Protocol Monsters Preisvorhersage bis zu $0.034259 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.011477 | $0.034259 |
| 2027 | $0.011048 | $0.029025 |
| 2028 | $0.019939 | $0.048839 |
| 2029 | $0.0438024 | $0.14409 |
| 2030 | $0.037252 | $0.1077067 |
| 2031 | $0.044043 | $0.098323 |
| 2032 | $0.067229 | $0.182385 |
| 2033 | $0.156225 | $0.4858098 |
| 2034 | $0.125597 | $0.281354 |
| 2035 | $0.148495 | $0.3315062 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Protocol Monsters eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.45 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige Polychain Monsters Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Protocol Monsters'
'name_with_ticker' => 'Protocol Monsters <small>PMON</small>'
'name_lang' => 'Polychain Monsters'
'name_lang_with_ticker' => 'Polychain Monsters <small>PMON</small>'
'name_with_lang' => 'Polychain Monsters/Protocol Monsters'
'name_with_lang_with_ticker' => 'Polychain Monsters/Protocol Monsters <small>PMON</small>'
'image' => '/uploads/coins/polychain-monsters.png?1725628345'
'price_for_sd' => 0.03321
'ticker' => 'PMON'
'marketcap' => '$194.46K'
'low24h' => '$0.03279'
'high24h' => '$0.03346'
'volume24h' => '$7.59'
'current_supply' => '5.85M'
'max_supply' => '8.68M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03321'
'change_24h_pct' => '0.7745%'
'ath_price' => '$62.1'
'ath_days' => 1740
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '02.04.2021'
'ath_pct' => '-99.95%'
'fdv' => '$288.49K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.63'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.033503'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.029359'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.011477'
'current_year_max_price_prediction' => '$0.034259'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.037252'
'grand_prediction_max_price' => '$0.1077067'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.033848818830132
107 => 0.033975198032523
108 => 0.034259936828591
109 => 0.031826874991677
110 => 0.032919248325509
111 => 0.033560915317595
112 => 0.030661840503303
113 => 0.033503609929753
114 => 0.03178452079817
115 => 0.031201036127059
116 => 0.03198662136845
117 => 0.031680478035873
118 => 0.031417273975863
119 => 0.031270401587958
120 => 0.031847248687357
121 => 0.031820338080688
122 => 0.030876504264875
123 => 0.029645311527734
124 => 0.030058540222842
125 => 0.029908410363869
126 => 0.029364320387816
127 => 0.029730971338002
128 => 0.028116426111182
129 => 0.025338684965196
130 => 0.027173745850747
131 => 0.027103098002815
201 => 0.027067474154263
202 => 0.028446471692397
203 => 0.028313912897991
204 => 0.028073317388126
205 => 0.0293599016626
206 => 0.028890281095416
207 => 0.030337541026954
208 => 0.031290800020768
209 => 0.031049022705239
210 => 0.031945567396422
211 => 0.030068060177373
212 => 0.030691692763025
213 => 0.030820222574611
214 => 0.029344025412364
215 => 0.028335601156138
216 => 0.028268350755126
217 => 0.026519882064253
218 => 0.027453899925772
219 => 0.028275796991622
220 => 0.027882172078869
221 => 0.027757562190701
222 => 0.028394167084764
223 => 0.028443636737185
224 => 0.027315723419429
225 => 0.02755025231456
226 => 0.02852827679444
227 => 0.027525608607019
228 => 0.025577588103779
301 => 0.025094452085485
302 => 0.025029992834681
303 => 0.023719689635067
304 => 0.025126737544432
305 => 0.024512523425455
306 => 0.02645281846789
307 => 0.025344532345662
308 => 0.025296756346036
309 => 0.025224535915386
310 => 0.024096703823535
311 => 0.024343627374182
312 => 0.025164438864051
313 => 0.025457313650739
314 => 0.025426764411035
315 => 0.025160416439958
316 => 0.025282349177195
317 => 0.024889561346373
318 => 0.024750859788139
319 => 0.02431307951748
320 => 0.023669663459499
321 => 0.023759134408662
322 => 0.022484358838832
323 => 0.021789793450928
324 => 0.021597546905781
325 => 0.021340466791074
326 => 0.021626584788801
327 => 0.022480747559809
328 => 0.021450446037233
329 => 0.019684066344024
330 => 0.01979022877335
331 => 0.020028744232138
401 => 0.019584272252624
402 => 0.019163616825719
403 => 0.019529342590559
404 => 0.018780904228775
405 => 0.020119189432453
406 => 0.020082992568195
407 => 0.020581822533124
408 => 0.020893751147216
409 => 0.020174856679823
410 => 0.01999405666537
411 => 0.020097048570505
412 => 0.018394821795936
413 => 0.020442714289727
414 => 0.020460424549054
415 => 0.020308778556487
416 => 0.021399218087843
417 => 0.023700385615624
418 => 0.022834593827423
419 => 0.022499333078337
420 => 0.021862002149249
421 => 0.022711207771292
422 => 0.022646002029191
423 => 0.022351116934864
424 => 0.022172769509718
425 => 0.02250138010898
426 => 0.022132051019897
427 => 0.022065709367013
428 => 0.021663751130966
429 => 0.021520270328631
430 => 0.021414042854718
501 => 0.021297096843636
502 => 0.021555050602953
503 => 0.020970493447697
504 => 0.020265574823303
505 => 0.02020696846701
506 => 0.020368785769459
507 => 0.020297193659007
508 => 0.020206625711529
509 => 0.02003370683508
510 => 0.019982405498265
511 => 0.020149109955044
512 => 0.019960910342814
513 => 0.020238609122422
514 => 0.020163090420143
515 => 0.019741249088099
516 => 0.019215478602708
517 => 0.019210798142547
518 => 0.019097521753906
519 => 0.018953247241753
520 => 0.018913113373025
521 => 0.019498542186737
522 => 0.020710362310709
523 => 0.020472453023976
524 => 0.020644366865565
525 => 0.021490012816803
526 => 0.021758818235241
527 => 0.021568026516239
528 => 0.021306859043749
529 => 0.021318349087091
530 => 0.02221083740136
531 => 0.022266500802773
601 => 0.022407144260448
602 => 0.022587910849398
603 => 0.021598811847994
604 => 0.021271762613073
605 => 0.021116788541567
606 => 0.020639528383841
607 => 0.021154212546755
608 => 0.020854328125998
609 => 0.020894792779869
610 => 0.020868440120951
611 => 0.020882830454679
612 => 0.020118815354465
613 => 0.020397182301531
614 => 0.019934343261876
615 => 0.019314653743897
616 => 0.019312576327342
617 => 0.019464244458953
618 => 0.019374026319496
619 => 0.019131251625937
620 => 0.019165736625293
621 => 0.018863611744115
622 => 0.019202420056016
623 => 0.019212135866087
624 => 0.019081676210991
625 => 0.019603657162012
626 => 0.019817513183541
627 => 0.019731641843841
628 => 0.019811488221432
629 => 0.020482339228935
630 => 0.02059171721444
701 => 0.020640295690497
702 => 0.020575206967995
703 => 0.019823750146351
704 => 0.019857080451832
705 => 0.019612524785217
706 => 0.019405901017569
707 => 0.019414164884676
708 => 0.019520396360457
709 => 0.019984315445585
710 => 0.020960605810715
711 => 0.020997655316413
712 => 0.021042560398129
713 => 0.020859908863304
714 => 0.020804819412661
715 => 0.020877496617853
716 => 0.021244139948087
717 => 0.022187246136142
718 => 0.021853889421339
719 => 0.021582865223197
720 => 0.021820626512566
721 => 0.021784025025703
722 => 0.021475071642138
723 => 0.021466400349662
724 => 0.02087342002823
725 => 0.020654208704905
726 => 0.020471019315452
727 => 0.020270981284449
728 => 0.020152392034334
729 => 0.02033459902036
730 => 0.020376271913874
731 => 0.019977873154496
801 => 0.019923572875726
802 => 0.020248913902669
803 => 0.020105743446648
804 => 0.020252997811122
805 => 0.020287162086805
806 => 0.02028166085155
807 => 0.020132174452441
808 => 0.020227452625485
809 => 0.020002091342447
810 => 0.019757044795314
811 => 0.019600720365182
812 => 0.019464306566466
813 => 0.01953999687041
814 => 0.019270174757352
815 => 0.019183853232938
816 => 0.020195174524284
817 => 0.020942248435738
818 => 0.020931385685191
819 => 0.020865261484914
820 => 0.020767014336105
821 => 0.021236952557208
822 => 0.021073235477687
823 => 0.021192353332058
824 => 0.021222673825356
825 => 0.021314444826621
826 => 0.021347245071589
827 => 0.021248099950061
828 => 0.020915356812654
829 => 0.020086192550506
830 => 0.019700214348189
831 => 0.019572835112449
901 => 0.019577465105741
902 => 0.01944974922156
903 => 0.019487367273276
904 => 0.019436667198356
905 => 0.019340653522123
906 => 0.019534068296462
907 => 0.019556357547422
908 => 0.019511212227956
909 => 0.019521845584975
910 => 0.01914806162162
911 => 0.019176479604538
912 => 0.019018244664469
913 => 0.018988577520757
914 => 0.018588573371356
915 => 0.017879908039163
916 => 0.018272577425006
917 => 0.017798288024578
918 => 0.017618667441979
919 => 0.018468963343271
920 => 0.018383617218319
921 => 0.018237541751469
922 => 0.018021465691203
923 => 0.017941320978597
924 => 0.017454387075539
925 => 0.017425616422855
926 => 0.017666954013532
927 => 0.017555585019354
928 => 0.017399180772792
929 => 0.016832700446188
930 => 0.016195789003894
1001 => 0.016215013356854
1002 => 0.016417603036489
1003 => 0.017006659852968
1004 => 0.016776505163984
1005 => 0.016609525296404
1006 => 0.016578254986603
1007 => 0.016969668382593
1008 => 0.01752360034156
1009 => 0.017783492823179
1010 => 0.017525947266947
1011 => 0.017230092799185
1012 => 0.01724810008978
1013 => 0.017367894526701
1014 => 0.017380483228219
1015 => 0.017187912384037
1016 => 0.017242119948684
1017 => 0.017159773701142
1018 => 0.016654414931972
1019 => 0.016645274594348
1020 => 0.016521251402383
1021 => 0.01651749602942
1022 => 0.016306501640852
1023 => 0.016276982067356
1024 => 0.015858039902411
1025 => 0.016133788904052
1026 => 0.015948830951223
1027 => 0.015670055689141
1028 => 0.015621994728881
1029 => 0.01562054995838
1030 => 0.015906789819531
1031 => 0.016130444024617
1101 => 0.015952048374
1102 => 0.015911431142409
1103 => 0.016345116912459
1104 => 0.016289926445086
1105 => 0.016242131856282
1106 => 0.017474001810214
1107 => 0.016498880617666
1108 => 0.016073672119743
1109 => 0.01554739585866
1110 => 0.015718754062984
1111 => 0.01575486175441
1112 => 0.014489262214932
1113 => 0.013975808639385
1114 => 0.013799610721348
1115 => 0.013698206328444
1116 => 0.013744417583646
1117 => 0.013282249143557
1118 => 0.013592833978858
1119 => 0.013192635175866
1120 => 0.013125540544185
1121 => 0.013841145579052
1122 => 0.01394071783915
1123 => 0.013515911642896
1124 => 0.013788705990767
1125 => 0.013689786968104
1126 => 0.013199495435703
1127 => 0.013180769905506
1128 => 0.012934758849128
1129 => 0.012549799183023
1130 => 0.012373862285767
1201 => 0.012282232822121
1202 => 0.012320040924644
1203 => 0.012300923991061
1204 => 0.012176173068243
1205 => 0.012308074567929
1206 => 0.011971120741694
1207 => 0.011836943013066
1208 => 0.011776338045945
1209 => 0.011477272130823
1210 => 0.011953218996998
1211 => 0.012046986525455
1212 => 0.012140938804909
1213 => 0.012958729253615
1214 => 0.012917874753849
1215 => 0.013287179534781
1216 => 0.013272829030102
1217 => 0.01316749732424
1218 => 0.01272312018343
1219 => 0.012900240991496
1220 => 0.012355090674954
1221 => 0.012763554358725
1222 => 0.012577148591304
1223 => 0.012700530381253
1224 => 0.012478678798037
1225 => 0.012601460624216
1226 => 0.012069222284998
1227 => 0.011572225612632
1228 => 0.011772231581829
1229 => 0.011989660943804
1230 => 0.012461103200536
1231 => 0.01218031608174
]
'min_raw' => 0.011477272130823
'max_raw' => 0.034259936828591
'avg_raw' => 0.022868604479707
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.011477'
'max' => '$0.034259'
'avg' => '$0.022868'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.021742057869177
'max_diff' => 0.0010406068285907
'year' => 2026
]
1 => [
'items' => [
101 => 0.012281297747396
102 => 0.011943026071577
103 => 0.011245074981837
104 => 0.011249025309207
105 => 0.011141660739742
106 => 0.01104888207624
107 => 0.012212567860036
108 => 0.012067845137671
109 => 0.011837248420424
110 => 0.012145911290009
111 => 0.012227526651865
112 => 0.01222985012648
113 => 0.012455042588387
114 => 0.012575227845674
115 => 0.012596411018184
116 => 0.0129507562226
117 => 0.013069528061194
118 => 0.013558732455142
119 => 0.012565030966281
120 => 0.012544566338041
121 => 0.012150254809572
122 => 0.011900176204398
123 => 0.01216737790562
124 => 0.012404082136233
125 => 0.012157609869828
126 => 0.012189793944507
127 => 0.011858925064382
128 => 0.011977195120199
129 => 0.012079065224965
130 => 0.012022818540761
131 => 0.011938614532137
201 => 0.012384675088662
202 => 0.012359506603937
203 => 0.012774888449061
204 => 0.013098708301575
205 => 0.013679051367004
206 => 0.013073433124261
207 => 0.013051361988381
208 => 0.01326711088193
209 => 0.013069495031162
210 => 0.01319438142738
211 => 0.013658930237837
212 => 0.013668745422176
213 => 0.013504328438355
214 => 0.013494323649947
215 => 0.013525901730214
216 => 0.013710855532665
217 => 0.013646226991032
218 => 0.013721016775604
219 => 0.013814542546433
220 => 0.014201404788685
221 => 0.014294675965576
222 => 0.014068075361291
223 => 0.014088534858719
224 => 0.014003780012391
225 => 0.013921907892813
226 => 0.014105944461161
227 => 0.014442274907065
228 => 0.014440182612816
301 => 0.014518204738937
302 => 0.014566811877139
303 => 0.014358154457374
304 => 0.014222326149652
305 => 0.014274411365812
306 => 0.014357696760721
307 => 0.014247403034736
308 => 0.013566619064934
309 => 0.013773125432724
310 => 0.013738752675478
311 => 0.01368980168929
312 => 0.013897445438969
313 => 0.013877417692762
314 => 0.013277508938197
315 => 0.013315913150265
316 => 0.013279844425531
317 => 0.013396389854112
318 => 0.013063201195549
319 => 0.013165687782863
320 => 0.013229966409675
321 => 0.013267827014678
322 => 0.013404605481211
323 => 0.013388556106854
324 => 0.013403607829566
325 => 0.013606414187258
326 => 0.014632139149724
327 => 0.014687967096296
328 => 0.014413049869261
329 => 0.014522873878959
330 => 0.01431203579621
331 => 0.014453572813652
401 => 0.014550408846335
402 => 0.014112825435137
403 => 0.014086914585419
404 => 0.013875206298903
405 => 0.013988966340306
406 => 0.013807965934797
407 => 0.013852377103184
408 => 0.013728199604679
409 => 0.013951694378494
410 => 0.014201596263197
411 => 0.014264731348197
412 => 0.014098650120924
413 => 0.013978396367093
414 => 0.013767270389413
415 => 0.014118377595543
416 => 0.014221052042414
417 => 0.014117838290384
418 => 0.014093921408773
419 => 0.014048598961339
420 => 0.01410353678025
421 => 0.014220492855326
422 => 0.01416533853016
423 => 0.014201768933626
424 => 0.014062933802481
425 => 0.014358223531662
426 => 0.014827214686945
427 => 0.014828722570197
428 => 0.014773567947728
429 => 0.014750999864537
430 => 0.014807591854252
501 => 0.014838290687148
502 => 0.015021298804691
503 => 0.01521767380618
504 => 0.016134070253002
505 => 0.015876749797754
506 => 0.016689831242044
507 => 0.017332873099065
508 => 0.017525693235173
509 => 0.017348307782842
510 => 0.016741481732591
511 => 0.016711707951549
512 => 0.017618562265974
513 => 0.01736233438559
514 => 0.017331856894529
515 => 0.01700762788217
516 => 0.017199287385019
517 => 0.01715736864027
518 => 0.01709119785095
519 => 0.017456870831268
520 => 0.018141378006571
521 => 0.018034691144032
522 => 0.017955054350208
523 => 0.017606109101594
524 => 0.017816252081003
525 => 0.017741424191059
526 => 0.01806293229321
527 => 0.017872478015772
528 => 0.017360393207389
529 => 0.017441944400978
530 => 0.017429618102125
531 => 0.017683292459062
601 => 0.017607145713694
602 => 0.01741474922798
603 => 0.018139038435461
604 => 0.018092007123036
605 => 0.0181586867712
606 => 0.018188041214459
607 => 0.018628903291645
608 => 0.018809510378655
609 => 0.018850511349379
610 => 0.019022074113385
611 => 0.01884624271152
612 => 0.019549693684644
613 => 0.02001744753427
614 => 0.020560767701002
615 => 0.021354704495292
616 => 0.021653232074272
617 => 0.021599305739146
618 => 0.022201259555501
619 => 0.02328295718281
620 => 0.021817947756544
621 => 0.023360606239723
622 => 0.022872218374797
623 => 0.02171425953278
624 => 0.021639700634792
625 => 0.022423883806785
626 => 0.024163126607431
627 => 0.023727466012197
628 => 0.024163839192093
629 => 0.023654786698419
630 => 0.023629507951476
701 => 0.024139115648702
702 => 0.025329841810539
703 => 0.024764172444753
704 => 0.02395314670108
705 => 0.02455199548925
706 => 0.024033217248098
707 => 0.022864264673895
708 => 0.023727132870751
709 => 0.023150157480585
710 => 0.023318549573134
711 => 0.02453126602465
712 => 0.024385348772754
713 => 0.024574179208282
714 => 0.024240898432129
715 => 0.023929561633647
716 => 0.023348428379108
717 => 0.023176383471962
718 => 0.02322393049477
719 => 0.023176359910019
720 => 0.022851221194994
721 => 0.022781007520441
722 => 0.022663981653388
723 => 0.022700252862986
724 => 0.022480209995802
725 => 0.022895476349356
726 => 0.02297255344389
727 => 0.023274749665666
728 => 0.023306124679908
729 => 0.024147736856062
730 => 0.023684191012155
731 => 0.02399517758487
801 => 0.023967360018687
802 => 0.021739356012125
803 => 0.022046355306383
804 => 0.022523949866564
805 => 0.022308794164567
806 => 0.022004614340623
807 => 0.021758972823699
808 => 0.021386800807423
809 => 0.0219106257734
810 => 0.022599399901086
811 => 0.023323593128437
812 => 0.024193663840079
813 => 0.02399947418598
814 => 0.023307327761691
815 => 0.023338376944672
816 => 0.023530310776453
817 => 0.023281739025269
818 => 0.023208430363147
819 => 0.023520239292008
820 => 0.023522386548734
821 => 0.023236374708097
822 => 0.022918524886844
823 => 0.022917193084487
824 => 0.02286063477886
825 => 0.023664848295345
826 => 0.024107084414254
827 => 0.024157786072587
828 => 0.024103671788678
829 => 0.024124498228836
830 => 0.02386717077525
831 => 0.02445534502606
901 => 0.024995111883008
902 => 0.024850442834909
903 => 0.024633563365892
904 => 0.024460808422489
905 => 0.024809747260474
906 => 0.0247942095633
907 => 0.024990397490395
908 => 0.024981497272785
909 => 0.024915526651904
910 => 0.024850445190928
911 => 0.025108485827226
912 => 0.025034174267978
913 => 0.024959747282353
914 => 0.02481047256848
915 => 0.024830761481286
916 => 0.024613919459567
917 => 0.024513598418304
918 => 0.023005010661542
919 => 0.022601866718408
920 => 0.02272870400967
921 => 0.022770462139282
922 => 0.022595013378587
923 => 0.022846561832335
924 => 0.022807358272274
925 => 0.022959876391155
926 => 0.022864589692045
927 => 0.022868500291414
928 => 0.02314871815623
929 => 0.023230066594518
930 => 0.023188692122243
1001 => 0.023217669384391
1002 => 0.023885438160054
1003 => 0.023790502794198
1004 => 0.023740070273219
1005 => 0.023754040426193
1006 => 0.023924669665499
1007 => 0.023972436536493
1008 => 0.023770044947571
1009 => 0.023865493990918
1010 => 0.024271903903206
1011 => 0.024414124371698
1012 => 0.024868023837426
1013 => 0.024675199276965
1014 => 0.025029137102943
1015 => 0.026117021313702
1016 => 0.026986098497117
1017 => 0.026186859203115
1018 => 0.027782808774146
1019 => 0.029025484440562
1020 => 0.0289777884787
1021 => 0.028761099232654
1022 => 0.027346346024681
1023 => 0.026044469029922
1024 => 0.027133544416655
1025 => 0.027136320693787
1026 => 0.027042768152213
1027 => 0.026461721351188
1028 => 0.027022548983029
1029 => 0.027067065443818
1030 => 0.027042148063659
1031 => 0.026596660843649
1101 => 0.025916484198495
1102 => 0.026049389086846
1103 => 0.02626709000515
1104 => 0.025854936749631
1105 => 0.025723228811247
1106 => 0.025968098927164
1107 => 0.026757121461365
1108 => 0.02660796132177
1109 => 0.026604066147722
1110 => 0.02724223647865
1111 => 0.026785444247483
1112 => 0.026051065443108
1113 => 0.025865625109737
1114 => 0.025207436853847
1115 => 0.025662049826576
1116 => 0.025678410538133
1117 => 0.025429423659001
1118 => 0.026071269356105
1119 => 0.026065354635011
1120 => 0.026674691598286
1121 => 0.027839515015556
1122 => 0.02749501941359
1123 => 0.027094408509519
1124 => 0.027137966022527
1125 => 0.027615684431123
1126 => 0.027326844976035
1127 => 0.027430713657945
1128 => 0.027615527213432
1129 => 0.02772702982012
1130 => 0.027121922513352
1201 => 0.026980843054516
1202 => 0.026692243993899
1203 => 0.026616953885941
1204 => 0.026852011798997
1205 => 0.026790082343625
1206 => 0.025677035483679
1207 => 0.02556071589388
1208 => 0.025564283249633
1209 => 0.025271792110389
1210 => 0.024825672917126
1211 => 0.025998047520629
1212 => 0.025903889432596
1213 => 0.025799946190664
1214 => 0.025812678644709
1215 => 0.026321566724628
1216 => 0.026026385938811
1217 => 0.026811172437085
1218 => 0.026649843925881
1219 => 0.026484377947113
1220 => 0.026461505508631
1221 => 0.026397815223699
1222 => 0.026179397538557
1223 => 0.02591564505888
1224 => 0.025741492825949
1225 => 0.023745166441776
1226 => 0.024115673006582
1227 => 0.024541907036655
1228 => 0.024689041315811
1229 => 0.024437357949933
1230 => 0.02618933553187
1231 => 0.026509438718566
]
'min_raw' => 0.01104888207624
'max_raw' => 0.029025484440562
'avg_raw' => 0.020037183258401
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.011048'
'max' => '$0.029025'
'avg' => '$0.020037'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.000428390054583
'max_diff' => -0.0052344523880288
'year' => 2027
]
2 => [
'items' => [
101 => 0.02553982528625
102 => 0.025358450202119
103 => 0.02620122645219
104 => 0.025692929348191
105 => 0.025921815502998
106 => 0.025427088830338
107 => 0.026432335234607
108 => 0.026424676941254
109 => 0.026033613385474
110 => 0.026364137624932
111 => 0.026306700904524
112 => 0.025865191113195
113 => 0.026446331882499
114 => 0.02644662012107
115 => 0.026070229951086
116 => 0.025630688634948
117 => 0.025552109029125
118 => 0.025492909851822
119 => 0.025907256134357
120 => 0.026278757715651
121 => 0.026970030055387
122 => 0.027143832345822
123 => 0.027822194256064
124 => 0.027418262767357
125 => 0.027597320364512
126 => 0.027791712715468
127 => 0.027884911557058
128 => 0.027733049046013
129 => 0.028786824317521
130 => 0.028875795237276
131 => 0.028905626417074
201 => 0.028550299324522
202 => 0.02886591294805
203 => 0.028718247785626
204 => 0.02910243151569
205 => 0.029162676430068
206 => 0.029111651130865
207 => 0.02913077381759
208 => 0.028231562522054
209 => 0.028184933672663
210 => 0.027549146002585
211 => 0.027808234177647
212 => 0.027323881252788
213 => 0.027477474554649
214 => 0.027545177018618
215 => 0.027509813093522
216 => 0.027822882634332
217 => 0.027556709568761
218 => 0.026854235085816
219 => 0.026151569214168
220 => 0.026142747816529
221 => 0.025957748295607
222 => 0.025824027526332
223 => 0.025849786890494
224 => 0.025940566249645
225 => 0.025818751264951
226 => 0.025844746668112
227 => 0.026276443567051
228 => 0.026363017301411
229 => 0.026068805925512
301 => 0.024887504796776
302 => 0.024597610536715
303 => 0.024805980781994
304 => 0.024706393225513
305 => 0.01993998758792
306 => 0.021059783891378
307 => 0.020394438952553
308 => 0.020701060511412
309 => 0.020021915619108
310 => 0.020346039158749
311 => 0.020286185376074
312 => 0.022086784694853
313 => 0.022058670813134
314 => 0.02207212744056
315 => 0.021429807552482
316 => 0.022453040575075
317 => 0.022957121956274
318 => 0.022863829908305
319 => 0.022887309506881
320 => 0.022483852211724
321 => 0.022076033789091
322 => 0.021623700395585
323 => 0.022464079930622
324 => 0.022370644072083
325 => 0.02258495231441
326 => 0.023129998514452
327 => 0.023210258637837
328 => 0.023318129057584
329 => 0.023279465190844
330 => 0.024200595357005
331 => 0.02408904041607
401 => 0.024357855727176
402 => 0.023804882237165
403 => 0.023179140244492
404 => 0.023298073340253
405 => 0.023286619126731
406 => 0.023140793842072
407 => 0.02300914929537
408 => 0.022789998215732
409 => 0.023483424659963
410 => 0.023455272812672
411 => 0.023911018497361
412 => 0.023830461020715
413 => 0.023292478475914
414 => 0.023311692627748
415 => 0.023440917032842
416 => 0.023888164174332
417 => 0.024020937576833
418 => 0.023959431646689
419 => 0.024105011621196
420 => 0.024220072097272
421 => 0.024119461445489
422 => 0.025543896105656
423 => 0.024952371523516
424 => 0.025240676489049
425 => 0.025309435524538
426 => 0.025133310700981
427 => 0.025171505868654
428 => 0.025229361140117
429 => 0.025580647019218
430 => 0.026502522811368
501 => 0.02691081532429
502 => 0.028139183494214
503 => 0.026876912314798
504 => 0.026802014366809
505 => 0.027023280567377
506 => 0.027744462719099
507 => 0.028328913115874
508 => 0.028522809030237
509 => 0.028548435576193
510 => 0.028912197201494
511 => 0.029120698581364
512 => 0.028868026972302
513 => 0.028653914239442
514 => 0.027886989006989
515 => 0.027975762690913
516 => 0.028587325340527
517 => 0.029451193603966
518 => 0.030192482444171
519 => 0.029932908928856
520 => 0.031913271620368
521 => 0.032109616492176
522 => 0.032082487979482
523 => 0.032529790817493
524 => 0.031641985775679
525 => 0.031262431919891
526 => 0.028700207842569
527 => 0.029420088296534
528 => 0.03046647681347
529 => 0.030327983369498
530 => 0.029568068058454
531 => 0.030191905980264
601 => 0.029985645654098
602 => 0.029822959577103
603 => 0.030568256034068
604 => 0.029748771964543
605 => 0.030458301833004
606 => 0.029548322437557
607 => 0.029934094638809
608 => 0.029715111679676
609 => 0.029856820491777
610 => 0.029028393671822
611 => 0.029475392674946
612 => 0.029009797043696
613 => 0.029009576290745
614 => 0.028999298241379
615 => 0.029547069436777
616 => 0.029564932235793
617 => 0.029160128494758
618 => 0.029101789951452
619 => 0.029317498122523
620 => 0.029064960348258
621 => 0.029183121183383
622 => 0.029068539319582
623 => 0.029042744528577
624 => 0.028837207245228
625 => 0.028748656132196
626 => 0.028783379305297
627 => 0.028664851214481
628 => 0.028593433752415
629 => 0.028985091510623
630 => 0.028775844569842
701 => 0.028953021415925
702 => 0.028751106038312
703 => 0.028051179369166
704 => 0.02764864414015
705 => 0.026326547545368
706 => 0.026701492499593
707 => 0.026950081392152
708 => 0.026867922764644
709 => 0.027044431287699
710 => 0.027055267477472
711 => 0.026997882757335
712 => 0.026931438602855
713 => 0.026899097263046
714 => 0.027140143113218
715 => 0.027280078342473
716 => 0.02697503061321
717 => 0.026903562198315
718 => 0.027211982294747
719 => 0.027400118375402
720 => 0.028789209490425
721 => 0.028686301133919
722 => 0.028944580914004
723 => 0.028915502574393
724 => 0.029186220931118
725 => 0.029628731030249
726 => 0.028728984270945
727 => 0.028885149197458
728 => 0.028846861163852
729 => 0.029264879875103
730 => 0.029266184883891
731 => 0.029015561784913
801 => 0.029151428632765
802 => 0.029075591485606
803 => 0.029212639460527
804 => 0.028684926730077
805 => 0.029327623872696
806 => 0.029691991738071
807 => 0.029697050986235
808 => 0.029869758462621
809 => 0.030045239261172
810 => 0.030382059372833
811 => 0.030035845531067
812 => 0.029413040532968
813 => 0.029458005042183
814 => 0.029092854699673
815 => 0.029098992942901
816 => 0.02906622651949
817 => 0.029164561022686
818 => 0.0287065056237
819 => 0.028814010310294
820 => 0.028663503119516
821 => 0.028884822024219
822 => 0.028646719468084
823 => 0.028846842700203
824 => 0.028933209252995
825 => 0.029251903692138
826 => 0.0285996480403
827 => 0.027269654612377
828 => 0.027549235355538
829 => 0.02713571347581
830 => 0.027173986500167
831 => 0.027251304100477
901 => 0.02700069246113
902 => 0.027048501264237
903 => 0.027046793197364
904 => 0.027032073999831
905 => 0.026966880233356
906 => 0.026872336373774
907 => 0.027248970011284
908 => 0.027312967405485
909 => 0.027455225685194
910 => 0.027878489830895
911 => 0.027836195761484
912 => 0.027905179143458
913 => 0.027754588807933
914 => 0.027180971953929
915 => 0.027212122108855
916 => 0.026823679177776
917 => 0.027445292326107
918 => 0.02729808612769
919 => 0.027203181333937
920 => 0.027177285681675
921 => 0.027601599017325
922 => 0.027728560217648
923 => 0.027649446517656
924 => 0.027487182010857
925 => 0.027798777833106
926 => 0.027882147729968
927 => 0.027900811175311
928 => 0.028452899229765
929 => 0.027931666764622
930 => 0.028057132599587
1001 => 0.029035981228182
1002 => 0.028148300593924
1003 => 0.028618524823531
1004 => 0.02859550979442
1005 => 0.028836060598767
1006 => 0.028575777607312
1007 => 0.028579004126937
1008 => 0.028792596944874
1009 => 0.02849264435375
1010 => 0.028418371873945
1011 => 0.028315764975043
1012 => 0.028539803384996
1013 => 0.028674104279377
1014 => 0.029756470854949
1015 => 0.030455729024682
1016 => 0.030425372383371
1017 => 0.030702775259696
1018 => 0.030577802723193
1019 => 0.030174233436734
1020 => 0.030863076998688
1021 => 0.030645098073247
1022 => 0.030663067991016
1023 => 0.030662399149779
1024 => 0.030807336079149
1025 => 0.030704634981416
1026 => 0.030502200575732
1027 => 0.030636585981443
1028 => 0.031035662592742
1029 => 0.032274408639381
1030 => 0.032967627338282
1031 => 0.032232676003276
1101 => 0.032739635592772
1102 => 0.032435640487246
1103 => 0.032380395533501
1104 => 0.032698803619724
1105 => 0.033017769037152
1106 => 0.032997452318987
1107 => 0.03276589980499
1108 => 0.032635101665261
1109 => 0.033625548999884
1110 => 0.034355293724205
1111 => 0.034305530026277
1112 => 0.034525170804909
1113 => 0.035170042924207
1114 => 0.035229001948995
1115 => 0.03522157446703
1116 => 0.035075438372354
1117 => 0.03571039872103
1118 => 0.03624009381496
1119 => 0.035041612088715
1120 => 0.035497978240791
1121 => 0.035702855709657
1122 => 0.036003676618359
1123 => 0.036511211914776
1124 => 0.037062529863775
1125 => 0.037140492266657
1126 => 0.037085174210968
1127 => 0.036721565203381
1128 => 0.037324823881766
1129 => 0.037678198667407
1130 => 0.037888625265418
1201 => 0.038422232106327
1202 => 0.035704120963156
1203 => 0.033780106797131
1204 => 0.033479644202005
1205 => 0.034090646704302
1206 => 0.034251763191504
1207 => 0.034186817337536
1208 => 0.032021164469959
1209 => 0.033468242487849
1210 => 0.035025176761323
1211 => 0.035084984947582
1212 => 0.035864418798843
1213 => 0.036118234410887
1214 => 0.036745780823883
1215 => 0.036706527624888
1216 => 0.036859325190008
1217 => 0.036824199675871
1218 => 0.037986597260459
1219 => 0.03926889441397
1220 => 0.039224492540999
1221 => 0.039040147153731
1222 => 0.039313931489384
1223 => 0.040637399571122
1224 => 0.040515555838299
1225 => 0.040633916646112
1226 => 0.042194360101873
1227 => 0.044223158564856
1228 => 0.043280577990765
1229 => 0.045325706616289
1230 => 0.046613006678446
1231 => 0.048839259026636
]
'min_raw' => 0.01993998758792
'max_raw' => 0.048839259026636
'avg_raw' => 0.034389623307278
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.019939'
'max' => '$0.048839'
'avg' => '$0.034389'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0088911055116803
'max_diff' => 0.019813774586074
'year' => 2028
]
3 => [
'items' => [
101 => 0.048560521268118
102 => 0.049427184970274
103 => 0.048061522506047
104 => 0.044925685442259
105 => 0.044429427223412
106 => 0.045422948744803
107 => 0.047865424458728
108 => 0.045346026492538
109 => 0.045855697419827
110 => 0.045708912158481
111 => 0.045701090595701
112 => 0.045999607834417
113 => 0.045566593010047
114 => 0.043802412717682
115 => 0.044610926149293
116 => 0.044298720285344
117 => 0.044645135967885
118 => 0.04651459853386
119 => 0.045688064571021
120 => 0.044817378183337
121 => 0.04590941213427
122 => 0.047299946617385
123 => 0.047212929468463
124 => 0.047044079829206
125 => 0.047995876405016
126 => 0.049567965498023
127 => 0.049992894862697
128 => 0.050306569032401
129 => 0.050349819400835
130 => 0.050795325075656
131 => 0.048399728780258
201 => 0.052201601624331
202 => 0.052858080039885
203 => 0.052734689306004
204 => 0.053464337436057
205 => 0.053249656446809
206 => 0.052938617375803
207 => 0.054095264862546
208 => 0.052769261855635
209 => 0.050887167526461
210 => 0.049854613353871
211 => 0.051214363982107
212 => 0.052044716242012
213 => 0.052593526265488
214 => 0.052759595846991
215 => 0.048585692101281
216 => 0.046336189477658
217 => 0.047778094868801
218 => 0.049537318960989
219 => 0.0483899562016
220 => 0.048434930649523
221 => 0.046799092876264
222 => 0.04968205430598
223 => 0.049262031075193
224 => 0.051441112339526
225 => 0.050921057107573
226 => 0.05269801328719
227 => 0.052230081172811
228 => 0.054172441217868
301 => 0.054947301227141
302 => 0.05624841178004
303 => 0.057205513999225
304 => 0.057767542728778
305 => 0.057733800631973
306 => 0.059960838460065
307 => 0.058647632059614
308 => 0.056997935321663
309 => 0.0569680975124
310 => 0.057822498829369
311 => 0.05961308959618
312 => 0.060077363729979
313 => 0.060336829633329
314 => 0.059939448570274
315 => 0.058514057140936
316 => 0.057898580348646
317 => 0.058422984407756
318 => 0.057781683306019
319 => 0.058888748924926
320 => 0.060408986476143
321 => 0.060095063433487
322 => 0.061144461099112
323 => 0.062230477283179
324 => 0.063783529202433
325 => 0.064189554483473
326 => 0.064860698833272
327 => 0.065551526828649
328 => 0.065773402162428
329 => 0.066197031018485
330 => 0.066194798285304
331 => 0.067471432356541
401 => 0.068879599271181
402 => 0.069411149682319
403 => 0.070633420542869
404 => 0.068540324527656
405 => 0.070127961898949
406 => 0.071560050548997
407 => 0.069852655422325
408 => 0.072205901832399
409 => 0.072297273057931
410 => 0.073676870082551
411 => 0.072278384199289
412 => 0.071447967745933
413 => 0.073845348931473
414 => 0.075005366170356
415 => 0.074655959537471
416 => 0.071996957808883
417 => 0.070449304752896
418 => 0.066398798185398
419 => 0.071196798183462
420 => 0.073533764022939
421 => 0.071990905631929
422 => 0.072769033661642
423 => 0.077014247882894
424 => 0.078630550601081
425 => 0.078294370934507
426 => 0.07835117976417
427 => 0.079223307372934
428 => 0.083090801479643
429 => 0.080773309363091
430 => 0.082544945251422
501 => 0.083484614538484
502 => 0.084357431740645
503 => 0.082214068548846
504 => 0.079425584528574
505 => 0.078542354586758
506 => 0.071837498771358
507 => 0.071488481908453
508 => 0.071292568167012
509 => 0.070057359739771
510 => 0.069086824268024
511 => 0.068315018427218
512 => 0.06628956942021
513 => 0.066973099002396
514 => 0.063744956029287
515 => 0.06581020750512
516 => 0.0606580133738
517 => 0.064948913744638
518 => 0.062613571756091
519 => 0.064181691092579
520 => 0.06417622007194
521 => 0.061288815200777
522 => 0.059623420329692
523 => 0.060684674759685
524 => 0.061822423751119
525 => 0.062007019697132
526 => 0.063482140962814
527 => 0.06389381560044
528 => 0.062646422229182
529 => 0.060551245602274
530 => 0.061037907346814
531 => 0.059613558144972
601 => 0.057117440955545
602 => 0.058910195899016
603 => 0.059522321258588
604 => 0.059792670689387
605 => 0.057338026114582
606 => 0.056566723496252
607 => 0.056156088454109
608 => 0.060234381811773
609 => 0.060457799928133
610 => 0.059314761256699
611 => 0.064481404438954
612 => 0.063312033963113
613 => 0.06461850728735
614 => 0.060993747894444
615 => 0.061132218584639
616 => 0.059416199398691
617 => 0.060377055478378
618 => 0.059697953371092
619 => 0.060299427802504
620 => 0.060659949096721
621 => 0.062375686700806
622 => 0.06496850471205
623 => 0.062119412717562
624 => 0.060878022535815
625 => 0.061648174022728
626 => 0.063699188921752
627 => 0.066806581483294
628 => 0.064966942544758
629 => 0.065783343066585
630 => 0.065961690261473
701 => 0.064605208615332
702 => 0.066856596896453
703 => 0.068063134166551
704 => 0.069300791747963
705 => 0.070375415147525
706 => 0.068806444093274
707 => 0.070485468024488
708 => 0.069132471123552
709 => 0.067918693033163
710 => 0.0679205338335
711 => 0.06715911310693
712 => 0.065683764504017
713 => 0.065411687585731
714 => 0.066827066074181
715 => 0.067962065585076
716 => 0.068055549581075
717 => 0.068683943628687
718 => 0.06905582075309
719 => 0.072700722114679
720 => 0.074166731594516
721 => 0.075959340236321
722 => 0.076657662328192
723 => 0.078759361462395
724 => 0.077062068719868
725 => 0.07669484875855
726 => 0.071596814119519
727 => 0.072431617006063
728 => 0.073768216973918
729 => 0.071618854160689
730 => 0.07298213015056
731 => 0.073251269709094
801 => 0.071545819634759
802 => 0.072456774207609
803 => 0.070037548941327
804 => 0.065021237211875
805 => 0.066862181485396
806 => 0.06821773612585
807 => 0.066283192515241
808 => 0.069750787060082
809 => 0.067725089912666
810 => 0.067083041167547
811 => 0.064578180105932
812 => 0.06576037810607
813 => 0.067359317828702
814 => 0.06637135897681
815 => 0.068421521937254
816 => 0.071325099447733
817 => 0.073394361692731
818 => 0.07355321395377
819 => 0.07222281696004
820 => 0.074354786632973
821 => 0.074370315704516
822 => 0.071965445204096
823 => 0.070492475412964
824 => 0.070157813577264
825 => 0.07099386445716
826 => 0.072008984568862
827 => 0.073609546055093
828 => 0.074576731839796
829 => 0.077098639410599
830 => 0.077780995290502
831 => 0.078530697525139
901 => 0.07953253091022
902 => 0.080735488753818
903 => 0.078103485476454
904 => 0.078208059873331
905 => 0.075757174864016
906 => 0.073138052739098
907 => 0.075125639953728
908 => 0.077724145839211
909 => 0.077128045717988
910 => 0.07706097227713
911 => 0.077173771200032
912 => 0.076724331175439
913 => 0.074691530601231
914 => 0.073670670878869
915 => 0.074987840369807
916 => 0.075687857333772
917 => 0.076773522596986
918 => 0.076639691437681
919 => 0.079436248563784
920 => 0.080522906099489
921 => 0.080244892601158
922 => 0.08029605377562
923 => 0.082263395338486
924 => 0.084451483771044
925 => 0.086500917331834
926 => 0.088585689175089
927 => 0.086072415348015
928 => 0.084796329895807
929 => 0.08611292435175
930 => 0.085414320801018
1001 => 0.0894287040228
1002 => 0.089706651207193
1003 => 0.093720744143376
1004 => 0.09753059632911
1005 => 0.095137696431842
1006 => 0.097394093256387
1007 => 0.099834570388864
1008 => 0.10454264673056
1009 => 0.1029571322508
1010 => 0.10174265300748
1011 => 0.10059497599087
1012 => 0.10298310967385
1013 => 0.10605540550563
1014 => 0.10671714860171
1015 => 0.10778942522268
1016 => 0.10666205746748
1017 => 0.10801984775314
1018 => 0.1128134441048
1019 => 0.11151817205633
1020 => 0.10967867752214
1021 => 0.11346276145989
1022 => 0.11483220672671
1023 => 0.12444369079329
1024 => 0.13657858645795
1025 => 0.13155465997076
1026 => 0.12843614667906
1027 => 0.12916907127474
1028 => 0.13360032437933
1029 => 0.13502350223558
1030 => 0.13115481422346
1031 => 0.13252130023197
1101 => 0.14005077248878
1102 => 0.14409009278017
1103 => 0.13860415327137
1104 => 0.12346866374212
1105 => 0.10951305116568
1106 => 0.11321470805038
1107 => 0.11279505503544
1108 => 0.12088453365459
1109 => 0.11148728024635
1110 => 0.11164550589315
1111 => 0.11990226636324
1112 => 0.11769950422653
1113 => 0.11413131167352
1114 => 0.10953910292012
1115 => 0.10104998031156
1116 => 0.09353092768047
1117 => 0.10827752142445
1118 => 0.10764162148727
1119 => 0.10672074414314
1120 => 0.10877005702316
1121 => 0.11872093866094
1122 => 0.11849153863133
1123 => 0.11703221268387
1124 => 0.11813909855311
1125 => 0.11393726922892
1126 => 0.11502017631964
1127 => 0.10951084052535
1128 => 0.11200129039456
1129 => 0.11412365593485
1130 => 0.11454975223923
1201 => 0.11550976897
1202 => 0.10730653111589
1203 => 0.11098954407797
1204 => 0.11315296914155
1205 => 0.10337853599823
1206 => 0.11295976002551
1207 => 0.10716373099541
1208 => 0.10519647168916
1209 => 0.10784512717832
1210 => 0.10681294355829
1211 => 0.10592553269364
1212 => 0.10543034218352
1213 => 0.10737522245332
1214 => 0.1072844914641
1215 => 0.10410228985771
1216 => 0.099951237585309
1217 => 0.10134446698157
1218 => 0.10083829368031
1219 => 0.0990038563389
1220 => 0.1002400456162
1221 => 0.094796493660033
1222 => 0.08543114545065
1223 => 0.091618181346142
1224 => 0.091379987194366
1225 => 0.091259878901795
1226 => 0.095909265380146
1227 => 0.095462334149849
1228 => 0.094651149590496
1229 => 0.098988958298329
1230 => 0.09740559976821
1231 => 0.10228513767185
]
'min_raw' => 0.043802412717682
'max_raw' => 0.14409009278017
'avg_raw' => 0.093946252748927
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0438024'
'max' => '$0.14409'
'avg' => '$0.093946'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.023862425129762
'max_diff' => 0.095250833753536
'year' => 2029
]
4 => [
'items' => [
101 => 0.10549911692391
102 => 0.10468394782425
103 => 0.10770671084533
104 => 0.10137656417293
105 => 0.1034791849761
106 => 0.10391253220953
107 => 0.098935430412215
108 => 0.095535457626417
109 => 0.095308718204132
110 => 0.089413633938668
111 => 0.092562740369821
112 => 0.095333823710357
113 => 0.094006689834995
114 => 0.093586558897052
115 => 0.09573291674372
116 => 0.095899707130718
117 => 0.092096868631512
118 => 0.09288759917573
119 => 0.096185076993135
120 => 0.092804511195188
121 => 0.086236624062067
122 => 0.084607697244909
123 => 0.084390368380422
124 => 0.079972589660474
125 => 0.084716549923848
126 => 0.082645684138654
127 => 0.089187524341299
128 => 0.085450860302141
129 => 0.085289780183789
130 => 0.085046283959583
131 => 0.081243719319183
201 => 0.082076239309841
202 => 0.084843662555162
203 => 0.085831110346347
204 => 0.085728111451805
205 => 0.084830100671498
206 => 0.085241205408163
207 => 0.083916893812978
208 => 0.083449251825556
209 => 0.08197324507819
210 => 0.079803922916832
211 => 0.080105580468595
212 => 0.075807585632925
213 => 0.073465809934601
214 => 0.072817637285412
215 => 0.071950873729918
216 => 0.072915540535375
217 => 0.07579540995357
218 => 0.072321676436847
219 => 0.066366203976501
220 => 0.066724138018999
221 => 0.067528309540921
222 => 0.066029741229946
223 => 0.064611472088913
224 => 0.065844542039229
225 => 0.063321129848174
226 => 0.067833251848466
227 => 0.067711211593434
228 => 0.06939305164739
301 => 0.070444740747961
302 => 0.068020937859534
303 => 0.067411357987755
304 => 0.067758602386581
305 => 0.062019425970444
306 => 0.068924038492547
307 => 0.068983749868359
308 => 0.068472464816834
309 => 0.072148957828858
310 => 0.079907504811158
311 => 0.076988427349587
312 => 0.075858072326884
313 => 0.07370926660244
314 => 0.076572422646802
315 => 0.076352576934788
316 => 0.075358351251046
317 => 0.074757040455346
318 => 0.075864974033619
319 => 0.07461975522404
320 => 0.074396079709515
321 => 0.073040849452854
322 => 0.072557093910274
323 => 0.072198940565411
324 => 0.071804648924137
325 => 0.072674358033432
326 => 0.070703482772009
327 => 0.068326800414017
328 => 0.06812920499201
329 => 0.06867478332494
330 => 0.068433405526148
331 => 0.068128049367974
401 => 0.067545041303218
402 => 0.067372075264401
403 => 0.067934130979363
404 => 0.067299602847055
405 => 0.068235883670811
406 => 0.067981267093531
407 => 0.066558999590523
408 => 0.064786327690904
409 => 0.064770547192692
410 => 0.064388627939684
411 => 0.063902196349034
412 => 0.063766882208562
413 => 0.065740696327325
414 => 0.069826432481878
415 => 0.069024304711359
416 => 0.06960392423092
417 => 0.072455078596633
418 => 0.07336137483229
419 => 0.072718107231023
420 => 0.071837562863392
421 => 0.071876302346729
422 => 0.074885389009833
423 => 0.07507306205399
424 => 0.075547251290956
425 => 0.07615671846632
426 => 0.072821902126398
427 => 0.071719232797014
428 => 0.071196726894987
429 => 0.069587610951974
430 => 0.071322904541338
501 => 0.070311823279496
502 => 0.070448252685173
503 => 0.070359402855748
504 => 0.070407920870613
505 => 0.067831990618409
506 => 0.068770524215404
507 => 0.067210030078816
508 => 0.065120703603611
509 => 0.065113699448653
510 => 0.065625059143513
511 => 0.065320882387504
512 => 0.064502350558182
513 => 0.064618619141176
514 => 0.063599984010597
515 => 0.064742299889012
516 => 0.064775057421003
517 => 0.064335203585446
518 => 0.066095098805359
519 => 0.066816129312896
520 => 0.06652660809575
521 => 0.066795815732496
522 => 0.069057636741614
523 => 0.06942641225627
524 => 0.069590197979937
525 => 0.069370746807673
526 => 0.06683715766846
527 => 0.066949533120437
528 => 0.066124996616113
529 => 0.065428350157476
530 => 0.065456212362392
531 => 0.065814379199832
601 => 0.06737851478514
602 => 0.070670145913591
603 => 0.070795060908764
604 => 0.070946461526942
605 => 0.070330639124958
606 => 0.070144901195893
607 => 0.070389937467357
608 => 0.071626101053461
609 => 0.074805849412059
610 => 0.073681913973878
611 => 0.07276813696754
612 => 0.07356976575461
613 => 0.073446361286215
614 => 0.07240470338309
615 => 0.072375467515099
616 => 0.070376192960826
617 => 0.06963710667939
618 => 0.069019470862973
619 => 0.068345028675236
620 => 0.06794519673884
621 => 0.06855952031351
622 => 0.0687000233835
623 => 0.067356794150944
624 => 0.067173716969949
625 => 0.068270626956871
626 => 0.067787917768553
627 => 0.06828439613935
628 => 0.068399583380088
629 => 0.068381035581342
630 => 0.06787703174994
701 => 0.068198268762465
702 => 0.067438447462482
703 => 0.066612255920219
704 => 0.066085197189807
705 => 0.065625268543327
706 => 0.065880463687604
707 => 0.064970739595049
708 => 0.064679700548712
709 => 0.068089440890683
710 => 0.070608252742184
711 => 0.070571628220304
712 => 0.070348685862423
713 => 0.070017438740818
714 => 0.071601868263304
715 => 0.071049884699338
716 => 0.071451498861894
717 => 0.071553726521957
718 => 0.071863138859969
719 => 0.071973727175919
720 => 0.071639452476594
721 => 0.070517585757444
722 => 0.06772200055721
723 => 0.066420648099963
724 => 0.065991180113332
725 => 0.06600679045897
726 => 0.065576187438616
727 => 0.065703019326384
728 => 0.065532080484025
729 => 0.065208363671144
730 => 0.065860475086619
731 => 0.065935624852414
801 => 0.065783414255891
802 => 0.065819265361476
803 => 0.064559026632263
804 => 0.064654839845751
805 => 0.064121339697698
806 => 0.064021314851379
807 => 0.062672672934274
808 => 0.060283358289352
809 => 0.061607270539023
810 => 0.060008170711654
811 => 0.059402567376712
812 => 0.062269399373683
813 => 0.061981648954729
814 => 0.06148914531958
815 => 0.060760629796445
816 => 0.06049041630237
817 => 0.05884868465157
818 => 0.058751682387343
819 => 0.059565368923963
820 => 0.059189880584557
821 => 0.058662552747477
822 => 0.056752624775937
823 => 0.054605233380507
824 => 0.054670049628714
825 => 0.055353094877963
826 => 0.057339141061356
827 => 0.056563158458557
828 => 0.056000174176851
829 => 0.055894744144133
830 => 0.057214421736324
831 => 0.059082042010277
901 => 0.059958287657167
902 => 0.059089954833075
903 => 0.058092460839117
904 => 0.058153173676587
905 => 0.058557068984445
906 => 0.058599512670529
907 => 0.057950246624502
908 => 0.058133011213361
909 => 0.05785537509054
910 => 0.056151522717263
911 => 0.056120705430805
912 => 0.055702552580071
913 => 0.055689891077936
914 => 0.054978508765721
915 => 0.054878981462689
916 => 0.053466488703968
917 => 0.05439619571518
918 => 0.053772597063868
919 => 0.052832686804289
920 => 0.052670645921264
921 => 0.05266577477665
922 => 0.053630852453149
923 => 0.054384918220634
924 => 0.053783444829393
925 => 0.053646500997279
926 => 0.055108702849975
927 => 0.054922624335953
928 => 0.054761481542889
929 => 0.058914817098983
930 => 0.055627127917519
1001 => 0.054193507779663
1002 => 0.052419130621986
1003 => 0.052996876771712
1004 => 0.053118616374316
1005 => 0.048851559165625
1006 => 0.047120414587487
1007 => 0.046526351005077
1008 => 0.046184459014574
1009 => 0.046340263487856
1010 => 0.044782030324525
1011 => 0.045829188781081
1012 => 0.044479890575807
1013 => 0.044253676340697
1014 => 0.046666388677699
1015 => 0.047002103504532
1016 => 0.045569839754842
1017 => 0.046489584944582
1018 => 0.046156072553368
1019 => 0.044503020420816
1020 => 0.044439885988381
1021 => 0.043610442535858
1022 => 0.042312524144561
1023 => 0.041719340611939
1024 => 0.041410405477893
1025 => 0.041537878135226
1026 => 0.041473424058951
1027 => 0.041052817612838
1028 => 0.041497532728098
1029 => 0.040361469377583
1030 => 0.039909079797523
1031 => 0.039704745919569
1101 => 0.038696424306619
1102 => 0.040301112395478
1103 => 0.040617256164311
1104 => 0.04093402283403
1105 => 0.043691260428147
1106 => 0.043553516629817
1107 => 0.044798653482766
1108 => 0.04475026975432
1109 => 0.044395136553979
1110 => 0.042896887998319
1111 => 0.043494063168892
1112 => 0.041656050815493
1113 => 0.043033214643351
1114 => 0.042404734584053
1115 => 0.042820724903108
1116 => 0.042072736801112
1117 => 0.042486704300429
1118 => 0.040692225580062
1119 => 0.03901656659998
1120 => 0.0396909006891
1121 => 0.040423978963431
1122 => 0.042013479447049
1123 => 0.0410667860721
1124 => 0.041407252808172
1125 => 0.040266746235776
1126 => 0.037913555407326
1127 => 0.037926874211859
1128 => 0.037564887069951
1129 => 0.037252077328354
1130 => 0.041175525194371
1201 => 0.0406875824317
1202 => 0.039910109499753
1203 => 0.04095078791471
1204 => 0.041225959805412
1205 => 0.041233793562294
1206 => 0.041993045670049
1207 => 0.042398258656062
1208 => 0.04246967920114
1209 => 0.04366437879742
1210 => 0.044064826343625
1211 => 0.045714213112983
1212 => 0.042363879165264
1213 => 0.042294881242359
1214 => 0.040965432394174
1215 => 0.040122274916899
1216 => 0.041023164107995
1217 => 0.041821228947668
1218 => 0.040990230493339
1219 => 0.04109874134814
1220 => 0.039983193818272
1221 => 0.04038194956881
1222 => 0.040725411739373
1223 => 0.040535772116561
1224 => 0.04025187242255
1225 => 0.041755796731826
1226 => 0.04167093942837
1227 => 0.043071428320238
1228 => 0.044163209561371
1229 => 0.046119876724722
1230 => 0.044077992536399
1231 => 0.044003578160822
]
'min_raw' => 0.037252077328354
'max_raw' => 0.10770671084533
'avg_raw' => 0.07247939408684
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.037252'
'max' => '$0.1077067'
'avg' => '$0.072479'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0065503353893277
'max_diff' => -0.036383381934846
'year' => 2030
]
5 => [
'items' => [
101 => 0.044730990618529
102 => 0.044064714980567
103 => 0.044485778184706
104 => 0.046052036932924
105 => 0.046085129512195
106 => 0.045530786172015
107 => 0.045497054329387
108 => 0.04560352203172
109 => 0.046227106689744
110 => 0.046009207049409
111 => 0.046261366029748
112 => 0.046576694695858
113 => 0.04788102775547
114 => 0.048195498040344
115 => 0.047431498282249
116 => 0.047500478906263
117 => 0.047214722024473
118 => 0.046938684457188
119 => 0.047559176596396
120 => 0.048693138176603
121 => 0.048686083860466
122 => 0.04894914090601
123 => 0.049113023266102
124 => 0.048409520207367
125 => 0.047951565584655
126 => 0.048127174527413
127 => 0.048407977051147
128 => 0.048036114053527
129 => 0.045740803368521
130 => 0.046437054005337
131 => 0.046321163854454
201 => 0.046156122186873
202 => 0.046856207586139
203 => 0.04678868264151
204 => 0.044766048391202
205 => 0.044895530873486
206 => 0.044773922649809
207 => 0.04516686369921
208 => 0.044043494874377
209 => 0.044389035558891
210 => 0.044605755436976
211 => 0.044733405110088
212 => 0.045194563259571
213 => 0.045140451673396
214 => 0.045191199607398
215 => 0.045874975401842
216 => 0.049333278726625
217 => 0.049521506546277
218 => 0.048594603921221
219 => 0.048964883237585
220 => 0.048254027921351
221 => 0.048731229857456
222 => 0.049057719302524
223 => 0.047582376280572
224 => 0.047495016041709
225 => 0.04678122677272
226 => 0.047164776694784
227 => 0.046554521190565
228 => 0.046704256545469
301 => 0.046285583439463
302 => 0.047039111673289
303 => 0.047881673325156
304 => 0.048094537672186
305 => 0.047534583219014
306 => 0.047129139292122
307 => 0.04641731331803
308 => 0.047601095777021
309 => 0.047947269843146
310 => 0.047599277472022
311 => 0.047518640035849
312 => 0.04736583224001
313 => 0.047551058932105
314 => 0.047945384504837
315 => 0.047759427846787
316 => 0.047882255495564
317 => 0.047414163157748
318 => 0.048409753096152
319 => 0.049990989520106
320 => 0.049996073453767
321 => 0.049810115793341
322 => 0.049734025925208
323 => 0.04992482976966
324 => 0.050028333028092
325 => 0.050645357673607
326 => 0.051307449701591
327 => 0.05439714430281
328 => 0.0535295704224
329 => 0.056270931279356
330 => 0.058438991796052
331 => 0.059089098347213
401 => 0.058491030910022
402 => 0.05644507451436
403 => 0.056344690132838
404 => 0.059402212768467
405 => 0.058538322580494
406 => 0.05843556559151
407 => 0.057342404839397
408 => 0.057988598234489
409 => 0.057847266259897
410 => 0.057624166823807
411 => 0.058857058807421
412 => 0.061164922539719
413 => 0.060805220334031
414 => 0.060536719323591
415 => 0.059360226055308
416 => 0.060068737782099
417 => 0.059816450326837
418 => 0.060900437340217
419 => 0.060258307446743
420 => 0.05853177776266
421 => 0.058806733305567
422 => 0.05876517432839
423 => 0.059620455133783
424 => 0.059363721065378
425 => 0.0587150428811
426 => 0.061157034512379
427 => 0.060998465158915
428 => 0.061223280248126
429 => 0.061322250803034
430 => 0.062808648076275
501 => 0.063417577479714
502 => 0.063555815115104
503 => 0.064134250952081
504 => 0.063541423104537
505 => 0.065913157173804
506 => 0.067490221935347
507 => 0.069322063810889
508 => 0.071998877143735
509 => 0.073005383718793
510 => 0.072823567314899
511 => 0.074853096633815
512 => 0.078500115706004
513 => 0.073560734141655
514 => 0.07876191492267
515 => 0.07711528113792
516 => 0.073211142055956
517 => 0.072959761525853
518 => 0.075603689840147
519 => 0.081467668372579
520 => 0.079998808258899
521 => 0.08147007090152
522 => 0.079753764878186
523 => 0.079668535817964
524 => 0.081386713748834
525 => 0.085401330137314
526 => 0.083494136376792
527 => 0.080759706457988
528 => 0.082778766957591
529 => 0.081029669897607
530 => 0.077088464680021
531 => 0.079997685049252
601 => 0.078052372238173
602 => 0.078620117934963
603 => 0.082708876120409
604 => 0.082216905918024
605 => 0.082853560915124
606 => 0.081729881509404
607 => 0.080680187756483
608 => 0.078720856415375
609 => 0.07814079499914
610 => 0.078301103106164
611 => 0.078140715558404
612 => 0.077044487680238
613 => 0.076807757374321
614 => 0.076413196493067
615 => 0.076535487408602
616 => 0.075793597518987
617 => 0.077193697022964
618 => 0.077453567828537
619 => 0.078472443488922
620 => 0.078578226539974
621 => 0.081415780751361
622 => 0.07985290357489
623 => 0.08090141651719
624 => 0.080807627650644
625 => 0.073295756588247
626 => 0.074330826142846
627 => 0.075941069547082
628 => 0.075215657076107
629 => 0.074190093562524
630 => 0.07336189603807
701 => 0.072107092100976
702 => 0.07387320454606
703 => 0.076195454606226
704 => 0.078637122633796
705 => 0.081570626784495
706 => 0.080915902807812
707 => 0.078582282814201
708 => 0.078686967302404
709 => 0.079334085616647
710 => 0.078496008602804
711 => 0.078248843330215
712 => 0.079300128903674
713 => 0.079307368529642
714 => 0.078343059640226
715 => 0.077271406776303
716 => 0.077266916511674
717 => 0.077076226235478
718 => 0.0797876882547
719 => 0.081278718205541
720 => 0.081449662386491
721 => 0.081267212300152
722 => 0.081337430097199
723 => 0.080469832621407
724 => 0.082452903173027
725 => 0.084272764816545
726 => 0.083785003020409
727 => 0.083053778748576
728 => 0.082471323395529
729 => 0.083647795049928
730 => 0.083595408619096
731 => 0.084256869912701
801 => 0.084226862207638
802 => 0.084004437653416
803 => 0.08378501096389
804 => 0.084655012984991
805 => 0.084404466374719
806 => 0.084153530596358
807 => 0.08365024047651
808 => 0.083718645962561
809 => 0.082987547946909
810 => 0.082649308552099
811 => 0.077562999603942
812 => 0.076203771653056
813 => 0.076631412436041
814 => 0.076772202885488
815 => 0.076180665139364
816 => 0.077028778313726
817 => 0.076896600773876
818 => 0.077410826260159
819 => 0.077089560501405
820 => 0.077102745360206
821 => 0.078047519455621
822 => 0.078321791394876
823 => 0.078182294472925
824 => 0.078279993335385
825 => 0.080531422384662
826 => 0.080211341170503
827 => 0.080041304404936
828 => 0.08008840575105
829 => 0.080663694144324
830 => 0.080824743484858
831 => 0.080142366112276
901 => 0.080464179225962
902 => 0.081834418619875
903 => 0.082313924858911
904 => 0.083844278597862
905 => 0.083194157129687
906 => 0.084387483221121
907 => 0.088055360791344
908 => 0.090985515192261
909 => 0.088290824111426
910 => 0.093671679515797
911 => 0.097861447285964
912 => 0.097700637020522
913 => 0.096970054098719
914 => 0.092200114883122
915 => 0.087810745701144
916 => 0.091482639404329
917 => 0.09149199981651
918 => 0.091176580890965
919 => 0.089217541033918
920 => 0.091108410550405
921 => 0.091258500905994
922 => 0.091174490219111
923 => 0.089672498953925
924 => 0.087379235906372
925 => 0.087827334016568
926 => 0.088561327862022
927 => 0.08717172438542
928 => 0.086727661875602
929 => 0.087553258567703
930 => 0.090213503129555
1001 => 0.089710599304884
1002 => 0.089697466453628
1003 => 0.091849102279981
1004 => 0.090308995380386
1005 => 0.087832985968746
1006 => 0.087207760937755
1007 => 0.084988633279785
1008 => 0.086521392657407
1009 => 0.086576553938688
1010 => 0.085737077291986
1011 => 0.087901104872006
1012 => 0.087881162976887
1013 => 0.089935585091117
1014 => 0.093862868567817
1015 => 0.092701377593874
1016 => 0.091350689961037
1017 => 0.091497547157232
1018 => 0.093108208125046
1019 => 0.092134365736092
1020 => 0.09248456624903
1021 => 0.093107678054627
1022 => 0.093483616877939
1023 => 0.091443455345927
1024 => 0.090967796100609
1025 => 0.089994764218396
1026 => 0.089740918362827
1027 => 0.090533432527913
1028 => 0.090324633045351
1029 => 0.086571917846592
1030 => 0.086179738228411
1031 => 0.086191765817397
1101 => 0.085205611520357
1102 => 0.083701489513222
1103 => 0.087654232341516
1104 => 0.087336771773803
1105 => 0.086986319876545
1106 => 0.087029248234308
1107 => 0.088744999925186
1108 => 0.08774977729694
1109 => 0.090395739767914
1110 => 0.089851809428794
1111 => 0.089293929328913
1112 => 0.089216813305666
1113 => 0.089002077063305
1114 => 0.088265666588413
1115 => 0.087376406688573
1116 => 0.086789240276324
1117 => 0.080058486493026
1118 => 0.081307675244213
1119 => 0.082744753035315
1120 => 0.083240826530076
1121 => 0.082392258490047
1122 => 0.088299173226717
1123 => 0.089378423469553
1124 => 0.086109304086251
1125 => 0.085497785326899
1126 => 0.088339264294773
1127 => 0.086625505120469
1128 => 0.087397210771723
1129 => 0.085729205254134
1130 => 0.08911846369019
1201 => 0.089092643219468
1202 => 0.087774145137969
1203 => 0.088888530687767
1204 => 0.088694878774808
1205 => 0.087206297688113
1206 => 0.089165654365772
1207 => 0.089166626182239
1208 => 0.087897600445416
1209 => 0.086415656210263
1210 => 0.086150719582978
1211 => 0.085951125423546
1212 => 0.087348122843847
1213 => 0.088600666362592
1214 => 0.090931339319104
1215 => 0.091517325875795
1216 => 0.093804470417892
1217 => 0.09244258720212
1218 => 0.093046292392332
1219 => 0.09370169977562
1220 => 0.094015926176976
1221 => 0.093503911118284
1222 => 0.097056788018413
1223 => 0.097356759686119
1224 => 0.097457337591556
1225 => 0.096259327490869
1226 => 0.097323440858035
1227 => 0.096825577453269
1228 => 0.098120879722033
1229 => 0.098323999657024
1230 => 0.098151964298288
1231 => 0.098216437771684
]
'min_raw' => 0.044043494874377
'max_raw' => 0.098323999657024
'avg_raw' => 0.071183747265701
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.044043'
'max' => '$0.098323'
'avg' => '$0.071183'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0067914175460228
'max_diff' => -0.0093827111883019
'year' => 2031
]
6 => [
'items' => [
101 => 0.095184684107858
102 => 0.095027471686614
103 => 0.092883869167667
104 => 0.093757403038848
105 => 0.092124373336243
106 => 0.092642223877009
107 => 0.092870487461117
108 => 0.092751255518624
109 => 0.093806791333285
110 => 0.092909370259102
111 => 0.090540928494651
112 => 0.088171841449824
113 => 0.088142099491793
114 => 0.08751836069075
115 => 0.087067511781056
116 => 0.087154361275787
117 => 0.087460430223178
118 => 0.08704972249743
119 => 0.087137367814129
120 => 0.088592864049016
121 => 0.088884753438799
122 => 0.087892799243771
123 => 0.083909960012428
124 => 0.082932561274861
125 => 0.083635096104765
126 => 0.083299329705109
127 => 0.067229060318148
128 => 0.071004531736939
129 => 0.068761274822789
130 => 0.069795070816117
131 => 0.067505286395331
201 => 0.068598091538814
202 => 0.068396290331667
203 => 0.074467136648762
204 => 0.074372348733697
205 => 0.074417718692574
206 => 0.072252092344578
207 => 0.075701993920098
208 => 0.077401539490647
209 => 0.077086998837479
210 => 0.07716616194337
211 => 0.075805877504261
212 => 0.074430889219379
213 => 0.072905815602264
214 => 0.075739213878067
215 => 0.075424188357519
216 => 0.076146743559051
217 => 0.0779844048764
218 => 0.078255007485976
219 => 0.078618700137427
220 => 0.078488342211288
221 => 0.081593996877754
222 => 0.081217881605876
223 => 0.082124211195353
224 => 0.080259822466406
225 => 0.078150089650199
226 => 0.078551080886198
227 => 0.078512462205603
228 => 0.078020802077177
229 => 0.077576953296842
301 => 0.076838070131205
302 => 0.079176005801416
303 => 0.079081089882777
304 => 0.080617668277852
305 => 0.080346063120996
306 => 0.078532217410458
307 => 0.078596999264858
308 => 0.079032688368793
309 => 0.080540613332122
310 => 0.080988268128599
311 => 0.080780896590911
312 => 0.08127172963903
313 => 0.081659664067388
314 => 0.081320448230488
315 => 0.086123029138092
316 => 0.084128662710482
317 => 0.085100703030587
318 => 0.085332528919338
319 => 0.084738711780076
320 => 0.084867489454584
321 => 0.085062552541649
322 => 0.086246937409035
323 => 0.08935510600558
324 => 0.09073169271897
325 => 0.094873221765798
326 => 0.090617386355436
327 => 0.090364862694582
328 => 0.091110877138111
329 => 0.093542393113971
330 => 0.095512908431723
331 => 0.096166642044378
401 => 0.096253043733255
402 => 0.097479491449984
403 => 0.098182468409316
404 => 0.097330568438396
405 => 0.096608672410685
406 => 0.094022930444459
407 => 0.094322237117791
408 => 0.096384163288904
409 => 0.099296755452446
410 => 0.10179606253233
411 => 0.1009208923026
412 => 0.10759782338154
413 => 0.1082598138252
414 => 0.1081683481506
415 => 0.10967646089865
416 => 0.1066831642156
417 => 0.10540347189121
418 => 0.096764754525744
419 => 0.099191881736737
420 => 0.1027198536781
421 => 0.10225291336244
422 => 0.099690805835666
423 => 0.10179411894402
424 => 0.10109869785372
425 => 0.10055019038675
426 => 0.10306300942634
427 => 0.10030006167139
428 => 0.1026922911607
429 => 0.099624232096216
430 => 0.10092489000649
501 => 0.10018657367087
502 => 0.10066435482467
503 => 0.097871255962275
504 => 0.099378344309779
505 => 0.097808556132173
506 => 0.097807811848184
507 => 0.097773158687158
508 => 0.099620007516605
509 => 0.09968023319063
510 => 0.098315409115234
511 => 0.098118716643411
512 => 0.09884599180244
513 => 0.097994543064882
514 => 0.098392930570231
515 => 0.098006609816576
516 => 0.097919640877768
517 => 0.097226657576802
518 => 0.096928101316773
519 => 0.097045172919177
520 => 0.096645547185623
521 => 0.096404758226063
522 => 0.097725259702531
523 => 0.097019769032532
524 => 0.097617133139193
525 => 0.096936361346292
526 => 0.094576509713945
527 => 0.093219334085204
528 => 0.088761793110063
529 => 0.09002594620105
530 => 0.090864081008236
531 => 0.090587077459461
601 => 0.091182188268373
602 => 0.091218723238751
603 => 0.091025246648337
604 => 0.090801225542524
605 => 0.090692184457358
606 => 0.091504887370497
607 => 0.091976688765897
608 => 0.090948199048934
609 => 0.09070723829835
610 => 0.091747098186673
611 => 0.092381412117842
612 => 0.097064829795387
613 => 0.096717867086594
614 => 0.09758867539767
615 => 0.097490635745486
616 => 0.098403381586136
617 => 0.099895335280426
618 => 0.096861776263121
619 => 0.097388297215947
620 => 0.097259206437458
621 => 0.098668585707575
622 => 0.098672985635817
623 => 0.097827992359666
624 => 0.098286076923118
625 => 0.098030386686692
626 => 0.098492453502522
627 => 0.096713233188085
628 => 0.098880131476105
629 => 0.10010862317357
630 => 0.10012568078198
701 => 0.10070797609667
702 => 0.10129962186066
703 => 0.10243523438315
704 => 0.10126795024376
705 => 0.099168119709815
706 => 0.099319720691954
707 => 0.0980885908182
708 => 0.098109286333799
709 => 0.097998812049592
710 => 0.098330353692614
711 => 0.096785987934525
712 => 0.097148447491114
713 => 0.096641001989329
714 => 0.097387194128528
715 => 0.096584414736729
716 => 0.097259144185976
717 => 0.097550335048635
718 => 0.09862483560074
719 => 0.096425710131534
720 => 0.091941544432116
721 => 0.092884170427388
722 => 0.091489952538707
723 => 0.091618992712466
724 => 0.091879674400051
725 => 0.091034719760848
726 => 0.091195910478427
727 => 0.091190151611713
728 => 0.091140524809567
729 => 0.090920719474214
730 => 0.090601958250791
731 => 0.091871804855377
801 => 0.092087576538081
802 => 0.092567210260275
803 => 0.093994274878866
804 => 0.093851677470968
805 => 0.094084259759559
806 => 0.093576533929457
807 => 0.091642544657532
808 => 0.091747569579701
809 => 0.090437907117347
810 => 0.09253371924659
811 => 0.092037403271017
812 => 0.091717425132839
813 => 0.09163011613326
814 => 0.093060718169015
815 => 0.093488776720052
816 => 0.093222039356986
817 => 0.092674953243367
818 => 0.093725520313007
819 => 0.094006607740976
820 => 0.094069532849993
821 => 0.095930936271139
822 => 0.094173564623622
823 => 0.094596581445952
824 => 0.097896837938287
825 => 0.094903960704004
826 => 0.096489354524131
827 => 0.096411757746627
828 => 0.097222791578202
829 => 0.096345229300134
830 => 0.096356107736319
831 => 0.097076250834568
901 => 0.09606493973157
902 => 0.095814524880368
903 => 0.095468578556938
904 => 0.096223939697955
905 => 0.09667674453995
906 => 0.10032601901791
907 => 0.10268361675781
908 => 0.1025812672222
909 => 0.10351655038738
910 => 0.10309519675526
911 => 0.10173453472965
912 => 0.1040570188923
913 => 0.10332208772637
914 => 0.10338267455875
915 => 0.10338041951382
916 => 0.10386908449037
917 => 0.103522820569
918 => 0.10284029883672
919 => 0.10329338861456
920 => 0.1046389032722
921 => 0.10881542205493
922 => 0.11115265729726
923 => 0.10867471755862
924 => 0.1103839672094
925 => 0.10935902648685
926 => 0.10917276426822
927 => 0.11024629936147
928 => 0.11132171353578
929 => 0.11125321430202
930 => 0.1104725188346
1001 => 0.11003152377446
1002 => 0.11337088611397
1003 => 0.11583127140117
1004 => 0.11566348961921
1005 => 0.1164040238392
1006 => 0.11857825521295
1007 => 0.11877703968141
1008 => 0.11875199740739
1009 => 0.1182592893613
1010 => 0.12040010250837
1011 => 0.12218600649969
1012 => 0.11814524168433
1013 => 0.11968391202852
1014 => 0.12037467071889
1015 => 0.12138890941523
1016 => 0.12310010010208
1017 => 0.12495890705892
1018 => 0.1252217627434
1019 => 0.12503525405646
1020 => 0.12380932090101
1021 => 0.12584324965336
1022 => 0.12703467741499
1023 => 0.1277441453817
1024 => 0.12954323810106
1025 => 0.1203789366094
1026 => 0.11389198851827
1027 => 0.11287895790117
1028 => 0.1149389954965
1029 => 0.1154822109819
1030 => 0.11526324150087
1031 => 0.10796159165678
1101 => 0.11284051622585
1102 => 0.11808982883055
1103 => 0.1182914763062
1104 => 0.12091939195406
1105 => 0.12177514901091
1106 => 0.12389096555621
1107 => 0.12375862065523
1108 => 0.12427378831402
1109 => 0.12415536019072
1110 => 0.12807446480316
1111 => 0.13239781918336
1112 => 0.13224811516859
1113 => 0.13162658182483
1114 => 0.1325496648275
1115 => 0.13701182986667
1116 => 0.1366010252146
1117 => 0.13700008694183
1118 => 0.14226123099961
1119 => 0.14910146666375
1120 => 0.14592349044932
1121 => 0.1528187843966
1122 => 0.15715900643258
1123 => 0.16466497165648
1124 => 0.16372518784279
1125 => 0.16664720502313
1126 => 0.16204277867748
1127 => 0.15147008507977
1128 => 0.14979691584729
1129 => 0.15314664302211
1130 => 0.16138162041982
1201 => 0.15288729427806
1202 => 0.1546056853935
1203 => 0.15411078863665
1204 => 0.15408441769166
1205 => 0.1550908894038
1206 => 0.1536309496913
1207 => 0.14768289266446
1208 => 0.15040885214774
1209 => 0.14935622827992
1210 => 0.15052419293958
1211 => 0.15682721650247
1212 => 0.15404049954
1213 => 0.15110491959454
1214 => 0.15478678830349
1215 => 0.15947507239733
1216 => 0.15918168800439
1217 => 0.15861239965694
1218 => 0.16182144826459
1219 => 0.16712185640142
1220 => 0.16855453542204
1221 => 0.16961210978523
1222 => 0.16975793142205
1223 => 0.17125998490892
1224 => 0.16318306474379
1225 => 0.17600134447587
1226 => 0.17821470728777
1227 => 0.17779868681362
1228 => 0.1802587464265
1229 => 0.17953493448271
1230 => 0.17848624453876
1231 => 0.18238596229486
]
'min_raw' => 0.067229060318148
'max_raw' => 0.18238596229486
'avg_raw' => 0.1248075113065
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.067229'
'max' => '$0.182385'
'avg' => '$0.1248075'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.023185565443771
'max_diff' => 0.084061962637833
'year' => 2032
]
7 => [
'items' => [
101 => 0.17791525057848
102 => 0.17156963814404
103 => 0.16808830966053
104 => 0.17267280383838
105 => 0.175472394456
106 => 0.17732274576684
107 => 0.17788266095548
108 => 0.16381005306417
109 => 0.15622569791336
110 => 0.16108718261022
111 => 0.16701852946214
112 => 0.16315011581255
113 => 0.16330175030374
114 => 0.15778640904065
115 => 0.16750651478288
116 => 0.16609037713519
117 => 0.17343730175649
118 => 0.17168389923286
119 => 0.17767503105556
120 => 0.17609736526195
121 => 0.18264616776511
122 => 0.18525866238537
123 => 0.18964544745511
124 => 0.19287238440983
125 => 0.19476730351111
126 => 0.19465353967594
127 => 0.20216215320017
128 => 0.1977345861359
129 => 0.19217251840575
130 => 0.19207191814861
131 => 0.19495259184117
201 => 0.20098969362653
202 => 0.20255502628321
203 => 0.20342983369169
204 => 0.20209003569334
205 => 0.19728422897167
206 => 0.19520910599525
207 => 0.19697717089326
208 => 0.19481497945454
209 => 0.19854752848154
210 => 0.20367311552507
211 => 0.20261470206935
212 => 0.2061528195656
213 => 0.20981439895342
214 => 0.2150506219298
215 => 0.21641956451261
216 => 0.21868237454576
217 => 0.22101154936424
218 => 0.22175961754292
219 => 0.22318791180794
220 => 0.22318038399214
221 => 0.22748464489505
222 => 0.23223237796284
223 => 0.23402453728565
224 => 0.23814550882823
225 => 0.23108848947764
226 => 0.23644131972025
227 => 0.24126970658913
228 => 0.23551310471303
301 => 0.24344723928301
302 => 0.24375530374923
303 => 0.24840671143812
304 => 0.24369161864354
305 => 0.24089181159323
306 => 0.24897474964008
307 => 0.25288582875079
308 => 0.25170777989323
309 => 0.24274276991972
310 => 0.23752474958778
311 => 0.22386818389812
312 => 0.24004497587725
313 => 0.2479242193668
314 => 0.24272236458257
315 => 0.24534587756191
316 => 0.25965891370026
317 => 0.26510839116128
318 => 0.26397493794411
319 => 0.26416647287958
320 => 0.26710691200254
321 => 0.28014643840312
322 => 0.27233285193003
323 => 0.27830604601921
324 => 0.28147420662615
325 => 0.28441697076139
326 => 0.2771904721154
327 => 0.26778890355532
328 => 0.26481103214134
329 => 0.24220514264163
330 => 0.24102840792077
331 => 0.24036787106324
401 => 0.2362032796113
402 => 0.23293105150768
403 => 0.23032885422964
404 => 0.22349991149018
405 => 0.22580447919903
406 => 0.21492056978345
407 => 0.22188370932547
408 => 0.20451272709702
409 => 0.2189797972784
410 => 0.21110602871564
411 => 0.21639305254121
412 => 0.21637460661315
413 => 0.20663951949785
414 => 0.20102452441583
415 => 0.20460261782097
416 => 0.20843861798069
417 => 0.20906099610075
418 => 0.21403447043767
419 => 0.21542246022064
420 => 0.21121678637921
421 => 0.20415275210103
422 => 0.20579356615039
423 => 0.20099127337149
424 => 0.192575439994
425 => 0.19861983845207
426 => 0.20068366183909
427 => 0.20159516382023
428 => 0.19331915825846
429 => 0.19071865763013
430 => 0.18933417291592
501 => 0.20308442370864
502 => 0.2038376934865
503 => 0.19998385880135
504 => 0.21740355701383
505 => 0.21346094281169
506 => 0.21786580883941
507 => 0.20564467947361
508 => 0.20611154307331
509 => 0.20032586457926
510 => 0.20356545793675
511 => 0.20127581776864
512 => 0.20330373080775
513 => 0.204519253522
514 => 0.21030398264314
515 => 0.21904584959282
516 => 0.20943993701616
517 => 0.2052545033473
518 => 0.20785112285569
519 => 0.21476626278504
520 => 0.2252430537575
521 => 0.21904058263673
522 => 0.22179313399534
523 => 0.22239444401471
524 => 0.21782097143822
525 => 0.22541168421493
526 => 0.22947960885881
527 => 0.23365245780503
528 => 0.23727562562446
529 => 0.23198573017299
530 => 0.23764667658279
531 => 0.23308495306805
601 => 0.22899261549303
602 => 0.22899882187989
603 => 0.22643163873956
604 => 0.22145739791928
605 => 0.22054007159348
606 => 0.22531211898586
607 => 0.22913884907998
608 => 0.22945403689933
609 => 0.23157271130393
610 => 0.23282652099249
611 => 0.24511556041197
612 => 0.25005831372675
613 => 0.25610221891854
614 => 0.25845666060657
615 => 0.26554268597349
616 => 0.25982014499086
617 => 0.2585820372528
618 => 0.24139365753389
619 => 0.24420825374995
620 => 0.24871469386
621 => 0.24146796707148
622 => 0.24606434725222
623 => 0.24697177006454
624 => 0.2412217260682
625 => 0.24429307301138
626 => 0.2361364861212
627 => 0.21922364089765
628 => 0.22543051304645
629 => 0.23000086015855
630 => 0.22347841130985
701 => 0.23516964841751
702 => 0.22833986905534
703 => 0.22617515688475
704 => 0.2177298429317
705 => 0.2217157060276
706 => 0.22710664293686
707 => 0.22377567069062
708 => 0.23068793824957
709 => 0.24047755254745
710 => 0.24745421467774
711 => 0.24798979616654
712 => 0.24350426981683
713 => 0.25069235441849
714 => 0.25074471176741
715 => 0.24263652297254
716 => 0.23767030248227
717 => 0.23654196673787
718 => 0.23936077065065
719 => 0.24278331898067
720 => 0.24817972377914
721 => 0.25144065817902
722 => 0.25994344562794
723 => 0.2622440561176
724 => 0.26477172954422
725 => 0.26814948074779
726 => 0.27220533710532
727 => 0.26333135429508
728 => 0.26368393417531
729 => 0.25542060425107
730 => 0.24659005114565
731 => 0.25329134020868
801 => 0.26205238422347
802 => 0.26004259104639
803 => 0.25981644825762
804 => 0.26019675770155
805 => 0.25868143927974
806 => 0.25182771021819
807 => 0.24838581039009
808 => 0.25282673929063
809 => 0.25518689535826
810 => 0.25884729159192
811 => 0.25839607049453
812 => 0.26782485809457
813 => 0.2714885998442
814 => 0.2705512579243
815 => 0.27072375139595
816 => 0.27735678083056
817 => 0.28473407374838
818 => 0.29164388208547
819 => 0.29867283590912
820 => 0.29019915772997
821 => 0.28589674653441
822 => 0.29033573666431
823 => 0.28798034601808
824 => 0.3015151193256
825 => 0.30245223766343
826 => 0.3159860322528
827 => 0.32883121489238
828 => 0.32076338582181
829 => 0.32837098525236
830 => 0.33659922429318
831 => 0.35247283238659
901 => 0.34712715962099
902 => 0.34303245805992
903 => 0.33916298487016
904 => 0.34721474431648
905 => 0.35757320421418
906 => 0.35980431726405
907 => 0.36341957275562
908 => 0.35961857365864
909 => 0.36419645840463
910 => 0.38035840318247
911 => 0.37599130303806
912 => 0.36978931878663
913 => 0.38254762197905
914 => 0.38716480230775
915 => 0.41957059189061
916 => 0.46048423985537
917 => 0.44354572094447
918 => 0.43303143565387
919 => 0.43550254209934
920 => 0.45044282132169
921 => 0.45524116482715
922 => 0.44219761309112
923 => 0.44680481607381
924 => 0.47219095747862
925 => 0.48580980785737
926 => 0.4673135797874
927 => 0.41628322011337
928 => 0.36923089796217
929 => 0.38171129259035
930 => 0.38029640315125
1001 => 0.40757064510508
1002 => 0.37588714914392
1003 => 0.37642061795905
1004 => 0.40425886235256
1005 => 0.3968320960167
1006 => 0.38480168570098
1007 => 0.36931873327112
1008 => 0.34069706370477
1009 => 0.31534605279555
1010 => 0.36506522317767
1011 => 0.36292124214234
1012 => 0.35981643988301
1013 => 0.36672584133646
1014 => 0.40027593352662
1015 => 0.39950249531058
1016 => 0.39458227599182
1017 => 0.39831421898028
1018 => 0.38414745805142
1019 => 0.38779855491394
1020 => 0.36922344463394
1021 => 0.37762017024563
1022 => 0.38477587384357
1023 => 0.38621248728286
1024 => 0.38944925071688
1025 => 0.36179146155998
1026 => 0.3742089969014
1027 => 0.38150313554877
1028 => 0.34854795177692
1029 => 0.3808517175246
1030 => 0.36131000098379
1031 => 0.3546772488831
1101 => 0.36360737578803
1102 => 0.36012729664835
1103 => 0.35713532896115
1104 => 0.35546575958317
1105 => 0.3620230592
1106 => 0.36171715333521
1107 => 0.35098813844505
1108 => 0.33699257589143
1109 => 0.34168994607311
1110 => 0.33998334744802
1111 => 0.33379841387512
1112 => 0.33796631233153
1113 => 0.31961299685464
1114 => 0.28803707149897
1115 => 0.30889709498567
1116 => 0.30809400677277
1117 => 0.30768905327868
1118 => 0.32336478440024
1119 => 0.32185792455355
1120 => 0.31912295917659
1121 => 0.33374818409119
1122 => 0.32840978026032
1123 => 0.34486148298091
1124 => 0.3556976384221
1125 => 0.35294923888931
1126 => 0.36314069545743
1127 => 0.34179816399474
1128 => 0.3488872968329
1129 => 0.35034835728574
1130 => 0.33356771108595
1201 => 0.32210446546012
1202 => 0.32133999766744
1203 => 0.30146430948479
1204 => 0.31208174168101
1205 => 0.32142464263449
1206 => 0.31695011811618
1207 => 0.3155336173263
1208 => 0.32277021266026
1209 => 0.32333255809495
1210 => 0.31051102258918
1211 => 0.31317702582605
1212 => 0.32429470250998
1213 => 0.31289688889864
1214 => 0.29075279887408
1215 => 0.28526075838199
1216 => 0.28452801894196
1217 => 0.2696331695482
1218 => 0.28562776278889
1219 => 0.27864569421088
1220 => 0.30070196519079
1221 => 0.28810354149722
1222 => 0.28756044863194
1223 => 0.28673948411167
1224 => 0.27391887193997
1225 => 0.27672577121317
1226 => 0.28605633190009
1227 => 0.28938558106947
1228 => 0.28903831310537
1229 => 0.28601060706245
1230 => 0.28739667538454
1231 => 0.28293166638089
]
'min_raw' => 0.15622569791336
'max_raw' => 0.48580980785737
'avg_raw' => 0.32101775288537
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.156225'
'max' => '$0.4858098'
'avg' => '$0.321017'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.088996637595217
'max_diff' => 0.30342384556252
'year' => 2033
]
8 => [
'items' => [
101 => 0.28135497877057
102 => 0.27637851897033
103 => 0.26906449784607
104 => 0.2700815573429
105 => 0.25559056767802
106 => 0.24769510741356
107 => 0.24550974807285
108 => 0.24258739423
109 => 0.24583983571549
110 => 0.25554951652499
111 => 0.24383758144503
112 => 0.22375829024717
113 => 0.22496508986161
114 => 0.22767641029323
115 => 0.22262388260608
116 => 0.2178420891767
117 => 0.22199947060438
118 => 0.21349161022323
119 => 0.22870454457351
120 => 0.22829307733309
121 => 0.23396351849733
122 => 0.23750936172649
123 => 0.22933734106365
124 => 0.22728209996643
125 => 0.22845285870091
126 => 0.2091028247174
127 => 0.23238220790032
128 => 0.23258352897279
129 => 0.23085969572479
130 => 0.24325524859937
131 => 0.26941373143465
201 => 0.25957185796948
202 => 0.25576078709157
203 => 0.24851593856678
204 => 0.25816926906952
205 => 0.25742804390233
206 => 0.25407594259497
207 => 0.25204858126509
208 => 0.25578405667769
209 => 0.25158571452279
210 => 0.25083157690905
211 => 0.24626232347956
212 => 0.24463130789302
213 => 0.24342376888534
214 => 0.24209438708822
215 => 0.24502667207136
216 => 0.23838172852536
217 => 0.23036857802073
218 => 0.22970237125976
219 => 0.23154182670029
220 => 0.23072800459921
221 => 0.22969847499264
222 => 0.22773282259799
223 => 0.22714965552201
224 => 0.22904466560648
225 => 0.22690530970707
226 => 0.2300620458734
227 => 0.22920358830634
228 => 0.2244083141204
301 => 0.21843162704684
302 => 0.21837842199536
303 => 0.21709075456909
304 => 0.21545071649964
305 => 0.21499449542771
306 => 0.22164934753642
307 => 0.23542469223849
308 => 0.23272026245741
309 => 0.23467449013535
310 => 0.24428735614059
311 => 0.24734299717469
312 => 0.24517417554551
313 => 0.2422053587324
314 => 0.24233597160518
315 => 0.25248131737755
316 => 0.25311407014884
317 => 0.25471283226811
318 => 0.25676769340149
319 => 0.245524127282
320 => 0.24180640065207
321 => 0.24004473552318
322 => 0.23461948877643
323 => 0.2404701522673
324 => 0.23706122120156
325 => 0.23752120246799
326 => 0.23722163906479
327 => 0.23738522093933
328 => 0.22870029224832
329 => 0.23186462379691
330 => 0.22660330886518
331 => 0.21955899878191
401 => 0.21953538378446
402 => 0.22125946869767
403 => 0.22023391552784
404 => 0.21747417831722
405 => 0.21786618596239
406 => 0.21443178650081
407 => 0.21828318423884
408 => 0.218393628545
409 => 0.21691063062881
410 => 0.22284424023471
411 => 0.22527524493161
412 => 0.22429910393428
413 => 0.22520675627704
414 => 0.23283264372458
415 => 0.23407599611933
416 => 0.23462821112183
417 => 0.23388831617295
418 => 0.22534614350054
419 => 0.22572502518269
420 => 0.22294504279106
421 => 0.22059625061746
422 => 0.22069018998661
423 => 0.22189777448545
424 => 0.22717136681578
425 => 0.2382693309797
426 => 0.23869049060721
427 => 0.23920094836185
428 => 0.23712466013822
429 => 0.23649843174256
430 => 0.23732458863969
501 => 0.24149240047642
502 => 0.25221314407038
503 => 0.24842371726989
504 => 0.24534285429514
505 => 0.24804560171869
506 => 0.24762953493767
507 => 0.24411751259105
508 => 0.24401894182093
509 => 0.23727824807631
510 => 0.23478636707709
511 => 0.23270396480009
512 => 0.23043003587608
513 => 0.22908197458715
514 => 0.23115320940985
515 => 0.23162692531993
516 => 0.2270981341811
517 => 0.22648087668334
518 => 0.23017918528805
519 => 0.22855169755796
520 => 0.23022560904812
521 => 0.23061397087238
522 => 0.23055143567394
523 => 0.22885215156795
524 => 0.22993522458373
525 => 0.2273734340218
526 => 0.22458787155421
527 => 0.22281085624656
528 => 0.22126017470376
529 => 0.22212058294985
530 => 0.21905338465689
531 => 0.21807212619247
601 => 0.22956830381589
602 => 0.23806065383105
603 => 0.23793717169849
604 => 0.23718550597356
605 => 0.23606868317613
606 => 0.24141069793253
607 => 0.23954964680836
608 => 0.24090371699722
609 => 0.24124838469043
610 => 0.24229158999052
611 => 0.24266444621877
612 => 0.24153741573169
613 => 0.23775496376184
614 => 0.22832945307772
615 => 0.22394185241059
616 => 0.22249387110916
617 => 0.22254650247936
618 => 0.2210946943325
619 => 0.22152231689723
620 => 0.22094598465564
621 => 0.21985455081983
622 => 0.22205318998607
623 => 0.22230656266823
624 => 0.22179337401505
625 => 0.22191424852058
626 => 0.21766526565798
627 => 0.21798830659672
628 => 0.21618957359977
629 => 0.21585233284689
630 => 0.2113052924642
701 => 0.20324955132222
702 => 0.20771321390459
703 => 0.20232173719103
704 => 0.2002799032654
705 => 0.209945627499
706 => 0.20897545687141
707 => 0.20731494648
708 => 0.20485870553042
709 => 0.20394766186944
710 => 0.19841244898673
711 => 0.1980853990804
712 => 0.2008288000484
713 => 0.19956281489633
714 => 0.19778489227676
715 => 0.1913454367738
716 => 0.18410535675803
717 => 0.18432388926419
718 => 0.18662682401073
719 => 0.19332291737935
720 => 0.19070663785664
721 => 0.18880849704456
722 => 0.18845303232836
723 => 0.19290241746738
724 => 0.1991992296141
725 => 0.2021535529901
726 => 0.19922590824862
727 => 0.19586278760518
728 => 0.19606748517555
729 => 0.19742924640506
730 => 0.19757234825601
731 => 0.19538330245153
801 => 0.19599950602308
802 => 0.19506343645105
803 => 0.18931877921538
804 => 0.18921487658249
805 => 0.18780504505174
806 => 0.18776235591329
807 => 0.18536388078053
808 => 0.18502831752959
809 => 0.18026599957646
810 => 0.18340057167484
811 => 0.18129806528367
812 => 0.17812909222106
813 => 0.17758276007061
814 => 0.17756633666645
815 => 0.18082016343234
816 => 0.18336254881461
817 => 0.1813346392825
818 => 0.18087292359142
819 => 0.18580283922546
820 => 0.18517546252385
821 => 0.1846321583464
822 => 0.1986354191504
823 => 0.18755074553596
824 => 0.18271719514902
825 => 0.17673475867886
826 => 0.1786826701596
827 => 0.17909312372937
828 => 0.16470644243385
829 => 0.158869767624
830 => 0.15686684077971
831 => 0.15571412806359
901 => 0.15623943372318
902 => 0.15098574182065
903 => 0.1545163096672
904 => 0.14996705656312
905 => 0.14920435947568
906 => 0.15733898757008
907 => 0.1584708735476
908 => 0.15364189631806
909 => 0.15674288143983
910 => 0.15561842112776
911 => 0.15004504045044
912 => 0.14983217830358
913 => 0.14703565179351
914 => 0.14265962931949
915 => 0.1406596696245
916 => 0.1396180732509
917 => 0.14004785621496
918 => 0.13983054479675
919 => 0.13841244079788
920 => 0.139911828858
921 => 0.13608151195432
922 => 0.13455624890032
923 => 0.13386732296466
924 => 0.13046769624784
925 => 0.13587801417517
926 => 0.13694391496424
927 => 0.13801191590714
928 => 0.14730813495989
929 => 0.14684372212686
930 => 0.15104178795925
1001 => 0.15087865884075
1002 => 0.14968130246119
1003 => 0.14462985285141
1004 => 0.14664327063244
1005 => 0.14044628365703
1006 => 0.14508948765316
1007 => 0.14297052325416
1008 => 0.14437306365837
1009 => 0.14185116954963
1010 => 0.14324688987586
1011 => 0.13719667958364
1012 => 0.13154707834152
1013 => 0.13382064280349
1014 => 0.13629226738729
1015 => 0.14165137924319
1016 => 0.13845953643353
1017 => 0.13960744380482
1018 => 0.13576214626836
1019 => 0.12782819909571
1020 => 0.12787310437508
1021 => 0.126652639453
1022 => 0.12559797956953
1023 => 0.13882615797619
1024 => 0.13718102488477
1025 => 0.13455972061328
1026 => 0.13806844054716
1027 => 0.13899620178855
1028 => 0.13902261384681
1029 => 0.1415824853374
1030 => 0.1429486892108
1031 => 0.14318948856496
1101 => 0.14721750166508
1102 => 0.14856763852546
1103 => 0.15412866117486
1104 => 0.14283277635728
1105 => 0.14260014504292
1106 => 0.13811781543211
1107 => 0.13527505113011
1108 => 0.13831246193596
1109 => 0.14100319326203
1110 => 0.1382014239548
1111 => 0.13856727587774
1112 => 0.13480612949575
1113 => 0.13615056234893
1114 => 0.13730856903675
1115 => 0.13666918580822
1116 => 0.13571199816862
1117 => 0.14078258397798
1118 => 0.14049648165483
1119 => 0.14521832773278
1120 => 0.14889934441299
1121 => 0.15549638436437
1122 => 0.14861202926363
1123 => 0.14836113600093
1124 => 0.15081365788841
1125 => 0.14856726305714
1126 => 0.14998690704759
1127 => 0.1552676577699
1128 => 0.15537923171136
1129 => 0.15351022443693
1130 => 0.15339649517442
1201 => 0.15375545846618
1202 => 0.15585791767799
1203 => 0.15512325382734
1204 => 0.15597342543473
1205 => 0.15703657804806
1206 => 0.16143422802417
1207 => 0.16249448654524
1208 => 0.15991860802006
1209 => 0.16015118101
1210 => 0.15918773173214
1211 => 0.15825705180171
1212 => 0.16034908437042
1213 => 0.16417231500876
1214 => 0.16414853088939
1215 => 0.1650354460845
1216 => 0.16558798690345
1217 => 0.16321607722391
1218 => 0.16167205124006
1219 => 0.1622641290512
1220 => 0.16321087436497
1221 => 0.16195711230585
1222 => 0.15421831207788
1223 => 0.15656576971057
1224 => 0.15617503797568
1225 => 0.15561858847059
1226 => 0.15797897527261
1227 => 0.15775131020736
1228 => 0.15093185761663
1229 => 0.15136841684583
1230 => 0.15095840622928
1231 => 0.15228323441161
]
'min_raw' => 0.12559797956953
'max_raw' => 0.28135497877057
'avg_raw' => 0.20347647917005
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.125597'
'max' => '$0.281354'
'avg' => '$0.203476'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.030627718343834
'max_diff' => -0.2044548290868
'year' => 2034
]
9 => [
'items' => [
101 => 0.14849571798758
102 => 0.1496607325303
103 => 0.15039141873016
104 => 0.15082179851527
105 => 0.15237662541329
106 => 0.15219418442255
107 => 0.15236528462514
108 => 0.15467068245581
109 => 0.16633059356635
110 => 0.16696521680195
111 => 0.1638400998873
112 => 0.1650885224545
113 => 0.16269182412548
114 => 0.16430074377023
115 => 0.16540152572904
116 => 0.16042730372537
117 => 0.16013276258075
118 => 0.15772617222518
119 => 0.15901933756602
120 => 0.15696181852686
121 => 0.15746666173011
122 => 0.15605507612239
123 => 0.1585956491724
124 => 0.16143640460744
125 => 0.16215409161517
126 => 0.16026616608153
127 => 0.15889918357482
128 => 0.15649921260507
129 => 0.1604904178146
130 => 0.16165756784765
131 => 0.16048428727235
201 => 0.16021241252637
202 => 0.159697210374
203 => 0.16032171509851
204 => 0.16165121129791
205 => 0.16102424544221
206 => 0.16143836743562
207 => 0.15986016143751
208 => 0.16321686242471
209 => 0.16854811142647
210 => 0.16856525226376
211 => 0.16793828302848
212 => 0.16768174072565
213 => 0.16832504920871
214 => 0.16867401767088
215 => 0.17075435934252
216 => 0.17298664884066
217 => 0.18340376990426
218 => 0.18047868399438
219 => 0.18972137351931
220 => 0.19703114092051
221 => 0.19922302054673
222 => 0.19720659442651
223 => 0.19030850959442
224 => 0.18997005664351
225 => 0.20027870767894
226 => 0.1973660415953
227 => 0.19701958923268
228 => 0.19333392143488
301 => 0.19551260758222
302 => 0.1950360969624
303 => 0.19428390163732
304 => 0.19844068303784
305 => 0.20622180674118
306 => 0.2050090456411
307 => 0.20410377573826
308 => 0.20013714654411
309 => 0.20252594329769
310 => 0.20167533852813
311 => 0.2053300764253
312 => 0.20316509065737
313 => 0.19734397528503
314 => 0.19827100709473
315 => 0.19813088810162
316 => 0.2010145270508
317 => 0.20014893021457
318 => 0.19796186642701
319 => 0.20619521170628
320 => 0.20566058406012
321 => 0.20641856382948
322 => 0.20675224996526
323 => 0.21176374214893
324 => 0.21381679014672
325 => 0.21428286798588
326 => 0.21623310479535
327 => 0.21423434431744
328 => 0.22223081132116
329 => 0.22754799527184
330 => 0.23372417805035
331 => 0.24274924109118
401 => 0.24614274828103
402 => 0.24552974158129
403 => 0.25237244137723
404 => 0.26466862080585
405 => 0.24801515100504
406 => 0.26555129514308
407 => 0.2599995543735
408 => 0.24683647688037
409 => 0.2459889298723
410 => 0.25490311877712
411 => 0.27467393180912
412 => 0.26972156738331
413 => 0.27468203210318
414 => 0.26889538651685
415 => 0.26860803078981
416 => 0.27440098764309
417 => 0.28793654708842
418 => 0.2815063101688
419 => 0.27228698878575
420 => 0.27909439222647
421 => 0.27319718937067
422 => 0.25990914081342
423 => 0.26971778040357
424 => 0.26315902244361
425 => 0.26507321669907
426 => 0.27885875038929
427 => 0.27720003850368
428 => 0.27934656527624
429 => 0.27555800170706
430 => 0.27201888593181
501 => 0.26541286351912
502 => 0.26345714595569
503 => 0.26399763593088
504 => 0.2634568781157
505 => 0.25976086928828
506 => 0.2589627165339
507 => 0.25763242697539
508 => 0.25804473933519
509 => 0.25554340577526
510 => 0.26026393900474
511 => 0.26114011156933
512 => 0.26457532199395
513 => 0.26493197693611
514 => 0.2744989890715
515 => 0.26922963955443
516 => 0.27276477414423
517 => 0.27244855843255
518 => 0.24712176068358
519 => 0.25061156995316
520 => 0.25604061801415
521 => 0.25359483922157
522 => 0.25013708023297
523 => 0.24734475445637
524 => 0.24311409537485
525 => 0.24906866678948
526 => 0.25689829500165
527 => 0.26513054922842
528 => 0.27502106328322
529 => 0.27281361568446
530 => 0.26494565294786
531 => 0.26529860400868
601 => 0.2674804085855
602 => 0.26465477342066
603 => 0.2638214384476
604 => 0.26736592115693
605 => 0.26739033006134
606 => 0.26413909531478
607 => 0.26052594286365
608 => 0.26051080362295
609 => 0.25986787804318
610 => 0.26900976154922
611 => 0.27403687312887
612 => 0.27461322336988
613 => 0.27399808016553
614 => 0.27423482437073
615 => 0.27130965890738
616 => 0.27799571972573
617 => 0.28413151031553
618 => 0.28248698736542
619 => 0.28002161368048
620 => 0.27805782479195
621 => 0.28202438111339
622 => 0.28184775660433
623 => 0.28407791953747
624 => 0.28397674646478
625 => 0.28322682655104
626 => 0.28248701414742
627 => 0.28542028670316
628 => 0.28457555131402
629 => 0.2837295038175
630 => 0.28203262603984
701 => 0.28226325991198
702 => 0.27979831190858
703 => 0.27865791417385
704 => 0.26150906844039
705 => 0.25692633650571
706 => 0.25836815726247
707 => 0.25884284209246
708 => 0.25684843128156
709 => 0.25970790406229
710 => 0.25926225825834
711 => 0.26099600538742
712 => 0.25991283545172
713 => 0.25995728912371
714 => 0.26314266094842
715 => 0.26406738794068
716 => 0.26359706432895
717 => 0.26392646286485
718 => 0.27151731309425
719 => 0.27043813693336
720 => 0.26986484610666
721 => 0.27002365158359
722 => 0.27196327656687
723 => 0.27250626566259
724 => 0.27020558270886
725 => 0.27129059808993
726 => 0.27591045587356
727 => 0.27752714463653
728 => 0.28268683911329
729 => 0.2804949091933
730 => 0.28451829142594
731 => 0.29688479673698
801 => 0.30676401687652
802 => 0.29767867776016
803 => 0.31582060743533
804 => 0.32994670199269
805 => 0.32940451895534
806 => 0.32694130762681
807 => 0.3108591245349
808 => 0.29606005988189
809 => 0.30844010586561
810 => 0.30847166514881
811 => 0.30740820821948
812 => 0.30080316856565
813 => 0.30717836715678
814 => 0.30768440726963
815 => 0.30740115937336
816 => 0.30233709095711
817 => 0.29460519448177
818 => 0.2961159885455
819 => 0.29859070004127
820 => 0.29390555490089
821 => 0.29240836714558
822 => 0.29519192403432
823 => 0.30416112430695
824 => 0.30246554895045
825 => 0.30242127062553
826 => 0.30967566103649
827 => 0.30448308309768
828 => 0.29613504449688
829 => 0.29402705465308
830 => 0.28654511081968
831 => 0.29171291607518
901 => 0.29189889618626
902 => 0.28906854206151
903 => 0.29636471213513
904 => 0.29629747664344
905 => 0.30322410423674
906 => 0.31646521467261
907 => 0.31254916676125
908 => 0.30799522910514
909 => 0.30849036839535
910 => 0.31392082430109
911 => 0.31063744669523
912 => 0.31181817217482
913 => 0.31391903713167
914 => 0.31518654112168
915 => 0.30830799407697
916 => 0.30670427572191
917 => 0.30342363079611
918 => 0.30256777177111
919 => 0.30523978861027
920 => 0.3045358065769
921 => 0.29188326527807
922 => 0.29056100431427
923 => 0.29060155617027
924 => 0.28727666810671
925 => 0.28220541574521
926 => 0.29553236416249
927 => 0.29446202369406
928 => 0.29328045065469
929 => 0.29342518661005
930 => 0.2992099632258
1001 => 0.29585450065044
1002 => 0.30477554785653
1003 => 0.30294164874219
1004 => 0.30106071703549
1005 => 0.30080071497905
1006 => 0.30007671674552
1007 => 0.29759385741488
1008 => 0.29459565557643
1009 => 0.29261598302288
1010 => 0.26992277671627
1011 => 0.27413450380647
1012 => 0.27897971191274
1013 => 0.28065225833507
1014 => 0.27779125194298
1015 => 0.29770682738528
1016 => 0.30134559492985
1017 => 0.29032353068642
1018 => 0.28826175249439
1019 => 0.2978419972203
1020 => 0.29206393851329
1021 => 0.29466579799526
1022 => 0.28904200093629
1023 => 0.30046912238392
1024 => 0.30038206686415
1025 => 0.29593665852778
1026 => 0.29969388721284
1027 => 0.29904097626795
1028 => 0.29402212120475
1029 => 0.30062822904139
1030 => 0.30063150558846
1031 => 0.29635289671621
1101 => 0.29135641826135
1102 => 0.29046316592517
1103 => 0.28979022028143
1104 => 0.29450029461922
1105 => 0.29872333254247
1106 => 0.30658135913773
1107 => 0.30855705372589
1108 => 0.31626832123291
1109 => 0.31167663688728
1110 => 0.31371207108543
1111 => 0.31592182283727
1112 => 0.31698125908803
1113 => 0.3152549645699
1114 => 0.32723373709263
1115 => 0.32824511251365
1116 => 0.32858421794396
1117 => 0.3245450432471
1118 => 0.32813277575852
1119 => 0.32645419452964
1120 => 0.33082139656389
1121 => 0.3315062296061
1122 => 0.33092620038299
1123 => 0.33114357719994
1124 => 0.32092180805207
1125 => 0.32039175539762
1126 => 0.31316444984345
1127 => 0.31610963027832
1128 => 0.31060375662149
1129 => 0.31234972587486
1130 => 0.31311933248553
1201 => 0.31271733366691
1202 => 0.31627614636119
1203 => 0.31325042855365
1204 => 0.30526506178548
1205 => 0.29727751940947
1206 => 0.29717724232145
1207 => 0.29507426340568
1208 => 0.29355419482938
1209 => 0.29384701396451
1210 => 0.29487894678969
1211 => 0.29349421701763
1212 => 0.29378971932208
1213 => 0.29869702649751
1214 => 0.29968115195422
1215 => 0.29633670912966
1216 => 0.28290828858823
1217 => 0.27961292050472
1218 => 0.28198156573316
1219 => 0.28084950587425
1220 => 0.22666747064574
1221 => 0.23939673612919
1222 => 0.23183343882393
1223 => 0.23531895419277
1224 => 0.22759878615045
1225 => 0.23128325498892
1226 => 0.23060286812971
1227 => 0.25107115034075
1228 => 0.25075156626723
1229 => 0.25090453425121
1230 => 0.24360297381974
1231 => 0.25523455784604
]
'min_raw' => 0.14849571798758
'max_raw' => 0.3315062296061
'avg_raw' => 0.24000097379684
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.148495'
'max' => '$0.3315062'
'avg' => '$0.24000097'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.022897738418047
'max_diff' => 0.050151250835524
'year' => 2035
]
10 => [
'items' => [
101 => 0.26096469439563
102 => 0.25990419862295
103 => 0.26017110256145
104 => 0.25558480860297
105 => 0.25094893960187
106 => 0.24580704742453
107 => 0.25536004753295
108 => 0.25429791699604
109 => 0.2567340623052
110 => 0.26292986573806
111 => 0.26384222132912
112 => 0.2650684364957
113 => 0.26462892564642
114 => 0.27509985718429
115 => 0.27383175828562
116 => 0.27688751177446
117 => 0.27060159500735
118 => 0.26348848352067
119 => 0.26484045346915
120 => 0.26471024789126
121 => 0.26305258144165
122 => 0.26155611429022
123 => 0.2590649181101
124 => 0.26694743145167
125 => 0.26662741580516
126 => 0.27180809714464
127 => 0.27089236139543
128 => 0.26477685394369
129 => 0.26499527048872
130 => 0.26646422672148
131 => 0.2715483010153
201 => 0.27305760041588
202 => 0.27235843279835
203 => 0.27401331068895
204 => 0.27532125869888
205 => 0.27417756882148
206 => 0.29036980565696
207 => 0.28364566000405
208 => 0.28692296180897
209 => 0.28770457897846
210 => 0.28570248303445
211 => 0.28613666595503
212 => 0.28679433477194
213 => 0.29078757104344
214 => 0.30126697847209
215 => 0.3059082366865
216 => 0.31987169102021
217 => 0.30552284480123
218 => 0.30467144364802
219 => 0.30718668342945
220 => 0.31538470930508
221 => 0.32202843927587
222 => 0.32423254779316
223 => 0.32452385711958
224 => 0.32865891122438
225 => 0.33102904712305
226 => 0.32815680689334
227 => 0.32572288403474
228 => 0.31700487446487
229 => 0.31801400781093
301 => 0.32496593585593
302 => 0.334785943686
303 => 0.34321253200188
304 => 0.34026183446991
305 => 0.36277357377101
306 => 0.3650055207705
307 => 0.36469713786266
308 => 0.36978184528576
309 => 0.35968973653357
310 => 0.35537516451661
311 => 0.32624912578297
312 => 0.33443235463144
313 => 0.34632715834687
314 => 0.34475283647191
315 => 0.33611451206475
316 => 0.3432059790582
317 => 0.34086131829949
318 => 0.33901198707903
319 => 0.34748413191045
320 => 0.33816866065177
321 => 0.3462342293951
322 => 0.33589005405416
323 => 0.34027531300769
324 => 0.33778602793456
325 => 0.33939690045218
326 => 0.32997977262969
327 => 0.33506102621485
328 => 0.32976837577494
329 => 0.32976586636951
330 => 0.3296490308177
331 => 0.33587581058905
401 => 0.33607886565385
402 => 0.33147726599468
403 => 0.33081410359329
404 => 0.33326616256869
405 => 0.33039544370376
406 => 0.33173863499257
407 => 0.33043612759957
408 => 0.3301429057504
409 => 0.32780646416865
410 => 0.32679986089343
411 => 0.32719457597461
412 => 0.32584720991296
413 => 0.32503537312445
414 => 0.32948753604683
415 => 0.32710892499714
416 => 0.32912297978938
417 => 0.32682771015965
418 => 0.31887130562161
419 => 0.31429549323433
420 => 0.29926658262107
421 => 0.30352876302769
422 => 0.30635459304682
423 => 0.30542065624235
424 => 0.30742711388391
425 => 0.30755029408733
426 => 0.30689797425464
427 => 0.30614267145574
428 => 0.3057750318241
429 => 0.30851511643685
430 => 0.31010582778156
501 => 0.30663820289397
502 => 0.30582578690003
503 => 0.30933174711421
504 => 0.31147038081953
505 => 0.32726085050515
506 => 0.3260910415083
507 => 0.32902703252698
508 => 0.32869648499473
509 => 0.33177387132237
510 => 0.33680409736755
511 => 0.32657624134437
512 => 0.32835144349734
513 => 0.32791620492484
514 => 0.33266802553376
515 => 0.33268286019902
516 => 0.32983390637293
517 => 0.33137837046105
518 => 0.33051629297722
519 => 0.33207418350726
520 => 0.32607541799594
521 => 0.33338126686201
522 => 0.33752321239057
523 => 0.33758072330825
524 => 0.33954397261627
525 => 0.34153874761696
526 => 0.34536754452248
527 => 0.34143196454934
528 => 0.33435223929866
529 => 0.33486337259438
530 => 0.33071253227028
531 => 0.33078230864604
601 => 0.33040983688376
602 => 0.33152765268071
603 => 0.32632071570314
604 => 0.3275427734043
605 => 0.32583188546631
606 => 0.3283477243611
607 => 0.32564109759338
608 => 0.32791599503962
609 => 0.32889776536337
610 => 0.33252051899403
611 => 0.32510601393656
612 => 0.30998733620652
613 => 0.31316546556163
614 => 0.30846476260876
615 => 0.30889983056388
616 => 0.30977873707379
617 => 0.30692991351486
618 => 0.30747337927316
619 => 0.30745396285196
620 => 0.3072866426237
621 => 0.30654555358923
622 => 0.30547082786927
623 => 0.30975220435448
624 => 0.31047969364742
625 => 0.31209681222876
626 => 0.3169082602248
627 => 0.31642748310824
628 => 0.31721165053261
629 => 0.31549981744813
630 => 0.30897923759101
701 => 0.30933333644871
702 => 0.30491771801917
703 => 0.31198389493785
704 => 0.31031053097453
705 => 0.3092317023415
706 => 0.3089373339537
707 => 0.31376070859869
708 => 0.31520393788961
709 => 0.31430461424702
710 => 0.31246007521862
711 => 0.31600213544216
712 => 0.31694984133046
713 => 0.3171619977288
714 => 0.32343784932223
715 => 0.31751274811686
716 => 0.31893897886743
717 => 0.33006602404789
718 => 0.31997532949649
719 => 0.32532059544971
720 => 0.32505897249672
721 => 0.32779342968445
722 => 0.3248346671945
723 => 0.32487134460161
724 => 0.32729935733614
725 => 0.3238896513449
726 => 0.32304536019066
727 => 0.32187897800802
728 => 0.32442573083259
729 => 0.3259523939712
730 => 0.33825617765786
731 => 0.34620498304015
801 => 0.34585990443502
802 => 0.34901327692581
803 => 0.34759265373712
804 => 0.34300508671941
805 => 0.35083550422445
806 => 0.34835763248727
807 => 0.34856190522267
808 => 0.34855430218126
809 => 0.35020187026717
810 => 0.3490344172809
811 => 0.34673324760838
812 => 0.34826087142809
813 => 0.35279736803714
814 => 0.36687879270834
815 => 0.37475894450841
816 => 0.36640439767537
817 => 0.37216725220896
818 => 0.36871159300383
819 => 0.3680835969293
820 => 0.371703095448
821 => 0.37532892941972
822 => 0.37509797947063
823 => 0.3724658101958
824 => 0.37097896456127
825 => 0.38223785783575
826 => 0.39053321861015
827 => 0.38996753061814
828 => 0.39246429344328
829 => 0.39979486631986
830 => 0.40046508203396
831 => 0.40038065025872
901 => 0.39871945068153
902 => 0.4059373516737
903 => 0.41195865166825
904 => 0.39833493097609
905 => 0.40352266546806
906 => 0.40585160661988
907 => 0.40927118319645
908 => 0.4150405820687
909 => 0.42130767950143
910 => 0.42219391579365
911 => 0.42156508873401
912 => 0.4174317695085
913 => 0.42428930230142
914 => 0.42830628418258
915 => 0.43069830496582
916 => 0.4367640716778
917 => 0.40586598936757
918 => 0.38399479097405
919 => 0.38057928752097
920 => 0.38752484810085
921 => 0.38935633703596
922 => 0.38861806614271
923 => 0.36400004390845
924 => 0.38044967872873
925 => 0.39814810267077
926 => 0.39882797121348
927 => 0.40768817229546
928 => 0.41057341695967
929 => 0.41770704016376
930 => 0.41726083009007
1001 => 0.41899775381953
1002 => 0.41859846513345
1003 => 0.43181199995745
1004 => 0.44638849109723
1005 => 0.44588375355946
1006 => 0.44378821049691
1007 => 0.44690044928799
1008 => 0.46194495025597
1009 => 0.46055989369005
1010 => 0.461905358165
1011 => 0.47964367267716
1012 => 0.50270600478879
1013 => 0.49199123610265
1014 => 0.51523920105994
1015 => 0.52987256267888
1016 => 0.55517944848101
1017 => 0.55201090173954
1018 => 0.5618626866718
1019 => 0.54633854177666
1020 => 0.51069196715007
1021 => 0.50505076026581
1022 => 0.51634459930622
1023 => 0.54410940055035
1024 => 0.5154701869085
1025 => 0.52126386252845
1026 => 0.51959528356015
1027 => 0.51950637207793
1028 => 0.52289976172502
1029 => 0.51797747305461
1030 => 0.49792318350853
1031 => 0.50711394622683
1101 => 0.50356495136462
1102 => 0.50750282575934
1103 => 0.52875390976468
1104 => 0.51935829896335
1105 => 0.50946078622159
1106 => 0.52187446363366
1107 => 0.5376813407816
1108 => 0.53669217481737
1109 => 0.53477277940747
1110 => 0.5455923108368
1111 => 0.5634630069328
1112 => 0.56829338427728
1113 => 0.57185907008025
1114 => 0.57235071790973
1115 => 0.57741499611074
1116 => 0.55018309586145
1117 => 0.59340082092187
1118 => 0.60086332817425
1119 => 0.59946068610003
1120 => 0.60775494884074
1121 => 0.60531456633729
1122 => 0.60177883497407
1123 => 0.61492700565836
1124 => 0.59985368897148
1125 => 0.57845901361226
1126 => 0.56672147157149
1127 => 0.58217841377128
1128 => 0.59161742899975
1129 => 0.59785601763165
1130 => 0.5997438107822
1201 => 0.55229703075853
1202 => 0.52672584784482
1203 => 0.5431166829183
1204 => 0.56311463294295
1205 => 0.55007200623934
1206 => 0.55058325251317
1207 => 0.53198789437583
1208 => 0.56475990952186
1209 => 0.55998530257112
1210 => 0.58475597187772
1211 => 0.57884425285066
1212 => 0.59904377207834
1213 => 0.59372456170609
1214 => 0.61580430656828
1215 => 0.62461251457903
1216 => 0.63940286671721
1217 => 0.65028270995761
1218 => 0.65667156200661
1219 => 0.65628799929357
1220 => 0.68160381402517
1221 => 0.66667596254514
1222 => 0.64792306286177
1223 => 0.64758388207114
1224 => 0.6572962745478
1225 => 0.67765078471413
1226 => 0.68292841305418
1227 => 0.68587788730897
1228 => 0.68136066481582
1229 => 0.66515755192301
1230 => 0.65816112992754
1231 => 0.66412228417354
]
'min_raw' => 0.24580704742453
'max_raw' => 0.68587788730897
'avg_raw' => 0.46584246736675
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.245807'
'max' => '$0.685877'
'avg' => '$0.465842'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.097311329436955
'max_diff' => 0.35437165770287
'year' => 2036
]
11 => [
'items' => [
101 => 0.65683230477851
102 => 0.66941685442129
103 => 0.68669812899559
104 => 0.68312961413356
105 => 0.69505862429567
106 => 0.70740389484498
107 => 0.72505818619129
108 => 0.72967367168574
109 => 0.73730289369685
110 => 0.74515586921517
111 => 0.74767803330803
112 => 0.75249362714285
113 => 0.7524682465863
114 => 0.76698036273439
115 => 0.78298767624857
116 => 0.78903006653
117 => 0.80292420980283
118 => 0.77913097635697
119 => 0.79717841724262
120 => 0.81345766067823
121 => 0.79404887553987
122 => 0.82079936418615
123 => 0.82183802504237
124 => 0.83752057081639
125 => 0.82162330626219
126 => 0.81218356131577
127 => 0.83943575127346
128 => 0.85262222755804
129 => 0.84865035358602
130 => 0.81842419654334
131 => 0.80083127668363
201 => 0.75478721198999
202 => 0.80932839557518
203 => 0.8358938151114
204 => 0.81835539852447
205 => 0.82720075570215
206 => 0.87545815634685
207 => 0.89383145007705
208 => 0.89000993342019
209 => 0.89065570682768
210 => 0.90056960262562
211 => 0.94453327627585
212 => 0.91818922395465
213 => 0.9383282648614
214 => 0.94900993954162
215 => 0.95893167428081
216 => 0.93456702955783
217 => 0.90286898476095
218 => 0.89282888338038
219 => 0.81661154863931
220 => 0.81264410537093
221 => 0.81041705923856
222 => 0.79637584839585
223 => 0.78534330288483
224 => 0.7765698130823
225 => 0.75354555585466
226 => 0.76131556678483
227 => 0.7246197062999
228 => 0.74809641741671
301 => 0.68952893803024
302 => 0.73830567520534
303 => 0.71175871476704
304 => 0.72958428472315
305 => 0.72952209298884
306 => 0.69669956709754
307 => 0.67776821915207
308 => 0.68983201088201
309 => 0.70276535324148
310 => 0.70486374452631
311 => 0.72163216049014
312 => 0.72631186494975
313 => 0.71213214196262
314 => 0.68831525719862
315 => 0.69384737632399
316 => 0.67765611093457
317 => 0.64928154112764
318 => 0.66966065253544
319 => 0.67661897717633
320 => 0.67969216974477
321 => 0.65178903918101
322 => 0.64302126975144
323 => 0.63835338287585
324 => 0.68471331343534
325 => 0.68725301508302
326 => 0.67425954237589
327 => 0.73299127110376
328 => 0.71969847205672
329 => 0.7345497854071
330 => 0.69334539449829
331 => 0.69491945772008
401 => 0.67541263873419
402 => 0.68633515392017
403 => 0.67861547223582
404 => 0.68545272263154
405 => 0.6895509423277
406 => 0.70905456043654
407 => 0.73852837519505
408 => 0.70614137027943
409 => 0.69202988844723
410 => 0.70078457240994
411 => 0.72409944948139
412 => 0.75942268171122
413 => 0.73851061728486
414 => 0.7477910363674
415 => 0.74981839507983
416 => 0.73439861297853
417 => 0.75999123107185
418 => 0.77370652302211
419 => 0.78777557458331
420 => 0.79999133784803
421 => 0.7821560860047
422 => 0.80124236205999
423 => 0.78586219274069
424 => 0.77206459088861
425 => 0.77208551615521
426 => 0.7634300789626
427 => 0.74665907874664
428 => 0.74356624899351
429 => 0.75965553995063
430 => 0.77255762763671
501 => 0.77362030537537
502 => 0.78076356405159
503 => 0.78499087095476
504 => 0.82642422535089
505 => 0.84308906324369
506 => 0.86346651156978
507 => 0.87140467610285
508 => 0.8952957053579
509 => 0.87600175889992
510 => 0.87182739221912
511 => 0.81387556994249
512 => 0.82336517759377
513 => 0.83855895505441
514 => 0.8141261097366
515 => 0.82962312642498
516 => 0.83268256579096
517 => 0.81329589100204
518 => 0.82365115165557
519 => 0.79615064948061
520 => 0.73912781099227
521 => 0.76005471379193
522 => 0.77546395817179
523 => 0.75347306649559
524 => 0.79289088866015
525 => 0.76986381070063
526 => 0.76256533248213
527 => 0.73409136685643
528 => 0.74752998256832
529 => 0.76570590274108
530 => 0.75447529725183
531 => 0.77778048992593
601 => 0.8107868580203
602 => 0.83430916148756
603 => 0.83611491187017
604 => 0.82099164661266
605 => 0.8452267757032
606 => 0.84540330216054
607 => 0.81806597754299
608 => 0.80132201842961
609 => 0.79751775568946
610 => 0.807021549884
611 => 0.81856091053337
612 => 0.83675526607634
613 => 0.84774973407671
614 => 0.87641747560642
615 => 0.8841741444958
616 => 0.89269637193016
617 => 0.90408469594008
618 => 0.91775929882033
619 => 0.88784004621392
620 => 0.88902879389644
621 => 0.86116840012961
622 => 0.83139557380513
623 => 0.85398943775021
624 => 0.88352790932265
625 => 0.87675175130682
626 => 0.87598929510569
627 => 0.87727153494828
628 => 0.87216253309297
629 => 0.84905470704989
630 => 0.8374501014737
701 => 0.85242300331761
702 => 0.86038043428046
703 => 0.87272171574293
704 => 0.87120039230983
705 => 0.90299020800029
706 => 0.91534276910347
707 => 0.91218245537739
708 => 0.91276402916018
709 => 0.93512775100228
710 => 0.96000080914087
711 => 0.98329771037677
712 => 1.0069963189391
713 => 0.97842672134477
714 => 0.96392084161418
715 => 0.97888720675754
716 => 0.97094584274563
717 => 1.0165792759196
718 => 1.0197388358232
719 => 1.0653689691806
720 => 1.1086773992719
721 => 1.0814761502827
722 => 1.1071257029084
723 => 1.1348677853118
724 => 1.1883867632587
725 => 1.1703634543065
726 => 1.1565578821104
727 => 1.1435116830932
728 => 1.1706587522223
729 => 1.205583022972
730 => 1.213105376391
731 => 1.2252944626899
801 => 1.2124791288571
802 => 1.2279137868959
803 => 1.2824049121054
804 => 1.2676809290673
805 => 1.2467705061549
806 => 1.2897860161244
807 => 1.3053531619639
808 => 1.4146115440425
809 => 1.5525547646553
810 => 1.4954453655376
811 => 1.4599957185964
812 => 1.4683272265045
813 => 1.5186994209996
814 => 1.5348773711379
815 => 1.4909001257881
816 => 1.5064336323089
817 => 1.592024780459
818 => 1.6379416853488
819 => 1.5755803610454
820 => 1.4035279405785
821 => 1.2448877513575
822 => 1.2869662731998
823 => 1.2821958746714
824 => 1.3741528856455
825 => 1.2673297669414
826 => 1.2691283942972
827 => 1.3629869788741
828 => 1.3379471176525
829 => 1.2973857493366
830 => 1.2451838942341
831 => 1.14868393699
901 => 1.0632112337585
902 => 1.2308428879834
903 => 1.2236143062349
904 => 1.2131462486472
905 => 1.2364417780465
906 => 1.3495582562582
907 => 1.3469505553131
908 => 1.3303616923612
909 => 1.3429441987027
910 => 1.2951799751394
911 => 1.3074899031228
912 => 1.244862621941
913 => 1.2731727685815
914 => 1.2972987228572
915 => 1.302142365369
916 => 1.3130553392704
917 => 1.2198051721227
918 => 1.2616717594909
919 => 1.286264457201
920 => 1.1751537542568
921 => 1.284068155852
922 => 1.2181818941755
923 => 1.1958191073841
924 => 1.2259276537256
925 => 1.2141943239348
926 => 1.2041066959849
927 => 1.1984776262614
928 => 1.2205860197357
929 => 1.2195546367548
930 => 1.1833810139768
1001 => 1.1361939976883
1002 => 1.1520315092157
1003 => 1.1462775928003
1004 => 1.125424657441
1005 => 1.1394770180802
1006 => 1.0775975335623
1007 => 0.97113709666491
1008 => 1.0414681222507
1009 => 1.038760454271
1010 => 1.0373951252928
1011 => 1.0902469472137
1012 => 1.085166464035
1013 => 1.0759453373174
1014 => 1.1252553042175
1015 => 1.1072565029863
1016 => 1.16272456733
1017 => 1.1992594219562
1018 => 1.1899930010442
1019 => 1.2243542084084
1020 => 1.152396373494
1021 => 1.1762978798053
1022 => 1.18122394713
1023 => 1.1246468268802
1024 => 1.0859976939144
1025 => 1.083420237378
1026 => 1.0164079669939
1027 => 1.0522053809289
1028 => 1.0837056237941
1029 => 1.0686194519793
1030 => 1.0638436206693
1031 => 1.0882423070807
1101 => 1.0901382939755
1102 => 1.0469095918467
1103 => 1.0558982078942
1104 => 1.0933822310455
1105 => 1.0549537066849
1106 => 0.98029336111613
1107 => 0.96177656315504
1108 => 0.95930608097473
1109 => 0.90908705631848
1110 => 0.96301394413631
1111 => 0.93947341245309
1112 => 1.0138376699815
1113 => 0.9713612049048
1114 => 0.96953012939197
1115 => 0.96676219019396
1116 => 0.92353660115054
1117 => 0.93300025802156
1118 => 0.96445889481646
1119 => 0.97568369083178
1120 => 0.97451285264534
1121 => 0.96430473033396
1122 => 0.96897795645407
1123 => 0.95392386686129
1124 => 0.9486079545023
1125 => 0.93182947284044
1126 => 0.90716973997137
1127 => 0.91059882707375
1128 => 0.86174144369002
1129 => 0.83512134816497
1130 => 0.82775325657086
1201 => 0.81790033655746
1202 => 0.82886617010399
1203 => 0.8616030368615
1204 => 0.82211543003822
1205 => 0.75441669787327
1206 => 0.75848550702941
1207 => 0.76762691316297
1208 => 0.75059196330953
1209 => 0.73446981290821
1210 => 0.74848671465075
1211 => 0.71980186937584
1212 => 0.77109333967098
1213 => 0.76970604914218
1214 => 0.78882433742496
1215 => 0.80077939543495
1216 => 0.77322685721791
1217 => 0.76629746836631
1218 => 0.77024476317935
1219 => 0.70500477262772
1220 => 0.78349283834358
1221 => 0.78417160639518
1222 => 0.77835958224536
1223 => 0.82015205419189
1224 => 0.90834720539797
1225 => 0.8751646418725
1226 => 0.86231535032715
1227 => 0.83788883770666
1228 => 0.87043571547066
1229 => 0.86793662306877
1230 => 0.85663477947478
1231 => 0.84979938920523
]
'min_raw' => 0.63835338287585
'max_raw' => 1.6379416853488
'avg_raw' => 1.1381475341123
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.638353'
'max' => '$1.63'
'avg' => '$1.13'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.39254633545132
'max_diff' => 0.95206379803981
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.020037183258401
]
1 => [
'year' => 2028
'avg' => 0.034389623307278
]
2 => [
'year' => 2029
'avg' => 0.093946252748927
]
3 => [
'year' => 2030
'avg' => 0.07247939408684
]
4 => [
'year' => 2031
'avg' => 0.071183747265701
]
5 => [
'year' => 2032
'avg' => 0.1248075113065
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.020037183258401
'min' => '$0.020037'
'max_raw' => 0.1248075113065
'max' => '$0.1248075'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.1248075113065
]
1 => [
'year' => 2033
'avg' => 0.32101775288537
]
2 => [
'year' => 2034
'avg' => 0.20347647917005
]
3 => [
'year' => 2035
'avg' => 0.24000097379684
]
4 => [
'year' => 2036
'avg' => 0.46584246736675
]
5 => [
'year' => 2037
'avg' => 1.1381475341123
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.1248075113065
'min' => '$0.1248075'
'max_raw' => 1.1381475341123
'max' => '$1.13'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.1381475341123
]
]
]
]
'prediction_2025_max_price' => '$0.034259'
'last_price' => 0.03321933
'sma_50day_nextmonth' => '$0.03096'
'sma_200day_nextmonth' => '$0.047278'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.032766'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.03252'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.031954'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.031595'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.032142'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0383042'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.049867'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.032848'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.032583'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.032189'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.032027'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.033679'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.038811'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.048975'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.045999'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.053695'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.163723'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.594548'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.032614'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.032724'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.035124'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.042154'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.077031'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.428083'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$1.98'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.73'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 114.23
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.032212'
'vwma_10_action' => 'BUY'
'hma_9' => '0.033015'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 203.06
'cci_20_action' => 'SELL'
'adx_14' => 13.19
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0004099'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 80.89
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004323'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767693686
'last_updated_date' => '6. Januar 2026'
]
Polychain Monsters Preisprognose für 2026
Die Preisprognose für Polychain Monsters im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.011477 am unteren Ende und $0.034259 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Polychain Monsters im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn PMON das prognostizierte Preisziel erreicht.
Polychain Monsters Preisprognose 2027-2032
Die Preisprognose für PMON für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.020037 am unteren Ende und $0.1248075 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Polychain Monsters, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Polychain Monsters Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.011048 | $0.020037 | $0.029025 |
| 2028 | $0.019939 | $0.034389 | $0.048839 |
| 2029 | $0.0438024 | $0.093946 | $0.14409 |
| 2030 | $0.037252 | $0.072479 | $0.1077067 |
| 2031 | $0.044043 | $0.071183 | $0.098323 |
| 2032 | $0.067229 | $0.1248075 | $0.182385 |
Polychain Monsters Preisprognose 2032-2037
Die Preisprognose für Polychain Monsters für die Jahre 2032-2037 wird derzeit zwischen $0.1248075 am unteren Ende und $1.13 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Polychain Monsters bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Polychain Monsters Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.067229 | $0.1248075 | $0.182385 |
| 2033 | $0.156225 | $0.321017 | $0.4858098 |
| 2034 | $0.125597 | $0.203476 | $0.281354 |
| 2035 | $0.148495 | $0.24000097 | $0.3315062 |
| 2036 | $0.245807 | $0.465842 | $0.685877 |
| 2037 | $0.638353 | $1.13 | $1.63 |
Polychain Monsters Potenzielles Preishistogramm
Polychain Monsters Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Polychain Monsters Bullisch, mit 20 technischen Indikatoren, die bullische Signale zeigen, und 15 anzeigen bärische Signale. Die Preisprognose für PMON wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Polychain Monsters
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Polychain Monsters im nächsten Monat steigen, und bis zum 04.02.2026 $0.047278 erreichen. Der kurzfristige 50-Tage-SMA für Polychain Monsters wird voraussichtlich bis zum 04.02.2026 $0.03096 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 59.73, was darauf hindeutet, dass sich der PMON-Markt in einem NEUTRAL Zustand befindet.
Beliebte PMON Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.032766 | BUY |
| SMA 5 | $0.03252 | BUY |
| SMA 10 | $0.031954 | BUY |
| SMA 21 | $0.031595 | BUY |
| SMA 50 | $0.032142 | BUY |
| SMA 100 | $0.0383042 | SELL |
| SMA 200 | $0.049867 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.032848 | BUY |
| EMA 5 | $0.032583 | BUY |
| EMA 10 | $0.032189 | BUY |
| EMA 21 | $0.032027 | BUY |
| EMA 50 | $0.033679 | SELL |
| EMA 100 | $0.038811 | SELL |
| EMA 200 | $0.048975 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.045999 | SELL |
| SMA 50 | $0.053695 | SELL |
| SMA 100 | $0.163723 | SELL |
| SMA 200 | $0.594548 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.042154 | SELL |
| EMA 50 | $0.077031 | SELL |
| EMA 100 | $0.428083 | SELL |
| EMA 200 | $1.98 | SELL |
Polychain Monsters Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 59.73 | NEUTRAL |
| Stoch RSI (14) | 114.23 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 203.06 | SELL |
| Average Directional Index (14) | 13.19 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.0004099 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 80.89 | SELL |
| VWMA (10) | 0.032212 | BUY |
| Hull Moving Average (9) | 0.033015 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.004323 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Polychain Monsters-Preisprognose
Definition weltweiter Geldflüsse, die für Polychain Monsters-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Polychain Monsters-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.046678 | $0.065591 | $0.092166 | $0.1295098 | $0.181982 | $0.255716 |
| Amazon.com aktie | $0.069314 | $0.144628 | $0.301774 | $0.629671 | $1.31 | $2.74 |
| Apple aktie | $0.047119 | $0.066834 | $0.094800097 | $0.134466 | $0.19073 | $0.270537 |
| Netflix aktie | $0.052414 | $0.0827024 | $0.130491 | $0.205895 | $0.32487 | $0.512594 |
| Google aktie | $0.043018 | $0.0557092 | $0.072143 | $0.093425 | $0.120985 | $0.156675 |
| Tesla aktie | $0.0753057 | $0.170712 | $0.386991 | $0.877281 | $1.98 | $4.50 |
| Kodak aktie | $0.02491 | $0.01868 | $0.0140084 | $0.0105048 | $0.007877 | $0.0059072 |
| Nokia aktie | $0.0220064 | $0.014578 | $0.009657 | $0.006397 | $0.004238 | $0.0028076 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Polychain Monsters Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Polychain Monsters investieren?", "Sollte ich heute PMON kaufen?", "Wird Polychain Monsters auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Polychain Monsters/Protocol Monsters-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Polychain Monsters.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Polychain Monsters zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Polychain Monsters-Preis entspricht heute $0.03321 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Polychain Monsters-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Polychain Monsters-Prognose
basierend auf dem Preisverlauf des letzten Monats
Polychain Monsters-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Polychain Monsters 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.034082 | $0.034968 | $0.035877 | $0.03681 |
| Wenn die Wachstumsrate von Polychain Monsters 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.034946 | $0.036763 | $0.038674 | $0.040684 |
| Wenn die Wachstumsrate von Polychain Monsters 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.037536 | $0.042415 | $0.047927 | $0.054156 |
| Wenn die Wachstumsrate von Polychain Monsters 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.041854 | $0.052733 | $0.06644 | $0.08371 |
| Wenn die Wachstumsrate von Polychain Monsters 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.050488 | $0.076736 | $0.116628 | $0.177259 |
| Wenn die Wachstumsrate von Polychain Monsters 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.076393 | $0.175678 | $0.4040007 | $0.929064 |
| Wenn die Wachstumsrate von Polychain Monsters 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.119567 | $0.43036 | $1.54 | $5.57 |
Fragefeld
Ist PMON eine gute Investition?
Die Entscheidung, Polychain Monsters zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Polychain Monsters in den letzten 2026 Stunden um 0.7745% gestiegen, und Polychain Monsters hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Polychain Monsters investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Polychain Monsters steigen?
Es scheint, dass der Durchschnittswert von Polychain Monsters bis zum Ende dieses Jahres potenziell auf $0.034259 steigen könnte. Betrachtet man die Aussichten von Polychain Monsters in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.1077067 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Polychain Monsters nächste Woche kosten?
Basierend auf unserer neuen experimentellen Polychain Monsters-Prognose wird der Preis von Polychain Monsters in der nächsten Woche um 0.86% steigen und $0.033503 erreichen bis zum 13. Januar 2026.
Wie viel wird Polychain Monsters nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Polychain Monsters-Prognose wird der Preis von Polychain Monsters im nächsten Monat um -11.62% fallen und $0.029359 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Polychain Monsters in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Polychain Monsters im Jahr 2026 wird erwartet, dass PMON innerhalb der Spanne von $0.011477 bis $0.034259 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Polychain Monsters-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Polychain Monsters in 5 Jahren sein?
Die Zukunft von Polychain Monsters scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.1077067 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Polychain Monsters-Prognose für 2030 könnte der Wert von Polychain Monsters seinen höchsten Gipfel von ungefähr $0.1077067 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.037252 liegen wird.
Wie viel wird Polychain Monsters im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Polychain Monsters-Preisprognosesimulation wird der Wert von PMON im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.034259 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.034259 und $0.011477 während des Jahres 2026 liegen.
Wie viel wird Polychain Monsters im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Polychain Monsters könnte der Wert von PMON um -12.62% fallen und bis zu $0.029025 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.029025 und $0.011048 im Laufe des Jahres schwanken.
Wie viel wird Polychain Monsters im Jahr 2028 kosten?
Unser neues experimentelles Polychain Monsters-Preisprognosemodell deutet darauf hin, dass der Wert von PMON im Jahr 2028 um 47.02% steigen, und im besten Fall $0.048839 erreichen wird. Der Preis wird voraussichtlich zwischen $0.048839 und $0.019939 im Laufe des Jahres liegen.
Wie viel wird Polychain Monsters im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Polychain Monsters im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.14409 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.14409 und $0.0438024.
Wie viel wird Polychain Monsters im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Polychain Monsters-Preisprognosen wird der Wert von PMON im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.1077067 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.1077067 und $0.037252 während des Jahres 2030 liegen.
Wie viel wird Polychain Monsters im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Polychain Monsters im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.098323 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.098323 und $0.044043 während des Jahres schwanken.
Wie viel wird Polychain Monsters im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Polychain Monsters-Preisprognose könnte PMON eine 449.04% Steigerung im Wert erfahren und $0.182385 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.182385 und $0.067229 liegen.
Wie viel wird Polychain Monsters im Jahr 2033 kosten?
Laut unserer experimentellen Polychain Monsters-Preisprognose wird der Wert von PMON voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.4858098 beträgt. Im Laufe des Jahres könnte der Preis von PMON zwischen $0.4858098 und $0.156225 liegen.
Wie viel wird Polychain Monsters im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Polychain Monsters-Preisprognosesimulation deuten darauf hin, dass PMON im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.281354 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.281354 und $0.125597.
Wie viel wird Polychain Monsters im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Polychain Monsters könnte PMON um 897.93% steigen, wobei der Wert im Jahr 2035 $0.3315062 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.3315062 und $0.148495.
Wie viel wird Polychain Monsters im Jahr 2036 kosten?
Unsere jüngste Polychain Monsters-Preisprognosesimulation deutet darauf hin, dass der Wert von PMON im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.685877 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.685877 und $0.245807.
Wie viel wird Polychain Monsters im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Polychain Monsters um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $1.63 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $1.63 und $0.638353 liegen.
Verwandte Prognosen
Zoomer-Preisprognose
Tomb-Preisprognose
Handy-Preisprognose
Crowns-Preisprognose
Vent Finance-Preisprognose
ADAPad-Preisprognose
Wault Finance (OLD)-Preisprognose
Talis Protocol-Preisprognose
governance ZIL-Preisprognose
SHILL Token-Preisprognose
Wild Goat Coin [OLD]-Preisprognose
Balanced Dollars-Preisprognose
Conic-Preisprognose
NanoByte-Preisprognose
Friends With Benefits Pro-Preisprognose
Gaia Everworld-Preisprognose
STEPN Green Satoshi Token on BSC-Preisprognose
Star-Preisprognose
Ariva-Preisprognose
BitCone-Preisprognose
Gridcoin-PreisprognoseMy DeFi Pet-Preisprognose
B3Coin-Preisprognose
Spintop-Preisprognose
DegenX (Avalanche)-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Polychain Monsters?
Polychain Monsters-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Polychain Monsters Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Polychain Monsters. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von PMON über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von PMON über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von PMON einzuschätzen.
Wie liest man Polychain Monsters-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Polychain Monsters in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von PMON innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Polychain Monsters?
Die Preisentwicklung von Polychain Monsters wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von PMON. Die Marktkapitalisierung von Polychain Monsters kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von PMON-„Walen“, großen Inhabern von Polychain Monsters, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Polychain Monsters-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


