Kleros Preisvorhersage bis zu $0.0183029 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.006131 | $0.0183029 |
| 2027 | $0.0059027 | $0.0155065 |
| 2028 | $0.010652 | $0.026091 |
| 2029 | $0.0234009 | $0.076978 |
| 2030 | $0.0199014 | $0.05754 |
| 2031 | $0.023529 | $0.052528 |
| 2032 | $0.035916 | $0.097437 |
| 2033 | $0.083461 | $0.259537 |
| 2034 | $0.067099 | $0.15031 |
| 2035 | $0.079332 | $0.1771031 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Kleros eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.48 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige Kleros Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Kleros'
'name_with_ticker' => 'Kleros <small>PNK</small>'
'name_lang' => 'Kleros'
'name_lang_with_ticker' => 'Kleros <small>PNK</small>'
'name_with_lang' => 'Kleros'
'name_with_lang_with_ticker' => 'Kleros <small>PNK</small>'
'image' => '/uploads/coins/kleros.png?1717120200'
'price_for_sd' => 0.01774
'ticker' => 'PNK'
'marketcap' => '$12.88M'
'low24h' => '$0.01737'
'high24h' => '$0.0178'
'volume24h' => '$6.21K'
'current_supply' => '724.19M'
'max_supply' => '805.29M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0173 USD 1.03x'
'price' => '$0.01774'
'change_24h_pct' => '2.1141%'
'ath_price' => '$0.3802'
'ath_days' => 1702
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10.05.2021'
'ath_pct' => '-95.32%'
'fdv' => '$14.32M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.87505'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.017898'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.015685'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006131'
'current_year_max_price_prediction' => '$0.0183029'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0199014'
'grand_prediction_max_price' => '$0.05754'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018083316694067
107 => 0.018150833234359
108 => 0.018302951447116
109 => 0.017003117974227
110 => 0.017586705042449
111 => 0.017929507770315
112 => 0.016380712574544
113 => 0.017898893069051
114 => 0.016980490765333
115 => 0.016668771229511
116 => 0.017088460518569
117 => 0.016924907194462
118 => 0.016784293650568
119 => 0.016705828877028
120 => 0.017014002371495
121 => 0.016999625709632
122 => 0.016495394058785
123 => 0.015837644425367
124 => 0.016058406792238
125 => 0.015978201754695
126 => 0.015687528351986
127 => 0.015883407129371
128 => 0.015020856125746
129 => 0.013536881955507
130 => 0.014517240747725
131 => 0.01447949800065
201 => 0.014460466396077
202 => 0.015197178933302
203 => 0.015126361021698
204 => 0.014997825818685
205 => 0.015685167702184
206 => 0.015434278668654
207 => 0.016207459553103
208 => 0.016716726489805
209 => 0.016587559921598
210 => 0.017066527937067
211 => 0.016063492711293
212 => 0.016396660778507
213 => 0.016465326255408
214 => 0.015676686010035
215 => 0.015137947707856
216 => 0.015102020005167
217 => 0.0141679220319
218 => 0.014666909629444
219 => 0.015105998065772
220 => 0.01489570877941
221 => 0.014829137473562
222 => 0.015169235837587
223 => 0.015195664393218
224 => 0.014593090524074
225 => 0.014718384712501
226 => 0.015240882306671
227 => 0.014705219113719
228 => 0.0136645130299
301 => 0.013406403532225
302 => 0.013371966967333
303 => 0.012671953538718
304 => 0.013423651643058
305 => 0.013095515276257
306 => 0.014132094127305
307 => 0.01354000584687
308 => 0.013514482104493
309 => 0.01347589922437
310 => 0.012873368749169
311 => 0.013005284630429
312 => 0.013443793111092
313 => 0.013600257877144
314 => 0.013583937320167
315 => 0.013441644180309
316 => 0.013506785251077
317 => 0.01329694316548
318 => 0.01322284355757
319 => 0.012988964812304
320 => 0.012645227667415
321 => 0.012693026425675
322 => 0.012011993197934
323 => 0.011640930150292
324 => 0.011538224789237
325 => 0.011400882888081
326 => 0.011553737922425
327 => 0.012010063916367
328 => 0.011459637952713
329 => 0.01051597124592
330 => 0.010572687222928
331 => 0.01070011118414
401 => 0.010462657475415
402 => 0.010237927468085
403 => 0.010433311976536
404 => 0.01003346795273
405 => 0.01074843042414
406 => 0.010729092692947
407 => 0.010995586489306
408 => 0.011162230529173
409 => 0.010778169968929
410 => 0.010681579776638
411 => 0.010736601939946
412 => 0.0098272081438401
413 => 0.010921269614832
414 => 0.010930731103865
415 => 0.010849716090527
416 => 0.011432270048472
417 => 0.012661640602871
418 => 0.01219910194899
419 => 0.012019993001903
420 => 0.011679506762562
421 => 0.012133184460411
422 => 0.012098349091691
423 => 0.011940810343417
424 => 0.01184553041691
425 => 0.012021086602941
426 => 0.011823777062666
427 => 0.011788334847529
428 => 0.011573593585309
429 => 0.011496940724802
430 => 0.01144018999852
501 => 0.011377713025095
502 => 0.011515521660179
503 => 0.011203229162844
504 => 0.01082663502547
505 => 0.010795325297753
506 => 0.01088177420876
507 => 0.010843527001004
508 => 0.010795142184837
509 => 0.010702762393953
510 => 0.010675355283379
511 => 0.010764415096703
512 => 0.01066387175997
513 => 0.010812228930198
514 => 0.010771883988873
515 => 0.010546520426254
516 => 0.010265633986954
517 => 0.010263133508465
518 => 0.010202616985864
519 => 0.010125540095611
520 => 0.010104099068023
521 => 0.010416857238206
522 => 0.011064257290421
523 => 0.010937157169201
524 => 0.011029000032527
525 => 0.011480776019867
526 => 0.011624382020865
527 => 0.011522453882851
528 => 0.011382928360885
529 => 0.011389066775747
530 => 0.011865867721555
531 => 0.011895605211689
601 => 0.01197074225558
602 => 0.012067314590706
603 => 0.011538900569114
604 => 0.01136417852285
605 => 0.01128138552412
606 => 0.011026415132954
607 => 0.011301378840317
608 => 0.011141169263156
609 => 0.011162787008654
610 => 0.011148708423539
611 => 0.011156396283001
612 => 0.010748230577558
613 => 0.010896944708064
614 => 0.010649678622518
615 => 0.010318617090893
616 => 0.010317507256554
617 => 0.010398534097405
618 => 0.010350336161886
619 => 0.010220636756688
620 => 0.010239059945032
621 => 0.010077653429345
622 => 0.010258657618396
623 => 0.010263848170874
624 => 0.010194151698724
625 => 0.010473013625723
626 => 0.010587263584743
627 => 0.010541387873731
628 => 0.010584044822563
629 => 0.01094243875306
630 => 0.011000872601555
701 => 0.011026825057133
702 => 0.0109920522047
703 => 0.0105905956057
704 => 0.010608401912991
705 => 0.010477751044761
706 => 0.010367364828755
707 => 0.010371779698496
708 => 0.010428532562726
709 => 0.010676375649332
710 => 0.011197946813945
711 => 0.011217740058378
712 => 0.011241730048041
713 => 0.011144150703679
714 => 0.01111471983971
715 => 0.011153546746035
716 => 0.011349421452555
717 => 0.011853264377187
718 => 0.011675172637085
719 => 0.011530381280218
720 => 0.01165740233566
721 => 0.011637848439798
722 => 0.011472793880384
723 => 0.011468161348632
724 => 0.011151368877982
725 => 0.011034257914597
726 => 0.01093639122799
727 => 0.010829523361089
728 => 0.010766168507347
729 => 0.010863510356961
730 => 0.010885773589683
731 => 0.010672933934258
801 => 0.010643924675693
802 => 0.010817734132776
803 => 0.010741247070983
804 => 0.010819915910825
805 => 0.010838167756477
806 => 0.010835228788951
807 => 0.010755367511957
808 => 0.010806268708415
809 => 0.010685872204413
810 => 0.010554959089281
811 => 0.010471444678002
812 => 0.010398567277582
813 => 0.010439003894994
814 => 0.010294854737354
815 => 0.010248738520675
816 => 0.010789024528368
817 => 0.011188139611305
818 => 0.011182336319932
819 => 0.011147010276185
820 => 0.011094522940804
821 => 0.011345581677048
822 => 0.011258117833419
823 => 0.011321755087508
824 => 0.011337953439521
825 => 0.011386980972432
826 => 0.011404504101389
827 => 0.011351537035085
828 => 0.011173773091188
829 => 0.010730802244286
830 => 0.010524598119276
831 => 0.010456547323421
901 => 0.010459020840603
902 => 0.010390790194444
903 => 0.010410887177621
904 => 0.010383801283848
905 => 0.010332507153822
906 => 0.010435836627008
907 => 0.010447744386213
908 => 0.010423626052476
909 => 0.010429306793167
910 => 0.0102296172909
911 => 0.010244799250055
912 => 0.010160264172252
913 => 0.01014441486425
914 => 0.0099307175488764
915 => 0.009552121778771
916 => 0.00976190058659
917 => 0.0095085172861088
918 => 0.0094125571908331
919 => 0.0098668173570119
920 => 0.0098212222355433
921 => 0.0097431832073119
922 => 0.0096277472197991
923 => 0.0095849308891415
924 => 0.009324792418069
925 => 0.0093094220494133
926 => 0.0094383537000064
927 => 0.0093788561795249
928 => 0.0092952991272958
929 => 0.0089926639541647
930 => 0.0086524018205029
1001 => 0.0086626721955066
1002 => 0.0087709032494224
1003 => 0.0090855996356286
1004 => 0.0089626423132351
1005 => 0.0088734353650659
1006 => 0.0088567295852248
1007 => 0.009065837395855
1008 => 0.0093617687573374
1009 => 0.0095006131310539
1010 => 0.0093630225734671
1011 => 0.0092049659493132
1012 => 0.0092145861236616
1013 => 0.0092785848336873
1014 => 0.0092853101932179
1015 => 0.0091824315793772
1016 => 0.0092113913065585
1017 => 0.0091673988328372
1018 => 0.0088974171028136
1019 => 0.0088925339894388
1020 => 0.0088262761188475
1021 => 0.0088242698568586
1022 => 0.0087115486901824
1023 => 0.0086957782197598
1024 => 0.0084719635016384
1025 => 0.0086192790268793
1026 => 0.0085204675069599
1027 => 0.0083715352391603
1028 => 0.0083458592600557
1029 => 0.0083450874091191
1030 => 0.0084980075475037
1031 => 0.0086174920660278
1101 => 0.0085221863756538
1102 => 0.0085004871173788
1103 => 0.0087321784258665
1104 => 0.0087026935949483
1105 => 0.0086771599215299
1106 => 0.0093352713497202
1107 => 0.0088143248012324
1108 => 0.0085871623715023
1109 => 0.0083060057277359
1110 => 0.0083975517486611
1111 => 0.0084168418403609
1112 => 0.0077407107943969
1113 => 0.0074664045132561
1114 => 0.0073722729345827
1115 => 0.007318098880231
1116 => 0.007342786677074
1117 => 0.0070958788511295
1118 => 0.0072618049936427
1119 => 0.0070480036869738
1120 => 0.0070121592021411
1121 => 0.0073944624233647
1122 => 0.007447657683215
1123 => 0.007220710178222
1124 => 0.0073664472158911
1125 => 0.0073136009401359
1126 => 0.0070516686967297
1127 => 0.0070416648116747
1128 => 0.006910236419297
1129 => 0.0067045764347775
1130 => 0.0066105843032579
1201 => 0.0065616323850855
1202 => 0.0065818309005773
1203 => 0.0065716179130599
1204 => 0.0065049712611776
1205 => 0.006575438021132
1206 => 0.0063954245683241
1207 => 0.006323741760949
1208 => 0.0062913642998862
1209 => 0.0061315919993315
1210 => 0.0063858607805786
1211 => 0.006435954933678
1212 => 0.0064861477877339
1213 => 0.0069230423141734
1214 => 0.0069012162982836
1215 => 0.0070985128522265
1216 => 0.0070908462709454
1217 => 0.0070345740977686
1218 => 0.0067971710554589
1219 => 0.0068917956768212
1220 => 0.0066005558001991
1221 => 0.006818772518151
1222 => 0.0067191875210257
1223 => 0.0067851027304494
1224 => 0.0066665812405708
1225 => 0.006732175926702
1226 => 0.0064478341157485
1227 => 0.0061823197334773
1228 => 0.0062891704717512
1229 => 0.0064053294441191
1230 => 0.0066571916929683
1231 => 0.0065071846153721
]
'min_raw' => 0.0061315919993315
'max_raw' => 0.018302951447116
'avg_raw' => 0.012217271723224
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006131'
'max' => '$0.0183029'
'avg' => '$0.012217'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.011615428000669
'max_diff' => 0.00055593144711636
'year' => 2026
]
1 => [
'items' => [
101 => 0.0065611328328713
102 => 0.0063804153350716
103 => 0.0060075435177095
104 => 0.0060096539317021
105 => 0.005952295726055
106 => 0.0059027298619408
107 => 0.00652441473273
108 => 0.0064470983916639
109 => 0.0063239049210877
110 => 0.0064888042769679
111 => 0.0065324062839673
112 => 0.0065336475718094
113 => 0.0066539538851912
114 => 0.0067181613862091
115 => 0.0067294782365548
116 => 0.0069187828200509
117 => 0.006982235219451
118 => 0.0072435866724603
119 => 0.0067127138283406
120 => 0.0067017808514665
121 => 0.0064911247490715
122 => 0.0063575233185913
123 => 0.0065002725533175
124 => 0.0066267288880711
125 => 0.0064950540998879
126 => 0.0065122480474182
127 => 0.0063354854025078
128 => 0.0063986697306078
129 => 0.0064530925858156
130 => 0.0064230434839974
131 => 0.0063780585241826
201 => 0.0066163609107103
202 => 0.0066029149561478
203 => 0.0068248276170306
204 => 0.0069978244053154
205 => 0.0073078655767966
206 => 0.0069843214515442
207 => 0.0069725302176485
208 => 0.0070877914203517
209 => 0.0069822175735614
210 => 0.0070489366004475
211 => 0.0072971161100931
212 => 0.0073023597520558
213 => 0.0072145219931301
214 => 0.0072091770575168
215 => 0.0072260472599583
216 => 0.0073248565625891
217 => 0.0072903295561467
218 => 0.0073302850821187
219 => 0.0073802500791674
220 => 0.0075869264916807
221 => 0.0076367554750379
222 => 0.0075156968788456
223 => 0.0075266271146461
224 => 0.0074813478765374
225 => 0.0074376086998716
226 => 0.0075359279814226
227 => 0.0077156084009274
228 => 0.007714490618363
301 => 0.0077561729831999
302 => 0.0077821407511779
303 => 0.0076706680814484
304 => 0.0075981034724181
305 => 0.0076259293609264
306 => 0.00767042356262
307 => 0.007611500490995
308 => 0.007247799997103
309 => 0.0073581234936723
310 => 0.0073397602692998
311 => 0.007313608804749
312 => 0.0074245399336558
313 => 0.0074138403556545
314 => 0.0070933464544997
315 => 0.0071138634342117
316 => 0.0070945941599904
317 => 0.0071568571271222
318 => 0.0069788551690067
319 => 0.0070336073724615
320 => 0.0070679474411984
321 => 0.0070881740054972
322 => 0.0071612462252296
323 => 0.0071526720436404
324 => 0.0071607132420634
325 => 0.0072690600535757
326 => 0.0078170410460695
327 => 0.007846866442439
328 => 0.0076999952825893
329 => 0.0077586674140437
330 => 0.0076460297518358
331 => 0.0077216441690827
401 => 0.0077733776329651
402 => 0.0075396040574536
403 => 0.0075257615034898
404 => 0.0074126589455825
405 => 0.0074734338537456
406 => 0.0073767366049876
407 => 0.0074004627275067
408 => 0.0073341224205373
409 => 0.0074535217648588
410 => 0.0075870287845926
411 => 0.0076207579301293
412 => 0.0075320310695324
413 => 0.0074677869750751
414 => 0.0073549955085285
415 => 0.0075425702311173
416 => 0.0075974227962384
417 => 0.0075422821139442
418 => 0.0075295048130089
419 => 0.0075052918508246
420 => 0.0075346417073983
421 => 0.0075971240573885
422 => 0.007567658535001
423 => 0.0075871210316536
424 => 0.0075129500640531
425 => 0.0076707049835404
426 => 0.0079212577614751
427 => 0.0079220633296257
428 => 0.007892597648408
429 => 0.0078805409265007
430 => 0.0079107745035571
501 => 0.0079271749788639
502 => 0.0080249448231745
503 => 0.0081298557614421
504 => 0.0086194293341086
505 => 0.0084819590339642
506 => 0.0089163378324961
507 => 0.0092598750651072
508 => 0.0093628868601047
509 => 0.0092681208557864
510 => 0.0089439314741727
511 => 0.0089280251964837
512 => 0.009412501001841
513 => 0.0092756143964299
514 => 0.0092593321702858
515 => 0.009086116793368
516 => 0.0091885085342682
517 => 0.0091661139585372
518 => 0.0091307630251655
519 => 0.0093261193341326
520 => 0.009691808904941
521 => 0.0096348127559154
522 => 0.0095922677746431
523 => 0.0094058480513656
524 => 0.0095181143631313
525 => 0.0094781384798311
526 => 0.0096499002438111
527 => 0.0095481523798183
528 => 0.0092745773457622
529 => 0.0093181450716508
530 => 0.0093115598975288
531 => 0.0094470823143281
601 => 0.0094064018486782
602 => 0.0093036163837125
603 => 0.0096905590177435
604 => 0.0096654331153776
605 => 0.0097010559003515
606 => 0.0097167381519683
607 => 0.009952263314609
608 => 0.010048750437778
609 => 0.010070654703983
610 => 0.010162310008411
611 => 0.010068374236512
612 => 0.010444184299179
613 => 0.010694076061728
614 => 0.01098433820324
615 => 0.011408489207099
616 => 0.011567973908165
617 => 0.01153916442441
618 => 0.011860750874767
619 => 0.012438634577593
620 => 0.011655971243078
621 => 0.012480117634777
622 => 0.012219202402393
623 => 0.011600577080075
624 => 0.011560744902431
625 => 0.011979685153093
626 => 0.012908854307555
627 => 0.012676107972912
628 => 0.01290923499718
629 => 0.0126372799401
630 => 0.012623775079299
701 => 0.012896026747072
702 => 0.013532157608491
703 => 0.01322995568124
704 => 0.012796675115573
705 => 0.013116602742669
706 => 0.012839451824174
707 => 0.012214953235147
708 => 0.012675929996176
709 => 0.012367687963938
710 => 0.012457649375993
711 => 0.013105528280215
712 => 0.013027573776384
713 => 0.013128454122734
714 => 0.012950402951925
715 => 0.012784075082296
716 => 0.012473611761965
717 => 0.012381698878472
718 => 0.01240710029279
719 => 0.012381686290792
720 => 0.012207984916372
721 => 0.012170474121104
722 => 0.012107954485606
723 => 0.012127331934885
724 => 0.012009776729383
725 => 0.01223162769031
726 => 0.012272805183602
727 => 0.01243424981213
728 => 0.012451011529035
729 => 0.012900632521465
730 => 0.012652988834408
731 => 0.012819129600213
801 => 0.012804268406342
802 => 0.011613984566645
803 => 0.011777995177792
804 => 0.012033144219372
805 => 0.011918199921987
806 => 0.011755695578307
807 => 0.011624464607854
808 => 0.011425636268563
809 => 0.011705483337956
810 => 0.01207345247579
811 => 0.012460343833612
812 => 0.01292516844991
813 => 0.012821425006708
814 => 0.012451654260736
815 => 0.012468241906282
816 => 0.012570780204054
817 => 0.012437983791853
818 => 0.012398819537401
819 => 0.0125653996369
820 => 0.012566546782494
821 => 0.012413748461275
822 => 0.012243941089038
823 => 0.012243229589948
824 => 0.012213014008203
825 => 0.012642655224968
826 => 0.012878914452563
827 => 0.012906001192255
828 => 0.012877091299165
829 => 0.012888217569623
830 => 0.012750743530703
831 => 0.013064968417015
901 => 0.013353332246315
902 => 0.013276044580068
903 => 0.013160179381274
904 => 0.013067887169611
905 => 0.013254303468089
906 => 0.013246002643764
907 => 0.013350813639829
908 => 0.01334605880763
909 => 0.013310814811794
910 => 0.013276045838742
911 => 0.013413900886788
912 => 0.013374200846835
913 => 0.013334439141755
914 => 0.013254690955003
915 => 0.01326553005806
916 => 0.013149684865027
917 => 0.013096089578014
918 => 0.012290145054419
919 => 0.012074770342717
920 => 0.012142531611375
921 => 0.012164840380438
922 => 0.012071109029895
923 => 0.012205495708965
924 => 0.012184551687382
925 => 0.012266032623516
926 => 0.012215126872111
927 => 0.012217216061905
928 => 0.012366919022538
929 => 0.012410378428892
930 => 0.01238827462406
1001 => 0.01240375537129
1002 => 0.012760502657195
1003 => 0.012709784601276
1004 => 0.012682841644917
1005 => 0.01269030502796
1006 => 0.012781461608256
1007 => 0.012806980473775
1008 => 0.012698855247395
1009 => 0.01274984772922
1010 => 0.012966967244923
1011 => 0.013042946787518
1012 => 0.013285437015234
1013 => 0.01318242285658
1014 => 0.013371509803138
1015 => 0.013952698612365
1016 => 0.014416992448382
1017 => 0.013990008649026
1018 => 0.014842625151408
1019 => 0.015506509399086
1020 => 0.015481028415903
1021 => 0.015365264841401
1022 => 0.014609450275696
1023 => 0.013913938443774
1024 => 0.014495763624169
1025 => 0.014497246816207
1026 => 0.014447267517216
1027 => 0.014136850383616
1028 => 0.014436465673835
1029 => 0.01446024804753
1030 => 0.014446936242504
1031 => 0.014208940153984
1101 => 0.013845564115844
1102 => 0.013916566923897
1103 => 0.014032870971907
1104 => 0.013812683145459
1105 => 0.013742319793258
1106 => 0.013873138652175
1107 => 0.014294664272797
1108 => 0.01421497729595
1109 => 0.014212896346945
1110 => 0.014553831026433
1111 => 0.014309795374228
1112 => 0.013917462496689
1113 => 0.013818393270876
1114 => 0.013466764260265
1115 => 0.013709635670354
1116 => 0.013718376180027
1117 => 0.013585357990807
1118 => 0.01392825618964
1119 => 0.013925096322371
1120 => 0.014250627128501
1121 => 0.014872919766033
1122 => 0.014688877211954
1123 => 0.014474855745333
1124 => 0.014498125812926
1125 => 0.014753341019004
1126 => 0.014599032079413
1127 => 0.01465452264997
1128 => 0.014753257027379
1129 => 0.014812825928707
1130 => 0.014489554764738
1201 => 0.01441418479257
1202 => 0.014260004280779
1203 => 0.014219781463168
1204 => 0.01434535827294
1205 => 0.014312273220259
1206 => 0.013717641574034
1207 => 0.013655499258504
1208 => 0.013657405074603
1209 => 0.013501145267497
1210 => 0.01326281155501
1211 => 0.013889138321259
1212 => 0.013838835516492
1213 => 0.013783305113157
1214 => 0.013790107270713
1215 => 0.014061974491758
1216 => 0.013904277773928
1217 => 0.014323540344263
1218 => 0.014237352563989
1219 => 0.014148954392367
1220 => 0.014136735072374
1221 => 0.014102709318078
1222 => 0.013986022346168
1223 => 0.013845115815787
1224 => 0.013752077119315
1225 => 0.012685564210522
1226 => 0.012883502802774
1227 => 0.013111213110489
1228 => 0.013189817796221
1229 => 0.013055359041998
1230 => 0.01399133159732
1231 => 0.014162342802434
]
'min_raw' => 0.0059027298619408
'max_raw' => 0.015506509399086
'avg_raw' => 0.010704619630513
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0059027'
'max' => '$0.0155065'
'avg' => '$0.0107046'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00022886213739066
'max_diff' => -0.0027964420480303
'year' => 2027
]
2 => [
'items' => [
101 => 0.013644338707361
102 => 0.01354744129114
103 => 0.013997684175796
104 => 0.013726132676394
105 => 0.013848412299948
106 => 0.013584110637204
107 => 0.014121151210915
108 => 0.014117059861532
109 => 0.013908138948747
110 => 0.014084717473604
111 => 0.014054032609526
112 => 0.013818161413541
113 => 0.014128628748543
114 => 0.014128782736468
115 => 0.013927700900245
116 => 0.01369288133801
117 => 0.013650901146473
118 => 0.013619274711395
119 => 0.013840634135654
120 => 0.014039104303272
121 => 0.014408408080282
122 => 0.014501259824263
123 => 0.014863666362514
124 => 0.01464787091424
125 => 0.014743530241441
126 => 0.014847381972956
127 => 0.014897172312065
128 => 0.014816041626383
129 => 0.015379008152769
130 => 0.015426539776445
131 => 0.015442476718716
201 => 0.015252647573514
202 => 0.015421260284518
203 => 0.015342371980906
204 => 0.015547617431104
205 => 0.0155798025384
206 => 0.015552542897538
207 => 0.015562758958602
208 => 0.015082366342432
209 => 0.015057455451011
210 => 0.014717793678885
211 => 0.014856208361679
212 => 0.014597448746584
213 => 0.01467950408605
214 => 0.014715673297835
215 => 0.014696780554183
216 => 0.014864034120169
217 => 0.014721834421435
218 => 0.014346546036681
219 => 0.013971155404857
220 => 0.013966442681261
221 => 0.013867608954097
222 => 0.013796170271657
223 => 0.013809931896319
224 => 0.013858429656582
225 => 0.013793351493667
226 => 0.013807239219271
227 => 0.014037867997739
228 => 0.014084118954491
229 => 0.013926940132031
301 => 0.013295844479057
302 => 0.013140972022834
303 => 0.013252291273113
304 => 0.013199087841358
305 => 0.010652694034545
306 => 0.011250931488262
307 => 0.010895479107487
308 => 0.011059287918126
309 => 0.010696463081303
310 => 0.010869622110714
311 => 0.010837645960737
312 => 0.011799594083182
313 => 0.011784574586366
314 => 0.011791763624678
315 => 0.011448612095128
316 => 0.01199526179928
317 => 0.012264561100432
318 => 0.012214720966958
319 => 0.01222726465479
320 => 0.01201172253861
321 => 0.011793850543514
322 => 0.011552196970693
323 => 0.01200115943971
324 => 0.0119512424772
325 => 0.012065734029641
326 => 0.012356918283299
327 => 0.012399796270751
328 => 0.012457424720713
329 => 0.012436769023674
330 => 0.012928871527893
331 => 0.012869274667635
401 => 0.013012885953669
402 => 0.012717466642482
403 => 0.012383171650416
404 => 0.012446710199481
405 => 0.012440590926261
406 => 0.0123626855548
407 => 0.012292356068828
408 => 0.012175277289896
409 => 0.012545731870837
410 => 0.01253069209138
411 => 0.012774168638953
412 => 0.012731131794164
413 => 0.012443721211765
414 => 0.012453986136942
415 => 0.012523022691914
416 => 0.01276195899692
417 => 0.01283289156027
418 => 0.012800032770752
419 => 0.012877807088271
420 => 0.012939276737723
421 => 0.012885526729838
422 => 0.013646513492746
423 => 0.013330498732975
424 => 0.013484522128071
425 => 0.013521255800243
426 => 0.0134271632714
427 => 0.013447568571706
428 => 0.013478477041556
429 => 0.01366614721799
430 => 0.014158648063757
501 => 0.01437677333578
502 => 0.015033013978774
503 => 0.014358661068389
504 => 0.014318647757436
505 => 0.014436856513808
506 => 0.014822139241372
507 => 0.015134374704297
508 => 0.015237961220645
509 => 0.015251651888807
510 => 0.015445987079777
511 => 0.015557376387105
512 => 0.01542238967607
513 => 0.015308002572167
514 => 0.014898282164234
515 => 0.014945708417084
516 => 0.015272428268867
517 => 0.015733939303215
518 => 0.016129963782724
519 => 0.015991289812846
520 => 0.017049274314446
521 => 0.017154169156301
522 => 0.017139676080813
523 => 0.017378642141003
524 => 0.016904343176117
525 => 0.016701571179519
526 => 0.01533273436238
527 => 0.015717321673868
528 => 0.016276341917136
529 => 0.016202353491721
530 => 0.015796378048406
531 => 0.016129655813945
601 => 0.016019463762099
602 => 0.015932550718935
603 => 0.016330716218591
604 => 0.015892916895982
605 => 0.016271974533994
606 => 0.015785829192394
607 => 0.01599192326386
608 => 0.015874934301247
609 => 0.015950640497685
610 => 0.015508063620239
611 => 0.015746867360363
612 => 0.015498128599536
613 => 0.015498010664976
614 => 0.015492519743045
615 => 0.015785159792081
616 => 0.015794702773574
617 => 0.015578441335182
618 => 0.015547274683271
619 => 0.015662514130489
620 => 0.015527598919055
621 => 0.015590724897339
622 => 0.01552951094063
623 => 0.015515730389612
624 => 0.01540592461453
625 => 0.015358617267453
626 => 0.015377167697202
627 => 0.015313845517065
628 => 0.01527569161307
629 => 0.01548492997122
630 => 0.015373142357112
701 => 0.015467796916098
702 => 0.015359926099775
703 => 0.014985998853323
704 => 0.01477094933968
705 => 0.014064635434207
706 => 0.014264945181619
707 => 0.014397750751389
708 => 0.014353858511372
709 => 0.01444815602697
710 => 0.014453945128576
711 => 0.014423288045005
712 => 0.014387791069646
713 => 0.014370513105148
714 => 0.014499288896951
715 => 0.014574047578486
716 => 0.014411079567025
717 => 0.014372898442104
718 => 0.014537668099402
719 => 0.01463817749517
720 => 0.015380282402166
721 => 0.015325304873689
722 => 0.015463287681372
723 => 0.015447752934746
724 => 0.015592380899584
725 => 0.015828786497754
726 => 0.015348107816628
727 => 0.015431537015053
728 => 0.015411082102261
729 => 0.015634403476562
730 => 0.015635100661516
731 => 0.015501208341893
801 => 0.015573793540515
802 => 0.015533278473915
803 => 0.015606494675201
804 => 0.015324570615278
805 => 0.015667923688443
806 => 0.015862582755744
807 => 0.015865285597083
808 => 0.015957552450074
809 => 0.016051300916448
810 => 0.016231242933884
811 => 0.016046282431246
812 => 0.015713556492542
813 => 0.015737578230618
814 => 0.015542501134496
815 => 0.015545780415725
816 => 0.015528275355521
817 => 0.015580809358914
818 => 0.015336098874779
819 => 0.015393531936285
820 => 0.015313125313849
821 => 0.015431362226759
822 => 0.01530415885373
823 => 0.015411072238283
824 => 0.015457212510821
825 => 0.015627471109816
826 => 0.015279011520225
827 => 0.01456847882841
828 => 0.014717841414605
829 => 0.014496922417444
830 => 0.014517369311729
831 => 0.014558675292284
901 => 0.014424789094829
902 => 0.014450330362064
903 => 0.014449417848268
904 => 0.014441554297347
905 => 0.014406725326458
906 => 0.014356216427968
907 => 0.014557428333734
908 => 0.014591618157395
909 => 0.01466761790017
910 => 0.014893741583551
911 => 0.014871146495217
912 => 0.01490800002175
913 => 0.014827548980252
914 => 0.014521101204805
915 => 0.014537742793377
916 => 0.014330221917226
917 => 0.014662311124796
918 => 0.01458366801708
919 => 0.014532966293932
920 => 0.014519131859023
921 => 0.014745816059278
922 => 0.014813643524833
923 => 0.014771378000031
924 => 0.014684690175579
925 => 0.014851156425481
926 => 0.014895695771308
927 => 0.014905666488291
928 => 0.015200612766381
929 => 0.014922150708792
930 => 0.014989179293728
1001 => 0.01551211717925
1002 => 0.015037884677577
1003 => 0.01528909621036
1004 => 0.015276800713072
1005 => 0.015405312032709
1006 => 0.015266259033897
1007 => 0.015267982762471
1008 => 0.015382092108198
1009 => 0.015221846111854
1010 => 0.015182166949614
1011 => 0.015127350471168
1012 => 0.015247040246435
1013 => 0.015318788853604
1014 => 0.015897029933843
1015 => 0.016270600042674
1016 => 0.016254382379029
1017 => 0.016402581466554
1018 => 0.016335816420276
1019 => 0.016120214474114
1020 => 0.016488220706355
1021 => 0.01637176813644
1022 => 0.016381368344814
1023 => 0.016381011024578
1024 => 0.016458441803112
1025 => 0.016403575000094
1026 => 0.016295426899385
1027 => 0.016367220655696
1028 => 0.016580422445204
1029 => 0.017242207341667
1030 => 0.017612550937211
1031 => 0.017219912192198
1101 => 0.017490749140866
1102 => 0.017328343480737
1103 => 0.017298829541142
1104 => 0.017468935159599
1105 => 0.017639338525422
1106 => 0.017628484567693
1107 => 0.017504780474415
1108 => 0.017434903170998
1109 => 0.01796403752309
1110 => 0.018353894700144
1111 => 0.018327309054305
1112 => 0.018444649448924
1113 => 0.01878916447673
1114 => 0.018820662613269
1115 => 0.018816694572042
1116 => 0.018738623154138
1117 => 0.019077842939942
1118 => 0.019360826053264
1119 => 0.018720551876593
1120 => 0.018964359901265
1121 => 0.019073813178544
1122 => 0.019234523062914
1123 => 0.01950566757595
1124 => 0.019800202434637
1125 => 0.019841852893066
1126 => 0.019812299899653
1127 => 0.019618046242826
1128 => 0.019940329799734
1129 => 0.02012911594889
1130 => 0.020241533780419
1201 => 0.020526606696632
1202 => 0.019074489124722
1203 => 0.018046608132398
1204 => 0.017886089672665
1205 => 0.018212510272609
1206 => 0.018298584781658
1207 => 0.018263888254989
1208 => 0.017106914747277
1209 => 0.017879998446588
1210 => 0.018711771504324
1211 => 0.018743723294974
1212 => 0.019160126279231
1213 => 0.01929572415984
1214 => 0.019630983141354
1215 => 0.019610012600779
1216 => 0.019691642827642
1217 => 0.019672877452125
1218 => 0.020293874118271
1219 => 0.020978925659928
1220 => 0.020955204503371
1221 => 0.020856720239096
1222 => 0.021002986165607
1223 => 0.021710032771181
1224 => 0.021644939249931
1225 => 0.021708172061173
1226 => 0.022541819856546
1227 => 0.023625680575547
1228 => 0.023122118453734
1229 => 0.024214703361971
1230 => 0.024902427646268
1231 => 0.026091775683943
]
'min_raw' => 0.010652694034545
'max_raw' => 0.026091775683943
'avg_raw' => 0.018372234859244
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.010652'
'max' => '$0.026091'
'avg' => '$0.018372'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0047499641726038
'max_diff' => 0.010585266284857
'year' => 2028
]
3 => [
'items' => [
101 => 0.025942863451964
102 => 0.026405867915191
103 => 0.0256762794778
104 => 0.024000996951398
105 => 0.023735877078871
106 => 0.024266653777574
107 => 0.025571516498904
108 => 0.024225559006868
109 => 0.024497844454528
110 => 0.024419426227284
111 => 0.02441524765321
112 => 0.024574726830119
113 => 0.024343393966138
114 => 0.023400902262296
115 => 0.023832840656029
116 => 0.023666048498823
117 => 0.023851116832422
118 => 0.024849854300866
119 => 0.024408288659139
120 => 0.02394313512546
121 => 0.024526540882526
122 => 0.02526941689124
123 => 0.025222929045691
124 => 0.025132723194915
125 => 0.025641208852718
126 => 0.026481078187089
127 => 0.026708091493302
128 => 0.026875668074865
129 => 0.026898774054233
130 => 0.02713678000201
131 => 0.025856962035592
201 => 0.027888066016354
202 => 0.028238781565716
203 => 0.028172861578106
204 => 0.028562667150856
205 => 0.02844797646294
206 => 0.028281807650568
207 => 0.028899732397399
208 => 0.028191331539113
209 => 0.027185845705963
210 => 0.026634216291642
211 => 0.027360646403095
212 => 0.027804251923242
213 => 0.02809744695345
214 => 0.028186167592437
215 => 0.025956310661151
216 => 0.024754541448722
217 => 0.025524861735577
218 => 0.026464705650206
219 => 0.025851741155193
220 => 0.025875768202902
221 => 0.025001841917249
222 => 0.026542028734755
223 => 0.026317636470455
224 => 0.027481783934589
225 => 0.027203950799407
226 => 0.028153267864464
227 => 0.027903280866155
228 => 0.028940962919551
301 => 0.029354922384771
302 => 0.030050024754521
303 => 0.030561344887285
304 => 0.030861601849239
305 => 0.030843575547479
306 => 0.032033343218167
307 => 0.031331778790079
308 => 0.030450448522359
309 => 0.030434508038378
310 => 0.030890961472576
311 => 0.031847562648771
312 => 0.032095595415778
313 => 0.032234211895282
314 => 0.032021915931647
315 => 0.031260418026532
316 => 0.030931607091986
317 => 0.031211763534789
318 => 0.030869156279358
319 => 0.03146059252085
320 => 0.032272760804382
321 => 0.032105051265494
322 => 0.032665679109577
323 => 0.033245869948434
324 => 0.034075568906001
325 => 0.034292482937172
326 => 0.034651033582196
327 => 0.035020099973677
328 => 0.035138634152003
329 => 0.035364952677422
330 => 0.035363759867079
331 => 0.036045785976423
401 => 0.03679808189562
402 => 0.037082056189427
403 => 0.0377350394196
404 => 0.03661682852119
405 => 0.037465004332715
406 => 0.038230080145929
407 => 0.037317925221042
408 => 0.038575118280159
409 => 0.038623932237784
410 => 0.039360965043318
411 => 0.038613841096508
412 => 0.038170201281797
413 => 0.039450972803902
414 => 0.040070697799523
415 => 0.039884031587353
416 => 0.038463492495888
417 => 0.037636677814867
418 => 0.035472744313995
419 => 0.038036017020748
420 => 0.039284512384518
421 => 0.03846025919451
422 => 0.038875964559605
423 => 0.041143918238648
424 => 0.042007408160502
425 => 0.041827808293007
426 => 0.041858157714148
427 => 0.042324081202529
428 => 0.044390242538764
429 => 0.043152150772847
430 => 0.044098625537477
501 => 0.044600632339869
502 => 0.045066924235072
503 => 0.043921858713519
504 => 0.04243214529433
505 => 0.041960290520558
506 => 0.038378303459018
507 => 0.038191845476684
508 => 0.038087180960944
509 => 0.037427285994297
510 => 0.036908789310955
511 => 0.036496461497815
512 => 0.035414390184626
513 => 0.035779557488291
514 => 0.034054961660903
515 => 0.035158296955342
516 => 0.032405800373009
517 => 0.034698161317654
518 => 0.033450533476346
519 => 0.034288282016941
520 => 0.034285359191203
521 => 0.032742798519551
522 => 0.031853081716562
523 => 0.032420043891723
524 => 0.033027872349009
525 => 0.033126490471223
526 => 0.03391455593204
527 => 0.034134488062743
528 => 0.033468083439062
529 => 0.032348760999348
530 => 0.032608754073067
531 => 0.031847812965222
601 => 0.0305142929429
602 => 0.031472050303957
603 => 0.031799070776641
604 => 0.031943501647323
605 => 0.030632137861179
606 => 0.03022007888848
607 => 0.030000702148925
608 => 0.032179480401958
609 => 0.032298838792973
610 => 0.031688184388965
611 => 0.034448400199709
612 => 0.033823678351853
613 => 0.034521645716477
614 => 0.032585162426745
615 => 0.032659138696234
616 => 0.031742376473353
617 => 0.032255702060092
618 => 0.031892900080641
619 => 0.032214230425466
620 => 0.03240683450926
621 => 0.03332344630048
622 => 0.034708627551936
623 => 0.033186535065181
624 => 0.032523337571937
625 => 0.032934781566781
626 => 0.034030511144509
627 => 0.03569059754413
628 => 0.034707792983202
629 => 0.035143944958238
630 => 0.035239224761733
701 => 0.034514541063907
702 => 0.035717317665747
703 => 0.036361895418013
704 => 0.037023098815266
705 => 0.037597203198602
706 => 0.036758999638229
707 => 0.037655997599589
708 => 0.036933175584188
709 => 0.036284729512407
710 => 0.036285712937431
711 => 0.035878933244318
712 => 0.03509074633137
713 => 0.034945392571666
714 => 0.035701541185804
715 => 0.036307900766802
716 => 0.03635784344616
717 => 0.036693555266081
718 => 0.036892226063003
719 => 0.038839469952695
720 => 0.039622667553575
721 => 0.04058034675476
722 => 0.040953416775464
723 => 0.042076223784777
724 => 0.04116946593483
725 => 0.040973283170219
726 => 0.038249720632999
727 => 0.038695703845892
728 => 0.039409766000713
729 => 0.038261495254926
730 => 0.038989808747636
731 => 0.039133593258885
801 => 0.038222477454376
802 => 0.038709143772554
803 => 0.037416702317979
804 => 0.03473679924381
805 => 0.03572030116396
806 => 0.036444489620356
807 => 0.035410983401286
808 => 0.037263503296756
809 => 0.036181299417595
810 => 0.035838292742848
811 => 0.034500101413953
812 => 0.035131676209484
813 => 0.035985890163719
814 => 0.035458085253033
815 => 0.036553359693013
816 => 0.038104560399048
817 => 0.039210038397768
818 => 0.039294903271735
819 => 0.038584154979832
820 => 0.039723133653542
821 => 0.039731429869728
822 => 0.038446657272919
823 => 0.037659741211017
824 => 0.037480952226067
825 => 0.037927602164117
826 => 0.038469917645036
827 => 0.039324998006602
828 => 0.039841705160685
829 => 0.041189003378235
830 => 0.041553543645836
831 => 0.041954062878227
901 => 0.042489280088259
902 => 0.043131945575777
903 => 0.041725830076053
904 => 0.041781697666184
905 => 0.040472342381836
906 => 0.039073108479967
907 => 0.040134952594517
908 => 0.041523172523088
909 => 0.041204713337627
910 => 0.041168880173732
911 => 0.041229141616113
912 => 0.04098903379018
913 => 0.039903034992297
914 => 0.039357653194712
915 => 0.040061334855332
916 => 0.040435310340684
917 => 0.041015313704375
918 => 0.040943816047415
919 => 0.042437842424469
920 => 0.04301837589758
921 => 0.042869850592731
922 => 0.042897182823284
923 => 0.043948210946458
924 => 0.045117170379848
925 => 0.046212055147
926 => 0.047325818958543
927 => 0.045983133212787
928 => 0.045301400196436
929 => 0.046004774651656
930 => 0.045631554265004
1001 => 0.047776189311064
1002 => 0.047924679188505
1003 => 0.050069159153041
1004 => 0.052104525999309
1005 => 0.050826148550553
1006 => 0.052031600905345
1007 => 0.053335395909026
1008 => 0.055850628004242
1009 => 0.055003586321505
1010 => 0.054354765667364
1011 => 0.05374163328428
1012 => 0.055017464441454
1013 => 0.056658800843258
1014 => 0.057012328983682
1015 => 0.057585179629313
1016 => 0.056982897220277
1017 => 0.05770828004273
1018 => 0.060269200155353
1019 => 0.059577216935055
1020 => 0.058594489520378
1021 => 0.060616089995912
1022 => 0.061347699349235
1023 => 0.066482516937648
1024 => 0.072965436251753
1025 => 0.07028146508657
1026 => 0.068615437573133
1027 => 0.069006993557492
1028 => 0.071374336230335
1029 => 0.072134651561152
1030 => 0.070067852395581
1031 => 0.070797880801412
1101 => 0.074820409092354
1102 => 0.076978366462285
1103 => 0.074047570501577
1104 => 0.065961620683037
1105 => 0.05850600566894
1106 => 0.060483570501398
1107 => 0.060259376020379
1108 => 0.064581080848371
1109 => 0.059560713364105
1110 => 0.05964524347709
1111 => 0.06405631658416
1112 => 0.062879517904132
1113 => 0.060973254755473
1114 => 0.058519923499522
1115 => 0.053984713767223
1116 => 0.049967752033646
1117 => 0.057845939044229
1118 => 0.057506217294779
1119 => 0.057014249857633
1120 => 0.058109070152565
1121 => 0.063425206734589
1122 => 0.063302652579719
1123 => 0.062523025574112
1124 => 0.063114365786547
1125 => 0.060869589957145
1126 => 0.061448119800978
1127 => 0.05850482466143
1128 => 0.059835316987368
1129 => 0.060969164770902
1130 => 0.06119680150035
1201 => 0.061709678675215
1202 => 0.057327199369895
1203 => 0.059294803915151
1204 => 0.060450587245876
1205 => 0.055228716109905
1206 => 0.060347367643113
1207 => 0.057250910155326
1208 => 0.05619992597674
1209 => 0.057614937716569
1210 => 0.057063506265413
1211 => 0.056589417884851
1212 => 0.056324868422625
1213 => 0.057363896875209
1214 => 0.057315424955988
1215 => 0.055615372740829
1216 => 0.053397723929147
1217 => 0.054142039662188
1218 => 0.053871622778377
1219 => 0.052891597106973
1220 => 0.053552016080749
1221 => 0.050643865150636
1222 => 0.04564054262791
1223 => 0.048945890742336
1224 => 0.048818638435458
1225 => 0.048754472051897
1226 => 0.051238349806777
1227 => 0.050999582273455
1228 => 0.050566216862457
1229 => 0.052883638011351
1230 => 0.052037748118292
1231 => 0.054644581451976
]
'min_raw' => 0.023400902262296
'max_raw' => 0.076978366462285
'avg_raw' => 0.05018963436229
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0234009'
'max' => '$0.076978'
'avg' => '$0.050189'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.012748208227752
'max_diff' => 0.050886590778342
'year' => 2029
]
4 => [
'items' => [
101 => 0.05636161048495
102 => 0.055926116382117
103 => 0.057540990486751
104 => 0.054159187193371
105 => 0.055282486593033
106 => 0.055513997042478
107 => 0.052855041394098
108 => 0.051038647594794
109 => 0.050917514836786
110 => 0.047768138303278
111 => 0.049450509826599
112 => 0.050930927145857
113 => 0.050221922134957
114 => 0.049997472329429
115 => 0.051144137708651
116 => 0.051233243429142
117 => 0.049201623558959
118 => 0.049624061663004
119 => 0.051385698781363
120 => 0.049579672927516
121 => 0.04607085970614
122 => 0.045200625514101
123 => 0.045084520231285
124 => 0.042724376083329
125 => 0.045258778724
126 => 0.044152444053579
127 => 0.047647342021513
128 => 0.045651075045743
129 => 0.045565019966306
130 => 0.045434935092201
131 => 0.043403461527729
201 => 0.043848225131468
202 => 0.045326687089707
203 => 0.045854218972473
204 => 0.045799193075159
205 => 0.04531944181954
206 => 0.045539069487638
207 => 0.04483157224534
208 => 0.044581740243803
209 => 0.043793201725247
210 => 0.042634267942294
211 => 0.042795424792967
212 => 0.040499273717418
213 => 0.039248208745497
214 => 0.038901930450041
215 => 0.038438872641391
216 => 0.038954234061678
217 => 0.040492769009917
218 => 0.038636969443943
219 => 0.035455331257284
220 => 0.03564655313355
221 => 0.036076171915235
222 => 0.035275580157778
223 => 0.034517887247918
224 => 0.035176639759472
225 => 0.03382853771699
226 => 0.036239083606435
227 => 0.036173885095602
228 => 0.03707238753603
301 => 0.037634239551155
302 => 0.036339352558041
303 => 0.03601369198102
304 => 0.036199203046139
305 => 0.033133118370719
306 => 0.0368218230051
307 => 0.036853723075955
308 => 0.0365805753022
309 => 0.038544696644029
310 => 0.042689605300098
311 => 0.041130123935121
312 => 0.040526245615028
313 => 0.039378272487098
314 => 0.040907878520165
315 => 0.040790428642396
316 => 0.040259275753585
317 => 0.039938032829134
318 => 0.040529932767281
319 => 0.039864689876531
320 => 0.0397451939737
321 => 0.03902117881537
322 => 0.038762738344437
323 => 0.03857139930857
324 => 0.038360753830666
325 => 0.03882538526534
326 => 0.037772469307012
327 => 0.036502755879892
328 => 0.036397192946917
329 => 0.03668866148605
330 => 0.036559708354764
331 => 0.036396575568936
401 => 0.036085110654219
402 => 0.035992705667418
403 => 0.036292977045996
404 => 0.03595398816649
405 => 0.036454184723881
406 => 0.036318158937409
407 => 0.035558329951658
408 => 0.034611301710692
409 => 0.034602871172888
410 => 0.034398835491809
411 => 0.034138965374986
412 => 0.034066675453508
413 => 0.035121161460359
414 => 0.037303915936431
415 => 0.03687538900389
416 => 0.037185043629857
417 => 0.038708237913167
418 => 0.039192415571782
419 => 0.038848757738073
420 => 0.038378337699402
421 => 0.038399033793681
422 => 0.040006601471652
423 => 0.040106863495844
424 => 0.040360193285224
425 => 0.040685793655566
426 => 0.038904208889079
427 => 0.038315121311395
428 => 0.038035978935754
429 => 0.037176328460475
430 => 0.038103387797202
501 => 0.03756323002233
502 => 0.037636115760577
503 => 0.037588648827927
504 => 0.037614568982854
505 => 0.036238409809732
506 => 0.036739809883621
507 => 0.035906135012637
508 => 0.034789937944785
509 => 0.034786196060825
510 => 0.035059383711866
511 => 0.034896881007193
512 => 0.034459590407244
513 => 0.034521705473013
514 => 0.03397751213633
515 => 0.034587780397025
516 => 0.034605280707097
517 => 0.034370294185192
518 => 0.035310496641585
519 => 0.035695698355101
520 => 0.035541025192484
521 => 0.035684846073684
522 => 0.03689319623262
523 => 0.03709021003254
524 => 0.037177710548464
525 => 0.037060471448723
526 => 0.03570693249639
527 => 0.035766967704618
528 => 0.035326469180627
529 => 0.034954294346446
530 => 0.034969179388013
531 => 0.035160525632125
601 => 0.035996145902466
602 => 0.037754659498894
603 => 0.037821393804422
604 => 0.037902277729499
605 => 0.037573282157208
606 => 0.037474053944542
607 => 0.037604961570024
608 => 0.03826536681859
609 => 0.039964108416178
610 => 0.039363659680454
611 => 0.038875485511769
612 => 0.039303745868516
613 => 0.039237818543411
614 => 0.038681325572604
615 => 0.038665706668371
616 => 0.037597618735827
617 => 0.037202770946351
618 => 0.036872806579621
619 => 0.036512494105089
620 => 0.036298888792402
621 => 0.036627083634567
622 => 0.036702145678057
623 => 0.0359845419198
624 => 0.035886735179187
625 => 0.036472745898732
626 => 0.036214864429742
627 => 0.036480101915751
628 => 0.03654163928767
629 => 0.036531730353466
630 => 0.036262472482342
701 => 0.036434089420011
702 => 0.036028164200952
703 => 0.035586781493222
704 => 0.035305206824805
705 => 0.035059495581151
706 => 0.035195830459951
707 => 0.034709821510793
708 => 0.034554337466529
709 => 0.036375949463032
710 => 0.037721593830477
711 => 0.037702027628441
712 => 0.037582923405563
713 => 0.037405958689777
714 => 0.038252420747385
715 => 0.037957530292057
716 => 0.03817208773723
717 => 0.038226701611974
718 => 0.038392001362178
719 => 0.038451081814882
720 => 0.038272499652797
721 => 0.037673156104867
722 => 0.036179648967297
723 => 0.035484417363114
724 => 0.035254979353735
725 => 0.035263318989611
726 => 0.035033274602374
727 => 0.035101032984281
728 => 0.035009711002347
729 => 0.034836769261724
730 => 0.035185151794805
731 => 0.035225299636335
801 => 0.035143982990252
802 => 0.03516313600411
803 => 0.034489868905342
804 => 0.034541055940602
805 => 0.034256040023741
806 => 0.034202602975247
807 => 0.033482107556595
808 => 0.032205645484972
809 => 0.032912929381823
810 => 0.032058629893593
811 => 0.031735093732651
812 => 0.033266663598355
813 => 0.033112936462974
814 => 0.03284982243078
815 => 0.032460621939398
816 => 0.032316263691245
817 => 0.031439188673736
818 => 0.031387366402689
819 => 0.031822068464383
820 => 0.031621468420096
821 => 0.031339749984738
822 => 0.030319394369214
823 => 0.02917217682923
824 => 0.029206804115609
825 => 0.029571712670337
826 => 0.030632733507832
827 => 0.030218174310776
828 => 0.029917406856793
829 => 0.029861082153698
830 => 0.030566103736679
831 => 0.031563856983185
901 => 0.032031980482975
902 => 0.031568084311805
903 => 0.031035185368309
904 => 0.031067620457784
905 => 0.031283396576883
906 => 0.03130607159609
907 => 0.03095920916677
908 => 0.031056848908865
909 => 0.030908525212258
910 => 0.029998262959961
911 => 0.02998179920229
912 => 0.029758406165614
913 => 0.029751641913246
914 => 0.029371594629857
915 => 0.029318423387768
916 => 0.028563816439377
917 => 0.029060501017968
918 => 0.02872735107976
919 => 0.028225215540754
920 => 0.028138647184564
921 => 0.028136044835242
922 => 0.028651625758349
923 => 0.029054476154696
924 => 0.028733146365569
925 => 0.028659985801301
926 => 0.029441149224038
927 => 0.029341739058032
928 => 0.029255650495398
929 => 0.031474519123414
930 => 0.029718111463861
1001 => 0.028952217472051
1002 => 0.028004278217863
1003 => 0.028312932018951
1004 => 0.028377969909908
1005 => 0.026098346882479
1006 => 0.025173504104159
1007 => 0.024856132914605
1008 => 0.024673481308046
1009 => 0.02475671793875
1010 => 0.023924250965024
1011 => 0.024483682539101
1012 => 0.023762836506536
1013 => 0.02364198432334
1014 => 0.024930946325254
1015 => 0.025110297857814
1016 => 0.024345128499761
1017 => 0.024836491097298
1018 => 0.02465831618898
1019 => 0.02377519334281
1020 => 0.023741464545899
1021 => 0.02329834454496
1022 => 0.022604947548431
1023 => 0.022288046514692
1024 => 0.022123001704859
1025 => 0.022191102410055
1026 => 0.022156668609592
1027 => 0.021931964769651
1028 => 0.022169548370669
1029 => 0.021562620446389
1030 => 0.02132093685659
1031 => 0.021211773986095
1101 => 0.020673090519829
1102 => 0.021530375468283
1103 => 0.02169927140292
1104 => 0.021868500114722
1105 => 0.023341520513615
1106 => 0.023267932577198
1107 => 0.023933131683622
1108 => 0.023907283269569
1109 => 0.023717557708906
1110 => 0.022917136776808
1111 => 0.023236170294211
1112 => 0.022254234716461
1113 => 0.02298996761644
1114 => 0.02265420984583
1115 => 0.022876447576455
1116 => 0.022476844098423
1117 => 0.022698001162389
1118 => 0.021739322894648
1119 => 0.020844122617199
1120 => 0.021204377341369
1121 => 0.021596015426668
1122 => 0.022445186583124
1123 => 0.021939427247849
1124 => 0.022121317429692
1125 => 0.021512015768567
1126 => 0.020254852403252
1127 => 0.020261967811372
1128 => 0.020068580616411
1129 => 0.019901465844972
1130 => 0.021997519791489
1201 => 0.02173684234953
1202 => 0.021321486962389
1203 => 0.021877456653645
1204 => 0.022024463864438
1205 => 0.022028648953062
1206 => 0.022434270088147
1207 => 0.022650750160653
1208 => 0.022688905711711
1209 => 0.023327159331792
1210 => 0.023541093526475
1211 => 0.024422258197271
1212 => 0.022632383338963
1213 => 0.022595522044116
1214 => 0.021885280287352
1215 => 0.021434833736734
1216 => 0.021916122748047
1217 => 0.022342479109568
1218 => 0.021898528367968
1219 => 0.02195649896251
1220 => 0.02136053136402
1221 => 0.021573561737598
1222 => 0.021757052193614
1223 => 0.021655739548873
1224 => 0.021504069616107
1225 => 0.022307522750027
1226 => 0.022262188775453
1227 => 0.023010382805067
1228 => 0.023593653555019
1229 => 0.024638979011051
1230 => 0.023548127403633
1231 => 0.023508372435316
]
'min_raw' => 0.019901465844972
'max_raw' => 0.057540990486751
'avg_raw' => 0.038721228165861
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0199014'
'max' => '$0.05754'
'avg' => '$0.038721'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0034994364173242
'max_diff' => -0.019437375975534
'year' => 2030
]
5 => [
'items' => [
101 => 0.02389698362751
102 => 0.023541034032126
103 => 0.023765981889446
104 => 0.024602736433556
105 => 0.024620415738533
106 => 0.024324264601679
107 => 0.024306243778087
108 => 0.024363122843458
109 => 0.024696265305923
110 => 0.024579855093104
111 => 0.024714567938524
112 => 0.024883028414519
113 => 0.025579852368994
114 => 0.025747854265331
115 => 0.025339696756227
116 => 0.025376548809354
117 => 0.025223886696775
118 => 0.025076417008874
119 => 0.025407907331056
120 => 0.026013712410303
121 => 0.026009943728346
122 => 0.026150478731563
123 => 0.026238030874313
124 => 0.025862192985546
125 => 0.025617536339902
126 => 0.025711353265749
127 => 0.025861368573245
128 => 0.025662705323384
129 => 0.024436463715469
130 => 0.024808427086693
131 => 0.024746514193642
201 => 0.024658342705072
202 => 0.025032354751145
203 => 0.024996280376893
204 => 0.02391571281298
205 => 0.023984887242529
206 => 0.023919919539154
207 => 0.0241298434799
208 => 0.023529697450414
209 => 0.023714298327039
210 => 0.023830078266332
211 => 0.023898273540039
212 => 0.024144641630607
213 => 0.024115733178749
214 => 0.02414284464065
215 => 0.024508143480197
216 => 0.026355699655201
217 => 0.026456258061403
218 => 0.025961071691753
219 => 0.026158888879309
220 => 0.025779123137064
221 => 0.026034062424042
222 => 0.026208485409437
223 => 0.02542030147805
224 => 0.025373630340905
225 => 0.024992297170352
226 => 0.025197204016392
227 => 0.024871182491019
228 => 0.024951176769597
301 => 0.024727505792917
302 => 0.025130069018493
303 => 0.025580197256688
304 => 0.025693917425759
305 => 0.025394768620545
306 => 0.025178165170702
307 => 0.024797880866392
308 => 0.025430302139649
309 => 0.025615241392638
310 => 0.025429330732484
311 => 0.025386251170298
312 => 0.025304615477799
313 => 0.025403570568379
314 => 0.025614234173749
315 => 0.025514889107802
316 => 0.025580508274095
317 => 0.025330435678378
318 => 0.025862317403526
319 => 0.026707073587369
320 => 0.026709789616632
321 => 0.026610444015178
322 => 0.026569793935494
323 => 0.026671728551381
324 => 0.026727023898923
325 => 0.027056661755088
326 => 0.027410376308105
327 => 0.029061007789286
328 => 0.028597517074479
329 => 0.030062055521089
330 => 0.03122031528584
331 => 0.031567626744728
401 => 0.031248116544818
402 => 0.030155089410528
403 => 0.030101460284758
404 => 0.031734904287541
405 => 0.03127338154028
406 => 0.031218484878047
407 => 0.030634477141257
408 => 0.030979698044465
409 => 0.030904193168848
410 => 0.030785005028862
411 => 0.031443662463887
412 => 0.032676610383498
413 => 0.032484443887714
414 => 0.032341000512959
415 => 0.031712473400519
416 => 0.032090987108821
417 => 0.031956205627247
418 => 0.032535312406529
419 => 0.032192262379268
420 => 0.031269885051549
421 => 0.031416776681184
422 => 0.03139457430687
423 => 0.031851497596982
424 => 0.031714340566823
425 => 0.03136779219544
426 => 0.032672396301547
427 => 0.032587682567486
428 => 0.032707787274129
429 => 0.032760661080355
430 => 0.03355475061004
501 => 0.033880063682321
502 => 0.033953915445135
503 => 0.034262937703187
504 => 0.033946226689842
505 => 0.035213296554345
506 => 0.036055824078662
507 => 0.037034463154227
508 => 0.038464517877013
509 => 0.039002231681527
510 => 0.038905098495631
511 => 0.039989349665458
512 => 0.041937724916088
513 => 0.039298920839964
514 => 0.04207758793964
515 => 0.041197894017137
516 => 0.0391121555519
517 => 0.03897785858398
518 => 0.04039034488856
519 => 0.04352310356535
520 => 0.042738383048268
521 => 0.043524387086997
522 => 0.042607471624757
523 => 0.042561939043687
524 => 0.04347985454959
525 => 0.045624614162101
526 => 0.044605719265309
527 => 0.043144883587479
528 => 0.044223541918868
529 => 0.043289108247103
530 => 0.041183567653099
531 => 0.042737782987278
601 => 0.041698523454817
602 => 0.042001834636464
603 => 0.04418620359551
604 => 0.043923374543234
605 => 0.044263499674194
606 => 0.043663187720674
607 => 0.043102401695581
608 => 0.042055652935227
609 => 0.041745762231377
610 => 0.041831404873222
611 => 0.041745719791137
612 => 0.041160073479837
613 => 0.041033603214671
614 => 0.040822813898606
615 => 0.040888146321741
616 => 0.040491800738949
617 => 0.041239786742854
618 => 0.041378619536408
619 => 0.041922941373194
620 => 0.041979454672007
621 => 0.043495383239518
622 => 0.042660435258678
623 => 0.043220590450166
624 => 0.043170484897454
625 => 0.039157359828954
626 => 0.039710333055291
627 => 0.040570585862913
628 => 0.040183043139124
629 => 0.039635148398718
630 => 0.039192694019583
701 => 0.038522330391909
702 => 0.039465854324666
703 => 0.040706487963658
704 => 0.042010919188449
705 => 0.043578107835316
706 => 0.043228329573423
707 => 0.04198162168681
708 => 0.042037548091882
709 => 0.042383263121813
710 => 0.04193553074653
711 => 0.041803485728285
712 => 0.042365122163995
713 => 0.042368989845458
714 => 0.04185381963743
715 => 0.04128130222636
716 => 0.041278903357503
717 => 0.041177029414065
718 => 0.042625594772981
719 => 0.043422159253907
720 => 0.043513484087918
721 => 0.04341601236494
722 => 0.0434535253626
723 => 0.042990022042249
724 => 0.044049453184931
725 => 0.045021691968336
726 => 0.044761111205532
727 => 0.044370463598349
728 => 0.044059293963091
729 => 0.044687809528578
730 => 0.044659822719822
731 => 0.045013200310726
801 => 0.044997169061995
802 => 0.044878341469377
803 => 0.044761115449239
804 => 0.045225903368457
805 => 0.045092051911988
806 => 0.044957992547236
807 => 0.044689115967764
808 => 0.044725660760482
809 => 0.044335080604117
810 => 0.04415438035205
811 => 0.041437082121498
812 => 0.040710931244014
813 => 0.040939393092235
814 => 0.041014608664678
815 => 0.040698586872209
816 => 0.041151680943272
817 => 0.041081066712242
818 => 0.041355785377236
819 => 0.041184153082246
820 => 0.0411911969315
821 => 0.041695930915202
822 => 0.041842457337962
823 => 0.041767932816733
824 => 0.041820127236851
825 => 0.043022925618579
826 => 0.042851926152025
827 => 0.042761086093563
828 => 0.042786249410569
829 => 0.043093590185389
830 => 0.043179628822154
831 => 0.042815077072352
901 => 0.042987001785007
902 => 0.043719035390999
903 => 0.043975205723583
904 => 0.044792778456454
905 => 0.044445459028334
906 => 0.045082978870281
907 => 0.047042497517897
908 => 0.048607896601989
909 => 0.047168290911405
910 => 0.050042946976969
911 => 0.052281279068932
912 => 0.052195368155105
913 => 0.051805063181318
914 => 0.049256781603755
915 => 0.046911814903344
916 => 0.048873479120783
917 => 0.048878479806294
918 => 0.048709971110302
919 => 0.047663378071736
920 => 0.048673551941181
921 => 0.048753735874525
922 => 0.048708854194482
923 => 0.047906433765681
924 => 0.046681286082985
925 => 0.046920677007595
926 => 0.047312804225548
927 => 0.046570425595656
928 => 0.046333190641098
929 => 0.046774255557418
930 => 0.048195458617325
1001 => 0.047926788411319
1002 => 0.047919772346458
1003 => 0.049069257421654
1004 => 0.048246474182219
1005 => 0.04692369649379
1006 => 0.046589677682168
1007 => 0.04540413592294
1008 => 0.046222993838793
1009 => 0.0462524630774
1010 => 0.045803982965413
1011 => 0.046960088183163
1012 => 0.046949434470053
1013 => 0.048046984310754
1014 => 0.050145087385279
1015 => 0.04952457506476
1016 => 0.048802986747545
1017 => 0.0488814434051
1018 => 0.049741919290948
1019 => 0.04922165592761
1020 => 0.049408746260471
1021 => 0.049741636107321
1022 => 0.049942476817116
1023 => 0.048852545517724
1024 => 0.048598430394395
1025 => 0.048078600034352
1026 => 0.04794298599651
1027 => 0.048366376978148
1028 => 0.048254828413111
1029 => 0.046249986302006
1030 => 0.046040469146559
1031 => 0.046046894738595
1101 => 0.045520053889227
1102 => 0.044716495137648
1103 => 0.046828199558797
1104 => 0.046658600140494
1105 => 0.04647137550864
1106 => 0.046494309457754
1107 => 0.047410928774671
1108 => 0.046879243280474
1109 => 0.048292816308335
1110 => 0.048002228189702
1111 => 0.047704187582314
1112 => 0.047662989291835
1113 => 0.04754826908562
1114 => 0.047154850813003
1115 => 0.046679774608044
1116 => 0.046366088147134
1117 => 0.042770265413585
1118 => 0.043437629196993
1119 => 0.044205370397681
1120 => 0.044470391583629
1121 => 0.044017054506157
1122 => 0.047172751323943
1123 => 0.047749327541604
1124 => 0.046002840569174
1125 => 0.045676144165225
1126 => 0.047194169485797
1127 => 0.046278614646444
1128 => 0.046690888934545
1129 => 0.04579977742565
1130 => 0.047610447214892
1201 => 0.047596652944799
1202 => 0.046892261500952
1203 => 0.047487608325827
1204 => 0.04738415216424
1205 => 0.046588895958976
1206 => 0.047635658255072
1207 => 0.047636177436111
1208 => 0.046958215986199
1209 => 0.046166505437547
1210 => 0.046024966290816
1211 => 0.045918335556864
1212 => 0.046664664310575
1213 => 0.047333820337444
1214 => 0.048578953805598
1215 => 0.048892009943134
1216 => 0.050113888889262
1217 => 0.049386319469049
1218 => 0.049708841569428
1219 => 0.050058984932927
1220 => 0.050226856537483
1221 => 0.049953318766345
1222 => 0.051851399715122
1223 => 0.052011655902896
1224 => 0.052065388416446
1225 => 0.051425366199951
1226 => 0.051993855727264
1227 => 0.051727878303828
1228 => 0.052419877668951
1229 => 0.052528392005293
1230 => 0.052436484222921
1231 => 0.052470928386058
]
'min_raw' => 0.023529697450414
'max_raw' => 0.052528392005293
'avg_raw' => 0.038029044727854
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.023529'
'max' => '$0.052528'
'avg' => '$0.038029'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0036282316054423
'max_diff' => -0.0050125984814571
'year' => 2031
]
6 => [
'items' => [
101 => 0.050851251140701
102 => 0.050767262331052
103 => 0.049622068951901
104 => 0.050088743718747
105 => 0.049216317610433
106 => 0.049492972916364
107 => 0.04961491993915
108 => 0.049551221734879
109 => 0.050115128809871
110 => 0.049635692597524
111 => 0.048370381606527
112 => 0.047104725882396
113 => 0.047088836605761
114 => 0.046755611794276
115 => 0.046514751288741
116 => 0.046561149567093
117 => 0.046724663151826
118 => 0.046505247581945
119 => 0.046552071018431
120 => 0.047329652047021
121 => 0.047485590376851
122 => 0.046955651003051
123 => 0.04482786794736
124 => 0.044305704648353
125 => 0.044681025272731
126 => 0.044501646188022
127 => 0.035916301684814
128 => 0.037933301027628
129 => 0.036734868508953
130 => 0.037287161350787
131 => 0.036063872081817
201 => 0.036647689839054
202 => 0.036539880016903
203 => 0.039783155272798
204 => 0.039732515990656
205 => 0.039756754335246
206 => 0.038599794995296
207 => 0.040442862638706
208 => 0.041350824034419
209 => 0.041182784544683
210 => 0.041225076463981
211 => 0.04049836117061
212 => 0.039763790527807
213 => 0.038949038635328
214 => 0.040462746945177
215 => 0.040294448420984
216 => 0.040680464683585
217 => 0.041662212724627
218 => 0.041806778852968
219 => 0.042001077195504
220 => 0.041931435070803
221 => 0.043590593021275
222 => 0.043389658045996
223 => 0.04387385352348
224 => 0.042877826690296
225 => 0.041750727784813
226 => 0.041964952439106
227 => 0.041944320882212
228 => 0.041681657483149
229 => 0.041444536710949
301 => 0.041049797433599
302 => 0.042298810917554
303 => 0.042248103251072
304 => 0.043069001430204
305 => 0.042923899703263
306 => 0.041954874858335
307 => 0.041989483770245
308 => 0.042222245335313
309 => 0.043027835769639
310 => 0.043266989859326
311 => 0.04315620415634
312 => 0.043418425697883
313 => 0.043625674912685
314 => 0.043444453008397
315 => 0.046010173009941
316 => 0.044944707183925
317 => 0.045464007814062
318 => 0.045587857954452
319 => 0.04527061842413
320 => 0.045339416318761
321 => 0.045443626382823
322 => 0.046076369485384
323 => 0.047736870472196
324 => 0.048472295055843
325 => 0.050684856200954
326 => 0.048411228281776
327 => 0.048276320610259
328 => 0.048674869685439
329 => 0.049973877301002
330 => 0.051026600963835
331 => 0.051375850135882
401 => 0.051422009179443
402 => 0.052077223843849
403 => 0.052452780670456
404 => 0.051997663549734
405 => 0.05161199944267
406 => 0.05023059848156
407 => 0.050390499404238
408 => 0.051492058195377
409 => 0.053048074869351
410 => 0.054383299051562
411 => 0.053915750080213
412 => 0.057482818693475
413 => 0.057836478976312
414 => 0.05778761456043
415 => 0.058593305316438
416 => 0.056994173241831
417 => 0.056310513298212
418 => 0.051695384400091
419 => 0.052992047371801
420 => 0.054876823151529
421 => 0.054627366009536
422 => 0.053258591458096
423 => 0.054382260713324
424 => 0.054010740517159
425 => 0.053717707124057
426 => 0.055060149905176
427 => 0.053584078922826
428 => 0.054862098214345
429 => 0.053223025253555
430 => 0.05391788580453
501 => 0.053523449349174
502 => 0.053778698076103
503 => 0.052286519234061
504 => 0.053091662716633
505 => 0.05225302261812
506 => 0.052252624993519
507 => 0.052234111966863
508 => 0.053220768323664
509 => 0.053252943152037
510 => 0.052523802613606
511 => 0.052418722070702
512 => 0.05280725991276
513 => 0.052352383857932
514 => 0.05256521750103
515 => 0.052358830372165
516 => 0.052312368282279
517 => 0.051942150445197
518 => 0.051782650421631
519 => 0.051845194490681
520 => 0.051631699339336
521 => 0.051503060788195
522 => 0.052208522521255
523 => 0.051831622775526
524 => 0.052150757229719
525 => 0.051787063241187
526 => 0.050526341423008
527 => 0.049801286973482
528 => 0.047419900327916
529 => 0.048095258626497
530 => 0.048543021877166
531 => 0.048395036125491
601 => 0.048712966782972
602 => 0.048732485143215
603 => 0.048629122645549
604 => 0.048509442114807
605 => 0.04845118825119
606 => 0.048885364824094
607 => 0.049137418938375
608 => 0.04858796090967
609 => 0.048459230581279
610 => 0.049014762984709
611 => 0.049353637429882
612 => 0.05185569593593
613 => 0.05167033536026
614 => 0.052135554030017
615 => 0.052083177547165
616 => 0.052570800828216
617 => 0.053367858807761
618 => 0.05174721707443
619 => 0.052028504441762
620 => 0.051959539275166
621 => 0.052712482880421
622 => 0.05271483348817
623 => 0.052263406184497
624 => 0.05250813224939
625 => 0.052371532873675
626 => 0.052618386408104
627 => 0.051667859756763
628 => 0.052825498615085
629 => 0.053481805251154
630 => 0.053490918069433
701 => 0.053802002206158
702 => 0.054118081705848
703 => 0.054724768780782
704 => 0.054101161532608
705 => 0.052979352800086
706 => 0.053060343767154
707 => 0.05240262771773
708 => 0.052413684043346
709 => 0.052354664510703
710 => 0.052531786570948
711 => 0.051706728088549
712 => 0.051900367665264
713 => 0.051629271123911
714 => 0.052027915130825
715 => 0.0515990400776
716 => 0.051959506018074
717 => 0.052115071168348
718 => 0.052689109921935
719 => 0.051514254086959
720 => 0.049118643508694
721 => 0.049622229896216
722 => 0.048877386073213
723 => 0.048946324204853
724 => 0.049085590202186
725 => 0.048634183539829
726 => 0.048720297705548
727 => 0.048717221101573
728 => 0.048690708590627
729 => 0.048573280283596
730 => 0.048402986005918
731 => 0.049081385994373
801 => 0.049196659371903
802 => 0.049452897810802
803 => 0.050215289596772
804 => 0.050139108678917
805 => 0.050263362916654
806 => 0.049992116613332
807 => 0.048958906542911
808 => 0.049015014820658
809 => 0.048315343698073
810 => 0.049435005647122
811 => 0.049169854918772
812 => 0.048998910519297
813 => 0.048952266756111
814 => 0.049716548363855
815 => 0.049945233399539
816 => 0.049802732231783
817 => 0.049510458179292
818 => 0.050071710763141
819 => 0.050221878277233
820 => 0.050255495245674
821 => 0.051249927214746
822 => 0.050311072945984
823 => 0.050537064499884
824 => 0.052300186091277
825 => 0.050701278102032
826 => 0.051548255323838
827 => 0.051506800196287
828 => 0.051940085082817
829 => 0.051471258188954
830 => 0.051477069860187
831 => 0.051861797486165
901 => 0.051321516921472
902 => 0.051187735855672
903 => 0.051002918271426
904 => 0.05140646070521
905 => 0.051648366143609
906 => 0.053597946317138
907 => 0.054857464020895
908 => 0.054802785035633
909 => 0.055302448606153
910 => 0.05507734559124
911 => 0.05435042857691
912 => 0.055591187282285
913 => 0.055198559312355
914 => 0.055230927085153
915 => 0.055229722355033
916 => 0.055490785630904
917 => 0.055305798373852
918 => 0.05494116950165
919 => 0.055183227163534
920 => 0.055902051882134
921 => 0.058133305864905
922 => 0.059381945153847
923 => 0.058058136211873
924 => 0.058971281893538
925 => 0.058423719871614
926 => 0.058324211563671
927 => 0.058897734532693
928 => 0.05947226137775
929 => 0.059435666501467
930 => 0.059018589514236
1001 => 0.058782993307086
1002 => 0.060567006718147
1003 => 0.061881437409542
1004 => 0.061791802048444
1005 => 0.06218742338135
1006 => 0.063348979850867
1007 => 0.06345517801734
1008 => 0.063441799489301
1009 => 0.063178576253065
1010 => 0.064322279444473
1011 => 0.065276376768288
1012 => 0.063117647679127
1013 => 0.063939663456441
1014 => 0.064308692822571
1015 => 0.06485053741813
1016 => 0.065764720074536
1017 => 0.066757764914367
1018 => 0.066898192342902
1019 => 0.066798552362285
1020 => 0.066143612595939
1021 => 0.06723021410917
1022 => 0.06786671979168
1023 => 0.068245744359442
1024 => 0.06920688759961
1025 => 0.064310971822304
1026 => 0.060845399292324
1027 => 0.060304200098294
1028 => 0.061404749940962
1029 => 0.061694956157753
1030 => 0.061577974395652
1031 => 0.05767715743709
1101 => 0.0602836631043
1102 => 0.063088044040996
1103 => 0.063195771733976
1104 => 0.064599703467726
1105 => 0.065056881189341
1106 => 0.066187230252549
1107 => 0.066116526610884
1108 => 0.066391748619993
1109 => 0.06632847984628
1110 => 0.068422213462796
1111 => 0.070731912564263
1112 => 0.070651935028772
1113 => 0.070319888455817
1114 => 0.07081303423901
1115 => 0.073196891234122
1116 => 0.072977423882542
1117 => 0.073190617720418
1118 => 0.076001319465948
1119 => 0.079655631552799
1120 => 0.077957836701522
1121 => 0.081641563001485
1122 => 0.083960273441371
1123 => 0.08797024338802
1124 => 0.087468175401181
1125 => 0.089029227274893
1126 => 0.086569368919989
1127 => 0.080921036917734
1128 => 0.08002716675743
1129 => 0.081816717454755
1130 => 0.086216153222324
1201 => 0.081678163566172
1202 => 0.082596192963321
1203 => 0.082331800435183
1204 => 0.082317712080954
1205 => 0.082855407260381
1206 => 0.082075452358328
1207 => 0.078897775776154
1208 => 0.080354086227598
1209 => 0.079791734824524
1210 => 0.080415705632309
1211 => 0.083783018736792
1212 => 0.082294249346582
1213 => 0.0807259517318
1214 => 0.082692944973838
1215 => 0.085197603303163
1216 => 0.085040866286218
1217 => 0.084736730962353
1218 => 0.086451125858971
1219 => 0.08928280395761
1220 => 0.090048195169068
1221 => 0.090613191313632
1222 => 0.090691094736279
1223 => 0.091493548406254
1224 => 0.087178552778439
1225 => 0.094026561656728
1226 => 0.095209023617581
1227 => 0.094986769776968
1228 => 0.09630102648085
1229 => 0.095914338819093
1230 => 0.095354089066643
1231 => 0.097437465492714
]
'min_raw' => 0.035916301684814
'max_raw' => 0.097437465492714
'avg_raw' => 0.066676883588764
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.035916'
'max' => '$0.097437'
'avg' => '$0.066676'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0123866042344
'max_diff' => 0.044909073487421
'year' => 2032
]
7 => [
'items' => [
101 => 0.095049042540032
102 => 0.091658976852788
103 => 0.089799119768869
104 => 0.092248329607365
105 => 0.09374397659009
106 => 0.094732504104657
107 => 0.09503163193328
108 => 0.087513513605809
109 => 0.08346166480126
110 => 0.086058853430435
111 => 0.089227602806412
112 => 0.087160950215661
113 => 0.087241959084528
114 => 0.084295455596864
115 => 0.089488302984497
116 => 0.08873174879884
117 => 0.09265675325235
118 => 0.091720019439391
119 => 0.094920708203434
120 => 0.0940778595851
121 => 0.097576477076772
122 => 0.098972170315488
123 => 0.1013157564856
124 => 0.10303970801244
125 => 0.10405204532294
126 => 0.103991268388
127 => 0.10800265315665
128 => 0.10563727970569
129 => 0.10266581317556
130 => 0.10261206872089
131 => 0.10415103334285
201 => 0.10737628099615
202 => 0.10821254078721
203 => 0.10867989592575
204 => 0.10796412526232
205 => 0.10539668190914
206 => 0.10428807288647
207 => 0.10523263989328
208 => 0.10407751561152
209 => 0.10607158419247
210 => 0.10880986626418
211 => 0.10824442184471
212 => 0.11013461776283
213 => 0.11209077168366
214 => 0.11488815964683
215 => 0.11561950044738
216 => 0.11682837898028
217 => 0.11807271208655
218 => 0.11847235834457
219 => 0.11923540705408
220 => 0.11923138541073
221 => 0.12153088405592
222 => 0.12406730227112
223 => 0.12502474142914
224 => 0.1272263199795
225 => 0.12345619386452
226 => 0.12631587783082
227 => 0.12889538435096
228 => 0.12581999033708
301 => 0.13005870451031
302 => 0.13022328417652
303 => 0.13270824173837
304 => 0.13018926118917
305 => 0.12869349857993
306 => 0.13301170918732
307 => 0.13510115527787
308 => 0.13447179711092
309 => 0.12968235038517
310 => 0.12689468696176
311 => 0.11959883408255
312 => 0.12824108697536
313 => 0.13245047626147
314 => 0.12967144908384
315 => 0.13107302874588
316 => 0.13871959291824
317 => 0.14163090947671
318 => 0.14102537598419
319 => 0.1411277011765
320 => 0.14269859474731
321 => 0.14966480194721
322 => 0.14549048911761
323 => 0.14868159486732
324 => 0.15037414585058
325 => 0.15194628153072
326 => 0.14808561317888
327 => 0.14306294037761
328 => 0.14147204906399
329 => 0.12939512959966
330 => 0.12876647349414
331 => 0.12841358977188
401 => 0.12618870781943
402 => 0.12444056005127
403 => 0.12305036804145
404 => 0.11940208906123
405 => 0.1206332761207
406 => 0.11481868088123
407 => 0.11853865285884
408 => 0.10925841845833
409 => 0.11698727343073
410 => 0.11278080905717
411 => 0.11560533675152
412 => 0.11559548224048
413 => 0.11039463123786
414 => 0.10739488891854
415 => 0.10930644147613
416 => 0.11135577755709
417 => 0.11168827544143
418 => 0.11434529316355
419 => 0.11508680969739
420 => 0.11283997998176
421 => 0.10906610622767
422 => 0.10994269102785
423 => 0.10737712495554
424 => 0.10288106909689
425 => 0.10611021490818
426 => 0.10721278726367
427 => 0.10769974602802
428 => 0.10327839146654
429 => 0.10188910587104
430 => 0.10114946187724
501 => 0.10849536487478
502 => 0.10889779002342
503 => 0.10683892606578
504 => 0.11614518638382
505 => 0.11403889305708
506 => 0.11639213875744
507 => 0.10986315014516
508 => 0.1101125663026
509 => 0.10702163846186
510 => 0.1087523515168
511 => 0.10752913931306
512 => 0.1086125270052
513 => 0.1092619051209
514 => 0.11235232577079
515 => 0.11702256107034
516 => 0.11189071998215
517 => 0.1096547033307
518 => 0.11104191548542
519 => 0.11473624425813
520 => 0.12033334145798
521 => 0.11701974726359
522 => 0.11849026409858
523 => 0.11881150660829
524 => 0.11636818492527
525 => 0.12042343021355
526 => 0.1225966691083
527 => 0.12482596252588
528 => 0.12676159553699
529 => 0.12393553371169
530 => 0.12695982496481
531 => 0.12452278007407
601 => 0.12233649887
602 => 0.12233981455613
603 => 0.12096832842034
604 => 0.11831090121389
605 => 0.11782083086477
606 => 0.12037023870994
607 => 0.12241462237196
608 => 0.1225830076023
609 => 0.12371488344181
610 => 0.12438471590439
611 => 0.13094998463071
612 => 0.13359059002319
613 => 0.13681947231301
614 => 0.13807730393473
615 => 0.14186292615851
616 => 0.1388057287596
617 => 0.13814428487167
618 => 0.12896160362437
619 => 0.13046526716419
620 => 0.1328727775734
621 => 0.12900130258428
622 => 0.13145686237417
623 => 0.13194164189256
624 => 0.12886975134558
625 => 0.13051058081528
626 => 0.1261530242158
627 => 0.11711754389638
628 => 0.12043348928608
629 => 0.12287514122804
630 => 0.11939060285334
701 => 0.12563650301973
702 => 0.12198777708408
703 => 0.12083130613221
704 => 0.1163195006373
705 => 0.11844889915558
706 => 0.1213289411416
707 => 0.11954941003506
708 => 0.12324220427907
709 => 0.12847218576084
710 => 0.13219938201554
711 => 0.13248550986319
712 => 0.13008917237418
713 => 0.13392931849354
714 => 0.13395728976564
715 => 0.12962558925554
716 => 0.12697244681211
717 => 0.12636964726671
718 => 0.12787555871694
719 => 0.12970401322412
720 => 0.13258697636294
721 => 0.13432909060827
722 => 0.1388716006141
723 => 0.14010067357771
724 => 0.14145105213308
725 => 0.14325557432437
726 => 0.14542236588501
727 => 0.14068154930584
728 => 0.14086991078652
729 => 0.13645532802907
730 => 0.13173771323753
731 => 0.13531779480532
801 => 0.13999827521692
802 => 0.13892456783903
803 => 0.13880375382516
804 => 0.13900692948547
805 => 0.13819738918654
806 => 0.13453586841747
807 => 0.13269707560957
808 => 0.13506958745783
809 => 0.13633047191683
810 => 0.13828599375206
811 => 0.13804493440981
812 => 0.14308214864964
813 => 0.14503945778579
814 => 0.14453869435078
815 => 0.14463084687437
816 => 0.14817446157209
817 => 0.1521156899159
818 => 0.15580717035077
819 => 0.15956230280189
820 => 0.15503534406675
821 => 0.15273683360504
822 => 0.15510830968885
823 => 0.15384997109784
824 => 0.16108075788927
825 => 0.16158140187829
826 => 0.16881166580154
827 => 0.17567404722851
828 => 0.17136390840656
829 => 0.17542817518274
830 => 0.17982401106571
831 => 0.18830429168263
901 => 0.18544843151072
902 => 0.18326088737607
903 => 0.18119366873897
904 => 0.18549522256107
905 => 0.1910291028342
906 => 0.19222104764218
907 => 0.19415245358908
908 => 0.192121816397
909 => 0.19456749522751
910 => 0.20320181618495
911 => 0.20086874644499
912 => 0.19755541235457
913 => 0.20437137950147
914 => 0.20683805151554
915 => 0.22415044751639
916 => 0.24600806260687
917 => 0.23695886643457
918 => 0.23134173835469
919 => 0.23266189669352
920 => 0.2406435577976
921 => 0.24320701401897
922 => 0.23623865633293
923 => 0.23869999807215
924 => 0.25226223304902
925 => 0.25953793698551
926 => 0.24965655378235
927 => 0.22239420942615
928 => 0.19725708287171
929 => 0.20392458077351
930 => 0.20316869342799
1001 => 0.21773962298736
1002 => 0.20081310350329
1003 => 0.20109810268093
1004 => 0.2159703436327
1005 => 0.21200268472153
1006 => 0.20557558542478
1007 => 0.19730400780923
1008 => 0.18201323155855
1009 => 0.16846976461848
1010 => 0.19503162216211
1011 => 0.19388622656523
1012 => 0.19222752400282
1013 => 0.19591878706509
1014 => 0.21384251271219
1015 => 0.21342931282259
1016 => 0.21080074594136
1017 => 0.21279449075365
1018 => 0.20522607231957
1019 => 0.20717662607972
1020 => 0.19725310102243
1021 => 0.20173894879134
1022 => 0.20556179575625
1023 => 0.20632928888267
1024 => 0.20805849008567
1025 => 0.19328265513285
1026 => 0.19991657123094
1027 => 0.20381337542469
1028 => 0.18620747231037
1029 => 0.20346536332742
1030 => 0.19302544071958
1031 => 0.18948197418411
1101 => 0.19425278505791
1102 => 0.19239359542062
1103 => 0.19079517334576
1104 => 0.18990322636361
1105 => 0.19340638333415
1106 => 0.1932429568743
1107 => 0.18751111213703
1108 => 0.18003415433715
1109 => 0.18254366679756
1110 => 0.18163193739389
1111 => 0.17832771241955
1112 => 0.18055436109861
1113 => 0.17074932719712
1114 => 0.15388027599093
1115 => 0.16502448793075
1116 => 0.16459544789364
1117 => 0.16437910645151
1118 => 0.17275367372089
1119 => 0.17194865231208
1120 => 0.1704875305723
1121 => 0.17830087777297
1122 => 0.17544890094037
1123 => 0.18423802152818
1124 => 0.19002710479199
1125 => 0.18855880601906
1126 => 0.19400346680974
1127 => 0.18260148089615
1128 => 0.18638876324837
1129 => 0.18716931689222
1130 => 0.17820446228135
1201 => 0.17208036377043
1202 => 0.17167195621959
1203 => 0.16105361335442
1204 => 0.16672584640472
1205 => 0.17171717675604
1206 => 0.16932671686064
1207 => 0.16856996867071
1208 => 0.17243603105438
1209 => 0.17273645721218
1210 => 0.16588670897669
1211 => 0.16731098853816
1212 => 0.17325047107629
1213 => 0.16716132881735
1214 => 0.15533112006396
1215 => 0.15239706472769
1216 => 0.15200560766046
1217 => 0.14404821688563
1218 => 0.15259313233499
1219 => 0.14886304775185
1220 => 0.16064634025672
1221 => 0.153915786773
1222 => 0.1536256460645
1223 => 0.15318705582922
1224 => 0.14633780087365
1225 => 0.14783735241606
1226 => 0.15282209013118
1227 => 0.15460070070503
1228 => 0.15441517705045
1229 => 0.15279766219696
1230 => 0.15353815221387
1231 => 0.15115277586558
]
'min_raw' => 0.08346166480126
'max_raw' => 0.25953793698551
'avg_raw' => 0.17149980089339
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.083461'
'max' => '$0.259537'
'avg' => '$0.171499'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.047545363116446
'max_diff' => 0.1621004714928
'year' => 2033
]
8 => [
'items' => [
101 => 0.15031044982969
102 => 0.14765183716037
103 => 0.14374441099698
104 => 0.14428776257063
105 => 0.13654612890727
106 => 0.13232807600787
107 => 0.13116057455836
108 => 0.12959934282684
109 => 0.13133691983672
110 => 0.13652419783179
111 => 0.13026724002732
112 => 0.11954012474611
113 => 0.12018484265263
114 => 0.1216333323701
115 => 0.11893408136431
116 => 0.11637946681828
117 => 0.11860049690362
118 => 0.11405527674591
119 => 0.12218260051112
120 => 0.12196277917983
121 => 0.12499214288917
122 => 0.12688646618542
123 => 0.12252066428201
124 => 0.12142267690969
125 => 0.12204814041771
126 => 0.11171062186733
127 => 0.12414734707928
128 => 0.12425490039536
129 => 0.12333396360558
130 => 0.12995613584013
131 => 0.14393098476234
201 => 0.13867308446081
202 => 0.13663706654318
203 => 0.13276659499344
204 => 0.13792376852761
205 => 0.13752777806462
206 => 0.13573695901608
207 => 0.13465386606783
208 => 0.13664949803443
209 => 0.13440658518249
210 => 0.13400369640316
211 => 0.13156262874773
212 => 0.13069127865624
213 => 0.13004616573795
214 => 0.12933595980239
215 => 0.13090249712393
216 => 0.12735251745818
217 => 0.12307158999009
218 => 0.12271567719139
219 => 0.12369838372076
220 => 0.12326360923541
221 => 0.12271359565843
222 => 0.12166346995267
223 => 0.12135192008816
224 => 0.12236430600532
225 => 0.12122138133061
226 => 0.12290782894647
227 => 0.12244920851036
228 => 0.11988739203533
301 => 0.11669442020151
302 => 0.11666599605471
303 => 0.11597807551064
304 => 0.11510190526821
305 => 0.11485817475083
306 => 0.11841344794479
307 => 0.12577275705592
308 => 0.12432794858406
309 => 0.1253719707749
310 => 0.13050752664711
311 => 0.13213996542734
312 => 0.13098129904756
313 => 0.12939524504351
314 => 0.12946502337032
315 => 0.13488505003339
316 => 0.13522309044803
317 => 0.13607720951984
318 => 0.13717499390114
319 => 0.13116825647465
320 => 0.12918210657771
321 => 0.12824095856914
322 => 0.12534258697286
323 => 0.12846823225185
324 => 0.12664705260126
325 => 0.12689279195648
326 => 0.12673275387901
327 => 0.12682014549104
328 => 0.12218032875849
329 => 0.12387083411424
330 => 0.1210600410814
331 => 0.11729670473675
401 => 0.11728408871372
402 => 0.11820515995256
403 => 0.11765727073818
404 => 0.1161829149498
405 => 0.11639234023077
406 => 0.11455755440178
407 => 0.11661511645028
408 => 0.11667411996752
409 => 0.11588184650269
410 => 0.11905180472725
411 => 0.1203505391983
412 => 0.1198290478316
413 => 0.12031394997382
414 => 0.12438798689898
415 => 0.12505223268048
416 => 0.12534724677901
417 => 0.12495196696886
418 => 0.12038841589
419 => 0.12059082878606
420 => 0.1191056572578
421 => 0.11785084381994
422 => 0.11790102977683
423 => 0.11854616699822
424 => 0.12136351908082
425 => 0.12729247044667
426 => 0.127517469817
427 => 0.12779017561753
428 => 0.12668094407582
429 => 0.12634638922892
430 => 0.12678775342791
501 => 0.12901435583147
502 => 0.13474178173009
503 => 0.13271732689561
504 => 0.13107141360265
505 => 0.13251532329561
506 => 0.13229304471612
507 => 0.13041678981194
508 => 0.13036412958584
509 => 0.12676299654976
510 => 0.12543173966015
511 => 0.12431924176034
512 => 0.12310442309624
513 => 0.12238423787107
514 => 0.12349076969526
515 => 0.12374384661555
516 => 0.12132439544309
517 => 0.12099463318847
518 => 0.12297040924338
519 => 0.12210094386597
520 => 0.12299521056834
521 => 0.12320268811416
522 => 0.12316927945067
523 => 0.12226145773919
524 => 0.12284007622646
525 => 0.12147147100961
526 => 0.11998331839414
527 => 0.11903396974066
528 => 0.11820553712766
529 => 0.11866519969014
530 => 0.11702658658599
531 => 0.11650236127521
601 => 0.1226440533023
602 => 0.12718098723703
603 => 0.1271150184208
604 => 0.12671345021778
605 => 0.12611680132322
606 => 0.12897070724854
607 => 0.12797646348981
608 => 0.12869985889613
609 => 0.12888399338785
610 => 0.12944131303652
611 => 0.12964050690768
612 => 0.12903840468
613 => 0.12701767606332
614 => 0.12198221247567
615 => 0.11963819058264
616 => 0.11886462431517
617 => 0.11889274197978
618 => 0.11811713126703
619 => 0.11834558338237
620 => 0.11803768494438
621 => 0.11745459979146
622 => 0.11862919582504
623 => 0.11876455707579
624 => 0.11849039232617
625 => 0.11855496804962
626 => 0.11628500102011
627 => 0.11645758168326
628 => 0.11549663062038
629 => 0.11531646388053
630 => 0.11288726327316
701 => 0.10858358227895
702 => 0.11096823931816
703 => 0.10808790894831
704 => 0.10699708419312
705 => 0.11216087892614
706 => 0.11164257715631
707 => 0.11075546982674
708 => 0.10944325319693
709 => 0.10895653928451
710 => 0.10599941962756
711 => 0.10582469722261
712 => 0.10729032557354
713 => 0.10661398851878
714 => 0.10566415514502
715 => 0.10222395494832
716 => 0.098356030916093
717 => 0.098472779229722
718 => 0.099703093899089
719 => 0.10328039973081
720 => 0.10188268445434
721 => 0.10086862598432
722 => 0.10067872331537
723 => 0.10305575280543
724 => 0.10641974753693
725 => 0.10799805859981
726 => 0.10643400027052
727 => 0.1046372942767
728 => 0.10474665144541
729 => 0.10547415569596
730 => 0.10555060610634
731 => 0.10438113520873
801 => 0.10471033441619
802 => 0.10421025071745
803 => 0.10114123798135
804 => 0.10108572927289
805 => 0.10033254405294
806 => 0.10030973790381
807 => 0.099028381953813
808 => 0.098849111398813
809 => 0.096304901387339
810 => 0.097979508121468
811 => 0.096856269845014
812 => 0.095163284817273
813 => 0.094871413560366
814 => 0.094862639557939
815 => 0.096600956636903
816 => 0.097959194874303
817 => 0.096875809055733
818 => 0.096629143105396
819 => 0.099262890124242
820 => 0.098927721808957
821 => 0.098637468209524
822 => 0.10611853870534
823 => 0.10019668765269
824 => 0.097614422586295
825 => 0.094418379207793
826 => 0.095459027047683
827 => 0.095678306837845
828 => 0.087992398642668
829 => 0.084874226645104
830 => 0.083804187521373
831 => 0.083188364877533
901 => 0.083469002989345
902 => 0.08066228246644
903 => 0.082548445076705
904 => 0.08011806235005
905 => 0.079710600776776
906 => 0.084056426158682
907 => 0.084661122372631
908 => 0.082081300459538
909 => 0.083737963762973
910 => 0.083137234619805
911 => 0.080159724286277
912 => 0.080046005292619
913 => 0.078551995271804
914 => 0.076214158886573
915 => 0.075145704925998
916 => 0.074589244826588
917 => 0.074818851108795
918 => 0.074702755146443
919 => 0.073945150461759
920 => 0.074746180160149
921 => 0.072699880289085
922 => 0.071885027192269
923 => 0.071516976952886
924 => 0.069700768036691
925 => 0.072591164094128
926 => 0.073160608529693
927 => 0.073731174946707
928 => 0.078697566064573
929 => 0.0784494591992
930 => 0.080692224429227
1001 => 0.080605074696569
1002 => 0.079965401722577
1003 => 0.077266726666403
1004 => 0.078342370444536
1005 => 0.075031706087599
1006 => 0.07751228092711
1007 => 0.076380250161639
1008 => 0.077129540186584
1009 => 0.075782249160975
1010 => 0.07652789564283
1011 => 0.073295644930362
1012 => 0.070277414694053
1013 => 0.071492038648777
1014 => 0.072812473796659
1015 => 0.075675513637887
1016 => 0.073970310728018
1017 => 0.074583566175268
1018 => 0.072529263084703
1019 => 0.0682906490262
1020 => 0.068314639121459
1021 => 0.067662620691785
1022 => 0.067099181572297
1023 => 0.074166173794793
1024 => 0.073287281599311
1025 => 0.071886881912378
1026 => 0.07376137254301
1027 => 0.074257017617915
1028 => 0.074271127936403
1029 => 0.075638707912906
1030 => 0.076368585591518
1031 => 0.076497229695845
1101 => 0.078649146337394
1102 => 0.079370440411174
1103 => 0.082341348619717
1104 => 0.07630666056986
1105 => 0.07618238014071
1106 => 0.073787750470283
1107 => 0.072269038475701
1108 => 0.073891737979867
1109 => 0.075329228219986
1110 => 0.073832417299032
1111 => 0.074027869205906
1112 => 0.07201852283847
1113 => 0.072736769616294
1114 => 0.073355420499646
1115 => 0.073013837844477
1116 => 0.072502472076903
1117 => 0.075211370413219
1118 => 0.075058523752826
1119 => 0.077581112160907
1120 => 0.079547650217034
1121 => 0.08307203797434
1122 => 0.079394155619102
1123 => 0.079260118967819
1124 => 0.080570348734267
1125 => 0.079370239821823
1126 => 0.080128667228136
1127 => 0.082949843593941
1128 => 0.083009450604999
1129 => 0.082010956370482
1130 => 0.081950197905568
1201 => 0.082141969645637
1202 => 0.083265182717102
1203 => 0.082872697557081
1204 => 0.083326891320766
1205 => 0.083894867577116
1206 => 0.086244258190323
1207 => 0.086810688313343
1208 => 0.085434556774752
1209 => 0.085558806044795
1210 => 0.085044095073707
1211 => 0.084546890724945
1212 => 0.085664533490098
1213 => 0.087707047610737
1214 => 0.0876943412364
1215 => 0.088168164811587
1216 => 0.088463352973562
1217 => 0.087196189291423
1218 => 0.08637131232925
1219 => 0.086687622644832
1220 => 0.08719340972779
1221 => 0.086523602710657
1222 => 0.082389243516119
1223 => 0.083643343991854
1224 => 0.083434600350311
1225 => 0.083137324020661
1226 => 0.084398331746684
1227 => 0.084276704475261
1228 => 0.080633495490711
1229 => 0.080866721909539
1230 => 0.080647678761709
1231 => 0.081355451984358
]
'min_raw' => 0.067099181572297
'max_raw' => 0.15031044982969
'avg_raw' => 0.10870481570099
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.067099'
'max' => '$0.15031'
'avg' => '$0.1087048'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.016362483228963
'max_diff' => -0.10922748715582
'year' => 2034
]
9 => [
'items' => [
101 => 0.079332017745087
102 => 0.079954412489049
103 => 0.080344772637874
104 => 0.080574697764419
105 => 0.081405344982638
106 => 0.081307878118874
107 => 0.081399286305537
108 => 0.082630916847419
109 => 0.088860081483697
110 => 0.089199121170973
111 => 0.087529565752888
112 => 0.088196520211889
113 => 0.086916113497514
114 => 0.087775659102853
115 => 0.088363738375935
116 => 0.08570632122202
117 => 0.08554896622466
118 => 0.084263274816309
119 => 0.084954132553873
120 => 0.08385492821898
121 => 0.084124634514227
122 => 0.083370512200143
123 => 0.08472778222124
124 => 0.086245421003264
125 => 0.086628836492975
126 => 0.085620235410292
127 => 0.084889941756379
128 => 0.083607786673794
129 => 0.085740039150823
130 => 0.086363574754324
131 => 0.085736763983745
201 => 0.085591518232117
202 => 0.085316277795233
203 => 0.085649911791947
204 => 0.086360178845516
205 => 0.086025230019626
206 => 0.086246469620165
207 => 0.085403332404195
208 => 0.087196608775328
209 => 0.090044763228149
210 => 0.090053920510435
211 => 0.089718969879046
212 => 0.089581915297294
213 => 0.089925594971603
214 => 0.090112027096437
215 => 0.091223424143079
216 => 0.092415997454138
217 => 0.097981216736348
218 => 0.096418525431488
219 => 0.10135631905504
220 => 0.10526147271902
221 => 0.10643245755117
222 => 0.10535520660468
223 => 0.10166998930871
224 => 0.10148917496691
225 => 0.10699644546571
226 => 0.10544038930083
227 => 0.10525530137135
228 => 0.10328627851264
301 => 0.10445021489036
302 => 0.10419564493064
303 => 0.10379379379522
304 => 0.1060145033234
305 => 0.11017147331605
306 => 0.10952357055888
307 => 0.10903994120599
308 => 0.10692081816404
309 => 0.10819700355856
310 => 0.10774257838329
311 => 0.10969507732159
312 => 0.10853846020369
313 => 0.10542860064496
314 => 0.10592385602992
315 => 0.10584899917479
316 => 0.10738954794877
317 => 0.10692711344559
318 => 0.10575870141624
319 => 0.11015726524453
320 => 0.10987164697562
321 => 0.11027658837951
322 => 0.11045485610873
323 => 0.11313218439962
324 => 0.11422900013545
325 => 0.11447799650995
326 => 0.11551988662821
327 => 0.11445207333467
328 => 0.11872408784683
329 => 0.12156472821846
330 => 0.12486427818813
331 => 0.12968580752923
401 => 0.13149874716313
402 => 0.13117125584526
403 => 0.13482688436433
404 => 0.14139596755304
405 => 0.13249905537497
406 => 0.14186752550187
407 => 0.13890157602388
408 => 0.13186936316673
409 => 0.13141657156307
410 => 0.13617886775561
411 => 0.14674118235663
412 => 0.14409544234585
413 => 0.14674550983948
414 => 0.14365406534154
415 => 0.14350054906548
416 => 0.14659536528045
417 => 0.15382657205636
418 => 0.15039129677486
419 => 0.14546598729476
420 => 0.14910275916856
421 => 0.14595225080413
422 => 0.1388532736873
423 => 0.14409341919833
424 => 0.14058948312585
425 => 0.14161211795129
426 => 0.14897687040448
427 => 0.14809072390459
428 => 0.1492374795304
429 => 0.14721348586667
430 => 0.14532275663024
501 => 0.14179357010304
502 => 0.14074875195913
503 => 0.14103750210549
504 => 0.1407486088689
505 => 0.13877406144183
506 => 0.13834765811295
507 => 0.137636967217
508 => 0.13785724004297
509 => 0.13652093323862
510 => 0.1390428202735
511 => 0.13951090472996
512 => 0.14134612380602
513 => 0.1415366623386
514 => 0.14664772134272
515 => 0.14383263593111
516 => 0.145721238268
517 => 0.14555230389877
518 => 0.13202177254288
519 => 0.13388616038283
520 => 0.13678656278466
521 => 0.13547993543404
522 => 0.13363267006397
523 => 0.13214090423354
524 => 0.12988072645954
525 => 0.13306188327357
526 => 0.13724476620571
527 => 0.14164274715257
528 => 0.1469266330931
529 => 0.14574733126239
530 => 0.14154396858031
531 => 0.14173252835967
601 => 0.14289813072013
602 => 0.14138856975719
603 => 0.14094337075908
604 => 0.14283696721429
605 => 0.14285000737237
606 => 0.14111307504797
607 => 0.13918279262466
608 => 0.13917470467082
609 => 0.13883122955791
610 => 0.1437151688011
611 => 0.1464008415629
612 => 0.14670874961686
613 => 0.14638011689758
614 => 0.14650659458827
615 => 0.14494386078293
616 => 0.14851580684761
617 => 0.1517937777854
618 => 0.15091521155044
619 => 0.14959811586868
620 => 0.14854898571823
621 => 0.15066806982883
622 => 0.15057371034913
623 => 0.1517651475689
624 => 0.15171109709454
625 => 0.15131046156975
626 => 0.15091522585839
627 => 0.15248229077849
628 => 0.1520310012478
629 => 0.15157901073981
630 => 0.15067247457976
701 => 0.15079568789988
702 => 0.14947881963326
703 => 0.14886957611733
704 => 0.13970801541732
705 => 0.13725974703565
706 => 0.13803002210762
707 => 0.1382836166615
708 => 0.13721812712425
709 => 0.13874576541886
710 => 0.13850768460881
711 => 0.13943391776808
712 => 0.13885524750254
713 => 0.13887899633208
714 => 0.14058074219754
715 => 0.14107476626202
716 => 0.14082350163556
717 => 0.14099947876709
718 => 0.14505479748779
719 => 0.14447826084749
720 => 0.14417198724814
721 => 0.14425682712827
722 => 0.14529304800843
723 => 0.14558313327931
724 => 0.14435402160266
725 => 0.14493367777477
726 => 0.14740178018633
727 => 0.14826547634788
728 => 0.15102197989786
729 => 0.14985096819688
730 => 0.15200041085422
731 => 0.15860706478388
801 => 0.16388491708857
802 => 0.15903118599271
803 => 0.16872328961984
804 => 0.17626998254325
805 => 0.17598032789917
806 => 0.17466438742982
807 => 0.16607267817573
808 => 0.15816645922495
809 => 0.16478034709307
810 => 0.1647972072534
811 => 0.16422906841996
812 => 0.16070040691965
813 => 0.16410627864857
814 => 0.1643766243781
815 => 0.1642253026603
816 => 0.16151988616139
817 => 0.1573892152121
818 => 0.15819633842816
819 => 0.15951842272094
820 => 0.15701544133904
821 => 0.15621558712653
822 => 0.15770266828607
823 => 0.16249435362778
824 => 0.16158851327027
825 => 0.16156485811775
826 => 0.16544042730326
827 => 0.16266635616661
828 => 0.15820651883668
829 => 0.15708035109285
830 => 0.15308321427973
831 => 0.15584405091387
901 => 0.15594340850931
902 => 0.15443132649986
903 => 0.15832921595819
904 => 0.15829329622062
905 => 0.16199376213703
906 => 0.16906766313767
907 => 0.16697556252625
908 => 0.16454267713507
909 => 0.16480719923369
910 => 0.16770835375933
911 => 0.16595424950621
912 => 0.16658503762568
913 => 0.16770739898597
914 => 0.16838454746129
915 => 0.16470976798881
916 => 0.16385300110876
917 => 0.16210035675648
918 => 0.16164312455963
919 => 0.16307061681443
920 => 0.16269452303934
921 => 0.15593505788814
922 => 0.15522865617053
923 => 0.1552503205027
924 => 0.1534740397962
925 => 0.15076478536257
926 => 0.15788454425297
927 => 0.15731272797311
928 => 0.15668148705521
929 => 0.15675881046584
930 => 0.15984925648914
1001 => 0.15805664172436
1002 => 0.16282260188032
1003 => 0.16184286375013
1004 => 0.16083799903379
1005 => 0.16069909612107
1006 => 0.1603123089363
1007 => 0.15898587176259
1008 => 0.15738411916881
1009 => 0.15632650336496
1010 => 0.14420293596647
1011 => 0.14645299955609
1012 => 0.14904149261619
1013 => 0.1499350300478
1014 => 0.14840657244012
1015 => 0.159046224585
1016 => 0.16099019155811
1017 => 0.15510178879473
1018 => 0.15400030905961
1019 => 0.15911843741306
1020 => 0.15603158035018
1021 => 0.15742159189658
1022 => 0.15441714722893
1023 => 0.16052194684028
1024 => 0.16047543849558
1025 => 0.15810053356361
1026 => 0.16010778694946
1027 => 0.15975897727759
1028 => 0.15707771545853
1029 => 0.16060694762243
1030 => 0.16060869807755
1031 => 0.15832290371541
1101 => 0.15565359632517
1102 => 0.15517638721002
1103 => 0.15481687424578
1104 => 0.15733317374592
1105 => 0.15958928000949
1106 => 0.16378733442982
1107 => 0.1648428250544
1108 => 0.16896247523014
1109 => 0.16650942413261
1110 => 0.16759682991182
1111 => 0.16877736270808
1112 => 0.16934335354327
1113 => 0.16842110185007
1114 => 0.17482061428866
1115 => 0.17536092921447
1116 => 0.17554209213539
1117 => 0.17338421254755
1118 => 0.17530091467955
1119 => 0.17440415322649
1120 => 0.17673727739985
1121 => 0.17710314106106
1122 => 0.176793267556
1123 => 0.17690939845683
1124 => 0.17144854354185
1125 => 0.17116536940621
1126 => 0.16730426997356
1127 => 0.16887769653217
1128 => 0.16593625099714
1129 => 0.16686901367654
1130 => 0.16728016657794
1201 => 0.16706540363497
1202 => 0.16896665570904
1203 => 0.16735020304594
1204 => 0.1630841186986
1205 => 0.15881687205944
1206 => 0.15876330025391
1207 => 0.15763980953697
1208 => 0.15682773152622
1209 => 0.15698416656111
1210 => 0.15753546402819
1211 => 0.15679568911523
1212 => 0.15695355760045
1213 => 0.15957522632731
1214 => 0.1601009832936
1215 => 0.15831425569565
1216 => 0.15114028656632
1217 => 0.14937977654744
1218 => 0.15064519623658
1219 => 0.15004040712864
1220 => 0.12109431872646
1221 => 0.12789477283315
1222 => 0.12385417392455
1223 => 0.12571626780065
1224 => 0.12159186262299
1225 => 0.12356024495237
1226 => 0.12319675660994
1227 => 0.13413168557344
1228 => 0.13396095169818
1229 => 0.13404267296923
1230 => 0.13014190377827
1231 => 0.1363559350169
]
'min_raw' => 0.079332017745087
'max_raw' => 0.17710314106106
'avg_raw' => 0.12821757940307
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.079332'
'max' => '$0.1771031'
'avg' => '$0.128217'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01223283617279
'max_diff' => 0.026792691231373
'year' => 2035
]
10 => [
'items' => [
101 => 0.13941719025439
102 => 0.1388506333826
103 => 0.13899322354124
104 => 0.13654305219199
105 => 0.1340663959837
106 => 0.13131940309405
107 => 0.13642297634444
108 => 0.1358555461199
109 => 0.13715702690005
110 => 0.14046705896388
111 => 0.14095447375887
112 => 0.14160956418621
113 => 0.14137476090052
114 => 0.14696872776925
115 => 0.14629126147126
116 => 0.14792376032905
117 => 0.14456558632059
118 => 0.14076549366923
119 => 0.14148776704786
120 => 0.14141820631334
121 => 0.14053261832483
122 => 0.13973314908612
123 => 0.13840225805271
124 => 0.14261339421721
125 => 0.14244242977937
126 => 0.14521014530359
127 => 0.14472092470053
128 => 0.1414537897807
129 => 0.14157047614352
130 => 0.14235524801104
131 => 0.1450713524049
201 => 0.14587767711548
202 => 0.14550415538306
203 => 0.14638825361809
204 => 0.14708700881548
205 => 0.14647600651266
206 => 0.15512651063071
207 => 0.15153421820985
208 => 0.15328507654077
209 => 0.15370264593604
210 => 0.1526330507106
211 => 0.15286500761566
212 => 0.15321635912236
213 => 0.15534969666936
214 => 0.16094819167887
215 => 0.16342772700834
216 => 0.17088753138517
217 => 0.16322183611603
218 => 0.16276698548256
219 => 0.16411072151534
220 => 0.16849041638502
221 => 0.17203974771308
222 => 0.17321726568044
223 => 0.17337289411853
224 => 0.1755819961052
225 => 0.17684821216664
226 => 0.17531375301886
227 => 0.17401345955569
228 => 0.16935596976897
229 => 0.16989508689371
301 => 0.17360906926641
302 => 0.17885528812033
303 => 0.18335708967303
304 => 0.1817807156729
305 => 0.19380733654729
306 => 0.19499972688265
307 => 0.1948349770929
308 => 0.19755141972831
309 => 0.19215983429094
310 => 0.18985482705941
311 => 0.17429459776139
312 => 0.17866638750063
313 => 0.18502104063282
314 => 0.18417997846205
315 => 0.17956505949709
316 => 0.18335358884317
317 => 0.18210098256309
318 => 0.1811130000193
319 => 0.18563913958221
320 => 0.18066246320923
321 => 0.18497139447904
322 => 0.17944514555532
323 => 0.18178791641655
324 => 0.18045804636864
325 => 0.18131863527238
326 => 0.17628765012583
327 => 0.17900224759065
328 => 0.17617471394653
329 => 0.17617337332743
330 => 0.17611095536552
331 => 0.17943753615862
401 => 0.17954601583885
402 => 0.17708766760657
403 => 0.17673338121968
404 => 0.17804336368102
405 => 0.17650971730374
406 => 0.17722730079101
407 => 0.17653145217655
408 => 0.17637480199662
409 => 0.17512658671112
410 => 0.17458882124573
411 => 0.17479969294122
412 => 0.17407987913271
413 => 0.17364616527627
414 => 0.17602467876305
415 => 0.17475393495603
416 => 0.17582991904959
417 => 0.17460369937496
418 => 0.17035308774418
419 => 0.16790851604592
420 => 0.15987950470728
421 => 0.16215652236296
422 => 0.16366618742442
423 => 0.16316724313062
424 => 0.16423916853952
425 => 0.16430497605381
426 => 0.16395648217639
427 => 0.16355297091117
428 => 0.16335656394283
429 => 0.16482042057161
430 => 0.16567023861577
501 => 0.16381770251005
502 => 0.16338367922022
503 => 0.16525669550442
504 => 0.16639923435577
505 => 0.17483509929706
506 => 0.17421014317473
507 => 0.17577866040035
508 => 0.1756020694316
509 => 0.17724612536844
510 => 0.17993346199528
511 => 0.17446935524176
512 => 0.17541773523958
513 => 0.17518521436541
514 => 0.17772381629937
515 => 0.17773174153751
516 => 0.17620972286553
517 => 0.17703483387954
518 => 0.17657427954726
519 => 0.17740656347335
520 => 0.1742017965047
521 => 0.1781048567393
522 => 0.18031764038467
523 => 0.18034836488773
524 => 0.1813972067739
525 => 0.18246289087507
526 => 0.18450837870575
527 => 0.18240584332967
528 => 0.17862358686578
529 => 0.17889665356586
530 => 0.17667911798496
531 => 0.1767163951587
601 => 0.17651740668379
602 => 0.17711458607617
603 => 0.17433284379901
604 => 0.1749857131514
605 => 0.17407169223486
606 => 0.17541574833661
607 => 0.17396976615156
608 => 0.1751851022368
609 => 0.17570960100216
610 => 0.17764501273799
611 => 0.17368390426455
612 => 0.16560693594374
613 => 0.16730481260855
614 => 0.16479351965596
615 => 0.16502594937989
616 => 0.16549549441314
617 => 0.1639735453348
618 => 0.16426388525682
619 => 0.16425351227171
620 => 0.16416412349002
621 => 0.16376820575428
622 => 0.16319404670752
623 => 0.16548131963297
624 => 0.16586997187344
625 => 0.16673389766019
626 => 0.16930435479508
627 => 0.16904750551175
628 => 0.16946643734943
629 => 0.16855191149997
630 => 0.16506837161112
701 => 0.1652575445869
702 => 0.16289855454763
703 => 0.16667357298115
704 => 0.16577959878828
705 => 0.1652032478105
706 => 0.16504598510635
707 => 0.1676228139073
708 => 0.16839384147138
709 => 0.16791338883518
710 => 0.16692796646129
711 => 0.16882026873314
712 => 0.16932656899126
713 => 0.16943991094742
714 => 0.17279270776017
715 => 0.16962729504433
716 => 0.17038924134653
717 => 0.17633372888913
718 => 0.1709428989712
719 => 0.17379854180858
720 => 0.17365877295174
721 => 0.17511962319766
722 => 0.17353894059255
723 => 0.17355853504787
724 => 0.17485567109968
725 => 0.17303407745463
726 => 0.17258302525099
727 => 0.17195989986215
728 => 0.17332047135209
729 => 0.17413607242695
730 => 0.18070921809734
731 => 0.18495576997228
801 => 0.1847714159559
802 => 0.18645606656931
803 => 0.18569711603834
804 => 0.1832462645728
805 => 0.18742956917498
806 => 0.18610579656195
807 => 0.18621492676778
808 => 0.18621086493607
809 => 0.18709105799753
810 => 0.18646736054498
811 => 0.18523798884477
812 => 0.18605410315174
813 => 0.18847767087724
814 => 0.19600049946133
815 => 0.20021037400121
816 => 0.19574705972796
817 => 0.19882579414749
818 => 0.19697965056101
819 => 0.19664415135333
820 => 0.19857782408548
821 => 0.20051488145578
822 => 0.20039149927542
823 => 0.19898529509358
824 => 0.19819096603237
825 => 0.20420589180361
826 => 0.20863758665026
827 => 0.20833537477218
828 => 0.20966923971747
829 => 0.21358550845173
830 => 0.21394356298451
831 => 0.21389845634317
901 => 0.21301098082454
902 => 0.21686705598518
903 => 0.22008386172537
904 => 0.21280555588361
905 => 0.21557703946814
906 => 0.21682124774085
907 => 0.21864811462516
908 => 0.22173034527743
909 => 0.22507846528709
910 => 0.22555192616673
911 => 0.22521598301544
912 => 0.22300780786677
913 => 0.22667136073272
914 => 0.22881738408071
915 => 0.23009529187357
916 => 0.23333585341268
917 => 0.21682893154757
918 => 0.20514451180419
919 => 0.2033198209362
920 => 0.20703040156869
921 => 0.20800885209015
922 => 0.20761443991182
923 => 0.19446256318969
924 => 0.2032505790271
925 => 0.2127057451508
926 => 0.21306895658898
927 => 0.21780241044871
928 => 0.21934381705626
929 => 0.22315486784132
930 => 0.22291648557707
1001 => 0.22384441579617
1002 => 0.22363110070831
1003 => 0.23069026977621
1004 => 0.23847758155485
1005 => 0.23820793171009
1006 => 0.23708841350662
1007 => 0.23875108894499
1008 => 0.24678842923959
1009 => 0.24604847974102
1010 => 0.24676727765014
1011 => 0.25624375482212
1012 => 0.26856452315886
1013 => 0.26284028928153
1014 => 0.27526022969141
1015 => 0.28307792382668
1016 => 0.29659781746897
1017 => 0.29490506019807
1018 => 0.30016825557945
1019 => 0.29187467139407
1020 => 0.27283092569452
1021 => 0.26981718004103
1022 => 0.2758507751595
1023 => 0.29068378000866
1024 => 0.27538363105062
1025 => 0.27847883125788
1026 => 0.27758741338996
1027 => 0.27753991352006
1028 => 0.27935279035818
1029 => 0.27672311795119
1030 => 0.2660093594961
1031 => 0.27091941185949
1101 => 0.26902340484191
1102 => 0.27112716598461
1103 => 0.28248029721467
1104 => 0.27746080727301
1105 => 0.27217318236973
1106 => 0.27880503741634
1107 => 0.28724966784333
1108 => 0.28672121804766
1109 => 0.2856958045692
1110 => 0.29147600665838
1111 => 0.30102320706939
1112 => 0.30360377697673
1113 => 0.3055087009249
1114 => 0.3057713577534
1115 => 0.30847688632724
1116 => 0.29392857730469
1117 => 0.31701711735056
1118 => 0.32100387040843
1119 => 0.32025452606753
1120 => 0.32468563430315
1121 => 0.32338188985386
1122 => 0.32149296869809
1123 => 0.32851721777528
1124 => 0.32046448303595
1125 => 0.30903463988458
1126 => 0.30276400187507
1127 => 0.31102168384393
1128 => 0.31606436206893
1129 => 0.31939725160108
1130 => 0.32040578195972
1201 => 0.29505792112039
1202 => 0.2813968299848
1203 => 0.29015343277799
1204 => 0.30083709253411
1205 => 0.29386922903532
1206 => 0.29414235609256
1207 => 0.28420801386559
1208 => 0.30171606138603
1209 => 0.29916528612816
1210 => 0.31239871267823
1211 => 0.30924044922717
1212 => 0.32003179486009
1213 => 0.31719007189757
1214 => 0.32898590503642
1215 => 0.33369158223493
1216 => 0.34159314663142
1217 => 0.34740556956663
1218 => 0.35081873548812
1219 => 0.35061382180866
1220 => 0.3641384856221
1221 => 0.35616346388708
1222 => 0.34614495701958
1223 => 0.34596375383833
1224 => 0.35115248050835
1225 => 0.36202662815106
1226 => 0.3648461364224
1227 => 0.36642185690169
1228 => 0.36400858613644
1229 => 0.35535227161802
1230 => 0.35161451889748
1231 => 0.3547991925085
]
'min_raw' => 0.13131940309405
'max_raw' => 0.36642185690169
'avg_raw' => 0.24887062999787
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.131319'
'max' => '$0.366421'
'avg' => '$0.24887'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.051987385348959
'max_diff' => 0.18931871584063
'year' => 2036
]
11 => [
'items' => [
101 => 0.35090461034435
102 => 0.35762775178644
103 => 0.36686006097195
104 => 0.36495362563365
105 => 0.37132655314083
106 => 0.37792186265923
107 => 0.38735345148444
108 => 0.38981921805407
109 => 0.39389503642897
110 => 0.39809039237333
111 => 0.39943782763464
112 => 0.4020104996331
113 => 0.40199694038176
114 => 0.40974986060991
115 => 0.41830157170951
116 => 0.42152964467704
117 => 0.4289524204689
118 => 0.41624117705043
119 => 0.42588280119958
120 => 0.43457978752762
121 => 0.42421088189267
122 => 0.43850200266528
123 => 0.43905689450051
124 => 0.44743510241447
125 => 0.43894218362324
126 => 0.43389911555537
127 => 0.44845826410602
128 => 0.4555029774808
129 => 0.45338105248054
130 => 0.43723309845619
131 => 0.42783429659569
201 => 0.40323581923328
202 => 0.43237377824419
203 => 0.44656602811249
204 => 0.43719634395762
205 => 0.44192186764336
206 => 0.46770279261655
207 => 0.47751849965506
208 => 0.47547690120802
209 => 0.475821897738
210 => 0.4811182750883
211 => 0.5046053290278
212 => 0.4905313418816
213 => 0.50129037771263
214 => 0.50699693152282
215 => 0.51229749673142
216 => 0.49928098383993
217 => 0.48234669181866
218 => 0.4769828906823
219 => 0.43626471352471
220 => 0.43414515557358
221 => 0.43295538346643
222 => 0.42545403862746
223 => 0.4195600363753
224 => 0.41487290695411
225 => 0.40257247965759
226 => 0.40672351278733
227 => 0.38711919897537
228 => 0.39966134421804
301 => 0.36837238601144
302 => 0.39443076016231
303 => 0.38024837184088
304 => 0.38977146416461
305 => 0.38973823899262
306 => 0.37220320672546
307 => 0.36208936606055
308 => 0.3685342989688
309 => 0.37544377864585
310 => 0.37656481847717
311 => 0.38552313923435
312 => 0.38802321399921
313 => 0.38044787074434
314 => 0.36772399189896
315 => 0.37067945875397
316 => 0.36202947361906
317 => 0.34687070738702
318 => 0.35775799794154
319 => 0.36147539761723
320 => 0.3631172130896
321 => 0.34821030749645
322 => 0.34352623411442
323 => 0.34103247274901
324 => 0.36579969757979
325 => 0.36715650206487
326 => 0.36021489848638
327 => 0.391591604891
328 => 0.38449008988321
329 => 0.39242422206033
330 => 0.37041128111461
331 => 0.37125220510309
401 => 0.36083092608636
402 => 0.36666614598562
403 => 0.36254200063874
404 => 0.36619471788252
405 => 0.36838414153773
406 => 0.37880371052512
407 => 0.39454973490296
408 => 0.37724737438041
409 => 0.36970848812637
410 => 0.37438557075807
411 => 0.38684125814504
412 => 0.4057122621312
413 => 0.39454024795704
414 => 0.39949819813443
415 => 0.40058128968434
416 => 0.39234346004276
417 => 0.4060160026604
418 => 0.41334322932473
419 => 0.42085944772642
420 => 0.42738556956494
421 => 0.4178573048116
422 => 0.42805391392078
423 => 0.41983724692259
424 => 0.41246604720179
425 => 0.41247722626907
426 => 0.40785316500817
427 => 0.39889346364596
428 => 0.39724115724829
429 => 0.40583666379227
430 => 0.41272944604305
501 => 0.41329716860343
502 => 0.4171133670214
503 => 0.41937175393518
504 => 0.4415070158184
505 => 0.45041000126032
506 => 0.46129640333382
507 => 0.46553727046544
508 => 0.47830076009663
509 => 0.4679932056195
510 => 0.46576310137082
511 => 0.4348030504312
512 => 0.43987275703815
513 => 0.4479898464698
514 => 0.43493689824622
515 => 0.44321598951956
516 => 0.44485045751204
517 => 0.43449336406035
518 => 0.44002553517649
519 => 0.42533372886646
520 => 0.39486997613245
521 => 0.40604991752572
522 => 0.41428211751875
523 => 0.40253375310576
524 => 0.42359224159155
525 => 0.41129030735359
526 => 0.40739118479714
527 => 0.39217931756686
528 => 0.39935873334109
529 => 0.40906899597506
530 => 0.40306918260646
531 => 0.41551969622281
601 => 0.43315294393425
602 => 0.44571944633148
603 => 0.44668414634666
604 => 0.43860472719552
605 => 0.45155204794739
606 => 0.45164635504416
607 => 0.43704172434468
608 => 0.42809646936018
609 => 0.42606408860672
610 => 0.43114137420057
611 => 0.43730613623014
612 => 0.44702624773474
613 => 0.45289990754341
614 => 0.46821529717597
615 => 0.47235920248391
616 => 0.47691209806375
617 => 0.48299617061941
618 => 0.49030165964667
619 => 0.47431766555675
620 => 0.47495273943984
621 => 0.46006866545677
622 => 0.44416289781375
623 => 0.45623339277288
624 => 0.47201395926129
625 => 0.46839387987287
626 => 0.46798654699016
627 => 0.46867156791416
628 => 0.46594214627603
629 => 0.45359707336387
630 => 0.44739745503163
701 => 0.45539654437154
702 => 0.45964770435719
703 => 0.46624088275483
704 => 0.46542813435221
705 => 0.48241145384887
706 => 0.48901065825634
707 => 0.48732229937303
708 => 0.48763299804019
709 => 0.49958054240084
710 => 0.51286866892978
711 => 0.52531475294687
712 => 0.5379754441808
713 => 0.52271248674311
714 => 0.5149628982446
715 => 0.52295849543234
716 => 0.51871591901834
717 => 0.54309502152306
718 => 0.5447829776859
719 => 0.56916031730402
720 => 0.59229731540122
721 => 0.57776538143874
722 => 0.59146834063267
723 => 0.60628920821957
724 => 0.63488106639379
725 => 0.62525233443441
726 => 0.61787687665499
727 => 0.61090710469139
728 => 0.6254100937275
729 => 0.64406795743154
730 => 0.6480866825706
731 => 0.65459855256702
801 => 0.64775211749936
802 => 0.65599789442828
803 => 0.68510911036533
804 => 0.67724300284733
805 => 0.66607186563188
806 => 0.68905237474328
807 => 0.69736893165623
808 => 0.75573888348598
809 => 0.82943335881349
810 => 0.79892336212389
811 => 0.77998482262721
812 => 0.78443582863709
813 => 0.81134655631128
814 => 0.81998942793642
815 => 0.79649512348277
816 => 0.80479370900193
817 => 0.85051973111144
818 => 0.87505027490676
819 => 0.84173450154114
820 => 0.74981760414813
821 => 0.66506602695169
822 => 0.68754596163744
823 => 0.68499743467767
824 => 0.73412434099691
825 => 0.67705539878452
826 => 0.67801629340991
827 => 0.72815909212553
828 => 0.71478185309341
829 => 0.69311243908868
830 => 0.66522423765473
831 => 0.61367031795766
901 => 0.56800757359456
902 => 0.65756273079258
903 => 0.65370094956872
904 => 0.64810851807265
905 => 0.66055386920286
906 => 0.72098496161662
907 => 0.71959182934013
908 => 0.7107294325794
909 => 0.71745148241283
910 => 0.69193403125225
911 => 0.69851045943789
912 => 0.66505260186885
913 => 0.68017695081362
914 => 0.69306594625846
915 => 0.69565360291885
916 => 0.70148372550373
917 => 0.65166596634444
918 => 0.6740326776344
919 => 0.68717102503981
920 => 0.62781149348497
921 => 0.68599767795642
922 => 0.65079874999199
923 => 0.6388517051707
924 => 0.65493682711909
925 => 0.64866843945251
926 => 0.64327924782886
927 => 0.64027198630479
928 => 0.65208312461356
929 => 0.6515321208941
930 => 0.63220680617779
1001 => 0.60699772093096
1002 => 0.61545871739981
1003 => 0.61238475806041
1004 => 0.60124433286579
1005 => 0.6087516343469
1006 => 0.57569327798243
1007 => 0.51881809408119
1008 => 0.55639158270034
1009 => 0.5549450442606
1010 => 0.55421563398398
1011 => 0.58245107222633
1012 => 0.57973688634172
1013 => 0.57481061238377
1014 => 0.60115385798132
1015 => 0.59153821897156
1016 => 0.62117135267016
1017 => 0.64068965107498
1018 => 0.63573917924871
1019 => 0.65409623323857
1020 => 0.61565364166964
1021 => 0.62842272853977
1022 => 0.63105441964651
1023 => 0.6008287864198
1024 => 0.58018096071934
1025 => 0.57880398614757
1026 => 0.54300350182862
1027 => 0.56212783158039
1028 => 0.57895645034341
1029 => 0.57089684790949
1030 => 0.56834541855269
1031 => 0.58138011779909
1101 => 0.58239302556518
1102 => 0.55929862115507
1103 => 0.56410067913661
1104 => 0.58412605919533
1105 => 0.56359609093896
1106 => 0.52370971616812
1107 => 0.51381734375268
1108 => 0.51249751891986
1109 => 0.48566862035523
1110 => 0.5144783993797
1111 => 0.50190215878144
1112 => 0.54163035214484
1113 => 0.51893782116224
1114 => 0.51795959150657
1115 => 0.51648085390693
1116 => 0.49338811262451
1117 => 0.49844395534509
1118 => 0.51525034657489
1119 => 0.52124705630323
1120 => 0.52062155034897
1121 => 0.51516798608917
1122 => 0.51766459988054
1123 => 0.50962213698063
1124 => 0.50678217594128
1125 => 0.49781847770827
1126 => 0.48464431759059
1127 => 0.48647626535678
1128 => 0.46037480695714
1129 => 0.44615334711178
1130 => 0.44221703446241
1201 => 0.43695323267784
1202 => 0.44281159488042
1203 => 0.46030086480497
1204 => 0.43920509472036
1205 => 0.40303787660651
1206 => 0.40521158804109
1207 => 0.41009527225388
1208 => 0.40099455903215
1209 => 0.39238149773274
1210 => 0.39986985573283
1211 => 0.38454532863397
1212 => 0.41194716813999
1213 => 0.41120602517412
1214 => 0.42141973642357
1215 => 0.42780657967431
1216 => 0.41308697374641
1217 => 0.4093850326616
1218 => 0.41149382654735
1219 => 0.37664016101227
1220 => 0.41857144836877
1221 => 0.41893407188307
1222 => 0.41582906919857
1223 => 0.43815618523265
1224 => 0.4852733640667
1225 => 0.4675459861052
1226 => 0.46068140954568
1227 => 0.44763184448804
1228 => 0.46501961512084
1229 => 0.46368450562771
1230 => 0.45764663417458
1231 => 0.45399491068041
]
'min_raw' => 0.34103247274901
'max_raw' => 0.87505027490676
'avg_raw' => 0.60804137382789
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.341032'
'max' => '$0.87505'
'avg' => '$0.608041'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.20971306965496
'max_diff' => 0.50862841800507
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010704619630513
]
1 => [
'year' => 2028
'avg' => 0.018372234859244
]
2 => [
'year' => 2029
'avg' => 0.05018963436229
]
3 => [
'year' => 2030
'avg' => 0.038721228165861
]
4 => [
'year' => 2031
'avg' => 0.038029044727854
]
5 => [
'year' => 2032
'avg' => 0.066676883588764
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010704619630513
'min' => '$0.0107046'
'max_raw' => 0.066676883588764
'max' => '$0.066676'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.066676883588764
]
1 => [
'year' => 2033
'avg' => 0.17149980089339
]
2 => [
'year' => 2034
'avg' => 0.10870481570099
]
3 => [
'year' => 2035
'avg' => 0.12821757940307
]
4 => [
'year' => 2036
'avg' => 0.24887062999787
]
5 => [
'year' => 2037
'avg' => 0.60804137382789
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.066676883588764
'min' => '$0.066676'
'max_raw' => 0.60804137382789
'max' => '$0.608041'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.60804137382789
]
]
]
]
'prediction_2025_max_price' => '$0.0183029'
'last_price' => 0.01774702
'sma_50day_nextmonth' => '$0.016681'
'sma_200day_nextmonth' => '$0.024358'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.017385'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.017342'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.017241'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.017221'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.016975'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.022144'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024458'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.017484'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.017394'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.017304'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.017257'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.018201'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.02049'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.021724'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.024433'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.020246'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.021648'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.02563'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.017451'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.017561'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.018929'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.021044'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.021367'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.022943'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.027511'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.91'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 105.63
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.017267'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0174010'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 243.33
'cci_20_action' => 'SELL'
'adx_14' => 7.93
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000280'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 61.88
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.005537'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767711187
'last_updated_date' => '6. Januar 2026'
]
Kleros Preisprognose für 2026
Die Preisprognose für Kleros im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.006131 am unteren Ende und $0.0183029 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Kleros im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn PNK das prognostizierte Preisziel erreicht.
Kleros Preisprognose 2027-2032
Die Preisprognose für PNK für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.0107046 am unteren Ende und $0.066676 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Kleros, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Kleros Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.0059027 | $0.0107046 | $0.0155065 |
| 2028 | $0.010652 | $0.018372 | $0.026091 |
| 2029 | $0.0234009 | $0.050189 | $0.076978 |
| 2030 | $0.0199014 | $0.038721 | $0.05754 |
| 2031 | $0.023529 | $0.038029 | $0.052528 |
| 2032 | $0.035916 | $0.066676 | $0.097437 |
Kleros Preisprognose 2032-2037
Die Preisprognose für Kleros für die Jahre 2032-2037 wird derzeit zwischen $0.066676 am unteren Ende und $0.608041 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Kleros bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Kleros Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.035916 | $0.066676 | $0.097437 |
| 2033 | $0.083461 | $0.171499 | $0.259537 |
| 2034 | $0.067099 | $0.1087048 | $0.15031 |
| 2035 | $0.079332 | $0.128217 | $0.1771031 |
| 2036 | $0.131319 | $0.24887 | $0.366421 |
| 2037 | $0.341032 | $0.608041 | $0.87505 |
Kleros Potenzielles Preishistogramm
Kleros Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Kleros Bullisch, mit 20 technischen Indikatoren, die bullische Signale zeigen, und 15 anzeigen bärische Signale. Die Preisprognose für PNK wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Kleros
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Kleros im nächsten Monat steigen, und bis zum 04.02.2026 $0.024358 erreichen. Der kurzfristige 50-Tage-SMA für Kleros wird voraussichtlich bis zum 04.02.2026 $0.016681 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 55.91, was darauf hindeutet, dass sich der PNK-Markt in einem NEUTRAL Zustand befindet.
Beliebte PNK Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.017385 | BUY |
| SMA 5 | $0.017342 | BUY |
| SMA 10 | $0.017241 | BUY |
| SMA 21 | $0.017221 | BUY |
| SMA 50 | $0.016975 | BUY |
| SMA 100 | $0.022144 | SELL |
| SMA 200 | $0.024458 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.017484 | BUY |
| EMA 5 | $0.017394 | BUY |
| EMA 10 | $0.017304 | BUY |
| EMA 21 | $0.017257 | BUY |
| EMA 50 | $0.018201 | SELL |
| EMA 100 | $0.02049 | SELL |
| EMA 200 | $0.021724 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.024433 | SELL |
| SMA 50 | $0.020246 | SELL |
| SMA 100 | $0.021648 | SELL |
| SMA 200 | $0.02563 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.021044 | SELL |
| EMA 50 | $0.021367 | SELL |
| EMA 100 | $0.022943 | SELL |
| EMA 200 | $0.027511 | SELL |
Kleros Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 55.91 | NEUTRAL |
| Stoch RSI (14) | 105.63 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 243.33 | SELL |
| Average Directional Index (14) | 7.93 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000280 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 61.88 | NEUTRAL |
| VWMA (10) | 0.017267 | BUY |
| Hull Moving Average (9) | 0.0174010 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.005537 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Kleros-Preisprognose
Definition weltweiter Geldflüsse, die für Kleros-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Kleros-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.024937 | $0.035041 | $0.049239 | $0.069189 | $0.097222 | $0.136613 |
| Amazon.com aktie | $0.03703 | $0.077265 | $0.161219 | $0.336394 | $0.7019064 | $1.46 |
| Apple aktie | $0.025172 | $0.0357056 | $0.050645 | $0.071837 | $0.101895 | $0.144531 |
| Netflix aktie | $0.028002 | $0.044182 | $0.069713 | $0.109997 | $0.173558 | $0.273847 |
| Google aktie | $0.022982 | $0.029761 | $0.038541 | $0.049911 | $0.064634 | $0.0837018 |
| Tesla aktie | $0.040231 | $0.09120098 | $0.206745 | $0.468676 | $1.06 | $2.40 |
| Kodak aktie | $0.0133083 | $0.009979 | $0.007483 | $0.005612 | $0.0042084 | $0.003155 |
| Nokia aktie | $0.011756 | $0.007788 | $0.005159 | $0.003417 | $0.002264 | $0.001499 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Kleros Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Kleros investieren?", "Sollte ich heute PNK kaufen?", "Wird Kleros auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Kleros-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Kleros.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Kleros zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Kleros-Preis entspricht heute $0.01774 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Kleros-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Kleros-Prognose
basierend auf dem Preisverlauf des letzten Monats
Kleros-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Kleros 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0182083 | $0.018681 | $0.019167 | $0.019665 |
| Wenn die Wachstumsrate von Kleros 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018669 | $0.01964 | $0.020661 | $0.021735 |
| Wenn die Wachstumsrate von Kleros 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020053 | $0.022659 | $0.0256048 | $0.028932 |
| Wenn die Wachstumsrate von Kleros 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.02236 | $0.028172 | $0.035494 | $0.044721 |
| Wenn die Wachstumsrate von Kleros 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.026973 | $0.040995 | $0.0623074 | $0.094698 |
| Wenn die Wachstumsrate von Kleros 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.040812 | $0.093854 | $0.215832 | $0.496341 |
| Wenn die Wachstumsrate von Kleros 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.063877 | $0.229914 | $0.827536 | $2.97 |
Fragefeld
Ist PNK eine gute Investition?
Die Entscheidung, Kleros zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Kleros in den letzten 2026 Stunden um 2.1141% gestiegen, und Kleros hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Kleros investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Kleros steigen?
Es scheint, dass der Durchschnittswert von Kleros bis zum Ende dieses Jahres potenziell auf $0.0183029 steigen könnte. Betrachtet man die Aussichten von Kleros in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.05754 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Kleros nächste Woche kosten?
Basierend auf unserer neuen experimentellen Kleros-Prognose wird der Preis von Kleros in der nächsten Woche um 0.86% steigen und $0.017898 erreichen bis zum 13. Januar 2026.
Wie viel wird Kleros nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Kleros-Prognose wird der Preis von Kleros im nächsten Monat um -11.62% fallen und $0.015685 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Kleros in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Kleros im Jahr 2026 wird erwartet, dass PNK innerhalb der Spanne von $0.006131 bis $0.0183029 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Kleros-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Kleros in 5 Jahren sein?
Die Zukunft von Kleros scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.05754 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Kleros-Prognose für 2030 könnte der Wert von Kleros seinen höchsten Gipfel von ungefähr $0.05754 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.0199014 liegen wird.
Wie viel wird Kleros im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Kleros-Preisprognosesimulation wird der Wert von PNK im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.0183029 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.0183029 und $0.006131 während des Jahres 2026 liegen.
Wie viel wird Kleros im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Kleros könnte der Wert von PNK um -12.62% fallen und bis zu $0.0155065 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.0155065 und $0.0059027 im Laufe des Jahres schwanken.
Wie viel wird Kleros im Jahr 2028 kosten?
Unser neues experimentelles Kleros-Preisprognosemodell deutet darauf hin, dass der Wert von PNK im Jahr 2028 um 47.02% steigen, und im besten Fall $0.026091 erreichen wird. Der Preis wird voraussichtlich zwischen $0.026091 und $0.010652 im Laufe des Jahres liegen.
Wie viel wird Kleros im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Kleros im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.076978 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.076978 und $0.0234009.
Wie viel wird Kleros im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Kleros-Preisprognosen wird der Wert von PNK im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.05754 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.05754 und $0.0199014 während des Jahres 2030 liegen.
Wie viel wird Kleros im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Kleros im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.052528 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.052528 und $0.023529 während des Jahres schwanken.
Wie viel wird Kleros im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Kleros-Preisprognose könnte PNK eine 449.04% Steigerung im Wert erfahren und $0.097437 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.097437 und $0.035916 liegen.
Wie viel wird Kleros im Jahr 2033 kosten?
Laut unserer experimentellen Kleros-Preisprognose wird der Wert von PNK voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.259537 beträgt. Im Laufe des Jahres könnte der Preis von PNK zwischen $0.259537 und $0.083461 liegen.
Wie viel wird Kleros im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Kleros-Preisprognosesimulation deuten darauf hin, dass PNK im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.15031 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.15031 und $0.067099.
Wie viel wird Kleros im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Kleros könnte PNK um 897.93% steigen, wobei der Wert im Jahr 2035 $0.1771031 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.1771031 und $0.079332.
Wie viel wird Kleros im Jahr 2036 kosten?
Unsere jüngste Kleros-Preisprognosesimulation deutet darauf hin, dass der Wert von PNK im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.366421 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.366421 und $0.131319.
Wie viel wird Kleros im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Kleros um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.87505 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.87505 und $0.341032 liegen.
Verwandte Prognosen
PondCoin-Preisprognose
Trustswap-Preisprognose
UBXS-Preisprognose
Equilibria Finance-Preisprognose
BOB Token-Preisprognose
lmeow-Preisprognose
Penpie-Preisprognose
cUNI-Preisprognose
ichi.farm-Preisprognose
T-mac DAO-Preisprognose
Defactor-Preisprognose
Bostrom-Preisprognose
DeFi Kingdoms-Preisprognose
Mazze-Preisprognose
MerlinSwap-Preisprognose
Swash-Preisprognose
Arsenal Fan Token-Preisprognose
Byte-Preisprognose
Ellipsis-Preisprognose
Fulcrom-Preisprognose
yfii finance-Preisprognose
Juventus Fan Token-Preisprognose
renBTC-Preisprognose
Arcas-Preisprognose
Data Lake-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Kleros?
Kleros-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Kleros Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Kleros. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von PNK über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von PNK über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von PNK einzuschätzen.
Wie liest man Kleros-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Kleros in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von PNK innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Kleros?
Die Preisentwicklung von Kleros wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von PNK. Die Marktkapitalisierung von Kleros kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von PNK-„Walen“, großen Inhabern von Kleros, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Kleros-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


