Gameflip (FLP) Price Prediction
Gameflip Price Prediction up to $0.004635 by 2026
| Year | Min. Price | Max. Price |
|---|---|---|
| 2026 | $0.001552 | $0.004635 |
| 2027 | $0.001494 | $0.003927 |
| 2028 | $0.002697 | $0.006608 |
| 2029 | $0.005926 | $0.019495 |
| 2030 | $0.00504 | $0.014572 |
| 2031 | $0.005959 | $0.0133034 |
| 2032 | $0.009096 | $0.024677 |
| 2033 | $0.021137 | $0.065731 |
| 2034 | $0.016993 | $0.038067 |
| 2035 | $0.020091 | $0.044853 |
Investment Profit Calculator
If you open a short on $10,000.00 of Gameflip today and close it on Apr 06, 2026, our forecast suggests you could make around $3,955.04 in profit, equal to a 39.55% ROI over the next 90 days.
Long-term Gameflip price prediction for 2027, 2028, 2029, 2030, 2031, 2032 and 2037
[
'name' => 'Gameflip'
'name_with_ticker' => 'Gameflip <small>FLP</small>'
'name_lang' => 'Gameflip'
'name_lang_with_ticker' => 'Gameflip <small>FLP</small>'
'name_with_lang' => 'Gameflip'
'name_with_lang_with_ticker' => 'Gameflip <small>FLP</small>'
'image' => '/uploads/coins/gameflip.png?1717125720'
'price_for_sd' => 0.004494
'ticker' => 'FLP'
'marketcap' => '$253.5K'
'low24h' => '$0.004452'
'high24h' => '$0.00455'
'volume24h' => '$11.21'
'current_supply' => '56.4M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '5.85 USD'
'price' => '$0.004494'
'change_24h_pct' => '0.5326%'
'ath_price' => '$0.2682'
'ath_days' => 1855
'ath_exchange' => null
'ath_pair' => null
'ath_date' => 'Dec 8, 2020'
'ath_pct' => '-98.32%'
'fdv' => '$449.47K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.221617'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004533'
'next_week_prediction_price_date' => 'January 13, 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003972'
'next_month_prediction_price_date' => 'February 5, 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001552'
'current_year_max_price_prediction' => '$0.004635'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00504'
'grand_prediction_max_price' => '$0.014572'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0045798212533141
107 => 0.0045969206433989
108 => 0.0046354464423763
109 => 0.0043062477082271
110 => 0.0044540482750931
111 => 0.0045408672610865
112 => 0.0041486159238663
113 => 0.0045331137133339
114 => 0.0043005170906666
115 => 0.0042215703034494
116 => 0.0043278617519891
117 => 0.0042864398711213
118 => 0.0042508277703257
119 => 0.0042309556061882
120 => 0.0043090043150367
121 => 0.0043053632494805
122 => 0.0041776604132027
123 => 0.0040110772691119
124 => 0.0040669880401741
125 => 0.0040466751328809
126 => 0.0039730585364333
127 => 0.0040226672339373
128 => 0.0038042156365171
129 => 0.0034283810172818
130 => 0.0036766688788744
131 => 0.0036671100662883
201 => 0.0036622900795248
202 => 0.0038488715453391
203 => 0.0038309360425679
204 => 0.0037983829294131
205 => 0.0039724606729818
206 => 0.0039089199549032
207 => 0.0041047374759454
208 => 0.0042337155599871
209 => 0.0042010025458702
210 => 0.0043223070573165
211 => 0.0040682761114155
212 => 0.0041526550016913
213 => 0.004170045374033
214 => 0.0039703125806475
215 => 0.0038338705126334
216 => 0.0038247713822503
217 => 0.0035881996391889
218 => 0.0037145743547919
219 => 0.0038257788747815
220 => 0.0037725205395258
221 => 0.0037556605416314
222 => 0.0038417946143866
223 => 0.0038484879695282
224 => 0.0036958787629714
225 => 0.0037276110495196
226 => 0.0038599399594793
227 => 0.0037242767005096
228 => 0.003460705148799
301 => 0.0033953357598129
302 => 0.0033866142783253
303 => 0.0032093273108836
304 => 0.0033997040549609
305 => 0.0033165995043916
306 => 0.0035791257838946
307 => 0.0034291721809991
308 => 0.0034227079808868
309 => 0.003412936394325
310 => 0.0032603381778155
311 => 0.0032937474891085
312 => 0.0034048051282282
313 => 0.00344443174502
314 => 0.0034402983642373
315 => 0.0034042608852092
316 => 0.0034207586585665
317 => 0.0033676135823774
318 => 0.0033488469498559
319 => 0.0032896142954492
320 => 0.0032025586569097
321 => 0.0032146642773918
322 => 0.0030421842780982
323 => 0.0029482080202766
324 => 0.0029221966306987
325 => 0.0028874131134644
326 => 0.0029261255215257
327 => 0.0030416956639311
328 => 0.0029022935526167
329 => 0.0026632984106894
330 => 0.0026776624259471
331 => 0.0027099341035168
401 => 0.0026497960458641
402 => 0.0025928804213005
403 => 0.002642363939148
404 => 0.0025410985468961
405 => 0.0027221715423694
406 => 0.002717274025293
407 => 0.0027847668405265
408 => 0.002826971482984
409 => 0.0027297034460347
410 => 0.0027052407977827
411 => 0.0027191758339924
412 => 0.0024888607261225
413 => 0.0027659451825886
414 => 0.0027683414204743
415 => 0.0027478233768987
416 => 0.0028953622959441
417 => 0.0032067154336726
418 => 0.0030895718591082
419 => 0.0030442103263535
420 => 0.0029579780194279
421 => 0.0030728774484386
422 => 0.0030640549650009
423 => 0.0030241563490681
424 => 0.0030000255416607
425 => 0.0030444872941998
426 => 0.0029945162384846
427 => 0.0029855400637654
428 => 0.0029311542111414
429 => 0.0029117409361532
430 => 0.0028973681202167
501 => 0.0028815450621144
502 => 0.0029164467854278
503 => 0.0028373548886956
504 => 0.0027419778147109
505 => 0.0027340482430033
506 => 0.002755942487663
507 => 0.0027462559142359
508 => 0.0027340018674164
509 => 0.0027106055548469
510 => 0.0027036643686907
511 => 0.0027262198563137
512 => 0.0027007560258539
513 => 0.0027383292947839
514 => 0.0027281114446588
515 => 0.0026710353644648
516 => 0.0025998974362716
517 => 0.0025992641594939
518 => 0.0025839376095543
519 => 0.0025644169438439
520 => 0.0025589867412157
521 => 0.0026381965752956
522 => 0.0028021585612904
523 => 0.0027699689001618
524 => 0.0027932292292564
525 => 0.0029076470268077
526 => 0.0029440170039861
527 => 0.002918202455655
528 => 0.0028828659097274
529 => 0.0028844205384122
530 => 0.0030051762129466
531 => 0.0030127075962454
601 => 0.0030317369721251
602 => 0.0030561950978315
603 => 0.0029223677802227
604 => 0.0028781172837877
605 => 0.0028571489436528
606 => 0.0027925745718059
607 => 0.0028622124956545
608 => 0.0028216374596212
609 => 0.0028271124182227
610 => 0.002823546844251
611 => 0.0028254938887426
612 => 0.0027221209287768
613 => 0.0027597846022655
614 => 0.002697161440101
615 => 0.0026133160557425
616 => 0.0026130349766141
617 => 0.0026335560156522
618 => 0.002621349298644
619 => 0.0025885013370384
620 => 0.0025931672349465
621 => 0.0025522890595832
622 => 0.0025981305855588
623 => 0.0025994451564949
624 => 0.0025817936719895
625 => 0.0026524188676664
626 => 0.00268135406796
627 => 0.0026697354827271
628 => 0.0026805388770472
629 => 0.0027713065259093
630 => 0.002786105613144
701 => 0.0027926783901208
702 => 0.002783871739698
703 => 0.0026821979430439
704 => 0.0026867076082759
705 => 0.0026536186770136
706 => 0.0026256620169226
707 => 0.0026267801367128
708 => 0.002641153494111
709 => 0.0027039227888552
710 => 0.0028360170691923
711 => 0.0028410299505714
712 => 0.002847105709039
713 => 0.0028223925459198
714 => 0.0028149388194499
715 => 0.0028247722086337
716 => 0.002874379875141
717 => 0.0030019842617479
718 => 0.0029568803491106
719 => 0.0029202101660522
720 => 0.0029523798028048
721 => 0.0029474275393807
722 => 0.0029056254522995
723 => 0.0029044522069413
724 => 0.0028242206368968
725 => 0.0027945608522358
726 => 0.0027697749161767
727 => 0.0027427093210533
728 => 0.0027266639290173
729 => 0.0027513169436849
730 => 0.0027569553798253
731 => 0.0027030511323935
801 => 0.0026957041826516
802 => 0.0027397235547084
803 => 0.0027203522702738
804 => 0.0027402761166995
805 => 0.0027448986199739
806 => 0.0027441542904814
807 => 0.0027239284447539
808 => 0.0027368197956772
809 => 0.0027063279076468
810 => 0.0026731725591473
811 => 0.0026520215124557
812 => 0.0026335644189382
813 => 0.0026438054871543
814 => 0.002607297948909
815 => 0.0025956184526728
816 => 0.002732452496049
817 => 0.0028335332751048
818 => 0.002832063520545
819 => 0.0028231167676521
820 => 0.0028098237076357
821 => 0.0028734074050035
822 => 0.0028512561162367
823 => 0.0028673730296166
824 => 0.0028714754604966
825 => 0.0028838922831969
826 => 0.0028883302300503
827 => 0.0028749156723071
828 => 0.0028298947780704
829 => 0.0027177069900907
830 => 0.002665483271941
831 => 0.0026482485750968
901 => 0.0026488750235937
902 => 0.0026315947774589
903 => 0.002636684584392
904 => 0.0026298247503213
905 => 0.0026168338841635
906 => 0.0026430033377764
907 => 0.0026460191235199
908 => 0.002639910860345
909 => 0.002641349577445
910 => 0.00259077576723
911 => 0.0025946207841801
912 => 0.0025732112412007
913 => 0.002569197209988
914 => 0.0025150757496784
915 => 0.0024191917377088
916 => 0.0024723207880262
917 => 0.0024081483663178
918 => 0.0023838452978459
919 => 0.0024988922440891
920 => 0.0024873447215918
921 => 0.0024675803826639
922 => 0.0024383448061404
923 => 0.0024275010464224
924 => 0.0023616177950932
925 => 0.0023577250611311
926 => 0.0023903785794874
927 => 0.0023753101043049
928 => 0.002354148258271
929 => 0.0022775021970779
930 => 0.0021913266476582
1001 => 0.002193927745815
1002 => 0.0022213385847323
1003 => 0.0023010392957397
1004 => 0.0022698988491128
1005 => 0.0022473060977896
1006 => 0.0022430751546023
1007 => 0.0022960342666701
1008 => 0.002370982505523
1009 => 0.0024061465423204
1010 => 0.0023713000498018
1011 => 0.0023312702754649
1012 => 0.0023337067023487
1013 => 0.0023499151588679
1014 => 0.0023516184384729
1015 => 0.0023255631705068
1016 => 0.0023328975758197
1017 => 0.0023217559434774
1018 => 0.0022533797663586
1019 => 0.0022521430581377
1020 => 0.002235362441558
1021 => 0.002234854331157
1022 => 0.0022063063162338
1023 => 0.002202312251603
1024 => 0.0021456284352325
1025 => 0.0021829378948219
1026 => 0.0021579126681639
1027 => 0.0021201937487359
1028 => 0.0021136909928095
1029 => 0.002113495512114
1030 => 0.0021522244085704
1031 => 0.0021824853251178
1101 => 0.0021583479926958
1102 => 0.0021528523899859
1103 => 0.002211531049259
1104 => 0.0022040636549987
1105 => 0.0021975969397287
1106 => 0.0023642717127732
1107 => 0.0022323356241138
1108 => 0.0021748039588096
1109 => 0.0021035975980288
1110 => 0.0021267827481526
1111 => 0.0021316681999445
1112 => 0.0019604297381778
1113 => 0.0018909583155655
1114 => 0.0018671183413002
1115 => 0.0018533980990628
1116 => 0.0018596505857384
1117 => 0.0017971181572021
1118 => 0.0018391409833694
1119 => 0.0017849931859916
1120 => 0.0017759151315491
1121 => 0.0018727381008855
1122 => 0.001886210451437
1123 => 0.0018287332184528
1124 => 0.0018656429067474
1125 => 0.0018522589406887
1126 => 0.0017859213945641
1127 => 0.001783387788248
1128 => 0.0017501019394802
1129 => 0.0016980160315688
1130 => 0.0016742113740019
1201 => 0.0016618137016595
1202 => 0.0016669292228937
1203 => 0.0016643426588202
1204 => 0.0016474635786206
1205 => 0.0016653101479393
1206 => 0.0016197195380418
1207 => 0.0016015649898321
1208 => 0.0015933650015881
1209 => 0.0015529007112065
1210 => 0.0016172973917552
1211 => 0.0016299843490713
1212 => 0.0016426963036126
1213 => 0.001753345189074
1214 => 0.0017478174834468
1215 => 0.0017977852502144
1216 => 0.0017958435946826
1217 => 0.0017815919781764
1218 => 0.0017214667524135
1219 => 0.0017454315957735
1220 => 0.0016716715328751
1221 => 0.0017269375871953
1222 => 0.0017017164679692
1223 => 0.0017184103014148
1224 => 0.0016883932836573
1225 => 0.0017050059406566
1226 => 0.0016329928973061
1227 => 0.0015657481306762
1228 => 0.0015928093877652
1229 => 0.001622228069051
1230 => 0.0016860152658193
1231 => 0.001648024137657
]
'min_raw' => 0.0015529007112065
'max_raw' => 0.0046354464423763
'avg_raw' => 0.0030941735767914
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001552'
'max' => '$0.004635'
'avg' => '$0.003094'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0029417492887935
'max_diff' => 0.00014079644237633
'year' => 2026
]
1 => [
'items' => [
101 => 0.0016616871839478
102 => 0.0016159182660401
103 => 0.0015214839151516
104 => 0.0015220184033221
105 => 0.001507491735802
106 => 0.0014949385741365
107 => 0.0016523878757372
108 => 0.001632806566178
109 => 0.0016016063121339
110 => 0.0016433690920207
111 => 0.0016544118338872
112 => 0.0016547262052239
113 => 0.001685195251376
114 => 0.0017014565867692
115 => 0.0017043227176129
116 => 0.0017522664200605
117 => 0.0017683365167282
118 => 0.0018345269705772
119 => 0.0017000769260727
120 => 0.0016973080158835
121 => 0.0016439567799785
122 => 0.0016101205827179
123 => 0.0016462735733531
124 => 0.0016783001876804
125 => 0.0016449519361595
126 => 0.0016493065137881
127 => 0.0016045392107735
128 => 0.0016205414151038
129 => 0.0016343246692028
130 => 0.0016267143664316
131 => 0.0016153213748402
201 => 0.0016756743705323
202 => 0.0016722690179901
203 => 0.0017284711150879
204 => 0.0017722846688261
205 => 0.0018508063897347
206 => 0.0017688648805367
207 => 0.0017658786062536
208 => 0.001795069916385
209 => 0.0017683320476907
210 => 0.0017852294577457
211 => 0.0018480839557419
212 => 0.0018494119722397
213 => 0.0018271659848483
214 => 0.0018258123144938
215 => 0.0018300848997168
216 => 0.0018551095648194
217 => 0.0018463651779023
218 => 0.0018564844038236
219 => 0.0018691386507893
220 => 0.0019214819815289
221 => 0.0019341017813627
222 => 0.0019034422103826
223 => 0.0019062104263614
224 => 0.0018947429051908
225 => 0.0018836654234276
226 => 0.001908565984695
227 => 0.0019540722498328
228 => 0.0019537891577192
301 => 0.0019643457267158
302 => 0.0019709223817453
303 => 0.0019426905639528
304 => 0.0019243126886826
305 => 0.0019313599354758
306 => 0.0019426286365672
307 => 0.0019277056475876
308 => 0.001835594046605
309 => 0.0018635348222312
310 => 0.0018588841109329
311 => 0.0018522609324983
312 => 0.0018803555984501
313 => 0.0018776457993817
314 => 0.0017964767967646
315 => 0.00180167297296
316 => 0.0017967927934493
317 => 0.001812561651839
318 => 0.0017674804775887
319 => 0.0017813471431617
320 => 0.0017900441858172
321 => 0.0017951668107552
322 => 0.0018136732446477
323 => 0.0018115017282309
324 => 0.0018135382601383
325 => 0.0018409784160836
326 => 0.0019797613085305
327 => 0.0019873149551592
328 => 0.001950118036543
329 => 0.0019649774718534
330 => 0.0019364506054588
331 => 0.0019556008819829
401 => 0.0019687030148164
402 => 0.001909496995937
403 => 0.0019059911997429
404 => 0.0018773465928231
405 => 0.0018927385820683
406 => 0.0018682488204559
407 => 0.0018742577513401
408 => 0.0018574562567388
409 => 0.001887695601877
410 => 0.0019215078884607
411 => 0.0019300502073394
412 => 0.001907579044069
413 => 0.0018913084409395
414 => 0.0018627426217138
415 => 0.0019102482157169
416 => 0.0019241402991101
417 => 0.0019101752465168
418 => 0.0019069392386885
419 => 0.0019008070097013
420 => 0.0019082402200571
421 => 0.0019240646398405
422 => 0.0019166021357018
423 => 0.0019215312511578
424 => 0.0019027465459213
425 => 0.0019426999098592
426 => 0.0020061554670933
427 => 0.0020063594870858
428 => 0.0019988969427215
429 => 0.0019958434303504
430 => 0.0020035004537332
501 => 0.0020076540748109
502 => 0.0020324154843732
503 => 0.0020589854633716
504 => 0.0021829759619672
505 => 0.0021481599261176
506 => 0.0022581716726993
507 => 0.0023451766810081
508 => 0.002371265678732
509 => 0.0023472650284082
510 => 0.0022651601001402
511 => 0.0022611316406572
512 => 0.0023838310672961
513 => 0.0023491628592808
514 => 0.0023450391862507
515 => 0.0023011702722661
516 => 0.0023271022337017
517 => 0.0023214305333368
518 => 0.0023124774768418
519 => 0.0023619538528248
520 => 0.0024545692118786
521 => 0.0024401342396287
522 => 0.0024293592024633
523 => 0.0023821461261705
524 => 0.0024105789435211
525 => 0.0024004545618573
526 => 0.0024439553305764
527 => 0.0024181864388472
528 => 0.002348900213508
529 => 0.0023599342732636
530 => 0.002358266497329
531 => 0.0023925892078836
601 => 0.0023822863821172
602 => 0.0023562547052437
603 => 0.0024542526626499
604 => 0.0024478892203892
605 => 0.0024569111266294
606 => 0.0024608828487681
607 => 0.0025205324785236
608 => 0.0025449690232591
609 => 0.002550516546736
610 => 0.0025737293742446
611 => 0.0025499389904412
612 => 0.002645117487911
613 => 0.0027084056349091
614 => 0.0027819180744257
615 => 0.0028893395068403
616 => 0.0029297309591321
617 => 0.0029224346048054
618 => 0.0030038803088784
619 => 0.0031502364286612
620 => 0.0029520173610951
621 => 0.0031607425205557
622 => 0.0030946625449183
623 => 0.0029379881114101
624 => 0.0029279001249625
625 => 0.0030340018703618
626 => 0.0032693253297429
627 => 0.0032103794721845
628 => 0.0032694217440491
629 => 0.0032005457977041
630 => 0.0031971255264361
701 => 0.0032660765930691
702 => 0.0034271845185842
703 => 0.0033506481822123
704 => 0.0032409145765435
705 => 0.0033219401633253
706 => 0.0032517483014908
707 => 0.0030935863913126
708 => 0.0032103343973981
709 => 0.0031322683305206
710 => 0.0031550521590558
711 => 0.0033191354201814
712 => 0.0032993924880923
713 => 0.0033249416703619
714 => 0.0032798480323946
715 => 0.0032377234639192
716 => 0.0031590948286482
717 => 0.0031358167660893
718 => 0.0031422499851236
719 => 0.0031358135781054
720 => 0.0030918215793058
721 => 0.0030823215113535
722 => 0.0030664876485589
723 => 0.0030713952247268
724 => 0.0030416229303129
725 => 0.0030978094011418
726 => 0.0031082381052411
727 => 0.0031491259331475
728 => 0.0031533710430809
729 => 0.0032672430617986
730 => 0.0032045242674305
731 => 0.0032466014495728
801 => 0.0032428376703562
802 => 0.0029413837214627
803 => 0.0029829214158695
804 => 0.0030475410331199
805 => 0.0030184299831384
806 => 0.0029772737694012
807 => 0.0029440379201518
808 => 0.002893682209999
809 => 0.0029645569050434
810 => 0.0030577495923433
811 => 0.0031557345634222
812 => 0.003273457085944
813 => 0.0032471827893584
814 => 0.0031535338227498
815 => 0.0031577348469812
816 => 0.0031837039257379
817 => 0.0031500716092084
818 => 0.003140152782483
819 => 0.0031823412312598
820 => 0.0031826317599202
821 => 0.0031439337151517
822 => 0.003100927920059
823 => 0.0031007477242073
824 => 0.0030930952583572
825 => 0.0032019071543788
826 => 0.0032617426950671
827 => 0.0032686027433773
828 => 0.0032612809591579
829 => 0.0032640988233127
830 => 0.0032292818405723
831 => 0.0033088631384613
901 => 0.0033818948071789
902 => 0.0033623207598685
903 => 0.0033329764803355
904 => 0.0033096023482755
905 => 0.0033568145571958
906 => 0.0033547122718515
907 => 0.0033812569392641
908 => 0.0033800527198208
909 => 0.0033711267465654
910 => 0.0033623210786432
911 => 0.0033972345566073
912 => 0.0033871800356469
913 => 0.0033771098972384
914 => 0.003356912692999
915 => 0.0033596578284951
916 => 0.0033303186156657
917 => 0.0033167449533398
918 => 0.0031126296397278
919 => 0.0030580833582704
920 => 0.0030752447288089
921 => 0.0030808946975849
922 => 0.0030571560859917
923 => 0.0030911911570674
924 => 0.0030858868272923
925 => 0.003106522871518
926 => 0.0030936303669987
927 => 0.0030941594798813
928 => 0.0031320735867009
929 => 0.0031430802132088
930 => 0.0031374821541325
1001 => 0.0031414028428193
1002 => 0.0032317534587871
1003 => 0.0032189084904465
1004 => 0.0032120848570253
1005 => 0.0032139750501165
1006 => 0.0032370615696353
1007 => 0.0032435245346234
1008 => 0.0032161404978246
1009 => 0.0032290549678841
1010 => 0.0032840431423074
1011 => 0.0033032858912944
1012 => 0.0033646995090174
1013 => 0.0033386099126687
1014 => 0.0033864984958981
1015 => 0.0035336916743242
1016 => 0.0036512797702443
1017 => 0.0035431408977026
1018 => 0.003759076461106
1019 => 0.0039272132713324
1020 => 0.0039207599005094
1021 => 0.003891441358572
1022 => 0.0037000220702776
1023 => 0.0035238751872883
1024 => 0.0036712295345005
1025 => 0.0036716051710353
1026 => 0.0036589473019277
1027 => 0.0035803303640115
1028 => 0.0036562116029003
1029 => 0.0036622347800831
1030 => 0.0036588634025528
1031 => 0.0035985879805796
1101 => 0.0035065585519867
1102 => 0.0035245408820464
1103 => 0.0035539963055139
1104 => 0.0034982310438449
1105 => 0.0034804106638054
1106 => 0.003513542140765
1107 => 0.0036202986627461
1108 => 0.003600116960664
1109 => 0.003599589934862
1110 => 0.0036859358147429
1111 => 0.0036241307993553
1112 => 0.0035247676968159
1113 => 0.0034996772029863
1114 => 0.0034106228528734
1115 => 0.0034721330096971
1116 => 0.0034743466507368
1117 => 0.003440658166463
1118 => 0.0035275013316468
1119 => 0.0035267010565912
1120 => 0.003609145717034
1121 => 0.0037667489430001
1122 => 0.0037201379138982
1123 => 0.0036659343583182
1124 => 0.0036718277877113
1125 => 0.0037364641619306
1126 => 0.0036973835345727
1127 => 0.0037114372006504
1128 => 0.0037364428900238
1129 => 0.0037515294432791
1130 => 0.0036696570648667
1201 => 0.0036505686970502
1202 => 0.0036115205956044
1203 => 0.0036013336748046
1204 => 0.0036331375386668
1205 => 0.0036247583441862
1206 => 0.0034741606027791
1207 => 0.0034584223008841
1208 => 0.0034589049721341
1209 => 0.0034193302637037
1210 => 0.0033589693343291
1211 => 0.0035175942527618
1212 => 0.0035048544518573
1213 => 0.0034907906976411
1214 => 0.0034925134272859
1215 => 0.0035613671280802
1216 => 0.0035214285044243
1217 => 0.0036276118812253
1218 => 0.0036057837711195
1219 => 0.0035833958523545
1220 => 0.0035803011600284
1221 => 0.0035716837213514
1222 => 0.00354213131772
1223 => 0.003506445014511
1224 => 0.0034828818260378
1225 => 0.0032127743800831
1226 => 0.0032629047509096
1227 => 0.0033205751730183
1228 => 0.0033404827716306
1229 => 0.0033064294466405
1230 => 0.0035434759505481
1231 => 0.003586786631049
]
'min_raw' => 0.0014949385741365
'max_raw' => 0.0039272132713324
'avg_raw' => 0.0027110759227345
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001494'
'max' => '$0.003927'
'avg' => '$0.002711'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.7962137069938E-5
'max_diff' => -0.0007082331710439
'year' => 2027
]
2 => [
'items' => [
101 => 0.003455595754726
102 => 0.0034310552982542
103 => 0.0035450848187888
104 => 0.0034763110783645
105 => 0.0035072798894665
106 => 0.003440342258898
107 => 0.0035763543564011
108 => 0.0035753181721007
109 => 0.0035224063941994
110 => 0.0035671270665574
111 => 0.0035593557492135
112 => 0.0034996184822789
113 => 0.0035782481343143
114 => 0.0035782871336407
115 => 0.003527360697812
116 => 0.0034678897699944
117 => 0.0034572577727413
118 => 0.0034492479910189
119 => 0.0035053099741713
120 => 0.0035555749729646
121 => 0.0036491056739689
122 => 0.003672621514436
123 => 0.0037644054053173
124 => 0.003709752567174
125 => 0.0037339794624502
126 => 0.0037602811843761
127 => 0.0037728911970811
128 => 0.0037523438580688
129 => 0.0038949220203642
130 => 0.0039069599857439
131 => 0.0039109962114078
201 => 0.0038629196572887
202 => 0.003905622889804
203 => 0.0038856434614925
204 => 0.003937624383514
205 => 0.0039457756558127
206 => 0.0039388718181656
207 => 0.0039414591606523
208 => 0.0038197938516446
209 => 0.0038134848635369
210 => 0.0037274613630232
211 => 0.0037625165753362
212 => 0.0036969825361572
213 => 0.0037177640550563
214 => 0.0037269243505734
215 => 0.0037221395320374
216 => 0.0037644985444439
217 => 0.0037284847305239
218 => 0.0036334383543697
219 => 0.0035383660828939
220 => 0.0035371725279698
221 => 0.0035121416770552
222 => 0.0034940489564729
223 => 0.0034975342563308
224 => 0.0035098169076248
225 => 0.0034933350664511
226 => 0.0034968523029161
227 => 0.0035552618634585
228 => 0.0035669754842674
229 => 0.0035271680239518
301 => 0.0033673353265954
302 => 0.0033281119817542
303 => 0.0033563049441933
304 => 0.0033428305240068
305 => 0.0026979251300988
306 => 0.0028494360863805
307 => 0.0027594134209838
308 => 0.0028009000069423
309 => 0.0027090101768285
310 => 0.0027528648201174
311 => 0.0027447664688171
312 => 0.0029883916029831
313 => 0.0029845877316085
314 => 0.0029864084435391
315 => 0.0028995011192509
316 => 0.003037946846633
317 => 0.0031061501902888
318 => 0.0030935275665513
319 => 0.0030967044090023
320 => 0.003042115730312
321 => 0.0029869369812738
322 => 0.0029257352566417
323 => 0.0030394404962463
324 => 0.0030267984146154
325 => 0.0030557948013992
326 => 0.0031295407771012
327 => 0.003140400152157
328 => 0.0031549952623569
329 => 0.0031497639543009
330 => 0.0032743949357607
331 => 0.0032593013015642
401 => 0.0032956726172428
402 => 0.0032208540613936
403 => 0.0031361897636078
404 => 0.0031522816787324
405 => 0.0031507318979029
406 => 0.0031310014091876
407 => 0.0031131896061851
408 => 0.0030835379726304
409 => 0.0031773601288136
410 => 0.0031735511206119
411 => 0.0032352145359091
412 => 0.0032243149282889
413 => 0.0031515246810145
414 => 0.0031541243989361
415 => 0.0031716087513404
416 => 0.0032321222946447
417 => 0.0032500868343736
418 => 0.0032417649438081
419 => 0.0032614622415084
420 => 0.0032770301824873
421 => 0.0032634173352072
422 => 0.0034561465457396
423 => 0.0033761119404929
424 => 0.0034151202502129
425 => 0.0034244235022309
426 => 0.0034005934178133
427 => 0.0034057613098321
428 => 0.0034135892580743
429 => 0.0034611190269319
430 => 0.0035858508932635
501 => 0.0036410937877832
502 => 0.0038072947615822
503 => 0.0036365066344116
504 => 0.0036263727737368
505 => 0.0036563105879066
506 => 0.0037538881536864
507 => 0.0038329656057562
508 => 0.0038592001586954
509 => 0.0038626674879516
510 => 0.0039118852533057
511 => 0.0039400959585496
512 => 0.0039059089220359
513 => 0.0038769389881225
514 => 0.0037731722807252
515 => 0.0037851835596538
516 => 0.0038679293604597
517 => 0.0039848126778013
518 => 0.004085110723717
519 => 0.0040499898437771
520 => 0.0043179373662409
521 => 0.0043445032686257
522 => 0.0043408327198946
523 => 0.0044013537990636
524 => 0.0042812317818167
525 => 0.0042298772921891
526 => 0.0038832026166573
527 => 0.0039806040598055
528 => 0.0041221827776076
529 => 0.0041034443034135
530 => 0.0040006260541357
531 => 0.004085032726855
601 => 0.0040571252412133
602 => 0.004035113449405
603 => 0.0041359537348744
604 => 0.0040250756987102
605 => 0.0041210766843796
606 => 0.0039979544272556
607 => 0.0040501502729983
608 => 0.0040205213865258
609 => 0.0040396949072533
610 => 0.0039276068968597
611 => 0.0039880868664854
612 => 0.0039250907312835
613 => 0.0039250608629131
614 => 0.003923670219737
615 => 0.0039977848934343
616 => 0.0040002017702828
617 => 0.0039454309144394
618 => 0.0039375375784308
619 => 0.0039667233787195
620 => 0.0039325544503546
621 => 0.0039485418768799
622 => 0.0039330386932174
623 => 0.003929548600028
624 => 0.0039017389437043
625 => 0.0038897577791176
626 => 0.0038944559024686
627 => 0.003878418785423
628 => 0.0038687558423151
629 => 0.0039217480171401
630 => 0.0038934364358293
701 => 0.003917408861259
702 => 0.0038900892569206
703 => 0.0037953876056989
704 => 0.0037409236846295
705 => 0.0035620410443194
706 => 0.0036127719392081
707 => 0.0036464065750042
708 => 0.0036352903280743
709 => 0.0036591723278963
710 => 0.0036606384887239
711 => 0.0036528742071335
712 => 0.003643884163718
713 => 0.0036395083077639
714 => 0.0036721223529742
715 => 0.0036910559039571
716 => 0.0036497822606797
717 => 0.0036401124235395
718 => 0.0036818423556732
719 => 0.0037072975901681
720 => 0.0038952447396181
721 => 0.0038813210077256
722 => 0.0039162668423815
723 => 0.0039123324776868
724 => 0.0039489612797142
725 => 0.0040088338905423
726 => 0.0038870961320835
727 => 0.0039082255975769
728 => 0.0039030451405886
729 => 0.003959604011599
730 => 0.0039597805822207
731 => 0.0039258707137248
801 => 0.0039442538035612
802 => 0.0039339928671282
803 => 0.0039525357661114
804 => 0.0038811350477972
805 => 0.0039680934154726
806 => 0.0040173932064711
807 => 0.004018077734117
808 => 0.0040414454437829
809 => 0.00406518839017
810 => 0.0041107609081852
811 => 0.0040639173973771
812 => 0.0039796504815572
813 => 0.0039857342806989
814 => 0.0039363286187857
815 => 0.0039371591368883
816 => 0.0039327257661677
817 => 0.003946030645429
818 => 0.0038840547205968
819 => 0.0038986003462792
820 => 0.0038782363851448
821 => 0.0039081813303025
822 => 0.0038759655193896
823 => 0.0039030426424153
824 => 0.0039147282310924
825 => 0.0039578483048836
826 => 0.0038695966494308
827 => 0.0036896455498507
828 => 0.0037274734526786
829 => 0.0036715230130785
830 => 0.0036767014392818
831 => 0.003687162684353
901 => 0.003653254366371
902 => 0.003659723004868
903 => 0.0036594918995818
904 => 0.0036575003590783
905 => 0.0036486794959698
906 => 0.0036358874993079
907 => 0.00368684687684
908 => 0.0036955058680913
909 => 0.003714753733021
910 => 0.0037720223231002
911 => 0.0037662998404649
912 => 0.0037756334470666
913 => 0.0037552582362612
914 => 0.0036776465868736
915 => 0.0036818612728362
916 => 0.0036293040713461
917 => 0.0037134097272142
918 => 0.0036934923977642
919 => 0.0036806515658979
920 => 0.0036771478259537
921 => 0.0037345583737908
922 => 0.0037517365095037
923 => 0.0037410322481092
924 => 0.0037190774956959
925 => 0.0037612371106693
926 => 0.0037725172450648
927 => 0.0037750424511606
928 => 0.0038497412055891
929 => 0.0037792172817335
930 => 0.0037961930911531
1001 => 0.003928633510286
1002 => 0.003808528325661
1003 => 0.0038721507206221
1004 => 0.0038690367354637
1005 => 0.0039015837998613
1006 => 0.0038663669262055
1007 => 0.0038668034815615
1008 => 0.0038957030698175
1009 => 0.0038551188101801
1010 => 0.0038450695767562
1011 => 0.003831186632755
1012 => 0.0038614995330843
1013 => 0.0038796707458971
1014 => 0.0040261173758832
1015 => 0.0041207285776319
1016 => 0.0041166212558447
1017 => 0.0041541544883956
1018 => 0.0041372454233664
1019 => 0.0040826415920012
1020 => 0.0041758436739137
1021 => 0.0041463506354559
1022 => 0.0041487820057123
1023 => 0.0041486915099899
1024 => 0.0041683018022382
1025 => 0.0041544061129234
1026 => 0.0041270162829207
1027 => 0.0041451989303063
1028 => 0.0041991948926263
1029 => 0.0043668000164661
1030 => 0.0044605940642394
1031 => 0.0043611534970189
1101 => 0.0044297462687253
1102 => 0.004388615047805
1103 => 0.004381140281416
1104 => 0.0044242216110136
1105 => 0.0044673783487757
1106 => 0.004464629451152
1107 => 0.0044332998756597
1108 => 0.0044156025934227
1109 => 0.004549612343546
1110 => 0.0046483484446404
1111 => 0.004641615304481
1112 => 0.0046713331954101
1113 => 0.004758585842318
1114 => 0.0047665631308655
1115 => 0.0047655581758643
1116 => 0.0047457856338554
1117 => 0.0048316971959242
1118 => 0.004903366132472
1119 => 0.004741208861664
1120 => 0.0048029562275932
1121 => 0.0048306766095346
1122 => 0.0048713783544914
1123 => 0.004940049020638
1124 => 0.0050146435780678
1125 => 0.0050251920663761
1126 => 0.0050177074091297
1127 => 0.0049685102932954
1128 => 0.0050501325481333
1129 => 0.0050979449507399
1130 => 0.0051264161423248
1201 => 0.0051986143470294
1202 => 0.0048308478011763
1203 => 0.0045705243608382
1204 => 0.0045298710965134
1205 => 0.0046125411081286
1206 => 0.0046343405309106
1207 => 0.0046255532109213
1208 => 0.0043325355112491
1209 => 0.004528328418966
1210 => 0.0047389851249342
1211 => 0.0047470773069369
1212 => 0.0048525364585686
1213 => 0.0048868782812565
1214 => 0.004971786721167
1215 => 0.0049664756751326
1216 => 0.0049871495290624
1217 => 0.0049823969680652
1218 => 0.0051396719734179
1219 => 0.0053131696598863
1220 => 0.0053071619866927
1221 => 0.0052822196415315
1222 => 0.0053192632773978
1223 => 0.0054983314829752
1224 => 0.0054818457521151
1225 => 0.0054978602353945
1226 => 0.005708991741612
1227 => 0.0059834927328014
1228 => 0.005855959462945
1229 => 0.0061326699618235
1230 => 0.0063068445530743
1231 => 0.0066080614986536
]
'min_raw' => 0.0026979251300988
'max_raw' => 0.0066080614986536
'avg_raw' => 0.0046529933143762
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002697'
'max' => '$0.006608'
'avg' => '$0.004652'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0012029865559623
'max_diff' => 0.0026808482273212
'year' => 2028
]
3 => [
'items' => [
101 => 0.0065703476535423
102 => 0.0066876092000243
103 => 0.0065028319996762
104 => 0.0060785461980434
105 => 0.0060114013458342
106 => 0.0061458270403355
107 => 0.0064762994931994
108 => 0.0061354192867432
109 => 0.006204378908546
110 => 0.0061845185328276
111 => 0.0061834602578067
112 => 0.0062238503110377
113 => 0.0061652624322227
114 => 0.0059265648741721
115 => 0.0060359585583731
116 => 0.0059937164033869
117 => 0.0060405872237054
118 => 0.0062935297099675
119 => 0.0061816978073952
120 => 0.0060638919825214
121 => 0.0062116466301185
122 => 0.006399789070515
123 => 0.0063880154547195
124 => 0.0063651697190865
125 => 0.0064939499346858
126 => 0.0067066571217929
127 => 0.0067641510197413
128 => 0.0068065918397958
129 => 0.0068124437118378
130 => 0.0068727216307884
131 => 0.0065485920685994
201 => 0.0070629940080309
202 => 0.0071518170129039
203 => 0.0071351219693242
204 => 0.0072338450009971
205 => 0.0072047981807173
206 => 0.0071627138954384
207 => 0.0073192108996311
208 => 0.0071397997129812
209 => 0.0068851481207721
210 => 0.0067454412208488
211 => 0.006929418536502
212 => 0.0070417670632479
213 => 0.0071160222927186
214 => 0.0071384918802902
215 => 0.0065737533238336
216 => 0.0062693905637397
217 => 0.0064644836034338
218 => 0.0067025105764628
219 => 0.0065472698167459
220 => 0.0065533549606172
221 => 0.0063320224338149
222 => 0.0067220935938917
223 => 0.0066652635068834
224 => 0.0069600980988133
225 => 0.0068897334572538
226 => 0.0071301596215598
227 => 0.0070668473549398
228 => 0.0073296530339381
301 => 0.0074344933344703
302 => 0.0076105365161536
303 => 0.0077400345972244
304 => 0.0078160783473328
305 => 0.0078115129658093
306 => 0.0081128361885846
307 => 0.0079351564115455
308 => 0.0077119487356763
309 => 0.0077079116130311
310 => 0.0078235140312409
311 => 0.0080657849858342
312 => 0.0081286023194612
313 => 0.0081637086392605
314 => 0.0081099420884282
315 => 0.0079170834248766
316 => 0.0078338080317707
317 => 0.0079047610794173
318 => 0.0078179915992104
319 => 0.0079677800652638
320 => 0.0081734716222451
321 => 0.008130997129121
322 => 0.0082729829915029
323 => 0.0084199234217198
324 => 0.0086300548364376
325 => 0.0086849909693886
326 => 0.0087757983081226
327 => 0.0088692688883367
328 => 0.0088992891195987
329 => 0.0089566070558085
330 => 0.0089563049619918
331 => 0.0091290364207023
401 => 0.0093195645687079
402 => 0.0093914845338433
403 => 0.009556860527982
404 => 0.0092736599334854
405 => 0.009488470837585
406 => 0.0096822356501485
407 => 0.0094512212526248
408 => 0.00976962078016
409 => 0.0097819835123054
410 => 0.0099686460899885
411 => 0.0097794278072838
412 => 0.0096670705950198
413 => 0.009991441656856
414 => 0.010148394596086
415 => 0.010101119093464
416 => 0.009741350184236
417 => 0.0095319492478507
418 => 0.0089839066069063
419 => 0.0096330867887852
420 => 0.0099492835185329
421 => 0.0097405313110935
422 => 0.0098458137821352
423 => 0.010420200806183
424 => 0.010638890196134
425 => 0.010593404331779
426 => 0.010601090694094
427 => 0.010719091519418
428 => 0.011242372163149
429 => 0.010928810271875
430 => 0.011168516588815
501 => 0.011295655954994
502 => 0.011413750083855
503 => 0.011123748227405
504 => 0.010746460073137
505 => 0.010626957077201
506 => 0.00971977501812
507 => 0.0096725522522529
508 => 0.0096460446827754
509 => 0.00947891820679
510 => 0.0093476025764599
511 => 0.0092431755117847
512 => 0.0089691277095157
513 => 0.0090616107980239
514 => 0.0086248357994287
515 => 0.0089042689651744
516 => 0.0082071655211153
517 => 0.0087877339838684
518 => 0.0084717569648007
519 => 0.00868392703493
520 => 0.0086831867935429
521 => 0.008292514425853
522 => 0.0080671827572937
523 => 0.0082107728665394
524 => 0.0083647128618479
525 => 0.0083896891081703
526 => 0.0085892763303327
527 => 0.0086449768339253
528 => 0.008476201707632
529 => 0.0081927196016976
530 => 0.0082585660293677
531 => 0.0080658483815386
601 => 0.0077281181164954
602 => 0.0079706818890542
603 => 0.008053503825782
604 => 0.0080900827113026
605 => 0.0077579637842156
606 => 0.0076536048066722
607 => 0.0075980449626847
608 => 0.0081498472187816
609 => 0.0081800761919937
610 => 0.0080254204910943
611 => 0.0087244789242151
612 => 0.0085662604710061
613 => 0.0087430292477027
614 => 0.0082525911562263
615 => 0.0082713265517831
616 => 0.0080391452996591
617 => 0.0081691512864917
618 => 0.008077267245287
619 => 0.0081586480874998
620 => 0.0082074274287764
621 => 0.0084395705822416
622 => 0.0087903846857843
623 => 0.0084048961364059
624 => 0.008236933255144
625 => 0.0083411364820198
626 => 0.0086186434069306
627 => 0.0090390806034887
628 => 0.0087901733210392
629 => 0.0089006341462705
630 => 0.0089247649225235
701 => 0.0087412299074937
702 => 0.0090458478012844
703 => 0.0092090950052782
704 => 0.0093765528573268
705 => 0.0095219518181981
706 => 0.0093096665087415
707 => 0.0095368422197638
708 => 0.0093537786985912
709 => 0.0091895517953404
710 => 0.0091898008597627
711 => 0.0090867789243812
712 => 0.0088871609429804
713 => 0.0088503483245208
714 => 0.0090418522146689
715 => 0.0091954201990818
716 => 0.0092080687938191
717 => 0.009293091920598
718 => 0.0093434077312179
719 => 0.0098365710763205
720 => 0.010034925453382
721 => 0.010277469430996
722 => 0.010371953979307
723 => 0.010656318595136
724 => 0.010426671072889
725 => 0.0103769853869
726 => 0.0096872098438559
727 => 0.0098001605503875
728 => 0.0099810055296666
729 => 0.0096901919109549
730 => 0.0098746462159596
731 => 0.009911061403044
801 => 0.0096803101754723
802 => 0.0098035643762903
803 => 0.0094762377612413
804 => 0.008797519511512
805 => 0.0090466034087183
806 => 0.0092300129977954
807 => 0.0089682648999431
808 => 0.009437438234293
809 => 0.0091633568580693
810 => 0.0090764862200326
811 => 0.008737572889433
812 => 0.0088975269355056
813 => 0.0091138670731401
814 => 0.0089801940203225
815 => 0.009257585676029
816 => 0.0096504462381618
817 => 0.0099304220699886
818 => 0.0099519151378825
819 => 0.0097719094349418
820 => 0.010060369722685
821 => 0.010062470840962
822 => 0.0097370864579927
823 => 0.0095377903351717
824 => 0.0094925098367441
825 => 0.0096056293995808
826 => 0.0097429774318878
827 => 0.0099595369977818
828 => 0.010090399407927
829 => 0.010431619169527
830 => 0.010523943453479
831 => 0.010625379850568
901 => 0.010760930158905
902 => 0.01092369305845
903 => 0.010567577100343
904 => 0.010581726251242
905 => 0.010250116001814
906 => 0.0098957428925805
907 => 0.010164667909257
908 => 0.010516251594966
909 => 0.010435597908999
910 => 0.010426522721723
911 => 0.010441784669475
912 => 0.010380974424159
913 => 0.010105931938327
914 => 0.0099678073237994
915 => 0.010146023315887
916 => 0.010240737184201
917 => 0.010387630134038
918 => 0.010369522477436
919 => 0.010747902941065
920 => 0.0108949301476
921 => 0.010857314296519
922 => 0.010864236518394
923 => 0.011130422252891
924 => 0.011426475534923
925 => 0.011703768501217
926 => 0.011985842816541
927 => 0.01164579121987
928 => 0.011473133990547
929 => 0.011651272179108
930 => 0.011556749548781
1001 => 0.012099904619873
1002 => 0.012137511498528
1003 => 0.012680627293327
1004 => 0.013196108855616
1005 => 0.012872344122154
1006 => 0.013177639683125
1007 => 0.013507841723428
1008 => 0.014144855032522
1009 => 0.013930331360417
1010 => 0.0137660095896
1011 => 0.013610726310174
1012 => 0.013933846164132
1013 => 0.014349534694284
1014 => 0.014439070022263
1015 => 0.014584151458718
1016 => 0.014431616068
1017 => 0.014615328144897
1018 => 0.015263912503522
1019 => 0.015088659284609
1020 => 0.014839771540392
1021 => 0.015351766600822
1022 => 0.015537055622862
1023 => 0.016837511016148
1024 => 0.018479389669305
1025 => 0.017799641125741
1026 => 0.017377699269403
1027 => 0.017476865614237
1028 => 0.01807642411727
1029 => 0.018268983279409
1030 => 0.017745541097593
1031 => 0.017930429725332
1101 => 0.018949184242028
1102 => 0.019495713354676
1103 => 0.018753453411047
1104 => 0.016705587665028
1105 => 0.014817361922165
1106 => 0.015318204417086
1107 => 0.015261424421114
1108 => 0.016355949057089
1109 => 0.015084479553298
1110 => 0.015105887838877
1111 => 0.016223046085202
1112 => 0.015925007418023
1113 => 0.015442222947102
1114 => 0.014820886783084
1115 => 0.013672289417257
1116 => 0.012654944699337
1117 => 0.014650191971674
1118 => 0.014564153281169
1119 => 0.014439556507099
1120 => 0.014716833145014
1121 => 0.016063209792383
1122 => 0.016032171452866
1123 => 0.015834721372753
1124 => 0.015984485518273
1125 => 0.015415968568294
1126 => 0.015562488331194
1127 => 0.01481706281756
1128 => 0.015154026281442
1129 => 0.015441187108457
1130 => 0.015498838895969
1201 => 0.015628731317007
1202 => 0.014518814800902
1203 => 0.015017134731196
1204 => 0.015309851003981
1205 => 0.01398734823443
1206 => 0.015283709376398
1207 => 0.014499493623698
1208 => 0.014233319018706
1209 => 0.01459168805849
1210 => 0.014452031295161
1211 => 0.014331962610971
1212 => 0.014264962222151
1213 => 0.01452810889322
1214 => 0.014515832786487
1215 => 0.014085273758049
1216 => 0.013523627057283
1217 => 0.013712134125484
1218 => 0.013643647740344
1219 => 0.013395444245674
1220 => 0.013562703432877
1221 => 0.012826178620372
1222 => 0.011559025961684
1223 => 0.012396145821949
1224 => 0.01236391761794
1225 => 0.012347666696046
1226 => 0.012976739134741
1227 => 0.012916268334931
1228 => 0.012806513241144
1229 => 0.013393428507305
1230 => 0.013179196540032
1231 => 0.013839408983769
]
'min_raw' => 0.0059265648741721
'max_raw' => 0.019495713354676
'avg_raw' => 0.012711139114424
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005926'
'max' => '$0.019495'
'avg' => '$0.012711'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0032286397440733
'max_diff' => 0.012887651856023
'year' => 2029
]
4 => [
'items' => [
101 => 0.014274267599077
102 => 0.014163973388033
103 => 0.014572960017585
104 => 0.013716476947605
105 => 0.014000966267316
106 => 0.014059599121823
107 => 0.013386186064025
108 => 0.012926162105635
109 => 0.012895483752267
110 => 0.012097865603624
111 => 0.01252394678048
112 => 0.012898880583677
113 => 0.012719316387984
114 => 0.012662471727956
115 => 0.012952878767939
116 => 0.012975445882114
117 => 0.012460913287373
118 => 0.012567900906948
119 => 0.013014057065787
120 => 0.012556658916464
121 => 0.011668009027893
122 => 0.011447611568982
123 => 0.011418206485232
124 => 0.010820471096721
125 => 0.011462339581058
126 => 0.011182146786639
127 => 0.012067272466983
128 => 0.011561693425395
129 => 0.0115398989234
130 => 0.011506953337076
131 => 0.010992457796047
201 => 0.011105099621635
202 => 0.011479538205724
203 => 0.01161314211088
204 => 0.011599206128987
205 => 0.011477703252388
206 => 0.0115333266471
207 => 0.011354144312257
208 => 0.011290871300467
209 => 0.011091164270643
210 => 0.010797650107276
211 => 0.010838465051919
212 => 0.010256936692132
213 => 0.0099400891776732
214 => 0.0098523899616542
215 => 0.0097351149047912
216 => 0.0098656364913839
217 => 0.010255289295353
218 => 0.0097852853443124
219 => 0.0089794965371963
220 => 0.0090279258175013
221 => 0.0091367320315642
222 => 0.008933972371483
223 => 0.0087420773695446
224 => 0.0089089145047964
225 => 0.0085674911646952
226 => 0.0091779914110461
227 => 0.0091614790902895
228 => 0.0093890358290472
301 => 0.0095313317277267
302 => 0.0092033857501147
303 => 0.0091209082236054
304 => 0.0091678911710997
305 => 0.0083913677048289
306 => 0.0093255772952232
307 => 0.0093336563785549
308 => 0.0092644783621157
309 => 0.0097619161285155
310 => 0.010811664970349
311 => 0.010416707230002
312 => 0.010263767655279
313 => 0.0099730294119315
314 => 0.010360420858863
315 => 0.010330675239987
316 => 0.010196154270737
317 => 0.010114795568803
318 => 0.01026470147171
319 => 0.010096220568498
320 => 0.010065956768736
321 => 0.009882591069515
322 => 0.0098171378575009
323 => 0.009768678905093
324 => 0.0097153303599704
325 => 0.0098330039568819
326 => 0.0095663401050295
327 => 0.0092447696410753
328 => 0.0092180345364382
329 => 0.0092918525109158
330 => 0.0092591935523113
331 => 0.0092178781779092
401 => 0.0091389958766028
402 => 0.0091155931828589
403 => 0.0091916405841537
404 => 0.0091057875019308
405 => 0.0092324684014101
406 => 0.0091980182063256
407 => 0.0090055822170268
408 => 0.0087657357254322
409 => 0.008763600588562
410 => 0.008711926055375
411 => 0.0086461107680433
412 => 0.0086278024607575
413 => 0.0088948639466121
414 => 0.0094476732298537
415 => 0.0093391435399484
416 => 0.0094175673634749
417 => 0.0098033349563148
418 => 0.0099259588736423
419 => 0.0098389233216299
420 => 0.0097197836899162
421 => 0.0097250252290678
422 => 0.010132161416653
423 => 0.010157554001269
424 => 0.010221712870636
425 => 0.010304175149067
426 => 0.0098529670042237
427 => 0.0097037733660222
428 => 0.0096330771432944
429 => 0.0094153601401742
430 => 0.0096501492623941
501 => 0.0095133476955492
502 => 0.0095318069007235
503 => 0.0095197853191377
504 => 0.0095263499155794
505 => 0.0091778207637853
506 => 0.0093048064685461
507 => 0.0090936681050987
508 => 0.0088109775378362
509 => 0.0088100298599307
510 => 0.0088792179757807
511 => 0.0088380621771419
512 => 0.0087273129812171
513 => 0.0087430443817767
514 => 0.0086052207595166
515 => 0.0087597786648963
516 => 0.0087642108325878
517 => 0.0087046976201906
518 => 0.008942815398309
519 => 0.0090403724462898
520 => 0.0090011995749934
521 => 0.0090376239732127
522 => 0.0093436534385461
523 => 0.0093935495943971
524 => 0.0094157101708711
525 => 0.0093860179341097
526 => 0.0090432176300528
527 => 0.0090584222812372
528 => 0.0089468606392909
529 => 0.0088526028079224
530 => 0.0088563726268599
531 => 0.0089048334048437
601 => 0.0091164644644859
602 => 0.0095618295531704
603 => 0.0095787308327284
604 => 0.0095992156765977
605 => 0.0095158935217235
606 => 0.0094907627625278
607 => 0.0095239167207062
608 => 0.0096911724318322
609 => 0.010121399530331
610 => 0.0099693285398198
611 => 0.0098456924574082
612 => 0.0099541546337316
613 => 0.0099374577318413
614 => 0.0097965190767185
615 => 0.00979256339808
616 => 0.0095220570580856
617 => 0.009422057023321
618 => 0.0093384895093989
619 => 0.0092472359657811
620 => 0.009193137806278
621 => 0.0092762571664486
622 => 0.0092952675475589
623 => 0.0091135256138682
624 => 0.0090887548598657
625 => 0.0092371692460896
626 => 0.0091718576081585
627 => 0.0092390322474214
628 => 0.0092546173399437
629 => 0.0092521077810925
630 => 0.0091839149300985
701 => 0.009227379019782
702 => 0.0091245734904119
703 => 0.0090127879181131
704 => 0.0089414756874737
705 => 0.0088792463080461
706 => 0.0089137747845453
707 => 0.0087906870704764
708 => 0.0087513088334795
709 => 0.0092126543641702
710 => 0.0095534552679917
711 => 0.0095484998878782
712 => 0.0095183352858574
713 => 0.0094735168059204
714 => 0.0096878936808678
715 => 0.0096132090642371
716 => 0.0096675483629445
717 => 0.0096813799950787
718 => 0.0097232441797279
719 => 0.0097382070273917
720 => 0.0096929789093857
721 => 0.0095411878212082
722 => 0.0091629388613336
723 => 0.0089868629494484
724 => 0.00892875496575
725 => 0.0089308670805946
726 => 0.0088726055242829
727 => 0.0088897661637165
728 => 0.0088666377542089
729 => 0.0088228381419646
730 => 0.0089110702819133
731 => 0.0089212382141031
801 => 0.0089006437783435
802 => 0.0089054945134944
803 => 0.0087349813814036
804 => 0.0087479451245014
805 => 0.00867576135558
806 => 0.0086622277690956
807 => 0.0084797534870221
808 => 0.0081564738462587
809 => 0.0083356021487556
810 => 0.0081192403485903
811 => 0.0080373008564514
812 => 0.0084251896680313
813 => 0.0083862563897096
814 => 0.0083196195411121
815 => 0.0082210497537003
816 => 0.0081844892607241
817 => 0.0079623592790457
818 => 0.0079492346547107
819 => 0.0080593282716446
820 => 0.0080085238555197
821 => 0.0079371752141433
822 => 0.0076787576675739
823 => 0.0073882107861205
824 => 0.007396980570159
825 => 0.0074893981273324
826 => 0.0077581146390197
827 => 0.0076531224490606
828 => 0.0075769494105988
829 => 0.007562684490248
830 => 0.0077412398340716
831 => 0.007993933054083
901 => 0.0081124910592203
902 => 0.0079950036767894
903 => 0.0078600404978228
904 => 0.0078682550811673
905 => 0.0079229030239604
906 => 0.0079286457500677
907 => 0.0078407985949993
908 => 0.0078655270545834
909 => 0.0078279622632574
910 => 0.0075974272082293
911 => 0.0075932575601184
912 => 0.0075366805397345
913 => 0.0075349674100424
914 => 0.0074387157845703
915 => 0.0074252495168107
916 => 0.0072341360723798
917 => 0.007359927520249
918 => 0.0072755532213658
919 => 0.0071483812510637
920 => 0.0071264567554496
921 => 0.0071257976786368
922 => 0.0072563748570049
923 => 0.0073584016498941
924 => 0.0072770209484186
925 => 0.0072584921401913
926 => 0.007456331336744
927 => 0.0074311544956383
928 => 0.0074093515136141
929 => 0.0079713071477945
930 => 0.0075264754133957
1001 => 0.0073325033870901
1002 => 0.0070924261702482
1003 => 0.0071705965226263
1004 => 0.0071870681644338
1005 => 0.0066097257350999
1006 => 0.0063754979834226
1007 => 0.0062951198457335
1008 => 0.0062488610911134
1009 => 0.0062699417864747
1010 => 0.00605910933779
1011 => 0.0062007922301529
1012 => 0.0060182291508152
1013 => 0.0059876218564526
1014 => 0.0063140672575342
1015 => 0.0063594902280283
1016 => 0.0061657017240896
1017 => 0.0062901453151272
1018 => 0.0062450203391217
1019 => 0.0060213586708227
1020 => 0.0060128164402375
1021 => 0.0059005908771729
1022 => 0.0057249796021278
1023 => 0.0056447205371526
1024 => 0.0056029209192724
1025 => 0.0056201682562681
1026 => 0.0056114474749059
1027 => 0.0055545384775534
1028 => 0.0056147094320188
1029 => 0.0054609975077147
1030 => 0.0053997881809157
1031 => 0.0053721413480461
1101 => 0.005235713167898
1102 => 0.0054528310724008
1103 => 0.0054956060347671
1104 => 0.0055384652770232
1105 => 0.0059115257196148
1106 => 0.0058928886741608
1107 => 0.0060613584884558
1108 => 0.0060548120612684
1109 => 0.0060067617412014
1110 => 0.0058040453447328
1111 => 0.0058848444872929
1112 => 0.0056361572854677
1113 => 0.0058224906461611
1114 => 0.0057374558818078
1115 => 0.005793740306796
1116 => 0.0056925358357053
1117 => 0.005748546568637
1118 => 0.0055057495651907
1119 => 0.0052790291396185
1120 => 0.0053702680572505
1121 => 0.0054694551951524
1122 => 0.0056845181825365
1123 => 0.0055564284414817
1124 => 0.0056024943559743
1125 => 0.0054481812537649
1126 => 0.0051297892465482
1127 => 0.0051315913107318
1128 => 0.0050826136369685
1129 => 0.0050402897759795
1130 => 0.0055711410890852
1201 => 0.0055051213367831
1202 => 0.0053999275019413
1203 => 0.0055407336301139
1204 => 0.0055779650052965
1205 => 0.0055790249302068
1206 => 0.0056817534465893
1207 => 0.0057365796741978
1208 => 0.0057462430344442
1209 => 0.0059078885745686
1210 => 0.0059620700274621
1211 => 0.0061852357638841
1212 => 0.0057319280518347
1213 => 0.0057225924778125
1214 => 0.0055427150610946
1215 => 0.0054286339596627
1216 => 0.0055505262917103
1217 => 0.0056585062579419
1218 => 0.0055460702996384
1219 => 0.0055607520621402
1220 => 0.0054098159744732
1221 => 0.0054637685236111
1222 => 0.005510239727122
1223 => 0.0054845810599944
1224 => 0.0054461687934108
1225 => 0.0056496531320982
1226 => 0.0056381717482479
1227 => 0.0058276610425183
1228 => 0.0059753814979115
1229 => 0.0062401229621661
1230 => 0.0059638514429318
1231 => 0.0059537830106911
]
'min_raw' => 0.0050402897759795
'max_raw' => 0.014572960017585
'avg_raw' => 0.009806624896782
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00504'
'max' => '$0.014572'
'avg' => '$0.0098066'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00088627509819258
'max_diff' => -0.0049227533370918
'year' => 2030
]
5 => [
'items' => [
101 => 0.0060522035508715
102 => 0.0059620549597902
103 => 0.00601902575753
104 => 0.0062309440858851
105 => 0.0062354215862267
106 => 0.0061604176865713
107 => 0.0061558536924609
108 => 0.0061702590118425
109 => 0.0062546314174024
110 => 0.0062251491063976
111 => 0.0062592667830931
112 => 0.0063019314602292
113 => 0.0064784106543125
114 => 0.0065209591905385
115 => 0.0064175883063961
116 => 0.0064269215398394
117 => 0.006388257991576
118 => 0.0063509094884063
119 => 0.0064348634692209
120 => 0.0065882910192792
121 => 0.0065873365544532
122 => 0.0066229287638613
123 => 0.0066451024154607
124 => 0.0065499168706908
125 => 0.006487954581115
126 => 0.0065117148657013
127 => 0.0065497080781864
128 => 0.0064993941789521
129 => 0.0061888334852124
130 => 0.0062830377609991
131 => 0.0062673575631545
201 => 0.0062450270546465
202 => 0.0063397501824101
203 => 0.0063306139056587
204 => 0.0060569469462965
205 => 0.0060744662171246
206 => 0.0060580123511812
207 => 0.0061111781581885
208 => 0.0059591838317365
209 => 0.0060059362628557
210 => 0.0060352589493769
211 => 0.0060525302370054
212 => 0.0061149259709521
213 => 0.0061076045517423
214 => 0.0061144708612543
215 => 0.0062069872628344
216 => 0.006674903474231
217 => 0.0067003711212184
218 => 0.0065749591130982
219 => 0.0066250587366998
220 => 0.0065288784149681
221 => 0.0065934449092987
222 => 0.0066376196649086
223 => 0.0064380024386246
224 => 0.0064261824019891
225 => 0.0063296051098564
226 => 0.0063815002762311
227 => 0.0062989313351344
228 => 0.0063191908651406
301 => 0.0062625434530493
302 => 0.0063644975164264
303 => 0.0064784980013418
304 => 0.006507299025847
305 => 0.0064315359299945
306 => 0.0063766784555659
307 => 0.0062803668016449
308 => 0.0064405352285608
309 => 0.0064873733576354
310 => 0.0064402892078084
311 => 0.0064293787814845
312 => 0.0064087035433154
313 => 0.0064337651310002
314 => 0.0064871182671254
315 => 0.0064619579134065
316 => 0.0064785767703062
317 => 0.0064152428250952
318 => 0.0065499483810668
319 => 0.006763893222607
320 => 0.006764581090256
321 => 0.0067394206009134
322 => 0.0067291254707647
323 => 0.0067549416596964
324 => 0.0067689458831563
325 => 0.006852430704282
326 => 0.0069420132435319
327 => 0.0073600558662871
328 => 0.007242671170642
329 => 0.0076135834550173
330 => 0.0079069269150259
331 => 0.0079948877923276
401 => 0.0079139679240891
402 => 0.0076371454260507
403 => 0.0076235631936454
404 => 0.008037252877159
405 => 0.0079203665933785
406 => 0.0079064633418519
407 => 0.0077585562355229
408 => 0.0078459876540149
409 => 0.0078268651202491
410 => 0.0077966792651936
411 => 0.0079634923211508
412 => 0.0082757514703984
413 => 0.0082270829536404
414 => 0.0081907541635481
415 => 0.0080315719805153
416 => 0.0081274352093288
417 => 0.0080933001496875
418 => 0.0082399660285505
419 => 0.0081530844109591
420 => 0.007919481064818
421 => 0.0079566831676577
422 => 0.0079510601446537
423 => 0.0080667815596238
424 => 0.0080320448632319
425 => 0.0079442772471792
426 => 0.0082746842025732
427 => 0.0082532294127099
428 => 0.0082836473994882
429 => 0.0082970383379755
430 => 0.0084981512293002
501 => 0.0085805407459812
502 => 0.0085992446086993
503 => 0.0086775082773123
504 => 0.0085972973373276
505 => 0.0089181982866975
506 => 0.0091315786929389
507 => 0.0093794310152436
508 => 0.0097416098745546
509 => 0.0098777924759973
510 => 0.0098531923079699
511 => 0.010127792185609
512 => 0.010621242061715
513 => 0.0099529326362028
514 => 0.010656664084049
515 => 0.010433870832631
516 => 0.0099056320413989
517 => 0.0098716196907697
518 => 0.010229349133171
519 => 0.011022758606234
520 => 0.010824018532007
521 => 0.011023083673798
522 => 0.010790863611931
523 => 0.010779331928555
524 => 0.011011805263718
525 => 0.011554991882789
526 => 0.011296944281114
527 => 0.010926969768246
528 => 0.011200153191107
529 => 0.010963496428293
530 => 0.010430242505615
531 => 0.010823866559218
601 => 0.010560661364341
602 => 0.010637478632964
603 => 0.011190696803777
604 => 0.011124132129831
605 => 0.011210272981639
606 => 0.011058236632895
607 => 0.010916210709237
608 => 0.010651108775745
609 => 0.010572625162605
610 => 0.010594315209732
611 => 0.010572614414095
612 => 0.010424292318719
613 => 0.010392262176344
614 => 0.010338877202447
615 => 0.010355423438133
616 => 0.010255044068881
617 => 0.010444480678095
618 => 0.010479641782075
619 => 0.010617497948558
620 => 0.010631810633083
621 => 0.01101573809448
622 => 0.010804277300381
623 => 0.010946143457709
624 => 0.010933453613302
625 => 0.009917080577765
626 => 0.010057127814527
627 => 0.010274997365684
628 => 0.010176847428203
629 => 0.010038086380153
630 => 0.0099260293939556
701 => 0.0097562516014518
702 => 0.0099952105841072
703 => 0.010309416235844
704 => 0.010639779406929
705 => 0.011036689110736
706 => 0.010948103485384
707 => 0.010632359456101
708 => 0.010646523502604
709 => 0.010734080064735
710 => 0.010620686361423
711 => 0.010587244344608
712 => 0.010729485645162
713 => 0.010730465182824
714 => 0.010599992023076
715 => 0.010454994982353
716 => 0.010454387439458
717 => 0.010428586616566
718 => 0.010795453521007
719 => 0.010997193224022
720 => 0.011020322355852
721 => 0.010995636449166
722 => 0.011005137074901
723 => 0.010887749186748
724 => 0.011156063088769
725 => 0.011402294458759
726 => 0.011336299191636
727 => 0.011237362904438
728 => 0.011158555386268
729 => 0.011317734644894
730 => 0.011310646643079
731 => 0.01140014384255
801 => 0.011396083732621
802 => 0.011365989190599
803 => 0.011336300266407
804 => 0.011454013494944
805 => 0.011420113975542
806 => 0.011386161800823
807 => 0.011318065516606
808 => 0.01132732093259
809 => 0.011228401728138
810 => 0.011182637177923
811 => 0.010494448147204
812 => 0.010310541550971
813 => 0.01036840230991
814 => 0.010387451574106
815 => 0.010307415187743
816 => 0.010422166806127
817 => 0.010404282887954
818 => 0.010473858751824
819 => 0.010430390772711
820 => 0.010432174713736
821 => 0.010560004771957
822 => 0.010597114381686
823 => 0.010578240134667
824 => 0.010591459010308
825 => 0.010896082420122
826 => 0.010852774712554
827 => 0.010829768356064
828 => 0.01083614127404
829 => 0.010913979086447
830 => 0.010935769424134
831 => 0.010843442232175
901 => 0.01088698426964
902 => 0.01107238073886
903 => 0.011137259010555
904 => 0.01134431931047
905 => 0.011256356414863
906 => 0.011417816116695
907 => 0.011914088194458
908 => 0.012310544669591
909 => 0.011945946910802
910 => 0.012673988738956
911 => 0.013240873733572
912 => 0.013219115743282
913 => 0.013120266232185
914 => 0.012474882737232
915 => 0.011880991223051
916 => 0.01237780669263
917 => 0.012379073177432
918 => 0.012336396287992
919 => 0.012071333792948
920 => 0.012327172687721
921 => 0.012347480250117
922 => 0.012336113415392
923 => 0.012132890621914
924 => 0.011822606978123
925 => 0.011883235659406
926 => 0.011982546676138
927 => 0.011794530203015
928 => 0.011734447547533
929 => 0.011846152635268
930 => 0.01220608970263
1001 => 0.012138045685018
1002 => 0.012136268780731
1003 => 0.012427389943226
1004 => 0.012219010018759
1005 => 0.011884000381237
1006 => 0.011799406029528
1007 => 0.011499153070546
1008 => 0.011706538858779
1009 => 0.011714002304096
1010 => 0.011600419227312
1011 => 0.011893217021926
1012 => 0.011890518838702
1013 => 0.012168486767487
1014 => 0.012699857047338
1015 => 0.012542704708443
1016 => 0.012359953636433
1017 => 0.012379823745098
1018 => 0.012597749793546
1019 => 0.012465986729887
1020 => 0.012513369646263
1021 => 0.012597678073827
1022 => 0.012648543441437
1023 => 0.012372505001473
1024 => 0.012308147236672
1025 => 0.012176493836396
1026 => 0.012142147921691
1027 => 0.012249376869178
1028 => 0.01222112582997
1029 => 0.011713375030417
1030 => 0.011660312246765
1031 => 0.011661939606583
1101 => 0.011528510714093
1102 => 0.01132499962644
1103 => 0.011859814613774
1104 => 0.011816861485561
1105 => 0.011769444556321
1106 => 0.011775252859595
1107 => 0.012007397919035
1108 => 0.011872742060953
1109 => 0.012230746729325
1110 => 0.012157151732113
1111 => 0.012081669300922
1112 => 0.01207123532968
1113 => 0.01204218103353
1114 => 0.011942543041404
1115 => 0.011822224178597
1116 => 0.01174277924353
1117 => 0.010832093131194
1118 => 0.011001111176427
1119 => 0.011195551030986
1120 => 0.011262670889612
1121 => 0.01114785772688
1122 => 0.011947076564863
1123 => 0.012093101548027
1124 => 0.01165078234905
1125 => 0.011568042486695
1126 => 0.011952500976465
1127 => 0.011720625508995
1128 => 0.011825039017799
1129 => 0.011599354122901
1130 => 0.012057928405694
1201 => 0.012054434837981
1202 => 0.011876039084604
1203 => 0.012026817953757
1204 => 0.012000616414756
1205 => 0.011799208048563
1206 => 0.012064313410148
1207 => 0.012064444899099
1208 => 0.011892742865133
1209 => 0.011692232479868
1210 => 0.011656385958827
1211 => 0.011629380420525
1212 => 0.011818397310846
1213 => 0.011987869263667
1214 => 0.012303214552208
1215 => 0.012382499850167
1216 => 0.01269195564642
1217 => 0.01250768978688
1218 => 0.012589372455772
1219 => 0.012678050547572
1220 => 0.01272056608581
1221 => 0.012651289297761
1222 => 0.013132001526429
1223 => 0.013172588367171
1224 => 0.013186196783797
1225 => 0.013024103324987
1226 => 0.013168080254857
1227 => 0.013100718217385
1228 => 0.013275975525173
1229 => 0.013303458108831
1230 => 0.013280181338194
1231 => 0.01328890474403
]
'min_raw' => 0.0059591838317365
'max_raw' => 0.013303458108831
'avg_raw' => 0.0096313209702839
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005959'
'max' => '$0.0133034'
'avg' => '$0.009631'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00091889405575703
'max_diff' => -0.0012695019087532
'year' => 2031
]
6 => [
'items' => [
101 => 0.01287870166031
102 => 0.012857430466425
103 => 0.012567396228475
104 => 0.012685587324264
105 => 0.012464634735732
106 => 0.01253470107762
107 => 0.012565585653507
108 => 0.012549453303748
109 => 0.012692269671488
110 => 0.012570846583452
111 => 0.012250391090322
112 => 0.011929848289308
113 => 0.01192582413555
114 => 0.011841430874093
115 => 0.011780430003456
116 => 0.011792180935263
117 => 0.011833592751648
118 => 0.011778023073406
119 => 0.011789881681713
120 => 0.011986813593107
121 => 0.012026306883483
122 => 0.011892093251761
123 => 0.011353206153461
124 => 0.011220961907843
125 => 0.011316016449076
126 => 0.011270586500663
127 => 0.0090962429392455
128 => 0.0096070727065066
129 => 0.0093035550049398
130 => 0.0094434299259998
131 => 0.0091336169482279
201 => 0.00928147593991
202 => 0.0092541717830922
203 => 0.010075570932296
204 => 0.010062745914379
205 => 0.010068884571771
206 => 0.0097758704602579
207 => 0.010242649896099
208 => 0.01047260223104
209 => 0.010430044173825
210 => 0.010440755119949
211 => 0.010256705578485
212 => 0.010070666573645
213 => 0.00986432068608
214 => 0.010247685840053
215 => 0.010205062179193
216 => 0.010302825521697
217 => 0.010551465227556
218 => 0.010588078368734
219 => 0.010637286801771
220 => 0.010619649081422
221 => 0.011039851136871
222 => 0.010988961895374
223 => 0.011111590325548
224 => 0.010859334340838
225 => 0.010573882749781
226 => 0.010628137765125
227 => 0.010622912570856
228 => 0.010556389850614
229 => 0.01049633611321
301 => 0.01039636356047
302 => 0.010712691510495
303 => 0.010699849173407
304 => 0.010907751683283
305 => 0.010871002895205
306 => 0.010625585494467
307 => 0.010634350624946
308 => 0.010693300339796
309 => 0.010897325975967
310 => 0.010957894675907
311 => 0.01092983684085
312 => 0.010996247655268
313 => 0.011048736055197
314 => 0.011002839390173
315 => 0.011652639379407
316 => 0.01138279711998
317 => 0.011514316359675
318 => 0.011545682923385
319 => 0.011465338130008
320 => 0.01148276203876
321 => 0.011509154512789
322 => 0.011669404446914
323 => 0.012089946642752
324 => 0.012276201918561
325 => 0.012836560105506
326 => 0.012260736010704
327 => 0.012226568991915
328 => 0.01232750642258
329 => 0.012656495998255
330 => 0.01292311114892
331 => 0.013011562775792
401 => 0.013023253118461
402 => 0.013189194250627
403 => 0.013284308612965
404 => 0.013169044632497
405 => 0.013071370477691
406 => 0.012721513778941
407 => 0.01276201064445
408 => 0.013040993888994
409 => 0.013435074153944
410 => 0.013773236018335
411 => 0.013654823519556
412 => 0.014558227299041
413 => 0.014647796093704
414 => 0.014635420582387
415 => 0.014839471626252
416 => 0.014434471858453
417 => 0.014261326611217
418 => 0.013092488738609
419 => 0.013420884504535
420 => 0.013898227036315
421 => 0.013835048962291
422 => 0.01348839005631
423 => 0.013772973046469
424 => 0.013678881010189
425 => 0.013604666717294
426 => 0.013944656780197
427 => 0.013570823740013
428 => 0.013894497765772
429 => 0.013479382479757
430 => 0.013655364417876
501 => 0.013555468558511
502 => 0.013620113422296
503 => 0.013242200869519
504 => 0.013446113309689
505 => 0.013233717441606
506 => 0.01323361673831
507 => 0.01322892808775
508 => 0.013478810884642
509 => 0.013486959553677
510 => 0.013302295789222
511 => 0.013275682855774
512 => 0.013374084819135
513 => 0.013258881891555
514 => 0.013312784616291
515 => 0.013260514550175
516 => 0.013248747457317
517 => 0.013154985259413
518 => 0.013114589926511
519 => 0.013130429977401
520 => 0.013076359717606
521 => 0.013043780430273
522 => 0.013222447247491
523 => 0.01312699277445
524 => 0.013207817480487
525 => 0.013115707527067
526 => 0.012796414298114
527 => 0.012612785385679
528 => 0.012009670074687
529 => 0.012180712828722
530 => 0.012294114351604
531 => 0.012256635148968
601 => 0.012337154978756
602 => 0.01234209824235
603 => 0.012315920424884
604 => 0.012285609865843
605 => 0.012270856361982
606 => 0.012380816892448
607 => 0.012444652681485
608 => 0.012305495711542
609 => 0.012272893180497
610 => 0.012413588560177
611 => 0.012499412660504
612 => 0.013133089596925
613 => 0.013086144762726
614 => 0.013203967084109
615 => 0.013190702098852
616 => 0.013314198662229
617 => 0.013516063349808
618 => 0.013105615997705
619 => 0.013176855465828
620 => 0.013159389193404
621 => 0.01335008137583
622 => 0.013350676696009
623 => 0.013236347206863
624 => 0.013298327077713
625 => 0.013263731614134
626 => 0.013326250292679
627 => 0.013085517785844
628 => 0.013378703993701
629 => 0.013544921681054
630 => 0.013547229613804
701 => 0.013626015478424
702 => 0.013706066479848
703 => 0.013859717406108
704 => 0.013701781238909
705 => 0.013417669448894
706 => 0.013438181402457
707 => 0.013271606763924
708 => 0.013274406913692
709 => 0.013259459494779
710 => 0.013304317824126
711 => 0.013095361666533
712 => 0.013144403259064
713 => 0.013075744742333
714 => 0.013176706215622
715 => 0.013068088359893
716 => 0.013159380770639
717 => 0.013198779548725
718 => 0.013344161888059
719 => 0.013046615270166
720 => 0.012439897574148
721 => 0.012567436989592
722 => 0.012378796176145
723 => 0.012396255601636
724 => 0.012431526419774
725 => 0.012317202158294
726 => 0.012339011624613
727 => 0.012338232437005
728 => 0.012331517819153
729 => 0.01230177766333
730 => 0.012258648553475
731 => 0.012430461652695
801 => 0.01245965604625
802 => 0.012524551566704
803 => 0.012717636616521
804 => 0.012698342866785
805 => 0.012729811773094
806 => 0.012661115327312
807 => 0.012399442232729
808 => 0.012413652340713
809 => 0.012236452066462
810 => 0.012520020157291
811 => 0.012452867490466
812 => 0.012409573729311
813 => 0.012397760625466
814 => 0.012591324295775
815 => 0.01264924157967
816 => 0.012613151415031
817 => 0.012539129434438
818 => 0.012681273519811
819 => 0.012719305280479
820 => 0.012727819189135
821 => 0.012979671254991
822 => 0.012741894921889
823 => 0.01279913004856
824 => 0.013245662168362
825 => 0.012840719152922
826 => 0.013055226499507
827 => 0.013044727481135
828 => 0.013154462181115
829 => 0.01303572603282
830 => 0.013037197909682
831 => 0.013134634889192
901 => 0.012997802224322
902 => 0.012963920532219
903 => 0.012917113217242
904 => 0.013019315277082
905 => 0.013080580789754
906 => 0.013574335827329
907 => 0.013893324099568
908 => 0.013879475977398
909 => 0.01400602189143
910 => 0.013949011798131
911 => 0.013764911168366
912 => 0.014079148494695
913 => 0.013979710656396
914 => 0.013987908190969
915 => 0.013987603078322
916 => 0.014053720547784
917 => 0.014006870261094
918 => 0.013914523536942
919 => 0.013975827602075
920 => 0.014157878758915
921 => 0.014722971135757
922 => 0.015039204316315
923 => 0.014703933501213
924 => 0.014935198820016
925 => 0.014796522036993
926 => 0.01477132034024
927 => 0.014916572050821
928 => 0.015062078005293
929 => 0.015052809905033
930 => 0.0149471800539
1001 => 0.014887512431253
1002 => 0.015339335660056
1003 => 0.01567223131843
1004 => 0.015649530066289
1005 => 0.015749726010394
1006 => 0.016043904401229
1007 => 0.016070800386523
1008 => 0.016067412110573
1009 => 0.016000747604716
1010 => 0.016290404434384
1011 => 0.01653204125772
1012 => 0.015985316697732
1013 => 0.016193502253026
1014 => 0.016286963456117
1015 => 0.016424192230943
1016 => 0.01665572017629
1017 => 0.01690722093469
1018 => 0.016942785899493
1019 => 0.016917550855025
1020 => 0.016751679344157
1021 => 0.017026874475026
1022 => 0.01718807732857
1023 => 0.017284069938793
1024 => 0.017527491226673
1025 => 0.016287540640689
1026 => 0.015409841986387
1027 => 0.015272776667395
1028 => 0.015551504383392
1029 => 0.015625002659288
1030 => 0.015595375596434
1031 => 0.014607445964146
1101 => 0.015267575422338
1102 => 0.015977819214091
1103 => 0.016005102570691
1104 => 0.016360665463341
1105 => 0.016476451316202
1106 => 0.016762726049479
1107 => 0.016744819486968
1108 => 0.016814522828895
1109 => 0.016798499237679
1110 => 0.017328762898816
1111 => 0.017913722461966
1112 => 0.017893467172352
1113 => 0.017809372314222
1114 => 0.017934267518849
1115 => 0.018538008476096
1116 => 0.018482425683505
1117 => 0.018536419631976
1118 => 0.01924826424592
1119 => 0.020173763502762
1120 => 0.019743776179353
1121 => 0.020676724945632
1122 => 0.021263966740515
1123 => 0.022279540702831
1124 => 0.022152385840942
1125 => 0.022547741331846
1126 => 0.02192475210014
1127 => 0.020494242897246
1128 => 0.020267859340119
1129 => 0.020721084954433
1130 => 0.021835295902113
1201 => 0.02068599448655
1202 => 0.020918496666065
1203 => 0.020851536022724
1204 => 0.020847967974604
1205 => 0.020984145859016
1206 => 0.020786612735116
1207 => 0.019981827252817
1208 => 0.020350655696724
1209 => 0.020208233321935
1210 => 0.020366261565055
1211 => 0.021219074817368
1212 => 0.020842025749992
1213 => 0.02044483518649
1214 => 0.020943000296763
1215 => 0.021577335670246
1216 => 0.021537640102583
1217 => 0.021460614109858
1218 => 0.021894805597899
1219 => 0.022611962729972
1220 => 0.022805807421001
1221 => 0.022948899608938
1222 => 0.022968629604092
1223 => 0.023171860816304
1224 => 0.022079035367381
1225 => 0.023813377420571
1226 => 0.024112850382924
1227 => 0.024056561877884
1228 => 0.024389413471791
1229 => 0.024291480089234
1230 => 0.024149589983185
1231 => 0.024677230559093
]
'min_raw' => 0.0090962429392455
'max_raw' => 0.024677230559093
'avg_raw' => 0.016886736749169
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.009096'
'max' => '$0.024677'
'avg' => '$0.016886'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.003137059107509
'max_diff' => 0.011373772450261
'year' => 2032
]
7 => [
'items' => [
101 => 0.024072333217214
102 => 0.023213757594874
103 => 0.022742726027758
104 => 0.023363018392369
105 => 0.023741809294216
106 => 0.023992165984712
107 => 0.024067923767986
108 => 0.022163868296105
109 => 0.02113768800052
110 => 0.021795457804809
111 => 0.022597982362889
112 => 0.02207457730294
113 => 0.022095093790353
114 => 0.021348855723296
115 => 0.022664007873393
116 => 0.022472401267295
117 => 0.023466456678681
118 => 0.02322921737696
119 => 0.024039830975937
120 => 0.023826369248706
121 => 0.024712436943955
122 => 0.025065913336915
123 => 0.025659455214903
124 => 0.026096067036501
125 => 0.026352453849197
126 => 0.026337061346645
127 => 0.027352993629948
128 => 0.026753933856455
129 => 0.026001373593399
130 => 0.025987762152538
131 => 0.026377523776636
201 => 0.027194357214865
202 => 0.027406150240954
203 => 0.027524513649202
204 => 0.027343235969211
205 => 0.026692999520085
206 => 0.026412230718126
207 => 0.02665145387205
208 => 0.026358904511481
209 => 0.026863926782676
210 => 0.027557430227965
211 => 0.027414224508923
212 => 0.027892939757079
213 => 0.028388359676609
214 => 0.029096832412237
215 => 0.02928205342
216 => 0.029588216702507
217 => 0.029903359289606
218 => 0.030004574595252
219 => 0.030197826018994
220 => 0.030196807488599
221 => 0.030779183661367
222 => 0.031421562614618
223 => 0.031664045798364
224 => 0.032221622508786
225 => 0.031266791932007
226 => 0.031991041892797
227 => 0.032644333486582
228 => 0.03186545231642
301 => 0.032938958553451
302 => 0.032980640368017
303 => 0.033609986281041
304 => 0.032972023630103
305 => 0.032593203444425
306 => 0.03368684312627
307 => 0.034216020918988
308 => 0.034056628261229
309 => 0.032843642265503
310 => 0.032137632388573
311 => 0.030289868361514
312 => 0.032478624669031
313 => 0.033544704019526
314 => 0.032840881377531
315 => 0.033195848579235
316 => 0.035132434533233
317 => 0.03586976107986
318 => 0.035716402312464
319 => 0.035742317419653
320 => 0.03614016544079
321 => 0.037904442665417
322 => 0.036847246856795
323 => 0.037655433440116
324 => 0.038084092689775
325 => 0.038482255290299
326 => 0.037504493783995
327 => 0.036232440430463
328 => 0.035829527736233
329 => 0.032770900086613
330 => 0.032611685234503
331 => 0.032522313113311
401 => 0.031958834531128
402 => 0.031516094715306
403 => 0.031164011575888
404 => 0.030240040277132
405 => 0.030551853467
406 => 0.02907923606458
407 => 0.030021364492292
408 => 0.027671031560439
409 => 0.029628458666606
410 => 0.028563120086009
411 => 0.029278466290691
412 => 0.029275970515172
413 => 0.027958791351632
414 => 0.02719906989893
415 => 0.027683193977393
416 => 0.028202213419323
417 => 0.028286422577585
418 => 0.02895934483184
419 => 0.029147142968587
420 => 0.028578105846786
421 => 0.02762232613454
422 => 0.027844331962681
423 => 0.027194570957908
424 => 0.026055889789741
425 => 0.026873710484185
426 => 0.027152950426305
427 => 0.027276278692694
428 => 0.026156516542218
429 => 0.025804662963319
430 => 0.02561733907025
501 => 0.027477778902284
502 => 0.027579697995989
503 => 0.02705826550269
504 => 0.029415189816658
505 => 0.028881745255204
506 => 0.029477733527439
507 => 0.027824187260732
508 => 0.027887354954915
509 => 0.027104539653002
510 => 0.027542863914336
511 => 0.027233070454275
512 => 0.027507451645625
513 => 0.027671914600404
514 => 0.028454601450029
515 => 0.029637395693182
516 => 0.028337694135001
517 => 0.027771395554033
518 => 0.028122724008682
519 => 0.029058357980934
520 => 0.030475891343117
521 => 0.029636683062187
522 => 0.030009109446583
523 => 0.030090468043477
524 => 0.029471666926298
525 => 0.030498707422956
526 => 0.031049106768777
527 => 0.031613702608492
528 => 0.032103925356501
529 => 0.031388190614381
530 => 0.032154129384995
531 => 0.031536917942274
601 => 0.030983215472008
602 => 0.030984055210097
603 => 0.030636709562196
604 => 0.029963683601021
605 => 0.02983956728771
606 => 0.030485236023719
607 => 0.031003001204941
608 => 0.031045646825194
609 => 0.031332308233254
610 => 0.031501951501697
611 => 0.033164686151276
612 => 0.033833451782199
613 => 0.034651205736606
614 => 0.034969766987935
615 => 0.035928522143906
616 => 0.035154249489173
617 => 0.034986730729918
618 => 0.032661104327953
619 => 0.033041925520991
620 => 0.033651656994824
621 => 0.032671158575379
622 => 0.033293059142891
623 => 0.033415835488573
624 => 0.032637841614278
625 => 0.03305340175767
626 => 0.031949797221818
627 => 0.02966145125626
628 => 0.030501255006174
629 => 0.031119633240996
630 => 0.030237131254418
701 => 0.031818981907815
702 => 0.030894897412126
703 => 0.030602006990871
704 => 0.029459337034581
705 => 0.02999863326855
706 => 0.030728039146971
707 => 0.030277351116642
708 => 0.031212596450723
709 => 0.032537153264603
710 => 0.033481111328895
711 => 0.033553576707897
712 => 0.032946674912836
713 => 0.033919238912617
714 => 0.033926322979584
715 => 0.03282926681479
716 => 0.032157326022287
717 => 0.032004659660455
718 => 0.032386050164315
719 => 0.032849128644572
720 => 0.033579274340689
721 => 0.034020486093016
722 => 0.035170932342453
723 => 0.035482210111672
724 => 0.035824210006521
725 => 0.0362812273349
726 => 0.036829993814458
727 => 0.035629323998479
728 => 0.035677028848597
729 => 0.034558981740363
730 => 0.033364188061041
731 => 0.034270887530512
801 => 0.035456276473669
802 => 0.03518434694037
803 => 0.035153749312858
804 => 0.035205206035259
805 => 0.03500018004754
806 => 0.034072855103706
807 => 0.033607158322273
808 => 0.034208025982241
809 => 0.034527360401971
810 => 0.035022620238084
811 => 0.034961569009617
812 => 0.036237305160421
813 => 0.036733017652365
814 => 0.036606193184192
815 => 0.036629531938538
816 => 0.037526995726887
817 => 0.038525160037038
818 => 0.039460072632875
819 => 0.040411105880791
820 => 0.039264598180969
821 => 0.038682472277763
822 => 0.039283077617708
823 => 0.038964387970201
824 => 0.040795673214264
825 => 0.04092246743128
826 => 0.042753620252577
827 => 0.044491602329609
828 => 0.043400006926208
829 => 0.044429332225078
830 => 0.045542631457929
831 => 0.047690366304389
901 => 0.046967084766324
902 => 0.046413062443433
903 => 0.045889514025318
904 => 0.046978935172445
905 => 0.048380458074297
906 => 0.048682332683737
907 => 0.049171484876005
908 => 0.04865720115652
909 => 0.049276599250147
910 => 0.051463346697964
911 => 0.05087246823461
912 => 0.050033325828195
913 => 0.051759552920789
914 => 0.052384267795061
915 => 0.056768843948422
916 => 0.062304552459847
917 => 0.060012732786695
918 => 0.058590126359011
919 => 0.058924472614192
920 => 0.060945925967006
921 => 0.061595152626207
922 => 0.059830330764648
923 => 0.060453695681585
924 => 0.063888497661791
925 => 0.065731158722531
926 => 0.063228577499649
927 => 0.056324055159528
928 => 0.049957770235753
929 => 0.051646395675084
930 => 0.051454957954412
1001 => 0.055145224181871
1002 => 0.050858375978676
1003 => 0.050930555508182
1004 => 0.054697132533165
1005 => 0.053692274358377
1006 => 0.052064532807733
1007 => 0.049969654550439
1008 => 0.046097078339046
1009 => 0.042667029593839
1010 => 0.04939414507624
1011 => 0.049104059624173
1012 => 0.048683972901325
1013 => 0.049618830444893
1014 => 0.054158233312514
1015 => 0.054053585383802
1016 => 0.05338786865318
1017 => 0.053892808925999
1018 => 0.051976014336557
1019 => 0.052470015946858
1020 => 0.049956761783695
1021 => 0.05109285762821
1022 => 0.052061040405421
1023 => 0.052255417432137
1024 => 0.052693358798466
1025 => 0.048951197772519
1026 => 0.050631318209094
1027 => 0.051618231559586
1028 => 0.047159321137847
1029 => 0.051530093237038
1030 => 0.048886055074614
1031 => 0.047988628810167
1101 => 0.049196895048325
1102 => 0.048726032520237
1103 => 0.048321212568563
1104 => 0.048095316079839
1105 => 0.048982533453664
1106 => 0.048941143702721
1107 => 0.047489483877671
1108 => 0.045595852813119
1109 => 0.046231417554703
1110 => 0.046000510925634
1111 => 0.045163675514341
1112 => 0.04572760154166
1113 => 0.043244356713777
1114 => 0.03897206305524
1115 => 0.041794471109964
1116 => 0.041685811470046
1117 => 0.041631020352277
1118 => 0.043751981999773
1119 => 0.043548100476277
1120 => 0.043178053514718
1121 => 0.045156879311697
1122 => 0.044434581276837
1123 => 0.046660533625456
1124 => 0.048126689807828
1125 => 0.047754825174795
1126 => 0.049133752150863
1127 => 0.046246059682689
1128 => 0.047205235286504
1129 => 0.04740292004909
1130 => 0.045132460908528
1201 => 0.043581458014966
1202 => 0.043478023804693
1203 => 0.040788798528622
1204 => 0.042225360964431
1205 => 0.043489476458951
1206 => 0.042884063236401
1207 => 0.042692407496347
1208 => 0.043671535107223
1209 => 0.043747621708249
1210 => 0.042012839141561
1211 => 0.042373555370595
1212 => 0.043877802009748
1213 => 0.042335652214788
1214 => 0.039339507071918
1215 => 0.038596421651539
1216 => 0.038497280358679
1217 => 0.036481973763763
1218 => 0.03864607817253
1219 => 0.037701388603711
1220 => 0.040685651632492
1221 => 0.038981056595376
1222 => 0.038907574910257
1223 => 0.03879649656578
1224 => 0.037061838928269
1225 => 0.03744161870764
1226 => 0.038704064536362
1227 => 0.039154519430521
1228 => 0.039107533294592
1229 => 0.038697877863077
1230 => 0.038885416021849
1231 => 0.038281290269817
]
'min_raw' => 0.02113768800052
'max_raw' => 0.065731158722531
'avg_raw' => 0.043434423361525
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.021137'
'max' => '$0.065731'
'avg' => '$0.043434'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.012041445061274
'max_diff' => 0.041053928163438
'year' => 2033
]
8 => [
'items' => [
101 => 0.038067960892984
102 => 0.037394634698833
103 => 0.036405031204538
104 => 0.03654264164001
105 => 0.034581978173973
106 => 0.03351370465739
107 => 0.033218020627618
108 => 0.032822619585521
109 => 0.033262682227445
110 => 0.034576423860718
111 => 0.032991772725155
112 => 0.030274999503585
113 => 0.030438282203358
114 => 0.030805129950678
115 => 0.030121511600487
116 => 0.02947452420377
117 => 0.030037027253469
118 => 0.028885894624901
119 => 0.03094423882924
120 => 0.030888566386955
121 => 0.031655789819181
122 => 0.032135550376361
123 => 0.031029857616385
124 => 0.030751778877362
125 => 0.030910185165084
126 => 0.028292082083415
127 => 0.03144183494186
128 => 0.031469074135376
129 => 0.031235835623097
130 => 0.032912981782509
131 => 0.036452283293875
201 => 0.035120655697226
202 => 0.034605009243146
203 => 0.033624764957005
204 => 0.034930882267142
205 => 0.034830592836327
206 => 0.034377045996547
207 => 0.034102739452696
208 => 0.03460815767044
209 => 0.034040112542302
210 => 0.033938076028452
211 => 0.033319845771344
212 => 0.033099165697242
213 => 0.032935782955902
214 => 0.032755914611345
215 => 0.03315265935904
216 => 0.032253583564644
217 => 0.03116938629409
218 => 0.031079247022221
219 => 0.031328129476978
220 => 0.031218017517868
221 => 0.031078719848523
222 => 0.030812762662283
223 => 0.030733858846401
224 => 0.030990257969326
225 => 0.030700798308541
226 => 0.031127911805713
227 => 0.03101176056775
228 => 0.030362949194378
301 => 0.029554290002419
302 => 0.029547091239391
303 => 0.02937286694295
304 => 0.029150966106635
305 => 0.029089238370375
306 => 0.029989654815572
307 => 0.031853489909932
308 => 0.031487574483116
309 => 0.031751985879512
310 => 0.033052628252205
311 => 0.033466063350803
312 => 0.033172616910565
313 => 0.032770929324179
314 => 0.032788601539381
315 => 0.034161289621164
316 => 0.034246902493051
317 => 0.034463218600551
318 => 0.034741245929613
319 => 0.033219966166929
320 => 0.032716949399365
321 => 0.032478592148586
322 => 0.03174454407205
323 => 0.032536151990068
324 => 0.03207491595627
325 => 0.032137152455295
326 => 0.032096620853659
327 => 0.032118753848887
328 => 0.030943663480085
329 => 0.031371804649545
330 => 0.030659936915973
331 => 0.029706825931622
401 => 0.029703630769399
402 => 0.029936903332547
403 => 0.02979814368403
404 => 0.029424745037708
405 => 0.029477784553026
406 => 0.029013102588038
407 => 0.029534205356914
408 => 0.02954914871973
409 => 0.029348495769053
410 => 0.030151326482831
411 => 0.030480246881314
412 => 0.030348172810776
413 => 0.030470980212443
414 => 0.031502779921109
415 => 0.031671008294199
416 => 0.031745724224983
417 => 0.031645614775696
418 => 0.030489839617016
419 => 0.030541103160039
420 => 0.030164965295231
421 => 0.029847168435901
422 => 0.029859878643649
423 => 0.030023267540045
424 => 0.030736796433237
425 => 0.032238375924135
426 => 0.032295359768174
427 => 0.032364425849486
428 => 0.03208349938696
429 => 0.031998769277758
430 => 0.032110550162492
501 => 0.032674464469975
502 => 0.03412500517006
503 => 0.033612287208294
504 => 0.033195439524447
505 => 0.033561127324509
506 => 0.033504832554046
507 => 0.033029648038276
508 => 0.03301631119157
509 => 0.032104280180129
510 => 0.031767123081141
511 => 0.031485369373455
512 => 0.031177701680029
513 => 0.030995305958251
514 => 0.031275548684275
515 => 0.031339643511451
516 => 0.030726887893196
517 => 0.030643371566638
518 => 0.031143761031753
519 => 0.030923558284555
520 => 0.031150042270814
521 => 0.031202588498369
522 => 0.031194127345491
523 => 0.030964210387292
524 => 0.031110752600225
525 => 0.030764136580301
526 => 0.030387243718676
527 => 0.030146809554215
528 => 0.029936998856758
529 => 0.030053414025976
530 => 0.029638415204283
531 => 0.029505648728947
601 => 0.031061107395787
602 => 0.032210141436981
603 => 0.032193434026955
604 => 0.032091731965216
605 => 0.031940623330982
606 => 0.032663409932183
607 => 0.032411605532899
608 => 0.03259481427234
609 => 0.032641448585774
610 => 0.032782596607183
611 => 0.032833044892754
612 => 0.03268055513517
613 => 0.032168780883665
614 => 0.030893488106948
615 => 0.030299835876799
616 => 0.03010392075279
617 => 0.030111041895452
618 => 0.029914608990656
619 => 0.029972467284623
620 => 0.029894488237194
621 => 0.029746814786522
622 => 0.03004429560653
623 => 0.03007857749981
624 => 0.030009141921789
625 => 0.030025496514018
626 => 0.029450599584327
627 => 0.029494307749281
628 => 0.029250935132653
629 => 0.029205305700936
630 => 0.028590080918977
701 => 0.02750012103948
702 => 0.028104064617687
703 => 0.027374585702531
704 => 0.027098320983952
705 => 0.028406115193726
706 => 0.028274848927629
707 => 0.028050178140147
708 => 0.027717843219965
709 => 0.027594576965323
710 => 0.026845650223475
711 => 0.026801399636198
712 => 0.027172587952181
713 => 0.027001297316165
714 => 0.026760740390361
715 => 0.025889467589965
716 => 0.02490986849381
717 => 0.024939436432983
718 => 0.02525102867938
719 => 0.026157025159722
720 => 0.025803036660954
721 => 0.025546213943548
722 => 0.025498118768641
723 => 0.026100130576678
724 => 0.026952103410424
725 => 0.0273518300022
726 => 0.026955713089627
727 => 0.026500675308913
728 => 0.026528371350183
729 => 0.026712620704707
730 => 0.026731982706722
731 => 0.026435799890117
801 => 0.02651917361809
802 => 0.026392521301445
803 => 0.025615256267974
804 => 0.025601198008252
805 => 0.025410444633947
806 => 0.025404668697583
807 => 0.02508014962223
808 => 0.025034747160294
809 => 0.02439039483928
810 => 0.02481450948825
811 => 0.024530035648739
812 => 0.024101266472002
813 => 0.02402734650432
814 => 0.024025124380831
815 => 0.024465374454306
816 => 0.024809364909815
817 => 0.024534984192971
818 => 0.024472513022393
819 => 0.025139541686262
820 => 0.025054656208683
821 => 0.024981145932553
822 => 0.026875818587682
823 => 0.025376037337996
824 => 0.024722047108613
825 => 0.023912610010374
826 => 0.024176166811096
827 => 0.024231702101464
828 => 0.022285151792203
829 => 0.021495436574164
830 => 0.021224436071123
831 => 0.021068471450238
901 => 0.021139546486456
902 => 0.020428710165864
903 => 0.020906403929449
904 => 0.020290879761315
905 => 0.020187685131438
906 => 0.021288318592875
907 => 0.021441465309226
908 => 0.020788093838316
909 => 0.021207664093873
910 => 0.021055522086745
911 => 0.020301431156516
912 => 0.020272630429699
913 => 0.019894254108488
914 => 0.019302168433886
915 => 0.019031569392813
916 => 0.018890639062773
917 => 0.018948789663625
918 => 0.018919386940397
919 => 0.018727514282564
920 => 0.018930384856546
921 => 0.01841213437193
922 => 0.018205762853129
923 => 0.018112549625869
924 => 0.017652572491388
925 => 0.018384600665107
926 => 0.018528819437178
927 => 0.018673322364781
928 => 0.019931121693227
929 => 0.019868285593282
930 => 0.020436293334364
1001 => 0.020414221598045
1002 => 0.020252216589173
1003 => 0.019568744105272
1004 => 0.019841164055629
1005 => 0.01900269779189
1006 => 0.019630933726847
1007 => 0.019344233081893
1008 => 0.019533999950393
1009 => 0.01919278201024
1010 => 0.019381626106864
1011 => 0.0185630190582
1012 => 0.017798615314268
1013 => 0.018106233695163
1014 => 0.018440650055624
1015 => 0.019165749932807
1016 => 0.018733886427901
1017 => 0.018889200874832
1018 => 0.018368923476936
1019 => 0.017295442595185
1020 => 0.017301518380396
1021 => 0.017136386733791
1022 => 0.016993688881509
1023 => 0.0187834911465
1024 => 0.018560900942262
1025 => 0.018206232583694
1026 => 0.018680970275598
1027 => 0.018806498456437
1028 => 0.018810072067274
1029 => 0.019156428432534
1030 => 0.019341278886761
1031 => 0.019373859580506
1101 => 0.019918858804766
1102 => 0.020101535356025
1103 => 0.020853954217306
1104 => 0.019325595617198
1105 => 0.019294120077593
1106 => 0.018687650808488
1107 => 0.018303018410122
1108 => 0.018713986917872
1109 => 0.019078048912942
1110 => 0.018698963229494
1111 => 0.018748463816817
1112 => 0.018239572259226
1113 => 0.018421477045491
1114 => 0.018578157952644
1115 => 0.018491647964992
1116 => 0.018362138326347
1117 => 0.019048199981054
1118 => 0.019009489693799
1119 => 0.019648366079151
1120 => 0.020146415908022
1121 => 0.021039010238416
1122 => 0.020107541522655
1123 => 0.0200735951004
1124 => 0.020405426823121
1125 => 0.020101484554317
1126 => 0.020293565576471
1127 => 0.021008063016185
1128 => 0.021023159221196
1129 => 0.020770278336903
1130 => 0.020754890512112
1201 => 0.020803459052154
1202 => 0.021087926508193
1203 => 0.020988524838251
1204 => 0.02110355496725
1205 => 0.021247401904967
1206 => 0.021842413829203
1207 => 0.021985869189732
1208 => 0.021637347036722
1209 => 0.021668814684901
1210 => 0.021538457832528
1211 => 0.021412534746502
1212 => 0.021695591454299
1213 => 0.02221288315129
1214 => 0.02220966510649
1215 => 0.022329666725478
1216 => 0.022404426739961
1217 => 0.022083502030126
1218 => 0.021874591844753
1219 => 0.021954701303125
1220 => 0.02208279807162
1221 => 0.021913161247548
1222 => 0.020866084185949
1223 => 0.021183700478896
1224 => 0.021130833597107
1225 => 0.021055544728606
1226 => 0.021374910367218
1227 => 0.021344106772277
1228 => 0.02042141951197
1229 => 0.020480486956723
1230 => 0.020425011598923
1231 => 0.020604263829166
]
'min_raw' => 0.016993688881509
'max_raw' => 0.038067960892984
'avg_raw' => 0.027530824887247
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.016993'
'max' => '$0.038067'
'avg' => '$0.02753'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0041439991190104
'max_diff' => -0.027663197829547
'year' => 2034
]
9 => [
'items' => [
101 => 0.020091804345628
102 => 0.020249433431297
103 => 0.020348296916148
104 => 0.02040652826823
105 => 0.020616899841563
106 => 0.020592215165532
107 => 0.020615365407442
108 => 0.020927290914658
109 => 0.022504903090248
110 => 0.022590769040161
111 => 0.022167933698797
112 => 0.022336848077613
113 => 0.022012569407799
114 => 0.022230259851324
115 => 0.022379198124045
116 => 0.021706174708799
117 => 0.021666322630034
118 => 0.021340705546797
119 => 0.021515673723434
120 => 0.021237286773748
121 => 0.021305593193639
122 => 0.021114602488777
123 => 0.021458347731658
124 => 0.02184270832581
125 => 0.021939812990753
126 => 0.021684372423476
127 => 0.021499416618413
128 => 0.021174695152953
129 => 0.021714714186903
130 => 0.021872632209211
131 => 0.021713884710759
201 => 0.021677099446667
202 => 0.02160739143768
203 => 0.021691888330304
204 => 0.021871772153747
205 => 0.021786942264544
206 => 0.021842973900873
207 => 0.021629439082759
208 => 0.022083608269559
209 => 0.022804938239964
210 => 0.022807257433768
211 => 0.0227224270873
212 => 0.022687716337221
213 => 0.022774757420633
214 => 0.022821973637771
215 => 0.023103448540921
216 => 0.023405482326455
217 => 0.024814942215878
218 => 0.024419171518973
219 => 0.025669728182013
220 => 0.026658756138018
221 => 0.026955322377073
222 => 0.026682495391662
223 => 0.025749169012396
224 => 0.025703375567561
225 => 0.027098159218418
226 => 0.026704068951912
227 => 0.026657193168696
228 => 0.026158514033164
301 => 0.026453295164876
302 => 0.026388822207192
303 => 0.026287048489363
304 => 0.026849470354039
305 => 0.027902273876964
306 => 0.027738184574788
307 => 0.027615699522596
308 => 0.027079005678756
309 => 0.027402215247658
310 => 0.027287126510843
311 => 0.027781620761315
312 => 0.027488693321724
313 => 0.026701083330545
314 => 0.026826512817637
315 => 0.026807554402992
316 => 0.027197717232975
317 => 0.027080600035851
318 => 0.02678468539059
319 => 0.027898675508977
320 => 0.027826339187028
321 => 0.027928895553167
322 => 0.027974044037202
323 => 0.028652110191557
324 => 0.0289298921993
325 => 0.028992953578316
326 => 0.029256825001239
327 => 0.028986388216932
328 => 0.030068328172321
329 => 0.030787755109708
330 => 0.031623406518855
331 => 0.032844517829543
401 => 0.033303666978272
402 => 0.033220725794239
403 => 0.034146558453652
404 => 0.035810259162512
405 => 0.033557007274524
406 => 0.035929686983899
407 => 0.035178523981815
408 => 0.03339753001672
409 => 0.033282855001908
410 => 0.034488964792835
411 => 0.037164000225346
412 => 0.036493934189503
413 => 0.037165096213336
414 => 0.036382150061665
415 => 0.036343270186046
416 => 0.037127070266318
417 => 0.038958461876593
418 => 0.038088436371239
419 => 0.036841041470309
420 => 0.037762098453542
421 => 0.036964193654866
422 => 0.035166290823958
423 => 0.036493421802634
424 => 0.035606007111708
425 => 0.035865001896079
426 => 0.037730215583433
427 => 0.037505788137827
428 => 0.037796218033863
429 => 0.037283616869234
430 => 0.036804766551686
501 => 0.035910956874091
502 => 0.03564634389284
503 => 0.03571947340108
504 => 0.035646307653488
505 => 0.035146229353408
506 => 0.035038237492119
507 => 0.034858246325405
508 => 0.034914033114242
509 => 0.034575597062546
510 => 0.035214295816552
511 => 0.03533284393349
512 => 0.035797635623599
513 => 0.035845891838754
514 => 0.037140330079813
515 => 0.036427375248788
516 => 0.036905686902998
517 => 0.036862902206602
518 => 0.03343612955639
519 => 0.033908308592918
520 => 0.034642870995811
521 => 0.034311951628984
522 => 0.033844109067496
523 => 0.033466301114963
524 => 0.032893883434029
525 => 0.033699550327636
526 => 0.034758916619605
527 => 0.035872759116139
528 => 0.037210967893872
529 => 0.036912295273149
530 => 0.035847742233877
531 => 0.035895497305563
601 => 0.036190700367793
602 => 0.035808385580178
603 => 0.03569563348564
604 => 0.036175209961429
605 => 0.036178512541047
606 => 0.035738613173612
607 => 0.035249745527441
608 => 0.035247697154154
609 => 0.035160707878419
610 => 0.03639762526057
611 => 0.037077804754301
612 => 0.037155786237093
613 => 0.037072555979185
614 => 0.037104588002163
615 => 0.036708806541494
616 => 0.037613445595237
617 => 0.038443631850483
618 => 0.038221124199734
619 => 0.037887553599937
620 => 0.037621848550261
621 => 0.038158532534259
622 => 0.03813463484127
623 => 0.038436380897782
624 => 0.038422691953689
625 => 0.038321226104127
626 => 0.0382211278234
627 => 0.038618006191888
628 => 0.038503711595435
629 => 0.038389239467904
630 => 0.038159648091336
701 => 0.038190853372521
702 => 0.03785734036839
703 => 0.037703041992163
704 => 0.03538276462727
705 => 0.034762710698121
706 => 0.034957792286593
707 => 0.035022018210809
708 => 0.034752169946222
709 => 0.035139063039308
710 => 0.035078766160572
711 => 0.03531334604324
712 => 0.035166790716823
713 => 0.03517280539854
714 => 0.035603793364641
715 => 0.035728911004754
716 => 0.035665275163169
717 => 0.035709843525306
718 => 0.036736902619621
719 => 0.036590887659911
720 => 0.036513320122751
721 => 0.03653480686065
722 => 0.036797242479643
723 => 0.036870710124507
724 => 0.036559422550737
725 => 0.036706227570059
726 => 0.037331304710002
727 => 0.037550046332679
728 => 0.038248164590332
729 => 0.037951591546418
730 => 0.038495964203902
731 => 0.040169180162691
801 => 0.041505860848309
802 => 0.040276594049149
803 => 0.042731237903028
804 => 0.044642530241021
805 => 0.044569171657664
806 => 0.044235893629547
807 => 0.042059938117078
808 => 0.040057591412835
809 => 0.041732639455067
810 => 0.041736909497003
811 => 0.041593021384649
812 => 0.040699344676537
813 => 0.041561923372363
814 => 0.041630391736812
815 => 0.041592067659928
816 => 0.040906887823155
817 => 0.039860744854802
818 => 0.040065158686706
819 => 0.040399992713293
820 => 0.039766082047268
821 => 0.039563509179471
822 => 0.03994013068177
823 => 0.041153683634384
824 => 0.040924268478326
825 => 0.040918277521462
826 => 0.041899812846246
827 => 0.041197245382281
828 => 0.04006773699975
829 => 0.039782521236775
830 => 0.038770197422576
831 => 0.039469413086817
901 => 0.039494576613783
902 => 0.039111623340289
903 => 0.040098811547318
904 => 0.040089714434199
905 => 0.041026902713199
906 => 0.042818454710803
907 => 0.042288604628192
908 => 0.04167244662964
909 => 0.041739440088291
910 => 0.042474192975744
911 => 0.042029944607213
912 => 0.042189699417946
913 => 0.042473951167704
914 => 0.042645447305907
915 => 0.041714764433179
916 => 0.041497777735838
917 => 0.041053899105061
918 => 0.040938099455679
919 => 0.041299629338615
920 => 0.041204378987501
921 => 0.03949246171678
922 => 0.039313556836972
923 => 0.039319043594218
924 => 0.038869178767477
925 => 0.038183026926768
926 => 0.039986192996154
927 => 0.03984137352549
928 => 0.039681504038013
929 => 0.039701087138026
930 => 0.040483780413778
1001 => 0.040029778786884
1002 => 0.041236816521385
1003 => 0.040988685850048
1004 => 0.040734191563272
1005 => 0.040699012700755
1006 => 0.040601054112778
1007 => 0.040265117665823
1008 => 0.039859454219474
1009 => 0.039591600074228
1010 => 0.036521158264413
1011 => 0.037091014404377
1012 => 0.037746581949383
1013 => 0.037972881238897
1014 => 0.037585780644749
1015 => 0.040280402756686
1016 => 0.040772736182561
1017 => 0.039281426121469
1018 => 0.039002462898828
1019 => 0.04029869153912
1020 => 0.039516907211517
1021 => 0.039868944646367
1022 => 0.039108032266403
1023 => 0.040654147477474
1024 => 0.040642368670017
1025 => 0.040040894932314
1026 => 0.040549256416706
1027 => 0.040460916098631
1028 => 0.03978185373013
1029 => 0.040675674965777
1030 => 0.040676118289958
1031 => 0.040097212894586
1101 => 0.039421178131478
1102 => 0.039300319083063
1103 => 0.039209268025211
1104 => 0.039846551667667
1105 => 0.040417938188759
1106 => 0.04148114684578
1107 => 0.041748462763369
1108 => 0.04279181458595
1109 => 0.042170549375481
1110 => 0.042445948196551
1111 => 0.042744932574363
1112 => 0.042888276679873
1113 => 0.042654705152214
1114 => 0.044275459993424
1115 => 0.044412301360668
1116 => 0.044458183087431
1117 => 0.043911673674049
1118 => 0.044397101945253
1119 => 0.044169986132852
1120 => 0.044760878382131
1121 => 0.044853537831709
1122 => 0.044775058574372
1123 => 0.044804470146198
1124 => 0.043421441809971
1125 => 0.043349724494682
1126 => 0.042371853811887
1127 => 0.042770343343181
1128 => 0.042025386264527
1129 => 0.042261619828077
1130 => 0.042365749331973
1201 => 0.042311357988435
1202 => 0.042792873343392
1203 => 0.04238348692459
1204 => 0.041303048856015
1205 => 0.040222316422811
1206 => 0.040208748707457
1207 => 0.039924210934307
1208 => 0.039718542240011
1209 => 0.039758161327021
1210 => 0.039897784157244
1211 => 0.039710427107298
1212 => 0.039750409233148
1213 => 0.04041437892176
1214 => 0.040547533307597
1215 => 0.040095022677748
1216 => 0.038278127201936
1217 => 0.037832256494834
1218 => 0.038152739517098
1219 => 0.037999569274206
1220 => 0.030668618149067
1221 => 0.032390916374384
1222 => 0.031367585252622
1223 => 0.031839183314731
1224 => 0.030794627229722
1225 => 0.031293144143363
1226 => 0.031201086272336
1227 => 0.033970490852135
1228 => 0.033927250408813
1229 => 0.033947947320798
1230 => 0.032960029786239
1231 => 0.034533809243676
]
'min_raw' => 0.020091804345628
'max_raw' => 0.044853537831709
'avg_raw' => 0.032472671088669
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.020091'
'max' => '$0.044853'
'avg' => '$0.032472'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0030981154641191
'max_diff' => 0.0067855769387247
'year' => 2035
]
10 => [
'items' => [
101 => 0.035309109595688
102 => 0.035165622134481
103 => 0.035201734837151
104 => 0.034581198958177
105 => 0.033953955464531
106 => 0.033258245897996
107 => 0.034550788280317
108 => 0.034407079631837
109 => 0.03473669556671
110 => 0.035575001694482
111 => 0.035698445456212
112 => 0.03586435512382
113 => 0.035804888318237
114 => 0.037221628885753
115 => 0.037050052255072
116 => 0.037463502569049
117 => 0.036613003904648
118 => 0.035650583935804
119 => 0.035833508508002
120 => 0.035815891400712
121 => 0.035591605404947
122 => 0.035389130036474
123 => 0.035052065595048
124 => 0.036118587363871
125 => 0.036075288527754
126 => 0.036776246355093
127 => 0.03665234525037
128 => 0.035824903349285
129 => 0.035854455598657
130 => 0.03605320867801
131 => 0.036741095354976
201 => 0.036945306955596
202 => 0.036850708005764
203 => 0.03707461670323
204 => 0.037251585008214
205 => 0.037096841197684
206 => 0.039287687228973
207 => 0.038377895211529
208 => 0.038821321510539
209 => 0.038927076070034
210 => 0.038656187989668
211 => 0.038714933914524
212 => 0.038803917983375
213 => 0.039344211824573
214 => 0.040762099199159
215 => 0.041390071865477
216 => 0.043279358615721
217 => 0.041337927477341
218 => 0.04122273098803
219 => 0.041563048582743
220 => 0.042672259906449
221 => 0.043571171501391
222 => 0.043869392336887
223 => 0.043908807143387
224 => 0.044468289256124
225 => 0.044788973969421
226 => 0.044400353411797
227 => 0.04407103817948
228 => 0.042891471893428
229 => 0.043028009902891
301 => 0.043968621389861
302 => 0.045297290516945
303 => 0.046437426852446
304 => 0.046038190845516
305 => 0.049084079761689
306 => 0.049386067206387
307 => 0.049344342305953
308 => 0.050032314646732
309 => 0.048666829653416
310 => 0.048083058363747
311 => 0.044142239870593
312 => 0.045249449123272
313 => 0.04685884279616
314 => 0.046645833508637
315 => 0.045477048804169
316 => 0.04643654022444
317 => 0.046119302354828
318 => 0.045869083684853
319 => 0.047015383919282
320 => 0.045754979724109
321 => 0.046846269300154
322 => 0.045446679130931
323 => 0.046040014521967
324 => 0.045703208657611
325 => 0.045921163329224
326 => 0.044647004772524
327 => 0.045334509801269
328 => 0.044618402303021
329 => 0.044618062774827
330 => 0.044602254662113
331 => 0.045444751958094
401 => 0.045472225764669
402 => 0.044849618989997
403 => 0.044759891626821
404 => 0.045091660716497
405 => 0.044703246002948
406 => 0.044884982802765
407 => 0.044708750625476
408 => 0.044669077050351
409 => 0.044352951253852
410 => 0.04421675556866
411 => 0.044270161406154
412 => 0.04408785975019
413 => 0.043978016408332
414 => 0.044580404056701
415 => 0.044258572636426
416 => 0.044531078775832
417 => 0.044220523636962
418 => 0.043144004223209
419 => 0.042524886524373
420 => 0.040491441145195
421 => 0.041068123732248
422 => 0.041450464884086
423 => 0.041324101135685
424 => 0.04159557936353
425 => 0.041612245921865
426 => 0.0415239855826
427 => 0.04142179141658
428 => 0.041372048948253
429 => 0.04174278855392
430 => 0.041958015373531
501 => 0.041488837933738
502 => 0.041378916224084
503 => 0.041853280519712
504 => 0.042142642466013
505 => 0.044279128499069
506 => 0.044120850712981
507 => 0.044518096895615
508 => 0.04447337307169
509 => 0.044889750357369
510 => 0.045570351245285
511 => 0.044186499341151
512 => 0.04442668818171
513 => 0.044367799424775
514 => 0.045010731431528
515 => 0.045012738595075
516 => 0.044627268740191
517 => 0.044836238202057
518 => 0.044719597181221
519 => 0.044930383270852
520 => 0.044118736816651
521 => 0.045107234586047
522 => 0.045667649123906
523 => 0.045675430480308
524 => 0.045941062523528
525 => 0.046210960063811
526 => 0.046729004889261
527 => 0.046196512074798
528 => 0.045238609338711
529 => 0.045307766822249
530 => 0.044746148798564
531 => 0.044755589699007
601 => 0.044705193432547
602 => 0.044856436421847
603 => 0.044151926147671
604 => 0.044317273300865
605 => 0.044085786318122
606 => 0.044426184974218
607 => 0.044059972290172
608 => 0.044367771026834
609 => 0.044500606757887
610 => 0.044990773465223
611 => 0.043987574268956
612 => 0.041941983197152
613 => 0.04237199124084
614 => 0.041735975567823
615 => 0.041794841239843
616 => 0.041913759265726
617 => 0.041528307036282
618 => 0.041601839174664
619 => 0.041599212089244
620 => 0.041576573286354
621 => 0.041476302274605
622 => 0.041330889469553
623 => 0.041910169329179
624 => 0.042008600265338
625 => 0.042227400043408
626 => 0.042878399769634
627 => 0.042813349545354
628 => 0.042919449160063
629 => 0.042687834296876
630 => 0.041805585189059
701 => 0.041853495560242
702 => 0.041256052463878
703 => 0.042212122080198
704 => 0.041985712175551
705 => 0.041839744237142
706 => 0.041799915532763
707 => 0.042452528961394
708 => 0.042647801127702
709 => 0.042526120617887
710 => 0.042276550342267
711 => 0.042755799050285
712 => 0.042884025786671
713 => 0.042912731024128
714 => 0.043761867847912
715 => 0.042960188339844
716 => 0.043153160565445
717 => 0.044658674783232
718 => 0.04329338113446
719 => 0.044016607629896
720 => 0.043981209456434
721 => 0.044351187658849
722 => 0.043950860444981
723 => 0.043955822980585
724 => 0.044284338559835
725 => 0.043822997676875
726 => 0.043708763186403
727 => 0.043550949055978
728 => 0.043895530436246
729 => 0.044102091389641
730 => 0.045766820971702
731 => 0.046842312202606
801 => 0.046795622291866
802 => 0.047222280676178
803 => 0.047030067166302
804 => 0.046409359039553
805 => 0.047468832124622
806 => 0.04713357051027
807 => 0.047161209070414
808 => 0.047160180361825
809 => 0.04738310002629
810 => 0.047225141013729
811 => 0.046913787585812
812 => 0.04712047852152
813 => 0.04773427670721
814 => 0.049639525109222
815 => 0.050705727356172
816 => 0.049575338395193
817 => 0.050355065563965
818 => 0.049887507107899
819 => 0.049802537827773
820 => 0.050292264111147
821 => 0.050782847595551
822 => 0.050751599548445
823 => 0.050395461130509
824 => 0.050194287574894
825 => 0.051717641136094
826 => 0.052840022090334
827 => 0.052763483233792
828 => 0.053101300854799
829 => 0.054093143838378
830 => 0.054183825530616
831 => 0.054172401721689
901 => 0.053947637685822
902 => 0.054924235910243
903 => 0.055738931330666
904 => 0.053895611305576
905 => 0.054597523440299
906 => 0.054912634411773
907 => 0.055375310807109
908 => 0.056155923439608
909 => 0.057003875805777
910 => 0.057123785567678
911 => 0.057038703853399
912 => 0.056479456473727
913 => 0.057407296070965
914 => 0.057950802746511
915 => 0.058274448533869
916 => 0.059095160401086
917 => 0.054914580429856
918 => 0.051955358137913
919 => 0.051493232845338
920 => 0.052432982799969
921 => 0.05268078736864
922 => 0.052580897657729
923 => 0.049250023927427
924 => 0.051475696484489
925 => 0.053870333016023
926 => 0.053962320757663
927 => 0.055161125874838
928 => 0.055551505961672
929 => 0.056516701211977
930 => 0.056456327986276
1001 => 0.056691337670114
1002 => 0.0566373130136
1003 => 0.05842513396895
1004 => 0.060397365976682
1005 => 0.060329073853568
1006 => 0.060045542168066
1007 => 0.060466635070372
1008 => 0.062502189859578
1009 => 0.062314788593689
1010 => 0.062496832960699
1011 => 0.064896866776013
1012 => 0.068017252136751
1013 => 0.06656751985512
1014 => 0.069713021757033
1015 => 0.071692948468395
1016 => 0.075117026987454
1017 => 0.074688315492926
1018 => 0.076021284133347
1019 => 0.073920832442931
1020 => 0.069097770790412
1021 => 0.068334502821963
1022 => 0.069862584623822
1023 => 0.073619224625651
1024 => 0.069744274661418
1025 => 0.070528171992437
1026 => 0.070302409508368
1027 => 0.07029037958502
1028 => 0.070749512829951
1029 => 0.0700835161114
1030 => 0.067370125669501
1031 => 0.068613656518913
1101 => 0.068133469538699
1102 => 0.068666272793557
1103 => 0.07154159221525
1104 => 0.070270344959866
1105 => 0.068931189244059
1106 => 0.070610787694124
1107 => 0.072749493693702
1108 => 0.072615657315872
1109 => 0.072355958803617
1110 => 0.073819865719827
1111 => 0.076237811060925
1112 => 0.076891371970532
1113 => 0.07737381727254
1114 => 0.077440338328706
1115 => 0.078125546549829
1116 => 0.074441009250146
1117 => 0.080288464570372
1118 => 0.081298158571481
1119 => 0.081108377946801
1120 => 0.082230610334616
1121 => 0.081900421097833
1122 => 0.081422028698838
1123 => 0.083201005739199
1124 => 0.08116155211847
1125 => 0.078266804463917
1126 => 0.076678688649012
1127 => 0.078770047663727
1128 => 0.080047167635642
1129 => 0.080891262696992
1130 => 0.08114668535254
1201 => 0.074727029392188
1202 => 0.071267190880001
1203 => 0.073484907699184
1204 => 0.076190675277226
1205 => 0.074425978574633
1206 => 0.074495151344362
1207 => 0.071979157600599
1208 => 0.076413284895645
1209 => 0.075767269845637
1210 => 0.079118797067857
1211 => 0.078318928198588
1212 => 0.08105196854277
1213 => 0.080332267425991
1214 => 0.083319706523795
1215 => 0.084511476861594
1216 => 0.086512644743
1217 => 0.087984711982781
1218 => 0.088849138022139
1219 => 0.088797241125117
1220 => 0.092222527748398
1221 => 0.090202755897049
1222 => 0.087665446428078
1223 => 0.087619554504894
1224 => 0.088933663032826
1225 => 0.091687673999306
1226 => 0.092401748973684
1227 => 0.092800819468461
1228 => 0.092189629113965
1229 => 0.089997311527678
1230 => 0.089050679909222
1231 => 0.089857237474705
]
'min_raw' => 0.033258245897996
'max_raw' => 0.092800819468461
'avg_raw' => 0.063029532683229
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.033258'
'max' => '$0.09280081'
'avg' => '$0.063029'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.013166441552368
'max_diff' => 0.047947281636752
'year' => 2036
]
11 => [
'items' => [
101 => 0.088870886880401
102 => 0.090573604727267
103 => 0.092911800011921
104 => 0.092428971931866
105 => 0.094042993813858
106 => 0.095713336661666
107 => 0.098102001953823
108 => 0.098726487513212
109 => 0.099758738395824
110 => 0.10082126363078
111 => 0.10116251810039
112 => 0.10181407876792
113 => 0.10181064472159
114 => 0.10377416664828
115 => 0.10593999213863
116 => 0.10675754112226
117 => 0.10863744993021
118 => 0.10541817197646
119 => 0.10786003128478
120 => 0.11006264950459
121 => 0.10743659725965
122 => 0.11105599848761
123 => 0.11119653163555
124 => 0.11331841532084
125 => 0.11116747970207
126 => 0.10989026099767
127 => 0.1135775435405
128 => 0.11536170341466
129 => 0.11482429994059
130 => 0.11073463296802
131 => 0.10835427137592
201 => 0.10212440595192
202 => 0.1095039506568
203 => 0.11309831161828
204 => 0.11072532444146
205 => 0.11192212114503
206 => 0.11845145589704
207 => 0.12093740382749
208 => 0.12042034403605
209 => 0.12050771862927
210 => 0.1218490910094
211 => 0.12779747485013
212 => 0.12423306537031
213 => 0.12695792286176
214 => 0.12840317745002
215 => 0.12974561045651
216 => 0.12644901927288
217 => 0.12216020257952
218 => 0.12080175430045
219 => 0.11048937763319
220 => 0.10995257364328
221 => 0.10965124929692
222 => 0.10775144191627
223 => 0.10625871371612
224 => 0.10507164082991
225 => 0.10195640708654
226 => 0.10300770702628
227 => 0.098042674639159
228 => 0.1012191264105
301 => 0.093294814835748
302 => 0.099894416987389
303 => 0.09630255358334
304 => 0.098714393256302
305 => 0.098705978574892
306 => 0.094265017062503
307 => 0.09170356314266
308 => 0.093335821273662
309 => 0.095085731558908
310 => 0.095369648615284
311 => 0.097638452977438
312 => 0.098271627507128
313 => 0.096353079122074
314 => 0.093130601091826
315 => 0.093879109241355
316 => 0.0916883946489
317 => 0.087849251590243
318 => 0.090606591159978
319 => 0.091548068120748
320 => 0.091963877981383
321 => 0.088188521711754
322 => 0.087002222804864
323 => 0.086370647220848
324 => 0.092643250006311
325 => 0.092986877346499
326 => 0.091228831290088
327 => 0.099175366169832
328 => 0.097376820586981
329 => 0.099386236657392
330 => 0.093811189972276
331 => 0.094024164263443
401 => 0.091384847818623
402 => 0.092862688668534
403 => 0.091818198388851
404 => 0.092743293732169
405 => 0.093297792066643
406 => 0.095936675425605
407 => 0.099924548796452
408 => 0.095542514250781
409 => 0.093633199047342
410 => 0.09481772746116
411 => 0.097972282722484
412 => 0.1027515954221
413 => 0.099922146111297
414 => 0.10117780766827
415 => 0.10145211385797
416 => 0.09936578268809
417 => 0.10282852142825
418 => 0.10468423125034
419 => 0.10658780554276
420 => 0.10824062576393
421 => 0.10582747610987
422 => 0.10840989215113
423 => 0.10632892067967
424 => 0.1044620741429
425 => 0.1044649053785
426 => 0.1032938052757
427 => 0.10102465125843
428 => 0.10060618444257
429 => 0.10278310166518
430 => 0.10452878312288
501 => 0.10467256580899
502 => 0.10563906476032
503 => 0.10621102888399
504 => 0.11181705484347
505 => 0.11407184485985
506 => 0.11682895941089
507 => 0.11790301091099
508 => 0.12113552085749
509 => 0.11852500654407
510 => 0.11796020535145
511 => 0.11011919356718
512 => 0.11140315880759
513 => 0.11345891104171
514 => 0.11015309216434
515 => 0.11224987334742
516 => 0.11266382236885
517 => 0.11004076170387
518 => 0.1114418517408
519 => 0.10772097199697
520 => 0.10000565380688
521 => 0.10283711078293
522 => 0.10492201617543
523 => 0.10194659911336
524 => 0.10727991903257
525 => 0.10416430363784
526 => 0.10317680313362
527 => 0.099324211597322
528 => 0.10114248650261
529 => 0.1036017293472
530 => 0.10208220318691
531 => 0.10523544812751
601 => 0.10970128390311
602 => 0.11288390442191
603 => 0.11312822650659
604 => 0.11108201473201
605 => 0.11436108215953
606 => 0.1143849665859
607 => 0.11068616513228
608 => 0.10842066983695
609 => 0.10790594453921
610 => 0.1091918292508
611 => 0.1107531306781
612 => 0.1132148678697
613 => 0.11470244409709
614 => 0.11858125394866
615 => 0.1196307486803
616 => 0.12078382520346
617 => 0.12232469103402
618 => 0.1241748955335
619 => 0.12012675342084
620 => 0.12028759365365
621 => 0.11651801976869
622 => 0.11248968946102
623 => 0.11554669002608
624 => 0.11954331160915
625 => 0.11862648220212
626 => 0.1185233201647
627 => 0.11869681009687
628 => 0.11800555066482
629 => 0.11487900987292
630 => 0.11330888066041
701 => 0.11533474792723
702 => 0.11641140621857
703 => 0.11808120933396
704 => 0.11787537085472
705 => 0.12217660435621
706 => 0.12384793363234
707 => 0.1234203360833
708 => 0.12349902432303
709 => 0.12652488614437
710 => 0.12989026680565
711 => 0.13304238989603
712 => 0.1362488648904
713 => 0.13238333413384
714 => 0.13042065600845
715 => 0.132445638845
716 => 0.13137115444823
717 => 0.13754546050484
718 => 0.13797295606
719 => 0.14414681564401
720 => 0.15000654355875
721 => 0.14632615344343
722 => 0.14979659555377
723 => 0.1535501616454
724 => 0.16079139963029
725 => 0.1583528054268
726 => 0.15648488048457
727 => 0.15471970043991
728 => 0.15839275989841
729 => 0.16311809221321
730 => 0.16413588353515
731 => 0.16578509430289
801 => 0.16405115083651
802 => 0.16613949475416
803 => 0.17351226644831
804 => 0.1715200784553
805 => 0.16869085124501
806 => 0.17451094640902
807 => 0.17661721622383
808 => 0.19140012084622
809 => 0.21006414858331
810 => 0.20233711854554
811 => 0.1975407016514
812 => 0.19866797339405
813 => 0.20548344450643
814 => 0.20767235751548
815 => 0.20172213739331
816 => 0.20382385573271
817 => 0.21540453041919
818 => 0.22161719083596
819 => 0.21317956351838
820 => 0.1899004843903
821 => 0.16843611028997
822 => 0.17412942885474
823 => 0.17348398321374
824 => 0.18592597344578
825 => 0.17147256543052
826 => 0.17171592375367
827 => 0.18441520116741
828 => 0.18102725167415
829 => 0.17553920739087
830 => 0.16847617908668
831 => 0.15541951801533
901 => 0.1438548691925
902 => 0.16653580871363
903 => 0.16555776535886
904 => 0.16414141364326
905 => 0.16729335112107
906 => 0.18259826482024
907 => 0.1822454370223
908 => 0.18000092658615
909 => 0.18170336796977
910 => 0.17524076118514
911 => 0.17690632210436
912 => 0.16843271022345
913 => 0.17226313668291
914 => 0.17552743251265
915 => 0.17618278822919
916 => 0.17765933812186
917 => 0.16504238095354
918 => 0.17070702430771
919 => 0.17403447157298
920 => 0.15900094377491
921 => 0.17373730706489
922 => 0.16482274779943
923 => 0.16179701249255
924 => 0.16587076647295
925 => 0.16428322058493
926 => 0.16291834185424
927 => 0.16215671607091
928 => 0.1651480313903
929 => 0.16500848295526
930 => 0.16011411050345
1001 => 0.15372960116021
1002 => 0.15587245206018
1003 => 0.15509393423889
1004 => 0.15227248522373
1005 => 0.15417380119689
1006 => 0.14580136788507
1007 => 0.13139703153329
1008 => 0.14091297734403
1009 => 0.14054662378168
1010 => 0.14036189170273
1011 => 0.14751286197807
1012 => 0.14682546118705
1013 => 0.1455778220203
1014 => 0.15224957135202
1015 => 0.14981429309825
1016 => 0.15731924685265
1017 => 0.16226249478527
1018 => 0.16100872721224
1019 => 0.16565787578566
1020 => 0.15592181901696
1021 => 0.15915574653273
1022 => 0.1598222545117
1023 => 0.1521672430009
1024 => 0.14693792845769
1025 => 0.14658919279621
1026 => 0.13752228202222
1027 => 0.14236575257214
1028 => 0.14662780621964
1029 => 0.14458661327121
1030 => 0.14394043256264
1031 => 0.14724162966321
1101 => 0.14749816095077
1102 => 0.14164922040853
1103 => 0.14286540035912
1104 => 0.14793707292617
1105 => 0.142737607223
1106 => 0.13263589468965
1107 => 0.13013053031427
1108 => 0.12979626852357
1109 => 0.1230015216346
1110 => 0.1302979507417
1111 => 0.12711286390431
1112 => 0.13717451506043
1113 => 0.13142735388177
1114 => 0.13117960525006
1115 => 0.13080509685642
1116 => 0.12495657752162
1117 => 0.12623703156315
1118 => 0.13049345581584
1119 => 0.13201219594125
1120 => 0.1318537789035
1121 => 0.13047259701492
1122 => 0.13110489501071
1123 => 0.12906804285902
1124 => 0.12834878797085
1125 => 0.12607862169713
1126 => 0.12274210442421
1127 => 0.12320606761506
1128 => 0.11659555385016
1129 => 0.11299379510453
1130 => 0.11199687575415
1201 => 0.1106637535347
1202 => 0.11214745545614
1203 => 0.11657682709523
1204 => 0.11123406515487
1205 => 0.1020742745593
1206 => 0.10262479358162
1207 => 0.1038616463742
1208 => 0.10155677937782
1209 => 0.099375416198577
1210 => 0.10127193450334
1211 => 0.097390810476614
1212 => 0.10433066167054
1213 => 0.10414295814446
1214 => 0.10672970551203
1215 => 0.10834725172638
1216 => 0.10461933138912
1217 => 0.10368176950567
1218 => 0.10421584736429
1219 => 0.095388730034325
1220 => 0.1060083417053
1221 => 0.10610018054801
1222 => 0.10531380061967
1223 => 0.11096841599074
1224 => 0.12290141814245
1225 => 0.11841174272907
1226 => 0.11667320470786
1227 => 0.11336824265866
1228 => 0.11777190835999
1229 => 0.11743377554201
1230 => 0.11590461070606
1231 => 0.114979767042
]
'min_raw' => 0.086370647220848
'max_raw' => 0.22161719083596
'avg_raw' => 0.15399391902841
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.08637'
'max' => '$0.221617'
'avg' => '$0.153993'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.053112401322852
'max_diff' => 0.1288163713675
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0027110759227345
]
1 => [
'year' => 2028
'avg' => 0.0046529933143762
]
2 => [
'year' => 2029
'avg' => 0.012711139114424
]
3 => [
'year' => 2030
'avg' => 0.009806624896782
]
4 => [
'year' => 2031
'avg' => 0.0096313209702839
]
5 => [
'year' => 2032
'avg' => 0.016886736749169
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0027110759227345
'min' => '$0.002711'
'max_raw' => 0.016886736749169
'max' => '$0.016886'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.016886736749169
]
1 => [
'year' => 2033
'avg' => 0.043434423361525
]
2 => [
'year' => 2034
'avg' => 0.027530824887247
]
3 => [
'year' => 2035
'avg' => 0.032472671088669
]
4 => [
'year' => 2036
'avg' => 0.063029532683229
]
5 => [
'year' => 2037
'avg' => 0.15399391902841
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.016886736749169
'min' => '$0.016886'
'max_raw' => 0.15399391902841
'max' => '$0.153993'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.15399391902841
]
]
]
]
'prediction_2025_max_price' => '$0.004635'
'last_price' => 0.00449465
'sma_50day_nextmonth' => '$0.00471'
'sma_200day_nextmonth' => '$0.007116'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'INCREASE'
'sma_200day_date_nextmonth' => 'Feb 4, 2026'
'sma_50day_date_nextmonth' => 'Feb 4, 2026'
'daily_sma3' => '$0.004546'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.0046065'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.004958'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.0056071'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.006087'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006777'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.007783'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004561'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.004658'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.004948'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.005397'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0060074'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00665'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.007348'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007015'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.008035'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.008278'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.007749'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.00479'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.005135'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.005784'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.006659'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.007547'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.00794'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.008418'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '11.62'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -1.72
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.005134'
'vwma_10_action' => 'SELL'
'hma_9' => '0.004422'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -106.17
'cci_20_action' => 'BUY'
'adx_14' => 46
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001268'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 3.79
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.000484'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 2
'sell_pct' => 94.12
'buy_pct' => 5.88
'overall_action' => 'bearish'
'overall_action_label' => 'BEARISH'
'overall_action_dir' => -1
'last_updated' => 1767679825
'last_updated_date' => 'January 6, 2026'
]
Gameflip price prediction 2026
The Gameflip price forecast for 2026 suggests that the average price could range between $0.001552 on the lower end and $0.004635 on the high end. In the crypto market, compared to today’s average price, Gameflip could potentially gain 3.13% by 2026 if FLP reaches the forecast price target.
Gameflip price prediction 2027-2032
The FLP price prediction for 2027-2032 is currently within a price range of $0.002711 on the lower end and $0.016886 on the high end. Considering the price volatility in the market, if Gameflip reaches the upper price target, it could gain 275.71% by 2032 compared to today’s price.
| Gameflip Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2027 | $0.001494 | $0.002711 | $0.003927 |
| 2028 | $0.002697 | $0.004652 | $0.006608 |
| 2029 | $0.005926 | $0.012711 | $0.019495 |
| 2030 | $0.00504 | $0.0098066 | $0.014572 |
| 2031 | $0.005959 | $0.009631 | $0.0133034 |
| 2032 | $0.009096 | $0.016886 | $0.024677 |
Gameflip price prediction 2032-2037
The Gameflip price prediction for 2032-2037 is currently estimated to be between $0.016886 on the lower end and $0.153993 on the high end. Compared to the current price, Gameflip could potentially gain 3326.16% by 2037 if it reaches the upper price target. Please note that this information is for general purposes only and should not be considered long-term investment advice.
| Gameflip Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2032 | $0.009096 | $0.016886 | $0.024677 |
| 2033 | $0.021137 | $0.043434 | $0.065731 |
| 2034 | $0.016993 | $0.02753 | $0.038067 |
| 2035 | $0.020091 | $0.032472 | $0.044853 |
| 2036 | $0.033258 | $0.063029 | $0.09280081 |
| 2037 | $0.08637 | $0.153993 | $0.221617 |
Gameflip potential price histogram
Gameflip Price Forecast Based on Technical Analysis
As of January 6, 2026, the overall price prediction sentiment for Gameflip is BEARISH, with 2 technical indicators showing bullish signals and 32 indicating bearish signals. The FLP price prediction was last updated on January 6, 2026.
Gameflip's 50-Day, 200-Day Simple Moving Averages and 14-Day Relative Strength Index - RSI (14)
According to our technical indicators, Gameflip's 200-day SMA is projected to INCREASE over the next month, reaching $0.007116 by Feb 4, 2026. The short-term 50-day SMA for Gameflip is expected to reach $0.00471 by Feb 4, 2026.
The Relative Strength Index (RSI) momentum oscillator is a commonly used tool to identify if a cryptocurrency is oversold (below 30) or overbought (above 70). Right now, the RSI stands at 11.62, suggesting that the FLP market is in a BUY state.
Popular FLP Moving Averages and Oscillators for Sat, Oct 19, 2024
Moving averages (MA) are widely used indicators across financial markets, designed to smooth out price movements over a set period. As lagging indicators, they are based on historical price data. The table below highlights two types: the simple moving average (SMA) and the exponential moving average (EMA).
Daily Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 3 | $0.004546 | SELL |
| SMA 5 | $0.0046065 | SELL |
| SMA 10 | $0.004958 | SELL |
| SMA 21 | $0.0056071 | SELL |
| SMA 50 | $0.006087 | SELL |
| SMA 100 | $0.006777 | SELL |
| SMA 200 | $0.007783 | SELL |
Daily Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 3 | $0.004561 | SELL |
| EMA 5 | $0.004658 | SELL |
| EMA 10 | $0.004948 | SELL |
| EMA 21 | $0.005397 | SELL |
| EMA 50 | $0.0060074 | SELL |
| EMA 100 | $0.00665 | SELL |
| EMA 200 | $0.007348 | SELL |
Weekly Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 21 | $0.007015 | SELL |
| SMA 50 | $0.008035 | SELL |
| SMA 100 | $0.008278 | SELL |
| SMA 200 | $0.007749 | SELL |
Weekly Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 21 | $0.006659 | SELL |
| EMA 50 | $0.007547 | SELL |
| EMA 100 | $0.00794 | SELL |
| EMA 200 | $0.008418 | SELL |
Gameflip Oscillators
An oscillator is a technical analysis tool that sets high and low boundaries between two extremes, creating a trend indicator that fluctuates within these limits. Traders use this indicator to identify short-term overbought or oversold conditions.
| Period | Value | Action |
|---|---|---|
| RSI (14) | 11.62 | BUY |
| Stoch RSI (14) | -1.72 | BUY |
| Stochastic Fast (14) | 0 | BUY |
| Commodity Channel Index (20) | -106.17 | BUY |
| Average Directional Index (14) | 46 | SELL |
| Awesome Oscillator (5, 34) | -0.001268 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -100 | BUY |
| Ultimate Oscillator (7, 14, 28) | 3.79 | BUY |
| VWMA (10) | 0.005134 | SELL |
| Hull Moving Average (9) | 0.004422 | SELL |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.000484 | SELL |
Gameflip price prediction based on worldwide money flows
Worldwide money flows definitions used for Gameflip price prediction
M0: The total of all physical currency, plus accounts at the central bank which can be exchanged for physical currency.
M1: Measure M0 plus the amount in demand accounts, including "checking" or "current" accounts.
M2: Measure M1 plus most savings accounts, money market accounts, and certificate of deposit (CD) accounts of under $100,000.
Gameflip price predictions by Internet companies or technological niches
| Comparison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.006315 | $0.008874 | $0.01247 | $0.017522 | $0.024622 | $0.034598 |
| Amazon.com stock | $0.009378 | $0.019568 | $0.04083 | $0.085195 | $0.177766 | $0.37092 |
| Apple stock | $0.006375 | $0.009042 | $0.012826 | $0.018193 | $0.0258062 | $0.0366042 |
| Netflix stock | $0.007091 | $0.011189 | $0.017655 | $0.027858 | $0.043955 | $0.069355 |
| Google stock | $0.00582 | $0.007537 | $0.009761 | $0.01264 | $0.016369 | $0.021198 |
| Tesla stock | $0.010189 | $0.023097 | $0.05236 | $0.118698 | $0.269079 | $0.609983 |
| Kodak stock | $0.00337 | $0.002527 | $0.001895 | $0.001421 | $0.001065 | $0.000799 |
| Nokia stock | $0.002977 | $0.001972 | $0.0013066 | $0.000865 | $0.000573 | $0.000379 |
This calculation shows how much cryptocurrency can cost if we assume that its capitalization will behave like the capitalization of some Internet companies or technological niches. If you extrapolate the data projections, you can get a potential picture of the future Gameflip price for 2024, 2025, 2026, 2027, 2028, 2029 and 2030.
Gameflip forecast and prediction overview
You may ask questions like: "Should I invest in Gameflip now?", "Should I buy FLP today?", "Will Gameflip be a good or bad investment in short-term, long-term period?".
We update Gameflip forecast projection regularly with fresh values. Look at our similar predictions. We making a forecast of future prices for huge amounts of digital coins like Gameflip with technical analysis methods.
If you are trying to find cryptocurrencies with good returns, you should explore the maximum of available sources of information about Gameflip in order to make such a responsible decision about the investment by yourself.
Gameflip price equal to $0.004494 USD today, but the price can go both up and down and your investment may be lost because cryptocurrency high-risk assets
Gameflip price prediction based on Bitcoin's growth pattern
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| If Gameflip has 1% of Bitcoin's previous average grow per year | $0.004611 | $0.004731 | $0.004854 | $0.00498 |
| If Gameflip has 2% of Bitcoin's previous average grow per year | $0.004728 | $0.004974 | $0.005232 | $0.0055047 |
| If Gameflip has 5% of Bitcoin's previous average grow per year | $0.005078 | $0.005738 | $0.006484 | $0.007327 |
| If Gameflip has 10% of Bitcoin's previous average grow per year | $0.005662 | $0.007134 | $0.008989 | $0.011326 |
| If Gameflip has 20% of Bitcoin's previous average grow per year | $0.006831 | $0.010382 | $0.01578 | $0.023983 |
| If Gameflip has 50% of Bitcoin's previous average grow per year | $0.010336 | $0.023769 | $0.054662 | $0.1257045 |
| If Gameflip has 100% of Bitcoin's previous average grow per year | $0.016177 | $0.058228 | $0.209583 | $0.754359 |
Frequently Asked Questions about Gameflip
Is FLP a good investment?
The determination to procure Gameflip is entirely contingent on your individualistic risk tolerance. As you may discern, Gameflip's value has experienced an escalation of 0.5326% during the preceding 24 hours, and Gameflip has incurred a decline of over the prior 30-day duration. Consequently, the determination of whether or not to invest in Gameflip will hinge on whether such an investment aligns with your trading aspirations.
Can Gameflip rise?
It appears that the mean value of Gameflip may potentially surge to $0.004635 by the end of this year. Looking at Gameflip's prospects in a more extended five-year timeline, the digital currency could potentially growth to as much as $0.014572. However, given the market's unpredictability, it is vital to conduct thorough research before investing any funds into a particular project, network, or asset.
What will the price of Gameflip be next week?
Based on the our new experimental Gameflip forecast, the price of Gameflip will increase by 0.86% over the next week and reach $0.004533 by January 13, 2026.
What will the price of Gameflip be next month?
Based on the our new experimental Gameflip forecast, the price of Gameflip will decrease by -11.62% over the next month and reach $0.003972 by February 5, 2026.
How high can Gameflip’s price go this year in 2026?
As per our most recent prediction on Gameflip's value in 2026, FLP is anticipated to fluctuate within the range of $0.001552 and $0.004635. However, it is crucial to bear in mind that the cryptocurrency market is exceptionally unstable, and this projected Gameflip price forecast fails to consider sudden and extreme price fluctuations.
Where will Gameflip be in 5 years?
Gameflip's future appears to be on an upward trend, with an maximum price of $0.014572 projected after a period of five years. Based on the Gameflip forecast for 2030, Gameflip's value may potentially reach its highest peak of approximately $0.014572, while its lowest peak is anticipated to be around $0.00504.
How much will be Gameflip in 2026?
Based on the our new experimental Gameflip price prediction simulation, FLP’s value in 2026 expected to grow by 3.13% to $0.004635 if the best happened. The price will be between $0.004635 and $0.001552 during 2026.
How much will be Gameflip in 2027?
According to our latest experimental simulation for Gameflip price prediction, FLP’s value could down by -12.62% to $0.003927 in 2027, assuming the most favorable conditions. The price is projected to fluctuate between $0.003927 and $0.001494 throughout the year.
How much will be Gameflip in 2028?
Our new experimental Gameflip price prediction model suggests that FLP’s value in 2028 could increase by 47.02% , reaching $0.006608 in the best-case scenario. The price is expected to range between $0.006608 and $0.002697 during the year.
How much will be Gameflip in 2029?
Based on our experimental forecast model, Gameflip's value may experience a 333.75% growth in 2029, potentially reaching $0.019495 under optimal conditions. The predicted price range for 2029 lies between $0.019495 and $0.005926.
How much will be Gameflip in 2030?
Using our new experimental simulation for Gameflip price predictions, FLP’s value in 2030 is expected to rise by 224.23% , reaching $0.014572 in the best scenario. The price is forecasted to range between $0.014572 and $0.00504 over the course of 2030.
How much will be Gameflip in 2031?
Our experimental simulation indicates that Gameflip’s price could grow by 195.98% in 2031, potentially hitting $0.0133034 under ideal conditions. The price will likely fluctuate between $0.0133034 and $0.005959 during the year.
How much will be Gameflip in 2032?
Based on the findings from our latest experimental Gameflip price prediction, FLP could see a 449.04% rise in value, reaching $0.024677 if the most positive scenario plays out in 2032. The price is expected to stay within a range of $0.024677 and $0.009096 throughout the year.
How much will be Gameflip in 2033?
According to our experimental Gameflip price prediction, FLP’s value is anticipated to rise by 1362.43% in 2033, with the highest potential price being $0.065731. Throughout the year, FLP’s price could range from $0.065731 and $0.021137.
How much will be Gameflip in 2034?
The results from our new Gameflip price prediction simulation suggest that FLP may rise by 746.96% in 2034, potentially reaching $0.038067 under the best circumstances. The predicted price range for the year is between $0.038067 and $0.016993.
How much will be Gameflip in 2035?
Based on our experimental forecast for Gameflip’s price, FLP could grow by 897.93% , with the value potentially hitting $0.044853 in 2035. The expected price range for the year lies between $0.044853 and $0.020091.
How much will be Gameflip in 2036?
Our recent Gameflip price prediction simulation suggests that FLP’s value might rise by 1964.7% in 2036, possibly reaching $0.09280081 if conditions are optimal. The expected price range for 2036 is between $0.09280081 and $0.033258.
How much will be Gameflip in 2037?
According to the experimental simulation, Gameflip’s value could rise by 4830.69% in 2037, with a high of $0.221617 under favorable conditions. The price is expected to fall between $0.221617 and $0.08637 over the course of the year.
Related Predictions
Smoothy Price Prediction
Kitsumon Price Prediction
HyperChainX Price Prediction
Wrapped OptiDoge Price Prediction
Hunny Finance Price Prediction
Savanna Price Prediction
Tholana Price Prediction
Flare Token Price Prediction
Cramer Coin Price Prediction
LakeViewMeta Price Prediction
XMax Price Prediction
Xena Finance Price Prediction
YES Price Prediction
APY.vision Price Prediction
GG Price Prediction
Aurora Chain Price PredictionGovWorld Price Prediction
NFTrade Price Prediction
Zillion Aakar XO Price Prediction
Bridge Mutual Price Prediction
CZ THE GOAT Price Prediction
Darwinia Commitment Price Prediction
Crypto Royale Price Prediction
Ycash Price Prediction
Dimecoin Price Prediction
How to read and predict Gameflip price movements?
Gameflip traders use indicators and chart patterns to predict market direction. They also identify key support and resistance levels to gauge when a downtrend might slow or an uptrend might stall.
Gameflip Price Prediction Indicators
Moving averages are popular tools for Gameflip price prediction. A simple moving average (SMA) calculates the average closing price of FLP over a specific period, like a 12-day SMA. An exponential moving average (EMA) gives more weight to recent prices, reacting faster to price changes.
Commonly used moving averages in the crypto market include the 50-day, 100-day, and 200-day averages, which help identify key resistance and support levels. A FLP price move above these averages is seen as bullish, while a drop below indicates weakness.
Traders also use RSI and Fibonacci retracement levels to gauge FLP's future direction.
How to read Gameflip charts and predict price movements?
Most traders prefer candlestick charts over simple line charts because they provide more detailed information. Candlesticks can represent Gameflip's price action in different time frames, such as 5-minute for short-term and weekly for long-term trends. Popular choices include 1-hour, 4-hour, and 1-day charts.
A 1-hour candlestick chart, for instance, shows FLP's opening, closing, highest, and lowest prices within each hour. The candle's color is crucial: green indicates the price closed higher than it opened, while red means the opposite. Some charts use hollow and filled candlesticks to convey the same information.
What affects the price of Gameflip?
Gameflip's price action is driven by supply and demand, influenced by factors like block reward halvings, hard forks, and protocol updates. Real-world events, such as regulations, adoption by companies and governments, and cryptocurrency exchange hacks, also impact FLP's price. Gameflip's market capitalization can change rapidly.
Traders often monitor the activity of FLP "whales," large holders of Gameflip, as their actions can significantly influence price movements in the relatively small Gameflip market.
Bullish and bearish price prediction patterns
Traders often identify candlestick patterns to gain an edge in cryptocurrency price predictions. Certain formations indicate bullish trends, while others suggest bearish movements.
Commonly followed bullish candlestick patterns:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Three White Soldiers
Common bearish candlestick patterns:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


