TERA (TERA) Price Prediction
TERA Price Prediction up to $0.020541 by 2026
| Year | Min. Price | Max. Price |
|---|---|---|
| 2026 | $0.006881 | $0.020541 |
| 2027 | $0.006624 | $0.0174028 |
| 2028 | $0.011955 | $0.029282 |
| 2029 | $0.026262 | $0.086392 |
| 2030 | $0.022335 | $0.064577 |
| 2031 | $0.0264071 | $0.058952 |
| 2032 | $0.0403085 | $0.109353 |
| 2033 | $0.093668 | $0.291277 |
| 2034 | $0.0753048 | $0.168692 |
| 2035 | $0.089033 | $0.198761 |
Investment Profit Calculator
If you open a short on $10,000.00 of TERA today and close it on Apr 06, 2026, our forecast suggests you could make around $3,954.46 in profit, equal to a 39.54% ROI over the next 90 days.
Long-term TERA price prediction for 2027, 2028, 2029, 2030, 2031, 2032 and 2037
[
'name' => 'TERA'
'name_with_ticker' => 'TERA <small>TERA</small>'
'name_lang' => 'TERA'
'name_lang_with_ticker' => 'TERA <small>TERA</small>'
'name_with_lang' => 'TERA'
'name_with_lang_with_ticker' => 'TERA <small>TERA</small>'
'image' => '/uploads/coins/tera-smart-money.png?1717119158'
'price_for_sd' => 0.01991
'ticker' => 'TERA'
'marketcap' => '$15.03M'
'low24h' => '$0.01991'
'high24h' => '$0.01991'
'volume24h' => '$0'
'current_supply' => '754.5M'
'max_supply' => '1B'
'algo' => 'SHA-3'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01991'
'change_24h_pct' => '0%'
'ath_price' => '$0.02827'
'ath_days' => 1730
'ath_exchange' => null
'ath_pair' => null
'ath_date' => 'Apr 12, 2021'
'ath_pct' => '-29.56%'
'fdv' => '$19.92M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.982061'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0200877'
'next_week_prediction_price_date' => 'January 13, 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017603'
'next_month_prediction_price_date' => 'February 5, 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006881'
'current_year_max_price_prediction' => '$0.020541'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.022335'
'grand_prediction_max_price' => '$0.064577'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.02029474273749
107 => 0.02037051593988
108 => 0.020541236833941
109 => 0.019082445486084
110 => 0.019737399973408
111 => 0.020122124373774
112 => 0.018383925536525
113 => 0.020087765771497
114 => 0.019057051174235
115 => 0.018707211159111
116 => 0.019178224651559
117 => 0.018994670235476
118 => 0.018836860927205
119 => 0.018748800621682
120 => 0.019094660946674
121 => 0.01907852614912
122 => 0.018512631528838
123 => 0.017774445065495
124 => 0.018022204672738
125 => 0.017932191284668
126 => 0.017605971154344
127 => 0.017825804134214
128 => 0.016857770945795
129 => 0.015192320159106
130 => 0.01629256796293
131 => 0.016250209619322
201 => 0.016228850621677
202 => 0.017055656437635
203 => 0.016976178136086
204 => 0.016831924240521
205 => 0.017603321818427
206 => 0.01732175132573
207 => 0.018189485237871
208 => 0.018761030913918
209 => 0.018616068442907
210 => 0.019153609913749
211 => 0.018027912553685
212 => 0.018401824061559
213 => 0.018478886705113
214 => 0.017593802892057
215 => 0.016989181769144
216 => 0.016948860433431
217 => 0.015900530728224
218 => 0.016460539994924
219 => 0.016953324974862
220 => 0.016717319211131
221 => 0.016642606836805
222 => 0.017024296154098
223 => 0.017053956682999
224 => 0.016377693480762
225 => 0.016518310014977
226 => 0.01710470433821
227 => 0.016503534382565
228 => 0.0153355593593
301 => 0.015045885405012
302 => 0.01500723755976
303 => 0.0142216188214
304 => 0.015065242803767
305 => 0.014696978327747
306 => 0.015860321395009
307 => 0.015195826074123
308 => 0.01516718100895
309 => 0.015123879791623
310 => 0.014447665290015
311 => 0.014595713290194
312 => 0.015087847391134
313 => 0.015263446382637
314 => 0.015245129969183
315 => 0.015085435665557
316 => 0.01515854289999
317 => 0.014923039025632
318 => 0.014839877706007
319 => 0.014577397705947
320 => 0.01419162461781
321 => 0.014245268731799
322 => 0.01348095130118
323 => 0.013064510599583
324 => 0.012949245301981
325 => 0.012795107728759
326 => 0.012966655551021
327 => 0.013478786085931
328 => 0.012861048006275
329 => 0.011801979397993
330 => 0.011865631225916
331 => 0.012008637984862
401 => 0.011742145835651
402 => 0.011489933381415
403 => 0.01170921164773
404 => 0.011260470316947
405 => 0.0120628662308
406 => 0.012041163670019
407 => 0.012340247246873
408 => 0.012527270345292
409 => 0.012096242652882
410 => 0.011987840353864
411 => 0.012049591229994
412 => 0.011028986799331
413 => 0.012256842090947
414 => 0.012267460634497
415 => 0.01217653821792
416 => 0.012830333254926
417 => 0.014210044706795
418 => 0.013690941759837
419 => 0.013489929408806
420 => 0.013107804782555
421 => 0.013616963158719
422 => 0.013577867739537
423 => 0.013401063427502
424 => 0.01329413162792
425 => 0.013491156747358
426 => 0.013269718035241
427 => 0.013229941557816
428 => 0.012988939381854
429 => 0.012902912569936
430 => 0.012839221743218
501 => 0.012769104401133
502 => 0.01292376578562
503 => 0.012573282740973
504 => 0.012150634547406
505 => 0.012115495923227
506 => 0.012212516754003
507 => 0.012169592258736
508 => 0.012115290417258
509 => 0.01201161341365
510 => 0.011980854661389
511 => 0.012080805684214
512 => 0.011967966806951
513 => 0.012134466717005
514 => 0.01208918795433
515 => 0.011836264466724
516 => 0.011521028156898
517 => 0.01151822189251
518 => 0.011450304746649
519 => 0.011363802049984
520 => 0.011339738978686
521 => 0.011690744643758
522 => 0.012417315865743
523 => 0.012274672549491
524 => 0.012377746964158
525 => 0.01288477106782
526 => 0.013045938783628
527 => 0.012931545756414
528 => 0.012774957525309
529 => 0.012781846612779
530 => 0.013316956000945
531 => 0.013350330117106
601 => 0.013434655741748
602 => 0.013543037999831
603 => 0.012950003723624
604 => 0.012753914751701
605 => 0.012660996918201
606 => 0.012374845954751
607 => 0.012683435236103
608 => 0.01250363347697
609 => 0.012527894877179
610 => 0.012512094608465
611 => 0.012520722623593
612 => 0.012062641944789
613 => 0.012229542468133
614 => 0.011952037977184
615 => 0.011580490615145
616 => 0.011579245058106
617 => 0.011670180748594
618 => 0.011616088641578
619 => 0.011470528172432
620 => 0.011491204350048
621 => 0.011310059277634
622 => 0.011513198641577
623 => 0.011519023951667
624 => 0.011440804231473
625 => 0.011753768449457
626 => 0.011881990144919
627 => 0.011830504249459
628 => 0.011878377757243
629 => 0.012280600023277
630 => 0.012346179802829
701 => 0.012375306008949
702 => 0.012336280751231
703 => 0.011885729641896
704 => 0.011905713499486
705 => 0.011759085211987
706 => 0.011635199760358
707 => 0.011640154528729
708 => 0.011703847754848
709 => 0.011981999808866
710 => 0.012567354408589
711 => 0.01258956818776
712 => 0.012616491936136
713 => 0.012506979520697
714 => 0.012473949528307
715 => 0.012517524614033
716 => 0.012737353025206
717 => 0.013302811381575
718 => 0.013102940632741
719 => 0.012940442602765
720 => 0.013082997184208
721 => 0.013061052023774
722 => 0.012875812784887
723 => 0.01287061373641
724 => 0.012515080412419
725 => 0.012383647837641
726 => 0.012273812940599
727 => 0.012153876100342
728 => 0.012082773521118
729 => 0.01219201939835
730 => 0.012217005223032
731 => 0.011978137203174
801 => 0.011945580374714
802 => 0.012140645156056
803 => 0.012054804418535
804 => 0.012143093745823
805 => 0.012163577627085
806 => 0.012160279250418
807 => 0.012070651661701
808 => 0.012127777614016
809 => 0.011992657706725
810 => 0.0118457351019
811 => 0.011752007633623
812 => 0.011670217986407
813 => 0.011715599636325
814 => 0.01155382234073
815 => 0.011502066527936
816 => 0.012108424626746
817 => 0.012556347873786
818 => 0.012549834892377
819 => 0.012510188793052
820 => 0.012451282731373
821 => 0.012733043679891
822 => 0.012634883799416
823 => 0.012706303313994
824 => 0.012724482577922
825 => 0.012779505734588
826 => 0.012799171783695
827 => 0.012739727324342
828 => 0.012540224458224
829 => 0.012043082284021
830 => 0.011811661259919
831 => 0.011735288467344
901 => 0.011738064473301
902 => 0.011661489836356
903 => 0.011684044498771
904 => 0.011653646245218
905 => 0.011596079307116
906 => 0.011712045040116
907 => 0.011725409010549
908 => 0.01169834122278
909 => 0.011704716666668
910 => 0.011480606944738
911 => 0.011497645520155
912 => 0.011402772567072
913 => 0.01138498503208
914 => 0.01114515446822
915 => 0.010720259860346
916 => 0.010955692718626
917 => 0.010671322932693
918 => 0.010563627785855
919 => 0.011073439860955
920 => 0.011022268868601
921 => 0.010934686373186
922 => 0.010805133608676
923 => 0.010757081228111
924 => 0.010465130175334
925 => 0.010447880149638
926 => 0.010592578974736
927 => 0.010525805445735
928 => 0.010432030121906
929 => 0.010092385404849
930 => 0.0097105122903754
1001 => 0.0097220386393326
1002 => 0.0098435053720447
1003 => 0.010196686279426
1004 => 0.01005869238882
1005 => 0.0099585762378886
1006 => 0.0099398274922995
1007 => 0.010174507296504
1008 => 0.010506628386393
1009 => 0.010662452170979
1010 => 0.010508035532893
1011 => 0.010330650013443
1012 => 0.010341446648087
1013 => 0.010413271821393
1014 => 0.010420819631554
1015 => 0.010305359893918
1016 => 0.010337861133753
1017 => 0.010288488778468
1018 => 0.0099854907252154
1019 => 0.0099800104512493
1020 => 0.0099056498424775
1021 => 0.0099033982327966
1022 => 0.0097768922871526
1023 => 0.0097591932308627
1024 => 0.0095080079974245
1025 => 0.0096733388787325
1026 => 0.009562443603812
1027 => 0.0093952982669559
1028 => 0.009366482347881
1029 => 0.0093656161065574
1030 => 0.0095372369944952
1031 => 0.0096713333887344
1101 => 0.0095643726745976
1102 => 0.009540019793335
1103 => 0.0098000448528869
1104 => 0.0097669542938779
1105 => 0.0097382980831873
1106 => 0.01047689058553
1107 => 0.009892236986834
1108 => 0.0096372946469419
1109 => 0.0093217550890882
1110 => 0.0094244963602139
1111 => 0.0094461454556234
1112 => 0.0086873296992655
1113 => 0.0083794782414155
1114 => 0.0082738352222189
1115 => 0.0082130361710982
1116 => 0.0082407430621603
1117 => 0.0079636406427208
1118 => 0.0081498580514351
1119 => 0.007909910779085
1120 => 0.0078696828380196
1121 => 0.0082987382847447
1122 => 0.008358438843651
1123 => 0.0081037377118471
1124 => 0.0082672970708329
1125 => 0.0082079881736195
1126 => 0.007914023986379
1127 => 0.0079027967166806
1128 => 0.0077552958208642
1129 => 0.0075244854807129
1130 => 0.0074189989617956
1201 => 0.0073640606668675
1202 => 0.0073867292780808
1203 => 0.0073752673345804
1204 => 0.0073004704000828
1205 => 0.0073795546073117
1206 => 0.0071775271376926
1207 => 0.0070970781714443
1208 => 0.0070607412397918
1209 => 0.0068814302322376
1210 => 0.0071667937852233
1211 => 0.0072230140000769
1212 => 0.0072793449861209
1213 => 0.0077696677608371
1214 => 0.0077451726206501
1215 => 0.0079665967583238
1216 => 0.0079579926235067
1217 => 0.0078948388726089
1218 => 0.007628403585859
1219 => 0.0077345999424052
1220 => 0.0074077440635341
1221 => 0.0076526467120237
1222 => 0.0075408833706321
1223 => 0.0076148594138754
1224 => 0.0074818438179731
1225 => 0.0075554601408248
1226 => 0.0072363458986511
1227 => 0.0069383615093679
1228 => 0.007058279126322
1229 => 0.0071886432901942
1230 => 0.0074713060136401
1231 => 0.0073029544274725
]
'min_raw' => 0.0068814302322376
'max_raw' => 0.020541236833941
'avg_raw' => 0.013711333533089
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006881'
'max' => '$0.020541'
'avg' => '$0.013711'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013035889767762
'max_diff' => 0.00062391683394055
'year' => 2026
]
1 => [
'items' => [
101 => 0.0073635000239367
102 => 0.0071606824109923
103 => 0.006742211743501
104 => 0.0067445802420332
105 => 0.0066802076467187
106 => 0.0066245803258142
107 => 0.0073222916323133
108 => 0.0072355202021666
109 => 0.0070972612845919
110 => 0.0072823263399567
111 => 0.0073312604779725
112 => 0.0073326535640885
113 => 0.0074676722512622
114 => 0.0075397317488103
115 => 0.0075524325475768
116 => 0.0077648873691165
117 => 0.0078360994229497
118 => 0.0081294117943817
119 => 0.007533618003895
120 => 0.0075213480228529
121 => 0.0072849305848067
122 => 0.007134990907986
123 => 0.0072951970827576
124 => 0.0074371178832816
125 => 0.0072893404596817
126 => 0.0073086370714522
127 => 0.0071102579541284
128 => 0.0071811691539666
129 => 0.0072422474320374
130 => 0.007208523596902
131 => 0.0071580373834521
201 => 0.0074254819960821
202 => 0.0074103917229136
203 => 0.0076594422947197
204 => 0.0078535950252198
205 => 0.008201551427228
206 => 0.007838440782355
207 => 0.0078252075872217
208 => 0.0079545641923206
209 => 0.0078360796191274
210 => 0.0079109577794371
211 => 0.0081894873979902
212 => 0.008195372289929
213 => 0.0080967927676991
214 => 0.0080907941948125
215 => 0.0081097274703985
216 => 0.0082206202568762
217 => 0.0081818709098898
218 => 0.0082267126352359
219 => 0.0082827878994222
220 => 0.0085147389675158
221 => 0.0085706615847665
222 => 0.0084347986173999
223 => 0.00844706552216
224 => 0.0083962490428431
225 => 0.0083471609605515
226 => 0.0084575038008042
227 => 0.0086591575101599
228 => 0.0086579030328999
301 => 0.0087046827738824
302 => 0.0087338261649703
303 => 0.0086087213961551
304 => 0.0085272827918863
305 => 0.008558511534836
306 => 0.0086084469748861
307 => 0.0085423181446408
308 => 0.0081341403705129
309 => 0.0082579554326862
310 => 0.0082373465520933
311 => 0.0082079970000036
312 => 0.0083324940024523
313 => 0.0083204859628537
314 => 0.0079607985568922
315 => 0.0079838245776189
316 => 0.0079621988454771
317 => 0.0080320760102357
318 => 0.0078323060229132
319 => 0.0078937539255422
320 => 0.0079322934740328
321 => 0.0079549935641685
322 => 0.0080370018553363
323 => 0.0080273791289039
324 => 0.0080364036931504
325 => 0.008158000339566
326 => 0.0087729944502063
327 => 0.0088064672227405
328 => 0.008641635048691
329 => 0.0087074822510529
330 => 0.0085810700217183
331 => 0.0086659313981589
401 => 0.0087239913966744
402 => 0.0084616294276787
403 => 0.0084460940545899
404 => 0.0083191600770174
405 => 0.0083873672066569
406 => 0.0082788447591343
407 => 0.0083054723718023
408 => 0.0082310192454291
409 => 0.0083650200494313
410 => 0.0085148537699254
411 => 0.0085527076848352
412 => 0.0084531303318427
413 => 0.0083810297658087
414 => 0.0082544449232561
415 => 0.0084649583375483
416 => 0.0085265188751674
417 => 0.0084646349862513
418 => 0.0084502951369998
419 => 0.0084231211485797
420 => 0.0084560602271029
421 => 0.0085261836032588
422 => 0.0084931147140391
423 => 0.0085149572979675
424 => 0.008431715892007
425 => 0.0086087628110392
426 => 0.0088899559271238
427 => 0.0088908600089717
428 => 0.0088577909414984
429 => 0.0088442597915713
430 => 0.0088781906615977
501 => 0.0088965967666699
502 => 0.009006322978478
503 => 0.0091240635754333
504 => 0.0096735075671763
505 => 0.0095192258929305
506 => 0.010006725288974
507 => 0.010392274017371
508 => 0.010507883223014
509 => 0.010401528193656
510 => 0.010037693383406
511 => 0.010019841911849
512 => 0.010563564725457
513 => 0.010409938126531
514 => 0.010391664731424
515 => 0.010197266680879
516 => 0.010312180005418
517 => 0.010287046775664
518 => 0.010247372742939
519 => 0.010466619361228
520 => 0.010877029458386
521 => 0.010813063195942
522 => 0.010765315348338
523 => 0.010556098179324
524 => 0.010682093645417
525 => 0.010637229073225
526 => 0.010829995747121
527 => 0.01071580503981
528 => 0.010408774253948
529 => 0.010457669918583
530 => 0.010450279437238
531 => 0.010602375019627
601 => 0.010556719701038
602 => 0.010441364503542
603 => 0.010875626721291
604 => 0.010847428148364
605 => 0.010887407277683
606 => 0.010905007326805
607 => 0.011169335086191
608 => 0.011277621711666
609 => 0.011302204671473
610 => 0.011405068590486
611 => 0.011299645323461
612 => 0.011721413557078
613 => 0.012001864821574
614 => 0.012327623397177
615 => 0.012803644231782
616 => 0.012982632469033
617 => 0.012950299846035
618 => 0.013311213410083
619 => 0.013959767062019
620 => 0.01308139108195
621 => 0.014006323121826
622 => 0.013713500316855
623 => 0.013019222713927
624 => 0.012974519421294
625 => 0.013444692274725
626 => 0.014487490411177
627 => 0.014226281305314
628 => 0.014487917655698
629 => 0.014182704955342
630 => 0.014167548572235
701 => 0.014473094156089
702 => 0.015187018067188
703 => 0.014847859578063
704 => 0.014361592718828
705 => 0.014720644600537
706 => 0.014409600631918
707 => 0.013708731514894
708 => 0.014226081563634
709 => 0.013880144319323
710 => 0.013981107198248
711 => 0.014708215831508
712 => 0.014620728197063
713 => 0.014733945297172
714 => 0.014534120078888
715 => 0.014347451815466
716 => 0.013999021639623
717 => 0.013895868641956
718 => 0.013924376419455
719 => 0.013895854514917
720 => 0.013700911033771
721 => 0.013658813007578
722 => 0.013588647786234
723 => 0.013610394922264
724 => 0.013478463778577
725 => 0.01372744510508
726 => 0.013773658233295
727 => 0.013954846079405
728 => 0.013973657602656
729 => 0.014478263175024
730 => 0.014200334905316
731 => 0.014386793183809
801 => 0.014370114600367
802 => 0.013034269814816
803 => 0.013218337440007
804 => 0.0135046889012
805 => 0.013375687956073
806 => 0.013193310801235
807 => 0.013046031470259
808 => 0.012822888223745
809 => 0.013136958058127
810 => 0.013549926492735
811 => 0.013984131163659
812 => 0.014505799625558
813 => 0.014389369297752
814 => 0.013974378934629
815 => 0.013992995099168
816 => 0.014108072903158
817 => 0.01395903669107
818 => 0.013915083002593
819 => 0.014102034341316
820 => 0.014103321772439
821 => 0.013931837598804
822 => 0.013741264321081
823 => 0.013740465812089
824 => 0.013706555138038
825 => 0.014188737588923
826 => 0.014453889182765
827 => 0.014484288385686
828 => 0.0144518430742
829 => 0.014464329986883
830 => 0.014310044116643
831 => 0.014662695863958
901 => 0.014986323980937
902 => 0.014899584732281
903 => 0.014769550267833
904 => 0.014665971553593
905 => 0.014875184878984
906 => 0.014865868938937
907 => 0.014983497371663
908 => 0.014978161066499
909 => 0.014938607048803
910 => 0.014899586144879
911 => 0.015054299618214
912 => 0.015009744622516
913 => 0.014965120420603
914 => 0.014875619752043
915 => 0.014887784379349
916 => 0.014757772367186
917 => 0.014697622861414
918 => 0.01379311861345
919 => 0.013551405522865
920 => 0.013627453381687
921 => 0.013652490311393
922 => 0.013547296464607
923 => 0.013698117418816
924 => 0.013674612132861
925 => 0.013766057450378
926 => 0.013708926386088
927 => 0.013711271064895
928 => 0.013879281343346
929 => 0.013928055441947
930 => 0.013903248541743
1001 => 0.013920622444315
1002 => 0.014320996696021
1003 => 0.014264076280676
1004 => 0.01423383844449
1005 => 0.014242214531763
1006 => 0.014344518737194
1007 => 0.014373158329112
1008 => 0.014251810365686
1009 => 0.014309038766742
1010 => 0.014552710035073
1011 => 0.01463798118839
1012 => 0.0149101257773
1013 => 0.014794513918947
1014 => 0.015006724488519
1015 => 0.015658987431469
1016 => 0.01618006020346
1017 => 0.015700860148094
1018 => 0.016657743935638
1019 => 0.017402815221068
1020 => 0.017374218144152
1021 => 0.017244297731728
1022 => 0.016396053882011
1023 => 0.015615487244898
1024 => 0.016268464381453
1025 => 0.01627012895446
1026 => 0.016214037639333
1027 => 0.01586565929844
1028 => 0.016201914828224
1029 => 0.016228605571078
1030 => 0.016213665852721
1031 => 0.015946564995574
1101 => 0.015538751355201
1102 => 0.015618437164362
1103 => 0.015748964145314
1104 => 0.015501849339591
1105 => 0.015422881185949
1106 => 0.015569698007876
1107 => 0.016042772398627
1108 => 0.015953340425389
1109 => 0.015951004995144
1110 => 0.016333632901715
1111 => 0.016059753896881
1112 => 0.015619442257605
1113 => 0.015508257761691
1114 => 0.015113627704047
1115 => 0.015386200090486
1116 => 0.015396009485422
1117 => 0.015246724374992
1118 => 0.015631555921559
1119 => 0.015628009631109
1120 => 0.015993349909958
1121 => 0.016691743307576
1122 => 0.016485194014048
1123 => 0.016244999658175
1124 => 0.016271115444526
1125 => 0.016557541161537
1126 => 0.016384361634569
1127 => 0.016446638199917
1128 => 0.016557446898497
1129 => 0.016624300537575
1130 => 0.016261496234682
1201 => 0.016176909196741
1202 => 0.016003873803131
1203 => 0.015958732098797
1204 => 0.01609966581639
1205 => 0.016062534761066
1206 => 0.015395185043762
1207 => 0.015325443285205
1208 => 0.015327582165371
1209 => 0.015152213197439
1210 => 0.014884733427969
1211 => 0.015587654291751
1212 => 0.015531199909018
1213 => 0.015468878639703
1214 => 0.015476512639594
1215 => 0.015781626762363
1216 => 0.015604645162524
1217 => 0.016075179752409
1218 => 0.015978451986293
1219 => 0.015879243517964
1220 => 0.015865529885677
1221 => 0.015827343089439
1222 => 0.015696386356457
1223 => 0.015538248232103
1224 => 0.015433831744714
1225 => 0.014236893955239
1226 => 0.014459038646699
1227 => 0.014714595865098
1228 => 0.014802813192808
1229 => 0.014651911349307
1230 => 0.015702344880996
1231 => 0.015894269209465
]
'min_raw' => 0.0066245803258142
'max_raw' => 0.017402815221068
'avg_raw' => 0.012013697773441
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006624'
'max' => '$0.0174028'
'avg' => '$0.012013'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025684990642337
'max_diff' => -0.0031384216128722
'year' => 2027
]
2 => [
'items' => [
101 => 0.015312917899618
102 => 0.015204170805964
103 => 0.015709474322352
104 => 0.015404714531127
105 => 0.015541947846455
106 => 0.015245324481326
107 => 0.015848040258938
108 => 0.015843448574537
109 => 0.015608978524093
110 => 0.015807151005147
111 => 0.015772713659779
112 => 0.015507997550302
113 => 0.015856432231774
114 => 0.015856605051029
115 => 0.015630932725295
116 => 0.015367396854862
117 => 0.015320282865668
118 => 0.015284788803684
119 => 0.015533218483033
120 => 0.015755959756717
121 => 0.016170426044799
122 => 0.016274632717098
123 => 0.016681358296516
124 => 0.016439173017082
125 => 0.01654653061463
126 => 0.016663082473429
127 => 0.016718961720589
128 => 0.016627909485987
129 => 0.017259721725749
130 => 0.017313066037012
131 => 0.017330951923152
201 => 0.017117908390756
202 => 0.017307140910983
203 => 0.017218605281491
204 => 0.017448950393524
205 => 0.017485071448284
206 => 0.017454478199946
207 => 0.017465943592859
208 => 0.016926803305538
209 => 0.016898846037449
210 => 0.016517646703296
211 => 0.016672988249647
212 => 0.016382584674458
213 => 0.016474674639639
214 => 0.016515267018825
215 => 0.016494063863535
216 => 0.016681771027605
217 => 0.016522181592106
218 => 0.016100998832891
219 => 0.015679701322716
220 => 0.015674412275657
221 => 0.015563492077747
222 => 0.015483317090705
223 => 0.01549876163757
224 => 0.015553190235185
225 => 0.015480153601666
226 => 0.015495739670478
227 => 0.015754572262201
228 => 0.015806479292561
229 => 0.015630078922011
301 => 0.014921805979799
302 => 0.014747994023213
303 => 0.014872926610766
304 => 0.014813216880605
305 => 0.011955422146823
306 => 0.012626818629257
307 => 0.012227897637865
308 => 0.012411738784171
309 => 0.01200454375205
310 => 0.012198878564298
311 => 0.012162992020447
312 => 0.013242577696134
313 => 0.013225721450729
314 => 0.013233789643392
315 => 0.012848673786052
316 => 0.013462173803829
317 => 0.013764405973333
318 => 0.013708470842407
319 => 0.013722548509786
320 => 0.013480647542669
321 => 0.013236131773523
322 => 0.012964926154832
323 => 0.013468792672332
324 => 0.013412771316874
325 => 0.013541264150446
326 => 0.013868057604168
327 => 0.013916179181596
328 => 0.01398085506966
329 => 0.013957673367732
330 => 0.014509955556478
331 => 0.014443070539346
401 => 0.014604244186502
402 => 0.014272697766028
403 => 0.013897521520586
404 => 0.013968830259409
405 => 0.013961962654431
406 => 0.0138745301608
407 => 0.013795600014921
408 => 0.013664203560462
409 => 0.014079961385385
410 => 0.014063082376956
411 => 0.01433633390372
412 => 0.01428803404214
413 => 0.013965475745534
414 => 0.0139769959782
415 => 0.014054475079316
416 => 0.014322631132919
417 => 0.014402238107084
418 => 0.014365360984861
419 => 0.014452646397838
420 => 0.014521633229341
421 => 0.014461310081735
422 => 0.015315358641583
423 => 0.014960698135476
424 => 0.015133557198441
425 => 0.015174783066413
426 => 0.015069183872488
427 => 0.015092084556427
428 => 0.015126772852531
429 => 0.015337393393811
430 => 0.015890122637672
501 => 0.016134922657224
502 => 0.016871415594264
503 => 0.016114595423381
504 => 0.016069688846474
505 => 0.016202353464391
506 => 0.016634752784128
507 => 0.016985171819572
508 => 0.017101426029788
509 => 0.017116790942816
510 => 0.017334891569615
511 => 0.01745990278156
512 => 0.017308408416906
513 => 0.017180032804982
514 => 0.016720207297639
515 => 0.016773433352177
516 => 0.017140108086207
517 => 0.017658057745058
518 => 0.01810251243583
519 => 0.017946879893931
520 => 0.019134246329164
521 => 0.019251968861261
522 => 0.01923570341375
523 => 0.019503892861327
524 => 0.018971591423718
525 => 0.018744022246285
526 => 0.017207789069405
527 => 0.017639407929971
528 => 0.018266791291891
529 => 0.018183754751374
530 => 0.017728132183943
531 => 0.018102166805256
601 => 0.017978499262306
602 => 0.01788095754021
603 => 0.018327815078524
604 => 0.017836476859252
605 => 0.0182618898173
606 => 0.017716293298269
607 => 0.017947590810273
608 => 0.017816295155858
609 => 0.017901259535255
610 => 0.017404559509408
611 => 0.017672566786644
612 => 0.017393409525549
613 => 0.01739327716866
614 => 0.017387114756649
615 => 0.017715542036354
616 => 0.017726252038154
617 => 0.017483543782226
618 => 0.017448565730731
619 => 0.017577897919846
620 => 0.017426483798547
621 => 0.017497329512914
622 => 0.017428629643063
623 => 0.017413163855319
624 => 0.017289929827288
625 => 0.017236837219622
626 => 0.017257656199116
627 => 0.017186590289184
628 => 0.017143770507884
629 => 0.01737859682439
630 => 0.017253138596347
701 => 0.017359368551618
702 => 0.017238306110298
703 => 0.016818650944287
704 => 0.016577302820541
705 => 0.015784613114001
706 => 0.016009418931447
707 => 0.016158465420992
708 => 0.016109205557087
709 => 0.016215034805793
710 => 0.016221531862154
711 => 0.016187125694598
712 => 0.016147287760271
713 => 0.016127896857017
714 => 0.016272420763205
715 => 0.016356321755198
716 => 0.016173424230203
717 => 0.016130573899105
718 => 0.016315493394924
719 => 0.01642829418055
720 => 0.017261151804321
721 => 0.017199451021457
722 => 0.017354307878278
723 => 0.017336873372672
724 => 0.017499188029252
725 => 0.017764503893468
726 => 0.017225042558034
727 => 0.017318674392696
728 => 0.017295718029112
729 => 0.017546349587243
730 => 0.01754713203161
731 => 0.017396865892536
801 => 0.017478327604318
802 => 0.017432857911586
803 => 0.017515027791949
804 => 0.017198626969885
805 => 0.017583969017801
806 => 0.017802433128077
807 => 0.01780546650246
808 => 0.017909016756892
809 => 0.018014229812622
810 => 0.018216177110969
811 => 0.018008597612078
812 => 0.017635182301031
813 => 0.017662141680364
814 => 0.017443208420125
815 => 0.017446888727783
816 => 0.017427242957073
817 => 0.017486201393838
818 => 0.017211565031234
819 => 0.017276021636602
820 => 0.01718578201163
821 => 0.017318478229375
822 => 0.017175719034552
823 => 0.017295706958858
824 => 0.017347489769326
825 => 0.017538569454757
826 => 0.017147496409652
827 => 0.016350071997364
828 => 0.016517700276663
829 => 0.016269764884663
830 => 0.016292712249149
831 => 0.016339069577457
901 => 0.016188810309236
902 => 0.016217475042399
903 => 0.01621645093642
904 => 0.016207625744358
905 => 0.016168537505405
906 => 0.016111851825551
907 => 0.016337670127156
908 => 0.016376041056957
909 => 0.016461334880752
910 => 0.016715111445014
911 => 0.01668975318178
912 => 0.016731113561218
913 => 0.016640824085134
914 => 0.016296900518988
915 => 0.016315577223296
916 => 0.016082678421302
917 => 0.016455379134758
918 => 0.016367118686402
919 => 0.016310216601179
920 => 0.016294690340032
921 => 0.01654909596731
922 => 0.016625218118311
923 => 0.016577783902175
924 => 0.016480494941002
925 => 0.016667318507353
926 => 0.016717304612256
927 => 0.016728494657727
928 => 0.017059510197436
929 => 0.016746994749272
930 => 0.016822220323782
1001 => 0.017409108782016
1002 => 0.016876881935469
1003 => 0.01715881436616
1004 => 0.017145015240783
1005 => 0.017289242332251
1006 => 0.017133184409609
1007 => 0.017135118934594
1008 => 0.017263182821029
1009 => 0.017083340188975
1010 => 0.017038808624146
1011 => 0.016977288586276
1012 => 0.0171116153383
1013 => 0.017192138151062
1014 => 0.017841092884435
1015 => 0.018260347238125
1016 => 0.018242146300927
1017 => 0.018408468796193
1018 => 0.018333538988736
1019 => 0.018091570874973
1020 => 0.018504580940299
1021 => 0.018373887274555
1022 => 0.018384661501566
1023 => 0.018384260484299
1024 => 0.01847116034658
1025 => 0.018409583829898
1026 => 0.018288210194819
1027 => 0.018368783678055
1028 => 0.018608058117719
1029 => 0.019350773320272
1030 => 0.019766406587288
1031 => 0.019325751675713
1101 => 0.019629709533113
1102 => 0.019447443129932
1103 => 0.019414319902518
1104 => 0.019605227899275
1105 => 0.019796470055207
1106 => 0.019784288756637
1107 => 0.019645456771823
1108 => 0.019567034106333
1109 => 0.020160876802945
1110 => 0.020598409985962
1111 => 0.02056857315614
1112 => 0.020700263219518
1113 => 0.021086909318616
1114 => 0.021122259392311
1115 => 0.021117806095537
1116 => 0.021030187249486
1117 => 0.021410890546388
1118 => 0.021728479934501
1119 => 0.021009906018177
1120 => 0.02128352955869
1121 => 0.021406367981626
1122 => 0.021586731231014
1123 => 0.021891034265123
1124 => 0.022221588072558
1125 => 0.022268332005267
1126 => 0.022235164948107
1127 => 0.02201715582634
1128 => 0.022378851746763
1129 => 0.022590724734133
1130 => 0.022716890249485
1201 => 0.023036825004478
1202 => 0.021407126589907
1203 => 0.020253545050807
1204 => 0.020073396635557
1205 => 0.020439735521954
1206 => 0.020536336164799
1207 => 0.020497396566796
1208 => 0.019198935665494
1209 => 0.020066560507635
1210 => 0.02100005188581
1211 => 0.021035911091409
1212 => 0.021503236393707
1213 => 0.021655416668447
1214 => 0.022031674790525
1215 => 0.022008139742545
1216 => 0.022099752607697
1217 => 0.022078692396512
1218 => 0.022775631337167
1219 => 0.023544458485143
1220 => 0.023517836445729
1221 => 0.023407308446857
1222 => 0.023571461373006
1223 => 0.024364973382241
1224 => 0.024291919512202
1225 => 0.024362885124231
1226 => 0.025298480503497
1227 => 0.026514887583434
1228 => 0.025949744369529
1229 => 0.027175942528123
1230 => 0.027947769270986
1231 => 0.029282563814393
]
'min_raw' => 0.011955422146823
'max_raw' => 0.029282563814393
'avg_raw' => 0.020618992980608
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011955'
'max' => '$0.029282'
'avg' => '$0.020618'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0053308418210091
'max_diff' => 0.011879748593325
'year' => 2028
]
3 => [
'items' => [
101 => 0.029115440963557
102 => 0.029635066684131
103 => 0.028816256180969
104 => 0.026936101756803
105 => 0.026638560122237
106 => 0.027234246009593
107 => 0.028698681637478
108 => 0.027188125720186
109 => 0.027493709214902
110 => 0.027405701147866
111 => 0.027401011571984
112 => 0.027579993609522
113 => 0.027320370828998
114 => 0.026262620915899
115 => 0.026747381467713
116 => 0.026560192138544
117 => 0.026767892655146
118 => 0.027888766681038
119 => 0.027393201555892
120 => 0.026871163952992
121 => 0.027525914956446
122 => 0.028359637980699
123 => 0.028307465092186
124 => 0.028206227881894
125 => 0.0287768967357
126 => 0.029719474491902
127 => 0.02997424947182
128 => 0.030162319153349
129 => 0.030188250784969
130 => 0.030455362707071
131 => 0.029019034581059
201 => 0.031298524204562
202 => 0.031692129092911
203 => 0.031618147687152
204 => 0.032055622955127
205 => 0.031926906633612
206 => 0.03174041687871
207 => 0.032433908232107
208 => 0.031638876357304
209 => 0.03051042870275
210 => 0.029891340001298
211 => 0.030706605943831
212 => 0.031204460406076
213 => 0.031533510536128
214 => 0.031633080906665
215 => 0.029130532644779
216 => 0.027781797929313
217 => 0.028646321418652
218 => 0.02970109974187
219 => 0.029013175234216
220 => 0.029040140572503
221 => 0.02805934100797
222 => 0.029787878740167
223 => 0.029536045331876
224 => 0.030842557499573
225 => 0.030530747885337
226 => 0.031596157839584
227 => 0.031315599692855
228 => 0.032480180874132
301 => 0.03294476383712
302 => 0.033724870938542
303 => 0.034298720897954
304 => 0.034635696570122
305 => 0.034615465814729
306 => 0.035950731308471
307 => 0.035163371897435
308 => 0.034174262910808
309 => 0.034156373049838
310 => 0.034668646609795
311 => 0.035742231456077
312 => 0.036020596386694
313 => 0.036176164407666
314 => 0.035937906568185
315 => 0.035083284358062
316 => 0.034714262820764
317 => 0.035028679862125
318 => 0.034644174838705
319 => 0.035307938382183
320 => 0.036219427499622
321 => 0.036031208601289
322 => 0.03666039615906
323 => 0.037311539088892
324 => 0.03824270272321
325 => 0.03848614337811
326 => 0.038888541523442
327 => 0.039302741395892
328 => 0.039435771231924
329 => 0.039689766465642
330 => 0.039688427785385
331 => 0.040453859518045
401 => 0.041298154422617
402 => 0.041616856203621
403 => 0.042349693375721
404 => 0.041094735400178
405 => 0.042046635440546
406 => 0.042905273104561
407 => 0.041881569884046
408 => 0.043292506281267
409 => 0.043347289744321
410 => 0.044174454994505
411 => 0.043335964547756
412 => 0.042838071597032
413 => 0.044275469889965
414 => 0.044970981646293
415 => 0.044761487845025
416 => 0.043167229673387
417 => 0.042239303036544
418 => 0.039810740044245
419 => 0.042687477814737
420 => 0.044088652867152
421 => 0.0431636009685
422 => 0.043630143339125
423 => 0.046175447236381
424 => 0.047144534164233
425 => 0.046942970857669
426 => 0.046977031738464
427 => 0.047499933454561
428 => 0.04981876763097
429 => 0.04842926844231
430 => 0.049491488508499
501 => 0.050054886201487
502 => 0.050578201377228
503 => 0.049293104701067
504 => 0.047621212807202
505 => 0.047091654463168
506 => 0.04307162278796
507 => 0.042862362681152
508 => 0.042744898641971
509 => 0.042004304490553
510 => 0.041422400353348
511 => 0.040959648578728
512 => 0.039745249732747
513 => 0.040155073694214
514 => 0.038219575398458
515 => 0.039457838618234
516 => 0.036368736603967
517 => 0.038941432554611
518 => 0.037541231114807
519 => 0.038481428723338
520 => 0.038478148462454
521 => 0.036746946575224
522 => 0.035748425455931
523 => 0.036384721976168
524 => 0.037066882355142
525 => 0.037177560581568
526 => 0.038061999319116
527 => 0.038308827159818
528 => 0.037560927279199
529 => 0.036304721830907
530 => 0.036596509705549
531 => 0.035742512383965
601 => 0.034245914926421
602 => 0.035320797348514
603 => 0.03568780946666
604 => 0.035849902926253
605 => 0.034378171212137
606 => 0.033915721154712
607 => 0.033669516624471
608 => 0.03611473974783
609 => 0.036248694590306
610 => 0.03556336267689
611 => 0.038661127911372
612 => 0.037960008232984
613 => 0.038743330692235
614 => 0.036570033014301
615 => 0.036653055912332
616 => 0.035624181962957
617 => 0.036200282625225
618 => 0.035793113245725
619 => 0.036153739384851
620 => 0.036369897205726
621 => 0.037398602327009
622 => 0.038953178714664
623 => 0.037244948086182
624 => 0.03650064753904
625 => 0.036962407412382
626 => 0.038192134805097
627 => 0.040055234753646
628 => 0.038952242085724
629 => 0.039441731501718
630 => 0.039548663163244
701 => 0.038735357204926
702 => 0.040085222504417
703 => 0.0408086262847
704 => 0.041550688875951
705 => 0.042195001031812
706 => 0.041254292758699
707 => 0.042260985456164
708 => 0.04144976884719
709 => 0.04072202368691
710 => 0.040723127375918
711 => 0.040266602206213
712 => 0.039382027164038
713 => 0.039218897954445
714 => 0.040067516703697
715 => 0.040748028576102
716 => 0.040804078793345
717 => 0.041180845131871
718 => 0.041403811570009
719 => 0.043589185771933
720 => 0.044468161354311
721 => 0.045542956058286
722 => 0.045961649167594
723 => 0.047221765316826
724 => 0.046204119184692
725 => 0.04598394504271
726 => 0.042927315445525
727 => 0.043427838370828
728 => 0.044229223867518
729 => 0.042940529997197
730 => 0.043757909641475
731 => 0.043919277697724
801 => 0.042896740672608
802 => 0.043442921878939
803 => 0.041992426526365
804 => 0.038984795549604
805 => 0.040088570857471
806 => 0.040901321010813
807 => 0.039741426330623
808 => 0.04182049265074
809 => 0.040605945027168
810 => 0.040220991739063
811 => 0.03871915171641
812 => 0.039427962395978
813 => 0.040386638989286
814 => 0.039794288312738
815 => 0.041023504908477
816 => 0.042764403428135
817 => 0.044005071385542
818 => 0.044100314465876
819 => 0.043302648087561
820 => 0.04458091354945
821 => 0.044590224317826
822 => 0.043148335654947
823 => 0.042265186877404
824 => 0.042064533616985
825 => 0.0425658048019
826 => 0.043174440560152
827 => 0.04413408951457
828 => 0.044713985279276
829 => 0.046226045880682
830 => 0.046635166125248
831 => 0.047084665236517
901 => 0.047685334669566
902 => 0.048406592332422
903 => 0.046828521627314
904 => 0.04689122131832
905 => 0.0454217437276
906 => 0.043851396177511
907 => 0.045043094221443
908 => 0.046601080888936
909 => 0.04624367702599
910 => 0.046203461790311
911 => 0.046271092661948
912 => 0.046001621821006
913 => 0.044782815194482
914 => 0.044170738136775
915 => 0.044960473698728
916 => 0.045380183002821
917 => 0.04603111553097
918 => 0.045950874357357
919 => 0.047627606644819
920 => 0.048279134109974
921 => 0.048112445503955
922 => 0.048143120219048
923 => 0.049322679573704
924 => 0.050634592170965
925 => 0.051863371440414
926 => 0.053113338490595
927 => 0.051606454424557
928 => 0.050841351627512
929 => 0.051630742415624
930 => 0.051211880551972
1001 => 0.053618785063016
1002 => 0.053785433909174
1003 => 0.056192164373627
1004 => 0.058476438172525
1005 => 0.057041726726453
1006 => 0.058394594999276
1007 => 0.059857832337303
1008 => 0.062680654564059
1009 => 0.061730027346171
1010 => 0.061001861795497
1011 => 0.060313748868579
1012 => 0.061745602634643
1013 => 0.063587659630262
1014 => 0.063984421064115
1015 => 0.064627326161491
1016 => 0.063951390062296
1017 => 0.064765480641858
1018 => 0.06763957811724
1019 => 0.066862971609031
1020 => 0.065760065521649
1021 => 0.068028889447208
1022 => 0.068849968006037
1023 => 0.074612727334085
1024 => 0.081888449033459
1025 => 0.078876252474954
1026 => 0.077006484868114
1027 => 0.077445924607202
1028 => 0.080102771873091
1029 => 0.080956066890777
1030 => 0.078636516884274
1031 => 0.079455821160036
1101 => 0.083970268271705
1102 => 0.086392124306312
1103 => 0.083102918512656
1104 => 0.074028130179753
1105 => 0.065660760895638
1106 => 0.067880164017334
1107 => 0.067628552579431
1108 => 0.072478762812173
1109 => 0.066844449800651
1110 => 0.066939317181764
1111 => 0.071889824625657
1112 => 0.07056911411281
1113 => 0.06842973222582
1114 => 0.065676380750994
1115 => 0.060586555895592
1116 => 0.056078356080896
1117 => 0.064919974093927
1118 => 0.064538707447766
1119 => 0.063986576843574
1120 => 0.065215283756433
1121 => 0.071181535750733
1122 => 0.071043994331391
1123 => 0.070169025995788
1124 => 0.070832681766726
1125 => 0.068313390160446
1126 => 0.068962668970588
1127 => 0.065659435461593
1128 => 0.067152634962876
1129 => 0.068425142073136
1130 => 0.068680616715311
1201 => 0.069256214128989
1202 => 0.06433779725013
1203 => 0.066546022031604
1204 => 0.06784314720804
1205 => 0.061982688471087
1206 => 0.067727304781622
1207 => 0.064252178554759
1208 => 0.063072668518717
1209 => 0.064660723393616
1210 => 0.064041856864434
1211 => 0.063509791763705
1212 => 0.063212890295459
1213 => 0.064378982528365
1214 => 0.064324582931918
1215 => 0.062416629710136
1216 => 0.059927782510443
1217 => 0.060763121324284
1218 => 0.060459634901872
1219 => 0.059359760956525
1220 => 0.060100943196403
1221 => 0.056837151715729
1222 => 0.051221968110349
1223 => 0.054931530397788
1224 => 0.054788716284949
1225 => 0.054716702933151
1226 => 0.057504336467391
1227 => 0.057236369824722
1228 => 0.05675000774434
1229 => 0.059350828535509
1230 => 0.058401493960756
1231 => 0.061327119428787
]
'min_raw' => 0.026262620915899
'max_raw' => 0.086392124306312
'avg_raw' => 0.056327372611105
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.026262'
'max' => '$0.086392'
'avg' => '$0.056327'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014307198769076
'max_diff' => 0.057109560491918
'year' => 2029
]
4 => [
'items' => [
101 => 0.063254125579624
102 => 0.062765374487653
103 => 0.064577733086545
104 => 0.060782365843408
105 => 0.062043034597874
106 => 0.062302856680958
107 => 0.059318734810661
108 => 0.057280212481462
109 => 0.05714426628296
110 => 0.05360974948981
111 => 0.055497859831088
112 => 0.057159318796098
113 => 0.056363608886282
114 => 0.056111710899992
115 => 0.057398603081941
116 => 0.057498605625965
117 => 0.055218537024431
118 => 0.055692635487072
119 => 0.057669704888597
120 => 0.055642818410791
121 => 0.051704909074442
122 => 0.050728253113171
123 => 0.050597949204597
124 => 0.04794918077807
125 => 0.050793517934566
126 => 0.049551888542259
127 => 0.053474180915553
128 => 0.051233788547603
129 => 0.051137209710436
130 => 0.050991216633023
131 => 0.048711312229066
201 => 0.049210466398049
202 => 0.050869730879075
203 => 0.051461775138858
204 => 0.051400020072087
205 => 0.05086159957791
206 => 0.051108085722985
207 => 0.050314067968232
208 => 0.050033683772978
209 => 0.049148714127008
210 => 0.047848053226537
211 => 0.048028918102164
212 => 0.045451968521893
213 => 0.044047909621495
214 => 0.043659284623064
215 => 0.043139599033405
216 => 0.043717984493247
217 => 0.045444668347509
218 => 0.043361921282854
219 => 0.039791197528224
220 => 0.040005804110094
221 => 0.040487961382291
222 => 0.039589464495341
223 => 0.038739112596971
224 => 0.039478424581374
225 => 0.037965461854517
226 => 0.040670795699567
227 => 0.040597624000669
228 => 0.04160600516138
301 => 0.042236566595238
302 => 0.040783326636885
303 => 0.040417840717338
304 => 0.040626038107521
305 => 0.037184999013214
306 => 0.041324798855016
307 => 0.041360600015956
308 => 0.041054048740466
309 => 0.043258364354244
310 => 0.047910157842599
311 => 0.04615996601432
312 => 0.045482238838583
313 => 0.04419387898209
314 => 0.045910541995628
315 => 0.045778729060303
316 => 0.045182620978192
317 => 0.044822092950161
318 => 0.045486376896201
319 => 0.044739780817942
320 => 0.044605671647198
321 => 0.043793115984709
322 => 0.043503070582128
323 => 0.043288332513096
324 => 0.04305192699882
325 => 0.04357337865473
326 => 0.042391700599759
327 => 0.040966712706792
328 => 0.040848240382075
329 => 0.041175352886813
330 => 0.041030629954128
331 => 0.040847547504352
401 => 0.04049799324819
402 => 0.040394287967432
403 => 0.040731279819246
404 => 0.040350835666394
405 => 0.040912201737793
406 => 0.040759541228174
407 => 0.039906792031156
408 => 0.038843950803481
409 => 0.03883448928717
410 => 0.038605501888076
411 => 0.038313852006845
412 => 0.038232721681932
413 => 0.039416161788156
414 => 0.04186584739066
415 => 0.04138491549088
416 => 0.041732438076355
417 => 0.043441905241144
418 => 0.043985293447359
419 => 0.043599609369443
420 => 0.043071661215633
421 => 0.043094888255018
422 => 0.044899046917362
423 => 0.045011570080107
424 => 0.045295879811013
425 => 0.045661298161149
426 => 0.043661841694585
427 => 0.043000714035251
428 => 0.042687435072293
429 => 0.041722657120598
430 => 0.04276308742769
501 => 0.042156873243415
502 => 0.042238672248099
503 => 0.042185400538989
504 => 0.04221449049438
505 => 0.040670039503622
506 => 0.0412327562707
507 => 0.040297130504721
508 => 0.039044432632996
509 => 0.039040233150478
510 => 0.039346829179886
511 => 0.03916445386449
512 => 0.038673686580057
513 => 0.038743397756455
514 => 0.038132654497666
515 => 0.038817553045935
516 => 0.038837193485615
517 => 0.038573470237855
518 => 0.03962865094925
519 => 0.040060959347655
520 => 0.03988737105648
521 => 0.040048779930395
522 => 0.041404900382593
523 => 0.041626007187985
524 => 0.041724208225445
525 => 0.041592631844393
526 => 0.040073567322796
527 => 0.04014094429389
528 => 0.039646576785325
529 => 0.039228888335752
530 => 0.039245593683248
531 => 0.039460339842026
601 => 0.040398148912105
602 => 0.042371712813223
603 => 0.042446608120614
604 => 0.042537383418022
605 => 0.042168154663454
606 => 0.042056791738033
607 => 0.042203708181873
608 => 0.042944875018073
609 => 0.044851357345611
610 => 0.044177479161386
611 => 0.043629605708072
612 => 0.044110238432251
613 => 0.044036248791687
614 => 0.043411701764789
615 => 0.043394172809862
616 => 0.042195467385481
617 => 0.041752333283289
618 => 0.041382017259484
619 => 0.040977641828835
620 => 0.040737914518758
621 => 0.041106244621149
622 => 0.04119048607352
623 => 0.040385125867333
624 => 0.040275358247138
625 => 0.040933032776418
626 => 0.04064361473666
627 => 0.040941288367773
628 => 0.041010351203588
629 => 0.04099923049637
630 => 0.040697044823412
701 => 0.040889648960049
702 => 0.040434082758847
703 => 0.03993872293887
704 => 0.039622714235732
705 => 0.039346954729773
706 => 0.039499962130916
707 => 0.038954518683889
708 => 0.038780020347577
709 => 0.040824399012287
710 => 0.042334603512682
711 => 0.04231264454114
712 => 0.042178974949265
713 => 0.041980369049625
714 => 0.042930345759474
715 => 0.042599392869147
716 => 0.042840188748899
717 => 0.042901481406468
718 => 0.04308699582076
719 => 0.043153301278366
720 => 0.042952880133378
721 => 0.042280242291415
722 => 0.04060409274173
723 => 0.039823840601672
724 => 0.039566344399326
725 => 0.039575703897226
726 => 0.039317527162496
727 => 0.039393571781543
728 => 0.039291081947351
729 => 0.039096990996343
730 => 0.039487977561625
731 => 0.039533035120982
801 => 0.039441774184703
802 => 0.039463269438891
803 => 0.038707667864563
804 => 0.038765114611179
805 => 0.038445243826042
806 => 0.038385271909929
807 => 0.03757666641944
808 => 0.036144104583797
809 => 0.036937882902885
810 => 0.035979110315549
811 => 0.03561600860895
812 => 0.037334875614091
813 => 0.037162349040724
814 => 0.036867058542619
815 => 0.03643026235199
816 => 0.036268250396005
817 => 0.035283917038195
818 => 0.035225757372201
819 => 0.035713619563568
820 => 0.035488487948565
821 => 0.035172317897091
822 => 0.034027182020296
823 => 0.032739670153319
824 => 0.032778532043572
825 => 0.033188065613447
826 => 0.034378839700987
827 => 0.033913583664384
828 => 0.033576035071631
829 => 0.033512822366882
830 => 0.034304061711579
831 => 0.035423831154094
901 => 0.035949201923093
902 => 0.035428575446763
903 => 0.034830507783275
904 => 0.034866909390772
905 => 0.035109072977248
906 => 0.035134520946178
907 => 0.034745240379596
908 => 0.034854820578865
909 => 0.034688358235952
910 => 0.033666779144763
911 => 0.033648302018466
912 => 0.0333975900343
913 => 0.033389998575058
914 => 0.032963474946957
915 => 0.032903801342966
916 => 0.032056912791237
917 => 0.0326143374006
918 => 0.032240446238745
919 => 0.03167690406582
920 => 0.031579749182795
921 => 0.031576828589694
922 => 0.032155460395564
923 => 0.032607575751052
924 => 0.032246950235582
925 => 0.032164842796141
926 => 0.03304153543879
927 => 0.032929968308782
928 => 0.032833351893726
929 => 0.035323568082256
930 => 0.033352367655042
1001 => 0.03249281175659
1002 => 0.031428948107018
1003 => 0.031775347475785
1004 => 0.031848338912449
1005 => 0.029289938611064
1006 => 0.028251995927421
1007 => 0.027895813112439
1008 => 0.027690824866731
1009 => 0.027784240584381
1010 => 0.026849970430568
1011 => 0.027477815425332
1012 => 0.02666881644402
1013 => 0.026533185132093
1014 => 0.027979775526421
1015 => 0.028181060128934
1016 => 0.027322317480392
1017 => 0.027873769278562
1018 => 0.027673805190792
1019 => 0.026682684409587
1020 => 0.026644830885936
1021 => 0.026147521317507
1022 => 0.025369328141024
1023 => 0.02501367297766
1024 => 0.024828444680641
1025 => 0.024904873486019
1026 => 0.02486622874326
1027 => 0.024614045656446
1028 => 0.024880683582601
1029 => 0.024199533863673
1030 => 0.023928294557199
1031 => 0.023805782055169
1101 => 0.023201222474105
1102 => 0.024163345616444
1103 => 0.024352895995993
1104 => 0.024542819848344
1105 => 0.026195977316543
1106 => 0.026113390241206
1107 => 0.026859937180713
1108 => 0.026830927739455
1109 => 0.026618000459049
1110 => 0.025719695287854
1111 => 0.026077743718342
1112 => 0.02497572630238
1113 => 0.025801432680319
1114 => 0.02542461477175
1115 => 0.025674030166387
1116 => 0.025225558797951
1117 => 0.025473761370172
1118 => 0.024397845422839
1119 => 0.023393170249765
1120 => 0.023797480867707
1121 => 0.024237012747937
1122 => 0.025190029854916
1123 => 0.024622420728219
1124 => 0.024826554433857
1125 => 0.024142740691541
1126 => 0.022731837619405
1127 => 0.02273982317757
1128 => 0.022522786478116
1129 => 0.022335235081911
1130 => 0.024687617464421
1201 => 0.024395061529493
1202 => 0.023928911935961
1203 => 0.024552871690953
1204 => 0.024717856553745
1205 => 0.024722553440848
1206 => 0.025177778371358
1207 => 0.025420731998374
1208 => 0.025463553628157
1209 => 0.0261798598921
1210 => 0.026419956303466
1211 => 0.027408879442164
1212 => 0.025400119080544
1213 => 0.025358749982798
1214 => 0.024561652084287
1215 => 0.024056119995432
1216 => 0.024596266298913
1217 => 0.025074762186473
1218 => 0.024576520285316
1219 => 0.024641580159146
1220 => 0.023972731114702
1221 => 0.024211813175818
1222 => 0.024417742854683
1223 => 0.024304040590001
1224 => 0.02413382279652
1225 => 0.025035530980388
1226 => 0.024984653070831
1227 => 0.025824344461831
1228 => 0.026478943948023
1229 => 0.027652103250934
1230 => 0.026427850360169
1231 => 0.026383233718865
]
'min_raw' => 0.022335235081911
'max_raw' => 0.064577733086545
'avg_raw' => 0.043456484084228
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.022335'
'max' => '$0.064577'
'avg' => '$0.043456'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0039273858339879
'max_diff' => -0.021814391219767
'year' => 2030
]
5 => [
'items' => [
101 => 0.026819368544346
102 => 0.026419889533496
103 => 0.026672346478806
104 => 0.027611428534075
105 => 0.027631269858117
106 => 0.027298902116316
107 => 0.027278677509022
108 => 0.02734251236954
109 => 0.027716395141436
110 => 0.027585749012678
111 => 0.027736936020432
112 => 0.027925997688686
113 => 0.02870803690907
114 => 0.028896583917523
115 => 0.028438512437398
116 => 0.028479871163244
117 => 0.028308539855334
118 => 0.028143035958667
119 => 0.02851506454847
120 => 0.029194954108575
121 => 0.029190724550908
122 => 0.029348445713688
123 => 0.029446704691467
124 => 0.029024905228871
125 => 0.028750329288717
126 => 0.028855619175893
127 => 0.029023979998403
128 => 0.028801022030264
129 => 0.027424822166729
130 => 0.027842273293338
131 => 0.027772789013553
201 => 0.027673834949562
202 => 0.028093585285422
203 => 0.02805309934154
204 => 0.026840388139768
205 => 0.026918021976274
206 => 0.026845109310497
207 => 0.027080705050149
208 => 0.026407166590396
209 => 0.026614342484265
210 => 0.026744281262746
211 => 0.026820816201509
212 => 0.027097312880817
213 => 0.027064869186813
214 => 0.027095296135245
215 => 0.027505267718242
216 => 0.029578763299783
217 => 0.029691619089376
218 => 0.029135875906354
219 => 0.029357884346422
220 => 0.0289316766894
221 => 0.029217792744902
222 => 0.029413546083516
223 => 0.02852897438752
224 => 0.028476595792506
225 => 0.028048629024873
226 => 0.028278594124522
227 => 0.027912703115904
228 => 0.028002479971095
301 => 0.027751456057376
302 => 0.028203249123707
303 => 0.028708423973409
304 => 0.028836051090404
305 => 0.028500319092521
306 => 0.028257227000236
307 => 0.027830437365699
308 => 0.028540198039562
309 => 0.028747753690165
310 => 0.028539107838089
311 => 0.028490760035161
312 => 0.028399141035975
313 => 0.028510197438949
314 => 0.028746623297516
315 => 0.028635129228716
316 => 0.028708773025431
317 => 0.028428118813506
318 => 0.029025044862044
319 => 0.0299731070852
320 => 0.029976155260271
321 => 0.029864660590476
322 => 0.029819039373782
323 => 0.029933439671054
324 => 0.029995497139378
325 => 0.030365446723329
326 => 0.030762417366349
327 => 0.032614906145465
328 => 0.032094734709143
329 => 0.033738372959026
330 => 0.035038277414967
331 => 0.035428061923372
401 => 0.035069478516418
402 => 0.033842784051525
403 => 0.033782596568822
404 => 0.035615795996417
405 => 0.035097833192268
406 => 0.035036223164859
407 => 0.034380796565006
408 => 0.034768234861683
409 => 0.034683496422823
410 => 0.034549732651536
411 => 0.035288937932409
412 => 0.036672664228893
413 => 0.036456997509083
414 => 0.036296012307236
415 => 0.03559062201483
416 => 0.036015424525484
417 => 0.035864160487996
418 => 0.036514086787574
419 => 0.036129084845335
420 => 0.035093909114597
421 => 0.0352587642617
422 => 0.035233846737858
423 => 0.035746647612856
424 => 0.035592717518682
425 => 0.035203789416481
426 => 0.036667934802842
427 => 0.036572861345456
428 => 0.036707653771211
429 => 0.036766993565623
430 => 0.037658193061165
501 => 0.038023288979286
502 => 0.038106172144603
503 => 0.038452985029286
504 => 0.038097543124092
505 => 0.039519564170648
506 => 0.04046512518938
507 => 0.041563442970761
508 => 0.043168380449348
509 => 0.043771851787799
510 => 0.04366284009197
511 => 0.044879685371337
512 => 0.047066329289408
513 => 0.044104823346355
514 => 0.047223296295488
515 => 0.046236023764294
516 => 0.043895218353107
517 => 0.04374449808091
518 => 0.045329718682675
519 => 0.048845585405562
520 => 0.047964900668109
521 => 0.048847025890295
522 => 0.047817979961775
523 => 0.047766879157944
524 => 0.048797047426421
525 => 0.051204091737266
526 => 0.05006059521189
527 => 0.048421112545913
528 => 0.049631681033295
529 => 0.0485829745767
530 => 0.046219945415536
531 => 0.047964227225088
601 => 0.046797875653326
602 => 0.047138279048626
603 => 0.049589776570766
604 => 0.049294805903044
605 => 0.049676525260625
606 => 0.04900280058583
607 => 0.048373435502942
608 => 0.047198678838468
609 => 0.04685089130492
610 => 0.046947007267108
611 => 0.046850843674623
612 => 0.04619357811742
613 => 0.046051641682921
614 => 0.045815074740378
615 => 0.045888396727842
616 => 0.045443581665761
617 => 0.046283039591389
618 => 0.046438850379664
619 => 0.047049737852954
620 => 0.047113162216973
621 => 0.048814475134649
622 => 0.047877420568995
623 => 0.048506077673034
624 => 0.048449844664499
625 => 0.043945950704311
626 => 0.044566547553832
627 => 0.045532001497667
628 => 0.045097065804611
629 => 0.044482168493908
630 => 0.043985605946808
701 => 0.043233262911823
702 => 0.044292171286096
703 => 0.045684523195912
704 => 0.047148474559136
705 => 0.048907316200157
706 => 0.048514763221055
707 => 0.047115594238082
708 => 0.047178359936565
709 => 0.047566352787192
710 => 0.047063866792762
711 => 0.046915673863313
712 => 0.047545993354343
713 => 0.04755033401826
714 => 0.046972163154207
715 => 0.046329632042964
716 => 0.046326939814147
717 => 0.046212607609016
718 => 0.047838319407077
719 => 0.048732296518009
720 => 0.048834789553061
721 => 0.048725397920128
722 => 0.048767498418046
723 => 0.048247312834636
724 => 0.049436302822068
725 => 0.050527437613458
726 => 0.05023499018067
727 => 0.04979656990507
728 => 0.049447347038373
729 => 0.050152724371739
730 => 0.050121315029451
731 => 0.05051790750294
801 => 0.050499915777513
802 => 0.050366556645276
803 => 0.050234994943345
804 => 0.050756622220443
805 => 0.050606401941717
806 => 0.050455948329405
807 => 0.050154190576619
808 => 0.050195204466889
809 => 0.04975685989073
810 => 0.049554061632516
811 => 0.046504462410036
812 => 0.045689509849261
813 => 0.04594591051477
814 => 0.046030324271296
815 => 0.045675655872456
816 => 0.046184159249556
817 => 0.046104909536873
818 => 0.04641322380939
819 => 0.046220602437371
820 => 0.046228507685668
821 => 0.046794966069569
822 => 0.046959411348302
823 => 0.046875773152302
824 => 0.046934350477831
825 => 0.048284240220693
826 => 0.048092329066302
827 => 0.047990380090463
828 => 0.048018620653502
829 => 0.048363546424766
830 => 0.048460106808471
831 => 0.048050973677535
901 => 0.048243923227255
902 => 0.049065477921018
903 => 0.049352975567866
904 => 0.050270530049907
905 => 0.049880736597705
906 => 0.050596219349086
907 => 0.052795369400787
908 => 0.054552202631694
909 => 0.052936546188348
910 => 0.056162746685546
911 => 0.05867480654359
912 => 0.058578389502184
913 => 0.058140353760942
914 => 0.055280440399126
915 => 0.052648705484677
916 => 0.054850263489981
917 => 0.054855875714091
918 => 0.05466675992897
919 => 0.053492178029649
920 => 0.054625887024928
921 => 0.054715876727947
922 => 0.05466550642445
923 => 0.053764957236193
924 => 0.052389985075036
925 => 0.052658651344108
926 => 0.053098732173491
927 => 0.05226556735299
928 => 0.051999320709604
929 => 0.052494323875156
930 => 0.05408932721257
1001 => 0.053787801070857
1002 => 0.053779927004734
1003 => 0.055069983705966
1004 => 0.054146581519545
1005 => 0.052662040086149
1006 => 0.052287173795521
1007 => 0.050956651003982
1008 => 0.051875647835258
1009 => 0.051908720895157
1010 => 0.051405395722587
1011 => 0.05270288214992
1012 => 0.052690925584074
1013 => 0.053922695841458
1014 => 0.056277377941793
1015 => 0.055580982577855
1016 => 0.054771150537195
1017 => 0.054859201734222
1018 => 0.05582490603673
1019 => 0.055241019170549
1020 => 0.055450988958631
1021 => 0.055824588222309
1022 => 0.056049989934033
1023 => 0.05482676989664
1024 => 0.054541578792546
1025 => 0.053958177882045
1026 => 0.053805979474189
1027 => 0.054281147342732
1028 => 0.0541559573973
1029 => 0.051905941232538
1030 => 0.051670802024348
1031 => 0.051678013408162
1101 => 0.05108674468891
1102 => 0.050184917971298
1103 => 0.052554864739906
1104 => 0.052364524847003
1105 => 0.052154404336376
1106 => 0.052180142899997
1107 => 0.053208856467301
1108 => 0.052612150646984
1109 => 0.054198590868457
1110 => 0.053872466451681
1111 => 0.053537978174194
1112 => 0.053491741705483
1113 => 0.053362992255849
1114 => 0.052921462487496
1115 => 0.052388288760383
1116 => 0.052036241283025
1117 => 0.048000681958284
1118 => 0.048749658295187
1119 => 0.049611287299453
1120 => 0.049908718178964
1121 => 0.04939994207797
1122 => 0.05294155206899
1123 => 0.053588638342152
1124 => 0.05162857181235
1125 => 0.051261923393613
1126 => 0.052965589478282
1127 => 0.051938070564518
1128 => 0.05240076226847
1129 => 0.051400675883357
1130 => 0.053432774207845
1201 => 0.053417293023308
1202 => 0.05262676087806
1203 => 0.053294913233893
1204 => 0.053178805319645
1205 => 0.052286296474655
1206 => 0.05346106833017
1207 => 0.053461651002354
1208 => 0.052700781000204
1209 => 0.051812251413553
1210 => 0.051653403309592
1211 => 0.051533732601498
1212 => 0.052371330610227
1213 => 0.053122318365752
1214 => 0.054519720393132
1215 => 0.054871060464268
1216 => 0.056242364151947
1217 => 0.055425819573499
1218 => 0.055787783209102
1219 => 0.056180745938432
1220 => 0.056369146721599
1221 => 0.056062157755572
1222 => 0.058192356833654
1223 => 0.058372210903457
1224 => 0.05843251441733
1225 => 0.057714223273631
1226 => 0.058352233927372
1227 => 0.058053729871178
1228 => 0.058830354498578
1229 => 0.058952139156595
1230 => 0.058848991883869
1231 => 0.058887648256564
]
'min_raw' => 0.026407166590396
'max_raw' => 0.058952139156595
'avg_raw' => 0.042679652873495
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0264071'
'max' => '$0.058952'
'avg' => '$0.042679'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0040719315084847
'max_diff' => -0.0056255939299498
'year' => 2031
]
6 => [
'items' => [
101 => 0.05706989913629
102 => 0.056975639255013
103 => 0.055690399085429
104 => 0.05621414395455
105 => 0.055235028025473
106 => 0.055545515772595
107 => 0.05568237581309
108 => 0.055610887894674
109 => 0.05624375570363
110 => 0.055705688779666
111 => 0.054285641700934
112 => 0.052865207731324
113 => 0.052847375339896
114 => 0.05247340014844
115 => 0.05220308458199
116 => 0.052255156950049
117 => 0.052438666766991
118 => 0.052192418657827
119 => 0.052244968177013
120 => 0.053117640331119
121 => 0.053292648508012
122 => 0.052697902342821
123 => 0.050309910668118
124 => 0.049723891521322
125 => 0.050145110462774
126 => 0.049943794938735
127 => 0.040308540468934
128 => 0.042572200584864
129 => 0.041227210610612
130 => 0.04184704387076
131 => 0.040474157390515
201 => 0.041129370778034
202 => 0.041008376789921
203 => 0.044648275269764
204 => 0.044591443261518
205 => 0.044618645736382
206 => 0.043320200735431
207 => 0.04538865887857
208 => 0.04640765573923
209 => 0.046219066540045
210 => 0.046266530378485
211 => 0.045450944378865
212 => 0.044626542391641
213 => 0.043712153713253
214 => 0.045410974855841
215 => 0.045222094944629
216 => 0.045655317504102
217 => 0.046757124449314
218 => 0.046919369707354
219 => 0.047137428979488
220 => 0.047059270252944
221 => 0.048921328211413
222 => 0.048695820706388
223 => 0.04923922891056
224 => 0.048121397006098
225 => 0.046856464100622
226 => 0.047096886492181
227 => 0.047073731882519
228 => 0.046778947125899
229 => 0.04651282862834
301 => 0.046069816308325
302 => 0.047471572842338
303 => 0.047414664086965
304 => 0.04833595068726
305 => 0.048173104331757
306 => 0.047085576514447
307 => 0.047124417783198
308 => 0.047385643982029
309 => 0.048289750838808
310 => 0.048558151310189
311 => 0.048433817517936
312 => 0.048728106381858
313 => 0.048960700300779
314 => 0.048757316596996
315 => 0.051636800944291
316 => 0.050441038286346
317 => 0.051023844685765
318 => 0.051162840577932
319 => 0.050806805522915
320 => 0.050884016777689
321 => 0.051000970789863
322 => 0.051711092649843
323 => 0.053574657885847
324 => 0.054400018243156
325 => 0.056883155600681
326 => 0.054331483555052
327 => 0.054180077895733
328 => 0.054627365917387
329 => 0.056085230413038
330 => 0.057266692656514
331 => 0.057658651842867
401 => 0.057710455719885
402 => 0.058445797210437
403 => 0.058867281239515
404 => 0.058356507412083
405 => 0.057923680073583
406 => 0.056373346271584
407 => 0.056552801630585
408 => 0.057789071096779
409 => 0.059535374533686
410 => 0.061033884554458
411 => 0.060509158573531
412 => 0.064512447409195
413 => 0.064909357145283
414 => 0.064854517053383
415 => 0.065758736500279
416 => 0.063964045039279
417 => 0.063196779669192
418 => 0.058017262256966
419 => 0.059472495380032
420 => 0.061587762187253
421 => 0.061307798693473
422 => 0.059771635396826
423 => 0.061032719236847
424 => 0.060615765481598
425 => 0.060286896755406
426 => 0.06179350814443
427 => 0.060136927034014
428 => 0.061571236523458
429 => 0.059731719767214
430 => 0.060511555477612
501 => 0.060068883011981
502 => 0.060355346349141
503 => 0.05868068753351
504 => 0.05958429278038
505 => 0.058643094584462
506 => 0.058642648333969
507 => 0.058621871331628
508 => 0.059729186835214
509 => 0.059765296354032
510 => 0.058946988523821
511 => 0.058829057581117
512 => 0.059265110086404
513 => 0.058754606805045
514 => 0.058993468077324
515 => 0.058761841669651
516 => 0.058709697686485
517 => 0.058294205557053
518 => 0.0581152001235
519 => 0.058185392766398
520 => 0.057945789089399
521 => 0.057801419207164
522 => 0.058593152528315
523 => 0.058170161353255
524 => 0.058528323064189
525 => 0.058120152590968
526 => 0.056705255899374
527 => 0.055891533849777
528 => 0.053218925160348
529 => 0.053976873669309
530 => 0.054479394314905
531 => 0.054313311244534
601 => 0.054670121945308
602 => 0.054692027224439
603 => 0.054576024428363
604 => 0.054441708051385
605 => 0.054376330267234
606 => 0.054863602707284
607 => 0.055146480759569
608 => 0.05452982898455
609 => 0.054385356101538
610 => 0.05500882509236
611 => 0.055389140816595
612 => 0.058197178443402
613 => 0.057989149946166
614 => 0.058511260650697
615 => 0.058452478997809
616 => 0.058999734194915
617 => 0.059894265154882
618 => 0.05807543359848
619 => 0.058391119866208
620 => 0.058313720883621
621 => 0.059158742680397
622 => 0.059161380746209
623 => 0.058654747967073
624 => 0.058929401815821
625 => 0.058776097572184
626 => 0.059053139060747
627 => 0.057986371598756
628 => 0.05928557921703
629 => 0.060022146217501
630 => 0.060032373451017
701 => 0.060381500363483
702 => 0.060736233526616
703 => 0.061417112942502
704 => 0.060717244169255
705 => 0.059458248377035
706 => 0.059549143806701
707 => 0.058810995034371
708 => 0.058823403448592
709 => 0.058757166361019
710 => 0.058955948846921
711 => 0.058029993175903
712 => 0.058247313121117
713 => 0.057943063925193
714 => 0.058390458487875
715 => 0.0579091358954
716 => 0.058313683559489
717 => 0.058488272920341
718 => 0.059132511420529
719 => 0.057813981345108
720 => 0.055125409264686
721 => 0.055690579711777
722 => 0.05485464822735
723 => 0.054932016868849
724 => 0.055088313837805
725 => 0.054581704224231
726 => 0.054678349373397
727 => 0.054674896528588
728 => 0.054645141777396
729 => 0.054513353050713
730 => 0.054322233323419
731 => 0.05508359549341
801 => 0.055212965762207
802 => 0.055500539844157
803 => 0.056356165248677
804 => 0.056270668093729
805 => 0.056410117500692
806 => 0.056105700228267
807 => 0.054946137913027
808 => 0.055009107725567
809 => 0.054223873154169
810 => 0.055480459630718
811 => 0.05518288336694
812 => 0.054991034013834
813 => 0.054938686140368
814 => 0.055796432474769
815 => 0.056053083621549
816 => 0.055893155850094
817 => 0.055565139325001
818 => 0.056195028022559
819 => 0.056363559665156
820 => 0.056401287684725
821 => 0.057517329687621
822 => 0.056463662035007
823 => 0.056717290311547
824 => 0.058696025723728
825 => 0.056901585751702
826 => 0.057852140625671
827 => 0.057805615911039
828 => 0.058291887619538
829 => 0.057765727437734
830 => 0.057772249823785
831 => 0.058204026158034
901 => 0.057597674167853
902 => 0.057447532887938
903 => 0.057240113785066
904 => 0.05769300580791
905 => 0.057964494093061
906 => 0.0601524902852
907 => 0.061566035610071
908 => 0.061504669879558
909 => 0.062065437784615
910 => 0.061812806707341
911 => 0.060996994318114
912 => 0.062389486588802
913 => 0.061948843770005
914 => 0.061985169828606
915 => 0.061983817770891
916 => 0.062276806723727
917 => 0.062069197198599
918 => 0.061659977513892
919 => 0.061931636638084
920 => 0.062738367117019
921 => 0.065242483277147
922 => 0.066643819855481
923 => 0.065158121055561
924 => 0.066182936193446
925 => 0.065568412289685
926 => 0.065456735015869
927 => 0.066100394655705
928 => 0.066745180936534
929 => 0.066704110837933
930 => 0.066236029108193
1001 => 0.065971621616197
1002 => 0.067973803728597
1003 => 0.069448977402731
1004 => 0.069348380447845
1005 => 0.06979238269083
1006 => 0.071095987008707
1007 => 0.071215172250233
1008 => 0.071200157649242
1009 => 0.070904744592427
1010 => 0.072188312337789
1011 => 0.073259087133196
1012 => 0.070836365005079
1013 => 0.071758905875704
1014 => 0.072173064194938
1015 => 0.072781171482811
1016 => 0.073807150408066
1017 => 0.074921635648363
1018 => 0.07507923608105
1019 => 0.074967411032184
1020 => 0.074232378057236
1021 => 0.075451861105744
1022 => 0.076166205675163
1023 => 0.076591581518767
1024 => 0.077670263882356
1025 => 0.072175621895722
1026 => 0.068286241196156
1027 => 0.06767885823658
1028 => 0.068913995369032
1029 => 0.069239691180825
1030 => 0.069108403607479
1031 => 0.064730552023095
1101 => 0.067655809754006
1102 => 0.07080314110981
1103 => 0.070924042925096
1104 => 0.072499662809407
1105 => 0.07301274923058
1106 => 0.074281329758669
1107 => 0.07420197970124
1108 => 0.074510858872305
1109 => 0.074439852899918
1110 => 0.076789631197058
1111 => 0.079381785604256
1112 => 0.079292027539681
1113 => 0.078919374674667
1114 => 0.079472827725968
1115 => 0.082148208866345
1116 => 0.081901902643049
1117 => 0.082141168158667
1118 => 0.085295593301045
1119 => 0.089396794697881
1120 => 0.087491374895163
1121 => 0.091625587597283
1122 => 0.094227855348069
1123 => 0.098728208343546
1124 => 0.098164741983806
1125 => 0.099916696379829
1126 => 0.097156019600895
1127 => 0.09081694769163
1128 => 0.089813765296996
1129 => 0.091822161855677
1130 => 0.096759608818723
1201 => 0.091666664079929
1202 => 0.092696960167522
1203 => 0.092400234824983
1204 => 0.092384423592481
1205 => 0.092987874028166
1206 => 0.092112537697347
1207 => 0.088546260015591
1208 => 0.090180664060934
1209 => 0.089549542168498
1210 => 0.090249818961409
1211 => 0.094028923996631
1212 => 0.092358091577947
1213 => 0.090598005352268
1214 => 0.092805544073671
1215 => 0.095616499458622
1216 => 0.095440594922405
1217 => 0.09509926659975
1218 => 0.097023316483184
1219 => 0.1002012831969
1220 => 0.10106027482951
1221 => 0.10169436489139
1222 => 0.10178179519789
1223 => 0.10268238169241
1224 => 0.097839701134334
1225 => 0.10552515954886
1226 => 0.10685222591054
1227 => 0.10660279243581
1228 => 0.10807777084533
1229 => 0.10764379478066
1230 => 0.10701503155171
1231 => 0.10935318606771
]
'min_raw' => 0.040308540468934
'max_raw' => 0.10935318606771
'avg_raw' => 0.074830863268321
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0403085'
'max' => '$0.109353'
'avg' => '$0.07483'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013901373878538
'max_diff' => 0.050401046911114
'year' => 2032
]
7 => [
'items' => [
101 => 0.10667268059446
102 => 0.10286804054143
103 => 0.10078073976109
104 => 0.10352946580639
105 => 0.10520801688494
106 => 0.10631743237196
107 => 0.106653140828
108 => 0.098215624640714
109 => 0.093668271381868
110 => 0.096583072685277
111 => 0.10013933144428
112 => 0.097819945937368
113 => 0.097910861458062
114 => 0.094604027248999
115 => 0.10043191289575
116 => 0.099582838977254
117 => 0.10398783596841
118 => 0.10293654808416
119 => 0.10652865212945
120 => 0.10558273074981
121 => 0.10950919751095
122 => 0.11107557140681
123 => 0.11370575696459
124 => 0.11564053216768
125 => 0.11677666917328
126 => 0.11670845976901
127 => 0.12121040060642
128 => 0.11855576338043
129 => 0.11522091337463
130 => 0.11516059645934
131 => 0.11688776253253
201 => 0.12050742879707
202 => 0.12144595559547
203 => 0.12197046403959
204 => 0.12116716109915
205 => 0.1182857426499
206 => 0.11704156077264
207 => 0.11810163977948
208 => 0.11680525424774
209 => 0.11904317937707
210 => 0.12211632857465
211 => 0.1214817354179
212 => 0.1236030851974
213 => 0.12579845904667
214 => 0.12893794225154
215 => 0.12975871941602
216 => 0.13111543285755
217 => 0.13251193664603
218 => 0.13296045602605
219 => 0.13381681868992
220 => 0.13381230523596
221 => 0.13639301176337
222 => 0.13923961098092
223 => 0.14031413628662
224 => 0.14278494797742
225 => 0.1385537695445
226 => 0.14176316699014
227 => 0.14465812382254
228 => 0.14120663694189
301 => 0.14596370751356
302 => 0.1461484137841
303 => 0.14893725917593
304 => 0.14611023009318
305 => 0.14443154924804
306 => 0.14927783794861
307 => 0.15162280439415
308 => 0.15091648141678
309 => 0.14554132868356
310 => 0.14241275924167
311 => 0.13422468955628
312 => 0.14392381179691
313 => 0.14864797131305
314 => 0.14552909425168
315 => 0.14710207442719
316 => 0.15568374422423
317 => 0.15895108846098
318 => 0.15827150370019
319 => 0.15838634233785
320 => 0.1601493419815
321 => 0.1679674533031
322 => 0.1632826597768
323 => 0.16686400889179
324 => 0.16876354354887
325 => 0.17052793720058
326 => 0.16619514403432
327 => 0.16055824378639
328 => 0.15877280085689
329 => 0.14521898339428
330 => 0.1445134483341
331 => 0.14411741012493
401 => 0.14162044523679
402 => 0.13965851481095
403 => 0.13809831489452
404 => 0.13400388439868
405 => 0.13538563449776
406 => 0.12885996686144
407 => 0.1330348577597
408 => 0.12261973464438
409 => 0.13129375866187
410 => 0.12657288174863
411 => 0.12974282362829
412 => 0.1297317639997
413 => 0.12389489596825
414 => 0.12052831230003
415 => 0.12267363044282
416 => 0.12497358178745
417 => 0.12534674115515
418 => 0.12832868810833
419 => 0.12916088540623
420 => 0.12663928874202
421 => 0.12240390436764
422 => 0.12338768755897
423 => 0.12050837596506
424 => 0.11546249314785
425 => 0.11908653427983
426 => 0.12032394126013
427 => 0.12087045067615
428 => 0.11590840444899
429 => 0.11434922179315
430 => 0.11351912602999
501 => 0.12176336651042
502 => 0.12221500461426
503 => 0.11990436021982
504 => 0.13034869198694
505 => 0.12798481804065
506 => 0.13062584440184
507 => 0.12329841954589
508 => 0.12357833704307
509 => 0.12010941668907
510 => 0.12205178029397
511 => 0.12067898030333
512 => 0.1218948565095
513 => 0.12262364769424
514 => 0.12609199883254
515 => 0.13133336166058
516 => 0.1255739428318
517 => 0.1230644815717
518 => 0.12462133722372
519 => 0.12876744898508
520 => 0.1350490205391
521 => 0.13133020375071
522 => 0.1329805514918
523 => 0.13334107905436
524 => 0.13059896123269
525 => 0.13515012633451
526 => 0.13758913268617
527 => 0.14009104852173
528 => 0.14226339193965
529 => 0.1390917283187
530 => 0.14248586303324
531 => 0.13975078959875
601 => 0.13729714598132
602 => 0.13730086714587
603 => 0.13576166066264
604 => 0.13277925414889
605 => 0.13222925262943
606 => 0.1350904299912
607 => 0.13738482328083
608 => 0.13757380050157
609 => 0.1388440945169
610 => 0.1395958414301
611 => 0.14696398312984
612 => 0.14992751067394
613 => 0.15355125605816
614 => 0.15496290910841
615 => 0.15921147868405
616 => 0.15578041369977
617 => 0.15503808120802
618 => 0.14473244111404
619 => 0.1464199891021
620 => 0.14912191625514
621 => 0.14477699489761
622 => 0.14753284743592
623 => 0.14807691110393
624 => 0.14462935613249
625 => 0.14647084420279
626 => 0.14158039785124
627 => 0.131439960027
628 => 0.1351614155406
629 => 0.137901659427
630 => 0.13399099353148
701 => 0.14100071078553
702 => 0.13690577867565
703 => 0.13560788178822
704 => 0.13054432329672
705 => 0.13293412799047
706 => 0.13616637305747
707 => 0.13416922139488
708 => 0.13831361096858
709 => 0.14418317187326
710 => 0.14836617051233
711 => 0.14868728920733
712 => 0.14599790132155
713 => 0.15030766257196
714 => 0.15033905447759
715 => 0.14547762618125
716 => 0.14250002841828
717 => 0.14182351194162
718 => 0.14351358273919
719 => 0.14556564069173
720 => 0.1488011641421
721 => 0.15075632319984
722 => 0.15585434108618
723 => 0.15723371855459
724 => 0.15874923619127
725 => 0.16077443512219
726 => 0.16320620568911
727 => 0.15788563012946
728 => 0.15809702651524
729 => 0.15314258022248
730 => 0.14784804381919
731 => 0.15186593697601
801 => 0.15711879780061
802 => 0.15591378572355
803 => 0.15577819724872
804 => 0.15600621945428
805 => 0.15509767970019
806 => 0.15098838806451
807 => 0.14892472753059
808 => 0.15158737611529
809 => 0.15300245533721
810 => 0.15519711980252
811 => 0.15492658108342
812 => 0.16057980105631
813 => 0.16277647139328
814 => 0.16221446912026
815 => 0.16231789106384
816 => 0.16629485778226
817 => 0.17071806269874
818 => 0.17486097779632
819 => 0.17907532897592
820 => 0.17399476413998
821 => 0.17141516664197
822 => 0.1740766527976
823 => 0.17266443078029
824 => 0.18077947738399
825 => 0.18134134560386
826 => 0.18945580539732
827 => 0.19715739399321
828 => 0.19232016418442
829 => 0.19688145402049
830 => 0.20181486086561
831 => 0.21133220308628
901 => 0.20812709705049
902 => 0.2056720360575
903 => 0.20335201528189
904 => 0.20817961022301
905 => 0.21439023399205
906 => 0.21572794286729
907 => 0.21789554228929
908 => 0.2156165765385
909 => 0.21836133976548
910 => 0.22805156006681
911 => 0.22543317700345
912 => 0.2217146521274
913 => 0.22936415039665
914 => 0.23213247408362
915 => 0.25156201950114
916 => 0.27609262318524
917 => 0.26593679218339
918 => 0.25963274015393
919 => 0.26111434191497
920 => 0.27007208796706
921 => 0.27294903169435
922 => 0.26512850690161
923 => 0.26789084846934
924 => 0.28311162209497
925 => 0.29127707880423
926 => 0.28018729182591
927 => 0.24959100938003
928 => 0.22137983964757
929 => 0.22886271222615
930 => 0.22801438669631
1001 => 0.24436720912686
1002 => 0.22537072943335
1003 => 0.2256905814322
1004 => 0.24238156291268
1005 => 0.23792869520955
1006 => 0.23071561981069
1007 => 0.22143250308045
1008 => 0.20427180322024
1009 => 0.18907209279253
1010 => 0.21888222522552
1011 => 0.2175967581088
1012 => 0.21573521122824
1013 => 0.21987788237052
1014 => 0.23999351751972
1015 => 0.23952978702157
1016 => 0.23657977018975
1017 => 0.23881733195643
1018 => 0.23032336441454
1019 => 0.23251245325413
1020 => 0.22137537085415
1021 => 0.22640979722459
1022 => 0.23070014379044
1023 => 0.2315614943832
1024 => 0.23350216125034
1025 => 0.21691937535037
1026 => 0.22436455937444
1027 => 0.22873790746918
1028 => 0.20897896167338
1029 => 0.22834733664065
1030 => 0.21663070594122
1031 => 0.21265390550395
1101 => 0.21800814338912
1102 => 0.2159215916781
1103 => 0.21412769704339
1104 => 0.2131266730142
1105 => 0.2170582343914
1106 => 0.21687482235393
1107 => 0.21044202485765
1108 => 0.20205070275812
1109 => 0.20486710589048
1110 => 0.20384388022857
1111 => 0.20013557843109
1112 => 0.20263452610053
1113 => 0.19163042525279
1114 => 0.17269844168765
1115 => 0.18520548993312
1116 => 0.18472398218072
1117 => 0.18448118413732
1118 => 0.19387988522437
1119 => 0.19297641697978
1120 => 0.19133661326906
1121 => 0.20010546214999
1122 => 0.19690471435079
1123 => 0.2067686648769
1124 => 0.21326570065372
1125 => 0.21161784222363
1126 => 0.21772833577463
1127 => 0.20493199013031
1128 => 0.20918242285308
1129 => 0.21005843114639
1130 => 0.19999725591595
1201 => 0.19312423555797
1202 => 0.19266588345826
1203 => 0.18074901331808
1204 => 0.18711490915735
1205 => 0.19271663405724
1206 => 0.19003384254161
1207 => 0.18918455089387
1208 => 0.19352339773326
1209 => 0.19386056329239
1210 => 0.18617315281301
1211 => 0.1877716088803
1212 => 0.19443743640212
1213 => 0.18760364712951
1214 => 0.17432671086595
1215 => 0.17103384710459
1216 => 0.1705945183793
1217 => 0.16166401069816
1218 => 0.17125389200656
1219 => 0.1670676518226
1220 => 0.18029193440487
1221 => 0.17273829511713
1222 => 0.1724126728247
1223 => 0.1719204469713
1224 => 0.16423359009551
1225 => 0.16591652322607
1226 => 0.17151084926999
1227 => 0.17350696782706
1228 => 0.17329875630784
1229 => 0.17148343402041
1230 => 0.17231447926764
1231 => 0.16963739297094
]
'min_raw' => 0.093668271381868
'max_raw' => 0.29127707880423
'avg_raw' => 0.19247267509305
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.093668'
'max' => '$0.291277'
'avg' => '$0.192472'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.053359730912934
'max_diff' => 0.18192389273652
'year' => 2033
]
8 => [
'items' => [
101 => 0.16869205808084
102 => 0.16570832113285
103 => 0.16132305209766
104 => 0.16193285065342
105 => 0.15324448522667
106 => 0.14851060261571
107 => 0.14720032630057
108 => 0.14544817005175
109 => 0.14739823701119
110 => 0.15321987217905
111 => 0.14619774503781
112 => 0.1341588005991
113 => 0.13488236167323
114 => 0.13650798857959
115 => 0.13347864359419
116 => 0.13061162279916
117 => 0.13310426477169
118 => 0.12800320530641
119 => 0.13712442724537
120 => 0.13687772375385
121 => 0.14027755124011
122 => 0.14240353313875
123 => 0.13750383315719
124 => 0.13627157186203
125 => 0.13697352389891
126 => 0.12537182034678
127 => 0.139329444545
128 => 0.13945015065867
129 => 0.13841659163063
130 => 0.14584859562289
131 => 0.16153244214672
201 => 0.15563154820319
202 => 0.15334654371279
203 => 0.14900274850622
204 => 0.15479059770994
205 => 0.15434618119561
206 => 0.15233636117783
207 => 0.15112081576006
208 => 0.15336049546296
209 => 0.15084329465944
210 => 0.15039113622707
211 => 0.14765154808017
212 => 0.14667363975504
213 => 0.14594963536277
214 => 0.14515257766608
215 => 0.14691068833057
216 => 0.14292657826611
217 => 0.13812213209549
218 => 0.13772269438123
219 => 0.13882557702923
220 => 0.13833763355745
221 => 0.13772035829562
222 => 0.13654181171587
223 => 0.13619216212132
224 => 0.13732835367773
225 => 0.13604565965463
226 => 0.13793834455768
227 => 0.13742363899108
228 => 0.13454853553629
301 => 0.13096509213198
302 => 0.13093319196915
303 => 0.13016114496572
304 => 0.1291778270288
305 => 0.12890429047402
306 => 0.1328943414173
307 => 0.14115362745773
308 => 0.13953213198003
309 => 0.14070382864021
310 => 0.14646741653748
311 => 0.14829948781289
312 => 0.14699912701659
313 => 0.14521911295586
314 => 0.14529742454081
315 => 0.15138027143324
316 => 0.15175965113255
317 => 0.15271822124017
318 => 0.15395025472035
319 => 0.14720894764573
320 => 0.14497990958383
321 => 0.14392366768778
322 => 0.14067085146499
323 => 0.14417873488588
324 => 0.14213484143907
325 => 0.14241063249439
326 => 0.14223102320781
327 => 0.14232910202341
328 => 0.13712187767794
329 => 0.13901911654578
330 => 0.13586458895247
331 => 0.13164103061738
401 => 0.13162687176887
402 => 0.13266058168787
403 => 0.13204569057898
404 => 0.13039103441523
405 => 0.13062607051354
406 => 0.1285669069758
407 => 0.13087609024938
408 => 0.13094230936301
409 => 0.13005314802062
410 => 0.13361076345945
411 => 0.13506832140748
412 => 0.13448305636424
413 => 0.13502725765185
414 => 0.13959951243774
415 => 0.14034498946931
416 => 0.14067608112328
417 => 0.14023246216819
418 => 0.13511083007593
419 => 0.13533799623808
420 => 0.13367120166732
421 => 0.13226293589751
422 => 0.13231925914292
423 => 0.13304329081034
424 => 0.13620517956585
425 => 0.1428591880483
426 => 0.14311170280619
427 => 0.14341775805913
428 => 0.14217287753438
429 => 0.14179740965621
430 => 0.142292748704
501 => 0.14479164443886
502 => 0.1512194827125
503 => 0.14894745536571
504 => 0.14710026176656
505 => 0.14872074855283
506 => 0.14847128731388
507 => 0.14636558340821
508 => 0.14630648331285
509 => 0.1422649642836
510 => 0.14077090671943
511 => 0.13952236039053
512 => 0.13815898039351
513 => 0.13735072303036
514 => 0.13859257368656
515 => 0.13887659962477
516 => 0.13616127146116
517 => 0.13579118226594
518 => 0.13800857785878
519 => 0.13703278473121
520 => 0.13803641216142
521 => 0.13826926233418
522 => 0.13823176809337
523 => 0.13721292799907
524 => 0.13786230629293
525 => 0.13632633303896
526 => 0.13465619282099
527 => 0.13359074741534
528 => 0.13266100498808
529 => 0.13317688012367
530 => 0.13133787946037
531 => 0.13074954613641
601 => 0.13764231153844
602 => 0.14273407145064
603 => 0.14266003524496
604 => 0.14220935888344
605 => 0.14153974522658
606 => 0.14474265802909
607 => 0.14362682725296
608 => 0.14443868737338
609 => 0.14464533984769
610 => 0.14527081464767
611 => 0.14549436812729
612 => 0.14481863424401
613 => 0.14255078879776
614 => 0.13689953356597
615 => 0.1342688590003
616 => 0.13340069257628
617 => 0.13343224877691
618 => 0.13256178789044
619 => 0.13281817763283
620 => 0.13247262600123
621 => 0.13181823480891
622 => 0.13313647331157
623 => 0.13328838801876
624 => 0.13298069540046
625 => 0.13305316815071
626 => 0.13050560468844
627 => 0.13069929040546
628 => 0.12962082372071
629 => 0.12941862421843
630 => 0.12669235435221
701 => 0.12186237210507
702 => 0.12453865112771
703 => 0.12130608241014
704 => 0.12008185965539
705 => 0.12587713977068
706 => 0.12529545438316
707 => 0.12429986185227
708 => 0.12282717299943
709 => 0.12228093837851
710 => 0.11896218973869
711 => 0.11876610036422
712 => 0.12041096180386
713 => 0.11965191484569
714 => 0.11858592544286
715 => 0.11472501988341
716 => 0.11038408373269
717 => 0.11051510930893
718 => 0.11189588033248
719 => 0.11591065830581
720 => 0.11434201509527
721 => 0.11320394644791
722 => 0.11299082040048
723 => 0.1156585390937
724 => 0.11943391994894
725 => 0.12120524417683
726 => 0.11944991566291
727 => 0.11743348877971
728 => 0.11755621934087
729 => 0.11837269077999
730 => 0.11845849038396
731 => 0.11714600377503
801 => 0.1175154610675
802 => 0.11695422165635
803 => 0.11350989642603
804 => 0.11344759950468
805 => 0.11260230654592
806 => 0.11257671141106
807 => 0.11113865721999
808 => 0.11093746349786
809 => 0.10808211961783
810 => 0.10996151560644
811 => 0.10870091545
812 => 0.10680089366873
813 => 0.10647332919747
814 => 0.10646348221392
815 => 0.1084143797462
816 => 0.10993871823291
817 => 0.10872284412943
818 => 0.1084460131648
819 => 0.11140184361822
820 => 0.11102568725003
821 => 0.11069993826112
822 => 0.11909587600209
823 => 0.11244983613692
824 => 0.10955178341302
825 => 0.10596489284189
826 => 0.10713280249852
827 => 0.10737889822334
828 => 0.098753072985413
829 => 0.095253576760665
830 => 0.094052681532065
831 => 0.093361549349839
901 => 0.093676506963971
902 => 0.090526549911731
903 => 0.092643373146317
904 => 0.089915776598318
905 => 0.08945848616068
906 => 0.094335766672875
907 => 0.095014411763487
908 => 0.092119100968431
909 => 0.093978359207097
910 => 0.093304166324134
911 => 0.089962533412457
912 => 0.089834907614619
913 => 0.088158193683616
914 => 0.08553446105739
915 => 0.08433534484306
916 => 0.083710834707432
917 => 0.083968519760852
918 => 0.08383822631255
919 => 0.082987973428496
920 => 0.083886961812594
921 => 0.081590417978872
922 => 0.080675915719773
923 => 0.080262856265629
924 => 0.07822454142907
925 => 0.081468406776758
926 => 0.082107489115391
927 => 0.082747830643654
928 => 0.088321566467454
929 => 0.088043118376911
930 => 0.0905601535057
1001 => 0.090462346149126
1002 => 0.08974444695713
1003 => 0.086715748354782
1004 => 0.087922933636316
1005 => 0.084207404977999
1006 => 0.0869913316802
1007 => 0.085720863792874
1008 => 0.08656178520952
1009 => 0.085049732679564
1010 => 0.08588656498076
1011 => 0.082259039246273
1012 => 0.078871706756073
1013 => 0.080234868232529
1014 => 0.081716780653861
1015 => 0.084929944367571
1016 => 0.08301621056771
1017 => 0.083704461608427
1018 => 0.081398935833859
1019 => 0.076641977620046
1020 => 0.076668901486932
1021 => 0.075937147101705
1022 => 0.075304804474979
1023 => 0.083236025915703
1024 => 0.082249653155493
1025 => 0.080677997255372
1026 => 0.082781721132806
1027 => 0.083337979116587
1028 => 0.083353814999379
1029 => 0.084888637635383
1030 => 0.08570777275135
1031 => 0.085852148865874
1101 => 0.088267225445663
1102 => 0.089076727259578
1103 => 0.09241095066611
1104 => 0.085638274859739
1105 => 0.085498796058389
1106 => 0.082811324841961
1107 => 0.081106888109263
1108 => 0.082928029083258
1109 => 0.084541311375684
1110 => 0.082861454019794
1111 => 0.083080807926749
1112 => 0.080825736675854
1113 => 0.081631818537085
1114 => 0.082326124826929
1115 => 0.081942769703114
1116 => 0.081368868528166
1117 => 0.084409040625334
1118 => 0.084237502201081
1119 => 0.087068580351218
1120 => 0.089275608221591
1121 => 0.093230996718721
1122 => 0.0891033426229
1123 => 0.088952914501709
1124 => 0.090423373515778
1125 => 0.089076502139965
1126 => 0.089927678357059
1127 => 0.093093859071014
1128 => 0.093160755480297
1129 => 0.092040154433642
1130 => 0.091971965758112
1201 => 0.092187189447155
1202 => 0.093447761316266
1203 => 0.093007278771737
1204 => 0.093517016323919
1205 => 0.094154450938301
1206 => 0.096791150770061
1207 => 0.097426850172993
1208 => 0.095882430196219
1209 => 0.096021874027984
1210 => 0.095444218561395
1211 => 0.094886210618671
1212 => 0.096140530983398
1213 => 0.098432826103666
1214 => 0.098418565854694
1215 => 0.098950333766746
1216 => 0.099281620770551
1217 => 0.09785949443331
1218 => 0.096933742480801
1219 => 0.09728873468652
1220 => 0.09785637495419
1221 => 0.097104656598179
1222 => 0.092464702675067
1223 => 0.093872168293935
1224 => 0.093637897193403
1225 => 0.093304266657906
1226 => 0.094719484221287
1227 => 0.094582983034853
1228 => 0.090494242549286
1229 => 0.090755990449286
1230 => 0.090510160306021
1231 => 0.091304487791025
]
'min_raw' => 0.075304804474979
'max_raw' => 0.16869205808084
'avg_raw' => 0.12199843127791
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0753048'
'max' => '$0.168692'
'avg' => '$0.121998'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018363466906889
'max_diff' => -0.12258502072339
'year' => 2034
]
9 => [
'items' => [
101 => 0.089033605849014
102 => 0.089732113839754
103 => 0.09017021150344
104 => 0.090428254392975
105 => 0.091360482251645
106 => 0.091251096072164
107 => 0.091353682653143
108 => 0.09273593046852
109 => 0.099726865588526
110 => 0.10010736676248
111 => 0.098233639820168
112 => 0.098982156775991
113 => 0.097545167903474
114 => 0.098509828160584
115 => 0.099169824208784
116 => 0.096187428976908
117 => 0.096010830886861
118 => 0.094567911050101
119 => 0.095343254439219
120 => 0.09410962735797
121 => 0.094412316293265
122 => 0.093565971642233
123 => 0.095089223508552
124 => 0.096792455784505
125 => 0.097222759520092
126 => 0.096090815649169
127 => 0.095271213687885
128 => 0.09383226263754
129 => 0.096225270303379
130 => 0.096925058670458
131 => 0.096221594612996
201 => 0.096058586619889
202 => 0.0957496867675
203 => 0.096124121183837
204 => 0.096921247472723
205 => 0.096545337435496
206 => 0.096793632637767
207 => 0.09584738736761
208 => 0.097859965216302
209 => 0.10105642319326
210 => 0.10106670032833
211 => 0.10069078826481
212 => 0.10053697314755
213 => 0.10092268173698
214 => 0.10113191282415
215 => 0.10237922367549
216 => 0.10371763791404
217 => 0.10996343316947
218 => 0.1082096388547
219 => 0.11375127996933
220 => 0.11813399859897
221 => 0.11944818428294
222 => 0.1182391952909
223 => 0.11410330925744
224 => 0.11390038295736
225 => 0.12008114281739
226 => 0.11833479506019
227 => 0.11812707255131
228 => 0.11591725600948
301 => 0.1172235312768
302 => 0.11693782971394
303 => 0.11648683581996
304 => 0.11897911803409
305 => 0.12364444785137
306 => 0.12291731244816
307 => 0.1223745396005
308 => 0.11999626698088
309 => 0.12142851830431
310 => 0.120918521041
311 => 0.12310979293644
312 => 0.1218117320082
313 => 0.11832156475835
314 => 0.11887738539663
315 => 0.11879337422531
316 => 0.12052231817798
317 => 0.12000333211842
318 => 0.11869203386775
319 => 0.12362850226124
320 => 0.12330795546184
321 => 0.12376241753618
322 => 0.12396248579601
323 => 0.1269672271168
324 => 0.12819817349492
325 => 0.12847761987351
326 => 0.12964692372792
327 => 0.1284485265284
328 => 0.1332429697692
329 => 0.13643099476082
330 => 0.14013404984284
331 => 0.14554520860506
401 => 0.14757985435566
402 => 0.14721231381222
403 => 0.15131499262903
404 => 0.15868741526541
405 => 0.14870249121267
406 => 0.1592166404855
407 => 0.15588798221741
408 => 0.14799579334378
409 => 0.14748762942311
410 => 0.15283231135853
411 => 0.16468630148472
412 => 0.16171701140495
413 => 0.16469115817957
414 => 0.16122165798587
415 => 0.16104936805801
416 => 0.16452265229923
417 => 0.17263817024772
418 => 0.16878279187603
419 => 0.16325516160266
420 => 0.16733667777707
421 => 0.16380089074031
422 => 0.15583377294202
423 => 0.16171474084479
424 => 0.15778230508853
425 => 0.15892999890199
426 => 0.16719539395597
427 => 0.16620087975556
428 => 0.16748787322043
429 => 0.16521636344141
430 => 0.16309441512359
501 => 0.15913364101042
502 => 0.15796105105931
503 => 0.15828511273643
504 => 0.15796089047044
505 => 0.15574487375552
506 => 0.15526632515692
507 => 0.15446872319356
508 => 0.15471593339347
509 => 0.15321620835567
510 => 0.156046499361
511 => 0.15657182631203
512 => 0.15863147607903
513 => 0.15884531575047
514 => 0.16458141103429
515 => 0.16142206614313
516 => 0.16354162746083
517 => 0.16335203394649
518 => 0.14816684100788
519 => 0.15025922661473
520 => 0.15351432199221
521 => 0.15204790593683
522 => 0.14997473672304
523 => 0.1483005414266
524 => 0.14576396435724
525 => 0.14933414787172
526 => 0.15402855954657
527 => 0.1589643737775
528 => 0.1648944311686
529 => 0.16357091139239
530 => 0.15885351547944
531 => 0.15906513441403
601 => 0.16037327939872
602 => 0.15867911278605
603 => 0.15817946997791
604 => 0.16030463614942
605 => 0.16031927100087
606 => 0.15836992756612
607 => 0.15620358906447
608 => 0.15619451202705
609 => 0.15580903301503
610 => 0.16129023384576
611 => 0.16430434009076
612 => 0.16464990251427
613 => 0.16428108098636
614 => 0.16442302575445
615 => 0.16266918374179
616 => 0.16667794649704
617 => 0.17035678362681
618 => 0.16937077668914
619 => 0.16789261212043
620 => 0.1667151828434
621 => 0.16909341177072
622 => 0.16898751298026
623 => 0.17032465219383
624 => 0.17026399183541
625 => 0.16981436221024
626 => 0.16937079274683
627 => 0.17112949553042
628 => 0.17062301737265
629 => 0.17011575251441
630 => 0.16909835518284
701 => 0.16923663637738
702 => 0.16775872703462
703 => 0.16707497854813
704 => 0.15679304185332
705 => 0.15404537239649
706 => 0.15490984514158
707 => 0.15519445201529
708 => 0.15399866274644
709 => 0.15571311738491
710 => 0.15544592144556
711 => 0.15648542454116
712 => 0.15583598813701
713 => 0.15586264123357
714 => 0.15777249522375
715 => 0.1583269339622
716 => 0.15804494194496
717 => 0.15824243948771
718 => 0.16279368700207
719 => 0.16214664514623
720 => 0.16180291705634
721 => 0.16189813208632
722 => 0.16306107340608
723 => 0.16338663348137
724 => 0.16200721256566
725 => 0.16265775544385
726 => 0.16542768445299
727 => 0.16639700284178
728 => 0.16949060183959
729 => 0.16817638600098
730 => 0.17058868605067
731 => 0.17800327398974
801 => 0.18392655988592
802 => 0.17847926138565
803 => 0.18935662160808
804 => 0.19782620680589
805 => 0.19750113001916
806 => 0.19602426193489
807 => 0.18638186436275
808 => 0.17750878635682
809 => 0.18493149287958
810 => 0.184950414885
811 => 0.18431279781182
812 => 0.18035261293157
813 => 0.18417499196218
814 => 0.18447839852879
815 => 0.18430857153381
816 => 0.18127230707127
817 => 0.17663649243244
818 => 0.17754231951629
819 => 0.17902608275802
820 => 0.17621700939599
821 => 0.17531934024907
822 => 0.17698827798174
823 => 0.18236594309341
824 => 0.18134932665474
825 => 0.18132277869106
826 => 0.18567229492814
827 => 0.18255897998674
828 => 0.17755374489668
829 => 0.1762898570255
830 => 0.17180390653969
831 => 0.17490236851864
901 => 0.17501387664918
902 => 0.17331688068882
903 => 0.17769144676618
904 => 0.17765113436965
905 => 0.18180413379187
906 => 0.18974310889181
907 => 0.18739516330152
908 => 0.18466475803577
909 => 0.18496162879408
910 => 0.18821756827331
911 => 0.1862489529383
912 => 0.18695688073844
913 => 0.1882164967398
914 => 0.18897645434792
915 => 0.18485228258936
916 => 0.1838907408705
917 => 0.18192376396899
918 => 0.18141061641075
919 => 0.18301267805471
920 => 0.1825905914132
921 => 0.17500450482259
922 => 0.17421171656528
923 => 0.1742360302493
924 => 0.17224252648127
925 => 0.16920195473931
926 => 0.17719239573408
927 => 0.17655065149605
928 => 0.17584221552432
929 => 0.17592899488858
930 => 0.17939737450323
1001 => 0.17738553916936
1002 => 0.18273433313778
1003 => 0.18163478189734
1004 => 0.18050703131657
1005 => 0.18035114183418
1006 => 0.17991705407574
1007 => 0.17842840563511
1008 => 0.17663077318915
1009 => 0.17544382054007
1010 => 0.16183765052295
1011 => 0.16436287653468
1012 => 0.16726791887957
1013 => 0.16827072785581
1014 => 0.16655535370969
1015 => 0.17849613906173
1016 => 0.18067783560982
1017 => 0.17406933445711
1018 => 0.17283315371477
1019 => 0.1785771828654
1020 => 0.17511283110856
1021 => 0.17667282849254
1022 => 0.17330096742133
1023 => 0.18015232879891
1024 => 0.18010013290439
1025 => 0.17743479858349
1026 => 0.17968752090009
1027 => 0.17929605496081
1028 => 0.17628689907694
1029 => 0.18024772440777
1030 => 0.18024968892771
1031 => 0.17768436259322
1101 => 0.17468862305667
1102 => 0.17415305558374
1103 => 0.17374957743626
1104 => 0.17657359760192
1105 => 0.17910560525196
1106 => 0.18381704375077
1107 => 0.18500161133038
1108 => 0.18962505745476
1109 => 0.1868720203992
1110 => 0.18809240606813
1111 => 0.18941730734585
1112 => 0.19005251374002
1113 => 0.18901747900777
1114 => 0.19619959392527
1115 => 0.19680598447863
1116 => 0.19700930198591
1117 => 0.19458753324544
1118 => 0.19673863070901
1119 => 0.19573220344266
1120 => 0.19835064759614
1121 => 0.19876125307338
1122 => 0.19841348484187
1123 => 0.19854381750131
1124 => 0.19241514943112
1125 => 0.19209734566038
1126 => 0.18776406869602
1127 => 0.18952991108896
1128 => 0.18622875337439
1129 => 0.18727558449137
1130 => 0.18773701767317
1201 => 0.1874959911651
1202 => 0.18962974916841
1203 => 0.18781561896764
1204 => 0.18302783109717
1205 => 0.1782387387971
1206 => 0.17817861564438
1207 => 0.17691773217627
1208 => 0.17600634437116
1209 => 0.17618190999564
1210 => 0.17680062615571
1211 => 0.17597038346317
1212 => 0.176147557836
1213 => 0.17908983293159
1214 => 0.17967988521866
1215 => 0.17767465699887
1216 => 0.16962337634336
1217 => 0.16764757187538
1218 => 0.16906774094506
1219 => 0.16838899160035
1220 => 0.13590305844344
1221 => 0.143535146568
1222 => 0.13900041896561
1223 => 0.14109023007757
1224 => 0.13646144745755
1225 => 0.13867054513911
1226 => 0.13826260546066
1227 => 0.15053477731504
1228 => 0.15034316423136
1229 => 0.15043487927458
1230 => 0.14605708129934
1231 => 0.15303103234407
]
'min_raw' => 0.089033605849014
'max_raw' => 0.19876125307338
'avg_raw' => 0.1438974294612
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.089033'
'max' => '$0.198761'
'avg' => '$0.143897'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013728801374035
'max_diff' => 0.030069194992536
'year' => 2035
]
10 => [
'items' => [
101 => 0.15646665140387
102 => 0.15583080975194
103 => 0.15599083739706
104 => 0.15324103225694
105 => 0.15046150339911
106 => 0.14737857812935
107 => 0.15310627221949
108 => 0.15246945041166
109 => 0.15393009051756
110 => 0.15764490955904
111 => 0.15819193077413
112 => 0.15892713283454
113 => 0.15866361523113
114 => 0.16494167364284
115 => 0.16418135934522
116 => 0.16601349804513
117 => 0.16224464973471
118 => 0.1579798401291
119 => 0.158790441008
120 => 0.15871237362492
121 => 0.15771848623676
122 => 0.15682124914244
123 => 0.15532760217538
124 => 0.16005372219732
125 => 0.15986185035534
126 => 0.16296803245041
127 => 0.16241898459326
128 => 0.15875230862843
129 => 0.15888326467784
130 => 0.15976400704542
131 => 0.16281226643578
201 => 0.16371719736416
202 => 0.16329799730287
203 => 0.16429021275418
204 => 0.16507441939101
205 => 0.16438869703391
206 => 0.17409707954999
207 => 0.17006548226325
208 => 0.17203045472913
209 => 0.17249908908396
210 => 0.17129869203839
211 => 0.17155901517458
212 => 0.1719533337921
213 => 0.17434755922214
214 => 0.1806306995253
215 => 0.18341345959479
216 => 0.1917855305628
217 => 0.1831823901089
218 => 0.18267191535771
219 => 0.18417997815137
220 => 0.1890952700833
221 => 0.19307865252424
222 => 0.19440017028675
223 => 0.19457483067494
224 => 0.19705408585024
225 => 0.19847514868135
226 => 0.19675303906108
227 => 0.19529373147028
228 => 0.190066672816
229 => 0.19067171908804
301 => 0.19483988790689
302 => 0.20072767186744
303 => 0.2057800030251
304 => 0.2040108527452
305 => 0.21750822055535
306 => 0.21884642944192
307 => 0.21866153224327
308 => 0.22171017123906
309 => 0.21565924367694
310 => 0.21307235491294
311 => 0.19560925033526
312 => 0.20051567041081
313 => 0.20764744013456
314 => 0.20670352366886
315 => 0.20152424186272
316 => 0.20577607407541
317 => 0.20437028537881
318 => 0.20326148150757
319 => 0.20834112699391
320 => 0.20275584812134
321 => 0.2075917227053
322 => 0.20138966353066
323 => 0.20401893407466
324 => 0.20252643295038
325 => 0.20349226409185
326 => 0.197846034974
327 => 0.20089260315153
328 => 0.19771928772163
329 => 0.19771778315694
330 => 0.19764773204294
331 => 0.20138112357358
401 => 0.20150286933736
402 => 0.19874388735538
403 => 0.19834627494837
404 => 0.19981645641416
405 => 0.19809525895886
406 => 0.19890059641511
407 => 0.19811965181
408 => 0.19794384473018
409 => 0.19654298400707
410 => 0.19593945469008
411 => 0.19617611408631
412 => 0.19536827356071
413 => 0.19488152042317
414 => 0.19755090459249
415 => 0.19612476031347
416 => 0.19733232752794
417 => 0.19595615227992
418 => 0.19118572929928
419 => 0.1884422085968
420 => 0.17943132180481
421 => 0.18198679812105
422 => 0.18368108156255
423 => 0.18312112089524
424 => 0.18432413308463
425 => 0.1843979882626
426 => 0.18400687673657
427 => 0.18355401969392
428 => 0.18333359393012
429 => 0.18497646698203
430 => 0.18593021008522
501 => 0.18385112557249
502 => 0.18336402516064
503 => 0.18546609439241
504 => 0.18674835540947
505 => 0.19621585031917
506 => 0.19551446771666
507 => 0.19727480040959
508 => 0.19707661396287
509 => 0.19892172306806
510 => 0.20193769665374
511 => 0.19580537907457
512 => 0.19686973736672
513 => 0.19660878129311
514 => 0.19945783127848
515 => 0.19946672570155
516 => 0.19775857791472
517 => 0.19868459254149
518 => 0.19816771658071
519 => 0.19910178130182
520 => 0.19550510032439
521 => 0.19988546951718
522 => 0.20236885658473
523 => 0.20240333841657
524 => 0.20358044417722
525 => 0.2047764518034
526 => 0.20707208429154
527 => 0.20471242785926
528 => 0.20046763564551
529 => 0.20077409593275
530 => 0.19828537581093
531 => 0.19832721164581
601 => 0.19810388868053
602 => 0.1987740977103
603 => 0.1956521735173
604 => 0.19638488288538
605 => 0.19535908547933
606 => 0.1968675074835
607 => 0.1952446947581
608 => 0.19660865545219
609 => 0.19719729567174
610 => 0.19936939075442
611 => 0.19492387454831
612 => 0.18585916606906
613 => 0.18776467769037
614 => 0.18494627632775
615 => 0.18520713010427
616 => 0.18573409624741
617 => 0.18402602656489
618 => 0.18435187243285
619 => 0.18434023092551
620 => 0.18423991070445
621 => 0.18379557581125
622 => 0.18315120230712
623 => 0.18571818801986
624 => 0.18615436891345
625 => 0.18712394500852
626 => 0.19000874579772
627 => 0.1897204861706
628 => 0.19019064958222
629 => 0.1891642854945
630 => 0.18525474019061
701 => 0.18546704731001
702 => 0.18281957412921
703 => 0.18705624316696
704 => 0.18605294401752
705 => 0.18540611052903
706 => 0.18522961601883
707 => 0.1881215676712
708 => 0.18898688493138
709 => 0.18844767728412
710 => 0.18734174666838
711 => 0.18946546038963
712 => 0.19003367658914
713 => 0.19016087924121
714 => 0.19392369277354
715 => 0.19037117871802
716 => 0.19122630416014
717 => 0.1978977487532
718 => 0.19184766910371
719 => 0.19505253122692
720 => 0.19489566990329
721 => 0.1965351689189
722 => 0.19476118313062
723 => 0.19478317381057
724 => 0.19623893786715
725 => 0.19419457979811
726 => 0.19368836799035
727 => 0.19298904000348
728 => 0.1945159970784
729 => 0.1954313387865
730 => 0.20280832070931
731 => 0.2075741874627
801 => 0.20736728861785
802 => 0.20925795676132
803 => 0.20840619344615
804 => 0.20565562501767
805 => 0.210350509929
806 => 0.20886485190073
807 => 0.2089873277435
808 => 0.20898276918652
809 => 0.20997060189684
810 => 0.20927063188804
811 => 0.20789091915024
812 => 0.20880683685409
813 => 0.21152678498794
814 => 0.21996958745362
815 => 0.22469429156567
816 => 0.21968515433356
817 => 0.22314039012125
818 => 0.22106847987503
819 => 0.2206919521493
820 => 0.22286209556389
821 => 0.22503603752724
822 => 0.22489756682239
823 => 0.22331939659015
824 => 0.22242792827054
825 => 0.22917842505039
826 => 0.23415207608607
827 => 0.23381290642922
828 => 0.23530989099069
829 => 0.23970508396316
830 => 0.24010692532621
831 => 0.24005630255068
901 => 0.23906029680455
902 => 0.24338793507388
903 => 0.2469981270557
904 => 0.23882975025169
905 => 0.24194016120675
906 => 0.24333652489566
907 => 0.24538680107342
908 => 0.24884596065148
909 => 0.25260352545002
910 => 0.25313488631213
911 => 0.2527578603525
912 => 0.2502796453591
913 => 0.25439121759873
914 => 0.25679968018848
915 => 0.25823386454398
916 => 0.26187071744402
917 => 0.24334514836243
918 => 0.23023182978595
919 => 0.22818399573162
920 => 0.2323483468082
921 => 0.23344645297702
922 => 0.23300380775728
923 => 0.21824357548869
924 => 0.22810628616342
925 => 0.23871773356918
926 => 0.23912536248051
927 => 0.24443767492673
928 => 0.24616758161827
929 => 0.25044468943818
930 => 0.25017715517952
1001 => 0.25121856287002
1002 => 0.25097916127664
1003 => 0.25890160286172
1004 => 0.26764123242403
1005 => 0.26733860684261
1006 => 0.26608218169043
1007 => 0.26794818729375
1008 => 0.27696842159767
1009 => 0.27613798296928
1010 => 0.27694468336017
1011 => 0.28758004796263
1012 => 0.3014075348088
1013 => 0.29498327891177
1014 => 0.30892206567848
1015 => 0.31769579308479
1016 => 0.33286904741365
1017 => 0.33096928124182
1018 => 0.33687611780557
1019 => 0.32756830330109
1020 => 0.30619567977914
1021 => 0.30281338029567
1022 => 0.30958482951503
1023 => 0.32623177667248
1024 => 0.30906055790759
1025 => 0.31253427309989
1026 => 0.31153384289082
1027 => 0.31148053421653
1028 => 0.313515109492
1029 => 0.31056385193862
1030 => 0.29853989774502
1031 => 0.30405040509434
1101 => 0.30192253357047
1102 => 0.30428356566953
1103 => 0.31702508214447
1104 => 0.31139175399109
1105 => 0.30545750039591
1106 => 0.31290037132055
1107 => 0.32237770365556
1108 => 0.32178462923043
1109 => 0.32063381695982
1110 => 0.32712088547469
1111 => 0.33783562212853
1112 => 0.34073177239076
1113 => 0.34286965130515
1114 => 0.34316442868769
1115 => 0.34620081893092
1116 => 0.3298733833242
1117 => 0.35578544295034
1118 => 0.36025973984158
1119 => 0.35941875746663
1120 => 0.36439175015404
1121 => 0.36292856955276
1122 => 0.3608086504275
1123 => 0.36869190162292
1124 => 0.35965439027294
1125 => 0.34682678070267
1126 => 0.33978930039108
1127 => 0.34905682216273
1128 => 0.35471617431674
1129 => 0.35845664608814
1130 => 0.35958851058611
1201 => 0.3311408356721
1202 => 0.31580911667384
1203 => 0.32563657277321
1204 => 0.33762674746924
1205 => 0.32980677729837
1206 => 0.3301133053239
1207 => 0.31896408291226
1208 => 0.33861320626027
1209 => 0.3357504942636
1210 => 0.35060224916636
1211 => 0.34705775866604
1212 => 0.35916878824743
1213 => 0.35597954827385
1214 => 0.36921790509617
1215 => 0.3744990440468
1216 => 0.38336689828855
1217 => 0.38989012796745
1218 => 0.39372069320439
1219 => 0.39349072043565
1220 => 0.40866932828446
1221 => 0.39971903353618
1222 => 0.38847535390985
1223 => 0.38827199121876
1224 => 0.39409525222141
1225 => 0.40629920974934
1226 => 0.40946351837597
1227 => 0.41123193521533
1228 => 0.40852354326681
1229 => 0.39880863979097
1230 => 0.39461379372577
1231 => 0.39818792410971
]
'min_raw' => 0.14737857812935
'max_raw' => 0.41123193521533
'avg_raw' => 0.27930525667234
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.147378'
'max' => '$0.411231'
'avg' => '$0.2793052'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.058344972280334
'max_diff' => 0.21247068214195
'year' => 2036
]
11 => [
'items' => [
101 => 0.39381706977868
102 => 0.40136239059916
103 => 0.41172372767923
104 => 0.40958415254536
105 => 0.41673643143485
106 => 0.42413828764379
107 => 0.43472327446073
108 => 0.43749058197561
109 => 0.44206483606642
110 => 0.44677324609005
111 => 0.44828546049444
112 => 0.45117274700498
113 => 0.45115752957986
114 => 0.45985856181618
115 => 0.46945606982137
116 => 0.47307890691051
117 => 0.48140942103258
118 => 0.46714370753456
119 => 0.47796441509551
120 => 0.48772496417537
121 => 0.47608803518216
122 => 0.49212683074258
123 => 0.4927495808295
124 => 0.50215236777902
125 => 0.49262084184967
126 => 0.48696105217853
127 => 0.50330065288956
128 => 0.51120687098103
129 => 0.50882545374894
130 => 0.49070275102769
131 => 0.48015456072463
201 => 0.45254791210757
202 => 0.48524917991294
203 => 0.50117701355188
204 => 0.49066150178644
205 => 0.49596491427014
206 => 0.52489861314392
207 => 0.53591469235679
208 => 0.53362342488872
209 => 0.53401061137335
210 => 0.53995468776063
211 => 0.56631399592449
212 => 0.55051888746873
213 => 0.56259365605174
214 => 0.56899806976935
215 => 0.57494684615212
216 => 0.56033853148612
217 => 0.54133332874441
218 => 0.53531358325197
219 => 0.48961594137945
220 => 0.48723718066519
221 => 0.48590191019245
222 => 0.47748321873956
223 => 0.47086843333126
224 => 0.46560811038333
225 => 0.45180345210259
226 => 0.45646211903235
227 => 0.43446037498894
228 => 0.44853631113398
301 => 0.41342099639001
302 => 0.442666073966
303 => 0.4267493078519
304 => 0.43743698821746
305 => 0.43739969990751
306 => 0.41772029182235
307 => 0.40636961993761
308 => 0.41360270983733
309 => 0.42135715637322
310 => 0.42261528923457
311 => 0.43266913158012
312 => 0.43547494287214
313 => 0.42697320366651
314 => 0.41269330954318
315 => 0.41601020325832
316 => 0.40630240319234
317 => 0.38928985698183
318 => 0.40150856468078
319 => 0.40568056870785
320 => 0.40752316336003
321 => 0.39079327806613
322 => 0.38553638488331
323 => 0.38273765906238
324 => 0.41053369143664
325 => 0.4120564208361
326 => 0.40426592193624
327 => 0.43947971568904
328 => 0.43150974963868
329 => 0.44041415440602
330 => 0.41570922991971
331 => 0.41665299130468
401 => 0.40495728413888
402 => 0.41150609864429
403 => 0.40687760763001
404 => 0.4109770191489
405 => 0.41343418951082
406 => 0.42512797752615
407 => 0.44279959824114
408 => 0.42338131555013
409 => 0.41492049170672
410 => 0.42016953923369
411 => 0.4341484445094
412 => 0.4553272015691
413 => 0.44278895112755
414 => 0.44835321376021
415 => 0.44956875760864
416 => 0.4403235159243
417 => 0.45566808681728
418 => 0.4638913670179
419 => 0.47232675093567
420 => 0.47965095843737
421 => 0.46895747310084
422 => 0.48040103526184
423 => 0.47117954422073
424 => 0.46290691345664
425 => 0.46291945962271
426 => 0.45772991750054
427 => 0.44767452571446
428 => 0.44582015719171
429 => 0.45546681642795
430 => 0.46320252359338
501 => 0.46383967348706
502 => 0.46812255844883
503 => 0.47065712565198
504 => 0.49549932981989
505 => 0.50549106984171
506 => 0.51770878040644
507 => 0.52246826722384
508 => 0.53679261617374
509 => 0.52522454102995
510 => 0.52272171520599
511 => 0.48797553011234
512 => 0.49366521597491
513 => 0.50277495201391
514 => 0.4881257463043
515 => 0.4974172955447
516 => 0.49925164418667
517 => 0.48762797189988
518 => 0.49383667749749
519 => 0.47734819618316
520 => 0.44315900207597
521 => 0.45570614916382
522 => 0.46494507274452
523 => 0.4517599896438
524 => 0.47539374076866
525 => 0.46158739126117
526 => 0.45721144128894
527 => 0.44013930030849
528 => 0.4481966936843
529 => 0.45909443359583
530 => 0.45236089732875
531 => 0.4663339961285
601 => 0.48612363051828
602 => 0.50022690247754
603 => 0.50130957657755
604 => 0.49224211755358
605 => 0.50677277850724
606 => 0.5068786185088
607 => 0.49048797359359
608 => 0.48044879484651
609 => 0.47816787231256
610 => 0.48386606400357
611 => 0.49078472066067
612 => 0.50169351387062
613 => 0.50828546913862
614 => 0.52547379237466
615 => 0.53012445981449
616 => 0.53523413333659
617 => 0.54206223292707
618 => 0.55026111717425
619 => 0.53232242520416
620 => 0.53303516287804
621 => 0.5163309012936
622 => 0.49848000215719
623 => 0.51202660945573
624 => 0.52973699646893
625 => 0.52567421411986
626 => 0.52521706811048
627 => 0.52598586089653
628 => 0.5229226556834
629 => 0.5090678920321
630 => 0.50211011646183
701 => 0.51108742206534
702 => 0.5158584604597
703 => 0.52325792493109
704 => 0.52234578475124
705 => 0.54140601058505
706 => 0.54881223799276
707 => 0.54691740809153
708 => 0.54726610239498
709 => 0.56067472334911
710 => 0.57558786754331
711 => 0.58955599504389
712 => 0.60376497428251
713 => 0.58663549522445
714 => 0.57793820215817
715 => 0.58691158855089
716 => 0.58215018342135
717 => 0.60951062962016
718 => 0.61140500755185
719 => 0.63876347527898
720 => 0.66472991893777
721 => 0.64842086091284
722 => 0.66379956805424
723 => 0.68043289367205
724 => 0.71252127744863
725 => 0.70171503867563
726 => 0.69343762913086
727 => 0.68561551710721
728 => 0.70189209050311
729 => 0.72283164215234
730 => 0.72734182102105
731 => 0.73465003380929
801 => 0.7269663416682
802 => 0.73622050252122
803 => 0.76889175681672
804 => 0.76006369550894
805 => 0.74752642927021
806 => 0.7733172467559
807 => 0.7826508433447
808 => 0.84815891224741
809 => 0.93086555524043
810 => 0.89662446196022
811 => 0.87536991040802
812 => 0.88036523418749
813 => 0.910566900412
814 => 0.92026671705034
815 => 0.89389927170003
816 => 0.90321269915616
817 => 0.95453060011543
818 => 0.98206100750469
819 => 0.94467101644306
820 => 0.84151351401258
821 => 0.74639758561862
822 => 0.77162661295478
823 => 0.76876642420272
824 => 0.82390110674493
825 => 0.75985314916638
826 => 0.76093155251186
827 => 0.81720636190041
828 => 0.80219320755002
829 => 0.77787382024192
830 => 0.74657514405941
831 => 0.68871664635891
901 => 0.637469761442
902 => 0.73797670421681
903 => 0.73364266208434
904 => 0.72736632680747
905 => 0.74133363179573
906 => 0.80915490013005
907 => 0.80759140037892
908 => 0.79764521266682
909 => 0.80518930838477
910 => 0.7765513037874
911 => 0.78393196964738
912 => 0.7463825187696
913 => 0.76335643876995
914 => 0.77782164175915
915 => 0.78072574542022
916 => 0.78726883925583
917 => 0.73135881882093
918 => 0.75646077656424
919 => 0.77120582500307
920 => 0.70458715972699
921 => 0.7698889881859
922 => 0.73038554975373
923 => 0.71697748942811
924 => 0.73502967627893
925 => 0.72799472150684
926 => 0.7219464805002
927 => 0.71857145809652
928 => 0.7318269917726
929 => 0.73120860528282
930 => 0.70951997940054
1001 => 0.68122805107858
1002 => 0.69072375087432
1003 => 0.68727387411587
1004 => 0.67477107570028
1005 => 0.68319645223875
1006 => 0.64609535794882
1007 => 0.58226485357007
1008 => 0.6244332399439
1009 => 0.62280980293889
1010 => 0.62199119238395
1011 => 0.65367956929529
1012 => 0.6506334630305
1013 => 0.64510475033236
1014 => 0.67466953655591
1015 => 0.66387799188183
1016 => 0.69713498975966
1017 => 0.71904019948976
1018 => 0.7134843297429
1019 => 0.73408628537113
1020 => 0.690942512619
1021 => 0.70527314329953
1022 => 0.70822666642139
1023 => 0.67430471168314
1024 => 0.65113184368725
1025 => 0.64958647758196
1026 => 0.60940791789502
1027 => 0.63087098016978
1028 => 0.64975758676971
1029 => 0.64071236786822
1030 => 0.63784892178224
1031 => 0.65247764682984
1101 => 0.6536144240526
1102 => 0.62769578290352
1103 => 0.63308508913503
1104 => 0.65555939201805
1105 => 0.6325187943655
1106 => 0.58775467678685
1107 => 0.57665255671499
1108 => 0.57517132924474
1109 => 0.54506149908963
1110 => 0.57739445346505
1111 => 0.56328025241087
1112 => 0.60786684442692
1113 => 0.58239922219004
1114 => 0.5813013638969
1115 => 0.57964179006603
1116 => 0.5537250154301
1117 => 0.55939914197842
1118 => 0.57826080281889
1119 => 0.58499085589859
1120 => 0.58428885622468
1121 => 0.57816837039083
1122 => 0.58097029746361
1123 => 0.57194431410609
1124 => 0.56875705152295
1125 => 0.55869717408492
1126 => 0.54391193336309
1127 => 0.54596791176861
1128 => 0.51667448113
1129 => 0.50071386539804
1130 => 0.49629617732097
1201 => 0.49038866019642
1202 => 0.49696344709949
1203 => 0.51659149652152
1204 => 0.49291590459557
1205 => 0.45232576288821
1206 => 0.45476529956706
1207 => 0.46024621417949
1208 => 0.4500325660591
1209 => 0.44036620527966
1210 => 0.44877032172075
1211 => 0.43157174358895
1212 => 0.46232458017954
1213 => 0.46149280213359
1214 => 0.47295555787191
1215 => 0.4801234542745
1216 => 0.46360377370054
1217 => 0.45944911871015
1218 => 0.46181579901122
1219 => 0.42269984548013
1220 => 0.46975894995466
1221 => 0.47016591904433
1222 => 0.46668120262049
1223 => 0.49173872296633
1224 => 0.54461790653264
1225 => 0.52472263061477
1226 => 0.51701857844147
1227 => 0.5023731696284
1228 => 0.52188730731348
1229 => 0.52038892600724
1230 => 0.51361267749616
1231 => 0.50951438125348
]
'min_raw' => 0.38273765906238
'max_raw' => 0.98206100750469
'avg_raw' => 0.68239933328354
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.382737'
'max' => '$0.982061'
'avg' => '$0.682399'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23535908093303
'max_diff' => 0.57082907228936
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012013697773441
]
1 => [
'year' => 2028
'avg' => 0.020618992980608
]
2 => [
'year' => 2029
'avg' => 0.056327372611105
]
3 => [
'year' => 2030
'avg' => 0.043456484084228
]
4 => [
'year' => 2031
'avg' => 0.042679652873495
]
5 => [
'year' => 2032
'avg' => 0.074830863268321
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012013697773441
'min' => '$0.012013'
'max_raw' => 0.074830863268321
'max' => '$0.07483'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.074830863268321
]
1 => [
'year' => 2033
'avg' => 0.19247267509305
]
2 => [
'year' => 2034
'avg' => 0.12199843127791
]
3 => [
'year' => 2035
'avg' => 0.1438974294612
]
4 => [
'year' => 2036
'avg' => 0.27930525667234
]
5 => [
'year' => 2037
'avg' => 0.68239933328354
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.074830863268321
'min' => '$0.07483'
'max_raw' => 0.68239933328354
'max' => '$0.682399'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.68239933328354
]
]
]
]
'prediction_2025_max_price' => '$0.020541'
'last_price' => 0.01991732
'sma_50day_nextmonth' => '$0.01896'
'sma_200day_nextmonth' => '$0.01571'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'INCREASE'
'sma_200day_date_nextmonth' => 'Feb 4, 2026'
'sma_50day_date_nextmonth' => 'Feb 4, 2026'
'daily_sma3' => '$0.019917'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.019917'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.019917'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.019917'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.019917'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.019917'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.012979'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.019917'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019917'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.019917'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.019917'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0198079'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.018444'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.014513'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.019917'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.015949'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.00802'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.004319'
'weekly_sma200_action' => 'BUY'
'weekly_ema3' => '$0.019917'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.019917'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.01991'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.019479'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.015917'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.011145'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.007669'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '99.91'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 100
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.019917'
'vwma_10_action' => 'SELL'
'hma_9' => '0.019917'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 666.67
'cci_20_action' => 'SELL'
'adx_14' => 99.82
'adx_14_action' => 'BUY'
'ao_5_34' => '0.00000000060'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 100
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 3
'buy_signals' => 31
'sell_pct' => 8.82
'buy_pct' => 91.18
'overall_action' => 'bullish'
'overall_action_label' => 'BULLISH'
'overall_action_dir' => 1
'last_updated' => 1767681107
'last_updated_date' => 'January 6, 2026'
]
TERA price prediction 2026
The TERA price forecast for 2026 suggests that the average price could range between $0.006881 on the lower end and $0.020541 on the high end. In the crypto market, compared to today’s average price, TERA could potentially gain 3.13% by 2026 if TERA reaches the forecast price target.
TERA price prediction 2027-2032
The TERA price prediction for 2027-2032 is currently within a price range of $0.012013 on the lower end and $0.07483 on the high end. Considering the price volatility in the market, if TERA reaches the upper price target, it could gain 275.71% by 2032 compared to today’s price.
| TERA Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2027 | $0.006624 | $0.012013 | $0.0174028 |
| 2028 | $0.011955 | $0.020618 | $0.029282 |
| 2029 | $0.026262 | $0.056327 | $0.086392 |
| 2030 | $0.022335 | $0.043456 | $0.064577 |
| 2031 | $0.0264071 | $0.042679 | $0.058952 |
| 2032 | $0.0403085 | $0.07483 | $0.109353 |
TERA price prediction 2032-2037
The TERA price prediction for 2032-2037 is currently estimated to be between $0.07483 on the lower end and $0.682399 on the high end. Compared to the current price, TERA could potentially gain 3326.16% by 2037 if it reaches the upper price target. Please note that this information is for general purposes only and should not be considered long-term investment advice.
| TERA Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2032 | $0.0403085 | $0.07483 | $0.109353 |
| 2033 | $0.093668 | $0.192472 | $0.291277 |
| 2034 | $0.0753048 | $0.121998 | $0.168692 |
| 2035 | $0.089033 | $0.143897 | $0.198761 |
| 2036 | $0.147378 | $0.2793052 | $0.411231 |
| 2037 | $0.382737 | $0.682399 | $0.982061 |
TERA potential price histogram
TERA Price Forecast Based on Technical Analysis
As of January 6, 2026, the overall price prediction sentiment for TERA is BULLISH, with 31 technical indicators showing bullish signals and 3 indicating bearish signals. The TERA price prediction was last updated on January 6, 2026.
TERA's 50-Day, 200-Day Simple Moving Averages and 14-Day Relative Strength Index - RSI (14)
According to our technical indicators, TERA's 200-day SMA is projected to INCREASE over the next month, reaching $0.01571 by Feb 4, 2026. The short-term 50-day SMA for TERA is expected to reach $0.01896 by Feb 4, 2026.
The Relative Strength Index (RSI) momentum oscillator is a commonly used tool to identify if a cryptocurrency is oversold (below 30) or overbought (above 70). Right now, the RSI stands at 99.91, suggesting that the TERA market is in a SELL state.
Popular TERA Moving Averages and Oscillators for Sat, Oct 19, 2024
Moving averages (MA) are widely used indicators across financial markets, designed to smooth out price movements over a set period. As lagging indicators, they are based on historical price data. The table below highlights two types: the simple moving average (SMA) and the exponential moving average (EMA).
Daily Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 3 | $0.019917 | BUY |
| SMA 5 | $0.019917 | BUY |
| SMA 10 | $0.019917 | BUY |
| SMA 21 | $0.019917 | BUY |
| SMA 50 | $0.019917 | BUY |
| SMA 100 | $0.019917 | BUY |
| SMA 200 | $0.012979 | BUY |
Daily Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 3 | $0.019917 | BUY |
| EMA 5 | $0.019917 | BUY |
| EMA 10 | $0.019917 | BUY |
| EMA 21 | $0.019917 | BUY |
| EMA 50 | $0.0198079 | BUY |
| EMA 100 | $0.018444 | BUY |
| EMA 200 | $0.014513 | BUY |
Weekly Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 21 | $0.019917 | BUY |
| SMA 50 | $0.015949 | BUY |
| SMA 100 | $0.00802 | BUY |
| SMA 200 | $0.004319 | BUY |
Weekly Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 21 | $0.019479 | BUY |
| EMA 50 | $0.015917 | BUY |
| EMA 100 | $0.011145 | BUY |
| EMA 200 | $0.007669 | BUY |
TERA Oscillators
An oscillator is a technical analysis tool that sets high and low boundaries between two extremes, creating a trend indicator that fluctuates within these limits. Traders use this indicator to identify short-term overbought or oversold conditions.
| Period | Value | Action |
|---|---|---|
| RSI (14) | 99.91 | SELL |
| Stoch RSI (14) | 100 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 666.67 | SELL |
| Average Directional Index (14) | 99.82 | BUY |
| Awesome Oscillator (5, 34) | 0.00000000060 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 100 | SELL |
| VWMA (10) | 0.019917 | SELL |
| Hull Moving Average (9) | 0.019917 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | — | — |
TERA price prediction based on worldwide money flows
Worldwide money flows definitions used for TERA price prediction
M0: The total of all physical currency, plus accounts at the central bank which can be exchanged for physical currency.
M1: Measure M0 plus the amount in demand accounts, including "checking" or "current" accounts.
M2: Measure M1 plus most savings accounts, money market accounts, and certificate of deposit (CD) accounts of under $100,000.
TERA price predictions by Internet companies or technological niches
| Comparison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.027987 | $0.039326 | $0.05526 | $0.07765 | $0.109111 | $0.153319 |
| Amazon.com stock | $0.041558 | $0.086714 | $0.180935 | $0.377532 | $0.787743 | $1.64 |
| Apple stock | $0.028251 | $0.040072 | $0.056839 | $0.080622 | $0.114356 | $0.1622059 |
| Netflix stock | $0.031426 | $0.049585 | $0.078238 | $0.123448 | $0.194782 | $0.307336 |
| Google stock | $0.025792 | $0.0334016 | $0.043254 | $0.056014 | $0.072539 | $0.093937 |
| Tesla stock | $0.045151 | $0.102354 | $0.232028 | $0.525991 | $1.19 | $2.70 |
| Kodak stock | $0.014935 | $0.01120031 | $0.008399 | $0.006298 | $0.004723 | $0.003541 |
| Nokia stock | $0.013194 | $0.00874 | $0.00579 | $0.003835 | $0.002541 | $0.001683 |
This calculation shows how much cryptocurrency can cost if we assume that its capitalization will behave like the capitalization of some Internet companies or technological niches. If you extrapolate the data projections, you can get a potential picture of the future TERA price for 2024, 2025, 2026, 2027, 2028, 2029 and 2030.
TERA forecast and prediction overview
You may ask questions like: "Should I invest in TERA now?", "Should I buy TERA today?", "Will TERA be a good or bad investment in short-term, long-term period?".
We update TERA forecast projection regularly with fresh values. Look at our similar predictions. We making a forecast of future prices for huge amounts of digital coins like TERA with technical analysis methods.
If you are trying to find cryptocurrencies with good returns, you should explore the maximum of available sources of information about TERA in order to make such a responsible decision about the investment by yourself.
TERA price equal to $0.01991 USD today, but the price can go both up and down and your investment may be lost because cryptocurrency high-risk assets
TERA price prediction based on Bitcoin's growth pattern
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| If TERA has 1% of Bitcoin's previous average grow per year | $0.020435 | $0.020966 | $0.021511 | $0.02207 |
| If TERA has 2% of Bitcoin's previous average grow per year | $0.020952 | $0.022042 | $0.023187 | $0.024393 |
| If TERA has 5% of Bitcoin's previous average grow per year | $0.0225058 | $0.02543 | $0.028736 | $0.03247 |
| If TERA has 10% of Bitcoin's previous average grow per year | $0.025094 | $0.031617 | $0.039835 | $0.05019 |
| If TERA has 20% of Bitcoin's previous average grow per year | $0.030271 | $0.0460087 | $0.069927 | $0.106279 |
| If TERA has 50% of Bitcoin's previous average grow per year | $0.045803 | $0.105331 | $0.242226 | $0.557039 |
| If TERA has 100% of Bitcoin's previous average grow per year | $0.071688 | $0.258031 | $0.928736 | $3.34 |
Frequently Asked Questions about TERA
Is TERA a good investment?
The determination to procure TERA is entirely contingent on your individualistic risk tolerance. As you may discern, TERA's value has experienced a fall of 0% during the preceding 24 hours, and TERA has incurred a decline of over the prior 30-day duration. Consequently, the determination of whether or not to invest in TERA will hinge on whether such an investment aligns with your trading aspirations.
Can TERA rise?
It appears that the mean value of TERA may potentially surge to $0.020541 by the end of this year. Looking at TERA's prospects in a more extended five-year timeline, the digital currency could potentially growth to as much as $0.064577. However, given the market's unpredictability, it is vital to conduct thorough research before investing any funds into a particular project, network, or asset.
What will the price of TERA be next week?
Based on the our new experimental TERA forecast, the price of TERA will increase by 0.86% over the next week and reach $0.0200877 by January 13, 2026.
What will the price of TERA be next month?
Based on the our new experimental TERA forecast, the price of TERA will decrease by -11.62% over the next month and reach $0.017603 by February 5, 2026.
How high can TERA’s price go this year in 2026?
As per our most recent prediction on TERA's value in 2026, TERA is anticipated to fluctuate within the range of $0.006881 and $0.020541. However, it is crucial to bear in mind that the cryptocurrency market is exceptionally unstable, and this projected TERA price forecast fails to consider sudden and extreme price fluctuations.
Where will TERA be in 5 years?
TERA's future appears to be on an upward trend, with an maximum price of $0.064577 projected after a period of five years. Based on the TERA forecast for 2030, TERA's value may potentially reach its highest peak of approximately $0.064577, while its lowest peak is anticipated to be around $0.022335.
How much will be TERA in 2026?
Based on the our new experimental TERA price prediction simulation, TERA’s value in 2026 expected to grow by 3.13% to $0.020541 if the best happened. The price will be between $0.020541 and $0.006881 during 2026.
How much will be TERA in 2027?
According to our latest experimental simulation for TERA price prediction, TERA’s value could down by -12.62% to $0.0174028 in 2027, assuming the most favorable conditions. The price is projected to fluctuate between $0.0174028 and $0.006624 throughout the year.
How much will be TERA in 2028?
Our new experimental TERA price prediction model suggests that TERA’s value in 2028 could increase by 47.02% , reaching $0.029282 in the best-case scenario. The price is expected to range between $0.029282 and $0.011955 during the year.
How much will be TERA in 2029?
Based on our experimental forecast model, TERA's value may experience a 333.75% growth in 2029, potentially reaching $0.086392 under optimal conditions. The predicted price range for 2029 lies between $0.086392 and $0.026262.
How much will be TERA in 2030?
Using our new experimental simulation for TERA price predictions, TERA’s value in 2030 is expected to rise by 224.23% , reaching $0.064577 in the best scenario. The price is forecasted to range between $0.064577 and $0.022335 over the course of 2030.
How much will be TERA in 2031?
Our experimental simulation indicates that TERA’s price could grow by 195.98% in 2031, potentially hitting $0.058952 under ideal conditions. The price will likely fluctuate between $0.058952 and $0.0264071 during the year.
How much will be TERA in 2032?
Based on the findings from our latest experimental TERA price prediction, TERA could see a 449.04% rise in value, reaching $0.109353 if the most positive scenario plays out in 2032. The price is expected to stay within a range of $0.109353 and $0.0403085 throughout the year.
How much will be TERA in 2033?
According to our experimental TERA price prediction, TERA’s value is anticipated to rise by 1362.43% in 2033, with the highest potential price being $0.291277. Throughout the year, TERA’s price could range from $0.291277 and $0.093668.
How much will be TERA in 2034?
The results from our new TERA price prediction simulation suggest that TERA may rise by 746.96% in 2034, potentially reaching $0.168692 under the best circumstances. The predicted price range for the year is between $0.168692 and $0.0753048.
How much will be TERA in 2035?
Based on our experimental forecast for TERA’s price, TERA could grow by 897.93% , with the value potentially hitting $0.198761 in 2035. The expected price range for the year lies between $0.198761 and $0.089033.
How much will be TERA in 2036?
Our recent TERA price prediction simulation suggests that TERA’s value might rise by 1964.7% in 2036, possibly reaching $0.411231 if conditions are optimal. The expected price range for 2036 is between $0.411231 and $0.147378.
How much will be TERA in 2037?
According to the experimental simulation, TERA’s value could rise by 4830.69% in 2037, with a high of $0.982061 under favorable conditions. The price is expected to fall between $0.982061 and $0.382737 over the course of the year.
Related Predictions
Waterfall Governance Price Prediction
MatrixETF Price Prediction
Uniwhale Price Prediction
Optimus X Price Prediction
XP Price Prediction
Crown Price Prediction
Kunci Coin Price Prediction
AFEN Blockchain Price PredictionStaySAFU Price Prediction
Cardence Price Prediction
Bismuth Price Prediction
MetaWars Price Prediction
Bomb Money Price Prediction
Billionaire Token Price Prediction
VELO Token Price Prediction
Youcoin Price Prediction
Zenith Chain Price Prediction
ACA Price Prediction
BillionHappiness Price Prediction
Fancy Games Price Prediction
Gourmet Galaxy Price Prediction
Savix Price Prediction
TaleCraft Price Prediction
0.exchange Price PredictionYellow Road Price Prediction
How to read and predict TERA price movements?
TERA traders use indicators and chart patterns to predict market direction. They also identify key support and resistance levels to gauge when a downtrend might slow or an uptrend might stall.
TERA Price Prediction Indicators
Moving averages are popular tools for TERA price prediction. A simple moving average (SMA) calculates the average closing price of TERA over a specific period, like a 12-day SMA. An exponential moving average (EMA) gives more weight to recent prices, reacting faster to price changes.
Commonly used moving averages in the crypto market include the 50-day, 100-day, and 200-day averages, which help identify key resistance and support levels. A TERA price move above these averages is seen as bullish, while a drop below indicates weakness.
Traders also use RSI and Fibonacci retracement levels to gauge TERA's future direction.
How to read TERA charts and predict price movements?
Most traders prefer candlestick charts over simple line charts because they provide more detailed information. Candlesticks can represent TERA's price action in different time frames, such as 5-minute for short-term and weekly for long-term trends. Popular choices include 1-hour, 4-hour, and 1-day charts.
A 1-hour candlestick chart, for instance, shows TERA's opening, closing, highest, and lowest prices within each hour. The candle's color is crucial: green indicates the price closed higher than it opened, while red means the opposite. Some charts use hollow and filled candlesticks to convey the same information.
What affects the price of TERA?
TERA's price action is driven by supply and demand, influenced by factors like block reward halvings, hard forks, and protocol updates. Real-world events, such as regulations, adoption by companies and governments, and cryptocurrency exchange hacks, also impact TERA's price. TERA's market capitalization can change rapidly.
Traders often monitor the activity of TERA "whales," large holders of TERA, as their actions can significantly influence price movements in the relatively small TERA market.
Bullish and bearish price prediction patterns
Traders often identify candlestick patterns to gain an edge in cryptocurrency price predictions. Certain formations indicate bullish trends, while others suggest bearish movements.
Commonly followed bullish candlestick patterns:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Three White Soldiers
Common bearish candlestick patterns:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


