Smart Lending AI (SLAI) Price Prediction
Smart Lending AI Price Prediction up to $0.001458 by 2026
| Year | Min. Price | Max. Price |
|---|---|---|
| 2026 | $0.000488 | $0.001458 |
| 2027 | $0.00047 | $0.001236 |
| 2028 | $0.000849 | $0.002079 |
| 2029 | $0.001865 | $0.006135 |
| 2030 | $0.001586 | $0.004586 |
| 2031 | $0.001875 | $0.004187 |
| 2032 | $0.002862 | $0.007766 |
| 2033 | $0.006652 | $0.020687 |
| 2034 | $0.005348 | $0.011981 |
| 2035 | $0.006323 | $0.014116 |
Investment Profit Calculator
If you open a short on $10,000.00 of Smart Lending AI today and close it on Apr 06, 2026, our forecast suggests you could make around $3,955.97 in profit, equal to a 39.56% ROI over the next 90 days.
Long-term Smart Lending AI price prediction for 2027, 2028, 2029, 2030, 2031, 2032 and 2037
[
'name' => 'Smart Lending AI'
'name_with_ticker' => 'Smart Lending AI <small>SLAI</small>'
'name_lang' => 'Smart Lending AI'
'name_lang_with_ticker' => 'Smart Lending AI <small>SLAI</small>'
'name_with_lang' => 'Smart Lending AI'
'name_with_lang_with_ticker' => 'Smart Lending AI <small>SLAI</small>'
'image' => '/uploads/coins/smart-lending-ai.png?1749577153'
'price_for_sd' => 0.001414
'ticker' => 'SLAI'
'marketcap' => '$10.62K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$55.41'
'current_supply' => '7.51M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001414'
'change_24h_pct' => '0%'
'ath_price' => '$0.1855'
'ath_days' => 166
'ath_exchange' => null
'ath_pair' => null
'ath_date' => 'Jul 24, 2025'
'ath_pct' => '-99.24%'
'fdv' => '$14.15K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.06975'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001426'
'next_week_prediction_price_date' => 'January 13, 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00125'
'next_month_prediction_price_date' => 'February 5, 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000488'
'current_year_max_price_prediction' => '$0.001458'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001586'
'grand_prediction_max_price' => '$0.004586'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0014414263049099
107 => 0.0014468080674947
108 => 0.0014589334533978
109 => 0.00135532335844
110 => 0.0014018412492435
111 => 0.0014291661519536
112 => 0.0013057112474208
113 => 0.0014267258454288
114 => 0.0013535197371984
115 => 0.0013286724845462
116 => 0.0013621260368658
117 => 0.0013490891549922
118 => 0.0013378808095087
119 => 0.001331626360145
120 => 0.0013561909568347
121 => 0.0013550449890381
122 => 0.001314852541071
123 => 0.0012624231311517
124 => 0.0012800201620574
125 => 0.0012736269957563
126 => 0.0012504573363464
127 => 0.0012660708892733
128 => 0.0011973167040214
129 => 0.0010790287018271
130 => 0.0011571733793362
131 => 0.0011541648942571
201 => 0.0011526478796563
202 => 0.0012113714450441
203 => 0.0012057265292153
204 => 0.0011954809517107
205 => 0.0012502691682808
206 => 0.0012302707322272
207 => 0.0012919011999203
208 => 0.0013324950119517
209 => 0.0013221991081483
210 => 0.0013603777845708
211 => 0.0012804255621084
212 => 0.001306982483284
213 => 0.001312455827932
214 => 0.0012495930901929
215 => 0.0012066501072567
216 => 0.0012037862998807
217 => 0.0011293290853769
218 => 0.0011691035283672
219 => 0.0012041033922204
220 => 0.0011873411735339
221 => 0.0011820347558548
222 => 0.0012091440929558
223 => 0.0012112507206243
224 => 0.0011632193865317
225 => 0.0011732066218441
226 => 0.0012148550533364
227 => 0.0011721571882293
228 => 0.0010892022109828
301 => 0.0010686282296834
302 => 0.0010658832813244
303 => 0.0010100850122973
304 => 0.0010700030814922
305 => 0.0010438472385842
306 => 0.0011264732329354
307 => 0.0010792777080941
308 => 0.0010772432033467
309 => 0.001074167751024
310 => 0.0010261398758749
311 => 0.0010366549282019
312 => 0.0010716085636243
313 => 0.001084080414524
314 => 0.0010827794982963
315 => 0.0010714372717419
316 => 0.0010766296849769
317 => 0.0010599031127903
318 => 0.0010539966120177
319 => 0.0010353540708683
320 => 0.0010079546855122
321 => 0.0010117647380962
322 => 0.00095747938626661
323 => 0.00092790184544817
324 => 0.00091971517197535
325 => 0.00090876761006285
326 => 0.00092095172822371
327 => 0.00095732560268547
328 => 0.00091345099293664
329 => 0.00083823105196831
330 => 0.00084275189858905
331 => 0.00085290889869445
401 => 0.00083398139619333
402 => 0.00081606810354089
403 => 0.00083164225815081
404 => 0.00079977057755557
405 => 0.00085676043902563
406 => 0.0008552190229851
407 => 0.00087646131911175
408 => 0.00088974456281554
409 => 0.00085913098657952
410 => 0.00085143175494407
411 => 0.00085581758719419
412 => 0.00078332954966181
413 => 0.00087053749995961
414 => 0.00087129167793518
415 => 0.00086483394823367
416 => 0.00091126948952385
417 => 0.0010092629652547
418 => 0.00097239387790631
419 => 0.00095811705291096
420 => 0.0009309767981585
421 => 0.00096713957618728
422 => 0.00096436283906189
423 => 0.00095180538073458
424 => 0.00094421059075656
425 => 0.00095820422416003
426 => 0.00094247662471719
427 => 0.00093965151569173
428 => 0.00092253442874636
429 => 0.00091642440748469
430 => 0.00091190079098951
501 => 0.00090692073370969
502 => 0.00091790549911602
503 => 0.00089301257553905
504 => 0.00086299414998861
505 => 0.00086049844270795
506 => 0.00086738930993467
507 => 0.00086434061415158
508 => 0.00086048384672546
509 => 0.0008531202273809
510 => 0.0008509355988202
511 => 0.00085803458181137
512 => 0.00085002024391076
513 => 0.00086184583604668
514 => 0.00085862992932557
515 => 0.00084066613580126
516 => 0.00081827659802178
517 => 0.0008180772841719
518 => 0.00081325349498351
519 => 0.00080710967419054
520 => 0.00080540060379751
521 => 0.00083033064628942
522 => 0.00088193508815427
523 => 0.00087180390142656
524 => 0.00087912472212311
525 => 0.00091513591426756
526 => 0.00092658278935596
527 => 0.00091845806855231
528 => 0.00090733644960532
529 => 0.00090782574439582
530 => 0.00094583168308067
531 => 0.00094820206685742
601 => 0.00095419126194645
602 => 0.00096188907018219
603 => 0.00091976903858112
604 => 0.0009058418946952
605 => 0.00089924244127353
606 => 0.00087891867904467
607 => 0.00090083611418081
608 => 0.00088806576332513
609 => 0.00088978891995286
610 => 0.0008886667119385
611 => 0.00088927951339771
612 => 0.00085674450919789
613 => 0.00086859855473883
614 => 0.00084888890489708
615 => 0.00082249989627099
616 => 0.0008224114310609
617 => 0.00082887010353685
618 => 0.00082502823242027
619 => 0.00081468985602911
620 => 0.00081615837359971
621 => 0.00080329261443441
622 => 0.00081772050970447
623 => 0.00081813425011532
624 => 0.00081257872454359
625 => 0.00083480688787298
626 => 0.00084391378452549
627 => 0.00084025701858328
628 => 0.0008436572160788
629 => 0.00087222489797466
630 => 0.00087688267661904
701 => 0.00087895135421728
702 => 0.0008761796002829
703 => 0.00084417938086142
704 => 0.0008455987266682
705 => 0.00083518450888877
706 => 0.00082638559228838
707 => 0.00082673750280816
708 => 0.00083126128971985
709 => 0.0008510169324798
710 => 0.00089259151800936
711 => 0.00089416924313958
712 => 0.00089608149202289
713 => 0.00088830341479516
714 => 0.0008859574722771
715 => 0.00088905237599756
716 => 0.0009046656044346
717 => 0.00094482706692485
718 => 0.0009306313237869
719 => 0.00091908996364585
720 => 0.00092921484801791
721 => 0.00092765620143029
722 => 0.00091449965566437
723 => 0.00091413039524396
724 => 0.00088887877751703
725 => 0.0008795438293949
726 => 0.00087174284803529
727 => 0.00086322438004037
728 => 0.00085817434667136
729 => 0.00086593349312529
730 => 0.00086770810172283
731 => 0.00085074259239463
801 => 0.00084843025616291
802 => 0.00086228465730627
803 => 0.00085618785190721
804 => 0.00086245856745364
805 => 0.00086391342724961
806 => 0.0008636791613142
807 => 0.00085731339626394
808 => 0.00086137074507713
809 => 0.00085177390558004
810 => 0.00084133878402565
811 => 0.000834681826605
812 => 0.0008288727483382
813 => 0.00083209596258623
814 => 0.00082060579232769
815 => 0.00081692985561054
816 => 0.00085999620659246
817 => 0.00089180978310409
818 => 0.00089134720110205
819 => 0.00088853135213108
820 => 0.00088434757173432
821 => 0.00090435953483942
822 => 0.00089738776704543
823 => 0.00090246031062625
824 => 0.00090375148586155
825 => 0.00090765948442171
826 => 0.00090905625800314
827 => 0.00090483423811843
828 => 0.00089066462370905
829 => 0.00085535529180739
830 => 0.00083891870249145
831 => 0.00083349435424414
901 => 0.00083369151900063
902 => 0.00082825283483452
903 => 0.00082985477106616
904 => 0.00082769574678773
905 => 0.00082360707712844
906 => 0.00083184349875634
907 => 0.00083279266962138
908 => 0.00083087019039552
909 => 0.00083132300384797
910 => 0.00081540569695946
911 => 0.00081661585523162
912 => 0.00080987754019276
913 => 0.00080861418735457
914 => 0.00079158031370853
915 => 0.00076140233744511
916 => 0.00077812386574208
917 => 0.00075792661096202
918 => 0.00075027760453847
919 => 0.00078648681128303
920 => 0.00078285241121294
921 => 0.00077663189812867
922 => 0.00076743046280853
923 => 0.00076401756094248
924 => 0.00074328184959778
925 => 0.00074205667315082
926 => 0.00075233385160455
927 => 0.00074759128736427
928 => 0.00074093093102139
929 => 0.00071680779549696
930 => 0.0006896854042718
1001 => 0.00069050405877762
1002 => 0.00069913118679631
1003 => 0.00072421572503738
1004 => 0.00071441476197968
1005 => 0.00070730405082822
1006 => 0.00070597242837675
1007 => 0.0007226404712974
1008 => 0.00074622924409307
1009 => 0.00075729656851976
1010 => 0.00074632918613255
1011 => 0.00073373044777193
1012 => 0.00073449727459901
1013 => 0.00073959862993509
1014 => 0.00074013471025163
1015 => 0.0007319342267501
1016 => 0.00073424261482118
1017 => 0.00073073596225778
1018 => 0.00070921564194903
1019 => 0.00070882640759631
1020 => 0.0007035449739305
1021 => 0.00070338505421808
1022 => 0.00069440001803716
1023 => 0.00069314294936483
1024 => 0.0006753026146749
1025 => 0.00068704517699332
1026 => 0.00067916888270232
1027 => 0.00066729744937578
1028 => 0.00066525080979567
1029 => 0.0006651892853385
1030 => 0.00067737859296094
1031 => 0.00068690273783679
1101 => 0.00067930589421364
1102 => 0.00067757624017928
1103 => 0.00069604442012233
1104 => 0.00069369417588338
1105 => 0.00069165887952989
1106 => 0.00074411712821314
1107 => 0.00070259233101216
1108 => 0.00068448514927997
1109 => 0.00066207407342584
1110 => 0.0006693712327304
1111 => 0.00067090885141344
1112 => 0.0006170142538843
1113 => 0.00059514922237887
1114 => 0.00058764596753254
1115 => 0.00058332773828803
1116 => 0.00058529560957966
1117 => 0.00056561451671238
1118 => 0.00057884053661442
1119 => 0.00056179837379272
1120 => 0.00055894119973567
1121 => 0.00058941469797973
1122 => 0.0005936549072368
1123 => 0.00057556485721639
1124 => 0.00058718159784256
1125 => 0.00058296920620674
1126 => 0.00056209051276033
1127 => 0.00056129310024395
1128 => 0.0005508169057941
1129 => 0.00053442369007106
1130 => 0.00052693155059693
1201 => 0.00052302957930907
1202 => 0.00052463960871034
1203 => 0.00052382552857735
1204 => 0.00051851310504451
1205 => 0.00052413003047575
1206 => 0.00050978110707277
1207 => 0.00050406725015657
1208 => 0.000501486433548
1209 => 0.00048875093813464
1210 => 0.00050901877483781
1211 => 0.00051301179399582
1212 => 0.00051701268063507
1213 => 0.00055183766730842
1214 => 0.00055009790938861
1215 => 0.00056582447368723
1216 => 0.00056521336831788
1217 => 0.00056072789742646
1218 => 0.00054180443355973
1219 => 0.0005493469889787
1220 => 0.00052613217577247
1221 => 0.00054352629228043
1222 => 0.00053558834390187
1223 => 0.00054084246394878
1224 => 0.00053139508235953
1225 => 0.00053662365340385
1226 => 0.00051395868696942
1227 => 0.00049279446021764
1228 => 0.00050131156288485
1229 => 0.00051057062753294
1230 => 0.00053064663885581
1231 => 0.00051868953213541
]
'min_raw' => 0.00048875093813464
'max_raw' => 0.0014589334533978
'avg_raw' => 0.00097384219576622
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000488'
'max' => '$0.001458'
'avg' => '$0.000973'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00092586906186536
'max_diff' => 4.4313453397795E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00052298975986033
102 => 0.00050858471683128
103 => 0.00047886299846522
104 => 0.00047903122016341
105 => 0.00047445918131562
106 => 0.00047050827222253
107 => 0.00052006294967913
108 => 0.00051390004219388
109 => 0.00050408025569752
110 => 0.0005172244301457
111 => 0.00052069995849589
112 => 0.00052079890190201
113 => 0.00053038855227915
114 => 0.00053550655040447
115 => 0.00053640861975673
116 => 0.00055149814182327
117 => 0.00055655595058437
118 => 0.00057738834906344
119 => 0.000535072324021
120 => 0.00053420085333208
121 => 0.00051740939563552
122 => 0.00050675998770192
123 => 0.0005181385697077
124 => 0.00052821844003349
125 => 0.00051772260530407
126 => 0.00051909313974057
127 => 0.00050500333915753
128 => 0.00051003977987923
129 => 0.00051437784111059
130 => 0.00051198261867809
131 => 0.00050839685476656
201 => 0.0005273920056161
202 => 0.00052632022476257
203 => 0.0005440089459303
204 => 0.00055779856901312
205 => 0.00058251203876753
206 => 0.00055672224473649
207 => 0.00055578236213685
208 => 0.00056496986531022
209 => 0.0005565545440255
210 => 0.00056187273659043
211 => 0.00058165519572638
212 => 0.00058207316791513
213 => 0.00057507159522679
214 => 0.0005746455488924
215 => 0.00057599027751601
216 => 0.00058386639506632
217 => 0.00058111423758559
218 => 0.00058429910389839
219 => 0.00058828182799094
220 => 0.00060475606347778
221 => 0.00060872794588039
222 => 0.00059907833082695
223 => 0.00059994958302412
224 => 0.00059634036210628
225 => 0.00059285389992305
226 => 0.00060069095775404
227 => 0.00061501333497792
228 => 0.00061492423621254
301 => 0.00061824674934125
302 => 0.00062031664749526
303 => 0.00061143112936022
304 => 0.00060564698378388
305 => 0.00060786499325259
306 => 0.00061141163869503
307 => 0.0006067148639361
308 => 0.00057772419436626
309 => 0.00058651811158261
310 => 0.00058505437375722
311 => 0.00058296983309728
312 => 0.00059181218485967
313 => 0.00059095931846112
314 => 0.00056541265865844
315 => 0.00056704807293307
316 => 0.00056551211361714
317 => 0.00057047511239462
318 => 0.00055628652580435
319 => 0.00056065083947793
320 => 0.0005633880961011
321 => 0.00056500036128074
322 => 0.00057082496865019
323 => 0.00057014151820275
324 => 0.00057078248441077
325 => 0.00057941883950034
326 => 0.00062309855990419
327 => 0.0006254759507119
328 => 0.0006137688088849
329 => 0.00061844558113162
330 => 0.00060946720111557
331 => 0.00061549444777026
401 => 0.00061961813685594
402 => 0.00060098397881757
403 => 0.00059988058491323
404 => 0.00059086514792906
405 => 0.0005957095331039
406 => 0.00058800176796711
407 => 0.0005898929839255
408 => 0.0005846049792326
409 => 0.00059412233484859
410 => 0.00060476421727481
411 => 0.00060745277703635
412 => 0.0006003803338015
413 => 0.00059525941880275
414 => 0.00058626877899921
415 => 0.00060122041336197
416 => 0.00060559272689244
417 => 0.00060119744746034
418 => 0.00060017896517717
419 => 0.00059824894309093
420 => 0.00060058842848658
421 => 0.00060556891433395
422 => 0.00060322020918346
423 => 0.00060477157031422
424 => 0.00059885938144042
425 => 0.00061143407083645
426 => 0.00063140570386115
427 => 0.00063146991592702
428 => 0.00062912119811613
429 => 0.00062816015339175
430 => 0.00063057008039783
501 => 0.00063187736693825
502 => 0.0006396706289709
503 => 0.00064803310962918
504 => 0.00068705715802522
505 => 0.00067609936139286
506 => 0.00071072381868086
507 => 0.00073810726897259
508 => 0.00074631836838192
509 => 0.00073876454328742
510 => 0.00071292331568873
511 => 0.00071165542178065
512 => 0.00075027312569797
513 => 0.00073936185553843
514 => 0.00073806399467233
515 => 0.00072425694782754
516 => 0.00073241862254883
517 => 0.00073063354456274
518 => 0.00072781571163269
519 => 0.00074338761845373
520 => 0.00077253683790899
521 => 0.00076799365869724
522 => 0.00076460238616769
523 => 0.00074974281712777
524 => 0.0007586915966947
525 => 0.0007555051076935
526 => 0.00076919628663855
527 => 0.00076108593552825
528 => 0.00073927919193544
529 => 0.00074275198772857
530 => 0.00074222708163073
531 => 0.00075302961192892
601 => 0.00074978696046869
602 => 0.00074159390189042
603 => 0.00077243720904582
604 => 0.00077043441623864
605 => 0.00077327391853705
606 => 0.00077452395526333
607 => 0.00079329773280878
608 => 0.00080098874877528
609 => 0.00080273474404986
610 => 0.00081004061437351
611 => 0.00080255296734071
612 => 0.00083250889407376
613 => 0.00085242783737446
614 => 0.00087556471503766
615 => 0.00090937391191004
616 => 0.00092208648268662
617 => 0.00091979007056164
618 => 0.00094542381777125
619 => 0.00099148709170073
620 => 0.00092910077522219
621 => 0.0009947937179599
622 => 0.00097399609075064
623 => 0.00092468529077081
624 => 0.00092151025658825
625 => 0.00095490410284475
626 => 0.0010289684398031
627 => 0.0010104161634258
628 => 0.0010289987846811
629 => 0.0010073211699127
630 => 0.0010062446936262
701 => 0.0010279459513171
702 => 0.0010786521227859
703 => 0.0010545635214135
704 => 0.0010200266045788
705 => 0.0010455281265156
706 => 0.0010234363481595
707 => 0.00097365738842372
708 => 0.0010104019768497
709 => 0.00098583191699487
710 => 0.00099300276667672
711 => 0.0010446453779709
712 => 0.0010384316023506
713 => 0.0010464728033834
714 => 0.0010322802940354
715 => 0.001019022252351
716 => 0.00099427513299195
717 => 0.00098694873096798
718 => 0.00098897348491108
719 => 0.00098694772760049
720 => 0.00097310194175688
721 => 0.00097011194562222
722 => 0.00096512848773639
723 => 0.00096667306971688
724 => 0.00095730271092948
725 => 0.00097498651397621
726 => 0.00097826878365082
727 => 0.00099113758080144
728 => 0.00099247366201221
729 => 0.0010283130789008
730 => 0.0010085733303355
731 => 0.001021816457921
801 => 0.0010206318679406
802 => 0.0009257540053298
803 => 0.0009388273376831
804 => 0.00095916534018714
805 => 0.00095000309762658
806 => 0.00093704983028052
807 => 0.00092658937238833
808 => 0.00091074070904491
809 => 0.00093304739835415
810 => 0.00096237832274384
811 => 0.00099321754265813
812 => 0.0010302688447194
813 => 0.001021999425424
814 => 0.00099252489433844
815 => 0.00099384710027178
816 => 0.0010020204570828
817 => 0.00099143521738475
818 => 0.00098831342354935
819 => 0.0010015915705483
820 => 0.0010016830098491
821 => 0.0009895034123075
822 => 0.00097596801848282
823 => 0.00097591130468848
824 => 0.00097350281209377
825 => 0.0010077496353948
826 => 0.001026581925466
827 => 0.0010287410171729
828 => 0.0010264366013914
829 => 0.0010273234795667
830 => 0.0010163653849155
831 => 0.0010414123397662
901 => 0.0010643979024243
902 => 0.001058237280617
903 => 0.0010490016327439
904 => 0.0010416449943639
905 => 0.001056504290412
906 => 0.0010558426293497
907 => 0.0010641971435866
908 => 0.0010638181345628
909 => 0.0010610088256541
910 => 0.0010582373809463
911 => 0.001069225845943
912 => 0.0010660613444933
913 => 0.0010628919276988
914 => 0.0010565351771039
915 => 0.0010573991650842
916 => 0.0010481651118759
917 => 0.0010438930163402
918 => 0.0009796509496739
919 => 0.00096248337029057
920 => 0.00096788464024287
921 => 0.00096966287855508
922 => 0.0009621915260066
923 => 0.00097290352632812
924 => 0.00097123407242483
925 => 0.00097772894096467
926 => 0.00097367122907539
927 => 0.00097383775898671
928 => 0.0009857706244577
929 => 0.00098923478606997
930 => 0.00098747288551476
1001 => 0.00098870686026921
1002 => 0.0010171432876574
1003 => 0.0010131005370286
1004 => 0.001010952906332
1005 => 0.0010115478147121
1006 => 0.0010188139315937
1007 => 0.0010208480476052
1008 => 0.0010122293551294
1009 => 0.0010162939803251
1010 => 0.0010336006385304
1011 => 0.0010396569894303
1012 => 0.0010589859542893
1013 => 0.0010507746664722
1014 => 0.0010658468406366
1015 => 0.0011121735655351
1016 => 0.0011491825589496
1017 => 0.0011151475591443
1018 => 0.0011831098624831
1019 => 0.0012360282642458
1020 => 0.0012339971678459
1021 => 0.0012247696204739
1022 => 0.0011645234269756
1023 => 0.0011090839814984
1024 => 0.0011554614317233
1025 => 0.0011555796573815
1026 => 0.0011515957932771
1027 => 0.0011268523554755
1028 => 0.0011507347752761
1029 => 0.0011526304750317
1030 => 0.0011515693872758
1031 => 0.0011325986515274
1101 => 0.0011036338444176
1102 => 0.0011092934983949
1103 => 0.0011185641270635
1104 => 0.001101012892938
1105 => 0.0010954042101682
1106 => 0.0011058318185329
1107 => 0.0011394317453626
1108 => 0.0011330798738266
1109 => 0.0011329140007908
1110 => 0.0011600900008347
1111 => 0.0011406378497512
1112 => 0.0011093648847562
1113 => 0.0011014680486553
1114 => 0.0010734396004431
1115 => 0.0010927989494572
1116 => 0.0010934956579634
1117 => 0.0010828927403562
1118 => 0.0011102252530841
1119 => 0.0011099733791675
1120 => 0.001135921532095
1121 => 0.0011855246548111
1122 => 0.0011708545706025
1123 => 0.0011537948587685
1124 => 0.0011556497224594
1125 => 0.0011759929989544
1126 => 0.0011636929895937
1127 => 0.0011681161587185
1128 => 0.0011759863039581
1129 => 0.0011807345579859
1130 => 0.0011549665217763
1201 => 0.0011489587599082
1202 => 0.0011366689875639
1203 => 0.0011334628153587
1204 => 0.0011434725784986
1205 => 0.0011408353595614
1206 => 0.0010934371023113
1207 => 0.0010884837207072
1208 => 0.0010886356338492
1209 => 0.0010761801202853
1210 => 0.0010571824724347
1211 => 0.0011071071566956
1212 => 0.0011030975058539
1213 => 0.0010986711616471
1214 => 0.001099213363556
1215 => 0.0011208839768892
1216 => 0.0011083139267637
1217 => 0.0011417334652128
1218 => 0.001134863412791
1219 => 0.0011278171694476
1220 => 0.0011268431639837
1221 => 0.0011241309614537
1222 => 0.0011148298098124
1223 => 0.0011035981102928
1224 => 0.0010961819693969
1225 => 0.0010111699228089
1226 => 0.0010269476641633
1227 => 0.0010450985174052
1228 => 0.0010513641192093
1229 => 0.0010406463737569
1230 => 0.0011152530117282
1231 => 0.0011288843634131
]
'min_raw' => 0.00047050827222253
'max_raw' => 0.0012360282642458
'avg_raw' => 0.00085326826823415
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00047'
'max' => '$0.001236'
'avg' => '$0.000853'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.8242665912112E-5
'max_diff' => -0.00022290518915202
'year' => 2027
]
2 => [
'items' => [
101 => 0.0010875941100087
102 => 0.0010798703894667
103 => 0.0011157593775611
104 => 0.0010941139304898
105 => 0.0011038608739806
106 => 0.0010827933134465
107 => 0.0011256009699648
108 => 0.0011252748473445
109 => 0.0011086217021041
110 => 0.0011226968264255
111 => 0.0011202509272029
112 => 0.0011014495672414
113 => 0.0011261970066109
114 => 0.0011262092810321
115 => 0.0011101809908088
116 => 0.001091463456872
117 => 0.0010881172038925
118 => 0.0010855962517782
119 => 0.0011032408742977
120 => 0.0011190609876754
121 => 0.0011484982965325
122 => 0.0011558995353924
123 => 0.0011847870633909
124 => 0.001167585946976
125 => 0.001175210979091
126 => 0.0011834890300784
127 => 0.0011874578321371
128 => 0.0011809908821602
129 => 0.0012258651037228
130 => 0.0012296538629333
131 => 0.0012309242011239
201 => 0.001215792866095
202 => 0.0012292330331337
203 => 0.0012229448240679
204 => 0.0012393049971425
205 => 0.0012418704811778
206 => 0.0012396976074696
207 => 0.0012405119325958
208 => 0.0012022197008473
209 => 0.0012002340466236
210 => 0.0011731595103868
211 => 0.0011841925840281
212 => 0.0011635667816846
213 => 0.001170107436077
214 => 0.0011729904942116
215 => 0.0011714845482542
216 => 0.0011848163774579
217 => 0.001173481599122
218 => 0.0011435672554834
219 => 0.0011136447617019
220 => 0.0011132691091668
221 => 0.00110539104473
222 => 0.0010996966470817
223 => 0.0011007935900884
224 => 0.0011046593603204
225 => 0.0010994719614882
226 => 0.0011005789560369
227 => 0.0011189624414105
228 => 0.0011226491182972
229 => 0.0011101203497586
301 => 0.0010598155361838
302 => 0.0010474706087524
303 => 0.0010563438977795
304 => 0.0010521030371376
305 => 0.00084912926424535
306 => 0.00089681494143385
307 => 0.00086848173130103
308 => 0.00088153897807855
309 => 0.00085261810738213
310 => 0.00086642066275117
311 => 0.00086387183476312
312 => 0.00094054899256046
313 => 0.00093935178420744
314 => 0.00093992482449118
315 => 0.00091257211869994
316 => 0.00095614572173228
317 => 0.00097761164544209
318 => 0.00097363887426046
319 => 0.00097463873517689
320 => 0.00095745781193508
321 => 0.00094009117338379
322 => 0.00092082889852391
323 => 0.00095661582432445
324 => 0.00095263692907863
325 => 0.00096176308321123
326 => 0.00098497346269517
327 => 0.00098839127924183
328 => 0.00099298485934063
329 => 0.00099133838786851
330 => 0.0010305640181162
331 => 0.0010258135354741
401 => 0.0010372608318343
402 => 0.001013712874713
403 => 0.00098706612603758
404 => 0.00099213080181292
405 => 0.00099164303280821
406 => 0.00098543317354297
407 => 0.00097982719025988
408 => 0.00097049480756954
409 => 0.0010000238473346
410 => 0.00099882502224645
411 => 0.0010182326069411
412 => 0.0010148021278311
413 => 0.0009918925487539
414 => 0.00099271076885251
415 => 0.00099821369223881
416 => 0.0010172593729101
417 => 0.0010229134276621
418 => 0.0010202942442259
419 => 0.0010264936571441
420 => 0.0010313934203442
421 => 0.0010271089919639
422 => 0.0010877674627689
423 => 0.0010625778365968
424 => 0.0010748550851248
425 => 0.001077783136557
426 => 0.0010702829943838
427 => 0.0010719095066612
428 => 0.0010743732295634
429 => 0.0010893324725793
430 => 0.0011285898547447
501 => 0.0011459766820718
502 => 0.0011982858099361
503 => 0.0011445329480986
504 => 0.0011413434757286
505 => 0.0011507659292413
506 => 0.0011814769247812
507 => 0.0012063653021292
508 => 0.0012146222127404
509 => 0.0012157134997844
510 => 0.0012312040130002
511 => 0.0012400828862945
512 => 0.0012293230572548
513 => 0.0012202052287448
514 => 0.0011875462987684
515 => 0.0011913266588405
516 => 0.0012173695909344
517 => 0.0012541567664382
518 => 0.0012857239900737
519 => 0.0012746702485853
520 => 0.0013590024934159
521 => 0.0013673636910245
522 => 0.0013662084438649
523 => 0.0013852564963304
524 => 0.0013474499912548
525 => 0.0013312869778685
526 => 0.0012221766067604
527 => 0.0012528321704876
528 => 0.0012973918327032
529 => 0.0012914941943188
530 => 0.0012591337765346
531 => 0.0012856994417949
601 => 0.0012769160020747
602 => 0.0012699881387421
603 => 0.0013017260237011
604 => 0.0012668289154683
605 => 0.0012970437073536
606 => 0.0012582929242287
607 => 0.0012747207411453
608 => 0.0012653955177393
609 => 0.0012714300801394
610 => 0.0012361521516549
611 => 0.0012551872655418
612 => 0.0012353602283355
613 => 0.0012353508277383
614 => 0.0012349131447931
615 => 0.0012582395661398
616 => 0.0012590002399024
617 => 0.001241761979283
618 => 0.0012392776766155
619 => 0.001248463445653
620 => 0.0012377093158668
621 => 0.0012427411055081
622 => 0.0012378617236491
623 => 0.0012367632720171
624 => 0.0012280106225274
625 => 0.0012242397404682
626 => 0.0012257184004873
627 => 0.0012206709715406
628 => 0.0012176297130268
629 => 0.0012343081619273
630 => 0.0012253975394865
701 => 0.001232942481242
702 => 0.001224344067864
703 => 0.0011945382209457
704 => 0.0011773965631919
705 => 0.0011210960813668
706 => 0.0011370628281718
707 => 0.0011476487978224
708 => 0.001144150134916
709 => 0.0011516666166417
710 => 0.0011521280675733
711 => 0.0011496843827429
712 => 0.0011468549087646
713 => 0.0011454776773117
714 => 0.0011557424322171
715 => 0.0011617014679354
716 => 0.0011487112414988
717 => 0.0011456678131973
718 => 0.0011588016493347
719 => 0.0011668132817914
720 => 0.0012259666745038
721 => 0.0012215844001087
722 => 0.0012325830488625
723 => 0.0012313447698008
724 => 0.0012428731059169
725 => 0.0012617170632283
726 => 0.0012234020291609
727 => 0.0012300521942408
728 => 0.0012284217273379
729 => 0.0012462227374519
730 => 0.0012462783102624
731 => 0.0012356057154727
801 => 0.0012413915022513
802 => 0.0012381620347962
803 => 0.0012439981189762
804 => 0.0012215258721624
805 => 0.0012488946430525
806 => 0.0012644109725425
807 => 0.0012646264167925
808 => 0.0012719810338256
809 => 0.0012794537506819
810 => 0.001293796979951
811 => 0.0012790537258024
812 => 0.0012525320468157
813 => 0.0012544468263741
814 => 0.0012388971756881
815 => 0.0012391585681254
816 => 0.0012377632348094
817 => 0.0012419507351266
818 => 0.0012224447929985
819 => 0.001227022798628
820 => 0.0012206135639379
821 => 0.0012300382618163
822 => 0.0012198988448575
823 => 0.0012284209410774
824 => 0.0012320987952939
825 => 0.0012456701565315
826 => 0.0012178943437682
827 => 0.0011612575812866
828 => 0.0011731633154146
829 => 0.001155553799464
830 => 0.0011571836272094
831 => 0.0011604761386403
901 => 0.0011498040318502
902 => 0.001151839933509
903 => 0.0011517671967754
904 => 0.0011511403909001
905 => 0.0011483641637477
906 => 0.001144338085117
907 => 0.0011603767432204
908 => 0.0011631020237659
909 => 0.0011691599848278
910 => 0.0011871843677937
911 => 0.0011853833068912
912 => 0.0011883209119485
913 => 0.0011819081366024
914 => 0.0011574810974655
915 => 0.0011588076032126
916 => 0.0011422660552897
917 => 0.0011687369802569
918 => 0.0011624683158255
919 => 0.0011584268670865
920 => 0.0011573241203544
921 => 0.0011753931822794
922 => 0.0011807997288052
923 => 0.0011774307318301
924 => 0.001170520820745
925 => 0.0011837898927603
926 => 0.0011873401366544
927 => 0.0011881349053343
928 => 0.0012116451568533
929 => 0.0011894488672279
930 => 0.0011947917347529
1001 => 0.0012364752619939
1002 => 0.0011986740547198
1003 => 0.0012186981972804
1004 => 0.0012177181197027
1005 => 0.0012279617934566
1006 => 0.0012168778394644
1007 => 0.0012170152383582
1008 => 0.0012261109266851
1009 => 0.0012133376728459
1010 => 0.0012101748355647
1011 => 0.0012058053985133
1012 => 0.0012153459044623
1013 => 0.0012210650062988
1014 => 0.0012671567668833
1015 => 0.0012969341462605
1016 => 0.0012956414316895
1017 => 0.0013074544230083
1018 => 0.0013021325622245
1019 => 0.001284946869918
1020 => 0.0013142807511134
1021 => 0.0013049982837214
1022 => 0.001305763519055
1023 => 0.0013057350369577
1024 => 0.001311907066286
1025 => 0.0013075336178487
1026 => 0.0012989131020536
1027 => 0.001304635802741
1028 => 0.0013216301778797
1029 => 0.0013743812397613
1030 => 0.0014039014328489
1031 => 0.0013726040870708
1101 => 0.0013941925771004
1102 => 0.0013812471758482
1103 => 0.0013788946113483
1104 => 0.0013924537784638
1105 => 0.0014060366791063
1106 => 0.0014051715070559
1107 => 0.001395311018679
1108 => 0.0013897410789956
1109 => 0.0014319185283453
1110 => 0.001462994154552
1111 => 0.0014608750051784
1112 => 0.0014702282413294
1113 => 0.0014976896319535
1114 => 0.0015002003573548
1115 => 0.0014998840636626
1116 => 0.0014936609687884
1117 => 0.00152070027417
1118 => 0.0015432569384307
1119 => 0.0014922205021275
1120 => 0.0015116545089557
1121 => 0.0015203790607455
1122 => 0.0015331892912308
1123 => 0.0015548022973034
1124 => 0.001578279754465
1125 => 0.0015815997243249
1126 => 0.0015792440468341
1127 => 0.0015637600327282
1128 => 0.0015894493464987
1129 => 0.0016044975440169
1130 => 0.0016134584012672
1201 => 0.0016361816443093
1202 => 0.0015204329406072
1203 => 0.001438500255043
1204 => 0.0014257052830698
1205 => 0.0014517243617147
1206 => 0.0014585853852551
1207 => 0.0014558197152689
1208 => 0.0013635970286726
1209 => 0.0014252197497108
1210 => 0.0014915206161624
1211 => 0.0014940675024616
1212 => 0.001527259102493
1213 => 0.0015380676480329
1214 => 0.0015647912365807
1215 => 0.001563119668841
1216 => 0.0015696264373872
1217 => 0.0015681306439799
1218 => 0.0016176304644492
1219 => 0.0016722361172212
1220 => 0.0016703452971011
1221 => 0.0016624950884503
1222 => 0.0016741539869562
1223 => 0.0017305128725143
1224 => 0.0017253242494648
1225 => 0.0017303645547915
1226 => 0.0017968148571122
1227 => 0.0018832097025743
1228 => 0.0018430706229565
1229 => 0.0019301608760181
1230 => 0.0019849795738645
1231 => 0.0020797828434306
]
'min_raw' => 0.00084912926424535
'max_raw' => 0.0020797828434306
'avg_raw' => 0.001464456053838
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000849'
'max' => '$0.002079'
'avg' => '$0.001464'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00037862099202282
'max_diff' => 0.00084375457918483
'year' => 2028
]
3 => [
'items' => [
101 => 0.002067913007165
102 => 0.0021048192243085
103 => 0.0020466635229399
104 => 0.0019131262773912
105 => 0.001891993497123
106 => 0.0019343018583871
107 => 0.0020383128361652
108 => 0.0019310261825532
109 => 0.0019527301328485
110 => 0.0019464793937033
111 => 0.0019461463183782
112 => 0.0019588584488225
113 => 0.0019404188405929
114 => 0.0018652925594432
115 => 0.0018997224913721
116 => 0.0018864274411932
117 => 0.0019011792905784
118 => 0.0019807889375845
119 => 0.0019455916149861
120 => 0.0019085140948271
121 => 0.0019550175332669
122 => 0.0020142323907161
123 => 0.0020105268313562
124 => 0.0020033364973945
125 => 0.0020438680334632
126 => 0.0021108142564228
127 => 0.0021289095514771
128 => 0.0021422671283441
129 => 0.002144108912516
130 => 0.0021630804341486
131 => 0.0020610657808911
201 => 0.0022229656555328
202 => 0.0022509212914897
203 => 0.0022456667905722
204 => 0.0022767383033853
205 => 0.0022675962761075
206 => 0.0022543509129221
207 => 0.002303605869831
208 => 0.002247139036405
209 => 0.0021669914753333
210 => 0.0021230209381903
211 => 0.0021809248885022
212 => 0.0022162848103883
213 => 0.0022396554694416
214 => 0.0022467274167502
215 => 0.002068984888025
216 => 0.0019731915230947
217 => 0.0020345939717418
218 => 0.002109509196862
219 => 0.002060649623033
220 => 0.0020625648258237
221 => 0.0019929039136136
222 => 0.0021156726418723
223 => 0.0020977862708125
224 => 0.002190580795511
225 => 0.0021684346374691
226 => 0.002244104970098
227 => 0.0022241784355278
228 => 0.0023068923664511
301 => 0.0023398891928867
302 => 0.0023952960000181
303 => 0.0024360534728901
304 => 0.0024599870405268
305 => 0.0024585501588985
306 => 0.0025533868775312
307 => 0.0024974649778961
308 => 0.0024272138921746
309 => 0.0024259432716732
310 => 0.002462327304434
311 => 0.0025385782556285
312 => 0.0025583490178671
313 => 0.0025693981767814
314 => 0.0025524760052801
315 => 0.0024917767911848
316 => 0.0024655671782905
317 => 0.0024878985278421
318 => 0.0024605892062953
319 => 0.0025077327569273
320 => 0.0025724709212643
321 => 0.0025591027463311
322 => 0.0026037905508638
323 => 0.0026500377272609
324 => 0.0027161732665995
325 => 0.0027334635455745
326 => 0.0027620437192298
327 => 0.0027914621060191
328 => 0.0028009104990081
329 => 0.0028189504128882
330 => 0.0028188553336373
331 => 0.0028732198283412
401 => 0.0029331855495279
402 => 0.0029558212210662
403 => 0.0030078706996304
404 => 0.0029187377916205
405 => 0.0029863461262311
406 => 0.0030473305363962
407 => 0.0029746224085052
408 => 0.0030748336239818
409 => 0.0030787245983953
410 => 0.0031374736924609
411 => 0.0030779202306608
412 => 0.0030425575751453
413 => 0.0031446482365972
414 => 0.0031940466918481
415 => 0.0031791674751086
416 => 0.0030659359010432
417 => 0.0030000302682066
418 => 0.0028275425148258
419 => 0.0030318617096217
420 => 0.0031313796293342
421 => 0.0030656781736729
422 => 0.003098814166283
423 => 0.0032795933975821
424 => 0.0033484224242723
425 => 0.003334106467872
426 => 0.0033365256288429
427 => 0.0033736645223098
428 => 0.003538358828704
429 => 0.0034396701827284
430 => 0.0035151139547837
501 => 0.0035551290594491
502 => 0.0035922973187283
503 => 0.0035010238210876
504 => 0.0033822783417309
505 => 0.0033446666638225
506 => 0.0030591454587416
507 => 0.0030442828400614
508 => 0.0030359400018128
509 => 0.002983339586773
510 => 0.002942010069018
511 => 0.0029091433020326
512 => 0.0028228910906155
513 => 0.0028519986800086
514 => 0.0027145306572454
515 => 0.0028024778266417
516 => 0.0025830755430301
517 => 0.0027658002843959
518 => 0.002666351515145
519 => 0.0027331286890309
520 => 0.002732895709762
521 => 0.0026099377609158
522 => 0.0025390181820882
523 => 0.0025842108979484
524 => 0.0026326610767529
525 => 0.0026405219552579
526 => 0.0027033388767569
527 => 0.002720869729302
528 => 0.002667750427653
529 => 0.0025785289183704
530 => 0.0025992530400508
531 => 0.0025385982084238
601 => 0.002432302949052
602 => 0.00250864606007
603 => 0.0025347129547412
604 => 0.0025462255804263
605 => 0.0024416964009271
606 => 0.0024088510632896
607 => 0.0023913644811305
608 => 0.0025650355139183
609 => 0.0025745496051346
610 => 0.002525874169315
611 => 0.0027458917548136
612 => 0.0026960949990532
613 => 0.002751730175739
614 => 0.0025973725432282
615 => 0.0026032692126603
616 => 0.0025301938357389
617 => 0.0025711111639164
618 => 0.0025421921151876
619 => 0.0025678054481526
620 => 0.0025831579743241
621 => 0.0026562213602952
622 => 0.0027666345509003
623 => 0.0026453081268803
624 => 0.0025924444665084
625 => 0.0026252407840866
626 => 0.0027125816996456
627 => 0.0028449076576167
628 => 0.0027665680271897
629 => 0.0028013338248801
630 => 0.0028089286050527
701 => 0.0027511638618666
702 => 0.0028470375260928
703 => 0.0028984170016279
704 => 0.0029511217120425
705 => 0.002996883735343
706 => 0.0029300702917015
707 => 0.0030015702537288
708 => 0.0029439539057771
709 => 0.0028922660853958
710 => 0.0028923444744836
711 => 0.0028599199497198
712 => 0.002797093347237
713 => 0.0027855071578062
714 => 0.0028457799783999
715 => 0.0028941130726586
716 => 0.0028980940178017
717 => 0.0029248537022274
718 => 0.0029406898078238
719 => 0.0030959051708107
720 => 0.0031583340738129
721 => 0.0032346709546853
722 => 0.0032644084718959
723 => 0.00335390773721
724 => 0.003281629811694
725 => 0.0032659920278591
726 => 0.0030488960851936
727 => 0.0030844455336431
728 => 0.0031413636306224
729 => 0.0030498346436486
730 => 0.0031078887188148
731 => 0.003119349823006
801 => 0.0030467245236952
802 => 0.003085516834011
803 => 0.0029824959589305
804 => 0.0027688801244535
805 => 0.0028472753415819
806 => 0.0029050006089331
807 => 0.0028226195349488
808 => 0.0029702844214779
809 => 0.0028840216431896
810 => 0.0028566804838158
811 => 0.0027500128732715
812 => 0.0028003558794355
813 => 0.0028684455161148
814 => 0.0028263740369169
815 => 0.002913678673317
816 => 0.0030373253217555
817 => 0.003125443286718
818 => 0.0031322078899027
819 => 0.003075553941877
820 => 0.0031663422551489
821 => 0.0031670035488952
822 => 0.0030645939606433
823 => 0.003001868658058
824 => 0.0029876173373355
825 => 0.0030232199306364
826 => 0.003066448051505
827 => 0.0031346067497585
828 => 0.0031757936236285
829 => 0.0032831871468516
830 => 0.0033122447550221
831 => 0.0033441702566852
901 => 0.0033868325723672
902 => 0.0034380596207367
903 => 0.0033259777552618
904 => 0.0033304309767239
905 => 0.0032260618954727
906 => 0.0031145285641156
907 => 0.0031991684597896
908 => 0.0033098238642099
909 => 0.0032844393921726
910 => 0.0032815831205107
911 => 0.0032863865771823
912 => 0.0032672475142455
913 => 0.003180682241909
914 => 0.0031372097040688
915 => 0.0031933003689098
916 => 0.0032231100609645
917 => 0.003269342293663
918 => 0.0032636431951389
919 => 0.0033827324615909
920 => 0.0034290069494617
921 => 0.0034171679552673
922 => 0.0034193466151204
923 => 0.0035031243650528
924 => 0.003596302453186
925 => 0.0036835760286544
926 => 0.0037723544581081
927 => 0.0036653285963205
928 => 0.0036109874641423
929 => 0.0036670536415537
930 => 0.0036373041386306
1001 => 0.0038082536067023
1002 => 0.0038200897769678
1003 => 0.0039910268834472
1004 => 0.0041532665523081
1005 => 0.0040513667231221
1006 => 0.0041474536723754
1007 => 0.0042513795420767
1008 => 0.0044518694060953
1009 => 0.0043843514732123
1010 => 0.0043326337947648
1011 => 0.00428376083853
1012 => 0.0043854577020914
1013 => 0.0045162890924161
1014 => 0.0045444689208045
1015 => 0.0045901310083168
1016 => 0.0045421229065921
1017 => 0.0045999433772006
1018 => 0.0048040750460508
1019 => 0.0047489168672074
1020 => 0.00467058338613
1021 => 0.0048317257336734
1022 => 0.0048900425228244
1023 => 0.0052993402898253
1024 => 0.0058160956279114
1025 => 0.0056021555247452
1026 => 0.005469355998906
1027 => 0.0055005670375251
1028 => 0.005689268593722
1029 => 0.0057498735444844
1030 => 0.0055851283965328
1031 => 0.0056433191679107
1101 => 0.0059639560393928
1102 => 0.0061359674336805
1103 => 0.0059023528560254
1104 => 0.0052578195015635
1105 => 0.0046635303132242
1106 => 0.0048211625671627
1107 => 0.0048032919614644
1108 => 0.0051477762796077
1109 => 0.004747601362884
1110 => 0.0047543392821759
1111 => 0.0051059471712031
1112 => 0.0050121442144959
1113 => 0.0048601954380052
1114 => 0.0046646397074492
1115 => 0.0043031368528006
1116 => 0.0039829436931855
1117 => 0.0046109162152715
1118 => 0.0045838368982252
1119 => 0.0045446220342122
1120 => 0.0046318904705816
1121 => 0.0050556412260134
1122 => 0.0050458723995534
1123 => 0.0049837281097136
1124 => 0.0050308640058424
1125 => 0.0048519322875151
1126 => 0.0048980470655276
1127 => 0.0046634361747804
1128 => 0.0047694900956144
1129 => 0.0048598694241745
1130 => 0.0048780144124718
1201 => 0.0049188959976116
1202 => 0.0045695673286355
1203 => 0.0047264056452549
1204 => 0.0048185334625058
1205 => 0.0044022966325273
1206 => 0.0048103057986806
1207 => 0.0045634862936948
1208 => 0.004479712046598
1209 => 0.004592503033896
1210 => 0.0045485482764531
1211 => 0.0045107585571137
1212 => 0.0044896712444125
1213 => 0.0045724924971972
1214 => 0.004568628786762
1215 => 0.0044331171422938
1216 => 0.0042563477262464
1217 => 0.0043156773445302
1218 => 0.0042941223379896
1219 => 0.0042160042136351
1220 => 0.0042686463974317
1221 => 0.004036836861591
1222 => 0.0036380206035883
1223 => 0.0039014908396972
1224 => 0.0038913475222075
1225 => 0.0038862328015664
1226 => 0.0040842234022198
1227 => 0.0040651911743873
1228 => 0.0040306474945072
1229 => 0.0042153697918646
1230 => 0.0041479436684637
1231 => 0.0043557350931928
]
'min_raw' => 0.0018652925594432
'max_raw' => 0.0061359674336805
'avg_raw' => 0.0040006299965619
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001865'
'max' => '$0.006135'
'avg' => '$0.00400062'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0010161632951978
'max_diff' => 0.0040561845902499
'year' => 2029
]
4 => [
'items' => [
101 => 0.0044925999646262
102 => 0.0044578866061159
103 => 0.0045866086792243
104 => 0.0043170441791065
105 => 0.004406582692995
106 => 0.0044250364566124
107 => 0.0042130903473889
108 => 0.0040683050822362
109 => 0.0040586495557234
110 => 0.0038076118585871
111 => 0.0039417141700918
112 => 0.0040597186546853
113 => 0.0040032036640829
114 => 0.0039853127063956
115 => 0.0040767137291451
116 => 0.0040838163714095
117 => 0.0039218753750756
118 => 0.0039555480362178
119 => 0.004095968630795
120 => 0.0039520097975166
121 => 0.0036723212999986
122 => 0.0036029546856181
123 => 0.0035936999005794
124 => 0.0034055721408439
125 => 0.0036075900944803
126 => 0.0035194038439735
127 => 0.0037979831526912
128 => 0.0036388601456024
129 => 0.003632000670802
130 => 0.0036216315685749
131 => 0.0034597022343107
201 => 0.0034951544673685
202 => 0.0036130030895802
203 => 0.0036550528056451
204 => 0.0036506666757563
205 => 0.0036124255670393
206 => 0.0036299321507838
207 => 0.0035735373448446
208 => 0.0035536231651111
209 => 0.0034907685360454
210 => 0.0033983895953533
211 => 0.0034112354536495
212 => 0.0032282085998739
213 => 0.0031284858559665
214 => 0.0031008839147776
215 => 0.0030639734454553
216 => 0.0031050530505026
217 => 0.0032276901077932
218 => 0.0030797637977976
219 => 0.0028261545151343
220 => 0.0028413968651516
221 => 0.002875641900146
222 => 0.0028118265039875
223 => 0.0027514305871436
224 => 0.0028039399367637
225 => 0.0026964823404272
226 => 0.0028886276372786
227 => 0.0028834306454797
228 => 0.0029550505299604
301 => 0.0029998359135142
302 => 0.0028966201038629
303 => 0.0028706616068608
304 => 0.0028854487465011
305 => 0.0026410502670075
306 => 0.0029350779601012
307 => 0.0029376207238008
308 => 0.0029158480372479
309 => 0.0030724087067337
310 => 0.0034028005518462
311 => 0.0032784938497337
312 => 0.0032303585374858
313 => 0.0031388532737158
314 => 0.0032607786046443
315 => 0.0032514166415605
316 => 0.0032090782940762
317 => 0.003183471929414
318 => 0.0032306524414381
319 => 0.0031776257418506
320 => 0.0031681006895285
321 => 0.0031103892358153
322 => 0.0030897888725436
323 => 0.0030745371837012
324 => 0.0030577465728858
325 => 0.0030947824763851
326 => 0.0030108542465769
327 => 0.002909645029014
328 => 0.0029012305776726
329 => 0.0029244636176325
330 => 0.0029141847269466
331 => 0.0029011813662986
401 => 0.0028763544095669
402 => 0.0028689887818486
403 => 0.0028929234986385
404 => 0.0028659025988634
405 => 0.0029057734083861
406 => 0.0028949307543485
407 => 0.0028343645702892
408 => 0.0027588766804781
409 => 0.0027582046799176
410 => 0.0027419409378827
411 => 0.0027212266171314
412 => 0.0027154643669778
413 => 0.0027995177457992
414 => 0.0029735057244536
415 => 0.0029393477210643
416 => 0.0029640303791661
417 => 0.0030854446277023
418 => 0.0031240385662581
419 => 0.0030966455028187
420 => 0.0030591481880523
421 => 0.0030607978795999
422 => 0.0031889375553658
423 => 0.003196929469764
424 => 0.0032171224591589
425 => 0.0032430761570696
426 => 0.0031010655297998
427 => 0.0030541091918263
428 => 0.003031858673856
429 => 0.0029633356905417
430 => 0.0030372318533296
501 => 0.0029941757238223
502 => 0.0029999854666996
503 => 0.0029962018640291
504 => 0.0029982679669333
505 => 0.0028885739287522
506 => 0.0029285406709165
507 => 0.0028620882103912
508 => 0.0027731158253866
509 => 0.0027728175587543
510 => 0.0027945934239371
511 => 0.0027816402872367
512 => 0.0027467837294315
513 => 0.0027517349389494
514 => 0.002708357133665
515 => 0.0027570017898915
516 => 0.0027583967445731
517 => 0.0027396659022336
518 => 0.0028146097068194
519 => 0.0028453142447066
520 => 0.0028329852030252
521 => 0.0028444492062755
522 => 0.0029407671403193
523 => 0.0029564711662145
524 => 0.0029634458571674
525 => 0.00295410069526
526 => 0.0028462097212965
527 => 0.0028509951447796
528 => 0.0028158828824388
529 => 0.0027862167207999
530 => 0.0027874032116869
531 => 0.0028026554751004
601 => 0.0028692630039605
602 => 0.0030094346217182
603 => 0.003014754032148
604 => 0.0030212013127671
605 => 0.0029949769823458
606 => 0.0029870674733577
607 => 0.0029975021573305
608 => 0.0030501432470868
609 => 0.0031855504218564
610 => 0.0031376884827517
611 => 0.0030987759812441
612 => 0.0031329127358013
613 => 0.00312765765001
614 => 0.0030832994373995
615 => 0.0030820544501111
616 => 0.0029969168579331
617 => 0.0029654434285941
618 => 0.002939141875293
619 => 0.0029104212657077
620 => 0.002893394725622
621 => 0.0029195552296178
622 => 0.0029255384464036
623 => 0.0028683380472095
624 => 0.0028605418441621
625 => 0.0029072529249003
626 => 0.0028866971198321
627 => 0.0029078392751042
628 => 0.0029127444364814
629 => 0.0029119545925242
630 => 0.0028904919712138
701 => 0.0029041716060125
702 => 0.0028718151916181
703 => 0.0028366324507406
704 => 0.0028141880540229
705 => 0.0027946023410695
706 => 0.0028054696329444
707 => 0.0027667297216996
708 => 0.0027543360444121
709 => 0.0028995372535442
710 => 0.0030067989479062
711 => 0.0030052393203898
712 => 0.0029957454889879
713 => 0.002981639581278
714 => 0.0030491113120775
715 => 0.0030256055102068
716 => 0.0030427079450432
717 => 0.003047061232496
718 => 0.0030602373224893
719 => 0.0030649466421387
720 => 0.0030507118073254
721 => 0.0030029379630533
722 => 0.002883890085328
723 => 0.0028284729768833
724 => 0.0028101844080516
725 => 0.0028108491627937
726 => 0.0027925122594109
727 => 0.0027979132992595
728 => 0.0027906339981665
729 => 0.0027768487629484
730 => 0.0028046184335154
731 => 0.0028078186293559
801 => 0.0028013368564227
802 => 0.0028028635485921
803 => 0.0027491972371066
804 => 0.0027532773702117
805 => 0.0027305586706041
806 => 0.0027262991883056
807 => 0.0026688682940409
808 => 0.0025671211401098
809 => 0.0026234989402229
810 => 0.0025554024856046
811 => 0.002529613326411
812 => 0.0026516951949964
813 => 0.0026394415614144
814 => 0.0026184686672484
815 => 0.0025874453856428
816 => 0.0025759385487202
817 => 0.0025060266502005
818 => 0.0025018958822704
819 => 0.0025365461069569
820 => 0.0025205562205055
821 => 0.0024981003640843
822 => 0.0024167675284401
823 => 0.0023253224927996
824 => 0.0023280826436226
825 => 0.0023571696080645
826 => 0.0024417438800908
827 => 0.0024086992488603
828 => 0.0023847249897592
829 => 0.0023802353316931
830 => 0.0024364328021257
831 => 0.0025159639965218
901 => 0.0025532782535223
902 => 0.0025163009580857
903 => 0.002473823432087
904 => 0.0024764088422727
905 => 0.0024936084179535
906 => 0.0024954158501687
907 => 0.0024677673475038
908 => 0.0024755502390519
909 => 0.0024637273151078
910 => 0.002391170052686
911 => 0.0023898577218904
912 => 0.0023720509995482
913 => 0.0023715118190725
914 => 0.0023412181422733
915 => 0.0023369798474788
916 => 0.0022768299134994
917 => 0.0023164207821954
918 => 0.002289865306088
919 => 0.0022498399397906
920 => 0.0022429395515544
921 => 0.0022427321175516
922 => 0.0022838292192309
923 => 0.0023159405386344
924 => 0.0022903272499643
925 => 0.0022844956006268
926 => 0.002346762358712
927 => 0.0023388383461715
928 => 0.0023319762024159
929 => 0.0025088428503694
930 => 0.0023688390974376
1001 => 0.0023077894700244
1002 => 0.0022322289630909
1003 => 0.0022568318451576
1004 => 0.0022620160339006
1005 => 0.0020803066355305
1006 => 0.0020065871552422
1007 => 0.0019812894076672
1008 => 0.0019667301962802
1009 => 0.0019733650117323
1010 => 0.0019070088330403
1011 => 0.0019516012825512
1012 => 0.0018941424407521
1013 => 0.0018845092789372
1014 => 0.0019872528058587
1015 => 0.0020015489674109
1016 => 0.0019405571007601
1017 => 0.0019797237528362
1018 => 0.0019655213803362
1019 => 0.0018951274076778
1020 => 0.0018924388757053
1021 => 0.0018571176546931
1022 => 0.0018018467833451
1023 => 0.0017765865120236
1024 => 0.0017634307433996
1025 => 0.0017688590699347
1026 => 0.001766114341929
1027 => 0.0017482031350865
1028 => 0.0017671409913391
1029 => 0.0017187625942762
1030 => 0.0016994979267544
1031 => 0.0016907965233718
1101 => 0.0016478579114218
1102 => 0.0017161923379217
1103 => 0.0017296550807966
1104 => 0.0017431443494338
1105 => 0.0018605592234059
1106 => 0.0018546935081133
1107 => 0.0019077167176397
1108 => 0.0019056563332209
1109 => 0.0018905332549449
1110 => 0.0018267314753242
1111 => 0.0018521617275237
1112 => 0.0017738913639924
1113 => 0.0018325368422174
1114 => 0.0018057734950492
1115 => 0.0018234881276183
1116 => 0.001791635620995
1117 => 0.0018092641133181
1118 => 0.001732847596567
1119 => 0.0016614909284343
1120 => 0.0016902069347219
1121 => 0.0017214245176302
1122 => 0.0017891121914676
1123 => 0.0017487979713412
1124 => 0.0017632964893481
1125 => 0.0017147288810477
1126 => 0.0016145200324724
1127 => 0.0016150872036727
1128 => 0.0015996722554878
1129 => 0.0015863514896368
1130 => 0.0017534285444788
1201 => 0.0017326498716118
1202 => 0.0016995417758438
1203 => 0.0017438582776928
1204 => 0.0017555762641791
1205 => 0.0017559098587808
1206 => 0.0017882420345553
1207 => 0.0018054977225621
1208 => 0.0018085391123637
1209 => 0.0018594144895278
1210 => 0.0018764672448908
1211 => 0.0019467051308346
1212 => 0.0018040336979935
1213 => 0.0018010954737217
1214 => 0.0017444819017556
1215 => 0.0017085766793895
1216 => 0.0017469403630492
1217 => 0.0017809253496067
1218 => 0.0017455379100207
1219 => 0.001750158762561
1220 => 0.0017026540161768
1221 => 0.0017196347277031
1222 => 0.0017342608040184
1223 => 0.0017261851443581
1224 => 0.0017140954909803
1225 => 0.0017781389682687
1226 => 0.0017745253842916
1227 => 0.0018341641426957
1228 => 0.0018806568196802
1229 => 0.0019639800083965
1230 => 0.001877027917235
1231 => 0.0018738590374298
]
'min_raw' => 0.0015863514896368
'max_raw' => 0.0045866086792243
'avg_raw' => 0.0030864800844305
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001586'
'max' => '$0.004586'
'avg' => '$0.003086'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00027894106980638
'max_diff' => -0.0015493587544563
'year' => 2030
]
5 => [
'items' => [
101 => 0.0019048353458298
102 => 0.0018764625025794
103 => 0.0018943931601164
104 => 0.0019610911022604
105 => 0.0019625003246767
106 => 0.0019388940335237
107 => 0.0019374575885617
108 => 0.0019419914350022
109 => 0.001968546315216
110 => 0.0019592672241203
111 => 0.0019700052232541
112 => 0.0019834332555971
113 => 0.0020389772907353
114 => 0.0020523687695637
115 => 0.0020198344186965
116 => 0.0020227719063081
117 => 0.0020106031659958
118 => 0.0019988483153281
119 => 0.0020252715029711
120 => 0.0020735603977379
121 => 0.0020732599950298
122 => 0.0020844620800137
123 => 0.0020914408861556
124 => 0.0020614827413962
125 => 0.0020419810907494
126 => 0.0020494592645297
127 => 0.0020614170272577
128 => 0.0020455815232397
129 => 0.001947837456721
130 => 0.0019774867625876
131 => 0.0019725516683144
201 => 0.0019655234939415
202 => 0.0019953361002616
203 => 0.0019924606016537
204 => 0.0019063282545181
205 => 0.001911842167926
206 => 0.0019066635738551
207 => 0.0019233966707389
208 => 0.0018755588604343
209 => 0.0018902734486914
210 => 0.0018995023005056
211 => 0.0019049381651235
212 => 0.0019245762355308
213 => 0.0019222719346302
214 => 0.0019244329969514
215 => 0.0019535510711069
216 => 0.0021008202980692
217 => 0.0021088358371615
218 => 0.0020693643911252
219 => 0.0020851324552769
220 => 0.0020548612202023
221 => 0.0020751825031075
222 => 0.0020890858087666
223 => 0.0020262594439449
224 => 0.0020225392743599
225 => 0.0019921430991301
226 => 0.0020084762819712
227 => 0.0019824890136736
228 => 0.0019888653803177
301 => 0.0019710365032989
302 => 0.0020031249322388
303 => 0.0020390047818313
304 => 0.0020480694487766
305 => 0.0020242242126281
306 => 0.0020069586901789
307 => 0.0019766461203749
308 => 0.0020270565995187
309 => 0.0020417981598519
310 => 0.0020269791683779
311 => 0.0020235452842521
312 => 0.0020170380800384
313 => 0.0020249258183875
314 => 0.0020417178741484
315 => 0.0020337990507521
316 => 0.0020390295731171
317 => 0.0020190962155532
318 => 0.0020614926587887
319 => 0.0021288284139064
320 => 0.0021290449093696
321 => 0.0021211260432879
322 => 0.0021178858139017
323 => 0.0021260110510584
324 => 0.0021304186589013
325 => 0.0021566941859525
326 => 0.0021848888733417
327 => 0.002316461177081
328 => 0.002279516200686
329 => 0.0023962549758349
330 => 0.0024885801903449
331 => 0.0025162644852842
401 => 0.0024907962365868
402 => 0.002403670733561
403 => 0.0023993959407283
404 => 0.0025295982256876
405 => 0.0024928101165441
406 => 0.0024884342880203
407 => 0.0024418828656059
408 => 0.0024694005217586
409 => 0.0024633820066984
410 => 0.0024538814862399
411 => 0.0025063832572828
412 => 0.0026046618858098
413 => 0.0025893442399027
414 => 0.0025779103277982
415 => 0.0025278102533182
416 => 0.0025579816884119
417 => 0.0025472382182708
418 => 0.0025933989839716
419 => 0.0025660543689566
420 => 0.0024925314104353
421 => 0.0025042401839146
422 => 0.002502470426358
423 => 0.0025388919114669
424 => 0.0025279590856741
425 => 0.0025003356166564
426 => 0.0026043259801417
427 => 0.0025975734243618
428 => 0.0026071470046086
429 => 0.002611361590706
430 => 0.0026746586924438
501 => 0.0027005894897444
502 => 0.0027064762347142
503 => 0.00273110848659
504 => 0.0027058633618481
505 => 0.0028068618602845
506 => 0.002874019968319
507 => 0.0029520275667257
508 => 0.0030660176344637
509 => 0.0031088789544003
510 => 0.0031011364405905
511 => 0.0031875624089988
512 => 0.0033428679530872
513 => 0.0031325281314062
514 => 0.0033540164743812
515 => 0.0032838958222012
516 => 0.0031176410172991
517 => 0.0031069361678788
518 => 0.0032195258520165
519 => 0.0034692389350784
520 => 0.0034066886399937
521 => 0.0034693412449531
522 => 0.0033962536532789
523 => 0.0033926242383217
524 => 0.0034657915437601
525 => 0.0036367509410589
526 => 0.0035555345397194
527 => 0.0034390909133206
528 => 0.00352507107499
529 => 0.0034505871018636
530 => 0.0032827538636586
531 => 0.0034066408089619
601 => 0.0033238011367347
602 => 0.0033479781570898
603 => 0.0035220948266402
604 => 0.0035011446483043
605 => 0.0035282561190052
606 => 0.0034804050828488
607 => 0.003435704669663
608 => 0.0033522680289553
609 => 0.0033275665530185
610 => 0.0033343931523014
611 => 0.0033275631700949
612 => 0.0032808811364413
613 => 0.0032708001557184
614 => 0.0032539980795224
615 => 0.0032592057455089
616 => 0.0032276129266397
617 => 0.0032872351032554
618 => 0.0032983015046241
619 => 0.0033416895526881
620 => 0.0033461942437725
621 => 0.0034670293400406
622 => 0.0034004753995674
623 => 0.0034451255288276
624 => 0.0034411316010032
625 => 0.00312124426305
626 => 0.0031653219158301
627 => 0.0032338929112265
628 => 0.0032030017707462
629 => 0.0031593289255207
630 => 0.0031240607614113
701 => 0.0030706258864307
702 => 0.0031458344468401
703 => 0.0032447257062397
704 => 0.0033487022893063
705 => 0.0034736233410452
706 => 0.0034457424165384
707 => 0.0033463669771373
708 => 0.003350824886755
709 => 0.003378381929889
710 => 0.0033426930552091
711 => 0.0033321677093364
712 => 0.0033769359089938
713 => 0.0033772442029807
714 => 0.0033361798395168
715 => 0.0032905443142259
716 => 0.0032903530997086
717 => 0.00328223269877
718 => 0.0033976982545663
719 => 0.0034611926353699
720 => 0.0034684721638027
721 => 0.0034607026651061
722 => 0.0034636928367941
723 => 0.0034267468556077
724 => 0.0035111944126094
725 => 0.0035886918419119
726 => 0.0035679208753678
727 => 0.0035367822437512
728 => 0.0035119788238288
729 => 0.0035620779778981
730 => 0.0035598471414308
731 => 0.0035880149694743
801 => 0.0035867371140889
802 => 0.0035772653329635
803 => 0.0035679212136349
804 => 0.0036049695905615
805 => 0.0035943002529854
806 => 0.003583614342981
807 => 0.0035621821145363
808 => 0.0035650951103336
809 => 0.0035339618552408
810 => 0.003519558186874
811 => 0.0033029615738707
812 => 0.0032450798813777
813 => 0.0032632906401264
814 => 0.0032692860947487
815 => 0.0032440959079983
816 => 0.0032802121649703
817 => 0.0032745834845778
818 => 0.0032964813873171
819 => 0.003282800528382
820 => 0.0032833619956048
821 => 0.0033235944846663
822 => 0.0033352741474021
823 => 0.0033293337766682
824 => 0.0033334942087062
825 => 0.0034293696090135
826 => 0.0034157391930125
827 => 0.0034084983061763
828 => 0.003410504081315
829 => 0.0034350023016853
830 => 0.0034418604658357
831 => 0.0034128019424157
901 => 0.0034265061100459
902 => 0.0034848567164975
903 => 0.0035052761263972
904 => 0.0035704450809245
905 => 0.0035427601507555
906 => 0.0035935770382564
907 => 0.0037497708256804
908 => 0.0038745492308627
909 => 0.0037597978527714
910 => 0.0039889375034547
911 => 0.0041673555896422
912 => 0.0041605076063235
913 => 0.004129396286112
914 => 0.0039262720384777
915 => 0.0037393540773926
916 => 0.0038957188887961
917 => 0.0038961174948571
918 => 0.0038826856188845
919 => 0.0037992613908047
920 => 0.0038797826365798
921 => 0.0038861741206592
922 => 0.0038825965892075
923 => 0.0038186354291372
924 => 0.0037209785597082
925 => 0.0037400604782371
926 => 0.0037713170500481
927 => 0.003712141838806
928 => 0.0036932317732616
929 => 0.0037283891828957
930 => 0.003841673682074
1001 => 0.0038202579037168
1002 => 0.0038196986511959
1003 => 0.0039113244327115
1004 => 0.0038457401472276
1005 => 0.0037403011623385
1006 => 0.0037136764280847
1007 => 0.0036191765580537
1008 => 0.0036844479548811
1009 => 0.0036867969562525
1010 => 0.0036510484792676
1011 => 0.0037432019542247
1012 => 0.0037423527437297
1013 => 0.0038298387529669
1014 => 0.0039970791443839
1015 => 0.003947617931242
1016 => 0.0038900999217227
1017 => 0.0038963537241589
1018 => 0.0039649425011839
1019 => 0.0039234721608651
1020 => 0.0039383851843852
1021 => 0.0039649199285367
1022 => 0.0039809289985039
1023 => 0.0038940502653562
1024 => 0.0038737946767693
1025 => 0.003832358851266
1026 => 0.0038215490178285
1027 => 0.0038552976331141
1028 => 0.0038464060653425
1029 => 0.003686599531783
1030 => 0.0036698988598709
1031 => 0.0036704110456353
1101 => 0.0036284164120386
1102 => 0.0035643645159368
1103 => 0.0037326890745525
1104 => 0.003719170256795
1105 => 0.0037042465282641
1106 => 0.0037060745998555
1107 => 0.003779138585702
1108 => 0.0037367577840913
1109 => 0.0038494340912501
1110 => 0.0038262712298581
1111 => 0.0038025143284728
1112 => 0.0037992304010485
1113 => 0.0037900860208587
1114 => 0.0037587265387141
1115 => 0.0037208580796117
1116 => 0.0036958540428026
1117 => 0.0034092299923799
1118 => 0.0034624257489229
1119 => 0.0035236226178799
1120 => 0.0035447475318128
1121 => 0.0035086119047311
1122 => 0.0037601533935205
1123 => 0.0038061124474364
1124 => 0.0036668994752902
1125 => 0.0036408584122298
1126 => 0.0037618606412794
1127 => 0.0036888815052416
1128 => 0.0037217440057308
1129 => 0.0036507132544998
1130 => 0.0037950422571863
1201 => 0.003793942712003
1202 => 0.0037377954701396
1203 => 0.0037852507344829
1204 => 0.0037770042144865
1205 => 0.0037136141167073
1206 => 0.0037970518363528
1207 => 0.0037970932204207
1208 => 0.0037430527208735
1209 => 0.0036799452483889
1210 => 0.0036686631228406
1211 => 0.0036601635567802
1212 => 0.0037196536335129
1213 => 0.0037729922502907
1214 => 0.0038722421923498
1215 => 0.0038971959859039
1216 => 0.0039945923034137
1217 => 0.0039365975384772
1218 => 0.0039623058666156
1219 => 0.0039902158934749
1220 => 0.0040035969867085
1221 => 0.0039817932133534
1222 => 0.0041330897843697
1223 => 0.0041458638505707
1224 => 0.0041501468844726
1225 => 0.0040991305319864
1226 => 0.0041444449935201
1227 => 0.0041232438576257
1228 => 0.0041784033233777
1229 => 0.004187053031919
1230 => 0.0041797270365069
1231 => 0.0041824725905242
]
'min_raw' => 0.0018755588604343
'max_raw' => 0.004187053031919
'avg_raw' => 0.0030313059461767
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001875'
'max' => '$0.004187'
'avg' => '$0.003031'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0002892073707975
'max_diff' => -0.00039955564730524
'year' => 2031
]
6 => [
'items' => [
101 => 0.0040533676577058
102 => 0.0040466728858564
103 => 0.0039553891966504
104 => 0.0039925879747368
105 => 0.0039230466420881
106 => 0.0039450989150261
107 => 0.0039548193468154
108 => 0.0039497419448783
109 => 0.0039946911378372
110 => 0.0039564751413087
111 => 0.0038556168431784
112 => 0.0037547310662723
113 => 0.003753464527523
114 => 0.0037269030832455
115 => 0.003707704024004
116 => 0.0037114024439371
117 => 0.0037244361581739
118 => 0.0037069464808385
119 => 0.0037106787902472
120 => 0.0037726599946784
121 => 0.0037850898831973
122 => 0.003742848265339
123 => 0.0035732420742014
124 => 0.0035316202894713
125 => 0.0035615372029394
126 => 0.0035472388451977
127 => 0.0028628985987152
128 => 0.0030236741886639
129 => 0.0029281467925396
130 => 0.0029721702116778
131 => 0.0028746614769342
201 => 0.0029211977560245
202 => 0.0029126042045093
203 => 0.0031711265954512
204 => 0.0031670901239026
205 => 0.0031690221692276
206 => 0.0030768006119475
207 => 0.0032237120567829
208 => 0.0032960859172734
209 => 0.0032826914418646
210 => 0.0032860625427523
211 => 0.0032281358605088
212 => 0.0031695830261332
213 => 0.003104638921594
214 => 0.0032252970404939
215 => 0.003211881917375
216 => 0.0032426513832008
217 => 0.0033209067981279
218 => 0.0033324302052393
219 => 0.0033479177812559
220 => 0.0033423665877347
221 => 0.0034746185387606
222 => 0.0034586019548649
223 => 0.0034971973137679
224 => 0.0034178037322675
225 => 0.0033279623586919
226 => 0.0033450382666728
227 => 0.0033433937194185
228 => 0.0033224567453472
229 => 0.003303555781311
301 => 0.0032720910015044
302 => 0.0033716502207239
303 => 0.00336760829824
304 => 0.0034330423250323
305 => 0.0034214762252045
306 => 0.00334423497985
307 => 0.0033469936660388
308 => 0.0033655471564376
309 => 0.0034297609985477
310 => 0.0034488240388978
311 => 0.0034399932790768
312 => 0.0034608950325598
313 => 0.0034774149262796
314 => 0.0034629696768662
315 => 0.0036674839462243
316 => 0.0035825553629017
317 => 0.0036239489634839
318 => 0.0036338210933175
319 => 0.0036085338403373
320 => 0.00361401774004
321 => 0.0036223243538165
322 => 0.0036727604860655
323 => 0.0038051194908992
324 => 0.0038637403931419
325 => 0.0040401042698433
326 => 0.003858872743253
327 => 0.0038481192144757
328 => 0.0038798876743485
329 => 0.0039834319399845
330 => 0.0040673448418642
331 => 0.0040951835924691
401 => 0.0040988629429292
402 => 0.0041510902897492
403 => 0.0041810260309641
404 => 0.0041447485161297
405 => 0.0041140071207217
406 => 0.0040038952581325
407 => 0.0040166410060519
408 => 0.0041044465698661
409 => 0.0042284771004755
410 => 0.0043349081989157
411 => 0.0042976397377402
412 => 0.0045819717890758
413 => 0.0046101621505734
414 => 0.004606267154118
415 => 0.0046704889928979
416 => 0.0045430217214698
417 => 0.0044885269933722
418 => 0.0041206537593385
419 => 0.0042240111327478
420 => 0.0043742471449638
421 => 0.0043543628453909
422 => 0.0042452574374995
423 => 0.0043348254326801
424 => 0.0043052114524232
425 => 0.0042818536775094
426 => 0.0043888601725169
427 => 0.0042712021356717
428 => 0.0043730734160426
429 => 0.0042424224452434
430 => 0.0042978099769316
501 => 0.0042663693351519
502 => 0.0042867152836035
503 => 0.0041677732846916
504 => 0.0042319515001506
505 => 0.0041651032599301
506 => 0.0041650715651603
507 => 0.0041635958865524
508 => 0.0042422425447214
509 => 0.0042448072094208
510 => 0.0041866872102054
511 => 0.0041783112103134
512 => 0.0042092816719533
513 => 0.0041730233725498
514 => 0.0041899884026336
515 => 0.0041735372260284
516 => 0.0041698337196598
517 => 0.004140323550815
518 => 0.0041276097586776
519 => 0.0041325951641688
520 => 0.0041155774050749
521 => 0.0041053235896616
522 => 0.0041615561445819
523 => 0.0041315133589028
524 => 0.0041569516568024
525 => 0.0041279615057766
526 => 0.0040274690119138
527 => 0.0039696747160045
528 => 0.0037798537107568
529 => 0.0038336867123729
530 => 0.0038693780481386
531 => 0.0038575820618809
601 => 0.003882924404803
602 => 0.0038844802188365
603 => 0.0038762411648179
604 => 0.0038667013957525
605 => 0.0038620579637539
606 => 0.0038966663015796
607 => 0.0039167576065505
608 => 0.0038729601511711
609 => 0.0038626990201672
610 => 0.0039069806656796
611 => 0.0039339924438615
612 => 0.0041334322373494
613 => 0.0041186570932658
614 => 0.0041557398054401
615 => 0.0041515648611299
616 => 0.0041904334512279
617 => 0.0042539671689464
618 => 0.0041247853565179
619 => 0.0041472068523845
620 => 0.004141709619386
621 => 0.0042017269678121
622 => 0.0042019143354228
623 => 0.0041659309369524
624 => 0.0041854381210272
625 => 0.0041745497460282
626 => 0.0041942265113034
627 => 0.0041184597622086
628 => 0.0042107354840909
629 => 0.0042630498722821
630 => 0.0042637762576128
701 => 0.0042885728624228
702 => 0.0043137676490322
703 => 0.0043621268479255
704 => 0.004312418937222
705 => 0.0042229992448342
706 => 0.0042294550578007
707 => 0.0041770283248711
708 => 0.0041779096277233
709 => 0.0041732051640293
710 => 0.0041873236137106
711 => 0.0041215579679643
712 => 0.0041369930335705
713 => 0.0041153838513343
714 => 0.0041471598782425
715 => 0.0041129741260547
716 => 0.0041417069684538
717 => 0.0041541071107244
718 => 0.004199863902659
719 => 0.0041062158106822
720 => 0.003915261011723
721 => 0.0039554020255674
722 => 0.0038960303130829
723 => 0.0039015253911174
724 => 0.0039126263232823
725 => 0.003876644570137
726 => 0.0038835087547218
727 => 0.0038832635177459
728 => 0.0038811501979754
729 => 0.0038717899543011
730 => 0.0038582157491055
731 => 0.0039122912046845
801 => 0.0039214796783168
802 => 0.0039419045169903
803 => 0.0040026749825822
804 => 0.0039966025800033
805 => 0.004006506920551
806 => 0.0039848858007458
807 => 0.0039025283328543
808 => 0.0039070007395946
809 => 0.0038512297558783
810 => 0.0039404783275464
811 => 0.0039193430877518
812 => 0.0039057170611634
813 => 0.0039019990735645
814 => 0.0039629201773862
815 => 0.003981148726471
816 => 0.0039697899179538
817 => 0.0039464926702956
818 => 0.0039912302730123
819 => 0.0040032001681713
820 => 0.0040058797862647
821 => 0.0040851462406942
822 => 0.0040103099005268
823 => 0.0040283237514144
824 => 0.0041688626737583
825 => 0.0040414132642379
826 => 0.0041089260589219
827 => 0.0041056216589417
828 => 0.0041401589201936
829 => 0.0041027885954519
830 => 0.0041032518454151
831 => 0.00413391859365
901 => 0.0040908526765312
902 => 0.0040801889498152
903 => 0.0040654570877322
904 => 0.0040976235696361
905 => 0.0041169059207727
906 => 0.0042723075096072
907 => 0.0043727040231677
908 => 0.0043683455457371
909 => 0.0044081738707251
910 => 0.0043902308455324
911 => 0.004332288084054
912 => 0.0044311893125306
913 => 0.0043998928256374
914 => 0.0044024728699917
915 => 0.0044023768406119
916 => 0.0044231862684095
917 => 0.0044084408816589
918 => 0.0043793762107905
919 => 0.0043986706957043
920 => 0.0044559684179938
921 => 0.0046338223060892
922 => 0.004733351698118
923 => 0.0046278305117163
924 => 0.0047006176131112
925 => 0.0046569712889703
926 => 0.0046490394535082
927 => 0.0046947551321088
928 => 0.004740550829953
929 => 0.0047376338419805
930 => 0.0047043885169808
1001 => 0.0046856090764573
1002 => 0.0048278132916752
1003 => 0.0049325869350621
1004 => 0.0049254420749946
1005 => 0.0049569771636998
1006 => 0.0050495651594822
1007 => 0.005058030245466
1008 => 0.0050569638391998
1009 => 0.0050359822403486
1010 => 0.0051271471462668
1011 => 0.0052031985146777
1012 => 0.0050311256064312
1013 => 0.0050966487172917
1014 => 0.0051260641527798
1015 => 0.0051692547392427
1016 => 0.0052421244981884
1017 => 0.0053212803841525
1018 => 0.0053324738943279
1019 => 0.0053245315631996
1020 => 0.0052723261285819
1021 => 0.0053589394435299
1022 => 0.0054096754920943
1023 => 0.0054398876479405
1024 => 0.0055165006483432
1025 => 0.0051262458124951
1026 => 0.004850004042758
1027 => 0.0048068649014341
1028 => 0.0048945900416793
1029 => 0.0049177224615671
1030 => 0.0049083978121159
1031 => 0.0045974625854739
1101 => 0.0048052278918153
1102 => 0.0050287658920356
1103 => 0.0050373528970112
1104 => 0.0051492606938806
1105 => 0.0051857024597969
1106 => 0.0052758029043671
1107 => 0.0052701670970275
1108 => 0.0052921051214691
1109 => 0.0052870619495636
1110 => 0.0054539540502428
1111 => 0.0056380608210087
1112 => 0.0056316857889607
1113 => 0.0056052182624107
1114 => 0.0056445270527214
1115 => 0.0058345449702324
1116 => 0.0058170511653631
1117 => 0.0058340449066749
1118 => 0.0060580867403609
1119 => 0.0063493729937319
1120 => 0.0062140412843794
1121 => 0.006507672153024
1122 => 0.0066924972201323
1123 => 0.0070121330624274
1124 => 0.0069721130807323
1125 => 0.0070965449685416
1126 => 0.0069004689610759
1127 => 0.0064502388144355
1128 => 0.0063789881703179
1129 => 0.0065216337641951
1130 => 0.0068723140375885
1201 => 0.0065105895944208
1202 => 0.0065837659781627
1203 => 0.0065626911747222
1204 => 0.006561568188009
1205 => 0.0066044280233346
1206 => 0.0065422575967761
1207 => 0.0062889640947304
1208 => 0.0064050470140499
1209 => 0.006360221824141
1210 => 0.0064099587142843
1211 => 0.0066783681973335
1212 => 0.0065596979667945
1213 => 0.0064346885189084
1214 => 0.0065914781083748
1215 => 0.0067911251345139
1216 => 0.0067786315824183
1217 => 0.0067543888694532
1218 => 0.0068910437731302
1219 => 0.0071167576378746
1220 => 0.0071777671885233
1221 => 0.0072228031915268
1222 => 0.0072290128954515
1223 => 0.0072929767051851
1224 => 0.0069490271792918
1225 => 0.0074948839101348
1226 => 0.0075891382885635
1227 => 0.0075714223718626
1228 => 0.0076761821466556
1229 => 0.0076453591634125
1230 => 0.0076007014966712
1231 => 0.0077667680227611
]
'min_raw' => 0.0028628985987152
'max_raw' => 0.0077667680227611
'avg_raw' => 0.0053148333107382
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002862'
'max' => '$0.007766'
'avg' => '$0.005314'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00098733973828092
'max_diff' => 0.0035797149908421
'year' => 2032
]
7 => [
'items' => [
101 => 0.0075763861514767
102 => 0.0073061630535994
103 => 0.0071579133176971
104 => 0.0073531405288984
105 => 0.0074723589742882
106 => 0.0075511547829736
107 => 0.0075749983470721
108 => 0.0069757270018881
109 => 0.0066527529839465
110 => 0.0068597756265425
111 => 0.0071123575384491
112 => 0.006947624074018
113 => 0.006954081313942
114 => 0.0067192146848561
115 => 0.0071331380236191
116 => 0.0070728328748046
117 => 0.0073856960935323
118 => 0.0073110287754987
119 => 0.007566156585091
120 => 0.0074989728825614
121 => 0.0077778486755716
122 => 0.0078890997796641
123 => 0.0080759076982871
124 => 0.0082133243636712
125 => 0.0082940180579467
126 => 0.0082891735112168
127 => 0.0086089221293752
128 => 0.0084203775404131
129 => 0.0081835211001289
130 => 0.0081792371143967
131 => 0.0083019084211015
201 => 0.0085589938267255
202 => 0.0086256523319633
203 => 0.0086629053426706
204 => 0.0086058510599857
205 => 0.0084011994217797
206 => 0.0083128318820097
207 => 0.0083881235861478
208 => 0.0082960483018768
209 => 0.0084549960742905
210 => 0.0086732653152266
211 => 0.0086281935801035
212 => 0.0087788616330881
213 => 0.0089347872171859
214 => 0.0091577678055018
215 => 0.0092160631882348
216 => 0.0093124232391177
217 => 0.009411609384104
218 => 0.009443465300732
219 => 0.0095042881298853
220 => 0.0095039675635527
221 => 0.0096872612530548
222 => 0.0098894398687086
223 => 0.0099657576156722
224 => 0.01014124606663
225 => 0.0098407282442136
226 => 0.010068674464616
227 => 0.010274287661284
228 => 0.01002914713178
301 => 0.010367016241283
302 => 0.010380134933177
303 => 0.01057821160555
304 => 0.010377422951201
305 => 0.010258195289189
306 => 0.010602401082016
307 => 0.010768951422784
308 => 0.010718785104713
309 => 0.010337016947176
310 => 0.010114811504683
311 => 0.0095332570014494
312 => 0.010222133431815
313 => 0.010557665046244
314 => 0.010336148001353
315 => 0.010447868313919
316 => 0.011057378113847
317 => 0.011289439982822
318 => 0.01124117273631
319 => 0.011249329106424
320 => 0.011374545478703
321 => 0.0119298238313
322 => 0.011597088171172
323 => 0.011851452115973
324 => 0.011986365835117
325 => 0.012111681216282
326 => 0.011803946246474
327 => 0.011403587572279
328 => 0.011276777174247
329 => 0.010314122496863
330 => 0.010264012140307
331 => 0.010235883678674
401 => 0.010058537706924
402 => 0.0099191923522778
403 => 0.0098083797527022
404 => 0.0095175743999724
405 => 0.0096157126698381
406 => 0.009152229633381
407 => 0.0094487496552759
408 => 0.0087090195379012
409 => 0.00932508876085
410 => 0.0089897902920293
411 => 0.009214934196019
412 => 0.0092141486901478
413 => 0.008799587380963
414 => 0.008560477069499
415 => 0.0087128474662764
416 => 0.0088762006267989
417 => 0.0089027041275077
418 => 0.0091144957640789
419 => 0.0091736022573999
420 => 0.0089945068232189
421 => 0.0086936902754258
422 => 0.0087635630985832
423 => 0.0085590610989679
424 => 0.0082006792106979
425 => 0.0084580753396009
426 => 0.0085459616949172
427 => 0.0085847773162002
428 => 0.0082323498895246
429 => 0.0081216095404914
430 => 0.0080626523078677
501 => 0.0086481963202361
502 => 0.0086802737430245
503 => 0.0085161611127485
504 => 0.0092579657633944
505 => 0.0090900725246497
506 => 0.0092776504071697
507 => 0.008757222872254
508 => 0.0087771039049364
509 => 0.008530725169686
510 => 0.0086686807983932
511 => 0.0085711782065404
512 => 0.0086575353468977
513 => 0.0087092974607641
514 => 0.0089556357676883
515 => 0.0093279015486164
516 => 0.0089188410392924
517 => 0.0087406075175255
518 => 0.0088511825920063
519 => 0.0091456585867616
520 => 0.0095918047927646
521 => 0.0093276772592817
522 => 0.009444892573465
523 => 0.0094704989050677
524 => 0.0092757410404102
525 => 0.0095989857930343
526 => 0.0097722152820012
527 => 0.0099499128928894
528 => 0.01010420274945
529 => 0.0098789365594464
530 => 0.01012000367339
531 => 0.0099257461336255
601 => 0.0097514770384817
602 => 0.0097517413327638
603 => 0.0096424197837149
604 => 0.0094305955070309
605 => 0.0093915318604429
606 => 0.0095947458831884
607 => 0.0097577042849906
608 => 0.0097711263194812
609 => 0.0098613484638239
610 => 0.009914740999484
611 => 0.010438060432585
612 => 0.010648543837703
613 => 0.010905918961236
614 => 0.011006181076718
615 => 0.011307934098364
616 => 0.011064244026203
617 => 0.011011520146209
618 => 0.010279566018357
619 => 0.010399423465788
620 => 0.010591326803648
621 => 0.010282730433716
622 => 0.010478463801345
623 => 0.010517105714315
624 => 0.010272244447152
625 => 0.010403035429774
626 => 0.010055693356753
627 => 0.0093354726566319
628 => 0.0095997876045595
629 => 0.0097944123736837
630 => 0.0095166588310825
701 => 0.010014521305649
702 => 0.0097236803259746
703 => 0.0096314976982471
704 => 0.0092718604020022
705 => 0.0094415953621208
706 => 0.0096711643260517
707 => 0.009529317396599
708 => 0.0098236710736369
709 => 0.010240554381581
710 => 0.010537650252652
711 => 0.010560457584578
712 => 0.010369444843357
713 => 0.010675543980191
714 => 0.010677773578227
715 => 0.010332492501427
716 => 0.010121009764419
717 => 0.010072960441608
718 => 0.010192997070616
719 => 0.010338743698215
720 => 0.010568545508065
721 => 0.010707409928894
722 => 0.011069494690417
723 => 0.011167464445101
724 => 0.011275103502926
725 => 0.011418942478835
726 => 0.011591658048971
727 => 0.011213766214217
728 => 0.01122878056129
729 => 0.010876892917035
730 => 0.010500850503356
731 => 0.01078621982099
801 => 0.011159302242707
802 => 0.011073716722945
803 => 0.011064086603619
804 => 0.011080281793154
805 => 0.011015753106215
806 => 0.010723892246739
807 => 0.010577321550255
808 => 0.010766435142892
809 => 0.0108669406009
810 => 0.011022815801275
811 => 0.011003600892702
812 => 0.011405118669092
813 => 0.01156113633573
814 => 0.011521220340232
815 => 0.011528565844035
816 => 0.011811028377108
817 => 0.012125184806736
818 => 0.012419433759674
819 => 0.012718756432889
820 => 0.012357911267565
821 => 0.01217469634645
822 => 0.012363727378008
823 => 0.012263424851858
824 => 0.012839792918773
825 => 0.012879699393198
826 => 0.013456025782141
827 => 0.014003028152918
828 => 0.013659465764398
829 => 0.013983429622382
830 => 0.014333822947953
831 => 0.015009788522246
901 => 0.01478214709758
902 => 0.014607777333881
903 => 0.014442998749735
904 => 0.01478587682548
905 => 0.015226983992316
906 => 0.01532199425118
907 => 0.015475947167253
908 => 0.01531408450047
909 => 0.015509030254022
910 => 0.016197274427569
911 => 0.016011304776577
912 => 0.015747197976056
913 => 0.016290500651398
914 => 0.016487119777569
915 => 0.01786709577527
916 => 0.019609372476332
917 => 0.018888058481687
918 => 0.018440315608553
919 => 0.018545545804343
920 => 0.019181766275782
921 => 0.01938610009858
922 => 0.018830650330123
923 => 0.019026844578573
924 => 0.020107894176927
925 => 0.02068784260222
926 => 0.019900194743206
927 => 0.017727105538756
928 => 0.015723418048324
929 => 0.01625488619801
930 => 0.016194634203213
1001 => 0.01735608713296
1002 => 0.016006869461906
1003 => 0.016029586827224
1004 => 0.017215057373559
1005 => 0.016898794155907
1006 => 0.016386488247244
1007 => 0.015727158448409
1008 => 0.014508326334638
1009 => 0.013428772741823
1010 => 0.015546025943678
1011 => 0.015454726135638
1012 => 0.015322510483724
1013 => 0.015616742109831
1014 => 0.017045447367103
1015 => 0.017012511086655
1016 => 0.016802987274685
1017 => 0.016961909239406
1018 => 0.016358628458452
1019 => 0.016514107652152
1020 => 0.015723100653989
1021 => 0.016080668852529
1022 => 0.016385389068852
1023 => 0.016446566163739
1024 => 0.016584401282299
1025 => 0.015406615285497
1026 => 0.015935406620081
1027 => 0.016246021988102
1028 => 0.014842650455101
1029 => 0.016218281845078
1030 => 0.01538611265163
1031 => 0.015103661928612
1101 => 0.015483944617103
1102 => 0.015335748083561
1103 => 0.015208337406414
1104 => 0.015137240059373
1105 => 0.015416477695532
1106 => 0.015403450926044
1107 => 0.014946563955599
1108 => 0.014350573527748
1109 => 0.014550607478054
1110 => 0.014477933268579
1111 => 0.014214552558285
1112 => 0.014392039356315
1113 => 0.013610477321803
1114 => 0.012265840463485
1115 => 0.013154148759431
1116 => 0.013119949856331
1117 => 0.013102705218591
1118 => 0.013770244351956
1119 => 0.013706075867031
1120 => 0.013589609438552
1121 => 0.014212413560992
1122 => 0.013985081678404
1123 => 0.014685664974412
1124 => 0.01514711444405
1125 => 0.015030075932223
1126 => 0.015464071388797
1127 => 0.014555215856257
1128 => 0.014857101207212
1129 => 0.014919319359648
1130 => 0.014204728254796
1201 => 0.01371657462475
1202 => 0.013684020342984
1203 => 0.012837629220197
1204 => 0.01328976452616
1205 => 0.013687624884776
1206 => 0.01349708064821
1207 => 0.01343676003526
1208 => 0.013744924964876
1209 => 0.013768872019161
1210 => 0.013222876643662
1211 => 0.013336406371653
1212 => 0.013809844210123
1213 => 0.01332447695284
1214 => 0.012381487656231
1215 => 0.012147613272824
1216 => 0.012116410118918
1217 => 0.011482124242309
1218 => 0.012163241877438
1219 => 0.011865915776886
1220 => 0.012805165366014
1221 => 0.012268671038001
1222 => 0.012245543839798
1223 => 0.012210583687692
1224 => 0.011664627631675
1225 => 0.011784157310625
1226 => 0.01218149216834
1227 => 0.01232326572187
1228 => 0.01230847757872
1229 => 0.012179545010772
1230 => 0.012238569680137
1231 => 0.012048430654553
]
'min_raw' => 0.0066527529839465
'max_raw' => 0.02068784260222
'avg_raw' => 0.013670297793083
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006652'
'max' => '$0.020687'
'avg' => '$0.01367'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0037898543852313
'max_diff' => 0.012921074579458
'year' => 2033
]
8 => [
'items' => [
101 => 0.011981288607218
102 => 0.011769369836953
103 => 0.011457907788718
104 => 0.011501218496833
105 => 0.010884130680802
106 => 0.010547908487298
107 => 0.010454846615474
108 => 0.010330400391147
109 => 0.010468903147651
110 => 0.010882382548552
111 => 0.010383638666517
112 => 0.0095285772635826
113 => 0.0095799679108526
114 => 0.0096954274372484
115 => 0.0094802693736511
116 => 0.0092766403233038
117 => 0.0094536792616337
118 => 0.0090913784731353
119 => 0.0097392097566259
120 => 0.0097216877359337
121 => 0.0099631591768011
122 => 0.010114156224268
123 => 0.009766156915731
124 => 0.0096786360307241
125 => 0.0097284919044265
126 => 0.0089044853674569
127 => 0.0098958202630803
128 => 0.0099043933684237
129 => 0.0098309852355901
130 => 0.010358840463478
131 => 0.011472779636497
201 => 0.011053670911508
202 => 0.010891379345564
203 => 0.01058286296007
204 => 0.01099394272585
205 => 0.010962378213682
206 => 0.01081963151917
207 => 0.010733297872932
208 => 0.010892370263259
209 => 0.010713587043394
210 => 0.010681472664472
211 => 0.010486894468993
212 => 0.010417438905951
213 => 0.01036601677218
214 => 0.010309406055533
215 => 0.010434275189945
216 => 0.010151305303465
217 => 0.0098100713602495
218 => 0.0097817014500736
219 => 0.0098600332663773
220 => 0.0098253772687808
221 => 0.0097815355304903
222 => 0.0096978297125066
223 => 0.0096729959844027
224 => 0.0097536935531284
225 => 0.0096625907029977
226 => 0.0097970179209946
227 => 0.0097604611558967
228 => 0.009556258037745
301 => 0.0093017453468507
302 => 0.0092994796500433
303 => 0.0092446453082746
304 => 0.0091748055296336
305 => 0.0091553777009334
306 => 0.0094387695360494
307 => 0.010025382153536
308 => 0.0099102160602727
309 => 0.0099934353653511
310 => 0.010402791981163
311 => 0.010532914139547
312 => 0.010440556513638
313 => 0.010314131698924
314 => 0.010319693749155
315 => 0.010751725612426
316 => 0.010778670909797
317 => 0.010846752983372
318 => 0.010934257687907
319 => 0.010455458943201
320 => 0.010297142371337
321 => 0.010222123196519
322 => 0.0099910931741522
323 => 0.010240239246257
324 => 0.01009507249954
325 => 0.010114660453274
326 => 0.010101903772708
327 => 0.0101088697829
328 => 0.0097390286745793
329 => 0.0098737793361751
330 => 0.0096497302259515
331 => 0.009349753618055
401 => 0.00934874799128
402 => 0.0094221668410861
403 => 0.0093784944363415
404 => 0.0092609731180941
405 => 0.0092776664666662
406 => 0.0091314151676081
407 => 0.0092954240223371
408 => 0.0093001272094388
409 => 0.0092369748667455
410 => 0.009489653136316
411 => 0.009593175629525
412 => 0.0095516074047099
413 => 0.0095902590920595
414 => 0.0099150017313915
415 => 0.0099679489511174
416 => 0.0099914646086226
417 => 0.0099599567427932
418 => 0.0095961947913681
419 => 0.009612329180749
420 => 0.0094939457368071
421 => 0.0093939242016161
422 => 0.0093979245384799
423 => 0.0094493486094575
424 => 0.0096739205433985
425 => 0.010146518939139
426 => 0.010164453702792
427 => 0.010186191159534
428 => 0.010097773998594
429 => 0.010071106536817
430 => 0.010106287802357
501 => 0.010283770911754
502 => 0.010740305655317
503 => 0.010578935786011
504 => 0.010447739570395
505 => 0.010562834021736
506 => 0.010545116133092
507 => 0.010395559322285
508 => 0.01039136176072
509 => 0.010104314424575
510 => 0.0099981995601535
511 => 0.0099095220368832
512 => 0.0098126884964574
513 => 0.0097552823278033
514 => 0.009843484293493
515 => 0.0098636571266213
516 => 0.0096708019871342
517 => 0.0096445165442463
518 => 0.0098020062142188
519 => 0.0097327008822706
520 => 0.0098039831348688
521 => 0.0098205212289195
522 => 0.0098178582148727
523 => 0.0097454954886521
524 => 0.0097916173324576
525 => 0.0096825254222743
526 => 0.0095639043550251
527 => 0.0094882315044737
528 => 0.0094221969058206
529 => 0.0094588367391068
530 => 0.0093282224236109
531 => 0.0092864362753369
601 => 0.0097759922895506
602 => 0.010137632580864
603 => 0.010132374187803
604 => 0.010100365072394
605 => 0.010052806019707
606 => 0.010280291670823
607 => 0.010201040218693
608 => 0.010258702271798
609 => 0.010273379684382
610 => 0.01031780379172
611 => 0.010333681591712
612 => 0.010285687852294
613 => 0.010124615000868
614 => 0.0097232367694594
615 => 0.0095363941192391
616 => 0.0094747329325559
617 => 0.0094769741995806
618 => 0.0094151500495836
619 => 0.0094333600325218
620 => 0.0094088173606621
621 => 0.0093623394776699
622 => 0.0094559668608032
623 => 0.0094667565445099
624 => 0.0094449027945227
625 => 0.009450050143762
626 => 0.0092691104277265
627 => 0.0092828668813562
628 => 0.00920626919946
629 => 0.0091919080575033
630 => 0.0089982757877929
701 => 0.0086552281545546
702 => 0.0088453098438081
703 => 0.00861571789272
704 => 0.0085287679419572
705 => 0.0089403754853767
706 => 0.0088990615042335
707 => 0.0088283499272723
708 => 0.0087237527673627
709 => 0.0086849566632965
710 => 0.0084492438163442
711 => 0.0084353166438672
712 => 0.008552142295599
713 => 0.00849823127705
714 => 0.0084225197893078
715 => 0.0081483004554563
716 => 0.0078399871333059
717 => 0.0078492931745132
718 => 0.0079473619059159
719 => 0.0082325099688397
720 => 0.0081210976875438
721 => 0.008040266799155
722 => 0.0080251296035274
723 => 0.0082146032986729
724 => 0.0084827482732701
725 => 0.0086085558959455
726 => 0.0084838843627085
727 => 0.0083406684181179
728 => 0.0083493853090664
729 => 0.0084073748793104
730 => 0.0084134687632147
731 => 0.0083202499061232
801 => 0.0083464904683619
802 => 0.008306628654834
803 => 0.0080619967787927
804 => 0.0080575721638912
805 => 0.0079975355562888
806 => 0.0079957176716707
807 => 0.0078935804253053
808 => 0.0078792907184974
809 => 0.0076764910165513
810 => 0.0078099743945063
811 => 0.007720440752766
812 => 0.0075854924358123
813 => 0.0075622272951044
814 => 0.0075615279168813
815 => 0.0077000896645011
816 => 0.0078083552198107
817 => 0.0077219982287967
818 => 0.0077023364159028
819 => 0.007912273138113
820 => 0.007885556776596
821 => 0.0078624205798244
822 => 0.0084587388318348
823 => 0.0079867064040751
824 => 0.0077808733229028
825 => 0.0075261157983102
826 => 0.0076090661329165
827 => 0.007626544987212
828 => 0.0070138990640621
829 => 0.0067653486893403
830 => 0.0066800555671591
831 => 0.006630968169476
901 => 0.0066533379130009
902 => 0.0064296134237002
903 => 0.0065799599805718
904 => 0.0063862334837976
905 => 0.0063537546061729
906 => 0.0067001615805129
907 => 0.0067483620873121
908 => 0.006542723750583
909 => 0.0066747768525857
910 => 0.0066268925621241
911 => 0.0063895543685561
912 => 0.0063804897953034
913 => 0.0062614018326118
914 => 0.0060750522309731
915 => 0.0059898854625968
916 => 0.0059455298701746
917 => 0.0059638318520813
918 => 0.0059545778099794
919 => 0.0058941889255893
920 => 0.0059580392301439
921 => 0.0057949280867743
922 => 0.0057299759152087
923 => 0.0057006385261915
924 => 0.0055558679981238
925 => 0.0057862622880255
926 => 0.0058316528655669
927 => 0.005877132876568
928 => 0.0062730053218098
929 => 0.0062532286531694
930 => 0.0064320001060501
1001 => 0.0064250533761307
1002 => 0.0063740648618637
1003 => 0.0061589527073743
1004 => 0.0062446925781483
1005 => 0.0059807985828403
1006 => 0.0061785259071725
1007 => 0.0060882914136377
1008 => 0.0061480175341406
1009 => 0.0060406245841892
1010 => 0.0061000602768386
1011 => 0.0058424166553814
1012 => 0.0056018326668083
1013 => 0.0056986506868946
1014 => 0.005803902947212
1015 => 0.0060321166653572
1016 => 0.0058961944575522
1017 => 0.0059450772232666
1018 => 0.0057813281409995
1019 => 0.0054434670116697
1020 => 0.0054453792689701
1021 => 0.0053934066949275
1022 => 0.0053484948028346
1023 => 0.0059118067581819
1024 => 0.0058417500118903
1025 => 0.0057301237554748
1026 => 0.005879539935538
1027 => 0.0059190479451004
1028 => 0.0059201726825909
1029 => 0.0060291828705752
1030 => 0.0060873616274435
1031 => 0.0060976158855028
1101 => 0.006269145771617
1102 => 0.0063266403269087
1103 => 0.0065634522632207
1104 => 0.0060824255663956
1105 => 0.0060725191381229
1106 => 0.0058816425276058
1107 => 0.0057605855635761
1108 => 0.0058899314015017
1109 => 0.0060045141564362
1110 => 0.0058852029331998
1111 => 0.0059007824601571
1112 => 0.0057406168910474
1113 => 0.0057978685455137
1114 => 0.0058471813829707
1115 => 0.0058199537326015
1116 => 0.0057791926221657
1117 => 0.0059951196772161
1118 => 0.0059829362265452
1119 => 0.0061840124643496
1120 => 0.0063407657708178
1121 => 0.0066216957190142
1122 => 0.0063285306728619
1123 => 0.0063178465733546
1124 => 0.006422285359822
1125 => 0.0063266243378746
1126 => 0.0063870788016391
1127 => 0.0066119555702794
1128 => 0.0066167068620446
1129 => 0.0065371166032838
1130 => 0.0065322735288051
1201 => 0.0065475597086221
1202 => 0.0066370913412656
1203 => 0.0066058062377907
1204 => 0.0066420101515737
1205 => 0.0066872837001333
1206 => 0.0068745542925626
1207 => 0.0069197045983957
1208 => 0.0068100127629708
1209 => 0.0068199167075423
1210 => 0.0067788889499852
1211 => 0.0067392566502613
1212 => 0.006828344272208
1213 => 0.0069911536523371
1214 => 0.0069901408236332
1215 => 0.007027909435261
1216 => 0.0070514389674131
1217 => 0.0069504329907462
1218 => 0.0068846818140287
1219 => 0.0069098949990382
1220 => 0.0069502114309403
1221 => 0.0068968209235437
1222 => 0.0065672699790033
1223 => 0.006667234683781
1224 => 0.0066505956688817
1225 => 0.0066268996882917
1226 => 0.0067274149719499
1227 => 0.0067177200276324
1228 => 0.0064273188056963
1229 => 0.0064459093497202
1230 => 0.0064284493582522
1231 => 0.0064848661626634
]
'min_raw' => 0.0053484948028346
'max_raw' => 0.011981288607218
'avg_raw' => 0.0086648917050264
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.005348'
'max' => '$0.011981'
'avg' => '$0.008664'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0013042581811119
'max_diff' => -0.0087065539950014
'year' => 2034
]
9 => [
'items' => [
101 => 0.0063235776452922
102 => 0.0063731889069409
103 => 0.0064043046251702
104 => 0.0064226320222495
105 => 0.0064888431477137
106 => 0.0064810740363464
107 => 0.0064883602088428
108 => 0.0065865338288172
109 => 0.0070830623095296
110 => 0.0071100872592064
111 => 0.0069770065230867
112 => 0.0070301696522651
113 => 0.0069281080697409
114 => 0.0069966226938425
115 => 0.0070434986595701
116 => 0.006831675184177
117 => 0.0068191323726872
118 => 0.0067166495457066
119 => 0.006771718012002
120 => 0.0066841001225632
121 => 0.0067055984878878
122 => 0.0066454871842464
123 => 0.0067536755627598
124 => 0.006874646980712
125 => 0.0069052091381928
126 => 0.0068248132596969
127 => 0.0067666013453193
128 => 0.0066644003998689
129 => 0.0068343628498496
130 => 0.0068840650497357
131 => 0.0068341017853524
201 => 0.0068225242052759
202 => 0.0068005847119512
203 => 0.0068271787724994
204 => 0.006883794360881
205 => 0.006857095494926
206 => 0.0068747305662628
207 => 0.0068075238595337
208 => 0.0069504664279273
209 => 0.0071774936275388
210 => 0.0071782235571082
211 => 0.0071515245472364
212 => 0.007140599887635
213 => 0.0071679946919949
214 => 0.0071828552495665
215 => 0.0072714450235184
216 => 0.0073665053805412
217 => 0.0078101105886832
218 => 0.0076855480213518
219 => 0.0080791409522073
220 => 0.0083904218588684
221 => 0.0084837613921117
222 => 0.0083978934134923
223 => 0.0081041436971322
224 => 0.0080897309346406
225 => 0.0085287170288138
226 => 0.008404683350373
227 => 0.0083899299389943
228 => 0.0082329785682075
301 => 0.008325756267148
302 => 0.008305464423423
303 => 0.0082734327553921
304 => 0.0084504461420199
305 => 0.0087817993996932
306 => 0.0087301548870737
307 => 0.0086916046541232
308 => 0.0085226887551382
309 => 0.0086244138550591
310 => 0.0085881914953932
311 => 0.0087438257397953
312 => 0.0086516314611321
313 => 0.0084037436732683
314 => 0.0084432206205345
315 => 0.0084372537593718
316 => 0.0085600513392834
317 => 0.0085231905538173
318 => 0.008430056099415
319 => 0.0087806668702812
320 => 0.0087579001570208
321 => 0.0087901781512289
322 => 0.0088043879225094
323 => 0.0090177985202809
324 => 0.0091052260138104
325 => 0.0091250735854753
326 => 0.0092081229424434
327 => 0.0091230072418177
328 => 0.0094635307307863
329 => 0.009689958980854
330 => 0.0099529670451988
331 => 0.01033729251711
401 => 0.010481802449758
402 => 0.010455698023883
403 => 0.01074708921044
404 => 0.011270712695421
405 => 0.010561537301166
406 => 0.011308300713329
407 => 0.011071884038836
408 => 0.010511344356569
409 => 0.01047525220936
410 => 0.010854856190191
411 => 0.011696781284144
412 => 0.011485888597144
413 => 0.01169712622903
414 => 0.011450706310888
415 => 0.011438469484962
416 => 0.011685158163625
417 => 0.012261559707622
418 => 0.011987732940158
419 => 0.01159513512392
420 => 0.011885023241932
421 => 0.011633895326231
422 => 0.011068033845881
423 => 0.011485727331481
424 => 0.011206427592886
425 => 0.011287942104999
426 => 0.011874988612825
427 => 0.011804353623871
428 => 0.011895761840202
429 => 0.011734428730948
430 => 0.011583718167009
501 => 0.011302405707503
502 => 0.01121912295678
503 => 0.01124213931288
504 => 0.011219111551017
505 => 0.011061719815318
506 => 0.011027731084979
507 => 0.010971081712001
508 => 0.010988639721462
509 => 0.010882122326904
510 => 0.011083142658051
511 => 0.011120453802897
512 => 0.011266739636202
513 => 0.0112819275167
514 => 0.011689331480205
515 => 0.011464940223252
516 => 0.011615481251425
517 => 0.011602015444918
518 => 0.010523492951189
519 => 0.01067210383494
520 => 0.010903295733393
521 => 0.010799144096513
522 => 0.010651898049695
523 => 0.010532988972055
524 => 0.010352829560354
525 => 0.010606400472669
526 => 0.010939819258102
527 => 0.011290383567324
528 => 0.011711563614971
529 => 0.011617561131412
530 => 0.0112825098993
531 => 0.011297540052817
601 => 0.011390450547715
602 => 0.011270123015014
603 => 0.011234636076548
604 => 0.011385575187309
605 => 0.01138661462201
606 => 0.011248163253569
607 => 0.01109429989388
608 => 0.011093655200785
609 => 0.011066276702072
610 => 0.011455576884987
611 => 0.011669652622903
612 => 0.011694196061254
613 => 0.01166800065395
614 => 0.011678082226563
615 => 0.011553516271507
616 => 0.011838237105878
617 => 0.012099525099469
618 => 0.012029494335583
619 => 0.011924508265058
620 => 0.01184088180307
621 => 0.012009794598826
622 => 0.012002273177924
623 => 0.012097242976788
624 => 0.012092934598139
625 => 0.012060999826776
626 => 0.012029495476074
627 => 0.012154406665517
628 => 0.01211843424897
629 => 0.012082405957324
630 => 0.012010145702772
701 => 0.012019967071482
702 => 0.011914999128282
703 => 0.011866436154751
704 => 0.011136165551718
705 => 0.010941013384307
706 => 0.011002412228863
707 => 0.011022626322711
708 => 0.01093769584936
709 => 0.011059464331297
710 => 0.011040486842372
711 => 0.01111431715032
712 => 0.011068191179254
713 => 0.011070084205196
714 => 0.011205730851009
715 => 0.011245109649371
716 => 0.011225081274698
717 => 0.011239108461786
718 => 0.011562359067729
719 => 0.011516403168537
720 => 0.011491990013026
721 => 0.011498752623945
722 => 0.011581350084334
723 => 0.011604472863589
724 => 0.011506500023077
725 => 0.011552704581037
726 => 0.011749437724598
727 => 0.011818283190712
728 => 0.012038004870852
729 => 0.011944663195887
730 => 0.012115995880018
731 => 0.01264261413942
801 => 0.013063313244242
802 => 0.012676420961322
803 => 0.01344898129162
804 => 0.014050530325955
805 => 0.014027441872085
806 => 0.013922547883869
807 => 0.013237700301287
808 => 0.012607493345294
809 => 0.013134688223983
810 => 0.013136032152148
811 => 0.013090745644522
812 => 0.012809475035058
813 => 0.013080958037002
814 => 0.013102507371815
815 => 0.01309044547475
816 => 0.012874795957948
817 => 0.012545539004483
818 => 0.01260987502506
819 => 0.012715258739185
820 => 0.012515745383001
821 => 0.01245198877676
822 => 0.012570524437953
823 => 0.012952471036204
824 => 0.01288026624427
825 => 0.012878380685351
826 => 0.013187303404838
827 => 0.01296618140738
828 => 0.012610686508312
829 => 0.012520919357896
830 => 0.012202306448316
831 => 0.012422373519823
901 => 0.012430293341949
902 => 0.012309764855915
903 => 0.012620466730683
904 => 0.01261760355821
905 => 0.012912568746431
906 => 0.013476431402444
907 => 0.013309669469065
908 => 0.013115743484191
909 => 0.013136828615732
910 => 0.013368080466187
911 => 0.013228260318435
912 => 0.013278540618427
913 => 0.013368004360931
914 => 0.013421980058043
915 => 0.013129062343556
916 => 0.013060769212435
917 => 0.012921065433794
918 => 0.012884619325641
919 => 0.012998405138329
920 => 0.012968426596798
921 => 0.012429627711566
922 => 0.012373320230211
923 => 0.012375047100275
924 => 0.012233459261132
925 => 0.012017503821464
926 => 0.012585021822883
927 => 0.012539442184959
928 => 0.012489125792276
929 => 0.012495289263278
930 => 0.012741629592724
1001 => 0.012598739761161
1002 => 0.012978635797555
1003 => 0.012900540593193
1004 => 0.012820442541519
1005 => 0.012809370550931
1006 => 0.012778539634681
1007 => 0.012672808951181
1008 => 0.012545132797426
1009 => 0.012460829941598
1010 => 0.011494456944146
1011 => 0.01167381015134
1012 => 0.011880139667657
1013 => 0.011951363789876
1014 => 0.011829530000261
1015 => 0.012677619691781
1016 => 0.012832573850817
1017 => 0.012363207595687
1018 => 0.01227540833345
1019 => 0.012683375796796
1020 => 0.012437321544404
1021 => 0.01254811975919
1022 => 0.012308634622206
1023 => 0.012795249931493
1024 => 0.01279154273814
1025 => 0.012602238392122
1026 => 0.012762237129076
1027 => 0.012734433411154
1028 => 0.012520709270736
1029 => 0.012802025367957
1030 => 0.012802164897231
1031 => 0.012619963580021
1101 => 0.012407192330516
1102 => 0.012369153856537
1103 => 0.012340496976144
1104 => 0.012541071923312
1105 => 0.012720906793762
1106 => 0.013055534902824
1107 => 0.01313966836001
1108 => 0.013468046844488
1109 => 0.013272513445439
1110 => 0.013359190868656
1111 => 0.013453291472828
1112 => 0.013498406762903
1113 => 0.013424893818745
1114 => 0.013935000771116
1115 => 0.01397806942717
1116 => 0.013992509975002
1117 => 0.013820504780747
1118 => 0.013973285651562
1119 => 0.013901804541678
1120 => 0.014087778531572
1121 => 0.014116941627822
1122 => 0.014092241522806
1123 => 0.014101498349864
1124 => 0.013666212055048
1125 => 0.013643640164344
1126 => 0.013335870832962
1127 => 0.013461289110416
1128 => 0.01322682565217
1129 => 0.013301176430021
1130 => 0.013333949544457
1201 => 0.013316830729334
1202 => 0.013468380071647
1203 => 0.013339532171195
1204 => 0.012999481377348
1205 => 0.012659337936889
1206 => 0.012655067713068
1207 => 0.012565513949226
1208 => 0.012500782980558
1209 => 0.012513252461578
1210 => 0.012557196539112
1211 => 0.012498228870886
1212 => 0.012510812612638
1213 => 0.012719786570768
1214 => 0.012761694807736
1215 => 0.012619274243911
1216 => 0.012047435128965
1217 => 0.011907104375807
1218 => 0.012007971338297
1219 => 0.011959763426891
1220 => 0.0096524625067655
1221 => 0.010194528633271
1222 => 0.0098724513477277
1223 => 0.010020879378969
1224 => 0.0096921218719386
1225 => 0.0098490221859509
1226 => 0.0098200484270349
1227 => 0.010691674717553
1228 => 0.010678065471909
1229 => 0.010684579497613
1230 => 0.01037364807854
1231 => 0.010868970271832
]
'min_raw' => 0.0063235776452922
'max_raw' => 0.014116941627822
'avg_raw' => 0.010220259636557
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.006323'
'max' => '$0.014116'
'avg' => '$0.01022'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00097508284245761
'max_diff' => 0.0021356530206042
'year' => 2035
]
10 => [
'items' => [
101 => 0.011112983795457
102 => 0.011067823386444
103 => 0.01107918928845
104 => 0.010883885434954
105 => 0.010686470465828
106 => 0.010467506883122
107 => 0.010874314155074
108 => 0.010829084130864
109 => 0.010932825533151
110 => 0.011196669128197
111 => 0.011235521099811
112 => 0.011287738543659
113 => 0.011269022307131
114 => 0.011714918993551
115 => 0.011660917962704
116 => 0.011791044909888
117 => 0.011523363906776
118 => 0.011220457443242
119 => 0.011278030059201
120 => 0.011272485353315
121 => 0.01120189488346
122 => 0.011138168963589
123 => 0.01103208326167
124 => 0.011367754120272
125 => 0.011354126496419
126 => 0.011574741886207
127 => 0.011535745973119
128 => 0.011275321721595
129 => 0.011284622824685
130 => 0.011347177212928
131 => 0.01156367866487
201 => 0.011627951036349
202 => 0.011598177513069
203 => 0.01166864923425
204 => 0.011724347209309
205 => 0.011675644042376
206 => 0.012365178180248
207 => 0.012078835532051
208 => 0.012218396946423
209 => 0.012251681521407
210 => 0.012166423782484
211 => 0.012184913133206
212 => 0.012212919461502
213 => 0.012382968402718
214 => 0.012829226028526
215 => 0.013026870493218
216 => 0.013621493616849
217 => 0.013010458871769
218 => 0.012974202598709
219 => 0.013081312179173
220 => 0.013430418899994
221 => 0.013713337107294
222 => 0.013807197398598
223 => 0.013819602585558
224 => 0.013995690731758
225 => 0.014096621173311
226 => 0.013974308999232
227 => 0.013870662238318
228 => 0.013499412405834
229 => 0.013542385584824
301 => 0.013838428173612
302 => 0.014256605767097
303 => 0.01461544564627
304 => 0.014489792427416
305 => 0.015448437789924
306 => 0.015543483561901
307 => 0.015530351309411
308 => 0.015746879722684
309 => 0.015317114917583
310 => 0.015133382137102
311 => 0.013893071844468
312 => 0.014241548445099
313 => 0.014748079649429
314 => 0.014681038345141
315 => 0.014313181844939
316 => 0.014615166594128
317 => 0.01451532099211
318 => 0.0144365686232
319 => 0.014797348492073
320 => 0.014400656206227
321 => 0.014744122340423
322 => 0.014303623470615
323 => 0.014490366400735
324 => 0.01438436208186
325 => 0.014452959867573
326 => 0.014051938613976
327 => 0.014268319948176
328 => 0.014042936439078
329 => 0.014042829577948
330 => 0.014037854224493
331 => 0.014303016923444
401 => 0.014311663869537
402 => 0.014115708234374
403 => 0.014087467965945
404 => 0.014191887039652
405 => 0.014069639651739
406 => 0.014126838435128
407 => 0.014071372144619
408 => 0.014058885514327
409 => 0.013959389919732
410 => 0.013916524481892
411 => 0.013933333124575
412 => 0.013875956561648
413 => 0.013841385107084
414 => 0.014030977092029
415 => 0.013929685742592
416 => 0.014015452740006
417 => 0.013917710421795
418 => 0.013578892962574
419 => 0.013384035458847
420 => 0.012744040686775
421 => 0.012925542410224
422 => 0.013045878240647
423 => 0.01300610724941
424 => 0.013091550727918
425 => 0.013096796263555
426 => 0.013069017717699
427 => 0.01303685372025
428 => 0.013021198065072
429 => 0.013137882492329
430 => 0.013205621729769
501 => 0.013057955551116
502 => 0.013023359431527
503 => 0.013172658091018
504 => 0.01326373018706
505 => 0.013936155375247
506 => 0.013886339945401
507 => 0.014011366898529
508 => 0.013997290782302
509 => 0.014128338947536
510 => 0.014342547312606
511 => 0.013907001812817
512 => 0.01398259745155
513 => 0.013964063146691
514 => 0.014166415827187
515 => 0.014167047550168
516 => 0.014045727009945
517 => 0.014111496843001
518 => 0.01407478592649
519 => 0.014141127514403
520 => 0.013885674629965
521 => 0.014196788668776
522 => 0.014373170281036
523 => 0.014375619339894
524 => 0.014459222824254
525 => 0.014544168806351
526 => 0.014707215221752
527 => 0.014539621530319
528 => 0.01423813679435
529 => 0.014259903018497
530 => 0.014083142628108
531 => 0.014086114002205
601 => 0.014070252574405
602 => 0.014117853913224
603 => 0.01389612044698
604 => 0.013948160848313
605 => 0.013875303981698
606 => 0.013982439074951
607 => 0.013867179424677
608 => 0.013964054208888
609 => 0.014005862154304
610 => 0.014160134372949
611 => 0.013844393292548
612 => 0.013200575855819
613 => 0.013335914086551
614 => 0.013135738212709
615 => 0.013154265251956
616 => 0.013191692819793
617 => 0.013070377826898
618 => 0.013093520904467
619 => 0.013092694070881
620 => 0.013085568865728
621 => 0.013054010150668
622 => 0.013008243770131
623 => 0.013190562944043
624 => 0.013221542524413
625 => 0.013290406294017
626 => 0.013495298161619
627 => 0.013474824632362
628 => 0.013508217808018
629 => 0.013435320693056
630 => 0.013157646740046
701 => 0.013172725771624
702 => 0.012984690006219
703 => 0.013285597796734
704 => 0.013214338860151
705 => 0.013168397760169
706 => 0.013155862305398
707 => 0.013361262060309
708 => 0.013422720886225
709 => 0.013384423870262
710 => 0.013305875573221
711 => 0.01345671152426
712 => 0.0134970688615
713 => 0.013506103380987
714 => 0.013773355766303
715 => 0.013521039820522
716 => 0.013581774776476
717 => 0.014055611565273
718 => 0.013625906982842
719 => 0.013853531083711
720 => 0.013842390068473
721 => 0.013958834856098
722 => 0.013832838197119
723 => 0.013834400076712
724 => 0.01393779515947
725 => 0.013792595413138
726 => 0.013756641913997
727 => 0.013706972412439
728 => 0.01381542395197
729 => 0.013880435745078
730 => 0.014404383051626
731 => 0.014742876906556
801 => 0.014728181995599
802 => 0.014862465974021
803 => 0.014801969811842
804 => 0.014606611746083
805 => 0.014940064142955
806 => 0.014834545852344
807 => 0.014843244652017
808 => 0.014842920882259
809 => 0.014913081320946
810 => 0.014863366220026
811 => 0.014765372652963
812 => 0.014830425355948
813 => 0.015023608627046
814 => 0.015623255428122
815 => 0.015958825722267
816 => 0.01560305367506
817 => 0.015848460469246
818 => 0.015701303840116
819 => 0.015674561103072
820 => 0.015828694705241
821 => 0.015983098097876
822 => 0.015973263269269
823 => 0.015861174334918
824 => 0.015797858140055
825 => 0.016277309580043
826 => 0.016630561233784
827 => 0.016606471839228
828 => 0.016712794592508
829 => 0.017024961484575
830 => 0.017053502112983
831 => 0.017049906649802
901 => 0.016979165724387
902 => 0.017286534569621
903 => 0.017542947067955
904 => 0.016962791244055
905 => 0.017183706986999
906 => 0.017282883181467
907 => 0.017428503259197
908 => 0.017674188739087
909 => 0.017941068335102
910 => 0.017978808036165
911 => 0.01795202991225
912 => 0.017776015644569
913 => 0.018068038483065
914 => 0.018239098613077
915 => 0.018340961005858
916 => 0.018599267085665
917 => 0.017283495659881
918 => 0.016352127246628
919 => 0.016206680619775
920 => 0.016502452054886
921 => 0.016580444623591
922 => 0.01654900591694
923 => 0.015500666091513
924 => 0.016201161327553
925 => 0.016954835302221
926 => 0.016983786989022
927 => 0.01736109193932
928 => 0.017483957897389
929 => 0.01778773783687
930 => 0.017768736318945
1001 => 0.017842701900014
1002 => 0.017825698493831
1003 => 0.018388386863305
1004 => 0.019009115694867
1005 => 0.018987621829227
1006 => 0.01889838471556
1007 => 0.019030917046544
1008 => 0.01967157572206
1009 => 0.019612594137564
1010 => 0.019669889722862
1011 => 0.020425262407236
1012 => 0.021407354347433
1013 => 0.020951074040793
1014 => 0.021941071015081
1015 => 0.02256422163291
1016 => 0.02364189619147
1017 => 0.02350696602908
1018 => 0.023926496826386
1019 => 0.023265412877625
1020 => 0.021747430504162
1021 => 0.021507203982959
1022 => 0.021988143561913
1023 => 0.023170486587373
1024 => 0.021950907372439
1025 => 0.022197626659237
1026 => 0.022126571488042
1027 => 0.022122785259934
1028 => 0.022267290187112
1029 => 0.02205767825337
1030 => 0.021203681526835
1031 => 0.021595063193971
1101 => 0.021443931936599
1102 => 0.021611623334235
1103 => 0.022516584646087
1104 => 0.022116479678534
1105 => 0.021695001597106
1106 => 0.022223628644691
1107 => 0.022896752532229
1108 => 0.022854629649067
1109 => 0.022772893649733
1110 => 0.023233635198421
1111 => 0.023994645252245
1112 => 0.024200343211808
1113 => 0.024352185240248
1114 => 0.024373121690577
1115 => 0.024588780140905
1116 => 0.023429130300567
1117 => 0.025269524379104
1118 => 0.025587309596607
1119 => 0.025527579146564
1120 => 0.025880784041372
1121 => 0.025776862201376
1122 => 0.025626295760059
1123 => 0.026186200647166
1124 => 0.025544314876093
1125 => 0.024633238835225
1126 => 0.024133404500165
1127 => 0.024791626673058
1128 => 0.025193579985256
1129 => 0.025459245555587
1130 => 0.025539635796649
1201 => 0.023519150616572
1202 => 0.022430221165756
1203 => 0.023128212459128
1204 => 0.023979810009827
1205 => 0.023424399633174
1206 => 0.023446170668408
1207 => 0.022654301430581
1208 => 0.024049872866425
1209 => 0.023846549846826
1210 => 0.024901390032178
1211 => 0.024649643956323
1212 => 0.025509825178818
1213 => 0.025283310635123
1214 => 0.026223559841743
1215 => 0.026598650706495
1216 => 0.027228486646645
1217 => 0.027691796528112
1218 => 0.027963860952216
1219 => 0.027947527224681
1220 => 0.029025582014937
1221 => 0.028389890769489
1222 => 0.027591312744282
1223 => 0.027576868987288
1224 => 0.02799046386248
1225 => 0.028857245256671
1226 => 0.029081989061029
1227 => 0.029207590187551
1228 => 0.029015227690075
1229 => 0.028325230403543
1230 => 0.028027293073584
1231 => 0.028281144310784
]
'min_raw' => 0.010467506883122
'max_raw' => 0.029207590187551
'avg_raw' => 0.019837548535336
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.010467'
'max' => '$0.0292075'
'avg' => '$0.019837'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0041439292378294
'max_diff' => 0.015090648559728
'year' => 2036
]
11 => [
'items' => [
101 => 0.027970706061373
102 => 0.028506609573445
103 => 0.029242519558333
104 => 0.029090557056557
105 => 0.029598544916503
106 => 0.030124258909665
107 => 0.03087605353118
108 => 0.031072600484118
109 => 0.031397485123313
110 => 0.03173189813609
111 => 0.03183930258311
112 => 0.032044370998115
113 => 0.032043290186343
114 => 0.032661277657657
115 => 0.033342936975994
116 => 0.033600247588216
117 => 0.034191919152833
118 => 0.033178702333072
119 => 0.033947238929856
120 => 0.034640478177875
121 => 0.033813969767488
122 => 0.034953119059445
123 => 0.034997349645084
124 => 0.035665178975262
125 => 0.034988206008508
126 => 0.034586221621824
127 => 0.035746735484022
128 => 0.036308271586096
129 => 0.036139132342219
130 => 0.034851974344881
131 => 0.034102793181626
201 => 0.032142041571135
202 => 0.034464636551928
203 => 0.035595904816048
204 => 0.034849044633371
205 => 0.035225717467251
206 => 0.037280722312321
207 => 0.038063135105614
208 => 0.037900398714088
209 => 0.037927898485387
210 => 0.038350074226851
211 => 0.04022223396093
212 => 0.039100392451947
213 => 0.039957998250965
214 => 0.040412869274436
215 => 0.040835378831274
216 => 0.039797828895197
217 => 0.038447991672996
218 => 0.038020441562414
219 => 0.034774784107209
220 => 0.03460583354149
221 => 0.034510996469226
222 => 0.033913062143569
223 => 0.033443249551599
224 => 0.033069637135441
225 => 0.032089166585332
226 => 0.032420046613979
227 => 0.030857381197211
228 => 0.031857119153397
301 => 0.029363067416361
302 => 0.031440187814112
303 => 0.030309705616692
304 => 0.031068794008038
305 => 0.031066145620151
306 => 0.029668423222488
307 => 0.028862246113239
308 => 0.029375973544135
309 => 0.02992673012979
310 => 0.030016088532845
311 => 0.030730158822365
312 => 0.03092944049128
313 => 0.030325607730895
314 => 0.02931138373767
315 => 0.02954696483931
316 => 0.028857472069733
317 => 0.027649162512006
318 => 0.028516991531427
319 => 0.028813306514405
320 => 0.028944176091581
321 => 0.027755942416847
322 => 0.027382573598437
323 => 0.027183795172384
324 => 0.029157997691461
325 => 0.029266148961967
326 => 0.028712831771013
327 => 0.031213877941813
328 => 0.030647814165453
329 => 0.031280246092639
330 => 0.02952558832358
331 => 0.029592618613318
401 => 0.028761935505808
402 => 0.029227062539749
403 => 0.028898325743903
404 => 0.029189484871881
405 => 0.029364004452697
406 => 0.030194551253283
407 => 0.031449671324449
408 => 0.030070495257571
409 => 0.029469568495066
410 => 0.029842380078784
411 => 0.030835226454758
412 => 0.032339439537231
413 => 0.031448915117298
414 => 0.031844114732779
415 => 0.031930448267554
416 => 0.031273808529301
417 => 0.032363650781002
418 => 0.03294770609755
419 => 0.033546825999111
420 => 0.034067025022677
421 => 0.033307524335498
422 => 0.034120298940927
423 => 0.033465346082983
424 => 0.032877785661626
425 => 0.032878676748251
426 => 0.032510091513046
427 => 0.031795911175107
428 => 0.031664205363299
429 => 0.032349355628935
430 => 0.032898781258004
501 => 0.032944034584385
502 => 0.033248224843146
503 => 0.033428241504871
504 => 0.035192649510567
505 => 0.035902309006406
506 => 0.036770067204752
507 => 0.03710810792718
508 => 0.038125489307382
509 => 0.037303871215193
510 => 0.037126108972728
511 => 0.034658274527272
512 => 0.035062382279464
513 => 0.035709397781323
514 => 0.034668943574587
515 => 0.035328872289215
516 => 0.035459156196684
517 => 0.034633589338777
518 => 0.035074560268223
519 => 0.033903472218381
520 => 0.031475197843721
521 => 0.03236635414454
522 => 0.033022545141909
523 => 0.032086079680896
524 => 0.033764657773544
525 => 0.032784067104704
526 => 0.032473266939335
527 => 0.031260724685972
528 => 0.031832997954528
529 => 0.032607005744414
530 => 0.032128758918328
531 => 0.033121192891579
601 => 0.034526744070174
602 => 0.035528423542062
603 => 0.03560532005401
604 => 0.034961307260899
605 => 0.035993341871894
606 => 0.036000859117337
607 => 0.034836719860149
608 => 0.034123691047077
609 => 0.033961689400521
610 => 0.034366401275911
611 => 0.034857796206567
612 => 0.035632589052726
613 => 0.036100780142754
614 => 0.037321574196179
615 => 0.037651886064127
616 => 0.038014798662701
617 => 0.038499761812497
618 => 0.039082084415826
619 => 0.037807995711386
620 => 0.037858617630812
621 => 0.036672203870197
622 => 0.035404350618035
623 => 0.036366493196287
624 => 0.037624366628887
625 => 0.037335809073622
626 => 0.037303340453959
627 => 0.037357943666188
628 => 0.037140380692927
629 => 0.036156351428126
630 => 0.035662178091693
701 => 0.036299787772756
702 => 0.036638648941499
703 => 0.03716419306242
704 => 0.037099408656626
705 => 0.038453153872801
706 => 0.038979178328676
707 => 0.038844598763008
708 => 0.038869364641929
709 => 0.039821706793088
710 => 0.040880907129278
711 => 0.041872988017915
712 => 0.042882175308702
713 => 0.041665560640408
714 => 0.041047838742209
715 => 0.041685170062832
716 => 0.041346993093022
717 => 0.043290258271357
718 => 0.043424805736063
719 => 0.045367930394207
720 => 0.047212187077766
721 => 0.046053842498113
722 => 0.04714610926374
723 => 0.048327484824582
724 => 0.050606549952723
725 => 0.049839040996043
726 => 0.049251141163625
727 => 0.048695578662701
728 => 0.04985161603406
729 => 0.051338839644166
730 => 0.051659173365332
731 => 0.052178236370521
801 => 0.051632505088569
802 => 0.052289778307351
803 => 0.054610241590137
804 => 0.053983231927832
805 => 0.053092777410526
806 => 0.054924560312623
807 => 0.055587475424016
808 => 0.060240160847113
809 => 0.066114368386621
810 => 0.063682407893138
811 => 0.062172811535959
812 => 0.062527602488001
813 => 0.064672664226955
814 => 0.06536158997665
815 => 0.063488852302031
816 => 0.064150334908526
817 => 0.067795169105847
818 => 0.069750505712429
819 => 0.067094895963949
820 => 0.059768173990902
821 => 0.053012601723917
822 => 0.054804483696505
823 => 0.054601339889385
824 => 0.058517259532081
825 => 0.053968277954752
826 => 0.054044871138001
827 => 0.058041767851877
828 => 0.056975464332772
829 => 0.055248189193658
830 => 0.053025212743949
831 => 0.04891583517623
901 => 0.04527604486603
902 => 0.052414511857979
903 => 0.052106688180827
904 => 0.051660913879396
905 => 0.052652936349412
906 => 0.057469915873318
907 => 0.057358868904251
908 => 0.056652444743707
909 => 0.057188261243343
910 => 0.055154257970637
911 => 0.055678466927407
912 => 0.053011531606754
913 => 0.054217097752747
914 => 0.055244483236968
915 => 0.055450746083627
916 => 0.055915466809193
917 => 0.051944479090583
918 => 0.053727335994165
919 => 0.054774597393918
920 => 0.050043032290137
921 => 0.054681069564958
922 => 0.051875353029052
923 => 0.050923050696318
924 => 0.052205200331053
925 => 0.051705545371465
926 => 0.051275971377936
927 => 0.051036261708528
928 => 0.051977730894586
929 => 0.051933810231757
930 => 0.050393383912072
1001 => 0.048383960573851
1002 => 0.049058389003231
1003 => 0.048813362832037
1004 => 0.047925356378626
1005 => 0.048523765509917
1006 => 0.045888674543641
1007 => 0.041355137496274
1008 => 0.04435013093576
1009 => 0.044234826946266
1010 => 0.044176685446143
1011 => 0.046427340240378
1012 => 0.046210991713353
1013 => 0.045818317018312
1014 => 0.047918144599912
1015 => 0.047151679285961
1016 => 0.049513744781617
1017 => 0.051069553885874
1018 => 0.050674950371882
1019 => 0.052138196354314
1020 => 0.04907392647209
1021 => 0.050091754009795
1022 => 0.050301526854668
1023 => 0.047892233053503
1024 => 0.046246389008002
1025 => 0.046136629974163
1026 => 0.043282963210545
1027 => 0.044807368961676
1028 => 0.046148782938476
1029 => 0.045506349741518
1030 => 0.045302974583508
1031 => 0.046341974159095
1101 => 0.046422713324548
1102 => 0.044581851795872
1103 => 0.044964625200187
1104 => 0.046560853926963
1105 => 0.044924404331773
1106 => 0.041745050080844
1107 => 0.040956526268602
1108 => 0.040851322656672
1109 => 0.03871278353926
1110 => 0.04100921920021
1111 => 0.040006763493556
1112 => 0.043173509059613
1113 => 0.041364680975878
1114 => 0.041286706012447
1115 => 0.041168835418781
1116 => 0.039328106458486
1117 => 0.039731109116362
1118 => 0.041070751330182
1119 => 0.041548750764222
1120 => 0.041498891507118
1121 => 0.041064186352495
1122 => 0.041263192146231
1123 => 0.040622125146392
1124 => 0.040395751046094
1125 => 0.03968125211645
1126 => 0.03863113607524
1127 => 0.038777161151506
1128 => 0.03669660649606
1129 => 0.03556300989638
1130 => 0.035249245298152
1201 => 0.034829666164276
1202 => 0.035296637877781
1203 => 0.036690712546129
1204 => 0.035009162726661
1205 => 0.032126263508189
1206 => 0.03229953066344
1207 => 0.03268881051781
1208 => 0.031963390084536
1209 => 0.031276840524363
1210 => 0.031873739665407
1211 => 0.030652217261951
1212 => 0.032836425664375
1213 => 0.032777348948263
1214 => 0.033591486770145
1215 => 0.034100583857958
1216 => 0.032927279892689
1217 => 0.032632197118375
1218 => 0.032800289677388
1219 => 0.030022094107696
1220 => 0.033364448921083
1221 => 0.033393353744303
1222 => 0.033145853099262
1223 => 0.034925553853763
1224 => 0.038681277548345
1225 => 0.037268223220808
1226 => 0.036721045875392
1227 => 0.035680861341773
1228 => 0.037066845472774
1229 => 0.036960423516234
1230 => 0.03647914306943
1231 => 0.036188063153516
]
'min_raw' => 0.027183795172384
'max_raw' => 0.069750505712429
'avg_raw' => 0.048467150442406
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.027183'
'max' => '$0.06975'
'avg' => '$0.048467'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.016716288289262
'max_diff' => 0.040542915524878
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00085326826823415
]
1 => [
'year' => 2028
'avg' => 0.001464456053838
]
2 => [
'year' => 2029
'avg' => 0.0040006299965619
]
3 => [
'year' => 2030
'avg' => 0.0030864800844305
]
4 => [
'year' => 2031
'avg' => 0.0030313059461767
]
5 => [
'year' => 2032
'avg' => 0.0053148333107382
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00085326826823415
'min' => '$0.000853'
'max_raw' => 0.0053148333107382
'max' => '$0.005314'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0053148333107382
]
1 => [
'year' => 2033
'avg' => 0.013670297793083
]
2 => [
'year' => 2034
'avg' => 0.0086648917050264
]
3 => [
'year' => 2035
'avg' => 0.010220259636557
]
4 => [
'year' => 2036
'avg' => 0.019837548535336
]
5 => [
'year' => 2037
'avg' => 0.048467150442406
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0053148333107382
'min' => '$0.005314'
'max_raw' => 0.048467150442406
'max' => '$0.048467'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.048467150442406
]
]
]
]
'prediction_2025_max_price' => '$0.001458'
'last_price' => 0.00141462
'sma_50day_nextmonth' => '$0.001557'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'DECREASE'
'sma_200day_date_nextmonth' => 'Feb 4, 2026'
'sma_50day_date_nextmonth' => 'Feb 4, 2026'
'daily_sma3' => '$0.001449'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.001614'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.001763'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.00195'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.002188'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.041482'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.001491'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.001576'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.001726'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.002458'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.010895'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.037837'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022558'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.026799'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.001498'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001789'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.006166'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.025461'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.01287'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006435'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003217'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '29.69'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -31.3
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.001549'
'vwma_10_action' => 'SELL'
'hma_9' => '0.001414'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -178.49
'cci_20_action' => 'BUY'
'adx_14' => 36.92
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000456'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 18.12
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.084570'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 28
'buy_signals' => 2
'sell_pct' => 93.33
'buy_pct' => 6.67
'overall_action' => 'bearish'
'overall_action_label' => 'BEARISH'
'overall_action_dir' => -1
'last_updated' => 1767679380
'last_updated_date' => 'January 6, 2026'
]
Smart Lending AI price prediction 2026
The Smart Lending AI price forecast for 2026 suggests that the average price could range between $0.000488 on the lower end and $0.001458 on the high end. In the crypto market, compared to today’s average price, Smart Lending AI could potentially gain 3.13% by 2026 if SLAI reaches the forecast price target.
Smart Lending AI price prediction 2027-2032
The SLAI price prediction for 2027-2032 is currently within a price range of $0.000853 on the lower end and $0.005314 on the high end. Considering the price volatility in the market, if Smart Lending AI reaches the upper price target, it could gain 275.71% by 2032 compared to today’s price.
| Smart Lending AI Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2027 | $0.00047 | $0.000853 | $0.001236 |
| 2028 | $0.000849 | $0.001464 | $0.002079 |
| 2029 | $0.001865 | $0.00400062 | $0.006135 |
| 2030 | $0.001586 | $0.003086 | $0.004586 |
| 2031 | $0.001875 | $0.003031 | $0.004187 |
| 2032 | $0.002862 | $0.005314 | $0.007766 |
Smart Lending AI price prediction 2032-2037
The Smart Lending AI price prediction for 2032-2037 is currently estimated to be between $0.005314 on the lower end and $0.048467 on the high end. Compared to the current price, Smart Lending AI could potentially gain 3326.16% by 2037 if it reaches the upper price target. Please note that this information is for general purposes only and should not be considered long-term investment advice.
| Smart Lending AI Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2032 | $0.002862 | $0.005314 | $0.007766 |
| 2033 | $0.006652 | $0.01367 | $0.020687 |
| 2034 | $0.005348 | $0.008664 | $0.011981 |
| 2035 | $0.006323 | $0.01022 | $0.014116 |
| 2036 | $0.010467 | $0.019837 | $0.0292075 |
| 2037 | $0.027183 | $0.048467 | $0.06975 |
Smart Lending AI potential price histogram
Smart Lending AI Price Forecast Based on Technical Analysis
As of January 6, 2026, the overall price prediction sentiment for Smart Lending AI is BEARISH, with 2 technical indicators showing bullish signals and 28 indicating bearish signals. The SLAI price prediction was last updated on January 6, 2026.
Smart Lending AI's 50-Day, 200-Day Simple Moving Averages and 14-Day Relative Strength Index - RSI (14)
According to our technical indicators, Smart Lending AI's 200-day SMA is projected to DECREASE over the next month, reaching — by Feb 4, 2026. The short-term 50-day SMA for Smart Lending AI is expected to reach $0.001557 by Feb 4, 2026.
The Relative Strength Index (RSI) momentum oscillator is a commonly used tool to identify if a cryptocurrency is oversold (below 30) or overbought (above 70). Right now, the RSI stands at 29.69, suggesting that the SLAI market is in a BUY state.
Popular SLAI Moving Averages and Oscillators for Sat, Oct 19, 2024
Moving averages (MA) are widely used indicators across financial markets, designed to smooth out price movements over a set period. As lagging indicators, they are based on historical price data. The table below highlights two types: the simple moving average (SMA) and the exponential moving average (EMA).
Daily Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 3 | $0.001449 | SELL |
| SMA 5 | $0.001614 | SELL |
| SMA 10 | $0.001763 | SELL |
| SMA 21 | $0.00195 | SELL |
| SMA 50 | $0.002188 | SELL |
| SMA 100 | $0.041482 | SELL |
| SMA 200 | — | — |
Daily Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 3 | $0.001491 | SELL |
| EMA 5 | $0.001576 | SELL |
| EMA 10 | $0.001726 | SELL |
| EMA 21 | $0.002458 | SELL |
| EMA 50 | $0.010895 | SELL |
| EMA 100 | $0.037837 | SELL |
| EMA 200 | $0.022558 | SELL |
Weekly Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 21 | $0.026799 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Weekly Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 21 | $0.025461 | SELL |
| EMA 50 | $0.01287 | SELL |
| EMA 100 | $0.006435 | SELL |
| EMA 200 | $0.003217 | SELL |
Smart Lending AI Oscillators
An oscillator is a technical analysis tool that sets high and low boundaries between two extremes, creating a trend indicator that fluctuates within these limits. Traders use this indicator to identify short-term overbought or oversold conditions.
| Period | Value | Action |
|---|---|---|
| RSI (14) | 29.69 | BUY |
| Stoch RSI (14) | -31.3 | BUY |
| Stochastic Fast (14) | 0 | BUY |
| Commodity Channel Index (20) | -178.49 | BUY |
| Average Directional Index (14) | 36.92 | SELL |
| Awesome Oscillator (5, 34) | -0.000456 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -100 | BUY |
| Ultimate Oscillator (7, 14, 28) | 18.12 | BUY |
| VWMA (10) | 0.001549 | SELL |
| Hull Moving Average (9) | 0.001414 | SELL |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.084570 | SELL |
Smart Lending AI price prediction based on worldwide money flows
Worldwide money flows definitions used for Smart Lending AI price prediction
M0: The total of all physical currency, plus accounts at the central bank which can be exchanged for physical currency.
M1: Measure M0 plus the amount in demand accounts, including "checking" or "current" accounts.
M2: Measure M1 plus most savings accounts, money market accounts, and certificate of deposit (CD) accounts of under $100,000.
Smart Lending AI price predictions by Internet companies or technological niches
| Comparison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001987 | $0.002793 | $0.003924 | $0.005515 | $0.007749 | $0.010889 |
| Amazon.com stock | $0.002951 | $0.006158 | $0.01285 | $0.026814 | $0.055949 | $0.116741 |
| Apple stock | $0.0020065 | $0.002846 | $0.004036 | $0.005726 | $0.008122 | $0.01152 |
| Netflix stock | $0.002232 | $0.003521 | $0.005556 | $0.008767 | $0.013834 | $0.021828 |
| Google stock | $0.001831 | $0.002372 | $0.003072 | $0.003978 | $0.005152 | $0.006671 |
| Tesla stock | $0.0032068 | $0.007269 | $0.016479 | $0.037358 | $0.084688 | $0.191982 |
| Kodak stock | $0.00106 | $0.000795 | $0.000596 | $0.000447 | $0.000335 | $0.000251 |
| Nokia stock | $0.000937 | $0.00062 | $0.000411 | $0.000272 | $0.00018 | $0.000119 |
This calculation shows how much cryptocurrency can cost if we assume that its capitalization will behave like the capitalization of some Internet companies or technological niches. If you extrapolate the data projections, you can get a potential picture of the future Smart Lending AI price for 2024, 2025, 2026, 2027, 2028, 2029 and 2030.
Smart Lending AI forecast and prediction overview
You may ask questions like: "Should I invest in Smart Lending AI now?", "Should I buy SLAI today?", "Will Smart Lending AI be a good or bad investment in short-term, long-term period?".
We update Smart Lending AI forecast projection regularly with fresh values. Look at our similar predictions. We making a forecast of future prices for huge amounts of digital coins like Smart Lending AI with technical analysis methods.
If you are trying to find cryptocurrencies with good returns, you should explore the maximum of available sources of information about Smart Lending AI in order to make such a responsible decision about the investment by yourself.
Smart Lending AI price equal to $0.001414 USD today, but the price can go both up and down and your investment may be lost because cryptocurrency high-risk assets
Smart Lending AI price prediction based on Bitcoin's growth pattern
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| If Smart Lending AI has 1% of Bitcoin's previous average grow per year | $0.001451 | $0.001489 | $0.001527 | $0.001567 |
| If Smart Lending AI has 2% of Bitcoin's previous average grow per year | $0.001488 | $0.001565 | $0.001646 | $0.001732 |
| If Smart Lending AI has 5% of Bitcoin's previous average grow per year | $0.001598 | $0.0018062 | $0.00204 | $0.0023062 |
| If Smart Lending AI has 10% of Bitcoin's previous average grow per year | $0.001782 | $0.002245 | $0.002829 | $0.003564 |
| If Smart Lending AI has 20% of Bitcoin's previous average grow per year | $0.00215 | $0.003267 | $0.004966 | $0.007548 |
| If Smart Lending AI has 50% of Bitcoin's previous average grow per year | $0.003253 | $0.007481 | $0.017204 | $0.039563 |
| If Smart Lending AI has 100% of Bitcoin's previous average grow per year | $0.005091 | $0.018326 | $0.065963 | $0.237422 |
Frequently Asked Questions about Smart Lending AI
Is SLAI a good investment?
The determination to procure Smart Lending AI is entirely contingent on your individualistic risk tolerance. As you may discern, Smart Lending AI's value has experienced a fall of 0% during the preceding 24 hours, and Smart Lending AI has incurred a decline of over the prior 30-day duration. Consequently, the determination of whether or not to invest in Smart Lending AI will hinge on whether such an investment aligns with your trading aspirations.
Can Smart Lending AI rise?
It appears that the mean value of Smart Lending AI may potentially surge to $0.001458 by the end of this year. Looking at Smart Lending AI's prospects in a more extended five-year timeline, the digital currency could potentially growth to as much as $0.004586. However, given the market's unpredictability, it is vital to conduct thorough research before investing any funds into a particular project, network, or asset.
What will the price of Smart Lending AI be next week?
Based on the our new experimental Smart Lending AI forecast, the price of Smart Lending AI will increase by 0.86% over the next week and reach $0.001426 by January 13, 2026.
What will the price of Smart Lending AI be next month?
Based on the our new experimental Smart Lending AI forecast, the price of Smart Lending AI will decrease by -11.62% over the next month and reach $0.00125 by February 5, 2026.
How high can Smart Lending AI’s price go this year in 2026?
As per our most recent prediction on Smart Lending AI's value in 2026, SLAI is anticipated to fluctuate within the range of $0.000488 and $0.001458. However, it is crucial to bear in mind that the cryptocurrency market is exceptionally unstable, and this projected Smart Lending AI price forecast fails to consider sudden and extreme price fluctuations.
Where will Smart Lending AI be in 5 years?
Smart Lending AI's future appears to be on an upward trend, with an maximum price of $0.004586 projected after a period of five years. Based on the Smart Lending AI forecast for 2030, Smart Lending AI's value may potentially reach its highest peak of approximately $0.004586, while its lowest peak is anticipated to be around $0.001586.
How much will be Smart Lending AI in 2026?
Based on the our new experimental Smart Lending AI price prediction simulation, SLAI’s value in 2026 expected to grow by 3.13% to $0.001458 if the best happened. The price will be between $0.001458 and $0.000488 during 2026.
How much will be Smart Lending AI in 2027?
According to our latest experimental simulation for Smart Lending AI price prediction, SLAI’s value could down by -12.62% to $0.001236 in 2027, assuming the most favorable conditions. The price is projected to fluctuate between $0.001236 and $0.00047 throughout the year.
How much will be Smart Lending AI in 2028?
Our new experimental Smart Lending AI price prediction model suggests that SLAI’s value in 2028 could increase by 47.02% , reaching $0.002079 in the best-case scenario. The price is expected to range between $0.002079 and $0.000849 during the year.
How much will be Smart Lending AI in 2029?
Based on our experimental forecast model, Smart Lending AI's value may experience a 333.75% growth in 2029, potentially reaching $0.006135 under optimal conditions. The predicted price range for 2029 lies between $0.006135 and $0.001865.
How much will be Smart Lending AI in 2030?
Using our new experimental simulation for Smart Lending AI price predictions, SLAI’s value in 2030 is expected to rise by 224.23% , reaching $0.004586 in the best scenario. The price is forecasted to range between $0.004586 and $0.001586 over the course of 2030.
How much will be Smart Lending AI in 2031?
Our experimental simulation indicates that Smart Lending AI’s price could grow by 195.98% in 2031, potentially hitting $0.004187 under ideal conditions. The price will likely fluctuate between $0.004187 and $0.001875 during the year.
How much will be Smart Lending AI in 2032?
Based on the findings from our latest experimental Smart Lending AI price prediction, SLAI could see a 449.04% rise in value, reaching $0.007766 if the most positive scenario plays out in 2032. The price is expected to stay within a range of $0.007766 and $0.002862 throughout the year.
How much will be Smart Lending AI in 2033?
According to our experimental Smart Lending AI price prediction, SLAI’s value is anticipated to rise by 1362.43% in 2033, with the highest potential price being $0.020687. Throughout the year, SLAI’s price could range from $0.020687 and $0.006652.
How much will be Smart Lending AI in 2034?
The results from our new Smart Lending AI price prediction simulation suggest that SLAI may rise by 746.96% in 2034, potentially reaching $0.011981 under the best circumstances. The predicted price range for the year is between $0.011981 and $0.005348.
How much will be Smart Lending AI in 2035?
Based on our experimental forecast for Smart Lending AI’s price, SLAI could grow by 897.93% , with the value potentially hitting $0.014116 in 2035. The expected price range for the year lies between $0.014116 and $0.006323.
How much will be Smart Lending AI in 2036?
Our recent Smart Lending AI price prediction simulation suggests that SLAI’s value might rise by 1964.7% in 2036, possibly reaching $0.0292075 if conditions are optimal. The expected price range for 2036 is between $0.0292075 and $0.010467.
How much will be Smart Lending AI in 2037?
According to the experimental simulation, Smart Lending AI’s value could rise by 4830.69% in 2037, with a high of $0.06975 under favorable conditions. The price is expected to fall between $0.06975 and $0.027183 over the course of the year.
Related Predictions
How to read and predict Smart Lending AI price movements?
Smart Lending AI traders use indicators and chart patterns to predict market direction. They also identify key support and resistance levels to gauge when a downtrend might slow or an uptrend might stall.
Smart Lending AI Price Prediction Indicators
Moving averages are popular tools for Smart Lending AI price prediction. A simple moving average (SMA) calculates the average closing price of SLAI over a specific period, like a 12-day SMA. An exponential moving average (EMA) gives more weight to recent prices, reacting faster to price changes.
Commonly used moving averages in the crypto market include the 50-day, 100-day, and 200-day averages, which help identify key resistance and support levels. A SLAI price move above these averages is seen as bullish, while a drop below indicates weakness.
Traders also use RSI and Fibonacci retracement levels to gauge SLAI's future direction.
How to read Smart Lending AI charts and predict price movements?
Most traders prefer candlestick charts over simple line charts because they provide more detailed information. Candlesticks can represent Smart Lending AI's price action in different time frames, such as 5-minute for short-term and weekly for long-term trends. Popular choices include 1-hour, 4-hour, and 1-day charts.
A 1-hour candlestick chart, for instance, shows SLAI's opening, closing, highest, and lowest prices within each hour. The candle's color is crucial: green indicates the price closed higher than it opened, while red means the opposite. Some charts use hollow and filled candlesticks to convey the same information.
What affects the price of Smart Lending AI?
Smart Lending AI's price action is driven by supply and demand, influenced by factors like block reward halvings, hard forks, and protocol updates. Real-world events, such as regulations, adoption by companies and governments, and cryptocurrency exchange hacks, also impact SLAI's price. Smart Lending AI's market capitalization can change rapidly.
Traders often monitor the activity of SLAI "whales," large holders of Smart Lending AI, as their actions can significantly influence price movements in the relatively small Smart Lending AI market.
Bullish and bearish price prediction patterns
Traders often identify candlestick patterns to gain an edge in cryptocurrency price predictions. Certain formations indicate bullish trends, while others suggest bearish movements.
Commonly followed bullish candlestick patterns:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Three White Soldiers
Common bearish candlestick patterns:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


