Vulture Peak (VPK) Price Prediction
Vulture Peak Price Prediction up to $0.00081 by 2026
| Year | Min. Price | Max. Price |
|---|---|---|
| 2026 | $0.000271 | $0.00081 |
| 2027 | $0.000261 | $0.000686 |
| 2028 | $0.000471 | $0.001154 |
| 2029 | $0.001035 | $0.0034073 |
| 2030 | $0.00088 | $0.002547 |
| 2031 | $0.001041 | $0.002325 |
| 2032 | $0.001589 | $0.004313 |
| 2033 | $0.003694 | $0.011488 |
| 2034 | $0.00297 | $0.006653 |
| 2035 | $0.003511 | $0.007839 |
Investment Profit Calculator
If you open a short on $10,000.00 of Vulture Peak today and close it on Apr 06, 2026, our forecast suggests you could make around $3,966.09 in profit, equal to a 39.66% ROI over the next 90 days.
Long-term Vulture Peak price prediction for 2027, 2028, 2029, 2030, 2031, 2032 and 2037
[
'name' => 'Vulture Peak'
'name_with_ticker' => 'Vulture Peak <small>VPK</small>'
'name_lang' => 'Vulture Peak'
'name_lang_with_ticker' => 'Vulture Peak <small>VPK</small>'
'name_with_lang' => 'Vulture Peak'
'name_with_lang_with_ticker' => 'Vulture Peak <small>VPK</small>'
'image' => '/uploads/coins/vulture-peak.png?1717331240'
'price_for_sd' => 0.0007855
'ticker' => 'VPK'
'marketcap' => '$2.66K'
'low24h' => '$0.1371'
'high24h' => '$0.1446'
'volume24h' => '$8.83'
'current_supply' => '3.39M'
'max_supply' => '29.9M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0007855'
'change_24h_pct' => '5.0149%'
'ath_price' => '$0.7853'
'ath_days' => 1417
'ath_exchange' => null
'ath_pair' => null
'ath_date' => 'Feb 19, 2022'
'ath_pct' => '-99.90%'
'fdv' => '$23.49K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.038733'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000792'
'next_week_prediction_price_date' => 'January 13, 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000694'
'next_month_prediction_price_date' => 'February 5, 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000271'
'current_year_max_price_prediction' => '$0.00081'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00088'
'grand_prediction_max_price' => '$0.002547'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00080044594879544
107 => 0.00080343452340636
108 => 0.00081016793460517
109 => 0.00075263167313915
110 => 0.00077846376536151
111 => 0.00079363769940243
112 => 0.00072508131337311
113 => 0.00079228256007621
114 => 0.00075163009483366
115 => 0.00073783203755079
116 => 0.00075640930392635
117 => 0.00074916972515281
118 => 0.00074294556044565
119 => 0.00073947236959433
120 => 0.00075311346372247
121 => 0.00075247709037676
122 => 0.00073015761276085
123 => 0.00070104276406919
124 => 0.00071081466295244
125 => 0.00070726444047611
126 => 0.00069439797623409
127 => 0.0007030684196304
128 => 0.00066488817492406
129 => 0.00059920104834323
130 => 0.00064259597621363
131 => 0.00064092531869521
201 => 0.00064008289741614
202 => 0.00067269298636303
203 => 0.00066955827875355
204 => 0.00066386875374718
205 => 0.00069429348364557
206 => 0.00068318804796229
207 => 0.00071741238396843
208 => 0.00073995474515334
209 => 0.00073423727318785
210 => 0.00075543847283894
211 => 0.00071103978776625
212 => 0.00072578724998133
213 => 0.00072882668150476
214 => 0.00069391804720133
215 => 0.00067007115568604
216 => 0.00066848083989644
217 => 0.000627133616313
218 => 0.00064922096940815
219 => 0.0006686569260951
220 => 0.00065934861113322
221 => 0.00065640187669428
222 => 0.00067145610387407
223 => 0.00067262594625667
224 => 0.00064595341595892
225 => 0.00065149947961701
226 => 0.00067462748702759
227 => 0.00065091671317062
228 => 0.00060485055269943
301 => 0.00059342550798808
302 => 0.00059190119641824
303 => 0.00056091556902933
304 => 0.00059418898410667
305 => 0.00057966424675333
306 => 0.00062554771801947
307 => 0.00059933932531024
308 => 0.0005982095338826
309 => 0.00059650168843535
310 => 0.00056983107894157
311 => 0.00057567024741505
312 => 0.00059508053275137
313 => 0.00060200634123188
314 => 0.00060128392266589
315 => 0.00059498541176398
316 => 0.00059786883780128
317 => 0.0005885803178829
318 => 0.0005853003481759
319 => 0.00057494786155386
320 => 0.00055973256616688
321 => 0.00056184834631127
322 => 0.00053170286485105
323 => 0.00051527800660974
324 => 0.00051073182232469
325 => 0.00050465247470061
326 => 0.00051141850081536
327 => 0.00053161746648966
328 => 0.00050725322843683
329 => 0.00046548245124785
330 => 0.00046799294613085
331 => 0.00047363328276032
401 => 0.00046312255276585
402 => 0.00045317502892479
403 => 0.00046182359383647
404 => 0.00044412476488707
405 => 0.0004757721016817
406 => 0.00047491612991205
407 => 0.0004867123000109
408 => 0.0004940886872555
409 => 0.00047708850279044
410 => 0.00047281300237086
411 => 0.00047524852172051
412 => 0.00043499481205718
413 => 0.00048342271314436
414 => 0.00048384151964397
415 => 0.00048025544412948
416 => 0.0005060418064147
417 => 0.0005604590738046
418 => 0.00053998510888301
419 => 0.0005320569708365
420 => 0.00051698557461466
421 => 0.00053706731522931
422 => 0.00053552535087406
423 => 0.000528552003287
424 => 0.00052433450090818
425 => 0.00053210537835684
426 => 0.0005233716031958
427 => 0.00052180277718878
428 => 0.0005122973984858
429 => 0.00050890441075602
430 => 0.00050639237771961
501 => 0.0005036268761738
502 => 0.00050972688346381
503 => 0.00049590346442186
504 => 0.00047923377618375
505 => 0.00047784787197527
506 => 0.00048167447534481
507 => 0.00047998148821091
508 => 0.00047783976660421
509 => 0.00047375063679387
510 => 0.00047253747932957
511 => 0.0004764796525482
512 => 0.00047202916882734
513 => 0.00047859609998786
514 => 0.00047681025807708
515 => 0.00046683469033383
516 => 0.00045440143949753
517 => 0.00045429075748546
518 => 0.00045161203398739
519 => 0.00044820027686384
520 => 0.00044725120408249
521 => 0.00046109523582242
522 => 0.00048975196720707
523 => 0.0004841259651388
524 => 0.00048819132820901
525 => 0.00050818889087672
526 => 0.0005145455147011
527 => 0.00051003373367544
528 => 0.00050385772953299
529 => 0.00050412944237151
530 => 0.00052523471812985
531 => 0.00052655102829064
601 => 0.00052987691940921
602 => 0.00053415162939328
603 => 0.0005107617352701
604 => 0.00050302778046172
605 => 0.00049936300361004
606 => 0.00048807690935398
607 => 0.00050024799441255
608 => 0.00049315642436675
609 => 0.00049411331944845
610 => 0.00049349014027117
611 => 0.00049383043824116
612 => 0.00047576325560609
613 => 0.00048234598737515
614 => 0.00047140091906727
615 => 0.0004567467012446
616 => 0.00045669757516803
617 => 0.00046028417421951
618 => 0.00045815072476006
619 => 0.00045240966712066
620 => 0.00045322515726131
621 => 0.00044608060553018
622 => 0.00045409263519775
623 => 0.0004543223915402
624 => 0.00045123732369998
625 => 0.00046358096084991
626 => 0.00046863815906169
627 => 0.0004666075013207
628 => 0.00046849568270126
629 => 0.00048435975092461
630 => 0.00048694628624284
701 => 0.00048809505437427
702 => 0.00048655585726077
703 => 0.0004687856487463
704 => 0.00046957383305868
705 => 0.00046379065954296
706 => 0.00045890448733799
707 => 0.00045909990860159
708 => 0.00046161203627287
709 => 0.00047258264514769
710 => 0.00049566964477204
711 => 0.00049654577953141
712 => 0.00049760768041842
713 => 0.00049328839584234
714 => 0.0004919856582842
715 => 0.00049370430538847
716 => 0.00050237456859061
717 => 0.00052467683949999
718 => 0.00051679372744203
719 => 0.00051038463463095
720 => 0.00051600713690528
721 => 0.00051514159675078
722 => 0.00050783556679794
723 => 0.00050763051087065
724 => 0.00049360790351209
725 => 0.00048842406485096
726 => 0.00048409206126211
727 => 0.00047936162643291
728 => 0.00047655726610054
729 => 0.00048086603813003
730 => 0.00048185150527306
731 => 0.00047243029992615
801 => 0.00047114622444991
802 => 0.00047883978410705
803 => 0.00047545413534676
804 => 0.00047893635905676
805 => 0.00047974426482745
806 => 0.00047961417339072
807 => 0.00047607916724569
808 => 0.00047833227474713
809 => 0.00047300300382255
810 => 0.00046720822212268
811 => 0.00046351151242582
812 => 0.00046028564291793
813 => 0.00046207554280955
814 => 0.00045569487651874
815 => 0.00045365357295487
816 => 0.00047756897262217
817 => 0.00049523553549027
818 => 0.00049497865666944
819 => 0.00049341497291152
820 => 0.0004910916560289
821 => 0.0005022046034896
822 => 0.00049833307480469
823 => 0.00050114993540001
824 => 0.00050186694464478
825 => 0.00050403711567935
826 => 0.0005048127652917
827 => 0.00050246821343987
828 => 0.00049459961106225
829 => 0.00047499180206148
830 => 0.00046586431404136
831 => 0.00046285209096438
901 => 0.0004629615795522
902 => 0.00045994139552149
903 => 0.00046083097507368
904 => 0.00045963203605673
905 => 0.00045736153561311
906 => 0.00046193534580525
907 => 0.00046246243482191
908 => 0.0004613948528701
909 => 0.00046164630706678
910 => 0.00045280718447603
911 => 0.00045347920376904
912 => 0.00044973731494947
913 => 0.00044903575590495
914 => 0.00043957658681262
915 => 0.00042281829763709
916 => 0.00043210401660683
917 => 0.00042088817386106
918 => 0.00041664056426548
919 => 0.0004367480874521
920 => 0.00043472984982005
921 => 0.00043127550430077
922 => 0.00042616580732908
923 => 0.00042427057101834
924 => 0.00041275571515321
925 => 0.00041207535603933
926 => 0.00041778242953335
927 => 0.00041514881148427
928 => 0.00041145021431421
929 => 0.00039805427028502
930 => 0.00038299279395156
1001 => 0.000383447405249
1002 => 0.00038823818064195
1003 => 0.00040216800622101
1004 => 0.00039672538237884
1005 => 0.00039277669633443
1006 => 0.00039203722613538
1007 => 0.00040129324386223
1008 => 0.00041439244814137
1009 => 0.00042053830171097
1010 => 0.00041444794747585
1011 => 0.0004074516764585
1012 => 0.00040787750705773
1013 => 0.00041071036725892
1014 => 0.00041100806081158
1015 => 0.00040645420760756
1016 => 0.00040773609061014
1017 => 0.00040578879311138
1018 => 0.00039383823195592
1019 => 0.00039362208420025
1020 => 0.00039068922376387
1021 => 0.00039060041791545
1022 => 0.00038561089067684
1023 => 0.00038491282132518
1024 => 0.00037500581215027
1025 => 0.00038152663559039
1026 => 0.00037715280958535
1027 => 0.00037056042211452
1028 => 0.00036942389202972
1029 => 0.00036938972656297
1030 => 0.00037615863446466
1031 => 0.0003814475369605
1101 => 0.00037722889416131
1102 => 0.00037626839097089
1103 => 0.00038652405216333
1104 => 0.00038521892579417
1105 => 0.00038408869477563
1106 => 0.00041321955807151
1107 => 0.00039016020666321
1108 => 0.00038010501326743
1109 => 0.00036765980201072
1110 => 0.00037171202555011
1111 => 0.0003725658885894
1112 => 0.00034263739893495
1113 => 0.00033049541440949
1114 => 0.00032632874288138
1115 => 0.00032393076450887
1116 => 0.00032502355336514
1117 => 0.00031409434317949
1118 => 0.0003214389531767
1119 => 0.00031197518097907
1120 => 0.00031038854877236
1121 => 0.00032731094579813
1122 => 0.00032966559848506
1123 => 0.00031961991858938
1124 => 0.00032607087133025
1125 => 0.00032373166619146
1126 => 0.00031213741019072
1127 => 0.00031169459489307
1128 => 0.0003058770047897
1129 => 0.00029677360278536
1130 => 0.00029261310379249
1201 => 0.00029044627979389
1202 => 0.00029134035360627
1203 => 0.00029088828252762
1204 => 0.00028793821294677
1205 => 0.00029105737706277
1206 => 0.00028308920167401
1207 => 0.00027991621003025
1208 => 0.00027848304331762
1209 => 0.00027141082902903
1210 => 0.00028266586699014
1211 => 0.00028488325125571
1212 => 0.00028710500445327
1213 => 0.00030644384918268
1214 => 0.00030547773515101
1215 => 0.00031421093548072
1216 => 0.00031387157937523
1217 => 0.00031138072917273
1218 => 0.00030087224189336
1219 => 0.00030506073762714
1220 => 0.00029216919879531
1221 => 0.00030182841622755
1222 => 0.00029742035277004
1223 => 0.00030033804553845
1224 => 0.0002950917708631
1225 => 0.00029799527588181
1226 => 0.00028540907532461
1227 => 0.00027365625833692
1228 => 0.00027838593497888
1229 => 0.00028352763439283
1230 => 0.00029467614880291
1231 => 0.00028803618559351
]
'min_raw' => 0.00027141082902903
'max_raw' => 0.00081016793460517
'avg_raw' => 0.0005407893818171
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000271'
'max' => '$0.00081'
'avg' => '$0.00054'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00051414917097097
'max_diff' => 2.4607934605175E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00029042416744842
102 => 0.00028242482797781
103 => 0.00026591990575161
104 => 0.00026601332181898
105 => 0.00026347439911375
106 => 0.00026128039920765
107 => 0.00028879886524292
108 => 0.00028537650898886
109 => 0.00027992343220494
110 => 0.00028722259217688
111 => 0.0002891526059267
112 => 0.00028920755070488
113 => 0.00029453282940182
114 => 0.00029737493159699
115 => 0.00029787586442726
116 => 0.00030625530551716
117 => 0.000309063983643
118 => 0.0003206325313443
119 => 0.00029713379908239
120 => 0.00029664985815523
121 => 0.00028732530632639
122 => 0.00028141152814121
123 => 0.00028773022777819
124 => 0.00029332773306804
125 => 0.00028749923641873
126 => 0.00028826031503485
127 => 0.00028043603448883
128 => 0.00028323284661742
129 => 0.00028564183799383
130 => 0.00028431173454974
131 => 0.00028232050531621
201 => 0.00029286880146738
202 => 0.00029227362525942
203 => 0.00030209644113967
204 => 0.00030975402855463
205 => 0.00032347779415972
206 => 0.00030915632931473
207 => 0.00030863439821311
208 => 0.00031373635845181
209 => 0.00030906320255947
210 => 0.00031201647577157
211 => 0.00032300197618782
212 => 0.00032323408250089
213 => 0.00031934600270487
214 => 0.00031910941269593
215 => 0.00031985616095169
216 => 0.00032422988880992
217 => 0.00032270157390517
218 => 0.00032447017860515
219 => 0.00032668184586431
220 => 0.00033583023937566
221 => 0.00033803588607951
222 => 0.00033267730808586
223 => 0.00033316112768123
224 => 0.00033115687241535
225 => 0.00032922078694176
226 => 0.00033357282434382
227 => 0.00034152625823561
228 => 0.00034147678033615
301 => 0.00034332182240638
302 => 0.00034447126833098
303 => 0.00033953700497676
304 => 0.00033632498097105
305 => 0.00033755667536123
306 => 0.00033952618151396
307 => 0.00033691799106025
308 => 0.0003208190313486
309 => 0.00032570242731959
310 => 0.00032488959144415
311 => 0.00032373201431331
312 => 0.00032864230672432
313 => 0.00032816869704254
314 => 0.00031398224833222
315 => 0.00031489041875083
316 => 0.00031403747718333
317 => 0.00031679350588336
318 => 0.00030891436796515
319 => 0.00031133793772199
320 => 0.00031285797795392
321 => 0.00031375329332803
322 => 0.00031698778638281
323 => 0.00031660825595521
324 => 0.00031696419423854
325 => 0.00032176009356427
326 => 0.00034601610659989
327 => 0.00034733630787154
328 => 0.00034083515396899
329 => 0.00034343223672347
330 => 0.00033844640575444
331 => 0.00034179342748611
401 => 0.00034408337474979
402 => 0.00033373554339677
403 => 0.00033312281198091
404 => 0.00032811640271391
405 => 0.00033080656347648
406 => 0.00032652632427383
407 => 0.00032757654525775
408 => 0.00032464003583009
409 => 0.00032992516814668
410 => 0.00033583476730316
411 => 0.00033732776542723
412 => 0.00033340033013891
413 => 0.00033055660815957
414 => 0.00032556396914409
415 => 0.00033386683909504
416 => 0.00033629485129408
417 => 0.0003338540857806
418 => 0.00033328850707934
419 => 0.00033221673646245
420 => 0.0003335158882823
421 => 0.0003362816278182
422 => 0.00033497735612826
423 => 0.00033583885055777
424 => 0.00033255572216167
425 => 0.00033953863842324
426 => 0.00035062918997693
427 => 0.00035066484791366
428 => 0.00034936056919322
429 => 0.00034882688644189
430 => 0.00035016515555932
501 => 0.00035089111165685
502 => 0.00035521882858603
503 => 0.0003598626412749
504 => 0.00038153328883961
505 => 0.00037544825771994
506 => 0.00039467574543194
507 => 0.00040988219183534
508 => 0.0004144419402144
509 => 0.0004102471862584
510 => 0.00039589715957108
511 => 0.00039519307880138
512 => 0.00041663807709724
513 => 0.00041057888283551
514 => 0.00040985816095828
515 => 0.00040219089786331
516 => 0.00040672319996144
517 => 0.00040573191900772
518 => 0.00040416713352715
519 => 0.00041281445020748
520 => 0.00042900145508178
521 => 0.00042647855857135
522 => 0.00042459533336012
523 => 0.0004163435886831
524 => 0.00042131298207256
525 => 0.00041954347626904
526 => 0.00042714639615711
527 => 0.00042264259484071
528 => 0.0004105329784796
529 => 0.00041246147479892
530 => 0.00041216998645985
531 => 0.00041816879582283
601 => 0.00041636810215166
602 => 0.00041181837212046
603 => 0.00042894612965887
604 => 0.00042783394835392
605 => 0.0004294107671643
606 => 0.00043010493156937
607 => 0.00044053029575806
608 => 0.00044480123389172
609 => 0.00044577081162136
610 => 0.00044982787252213
611 => 0.00044566986825025
612 => 0.00046230484994457
613 => 0.0004733661420932
614 => 0.00048621440213272
615 => 0.00050498916333719
616 => 0.00051204864722632
617 => 0.00051077341464874
618 => 0.00052500822432058
619 => 0.00055058786087884
620 => 0.00051594379054696
621 => 0.0005524240807288
622 => 0.00054087484204244
623 => 0.00051349180487899
624 => 0.00051172866011047
625 => 0.00053027277080115
626 => 0.00057140182350858
627 => 0.00056109946228722
628 => 0.00057141867448081
629 => 0.00055938076531976
630 => 0.00055878298166645
701 => 0.00057083402010198
702 => 0.0005989919282745
703 => 0.00058561516158514
704 => 0.00056643628641818
705 => 0.00058059766938512
706 => 0.00056832976888503
707 => 0.00054068675548921
708 => 0.00056109158426575
709 => 0.00054744745635894
710 => 0.00055142953824388
711 => 0.00058010746569315
712 => 0.00057665686159007
713 => 0.00058112226281679
714 => 0.00057324094653152
715 => 0.00056587855435158
716 => 0.00055213610260929
717 => 0.00054806764014308
718 => 0.0005491920168008
719 => 0.00054806708295785
720 => 0.00054037830750769
721 => 0.00053871791718129
722 => 0.00053595052722724
723 => 0.00053680825709151
724 => 0.00053160475434941
725 => 0.00054142483912227
726 => 0.00054324753339041
727 => 0.00055039377216099
728 => 0.00055113571837689
729 => 0.00057103789163261
730 => 0.00056007610904579
731 => 0.0005674302191998
801 => 0.00056677239836806
802 => 0.00051408527832695
803 => 0.00052134509860622
804 => 0.00053263910070366
805 => 0.00052755116806742
806 => 0.00052035802171266
807 => 0.00051454917035909
808 => 0.00050574816657288
809 => 0.00051813541039366
810 => 0.00053442331878148
811 => 0.00055154880661274
812 => 0.00057212395813559
813 => 0.00056753182383686
814 => 0.0005511641684668
815 => 0.00055189840953012
816 => 0.00055643719887036
817 => 0.00055055905428225
818 => 0.0005488254746882
819 => 0.00055619903165507
820 => 0.00055624980928946
821 => 0.00054948629354334
822 => 0.00054196988350183
823 => 0.00054193838946931
824 => 0.00054060091690234
825 => 0.00055961869871821
826 => 0.00057007655580233
827 => 0.00057127553226334
828 => 0.00056999585513356
829 => 0.00057048835207224
830 => 0.00056440315545815
831 => 0.00057831211040897
901 => 0.00059107634292491
902 => 0.00058765525594258
903 => 0.0005825265602199
904 => 0.00057844130704534
905 => 0.00058669290012587
906 => 0.0005863254696752
907 => 0.00059096485848915
908 => 0.00059075438901414
909 => 0.00058919433705225
910 => 0.00058765531165695
911 => 0.00059375737338578
912 => 0.00059200007760399
913 => 0.00059024005225647
914 => 0.00058671005197563
915 => 0.00058718983764089
916 => 0.00058206202745984
917 => 0.00057968966783745
918 => 0.00054401507120345
919 => 0.00053448165328177
920 => 0.00053748106063055
921 => 0.00053846854340934
922 => 0.00053431958771242
923 => 0.00054026812440254
924 => 0.00053934105126044
925 => 0.00054294775053668
926 => 0.00054069444141357
927 => 0.00054078691800597
928 => 0.0005474134196809
929 => 0.00054933712130828
930 => 0.00054835871113442
1001 => 0.00054904395608226
1002 => 0.00056483513668133
1003 => 0.00056259013577367
1004 => 0.00056139752378601
1005 => 0.00056172788545705
1006 => 0.00056576287066684
1007 => 0.00056689244622356
1008 => 0.00056210635521588
1009 => 0.00056436350340317
1010 => 0.00057397415390987
1011 => 0.0005773373376715
1012 => 0.00058807100581886
1013 => 0.00058351115281412
1014 => 0.00059188096035013
1015 => 0.00061760689523815
1016 => 0.00063815855212599
1017 => 0.00061925839911879
1018 => 0.00065699889975559
1019 => 0.00068638529305461
1020 => 0.00068525739433419
1021 => 0.00068013319694299
1022 => 0.00064667756944973
1023 => 0.00061589120223514
1024 => 0.00064164530566835
1025 => 0.00064171095817438
1026 => 0.00063949865784928
1027 => 0.00062575825053183
1028 => 0.0006390205214587
1029 => 0.00064007323236338
1030 => 0.00063948399419518
1031 => 0.00062894925612097
1101 => 0.0006128646582267
1102 => 0.00061600755015416
1103 => 0.00062115567124458
1104 => 0.00061140920400984
1105 => 0.00060829461716906
1106 => 0.00061408522668046
1107 => 0.00063274377704757
1108 => 0.00062921648618229
1109 => 0.0006291243743629
1110 => 0.00064421562048868
1111 => 0.00063341354515737
1112 => 0.0006160471920863
1113 => 0.00061166195890179
1114 => 0.00059609733534385
1115 => 0.00060684787627461
1116 => 0.00060723476910389
1117 => 0.00060134680770398
1118 => 0.00061652496770349
1119 => 0.00061638509828703
1120 => 0.00063079450223559
1121 => 0.00065833987066026
1122 => 0.00065019334979183
1123 => 0.00064071983236079
1124 => 0.00064174986637769
1125 => 0.00065304679720249
1126 => 0.00064621641494197
1127 => 0.00064867266802597
1128 => 0.00065304307936927
1129 => 0.00065567985704389
1130 => 0.00064137047464801
1201 => 0.00063803427311465
1202 => 0.00063120957562502
1203 => 0.00062942913943899
1204 => 0.00063498771314231
1205 => 0.00063352322535879
1206 => 0.00060720225225971
1207 => 0.00060445156412234
1208 => 0.00060453592380044
1209 => 0.00059761918769094
1210 => 0.00058706950491708
1211 => 0.00061479344135796
1212 => 0.00061256682126551
1213 => 0.00061010880501016
1214 => 0.00061040989797619
1215 => 0.00062244391913379
1216 => 0.00061546357912975
1217 => 0.00063402195708572
1218 => 0.00063020691249388
1219 => 0.00062629402640374
1220 => 0.00062575314635665
1221 => 0.0006242470190437
1222 => 0.0006190819480823
1223 => 0.00061284481452377
1224 => 0.00060872651869717
1225 => 0.00056151803633611
1226 => 0.00057027965606321
1227 => 0.00058035910091248
1228 => 0.00058383848488361
1229 => 0.00057788675783495
1230 => 0.00061931695854239
1231 => 0.00062688665544299
]
'min_raw' => 0.00026128039920765
'max_raw' => 0.00068638529305461
'avg_raw' => 0.00047383284613113
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000261'
'max' => '$0.000686'
'avg' => '$0.000473'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.0130429821379E-5
'max_diff' => -0.00012378264155057
'year' => 2027
]
2 => [
'items' => [
101 => 0.00060395754977197
102 => 0.00059966845029014
103 => 0.00061959815119036
104 => 0.00060757810524068
105 => 0.00061299073119582
106 => 0.00060129159442891
107 => 0.00062506333712623
108 => 0.00062488223627544
109 => 0.00061563449145702
110 => 0.00062345062205173
111 => 0.00062209237701537
112 => 0.00061165169589156
113 => 0.00062539432534056
114 => 0.00062540114151331
115 => 0.0006165003881889
116 => 0.00060610625693142
117 => 0.00060424803176101
118 => 0.00060284810871253
119 => 0.00061264643594274
120 => 0.00062143158549877
121 => 0.00063777857079928
122 => 0.00064188859129862
123 => 0.00065793027492709
124 => 0.00064837823338174
125 => 0.00065261252967915
126 => 0.00065720945728776
127 => 0.00065941339342975
128 => 0.00065582219775612
129 => 0.00068074153545154
130 => 0.00068284549106182
131 => 0.00068355092917879
201 => 0.00067514826871497
202 => 0.00068261179787402
203 => 0.0006791198597466
204 => 0.00068820491266578
205 => 0.00068962956496728
206 => 0.00068842293515138
207 => 0.00068887514227849
208 => 0.00066761088362785
209 => 0.00066650821963891
210 => 0.0006514733179083
211 => 0.00065760015149591
212 => 0.00064614632977065
213 => 0.00064977845462717
214 => 0.00065137946065576
215 => 0.00065054318596272
216 => 0.00065794655347432
217 => 0.0006516521786814
218 => 0.00063504028871184
219 => 0.00061842387284397
220 => 0.00061821526727819
221 => 0.00061384045828428
222 => 0.00061067827266792
223 => 0.0006112874218022
224 => 0.00061343414280394
225 => 0.00061055350134077
226 => 0.00061116823224917
227 => 0.00062137686125916
228 => 0.00062342412900251
229 => 0.00061646671329148
301 => 0.00058853168526143
302 => 0.00058167635931314
303 => 0.00058660383165775
304 => 0.00058424881724689
305 => 0.00047153439426883
306 => 0.00049801497603086
307 => 0.00048228111354345
308 => 0.00048953200125785
309 => 0.00047347180192215
310 => 0.00048113657083231
311 => 0.00047972116788715
312 => 0.00052230115974311
313 => 0.00052163633173714
314 => 0.00052195454972168
315 => 0.00050676517620698
316 => 0.00053096226065233
317 => 0.00054288261454913
318 => 0.00054067647429278
319 => 0.00054123171226588
320 => 0.00053169088429665
321 => 0.00052204692579164
322 => 0.00051135029161502
323 => 0.00053122331577124
324 => 0.00052901377472891
325 => 0.00053408166691225
326 => 0.00054697074363067
327 => 0.00054886870913829
328 => 0.00055141959402781
329 => 0.00055050528337927
330 => 0.0005722878724119
331 => 0.0005696498571539
401 => 0.0005760067149169
402 => 0.00056293017620245
403 => 0.00054813283141061
404 => 0.00055094532289389
405 => 0.00055067445734743
406 => 0.00054722602805589
407 => 0.00054411294028117
408 => 0.00053893052624332
409 => 0.00055532845111205
410 => 0.00055466272530851
411 => 0.00056544005224629
412 => 0.00056353505502467
413 => 0.00055081301734679
414 => 0.0005512673874113
415 => 0.00055432324445796
416 => 0.00056489960058761
417 => 0.00056803938318013
418 => 0.00056658491078457
419 => 0.00057002753906074
420 => 0.00057274845208297
421 => 0.00057036924384442
422 => 0.00060405381519612
423 => 0.00059006563269077
424 => 0.00059688337551473
425 => 0.00059850936700577
426 => 0.00059434442399239
427 => 0.00059524765099656
428 => 0.00059661579379326
429 => 0.00060492288894499
430 => 0.00062672311030048
501 => 0.0006363782799397
502 => 0.00066542633417697
503 => 0.00063557655250761
504 => 0.00063380538999403
505 => 0.00063903782172936
506 => 0.00065609210461546
507 => 0.0006699129990673
508 => 0.0006744981871035
509 => 0.00067510419539569
510 => 0.00068370631296915
511 => 0.00068863688634226
512 => 0.00068266178963758
513 => 0.00067759852079906
514 => 0.00065946252029556
515 => 0.00066156181173653
516 => 0.00067602384799766
517 => 0.00069645232602619
518 => 0.00071398208539555
519 => 0.00070784377463819
520 => 0.00075467475274476
521 => 0.00075931785293663
522 => 0.00075867632661952
523 => 0.00076925399984256
524 => 0.00074825947260051
525 => 0.00073928390545473
526 => 0.00067869325699249
527 => 0.00069571675774995
528 => 0.00072046141585605
529 => 0.000717186367568
530 => 0.00069921613542474
531 => 0.00071396845336304
601 => 0.00070909087570501
602 => 0.00070524372783523
603 => 0.00072286825803298
604 => 0.00070348936310476
605 => 0.00072026809655506
606 => 0.00069874919735127
607 => 0.00070787181392468
608 => 0.0007026933755463
609 => 0.00070604445982265
610 => 0.00068645408961701
611 => 0.00069702457785062
612 => 0.00068601432255395
613 => 0.00068600910225936
614 => 0.00068576605026344
615 => 0.00069871956679303
616 => 0.00069914198050201
617 => 0.00068956931221497
618 => 0.00068818974116162
619 => 0.0006932907384083
620 => 0.00068731880658574
621 => 0.00069011303589863
622 => 0.0006874034409451
623 => 0.00068679345404826
624 => 0.00068193297467352
625 => 0.00067983894651722
626 => 0.00068066006891376
627 => 0.00067785715485675
628 => 0.00067616829775157
629 => 0.0006854300940773
630 => 0.00068048188992026
701 => 0.000684671710823
702 => 0.00067989688110677
703 => 0.00066334524101606
704 => 0.00065382621776947
705 => 0.00062256170397595
706 => 0.00063142828130429
707 => 0.00063730683124611
708 => 0.0006353639705254
709 => 0.00063953798714077
710 => 0.00063979423786099
711 => 0.00063843722251028
712 => 0.00063686597257858
713 => 0.0006361011750074
714 => 0.00064180134951607
715 => 0.00064511049267741
716 => 0.00063789682237762
717 => 0.00063620676035636
718 => 0.00064350017930709
719 => 0.00064794916065377
720 => 0.00068079793925098
721 => 0.00067836439563234
722 => 0.0006844721125563
723 => 0.00068378447736122
724 => 0.00069018633773314
725 => 0.00070065067381318
726 => 0.00067937375268808
727 => 0.00068306669049482
728 => 0.000682161267427
729 => 0.00069204643906683
730 => 0.00069207729949369
731 => 0.00068615064529466
801 => 0.00068936358068494
802 => 0.00068757020829236
803 => 0.00069081107459456
804 => 0.00067833189417365
805 => 0.00069353018888204
806 => 0.00070214664262522
807 => 0.0007022662820938
808 => 0.00070635041278366
809 => 0.00071050012610146
810 => 0.00071846513945111
811 => 0.00071027798620216
812 => 0.00069555009451059
813 => 0.00069661340071992
814 => 0.00068797844320988
815 => 0.00068812359840566
816 => 0.00068734874859459
817 => 0.00068967413120558
818 => 0.00067884218488915
819 => 0.00068138442103904
820 => 0.00067782527554189
821 => 0.0006830589536076
822 => 0.00067742838116687
823 => 0.00068216083080458
824 => 0.00068420319918502
825 => 0.00069173958247791
826 => 0.00067631525122687
827 => 0.00064486399567057
828 => 0.00065147543089812
829 => 0.00064169659887954
830 => 0.0006426016670135
831 => 0.00064443004868462
901 => 0.00063850366547926
902 => 0.00063963423263305
903 => 0.00063959384081863
904 => 0.00063924576598346
905 => 0.00063770408482396
906 => 0.00063546834213038
907 => 0.00064437485289631
908 => 0.0006458882426302
909 => 0.0006492523205393
910 => 0.00065926153452095
911 => 0.00065826137801067
912 => 0.00065989267477504
913 => 0.00065633156309775
914 => 0.00064276685677069
915 => 0.00064350348558603
916 => 0.00063431771245518
917 => 0.00064901741966791
918 => 0.00064553633497328
919 => 0.00064329205702486
920 => 0.00064267968499354
921 => 0.00065271370988065
922 => 0.00065571604739095
923 => 0.00065384519213391
924 => 0.00065000801342015
925 => 0.00065737653091061
926 => 0.00065934803533826
927 => 0.00065978938247333
928 => 0.00067284498269333
929 => 0.000660519045496
930 => 0.00066348602108868
1001 => 0.00068663351770221
1002 => 0.00066564193240992
1003 => 0.00067676164330746
1004 => 0.00067621739132321
1005 => 0.00068190585914789
1006 => 0.00067575077092765
1007 => 0.00067582707062295
1008 => 0.00068087804468108
1009 => 0.00067378486256441
1010 => 0.00067202849092067
1011 => 0.00066960207607423
1012 => 0.00067490006412283
1013 => 0.00067807596835058
1014 => 0.00070367142398158
1015 => 0.00072020725561379
1016 => 0.00071948939155248
1017 => 0.00072604932528762
1018 => 0.00072309401505784
1019 => 0.00071355053875441
1020 => 0.00072984008910141
1021 => 0.00072468539378788
1022 => 0.00072511034060658
1023 => 0.00072509452406476
1024 => 0.00072852194581697
1025 => 0.00072609330338694
1026 => 0.00072130619986232
1027 => 0.00072448410258673
1028 => 0.00073392133755722
1029 => 0.00076321480447535
1030 => 0.00077960781664955
1031 => 0.00076222792455879
1101 => 0.00077421634139696
1102 => 0.00076702756320375
1103 => 0.00076572114835841
1104 => 0.00077325076006983
1105 => 0.0007807935513698
1106 => 0.00078031310817237
1107 => 0.00077483742901522
1108 => 0.00077174435679956
1109 => 0.00079516613587176
1110 => 0.00081242290371257
1111 => 0.00081124610783667
1112 => 0.00081644010211839
1113 => 0.0008316898299737
1114 => 0.00083308407397298
1115 => 0.00083290843127541
1116 => 0.00082945265204888
1117 => 0.00084446798954984
1118 => 0.00085699404826287
1119 => 0.000828652739005
1120 => 0.00083944473855541
1121 => 0.0008442896148501
1122 => 0.00085140333066073
1123 => 0.00086340536163047
1124 => 0.00087644275064509
1125 => 0.00087828638039945
1126 => 0.00087697823686293
1127 => 0.00086837972834396
1128 => 0.00088264539497215
1129 => 0.0008910018879119
1130 => 0.00089597798822258
1201 => 0.00090859655066633
1202 => 0.00084431953515671
1203 => 0.00079882106880404
1204 => 0.00079171582627726
1205 => 0.00080616461635534
1206 => 0.00080997464707199
1207 => 0.00080843882846748
1208 => 0.00075722616804797
1209 => 0.00079144620221885
1210 => 0.00082826408168452
1211 => 0.00082967840638033
1212 => 0.0008481102066664
1213 => 0.00085411235638457
1214 => 0.00086895237152614
1215 => 0.00086802412453854
1216 => 0.00087163743206929
1217 => 0.00087080679524174
1218 => 0.00089829479835764
1219 => 0.00092861814780245
1220 => 0.00092756814663352
1221 => 0.00092320880638124
1222 => 0.00092968317003384
1223 => 0.0009609801163085
1224 => 0.00095809879501887
1225 => 0.00096089775322138
1226 => 0.00099779861669779
1227 => 0.0010457749883038
1228 => 0.0010234851469438
1229 => 0.0010718476889658
1230 => 0.0011022893455804
1231 => 0.0011549350429694
]
'min_raw' => 0.00047153439426883
'max_raw' => 0.0011549350429694
'avg_raw' => 0.00081323471861911
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000471'
'max' => '$0.001154'
'avg' => '$0.000813'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00021025399506118
'max_diff' => 0.00046854974991477
'year' => 2028
]
3 => [
'items' => [
101 => 0.0011483435423708
102 => 0.0011688381260323
103 => 0.0011365433806115
104 => 0.0010623881172805
105 => 0.0010506527630035
106 => 0.0010741472394527
107 => 0.0011319061172456
108 => 0.0010723282068446
109 => 0.0010843807405243
110 => 0.0010809096100137
111 => 0.0010807246482201
112 => 0.0010877838875861
113 => 0.0010775440927006
114 => 0.0010358253262333
115 => 0.0010549447910551
116 => 0.0010475618474953
117 => 0.0010557537738098
118 => 0.0010999622215216
119 => 0.0010804166129904
120 => 0.0010598269021591
121 => 0.0010856509687642
122 => 0.0011185338796644
123 => 0.0011164761261966
124 => 0.0011124832243947
125 => 0.0011349910027904
126 => 0.0011721672585397
127 => 0.0011822158510825
128 => 0.0011896335166631
129 => 0.0011906562874242
130 => 0.0012011914619119
131 => 0.001144541173486
201 => 0.0012344466361004
202 => 0.0012499708259056
203 => 0.001247052921634
204 => 0.0012643074052447
205 => 0.0012592306984625
206 => 0.0012518753468458
207 => 0.0012792273735028
208 => 0.0012478704821353
209 => 0.0012033633225621
210 => 0.0011789458145684
211 => 0.0012111007587987
212 => 0.0012307366611872
213 => 0.001243714743588
214 => 0.001247641903481
215 => 0.0011489387741138
216 => 0.0010957432617115
217 => 0.0011298409752736
218 => 0.0011714425391179
219 => 0.0011443100746983
220 => 0.001145373615935
221 => 0.001106689851959
222 => 0.0011748651938677
223 => 0.0011649326199965
224 => 0.0012164628308108
225 => 0.0012041647324442
226 => 0.001246185618972
227 => 0.001235120111276
228 => 0.001281052415058
301 => 0.0012993760546041
302 => 0.0013301442972489
303 => 0.0013527775417876
304 => 0.0013660682158857
305 => 0.0013652702936649
306 => 0.0014179345658293
307 => 0.0013868802844835
308 => 0.001347868788181
309 => 0.0013471631932926
310 => 0.0013673678000248
311 => 0.0014097111128724
312 => 0.0014206901178236
313 => 0.001426825883808
314 => 0.0014174287446154
315 => 0.001383721547895
316 => 0.0013691669512504
317 => 0.0013815678892788
318 => 0.0013664026076949
319 => 0.0013925821383353
320 => 0.0014285322255506
321 => 0.0014211086747027
322 => 0.0014459244921863
323 => 0.0014716062525817
324 => 0.0015083323233871
325 => 0.0015179338782581
326 => 0.0015338048833455
327 => 0.001550141360934
328 => 0.0015553881972549
329 => 0.0015654060357894
330 => 0.0015653532368354
331 => 0.0015955426675374
401 => 0.0016288425444905
402 => 0.0016414124771464
403 => 0.0016703163441784
404 => 0.0016208194847983
405 => 0.0016583634212171
406 => 0.0016922289916525
407 => 0.0016518530624658
408 => 0.0017075018744646
409 => 0.0017096625917316
410 => 0.0017422868571416
411 => 0.0017092159140956
412 => 0.0016895784936811
413 => 0.0017462709906132
414 => 0.0017737027040818
415 => 0.0017654400487384
416 => 0.0017025608335974
417 => 0.0016659624333689
418 => 0.0015701773606669
419 => 0.0016836389168897
420 => 0.0017389027312068
421 => 0.0017024177136691
422 => 0.0017208186343084
423 => 0.0018212080907979
424 => 0.0018594298960932
425 => 0.0018514800277824
426 => 0.0018528234246609
427 => 0.0018734472170234
428 => 0.0019649044700886
429 => 0.0019101011640894
430 => 0.0019519962380851
501 => 0.0019742172342685
502 => 0.0019948573339132
503 => 0.0019441717725563
504 => 0.0018782306019497
505 => 0.0018573442651966
506 => 0.001698789997716
507 => 0.0016905365595274
508 => 0.0016859036545673
509 => 0.0016566938441316
510 => 0.0016337429343695
511 => 0.0016154915188141
512 => 0.0015675943540625
513 => 0.0015837582411302
514 => 0.0015074201574314
515 => 0.0015562585581263
516 => 0.0014344211332957
517 => 0.0015358909611133
518 => 0.0014806655470991
519 => 0.0015177479273268
520 => 0.0015176185503956
521 => 0.0014493381314169
522 => 0.001409955410726
523 => 0.0014350516131487
524 => 0.0014619567342848
525 => 0.0014663219996695
526 => 0.001501205191518
527 => 0.0015109403405512
528 => 0.0014814423844899
529 => 0.0014318963234756
530 => 0.0014434047434239
531 => 0.0014097221929631
601 => 0.0013506948188611
602 => 0.0013930893094602
603 => 0.0014075646525049
604 => 0.0014139577886356
605 => 0.001355911145546
606 => 0.0013376716300333
607 => 0.0013279610650188
608 => 0.0014244032307713
609 => 0.0014296865503171
610 => 0.0014026563405346
611 => 0.0015248354518609
612 => 0.0014971825560619
613 => 0.0015280776157933
614 => 0.0014423604749391
615 => 0.0014456349851532
616 => 0.0014050551169947
617 => 0.0014277771316157
618 => 0.0014117179440463
619 => 0.0014259414173776
620 => 0.0014344669086469
621 => 0.0014750401180483
622 => 0.001536354241991
623 => 0.001468979833561
624 => 0.0014396238389888
625 => 0.001457836132917
626 => 0.0015063378716359
627 => 0.0015798204885534
628 => 0.0015363173003628
629 => 0.0015556232765497
630 => 0.0015598407734835
701 => 0.0015277631330873
702 => 0.0015810032369099
703 => 0.0016095350410702
704 => 0.0016388027683138
705 => 0.0016642151158163
706 => 0.0016271125944416
707 => 0.00166681761075
708 => 0.0016348223764843
709 => 0.0016061193437415
710 => 0.001606162874394
711 => 0.00158815704267
712 => 0.001553268474824
713 => 0.0015468344876265
714 => 0.0015803049015508
715 => 0.0016071450038581
716 => 0.0016093556832395
717 => 0.0016242157429711
718 => 0.0016330097732494
719 => 0.0017192032248817
720 => 0.0017538709441578
721 => 0.0017962619750623
722 => 0.0018127756706271
723 => 0.0018624759737899
724 => 0.0018223389425247
725 => 0.0018136550433367
726 => 0.001693098364709
727 => 0.0017128395140806
728 => 0.0017444469989621
729 => 0.001693619560493
730 => 0.001725857871338
731 => 0.0017322223967996
801 => 0.0016918924635831
802 => 0.0017134344234676
803 => 0.0016562253647605
804 => 0.0015376012431365
805 => 0.0015811352994678
806 => 0.0016131910183325
807 => 0.0015674435550709
808 => 0.001649444112296
809 => 0.0016015410796002
810 => 0.0015863581179867
811 => 0.0015271239716158
812 => 0.0015550802085715
813 => 0.0015928914193488
814 => 0.0015695284871135
815 => 0.0016180100794637
816 => 0.0016866729437999
817 => 0.0017356061898702
818 => 0.001739362676897
819 => 0.0017079018779466
820 => 0.0017583180090447
821 => 0.0017586852355192
822 => 0.0017018156336847
823 => 0.0016669833192123
824 => 0.0016590693440763
825 => 0.0016788400055921
826 => 0.0017028452385378
827 => 0.0017406948002575
828 => 0.0017635664977009
829 => 0.0018232037544222
830 => 0.0018393398861568
831 => 0.0018570686027638
901 => 0.0018807596354843
902 => 0.0019092067945214
903 => 0.0018469660300459
904 => 0.0018494389716498
905 => 0.0017914812335522
906 => 0.0017295450784145
907 => 0.0017765468997132
908 => 0.0018379955286711
909 => 0.0018238991452935
910 => 0.0018223130142005
911 => 0.0018249804467428
912 => 0.0018143522340209
913 => 0.0017662812217797
914 => 0.0017421402603726
915 => 0.0017732882596039
916 => 0.0017898420349573
917 => 0.0018155154968896
918 => 0.0018123507008054
919 => 0.0018784827816144
920 => 0.0019041797084864
921 => 0.0018976053349591
922 => 0.0018988151779092
923 => 0.0019453382365659
924 => 0.0019970814459889
925 => 0.0020455457897313
926 => 0.0020948458017781
927 => 0.0020354127130435
928 => 0.0020052362559073
929 => 0.0020363706568965
930 => 0.0020198503054832
1001 => 0.0021147811449584
1002 => 0.0021213539503152
1003 => 0.0022162779252101
1004 => 0.0023063720807221
1005 => 0.0022497855558495
1006 => 0.0023031441000914
1007 => 0.0023608557160748
1008 => 0.0024721907866793
1009 => 0.0024346970517147
1010 => 0.0024059774383336
1011 => 0.0023788375424606
1012 => 0.0024353113574351
1013 => 0.0025079640182087
1014 => 0.0025236127054808
1015 => 0.0025489695571202
1016 => 0.0025223099281096
1017 => 0.002554418514791
1018 => 0.0026677759350042
1019 => 0.002637145759429
1020 => 0.0025936459860657
1021 => 0.0026831307823617
1022 => 0.0027155149822779
1023 => 0.0029428042570267
1024 => 0.0032297663552488
1025 => 0.0031109621622901
1026 => 0.0030372165659333
1027 => 0.0030545485303461
1028 => 0.0031593373743368
1029 => 0.0031929922251949
1030 => 0.0031015067390397
1031 => 0.0031338209593699
1101 => 0.0033118754904536
1102 => 0.0034073960337066
1103 => 0.0032776663058485
1104 => 0.0029197471318434
1105 => 0.0025897293074157
1106 => 0.0026772648953502
1107 => 0.002667341076224
1108 => 0.0028586384571182
1109 => 0.0026364152398716
1110 => 0.0026401569089268
1111 => 0.0028354101170705
1112 => 0.0027833199086252
1113 => 0.0026989404421536
1114 => 0.0025903453709009
1115 => 0.0023895973378618
1116 => 0.002211789206726
1117 => 0.0025605118986503
1118 => 0.0025454743420634
1119 => 0.0025236977316847
1120 => 0.0025721592216073
1121 => 0.0028074744606376
1122 => 0.0028020496827368
1123 => 0.0027675400134783
1124 => 0.0027937152934566
1125 => 0.0026943517890178
1126 => 0.0027199600265766
1127 => 0.0025896770309062
1128 => 0.0026485703860477
1129 => 0.0026987594017153
1130 => 0.0027088355896717
1201 => 0.0027315377556402
1202 => 0.002537550233054
1203 => 0.0026246449355208
1204 => 0.00267580491355
1205 => 0.0024446622715981
1206 => 0.0026712359666989
1207 => 0.0025341733418691
1208 => 0.0024876522283903
1209 => 0.0025502867789988
1210 => 0.0025258780337126
1211 => 0.0025048928278451
1212 => 0.0024931827223994
1213 => 0.0025391746236432
1214 => 0.002537029046478
1215 => 0.0024617773693998
1216 => 0.002363614624302
1217 => 0.0023965612636391
1218 => 0.0023845914406916
1219 => 0.0023412112581917
1220 => 0.0023704442634534
1221 => 0.0022417169027664
1222 => 0.0020202481693704
1223 => 0.0021665571984226
1224 => 0.0021609244599577
1225 => 0.0021580841777993
1226 => 0.0022680313694475
1227 => 0.0022574624838838
1228 => 0.0022382798530949
1229 => 0.0023408589541341
1230 => 0.0023034162023712
1231 => 0.0024188059406827
]
'min_raw' => 0.0010358253262333
'max_raw' => 0.0034073960337066
'avg_raw' => 0.00222161067997
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001035'
'max' => '$0.0034073'
'avg' => '$0.002221'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00056429093196449
'max_diff' => 0.0022524609907373
'year' => 2029
]
4 => [
'items' => [
101 => 0.002494809085275
102 => 0.0024755322293622
103 => 0.0025470135542064
104 => 0.0023973202876666
105 => 0.0024470423861597
106 => 0.0024572900417472
107 => 0.0023395931439502
108 => 0.0022591916842696
109 => 0.0022538298235527
110 => 0.0021144247724701
111 => 0.0021888938255202
112 => 0.0022544235104654
113 => 0.0022230398766856
114 => 0.0022131047557903
115 => 0.0022638611337795
116 => 0.0022678053390483
117 => 0.0021778770409328
118 => 0.0021965759817699
119 => 0.0022745536735006
120 => 0.0021946111440084
121 => 0.0020392958677432
122 => 0.0020007755318277
123 => 0.0019956362089459
124 => 0.0018911660028568
125 => 0.0020033496448657
126 => 0.0019543784787942
127 => 0.0021090778056496
128 => 0.0020207143798189
129 => 0.0020169052091411
130 => 0.0020111470889777
131 => 0.001921225266987
201 => 0.001940912431173
202 => 0.0020063555633673
203 => 0.0020297064102038
204 => 0.0020272707255709
205 => 0.0020060348563171
206 => 0.0020157565285163
207 => 0.0019844396351077
208 => 0.0019733809882404
209 => 0.0019384768568066
210 => 0.0018871774261114
211 => 0.0018943109265873
212 => 0.0017926733311539
213 => 0.0017372957748463
214 => 0.0017219679971248
215 => 0.0017014710521637
216 => 0.0017242831815985
217 => 0.0017923854046161
218 => 0.0017102396749642
219 => 0.001569406583329
220 => 0.0015778708921042
221 => 0.0015968876808462
222 => 0.0015614500208341
223 => 0.0015279112496901
224 => 0.0015570704901133
225 => 0.0014973976526177
226 => 0.0016040988581672
227 => 0.0016012128895838
228 => 0.0016409845006544
301 => 0.0016658545052525
302 => 0.0016085371964135
303 => 0.001594122048243
304 => 0.0016023335717729
305 => 0.0014666153792187
306 => 0.0016298934288622
307 => 0.0016313054642158
308 => 0.0016192147602469
309 => 0.0017061552810378
310 => 0.0018896268973352
311 => 0.0018205974951554
312 => 0.0017938672242067
313 => 0.0017430529595935
314 => 0.0018107599501381
315 => 0.0018055611096579
316 => 0.0017820499814046
317 => 0.0017678303776777
318 => 0.0017940304335412
319 => 0.0017645839008131
320 => 0.0017592944943985
321 => 0.0017272464464571
322 => 0.0017158067514352
323 => 0.0017073372566685
324 => 0.0016980131751256
325 => 0.0017185797755928
326 => 0.0016719731531725
327 => 0.0016157701354373
328 => 0.0016110974626377
329 => 0.001623999123063
330 => 0.0016182910987404
331 => 0.0016110701348132
401 => 0.0015972833481637
402 => 0.0015931931030729
403 => 0.0016064844153133
404 => 0.0015914792987255
405 => 0.0016136201656217
406 => 0.001607599074936
407 => 0.0015739657518177
408 => 0.0015320461785613
409 => 0.00153167300643
410 => 0.0015226415031338
411 => 0.0015111385257905
412 => 0.001507938660646
413 => 0.0015546147802166
414 => 0.0016512329508291
415 => 0.001632264492061
416 => 0.0016459711474868
417 => 0.0017133943262062
418 => 0.0017348261272354
419 => 0.0017196143425049
420 => 0.0016987915133438
421 => 0.0016997076121492
422 => 0.0017708655228918
423 => 0.0017753035545007
424 => 0.0017865170286133
425 => 0.0018009295117753
426 => 0.0017220688507087
427 => 0.0016959932821048
428 => 0.0016836372310828
429 => 0.0016455853763286
430 => 0.0016866210393615
501 => 0.0016627113158345
502 => 0.0016659375544108
503 => 0.0016638364623056
504 => 0.0016649838006702
505 => 0.0016040690330057
506 => 0.0016262631727567
507 => 0.0015893611107965
508 => 0.0015399533922825
509 => 0.0015397877602855
510 => 0.0015518802293959
511 => 0.0015446871555907
512 => 0.0015253307789316
513 => 0.0015280802608765
514 => 0.0015039919058983
515 => 0.0015310050233046
516 => 0.0015317796628542
517 => 0.0015213781412383
518 => 0.0015629955756946
519 => 0.0015800462725479
520 => 0.0015731997681981
521 => 0.0015795659035513
522 => 0.0016330527171602
523 => 0.0016417734015718
524 => 0.0016456465535313
525 => 0.0016404570429998
526 => 0.001580543544317
527 => 0.0015832009627554
528 => 0.0015637025894789
529 => 0.0015472285187482
530 => 0.0015478873951823
531 => 0.0015563572090172
601 => 0.0015933453827821
602 => 0.0016711848138984
603 => 0.0016741387634094
604 => 0.0016777190363895
605 => 0.0016631562668784
606 => 0.0016587639962469
607 => 0.0016645585349511
608 => 0.0016937909326755
609 => 0.0017689845961414
610 => 0.0017424061334566
611 => 0.0017207974295755
612 => 0.001739754088544
613 => 0.001736835859483
614 => 0.0017122030694063
615 => 0.0017115117090309
616 => 0.0016642335092943
617 => 0.0016467558353242
618 => 0.0016321501827736
619 => 0.0016162011914785
620 => 0.0016067460948238
621 => 0.0016212734205501
622 => 0.0016245959918259
623 => 0.0015928317402312
624 => 0.0015885023901118
625 => 0.001614441763643
626 => 0.0016030268124693
627 => 0.0016147673728287
628 => 0.0016174912835407
629 => 0.0016170526711791
630 => 0.0016051341511549
701 => 0.0016127306604029
702 => 0.0015947626514029
703 => 0.001575225140323
704 => 0.001562761425484
705 => 0.0015518851812152
706 => 0.0015579199536666
707 => 0.0015364070917832
708 => 0.0015295246942984
709 => 0.0016101571339965
710 => 0.0016697211841464
711 => 0.0016688550992673
712 => 0.0016635830303045
713 => 0.001655749805226
714 => 0.0016932178834709
715 => 0.0016801647542082
716 => 0.0016896619963723
717 => 0.001692079443101
718 => 0.0016993963262606
719 => 0.0017020114830827
720 => 0.0016941066628229
721 => 0.0016675771205385
722 => 0.0016014680235189
723 => 0.0015706940603982
724 => 0.0015605381399874
725 => 0.0015609072884055
726 => 0.0015507245270835
727 => 0.0015537238066522
728 => 0.0015496815000492
729 => 0.0015420263492823
730 => 0.0015574472696783
731 => 0.0015592243870982
801 => 0.0015556249600115
802 => 0.0015564727553915
803 => 0.001526671036449
804 => 0.0015289367964143
805 => 0.0015163207570088
806 => 0.0015139554017089
807 => 0.001482063152696
808 => 0.0014255614107143
809 => 0.001456868860529
810 => 0.0014190538636465
811 => 0.0014047327513364
812 => 0.0014725266696225
813 => 0.0014657220405371
814 => 0.0014540754734442
815 => 0.0014368477733565
816 => 0.0014304578518137
817 => 0.0013916347113228
818 => 0.0013893408330692
819 => 0.0014085826298095
820 => 0.0013997032026836
821 => 0.001387233124097
822 => 0.0013420677635276
823 => 0.0012912869445107
824 => 0.0012928196982399
825 => 0.0013089721319585
826 => 0.0013559375114477
827 => 0.0013375873251719
828 => 0.0013242740544848
829 => 0.0013217808790805
830 => 0.0013529881890811
831 => 0.0013971530708655
901 => 0.0014178742452652
902 => 0.0013973401907465
903 => 0.0013737517745474
904 => 0.0013751874921433
905 => 0.0013847386780956
906 => 0.0013857423726927
907 => 0.0013703887386755
908 => 0.0013747106967169
909 => 0.0013681452472438
910 => 0.0013278530959466
911 => 0.0013271243386975
912 => 0.0013172359949704
913 => 0.0013169365798522
914 => 0.0013001140404096
915 => 0.0012977604508529
916 => 0.0012643582777343
917 => 0.001286343689232
918 => 0.0012715970294853
919 => 0.0012493703348616
920 => 0.0012455384443307
921 => 0.0012454232530742
922 => 0.0012682450986548
923 => 0.0012860770026789
924 => 0.0012718535539452
925 => 0.0012686151503785
926 => 0.0013031928281162
927 => 0.0012987925034416
928 => 0.0012949818506524
929 => 0.0013931985901063
930 => 0.0013154523768808
1001 => 0.0012815505903157
1002 => 0.0012395906916668
1003 => 0.0012532530462471
1004 => 0.0012561319050989
1005 => 0.0011552259126884
1006 => 0.0011142883641346
1007 => 0.0011002401401698
1008 => 0.0010921551886654
1009 => 0.0010958396025904
1010 => 0.0010589910073964
1011 => 0.0010837538727863
1012 => 0.0010518461040825
1013 => 0.0010464966628224
1014 => 0.0011035517058789
1015 => 0.0011114905818095
1016 => 0.0010776208706742
1017 => 0.0010993707082312
1018 => 0.0010914839147877
1019 => 0.0010523930711961
1020 => 0.0010509000885037
1021 => 0.001031285677299
1022 => 0.0010005929218621
1023 => 0.00098656550903087
1024 => 0.00097925991063679
1025 => 0.00098227434291746
1026 => 0.0009807501537132
1027 => 0.00097080378815411
1028 => 0.00098132026774425
1029 => 0.00095445500810082
1030 => 0.0009437570452427
1031 => 0.00093892502361054
1101 => 0.00091508055937034
1102 => 0.00095302770565787
1103 => 0.00096050377152207
1104 => 0.00096799456754549
1105 => 0.0010331968327457
1106 => 0.001029939511836
1107 => 0.0010593841064802
1108 => 0.0010582399436775
1109 => 0.0010498418683141
1110 => 0.0010144117697726
1111 => 0.0010285335755705
1112 => 0.00098506885234045
1113 => 0.0010176355782983
1114 => 0.0010027734845901
1115 => 0.0010126106894656
1116 => 0.00099492250811445
1117 => 0.0010047118780013
1118 => 0.00096227662408223
1119 => 0.00092265118105274
1120 => 0.0009385976160666
1121 => 0.00095593321462271
1122 => 0.00099352120932072
1123 => 0.0009711341097728
1124 => 0.00097918535732019
1125 => 0.00095221502579901
1126 => 0.00089656752817648
1127 => 0.00089688248696973
1128 => 0.00088832233180714
1129 => 0.00088092510794354
1130 => 0.00097370553745937
1201 => 0.00096216682440754
1202 => 0.00094378139530887
1203 => 0.00096839102276535
1204 => 0.00097489819887215
1205 => 0.0009750834490279
1206 => 0.00099303799795372
1207 => 0.001002620343934
1208 => 0.0010043092739452
1209 => 0.0010325611446137
1210 => 0.0010420307990106
1211 => 0.0010810349652758
1212 => 0.0010018073488257
1213 => 0.0010001757082021
1214 => 0.00096873733069171
1215 => 0.00094879861465356
1216 => 0.00097010255163716
1217 => 0.00098897493152722
1218 => 0.00096932374814145
1219 => 0.00097188977783251
1220 => 0.00094550966969778
1221 => 0.00095493931705649
1222 => 0.00096306139967248
1223 => 0.00095857686304588
1224 => 0.00095186329466183
1225 => 0.00098742761159402
1226 => 0.00098542093345502
1227 => 0.0010185392430024
1228 => 0.0010443573336076
1229 => 0.0010906279675079
1230 => 0.0010423421488902
1231 => 0.0010405824217411
]
'min_raw' => 0.00088092510794354
'max_raw' => 0.0025470135542064
'avg_raw' => 0.001713969331075
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00088'
'max' => '$0.002547'
'avg' => '$0.001713'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00015490021828979
'max_diff' => -0.00086038247950026
'year' => 2030
]
5 => [
'items' => [
101 => 0.0010577840368933
102 => 0.001042028165533
103 => 0.0010519853323585
104 => 0.0010890237139951
105 => 0.0010898062766347
106 => 0.0010766973441454
107 => 0.001075899664412
108 => 0.0010784173782926
109 => 0.0010931637071306
110 => 0.0010880108867257
111 => 0.0010939738609517
112 => 0.0011014306515296
113 => 0.0011322750989736
114 => 0.001139711590829
115 => 0.0011216447709994
116 => 0.0011232760025444
117 => 0.0011165185159829
118 => 0.0011099908686355
119 => 0.0011246640665861
120 => 0.0011514796242432
121 => 0.0011513128060508
122 => 0.0011575334942073
123 => 0.0011614089313938
124 => 0.0011447727179958
125 => 0.0011339431548042
126 => 0.0011380958984349
127 => 0.0011447362259353
128 => 0.0011359425297226
129 => 0.0010816637630613
130 => 0.0010981284735253
131 => 0.0010953879406209
201 => 0.0010914850885048
202 => 0.0011080404821942
203 => 0.0011064436740857
204 => 0.0010586130717926
205 => 0.0010616750317654
206 => 0.0010587992797201
207 => 0.001068091422902
208 => 0.0010415263593069
209 => 0.0010496975939503
210 => 0.0010548225157181
211 => 0.0010578411340109
212 => 0.0010687464531701
213 => 0.0010674668398355
214 => 0.0010686669106086
215 => 0.0010848366200243
216 => 0.0011666174614746
217 => 0.0011710686122355
218 => 0.001149149517957
219 => 0.0011579057637862
220 => 0.0011410956865746
221 => 0.0011523804040245
222 => 0.001160101121103
223 => 0.0011252126852338
224 => 0.0011231468184857
225 => 0.0011062673601056
226 => 0.0011153374249377
227 => 0.0011009062996292
228 => 0.0011044471930005
301 => 0.0010945465464446
302 => 0.0011123657390462
303 => 0.0011322903651973
304 => 0.0011373241126104
305 => 0.0011240824903311
306 => 0.0011144946831354
307 => 0.0010976616521198
308 => 0.0011256553578473
309 => 0.0011338415704947
310 => 0.0011256123591572
311 => 0.0011237054710785
312 => 0.001120091921615
313 => 0.0011244721026795
314 => 0.0011337969866225
315 => 0.0011293995435586
316 => 0.0011323041321753
317 => 0.0011212348355671
318 => 0.0011447782252747
319 => 0.0011821707941555
320 => 0.0011822910173788
321 => 0.001177893550611
322 => 0.0011760942019543
323 => 0.0011806062697187
324 => 0.0011830538813862
325 => 0.0011976450811644
326 => 0.0012133020198656
327 => 0.0012863661211263
328 => 0.001265850013863
329 => 0.0013306768311044
330 => 0.0013819464268336
331 => 0.0013973199368451
401 => 0.0013831770310141
402 => 0.0013347949141509
403 => 0.0013324210566785
404 => 0.001404724365675
405 => 0.0013842953691821
406 => 0.0013818654050538
407 => 0.0013560146922179
408 => 0.001371295665177
409 => 0.0013679534922325
410 => 0.0013626777087349
411 => 0.001391832740659
412 => 0.0014464083577333
413 => 0.0014379022360054
414 => 0.0014315528107231
415 => 0.0014037314774262
416 => 0.0014204861341907
417 => 0.0014145201218312
418 => 0.0014401538970527
419 => 0.0014249690164691
420 => 0.0013841405994412
421 => 0.0013906426594251
422 => 0.0013896598861389
423 => 0.0014098852907296
424 => 0.0014038141262969
425 => 0.0013884743938447
426 => 0.0014462218242073
427 => 0.0014424720272876
428 => 0.0014477883819968
429 => 0.0014501288057535
430 => 0.0014852786489914
501 => 0.0014996784150964
502 => 0.0015029474141056
503 => 0.0015166260781875
504 => 0.0015026070764823
505 => 0.001558693078682
506 => 0.0015959869974359
507 => 0.001639305803196
508 => 0.0017026062214088
509 => 0.0017264077642184
510 => 0.0017221082285492
511 => 0.0017701018832005
512 => 0.0018563454137699
513 => 0.0017395405118742
514 => 0.0018625363571948
515 => 0.0018235972926216
516 => 0.0017312734710025
517 => 0.0017253289053166
518 => 0.0017878516692187
519 => 0.0019265211419605
520 => 0.0018917860118148
521 => 0.0019265779561899
522 => 0.0018859913049934
523 => 0.0018839758356704
524 => 0.0019246067531324
525 => 0.0020195431064584
526 => 0.0019744424036292
527 => 0.0019097794869775
528 => 0.0019575255783667
529 => 0.0019161634953132
530 => 0.0018229631456756
531 => 0.0018917594505154
601 => 0.001845757320675
602 => 0.0018591831877702
603 => 0.0019558728223943
604 => 0.0019442388697473
605 => 0.0019592942817476
606 => 0.0019327218736358
607 => 0.0019078990543754
608 => 0.0018615654188589
609 => 0.0018478483136031
610 => 0.001851639228006
611 => 0.0018478464350142
612 => 0.0018219231917708
613 => 0.0018163250698606
614 => 0.0018069946214175
615 => 0.0018098865175397
616 => 0.0017923425447477
617 => 0.0018254516461759
618 => 0.0018315969871573
619 => 0.0018556910301068
620 => 0.0018581925535747
621 => 0.0019252941202318
622 => 0.0018883357049131
623 => 0.0019131306007449
624 => 0.0019109127118831
625 => 0.0017332744081673
626 => 0.0017577513991033
627 => 0.0017958299156968
628 => 0.0017786755955857
629 => 0.0017544234004411
630 => 0.0017348384525415
701 => 0.0017051652538098
702 => 0.0017469297112014
703 => 0.0018018455315163
704 => 0.0018595853094028
705 => 0.0019289558692733
706 => 0.0019134731678726
707 => 0.0018582884750392
708 => 0.0018607640200473
709 => 0.001876066865196
710 => 0.0018562482903183
711 => 0.0018504034056823
712 => 0.0018752638678014
713 => 0.0018754350681409
714 => 0.0018526314025893
715 => 0.0018272893013553
716 => 0.0018271831170259
717 => 0.0018226737348869
718 => 0.0018867935140583
719 => 0.0019220529093617
720 => 0.0019260953422098
721 => 0.0019217808214226
722 => 0.0019234413092364
723 => 0.0019029246439971
724 => 0.001949819656706
725 => 0.0019928551578037
726 => 0.0019813207241902
727 => 0.0019640289684871
728 => 0.0019502552521857
729 => 0.0019780760743646
730 => 0.001976837256947
731 => 0.001992479280245
801 => 0.0019917696677155
802 => 0.0019865098436066
803 => 0.0019813209120351
804 => 0.0020018944391862
805 => 0.0019959695937674
806 => 0.0019900355454272
807 => 0.0019781339030236
808 => 0.0019797515338916
809 => 0.0019624627638539
810 => 0.0019544641877541
811 => 0.0018341847944818
812 => 0.0018020422103569
813 => 0.0018121549216452
814 => 0.0018154842887778
815 => 0.0018014957949747
816 => 0.001821551701739
817 => 0.0018184260099143
818 => 0.0018305862483358
819 => 0.0018229890593062
820 => 0.001823300850594
821 => 0.0018456425636386
822 => 0.0018521284579839
823 => 0.0018488296797723
824 => 0.0018511400309562
825 => 0.001904381098851
826 => 0.0018968119215499
827 => 0.001892790946968
828 => 0.001893904784407
829 => 0.0019075090187555
830 => 0.0019113174616094
831 => 0.0018951808216228
901 => 0.0019027909543253
902 => 0.0019351939335028
903 => 0.0019465331423652
904 => 0.0019827224539248
905 => 0.0019673485911605
906 => 0.0019955679816295
907 => 0.0020823047672318
908 => 0.0021515961133001
909 => 0.0020878729278697
910 => 0.0022151176607243
911 => 0.0023141959374244
912 => 0.0023103931481412
913 => 0.0022931165588767
914 => 0.0021803185749859
915 => 0.0020765201884864
916 => 0.0021633519463055
917 => 0.0021635732983133
918 => 0.0021561143733093
919 => 0.0021097876307139
920 => 0.0021545023030861
921 => 0.0021580515913991
922 => 0.0021560649337758
923 => 0.0021205463288466
924 => 0.0020663159840553
925 => 0.0020769124636185
926 => 0.0020942697133052
927 => 0.0020614088185466
928 => 0.0020509077715594
929 => 0.0020704312158145
930 => 0.0021333398210757
1001 => 0.0021214473136558
1002 => 0.0021211367522257
1003 => 0.0021720179421759
1004 => 0.0021355979910196
1005 => 0.0020770461191604
1006 => 0.0020622609993116
1007 => 0.0020097837842987
1008 => 0.0020460299836256
1009 => 0.0020473344198115
1010 => 0.0020274827468673
1011 => 0.002078656973011
1012 => 0.002078185393508
1013 => 0.002126767704953
1014 => 0.002219638837753
1015 => 0.0021921722738732
1016 => 0.0021602316484346
1017 => 0.0021637044800372
1018 => 0.0022017928710396
1019 => 0.0021787637603662
1020 => 0.002187045189129
1021 => 0.0022017803361053
1022 => 0.0022106704161292
1023 => 0.0021624253343323
1024 => 0.0021511770979365
1025 => 0.002128167153865
1026 => 0.0021221642889577
1027 => 0.0021409054082857
1028 => 0.0021359677854763
1029 => 0.0020472247870011
1030 => 0.002037950649899
1031 => 0.0020382350744435
1101 => 0.0020149148157393
1102 => 0.0019793458237119
1103 => 0.0020728190110457
1104 => 0.0020653118059464
1105 => 0.0020570244325282
1106 => 0.0020580395884849
1107 => 0.0020986131310062
1108 => 0.0020750784273308
1109 => 0.002137649294314
1110 => 0.0021247866051147
1111 => 0.0021115940364728
1112 => 0.002109770421631
1113 => 0.0021046924082409
1114 => 0.0020872780108808
1115 => 0.0020662490796255
1116 => 0.0020523639577159
1117 => 0.0018931972634445
1118 => 0.0019227376760712
1119 => 0.0019567212281049
1120 => 0.0019684522140864
1121 => 0.0019483855508055
1122 => 0.0020880703650549
1123 => 0.0021135921266546
1124 => 0.0020362850460258
1125 => 0.0020218240476674
1126 => 0.0020890184256998
1127 => 0.0020484920015676
1128 => 0.0020667410478729
1129 => 0.0020272965914556
1130 => 0.0021074446816497
1201 => 0.0021068340874872
1202 => 0.0020756546701749
1203 => 0.0021020073001798
1204 => 0.0020974278822101
1205 => 0.0020622263968561
1206 => 0.0021085606315231
1207 => 0.0021085836127255
1208 => 0.0020785741014614
1209 => 0.0020435295622318
1210 => 0.0020372644263326
1211 => 0.0020325444880352
1212 => 0.0020655802323892
1213 => 0.0020951999774769
1214 => 0.0021503149797276
1215 => 0.0021641722007936
1216 => 0.0022182578571416
1217 => 0.0021860524821692
1218 => 0.002200328707765
1219 => 0.0022158275701447
1220 => 0.0022232582947213
1221 => 0.0022111503277784
1222 => 0.0022951676146311
1223 => 0.0023022612478647
1224 => 0.0023046396817282
1225 => 0.0022763095253194
1226 => 0.002301473334966
1227 => 0.0022897000217701
1228 => 0.0023203309119853
1229 => 0.0023251342266858
1230 => 0.0023210659900173
1231 => 0.0023225906379185
]
'min_raw' => 0.0010415263593069
'max_raw' => 0.0023251342266858
'avg_raw' => 0.0016833302929964
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001041'
'max' => '$0.002325'
'avg' => '$0.001683'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0001606012513634
'max_diff' => -0.00022187932752054
'year' => 2031
]
6 => [
'items' => [
101 => 0.0022508967052547
102 => 0.0022471789966305
103 => 0.0021964877757424
104 => 0.0022171448229449
105 => 0.0021785274633179
106 => 0.0021907734258585
107 => 0.0021961713294626
108 => 0.0021933517709481
109 => 0.0022183127414001
110 => 0.0021970908173265
111 => 0.0021410826704891
112 => 0.0020850592642694
113 => 0.00208435593604
114 => 0.0020696059620777
115 => 0.0020589444324954
116 => 0.002060998221331
117 => 0.0020682360410677
118 => 0.0020585237572546
119 => 0.0020605963654314
120 => 0.0020950154708823
121 => 0.0021019179770147
122 => 0.0020784605641937
123 => 0.001984275666829
124 => 0.0019611624567708
125 => 0.0019777757738058
126 => 0.0019698356782977
127 => 0.0015898111317575
128 => 0.0016790922619833
129 => 0.0016260444461038
130 => 0.0016504913202737
131 => 0.0015963432369261
201 => 0.0016221855404438
202 => 0.0016174134105939
203 => 0.0017609748259764
204 => 0.0017587333119374
205 => 0.0017598062060896
206 => 0.0017085941727966
207 => 0.0017901763323906
208 => 0.0018303666378061
209 => 0.0018229284819041
210 => 0.0018248005054958
211 => 0.0017926329378782
212 => 0.0017601176584589
213 => 0.0017240532095173
214 => 0.0017910564979503
215 => 0.0017836068760608
216 => 0.0018006936283859
217 => 0.0018441500504286
218 => 0.0018505491736493
219 => 0.0018591496601514
220 => 0.0018560669979647
221 => 0.0019295085177
222 => 0.0019206142650773
223 => 0.0019420468548469
224 => 0.0018979583915964
225 => 0.0018480681105131
226 => 0.0018575506219108
227 => 0.0018566373798097
228 => 0.0018450107596916
229 => 0.0018345147669103
301 => 0.0018170418961571
302 => 0.0018723286447186
303 => 0.0018700841036925
304 => 0.0019064206139121
305 => 0.0018999977827768
306 => 0.0018571045445215
307 => 0.0018586364849171
308 => 0.001868939520303
309 => 0.0019045984434118
310 => 0.001915184439635
311 => 0.0019102805844054
312 => 0.0019218876459952
313 => 0.0019310613942177
314 => 0.0019230397275304
315 => 0.0020366096116243
316 => 0.0019894474776838
317 => 0.0020124339736144
318 => 0.0020179161174495
319 => 0.0020038737212929
320 => 0.0020069190141988
321 => 0.0020115318031585
322 => 0.0020395397544454
323 => 0.0021130407227883
324 => 0.0021455938013294
325 => 0.0022435313442607
326 => 0.0021428907213172
327 => 0.0021369191232441
328 => 0.0021545606321565
329 => 0.002212060337599
330 => 0.0022586584481874
331 => 0.002274117729779
401 => 0.0022761609290463
402 => 0.0023051635690259
403 => 0.002321787341395
404 => 0.0023016418856872
405 => 0.002284570721292
406 => 0.0022234239293793
407 => 0.0022305018370404
408 => 0.0022792616020019
409 => 0.0023481376419459
410 => 0.0024072404495484
411 => 0.0023865447062668
412 => 0.0025444386185876
413 => 0.0025600931550554
414 => 0.0025579302042873
415 => 0.0025935935680684
416 => 0.0025228090536807
417 => 0.0024925473023946
418 => 0.0022882617008002
419 => 0.0023456576221468
420 => 0.0024290859645684
421 => 0.0024180439106087
422 => 0.0023574560182962
423 => 0.0024071944881991
424 => 0.0023907493945834
425 => 0.0023777784669412
426 => 0.0024372008010083
427 => 0.0023718635037665
428 => 0.002428434175048
429 => 0.0023558817039809
430 => 0.0023866392426789
501 => 0.0023691797761391
502 => 0.0023804781907421
503 => 0.0023144278898378
504 => 0.0023500670289253
505 => 0.0023129451844811
506 => 0.0023129275838934
507 => 0.0023121081171199
508 => 0.002355781802485
509 => 0.0023572059997968
510 => 0.0023249310803247
511 => 0.0023202797601998
512 => 0.0023374781285572
513 => 0.0023173433434705
514 => 0.0023267642826857
515 => 0.002317628694122
516 => 0.0023155720807114
517 => 0.0022991846351517
518 => 0.0022921244730223
519 => 0.0022948929445112
520 => 0.0022854427240748
521 => 0.0022797486244324
522 => 0.0023109754173826
523 => 0.0022942922015945
524 => 0.0023084184752921
525 => 0.0022923198035359
526 => 0.0022365147933714
527 => 0.0022044207418985
528 => 0.0020990102508251
529 => 0.0021289045353322
530 => 0.0021487244768883
531 => 0.0021421739863222
601 => 0.0021562469747615
602 => 0.0021571109419556
603 => 0.0021525356699568
604 => 0.0021472380911109
605 => 0.0021446595227033
606 => 0.0021638780590327
607 => 0.0021750350662382
608 => 0.0021507136731801
609 => 0.002145015511079
610 => 0.0021696057822817
611 => 0.0021846058335099
612 => 0.0022953577839789
613 => 0.0022871529217641
614 => 0.0023077455158004
615 => 0.002305427105731
616 => 0.0023270114249386
617 => 0.002362292664629
618 => 0.0022905560395486
619 => 0.0023030070371967
620 => 0.0022999543401089
621 => 0.0023332828864532
622 => 0.002333386934537
623 => 0.0023134048061192
624 => 0.0023242374421075
625 => 0.0023181909618766
626 => 0.0023291177688846
627 => 0.0022870433408269
628 => 0.0023382854525473
629 => 0.002367336427924
630 => 0.0023677398007453
701 => 0.0023815097325111
702 => 0.0023955007806858
703 => 0.0024223553792936
704 => 0.002394751820506
705 => 0.0023450957053993
706 => 0.0023486807165217
707 => 0.0023195673544031
708 => 0.0023200567552801
709 => 0.0023174442950438
710 => 0.0023252844848698
711 => 0.0022887638216016
712 => 0.0022973351482742
713 => 0.002285335240739
714 => 0.0023029809517412
715 => 0.0022839970836433
716 => 0.0022999528680059
717 => 0.0023068388555942
718 => 0.0023322482980396
719 => 0.0022802440883343
720 => 0.0021742039843697
721 => 0.0021964948998351
722 => 0.0021635248849482
723 => 0.0021665763853517
724 => 0.0021727409018094
725 => 0.0021527596870657
726 => 0.0021565714731583
727 => 0.002156435289336
728 => 0.0021552617307274
729 => 0.0021500638450614
730 => 0.0021425258824754
731 => 0.0021725548053555
801 => 0.0021776573045048
802 => 0.0021889995280477
803 => 0.0022227462918079
804 => 0.0022193741943047
805 => 0.0022248742252393
806 => 0.0022128676885905
807 => 0.0021671333341512
808 => 0.0021696169296319
809 => 0.0021386464541911
810 => 0.0021882075433596
811 => 0.0021764708232701
812 => 0.0021689040834765
813 => 0.0021668394284184
814 => 0.0022006698438786
815 => 0.002210792434411
816 => 0.002204484715293
817 => 0.0021915473993563
818 => 0.0022163908705289
819 => 0.0022230379353527
820 => 0.0022245259680325
821 => 0.0022685438356871
822 => 0.0022269860778569
823 => 0.0022369894432152
824 => 0.0023150328441543
825 => 0.0022442582487557
826 => 0.0022817491304002
827 => 0.0022799141468368
828 => 0.0022990932132638
829 => 0.0022783409035948
830 => 0.0022785981533445
831 => 0.0022956278650293
901 => 0.0022717127062928
902 => 0.00226579097667
903 => 0.0022576101496083
904 => 0.0022754726862079
905 => 0.0022861804690463
906 => 0.0023724773347238
907 => 0.0024282290455667
908 => 0.0024258087167644
909 => 0.0024479259913523
910 => 0.0024379619565794
911 => 0.0024057854599182
912 => 0.0024607068162132
913 => 0.0024433274010743
914 => 0.0024447601389424
915 => 0.0024447068123674
916 => 0.0024562626040999
917 => 0.0024480742665846
918 => 0.0024319342128265
919 => 0.0024426487337359
920 => 0.0024744670303256
921 => 0.0025732319992446
922 => 0.0026285021843135
923 => 0.0025699046647042
924 => 0.0026103244490787
925 => 0.0025860869814958
926 => 0.0025816823126337
927 => 0.0026070689242195
928 => 0.0026324999717082
929 => 0.0026308801239246
930 => 0.0026124184893466
1001 => 0.00260198998042
1002 => 0.0026809581438184
1003 => 0.0027391405414227
1004 => 0.0027351728919658
1005 => 0.0027526848063198
1006 => 0.002804100328486
1007 => 0.0028088011194725
1008 => 0.0028082089278547
1009 => 0.0027965575269176
1010 => 0.0028471827856395
1011 => 0.002889415267132
1012 => 0.002793860564242
1013 => 0.0028302465441996
1014 => 0.0028465813828856
1015 => 0.0028705657724049
1016 => 0.0029110314577745
1017 => 0.0029549879250787
1018 => 0.0029612038515136
1019 => 0.0029567933542486
1020 => 0.0029278028824482
1021 => 0.0029759005734822
1022 => 0.0030040750728603
1023 => 0.0030208523424779
1024 => 0.0030633967067569
1025 => 0.0028466822612883
1026 => 0.0026932810053788
1027 => 0.0026693251841276
1028 => 0.0027180402886581
1029 => 0.0027308860732272
1030 => 0.0027257079535746
1031 => 0.0025530408934165
1101 => 0.0026684161277901
1102 => 0.0027925501789509
1103 => 0.0027973186734078
1104 => 0.0028594627749395
1105 => 0.002879699441771
1106 => 0.0029297335889176
1107 => 0.0029266039393907
1108 => 0.0029387864580038
1109 => 0.0029359859079464
1110 => 0.0030286636296028
1111 => 0.0031309009193646
1112 => 0.0031273607671148
1113 => 0.0031126629470949
1114 => 0.0031344917161752
1115 => 0.0032400115556232
1116 => 0.0032302969797278
1117 => 0.0032397338627246
1118 => 0.0033641477002714
1119 => 0.0035259033867442
1120 => 0.0034507516303721
1121 => 0.0036138093173641
1122 => 0.0037164454880089
1123 => 0.003893944132361
1124 => 0.0038717204278888
1125 => 0.0039408193475899
1126 => 0.0038319353586566
1127 => 0.003581915710981
1128 => 0.0035423491446996
1129 => 0.0036215624123801
1130 => 0.0038163005014548
1201 => 0.0036154294169411
1202 => 0.0036560653757231
1203 => 0.0036443622168602
1204 => 0.0036437386052596
1205 => 0.0036675393236422
1206 => 0.0036330151402662
1207 => 0.0034923574064105
1208 => 0.0035568200169354
1209 => 0.0035319279072629
1210 => 0.0035595475587742
1211 => 0.0037085994267699
1212 => 0.0036427000429763
1213 => 0.0035732803953809
1214 => 0.0036603480389185
1215 => 0.0037712150688303
1216 => 0.0037642772093456
1217 => 0.0037508148621451
1218 => 0.003826701408449
1219 => 0.0039520437502713
1220 => 0.0039859232815996
1221 => 0.0040109324589895
1222 => 0.0040143808020181
1223 => 0.0040499008783456
1224 => 0.003858900475721
1225 => 0.0041620230199244
1226 => 0.0042143639097171
1227 => 0.0042045259917437
1228 => 0.0042627006879068
1229 => 0.004245584216546
1230 => 0.0042207851350363
1231 => 0.0043130044025677
]
'min_raw' => 0.0015898111317575
'max_raw' => 0.0043130044025677
'avg_raw' => 0.0029514077671626
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001589'
'max' => '$0.004313'
'avg' => '$0.002951'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00054828477245052
'max_diff' => 0.0019878701758818
'year' => 2032
]
7 => [
'items' => [
101 => 0.0042072824540541
102 => 0.0040572234581623
103 => 0.0039748981251857
104 => 0.0040833107646445
105 => 0.0041495145804823
106 => 0.0041932710913975
107 => 0.0042065117851621
108 => 0.0038737272932683
109 => 0.0036943749092117
110 => 0.0038093377311127
111 => 0.0039496003081422
112 => 0.0038581213100236
113 => 0.0038617071135572
114 => 0.0037312821024979
115 => 0.0039611400275934
116 => 0.0039276516613165
117 => 0.0041013893648013
118 => 0.0040599254675325
119 => 0.0042016018202656
120 => 0.0041642936884993
121 => 0.0043191576575915
122 => 0.0043809370876369
123 => 0.0044846743658837
124 => 0.0045609839300488
125 => 0.0046057943656958
126 => 0.0046031041152193
127 => 0.0047806653857234
128 => 0.0046759637080254
129 => 0.004544433724546
130 => 0.0045420547621166
131 => 0.0046101760043549
201 => 0.0047529394399362
202 => 0.0047899559216589
203 => 0.0048106430850606
204 => 0.0047789599741855
205 => 0.0046653138070812
206 => 0.0046162419683247
207 => 0.0046580525966933
208 => 0.0046069217910268
209 => 0.0046951879063774
210 => 0.0048163961353787
211 => 0.0047913671153992
212 => 0.0048750353766303
213 => 0.0049616232248466
214 => 0.0050854477366996
215 => 0.0051178200493064
216 => 0.0051713302510365
217 => 0.0052264098258025
218 => 0.0052440999007811
219 => 0.0052778757428233
220 => 0.0052776977274635
221 => 0.0053794835008339
222 => 0.0054917563609045
223 => 0.0055341367664585
224 => 0.0056315881721606
225 => 0.0054647060550003
226 => 0.00559128805787
227 => 0.0057054681930115
228 => 0.0055693379288013
301 => 0.0057569617837314
302 => 0.0057642467928536
303 => 0.0058742417814367
304 => 0.0057627407880177
305 => 0.0056965318540492
306 => 0.0058876745655997
307 => 0.0059801625027799
308 => 0.0059523043834095
309 => 0.005740302719475
310 => 0.005616908657886
311 => 0.0052939625977708
312 => 0.0056765061562089
313 => 0.0058628319645755
314 => 0.0057398201806443
315 => 0.0058018601692911
316 => 0.0061403302308136
317 => 0.0062691977159278
318 => 0.0062423941798758
319 => 0.0062469235362448
320 => 0.0063164580921022
321 => 0.0066248126061529
322 => 0.006440039433732
323 => 0.0065812916007291
324 => 0.0066562112407818
325 => 0.0067258007777796
326 => 0.006554910868912
327 => 0.0063325856083465
328 => 0.0062621658657459
329 => 0.0057275890830297
330 => 0.00569976203994
331 => 0.0056841418774081
401 => 0.00558565896216
402 => 0.0055082783675159
403 => 0.0054467424456976
404 => 0.0052852538106646
405 => 0.0053397514844396
406 => 0.0050823723054946
407 => 0.0052470343832256
408 => 0.0048362509989917
409 => 0.0051783636078759
410 => 0.0049921672688118
411 => 0.0051171931027588
412 => 0.0051167568994023
413 => 0.0048865446996291
414 => 0.0047537631072059
415 => 0.0048383767058349
416 => 0.0049290892002009
417 => 0.0049438069972183
418 => 0.0050614181140022
419 => 0.0050942408486541
420 => 0.0049947864303119
421 => 0.0048277384264068
422 => 0.0048665398677546
423 => 0.0047529767972355
424 => 0.0045539618842911
425 => 0.0046968978692348
426 => 0.0047457024989461
427 => 0.0047672574037651
428 => 0.0045715490939015
429 => 0.0045100532939082
430 => 0.0044773134459915
501 => 0.0048024749412031
502 => 0.0048202880219213
503 => 0.0047291537824509
504 => 0.0051410891865604
505 => 0.0050478555177107
506 => 0.0051520203686193
507 => 0.0048630190436498
508 => 0.0048740592834555
509 => 0.0047372414247632
510 => 0.0048138502834583
511 => 0.0047597056113514
512 => 0.0048076610447392
513 => 0.0048364053337842
514 => 0.0049732007420121
515 => 0.0051799255917003
516 => 0.0049527680697477
517 => 0.0048537922844774
518 => 0.0049151963049982
519 => 0.0050787233033722
520 => 0.005326475076702
521 => 0.0051798010404217
522 => 0.0052448924870362
523 => 0.0052591120724046
524 => 0.0051509600682195
525 => 0.0053304627953627
526 => 0.0054266597651163
527 => 0.0055253379509255
528 => 0.0056110174547635
529 => 0.0054859237135335
530 => 0.0056197919481331
531 => 0.0055119177819703
601 => 0.005415143503096
602 => 0.0054152902697304
603 => 0.0053545823509459
604 => 0.0052369531086109
605 => 0.005215260471568
606 => 0.0053281083089434
607 => 0.0054186015877884
608 => 0.0054260550476677
609 => 0.0054761567765489
610 => 0.0055058064636119
611 => 0.0057964137036246
612 => 0.0059132983395868
613 => 0.0060562226599286
614 => 0.006111899737475
615 => 0.0062794677795528
616 => 0.006144142976364
617 => 0.0061148646039612
618 => 0.0057083993449694
619 => 0.0057749580083587
620 => 0.0058815248504008
621 => 0.0057101565929437
622 => 0.0058188503087647
623 => 0.0058403087507154
624 => 0.0057043335651302
625 => 0.0057769637868922
626 => 0.0055840794512523
627 => 0.0051841299431252
628 => 0.0053309080534969
629 => 0.0054389861477082
630 => 0.0052847453813358
701 => 0.0055612159851163
702 => 0.0053997075658994
703 => 0.005348517150779
704 => 0.0051488050906935
705 => 0.0052430614954317
706 => 0.0053705446324618
707 => 0.0052917748752826
708 => 0.005455233948768
709 => 0.0056867355897659
710 => 0.005851717445302
711 => 0.0058643827035822
712 => 0.0057583104233983
713 => 0.0059282919293373
714 => 0.005929530059035
715 => 0.0057377902259411
716 => 0.0056203506457829
717 => 0.005593668126076
718 => 0.00566032629172
719 => 0.0057412616105881
720 => 0.0058688740504982
721 => 0.0059459875752795
722 => 0.0061470587500556
723 => 0.0062014628447877
724 => 0.0062612364506074
725 => 0.0063411124214798
726 => 0.0064370240042907
727 => 0.0062271749213499
728 => 0.0062355126166228
729 => 0.0060401040561466
730 => 0.0058312819848556
731 => 0.0059897519069268
801 => 0.0061969302496646
802 => 0.0061494033089288
803 => 0.0061440555572088
804 => 0.0061530489922593
805 => 0.0061172152310293
806 => 0.0059551404570471
807 => 0.0058737475201951
808 => 0.005978765174287
809 => 0.0060345773836388
810 => 0.0061211372530074
811 => 0.0061104669220505
812 => 0.0063334358496925
813 => 0.0064200748327438
814 => 0.0063979088733882
815 => 0.0064019879433632
816 => 0.0065588436837604
817 => 0.0067332995269254
818 => 0.0068967004455255
819 => 0.0070629188781583
820 => 0.0068625360700036
821 => 0.0067607940379161
822 => 0.0068657658445855
823 => 0.0068100663263816
824 => 0.0071301322795318
825 => 0.0071522929516906
826 => 0.0074723357604294
827 => 0.0077760944959112
828 => 0.0075853090765581
829 => 0.007765211133844
830 => 0.0079597898764288
831 => 0.0083351638401379
901 => 0.0082087510949759
902 => 0.0081119209133221
903 => 0.0080204168595393
904 => 0.0082108222696019
905 => 0.0084557757878467
906 => 0.008508536429541
907 => 0.0085940288252021
908 => 0.0085041440246772
909 => 0.0086124003664234
910 => 0.0089945928230346
911 => 0.0088913210475521
912 => 0.0087446585246007
913 => 0.0090463627629415
914 => 0.0091555483539515
915 => 0.0099218700125977
916 => 0.010889382761807
917 => 0.010488826130603
918 => 0.010240187703733
919 => 0.01029862363183
920 => 0.010651926535468
921 => 0.010765396214843
922 => 0.010456946510958
923 => 0.010565896160908
924 => 0.011166219443827
925 => 0.011488273624436
926 => 0.011050880789522
927 => 0.0098441313052449
928 => 0.0087314531690783
929 => 0.0090265855153392
930 => 0.0089931266662962
1001 => 0.0096380991419377
1002 => 0.0088888580498611
1003 => 0.0089014733483158
1004 => 0.0095597831717159
1005 => 0.0093841573971203
1006 => 0.0090996661347252
1007 => 0.0087335302701307
1008 => 0.0080566942609594
1009 => 0.0074572017326679
1010 => 0.0086329446355314
1011 => 0.0085822444636101
1012 => 0.0085088231013237
1013 => 0.008672214398071
1014 => 0.0094655961556469
1015 => 0.0094473061382087
1016 => 0.0093309543789153
1017 => 0.009419206162862
1018 => 0.0090841951703082
1019 => 0.0091705351311478
1020 => 0.0087312769151767
1021 => 0.0089298399738392
1022 => 0.0090990557442476
1023 => 0.0091330283154394
1024 => 0.009209570253017
1025 => 0.0085555277768413
1026 => 0.0088491736469659
1027 => 0.009021663084767
1028 => 0.0082423495295623
1029 => 0.0090062585614647
1030 => 0.0085441423524443
1031 => 0.0083872931703502
1101 => 0.0085984699307314
1102 => 0.0085161741418347
1103 => 0.0084454210551122
1104 => 0.0084059396170287
1105 => 0.0085610045231242
1106 => 0.0085537705599122
1107 => 0.0083000542767386
1108 => 0.0079690917281375
1109 => 0.0080801736229234
1110 => 0.0080398165291494
1111 => 0.0078935572151436
1112 => 0.0079921183333666
1113 => 0.0075581050493531
1114 => 0.0068114077522554
1115 => 0.0073046988586749
1116 => 0.0072857076876752
1117 => 0.0072761314780761
1118 => 0.0076468261109856
1119 => 0.0076111923754116
1120 => 0.0075465167964183
1121 => 0.0078923693974162
1122 => 0.007766128545678
1123 => 0.0081551731046496
1124 => 0.0084114230130127
1125 => 0.0083464297474356
1126 => 0.0085874340248144
1127 => 0.0080827327254254
1128 => 0.0082503742519809
1129 => 0.0082849249382628
1130 => 0.0078881016300052
1201 => 0.0076170224952414
1202 => 0.007598944607481
1203 => 0.0071289307448064
1204 => 0.0073800083564279
1205 => 0.0076009462643572
1206 => 0.0074951341519333
1207 => 0.0074616371981868
1208 => 0.0076327658702746
1209 => 0.0076460640337138
1210 => 0.0073428644980243
1211 => 0.0074059092825747
1212 => 0.0076688165144733
1213 => 0.0073992846948813
1214 => 0.0068756283971869
1215 => 0.0067457543952439
1216 => 0.006728426809332
1217 => 0.0063761982156256
1218 => 0.0067544331970705
1219 => 0.0065893234916025
1220 => 0.0071109030728578
1221 => 0.0068129796133322
1222 => 0.0068001367284441
1223 => 0.0067807228242942
1224 => 0.0064775451233112
1225 => 0.0065439217718784
1226 => 0.0067645678611649
1227 => 0.0068432968715784
1228 => 0.0068350847907845
1229 => 0.0067634865749543
1230 => 0.0067962638715192
1231 => 0.0066906767789166
]
'min_raw' => 0.0036943749092117
'max_raw' => 0.011488273624436
'avg_raw' => 0.0075913242668238
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003694'
'max' => '$0.011488'
'avg' => '$0.007591'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0021045637774542
'max_diff' => 0.0071752692218684
'year' => 2033
]
8 => [
'items' => [
101 => 0.0066533917789133
102 => 0.0065357100628558
103 => 0.006362750450655
104 => 0.0063868015455545
105 => 0.0060441232964404
106 => 0.0058574139990119
107 => 0.0058057353262727
108 => 0.0057366284452853
109 => 0.0058135411323666
110 => 0.006043152532016
111 => 0.0057661924692629
112 => 0.0052913638681624
113 => 0.0053199018761571
114 => 0.0053840183071106
115 => 0.0052645377622014
116 => 0.0051514594536869
117 => 0.0052497718686071
118 => 0.005048580730766
119 => 0.0054083312949167
120 => 0.0053986010503457
121 => 0.0055326938138355
122 => 0.0056165447707061
123 => 0.0054232954621889
124 => 0.0053746937836985
125 => 0.0054023795085898
126 => 0.0049447961468518
127 => 0.0054952994909342
128 => 0.005500060266714
129 => 0.0054592956141368
130 => 0.0057524216499767
131 => 0.0063710090139024
201 => 0.0061382715649745
202 => 0.006048148590223
203 => 0.0058768247493409
204 => 0.0061051035951132
205 => 0.0060875753414626
206 => 0.0060083059310619
207 => 0.005960363544316
208 => 0.0060486988618892
209 => 0.005949417820905
210 => 0.0059315842178836
211 => 0.0058235319867258
212 => 0.0057849622562658
213 => 0.0057564067633383
214 => 0.00572496997143
215 => 0.0057943117008193
216 => 0.005637174219359
217 => 0.0054476818210951
218 => 0.0054319275785157
219 => 0.0054754264274048
220 => 0.0054561814248798
221 => 0.0054318354408477
222 => 0.0053853523270961
223 => 0.0053715617802006
224 => 0.0054163743673888
225 => 0.0053657835691895
226 => 0.0054404330477559
227 => 0.0054201325201299
228 => 0.005306735423033
301 => 0.0051654006550678
302 => 0.0051641424791732
303 => 0.0051336921352506
304 => 0.0050949090440252
305 => 0.0050841204752833
306 => 0.0052414922712382
307 => 0.0055672471791233
308 => 0.0055032936960511
309 => 0.0055495066417873
310 => 0.0057768285961759
311 => 0.0058490874096663
312 => 0.0057977998153946
313 => 0.0057275941930744
314 => 0.0057306828841569
315 => 0.0059705967483122
316 => 0.0059855598817352
317 => 0.0060233668926054
318 => 0.0060719595858336
319 => 0.0058060753611721
320 => 0.005718159761086
321 => 0.0056765004723933
322 => 0.0055482059873938
323 => 0.0056865605903279
324 => 0.005605947288133
325 => 0.0056168247767416
326 => 0.0056097407980154
327 => 0.0056136091294165
328 => 0.0054082307373023
329 => 0.0054830598290182
330 => 0.0053586419506994
331 => 0.0051920603781929
401 => 0.0051915019383508
402 => 0.0052322725422259
403 => 0.0052080205916871
404 => 0.005142759216362
405 => 0.0051520292867019
406 => 0.0050708137160978
407 => 0.0051618903274286
408 => 0.0051645020787538
409 => 0.0051294326224149
410 => 0.0052697487083206
411 => 0.0053272363232031
412 => 0.0053041528557803
413 => 0.0053256167255929
414 => 0.0055059512520054
415 => 0.0055353536483577
416 => 0.0055484122506041
417 => 0.0055309154535272
418 => 0.005328912909691
419 => 0.0053378725814913
420 => 0.0052721324546565
421 => 0.005216588975005
422 => 0.0052188104229039
423 => 0.0052473669915917
424 => 0.0053720752018719
425 => 0.0056345162784562
426 => 0.0056444757254707
427 => 0.0056565468657897
428 => 0.005607447471643
429 => 0.0055926386245505
430 => 0.0056121753163533
501 => 0.0057107343862221
502 => 0.0059642550724511
503 => 0.0058746439298604
504 => 0.0058017886760537
505 => 0.0058657023752776
506 => 0.0058558633622542
507 => 0.0057728121907041
508 => 0.0057704812209292
509 => 0.0056110794696589
510 => 0.0055521522716165
511 => 0.005502908294308
512 => 0.0054491351566336
513 => 0.0054172566381284
514 => 0.00546623653108
515 => 0.0054774388121111
516 => 0.0053703434201504
517 => 0.0053557467139572
518 => 0.0054432031228469
519 => 0.0054047168179981
520 => 0.0054443009369495
521 => 0.0054534847920926
522 => 0.0054520059798924
523 => 0.0054118218575063
524 => 0.0054374340188074
525 => 0.0053768536219775
526 => 0.0053109815393063
527 => 0.0052689592545379
528 => 0.0052322892376302
529 => 0.0052526358942845
530 => 0.0051801037784647
531 => 0.0051568992948309
601 => 0.0054287571948505
602 => 0.0056295815485599
603 => 0.0056266614829218
604 => 0.0056088863343297
605 => 0.0055824760690791
606 => 0.0057088023108196
607 => 0.0056647927741702
608 => 0.0056968133892025
609 => 0.0057049639796292
610 => 0.00572963336205
611 => 0.0057384505458604
612 => 0.0057117988924575
613 => 0.0056223526884121
614 => 0.0053994612522208
615 => 0.0052957046869898
616 => 0.0052614632922612
617 => 0.005262707901926
618 => 0.0052283760111909
619 => 0.0052384882916598
620 => 0.0052248593727232
621 => 0.0051990494974469
622 => 0.0052510422072165
623 => 0.0052570338826718
624 => 0.005244898162945
625 => 0.0052477565642601
626 => 0.0051472779881557
627 => 0.0051549171560689
628 => 0.0051123812983896
629 => 0.0051044063378521
630 => 0.0049968793936595
701 => 0.0048063798257425
702 => 0.004911935078609
703 => 0.0047844391764609
704 => 0.0047361545464393
705 => 0.0049647264751612
706 => 0.0049417841931159
707 => 0.0049025169790248
708 => 0.0048444325853794
709 => 0.0048228885187677
710 => 0.0046919935900577
711 => 0.0046842596193722
712 => 0.0047491346805013
713 => 0.0047191970720048
714 => 0.0046771533314167
715 => 0.0045248751649123
716 => 0.0043536640881931
717 => 0.0043588318744048
718 => 0.0044132909324139
719 => 0.0045716379883797
720 => 0.004509769054182
721 => 0.0044648824325573
722 => 0.0044564765176139
723 => 0.0045616941421056
724 => 0.0047105991245353
725 => 0.0047804620107301
726 => 0.0047112300122784
727 => 0.0046317000201727
728 => 0.0046365406422857
729 => 0.0046687431325664
730 => 0.0046721271589762
731 => 0.0046203613099307
801 => 0.0046349330932168
802 => 0.0046127972219334
803 => 0.0044769494207267
804 => 0.0044744923647809
805 => 0.0044411531235231
806 => 0.0044401436245477
807 => 0.0043834252583046
808 => 0.0043754899667916
809 => 0.0042628722080573
810 => 0.0043369975578942
811 => 0.0042872781649792
812 => 0.004212339312237
813 => 0.0041994198257781
814 => 0.0041990314504144
815 => 0.0042759768961598
816 => 0.0043360984055609
817 => 0.0042881430551056
818 => 0.0042772245513824
819 => 0.0043938056060115
820 => 0.0043789696041501
821 => 0.00436612172222
822 => 0.0046972663165628
823 => 0.0044351395306056
824 => 0.0043208372902543
825 => 0.0041793665624129
826 => 0.0042254301447554
827 => 0.0042351364183698
828 => 0.0038949248199266
829 => 0.0037569010168089
830 => 0.0037095364488962
831 => 0.0036822774704257
901 => 0.0036946997292114
902 => 0.003570462117828
903 => 0.0036539518473781
904 => 0.003546372577464
905 => 0.0035283365627696
906 => 0.0037207016238903
907 => 0.0037474680983649
908 => 0.0036332740025646
909 => 0.0037066050984132
910 => 0.00368001422368
911 => 0.0035482167152754
912 => 0.0035431830198912
913 => 0.0034770516630802
914 => 0.003373568895225
915 => 0.0033262744935018
916 => 0.0033016431584556
917 => 0.0033118065273508
918 => 0.0033066676170331
919 => 0.0032731327511176
920 => 0.0033085897962929
921 => 0.0032180116977325
922 => 0.0031819427690485
923 => 0.0031656512707547
924 => 0.0030852579948015
925 => 0.0032131994478951
926 => 0.0032384055259185
927 => 0.0032636612677021
928 => 0.0034834952571015
929 => 0.0034725129722355
930 => 0.0035717874788344
1001 => 0.0035679298540621
1002 => 0.0035396151566397
1003 => 0.0034201601057563
1004 => 0.0034677727599569
1005 => 0.0033212284109768
1006 => 0.0034310294012798
1007 => 0.0033809208147045
1008 => 0.003414087637754
1009 => 0.0033544506993791
1010 => 0.0033874562434246
1011 => 0.0032443828221017
1012 => 0.0031107828743676
1013 => 0.0031645473933614
1014 => 0.0032229955742262
1015 => 0.0033497261226605
1016 => 0.0032742464535173
1017 => 0.0033013917967435
1018 => 0.0032104594410114
1019 => 0.0030228400175929
1020 => 0.003023901923154
1021 => 0.0029950407623724
1022 => 0.0029701005056586
1023 => 0.003282916201494
1024 => 0.0032440126248325
1025 => 0.0031820248669967
1026 => 0.0032649979441555
1027 => 0.0032869373427161
1028 => 0.00328756192655
1029 => 0.0033480969417999
1030 => 0.0033804044902904
1031 => 0.0033860988357407
1101 => 0.0034813519901822
1102 => 0.0035132795911314
1103 => 0.0036447848608783
1104 => 0.0033776634205212
1105 => 0.0033721622302412
1106 => 0.0032661655455077
1107 => 0.0031989407723083
1108 => 0.0032707684832419
1109 => 0.0033343980296687
1110 => 0.0032681426928818
1111 => 0.0032767942411397
1112 => 0.0031878518647631
1113 => 0.00321964457919
1114 => 0.0032470287477955
1115 => 0.0032319088194585
1116 => 0.0032092735549253
1117 => 0.0033291811324835
1118 => 0.0033224154770361
1119 => 0.0034340761699216
1120 => 0.0035211236649586
1121 => 0.0036771283376658
1122 => 0.0035143293289883
1123 => 0.0035083962860446
1124 => 0.0035663927325089
1125 => 0.0035132707121777
1126 => 0.0035468419953172
1127 => 0.003671719484942
1128 => 0.0036743579495184
1129 => 0.0036301602683941
1130 => 0.003627470835481
1201 => 0.0036359594836106
1202 => 0.0036856777608436
1203 => 0.00366830466709
1204 => 0.0036884092510146
1205 => 0.0037135503410645
1206 => 0.0038175445491124
1207 => 0.0038426172006021
1208 => 0.0037817036561616
1209 => 0.0037872034672046
1210 => 0.0037644201294697
1211 => 0.0037424117106921
1212 => 0.0037918834220326
1213 => 0.0038822939468762
1214 => 0.0038817315076934
1215 => 0.0039027049921277
1216 => 0.0039157712991765
1217 => 0.0038596811442017
1218 => 0.0038231685158052
1219 => 0.0038371697808913
1220 => 0.0038595581086719
1221 => 0.0038299095479344
1222 => 0.0036469048965134
1223 => 0.0037024168173722
1224 => 0.003693176919347
1225 => 0.0036800181809492
1226 => 0.0037358358466337
1227 => 0.0037304520966103
1228 => 0.0035691878815532
1229 => 0.0035795114933807
1230 => 0.0035698156945813
1231 => 0.0036011448040759
]
'min_raw' => 0.0029701005056586
'max_raw' => 0.0066533917789133
'avg_raw' => 0.004811746142286
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.00297'
'max' => '$0.006653'
'avg' => '$0.004811'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00072427440355307
'max_diff' => -0.0048348818455227
'year' => 2034
]
9 => [
'items' => [
101 => 0.0035115788374516
102 => 0.0035391287255492
103 => 0.0035564077570999
104 => 0.0035665852394271
105 => 0.0036033532843576
106 => 0.0035990389786602
107 => 0.0036030851010579
108 => 0.003657602405286
109 => 0.0039333322219918
110 => 0.0039483395875516
111 => 0.0038744378308493
112 => 0.0039039601250041
113 => 0.0038472837760428
114 => 0.0038853309887991
115 => 0.0039113619254725
116 => 0.0037937331281065
117 => 0.0037867679141311
118 => 0.0037298576417167
119 => 0.0037604379985496
120 => 0.003711782452023
121 => 0.0037237208212419
122 => 0.0036903401001376
123 => 0.00375041875209
124 => 0.0038175960202515
125 => 0.0038345676510998
126 => 0.0037899225970844
127 => 0.0037575966357248
128 => 0.0037008428964111
129 => 0.0037952256297294
130 => 0.0038228260172134
131 => 0.0037950806566438
201 => 0.0037886514503517
202 => 0.0037764681160456
203 => 0.0037912362023191
204 => 0.0038226756995757
205 => 0.0038078494132658
206 => 0.003817642436579
207 => 0.0037803215302309
208 => 0.0038596997123769
209 => 0.0039857713690245
210 => 0.0039861767100154
211 => 0.0039713503437863
212 => 0.0039652837141639
213 => 0.0039804964656541
214 => 0.0039887487592777
215 => 0.0040379440080553
216 => 0.0040907324700188
217 => 0.004337073188592
218 => 0.0042679017005649
219 => 0.004486469840958
220 => 0.0046593288624879
221 => 0.0047111617248359
222 => 0.0046634779304004
223 => 0.0045003542454646
224 => 0.0044923506192591
225 => 0.0047361262735964
226 => 0.0046672484856138
227 => 0.0046590556919006
228 => 0.0045718982087353
301 => 0.0046234190759503
302 => 0.0046121507065248
303 => 0.0045943630341193
304 => 0.0046926612597907
305 => 0.0048766667631046
306 => 0.0048479877798205
307 => 0.0048265802491786
308 => 0.0047327786815444
309 => 0.0047892681765988
310 => 0.0047691533493949
311 => 0.0048555794122475
312 => 0.0048043825271853
313 => 0.0046667266686267
314 => 0.0046886488178218
315 => 0.0046853353290722
316 => 0.0047535266927426
317 => 0.0047330573379824
318 => 0.0046813383590339
319 => 0.0048760378522982
320 => 0.0048633951501811
321 => 0.0048813196112591
322 => 0.004889210513358
323 => 0.0050077206639181
324 => 0.0050562704807008
325 => 0.0050672921390946
326 => 0.0051134107100605
327 => 0.0050661446670359
328 => 0.0052552425392519
329 => 0.0053809815901088
330 => 0.0055270339681514
331 => 0.0057404557476501
401 => 0.0058207043110034
402 => 0.0058062081263107
403 => 0.0059680220837775
404 => 0.0062587981684231
405 => 0.005864982286624
406 => 0.0062796713664181
407 => 0.006148385591571
408 => 0.0058371093811386
409 => 0.0058170668628922
410 => 0.0060278667265881
411 => 0.0064954005355307
412 => 0.0063782886191151
413 => 0.0064955920886717
414 => 0.0063587513604933
415 => 0.0063519560649551
416 => 0.0064889460399383
417 => 0.0068090305834216
418 => 0.0066569704150024
419 => 0.0064389548768905
420 => 0.0065999341575349
421 => 0.0064604790067116
422 => 0.0061462475208678
423 => 0.0063781990658398
424 => 0.0062230996733167
425 => 0.0062683659215921
426 => 0.0065943617753822
427 => 0.0065551370917761
428 => 0.0066058974644703
429 => 0.0065163067352953
430 => 0.0064326148670847
501 => 0.0062763977800298
502 => 0.0062301496019622
503 => 0.0062429309345449
504 => 0.0062301432681685
505 => 0.0061427412436705
506 => 0.0061238667848017
507 => 0.0060924085264448
508 => 0.0061021587561264
509 => 0.0060430080269773
510 => 0.0061546376740459
511 => 0.0061753571202189
512 => 0.0062565918682154
513 => 0.0062650259292384
514 => 0.0064912635461043
515 => 0.0063666556685032
516 => 0.0064502533909246
517 => 0.0064427756237789
518 => 0.0058438556804907
519 => 0.0059263815643604
520 => 0.0060547659416127
521 => 0.0059969289536815
522 => 0.0059151609845175
523 => 0.0058491289652966
524 => 0.0057490837040561
525 => 0.005889895488053
526 => 0.006075048010345
527 => 0.0062697217027519
528 => 0.0065036093886531
529 => 0.0064514083799127
530 => 0.0062653493351528
531 => 0.0062736958079845
601 => 0.0063252904188142
602 => 0.0062584707099251
603 => 0.006238764273298
604 => 0.0063225830570345
605 => 0.0063231602709321
606 => 0.0062462761204237
607 => 0.0061608334567845
608 => 0.0061604754489041
609 => 0.0061452717521877
610 => 0.006361456064364
611 => 0.0064803355773616
612 => 0.0064939649219429
613 => 0.0064794182138784
614 => 0.0064850166644742
615 => 0.0064158432951922
616 => 0.0065739531046454
617 => 0.0067190503012393
618 => 0.0066801611530026
619 => 0.0066218607913778
620 => 0.0065754217452177
621 => 0.0066692215895814
622 => 0.0066650448301666
623 => 0.006717783003807
624 => 0.0067153904956203
625 => 0.006697656631408
626 => 0.0066801617863348
627 => 0.0067495268695225
628 => 0.0067295508395336
629 => 0.0067095437812526
630 => 0.0066694165629426
701 => 0.0066748705183535
702 => 0.006616580223108
703 => 0.006589612465345
704 => 0.0061840820932883
705 => 0.0060757111267875
706 => 0.0061098068389431
707 => 0.0061210320326795
708 => 0.0060738688491772
709 => 0.0061414887390917
710 => 0.0061309502508757
711 => 0.0061719493437147
712 => 0.0061463348904826
713 => 0.0061473861165779
714 => 0.0062227127619564
715 => 0.0062445804075722
716 => 0.0062334583465185
717 => 0.0062412478568386
718 => 0.0064207538344186
719 => 0.0063952338246848
720 => 0.0063816768281463
721 => 0.0063854322088376
722 => 0.0064312998347609
723 => 0.0064441402657399
724 => 0.0063897344574009
725 => 0.0064153925511298
726 => 0.0065246414577306
727 => 0.0065628723920883
728 => 0.0066848871826684
729 => 0.00663305313099
730 => 0.006728196776171
731 => 0.0070206359045984
801 => 0.0072542565156347
802 => 0.0070394093469456
803 => 0.0074684238477084
804 => 0.0078024731750272
805 => 0.0077896518054564
806 => 0.0077314025785382
807 => 0.0073510963005466
808 => 0.0070011327934916
809 => 0.0072938921273785
810 => 0.0072946384311271
811 => 0.0072694901447108
812 => 0.0071132962976205
813 => 0.0072640549374019
814 => 0.0072760216107528
815 => 0.0072693234558715
816 => 0.0071495699995232
817 => 0.0069667286058176
818 => 0.0070024553764873
819 => 0.0070609765556505
820 => 0.0069501837546976
821 => 0.0069147787416206
822 => 0.0069806033970101
823 => 0.0071927041517865
824 => 0.007152607732712
825 => 0.0071515606531676
826 => 0.007323110137496
827 => 0.0072003177294127
828 => 0.0070029060054784
829 => 0.0069530569416442
830 => 0.006776126347386
831 => 0.0068983329390453
901 => 0.0069027309367189
902 => 0.0068357996353882
903 => 0.0070083371117019
904 => 0.007006747148483
905 => 0.0071705458034286
906 => 0.0074836673117192
907 => 0.007391061873944
908 => 0.0072833718252545
909 => 0.0072950807194682
910 => 0.0074234983889791
911 => 0.0073458541345026
912 => 0.0073737755497673
913 => 0.007423456126573
914 => 0.0074534296520593
915 => 0.0072907679904171
916 => 0.0072528437760816
917 => 0.0071752641431417
918 => 0.0071550250650001
919 => 0.0072182120572775
920 => 0.0072015645172418
921 => 0.0069023613020443
922 => 0.0068710929013052
923 => 0.0068720518585149
924 => 0.006793425978125
925 => 0.0066735026381569
926 => 0.0069886540153425
927 => 0.0069633429492138
928 => 0.0069354014911286
929 => 0.0069388241603123
930 => 0.0070756206916773
1001 => 0.0069962717950952
1002 => 0.0072072338416872
1003 => 0.0071638663870075
1004 => 0.0071193867207556
1005 => 0.0071132382759958
1006 => 0.0070961173993157
1007 => 0.0070374035427817
1008 => 0.0069665030328612
1009 => 0.0069196883749147
1010 => 0.0063830467525152
1011 => 0.0064826443161318
1012 => 0.0065972222344692
1013 => 0.0066367740727371
1014 => 0.006569117916476
1015 => 0.0070400750202
1016 => 0.007126123421306
1017 => 0.0068654772015577
1018 => 0.0068167209359579
1019 => 0.0070432714728557
1020 => 0.0069066338044295
1021 => 0.0069681617381554
1022 => 0.0068351719994205
1023 => 0.0071053968812709
1024 => 0.0071033382204217
1025 => 0.0069982146380761
1026 => 0.0070870643700193
1027 => 0.0070716245426097
1028 => 0.0069529402770495
1029 => 0.0071091593841824
1030 => 0.0071092368669105
1031 => 0.0070080577044867
1101 => 0.0068899025937424
1102 => 0.0068687792506404
1103 => 0.006852865649135
1104 => 0.0069642479677066
1105 => 0.0070641130062544
1106 => 0.0072499370843493
1107 => 0.0072966576726535
1108 => 0.0074790112391707
1109 => 0.0073704285689437
1110 => 0.0074185618602744
1111 => 0.0074708173568835
1112 => 0.0074958705635902
1113 => 0.0074550477076909
1114 => 0.0077383178562145
1115 => 0.007762234535923
1116 => 0.0077702535917507
1117 => 0.0076747364914701
1118 => 0.007759578032575
1119 => 0.0077198834851485
1120 => 0.0078231576700893
1121 => 0.007839352380959
1122 => 0.0078256360369959
1123 => 0.0078307764938421
1124 => 0.0075890553943557
1125 => 0.0075765208801669
1126 => 0.0074056118897947
1127 => 0.0074752585666669
1128 => 0.0073450574425065
1129 => 0.007386345560198
1130 => 0.0074045449690687
1201 => 0.007395038630682
1202 => 0.0074791962852802
1203 => 0.0074076450865988
1204 => 0.0072188097091723
1205 => 0.0070299228836735
1206 => 0.0070275515634432
1207 => 0.0069778209964188
1208 => 0.0069418749050678
1209 => 0.0069487993975181
1210 => 0.0069732022120887
1211 => 0.0069404565691231
1212 => 0.006947444512296
1213 => 0.007063490929389
1214 => 0.0070867632107318
1215 => 0.0070076749056616
1216 => 0.006690123948417
1217 => 0.0066121961469929
1218 => 0.0066682091052811
1219 => 0.0066414385189159
1220 => 0.0053601592277889
1221 => 0.0056611767917548
1222 => 0.0054823223768369
1223 => 0.005564746719927
1224 => 0.005382182676422
1225 => 0.0054693118069839
1226 => 0.0054532222380155
1227 => 0.0059372495731155
1228 => 0.0059296921520357
1229 => 0.0059333094895767
1230 => 0.0057606445438194
1231 => 0.006035704490775
]
'min_raw' => 0.0035115788374516
'max_raw' => 0.007839352380959
'avg_raw' => 0.0056754656092053
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003511'
'max' => '$0.007839'
'avg' => '$0.005675'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00054147833179299
'max_diff' => 0.0011859606020457
'year' => 2035
]
10 => [
'items' => [
101 => 0.0061712089114812
102 => 0.0061461306495418
103 => 0.006152442307782
104 => 0.0060439871076914
105 => 0.005934359572985
106 => 0.0058127657654388
107 => 0.0060386720304107
108 => 0.0060135551100944
109 => 0.0060711642885173
110 => 0.0062176806494649
111 => 0.006239255740176
112 => 0.0062682528808846
113 => 0.0062578594700976
114 => 0.0065054726814084
115 => 0.0064754850877141
116 => 0.0065477465604979
117 => 0.0063990992284905
118 => 0.0062308906625899
119 => 0.0062628616118153
120 => 0.0062597825523108
121 => 0.006220582590838
122 => 0.006185194618369
123 => 0.0061262836147077
124 => 0.0063126867474803
125 => 0.0063051191207018
126 => 0.0064276302018415
127 => 0.0064059751782409
128 => 0.006261357630753
129 => 0.0062665226747535
130 => 0.0063012600778921
131 => 0.0064214866267796
201 => 0.0064571780521371
202 => 0.0064406443618542
203 => 0.0064797783803831
204 => 0.006510708313006
205 => 0.006483662703715
206 => 0.0068665714971337
207 => 0.0067075610697983
208 => 0.0067850616456941
209 => 0.0068035450763854
210 => 0.0067562001573344
211 => 0.0067664675749821
212 => 0.0067820199150146
213 => 0.0068764506782311
214 => 0.0071242643246729
215 => 0.0072340193017574
216 => 0.0075642225655313
217 => 0.0072249056787736
218 => 0.0072047720189462
219 => 0.0072642515979352
220 => 0.0074581158693357
221 => 0.0076152246525608
222 => 0.0076673466997797
223 => 0.0076742354887609
224 => 0.0077720199143517
225 => 0.0078280681235288
226 => 0.0077601463130992
227 => 0.0077025896904702
228 => 0.0074964290124039
229 => 0.007520292672247
301 => 0.0076846896241129
302 => 0.0079169100015555
303 => 0.0081161792438137
304 => 0.0080464021004091
305 => 0.0085787524495994
306 => 0.0086315328122655
307 => 0.0086242402727385
308 => 0.0087444817936628
309 => 0.0085058268613879
310 => 0.0084037972541188
311 => 0.007715034085578
312 => 0.0079085484416534
313 => 0.0081898329229087
314 => 0.0081526038670519
315 => 0.0079483275580086
316 => 0.0081160242819153
317 => 0.0080605785006303
318 => 0.0080168461124833
319 => 0.0082171926605255
320 => 0.0079969034011705
321 => 0.0081876353690341
322 => 0.0079430196473795
323 => 0.0080467208365226
324 => 0.0079878550261028
325 => 0.0080259484197668
326 => 0.0078032552187832
327 => 0.0079234150644621
328 => 0.007798256174154
329 => 0.0077981968325438
330 => 0.0077954339431034
331 => 0.0079426828225113
401 => 0.0079474846031824
402 => 0.0078386674588192
403 => 0.0078229852082732
404 => 0.007880970707942
405 => 0.0078130848742563
406 => 0.0078448482285695
407 => 0.0078140469539006
408 => 0.0078071129381985
409 => 0.0077518615213588
410 => 0.007728057691815
411 => 0.0077373917867282
412 => 0.0077055297087335
413 => 0.0076863316542399
414 => 0.0077916149668566
415 => 0.0077353663400422
416 => 0.0077829940580784
417 => 0.0077287162622789
418 => 0.0075405657743281
419 => 0.0074323584390522
420 => 0.0070769596088725
421 => 0.0071777502762406
422 => 0.0072445745929812
423 => 0.007222489156697
424 => 0.0072699372197646
425 => 0.0072728501454797
426 => 0.0072574242965007
427 => 0.0072395631395567
428 => 0.0072308693161402
429 => 0.0072956659531704
430 => 0.0073332825819209
501 => 0.0072512813071601
502 => 0.0072320695558034
503 => 0.0073149773720011
504 => 0.0073655510919874
505 => 0.0077389590254477
506 => 0.0077112957596452
507 => 0.0077807251281677
508 => 0.0077729084467526
509 => 0.0078456814859299
510 => 0.0079646346488038
511 => 0.0077227696088537
512 => 0.0077647490167252
513 => 0.0077544566353612
514 => 0.007866826156286
515 => 0.0078671769616648
516 => 0.0077998058205965
517 => 0.0078363288091416
518 => 0.0078159426788915
519 => 0.0078527831716041
520 => 0.0077109262998649
521 => 0.0078836926571402
522 => 0.0079816400488972
523 => 0.0079830000485267
524 => 0.0080294263348609
525 => 0.0080765981306057
526 => 0.0081671402847402
527 => 0.0080740729590687
528 => 0.0079066539001073
529 => 0.0079187410154041
530 => 0.0078205832823912
531 => 0.0078222333316168
601 => 0.0078134252395339
602 => 0.0078398589869169
603 => 0.0077167270209169
604 => 0.0077456258472244
605 => 0.0077051673211626
606 => 0.007764661067791
607 => 0.0077006556310875
608 => 0.0077544516720633
609 => 0.0077776682599815
610 => 0.0078633379692169
611 => 0.0076880021453775
612 => 0.0073304805313772
613 => 0.0074056359091706
614 => 0.0072944752020866
615 => 0.0073047635487459
616 => 0.0073255476463759
617 => 0.0072581795858235
618 => 0.0072710312887654
619 => 0.0072705721355002
620 => 0.007266615400716
621 => 0.0072490903662884
622 => 0.007223675599146
623 => 0.0073249202091886
624 => 0.0073421236413156
625 => 0.0073803647398794
626 => 0.0074941443100206
627 => 0.0074827750478564
628 => 0.0075013187861523
629 => 0.0074608379095711
630 => 0.0073066413405085
701 => 0.0073150149560707
702 => 0.0072105958358324
703 => 0.0073776945082088
704 => 0.0073381233369953
705 => 0.0073126115454883
706 => 0.0073056504168106
707 => 0.0074197120244986
708 => 0.0074538410452155
709 => 0.0074325741298181
710 => 0.007388955065883
711 => 0.007472716563457
712 => 0.0074951276065939
713 => 0.0075001446126648
714 => 0.0076485539266918
715 => 0.0075084390446971
716 => 0.0075421660894154
717 => 0.0078052948644979
718 => 0.007566673374787
719 => 0.0076930764997811
720 => 0.0076868897245828
721 => 0.0077515532860812
722 => 0.007681585425152
723 => 0.0076824527606439
724 => 0.0077398696225655
725 => 0.0076592379951822
726 => 0.007639272470317
727 => 0.0076116902407116
728 => 0.0076719150299795
729 => 0.0077080170674126
730 => 0.0079989729750993
731 => 0.0081869437606663
801 => 0.0081787834531272
802 => 0.0082533533885793
803 => 0.0082197589496758
804 => 0.0081112736446911
805 => 0.0082964448319264
806 => 0.0082378489203936
807 => 0.0082426794961464
808 => 0.0082424997018756
809 => 0.0082814608605014
810 => 0.0082538533088773
811 => 0.008199435990769
812 => 0.0082355607460792
813 => 0.0083428383545139
814 => 0.0086758313427743
815 => 0.0088621786305751
816 => 0.0086646130020641
817 => 0.0088008911271018
818 => 0.0087191728129401
819 => 0.0087043221643477
820 => 0.0087899148977457
821 => 0.0088756574498929
822 => 0.0088701960199964
823 => 0.0088079513300663
824 => 0.0087727908841253
825 => 0.0090390375604039
826 => 0.0092352035760922
827 => 0.0092218263689359
828 => 0.0092808690108229
829 => 0.0094542200335234
830 => 0.0094700690785334
831 => 0.0094680724631483
901 => 0.0094287889514142
902 => 0.0095994755457377
903 => 0.0097418653056673
904 => 0.0094196959534576
905 => 0.0095423738252725
906 => 0.0095974478743644
907 => 0.0096783129181654
908 => 0.0098147458016126
909 => 0.0099629481000714
910 => 0.0099839055300289
911 => 0.0099690352305687
912 => 0.0098712918308435
913 => 0.010033456554238
914 => 0.010128448845972
915 => 0.01018501458184
916 => 0.010328455876359
917 => 0.0095977879929422
918 => 0.0090805849485097
919 => 0.008999816224619
920 => 0.0091640626007238
921 => 0.0092073730602624
922 => 0.0091899146683291
923 => 0.0086077556197767
924 => 0.008996751277709
925 => 0.0094152778979602
926 => 0.0094313552099474
927 => 0.009640878387024
928 => 0.0097091077221254
929 => 0.0098778013425028
930 => 0.0098672495106178
1001 => 0.009908323722678
1002 => 0.0098988814726315
1003 => 0.010211350881748
1004 => 0.010556051042159
1005 => 0.010544115171684
1006 => 0.010494560445317
1007 => 0.010568157664308
1008 => 0.010923925170167
1009 => 0.010891171799285
1010 => 0.010922988909171
1011 => 0.011342458848757
1012 => 0.011887829439121
1013 => 0.011634450045585
1014 => 0.012184210421602
1015 => 0.01253025543676
1016 => 0.013128704508752
1017 => 0.013053775737515
1018 => 0.01328674756962
1019 => 0.012919637598894
1020 => 0.012076678900941
1021 => 0.011943277460274
1022 => 0.012210350522752
1023 => 0.012866923586247
1024 => 0.012189672700438
1025 => 0.012326679672584
1026 => 0.012287221655389
1027 => 0.012285119105338
1028 => 0.012365364889078
1029 => 0.012248964194425
1030 => 0.011774726824321
1031 => 0.011992067016341
1101 => 0.011908141530669
1102 => 0.012001263114081
1103 => 0.012503801893498
1104 => 0.01228161752009
1105 => 0.012047564331497
1106 => 0.012341118970553
1107 => 0.012714914902389
1108 => 0.012691523424751
1109 => 0.012646134181253
1110 => 0.012901990970346
1111 => 0.013324591426923
1112 => 0.01343881863219
1113 => 0.013523138819845
1114 => 0.013534765149121
1115 => 0.013654523566392
1116 => 0.013010552373721
1117 => 0.014032551194843
1118 => 0.014209022159103
1119 => 0.014175852931794
1120 => 0.014371992981536
1121 => 0.014314283603309
1122 => 0.014230671768582
1123 => 0.014541595467608
1124 => 0.014185146536924
1125 => 0.01367921215549
1126 => 0.013401646547588
1127 => 0.013767167330652
1128 => 0.013990378117952
1129 => 0.014137906249485
1130 => 0.014182548172948
1201 => 0.013060542024257
1202 => 0.012455842939426
1203 => 0.012843448119914
1204 => 0.013316353191189
1205 => 0.013007925362172
1206 => 0.013020015149139
1207 => 0.012580278118369
1208 => 0.013355260160996
1209 => 0.01324235179601
1210 => 0.013828120593289
1211 => 0.01368832216873
1212 => 0.014165993883497
1213 => 0.014040206912476
1214 => 0.014562341596527
1215 => 0.014770635258228
1216 => 0.015120392734542
1217 => 0.015377675757888
1218 => 0.015528757270237
1219 => 0.015519686902928
1220 => 0.016118347123365
1221 => 0.015765338106968
1222 => 0.015321875584537
1223 => 0.015313854746613
1224 => 0.015543530270892
1225 => 0.016024867161379
1226 => 0.016149670813916
1227 => 0.016219419029656
1228 => 0.016112597209297
1229 => 0.015729431222383
1230 => 0.015563982091929
1231 => 0.015704949544598
]
'min_raw' => 0.0058127657654388
'max_raw' => 0.016219419029656
'avg_raw' => 0.011016092397548
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.005812'
'max' => '$0.016219'
'avg' => '$0.011016'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0023011869279872
'max_diff' => 0.0083800666486972
'year' => 2036
]
11 => [
'items' => [
101 => 0.015532558463455
102 => 0.015830153833903
103 => 0.016238815840469
104 => 0.016154428752138
105 => 0.01643652213641
106 => 0.016728459112042
107 => 0.017145942098905
108 => 0.017255087611022
109 => 0.017435500992118
110 => 0.017621205623975
111 => 0.017680848946847
112 => 0.017794726556446
113 => 0.017794126365232
114 => 0.018137304206606
115 => 0.018515839992974
116 => 0.018658728489205
117 => 0.01898729270737
118 => 0.018424637998026
119 => 0.018851418058375
120 => 0.019236384355807
121 => 0.018777411665711
122 => 0.019409998592087
123 => 0.019434560508965
124 => 0.019805416292578
125 => 0.019429482908515
126 => 0.01920625486508
127 => 0.019850705862231
128 => 0.020162535399735
129 => 0.020068609805286
130 => 0.019353831393847
131 => 0.018937799700102
201 => 0.01784896451105
202 => 0.019138736826662
203 => 0.019766947298422
204 => 0.01935220448049
205 => 0.019561376633706
206 => 0.020702552077355
207 => 0.021137037800658
208 => 0.021046667807495
209 => 0.021061938848723
210 => 0.021296379458543
211 => 0.02233601823129
212 => 0.021713042580022
213 => 0.022189284122964
214 => 0.022441880920124
215 => 0.022676506902699
216 => 0.022100339643799
217 => 0.021350754505549
218 => 0.021113329426821
219 => 0.019310966480934
220 => 0.019217145662335
221 => 0.019164481193794
222 => 0.018832439169178
223 => 0.018571545091794
224 => 0.018364072435083
225 => 0.017819602227293
226 => 0.018003344939332
227 => 0.017135573067878
228 => 0.017690742759287
301 => 0.016305757899363
302 => 0.017459214445755
303 => 0.016831440488787
304 => 0.017252973816965
305 => 0.017251503126894
306 => 0.016475326622456
307 => 0.016027644213086
308 => 0.016312924868396
309 => 0.016618768376496
310 => 0.016668390456704
311 => 0.017064924548286
312 => 0.017175588689775
313 => 0.016840271174649
314 => 0.016277057166564
315 => 0.016407878935098
316 => 0.016024993114122
317 => 0.015354000440353
318 => 0.015835919093062
319 => 0.016000467309565
320 => 0.016073141176077
321 => 0.015413296945454
322 => 0.015205959562277
323 => 0.015095574879203
324 => 0.016191879562359
325 => 0.01625193760767
326 => 0.015944672156506
327 => 0.017333541131873
328 => 0.017019197307979
329 => 0.017370396375375
330 => 0.016396008230812
331 => 0.016433231170122
401 => 0.015971940207224
402 => 0.016230232322974
403 => 0.016047679780705
404 => 0.016209364872513
405 => 0.016306278249891
406 => 0.016767493519482
407 => 0.017464480783273
408 => 0.016698603338379
409 => 0.016364899568071
410 => 0.016571927510349
411 => 0.017123270202457
412 => 0.017958582603715
413 => 0.017464060849942
414 => 0.017683521206742
415 => 0.017731463531591
416 => 0.017366821498549
417 => 0.017972027475593
418 => 0.018296362275375
419 => 0.018629062668322
420 => 0.018917937097464
421 => 0.018496174815141
422 => 0.018947520914475
423 => 0.018583815631723
424 => 0.018257534393934
425 => 0.018258029227889
426 => 0.018053348241215
427 => 0.017656753038072
428 => 0.01758361479775
429 => 0.017964089160245
430 => 0.01826919356791
501 => 0.018294323428277
502 => 0.018463244905191
503 => 0.018563210895199
504 => 0.019543013494452
505 => 0.019937098205223
506 => 0.020418977529913
507 => 0.02060669668411
508 => 0.021171664037202
509 => 0.020715407015175
510 => 0.020616692938468
511 => 0.019246266939279
512 => 0.019470674119874
513 => 0.019829971668078
514 => 0.019252191623512
515 => 0.019618660075155
516 => 0.019691008710373
517 => 0.019232558878688
518 => 0.019477436742239
519 => 0.018827113737874
520 => 0.017478656047641
521 => 0.017973528694479
522 => 0.018337921534884
523 => 0.017817888022313
524 => 0.018750027965521
525 => 0.018205491053973
526 => 0.018032898995394
527 => 0.017359555841365
528 => 0.017677347890712
529 => 0.018107166187797
530 => 0.017841588451939
531 => 0.018392702130543
601 => 0.019173226076096
602 => 0.019729473920701
603 => 0.019772175723253
604 => 0.019414545624883
605 => 0.019987650139886
606 => 0.019991824580605
607 => 0.019345360346481
608 => 0.018949404602608
609 => 0.018859442624502
610 => 0.019084185283896
611 => 0.019357064362183
612 => 0.019787318612956
613 => 0.02004731224565
614 => 0.020725237749749
615 => 0.020908664953511
616 => 0.021110195838792
617 => 0.02137950325135
618 => 0.02170287584913
619 => 0.0209953550148
620 => 0.021023466136532
621 => 0.020364632531897
622 => 0.019660574339048
623 => 0.020194866745327
624 => 0.020893382992598
625 => 0.020733142593682
626 => 0.02071511227539
627 => 0.020745434269564
628 => 0.020624618241744
629 => 0.020078171825564
630 => 0.019803749856294
701 => 0.020157824209163
702 => 0.020345998969677
703 => 0.02063784161267
704 => 0.02060186584687
705 => 0.021353621153609
706 => 0.021645730533907
707 => 0.021570996454361
708 => 0.021584749323574
709 => 0.022113599403641
710 => 0.02270178945899
711 => 0.023252707064338
712 => 0.023813124114959
713 => 0.023137519486985
714 => 0.0227944891224
715 => 0.023148408897484
716 => 0.022960614083043
717 => 0.02403973879038
718 => 0.024114455043772
719 => 0.02519350171811
720 => 0.026217645502545
721 => 0.025574399140983
722 => 0.026180951487483
723 => 0.026836987303162
724 => 0.02810258682958
725 => 0.027676377433411
726 => 0.027349907715498
727 => 0.02704139540956
728 => 0.027683360543267
729 => 0.028509238432138
730 => 0.028687124619241
731 => 0.0289753682001
801 => 0.028672315319574
802 => 0.029037309133988
803 => 0.030325897685278
804 => 0.029977709684034
805 => 0.029483226748253
806 => 0.030500443652136
807 => 0.030868570495321
808 => 0.033452277470316
809 => 0.036714314253859
810 => 0.035363809605784
811 => 0.034525507790211
812 => 0.034722528601655
813 => 0.035913714008092
814 => 0.036296284954304
815 => 0.035256325242385
816 => 0.035623656593814
817 => 0.037647688455408
818 => 0.038733516610437
819 => 0.037258816129731
820 => 0.033190175990933
821 => 0.02943870397014
822 => 0.030433763281041
823 => 0.030320954435471
824 => 0.032495524167636
825 => 0.029969405515357
826 => 0.030011938874869
827 => 0.032231476406187
828 => 0.031639341845338
829 => 0.030680159691627
830 => 0.029445707061357
831 => 0.027163707201255
901 => 0.025142476286889
902 => 0.029106575571641
903 => 0.028935636402235
904 => 0.028688091153171
905 => 0.02923897631777
906 => 0.031913918305583
907 => 0.031852252234822
908 => 0.031459964154944
909 => 0.031757511206063
910 => 0.030627998254947
911 => 0.030919099460981
912 => 0.029438109717805
913 => 0.030107578933316
914 => 0.030678101717516
915 => 0.030792642613178
916 => 0.031050709099708
917 => 0.028845559227495
918 => 0.02983560678032
919 => 0.030417166962694
920 => 0.027789656901387
921 => 0.030365229536871
922 => 0.028807172474235
923 => 0.028278344505945
924 => 0.028990341697461
925 => 0.028712875699487
926 => 0.028474326727779
927 => 0.028341212302775
928 => 0.028864024459962
929 => 0.028839634647933
930 => 0.027984212485308
1001 => 0.026868349145632
1002 => 0.027242869509393
1003 => 0.027106802750092
1004 => 0.026613679261422
1005 => 0.026945984952828
1006 => 0.025482678863937
1007 => 0.022965136794032
1008 => 0.02462830219981
1009 => 0.024564272140864
1010 => 0.024531985281611
1011 => 0.025781808117538
1012 => 0.025661666490182
1013 => 0.025443608260102
1014 => 0.026609674451023
1015 => 0.026184044605533
1016 => 0.02749573549833
1017 => 0.028359699955173
1018 => 0.028140570622595
1019 => 0.028953133370159
1020 => 0.027251497702149
1021 => 0.027816712813289
1022 => 0.02793320286434
1023 => 0.026595285375231
1024 => 0.025681323146234
1025 => 0.025620372285492
1026 => 0.024035687732165
1027 => 0.024882213429426
1028 => 0.025627121011402
1029 => 0.025270368086799
1030 => 0.02515743076856
1031 => 0.025734403034326
1101 => 0.02577923872081
1102 => 0.024756980317517
1103 => 0.024969540210275
1104 => 0.025855950298218
1105 => 0.024947204950353
1106 => 0.023181661182161
1107 => 0.022743781917097
1108 => 0.022685360751421
1109 => 0.021497797455925
1110 => 0.022773043103389
1111 => 0.022216364203813
1112 => 0.023974906177538
1113 => 0.022970436433396
1114 => 0.022927135750334
1115 => 0.022861680417057
1116 => 0.021839495631002
1117 => 0.022063289135916
1118 => 0.022807212830963
1119 => 0.023072653186257
1120 => 0.023044965582511
1121 => 0.022803567199012
1122 => 0.022914078142818
1123 => 0.022558083888253
1124 => 0.022432374907586
1125 => 0.022035602785623
1126 => 0.021452457377434
1127 => 0.021533547323081
1128 => 0.020378183681162
1129 => 0.019748680249255
1130 => 0.019574441996024
1201 => 0.019341443321887
1202 => 0.019600759816254
1203 => 0.020374910681128
1204 => 0.019441120492822
1205 => 0.017840202712737
1206 => 0.017936420599152
1207 => 0.018152593622578
1208 => 0.017749756623551
1209 => 0.017368505211519
1210 => 0.017699972382376
1211 => 0.017021642414428
1212 => 0.018234566558444
1213 => 0.018201760359529
1214 => 0.018653863473693
1215 => 0.018936572829069
1216 => 0.018285019293167
1217 => 0.018121155340876
1218 => 0.018214499695303
1219 => 0.016671725443753
1220 => 0.018527785903243
1221 => 0.018543837191171
1222 => 0.01840639631891
1223 => 0.019394691214151
1224 => 0.021480301700017
1225 => 0.020695611141747
1226 => 0.020391755240187
1227 => 0.019814124949204
1228 => 0.020583783015645
1229 => 0.020524685284679
1230 => 0.0202574229331
1231 => 0.020095781828955
]
'min_raw' => 0.015095574879203
'max_raw' => 0.038733516610437
'avg_raw' => 0.02691454574482
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.015095'
'max' => '$0.038733'
'avg' => '$0.026914'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.009282809113764
'max_diff' => 0.02251409758078
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00047383284613113
]
1 => [
'year' => 2028
'avg' => 0.00081323471861911
]
2 => [
'year' => 2029
'avg' => 0.00222161067997
]
3 => [
'year' => 2030
'avg' => 0.001713969331075
]
4 => [
'year' => 2031
'avg' => 0.0016833302929964
]
5 => [
'year' => 2032
'avg' => 0.0029514077671626
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00047383284613113
'min' => '$0.000473'
'max_raw' => 0.0029514077671626
'max' => '$0.002951'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0029514077671626
]
1 => [
'year' => 2033
'avg' => 0.0075913242668238
]
2 => [
'year' => 2034
'avg' => 0.004811746142286
]
3 => [
'year' => 2035
'avg' => 0.0056754656092053
]
4 => [
'year' => 2036
'avg' => 0.011016092397548
]
5 => [
'year' => 2037
'avg' => 0.02691454574482
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0029514077671626
'min' => '$0.002951'
'max_raw' => 0.02691454574482
'max' => '$0.026914'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.02691454574482
]
]
]
]
'prediction_2025_max_price' => '$0.00081'
'last_price' => 0.00078556
'sma_50day_nextmonth' => '$0.005338'
'sma_200day_nextmonth' => '$0.014338'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'INCREASE'
'sma_200day_date_nextmonth' => 'Feb 4, 2026'
'sma_50day_date_nextmonth' => 'Feb 4, 2026'
'daily_sma3' => '$0.00079'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.005099'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.009315'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.01241'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.014389'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.015546'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017425'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002183'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.004228'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.007588'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.010786'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.01344'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.015471'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.020715'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.014414'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.016345'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.040819'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.004085'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.006857'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.010335'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.01336'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.020094'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.033924'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.055984'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '0.671423'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -2.94
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0.01
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003025'
'vwma_10_action' => 'SELL'
'hma_9' => '-0.000454'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -213.63
'cci_20_action' => 'BUY'
'adx_14' => 68.45
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.008511'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 0.14
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.000319'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 2
'sell_pct' => 94.12
'buy_pct' => 5.88
'overall_action' => 'bearish'
'overall_action_label' => 'BEARISH'
'overall_action_dir' => -1
'last_updated' => 1767690788
'last_updated_date' => 'January 6, 2026'
]
Vulture Peak price prediction 2026
The Vulture Peak price forecast for 2026 suggests that the average price could range between $0.000271 on the lower end and $0.00081 on the high end. In the crypto market, compared to today’s average price, Vulture Peak could potentially gain 3.13% by 2026 if VPK reaches the forecast price target.
Vulture Peak price prediction 2027-2032
The VPK price prediction for 2027-2032 is currently within a price range of $0.000473 on the lower end and $0.002951 on the high end. Considering the price volatility in the market, if Vulture Peak reaches the upper price target, it could gain 275.71% by 2032 compared to today’s price.
| Vulture Peak Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2027 | $0.000261 | $0.000473 | $0.000686 |
| 2028 | $0.000471 | $0.000813 | $0.001154 |
| 2029 | $0.001035 | $0.002221 | $0.0034073 |
| 2030 | $0.00088 | $0.001713 | $0.002547 |
| 2031 | $0.001041 | $0.001683 | $0.002325 |
| 2032 | $0.001589 | $0.002951 | $0.004313 |
Vulture Peak price prediction 2032-2037
The Vulture Peak price prediction for 2032-2037 is currently estimated to be between $0.002951 on the lower end and $0.026914 on the high end. Compared to the current price, Vulture Peak could potentially gain 3326.16% by 2037 if it reaches the upper price target. Please note that this information is for general purposes only and should not be considered long-term investment advice.
| Vulture Peak Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2032 | $0.001589 | $0.002951 | $0.004313 |
| 2033 | $0.003694 | $0.007591 | $0.011488 |
| 2034 | $0.00297 | $0.004811 | $0.006653 |
| 2035 | $0.003511 | $0.005675 | $0.007839 |
| 2036 | $0.005812 | $0.011016 | $0.016219 |
| 2037 | $0.015095 | $0.026914 | $0.038733 |
Vulture Peak potential price histogram
Vulture Peak Price Forecast Based on Technical Analysis
As of January 6, 2026, the overall price prediction sentiment for Vulture Peak is BEARISH, with 2 technical indicators showing bullish signals and 32 indicating bearish signals. The VPK price prediction was last updated on January 6, 2026.
Vulture Peak's 50-Day, 200-Day Simple Moving Averages and 14-Day Relative Strength Index - RSI (14)
According to our technical indicators, Vulture Peak's 200-day SMA is projected to INCREASE over the next month, reaching $0.014338 by Feb 4, 2026. The short-term 50-day SMA for Vulture Peak is expected to reach $0.005338 by Feb 4, 2026.
The Relative Strength Index (RSI) momentum oscillator is a commonly used tool to identify if a cryptocurrency is oversold (below 30) or overbought (above 70). Right now, the RSI stands at 0.671423, suggesting that the VPK market is in a BUY state.
Popular VPK Moving Averages and Oscillators for Sat, Oct 19, 2024
Moving averages (MA) are widely used indicators across financial markets, designed to smooth out price movements over a set period. As lagging indicators, they are based on historical price data. The table below highlights two types: the simple moving average (SMA) and the exponential moving average (EMA).
Daily Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 3 | $0.00079 | SELL |
| SMA 5 | $0.005099 | SELL |
| SMA 10 | $0.009315 | SELL |
| SMA 21 | $0.01241 | SELL |
| SMA 50 | $0.014389 | SELL |
| SMA 100 | $0.015546 | SELL |
| SMA 200 | $0.017425 | SELL |
Daily Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 3 | $0.002183 | SELL |
| EMA 5 | $0.004228 | SELL |
| EMA 10 | $0.007588 | SELL |
| EMA 21 | $0.010786 | SELL |
| EMA 50 | $0.01344 | SELL |
| EMA 100 | $0.015471 | SELL |
| EMA 200 | $0.020715 | SELL |
Weekly Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 21 | $0.014414 | SELL |
| SMA 50 | $0.016345 | SELL |
| SMA 100 | $0.040819 | SELL |
| SMA 200 | — | — |
Weekly Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 21 | $0.01336 | SELL |
| EMA 50 | $0.020094 | SELL |
| EMA 100 | $0.033924 | SELL |
| EMA 200 | $0.055984 | SELL |
Vulture Peak Oscillators
An oscillator is a technical analysis tool that sets high and low boundaries between two extremes, creating a trend indicator that fluctuates within these limits. Traders use this indicator to identify short-term overbought or oversold conditions.
| Period | Value | Action |
|---|---|---|
| RSI (14) | 0.671423 | BUY |
| Stoch RSI (14) | -2.94 | BUY |
| Stochastic Fast (14) | 0 | BUY |
| Commodity Channel Index (20) | -213.63 | BUY |
| Average Directional Index (14) | 68.45 | SELL |
| Awesome Oscillator (5, 34) | -0.008511 | NEUTRAL |
| Momentum (10) | -0.01 | SELL |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -100 | BUY |
| Ultimate Oscillator (7, 14, 28) | 0.14 | BUY |
| VWMA (10) | 0.003025 | SELL |
| Hull Moving Average (9) | -0.000454 | SELL |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.000319 | SELL |
Vulture Peak price prediction based on worldwide money flows
Worldwide money flows definitions used for Vulture Peak price prediction
M0: The total of all physical currency, plus accounts at the central bank which can be exchanged for physical currency.
M1: Measure M0 plus the amount in demand accounts, including "checking" or "current" accounts.
M2: Measure M1 plus most savings accounts, money market accounts, and certificate of deposit (CD) accounts of under $100,000.
Vulture Peak price predictions by Internet companies or technological niches
| Comparison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0011038 | $0.001551 | $0.002179 | $0.003062 | $0.0043034 | $0.006047 |
| Amazon.com stock | $0.001639 | $0.00342 | $0.007136 | $0.01489 | $0.031069 | $0.064828 |
| Apple stock | $0.001114 | $0.00158 | $0.002241 | $0.003179 | $0.00451 | $0.006397 |
| Netflix stock | $0.001239 | $0.001955 | $0.003085 | $0.004868 | $0.007682 | $0.012121 |
| Google stock | $0.001017 | $0.001317 | $0.001706 | $0.0022092 | $0.002861 | $0.003705 |
| Tesla stock | $0.00178 | $0.004036 | $0.009151 | $0.020745 | $0.047028 | $0.10661 |
| Kodak stock | $0.000589 | $0.000441 | $0.000331 | $0.000248 | $0.000186 | $0.000139 |
| Nokia stock | $0.00052 | $0.000344 | $0.000228 | $0.000151 | $0.00010022 | $0.000066 |
This calculation shows how much cryptocurrency can cost if we assume that its capitalization will behave like the capitalization of some Internet companies or technological niches. If you extrapolate the data projections, you can get a potential picture of the future Vulture Peak price for 2024, 2025, 2026, 2027, 2028, 2029 and 2030.
Vulture Peak forecast and prediction overview
You may ask questions like: "Should I invest in Vulture Peak now?", "Should I buy VPK today?", "Will Vulture Peak be a good or bad investment in short-term, long-term period?".
We update Vulture Peak forecast projection regularly with fresh values. Look at our similar predictions. We making a forecast of future prices for huge amounts of digital coins like Vulture Peak with technical analysis methods.
If you are trying to find cryptocurrencies with good returns, you should explore the maximum of available sources of information about Vulture Peak in order to make such a responsible decision about the investment by yourself.
Vulture Peak price equal to $0.0007855 USD today, but the price can go both up and down and your investment may be lost because cryptocurrency high-risk assets
Vulture Peak price prediction based on Bitcoin's growth pattern
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| If Vulture Peak has 1% of Bitcoin's previous average grow per year | $0.0008059 | $0.000826 | $0.000848 | $0.00087 |
| If Vulture Peak has 2% of Bitcoin's previous average grow per year | $0.000826 | $0.000869 | $0.000914 | $0.000962 |
| If Vulture Peak has 5% of Bitcoin's previous average grow per year | $0.000887 | $0.001003 | $0.001133 | $0.00128 |
| If Vulture Peak has 10% of Bitcoin's previous average grow per year | $0.000989 | $0.001247 | $0.001571 | $0.001979 |
| If Vulture Peak has 20% of Bitcoin's previous average grow per year | $0.001193 | $0.001814 | $0.002757 | $0.004191 |
| If Vulture Peak has 50% of Bitcoin's previous average grow per year | $0.0018065 | $0.004154 | $0.009553 | $0.02197 |
| If Vulture Peak has 100% of Bitcoin's previous average grow per year | $0.002827 | $0.010177 | $0.03663 | $0.131844 |
Frequently Asked Questions about Vulture Peak
Is VPK a good investment?
The determination to procure Vulture Peak is entirely contingent on your individualistic risk tolerance. As you may discern, Vulture Peak's value has experienced an escalation of 5.0149% during the preceding 24 hours, and Vulture Peak has incurred a decline of over the prior 30-day duration. Consequently, the determination of whether or not to invest in Vulture Peak will hinge on whether such an investment aligns with your trading aspirations.
Can Vulture Peak rise?
It appears that the mean value of Vulture Peak may potentially surge to $0.00081 by the end of this year. Looking at Vulture Peak's prospects in a more extended five-year timeline, the digital currency could potentially growth to as much as $0.002547. However, given the market's unpredictability, it is vital to conduct thorough research before investing any funds into a particular project, network, or asset.
What will the price of Vulture Peak be next week?
Based on the our new experimental Vulture Peak forecast, the price of Vulture Peak will increase by 0.86% over the next week and reach $0.000792 by January 13, 2026.
What will the price of Vulture Peak be next month?
Based on the our new experimental Vulture Peak forecast, the price of Vulture Peak will decrease by -11.62% over the next month and reach $0.000694 by February 5, 2026.
How high can Vulture Peak’s price go this year in 2026?
As per our most recent prediction on Vulture Peak's value in 2026, VPK is anticipated to fluctuate within the range of $0.000271 and $0.00081. However, it is crucial to bear in mind that the cryptocurrency market is exceptionally unstable, and this projected Vulture Peak price forecast fails to consider sudden and extreme price fluctuations.
Where will Vulture Peak be in 5 years?
Vulture Peak's future appears to be on an upward trend, with an maximum price of $0.002547 projected after a period of five years. Based on the Vulture Peak forecast for 2030, Vulture Peak's value may potentially reach its highest peak of approximately $0.002547, while its lowest peak is anticipated to be around $0.00088.
How much will be Vulture Peak in 2026?
Based on the our new experimental Vulture Peak price prediction simulation, VPK’s value in 2026 expected to grow by 3.13% to $0.00081 if the best happened. The price will be between $0.00081 and $0.000271 during 2026.
How much will be Vulture Peak in 2027?
According to our latest experimental simulation for Vulture Peak price prediction, VPK’s value could down by -12.62% to $0.000686 in 2027, assuming the most favorable conditions. The price is projected to fluctuate between $0.000686 and $0.000261 throughout the year.
How much will be Vulture Peak in 2028?
Our new experimental Vulture Peak price prediction model suggests that VPK’s value in 2028 could increase by 47.02% , reaching $0.001154 in the best-case scenario. The price is expected to range between $0.001154 and $0.000471 during the year.
How much will be Vulture Peak in 2029?
Based on our experimental forecast model, Vulture Peak's value may experience a 333.75% growth in 2029, potentially reaching $0.0034073 under optimal conditions. The predicted price range for 2029 lies between $0.0034073 and $0.001035.
How much will be Vulture Peak in 2030?
Using our new experimental simulation for Vulture Peak price predictions, VPK’s value in 2030 is expected to rise by 224.23% , reaching $0.002547 in the best scenario. The price is forecasted to range between $0.002547 and $0.00088 over the course of 2030.
How much will be Vulture Peak in 2031?
Our experimental simulation indicates that Vulture Peak’s price could grow by 195.98% in 2031, potentially hitting $0.002325 under ideal conditions. The price will likely fluctuate between $0.002325 and $0.001041 during the year.
How much will be Vulture Peak in 2032?
Based on the findings from our latest experimental Vulture Peak price prediction, VPK could see a 449.04% rise in value, reaching $0.004313 if the most positive scenario plays out in 2032. The price is expected to stay within a range of $0.004313 and $0.001589 throughout the year.
How much will be Vulture Peak in 2033?
According to our experimental Vulture Peak price prediction, VPK’s value is anticipated to rise by 1362.43% in 2033, with the highest potential price being $0.011488. Throughout the year, VPK’s price could range from $0.011488 and $0.003694.
How much will be Vulture Peak in 2034?
The results from our new Vulture Peak price prediction simulation suggest that VPK may rise by 746.96% in 2034, potentially reaching $0.006653 under the best circumstances. The predicted price range for the year is between $0.006653 and $0.00297.
How much will be Vulture Peak in 2035?
Based on our experimental forecast for Vulture Peak’s price, VPK could grow by 897.93% , with the value potentially hitting $0.007839 in 2035. The expected price range for the year lies between $0.007839 and $0.003511.
How much will be Vulture Peak in 2036?
Our recent Vulture Peak price prediction simulation suggests that VPK’s value might rise by 1964.7% in 2036, possibly reaching $0.016219 if conditions are optimal. The expected price range for 2036 is between $0.016219 and $0.005812.
How much will be Vulture Peak in 2037?
According to the experimental simulation, Vulture Peak’s value could rise by 4830.69% in 2037, with a high of $0.038733 under favorable conditions. The price is expected to fall between $0.038733 and $0.015095 over the course of the year.
Related Predictions
Index Coop - ETH 2x Flexible Leverage Index (Polygon) Price Prediction
Shirtum Price Prediction
Riecoin Price Prediction
B20 Price PredictionPacoca Price Prediction
Refereum Price Prediction
Blue Whale Price Prediction
Ajna Protocol Price Prediction
Gold Price Prediction
EverETH Reflect Price Prediction
TRDGtoken Price Prediction
Tag Protocol Price Prediction
Ink Price Prediction
Scream Price Prediction
LaunchZone Price Prediction
Mist Price Prediction
Omni Price Prediction
XIDR Price Prediction
Pixel Price Prediction
Ecoin Finance Price Prediction
CATpay Price Prediction
e-Money EUR Price Prediction
Decentral Games ICE Price Prediction
KOK Price Prediction
DogeCash Price Prediction
How to read and predict Vulture Peak price movements?
Vulture Peak traders use indicators and chart patterns to predict market direction. They also identify key support and resistance levels to gauge when a downtrend might slow or an uptrend might stall.
Vulture Peak Price Prediction Indicators
Moving averages are popular tools for Vulture Peak price prediction. A simple moving average (SMA) calculates the average closing price of VPK over a specific period, like a 12-day SMA. An exponential moving average (EMA) gives more weight to recent prices, reacting faster to price changes.
Commonly used moving averages in the crypto market include the 50-day, 100-day, and 200-day averages, which help identify key resistance and support levels. A VPK price move above these averages is seen as bullish, while a drop below indicates weakness.
Traders also use RSI and Fibonacci retracement levels to gauge VPK's future direction.
How to read Vulture Peak charts and predict price movements?
Most traders prefer candlestick charts over simple line charts because they provide more detailed information. Candlesticks can represent Vulture Peak's price action in different time frames, such as 5-minute for short-term and weekly for long-term trends. Popular choices include 1-hour, 4-hour, and 1-day charts.
A 1-hour candlestick chart, for instance, shows VPK's opening, closing, highest, and lowest prices within each hour. The candle's color is crucial: green indicates the price closed higher than it opened, while red means the opposite. Some charts use hollow and filled candlesticks to convey the same information.
What affects the price of Vulture Peak?
Vulture Peak's price action is driven by supply and demand, influenced by factors like block reward halvings, hard forks, and protocol updates. Real-world events, such as regulations, adoption by companies and governments, and cryptocurrency exchange hacks, also impact VPK's price. Vulture Peak's market capitalization can change rapidly.
Traders often monitor the activity of VPK "whales," large holders of Vulture Peak, as their actions can significantly influence price movements in the relatively small Vulture Peak market.
Bullish and bearish price prediction patterns
Traders often identify candlestick patterns to gain an edge in cryptocurrency price predictions. Certain formations indicate bullish trends, while others suggest bearish movements.
Commonly followed bullish candlestick patterns:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Three White Soldiers
Common bearish candlestick patterns:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


