My DeFi Pet Preisvorhersage bis zu $0.0080033 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.002681 | $0.0080033 |
| 2027 | $0.002581 | $0.00678 |
| 2028 | $0.004658 | $0.0114091 |
| 2029 | $0.010232 | $0.03366 |
| 2030 | $0.0087023 | $0.025161 |
| 2031 | $0.010288 | $0.022969 |
| 2032 | $0.0157051 | $0.0426066 |
| 2033 | $0.036495 | $0.113488 |
| 2034 | $0.02934 | $0.065726 |
| 2035 | $0.034689 | $0.077442 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in My DeFi Pet eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.11 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige My DeFi Pet Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'My DeFi Pet'
'name_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'name_lang' => 'My DeFi Pet'
'name_lang_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'name_with_lang' => 'My DeFi Pet'
'name_with_lang_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'image' => '/uploads/coins/my-defi-pet.PNG?1719975034'
'price_for_sd' => 0.00776
'ticker' => 'DPET'
'marketcap' => '$389.73K'
'low24h' => '$0.006031'
'high24h' => '$0.008122'
'volume24h' => '$14.85K'
'current_supply' => '50.23M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00776'
'change_24h_pct' => '18.8361%'
'ath_price' => '$9.92'
'ath_days' => 1625
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26.07.2021'
'ath_pct' => '-99.92%'
'fdv' => '$775.89K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.382634'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007826'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006858'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002681'
'current_year_max_price_prediction' => '$0.0080033'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0087023'
'grand_prediction_max_price' => '$0.025161'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.007907323034598
107 => 0.0079368461084509
108 => 0.0080033631013271
109 => 0.0074349826800137
110 => 0.007690168802411
111 => 0.0078400667416132
112 => 0.0071628223989637
113 => 0.0078266797984656
114 => 0.0074250884414109
115 => 0.0072887823031268
116 => 0.0074723005613582
117 => 0.0074007833176481
118 => 0.0073392969911396
119 => 0.0073049865644786
120 => 0.0074397421191527
121 => 0.0074334556114594
122 => 0.0072129693690865
123 => 0.0069253540540801
124 => 0.0070218871944472
125 => 0.0069868157995488
126 => 0.0068597125401371
127 => 0.0069453647904745
128 => 0.0065681956276006
129 => 0.0059192956864231
130 => 0.0063479788639077
131 => 0.0063314750278921
201 => 0.0063231530453836
202 => 0.0066452966053305
203 => 0.0066143299351581
204 => 0.0065581251255686
205 => 0.0068586802947327
206 => 0.0067489736149503
207 => 0.007087063751895
208 => 0.0073097517823859
209 => 0.0072532708946503
210 => 0.0074627100636716
211 => 0.0070241111230317
212 => 0.007169796097577
213 => 0.0071998215689202
214 => 0.0068549714905992
215 => 0.0066193964653696
216 => 0.0066036862969387
217 => 0.0061952316674287
218 => 0.0064134248335823
219 => 0.0066054257903508
220 => 0.0065134722319349
221 => 0.0064843624823748
222 => 0.0066330778797429
223 => 0.0066446343397796
224 => 0.0063811458262431
225 => 0.0064359334318034
226 => 0.0066644068546713
227 => 0.0064301764877496
228 => 0.0059751051461338
301 => 0.0058622411615595
302 => 0.0058471830255214
303 => 0.0055410869480005
304 => 0.0058697832726889
305 => 0.0057262985184486
306 => 0.0061795651378825
307 => 0.0059206616757795
308 => 0.005909500864992
309 => 0.0058926296625518
310 => 0.0056291601239598
311 => 0.0056868432085488
312 => 0.0058785905671043
313 => 0.0059470081848255
314 => 0.0059398716667682
315 => 0.00587765090044
316 => 0.0059061352486432
317 => 0.0058143772384759
318 => 0.0057819755753081
319 => 0.0056797070135707
320 => 0.0055294004802279
321 => 0.0055503015255728
322 => 0.005252504953177
323 => 0.0050902495752754
324 => 0.0050453394251637
325 => 0.0049852836955101
326 => 0.0050521228796303
327 => 0.0052516613329035
328 => 0.0050109756238117
329 => 0.0045983368577131
330 => 0.0046231371506579
331 => 0.0046788560456317
401 => 0.0045750242534654
402 => 0.0044767561761217
403 => 0.0045621922966309
404 => 0.0043873518117142
405 => 0.0046999846829236
406 => 0.0046915288399009
407 => 0.0048080590412007
408 => 0.0048809277675139
409 => 0.0047129889448922
410 => 0.0046707527851577
411 => 0.0046948124212689
412 => 0.0042971602298526
413 => 0.0047755623735078
414 => 0.0047796996151122
415 => 0.004744274040703
416 => 0.0049990084131903
417 => 0.0055365773927817
418 => 0.0053343223189973
419 => 0.005256003041236
420 => 0.0051071180369608
421 => 0.0053054984652408
422 => 0.0052902659435656
423 => 0.0052213787037884
424 => 0.0051797154862298
425 => 0.0052564812420454
426 => 0.0051702033595553
427 => 0.0051547054811024
428 => 0.0050608051995359
429 => 0.0050272870712073
430 => 0.0050024715833879
501 => 0.0049751521696182
502 => 0.0050354119888204
503 => 0.0048988553106689
504 => 0.0047341813436344
505 => 0.0047204904850725
506 => 0.0047582921492745
507 => 0.004741567726868
508 => 0.0047204104149724
509 => 0.0046800153447125
510 => 0.0046680309902705
511 => 0.0047069743282248
512 => 0.0046630095702121
513 => 0.0047278819655441
514 => 0.0047102402635671
515 => 0.004611695150411
516 => 0.0044888714533447
517 => 0.0044877780648094
518 => 0.0044613159007477
519 => 0.0044276123562021
520 => 0.0044182368011422
521 => 0.0045549971048623
522 => 0.0048380868406717
523 => 0.004782509551769
524 => 0.0048226698387908
525 => 0.0050202187028411
526 => 0.0050830135462211
527 => 0.0050384432537674
528 => 0.0049774326884808
529 => 0.0049801168437196
530 => 0.0051886084144579
531 => 0.0052016117779839
601 => 0.00523446708257
602 => 0.0052766954338711
603 => 0.0050456349245945
604 => 0.0049692339145116
605 => 0.0049330308773676
606 => 0.0048215395353028
607 => 0.0049417733891744
608 => 0.0048717182714503
609 => 0.0048811711002549
610 => 0.0048750149330951
611 => 0.0048783766166425
612 => 0.0046998972956646
613 => 0.004764925779632
614 => 0.0046568033125543
615 => 0.0045120394664538
616 => 0.0045115541672809
617 => 0.0045469849135272
618 => 0.0045259093192547
619 => 0.0044691954369704
620 => 0.0044772513762669
621 => 0.0044066728711717
622 => 0.0044858208846505
623 => 0.0044880905664719
624 => 0.0044576142700611
625 => 0.0045795527051463
626 => 0.004629510981493
627 => 0.0046094508303299
628 => 0.0046281035078111
629 => 0.0047848190390393
630 => 0.0048103705086075
701 => 0.0048217187835544
702 => 0.0048065135984839
703 => 0.0046309679800352
704 => 0.004638754174691
705 => 0.004581624244528
706 => 0.004533355473744
707 => 0.004535285971439
708 => 0.004560102394123
709 => 0.0046684771674478
710 => 0.004896545488868
711 => 0.0049052005149501
712 => 0.0049156906590466
713 => 0.0048730219710823
714 => 0.0048601526865079
715 => 0.0048771305947057
716 => 0.0049627810649685
717 => 0.0051830973283602
718 => 0.0051052228464491
719 => 0.0050419096804668
720 => 0.0050974523961402
721 => 0.0050889020304205
722 => 0.0050167283389621
723 => 0.0050147026638248
724 => 0.0048761782745911
725 => 0.0048249689619392
726 => 0.0047821746273366
727 => 0.0047354443311249
728 => 0.0047077410451169
729 => 0.0047503058833435
730 => 0.0047600409654583
731 => 0.0046669722027698
801 => 0.0046542872743163
802 => 0.0047302892349565
803 => 0.0046968436057174
804 => 0.0047312432648015
805 => 0.0047392242807838
806 => 0.0047379391533922
807 => 0.0047030180752606
808 => 0.0047252757291002
809 => 0.0046726297424437
810 => 0.0046153851391262
811 => 0.0045788666486745
812 => 0.0045469994222806
813 => 0.004564681211618
814 => 0.0045016488611972
815 => 0.004481483543707
816 => 0.0047177353367924
817 => 0.0048922570764793
818 => 0.0048897194612661
819 => 0.0048742723812771
820 => 0.0048513211537393
821 => 0.0049611020397197
822 => 0.0049228565741822
823 => 0.0049506833458763
824 => 0.0049577664271584
825 => 0.0049792047809117
826 => 0.0049868671496897
827 => 0.0049637061493852
828 => 0.0048859750034855
829 => 0.004692276378359
830 => 0.0046021091454831
831 => 0.00457235245678
901 => 0.0045734340558984
902 => 0.004543598723743
903 => 0.0045523865661885
904 => 0.0045405426707698
905 => 0.0045181131981928
906 => 0.004563296254891
907 => 0.0045685031812661
908 => 0.0045579569159355
909 => 0.0045604409432012
910 => 0.0044731223706321
911 => 0.0044797610120586
912 => 0.0044427962129983
913 => 0.0044358657587918
914 => 0.0043424219656607
915 => 0.0041768727412345
916 => 0.0042686030818186
917 => 0.0041578057296308
918 => 0.0041158450935034
919 => 0.0043144802187127
920 => 0.0042945427614224
921 => 0.0042604185011459
922 => 0.0042099416080779
923 => 0.0041912192374313
924 => 0.004077468040165
925 => 0.0040707470125914
926 => 0.0041271251774973
927 => 0.0041011085942475
928 => 0.0040645714581141
929 => 0.0039322376547491
930 => 0.0037834506455503
1001 => 0.0037879415901162
1002 => 0.0038352679694616
1003 => 0.0039728758002402
1004 => 0.0039191100401154
1005 => 0.0038801023642538
1006 => 0.0038727973991314
1007 => 0.0039642343316191
1008 => 0.0040936367477189
1009 => 0.0041543494661371
1010 => 0.0040941850060573
1011 => 0.0040250713138024
1012 => 0.0040292779440079
1013 => 0.0040572627701619
1014 => 0.0040602035797065
1015 => 0.0040152176710509
1016 => 0.004027880940831
1017 => 0.0040086442760814
1018 => 0.003890588900021
1019 => 0.0038884536526258
1020 => 0.0038594809594405
1021 => 0.0038586036778053
1022 => 0.0038093138991201
1023 => 0.0038024179183578
1024 => 0.0037045500711026
1025 => 0.0037689669845372
1026 => 0.003725759501045
1027 => 0.0036606356318074
1028 => 0.0036494082522042
1029 => 0.0036490707436158
1030 => 0.0037159383958922
1031 => 0.0037681855970881
1101 => 0.0037265111137191
1102 => 0.0037170226416819
1103 => 0.003818334699172
1104 => 0.0038054418163765
1105 => 0.0037942766630257
1106 => 0.0040820501806553
1107 => 0.0038542549862039
1108 => 0.0037549232793279
1109 => 0.0036319814294894
1110 => 0.0036720119157235
1111 => 0.0036804469273432
1112 => 0.0033847939404156
1113 => 0.0032648475604403
1114 => 0.0032236864829168
1115 => 0.0031999977008698
1116 => 0.0032107929763136
1117 => 0.0031028271660287
1118 => 0.0031753819761299
1119 => 0.0030818927105459
1120 => 0.0030662189309304
1121 => 0.0032333893188921
1122 => 0.0032566501017817
1123 => 0.0031574123754158
1124 => 0.0032211390608713
1125 => 0.0031980308788579
1126 => 0.0030834953156739
1127 => 0.0030791208996268
1128 => 0.0030216509801408
1129 => 0.0029317216845144
1130 => 0.002890621583288
1201 => 0.0028692162937218
1202 => 0.0028780485333776
1203 => 0.0028735826827367
1204 => 0.0028444399864867
1205 => 0.0028752531079725
1206 => 0.0027965383154371
1207 => 0.0027651934508013
1208 => 0.0027510357026407
1209 => 0.0026811717936111
1210 => 0.0027923563414985
1211 => 0.0028142610980984
1212 => 0.0028362090138354
1213 => 0.0030272506358482
1214 => 0.0030177067362904
1215 => 0.0031039789402248
1216 => 0.0031006265610243
1217 => 0.0030760203309452
1218 => 0.0029722106937698
1219 => 0.003013587364919
1220 => 0.002886236402484
1221 => 0.002981656402564
1222 => 0.0029381106993619
1223 => 0.0029669335565083
1224 => 0.0029151074605069
1225 => 0.0029437901618811
1226 => 0.0028194555285011
1227 => 0.0027033535972863
1228 => 0.0027500764036338
1229 => 0.0028008694375345
1230 => 0.0029110016768557
1231 => 0.0028454078236872
]
'min_raw' => 0.0026811717936111
'max_raw' => 0.0080033631013271
'avg_raw' => 0.0053422674474691
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002681'
'max' => '$0.0080033'
'avg' => '$0.005342'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0050790982063889
'max_diff' => 0.00024309310132707
'year' => 2026
]
1 => [
'items' => [
101 => 0.0028689978536648
102 => 0.0027899752021633
103 => 0.0026269289004112
104 => 0.0026278517247724
105 => 0.0026027706034046
106 => 0.0025810968526391
107 => 0.0028529420667787
108 => 0.0028191338171635
109 => 0.0027652647961161
110 => 0.0028373706214579
111 => 0.0028564365461516
112 => 0.0028569793262241
113 => 0.0029095858750727
114 => 0.0029376619996234
115 => 0.0029426105382644
116 => 0.0030253880795174
117 => 0.0030531340194832
118 => 0.0031674156194501
119 => 0.0029352799366123
120 => 0.0029304992549853
121 => 0.002838385298291
122 => 0.0027799651706915
123 => 0.0028423853744084
124 => 0.002897681153694
125 => 0.0028401034922898
126 => 0.0028476219193384
127 => 0.0027703286131711
128 => 0.0027979573331378
129 => 0.0028217549087637
130 => 0.0028086152862599
131 => 0.0027889446354069
201 => 0.0028931475303774
202 => 0.0028872679946687
203 => 0.0029843041260794
204 => 0.0030599507296344
205 => 0.0031955229666529
206 => 0.0030540462697836
207 => 0.0030488902966307
208 => 0.003099290761244
209 => 0.0030531263034347
210 => 0.0030823006472273
211 => 0.0031908225288343
212 => 0.0031931154251861
213 => 0.0031547064570631
214 => 0.0031523692678622
215 => 0.0031597461303383
216 => 0.0032029526442729
217 => 0.0031878549607021
218 => 0.0032053263823568
219 => 0.0032271746626679
220 => 0.0033175484135136
221 => 0.0033393372188837
222 => 0.0032864017180349
223 => 0.0032911812010678
224 => 0.0032713818706384
225 => 0.0032522559655285
226 => 0.0032952482071015
227 => 0.0033738173735909
228 => 0.0033733285988839
301 => 0.0033915551183431
302 => 0.0034029100889695
303 => 0.0033541662426943
304 => 0.0033224357911301
305 => 0.0033346032653209
306 => 0.0033540593215252
307 => 0.0033282939285161
308 => 0.003169257987173
309 => 0.0032174993325212
310 => 0.003209469613774
311 => 0.0031980343178308
312 => 0.0032465413636177
313 => 0.0032418627407179
314 => 0.003101719820593
315 => 0.0031106913156468
316 => 0.0031022654069218
317 => 0.0031294912417912
318 => 0.0030516560190042
319 => 0.0030755976093052
320 => 0.0030906135503036
321 => 0.0030994580549095
322 => 0.0031314104702797
323 => 0.0031276612231294
324 => 0.0031311774118126
325 => 0.0031785544086817
326 => 0.0034181710010234
327 => 0.0034312128034603
328 => 0.0033669901984457
329 => 0.0033926458624141
330 => 0.0033433925978716
331 => 0.0033764566443272
401 => 0.0033990782251764
402 => 0.0032968556511987
403 => 0.0032908026937867
404 => 0.003241346143501
405 => 0.0032679212922624
406 => 0.0032256383197623
407 => 0.0032360130822182
408 => 0.0032070043419359
409 => 0.0032592142988615
410 => 0.0033175931433114
411 => 0.0033323419448699
412 => 0.0032935441977278
413 => 0.0032654520719009
414 => 0.0032161315530702
415 => 0.003298152675065
416 => 0.0033221381506847
417 => 0.0032980266895725
418 => 0.003292439537187
419 => 0.0032818518935122
420 => 0.0032946857558436
421 => 0.0033220075206333
422 => 0.0033091230809123
423 => 0.0033176334803427
424 => 0.0032852006135999
425 => 0.0033541823789357
426 => 0.0034637420236548
427 => 0.0034640942758274
428 => 0.0034512097666544
429 => 0.0034459377031015
430 => 0.0034591579914103
501 => 0.0034663294554933
502 => 0.0035090814436979
503 => 0.0035549560303559
504 => 0.0037690327096382
505 => 0.0037089208347374
506 => 0.0038988624000753
507 => 0.0040490815174322
508 => 0.0040941256624416
509 => 0.0040526871685237
510 => 0.0039109283192941
511 => 0.0039039729538546
512 => 0.004115820523646
513 => 0.0040559638819466
514 => 0.0040488441248787
515 => 0.0039731019386956
516 => 0.0040178749515821
517 => 0.0040080824368833
518 => 0.0039926244733652
519 => 0.0040780482630374
520 => 0.0042379539714694
521 => 0.004213031167224
522 => 0.0041944274499905
523 => 0.0041129113765337
524 => 0.0041620022600288
525 => 0.0041445219366902
526 => 0.0042196284990404
527 => 0.0041751370353182
528 => 0.0040555104090151
529 => 0.0040745613435484
530 => 0.0040716818331188
531 => 0.0041309419537146
601 => 0.0041131535364383
602 => 0.0040682083591517
603 => 0.0042374074311419
604 => 0.0042264205845416
605 => 0.0042419974210781
606 => 0.0042488548262511
607 => 0.0043518433197495
608 => 0.0043940344102716
609 => 0.0044036125264791
610 => 0.004443690799299
611 => 0.0044026153425408
612 => 0.0045669464558778
613 => 0.0046762170572605
614 => 0.0048031404837803
615 => 0.0049886097237266
616 => 0.0050583478736328
617 => 0.0050457503010542
618 => 0.0051863709620504
619 => 0.0054390631640387
620 => 0.0050968266198226
621 => 0.0054572025318974
622 => 0.0053431116788745
623 => 0.005072604318764
624 => 0.0050551868338452
625 => 0.0052383775587671
626 => 0.0056446769551898
627 => 0.0055429035645955
628 => 0.0056448434199975
629 => 0.0055259251638169
630 => 0.0055200198700757
701 => 0.0056390678257253
702 => 0.0059172298630669
703 => 0.005785085505874
704 => 0.0055956241667122
705 => 0.0057355194712043
706 => 0.005614329211754
707 => 0.0053412536381947
708 => 0.0055428257404018
709 => 0.0054080402160989
710 => 0.005447377797683
711 => 0.0057306769219341
712 => 0.0056965896217877
713 => 0.0057407017445762
714 => 0.0056628450024698
715 => 0.0055901145284612
716 => 0.005454357697688
717 => 0.005414166792827
718 => 0.0054252741130133
719 => 0.0054141612885907
720 => 0.0053382065894429
721 => 0.0053218041793936
722 => 0.0052944661107054
723 => 0.0053029393213243
724 => 0.0052515357541564
725 => 0.0053485449059211
726 => 0.0053665506593304
727 => 0.0054371458300929
728 => 0.0054444752549119
729 => 0.005641081800626
730 => 0.0055327942190855
731 => 0.0056054428778829
801 => 0.0055989444980443
802 => 0.0050784670335077
803 => 0.0051501842359093
804 => 0.0052617536967483
805 => 0.0052114918058692
806 => 0.0051404332516372
807 => 0.0050830496591763
808 => 0.0049961076488244
809 => 0.0051184768588213
810 => 0.0052793793574524
811 => 0.0054485560078068
812 => 0.0056518106683142
813 => 0.005606446594234
814 => 0.0054447563033096
815 => 0.0054520096116456
816 => 0.0054968467097074
817 => 0.0054387785938374
818 => 0.0054216531728431
819 => 0.0054944939398415
820 => 0.0054949955541712
821 => 0.0054281811690966
822 => 0.0053539292069896
823 => 0.0053536180885573
824 => 0.0053404056690892
825 => 0.0055282756238887
826 => 0.0056315851032336
827 => 0.0056434293685489
828 => 0.0056307878898077
829 => 0.0056356530932528
830 => 0.0055755395834911
831 => 0.0057129412406989
901 => 0.0058390345889682
902 => 0.0058052388780406
903 => 0.0057545743030166
904 => 0.0057142175286735
905 => 0.0057957321045621
906 => 0.0057921023888136
907 => 0.0058379332735725
908 => 0.0058358541199078
909 => 0.0058204429171502
910 => 0.0058052394284232
911 => 0.0058655195427014
912 => 0.0058481598378583
913 => 0.0058307731685986
914 => 0.0057959015416326
915 => 0.0058006411748937
916 => 0.0057499853478229
917 => 0.005726549644367
918 => 0.0053741328945058
919 => 0.0052799556233934
920 => 0.0053095857100405
921 => 0.0053193407039096
922 => 0.00527835463483
923 => 0.0053371181294329
924 => 0.005327959901045
925 => 0.0053635892103179
926 => 0.0053413295647289
927 => 0.0053422431083484
928 => 0.0054077039797687
929 => 0.0054267075492324
930 => 0.0054170421804256
1001 => 0.0054238114734284
1002 => 0.00557980697354
1003 => 0.0055576294018794
1004 => 0.0055458480089501
1005 => 0.005549111535307
1006 => 0.0055889717301667
1007 => 0.0056001304084415
1008 => 0.0055528503044849
1009 => 0.0055751478748339
1010 => 0.0056700880993968
1011 => 0.0057033118048424
1012 => 0.0058093459243417
1013 => 0.0057643007457723
1014 => 0.0058469831205462
1015 => 0.0061011205521026
1016 => 0.0063041431174026
1017 => 0.0061174351760904
1018 => 0.0064902602624959
1019 => 0.0067805580708449
1020 => 0.0067694159574441
1021 => 0.0067187958198492
1022 => 0.0063882994830105
1023 => 0.0060841718264287
1024 => 0.0063385875251018
1025 => 0.0063392360830387
1026 => 0.0063173815488926
1027 => 0.0061816449142709
1028 => 0.006312658208234
1029 => 0.0063230575677384
1030 => 0.0063172366918288
1031 => 0.0062131677323157
1101 => 0.0060542736662979
1102 => 0.0060853211864591
1103 => 0.0061361776578355
1104 => 0.0060398957477487
1105 => 0.0060091278435493
1106 => 0.0060663312312892
1107 => 0.0062506524653864
1108 => 0.0062158076037805
1109 => 0.0062148976636249
1110 => 0.0063639787580957
1111 => 0.0062572688681684
1112 => 0.0060857127951163
1113 => 0.006042392624124
1114 => 0.0058886352010653
1115 => 0.0059948360008371
1116 => 0.0059986579785552
1117 => 0.0059404928858661
1118 => 0.0060904325718219
1119 => 0.0060890508512194
1120 => 0.0062313962674574
1121 => 0.0065035072408075
1122 => 0.0064230306362201
1123 => 0.0063294451009146
1124 => 0.0063396204434477
1125 => 0.0064512188361508
1126 => 0.006383743900379
1127 => 0.0064080083577345
1128 => 0.0064511821089884
1129 => 0.0064772299050639
1130 => 0.0063358725664453
1201 => 0.0063029154089102
1202 => 0.0062354966309838
1203 => 0.0062179083302539
1204 => 0.006272819518136
1205 => 0.0062583523601699
1206 => 0.0059983367561274
1207 => 0.0059711636787918
1208 => 0.0059719970382795
1209 => 0.0059036690433097
1210 => 0.005799452450383
1211 => 0.006073327434145
1212 => 0.0060513314400709
1213 => 0.0060270495649679
1214 => 0.0060300239561176
1215 => 0.0061489038040842
1216 => 0.0060799474886873
1217 => 0.0062632791548877
1218 => 0.0062255916757713
1219 => 0.0061869376550233
1220 => 0.0061815944919257
1221 => 0.0061667159917438
1222 => 0.0061156920785741
1223 => 0.0060540776373598
1224 => 0.0060133944463187
1225 => 0.0055470385099012
1226 => 0.0056335914590326
1227 => 0.0057331627374588
1228 => 0.0057675343437646
1229 => 0.0057087393327357
1230 => 0.0061180136639694
1231 => 0.0061927920281513
]
'min_raw' => 0.0025810968526391
'max_raw' => 0.0067805580708449
'avg_raw' => 0.004680827461742
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002581'
'max' => '$0.00678'
'avg' => '$0.00468'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00010007494097198
'max_diff' => -0.0012228050304822
'year' => 2027
]
2 => [
'items' => [
101 => 0.0059662834853721
102 => 0.005923912985301
103 => 0.0061207914669001
104 => 0.0060020496750803
105 => 0.0060555190966661
106 => 0.0059399474534075
107 => 0.006174780109986
108 => 0.0061729910785952
109 => 0.00608163587125
110 => 0.0061588486669247
111 => 0.0061454310435626
112 => 0.0060422912394679
113 => 0.0061780498257429
114 => 0.006178117160308
115 => 0.0060901897594718
116 => 0.0059875098050782
117 => 0.0059691530544249
118 => 0.0059553237086901
119 => 0.0060521179253696
120 => 0.0061389033173769
121 => 0.0063003894159791
122 => 0.0063409908579828
123 => 0.0064994609891141
124 => 0.006405099741796
125 => 0.0064469288605494
126 => 0.0064923402860463
127 => 0.0065141121933794
128 => 0.0064786360387251
129 => 0.0067248053812803
130 => 0.0067455896162257
131 => 0.00675255839042
201 => 0.0066695514731666
202 => 0.0067432810436985
203 => 0.0067087854193133
204 => 0.0067985334508031
205 => 0.006812607088101
206 => 0.0068006872179938
207 => 0.0068051544126095
208 => 0.0065950923059864
209 => 0.0065841994775921
210 => 0.0064356749895161
211 => 0.0064961998162446
212 => 0.006383051553706
213 => 0.0064189320333133
214 => 0.0064347478068424
215 => 0.006426486544288
216 => 0.0064996217991372
217 => 0.0064374418919699
218 => 0.0062733388936324
219 => 0.0061091911855427
220 => 0.0061071304447794
221 => 0.0060639132506871
222 => 0.0060326751349823
223 => 0.0060386927042988
224 => 0.0060598994034538
225 => 0.0060314425630757
226 => 0.0060375152727688
227 => 0.006138362715927
228 => 0.0061585869514414
229 => 0.0060898570970448
301 => 0.0058138968139719
302 => 0.0057461754683118
303 => 0.0057948522285996
304 => 0.0057715878723669
305 => 0.0046581218669644
306 => 0.004919714188659
307 => 0.004764284913944
308 => 0.0048359138746898
309 => 0.0046772608334212
310 => 0.0047529783804329
311 => 0.004738996114262
312 => 0.0051596288264673
313 => 0.0051530612252276
314 => 0.0051562047883913
315 => 0.0050061543280765
316 => 0.005245188785672
317 => 0.0053629457548846
318 => 0.0053411520738836
319 => 0.0053466370738652
320 => 0.0052523866015082
321 => 0.0051571173389851
322 => 0.0050514490650126
323 => 0.0052477676570601
324 => 0.0052259403808945
325 => 0.0052760042992122
326 => 0.0054033309392978
327 => 0.0054220802707172
328 => 0.005447279562282
329 => 0.0054382474100637
330 => 0.0056534299196012
331 => 0.0056273698978763
401 => 0.0056901670522534
402 => 0.0055609885412682
403 => 0.0054148107943516
404 => 0.0054425944051299
405 => 0.0054399186199902
406 => 0.0054058528040395
407 => 0.0053750997085847
408 => 0.0053239044692834
409 => 0.0054858937819025
410 => 0.0054793173116374
411 => 0.0055857827209192
412 => 0.0055669639256788
413 => 0.0054412874053233
414 => 0.0054457759668343
415 => 0.0054759637001245
416 => 0.0055804437897195
417 => 0.0056114605938582
418 => 0.0055970923743752
419 => 0.0056311008841424
420 => 0.0056579798236238
421 => 0.0056344764651059
422 => 0.0059672344575233
423 => 0.0058290501392653
424 => 0.0058964002145039
425 => 0.0059124628105987
426 => 0.005871318808462
427 => 0.0058802414692692
428 => 0.0058937568691125
429 => 0.0059758197303747
430 => 0.0061911764234069
501 => 0.0062865564367682
502 => 0.0065735119129329
503 => 0.0062786364544125
504 => 0.0062611397650198
505 => 0.0063128291115023
506 => 0.0064813023533329
507 => 0.0066178340919497
508 => 0.0066631295463538
509 => 0.0066691160883998
510 => 0.0067540933720468
511 => 0.0068028007663008
512 => 0.0067437748946877
513 => 0.0066937566487619
514 => 0.0065145975003489
515 => 0.0065353356596118
516 => 0.0066782010118907
517 => 0.0068800067367118
518 => 0.0070531770429153
519 => 0.0069925388372773
520 => 0.0074551655423934
521 => 0.0075010330905451
522 => 0.0074946956784659
523 => 0.0075991887791617
524 => 0.0073917912539304
525 => 0.0073031247937563
526 => 0.0067045711612622
527 => 0.0068727403173077
528 => 0.0071171840618479
529 => 0.007084831015641
530 => 0.0069073094343559
531 => 0.0070530423768772
601 => 0.0070048585085892
602 => 0.0069668538925199
603 => 0.0071409604062906
604 => 0.0069495231424983
605 => 0.0071152743286997
606 => 0.0069026967179199
607 => 0.0069928158274929
608 => 0.0069416598623284
609 => 0.0069747640412291
610 => 0.0067812376878051
611 => 0.006885659810526
612 => 0.0067768933841918
613 => 0.0067768418147439
614 => 0.0067744407898542
615 => 0.0069024040080922
616 => 0.006906576884045
617 => 0.0068120118724254
618 => 0.0067983835768679
619 => 0.0068487745284228
620 => 0.0067897799215631
621 => 0.0068173831268051
622 => 0.0067906159945301
623 => 0.0067845901492529
624 => 0.0067365751888712
625 => 0.00671588902374
626 => 0.0067240006021048
627 => 0.0066963116033405
628 => 0.0066796279800302
629 => 0.0067711219972571
630 => 0.0067222404347109
701 => 0.0067636301967366
702 => 0.0067164613391039
703 => 0.006552953528056
704 => 0.0064589184568587
705 => 0.0061500673589713
706 => 0.0062376571472036
707 => 0.0062957292674197
708 => 0.0062765364320347
709 => 0.0063177700690831
710 => 0.0063203014795121
711 => 0.0063068960037805
712 => 0.0062913741802311
713 => 0.006283819014938
714 => 0.0063401290272024
715 => 0.0063728188846297
716 => 0.0063015575815882
717 => 0.0062848620553371
718 => 0.0063569111671565
719 => 0.0064008610837449
720 => 0.0067253625745089
721 => 0.0067013224559471
722 => 0.0067616584359022
723 => 0.0067548655304903
724 => 0.0068181072497586
725 => 0.0069214807328177
726 => 0.0067112935380782
727 => 0.0067477747673586
728 => 0.0067388304124137
729 => 0.0068364825343668
730 => 0.0068367873936324
731 => 0.0067782400684363
801 => 0.006809979523247
802 => 0.0067922634302981
803 => 0.0068242788047303
804 => 0.0067010013855071
805 => 0.0068511399751459
806 => 0.0069362588807541
807 => 0.0069374407568411
808 => 0.006977786442554
809 => 0.0070187799959028
810 => 0.0070974635517698
811 => 0.0070165855542352
812 => 0.0068710939099849
813 => 0.0068815979367646
814 => 0.0067962962389739
815 => 0.0067977301759248
816 => 0.0067900757081014
817 => 0.0068130473422409
818 => 0.0067060423673937
819 => 0.0067311562211118
820 => 0.0066959966788399
821 => 0.0067476983373803
822 => 0.0066920758993811
823 => 0.0067388260991749
824 => 0.0067590019356123
825 => 0.0068334512064207
826 => 0.0066810796815499
827 => 0.0063703838276929
828 => 0.0064356958629968
829 => 0.0063390942326327
830 => 0.0063480350813112
831 => 0.0063660970185674
901 => 0.0063075523704221
902 => 0.0063187208443343
903 => 0.0063183218278548
904 => 0.0063148833194007
905 => 0.0062996535953166
906 => 0.0062775674822854
907 => 0.0063655517588544
908 => 0.0063805020019297
909 => 0.0064137345403426
910 => 0.0065126120328134
911 => 0.0065027318396238
912 => 0.0065188468446414
913 => 0.0064836678791698
914 => 0.0063496669326238
915 => 0.0063569438287192
916 => 0.0062662008178046
917 => 0.0064114140375354
918 => 0.0063770256303823
919 => 0.0063548552005809
920 => 0.006348805793402
921 => 0.0064479283840516
922 => 0.0064775874167302
923 => 0.0064591058979085
924 => 0.0064211997636132
925 => 0.0064939907474028
926 => 0.0065134665438598
927 => 0.0065178264564468
928 => 0.006646798123435
929 => 0.0065250345399349
930 => 0.0065543442447093
1001 => 0.006783010194535
1002 => 0.0065756417317872
1003 => 0.0066854894313733
1004 => 0.0066801129580984
1005 => 0.0067363073241632
1006 => 0.0066755033798904
1007 => 0.0066762571176526
1008 => 0.006726153907782
1009 => 0.0066560828649787
1010 => 0.0066387322893694
1011 => 0.0066147625934322
1012 => 0.0066670995475972
1013 => 0.0066984731846224
1014 => 0.0069513216576475
1015 => 0.0071146733025129
1016 => 0.0071075817768
1017 => 0.0071723850470362
1018 => 0.0071431905802649
1019 => 0.007048913945949
1020 => 0.0072098326649155
1021 => 0.0071589112491093
1022 => 0.0071631091487589
1023 => 0.0071629529027242
1024 => 0.0071968111926079
1025 => 0.0071728194911586
1026 => 0.0071255293849045
1027 => 0.0071569227643728
1028 => 0.0072501498780553
1029 => 0.007539529699483
1030 => 0.0077014704813267
1031 => 0.0075297806610772
1101 => 0.007648210000067
1102 => 0.0075771945973613
1103 => 0.0075642889861644
1104 => 0.0076386713629094
1105 => 0.0077131839361583
1106 => 0.0077084378073691
1107 => 0.0076543455054534
1108 => 0.0076237901366425
1109 => 0.0078551656260777
1110 => 0.0080256391453149
1111 => 0.0080140139941719
1112 => 0.0080653236306154
1113 => 0.008215970310161
1114 => 0.008229743554573
1115 => 0.0082280084423514
1116 => 0.0081938700189869
1117 => 0.0083422012389428
1118 => 0.0084659417522696
1119 => 0.0081859679603319
1120 => 0.0082925783151757
1121 => 0.0083404391382362
1122 => 0.0084107130261553
1123 => 0.0085292768543461
1124 => 0.0086580686192634
1125 => 0.0086762811869526
1126 => 0.0086633584986255
1127 => 0.0085784168675541
1128 => 0.008719342353532
1129 => 0.0088018931981085
1130 => 0.0088510503369114
1201 => 0.0089757046619474
1202 => 0.0083407347103857
1203 => 0.007891271418616
1204 => 0.0078210812352775
1205 => 0.0079638157331889
1206 => 0.0080014536820018
1207 => 0.0079862818720293
1208 => 0.0074803700737278
1209 => 0.0078184177143603
1210 => 0.0081821285518279
1211 => 0.0081961001663541
1212 => 0.0083781814164253
1213 => 0.0084374745352112
1214 => 0.0085840738074535
1215 => 0.0085749039830601
1216 => 0.0086105985729472
1217 => 0.0086023930048763
1218 => 0.0088739372865865
1219 => 0.0091734909540289
1220 => 0.0091631183630477
1221 => 0.0091200539791947
1222 => 0.009184011932785
1223 => 0.0094931834197074
1224 => 0.0094647198635637
1225 => 0.0094923697838374
1226 => 0.0098569003910604
1227 => 0.010330842034325
1228 => 0.010110648558065
1229 => 0.010588405042582
1230 => 0.010889127424802
1231 => 0.011409195689577
]
'min_raw' => 0.0046581218669644
'max_raw' => 0.011409195689577
'avg_raw' => 0.0080336587782707
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004658'
'max' => '$0.0114091'
'avg' => '$0.008033'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0020770250143253
'max_diff' => 0.004628637618732
'year' => 2028
]
3 => [
'items' => [
101 => 0.011344080581437
102 => 0.011546539340477
103 => 0.011227510947933
104 => 0.010494957272377
105 => 0.010379027849118
106 => 0.010611121490284
107 => 0.011181701059724
108 => 0.010593151909122
109 => 0.010712214635761
110 => 0.010677924562479
111 => 0.010676097390197
112 => 0.010745833124545
113 => 0.010644677804702
114 => 0.010232552834168
115 => 0.010421427279496
116 => 0.010348493785659
117 => 0.010429418934623
118 => 0.010866138587514
119 => 0.010673054418875
120 => 0.010469655932097
121 => 0.010724762772254
122 => 0.011049601443994
123 => 0.011029273623707
124 => 0.010989829155982
125 => 0.011212175555303
126 => 0.011579426665599
127 => 0.011678693164978
128 => 0.011751969665405
129 => 0.011762073256797
130 => 0.011866146527485
131 => 0.011306518321157
201 => 0.01219466265687
202 => 0.012348020649156
203 => 0.012319195702644
204 => 0.012489646656778
205 => 0.012439495662148
206 => 0.01236683473938
207 => 0.012637035757641
208 => 0.012327272094303
209 => 0.011887601572355
210 => 0.011646389628317
211 => 0.011964036974238
212 => 0.012158013124028
213 => 0.012286219019838
214 => 0.012325014046446
215 => 0.011349960665757
216 => 0.010824460972506
217 => 0.011161300251014
218 => 0.011572267418199
219 => 0.011304235377793
220 => 0.011314741726326
221 => 0.010932598474289
222 => 0.011606078616549
223 => 0.011507958224681
224 => 0.012017006991263
225 => 0.011895518417746
226 => 0.012310627925734
227 => 0.012201315680447
228 => 0.012655064699071
301 => 0.012836077467364
302 => 0.013140026077717
303 => 0.013363611912786
304 => 0.013494905791654
305 => 0.013487023399638
306 => 0.014007275158063
307 => 0.013700500872331
308 => 0.013315120068305
309 => 0.013308149745421
310 => 0.013507743924715
311 => 0.013926038568525
312 => 0.014034496283725
313 => 0.014095109350449
314 => 0.014002278328806
315 => 0.013669296828355
316 => 0.013525517104715
317 => 0.013648021594956
318 => 0.013498209130323
319 => 0.013756827474234
320 => 0.014111965698321
321 => 0.014038631059416
322 => 0.014283777762333
323 => 0.014537478809667
324 => 0.014900282701781
325 => 0.014995133073769
326 => 0.015151917131829
327 => 0.015313299428452
328 => 0.015365131072753
329 => 0.015464093764137
330 => 0.015463572181904
331 => 0.015761802913349
401 => 0.016090760645569
402 => 0.016214934574093
403 => 0.016500465675744
404 => 0.01601150367037
405 => 0.016382386968237
406 => 0.016716932986724
407 => 0.01631807343177
408 => 0.016867808405917
409 => 0.016889153369236
410 => 0.017211436973459
411 => 0.016884740798512
412 => 0.016690749652679
413 => 0.017250794821944
414 => 0.017521783038094
415 => 0.017440159182014
416 => 0.016818997606982
417 => 0.01645745492744
418 => 0.015511227998704
419 => 0.016632074669753
420 => 0.017178006387675
421 => 0.01681758377572
422 => 0.016999359976659
423 => 0.017991071987851
424 => 0.018368651713116
425 => 0.018290117769742
426 => 0.018303388713394
427 => 0.01850712387959
428 => 0.019410597805507
429 => 0.018869215286736
430 => 0.019283081937121
501 => 0.019502595316178
502 => 0.019706491576259
503 => 0.019205786803574
504 => 0.018554377251123
505 => 0.01834804850155
506 => 0.016781746850114
507 => 0.016700214047054
508 => 0.016654447213999
509 => 0.016365893805437
510 => 0.016139169867737
511 => 0.015958870574758
512 => 0.015485711388056
513 => 0.015645388723834
514 => 0.014891271736227
515 => 0.015373729060633
516 => 0.014170140139621
517 => 0.015172524757878
518 => 0.014626972382996
519 => 0.014993296130145
520 => 0.014992018061101
521 => 0.01431749989955
522 => 0.013928451900803
523 => 0.014176368427579
524 => 0.014442154623922
525 => 0.014485277540067
526 => 0.014829876281355
527 => 0.014926046382923
528 => 0.014634646485418
529 => 0.014145198434465
530 => 0.01425888605358
531 => 0.01392614802483
601 => 0.01334303742803
602 => 0.013761837638786
603 => 0.013904834444084
604 => 0.013967989979651
605 => 0.013394567678403
606 => 0.013214385941747
607 => 0.013118458697023
608 => 0.014071176816102
609 => 0.014123368865305
610 => 0.013856346962372
611 => 0.015063311283686
612 => 0.014790138085354
613 => 0.015095339476949
614 => 0.014248570093762
615 => 0.014280917824526
616 => 0.013880043628444
617 => 0.014104506391827
618 => 0.01394586334544
619 => 0.014086372018729
620 => 0.01417059233816
621 => 0.014571400754731
622 => 0.015177101346167
623 => 0.014511533343078
624 => 0.014221535833023
625 => 0.014401448657253
626 => 0.014880580216814
627 => 0.015606489055841
628 => 0.01517673641286
629 => 0.015367453338142
630 => 0.01540911650191
701 => 0.015092232813284
702 => 0.015618173009439
703 => 0.015900028633289
704 => 0.016189154181555
705 => 0.016440193794001
706 => 0.016073671079571
707 => 0.016465902922979
708 => 0.016149833295433
709 => 0.015866286164846
710 => 0.0158667161888
711 => 0.015688842931821
712 => 0.01534419108295
713 => 0.015280631994111
714 => 0.015611274400883
715 => 0.015876418299162
716 => 0.015898256820578
717 => 0.016045054106251
718 => 0.016131927227779
719 => 0.016983401917043
720 => 0.017325872080833
721 => 0.017744638114487
722 => 0.017907771084956
723 => 0.018398742839659
724 => 0.01800224327296
725 => 0.017916458097605
726 => 0.01672552121633
727 => 0.016920537063922
728 => 0.017232776252146
729 => 0.016730669925539
730 => 0.017049140820826
731 => 0.017112013721691
801 => 0.016713608544695
802 => 0.0169264139638
803 => 0.016361265863066
804 => 0.015189420030392
805 => 0.01561947760884
806 => 0.015936144742394
807 => 0.015484221698037
808 => 0.01629427626321
809 => 0.015821059109156
810 => 0.015671071989751
811 => 0.01508591876268
812 => 0.015362088561244
813 => 0.015735612168173
814 => 0.015504818005871
815 => 0.015983750546565
816 => 0.01666204675083
817 => 0.017145441019227
818 => 0.017182550028824
819 => 0.016871759899146
820 => 0.017369803065392
821 => 0.017373430766132
822 => 0.01681163604004
823 => 0.016467539898395
824 => 0.016389360531029
825 => 0.016584667918678
826 => 0.016821807143016
827 => 0.01719570960537
828 => 0.017421651032529
829 => 0.018010786444485
830 => 0.018170189595125
831 => 0.018345325329662
901 => 0.018579360680864
902 => 0.018860380125415
903 => 0.018245525579184
904 => 0.018269954896538
905 => 0.017697410856329
906 => 0.017085565438245
907 => 0.017549879842963
908 => 0.018156909161975
909 => 0.018017655965485
910 => 0.018001987136196
911 => 0.01802833776089
912 => 0.017923345398322
913 => 0.017448468833622
914 => 0.017209988795715
915 => 0.017517688887362
916 => 0.017681217791917
917 => 0.017934836861662
918 => 0.017903572958067
919 => 0.018556868445031
920 => 0.018810719316635
921 => 0.018745773400788
922 => 0.018757725012315
923 => 0.019217309889856
924 => 0.019728462794521
925 => 0.020207224942307
926 => 0.020694242362346
927 => 0.020107123853875
928 => 0.019809021283708
929 => 0.020116587043121
930 => 0.019953388321875
1001 => 0.020891176582039
1002 => 0.020956107006482
1003 => 0.021893827453881
1004 => 0.022783835820136
1005 => 0.022224837511447
1006 => 0.022751947738704
1007 => 0.023322060425409
1008 => 0.024421900295513
1009 => 0.024051512920095
1010 => 0.023767801995235
1011 => 0.023499696542124
1012 => 0.024057581429507
1013 => 0.024775291424696
1014 => 0.024929879283519
1015 => 0.02518037067192
1016 => 0.024917009605646
1017 => 0.025234199001703
1018 => 0.026354016949864
1019 => 0.026051432255365
1020 => 0.025621713346258
1021 => 0.026505702067873
1022 => 0.026825614149806
1023 => 0.029070924680071
1024 => 0.031905721973683
1025 => 0.030732097279845
1026 => 0.030003590559748
1027 => 0.030174806919381
1028 => 0.031209978927064
1029 => 0.031542443321214
1030 => 0.030638690490564
1031 => 0.030957911268865
1101 => 0.032716849142398
1102 => 0.033660462878065
1103 => 0.032378908680797
1104 => 0.02884315147771
1105 => 0.025583021860149
1106 => 0.026447755040276
1107 => 0.026349721133445
1108 => 0.028239480446587
1109 => 0.026044215710472
1110 => 0.026081178338558
1111 => 0.028010015873006
1112 => 0.027495435087462
1113 => 0.026661880117409
1114 => 0.025589107733898
1115 => 0.023605988763543
1116 => 0.021849484988136
1117 => 0.02529439339037
1118 => 0.025145842675906
1119 => 0.02493071922738
1120 => 0.025409453183286
1121 => 0.027734049382163
1122 => 0.027680459915795
1123 => 0.02733955107235
1124 => 0.02759812742547
1125 => 0.026616550432508
1126 => 0.026869525173687
1127 => 0.025582505438961
1128 => 0.026164292109749
1129 => 0.026660091682812
1130 => 0.026759630787542
1201 => 0.026983897473092
1202 => 0.02506756319958
1203 => 0.025927941027769
1204 => 0.026433332395329
1205 => 0.024149955810396
1206 => 0.02638819738186
1207 => 0.025034204083337
1208 => 0.024574638421522
1209 => 0.025193383041984
1210 => 0.024952257661641
1211 => 0.02474495221898
1212 => 0.024629272220015
1213 => 0.025083609980931
1214 => 0.025062414581333
1215 => 0.024319029821315
1216 => 0.023349314706111
1217 => 0.023674782928587
1218 => 0.02355653727208
1219 => 0.023127999758908
1220 => 0.02341678230097
1221 => 0.02214513013523
1222 => 0.019957318678803
1223 => 0.021402653941396
1224 => 0.021347010106008
1225 => 0.021318951960959
1226 => 0.022405081464665
1227 => 0.022300675174155
1228 => 0.022111176734529
1229 => 0.023124519471458
1230 => 0.022754635741096
1231 => 0.023894530242504
]
'min_raw' => 0.010232552834168
'max_raw' => 0.033660462878065
'avg_raw' => 0.021946507856116
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.010232'
'max' => '$0.03366'
'avg' => '$0.021946'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0055744309672032
'max_diff' => 0.022251267188488
'year' => 2029
]
4 => [
'items' => [
101 => 0.024645338484886
102 => 0.024454909228516
103 => 0.025161048009447
104 => 0.023682281059079
105 => 0.024173468122159
106 => 0.024274701095104
107 => 0.023112014979381
108 => 0.022317757334496
109 => 0.022264789404783
110 => 0.020887656103998
111 => 0.021623309597446
112 => 0.022270654228269
113 => 0.021960626386078
114 => 0.021862480833058
115 => 0.022363885178262
116 => 0.022402848590122
117 => 0.021514478670553
118 => 0.021699198907848
119 => 0.022469513004552
120 => 0.021679788969034
121 => 0.020145484168709
122 => 0.019764955364806
123 => 0.019714185807828
124 => 0.01868216151152
125 => 0.019790384119052
126 => 0.019306615252345
127 => 0.020834835305831
128 => 0.019961924207288
129 => 0.019924294754495
130 => 0.019867412317558
131 => 0.01897910637334
201 => 0.019173588920336
202 => 0.019820078527079
203 => 0.020050753301992
204 => 0.020026692033106
205 => 0.019816910375315
206 => 0.019912947343995
207 => 0.019603578806377
208 => 0.019494334336795
209 => 0.019149528740734
210 => 0.018642759769502
211 => 0.018713229103146
212 => 0.017709187167821
213 => 0.017162131832917
214 => 0.017010714126289
215 => 0.016808232040805
216 => 0.017033585016629
217 => 0.01770634284317
218 => 0.016894854170827
219 => 0.015503613761407
220 => 0.015587229680571
221 => 0.015775089825145
222 => 0.015425013688552
223 => 0.015093696004929
224 => 0.015381749850186
225 => 0.014792262948316
226 => 0.015846326500929
227 => 0.015817817035809
228 => 0.016210706745371
301 => 0.016456388743668
302 => 0.015890171278084
303 => 0.015747769116705
304 => 0.015828887859644
305 => 0.014488175733094
306 => 0.016101141961399
307 => 0.016115090960321
308 => 0.015995651162866
309 => 0.016854505884693
310 => 0.018666957231253
311 => 0.017985040128991
312 => 0.017720981215941
313 => 0.017219005029208
314 => 0.017887858493633
315 => 0.017836500983305
316 => 0.017604242844842
317 => 0.017463772398011
318 => 0.017722593503357
319 => 0.017431701598812
320 => 0.017379449419581
321 => 0.017062858064371
322 => 0.01694984935455
323 => 0.016866182204805
324 => 0.0167740728939
325 => 0.016977243081546
326 => 0.016516832707076
327 => 0.01596162293005
328 => 0.015915463244543
329 => 0.016042914194628
330 => 0.015986526636823
331 => 0.01591519328261
401 => 0.015778998482935
402 => 0.015738592395213
403 => 0.015869892578063
404 => 0.015721662326902
405 => 0.01594038413701
406 => 0.01588090390709
407 => 0.015548652177884
408 => 0.015134543507948
409 => 0.015130857072164
410 => 0.0150416380385
411 => 0.014928004184958
412 => 0.014896393846494
413 => 0.015357490758786
414 => 0.016311947567761
415 => 0.016124564857943
416 => 0.016259968069539
417 => 0.016926017857106
418 => 0.017137735055758
419 => 0.016987463202951
420 => 0.016781761822466
421 => 0.016790811639255
422 => 0.017493755526416
423 => 0.01753759727441
424 => 0.017648371227706
425 => 0.017790747062407
426 => 0.017011710423251
427 => 0.016754119083608
428 => 0.016632058016262
429 => 0.016256157172414
430 => 0.016661534005202
501 => 0.016425338284703
502 => 0.016457209156993
503 => 0.016436453209604
504 => 0.016447787360389
505 => 0.015846031868684
506 => 0.016065279942524
507 => 0.015700737495902
508 => 0.015212656081685
509 => 0.015211019861641
510 => 0.015330477096306
511 => 0.015259419258765
512 => 0.015068204445007
513 => 0.015095365606793
514 => 0.01485740524923
515 => 0.015124258302612
516 => 0.015131910693337
517 => 0.015029157732201
518 => 0.01544028167956
519 => 0.015608719496239
520 => 0.015541085296037
521 => 0.015603974100454
522 => 0.016132351455518
523 => 0.016218500019114
524 => 0.016256761520409
525 => 0.016205496177352
526 => 0.015613631868548
527 => 0.015639883567445
528 => 0.015447266019216
529 => 0.0152845244885
530 => 0.015291033296262
531 => 0.015374703597968
601 => 0.015740096712717
602 => 0.016509044981607
603 => 0.016538226006318
604 => 0.016573594259538
605 => 0.016429733799033
606 => 0.016386344107586
607 => 0.016443586310435
608 => 0.01673236285085
609 => 0.017475174514866
610 => 0.01721261526208
611 => 0.016999150502587
612 => 0.017186416646348
613 => 0.017157588491357
614 => 0.016914249851598
615 => 0.016907420146445
616 => 0.016440375496679
617 => 0.016267719723753
618 => 0.016123435636836
619 => 0.015965881180553
620 => 0.015872477617595
621 => 0.016015987941458
622 => 0.01604881045049
623 => 0.015735022619232
624 => 0.015692254497318
625 => 0.015948500413904
626 => 0.015835736139825
627 => 0.015951716992134
628 => 0.015978625544735
629 => 0.01597429264801
630 => 0.015856553794978
701 => 0.015931597028877
702 => 0.01575409740924
703 => 0.015561093232464
704 => 0.015437968592267
705 => 0.015330526013581
706 => 0.015390141400835
707 => 0.015177623430613
708 => 0.015109634654798
709 => 0.015906174069758
710 => 0.016494586299832
711 => 0.01648603055297
712 => 0.016433949644306
713 => 0.016356567978259
714 => 0.016726701899998
715 => 0.016597754642726
716 => 0.016691574546295
717 => 0.016715455649363
718 => 0.01678773655582
719 => 0.016813570767125
720 => 0.016735481837549
721 => 0.016473405852133
722 => 0.015820337413912
723 => 0.015516332292996
724 => 0.015416005539488
725 => 0.015419652226431
726 => 0.015319060321032
727 => 0.015348689145385
728 => 0.015308756625066
729 => 0.015233134092297
730 => 0.015385471922535
731 => 0.015403027438345
801 => 0.015367469968466
802 => 0.015375845039822
803 => 0.015081444376017
804 => 0.015103827019081
805 => 0.01497919761825
806 => 0.014955831108024
807 => 0.014640778835445
808 => 0.014082618067014
809 => 0.014391893314702
810 => 0.014018332306176
811 => 0.013876859091875
812 => 0.014546571284779
813 => 0.014479350755536
814 => 0.014364298429534
815 => 0.014194112060371
816 => 0.014130988280582
817 => 0.013747468177144
818 => 0.013724807763433
819 => 0.01391489068261
820 => 0.013827173955764
821 => 0.013703986450349
822 => 0.013257813793053
823 => 0.012756168003561
824 => 0.012771309536713
825 => 0.012930873728899
826 => 0.013394828137841
827 => 0.013213553123774
828 => 0.013082036021178
829 => 0.013057406821251
830 => 0.013365692823056
831 => 0.013801982103525
901 => 0.014006679272498
902 => 0.013803830594791
903 => 0.01357080895599
904 => 0.013584991903425
905 => 0.013679344698642
906 => 0.013689259843342
907 => 0.013537586711494
908 => 0.013580281809679
909 => 0.013515424051414
910 => 0.013117392108664
911 => 0.013110192972992
912 => 0.013012509515109
913 => 0.013009551698826
914 => 0.012843367768687
915 => 0.012820117488085
916 => 0.012490149208149
917 => 0.012707335329239
918 => 0.012561658281995
919 => 0.012342088610057
920 => 0.012304234715854
921 => 0.012303096782084
922 => 0.012528545740284
923 => 0.012704700826899
924 => 0.012564192396601
925 => 0.012532201350664
926 => 0.012873782025874
927 => 0.012830312771376
928 => 0.012792668677328
929 => 0.013762917183722
930 => 0.012994889781476
1001 => 0.012659985996626
1002 => 0.012245478966369
1003 => 0.012380444545547
1004 => 0.012408883776136
1005 => 0.011412069088878
1006 => 0.011007661494402
1007 => 0.010868884047757
1008 => 0.010789015665187
1009 => 0.010825412690048
1010 => 0.010461398422741
1011 => 0.010706022030612
1012 => 0.010390816444483
1013 => 0.010337971202201
1014 => 0.010901597836678
1015 => 0.010980023190206
1016 => 0.010645436267207
1017 => 0.010860295236475
1018 => 0.010782384387455
1019 => 0.010396219739563
1020 => 0.010381471090448
1021 => 0.010187707244479
1022 => 0.0098845043456119
1023 => 0.0097459324848096
1024 => 0.0096737630565677
1025 => 0.0097035415692144
1026 => 0.0096884846419827
1027 => 0.0095902280068978
1028 => 0.0096941165972907
1029 => 0.0094287241785663
1030 => 0.0093230427790182
1031 => 0.0092753089426322
1101 => 0.0090397578955966
1102 => 0.0094146243614563
1103 => 0.009488477777674
1104 => 0.009562476707936
1105 => 0.010206586874652
1106 => 0.010174408950959
1107 => 0.010465281709857
1108 => 0.010453978929327
1109 => 0.010371017306663
1110 => 0.010021015867169
1111 => 0.010160520202775
1112 => 0.0097311475415653
1113 => 0.010052862733847
1114 => 0.0099060453552371
1115 => 0.010003223630454
1116 => 0.0098284883294024
1117 => 0.009925194059648
1118 => 0.0095059911624403
1119 => 0.0091145453953716
1120 => 0.0092720745990543
1121 => 0.0094433268591071
1122 => 0.0098146453931658
1123 => 0.0095934911375918
1124 => 0.0096730265706645
1125 => 0.0094065961839418
1126 => 0.0088568741940554
1127 => 0.0088599855608185
1128 => 0.008775422809019
1129 => 0.0087023482451003
1130 => 0.0096188933641986
1201 => 0.0095049064902046
1202 => 0.0093232833247283
1203 => 0.009566393149136
1204 => 0.0096306752453811
1205 => 0.0096325052662912
1206 => 0.0098098719186063
1207 => 0.0099045325327415
1208 => 0.0099212168762655
1209 => 0.010200307135943
1210 => 0.010293854509698
1211 => 0.010679162902873
1212 => 0.0098965012409891
1213 => 0.0098803828391074
1214 => 0.0095698142029214
1215 => 0.0093728466639564
1216 => 0.0095833007388274
1217 => 0.0097697343193171
1218 => 0.0095756072139488
1219 => 0.0096009561156631
1220 => 0.0093403563374734
1221 => 0.009433508495817
1222 => 0.0095137436835333
1223 => 0.0094694425288827
1224 => 0.0094031215561706
1225 => 0.0097544488917775
1226 => 0.0097346256266396
1227 => 0.010061789718537
1228 => 0.0103168375239
1229 => 0.010773928786359
1230 => 0.010296930225277
1231 => 0.010279546501813
]
'min_raw' => 0.0087023482451003
'max_raw' => 0.025161048009447
'avg_raw' => 0.016931698127274
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0087023'
'max' => '$0.025161'
'avg' => '$0.016931'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0015302045890673
'max_diff' => -0.008499414868618
'year' => 2030
]
5 => [
'items' => [
101 => 0.010449475187105
102 => 0.010293828494501
103 => 0.010392191831486
104 => 0.01075808093208
105 => 0.010765811592215
106 => 0.01063631307456
107 => 0.010628433077991
108 => 0.010653304684866
109 => 0.010798978463178
110 => 0.010748075568933
111 => 0.010806981686857
112 => 0.010880644689325
113 => 0.011185346099995
114 => 0.011258808578546
115 => 0.011080332841595
116 => 0.011096447202334
117 => 0.011029692377446
118 => 0.01096520805304
119 => 0.011110159397126
120 => 0.011375060827469
121 => 0.011373412889419
122 => 0.01143486487231
123 => 0.011473148948556
124 => 0.011308805667653
125 => 0.011201824234855
126 => 0.011242847723595
127 => 0.011308445175466
128 => 0.011221575354053
129 => 0.01068537457428
130 => 0.010848023638225
131 => 0.010820950880852
201 => 0.010782395982192
202 => 0.010945940873717
203 => 0.010930166569959
204 => 0.010457664930292
205 => 0.010487912952235
206 => 0.010459504412691
207 => 0.0105512982158
208 => 0.010288871327892
209 => 0.01036959207114
210 => 0.010420219364596
211 => 0.010450039229378
212 => 0.010557769028645
213 => 0.010545128180114
214 => 0.010556983255752
215 => 0.010716718108452
216 => 0.011524602179029
217 => 0.011568573526494
218 => 0.011352042529808
219 => 0.011438542392099
220 => 0.011272481571941
221 => 0.011383959313024
222 => 0.011460229552245
223 => 0.011115579007127
224 => 0.011095171038609
225 => 0.010928424826375
226 => 0.011018024795841
227 => 0.010875464801954
228 => 0.010910444037917
301 => 0.01081263904473
302 => 0.010988668559687
303 => 0.011185496909631
304 => 0.011235223523814
305 => 0.011104414210552
306 => 0.011009699646997
307 => 0.010843412074311
308 => 0.011119952013648
309 => 0.011200820719312
310 => 0.011119527244764
311 => 0.011100689770414
312 => 0.011064992790559
313 => 0.011108263053441
314 => 0.011200380290974
315 => 0.011156939502891
316 => 0.011185632908748
317 => 0.011076283234134
318 => 0.011308860072117
319 => 0.011678248063498
320 => 0.011679435706291
321 => 0.011635994684047
322 => 0.011618219553694
323 => 0.011662792678739
324 => 0.01168697177059
325 => 0.01183111308367
326 => 0.011985782455449
327 => 0.012707556926006
328 => 0.012504885542901
329 => 0.013145286791734
330 => 0.013651761033866
331 => 0.013803630513648
401 => 0.01366391773826
402 => 0.013185967880796
403 => 0.013162517380608
404 => 0.013876776252885
405 => 0.013674965406338
406 => 0.013650960648298
407 => 0.013395590579431
408 => 0.01354654591833
409 => 0.013513529771332
410 => 0.01346141216809
411 => 0.013749424439068
412 => 0.014288557699307
413 => 0.014204528724739
414 => 0.014141804993216
415 => 0.013866967860286
416 => 0.014032481201406
417 => 0.013973545070832
418 => 0.014226772089569
419 => 0.014076766013334
420 => 0.013673436490689
421 => 0.013737668046562
422 => 0.013727959576108
423 => 0.013927759210106
424 => 0.013867784319311
425 => 0.013716248516117
426 => 0.014286715000434
427 => 0.014249672080044
428 => 0.014302190471967
429 => 0.014325310692277
430 => 0.014672543588533
501 => 0.014814793795916
502 => 0.014847087083433
503 => 0.014982213778421
504 => 0.014843725008164
505 => 0.015397778830011
506 => 0.015766192291603
507 => 0.016194123485625
508 => 0.016819445977153
509 => 0.017054573018524
510 => 0.017012099423041
511 => 0.01748621179941
512 => 0.01833818120082
513 => 0.017184306797803
514 => 0.018399339346006
515 => 0.01801467406947
516 => 0.017102639618637
517 => 0.017043915352183
518 => 0.017661555671225
519 => 0.019031422453182
520 => 0.018688286361202
521 => 0.019031983700904
522 => 0.018631042497583
523 => 0.01861113238744
524 => 0.019012510881576
525 => 0.019950353611126
526 => 0.019504819684826
527 => 0.018866037552074
528 => 0.019337704338347
529 => 0.018929102917377
530 => 0.018008409555594
531 => 0.0186880239715
601 => 0.018233585165888
602 => 0.018366214568661
603 => 0.019321377345387
604 => 0.019206449633044
605 => 0.019355176734835
606 => 0.019092677293039
607 => 0.01884746142204
608 => 0.018389747788849
609 => 0.01825424134707
610 => 0.018291690452567
611 => 0.018254222789154
612 => 0.017998136217989
613 => 0.017942834347328
614 => 0.017850662140063
615 => 0.017879230161245
616 => 0.017705919445656
617 => 0.018032992573794
618 => 0.018093700228534
619 => 0.018331716775558
620 => 0.018356428443059
621 => 0.019019301138565
622 => 0.018654201997003
623 => 0.018899142022306
624 => 0.018877232280978
625 => 0.017122406170717
626 => 0.017364205725749
627 => 0.017740369952499
628 => 0.017570908478226
629 => 0.017331329601484
630 => 0.017137856813107
701 => 0.016844725755108
702 => 0.017257302090158
703 => 0.017799796098147
704 => 0.018370186986353
705 => 0.019055474265041
706 => 0.018902526122061
707 => 0.018357376017354
708 => 0.018381831052819
709 => 0.01853300245936
710 => 0.018337221752518
711 => 0.018279482199977
712 => 0.018525069931492
713 => 0.018526761159226
714 => 0.018301491795116
715 => 0.018051146120766
716 => 0.01805009716325
717 => 0.018005550568551
718 => 0.018638967237819
719 => 0.018987282360268
720 => 0.019027216127719
721 => 0.018984594499543
722 => 0.019000997872636
723 => 0.018798320977483
724 => 0.019261580257836
725 => 0.019686712785083
726 => 0.019572768186149
727 => 0.019401949034168
728 => 0.01926588335185
729 => 0.019540715435625
730 => 0.01952847759556
731 => 0.019682999623335
801 => 0.019675989611593
802 => 0.019624029665519
803 => 0.019572770041802
804 => 0.019776008655715
805 => 0.01971747919882
806 => 0.019658858829513
807 => 0.019541286704538
808 => 0.019557266708988
809 => 0.019386477051342
810 => 0.019307461940912
811 => 0.018119264263803
812 => 0.017801739019001
813 => 0.017901638924838
814 => 0.017934528567739
815 => 0.017796341174282
816 => 0.017994466399071
817 => 0.017963588792654
818 => 0.018083715496427
819 => 0.018008665547205
820 => 0.0180117456233
821 => 0.018232451521625
822 => 0.018296523382859
823 => 0.018263935917112
824 => 0.018286759061088
825 => 0.018812708780972
826 => 0.01873793554973
827 => 0.018698213760919
828 => 0.018709216967883
829 => 0.018843608397802
830 => 0.01888123066068
831 => 0.018721822489199
901 => 0.018797000304397
902 => 0.019117097900026
903 => 0.019229113942541
904 => 0.019586615379498
905 => 0.019434742414997
906 => 0.019713511814247
907 => 0.020570353908048
908 => 0.02125485866154
909 => 0.020625359801874
910 => 0.021882365610506
911 => 0.0228611249393
912 => 0.022823558526052
913 => 0.022652889197966
914 => 0.021538597723797
915 => 0.020513210096116
916 => 0.021370990386929
917 => 0.021373177045295
918 => 0.021299492957586
919 => 0.02084184741713
920 => 0.021283567884783
921 => 0.021318630051412
922 => 0.021299004561882
923 => 0.020948128799021
924 => 0.020412406361812
925 => 0.020517085243705
926 => 0.020688551387635
927 => 0.020363930205589
928 => 0.020260194068435
929 => 0.020453059284013
930 => 0.021074511193669
1001 => 0.020957029309975
1002 => 0.02095396138321
1003 => 0.021456598701728
1004 => 0.021096818857591
1005 => 0.020518405579633
1006 => 0.020372348598615
1007 => 0.019853944711772
1008 => 0.020212008122906
1009 => 0.020224894187625
1010 => 0.020028786516666
1011 => 0.020534318636321
1012 => 0.020529660068841
1013 => 0.021009587577927
1014 => 0.021927028722758
1015 => 0.021655696231694
1016 => 0.021340166065479
1017 => 0.021374472943249
1018 => 0.021750734715798
1019 => 0.021523238258894
1020 => 0.021605047570958
1021 => 0.021750610887606
1022 => 0.021838432850674
1023 => 0.021361836714267
1024 => 0.021250719356642
1025 => 0.021023412239834
1026 => 0.020964112055947
1027 => 0.021149248959669
1028 => 0.021100471926521
1029 => 0.020223811163782
1030 => 0.020132195236382
1031 => 0.020135004966078
1101 => 0.019904632360529
1102 => 0.019553258841306
1103 => 0.0204766474704
1104 => 0.020402486440669
1105 => 0.020320618403452
1106 => 0.020330646770879
1107 => 0.020731458478224
1108 => 0.020498967446487
1109 => 0.02111708295889
1110 => 0.020990016991793
1111 => 0.020859692262104
1112 => 0.020841677414673
1113 => 0.020791513512526
1114 => 0.020619482826898
1115 => 0.020411745436561
1116 => 0.020274579217557
1117 => 0.018702227617993
1118 => 0.018994046928924
1119 => 0.019329758445982
1120 => 0.019445644716391
1121 => 0.019247413231771
1122 => 0.020627310214146
1123 => 0.020879430689844
1124 => 0.020115741323543
1125 => 0.019972886224339
1126 => 0.020636675770667
1127 => 0.02023632952926
1128 => 0.020416605417252
1129 => 0.020026947553051
1130 => 0.020818702250198
1201 => 0.020812670405958
1202 => 0.020504659946177
1203 => 0.020764988277619
1204 => 0.020719749823665
1205 => 0.020372006773169
1206 => 0.020829726325157
1207 => 0.020829953348344
1208 => 0.02053349997753
1209 => 0.020187307342406
1210 => 0.020125416275951
1211 => 0.020078789671272
1212 => 0.020405138130764
1213 => 0.020697741139079
1214 => 0.021242202795115
1215 => 0.021379093391533
1216 => 0.021913386502674
1217 => 0.021595240969249
1218 => 0.021736270763542
1219 => 0.021889378555129
1220 => 0.021962784060768
1221 => 0.021843173728485
1222 => 0.022673150853905
1223 => 0.022743226353132
1224 => 0.022766722061873
1225 => 0.022486858444995
1226 => 0.022735442839677
1227 => 0.022619138433655
1228 => 0.02292173018783
1229 => 0.02296918043857
1230 => 0.022928991764285
1231 => 0.022944053222821
]
'min_raw' => 0.010288871327892
'max_raw' => 0.02296918043857
'avg_raw' => 0.016629025883231
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.010288'
'max' => '$0.022969'
'avg' => '$0.016629'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015865230827917
'max_diff' => -0.0021918675708765
'year' => 2031
]
6 => [
'items' => [
101 => 0.022235814164274
102 => 0.02219908823283
103 => 0.021698327551632
104 => 0.021902391230656
105 => 0.021520903963748
106 => 0.021641877505839
107 => 0.021695201490514
108 => 0.021667348067029
109 => 0.021913928684894
110 => 0.021704284786617
111 => 0.021151000070416
112 => 0.020597564612165
113 => 0.020590616680805
114 => 0.020444906893595
115 => 0.020339585405521
116 => 0.020359874060604
117 => 0.02043137392741
118 => 0.020335429703282
119 => 0.020355904267996
120 => 0.020695918463547
121 => 0.020764105885595
122 => 0.020532378382931
123 => 0.019601959021619
124 => 0.019373631776573
125 => 0.019537748872386
126 => 0.019459311471082
127 => 0.015705183094154
128 => 0.01658715987054
129 => 0.016063119219113
130 => 0.016304621261241
131 => 0.015769711455803
201 => 0.016024998451983
202 => 0.015977856265377
203 => 0.017396048822216
204 => 0.017373905696101
205 => 0.017384504438784
206 => 0.016878598835644
207 => 0.01768452019828
208 => 0.018081546041509
209 => 0.018008067124428
210 => 0.018026560184816
211 => 0.017708788136907
212 => 0.017387581166823
213 => 0.017031313203601
214 => 0.017693215043216
215 => 0.017619622857692
216 => 0.017788416853651
217 => 0.018217707510362
218 => 0.018280922190279
219 => 0.018365883361148
220 => 0.018335430829339
221 => 0.019060933683808
222 => 0.01897307050111
223 => 0.019184795491449
224 => 0.018749261122707
225 => 0.018256412643173
226 => 0.018350087026702
227 => 0.018341065430286
228 => 0.018226210153409
229 => 0.018122523944971
301 => 0.017949915621329
302 => 0.018496073898557
303 => 0.018473900869904
304 => 0.018832856430475
305 => 0.018769407548436
306 => 0.018345680385603
307 => 0.018360813884118
308 => 0.018462593934546
309 => 0.018814855851183
310 => 0.018919431171861
311 => 0.018870987716717
312 => 0.018985649781795
313 => 0.019076274002884
314 => 0.018997030788689
315 => 0.020118947592545
316 => 0.019653049515817
317 => 0.019880124996717
318 => 0.019934281160905
319 => 0.019795561285118
320 => 0.01982564465899
321 => 0.019871212773177
322 => 0.020147893439368
323 => 0.020873983565651
324 => 0.021195563939918
325 => 0.022163054362399
326 => 0.02116886116645
327 => 0.021109869856583
328 => 0.021284144097084
329 => 0.021852163394342
330 => 0.02231248968343
331 => 0.022465206470381
401 => 0.022485390514856
402 => 0.022771897359597
403 => 0.022936117739965
404 => 0.022737107892767
405 => 0.022568467884466
406 => 0.021964420307099
407 => 0.022034340458946
408 => 0.022516020968695
409 => 0.023196423059555
410 => 0.023780278837285
411 => 0.023575832893352
412 => 0.025135611129216
413 => 0.025290256770179
414 => 0.02526888974289
415 => 0.025621195527361
416 => 0.024921940291011
417 => 0.02462299513004
418 => 0.022604929768406
419 => 0.023171923819209
420 => 0.023996082970443
421 => 0.023887002416339
422 => 0.023288476010875
423 => 0.023779824801335
424 => 0.023617369525312
425 => 0.023489234308837
426 => 0.024076246575743
427 => 0.023430802475144
428 => 0.023989644171801
429 => 0.023272923915362
430 => 0.023576766785202
501 => 0.023404290877055
502 => 0.023515903927479
503 => 0.022863416315331
504 => 0.023215482792605
505 => 0.022848769192389
506 => 0.022848595322395
507 => 0.022840500099346
508 => 0.023271937023742
509 => 0.023286006166357
510 => 0.022967173627363
511 => 0.022921224877394
512 => 0.023091121488745
513 => 0.022892217052846
514 => 0.022985283186514
515 => 0.022895035931227
516 => 0.022874719373164
517 => 0.022712833581939
518 => 0.022643088731938
519 => 0.022670437484727
520 => 0.022577082092209
521 => 0.022520832091405
522 => 0.022829310558394
523 => 0.022664502957467
524 => 0.022804051429878
525 => 0.022645018333145
526 => 0.022093740332446
527 => 0.021776694524585
528 => 0.020735381484763
529 => 0.021030696571112
530 => 0.021226490778886
531 => 0.021161780794385
601 => 0.021300802880534
602 => 0.021309337707533
603 => 0.021264140210163
604 => 0.021211807298368
605 => 0.021186334531097
606 => 0.021376187668886
607 => 0.021486403805535
608 => 0.021246141347025
609 => 0.021189851214625
610 => 0.021432769825433
611 => 0.021580950037696
612 => 0.022675029469777
613 => 0.022593976531618
614 => 0.022797403500561
615 => 0.022774500745699
616 => 0.022987724617608
617 => 0.023336255533048
618 => 0.022627594731182
619 => 0.022750593742739
620 => 0.022720437225568
621 => 0.023049678172586
622 => 0.023050706026885
623 => 0.022853309632342
624 => 0.022960321420214
625 => 0.022900590375939
626 => 0.023008532446079
627 => 0.022592894020214
628 => 0.023099096757523
629 => 0.023386081090593
630 => 0.023390065868336
701 => 0.023526094164563
702 => 0.023664306791757
703 => 0.023929593893873
704 => 0.023656908078464
705 => 0.023166372841971
706 => 0.023201787901627
707 => 0.022914187271951
708 => 0.022919021890495
709 => 0.022893214317811
710 => 0.022970664786141
711 => 0.022609890042594
712 => 0.022694563153798
713 => 0.022576020302268
714 => 0.022750336053731
715 => 0.022562801120582
716 => 0.022720422683182
717 => 0.022788446924362
718 => 0.023039457838775
719 => 0.022525726604433
720 => 0.021478193841062
721 => 0.02169839792803
722 => 0.021372698786747
723 => 0.021402843482297
724 => 0.0214637405648
725 => 0.021266353196121
726 => 0.021304008485675
727 => 0.021302663173755
728 => 0.021291070002434
729 => 0.021239721924378
730 => 0.021165257052291
731 => 0.021461902183609
801 => 0.02151230797193
802 => 0.021624353795411
803 => 0.021957726164682
804 => 0.02192441440353
805 => 0.021978747268061
806 => 0.021860138929857
807 => 0.021408345382929
808 => 0.021432879946172
809 => 0.021126933549398
810 => 0.021616530058184
811 => 0.021500587142546
812 => 0.02142583799058
813 => 0.02140544199192
814 => 0.021739640726814
815 => 0.021839638226217
816 => 0.021777326495171
817 => 0.021649523316873
818 => 0.021894943200824
819 => 0.021960607208335
820 => 0.021975306958022
821 => 0.022410143937787
822 => 0.021999609514754
823 => 0.022098429230739
824 => 0.022869392445524
825 => 0.022170235195366
826 => 0.022540594383841
827 => 0.022522467228822
828 => 0.022711930457374
829 => 0.022506925714063
830 => 0.022509466993552
831 => 0.022677697505156
901 => 0.022441448092141
902 => 0.022382949415096
903 => 0.022302133911733
904 => 0.02247859160675
905 => 0.022584370014417
906 => 0.023436866294538
907 => 0.02398761777005
908 => 0.023963708195994
909 => 0.024182196946015
910 => 0.024083765763003
911 => 0.023765905508223
912 => 0.024308454204205
913 => 0.024136769095594
914 => 0.024150922607351
915 => 0.024150395812936
916 => 0.024264551401189
917 => 0.024183661704706
918 => 0.02402421980978
919 => 0.024130064780474
920 => 0.024444386503163
921 => 0.025420050774961
922 => 0.025966045427291
923 => 0.025387181211319
924 => 0.025786473996196
925 => 0.025547040607837
926 => 0.025503528438645
927 => 0.025754313815053
928 => 0.026005538158063
929 => 0.025989536253486
930 => 0.025807160280973
1001 => 0.02570414072172
1002 => 0.026484239338471
1003 => 0.027059002710661
1004 => 0.02701980770194
1005 => 0.027192801723534
1006 => 0.027700717521437
1007 => 0.027747154976589
1008 => 0.027741304924593
1009 => 0.02762620484675
1010 => 0.028126313910987
1011 => 0.028543513690955
1012 => 0.027599562504291
1013 => 0.027959006758944
1014 => 0.028120372865428
1015 => 0.028357306184914
1016 => 0.028757052409521
1017 => 0.029191282836894
1018 => 0.029252687780419
1019 => 0.029209118034491
1020 => 0.028922731394898
1021 => 0.029397871509976
1022 => 0.029676197445982
1023 => 0.029841934171497
1024 => 0.030262214931443
1025 => 0.028121369407567
1026 => 0.02660597253884
1027 => 0.026369321435192
1028 => 0.026850560760305
1029 => 0.026977459732526
1030 => 0.026926306915941
1031 => 0.025220589966334
1101 => 0.026360341188459
1102 => 0.027586617670461
1103 => 0.027633723944303
1104 => 0.028247623591425
1105 => 0.028447534481125
1106 => 0.028941804162724
1107 => 0.028910887459565
1108 => 0.029031234261486
1109 => 0.02900356861584
1110 => 0.029919099120243
1111 => 0.030929065224194
1112 => 0.03089409330951
1113 => 0.03074889873269
1114 => 0.030964537438621
1115 => 0.032006930692444
1116 => 0.031910963825644
1117 => 0.032004187462302
1118 => 0.033233227855269
1119 => 0.034831155195083
1120 => 0.034088757516457
1121 => 0.035699546859897
1122 => 0.036713453367319
1123 => 0.038466899832014
1124 => 0.038247359698728
1125 => 0.03892996354005
1126 => 0.037854337040738
1127 => 0.035384481178338
1128 => 0.034993617033884
1129 => 0.035776136949336
1130 => 0.037699885804299
1201 => 0.035715551251853
1202 => 0.03611697954741
1203 => 0.036001368171284
1204 => 0.035995207732367
1205 => 0.036230326629514
1206 => 0.035889274406225
1207 => 0.034499766294421
1208 => 0.035136569673638
1209 => 0.034890669307112
1210 => 0.035163514096859
1211 => 0.036635944897373
1212 => 0.035984948142099
1213 => 0.035299175943101
1214 => 0.036159286465679
1215 => 0.037254502726961
1216 => 0.037185966061623
1217 => 0.037052976284763
1218 => 0.037802632693804
1219 => 0.039040845452821
1220 => 0.039375529386042
1221 => 0.039622586223233
1222 => 0.039656651187022
1223 => 0.040007541485308
1224 => 0.038120715915683
1225 => 0.041115156551796
1226 => 0.0416322137299
1227 => 0.041535028410241
1228 => 0.042109715702611
1229 => 0.041940628122786
1230 => 0.041695646748648
1231 => 0.042606648346547
]
'min_raw' => 0.015705183094154
'max_raw' => 0.042606648346547
'avg_raw' => 0.029155915720351
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0157051'
'max' => '$0.0426066'
'avg' => '$0.029155'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0054163117662618
'max_diff' => 0.019637467907977
'year' => 2032
]
7 => [
'items' => [
101 => 0.041562258528594
102 => 0.040079878667032
103 => 0.039266615756829
104 => 0.040337585961031
105 => 0.040991590093028
106 => 0.041423845221803
107 => 0.041554645362595
108 => 0.038267184813549
109 => 0.036495425908534
110 => 0.037631103053392
111 => 0.039016707550367
112 => 0.038113018812741
113 => 0.038148441700347
114 => 0.036860019045714
115 => 0.039130704366226
116 => 0.038799884614497
117 => 0.040516178071677
118 => 0.040106570864006
119 => 0.041506141552208
120 => 0.041137587685283
121 => 0.04266743418132
122 => 0.043277731367529
123 => 0.044302515328347
124 => 0.045056350581546
125 => 0.045499017060796
126 => 0.045472441025782
127 => 0.047226506152131
128 => 0.04619219522949
129 => 0.044892856942287
130 => 0.044869356012031
131 => 0.04554230172274
201 => 0.046952611318745
202 => 0.047318284077819
203 => 0.047522645264147
204 => 0.047209658993422
205 => 0.046086988616628
206 => 0.045602225239996
207 => 0.046015257681834
208 => 0.045510154497749
209 => 0.046382104300402
210 => 0.047579477617872
211 => 0.047332224762742
212 => 0.048158753987223
213 => 0.049014124781151
214 => 0.050237343433573
215 => 0.050557138084972
216 => 0.051085746483033
217 => 0.051629858163451
218 => 0.05180461217098
219 => 0.052138271794337
220 => 0.052136513243423
221 => 0.053142018976293
222 => 0.054251122937569
223 => 0.054669784007135
224 => 0.055632472051496
225 => 0.053983902512141
226 => 0.055234361445143
227 => 0.056362306703729
228 => 0.055017523866719
301 => 0.056870993713323
302 => 0.056942959747413
303 => 0.058029561420171
304 => 0.056928082457139
305 => 0.056274027764936
306 => 0.058162259154217
307 => 0.059075914844758
308 => 0.058800714315191
309 => 0.056706424696854
310 => 0.055487458310675
311 => 0.052297188156988
312 => 0.056076200963444
313 => 0.057916847866154
314 => 0.056701657866043
315 => 0.057314529018718
316 => 0.060658155303575
317 => 0.061931191709078
318 => 0.06166640903593
319 => 0.061711152948998
320 => 0.062398060286163
321 => 0.06544418570593
322 => 0.063618876745771
323 => 0.065014257052791
324 => 0.065754361736216
325 => 0.066441812212664
326 => 0.064753651113463
327 => 0.062557378327414
328 => 0.061861726542813
329 => 0.05658083116931
330 => 0.056305937631353
331 => 0.056151631558371
401 => 0.055178753595247
402 => 0.054414338009933
403 => 0.05380644635556
404 => 0.052211157122672
405 => 0.052749520408565
406 => 0.050206962334081
407 => 0.051833600887411
408 => 0.047775616808322
409 => 0.051155226533035
410 => 0.049315858611872
411 => 0.050550944701291
412 => 0.050546635602277
413 => 0.048272450527256
414 => 0.046960748037014
415 => 0.047796615916021
416 => 0.04869273263359
417 => 0.048838124556117
418 => 0.049999963271486
419 => 0.050324207483305
420 => 0.049341732383977
421 => 0.047691524108014
422 => 0.048074829853277
423 => 0.046952980358321
424 => 0.044986982269728
425 => 0.046398996419989
426 => 0.046881120132768
427 => 0.047094053430313
428 => 0.045160720106588
429 => 0.044553224801565
430 => 0.04422979939855
501 => 0.047441955053682
502 => 0.047617924191501
503 => 0.046717641202888
504 => 0.050787005679756
505 => 0.049865983169236
506 => 0.050894990969481
507 => 0.048040048874515
508 => 0.048149111507232
509 => 0.046797536166999
510 => 0.047554328045233
511 => 0.047019451938238
512 => 0.047493186740234
513 => 0.047777141427269
514 => 0.049128494987289
515 => 0.051170656819981
516 => 0.048926647829092
517 => 0.047948900976961
518 => 0.048555489624966
519 => 0.050170915129921
520 => 0.052618367462038
521 => 0.051169426421856
522 => 0.051812441850874
523 => 0.051952912116349
524 => 0.050884516636032
525 => 0.052657760727341
526 => 0.053608056641682
527 => 0.054582863613764
528 => 0.055429261194152
529 => 0.05419350427265
530 => 0.055515941317453
531 => 0.054450290500905
601 => 0.053494291553504
602 => 0.053495741409288
603 => 0.052896029304668
604 => 0.051734011533378
605 => 0.051519717627801
606 => 0.05263450158695
607 => 0.053528452751753
608 => 0.053602082851423
609 => 0.054097020149128
610 => 0.05438991894365
611 => 0.057260725306567
612 => 0.058415387374288
613 => 0.059827286294063
614 => 0.060377300493579
615 => 0.062032646043116
616 => 0.060695820071272
617 => 0.060406589363234
618 => 0.056391262519459
619 => 0.057048772065184
620 => 0.058101508288125
621 => 0.056408621752028
622 => 0.057482368610415
623 => 0.057694348985328
624 => 0.056351098115323
625 => 0.057068586443437
626 => 0.05516315016443
627 => 0.051212190123907
628 => 0.052662159275307
629 => 0.053729824625077
630 => 0.052206134528768
701 => 0.054937290051452
702 => 0.053341805377594
703 => 0.052836113332751
704 => 0.050863228373589
705 => 0.051794354131007
706 => 0.053053715050352
707 => 0.052275576418618
708 => 0.05389033091757
709 => 0.05617725392738
710 => 0.05780705145279
711 => 0.057932167069515
712 => 0.05688431644863
713 => 0.058563503755892
714 => 0.058575734802215
715 => 0.056681604659942
716 => 0.05552146049436
717 => 0.055257873298976
718 => 0.05591636579236
719 => 0.056715897243748
720 => 0.057976535500611
721 => 0.058738312797004
722 => 0.060724623970536
723 => 0.06126206282209
724 => 0.061852545178669
725 => 0.062641611705073
726 => 0.063589088382526
727 => 0.061516063352136
728 => 0.061598428501196
729 => 0.059668056295882
730 => 0.057605176751127
731 => 0.059170645184031
801 => 0.061217286914513
802 => 0.060747785040202
803 => 0.060694956488289
804 => 0.060783799459189
805 => 0.060429810378456
806 => 0.05882873088575
807 => 0.0580246787878
808 => 0.059062111129722
809 => 0.059613460248652
810 => 0.060468554649416
811 => 0.060363146215669
812 => 0.062565777561604
813 => 0.06342165349852
814 => 0.06320268380886
815 => 0.063242979501557
816 => 0.06479250200338
817 => 0.066515889709015
818 => 0.068130069716379
819 => 0.069772082950514
820 => 0.067792571907897
821 => 0.066787498279724
822 => 0.067824477711139
823 => 0.067274241828288
824 => 0.070436060421715
825 => 0.070654977881023
826 => 0.073816567838978
827 => 0.076817293184206
828 => 0.074932591358447
829 => 0.076709780291303
830 => 0.078631955018527
831 => 0.082340141928952
901 => 0.081091355033109
902 => 0.080134803841879
903 => 0.079230867588189
904 => 0.081111815436279
905 => 0.083531624793973
906 => 0.084052828552974
907 => 0.084897377757716
908 => 0.084009437535493
909 => 0.085078863729753
910 => 0.088854408125173
911 => 0.087834222701879
912 => 0.08638539539781
913 => 0.089365825090855
914 => 0.090444431010641
915 => 0.098014652226006
916 => 0.10757236922065
917 => 0.10361541162551
918 => 0.10115920035599
919 => 0.10173646826644
920 => 0.10522662296374
921 => 0.10634754988054
922 => 0.103300484114
923 => 0.10437675925532
924 => 0.11030714110106
925 => 0.11348860069187
926 => 0.10916775124052
927 => 0.097246698971629
928 => 0.086254944351041
929 => 0.089170452641582
930 => 0.088839924480191
1001 => 0.095211379943232
1002 => 0.087809891616931
1003 => 0.087934513698171
1004 => 0.0944377241127
1005 => 0.092702779067355
1006 => 0.089892390288869
1007 => 0.086275463299286
1008 => 0.079589239233789
1009 => 0.073667064119827
1010 => 0.085281813313783
1011 => 0.084780964208489
1012 => 0.084055660482344
1013 => 0.085669745438819
1014 => 0.093507283821455
1015 => 0.0933266031941
1016 => 0.092177205226928
1017 => 0.093049013454699
1018 => 0.08973955809141
1019 => 0.090592480093428
1020 => 0.08625320320095
1021 => 0.088214737580561
1022 => 0.08988636045676
1023 => 0.090221963497957
1024 => 0.090978094286089
1025 => 0.084517039488758
1026 => 0.087417863406157
1027 => 0.089121825687185
1028 => 0.081423262110822
1029 => 0.088969649838049
1030 => 0.084404566899286
1031 => 0.082855109184625
1101 => 0.084941249871885
1102 => 0.084128278817221
1103 => 0.083429334043683
1104 => 0.083039310850654
1105 => 0.084571142332432
1106 => 0.084499680562872
1107 => 0.081993306943005
1108 => 0.078723844728747
1109 => 0.07982118356429
1110 => 0.079422510077731
1111 => 0.077977665932536
1112 => 0.07895131643525
1113 => 0.07466385237454
1114 => 0.067287493301078
1115 => 0.072160542048996
1116 => 0.071972934973058
1117 => 0.071878334978067
1118 => 0.075540296430952
1119 => 0.075188283333082
1120 => 0.074549376113526
1121 => 0.077965931900412
1122 => 0.076718843079038
1123 => 0.080562076975431
1124 => 0.083093479384378
1125 => 0.08245143385118
1126 => 0.084832230052125
1127 => 0.079846464034748
1128 => 0.081502535511507
1129 => 0.081843849547652
1130 => 0.07792377213234
1201 => 0.075245877029313
1202 => 0.075067291956181
1203 => 0.070424190884209
1204 => 0.072904497999054
1205 => 0.075087065618035
1206 => 0.074041785102632
1207 => 0.073710880518323
1208 => 0.075401400275111
1209 => 0.075532768138537
1210 => 0.072537566930703
1211 => 0.073160364107498
1212 => 0.075757531866149
1213 => 0.073094922143626
1214 => 0.067921906387593
1215 => 0.066638926957559
1216 => 0.06646775385159
1217 => 0.062988211882954
1218 => 0.066724661777879
1219 => 0.065093601268112
1220 => 0.070246101875358
1221 => 0.067303021161914
1222 => 0.067176150834619
1223 => 0.066984367727081
1224 => 0.063989382216608
1225 => 0.064645093702143
1226 => 0.06682477854774
1227 => 0.067602514656556
1228 => 0.067521390408602
1229 => 0.066814096902873
1230 => 0.067137892247867
1231 => 0.066094834623865
]
'min_raw' => 0.036495425908534
'max_raw' => 0.11348860069187
'avg_raw' => 0.0749920133002
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.036495'
'max' => '$0.113488'
'avg' => '$0.074992'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.02079024281438
'max_diff' => 0.070881952345319
'year' => 2033
]
8 => [
'items' => [
101 => 0.065726509267463
102 => 0.064563973126786
103 => 0.062855366158798
104 => 0.063092958437192
105 => 0.059707760952274
106 => 0.057863325696462
107 => 0.057352810326919
108 => 0.05667012783886
109 => 0.057429921130494
110 => 0.059698171113127
111 => 0.056962180397993
112 => 0.05227151622433
113 => 0.05255343313367
114 => 0.053186816727076
115 => 0.052006510591017
116 => 0.050889449888822
117 => 0.051860643539381
118 => 0.049873147293067
119 => 0.053426996153067
120 => 0.05333087450095
121 => 0.054655529587419
122 => 0.055483863597647
123 => 0.053574821880392
124 => 0.053094703051101
125 => 0.053368200556449
126 => 0.048847896016255
127 => 0.05428612426869
128 => 0.054333154292445
129 => 0.053930454676304
130 => 0.056826143334265
131 => 0.062936949590505
201 => 0.060637818470295
202 => 0.059747525408944
203 => 0.058055077648515
204 => 0.060310163801682
205 => 0.060137008369943
206 => 0.059353933840372
207 => 0.058880327921545
208 => 0.059752961348533
209 => 0.058772198982935
210 => 0.058596027112526
211 => 0.057528617254734
212 => 0.057147600499557
213 => 0.056865510862737
214 => 0.056554957890154
215 => 0.057239960362693
216 => 0.05568765464034
217 => 0.053815726113588
218 => 0.053660095511136
219 => 0.054089805287689
220 => 0.053899690699695
221 => 0.053659185315631
222 => 0.05319999503971
223 => 0.053063763093892
224 => 0.053506450827456
225 => 0.053006682186561
226 => 0.053744118040009
227 => 0.053543576292058
228 => 0.052423366389965
301 => 0.051027170097132
302 => 0.051014741021505
303 => 0.050713932820435
304 => 0.050330808349557
305 => 0.050224231886459
306 => 0.05177885231901
307 => 0.054996870088517
308 => 0.054365096199724
309 => 0.054821617581169
310 => 0.057067250942062
311 => 0.057781070258939
312 => 0.057274418215557
313 => 0.056580881649638
314 => 0.056611393738781
315 => 0.05898141813232
316 => 0.059129233646613
317 => 0.059502715764142
318 => 0.0599827458312
319 => 0.057356169411685
320 => 0.056487682225626
321 => 0.056076144815037
322 => 0.054808768875443
323 => 0.056175525169694
324 => 0.055379174807373
325 => 0.055486629678452
326 => 0.055416649552696
327 => 0.055454863433394
328 => 0.053426002779883
329 => 0.054165212968246
330 => 0.052936132657919
331 => 0.05129053209313
401 => 0.051285015463015
402 => 0.051687773869926
403 => 0.051448197409558
404 => 0.050803503314779
405 => 0.050895079068072
406 => 0.05009277910869
407 => 0.050992492809251
408 => 0.051018293378852
409 => 0.0506718545964
410 => 0.05205798768868
411 => 0.052625887547563
412 => 0.052397854119515
413 => 0.052609888114361
414 => 0.054391349257091
415 => 0.054681805153955
416 => 0.054810806476903
417 => 0.054637961793553
418 => 0.052642449953776
419 => 0.052730959389442
420 => 0.05208153587746
421 => 0.051532841444399
422 => 0.051554786344198
423 => 0.051836886608075
424 => 0.053068835005386
425 => 0.055661397780202
426 => 0.055759783642368
427 => 0.055879030177431
428 => 0.055393994590824
429 => 0.055247703216738
430 => 0.055440699300165
501 => 0.056414329567911
502 => 0.058918770954593
503 => 0.058033534102523
504 => 0.057313822762258
505 => 0.057945203640455
506 => 0.057848007503183
507 => 0.057027574289877
508 => 0.057004547462117
509 => 0.055429873817417
510 => 0.054847752824556
511 => 0.054361288951919
512 => 0.053830083102461
513 => 0.053515166468722
514 => 0.053999021545196
515 => 0.054109684925991
516 => 0.053051727344939
517 => 0.05290753163593
518 => 0.053771482634217
519 => 0.05339129001121
520 => 0.053782327552296
521 => 0.053873051616086
522 => 0.053858442952263
523 => 0.053461478189
524 => 0.053714491691444
525 => 0.053116039331208
526 => 0.052465312274088
527 => 0.052050188953375
528 => 0.051687938797934
529 => 0.051888936238275
530 => 0.051172417064141
531 => 0.050943188159654
601 => 0.0536287764098
602 => 0.055612649325122
603 => 0.055583803027234
604 => 0.055408208607502
605 => 0.055147310917807
606 => 0.056395243276878
607 => 0.055960488596173
608 => 0.056276808951355
609 => 0.056357325757673
610 => 0.056601025880285
611 => 0.056688127727385
612 => 0.056424845449325
613 => 0.055541237966933
614 => 0.053339372131691
615 => 0.052314397641563
616 => 0.05197613898752
617 => 0.05198843404715
618 => 0.051649281414997
619 => 0.051749177064921
620 => 0.051614541784667
621 => 0.051359575135639
622 => 0.051873192766175
623 => 0.051932382413415
624 => 0.051812497921174
625 => 0.051840735058979
626 => 0.050848142666563
627 => 0.050923607310361
628 => 0.05050341058411
629 => 0.050424628763486
630 => 0.049362408030239
701 => 0.047480530029934
702 => 0.04852327312042
703 => 0.04726378609898
704 => 0.046786799279618
705 => 0.049044780695808
706 => 0.048818141988278
707 => 0.048430235038465
708 => 0.0478564398128
709 => 0.047643613582079
710 => 0.046350548776818
711 => 0.046274147609891
712 => 0.046915025443065
713 => 0.046619282374315
714 => 0.046203947099131
715 => 0.044699644834277
716 => 0.043008311031217
717 => 0.043059361767386
718 => 0.043597343581755
719 => 0.045161598263766
720 => 0.044550416897624
721 => 0.044106997803989
722 => 0.044023958736881
723 => 0.045063366515808
724 => 0.046534346285653
725 => 0.047224497082347
726 => 0.046540578603015
727 => 0.045754929878744
728 => 0.045802748676244
729 => 0.046120865712818
730 => 0.046154295315429
731 => 0.045642918761923
801 => 0.045786868266329
802 => 0.045568195806117
803 => 0.044226203321431
804 => 0.044201930932887
805 => 0.043872584334593
806 => 0.043862611850487
807 => 0.04330231112743
808 => 0.043223921183098
809 => 0.042111410089645
810 => 0.04284366826035
811 => 0.04235250792472
812 => 0.041612213445916
813 => 0.041484586398736
814 => 0.041480749775584
815 => 0.042240866678499
816 => 0.042834785851777
817 => 0.042361051869042
818 => 0.042253191824121
819 => 0.043404854918992
820 => 0.043258295292528
821 => 0.043131375601218
822 => 0.046402636181111
823 => 0.043813178172479
824 => 0.04268402667962
825 => 0.041286487287154
826 => 0.041741533160346
827 => 0.041837418011842
828 => 0.038476587698371
829 => 0.03711309925876
830 => 0.036645201408264
831 => 0.036375919580198
901 => 0.036498634690676
902 => 0.035271335173784
903 => 0.036096100746796
904 => 0.035033363106213
905 => 0.034855191682322
906 => 0.036755498231615
907 => 0.037019914786519
908 => 0.035891831615513
909 => 0.036616243631375
910 => 0.036353561764343
911 => 0.035051580692819
912 => 0.035001854592611
913 => 0.034348566257767
914 => 0.033326296515286
915 => 0.032859091811813
916 => 0.032615767545787
917 => 0.032716167880244
918 => 0.032665402398842
919 => 0.032334123293594
920 => 0.032684390929373
921 => 0.031789601860537
922 => 0.031433289643521
923 => 0.031272351681475
924 => 0.030478174880746
925 => 0.031742063342732
926 => 0.031991065291791
927 => 0.03224055785161
928 => 0.034412220249029
929 => 0.034303730132708
930 => 0.035284427947419
1001 => 0.035246319833727
1002 => 0.03496660893072
1003 => 0.033786554641145
1004 => 0.034256903248524
1005 => 0.032809243343413
1006 => 0.033893928575627
1007 => 0.033398923533183
1008 => 0.033726566872846
1009 => 0.033137434605722
1010 => 0.033463484727024
1011 => 0.032050112891276
1012 => 0.030730326157734
1013 => 0.031261446866288
1014 => 0.031838835817506
1015 => 0.033090762179717
1016 => 0.032345125166553
1017 => 0.032613284432144
1018 => 0.031714995781733
1019 => 0.029861569712467
1020 => 0.029872059902738
1021 => 0.029586950681063
1022 => 0.029340574686908
1023 => 0.032430770547085
1024 => 0.032046455843104
1025 => 0.031434100660177
1026 => 0.032253762406553
1027 => 0.032470493982076
1028 => 0.032476664025342
1029 => 0.033074668076967
1030 => 0.033393822946517
1031 => 0.033450075375571
1101 => 0.034391047671535
1102 => 0.034706449173417
1103 => 0.036005543322379
1104 => 0.033366744885647
1105 => 0.033312400568352
1106 => 0.032265296728241
1107 => 0.031601206918786
1108 => 0.032310767525648
1109 => 0.032939341358646
1110 => 0.032284828269375
1111 => 0.032370293861308
1112 => 0.031491663514646
1113 => 0.031805732520178
1114 => 0.032076251057405
1115 => 0.031926886621493
1116 => 0.031703280831611
1117 => 0.032887805472501
1118 => 0.032820969950073
1119 => 0.033924026527773
1120 => 0.034783938010423
1121 => 0.036325053114896
1122 => 0.034716819163231
1123 => 0.034658208725882
1124 => 0.035231135152385
1125 => 0.034706361461367
1126 => 0.035038000319518
1127 => 0.036271620967731
1128 => 0.036297685428114
1129 => 0.035861072134542
1130 => 0.035834504175949
1201 => 0.035918360535005
1202 => 0.036409509849206
1203 => 0.03623788718733
1204 => 0.036436493276607
1205 => 0.036684853232411
1206 => 0.037712175312059
1207 => 0.03795985918748
1208 => 0.037358115779573
1209 => 0.037412446471872
1210 => 0.037187377919089
1211 => 0.036969964517202
1212 => 0.037458678093967
1213 => 0.038351811761196
1214 => 0.038346255623006
1215 => 0.038553445273765
1216 => 0.038682522709736
1217 => 0.038128427864089
1218 => 0.037767732494205
1219 => 0.037906046050662
1220 => 0.038127212439512
1221 => 0.037834324771563
1222 => 0.036026486406215
1223 => 0.0365748690811
1224 => 0.036483591389456
1225 => 0.036353600856809
1226 => 0.036905003876924
1227 => 0.036851819710477
1228 => 0.035258747443328
1229 => 0.035360730761161
1230 => 0.035264949386665
1231 => 0.035574438602687
]
'min_raw' => 0.029340574686908
'max_raw' => 0.065726509267463
'avg_raw' => 0.047533541977185
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.02934'
'max' => '$0.065726'
'avg' => '$0.047533'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0071548512216263
'max_diff' => -0.047762091424404
'year' => 2034
]
9 => [
'items' => [
101 => 0.034689648028044
102 => 0.034961803649649
103 => 0.035132497104219
104 => 0.035233036860289
105 => 0.035596255399972
106 => 0.035553635896593
107 => 0.035593606111802
108 => 0.036132163320012
109 => 0.038856000868624
110 => 0.039004253336587
111 => 0.038274203963548
112 => 0.03856584428849
113 => 0.03800595863933
114 => 0.038381813626519
115 => 0.038638964063072
116 => 0.037476950687473
117 => 0.037408143796775
118 => 0.036845947300378
119 => 0.037148039853105
120 => 0.036667388880494
121 => 0.036785323816715
122 => 0.036455567453657
123 => 0.037049063253325
124 => 0.037712683777276
125 => 0.037880340528795
126 => 0.037439307796319
127 => 0.037119971032533
128 => 0.036559320871394
129 => 0.037491694584272
130 => 0.037764349071491
131 => 0.037490262446323
201 => 0.03742675058636
202 => 0.037306395726495
203 => 0.037452284438835
204 => 0.037762864136598
205 => 0.03761640048664
206 => 0.037713142307795
207 => 0.037344462245284
208 => 0.038128611292539
209 => 0.039374028695325
210 => 0.039378032915921
211 => 0.039231568476469
212 => 0.039171638383465
213 => 0.039321919786549
214 => 0.039403441282856
215 => 0.039889423783532
216 => 0.040410902369154
217 => 0.042844415389321
218 => 0.042161094671117
219 => 0.044320252192947
220 => 0.046027865461199
221 => 0.046539904015469
222 => 0.046068852638816
223 => 0.044457411324981
224 => 0.044378346326338
225 => 0.046786519982181
226 => 0.046106100623064
227 => 0.046025166905374
228 => 0.045164168888821
301 => 0.045673125353283
302 => 0.045561809108564
303 => 0.045386090970499
304 => 0.046357144450477
305 => 0.048174869878454
306 => 0.047891560323982
307 => 0.047680082883922
308 => 0.046753450301732
309 => 0.04731149008709
310 => 0.047112782808072
311 => 0.047966555381489
312 => 0.047460799422375
313 => 0.046100945777208
314 => 0.046317506952337
315 => 0.046284774166377
316 => 0.046958412581967
317 => 0.04675620305034
318 => 0.04624528950998
319 => 0.048168657090553
320 => 0.048043764298203
321 => 0.048220833723288
322 => 0.048298785160264
323 => 0.04946950511302
324 => 0.049949111618804
325 => 0.050057990692311
326 => 0.050513579778708
327 => 0.050046655220809
328 => 0.05191468636397
329 => 0.053156818071533
330 => 0.054599617969381
331 => 0.056707936408189
401 => 0.057500683644217
402 => 0.057357480951634
403 => 0.058955983930032
404 => 0.06182845824949
405 => 0.05793809013878
406 => 0.062034657205909
407 => 0.060737731369597
408 => 0.057662743542401
409 => 0.057464750578055
410 => 0.059547168035975
411 => 0.064165769532388
412 => 0.063008862241281
413 => 0.064167661818266
414 => 0.06281586055845
415 => 0.062748732232024
416 => 0.064102007848354
417 => 0.067264010089121
418 => 0.065761861350414
419 => 0.063608162791496
420 => 0.06519842029214
421 => 0.063820792073698
422 => 0.060716610123689
423 => 0.063007977576079
424 => 0.061475805415054
425 => 0.061922974706393
426 => 0.06514337269546
427 => 0.064755885889299
428 => 0.065257329696783
429 => 0.064372294501643
430 => 0.063545532072142
501 => 0.062002318601294
502 => 0.06154544917208
503 => 0.061671711445875
504 => 0.061545386602768
505 => 0.060681972848692
506 => 0.060495518730706
507 => 0.060184753698653
508 => 0.060281072776625
509 => 0.059696743598849
510 => 0.060799493485881
511 => 0.061004173582313
512 => 0.061806662988386
513 => 0.061889980100681
514 => 0.064124901673872
515 => 0.06289394442769
516 => 0.063719776824164
517 => 0.063645906601588
518 => 0.057729387852795
519 => 0.058544631934492
520 => 0.059812895887926
521 => 0.059241544695995
522 => 0.058433787786194
523 => 0.057781480772344
524 => 0.056793168944544
525 => 0.058184198863324
526 => 0.06001325528698
527 => 0.061936367989987
528 => 0.064246861895315
529 => 0.063731186552759
530 => 0.061893174913573
531 => 0.061975626773039
601 => 0.062485311724644
602 => 0.061825223402554
603 => 0.061630550469915
604 => 0.062458566653106
605 => 0.06246426874549
606 => 0.061704757356587
607 => 0.060860699436938
608 => 0.060857162803436
609 => 0.060706970849267
610 => 0.062842579373443
611 => 0.064016948127364
612 => 0.064151587612412
613 => 0.064007885817269
614 => 0.064063190934899
615 => 0.063379851632442
616 => 0.064941762639884
617 => 0.066375126637301
618 => 0.065990954466638
619 => 0.065415025769522
620 => 0.064956270821784
621 => 0.065882886380393
622 => 0.065841625648196
623 => 0.066362607453223
624 => 0.06633897270921
625 => 0.066163786123297
626 => 0.065990960723103
627 => 0.066676193899574
628 => 0.066478857749259
629 => 0.066281215081396
630 => 0.065884812453418
701 => 0.065938690154111
702 => 0.065362860899204
703 => 0.06509645593773
704 => 0.061090364512046
705 => 0.060019805980289
706 => 0.060356625487608
707 => 0.060467515214932
708 => 0.060001606769953
709 => 0.060669599797993
710 => 0.060565493792153
711 => 0.060970509360901
712 => 0.060717473217279
713 => 0.060727857908876
714 => 0.061471983254274
715 => 0.061688006007779
716 => 0.061578135091829
717 => 0.061655084915206
718 => 0.063428361116432
719 => 0.063176257946798
720 => 0.063042333162533
721 => 0.063079431243033
722 => 0.063532541331916
723 => 0.06365938741791
724 => 0.063121931638238
725 => 0.063375398890926
726 => 0.064454630283089
727 => 0.064832300191139
728 => 0.066037641245795
729 => 0.065525590942548
730 => 0.066465481435176
731 => 0.069354384377232
801 => 0.071662239944224
802 => 0.069539840588653
803 => 0.0737779234338
804 => 0.077077878845624
805 => 0.076951221060555
806 => 0.07637579750516
807 => 0.072618886002652
808 => 0.069161720025649
809 => 0.072053786164433
810 => 0.07206115863578
811 => 0.071812727589612
812 => 0.070269743698172
813 => 0.071759035094801
814 => 0.071877249637554
815 => 0.071811080929396
816 => 0.070628078797546
817 => 0.068821853197552
818 => 0.069174785356297
819 => 0.069752895431944
820 => 0.068658412452349
821 => 0.068308658823307
822 => 0.068958917363048
823 => 0.071054185864841
824 => 0.070658087491641
825 => 0.070647743762357
826 => 0.072342420574758
827 => 0.071129397711225
828 => 0.069179236961065
829 => 0.068686795652189
830 => 0.066938960753894
831 => 0.068146196543721
901 => 0.068189642810596
902 => 0.067528452106159
903 => 0.0692328889427
904 => 0.069217182257191
905 => 0.070835291361542
906 => 0.073928508235036
907 => 0.073013691797586
908 => 0.071949859812577
909 => 0.072065527846209
910 => 0.073334120682117
911 => 0.072567100494369
912 => 0.072842926301738
913 => 0.073333703186722
914 => 0.073629801066738
915 => 0.072022923917962
916 => 0.071648283988764
917 => 0.070881902174371
918 => 0.07068196746419
919 => 0.071306169460932
920 => 0.071141714288172
921 => 0.068185991320098
922 => 0.067877101824446
923 => 0.067886575024285
924 => 0.067109857700576
925 => 0.065925177348401
926 => 0.069038446580327
927 => 0.068788407490829
928 => 0.068512383687511
929 => 0.068546195028447
930 => 0.069897559683542
1001 => 0.069113699938036
1002 => 0.071197719543549
1003 => 0.070769307764019
1004 => 0.07032990883889
1005 => 0.070269170523019
1006 => 0.070100039424599
1007 => 0.069520025957206
1008 => 0.068819624841924
1009 => 0.068357159357909
1010 => 0.063055866161899
1011 => 0.064039755342875
1012 => 0.065171630161267
1013 => 0.065562348812872
1014 => 0.064893997522393
1015 => 0.069546416539803
1016 => 0.070396458326109
1017 => 0.067821626308535
1018 => 0.067339980367745
1019 => 0.069577993167496
1020 => 0.068228197863309
1021 => 0.068836010606135
1022 => 0.067522251911939
1023 => 0.070191708151917
1024 => 0.070171371367931
1025 => 0.069132892598176
1026 => 0.070010607743177
1027 => 0.069858083137224
1028 => 0.068685643163831
1029 => 0.070228876590317
1030 => 0.070229642014843
1031 => 0.069230128777429
1101 => 0.068062916137713
1102 => 0.067854246086063
1103 => 0.067697041233022
1104 => 0.06879734784912
1105 => 0.069783879320544
1106 => 0.07161956980697
1107 => 0.072081106010188
1108 => 0.073882512537552
1109 => 0.072809862659399
1110 => 0.073285354457243
1111 => 0.073801568066224
1112 => 0.074049059853496
1113 => 0.073645785267278
1114 => 0.076444111092782
1115 => 0.076680375530943
1116 => 0.076759592953378
1117 => 0.075816013229621
1118 => 0.076654132871902
1119 => 0.076262004446884
1120 => 0.077282213672367
1121 => 0.077442195505608
1122 => 0.077306696584371
1123 => 0.077357477343383
1124 => 0.074969599909818
1125 => 0.074845775867831
1126 => 0.073157426269181
1127 => 0.073845441210281
1128 => 0.072559230255309
1129 => 0.072967100998571
1130 => 0.073146886535866
1201 => 0.073052976773923
1202 => 0.073884340542762
1203 => 0.073177511502852
1204 => 0.071312073453076
1205 => 0.069446127165952
1206 => 0.069422701730284
1207 => 0.068931431009572
1208 => 0.068576332259217
1209 => 0.068644736876341
1210 => 0.068885803669237
1211 => 0.068562321018979
1212 => 0.068631352443398
1213 => 0.069777734042733
1214 => 0.07000763269686
1215 => 0.069226347242934
1216 => 0.066089373406465
1217 => 0.065319552158492
1218 => 0.065872884405316
1219 => 0.065608427230495
1220 => 0.052951121302808
1221 => 0.055924767582045
1222 => 0.054157927938408
1223 => 0.05497216893458
1224 => 0.053168683179334
1225 => 0.054029401110524
1226 => 0.05387045793702
1227 => 0.058651993157443
1228 => 0.058577336061763
1229 => 0.058613070462699
1230 => 0.056907374400511
1231 => 0.059624594542272
]
'min_raw' => 0.034689648028044
'max_raw' => 0.077442195505608
'avg_raw' => 0.056065921766826
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.034689'
'max' => '$0.077442'
'avg' => '$0.056065'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0053490733411365
'max_diff' => 0.011715686238145
'year' => 2035
]
10 => [
'items' => [
101 => 0.060963194892179
102 => 0.060715455593106
103 => 0.060777806237349
104 => 0.059706415591686
105 => 0.058623443866093
106 => 0.057422261554257
107 => 0.059653909819028
108 => 0.059405788627492
109 => 0.059974889369689
110 => 0.061422272790905
111 => 0.061635405497754
112 => 0.061921858017138
113 => 0.061819185180018
114 => 0.064265268706851
115 => 0.063969031851972
116 => 0.064682877439069
117 => 0.063214442906816
118 => 0.061552769848486
119 => 0.06186859957269
120 => 0.061838182630507
121 => 0.061450940045576
122 => 0.061101354754686
123 => 0.060519393740399
124 => 0.062360804503627
125 => 0.062286046589451
126 => 0.063496290323393
127 => 0.063282367987738
128 => 0.061853742274561
129 => 0.061904765921393
130 => 0.062247924467468
131 => 0.063435600113549
201 => 0.06378818310843
202 => 0.063624852617198
203 => 0.06401144377506
204 => 0.064316989663643
205 => 0.064049815634399
206 => 0.067832436468331
207 => 0.066261628574678
208 => 0.067027229412433
209 => 0.067209820701056
210 => 0.06674211695473
211 => 0.066843545150093
212 => 0.066997181228538
213 => 0.06793002941183
214 => 0.070378092966584
215 => 0.071462323650452
216 => 0.07472428515787
217 => 0.071372293385377
218 => 0.071173400065518
219 => 0.071760977834804
220 => 0.073676094553351
221 => 0.075228116775966
222 => 0.075743012085518
223 => 0.07581106400067
224 => 0.076777041830982
225 => 0.077330722308897
226 => 0.076659746714643
227 => 0.076091165152586
228 => 0.074054576572239
229 => 0.074290317245861
301 => 0.075914336714337
302 => 0.078208359867829
303 => 0.080176870385954
304 => 0.079487566612025
305 => 0.084746467834479
306 => 0.08526786641
307 => 0.085195825985698
308 => 0.086383649535247
309 => 0.084026061685451
310 => 0.08301814720355
311 => 0.076214098939978
312 => 0.07812575896852
313 => 0.080904469087862
314 => 0.080536696383939
315 => 0.078518722820138
316 => 0.08017533957205
317 => 0.079627610266672
318 => 0.079195593438211
319 => 0.081174746279974
320 => 0.078998586431338
321 => 0.080882760228697
322 => 0.078466287844302
323 => 0.079490715293601
324 => 0.078909200727399
325 => 0.079285511919476
326 => 0.077085604379891
327 => 0.078272621088514
328 => 0.077036220582263
329 => 0.077035634367439
330 => 0.077008340757736
331 => 0.078462960470302
401 => 0.078510395566906
402 => 0.077435429401511
403 => 0.077280509982951
404 => 0.077853328269924
405 => 0.077182708077225
406 => 0.077496487044556
407 => 0.077192212122494
408 => 0.077123713428527
409 => 0.07657790418091
410 => 0.076342754549699
411 => 0.076434962779156
412 => 0.076120208555417
413 => 0.075930557750457
414 => 0.076970614439188
415 => 0.076414954106166
416 => 0.076885451523861
417 => 0.07634926033489
418 => 0.074490588066533
419 => 0.073421645989898
420 => 0.069910786373982
421 => 0.070906461805848
422 => 0.071566595647276
423 => 0.071348421416622
424 => 0.071817144086286
425 => 0.071845919851396
426 => 0.071693533333426
427 => 0.071517089267539
428 => 0.071431206054234
429 => 0.072071309163412
430 => 0.07244291056317
501 => 0.071632848909715
502 => 0.071443062798277
503 => 0.07226207985465
504 => 0.072761679785907
505 => 0.076450444977355
506 => 0.076177169337418
507 => 0.076863037566025
508 => 0.076785819328989
509 => 0.077504718499946
510 => 0.078679814815002
511 => 0.076290515444396
512 => 0.076705215199377
513 => 0.076603540396272
514 => 0.077713599236012
515 => 0.077717064718543
516 => 0.077051528992567
517 => 0.077412326706703
518 => 0.07721093932064
519 => 0.077574873546393
520 => 0.076173519574639
521 => 0.077880217445422
522 => 0.078847805160975
523 => 0.078861240117344
524 => 0.079319869015265
525 => 0.079785862537548
526 => 0.080680296524086
527 => 0.079760917259118
528 => 0.078107043461207
529 => 0.078226447807437
530 => 0.077256782204851
531 => 0.077273082458815
601 => 0.077186070425682
602 => 0.077447200087074
603 => 0.07623082285072
604 => 0.076516304156832
605 => 0.076116628656498
606 => 0.076704346382895
607 => 0.076072059262513
608 => 0.076603491365603
609 => 0.076832839844044
610 => 0.077679140667009
611 => 0.075947059942855
612 => 0.072415230094749
613 => 0.073157663548119
614 => 0.072059546153696
615 => 0.072161181099377
616 => 0.072366499864736
617 => 0.071700994570089
618 => 0.071827952007826
619 => 0.071823416194764
620 => 0.071784329008243
621 => 0.071611205378071
622 => 0.071360141862856
623 => 0.072360301634198
624 => 0.072530248268741
625 => 0.072908018585397
626 => 0.074032006803712
627 => 0.073919693875234
628 => 0.074102880921399
629 => 0.073702984628173
630 => 0.07217973114149
701 => 0.07226245113441
702 => 0.071230931497193
703 => 0.072881640309101
704 => 0.07249073067415
705 => 0.072238708689479
706 => 0.072169942155994
707 => 0.073296716523698
708 => 0.073633865074539
709 => 0.073423776722852
710 => 0.072992879384287
711 => 0.073820329657695
712 => 0.074041720443535
713 => 0.074091281675906
714 => 0.075557364912533
715 => 0.074173219442681
716 => 0.074506397014497
717 => 0.077105753320075
718 => 0.074748495837566
719 => 0.075997187699166
720 => 0.075936070730419
721 => 0.076574859233385
722 => 0.075883671428337
723 => 0.075892239529562
724 => 0.076459440444914
725 => 0.075662909054526
726 => 0.07546567668062
727 => 0.075193201568673
728 => 0.075788141007306
729 => 0.076144780293969
730 => 0.079019031021786
731 => 0.080875928073714
801 => 0.080795315275472
802 => 0.081531965350566
803 => 0.081200097744795
804 => 0.080128409703508
805 => 0.081957650511551
806 => 0.0813788021812
807 => 0.081426521734253
808 => 0.081424745610105
809 => 0.081809629145989
810 => 0.081536903886758
811 => 0.080999334406138
812 => 0.08135619811469
813 => 0.082415955747981
814 => 0.08570547595905
815 => 0.087546335049511
816 => 0.085594653930354
817 => 0.086940897432297
818 => 0.086133631046738
819 => 0.085986926730387
820 => 0.086832467136221
821 => 0.087679487548603
822 => 0.087625536010104
823 => 0.087010642685694
824 => 0.086663305049075
825 => 0.089293462000199
826 => 0.091231316838232
827 => 0.091099168129822
828 => 0.091682429551682
829 => 0.093394903125861
830 => 0.093551470248066
831 => 0.093531746389323
901 => 0.093143678440847
902 => 0.09482983106742
903 => 0.09623644925354
904 => 0.093053851923136
905 => 0.094265743323296
906 => 0.09480980041753
907 => 0.095608637646331
908 => 0.096956409951984
909 => 0.098420448154872
910 => 0.098627479209123
911 => 0.098480580768784
912 => 0.09751500821852
913 => 0.099116976289728
914 => 0.10005537161507
915 => 0.10061416455651
916 => 0.10203117048174
917 => 0.094813160328924
918 => 0.089703893984383
919 => 0.088906008265982
920 => 0.090528540249656
921 => 0.090956388994301
922 => 0.090783923701811
923 => 0.085032979916856
924 => 0.088875730737139
925 => 0.093010207512099
926 => 0.093169029603211
927 => 0.095238835124588
928 => 0.095912848646544
929 => 0.097579313386864
930 => 0.097475075563627
1001 => 0.097880833208649
1002 => 0.097787556552802
1003 => 0.10087433156869
1004 => 0.10427950280175
1005 => 0.10416159254973
1006 => 0.10367205889682
1007 => 0.10439909984928
1008 => 0.10791360148212
1009 => 0.10759004249051
1010 => 0.10790435249017
1011 => 0.11204814798391
1012 => 0.11743567157382
1013 => 0.11493262596778
1014 => 0.12036351470091
1015 => 0.12378197127937
1016 => 0.12969383845682
1017 => 0.12895364356964
1018 => 0.13125509007854
1019 => 0.12762854023826
1020 => 0.11930124875835
1021 => 0.11798342300606
1022 => 0.1206217435348
1023 => 0.12710779711117
1024 => 0.12041747462578
1025 => 0.12177091815108
1026 => 0.12138112632474
1027 => 0.12136035597482
1028 => 0.12215307575203
1029 => 0.12100319436971
1030 => 0.1163183707584
1031 => 0.11846539781163
1101 => 0.11763632755767
1102 => 0.11855624281572
1103 => 0.12352064606148
1104 => 0.12132576504994
1105 => 0.11901363620193
1106 => 0.1219135588798
1107 => 0.12560615697027
1108 => 0.12537508081801
1109 => 0.12492669650027
1110 => 0.12745421542269
1111 => 0.13162893618897
1112 => 0.13275734643671
1113 => 0.13359031581226
1114 => 0.13370516821601
1115 => 0.13488821935507
1116 => 0.12852665521312
1117 => 0.13862262088294
1118 => 0.1403659152587
1119 => 0.14003824816821
1120 => 0.14197584649782
1121 => 0.14140575591712
1122 => 0.14057978411016
1123 => 0.14365128960158
1124 => 0.14013005641338
1125 => 0.13513210921367
1126 => 0.13239013653172
1127 => 0.13600098734793
1128 => 0.13820600794007
1129 => 0.13966338628583
1130 => 0.14010438809268
1201 => 0.12902048532841
1202 => 0.12304687647989
1203 => 0.12687589126422
1204 => 0.13154755356559
1205 => 0.12850070389315
1206 => 0.12862013463187
1207 => 0.12427612769697
1208 => 0.13193190178927
1209 => 0.13081651989921
1210 => 0.13660312311788
1211 => 0.13522210381935
1212 => 0.13994085410953
1213 => 0.13869824901558
1214 => 0.14385623328744
1215 => 0.14591389286034
1216 => 0.14936902353237
1217 => 0.15191063171963
1218 => 0.1534031126604
1219 => 0.15331350970287
1220 => 0.15922746274127
1221 => 0.15574021125231
1222 => 0.1513594015001
1223 => 0.15128016647296
1224 => 0.15354904992018
1225 => 0.15830400718779
1226 => 0.15953689842546
1227 => 0.16022591643321
1228 => 0.15917066136946
1229 => 0.15538549981175
1230 => 0.15375108624234
1231 => 0.155143653957
]
'min_raw' => 0.057422261554257
'max_raw' => 0.16022591643321
'avg_raw' => 0.10882408899373
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.057422'
'max' => '$0.160225'
'avg' => '$0.108824'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.022732613526213
'max_diff' => 0.082783720927601
'year' => 2036
]
11 => [
'items' => [
101 => 0.15344066330668
102 => 0.15638050294392
103 => 0.1604175306817
104 => 0.15958390041799
105 => 0.16237060140475
106 => 0.16525454375656
107 => 0.1693787108456
108 => 0.17045692084015
109 => 0.17223916096047
110 => 0.17407367147966
111 => 0.17466286681698
112 => 0.1757878235325
113 => 0.17578189445532
114 => 0.17917202723585
115 => 0.18291144867646
116 => 0.18432299370249
117 => 0.18756876365678
118 => 0.1820104963554
119 => 0.18622650595227
120 => 0.19002945214221
121 => 0.18549542291749
122 => 0.19174452591045
123 => 0.1919871644189
124 => 0.19565071782271
125 => 0.19193700459604
126 => 0.18973181353663
127 => 0.1960981174977
128 => 0.19917857144776
129 => 0.19825071364844
130 => 0.19118966998159
131 => 0.18707983970507
201 => 0.17632362114436
202 => 0.18906482666358
203 => 0.19527069620593
204 => 0.1911735982787
205 => 0.19323993615924
206 => 0.20451320562316
207 => 0.20880533674488
208 => 0.20791260347583
209 => 0.20806346070266
210 => 0.21037941674825
211 => 0.22064964127468
212 => 0.2144954846765
213 => 0.21920010680396
214 => 0.22169542141659
215 => 0.22401320869419
216 => 0.21832145568459
217 => 0.21091656864756
218 => 0.20857113008692
219 => 0.19076622263481
220 => 0.18983939987913
221 => 0.18931914618077
222 => 0.18603902020393
223 => 0.18346173968825
224 => 0.18141219053389
225 => 0.17603356150567
226 => 0.17784869091138
227 => 0.16927627884753
228 => 0.17476060429835
301 => 0.16107882765631
302 => 0.17247341779999
303 => 0.16627186043322
304 => 0.17043603941466
305 => 0.17042151098648
306 => 0.16275393722751
307 => 0.15833144070152
308 => 0.16114962761402
309 => 0.16417094769218
310 => 0.16466114670992
311 => 0.16857836705577
312 => 0.16967157905393
313 => 0.16635909566232
314 => 0.16079530324605
315 => 0.16208764532776
316 => 0.15830525143048
317 => 0.15167675161319
318 => 0.15643745590447
319 => 0.15806296966291
320 => 0.15878088914211
321 => 0.15226252086015
322 => 0.1502143080253
323 => 0.14912385669819
324 => 0.15995386375502
325 => 0.16054715598895
326 => 0.15751178903709
327 => 0.1712319354848
328 => 0.16812664378684
329 => 0.1715960154284
330 => 0.16197037882953
331 => 0.16233809111025
401 => 0.15778116048667
402 => 0.16033273714166
403 => 0.15852936500307
404 => 0.16012659496311
405 => 0.16108396801553
406 => 0.16564015089163
407 => 0.17252544208974
408 => 0.16495960910525
409 => 0.16166306732919
410 => 0.1637082233066
411 => 0.16915474318196
412 => 0.17740649959536
413 => 0.17252129371656
414 => 0.17468926512939
415 => 0.17516287043676
416 => 0.17156070048189
417 => 0.17753931673968
418 => 0.18074330576242
419 => 0.18402993552765
420 => 0.18688362406352
421 => 0.18271718332488
422 => 0.18717587215104
423 => 0.18358295602168
424 => 0.18035973882481
425 => 0.18036462711481
426 => 0.17834265588352
427 => 0.17442483183813
428 => 0.17370232497395
429 => 0.17746089692395
430 => 0.18047491568976
501 => 0.18072316471149
502 => 0.18239188036612
503 => 0.18337940910139
504 => 0.19305853318727
505 => 0.19695155696452
506 => 0.20171187274817
507 => 0.20356628402261
508 => 0.20914739711541
509 => 0.20464019501713
510 => 0.20366503349153
511 => 0.19012707869658
512 => 0.19234391803584
513 => 0.19589329171118
514 => 0.19018560656117
515 => 0.19380581906083
516 => 0.19452052569485
517 => 0.18999166160384
518 => 0.19241072359552
519 => 0.18598641214753
520 => 0.17266547452369
521 => 0.17755414675125
522 => 0.18115385502001
523 => 0.17601662747966
524 => 0.18522490900758
525 => 0.17984562103648
526 => 0.178140645001
527 => 0.17148892561876
528 => 0.17462828111902
529 => 0.17887430438436
530 => 0.17625075565957
531 => 0.18169501319134
601 => 0.18940553378678
602 => 0.19490050993253
603 => 0.19532234596961
604 => 0.1917894444427
605 => 0.19745094168625
606 => 0.19749217951287
607 => 0.19110598749426
608 => 0.18719448044132
609 => 0.18630577780901
610 => 0.18852593122493
611 => 0.19122160733479
612 => 0.19547193723276
613 => 0.19804032257314
614 => 0.20473730937452
615 => 0.20654932198532
616 => 0.20854017447668
617 => 0.21120056736132
618 => 0.21439505113006
619 => 0.20740570250612
620 => 0.20768340235672
621 => 0.20117501769222
622 => 0.19421987528143
623 => 0.19949796140048
624 => 0.20639835688677
625 => 0.20481539853795
626 => 0.20463728338681
627 => 0.20493682366601
628 => 0.20374332476559
629 => 0.19834517347213
630 => 0.19563425568677
701 => 0.19913203125877
702 => 0.20099094330721
703 => 0.20387395378018
704 => 0.20351856188641
705 => 0.21094488725204
706 => 0.2138305327287
707 => 0.21309226113204
708 => 0.21322812087333
709 => 0.21845244417243
710 => 0.22426296614506
711 => 0.22970528673834
712 => 0.23524144899893
713 => 0.2285673893137
714 => 0.22517871340431
715 => 0.22867496195692
716 => 0.22681980326164
717 => 0.23748009540051
718 => 0.2382181908989
719 => 0.2488777121773
720 => 0.25899486718269
721 => 0.25264046339147
722 => 0.25863237995796
723 => 0.26511312625275
724 => 0.27761553731859
725 => 0.27340516511174
726 => 0.27018008598624
727 => 0.2671324017961
728 => 0.27347414878953
729 => 0.28163270498468
730 => 0.28338997984744
731 => 0.28623743645577
801 => 0.28324368400254
802 => 0.28684932908144
803 => 0.29957884061069
804 => 0.29613921422898
805 => 0.29125439181942
806 => 0.30130311861648
807 => 0.3049397137809
808 => 0.33046324314447
809 => 0.36268775329039
810 => 0.34934659449244
811 => 0.34106530671004
812 => 0.34301160577368
813 => 0.35477890601046
814 => 0.35855818937107
815 => 0.34828479439983
816 => 0.35191353118193
817 => 0.37190822762087
818 => 0.3826347407537
819 => 0.36806669515641
820 => 0.32787403513055
821 => 0.29081456700744
822 => 0.30064440676329
823 => 0.29953000799042
824 => 0.32101181492488
825 => 0.29605718027734
826 => 0.29647735232507
827 => 0.31840338027731
828 => 0.31255389192694
829 => 0.30307846994519
830 => 0.29088374807404
831 => 0.26834067681996
901 => 0.24837364995017
902 => 0.28753358777348
903 => 0.28584494004682
904 => 0.28339952789503
905 => 0.2888415280176
906 => 0.31526633587411
907 => 0.31465715852427
908 => 0.31078188302954
909 => 0.31372124533718
910 => 0.30256318552106
911 => 0.30543887159997
912 => 0.29080869659835
913 => 0.29742214670916
914 => 0.30305813994525
915 => 0.3041896490297
916 => 0.30673899677325
917 => 0.28495509942761
918 => 0.29473542979418
919 => 0.30048045759151
920 => 0.27452421299726
921 => 0.29996738609157
922 => 0.28457589023962
923 => 0.27935178537496
924 => 0.28638535435174
925 => 0.28364436568112
926 => 0.28128782457837
927 => 0.27997283415252
928 => 0.2851375109424
929 => 0.28489657259702
930 => 0.27644615894822
1001 => 0.26542293882629
1002 => 0.26912269332408
1003 => 0.26777853782965
1004 => 0.26290714491832
1005 => 0.26618987556633
1006 => 0.25173439114447
1007 => 0.22686448152735
1008 => 0.24329430560635
1009 => 0.24266177525152
1010 => 0.24234282476364
1011 => 0.25468938347203
1012 => 0.25350254673579
1013 => 0.25134842643798
1014 => 0.26286758280977
1015 => 0.25866293577955
1016 => 0.27162066718726
1017 => 0.2801554671459
1018 => 0.27799076580453
1019 => 0.2860177864179
1020 => 0.26920792819525
1021 => 0.27479148880236
1022 => 0.27594225290501
1023 => 0.26272543820822
1024 => 0.2536967279037
1025 => 0.25309461586122
1026 => 0.2374400764261
1027 => 0.24580260503332
1028 => 0.25316128414272
1029 => 0.24963704790588
1030 => 0.24852137999686
1031 => 0.25422108538519
1101 => 0.25466400130854
1102 => 0.24456547131806
1103 => 0.24666527548194
1104 => 0.25542180790869
1105 => 0.24644463333173
1106 => 0.22900344954184
1107 => 0.22467779481871
1108 => 0.22410067274102
1109 => 0.2123691540599
1110 => 0.22496685575124
1111 => 0.21946762136555
1112 => 0.23683963689899
1113 => 0.22691683479428
1114 => 0.226489082628
1115 => 0.22584247249106
1116 => 0.21574466973929
1117 => 0.21795544679309
1118 => 0.22530440643075
1119 => 0.22792659802143
1120 => 0.22765308195554
1121 => 0.22526839251932
1122 => 0.22636009113163
1123 => 0.22284334952835
1124 => 0.22160151487359
1125 => 0.21768194310961
1126 => 0.21192125542591
1127 => 0.21272231438068
1128 => 0.20130888471334
1129 => 0.19509024247401
1130 => 0.19336900426255
1201 => 0.19106729259069
1202 => 0.19362898872051
1203 => 0.20127655190111
1204 => 0.19205196818427
1205 => 0.17623706643105
1206 => 0.1771875689737
1207 => 0.1793230659803
1208 => 0.17534358143623
1209 => 0.17157733328809
1210 => 0.17485178048753
1211 => 0.16815079813052
1212 => 0.18013284768382
1213 => 0.17980876682271
1214 => 0.1842749339312
1215 => 0.18706771987912
1216 => 0.18063125244436
1217 => 0.17901249829058
1218 => 0.17993461422484
1219 => 0.16469409187
1220 => 0.18302945810805
1221 => 0.18318802311667
1222 => 0.18183029324526
1223 => 0.19159330972611
1224 => 0.21219631966189
1225 => 0.20444463856989
1226 => 0.20144295335527
1227 => 0.19573674756805
1228 => 0.20333992797854
1229 => 0.20275612235111
1230 => 0.20011593190214
1231 => 0.19851913648071
]
'min_raw' => 0.14912385669819
'max_raw' => 0.3826347407537
'avg_raw' => 0.26587929872595
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.149123'
'max' => '$0.382634'
'avg' => '$0.265879'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.091701595143935
'max_diff' => 0.22240882432049
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.004680827461742
]
1 => [
'year' => 2028
'avg' => 0.0080336587782707
]
2 => [
'year' => 2029
'avg' => 0.021946507856116
]
3 => [
'year' => 2030
'avg' => 0.016931698127274
]
4 => [
'year' => 2031
'avg' => 0.016629025883231
]
5 => [
'year' => 2032
'avg' => 0.029155915720351
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.004680827461742
'min' => '$0.00468'
'max_raw' => 0.029155915720351
'max' => '$0.029155'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.029155915720351
]
1 => [
'year' => 2033
'avg' => 0.0749920133002
]
2 => [
'year' => 2034
'avg' => 0.047533541977185
]
3 => [
'year' => 2035
'avg' => 0.056065921766826
]
4 => [
'year' => 2036
'avg' => 0.10882408899373
]
5 => [
'year' => 2037
'avg' => 0.26587929872595
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.029155915720351
'min' => '$0.029155'
'max_raw' => 0.26587929872595
'max' => '$0.265879'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.26587929872595
]
]
]
]
'prediction_2025_max_price' => '$0.0080033'
'last_price' => 0.00776027
'sma_50day_nextmonth' => '$0.006249'
'sma_200day_nextmonth' => '$0.01289'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005875'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005168'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0050023'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004872'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.008909'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011452'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014681'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006345'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005795'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005339'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00552'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007745'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.010239'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.01243'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.011914'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.011343'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.026668'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.059278'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006256'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.006514'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.008291'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010755'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015747'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.075955'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.344596'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.16'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 71.53
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005039'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005627'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 81.65
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 198.78
'cci_20_action' => 'SELL'
'adx_14' => 17.22
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000166'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -18.35
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.04
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008057'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767677902
'last_updated_date' => '6. Januar 2026'
]
My DeFi Pet Preisprognose für 2026
Die Preisprognose für My DeFi Pet im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.002681 am unteren Ende und $0.0080033 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte My DeFi Pet im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn DPET das prognostizierte Preisziel erreicht.
My DeFi Pet Preisprognose 2027-2032
Die Preisprognose für DPET für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.00468 am unteren Ende und $0.029155 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte My DeFi Pet, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| My DeFi Pet Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.002581 | $0.00468 | $0.00678 |
| 2028 | $0.004658 | $0.008033 | $0.0114091 |
| 2029 | $0.010232 | $0.021946 | $0.03366 |
| 2030 | $0.0087023 | $0.016931 | $0.025161 |
| 2031 | $0.010288 | $0.016629 | $0.022969 |
| 2032 | $0.0157051 | $0.029155 | $0.0426066 |
My DeFi Pet Preisprognose 2032-2037
Die Preisprognose für My DeFi Pet für die Jahre 2032-2037 wird derzeit zwischen $0.029155 am unteren Ende und $0.265879 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte My DeFi Pet bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| My DeFi Pet Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.0157051 | $0.029155 | $0.0426066 |
| 2033 | $0.036495 | $0.074992 | $0.113488 |
| 2034 | $0.02934 | $0.047533 | $0.065726 |
| 2035 | $0.034689 | $0.056065 | $0.077442 |
| 2036 | $0.057422 | $0.108824 | $0.160225 |
| 2037 | $0.149123 | $0.265879 | $0.382634 |
My DeFi Pet Potenzielles Preishistogramm
My DeFi Pet Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für My DeFi Pet Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 14 anzeigen bärische Signale. Die Preisprognose für DPET wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von My DeFi Pet
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von My DeFi Pet im nächsten Monat steigen, und bis zum 04.02.2026 $0.01289 erreichen. Der kurzfristige 50-Tage-SMA für My DeFi Pet wird voraussichtlich bis zum 04.02.2026 $0.006249 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 57.16, was darauf hindeutet, dass sich der DPET-Markt in einem NEUTRAL Zustand befindet.
Beliebte DPET Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005875 | BUY |
| SMA 5 | $0.005168 | BUY |
| SMA 10 | $0.0050023 | BUY |
| SMA 21 | $0.004872 | BUY |
| SMA 50 | $0.008909 | SELL |
| SMA 100 | $0.011452 | SELL |
| SMA 200 | $0.014681 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.006345 | BUY |
| EMA 5 | $0.005795 | BUY |
| EMA 10 | $0.005339 | BUY |
| EMA 21 | $0.00552 | BUY |
| EMA 50 | $0.007745 | BUY |
| EMA 100 | $0.010239 | SELL |
| EMA 200 | $0.01243 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.011914 | SELL |
| SMA 50 | $0.011343 | SELL |
| SMA 100 | $0.026668 | SELL |
| SMA 200 | $0.059278 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.010755 | SELL |
| EMA 50 | $0.015747 | SELL |
| EMA 100 | $0.075955 | SELL |
| EMA 200 | $0.344596 | SELL |
My DeFi Pet Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 57.16 | NEUTRAL |
| Stoch RSI (14) | 71.53 | NEUTRAL |
| Stochastic Fast (14) | 81.65 | SELL |
| Commodity Channel Index (20) | 198.78 | SELL |
| Average Directional Index (14) | 17.22 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000166 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -18.35 | SELL |
| Ultimate Oscillator (7, 14, 28) | 68.04 | NEUTRAL |
| VWMA (10) | 0.005039 | BUY |
| Hull Moving Average (9) | 0.005627 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.0008057 | SELL |
Auf weltweiten Geldflüssen basierende My DeFi Pet-Preisprognose
Definition weltweiter Geldflüsse, die für My DeFi Pet-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
My DeFi Pet-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.0109044 | $0.015322 | $0.02153 | $0.030254 | $0.042512 | $0.059737 |
| Amazon.com aktie | $0.016192 | $0.033786 | $0.070496 | $0.147095 | $0.306923 | $0.640414 |
| Apple aktie | $0.0110073 | $0.015613 | $0.022145 | $0.031412 | $0.044556 | $0.063199 |
| Netflix aktie | $0.012244 | $0.019319 | $0.030483 | $0.048098 | $0.075892 | $0.119745 |
| Google aktie | $0.010049 | $0.013014 | $0.016853 | $0.021824 | $0.028262 | $0.03660045 |
| Tesla aktie | $0.017591 | $0.039879 | $0.090404 | $0.204939 | $0.464581 | $1.05 |
| Kodak aktie | $0.005819 | $0.004363 | $0.003272 | $0.002454 | $0.00184 | $0.001379 |
| Nokia aktie | $0.00514 | $0.0034056 | $0.002256 | $0.001494 | $0.00099 | $0.000655 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
My DeFi Pet Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in My DeFi Pet investieren?", "Sollte ich heute DPET kaufen?", "Wird My DeFi Pet auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere My DeFi Pet-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie My DeFi Pet.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich My DeFi Pet zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der My DeFi Pet-Preis entspricht heute $0.00776 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige My DeFi Pet-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige My DeFi Pet-Prognose
basierend auf dem Preisverlauf des letzten Monats
My DeFi Pet-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von My DeFi Pet 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.007961 | $0.008168 | $0.008381 | $0.008599 |
| Wenn die Wachstumsrate von My DeFi Pet 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008163 | $0.008588 | $0.009034 | $0.0095042 |
| Wenn die Wachstumsrate von My DeFi Pet 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008768 | $0.0099084 | $0.011196 | $0.012651 |
| Wenn die Wachstumsrate von My DeFi Pet 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009777 | $0.012318 | $0.01552 | $0.019555 |
| Wenn die Wachstumsrate von My DeFi Pet 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.011794 | $0.017926 | $0.027245 | $0.0414091 |
| Wenn die Wachstumsrate von My DeFi Pet 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017845 | $0.041039 | $0.094377 | $0.217036 |
| Wenn die Wachstumsrate von My DeFi Pet 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.027931 | $0.100535 | $0.361858 | $1.30 |
Fragefeld
Ist DPET eine gute Investition?
Die Entscheidung, My DeFi Pet zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von My DeFi Pet in den letzten 2026 Stunden um 18.8361% gestiegen, und My DeFi Pet hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in My DeFi Pet investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann My DeFi Pet steigen?
Es scheint, dass der Durchschnittswert von My DeFi Pet bis zum Ende dieses Jahres potenziell auf $0.0080033 steigen könnte. Betrachtet man die Aussichten von My DeFi Pet in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.025161 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird My DeFi Pet nächste Woche kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Prognose wird der Preis von My DeFi Pet in der nächsten Woche um 0.86% steigen und $0.007826 erreichen bis zum 13. Januar 2026.
Wie viel wird My DeFi Pet nächsten Monat kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Prognose wird der Preis von My DeFi Pet im nächsten Monat um -11.62% fallen und $0.006858 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von My DeFi Pet in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von My DeFi Pet im Jahr 2026 wird erwartet, dass DPET innerhalb der Spanne von $0.002681 bis $0.0080033 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte My DeFi Pet-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird My DeFi Pet in 5 Jahren sein?
Die Zukunft von My DeFi Pet scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.025161 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der My DeFi Pet-Prognose für 2030 könnte der Wert von My DeFi Pet seinen höchsten Gipfel von ungefähr $0.025161 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.0087023 liegen wird.
Wie viel wird My DeFi Pet im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Preisprognosesimulation wird der Wert von DPET im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.0080033 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.0080033 und $0.002681 während des Jahres 2026 liegen.
Wie viel wird My DeFi Pet im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von My DeFi Pet könnte der Wert von DPET um -12.62% fallen und bis zu $0.00678 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.00678 und $0.002581 im Laufe des Jahres schwanken.
Wie viel wird My DeFi Pet im Jahr 2028 kosten?
Unser neues experimentelles My DeFi Pet-Preisprognosemodell deutet darauf hin, dass der Wert von DPET im Jahr 2028 um 47.02% steigen, und im besten Fall $0.0114091 erreichen wird. Der Preis wird voraussichtlich zwischen $0.0114091 und $0.004658 im Laufe des Jahres liegen.
Wie viel wird My DeFi Pet im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von My DeFi Pet im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.03366 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.03366 und $0.010232.
Wie viel wird My DeFi Pet im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für My DeFi Pet-Preisprognosen wird der Wert von DPET im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.025161 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.025161 und $0.0087023 während des Jahres 2030 liegen.
Wie viel wird My DeFi Pet im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von My DeFi Pet im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.022969 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.022969 und $0.010288 während des Jahres schwanken.
Wie viel wird My DeFi Pet im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen My DeFi Pet-Preisprognose könnte DPET eine 449.04% Steigerung im Wert erfahren und $0.0426066 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.0426066 und $0.0157051 liegen.
Wie viel wird My DeFi Pet im Jahr 2033 kosten?
Laut unserer experimentellen My DeFi Pet-Preisprognose wird der Wert von DPET voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.113488 beträgt. Im Laufe des Jahres könnte der Preis von DPET zwischen $0.113488 und $0.036495 liegen.
Wie viel wird My DeFi Pet im Jahr 2034 kosten?
Die Ergebnisse unserer neuen My DeFi Pet-Preisprognosesimulation deuten darauf hin, dass DPET im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.065726 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.065726 und $0.02934.
Wie viel wird My DeFi Pet im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von My DeFi Pet könnte DPET um 897.93% steigen, wobei der Wert im Jahr 2035 $0.077442 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.077442 und $0.034689.
Wie viel wird My DeFi Pet im Jahr 2036 kosten?
Unsere jüngste My DeFi Pet-Preisprognosesimulation deutet darauf hin, dass der Wert von DPET im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.160225 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.160225 und $0.057422.
Wie viel wird My DeFi Pet im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von My DeFi Pet um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.382634 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.382634 und $0.149123 liegen.
Verwandte Prognosen
B3Coin-Preisprognose
Spintop-Preisprognose
DegenX (Avalanche)-Preisprognose
Winkies-Preisprognose
rETH2-Preisprognose
Cirus-Preisprognose
BiFi-Preisprognose
InfinityBit Token-Preisprognose
CocktailBar-Preisprognose
Utopia-Preisprognose
mStable USD-Preisprognose
EQIFi-Preisprognose
NAOS Finance-Preisprognose
InsurAce-Preisprognose
Mizar-Preisprognose
VelasPad-Preisprognose
LGCY Network-Preisprognose
Shroom.Finance-Preisprognose
MetFi [OLD]-Preisprognose
Ethereans-Preisprognose
Cashaa-Preisprognose
Slam Token-Preisprognose
Brazil Fan Token-Preisprognose
S.C. Corinthians Fan Token-Preisprognose
Alvara Protocol-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von My DeFi Pet?
My DeFi Pet-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
My DeFi Pet Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von My DeFi Pet. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von DPET über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von DPET über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von DPET einzuschätzen.
Wie liest man My DeFi Pet-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von My DeFi Pet in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von DPET innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von My DeFi Pet?
Die Preisentwicklung von My DeFi Pet wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von DPET. Die Marktkapitalisierung von My DeFi Pet kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von DPET-„Walen“, großen Inhabern von My DeFi Pet, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen My DeFi Pet-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


