Aleph.im (Wormhole) (ALEPH) Price Prediction
Aleph.im (Wormhole) Price Prediction up to $0.036323 by 2026
| Year | Min. Price | Max. Price |
|---|---|---|
| 2026 | $0.012168 | $0.036323 |
| 2027 | $0.011714 | $0.030773 |
| 2028 | $0.02114 | $0.05178 |
| 2029 | $0.04644 | $0.152768 |
| 2030 | $0.039495 | $0.114193 |
| 2031 | $0.046696 | $0.104246 |
| 2032 | $0.071278 | $0.193371 |
| 2033 | $0.165635 | $0.51507 |
| 2034 | $0.133162 | $0.2983012 |
| 2035 | $0.157439 | $0.351473 |
Investment Profit Calculator
If you open a short on $10,000.00 of Aleph.im (Wormhole) today and close it on Apr 06, 2026, our forecast suggests you could make around $3,954.60 in profit, equal to a 39.55% ROI over the next 90 days.
Long-term Aleph.im (Wormhole) price prediction for 2027, 2028, 2029, 2030, 2031, 2032 and 2037
[
'name' => 'Aleph.im (Wormhole)'
'name_with_ticker' => 'Aleph.im (Wormhole) <small>ALEPH</small>'
'name_lang' => 'Aleph.im (Wormhole)'
'name_lang_with_ticker' => 'Aleph.im (Wormhole) <small>ALEPH</small>'
'name_with_lang' => 'Aleph.im (Wormhole)'
'name_with_lang_with_ticker' => 'Aleph.im (Wormhole) <small>ALEPH</small>'
'image' => '/uploads/coins/aleph-im-wormhole.png?1717576133'
'price_for_sd' => 0.03522
'ticker' => 'ALEPH'
'marketcap' => '$279.1K'
'low24h' => '$0.03417'
'high24h' => '$0.03638'
'volume24h' => '$11.55K'
'current_supply' => '7.92M'
'max_supply' => '7.92M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03522'
'change_24h_pct' => '-2.0192%'
'ath_price' => '$0.4698'
'ath_days' => 665
'ath_exchange' => null
'ath_pair' => null
'ath_date' => 'Mar 12, 2024'
'ath_pct' => '-92.52%'
'fdv' => '$279.1K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.73'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.035521'
'next_week_prediction_price_date' => 'January 13, 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.031128'
'next_month_prediction_price_date' => 'February 5, 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.012168'
'current_year_max_price_prediction' => '$0.036323'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.039495'
'grand_prediction_max_price' => '$0.114193'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.035887563506196
107 => 0.036021554641142
108 => 0.036323443509934
109 => 0.033743836179323
110 => 0.034902004137475
111 => 0.035582319307227
112 => 0.032508630620209
113 => 0.035521562364547
114 => 0.033698930954805
115 => 0.033080302479333
116 => 0.033913204223452
117 => 0.033588621603745
118 => 0.033309564527452
119 => 0.033153845884072
120 => 0.033765437000942
121 => 0.03373690554433
122 => 0.032736223772411
123 => 0.031430875193949
124 => 0.031868993023488
125 => 0.03170982070864
126 => 0.031132959705994
127 => 0.031521694371314
128 => 0.029809903639357
129 => 0.026864856656164
130 => 0.02881044490249
131 => 0.028735541871399
201 => 0.028697772366541
202 => 0.030159828161546
203 => 0.030019285232222
204 => 0.0297641984393
205 => 0.031128274837001
206 => 0.030630368602423
207 => 0.032164798295928
208 => 0.033175472932761
209 => 0.032919133152961
210 => 0.033869677533916
211 => 0.031879086373407
212 => 0.032540280908272
213 => 0.032676552185532
214 => 0.031111442345993
215 => 0.030042279793583
216 => 0.029970978840683
217 => 0.028117198314479
218 => 0.029107472908384
219 => 0.029978873570673
220 => 0.029561540276859
221 => 0.029429425023516
222 => 0.030104373200546
223 => 0.030156822454442
224 => 0.028960973907302
225 => 0.02920962868785
226 => 0.030246560458157
227 => 0.029183500667732
228 => 0.027118149144766
301 => 0.026605913411352
302 => 0.026537571722137
303 => 0.025148347787189
304 => 0.026640143452409
305 => 0.025988934666902
306 => 0.028046095417639
307 => 0.026871056229593
308 => 0.026820402638717
309 => 0.026743832306842
310 => 0.025548069877915
311 => 0.025809865855183
312 => 0.026680115556276
313 => 0.026990630453691
314 => 0.026958241205917
315 => 0.026675850857978
316 => 0.026805127713192
317 => 0.026388681919505
318 => 0.026241626242185
319 => 0.025777478073711
320 => 0.025095308490259
321 => 0.025190168354827
322 => 0.023838611910627
323 => 0.023102212227298
324 => 0.022898386500544
325 => 0.022625822220265
326 => 0.022929173361267
327 => 0.023834783121035
328 => 0.022742425614927
329 => 0.020869655290673
330 => 0.020982211978206
331 => 0.021235093436712
401 => 0.020763850511765
402 => 0.020317858631722
403 => 0.020705612386954
404 => 0.019912094912273
405 => 0.021330986232453
406 => 0.021292609198639
407 => 0.021821484139152
408 => 0.022152200493061
409 => 0.021390006367992
410 => 0.021198316606729
411 => 0.021307511806558
412 => 0.019502758388696
413 => 0.021673997281657
414 => 0.021692774245766
415 => 0.021531994479239
416 => 0.022688112160261
417 => 0.025127881069364
418 => 0.024209941866283
419 => 0.02385448806199
420 => 0.023178770120195
421 => 0.024079124157476
422 => 0.024009991015123
423 => 0.023697344727441
424 => 0.023508255277135
425 => 0.023856658387123
426 => 0.023465084276201
427 => 0.023394746806142
428 => 0.02296857826551
429 => 0.022816455485937
430 => 0.022703829836124
501 => 0.022579840062047
502 => 0.022853330607333
503 => 0.022233565051037
504 => 0.021486188546509
505 => 0.021424052276884
506 => 0.021595615980397
507 => 0.021519711813008
508 => 0.021423688876933
509 => 0.021240354941675
510 => 0.021185963679393
511 => 0.021362708894918
512 => 0.021163173851477
513 => 0.021457598677311
514 => 0.021377531415953
515 => 0.020930282202642
516 => 0.020372844089991
517 => 0.020367881721522
518 => 0.020247782594533
519 => 0.020094818299288
520 => 0.0200522671317
521 => 0.020672956847222
522 => 0.021957765982672
523 => 0.021705527206506
524 => 0.021887795572756
525 => 0.02278437553707
526 => 0.023069371346625
527 => 0.022867088071499
528 => 0.022590190248216
529 => 0.02260237234716
530 => 0.023548616031988
531 => 0.023607632089924
601 => 0.023756746629028
602 => 0.02394840095154
603 => 0.022899727631359
604 => 0.022552979928085
605 => 0.022388671629444
606 => 0.021882665664943
607 => 0.022428349715985
608 => 0.022110402987964
609 => 0.022153304864181
610 => 0.022125364961013
611 => 0.02214062203743
612 => 0.021330589623412
613 => 0.02162572286103
614 => 0.021135006611457
615 => 0.020477992638764
616 => 0.020475790097548
617 => 0.020636593336574
618 => 0.02054094127777
619 => 0.020283544046968
620 => 0.020320106108723
621 => 0.019999783975342
622 => 0.020358999015335
623 => 0.020369300017349
624 => 0.020230982660376
625 => 0.020784402991608
626 => 0.021011139752862
627 => 0.020920096305457
628 => 0.021004751901889
629 => 0.021716008866446
630 => 0.021831974785985
701 => 0.021883479187166
702 => 0.02181447011261
703 => 0.021017752373528
704 => 0.021053090193162
705 => 0.020793804719701
706 => 0.020574735817457
707 => 0.020583497424682
708 => 0.020696127317399
709 => 0.021187988664551
710 => 0.022223081872823
711 => 0.022262362903433
712 => 0.022309972658442
713 => 0.022116319858076
714 => 0.022057912320478
715 => 0.022134966938835
716 => 0.022523693525246
717 => 0.023523603843735
718 => 0.023170168755416
719 => 0.022882820527068
720 => 0.023134902391855
721 => 0.023096096364654
722 => 0.022768534442072
723 => 0.022759340869884
724 => 0.022130644812568
725 => 0.021898230194894
726 => 0.021704007144434
727 => 0.021491920643652
728 => 0.021366188656785
729 => 0.021559370132779
730 => 0.021603553021995
731 => 0.021181158348499
801 => 0.021123587515303
802 => 0.021468524123702
803 => 0.021316730382879
804 => 0.02147285400962
805 => 0.021509076030227
806 => 0.021503243450645
807 => 0.021344753351826
808 => 0.02144577021457
809 => 0.021206835219602
810 => 0.020947029299451
811 => 0.020781289308875
812 => 0.020636659184877
813 => 0.020716908383623
814 => 0.020430834643019
815 => 0.020339313895873
816 => 0.021411547974424
817 => 0.022203618816708
818 => 0.022192101792967
819 => 0.02212199487288
820 => 0.0220178302103
821 => 0.022516073231377
822 => 0.022342495325517
823 => 0.022468787754949
824 => 0.022500934478716
825 => 0.022598232929585
826 => 0.022633008762687
827 => 0.022527892041686
828 => 0.02217510748708
829 => 0.021296001918751
830 => 0.020886775903593
831 => 0.020751724502393
901 => 0.020756633364328
902 => 0.020621225038049
903 => 0.020661108858714
904 => 0.02060735507287
905 => 0.020505558406919
906 => 0.020710622726356
907 => 0.020734254478865
908 => 0.020686390016372
909 => 0.020697663830008
910 => 0.020301366523748
911 => 0.02033149614723
912 => 0.020163730574992
913 => 0.020132276552642
914 => 0.019708179795044
915 => 0.018956830915151
916 => 0.019373151129812
917 => 0.018870294853982
918 => 0.018679855562809
919 => 0.019581365547835
920 => 0.019490878949333
921 => 0.019336005226277
922 => 0.019106914711364
923 => 0.019021942810934
924 => 0.018505680442755
925 => 0.01847517690789
926 => 0.018731050477816
927 => 0.018612973629367
928 => 0.018447149014946
929 => 0.017846549070881
930 => 0.017171275881945
1001 => 0.017191658134903
1002 => 0.0174064499724
1003 => 0.018030986208546
1004 => 0.017786969096497
1005 => 0.017609931881932
1006 => 0.017576778133363
1007 => 0.017991766708777
1008 => 0.018579062485782
1009 => 0.018854608524351
1010 => 0.018581550768587
1011 => 0.018267876721239
1012 => 0.018286968607075
1013 => 0.01841397837023
1014 => 0.018427325300516
1015 => 0.018223155741906
1016 => 0.018280628276725
1017 => 0.018193322240936
1018 => 0.017657525260457
1019 => 0.017647834392111
1020 => 0.017516341172207
1021 => 0.017512359609768
1022 => 0.017288656840191
1023 => 0.017257359276344
1024 => 0.016813183849563
1025 => 0.017105541460557
1026 => 0.016909443324565
1027 => 0.016613877178752
1028 => 0.016562921463809
1029 => 0.016561389673487
1030 => 0.016864870017856
1031 => 0.017101995116038
1101 => 0.016912854535598
1102 => 0.016869790891768
1103 => 0.017329597944194
1104 => 0.017271083305538
1105 => 0.017220410005842
1106 => 0.018526476590468
1107 => 0.01749262297509
1108 => 0.017041803788483
1109 => 0.016483829436817
1110 => 0.01666550869927
1111 => 0.016703791189293
1112 => 0.015361963455971
1113 => 0.014817584111676
1114 => 0.014630773635217
1115 => 0.014523261564903
1116 => 0.014572256165397
1117 => 0.014082250906203
1118 => 0.01441154254432
1119 => 0.013987239408972
1120 => 0.013916103607529
1121 => 0.014674810174604
1122 => 0.014780379761113
1123 => 0.014329987107165
1124 => 0.014619212102947
1125 => 0.014514335098948
1126 => 0.013994512868403
1127 => 0.01397465948275
1128 => 0.013713830960097
1129 => 0.0133056848285
1130 => 0.013119151094338
1201 => 0.013022002706026
1202 => 0.013062088024428
1203 => 0.013041819660813
1204 => 0.012909554878175
1205 => 0.01304940092333
1206 => 0.012692152066336
1207 => 0.012549892692931
1208 => 0.012485637434357
1209 => 0.012168558511298
1210 => 0.012673172083522
1211 => 0.012772587314204
1212 => 0.012872198423602
1213 => 0.013739245123517
1214 => 0.013695929920638
1215 => 0.014087478259306
1216 => 0.014072263410877
1217 => 0.013960587482026
1218 => 0.013489445108003
1219 => 0.013677234060983
1220 => 0.013099248852593
1221 => 0.013532314669893
1222 => 0.013334681516138
1223 => 0.013465494701807
1224 => 0.013230280799024
1225 => 0.013360457884568
1226 => 0.012796162353461
1227 => 0.012269231126365
1228 => 0.01248128363423
1229 => 0.012711808961425
1230 => 0.013211646607544
1231 => 0.012913947429086
]
'min_raw' => 0.012168558511298
'max_raw' => 0.036323443509934
'avg_raw' => 0.024246001010616
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.012168'
'max' => '$0.036323'
'avg' => '$0.024246'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.023051601488702
'max_diff' => 0.001103283509934
'year' => 2026
]
1 => [
'items' => [
101 => 0.013021011310912
102 => 0.012662365229074
103 => 0.011922375920053
104 => 0.011926564179179
105 => 0.01181273294553
106 => 0.011714366140024
107 => 0.012948141760876
108 => 0.012794702259317
109 => 0.012550216495248
110 => 0.012877470405933
111 => 0.012964001534136
112 => 0.012966464953707
113 => 0.013205220959297
114 => 0.013332645082279
115 => 0.013355104136242
116 => 0.013730791869702
117 => 0.013856717442517
118 => 0.014375387055287
119 => 0.013321834035707
120 => 0.013300136804578
121 => 0.01288207553957
122 => 0.012616934476014
123 => 0.01290022997503
124 => 0.013151191113465
125 => 0.012889873601693
126 => 0.012923996152016
127 => 0.012573198742887
128 => 0.012698592310098
129 => 0.012806598142519
130 => 0.012746963670146
131 => 0.012657687978662
201 => 0.013130615162036
202 => 0.013103930756934
203 => 0.013544331422641
204 => 0.013887655234913
205 => 0.014502952882978
206 => 0.013860857711031
207 => 0.013837457210868
208 => 0.014066200853519
209 => 0.013856682423057
210 => 0.013989090838778
211 => 0.014481619840179
212 => 0.014492026201862
213 => 0.014317706235839
214 => 0.014307098850064
215 => 0.014340578906391
216 => 0.014536672642023
217 => 0.014468151465441
218 => 0.014547445905726
219 => 0.014646604817501
220 => 0.015056768119111
221 => 0.015155657102528
222 => 0.014915408140885
223 => 0.014937099932168
224 => 0.014847240225531
225 => 0.01476043687486
226 => 0.014955558130558
227 => 0.015312146060466
228 => 0.015309927745461
301 => 0.01539264921412
302 => 0.015444184003794
303 => 0.015222958960744
304 => 0.015078949592389
305 => 0.015134171947771
306 => 0.015222473696612
307 => 0.015105536880723
308 => 0.01438374868265
309 => 0.014602693113937
310 => 0.014566250054735
311 => 0.014514350706804
312 => 0.01473450102551
313 => 0.014713266990211
314 => 0.014077225194028
315 => 0.014117942526187
316 => 0.014079701349856
317 => 0.014203266413989
318 => 0.013850009504088
319 => 0.013958668950352
320 => 0.01402681913643
321 => 0.014066960119584
322 => 0.014211976875666
323 => 0.014194960833117
324 => 0.01421091913457
325 => 0.014425940700836
326 => 0.015513445996519
327 => 0.015572636510317
328 => 0.015281160772459
329 => 0.015397599580629
330 => 0.01517406253131
331 => 0.015324124450086
401 => 0.015426793003752
402 => 0.014962853551761
403 => 0.014935382068356
404 => 0.014710922402119
405 => 0.014831534312709
406 => 0.014639632090656
407 => 0.014686718183493
408 => 0.014555061363029
409 => 0.014792017427253
410 => 0.015056971126305
411 => 0.015123908894024
412 => 0.014947824445676
413 => 0.014820327700541
414 => 0.014596485416124
415 => 0.014968740123761
416 => 0.015077598744531
417 => 0.014968168335769
418 => 0.014942810918957
419 => 0.014894758659918
420 => 0.014953005432869
421 => 0.015077005877103
422 => 0.015018529557531
423 => 0.015057154196829
424 => 0.014909956901382
425 => 0.015223032195438
426 => 0.015720271108073
427 => 0.015721869812484
428 => 0.015663393177703
429 => 0.015639465798647
430 => 0.015699466374591
501 => 0.015732014225689
502 => 0.015926045086069
503 => 0.016134247929788
504 => 0.017105839755407
505 => 0.016833020658661
506 => 0.017695074726606
507 => 0.018376847570639
508 => 0.018581281436252
509 => 0.018393211899245
510 => 0.017749836172462
511 => 0.01771826908992
512 => 0.018679744051959
513 => 0.01840808333684
514 => 0.018375770159194
515 => 0.018032012543013
516 => 0.018235215869385
517 => 0.018190772321095
518 => 0.018120616005865
519 => 0.018508313797316
520 => 0.019234049452891
521 => 0.019120936745064
522 => 0.019036503355818
523 => 0.018666540822334
524 => 0.018889340901615
525 => 0.018810006060838
526 => 0.019150878883952
527 => 0.018948953374796
528 => 0.018406025239737
529 => 0.01849248833476
530 => 0.018479419611887
531 => 0.018748373002555
601 => 0.01866763987051
602 => 0.018463655172135
603 => 0.019231568967318
604 => 0.01918170491682
605 => 0.019252400739917
606 => 0.019283523227586
607 => 0.019750938822555
608 => 0.019942424036183
609 => 0.019985894532097
610 => 0.020167790675046
611 => 0.019981368790357
612 => 0.020727189245664
613 => 0.021223116328613
614 => 0.021799161155632
615 => 0.022640917474161
616 => 0.022957425636609
617 => 0.022900251270017
618 => 0.023538461303894
619 => 0.024685310548157
620 => 0.023132062291958
621 => 0.024767636477317
622 => 0.024249832573845
623 => 0.023022128833605
624 => 0.02294307918641
625 => 0.023774494413234
626 => 0.025618493365578
627 => 0.025156592542479
628 => 0.025619248869854
629 => 0.025079535688533
630 => 0.025052734380021
701 => 0.025593036205299
702 => 0.026855480870381
703 => 0.026255740732031
704 => 0.025395866181392
705 => 0.026030784168454
706 => 0.025480759449175
707 => 0.024241399814414
708 => 0.025156239335625
709 => 0.02454451220092
710 => 0.02472304670003
711 => 0.026008806149635
712 => 0.025854100170961
713 => 0.026054304032753
714 => 0.025700949456937
715 => 0.025370860564223
716 => 0.02475472513325
717 => 0.024572317807248
718 => 0.024622728629827
719 => 0.024572292826148
720 => 0.024227570715095
721 => 0.024153128008035
722 => 0.02402905356819
723 => 0.02406750942523
724 => 0.023834213179066
725 => 0.024274491397043
726 => 0.024356210914017
727 => 0.024676608684904
728 => 0.024709873444357
729 => 0.0256021766757
730 => 0.025110711050423
731 => 0.02544042862296
801 => 0.02541093557985
802 => 0.023048736896379
803 => 0.023374227033106
804 => 0.023880587541421
805 => 0.023652472818781
806 => 0.023329971971592
807 => 0.023069535246085
808 => 0.02267494697592
809 => 0.023230322388781
810 => 0.023960581999102
811 => 0.024728394033186
812 => 0.025650869883101
813 => 0.025444984012203
814 => 0.024711148988833
815 => 0.024744068291915
816 => 0.024947562470296
817 => 0.024684019019896
818 => 0.024606294911394
819 => 0.024936884371323
820 => 0.024939160959245
821 => 0.024635922369269
822 => 0.024298928168588
823 => 0.024297516150582
824 => 0.024237551287549
825 => 0.025090203304454
826 => 0.02555907570091
827 => 0.025612831165538
828 => 0.02555545752984
829 => 0.025577538365142
830 => 0.025304711848542
831 => 0.025928312361298
901 => 0.026500589859502
902 => 0.026347207265058
903 => 0.026117264951365
904 => 0.025934104822987
905 => 0.026304060559724
906 => 0.026287587013132
907 => 0.026495591514799
908 => 0.026486155229111
909 => 0.026416211138645
910 => 0.026347209762981
911 => 0.026620792417927
912 => 0.026542005006906
913 => 0.026463095217273
914 => 0.026304829553681
915 => 0.026326340485878
916 => 0.026096437874968
917 => 0.025990074407533
918 => 0.02439062305896
919 => 0.023963197395041
920 => 0.024097674209962
921 => 0.024141947469123
922 => 0.023955931272424
923 => 0.02422263071485
924 => 0.024181065889252
925 => 0.024342770311042
926 => 0.024241744408698
927 => 0.024245890546969
928 => 0.024542986184771
929 => 0.02462923431236
930 => 0.02458536781856
1001 => 0.024616090407162
1002 => 0.025324079494295
1003 => 0.025223426086321
1004 => 0.025169955969432
1005 => 0.025184767557232
1006 => 0.025365673948451
1007 => 0.02541631786087
1008 => 0.025201736045267
1009 => 0.025302934069988
1010 => 0.025733822415309
1011 => 0.025884608950003
1012 => 0.026365847187104
1013 => 0.026161408630656
1014 => 0.026536664448909
1015 => 0.027690072900085
1016 => 0.028611495380678
1017 => 0.02776411718813
1018 => 0.029456192231295
1019 => 0.030773715366147
1020 => 0.030723146633781
1021 => 0.030493406000361
1022 => 0.028993440939496
1023 => 0.02761315072727
1024 => 0.028767822100016
1025 => 0.028770765594805
1026 => 0.028671578299859
1027 => 0.028055534529573
1028 => 0.028650141312005
1029 => 0.0286973390391
1030 => 0.028670920862815
1031 => 0.028198601548528
1101 => 0.027477457254812
1102 => 0.027618367123628
1103 => 0.027849180363233
1104 => 0.027412202747975
1105 => 0.027272561922492
1106 => 0.027532180784818
1107 => 0.028368726852971
1108 => 0.028210582664568
1109 => 0.028206452880698
1110 => 0.028883060782258
1111 => 0.028398755545865
1112 => 0.02762014444833
1113 => 0.027423534877584
1114 => 0.026725703353511
1115 => 0.027207698072779
1116 => 0.027225044204646
1117 => 0.02696106062277
1118 => 0.027641565261103
1119 => 0.02763529429106
1120 => 0.028281332165408
1121 => 0.029516313940417
1122 => 0.029151069059784
1123 => 0.028726329002139
1124 => 0.028772510023169
1125 => 0.0292790018394
1126 => 0.028972765325223
1127 => 0.029082890110878
1128 => 0.029278835152348
1129 => 0.029397053660908
1130 => 0.028755500199067
1201 => 0.028605923398062
1202 => 0.02829994175753
1203 => 0.028220116858933
1204 => 0.02846933252063
1205 => 0.028403672998692
1206 => 0.02722358632943
1207 => 0.027100260706552
1208 => 0.027104042927338
1209 => 0.026793934784797
1210 => 0.02632094543294
1211 => 0.027563933208893
1212 => 0.027464103894881
1213 => 0.027353900058387
1214 => 0.027367399399543
1215 => 0.02790693826432
1216 => 0.027593978475384
1217 => 0.028426033367371
1218 => 0.028254987895438
1219 => 0.028079555752564
1220 => 0.028055305686625
1221 => 0.027987779278785
1222 => 0.027756206100833
1223 => 0.027476567573066
1224 => 0.027291925995159
1225 => 0.025175359084785
1226 => 0.025568181591847
1227 => 0.026020088079324
1228 => 0.026176084387899
1229 => 0.025909241907465
1230 => 0.027766742668385
1231 => 0.028106125956727
]
'min_raw' => 0.011714366140024
'max_raw' => 0.030773715366147
'avg_raw' => 0.021244040753085
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.011714'
'max' => '$0.030773'
'avg' => '$0.021244'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00045419237127365
'max_diff' => -0.0055497281437873
'year' => 2027
]
2 => [
'items' => [
101 => 0.027078111838913
102 => 0.02688581237101
103 => 0.027779349789486
104 => 0.027240437495638
105 => 0.02748310966856
106 => 0.026958585165285
107 => 0.028024378460869
108 => 0.028016258901648
109 => 0.027601641237633
110 => 0.027952073248079
111 => 0.027891177062556
112 => 0.027423074741041
113 => 0.0280392181394
114 => 0.028039523738838
115 => 0.027640463251789
116 => 0.027174447968489
117 => 0.027091135442624
118 => 0.027028370645848
119 => 0.027467673376105
120 => 0.027861550830389
121 => 0.02859445912231
122 => 0.028778729680371
123 => 0.029497949936066
124 => 0.029069689291998
125 => 0.02925953168861
126 => 0.029465632464978
127 => 0.029564444756274
128 => 0.029403435430167
129 => 0.03052068053013
130 => 0.030615010248072
131 => 0.03064663818655
201 => 0.030269909424951
202 => 0.030604532739715
203 => 0.030447973572296
204 => 0.030855297032531
205 => 0.030919170552062
206 => 0.030865071953385
207 => 0.03088534641666
208 => 0.029931974819383
209 => 0.029882537472628
210 => 0.029208455741714
211 => 0.029483149029622
212 => 0.02896962309427
213 => 0.029132467458274
214 => 0.029204247702288
215 => 0.029166753776308
216 => 0.029498679775974
217 => 0.029216474868256
218 => 0.028471689718007
219 => 0.027726701651541
220 => 0.02771734893322
221 => 0.027521206725452
222 => 0.027379431834472
223 => 0.027406742708209
224 => 0.027502989789472
225 => 0.027373837779141
226 => 0.027401398908719
227 => 0.027859097298546
228 => 0.02795088544647
229 => 0.027638953455879
301 => 0.026386501502084
302 => 0.026079146651085
303 => 0.026300067222872
304 => 0.026194481418665
305 => 0.021140990900315
306 => 0.022328233538117
307 => 0.021622814277685
308 => 0.021947903927672
309 => 0.021227853530203
310 => 0.02157149932095
311 => 0.021508040491334
312 => 0.023417091519856
313 => 0.023387284313859
314 => 0.023401551446007
315 => 0.022720544055754
316 => 0.023805407319793
317 => 0.02433984997408
318 => 0.024240938862503
319 => 0.024265832658331
320 => 0.023838074768916
321 => 0.023405693077409
322 => 0.022926115238464
323 => 0.023817111585612
324 => 0.023718048001624
325 => 0.02394526422134
326 => 0.024523139042201
327 => 0.024608233304705
328 => 0.024722600856452
329 => 0.024681608230388
330 => 0.0256582188915
331 => 0.025539944896555
401 => 0.025824951194622
402 => 0.025238671616017
403 => 0.024575240622657
404 => 0.024701337165302
405 => 0.024689193054241
406 => 0.024534584582072
407 => 0.02439501096641
408 => 0.024162660220956
409 => 0.024897852361015
410 => 0.024868004902747
411 => 0.025351200558229
412 => 0.02526579103261
413 => 0.024695405317273
414 => 0.024715776754682
415 => 0.02485278446144
416 => 0.025326969698854
417 => 0.025467740162311
418 => 0.025402529674905
419 => 0.02555687806167
420 => 0.025678868733279
421 => 0.025572198211823
422 => 0.027082427847418
423 => 0.026455275209876
424 => 0.026760945041714
425 => 0.026833845495496
426 => 0.026647112516065
427 => 0.026687608212897
428 => 0.02674894815918
429 => 0.027121392301422
430 => 0.028098793498244
501 => 0.028531677834922
502 => 0.029834031719953
503 => 0.028495732816801
504 => 0.02841632369832
505 => 0.028650916960333
506 => 0.029415536559006
507 => 0.030035188926664
508 => 0.030240763365619
509 => 0.03026793342139
510 => 0.0306536047352
511 => 0.030874664339931
512 => 0.030606774093541
513 => 0.030379765159003
514 => 0.029566647332875
515 => 0.029660767935295
516 => 0.030309165551063
517 => 0.031225065373765
518 => 0.032011002704777
519 => 0.031735794844138
520 => 0.033835436554344
521 => 0.034043607453644
522 => 0.034014844966332
523 => 0.03448908925492
524 => 0.033547810920242
525 => 0.033145396195759
526 => 0.030428847067311
527 => 0.031192086565806
528 => 0.032301500000352
529 => 0.032154664972203
530 => 0.031348979281329
531 => 0.032010391519933
601 => 0.031791707949578
602 => 0.031619223144449
603 => 0.03240940947457
604 => 0.031540567145536
605 => 0.03229283263349
606 => 0.031328044363999
607 => 0.031737051970464
608 => 0.031504879471563
609 => 0.031655123532343
610 => 0.030776799823012
611 => 0.031250721976464
612 => 0.030757083103317
613 => 0.030756849054217
614 => 0.030745951948733
615 => 0.031326715893861
616 => 0.031345654585261
617 => 0.030916469152326
618 => 0.030854616826303
619 => 0.031083317293725
620 => 0.030815568943122
621 => 0.030940846711181
622 => 0.030819363479094
623 => 0.030792015044723
624 => 0.030574098066701
625 => 0.030480213440817
626 => 0.030517028021734
627 => 0.030391360877844
628 => 0.030315641878071
629 => 0.030730889533858
630 => 0.030509039462414
701 => 0.030696887828631
702 => 0.030482810906973
703 => 0.029740727027629
704 => 0.029313946741224
705 => 0.027912219084355
706 => 0.028309747309005
707 => 0.028573308933221
708 => 0.02848620181799
709 => 0.028673341607485
710 => 0.028684830470673
711 => 0.028623989417444
712 => 0.028553543272026
713 => 0.028519253984353
714 => 0.028774818241983
715 => 0.028923181895434
716 => 0.02859976086821
717 => 0.028523987846673
718 => 0.02885098436176
719 => 0.029050452047064
720 => 0.030523209364135
721 => 0.030414102745143
722 => 0.03068793894772
723 => 0.030657109193669
724 => 0.030944133159498
725 => 0.031413296038251
726 => 0.030459356725743
727 => 0.030624927605655
728 => 0.03058433344949
729 => 0.031027529802133
730 => 0.03102891341277
731 => 0.030763195060061
801 => 0.030907245289852
802 => 0.030826840403394
803 => 0.030972142900596
804 => 0.030412645559727
805 => 0.0310940529269
806 => 0.031480366995167
807 => 0.031485730966379
808 => 0.031668840768759
809 => 0.031854890932982
810 => 0.032211998021654
811 => 0.0318449314101
812 => 0.031184614309127
813 => 0.031232287071006
814 => 0.030845143396307
815 => 0.030851651351422
816 => 0.030816911376981
817 => 0.030921168655382
818 => 0.03043552416944
819 => 0.030549503959598
820 => 0.030389931585912
821 => 0.030624580726478
822 => 0.030372137040122
823 => 0.030584313873759
824 => 0.030675882361383
825 => 0.031013772052046
826 => 0.030322230458081
827 => 0.028912130334738
828 => 0.029208550476476
829 => 0.028770121803546
830 => 0.028810700046441
831 => 0.028892674555069
901 => 0.028626968352215
902 => 0.028677656722355
903 => 0.028675845777085
904 => 0.0286602400291
905 => 0.028591119583677
906 => 0.028490881262751
907 => 0.028890199881594
908 => 0.028958051896169
909 => 0.029108878519484
910 => 0.029557636243792
911 => 0.029512794764698
912 => 0.029585933077556
913 => 0.029426272551241
914 => 0.028818106240339
915 => 0.028851132596998
916 => 0.028439293400256
917 => 0.029098346865282
918 => 0.028942274305683
919 => 0.028841653311198
920 => 0.028814197940606
921 => 0.029264068048513
922 => 0.029398676235649
923 => 0.029314797446646
924 => 0.029142759603264
925 => 0.02947312312098
926 => 0.029561514461402
927 => 0.029581302022776
928 => 0.030166642835247
929 => 0.029614016071868
930 => 0.029747038826451
1001 => 0.030784844384687
1002 => 0.029843697950744
1003 => 0.030342244206874
1004 => 0.030317842961946
1005 => 0.030572882356696
1006 => 0.030296922287534
1007 => 0.030300343143326
1008 => 0.030526800848
1009 => 0.030208781843648
1010 => 0.03013003586586
1011 => 0.030021248861534
1012 => 0.030258781305586
1013 => 0.030401171263127
1014 => 0.031548729747007
1015 => 0.032290104862619
1016 => 0.032257919813612
1017 => 0.032552030913644
1018 => 0.032419531169331
1019 => 0.031991654543277
1020 => 0.032721987769955
1021 => 0.032490879778594
1022 => 0.032509932040606
1023 => 0.032509222914462
1024 => 0.032662889524906
1025 => 0.032554002648068
1026 => 0.032339375436813
1027 => 0.032481854995877
1028 => 0.032904968348922
1029 => 0.034218325179477
1030 => 0.03495329706152
1031 => 0.034174078949321
1101 => 0.034711573168969
1102 => 0.034389268165953
1103 => 0.034330695759162
1104 => 0.034668281849612
1105 => 0.035006458839824
1106 => 0.034984918427527
1107 => 0.034739419298213
1108 => 0.034600743069374
1109 => 0.035650845934092
1110 => 0.036424543836781
1111 => 0.036371782826754
1112 => 0.036604652766212
1113 => 0.037288366110859
1114 => 0.037350876290519
1115 => 0.037343001444662
1116 => 0.037188063442112
1117 => 0.037861268021314
1118 => 0.038422867125192
1119 => 0.037152199771111
1120 => 0.037636053265288
1121 => 0.03785327068761
1122 => 0.038172210309084
1123 => 0.038710314910997
1124 => 0.039294839233872
1125 => 0.039377497382109
1126 => 0.039318847470378
1127 => 0.038933337966585
1128 => 0.0395729314555
1129 => 0.039947590320993
1130 => 0.040170691101479
1201 => 0.04073643756036
1202 => 0.037854612148461
1203 => 0.035814712885902
1204 => 0.035496153159551
1205 => 0.036143956889828
1206 => 0.036314777567365
1207 => 0.036245919966441
1208 => 0.033949827886904
1209 => 0.03548406470994
1210 => 0.03713477452923
1211 => 0.037198185016116
1212 => 0.038024564866368
1213 => 0.038293668020064
1214 => 0.038959012115599
1215 => 0.03891739466127
1216 => 0.039079395360596
1217 => 0.039042154205282
1218 => 0.040274564037532
1219 => 0.041634095097136
1220 => 0.041587018859586
1221 => 0.041391570184526
1222 => 0.041681844795941
1223 => 0.043085026545654
1224 => 0.04295584405567
1225 => 0.043081333840951
1226 => 0.044735764203721
1227 => 0.046886759015296
1228 => 0.045887405968971
1229 => 0.048055714523404
1230 => 0.049420549821322
1231 => 0.051780891342467
]
'min_raw' => 0.021140990900315
'max_raw' => 0.051780891342467
'avg_raw' => 0.036460941121391
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.02114'
'max' => '$0.05178'
'avg' => '$0.03646'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0094266247602906
'max_diff' => 0.02100717597632
'year' => 2028
]
3 => [
'items' => [
101 => 0.051485364959093
102 => 0.052404228592288
103 => 0.050956311054635
104 => 0.047631599715769
105 => 0.04710545141991
106 => 0.048158813632417
107 => 0.050748401846284
108 => 0.048077258284
109 => 0.048617627147745
110 => 0.048462000878634
111 => 0.048453708216122
112 => 0.048770205415505
113 => 0.048311109720417
114 => 0.046440671268891
115 => 0.047297882188662
116 => 0.046966871885889
117 => 0.047334152495269
118 => 0.049316214466045
119 => 0.048439897622309
120 => 0.047516769013632
121 => 0.04867457714755
122 => 0.050148864768067
123 => 0.050056606498324
124 => 0.049877586894059
125 => 0.050886711030141
126 => 0.052553488457319
127 => 0.053004011698231
128 => 0.05333657874413
129 => 0.053382434120993
130 => 0.053854773001642
131 => 0.051314887795668
201 => 0.055345750846426
202 => 0.056041769544947
203 => 0.055910946876645
204 => 0.056684542367107
205 => 0.05645693094959
206 => 0.056127157716744
207 => 0.057353471117606
208 => 0.055947601761906
209 => 0.05395214720552
210 => 0.052857401370271
211 => 0.054299050996755
212 => 0.05517941611701
213 => 0.055761281459761
214 => 0.055937353560905
215 => 0.051512051854082
216 => 0.049127059672589
217 => 0.050655812316935
218 => 0.052520996051909
219 => 0.051304526605845
220 => 0.05135220990505
221 => 0.04961784415751
222 => 0.052674448936367
223 => 0.05222912733018
224 => 0.054539456610838
225 => 0.053988077986458
226 => 0.055872061828368
227 => 0.055375945743619
228 => 0.057435295873936
301 => 0.058256826395598
302 => 0.059636304002485
303 => 0.060651053345595
304 => 0.061246933568932
305 => 0.061211159155413
306 => 0.063572333466619
307 => 0.062180031468448
308 => 0.060430972018359
309 => 0.060399337051119
310 => 0.061305199724684
311 => 0.063203639377188
312 => 0.063695877157909
313 => 0.063970970925019
314 => 0.063549655244607
315 => 0.062038411212776
316 => 0.061385863702012
317 => 0.061941853087304
318 => 0.061261925845804
319 => 0.062435671018522
320 => 0.064047473839105
321 => 0.063714642930414
322 => 0.06482724675737
323 => 0.065978674668933
324 => 0.067625268296332
325 => 0.068055748843719
326 => 0.068767316818842
327 => 0.069499754003146
328 => 0.069734993087009
329 => 0.070184137488504
330 => 0.070181770275805
331 => 0.071535297160616
401 => 0.073028279229801
402 => 0.073591845398303
403 => 0.074887734727556
404 => 0.072668569664589
405 => 0.074351831856781
406 => 0.075870176488923
407 => 0.074059943424481
408 => 0.076554927973604
409 => 0.07665180256989
410 => 0.078114493958989
411 => 0.076631776018374
412 => 0.07575134283824
413 => 0.078293120439886
414 => 0.079523006556079
415 => 0.079152554848736
416 => 0.076333399064404
417 => 0.074692529478643
418 => 0.070398057272601
419 => 0.075485045108051
420 => 0.077962768493229
421 => 0.07632698235941
422 => 0.077151977737312
423 => 0.08165288501349
424 => 0.083366539092095
425 => 0.083010111023091
426 => 0.083070341499447
427 => 0.08399499813524
428 => 0.088095434876057
429 => 0.08563835813358
430 => 0.087516701238295
501 => 0.088512967648165
502 => 0.089438355412184
503 => 0.087165895535561
504 => 0.084209458625141
505 => 0.083273030952833
506 => 0.076164335666223
507 => 0.075794297205056
508 => 0.07558658340349
509 => 0.074276977266318
510 => 0.073247985573811
511 => 0.072429693175918
512 => 0.070282249561051
513 => 0.0710069487422
514 => 0.067584371826417
515 => 0.069774015248457
516 => 0.064311499849858
517 => 0.068860844993333
518 => 0.066384843265081
519 => 0.068047411833749
520 => 0.068041611288636
521 => 0.064980295435874
522 => 0.063214592340032
523 => 0.064339767074895
524 => 0.06554604370715
525 => 0.065741758032331
526 => 0.067305727173091
527 => 0.067742197342872
528 => 0.06641967235159
529 => 0.064198301359823
530 => 0.064714275177132
531 => 0.063204136147093
601 => 0.060557675583609
602 => 0.062458409763072
603 => 0.063107403981323
604 => 0.063394036800488
605 => 0.06079154678435
606 => 0.059973787918473
607 => 0.059538419959941
608 => 0.063862352579409
609 => 0.06409922736903
610 => 0.062887342454611
611 => 0.068365177183426
612 => 0.067125374476436
613 => 0.068510537859181
614 => 0.064667455961393
615 => 0.064814266865284
616 => 0.062994890306752
617 => 0.064013619608745
618 => 0.063293614573274
619 => 0.063931316348423
620 => 0.064313552163104
621 => 0.066132630179846
622 => 0.068881615942259
623 => 0.06586092058505
624 => 0.06454476036076
625 => 0.065361298761544
626 => 0.067535848125002
627 => 0.070830401723775
628 => 0.068879959684231
629 => 0.069745532740727
630 => 0.069934621946907
701 => 0.068496438196236
702 => 0.070883429610067
703 => 0.072162637700622
704 => 0.073474840506715
705 => 0.074614189436158
706 => 0.072950717850003
707 => 0.074730870896474
708 => 0.073296381780333
709 => 0.072009496748396
710 => 0.072011448421786
711 => 0.071204166642861
712 => 0.069639956472144
713 => 0.069351492117374
714 => 0.070852120119919
715 => 0.072055481667959
716 => 0.072154596288769
717 => 0.072820839072713
718 => 0.073215114689404
719 => 0.07707955172469
720 => 0.078633860268582
721 => 0.080534439334498
722 => 0.081274821991439
723 => 0.08350310834696
724 => 0.081703586142308
725 => 0.081314248193806
726 => 0.075909154362226
727 => 0.076794238174348
728 => 0.078211342755441
729 => 0.075932521894816
730 => 0.077377909218625
731 => 0.077663259293834
801 => 0.075855088433974
802 => 0.076820910616676
803 => 0.074255973245739
804 => 0.06893752456778
805 => 0.070889350563804
806 => 0.072326551474405
807 => 0.070275488569384
808 => 0.073951939439537
809 => 0.071804232738544
810 => 0.071123512822432
811 => 0.068467781735506
812 => 0.069721184580071
813 => 0.071416429874346
814 => 0.070368965375903
815 => 0.072542611487757
816 => 0.075621074072387
817 => 0.077814969835811
818 => 0.077983389910815
819 => 0.076572861914534
820 => 0.078833242030443
821 => 0.078849706431875
822 => 0.076299988427205
823 => 0.074738300346234
824 => 0.074383481528417
825 => 0.07526988850165
826 => 0.076346150206908
827 => 0.078043114945056
828 => 0.079068555195867
829 => 0.081742359518497
830 => 0.082465814304223
831 => 0.083260671775951
901 => 0.084322846483144
902 => 0.085598259555135
903 => 0.082807728362926
904 => 0.082918601369393
905 => 0.080320097360742
906 => 0.077543223164328
907 => 0.079650524537151
908 => 0.082405540759563
909 => 0.081773536994119
910 => 0.081702423659841
911 => 0.081822016562902
912 => 0.081345506363071
913 => 0.079190268389527
914 => 0.078107921371716
915 => 0.079504425160865
916 => 0.080246604773565
917 => 0.081397660627998
918 => 0.081255768698098
919 => 0.084220764964743
920 => 0.085372872857129
921 => 0.08507811435678
922 => 0.085132357014604
923 => 0.087218193321922
924 => 0.089538072280614
925 => 0.09171094506042
926 => 0.093921284579096
927 => 0.091256634018312
928 => 0.089903688796345
929 => 0.091299582915626
930 => 0.090558901847303
1001 => 0.094815074966162
1002 => 0.095109763158424
1003 => 0.099365628507522
1004 => 0.10340495150283
1005 => 0.10086792510147
1006 => 0.10326022672778
1007 => 0.10584769598385
1008 => 0.11083934398056
1009 => 0.10915833254356
1010 => 0.10787070412763
1011 => 0.10665390149634
1012 => 0.10918587461007
1013 => 0.11244321757161
1014 => 0.11314481804708
1015 => 0.11428167884936
1016 => 0.11308640872449
1017 => 0.11452597993521
1018 => 0.11960829888869
1019 => 0.11823501144459
1020 => 0.11628472250699
1021 => 0.12029672520966
1022 => 0.1217486533915
1023 => 0.13193904575228
1024 => 0.14480483705189
1025 => 0.13947831497251
1026 => 0.13617197083205
1027 => 0.13694904013259
1028 => 0.14164719158068
1029 => 0.14315608871394
1030 => 0.13905438615772
1031 => 0.14050317684246
1101 => 0.14848615595735
1102 => 0.15276876812785
1103 => 0.14695240556876
1104 => 0.1309052919485
1105 => 0.11610912032674
1106 => 0.12003373132112
1107 => 0.11958880222921
1108 => 0.12816551739123
1109 => 0.11820225899322
1110 => 0.11837001471245
1111 => 0.12712408726112
1112 => 0.12478865078793
1113 => 0.12100554280147
1114 => 0.11613674120167
1115 => 0.10713631113482
1116 => 0.099164379229039
1117 => 0.11479917352254
1118 => 0.11412497276258
1119 => 0.11314863015119
1120 => 0.11532137498152
1121 => 0.12587160713322
1122 => 0.12562839013435
1123 => 0.12408116767797
1124 => 0.12525472227454
1125 => 0.12079981300664
1126 => 0.12194794456137
1127 => 0.11610677653755
1128 => 0.11874722843305
1129 => 0.12099742595081
1130 => 0.12144918641724
1201 => 0.12246702581558
1202 => 0.11376969959799
1203 => 0.11767454372961
1204 => 0.11996827382252
1205 => 0.10960511781614
1206 => 0.11976342754836
1207 => 0.11361829849835
1208 => 0.11153254940204
1209 => 0.11434073578367
1210 => 0.1132463828197
1211 => 0.11230552240384
1212 => 0.11178050612575
1213 => 0.1138425282762
1214 => 0.11374633247824
1215 => 0.11037246401884
1216 => 0.10597139015003
1217 => 0.10744853500073
1218 => 0.10691187442816
1219 => 0.10496694728259
1220 => 0.10627759334731
1221 => 0.1005061713811
1222 => 0.090576739860652
1223 => 0.097136426469774
1224 => 0.096883885670889
1225 => 0.096756543148277
1226 => 0.10168596633861
1227 => 0.10121211604
1228 => 0.10035207310807
1229 => 0.1049511519197
1230 => 0.10327242628711
1231 => 0.10844586312923
]
'min_raw' => 0.046440671268891
'max_raw' => 0.15276876812785
'avg_raw' => 0.09960471969837
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.04644'
'max' => '$0.152768'
'avg' => '$0.0996047'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.025299680368576
'max_diff' => 0.10098787678538
'year' => 2029
]
4 => [
'items' => [
101 => 0.11185342323036
102 => 0.11098915576569
103 => 0.11419398251097
104 => 0.10748256543467
105 => 0.1097118289721
106 => 0.11017127709754
107 => 0.10489440000106
108 => 0.10128964380906
109 => 0.10104924766828
110 => 0.094799097197365
111 => 0.098137877129478
112 => 0.10107586530164
113 => 0.099668796964264
114 => 0.099223361163623
115 => 0.10149899606586
116 => 0.10167583238726
117 => 0.097643945519095
118 => 0.098482302472238
119 => 0.10197839033209
120 => 0.098394210028207
121 => 0.091430733170291
122 => 0.089703694631928
123 => 0.089473275855275
124 => 0.08478941036608
125 => 0.089819103605218
126 => 0.087623507718936
127 => 0.094559368816422
128 => 0.090597642155307
129 => 0.090426860037149
130 => 0.090168697817264
131 => 0.086137101302667
201 => 0.087019764718039
202 => 0.089953872344169
203 => 0.09100079500026
204 => 0.090891592390046
205 => 0.089939493616104
206 => 0.09037535955928
207 => 0.088971283490549
208 => 0.088475475007364
209 => 0.086910567051565
210 => 0.084610584673396
211 => 0.084930411329692
212 => 0.080373544415415
213 => 0.077890721469284
214 => 0.077203508800876
215 => 0.076284539300085
216 => 0.077307308851274
217 => 0.080360635383987
218 => 0.076677675786176
219 => 0.070363499885307
220 => 0.070742992615782
221 => 0.071595600108755
222 => 0.070006771686163
223 => 0.068503078924441
224 => 0.069810417782308
225 => 0.0671350182148
226 => 0.071918909364616
227 => 0.071789518515713
228 => 0.07357265730252
301 => 0.074687690579602
302 => 0.072117899872239
303 => 0.07147160445879
304 => 0.071839763698779
305 => 0.065754911546596
306 => 0.073075395065273
307 => 0.073138702910732
308 => 0.072596622702603
309 => 0.076494554181726
310 => 0.084720405397994
311 => 0.081625509286335
312 => 0.080427071968171
313 => 0.078148841750288
314 => 0.081184448247692
315 => 0.08095136103153
316 => 0.079897252244342
317 => 0.079259723960831
318 => 0.080434389370884
319 => 0.079114169917079
320 => 0.078877022225971
321 => 0.07744016523709
322 => 0.076927272664888
323 => 0.07654754742327
324 => 0.076129507243281
325 => 0.077051599711215
326 => 0.07496201686751
327 => 0.072442184802335
328 => 0.072232688031077
329 => 0.072811127035666
330 => 0.072555210835854
331 => 0.07223146280277
401 => 0.071613339640081
402 => 0.071429955701823
403 => 0.072025864535923
404 => 0.071353118205868
405 => 0.072345792062253
406 => 0.072075839700466
407 => 0.070567907751847
408 => 0.068688466235956
409 => 0.068671735264202
410 => 0.068266812672505
411 => 0.06775108287146
412 => 0.067607618639109
413 => 0.069700317350163
414 => 0.074032141052843
415 => 0.073181700408251
416 => 0.073796230930632
417 => 0.076819112877532
418 => 0.07777999614722
419 => 0.077097983962163
420 => 0.076164403618578
421 => 0.076205476415695
422 => 0.079395803063715
423 => 0.079594779823418
424 => 0.080097529902851
425 => 0.080743705832078
426 => 0.077208030517054
427 => 0.076038946426315
428 => 0.075484969525807
429 => 0.073778935088284
430 => 0.075618746964814
501 => 0.074546767372959
502 => 0.074691414043938
503 => 0.074597212709706
504 => 0.074648653008063
505 => 0.071917572169543
506 => 0.072912634485717
507 => 0.071258150389568
508 => 0.06904298190938
509 => 0.069035555887897
510 => 0.069577715235196
511 => 0.069255217640725
512 => 0.068387384906175
513 => 0.068510656450063
514 => 0.067430668013192
515 => 0.068641786600121
516 => 0.068676517147604
517 => 0.068210170521561
518 => 0.070076065806883
519 => 0.070840524627706
520 => 0.070533565288331
521 => 0.070818987542164
522 => 0.073217040056543
523 => 0.073608027250754
524 => 0.073781677935258
525 => 0.07354900902233
526 => 0.07086281953996
527 => 0.070981963466063
528 => 0.070107764389558
529 => 0.06936915829074
530 => 0.069398698661214
531 => 0.069778438208078
601 => 0.071436783080664
602 => 0.07492667210025
603 => 0.075059110837468
604 => 0.075219630450486
605 => 0.074566716513647
606 => 0.074369791422752
607 => 0.074629586448321
608 => 0.075940205274431
609 => 0.079311472724724
610 => 0.078119841648408
611 => 0.077151027034521
612 => 0.078000938641444
613 => 0.077870101411386
614 => 0.076765703519757
615 => 0.076734706749251
616 => 0.074615014097851
617 => 0.073831411987694
618 => 0.073176575412846
619 => 0.072461510968054
620 => 0.072037596796004
621 => 0.072688921629819
622 => 0.072837887325561
623 => 0.071413754193216
624 => 0.07121965010963
625 => 0.072382627967552
626 => 0.071870844772465
627 => 0.072397226480224
628 => 0.072519351551643
629 => 0.072499686602366
630 => 0.071965326168769
701 => 0.072305911574286
702 => 0.071500325556843
703 => 0.070624371757981
704 => 0.070065567808157
705 => 0.069577937247348
706 => 0.069848503023739
707 => 0.068883985434263
708 => 0.068575416845485
709 => 0.072190528902311
710 => 0.074861051047693
711 => 0.074822220598056
712 => 0.074585850222273
713 => 0.07423465178984
714 => 0.075914512921618
715 => 0.07532928289319
716 => 0.075755086636477
717 => 0.07586347156007
718 => 0.076191520080336
719 => 0.076308769229608
720 => 0.075954360865738
721 => 0.074764923109253
722 => 0.071800957308441
723 => 0.07042122322709
724 => 0.069965887998956
725 => 0.069982438569694
726 => 0.069525899943739
727 => 0.069660371029709
728 => 0.069479136387767
729 => 0.069135921821298
730 => 0.069827310491413
731 => 0.069906986594913
801 => 0.069745608217829
802 => 0.069783618667614
803 => 0.068447474630962
804 => 0.068549058760117
805 => 0.067983425420298
806 => 0.067877375987894
807 => 0.066447504160162
808 => 0.0639142789541
809 => 0.065317931624379
810 => 0.063622516582115
811 => 0.06298043721588
812 => 0.06601994107181
813 => 0.065714859187388
814 => 0.065192691617166
815 => 0.06442029695155
816 => 0.064133808256701
817 => 0.062393193638097
818 => 0.062290348840612
819 => 0.06315304444614
820 => 0.062754940107732
821 => 0.062195850842704
822 => 0.060170886198743
823 => 0.057894155496177
824 => 0.057962875685068
825 => 0.058687061361474
826 => 0.060792728885367
827 => 0.059970008155364
828 => 0.059373114826114
829 => 0.059261334648093
830 => 0.060660497603679
831 => 0.062640606319534
901 => 0.063569629026578
902 => 0.062648995738736
903 => 0.061591421788081
904 => 0.061655791414131
905 => 0.062084013698145
906 => 0.062129013805458
907 => 0.06144064188394
908 => 0.061634414547686
909 => 0.061340056152512
910 => 0.059533579224675
911 => 0.059500905785451
912 => 0.059057567213984
913 => 0.059044143098234
914 => 0.05828991359218
915 => 0.058184391670541
916 => 0.056686823207811
917 => 0.057672527305035
918 => 0.057011368748405
919 => 0.056014846852027
920 => 0.05584304610148
921 => 0.055837881563463
922 => 0.056861086732824
923 => 0.057660570556891
924 => 0.057022869884564
925 => 0.056877677802783
926 => 0.058427949382741
927 => 0.058230663193152
928 => 0.058059814625328
929 => 0.062463309302052
930 => 0.05897759965645
1001 => 0.057457631293617
1002 => 0.055576381810447
1003 => 0.056188926128251
1004 => 0.05631799821616
1005 => 0.051793932329844
1006 => 0.049958519363203
1007 => 0.04932867479913
1008 => 0.048966190347811
1009 => 0.04913137906407
1010 => 0.047479292121624
1011 => 0.048589521869944
1012 => 0.047158954225218
1013 => 0.04691911490411
1014 => 0.049477147066204
1015 => 0.049833082297752
1016 => 0.048314552019559
1017 => 0.04928969428588
1018 => 0.04893609414462
1019 => 0.047183477201509
1020 => 0.047116540125659
1021 => 0.04623713855107
1022 => 0.044861045372538
1023 => 0.044232133864439
1024 => 0.043904591290561
1025 => 0.044039741740221
1026 => 0.043971405537201
1027 => 0.043525465588107
1028 => 0.043996966293084
1029 => 0.042792476829411
1030 => 0.042312839419745
1031 => 0.042096198329303
1101 => 0.041027144602466
1102 => 0.042728484492213
1103 => 0.043063669883409
1104 => 0.043399515693369
1105 => 0.046322824177399
1106 => 0.046176783946721
1107 => 0.047496916507574
1108 => 0.047445618583828
1109 => 0.047069095392743
1110 => 0.045480605984614
1111 => 0.046113749550593
1112 => 0.044165032066866
1113 => 0.045625143705582
1114 => 0.044958809729392
1115 => 0.045399855517961
1116 => 0.044606815422618
1117 => 0.045045716555204
1118 => 0.043143154774219
1119 => 0.041366569352903
1120 => 0.042081519188202
1121 => 0.042858751423604
1122 => 0.044543988945044
1123 => 0.043540275380182
1124 => 0.043901248732718
1125 => 0.042692048427931
1126 => 0.040197122808163
1127 => 0.040211243816222
1128 => 0.03982745386453
1129 => 0.039495803312018
1130 => 0.043655563957184
1201 => 0.043138231964873
1202 => 0.042313931141863
1203 => 0.043417290549874
1204 => 0.043709036290021
1205 => 0.043717341881097
1206 => 0.044522324423354
1207 => 0.044951943750457
1208 => 0.045027666018936
1209 => 0.046294323441976
1210 => 0.046718890302564
1211 => 0.048467621114374
1212 => 0.044915493552136
1213 => 0.044842339822534
1214 => 0.043432817079453
1215 => 0.042538875472118
1216 => 0.043494026026107
1217 => 0.044340159025889
1218 => 0.043459108790343
1219 => 0.043574155351119
1220 => 0.042391417394347
1221 => 0.0428141905609
1222 => 0.043178339765631
1223 => 0.042977277978479
1224 => 0.042676278751613
1225 => 0.044270785769081
1226 => 0.044180817434232
1227 => 0.045665659026456
1228 => 0.046823199229636
1229 => 0.048897718208796
1230 => 0.046732849506922
1231 => 0.046653953086852
]
'min_raw' => 0.039495803312018
'max_raw' => 0.11419398251097
'avg_raw' => 0.076844892911494
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.039495'
'max' => '$0.114193'
'avg' => '$0.076844'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0069448679568729
'max_diff' => -0.03857478561688
'year' => 2030
]
5 => [
'items' => [
101 => 0.04742517824842
102 => 0.04671877223201
103 => 0.047165196450074
104 => 0.048825792365574
105 => 0.048860878140536
106 => 0.048273146204459
107 => 0.048237382662736
108 => 0.048350263010142
109 => 0.049011406730655
110 => 0.048780382799813
111 => 0.049047729541393
112 => 0.049382050735498
113 => 0.050764944943564
114 => 0.051098356055363
115 => 0.050288339907534
116 => 0.050361475296317
117 => 0.050058507021589
118 => 0.049765843464382
119 => 0.050423708400902
120 => 0.051625969502759
121 => 0.051618490298841
122 => 0.051897391505856
123 => 0.052071144647284
124 => 0.051325268969203
125 => 0.050839731329381
126 => 0.051025917356051
127 => 0.051323632867302
128 => 0.050929372228262
129 => 0.048495812924819
130 => 0.049233999361114
131 => 0.049111129042642
201 => 0.048936146767596
202 => 0.049678398937517
203 => 0.049606806904992
204 => 0.047462347582142
205 => 0.047599628910309
206 => 0.047470696114397
207 => 0.047887304355157
208 => 0.046696274019817
209 => 0.047062626929256
210 => 0.047292400039711
211 => 0.047427738166969
212 => 0.047916672284847
213 => 0.047859301509371
214 => 0.047913106036891
215 => 0.048638066259884
216 => 0.052304666291474
217 => 0.052504231241296
218 => 0.051521500440919
219 => 0.051914082012162
220 => 0.051160411243528
221 => 0.051666355479667
222 => 0.052012509676443
223 => 0.050448305422835
224 => 0.050355683398538
225 => 0.049598901962546
226 => 0.050005553439957
227 => 0.049358541700121
228 => 0.049517295749567
301 => 0.049073405587387
302 => 0.049872319501661
303 => 0.050765629396491
304 => 0.050991314753802
305 => 0.050397633742372
306 => 0.049967769564612
307 => 0.049213069674529
308 => 0.050468152411322
309 => 0.050835176851513
310 => 0.050466224588184
311 => 0.050380730287005
312 => 0.050218718740755
313 => 0.05041510180242
314 => 0.05083317795759
315 => 0.050636020963466
316 => 0.050766246631544
317 => 0.050269960672957
318 => 0.051325515885088
319 => 0.053001991595148
320 => 0.053007381738687
321 => 0.052810223681814
322 => 0.052729550852771
323 => 0.052931846983674
324 => 0.053041584336068
325 => 0.053695772928643
326 => 0.0543977433525
327 => 0.057673533026947
328 => 0.056753704394646
329 => 0.059660179871416
330 => 0.061958824614935
331 => 0.062648087665964
401 => 0.06201399809135
402 => 0.059844811909442
403 => 0.059738381286708
404 => 0.062980061249263
405 => 0.062064138181493
406 => 0.061955192047024
407 => 0.060796189243682
408 => 0.061481303445747
409 => 0.061331458919736
410 => 0.061094922004784
411 => 0.062402072176855
412 => 0.064848940608872
413 => 0.064467573217155
414 => 0.064182900150363
415 => 0.062935545638763
416 => 0.063686731661462
417 => 0.0634192487068
418 => 0.064568525228908
419 => 0.063887719276803
420 => 0.062057199163419
421 => 0.062348715524949
422 => 0.062304653413353
423 => 0.063211448547717
424 => 0.06293925115642
425 => 0.06225150250409
426 => 0.06484057747858
427 => 0.064672457350928
428 => 0.064910813254326
429 => 0.065015744894403
430 => 0.066591669206757
501 => 0.067237274973574
502 => 0.067383838785562
503 => 0.067997114331097
504 => 0.067368579931308
505 => 0.069883165667896
506 => 0.071555218452582
507 => 0.073497393805044
508 => 0.076335434002513
509 => 0.0774025633701
510 => 0.07720979600135
511 => 0.079361565688966
512 => 0.083228247986458
513 => 0.077991363046351
514 => 0.083505815604433
515 => 0.081760003591961
516 => 0.077620714716206
517 => 0.077354193311617
518 => 0.080157367796411
519 => 0.086374539008137
520 => 0.084817208134172
521 => 0.086377086243548
522 => 0.084557405571156
523 => 0.084467043088299
524 => 0.086288708414893
525 => 0.090545128744288
526 => 0.088523062995323
527 => 0.085623935913318
528 => 0.087764606235257
529 => 0.085910159492708
530 => 0.081731571954783
531 => 0.084816017272602
601 => 0.082753536528521
602 => 0.083355478057151
603 => 0.087690505810351
604 => 0.087168903802026
605 => 0.087843905099845
606 => 0.086652545477054
607 => 0.085539627729198
608 => 0.083462284106468
609 => 0.082847285071581
610 => 0.083017248679477
611 => 0.082847200846058
612 => 0.081684946180914
613 => 0.081433957396635
614 => 0.0810156317601
615 => 0.081145288367013
616 => 0.080358713784845
617 => 0.081843142535997
618 => 0.082118665592952
619 => 0.083198909046956
620 => 0.08331106350592
621 => 0.086319526149018
622 => 0.084662515480361
623 => 0.085774181296314
624 => 0.08567474344233
625 => 0.077710425657565
626 => 0.078807838378535
627 => 0.080515068185281
628 => 0.079745963471437
629 => 0.078658629348848
630 => 0.077780548745691
701 => 0.076450166843555
702 => 0.078322653823089
703 => 0.080784775084386
704 => 0.083373506964226
705 => 0.086483698697421
706 => 0.085789540109195
707 => 0.083315364093178
708 => 0.08342635382187
709 => 0.084112448651794
710 => 0.083223893508753
711 => 0.082961841250414
712 => 0.084076446695584
713 => 0.084084122370709
714 => 0.083061732293165
715 => 0.081925532817383
716 => 0.081920772100094
717 => 0.081718596377763
718 => 0.084593372183023
719 => 0.086174208203299
720 => 0.086355448505379
721 => 0.086162009286921
722 => 0.086236456364778
723 => 0.085316602715924
724 => 0.087419115383077
725 => 0.089348588923409
726 => 0.08883144879741
727 => 0.088056182232738
728 => 0.087438645072079
729 => 0.088685976667973
730 => 0.088630434955489
731 => 0.08933173665527
801 => 0.089299921559253
802 => 0.089064100174908
803 => 0.088831457219335
804 => 0.089753860241416
805 => 0.089488222984396
806 => 0.089222173119345
807 => 0.088688569384788
808 => 0.088761094994534
809 => 0.087985962290564
810 => 0.087627350434048
811 => 0.082234688542207
812 => 0.080793593074396
813 => 0.081246991044773
814 => 0.081396261429094
815 => 0.080769094834688
816 => 0.081668290625186
817 => 0.081528151913721
818 => 0.082073349661628
819 => 0.08173273377847
820 => 0.081746712773126
821 => 0.082748391458529
822 => 0.083039183042348
823 => 0.082891284095842
824 => 0.082994867448295
825 => 0.085381902085785
826 => 0.085042542093405
827 => 0.084862263861148
828 => 0.084912202163526
829 => 0.085522140692005
830 => 0.08569289017857
831 => 0.084969412605641
901 => 0.085310608811408
902 => 0.08676337895132
903 => 0.087271766280621
904 => 0.088894294595986
905 => 0.088205015729478
906 => 0.089470216920244
907 => 0.09335901404179
908 => 0.096465654266773
909 => 0.093608659528541
910 => 0.099313608673477
911 => 0.10375572990916
912 => 0.10358523389739
913 => 0.10281064731184
914 => 0.097753410384916
915 => 0.093099665565609
916 => 0.096992720715402
917 => 0.097002644913593
918 => 0.096668228023646
919 => 0.094591193441323
920 => 0.096595951722414
921 => 0.096755082154555
922 => 0.096666011428753
923 => 0.095073553884352
924 => 0.0926421655494
925 => 0.093117253010129
926 => 0.093895455962323
927 => 0.092422155423676
928 => 0.091951346631151
929 => 0.092826669751493
930 => 0.09564714322605
1001 => 0.095113949053576
1002 => 0.095100025198925
1003 => 0.09738125597829
1004 => 0.095748387060679
1005 => 0.093123245384449
1006 => 0.092460362489836
1007 => 0.090107574785384
1008 => 0.091732653633191
1009 => 0.091791137327852
1010 => 0.090901098250811
1011 => 0.093195467150266
1012 => 0.093174324136941
1013 => 0.09535248593523
1014 => 0.099516313213346
1015 => 0.09828486459771
1016 => 0.096852823838955
1017 => 0.097008526375615
1018 => 0.098716198896167
1019 => 0.097683701107869
1020 => 0.098054994511372
1021 => 0.098715636899132
1022 => 0.099114218854496
1023 => 0.096951176566066
1024 => 0.09644686793836
1025 => 0.09541522947435
1026 => 0.095146094255534
1027 => 0.095986342258627
1028 => 0.095764966596212
1029 => 0.091786221999776
1030 => 0.091370421051922
1031 => 0.091383173073366
1101 => 0.09033762181973
1102 => 0.088742905196884
1103 => 0.092933725266143
1104 => 0.092597143764093
1105 => 0.092225583835168
1106 => 0.092271097806369
1107 => 0.094090190758364
1108 => 0.093035024979811
1109 => 0.095840356140365
1110 => 0.095263664389729
1111 => 0.094672182671746
1112 => 0.094590421881347
1113 => 0.094362751882772
1114 => 0.093581986745385
1115 => 0.092639165925279
1116 => 0.092016633954104
1117 => 0.084880480841793
1118 => 0.086204909350345
1119 => 0.087728543623977
1120 => 0.088254496069654
1121 => 0.087354818016522
1122 => 0.093617511518525
1123 => 0.094761765970157
1124 => 0.091295744598292
1125 => 0.090647393516337
1126 => 0.093660017307519
1127 => 0.091843036883156
1128 => 0.092661223056991
1129 => 0.090892752073068
1130 => 0.09448614858044
1201 => 0.09445877291964
1202 => 0.093060860517731
1203 => 0.094242366507333
1204 => 0.094037050766206
1205 => 0.092458811107357
1206 => 0.094536181592681
1207 => 0.094537211942524
1208 => 0.093191751648924
1209 => 0.091620548585129
1210 => 0.091339654587483
1211 => 0.091128038693055
1212 => 0.092609178519252
1213 => 0.093937163856017
1214 => 0.096408215332252
1215 => 0.097029496384112
1216 => 0.099454397690544
1217 => 0.098010487028866
1218 => 0.098650553923414
1219 => 0.099345437080437
1220 => 0.099678589619396
1221 => 0.099135735435114
1222 => 0.1029026052932
1223 => 0.10322064452313
1224 => 0.1033272803259
1225 => 0.10205711300381
1226 => 0.10318531887219
1227 => 0.10265746870863
1228 => 0.10403078819322
1229 => 0.10424614222383
1230 => 0.10406374502135
1231 => 0.10413210178979
]
'min_raw' => 0.046696274019817
'max_raw' => 0.10424614222383
'avg_raw' => 0.075471208121824
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.046696'
'max' => '$0.104246'
'avg' => '$0.075471'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0072004707077996
'max_diff' => -0.0099478402871398
'year' => 2031
]
6 => [
'items' => [
101 => 0.1009177428873
102 => 0.10075106142111
103 => 0.098478347802448
104 => 0.099404495401102
105 => 0.097673106856828
106 => 0.098222147999495
107 => 0.098464160103727
108 => 0.098337746714542
109 => 0.09945685839675
110 => 0.098505384847461
111 => 0.095994289714156
112 => 0.093482510434661
113 => 0.093450977091858
114 => 0.092789669944154
115 => 0.092311666000809
116 => 0.092403746518398
117 => 0.092728250272633
118 => 0.092292805252697
119 => 0.092385729525324
120 => 0.093928891602106
121 => 0.094238361751277
122 => 0.093186661266603
123 => 0.088963932060982
124 => 0.087927663722008
125 => 0.088672512853968
126 => 0.088316522943319
127 => 0.071278326837261
128 => 0.075281198281244
129 => 0.0729028279939
130 => 0.073998890445863
131 => 0.071571190258485
201 => 0.07272981603457
202 => 0.072515860159966
203 => 0.078952358988314
204 => 0.078851861912224
205 => 0.078899964544361
206 => 0.076603900581704
207 => 0.080261592819147
208 => 0.08206350354167
209 => 0.081730017823232
210 => 0.081813948993895
211 => 0.080371733404631
212 => 0.078913928343792
213 => 0.077296998176732
214 => 0.080301054568521
215 => 0.079967054778707
216 => 0.08073313012721
217 => 0.082681475431671
218 => 0.082968376678797
219 => 0.0833539748644
220 => 0.083215765363609
221 => 0.086508476392329
222 => 0.086109707360744
223 => 0.087070625993183
224 => 0.085093943461184
225 => 0.082857139547798
226 => 0.083282282845103
227 => 0.083241338126786
228 => 0.082720064868451
229 => 0.082249482678528
301 => 0.081466095918017
302 => 0.083944847547702
303 => 0.083844214758268
304 => 0.085473342646371
305 => 0.085185378467645
306 => 0.083262283205324
307 => 0.083330966928838
308 => 0.083792897977744
309 => 0.085391646612243
310 => 0.085866264058069
311 => 0.085646402346927
312 => 0.086166798709167
313 => 0.086578098775612
314 => 0.086218451665025
315 => 0.0913102963223
316 => 0.089195807418428
317 => 0.090226394597656
318 => 0.09047218356733
319 => 0.089842600289896
320 => 0.089979134359085
321 => 0.090185946270598
322 => 0.091441667699385
323 => 0.094737044074443
324 => 0.096196543838571
325 => 0.1005875208894
326 => 0.096075352700378
327 => 0.09580761931325
328 => 0.096598566874907
329 => 0.099176535235869
330 => 0.10126573645617
331 => 0.10195884502986
401 => 0.10205045076985
402 => 0.10335076853106
403 => 0.1040960864223
404 => 0.1031928757531
405 => 0.10242749928105
406 => 0.099686015760183
407 => 0.10000334994253
408 => 0.10218946777377
409 => 0.10527748797209
410 => 0.107927330556
411 => 0.10699944803945
412 => 0.11407853665771
413 => 0.11478039937873
414 => 0.11468342464463
415 => 0.11628237237428
416 => 0.11310878675096
417 => 0.11175201741166
418 => 0.1025929823617
419 => 0.10516629761855
420 => 0.1089067624699
421 => 0.1084116979208
422 => 0.10569527236284
423 => 0.10792526990362
424 => 0.10718796297817
425 => 0.10660641841517
426 => 0.10927058679622
427 => 0.10634122422325
428 => 0.10887753983739
429 => 0.10562468882743
430 => 0.10700368652863
501 => 0.10622090073882
502 => 0.10672745907944
503 => 0.10376612937083
504 => 0.10536399099938
505 => 0.1036996530738
506 => 0.10369886396092
507 => 0.10366212360897
508 => 0.10562020979761
509 => 0.10568406291792
510 => 0.10423703426601
511 => 0.10402849483044
512 => 0.1047995744237
513 => 0.10389684216605
514 => 0.10431922490768
515 => 0.10390963570901
516 => 0.10381742855312
517 => 0.10308270624724
518 => 0.10276616767626
519 => 0.10289029060613
520 => 0.10246659505671
521 => 0.10221130316244
522 => 0.10361133962559
523 => 0.10286335662064
524 => 0.1034967005025
525 => 0.10277492521475
526 => 0.1002729376049
527 => 0.098834018072439
528 => 0.094107995411807
529 => 0.095448289575749
530 => 0.096336905993078
531 => 0.096043218272452
601 => 0.096674173138417
602 => 0.096712908642784
603 => 0.096507778784036
604 => 0.096270264686367
605 => 0.096154655958975
606 => 0.097016308696499
607 => 0.09751652711253
608 => 0.096426090538711
609 => 0.096170616506294
610 => 0.097273108087078
611 => 0.097945627314468
612 => 0.1029111314336
613 => 0.10254327085009
614 => 0.10346652872571
615 => 0.10336258405747
616 => 0.10433030539763
617 => 0.10591212079925
618 => 0.10269584780522
619 => 0.10325408158663
620 => 0.10311721555493
621 => 0.10461148300085
622 => 0.10461614794071
623 => 0.10372025996269
624 => 0.10420593536969
625 => 0.10393484468131
626 => 0.10442474219532
627 => 0.10253835784773
628 => 0.10483577036049
629 => 0.10613825521324
630 => 0.10615634021668
701 => 0.10677370769973
702 => 0.10740098881801
703 => 0.10860500029989
704 => 0.10736740959126
705 => 0.10514110438347
706 => 0.10530183642855
707 => 0.10399655449979
708 => 0.10401849652483
709 => 0.10390136827554
710 => 0.10425287896867
711 => 0.10261549467771
712 => 0.10299978549804
713 => 0.10246177609917
714 => 0.10325291205927
715 => 0.10240178054566
716 => 0.10311714955398
717 => 0.10342587910312
718 => 0.10456509778589
719 => 0.10223351701995
720 => 0.097479266004047
721 => 0.098478667207311
722 => 0.097000474326414
723 => 0.097137286705418
724 => 0.097413669484535
725 => 0.096517822470598
726 => 0.096688721849473
727 => 0.096682616121059
728 => 0.09663000025217
729 => 0.096396955844592
730 => 0.096058995347172
731 => 0.097405325950136
801 => 0.097634093754553
802 => 0.098142616245437
803 => 0.099655634244208
804 => 0.099504448066709
805 => 0.099751038994863
806 => 0.099212732383251
807 => 0.09716225720523
808 => 0.09727360787253
809 => 0.095885063267023
810 => 0.098107108038
811 => 0.097580898506675
812 => 0.097241647798634
813 => 0.097149080099809
814 => 0.098665848577548
815 => 0.09911968947852
816 => 0.098836886285164
817 => 0.098256848684904
818 => 0.099370692350127
819 => 0.099668709925649
820 => 0.099735425070343
821 => 0.10170894248678
822 => 0.099845722770878
823 => 0.10029421827531
824 => 0.10379325217217
825 => 0.10062011126139
826 => 0.10230099477132
827 => 0.1022187242704
828 => 0.10307860739608
829 => 0.10214818875599
830 => 0.10215972241013
831 => 0.1029232403722
901 => 0.10185101709566
902 => 0.10158551953367
903 => 0.10121873655332
904 => 0.10201959377243
905 => 0.10249967145563
906 => 0.10636874500401
907 => 0.10886834296745
908 => 0.10875982882763
909 => 0.10975144493557
910 => 0.10930471279678
911 => 0.10786209687865
912 => 0.11032446634263
913 => 0.10954526961432
914 => 0.10960950564587
915 => 0.10960711477757
916 => 0.11012521248334
917 => 0.10975809277585
918 => 0.10903446214831
919 => 0.10951484192929
920 => 0.11094139813992
921 => 0.11536947238978
922 => 0.11784748140419
923 => 0.11522029313563
924 => 0.11703249242383
925 => 0.11594581860354
926 => 0.11574833764465
927 => 0.11688653271811
928 => 0.11802672005138
929 => 0.11795409504741
930 => 0.11712637759273
1001 => 0.11665882100513
1002 => 0.12019931612937
1003 => 0.12280789262615
1004 => 0.12263000519718
1005 => 0.12341514245653
1006 => 0.12572032973335
1007 => 0.12593108716839
1008 => 0.12590453657578
1009 => 0.12538215228276
1010 => 0.12765190852318
1011 => 0.1295453791115
1012 => 0.12526123541206
1013 => 0.12689258124925
1014 => 0.12762494495424
1015 => 0.12870027215569
1016 => 0.13051452939031
1017 => 0.13248529395506
1018 => 0.13276398167285
1019 => 0.13256623940065
1020 => 0.13126646719319
1021 => 0.13342290129606
1022 => 0.13468608981892
1023 => 0.13543828967672
1024 => 0.137345743362
1025 => 0.12762946778316
1026 => 0.12075180499822
1027 => 0.1196777586397
1028 => 0.12186187414454
1029 => 0.12243780798517
1030 => 0.12220564977617
1031 => 0.11446421502199
1101 => 0.11963700158785
1102 => 0.12520248499246
1103 => 0.12541627787618
1104 => 0.1282024752373
1105 => 0.12910977530817
1106 => 0.13135302937911
1107 => 0.1312127132262
1108 => 0.1317589098945
1109 => 0.13163334873927
1110 => 0.13578850453281
1111 => 0.14037225841969
1112 => 0.14021353759803
1113 => 0.13955456874428
1114 => 0.14053324986299
1115 => 0.14526417509916
1116 => 0.14482862731495
1117 => 0.14525172488744
1118 => 0.15082975236416
1119 => 0.15808198154905
1120 => 0.15471259298076
1121 => 0.1620231966585
1122 => 0.16662483415519
1123 => 0.17458289038751
1124 => 0.17358650255297
1125 => 0.1766845154453
1126 => 0.17180276037673
1127 => 0.16059326397381
1128 => 0.15881931825982
1129 => 0.16237080250269
1130 => 0.17110177996502
1201 => 0.16209583295149
1202 => 0.16391772430296
1203 => 0.16339301947117
1204 => 0.16336506018053
1205 => 0.16443215258538
1206 => 0.16288427939635
1207 => 0.15657796556719
1208 => 0.15946811203176
1209 => 0.15835208768555
1210 => 0.15959039990279
1211 => 0.16627306022041
1212 => 0.16331849679927
1213 => 0.16020610424433
1214 => 0.16410973520342
1215 => 0.16908039884746
1216 => 0.16876934364976
1217 => 0.16816576655523
1218 => 0.17156809903483
1219 => 0.17718775550124
1220 => 0.17870672606251
1221 => 0.17982799907684
1222 => 0.17998260368146
1223 => 0.18157512719521
1224 => 0.17301172689415
1225 => 0.18660206309565
1226 => 0.18894873873219
1227 => 0.18850766097226
1228 => 0.19111589217907
1229 => 0.19034848439359
1230 => 0.18923663091502
1231 => 0.19337123216449
]
'min_raw' => 0.071278326837261
'max_raw' => 0.19337123216449
'avg_raw' => 0.13232477950088
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.071278'
'max' => '$0.193371'
'avg' => '$0.132324'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.024582052817444
'max_diff' => 0.089125089940661
'year' => 2032
]
7 => [
'items' => [
101 => 0.18863124547708
102 => 0.18190343112204
103 => 0.17821241910578
104 => 0.18307304147424
105 => 0.18604125394231
106 => 0.18800305356993
107 => 0.1885966929519
108 => 0.17367647928265
109 => 0.16563531162791
110 => 0.17078960790242
111 => 0.17707820508786
112 => 0.17297679341927
113 => 0.17313756099168
114 => 0.1672900257843
115 => 0.17759558220154
116 => 0.17609414931492
117 => 0.1838835857867
118 => 0.18202457425858
119 => 0.18837655731713
120 => 0.18670386729968
121 => 0.19364711004328
122 => 0.19641695755449
123 => 0.20106796261816
124 => 0.20448926087599
125 => 0.206498312652
126 => 0.20637769671913
127 => 0.21433856076129
128 => 0.20964431736703
129 => 0.20374724131563
130 => 0.2036405818149
131 => 0.20669476106413
201 => 0.21309548289737
202 => 0.21475509694202
203 => 0.21568259478426
204 => 0.21426209955243
205 => 0.20916683478743
206 => 0.20696672529547
207 => 0.20884128232592
208 => 0.2065488601602
209 => 0.21050622395829
210 => 0.21594052970037
211 => 0.2148183670542
212 => 0.2185695885363
213 => 0.22245170813027
214 => 0.22800331350654
215 => 0.22945470872725
216 => 0.23185380983546
217 => 0.23432327293948
218 => 0.23511639793459
219 => 0.23663071964249
220 => 0.2366227384196
221 => 0.24118624881197
222 => 0.24621994209491
223 => 0.24812004477895
224 => 0.25248922612863
225 => 0.24500715618168
226 => 0.25068239218426
227 => 0.25580159711897
228 => 0.24969826995577
301 => 0.25811028455739
302 => 0.25843690402234
303 => 0.26336847016254
304 => 0.25836938310569
305 => 0.25540094116899
306 => 0.26397072181419
307 => 0.26811736872283
308 => 0.26686836492742
309 => 0.25736338437337
310 => 0.25183107800312
311 => 0.23735196512998
312 => 0.25450309977934
313 => 0.26285691716159
314 => 0.25734175000448
315 => 0.26012327952042
316 => 0.27529840264536
317 => 0.28107610701489
318 => 0.27987438489523
319 => 0.28007745615142
320 => 0.28319500055646
321 => 0.29701990931148
322 => 0.28873570352659
323 => 0.29506866844587
324 => 0.29842765020385
325 => 0.30154765965874
326 => 0.29388590252663
327 => 0.28391806907131
328 => 0.28076083779483
329 => 0.25679337532277
330 => 0.25554576481569
331 => 0.2548454432316
401 => 0.25043001470634
402 => 0.24696069737315
403 => 0.2442017674223
404 => 0.23696151134505
405 => 0.23940488523117
406 => 0.22786542820292
407 => 0.23524796387635
408 => 0.21683071182933
409 => 0.23216914660569
410 => 0.22382113390997
411 => 0.22942659991606
412 => 0.22940704297323
413 => 0.2190856028414
414 => 0.21313241157631
415 => 0.2169260167521
416 => 0.22099306263729
417 => 0.22165292714897
418 => 0.22692595829988
419 => 0.22839754795068
420 => 0.22393856260682
421 => 0.21644905521691
422 => 0.21818869696611
423 => 0.21309715779179
424 => 0.20417443123203
425 => 0.21058288922311
426 => 0.21277101854127
427 => 0.21373742110315
428 => 0.20496294431369
429 => 0.20220581320329
430 => 0.20073793973468
501 => 0.21531638044855
502 => 0.21611502033983
503 => 0.21202906573976
504 => 0.23049796797817
505 => 0.22631788659129
506 => 0.23098806164523
507 => 0.21803084271143
508 => 0.21852582592391
509 => 0.212391670832
510 => 0.21582638779908
511 => 0.21339884055285
512 => 0.21554889661068
513 => 0.21683763134673
514 => 0.22297077988414
515 => 0.23223917731017
516 => 0.22205469201513
517 => 0.21761716592757
518 => 0.2203701821547
519 => 0.22770182715579
520 => 0.23880964463244
521 => 0.2322335931206
522 => 0.23515193311296
523 => 0.23578946057338
524 => 0.23094052364721
525 => 0.23898843185336
526 => 0.24330137124212
527 => 0.24772555461794
528 => 0.25156694908036
529 => 0.24595843848776
530 => 0.25196034877025
531 => 0.24712386856235
601 => 0.24278504582973
602 => 0.24279162603283
603 => 0.24006981915257
604 => 0.23479597535233
605 => 0.23382339764028
606 => 0.23888286972136
607 => 0.2429400871966
608 => 0.24327425906062
609 => 0.24552054312228
610 => 0.2468498708914
611 => 0.25987909016224
612 => 0.26511954993633
613 => 0.27152748495126
614 => 0.274023736771
615 => 0.28153655979262
616 => 0.27546934504101
617 => 0.27415666496493
618 => 0.25593301374016
619 => 0.25891713560731
620 => 0.26369500264154
621 => 0.25601179900776
622 => 0.2608850232837
623 => 0.26184710098477
624 => 0.25575072668829
625 => 0.25900706360883
626 => 0.2503591981845
627 => 0.23242767714454
628 => 0.23900839476227
629 => 0.24385401797452
630 => 0.23693871618961
701 => 0.24933412697993
702 => 0.24209298388944
703 => 0.23979788916592
704 => 0.23084390638913
705 => 0.23506984158937
706 => 0.24078547945726
707 => 0.23725387976913
708 => 0.24458247939437
709 => 0.25496173092984
710 => 0.26235860366914
711 => 0.26292644371073
712 => 0.25817075009135
713 => 0.26579177946683
714 => 0.26584729034577
715 => 0.2572507380774
716 => 0.25198539767882
717 => 0.2507891012619
718 => 0.25377768425911
719 => 0.25740637574058
720 => 0.26312781083354
721 => 0.2665851542331
722 => 0.27560007218591
723 => 0.27803925050598
724 => 0.28071916796709
725 => 0.28430036415106
726 => 0.28860050836977
727 => 0.27919203762657
728 => 0.27956585370878
729 => 0.27080481602186
730 => 0.26144239079349
731 => 0.26854730449904
801 => 0.27783603404199
802 => 0.27570518922171
803 => 0.27546542565021
804 => 0.27586864147259
805 => 0.27426205406498
806 => 0.26699551876327
807 => 0.26334631022567
808 => 0.26805472025156
809 => 0.2705570306331
810 => 0.27443789581048
811 => 0.27395949726224
812 => 0.28395618918467
813 => 0.28784060138145
814 => 0.28684680251814
815 => 0.2870296854261
816 => 0.29406222816466
817 => 0.30188386204267
818 => 0.30920985432491
819 => 0.31666216833311
820 => 0.30767811292746
821 => 0.30311656365198
822 => 0.30782291813335
823 => 0.3053256601988
824 => 0.31967564502555
825 => 0.32066920684024
826 => 0.33501815399975
827 => 0.34863701349497
828 => 0.34008325185324
829 => 0.34814906381151
830 => 0.35687289705968
831 => 0.37370258678633
901 => 0.36803493936202
902 => 0.36369361025835
903 => 0.35959107523254
904 => 0.36812779936216
905 => 0.37911015857743
906 => 0.38147565356467
907 => 0.38530865913263
908 => 0.38127872245554
909 => 0.38613233730013
910 => 0.40326773048797
911 => 0.39863759599032
912 => 0.39206206067239
913 => 0.40558880789353
914 => 0.41048408512896
915 => 0.44484170444383
916 => 0.4882196180713
917 => 0.47026087699479
918 => 0.45911330688365
919 => 0.46173325028366
920 => 0.47757339590537
921 => 0.48266074793798
922 => 0.46883157139796
923 => 0.4737162703429
924 => 0.50063144178254
925 => 0.51507056771783
926 => 0.49546029526438
927 => 0.44135633131999
928 => 0.3914700056615
929 => 0.40470210563665
930 => 0.40320199613934
1001 => 0.43211899011522
1002 => 0.39852716881384
1003 => 0.39909276893352
1004 => 0.4286077357212
1005 => 0.42073364859688
1006 => 0.40797863589236
1007 => 0.39156313136978
1008 => 0.36121755300941
1009 => 0.33433962800657
1010 => 0.38705342855359
1011 => 0.38478031362017
1012 => 0.38148850633983
1013 => 0.38881406723148
1014 => 0.42438491152461
1015 => 0.42356488843206
1016 => 0.41834831989676
1017 => 0.42230504115406
1018 => 0.40728500352549
1019 => 0.41115600922227
1020 => 0.39146210341264
1021 => 0.40036457132875
1022 => 0.40795126936366
1023 => 0.40947441131716
1024 => 0.41290612791193
1025 => 0.38358248534141
1026 => 0.39674793995866
1027 => 0.40448141111002
1028 => 0.36954130710208
1029 => 0.40379075759478
1030 => 0.38307202596347
1031 => 0.3760397772629
1101 => 0.3855077737099
1102 => 0.38181808628658
1103 => 0.37864590970571
1104 => 0.37687578066868
1105 => 0.38382803231473
1106 => 0.3835037014657
1107 => 0.37212846839887
1108 => 0.35728994057702
1109 => 0.3622702375721
1110 => 0.36046084898325
1111 => 0.35390339132149
1112 => 0.35832232603506
1113 => 0.33886357392818
1114 => 0.30538580230622
1115 => 0.32750224369157
1116 => 0.32665078475629
1117 => 0.32622144055053
1118 => 0.34284133499808
1119 => 0.34124371563315
1120 => 0.33834402084187
1121 => 0.35385013615268
1122 => 0.34819019547756
1123 => 0.36563279898856
1124 => 0.37712162577777
1125 => 0.37420768767942
1126 => 0.38501298480499
1127 => 0.36238497355608
1128 => 0.36990109121473
1129 => 0.37145015264729
1130 => 0.3536587930967
1201 => 0.34150510591935
1202 => 0.34069459354679
1203 => 0.31962177486252
1204 => 0.33087870450981
1205 => 0.34078433675602
1206 => 0.3360403076182
1207 => 0.33453848971701
1208 => 0.34221095166965
1209 => 0.34280716767357
1210 => 0.3292133796002
1211 => 0.33203995859994
1212 => 0.34382726290849
1213 => 0.33174294877447
1214 => 0.30826510037358
1215 => 0.3024422693635
1216 => 0.30166539637069
1217 => 0.28587341685683
1218 => 0.30283137877455
1219 => 0.29542877395234
1220 => 0.31881351388887
1221 => 0.305456275852
1222 => 0.304880472017
1223 => 0.30401006006835
1224 => 0.29041725094231
1225 => 0.29339321227283
1226 => 0.30328576098718
1227 => 0.30681553381599
1228 => 0.30644734959137
1229 => 0.30323728210161
1230 => 0.30470683456022
1231 => 0.29997289406503
]
'min_raw' => 0.16563531162791
'max_raw' => 0.51507056771783
'avg_raw' => 0.34035293967287
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.165635'
'max' => '$0.51507'
'avg' => '$0.340352'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.094356984790648
'max_diff' => 0.32169933555334
'year' => 2033
]
8 => [
'items' => [
101 => 0.29830124114773
102 => 0.29302504471637
103 => 0.28527049354873
104 => 0.28634881145002
105 => 0.27098501649824
106 => 0.2626140055902
107 => 0.26029702009901
108 => 0.25719865026669
109 => 0.26064698921601
110 => 0.2709414927975
111 => 0.25852413737746
112 => 0.237235452486
113 => 0.23851493872213
114 => 0.24138956441184
115 => 0.23603271845661
116 => 0.23096291332599
117 => 0.23537069756077
118 => 0.22635040112849
119 => 0.24247962414071
120 => 0.24204337385985
121 => 0.24805535077435
122 => 0.25181476331717
123 => 0.24315053453023
124 => 0.24097150442088
125 => 0.24221277900256
126 => 0.22169727514067
127 => 0.24637879642373
128 => 0.2465922432447
129 => 0.24476458197616
130 => 0.25790673010291
131 => 0.28564076178915
201 => 0.27520610346995
202 => 0.27116548837954
203 => 0.26348427613899
204 => 0.27371903538426
205 => 0.27293316556134
206 => 0.26937916418981
207 => 0.26722969307115
208 => 0.27119015951367
209 => 0.26673894745039
210 => 0.26593938745269
211 => 0.26109492379653
212 => 0.25936567068033
213 => 0.25808540051665
214 => 0.25667594886318
215 => 0.25978484799726
216 => 0.2527396735497
217 => 0.2442438838129
218 => 0.24353755082201
219 => 0.2454877983113
220 => 0.24462495897614
221 => 0.24353341987923
222 => 0.24144937448024
223 => 0.24083108272895
224 => 0.24284023096814
225 => 0.24057201974671
226 => 0.24391888895979
227 => 0.24300872572455
228 => 0.23792462787934
301 => 0.23158795959009
302 => 0.23153154995071
303 => 0.23016632516201
304 => 0.22842750613068
305 => 0.22794380645495
306 => 0.23499948626683
307 => 0.24960453231869
308 => 0.24673721230958
309 => 0.24880914487094
310 => 0.25900100240579
311 => 0.26224068743627
312 => 0.25994123573778
313 => 0.25679360442888
314 => 0.25693208423197
315 => 0.26768849326727
316 => 0.26835935730472
317 => 0.27005441429842
318 => 0.27223304155837
319 => 0.2603122653808
320 => 0.25637061674603
321 => 0.25450284494853
322 => 0.2487508307309
323 => 0.25495388492419
324 => 0.25133963088702
325 => 0.25182731723714
326 => 0.25150971086185
327 => 0.2516831454192
328 => 0.24247511569416
329 => 0.24583003776617
330 => 0.24025182912362
331 => 0.23278323393454
401 => 0.23275819658464
402 => 0.23458612467641
403 => 0.23349880152059
404 => 0.23057284286591
405 => 0.23098846148267
406 => 0.22734720506538
407 => 0.23143057593881
408 => 0.23154767240445
409 => 0.22997535219547
410 => 0.23626634842258
411 => 0.2388437747098
412 => 0.23780883986588
413 => 0.23877116092222
414 => 0.24685636240113
415 => 0.24817460302427
416 => 0.24876007843097
417 => 0.24797561894661
418 => 0.23891894356304
419 => 0.23932064562826
420 => 0.23637322240719
421 => 0.2338829603772
422 => 0.23398255779869
423 => 0.23526287619352
424 => 0.24085410171338
425 => 0.25262050619919
426 => 0.25306703264829
427 => 0.25360823573071
428 => 0.25140689080766
429 => 0.25074294411483
430 => 0.25161886118185
501 => 0.25603770405856
502 => 0.2674041676416
503 => 0.26338650027078
504 => 0.26012007415958
505 => 0.26298561048126
506 => 0.26254448362535
507 => 0.25882092902713
508 => 0.25871642125124
509 => 0.25156972948483
510 => 0.24892776026108
511 => 0.24671993302976
512 => 0.24430904332993
513 => 0.24287978710212
514 => 0.24507577425338
515 => 0.24557802249703
516 => 0.24077645821152
517 => 0.2401220227418
518 => 0.2440430837863
519 => 0.24231757101251
520 => 0.24409230369101
521 => 0.2445040568958
522 => 0.24443775514635
523 => 0.24263612163663
524 => 0.24378442911024
525 => 0.24106833960821
526 => 0.23811500021821
527 => 0.23623095368693
528 => 0.23458687320588
529 => 0.23549910461129
530 => 0.2322471662179
531 => 0.23120680567726
601 => 0.24339540837592
602 => 0.25239926023897
603 => 0.25226834066697
604 => 0.25147140144216
605 => 0.25028731140732
606 => 0.25595108049727
607 => 0.25397793659697
608 => 0.25541356364613
609 => 0.25577899098322
610 => 0.25688502947291
611 => 0.25728034316576
612 => 0.25608543062297
613 => 0.25207515818309
614 => 0.24208194054816
615 => 0.23743007076293
616 => 0.23589487625079
617 => 0.23595067765555
618 => 0.23441142580364
619 => 0.23486480445846
620 => 0.23425375920975
621 => 0.23309658733642
622 => 0.23542765250893
623 => 0.23569628605469
624 => 0.23515218758927
625 => 0.23528034247453
626 => 0.23077543956836
627 => 0.23111793755218
628 => 0.22921086525573
629 => 0.22885331219024
630 => 0.22403239949258
701 => 0.2154914538462
702 => 0.22022396682395
703 => 0.21450775663886
704 => 0.21234294122705
705 => 0.2225908406887
706 => 0.22156223581523
707 => 0.21980171139565
708 => 0.21719752885366
709 => 0.21623161221697
710 => 0.21036300850451
711 => 0.2100162600894
712 => 0.21292489855492
713 => 0.21158266198322
714 => 0.20969765349181
715 => 0.20287034381618
716 => 0.19519418729622
717 => 0.19542588221096
718 => 0.19786752477999
719 => 0.2049669298498
720 => 0.20219306946807
721 => 0.20018060193474
722 => 0.1998037272603
723 => 0.2045211028515
724 => 0.21119717763378
725 => 0.21432944255287
726 => 0.21122546314635
727 => 0.20765977873426
728 => 0.20787680542263
729 => 0.20932058675071
730 => 0.20947230775433
731 => 0.20715141376033
801 => 0.20780473182493
802 => 0.20681228194415
803 => 0.20072161885776
804 => 0.20061145807623
805 => 0.19911671112962
806 => 0.19907145078613
807 => 0.19652851334784
808 => 0.19617273882173
809 => 0.19112358219274
810 => 0.1944469523762
811 => 0.1922178101419
812 => 0.18885796699333
813 => 0.18827872876811
814 => 0.18826131616761
815 => 0.19171112383402
816 => 0.19440663936504
817 => 0.19225658702545
818 => 0.19176706178474
819 => 0.19699391065307
820 => 0.19632874649079
821 => 0.1957527186161
822 => 0.21059940836086
823 => 0.19884709492623
824 => 0.19372241547014
825 => 0.18737965149299
826 => 0.18944488742694
827 => 0.18988006298285
828 => 0.17462685898695
829 => 0.16843863602547
830 => 0.16631507110336
831 => 0.16509292946788
901 => 0.16564987475786
902 => 0.16007974828637
903 => 0.1638229653966
904 => 0.15899970670336
905 => 0.1581910716872
906 => 0.1668156557178
907 => 0.16801571620157
908 => 0.16289588534824
909 => 0.1661836455814
910 => 0.16499145801758
911 => 0.15908238763007
912 => 0.15885670460544
913 => 0.15589174079886
914 => 0.15125214657168
915 => 0.14913172751292
916 => 0.1480273948568
917 => 0.14848306403373
918 => 0.14825266375417
919 => 0.14674914608127
920 => 0.14833884362723
921 => 0.14427782330568
922 => 0.14266069229178
923 => 0.14193027172995
924 => 0.13832588245098
925 => 0.14406206867302
926 => 0.14519216962133
927 => 0.14632449721762
928 => 0.15618063587041
929 => 0.15568825103647
930 => 0.1601391701341
1001 => 0.15996621560268
1002 => 0.15869674137593
1003 => 0.15334103843163
1004 => 0.155475726169
1005 => 0.14890548911751
1006 => 0.15382835744918
1007 => 0.1515817659265
1008 => 0.1530687825955
1009 => 0.15039499254576
1010 => 0.15187477835737
1011 => 0.14546015848016
1012 => 0.13947027669495
1013 => 0.14188077998087
1014 => 0.14450127272715
1015 => 0.15018316869021
1016 => 0.14679907832923
1017 => 0.14801612518967
1018 => 0.14393922193841
1019 => 0.13552740602121
1020 => 0.13557501598578
1021 => 0.13428104136829
1022 => 0.1331628583754
1023 => 0.14718778181579
1024 => 0.14544356088475
1025 => 0.14266437310912
1026 => 0.14638442638733
1027 => 0.14736806751927
1028 => 0.14739607039946
1029 => 0.15011012524276
1030 => 0.15155861679916
1031 => 0.15181391971409
1101 => 0.15608454365107
1102 => 0.15751600046385
1103 => 0.16341196848836
1104 => 0.15143572241064
1105 => 0.15118907950386
1106 => 0.14643677516583
1107 => 0.14342278862369
1108 => 0.14664314540295
1109 => 0.14949594188683
1110 => 0.14652541950472
1111 => 0.14691330701667
1112 => 0.14292562341929
1113 => 0.1443510326674
1114 => 0.14557878713524
1115 => 0.14490089328217
1116 => 0.14388605337369
1117 => 0.14926204510801
1118 => 0.14895871058568
1119 => 0.1539649576822
1120 => 0.15786768529409
1121 => 0.16486207087062
1122 => 0.15756306489595
1123 => 0.15729706010731
1124 => 0.15989729958476
1125 => 0.15751560238074
1126 => 0.15902075280028
1127 => 0.1646195678685
1128 => 0.16473786200839
1129 => 0.16275628275177
1130 => 0.16263570347392
1201 => 0.16301628744626
1202 => 0.16524537965955
1203 => 0.16446646634714
1204 => 0.16536784455193
1205 => 0.16649503179941
1206 => 0.1711575561725
1207 => 0.17228167501395
1208 => 0.16955064901802
1209 => 0.16979723008745
1210 => 0.16877575139664
1211 => 0.1677890157804
1212 => 0.17000705334454
1213 => 0.17406056058864
1214 => 0.17403534393045
1215 => 0.17497567882216
1216 => 0.17556149966954
1217 => 0.17304672774551
1218 => 0.1714097036937
1219 => 0.17203744288171
1220 => 0.17304121151372
1221 => 0.17171193424281
1222 => 0.16350701914556
1223 => 0.16599586625406
1224 => 0.1655816003968
1225 => 0.16499163543961
1226 => 0.16749419045289
1227 => 0.16725281291684
1228 => 0.16002261858848
1229 => 0.16048547217107
1230 => 0.16005076624785
1231 => 0.16145539001823
]
'min_raw' => 0.1331628583754
'max_raw' => 0.29830124114773
'avg_raw' => 0.21573204976156
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.133162'
'max' => '$0.2983012'
'avg' => '$0.215732'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.032472453252512
'max_diff' => -0.2167693265701
'year' => 2034
]
9 => [
'items' => [
101 => 0.15743974808755
102 => 0.15867493249967
103 => 0.15944962858381
104 => 0.15990593052887
105 => 0.16155440604359
106 => 0.16136097646857
107 => 0.16154238218962
108 => 0.16398663619654
109 => 0.17634883419689
110 => 0.17702168135839
111 => 0.17370833585285
112 => 0.17503195202946
113 => 0.1724908984134
114 => 0.17419672472944
115 => 0.17536380777159
116 => 0.1700899839213
117 => 0.16977770229972
118 => 0.16722616085148
119 => 0.16859721469907
120 => 0.16641576944529
121 => 0.16695101980685
122 => 0.16545441313364
123 => 0.168148007174
124 => 0.17115986385333
125 => 0.17192077779235
126 => 0.16991914081283
127 => 0.16846982372536
128 => 0.16592530035447
129 => 0.17015689942865
130 => 0.17139434795359
131 => 0.17015039963835
201 => 0.1698621496329
202 => 0.16931591639343
203 => 0.16997803559686
204 => 0.17138760854316
205 => 0.17072287997241
206 => 0.1711619449044
207 => 0.16948868214545
208 => 0.17304756023966
209 => 0.17869991514392
210 => 0.17871808838919
211 => 0.17805335623531
212 => 0.17778136215979
213 => 0.178463417689
214 => 0.17883340483421
215 => 0.18103904734807
216 => 0.18340578964211
217 => 0.19445034323784
218 => 0.19134907678366
219 => 0.20114846177722
220 => 0.20889850301625
221 => 0.2112224015156
222 => 0.20908452424407
223 => 0.20177096158402
224 => 0.20141212330873
225 => 0.21234167362935
226 => 0.20925357505865
227 => 0.20888625555992
228 => 0.20497859668946
301 => 0.20728850705487
302 => 0.20678329577361
303 => 0.20598579505037
304 => 0.21039294311782
305 => 0.21864273087126
306 => 0.21735692408387
307 => 0.21639712896394
308 => 0.21219158614057
309 => 0.21472426226223
310 => 0.21382242480552
311 => 0.21769729083974
312 => 0.21540190603986
313 => 0.20923017967475
314 => 0.21021304744067
315 => 0.21006448895511
316 => 0.21312181206103
317 => 0.21220407955206
318 => 0.20988528695365
319 => 0.21861453399358
320 => 0.21804770524543
321 => 0.21885133881522
322 => 0.21920512316583
323 => 0.22451846201245
324 => 0.22669516693004
325 => 0.22718931705491
326 => 0.22925701837421
327 => 0.22713787076245
328 => 0.23561597213613
329 => 0.2412534148387
330 => 0.24780159463787
331 => 0.25737024530928
401 => 0.26096814647669
402 => 0.26031821783436
403 => 0.26757305956792
404 => 0.28060984889705
405 => 0.26295332569385
406 => 0.28154568750021
407 => 0.27565956041146
408 => 0.26170365897093
409 => 0.26080506344743
410 => 0.2702561619343
411 => 0.29121778874367
412 => 0.28596713897273
413 => 0.2912263769257
414 => 0.28509119649268
415 => 0.28478653307282
416 => 0.29092840490605
417 => 0.30527922322038
418 => 0.29846168737162
419 => 0.28868707800405
420 => 0.2959044974513
421 => 0.28965210078546
422 => 0.27556370116168
423 => 0.2859631238998
424 => 0.27900932607333
425 => 0.28103881396332
426 => 0.2956546626952
427 => 0.29389604510704
428 => 0.29617185910973
429 => 0.29215510696341
430 => 0.28840282707508
501 => 0.28139891801555
502 => 0.27932540583157
503 => 0.27989845000207
504 => 0.27932512185933
505 => 0.27540649910977
506 => 0.2745602729001
507 => 0.27314985880996
508 => 0.2735870051125
509 => 0.27093501399184
510 => 0.27593986916585
511 => 0.27686881438878
512 => 0.28051093061414
513 => 0.28088906720292
514 => 0.29103230904827
515 => 0.28544558189011
516 => 0.28919364080262
517 => 0.28885837913539
518 => 0.26200612567314
519 => 0.2657061292808
520 => 0.27146217376922
521 => 0.26886908352932
522 => 0.26520306061977
523 => 0.26224255056059
524 => 0.25775707509325
525 => 0.26407029567761
526 => 0.27237150940989
527 => 0.28109959968226
528 => 0.29158582825738
529 => 0.28924542411257
530 => 0.28090356693311
531 => 0.28127777655245
601 => 0.28359099317315
602 => 0.28059516747145
603 => 0.27971163998656
604 => 0.28346961006422
605 => 0.2834954891388
606 => 0.28004842961136
607 => 0.27621765375185
608 => 0.27620160266113
609 => 0.27551995309783
610 => 0.2852124604357
611 => 0.29054235944851
612 => 0.29115342378076
613 => 0.29050122995024
614 => 0.29075223347096
615 => 0.28765088267172
616 => 0.29473965092177
617 => 0.30124500567454
618 => 0.29950143163417
619 => 0.29688756628399
620 => 0.29480549663176
621 => 0.29901096219323
622 => 0.29882369943179
623 => 0.30118818707593
624 => 0.30108092025845
625 => 0.3002858319966
626 => 0.29950146002927
627 => 0.30261140621834
628 => 0.3017157916601
629 => 0.30081878596507
630 => 0.29901970371899
701 => 0.29926422887582
702 => 0.29665081484635
703 => 0.29544172993463
704 => 0.27725999386266
705 => 0.27240123987886
706 => 0.27392990279122
707 => 0.27443317831368
708 => 0.27231864235327
709 => 0.27535034374078
710 => 0.27487785629091
711 => 0.27671602856246
712 => 0.27556761833136
713 => 0.27561474948782
714 => 0.27899197911063
715 => 0.27997240323789
716 => 0.27947375161377
717 => 0.27982299011853
718 => 0.28787104405626
719 => 0.28672686814859
720 => 0.28611904750192
721 => 0.28628741797497
722 => 0.28834386830828
723 => 0.28891956212358
724 => 0.28648030697486
725 => 0.28763067380416
726 => 0.29252878976005
727 => 0.29424285313526
728 => 0.29971332063182
729 => 0.29738936880947
730 => 0.30165508295767
731 => 0.31476643396011
801 => 0.32524068837733
802 => 0.31560813114838
803 => 0.33484276549736
804 => 0.34981968738246
805 => 0.34924484817514
806 => 0.34663327542203
807 => 0.32958244803791
808 => 0.31389202246553
809 => 0.32701772970749
810 => 0.32705118983457
811 => 0.32592367994187
812 => 0.31892081283365
813 => 0.3256799953461
814 => 0.3262165147082
815 => 0.32591620653744
816 => 0.32054712474465
817 => 0.31234952921925
818 => 0.31395131976264
819 => 0.31657508534836
820 => 0.31160774971976
821 => 0.31002038500494
822 => 0.31297159801828
823 => 0.32248102125692
824 => 0.32068331987799
825 => 0.3206363746299
826 => 0.32832770347298
827 => 0.32282237191399
828 => 0.31397152347104
829 => 0.31173656751085
830 => 0.30380397949889
831 => 0.30928304629366
901 => 0.30948022815341
902 => 0.30647939926462
903 => 0.31421502419685
904 => 0.31414373905127
905 => 0.3214875636286
906 => 0.33552619800591
907 => 0.33137428302129
908 => 0.32654605762126
909 => 0.32707101959441
910 => 0.33282855672334
911 => 0.3293474183434
912 => 0.33059925997619
913 => 0.3328266619111
914 => 0.33417050880171
915 => 0.32687766070748
916 => 0.32517734895947
917 => 0.32169910785136
918 => 0.3207916996707
919 => 0.32362465447737
920 => 0.32287827097558
921 => 0.30946365578162
922 => 0.30806175385564
923 => 0.30810474818625
924 => 0.30457959913656
925 => 0.29920290070308
926 => 0.3133325431603
927 => 0.31219773512676
928 => 0.31094499488491
929 => 0.3110984484165
930 => 0.31723164730916
1001 => 0.31367408221745
1002 => 0.32313245208722
1003 => 0.32118809558662
1004 => 0.31919387367851
1005 => 0.31891821146532
1006 => 0.31815060616972
1007 => 0.31551820199773
1008 => 0.3123394157771
1009 => 0.31024050577249
1010 => 0.28618046732403
1011 => 0.29064587050926
1012 => 0.29578290983956
1013 => 0.29755619523098
1014 => 0.29452286786134
1015 => 0.31563797625063
1016 => 0.31949591002361
1017 => 0.30780997697848
1018 => 0.30562401603924
1019 => 0.31578128748589
1020 => 0.30965521112763
1021 => 0.31241378293665
1022 => 0.30645125954365
1023 => 0.31856664675119
1024 => 0.31847434779949
1025 => 0.31376118853733
1026 => 0.31774471847138
1027 => 0.31705248211548
1028 => 0.3117313369165
1029 => 0.31873533654515
1030 => 0.31873881044158
1031 => 0.31420249712467
1101 => 0.30890507629719
1102 => 0.30795802257273
1103 => 0.30724454481012
1104 => 0.31223831114403
1105 => 0.3167157064239
1106 => 0.32504702899933
1107 => 0.32714172144214
1108 => 0.33531744549798
1109 => 0.3304491998915
1110 => 0.33260723011452
1111 => 0.33495007719361
1112 => 0.33607332423868
1113 => 0.3342430534555
1114 => 0.3469433181765
1115 => 0.34801560964501
1116 => 0.34837513969911
1117 => 0.34409268189243
1118 => 0.3478965067465
1119 => 0.34611682306672
1120 => 0.35074706559114
1121 => 0.35147314674087
1122 => 0.35085818183813
1123 => 0.35108865145547
1124 => 0.34025121599632
1125 => 0.33968923779574
1126 => 0.33202662515463
1127 => 0.33514919644506
1128 => 0.32931169908635
1129 => 0.33116282963168
1130 => 0.33197879033784
1201 => 0.33155257877031
1202 => 0.33532574194075
1203 => 0.33211778243956
1204 => 0.32365144987856
1205 => 0.31518281067091
1206 => 0.31507649380406
1207 => 0.31284685058459
1208 => 0.31123522691643
1209 => 0.31154568281034
1210 => 0.31263976987387
1211 => 0.31117163658736
1212 => 0.31148493726028
1213 => 0.31668781594229
1214 => 0.31773121615674
1215 => 0.31418533454528
1216 => 0.29994810820699
1217 => 0.29645425715219
1218 => 0.2989655680043
1219 => 0.29776532316612
1220 => 0.24031985542569
1221 => 0.25381581597063
1222 => 0.24579697449434
1223 => 0.24949242557577
1224 => 0.24130726489741
1225 => 0.24521365259415
1226 => 0.244492285425
1227 => 0.26619339060678
1228 => 0.26585455769826
1229 => 0.26601673908093
1230 => 0.25827539912476
1231 => 0.27060756387522
]
'min_raw' => 0.15743974808755
'max_raw' => 0.35147314674087
'avg_raw' => 0.25445644741421
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.157439'
'max' => '$0.351473'
'avg' => '$0.254456'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.024276889712157
'max_diff' => 0.053171905593138
'year' => 2035
]
10 => [
'items' => [
101 => 0.27668283168159
102 => 0.27555846129865
103 => 0.27584144110043
104 => 0.27097891054895
105 => 0.26606381900563
106 => 0.26061222605693
107 => 0.27074061191836
108 => 0.26961450830788
109 => 0.27219738483103
110 => 0.27876636705415
111 => 0.27973367463964
112 => 0.28103374584401
113 => 0.28056776286261
114 => 0.29166936798568
115 => 0.29032489035453
116 => 0.293564694613
117 => 0.28690017144879
118 => 0.27935863088615
119 => 0.28079203119557
120 => 0.2806539832191
121 => 0.27889647403448
122 => 0.27730987332616
123 => 0.27466863016878
124 => 0.28302591434917
125 => 0.28268662387364
126 => 0.28817934229045
127 => 0.28720845095686
128 => 0.28072460101373
129 => 0.2809561729829
130 => 0.28251360576528
131 => 0.28790389840756
201 => 0.28950410426289
202 => 0.28876282515352
203 => 0.29051737782173
204 => 0.2919041047118
205 => 0.2906915293687
206 => 0.30785903913194
207 => 0.30072989216364
208 => 0.3042045887917
209 => 0.3050332834634
210 => 0.30291059948743
211 => 0.3033709336342
212 => 0.30406821443302
213 => 0.30830196690184
214 => 0.31941255842618
215 => 0.32433336377996
216 => 0.33913784947505
217 => 0.32392475939624
218 => 0.32302207758899
219 => 0.32568881251532
220 => 0.3343806128323
221 => 0.34142450060993
222 => 0.3437613645574
223 => 0.34407021970548
224 => 0.34845433182272
225 => 0.35096722312947
226 => 0.34792198529809
227 => 0.34534146508569
228 => 0.33609836199082
229 => 0.33716827634219
301 => 0.34453892524008
302 => 0.3549504009374
303 => 0.36388453021513
304 => 0.36075610952791
305 => 0.38462375105057
306 => 0.38699013021697
307 => 0.38666317313037
308 => 0.39205413703586
309 => 0.38135417153417
310 => 0.37677972898012
311 => 0.34589940284576
312 => 0.35457551489738
313 => 0.36718675329461
314 => 0.36551760860302
315 => 0.35635899017958
316 => 0.36387758258178
317 => 0.36139170080549
318 => 0.3594309827092
319 => 0.36841341241221
320 => 0.35853686197588
321 => 0.36708822714884
322 => 0.35612101286197
323 => 0.36077039989009
324 => 0.35813118294738
325 => 0.35983907975958
326 => 0.34985474989355
327 => 0.35524205193335
328 => 0.34963062041689
329 => 0.34962795986772
330 => 0.34950408720598
331 => 0.3561059115002
401 => 0.35632119675342
402 => 0.35144243862519
403 => 0.35073933335839
404 => 0.35333908204215
405 => 0.35029545720872
406 => 0.35171955011194
407 => 0.35033859153202
408 => 0.35002770866824
409 => 0.34755054111729
410 => 0.34648330922521
411 => 0.34690179834927
412 => 0.34547327922291
413 => 0.34461254477748
414 => 0.34933286546042
415 => 0.34681098853671
416 => 0.34894635165305
417 => 0.34651283587768
418 => 0.33807720996787
419 => 0.33322579230201
420 => 0.31729167694133
421 => 0.32181057229141
422 => 0.32480660458365
423 => 0.32381641592894
424 => 0.3259437243114
425 => 0.3260743237688
426 => 0.32538271412832
427 => 0.32458191876533
428 => 0.32419213586938
429 => 0.32709725823262
430 => 0.3287837795464
501 => 0.32510729650592
502 => 0.324245947969
503 => 0.32796307530711
504 => 0.33023052083605
505 => 0.34697206465415
506 => 0.34573179701363
507 => 0.3488446254011
508 => 0.34849416869491
509 => 0.35175690875743
510 => 0.35709010982282
511 => 0.34624622087042
512 => 0.34812834503909
513 => 0.34766689165752
514 => 0.35270491867786
515 => 0.3527206468483
516 => 0.34970009798149
517 => 0.351337586525
518 => 0.35042358534216
519 => 0.35207530901421
520 => 0.34571523248313
521 => 0.35346111917015
522 => 0.35785253778778
523 => 0.35791351263954
524 => 0.35999501021184
525 => 0.36210993229751
526 => 0.36616934107006
527 => 0.36199671759009
528 => 0.35449057414635
529 => 0.35503249345829
530 => 0.35063164430361
531 => 0.35070562337298
601 => 0.35031071730285
602 => 0.35149586014646
603 => 0.34597530469094
604 => 0.34727096802202
605 => 0.34545703177112
606 => 0.34812440189593
607 => 0.34525475257371
608 => 0.34766666913073
609 => 0.34870757236044
610 => 0.35254852768712
611 => 0.34468744034897
612 => 0.32865815111766
613 => 0.33202770205043
614 => 0.32704387154835
615 => 0.3275051440361
616 => 0.32843698787232
617 => 0.32541657711879
618 => 0.32599277630649
619 => 0.32597219041685
620 => 0.32579479234137
621 => 0.32500906685058
622 => 0.32386960943788
623 => 0.32840885706357
624 => 0.32918016368822
625 => 0.33089468277014
626 => 0.33599592858854
627 => 0.33548619383562
628 => 0.33631759236632
629 => 0.33450265404191
630 => 0.3275893338196
701 => 0.32796476036866
702 => 0.3232831852861
703 => 0.33077496436967
704 => 0.32900081219603
705 => 0.32785700474814
706 => 0.32754490628868
707 => 0.33265879710877
708 => 0.33418895339256
709 => 0.33323546268147
710 => 0.33127982541526
711 => 0.33503522709864
712 => 0.33604001416143
713 => 0.33626494892967
714 => 0.34291880068577
715 => 0.33663682532777
716 => 0.3381489592339
717 => 0.34994619631193
718 => 0.3392477301896
719 => 0.34491494629886
720 => 0.34463756556108
721 => 0.34753672155444
722 => 0.3443997501496
723 => 0.34443863666979
724 => 0.34701289078606
725 => 0.34339781514894
726 => 0.34250267158226
727 => 0.34126603715604
728 => 0.34396618318433
729 => 0.34558479861119
730 => 0.35862965020963
731 => 0.36705721925973
801 => 0.36669135626113
802 => 0.37003465920147
803 => 0.3685284706057
804 => 0.36366459031749
805 => 0.37196664088246
806 => 0.36933952471115
807 => 0.36955610097637
808 => 0.36954803999696
809 => 0.37129484258439
810 => 0.37005707285909
811 => 0.36761730167606
812 => 0.36923693564671
813 => 0.3740466695098
814 => 0.38897623100148
815 => 0.39733101140261
816 => 0.38847326273076
817 => 0.39458321915463
818 => 0.39091942250038
819 => 0.3902536016598
820 => 0.39409110581622
821 => 0.39793532701566
822 => 0.39769046674428
823 => 0.39489975955643
824 => 0.39332335987758
825 => 0.40526038637843
826 => 0.41405538416231
827 => 0.41345562427586
828 => 0.41610276936227
829 => 0.4238748692091
830 => 0.42458545261597
831 => 0.42449593543928
901 => 0.42273468032364
902 => 0.43038732195755
903 => 0.43677129024397
904 => 0.42232700065193
905 => 0.42782719703894
906 => 0.43029641240233
907 => 0.43392195313898
908 => 0.44003884807287
909 => 0.44668341839734
910 => 0.44762303349522
911 => 0.44695633161855
912 => 0.44257405887393
913 => 0.44984462700917
914 => 0.45410355530699
915 => 0.4566396496445
916 => 0.46307076291856
917 => 0.4303116614358
918 => 0.40712314117331
919 => 0.40350191888803
920 => 0.41086581680268
921 => 0.41280761795678
922 => 0.41202488034637
923 => 0.38592409258292
924 => 0.40336450364214
925 => 0.42212891951044
926 => 0.42284973714443
927 => 0.43224359607354
928 => 0.43530262160815
929 => 0.44286590932731
930 => 0.44239282362122
1001 => 0.44423436382264
1002 => 0.44381102562136
1003 => 0.457820423483
1004 => 0.47327486974009
1005 => 0.47273973140833
1006 => 0.47051797191017
1007 => 0.47381766363123
1008 => 0.48976830836766
1009 => 0.48829982860421
1010 => 0.4897263316096
1011 => 0.50853304069279
1012 => 0.53298443772412
1013 => 0.52162430892294
1014 => 0.54627251963249
1015 => 0.56178726172864
1016 => 0.58861840392966
1017 => 0.58525901277993
1018 => 0.59570417954277
1019 => 0.57924500149583
1020 => 0.54145140175134
1021 => 0.53547041992368
1022 => 0.54744449700523
1023 => 0.57688159709685
1024 => 0.5465174179656
1025 => 0.55266005185746
1026 => 0.55089097288337
1027 => 0.55079670618294
1028 => 0.55439448272789
1029 => 0.54917572020203
1030 => 0.52791354283424
1031 => 0.5376578734231
1101 => 0.53389511942155
1102 => 0.53807017551816
1103 => 0.56060123134746
1104 => 0.55063971449204
1105 => 0.54014606569278
1106 => 0.55330743001414
1107 => 0.5700663695307
1108 => 0.56901762521446
1109 => 0.56698262289985
1110 => 0.57845382439808
1111 => 0.59740088852648
1112 => 0.60252220382491
1113 => 0.60630265407754
1114 => 0.60682391429614
1115 => 0.61219321850921
1116 => 0.58332111651667
1117 => 0.629141883867
1118 => 0.63705386461525
1119 => 0.63556674015258
1120 => 0.64436057376722
1121 => 0.64177320483976
1122 => 0.63802451320963
1123 => 0.65196460999088
1124 => 0.63598341393898
1125 => 0.61330011811996
1126 => 0.60085561340892
1127 => 0.61724354108197
1128 => 0.62725107665205
1129 => 0.63386542106506
1130 => 0.63586691768795
1201 => 0.58556237560601
1202 => 0.55845101744166
1203 => 0.57582908719266
1204 => 0.59703153165918
1205 => 0.58320333586712
1206 => 0.58374537496193
1207 => 0.56403000174837
1208 => 0.5987759047201
1209 => 0.59371371891616
1210 => 0.61997634782184
1211 => 0.61370856066274
1212 => 0.63512471502594
1213 => 0.62948512384862
1214 => 0.65289475152039
1215 => 0.66223348578902
1216 => 0.67791467408399
1217 => 0.68944982002769
1218 => 0.69622347835801
1219 => 0.69581681331921
1220 => 0.72265742224712
1221 => 0.70683045290178
1222 => 0.68694804927377
1223 => 0.68658843932032
1224 => 0.6968858178951
1225 => 0.71846629844001
1226 => 0.72406180306208
1227 => 0.72718892679304
1228 => 0.72239962794311
1229 => 0.70522058704786
1230 => 0.69780276428901
1231 => 0.70412296419457
]
'min_raw' => 0.26061222605693
'max_raw' => 0.72718892679304
'avg_raw' => 0.49390057642498
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.260612'
'max' => '$0.727188'
'avg' => '$0.49390057'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10317247796937
'max_diff' => 0.37571578005217
'year' => 2036
]
11 => [
'items' => [
101 => 0.69639390281104
102 => 0.70973643115061
103 => 0.72805857237112
104 => 0.72427512266268
105 => 0.73692262779151
106 => 0.7500114650435
107 => 0.7687290901703
108 => 0.7736225704901
109 => 0.78171130737634
110 => 0.79003727464393
111 => 0.79271135093917
112 => 0.79781699230392
113 => 0.79779008305372
114 => 0.81317627695571
115 => 0.83014772530038
116 => 0.83655405416055
117 => 0.8512850541275
118 => 0.82605873291991
119 => 0.84519318733496
120 => 0.86245294418379
121 => 0.84187515053236
122 => 0.87023684506985
123 => 0.87133806539976
124 => 0.88796518495239
125 => 0.87111041391512
126 => 0.86110210467553
127 => 0.88999571844379
128 => 0.90397642800594
129 => 0.89976532450703
130 => 0.86771861895251
131 => 0.84906606177192
201 => 0.80024872182073
202 => 0.85807496974506
203 => 0.88624044829422
204 => 0.86764567716735
205 => 0.8770237981305
206 => 0.92818778523953
207 => 0.9476677189078
208 => 0.94361602887982
209 => 0.94430069779805
210 => 0.95481171641965
211 => 1.0014233615115
212 => 0.97349258332298
213 => 0.9948446167018
214 => 1.0061696582154
215 => 1.0166889879247
216 => 0.99085683882701
217 => 0.95724959240051
218 => 0.94660476672101
219 => 0.86579679364166
220 => 0.86159038771164
221 => 0.85922920459598
222 => 0.8443422790477
223 => 0.83264523343884
224 => 0.82334330848722
225 => 0.79893227962424
226 => 0.80717028527223
227 => 0.76826420024231
228 => 0.79315493469746
301 => 0.73105988356945
302 => 0.78277448731326
303 => 0.75462857967001
304 => 0.77352779967069
305 => 0.77346186207252
306 => 0.7386624060481
307 => 0.71859080605933
308 => 0.73138121077053
309 => 0.74509353992453
310 => 0.74731831919595
311 => 0.76509671187252
312 => 0.77005827912328
313 => 0.75502449872006
314 => 0.72977310165426
315 => 0.73563842526959
316 => 0.71847194546347
317 => 0.68838834990236
318 => 0.70999491344354
319 => 0.71737234421004
320 => 0.72063063791948
321 => 0.69104687680942
322 => 0.68175101677393
323 => 0.67680197889086
324 => 0.72595420959191
325 => 0.7286468797446
326 => 0.71487079853824
327 => 0.7771399918926
328 => 0.76304655565278
329 => 0.77879237690837
330 => 0.73510620862892
331 => 0.73677507908842
401 => 0.71609334692302
402 => 0.7276737349818
403 => 0.71948908995518
404 => 0.72673815406628
405 => 0.73108321320545
406 => 0.75176155170211
407 => 0.78301060072282
408 => 0.74867289749253
409 => 0.73371146847012
410 => 0.74299345488935
411 => 0.76771260788963
412 => 0.80516339003521
413 => 0.78299177323779
414 => 0.79283116027402
415 => 0.79498062861757
416 => 0.77863209922903
417 => 0.80576618363306
418 => 0.82030755990209
419 => 0.83522400304028
420 => 0.84817553266792
421 => 0.82926604763128
422 => 0.84950190718869
423 => 0.83319537649549
424 => 0.81856673272553
425 => 0.81858891833968
426 => 0.8094121564124
427 => 0.79163102383188
428 => 0.78835191017252
429 => 0.80541027353494
430 => 0.81908946551858
501 => 0.82021614928927
502 => 0.82778965283367
503 => 0.83227157421796
504 => 0.87620049666066
505 => 0.89386907266621
506 => 0.91547387295678
507 => 0.92389016024978
508 => 0.94922016759573
509 => 0.92876412946127
510 => 0.92433833693636
511 => 0.86289602449735
512 => 0.87295719971717
513 => 0.88906611200313
514 => 0.86316165452766
515 => 0.87959207041165
516 => 0.88283578255095
517 => 0.86228143097511
518 => 0.87326039825287
519 => 0.84410351620008
520 => 0.78364614107501
521 => 0.80583348997423
522 => 0.82217084694495
523 => 0.79885542416615
524 => 0.84064741706568
525 => 0.81623339757562
526 => 0.80849532547688
527 => 0.7783063473978
528 => 0.7925543829708
529 => 0.81182505509549
530 => 0.79991802017852
531 => 0.82462690548152
601 => 0.85962127668957
602 => 0.88456034956326
603 => 0.88647486190881
604 => 0.87044070883914
605 => 0.89613554146188
606 => 0.89632270026585
607 => 0.86733882410092
608 => 0.8495863613328
609 => 0.84555296444039
610 => 0.85562918067169
611 => 0.86786356734862
612 => 0.88715378522237
613 => 0.898810459878
614 => 0.92920488515735
615 => 0.93742874516148
616 => 0.94646427398746
617 => 0.95853852695286
618 => 0.97303676341273
619 => 0.94131544742358
620 => 0.94257579444376
621 => 0.91303734420618
622 => 0.88147127388507
623 => 0.90542598649258
624 => 0.93674358666502
625 => 0.92955929458259
626 => 0.92875091496155
627 => 0.93011038525833
628 => 0.92469366364522
629 => 0.9001940325422
630 => 0.88789047117807
701 => 0.90376520431106
702 => 0.91220191846817
703 => 0.92528652636704
704 => 0.92367357226094
705 => 0.95737811702413
706 => 0.97047468394658
707 => 0.96712402169413
708 => 0.96774062418677
709 => 0.99145133302629
710 => 1.017822517735
711 => 1.0425226121991
712 => 1.0676486091816
713 => 1.0373582391348
714 => 1.0219786572753
715 => 1.0378464599964
716 => 1.0294267805171
717 => 1.0778087562445
718 => 1.0811586192709
719 => 1.1295370964307
720 => 1.1754540320573
721 => 1.1466144274776
722 => 1.1738088756319
723 => 1.2032218885067
724 => 1.2599643624315
725 => 1.240855493438
726 => 1.226218399263
727 => 1.2123864159936
728 => 1.2411685774117
729 => 1.2781963682698
730 => 1.2861717997729
731 => 1.2990950456572
801 => 1.2855078327892
802 => 1.3018721341063
803 => 1.359645308594
804 => 1.3440344868695
805 => 1.3218646104559
806 => 1.3674709831193
807 => 1.3839757520959
808 => 1.4998148643884
809 => 1.6460665287326
810 => 1.5855173793539
811 => 1.5479325684257
812 => 1.5567658905174
813 => 1.6101720474047
814 => 1.6273244099702
815 => 1.5806983757432
816 => 1.5971674792749
817 => 1.6879138589409
818 => 1.7365963801393
819 => 1.670478977417
820 => 1.4880636855604
821 => 1.3198684556507
822 => 1.3644814045527
823 => 1.3594236806482
824 => 1.4569193447579
825 => 1.3436621739342
826 => 1.3455691342267
827 => 1.4450809054205
828 => 1.4185328709297
829 => 1.3755284550698
830 => 1.320182435478
831 => 1.2178701993754
901 => 1.1272493986716
902 => 1.3049776575758
903 => 1.297313691874
904 => 1.2862151338017
905 => 1.3109137738022
906 => 1.4308433588135
907 => 1.4280785937048
908 => 1.4104905686789
909 => 1.4238309306473
910 => 1.3731898251171
911 => 1.3862411910888
912 => 1.319841812667
913 => 1.3498571047966
914 => 1.3754361869077
915 => 1.3805715663462
916 => 1.3921418384403
917 => 1.2932751302025
918 => 1.3376633796272
919 => 1.3637373175477
920 => 1.2459343174448
921 => 1.3614087310012
922 => 1.2915540807706
923 => 1.2678443633007
924 => 1.2997663743562
925 => 1.2873263356027
926 => 1.276631120786
927 => 1.2706630071512
928 => 1.2941030089666
929 => 1.293009504865
930 => 1.2546571123868
1001 => 1.2046279798425
1002 => 1.2214193988746
1003 => 1.2153189189199
1004 => 1.1932099925862
1005 => 1.2081087394931
1006 => 1.1425021981981
1007 => 1.0296295538313
1008 => 1.1041966800826
1009 => 1.1013259268353
1010 => 1.0998783628698
1011 => 1.1559134973637
1012 => 1.1505270121326
1013 => 1.1407504886936
1014 => 1.1930304390664
1015 => 1.1739475539157
1016 => 1.2327565094568
1017 => 1.2714918911009
1018 => 1.2616673453576
1019 => 1.2980981590182
1020 => 1.2218062392552
1021 => 1.2471473546999
1022 => 1.2523701234718
1023 => 1.192385312594
1024 => 1.1514083077322
1025 => 1.1486756086799
1026 => 1.0776271292287
1027 => 1.1155806534683
1028 => 1.1489781841755
1029 => 1.1329833587198
1030 => 1.1279198748124
1031 => 1.1537881159599
1101 => 1.1557982998436
1102 => 1.1099658942663
1103 => 1.1194959027093
1104 => 1.1592376221489
1105 => 1.1184945133462
1106 => 1.0393373082915
1107 => 1.019705227004
1108 => 1.0170859454692
1109 => 0.96384218397739
1110 => 1.0210171365501
1111 => 0.99605873755863
1112 => 1.0749020209251
1113 => 1.0298671603112
1114 => 1.0279257974801
1115 => 1.024991142825
1116 => 0.97916203783695
1117 => 0.98919569923778
1118 => 1.0225491179039
1119 => 1.0344499934371
1120 => 1.033208634618
1121 => 1.0223856679565
1122 => 1.0273403666716
1123 => 1.0113795557789
1124 => 1.0057434612572
1125 => 0.98795439661655
1126 => 0.96180938594939
1127 => 0.96544501003932
1128 => 0.9136449026935
1129 => 0.88542145497172
1130 => 0.8776095766214
1201 => 0.86716320641047
1202 => 0.87878952193345
1203 => 0.91349815949773
1204 => 0.87163217874698
1205 => 0.7998558913069
1206 => 0.80416976848289
1207 => 0.81386176969572
1208 => 0.79580078955462
1209 => 0.77870758759424
1210 => 0.79356873988348
1211 => 0.76315618068504
1212 => 0.81753698217713
1213 => 0.8160661338972
1214 => 0.83633593380725
1215 => 0.84901105566916
1216 => 0.81979900339688
1217 => 0.81245225124818
1218 => 0.81663729516335
1219 => 0.74746784154623
1220 => 0.83068331376084
1221 => 0.83140296462015
1222 => 0.82524087705003
1223 => 0.86955054701485
1224 => 0.96305777117326
1225 => 0.92787659212549
1226 => 0.91425337624143
1227 => 0.88835563288732
1228 => 0.92286283825083
1229 => 0.92021322327517
1230 => 0.90823065951861
1231 => 0.90098356757076
]
'min_raw' => 0.67680197889086
'max_raw' => 1.7365963801393
'avg_raw' => 1.2066991795151
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.6768019'
'max' => '$1.73'
'avg' => '$1.20'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.41618975283394
'max_diff' => 1.0094074533463
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.021244040753085
]
1 => [
'year' => 2028
'avg' => 0.036460941121391
]
2 => [
'year' => 2029
'avg' => 0.09960471969837
]
3 => [
'year' => 2030
'avg' => 0.076844892911494
]
4 => [
'year' => 2031
'avg' => 0.075471208121824
]
5 => [
'year' => 2032
'avg' => 0.13232477950088
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.021244040753085
'min' => '$0.021244'
'max_raw' => 0.13232477950088
'max' => '$0.132324'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.13232477950088
]
1 => [
'year' => 2033
'avg' => 0.34035293967287
]
2 => [
'year' => 2034
'avg' => 0.21573204976156
]
3 => [
'year' => 2035
'avg' => 0.25445644741421
]
4 => [
'year' => 2036
'avg' => 0.49390057642498
]
5 => [
'year' => 2037
'avg' => 1.2066991795151
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.13232477950088
'min' => '$0.132324'
'max_raw' => 1.2066991795151
'max' => '$1.20'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2066991795151
]
]
]
]
'prediction_2025_max_price' => '$0.036323'
'last_price' => 0.03522016
'sma_50day_nextmonth' => '$0.031924'
'sma_200day_nextmonth' => '$0.054984'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'INCREASE'
'sma_200day_date_nextmonth' => 'Feb 4, 2026'
'sma_50day_date_nextmonth' => 'Feb 4, 2026'
'daily_sma3' => '$0.03644'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.033682'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.032127'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.031132'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.035213'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.04652'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.060196'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.036137'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.034900035'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.033397'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.033027'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.036869'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.044782'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.056993'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.053349'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.063228'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.1378061'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.033167'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.033858'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0386021'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.048765'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.076328'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.136766'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.075981'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.93'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 66.23
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.040440'
'vwma_10_action' => 'SELL'
'hma_9' => '0.037245'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 47.01
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 71.23
'cci_20_action' => 'NEUTRAL'
'adx_14' => 20.35
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000319'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -52.99
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 56.24
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.013264'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 13
'sell_pct' => 59.38
'buy_pct' => 40.63
'overall_action' => 'bearish'
'overall_action_label' => 'BEARISH'
'overall_action_dir' => -1
'last_updated' => 1767710969
'last_updated_date' => 'January 6, 2026'
]
Aleph.im (Wormhole) price prediction 2026
The Aleph.im (Wormhole) price forecast for 2026 suggests that the average price could range between $0.012168 on the lower end and $0.036323 on the high end. In the crypto market, compared to today’s average price, Aleph.im (Wormhole) could potentially gain 3.13% by 2026 if ALEPH reaches the forecast price target.
Aleph.im (Wormhole) price prediction 2027-2032
The ALEPH price prediction for 2027-2032 is currently within a price range of $0.021244 on the lower end and $0.132324 on the high end. Considering the price volatility in the market, if Aleph.im (Wormhole) reaches the upper price target, it could gain 275.71% by 2032 compared to today’s price.
| Aleph.im (Wormhole) Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2027 | $0.011714 | $0.021244 | $0.030773 |
| 2028 | $0.02114 | $0.03646 | $0.05178 |
| 2029 | $0.04644 | $0.0996047 | $0.152768 |
| 2030 | $0.039495 | $0.076844 | $0.114193 |
| 2031 | $0.046696 | $0.075471 | $0.104246 |
| 2032 | $0.071278 | $0.132324 | $0.193371 |
Aleph.im (Wormhole) price prediction 2032-2037
The Aleph.im (Wormhole) price prediction for 2032-2037 is currently estimated to be between $0.132324 on the lower end and $1.20 on the high end. Compared to the current price, Aleph.im (Wormhole) could potentially gain 3326.16% by 2037 if it reaches the upper price target. Please note that this information is for general purposes only and should not be considered long-term investment advice.
| Aleph.im (Wormhole) Price Prediction | Potential Low ($) | Average Price ($) | Potential High ($) |
|---|---|---|---|
| 2032 | $0.071278 | $0.132324 | $0.193371 |
| 2033 | $0.165635 | $0.340352 | $0.51507 |
| 2034 | $0.133162 | $0.215732 | $0.2983012 |
| 2035 | $0.157439 | $0.254456 | $0.351473 |
| 2036 | $0.260612 | $0.49390057 | $0.727188 |
| 2037 | $0.6768019 | $1.20 | $1.73 |
Aleph.im (Wormhole) potential price histogram
Aleph.im (Wormhole) Price Forecast Based on Technical Analysis
As of January 6, 2026, the overall price prediction sentiment for Aleph.im (Wormhole) is BEARISH, with 13 technical indicators showing bullish signals and 19 indicating bearish signals. The ALEPH price prediction was last updated on January 6, 2026.
Aleph.im (Wormhole)'s 50-Day, 200-Day Simple Moving Averages and 14-Day Relative Strength Index - RSI (14)
According to our technical indicators, Aleph.im (Wormhole)'s 200-day SMA is projected to INCREASE over the next month, reaching $0.054984 by Feb 4, 2026. The short-term 50-day SMA for Aleph.im (Wormhole) is expected to reach $0.031924 by Feb 4, 2026.
The Relative Strength Index (RSI) momentum oscillator is a commonly used tool to identify if a cryptocurrency is oversold (below 30) or overbought (above 70). Right now, the RSI stands at 51.93, suggesting that the ALEPH market is in a NEUTRAL state.
Popular ALEPH Moving Averages and Oscillators for Sat, Oct 19, 2024
Moving averages (MA) are widely used indicators across financial markets, designed to smooth out price movements over a set period. As lagging indicators, they are based on historical price data. The table below highlights two types: the simple moving average (SMA) and the exponential moving average (EMA).
Daily Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 3 | $0.03644 | SELL |
| SMA 5 | $0.033682 | BUY |
| SMA 10 | $0.032127 | BUY |
| SMA 21 | $0.031132 | BUY |
| SMA 50 | $0.035213 | BUY |
| SMA 100 | $0.04652 | SELL |
| SMA 200 | $0.060196 | SELL |
Daily Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 3 | $0.036137 | SELL |
| EMA 5 | $0.034900035 | BUY |
| EMA 10 | $0.033397 | BUY |
| EMA 21 | $0.033027 | BUY |
| EMA 50 | $0.036869 | SELL |
| EMA 100 | $0.044782 | SELL |
| EMA 200 | $0.056993 | SELL |
Weekly Simple Moving Average (SMA)
| Period | Value | Action |
|---|---|---|
| SMA 21 | $0.053349 | SELL |
| SMA 50 | $0.063228 | SELL |
| SMA 100 | $0.1378061 | SELL |
| SMA 200 | — | — |
Weekly Exponential Moving Average (EMA)
| Period | Value | Action |
|---|---|---|
| EMA 21 | $0.048765 | SELL |
| EMA 50 | $0.076328 | SELL |
| EMA 100 | $0.136766 | SELL |
| EMA 200 | $0.075981 | SELL |
Aleph.im (Wormhole) Oscillators
An oscillator is a technical analysis tool that sets high and low boundaries between two extremes, creating a trend indicator that fluctuates within these limits. Traders use this indicator to identify short-term overbought or oversold conditions.
| Period | Value | Action |
|---|---|---|
| RSI (14) | 51.93 | NEUTRAL |
| Stoch RSI (14) | 66.23 | NEUTRAL |
| Stochastic Fast (14) | 47.01 | NEUTRAL |
| Commodity Channel Index (20) | 71.23 | NEUTRAL |
| Average Directional Index (14) | 20.35 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000319 | BUY |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -52.99 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 56.24 | NEUTRAL |
| VWMA (10) | 0.040440 | SELL |
| Hull Moving Average (9) | 0.037245 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.013264 | SELL |
Aleph.im (Wormhole) price prediction based on worldwide money flows
Worldwide money flows definitions used for Aleph.im (Wormhole) price prediction
M0: The total of all physical currency, plus accounts at the central bank which can be exchanged for physical currency.
M1: Measure M0 plus the amount in demand accounts, including "checking" or "current" accounts.
M2: Measure M1 plus most savings accounts, money market accounts, and certificate of deposit (CD) accounts of under $100,000.
Aleph.im (Wormhole) price predictions by Internet companies or technological niches
| Comparison | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.04949 | $0.069542 | $0.097718 | $0.13731 | $0.192943 | $0.271118 |
| Amazon.com stock | $0.073488 | $0.153339 | $0.319951 | $0.667596 | $1.39 | $2.90 |
| Apple stock | $0.049957 | $0.07086 | $0.1005099 | $0.142565 | $0.202218 | $0.286831 |
| Netflix stock | $0.055571 | $0.087683 | $0.138351 | $0.218296 | $0.344437 | $0.543468 |
| Google stock | $0.0456099 | $0.059064 | $0.076488 | $0.099052 | $0.128272 | $0.166111 |
| Tesla stock | $0.079841 | $0.180994 | $0.41030087 | $0.930121 | $2.10 | $4.77 |
| Kodak stock | $0.026411 | $0.0198057 | $0.014852 | $0.011137 | $0.008351 | $0.006263 |
| Nokia stock | $0.023331 | $0.015456 | $0.010239 | $0.006783 | $0.004493 | $0.002976 |
This calculation shows how much cryptocurrency can cost if we assume that its capitalization will behave like the capitalization of some Internet companies or technological niches. If you extrapolate the data projections, you can get a potential picture of the future Aleph.im (Wormhole) price for 2024, 2025, 2026, 2027, 2028, 2029 and 2030.
Aleph.im (Wormhole) forecast and prediction overview
You may ask questions like: "Should I invest in Aleph.im (Wormhole) now?", "Should I buy ALEPH today?", "Will Aleph.im (Wormhole) be a good or bad investment in short-term, long-term period?".
We update Aleph.im (Wormhole) forecast projection regularly with fresh values. Look at our similar predictions. We making a forecast of future prices for huge amounts of digital coins like Aleph.im (Wormhole) with technical analysis methods.
If you are trying to find cryptocurrencies with good returns, you should explore the maximum of available sources of information about Aleph.im (Wormhole) in order to make such a responsible decision about the investment by yourself.
Aleph.im (Wormhole) price equal to $0.03522 USD today, but the price can go both up and down and your investment may be lost because cryptocurrency high-risk assets
Aleph.im (Wormhole) price prediction based on Bitcoin's growth pattern
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| If Aleph.im (Wormhole) has 1% of Bitcoin's previous average grow per year | $0.036135 | $0.037074 | $0.038038 | $0.039027 |
| If Aleph.im (Wormhole) has 2% of Bitcoin's previous average grow per year | $0.037051 | $0.038977 | $0.0410035 | $0.043135 |
| If Aleph.im (Wormhole) has 5% of Bitcoin's previous average grow per year | $0.039797 | $0.044969 | $0.050814 | $0.057418 |
| If Aleph.im (Wormhole) has 10% of Bitcoin's previous average grow per year | $0.044375 | $0.0559095 | $0.070442 | $0.088752 |
| If Aleph.im (Wormhole) has 20% of Bitcoin's previous average grow per year | $0.053529 | $0.081358 | $0.123653 | $0.187936 |
| If Aleph.im (Wormhole) has 50% of Bitcoin's previous average grow per year | $0.080994 | $0.186259 | $0.428334 | $0.985022 |
| If Aleph.im (Wormhole) has 100% of Bitcoin's previous average grow per year | $0.126768 | $0.456281 | $1.64 | $5.91 |
Frequently Asked Questions about Aleph.im (Wormhole)
Is ALEPH a good investment?
The determination to procure Aleph.im (Wormhole) is entirely contingent on your individualistic risk tolerance. As you may discern, Aleph.im (Wormhole)'s value has experienced a fall of -2.0192% during the preceding 24 hours, and Aleph.im (Wormhole) has incurred a decline of over the prior 30-day duration. Consequently, the determination of whether or not to invest in Aleph.im (Wormhole) will hinge on whether such an investment aligns with your trading aspirations.
Can Aleph.im (Wormhole) rise?
It appears that the mean value of Aleph.im (Wormhole) may potentially surge to $0.036323 by the end of this year. Looking at Aleph.im (Wormhole)'s prospects in a more extended five-year timeline, the digital currency could potentially growth to as much as $0.114193. However, given the market's unpredictability, it is vital to conduct thorough research before investing any funds into a particular project, network, or asset.
What will the price of Aleph.im (Wormhole) be next week?
Based on the our new experimental Aleph.im (Wormhole) forecast, the price of Aleph.im (Wormhole) will increase by 0.86% over the next week and reach $0.035521 by January 13, 2026.
What will the price of Aleph.im (Wormhole) be next month?
Based on the our new experimental Aleph.im (Wormhole) forecast, the price of Aleph.im (Wormhole) will decrease by -11.62% over the next month and reach $0.031128 by February 5, 2026.
How high can Aleph.im (Wormhole)’s price go this year in 2026?
As per our most recent prediction on Aleph.im (Wormhole)'s value in 2026, ALEPH is anticipated to fluctuate within the range of $0.012168 and $0.036323. However, it is crucial to bear in mind that the cryptocurrency market is exceptionally unstable, and this projected Aleph.im (Wormhole) price forecast fails to consider sudden and extreme price fluctuations.
Where will Aleph.im (Wormhole) be in 5 years?
Aleph.im (Wormhole)'s future appears to be on an upward trend, with an maximum price of $0.114193 projected after a period of five years. Based on the Aleph.im (Wormhole) forecast for 2030, Aleph.im (Wormhole)'s value may potentially reach its highest peak of approximately $0.114193, while its lowest peak is anticipated to be around $0.039495.
How much will be Aleph.im (Wormhole) in 2026?
Based on the our new experimental Aleph.im (Wormhole) price prediction simulation, ALEPH’s value in 2026 expected to grow by 3.13% to $0.036323 if the best happened. The price will be between $0.036323 and $0.012168 during 2026.
How much will be Aleph.im (Wormhole) in 2027?
According to our latest experimental simulation for Aleph.im (Wormhole) price prediction, ALEPH’s value could down by -12.62% to $0.030773 in 2027, assuming the most favorable conditions. The price is projected to fluctuate between $0.030773 and $0.011714 throughout the year.
How much will be Aleph.im (Wormhole) in 2028?
Our new experimental Aleph.im (Wormhole) price prediction model suggests that ALEPH’s value in 2028 could increase by 47.02% , reaching $0.05178 in the best-case scenario. The price is expected to range between $0.05178 and $0.02114 during the year.
How much will be Aleph.im (Wormhole) in 2029?
Based on our experimental forecast model, Aleph.im (Wormhole)'s value may experience a 333.75% growth in 2029, potentially reaching $0.152768 under optimal conditions. The predicted price range for 2029 lies between $0.152768 and $0.04644.
How much will be Aleph.im (Wormhole) in 2030?
Using our new experimental simulation for Aleph.im (Wormhole) price predictions, ALEPH’s value in 2030 is expected to rise by 224.23% , reaching $0.114193 in the best scenario. The price is forecasted to range between $0.114193 and $0.039495 over the course of 2030.
How much will be Aleph.im (Wormhole) in 2031?
Our experimental simulation indicates that Aleph.im (Wormhole)’s price could grow by 195.98% in 2031, potentially hitting $0.104246 under ideal conditions. The price will likely fluctuate between $0.104246 and $0.046696 during the year.
How much will be Aleph.im (Wormhole) in 2032?
Based on the findings from our latest experimental Aleph.im (Wormhole) price prediction, ALEPH could see a 449.04% rise in value, reaching $0.193371 if the most positive scenario plays out in 2032. The price is expected to stay within a range of $0.193371 and $0.071278 throughout the year.
How much will be Aleph.im (Wormhole) in 2033?
According to our experimental Aleph.im (Wormhole) price prediction, ALEPH’s value is anticipated to rise by 1362.43% in 2033, with the highest potential price being $0.51507. Throughout the year, ALEPH’s price could range from $0.51507 and $0.165635.
How much will be Aleph.im (Wormhole) in 2034?
The results from our new Aleph.im (Wormhole) price prediction simulation suggest that ALEPH may rise by 746.96% in 2034, potentially reaching $0.2983012 under the best circumstances. The predicted price range for the year is between $0.2983012 and $0.133162.
How much will be Aleph.im (Wormhole) in 2035?
Based on our experimental forecast for Aleph.im (Wormhole)’s price, ALEPH could grow by 897.93% , with the value potentially hitting $0.351473 in 2035. The expected price range for the year lies between $0.351473 and $0.157439.
How much will be Aleph.im (Wormhole) in 2036?
Our recent Aleph.im (Wormhole) price prediction simulation suggests that ALEPH’s value might rise by 1964.7% in 2036, possibly reaching $0.727188 if conditions are optimal. The expected price range for 2036 is between $0.727188 and $0.260612.
How much will be Aleph.im (Wormhole) in 2037?
According to the experimental simulation, Aleph.im (Wormhole)’s value could rise by 4830.69% in 2037, with a high of $1.73 under favorable conditions. The price is expected to fall between $1.73 and $0.6768019 over the course of the year.
Related Predictions
SolPod Price Prediction
zuzalu Price Prediction
SOFT COQ INU Price Prediction
All Street Bets Price Prediction
MagicRing Price Prediction
AI INU Price Prediction
Wall Street Baby On Solana Price Prediction
Meta Masters Guild Games Price Prediction
Morfey Price Prediction
PANTIES Price PredictionCeler Bridged BUSD (zkSync) Price Prediction
Bridged BUSD Price Prediction
Multichain Bridged BUSD (Moonriver) Price Prediction
tooker kurlson Price Prediction
dogwifsaudihat Price PredictionHarmony Horizen Bridged BUSD (Harmony) Price Prediction
IoTeX Bridged BUSD (IoTeX) Price Prediction
MIMANY Price Prediction
The Open League MEME Price Prediction
Sandwich Cat Price Prediction
Hege Price Prediction
DexNet Price Prediction
SolDocs Price Prediction
Secret Society Price Prediction
duk Price Prediction
How to read and predict Aleph.im (Wormhole) price movements?
Aleph.im (Wormhole) traders use indicators and chart patterns to predict market direction. They also identify key support and resistance levels to gauge when a downtrend might slow or an uptrend might stall.
Aleph.im (Wormhole) Price Prediction Indicators
Moving averages are popular tools for Aleph.im (Wormhole) price prediction. A simple moving average (SMA) calculates the average closing price of ALEPH over a specific period, like a 12-day SMA. An exponential moving average (EMA) gives more weight to recent prices, reacting faster to price changes.
Commonly used moving averages in the crypto market include the 50-day, 100-day, and 200-day averages, which help identify key resistance and support levels. A ALEPH price move above these averages is seen as bullish, while a drop below indicates weakness.
Traders also use RSI and Fibonacci retracement levels to gauge ALEPH's future direction.
How to read Aleph.im (Wormhole) charts and predict price movements?
Most traders prefer candlestick charts over simple line charts because they provide more detailed information. Candlesticks can represent Aleph.im (Wormhole)'s price action in different time frames, such as 5-minute for short-term and weekly for long-term trends. Popular choices include 1-hour, 4-hour, and 1-day charts.
A 1-hour candlestick chart, for instance, shows ALEPH's opening, closing, highest, and lowest prices within each hour. The candle's color is crucial: green indicates the price closed higher than it opened, while red means the opposite. Some charts use hollow and filled candlesticks to convey the same information.
What affects the price of Aleph.im (Wormhole)?
Aleph.im (Wormhole)'s price action is driven by supply and demand, influenced by factors like block reward halvings, hard forks, and protocol updates. Real-world events, such as regulations, adoption by companies and governments, and cryptocurrency exchange hacks, also impact ALEPH's price. Aleph.im (Wormhole)'s market capitalization can change rapidly.
Traders often monitor the activity of ALEPH "whales," large holders of Aleph.im (Wormhole), as their actions can significantly influence price movements in the relatively small Aleph.im (Wormhole) market.
Bullish and bearish price prediction patterns
Traders often identify candlestick patterns to gain an edge in cryptocurrency price predictions. Certain formations indicate bullish trends, while others suggest bearish movements.
Commonly followed bullish candlestick patterns:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Three White Soldiers
Common bearish candlestick patterns:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


