Arcas Preisvorhersage bis zu $0.014848 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.004974 | $0.014848 |
| 2027 | $0.004788 | $0.012579 |
| 2028 | $0.008642 | $0.021167 |
| 2029 | $0.018984 | $0.062449 |
| 2030 | $0.016145 | $0.04668 |
| 2031 | $0.019088 | $0.042614 |
| 2032 | $0.029137 | $0.079047 |
| 2033 | $0.067709 | $0.210552 |
| 2034 | $0.054434 | $0.12194 |
| 2035 | $0.064358 | $0.143676 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Arcas eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.48 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige Arcas Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Arcas'
'name_with_ticker' => 'Arcas <small>ARCAS</small>'
'name_lang' => 'Arcas'
'name_lang_with_ticker' => 'Arcas <small>ARCAS</small>'
'name_with_lang' => 'Arcas'
'name_with_lang_with_ticker' => 'Arcas <small>ARCAS</small>'
'image' => '/uploads/coins/block-ape-scissors.png?1737215820'
'price_for_sd' => 0.01439
'ticker' => 'ARCAS'
'marketcap' => '$999.57K'
'low24h' => '$0.01434'
'high24h' => '$0.01491'
'volume24h' => '$82.9'
'current_supply' => '69.43M'
'max_supply' => '99.43M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01439'
'change_24h_pct' => '-1.9991%'
'ath_price' => '$2.09'
'ath_days' => 1503
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '25.11.2021'
'ath_pct' => '-99.31%'
'fdv' => '$1.43M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.709892'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.01452'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012724'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004974'
'current_year_max_price_prediction' => '$0.014848'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.016145'
'grand_prediction_max_price' => '$0.04668'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014670263914947
107 => 0.014725037355099
108 => 0.014848444712564
109 => 0.013793942354652
110 => 0.014267382954792
111 => 0.014545484951989
112 => 0.013289010011216
113 => 0.014520648482285
114 => 0.013775585814657
115 => 0.013522700354798
116 => 0.013863177311372
117 => 0.013730493110271
118 => 0.013616419025641
119 => 0.013552763726376
120 => 0.013802772426214
121 => 0.013791109221541
122 => 0.01338204646401
123 => 0.012848440772341
124 => 0.013027536357475
125 => 0.012962469252366
126 => 0.012726657669626
127 => 0.012885566204394
128 => 0.012185813439048
129 => 0.010981925176255
130 => 0.011777250638751
131 => 0.011746631473592
201 => 0.011731191902051
202 => 0.012328857005935
203 => 0.012271405296677
204 => 0.012167129881804
205 => 0.012724742569859
206 => 0.01252120643777
207 => 0.013148456837724
208 => 0.013561604519146
209 => 0.01345681690321
210 => 0.013845384294504
211 => 0.013031662358034
212 => 0.013301948144472
213 => 0.013357653670457
214 => 0.012717861715844
215 => 0.012280805106829
216 => 0.012251658413818
217 => 0.011493862483896
218 => 0.011898670952945
219 => 0.012254885653596
220 => 0.012084286455362
221 => 0.012030279845707
222 => 0.012306187901829
223 => 0.012327628320782
224 => 0.011838784496491
225 => 0.011940430607232
226 => 0.012364311786281
227 => 0.011929749889087
228 => 0.011085467108123
301 => 0.010876073305321
302 => 0.010848136312134
303 => 0.010280243711703
304 => 0.01089006600048
305 => 0.010623862229208
306 => 0.011464796753045
307 => 0.010984459463051
308 => 0.010963753082518
309 => 0.010932452351376
310 => 0.010443643730837
311 => 0.010550661753327
312 => 0.010906405959387
313 => 0.011033339499854
314 => 0.011020099291648
315 => 0.010904662618702
316 => 0.010957508936445
317 => 0.010787272534116
318 => 0.010727158517289
319 => 0.010537422144521
320 => 0.010258562092563
321 => 0.010297339293136
322 => 0.0097448445625047
323 => 0.0094438161101422
324 => 0.0093604954020195
325 => 0.0092490754689057
326 => 0.0093730805799418
327 => 0.0097432794143501
328 => 0.0092967410779897
329 => 0.0085311824213221
330 => 0.0085771938010363
331 => 0.0086805677103529
401 => 0.0084879311142283
402 => 0.0083056167427604
403 => 0.0084641242971193
404 => 0.0081397470021078
405 => 0.0087197671567242
406 => 0.0087040792370295
407 => 0.0089202748824647
408 => 0.0090554664563367
409 => 0.0087438936473537
410 => 0.0086655339284769
411 => 0.0087101711855998
412 => 0.0079724167560779
413 => 0.0088599846060557
414 => 0.0088676603296794
415 => 0.0088019361239466
416 => 0.0092745386034768
417 => 0.010271877243695
418 => 0.0098966383293913
419 => 0.0097513344801165
420 => 0.0094751117564287
421 => 0.0098431621352602
422 => 0.0098149016086463
423 => 0.0096870967898116
424 => 0.009609800036605
425 => 0.0097522216744359
426 => 0.0095921524195673
427 => 0.0095633995829839
428 => 0.0093891886766835
429 => 0.0093270033092254
430 => 0.0092809637388302
501 => 0.0092302786955799
502 => 0.0093420772710643
503 => 0.0090887269906893
504 => 0.0087832113887913
505 => 0.0087578110722181
506 => 0.0088279435794954
507 => 0.0087969151657763
508 => 0.0087576625201107
509 => 0.0086827185297132
510 => 0.0086604842486872
511 => 0.0087327348754819
512 => 0.008651168130304
513 => 0.0087715243059846
514 => 0.0087387940858104
515 => 0.0085559657365444
516 => 0.0083280939216346
517 => 0.0083260653845046
518 => 0.0082769707757669
519 => 0.0082144414101157
520 => 0.0081970471710696
521 => 0.0084507752330047
522 => 0.0089759847277684
523 => 0.0088728735367483
524 => 0.0089473819395202
525 => 0.0093138895374817
526 => 0.0094303912816057
527 => 0.0093477011031215
528 => 0.0092345096867043
529 => 0.0092394895345705
530 => 0.00962629886984
531 => 0.0096504236936107
601 => 0.0097113793403164
602 => 0.0097897245723968
603 => 0.0093610436349192
604 => 0.009219298700966
605 => 0.0091521320875494
606 => 0.0089452849149771
607 => 0.00916835185686
608 => 0.0090383803025037
609 => 0.0090559179056469
610 => 0.0090444965185928
611 => 0.0090507333682351
612 => 0.0087196050292701
613 => 0.0088402507923958
614 => 0.0086396538115687
615 => 0.0083710769723091
616 => 0.0083701766085687
617 => 0.0084359104094849
618 => 0.0083968093725361
619 => 0.0082915894874862
620 => 0.0083065354755337
621 => 0.0081755928933301
622 => 0.0083224342758052
623 => 0.0083266451612308
624 => 0.0082701032304738
625 => 0.0084963326403826
626 => 0.0085890190142078
627 => 0.008551801904138
628 => 0.0085864077625521
629 => 0.0088771582722543
630 => 0.0089245632916698
701 => 0.0089456174698944
702 => 0.0089174076602176
703 => 0.0085917221481313
704 => 0.008606167685514
705 => 0.008500175916964
706 => 0.0084106240416765
707 => 0.0084142056470503
708 => 0.008460246951877
709 => 0.0086613120303417
710 => 0.0090844416345369
711 => 0.0091004990937124
712 => 0.0091199612026622
713 => 0.009040799024691
714 => 0.0090169229543349
715 => 0.0090484216540713
716 => 0.0092073268863093
717 => 0.0096160742859754
718 => 0.0094715956556125
719 => 0.0093541322801836
720 => 0.0094571793283333
721 => 0.0094413160429802
722 => 0.0093074139503531
723 => 0.0093036557645878
724 => 0.0090466548377478
725 => 0.008951647446723
726 => 0.0088722521596027
727 => 0.0087855545787339
728 => 0.0087341573466656
729 => 0.0088131268547467
730 => 0.0088311881155846
731 => 0.0086585199060144
801 => 0.008634985867081
802 => 0.0087759904543181
803 => 0.0087139395926559
804 => 0.0087777604426628
805 => 0.0087925674273096
806 => 0.0087901831617477
807 => 0.0087253949356762
808 => 0.0087666890189614
809 => 0.0086690162016332
810 => 0.0085628116827715
811 => 0.0084950598165131
812 => 0.0084359373272217
813 => 0.0084687419204999
814 => 0.0083517995353454
815 => 0.0083143873127493
816 => 0.0087526995126907
817 => 0.0090764854474376
818 => 0.0090717774717131
819 => 0.0090431188802831
820 => 0.0090005380266011
821 => 0.0092042118316428
822 => 0.0091332559505525
823 => 0.0091848822826079
824 => 0.0091980233508664
825 => 0.0092377974066481
826 => 0.0092520132128944
827 => 0.0092090431729057
828 => 0.0090648304703551
829 => 0.0087054661269312
830 => 0.0085381810549819
831 => 0.0084829741948854
901 => 0.0084849808593972
902 => 0.0084296280940181
903 => 0.0084459319641592
904 => 0.0084239582733395
905 => 0.0083823454189338
906 => 0.0084661724440023
907 => 0.0084758327277386
908 => 0.0084562664984293
909 => 0.0084608750537395
910 => 0.008298875031904
911 => 0.0083111915417186
912 => 0.0082426116499645
913 => 0.0082297537470036
914 => 0.0080563897525836
915 => 0.0077492503069557
916 => 0.0079194353745809
917 => 0.0077138757445315
918 => 0.0076360271978951
919 => 0.0080045501097388
920 => 0.0079675606306242
921 => 0.00790425072132
922 => 0.0078106021705179
923 => 0.0077758670120708
924 => 0.0075648271851615
925 => 0.007552357826334
926 => 0.0076569548631049
927 => 0.0076086869295994
928 => 0.0075409004704617
929 => 0.0072953847868684
930 => 0.0070193438710601
1001 => 0.007027675811177
1002 => 0.0071154792905718
1003 => 0.0073707797488246
1004 => 0.0072710294430425
1005 => 0.0071986594516946
1006 => 0.0071851067277491
1007 => 0.0073547474424764
1008 => 0.007594824594644
1009 => 0.0077074634230175
1010 => 0.0075958417649915
1011 => 0.007467616814388
1012 => 0.007475421272994
1013 => 0.0075273408396408
1014 => 0.0075327968519923
1015 => 0.0074493355908873
1016 => 0.0074728294470112
1017 => 0.0074371401312357
1018 => 0.0072181148661991
1019 => 0.0072141533936912
1020 => 0.0071604010613917
1021 => 0.0071587734621322
1022 => 0.0070673273357431
1023 => 0.007054533390524
1024 => 0.0068729615561953
1025 => 0.0069924726874006
1026 => 0.0069123108952041
1027 => 0.0067914881661088
1028 => 0.0067706582820719
1029 => 0.0067700321106049
1030 => 0.006894090037918
1031 => 0.0069910229982899
1101 => 0.0069137053438996
1102 => 0.0068961016127347
1103 => 0.0070840634064597
1104 => 0.0070601435548984
1105 => 0.0070394291177128
1106 => 0.0075733283188567
1107 => 0.0071507054404771
1108 => 0.0069664177430331
1109 => 0.0067383267221615
1110 => 0.006812594308692
1111 => 0.0068282435803919
1112 => 0.0062797257916925
1113 => 0.0060571921931307
1114 => 0.005980827048106
1115 => 0.0059368778274997
1116 => 0.0059569060392095
1117 => 0.0057565996999162
1118 => 0.0058912088726824
1119 => 0.0057177605143277
1120 => 0.0056886813325998
1121 => 0.0059988284834664
1122 => 0.0060419836476561
1123 => 0.0058578703099642
1124 => 0.0059761008780043
1125 => 0.0059332288305051
1126 => 0.0057207337886047
1127 => 0.0057126180410119
1128 => 0.0056059954985481
1129 => 0.0054391518657849
1130 => 0.0053628998485998
1201 => 0.0053231871359995
1202 => 0.0053395733752037
1203 => 0.0053312879912348
1204 => 0.0052772202563883
1205 => 0.0053343870905068
1206 => 0.0051883494523008
1207 => 0.005130196088062
1208 => 0.0051039295625831
1209 => 0.0049743127530625
1210 => 0.0051805907378666
1211 => 0.0052212300994946
1212 => 0.0052619495332192
1213 => 0.0056163844034532
1214 => 0.0055986778389589
1215 => 0.0057587365585411
1216 => 0.0057525169710272
1217 => 0.005706865631423
1218 => 0.0055142701389138
1219 => 0.0055910352695434
1220 => 0.0053547641294154
1221 => 0.0055317945324752
1222 => 0.0054510052494851
1223 => 0.0055044795946295
1224 => 0.0054083279004725
1225 => 0.0054615422180251
1226 => 0.0052308671997576
1227 => 0.0050154661133844
1228 => 0.0051021497984907
1229 => 0.005196384877683
1230 => 0.0054007105400236
1231 => 0.0052790158611837
]
'min_raw' => 0.0049743127530625
'max_raw' => 0.014848444712564
'avg_raw' => 0.0099113787328133
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004974'
'max' => '$0.014848'
'avg' => '$0.009911'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0094231272469375
'max_diff' => 0.00045100471256419
'year' => 2026
]
1 => [
'items' => [
101 => 0.0053227818694798
102 => 0.0051761730680291
103 => 0.0048736772339025
104 => 0.0048753893274727
105 => 0.0048288569336223
106 => 0.0047886461514948
107 => 0.005292993958963
108 => 0.0052302703365454
109 => 0.0051303284532876
110 => 0.0052641046355607
111 => 0.0052994771814672
112 => 0.0053004841881212
113 => 0.0053980838374446
114 => 0.0054501727877842
115 => 0.005459353691048
116 => 0.0056129288480384
117 => 0.0056644052149563
118 => 0.0058764290850828
119 => 0.0054457534042732
120 => 0.0054368839220409
121 => 0.005265987140786
122 => 0.0051576017003429
123 => 0.0052734083846209
124 => 0.0053759972977024
125 => 0.0052691748642809
126 => 0.0052831236189411
127 => 0.0051397232297863
128 => 0.0051909821212937
129 => 0.0052351331839782
130 => 0.0052107555622433
131 => 0.005174261082616
201 => 0.0053675861767382
202 => 0.0053566780172807
203 => 0.0055367067894521
204 => 0.0056770520913406
205 => 0.0059285759620486
206 => 0.0056660976907289
207 => 0.0056565319392654
208 => 0.0057500386942161
209 => 0.0056643908995593
210 => 0.005718517349321
211 => 0.0059198553542003
212 => 0.0059241093089791
213 => 0.0058528500855226
214 => 0.0058485139552993
215 => 0.0058622000686546
216 => 0.0059423600620545
217 => 0.0059143496972928
218 => 0.0059467640005308
219 => 0.0059872985830753
220 => 0.0061549668027862
221 => 0.0061953910429205
222 => 0.0060971810969598
223 => 0.0061060483554699
224 => 0.0060693151397573
225 => 0.0060338313136448
226 => 0.0061135937727491
227 => 0.0062593612344973
228 => 0.0062584544226831
301 => 0.0062922696404941
302 => 0.00631333624105
303 => 0.00622290296977
304 => 0.0061640342354903
305 => 0.0061866082541281
306 => 0.0062227046015279
307 => 0.0061749026951607
308 => 0.0058798471850649
309 => 0.005969348178609
310 => 0.0059544508369083
311 => 0.0059332352107478
312 => 0.0060232291518471
313 => 0.0060145490166864
314 => 0.0057545452688887
315 => 0.0057711898652426
316 => 0.0057555574819216
317 => 0.0058060689105165
318 => 0.0056616631166508
319 => 0.005706081366256
320 => 0.0057339400760132
321 => 0.0057503490700808
322 => 0.0058096296084058
323 => 0.0058026737214468
324 => 0.0058091972207059
325 => 0.00589709460956
326 => 0.0063416494396424
327 => 0.0063658455781889
328 => 0.0062466949426643
329 => 0.006294293271414
330 => 0.0062029148888248
331 => 0.0062642578092389
401 => 0.006306227077445
402 => 0.0061165760246478
403 => 0.0061053461201263
404 => 0.0060135905864471
405 => 0.0060628948129472
406 => 0.0059844482434861
407 => 0.0060036962876874
408 => 0.0059498770780864
409 => 0.0060467409400704
410 => 0.006155049788891
411 => 0.0061824128813492
412 => 0.0061104323656438
413 => 0.006058313728526
414 => 0.0059668105706934
415 => 0.0061189823614498
416 => 0.0061634820304183
417 => 0.0061187486236328
418 => 0.0061083829158364
419 => 0.0060887399182926
420 => 0.0061125502706237
421 => 0.0061632396756643
422 => 0.0061393354883335
423 => 0.0061551246252031
424 => 0.0060949527171435
425 => 0.0062229329069457
426 => 0.0064261962484616
427 => 0.0064268497733415
428 => 0.0064029454571582
429 => 0.0063931643260017
430 => 0.0064176916050409
501 => 0.006430996647758
502 => 0.0065103133706372
503 => 0.0065954233744041
504 => 0.0069925946255805
505 => 0.0068810705275566
506 => 0.0072334644894237
507 => 0.0075121623606316
508 => 0.007595731666226
509 => 0.0075188518373188
510 => 0.0072558500955943
511 => 0.0072429459754292
512 => 0.0076359816140369
513 => 0.0075249310439576
514 => 0.0075117219320066
515 => 0.0073711992979953
516 => 0.0074542655787628
517 => 0.0074360977646501
518 => 0.0074074189812734
519 => 0.0075659036585305
520 => 0.0078625728263311
521 => 0.0078163341543835
522 => 0.0077818191307249
523 => 0.0076305843442253
524 => 0.0077216614652106
525 => 0.0076892306468951
526 => 0.0078285740234843
527 => 0.0077460300940265
528 => 0.007524089726668
529 => 0.0075594344616949
530 => 0.0075540921760993
531 => 0.0076640360350978
601 => 0.0076310336176008
602 => 0.0075476479244131
603 => 0.0078615588433676
604 => 0.007841175214355
605 => 0.0078700745399485
606 => 0.0078827969168162
607 => 0.0080738689614529
608 => 0.0081521450645171
609 => 0.0081699151103287
610 => 0.0082442713541487
611 => 0.0081680650592455
612 => 0.0084729445730255
613 => 0.0086756716594764
614 => 0.0089111496026295
615 => 0.0092552461680806
616 => 0.0093846296597613
617 => 0.0093612576900559
618 => 0.0096221477788611
619 => 0.010090961469183
620 => 0.0094560183407664
621 => 0.010124614996752
622 => 0.0099129450147862
623 => 0.0094110792953269
624 => 0.0093787650596019
625 => 0.0097186343516005
626 => 0.010472431730047
627 => 0.010283614036245
628 => 0.010472740568151
629 => 0.010252114422635
630 => 0.010241158474927
701 => 0.010462025248711
702 => 0.010978092504476
703 => 0.010732928295754
704 => 0.01038142528582
705 => 0.010640969638363
706 => 0.010416128300494
707 => 0.0099094978371487
708 => 0.010283469650913
709 => 0.010033405349153
710 => 0.010106387406556
711 => 0.010631985374598
712 => 0.010568744036523
713 => 0.010650584183982
714 => 0.010506138465847
715 => 0.01037120338811
716 => 0.010119337045103
717 => 0.010044771837799
718 => 0.010065378978523
719 => 0.010044761625924
720 => 0.0099038447217827
721 => 0.0098734137297502
722 => 0.0098226940764837
723 => 0.0098384142178568
724 => 0.0097430464311579
725 => 0.0099230251486489
726 => 0.0099564307845822
727 => 0.010087404286193
728 => 0.010101002389618
729 => 0.010465761727312
730 => 0.010264858413642
731 => 0.010399641701609
801 => 0.010387585415704
802 => 0.0094219562472575
803 => 0.0095550114268511
804 => 0.0097620035312833
805 => 0.0096687538688078
806 => 0.0095369206631279
807 => 0.0094304582810922
808 => 0.0092691568859705
809 => 0.0094961855020853
810 => 0.0097947039904746
811 => 0.010108573311114
812 => 0.010485666734329
813 => 0.010401503872119
814 => 0.010101523811868
815 => 0.010114980698235
816 => 0.010198165874668
817 => 0.010090433513017
818 => 0.01005866113638
819 => 0.010193800838016
820 => 0.01019473147087
821 => 0.010070772368899
822 => 0.0099330145113354
823 => 0.0099324373008823
824 => 0.0099079246207118
825 => 0.010256475173982
826 => 0.010448142735845
827 => 0.010470117112925
828 => 0.010446663685185
829 => 0.010455689978689
830 => 0.010344162847548
831 => 0.010599080796994
901 => 0.010833018716178
902 => 0.010770318356482
903 => 0.010676321603916
904 => 0.010601448663001
905 => 0.010752680671099
906 => 0.010745946547839
907 => 0.010830975472537
908 => 0.010827118069362
909 => 0.010798526040086
910 => 0.010770319377593
911 => 0.010882155606038
912 => 0.010849948568281
913 => 0.010817691504098
914 => 0.01075299502357
915 => 0.010761788349769
916 => 0.010667807827068
917 => 0.01062432813701
918 => 0.0099704979209066
919 => 0.0097957731226452
920 => 0.0098507451010295
921 => 0.0098688433036604
922 => 0.009792802847541
923 => 0.0099018253284257
924 => 0.0098848342902632
925 => 0.0099509364803286
926 => 0.0099096387017992
927 => 0.0099113335770353
928 => 0.010032781538075
929 => 0.010068038397842
930 => 0.010050106474407
1001 => 0.01006266537891
1002 => 0.010352080032412
1003 => 0.010310934523643
1004 => 0.010289076792171
1005 => 0.010295131533167
1006 => 0.010369083182257
1007 => 0.010389785606392
1008 => 0.010302067980599
1009 => 0.010343436120012
1010 => 0.010519576407236
1011 => 0.010581215539087
1012 => 0.010777938059495
1013 => 0.010694366836362
1014 => 0.0108477654333
1015 => 0.011319260422854
1016 => 0.011695923245482
1017 => 0.011349528547544
1018 => 0.012041221853578
1019 => 0.012579804309838
1020 => 0.012559132618111
1021 => 0.012465218309225
1022 => 0.011852056501729
1023 => 0.011287815864744
1024 => 0.011759827116505
1025 => 0.011761030370256
1026 => 0.011720484185123
1027 => 0.011468655311545
1028 => 0.011711721086194
1029 => 0.0117310147647
1030 => 0.01172021543534
1031 => 0.011527138828411
1101 => 0.011232346536152
1102 => 0.011289948244426
1103 => 0.011384301017623
1104 => 0.011205671533911
1105 => 0.011148588590324
1106 => 0.011254716642928
1107 => 0.011596683341076
1108 => 0.011532036517669
1109 => 0.011530348327852
1110 => 0.011806934852906
1111 => 0.011608958592075
1112 => 0.011290674786434
1113 => 0.011210303927862
1114 => 0.010925041524229
1115 => 0.011122073282488
1116 => 0.011129164104699
1117 => 0.011021251824316
1118 => 0.011299431273248
1119 => 0.011296867800654
1120 => 0.011560957785868
1121 => 0.01206579864993
1122 => 0.011916492364717
1123 => 0.011742865399491
1124 => 0.011761743464765
1125 => 0.01196878924578
1126 => 0.011843604640183
1127 => 0.011888621897174
1128 => 0.01196872110677
1129 => 0.012017046948671
1130 => 0.011754790119808
1201 => 0.011693645507806
1202 => 0.011568565090492
1203 => 0.011535933944351
1204 => 0.011637809334365
1205 => 0.011610968768407
1206 => 0.011128568148549
1207 => 0.011078154599722
1208 => 0.011079700711291
1209 => 0.010952933445732
1210 => 0.010759582938125
1211 => 0.011267696527757
1212 => 0.011226887895464
1213 => 0.011181838323751
1214 => 0.011187356639236
1215 => 0.011407911526928
1216 => 0.011279978553778
1217 => 0.011620109330699
1218 => 0.011550188668231
1219 => 0.011478474804606
1220 => 0.011468561764195
1221 => 0.011440958045039
1222 => 0.01134629462116
1223 => 0.011231982848436
1224 => 0.011156504314567
1225 => 0.010291285499601
1226 => 0.010451865078913
1227 => 0.010636597247621
1228 => 0.010700366051992
1229 => 0.010591285099449
1230 => 0.011350601802022
1231 => 0.01148933628054
]
'min_raw' => 0.0047886461514948
'max_raw' => 0.012579804309838
'avg_raw' => 0.0086842252306663
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004788'
'max' => '$0.012579'
'avg' => '$0.008684'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00018566660156769
'max_diff' => -0.0022686404027264
'year' => 2027
]
2 => [
'items' => [
101 => 0.011069100495683
102 => 0.010990491538451
103 => 0.011355755392171
104 => 0.011135456636688
105 => 0.011234657152793
106 => 0.011020239896755
107 => 0.011455919207285
108 => 0.011452600060901
109 => 0.011283110968841
110 => 0.011426361988839
111 => 0.01140146859888
112 => 0.011210115831378
113 => 0.011461985431324
114 => 0.011462110355504
115 => 0.011298980789407
116 => 0.011108481169859
117 => 0.011074424337285
118 => 0.011048767088831
119 => 0.011228347042491
120 => 0.011389357867411
121 => 0.011688959094618
122 => 0.011764285961488
123 => 0.012058291737673
124 => 0.011883225612836
125 => 0.01196083015849
126 => 0.012045080870631
127 => 0.012085473760249
128 => 0.012019655714219
129 => 0.01247636770224
130 => 0.012514928187322
131 => 0.012527857184424
201 => 0.012373856471724
202 => 0.012510645148917
203 => 0.012446646256823
204 => 0.012613153594647
205 => 0.01263926407129
206 => 0.01261714942648
207 => 0.012625437303893
208 => 0.012235714191633
209 => 0.012215504992309
210 => 0.011939951125548
211 => 0.012052241363044
212 => 0.011842320146256
213 => 0.011908888326528
214 => 0.011938230946107
215 => 0.011922904026818
216 => 0.012058590084594
217 => 0.011943229216654
218 => 0.011638772919079
219 => 0.011334233672589
220 => 0.011330410430421
221 => 0.011250230622385
222 => 0.011192275306839
223 => 0.011203439556688
224 => 0.011242783829333
225 => 0.011189988546188
226 => 0.011201255096636
227 => 0.011388354902703
228 => 0.011425876434475
229 => 0.011298363608905
301 => 0.01078638121423
302 => 0.010660739450366
303 => 0.010751048258647
304 => 0.010707886464921
305 => 0.0086421000934644
306 => 0.0091274259591957
307 => 0.0088390618098872
308 => 0.0089719532768851
309 => 0.0086776081519757
310 => 0.0088180850735322
311 => 0.0087921441155165
312 => 0.0095725337457761
313 => 0.0095603490350904
314 => 0.0095661812112951
315 => 0.0092877962453912
316 => 0.0097312710550516
317 => 0.0099497426931288
318 => 0.009909309407355
319 => 0.0099194855942834
320 => 0.0097446249875349
321 => 0.0095678742441948
322 => 0.0093718304680862
323 => 0.0097360555723529
324 => 0.0096955599582883
325 => 0.0097884423270904
326 => 0.010024668342556
327 => 0.010059453520668
328 => 0.010106205152808
329 => 0.010089448020694
330 => 0.01048867089182
331 => 0.010440322367969
401 => 0.01055682839963
402 => 0.01031716665317
403 => 0.010045966638149
404 => 0.010097512894808
405 => 0.010092548575783
406 => 0.010029347096814
407 => 0.0099722916275291
408 => 0.0098773103464492
409 => 0.010177845174371
410 => 0.010165644009198
411 => 0.010363166691039
412 => 0.010328252638391
413 => 0.010095088049887
414 => 0.01010341556878
415 => 0.010159422135405
416 => 0.010353261501966
417 => 0.010410806223551
418 => 0.010384149215752
419 => 0.010447244375954
420 => 0.010497112217981
421 => 0.010453507009134
422 => 0.011070864811163
423 => 0.010814494809725
424 => 0.010939447764615
425 => 0.01096924830809
426 => 0.010892914842615
427 => 0.01090946883798
428 => 0.010934543630265
429 => 0.011086792858868
430 => 0.011486338888391
501 => 0.011663295105065
502 => 0.012195676613795
503 => 0.01164860135462
504 => 0.011616140172763
505 => 0.011712038158867
506 => 0.012024602462797
507 => 0.01227790647346
508 => 0.012361942027256
509 => 0.012373048712966
510 => 0.012530704998466
511 => 0.012621070641198
512 => 0.012511561378634
513 => 0.012418763744709
514 => 0.012086374138454
515 => 0.012124849140445
516 => 0.012389903750338
517 => 0.01276430899845
518 => 0.013085587651557
519 => 0.012973087064931
520 => 0.013831387127855
521 => 0.013916484073252
522 => 0.013904726426912
523 => 0.014098589932651
524 => 0.013713810353375
525 => 0.013549309628482
526 => 0.012438827646461
527 => 0.012750827787438
528 => 0.013204338315473
529 => 0.01314431449651
530 => 0.01281496302868
531 => 0.013085337808935
601 => 0.012995943451182
602 => 0.012925434412246
603 => 0.01324844998846
604 => 0.012893281093664
605 => 0.013200795234057
606 => 0.012806405168177
607 => 0.012973600958134
608 => 0.012878692541404
609 => 0.012940109918566
610 => 0.012581065186638
611 => 0.012774797008668
612 => 0.012573005305911
613 => 0.012572909630369
614 => 0.012568455067347
615 => 0.01280586211076
616 => 0.012813603945923
617 => 0.012638159782138
618 => 0.012612875537184
619 => 0.012706364642789
620 => 0.012596913384961
621 => 0.012648124939621
622 => 0.012598464530781
623 => 0.012587284926743
624 => 0.012498203939716
625 => 0.012459825401172
626 => 0.012474874615028
627 => 0.012423503889736
628 => 0.012392551169586
629 => 0.01256229779224
630 => 0.012471609019316
701 => 0.01254839843713
702 => 0.012460887203933
703 => 0.012157535142846
704 => 0.011983074164625
705 => 0.011410070241982
706 => 0.011572573443635
707 => 0.011680313234452
708 => 0.011644705234229
709 => 0.011721204997174
710 => 0.011725901461313
711 => 0.011701030608557
712 => 0.011672233347219
713 => 0.011658216432989
714 => 0.011762687027823
715 => 0.011823335724443
716 => 0.011691126363833
717 => 0.011660151560447
718 => 0.011793822523503
719 => 0.011875361733748
720 => 0.012477401449271
721 => 0.012432800402583
722 => 0.012544740277258
723 => 0.012532137565227
724 => 0.012649468387307
725 => 0.012841254693702
726 => 0.012451299508505
727 => 0.01251898224502
728 => 0.012502388001049
729 => 0.012683559605477
730 => 0.01268412520345
731 => 0.012575503776403
801 => 0.012634389214187
802 => 0.012601520978253
803 => 0.012660918322993
804 => 0.012432204728412
805 => 0.012710753198505
806 => 0.012868672231781
807 => 0.012870864937711
808 => 0.012945717306161
809 => 0.013021771647663
810 => 0.013167751333239
811 => 0.013017700353463
812 => 0.012747773248015
813 => 0.012767261113169
814 => 0.012609002950007
815 => 0.012611663298322
816 => 0.012597462150524
817 => 0.012640080864077
818 => 0.012441557139379
819 => 0.012488150260762
820 => 0.012422919617977
821 => 0.012518840446342
822 => 0.012415645491302
823 => 0.012502379998802
824 => 0.012539811736945
825 => 0.012677935656539
826 => 0.012395244476073
827 => 0.011818818022592
828 => 0.011939989851609
829 => 0.011760767198651
830 => 0.011777354937531
831 => 0.011810864809988
901 => 0.011702248349608
902 => 0.01172296894735
903 => 0.01172222866179
904 => 0.011715849280769
905 => 0.011687593944457
906 => 0.011646618116658
907 => 0.011809853202917
908 => 0.011837590024917
909 => 0.011899245544357
910 => 0.012082690548874
911 => 0.012064360066992
912 => 0.012094257843466
913 => 0.012028991165291
914 => 0.011780382471542
915 => 0.011793883119705
916 => 0.011625529820778
917 => 0.011894940371994
918 => 0.011831140397421
919 => 0.01179000813877
920 => 0.011778784820909
921 => 0.01196268455011
922 => 0.012017710231361
923 => 0.011983421919441
924 => 0.011913095591344
925 => 0.012048142931404
926 => 0.012084275902414
927 => 0.012092364742091
928 => 0.012331642735919
929 => 0.012105737723899
930 => 0.012160115305595
1001 => 0.012584353675221
1002 => 0.012199628014863
1003 => 0.012403425777561
1004 => 0.012393450937589
1005 => 0.012497706976845
1006 => 0.012384898899364
1007 => 0.012386297290684
1008 => 0.012478869590627
1009 => 0.012348868490859
1010 => 0.012316678390347
1011 => 0.012272207997039
1012 => 0.01236930747391
1013 => 0.012427514218862
1014 => 0.012896617835034
1015 => 0.013199680164805
1016 => 0.0131865234298
1017 => 0.013306751359373
1018 => 0.013252587575939
1019 => 0.013077678431545
1020 => 0.013376227013127
1021 => 0.013281753750111
1022 => 0.013289542011129
1023 => 0.013289252131665
1024 => 0.013352068592575
1025 => 0.013307557372976
1026 => 0.013219821190165
1027 => 0.013278064562791
1028 => 0.013451026557105
1029 => 0.013987905894579
1030 => 0.014288350684534
1031 => 0.013969818740974
1101 => 0.014189537810329
1102 => 0.014057784662626
1103 => 0.014033841196371
1104 => 0.014171841009038
1105 => 0.014310082372109
1106 => 0.014301276994915
1107 => 0.014200920864098
1108 => 0.014144232232242
1109 => 0.01457349754474
1110 => 0.014889772914644
1111 => 0.014868205054753
1112 => 0.014963398574066
1113 => 0.015242889690993
1114 => 0.015268442856028
1115 => 0.015265223744567
1116 => 0.01520188755883
1117 => 0.015477082859953
1118 => 0.01570665562175
1119 => 0.01518722706179
1120 => 0.015385018657604
1121 => 0.015473813677412
1122 => 0.015604191110785
1123 => 0.01582415969468
1124 => 0.016063103920576
1125 => 0.016096893254008
1126 => 0.016072918104969
1127 => 0.015915327964826
1128 => 0.016176783587998
1129 => 0.016329938160164
1130 => 0.016421138203009
1201 => 0.016652406337422
1202 => 0.015474362045225
1203 => 0.014640483742607
1204 => 0.014510261604304
1205 => 0.014775073443275
1206 => 0.014844902213377
1207 => 0.014816754323706
1208 => 0.013878148481212
1209 => 0.014505320038792
1210 => 0.015180103900667
1211 => 0.015206025096945
1212 => 0.015543836007265
1213 => 0.015653841087002
1214 => 0.015925823147698
1215 => 0.015908810595748
1216 => 0.015975033899348
1217 => 0.015959810308678
1218 => 0.016463599803537
1219 => 0.01701935442983
1220 => 0.017000110414312
1221 => 0.016920214111393
1222 => 0.017038873745573
1223 => 0.017612472078192
1224 => 0.017559664335451
1225 => 0.017610962559371
1226 => 0.018287267320115
1227 => 0.019166559712312
1228 => 0.018758040116624
1229 => 0.019644410090921
1230 => 0.020202333005287
1231 => 0.021167202995378
]
'min_raw' => 0.0086421000934644
'max_raw' => 0.021167202995378
'avg_raw' => 0.014904651544421
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008642'
'max' => '$0.021167'
'avg' => '$0.0149046'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0038534539419696
'max_diff' => 0.0085873986855401
'year' => 2028
]
3 => [
'items' => [
101 => 0.021046396520534
102 => 0.021422013327133
103 => 0.02083012771749
104 => 0.019471038717933
105 => 0.01925595768137
106 => 0.019686555363289
107 => 0.020745137747181
108 => 0.019653216836846
109 => 0.019874111014886
110 => 0.01981049347675
111 => 0.0198071035685
112 => 0.019936482578654
113 => 0.01974881157647
114 => 0.018984206152203
115 => 0.019334620312297
116 => 0.019199308576814
117 => 0.01934944703549
118 => 0.020159682375151
119 => 0.019801458017889
120 => 0.019424097757297
121 => 0.019897391267025
122 => 0.020500056546204
123 => 0.020462342836127
124 => 0.020389162475469
125 => 0.020801676336899
126 => 0.021483028380761
127 => 0.021667195100322
128 => 0.02180314320758
129 => 0.021821888154709
130 => 0.022014972760054
131 => 0.020976708173525
201 => 0.022624460736873
202 => 0.022908982086317
203 => 0.022855503864823
204 => 0.023171737370241
205 => 0.023078693450878
206 => 0.022943887409863
207 => 0.023445184780747
208 => 0.02287048779764
209 => 0.022054777782459
210 => 0.021607263135216
211 => 0.022196586522683
212 => 0.022556465750857
213 => 0.022794323028062
214 => 0.022866298496427
215 => 0.021057305697817
216 => 0.020082358910707
217 => 0.020707288623457
218 => 0.021469746003357
219 => 0.020972472684283
220 => 0.020991964856927
221 => 0.020282983785056
222 => 0.02153247509649
223 => 0.021350434722291
224 => 0.022294860505663
225 => 0.022069465712971
226 => 0.022839608276914
227 => 0.02263680392954
228 => 0.023478633436851
301 => 0.023814462018942
302 => 0.024378370475817
303 => 0.024793183832215
304 => 0.025036770169206
305 => 0.025022146159203
306 => 0.025987356580596
307 => 0.025418205716984
308 => 0.024703218093728
309 => 0.024690286223381
310 => 0.025060588444918
311 => 0.025836640313806
312 => 0.026037859272314
313 => 0.026150313219324
314 => 0.025978086084927
315 => 0.025360313613887
316 => 0.025093562593069
317 => 0.025320842191327
318 => 0.025042898773016
319 => 0.02552270709017
320 => 0.026181586391149
321 => 0.026045530420988
322 => 0.026500345130585
323 => 0.026971030507115
324 => 0.027644131735357
325 => 0.027820105321285
326 => 0.028110982967149
327 => 0.028410391613072
328 => 0.028506553600853
329 => 0.02869015667284
330 => 0.028689188994022
331 => 0.029242489209366
401 => 0.029852796481172
402 => 0.030083173347632
403 => 0.030612912249005
404 => 0.02970575294467
405 => 0.030393843697703
406 => 0.031014518780967
407 => 0.030274524359269
408 => 0.031294434272993
409 => 0.031334035063777
410 => 0.031931959988396
411 => 0.03132584852874
412 => 0.030965941478772
413 => 0.032004979646487
414 => 0.03250773748645
415 => 0.032356302733474
416 => 0.031203876786074
417 => 0.030533115454813
418 => 0.028777603670706
419 => 0.030857083211446
420 => 0.031869937036491
421 => 0.031201253739355
422 => 0.031538498699446
423 => 0.033378397849659
424 => 0.034078912321412
425 => 0.033933210208253
426 => 0.033957831466916
427 => 0.034335816360636
428 => 0.036012009539478
429 => 0.035007595732862
430 => 0.035775432453353
501 => 0.036182690281259
502 => 0.036560974048545
503 => 0.035632028673905
504 => 0.034423484390416
505 => 0.034040687684597
506 => 0.031134766363762
507 => 0.030983500539236
508 => 0.030898590448106
509 => 0.030363244334301
510 => 0.029942608932493
511 => 0.029608104043783
512 => 0.028730263324194
513 => 0.029026508797771
514 => 0.027627413910344
515 => 0.028522505238441
516 => 0.02628951601578
517 => 0.028149215794045
518 => 0.027137065754909
519 => 0.027816697284501
520 => 0.027814326114119
521 => 0.026562908990767
522 => 0.025841117710427
523 => 0.026301071206797
524 => 0.026794177866059
525 => 0.026874182762515
526 => 0.027513508417649
527 => 0.027691930465738
528 => 0.027151303330299
529 => 0.026243242277433
530 => 0.026454164149347
531 => 0.025836843385425
601 => 0.024755012491552
602 => 0.025532002326487
603 => 0.025797300817965
604 => 0.025914471745523
605 => 0.024850615310517
606 => 0.024516328521192
607 => 0.024338357039492
608 => 0.026105911771011
609 => 0.026202742409233
610 => 0.025707343173618
611 => 0.027946594694281
612 => 0.027439783110071
613 => 0.028006015821487
614 => 0.026435025200249
615 => 0.0264950391576
616 => 0.025751307021264
617 => 0.026167747321413
618 => 0.025873420739765
619 => 0.026134103060504
620 => 0.026290354968721
621 => 0.027033965065931
622 => 0.028157706626878
623 => 0.02692289451462
624 => 0.026384869194474
625 => 0.026718657077123
626 => 0.027607578194671
627 => 0.028954339190792
628 => 0.028157029574997
629 => 0.028510862043292
630 => 0.028588158696703
701 => 0.028000252104023
702 => 0.028976016145445
703 => 0.029498936022336
704 => 0.030035343613005
705 => 0.030501091294183
706 => 0.029821090625436
707 => 0.030548788815262
708 => 0.029962392530285
709 => 0.029436334442127
710 => 0.029437132255099
711 => 0.029107128331915
712 => 0.028467704147576
713 => 0.028349784517457
714 => 0.028963217324945
715 => 0.029455132344247
716 => 0.02949564882135
717 => 0.029767998251542
718 => 0.029929171838907
719 => 0.031508892099954
720 => 0.032144268657079
721 => 0.032921195084068
722 => 0.033223851712554
723 => 0.034134739655892
724 => 0.033399123662945
725 => 0.033239968515629
726 => 0.031030452314268
727 => 0.031392260468462
728 => 0.03197155023262
729 => 0.031040004589113
730 => 0.031630855887668
731 => 0.031747502449944
801 => 0.031008351024607
802 => 0.031403163737727
803 => 0.030354658225492
804 => 0.02818056118181
805 => 0.028978436536953
806 => 0.029565941360279
807 => 0.028727499538571
808 => 0.030230374051804
809 => 0.0293524257868
810 => 0.029074158335743
811 => 0.027988537799659
812 => 0.028500908903324
813 => 0.029193898157478
814 => 0.028765711367059
815 => 0.02965426324975
816 => 0.030912689683771
817 => 0.031809519301244
818 => 0.031878366743296
819 => 0.031301765382178
820 => 0.03222577274319
821 => 0.032232503128053
822 => 0.031190219050151
823 => 0.030551825855898
824 => 0.030406781578973
825 => 0.030769130620338
826 => 0.031209089249877
827 => 0.031902781385279
828 => 0.032321965014332
829 => 0.033414973601085
830 => 0.033710710385648
831 => 0.034035635450093
901 => 0.034469835539369
902 => 0.034991204073164
903 => 0.033850479402749
904 => 0.033895802520481
905 => 0.032833575501799
906 => 0.031698433593573
907 => 0.03255986480448
908 => 0.033686071521349
909 => 0.033427718456151
910 => 0.033398648458643
911 => 0.033447536131108
912 => 0.033252746356971
913 => 0.032371719427797
914 => 0.031929273219486
915 => 0.032500141708273
916 => 0.03280353290363
917 => 0.033274066189136
918 => 0.033216063029945
919 => 0.034428106241823
920 => 0.034899069583674
921 => 0.034778577007171
922 => 0.034800750541063
923 => 0.035653407175344
924 => 0.036601736714876
925 => 0.037489972471752
926 => 0.038393524034259
927 => 0.037304257359439
928 => 0.036751194918594
929 => 0.037321814184057
930 => 0.037019035569754
1001 => 0.038758891297507
1002 => 0.038879355133186
1003 => 0.040619085049566
1004 => 0.042270295903397
1005 => 0.041233199950621
1006 => 0.042211134722261
1007 => 0.043268850909981
1008 => 0.04530935704436
1009 => 0.044622186364172
1010 => 0.044095824392486
1011 => 0.043598414872605
1012 => 0.04463344512194
1013 => 0.045964995002697
1014 => 0.046251798093586
1015 => 0.046716528668039
1016 => 0.046227921293552
1017 => 0.046816395057784
1018 => 0.048893966033998
1019 => 0.048332588016999
1020 => 0.04753534098684
1021 => 0.049175383740524
1022 => 0.049768908837577
1023 => 0.053934578800202
1024 => 0.05919390920326
1025 => 0.057016511881769
1026 => 0.055664931100147
1027 => 0.055982584643753
1028 => 0.05790311406738
1029 => 0.058519927163692
1030 => 0.056843216539691
1031 => 0.057435459077946
1101 => 0.060698773691731
1102 => 0.062449437282358
1103 => 0.060071800980797
1104 => 0.053511996723213
1105 => 0.047463557614643
1106 => 0.049067876030999
1107 => 0.048885996110381
1108 => 0.052392020556103
1109 => 0.048319199336953
1110 => 0.048387775200952
1111 => 0.051966300519268
1112 => 0.051011611315796
1113 => 0.049465137073528
1114 => 0.047474848588043
1115 => 0.043795616243221
1116 => 0.040536817552429
1117 => 0.04692807224159
1118 => 0.046652469717651
1119 => 0.046253356420981
1120 => 0.04714153987415
1121 => 0.051454306607467
1122 => 0.0513548833752
1123 => 0.050722403497699
1124 => 0.051202133910362
1125 => 0.049381038012725
1126 => 0.049850375891129
1127 => 0.047462599510986
1128 => 0.048541974157161
1129 => 0.049461819034361
1130 => 0.049646491511995
1201 => 0.050062568033715
1202 => 0.046507239711011
1203 => 0.048103477748949
1204 => 0.04904111804896
1205 => 0.044804825061864
1206 => 0.048957380157326
1207 => 0.046445349354804
1208 => 0.045592728370991
1209 => 0.046740670201422
1210 => 0.046293316153693
1211 => 0.045908707412967
1212 => 0.045694089127225
1213 => 0.046537010913776
1214 => 0.046497687604924
1215 => 0.045118503958057
1216 => 0.043319415113436
1217 => 0.043923248382769
1218 => 0.043703870095054
1219 => 0.042908814880009
1220 => 0.043444586099616
1221 => 0.041085320796076
1222 => 0.037026327465274
1223 => 0.03970782278993
1224 => 0.039604588136836
1225 => 0.039552532543428
1226 => 0.041567602168819
1227 => 0.041373899719904
1228 => 0.041022327878383
1229 => 0.042902357987434
1230 => 0.042216121707657
1231 => 0.044330940224327
]
'min_raw' => 0.018984206152203
'max_raw' => 0.062449437282358
'avg_raw' => 0.040716821717281
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.018984'
'max' => '$0.062449'
'avg' => '$0.040716'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.010342106058739
'max_diff' => 0.04128223428698
'year' => 2029
]
4 => [
'items' => [
101 => 0.045723896477292
102 => 0.045370597714126
103 => 0.046680679802782
104 => 0.043937159481723
105 => 0.044848446881448
106 => 0.045036261951542
107 => 0.042879158707718
108 => 0.041405591836105
109 => 0.041307321725661
110 => 0.038752359840308
111 => 0.040117199856532
112 => 0.041318202589891
113 => 0.040743015482189
114 => 0.040560928427117
115 => 0.041491171701618
116 => 0.041563459571041
117 => 0.039915288487459
118 => 0.040257995446526
119 => 0.041687140436127
120 => 0.040221984659596
121 => 0.037375426317634
122 => 0.036669440492079
123 => 0.03657524896905
124 => 0.034660559417703
125 => 0.036716617840745
126 => 0.035819093240148
127 => 0.03865436269944
128 => 0.037034871990147
129 => 0.036965058982505
130 => 0.036859526382111
131 => 0.035211473990438
201 => 0.035572292725021
202 => 0.03677170915302
203 => 0.037199674446923
204 => 0.037155034160553
205 => 0.036765831358184
206 => 0.036944006408067
207 => 0.036370042492089
208 => 0.036167363887331
209 => 0.035527654459573
210 => 0.034587458325009
211 => 0.034718198364078
212 => 0.032855423805805
213 => 0.03184048536153
214 => 0.031559563776828
215 => 0.031183903693243
216 => 0.031601995582862
217 => 0.032850146799527
218 => 0.031344611622177
219 => 0.028763477161623
220 => 0.028918607740742
221 => 0.029267140093338
222 => 0.028617652360047
223 => 0.02800296672786
224 => 0.028537386014025
225 => 0.027443725316594
226 => 0.029399303763597
227 => 0.029346410847051
228 => 0.030075329559934
301 => 0.030531137390017
302 => 0.029480647911212
303 => 0.029216452648119
304 => 0.029366950276982
305 => 0.02687955970948
306 => 0.029872056683688
307 => 0.029897935921787
308 => 0.029676342173442
309 => 0.031269754429229
310 => 0.034632351286686
311 => 0.033367207088766
312 => 0.032877305016145
313 => 0.031946000817977
314 => 0.033186908366664
315 => 0.033091626028098
316 => 0.03266072315835
317 => 0.032400111758227
318 => 0.032880296253735
319 => 0.032340611585267
320 => 0.032243669389267
321 => 0.031656305155658
322 => 0.031446642847629
323 => 0.031291417221662
324 => 0.031120529059627
325 => 0.0314974657624
326 => 0.030643277603764
327 => 0.029613210421546
328 => 0.029527571480826
329 => 0.029764028125607
330 => 0.029659413662418
331 => 0.029527070627025
401 => 0.029274391730977
402 => 0.02919942730015
403 => 0.029443025332766
404 => 0.02916801735659
405 => 0.029573806605898
406 => 0.029463454383429
407 => 0.028847035839211
408 => 0.028078750105741
409 => 0.028071910751179
410 => 0.027906384850144
411 => 0.02769556272819
412 => 0.027636916836819
413 => 0.028492378712361
414 => 0.030263159192913
415 => 0.029915512613395
416 => 0.030166722895351
417 => 0.031402428850621
418 => 0.031795222614827
419 => 0.031516426904824
420 => 0.031134794141601
421 => 0.031151584046364
422 => 0.03245573872639
423 => 0.032537077254075
424 => 0.03274259347273
425 => 0.033006739892579
426 => 0.031561412182326
427 => 0.031083509241187
428 => 0.03085705231463
429 => 0.030159652630694
430 => 0.030911738399289
501 => 0.030473530229452
502 => 0.030532659482886
503 => 0.030494151479017
504 => 0.030515179453029
505 => 0.029398757139566
506 => 0.029805522753163
507 => 0.02912919602707
508 => 0.02822367046207
509 => 0.028220634822858
510 => 0.028442260922035
511 => 0.028310429046015
512 => 0.027955672857351
513 => 0.028006064299549
514 => 0.02756458224153
515 => 0.028059668214683
516 => 0.02807386550889
517 => 0.027883230441711
518 => 0.028645978692052
519 => 0.02895847727256
520 => 0.028832997187544
521 => 0.028949673255291
522 => 0.029929958898304
523 => 0.030089788230976
524 => 0.030160773862816
525 => 0.030065662519945
526 => 0.028967591077309
527 => 0.02901629521515
528 => 0.028658936567375
529 => 0.028357006167531
530 => 0.028369081800109
531 => 0.028524313273833
601 => 0.029202218223792
602 => 0.030628829226302
603 => 0.030682968071008
604 => 0.030748585930133
605 => 0.030481685120177
606 => 0.030401185281997
607 => 0.030507385347327
608 => 0.031043145432227
609 => 0.032421265828033
610 => 0.031934146038589
611 => 0.031538110067299
612 => 0.031885540384651
613 => 0.031832056210544
614 => 0.031380595956506
615 => 0.03136792497081
616 => 0.030501428402738
617 => 0.030181104350693
618 => 0.029913417596965
619 => 0.029621110650034
620 => 0.029447821293676
621 => 0.029714072503646
622 => 0.029774967305558
623 => 0.029192804381683
624 => 0.029113457726325
625 => 0.029588864536821
626 => 0.029379655724474
627 => 0.029594832176101
628 => 0.029644754958628
629 => 0.029636716240822
630 => 0.029418278213253
701 => 0.02955750409811
702 => 0.02922819337519
703 => 0.028870117424885
704 => 0.02864168727751
705 => 0.028442351677064
706 => 0.028552954653645
707 => 0.02815867523744
708 => 0.028032537316919
709 => 0.029510337501002
710 => 0.030602004386013
711 => 0.030586131117158
712 => 0.030489506675273
713 => 0.030345942354184
714 => 0.031032642807932
715 => 0.030793410100855
716 => 0.030967471883815
717 => 0.031011777912929
718 => 0.031145878918933
719 => 0.031193808502208
720 => 0.031048932012314
721 => 0.030562708817055
722 => 0.029351086843184
723 => 0.028787073543636
724 => 0.028600939760401
725 => 0.028607705369903
726 => 0.028421079656821
727 => 0.028476049293302
728 => 0.028401963460549
729 => 0.028261662816603
730 => 0.028544291484238
731 => 0.028576861805314
801 => 0.028510892897128
802 => 0.028526430963115
803 => 0.027980236579016
804 => 0.028021762551767
805 => 0.027790540658623
806 => 0.02774718934108
807 => 0.027162680530006
808 => 0.02612713844528
809 => 0.026700929282721
810 => 0.026007870638294
811 => 0.025745398828097
812 => 0.026987899554827
813 => 0.026863186943469
814 => 0.026649733164093
815 => 0.02633399053673
816 => 0.026216878524895
817 => 0.02550534301414
818 => 0.02546330170027
819 => 0.025815957912475
820 => 0.025653219204702
821 => 0.02542467242502
822 => 0.024596899156427
823 => 0.023666207936218
824 => 0.02369429965404
825 => 0.023990335215063
826 => 0.024851098534571
827 => 0.024514783414282
828 => 0.024270782935742
829 => 0.024225088980738
830 => 0.024797044494378
831 => 0.025606481374562
901 => 0.025986251048616
902 => 0.025609910835405
903 => 0.025177591462066
904 => 0.025203904739146
905 => 0.025378955183004
906 => 0.025397350509573
907 => 0.025115955040679
908 => 0.025195166216889
909 => 0.025074837197004
910 => 0.024336378224077
911 => 0.024323021842936
912 => 0.02414179210172
913 => 0.024136304537181
914 => 0.023827987537495
915 => 0.023784851857945
916 => 0.023172669741565
917 => 0.023575609864424
918 => 0.023305338785316
919 => 0.022897976518598
920 => 0.022827747110271
921 => 0.022825635929452
922 => 0.023243905892836
923 => 0.023570722136373
924 => 0.02331004026645
925 => 0.023250688057774
926 => 0.023884414368392
927 => 0.023803766918822
928 => 0.023733926747615
929 => 0.025534005179923
930 => 0.02410910263888
1001 => 0.023487763800391
1002 => 0.022718738998716
1003 => 0.022969137351901
1004 => 0.023021899964034
1005 => 0.021172533943145
1006 => 0.020422246378794
1007 => 0.020164775960699
1008 => 0.020016598094988
1009 => 0.020084124609093
1010 => 0.019408777801224
1011 => 0.019862622025317
1012 => 0.019277828775347
1013 => 0.019179786283908
1014 => 0.020225469056837
1015 => 0.0203709697059
1016 => 0.019750218733489
1017 => 0.020148841348231
1018 => 0.020004295246856
1019 => 0.019287853377159
1020 => 0.019260490567527
1021 => 0.018901005221462
1022 => 0.01833848026495
1023 => 0.018081391265265
1024 => 0.01794749708208
1025 => 0.018002744431607
1026 => 0.017974809681089
1027 => 0.017792516538166
1028 => 0.017985258510657
1029 => 0.017492882417423
1030 => 0.017296814289754
1031 => 0.017208254865232
1101 => 0.016771242742376
1102 => 0.017466723370012
1103 => 0.017603741815091
1104 => 0.017741030228833
1105 => 0.01893603213968
1106 => 0.018876333221254
1107 => 0.019415982369268
1108 => 0.019395012595728
1109 => 0.019241095916977
1110 => 0.018591746767395
1111 => 0.018850565764883
1112 => 0.018053961120017
1113 => 0.018650831483801
1114 => 0.018378444775672
1115 => 0.018558737263786
1116 => 0.018234555113839
1117 => 0.018413970900773
1118 => 0.017636233971468
1119 => 0.016909994169937
1120 => 0.017202254266335
1121 => 0.017519974415115
1122 => 0.018208872651258
1123 => 0.017798570545098
1124 => 0.017946130697714
1125 => 0.017451828887723
1126 => 0.016431943063381
1127 => 0.016437715506387
1128 => 0.016280828291732
1129 => 0.016145254832362
1130 => 0.017845698677681
1201 => 0.017634221605477
1202 => 0.017297260568354
1203 => 0.017748296306842
1204 => 0.017867557314998
1205 => 0.017870952508239
1206 => 0.018200016540123
1207 => 0.018375638072927
1208 => 0.018406592129271
1209 => 0.018924381493339
1210 => 0.019097937658368
1211 => 0.019812790939534
1212 => 0.018360737812868
1213 => 0.018330833734274
1214 => 0.017754643304641
1215 => 0.017389214224958
1216 => 0.017779664546365
1217 => 0.018125550229349
1218 => 0.017765390936964
1219 => 0.017812420137172
1220 => 0.017328935713241
1221 => 0.01750175864474
1222 => 0.017650617035109
1223 => 0.017568426181439
1224 => 0.017445382495412
1225 => 0.018097191547773
1226 => 0.018060413926578
1227 => 0.018667393501161
1228 => 0.019140577485075
1229 => 0.019988607776002
1230 => 0.0191036439586
1231 => 0.019071392359682
]
'min_raw' => 0.016145254832362
'max_raw' => 0.046680679802782
'avg_raw' => 0.031412967317572
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.016145'
'max' => '$0.04668'
'avg' => '$0.031412'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0028389513198407
'max_diff' => -0.015768757479577
'year' => 2030
]
5 => [
'items' => [
101 => 0.019386656912431
102 => 0.019097889393008
103 => 0.019280380497367
104 => 0.019959205637788
105 => 0.019973548143327
106 => 0.019733292696283
107 => 0.019718673130496
108 => 0.019764816817208
109 => 0.020035081831548
110 => 0.019940642931132
111 => 0.020049930017593
112 => 0.020186595192676
113 => 0.020751900301653
114 => 0.020888193449596
115 => 0.02055707175999
116 => 0.020586968341149
117 => 0.020463119739743
118 => 0.020343483542603
119 => 0.02061240824231
120 => 0.021103873416753
121 => 0.02110081603741
122 => 0.021214826405163
123 => 0.02128585391976
124 => 0.020980951831791
125 => 0.020782471784083
126 => 0.020858581663988
127 => 0.020980283019413
128 => 0.020819115554673
129 => 0.019824315302267
130 => 0.020126074150761
131 => 0.020075846723118
201 => 0.02000431675829
202 => 0.020307737613883
203 => 0.020278471932161
204 => 0.019401851143579
205 => 0.019457969562275
206 => 0.01940526389049
207 => 0.019575566698593
208 => 0.019088692482484
209 => 0.019238451712211
210 => 0.01933237929719
211 => 0.019387703366329
212 => 0.019587571840127
213 => 0.0195641195816
214 => 0.019586114014808
215 => 0.019882466198129
216 => 0.021381313845579
217 => 0.021462892816009
218 => 0.021061168129506
219 => 0.021221649218095
220 => 0.020913560621361
221 => 0.021120382560363
222 => 0.02126188487832
223 => 0.020622463112801
224 => 0.02058460070566
225 => 0.020275240517693
226 => 0.02044147315965
227 => 0.020176985073747
228 => 0.020241881198627
301 => 0.02006042597592
302 => 0.020387009249418
303 => 0.020752180095099
304 => 0.020844436671752
305 => 0.020601749337532
306 => 0.020426027713683
307 => 0.020117518428504
308 => 0.020630576245334
309 => 0.020780609986129
310 => 0.020629788181965
311 => 0.020594839474419
312 => 0.020528611736769
313 => 0.02060889000204
314 => 0.020779792870155
315 => 0.020699198233632
316 => 0.02075243241095
317 => 0.020549558621859
318 => 0.020981052767069
319 => 0.021666369314383
320 => 0.021668572719143
321 => 0.021587977648185
322 => 0.021554999881594
323 => 0.021637695315315
324 => 0.021682554195764
325 => 0.021949976064668
326 => 0.022236930384559
327 => 0.023576020987511
328 => 0.02320000970466
329 => 0.024388130550455
330 => 0.025327779881297
331 => 0.025609539629731
401 => 0.025350333918992
402 => 0.024463605184572
403 => 0.024420098042499
404 => 0.025745245138937
405 => 0.025370830388611
406 => 0.025326294945438
407 => 0.024852513073892
408 => 0.025132576839002
409 => 0.025071322785285
410 => 0.024974630264841
411 => 0.02550897241926
412 => 0.02650921323128
413 => 0.026353316320528
414 => 0.026236946508501
415 => 0.025727047866942
416 => 0.026034120739145
417 => 0.025924777970947
418 => 0.026394583893761
419 => 0.026116281272561
420 => 0.02536799382863
421 => 0.025487161070464
422 => 0.025469149181592
423 => 0.025839832578241
424 => 0.025728562623494
425 => 0.025447421937109
426 => 0.026505794516925
427 => 0.026437069688569
428 => 0.026534505782494
429 => 0.026577400164351
430 => 0.027221612903068
501 => 0.027485526249612
502 => 0.027545439199731
503 => 0.027796136467157
504 => 0.027539201623338
505 => 0.028567124190055
506 => 0.029250632715977
507 => 0.030044563041863
508 => 0.031204708636336
509 => 0.031640934111805
510 => 0.031562133884164
511 => 0.032441743033335
512 => 0.034022381121782
513 => 0.031881626034012
514 => 0.034135846339593
515 => 0.033422186217071
516 => 0.031730110904768
517 => 0.031621161202914
518 => 0.032767054249803
519 => 0.035308534739686
520 => 0.034671922702204
521 => 0.03530957600892
522 => 0.034565719555686
523 => 0.034528780813069
524 => 0.035273448561305
525 => 0.037013405344785
526 => 0.036186817098258
527 => 0.035001700159109
528 => 0.035876772064515
529 => 0.035118703795971
530 => 0.033410563816992
531 => 0.034671435896976
601 => 0.03382832664466
602 => 0.034074390746639
603 => 0.035846480991971
604 => 0.035633258405284
605 => 0.035909188176337
606 => 0.035422179352767
607 => 0.03496723631731
608 => 0.034118051357116
609 => 0.033866649554715
610 => 0.033936127968409
611 => 0.033866615124664
612 => 0.033391503943848
613 => 0.033288903729586
614 => 0.033117898877465
615 => 0.03317090043165
616 => 0.032849361280428
617 => 0.033456172092162
618 => 0.033568801526018
619 => 0.034010387830975
620 => 0.034056234786062
621 => 0.035286046359781
622 => 0.034608686811121
623 => 0.035063118076772
624 => 0.035022469467099
625 => 0.031766783307607
626 => 0.032215388135223
627 => 0.032913276467043
628 => 0.032598878719523
629 => 0.032154393862273
630 => 0.031795448508274
701 => 0.031251609592917
702 => 0.03201705242278
703 => 0.03302352834828
704 => 0.034081760676471
705 => 0.035353157480664
706 => 0.035069396514659
707 => 0.034057992797582
708 => 0.034103363629499
709 => 0.034383828259647
710 => 0.034020601080707
711 => 0.033913478294601
712 => 0.034369111233818
713 => 0.034372248927459
714 => 0.033954312160618
715 => 0.033489851925894
716 => 0.033487905820552
717 => 0.033405259607937
718 => 0.034580422133311
719 => 0.035226642699934
720 => 0.035300730846461
721 => 0.035221655977369
722 => 0.035252088756113
723 => 0.034876067246894
724 => 0.035735540911255
725 => 0.036524278938808
726 => 0.036312880298494
727 => 0.035995963684575
728 => 0.035743524336816
729 => 0.0362534136108
730 => 0.036230709044069
731 => 0.036517390000217
801 => 0.036504384496097
802 => 0.036407984473161
803 => 0.036312883741242
804 => 0.0366899473936
805 => 0.036581359117178
806 => 0.03647260217317
807 => 0.036254473472106
808 => 0.036284120785315
809 => 0.035967258891517
810 => 0.035820664080833
811 => 0.033616229858272
812 => 0.033027133002037
813 => 0.033212474865181
814 => 0.033273494218927
815 => 0.033017118512146
816 => 0.033384695418155
817 => 0.033327408946714
818 => 0.033550277095627
819 => 0.033411038751996
820 => 0.033416753142187
821 => 0.03382622342206
822 => 0.033945094386318
823 => 0.03388463565449
824 => 0.033926978877858
825 => 0.034902760588423
826 => 0.034764035632924
827 => 0.034690340765205
828 => 0.034710754747203
829 => 0.034960087895248
830 => 0.035029887563616
831 => 0.034734141464007
901 => 0.03487361703427
902 => 0.035467486310366
903 => 0.035675306946909
904 => 0.036338570659192
905 => 0.036056804445642
906 => 0.036573998525169
907 => 0.03816367680118
908 => 0.039433621805427
909 => 0.038265727896824
910 => 0.040597820170603
911 => 0.042413688524508
912 => 0.042343992472598
913 => 0.042027353823303
914 => 0.03996003597974
915 => 0.038057659278121
916 => 0.039649078168207
917 => 0.039653135022236
918 => 0.039516430728218
919 => 0.038667372098816
920 => 0.039486885328356
921 => 0.039551935312482
922 => 0.039515524619559
923 => 0.03886455335912
924 => 0.037870640564028
925 => 0.038064848745098
926 => 0.03838296570743
927 => 0.037780703931585
928 => 0.037588244801875
929 => 0.037946062940854
930 => 0.039099027539014
1001 => 0.038881066260401
1002 => 0.038875374410565
1003 => 0.039807905190438
1004 => 0.039140414404787
1005 => 0.038067298332202
1006 => 0.037796322371212
1007 => 0.036834540260978
1008 => 0.037498846590267
1009 => 0.037522753792416
1010 => 0.037158920004911
1011 => 0.038096821438856
1012 => 0.038088178512027
1013 => 0.038978576335352
1014 => 0.040680682555399
1015 => 0.040177285990571
1016 => 0.039591890555066
1017 => 0.03965553927016
1018 => 0.040353608576328
1019 => 0.039931539938447
1020 => 0.040083318763396
1021 => 0.040353378840898
1022 => 0.04051631279087
1023 => 0.039632095582171
1024 => 0.039425942253825
1025 => 0.039004224894015
1026 => 0.038894206706568
1027 => 0.039237686696712
1028 => 0.039147191854636
1029 => 0.037520744484649
1030 => 0.037350771685018
1031 => 0.037355984508117
1101 => 0.036928579821678
1102 => 0.03627668508598
1103 => 0.037989825528782
1104 => 0.03785223637584
1105 => 0.037700348599546
1106 => 0.037718953985483
1107 => 0.038462570187986
1108 => 0.038031235237016
1109 => 0.039178009898579
1110 => 0.038942267503363
1111 => 0.038700479205248
1112 => 0.038667056697397
1113 => 0.03857398883103
1114 => 0.038254824488233
1115 => 0.037869414365501
1116 => 0.037614933218821
1117 => 0.034697787576515
1118 => 0.035239192839471
1119 => 0.03586203024386
1120 => 0.036077031219991
1121 => 0.035709257172705
1122 => 0.038269346449229
1123 => 0.038737099429684
1124 => 0.037320245141114
1125 => 0.037055209553501
1126 => 0.038286722138229
1127 => 0.037543969503348
1128 => 0.037878430969355
1129 => 0.037155508220487
1130 => 0.038624431434099
1201 => 0.03861324070033
1202 => 0.0380417963931
1203 => 0.038524777208489
1204 => 0.038440847406241
1205 => 0.037795688190784
1206 => 0.038644884131978
1207 => 0.03864530532257
1208 => 0.038095302601132
1209 => 0.037453019833569
1210 => 0.037338194844771
1211 => 0.037251689640278
1212 => 0.037857155991916
1213 => 0.03840001522955
1214 => 0.039410141684569
1215 => 0.039664111475373
1216 => 0.040655372476609
1217 => 0.040065124813995
1218 => 0.040326773957845
1219 => 0.040610831116025
1220 => 0.040747018563512
1221 => 0.040525108426053
1222 => 0.042064944780278
1223 => 0.042194954147941
1224 => 0.042238545164342
1225 => 0.041719321009489
1226 => 0.042180513584925
1227 => 0.041964736851971
1228 => 0.042526127966614
1229 => 0.042614161261592
1230 => 0.042539600192621
1231 => 0.042567543349958
]
'min_raw' => 0.019088692482484
'max_raw' => 0.042614161261592
'avg_raw' => 0.030851426872038
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.019088'
'max' => '$0.042614'
'avg' => '$0.030851'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0029434376501215
'max_diff' => -0.00406651854119
'year' => 2031
]
6 => [
'items' => [
101 => 0.041253564667374
102 => 0.041185427940892
103 => 0.040256378840553
104 => 0.040634973216125
105 => 0.039927209177493
106 => 0.040151648444921
107 => 0.040250579135467
108 => 0.040198903356993
109 => 0.040656378374082
110 => 0.040267431153585
111 => 0.03924093548985
112 => 0.038214160158057
113 => 0.03820126983016
114 => 0.037930938009389
115 => 0.037735537616714
116 => 0.037773178664545
117 => 0.037905830626698
118 => 0.037727827643526
119 => 0.037765813604966
120 => 0.03839663366401
121 => 0.038523140128049
122 => 0.03809322173398
123 => 0.036367037344863
124 => 0.035943427365968
125 => 0.036247909818247
126 => 0.036102386817239
127 => 0.029137443837276
128 => 0.030773753877959
129 => 0.029801514015623
130 => 0.030249566874793
131 => 0.02925716173564
201 => 0.029730789484453
202 => 0.029643327733364
203 => 0.032274465856848
204 => 0.032233384254062
205 => 0.032253047843325
206 => 0.031314453494562
207 => 0.032809659777755
208 => 0.033546252158735
209 => 0.033409928512787
210 => 0.033444238237494
211 => 0.032854683493464
212 => 0.03225875602195
213 => 0.031597780743461
214 => 0.032825791111881
215 => 0.032689257321748
216 => 0.033002416713005
217 => 0.033798869216919
218 => 0.033916149873549
219 => 0.034073776265403
220 => 0.034017278424534
221 => 0.035363286207387
222 => 0.035200275783639
223 => 0.035593084003574
224 => 0.034785047692736
225 => 0.033870677907512
226 => 0.034044469710683
227 => 0.034027732162492
228 => 0.033814643963561
229 => 0.033622277465382
301 => 0.03330204144484
302 => 0.034315315599849
303 => 0.034274178519612
304 => 0.034940140032032
305 => 0.034822424865907
306 => 0.034036294176735
307 => 0.034064370988091
308 => 0.034253201037721
309 => 0.034906743995512
310 => 0.035100760041982
311 => 0.035010884079054
312 => 0.03522361381684
313 => 0.035391746727895
314 => 0.035244728721849
315 => 0.037326193653934
316 => 0.036461824294903
317 => 0.036883111906252
318 => 0.036983586519187
319 => 0.036726222910906
320 => 0.036782035862042
321 => 0.036866577274895
322 => 0.037379896178831
323 => 0.038726993512782
324 => 0.039323613751988
325 => 0.041118575178361
326 => 0.039274072746476
327 => 0.039164627605478
328 => 0.03948795436101
329 => 0.040541786734254
330 => 0.041395818891327
331 => 0.041679150628125
401 => 0.04171659759444
402 => 0.042248146768212
403 => 0.042552820841812
404 => 0.042183602717385
405 => 0.041870729015681
406 => 0.040750054251494
407 => 0.040879775406945
408 => 0.04177342552972
409 => 0.04303575896387
410 => 0.04411897237378
411 => 0.043739668791428
412 => 0.046633487378173
413 => 0.04692039767086
414 => 0.046880755945331
415 => 0.047534380290048
416 => 0.046237069074068
417 => 0.045682443395016
418 => 0.041938375861257
419 => 0.042990306119713
420 => 0.044519348528077
421 => 0.044316974031715
422 => 0.043206542563341
423 => 0.044118130011937
424 => 0.043816730693456
425 => 0.043579004545901
426 => 0.044668074113332
427 => 0.043470597387429
428 => 0.044507402781714
429 => 0.043177689139165
430 => 0.043741401418243
501 => 0.043421411064943
502 => 0.043628484040071
503 => 0.042417939658672
504 => 0.043071120022571
505 => 0.042390765208076
506 => 0.042390442631309
507 => 0.04237542376107
508 => 0.043175858183169
509 => 0.043201960320937
510 => 0.042610438073617
511 => 0.042525190476464
512 => 0.042840395523213
513 => 0.042471372965802
514 => 0.042644036297814
515 => 0.042476602762234
516 => 0.042438909946685
517 => 0.042138567179487
518 => 0.042009171257282
519 => 0.042059910732501
520 => 0.041886710745586
521 => 0.041782351488553
522 => 0.042354664078162
523 => 0.042048900548558
524 => 0.042307801431984
525 => 0.042012751199424
526 => 0.040989978546104
527 => 0.040401771177555
528 => 0.038469848446508
529 => 0.03901773933649
530 => 0.039380991563382
531 => 0.039260936704562
601 => 0.039518860996372
602 => 0.039534695453115
603 => 0.03945084163662
604 => 0.039353749659459
605 => 0.0393064906545
606 => 0.039658720558888
607 => 0.039863201873899
608 => 0.039417448784039
609 => 0.039313015071833
610 => 0.039763696056384
611 => 0.040038611196611
612 => 0.042068430130568
613 => 0.041918054587712
614 => 0.042295467690572
615 => 0.042252976767066
616 => 0.042648565825485
617 => 0.04329518674759
618 => 0.041980425614897
619 => 0.042208622686513
620 => 0.042152674034393
621 => 0.042763506747718
622 => 0.042765413700774
623 => 0.042399188975779
624 => 0.042597725340516
625 => 0.04248690778828
626 => 0.042687170083062
627 => 0.041916046230658
628 => 0.04285519184521
629 => 0.043387626891454
630 => 0.043395019752588
701 => 0.043647389738842
702 => 0.04390381226116
703 => 0.044395992963054
704 => 0.043890085608516
705 => 0.042980007526789
706 => 0.043045712224755
707 => 0.042512133778423
708 => 0.042521103328505
709 => 0.042473223167212
710 => 0.042616915135501
711 => 0.041947578537196
712 => 0.042104670498967
713 => 0.041884740832559
714 => 0.04220814460237
715 => 0.041860215606611
716 => 0.042152647054258
717 => 0.042278850772807
718 => 0.042744545211222
719 => 0.041791432159413
720 => 0.039847970126692
721 => 0.040256509408169
722 => 0.039652247720796
723 => 0.039708174440549
724 => 0.039821155315121
725 => 0.039454947335591
726 => 0.039524808277546
727 => 0.039522312353095
728 => 0.039500803824588
729 => 0.039405538985489
730 => 0.039267386121221
731 => 0.039817744611255
801 => 0.03991126124315
802 => 0.040119137131595
803 => 0.040737634772043
804 => 0.040675832272584
805 => 0.040776634713363
806 => 0.040556583551123
807 => 0.039718381982844
808 => 0.039763900360711
809 => 0.039196285459327
810 => 0.040104621942394
811 => 0.039889515873748
812 => 0.039750835591944
813 => 0.03971299539219
814 => 0.040333026168658
815 => 0.040518549094769
816 => 0.040402943657197
817 => 0.040165833531988
818 => 0.040621155067706
819 => 0.04074297990219
820 => 0.040770251989905
821 => 0.041576994451952
822 => 0.040815339931742
823 => 0.040998677744952
824 => 0.042429027027523
825 => 0.041131897602939
826 => 0.04181901598858
827 => 0.041785385119194
828 => 0.042136891634469
829 => 0.041756551325235
830 => 0.041761266099202
831 => 0.042073380071652
901 => 0.041635072287397
902 => 0.041526541116079
903 => 0.041376606080219
904 => 0.041703983745757
905 => 0.041900231850228
906 => 0.043481847443921
907 => 0.04450364324788
908 => 0.044459284397235
909 => 0.044864641255838
910 => 0.044682024278394
911 => 0.044092305886304
912 => 0.045098883273105
913 => 0.044780360070935
914 => 0.044806618736716
915 => 0.044805641387864
916 => 0.045017431471526
917 => 0.044867358786975
918 => 0.044571550121081
919 => 0.044767921718314
920 => 0.045351075157966
921 => 0.047161201327976
922 => 0.048174171913696
923 => 0.047100219226792
924 => 0.047841017409419
925 => 0.047396802473225
926 => 0.047316075405068
927 => 0.047781351408314
928 => 0.04824744181561
929 => 0.048217753871629
930 => 0.04787939616994
1001 => 0.047688266489764
1002 => 0.049135564461195
1003 => 0.050201908952469
1004 => 0.050129191407028
1005 => 0.05045014300359
1006 => 0.051392466817757
1007 => 0.051478621097738
1008 => 0.051467767638694
1009 => 0.051254225266492
1010 => 0.052182065437749
1011 => 0.052956086032406
1012 => 0.051204796377159
1013 => 0.051871664551812
1014 => 0.052171043160565
1015 => 0.052610619779844
1016 => 0.053352259218163
1017 => 0.054157876358324
1018 => 0.054271799455085
1019 => 0.054190965566211
1020 => 0.053659639406124
1021 => 0.054541155293899
1022 => 0.055057526626866
1023 => 0.055365013938701
1024 => 0.056144750600502
1025 => 0.052172892020931
1026 => 0.049361413104131
1027 => 0.048922360073025
1028 => 0.049815191676687
1029 => 0.050050624250374
1030 => 0.049955721675128
1031 => 0.04679114654579
1101 => 0.048905699239893
1102 => 0.051180780142108
1103 => 0.051268175265121
1104 => 0.052407128334468
1105 => 0.052778018141111
1106 => 0.053695024647927
1107 => 0.053637665641252
1108 => 0.053860942132901
1109 => 0.053809614734081
1110 => 0.055508176189456
1111 => 0.057381941713551
1112 => 0.057317059171661
1113 => 0.057047683208185
1114 => 0.057447752449374
1115 => 0.059381679275157
1116 => 0.059203634283585
1117 => 0.059376589827061
1118 => 0.061656798545999
1119 => 0.064621394236527
1120 => 0.063244041897736
1121 => 0.066232500150453
1122 => 0.068113576209174
1123 => 0.071366702745836
1124 => 0.07095939528146
1125 => 0.072225813569637
1126 => 0.070230229912594
1127 => 0.065647966462023
1128 => 0.06492280573077
1129 => 0.066374595878733
1130 => 0.069943680293887
1201 => 0.066262192709206
1202 => 0.067006952852808
1203 => 0.066792461881348
1204 => 0.066781032569007
1205 => 0.067217242934696
1206 => 0.066584497048061
1207 => 0.0640065764771
1208 => 0.06518802228299
1209 => 0.064731809319649
1210 => 0.065238011615406
1211 => 0.067969776631899
1212 => 0.066761998200963
1213 => 0.065489701735924
1214 => 0.06708544384827
1215 => 0.069117371913769
1216 => 0.068990217507156
1217 => 0.068743484811908
1218 => 0.070134304096518
1219 => 0.072431530082879
1220 => 0.073052461035991
1221 => 0.073510819571203
1222 => 0.073574019469178
1223 => 0.074225017696838
1224 => 0.070724436154036
1225 => 0.076279948963772
1226 => 0.077239232558069
1227 => 0.077058927000573
1228 => 0.078125130342809
1229 => 0.077811426272555
1230 => 0.077356918293418
1231 => 0.079047077378817
]
'min_raw' => 0.029137443837276
'max_raw' => 0.079047077378817
'avg_raw' => 0.054092260608046
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.029137'
'max' => '$0.079047'
'avg' => '$0.054092'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010048751354792
'max_diff' => 0.036432916117226
'year' => 2032
]
7 => [
'items' => [
101 => 0.077109446376212
102 => 0.074359223108973
103 => 0.072850396231317
104 => 0.074837341177406
105 => 0.07605069912116
106 => 0.076852651537923
107 => 0.077095321854682
108 => 0.070996176334326
109 => 0.067709075172973
110 => 0.069816069330709
111 => 0.072386747620116
112 => 0.070710155906342
113 => 0.070775875127314
114 => 0.068385495944024
115 => 0.072598243137221
116 => 0.071984481305953
117 => 0.075168678772296
118 => 0.074408744492172
119 => 0.077005333916142
120 => 0.076321564899623
121 => 0.079159851858183
122 => 0.080292121369504
123 => 0.08219337810269
124 => 0.083591950295129
125 => 0.084413218636952
126 => 0.084363912766209
127 => 0.087618187090775
128 => 0.085699255217263
129 => 0.083288624526615
130 => 0.083245023822864
131 => 0.084493523616451
201 => 0.08711003667462
202 => 0.087788460441887
203 => 0.088167606775516
204 => 0.087586930967384
205 => 0.085504067949773
206 => 0.084604698259124
207 => 0.085370987292805
208 => 0.08443388165258
209 => 0.086051588893012
210 => 0.088273046457746
211 => 0.087814324255224
212 => 0.08934776380278
213 => 0.090934712411956
214 => 0.093204120197399
215 => 0.09379742742844
216 => 0.094778141719899
217 => 0.095787618873672
218 => 0.096111835729292
219 => 0.096730866305253
220 => 0.096727603708555
221 => 0.098593094014775
222 => 0.10065078759196
223 => 0.10142751928163
224 => 0.1032135709728
225 => 0.10015502004239
226 => 0.10247496605721
227 => 0.10456761543458
228 => 0.10207267257707
301 => 0.10551137005902
302 => 0.10564488688999
303 => 0.10766083251913
304 => 0.10561728541555
305 => 0.10440383366867
306 => 0.10790702339445
307 => 0.10960210655332
308 => 0.10909153371082
309 => 0.10520604916935
310 => 0.10294453050995
311 => 0.097025699963911
312 => 0.10403681042014
313 => 0.10745171780648
314 => 0.10519720538421
315 => 0.10633425031284
316 => 0.11253759875544
317 => 0.11489943220532
318 => 0.1144081873582
319 => 0.11449119965079
320 => 0.11576560211003
321 => 0.12141700444057
322 => 0.11803055316563
323 => 0.12061936827741
324 => 0.12199246647803
325 => 0.12326787661036
326 => 0.12013587242287
327 => 0.11606118099322
328 => 0.11477055517354
329 => 0.10497303855539
330 => 0.10446303526696
331 => 0.10417675496648
401 => 0.10237179816712
402 => 0.1009535965421
403 => 0.099825789955426
404 => 0.096866088680451
405 => 0.097864900977813
406 => 0.093147754883166
407 => 0.096165617789128
408 => 0.088636938722597
409 => 0.094907046365111
410 => 0.091494511842102
411 => 0.093785936994481
412 => 0.093777942427989
413 => 0.089558702225455
414 => 0.087125132529929
415 => 0.088675897855867
416 => 0.090338441385178
417 => 0.090608183479341
418 => 0.092763714561918
419 => 0.09336527695408
420 => 0.091542514821567
421 => 0.088480923583031
422 => 0.089192061400282
423 => 0.08711072134476
424 => 0.083463252955048
425 => 0.086082928431228
426 => 0.086977400817795
427 => 0.087372450780671
428 => 0.083785584533965
429 => 0.082658513284594
430 => 0.082058470008474
501 => 0.088017904192519
502 => 0.088344375449783
503 => 0.086674102339236
504 => 0.094223895180702
505 => 0.092515144540084
506 => 0.094424237659726
507 => 0.08912753309716
508 => 0.089329874344409
509 => 0.086822329521034
510 => 0.088226387067918
511 => 0.087234044448667
512 => 0.088112953093297
513 => 0.088639767311012
514 => 0.091146900670955
515 => 0.094935673800817
516 => 0.090772418552509
517 => 0.088958428621908
518 => 0.090083817772586
519 => 0.093080877382891
520 => 0.097621576109161
521 => 0.094933391073131
522 => 0.096126361943779
523 => 0.096386973007436
524 => 0.094404804883886
525 => 0.097694661475211
526 => 0.09945772234925
527 => 0.10126625799197
528 => 0.10283655881653
529 => 0.10054388908572
530 => 0.10299737433898
531 => 0.1010202983233
601 => 0.099246656750871
602 => 0.099249346633009
603 => 0.098136715365857
604 => 0.095980852085187
605 => 0.095583277819355
606 => 0.097651509358309
607 => 0.099310035190296
608 => 0.099446639321621
609 => 0.10036488444034
610 => 0.10090829244293
611 => 0.10623442959559
612 => 0.10837664601851
613 => 0.11099610771038
614 => 0.11201653566413
615 => 0.11508765796126
616 => 0.11260747728197
617 => 0.11207087459094
618 => 0.10462133645455
619 => 0.10584119790705
620 => 0.10779431379163
621 => 0.10465354261611
622 => 0.10664563902111
623 => 0.10703892104982
624 => 0.1045468204134
625 => 0.10587795904063
626 => 0.1023428495018
627 => 0.095012729528424
628 => 0.097702821994168
629 => 0.099683635524288
630 => 0.096856770384259
701 => 0.10192381673297
702 => 0.098963752861122
703 => 0.098025554721869
704 => 0.094365309288858
705 => 0.096092804237472
706 => 0.098429265890818
707 => 0.096985604231872
708 => 0.099981418941075
709 => 0.10422429152391
710 => 0.10724801519386
711 => 0.10748013915151
712 => 0.10553608740548
713 => 0.10865144273527
714 => 0.10867413469774
715 => 0.10516000115914
716 => 0.10300761393353
717 => 0.1025185870272
718 => 0.10374027211857
719 => 0.10522362335499
720 => 0.10756245482154
721 => 0.10897576169335
722 => 0.11266091645501
723 => 0.11365801367185
724 => 0.11475352121217
725 => 0.11621745712805
726 => 0.11797528754053
727 => 0.11412925467137
728 => 0.11428206472716
729 => 0.11070069217135
730 => 0.10687348197469
731 => 0.10977785744547
801 => 0.11357494202064
802 => 0.11270388662369
803 => 0.11260587509748
804 => 0.11277070329843
805 => 0.11211395597514
806 => 0.10914351217209
807 => 0.10765177389016
808 => 0.10957649685688
809 => 0.11059940145412
810 => 0.11218583727779
811 => 0.11199027557692
812 => 0.11607676388792
813 => 0.11766464967659
814 => 0.11725840054238
815 => 0.11733316016001
816 => 0.12020795153307
817 => 0.12340531078586
818 => 0.1264000596548
819 => 0.12944644683175
820 => 0.12577390818742
821 => 0.12390921955453
822 => 0.1258331022474
823 => 0.12481226300995
824 => 0.13067830806892
825 => 0.13108446030143
826 => 0.13695008117857
827 => 0.14251725385612
828 => 0.13902061244361
829 => 0.14231778780342
830 => 0.1458839517777
831 => 0.15276366067335
901 => 0.15044681674837
902 => 0.14867215061141
903 => 0.14699509968711
904 => 0.15048477643625
905 => 0.15497418982506
906 => 0.15594116646995
907 => 0.15750803804817
908 => 0.15586066417161
909 => 0.15784474455364
910 => 0.16484942015132
911 => 0.16295669497285
912 => 0.16026872094866
913 => 0.16579823959683
914 => 0.16779935090014
915 => 0.18184419801692
916 => 0.19957639766556
917 => 0.19223515057512
918 => 0.18767820160553
919 => 0.18874919270566
920 => 0.1952243917445
921 => 0.19730402016323
922 => 0.19165087323021
923 => 0.19364766029699
924 => 0.20465015335472
925 => 0.21055263787795
926 => 0.20253627108597
927 => 0.18041943304061
928 => 0.16002669829754
929 => 0.16543576984822
930 => 0.1648225489974
1001 => 0.17664335519897
1002 => 0.16291155410331
1003 => 0.16314276241659
1004 => 0.17520801037195
1005 => 0.17198920906818
1006 => 0.16677516318898
1007 => 0.16006476660267
1008 => 0.1476599778763
1009 => 0.13667271056823
1010 => 0.1582212719759
1011 => 0.15729205882448
1012 => 0.15594642047956
1013 => 0.15894099300291
1014 => 0.17348178715204
1015 => 0.17314657478295
1016 => 0.17101412471762
1017 => 0.17263156929762
1018 => 0.16649161733388
1019 => 0.16807402275904
1020 => 0.16002346798417
1021 => 0.16366265496328
1022 => 0.16676397618827
1023 => 0.16738661234004
1024 => 0.16878944338255
1025 => 0.15680240571746
1026 => 0.16218423370815
1027 => 0.16534555344359
1028 => 0.15106259586906
1029 => 0.16506322529555
1030 => 0.15659373806046
1031 => 0.15371906688544
1101 => 0.15758943291348
1102 => 0.1560811475083
1103 => 0.15478441228641
1104 => 0.15406081175186
1105 => 0.15690278140614
1106 => 0.15677020012488
1107 => 0.15212018616794
1108 => 0.14605443251993
1109 => 0.14809029854578
1110 => 0.14735064933224
1111 => 0.14467006516574
1112 => 0.146476455239
1113 => 0.13852202754947
1114 => 0.1248368481448
1115 => 0.1338776968479
1116 => 0.13352963400739
1117 => 0.1333541249398
1118 => 0.14014807286948
1119 => 0.13949499153909
1120 => 0.13830964252944
1121 => 0.14464829530161
1122 => 0.14233460177286
1123 => 0.14946486005373
1124 => 0.1541613093137
1125 => 0.15297013786715
1126 => 0.15738717109606
1127 => 0.14813720078714
1128 => 0.15120966987937
1129 => 0.15184290150102
1130 => 0.14457007731033
1201 => 0.13960184372153
1202 => 0.13927051918317
1203 => 0.13065628680496
1204 => 0.13525794020975
1205 => 0.1393072047766
1206 => 0.1373679212847
1207 => 0.13675400206561
1208 => 0.13989038221311
1209 => 0.14013410581185
1210 => 0.13457718193191
1211 => 0.13573264237145
1212 => 0.1405511044836
1213 => 0.13561122948912
1214 => 0.12601385929884
1215 => 0.12363357879762
1216 => 0.12331600550149
1217 => 0.11686049599977
1218 => 0.12379264052247
1219 => 0.12076657366839
1220 => 0.13032588260258
1221 => 0.12486565660697
1222 => 0.12463027717752
1223 => 0.12427446664724
1224 => 0.11871794294537
1225 => 0.11993446850058
1226 => 0.12397838472816
1227 => 0.12542129959613
1228 => 0.12527079175395
1229 => 0.12395856733249
1230 => 0.12455929695296
1231 => 0.12262413753736
]
'min_raw' => 0.067709075172973
'max_raw' => 0.21055263787795
'avg_raw' => 0.13913085652546
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.067709'
'max' => '$0.210552'
'avg' => '$0.13913'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.038571631335697
'max_diff' => 0.13150556049913
'year' => 2033
]
8 => [
'items' => [
101 => 0.12194079247085
102 => 0.11978396747207
103 => 0.11661403056199
104 => 0.11705482973169
105 => 0.11077435525371
106 => 0.10735241942809
107 => 0.10640527269195
108 => 0.1051387084924
109 => 0.10654833448849
110 => 0.11075656345861
111 => 0.10568054649507
112 => 0.096978071452259
113 => 0.097501105030628
114 => 0.098676206191159
115 => 0.096486412952581
116 => 0.094413957427682
117 => 0.09621578936295
118 => 0.092528435964611
119 => 0.099121805232809
120 => 0.098943473071808
121 => 0.10140107340377
122 => 0.10293786132638
123 => 0.099396062705761
124 => 0.098505309930715
125 => 0.099012723193838
126 => 0.09062631223144
127 => 0.10071572470945
128 => 0.10080297836753
129 => 0.1000558595738
130 => 0.10542816024268
131 => 0.11676539031661
201 => 0.11249986832378
202 => 0.11084812928207
203 => 0.10770817215636
204 => 0.11189197859416
205 => 0.11157072753728
206 => 0.11011790842725
207 => 0.10923923889643
208 => 0.11085821444844
209 => 0.10903862990912
210 => 0.10871178252702
211 => 0.10673144300495
212 => 0.10602455189527
213 => 0.10550119785982
214 => 0.10492503649049
215 => 0.10619590490076
216 => 0.10331594988641
217 => 0.099843006464571
218 => 0.099554268796813
219 => 0.10035149888357
220 => 0.099998783916978
221 => 0.099552580133253
222 => 0.098700655593751
223 => 0.098447907781369
224 => 0.099269215555805
225 => 0.098342006963684
226 => 0.099710153749024
227 => 0.099338093526426
228 => 0.097259795367627
301 => 0.094669466377233
302 => 0.09464640701582
303 => 0.094088324883831
304 => 0.093377523380532
305 => 0.09317979466325
306 => 0.09606404410308
307 => 0.10203435412521
308 => 0.10086223941045
309 => 0.10170921241501
310 => 0.10587548131744
311 => 0.10719981291744
312 => 0.10625983371627
313 => 0.10497313221032
314 => 0.10502974054646
315 => 0.10942678910334
316 => 0.1097010276283
317 => 0.11039393990818
318 => 0.11128452800482
319 => 0.10641150472014
320 => 0.10480022158798
321 => 0.10403670624937
322 => 0.10168537452409
323 => 0.10422108420186
324 => 0.10274363476254
325 => 0.10294299316876
326 => 0.10281316074517
327 => 0.10288405802768
328 => 0.099119962251725
329 => 0.10049140091743
330 => 0.098211118140789
331 => 0.095158075476615
401 => 0.09514784060707
402 => 0.095895068473884
403 => 0.095450588099674
404 => 0.094254502841309
405 => 0.094424401106897
406 => 0.092935913524994
407 => 0.094605130449278
408 => 0.094652997617921
409 => 0.094010258179211
410 => 0.096581917158617
411 => 0.097635527940753
412 => 0.097212463073382
413 => 0.097605844581854
414 => 0.10091094606863
415 => 0.10144982182266
416 => 0.10168915483647
417 => 0.10136848030352
418 => 0.097666255769772
419 => 0.097830465170918
420 => 0.096625605539959
421 => 0.095607626116778
422 => 0.095648339955106
423 => 0.096171713706683
424 => 0.098457317575283
425 => 0.10326723617304
426 => 0.10344976906782
427 => 0.10367100426116
428 => 0.10277112954597
429 => 0.10249971872123
430 => 0.10285777965614
501 => 0.10466413218795
502 => 0.10931056131971
503 => 0.10766820293998
504 => 0.10633294001243
505 => 0.10750432558419
506 => 0.10732399995704
507 => 0.1058018701906
508 => 0.10575914907767
509 => 0.10283769540156
510 => 0.10175770049578
511 => 0.10085517591629
512 => 0.099869642636493
513 => 0.099285385472854
514 => 0.10018307001634
515 => 0.10038838109252
516 => 0.098425578149358
517 => 0.098158055361011
518 => 0.099760922614442
519 => 0.099055560497122
520 => 0.099781042926925
521 => 0.099949361073712
522 => 0.099922257975384
523 => 0.099185778914578
524 => 0.099655188705814
525 => 0.098544894611747
526 => 0.09733761654523
527 => 0.096567448354873
528 => 0.095895374460801
529 => 0.096268280118396
530 => 0.094938939538952
531 => 0.094513656733248
601 => 0.099496163230598
602 => 0.10317679435116
603 => 0.10312327651698
604 => 0.10279750046506
605 => 0.10231346333317
606 => 0.10462872185688
607 => 0.10382213208227
608 => 0.10440899353613
609 => 0.10455837440663
610 => 0.10501050531101
611 => 0.10517210324736
612 => 0.10468364204672
613 => 0.10304430659689
614 => 0.098959238519239
615 => 0.097057628301662
616 => 0.096430065256039
617 => 0.096452875980835
618 => 0.095823654359388
619 => 0.096008988326639
620 => 0.095759202769006
621 => 0.095286169352465
622 => 0.096239071637898
623 => 0.096348884749395
624 => 0.096126465969641
625 => 0.09617885364395
626 => 0.094337321143888
627 => 0.094477328860269
628 => 0.093697748104137
629 => 0.093551586110348
630 => 0.091580873844708
701 => 0.088089471406816
702 => 0.090024047276044
703 => 0.087687351668549
704 => 0.086802409635275
705 => 0.090991587584073
706 => 0.090571110307723
707 => 0.089851435987691
708 => 0.088786887675092
709 => 0.088392036350689
710 => 0.085993044698355
711 => 0.085851299473413
712 => 0.087040304514533
713 => 0.086491619599221
714 => 0.085721058174897
715 => 0.082930162806552
716 => 0.079792272378832
717 => 0.079886985566769
718 => 0.0808850901293
719 => 0.083787213757597
720 => 0.082653303848773
721 => 0.081830639199804
722 => 0.081676578840261
723 => 0.083604966787155
724 => 0.086334039741776
725 => 0.087614459712518
726 => 0.086345602408445
727 => 0.084888007457655
728 => 0.084976724508465
729 => 0.085566919301564
730 => 0.085628940429414
731 => 0.084680195959632
801 => 0.084947261970573
802 => 0.084541564278925
803 => 0.082051798294144
804 => 0.082006766322613
805 => 0.081395737597047
806 => 0.081377235890075
807 => 0.08033772359963
808 => 0.080192288644387
809 => 0.078128273897822
810 => 0.079486814654424
811 => 0.078575576841486
812 => 0.07720212651812
813 => 0.076965343164686
814 => 0.076958225171158
815 => 0.078368451555383
816 => 0.07947033533805
817 => 0.078591428213377
818 => 0.078391318097988
819 => 0.080527970599591
820 => 0.080256062092742
821 => 0.080020591079433
822 => 0.086089681191424
823 => 0.081285522790776
824 => 0.079190635516319
825 => 0.076597814705874
826 => 0.077442050235892
827 => 0.077619943066467
828 => 0.071384676408428
829 => 0.068855029501814
830 => 0.067986950011197
831 => 0.067487357991504
901 => 0.06771502834836
902 => 0.065438049434419
903 => 0.066968216922342
904 => 0.064996545651106
905 => 0.06466598854611
906 => 0.068191581022282
907 => 0.068682146619128
908 => 0.066589241376195
909 => 0.06793322535274
910 => 0.06744587808007
911 => 0.065030344296012
912 => 0.064938088672925
913 => 0.063726058730202
914 => 0.061829466565085
915 => 0.060962673053265
916 => 0.060511239466463
917 => 0.060697509762643
918 => 0.060603325800929
919 => 0.059988711742261
920 => 0.06063855475933
921 => 0.058978474384392
922 => 0.058317417002914
923 => 0.058018832720116
924 => 0.056545415836697
925 => 0.058890277329679
926 => 0.059352244583583
927 => 0.059815122055687
928 => 0.063844154430474
929 => 0.063642875358957
930 => 0.065462340138588
1001 => 0.065391639083033
1002 => 0.064872698254507
1003 => 0.062683372260578
1004 => 0.063555998580775
1005 => 0.06087019040345
1006 => 0.062882580507105
1007 => 0.061964209703217
1008 => 0.062572078414513
1009 => 0.061479075662291
1010 => 0.062083988514348
1011 => 0.059461794157339
1012 => 0.057013225962034
1013 => 0.057998601281987
1014 => 0.059069816946111
1015 => 0.061392485446608
1016 => 0.060009123249311
1017 => 0.060506632606175
1018 => 0.058840059542741
1019 => 0.055401443279816
1020 => 0.055420905474432
1021 => 0.054891949276708
1022 => 0.054434853893006
1023 => 0.060168019038695
1024 => 0.0594550093249
1025 => 0.058318921662371
1026 => 0.059839620144995
1027 => 0.060241716960531
1028 => 0.060253164091588
1029 => 0.061362626449601
1030 => 0.061954746708954
1031 => 0.062059110471062
1101 => 0.063804873462916
1102 => 0.064390030190615
1103 => 0.066800207937527
1104 => 0.061904509441862
1105 => 0.061803685753048
1106 => 0.059861019491209
1107 => 0.058628949835612
1108 => 0.059945380354609
1109 => 0.061111558083754
1110 => 0.059897255883961
1111 => 0.060055818115935
1112 => 0.058425716624848
1113 => 0.059008401204508
1114 => 0.0595102876606
1115 => 0.059233175459068
1116 => 0.058818325080993
1117 => 0.06101594480888
1118 => 0.060891946491291
1119 => 0.062938420504959
1120 => 0.064533793343374
1121 => 0.067392986676821
1122 => 0.06440926938025
1123 => 0.064300530862761
1124 => 0.065363467313424
1125 => 0.064389867460583
1126 => 0.065005148960054
1127 => 0.067293855315041
1128 => 0.067342212073826
1129 => 0.066532174060018
1130 => 0.066482883173262
1201 => 0.066638459834658
1202 => 0.067549677199807
1203 => 0.067231269853543
1204 => 0.067599738895727
1205 => 0.068060515075177
1206 => 0.069966480718435
1207 => 0.070426002582408
1208 => 0.069309602687723
1209 => 0.069410401098414
1210 => 0.068992836891939
1211 => 0.068589475100549
1212 => 0.069496173501335
1213 => 0.071153182649973
1214 => 0.071142874482059
1215 => 0.071527268396887
1216 => 0.071766742621335
1217 => 0.070738743944161
1218 => 0.07006955460588
1219 => 0.070326164379801
1220 => 0.070736488996534
1221 => 0.070193101636811
1222 => 0.06683906313109
1223 => 0.067856464156916
1224 => 0.06768711887785
1225 => 0.067445950607371
1226 => 0.068468955206169
1227 => 0.068370283916978
1228 => 0.065414695724565
1229 => 0.065603902891261
1230 => 0.065426202039046
1231 => 0.066000389846727
]
'min_raw' => 0.054434853893006
'max_raw' => 0.12194079247085
'avg_raw' => 0.088187823181926
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.054434'
'max' => '$0.12194'
'avg' => '$0.088187'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013274221279967
'max_diff' => -0.088611845407101
'year' => 2034
]
9 => [
'items' => [
101 => 0.064358859434644
102 => 0.064863783133525
103 => 0.065180466544097
104 => 0.065366995505801
105 => 0.066040866019581
106 => 0.065961795092573
107 => 0.066035950859737
108 => 0.067035122936454
109 => 0.072088592426032
110 => 0.072363641620498
111 => 0.071009198792432
112 => 0.071550271987041
113 => 0.070511529773091
114 => 0.071208844380284
115 => 0.071685929324654
116 => 0.069530074199204
117 => 0.069402418450059
118 => 0.068359388977491
119 => 0.06891985393584
120 => 0.068028113888251
121 => 0.068246915704186
122 => 0.067635126752031
123 => 0.068736225059946
124 => 0.069967424061573
125 => 0.070278473550907
126 => 0.069460236259696
127 => 0.068867778536394
128 => 0.067827617941983
129 => 0.06955742819198
130 => 0.070063277424091
131 => 0.06955477118131
201 => 0.069436939173777
202 => 0.069213647732419
203 => 0.069484311508628
204 => 0.070060522460536
205 => 0.069788792016561
206 => 0.069968274762081
207 => 0.069284271617964
208 => 0.070739084254498
209 => 0.07304967684104
210 => 0.073057105774026
211 => 0.072785373865323
212 => 0.072674187022828
213 => 0.072953000451228
214 => 0.073104245298609
215 => 0.074005876800417
216 => 0.07497336332444
217 => 0.079488200784614
218 => 0.078220452492211
219 => 0.08222628487576
220 => 0.085394378198913
221 => 0.086344350862596
222 => 0.085470420711676
223 => 0.082480752874157
224 => 0.082334065507085
225 => 0.086801891461541
226 => 0.085539525990015
227 => 0.08538937163399
228 => 0.083791982975678
301 => 0.084736237513175
302 => 0.084529715194446
303 => 0.084203709610915
304 => 0.086005281491117
305 => 0.089377663223424
306 => 0.088852045904448
307 => 0.088459696958519
308 => 0.086740538088516
309 => 0.087775855716293
310 => 0.087407198939244
311 => 0.088991182408815
312 => 0.088052865690971
313 => 0.085529962329997
314 => 0.08593174300583
315 => 0.085871014664949
316 => 0.087120799617037
317 => 0.08674564519599
318 => 0.085797759743226
319 => 0.089366136789288
320 => 0.089134426232272
321 => 0.089462938825712
322 => 0.089607560228934
323 => 0.091779568455015
324 => 0.092669370728729
325 => 0.092871371423044
326 => 0.093716614763295
327 => 0.092850340998739
328 => 0.096316053699688
329 => 0.098620550415877
330 => 0.10129734194005
331 => 0.10520885381059
401 => 0.10667961845742
402 => 0.10641393798828
403 => 0.10937960164706
404 => 0.11470883331888
405 => 0.10749112807772
406 => 0.11509138922262
407 => 0.11268523429338
408 => 0.10698028424103
409 => 0.1066129527146
410 => 0.11047641112588
411 => 0.11904519003803
412 => 0.11689880810682
413 => 0.11904870074994
414 => 0.11654073678347
415 => 0.11641619523375
416 => 0.11892689453797
417 => 0.12479328031338
418 => 0.12200638032967
419 => 0.1180106758271
420 => 0.12096104185175
421 => 0.11840516175771
422 => 0.11264604856006
423 => 0.11689716680901
424 => 0.11405456510082
425 => 0.11488418740028
426 => 0.12085891338581
427 => 0.12014001854807
428 => 0.12107033503598
429 => 0.11942835078544
430 => 0.11789447857829
501 => 0.11503139219679
502 => 0.11418377346768
503 => 0.11441802479028
504 => 0.11418365738436
505 => 0.11258178686704
506 => 0.11223586308134
507 => 0.11165930828323
508 => 0.11183800672362
509 => 0.11075391502613
510 => 0.11279982004407
511 => 0.11317955804385
512 => 0.11466839710158
513 => 0.11482297331159
514 => 0.11896936889509
515 => 0.11668560388504
516 => 0.11821775062457
517 => 0.11808070099906
518 => 0.10710392780758
519 => 0.10861643030448
520 => 0.11096940954022
521 => 0.1099093955839
522 => 0.10841078385474
523 => 0.10720057453297
524 => 0.10536698366022
525 => 0.10794772760262
526 => 0.11134113145535
527 => 0.11490903563327
528 => 0.11919563872469
529 => 0.11823891881625
530 => 0.11482890057017
531 => 0.11498187149767
601 => 0.11592747757963
602 => 0.11470283178612
603 => 0.11434165983369
604 => 0.11587785809954
605 => 0.11588843705271
606 => 0.11447933406389
607 => 0.11291337395495
608 => 0.11290681252491
609 => 0.1126281650489
610 => 0.11659030755043
611 => 0.11876908530848
612 => 0.11901887866716
613 => 0.11875227222519
614 => 0.11885487846348
615 => 0.11758709569216
616 => 0.12048487115809
617 => 0.12314415648591
618 => 0.12243141121071
619 => 0.12136290472047
620 => 0.12051178783475
621 => 0.12223091512132
622 => 0.12215436508941
623 => 0.12312092994848
624 => 0.12307708098333
625 => 0.12275206157556
626 => 0.12243142281818
627 => 0.12370271924785
628 => 0.1233366062925
629 => 0.12296992466261
630 => 0.12223448851771
701 => 0.1223344465041
702 => 0.12126612450657
703 => 0.12077186986743
704 => 0.11333946597738
705 => 0.11135328479716
706 => 0.1119781778289
707 => 0.11218390884029
708 => 0.1113195202453
709 => 0.11255883144731
710 => 0.11236568610923
711 => 0.11311710163345
712 => 0.11264764983659
713 => 0.11266691630208
714 => 0.11404747393898
715 => 0.11444825569428
716 => 0.11424441485883
717 => 0.11438717799272
718 => 0.1176770941568
719 => 0.11720937328386
720 => 0.11696090589214
721 => 0.1170297330577
722 => 0.11787037717422
723 => 0.11810571162938
724 => 0.11710858300621
725 => 0.11757883462923
726 => 0.11958110635622
727 => 0.1202817881419
728 => 0.12251802805545
729 => 0.12156803359418
730 => 0.12331178954264
731 => 0.128671500838
801 => 0.13295320908455
802 => 0.12901557323195
803 => 0.13687838515448
804 => 0.14300071208955
805 => 0.14276572698451
806 => 0.14169815767141
807 => 0.13472805122631
808 => 0.1283140553571
809 => 0.13367963525435
810 => 0.13369331322095
811 => 0.13323240514928
812 => 0.13036974470087
813 => 0.13313279077085
814 => 0.13335211133397
815 => 0.13322935014067
816 => 0.13103455508674
817 => 0.12768350870531
818 => 0.12833829514697
819 => 0.12941084869569
820 => 0.12738028106985
821 => 0.12673139167697
822 => 0.1279378005146
823 => 0.13182510115471
824 => 0.1310902294863
825 => 0.13107103901719
826 => 0.13421513164875
827 => 0.13196463986221
828 => 0.12834655410091
829 => 0.1274329397295
830 => 0.12419022419536
831 => 0.12642997936495
901 => 0.12651058416614
902 => 0.1252838931495
903 => 0.12844609331623
904 => 0.128416953085
905 => 0.13141899151193
906 => 0.13715776147008
907 => 0.13546052480574
908 => 0.13348682322393
909 => 0.13370141931068
910 => 0.13605500871407
911 => 0.13463197483356
912 => 0.13514370773874
913 => 0.13605423414503
914 => 0.13660357733304
915 => 0.13362237727984
916 => 0.13292731694016
917 => 0.13150546741819
918 => 0.13113453341799
919 => 0.13229260018577
920 => 0.13198749050756
921 => 0.12650380964472
922 => 0.12593073448364
923 => 0.12594830988067
924 => 0.12450728513989
925 => 0.12230937652465
926 => 0.12808534913521
927 => 0.12762145769989
928 => 0.12710935745765
929 => 0.12717208681532
930 => 0.12967924075969
1001 => 0.12822496485765
1002 => 0.13209139569436
1003 => 0.13129657374988
1004 => 0.13048136762167
1005 => 0.13036868130296
1006 => 0.13005489649372
1007 => 0.12897881162863
1008 => 0.12767937449137
1009 => 0.12682137353803
1010 => 0.11698601333639
1011 => 0.11881139898015
1012 => 0.12091133877417
1013 => 0.12163622957608
1014 => 0.12039625369849
1015 => 0.12902777343402
1016 => 0.13060483526509
1017 => 0.12582781210957
1018 => 0.12493422612174
1019 => 0.12908635678262
1020 => 0.12658211441678
1021 => 0.12770977460078
1022 => 0.12527239008012
1023 => 0.13022496725175
1024 => 0.13018723691154
1025 => 0.12826057253274
1026 => 0.12988897607247
1027 => 0.1296060008844
1028 => 0.12743080154591
1029 => 0.13029392495061
1030 => 0.1302953450241
1031 => 0.12844097244881
1101 => 0.12627547125522
1102 => 0.12588833078866
1103 => 0.12559667245211
1104 => 0.12763804452897
1105 => 0.12946833234987
1106 => 0.13287404421775
1107 => 0.13373032109905
1108 => 0.13707242677235
1109 => 0.13508236556807
1110 => 0.13596453392432
1111 => 0.13692225246536
1112 => 0.13738141795287
1113 => 0.13663323243115
1114 => 0.14182489820736
1115 => 0.14226323386741
1116 => 0.14241020402263
1117 => 0.14065960353347
1118 => 0.14221454650099
1119 => 0.14148704018078
1120 => 0.14337980951888
1121 => 0.14367661991918
1122 => 0.14342523206946
1123 => 0.14351944437535
1124 => 0.13908927350796
1125 => 0.13885954577747
1126 => 0.13572719187154
1127 => 0.1370036492414
1128 => 0.13461737337064
1129 => 0.13537408603062
1130 => 0.13570763776092
1201 => 0.13553340926591
1202 => 0.13707581822591
1203 => 0.13576445551657
1204 => 0.13230355371865
1205 => 0.12884170900035
1206 => 0.12879824835987
1207 => 0.12788680575218
1208 => 0.12722799968585
1209 => 0.12735490910663
1210 => 0.12780215445849
1211 => 0.12720200497296
1212 => 0.12733007729405
1213 => 0.12945693116557
1214 => 0.12988345654147
1215 => 0.12843395665992
1216 => 0.12261400547367
1217 => 0.12118577485432
1218 => 0.12221235870047
1219 => 0.12172171774248
1220 => 0.098238926208739
1221 => 0.10375585975442
1222 => 0.10047788517894
1223 => 0.10198852667568
1224 => 0.098642563461512
1225 => 0.10023943248427
1226 => 0.099944549084086
1227 => 0.10881561496761
1228 => 0.10867710547559
1229 => 0.10874340263966
1230 => 0.10557886626224
1231 => 0.110620058638
]
'min_raw' => 0.064358859434644
'max_raw' => 0.14367661991918
'avg_raw' => 0.10401773967691
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.064358'
'max' => '$0.143676'
'avg' => '$0.104017'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0099240055416387
'max_diff' => 0.021735827448338
'year' => 2035
]
10 => [
'items' => [
101 => 0.11310353127771
102 => 0.11264390658758
103 => 0.11275958421986
104 => 0.11077185923896
105 => 0.10876264816243
106 => 0.10653412386318
107 => 0.11067444655725
108 => 0.11021411335134
109 => 0.11126995210305
110 => 0.11395524732653
111 => 0.11435066724864
112 => 0.1148821156339
113 => 0.11469162921885
114 => 0.119229788434
115 => 0.11868018740931
116 => 0.12000456774782
117 => 0.11728021691053
118 => 0.11419735534039
119 => 0.11478330653854
120 => 0.11472687472624
121 => 0.11400843298619
122 => 0.11335985590699
123 => 0.11228015780556
124 => 0.11569648236372
125 => 0.1155577858256
126 => 0.11780312156067
127 => 0.11740623665947
128 => 0.11475574215503
129 => 0.11485040508478
130 => 0.1154870587808
131 => 0.11769052449191
201 => 0.11834466313835
202 => 0.1180416400544
203 => 0.11875887321766
204 => 0.11932574506595
205 => 0.11883006359409
206 => 0.12584786793586
207 => 0.12293358629354
208 => 0.12435398688857
209 => 0.12469274406099
210 => 0.12382502468712
211 => 0.12401320194861
212 => 0.12429823922454
213 => 0.12602892974794
214 => 0.13057076246069
215 => 0.13258230925186
216 => 0.13863414702108
217 => 0.13241527829294
218 => 0.13204627635885
219 => 0.13313639508908
220 => 0.1366894645117
221 => 0.13956889355589
222 => 0.14052416628809
223 => 0.14065042134949
224 => 0.14244257650044
225 => 0.14346980641125
226 => 0.14222496172675
227 => 0.14117008619732
228 => 0.13739165298684
229 => 0.13782901691929
301 => 0.14084202070089
302 => 0.14509806600743
303 => 0.14875019564648
304 => 0.14747134713646
305 => 0.15722805854163
306 => 0.15819539662486
307 => 0.15806174177954
308 => 0.16026548189235
309 => 0.15589150655229
310 => 0.15402154735264
311 => 0.14139816226013
312 => 0.14494481856994
313 => 0.15010009180407
314 => 0.14941777206025
315 => 0.14567387483677
316 => 0.14874735556472
317 => 0.14773116671943
318 => 0.14692965641544
319 => 0.15060153049844
320 => 0.14656415411191
321 => 0.15005981588618
322 => 0.14557659350268
323 => 0.14747718880873
324 => 0.14639831899157
325 => 0.14709647998458
326 => 0.14301504508518
327 => 0.14521728828567
328 => 0.14292342452774
329 => 0.14292233693765
330 => 0.14287169976806
331 => 0.14557042030671
401 => 0.14565842548659
402 => 0.14366406693098
403 => 0.14337664870538
404 => 0.14443938452741
405 => 0.14319519921077
406 => 0.14377734568962
407 => 0.14321283183457
408 => 0.14308574787532
409 => 0.14207312126645
410 => 0.1416368538806
411 => 0.14180792556382
412 => 0.1412239697155
413 => 0.14087211519428
414 => 0.14280170704774
415 => 0.14177080395995
416 => 0.1426437063643
417 => 0.14164892390548
418 => 0.1382005744971
419 => 0.13621739228671
420 => 0.12970377991645
421 => 0.13155103230454
422 => 0.13277576254897
423 => 0.1323709892105
424 => 0.13324059896803
425 => 0.13329398594447
426 => 0.13301126694767
427 => 0.13268391456792
428 => 0.13252457753319
429 => 0.13371214524774
430 => 0.13440156827773
501 => 0.13289868061378
502 => 0.13254657506175
503 => 0.1340660774667
504 => 0.13499297305594
505 => 0.14183664930921
506 => 0.14132964766758
507 => 0.14260212229402
508 => 0.14245886117879
509 => 0.1437926173084
510 => 0.14597274489291
511 => 0.14153993594034
512 => 0.14230931829951
513 => 0.14212068351267
514 => 0.14418014865263
515 => 0.144186578078
516 => 0.14295182584868
517 => 0.14362120506376
518 => 0.14324757594936
519 => 0.14392277425808
520 => 0.14132287635155
521 => 0.14448927136007
522 => 0.14628441329191
523 => 0.14630933883938
524 => 0.14716022186794
525 => 0.14802476830479
526 => 0.14968418990418
527 => 0.14797848793703
528 => 0.14491009614487
529 => 0.14513162412142
530 => 0.14333262713635
531 => 0.14336286860068
601 => 0.143201437294
602 => 0.14368590479734
603 => 0.14142918972457
604 => 0.14195883624149
605 => 0.14121732801619
606 => 0.14230770640544
607 => 0.14113463950461
608 => 0.14212059254727
609 => 0.14254609719562
610 => 0.14411621850848
611 => 0.14090273131008
612 => 0.13435021337857
613 => 0.13572763208938
614 => 0.13369032162219
615 => 0.13387888246252
616 => 0.13425980536921
617 => 0.1330251095984
618 => 0.13326065064174
619 => 0.13325223545819
620 => 0.13317971795265
621 => 0.13285852589645
622 => 0.13239273386905
623 => 0.134248305943
624 => 0.13456360379656
625 => 0.13526447186788
626 => 0.13734977984478
627 => 0.13714140840294
628 => 0.13748127086983
629 => 0.13673935301285
630 => 0.13391329790403
701 => 0.134066766293
702 => 0.13215301302338
703 => 0.13521553289407
704 => 0.1344902877654
705 => 0.13402271751295
706 => 0.13389513663756
707 => 0.13598561368959
708 => 0.13661111718777
709 => 0.13622134538369
710 => 0.13542191204204
711 => 0.13695706038925
712 => 0.13736780132425
713 => 0.13745975107206
714 => 0.14017973960781
715 => 0.1376117682159
716 => 0.13822990445337
717 => 0.14305242692336
718 => 0.13867906450569
719 => 0.14099573211595
720 => 0.14088234329179
721 => 0.14206747204944
722 => 0.14078512814234
723 => 0.14080102433195
724 => 0.14185333838117
725 => 0.14037555308488
726 => 0.14000963266338
727 => 0.13950411622184
728 => 0.14060789287798
729 => 0.14126955706381
730 => 0.14660208446282
731 => 0.15004714035537
801 => 0.14989758139339
802 => 0.15126427034328
803 => 0.15064856445392
804 => 0.14866028772216
805 => 0.15205403365875
806 => 0.15098011044406
807 => 0.15106864336906
808 => 0.15106534816917
809 => 0.15177941322295
810 => 0.15127343268924
811 => 0.15027609311948
812 => 0.15093817366978
813 => 0.15290431620604
814 => 0.1590072829672
815 => 0.1624225840203
816 => 0.15880167755542
817 => 0.16129933034903
818 => 0.15980162867755
819 => 0.15952945173108
820 => 0.16109816226055
821 => 0.16266961861015
822 => 0.16256952363427
823 => 0.16142872701964
824 => 0.16078431995868
825 => 0.16566398611648
826 => 0.1692592410186
827 => 0.16901406873717
828 => 0.17009617945311
829 => 0.17327328998352
830 => 0.17356376515357
831 => 0.17352717195864
901 => 0.17280719894171
902 => 0.17593547685884
903 => 0.17854514133411
904 => 0.17264054599031
905 => 0.1748889386004
906 => 0.17589831448176
907 => 0.17738037774392
908 => 0.17988086688982
909 => 0.18259706132427
910 => 0.18298116099885
911 => 0.18270862389887
912 => 0.18091722065413
913 => 0.18388931301524
914 => 0.18563029501624
915 => 0.18666700995616
916 => 0.1892959465509
917 => 0.17590454804357
918 => 0.16642545058439
919 => 0.16494515263631
920 => 0.16795539672357
921 => 0.16874917408313
922 => 0.1684292034248
923 => 0.15775961743266
924 => 0.16488897947418
925 => 0.17255957357708
926 => 0.17285423233605
927 => 0.17669429212851
928 => 0.17794477300631
929 => 0.18103652446739
930 => 0.18084313457171
1001 => 0.18159592685197
1002 => 0.18142287294328
1003 => 0.18714969147985
1004 => 0.19346722276647
1005 => 0.19324846674653
1006 => 0.19234024687845
1007 => 0.19368910825706
1008 => 0.20020947757264
1009 => 0.19960918645285
1010 => 0.20019231814305
1011 => 0.20788020103804
1012 => 0.21787554239012
1013 => 0.21323170281621
1014 => 0.22330749846274
1015 => 0.22964967772726
1016 => 0.24061782097166
1017 => 0.23924455541821
1018 => 0.2435143730953
1019 => 0.23678612346838
1020 => 0.22133670232136
1021 => 0.21889177228684
1022 => 0.22378658413145
1023 => 0.23582000142265
1024 => 0.22340760899765
1025 => 0.22591861981929
1026 => 0.22519544853373
1027 => 0.22515691380921
1028 => 0.22662762751236
1029 => 0.22449428057867
1030 => 0.21580264138901
1031 => 0.21978596840948
1101 => 0.2182478145518
1102 => 0.21995451093386
1103 => 0.22916484741271
1104 => 0.22509273810841
1105 => 0.22080310174763
1106 => 0.22618325769056
1107 => 0.23303404502808
1108 => 0.23260533506854
1109 => 0.23177345856019
1110 => 0.23646270288215
1111 => 0.24420796068237
1112 => 0.2463014727428
1113 => 0.24784686054584
1114 => 0.24805994341434
1115 => 0.25025482939013
1116 => 0.23845237431578
1117 => 0.25718317362732
1118 => 0.26041746524054
1119 => 0.25980955246491
1120 => 0.2634043314732
1121 => 0.26234665629822
1122 => 0.26081425091382
1123 => 0.26651274027339
1124 => 0.25997988206702
1125 => 0.25070731230707
1126 => 0.24562019714613
1127 => 0.25231932075593
1128 => 0.25641024177725
1129 => 0.25911408034089
1130 => 0.25993226025654
1201 => 0.23936856530592
1202 => 0.22828587424234
1203 => 0.23538975215079
1204 => 0.24405697348255
1205 => 0.23840422746366
1206 => 0.23862580440554
1207 => 0.23056647409813
1208 => 0.24477004538461
1209 => 0.24270070451901
1210 => 0.25343644859036
1211 => 0.250874277108
1212 => 0.259628859639
1213 => 0.25732348466058
1214 => 0.26689296730423
1215 => 0.27071049301418
1216 => 0.27712071283162
1217 => 0.28183609662362
1218 => 0.2846050601772
1219 => 0.28443882199157
1220 => 0.29541083508302
1221 => 0.28894102229593
1222 => 0.28081341261755
1223 => 0.28066640980075
1224 => 0.2848758140223
1225 => 0.29369757047702
1226 => 0.2959849235744
1227 => 0.29726324190938
1228 => 0.29530545288077
1229 => 0.28828293479605
1230 => 0.28525064709204
1231 => 0.28783424406969
]
'min_raw' => 0.10653412386318
'max_raw' => 0.29726324190938
'avg_raw' => 0.20189868288628
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.106534'
'max' => '$0.297263'
'avg' => '$0.201898'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.042175264428536
'max_diff' => 0.1535866219902
'year' => 2036
]
11 => [
'items' => [
101 => 0.28467472697704
102 => 0.29012893988287
103 => 0.29761873915958
104 => 0.29607212522682
105 => 0.30124222372274
106 => 0.30659273175578
107 => 0.3142441985494
108 => 0.31624457530224
109 => 0.31955112200718
110 => 0.32295464471057
111 => 0.32404776447539
112 => 0.32613486928158
113 => 0.32612386920902
114 => 0.33241350002082
115 => 0.33935115757988
116 => 0.34196996270129
117 => 0.3479917606762
118 => 0.33767964267313
119 => 0.34550150263553
120 => 0.35255701611547
121 => 0.34414514208001
122 => 0.35573895072261
123 => 0.35618911204007
124 => 0.36298601347754
125 => 0.3560960517419
126 => 0.35200481445682
127 => 0.36381606320219
128 => 0.36953115441923
129 => 0.3678097224337
130 => 0.35470954002627
131 => 0.34708467197189
201 => 0.32712892154637
202 => 0.35076736994966
203 => 0.36228096862391
204 => 0.35467972258718
205 => 0.35851334895003
206 => 0.37942837132821
207 => 0.3873914577024
208 => 0.38573519140275
209 => 0.38601507314293
210 => 0.3903118100102
211 => 0.40936590753591
212 => 0.39794825062798
213 => 0.40667662152265
214 => 0.4113061179727
215 => 0.41560625228014
216 => 0.40504648149246
217 => 0.39130837485153
218 => 0.38695693979186
219 => 0.35392392847302
220 => 0.35220441677877
221 => 0.35123920275826
222 => 0.34515366489114
223 => 0.3403720990967
224 => 0.33656962044881
225 => 0.32659078096048
226 => 0.32995834635589
227 => 0.31405415895716
228 => 0.32422909444507
301 => 0.29884562733668
302 => 0.31998573301835
303 => 0.30848013461847
304 => 0.31620583450191
305 => 0.31617888026282
306 => 0.30195341734203
307 => 0.29374846720716
308 => 0.29897698077454
309 => 0.30458236235869
310 => 0.30549181666195
311 => 0.31275934020123
312 => 0.31478754980615
313 => 0.3086419800152
314 => 0.298319611401
315 => 0.30071726220192
316 => 0.2936998788902
317 => 0.28140218455618
318 => 0.29023460332402
319 => 0.2932503794254
320 => 0.29458231795674
321 => 0.28248894797897
322 => 0.27868894857212
323 => 0.27666586077299
324 => 0.29675850919891
325 => 0.29785922983627
326 => 0.29222778742931
327 => 0.31768244110402
328 => 0.31192126901802
329 => 0.31835790975951
330 => 0.30049970052272
331 => 0.30118190816483
401 => 0.29272754572164
402 => 0.29746142376912
403 => 0.29411567134517
404 => 0.29707897320398
405 => 0.29885516412
406 => 0.30730813928551
407 => 0.32008225241654
408 => 0.30604554667766
409 => 0.29992955297791
410 => 0.30372388107158
411 => 0.31382867679575
412 => 0.32913795957283
413 => 0.32007455604077
414 => 0.32409674062172
415 => 0.32497540901812
416 => 0.31829239079902
417 => 0.32938437198712
418 => 0.33532865481692
419 => 0.34142625900428
420 => 0.34672063786918
421 => 0.33899074180266
422 => 0.34726283863091
423 => 0.340596988809
424 => 0.33461703241586
425 => 0.33462610154129
426 => 0.33087478754265
427 => 0.3236061439743
428 => 0.3222656945793
429 => 0.3292388816122
430 => 0.33483071724932
501 => 0.33529128761548
502 => 0.33838721514308
503 => 0.34021935316332
504 => 0.35817679643255
505 => 0.3653994286672
506 => 0.3742311266463
507 => 0.37767157073638
508 => 0.38802607398006
509 => 0.37966397165915
510 => 0.37785477822193
511 => 0.35273814028497
512 => 0.35685098834009
513 => 0.36343605490714
514 => 0.35284672560723
515 => 0.35956321772041
516 => 0.3608891955383
517 => 0.35248690424968
518 => 0.35697493106851
519 => 0.34505606244491
520 => 0.32034205118202
521 => 0.32941188574653
522 => 0.33609033685932
523 => 0.32655936367429
524 => 0.34364326420885
525 => 0.33366320219985
526 => 0.33050000167046
527 => 0.31815922864288
528 => 0.32398359847198
529 => 0.33186114206278
530 => 0.32699373598641
531 => 0.33709433443959
601 => 0.3513994755805
602 => 0.3615941710434
603 => 0.36237679317301
604 => 0.35582228698191
605 => 0.36632592498344
606 => 0.3664024325192
607 => 0.35455428594486
608 => 0.34729736213882
609 => 0.3456485737814
610 => 0.34976757036225
611 => 0.35476879262012
612 => 0.36265432620158
613 => 0.36741938899386
614 => 0.37984414556208
615 => 0.38320592844376
616 => 0.38689950860183
617 => 0.39183527075096
618 => 0.39776191871442
619 => 0.38479475037462
620 => 0.38530996014659
621 => 0.37323511253123
622 => 0.36033140614591
623 => 0.37012371082266
624 => 0.38292584657181
625 => 0.37998902248585
626 => 0.37965856978231
627 => 0.38021429956973
628 => 0.37800003011662
629 => 0.36798497144489
630 => 0.36295547167753
701 => 0.36944480953966
702 => 0.37289360380618
703 => 0.37824238294709
704 => 0.37758303301894
705 => 0.39136091366899
706 => 0.39671458146811
707 => 0.39534488414873
708 => 0.39559694141911
709 => 0.40528950124491
710 => 0.41606962119817
711 => 0.42616662609652
712 => 0.43643773315556
713 => 0.42405551270775
714 => 0.41776858479354
715 => 0.42425508961376
716 => 0.42081325885199
717 => 0.44059103932248
718 => 0.44196040993102
719 => 0.46173676024287
720 => 0.48050687161281
721 => 0.46871770096283
722 => 0.47983435788986
723 => 0.49185792871077
724 => 0.51505334757838
725 => 0.50724194652845
726 => 0.50125853574446
727 => 0.49560424146522
728 => 0.50736993026638
729 => 0.5225063009476
730 => 0.52576653021798
731 => 0.53104934713944
801 => 0.52549511109865
802 => 0.53218457663075
803 => 0.55580132945915
804 => 0.54941987437407
805 => 0.54035718228316
806 => 0.55900034046414
807 => 0.56574722693639
808 => 0.61310040957053
809 => 0.67288575870854
810 => 0.64813423159364
811 => 0.63277015998663
812 => 0.63638108125492
813 => 0.65821266689834
814 => 0.66522427930711
815 => 0.64616429973233
816 => 0.6528966067392
817 => 0.68999228025285
818 => 0.70989291892123
819 => 0.68286517859722
820 => 0.60829671497899
821 => 0.53954118601744
822 => 0.55777824839986
823 => 0.55571073148763
824 => 0.59556540489854
825 => 0.54926767878078
826 => 0.55004721375147
827 => 0.59072603960168
828 => 0.57987362627647
829 => 0.56229410656172
830 => 0.53966953596602
831 => 0.49784592470039
901 => 0.46080158586474
902 => 0.53345406512318
903 => 0.53032115810759
904 => 0.52578424447822
905 => 0.53588065481506
906 => 0.5849059574947
907 => 0.58377576558851
908 => 0.57658606131034
909 => 0.58203938863819
910 => 0.56133811191469
911 => 0.56667330228565
912 => 0.53953029479037
913 => 0.55180006777036
914 => 0.56225638880777
915 => 0.56435565006451
916 => 0.56908539286688
917 => 0.52867025847078
918 => 0.54681546728862
919 => 0.55747407749296
920 => 0.50931808882619
921 => 0.55652218843033
922 => 0.5279667208965
923 => 0.51827456632679
924 => 0.53132377561063
925 => 0.52623848606195
926 => 0.52186645272621
927 => 0.51942678300379
928 => 0.52900868211318
929 => 0.52856167506688
930 => 0.51288382835745
1001 => 0.49243271643579
1002 => 0.49929678088156
1003 => 0.49680300191746
1004 => 0.48776522524769
1005 => 0.4938555954978
1006 => 0.46703668718214
1007 => 0.42089614935061
1008 => 0.45137800196502
1009 => 0.45020448379724
1010 => 0.44961274272223
1011 => 0.47251901250543
1012 => 0.47031710320333
1013 => 0.46632061625887
1014 => 0.48769182663087
1015 => 0.47989104736175
1016 => 0.50393121097443
1017 => 0.51976561755004
1018 => 0.51574949985307
1019 => 0.53064183577176
1020 => 0.49945491506293
1021 => 0.50981395912032
1022 => 0.51194894374353
1023 => 0.48742810921224
1024 => 0.47067736279663
1025 => 0.4695602789832
1026 => 0.44051679309357
1027 => 0.45603158882498
1028 => 0.46968396702275
1029 => 0.46314553733337
1030 => 0.46107566582374
1031 => 0.47165019046608
1101 => 0.47247192159546
1102 => 0.45373636476224
1103 => 0.45763208030579
1104 => 0.47387786173121
1105 => 0.45722272829625
1106 => 0.42486452463273
1107 => 0.41683924273701
1108 => 0.41576852219683
1109 => 0.3940033212025
1110 => 0.41737553044766
1111 => 0.40717293477588
1112 => 0.43940281225716
1113 => 0.42099327909216
1114 => 0.42019968091208
1115 => 0.41900004086735
1116 => 0.4002658332624
1117 => 0.40436743410688
1118 => 0.41800178000538
1119 => 0.42286666822386
1120 => 0.42235922052582
1121 => 0.41793496427229
1122 => 0.4199603661293
1123 => 0.41343584105108
1124 => 0.41113189544971
1125 => 0.40386000938164
1126 => 0.39317234577137
1127 => 0.39465853094763
1128 => 0.37348347275638
1129 => 0.3619461772084
1130 => 0.35875280585982
1201 => 0.35448249623234
1202 => 0.35923514869511
1203 => 0.37342348647703
1204 => 0.35630934088825
1205 => 0.32696833869402
1206 => 0.32873178292053
1207 => 0.3326937185262
1208 => 0.32531067773586
1209 => 0.31832324923944
1210 => 0.32439825140908
1211 => 0.31196608198379
1212 => 0.33419608680586
1213 => 0.33359482747429
1214 => 0.34188079857768
1215 => 0.34706218635388
1216 => 0.33512076502396
1217 => 0.33211752985252
1218 => 0.3338283090956
1219 => 0.30555293901536
1220 => 0.33957009760526
1221 => 0.33986427940534
1222 => 0.33734531623011
1223 => 0.35545840301729
1224 => 0.39368266575168
1225 => 0.3793011605436
1226 => 0.37373220704373
1227 => 0.36314562236961
1228 => 0.37725161787868
1229 => 0.37616849751139
1230 => 0.37127021644932
1231 => 0.36830772077941
]
'min_raw' => 0.27666586077299
'max_raw' => 0.70989291892123
'avg_raw' => 0.49327938984711
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.276665'
'max' => '$0.709892'
'avg' => '$0.493279'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.17013173690981
'max_diff' => 0.41262967701185
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0086842252306663
]
1 => [
'year' => 2028
'avg' => 0.014904651544421
]
2 => [
'year' => 2029
'avg' => 0.040716821717281
]
3 => [
'year' => 2030
'avg' => 0.031412967317572
]
4 => [
'year' => 2031
'avg' => 0.030851426872038
]
5 => [
'year' => 2032
'avg' => 0.054092260608046
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0086842252306663
'min' => '$0.008684'
'max_raw' => 0.054092260608046
'max' => '$0.054092'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.054092260608046
]
1 => [
'year' => 2033
'avg' => 0.13913085652546
]
2 => [
'year' => 2034
'avg' => 0.088187823181926
]
3 => [
'year' => 2035
'avg' => 0.10401773967691
]
4 => [
'year' => 2036
'avg' => 0.20189868288628
]
5 => [
'year' => 2037
'avg' => 0.49327938984711
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.054092260608046
'min' => '$0.054092'
'max_raw' => 0.49327938984711
'max' => '$0.493279'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.49327938984711
]
]
]
]
'prediction_2025_max_price' => '$0.014848'
'last_price' => 0.01439744
'sma_50day_nextmonth' => '$0.013483'
'sma_200day_nextmonth' => '$0.023783'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.014476'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.014371'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0139071'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.01389'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.015472'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.021419'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.025284'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01440074'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.014275'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.014111'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.014358'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0163001'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0197026'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.024695'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.023541'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.026647'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.061332'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.073342'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.014457'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.014986'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.017195'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.021253'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.031043'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.054068'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.108851'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '48.47'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 97.69
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.014088'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014797'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 90.7
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 70.78
'cci_20_action' => 'NEUTRAL'
'adx_14' => 12.7
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0006065'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -9.3
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 51.42
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004237'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 23
'buy_signals' => 11
'sell_pct' => 67.65
'buy_pct' => 32.35
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767675598
'last_updated_date' => '6. Januar 2026'
]
Arcas Preisprognose für 2026
Die Preisprognose für Arcas im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.004974 am unteren Ende und $0.014848 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Arcas im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn ARCAS das prognostizierte Preisziel erreicht.
Arcas Preisprognose 2027-2032
Die Preisprognose für ARCAS für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.008684 am unteren Ende und $0.054092 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Arcas, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Arcas Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.004788 | $0.008684 | $0.012579 |
| 2028 | $0.008642 | $0.0149046 | $0.021167 |
| 2029 | $0.018984 | $0.040716 | $0.062449 |
| 2030 | $0.016145 | $0.031412 | $0.04668 |
| 2031 | $0.019088 | $0.030851 | $0.042614 |
| 2032 | $0.029137 | $0.054092 | $0.079047 |
Arcas Preisprognose 2032-2037
Die Preisprognose für Arcas für die Jahre 2032-2037 wird derzeit zwischen $0.054092 am unteren Ende und $0.493279 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Arcas bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Arcas Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.029137 | $0.054092 | $0.079047 |
| 2033 | $0.067709 | $0.13913 | $0.210552 |
| 2034 | $0.054434 | $0.088187 | $0.12194 |
| 2035 | $0.064358 | $0.104017 | $0.143676 |
| 2036 | $0.106534 | $0.201898 | $0.297263 |
| 2037 | $0.276665 | $0.493279 | $0.709892 |
Arcas Potenzielles Preishistogramm
Arcas Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Arcas Bärisch, mit 11 technischen Indikatoren, die bullische Signale zeigen, und 23 anzeigen bärische Signale. Die Preisprognose für ARCAS wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Arcas
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Arcas im nächsten Monat steigen, und bis zum 04.02.2026 $0.023783 erreichen. Der kurzfristige 50-Tage-SMA für Arcas wird voraussichtlich bis zum 04.02.2026 $0.013483 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 48.47, was darauf hindeutet, dass sich der ARCAS-Markt in einem NEUTRAL Zustand befindet.
Beliebte ARCAS Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.014476 | SELL |
| SMA 5 | $0.014371 | BUY |
| SMA 10 | $0.0139071 | BUY |
| SMA 21 | $0.01389 | BUY |
| SMA 50 | $0.015472 | SELL |
| SMA 100 | $0.021419 | SELL |
| SMA 200 | $0.025284 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.01440074 | SELL |
| EMA 5 | $0.014275 | BUY |
| EMA 10 | $0.014111 | BUY |
| EMA 21 | $0.014358 | BUY |
| EMA 50 | $0.0163001 | SELL |
| EMA 100 | $0.0197026 | SELL |
| EMA 200 | $0.024695 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.023541 | SELL |
| SMA 50 | $0.026647 | SELL |
| SMA 100 | $0.061332 | SELL |
| SMA 200 | $0.073342 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.021253 | SELL |
| EMA 50 | $0.031043 | SELL |
| EMA 100 | $0.054068 | SELL |
| EMA 200 | $0.108851 | SELL |
Arcas Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 48.47 | NEUTRAL |
| Stoch RSI (14) | 97.69 | SELL |
| Stochastic Fast (14) | 90.7 | SELL |
| Commodity Channel Index (20) | 70.78 | NEUTRAL |
| Average Directional Index (14) | 12.7 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.0006065 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -9.3 | SELL |
| Ultimate Oscillator (7, 14, 28) | 51.42 | NEUTRAL |
| VWMA (10) | 0.014088 | BUY |
| Hull Moving Average (9) | 0.014797 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.004237 | SELL |
Auf weltweiten Geldflüssen basierende Arcas-Preisprognose
Definition weltweiter Geldflüsse, die für Arcas-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Arcas-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.02023 | $0.028427 | $0.039945 | $0.05613 | $0.078872 | $0.110828 |
| Amazon.com aktie | $0.030041 | $0.062682 | $0.13079 | $0.272903 | $0.569428 | $1.18 |
| Apple aktie | $0.020421 | $0.028966 | $0.041086 | $0.058278 | $0.082663 | $0.117252 |
| Netflix aktie | $0.022716 | $0.035843 | $0.056555 | $0.089236 | $0.14080062 | $0.222161 |
| Google aktie | $0.018644 | $0.024144 | $0.031267 | $0.04049 | $0.052435 | $0.0679039 |
| Tesla aktie | $0.032637 | $0.073987 | $0.167724 | $0.380218 | $0.861926 | $1.95 |
| Kodak aktie | $0.010796 | $0.008096 | $0.006071 | $0.004552 | $0.003414 | $0.00256 |
| Nokia aktie | $0.009537 | $0.006318 | $0.004185 | $0.002772 | $0.001836 | $0.001216 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Arcas Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Arcas investieren?", "Sollte ich heute ARCAS kaufen?", "Wird Arcas auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Arcas-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Arcas.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Arcas zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Arcas-Preis entspricht heute $0.01439 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Arcas-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Arcas 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.014771 | $0.015155 | $0.015549 | $0.015953 |
| Wenn die Wachstumsrate von Arcas 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.015145 | $0.015933 | $0.016761 | $0.017632 |
| Wenn die Wachstumsrate von Arcas 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.016268 | $0.018382 | $0.020772 | $0.023471 |
| Wenn die Wachstumsrate von Arcas 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018139 | $0.022854 | $0.028795 | $0.03628 |
| Wenn die Wachstumsrate von Arcas 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.021882 | $0.033257 | $0.050547 | $0.076825 |
| Wenn die Wachstumsrate von Arcas 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0331092 | $0.076139 | $0.175096 | $0.402661 |
| Wenn die Wachstumsrate von Arcas 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.051821 | $0.18652 | $0.671347 | $2.41 |
Fragefeld
Ist ARCAS eine gute Investition?
Die Entscheidung, Arcas zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Arcas in den letzten 2026 Stunden um -1.9991% gefallen, und Arcas hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Arcas investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Arcas steigen?
Es scheint, dass der Durchschnittswert von Arcas bis zum Ende dieses Jahres potenziell auf $0.014848 steigen könnte. Betrachtet man die Aussichten von Arcas in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.04668 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Arcas nächste Woche kosten?
Basierend auf unserer neuen experimentellen Arcas-Prognose wird der Preis von Arcas in der nächsten Woche um 0.86% steigen und $0.01452 erreichen bis zum 13. Januar 2026.
Wie viel wird Arcas nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Arcas-Prognose wird der Preis von Arcas im nächsten Monat um -11.62% fallen und $0.012724 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Arcas in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Arcas im Jahr 2026 wird erwartet, dass ARCAS innerhalb der Spanne von $0.004974 bis $0.014848 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Arcas-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Arcas in 5 Jahren sein?
Die Zukunft von Arcas scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.04668 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Arcas-Prognose für 2030 könnte der Wert von Arcas seinen höchsten Gipfel von ungefähr $0.04668 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.016145 liegen wird.
Wie viel wird Arcas im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Arcas-Preisprognosesimulation wird der Wert von ARCAS im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.014848 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.014848 und $0.004974 während des Jahres 2026 liegen.
Wie viel wird Arcas im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Arcas könnte der Wert von ARCAS um -12.62% fallen und bis zu $0.012579 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.012579 und $0.004788 im Laufe des Jahres schwanken.
Wie viel wird Arcas im Jahr 2028 kosten?
Unser neues experimentelles Arcas-Preisprognosemodell deutet darauf hin, dass der Wert von ARCAS im Jahr 2028 um 47.02% steigen, und im besten Fall $0.021167 erreichen wird. Der Preis wird voraussichtlich zwischen $0.021167 und $0.008642 im Laufe des Jahres liegen.
Wie viel wird Arcas im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Arcas im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.062449 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.062449 und $0.018984.
Wie viel wird Arcas im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Arcas-Preisprognosen wird der Wert von ARCAS im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.04668 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.04668 und $0.016145 während des Jahres 2030 liegen.
Wie viel wird Arcas im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Arcas im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.042614 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.042614 und $0.019088 während des Jahres schwanken.
Wie viel wird Arcas im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Arcas-Preisprognose könnte ARCAS eine 449.04% Steigerung im Wert erfahren und $0.079047 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.079047 und $0.029137 liegen.
Wie viel wird Arcas im Jahr 2033 kosten?
Laut unserer experimentellen Arcas-Preisprognose wird der Wert von ARCAS voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.210552 beträgt. Im Laufe des Jahres könnte der Preis von ARCAS zwischen $0.210552 und $0.067709 liegen.
Wie viel wird Arcas im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Arcas-Preisprognosesimulation deuten darauf hin, dass ARCAS im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.12194 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.12194 und $0.054434.
Wie viel wird Arcas im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Arcas könnte ARCAS um 897.93% steigen, wobei der Wert im Jahr 2035 $0.143676 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.143676 und $0.064358.
Wie viel wird Arcas im Jahr 2036 kosten?
Unsere jüngste Arcas-Preisprognosesimulation deutet darauf hin, dass der Wert von ARCAS im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.297263 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.297263 und $0.106534.
Wie viel wird Arcas im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Arcas um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.709892 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.709892 und $0.276665 liegen.
Verwandte Prognosen
Data Lake-Preisprognose
Juno Network-Preisprognose
Wagmi-Preisprognose
Fuse Network Token-Preisprognose
Soil-Preisprognose
WINR Protocol-Preisprognose
Cakepie-Preisprognose
Gyroscope GYD-Preisprognose
Wrapped STEAMX-Preisprognose
XANA-Preisprognose
Radiant-Preisprognose
Atletico Madrid-Preisprognose
ParagonsDAO-Preisprognose
Jade Protocol-Preisprognose
SpartaDEX-Preisprognose
Shiden Network-Preisprognose
MaidSafeCoin-Preisprognose
Syndicate-Preisprognose
LORDS-Preisprognose
Bad Idea AI-Preisprognose
Vector ETH-Preisprognose
Terracoin-Preisprognose
Phantasma-Preisprognose
Bifrost Native Coin-Preisprognose
NvirWorld-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Arcas?
Arcas-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Arcas Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Arcas. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von ARCAS über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von ARCAS über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von ARCAS einzuschätzen.
Wie liest man Arcas-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Arcas in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von ARCAS innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Arcas?
Die Preisentwicklung von Arcas wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von ARCAS. Die Marktkapitalisierung von Arcas kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von ARCAS-„Walen“, großen Inhabern von Arcas, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Arcas-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


