Previsão de Preço Kleros - Projeção PNK
Previsão de Preço Kleros até $0.018351 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006147 | $0.018351 |
| 2027 | $0.005918 | $0.015547 |
| 2028 | $0.01068 | $0.026161 |
| 2029 | $0.023463 | $0.077182 |
| 2030 | $0.019954 | $0.057693 |
| 2031 | $0.023592 | $0.052667 |
| 2032 | $0.036011 | $0.097696 |
| 2033 | $0.083683 | $0.260227 |
| 2034 | $0.067277 | $0.1507096 |
| 2035 | $0.079542 | $0.177573 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Kleros hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.75, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Kleros para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Kleros'
'name_with_ticker' => 'Kleros <small>PNK</small>'
'name_lang' => 'Kleros'
'name_lang_with_ticker' => 'Kleros <small>PNK</small>'
'name_with_lang' => 'Kleros'
'name_with_lang_with_ticker' => 'Kleros <small>PNK</small>'
'image' => '/uploads/coins/kleros.png?1717120200'
'price_for_sd' => 0.01779
'ticker' => 'PNK'
'marketcap' => '$12.87M'
'low24h' => '$0.01738'
'high24h' => '$0.0178'
'volume24h' => '$6.26K'
'current_supply' => '724.19M'
'max_supply' => '805.29M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0173 USD 1.03x'
'price' => '$0.01779'
'change_24h_pct' => '2.3531%'
'ath_price' => '$0.3802'
'ath_days' => 1702
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 de mai. de 2021'
'ath_pct' => '-95.32%'
'fdv' => '$14.31M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.877374'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.017946'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.015726'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006147'
'current_year_max_price_prediction' => '$0.018351'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.019954'
'grand_prediction_max_price' => '$0.057693'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.018131339782777
107 => 0.01819903562385
108 => 0.018351557810421
109 => 0.017048272425517
110 => 0.01763340930089
111 => 0.017977122395262
112 => 0.016424214130503
113 => 0.017946426391848
114 => 0.017025585126514
115 => 0.016713037770488
116 => 0.017133841610394
117 => 0.016969853944737
118 => 0.016828866979485
119 => 0.01675019383041
120 => 0.017059185728012
121 => 0.017044770886664
122 => 0.016539200169444
123 => 0.01587970377853
124 => 0.016101052414552
125 => 0.01602063437993
126 => 0.01572918904833
127 => 0.015925588012585
128 => 0.015060746369246
129 => 0.013572831272438
130 => 0.014555793561461
131 => 0.014517950582591
201 => 0.014498868436603
202 => 0.015237537429721
203 => 0.015166531450026
204 => 0.015037654901587
205 => 0.015726822129451
206 => 0.015475266820673
207 => 0.016250501008442
208 => 0.01676112038351
209 => 0.016631610793187
210 => 0.017111850783476
211 => 0.016106151840064
212 => 0.016440204687427
213 => 0.016509052516291
214 => 0.015718317912836
215 => 0.01517814890645
216 => 0.015142125792101
217 => 0.014205547174902
218 => 0.014705859912411
219 => 0.015146114417072
220 => 0.014935266674469
221 => 0.014868518578058
222 => 0.015209520126726
223 => 0.015236018867538
224 => 0.014631844768809
225 => 0.01475747169564
226 => 0.015281356864265
227 => 0.014744271133542
228 => 0.013700801291202
301 => 0.013442006343203
302 => 0.013407478326602
303 => 0.012705605902341
304 => 0.013459300259104
305 => 0.013130292474624
306 => 0.014169624123678
307 => 0.013575963459786
308 => 0.0135503719351
309 => 0.013511686592077
310 => 0.012907556002531
311 => 0.013039822207139
312 => 0.013479495215971
313 => 0.013636375498792
314 => 0.013620011600012
315 => 0.013477340578364
316 => 0.013542654641481
317 => 0.013332255287255
318 => 0.013257958896194
319 => 0.013023459049173
320 => 0.012678809056289
321 => 0.012726734751661
322 => 0.012043892933181
323 => 0.011671844469314
324 => 0.011568866358036
325 => 0.011431159723883
326 => 0.011584420688787
327 => 0.012041958528103
328 => 0.01149007082182
329 => 0.01054389805982
330 => 0.010600764655016
331 => 0.010728527010578
401 => 0.01049044270622
402 => 0.010265115893047
403 => 0.010461019275759
404 => 0.010060113403324
405 => 0.010776974569911
406 => 0.010757585484335
407 => 0.011024786996842
408 => 0.011191873586139
409 => 0.010806793092734
410 => 0.010709946390012
411 => 0.01076511467332
412 => 0.009853305839105
413 => 0.01095027276223
414 => 0.010959759377734
415 => 0.0108785292163
416 => 0.01146263023781
417 => 0.012695265578874
418 => 0.012231498580924
419 => 0.012051913981886
420 => 0.011710523527839
421 => 0.012165406038097
422 => 0.012130478158582
423 => 0.011972521041409
424 => 0.011876988084087
425 => 0.012053010487154
426 => 0.011855176960393
427 => 0.011819640622885
428 => 0.011604329081504
429 => 0.011527472657282
430 => 0.01147057122053
501 => 0.011407928329686
502 => 0.011546102937252
503 => 0.011232981098124
504 => 0.010855386855848
505 => 0.010823993980229
506 => 0.010910672469903
507 => 0.010872323690677
508 => 0.010823810381028
509 => 0.010731185261095
510 => 0.010703705366633
511 => 0.010793001692284
512 => 0.010692191346923
513 => 0.010840942502927
514 => 0.010800490419271
515 => 0.010574528368302
516 => 0.01029289599093
517 => 0.010290388872027
518 => 0.010229711638292
519 => 0.010152430058247
520 => 0.010130932090642
521 => 0.010444520839286
522 => 0.011093640164058
523 => 0.010966202508497
524 => 0.011058289274976
525 => 0.011511265024434
526 => 0.01165525239373
527 => 0.011553053569531
528 => 0.011413157515619
529 => 0.011419312232006
530 => 0.01189737939764
531 => 0.011927195860352
601 => 0.012002532442468
602 => 0.012099361240603
603 => 0.011569543932553
604 => 0.011394357884443
605 => 0.011311345015896
606 => 0.011055697510796
607 => 0.011331391427486
608 => 0.011170756388622
609 => 0.011192431543439
610 => 0.011178315570429
611 => 0.01118602384621
612 => 0.010776774192606
613 => 0.010925883256851
614 => 0.010677960517365
615 => 0.010346019799826
616 => 0.010344907018148
617 => 0.010426149038505
618 => 0.010377823105796
619 => 0.010247779263449
620 => 0.010266251377465
621 => 0.010104416221415
622 => 0.010285901095529
623 => 0.010291105432335
624 => 0.010221223870253
625 => 0.010500826358913
626 => 0.01061537972665
627 => 0.01056938218548
628 => 0.010612152416542
629 => 0.010971498118432
630 => 0.011030087147192
701 => 0.011056108523593
702 => 0.011021243326387
703 => 0.010618720596312
704 => 0.01063657419105
705 => 0.010505576358911
706 => 0.010394896994966
707 => 0.010399323589087
708 => 0.010456227169465
709 => 0.010704728442328
710 => 0.011227684721117
711 => 0.011247530529621
712 => 0.011271584228471
713 => 0.011173745746828
714 => 0.011144236724576
715 => 0.011183166741851
716 => 0.011379561624429
717 => 0.011884742583111
718 => 0.011706177892411
719 => 0.011561002019347
720 => 0.011688360399159
721 => 0.011668754574855
722 => 0.011503261687125
723 => 0.011498616852957
724 => 0.011180983090126
725 => 0.011063561120179
726 => 0.010965434533208
727 => 0.010858282861896
728 => 0.010794759759386
729 => 0.010892360115575
730 => 0.01091468247181
731 => 0.010701277587238
801 => 0.010672191290029
802 => 0.010846462325435
803 => 0.010769772140232
804 => 0.010848649897538
805 => 0.010866950213834
806 => 0.010864003441418
807 => 0.010783930080255
808 => 0.010834966452838
809 => 0.010714250217003
810 => 0.010582989441525
811 => 0.010499253244605
812 => 0.010426182306798
813 => 0.010466726310001
814 => 0.010322194341624
815 => 0.010275955656086
816 => 0.010817676478162
817 => 0.011217851473909
818 => 0.011212032770985
819 => 0.011176612913378
820 => 0.011123986189631
821 => 0.011375711651795
822 => 0.011288015534187
823 => 0.011351821787003
824 => 0.011368063156285
825 => 0.011417220889513
826 => 0.011434790553892
827 => 0.011381682825222
828 => 0.011203446801242
829 => 0.010759299575656
830 => 0.010552547843193
831 => 0.010484316327758
901 => 0.010486796413754
902 => 0.010418384570394
903 => 0.010438534924267
904 => 0.010411377099647
905 => 0.01035994675
906 => 0.010463550630837
907 => 0.010475490012967
908 => 0.010451307629205
909 => 0.010457003455996
910 => 0.010256783646881
911 => 0.010272005924114
912 => 0.01018724635013
913 => 0.0101713549518
914 => 0.0099570901296296
915 => 0.0095774889389722
916 => 0.0097878248473756
917 => 0.0095337686477287
918 => 0.0094375537153428
919 => 0.0098930202407657
920 => 0.0098473040342882
921 => 0.0097690577611559
922 => 0.0096533152152411
923 => 0.0096103851790902
924 => 0.0093495558694352
925 => 0.0093341446823505
926 => 0.0094634187311993
927 => 0.009403763205704
928 => 0.0093199842545944
929 => 0.0090165453862113
930 => 0.008675379632992
1001 => 0.0086856772825902
1002 => 0.0087941957610748
1003 => 0.0091097278729793
1004 => 0.0089864440180973
1005 => 0.0088970001668611
1006 => 0.0088802500221968
1007 => 0.0090899131514729
1008 => 0.0093866304051821
1009 => 0.0095258435019481
1010 => 0.0093878875510176
1011 => 0.0092294111826646
1012 => 0.0092390569048975
1013 => 0.009303225573553
1014 => 0.0093099687933326
1015 => 0.0092068169691687
1016 => 0.0092358536034555
1017 => 0.0091917443008083
1018 => 0.0089210455918814
1019 => 0.0089161495106318
1020 => 0.0088497156818548
1021 => 0.0088477040919219
1022 => 0.008734683576477
1023 => 0.0087188712250924
1024 => 0.0084944621318216
1025 => 0.0086421688765857
1026 => 0.0085430949471501
1027 => 0.0083937671663132
1028 => 0.0083680230006119
1029 => 0.008367249099904
1030 => 0.0085205753417426
1031 => 0.0086403771701789
1101 => 0.0085448183805698
1102 => 0.0085230614965052
1103 => 0.0087553680976656
1104 => 0.0087258049651463
1105 => 0.0087002034830463
1106 => 0.0093600626295358
1107 => 0.008837732625638
1108 => 0.0086099669303843
1109 => 0.0083280636309754
1110 => 0.0084198527667427
1111 => 0.0084391940863119
1112 => 0.0077612674681225
1113 => 0.0074862327235534
1114 => 0.007391851163683
1115 => 0.0073375332416182
1116 => 0.0073622866007846
1117 => 0.0071147230723145
1118 => 0.0072810898577693
1119 => 0.0070667207681383
1120 => 0.0070307810926443
1121 => 0.0074140995801388
1122 => 0.0074674361083596
1123 => 0.0072398859086094
1124 => 0.0073860099738801
1125 => 0.0073330233565365
1126 => 0.0070703955109034
1127 => 0.0070603650589599
1128 => 0.0069285876378364
1129 => 0.0067223814909149
1130 => 0.0066281397485222
1201 => 0.0065790578308397
1202 => 0.006599309986663
1203 => 0.0065890698769526
1204 => 0.0065222462344148
1205 => 0.0065929001299219
1206 => 0.0064124086231065
1207 => 0.0063405354507738
1208 => 0.006308072006276
1209 => 0.0061478754052739
1210 => 0.0064028194372201
1211 => 0.0064530466232138
1212 => 0.0065033727722798
1213 => 0.0069414275407786
1214 => 0.0069195435624743
1215 => 0.0071173640684153
1216 => 0.007109677127323
1217 => 0.0070532555145489
1218 => 0.0068152220111598
1219 => 0.0069100979230715
1220 => 0.0066180846131977
1221 => 0.0068368808399301
1222 => 0.0067370313791983
1223 => 0.0068031216368172
1224 => 0.0066842853945002
1225 => 0.0067500542776266
1226 => 0.0064649573523186
1227 => 0.006198737854888
1228 => 0.0063058723520857
1229 => 0.0064223398028554
1230 => 0.0066748709114788
1231 => 0.0065244654665191
]
'min_raw' => 0.0061478754052739
'max_raw' => 0.018351557810421
'avg_raw' => 0.012249716607848
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006147'
'max' => '$0.018351'
'avg' => '$0.012249'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.011646274594726
'max_diff' => 0.00055740781042144
'year' => 2026
]
1 => [
'items' => [
101 => 0.0065785569519862
102 => 0.0063973595304769
103 => 0.0060234974934187
104 => 0.0060256135119472
105 => 0.005968102982573
106 => 0.0059184054885189
107 => 0.0065417413411608
108 => 0.0064642196744032
109 => 0.0063406990442098
110 => 0.0065060363162384
111 => 0.006549754115218
112 => 0.006550998699495
113 => 0.0066716245051944
114 => 0.0067360025193195
115 => 0.0067473494233393
116 => 0.0069371567349003
117 => 0.0070007776421165
118 => 0.0072628231549725
119 => 0.0067305404946051
120 => 0.0067195784834932
121 => 0.0065083629507202
122 => 0.0063744067206501
123 => 0.0065175350483977
124 => 0.0066443272078169
125 => 0.0065123027365451
126 => 0.0065295423453045
127 => 0.0063523102794178
128 => 0.0064156624034285
129 => 0.0064702297870793
130 => 0.0064401008851499
131 => 0.0063949964607063
201 => 0.0066339316966632
202 => 0.0066204500342558
203 => 0.0068429520190762
204 => 0.0070164082275133
205 => 0.0073272727620387
206 => 0.0070028694145268
207 => 0.0069910468671569
208 => 0.0071066141640935
209 => 0.0070007599493655
210 => 0.0070676561591103
211 => 0.0073164947484374
212 => 0.0073217523157152
213 => 0.0072336812898198
214 => 0.0072283221598901
215 => 0.0072452371638048
216 => 0.0073443088700636
217 => 0.0073096901717307
218 => 0.0073497518058797
219 => 0.0073998494928285
220 => 0.007607074767028
221 => 0.0076570360790796
222 => 0.0075356559927645
223 => 0.0075466152555235
224 => 0.0075012157712838
225 => 0.0074573604383621
226 => 0.0075559408222131
227 => 0.007736098411303
228 => 0.0077349776602914
301 => 0.0077767707191972
302 => 0.0078028074486631
303 => 0.0076910387457446
304 => 0.0076182814299938
305 => 0.007646181214521
306 => 0.0076907935775581
307 => 0.0076317140264584
308 => 0.0072670476687608
309 => 0.0073776641467091
310 => 0.0073592521559091
311 => 0.0073330312420353
312 => 0.0074442569659843
313 => 0.0074335289735724
314 => 0.0071121839505076
315 => 0.0071327554162828
316 => 0.0071134349694762
317 => 0.0071758632856999
318 => 0.0069973886154172
319 => 0.0070522862219509
320 => 0.0070867174861357
321 => 0.0071069977652541
322 => 0.007180264039747
323 => 0.0071716670880714
324 => 0.0071797296411602
325 => 0.0072883641846538
326 => 0.0078378004267713
327 => 0.007867705029167
328 => 0.007720443829876
329 => 0.007779271774394
330 => 0.0076663349851766
331 => 0.007742150208389
401 => 0.007794021058613
402 => 0.0075596266606416
403 => 0.0075457473456008
404 => 0.0074323444260804
405 => 0.007493280731561
406 => 0.007396326688066
407 => 0.0074201158190312
408 => 0.0073535993349534
409 => 0.0074733157629936
410 => 0.0076071773315948
411 => 0.007640996050177
412 => 0.007552033561461
413 => 0.007487618856717
414 => 0.0073745278547092
415 => 0.0075626007114454
416 => 0.0076175989461715
417 => 0.0075623118291319
418 => 0.0075495005960664
419 => 0.0075252233325568
420 => 0.007554651132286
421 => 0.0076172994139737
422 => 0.0075877556412619
423 => 0.0076072698236324
424 => 0.0075329018833737
425 => 0.007691075745836
426 => 0.0079422939060391
427 => 0.0079431016135024
428 => 0.0079135576815387
429 => 0.007901468941112
430 => 0.0079317828081825
501 => 0.0079482268375283
502 => 0.0080462563250219
503 => 0.0081514458707696
504 => 0.0086423195829795
505 => 0.0085044842088539
506 => 0.0089400165685344
507 => 0.0092844661182428
508 => 0.009387751477247
509 => 0.0092927338069148
510 => 0.008967683489462
511 => 0.0089517349701533
512 => 0.009437497377132
513 => 0.0093002472478328
514 => 0.009283921781679
515 => 0.0091102464041124
516 => 0.0092129100623682
517 => 0.0091904560143227
518 => 0.0091550112009931
519 => 0.0093508863093328
520 => 0.0097175470262532
521 => 0.0096603995149988
522 => 0.0096177415488441
523 => 0.0094308267587014
524 => 0.0095433912112971
525 => 0.0095033091657578
526 => 0.0096755270700891
527 => 0.0095735089986569
528 => 0.0092992074431141
529 => 0.0093428908699441
530 => 0.0093362882078576
531 => 0.0094721705257278
601 => 0.0094313820267097
602 => 0.0093283235987923
603 => 0.0097162938197839
604 => 0.0096911011916365
605 => 0.009726818578513
606 => 0.0097425424768129
607 => 0.0099786931135283
608 => 0.010075436473413
609 => 0.010097398909838
610 => 0.010189297619328
611 => 0.010095112386228
612 => 0.010471920471563
613 => 0.01072247586095
614 => 0.011013508839185
615 => 0.011438786242676
616 => 0.011598694480424
617 => 0.011569808488558
618 => 0.011892248962261
619 => 0.012471667326057
620 => 0.011686925506086
621 => 0.012513260548017
622 => 0.012251652414239
623 => 0.011631384235179
624 => 0.011591446276929
625 => 0.01201149908925
626 => 0.012943135798392
627 => 0.012709771369288
628 => 0.012943517498998
629 => 0.012670840222535
630 => 0.012657299497454
701 => 0.012930274172307
702 => 0.013568094379176
703 => 0.013265089907226
704 => 0.01283065869694
705 => 0.013151435942117
706 => 0.012873549005812
707 => 0.012247391962661
708 => 0.012709592919907
709 => 0.012400532302522
710 => 0.012490732621241
711 => 0.013140332069688
712 => 0.013062170545424
713 => 0.013163318795383
714 => 0.012984794781715
715 => 0.012818025202295
716 => 0.012506737397837
717 => 0.012414580425241
718 => 0.012440049297006
719 => 0.012414567804133
720 => 0.012240405138421
721 => 0.012202794727343
722 => 0.012140109061129
723 => 0.012159537970269
724 => 0.012041670578449
725 => 0.01226411069946
726 => 0.012305397546055
727 => 0.01246727091616
728 => 0.012484077146438
729 => 0.012934892178057
730 => 0.01268659083428
731 => 0.012853172812992
801 => 0.012838272152886
802 => 0.011644827327437
803 => 0.011809273494531
804 => 0.012065100124479
805 => 0.011949850574453
806 => 0.011786914674956
807 => 0.011655335200042
808 => 0.011455978840856
809 => 0.011736569088111
810 => 0.012105515425805
811 => 0.012493434234416
812 => 0.012959493265516
813 => 0.0128554743153
814 => 0.012484721585014
815 => 0.012501353281659
816 => 0.012604163885991
817 => 0.012471014812053
818 => 0.01243174655077
819 => 0.012598769029896
820 => 0.012599919221916
821 => 0.012446715120747
822 => 0.012276456798353
823 => 0.012275743409766
824 => 0.012245447585796
825 => 0.012676229782317
826 => 0.012913116433411
827 => 0.012940275106197
828 => 0.012911288438343
829 => 0.01292244425636
830 => 0.01278460513353
831 => 0.013099664493398
901 => 0.013388794118154
902 => 0.013311301202366
903 => 0.013195128305333
904 => 0.0131025909972
905 => 0.013289502353448
906 => 0.01328117948498
907 => 0.013386268823113
908 => 0.01338150136371
909 => 0.013346163771906
910 => 0.013311302464383
911 => 0.013449523608168
912 => 0.013409718138522
913 => 0.013369850839986
914 => 0.013289890869395
915 => 0.013300758757393
916 => 0.013184605919248
917 => 0.01313086830153
918 => 0.012322783465623
919 => 0.012106836792535
920 => 0.012174778011888
921 => 0.012197146025393
922 => 0.012103165756521
923 => 0.012237909320532
924 => 0.01221690967881
925 => 0.012298607000372
926 => 0.012247566060746
927 => 0.012249660798712
928 => 0.012399761319078
929 => 0.012443336138714
930 => 0.012421173633755
1001 => 0.012436695492542
1002 => 0.012794390176916
1003 => 0.01274353743123
1004 => 0.012716522923617
1005 => 0.012724006126847
1006 => 0.012815404787765
1007 => 0.01284099142264
1008 => 0.012732579052733
1009 => 0.012783706953105
1010 => 0.013001403063796
1011 => 0.013077584382004
1012 => 0.01332071858062
1013 => 0.013217430851682
1014 => 0.013407019948335
1015 => 0.013989752195761
1016 => 0.014455279037009
1017 => 0.014027161315087
1018 => 0.014882042074553
1019 => 0.015547689371159
1020 => 0.015522140719222
1021 => 0.015406069716359
1022 => 0.014648247966322
1023 => 0.013950889093452
1024 => 0.01453425940203
1025 => 0.014535746532918
1026 => 0.014485634506045
1027 => 0.014174393010974
1028 => 0.014474803976672
1029 => 0.014498649508196
1030 => 0.014485302351581
1031 => 0.014246674227055
1101 => 0.013882333186752
1102 => 0.013953524553918
1103 => 0.0140701374656
1104 => 0.013849364895784
1105 => 0.013778814682645
1106 => 0.013909980951596
1107 => 0.014332625999734
1108 => 0.0142527274016
1109 => 0.014250640926307
1110 => 0.014592481011404
1111 => 0.014347797284182
1112 => 0.013954422505044
1113 => 0.013855090185336
1114 => 0.01350252736864
1115 => 0.013746043761917
1116 => 0.013754807483388
1117 => 0.013621436043467
1118 => 0.013965244862342
1119 => 0.013962076603549
1120 => 0.014288471907882
1121 => 0.014912417141287
1122 => 0.014727885833289
1123 => 0.014513295999036
1124 => 0.01453662786395
1125 => 0.014792520834107
1126 => 0.014637802102882
1127 => 0.014693440037367
1128 => 0.014792436619429
1129 => 0.014852163715334
1130 => 0.014528034053997
1201 => 0.014452463925026
1202 => 0.014297873962661
1203 => 0.014257544327038
1204 => 0.014383454625759
1205 => 0.014350281710523
1206 => 0.013754070926533
1207 => 0.01369176358232
1208 => 0.013693674459613
1209 => 0.013536999680038
1210 => 0.013298033034931
1211 => 0.013926023110316
1212 => 0.013875586718547
1213 => 0.013819908845501
1214 => 0.013826729067255
1215 => 0.014099318274422
1216 => 0.01394120276818
1217 => 0.014361578756145
1218 => 0.014275162090678
1219 => 0.014186529163822
1220 => 0.014174277393506
1221 => 0.014140161278472
1222 => 0.014023164425975
1223 => 0.013881883696164
1224 => 0.013788597920815
1225 => 0.012719252719423
1226 => 0.012917716968707
1227 => 0.013146031996922
1228 => 0.013224845429747
1229 => 0.013090029599176
1230 => 0.014028487776678
1231 => 0.014199953128915
]
'min_raw' => 0.0059184054885189
'max_raw' => 0.015547689371159
'avg_raw' => 0.010733047429839
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005918'
'max' => '$0.015547'
'avg' => '$0.010733'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00022946991675504
'max_diff' => -0.0028038684392624
'year' => 2027
]
2 => [
'items' => [
101 => 0.01368057339258
102 => 0.013583418650046
103 => 0.014034857225424
104 => 0.01376258457835
105 => 0.013885188934656
106 => 0.01362018537732
107 => 0.014158652146653
108 => 0.014154549932049
109 => 0.013945074196955
110 => 0.014122121653829
111 => 0.014091355301273
112 => 0.013854857712268
113 => 0.014166149542058
114 => 0.014166303938922
115 => 0.013964688098288
116 => 0.013729244935812
117 => 0.01368715325928
118 => 0.013655442835235
119 => 0.013877390114225
120 => 0.014076387350556
121 => 0.014446671871771
122 => 0.014539770198147
123 => 0.014903139163901
124 => 0.014686770636908
125 => 0.014782684002483
126 => 0.014886811528587
127 => 0.014936734093765
128 => 0.014855387952801
129 => 0.01541984952525
130 => 0.01546750737662
131 => 0.015483486641946
201 => 0.015293153375623
202 => 0.015462213864173
203 => 0.015383116060276
204 => 0.015588906572015
205 => 0.01562117715192
206 => 0.015593845118799
207 => 0.015604088310218
208 => 0.015122419935978
209 => 0.01509744288977
210 => 0.014756879092441
211 => 0.014895661357173
212 => 0.014636214565264
213 => 0.014718487815576
214 => 0.014754753080386
215 => 0.014735810164085
216 => 0.014903507898194
217 => 0.014760930565818
218 => 0.014384645543793
219 => 0.014008258003165
220 => 0.014003532764191
221 => 0.013904436568536
222 => 0.013832808169451
223 => 0.013846606340269
224 => 0.013895232893954
225 => 0.013829981905753
226 => 0.013843906512395
227 => 0.014075147761819
228 => 0.014121521545254
229 => 0.013963925309735
301 => 0.013331153683098
302 => 0.013175869938734
303 => 0.013287484814773
304 => 0.013234140092945
305 => 0.010680983937292
306 => 0.011280810104562
307 => 0.010924413764142
308 => 0.011088657594814
309 => 0.010724869219631
310 => 0.010898488100051
311 => 0.010866427032383
312 => 0.011830929759207
313 => 0.011815870375758
314 => 0.01182307850569
315 => 0.011479015683339
316 => 0.012027117101669
317 => 0.012297131569427
318 => 0.012247159077648
319 => 0.012259736077214
320 => 0.012043621555078
321 => 0.011825170966668
322 => 0.011582875644816
323 => 0.01203303040421
324 => 0.011982980879363
325 => 0.01209777648211
326 => 0.012389734021304
327 => 0.012432725877989
328 => 0.012490507369354
329 => 0.012469796817867
330 => 0.012963206177604
331 => 0.01290345104852
401 => 0.013047443716888
402 => 0.012751239873304
403 => 0.012416057108362
404 => 0.012479764394028
405 => 0.012473628870117
406 => 0.0123955166087
407 => 0.012325000351729
408 => 0.012207610651704
409 => 0.01257904903299
410 => 0.012563969313036
411 => 0.012808092450835
412 => 0.012764941314944
413 => 0.012476767468585
414 => 0.012487059653884
415 => 0.012556279546275
416 => 0.01279585038418
417 => 0.012866971320096
418 => 0.0128340252689
419 => 0.012912006128339
420 => 0.012973639020103
421 => 0.012919746270628
422 => 0.01368275395345
423 => 0.013365899966832
424 => 0.013520332395254
425 => 0.013557163619464
426 => 0.013462821213127
427 => 0.013483280702913
428 => 0.013514271255062
429 => 0.013702439819136
430 => 0.01419624857828
501 => 0.014414953116234
502 => 0.015072936509363
503 => 0.014396792748871
504 => 0.014356673176285
505 => 0.014475195854582
506 => 0.014861501760964
507 => 0.015174566414218
508 => 0.015278428020836
509 => 0.015292155046719
510 => 0.015487006325322
511 => 0.015598691444456
512 => 0.015463346255002
513 => 0.015348655378172
514 => 0.014937846893321
515 => 0.014985399094037
516 => 0.015312986601721
517 => 0.015775723251132
518 => 0.016172799435869
519 => 0.016033757195476
520 => 0.017094551341149
521 => 0.017199724747737
522 => 0.01718519318361
523 => 0.017424793855719
524 => 0.016949235315411
525 => 0.016745924825917
526 => 0.015373452847539
527 => 0.015759061491059
528 => 0.016319566300416
529 => 0.016245381387113
530 => 0.015838327812221
531 => 0.016172490649231
601 => 0.016062005965077
602 => 0.015974862110672
603 => 0.016374085001372
604 => 0.015935123033875
605 => 0.016315187319002
606 => 0.015827750942065
607 => 0.016034392328718
608 => 0.015917092683534
609 => 0.015992999929672
610 => 0.01554924771979
611 => 0.015788685640767
612 => 0.015539286315079
613 => 0.015539168067326
614 => 0.015533662563388
615 => 0.015827079764054
616 => 0.015836648088434
617 => 0.015619812333813
618 => 0.015588562913961
619 => 0.015704108397638
620 => 0.015568834897662
621 => 0.015632128516899
622 => 0.015570751996911
623 => 0.015556934849474
624 => 0.015446837467904
625 => 0.015399404488733
626 => 0.015418004182064
627 => 0.015354513839929
628 => 0.015316258612246
629 => 0.015526052635732
630 => 0.01541396815205
701 => 0.01550887408109
702 => 0.015400716796866
703 => 0.01502579652786
704 => 0.014810175916445
705 => 0.01410198628342
706 => 0.01430282798484
707 => 0.014435986240667
708 => 0.01439197743791
709 => 0.014486525375377
710 => 0.014492329850851
711 => 0.014461591352578
712 => 0.014426000109424
713 => 0.014408676260576
714 => 0.014537794036727
715 => 0.014612751251688
716 => 0.014449350453066
717 => 0.01441106793217
718 => 0.014576275161181
719 => 0.014677051475441
720 => 0.015421127158617
721 => 0.015366003628674
722 => 0.015504352871383
723 => 0.015488776869796
724 => 0.015633788916918
725 => 0.015870822327299
726 => 0.015388867128411
727 => 0.015472517886181
728 => 0.015452008652154
729 => 0.015675923091452
730 => 0.01567662212789
731 => 0.015542374236176
801 => 0.015615152196197
802 => 0.015574529535472
803 => 0.015647940173885
804 => 0.015365267420324
805 => 0.015709532321523
806 => 0.015904708336562
807 => 0.01590741835572
808 => 0.015999930237836
809 => 0.016093927667993
810 => 0.016274347549728
811 => 0.016088895855414
812 => 0.015755286310703
813 => 0.015779371842279
814 => 0.015583776688277
815 => 0.015587064678153
816 => 0.015569513130511
817 => 0.015622186646204
818 => 0.01537682629493
819 => 0.015434411878955
820 => 0.0153537917241
821 => 0.015472342633709
822 => 0.015344801452137
823 => 0.01545199876198
824 => 0.015498261567262
825 => 0.015668972314717
826 => 0.015319587335937
827 => 0.01460716771292
828 => 0.014756926954931
829 => 0.014535421272662
830 => 0.014555922466888
831 => 0.014597338141964
901 => 0.014463096388675
902 => 0.014488705484759
903 => 0.014487790547639
904 => 0.014479906113823
905 => 0.01444498464913
906 => 0.014394341616324
907 => 0.014596087871919
908 => 0.014630368492029
909 => 0.014706570064062
910 => 0.014933294254412
911 => 0.014910639161272
912 => 0.014947590558135
913 => 0.014866925866256
914 => 0.014559664270592
915 => 0.014576350053517
916 => 0.014368278073074
917 => 0.014701249195712
918 => 0.014622397238868
919 => 0.014571560869328
920 => 0.014557689694903
921 => 0.014784975890668
922 => 0.014852983482715
923 => 0.014810605715171
924 => 0.014723687677581
925 => 0.014890596004765
926 => 0.014935253631822
927 => 0.014945250827611
928 => 0.015240980381884
929 => 0.014961778824549
930 => 0.015028985414424
1001 => 0.015553312043664
1002 => 0.015077820143073
1003 => 0.015329698807551
1004 => 0.015317370657638
1005 => 0.015446223259276
1006 => 0.015306800983378
1007 => 0.015308529289584
1008 => 0.015422941670607
1009 => 0.015262270115842
1010 => 0.015222485579353
1011 => 0.015167523527135
1012 => 0.015287531157405
1013 => 0.015359470304274
1014 => 0.015939246994554
1015 => 0.016313809177504
1016 => 0.016297548445305
1017 => 0.016446141098792
1018 => 0.016379198747443
1019 => 0.016163024236439
1020 => 0.01653200776705
1021 => 0.016415245939038
1022 => 0.016424871642274
1023 => 0.016424513373119
1024 => 0.01650214978125
1025 => 0.016447137270817
1026 => 0.016338701965833
1027 => 0.016410686381745
1028 => 0.016624454362103
1029 => 0.017287996732337
1030 => 0.017659323833488
1031 => 0.017265642374596
1101 => 0.017537198573335
1102 => 0.017374361619459
1103 => 0.01734476930096
1104 => 0.017515326661613
1105 => 0.017686182560348
1106 => 0.017675299778229
1107 => 0.017551267169295
1108 => 0.017481204295719
1109 => 0.018011743847221
1110 => 0.018402636351262
1111 => 0.018375980103063
1112 => 0.018493632113537
1113 => 0.018839062055128
1114 => 0.018870643839919
1115 => 0.018866665260934
1116 => 0.018788386512113
1117 => 0.019128507149356
1118 => 0.019412241768798
1119 => 0.018770267243452
1120 => 0.01901472273864
1121 => 0.019124466686294
1122 => 0.019285603361012
1123 => 0.019557467940904
1124 => 0.019852784983186
1125 => 0.019894546050951
1126 => 0.01986491457492
1127 => 0.019670145046988
1128 => 0.019993284478517
1129 => 0.020182571978955
1130 => 0.020295288353698
1201 => 0.02058111832583
1202 => 0.019125144427553
1203 => 0.018094533735755
1204 => 0.017933588994032
1205 => 0.018260876455165
1206 => 0.018347179548597
1207 => 0.01831239087985
1208 => 0.017152344847206
1209 => 0.017927481591747
1210 => 0.018761463553524
1211 => 0.018793500197175
1212 => 0.019211009004981
1213 => 0.019346966987067
1214 => 0.019683116301482
1215 => 0.019662090070341
1216 => 0.019743937079098
1217 => 0.019725121869177
1218 => 0.020347767689541
1219 => 0.021034638493201
1220 => 0.021010854341386
1221 => 0.020912108536673
1222 => 0.021058762895333
1223 => 0.021767687174259
1224 => 0.021702420786936
1225 => 0.021765821522843
1226 => 0.022601683200918
1227 => 0.023688422282353
1228 => 0.023183522872207
1229 => 0.024279009311333
1230 => 0.024968559955522
1231 => 0.02616106649378
]
'min_raw' => 0.010680983937292
'max_raw' => 0.02616106649378
'avg_raw' => 0.018421025215536
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.01068'
'max' => '$0.026161'
'avg' => '$0.018421'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0047625784487727
'max_diff' => 0.010613377122621
'year' => 2028
]
3 => [
'items' => [
101 => 0.026011758801971
102 => 0.026475992846298
103 => 0.025744466872179
104 => 0.02406473536981
105 => 0.023798911429806
106 => 0.024331097689428
107 => 0.025639425678732
108 => 0.0242898937851
109 => 0.024562902329548
110 => 0.024484275850381
111 => 0.024480086179447
112 => 0.024639988878367
113 => 0.02440804167362
114 => 0.023463047034975
115 => 0.023896132508977
116 => 0.023728897408992
117 => 0.023914457220628
118 => 0.024915846993341
119 => 0.024473108704674
120 => 0.024006719882702
121 => 0.02459167496542
122 => 0.025336523798095
123 => 0.025289912496768
124 => 0.025199467090181
125 => 0.025709303111541
126 => 0.02655140285089
127 => 0.026779019026605
128 => 0.02694704063411
129 => 0.026970207975037
130 => 0.027208845985003
131 => 0.025925629260892
201 => 0.027962127157399
202 => 0.028313774087007
203 => 0.028247679038512
204 => 0.028638519801207
205 => 0.028523524534149
206 => 0.028356914434387
207 => 0.028976480177471
208 => 0.028266198049402
209 => 0.027258041990642
210 => 0.02670494763774
211 => 0.02743330689849
212 => 0.027878090482795
213 => 0.028172064138471
214 => 0.028261020389055
215 => 0.026025241722335
216 => 0.024820281022943
217 => 0.025592647016351
218 => 0.026534986834162
219 => 0.025920394515624
220 => 0.025944485370934
221 => 0.025068238236719
222 => 0.026612515262312
223 => 0.026387527089097
224 => 0.027554766129732
225 => 0.027276195165006
226 => 0.028228033290685
227 => 0.027977382412625
228 => 0.029017820193753
301 => 0.029432878993373
302 => 0.03012982731668
303 => 0.030642505340394
304 => 0.030943559681887
305 => 0.03092548550845
306 => 0.032118412794123
307 => 0.031414985251466
308 => 0.030531314472748
309 => 0.030515331656306
310 => 0.030972997274316
311 => 0.031932138855235
312 => 0.032180830312225
313 => 0.03231981490957
314 => 0.032106955160648
315 => 0.031343434978201
316 => 0.031013750834555
317 => 0.03129465127681
318 => 0.030951134173982
319 => 0.031544141067339
320 => 0.032358466191355
321 => 0.032190311273436
322 => 0.032752427952844
323 => 0.033334159579633
324 => 0.034166061933142
325 => 0.034383552013604
326 => 0.034743054846202
327 => 0.035113101351473
328 => 0.035231950315933
329 => 0.035458869865755
330 => 0.035457673887717
331 => 0.036141511224554
401 => 0.036895804983764
402 => 0.037180533415925
403 => 0.037835250745662
404 => 0.036714070262519
405 => 0.037564498538176
406 => 0.03833160613042
407 => 0.037417028834813
408 => 0.038677560567627
409 => 0.038726504158386
410 => 0.039465494270337
411 => 0.0387163862185
412 => 0.038271568248556
413 => 0.039555741060671
414 => 0.040177111833389
415 => 0.039989949899763
416 => 0.038565638343547
417 => 0.037736627926233
418 => 0.035566947759955
419 => 0.03813702764012
420 => 0.03938883857949
421 => 0.03856239645563
422 => 0.038979205791637
423 => 0.041253182378013
424 => 0.042118965433025
425 => 0.041938888609863
426 => 0.04196931862866
427 => 0.04243647945007
428 => 0.044508127802367
429 => 0.043266748089238
430 => 0.044215736366314
501 => 0.044719076326644
502 => 0.045186606533239
503 => 0.044038500110281
504 => 0.042544830523046
505 => 0.042071722664785
506 => 0.038480223073806
507 => 0.038293269923003
508 => 0.038188327454197
509 => 0.037526680032784
510 => 0.037006806400035
511 => 0.036593383585602
512 => 0.035508438662027
513 => 0.035874575724841
514 => 0.034145399962267
515 => 0.035251665336936
516 => 0.032491859067459
517 => 0.034790307736765
518 => 0.033539366623699
519 => 0.03437933993717
520 => 0.034376409349409
521 => 0.032829752165528
522 => 0.031937672579778
523 => 0.032506140412075
524 => 0.03311558305333
525 => 0.033214463071463
526 => 0.034004621363931
527 => 0.034225137558963
528 => 0.033556963193099
529 => 0.03243466821678
530 => 0.032695351742955
531 => 0.03193238983644
601 => 0.030595328442178
602 => 0.03155562927839
603 => 0.031883518205319
604 => 0.032028332634872
605 => 0.030713486316154
606 => 0.03030033305611
607 => 0.030080373727155
608 => 0.032264938068166
609 => 0.032384613434142
610 => 0.031772337341418
611 => 0.03453988333893
612 => 0.033913502444051
613 => 0.034613323370676
614 => 0.03267169744531
615 => 0.032745870170405
616 => 0.031826673341401
617 => 0.032341362144889
618 => 0.031977596687779
619 => 0.032299780375821
620 => 0.032492895950021
621 => 0.03341194194787
622 => 0.034800801765777
623 => 0.033274667123275
624 => 0.032609708404886
625 => 0.033022245053905
626 => 0.034120884513685
627 => 0.035785379533572
628 => 0.034799964980715
629 => 0.035237275225848
630 => 0.035332808059832
701 => 0.034606199850584
702 => 0.03581217061467
703 => 0.036458460144432
704 => 0.037121419471194
705 => 0.037697048478923
706 => 0.036856618937297
707 => 0.037755999017679
708 => 0.037031257434847
709 => 0.03638108931264
710 => 0.036382075349304
711 => 0.035974215388802
712 => 0.035183935321668
713 => 0.035038195552217
714 => 0.035796352237805
715 => 0.036404322101942
716 => 0.036454397411931
717 => 0.036791000767336
718 => 0.036990199165775
719 => 0.038942614267564
720 => 0.039727891772729
721 => 0.040688114241502
722 => 0.041062175008262
723 => 0.042187963808002
724 => 0.041278797920116
725 => 0.04108209416135
726 => 0.038351298775889
727 => 0.038798466367276
728 => 0.039514424826342
729 => 0.038363104667175
730 => 0.039093352310796
731 => 0.039237518664407
801 => 0.038323983248725
802 => 0.038811941985776
803 => 0.037516068249851
804 => 0.034829048272006
805 => 0.035815162036031
806 => 0.036541273688657
807 => 0.035505022831438
808 => 0.037362462384556
809 => 0.03627738454296
810 => 0.035933466960096
811 => 0.034591721853872
812 => 0.035224973895504
813 => 0.036081456349108
814 => 0.035552249769553
815 => 0.036650432882897
816 => 0.03820575304613
817 => 0.039314166815367
818 => 0.03939925706134
819 => 0.038686621265676
820 => 0.039828624676209
821 => 0.039836942924301
822 => 0.038548758411999
823 => 0.037759752570855
824 => 0.037580488783665
825 => 0.038028324870802
826 => 0.038572080555689
827 => 0.039429431717504
828 => 0.039947511068619
829 => 0.041298387248271
830 => 0.04166389560983
831 => 0.042065478483972
901 => 0.042602117047397
902 => 0.043246489234092
903 => 0.041836639573732
904 => 0.041892655529026
905 => 0.040579823045995
906 => 0.039176873258655
907 => 0.040241537267086
908 => 0.041633443831793
909 => 0.04131413892793
910 => 0.041278210603438
911 => 0.041338632079547
912 => 0.041097886609557
913 => 0.040009003771235
914 => 0.039462173626597
915 => 0.040167724024428
916 => 0.04054269266044
917 => 0.041124236314193
918 => 0.041052548783971
919 => 0.042550542782809
920 => 0.043132617953771
921 => 0.042983698216638
922 => 0.043011103032224
923 => 0.044064922325716
924 => 0.045236986114546
925 => 0.046334778520225
926 => 0.047451500106562
927 => 0.046105248647847
928 => 0.045421705182358
929 => 0.046126947558958
930 => 0.045752736026929
1001 => 0.047903066488316
1002 => 0.048051950703957
1003 => 0.050202125671977
1004 => 0.0522428977547
1005 => 0.050961125373771
1006 => 0.052169778996691
1007 => 0.053477036432855
1008 => 0.05599894812209
1009 => 0.055149656987078
1010 => 0.054499113287748
1011 => 0.053884352635286
1012 => 0.055163571962555
1013 => 0.056809267191059
1014 => 0.057163734181006
1015 => 0.057738106121532
1016 => 0.057134224256928
1017 => 0.057861533447438
1018 => 0.060429254485788
1019 => 0.059735433595325
1020 => 0.058750096393594
1021 => 0.060777065546822
1022 => 0.061510617803732
1023 => 0.066659071707027
1024 => 0.07315920743196
1025 => 0.070468108559646
1026 => 0.068797656648382
1027 => 0.069190252471178
1028 => 0.071563881994443
1029 => 0.072326216462081
1030 => 0.070253928586592
1031 => 0.070985895697557
1101 => 0.075019106444389
1102 => 0.077182794609172
1103 => 0.074244215459308
1104 => 0.06613679213057
1105 => 0.058661377559386
1106 => 0.060644194125969
1107 => 0.060419404261281
1108 => 0.064752586055465
1109 => 0.05971888619655
1110 => 0.059803640792531
1111 => 0.0642264281973
1112 => 0.063046504343479
1113 => 0.061135178813519
1114 => 0.058675332350954
1115 => 0.054128078656644
1116 => 0.050100449250044
1117 => 0.057999558024044
1118 => 0.057658934090112
1119 => 0.057165660156139
1120 => 0.058263387918381
1121 => 0.063593642336364
1122 => 0.06347076271968
1123 => 0.062689065292065
1124 => 0.063281975901346
1125 => 0.061031238717032
1126 => 0.061611304937763
1127 => 0.058660193415525
1128 => 0.05999421907288
1129 => 0.061131077967352
1130 => 0.061359319221901
1201 => 0.061873558422687
1202 => 0.057479440755001
1203 => 0.059452270583275
1204 => 0.060611123278229
1205 => 0.055375384643004
1206 => 0.060507629559594
1207 => 0.057402948942436
1208 => 0.056349173710235
1209 => 0.057767943236064
1210 => 0.05721504737205
1211 => 0.056739699975305
1212 => 0.056474447960416
1213 => 0.057516235716306
1214 => 0.057467635072288
1215 => 0.055763068101362
1216 => 0.053539529974826
1217 => 0.054285822355242
1218 => 0.054014687336909
1219 => 0.053032059053354
1220 => 0.053694231873478
1221 => 0.050778357891646
1222 => 0.045761748259844
1223 => 0.049075874245521
1224 => 0.048948284000148
1225 => 0.048883947212674
1226 => 0.051374421295196
1227 => 0.051135019677174
1228 => 0.050700503396238
1229 => 0.053024078821103
1230 => 0.052175942534527
1231 => 0.054789698723712
]
'min_raw' => 0.023463047034975
'max_raw' => 0.077182794609172
'avg_raw' => 0.050322920822073
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.023463'
'max' => '$0.077182'
'avg' => '$0.050322'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.012782063097683
'max_diff' => 0.051021728115392
'year' => 2029
]
4 => [
'items' => [
101 => 0.05651128759706
102 => 0.056074636971213
103 => 0.057693799627758
104 => 0.054303015424388
105 => 0.055429297922098
106 => 0.055661423183916
107 => 0.052995406261039
108 => 0.051174188742612
109 => 0.051052734297533
110 => 0.047894994099814
111 => 0.049581833425047
112 => 0.051066182225098
113 => 0.050355294339994
114 => 0.050130248472741
115 => 0.051279959002041
116 => 0.051369301356772
117 => 0.049332286200819
118 => 0.049755846155622
119 => 0.051522161578135
120 => 0.049711339538873
121 => 0.046193208112687
122 => 0.045320662877021
123 => 0.045204249258383
124 => 0.04283783737682
125 => 0.045378970521905
126 => 0.044269697805941
127 => 0.047773877024544
128 => 0.045772308648168
129 => 0.045686025035947
130 => 0.04555559470102
131 => 0.043518726239315
201 => 0.043964670982684
202 => 0.045447059228947
203 => 0.045975992055513
204 => 0.045920820028283
205 => 0.045439794717827
206 => 0.045660005641705
207 => 0.04495062952932
208 => 0.044700134059649
209 => 0.043909501453162
210 => 0.042747489939459
211 => 0.04290907476747
212 => 0.040606825901971
213 => 0.039352438530452
214 => 0.039005240638575
215 => 0.038540953107159
216 => 0.03905768315067
217 => 0.040600303920197
218 => 0.038739575986895
219 => 0.035549488460136
220 => 0.035741218156139
221 => 0.036171977858
222 => 0.035369260003343
223 => 0.034609554920913
224 => 0.035270056853264
225 => 0.033918374713996
226 => 0.036335322186793
227 => 0.03626995053107
228 => 0.0371708390859
301 => 0.037734183187329
302 => 0.036435857418354
303 => 0.036109331998503
304 => 0.036295335717403
305 => 0.033221108572388
306 => 0.03691960914149
307 => 0.036951593927995
308 => 0.036677720767411
309 => 0.038647058142063
310 => 0.042802974254311
311 => 0.041239351441545
312 => 0.040633869427693
313 => 0.039482847676754
314 => 0.041016515818971
315 => 0.040898754034598
316 => 0.040366190585837
317 => 0.040044094550327
318 => 0.040637566371758
319 => 0.039970556823989
320 => 0.039850743581014
321 => 0.039124805686674
322 => 0.038865678886465
323 => 0.038673831719725
324 => 0.038462626839658
325 => 0.038928492176109
326 => 0.037872780034021
327 => 0.036599694683399
328 => 0.03649385141147
329 => 0.036786093991103
330 => 0.036656798404517
331 => 0.036493232393945
401 => 0.03618094033521
402 => 0.036088289952448
403 => 0.03638935874885
404 => 0.036049469631113
405 => 0.036550994539052
406 => 0.036414607514732
407 => 0.035652760683726
408 => 0.03470321746047
409 => 0.034694764534048
410 => 0.034490187004161
411 => 0.034229626761412
412 => 0.03415714486269
413 => 0.035214431222811
414 => 0.037402982346345
415 => 0.036973317393206
416 => 0.037283794355685
417 => 0.038811033720737
418 => 0.039296497189197
419 => 0.038951926718116
420 => 0.03848025740512
421 => 0.03850100846113
422 => 0.040112845287648
423 => 0.040213373573399
424 => 0.040467376119837
425 => 0.04079384117312
426 => 0.039007525128365
427 => 0.038416873136063
428 => 0.038136989453985
429 => 0.037275056041801
430 => 0.038204577330255
501 => 0.037662985081543
502 => 0.03773606437932
503 => 0.037688471390772
504 => 0.037714460380743
505 => 0.036334646600716
506 => 0.036837378221281
507 => 0.036001489395691
508 => 0.03488232809115
509 => 0.034878576270029
510 => 0.035152489413801
511 => 0.034989555157663
512 => 0.034551103263819
513 => 0.034613383285905
514 => 0.034067744758313
515 => 0.034679633682259
516 => 0.034697180467154
517 => 0.03446156990162
518 => 0.035404269213358
519 => 0.035790493890547
520 => 0.035635409969045
521 => 0.035779612789192
522 => 0.03699117191183
523 => 0.03718870891285
524 => 0.037276441800142
525 => 0.037158891353551
526 => 0.035801757865864
527 => 0.03586195250702
528 => 0.035420284169988
529 => 0.035047120967059
530 => 0.035062045538193
531 => 0.035253899932319
601 => 0.036091739323581
602 => 0.03785492292916
603 => 0.037921834458121
604 => 0.038002933183169
605 => 0.037673063911445
606 => 0.037573572182669
607 => 0.037704827453919
608 => 0.038366986512384
609 => 0.040070239385189
610 => 0.039468196063505
611 => 0.038978725471614
612 => 0.039408123141027
613 => 0.039342020735551
614 => 0.038784049910225
615 => 0.038768389527537
616 => 0.037697465119672
617 => 0.037301568749853
618 => 0.036970728110903
619 => 0.036609458769983
620 => 0.036395286194828
621 => 0.036724352609961
622 => 0.036799613992501
623 => 0.036080104524716
624 => 0.035982038042935
625 => 0.03656960500602
626 => 0.036311038692271
627 => 0.036576980558098
628 => 0.036638681352176
629 => 0.03662874610324
630 => 0.036358773175534
701 => 0.036530845868945
702 => 0.036123842651689
703 => 0.035681287782829
704 => 0.035398965348639
705 => 0.035152601580172
706 => 0.035289298517664
707 => 0.034801998895379
708 => 0.034646101938807
709 => 0.036472551512176
710 => 0.037821769449665
711 => 0.037802151286505
712 => 0.03768273076365
713 => 0.037505296090256
714 => 0.038354006060853
715 => 0.038058332477589
716 => 0.038273459713768
717 => 0.038328218624238
718 => 0.0384939573539
719 => 0.038553194704029
720 => 0.038374138288954
721 => 0.037773203090063
722 => 0.036275729709632
723 => 0.03557865180869
724 => 0.035348604490628
725 => 0.035356966273717
726 => 0.035126310967466
727 => 0.035194249292402
728 => 0.035102684790597
729 => 0.034929283776009
730 => 0.035278591493644
731 => 0.035318845954075
801 => 0.035237313358863
802 => 0.035256517236558
803 => 0.034581462171227
804 => 0.034632785141701
805 => 0.034347012320291
806 => 0.034293433361319
807 => 0.033571024553879
808 => 0.032291172636669
809 => 0.033000334837035
810 => 0.032143766622288
811 => 0.031819371260237
812 => 0.033355008450358
813 => 0.033200873068415
814 => 0.032937060295569
815 => 0.032546826221131
816 => 0.032402084606969
817 => 0.031522680378946
818 => 0.031470720485716
819 => 0.031906576967035
820 => 0.031705444197812
821 => 0.031422977614886
822 => 0.030399912284707
823 => 0.029249648128296
824 => 0.029284367372876
825 => 0.029650244999605
826 => 0.030714083544639
827 => 0.0302984234205
828 => 0.029996857231287
829 => 0.029940382949094
830 => 0.030647276827661
831 => 0.031647679764678
901 => 0.032117046439973
902 => 0.031651918319634
903 => 0.031117604179265
904 => 0.031150125405216
905 => 0.031366474551702
906 => 0.031389209787985
907 => 0.031041426210986
908 => 0.031139325250757
909 => 0.030990607657269
910 => 0.030077928060541
911 => 0.030061420580775
912 => 0.029837434288792
913 => 0.029830652072888
914 => 0.029449595514225
915 => 0.029396283067549
916 => 0.028639672141844
917 => 0.029137675744372
918 => 0.028803641074158
919 => 0.028300172035334
920 => 0.028213373783272
921 => 0.028210764523003
922 => 0.028727714652258
923 => 0.029131634881128
924 => 0.028809451750259
925 => 0.028736096896618
926 => 0.02951933482156
927 => 0.029419660656239
928 => 0.0293333434719
929 => 0.031558104654184
930 => 0.029797032578126
1001 => 0.029029104634485
1002 => 0.028078647978668
1003 => 0.028388121458421
1004 => 0.028453332067716
1005 => 0.026167655143165
1006 => 0.025240356299538
1007 => 0.024922142280925
1008 => 0.024739005614327
1009 => 0.024822463292981
1010 => 0.023987785572411
1011 => 0.024548702804929
1012 => 0.023825942452467
1013 => 0.023704769327311
1014 => 0.024997154370341
1015 => 0.025176982199074
1016 => 0.024409780813569
1017 => 0.024902448301686
1018 => 0.024723800221904
1019 => 0.023838332104262
1020 => 0.02380451373523
1021 => 0.023360216959506
1022 => 0.022664978538307
1023 => 0.022347235924082
1024 => 0.022181752811825
1025 => 0.022250034369144
1026 => 0.022215509124314
1027 => 0.02199020854802
1028 => 0.022228423089619
1029 => 0.021619883372877
1030 => 0.021377557954332
1031 => 0.021268105184683
1101 => 0.020727991159835
1102 => 0.021587552763165
1103 => 0.021756897227493
1104 => 0.021926575352729
1105 => 0.02340350758873
1106 => 0.023329724227986
1107 => 0.023996689875153
1108 => 0.023970772816575
1109 => 0.023780543409876
1110 => 0.022977996834231
1111 => 0.023297877595266
1112 => 0.022313334333308
1113 => 0.023051021087601
1114 => 0.022714371659477
1115 => 0.022937199577314
1116 => 0.022536534889461
1117 => 0.022758279270758
1118 => 0.021797055082251
1119 => 0.020899477459812
1120 => 0.021260688897005
1121 => 0.021653367038773
1122 => 0.022504793302656
1123 => 0.021997690844001
1124 => 0.022180064063801
1125 => 0.021569144306382
1126 => 0.020308642346226
1127 => 0.020315776650431
1128 => 0.020121875885389
1129 => 0.019954317314417
1130 => 0.022055937661519
1201 => 0.021794567949656
1202 => 0.021378109521024
1203 => 0.021935555677148
1204 => 0.022082953288687
1205 => 0.022087149491471
1206 => 0.022493847817211
1207 => 0.022710902786563
1208 => 0.022749159665682
1209 => 0.023389108268533
1210 => 0.023603610599082
1211 => 0.02448711534111
1212 => 0.022692487188892
1213 => 0.022655528003085
1214 => 0.021943400087744
1215 => 0.021491757305537
1216 => 0.021974324455439
1217 => 0.022401813073266
1218 => 0.021956683350719
1219 => 0.022014807895283
1220 => 0.021417257611198
1221 => 0.021630853720404
1222 => 0.021814831464156
1223 => 0.021713249767768
1224 => 0.021561177051666
1225 => 0.02236676388162
1226 => 0.022321309515554
1227 => 0.023071490491969
1228 => 0.02365631020904
1229 => 0.024704411691061
1230 => 0.023610663155806
1231 => 0.023570802611925
]
'min_raw' => 0.019954317314417
'max_raw' => 0.057693799627758
'avg_raw' => 0.038824058471088
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.019954'
'max' => '$0.057693'
'avg' => '$0.038824'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0035087297205576
'max_diff' => -0.019488994981414
'year' => 2030
]
5 => [
'items' => [
101 => 0.023960445822198
102 => 0.023603550946737
103 => 0.023829096188436
104 => 0.024668072865708
105 => 0.024685799120856
106 => 0.024388861508127
107 => 0.024370792827407
108 => 0.024427822944073
109 => 0.02476185011869
110 => 0.024645130760261
111 => 0.024780201356808
112 => 0.024949109206065
113 => 0.025647783686035
114 => 0.025816231737804
115 => 0.025406990302306
116 => 0.025443940221849
117 => 0.025290872691044
118 => 0.025143011374217
119 => 0.025475382021033
120 => 0.026082795910851
121 => 0.026079017220567
122 => 0.026219925436566
123 => 0.026307710087787
124 => 0.025930874102456
125 => 0.025685567732648
126 => 0.025779633804082
127 => 0.025930047500798
128 => 0.025730856669463
129 => 0.024501358584293
130 => 0.024874309762692
131 => 0.024812232450225
201 => 0.024723826808414
202 => 0.02509883210224
203 => 0.025062661926819
204 => 0.023979224745963
205 => 0.024048582879078
206 => 0.023983442643759
207 => 0.024193924070513
208 => 0.023592184258951
209 => 0.023777275372208
210 => 0.023893362783321
211 => 0.023961739160293
212 => 0.024208761520033
213 => 0.024179776297239
214 => 0.024206959757887
215 => 0.024573228705898
216 => 0.02642569135661
217 => 0.02652651681146
218 => 0.026030015396602
219 => 0.02622835791878
220 => 0.025847583648939
221 => 0.02610319996725
222 => 0.026278086160287
223 => 0.025487809082632
224 => 0.025441014002949
225 => 0.025058668142247
226 => 0.025264119150612
227 => 0.024937231823853
228 => 0.025017438539807
301 => 0.024793173569706
302 => 0.025196805865177
303 => 0.025648129489632
304 => 0.02576215166048
305 => 0.025462208418611
306 => 0.025245029744276
307 => 0.024863735535245
308 => 0.025497836302559
309 => 0.025683266690792
310 => 0.025496862315669
311 => 0.025453668348937
312 => 0.02537181586003
313 => 0.025471033741401
314 => 0.025682256797074
315 => 0.025582647904696
316 => 0.025648441332995
317 => 0.025397704630209
318 => 0.025930998850847
319 => 0.026777998417463
320 => 0.026780721659568
321 => 0.026681112230261
322 => 0.026640354197904
323 => 0.026742559517179
324 => 0.026798001710204
325 => 0.027128514971488
326 => 0.027483168869076
327 => 0.0291381838615
328 => 0.028673462274277
329 => 0.030141890032838
330 => 0.03130322573838
331 => 0.031651459537416
401 => 0.031331100827969
402 => 0.030235170988388
403 => 0.030181399442049
404 => 0.031819181312026
405 => 0.031356432918596
406 => 0.03130139046965
407 => 0.030715831808557
408 => 0.031061969500114
409 => 0.030986264109437
410 => 0.030866759446619
411 => 0.031527166049949
412 => 0.03276338825648
413 => 0.032570711432374
414 => 0.032426887121199
415 => 0.031796690856259
416 => 0.032176209767185
417 => 0.03204107035221
418 => 0.032621715040533
419 => 0.032277753990025
420 => 0.03135292714439
421 => 0.031500208867827
422 => 0.031477947531619
423 => 0.031936084253319
424 => 0.031798562981117
425 => 0.031451094296084
426 => 0.032759162983373
427 => 0.032674224278681
428 => 0.032794647942243
429 => 0.032847662163169
430 => 0.033643860522366
501 => 0.033970037514623
502 => 0.034044085402398
503 => 0.034353928317608
504 => 0.034036376228407
505 => 0.035306810996015
506 => 0.03615157598455
507 => 0.037132813989943
508 => 0.038566666447734
509 => 0.03910580823574
510 => 0.039008417097408
511 => 0.040095547666573
512 => 0.042049097133807
513 => 0.039403285298853
514 => 0.042189331585593
515 => 0.041307301497662
516 => 0.039216024026222
517 => 0.039081370411603
518 => 0.040497607795493
519 => 0.043638686005164
520 => 0.042851881539456
521 => 0.043639972935405
522 => 0.042720622460091
523 => 0.042674968960097
524 => 0.043595322134848
525 => 0.045745777493492
526 => 0.044724176761214
527 => 0.043259461604717
528 => 0.044340984482782
529 => 0.043404069275584
530 => 0.041292937087713
531 => 0.042851279884909
601 => 0.041809260435472
602 => 0.042113377107618
603 => 0.04430354700164
604 => 0.04404001996552
605 => 0.044381048352205
606 => 0.043779142175973
607 => 0.04321686689548
608 => 0.04216733832933
609 => 0.041856624662025
610 => 0.041942494741362
611 => 0.041856582109079
612 => 0.041269380521983
613 => 0.041142574395157
614 => 0.040931225294944
615 => 0.040996731218594
616 => 0.040599333077834
617 => 0.041349305476094
618 => 0.041488506961945
619 => 0.042034274330891
620 => 0.042090937709649
621 => 0.043610892063652
622 => 0.042773726747262
623 => 0.043335369518872
624 => 0.043285130902993
625 => 0.039261348350336
626 => 0.039815790083958
627 => 0.040678327428073
628 => 0.040289755523691
629 => 0.039740405762717
630 => 0.03929677637646
701 => 0.038624632492847
702 => 0.039570662101652
703 => 0.040814590438199
704 => 0.042122485785058
705 => 0.043693836347612
706 => 0.043343129194587
707 => 0.0420931104793
708 => 0.042149185405729
709 => 0.04249581853624
710 => 0.042046897137287
711 => 0.041914501452749
712 => 0.042477629402258
713 => 0.042481507354957
714 => 0.041964969031498
715 => 0.04139093121049
716 => 0.04138852597106
717 => 0.041286381485359
718 => 0.042738793737182
719 => 0.043537473620243
720 => 0.043629040981699
721 => 0.043531310407246
722 => 0.043568923026565
723 => 0.043104188800322
724 => 0.04416643342886
725 => 0.045141254145111
726 => 0.044879981369149
727 => 0.044488296335868
728 => 0.044176300340752
729 => 0.044806485028075
730 => 0.044778423895951
731 => 0.04513273993657
801 => 0.045116666114339
802 => 0.044997522956379
803 => 0.044879985624126
804 => 0.045346007860691
805 => 0.045211800940649
806 => 0.04507738556019
807 => 0.044807794936716
808 => 0.044844436779872
809 => 0.044452819376534
810 => 0.044271639246557
811 => 0.041547124803616
812 => 0.040819045518384
813 => 0.041048114082938
814 => 0.041123529402152
815 => 0.040806668364161
816 => 0.041260965697719
817 => 0.041190163939504
818 => 0.041465612163075
819 => 0.041293524071559
820 => 0.041300586626862
821 => 0.041806661010961
822 => 0.041953576557659
823 => 0.041878854124854
824 => 0.041931187155455
825 => 0.043137179757269
826 => 0.042965726174764
827 => 0.042874644876254
828 => 0.042899875018402
829 => 0.043208031984938
830 => 0.043294299110822
831 => 0.04292877923657
901 => 0.043101160522312
902 => 0.043835138158561
903 => 0.044091988791712
904 => 0.044911732717431
905 => 0.044563490927999
906 => 0.045202703804053
907 => 0.047167426261315
908 => 0.048736982508629
909 => 0.047293553718944
910 => 0.050175843885353
911 => 0.05242012021987
912 => 0.052333981156114
913 => 0.051942639666144
914 => 0.049387590726469
915 => 0.047036396598547
916 => 0.04900327032353
917 => 0.049008284289146
918 => 0.048839328091836
919 => 0.047789955661017
920 => 0.04880281220589
921 => 0.048883209080268
922 => 0.048838208209871
923 => 0.048033656827546
924 => 0.046805255572685
925 => 0.047045282237508
926 => 0.047438450810899
927 => 0.046694100677913
928 => 0.04645623570866
929 => 0.046898471942164
930 => 0.048323449230095
1001 => 0.048054065528143
1002 => 0.04804703083102
1003 => 0.049199568544438
1004 => 0.048374600274837
1005 => 0.047048309742423
1006 => 0.046713403891366
1007 => 0.045524713739726
1008 => 0.046345746261433
1009 => 0.046375293760233
1010 => 0.045925622638843
1011 => 0.047084798075645
1012 => 0.047074116069926
1013 => 0.048174580626674
1014 => 0.050278255543565
1015 => 0.049656095355085
1016 => 0.048932590746718
1017 => 0.049011255758255
1018 => 0.049874016773014
1019 => 0.049352371768572
1020 => 0.049539958949208
1021 => 0.049873732837349
1022 => 0.050075106911205
1023 => 0.048982281127998
1024 => 0.048727491162033
1025 => 0.048206280310794
1026 => 0.048070306128567
1027 => 0.04849482149148
1028 => 0.048382976691702
1029 => 0.046372810407372
1030 => 0.0461627368462
1031 => 0.046169179502405
1101 => 0.045640939544385
1102 => 0.044835246816287
1103 => 0.046952559200315
1104 => 0.046782509384109
1105 => 0.046594787547829
1106 => 0.046617782401648
1107 => 0.047536835945179
1108 => 0.047003738476614
1109 => 0.04842106546975
1110 => 0.048129705648711
1111 => 0.047830873547663
1112 => 0.04778956584865
1113 => 0.047674540984903
1114 => 0.047280077928249
1115 => 0.046803740083785
1116 => 0.046489220579192
1117 => 0.042883848573402
1118 => 0.043552984646193
1119 => 0.044322764704266
1120 => 0.044588489695613
1121 => 0.044133948710304
1122 => 0.047298025976809
1123 => 0.047876133383206
1124 => 0.046125008340215
1125 => 0.045797444342636
1126 => 0.047319501017957
1127 => 0.046401514778877
1128 => 0.046814883926126
1129 => 0.045921405930609
1130 => 0.047736884237966
1201 => 0.047723053335022
1202 => 0.047016791269023
1203 => 0.047613719130932
1204 => 0.047509988225252
1205 => 0.046712620092185
1206 => 0.047762162230024
1207 => 0.04776268278983
1208 => 0.047082920906768
1209 => 0.046289107846361
1210 => 0.046147192820188
1211 => 0.046040278911567
1212 => 0.046788589658547
1213 => 0.047459522734381
1214 => 0.048707962850095
1215 => 0.049021850357391
1216 => 0.050246974195041
1217 => 0.049517472599917
1218 => 0.049840851208408
1219 => 0.050191924432622
1220 => 0.050360241846601
1221 => 0.050085977652933
1222 => 0.051989099253894
1223 => 0.052149781027154
1224 => 0.052203656235836
1225 => 0.051561934339785
1226 => 0.052131933580358
1227 => 0.051865249812085
1228 => 0.052559086890248
1229 => 0.05266788940346
1230 => 0.052575737545531
1231 => 0.052610273180555
]
'min_raw' => 0.023592184258951
'max_raw' => 0.05266788940346
'avg_raw' => 0.038130036831206
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.023592'
'max' => '$0.052667'
'avg' => '$0.03813'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0036378669445338
'max_diff' => -0.0050259102242981
'year' => 2031
]
6 => [
'items' => [
101 => 0.050986294627792
102 => 0.050902082772662
103 => 0.049753848152562
104 => 0.050221762247574
105 => 0.049347019274655
106 => 0.049624409282219
107 => 0.049746680154484
108 => 0.049682812789623
109 => 0.050248217408454
110 => 0.049767507977916
111 => 0.048498836754778
112 => 0.047229819883014
113 => 0.047213888409908
114 => 0.04687977866758
115 => 0.046638278519129
116 => 0.046684800015399
117 => 0.046848747836148
118 => 0.046628749573747
119 => 0.046675697357225
120 => 0.047455343374409
121 => 0.047611695822974
122 => 0.047080349111904
123 => 0.044946915393994
124 => 0.044423365408305
125 => 0.044799682755571
126 => 0.044619827301519
127 => 0.036011683067063
128 => 0.03803403886854
129 => 0.036832423724016
130 => 0.037386183266267
131 => 0.036159645360442
201 => 0.036745013537461
202 => 0.036636917409389
203 => 0.039888805692305
204 => 0.039838031929594
205 => 0.039862334642916
206 => 0.038702302815658
207 => 0.040550265014777
208 => 0.041460637644634
209 => 0.04129215189963
210 => 0.041334556131765
211 => 0.040605910931751
212 => 0.039869389521192
213 => 0.039052473927049
214 => 0.040570202127147
215 => 0.040401456659781
216 => 0.040788498049217
217 => 0.041772853276433
218 => 0.041917803322842
219 => 0.042112617655155
220 => 0.042042790584849
221 => 0.043706354689944
222 => 0.043504886100267
223 => 0.043990367434918
224 => 0.042991695495984
225 => 0.041861603402269
226 => 0.04207639696379
227 => 0.042055710616555
228 => 0.041792349673566
229 => 0.0415545991899
301 => 0.041158811620378
302 => 0.042411142055883
303 => 0.042360299727226
304 => 0.04318337793045
305 => 0.043037890863075
306 => 0.04206629262042
307 => 0.042100993441733
308 => 0.042334373141709
309 => 0.043142102948006
310 => 0.043381892148954
311 => 0.043270812237127
312 => 0.043533730149174
313 => 0.043741529746828
314 => 0.0435598265793
315 => 0.04613236025343
316 => 0.04506406491551
317 => 0.045584744630061
318 => 0.045708923673959
319 => 0.045390841664219
320 => 0.045459822262469
321 => 0.045564309072729
322 => 0.046198732524015
323 => 0.047863643232094
324 => 0.048601020851272
325 => 0.050819457800138
326 => 0.048539791904791
327 => 0.048404525964756
328 => 0.048804133449625
329 => 0.05010659078401
330 => 0.051162110119932
331 => 0.051512286778028
401 => 0.051558568404182
402 => 0.052215523094076
403 => 0.052592077270843
404 => 0.052135751515099
405 => 0.051749063216404
406 => 0.050363993727997
407 => 0.0505243192927
408 => 0.051628803446284
409 => 0.053188952367015
410 => 0.054527722446831
411 => 0.054058931825727
412 => 0.057635473350146
413 => 0.05799007283343
414 => 0.057941078650414
415 => 0.058748909044814
416 => 0.057145530223729
417 => 0.056460054713714
418 => 0.051832669615681
419 => 0.053132776079643
420 => 0.055022557177587
421 => 0.054772437562959
422 => 0.053400028015638
423 => 0.054526681351122
424 => 0.054154174524704
425 => 0.053860362935386
426 => 0.055206370784233
427 => 0.05372637986347
428 => 0.055007793136019
429 => 0.053364367359452
430 => 0.054061073221796
501 => 0.053665589278459
502 => 0.053921515858487
503 => 0.052425374301081
504 => 0.053232655968674
505 => 0.052391788729613
506 => 0.052391390049058
507 => 0.05237282785815
508 => 0.05336210443593
509 => 0.053394364709615
510 => 0.052663287823922
511 => 0.052557928223126
512 => 0.05294749788847
513 => 0.05249141383881
514 => 0.052704812695087
515 => 0.052497877472773
516 => 0.052451291995508
517 => 0.052080090986792
518 => 0.051920167385852
519 => 0.051982877550504
520 => 0.051768815429241
521 => 0.051639835258216
522 => 0.05234717045575
523 => 0.051969269793528
524 => 0.052289251759406
525 => 0.051924591924344
526 => 0.050660522061294
527 => 0.049933542115757
528 => 0.047545831323793
529 => 0.048222983142448
530 => 0.048671935498781
531 => 0.048523556747691
601 => 0.048842331719986
602 => 0.048861901914302
603 => 0.048758264921282
604 => 0.048638266560087
605 => 0.048579857994183
606 => 0.049015187591193
607 => 0.049267911074777
608 => 0.048716993873946
609 => 0.048587921681942
610 => 0.049144929388955
611 => 0.04948470376846
612 => 0.051993406883991
613 => 0.051807554054189
614 => 0.052274008185218
615 => 0.052221492608386
616 => 0.052710410849675
617 => 0.053509585541918
618 => 0.051884639939831
619 => 0.052166674309962
620 => 0.05209752599553
621 => 0.05285246916083
622 => 0.052854826010988
623 => 0.052402199871182
624 => 0.052647575844591
625 => 0.052510613707772
626 => 0.052758122800547
627 => 0.051805071876337
628 => 0.052965785026535
629 => 0.053623834587994
630 => 0.053632971606793
701 => 0.053944881876321
702 => 0.054261800774785
703 => 0.054870099002568
704 => 0.054244835667367
705 => 0.053120047795497
706 => 0.053201253846804
707 => 0.052541791129071
708 => 0.052552876816497
709 => 0.052493700548212
710 => 0.052671292983917
711 => 0.051844043429086
712 => 0.052038197246122
713 => 0.051766380765308
714 => 0.052166083434017
715 => 0.051736069435704
716 => 0.052097492650119
717 => 0.052253470928092
718 => 0.052829034131781
719 => 0.051651058282543
720 => 0.049249085783992
721 => 0.049754009524289
722 => 0.049007187651486
723 => 0.049076308859165
724 => 0.049215944699236
725 => 0.048763339255563
726 => 0.048849682110979
727 => 0.048846597336598
728 => 0.048820014417514
729 => 0.048702274261163
730 => 0.048531527740274
731 => 0.049211729326489
801 => 0.049327308830584
802 => 0.049584227750917
803 => 0.050348644188061
804 => 0.050272260959809
805 => 0.050396845174197
806 => 0.050124878533699
807 => 0.049088924611599
808 => 0.049145181893694
809 => 0.048443652684511
810 => 0.049566288071786
811 => 0.049300433194016
812 => 0.04912903482483
813 => 0.049082267191802
814 => 0.049848578469439
815 => 0.050077870814165
816 => 0.049934991212168
817 => 0.049641940980009
818 => 0.050204684058278
819 => 0.050355250365799
820 => 0.050388956609381
821 => 0.051386029448791
822 => 0.050444681905006
823 => 0.050671273614985
824 => 0.052439077452784
825 => 0.050835923312155
826 => 0.051685149815049
827 => 0.051643584596894
828 => 0.052078020139517
829 => 0.051607948202176
830 => 0.051613775307215
831 => 0.051999524637852
901 => 0.051457809273231
902 => 0.051323672930791
903 => 0.051138364534412
904 => 0.051542978638533
905 => 0.051785526494831
906 => 0.053740284084827
907 => 0.05500314663574
908 => 0.054948322441841
909 => 0.05544931294748
910 => 0.055223612136143
911 => 0.054494764679469
912 => 0.055738818414533
913 => 0.055345147759339
914 => 0.055377601489844
915 => 0.055376393560373
916 => 0.055638150130791
917 => 0.055452671611013
918 => 0.05508707440955
919 => 0.055329774893588
920 => 0.056050508564169
921 => 0.058287687992463
922 => 0.059539643239221
923 => 0.058212318714607
924 => 0.059127889398102
925 => 0.058578873239196
926 => 0.058479100671307
927 => 0.059054146720684
928 => 0.059630199312047
929 => 0.059593507252321
930 => 0.059175322651619
1001 => 0.058939100781724
1002 => 0.060727851920701
1003 => 0.062045773289319
1004 => 0.061955899887436
1005 => 0.062352571854951
1006 => 0.063517213020175
1007 => 0.063623693212565
1008 => 0.063610279155743
1009 => 0.063346356888846
1010 => 0.064493097363776
1011 => 0.065449728442941
1012 => 0.063285266509506
1013 => 0.064109465278871
1014 => 0.064479474660465
1015 => 0.065022758209481
1016 => 0.065939368621566
1017 => 0.066935050647995
1018 => 0.06707585100363
1019 => 0.06697594641339
1020 => 0.06631926735159
1021 => 0.067408754505866
1022 => 0.068046950529223
1023 => 0.068426981656276
1024 => 0.069390677363332
1025 => 0.064481759712439
1026 => 0.0610069838101
1027 => 0.060464347376577
1028 => 0.061567819902269
1029 => 0.061858796807266
1030 => 0.061741504381716
1031 => 0.057830328190829
1101 => 0.060443755843369
1102 => 0.063255584254263
1103 => 0.063363598035057
1104 => 0.064771258130111
1105 => 0.065229649958997
1106 => 0.066363000841741
1107 => 0.066292109435447
1108 => 0.066568062339844
1109 => 0.066504625545961
1110 => 0.06860391940106
1111 => 0.070919752271389
1112 => 0.070839562342987
1113 => 0.070506633968186
1114 => 0.071001089377489
1115 => 0.0733912770794
1116 => 0.073171226897786
1117 => 0.073384986905394
1118 => 0.076203152911024
1119 => 0.079867169597782
1120 => 0.078164865985522
1121 => 0.081858374999458
1122 => 0.08418324313923
1123 => 0.088203862191113
1124 => 0.087700460883851
1125 => 0.089265658376084
1126 => 0.086799267480829
1127 => 0.081135935445483
1128 => 0.080239691472525
1129 => 0.082033994602899
1130 => 0.086445113763382
1201 => 0.081895072762695
1202 => 0.082815540131148
1203 => 0.08255044546711
1204 => 0.082536319699043
1205 => 0.083075442812501
1206 => 0.08229341661766
1207 => 0.079107301216049
1208 => 0.080567479128711
1209 => 0.08000363431313
1210 => 0.080629262173433
1211 => 0.084005517706933
1212 => 0.082512794655694
1213 => 0.080940332180186
1214 => 0.08291254908183
1215 => 0.085423858924878
1216 => 0.085266705668158
1217 => 0.084961762665155
1218 => 0.086680710406785
1219 => 0.089519908471524
1220 => 0.090287332299602
1221 => 0.090853828880199
1222 => 0.090931939187625
1223 => 0.091736523899401
1224 => 0.087410069122729
1225 => 0.094276263964546
1226 => 0.095461866138923
1227 => 0.095239022068315
1228 => 0.096556768987369
1229 => 0.096169054415771
1230 => 0.095607316832077
1231 => 0.097696225991585
]
'min_raw' => 0.036011683067063
'max_raw' => 0.097696225991585
'avg_raw' => 0.066853954529324
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.036011'
'max' => '$0.097696'
'avg' => '$0.066853'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.012419498808112
'max_diff' => 0.045028336588125
'year' => 2032
]
7 => [
'items' => [
101 => 0.095301460206486
102 => 0.091902391667167
103 => 0.090037595440543
104 => 0.092493309540582
105 => 0.093992928448863
106 => 0.094984081153562
107 => 0.095284003363133
108 => 0.087745919491205
109 => 0.083683310365534
110 => 0.086287396237181
111 => 0.089464560724996
112 => 0.087392419813581
113 => 0.087473643814227
114 => 0.0845193154236
115 => 0.089725953233365
116 => 0.088967389899199
117 => 0.092902817818728
118 => 0.09196359636195
119 => 0.095172785057894
120 => 0.094327698122627
121 => 0.097835606742746
122 => 0.099235006464146
123 => 0.10158481639555
124 => 0.10331334614654
125 => 0.10432837187783
126 => 0.10426743354019
127 => 0.10828947117136
128 => 0.10591781609955
129 => 0.10293845837317
130 => 0.10288457119166
131 => 0.10442762277597
201 => 0.10766143558117
202 => 0.10849991619149
203 => 0.10896851246503
204 => 0.10825084096015
205 => 0.10567657935775
206 => 0.10456502624964
207 => 0.10551210170254
208 => 0.10435390980676
209 => 0.10635327395013
210 => 0.10909882796012
211 => 0.10853188191415
212 => 0.11042709754451
213 => 0.11238844633943
214 => 0.11519326320586
215 => 0.11592654619681
216 => 0.1171386350966
217 => 0.11838627272494
218 => 0.11878698030639
219 => 0.11955205541163
220 => 0.11954802308817
221 => 0.12185362841332
222 => 0.1243967824856
223 => 0.12535676427374
224 => 0.12756418946185
225 => 0.12378405118461
226 => 0.126651329491
227 => 0.12923768629599
228 => 0.1261541250901
301 => 0.1304040958348
302 => 0.13056911256818
303 => 0.13306066932526
304 => 0.13053499922744
305 => 0.12903526438557
306 => 0.1333649426797
307 => 0.13545993762264
308 => 0.13482890809619
309 => 0.13002674224215
310 => 0.12723167574052
311 => 0.11991644757768
312 => 0.1285816513309
313 => 0.13280221931164
314 => 0.1300158119907
315 => 0.13142111376775
316 => 0.13908798459269
317 => 0.1420070326097
318 => 0.14139989102785
319 => 0.14150248796078
320 => 0.14307755328629
321 => 0.15006226034393
322 => 0.14587686197075
323 => 0.14907644220316
324 => 0.15077348802149
325 => 0.15234979875494
326 => 0.1484788777917
327 => 0.14344286649366
328 => 0.1418477503182
329 => 0.12973875869672
330 => 0.12910843309613
331 => 0.12875461223571
401 => 0.12652382175966
402 => 0.12477103151043
403 => 0.12337714762731
404 => 0.11971918006904
405 => 0.12095363673919
406 => 0.11512359992848
407 => 0.11885345087616
408 => 0.1095485713551
409 => 0.11729795151622
410 => 0.1130803162156
411 => 0.11591234488703
412 => 0.11590246420579
413 => 0.11068780152618
414 => 0.10768009291981
415 => 0.10959672190556
416 => 0.11165150032048
417 => 0.11198488120519
418 => 0.11464895505534
419 => 0.11539244080284
420 => 0.11313964427789
421 => 0.10935574840909
422 => 0.11023466111794
423 => 0.10766228178182
424 => 0.10315428594042
425 => 0.10639200725577
426 => 0.10749750766539
427 => 0.10798575962525
428 => 0.10355266346205
429 => 0.10215968840037
430 => 0.10141808016573
501 => 0.10878349136286
502 => 0.10918698521472
503 => 0.10712265362035
504 => 0.11645362817485
505 => 0.11434174125525
506 => 0.1167012363693
507 => 0.11015490900194
508 => 0.11040498752317
509 => 0.10730585123791
510 => 0.10904116047329
511 => 0.10781469983735
512 => 0.10890096463573
513 => 0.10955206727705
514 => 0.11265069502454
515 => 0.11733333286771
516 => 0.11218786336919
517 => 0.10994590862421
518 => 0.11133680473876
519 => 0.11504094438197
520 => 0.12065290555285
521 => 0.11733051158845
522 => 0.11880493361194
523 => 0.1191270292316
524 => 0.11667721892396
525 => 0.12074323355327
526 => 0.12292224382535
527 => 0.12515745748187
528 => 0.12709823087056
529 => 0.12426466399406
530 => 0.12729698672778
531 => 0.12485346988142
601 => 0.12266138266411
602 => 0.12266470715556
603 => 0.12128957882286
604 => 0.11862509440092
605 => 0.11813372259299
606 => 0.12068990079126
607 => 0.1227397136353
608 => 0.12290854603908
609 => 0.12404342775272
610 => 0.12471503906064
611 => 0.1312977428896
612 => 0.13394536082458
613 => 0.13718281791864
614 => 0.13844398990986
615 => 0.14223966544825
616 => 0.13917434918131
617 => 0.13851114872521
618 => 0.12930408142508
619 => 0.13081173817969
620 => 0.13322564211105
621 => 0.12934388581182
622 => 0.13180596672655
623 => 0.13229203365312
624 => 0.12921198521814
625 => 0.1308571721683
626 => 0.12648804339261
627 => 0.11742856793556
628 => 0.12075331933924
629 => 0.12320145547156
630 => 0.11970766335773
701 => 0.12597015049335
702 => 0.1223117347927
703 => 0.12115219265051
704 => 0.11662840534722
705 => 0.11876345881783
706 => 0.12165114920785
707 => 0.11986689227686
708 => 0.1235694933162
709 => 0.12881336383552
710 => 0.13255045824548
711 => 0.13283734595059
712 => 0.13043464461087
713 => 0.13428498884161
714 => 0.13431303439582
715 => 0.12996983037442
716 => 0.12730964209438
717 => 0.12670524172007
718 => 0.12821515235477
719 => 0.13004846261017
720 => 0.13293908191058
721 => 0.13468582261401
722 => 0.13924039596887
723 => 0.14047273292884
724 => 0.14182669762663
725 => 0.14363601201013
726 => 0.1458085578262
727 => 0.14105515126373
728 => 0.14124401296792
729 => 0.13681770659234
730 => 0.1320875634335
731 => 0.13567715247039
801 => 0.14037006263312
802 => 0.13929350385658
803 => 0.13917236900212
804 => 0.13937608422732
805 => 0.13856439406693
806 => 0.13489314955416
807 => 0.13304947354305
808 => 0.1354282859693
809 => 0.13669251890508
810 => 0.13865323393579
811 => 0.13841153442258
812 => 0.14346212577627
813 => 0.14542463285436
814 => 0.14492253956337
815 => 0.14501493681246
816 => 0.14856796213578
817 => 0.1525196570307
818 => 0.15622094077187
819 => 0.15998604556721
820 => 0.15544706478188
821 => 0.15314245026451
822 => 0.15552022417566
823 => 0.15425854386881
824 => 0.16150853315066
825 => 0.16201050667845
826 => 0.16925997170356
827 => 0.17614057726261
828 => 0.17181899218982
829 => 0.175894052265
830 => 0.18030156198082
831 => 0.18880436331533
901 => 0.18594091895803
902 => 0.18374756545622
903 => 0.18167485699523
904 => 0.18598783426936
905 => 0.19153641063103
906 => 0.19273152083573
907 => 0.19466805593458
908 => 0.19263202606639
909 => 0.1950841997813
910 => 0.20374145053465
911 => 0.20140218496143
912 => 0.19808005179175
913 => 0.20491411981032
914 => 0.20738734245948
915 => 0.22474571424801
916 => 0.2466613756696
917 => 0.23758814793507
918 => 0.23195610268902
919 => 0.23327976691574
920 => 0.24128262457495
921 => 0.24385288845708
922 => 0.23686602520235
923 => 0.23933390342128
924 => 0.25293215504401
925 => 0.26022718075546
926 => 0.25031955598665
927 => 0.22298481219159
928 => 0.19778093004806
929 => 0.20446613453813
930 => 0.203708239815
1001 => 0.21831786476719
1002 => 0.20134639425115
1003 => 0.20163215028888
1004 => 0.21654388681322
1005 => 0.21256569116041
1006 => 0.20612152369166
1007 => 0.19782797960213
1008 => 0.18249659629265
1009 => 0.16891716254819
1010 => 0.19554955927789
1011 => 0.19440112190304
1012 => 0.19273801439536
1013 => 0.19643908018666
1014 => 0.21441040510337
1015 => 0.21399610789654
1016 => 0.21136056044297
1017 => 0.21335959995785
1018 => 0.20577108239949
1019 => 0.20772681616161
1020 => 0.19777693762436
1021 => 0.20227469826683
1022 => 0.2061076974025
1023 => 0.2068772287275
1024 => 0.20861102209599
1025 => 0.19379594759189
1026 => 0.20044748109649
1027 => 0.20435463386604
1028 => 0.18670197550978
1029 => 0.20400569756796
1030 => 0.19353805010533
1031 => 0.18998517333773
1101 => 0.19476865384939
1102 => 0.19290452684191
1103 => 0.19130185990609
1104 => 0.19040754421859
1105 => 0.19392000437287
1106 => 0.19375614390837
1107 => 0.18800907735683
1108 => 0.18051226332074
1109 => 0.18302844018578
1110 => 0.18211428954143
1111 => 0.17880128967851
1112 => 0.18103385157299
1113 => 0.17120277886342
1114 => 0.1542889292413
1115 => 0.1654627363869
1116 => 0.16503255696655
1117 => 0.16481564099573
1118 => 0.1732124482443
1119 => 0.17240528897466
1120 => 0.17094028699652
1121 => 0.17877438376831
1122 => 0.17591483306314
1123 => 0.1847272945416
1124 => 0.19053175162559
1125 => 0.18905955355458
1126 => 0.19451867349744
1127 => 0.18308640781879
1128 => 0.18688374789435
1129 => 0.18766637442104
1130 => 0.1786777122302
1201 => 0.17253735021348
1202 => 0.17212785807222
1203 => 0.16148131652923
1204 => 0.16716861308561
1205 => 0.17217319869891
1206 => 0.16977639056167
1207 => 0.16901763270803
1208 => 0.17289396202779
1209 => 0.17319518601445
1210 => 0.16632724719629
1211 => 0.16775530915592
1212 => 0.17371056492313
1213 => 0.1676052519902
1214 => 0.15574362625872
1215 => 0.15280177907751
1216 => 0.15240928243454
1217 => 0.14443075955825
1218 => 0.15299836737315
1219 => 0.14925837696433
1220 => 0.16107296185383
1221 => 0.15432453432784
1222 => 0.1540336231051
1223 => 0.15359386812454
1224 => 0.14672642389629
1225 => 0.14822995773343
1226 => 0.15322793320274
1227 => 0.15501126715642
1228 => 0.15482525081463
1229 => 0.15320344039631
1230 => 0.1539458969008
1231 => 0.15155418581083
]
'min_raw' => 0.083683310365534
'max_raw' => 0.26022718075546
'avg_raw' => 0.1719552455605
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.083683'
'max' => '$0.260227'
'avg' => '$0.171955'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.047671627298471
'max_diff' => 0.16253095476387
'year' => 2033
]
8 => [
'items' => [
101 => 0.15070962284581
102 => 0.14804394981283
103 => 0.14412614686532
104 => 0.14467094139446
105 => 0.13690874860654
106 => 0.13267949400494
107 => 0.13150889207189
108 => 0.1299435142442
109 => 0.13168570566284
110 => 0.13688675928964
111 => 0.13061318515064
112 => 0.11985758232937
113 => 0.12050401238559
114 => 0.12195634879509
115 => 0.11924992950415
116 => 0.11668853077782
117 => 0.11891545915751
118 => 0.11435816845354
119 => 0.12250707560395
120 => 0.12228667050258
121 => 0.12532407916322
122 => 0.12722343313262
123 => 0.12284603715631
124 => 0.121745133906
125 => 0.12237225843064
126 => 0.11200728697554
127 => 0.12447703986533
128 => 0.12458487880614
129 => 0.12366149632401
130 => 0.1303012547774
131 => 0.14431321610664
201 => 0.13904135262474
202 => 0.13699992774163
203 => 0.13311917754657
204 => 0.13829004676535
205 => 0.13789300468747
206 => 0.13609742983758
207 => 0.13501146056583
208 => 0.13701239224666
209 => 0.13476352298724
210 => 0.13435956427345
211 => 0.13191201397932
212 => 0.13103834988076
213 => 0.13039152376376
214 => 0.12967943176476
215 => 0.13125012927228
216 => 0.12769072207776
217 => 0.12339842593416
218 => 0.12304156795311
219 => 0.12402688421407
220 => 0.12359095511676
221 => 0.12303948089231
222 => 0.12198656641275
223 => 0.12167418917862
224 => 0.12268926364564
225 => 0.12154330375489
226 => 0.12323422999736
227 => 0.12277439162263
228 => 0.12020577184144
301 => 0.11700432056924
302 => 0.11697582093765
303 => 0.11628607351249
304 => 0.11540757646232
305 => 0.11516319868026
306 => 0.11872791346078
307 => 0.12610676637354
308 => 0.12465812098578
309 => 0.12570491574159
310 => 0.13085410988931
311 => 0.1324908838672
312 => 0.13132914046681
313 => 0.12973887444714
314 => 0.12980883808127
315 => 0.13524325847673
316 => 0.1355821966108
317 => 0.13643858393001
318 => 0.13753928365021
319 => 0.13151659438872
320 => 0.12952516995866
321 => 0.12858152258368
322 => 0.12567545390624
323 => 0.12880939982736
324 => 0.12698338374807
325 => 0.12722977570276
326 => 0.12706931261903
327 => 0.12715693631321
328 => 0.12250479781833
329 => 0.12419979257666
330 => 0.12138153504129
331 => 0.11760820456569
401 => 0.11759555503883
402 => 0.11851907232706
403 => 0.11796972810679
404 => 0.11649145693496
405 => 0.11670143837768
406 => 0.11486177998664
407 => 0.11692480621444
408 => 0.11698396642479
409 => 0.11618958895329
410 => 0.11936796549998
411 => 0.12067014896447
412 => 0.12014727269551
413 => 0.12063346257155
414 => 0.12471831874188
415 => 0.12538432853242
416 => 0.12568012608723
417 => 0.12528379654944
418 => 0.12070812624367
419 => 0.12091107667899
420 => 0.11942196104438
421 => 0.11816381525229
422 => 0.11821413448586
423 => 0.11886098497051
424 => 0.12168581897422
425 => 0.12763051560198
426 => 0.12785611249349
427 => 0.12812954250712
428 => 0.12701736522676
429 => 0.12668192191691
430 => 0.12712445822787
501 => 0.12935697372396
502 => 0.13509960970194
503 => 0.13306977860956
504 => 0.13141949433525
505 => 0.13286723855727
506 => 0.13264436968208
507 => 0.13076313208822
508 => 0.13071033201461
509 => 0.12709963560394
510 => 0.12576484335249
511 => 0.12464939103972
512 => 0.12343134623379
513 => 0.1227092484436
514 => 0.1238187188369
515 => 0.12407246784272
516 => 0.12164659143753
517 => 0.12131595344743
518 => 0.12329697648608
519 => 0.12242520210675
520 => 0.12332184367486
521 => 0.12352987220991
522 => 0.12349637482446
523 => 0.12258614224979
524 => 0.12316629734936
525 => 0.12179405758632
526 => 0.12030195294777
527 => 0.11935008314977
528 => 0.11851945050382
529 => 0.11898033377245
530 => 0.11733736907374
531 => 0.11681175160028
601 => 0.12296975385553
602 => 0.12751873633116
603 => 0.12745259232437
604 => 0.12704995769389
605 => 0.12645172430445
606 => 0.12931320922536
607 => 0.12831632509611
608 => 0.12904164159259
609 => 0.12922626508239
610 => 0.12978506478095
611 => 0.12998478764273
612 => 0.12938108643799
613 => 0.12735499145897
614 => 0.12230615540659
615 => 0.11995590859514
616 => 0.11918028800091
617 => 0.11920848033639
618 => 0.11843080986753
619 => 0.11865986867335
620 => 0.11835115256269
621 => 0.11776651893553
622 => 0.11894423429342
623 => 0.11907995501724
624 => 0.11880506218006
625 => 0.11886980939448
626 => 0.11659381411088
627 => 0.11676685308909
628 => 0.11580335006968
629 => 0.11562270486875
630 => 0.11318705313749
701 => 0.10887194304221
702 => 0.11126293291287
703 => 0.10837495337316
704 => 0.10728123176145
705 => 0.1124587397627
706 => 0.1119390615611
707 => 0.11104959837863
708 => 0.10973389695139
709 => 0.1092458904937
710 => 0.10628091774088
711 => 0.10610573133313
712 => 0.10757525189043
713 => 0.10689711871635
714 => 0.10594476291083
715 => 0.10249542672199
716 => 0.09861723080977
717 => 0.098734289166889
718 => 0.099967871130166
719 => 0.10355467705959
720 => 0.10215324993059
721 => 0.10113649846898
722 => 0.10094609148365
723 => 0.103329433549
724 => 0.10670236189705
725 => 0.10828486441294
726 => 0.10671665248101
727 => 0.10491517505214
728 => 0.10502482263599
729 => 0.10575425888838
730 => 0.10583091232483
731 => 0.10465833571351
801 => 0.10498840916119
802 => 0.10448699741161
803 => 0.10140983442999
804 => 0.10135417830944
805 => 0.1005989928878
806 => 0.10057612617336
807 => 0.099291367381309
808 => 0.099111620745183
809 => 0.096560654184281
810 => 0.098239708099705
811 => 0.097113486887526
812 => 0.095416005872044
813 => 0.095123359505156
814 => 0.095114562201986
815 => 0.096857495655076
816 => 0.09821934090752
817 => 0.097133077987689
818 => 0.096885756977165
819 => 0.099526498325031
820 => 0.099190439917623
821 => 0.098899415504152
822 => 0.10640035315809
823 => 0.10046277569953
824 => 0.097873653022531
825 => 0.094669122048679
826 => 0.095712533492413
827 => 0.095932395614511
828 => 0.088226076282522
829 => 0.085099623489294
830 => 0.084026742708547
831 => 0.083409284650919
901 => 0.08369066804133
902 => 0.080876493831089
903 => 0.082767665442517
904 => 0.080330828452672
905 => 0.079922284801171
906 => 0.084279651205189
907 => 0.084885953284943
908 => 0.082299280249422
909 => 0.083960343082552
910 => 0.083358018608758
911 => 0.080372601028717
912 => 0.080258580036404
913 => 0.078760602437241
914 => 0.076416557560172
915 => 0.07534526615223
916 => 0.074787328285595
917 => 0.075017544323361
918 => 0.07490114004994
919 => 0.074141523426981
920 => 0.074944680385592
921 => 0.072892946243709
922 => 0.072075929176466
923 => 0.071706901521844
924 => 0.069885869377512
925 => 0.072783941335815
926 => 0.073354898020549
927 => 0.07392697966633
928 => 0.078906559816122
929 => 0.078657794063986
930 => 0.080906515309463
1001 => 0.080819134136996
1002 => 0.080177762410917
1003 => 0.077471920599119
1004 => 0.078550420918309
1005 => 0.075230964572004
1006 => 0.077718126967747
1007 => 0.076583089916715
1008 => 0.077334369799048
1009 => 0.075983500830436
1010 => 0.076731127493679
1011 => 0.073490293031596
1012 => 0.070464047410674
1013 => 0.07168189699015
1014 => 0.073005838761033
1015 => 0.075876481854397
1016 => 0.074166750510281
1017 => 0.074781634553725
1018 => 0.072721875938533
1019 => 0.068472005574432
1020 => 0.068496059379158
1021 => 0.0678423094121
1022 => 0.067277373991503
1023 => 0.074363133722203
1024 => 0.073481907490406
1025 => 0.072077788822075
1026 => 0.073957257457094
1027 => 0.074454218795371
1028 => 0.074468366586027
1029 => 0.07583957838603
1030 => 0.076571394369495
1031 => 0.076700380108453
1101 => 0.07885801150275
1102 => 0.079581221086272
1103 => 0.082560019008349
1104 => 0.076509304896212
1105 => 0.076384694420856
1106 => 0.073983705435098
1107 => 0.072460960262196
1108 => 0.074087969099852
1109 => 0.07552927682116
1110 => 0.074028490883629
1111 => 0.07422446184375
1112 => 0.07220977934133
1113 => 0.072929933536323
1114 => 0.073550227344296
1115 => 0.073207737562718
1116 => 0.072695013783002
1117 => 0.075411106024469
1118 => 0.075257853455754
1119 => 0.077787140993699
1120 => 0.079758901500614
1121 => 0.083292648823357
1122 => 0.079604999273661
1123 => 0.079470606666991
1124 => 0.080784315954445
1125 => 0.079581019964225
1126 => 0.080341461493678
1127 => 0.083170129936582
1128 => 0.083229895243423
1129 => 0.082228749350585
1130 => 0.082167829532021
1201 => 0.082360110552077
1202 => 0.083486306492331
1203 => 0.0830927790263
1204 => 0.083548178972888
1205 => 0.084117663579426
1206 => 0.086473293368539
1207 => 0.087041227735748
1208 => 0.08566144166364
1209 => 0.085786020897142
1210 => 0.085269943030199
1211 => 0.084771418277169
1212 => 0.085892029118287
1213 => 0.087939967456091
1214 => 0.08792722733798
1215 => 0.088402309226118
1216 => 0.088698281306637
1217 => 0.087427752472245
1218 => 0.086600684919695
1219 => 0.086917835247018
1220 => 0.087424965527044
1221 => 0.086753379732137
1222 => 0.082608041097173
1223 => 0.083865472033764
1224 => 0.083656174040684
1225 => 0.083358108247032
1226 => 0.0846224647772
1227 => 0.084500514505447
1228 => 0.080847630407022
1229 => 0.08108147619525
1230 => 0.080861851343925
1231 => 0.081571504169571
]
'min_raw' => 0.067277373991503
'max_raw' => 0.15070962284581
'avg_raw' => 0.10899349841865
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.067277'
'max' => '$0.1507096'
'avg' => '$0.108993'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.016405936374031
'max_diff' => -0.10951755790965
'year' => 2034
]
9 => [
'items' => [
101 => 0.079542696382758
102 => 0.080166743993753
103 => 0.080558140805286
104 => 0.08078867653413
105 => 0.081621529666547
106 => 0.081523803964213
107 => 0.081615454899677
108 => 0.082850356229976
109 => 0.089096063391664
110 => 0.089436003452099
111 => 0.087762014267283
112 => 0.08843073992864
113 => 0.08714693289306
114 => 0.088008761156805
115 => 0.088598402166794
116 => 0.085933927824097
117 => 0.085776154945818
118 => 0.084487049181926
119 => 0.085179741600759
120 => 0.084077618156049
121 => 0.084348040698739
122 => 0.083591915694363
123 => 0.084952790159253
124 => 0.086474459269513
125 => 0.086858892979298
126 => 0.085847613397971
127 => 0.085115380334517
128 => 0.083829820287659
129 => 0.085967735296158
130 => 0.086592926796423
131 => 0.08596445143136
201 => 0.085818819956816
202 => 0.085542848575708
203 => 0.085877368589919
204 => 0.086589521869246
205 => 0.086253683534122
206 => 0.086475510671181
207 => 0.085630134371861
208 => 0.087428173070155
209 => 0.090283891244624
210 => 0.090293072845512
211 => 0.089957232700094
212 => 0.089819814148366
213 => 0.090164406518049
214 => 0.090351333742683
215 => 0.091465682278804
216 => 0.092661422655666
217 => 0.09824142125208
218 => 0.096674579974932
219 => 0.10162548668527
220 => 0.10554101109838
221 => 0.10671510566473
222 => 0.1056349939091
223 => 0.10193998993958
224 => 0.10175869541689
225 => 0.10728059133779
226 => 0.10572040282128
227 => 0.10553482336172
228 => 0.10356057145344
301 => 0.10472759884709
302 => 0.10447235283684
303 => 0.1040694345226
304 => 0.10629604149385
305 => 0.11046405097344
306 => 0.1098144276087
307 => 0.10932951390208
308 => 0.10720476319594
309 => 0.10848433770129
310 => 0.10802870572857
311 => 0.10998638983457
312 => 0.10882670113819
313 => 0.10570858285878
314 => 0.10620515347223
315 => 0.10613009782297
316 => 0.10767473776626
317 => 0.10721107519561
318 => 0.10603956026453
319 => 0.11044980517016
320 => 0.11016342839706
321 => 0.11056944518647
322 => 0.11074818633366
323 => 0.11343262469049
324 => 0.11453235319283
325 => 0.11478201081632
326 => 0.1158266678375
327 => 0.11475601879798
328 => 0.11903937831589
329 => 0.12188756245434
330 => 0.12519587489738
331 => 0.1300302085672
401 => 0.13184796274714
402 => 0.13151960172462
403 => 0.13518493833959
404 => 0.14177146676084
405 => 0.13285092743461
406 => 0.14224427700589
407 => 0.13927045098306
408 => 0.13221956297977
409 => 0.13176556891687
410 => 0.13654051213519
411 => 0.14713087662217
412 => 0.1444781104331
413 => 0.14713521559733
414 => 0.14403556128281
415 => 0.14388163732015
416 => 0.14698467230583
417 => 0.1542350826875
418 => 0.15079068449274
419 => 0.14585229507946
420 => 0.14949872497238
421 => 0.14633984993798
422 => 0.13922202037203
423 => 0.14447608191279
424 => 0.14096284058754
425 => 0.14198819118043
426 => 0.1493725018909
427 => 0.14848400208976
428 => 0.14963380310531
429 => 0.14760443440839
430 => 0.1457086840434
501 => 0.14217012520688
502 => 0.14112253238423
503 => 0.14141204935197
504 => 0.141122388914
505 => 0.139142597766
506 => 0.13871506205609
507 => 0.1380024838088
508 => 0.13822334160386
509 => 0.13688348602683
510 => 0.13941207032897
511 => 0.13988139785725
512 => 0.14172149064592
513 => 0.14191253518351
514 => 0.14703716740785
515 => 0.14421460609463
516 => 0.14610822391176
517 => 0.14593884091077
518 => 0.13237237710296
519 => 0.13424171611776
520 => 0.13714982099387
521 => 0.13583972368903
522 => 0.13398755261553
523 => 0.13249182516655
524 => 0.13022564513536
525 => 0.13341525001112
526 => 0.13760924124609
527 => 0.14201890172237
528 => 0.14731681985221
529 => 0.14613438620019
530 => 0.14191986082808
531 => 0.14210892135757
601 => 0.14327761915823
602 => 0.14176404931898
603 => 0.14131766802498
604 => 0.14321629322309
605 => 0.14322936801137
606 => 0.14148782299027
607 => 0.1395524143987
608 => 0.13954430496603
609 => 0.13919991770099
610 => 0.1440968270122
611 => 0.14678963199999
612 => 0.14709835775217
613 => 0.14676885229707
614 => 0.14689566586913
615 => 0.14532878197865
616 => 0.14891021390731
617 => 0.15219689001196
618 => 0.15131599060632
619 => 0.14999539717004
620 => 0.14894348088964
621 => 0.15106819256104
622 => 0.15097358249492
623 => 0.15216818376342
624 => 0.15211398974953
625 => 0.15171229027416
626 => 0.15131600495228
627 => 0.15288723145949
628 => 0.15243474345854
629 => 0.15198155261874
630 => 0.15107260900948
701 => 0.15119614954193
702 => 0.14987578412472
703 => 0.14926492266691
704 => 0.14007903200301
705 => 0.13762426185998
706 => 0.13839658251843
707 => 0.13865085053249
708 => 0.13758253142037
709 => 0.13911422659849
710 => 0.13887551352745
711 => 0.1398042064444
712 => 0.13922399942905
713 => 0.13924781132734
714 => 0.14095407644632
715 => 0.14144941246932
716 => 0.14119748057017
717 => 0.14137392503662
718 => 0.14544001329335
719 => 0.14486194556942
720 => 0.1445548586124
721 => 0.14463992379817
722 => 0.14567889652568
723 => 0.14596975216357
724 => 0.14473737638775
725 => 0.14531857192791
726 => 0.1477932287732
727 => 0.14865921861561
728 => 0.15142304249386
729 => 0.15024892098733
730 => 0.15240407182736
731 => 0.15902827076456
801 => 0.1643201392353
802 => 0.1594535182939
803 => 0.16917136082502
804 => 0.17673809517721
805 => 0.17644767130972
806 => 0.1751282361537
807 => 0.16651371026576
808 => 0.15858649510834
809 => 0.16521794719486
810 => 0.16523485213
811 => 0.16466520451462
812 => 0.16112717209927
813 => 0.1645420886557
814 => 0.16481315233079
815 => 0.16466142875439
816 => 0.1619488275969
817 => 0.1578071870019
818 => 0.15861645366047
819 => 0.15994204895581
820 => 0.15743242051359
821 => 0.15663044216255
822 => 0.15812147249976
823 => 0.16292588291475
824 => 0.16201763695585
825 => 0.16199391898335
826 => 0.16587978035176
827 => 0.16309834223335
828 => 0.15862666110467
829 => 0.15749750264545
830 => 0.1534897508075
831 => 0.15625791927709
901 => 0.15635754073224
902 => 0.15484144315144
903 => 0.15874968406766
904 => 0.15871366893958
905 => 0.16242396202464
906 => 0.16951664888083
907 => 0.16741899236754
908 => 0.16497964606695
909 => 0.16524487064556
910 => 0.16815372964287
911 => 0.1663949670903
912 => 0.16702743036674
913 => 0.16815277233395
914 => 0.16883171908345
915 => 0.1651471806567
916 => 0.16428813849759
917 => 0.16253083972285
918 => 0.16207239327406
919 => 0.16350367645884
920 => 0.16312658390763
921 => 0.15634916793469
922 => 0.15564089025633
923 => 0.15566261212154
924 => 0.15388161422253
925 => 0.15116516493808
926 => 0.15830383146686
927 => 0.15773049663903
928 => 0.15709757936169
929 => 0.15717510811679
930 => 0.16027376130507
1001 => 0.15847638597013
1002 => 0.1632550028821
1003 => 0.16227266290337
1004 => 0.16126512961089
1005 => 0.16112585781966
1006 => 0.16073804346076
1007 => 0.15940808372472
1008 => 0.15780207742526
1009 => 0.15674165295648
1010 => 0.14458588951992
1011 => 0.14684192850692
1012 => 0.14943729571704
1013 => 0.1503332060777
1014 => 0.14880068941069
1015 => 0.15946859682353
1016 => 0.16141772630637
1017 => 0.15551368596428
1018 => 0.15440928107665
1019 => 0.1595410014241
1020 => 0.15644594672729
1021 => 0.15783964966775
1022 => 0.15482722622523
1023 => 0.16094823809113
1024 => 0.16090160623621
1025 => 0.15852039437105
1026 => 0.16053297833365
1027 => 0.16018324234289
1028 => 0.15749486001179
1029 => 0.16103346460621
1030 => 0.16103521970994
1031 => 0.15874335506173
1101 => 0.15606695890631
1102 => 0.15558848248738
1103 => 0.15522801477997
1104 => 0.1577509967088
1105 => 0.16001309441703
1106 => 0.16422229743046
1107 => 0.16528059107624
1108 => 0.16941118163029
1109 => 0.16695161607016
1110 => 0.16804190962626
1111 => 0.16922557751284
1112 => 0.16979307142562
1113 => 0.16886837054815
1114 => 0.1752848778975
1115 => 0.17582662771449
1116 => 0.17600827174201
1117 => 0.17384466156588
1118 => 0.17576645380155
1119 => 0.17486731085755
1120 => 0.17720663100873
1121 => 0.17757346627838
1122 => 0.17726276985553
1123 => 0.17737920916022
1124 => 0.17190385208701
1125 => 0.17161992593796
1126 => 0.16774857274911
1127 => 0.16932617778916
1128 => 0.16637692078336
1129 => 0.16731216056062
1130 => 0.16772440534314
1201 => 0.16750907206343
1202 => 0.16941537321111
1203 => 0.16779462780399
1204 => 0.16351721419938
1205 => 0.1592386352163
1206 => 0.15918492114243
1207 => 0.15805844681937
1208 => 0.15724421220787
1209 => 0.15740106268057
1210 => 0.15795382420469
1211 => 0.15721208470322
1212 => 0.15737037243301
1213 => 0.15999900341309
1214 => 0.16052615660961
1215 => 0.15873468407579
1216 => 0.15154166334427
1217 => 0.14977647801443
1218 => 0.15104525822437
1219 => 0.15043886300393
1220 => 0.12141590371602
1221 => 0.12823441749708
1222 => 0.12418308814323
1223 => 0.12605012710218
1224 => 0.12191476891855
1225 => 0.12388837859647
1226 => 0.12352392495364
1227 => 0.13448789333909
1228 => 0.13431670605319
1229 => 0.13439864434792
1230 => 0.13048751605149
1231 => 0.13671804962641
]
'min_raw' => 0.079542696382758
'max_raw' => 0.17757346627838
'avg_raw' => 0.12855808133057
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.079542'
'max' => '$0.177573'
'avg' => '$0.128558'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.012265322391255
'max_diff' => 0.026863843432572
'year' => 2035
]
10 => [
'items' => [
101 => 0.13978743450816
102 => 0.13921937305558
103 => 0.1393623418848
104 => 0.13690566372057
105 => 0.13442243036258
106 => 0.13166814240171
107 => 0.13678526899274
108 => 0.13621633186808
109 => 0.13752126893493
110 => 0.14084009130897
111 => 0.14132880051053
112 => 0.14198563063343
113 => 0.14175020379072
114 => 0.14735902631738
115 => 0.1466797609012
116 => 0.1483165951162
117 => 0.14494950294904
118 => 0.14113931855457
119 => 0.14186351004364
120 => 0.14179376457966
121 => 0.14090582477311
122 => 0.14010423241821
123 => 0.13876980699457
124 => 0.14299212649279
125 => 0.14282070803202
126 => 0.14559577365968
127 => 0.14510525385444
128 => 0.14182944254451
129 => 0.1419464387863
130 => 0.14273329473882
131 => 0.14545661217464
201 => 0.14626507820719
202 => 0.14589056452911
203 => 0.14677701062592
204 => 0.14747762147751
205 => 0.14686499656208
206 => 0.15553847345298
207 => 0.15193664113518
208 => 0.15369214914549
209 => 0.15411082746189
210 => 0.15303839175828
211 => 0.15327096466135
212 => 0.15362324923718
213 => 0.15576225219722
214 => 0.16137561488986
215 => 0.16386173501498
216 => 0.17134135007441
217 => 0.16365529734705
218 => 0.16319923878626
219 => 0.1645465433212
220 => 0.16893786915874
221 => 0.17249662629381
222 => 0.17367727134514
223 => 0.17383331307899
224 => 0.17604828168308
225 => 0.17731786038023
226 => 0.17577932623509
227 => 0.17447557963832
228 => 0.1698057211557
229 => 0.17034626999066
301 => 0.17407011542709
302 => 0.17933026643946
303 => 0.1838440232335
304 => 0.18226346292453
305 => 0.19432202238027
306 => 0.1955175792955
307 => 0.1953523919868
308 => 0.19807604856244
309 => 0.19267014492282
310 => 0.19035901638243
311 => 0.1747574644507
312 => 0.17914086416448
313 => 0.1855123930765
314 => 0.18466909733299
315 => 0.18004192272562
316 => 0.18384051310663
317 => 0.18258458033377
318 => 0.18159397404711
319 => 0.18613213348476
320 => 0.18114224076575
321 => 0.18546261507956
322 => 0.17992169033354
323 => 0.18227068279089
324 => 0.18093728106412
325 => 0.18180015539691
326 => 0.17675580967884
327 => 0.17947761618374
328 => 0.17664257357977
329 => 0.17664122940044
330 => 0.17657864567783
331 => 0.17991406072889
401 => 0.18002282849396
402 => 0.17755795173169
403 => 0.17720272448164
404 => 0.17851618580723
405 => 0.17697846659103
406 => 0.177697955734
407 => 0.17700025918421
408 => 0.17684319299512
409 => 0.1755916628778
410 => 0.17505246929173
411 => 0.17526390099014
412 => 0.17454217560296
413 => 0.17410730995124
414 => 0.17649213995429
415 => 0.17521802148743
416 => 0.17629686302581
417 => 0.17506738693217
418 => 0.17080548713435
419 => 0.16835442349186
420 => 0.16030408985211
421 => 0.16258715448593
422 => 0.16410082870016
423 => 0.16360055938139
424 => 0.16467533145664
425 => 0.16474131373312
426 => 0.16439189437545
427 => 0.16398731152266
428 => 0.16379038296476
429 => 0.16525812709482
430 => 0.16611020196432
501 => 0.1642527461579
502 => 0.16381757025103
503 => 0.16569556062426
504 => 0.16684113366705
505 => 0.17529940137312
506 => 0.17467278558161
507 => 0.17624546825117
508 => 0.17606840831736
509 => 0.17771683030305
510 => 0.18041130357454
511 => 0.17493268602702
512 => 0.17588358459693
513 => 0.17565044622704
514 => 0.1781957898173
515 => 0.17820373610215
516 => 0.17667767547045
517 => 0.1775049776964
518 => 0.17704320028973
519 => 0.17787769447655
520 => 0.17466441674569
521 => 0.17857784216998
522 => 0.18079650221
523 => 0.1808273083068
524 => 0.18187893555739
525 => 0.18294744975014
526 => 0.18499836969514
527 => 0.18289025070601
528 => 0.17909794986582
529 => 0.17937174173743
530 => 0.17714831714237
531 => 0.17718569331151
601 => 0.17698617639143
602 => 0.17758494168752
603 => 0.17479581205669
604 => 0.17545041520621
605 => 0.17453396696352
606 => 0.17588159241743
607 => 0.1744317701995
608 => 0.17565033380066
609 => 0.1761762254549
610 => 0.17811677698068
611 => 0.17414514916132
612 => 0.1660467311821
613 => 0.16774911682516
614 => 0.16523115473956
615 => 0.16546420171714
616 => 0.165934993701
617 => 0.16440900284776
618 => 0.16470011381306
619 => 0.16468971328086
620 => 0.16460008711321
621 => 0.16420311795572
622 => 0.1636274341394
623 => 0.16592078127748
624 => 0.16631046564504
625 => 0.16717668572245
626 => 0.16975396911013
627 => 0.16949643772317
628 => 0.16991648210017
629 => 0.16899952758363
630 => 0.16550673660728
701 => 0.16569641196162
702 => 0.16333115725365
703 => 0.16711620084175
704 => 0.16621985255995
705 => 0.16564197099159
706 => 0.16548429065163
707 => 0.16806796262632
708 => 0.16884103777525
709 => 0.16835930922158
710 => 0.16737126990374
711 => 0.16926859748159
712 => 0.1697762422996
713 => 0.16988988525313
714 => 0.17325158594461
715 => 0.17007776697795
716 => 0.17084173674827
717 => 0.17680201081153
718 => 0.17139686469775
719 => 0.17426009114336
720 => 0.17411995110836
721 => 0.17558468087164
722 => 0.17399980051552
723 => 0.17401944700699
724 => 0.17532002780739
725 => 0.17349359663421
726 => 0.17304134659058
727 => 0.17241656639437
728 => 0.17378075109566
729 => 0.17459851812733
730 => 0.18118911981881
731 => 0.18544694907946
801 => 0.18526210548203
802 => 0.18695122994983
803 => 0.18619026390648
804 => 0.1837329038198
805 => 0.18792731784463
806 => 0.18660002974543
807 => 0.18670944976368
808 => 0.18670537714513
809 => 0.18758790769756
810 => 0.18696255391843
811 => 0.18572991742851
812 => 0.18654819905525
813 => 0.18897820294564
814 => 0.19652100958301
815 => 0.20074206410618
816 => 0.1962668968006
817 => 0.19935380728311
818 => 0.19750276097227
819 => 0.19716637079374
820 => 0.19910517869765
821 => 0.20104738022813
822 => 0.20092367038701
823 => 0.19951373180903
824 => 0.19871729328219
825 => 0.20474819263387
826 => 0.2091916565425
827 => 0.20888864209329
828 => 0.21022604932651
829 => 0.21415271832772
830 => 0.21451172373057
831 => 0.21446649730146
901 => 0.21357666495215
902 => 0.21744298052624
903 => 0.22066832899949
904 => 0.21337069447301
905 => 0.21614953816764
906 => 0.21739705063092
907 => 0.21922876904727
908 => 0.22231918504731
909 => 0.22567619651572
910 => 0.22615091474511
911 => 0.225814079444
912 => 0.22360004013927
913 => 0.22727332214548
914 => 0.22942504459565
915 => 0.23070634607343
916 => 0.23395551343286
917 => 0.21740475484319
918 => 0.20568930528734
919 => 0.20385976866606
920 => 0.20758020332842
921 => 0.20856125227897
922 => 0.20816579267713
923 => 0.19497898907996
924 => 0.20379034287419
925 => 0.21327061867711
926 => 0.21363479468034
927 => 0.2183808189705
928 => 0.21992631902548
929 => 0.22374749065469
930 => 0.22350847532889
1001 => 0.22443886981248
1002 => 0.22422498823289
1003 => 0.23130290403337
1004 => 0.23911089624197
1005 => 0.23884053029968
1006 => 0.23771803903973
1007 => 0.23938512997396
1008 => 0.24744381468853
1009 => 0.24670190013781
1010 => 0.24742260692771
1011 => 0.25692425037375
1012 => 0.26927773844664
1013 => 0.26353830296686
1014 => 0.27599122647991
1015 => 0.28382968173026
1016 => 0.29738547957434
1017 => 0.29568822692055
1018 => 0.30096539954421
1019 => 0.29264979044295
1020 => 0.27355547108456
1021 => 0.27053372195598
1022 => 0.27658334023428
1023 => 0.29145573645835
1024 => 0.27611495555082
1025 => 0.27921837554853
1026 => 0.27832459038041
1027 => 0.27827696436715
1028 => 0.28009465558454
1029 => 0.27745799966931
1030 => 0.26671578914531
1031 => 0.27163888092421
1101 => 0.26973783876209
1102 => 0.27184718677305
1103 => 0.28323046802688
1104 => 0.27819764804103
1105 => 0.27289598101903
1106 => 0.27954544799871
1107 => 0.2880125044686
1108 => 0.28748265129148
1109 => 0.28645451466641
1110 => 0.29225006699042
1111 => 0.30182262149216
1112 => 0.30441004450835
1113 => 0.30632002728136
1114 => 0.30658338163634
1115 => 0.3092960951664
1116 => 0.29470915082342
1117 => 0.31785900611502
1118 => 0.32185634662203
1119 => 0.32110501227951
1120 => 0.32554788801925
1121 => 0.32424068127174
1122 => 0.32234674378905
1123 => 0.32938964686331
1124 => 0.32131552682164
1125 => 0.30985532992594
1126 => 0.30356803925196
1127 => 0.31184765079272
1128 => 0.31690372064204
1129 => 0.32024546118601
1130 => 0.32125666985548
1201 => 0.29584149378906
1202 => 0.28214412347955
1203 => 0.29092398080728
1204 => 0.30163601270049
1205 => 0.29464964494539
1206 => 0.29492349733445
1207 => 0.28496277290083
1208 => 0.3025173157923
1209 => 0.29995976654995
1210 => 0.31322833654345
1211 => 0.31006168582757
1212 => 0.32088168957435
1213 => 0.31803241997001
1214 => 0.3298595787971
1215 => 0.33457775266077
1216 => 0.342500300903
1217 => 0.34832815964055
1218 => 0.35175038976042
1219 => 0.35154493190048
1220 => 0.36510551258367
1221 => 0.3571093119254
1222 => 0.34706419933881
1223 => 0.34688251494405
1224 => 0.35208502109298
1225 => 0.3629880467433
1226 => 0.36581504266185
1227 => 0.36739494771445
1228 => 0.3649752681295
1229 => 0.35629596540782
1230 => 0.35254828649766
1231 => 0.35574141750982
]
'min_raw' => 0.13166814240171
'max_raw' => 0.36739494771445
'avg_raw' => 0.24953154505808
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.131668'
'max' => '$0.367394'
'avg' => '$0.249531'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.052125446018947
'max_diff' => 0.18982148143607
'year' => 2036
]
11 => [
'items' => [
101 => 0.35183649267082
102 => 0.35857748847134
103 => 0.36783431550446
104 => 0.36592281732758
105 => 0.37231266914507
106 => 0.37892549354415
107 => 0.38838212943536
108 => 0.39085444423553
109 => 0.39494108658651
110 => 0.39914758395775
111 => 0.40049859754511
112 => 0.40307810167827
113 => 0.40306450641821
114 => 0.41083801574415
115 => 0.41941243725621
116 => 0.4226490828787
117 => 0.43009157101793
118 => 0.41734657089539
119 => 0.42701379989235
120 => 0.43573388243404
121 => 0.42533744054103
122 => 0.43966651363026
123 => 0.44022287906793
124 => 0.44862333662938
125 => 0.44010786355791
126 => 0.43505140283043
127 => 0.44964921548757
128 => 0.45671263720557
129 => 0.45458507710007
130 => 0.43839423964667
131 => 0.4289704777911
201 => 0.40430667530717
202 => 0.43352201474636
203 => 0.44775195436405
204 => 0.43835738754076
205 => 0.44309546059711
206 => 0.46894485086723
207 => 0.47878662505802
208 => 0.47673960482553
209 => 0.477085517548
210 => 0.48239596026051
211 => 0.505945387762
212 => 0.49183402493165
213 => 0.50262163307278
214 => 0.50834334153321
215 => 0.51365798322555
216 => 0.50060690293894
217 => 0.4836276392445
218 => 0.47824959369147
219 => 0.43742328301685
220 => 0.43529809624656
221 => 0.43410516451264
222 => 0.42658389867385
223 => 0.42067424397265
224 => 0.41597466714285
225 => 0.40364157412901
226 => 0.40780363097944
227 => 0.38814725483194
228 => 0.40072270771191
301 => 0.36935065676071
302 => 0.3954782330184
303 => 0.38125818113646
304 => 0.39080656352811
305 => 0.39077325012146
306 => 0.37319165082103
307 => 0.36305095126316
308 => 0.36951299970337
309 => 0.37644082858931
310 => 0.37756484551804
311 => 0.38654695650351
312 => 0.38905367060972
313 => 0.3814582098406
314 => 0.36870054073579
315 => 0.37166385629739
316 => 0.36299089976789
317 => 0.34779187705039
318 => 0.35870808051557
319 => 0.36243535233017
320 => 0.36408152790149
321 => 0.34913503467839
322 => 0.34443852200353
323 => 0.341938138063
324 => 0.36677113615071
325 => 0.36813154384328
326 => 0.36117150574584
327 => 0.39263153792418
328 => 0.38551116372751
329 => 0.39346636623923
330 => 0.37139496647018
331 => 0.37223812366444
401 => 0.3617891693039
402 => 0.36763988554642
403 => 0.36350478788359
404 => 0.36716720549193
405 => 0.36936244350565
406 => 0.3798096832956
407 => 0.39559752371517
408 => 0.37824921405572
409 => 0.37069030710473
410 => 0.37537981046422
411 => 0.38786857588606
412 => 0.4067896947883
413 => 0.39558801157517
414 => 0.40055912836824
415 => 0.40164509623793
416 => 0.39338538974543
417 => 0.4070942419482
418 => 0.41444092721418
419 => 0.42197710611477
420 => 0.42852055909522
421 => 0.41896699053775
422 => 0.4291906783445
423 => 0.4209521906961
424 => 0.4135614155963
425 => 0.41357262435134
426 => 0.40893628316924
427 => 0.39995278791233
428 => 0.39829609355541
429 => 0.40691442681753
430 => 0.41382551393456
501 => 0.4143947441714
502 => 0.41822107710386
503 => 0.42048546151893
504 => 0.44267950706795
505 => 0.45160613578654
506 => 0.46252144841119
507 => 0.46677357783181
508 => 0.4795709629151
509 => 0.46923603510754
510 => 0.46700000846664
511 => 0.43595773824734
512 => 0.44104090825673
513 => 0.44917955389472
514 => 0.43609194151627
515 => 0.44439301921728
516 => 0.44603182779632
517 => 0.43564722945568
518 => 0.44119409212143
519 => 0.42646326941137
520 => 0.39591861539556
521 => 0.40712824687977
522 => 0.41538230877332
523 => 0.40360274473274
524 => 0.42471715734339
525 => 0.41238255338619
526 => 0.40847307609717
527 => 0.3932208113634
528 => 0.40041929320423
529 => 0.41015534296629
530 => 0.40413959615061
531 => 0.41662317406207
601 => 0.43430324963333
602 => 0.44690312435211
603 => 0.44787038627975
604 => 0.43976951096162
605 => 0.45275121535802
606 => 0.4528457729021
607 => 0.43820235731114
608 => 0.42923334679656
609 => 0.42719556873668
610 => 0.43228633786017
611 => 0.4384674713839
612 => 0.44821339617182
613 => 0.45410265440697
614 => 0.46945871646304
615 => 0.47361362656261
616 => 0.478178613072
617 => 0.48427884283826
618 => 0.49160373273945
619 => 0.47557729064185
620 => 0.47621405106341
621 => 0.46129045008332
622 => 0.44534244217522
623 => 0.45744499223022
624 => 0.47326746649236
625 => 0.46963777341434
626 => 0.46922935879517
627 => 0.46991619889985
628 => 0.46717952885372
629 => 0.4548016716608
630 => 0.448585589268
701 => 0.45660592144646
702 => 0.4608683710554
703 => 0.46747905867418
704 => 0.46666415189048
705 => 0.48369257326046
706 => 0.4903093028921
707 => 0.4886164603065
708 => 0.48892798408278
709 => 0.50090725702467
710 => 0.51423067226142
711 => 0.52670980881013
712 => 0.53940412249887
713 => 0.5241006318796
714 => 0.51633046313122
715 => 0.52434729388355
716 => 0.5200934506413
717 => 0.54453729568314
718 => 0.54622973447878
719 => 0.57067181195239
720 => 0.59387025398329
721 => 0.57929972818694
722 => 0.593039077742
723 => 0.60789930447141
724 => 0.63656709281733
725 => 0.62691279024738
726 => 0.61951774578101
727 => 0.61252946449288
728 => 0.62707096849506
729 => 0.64577838108767
730 => 0.64980777858275
731 => 0.65633694187309
801 => 0.6494723250214
802 => 0.65773999990652
803 => 0.68692852525141
804 => 0.67904152804898
805 => 0.66784072412346
806 => 0.69088226158748
807 => 0.699220904424
808 => 0.75774586683185
809 => 0.83163604941737
810 => 0.80104502863787
811 => 0.78205619487396
812 => 0.78651902122964
813 => 0.81350121456934
814 => 0.82216703869804
815 => 0.79861034142752
816 => 0.80693096514439
817 => 0.85277841989003
818 => 0.8773741083986
819 => 0.84396985976228
820 => 0.75180886260637
821 => 0.66683221428062
822 => 0.68937184796495
823 => 0.68681655299141
824 => 0.73607392352914
825 => 0.6788534257741
826 => 0.67981687220615
827 => 0.73009283300214
828 => 0.71668006860994
829 => 0.69495310807166
830 => 0.66699084513704
831 => 0.61530001590613
901 => 0.56951600695089
902 => 0.65930899193966
903 => 0.65543695514899
904 => 0.64982967207241
905 => 0.66230807378795
906 => 0.72289965046247
907 => 0.72150281850433
908 => 0.71261688625655
909 => 0.71935678754948
910 => 0.69377157078807
911 => 0.70036546371204
912 => 0.66681875354536
913 => 0.68198326757507
914 => 0.69490649177242
915 => 0.69750102036164
916 => 0.70334662575307
917 => 0.65339656770703
918 => 0.67582267731304
919 => 0.68899591566428
920 => 0.62947874554689
921 => 0.68781945257335
922 => 0.65252704832529
923 => 0.64054827624938
924 => 0.65667611476638
925 => 0.65039108041147
926 => 0.64498757694271
927 => 0.64197232916318
928 => 0.65381483380548
929 => 0.65326236680906
930 => 0.63388573068315
1001 => 0.60860969874963
1002 => 0.61709316472399
1003 => 0.61401104200259
1004 => 0.60284103165849
1005 => 0.61036826995822
1006 => 0.57722212193433
1007 => 0.52019589704609
1008 => 0.55786916796777
1009 => 0.55641878801792
1010 => 0.55568744067771
1011 => 0.58399786256262
1012 => 0.58127646873095
1013 => 0.57633711227849
1014 => 0.60275031650375
1015 => 0.5931091416538
1016 => 0.62282097079486
1017 => 0.64239110310778
1018 => 0.63742748452577
1019 => 0.65583328855673
1020 => 0.61728860664584
1021 => 0.63009160383241
1022 => 0.63273028380838
1023 => 0.60242438166362
1024 => 0.58172172241786
1025 => 0.58034109107376
1026 => 0.54444553294377
1027 => 0.56362065035799
1028 => 0.58049396016223
1029 => 0.57241295418773
1030 => 0.56985474910939
1031 => 0.58292406404764
1101 => 0.58393966174945
1102 => 0.56078392651987
1103 => 0.56559873712086
1104 => 0.58567729772269
1105 => 0.56509280890998
1106 => 0.52510050960404
1107 => 0.51518186643937
1108 => 0.51385853660434
1109 => 0.48695838968424
1110 => 0.51584467760347
1111 => 0.50323503882234
1112 => 0.54306873664526
1113 => 0.52031594208121
1114 => 0.51933511458299
1115 => 0.51785244996332
1116 => 0.49469838227812
1117 => 0.49976765158341
1118 => 0.51661867482572
1119 => 0.52263130975894
1120 => 0.52200414267534
1121 => 0.51653609561879
1122 => 0.51903933956035
1123 => 0.51097551863659
1124 => 0.50812801563449
1125 => 0.49914051289246
1126 => 0.48593136672268
1127 => 0.48776817951399
1128 => 0.46159740459054
1129 => 0.4473381774241
1130 => 0.44339141127802
1201 => 0.43811363064077
1202 => 0.44398755064464
1203 => 0.46152326607337
1204 => 0.44037147285676
1205 => 0.40410820701265
1206 => 0.40628769107948
1207 => 0.41118434468302
1208 => 0.40205946308743
1209 => 0.39342352845047
1210 => 0.40093177296179
1211 => 0.38556654917345
1212 => 0.41304115856962
1213 => 0.41229804738215
1214 => 0.42253888274659
1215 => 0.42894268726308
1216 => 0.41418399110892
1217 => 0.4104722189379
1218 => 0.41258661305715
1219 => 0.37764038813707
1220 => 0.41968303061535
1221 => 0.42004661713336
1222 => 0.41693336862638
1223 => 0.4393197778251
1224 => 0.48656208373053
1225 => 0.46878762793156
1226 => 0.46190482141042
1227 => 0.44882060118245
1228 => 0.4662545477721
1229 => 0.46491589268595
1230 => 0.4588619867165
1231 => 0.45520056549685
]
'min_raw' => 0.341938138063
'max_raw' => 0.8773741083986
'avg_raw' => 0.6096561232308
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.341938'
'max' => '$0.877374'
'avg' => '$0.609656'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.21026999566129
'max_diff' => 0.50997916068416
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010733047429839
]
1 => [
'year' => 2028
'avg' => 0.018421025215536
]
2 => [
'year' => 2029
'avg' => 0.050322920822073
]
3 => [
'year' => 2030
'avg' => 0.038824058471088
]
4 => [
'year' => 2031
'avg' => 0.038130036831206
]
5 => [
'year' => 2032
'avg' => 0.066853954529324
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010733047429839
'min' => '$0.010733'
'max_raw' => 0.066853954529324
'max' => '$0.066853'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.066853954529324
]
1 => [
'year' => 2033
'avg' => 0.1719552455605
]
2 => [
'year' => 2034
'avg' => 0.10899349841865
]
3 => [
'year' => 2035
'avg' => 0.12855808133057
]
4 => [
'year' => 2036
'avg' => 0.24953154505808
]
5 => [
'year' => 2037
'avg' => 0.6096561232308
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.066853954529324
'min' => '$0.066853'
'max_raw' => 0.6096561232308
'max' => '$0.609656'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.6096561232308
]
]
]
]
'prediction_2025_max_price' => '$0.018351'
'last_price' => 0.01779415
'sma_50day_nextmonth' => '$0.016708'
'sma_200day_nextmonth' => '$0.024365'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.0174014'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.017351'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.017245'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.017223'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.016976'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.022145'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024458'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0175082'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.01741'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.017312'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.017262'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0182028'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.020491'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.021725'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.024435'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.020247'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.021648'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.02563'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.017475'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.017576'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.018938'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.021048'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.021369'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.022944'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.027511'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.44'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.71
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.017268'
'vwma_10_action' => 'BUY'
'hma_9' => '0.017415'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 259.18
'cci_20_action' => 'SELL'
'adx_14' => 8.01
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000288'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 62.86
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.005537'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767713517
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Kleros para 2026
A previsão de preço para Kleros em 2026 sugere que o preço médio poderia variar entre $0.006147 na extremidade inferior e $0.018351 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Kleros poderia potencialmente ganhar 3.13% até 2026 se PNK atingir a meta de preço prevista.
Previsão de preço de Kleros 2027-2032
A previsão de preço de PNK para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.010733 na extremidade inferior e $0.066853 na extremidade superior. Considerando a volatilidade de preços no mercado, se Kleros atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Kleros | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.005918 | $0.010733 | $0.015547 |
| 2028 | $0.01068 | $0.018421 | $0.026161 |
| 2029 | $0.023463 | $0.050322 | $0.077182 |
| 2030 | $0.019954 | $0.038824 | $0.057693 |
| 2031 | $0.023592 | $0.03813 | $0.052667 |
| 2032 | $0.036011 | $0.066853 | $0.097696 |
Previsão de preço de Kleros 2032-2037
A previsão de preço de Kleros para 2032-2037 é atualmente estimada entre $0.066853 na extremidade inferior e $0.609656 na extremidade superior. Comparado ao preço atual, Kleros poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Kleros | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.036011 | $0.066853 | $0.097696 |
| 2033 | $0.083683 | $0.171955 | $0.260227 |
| 2034 | $0.067277 | $0.108993 | $0.1507096 |
| 2035 | $0.079542 | $0.128558 | $0.177573 |
| 2036 | $0.131668 | $0.249531 | $0.367394 |
| 2037 | $0.341938 | $0.609656 | $0.877374 |
Kleros Histograma de preços potenciais
Previsão de preço de Kleros baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Kleros é Altista, com 20 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de PNK foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Kleros
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Kleros está projetado para aumentar no próximo mês, alcançando $0.024365 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Kleros é esperado para alcançar $0.016708 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 56.44, sugerindo que o mercado de PNK está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de PNK para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.0174014 | BUY |
| SMA 5 | $0.017351 | BUY |
| SMA 10 | $0.017245 | BUY |
| SMA 21 | $0.017223 | BUY |
| SMA 50 | $0.016976 | BUY |
| SMA 100 | $0.022145 | SELL |
| SMA 200 | $0.024458 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.0175082 | BUY |
| EMA 5 | $0.01741 | BUY |
| EMA 10 | $0.017312 | BUY |
| EMA 21 | $0.017262 | BUY |
| EMA 50 | $0.0182028 | SELL |
| EMA 100 | $0.020491 | SELL |
| EMA 200 | $0.021725 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.024435 | SELL |
| SMA 50 | $0.020247 | SELL |
| SMA 100 | $0.021648 | SELL |
| SMA 200 | $0.02563 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.021048 | SELL |
| EMA 50 | $0.021369 | SELL |
| EMA 100 | $0.022944 | SELL |
| EMA 200 | $0.027511 | SELL |
Osciladores de Kleros
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 56.44 | NEUTRAL |
| Stoch RSI (14) | 108.71 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 259.18 | SELL |
| Índice Direcional Médio (14) | 8.01 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000288 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 62.86 | NEUTRAL |
| VWMA (10) | 0.017268 | BUY |
| Média Móvel de Hull (9) | 0.017415 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.005537 | NEUTRAL |
Previsão do preço de Kleros com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Kleros
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Kleros por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0250037 | $0.035134 | $0.049369 | $0.069372 | $0.09748 | $0.136976 |
| Amazon.com stock | $0.037128 | $0.07747 | $0.161647 | $0.337287 | $0.70377 | $1.46 |
| Apple stock | $0.025239 | $0.0358005 | $0.05078 | $0.072027 | $0.102166 | $0.144914 |
| Netflix stock | $0.028076 | $0.04430012 | $0.069898 | $0.110289 | $0.174018 | $0.274574 |
| Google stock | $0.023043 | $0.029841 | $0.038643 | $0.050043 | $0.0648065 | $0.083924 |
| Tesla stock | $0.040337 | $0.091443 | $0.207294 | $0.469921 | $1.06 | $2.41 |
| Kodak stock | $0.013343 | $0.0100063 | $0.0075037 | $0.005626 | $0.004219 | $0.003164 |
| Nokia stock | $0.011787 | $0.0078089 | $0.005173 | $0.003426 | $0.00227 | $0.0015039 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Kleros
Você pode fazer perguntas como: 'Devo investir em Kleros agora?', 'Devo comprar PNK hoje?', 'Kleros será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Kleros regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Kleros, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Kleros para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Kleros é de $0.01779 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Kleros
com base no histórico de preços de 4 horas
Previsão de longo prazo para Kleros
com base no histórico de preços de 1 mês
Previsão do preço de Kleros com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Kleros tiver 1% da média anterior do crescimento anual do Bitcoin | $0.018256 | $0.018731 | $0.019218 | $0.019717 |
| Se Kleros tiver 2% da média anterior do crescimento anual do Bitcoin | $0.018719 | $0.019692 | $0.020716 | $0.021793 |
| Se Kleros tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0201067 | $0.022719 | $0.025672 | $0.0290094 |
| Se Kleros tiver 10% da média anterior do crescimento anual do Bitcoin | $0.022419 | $0.028246 | $0.035589 | $0.04484 |
| Se Kleros tiver 20% da média anterior do crescimento anual do Bitcoin | $0.027044 | $0.0411042 | $0.062472 | $0.09495 |
| Se Kleros tiver 50% da média anterior do crescimento anual do Bitcoin | $0.04092 | $0.0941032 | $0.2164056 | $0.497659 |
| Se Kleros tiver 100% da média anterior do crescimento anual do Bitcoin | $0.064046 | $0.230525 | $0.829734 | $2.98 |
Perguntas Frequentes sobre Kleros
PNK é um bom investimento?
A decisão de adquirir Kleros depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Kleros experimentou uma escalada de 2.3531% nas últimas 24 horas, e Kleros registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Kleros dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Kleros pode subir?
Parece que o valor médio de Kleros pode potencialmente subir para $0.018351 até o final deste ano. Observando as perspectivas de Kleros em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.057693. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Kleros na próxima semana?
Com base na nossa nova previsão experimental de Kleros, o preço de Kleros aumentará 0.86% na próxima semana e atingirá $0.017946 até 13 de janeiro de 2026.
Qual será o preço de Kleros no próximo mês?
Com base na nossa nova previsão experimental de Kleros, o preço de Kleros diminuirá -11.62% no próximo mês e atingirá $0.015726 até 5 de fevereiro de 2026.
Até onde o preço de Kleros pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Kleros em 2026, espera-se que PNK fluctue dentro do intervalo de $0.006147 e $0.018351. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Kleros não considera flutuações repentinas e extremas de preço.
Onde estará Kleros em 5 anos?
O futuro de Kleros parece seguir uma tendência de alta, com um preço máximo de $0.057693 projetada após um período de cinco anos. Com base na previsão de Kleros para 2030, o valor de Kleros pode potencialmente atingir seu pico mais alto de aproximadamente $0.057693, enquanto seu pico mais baixo está previsto para cerca de $0.019954.
Quanto será Kleros em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Kleros, espera-se que o valor de PNK em 2026 aumente 3.13% para $0.018351 se o melhor cenário ocorrer. O preço ficará entre $0.018351 e $0.006147 durante 2026.
Quanto será Kleros em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Kleros, o valor de PNK pode diminuir -12.62% para $0.015547 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.015547 e $0.005918 ao longo do ano.
Quanto será Kleros em 2028?
Nosso novo modelo experimental de previsão de preços de Kleros sugere que o valor de PNK em 2028 pode aumentar 47.02%, alcançando $0.026161 no melhor cenário. O preço é esperado para variar entre $0.026161 e $0.01068 durante o ano.
Quanto será Kleros em 2029?
Com base no nosso modelo de previsão experimental, o valor de Kleros pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.077182 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.077182 e $0.023463.
Quanto será Kleros em 2030?
Usando nossa nova simulação experimental para previsões de preços de Kleros, espera-se que o valor de PNK em 2030 aumente 224.23%, alcançando $0.057693 no melhor cenário. O preço está previsto para variar entre $0.057693 e $0.019954 ao longo de 2030.
Quanto será Kleros em 2031?
Nossa simulação experimental indica que o preço de Kleros poderia aumentar 195.98% em 2031, potencialmente atingindo $0.052667 sob condições ideais. O preço provavelmente oscilará entre $0.052667 e $0.023592 durante o ano.
Quanto será Kleros em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Kleros, PNK poderia ver um 449.04% aumento em valor, atingindo $0.097696 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.097696 e $0.036011 ao longo do ano.
Quanto será Kleros em 2033?
De acordo com nossa previsão experimental de preços de Kleros, espera-se que o valor de PNK seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.260227. Ao longo do ano, o preço de PNK poderia variar entre $0.260227 e $0.083683.
Quanto será Kleros em 2034?
Os resultados da nossa nova simulação de previsão de preços de Kleros sugerem que PNK pode aumentar 746.96% em 2034, atingindo potencialmente $0.1507096 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.1507096 e $0.067277.
Quanto será Kleros em 2035?
Com base em nossa previsão experimental para o preço de Kleros, PNK poderia aumentar 897.93%, com o valor potencialmente atingindo $0.177573 em 2035. A faixa de preço esperada para o ano está entre $0.177573 e $0.079542.
Quanto será Kleros em 2036?
Nossa recente simulação de previsão de preços de Kleros sugere que o valor de PNK pode aumentar 1964.7% em 2036, possivelmente atingindo $0.367394 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.367394 e $0.131668.
Quanto será Kleros em 2037?
De acordo com a simulação experimental, o valor de Kleros poderia aumentar 4830.69% em 2037, com um pico de $0.877374 sob condições favoráveis. O preço é esperado para cair entre $0.877374 e $0.341938 ao longo do ano.
Previsões relacionadas
Previsão de Preço do PondCoin
Previsão de Preço do Trustswap
Previsão de Preço do UBXS
Previsão de Preço do Equilibria Finance
Previsão de Preço do BOB Token
Previsão de Preço do lmeow
Previsão de Preço do Penpie
Previsão de Preço do cUNI
Previsão de Preço do ichi.farm
Previsão de Preço do T-mac DAO
Previsão de Preço do Defactor
Previsão de Preço do Bostrom
Previsão de Preço do DeFi Kingdoms
Previsão de Preço do Mazze
Previsão de Preço do MerlinSwap
Previsão de Preço do Swash
Previsão de Preço do Arsenal Fan Token
Previsão de Preço do Byte
Previsão de Preço do Ellipsis
Previsão de Preço do Fulcrom
Previsão de Preço do yfii finance
Previsão de Preço do Juventus Fan Token
Previsão de Preço do renBTC
Previsão de Preço do Arcas
Previsão de Preço do Data Lake
Como ler e prever os movimentos de preço de Kleros?
Traders de Kleros utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Kleros
Médias móveis são ferramentas populares para a previsão de preço de Kleros. Uma média móvel simples (SMA) calcula o preço médio de fechamento de PNK em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de PNK acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de PNK.
Como ler gráficos de Kleros e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Kleros em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de PNK dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Kleros?
A ação de preço de Kleros é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de PNK. A capitalização de mercado de Kleros pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de PNK, grandes detentores de Kleros, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Kleros.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


