
607 => 0.0044571398364633
608 => 0.0043939549367591
609 => 0.0044024807384327
610 => 0.004396928298908
611 => 0.0043999603063428
612 => 0.0042389842297671
613 => 0.0042976354514178
614 => 0.004200116419832
615 => 0.0040695493835637
616 => 0.0040691116770754
617 => 0.0041010677742279
618 => 0.0040820590371994
619 => 0.004030907014615
620 => 0.0040381729179923
621 => 0.0039745159588637
622 => 0.004045902025377
623 => 0.004047949122333
624 => 0.0040204615983
625 => 0.0041304416831426
626 => 0.0041755006136378
627 => 0.0041574077364795
628 => 0.0041742311691445
629 => 0.0043155778036867
630 => 0.0043386234725031
701 => 0.0043488588362799
702 => 0.0043351448047448
703 => 0.0041768147261503
704 => 0.0041838373384074
705 => 0.0041323100692409
706 => 0.004088774956605
707 => 0.0040905161327989
708 => 0.0041128988398622
709 => 0.0042106454343361
710 => 0.00441634737993
711 => 0.0044241536183992
712 => 0.0044336150071478
713 => 0.0043951307841942
714 => 0.0043835235743069
715 => 0.0043988364802233
716 => 0.0044760873156938
717 => 0.0046747974379214
718 => 0.0046045600093234
719 => 0.0045474558865624
720 => 0.0045975515973847
721 => 0.0045898397553668
722 => 0.004524744047812
723 => 0.0045229170281089
724 => 0.0043979775529545
725 => 0.0043517902737242
726 => 0.0043131927261413
727 => 0.0042710452117954
728 => 0.0042460587524937
729 => 0.0042844493101238
730 => 0.0042932296848775
731 => 0.0042092880596671
801 => 0.0041978471263259
802 => 0.0042663956694786
803 => 0.0042362300113843
804 => 0.0042672561388066
805 => 0.0042744544665057
806 => 0.0042732953699546
807 => 0.0042417989584005
808 => 0.0042618738318886
809 => 0.0042143907714814
810 => 0.0041627600750137
811 => 0.0041298229073734
812 => 0.0041010808601258
813 => 0.0041170286184364
814 => 0.004060177772005
815 => 0.0040419900420502
816 => 0.0042550729164497
817 => 0.0044124795267957
818 => 0.0044101907723414
819 => 0.0043962585682207
820 => 0.0043755581389419
821 => 0.0044745729503571
822 => 0.0044400781699237
823 => 0.0044651760048243
824 => 0.0044715644571594
825 => 0.0044909003782987
826 => 0.0044978113081275
827 => 0.0044769216782356
828 => 0.0044068135288651
829 => 0.0042321106863165
830 => 0.0041507860415088
831 => 0.0041239475541532
901 => 0.0041249230821951
902 => 0.0040980136638524
903 => 0.0041059396935498
904 => 0.0040952573141827
905 => 0.0040750274720064
906 => 0.0041157794826882
907 => 0.004120475772288
908 => 0.0041109637660446
909 => 0.0041132041878546
910 => 0.0040344488387903
911 => 0.0040404364369321
912 => 0.0040070967296117
913 => 0.0040008459364054
914 => 0.00391656605952
915 => 0.0037672520410541
916 => 0.0038499865015467
917 => 0.0037500549074972
918 => 0.00371220929862
919 => 0.0038913645248452
920 => 0.0038733823091247
921 => 0.0038426045724924
922 => 0.0037970778853709
923 => 0.0037801915942624
924 => 0.0036775958350372
925 => 0.0036715339302551
926 => 0.0037223831588456
927 => 0.0036989179894662
928 => 0.0036659640047029
929 => 0.0035466080123822
930 => 0.0034124123596028
1001 => 0.0034164628828364
1002 => 0.0034591480231867
1003 => 0.0035832608256305
1004 => 0.0035347678065424
1005 => 0.0034995855648007
1006 => 0.0034929969884968
1007 => 0.0035754668150591
1008 => 0.0036921788976075
1009 => 0.0037469375954536
1010 => 0.0036926733889345
1011 => 0.0036303375902778
1012 => 0.0036341316815057
1013 => 0.0036593720706625
1014 => 0.003662024478683
1015 => 0.0036214502819811
1016 => 0.003632871680688
1017 => 0.0036155215316577
1018 => 0.0035090436990845
1019 => 0.0035071178527381
1020 => 0.0034809864754376
1021 => 0.0034801952277183
1022 => 0.0034357392361526
1023 => 0.0034295195356228
1024 => 0.0033412494660835
1025 => 0.0033993490931607
1026 => 0.0033603789136846
1027 => 0.0033016416610782
1028 => 0.0032915153365894
1029 => 0.0032912109270474
1030 => 0.0033515209520649
1031 => 0.0033986443354041
1101 => 0.0033610568166412
1102 => 0.0033524988672223
1103 => 0.0034438753775946
1104 => 0.0034322468837343
1105 => 0.0034221766830471
1106 => 0.0036817286107246
1107 => 0.0034762730068784
1108 => 0.0033866826366055
1109 => 0.003275797540643
1110 => 0.0033119022870195
1111 => 0.0033195100875702
1112 => 0.0030528514203211
1113 => 0.0029446680322284
1114 => 0.0029075435702399
1115 => 0.0028861779175027
1116 => 0.002895914513748
1117 => 0.0027985367758188
1118 => 0.0028639762261864
1119 => 0.0027796553362749
1120 => 0.0027655186646774
1121 => 0.0029162948611929
1122 => 0.0029372744881162
1123 => 0.002847768881802
1124 => 0.0029052459706971
1125 => 0.0028844039792725
1126 => 0.0027811007759168
1127 => 0.0027771553533956
1128 => 0.0027253214372349
1129 => 0.0026442113954674
1130 => 0.0026071419299067
1201 => 0.0025878358303908
1202 => 0.0025958019033194
1203 => 0.0025917740130808
1204 => 0.0025654893047042
1205 => 0.0025932806217972
1206 => 0.0025222852907897
1207 => 0.0024940143779343
1208 => 0.0024812450624777
1209 => 0.0024182326198698
1210 => 0.0025185134378194
1211 => 0.0025382700222599
1212 => 0.0025580655332749
1213 => 0.0027303719416912
1214 => 0.0027217640004595
1215 => 0.002799575596956
1216 => 0.0027965519814025
1217 => 0.0027743588536174
1218 => 0.0026807296980845
1219 => 0.0027180486107007
1220 => 0.0026031867983147
1221 => 0.0026892490779983
1222 => 0.0026499738475975
1223 => 0.0026759700830925
1224 => 0.0026292265076864
1225 => 0.002655096332311
1226 => 0.0025429550413517
1227 => 0.0024382390817245
1228 => 0.0024803798407279
1229 => 0.002526191665145
1230 => 0.002625523373117
1231 => 0.0025663622273177
]
'min_raw' => 0.0024182326198698
'max_raw' => 0.0072184832640748
'avg_raw' => 0.0048183579419723
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002418'
'max' => '$0.007218'
'avg' => '$0.004818'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0045809973801302
'max_diff' => 0.00021925326407477
'year' => 2026
]
1 => [
'items' => [
101 => 0.0025876388124777
102 => 0.0025163658138489
103 => 0.0023693092595522
104 => 0.0023701415836792
105 => 0.0023475201366019
106 => 0.0023279719035417
107 => 0.0025731575965861
108 => 0.0025426648798438
109 => 0.0024940787265031
110 => 0.0025591132234866
111 => 0.0025763093767254
112 => 0.0025767989270331
113 => 0.002624246417249
114 => 0.0026495691512827
115 => 0.0026540323929111
116 => 0.0027286920439367
117 => 0.0027537169741759
118 => 0.0028567911201703
119 => 0.00264742069422
120 => 0.0026431088480776
121 => 0.0025600283922283
122 => 0.0025073374536787
123 => 0.0025636361858699
124 => 0.002613509177048
125 => 0.0025615780850846
126 => 0.0025683591893699
127 => 0.0024986459413352
128 => 0.0025235651471944
129 => 0.0025450289242599
130 => 0.0025331778881468
131 => 0.0025154363134889
201 => 0.0026094201605155
202 => 0.0026041172235405
203 => 0.0026916371425709
204 => 0.0027598651780646
205 => 0.0028821420148894
206 => 0.002754539761227
207 => 0.0027498894279306
208 => 0.0027953471818406
209 => 0.0027537100148306
210 => 0.0027800232671147
211 => 0.0028779025431451
212 => 0.0028799705780115
213 => 0.0028453283294872
214 => 0.0028432203455162
215 => 0.00284987376829
216 => 0.0028888430732918
217 => 0.0028752260007184
218 => 0.0028909840218424
219 => 0.0029106896685534
220 => 0.0029922005783713
221 => 0.0030118525827745
222 => 0.0029641084004708
223 => 0.0029684191655638
224 => 0.0029505615307752
225 => 0.0029333112793248
226 => 0.0029720873253883
227 => 0.0030429513117145
228 => 0.0030425104705334
301 => 0.003058949537962
302 => 0.0030691909407814
303 => 0.0030252273427153
304 => 0.0029966086569606
305 => 0.0030075828821333
306 => 0.0030251309071719
307 => 0.0030018922941196
308 => 0.0028584528091884
309 => 0.0029019631859668
310 => 0.0028947209317221
311 => 0.0028844070809896
312 => 0.002928157101296
313 => 0.0029239373051086
314 => 0.0027975380263688
315 => 0.0028056296980923
316 => 0.0027980301077268
317 => 0.0028225859389276
318 => 0.0027523839193604
319 => 0.0027739775877614
320 => 0.0027875209341545
321 => 0.0027954980692249
322 => 0.002824316951072
323 => 0.0028209353879136
324 => 0.0028241067483582
325 => 0.0028668375422346
326 => 0.0030829552342242
327 => 0.0030947180433624
328 => 0.0030367936691206
329 => 0.0030599333141224
330 => 0.0030155102558031
331 => 0.0030453317524615
401 => 0.0030657348630913
402 => 0.0029735371294477
403 => 0.0029680777780197
404 => 0.0029234713699365
405 => 0.0029474403270043
406 => 0.0029093039928804
407 => 0.002918661315322
408 => 0.0028924974260184
409 => 0.0029395872175865
410 => 0.0029922409215736
411 => 0.0030055433265584
412 => 0.0029705504260886
413 => 0.0029452132600039
414 => 0.0029007295429406
415 => 0.0029747069558012
416 => 0.0029963402057425
417 => 0.0029745933255488
418 => 0.0029695540982292
419 => 0.0029600047715643
420 => 0.0029715800330238
421 => 0.0029962223864173
422 => 0.0029846015076297
423 => 0.0029922773028025
424 => 0.0029630250868496
425 => 0.0030252418964956
426 => 0.0031240571635041
427 => 0.0031243748707454
428 => 0.003112753929317
429 => 0.0031079988904611
430 => 0.0031199226815844
501 => 0.0031263908491293
502 => 0.0031649502031726
503 => 0.0032063259263335
504 => 0.003399408372683
505 => 0.00334519159438
506 => 0.0035165058273074
507 => 0.003651993143184
508 => 0.0036926198650732
509 => 0.0036552451925701
510 => 0.0035273884568775
511 => 0.0035211151954517
512 => 0.0037121871382979
513 => 0.0036582005627944
514 => 0.0036517790314222
515 => 0.0035834647869696
516 => 0.0036238469663248
517 => 0.003615014791329
518 => 0.0036010727710133
519 => 0.0036781191561761
520 => 0.0038223431112226
521 => 0.003799864455305
522 => 0.0037830851814172
523 => 0.0037095632876145
524 => 0.0037538398893932
525 => 0.0037380738395623
526 => 0.0038058147950185
527 => 0.0037656865536521
528 => 0.0036577915613877
529 => 0.0036749741945324
530 => 0.0036723770740992
531 => 0.0037258256285796
601 => 0.0037097816991993
602 => 0.0036692442393919
603 => 0.0038218501694234
604 => 0.003811940789166
605 => 0.0038259900247713
606 => 0.0038321749327719
607 => 0.003925063473164
608 => 0.0039631169360609
609 => 0.0039717557383581
610 => 0.0040079035849497
611 => 0.003970856347005
612 => 0.0041190717130169
613 => 0.0042176262828084
614 => 0.0043321024871931
615 => 0.004499382990102
616 => 0.004562282006627
617 => 0.004550919862279
618 => 0.0046777500304386
619 => 0.0049056610233451
620 => 0.0045969871901701
621 => 0.004922021486022
622 => 0.0048191193806567
623 => 0.0045751403399653
624 => 0.0045594309660688
625 => 0.0047246564050799
626 => 0.0050911105264473
627 => 0.004999317925333
628 => 0.0050912606662589
629 => 0.0049840045751426
630 => 0.0049786784061934
701 => 0.0050860514773135
702 => 0.0053369345105871
703 => 0.0052177493856887
704 => 0.0050468682837552
705 => 0.0051730442302184
706 => 0.0050637389483594
707 => 0.0048174435557089
708 => 0.0049992477332609
709 => 0.0048776804572168
710 => 0.0049131602512383
711 => 0.0051686765837154
712 => 0.0051379321825794
713 => 0.0051777182845043
714 => 0.0051074968559904
715 => 0.0050418989688556
716 => 0.0049194556411554
717 => 0.0048832062082065
718 => 0.0048932242473556
719 => 0.0048832012437638
720 => 0.0048146953272278
721 => 0.0047999014810744
722 => 0.0047752444226854
723 => 0.004782886676107
724 => 0.0047365241926588
725 => 0.0048240197779034
726 => 0.0048402597295333
727 => 0.004903931719948
728 => 0.0049105423572166
729 => 0.0050878679442076
730 => 0.0049901999907284
731 => 0.0050557240861676
801 => 0.0050498629943348
802 => 0.0045804281055863
803 => 0.0046451120913967
804 => 0.0047457400743649
805 => 0.0047004073044357
806 => 0.0046363173739904
807 => 0.0045845613188712
808 => 0.0045061456030372
809 => 0.0046165142172331
810 => 0.0047616372085072
811 => 0.0049142229157647
812 => 0.005097544645223
813 => 0.0050566293693081
814 => 0.0049107958435484
815 => 0.0049173378289825
816 => 0.0049577778087599
817 => 0.0049054043605886
818 => 0.0048899584082717
819 => 0.0049556557721003
820 => 0.0049561081937383
821 => 0.0048958462120746
822 => 0.0048288760472816
823 => 0.0048285954398458
824 => 0.004816678745876
825 => 0.0049861245285268
826 => 0.0050793025760837
827 => 0.0050899852890722
828 => 0.0050785835443842
829 => 0.0050829716233956
830 => 0.0050287533705603
831 => 0.0051526802186182
901 => 0.0052664077494912
902 => 0.0052359263417829
903 => 0.0051902303784408
904 => 0.005153831342623
905 => 0.0052273518857223
906 => 0.0052240781316701
907 => 0.0052654144387228
908 => 0.0052635391850648
909 => 0.0052496393397401
910 => 0.0052359268381902
911 => 0.0052902953568448
912 => 0.0052746380966039
913 => 0.0052589565163133
914 => 0.0052275047063106
915 => 0.0052317795296492
916 => 0.0051860914563595
917 => 0.0051649540631116
918 => 0.0048470983843619
919 => 0.0047621569607661
920 => 0.0047888812617714
921 => 0.0047976795955586
922 => 0.0047607129791543
923 => 0.0048137136111334
924 => 0.004805453518781
925 => 0.0048375887061318
926 => 0.0048175120362227
927 => 0.0048183359897588
928 => 0.0048773771951641
929 => 0.0048945171082725
930 => 0.0048857996101295
1001 => 0.0048919050470106
1002 => 0.0050326022629896
1003 => 0.0050125996181211
1004 => 0.0050019736117022
1005 => 0.0050049170880996
1006 => 0.0050408682433646
1007 => 0.0050509326039785
1008 => 0.0050082892008474
1009 => 0.0050284000762826
1010 => 0.0051140296314356
1011 => 0.0051439951295261
1012 => 0.0052396306151758
1013 => 0.0051990029610866
1014 => 0.005273576778491
1015 => 0.0055027912691045
1016 => 0.0056859036646428
1017 => 0.005517505938266
1018 => 0.0058537685334491
1019 => 0.0061155971978036
1020 => 0.0061055477775672
1021 => 0.0060598918937309
1022 => 0.0057618069204385
1023 => 0.0054875046838183
1024 => 0.0057169701522393
1025 => 0.0057175551069083
1026 => 0.0056978438196681
1027 => 0.0055754187075079
1028 => 0.0056935836911367
1029 => 0.005702963198425
1030 => 0.0056977131685559
1031 => 0.0056038501221035
1101 => 0.0054605385989614
1102 => 0.005488541327544
1103 => 0.0055344103682026
1104 => 0.0054475707049516
1105 => 0.0054198201707422
1106 => 0.0054714136935927
1107 => 0.0056376587741543
1108 => 0.0056062311046663
1109 => 0.0056054104012068
1110 => 0.0057398712986824
1111 => 0.0056436263145677
1112 => 0.0054888945316286
1113 => 0.005449822715775
1114 => 0.0053111440914236
1115 => 0.0054069299112194
1116 => 0.0054103770723497
1117 => 0.0053579161577549
1118 => 0.0054931514457194
1119 => 0.0054919052287331
1120 => 0.0056202910075391
1121 => 0.0058657163971198
1122 => 0.0057931320327708
1123 => 0.0057087243141894
1124 => 0.0057179017735714
1125 => 0.0058185558510917
1126 => 0.0057576980981138
1127 => 0.0057795829704
1128 => 0.0058185227257164
1129 => 0.0058420160469185
1130 => 0.005714521446192
1201 => 0.005684796355991
1202 => 0.0056239892535286
1203 => 0.0056081258155145
1204 => 0.0056576519316883
1205 => 0.00564460354986
1206 => 0.0054100873518047
1207 => 0.0053855791042722
1208 => 0.0053863307372343
1209 => 0.0053247035835099
1210 => 0.0052307073818687
1211 => 0.0054777237875603
1212 => 0.0054578849131909
1213 => 0.0054359843312939
1214 => 0.0054386670276133
1215 => 0.0055458884771613
1216 => 0.0054836946216105
1217 => 0.0056490471799647
1218 => 0.00561505566492
1219 => 0.0055801923957761
1220 => 0.0055753732300192
1221 => 0.0055619538457931
1222 => 0.005515933784149
1223 => 0.0054603617943368
1224 => 0.0054236683530995
1225 => 0.0050030473617098
1226 => 0.005081112171072
1227 => 0.0051709186184119
1228 => 0.0052019194441569
1229 => 0.0051488903865283
1230 => 0.0055180276945601
1231 => 0.0055854726378332
]
'min_raw' => 0.0023279719035417
'max_raw' => 0.0061155971978036
'avg_raw' => 0.0042217845506726
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002327'
'max' => '$0.006115'
'avg' => '$0.004221'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.0260716328083E-5
'max_diff' => -0.0011028860662711
'year' => 2027
]
2 => [
'items' => [
101 => 0.0053811775053344
102 => 0.0053429622273591
103 => 0.005520533081822
104 => 0.0054134361494268
105 => 0.0054616618915267
106 => 0.0053574242151772
107 => 0.0055692271260172
108 => 0.0055676135427035
109 => 0.0054852174266011
110 => 0.0055548580597066
111 => 0.0055427562859327
112 => 0.0054497312737857
113 => 0.0055721761848279
114 => 0.0055722369159762
115 => 0.0054929324456736
116 => 0.0054003221863411
117 => 0.0053837656593292
118 => 0.0053712925402821
119 => 0.0054585942688573
120 => 0.0055368687257123
121 => 0.0056825180840362
122 => 0.0057191377932622
123 => 0.0058620669562834
124 => 0.0057769595987989
125 => 0.005814686588047
126 => 0.0058556445716842
127 => 0.0058752813352199
128 => 0.0058432842828053
129 => 0.0060653121049678
130 => 0.006084058055915
131 => 0.0060903434111158
201 => 0.006015476878708
202 => 0.0060819758822162
203 => 0.0060508632006902
204 => 0.0061318097546689
205 => 0.0061445032079102
206 => 0.0061337523045975
207 => 0.0061377814070088
208 => 0.005948319829185
209 => 0.0059384952468854
210 => 0.0058045363701096
211 => 0.0058591256025697
212 => 0.0057570736490155
213 => 0.0057894353747392
214 => 0.0058037001150843
215 => 0.0057962490242449
216 => 0.005862211995868
217 => 0.0058061299946436
218 => 0.0056581203726776
219 => 0.005510070425589
220 => 0.0055082117791022
221 => 0.0054692328413324
222 => 0.0054410582086734
223 => 0.0054464856424724
224 => 0.005465612627091
225 => 0.0054399465135564
226 => 0.005445423680184
227 => 0.0055363811403724
228 => 0.0055546220103343
229 => 0.0054926324070359
301 => 0.005243735204736
302 => 0.0051826552069802
303 => 0.005226558298098
304 => 0.0052055754482649
305 => 0.0042013056652557
306 => 0.0044372439542294
307 => 0.0042970574346284
308 => 0.0043616618325322
309 => 0.0042185676971429
310 => 0.0042868597187569
311 => 0.0042742486759901
312 => 0.0046536304627384
313 => 0.0046477069379609
314 => 0.0046505422158059
315 => 0.0045152070169856
316 => 0.0047307996634575
317 => 0.0048370083535703
318 => 0.0048173519516832
319 => 0.0048222990445576
320 => 0.0047372915984719
321 => 0.0046513652737011
322 => 0.0045560597555637
323 => 0.004733125628145
324 => 0.0047134389257292
325 => 0.0047585931380191
326 => 0.004873433013318
327 => 0.00489034362119
328 => 0.0049130716496605
329 => 0.0049049252693451
330 => 0.0050990050985559
331 => 0.0050755007506585
401 => 0.0051321394664288
402 => 0.0050156293308996
403 => 0.0048837870533048
404 => 0.0049088459600268
405 => 0.0049064325857985
406 => 0.0048757075619298
407 => 0.0048479703841899
408 => 0.0048017957981542
409 => 0.004947899020924
410 => 0.0049419674968953
411 => 0.0050379919762765
412 => 0.0050210187168138
413 => 0.0049076671360611
414 => 0.004911715509943
415 => 0.0049389427698807
416 => 0.0050331766274006
417 => 0.0050611516522428
418 => 0.0050481925061239
419 => 0.0050788658437549
420 => 0.0051031087991658
421 => 0.0050819103857034
422 => 0.0053820352168327
423 => 0.0052574024623176
424 => 0.0053181475996792
425 => 0.0053326349570088
426 => 0.0052955258958453
427 => 0.0053035735224358
428 => 0.0053157634838734
429 => 0.0053897785426835
430 => 0.0055840154734309
501 => 0.0056700416878435
502 => 0.0059288557983623
503 => 0.0056628984082793
504 => 0.0056471175973928
505 => 0.0056937378341346
506 => 0.0058456891152651
507 => 0.0059688313565632
508 => 0.0060096847422481
509 => 0.0060150841915823
510 => 0.0060917278590089
511 => 0.0061356585798581
512 => 0.0060824213018548
513 => 0.0060373082829223
514 => 0.0058757190487402
515 => 0.0058944234425896
516 => 0.0060232781679575
517 => 0.006205293057045
518 => 0.0063614807673037
519 => 0.0063067892748624
520 => 0.0067240467560132
521 => 0.0067654161309253
522 => 0.0067597002209445
523 => 0.0068539458135827
524 => 0.0066668875049769
525 => 0.0065869164539639
526 => 0.00604706222967
527 => 0.006198739246329
528 => 0.0064192106977216
529 => 0.0063900304744043
530 => 0.0062299182131841
531 => 0.006361359307796
601 => 0.0063179007713742
602 => 0.0062836232206021
603 => 0.0064406553257195
604 => 0.0062679920756196
605 => 0.0064174882497213
606 => 0.0062257578600959
607 => 0.006307039100993
608 => 0.0062608999375286
609 => 0.0062907576308932
610 => 0.0061162101655762
611 => 0.0062103917409611
612 => 0.0061122919023999
613 => 0.0061122453903034
614 => 0.00611007983093
615 => 0.006225493855956
616 => 0.0062292575031686
617 => 0.0061439663642935
618 => 0.0061316745786836
619 => 0.006177123752469
620 => 0.0061239146731237
621 => 0.0061488108664554
622 => 0.0061246687534576
623 => 0.0061192338553111
624 => 0.006075927662208
625 => 0.0060572701634906
626 => 0.0060645862494822
627 => 0.0060396126762921
628 => 0.0060245651951114
629 => 0.0061070865081836
630 => 0.0060629986995094
701 => 0.0061003294191961
702 => 0.0060577863526007
703 => 0.0059103135486492
704 => 0.0058255003796
705 => 0.0055469379236718
706 => 0.0056259378906174
707 => 0.0056783149504337
708 => 0.0056610043324769
709 => 0.005698194238168
710 => 0.0057004773963336
711 => 0.0056883865788872
712 => 0.0056743869612139
713 => 0.0056675727215579
714 => 0.0057183604811515
715 => 0.005747844485033
716 => 0.0056835716891009
717 => 0.005668513472286
718 => 0.0057334968175717
719 => 0.0057731366206562
720 => 0.0060658146549514
721 => 0.0060441321208332
722 => 0.0060985510264874
723 => 0.0060924242928369
724 => 0.0061494639755741
725 => 0.0062426997500808
726 => 0.0060531253513761
727 => 0.0060860289120017
728 => 0.0060779617187905
729 => 0.006166037218939
730 => 0.0061663121810367
731 => 0.0061135065190001
801 => 0.0061421333250642
802 => 0.0061261546272546
803 => 0.0061550302938471
804 => 0.0060438425373708
805 => 0.0061792572227823
806 => 0.006256028623481
807 => 0.0062570945944542
808 => 0.0062934836290898
809 => 0.0063304569957904
810 => 0.0064014241534707
811 => 0.0063284777602802
812 => 0.0061972543001189
813 => 0.0062067282100933
814 => 0.0061297919434135
815 => 0.0061310852559561
816 => 0.0061241814522451
817 => 0.0061449002868757
818 => 0.0060483891564511
819 => 0.006071040125858
820 => 0.0060393286360444
821 => 0.006085959977416
822 => 0.006035792362537
823 => 0.0060779578285457
824 => 0.0060961550458676
825 => 0.0061633031695438
826 => 0.0060258745300736
827 => 0.0057456482310929
828 => 0.0058045551965541
829 => 0.0057174271675947
830 => 0.0057254911983946
831 => 0.0057417818239916
901 => 0.0056889785764708
902 => 0.0056990517720762
903 => 0.0056986918866452
904 => 0.0056955905884266
905 => 0.0056818544243882
906 => 0.0056619342689154
907 => 0.0057412900372186
908 => 0.005754774128602
909 => 0.0057847475934216
910 => 0.0058739282935296
911 => 0.0058650170385631
912 => 0.0058795516651378
913 => 0.0058478226569335
914 => 0.0057269630160842
915 => 0.0057335262760556
916 => 0.0056516823190433
917 => 0.0057826546594305
918 => 0.0057516386804764
919 => 0.0057316424770738
920 => 0.0057261863277119
921 => 0.0058155880895259
922 => 0.0058423384978616
923 => 0.0058256694385399
924 => 0.005791480711557
925 => 0.0058571331743539
926 => 0.0058746990037434
927 => 0.0058786313451408
928 => 0.0059949549216058
929 => 0.0058851325408714
930 => 0.0059115678794548
1001 => 0.0061178088447819
1002 => 0.005930776748538
1003 => 0.0060298518212318
1004 => 0.0060250026119853
1005 => 0.0060756860666578
1006 => 0.0060208450893629
1007 => 0.0060215249090028
1008 => 0.0060665283831574
1009 => 0.0060033291201266
1010 => 0.005987680093827
1011 => 0.0059660610760745
1012 => 0.0060132654104211
1013 => 0.0060415622739936
1014 => 0.0062696142126312
1015 => 0.006416946165423
1016 => 0.006410550096792
1017 => 0.0064689981911412
1018 => 0.0064426667893137
1019 => 0.0063576357469398
1020 => 0.0065027733678411
1021 => 0.0064568457517719
1022 => 0.0064606319686386
1023 => 0.0064604910454578
1024 => 0.0064910288950819
1025 => 0.0064693900298704
1026 => 0.0064267376053545
1027 => 0.0064550522752535
1028 => 0.0065391367221735
1029 => 0.0068001374254391
1030 => 0.006946196876786
1031 => 0.0067913444630704
1101 => 0.006898159584495
1102 => 0.0068341085737595
1103 => 0.0068224685997564
1104 => 0.0068895563895865
1105 => 0.0069567616077117
1106 => 0.0069524809258533
1107 => 0.0069036933885205
1108 => 0.0068761345466192
1109 => 0.0070848193303856
1110 => 0.0072385747242122
1111 => 0.0072280896371425
1112 => 0.0072743674015353
1113 => 0.00741024034911
1114 => 0.007422662868621
1115 => 0.007421097916691
1116 => 0.0073903074059271
1117 => 0.0075240919681462
1118 => 0.0076356974036648
1119 => 0.0073831802923086
1120 => 0.0074793355026213
1121 => 0.0075225026744581
1122 => 0.0075858848898372
1123 => 0.0076928213112745
1124 => 0.0078089826284404
1125 => 0.0078254091123317
1126 => 0.0078137537359312
1127 => 0.0077371422246765
1128 => 0.0078642473240121
1129 => 0.0079387025102215
1130 => 0.0079830388697326
1201 => 0.008095468500586
1202 => 0.0075227692602155
1203 => 0.0071173842728822
1204 => 0.0070540775532799
1205 => 0.0071828142570049
1206 => 0.0072167610991212
1207 => 0.0072030771696299
1208 => 0.0067467795103956
1209 => 0.007051675240537
1210 => 0.007379717409808
1211 => 0.0073923188455235
1212 => 0.0075565436144988
1213 => 0.0076100219310779
1214 => 0.0077422443955356
1215 => 0.0077339738443834
1216 => 0.00776616791036
1217 => 0.0077587670521155
1218 => 0.0080036813247986
1219 => 0.0082738581376895
1220 => 0.0082645027737687
1221 => 0.0082256616603287
1222 => 0.0082833473371811
1223 => 0.0085621987619913
1224 => 0.0085365265912978
1225 => 0.0085614649183763
1226 => 0.0088902464636052
1227 => 0.0093177092410322
1228 => 0.0091191098643562
1229 => 0.009550013366312
1230 => 0.00982124427958
1231 => 0.010290310098277
]
'min_raw' => 0.0042013056652557
'max_raw' => 0.010290310098277
'avg_raw' => 0.0072458078817664
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0042013'
'max' => '$0.01029'
'avg' => '$0.007245'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001873333761714
'max_diff' => 0.0041747129004735
'year' => 2028
]
3 => [
'items' => [
101 => 0.010231580747578
102 => 0.010414184628633
103 => 0.010126442952642
104 => 0.0094657299023798
105 => 0.0093611695330678
106 => 0.0095705020403207
107 => 0.010085125583034
108 => 0.0095542947135709
109 => 0.0096616811071078
110 => 0.0096307538185449
111 => 0.0096291058347699
112 => 0.0096920026726273
113 => 0.0096007675288367
114 => 0.0092290591401447
115 => 0.009399410904191
116 => 0.0093336299071291
117 => 0.0094066188276674
118 => 0.0098005099288923
119 => 0.0096263612838497
120 => 0.0094429098329845
121 => 0.0096729986635054
122 => 0.0099659808118587
123 => 0.0099476465155543
124 => 0.0099120703175824
125 => 0.010112611482841
126 => 0.0104438467348
127 => 0.010533378292393
128 => 0.010599468657816
129 => 0.010608581402602
130 => 0.010702448337437
131 => 0.010197702171315
201 => 0.010998747299752
202 => 0.011137065665008
203 => 0.011111067545049
204 => 0.011264802586704
205 => 0.011219569837567
206 => 0.011154034680869
207 => 0.011397737422274
208 => 0.011118351895051
209 => 0.010721799312817
210 => 0.010504242723282
211 => 0.010790738790171
212 => 0.010965691940884
213 => 0.011081324844396
214 => 0.011116315291131
215 => 0.010236884179363
216 => 0.009762919585606
217 => 0.010066725456189
218 => 0.010437389585862
219 => 0.01019564311336
220 => 0.010205119117395
221 => 0.0098604521774622
222 => 0.010467884962161
223 => 0.010379387114744
224 => 0.010838514103692
225 => 0.010728939763055
226 => 0.011103339999335
227 => 0.011004747869604
228 => 0.011413998287905
301 => 0.011577259359778
302 => 0.011851400109009
303 => 0.012053059160097
304 => 0.012171477212019
305 => 0.012164367836357
306 => 0.012633599153711
307 => 0.012356909839561
308 => 0.012009322850324
309 => 0.012003036098311
310 => 0.012183056325383
311 => 0.012560329335188
312 => 0.012658150737531
313 => 0.0127128195564
314 => 0.012629092357267
315 => 0.012328765937259
316 => 0.012199086511789
317 => 0.012309577139464
318 => 0.012174456596385
319 => 0.012407712561867
320 => 0.01272802282326
321 => 0.012661880020927
322 => 0.012882985492445
323 => 0.013111806394492
324 => 0.01343903056141
325 => 0.013524579075718
326 => 0.01366598751675
327 => 0.013811543252826
328 => 0.013858291832416
329 => 0.013947549376086
330 => 0.013947078944773
331 => 0.014216062560349
401 => 0.014512759818059
402 => 0.014624756164287
403 => 0.014882285586924
404 => 0.014441275475565
405 => 0.01477578671099
406 => 0.015077524218702
407 => 0.01471778032283
408 => 0.015213603473712
409 => 0.015232855163101
410 => 0.015523532816222
411 => 0.015228875327684
412 => 0.01505390865157
413 => 0.015559030889595
414 => 0.015803443629373
415 => 0.015729824523055
416 => 0.01516957948895
417 => 0.014843492849062
418 => 0.013990061215057
419 => 0.015000987851038
420 => 0.01549338072629
421 => 0.015168304310357
422 => 0.015332253945988
423 => 0.016226709997143
424 => 0.016567260949682
425 => 0.016496428732185
426 => 0.016508398210944
427 => 0.016692153323498
428 => 0.017507024688347
429 => 0.017018734877959
430 => 0.017392014142131
501 => 0.017590000117889
502 => 0.017773900526051
503 => 0.017322299245925
504 => 0.016734772615821
505 => 0.016548678269377
506 => 0.015135981867348
507 => 0.015062444884593
508 => 0.015021166347774
509 => 0.014760911012094
510 => 0.014556421608187
511 => 0.014393804041994
512 => 0.013967046986589
513 => 0.014111064965204
514 => 0.013430903290008
515 => 0.013866046626349
516 => 0.012780492169659
517 => 0.013684574178615
518 => 0.013192523444705
519 => 0.013522922278863
520 => 0.013521769548456
521 => 0.012913400541725
522 => 0.012562505994979
523 => 0.012786109657185
524 => 0.013025830532752
525 => 0.013064724438294
526 => 0.013375528810821
527 => 0.013462267630475
528 => 0.013199444957474
529 => 0.012757996466419
530 => 0.012860534882523
531 => 0.01256042805725
601 => 0.0120345023894
602 => 0.012412231385831
603 => 0.012541204672784
604 => 0.012598166623748
605 => 0.01208097913239
606 => 0.011918467593918
607 => 0.01183194781444
608 => 0.012691234055847
609 => 0.01273830769588
610 => 0.012497472297928
611 => 0.013586071133622
612 => 0.013339687690138
613 => 0.013614958361919
614 => 0.012851230596018
615 => 0.012880406025172
616 => 0.012518845061514
617 => 0.01272129504165
618 => 0.012578209920957
619 => 0.012704939083905
620 => 0.012780900021651
621 => 0.013142401656713
622 => 0.013688701946599
623 => 0.013088405367452
624 => 0.012826847551512
625 => 0.012989116549464
626 => 0.013421260274569
627 => 0.014075980139133
628 => 0.013688372801846
629 => 0.013860386356135
630 => 0.013897963665396
701 => 0.013612156364884
702 => 0.014086518261975
703 => 0.014340732656334
704 => 0.014601504022691
705 => 0.01482792449345
706 => 0.014497346204483
707 => 0.014851112360214
708 => 0.014566039286828
709 => 0.014310299269687
710 => 0.014310687121728
711 => 0.014150257673211
712 => 0.013839405401296
713 => 0.013782079473026
714 => 0.014080296191356
715 => 0.014319437758228
716 => 0.014339134603086
717 => 0.014471535662044
718 => 0.014549889244896
719 => 0.015317860873375
720 => 0.015626745415344
721 => 0.016004443586378
722 => 0.016151578309898
723 => 0.016594401076977
724 => 0.016236785728254
725 => 0.016159413398052
726 => 0.015085270211343
727 => 0.015261161097992
728 => 0.015542779378463
729 => 0.015089913993061
730 => 0.015377152844856
731 => 0.015433859878751
801 => 0.015074525800556
802 => 0.015266461657629
803 => 0.01475673692626
804 => 0.013699812552826
805 => 0.01408769492094
806 => 0.014373306903665
807 => 0.013965703388613
808 => 0.01469631691291
809 => 0.01426950757494
810 => 0.014134229505265
811 => 0.013606461525348
812 => 0.013855547696216
813 => 0.014192440308886
814 => 0.013984279842226
815 => 0.014416244065997
816 => 0.015028020607507
817 => 0.015464009002909
818 => 0.015497478778219
819 => 0.015217167448929
820 => 0.015666368143039
821 => 0.015669640079692
822 => 0.015162939861697
823 => 0.014852588799494
824 => 0.014782076385177
825 => 0.014958230220913
826 => 0.01517211349729
827 => 0.015509347811506
828 => 0.015713131444706
829 => 0.016244491081604
830 => 0.016388261764073
831 => 0.016546222155561
901 => 0.016757305951768
902 => 0.017010766169889
903 => 0.016456209642138
904 => 0.016478243206808
905 => 0.015961847846524
906 => 0.015410005345474
907 => 0.015828785015632
908 => 0.016376283726438
909 => 0.016250686917247
910 => 0.016236554710503
911 => 0.016260321162299
912 => 0.016165625269777
913 => 0.015737319257494
914 => 0.015522226659463
915 => 0.015799750986897
916 => 0.015947242815742
917 => 0.01617598977964
918 => 0.016147791888077
919 => 0.01673701950145
920 => 0.016965975534688
921 => 0.016907398783805
922 => 0.016918178315695
923 => 0.017332692277508
924 => 0.017793717054342
925 => 0.018225527595424
926 => 0.018664783824507
927 => 0.018135243295885
928 => 0.01786637527297
929 => 0.018143778441964
930 => 0.017996584415764
1001 => 0.018842404950898
1002 => 0.0189009677296
1003 => 0.019746727102282
1004 => 0.02054945345811
1005 => 0.020045275416351
1006 => 0.020520692601052
1007 => 0.021034895047638
1008 => 0.022026874993443
1009 => 0.021692811045971
1010 => 0.021436923297657
1011 => 0.021195110611941
1012 => 0.021698284424233
1013 => 0.02234560949535
1014 => 0.022485037115666
1015 => 0.022710963126028
1016 => 0.02247342955105
1017 => 0.022759512578646
1018 => 0.02376951137731
1019 => 0.023496600786405
1020 => 0.023109023874753
1021 => 0.023906320924983
1022 => 0.024194859628047
1023 => 0.026219975355045
1024 => 0.028776767613738
1025 => 0.027718238829836
1026 => 0.027061175855158
1027 => 0.027215601239949
1028 => 0.028149255219944
1029 => 0.028449115245622
1030 => 0.027633992327879
1031 => 0.027921907522596
1101 => 0.029508348552685
1102 => 0.030359423266206
1103 => 0.029203549490661
1104 => 0.026014539586552
1105 => 0.023074126814429
1106 => 0.023854056690109
1107 => 0.023765636846249
1108 => 0.02547006982053
1109 => 0.023490091959069
1110 => 0.02352342970832
1111 => 0.025263108551484
1112 => 0.024798992061774
1113 => 0.024047182787992
1114 => 0.02307961585413
1115 => 0.021290978887777
1116 => 0.019706733246847
1117 => 0.022813803778693
1118 => 0.022679821247519
1119 => 0.022485794687279
1120 => 0.022917579801225
1121 => 0.025014205750201
1122 => 0.024965871735962
1123 => 0.024658395397599
1124 => 0.024891613490275
1125 => 0.024006298528753
1126 => 0.024234464352584
1127 => 0.023073661038023
1128 => 0.023598392615633
1129 => 0.024045569742945
1130 => 0.024135347171824
1201 => 0.024337620303236
1202 => 0.022609218541803
1203 => 0.023385220189477
1204 => 0.023841048455963
1205 => 0.021781599764802
1206 => 0.023800339776971
1207 => 0.022579130912483
1208 => 0.022164634281934
1209 => 0.02272269938919
1210 => 0.022505220874156
1211 => 0.022318245617697
1212 => 0.022213910211951
1213 => 0.022623691635321
1214 => 0.022604574842126
1215 => 0.021934092898345
1216 => 0.021059476535024
1217 => 0.021353026494858
1218 => 0.021246377042405
1219 => 0.020859865668661
1220 => 0.021120327667003
1221 => 0.019973384843105
1222 => 0.01800012932749
1223 => 0.019303722363556
1224 => 0.019253535449704
1225 => 0.019228228931945
1226 => 0.020207843069884
1227 => 0.020113675774064
1228 => 0.019942761210063
1229 => 0.02085672668866
1230 => 0.020523116994402
1231 => 0.021551223463777
]
'min_raw' => 0.0092290591401447
'max_raw' => 0.030359423266206
'avg_raw' => 0.019794241203175
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009229'
'max' => '$0.030359'
'avg' => '$0.019794'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.005027753474889
'max_diff' => 0.020069113167929
'year' => 2029
]
4 => [
'items' => [
101 => 0.022228400878264
102 => 0.022056646781556
103 => 0.022693535412964
104 => 0.021359789293045
105 => 0.021802806253476
106 => 0.021894111435025
107 => 0.020845448496526
108 => 0.020129082708247
109 => 0.020081309277337
110 => 0.018839229721748
111 => 0.019502738594627
112 => 0.020086598944899
113 => 0.019806975146512
114 => 0.019718454605467
115 => 0.020170686851907
116 => 0.020205829170562
117 => 0.019404580580997
118 => 0.019571185535011
119 => 0.020265955889016
120 => 0.019553679104687
121 => 0.018169841662488
122 => 0.017826630843773
123 => 0.017780840193926
124 => 0.016850025233178
125 => 0.017849565831806
126 => 0.017413239574483
127 => 0.018791588993377
128 => 0.018004283197541
129 => 0.01797034401825
130 => 0.017919039970958
131 => 0.01711784908276
201 => 0.017293258968938
202 => 0.017876348146274
203 => 0.018084400933717
204 => 0.018062699323461
205 => 0.017873490691202
206 => 0.017960109434145
207 => 0.017681080283155
208 => 0.017582549282451
209 => 0.017271558341141
210 => 0.016814487570856
211 => 0.016878046064843
212 => 0.015972469269836
213 => 0.015479062969318
214 => 0.015342494608325
215 => 0.015159869688421
216 => 0.015363122578975
217 => 0.015969903884555
218 => 0.01523799689419
219 => 0.013983193696515
220 => 0.014058609506776
221 => 0.014228046441277
222 => 0.013912301834771
223 => 0.01361347606315
224 => 0.013873280827074
225 => 0.01334160417044
226 => 0.014292297025116
227 => 0.014266583447683
228 => 0.014620942953454
301 => 0.014842531224602
302 => 0.014331841999661
303 => 0.014203405040639
304 => 0.014276568569632
305 => 0.013067338409146
306 => 0.014522123051193
307 => 0.014534704089189
308 => 0.0144269776037
309 => 0.015201605514153
310 => 0.016836312017714
311 => 0.016221269675158
312 => 0.015983106690367
313 => 0.015530358682183
314 => 0.016133618521571
315 => 0.016087297578226
316 => 0.015877816705721
317 => 0.01575112202041
318 => 0.015984560862766
319 => 0.015722196364489
320 => 0.015675068491304
321 => 0.015389524855435
322 => 0.015287598768838
323 => 0.015212136752115
324 => 0.015129060486448
325 => 0.015312306027194
326 => 0.014897047523906
327 => 0.014396286477235
328 => 0.014354653614514
329 => 0.014469605608886
330 => 0.014418747908546
331 => 0.014354410127411
401 => 0.014231571781873
402 => 0.014195128268778
403 => 0.014313552006458
404 => 0.01417985851115
405 => 0.014377130546138
406 => 0.014323483468181
407 => 0.014023815251662
408 => 0.013650317702495
409 => 0.013646992790869
410 => 0.01356652335656
411 => 0.013464033433307
412 => 0.013435523081309
413 => 0.01385140079451
414 => 0.014712255214664
415 => 0.014543248893487
416 => 0.014665373281002
417 => 0.015266104396624
418 => 0.015457058753666
419 => 0.015321523874039
420 => 0.01513599537138
421 => 0.015144157683924
422 => 0.015778164740809
423 => 0.015817706983258
424 => 0.015917617473116
425 => 0.016046030687284
426 => 0.015343393199687
427 => 0.015111063521445
428 => 0.015000972830734
429 => 0.014661936113804
430 => 0.015027558146202
501 => 0.01481452584542
502 => 0.014843271181015
503 => 0.014824550743499
504 => 0.014834773368253
505 => 0.014292031287088
506 => 0.014489777975781
507 => 0.014160985752228
508 => 0.01372076987355
509 => 0.013719294115565
510 => 0.013827036328218
511 => 0.013762947044178
512 => 0.013590484428715
513 => 0.013614981929241
514 => 0.013400358047152
515 => 0.013641041154417
516 => 0.013647943084728
517 => 0.013555266978334
518 => 0.013926072512945
519 => 0.014077991843023
520 => 0.01401699044448
521 => 0.014073711822284
522 => 0.01455027186915
523 => 0.014627971950562
524 => 0.014662481194145
525 => 0.014616243379342
526 => 0.014082422465107
527 => 0.014106099692635
528 => 0.013932371907122
529 => 0.013785590235345
530 => 0.013791460732448
531 => 0.013866925592023
601 => 0.014196485059741
602 => 0.014890023530962
603 => 0.014916342808974
604 => 0.014948242541714
605 => 0.014818490297143
606 => 0.014779355778618
607 => 0.014830984310028
608 => 0.015091440895298
609 => 0.015761405945886
610 => 0.015524595551547
611 => 0.015332065014776
612 => 0.015500966201385
613 => 0.015474965187598
614 => 0.015255490464739
615 => 0.015249330540252
616 => 0.014828088376773
617 => 0.014672364740155
618 => 0.014542230413685
619 => 0.014400127126422
620 => 0.014315883534388
621 => 0.014445319979781
622 => 0.014474923626289
623 => 0.014191908576275
624 => 0.014153334670735
625 => 0.01438445086988
626 => 0.014282745247517
627 => 0.014387352002296
628 => 0.014411621666705
629 => 0.014407713691757
630 => 0.014301521341193
701 => 0.014369205178741
702 => 0.014209112725417
703 => 0.014035036227536
704 => 0.013923986267237
705 => 0.013827080448236
706 => 0.013880849428817
707 => 0.013689172830875
708 => 0.013627851629505
709 => 0.014346275417514
710 => 0.014876982794074
711 => 0.014869266098636
712 => 0.014822292699728
713 => 0.014752499757156
714 => 0.015086335106836
715 => 0.014970033546256
716 => 0.015054652648899
717 => 0.015076191761974
718 => 0.015141384170086
719 => 0.015164684852509
720 => 0.015094254006861
721 => 0.014857879486464
722 => 0.014268856655449
723 => 0.013994664937574
724 => 0.013904177103651
725 => 0.013907466164553
726 => 0.013816739181855
727 => 0.013843462344358
728 => 0.013807445956502
729 => 0.013739239631202
730 => 0.01387663788043
731 => 0.013892471748701
801 => 0.013860401355544
802 => 0.013867955094097
803 => 0.013602425936205
804 => 0.01362261354138
805 => 0.013510206390446
806 => 0.013489131404734
807 => 0.013204975915582
808 => 0.012701553277552
809 => 0.012980498287438
810 => 0.0126435719411
811 => 0.012515972828474
812 => 0.013120007181911
813 => 0.013059378886131
814 => 0.012955609598242
815 => 0.01280211319404
816 => 0.012745179884604
817 => 0.01239927111937
818 => 0.012378832984168
819 => 0.012550274708541
820 => 0.012471160251692
821 => 0.012360053591289
822 => 0.011957636530011
823 => 0.011505186517424
824 => 0.011518843139304
825 => 0.011662759070177
826 => 0.012081214048895
827 => 0.011917716449365
828 => 0.011799097064987
829 => 0.011776883219979
830 => 0.012054935998093
831 => 0.012448438932982
901 => 0.012633061705901
902 => 0.012450106145016
903 => 0.012239936647698
904 => 0.012252728691168
905 => 0.012337828425438
906 => 0.012346771204264
907 => 0.012209972467284
908 => 0.012248480510441
909 => 0.012189983271636
910 => 0.011830985825071
911 => 0.011824492699656
912 => 0.011736388936653
913 => 0.011733721189724
914 => 0.011583834710342
915 => 0.01156286455576
916 => 0.011265255853489
917 => 0.011461142802566
918 => 0.011329752121651
919 => 0.011131715373585
920 => 0.011097573763573
921 => 0.011096547425549
922 => 0.011299886885607
923 => 0.011458766662585
924 => 0.011332037718799
925 => 0.011303183994836
926 => 0.011611266279261
927 => 0.011572060000335
928 => 0.011538107615639
929 => 0.012413205061141
930 => 0.011720497148321
1001 => 0.011418436959946
1002 => 0.011044580117158
1003 => 0.01116630979032
1004 => 0.011191960021036
1005 => 0.010292901706892
1006 => 0.0099281538608147
1007 => 0.0098029861452734
1008 => 0.0097309503553677
1009 => 0.0097637779693963
1010 => 0.0094354621272712
1011 => 0.0096560958030221
1012 => 0.0093718020355891
1013 => 0.009324139260307
1014 => 0.0098324917337169
1015 => 0.0099032260106398
1016 => 0.0096014516098694
1017 => 0.0097952396280017
1018 => 0.009724969398772
1019 => 0.0093766754362591
1020 => 0.0093633731687681
1021 => 0.0091886115015039
1022 => 0.0089151433327625
1023 => 0.0087901610415171
1024 => 0.0087250691790905
1025 => 0.0087519273501428
1026 => 0.0087383470369852
1027 => 0.0086497263075537
1028 => 0.0087434266734605
1029 => 0.008504060958233
1030 => 0.0084087436017288
1031 => 0.0083656909631417
1101 => 0.0081532401135008
1102 => 0.0084913438926011
1103 => 0.0085579545964031
1104 => 0.0086246965438686
1105 => 0.0092056396298932
1106 => 0.0091766173550435
1107 => 0.0094389645852634
1108 => 0.0094287702543227
1109 => 0.0093539445745206
1110 => 0.0090382673396625
1111 => 0.0091640906590713
1112 => 0.0087768260392164
1113 => 0.0090669910238461
1114 => 0.0089345718424406
1115 => 0.0090222199654112
1116 => 0.0088646207373974
1117 => 0.0089518426572929
1118 => 0.0085737504653687
1119 => 0.0082206932964506
1120 => 0.0083627738076045
1121 => 0.0085172315721061
1122 => 0.0088521353606521
1123 => 0.0086526694270904
1124 => 0.0087244049194412
1125 => 0.0084841030284424
1126 => 0.0079882915884703
1127 => 0.0079910978273755
1128 => 0.0079148280391752
1129 => 0.0078489198065987
1130 => 0.0086755804890165
1201 => 0.0085727721655863
1202 => 0.0084089605574211
1203 => 0.0086282289045648
1204 => 0.0086862069358062
1205 => 0.0086878574888481
1206 => 0.008847830014789
1207 => 0.0089332073805603
1208 => 0.0089482555113242
1209 => 0.0091999757373273
1210 => 0.0092843490368135
1211 => 0.0096318707164407
1212 => 0.0089259637075731
1213 => 0.0089114260172604
1214 => 0.0086313144598724
1215 => 0.0084536632817883
1216 => 0.008643478388023
1217 => 0.008811628659801
1218 => 0.0086365393575336
1219 => 0.0086594023240728
1220 => 0.0084243592411004
1221 => 0.008508376083458
1222 => 0.0085807427063873
1223 => 0.0085407861107193
1224 => 0.0084809691530831
1225 => 0.0087978422550756
1226 => 0.0087799630328255
1227 => 0.0090750425502821
1228 => 0.0093050781354782
1229 => 0.0097173430279292
1230 => 0.0092871231208017
1231 => 0.0092714441974167
]
'min_raw' => 0.0078489198065987
'max_raw' => 0.022693535412964
'avg_raw' => 0.015271227609781
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.007848'
'max' => '$0.022693'
'avg' => '$0.015271'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.001380139333546
'max_diff' => -0.0076658878532418
'year' => 2030
]
5 => [
'items' => [
101 => 0.0094247081884833
102 => 0.009284325572895
103 => 0.0093730425401036
104 => 0.0097030493529529
105 => 0.0097100218768905
106 => 0.0095932231173463
107 => 0.0095861159022134
108 => 0.0096085483816223
109 => 0.0097399361141858
110 => 0.0096940252032909
111 => 0.0097471544717005
112 => 0.009813593435391
113 => 0.010088413158752
114 => 0.010154671263656
115 => 0.009993698419627
116 => 0.010008232465106
117 => 0.0099480242026361
118 => 0.009889863775497
119 => 0.010020599922057
120 => 0.010259522799521
121 => 0.010258036472701
122 => 0.010313461936275
123 => 0.010347991540913
124 => 0.010199765200593
125 => 0.010103275303478
126 => 0.010140275669844
127 => 0.010199440061425
128 => 0.010121089455051
129 => 0.0096374732169809
130 => 0.0097841714900866
131 => 0.0097597537242627
201 => 0.0097249798564278
202 => 0.0098724861044197
203 => 0.009858258766957
204 => 0.0094320947737703
205 => 0.0094593764099284
206 => 0.0094337538604246
207 => 0.0095165455597517
208 => 0.0092798545494321
209 => 0.0093526591100681
210 => 0.0093983214479987
211 => 0.0094252169158344
212 => 0.0095223817880519
213 => 0.0095109806117699
214 => 0.0095216730749262
215 => 0.0096657429298495
216 => 0.010394398817248
217 => 0.01043405794951
218 => 0.010238761877603
219 => 0.010316778806285
220 => 0.010167003363643
221 => 0.010267548621697
222 => 0.010336339133685
223 => 0.010025488037666
224 => 0.010007081453166
225 => 0.0098566878339938
226 => 0.0099375008462071
227 => 0.0098089215331145
228 => 0.009840470399034
301 => 0.0097522570195424
302 => 0.0099110235395186
303 => 0.010088549178675
304 => 0.010133399165826
305 => 0.010015418158765
306 => 0.0099299921343265
307 => 0.0097800121764936
308 => 0.010029432188891
309 => 0.010102370201453
310 => 0.010029049076562
311 => 0.010012058969826
312 => 0.0099798627482627
313 => 0.010018889550432
314 => 0.010101972965373
315 => 0.010062792361197
316 => 0.010088671840528
317 => 0.0099900459521189
318 => 0.010199814269679
319 => 0.01053297684146
320 => 0.010534048013606
321 => 0.010494867198231
322 => 0.010478835252743
323 => 0.010519037147007
324 => 0.010540845025478
325 => 0.010670850579763
326 => 0.010810351719161
327 => 0.011461342667614
328 => 0.011278547014271
329 => 0.011856144911364
330 => 0.012312949856264
331 => 0.01244992568558
401 => 0.01232391436782
402 => 0.01189283645676
403 => 0.011871685717878
404 => 0.012515898113401
405 => 0.012333878604869
406 => 0.01231222796351
407 => 0.01208190171879
408 => 0.01221805305588
409 => 0.012188274761239
410 => 0.012141268266344
411 => 0.012401035533127
412 => 0.012887296666961
413 => 0.012811508309125
414 => 0.012754935815721
415 => 0.01250705161763
416 => 0.012656333271821
417 => 0.012603176934065
418 => 0.012831570294909
419 => 0.012696275127478
420 => 0.01233249962807
421 => 0.012390432075371
422 => 0.012381675702505
423 => 0.012561881235595
424 => 0.012507788007537
425 => 0.012371113131562
426 => 0.012885634679269
427 => 0.01285222451188
428 => 0.01289959249061
429 => 0.01292044533975
430 => 0.013233625538953
501 => 0.013361925445918
502 => 0.013391051771005
503 => 0.01351292675955
504 => 0.013388019410264
505 => 0.01388773786484
506 => 0.014220021477752
507 => 0.014605985993308
508 => 0.015169983888018
509 => 0.015382052313701
510 => 0.015343744050752
511 => 0.015771360817702
512 => 0.016539778642523
513 => 0.015499063263055
514 => 0.01659493908469
515 => 0.016247997452055
516 => 0.015425405082291
517 => 0.015372439831405
518 => 0.015929508934703
519 => 0.017165034589903
520 => 0.016855549426491
521 => 0.01716554079676
522 => 0.016803919397181
523 => 0.016785961846707
524 => 0.017147977652537
525 => 0.017993847315313
526 => 0.017592006345478
527 => 0.017015868779772
528 => 0.017441279792596
529 => 0.017072749403357
530 => 0.016242347291241
531 => 0.01685531276902
601 => 0.016445440210281
602 => 0.016565062812944
603 => 0.017426553967472
604 => 0.017322897072536
605 => 0.017457038692953
606 => 0.017220282244015
607 => 0.016999114387641
608 => 0.01658628815958
609 => 0.016464070665538
610 => 0.016497847183967
611 => 0.016464053927573
612 => 0.016233081447042
613 => 0.016183202961862
614 => 0.016100069968003
615 => 0.016125836358979
616 => 0.015969522009108
617 => 0.016264519483507
618 => 0.016319273614264
619 => 0.016533948175384
620 => 0.016556236400475
621 => 0.017154101997492
622 => 0.016824807673378
623 => 0.017045726735898
624 => 0.017025965655575
625 => 0.015443233153262
626 => 0.015661319727514
627 => 0.016000593997712
628 => 0.015847751398863
629 => 0.015631667723751
630 => 0.015457168570424
701 => 0.015192784509679
702 => 0.015564899998131
703 => 0.016054192295375
704 => 0.016568645660588
705 => 0.017186727670571
706 => 0.017048778961211
707 => 0.01655709104734
708 => 0.016579147807978
709 => 0.016715494023227
710 => 0.01653891328612
711 => 0.016486836179482
712 => 0.016708339428473
713 => 0.016709864799613
714 => 0.016506687321077
715 => 0.016280892734769
716 => 0.016279946647208
717 => 0.016239768681492
718 => 0.016811066968026
719 => 0.017125223260848
720 => 0.017161240773531
721 => 0.017122798995271
722 => 0.017137593710024
723 => 0.016954793085193
724 => 0.017372621105716
725 => 0.017756061416257
726 => 0.017653291222025
727 => 0.017499224091226
728 => 0.017376502200667
729 => 0.017624381844767
730 => 0.017613344154414
731 => 0.01775271239965
801 => 0.017746389851016
802 => 0.017699525552048
803 => 0.017653292895696
804 => 0.017836600152229
805 => 0.017783810606172
806 => 0.017730939063369
807 => 0.01762489709005
808 => 0.017639309955395
809 => 0.017485269426459
810 => 0.017414003229358
811 => 0.016342330616478
812 => 0.016055944676404
813 => 0.016146047523075
814 => 0.016175711719718
815 => 0.016051076191584
816 => 0.016229771522688
817 => 0.016201922044621
818 => 0.016310268072381
819 => 0.016242578178074
820 => 0.016245356194948
821 => 0.016444417741097
822 => 0.016502206154813
823 => 0.016472814501187
824 => 0.0164933994079
825 => 0.016967769894739
826 => 0.016900329581025
827 => 0.016864503258499
828 => 0.01687442739468
829 => 0.016995639224686
830 => 0.017029571919167
831 => 0.016885796708243
901 => 0.016953601928869
902 => 0.017242307952532
903 => 0.017343338721468
904 => 0.017665780438393
905 => 0.017528801466099
906 => 0.017780232298055
907 => 0.018553044956403
908 => 0.01917042118246
909 => 0.018602656490827
910 => 0.019736389307591
911 => 0.020619162929756
912 => 0.020585280607801
913 => 0.020431348607855
914 => 0.019426334308771
915 => 0.018501505166836
916 => 0.019275164014384
917 => 0.019277136229891
918 => 0.019210678248763
919 => 0.018797913435666
920 => 0.019196314927987
921 => 0.019227938591665
922 => 0.019210237749416
923 => 0.018893771934993
924 => 0.018410587129029
925 => 0.018505000283533
926 => 0.018659650956588
927 => 0.018366864968985
928 => 0.018273302105418
929 => 0.018447253269853
930 => 0.019007760165827
1001 => 0.018901799583939
1002 => 0.018899032524925
1003 => 0.019352376828524
1004 => 0.019027880144971
1005 => 0.018506191135764
1006 => 0.018374457780707
1007 => 0.017906893116474
1008 => 0.018229841695468
1009 => 0.018241464039891
1010 => 0.018064588403631
1011 => 0.018520543618829
1012 => 0.018516341911252
1013 => 0.018949203528105
1014 => 0.01977667236413
1015 => 0.019531949112049
1016 => 0.019247362595693
1017 => 0.019278305040749
1018 => 0.019617667290552
1019 => 0.019412481127435
1020 => 0.019486267502301
1021 => 0.019617555606037
1022 => 0.019696764978721
1023 => 0.019266908030983
1024 => 0.019166687814031
1025 => 0.018961672422662
1026 => 0.018908187733848
1027 => 0.019075168492331
1028 => 0.019031174961988
1029 => 0.018240487226846
1030 => 0.018157855959179
1031 => 0.018160390142188
1101 => 0.017952609890736
1102 => 0.017635695134298
1103 => 0.018468528192221
1104 => 0.018401640042179
1105 => 0.018327800701264
1106 => 0.018336845599204
1107 => 0.018698350202318
1108 => 0.018488659276092
1109 => 0.01904615697113
1110 => 0.018931552204945
1111 => 0.018814008258951
1112 => 0.018797760105138
1113 => 0.018752515714308
1114 => 0.018597355863457
1115 => 0.018409991019893
1116 => 0.018286276520907
1117 => 0.016868123481617
1118 => 0.017131324436692
1119 => 0.017434113143985
1120 => 0.017538634592393
1121 => 0.017359843422227
1122 => 0.0186044156286
1123 => 0.018831810963701
1124 => 0.018143015661051
1125 => 0.018014170183252
1126 => 0.018612862716674
1127 => 0.018251777931835
1128 => 0.018414374388339
1129 => 0.018062929784884
1130 => 0.018777038086388
1201 => 0.018771597777589
1202 => 0.018493793519437
1203 => 0.018728591776106
1204 => 0.018687789800908
1205 => 0.018374149477656
1206 => 0.018786981044065
1207 => 0.018787185803372
1208 => 0.018519805244885
1209 => 0.018207563289704
1210 => 0.018151741802943
1211 => 0.018109687811231
1212 => 0.018404031684334
1213 => 0.018667939480569
1214 => 0.019159006461071
1215 => 0.019282472367433
1216 => 0.019764368019554
1217 => 0.01947742262179
1218 => 0.019604621800054
1219 => 0.019742714501482
1220 => 0.019808921220737
1221 => 0.019701040924559
1222 => 0.020449623228467
1223 => 0.020512826510886
1224 => 0.020534018024775
1225 => 0.020281600283748
1226 => 0.020505806316888
1227 => 0.020400907738905
1228 => 0.020673824697152
1229 => 0.020716621560984
1230 => 0.020680374139861
1231 => 0.020693958539944
]
'min_raw' => 0.0092798545494321
'max_raw' => 0.020716621560984
'avg_raw' => 0.014998238055208
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009279'
'max' => '$0.020716'
'avg' => '$0.014998'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0014309347428334
'max_diff' => -0.0019769138519802
'year' => 2031
]
6 => [
'items' => [
101 => 0.020055175602525
102 => 0.020022051337372
103 => 0.019570399631612
104 => 0.01975445104015
105 => 0.019410375753702
106 => 0.019519485571403
107 => 0.019567580139409
108 => 0.019542458266425
109 => 0.01976485703064
110 => 0.019575772647992
111 => 0.019076747873832
112 => 0.018577587140706
113 => 0.018571320584309
114 => 0.018439900374195
115 => 0.018344907633095
116 => 0.01836320660508
117 => 0.018427694569125
118 => 0.018341159475392
119 => 0.018359626125081
120 => 0.018666295552553
121 => 0.018727795919166
122 => 0.01851879364367
123 => 0.017679619348668
124 => 0.017473683871765
125 => 0.017621706208685
126 => 0.017550961065497
127 => 0.014164995376204
128 => 0.014960477790164
129 => 0.014487829151819
130 => 0.014705647389887
131 => 0.014223195521908
201 => 0.014453446840777
202 => 0.014410927829613
203 => 0.015690040011226
204 => 0.015670068433871
205 => 0.015679627771079
206 => 0.015223335699454
207 => 0.015950221359232
208 => 0.016308311373201
209 => 0.016242038441873
210 => 0.016258717910894
211 => 0.015972109371385
212 => 0.015682402768236
213 => 0.015361073559817
214 => 0.015958063511569
215 => 0.015891688419893
216 => 0.016043928999195
217 => 0.016431119656629
218 => 0.01648813495173
219 => 0.016564764086539
220 => 0.016537297996543
221 => 0.017191651690949
222 => 0.017112405140991
223 => 0.0173033665256
224 => 0.016910544469185
225 => 0.01646602902534
226 => 0.016550516878911
227 => 0.016542380019203
228 => 0.016438788456078
229 => 0.01634527062478
301 => 0.016189589784154
302 => 0.016682187000323
303 => 0.016662188452935
304 => 0.016985941689384
305 => 0.01692871516007
306 => 0.016546542391608
307 => 0.016560191766799
308 => 0.016651990374625
309 => 0.016969706404451
310 => 0.017064026153861
311 => 0.017020333487942
312 => 0.017123750787309
313 => 0.017205487604066
314 => 0.017134015673052
315 => 0.018145907495251
316 => 0.017725699461822
317 => 0.017930505933527
318 => 0.017979351070238
319 => 0.017854235279654
320 => 0.017881368414571
321 => 0.017922467720634
322 => 0.018172014658978
323 => 0.018826898032183
324 => 0.019116941420233
325 => 0.019989551263672
326 => 0.019092857354455
327 => 0.01903965124877
328 => 0.019196834631866
329 => 0.019709148985097
330 => 0.02012433164915
331 => 0.020262071691279
401 => 0.020280276311687
402 => 0.020538685787506
403 => 0.020686801279994
404 => 0.020507308080298
405 => 0.020355206387276
406 => 0.019810397002431
407 => 0.019873460172194
408 => 0.020307902875121
409 => 0.020921578781554
410 => 0.021448176551368
411 => 0.021263780366164
412 => 0.022670593095851
413 => 0.022810072831685
414 => 0.022790801242113
415 => 0.02310855683771
416 => 0.022477876690251
417 => 0.02220824870836
418 => 0.020388092499735
419 => 0.020899482151152
420 => 0.021642817042347
421 => 0.021544433882135
422 => 0.02100460421475
423 => 0.021447767042158
424 => 0.021301243552434
425 => 0.021185674396823
426 => 0.021715119102858
427 => 0.021132972900183
428 => 0.021637009688657
429 => 0.020990577293846
430 => 0.021264622672406
501 => 0.021109061261452
502 => 0.021209728559229
503 => 0.020621229593397
504 => 0.020938769350355
505 => 0.020608018895534
506 => 0.020607862076754
507 => 0.020600560742132
508 => 0.020989687185456
509 => 0.021002376584803
510 => 0.020714811555249
511 => 0.02067336894188
512 => 0.020826604004457
513 => 0.020647205878506
514 => 0.02073114513252
515 => 0.020649748312999
516 => 0.020631424174446
517 => 0.020485414320857
518 => 0.020422509261306
519 => 0.02044717595602
520 => 0.02036297581041
521 => 0.020312242177028
522 => 0.020590468545505
523 => 0.020441823420447
524 => 0.020567686548219
525 => 0.02042424962893
526 => 0.019927034774185
527 => 0.01964108125327
528 => 0.018701888484498
529 => 0.018968242388657
530 => 0.019144835302677
531 => 0.019086471345647
601 => 0.019211859709201
602 => 0.019219557536361
603 => 0.019178792501186
604 => 0.019131591812779
605 => 0.019108617128024
606 => 0.019279851605382
607 => 0.019379258982975
608 => 0.019162558764107
609 => 0.019111788934785
610 => 0.019330884820407
611 => 0.01946453318407
612 => 0.020451317610824
613 => 0.020378213433218
614 => 0.020561690573038
615 => 0.02054103386278
616 => 0.020733347135512
617 => 0.021047698058775
618 => 0.020408534737881
619 => 0.020519471389783
620 => 0.020492272284638
621 => 0.020789224982624
622 => 0.020790152036534
623 => 0.020612114060204
624 => 0.020708631335508
625 => 0.020654758040246
626 => 0.020752114366198
627 => 0.020377237082357
628 => 0.020833797148573
629 => 0.021092637286036
630 => 0.021096231281596
701 => 0.021218919452472
702 => 0.021343577739701
703 => 0.021582848466588
704 => 0.021336904608992
705 => 0.020894475551329
706 => 0.020926417500255
707 => 0.020667021505625
708 => 0.020671381999159
709 => 0.020648105342939
710 => 0.020717960340439
711 => 0.020392566326021
712 => 0.020468935650816
713 => 0.020362018148884
714 => 0.020519238972015
715 => 0.020350095355859
716 => 0.020492259168406
717 => 0.020553612357096
718 => 0.020780006944203
719 => 0.020316656691268
720 => 0.019371854159479
721 => 0.019570463106284
722 => 0.019276704873563
723 => 0.019303893316418
724 => 0.019358818297993
725 => 0.019180788462372
726 => 0.019214750944643
727 => 0.019213537565786
728 => 0.019203081322316
729 => 0.019156768886233
730 => 0.019089606691275
731 => 0.019357160204552
801 => 0.019402622760081
802 => 0.019503680389401
803 => 0.019804359346212
804 => 0.019774314427929
805 => 0.019823318936201
806 => 0.019716342369791
807 => 0.019308855652517
808 => 0.019330984141743
809 => 0.019055041526513
810 => 0.019496623916326
811 => 0.019392051377815
812 => 0.019324632781953
813 => 0.019306236993443
814 => 0.019607661275231
815 => 0.019697852144588
816 => 0.019641651247289
817 => 0.019526381567285
818 => 0.019747733429314
819 => 0.019806957849507
820 => 0.019820216013076
821 => 0.020212409072581
822 => 0.019842135248381
823 => 0.019931263838071
824 => 0.020626619651956
825 => 0.019996027881305
826 => 0.020330066406093
827 => 0.020313716958558
828 => 0.020484599764592
829 => 0.020299699580767
830 => 0.020301991640147
831 => 0.020453723995301
901 => 0.020240643267561
902 => 0.020187881482812
903 => 0.020114991455068
904 => 0.020274144164019
905 => 0.020369549015177
906 => 0.021138442048372
907 => 0.021635182013598
908 => 0.021613617221649
909 => 0.021810679052463
910 => 0.021721900892802
911 => 0.021435212796761
912 => 0.021924554418815
913 => 0.021769706254674
914 => 0.021782471749185
915 => 0.021781996616842
916 => 0.021884957108934
917 => 0.021812000164096
918 => 0.021668194536944
919 => 0.021763659423375
920 => 0.022047156006754
921 => 0.022927138100302
922 => 0.023419587738063
923 => 0.022897492013771
924 => 0.023257626653247
925 => 0.023041674198654
926 => 0.023002429213625
927 => 0.023228620380957
928 => 0.023455207465985
929 => 0.023440774848232
930 => 0.023276284259877
1001 => 0.02318336770031
1002 => 0.023886963018685
1003 => 0.02440536006383
1004 => 0.024370008860729
1005 => 0.02452603757439
1006 => 0.024984142703484
1007 => 0.025026026095328
1008 => 0.025020749750634
1009 => 0.024916937393869
1010 => 0.025368001385931
1011 => 0.025744286903824
1012 => 0.024892907832705
1013 => 0.025217101837617
1014 => 0.0253626429713
1015 => 0.025576340535656
1016 => 0.025936884146594
1017 => 0.026328530137543
1018 => 0.026383913174843
1019 => 0.026344616259557
1020 => 0.026086315200516
1021 => 0.026514858917121
1022 => 0.026765889775721
1023 => 0.026915372907279
1024 => 0.027294437257287
1025 => 0.025363541783794
1026 => 0.023996757995924
1027 => 0.02378331497085
1028 => 0.024217359755569
1029 => 0.024331813903857
1030 => 0.024285677580195
1031 => 0.022747238164402
1101 => 0.023775215405714
1102 => 0.024881232482584
1103 => 0.024923719102903
1104 => 0.02547741437731
1105 => 0.025657720255393
1106 => 0.02610351752579
1107 => 0.026075632785149
1108 => 0.026184177326307
1109 => 0.026159224816024
1110 => 0.026984970385744
1111 => 0.027895890373548
1112 => 0.027864348110919
1113 => 0.027733392585156
1114 => 0.027927883872149
1115 => 0.028868050919681
1116 => 0.028781495403815
1117 => 0.028865576714698
1118 => 0.029974086649232
1119 => 0.031415307247825
1120 => 0.030745715583596
1121 => 0.032198536825162
1122 => 0.033113010785982
1123 => 0.034694498942849
1124 => 0.034496488836616
1125 => 0.035112150570588
1126 => 0.034142009420503
1127 => 0.031914369242031
1128 => 0.031561836656724
1129 => 0.032267615820056
1130 => 0.034002705024184
1201 => 0.032212971686359
1202 => 0.032575032409648
1203 => 0.032470758896983
1204 => 0.032465202604627
1205 => 0.032677263684781
1206 => 0.032369658027656
1207 => 0.03111641724333
1208 => 0.031690770109393
1209 => 0.031468984885116
1210 => 0.031715072126635
1211 => 0.033043103475013
1212 => 0.032455949159582
1213 => 0.031837429784818
1214 => 0.032613190341209
1215 => 0.033601000109742
1216 => 0.033539184749692
1217 => 0.033419237114379
1218 => 0.034095375654385
1219 => 0.035212158432471
1220 => 0.03551402032979
1221 => 0.035736848611097
1222 => 0.035767572866375
1223 => 0.036084051790751
1224 => 0.034382264851419
1225 => 0.037083044429128
1226 => 0.037549394454668
1227 => 0.037461739978095
1228 => 0.037980068404473
1229 => 0.03782756303271
1230 => 0.037606606676384
1231 => 0.038428267483812
]
'min_raw' => 0.014164995376204
'max_raw' => 0.038428267483812
'avg_raw' => 0.026296631430008
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.014164'
'max' => '$0.038428'
'avg' => '$0.026296'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0048851408267718
'max_diff' => 0.017711645922829
'year' => 2032
]
7 => [
'items' => [
101 => 0.037486299672704
102 => 0.036149294955285
103 => 0.035415787724354
104 => 0.036381729216384
105 => 0.036971595978855
106 => 0.037361460386275
107 => 0.037479433120398
108 => 0.034514369727153
109 => 0.032916365008149
110 => 0.03394066771187
111 => 0.035190387704005
112 => 0.034375322593763
113 => 0.034407271602962
114 => 0.0332452029511
115 => 0.035293204994313
116 => 0.034994828323026
117 => 0.036542807021486
118 => 0.036173369481793
119 => 0.0374356860182
120 => 0.03710327576933
121 => 0.038483092127583
122 => 0.039033538229926
123 => 0.039957822905856
124 => 0.040637730475986
125 => 0.041036985205725
126 => 0.041013015449318
127 => 0.042595061596462
128 => 0.041662184255974
129 => 0.040490270454013
130 => 0.040469074230676
131 => 0.041076024994858
201 => 0.042348027287775
202 => 0.042677838975447
203 => 0.042862158715118
204 => 0.042579866617596
205 => 0.041567295124417
206 => 0.041130071887517
207 => 0.041502598752933
208 => 0.041047030408127
209 => 0.041833469181163
210 => 0.042913417590797
211 => 0.042690412514787
212 => 0.043435885049101
213 => 0.044207370696119
214 => 0.045310629820943
215 => 0.045599062609739
216 => 0.046075831041502
217 => 0.046566582368058
218 => 0.046724198468029
219 => 0.047025136508276
220 => 0.047023550416257
221 => 0.047930447456009
222 => 0.048930782975118
223 => 0.049308386475762
224 => 0.050176664904313
225 => 0.048689768523524
226 => 0.049817596508587
227 => 0.050834925582479
228 => 0.04962202392103
301 => 0.051293726291495
302 => 0.051358634706381
303 => 0.052338674708342
304 => 0.051345216413408
305 => 0.050755304049108
306 => 0.052458358941115
307 => 0.053282413557631
308 => 0.053034201600757
309 => 0.051145296353214
310 => 0.050045872480187
311 => 0.047168468141448
312 => 0.050576877875302
313 => 0.052237014831987
314 => 0.051140996999556
315 => 0.051693764642684
316 => 0.054709485668081
317 => 0.055857676981076
318 => 0.055618861214436
319 => 0.055659217147756
320 => 0.056278760339101
321 => 0.059026156038194
322 => 0.057379852851164
323 => 0.058638389951845
324 => 0.059305913492053
325 => 0.059925946557689
326 => 0.058403341311949
327 => 0.056422454258755
328 => 0.055795024177026
329 => 0.051032019626272
330 => 0.050784084554724
331 => 0.050644911085864
401 => 0.049767442051173
402 => 0.049077991748903
403 => 0.04852971527089
404 => 0.047090874063366
405 => 0.047576440733279
406 => 0.045283228157985
407 => 0.046750344297194
408 => 0.043090321655472
409 => 0.046138497269659
410 => 0.044479513866396
411 => 0.045593476603471
412 => 0.045589590092423
413 => 0.04353843151126
414 => 0.042355366048232
415 => 0.04310926140687
416 => 0.043917497075618
417 => 0.044048630593641
418 => 0.045096529235282
419 => 0.045388975221658
420 => 0.044502850229941
421 => 0.0430144758214
422 => 0.043360191250298
423 => 0.0423483601361
424 => 0.040575165027988
425 => 0.04184870471165
426 => 0.04228354715324
427 => 0.042475598347873
428 => 0.04073186461188
429 => 0.040183945613729
430 => 0.0398922381366
501 => 0.042789381692954
502 => 0.042948093756903
503 => 0.042136100398116
504 => 0.045806387376202
505 => 0.044975688394554
506 => 0.045903782683247
507 => 0.043328821198743
508 => 0.043427188195097
509 => 0.042208160162745
510 => 0.042890734405379
511 => 0.04240831293108
512 => 0.042835589151904
513 => 0.043091696756941
514 => 0.044310524758788
515 => 0.046152414327609
516 => 0.044128472499644
517 => 0.043246612061819
518 => 0.043793713317674
519 => 0.045250716058178
520 => 0.047458149792638
521 => 0.046151304593094
522 => 0.046731260300981
523 => 0.046857954822721
524 => 0.045894335554615
525 => 0.047493679809546
526 => 0.048350781388812
527 => 0.049229990256958
528 => 0.049993382682296
529 => 0.048878814900803
530 => 0.050071562194016
531 => 0.049110418423927
601 => 0.04824817310094
602 => 0.048249480771176
603 => 0.047708581684672
604 => 0.0466605215469
605 => 0.046467243177368
606 => 0.047472701664043
607 => 0.048278984153084
608 => 0.048345393440714
609 => 0.048791792854937
610 => 0.049055967429994
611 => 0.051645237393478
612 => 0.052686663192355
613 => 0.053960098946041
614 => 0.054456173939008
615 => 0.055949181815112
616 => 0.054743456698987
617 => 0.054482590485747
618 => 0.050861041737475
619 => 0.051454070142121
620 => 0.052403565836691
621 => 0.050876698571757
622 => 0.051845144414959
623 => 0.052036336138894
624 => 0.050824816206358
625 => 0.051471941349012
626 => 0.049753368829356
627 => 0.046189874512221
628 => 0.047497646997399
629 => 0.048460607737949
630 => 0.047086344028982
701 => 0.049549658535956
702 => 0.048110641054115
703 => 0.047654541597392
704 => 0.045875135005518
705 => 0.046714946421242
706 => 0.047850803385949
707 => 0.047148975839305
708 => 0.048605373378527
709 => 0.050668020701101
710 => 0.052137986015939
711 => 0.052250831700181
712 => 0.051305742482767
713 => 0.052820253985151
714 => 0.052831285548016
715 => 0.051122910386366
716 => 0.050076540112128
717 => 0.049838802584239
718 => 0.050432717540093
719 => 0.051153839939249
720 => 0.052290848974577
721 => 0.05297791972163
722 => 0.054769435835776
723 => 0.055254168729471
724 => 0.055786743217812
725 => 0.056498426974126
726 => 0.057352985795549
727 => 0.055483259744335
728 => 0.055557547445955
729 => 0.053816484435184
730 => 0.051955908914482
731 => 0.053367853810682
801 => 0.055213783939305
802 => 0.054790325528227
803 => 0.05474267780651
804 => 0.054822808058062
805 => 0.054503534244968
806 => 0.053059470621185
807 => 0.052334270909638
808 => 0.053269963555712
809 => 0.053767242554212
810 => 0.054538478913599
811 => 0.05444340775348
812 => 0.056430029790523
813 => 0.057201971041786
814 => 0.057004475436485
815 => 0.057040819380857
816 => 0.058438382143549
817 => 0.059992759366366
818 => 0.061448638753673
819 => 0.062929621797917
820 => 0.061144238934329
821 => 0.060237731623305
822 => 0.061173015775241
823 => 0.060676740839147
824 => 0.063528483826655
825 => 0.063725932323771
826 => 0.066577469097803
827 => 0.069283917051042
828 => 0.067584045582664
829 => 0.069186947813452
830 => 0.070920617262585
831 => 0.074265146907695
901 => 0.073138826985193
902 => 0.072276083576241
903 => 0.071460795223526
904 => 0.073157280862144
905 => 0.075339782534205
906 => 0.075809872490626
907 => 0.076571597808212
908 => 0.075770736776111
909 => 0.076735285677328
910 => 0.08014056714289
911 => 0.079220430031644
912 => 0.077913687414253
913 => 0.080601830084606
914 => 0.081574658467116
915 => 0.088402477529755
916 => 0.097022881139473
917 => 0.093453977440428
918 => 0.091238643746628
919 => 0.091759299713088
920 => 0.09490717929228
921 => 0.095918178304412
922 => 0.093169934477178
923 => 0.094140660657763
924 => 0.099489457352483
925 => 0.10235891516926
926 => 0.098461806034478
927 => 0.087709836493214
928 => 0.077796029538938
929 => 0.080425617567757
930 => 0.080127503890906
1001 => 0.085874118663406
1002 => 0.079198485065851
1003 => 0.079310885615017
1004 => 0.085176334295241
1005 => 0.083611533146604
1006 => 0.081076755690403
1007 => 0.077814536219521
1008 => 0.071784021808818
1009 => 0.066442627021922
1010 => 0.076918332248778
1011 => 0.076466600790562
1012 => 0.075812426696214
1013 => 0.077268220354156
1014 => 0.084337141122879
1015 => 0.084174179619296
1016 => 0.083137501677193
1017 => 0.083923812759418
1018 => 0.08093891155593
1019 => 0.081708188561006
1020 => 0.077794459141265
1021 => 0.079563628290766
1022 => 0.081071317196408
1023 => 0.081374008065931
1024 => 0.082055986050746
1025 => 0.076228558838919
1026 => 0.078844902572755
1027 => 0.080381759398128
1028 => 0.073438184349762
1029 => 0.080244507244718
1030 => 0.076127116296016
1031 => 0.07472961196689
1101 => 0.076611167438863
1102 => 0.075877923441563
1103 => 0.075247523310216
1104 => 0.074895749205275
1105 => 0.076277355884193
1106 => 0.076212902281244
1107 => 0.073952325596234
1108 => 0.071003495463532
1109 => 0.071993219648116
1110 => 0.071633643573143
1111 => 0.070330493491203
1112 => 0.07120865930349
1113 => 0.067341661495728
1114 => 0.060688692756528
1115 => 0.065083847691587
1116 => 0.064914639007596
1117 => 0.064829316316125
1118 => 0.068132153776661
1119 => 0.067814662164256
1120 => 0.067238411778852
1121 => 0.070319910200974
1122 => 0.069195121824897
1123 => 0.072661454566496
1124 => 0.074944605498458
1125 => 0.074365524569917
1126 => 0.076512839056854
1127 => 0.072016020894367
1128 => 0.073509683506915
1129 => 0.073817525301234
1130 => 0.070281884988774
1201 => 0.06786660771853
1202 => 0.067705536260782
1203 => 0.063517778319889
1204 => 0.065754844809513
1205 => 0.06772337074428
1206 => 0.06678059958531
1207 => 0.066482146400867
1208 => 0.068006878993587
1209 => 0.068125363774493
1210 => 0.065423898213385
1211 => 0.065985618447828
1212 => 0.068328085203673
1213 => 0.065926594295731
1214 => 0.061260889742913
1215 => 0.060103730505402
1216 => 0.059949344132441
1217 => 0.056811036504855
1218 => 0.060181057418824
1219 => 0.058709952978931
1220 => 0.063357154278016
1221 => 0.060702697819419
1222 => 0.060588269506884
1223 => 0.060415294329503
1224 => 0.057714023312584
1225 => 0.05830542999056
1226 => 0.060271355861934
1227 => 0.060972820360581
1228 => 0.060899651866443
1229 => 0.060261721752658
1230 => 0.060553762892018
1231 => 0.059612996628261
]
'min_raw' => 0.032916365008149
'max_raw' => 0.10235891516926
'avg_raw' => 0.067637640088703
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.032916'
'max' => '$0.102358'
'avg' => '$0.067637'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.018751369631945
'max_diff' => 0.063930647685444
'year' => 2033
]
8 => [
'items' => [
101 => 0.059280792480172
102 => 0.058232264808853
103 => 0.056691218795176
104 => 0.056905510695162
105 => 0.053852295305444
106 => 0.052188741514721
107 => 0.051728291750735
108 => 0.051112559082813
109 => 0.051797840393979
110 => 0.053843645929862
111 => 0.051375970411731
112 => 0.047145313823207
113 => 0.047399583492865
114 => 0.047970851947245
115 => 0.046906296961827
116 => 0.045898785009457
117 => 0.046774734910015
118 => 0.044982149941697
119 => 0.04818747727649
120 => 0.04810078215491
121 => 0.049295529969209
122 => 0.050042630296183
123 => 0.048320805919111
124 => 0.047887771744585
125 => 0.048134447690701
126 => 0.04405744377887
127 => 0.048962351769351
128 => 0.049004769617334
129 => 0.048641562250286
130 => 0.051253274333172
131 => 0.056764801441489
201 => 0.054691143242676
202 => 0.053888160111445
203 => 0.052361688591997
204 => 0.054395621258751
205 => 0.054239446964237
206 => 0.0535331675771
207 => 0.053106007600034
208 => 0.053893062955218
209 => 0.053008482731571
210 => 0.052849587816765
211 => 0.051886857512413
212 => 0.051543206595197
213 => 0.051288781137228
214 => 0.051008683707333
215 => 0.051626508841751
216 => 0.050226435805495
217 => 0.048538084974622
218 => 0.048397716871244
219 => 0.04878528554596
220 => 0.048613815258493
221 => 0.048396895937477
222 => 0.047982737879196
223 => 0.047859866030391
224 => 0.048259139930061
225 => 0.047808382976448
226 => 0.048473499415506
227 => 0.048292624546653
228 => 0.047282272232491
301 => 0.046022999168708
302 => 0.046011788997026
303 => 0.045740480681055
304 => 0.045394928749189
305 => 0.045298804106901
306 => 0.046700964852613
307 => 0.049603395633096
308 => 0.049033579021605
309 => 0.049445329920563
310 => 0.051470736818591
311 => 0.052114552765364
312 => 0.051657587455961
313 => 0.051032065156057
314 => 0.051059584962674
315 => 0.053197184019921
316 => 0.053330503451089
317 => 0.053667358643173
318 => 0.054100312760266
319 => 0.051731321414248
320 => 0.050948005683316
321 => 0.050576827233298
322 => 0.049433741271381
323 => 0.050666461480525
324 => 0.049948208204999
325 => 0.050045125110893
326 => 0.049982007848788
327 => 0.050016474141868
328 => 0.048186581322176
329 => 0.048853298089336
330 => 0.047744752152088
331 => 0.046260533582233
401 => 0.046255557961153
402 => 0.046618818353434
403 => 0.046402736857725
404 => 0.045821267108735
405 => 0.045903862142119
406 => 0.045180242739094
407 => 0.045991722639198
408 => 0.046014992979118
409 => 0.04570252901597
410 => 0.046952725764727
411 => 0.047464932392756
412 => 0.047259261918585
413 => 0.047450502004012
414 => 0.04905725747438
415 => 0.049319228723706
416 => 0.049435579047808
417 => 0.049279685026976
418 => 0.047479870544448
419 => 0.04755969997015
420 => 0.046973964612004
421 => 0.046479079957641
422 => 0.046498872748487
423 => 0.046753307791332
424 => 0.04786444054585
425 => 0.050202753922882
426 => 0.050291491206255
427 => 0.050399043382353
428 => 0.049961574630771
429 => 0.049829629869281
430 => 0.050003699067518
501 => 0.050881846629255
502 => 0.053140680572778
503 => 0.052342257794691
504 => 0.051693127647914
505 => 0.052262589790868
506 => 0.052174925557552
507 => 0.0514349512062
508 => 0.051414182590718
509 => 0.049993935226362
510 => 0.049468902113227
511 => 0.049030145145844
512 => 0.048551033991503
513 => 0.048267000839258
514 => 0.048703404851865
515 => 0.048803215612929
516 => 0.047849010612327
517 => 0.047718955996653
518 => 0.04849818039809
519 => 0.048155272791432
520 => 0.04850796176858
521 => 0.048589788636588
522 => 0.048576612626206
523 => 0.048218577702166
524 => 0.048446778485994
525 => 0.047907015602314
526 => 0.047320104536075
527 => 0.046945691841666
528 => 0.046618967107157
529 => 0.046800252979216
530 => 0.04615400194682
531 => 0.045947253235093
601 => 0.048369469195114
602 => 0.050158786167991
603 => 0.050132768790558
604 => 0.049974394696561
605 => 0.049739082917894
606 => 0.050864632106979
607 => 0.050472513275568
608 => 0.050757812488044
609 => 0.050830433111589
610 => 0.051050233867129
611 => 0.051128793744721
612 => 0.050891331231294
613 => 0.050094378032632
614 => 0.048108446433603
615 => 0.047183989913335
616 => 0.046878903863605
617 => 0.046889993162072
618 => 0.04658410080555
619 => 0.04667419981368
620 => 0.046552768047438
621 => 0.046322805659677
622 => 0.046786053449789
623 => 0.046839438442147
624 => 0.046731310872536
625 => 0.046756778829455
626 => 0.045861528734965
627 => 0.045929592655268
628 => 0.045550604097876
629 => 0.04547954831214
630 => 0.044521498241361
701 => 0.042824173669398
702 => 0.043764656245548
703 => 0.042628685545421
704 => 0.042198476228517
705 => 0.044235020223462
706 => 0.044030607691307
707 => 0.04368074229225
708 => 0.043163218448706
709 => 0.042971263820987
710 => 0.041805008268419
711 => 0.041736099668642
712 => 0.042314127412044
713 => 0.042047387497184
714 => 0.041672783634416
715 => 0.040316006416454
716 => 0.038790539609965
717 => 0.038836583864111
718 => 0.039321806472936
719 => 0.040732656649278
720 => 0.040181413077425
721 => 0.039781479541255
722 => 0.039706584011888
723 => 0.040644058366325
724 => 0.041970780984802
725 => 0.042593249553646
726 => 0.041976402106573
727 => 0.041267800972801
728 => 0.041310930240472
729 => 0.041597849936036
730 => 0.041628001139214
731 => 0.041166774646502
801 => 0.041296607202551
802 => 0.041099379677775
803 => 0.039888994722279
804 => 0.039867102696606
805 => 0.039570054708433
806 => 0.039561060213405
807 => 0.03905570748343
808 => 0.038985005143168
809 => 0.037981596625084
810 => 0.038642043150288
811 => 0.03819905029618
812 => 0.037531355573589
813 => 0.037416244751745
814 => 0.03741278438144
815 => 0.038098357567733
816 => 0.038634031828446
817 => 0.038206756346539
818 => 0.038109474001696
819 => 0.039148194933251
820 => 0.039016008226559
821 => 0.038901535391076
822 => 0.041851987525938
823 => 0.039516474434544
824 => 0.038498057420269
825 => 0.037237572972959
826 => 0.037647993064917
827 => 0.037734474608619
828 => 0.034703236732236
829 => 0.033473463903304
830 => 0.033051452211426
831 => 0.03280857851638
901 => 0.032919259109028
902 => 0.031812319325024
903 => 0.032556201166969
904 => 0.031597684881312
905 => 0.031436986506739
906 => 0.033150932362877
907 => 0.033389417916032
908 => 0.032371964454619
909 => 0.033025334287599
910 => 0.032788413303641
911 => 0.031614115891921
912 => 0.03156926636834
913 => 0.030980045205689
914 => 0.030058028181839
915 => 0.029636641660921
916 => 0.029417179902181
917 => 0.029507734101061
918 => 0.029461947127103
919 => 0.029163156150523
920 => 0.029479073476128
921 => 0.028672035255258
922 => 0.028350666132959
923 => 0.028205511156123
924 => 0.027489218283714
925 => 0.028629158780603
926 => 0.028853741419082
927 => 0.029078766554736
928 => 0.031037456729419
929 => 0.030939606103493
930 => 0.031824128106678
1001 => 0.031789757208166
1002 => 0.031537477204551
1003 => 0.030473149367346
1004 => 0.030897371473437
1005 => 0.029591681769644
1006 => 0.030569993273995
1007 => 0.030123532758674
1008 => 0.030419044524666
1009 => 0.029887687724191
1010 => 0.030181762516759
1011 => 0.028906998294132
1012 => 0.027716641399461
1013 => 0.028195675762561
1014 => 0.028716440899474
1015 => 0.029845592404793
1016 => 0.029173079083523
1017 => 0.029414940304396
1018 => 0.028604745701551
1019 => 0.026933082815236
1020 => 0.02694254424563
1021 => 0.026685395329726
1022 => 0.026463181122029
1023 => 0.029250325328406
1024 => 0.028903699888113
1025 => 0.028351397614223
1026 => 0.029090676155445
1027 => 0.029286153135672
1028 => 0.029291718090491
1029 => 0.029831076630626
1030 => 0.030118932380181
1031 => 0.030169668203678
1101 => 0.031018360520193
1102 => 0.031302830990166
1103 => 0.032474524596219
1104 => 0.030094509830968
1105 => 0.030045494993089
1106 => 0.029101079320591
1107 => 0.028502115970472
1108 => 0.029142090853609
1109 => 0.029709021234786
1110 => 0.029118695427847
1111 => 0.029195779515775
1112 => 0.028403315351349
1113 => 0.028686584001227
1114 => 0.028930573122909
1115 => 0.028795856670934
1116 => 0.028594179621977
1117 => 0.029662539408718
1118 => 0.029602258362615
1119 => 0.030597139557513
1120 => 0.031372720593574
1121 => 0.032762700461888
1122 => 0.031312184008013
1123 => 0.031259321423153
1124 => 0.031776061669584
1125 => 0.031302751879927
1126 => 0.031601867328892
1127 => 0.032714508338753
1128 => 0.032738016690015
1129 => 0.032344221517582
1130 => 0.032320259045552
1201 => 0.032395891716065
1202 => 0.032838874629601
1203 => 0.032684082788121
1204 => 0.032863211825932
1205 => 0.033087215430634
1206 => 0.034013789315246
1207 => 0.034237183141924
1208 => 0.033694451959515
1209 => 0.033743454508583
1210 => 0.033540458148058
1211 => 0.033344366207327
1212 => 0.033785152253161
1213 => 0.034590697415594
1214 => 0.034585686160947
1215 => 0.034772556981071
1216 => 0.034888975953887
1217 => 0.034389220498664
1218 => 0.034063898073832
1219 => 0.034188647392316
1220 => 0.03438812426926
1221 => 0.034123959729606
1222 => 0.032493413817944
1223 => 0.032988017287866
1224 => 0.032905691085597
1225 => 0.032788448562357
1226 => 0.03328577617602
1227 => 0.033237807714443
1228 => 0.031800966057594
1229 => 0.031892947998644
1230 => 0.031806559784083
1231 => 0.032085697778696
]
'min_raw' => 0.026463181122029
'max_raw' => 0.059280792480172
'avg_raw' => 0.0428719868011
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.026463'
'max' => '$0.05928'
'avg' => '$0.042871'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0064531838861204
'max_diff' => -0.043078122689085
'year' => 2034
]
9 => [
'items' => [
101 => 0.031287677512165
102 => 0.031533143171401
103 => 0.031687096931777
104 => 0.031777776879367
105 => 0.032105375029883
106 => 0.032066935168043
107 => 0.032102985554099
108 => 0.032588727128609
109 => 0.035045441326101
110 => 0.035179154859436
111 => 0.034520700517866
112 => 0.034783740039886
113 => 0.034278761678029
114 => 0.034617757035404
115 => 0.034849689049372
116 => 0.033801632876212
117 => 0.033739573791466
118 => 0.033232511204278
119 => 0.03350497791714
120 => 0.033071463785927
121 => 0.033177832990046
122 => 0.032880415422229
123 => 0.033415707829053
124 => 0.034014247915913
125 => 0.034165462778919
126 => 0.033767681576444
127 => 0.033479661770793
128 => 0.032973993871693
129 => 0.033814930857441
130 => 0.034060846459164
131 => 0.033813639167474
201 => 0.033756355836404
202 => 0.033647804027534
203 => 0.033779385615813
204 => 0.034059507149983
205 => 0.033927407007501
206 => 0.034014661478916
207 => 0.033682137410304
208 => 0.034389385938515
209 => 0.035512666809941
210 => 0.035516278341617
211 => 0.035384177487066
212 => 0.035330124663536
213 => 0.035465668156856
214 => 0.035539194941697
215 => 0.035977517744667
216 => 0.036447855575805
217 => 0.038642717009253
218 => 0.038026408701621
219 => 0.039973820338266
220 => 0.0415139701031
221 => 0.041975793674987
222 => 0.041550937719329
223 => 0.040097528445292
224 => 0.040026217252453
225 => 0.042198224321432
226 => 0.04158453284022
227 => 0.041511536191279
228 => 0.040734975176341
301 => 0.041194018915122
302 => 0.041093619315685
303 => 0.040935133636258
304 => 0.041810957112589
305 => 0.043450420474979
306 => 0.043194894735161
307 => 0.043004156623884
308 => 0.042168397743299
309 => 0.042671711262915
310 => 0.042492490958916
311 => 0.043262535120914
312 => 0.042806378017913
313 => 0.041579883523667
314 => 0.041775206814454
315 => 0.041745684091988
316 => 0.042353259628348
317 => 0.042170880533284
318 => 0.041710071646597
319 => 0.043444816967439
320 => 0.043332172255464
321 => 0.043491876702878
322 => 0.043562183539654
323 => 0.04461809244681
324 => 0.045050664540755
325 => 0.045148865979321
326 => 0.045559776012242
327 => 0.045138642163371
328 => 0.046823477822201
329 => 0.047943795222437
330 => 0.049245101533816
331 => 0.051146659812904
401 => 0.051861663316239
402 => 0.05173250433311
403 => 0.05317424411813
404 => 0.055765018463736
405 => 0.05225617390143
406 => 0.055950995745678
407 => 0.054781257808559
408 => 0.052007830202336
409 => 0.051829254161058
410 => 0.053707451536149
411 => 0.057873112544303
412 => 0.056829661708297
413 => 0.057874819256065
414 => 0.056655587459781
415 => 0.056595042324603
416 => 0.057815603889095
417 => 0.060667512513878
418 => 0.05931267762844
419 => 0.057370189601021
420 => 0.058804492532006
421 => 0.057561966594717
422 => 0.054762207896894
423 => 0.056828863801107
424 => 0.055446949852931
425 => 0.055850265809595
426 => 0.058754843384475
427 => 0.058405356926106
428 => 0.05885762476481
429 => 0.058059383867408
430 => 0.057313700998199
501 => 0.055921828547684
502 => 0.055509763733568
503 => 0.055623643623651
504 => 0.05550970730035
505 => 0.054730967456255
506 => 0.054562798661067
507 => 0.05428250996811
508 => 0.054369383154238
509 => 0.053842358410129
510 => 0.054836962991131
511 => 0.05502157036579
512 => 0.055745360636705
513 => 0.055820506943713
514 => 0.0578362525457
515 => 0.056726013741354
516 => 0.057470857784716
517 => 0.057404231922733
518 => 0.052067938788331
519 => 0.052803232899738
520 => 0.053947119789085
521 => 0.053431800295937
522 => 0.052703259098815
523 => 0.052114923020231
524 => 0.051223533700724
525 => 0.052478147050315
526 => 0.05412783019177
527 => 0.055862345630572
528 => 0.057946252280338
529 => 0.057481148575458
530 => 0.05582338844529
531 => 0.055897754353735
601 => 0.056357455137834
602 => 0.055762100854205
603 => 0.055586519253266
604 => 0.056333332922104
605 => 0.0563384758174
606 => 0.055653448763116
607 => 0.054892166550906
608 => 0.05488897675064
609 => 0.054753513934092
610 => 0.056679685993913
611 => 0.057738885868854
612 => 0.05786032142753
613 => 0.057730712288207
614 => 0.05778059370193
615 => 0.057164268632578
616 => 0.058573004975594
617 => 0.05986580075353
618 => 0.05951930386849
619 => 0.05899985578038
620 => 0.058586090358191
621 => 0.059421833884676
622 => 0.059384619541024
623 => 0.05985450931022
624 => 0.059833192396075
625 => 0.059675186140142
626 => 0.059519309511391
627 => 0.060137342724895
628 => 0.059959359084715
629 => 0.059781098986782
630 => 0.059423571070122
701 => 0.059472165051906
702 => 0.058952806653832
703 => 0.05871252769466
704 => 0.055099308658545
705 => 0.054133738466757
706 => 0.054437526505087
707 => 0.054537541415158
708 => 0.05411732403028
709 => 0.054719807815206
710 => 0.054625911355513
711 => 0.054991207552585
712 => 0.054762986347972
713 => 0.054772352625816
714 => 0.055443502526692
715 => 0.055638340198192
716 => 0.055539244185935
717 => 0.055608647636107
718 => 0.057208020851976
719 => 0.056980641125756
720 => 0.056859850178047
721 => 0.056893310096062
722 => 0.057301984243665
723 => 0.057416390692213
724 => 0.056931642530518
725 => 0.057160252565869
726 => 0.05813364508146
727 => 0.058474277372672
728 => 0.059561412133444
729 => 0.059099577964789
730 => 0.059947294569071
731 => 0.062552886402748
801 => 0.064634413452729
802 => 0.062720155154823
803 => 0.066542614501243
804 => 0.069518947401657
805 => 0.069404710787597
806 => 0.06888571830259
807 => 0.065497242425372
808 => 0.062379116403827
809 => 0.064987561223474
810 => 0.06499421068575
811 => 0.064770142962427
812 => 0.063378477576754
813 => 0.064721716023616
814 => 0.064828337413602
815 => 0.064768657788126
816 => 0.063701671199862
817 => 0.062072579891666
818 => 0.062390900433794
819 => 0.062912315975362
820 => 0.061925167576496
821 => 0.061609713849628
822 => 0.062196202345403
823 => 0.064085990478523
824 => 0.063728736978754
825 => 0.0637194076461
826 => 0.065247889617173
827 => 0.064153826392939
828 => 0.062394915475234
829 => 0.061950767271328
830 => 0.060374340361544
831 => 0.061463184043172
901 => 0.061502369588843
902 => 0.060906021032128
903 => 0.062443305873946
904 => 0.062429139523495
905 => 0.06388856268615
906 => 0.066678431638836
907 => 0.065853330108413
908 => 0.064893826799323
909 => 0.064998151413162
910 => 0.066142334931889
911 => 0.065450535457297
912 => 0.065699311371758
913 => 0.066141958379747
914 => 0.066409018309974
915 => 0.064959725599021
916 => 0.064621826140414
917 => 0.063930602434699
918 => 0.063750275072179
919 => 0.064313262357629
920 => 0.064164935098547
921 => 0.061499076195463
922 => 0.061220479107392
923 => 0.061229023282338
924 => 0.060528477657813
925 => 0.059459977430199
926 => 0.062267932231536
927 => 0.062042414163687
928 => 0.061793459670493
929 => 0.061823955175394
930 => 0.063042793184237
1001 => 0.062335805586313
1002 => 0.064215447988381
1003 => 0.063829050017739
1004 => 0.063432742397162
1005 => 0.063377960612173
1006 => 0.063225415989628
1007 => 0.062702283719568
1008 => 0.062070570068096
1009 => 0.061653457997294
1010 => 0.056872056013045
1011 => 0.057759456409185
1012 => 0.058780329675854
1013 => 0.059132731036615
1014 => 0.058529924123602
1015 => 0.062726086210646
1016 => 0.063492765459173
1017 => 0.061170444006135
1018 => 0.060736032482031
1019 => 0.062754566157844
1020 => 0.061537143595623
1021 => 0.062085348900847
1022 => 0.060900428883222
1023 => 0.063308094879192
1024 => 0.063289752498246
1025 => 0.062353116046211
1026 => 0.063144754761661
1027 => 0.06300718805358
1028 => 0.061949727806066
1029 => 0.063341618255195
1030 => 0.063342308615493
1031 => 0.062440816394642
1101 => 0.06138807084271
1102 => 0.061199864802765
1103 => 0.06105807683359
1104 => 0.062050477752191
1105 => 0.062940261312651
1106 => 0.064595927922616
1107 => 0.06501220184603
1108 => 0.066636946682037
1109 => 0.065669490239585
1110 => 0.066098351149866
1111 => 0.066563940334055
1112 => 0.066787160910431
1113 => 0.066423434959903
1114 => 0.068947332461877
1115 => 0.069160426741265
1116 => 0.069231875409886
1117 => 0.068380831372769
1118 => 0.069136757667066
1119 => 0.068783084787612
1120 => 0.069703243366795
1121 => 0.069847535981185
1122 => 0.069725325270155
1123 => 0.069771126023467
1124 => 0.067617424751561
1125 => 0.067505743978933
1126 => 0.06598296871965
1127 => 0.066603510893594
1128 => 0.065443437042766
1129 => 0.065811308410948
1130 => 0.065973462604836
1201 => 0.065888762456119
1202 => 0.066638595417055
1203 => 0.066001084219506
1204 => 0.064318587352628
1205 => 0.062635632090603
1206 => 0.062614503958194
1207 => 0.062171411544331
1208 => 0.061851136885531
1209 => 0.06191283314717
1210 => 0.062130258820355
1211 => 0.061838499710148
1212 => 0.061900761308873
1213 => 0.062934718694571
1214 => 0.063142071474426
1215 => 0.062437405710518
1216 => 0.05960807098564
1217 => 0.058913745147306
1218 => 0.05941281279082
1219 => 0.059174290601293
1220 => 0.047758270879267
1221 => 0.050440295376743
1222 => 0.048846727493289
1223 => 0.049581116890518
1224 => 0.047954496733914
1225 => 0.048730805131112
1226 => 0.048587449316393
1227 => 0.05290006534146
1228 => 0.052832729774038
1229 => 0.052864959746844
1230 => 0.051326539170066
1231 => 0.053777284921543
]
'min_raw' => 0.031287677512165
'max_raw' => 0.069847535981185
'avg_raw' => 0.050567606746675
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.031287'
'max' => '$0.069847'
'avg' => '$0.050567'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0048244963901363
'max_diff' => 0.010566743501014
'year' => 2035
]
10 => [
'items' => [
101 => 0.054984610404688
102 => 0.054761166589685
103 => 0.054817402584013
104 => 0.053851081882692
105 => 0.052874315843505
106 => 0.051790931982831
107 => 0.053803725285671
108 => 0.053579937029923
109 => 0.054093226772136
110 => 0.055398667106465
111 => 0.05559089815458
112 => 0.055849258632663
113 => 0.055756654792621
114 => 0.057962853958825
115 => 0.057695668682827
116 => 0.058339508323532
117 => 0.05701508133437
118 => 0.05551636648037
119 => 0.055801223177435
120 => 0.055773789186835
121 => 0.055424522999225
122 => 0.055109221101797
123 => 0.054584332278337
124 => 0.056245158184692
125 => 0.056177731685918
126 => 0.057269288326334
127 => 0.057076345087325
128 => 0.055787822916003
129 => 0.055833842737429
130 => 0.056143348152891
131 => 0.057214549929675
201 => 0.057532555550002
202 => 0.057385242676334
203 => 0.057733921321515
204 => 0.058009502705893
205 => 0.057768530100467
206 => 0.061180194027042
207 => 0.059763433304349
208 => 0.060453952622832
209 => 0.060618637411514
210 => 0.060196800788253
211 => 0.060288282047001
212 => 0.060426851226854
213 => 0.061268216152294
214 => 0.06347620116755
215 => 0.064454102700544
216 => 0.06739616771137
217 => 0.064372901591276
218 => 0.064193513491228
219 => 0.06472346824153
220 => 0.066450771852094
221 => 0.067850589191078
222 => 0.068314989359819
223 => 0.068376367508529
224 => 0.069247613097826
225 => 0.069746994821842
226 => 0.069141820967251
227 => 0.068628999489829
228 => 0.066792136611447
229 => 0.067004758491231
301 => 0.068469512395972
302 => 0.070538563559993
303 => 0.072314024706805
304 => 0.07169232009426
305 => 0.076435487432927
306 => 0.076905753100455
307 => 0.076840777590712
308 => 0.077912112766255
309 => 0.075785730616417
310 => 0.074876661050647
311 => 0.068739877314019
312 => 0.070464063227856
313 => 0.072970268711506
314 => 0.072638563017956
315 => 0.070818489604665
316 => 0.072312644017911
317 => 0.071818629842364
318 => 0.071428980365442
319 => 0.073214040156487
320 => 0.071251293590019
321 => 0.072950688813082
322 => 0.070771196861511
323 => 0.071695159988561
324 => 0.071170673830579
325 => 0.071510080653399
326 => 0.069525915302414
327 => 0.070596522762914
328 => 0.069481374512226
329 => 0.069480845786759
330 => 0.069456228827318
331 => 0.070768195798928
401 => 0.070810978994771
402 => 0.069841433420479
403 => 0.069701706756075
404 => 0.070218349468086
405 => 0.069613496161262
406 => 0.069896503216623
407 => 0.069622068156665
408 => 0.069560287044182
409 => 0.069068004628724
410 => 0.068855915828558
411 => 0.068939081311959
412 => 0.068655194642368
413 => 0.068484142655311
414 => 0.069422202281776
415 => 0.068921034864573
416 => 0.069345391187337
417 => 0.06886178359951
418 => 0.067185389002305
419 => 0.066221276741901
420 => 0.063054722749643
421 => 0.063952753533749
422 => 0.064548148872692
423 => 0.064351370716723
424 => 0.064774126338781
425 => 0.064800080100497
426 => 0.064662637938282
427 => 0.064503497521869
428 => 0.064426036768176
429 => 0.065003365763798
430 => 0.065338524677757
501 => 0.064607904760317
502 => 0.064436730736119
503 => 0.065175427811283
504 => 0.065626032600401
505 => 0.06895304519029
506 => 0.068706569351522
507 => 0.06932517533839
508 => 0.069255529797551
509 => 0.06990392742345
510 => 0.070963783508513
511 => 0.068808799747158
512 => 0.069182830414397
513 => 0.06909112673242
514 => 0.070092323486254
515 => 0.070095449113236
516 => 0.069495181645825
517 => 0.069820596378136
518 => 0.069638958801846
519 => 0.069967202451992
520 => 0.068703277516426
521 => 0.07024260165568
522 => 0.07111529925078
523 => 0.071127416657735
524 => 0.071541068391656
525 => 0.071961362510412
526 => 0.072768080471463
527 => 0.071938863584326
528 => 0.070447183127003
529 => 0.070554877637923
530 => 0.069680305931579
531 => 0.069695007639967
601 => 0.069616528768399
602 => 0.069852049769589
603 => 0.068754961131693
604 => 0.069012445642178
605 => 0.068651965819672
606 => 0.069182046801664
607 => 0.068611767290566
608 => 0.069091082510128
609 => 0.06929793906934
610 => 0.070061244226135
611 => 0.068499026498282
612 => 0.06531355879835
613 => 0.065983182728938
614 => 0.064992756337773
615 => 0.065084424071095
616 => 0.065269607481216
617 => 0.064669367460772
618 => 0.064783874340936
619 => 0.064779783349404
620 => 0.064744529394514
621 => 0.064588383782827
622 => 0.064361941753413
623 => 0.065264017103416
624 => 0.065417297283474
625 => 0.065758020136344
626 => 0.066771780231969
627 => 0.066670481692307
628 => 0.066835703813332
629 => 0.066475024850817
630 => 0.065101154933713
701 => 0.0651757626801
702 => 0.064245402887155
703 => 0.065734228744705
704 => 0.065381655130096
705 => 0.06515434862713
706 => 0.065092325941816
707 => 0.066108598952634
708 => 0.066412683765599
709 => 0.066223198516532
710 => 0.065834558742528
711 => 0.066580861999651
712 => 0.06678054126725
713 => 0.066825242091377
714 => 0.068147548373542
715 => 0.06689914432356
716 => 0.06719964758646
717 => 0.069544088261164
718 => 0.067418004079906
719 => 0.068544238288053
720 => 0.068489114984204
721 => 0.069065258295405
722 => 0.068441854416323
723 => 0.068449582254547
724 => 0.068961158483565
725 => 0.068242741933168
726 => 0.068064851892175
727 => 0.067819098074617
728 => 0.068355692544533
729 => 0.068677356661168
730 => 0.071269733204981
731 => 0.072944526679017
801 => 0.072871819477356
802 => 0.073536227198363
803 => 0.073236905434772
804 => 0.072270316503045
805 => 0.073920165946541
806 => 0.073398084549986
807 => 0.073441124305989
808 => 0.073439522364121
809 => 0.073786660851682
810 => 0.07354068141847
811 => 0.073055830706338
812 => 0.073377697236086
813 => 0.07433352576005
814 => 0.077300446826832
815 => 0.07896077516228
816 => 0.077200492976269
817 => 0.078414712057062
818 => 0.077686613279081
819 => 0.07755429607206
820 => 0.078316915384883
821 => 0.079080869561859
822 => 0.079032208983451
823 => 0.078477617480447
824 => 0.078164342812639
825 => 0.080536563551996
826 => 0.082284375383029
827 => 0.082165186333632
828 => 0.082691248035316
829 => 0.084235781461936
830 => 0.084376994241743
831 => 0.084359204677226
901 => 0.084009194068445
902 => 0.085529987809963
903 => 0.086798660704957
904 => 0.083928176725291
905 => 0.085021219447353
906 => 0.085511921540924
907 => 0.086232417799037
908 => 0.087448015755667
909 => 0.088768477558001
910 => 0.088955205334978
911 => 0.088822713041466
912 => 0.087951832986908
913 => 0.089396698047407
914 => 0.090243066113593
915 => 0.090747058928218
916 => 0.092025100849698
917 => 0.085514951949999
918 => 0.080906744983397
919 => 0.080187106922247
920 => 0.081650519217965
921 => 0.082036409369852
922 => 0.081880857533491
923 => 0.076693901632734
924 => 0.080159798672895
925 => 0.083888812467209
926 => 0.084032059073935
927 => 0.08589888134937
928 => 0.086506795205882
929 => 0.088009831827596
930 => 0.087915816477675
1001 => 0.088281781976526
1002 => 0.088197652845979
1003 => 0.090981711686003
1004 => 0.094052942023288
1005 => 0.093946595082622
1006 => 0.093505069384489
1007 => 0.094160810337535
1008 => 0.097330649178658
1009 => 0.0970388212138
1010 => 0.097322307223813
1011 => 0.10105972586179
1012 => 0.10591890173275
1013 => 0.10366132668741
1014 => 0.10855961493609
1015 => 0.11164282774153
1016 => 0.11697492547838
1017 => 0.11630732058059
1018 => 0.11838306710081
1019 => 0.1151121684802
1020 => 0.10760152408961
1021 => 0.10641293586521
1022 => 0.10879251959031
1023 => 0.11464249398209
1024 => 0.10860828307842
1025 => 0.10982899608526
1026 => 0.10947743065717
1027 => 0.10945869722956
1028 => 0.11017367596693
1029 => 0.1091365620176
1030 => 0.10491117321476
1031 => 0.10684764400273
1101 => 0.10609987963453
1102 => 0.10692957995057
1103 => 0.11140713036182
1104 => 0.10942749859354
1105 => 0.10734211733788
1106 => 0.10995764821562
1107 => 0.11328811781691
1108 => 0.11307970301469
1109 => 0.11267529118775
1110 => 0.11495493948187
1111 => 0.11872025058947
1112 => 0.11973799905161
1113 => 0.12048928015941
1114 => 0.12059286913117
1115 => 0.12165989992056
1116 => 0.11592220643963
1117 => 0.12502807334829
1118 => 0.12660040501892
1119 => 0.12630487183131
1120 => 0.12805245230938
1121 => 0.12753826980089
1122 => 0.12679330001886
1123 => 0.12956358679763
1124 => 0.12638767655639
1125 => 0.12187987180492
1126 => 0.119406800964
1127 => 0.12266354014426
1128 => 0.12465231711711
1129 => 0.12596677218619
1130 => 0.12636452549588
1201 => 0.11636760725144
1202 => 0.11097982277219
1203 => 0.11443333085232
1204 => 0.11864684905846
1205 => 0.11589880013325
1206 => 0.11600651844838
1207 => 0.11208852285558
1208 => 0.11899350473121
1209 => 0.11798750695197
1210 => 0.12320662521025
1211 => 0.12196104075187
1212 => 0.1262170290865
1213 => 0.12509628472429
1214 => 0.12974843191184
1215 => 0.13160429937681
1216 => 0.1347205896932
1217 => 0.13701294553552
1218 => 0.13835906073191
1219 => 0.13827824502467
1220 => 0.1436122240647
1221 => 0.14046696297983
1222 => 0.13651577377611
1223 => 0.13644430922926
1224 => 0.13849068610665
1225 => 0.14277933064558
1226 => 0.14389131377729
1227 => 0.14451276064838
1228 => 0.14356099313258
1229 => 0.14014703764784
1230 => 0.13867290897868
1231 => 0.13992890931443
]
'min_raw' => 0.051790931982831
'max_raw' => 0.14451276064838
'avg_raw' => 0.098151846315605
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.05179'
'max' => '$0.144512'
'avg' => '$0.098151'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.020503254470666
'max_diff' => 0.074665224667195
'year' => 2036
]
11 => [
'items' => [
101 => 0.13839292883315
102 => 0.14104446206384
103 => 0.14468558352651
104 => 0.14393370634302
105 => 0.1464471190397
106 => 0.14904823676202
107 => 0.15276795192846
108 => 0.15374042321362
109 => 0.15534788126822
110 => 0.15700248362887
111 => 0.15753389731432
112 => 0.15854853092784
113 => 0.15854318330786
114 => 0.16160084999491
115 => 0.16497355103878
116 => 0.16624666760464
117 => 0.16917412894776
118 => 0.16416095398814
119 => 0.16796350478222
120 => 0.17139350078249
121 => 0.16730411814883
122 => 0.17294037940538
123 => 0.17315922265793
124 => 0.17646349594875
125 => 0.17311398194634
126 => 0.17112505122373
127 => 0.17686701969563
128 => 0.17964537736887
129 => 0.17880851342667
130 => 0.17243993750542
131 => 0.16873315315819
201 => 0.15903178353617
202 => 0.17052347492143
203 => 0.17612074257795
204 => 0.17242544193439
205 => 0.1742891366362
206 => 0.18445685062425
207 => 0.18832805780017
208 => 0.18752287376936
209 => 0.1876589366161
210 => 0.18974776974085
211 => 0.19901080615738
212 => 0.19346018002109
213 => 0.19770342572429
214 => 0.19995402794511
215 => 0.20204451271523
216 => 0.19691094282431
217 => 0.19023224382335
218 => 0.18811681949703
219 => 0.17205801711181
220 => 0.17122208670781
221 => 0.17075285364077
222 => 0.16779440552738
223 => 0.16546987569739
224 => 0.16362132327233
225 => 0.15877016968448
226 => 0.16040729161327
227 => 0.15267556530868
228 => 0.1576220498028
301 => 0.14528202793161
302 => 0.15555916483167
303 => 0.14996578646104
304 => 0.15372158960349
305 => 0.15370848596014
306 => 0.14679286159643
307 => 0.14280407378884
308 => 0.14534588462578
309 => 0.14807090761217
310 => 0.14851303342364
311 => 0.15204609685588
312 => 0.15303209891687
313 => 0.15004446664003
314 => 0.14502630840665
315 => 0.14619191211226
316 => 0.14278045286695
317 => 0.13680200175942
318 => 0.14109582971859
319 => 0.14256193137014
320 => 0.14320944538143
321 => 0.13733032534693
322 => 0.13548297819018
323 => 0.13449946606467
324 => 0.14426738783702
325 => 0.14480249664155
326 => 0.14206480434083
327 => 0.1544394331387
328 => 0.15163867352453
329 => 0.15476780821633
330 => 0.14608614579326
331 => 0.14641779698923
401 => 0.14230775886833
402 => 0.14460910558319
403 => 0.14298258790099
404 => 0.14442317951098
405 => 0.14528666418222
406 => 0.1493960278863
407 => 0.1556060871642
408 => 0.14878222598411
409 => 0.14580897194846
410 => 0.14765356202996
411 => 0.15256594849425
412 => 0.16000846544809
413 => 0.15560234561681
414 => 0.15755770677716
415 => 0.15798486620274
416 => 0.15473595656257
417 => 0.16012825738072
418 => 0.16301803519614
419 => 0.16598234927949
420 => 0.16855618013988
421 => 0.16479833704794
422 => 0.16881976782196
423 => 0.16557920449619
424 => 0.16267208418969
425 => 0.16267649309119
426 => 0.16085281405668
427 => 0.15731920612896
428 => 0.15666755461181
429 => 0.16005752809851
430 => 0.16277596580315
501 => 0.16299986935295
502 => 0.16450493614461
503 => 0.1653956191685
504 => 0.17412552362744
505 => 0.17763676341838
506 => 0.18193024097038
507 => 0.18360279244402
508 => 0.18863657273678
509 => 0.18457138632673
510 => 0.18369185767569
511 => 0.17148155322243
512 => 0.17348098989262
513 => 0.17668228091853
514 => 0.17153434133234
515 => 0.17479952410743
516 => 0.17544414035325
517 => 0.17135941631509
518 => 0.17354124391438
519 => 0.16774695667746
520 => 0.15573238679201
521 => 0.16014163303155
522 => 0.16338832240008
523 => 0.15875489635727
524 => 0.16706013320066
525 => 0.16220838529164
526 => 0.16067061412945
527 => 0.15467122057075
528 => 0.15750270339262
529 => 0.16133232445213
530 => 0.15896606387859
531 => 0.1638764098645
601 => 0.170830769322
602 => 0.17578686001068
603 => 0.17616732711373
604 => 0.1729808928332
605 => 0.1780871741033
606 => 0.1781243677877
607 => 0.17236446165525
608 => 0.16883655122042
609 => 0.16803500254684
610 => 0.17003742828632
611 => 0.17246874280223
612 => 0.17630224814828
613 => 0.17861875514171
614 => 0.18465897680022
615 => 0.18629328759428
616 => 0.18808889966489
617 => 0.19048839113747
618 => 0.19336959586729
619 => 0.18706568394552
620 => 0.18731615011813
621 => 0.18144603462018
622 => 0.1751729743509
623 => 0.17993344514728
624 => 0.18615712745466
625 => 0.18472940785679
626 => 0.18456876023636
627 => 0.18483892497398
628 => 0.18376247102215
629 => 0.17889370969327
630 => 0.17644864823396
701 => 0.17960340131817
702 => 0.18128001218052
703 => 0.1838802894122
704 => 0.1835597503582
705 => 0.19025778525762
706 => 0.19286043908147
707 => 0.19219456885949
708 => 0.19231710500539
709 => 0.19702908543452
710 => 0.2022697767644
711 => 0.20717837576496
712 => 0.21217161349757
713 => 0.20615207052153
714 => 0.20309571783209
715 => 0.2062490936498
716 => 0.20457586805395
717 => 0.21419071863867
718 => 0.21485643003211
719 => 0.2244705853537
720 => 0.2335955635862
721 => 0.22786432824933
722 => 0.23326862503149
723 => 0.23911381262018
724 => 0.25039012782627
725 => 0.24659266157041
726 => 0.24368386193231
727 => 0.24093506032952
728 => 0.24665488010496
729 => 0.25401333686972
730 => 0.25559827797842
731 => 0.25816648806863
801 => 0.25546632918456
802 => 0.25871837314767
803 => 0.27019951735797
804 => 0.26709721084549
805 => 0.2626914368771
806 => 0.27175469757032
807 => 0.27503465638266
808 => 0.29805512505545
809 => 0.32711941768298
810 => 0.31508660968875
811 => 0.30761745747044
812 => 0.3093728854124
813 => 0.31998618119158
814 => 0.32339483494668
815 => 0.3141289390069
816 => 0.31740181009869
817 => 0.33543565159599
818 => 0.34511022896439
819 => 0.33197085342901
820 => 0.2957198374421
821 => 0.26229474513586
822 => 0.271160584767
823 => 0.27015547369186
824 => 0.28953058661318
825 => 0.26702322186117
826 => 0.26740218816023
827 => 0.28717795789816
828 => 0.2819021215746
829 => 0.27335594240851
830 => 0.26235714170154
831 => 0.24202484132879
901 => 0.22401595588049
902 => 0.25933552744322
903 => 0.25781248329296
904 => 0.25560688966089
905 => 0.26051519961891
906 => 0.28434855952695
907 => 0.28379912344001
908 => 0.28030389137966
909 => 0.28295499409187
910 => 0.27289119128517
911 => 0.27548486241698
912 => 0.26228945043047
913 => 0.26825432773746
914 => 0.2733376061463
915 => 0.2743581495461
916 => 0.27665748593609
917 => 0.25700990823344
918 => 0.26583109379935
919 => 0.27101271388602
920 => 0.24760196582552
921 => 0.27054995866815
922 => 0.25666788761755
923 => 0.25195610420126
924 => 0.25829989984103
925 => 0.25582771651067
926 => 0.2537022784547
927 => 0.25251624749981
928 => 0.25717443087848
929 => 0.25695712105613
930 => 0.2493354289342
1001 => 0.23939324226104
1002 => 0.24273016644971
1003 => 0.24151783060813
1004 => 0.23712416912384
1005 => 0.24008496647154
1006 => 0.22704711337751
1007 => 0.20461616477785
1008 => 0.21943473650132
1009 => 0.21886423760947
1010 => 0.21857656619814
1011 => 0.22971231329309
1012 => 0.2286418681553
1013 => 0.2266989997484
1014 => 0.23708848682193
1015 => 0.23329618428177
1016 => 0.2449831671317
1017 => 0.25268096990331
1018 => 0.2507285581226
1019 => 0.25796837883602
1020 => 0.24280704244337
1021 => 0.24784303022577
1022 => 0.24888094032815
1023 => 0.23696028216416
1024 => 0.22881700621826
1025 => 0.22827394255281
1026 => 0.21415462427517
1027 => 0.22169705013193
1028 => 0.22833407275909
1029 => 0.22515545397445
1030 => 0.22414919822576
1031 => 0.22928994061555
1101 => 0.22968942032671
1102 => 0.22058124057713
1103 => 0.22247511956561
1104 => 0.23037290977875
1105 => 0.22227611551588
1106 => 0.20654536686697
1107 => 0.20264392370742
1108 => 0.20212339927207
1109 => 0.19154237599602
1110 => 0.20290463679482
1111 => 0.19794470546649
1112 => 0.21361306910359
1113 => 0.20466338382519
1114 => 0.20427758078035
1115 => 0.20369438289307
1116 => 0.19458685906281
1117 => 0.1965808279683
1118 => 0.2032090843002
1119 => 0.20557412083207
1120 => 0.20532742814563
1121 => 0.20317660222814
1122 => 0.20416123931916
1123 => 0.2009893801787
1124 => 0.19986933069966
1125 => 0.19633414644994
1126 => 0.19113840222244
1127 => 0.19186090232462
1128 => 0.1815667734695
1129 => 0.17595798571846
1130 => 0.1744055471916
1201 => 0.17232956151262
1202 => 0.17464003529803
1203 => 0.18153761149584
1204 => 0.17321767119886
1205 => 0.15895371713564
1206 => 0.15981100507944
1207 => 0.16173707655807
1208 => 0.15814785509987
1209 => 0.15475095821022
1210 => 0.15770428445682
1211 => 0.15166045908185
1212 => 0.16246744397991
1213 => 0.16217514532465
1214 => 0.16620332099518
1215 => 0.16872222190845
1216 => 0.16291697080722
1217 => 0.16145696585432
1218 => 0.16228865102902
1219 => 0.14854274769296
1220 => 0.1650799874326
1221 => 0.1652230021686
1222 => 0.16399842317227
1223 => 0.17280399280363
1224 => 0.19138649125186
1225 => 0.18439500785637
1226 => 0.18168769416693
1227 => 0.17654108886427
1228 => 0.18339863485488
1229 => 0.18287208231718
1230 => 0.1804908120526
1231 => 0.17905061236656
]
'min_raw' => 0.13449946606467
'max_raw' => 0.34511022896439
'avg_raw' => 0.23980484751453
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.134499'
'max' => '$0.34511'
'avg' => '$0.2398048'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.08270853408184
'max_diff' => 0.20059746831601
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0042217845506726
]
1 => [
'year' => 2028
'avg' => 0.0072458078817664
]
2 => [
'year' => 2029
'avg' => 0.019794241203175
]
3 => [
'year' => 2030
'avg' => 0.015271227609781
]
4 => [
'year' => 2031
'avg' => 0.014998238055208
]
5 => [
'year' => 2032
'avg' => 0.026296631430008
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0042217845506726
'min' => '$0.004221'
'max_raw' => 0.026296631430008
'max' => '$0.026296'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.026296631430008
]
1 => [
'year' => 2033
'avg' => 0.067637640088703
]
2 => [
'year' => 2034
'avg' => 0.0428719868011
]
3 => [
'year' => 2035
'avg' => 0.050567606746675
]
4 => [
'year' => 2036
'avg' => 0.098151846315605
]
5 => [
'year' => 2037
'avg' => 0.23980484751453
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.026296631430008
'min' => '$0.026296'
'max_raw' => 0.23980484751453
'max' => '$0.2398048'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.23980484751453
]
]
]
]
'prediction_2025_max_price' => '$0.007218'
'last_price' => 0.00699923
'sma_50day_nextmonth' => '$0.006771'
'sma_200day_nextmonth' => '$0.014915'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'INCREASE'
'sma_200day_date_nextmonth' => 'Feb 4, 2026'
'sma_50day_date_nextmonth' => 'Feb 4, 2026'
'daily_sma3' => '$0.007279'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.007527'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.007493'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.007229'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.008915'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011913'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0161017'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007245'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.007347'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.007397'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.007583'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.008994'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.011574'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0142048'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.013524'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.007282'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.007659'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.009144'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.011789'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.012948'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006474'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.003237'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '43.61'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 52.61
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.007729'
'vwma_10_action' => 'SELL'
'hma_9' => '0.007363'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 11.51
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -48.4
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.58
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000214'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -88.49
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 50.1
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001586'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 27
'buy_signals' => 2
'sell_pct' => 93.1
'buy_pct' => 6.9
'overall_action' => 'bearish'
'overall_action_label' => 'BEARISH'
'overall_action_dir' => -1
'last_updated' => 1767689085
'last_updated_date' => 'January 6, 2026'
]
Xrpturbo price prediction 2026
The Xrpturbo price forecast for 2026 suggests that the average price could range between $0.002418 on the lower end and $0.007218 on the high end. In the crypto market, compared to today’s average price, Xrpturbo could potentially gain 3.13% by 2026 if XRT reaches the forecast price target.
Xrpturbo price prediction 2027-2032
The XRT price prediction for 2027-2032 is currently within a price range of $0.004221 on the lower end and $0.026296 on the high end. Considering the price volatility in the market, if Xrpturbo reaches the upper price target, it could gain 275.71% by 2032 compared to today’s price.
| Xrpturbo Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2027 | $0.002327 | $0.004221 | $0.006115 |
| 2028 | $0.0042013 | $0.007245 | $0.01029 |
| 2029 | $0.009229 | $0.019794 | $0.030359 |
| 2030 | $0.007848 | $0.015271 | $0.022693 |
| 2031 | $0.009279 | $0.014998 | $0.020716 |
| 2032 | $0.014164 | $0.026296 | $0.038428 |
Xrpturbo price prediction 2032-2037
The Xrpturbo price prediction for 2032-2037 is currently estimated to be between $0.026296 on the lower end and $0.2398048 on the high end. Compared to the current price, Xrpturbo could potentially gain 3326.16% by 2037 if it reaches the upper price target. Please note that this information is for general purposes only and should not be considered long-term investment advice.
| Xrpturbo Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2032 | $0.014164 | $0.026296 | $0.038428 |
| 2033 | $0.032916 | $0.067637 | $0.102358 |
| 2034 | $0.026463 | $0.042871 | $0.05928 |
| 2035 | $0.031287 | $0.050567 | $0.069847 |
| 2036 | $0.05179 | $0.098151 | $0.144512 |
| 2037 | $0.134499 | $0.2398048 | $0.34511 |
Xrpturbo potential price histogram
Xrpturbo Price Forecast Based on Technical Analysis
As of January 6, 2026, the overall price prediction sentiment for Xrpturbo is BEARISH, with 2 technical indicators showing bullish signals and 27 indicating bearish signals. The XRT price prediction was last updated on January 6, 2026.
Xrpturbo's 50-Day, 200-Day Simple Moving Averages and 14-Day Relative Strength Index - RSI (14)
According to our technical indicators, Xrpturbo's 200-day SMA is projected to INCREASE over the next month, reaching $0.014915 by Feb 4, 2026. The short-term 50-day SMA for Xrpturbo is expected to reach $0.006771 by Feb 4, 2026.
The Relative Strength Index (RSI) momentum oscillator is a commonly used tool to identify if a cryptocurrency is oversold (below 30) or overbought (above 70). Right now, the RSI stands at 43.61, suggesting that the XRT market is in a NEUTRAL state.
Popular XRT Moving Averages and Oscillators for Sat, Oct 19, 2024
Moving averages (MA) are widely used indicators across financial markets, designed to smooth out price movements over a set period. As lagging indicators, they are based on historical price data. The table below highlights two types: the simple moving average (SMA) and the exponential moving average (EMA).
Daily Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 3 | $0.007279 | SELL |
| SMA 5 | $0.007527 | SELL |
| SMA 10 | $0.007493 | SELL |
| SMA 21 | $0.007229 | SELL |
| SMA 50 | $0.008915 | SELL |
| SMA 100 | $0.011913 | SELL |
| SMA 200 | $0.0161017 | SELL |
Daily Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 3 | $0.007245 | SELL |
| EMA 5 | $0.007347 | SELL |
| EMA 10 | $0.007397 | SELL |
| EMA 21 | $0.007583 | SELL |
| EMA 50 | $0.008994 | SELL |
| EMA 100 | $0.011574 | SELL |
| EMA 200 | $0.0142048 | SELL |
Weekly Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 21 | $0.013524 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Weekly Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 21 | $0.011789 | SELL |
| EMA 50 | $0.012948 | SELL |
| EMA 100 | $0.006474 | BUY |
| EMA 200 | $0.003237 | BUY |
Xrpturbo Oscillators
An oscillator is a technical analysis tool that sets high and low boundaries between two extremes, creating a trend indicator that fluctuates within these limits. Traders use this indicator to identify short-term overbought or oversold conditions.
| Period | Value | Action |
|---|---|---|
| RSI (14) | 43.61 | NEUTRAL |
| Stoch RSI (14) | 52.61 | NEUTRAL |
| Stochastic Fast (14) | 11.51 | BUY |
| Commodity Channel Index (20) | -48.4 | NEUTRAL |
| Average Directional Index (14) | 17.58 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.000214 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -88.49 | BUY |
| Ultimate Oscillator (7, 14, 28) | 50.1 | NEUTRAL |
| VWMA (10) | 0.007729 | SELL |
| Hull Moving Average (9) | 0.007363 | SELL |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.001586 | SELL |
Xrpturbo price prediction based on worldwide money flows
Worldwide money flows definitions used for Xrpturbo price prediction
M0: The total of all physical currency, plus accounts at the central bank which can be exchanged for physical currency.
M1: Measure M0 plus the amount in demand accounts, including "checking" or "current" accounts.
M2: Measure M1 plus most savings accounts, money market accounts, and certificate of deposit (CD) accounts of under $100,000.
Xrpturbo price predictions by Internet companies or technological niches
| Comparison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.009835 | $0.013819 | $0.019419 | $0.027287 | $0.038343 | $0.053878 |
| Amazon.com stock | $0.0146043 | $0.030472 | $0.063583 | $0.13267 | $0.276824 | $0.57761 |
| Apple stock | $0.009927 | $0.014081 | $0.019974 | $0.028331 | $0.040186 | $0.0570014 |
| Netflix stock | $0.011043 | $0.017425 | $0.027494 | $0.043381 | $0.068449 | $0.1080024 |
| Google stock | $0.009063 | $0.011737 | $0.0152004 | $0.019684 | $0.025491 | $0.033011 |
| Tesla stock | $0.015866 | $0.035968 | $0.081538 | $0.184841 | $0.41902 | $0.949888 |
| Kodak stock | $0.005248 | $0.003935 | $0.002951 | $0.002213 | $0.001659 | $0.001244 |
| Nokia stock | $0.004636 | $0.003071 | $0.002034 | $0.001347 | $0.000892 | $0.000591 |
This calculation shows how much cryptocurrency can cost if we assume that its capitalization will behave like the capitalization of some Internet companies or technological niches. If you extrapolate the data projections, you can get a potential picture of the future Xrpturbo price for 2024, 2025, 2026, 2027, 2028, 2029 and 2030.
Xrpturbo forecast and prediction overview
You may ask questions like: "Should I invest in Xrpturbo now?", "Should I buy XRT today?", "Will Xrpturbo be a good or bad investment in short-term, long-term period?".
We update Xrpturbo forecast projection regularly with fresh values. Look at our similar predictions. We making a forecast of future prices for huge amounts of digital coins like Xrpturbo with technical analysis methods.
If you are trying to find cryptocurrencies with good returns, you should explore the maximum of available sources of information about Xrpturbo in order to make such a responsible decision about the investment by yourself.
Xrpturbo price equal to $0.006999 USD today, but the price can go both up and down and your investment may be lost because cryptocurrency high-risk assets
Xrpturbo price prediction based on Bitcoin's growth pattern
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| If Xrpturbo has 1% of Bitcoin's previous average grow per year | $0.007181 | $0.007367 | $0.007559 | $0.007755 |
| If Xrpturbo has 2% of Bitcoin's previous average grow per year | $0.007363 | $0.007745 | $0.008148 | $0.008572 |
| If Xrpturbo has 5% of Bitcoin's previous average grow per year | $0.0079088 | $0.008936 | $0.010098 | $0.01141 |
| If Xrpturbo has 10% of Bitcoin's previous average grow per year | $0.008818 | $0.01111 | $0.013998 | $0.017637 |
| If Xrpturbo has 20% of Bitcoin's previous average grow per year | $0.010637 | $0.016168 | $0.024573 | $0.037348 |
| If Xrpturbo has 50% of Bitcoin's previous average grow per year | $0.016095 | $0.037015 | $0.085121 | $0.195751 |
| If Xrpturbo has 100% of Bitcoin's previous average grow per year | $0.025192 | $0.090675 | $0.326371 | $1.17 |
Frequently Asked Questions about Xrpturbo
Is XRT a good investment?
The determination to procure Xrpturbo is entirely contingent on your individualistic risk tolerance. As you may discern, Xrpturbo's value has experienced a fall of -6.6076% during the preceding 24 hours, and Xrpturbo has incurred a decline of over the prior 30-day duration. Consequently, the determination of whether or not to invest in Xrpturbo will hinge on whether such an investment aligns with your trading aspirations.
Can Xrpturbo rise?
It appears that the mean value of Xrpturbo may potentially surge to $0.007218 by the end of this year. Looking at Xrpturbo's prospects in a more extended five-year timeline, the digital currency could potentially growth to as much as $0.022693. However, given the market's unpredictability, it is vital to conduct thorough research before investing any funds into a particular project, network, or asset.
What will the price of Xrpturbo be next week?
Based on the our new experimental Xrpturbo forecast, the price of Xrpturbo will increase by 0.86% over the next week and reach $0.0070591 by January 13, 2026.
What will the price of Xrpturbo be next month?
Based on the our new experimental Xrpturbo forecast, the price of Xrpturbo will decrease by -11.62% over the next month and reach $0.006186 by February 5, 2026.
How high can Xrpturbo’s price go this year in 2026?
As per our most recent prediction on Xrpturbo's value in 2026, XRT is anticipated to fluctuate within the range of $0.002418 and $0.007218. However, it is crucial to bear in mind that the cryptocurrency market is exceptionally unstable, and this projected Xrpturbo price forecast fails to consider sudden and extreme price fluctuations.
Where will Xrpturbo be in 5 years?
Xrpturbo's future appears to be on an upward trend, with an maximum price of $0.022693 projected after a period of five years. Based on the Xrpturbo forecast for 2030, Xrpturbo's value may potentially reach its highest peak of approximately $0.022693, while its lowest peak is anticipated to be around $0.007848.
How much will be Xrpturbo in 2026?
Based on the our new experimental Xrpturbo price prediction simulation, XRT’s value in 2026 expected to grow by 3.13% to $0.007218 if the best happened. The price will be between $0.007218 and $0.002418 during 2026.
How much will be Xrpturbo in 2027?
According to our latest experimental simulation for Xrpturbo price prediction, XRT’s value could down by -12.62% to $0.006115 in 2027, assuming the most favorable conditions. The price is projected to fluctuate between $0.006115 and $0.002327 throughout the year.
How much will be Xrpturbo in 2028?
Our new experimental Xrpturbo price prediction model suggests that XRT’s value in 2028 could increase by 47.02% , reaching $0.01029 in the best-case scenario. The price is expected to range between $0.01029 and $0.0042013 during the year.
How much will be Xrpturbo in 2029?
Based on our experimental forecast model, Xrpturbo's value may experience a 333.75% growth in 2029, potentially reaching $0.030359 under optimal conditions. The predicted price range for 2029 lies between $0.030359 and $0.009229.
How much will be Xrpturbo in 2030?
Using our new experimental simulation for Xrpturbo price predictions, XRT’s value in 2030 is expected to rise by 224.23% , reaching $0.022693 in the best scenario. The price is forecasted to range between $0.022693 and $0.007848 over the course of 2030.
How much will be Xrpturbo in 2031?
Our experimental simulation indicates that Xrpturbo’s price could grow by 195.98% in 2031, potentially hitting $0.020716 under ideal conditions. The price will likely fluctuate between $0.020716 and $0.009279 during the year.
How much will be Xrpturbo in 2032?
Based on the findings from our latest experimental Xrpturbo price prediction, XRT could see a 449.04% rise in value, reaching $0.038428 if the most positive scenario plays out in 2032. The price is expected to stay within a range of $0.038428 and $0.014164 throughout the year.
How much will be Xrpturbo in 2033?
According to our experimental Xrpturbo price prediction, XRT’s value is anticipated to rise by 1362.43% in 2033, with the highest potential price being $0.102358. Throughout the year, XRT’s price could range from $0.102358 and $0.032916.
How much will be Xrpturbo in 2034?
The results from our new Xrpturbo price prediction simulation suggest that XRT may rise by 746.96% in 2034, potentially reaching $0.05928 under the best circumstances. The predicted price range for the year is between $0.05928 and $0.026463.
How much will be Xrpturbo in 2035?
Based on our experimental forecast for Xrpturbo’s price, XRT could grow by 897.93% , with the value potentially hitting $0.069847 in 2035. The expected price range for the year lies between $0.069847 and $0.031287.
How much will be Xrpturbo in 2036?
Our recent Xrpturbo price prediction simulation suggests that XRT’s value might rise by 1964.7% in 2036, possibly reaching $0.144512 if conditions are optimal. The expected price range for 2036 is between $0.144512 and $0.05179.
How much will be Xrpturbo in 2037?
According to the experimental simulation, Xrpturbo’s value could rise by 4830.69% in 2037, with a high of $0.34511 under favorable conditions. The price is expected to fall between $0.34511 and $0.134499 over the course of the year.
Related Predictions
How to read and predict Xrpturbo price movements?
Xrpturbo traders use indicators and chart patterns to predict market direction. They also identify key support and resistance levels to gauge when a downtrend might slow or an uptrend might stall.
Xrpturbo Price Prediction Indicators
Moving averages are popular tools for Xrpturbo price prediction. A simple moving average (SMA) calculates the average closing price of XRT over a specific period, like a 12-day SMA. An exponential moving average (EMA) gives more weight to recent prices, reacting faster to price changes.
Commonly used moving averages in the crypto market include the 50-day, 100-day, and 200-day averages, which help identify key resistance and support levels. A XRT price move above these averages is seen as bullish, while a drop below indicates weakness.
Traders also use RSI and Fibonacci retracement levels to gauge XRT's future direction.
How to read Xrpturbo charts and predict price movements?
Most traders prefer candlestick charts over simple line charts because they provide more detailed information. Candlesticks can represent Xrpturbo's price action in different time frames, such as 5-minute for short-term and weekly for long-term trends. Popular choices include 1-hour, 4-hour, and 1-day charts.
A 1-hour candlestick chart, for instance, shows XRT's opening, closing, highest, and lowest prices within each hour. The candle's color is crucial: green indicates the price closed higher than it opened, while red means the opposite. Some charts use hollow and filled candlesticks to convey the same information.
What affects the price of Xrpturbo?
Xrpturbo's price action is driven by supply and demand, influenced by factors like block reward halvings, hard forks, and protocol updates. Real-world events, such as regulations, adoption by companies and governments, and cryptocurrency exchange hacks, also impact XRT's price. Xrpturbo's market capitalization can change rapidly.
Traders often monitor the activity of XRT "whales," large holders of Xrpturbo, as their actions can significantly influence price movements in the relatively small Xrpturbo market.
Bullish and bearish price prediction patterns
Traders often identify candlestick patterns to gain an edge in cryptocurrency price predictions. Certain formations indicate bullish trends, while others suggest bearish movements.
Commonly followed bullish candlestick patterns:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Three White Soldiers
Common bearish candlestick patterns:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


