Aleph.im (Wormhole) (ALEPH) Price Prediction
Aleph.im (Wormhole) Price Prediction up to $0.036295 by 2026
| Year | Min. Price | Max. Price |
|---|---|---|
| 2026 | $0.012159 | $0.036295 |
| 2027 | $0.0117053 | $0.03075 |
| 2028 | $0.021124 | $0.051741 |
| 2029 | $0.046405 | $0.152651 |
| 2030 | $0.039465 | $0.1141064 |
| 2031 | $0.04666 | $0.104166 |
| 2032 | $0.071223 | $0.193223 |
| 2033 | $0.1655083 | $0.514675 |
| 2034 | $0.13306 | $0.298072 |
| 2035 | $0.157319 | $0.3512038 |
Investment Profit Calculator
If you open a short on $10,000.00 of Aleph.im (Wormhole) today and close it on Apr 06, 2026, our forecast suggests you could make around $3,954.51 in profit, equal to a 39.55% ROI over the next 90 days.
Long-term Aleph.im (Wormhole) price prediction for 2027, 2028, 2029, 2030, 2031, 2032 and 2037
[
'name' => 'Aleph.im (Wormhole)'
'name_with_ticker' => 'Aleph.im (Wormhole) <small>ALEPH</small>'
'name_lang' => 'Aleph.im (Wormhole)'
'name_lang_with_ticker' => 'Aleph.im (Wormhole) <small>ALEPH</small>'
'name_with_lang' => 'Aleph.im (Wormhole)'
'name_with_lang_with_ticker' => 'Aleph.im (Wormhole) <small>ALEPH</small>'
'image' => '/uploads/coins/aleph-im-wormhole.png?1717576133'
'price_for_sd' => 0.03519
'ticker' => 'ALEPH'
'marketcap' => '$280.4K'
'low24h' => '$0.03417'
'high24h' => '$0.03638'
'volume24h' => '$12.07K'
'current_supply' => '7.92M'
'max_supply' => '7.92M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03519'
'change_24h_pct' => '-3.1486%'
'ath_price' => '$0.4698'
'ath_days' => 665
'ath_exchange' => null
'ath_pair' => null
'ath_date' => 'Mar 12, 2024'
'ath_pct' => '-92.51%'
'fdv' => '$280.4K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.73'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.035494'
'next_week_prediction_price_date' => 'January 13, 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.031104'
'next_month_prediction_price_date' => 'February 5, 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.012159'
'current_year_max_price_prediction' => '$0.036295'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.039465'
'grand_prediction_max_price' => '$0.1141064'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.035860062059893
107 => 0.035993950514422
108 => 0.03629560803899
109 => 0.033717977519439
110 => 0.034875257947461
111 => 0.035555051776412
112 => 0.0324837185261
113 => 0.035494341393143
114 => 0.033673106706804
115 => 0.033054952300234
116 => 0.03388721577303
117 => 0.033562881888279
118 => 0.033284038659694
119 => 0.033128439347009
120 => 0.033739561787863
121 => 0.033711052195548
122 => 0.032711137268556
123 => 0.031406789008041
124 => 0.031844571098042
125 => 0.031685520760516
126 => 0.031109101819418
127 => 0.03149753858863
128 => 0.029787059640374
129 => 0.026844269512859
130 => 0.028788366811195
131 => 0.02871352117998
201 => 0.028675780618742
202 => 0.030136716007538
203 => 0.02999628077942
204 => 0.029741389465238
205 => 0.031104420540545
206 => 0.030606895862703
207 => 0.032140149688256
208 => 0.033150049822404
209 => 0.032893906481537
210 => 0.033843722438975
211 => 0.0318546567132
212 => 0.032515344559837
213 => 0.032651511409355
214 => 0.031087600948654
215 => 0.030019257719532
216 => 0.029948011406154
217 => 0.028095651473622
218 => 0.029085167197853
219 => 0.029955900086234
220 => 0.029538886604302
221 => 0.029406872593845
222 => 0.030081303542922
223 => 0.030133712603776
224 => 0.028938780462248
225 => 0.029187244693051
226 => 0.030223381839242
227 => 0.029161136695421
228 => 0.027097367897736
301 => 0.026585524702074
302 => 0.026517235384631
303 => 0.0251290760432
304 => 0.026619728511881
305 => 0.025969018762299
306 => 0.028024603064529
307 => 0.026850464335415
308 => 0.026799849561524
309 => 0.026723337907215
310 => 0.025528491817906
311 => 0.025790087175034
312 => 0.026659669984227
313 => 0.026969946927099
314 => 0.026937582499933
315 => 0.026655408554063
316 => 0.026784586341518
317 => 0.026368459679601
318 => 0.02622151669435
319 => 0.025757724213047
320 => 0.025076077391475
321 => 0.025170864562798
322 => 0.02382034384667
323 => 0.023084508482964
324 => 0.022880838952445
325 => 0.022608483544299
326 => 0.022911602220505
327 => 0.023816517991165
328 => 0.022724997583159
329 => 0.020853662404886
330 => 0.0209661328377
331 => 0.021218820507462
401 => 0.020747938706557
402 => 0.020302288600113
403 => 0.02068974521093
404 => 0.01989683582652
405 => 0.021314639818399
406 => 0.021276292193768
407 => 0.02180476184553
408 => 0.022135224764066
409 => 0.021373614725482
410 => 0.02118207186039
411 => 0.021291183381484
412 => 0.019487812986718
413 => 0.021657388010528
414 => 0.021676150585428
415 => 0.021515494028049
416 => 0.022670725750114
417 => 0.025108625009481
418 => 0.024191389243837
419 => 0.023836207831781
420 => 0.023161007707828
421 => 0.024060671783579
422 => 0.023991591619507
423 => 0.023679184919701
424 => 0.023490240372889
425 => 0.023838376493745
426 => 0.023447102454863
427 => 0.023376818885988
428 => 0.022950976927884
429 => 0.022798970723416
430 => 0.022686431381168
501 => 0.022562536623241
502 => 0.022835817586578
503 => 0.022216526970553
504 => 0.021469723197434
505 => 0.021407634544228
506 => 0.02157906677462
507 => 0.0215032207743
508 => 0.021407271422759
509 => 0.021224077980415
510 => 0.02116972839938
511 => 0.021346338171075
512 => 0.021146956035821
513 => 0.021441155237296
514 => 0.021361149333279
515 => 0.02091424285709
516 => 0.02035723192179
517 => 0.020352273356096
518 => 0.020232266263766
519 => 0.020079419188497
520 => 0.020036900628825
521 => 0.020657114695871
522 => 0.021940939253212
523 => 0.021688893773288
524 => 0.021871022463192
525 => 0.022766915358134
526 => 0.023051692768997
527 => 0.022849564508089
528 => 0.022572878877831
529 => 0.022585051641359
530 => 0.023530570198388
531 => 0.023589541030994
601 => 0.023738541300276
602 => 0.023930048753774
603 => 0.022882179055522
604 => 0.022535697072804
605 => 0.022371514687304
606 => 0.021865896486544
607 => 0.022411162367636
608 => 0.022093459289336
609 => 0.022136328288881
610 => 0.022108409796689
611 => 0.022123655181266
612 => 0.021314243513288
613 => 0.021609150583675
614 => 0.02111881038099
615 => 0.020462299892867
616 => 0.020460099039508
617 => 0.020620779051399
618 => 0.020525200292917
619 => 0.020268000311397
620 => 0.020304534354822
621 => 0.019984457691489
622 => 0.020343397456926
623 => 0.02035369056505
624 => 0.020215479203776
625 => 0.020768475436573
626 => 0.020995038444352
627 => 0.020904064765587
628 => 0.020988655488532
629 => 0.021699367400896
630 => 0.021815244453146
701 => 0.021866709385347
702 => 0.021797753193994
703 => 0.021001645997618
704 => 0.021036956737087
705 => 0.020777869959911
706 => 0.020558968935089
707 => 0.020567723828097
708 => 0.020680267409997
709 => 0.021171751832747
710 => 0.022206051825834
711 => 0.022245302754508
712 => 0.022292876025092
713 => 0.022099371625218
714 => 0.022041008846629
715 => 0.0221180044163
716 => 0.022506433112793
717 => 0.023505577177537
718 => 0.023152412934468
719 => 0.022865284907524
720 => 0.023117173596314
721 => 0.023078397307044
722 => 0.022751086402523
723 => 0.022741899875576
724 => 0.022113685602175
725 => 0.021881449089046
726 => 0.021687374876073
727 => 0.021475450901942
728 => 0.021349815266322
729 => 0.02154284870301
730 => 0.021586997733885
731 => 0.021164926750919
801 => 0.021107400035546
802 => 0.021452072311272
803 => 0.021300394893403
804 => 0.0214563988791
805 => 0.021492593141959
806 => 0.021486765032014
807 => 0.021328396387718
808 => 0.021429335838972
809 => 0.021190583945259
810 => 0.020930977120222
811 => 0.020765364139925
812 => 0.020620844849241
813 => 0.020701032551223
814 => 0.020415178035354
815 => 0.020323727422613
816 => 0.021395139824097
817 => 0.022186603684697
818 => 0.022175095486709
819 => 0.02210504229113
820 => 0.022000957452272
821 => 0.022498818658526
822 => 0.022325373769316
823 => 0.022451569418022
824 => 0.022483691507032
825 => 0.022580915395912
826 => 0.022615664579511
827 => 0.022510628411816
828 => 0.022158114203941
829 => 0.021279682313962
830 => 0.020870769897896
831 => 0.020735821989619
901 => 0.020740727089782
902 => 0.020605422529947
903 => 0.020645275786743
904 => 0.020591563193633
905 => 0.020489844536755
906 => 0.020694751710796
907 => 0.020718365353762
908 => 0.020670537570883
909 => 0.020681802745142
910 => 0.020285809130412
911 => 0.020315915664887
912 => 0.020148278655176
913 => 0.02011684873675
914 => 0.019693076974027
915 => 0.018942303869663
916 => 0.019358305048789
917 => 0.018855834123023
918 => 0.018665540769758
919 => 0.019566359907425
920 => 0.019475942650837
921 => 0.019321187610995
922 => 0.019092272653291
923 => 0.019007365868738
924 => 0.018491499124012
925 => 0.018461018964691
926 => 0.018716696452951
927 => 0.018598710089444
928 => 0.018433012550151
929 => 0.017832872859319
930 => 0.017158117147401
1001 => 0.017178483780981
1002 => 0.017393111018665
1003 => 0.01801716865866
1004 => 0.017773338542407
1005 => 0.017596436995438
1006 => 0.017563308653331
1007 => 0.017977979213675
1008 => 0.01856482493273
1009 => 0.018840159814178
1010 => 0.018567311308708
1011 => 0.018253877636831
1012 => 0.018272954892126
1013 => 0.018399867324845
1014 => 0.018413204027079
1015 => 0.018209190928189
1016 => 0.018266619420513
1017 => 0.018179380289302
1018 => 0.017643993902088
1019 => 0.017634310460072
1020 => 0.017502918006377
1021 => 0.017498939495098
1022 => 0.017275408153981
1023 => 0.01724413457416
1024 => 0.016800299528989
1025 => 0.017092433099777
1026 => 0.016896485238193
1027 => 0.016601145591359
1028 => 0.016550228924924
1029 => 0.016548698308448
1030 => 0.01685194608901
1031 => 0.017088889472901
1101 => 0.016899893835138
1102 => 0.016856863191946
1103 => 0.017316317883896
1104 => 0.017257848086323
1105 => 0.017207213618714
1106 => 0.018512279335169
1107 => 0.017479217985047
1108 => 0.017028744271313
1109 => 0.01647119750793
1110 => 0.016652737545482
1111 => 0.016690990698773
1112 => 0.015350191238194
1113 => 0.014806229064023
1114 => 0.014619561744629
1115 => 0.01451213206323
1116 => 0.01456108911806
1117 => 0.014071459360907
1118 => 0.014400498655443
1119 => 0.013976520673121
1120 => 0.013905439384641
1121 => 0.014663564537826
1122 => 0.014769053223989
1123 => 0.014319005716053
1124 => 0.014608009072221
1125 => 0.014503212437827
1126 => 0.013983788558738
1127 => 0.01396395038718
1128 => 0.013703321743285
1129 => 0.013295488383239
1130 => 0.013109097594069
1201 => 0.01301202365275
1202 => 0.013052078252871
1203 => 0.013031825421359
1204 => 0.012899661996196
1205 => 0.013039400874184
1206 => 0.012682425785017
1207 => 0.012540275428166
1208 => 0.01247606940984
1209 => 0.012159233471485
1210 => 0.01266346034699
1211 => 0.012762799393547
1212 => 0.012862334168714
1213 => 0.01372871643126
1214 => 0.013685434421794
1215 => 0.014076682708173
1216 => 0.014061479519223
1217 => 0.013949889170146
1218 => 0.013479107843111
1219 => 0.013666752889197
1220 => 0.013089210603859
1221 => 0.013521944553092
1222 => 0.013324462850064
1223 => 0.013455175790649
1224 => 0.013220142137566
1225 => 0.013350219465484
1226 => 0.012786356366722
1227 => 0.012259828938865
1228 => 0.012471718946128
1229 => 0.012702067616585
1230 => 0.013201522225885
1231 => 0.012904051180997
]
'min_raw' => 0.012159233471485
'max_raw' => 0.03629560803899
'avg_raw' => 0.024227420755237
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.012159'
'max' => '$0.036295'
'avg' => '$0.024227'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.023033936528515
'max_diff' => 0.0011024380389898
'year' => 2026
]
1 => [
'items' => [
101 => 0.013011033017364
102 => 0.012652661774077
103 => 0.011913239535491
104 => 0.01191742458506
105 => 0.011803680582843
106 => 0.011705389158031
107 => 0.012938219308902
108 => 0.012784897391481
109 => 0.012540598982346
110 => 0.012867602111006
111 => 0.012954066928461
112 => 0.012956528460258
113 => 0.013195101501756
114 => 0.01332242797677
115 => 0.013344869819856
116 => 0.013720269655364
117 => 0.013846098728582
118 => 0.014364370873174
119 => 0.013311625214945
120 => 0.013289944610893
121 => 0.012872203715626
122 => 0.012607265835625
123 => 0.012890344238933
124 => 0.013141113060209
125 => 0.012879995801918
126 => 0.012914092203365
127 => 0.012563563618172
128 => 0.012688861093476
129 => 0.0127967841586
130 => 0.012737195385463
131 => 0.012647988107948
201 => 0.013120552876595
202 => 0.013093888920351
203 => 0.013533952097133
204 => 0.013877012812653
205 => 0.014491838944305
206 => 0.013850235824315
207 => 0.013826853256482
208 => 0.014055421607739
209 => 0.013846063735959
210 => 0.013978370684136
211 => 0.014470522249496
212 => 0.01448092063655
213 => 0.014306734255834
214 => 0.014296134998737
215 => 0.014329589398544
216 => 0.014525532863141
217 => 0.014457064195876
218 => 0.014536297871049
219 => 0.014635380795122
220 => 0.015045229779378
221 => 0.015144042981945
222 => 0.014903978128479
223 => 0.014925653296855
224 => 0.014835862451731
225 => 0.014749125620417
226 => 0.014944097350314
227 => 0.015300412018878
228 => 0.015298195403817
301 => 0.015380853481157
302 => 0.015432348778563
303 => 0.015211293265235
304 => 0.015067394254495
305 => 0.015122574291744
306 => 0.015210808372972
307 => 0.015093961168392
308 => 0.014372726092834
309 => 0.014591502742083
310 => 0.014555087610017
311 => 0.014503228033722
312 => 0.014723209646292
313 => 0.014701991883111
314 => 0.014066437500048
315 => 0.014107123629601
316 => 0.014068911758343
317 => 0.01419238213179
318 => 0.013839395930597
319 => 0.013947972108686
320 => 0.014016070069745
321 => 0.014056180291961
322 => 0.014201085918445
323 => 0.014184082915672
324 => 0.014200028987919
325 => 0.014414885778328
326 => 0.015501557694267
327 => 0.015560702849045
328 => 0.015269450475593
329 => 0.015385800054088
330 => 0.015162434306234
331 => 0.015312381229189
401 => 0.015414971105636
402 => 0.014951387180871
403 => 0.014923936749481
404 => 0.01469964909173
405 => 0.014820168574703
406 => 0.014628413411635
407 => 0.014675463421341
408 => 0.014543907492457
409 => 0.014780681971924
410 => 0.015045432631003
411 => 0.015112319102807
412 => 0.014936369591928
413 => 0.014808970550414
414 => 0.014585299801368
415 => 0.014957269241859
416 => 0.015066044441821
417 => 0.01495669789204
418 => 0.014931359907187
419 => 0.014883344471674
420 => 0.014941546608814
421 => 0.015065452028722
422 => 0.015007020520867
423 => 0.015045615561236
424 => 0.014898531066384
425 => 0.015211366443808
426 => 0.015708224311091
427 => 0.015709821790379
428 => 0.015651389967556
429 => 0.015627480924589
430 => 0.015687435520744
501 => 0.015719958429692
502 => 0.015913840599864
503 => 0.016121883893065
504 => 0.017092731166036
505 => 0.016820121136694
506 => 0.017681514593237
507 => 0.018362764979421
508 => 0.018567042182768
509 => 0.018379116767674
510 => 0.017736234074166
511 => 0.017704691182189
512 => 0.018665429344361
513 => 0.018393976808952
514 => 0.01836168839362
515 => 0.018018194206625
516 => 0.018221241813722
517 => 0.018176832323521
518 => 0.018106729770652
519 => 0.018494130460574
520 => 0.019219309968609
521 => 0.019106283941591
522 => 0.019021915255549
523 => 0.018652236232668
524 => 0.018874865575241
525 => 0.018795591530535
526 => 0.019136203135145
527 => 0.018934432366045
528 => 0.018391920289015
529 => 0.018478317125425
530 => 0.018465258417408
531 => 0.01873400570305
601 => 0.018653334438618
602 => 0.0184495060583
603 => 0.019216831383888
604 => 0.019167005545332
605 => 0.019237647192631
606 => 0.019268745830438
607 => 0.019735803234334
608 => 0.019927141708541
609 => 0.019970578892037
610 => 0.020152335643884
611 => 0.019966056618474
612 => 0.020711305534808
613 => 0.02120685257769
614 => 0.021782455968615
615 => 0.022623567230362
616 => 0.022939832845494
617 => 0.022882702292904
618 => 0.023520423252091
619 => 0.024666393640009
620 => 0.023114335672849
621 => 0.024748656480959
622 => 0.024231249382253
623 => 0.023004486458976
624 => 0.022925497389302
625 => 0.023756275483955
626 => 0.025598861338469
627 => 0.025137314480349
628 => 0.025599616263784
629 => 0.025060316676802
630 => 0.025033535906734
701 => 0.025573423686583
702 => 0.026834900911951
703 => 0.026235620367946
704 => 0.025376404758496
705 => 0.026010836193638
706 => 0.02546123297066
707 => 0.024222823085035
708 => 0.025136961544165
709 => 0.024525703189709
710 => 0.024704100873821
711 => 0.025988875017068
712 => 0.025834287593062
713 => 0.026034338034136
714 => 0.025681254241872
715 => 0.025351418303693
716 => 0.024735755031145
717 => 0.024553487487976
718 => 0.024603859679609
719 => 0.024553462526019
720 => 0.024209004583266
721 => 0.024134618923325
722 => 0.024010639564512
723 => 0.024049065951964
724 => 0.023815948485955
725 => 0.024255889308841
726 => 0.024337546202313
727 => 0.024657698445189
728 => 0.024690937713109
729 => 0.025582557152436
730 => 0.025091468148311
731 => 0.025420933050863
801 => 0.025391462608935
802 => 0.023031074131394
803 => 0.023356314837715
804 => 0.023862287310595
805 => 0.023634347397392
806 => 0.023312093689849
807 => 0.023051856542857
808 => 0.022657570654549
809 => 0.023212520470752
810 => 0.023942220466725
811 => 0.024709444109195
812 => 0.025631213045138
813 => 0.025425484949209
814 => 0.024692212280107
815 => 0.024725106356387
816 => 0.024928444592607
817 => 0.024665103101475
818 => 0.024587438554703
819 => 0.024917774676501
820 => 0.024920049519822
821 => 0.024617043308392
822 => 0.024280307353939
823 => 0.024278896417994
824 => 0.024218977507383
825 => 0.025070976117889
826 => 0.025539489206892
827 => 0.025593203477499
828 => 0.025535873808507
829 => 0.025557937722769
830 => 0.02528532027926
831 => 0.02590844291293
901 => 0.026480281862028
902 => 0.026327016808112
903 => 0.026097250704382
904 => 0.025914230935726
905 => 0.026283903167069
906 => 0.026267442244525
907 => 0.026475287347669
908 => 0.026465858293219
909 => 0.026395967802481
910 => 0.026327019304122
911 => 0.026600392306532
912 => 0.026521665272074
913 => 0.026442815952786
914 => 0.026284671571729
915 => 0.026306166019614
916 => 0.026076439588241
917 => 0.025970157629522
918 => 0.024371931976456
919 => 0.023944833858428
920 => 0.024079207620743
921 => 0.024123446952311
922 => 0.023937573304004
923 => 0.024204068368654
924 => 0.024162535395116
925 => 0.024324115899174
926 => 0.024223167415249
927 => 0.024227310376241
928 => 0.02452417834298
929 => 0.024610360376691
930 => 0.024566527498771
1001 => 0.024597226543963
1002 => 0.02530467308315
1003 => 0.025204096808145
1004 => 0.025150667666607
1005 => 0.025165467903954
1006 => 0.025346235662542
1007 => 0.025396840765392
1008 => 0.025182423388656
1009 => 0.025283543863057
1010 => 0.025714102008957
1011 => 0.025864772992541
1012 => 0.026345642445967
1013 => 0.026141360555379
1014 => 0.026516328806667
1015 => 0.02766885337503
1016 => 0.028589569748872
1017 => 0.027742840921273
1018 => 0.029433619289311
1019 => 0.030750132776581
1020 => 0.030699602796171
1021 => 0.03047003821816
1022 => 0.028971222614226
1023 => 0.027591990149404
1024 => 0.028745776671531
1025 => 0.028748717910655
1026 => 0.028649606625161
1027 => 0.028034034943059
1028 => 0.028628186064953
1029 => 0.028675347623369
1030 => 0.028648949691927
1031 => 0.028176992326543
1101 => 0.027456400661903
1102 => 0.027597202548321
1103 => 0.027827838910554
1104 => 0.027391196161061
1105 => 0.027251662345481
1106 => 0.027511082256039
1107 => 0.028346987260142
1108 => 0.028188964261184
1109 => 0.028184837642061
1110 => 0.028860927043782
1111 => 0.028376992941374
1112 => 0.027598978511018
1113 => 0.027402519606604
1114 => 0.026705222846508
1115 => 0.027186848202392
1116 => 0.027204181041529
1117 => 0.026940399756204
1118 => 0.027620382908541
1119 => 0.027614116744084
1120 => 0.028259659545092
1121 => 0.029493694925817
1122 => 0.029128729940543
1123 => 0.028704315370748
1124 => 0.028750461002224
1125 => 0.029256564682396
1126 => 0.028950562844141
1127 => 0.029060603238698
1128 => 0.029256398123079
1129 => 0.02937452603814
1130 => 0.028733464213132
1201 => 0.028584002036191
1202 => 0.028278254876266
1203 => 0.028198491149282
1204 => 0.028447515831418
1205 => 0.028381906625847
1206 => 0.027202724283516
1207 => 0.027079493167834
1208 => 0.027083272490218
1209 => 0.026773401990515
1210 => 0.026300775101027
1211 => 0.027542810347517
1212 => 0.027443057534952
1213 => 0.027332938150134
1214 => 0.027346427146442
1215 => 0.027885552550463
1216 => 0.027572832589645
1217 => 0.028404249859273
1218 => 0.028233335463328
1219 => 0.028058037758047
1220 => 0.028033806275478
1221 => 0.027966331614642
1222 => 0.02773493589642
1223 => 0.02745551166194
1224 => 0.027271011579024
1225 => 0.025156066641431
1226 => 0.02554858811978
1227 => 0.026000148301161
1228 => 0.02615602506626
1229 => 0.025889387073214
1230 => 0.027745464389563
1231 => 0.028084587600866
]
'min_raw' => 0.011705389158031
'max_raw' => 0.030750132776581
'avg_raw' => 0.021227760967306
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0117053'
'max' => '$0.03075'
'avg' => '$0.021227'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00045384431345391
'max_diff' => -0.0055454752624091
'year' => 2027
]
2 => [
'items' => [
101 => 0.02705736127337
102 => 0.02686520916887
103 => 0.027758061849544
104 => 0.027219562536296
105 => 0.027462048744079
106 => 0.026937926195717
107 => 0.02800290274995
108 => 0.027994789412931
109 => 0.027580489479748
110 => 0.02793065294627
111 => 0.027869803426862
112 => 0.027402059822674
113 => 0.028017731056502
114 => 0.028018036421753
115 => 0.027619281743721
116 => 0.027153623578404
117 => 0.0270703748968
118 => 0.027007658198099
119 => 0.027446624280802
120 => 0.027840199897943
121 => 0.028572546545771
122 => 0.028756675893163
123 => 0.029475344994215
124 => 0.029047412535902
125 => 0.029237109452019
126 => 0.029443052288732
127 => 0.029541788857949
128 => 0.029380902916906
129 => 0.030497291846845
130 => 0.030591549277804
131 => 0.030623152979082
201 => 0.030246712913198
202 => 0.030581079798597
203 => 0.030424640605986
204 => 0.0308316519251
205 => 0.030895476496919
206 => 0.030841419355214
207 => 0.030861678281711
208 => 0.029909037274511
209 => 0.029859637812706
210 => 0.02918607264577
211 => 0.029460555430039
212 => 0.02894742302115
213 => 0.029110142593858
214 => 0.029181867831059
215 => 0.029144402637516
216 => 0.029476074274831
217 => 0.029194085627075
218 => 0.028449871222421
219 => 0.02770545405705
220 => 0.027696108505928
221 => 0.02750011660634
222 => 0.027358450360645
223 => 0.027385740305446
224 => 0.027481913630408
225 => 0.027352860592165
226 => 0.027380400601029
227 => 0.027837748246296
228 => 0.0279294660549
229 => 0.027617773104802
301 => 0.026366280933082
302 => 0.026059161615012
303 => 0.0262799128904
304 => 0.026174407998967
305 => 0.021124790083953
306 => 0.022311122911044
307 => 0.021606244229243
308 => 0.021931084755726
309 => 0.021211586149056
310 => 0.021554968596312
311 => 0.021491558396623
312 => 0.023399146476445
313 => 0.023369362112381
314 => 0.023383618311305
315 => 0.022703132792317
316 => 0.02378716470126
317 => 0.024321197800132
318 => 0.024222362486362
319 => 0.024247237205515
320 => 0.023819807116582
321 => 0.023387756768882
322 => 0.02290854644121
323 => 0.023798859997837
324 => 0.0236998723285
325 => 0.023926914427321
326 => 0.024504346409721
327 => 0.02458937546258
328 => 0.024703655371903
329 => 0.024662694159408
330 => 0.025638556421827
331 => 0.025520373062902
401 => 0.025805160954239
402 => 0.025219330654849
403 => 0.024556408063566
404 => 0.024682407975597
405 => 0.024670273170841
406 => 0.024515783178619
407 => 0.024376316521354
408 => 0.024144143831497
409 => 0.024878772577299
410 => 0.024848947991809
411 => 0.025331773363604
412 => 0.025246429289223
413 => 0.024676480673276
414 => 0.024696836499595
415 => 0.024833739214268
416 => 0.02530756107288
417 => 0.025448223660769
418 => 0.025383063145624
419 => 0.025537293251752
420 => 0.025659190439168
421 => 0.025552601661729
422 => 0.02706167397442
423 => 0.026435001938036
424 => 0.026740437528214
425 => 0.02681328211674
426 => 0.026626692234987
427 => 0.026667156899056
428 => 0.026728449839161
429 => 0.027100608569087
430 => 0.02807726076141
501 => 0.028509813369094
502 => 0.02981116923108
503 => 0.028473895896449
504 => 0.028394547630959
505 => 0.028628961118885
506 => 0.029392994772378
507 => 0.030012172286503
508 => 0.030217589189146
509 => 0.030244738423894
510 => 0.030630114189109
511 => 0.030851004390898
512 => 0.030583319434823
513 => 0.030356484462333
514 => 0.029543989746665
515 => 0.029638038222353
516 => 0.030285938956459
517 => 0.031201136904546
518 => 0.031986471954122
519 => 0.03171147499145
520 => 0.033809507699035
521 => 0.034017519072297
522 => 0.033988778626325
523 => 0.034462659490859
524 => 0.03352210247892
525 => 0.033119996133882
526 => 0.030405528758071
527 => 0.031168183368989
528 => 0.032276746635092
529 => 0.032130024129924
530 => 0.031324955854099
531 => 0.031985861237643
601 => 0.031767345249421
602 => 0.031594992623274
603 => 0.032384573415854
604 => 0.031516396900221
605 => 0.032268085910228
606 => 0.031304036979667
607 => 0.031712731154412
608 => 0.031480736574514
609 => 0.031630865499894
610 => 0.030753214869757
611 => 0.031226773846014
612 => 0.030733513259428
613 => 0.030733279389685
614 => 0.030722390634897
615 => 0.031302709527564
616 => 0.03132163370582
617 => 0.030892777167326
618 => 0.030830972240131
619 => 0.031059497449245
620 => 0.030791954280219
621 => 0.03091713604511
622 => 0.030795745908353
623 => 0.030768418431702
624 => 0.030550668448356
625 => 0.030456855768371
626 => 0.030493642137448
627 => 0.030368071295114
628 => 0.030292410320512
629 => 0.03070733976269
630 => 0.03048565969994
701 => 0.030673364113734
702 => 0.03045945124403
703 => 0.029717936040238
704 => 0.029291482805156
705 => 0.027890829323687
706 => 0.028288052913526
707 => 0.028551412564547
708 => 0.028464372201456
709 => 0.028651368581525
710 => 0.02866284864054
711 => 0.028602054211177
712 => 0.028531662050223
713 => 0.028497399039202
714 => 0.028752767452198
715 => 0.028901017411248
716 => 0.028577844228825
717 => 0.028502129273856
718 => 0.028828875204166
719 => 0.029028190032901
720 => 0.030499818742947
721 => 0.030390795734808
722 => 0.030664422090551
723 => 0.030633615962033
724 => 0.030920419974948
725 => 0.031389223323644
726 => 0.030436015036267
727 => 0.030601459035493
728 => 0.030560895987542
729 => 0.031003752708862
730 => 0.031005135259207
731 => 0.030739620532441
801 => 0.030883560373305
802 => 0.030803217102918
803 => 0.030948408251552
804 => 0.030389339666067
805 => 0.031070224855463
806 => 0.031456242882579
807 => 0.03146160274326
808 => 0.031644572224484
809 => 0.031830479814286
810 => 0.032187313243771
811 => 0.031820527923609
812 => 0.031160716838469
813 => 0.031208353067639
814 => 0.030821506069837
815 => 0.030828009037759
816 => 0.030793295685341
817 => 0.030897473069047
818 => 0.030412200743387
819 => 0.030526093188271
820 => 0.030366643098481
821 => 0.030601112422138
822 => 0.03034886218905
823 => 0.030560876426812
824 => 0.030652374743447
825 => 0.030990005501647
826 => 0.030298993851545
827 => 0.028889974319611
828 => 0.029186167307934
829 => 0.028748074612747
830 => 0.028788621759623
831 => 0.028870533449343
901 => 0.028605030863123
902 => 0.028655680389626
903 => 0.028653870832124
904 => 0.028638277043174
905 => 0.028569209566302
906 => 0.028469048060253
907 => 0.028868060672266
908 => 0.028935860690318
909 => 0.029086571731802
910 => 0.029534985562983
911 => 0.029490178446921
912 => 0.029563260712247
913 => 0.029403722537381
914 => 0.028796022277989
915 => 0.028829023325808
916 => 0.028417499730697
917 => 0.029076048148244
918 => 0.028920095190554
919 => 0.028819551304198
920 => 0.028792116973273
921 => 0.029241642335608
922 => 0.029376147369466
923 => 0.029292332858663
924 => 0.029120426851746
925 => 0.029450537204475
926 => 0.029538860808628
927 => 0.029558633206348
928 => 0.030143525459002
929 => 0.029591322185929
930 => 0.029724243002186
1001 => 0.030761253266704
1002 => 0.029820828054421
1003 => 0.030318992263352
1004 => 0.030294609717646
1005 => 0.030549453669978
1006 => 0.030273705075218
1007 => 0.030277123309531
1008 => 0.030503407474577
1009 => 0.030185632175335
1010 => 0.030106946542358
1011 => 0.029998242903958
1012 => 0.030235593321561
1013 => 0.030377874162478
1014 => 0.031524553246507
1015 => 0.032265360229708
1016 => 0.032233199844828
1017 => 0.032527085560915
1018 => 0.032394687354133
1019 => 0.031967138619552
1020 => 0.032696912175469
1021 => 0.032465981287354
1022 => 0.032485018949189
1023 => 0.032484310366465
1024 => 0.032637859218732
1025 => 0.032529055784355
1026 => 0.032314593046755
1027 => 0.032456963420531
1028 => 0.032879752532306
1029 => 0.034192102908012
1030 => 0.034926511564586
1031 => 0.034147890584735
1101 => 0.034684972910486
1102 => 0.034362914897035
1103 => 0.034304387375596
1104 => 0.034641714766239
1105 => 0.034979632603825
1106 => 0.03495810869843
1107 => 0.034712797700615
1108 => 0.034574227742486
1109 => 0.035623525889783
1110 => 0.036396630890384
1111 => 0.036343910312305
1112 => 0.036576601798296
1113 => 0.037259791198044
1114 => 0.037322253474749
1115 => 0.037314384663563
1116 => 0.037159565393486
1117 => 0.037832254080892
1118 => 0.038393422818758
1119 => 0.037123729205622
1120 => 0.037607211911994
1121 => 0.037824262875725
1122 => 0.0381429580866
1123 => 0.038680650326866
1124 => 0.039264726715617
1125 => 0.039347321521058
1126 => 0.039288716554073
1127 => 0.038903502474875
1128 => 0.039542605828927
1129 => 0.039916977584913
1130 => 0.040139907398258
1201 => 0.040705220312915
1202 => 0.037825603308584
1203 => 0.035787267266666
1204 => 0.035468951659792
1205 => 0.036116258963514
1206 => 0.036286948737327
1207 => 0.03621814390353
1208 => 0.033923811370947
1209 => 0.035456872473831
1210 => 0.037106317317095
1211 => 0.0371696792111
1212 => 0.037995425787904
1213 => 0.038264322721807
1214 => 0.038929156949212
1215 => 0.038887571387273
1216 => 0.039049447941823
1217 => 0.039012235325243
1218 => 0.040243700734147
1219 => 0.04160218995455
1220 => 0.041555149792579
1221 => 0.041359850894231
1222 => 0.041649903061688
1223 => 0.043052009521698
1224 => 0.042922926027158
1225 => 0.043048319646797
1226 => 0.044701482182405
1227 => 0.046850828638324
1228 => 0.045852241418694
1229 => 0.04801888834956
1230 => 0.049382677743521
1231 => 0.051741210481922
]
'min_raw' => 0.021124790083953
'max_raw' => 0.051741210481922
'avg_raw' => 0.036433000282937
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.021124'
'max' => '$0.051741'
'avg' => '$0.036433'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0094194009259218
'max_diff' => 0.020991077705341
'year' => 2028
]
3 => [
'items' => [
101 => 0.051445910567056
102 => 0.052364070054402
103 => 0.050917262088493
104 => 0.047595098550631
105 => 0.047069353454034
106 => 0.048121908451409
107 => 0.05070951220564
108 => 0.048040415600688
109 => 0.048580370367631
110 => 0.048424863358427
111 => 0.048416577050768
112 => 0.048732831711235
113 => 0.048274087831494
114 => 0.046405082738982
115 => 0.047261636758764
116 => 0.046930880116624
117 => 0.04729787927062
118 => 0.049278422342771
119 => 0.048402777040323
120 => 0.047480355845842
121 => 0.048637276725371
122 => 0.050110434566157
123 => 0.050018246996
124 => 0.04983936457848
125 => 0.050847715400061
126 => 0.052513215538244
127 => 0.052963393533074
128 => 0.053295705725373
129 => 0.05334152596223
130 => 0.053813502878981
131 => 0.051275564044112
201 => 0.055303338153941
202 => 0.055998823477695
203 => 0.055868101061742
204 => 0.056641103728598
205 => 0.056413666734824
206 => 0.056084146214617
207 => 0.057309519863965
208 => 0.055904727857542
209 => 0.05391080246282
210 => 0.052816895555903
211 => 0.054257440413884
212 => 0.055137130890566
213 => 0.05571855033683
214 => 0.055894487509967
215 => 0.051472577011278
216 => 0.049089412502884
217 => 0.050616993629728
218 => 0.052480748032495
219 => 0.051265210794302
220 => 0.051312857552722
221 => 0.049579820888626
222 => 0.05263408332256
223 => 0.052189102976326
224 => 0.054497661799743
225 => 0.053946705709192
226 => 0.055829245811952
227 => 0.055333509912106
228 => 0.057391281916145
301 => 0.058212182880509
302 => 0.059590603362709
303 => 0.060604575080596
304 => 0.061199998667528
305 => 0.061164251668746
306 => 0.063523616559022
307 => 0.062132381513157
308 => 0.060384662406626
309 => 0.060353051681972
310 => 0.061258220172616
311 => 0.063155205008157
312 => 0.063647065576006
313 => 0.06392194853258
314 => 0.063500955715842
315 => 0.061990869784269
316 => 0.061338822335326
317 => 0.061894385653459
318 => 0.061214979455482
319 => 0.0623878251609
320 => 0.063998392820764
321 => 0.063665816967877
322 => 0.06477756818152
323 => 0.065928113728003
324 => 0.067573445533706
325 => 0.068003596194177
326 => 0.068714618878772
327 => 0.069446494780004
328 => 0.069681553594871
329 => 0.070130353806919
330 => 0.070127988408268
331 => 0.071480478055013
401 => 0.072972316018492
402 => 0.073535450313576
403 => 0.074830346573718
404 => 0.072612882106803
405 => 0.074294854377354
406 => 0.075812035467887
407 => 0.074003189625719
408 => 0.07649626221212
409 => 0.076593062571226
410 => 0.078054633067047
411 => 0.076573051366506
412 => 0.075693292882101
413 => 0.078233122662458
414 => 0.079462066289284
415 => 0.079091898467409
416 => 0.0762749030655
417 => 0.074635290914973
418 => 0.070344109659479
419 => 0.075427199221846
420 => 0.07790302387192
421 => 0.076268491277772
422 => 0.077092854443177
423 => 0.081590312572976
424 => 0.083302653439954
425 => 0.082946498509789
426 => 0.083006682830177
427 => 0.083930630880814
428 => 0.08802792536482
429 => 0.085572731535461
430 => 0.087449635223648
501 => 0.088445138172183
502 => 0.089369816790764
503 => 0.087099098351207
504 => 0.084144927024822
505 => 0.08320921695808
506 => 0.0761059692244
507 => 0.075736214332021
508 => 0.075528659706208
509 => 0.074220057149645
510 => 0.073191853996594
511 => 0.072374188674552
512 => 0.07022839069398
513 => 0.070952534521863
514 => 0.067532580403675
515 => 0.06972054585276
516 => 0.064262216502453
517 => 0.068808075380521
518 => 0.066333971068029
519 => 0.067995265573045
520 => 0.06798946947302
521 => 0.064930499575383
522 => 0.063166149577499
523 => 0.06429046206568
524 => 0.065495814301047
525 => 0.065691378645943
526 => 0.067254149282008
527 => 0.067690284974891
528 => 0.066368773464226
529 => 0.064149104758964
530 => 0.064664683173943
531 => 0.063155701397376
601 => 0.060511268876087
602 => 0.062410546480239
603 => 0.063059043359638
604 => 0.063345456525632
605 => 0.060744960856072
606 => 0.059927828657188
607 => 0.059492794330906
608 => 0.06381341342365
609 => 0.064050106690796
610 => 0.062839150471019
611 => 0.068312787411994
612 => 0.067073934793677
613 => 0.068458036694598
614 => 0.064617899836821
615 => 0.064764598236218
616 => 0.062946615906824
617 => 0.063964564533661
618 => 0.063245111254228
619 => 0.063882324344177
620 => 0.064264267242965
621 => 0.066081951259348
622 => 0.068828830412202
623 => 0.06581044988172
624 => 0.064495298260584
625 => 0.065311210929644
626 => 0.067484093887063
627 => 0.070776122795385
628 => 0.068827175423402
629 => 0.069692085171816
630 => 0.069881029474688
701 => 0.068443947836541
702 => 0.070829110045216
703 => 0.072107337849868
704 => 0.073418535085466
705 => 0.074557010906223
706 => 0.072894814075723
707 => 0.074673602950914
708 => 0.073240213116015
709 => 0.071954314252994
710 => 0.071956264430773
711 => 0.071149601290015
712 => 0.069586589808699
713 => 0.069298346510646
714 => 0.070797824548234
715 => 0.07200026393328
716 => 0.072099302600329
717 => 0.072765034827457
718 => 0.073159008301884
719 => 0.077020483932237
720 => 0.078573601374567
721 => 0.080472723984039
722 => 0.081212539269114
723 => 0.08343911803873
724 => 0.081640974848379
725 => 0.081251935258295
726 => 0.07585098347157
727 => 0.07673538902408
728 => 0.07815140764609
729 => 0.075874333097095
730 => 0.07731861278812
731 => 0.077603744193155
801 => 0.075796958975254
802 => 0.076762041026716
803 => 0.074199069224919
804 => 0.068884696193687
805 => 0.070835026461594
806 => 0.072271126012842
807 => 0.070221634883413
808 => 0.073895268406655
809 => 0.071749207541566
810 => 0.071069009276421
811 => 0.0684153133359
812 => 0.069667755669702
813 => 0.071361701859416
814 => 0.070315040056554
815 => 0.072487020454552
816 => 0.075563123944131
817 => 0.077755338475935
818 => 0.07792362948685
819 => 0.076514182409867
820 => 0.078772830345704
821 => 0.078789282130094
822 => 0.076241518031623
823 => 0.074681026707319
824 => 0.074326479795136
825 => 0.075212207494787
826 => 0.076287644436517
827 => 0.077983308752456
828 => 0.079007963185361
829 => 0.081679718511659
830 => 0.082402618897727
831 => 0.083196867252313
901 => 0.084258227991162
902 => 0.085532663685457
903 => 0.082744270940003
904 => 0.082855058981994
905 => 0.080258546265353
906 => 0.077483800050032
907 => 0.079589486550462
908 => 0.082342391542038
909 => 0.08171087209528
910 => 0.081639813256749
911 => 0.081759314513081
912 => 0.081283169473723
913 => 0.079129583107466
914 => 0.078048065516495
915 => 0.079443499133411
916 => 0.080185109997197
917 => 0.081335283771665
918 => 0.081193500576739
919 => 0.084156224700122
920 => 0.085307449706342
921 => 0.085012917086055
922 => 0.085067118176511
923 => 0.087151356060599
924 => 0.089469457243918
925 => 0.091640664902488
926 => 0.093849310588325
927 => 0.09118670200914
928 => 0.089834793579497
929 => 0.091229617993749
930 => 0.090489504525972
1001 => 0.094742416043734
1002 => 0.095036878409813
1003 => 0.099289482393665
1004 => 0.103325709965
1005 => 0.10079062774397
1006 => 0.10318109609579
1007 => 0.10576658251603
1008 => 0.11075440530072
1009 => 0.10907468206056
1010 => 0.10778804038321
1011 => 0.10657217021513
1012 => 0.10910220302096
1013 => 0.1123570498074
1014 => 0.11305811263066
1015 => 0.11419410223096
1016 => 0.11299974806845
1017 => 0.1144382161034
1018 => 0.11951664036167
1019 => 0.11814440529859
1020 => 0.11619561091123
1021 => 0.12020453912609
1022 => 0.12165535466273
1023 => 0.13183793789687
1024 => 0.14469386985151
1025 => 0.13937142960569
1026 => 0.13606761919103
1027 => 0.13684409300591
1028 => 0.14153864415498
1029 => 0.14304638498646
1030 => 0.13894782565707
1031 => 0.14039550610096
1101 => 0.14837236767957
1102 => 0.15265169798814
1103 => 0.14683979263837
1104 => 0.13080497628186
1105 => 0.11602014329887
1106 => 0.11994174677567
1107 => 0.11949715864292
1108 => 0.1280673012754
1109 => 0.11811167794617
1110 => 0.11827930511041
1111 => 0.12702666921659
1112 => 0.12469302244085
1113 => 0.12091281353504
1114 => 0.11604774300732
1115 => 0.10705421017226
1116 => 0.099088387337027
1117 => 0.11471120033635
1118 => 0.11403751623158
1119 => 0.11306192181347
1120 => 0.11523300162062
1121 => 0.12577514889235
1122 => 0.12553211827614
1123 => 0.12398608149109
1124 => 0.12515873676641
1125 => 0.12070724139558
1126 => 0.1218544931113
1127 => 0.11601780130579
1128 => 0.11865622976366
1129 => 0.12090470290451
1130 => 0.12135611717675
1201 => 0.12237317658188
1202 => 0.1136825153208
1203 => 0.11758436708262
1204 => 0.11987633943862
1205 => 0.10952112495155
1206 => 0.11967165014276
1207 => 0.11353123024322
1208 => 0.11144707950331
1209 => 0.11425311390862
1210 => 0.11315959957191
1211 => 0.11221946015853
1212 => 0.11169484621221
1213 => 0.11375528818876
1214 => 0.11365916610779
1215 => 0.11028788311961
1216 => 0.1058901818926
1217 => 0.107366194774
1218 => 0.10682994545649
1219 => 0.1048865087523
1220 => 0.10619615043948
1221 => 0.10042915124361
1222 => 0.090507328869651
1223 => 0.097061988643528
1224 => 0.096809641372332
1225 => 0.096682396435157
1226 => 0.10160804209774
1227 => 0.10113455492126
1228 => 0.10027517105955
1229 => 0.10487072549374
1230 => 0.10319328630633
1231 => 0.10836275862755
]
'min_raw' => 0.046405082738982
'max_raw' => 0.15265169798814
'avg_raw' => 0.099528390363561
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.046405'
'max' => '$0.152651'
'avg' => '$0.099528'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.025280292655029
'max_diff' => 0.10091048750622
'year' => 2029
]
4 => [
'items' => [
101 => 0.11176770743881
102 => 0.11090410228171
103 => 0.11410647309625
104 => 0.10740019912966
105 => 0.10962775433235
106 => 0.11008685037237
107 => 0.10481401706537
108 => 0.10121202327905
109 => 0.10097181135923
110 => 0.09472645051906
111 => 0.098062671869089
112 => 0.10099840859489
113 => 0.099592418525607
114 => 0.099147324072429
115 => 0.10142121510451
116 => 0.10159791591226
117 => 0.097569118769599
118 => 0.09840683327097
119 => 0.10190024200014
120 => 0.098318808334159
121 => 0.091360667745027
122 => 0.089634952675102
123 => 0.089404710473535
124 => 0.084724434335711
125 => 0.089750273207902
126 => 0.087556359856083
127 => 0.094486905847363
128 => 0.090528215146407
129 => 0.090357563902424
130 => 0.090099599518048
131 => 0.086071092506451
201 => 0.086953079517014
202 => 0.089884938670541
203 => 0.090931059046277
204 => 0.090821940120476
205 => 0.089870570961219
206 => 0.090306102890528
207 => 0.088903102796838
208 => 0.088407674262835
209 => 0.086843965531165
210 => 0.084545745681173
211 => 0.084865327247116
212 => 0.080311952362347
213 => 0.077831032059229
214 => 0.07714434601733
215 => 0.076226080743517
216 => 0.077248066523417
217 => 0.0802990532234
218 => 0.076618915960285
219 => 0.070309578754288
220 => 0.070688780670955
221 => 0.071540734791649
222 => 0.069953123923977
223 => 0.068450583475807
224 => 0.069756920490531
225 => 0.067083571141828
226 => 0.071863796288362
227 => 0.071734504594574
228 => 0.073516276922062
301 => 0.07463045572409
302 => 0.072062634305088
303 => 0.071416834162336
304 => 0.071784711273627
305 => 0.065704522080374
306 => 0.073019395748041
307 => 0.073082655079275
308 => 0.07254099027939
309 => 0.076435934686035
310 => 0.084655482247682
311 => 0.081562957824456
312 => 0.080365438895737
313 => 0.078088954536862
314 => 0.081122234780797
315 => 0.080889326184606
316 => 0.079836025184667
317 => 0.079198985453405
318 => 0.08037275069096
319 => 0.079053542950987
320 => 0.078816576991484
321 => 0.0773808210984
322 => 0.0768683215673
323 => 0.076488887317667
324 => 0.076071167491261
325 => 0.076992553339018
326 => 0.074904571789599
327 => 0.072386670728355
328 => 0.07217733449918
329 => 0.072755330232963
330 => 0.072499610147486
331 => 0.072176110209793
401 => 0.071558460728773
402 => 0.071375217321748
403 => 0.071970669497518
404 => 0.071298438708092
405 => 0.072290351856196
406 => 0.07202060636497
407 => 0.070513829978486
408 => 0.068635828720859
409 => 0.068619110570425
410 => 0.068214498280009
411 => 0.067699163694299
412 => 0.067555809401812
413 => 0.069646904430821
414 => 0.073975408559663
415 => 0.073125619626846
416 => 0.073739679220679
417 => 0.076760244665219
418 => 0.077720391588467
419 => 0.077038902044672
420 => 0.076106037124681
421 => 0.076147078446791
422 => 0.079334960275815
423 => 0.079533784555156
424 => 0.080036149365907
425 => 0.080681830116
426 => 0.077148864268415
427 => 0.075980676073084
428 => 0.075427123697523
429 => 0.073722396632524
430 => 0.075560798619873
501 => 0.074489640510066
502 => 0.074634176335051
503 => 0.074540047189418
504 => 0.074591448067918
505 => 0.071862460118012
506 => 0.072856759895574
507 => 0.071203543667764
508 => 0.068990072720957
509 => 0.068982652390201
510 => 0.06952439626861
511 => 0.069202145811292
512 => 0.068334978116467
513 => 0.068458155194601
514 => 0.067378994377136
515 => 0.068589184856678
516 => 0.068623888789362
517 => 0.068157899535217
518 => 0.070022364943056
519 => 0.070786237941907
520 => 0.070479513832372
521 => 0.070764717360718
522 => 0.073160932193572
523 => 0.07355161976551
524 => 0.073725137377592
525 => 0.07349264676408
526 => 0.070808515769069
527 => 0.070927568392504
528 => 0.070054039234394
529 => 0.069315999146027
530 => 0.069345516879051
531 => 0.069724965422968
601 => 0.071382039468615
602 => 0.074869254107828
603 => 0.075001591354266
604 => 0.075161987957498
605 => 0.074509574363279
606 => 0.074312800180506
607 => 0.07457239611931
608 => 0.075882010588763
609 => 0.079250694561058
610 => 0.078059976658411
611 => 0.077091904468931
612 => 0.077941164769494
613 => 0.077810427802944
614 => 0.076706876236236
615 => 0.076675903219251
616 => 0.074557834935959
617 => 0.073774833317707
618 => 0.07312049855884
619 => 0.072405982083999
620 => 0.071982392766905
621 => 0.072633218475864
622 => 0.072782070015846
623 => 0.07135902822872
624 => 0.071165072891455
625 => 0.072327159533313
626 => 0.071815768529188
627 => 0.072341746858817
628 => 0.072463778343049
629 => 0.072444128463465
630 => 0.071910177522276
701 => 0.072250501929543
702 => 0.071445533250767
703 => 0.070570250714983
704 => 0.070011874989182
705 => 0.069524618110629
706 => 0.069794976546386
707 => 0.068831198088411
708 => 0.068522865962677
709 => 0.072135207677902
710 => 0.074803683342158
711 => 0.074764882649167
712 => 0.074528693409315
713 => 0.074177764108132
714 => 0.075856337924578
715 => 0.075271556371071
716 => 0.075697033811381
717 => 0.075805335677172
718 => 0.076133132806486
719 => 0.076250292105101
720 => 0.075896155332323
721 => 0.074707629068717
722 => 0.071745934621498
723 => 0.070367257861377
724 => 0.069912271566859
725 => 0.069928809454523
726 => 0.069472620684375
727 => 0.06960698872213
728 => 0.069425892964367
729 => 0.069082941410932
730 => 0.069773800254374
731 => 0.069853415300285
801 => 0.069692160591077
802 => 0.069730141912601
803 => 0.068395021793148
804 => 0.068496528076101
805 => 0.067931328193821
806 => 0.06782536002948
807 => 0.066396583944659
808 => 0.063865300005993
809 => 0.065267877025691
810 => 0.063573761218069
811 => 0.06293217389168
812 => 0.065969348507508
813 => 0.065664500414189
814 => 0.065142732992709
815 => 0.064370930230482
816 => 0.064084661078357
817 => 0.062345380331846
818 => 0.06224261434664
819 => 0.063104648849141
820 => 0.062706849587033
821 => 0.062148188764671
822 => 0.060124775896617
823 => 0.057849789903947
824 => 0.057918457431013
825 => 0.058642088147663
826 => 0.060746142051218
827 => 0.059924051790597
828 => 0.059327615874117
829 => 0.059215921355759
830 => 0.060614012101332
831 => 0.062592603415386
901 => 0.063520914191454
902 => 0.062600986405588
903 => 0.061544222897614
904 => 0.061608543195774
905 => 0.062036437323429
906 => 0.062081402946149
907 => 0.061393558539502
908 => 0.061587182710901
909 => 0.06129304988918
910 => 0.059487957305204
911 => 0.059455308904371
912 => 0.059012310073213
913 => 0.058998896244665
914 => 0.058245244721628
915 => 0.058139803663808
916 => 0.056643382821442
917 => 0.057628331551467
918 => 0.056967679655496
919 => 0.055971921416239
920 => 0.055800252320467
921 => 0.055795091740151
922 => 0.0568175128044
923 => 0.057616383966049
924 => 0.056979171978076
925 => 0.05683409116025
926 => 0.058383174732261
927 => 0.058186039727512
928 => 0.058015322084784
929 => 0.062415442264592
930 => 0.058932403796615
1001 => 0.057413600219692
1002 => 0.055533792380273
1003 => 0.056145867291601
1004 => 0.05627484046867
1005 => 0.051754241475698
1006 => 0.049920235027254
1007 => 0.049290873127223
1008 => 0.048928666455884
1009 => 0.049093728584318
1010 => 0.047442907673218
1011 => 0.048552286627535
1012 => 0.04712281525894
1013 => 0.046883159732093
1014 => 0.049439231616663
1015 => 0.049794894087045
1016 => 0.048277527492725
1017 => 0.049251922485616
1018 => 0.04889859331609
1019 => 0.047147319442723
1020 => 0.047080433662259
1021 => 0.046201705992857
1022 => 0.044826667345448
1023 => 0.044198237786369
1024 => 0.043870946215725
1025 => 0.044005993096558
1026 => 0.043937709261107
1027 => 0.043492111045816
1028 => 0.043963250429208
1029 => 0.042759683992876
1030 => 0.042280414140134
1031 => 0.042063939066627
1101 => 0.040995704579683
1102 => 0.042695740694444
1103 => 0.043030669225543
1104 => 0.043366257669312
1105 => 0.046287325956365
1106 => 0.046141397639597
1107 => 0.047460518553206
1108 => 0.047409259940211
1109 => 0.047033025287307
1110 => 0.045445753174305
1111 => 0.046078411548143
1112 => 0.044131187410411
1113 => 0.04559018013277
1114 => 0.044924356783278
1115 => 0.045365064588549
1116 => 0.044572632217651
1117 => 0.045011197010437
1118 => 0.043110093205295
1119 => 0.041334869221307
1120 => 0.042049271174482
1121 => 0.042825907799358
1122 => 0.044509853885419
1123 => 0.043506909488814
1124 => 0.04386760621936
1125 => 0.042659332551936
1126 => 0.040166318849731
1127 => 0.040180429036545
1128 => 0.039796933191717
1129 => 0.039465536790475
1130 => 0.043622109717589
1201 => 0.043105174168408
1202 => 0.042281505025641
1203 => 0.043384018904546
1204 => 0.043675541073376
1205 => 0.043683840299691
1206 => 0.044488205965738
1207 => 0.044917496065898
1208 => 0.044993160306701
1209 => 0.046258847061696
1210 => 0.046683088567158
1211 => 0.048430479287253
1212 => 0.044881073800182
1213 => 0.044807976129927
1214 => 0.043399533535795
1215 => 0.042506276976001
1216 => 0.043460695576659
1217 => 0.044306180165711
1218 => 0.043425805098756
1219 => 0.043540763496769
1220 => 0.042358931898668
1221 => 0.042781381084644
1222 => 0.043145251233657
1223 => 0.042944343524671
1224 => 0.042643574960275
1225 => 0.044236860071188
1226 => 0.044146960681095
1227 => 0.045630664405843
1228 => 0.046787317559955
1229 => 0.048860246788608
1230 => 0.046697037074264
1231 => 0.046618201114294
]
'min_raw' => 0.039465536790475
'max_raw' => 0.11410647309625
'avg_raw' => 0.076786004943362
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.039465'
'max' => '$0.1141064'
'avg' => '$0.076786'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0069395459485074
'max_diff' => -0.038545224891891
'year' => 2030
]
5 => [
'items' => [
101 => 0.047388835268691
102 => 0.046682970587084
103 => 0.047129052700239
104 => 0.048788376063776
105 => 0.04882343495172
106 => 0.048236153407832
107 => 0.048200417272514
108 => 0.048313211117174
109 => 0.048973848188398
110 => 0.048743001296385
111 => 0.04901014316415
112 => 0.049344208160412
113 => 0.050726042625573
114 => 0.051059198236945
115 => 0.050249802822691
116 => 0.050322882166182
117 => 0.05002014606285
118 => 0.049727706780304
119 => 0.050385067580141
120 => 0.0515864073623
121 => 0.051578933889865
122 => 0.051857621368618
123 => 0.052031241359109
124 => 0.05128593726232
125 => 0.050800771700902
126 => 0.050986815049036
127 => 0.051284302414201
128 => 0.050890343905948
129 => 0.048458649493681
130 => 0.049196270241122
131 => 0.049073494080936
201 => 0.04889864589874
202 => 0.049640329264145
203 => 0.049568792094203
204 => 0.047425976118717
205 => 0.047563152245118
206 => 0.047434318253305
207 => 0.047850607237808
208 => 0.046660489615777
209 => 0.04702656178075
210 => 0.047256158810907
211 => 0.047391393225517
212 => 0.047879952662195
213 => 0.047822625851232
214 => 0.047876389147135
215 => 0.048600793816819
216 => 0.052264584050416
217 => 0.052463996069133
218 => 0.05148201835745
219 => 0.051874299084614
220 => 0.051121205870825
221 => 0.051626762390527
222 => 0.051972651321565
223 => 0.050409645752824
224 => 0.050317094706865
225 => 0.049560893209492
226 => 0.049967233060738
227 => 0.049320717140537
228 => 0.049479349533187
301 => 0.049035799534013
302 => 0.049834101222603
303 => 0.050726726553988
304 => 0.050952238963538
305 => 0.050359012903208
306 => 0.049929478140026
307 => 0.049175356593426
308 => 0.050429477532117
309 => 0.050796220713233
310 => 0.050427551186314
311 => 0.050342122401338
312 => 0.050180235008176
313 => 0.050376467577089
314 => 0.050794223351106
315 => 0.050597217442817
316 => 0.05072734331604
317 => 0.050231437672534
318 => 0.051286183988988
319 => 0.052961374978042
320 => 0.052966760990993
321 => 0.052769754020769
322 => 0.052689143013127
323 => 0.05289128411996
324 => 0.053000937378154
325 => 0.053654624651311
326 => 0.054356057139459
327 => 0.057629336502673
328 => 0.056710212755721
329 => 0.059614460935025
330 => 0.061911344175427
331 => 0.062600079028692
401 => 0.061966475371167
402 => 0.059798951485371
403 => 0.059692602422815
404 => 0.062931798213174
405 => 0.062016577037832
406 => 0.061907714391234
407 => 0.060749599757783
408 => 0.06143418894144
409 => 0.061284459244657
410 => 0.061048103593257
411 => 0.06235425206678
412 => 0.064799245408537
413 => 0.064418170267222
414 => 0.064133715351797
415 => 0.062887316715987
416 => 0.063637927087958
417 => 0.063370649111494
418 => 0.06451904491718
419 => 0.063838760681973
420 => 0.062009643337284
421 => 0.062300936303275
422 => 0.062256907957465
423 => 0.063163008194343
424 => 0.062891019394023
425 => 0.062203797778939
426 => 0.064790888687099
427 => 0.064622897393679
428 => 0.064861070639593
429 => 0.064965921868196
430 => 0.066540638514338
501 => 0.06718574953895
502 => 0.067332201035795
503 => 0.067945006614499
504 => 0.067316953874744
505 => 0.06982961262778
506 => 0.071500384080846
507 => 0.073441071100695
508 => 0.07627693644419
509 => 0.077343248046565
510 => 0.077150628399781
511 => 0.079300749137935
512 => 0.083164468309899
513 => 0.077931596512394
514 => 0.083441823221572
515 => 0.081697349064073
516 => 0.077561232218392
517 => 0.077294915055145
518 => 0.080095941404343
519 => 0.086308348258071
520 => 0.084752210801748
521 => 0.086310893541479
522 => 0.084492607331274
523 => 0.084402314095218
524 => 0.08622258343874
525 => 0.090475741977596
526 => 0.088455225783049
527 => 0.08555832036727
528 => 0.087697350245441
529 => 0.085844324607099
530 => 0.081668939214697
531 => 0.084751020852762
601 => 0.082690120634019
602 => 0.08329160088133
603 => 0.087623306605356
604 => 0.087102104312369
605 => 0.087776588341527
606 => 0.086586141684384
607 => 0.085474076790406
608 => 0.083398325082772
609 => 0.082783797335464
610 => 0.082953630696428
611 => 0.082783713174485
612 => 0.081622349171206
613 => 0.081371552725273
614 => 0.080953547661073
615 => 0.081083104909214
616 => 0.080297133096823
617 => 0.081780424296868
618 => 0.082055736214313
619 => 0.083135151853485
620 => 0.083247220365968
621 => 0.086253377556542
622 => 0.084597636692393
623 => 0.085708450613853
624 => 0.085609088961331
625 => 0.077650874412241
626 => 0.078747446161184
627 => 0.080453367679368
628 => 0.079684852347749
629 => 0.07859835147373
630 => 0.077720943763469
701 => 0.076391581362879
702 => 0.078262633413566
703 => 0.080722867896017
704 => 0.083309615972448
705 => 0.086417424295833
706 => 0.08572379765693
707 => 0.083251517657589
708 => 0.083362422332358
709 => 0.084047991392397
710 => 0.083160117169129
711 => 0.082898265727323
712 => 0.084012017025295
713 => 0.084019686818378
714 => 0.082998080221323
715 => 0.08186275144073
716 => 0.081857994371685
717 => 0.081655973581154
718 => 0.084528546381118
719 => 0.08610817097123
720 => 0.086289272384794
721 => 0.086095981403157
722 => 0.086170371430544
723 => 0.085251222686211
724 => 0.087352124150664
725 => 0.089280119092067
726 => 0.088763375262167
727 => 0.087988702801683
728 => 0.087371638873626
729 => 0.088618014611291
730 => 0.08856251546167
731 => 0.0892632797382
801 => 0.089231489022806
802 => 0.088995848353686
803 => 0.088763383677637
804 => 0.089685079841556
805 => 0.089419646148335
806 => 0.089153800163274
807 => 0.088620605341249
808 => 0.08869307537299
809 => 0.087918536670628
810 => 0.087560199626436
811 => 0.082171670252575
812 => 0.080731679128603
813 => 0.081184729649927
814 => 0.081333885644998
815 => 0.080707199662446
816 => 0.081605706379005
817 => 0.081465675058984
818 => 0.082010455009605
819 => 0.081670100148053
820 => 0.081684068430291
821 => 0.08268497950681
822 => 0.082975548250504
823 => 0.082827762642284
824 => 0.082931266616487
825 => 0.085316472015697
826 => 0.084977372082504
827 => 0.084797232001508
828 => 0.084847132035043
829 => 0.085456603153922
830 => 0.085627221791319
831 => 0.08490429863551
901 => 0.085245233374959
902 => 0.086696890224469
903 => 0.087204887965136
904 => 0.088826172900595
905 => 0.08813742224397
906 => 0.089401653882635
907 => 0.093287470931566
908 => 0.096391730468339
909 => 0.093536925109371
910 => 0.099237502423588
911 => 0.10367621956195
912 => 0.10350585420511
913 => 0.10273186120266
914 => 0.097678499750033
915 => 0.093028321199949
916 => 0.096918393014105
917 => 0.09692830960716
918 => 0.09659414898839
919 => 0.094518706084338
920 => 0.096521928074112
921 => 0.096680936561027
922 => 0.096591934092124
923 => 0.095000696883721
924 => 0.092571171776283
925 => 0.093045895166815
926 => 0.093823501764602
927 => 0.092351330249262
928 => 0.091880882248094
929 => 0.09275553458866
930 => 0.095573846671018
1001 => 0.095041061097219
1002 => 0.095027147912731
1003 => 0.09730663053369
1004 => 0.095675012920222
1005 => 0.093051882949045
1006 => 0.092389508036489
1007 => 0.090038523326121
1008 => 0.091662356839492
1009 => 0.091720795716784
1010 => 0.090831438696686
1011 => 0.093124049369699
1012 => 0.093102922558741
1013 => 0.095279415182701
1014 => 0.099440051626413
1015 => 0.098209546697522
1016 => 0.096778603343778
1017 => 0.096934186562085
1018 => 0.098640550454814
1019 => 0.097608843892772
1020 => 0.097979852765796
1021 => 0.09863998888845
1022 => 0.099038265401505
1023 => 0.096876880700984
1024 => 0.096372958536312
1025 => 0.095342110640037
1026 => 0.095073181665587
1027 => 0.095912785767755
1028 => 0.095691579750484
1029 => 0.091715884155434
1030 => 0.09130040184519
1031 => 0.091313144094473
1101 => 0.090268394070256
1102 => 0.088674899514591
1103 => 0.092862508064264
1104 => 0.092526184492181
1105 => 0.092154909297979
1106 => 0.092200388390802
1107 => 0.094018087330993
1108 => 0.092963730149685
1109 => 0.095766911521935
1110 => 0.095190661703146
1111 => 0.094599633250894
1112 => 0.094517935115626
1113 => 0.094290439585687
1114 => 0.093510272766168
1115 => 0.092568174450841
1116 => 0.091946119539904
1117 => 0.084815435022072
1118 => 0.086138848591298
1119 => 0.08766131526975
1120 => 0.088186864666249
1121 => 0.087287876056626
1122 => 0.093545770315876
1123 => 0.09468914789961
1124 => 0.091225782617804
1125 => 0.090577928381851
1126 => 0.093588243531729
1127 => 0.091772655500292
1128 => 0.092590214679678
1129 => 0.090823098914808
1130 => 0.094413741721693
1201 => 0.094386387039476
1202 => 0.092989545889252
1203 => 0.094170146464266
1204 => 0.093964988061204
1205 => 0.092387957842869
1206 => 0.094463736392512
1207 => 0.094464765952775
1208 => 0.093120336715629
1209 => 0.091550337700048
1210 => 0.091269658957783
1211 => 0.09105820522937
1212 => 0.092538210024838
1213 => 0.093865177696599
1214 => 0.096334335550564
1215 => 0.096955140500794
1216 => 0.099378183550868
1217 => 0.097935379390374
1218 => 0.098574955787279
1219 => 0.099269306439725
1220 => 0.099602203676407
1221 => 0.099059765493484
1222 => 0.10282374871456
1223 => 0.10314154422388
1224 => 0.10324809830924
1225 => 0.1019789043449
1226 => 0.10310624564378
1227 => 0.10257879998366
1228 => 0.10395106706267
1229 => 0.10416625606265
1230 => 0.10398399863524
1231 => 0.10405230302036
]
'min_raw' => 0.046660489615777
'max_raw' => 0.10416625606265
'avg_raw' => 0.075413372839213
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.04666'
'max' => '$0.104166'
'avg' => '$0.075413'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0071949528253026
'max_diff' => -0.0099402170336013
'year' => 2031
]
6 => [
'items' => [
101 => 0.10084040735331
102 => 0.10067385361888
103 => 0.098402881631732
104 => 0.099328319502671
105 => 0.097598257760342
106 => 0.098146878160445
107 => 0.098388704805364
108 => 0.0982623882896
109 => 0.099380642371379
110 => 0.098429897957651
111 => 0.09592072713297
112 => 0.093410872686376
113 => 0.093379363508282
114 => 0.092718563135105
115 => 0.092240925496923
116 => 0.092332935451142
117 => 0.092657190530858
118 => 0.092222079202226
119 => 0.092314932264894
120 => 0.093856911781903
121 => 0.094166144777144
122 => 0.093115250234183
123 => 0.088895757000836
124 => 0.087860282777575
125 => 0.088604561114909
126 => 0.088248844007327
127 => 0.071223704653792
128 => 0.075223508607443
129 => 0.072846960918692
130 => 0.07394218343337
131 => 0.071516343647195
201 => 0.072674081542314
202 => 0.072460289626904
203 => 0.078891856021573
204 => 0.07879143595865
205 => 0.07883950172866
206 => 0.076545197291409
207 => 0.080200086557103
208 => 0.082000616434951
209 => 0.081667386274112
210 => 0.081751253126434
211 => 0.080310142739382
212 => 0.078853454827318
213 => 0.077237763750176
214 => 0.080239518066052
215 => 0.079905774227782
216 => 0.080671262515531
217 => 0.082618114759207
218 => 0.082904796147461
219 => 0.083290098840509
220 => 0.083151995252765
221 => 0.086442183003036
222 => 0.086043719557121
223 => 0.08700390181602
224 => 0.085028734060261
225 => 0.082793644259974
226 => 0.083218461760418
227 => 0.083177548418959
228 => 0.082656674624034
229 => 0.082186453051818
301 => 0.081403666618183
302 => 0.083880518724797
303 => 0.083779963052532
304 => 0.085407842503327
305 => 0.085120098998021
306 => 0.083198477446812
307 => 0.083267108536446
308 => 0.083728685597209
309 => 0.085326209074705
310 => 0.085800462810519
311 => 0.085580769584346
312 => 0.08610076715516
313 => 0.086511752033122
314 => 0.086152380528198
315 => 0.091240323190499
316 => 0.089127454666987
317 => 0.090157252084102
318 => 0.090402852700165
319 => 0.089773751886544
320 => 0.089910181326607
321 => 0.090116834753506
322 => 0.091371593894745
323 => 0.094664444948841
324 => 0.096122826265505
325 => 0.10051043841196
326 => 0.096001727998804
327 => 0.095734199781786
328 => 0.096524541222555
329 => 0.099100534028435
330 => 0.1011881342469
331 => 0.10188071167591
401 => 0.10197224721636
402 => 0.10327156851486
403 => 0.10401631525226
404 => 0.10311379673368
405 => 0.10234900678682
406 => 0.099609624126375
407 => 0.099926715128413
408 => 0.10211115768843
409 => 0.10519681146749
410 => 0.10784462341748
411 => 0.10691745195816
412 => 0.11399111571175
413 => 0.11469244057959
414 => 0.1145955401594
415 => 0.11619326257948
416 => 0.11302210894613
417 => 0.11166637932967
418 => 0.10251436305406
419 => 0.10508570632162
420 => 0.1088233047707
421 => 0.10832861960069
422 => 0.10561427570067
423 => 0.10784256434423
424 => 0.10710582243364
425 => 0.10652472352131
426 => 0.10918685029027
427 => 0.10625973255366
428 => 0.10879410453215
429 => 0.10554374625501
430 => 0.10692168719928
501 => 0.10613950127581
502 => 0.1066456714294
503 => 0.10368661105428
504 => 0.10528324820557
505 => 0.10362018569953
506 => 0.10361939719137
507 => 0.10358268499437
508 => 0.10553927065757
509 => 0.1056030748458
510 => 0.10415715508446
511 => 0.10394877545734
512 => 0.10471926415499
513 => 0.10381722368135
514 => 0.10423928274159
515 => 0.10383000742033
516 => 0.10373787092486
517 => 0.10300371165319
518 => 0.10268741565283
519 => 0.10281144346451
520 => 0.10238807260251
521 => 0.10213297634416
522 => 0.10353193992791
523 => 0.10278453011914
524 => 0.10341738865535
525 => 0.10269616648022
526 => 0.1001960961997
527 => 0.098758279343604
528 => 0.094035878340329
529 => 0.095375145406738
530 => 0.096263080857339
531 => 0.095969618196212
601 => 0.096600089547286
602 => 0.096638795367766
603 => 0.096433822704637
604 => 0.096196490619358
605 => 0.096080970485532
606 => 0.096941962919203
607 => 0.097441798006621
608 => 0.09635219705885
609 => 0.096096918801925
610 => 0.097198565518638
611 => 0.097870569379433
612 => 0.10283226832119
613 => 0.10246468963751
614 => 0.10338723999987
615 => 0.10328337498676
616 => 0.10425035474032
617 => 0.10583095796125
618 => 0.10261714966948
619 => 0.10317495566381
620 => 0.10303819451562
621 => 0.10453131687082
622 => 0.10453597823583
623 => 0.1036407767969
624 => 0.10412608001993
625 => 0.10385519707443
626 => 0.10434471916897
627 => 0.10245978040008
628 => 0.10475543235402
629 => 0.10605691908336
630 => 0.10607499022786
701 => 0.10669188460833
702 => 0.107318685027
703 => 0.10852177384782
704 => 0.10728513153276
705 => 0.10506053239267
706 => 0.10522114126517
707 => 0.10391685960329
708 => 0.10393878481366
709 => 0.10382174632238
710 => 0.10417298764497
711 => 0.10253685811838
712 => 0.10292085444802
713 => 0.10238325733784
714 => 0.10317378703268
715 => 0.10232330776028
716 => 0.10303812856525
717 => 0.103346621528
718 => 0.10448496720189
719 => 0.10215517317868
720 => 0.097404565452163
721 => 0.098403200791829
722 => 0.09692614068335
723 => 0.097062848219954
724 => 0.097339019200738
725 => 0.096443858694497
726 => 0.096614627109338
727 => 0.096608526059881
728 => 0.096555950511714
729 => 0.096323084691302
730 => 0.095985383180606
731 => 0.097330682060176
801 => 0.097559274554685
802 => 0.098067407353357
803 => 0.099579265892438
804 => 0.099428195572305
805 => 0.09967459753229
806 => 0.09913670343713
807 => 0.097087799584311
808 => 0.097199064921093
809 => 0.095811584388517
810 => 0.098031926356658
811 => 0.09750612007152
812 => 0.09716712933892
813 => 0.097074632576803
814 => 0.098590238720775
815 => 0.099043731833268
816 => 0.098761145358353
817 => 0.098181552253939
818 => 0.099294542355733
819 => 0.099592331553691
820 => 0.099658995573071
821 => 0.10163100063877
822 => 0.099769208749999
823 => 0.10021736056225
824 => 0.10371371307081
825 => 0.10054300380921
826 => 0.10222259922033
827 => 0.10214039176515
828 => 0.10299961594307
829 => 0.10206991030369
830 => 0.10208143511933
831 => 0.10284436798044
901 => 0.10177296637268
902 => 0.10150767226744
903 => 0.10114117036113
904 => 0.10194141386536
905 => 0.10242112365424
906 => 0.10628723224462
907 => 0.10878491470997
908 => 0.10867648372698
909 => 0.10966733993722
910 => 0.10922095013931
911 => 0.10777943973017
912 => 0.1102399222251
913 => 0.10946132261274
914 => 0.10952550941879
915 => 0.10952312038266
916 => 0.11004082105852
917 => 0.1096739826831
918 => 0.10895090658997
919 => 0.10943091824514
920 => 0.11085638125368
921 => 0.11528106217075
922 => 0.11775717223117
923 => 0.11513199723602
924 => 0.11694280779518
925 => 0.11585696671746
926 => 0.11565963709266
927 => 0.11679695994166
928 => 0.11793627352376
929 => 0.11786370417396
930 => 0.11703662101777
1001 => 0.11656942272929
1002 => 0.12010720469256
1003 => 0.12271378217855
1004 => 0.12253603106872
1005 => 0.12332056665974
1006 => 0.12562398741975
1007 => 0.12583458334664
1008 => 0.12580805310035
1009 => 0.12528606912214
1010 => 0.12755408599736
1011 => 0.12944610557662
1012 => 0.12516524491276
1013 => 0.12679534061298
1014 => 0.12752714309121
1015 => 0.12860164624526
1016 => 0.13041451317379
1017 => 0.13238376749738
1018 => 0.13266224165051
1019 => 0.13246465091265
1020 => 0.13116587474985
1021 => 0.1333206563288
1022 => 0.13458287684191
1023 => 0.13533450027207
1024 => 0.13724049223272
1025 => 0.12753166245418
1026 => 0.12065927017678
1027 => 0.11958604688411
1028 => 0.12176848865217
1029 => 0.12234398114175
1030 => 0.12211200084081
1031 => 0.11437649852202
1101 => 0.1195453210653
1102 => 0.12510653951493
1103 => 0.12532016856436
1104 => 0.12810423079983
1105 => 0.12901083558627
1106 => 0.13125237060121
1107 => 0.13111216197572
1108 => 0.13165794008125
1109 => 0.13153247514635
1110 => 0.13568444675063
1111 => 0.14026468800391
1112 => 0.14010608881359
1113 => 0.13944762494247
1114 => 0.14042555607585
1115 => 0.14515285589772
1116 => 0.14471764188356
1117 => 0.14514041522688
1118 => 0.1507141681358
1119 => 0.15796083977451
1120 => 0.15459403324439
1121 => 0.16189903464226
1122 => 0.16649714580074
1123 => 0.17444910359576
1124 => 0.1734534793156
1125 => 0.17654911813104
1126 => 0.17167110406107
1127 => 0.16047019774712
1128 => 0.15869761144759
1129 => 0.16224637410828
1130 => 0.1709706608264
1201 => 0.16197161527243
1202 => 0.16379211046761
1203 => 0.16326780772893
1204 => 0.16323986986413
1205 => 0.16430614453209
1206 => 0.16275945751307
1207 => 0.15645797635389
1208 => 0.15934590803428
1209 => 0.15823073892261
1210 => 0.15946810219337
1211 => 0.16614564143823
1212 => 0.16319334216543
1213 => 0.16008333470684
1214 => 0.16398397422581
1215 => 0.16895082873862
1216 => 0.1686400119095
1217 => 0.16803689734966
1218 => 0.17143662254543
1219 => 0.17705197254282
1220 => 0.17856977908281
1221 => 0.17969019284044
1222 => 0.17984467896807
1223 => 0.18143598209528
1224 => 0.17287914412028
1225 => 0.18645906574178
1226 => 0.18880394306805
1227 => 0.18836320331592
1228 => 0.19096943577654
1229 => 0.19020261607289
1230 => 0.18909161463263
1231 => 0.19322304744426
]
'min_raw' => 0.071223704653792
'max_raw' => 0.19322304744426
'avg_raw' => 0.13222337604903
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.071223'
'max' => '$0.193223'
'avg' => '$0.132223'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.024563215038014
'max_diff' => 0.089056791381611
'year' => 2032
]
7 => [
'items' => [
101 => 0.18848669311516
102 => 0.18176403443543
103 => 0.17807585092462
104 => 0.18293274848893
105 => 0.18589868634909
106 => 0.18785898260558
107 => 0.18845216706835
108 => 0.17354338709409
109 => 0.16550838156681
110 => 0.17065872798827
111 => 0.17694250608038
112 => 0.17284423741571
113 => 0.17300488178831
114 => 0.16716182767855
115 => 0.17745948671636
116 => 0.17595920441149
117 => 0.18374267166307
118 => 0.18188508473726
119 => 0.18823220012846
120 => 0.18656079193096
121 => 0.19349871391163
122 => 0.19626643882646
123 => 0.20091387972044
124 => 0.20433255616054
125 => 0.20634006835503
126 => 0.20621954485286
127 => 0.21417430830602
128 => 0.20948366221596
129 => 0.20359110522644
130 => 0.20348452746128
131 => 0.20653636622433
201 => 0.21293218304061
202 => 0.21459052528572
203 => 0.21551731236552
204 => 0.21409790569111
205 => 0.20900654554198
206 => 0.20680812204337
207 => 0.20868124255864
208 => 0.20639057712754
209 => 0.21034490830883
210 => 0.2157750496203
211 => 0.21465374691259
212 => 0.21840209374938
213 => 0.22228123838787
214 => 0.2278285894442
215 => 0.22927887242814
216 => 0.23167613505127
217 => 0.23414370575021
218 => 0.23493622295582
219 => 0.23644938420497
220 => 0.23644140909827
221 => 0.24100142237009
222 => 0.24603125822075
223 => 0.24792990481341
224 => 0.25229573796125
225 => 0.24481940169262
226 => 0.25049028863434
227 => 0.25560557060727
228 => 0.24950692056081
301 => 0.25791248884664
302 => 0.25823885801575
303 => 0.263166644986
304 => 0.2581713888419
305 => 0.25520522168895
306 => 0.26376843511867
307 => 0.26791190435862
308 => 0.26666385770288
309 => 0.25716616102901
310 => 0.25163809418944
311 => 0.23717007698583
312 => 0.25430806833534
313 => 0.26265548399962
314 => 0.25714454323902
315 => 0.25992394120639
316 => 0.2750874352935
317 => 0.28086071207834
318 => 0.27965991086534
319 => 0.27986282650347
320 => 0.28297798186418
321 => 0.29679229628097
322 => 0.28851443886913
323 => 0.29484255069509
324 => 0.29819895838987
325 => 0.30131657691141
326 => 0.29366069115595
327 => 0.28370049627539
328 => 0.28054568445618
329 => 0.25659658878915
330 => 0.25534993435403
331 => 0.25465014944211
401 => 0.25023810455894
402 => 0.24677144584158
403 => 0.24401463012074
404 => 0.23677992241441
405 => 0.23922142388823
406 => 0.22769080980519
407 => 0.23506768807564
408 => 0.2166645495827
409 => 0.23199123017184
410 => 0.22364961474582
411 => 0.22925078515736
412 => 0.22923124320146
413 => 0.21891771262112
414 => 0.21296908342027
415 => 0.21675978147116
416 => 0.22082371068771
417 => 0.22148306953039
418 => 0.22675205983904
419 => 0.22822252177762
420 => 0.22376695345443
421 => 0.21628318544232
422 => 0.21802149406495
423 => 0.21293385665151
424 => 0.20401796777761
425 => 0.21042151482333
426 => 0.21260796732883
427 => 0.21357362931471
428 => 0.20480587660398
429 => 0.20205085834509
430 => 0.20058410974091
501 => 0.21515137866808
502 => 0.21594940654366
503 => 0.21186658310242
504 => 0.23032133220605
505 => 0.22614445410946
506 => 0.23081105030333
507 => 0.21786376077754
508 => 0.21835836467326
509 => 0.21222891032223
510 => 0.21566099518852
511 => 0.21323530822629
512 => 0.21538371664785
513 => 0.21667146379751
514 => 0.22279991236539
515 => 0.23206120721022
516 => 0.2218845265151
517 => 0.21745040100349
518 => 0.22020130753243
519 => 0.22752733412921
520 => 0.23862663943574
521 => 0.23205562729993
522 => 0.23497173090278
523 => 0.23560876981158
524 => 0.23076354873474
525 => 0.23880528964799
526 => 0.24311492393439
527 => 0.24753571695908
528 => 0.2513741676746
529 => 0.24576995500969
530 => 0.25176726589347
531 => 0.24693449198903
601 => 0.24259899419376
602 => 0.2426055693543
603 => 0.23988584825582
604 => 0.23461604592058
605 => 0.23364421351669
606 => 0.23869980841063
607 => 0.24275391674895
608 => 0.24308783252957
609 => 0.24533239521327
610 => 0.24666070428865
611 => 0.259679938976
612 => 0.26491638286801
613 => 0.27131940733836
614 => 0.27381374622424
615 => 0.28132081200077
616 => 0.27525824669215
617 => 0.27394657255231
618 => 0.25573688652095
619 => 0.25871872158846
620 => 0.26349292723583
621 => 0.25581561141363
622 => 0.26068510122831
623 => 0.26164644166762
624 => 0.25555473915975
625 => 0.25880858067613
626 => 0.2501673423054
627 => 0.23224956259292
628 => 0.23882523725888
629 => 0.24366714716118
630 => 0.23675714472741
701 => 0.24914305663592
702 => 0.24190746259609
703 => 0.23961412665523
704 => 0.23066700551663
705 => 0.23488970228777
706 => 0.24060096013394
707 => 0.23707206679
708 => 0.24439505034468
709 => 0.25476634802648
710 => 0.26215755237599
711 => 0.26272495726899
712 => 0.25797290804449
713 => 0.26558809725393
714 => 0.26564356559363
715 => 0.25705360105642
716 => 0.25179229560651
717 => 0.2505969159384
718 => 0.25358320871731
719 => 0.25720911945096
720 => 0.26292617007965
721 => 0.26638086403928
722 => 0.27538887365789
723 => 0.27782618278082
724 => 0.28050404656095
725 => 0.28408249839382
726 => 0.2883793473154
727 => 0.27897808649473
728 => 0.27935161611328
729 => 0.2705972922064
730 => 0.26124204161485
731 => 0.26834151066538
801 => 0.27762312204617
802 => 0.27549391014015
803 => 0.27525433030487
804 => 0.2756572371339
805 => 0.27405188089032
806 => 0.26679091409789
807 => 0.26314450203079
808 => 0.26784930389628
809 => 0.27034969670115
810 => 0.27422758788434
811 => 0.27374955594366
812 => 0.28373858717644
813 => 0.28762002266087
814 => 0.28662698536796
815 => 0.28680972812864
816 => 0.29383688167168
817 => 0.3016525216559
818 => 0.30897289986564
819 => 0.31641950299816
820 => 0.30744233227604
821 => 0.30288427861827
822 => 0.30758702651445
823 => 0.30509168228477
824 => 0.3194306703957
825 => 0.32042347082164
826 => 0.33476142206053
827 => 0.34836984511771
828 => 0.33982263841572
829 => 0.34788226936105
830 => 0.35659941733978
831 => 0.37341621009703
901 => 0.36775290591829
902 => 0.36341490367267
903 => 0.35931551251163
904 => 0.36784569475773
905 => 0.37881963794436
906 => 0.38118332019964
907 => 0.38501338844931
908 => 0.38098654000324
909 => 0.38583643541372
910 => 0.40295869736473
911 => 0.39833211104318
912 => 0.39176161470571
913 => 0.40527799607652
914 => 0.41016952195101
915 => 0.44450081225018
916 => 0.48784548440775
917 => 0.46990050551805
918 => 0.45876147804037
919 => 0.46137941371889
920 => 0.47720742068109
921 => 0.48229087416151
922 => 0.46847229523021
923 => 0.4733532509206
924 => 0.50024779665959
925 => 0.51467585756822
926 => 0.49508061290719
927 => 0.44101811004609
928 => 0.39117001339988
929 => 0.4043919733195
930 => 0.4028930133898
1001 => 0.43178784762344
1002 => 0.39822176848952
1003 => 0.39878693517713
1004 => 0.42827928398256
1005 => 0.42041123094813
1006 => 0.40766599269645
1007 => 0.39126306774385
1008 => 0.36094074388203
1009 => 0.33408341603706
1010 => 0.38675682081425
1011 => 0.38448544781989
1012 => 0.38119616312543
1013 => 0.38851611027517
1014 => 0.42405969583104
1015 => 0.42324030114061
1016 => 0.41802773017899
1017 => 0.42198141931189
1018 => 0.40697289187565
1019 => 0.41084093113379
1020 => 0.39116211720669
1021 => 0.4000577629616
1022 => 0.40763864713934
1023 => 0.40916062187493
1024 => 0.41258970866817
1025 => 0.38328853746384
1026 => 0.3964439030974
1027 => 0.40417144791605
1028 => 0.36925811929491
1029 => 0.40348132366412
1030 => 0.3827784692624
1031 => 0.37575160953202
1101 => 0.3852123504406
1102 => 0.38152549050766
1103 => 0.37835574483699
1104 => 0.37658697228961
1105 => 0.383533896269
1106 => 0.38320981396199
1107 => 0.37184329799187
1108 => 0.3570161412673
1109 => 0.36199262174889
1110 => 0.36018461973517
1111 => 0.35363218720057
1112 => 0.35804773558517
1113 => 0.33860389515727
1114 => 0.30515177830394
1115 => 0.3272512713633
1116 => 0.32640046492013
1117 => 0.32597144973049
1118 => 0.34257860797947
1119 => 0.34098221290616
1120 => 0.33808474021616
1121 => 0.35357897284239
1122 => 0.34792336950698
1123 => 0.36535260635898
1124 => 0.37683262900207
1125 => 0.37392092391995
1126 => 0.38471794070355
1127 => 0.36210726980811
1128 => 0.36961762769691
1129 => 0.37116550204889
1130 => 0.35338777641689
1201 => 0.34124340288311
1202 => 0.3404335116244
1203 => 0.31937684151459
1204 => 0.33062514472375
1205 => 0.34052318606139
1206 => 0.3357827923797
1207 => 0.33428212535531
1208 => 0.34194870772796
1209 => 0.34254446683815
1210 => 0.32896109599004
1211 => 0.33178550891877
1212 => 0.34356378035117
1213 => 0.33148872669861
1214 => 0.30802886990049
1215 => 0.30221050105666
1216 => 0.30143422339908
1217 => 0.28565434563396
1218 => 0.30259931228441
1219 => 0.29520238024462
1220 => 0.31856919992949
1221 => 0.30522219784426
1222 => 0.30464683526068
1223 => 0.30377709032826
1224 => 0.29019469767728
1225 => 0.29316837846176
1226 => 0.30305334629374
1227 => 0.30658041417833
1228 => 0.30621251210155
1229 => 0.30300490455864
1230 => 0.30447333086618
1231 => 0.29974301809596
]
'min_raw' => 0.16550838156681
'max_raw' => 0.51467585756822
'avg_raw' => 0.34009211956751
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.1655083'
'max' => '$0.514675'
'avg' => '$0.340092'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.094284676913015
'max_diff' => 0.32145281012396
'year' => 2033
]
8 => [
'items' => [
101 => 0.29807264620385
102 => 0.29280049304037
103 => 0.28505188435954
104 => 0.28612937592159
105 => 0.27077735459111
106 => 0.26241275857682
107 => 0.26009754864367
108 => 0.25700155316177
109 => 0.26044724957148
110 => 0.27073386424356
111 => 0.25832602452198
112 => 0.23705365362811
113 => 0.23833215936519
114 => 0.24120458216464
115 => 0.23585184128084
116 => 0.23078592125581
117 => 0.23519032770649
118 => 0.22617694373004
119 => 0.24229380655624
120 => 0.24185789058378
121 => 0.24786526038528
122 => 0.25162179200579
123 => 0.24296420281206
124 => 0.24078684254245
125 => 0.24202716590753
126 => 0.22152738353722
127 => 0.24618999081593
128 => 0.24640327406781
129 => 0.24457701337717
130 => 0.25770909038051
131 => 0.28542186885509
201 => 0.27499520684902
202 => 0.27095768817274
203 => 0.26328236221773
204 => 0.27350927833702
205 => 0.2727240107438
206 => 0.26917273288338
207 => 0.26702490895274
208 => 0.27098234040083
209 => 0.26653453940137
210 => 0.26573559212447
211 => 0.26089484088966
212 => 0.25916691293898
213 => 0.25788762387509
214 => 0.2564792523161
215 => 0.25958576903091
216 => 0.25254599345883
217 => 0.24405671423661
218 => 0.24335092252456
219 => 0.24529967549538
220 => 0.24443749737339
221 => 0.24334679474741
222 => 0.24126434639924
223 => 0.24064652845881
224 => 0.24265413704256
225 => 0.24038766400236
226 => 0.24373196843436
227 => 0.24282250267766
228 => 0.23774230089086
301 => 0.23141048853291
302 => 0.2313541221215
303 => 0.22998994353523
304 => 0.228252457
305 => 0.2277691279942
306 => 0.2348194008801
307 => 0.249413254757
308 => 0.24654813203964
309 => 0.24861847683252
310 => 0.25880252411793
311 => 0.26203972650497
312 => 0.25974203692799
313 => 0.25659681771969
314 => 0.2567351914026
315 => 0.26748335755996
316 => 0.26815370749922
317 => 0.26984746553266
318 => 0.27202442326159
319 => 0.26011278224266
320 => 0.2561741541818
321 => 0.25430781369981
322 => 0.24856020737992
323 => 0.25475850803339
324 => 0.25114702368031
325 => 0.25163433630541
326 => 0.25131697331903
327 => 0.25149027496958
328 => 0.24228930156462
329 => 0.24564165268447
330 => 0.24006771874853
331 => 0.23260484691177
401 => 0.23257982874855
402 => 0.23440635605796
403 => 0.2333198661423
404 => 0.23039614971548
405 => 0.23081144983436
406 => 0.22717298379368
407 => 0.23125322548825
408 => 0.23137023222025
409 => 0.22979911691557
410 => 0.23608529221091
411 => 0.23866074335845
412 => 0.23762660160836
413 => 0.23858818521645
414 => 0.2466671908238
415 => 0.24798442124952
416 => 0.24856944799327
417 => 0.24778558965784
418 => 0.23873585460812
419 => 0.23913724884002
420 => 0.23619208429559
421 => 0.23370373060934
422 => 0.2338032517071
423 => 0.23508258896517
424 => 0.24066952980328
425 => 0.25242691742894
426 => 0.25287310169479
427 => 0.25341389004112
428 => 0.25121423205815
429 => 0.2505507941626
430 => 0.25142603999469
501 => 0.25584149661281
502 => 0.26719924981941
503 => 0.26318466127736
504 => 0.25992073830189
505 => 0.2627840786987
506 => 0.26234328988821
507 => 0.25862258873354
508 => 0.25851816104431
509 => 0.25137694594839
510 => 0.24873700132503
511 => 0.24653086600131
512 => 0.24412182382044
513 => 0.24269366286379
514 => 0.24488796718075
515 => 0.24538983054028
516 => 0.24059194580138
517 => 0.23993801184026
518 => 0.24385606808758
519 => 0.242131877613
520 => 0.24390525027398
521 => 0.24431668794303
522 => 0.2442504370021
523 => 0.24245018412462
524 => 0.24359761162441
525 => 0.2408836035228
526 => 0.23793252734313
527 => 0.23604992459904
528 => 0.23440710401381
529 => 0.23531863635579
530 => 0.23206918999586
531 => 0.23102962670689
601 => 0.24320888900542
602 => 0.25220584101448
603 => 0.25207502176908
604 => 0.25127869325671
605 => 0.25009551061667
606 => 0.2557549394331
607 => 0.25378330759731
608 => 0.2552178344932
609 => 0.25558298179511
610 => 0.25668817270266
611 => 0.25708318345774
612 => 0.25588918660328
613 => 0.25188198732528
614 => 0.24189642771758
615 => 0.23724812276469
616 => 0.23571410470659
617 => 0.23576986334949
618 => 0.23423179106085
619 => 0.23468482228142
620 => 0.23407424529042
621 => 0.2329179601839
622 => 0.23524723900879
623 => 0.23551566669463
624 => 0.23497198518409
625 => 0.23510004186138
626 => 0.23059859116353
627 => 0.23094082668345
628 => 0.22903521581934
629 => 0.22867793675481
630 => 0.22386071843087
701 => 0.21532631790306
702 => 0.22005520424977
703 => 0.21434337452499
704 => 0.21218021805987
705 => 0.22242026432589
706 => 0.22139244769546
707 => 0.2196332724053
708 => 0.2170310855069
709 => 0.21606590907383
710 => 0.21020180260427
711 => 0.20985531991026
712 => 0.21276172942077
713 => 0.21142052143511
714 => 0.20953695746807
715 => 0.20271487971325
716 => 0.19504460560451
717 => 0.19527612296623
718 => 0.19771589444969
719 => 0.20480985908588
720 => 0.20203812437569
721 => 0.20002719904145
722 => 0.19965061317454
723 => 0.20436437373482
724 => 0.21103533249099
725 => 0.21416519708509
726 => 0.21106359632774
727 => 0.20750064437973
728 => 0.20771750475568
729 => 0.20916017968168
730 => 0.20931178441808
731 => 0.20699266897731
801 => 0.20764548638959
802 => 0.20665379704546
803 => 0.20056780137104
804 => 0.20045772500819
805 => 0.19896412351976
806 => 0.19891889786028
807 => 0.19637790913209
808 => 0.196022407244
809 => 0.19097711989719
810 => 0.19429794330739
811 => 0.19207050931488
812 => 0.18871324088961
813 => 0.18813444654766
814 => 0.18811704729083
815 => 0.1915642112921
816 => 0.194257661189
817 => 0.19210925648283
818 => 0.19162010637631
819 => 0.19684294979291
820 => 0.19617829536087
821 => 0.19560270890929
822 => 0.21043802130209
823 => 0.19869471392933
824 => 0.19357396163025
825 => 0.18723605825566
826 => 0.18929971155291
827 => 0.18973455362401
828 => 0.17449303850107
829 => 0.1683095577139
830 => 0.1661876201273
831 => 0.16496641504642
901 => 0.1655229335367
902 => 0.15995707557829
903 => 0.16369742417714
904 => 0.15887786165542
905 => 0.15806984631444
906 => 0.1666878211325
907 => 0.16788696198296
908 => 0.16277105457105
909 => 0.16605629531967
910 => 0.16486502135596
911 => 0.15896047922187
912 => 0.15873496914322
913 => 0.15577227745502
914 => 0.15113623865315
915 => 0.14901744451916
916 => 0.14791395813797
917 => 0.14836927812537
918 => 0.14813905440672
919 => 0.14663668891319
920 => 0.1482251682382
921 => 0.14416725996778
922 => 0.14255136819771
923 => 0.14182150737358
924 => 0.13821988021909
925 => 0.14395167067274
926 => 0.1450809055993
927 => 0.14621236546751
928 => 0.15606095113978
929 => 0.15556894363141
930 => 0.16001645188972
1001 => 0.15984362989725
1002 => 0.15857512849712
1003 => 0.15322352974833
1004 => 0.15535658162652
1005 => 0.14879137949531
1006 => 0.15371047532237
1007 => 0.15146560541325
1008 => 0.15295148254796
1009 => 0.15027974148362
1010 => 0.15175839330211
1011 => 0.14534868909224
1012 => 0.13936339748805
1013 => 0.14177205355113
1014 => 0.14439053815493
1015 => 0.15006807995345
1016 => 0.14668658289696
1017 => 0.14790269710703
1018 => 0.14382891807834
1019 => 0.1354235483247
1020 => 0.13547112180468
1021 => 0.13417813878902
1022 => 0.13306081268487
1023 => 0.14707498851129
1024 => 0.14533210421594
1025 => 0.14255504619436
1026 => 0.14627224871215
1027 => 0.14725513605779
1028 => 0.14728311747874
1029 => 0.14999509248084
1030 => 0.1514424740256
1031 => 0.15169758129618
1101 => 0.15596493255807
1102 => 0.15739529241334
1103 => 0.16328674222506
1104 => 0.15131967381382
1105 => 0.15107321991504
1106 => 0.1463245573746
1107 => 0.14331288051807
1108 => 0.14653076946557
1109 => 0.14938137978741
1110 => 0.14641313378335
1111 => 0.14680072404839
1112 => 0.14281609630254
1113 => 0.14424041322752
1114 => 0.14546722683952
1115 => 0.14478985247175
1116 => 0.1437757902579
1117 => 0.14914766224895
1118 => 0.14884456017868
1119 => 0.15384697087555
1120 => 0.15774670773959
1121 => 0.16473573336128
1122 => 0.1574423207789
1123 => 0.15717651983571
1124 => 0.15977476669122
1125 => 0.15739489463528
1126 => 0.15889889162424
1127 => 0.16449341619466
1128 => 0.1646116196831
1129 => 0.16263155895519
1130 => 0.16251107207995
1201 => 0.16289136440223
1202 => 0.16511874841207
1203 => 0.16434043199844
1204 => 0.16524111945686
1205 => 0.16636744291543
1206 => 0.17102639429132
1207 => 0.17214965169524
1208 => 0.1694207185459
1209 => 0.16966711065472
1210 => 0.16864641474598
1211 => 0.16766043528741
1212 => 0.16987677311953
1213 => 0.17392717406994
1214 => 0.17390197673585
1215 => 0.1748415910278
1216 => 0.1754269629475
1217 => 0.17291411814971
1218 => 0.17127834858621
1219 => 0.17190560672357
1220 => 0.17290860614513
1221 => 0.17158034752925
1222 => 0.16338172004281
1223 => 0.16586865989185
1224 => 0.16545471149582
1225 => 0.16486519864204
1226 => 0.16736583589118
1227 => 0.16712464332815
1228 => 0.15989998966017
1229 => 0.16036248854766
1230 => 0.15992811574936
1231 => 0.16133166312498
]
'min_raw' => 0.13306081268487
'max_raw' => 0.29807264620385
'avg_raw' => 0.21556672944436
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.13306'
'max' => '$0.298072'
'avg' => '$0.215566'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.032447568881933
'max_diff' => -0.21660321136437
'year' => 2034
]
9 => [
'items' => [
101 => 0.15731909847095
102 => 0.15855333633349
103 => 0.15932743875062
104 => 0.15978339102124
105 => 0.16143060327213
106 => 0.16123732192654
107 => 0.16141858863231
108 => 0.16386096955247
109 => 0.17621369412271
110 => 0.17688602566632
111 => 0.17357521925188
112 => 0.17489782111168
113 => 0.1723587147621
114 => 0.17406323386511
115 => 0.17522942254529
116 => 0.16995964014472
117 => 0.16964759783156
118 => 0.16709801168687
119 => 0.16846801486509
120 => 0.16628824130183
121 => 0.16682308148901
122 => 0.16532762169912
123 => 0.16801915157784
124 => 0.17102870020372
125 => 0.17178903103729
126 => 0.16978892795717
127 => 0.16834072151394
128 => 0.16579814806849
129 => 0.17002650437322
130 => 0.17126300461354
131 => 0.17002000956385
201 => 0.16973198045086
202 => 0.16918616580219
203 => 0.1698477776088
204 => 0.17125627036768
205 => 0.17059205119337
206 => 0.17103077966004
207 => 0.16935879915993
208 => 0.17291495000589
209 => 0.17856297338359
210 => 0.17858113270229
211 => 0.17791690994759
212 => 0.17764512430725
213 => 0.17832665716198
214 => 0.17869636077773
215 => 0.18090031305816
216 => 0.18326524166441
217 => 0.19430133157055
218 => 0.19120244168653
219 => 0.20099431719119
220 => 0.20873841939947
221 => 0.21106053704318
222 => 0.20892429807504
223 => 0.2016163399624
224 => 0.20125777667293
225 => 0.21217895143356
226 => 0.20909321934219
227 => 0.20872618132864
228 => 0.20482151698497
301 => 0.20712965721417
302 => 0.20662483308767
303 => 0.20582794350715
304 => 0.21023171427801
305 => 0.21847518003372
306 => 0.21719035858896
307 => 0.2162312989816
308 => 0.21202897896019
309 => 0.21455971423524
310 => 0.21365856787683
311 => 0.21753046451414
312 => 0.21523683871921
313 => 0.2090698418867
314 => 0.21005195645896
315 => 0.2099035118171
316 => 0.21295849202763
317 => 0.2120414627977
318 => 0.20972444714217
319 => 0.21844700476395
320 => 0.2178806103894
321 => 0.21868362811673
322 => 0.21903714135444
323 => 0.22434640847012
324 => 0.22652144532981
325 => 0.22701521677634
326 => 0.22908133356966
327 => 0.22696380990833
328 => 0.23543541432242
329 => 0.24106853692598
330 => 0.24761169870784
331 => 0.25717301670723
401 => 0.26076816072213
402 => 0.26011873013472
403 => 0.26736801232005
404 => 0.28039481126458
405 => 0.26275181865185
406 => 0.28132993271359
407 => 0.27544831629628
408 => 0.26150310957661
409 => 0.26060520266706
410 => 0.27004905856479
411 => 0.29099462200853
412 => 0.28574799592849
413 => 0.29100320360925
414 => 0.28487272470285
415 => 0.28456829475342
416 => 0.29070545993225
417 => 0.30504528089205
418 => 0.2982329694742
419 => 0.28846585060942
420 => 0.29567773918597
421 => 0.28943013387218
422 => 0.2753525305056
423 => 0.28574398393241
424 => 0.27879551495746
425 => 0.28082344760527
426 => 0.29542809588386
427 => 0.29367082596388
428 => 0.29594489595915
429 => 0.29193122194026
430 => 0.28818181750832
501 => 0.28118327570168
502 => 0.27911135249667
503 => 0.27968395753055
504 => 0.27911106874206
505 => 0.27519544892116
506 => 0.27434987119365
507 => 0.27294053793551
508 => 0.27337734924302
509 => 0.27072739040274
510 => 0.27572841024378
511 => 0.27665664359511
512 => 0.28029596878497
513 => 0.28067381559918
514 => 0.2908092844504
515 => 0.28522683852678
516 => 0.28897202521753
517 => 0.28863702046885
518 => 0.2618053444918
519 => 0.26550251270355
520 => 0.27125414620575
521 => 0.26866304310916
522 => 0.26499982955534
523 => 0.26204158820155
524 => 0.25755955005484
525 => 0.26386793267641
526 => 0.27216278500208
527 => 0.28088418674275
528 => 0.29136237948529
529 => 0.28902376884477
530 => 0.28068830421791
531 => 0.28106222707201
601 => 0.28337367102284
602 => 0.28038014108969
603 => 0.27949729067176
604 => 0.2832523809325
605 => 0.28327824017537
606 => 0.2798338222071
607 => 0.27600598195721
608 => 0.2759899431668
609 => 0.27530881596688
610 => 0.28499389571859
611 => 0.29031971031002
612 => 0.29093030636994
613 => 0.29027861233021
614 => 0.29052942350129
615 => 0.28743044933685
616 => 0.29451378530452
617 => 0.30101415485776
618 => 0.29927191695735
619 => 0.29666005467093
620 => 0.29457958055546
621 => 0.29878182337417
622 => 0.29859470411639
623 => 0.30095737980051
624 => 0.30085019518401
625 => 0.30005571621616
626 => 0.2992719453307
627 => 0.30237950829812
628 => 0.30148458006944
629 => 0.30058826177003
630 => 0.2987905582011
701 => 0.29903489597281
702 => 0.29642348466123
703 => 0.29521532629845
704 => 0.27704752329937
705 => 0.27219249268792
706 => 0.27371998415155
707 => 0.27422287400267
708 => 0.27210995845868
709 => 0.27513933658529
710 => 0.27466721121316
711 => 0.27650397485201
712 => 0.27535644467346
713 => 0.27540353971227
714 => 0.27877818128813
715 => 0.27975785409435
716 => 0.27925958459818
717 => 0.27960855547362
718 => 0.28765044200678
719 => 0.28650714290682
720 => 0.28589978804676
721 => 0.28606802949374
722 => 0.28812290392295
723 => 0.28869815657115
724 => 0.28626077067845
725 => 0.28741025595581
726 => 0.29230461837538
727 => 0.2940173682253
728 => 0.2994836435797
729 => 0.29716147265386
730 => 0.30142391788945
731 => 0.314525221369
801 => 0.32499144912972
802 => 0.31536627354581
803 => 0.33458616796229
804 => 0.34955161269562
805 => 0.3489772140005
806 => 0.34636764255427
807 => 0.32932988160231
808 => 0.3136514799556
809 => 0.32676712867317
810 => 0.32680056315901
811 => 0.32567391730248
812 => 0.31867641664867
813 => 0.32543041944769
814 => 0.32596652766294
815 => 0.32566644962508
816 => 0.32030148228031
817 => 0.31211016875656
818 => 0.31371073181187
819 => 0.31633248674706
820 => 0.31136895769936
821 => 0.30978280941779
822 => 0.31273176085029
823 => 0.32223389680423
824 => 0.32043757304426
825 => 0.32039066377137
826 => 0.32807609857633
827 => 0.32257498587662
828 => 0.31373092003771
829 => 0.31149767677449
830 => 0.30357116768297
831 => 0.30904603574574
901 => 0.3092430665006
902 => 0.30624453721441
903 => 0.31397423416344
904 => 0.31390300364527
905 => 0.32124120048481
906 => 0.33526907674115
907 => 0.33112034346228
908 => 0.32629581803986
909 => 0.32682037772286
910 => 0.33257350272171
911 => 0.32909503201634
912 => 0.33034591433475
913 => 0.33257160936151
914 => 0.33391442643205
915 => 0.32662716701119
916 => 0.32492815825027
917 => 0.32145258259648
918 => 0.3205458697831
919 => 0.32337665363285
920 => 0.32263084210151
921 => 0.30922650682859
922 => 0.30782567921155
923 => 0.30786864059465
924 => 0.30434619294588
925 => 0.29897361479722
926 => 0.31309242939194
927 => 0.3119584909873
928 => 0.31070671074844
929 => 0.31086004668514
930 => 0.31698854556968
1001 => 0.31343370672003
1002 => 0.32288482842845
1003 => 0.32094196193192
1004 => 0.31894926824087
1005 => 0.31867381727383
1006 => 0.31790680021141
1007 => 0.31527641330989
1008 => 0.31210006306457
1009 => 0.31000276150185
1010 => 0.28596116080149
1011 => 0.29042314204792
1012 => 0.29555624474955
1013 => 0.29732817123253
1014 => 0.29429716836981
1015 => 0.31539609577709
1016 => 0.31925107312873
1017 => 0.30757409527668
1018 => 0.30538980948842
1019 => 0.31553929718973
1020 => 0.30941791538143
1021 => 0.31217437323489
1022 => 0.30621641905754
1023 => 0.31832252197163
1024 => 0.3182302937507
1025 => 0.31352074628838
1026 => 0.31750122355394
1027 => 0.31680951767432
1028 => 0.31149245018846
1029 => 0.31849108249482
1030 => 0.31849455372912
1031 => 0.31396171669104
1101 => 0.30866835539617
1102 => 0.30772202742026
1103 => 0.30700909641169
1104 => 0.31199903591025
1105 => 0.31647300006151
1106 => 0.32479793815725
1107 => 0.32689102539017
1108 => 0.33506048420496
1109 => 0.33019596924448
1110 => 0.33235234572045
1111 => 0.33469339742318
1112 => 0.3358157836988
1113 => 0.33398691549325
1114 => 0.34667744771601
1115 => 0.34774891746348
1116 => 0.34810817200162
1117 => 0.34382899593858
1118 => 0.34762990583619
1119 => 0.345851585968
1120 => 0.35047828023354
1121 => 0.35120380497097
1122 => 0.35058931132966
1123 => 0.35081960433295
1124 => 0.33999047384411
1125 => 0.33942892630005
1126 => 0.33177218569119
1127 => 0.33489236408507
1128 => 0.32905934013175
1129 => 0.33090905211415
1130 => 0.33172438753129
1201 => 0.33129850257925
1202 => 0.33506877428998
1203 => 0.33186327312024
1204 => 0.32340342850012
1205 => 0.31494127900098
1206 => 0.31483504360714
1207 => 0.31260710901336
1208 => 0.31099672036864
1209 => 0.31130693835322
1210 => 0.31240018699325
1211 => 0.31093317877026
1212 => 0.31124623935384
1213 => 0.31644513095301
1214 => 0.31748773158642
1215 => 0.31394456726371
1216 => 0.29971825123187
1217 => 0.29622707759365
1218 => 0.29873646397182
1219 => 0.29753713890824
1220 => 0.24013569292052
1221 => 0.25362131120765
1222 => 0.24560861474976
1223 => 0.249301233924
1224 => 0.24112234571818
1225 => 0.24502573986225
1226 => 0.24430492549298
1227 => 0.26598940063023
1228 => 0.26565082737698
1229 => 0.26581288447641
1230 => 0.258077476883
1231 => 0.27040019121851
]
'min_raw' => 0.15731909847095
'max_raw' => 0.35120380497097
'avg_raw' => 0.25426145172096
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.157319'
'max' => '$0.3512038'
'avg' => '$0.254261'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.024258285786073
'max_diff' => 0.053131158767117
'year' => 2035
]
10 => [
'items' => [
101 => 0.27647080341065
102 => 0.275347294658
103 => 0.275630057606
104 => 0.27077125332094
105 => 0.26585992832271
106 => 0.26041251305218
107 => 0.27053313730395
108 => 0.26940789665197
109 => 0.2719887938588
110 => 0.27855274212324
111 => 0.27951930843919
112 => 0.28081838336978
113 => 0.28035275748161
114 => 0.29144585519523
115 => 0.29010240786749
116 => 0.29333972939116
117 => 0.2866803134008
118 => 0.27914455209015
119 => 0.28057685395271
120 => 0.2804389117655
121 => 0.27868274939967
122 => 0.27709736453912
123 => 0.27445814542571
124 => 0.28280902523145
125 => 0.28246999476184
126 => 0.28795850398511
127 => 0.28698835666736
128 => 0.28050947544413
129 => 0.2807408699545
130 => 0.28229710924114
131 => 0.28768327118105
201 => 0.28928225076268
202 => 0.28854153971215
203 => 0.29029474782722
204 => 0.29168041203732
205 => 0.29046876591795
206 => 0.30762311983271
207 => 0.30049943608992
208 => 0.30397146997988
209 => 0.30479952960422
210 => 0.30267847228868
211 => 0.30313845367106
212 => 0.30383520012793
213 => 0.3080657081771
214 => 0.3191677854055
215 => 0.32408481983557
216 => 0.33887796052062
217 => 0.32367652857458
218 => 0.32277453851268
219 => 0.32543922986011
220 => 0.3341243694552
221 => 0.34116285934335
222 => 0.34349793249947
223 => 0.34380655096491
224 => 0.34818730343852
225 => 0.3506982690602
226 => 0.347655364863
227 => 0.34507682216122
228 => 0.33584080226395
229 => 0.3369098967159
301 => 0.34427489731993
302 => 0.35467839446948
303 => 0.36360567732319
304 => 0.36047965401504
305 => 0.3843290052277
306 => 0.38669357098457
307 => 0.38636686445253
308 => 0.39175369714125
309 => 0.38106193126355
310 => 0.37649099420762
311 => 0.34563433236104
312 => 0.35430379571305
313 => 0.36690536983492
314 => 0.36523750424642
315 => 0.35608590427807
316 => 0.36359873501397
317 => 0.36111475822474
318 => 0.35915554267079
319 => 0.36813108893608
320 => 0.35826210712227
321 => 0.36680691919195
322 => 0.35584810932783
323 => 0.36049393342619
324 => 0.35785673897473
325 => 0.35956332698722
326 => 0.34958664833752
327 => 0.35496982196672
328 => 0.34936269061632
329 => 0.34936003210599
330 => 0.34923625437065
331 => 0.35583301953857
401 => 0.35604813981387
402 => 0.35117312038761
403 => 0.35047055392617
404 => 0.3530683103641
405 => 0.35002701792878
406 => 0.3514500195176
407 => 0.35007011919727
408 => 0.34975947457001
409 => 0.34728420532823
410 => 0.34621779127992
411 => 0.34663595970636
412 => 0.3452085352863
413 => 0.34434846044102
414 => 0.34906516383615
415 => 0.34654521948341
416 => 0.348678946223
417 => 0.34624729530545
418 => 0.33781813380532
419 => 0.33297043388984
420 => 0.31704852919979
421 => 0.32156396161882
422 => 0.3245576979842
423 => 0.3235682681333
424 => 0.32569394631155
425 => 0.32582444568765
426 => 0.32513336604318
427 => 0.32433318434767
428 => 0.32394370015111
429 => 0.3268465962538
430 => 0.32853182514841
501 => 0.32485815947949
502 => 0.32399747101331
503 => 0.32771174983322
504 => 0.3299774577677
505 => 0.34670617216459
506 => 0.34546685496903
507 => 0.34857729792617
508 => 0.34822710978283
509 => 0.35148734953432
510 => 0.3568164636479
511 => 0.34598088461126
512 => 0.34786156646589
513 => 0.34740046670642
514 => 0.35243463297345
515 => 0.35245034909103
516 => 0.3494321149387
517 => 0.35106834863794
518 => 0.35015504787475
519 => 0.35180550579383
520 => 0.34545030313231
521 => 0.35319025397231
522 => 0.35757830734718
523 => 0.35763923547254
524 => 0.35971913794648
525 => 0.36183243931983
526 => 0.36588873727622
527 => 0.36171931137139
528 => 0.35421892005403
529 => 0.35476042408102
530 => 0.35036294739594
531 => 0.35043686977348
601 => 0.35004226632875
602 => 0.35122650097077
603 => 0.34571017604094
604 => 0.3470048464761
605 => 0.3451923002853
606 => 0.34785762634446
607 => 0.34499017609899
608 => 0.34740024435016
609 => 0.34844034991233
610 => 0.35227836182864
611 => 0.34442329861836
612 => 0.32840629299156
613 => 0.33177326176173
614 => 0.32679325048096
615 => 0.32725416948523
616 => 0.32818529922858
617 => 0.32516720308368
618 => 0.32574296071699
619 => 0.32572239060278
620 => 0.32554512847143
621 => 0.32476000509974
622 => 0.32362142087886
623 => 0.3281571899771
624 => 0.32892790553215
625 => 0.33064111073958
626 => 0.33573844735868
627 => 0.33522910322696
628 => 0.33605986463829
629 => 0.33424631714189
630 => 0.32733829475221
701 => 0.32771343360347
702 => 0.32303544611709
703 => 0.330521484082
704 => 0.32874869148104
705 => 0.3276057605585
706 => 0.3272939012671
707 => 0.33240387319775
708 => 0.33393285688839
709 => 0.33298009685866
710 => 0.33102595824123
711 => 0.33477848207592
712 => 0.33578249914781
713 => 0.33600726154348
714 => 0.34265601430347
715 => 0.33637885296434
716 => 0.33788982808828
717 => 0.34967802467845
718 => 0.3389877570311
719 => 0.34465063022532
720 => 0.34437346205063
721 => 0.34727039635561
722 => 0.34413582888245
723 => 0.34417468560302
724 => 0.34674696701052
725 => 0.34313466168709
726 => 0.34224020408904
727 => 0.34100451732357
728 => 0.34370259416928
729 => 0.34531996921477
730 => 0.35835482425032
731 => 0.36677593506488
801 => 0.36641035243532
802 => 0.3697510933275
803 => 0.36824605895789
804 => 0.36338590597044
805 => 0.37168159448751
806 => 0.36905649153436
807 => 0.36927290183232
808 => 0.36926484703022
809 => 0.37101031100358
810 => 0.36977348980903
811 => 0.36733558827748
812 => 0.36895398108622
813 => 0.37376002914218
814 => 0.38867814977543
815 => 0.3970265277206
816 => 0.3881755669406
817 => 0.39428084116756
818 => 0.39061985216302
819 => 0.38995454155591
820 => 0.39378910494666
821 => 0.39763038023302
822 => 0.39738570760357
823 => 0.39459713899734
824 => 0.39302194734899
825 => 0.4049498262382
826 => 0.41373808421766
827 => 0.41313878394069
828 => 0.41578390046034
829 => 0.42355004437242
830 => 0.42426008324325
831 => 0.42417063466559
901 => 0.42241072923932
902 => 0.43005750648199
903 => 0.43643658259007
904 => 0.4220033619817
905 => 0.42749934344464
906 => 0.42996666659281
907 => 0.43358942899612
908 => 0.43970163641598
909 => 0.4463411148569
910 => 0.44728000990663
911 => 0.44661381893858
912 => 0.44223490442804
913 => 0.44949990096354
914 => 0.45375556554891
915 => 0.45628971642034
916 => 0.4627159013878
917 => 0.4299819039406
918 => 0.40681115356223
919 => 0.40319270630095
920 => 0.41055096109516
921 => 0.41249127420342
922 => 0.41170913642243
923 => 0.38562835027911
924 => 0.40305539635945
925 => 0.42180543263424
926 => 0.42252569788949
927 => 0.43191235809342
928 => 0.43496903942802
929 => 0.44252653122986
930 => 0.44205380805997
1001 => 0.44389393704776
1002 => 0.44347092326006
1003 => 0.45746958540532
1004 => 0.47291218857299
1005 => 0.47237746032976
1006 => 0.47015740341582
1007 => 0.47345456650898
1008 => 0.48939298790794
1009 => 0.48792563347352
1010 => 0.4893510433176
1011 => 0.50814334039704
1012 => 0.53257599977341
1013 => 0.52122457649419
1014 => 0.54585389872603
1015 => 0.5613567515267
1016 => 0.58816733242056
1017 => 0.58481051564775
1018 => 0.5952476780446
1019 => 0.57880111303563
1020 => 0.54103647537584
1021 => 0.53506007690895
1022 => 0.54702497798617
1023 => 0.57643951976655
1024 => 0.54609860938804
1025 => 0.55223653604153
1026 => 0.55046881275241
1027 => 0.55037461829067
1028 => 0.55396963777861
1029 => 0.54875487450774
1030 => 0.52750899082422
1031 => 0.5372458541136
1101 => 0.53348598359499
1102 => 0.53765784025231
1103 => 0.56017163002725
1104 => 0.55021774690603
1105 => 0.53973213962563
1106 => 0.55288341809778
1107 => 0.56962951486242
1108 => 0.56858157422252
1109 => 0.5665481313759
1110 => 0.57801054223467
1111 => 0.59694308680209
1112 => 0.60206047752153
1113 => 0.60583803073018
1114 => 0.60635889149537
1115 => 0.61172408108997
1116 => 0.58287410443794
1117 => 0.62865975830467
1118 => 0.63656567592429
1119 => 0.63507969107851
1120 => 0.64386678578085
1121 => 0.64128139961234
1122 => 0.63753558068884
1123 => 0.65146499486069
1124 => 0.63549604555843
1125 => 0.61283013245868
1126 => 0.60039516425122
1127 => 0.61677053348707
1128 => 0.62677040005777
1129 => 0.63337967575004
1130 => 0.63537963858108
1201 => 0.58511364600008
1202 => 0.55802306387868
1203 => 0.57538781642435
1204 => 0.59657401298126
1205 => 0.58275641404635
1206 => 0.58329803776442
1207 => 0.56359777288436
1208 => 0.5983170492899
1209 => 0.59325874275269
1210 => 0.61950124601573
1211 => 0.61323826200276
1212 => 0.63463800468565
1213 => 0.62900273525377
1214 => 0.65239442360184
1215 => 0.66172600138857
1216 => 0.67739517283659
1217 => 0.68892147913876
1218 => 0.6956899466625
1219 => 0.69528359326026
1220 => 0.72210363362644
1221 => 0.70628879284335
1222 => 0.68642162554799
1223 => 0.68606229117172
1224 => 0.69635177863393
1225 => 0.71791572157168
1226 => 0.72350693823283
1227 => 0.7266316655786
1228 => 0.72184603687601
1229 => 0.7046801606658
1230 => 0.6972680223512
1231 => 0.70358337894556
]
'min_raw' => 0.26041251305218
'max_raw' => 0.7266316655786
'avg_raw' => 0.49352208931539
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.260412'
'max' => '$0.726631'
'avg' => '$0.493522'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10309341458123
'max_diff' => 0.37542786060763
'year' => 2036
]
11 => [
'items' => [
101 => 0.69586024051544
102 => 0.70919254417574
103 => 0.72750064472774
104 => 0.72372009436183
105 => 0.73635790742328
106 => 0.74943671440518
107 => 0.76813999579527
108 => 0.77302972613115
109 => 0.78111226443656
110 => 0.78943185132834
111 => 0.79210387841883
112 => 0.79720560721589
113 => 0.79717871858684
114 => 0.81255312170273
115 => 0.82951156444518
116 => 0.8359129839916
117 => 0.85063269526226
118 => 0.82542570555145
119 => 0.84454549680413
120 => 0.86179202711346
121 => 0.84123000268769
122 => 0.86956996302138
123 => 0.8706703394614
124 => 0.88728471727871
125 => 0.87044286243121
126 => 0.86044222278387
127 => 0.88931369472666
128 => 0.90328369055694
129 => 0.89907581412126
130 => 0.86705366667729
131 => 0.84841540337039
201 => 0.79963547324373
202 => 0.85741740761492
203 => 0.885561302325
204 => 0.86698078078906
205 => 0.87635171508739
206 => 0.92747649408345
207 => 0.94694149984084
208 => 0.94289291471397
209 => 0.94357705895503
210 => 0.95408002274687
211 => 1.0006559482877
212 => 0.97274657408214
213 => 0.994082244918
214 => 1.0053986077979
215 => 1.0159098763084
216 => 0.990097522967
217 => 0.95651603052859
218 => 0.94587936221819
219 => 0.86513331410436
220 => 0.86093013163773
221 => 0.85857075794974
222 => 0.84369524058701
223 => 0.83200715868704
224 => 0.82271236200952
225 => 0.79832003986647
226 => 0.80655173254562
227 => 0.76767546212288
228 => 0.79254712224892
301 => 0.73049965595386
302 => 0.7821746296348
303 => 0.75405029083301
304 => 0.77293502793675
305 => 0.77286914086804
306 => 0.73809635244871
307 => 0.71804013377802
308 => 0.73082073691469
309 => 0.74452255800274
310 => 0.74674563237582
311 => 0.7645104010706
312 => 0.76946816616089
313 => 0.75444590648139
314 => 0.72921386012856
315 => 0.73507468901462
316 => 0.7179213642677
317 => 0.68786082244184
318 => 0.70945082838788
319 => 0.71682260566341
320 => 0.72007840246917
321 => 0.69051731205999
322 => 0.68122857565093
323 => 0.67628333032679
324 => 0.72539789456901
325 => 0.72808850126806
326 => 0.71432297698228
327 => 0.77654445205459
328 => 0.76246181593164
329 => 0.77819557081059
330 => 0.73454288022351
331 => 0.73621047179008
401 => 0.71554458850076
402 => 0.72711610224796
403 => 0.71893772929873
404 => 0.72618123828911
405 => 0.73052296771184
406 => 0.75118545993307
407 => 0.78241056210535
408 => 0.74809917262861
409 => 0.73314920888544
410 => 0.74242408230991
411 => 0.76712429246781
412 => 0.80454637523752
413 => 0.78239174904825
414 => 0.7922235959411
415 => 0.79437141709876
416 => 0.77803541595563
417 => 0.80514870690109
418 => 0.81967893978675
419 => 0.83458395211939
420 => 0.84752555669885
421 => 0.82863056242549
422 => 0.84885091478903
423 => 0.8325568801567
424 => 0.81793944664516
425 => 0.81796161525798
426 => 0.80879188568957
427 => 0.79102437919048
428 => 0.78774777838959
429 => 0.80479306954488
430 => 0.81846177885633
501 => 0.81958759922393
502 => 0.82715529902239
503 => 0.83163378580961
504 => 0.87552904453196
505 => 0.89318408071072
506 => 0.91477232475737
507 => 0.9231821624603
508 => 0.94849275885246
509 => 0.92805239663966
510 => 0.92362999569902
511 => 0.86223476788462
512 => 0.87228823299981
513 => 0.88838480066431
514 => 0.86250019435668
515 => 0.87891801924379
516 => 0.88215924565358
517 => 0.86162064533921
518 => 0.87259119918765
519 => 0.84345666070873
520 => 0.78304561542869
521 => 0.8052159616639
522 => 0.82154079895087
523 => 0.79824324330444
524 => 0.84000321006075
525 => 0.81560789958241
526 => 0.80787575734219
527 => 0.77770991375536
528 => 0.79194703073854
529 => 0.81120293531418
530 => 0.79930502502562
531 => 0.8239949753546
601 => 0.85896252958968
602 => 0.88388249109145
603 => 0.88579553630316
604 => 0.86977367056527
605 => 0.89544881266042
606 => 0.89563582804039
607 => 0.86667416287103
608 => 0.84893530421403
609 => 0.84490499820428
610 => 0.85497349280467
611 => 0.86719850399618
612 => 0.88647393934254
613 => 0.89812168122645
614 => 0.92849281457476
615 => 0.93671037245017
616 => 0.94573897714738
617 => 0.95780397734143
618 => 0.97229110347693
619 => 0.940594096245
620 => 0.94185347743294
621 => 0.9123376631735
622 => 0.88079578264135
623 => 0.90473213821433
624 => 0.93602573900607
625 => 0.92884695240809
626 => 0.92803919226651
627 => 0.92939762077066
628 => 0.92398505011304
629 => 0.89950419362783
630 => 0.88721006075923
701 => 0.90307262872752
702 => 0.911502877641
703 => 0.92457745851083
704 => 0.9229657404477
705 => 0.95664445666091
706 => 0.96973098738985
707 => 0.96638289282516
708 => 0.96699902280146
709 => 0.99069156159202
710 => 1.0170425374694
711 => 1.041723703696
712 => 1.0668304460625
713 => 1.0365632882069
714 => 1.0211954920665
715 => 1.0370511349339
716 => 1.0286379076441
717 => 1.0769828071763
718 => 1.0803301031275
719 => 1.1286715067732
720 => 1.1745532552202
721 => 1.1457357510776
722 => 1.1729093595152
723 => 1.2022998325373
724 => 1.2589988234294
725 => 1.2399045979915
726 => 1.2252787205507
727 => 1.2114573370409
728 => 1.240217442042
729 => 1.2772168576719
730 => 1.2851861774226
731 => 1.2980995199332
801 => 1.2845227192517
802 => 1.300874480237
803 => 1.358603381843
804 => 1.343004523042
805 => 1.3208516359028
806 => 1.3664230593781
807 => 1.3829151803794
808 => 1.4986655225572
809 => 1.6448051109648
810 => 1.5843023617597
811 => 1.5467463529167
812 => 1.5555729058352
813 => 1.6089381363844
814 => 1.6260773547091
815 => 1.5794870510598
816 => 1.5959435339474
817 => 1.6866203726236
818 => 1.7352655873121
819 => 1.6691988518412
820 => 1.4869233489216
821 => 1.3188570107959
822 => 1.3634357717927
823 => 1.3583819237356
824 => 1.4558028747273
825 => 1.3426324954185
826 => 1.3445379943644
827 => 1.4439735074519
828 => 1.4174458173164
829 => 1.3744743567068
830 => 1.3191707500134
831 => 1.2169369180763
901 => 1.1263855621282
902 => 1.3039776238742
903 => 1.2963195312415
904 => 1.2852294782436
905 => 1.3099091911213
906 => 1.4297468713968
907 => 1.4269842249898
908 => 1.4094096780626
909 => 1.4227398170119
910 => 1.3721375188987
911 => 1.3851788833154
912 => 1.3188303882293
913 => 1.3488226789661
914 => 1.3743821592518
915 => 1.3795136033337
916 => 1.3910750088683
917 => 1.2922840644105
918 => 1.3366382981223
919 => 1.3626922549983
920 => 1.2449795299814
921 => 1.3603654529
922 => 1.2905643338575
923 => 1.2668727856768
924 => 1.2987703341779
925 => 1.2863398285057
926 => 1.2756528096724
927 => 1.2696892695372
928 => 1.2931113087525
929 => 1.2920186426277
930 => 1.2536956404496
1001 => 1.2037048463537
1002 => 1.2204833977442
1003 => 1.2143875927242
1004 => 1.1922956089576
1005 => 1.20718293862
1006 => 1.1416266730917
1007 => 1.0288405255685
1008 => 1.1033505093555
1009 => 1.100481956031
1010 => 1.0990355013662
1011 => 1.1550276948774
1012 => 1.149645337431
1013 => 1.1398763059616
1014 => 1.1921161930337
1015 => 1.1730479315267
1016 => 1.2318118204437
1017 => 1.2705175182945
1018 => 1.2607005013214
1019 => 1.2971033972309
1020 => 1.2208699416803
1021 => 1.2461916376588
1022 => 1.2514104041056
1023 => 1.1914715609362
1024 => 1.150525957674
1025 => 1.1477953527504
1026 => 1.0768013193454
1027 => 1.1147257589466
1028 => 1.1480976963756
1029 => 1.1321151281141
1030 => 1.1270555244681
1031 => 1.1529039422012
1101 => 1.1549125856358
1102 => 1.1091153024607
1103 => 1.1186380078441
1104 => 1.1583492723111
1105 => 1.1176373858682
1106 => 1.0385408407584
1107 => 1.0189238039759
1108 => 1.0163065296554
1109 => 0.96310357005441
1110 => 1.0202347081762
1111 => 0.99529543536674
1112 => 1.0740782993535
1113 => 1.0290779499653
1114 => 1.0271380748442
1115 => 1.0242056690809
1116 => 0.97841168396572
1117 => 0.98843765634636
1118 => 1.0217655155383
1119 => 1.0336572711632
1120 => 1.0324168636253
1121 => 1.0216021908463
1122 => 1.0265530926644
1123 => 1.0106045128998
1124 => 1.0049727374439
1125 => 0.98719730496322
1126 => 0.96107232980521
1127 => 0.96470516783472
1128 => 0.9129447560751
1129 => 0.88474293661548
1130 => 0.87693704468307
1201 => 0.86649867976036
1202 => 0.87811608577652
1203 => 0.91279812533194
1204 => 0.87096422742295
1205 => 0.79924294376474
1206 => 0.80355351511972
1207 => 0.81323808913424
1208 => 0.79519094952806
1209 => 0.77811084647242
1210 => 0.79296061032673
1211 => 0.76257135695577
1212 => 0.81691048521775
1213 => 0.81544076408191
1214 => 0.83569503078882
1215 => 0.84836043942005
1216 => 0.81917077299981
1217 => 0.81182965083237
1218 => 0.81601148765434
1219 => 0.74689504014375
1220 => 0.83004674247217
1221 => 0.83076584184686
1222 => 0.8246084764229
1223 => 0.868884190892
1224 => 0.96231975836344
1225 => 0.92716553944369
1226 => 0.91355276333607
1227 => 0.88767486600461
1228 => 0.92215562772128
1229 => 0.91950804320511
1230 => 0.90753466195641
1231 => 0.90029312361796
]
'min_raw' => 0.67628333032679
'max_raw' => 1.7352655873121
'avg_raw' => 1.2057744588195
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.676283'
'max' => '$1.73'
'avg' => '$1.20'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.41587081727461
'max_diff' => 1.0086339217335
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.021227760967306
]
1 => [
'year' => 2028
'avg' => 0.036433000282937
]
2 => [
'year' => 2029
'avg' => 0.099528390363561
]
3 => [
'year' => 2030
'avg' => 0.076786004943362
]
4 => [
'year' => 2031
'avg' => 0.075413372839213
]
5 => [
'year' => 2032
'avg' => 0.13222337604903
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.021227760967306
'min' => '$0.021227'
'max_raw' => 0.13222337604903
'max' => '$0.132223'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.13222337604903
]
1 => [
'year' => 2033
'avg' => 0.34009211956751
]
2 => [
'year' => 2034
'avg' => 0.21556672944436
]
3 => [
'year' => 2035
'avg' => 0.25426145172096
]
4 => [
'year' => 2036
'avg' => 0.49352208931539
]
5 => [
'year' => 2037
'avg' => 1.2057744588195
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.13222337604903
'min' => '$0.132223'
'max_raw' => 1.2057744588195
'max' => '$1.20'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2057744588195
]
]
]
]
'prediction_2025_max_price' => '$0.036295'
'last_price' => 0.03519317
'sma_50day_nextmonth' => '$0.0319095'
'sma_200day_nextmonth' => '$0.05498'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'INCREASE'
'sma_200day_date_nextmonth' => 'Feb 4, 2026'
'sma_50day_date_nextmonth' => 'Feb 4, 2026'
'daily_sma3' => '$0.036431'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.033677'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.032125'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.031131'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.035212'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.04652'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.060195'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.036123'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.034891'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.033392'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.033025'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.036868'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.044782'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.056992'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.053347'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.063227'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.1378058'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.033153'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.033849'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.038597'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.048762'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.076327'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.136766'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.075981'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.90'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 66.21
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.040417'
'vwma_10_action' => 'SELL'
'hma_9' => '0.037237'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 46.87
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 70.81
'cci_20_action' => 'NEUTRAL'
'adx_14' => 20.35
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000314'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -53.13
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 56.2
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.013264'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 12
'sell_pct' => 62.5
'buy_pct' => 37.5
'overall_action' => 'bearish'
'overall_action_label' => 'BEARISH'
'overall_action_dir' => -1
'last_updated' => 1767710289
'last_updated_date' => 'January 6, 2026'
]
Aleph.im (Wormhole) price prediction 2026
The Aleph.im (Wormhole) price forecast for 2026 suggests that the average price could range between $0.012159 on the lower end and $0.036295 on the high end. In the crypto market, compared to today’s average price, Aleph.im (Wormhole) could potentially gain 3.13% by 2026 if ALEPH reaches the forecast price target.
Aleph.im (Wormhole) price prediction 2027-2032
The ALEPH price prediction for 2027-2032 is currently within a price range of $0.021227 on the lower end and $0.132223 on the high end. Considering the price volatility in the market, if Aleph.im (Wormhole) reaches the upper price target, it could gain 275.71% by 2032 compared to today’s price.
| Aleph.im (Wormhole) Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2027 | $0.0117053 | $0.021227 | $0.03075 |
| 2028 | $0.021124 | $0.036433 | $0.051741 |
| 2029 | $0.046405 | $0.099528 | $0.152651 |
| 2030 | $0.039465 | $0.076786 | $0.1141064 |
| 2031 | $0.04666 | $0.075413 | $0.104166 |
| 2032 | $0.071223 | $0.132223 | $0.193223 |
Aleph.im (Wormhole) price prediction 2032-2037
The Aleph.im (Wormhole) price prediction for 2032-2037 is currently estimated to be between $0.132223 on the lower end and $1.20 on the high end. Compared to the current price, Aleph.im (Wormhole) could potentially gain 3326.16% by 2037 if it reaches the upper price target. Please note that this information is for general purposes only and should not be considered long-term investment advice.
| Aleph.im (Wormhole) Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2032 | $0.071223 | $0.132223 | $0.193223 |
| 2033 | $0.1655083 | $0.340092 | $0.514675 |
| 2034 | $0.13306 | $0.215566 | $0.298072 |
| 2035 | $0.157319 | $0.254261 | $0.3512038 |
| 2036 | $0.260412 | $0.493522 | $0.726631 |
| 2037 | $0.676283 | $1.20 | $1.73 |
Aleph.im (Wormhole) potential price histogram
Aleph.im (Wormhole) Price Forecast Based on Technical Analysis
As of January 6, 2026, the overall price prediction sentiment for Aleph.im (Wormhole) is BEARISH, with 12 technical indicators showing bullish signals and 20 indicating bearish signals. The ALEPH price prediction was last updated on January 6, 2026.
Aleph.im (Wormhole)'s 50-Day, 200-Day Simple Moving Averages and 14-Day Relative Strength Index - RSI (14)
According to our technical indicators, Aleph.im (Wormhole)'s 200-day SMA is projected to INCREASE over the next month, reaching $0.05498 by Feb 4, 2026. The short-term 50-day SMA for Aleph.im (Wormhole) is expected to reach $0.0319095 by Feb 4, 2026.
The Relative Strength Index (RSI) momentum oscillator is a commonly used tool to identify if a cryptocurrency is oversold (below 30) or overbought (above 70). Right now, the RSI stands at 51.90, suggesting that the ALEPH market is in a NEUTRAL state.
Popular ALEPH Moving Averages and Oscillators for Sat, Oct 19, 2024
Moving averages (MA) are widely used indicators across financial markets, designed to smooth out price movements over a set period. As lagging indicators, they are based on historical price data. The table below highlights two types: the simple moving average (SMA) and the exponential moving average (EMA).
Daily Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 3 | $0.036431 | SELL |
| SMA 5 | $0.033677 | BUY |
| SMA 10 | $0.032125 | BUY |
| SMA 21 | $0.031131 | BUY |
| SMA 50 | $0.035212 | SELL |
| SMA 100 | $0.04652 | SELL |
| SMA 200 | $0.060195 | SELL |
Daily Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 3 | $0.036123 | SELL |
| EMA 5 | $0.034891 | BUY |
| EMA 10 | $0.033392 | BUY |
| EMA 21 | $0.033025 | BUY |
| EMA 50 | $0.036868 | SELL |
| EMA 100 | $0.044782 | SELL |
| EMA 200 | $0.056992 | SELL |
Weekly Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 21 | $0.053347 | SELL |
| SMA 50 | $0.063227 | SELL |
| SMA 100 | $0.1378058 | SELL |
| SMA 200 | — | — |
Weekly Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 21 | $0.048762 | SELL |
| EMA 50 | $0.076327 | SELL |
| EMA 100 | $0.136766 | SELL |
| EMA 200 | $0.075981 | SELL |
Aleph.im (Wormhole) Oscillators
An oscillator is a technical analysis tool that sets high and low boundaries between two extremes, creating a trend indicator that fluctuates within these limits. Traders use this indicator to identify short-term overbought or oversold conditions.
| Period | Value | Action |
|---|---|---|
| RSI (14) | 51.90 | NEUTRAL |
| Stoch RSI (14) | 66.21 | NEUTRAL |
| Stochastic Fast (14) | 46.87 | NEUTRAL |
| Commodity Channel Index (20) | 70.81 | NEUTRAL |
| Average Directional Index (14) | 20.35 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000314 | BUY |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -53.13 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 56.2 | NEUTRAL |
| VWMA (10) | 0.040417 | SELL |
| Hull Moving Average (9) | 0.037237 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.013264 | SELL |
Aleph.im (Wormhole) price prediction based on worldwide money flows
Worldwide money flows definitions used for Aleph.im (Wormhole) price prediction
M0: The total of all physical currency, plus accounts at the central bank which can be exchanged for physical currency.
M1: Measure M0 plus the amount in demand accounts, including "checking" or "current" accounts.
M2: Measure M1 plus most savings accounts, money market accounts, and certificate of deposit (CD) accounts of under $100,000.
Aleph.im (Wormhole) price predictions by Internet companies or technological niches
| Comparison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.049452 | $0.069488 | $0.097643 | $0.137205 | $0.192796 | $0.27091 |
| Amazon.com stock | $0.073432 | $0.153221 | $0.3197059 | $0.667085 | $1.39 | $2.90 |
| Apple stock | $0.049918 | $0.070806 | $0.100432 | $0.142456 | $0.202063 | $0.286611 |
| Netflix stock | $0.055529 | $0.087616 | $0.138245 | $0.218129 | $0.344173 | $0.543052 |
| Google stock | $0.045574 | $0.059019 | $0.076429 | $0.098976 | $0.128173 | $0.165984 |
| Tesla stock | $0.07978 | $0.180855 | $0.409986 | $0.9294082 | $2.10 | $4.77 |
| Kodak stock | $0.026391 | $0.01979 | $0.01484 | $0.011129 | $0.008345 | $0.006258 |
| Nokia stock | $0.023314 | $0.015444 | $0.010231 | $0.006777 | $0.00449 | $0.002974 |
This calculation shows how much cryptocurrency can cost if we assume that its capitalization will behave like the capitalization of some Internet companies or technological niches. If you extrapolate the data projections, you can get a potential picture of the future Aleph.im (Wormhole) price for 2024, 2025, 2026, 2027, 2028, 2029 and 2030.
Aleph.im (Wormhole) forecast and prediction overview
You may ask questions like: "Should I invest in Aleph.im (Wormhole) now?", "Should I buy ALEPH today?", "Will Aleph.im (Wormhole) be a good or bad investment in short-term, long-term period?".
We update Aleph.im (Wormhole) forecast projection regularly with fresh values. Look at our similar predictions. We making a forecast of future prices for huge amounts of digital coins like Aleph.im (Wormhole) with technical analysis methods.
If you are trying to find cryptocurrencies with good returns, you should explore the maximum of available sources of information about Aleph.im (Wormhole) in order to make such a responsible decision about the investment by yourself.
Aleph.im (Wormhole) price equal to $0.03519 USD today, but the price can go both up and down and your investment may be lost because cryptocurrency high-risk assets
Aleph.im (Wormhole) price prediction based on Bitcoin's growth pattern
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| If Aleph.im (Wormhole) has 1% of Bitcoin's previous average grow per year | $0.0361079 | $0.037046 | $0.0380094 | $0.038997 |
| If Aleph.im (Wormhole) has 2% of Bitcoin's previous average grow per year | $0.037022 | $0.038947 | $0.040972 | $0.0431021 |
| If Aleph.im (Wormhole) has 5% of Bitcoin's previous average grow per year | $0.039767 | $0.044935 | $0.050775 | $0.057374 |
| If Aleph.im (Wormhole) has 10% of Bitcoin's previous average grow per year | $0.044341 | $0.055866 | $0.070388 | $0.088684 |
| If Aleph.im (Wormhole) has 20% of Bitcoin's previous average grow per year | $0.053488 | $0.081295 | $0.123558 | $0.187792 |
| If Aleph.im (Wormhole) has 50% of Bitcoin's previous average grow per year | $0.080932 | $0.186116 | $0.4280057 | $0.984268 |
| If Aleph.im (Wormhole) has 100% of Bitcoin's previous average grow per year | $0.126671 | $0.455931 | $1.64 | $5.90 |
Frequently Asked Questions about Aleph.im (Wormhole)
Is ALEPH a good investment?
The determination to procure Aleph.im (Wormhole) is entirely contingent on your individualistic risk tolerance. As you may discern, Aleph.im (Wormhole)'s value has experienced a fall of -3.1486% during the preceding 24 hours, and Aleph.im (Wormhole) has incurred a decline of over the prior 30-day duration. Consequently, the determination of whether or not to invest in Aleph.im (Wormhole) will hinge on whether such an investment aligns with your trading aspirations.
Can Aleph.im (Wormhole) rise?
It appears that the mean value of Aleph.im (Wormhole) may potentially surge to $0.036295 by the end of this year. Looking at Aleph.im (Wormhole)'s prospects in a more extended five-year timeline, the digital currency could potentially growth to as much as $0.1141064. However, given the market's unpredictability, it is vital to conduct thorough research before investing any funds into a particular project, network, or asset.
What will the price of Aleph.im (Wormhole) be next week?
Based on the our new experimental Aleph.im (Wormhole) forecast, the price of Aleph.im (Wormhole) will increase by 0.86% over the next week and reach $0.035494 by January 13, 2026.
What will the price of Aleph.im (Wormhole) be next month?
Based on the our new experimental Aleph.im (Wormhole) forecast, the price of Aleph.im (Wormhole) will decrease by -11.62% over the next month and reach $0.031104 by February 5, 2026.
How high can Aleph.im (Wormhole)’s price go this year in 2026?
As per our most recent prediction on Aleph.im (Wormhole)'s value in 2026, ALEPH is anticipated to fluctuate within the range of $0.012159 and $0.036295. However, it is crucial to bear in mind that the cryptocurrency market is exceptionally unstable, and this projected Aleph.im (Wormhole) price forecast fails to consider sudden and extreme price fluctuations.
Where will Aleph.im (Wormhole) be in 5 years?
Aleph.im (Wormhole)'s future appears to be on an upward trend, with an maximum price of $0.1141064 projected after a period of five years. Based on the Aleph.im (Wormhole) forecast for 2030, Aleph.im (Wormhole)'s value may potentially reach its highest peak of approximately $0.1141064, while its lowest peak is anticipated to be around $0.039465.
How much will be Aleph.im (Wormhole) in 2026?
Based on the our new experimental Aleph.im (Wormhole) price prediction simulation, ALEPH’s value in 2026 expected to grow by 3.13% to $0.036295 if the best happened. The price will be between $0.036295 and $0.012159 during 2026.
How much will be Aleph.im (Wormhole) in 2027?
According to our latest experimental simulation for Aleph.im (Wormhole) price prediction, ALEPH’s value could down by -12.62% to $0.03075 in 2027, assuming the most favorable conditions. The price is projected to fluctuate between $0.03075 and $0.0117053 throughout the year.
How much will be Aleph.im (Wormhole) in 2028?
Our new experimental Aleph.im (Wormhole) price prediction model suggests that ALEPH’s value in 2028 could increase by 47.02% , reaching $0.051741 in the best-case scenario. The price is expected to range between $0.051741 and $0.021124 during the year.
How much will be Aleph.im (Wormhole) in 2029?
Based on our experimental forecast model, Aleph.im (Wormhole)'s value may experience a 333.75% growth in 2029, potentially reaching $0.152651 under optimal conditions. The predicted price range for 2029 lies between $0.152651 and $0.046405.
How much will be Aleph.im (Wormhole) in 2030?
Using our new experimental simulation for Aleph.im (Wormhole) price predictions, ALEPH’s value in 2030 is expected to rise by 224.23% , reaching $0.1141064 in the best scenario. The price is forecasted to range between $0.1141064 and $0.039465 over the course of 2030.
How much will be Aleph.im (Wormhole) in 2031?
Our experimental simulation indicates that Aleph.im (Wormhole)’s price could grow by 195.98% in 2031, potentially hitting $0.104166 under ideal conditions. The price will likely fluctuate between $0.104166 and $0.04666 during the year.
How much will be Aleph.im (Wormhole) in 2032?
Based on the findings from our latest experimental Aleph.im (Wormhole) price prediction, ALEPH could see a 449.04% rise in value, reaching $0.193223 if the most positive scenario plays out in 2032. The price is expected to stay within a range of $0.193223 and $0.071223 throughout the year.
How much will be Aleph.im (Wormhole) in 2033?
According to our experimental Aleph.im (Wormhole) price prediction, ALEPH’s value is anticipated to rise by 1362.43% in 2033, with the highest potential price being $0.514675. Throughout the year, ALEPH’s price could range from $0.514675 and $0.1655083.
How much will be Aleph.im (Wormhole) in 2034?
The results from our new Aleph.im (Wormhole) price prediction simulation suggest that ALEPH may rise by 746.96% in 2034, potentially reaching $0.298072 under the best circumstances. The predicted price range for the year is between $0.298072 and $0.13306.
How much will be Aleph.im (Wormhole) in 2035?
Based on our experimental forecast for Aleph.im (Wormhole)’s price, ALEPH could grow by 897.93% , with the value potentially hitting $0.3512038 in 2035. The expected price range for the year lies between $0.3512038 and $0.157319.
How much will be Aleph.im (Wormhole) in 2036?
Our recent Aleph.im (Wormhole) price prediction simulation suggests that ALEPH’s value might rise by 1964.7% in 2036, possibly reaching $0.726631 if conditions are optimal. The expected price range for 2036 is between $0.726631 and $0.260412.
How much will be Aleph.im (Wormhole) in 2037?
According to the experimental simulation, Aleph.im (Wormhole)’s value could rise by 4830.69% in 2037, with a high of $1.73 under favorable conditions. The price is expected to fall between $1.73 and $0.676283 over the course of the year.
Related Predictions
SolPod Price Prediction
zuzalu Price Prediction
SOFT COQ INU Price Prediction
All Street Bets Price Prediction
MagicRing Price Prediction
AI INU Price Prediction
Wall Street Baby On Solana Price Prediction
Meta Masters Guild Games Price Prediction
Morfey Price Prediction
PANTIES Price PredictionCeler Bridged BUSD (zkSync) Price Prediction
Bridged BUSD Price Prediction
Multichain Bridged BUSD (Moonriver) Price Prediction
tooker kurlson Price Prediction
dogwifsaudihat Price PredictionHarmony Horizen Bridged BUSD (Harmony) Price Prediction
IoTeX Bridged BUSD (IoTeX) Price Prediction
MIMANY Price Prediction
The Open League MEME Price Prediction
Sandwich Cat Price Prediction
Hege Price Prediction
DexNet Price Prediction
SolDocs Price Prediction
Secret Society Price Prediction
duk Price Prediction
How to read and predict Aleph.im (Wormhole) price movements?
Aleph.im (Wormhole) traders use indicators and chart patterns to predict market direction. They also identify key support and resistance levels to gauge when a downtrend might slow or an uptrend might stall.
Aleph.im (Wormhole) Price Prediction Indicators
Moving averages are popular tools for Aleph.im (Wormhole) price prediction. A simple moving average (SMA) calculates the average closing price of ALEPH over a specific period, like a 12-day SMA. An exponential moving average (EMA) gives more weight to recent prices, reacting faster to price changes.
Commonly used moving averages in the crypto market include the 50-day, 100-day, and 200-day averages, which help identify key resistance and support levels. A ALEPH price move above these averages is seen as bullish, while a drop below indicates weakness.
Traders also use RSI and Fibonacci retracement levels to gauge ALEPH's future direction.
How to read Aleph.im (Wormhole) charts and predict price movements?
Most traders prefer candlestick charts over simple line charts because they provide more detailed information. Candlesticks can represent Aleph.im (Wormhole)'s price action in different time frames, such as 5-minute for short-term and weekly for long-term trends. Popular choices include 1-hour, 4-hour, and 1-day charts.
A 1-hour candlestick chart, for instance, shows ALEPH's opening, closing, highest, and lowest prices within each hour. The candle's color is crucial: green indicates the price closed higher than it opened, while red means the opposite. Some charts use hollow and filled candlesticks to convey the same information.
What affects the price of Aleph.im (Wormhole)?
Aleph.im (Wormhole)'s price action is driven by supply and demand, influenced by factors like block reward halvings, hard forks, and protocol updates. Real-world events, such as regulations, adoption by companies and governments, and cryptocurrency exchange hacks, also impact ALEPH's price. Aleph.im (Wormhole)'s market capitalization can change rapidly.
Traders often monitor the activity of ALEPH "whales," large holders of Aleph.im (Wormhole), as their actions can significantly influence price movements in the relatively small Aleph.im (Wormhole) market.
Bullish and bearish price prediction patterns
Traders often identify candlestick patterns to gain an edge in cryptocurrency price predictions. Certain formations indicate bullish trends, while others suggest bearish movements.
Commonly followed bullish candlestick patterns:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Three White Soldiers
Common bearish candlestick patterns:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


