My DeFi Pet Preisvorhersage bis zu $0.008282 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.002774 | $0.008282 |
| 2027 | $0.00267 | $0.007016 |
| 2028 | $0.00482 | $0.0118065 |
| 2029 | $0.010588 | $0.034832 |
| 2030 | $0.0090054 | $0.026037 |
| 2031 | $0.010647 | $0.023769 |
| 2032 | $0.016252 | $0.04409 |
| 2033 | $0.037766 | $0.11744 |
| 2034 | $0.030362 | $0.068015 |
| 2035 | $0.035897 | $0.080139 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in My DeFi Pet eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.56 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige My DeFi Pet Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'My DeFi Pet'
'name_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'name_lang' => 'My DeFi Pet'
'name_lang_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'name_with_lang' => 'My DeFi Pet'
'name_with_lang_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'image' => '/uploads/coins/my-defi-pet.PNG?1719975034'
'price_for_sd' => 0.00803
'ticker' => 'DPET'
'marketcap' => '$404.13K'
'low24h' => '$0.006224'
'high24h' => '$0.008122'
'volume24h' => '$14.89K'
'current_supply' => '50.23M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00803'
'change_24h_pct' => '24.7366%'
'ath_price' => '$9.92'
'ath_days' => 1625
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26.07.2021'
'ath_pct' => '-99.92%'
'fdv' => '$804.56K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.395959'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0080992'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0070975'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002774'
'current_year_max_price_prediction' => '$0.008282'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0090054'
'grand_prediction_max_price' => '$0.026037'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0081826941299465
107 => 0.0082132453395097
108 => 0.0082820787746392
109 => 0.0076939046078943
110 => 0.0079579775408764
111 => 0.0081130956487158
112 => 0.0074122663942525
113 => 0.0080992425076929
114 => 0.0076836658042206
115 => 0.0075426128293095
116 => 0.007732522077711
117 => 0.0076585142589161
118 => 0.0075948866822013
119 => 0.0075593814011338
120 => 0.007698829793641
121 => 0.0076923243594536
122 => 0.0074641597235453
123 => 0.0071665282571833
124 => 0.0072664231467142
125 => 0.007230130396828
126 => 0.0070986007893826
127 => 0.0071872358638555
128 => 0.0067969318530617
129 => 0.0061254340887281
130 => 0.0065690460803797
131 => 0.0065519675012581
201 => 0.0065433557072131
202 => 0.0068767178584043
203 => 0.0068446727795406
204 => 0.0067865106476168
205 => 0.0070975325962185
206 => 0.0069840054011433
207 => 0.0073338694659939
208 => 0.0075643125668934
209 => 0.0075058647424519
210 => 0.0077225975926761
211 => 0.0072687245232097
212 => 0.0074194829506595
213 => 0.0074505540536147
214 => 0.0070936946336515
215 => 0.0068499157507509
216 => 0.0068336584785442
217 => 0.006410979490394
218 => 0.0066367711941182
219 => 0.0068354585495
220 => 0.0067403027250337
221 => 0.0067101792337071
222 => 0.0068640736179067
223 => 0.0068760325295753
224 => 0.0066033680761832
225 => 0.0066600636502037
226 => 0.006896493618724
227 => 0.0066541062216138
228 => 0.0061831871027851
301 => 0.0060663926503494
302 => 0.0060508101174456
303 => 0.0057340542993552
304 => 0.0060741974141356
305 => 0.0059257158292652
306 => 0.0063947673767882
307 => 0.006126847648417
308 => 0.0061152981644112
309 => 0.0060978394253957
310 => 0.0058251946077471
311 => 0.0058848864953301
312 => 0.006083311420987
313 => 0.0061541116698781
314 => 0.0061467266238694
315 => 0.0060823390306009
316 => 0.0061118153410814
317 => 0.0060168618747963
318 => 0.0059833318295656
319 => 0.0058775017836518
320 => 0.0057219608524549
321 => 0.0057435897729258
322 => 0.0054354224887261
323 => 0.0052675165966185
324 => 0.0052210424586472
325 => 0.005158895299064
326 => 0.0052280621456894
327 => 0.0054345494895292
328 => 0.0051854819441246
329 => 0.0047584731075855
330 => 0.0047841370662492
331 => 0.0048417963616687
401 => 0.0047343486461088
402 => 0.0046326584007346
403 => 0.0047210698186971
404 => 0.0045401405454974
405 => 0.004863660799935
406 => 0.0048549104837075
407 => 0.0049754988282035
408 => 0.0050509051947388
409 => 0.004877117932976
410 => 0.0048334109066134
411 => 0.0048583084152032
412 => 0.0044468080581005
413 => 0.0049418704699323
414 => 0.0049461517902278
415 => 0.0049094925265933
416 => 0.0051730979775566
417 => 0.0057293876996911
418 => 0.0055200891295218
419 => 0.0054390423970695
420 => 0.0052849724994329
421 => 0.0054902614902684
422 => 0.0054744984987794
423 => 0.005403212273329
424 => 0.00536009814175
425 => 0.0054395372511357
426 => 0.0053502547569834
427 => 0.0053342171677148
428 => 0.0052370468258163
429 => 0.0052023614347273
430 => 0.0051766817520303
501 => 0.0051484109446143
502 => 0.0052107693011276
503 => 0.0050694570613436
504 => 0.0048990483531737
505 => 0.0048848807129371
506 => 0.0049239988132619
507 => 0.0049066919658682
508 => 0.0048847978544102
509 => 0.0048429960331304
510 => 0.0048305943257112
511 => 0.0048708938583703
512 => 0.0048253980356069
513 => 0.00489252960038
514 => 0.0048742735293206
515 => 0.0047722966004119
516 => 0.0046451955902969
517 => 0.0046440641247035
518 => 0.0046166804205617
519 => 0.0045818031561696
520 => 0.0045721010990994
521 => 0.0047136240556758
522 => 0.0050065723403632
523 => 0.0049490595824207
524 => 0.0049906184441787
525 => 0.0051950469117105
526 => 0.0052600285741604
527 => 0.0052139061293285
528 => 0.0051507708821341
529 => 0.0051535485125939
530 => 0.0053693007645962
531 => 0.0053827569679064
601 => 0.0054167564525358
602 => 0.0054604553985378
603 => 0.0052213482487922
604 => 0.0051422865873434
605 => 0.005104822785975
606 => 0.0049894487780759
607 => 0.0051138697541752
608 => 0.0050413749796395
609 => 0.0050511570014985
610 => 0.0050447864469302
611 => 0.0050482652004995
612 => 0.0048635703694305
613 => 0.0049308634585975
614 => 0.0048189756461481
615 => 0.0046691704252747
616 => 0.0046686682256459
617 => 0.0047053328412257
618 => 0.0046835232931923
619 => 0.004624834360209
620 => 0.0046331708461353
621 => 0.0045601344573581
622 => 0.0046420387860994
623 => 0.0046443875091799
624 => 0.0046128498812556
625 => 0.004739034800301
626 => 0.004790732864591
627 => 0.0047699741222897
628 => 0.0047892763758925
629 => 0.0049514494971678
630 => 0.004977890792045
701 => 0.0049896342686156
702 => 0.0049738995657235
703 => 0.004792240602844
704 => 0.0048002979503213
705 => 0.0047411784806672
706 => 0.0046912287586657
707 => 0.004693226485594
708 => 0.0047189071357121
709 => 0.0048310560409281
710 => 0.005067066800416
711 => 0.0050760232362169
712 => 0.0050868786976854
713 => 0.0050427240803755
714 => 0.0050294066252921
715 => 0.0050469757860739
716 => 0.0051356090184814
717 => 0.0053635977559213
718 => 0.0052830113092542
719 => 0.0052174932737112
720 => 0.005274970254418
721 => 0.0052661221237576
722 => 0.0051914349965403
723 => 0.0051893387776325
724 => 0.0050459903015835
725 => 0.0049929976338751
726 => 0.0049487129943054
727 => 0.0049003553239752
728 => 0.0048716872760397
729 => 0.0049157344270634
730 => 0.0049258085316532
731 => 0.0048294986661272
801 => 0.0048163719873332
802 => 0.0048950207025145
803 => 0.0048604103352829
804 => 0.0048960079562764
805 => 0.0049042669096977
806 => 0.004902937027977
807 => 0.0048667998296118
808 => 0.004889832602223
809 => 0.0048353532285975
810 => 0.0047761150923171
811 => 0.0047383248520365
812 => 0.0047053478552437
813 => 0.0047236454096987
814 => 0.0046584179690683
815 => 0.0046375503980416
816 => 0.0048820296171162
817 => 0.0050626290448411
818 => 0.0050600030576367
819 => 0.0050440180358794
820 => 0.0050202675359912
821 => 0.0051338715214819
822 => 0.0050942941645203
823 => 0.0051230899985087
824 => 0.005130419746816
825 => 0.0051526046873635
826 => 0.0051605338967492
827 => 0.0051365663187957
828 => 0.0050561281997908
829 => 0.0048556840550573
830 => 0.0047623767645952
831 => 0.0047315838045869
901 => 0.004732703070199
902 => 0.0047018287279943
903 => 0.0047109226054645
904 => 0.0046986662485288
905 => 0.0046754556736236
906 => 0.004722212222104
907 => 0.004727600478749
908 => 0.0047166869416345
909 => 0.0047192574747008
910 => 0.0046288980486257
911 => 0.0046357678795398
912 => 0.0045975157880341
913 => 0.0045903439820126
914 => 0.0044936460256766
915 => 0.0043223315794345
916 => 0.0044172564125483
917 => 0.0043026005625983
918 => 0.0042591786549026
919 => 0.0044647312124419
920 => 0.0044440994368054
921 => 0.0044087868053331
922 => 0.0043565520635882
923 => 0.0043371776897681
924 => 0.0042194651276187
925 => 0.0042125100414748
926 => 0.0042708515657826
927 => 0.0042439289597238
928 => 0.0042061194244291
929 => 0.0040691771202826
930 => 0.0039152086303833
1001 => 0.0039198559712819
1002 => 0.0039688304832333
1003 => 0.0041112304818447
1004 => 0.0040555923388423
1005 => 0.0040152262277198
1006 => 0.0040076668685075
1007 => 0.0041022880756409
1008 => 0.0042361969074905
1009 => 0.0042990239353531
1010 => 0.0042367642588265
1011 => 0.0041652436947318
1012 => 0.0041695968200738
1013 => 0.0041985562127401
1014 => 0.0042015994354455
1015 => 0.0041550469006526
1016 => 0.0041681511665138
1017 => 0.0041482445883915
1018 => 0.0040260779551996
1019 => 0.0040238683481998
1020 => 0.0039938866862114
1021 => 0.0039929788534019
1022 => 0.0039419725670836
1023 => 0.0039348364350378
1024 => 0.0038335603576926
1025 => 0.0039002205784934
1026 => 0.0038555084021989
1027 => 0.0037881166059869
1028 => 0.0037764982349184
1029 => 0.0037761489726545
1030 => 0.0038453452788344
1031 => 0.0038994119793677
1101 => 0.0038562861896485
1102 => 0.0038464672832877
1103 => 0.0039513075148667
1104 => 0.0039379656397584
1105 => 0.0039264116619604
1106 => 0.0042242068403233
1107 => 0.0039884787194015
1108 => 0.0038856878037889
1109 => 0.0037584645262527
1110 => 0.0037998890669339
1111 => 0.0038086178263086
1112 => 0.0035026687775537
1113 => 0.0033785452865773
1114 => 0.0033359507819693
1115 => 0.0033114370423695
1116 => 0.0033226082613293
1117 => 0.0032108825612172
1118 => 0.0032859640794651
1119 => 0.0031892190671063
1120 => 0.0031729994509489
1121 => 0.0033459915174536
1122 => 0.0033700623529027
1123 => 0.0032673686906543
1124 => 0.0033333146464115
1125 => 0.0033094017261366
1126 => 0.0031908774826682
1127 => 0.003186350728373
1128 => 0.0031268794293292
1129 => 0.0030338183622382
1130 => 0.0029912869574159
1201 => 0.0029691362325098
1202 => 0.0029782760533151
1203 => 0.0029736546802328
1204 => 0.0029434970948538
1205 => 0.0029753832777255
1206 => 0.0028939272567686
1207 => 0.0028614908128878
1208 => 0.0028468400237066
1209 => 0.0027745431166737
1210 => 0.0028895996463436
1211 => 0.0029122672321325
1212 => 0.0029349794800678
1213 => 0.0031326740920344
1214 => 0.0031227978278997
1215 => 0.0032120744457414
1216 => 0.0032086053205413
1217 => 0.0031831421829475
1218 => 0.0030757173939221
1219 => 0.0031185350001649
1220 => 0.002986749063483
1221 => 0.0030854920478177
1222 => 0.003040429873373
1223 => 0.0030702564813095
1224 => 0.0030166255508828
1225 => 0.0030463071221478
1226 => 0.002917642557635
1227 => 0.0027974973976523
1228 => 0.0028458473172852
1229 => 0.0028984092094102
1230 => 0.0030123767840582
1231 => 0.0029444986368099
]
'min_raw' => 0.0027745431166737
'max_raw' => 0.0082820787746392
'avg_raw' => 0.0055283109456565
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002774'
'max' => '$0.008282'
'avg' => '$0.005528'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0052559768833263
'max_diff' => 0.00025155877463917
'year' => 2026
]
1 => [
'items' => [
101 => 0.0029689101853173
102 => 0.0028871355842614
103 => 0.0027184112245231
104 => 0.0027193661860759
105 => 0.0026934116191901
106 => 0.002670983083972
107 => 0.0029522952585551
108 => 0.0029173096427583
109 => 0.0028615646427903
110 => 0.0029361815404657
111 => 0.0029559114325405
112 => 0.0029564731148309
113 => 0.003010911677234
114 => 0.0030399655477472
115 => 0.0030450864183518
116 => 0.003130746672516
117 => 0.0031594588598258
118 => 0.0032777202958539
119 => 0.0030375005298222
120 => 0.0030325533618218
121 => 0.0029372315532362
122 => 0.002876776955253
123 => 0.0029413709312813
124 => 0.0029985923760853
125 => 0.0029390095830304
126 => 0.0029467898379419
127 => 0.0028668048063589
128 => 0.0028953956915043
129 => 0.0029200220133997
130 => 0.0029064248059173
131 => 0.002886069128204
201 => 0.0029939008701561
202 => 0.0029878165806791
203 => 0.003088231977826
204 => 0.0031665129606758
205 => 0.0033068064763423
206 => 0.003160402879078
207 => 0.0031550673500921
208 => 0.0032072230017751
209 => 0.0031594508750673
210 => 0.0031896412101088
211 => 0.0033019423466264
212 => 0.0033043150926792
213 => 0.0032645685391841
214 => 0.0032621499577918
215 => 0.0032697837181702
216 => 0.0033144948911425
217 => 0.0032988714334704
218 => 0.0033169512942261
219 => 0.0033395604369497
220 => 0.0034330814373327
221 => 0.0034556290339111
222 => 0.0034008500638139
223 => 0.0034057959914796
224 => 0.0033853071529469
225 => 0.0033655151916487
226 => 0.0034100046302632
227 => 0.0034913099537734
228 => 0.0034908041575756
301 => 0.0035096654122803
302 => 0.0035214158177062
303 => 0.0034709744757955
304 => 0.0034381390169912
305 => 0.0034507302212713
306 => 0.003470863831116
307 => 0.0034442011629527
308 => 0.0032796268236997
309 => 0.0033295481651796
310 => 0.0033212388129285
311 => 0.0033094052848711
312 => 0.0033596015797594
313 => 0.0033547600246628
314 => 0.0032097366526769
315 => 0.0032190205784242
316 => 0.0032103012389509
317 => 0.0032384752085983
318 => 0.0031579293882472
319 => 0.0031827047401028
320 => 0.0031982436085322
321 => 0.0032073961214122
322 => 0.003240461273872
323 => 0.0032365814598674
324 => 0.0032402200991859
325 => 0.0032892469914071
326 => 0.0035372081882638
327 => 0.0035507041691132
328 => 0.0034842450234878
329 => 0.0035107941413165
330 => 0.0034598256407393
331 => 0.003494041136636
401 => 0.0035174505099492
402 => 0.0034116680533105
403 => 0.0034054043027508
404 => 0.0033542254370412
405 => 0.0033817260605544
406 => 0.0033379705911801
407 => 0.0033487066528632
408 => 0.0033186876884442
409 => 0.0033727158476823
410 => 0.0034331277248376
411 => 0.0034483901507443
412 => 0.0034082412790711
413 => 0.0033791708500402
414 => 0.0033281327530564
415 => 0.0034130102457986
416 => 0.0034378310112711
417 => 0.0034128798728841
418 => 0.0034070981489266
419 => 0.0033961417924747
420 => 0.003409422591742
421 => 0.0034376958320518
422 => 0.0034243626940464
423 => 0.0034331694665986
424 => 0.0033996071311341
425 => 0.0034709911739786
426 => 0.003584366213521
427 => 0.0035847307328118
428 => 0.0035713975229359
429 => 0.0035659418607227
430 => 0.0035796225431822
501 => 0.0035870437522055
502 => 0.0036312845706715
503 => 0.0036787567315175
504 => 0.0039002885924592
505 => 0.0038380833323809
506 => 0.0040346395783978
507 => 0.0041900900493629
508 => 0.0042367028485801
509 => 0.004193821266602
510 => 0.0040471256910723
511 => 0.0040399281062886
512 => 0.0042591532294044
513 => 0.0041972120909774
514 => 0.0041898443896566
515 => 0.004111464495531
516 => 0.004157796720498
517 => 0.0041476631832449
518 => 0.0041316668989415
519 => 0.0042200655566477
520 => 0.0043855399524713
521 => 0.0043597492160731
522 => 0.0043404976277497
523 => 0.0042561427717697
524 => 0.0043069432364089
525 => 0.0042888541639697
526 => 0.0043665762987775
527 => 0.0043205354278734
528 => 0.0041967428259331
529 => 0.0042164572058178
530 => 0.0042134774169581
531 => 0.0042748012605417
601 => 0.0042563933648492
602 => 0.0042098829798879
603 => 0.0043849743789757
604 => 0.0043736049174285
605 => 0.0043897242144817
606 => 0.0043968204275503
607 => 0.0045033954767185
608 => 0.0045470558643416
609 => 0.0045569675367147
610 => 0.004598441528141
611 => 0.004555935626026
612 => 0.0047259895406803
613 => 0.0048390654710044
614 => 0.0049704089829101
615 => 0.005162337155612
616 => 0.0052345039239828
617 => 0.0052214676432163
618 => 0.0053669853933129
619 => 0.0056284775555588
620 => 0.0052743226855532
621 => 0.0056472486236243
622 => 0.005529184577268
623 => 0.0052492568472387
624 => 0.005231232801556
625 => 0.0054208031103595
626 => 0.0058412518098199
627 => 0.0057359341792947
628 => 0.0058414240717344
629 => 0.005718364508778
630 => 0.0057122535642498
701 => 0.0058354473434357
702 => 0.0061232963234469
703 => 0.0059865500629013
704 => 0.0057904907668503
705 => 0.0059352579000338
706 => 0.0058098472117046
707 => 0.0055272618306573
708 => 0.0057358536448875
709 => 0.0055963742390646
710 => 0.0056370817448168
711 => 0.0059302467098607
712 => 0.0058949723256483
713 => 0.0059406206451391
714 => 0.0058600525560623
715 => 0.0057847892564431
716 => 0.0056443047185778
717 => 0.0056027141727199
718 => 0.0056142083033239
719 => 0.0056027084767996
720 => 0.0055241086689835
721 => 0.0055071350479692
722 => 0.0054788449359806
723 => 0.0054876132246276
724 => 0.0054344195375249
725 => 0.0055348070154644
726 => 0.0055534398159814
727 => 0.0056264934508048
728 => 0.0056340781215183
729 => 0.0058375314546483
730 => 0.0057254727776547
731 => 0.0058006514128627
801 => 0.0057939267281209
802 => 0.0052553237299635
803 => 0.0053295384709751
804 => 0.0054449933181205
805 => 0.0053929810659769
806 => 0.0053194479104384
807 => 0.0052600659447427
808 => 0.005170096194596
809 => 0.0052967268902115
810 => 0.0054632327892726
811 => 0.0056383009858951
812 => 0.0058486339532143
813 => 0.0058016900834543
814 => 0.0056343689573756
815 => 0.0056418748608634
816 => 0.0056882734027604
817 => 0.0056281830752517
818 => 0.0056104612645668
819 => 0.0056858386981092
820 => 0.0056863577810673
821 => 0.0056172165971099
822 => 0.0055403788238443
823 => 0.0055400568707688
824 => 0.005526384331181
825 => 0.0057207968231969
826 => 0.0058277040364857
827 => 0.0058399607761997
828 => 0.0058268790602464
829 => 0.0058319136935221
830 => 0.005769706741649
831 => 0.0059118933867323
901 => 0.0060423779130624
902 => 0.0060074052726106
903 => 0.0059549763129196
904 => 0.0059132141212049
905 => 0.0059975674274642
906 => 0.0059938113075209
907 => 0.0060412382445572
908 => 0.0060390866847419
909 => 0.006023138789634
910 => 0.0060074058421602
911 => 0.0060697852005219
912 => 0.0060518209470956
913 => 0.0060338287902218
914 => 0.0059977427651501
915 => 0.0060026474552828
916 => 0.0059502275481908
917 => 0.0059259757005983
918 => 0.0055612861011262
919 => 0.0054638291235709
920 => 0.0054944910726295
921 => 0.0055045857823968
922 => 0.0054621723808701
923 => 0.0055229823035504
924 => 0.0055135051415143
925 => 0.0055503752350423
926 => 0.0055273404013194
927 => 0.0055282857589303
928 => 0.005596026293365
929 => 0.0056156916587003
930 => 0.0056056896951718
1001 => 0.0056126947275799
1002 => 0.005774122742785
1003 => 0.0057511728412002
1004 => 0.0057389811633917
1005 => 0.0057423583414641
1006 => 0.0057836066604047
1007 => 0.0057951539376333
1008 => 0.0057462273126028
1009 => 0.0057693013918086
1010 => 0.0058675478925305
1011 => 0.0059019286075128
1012 => 0.0060116553460569
1013 => 0.0059650414772861
1014 => 0.0060506032508158
1015 => 0.0063135909724882
1016 => 0.0065236837619263
1017 => 0.0063304737503073
1018 => 0.0067162824029549
1019 => 0.0070166897800052
1020 => 0.0070051596445194
1021 => 0.0069527766697828
1022 => 0.0066107708577543
1023 => 0.0062960520105063
1024 => 0.0065593276898974
1025 => 0.0065599988337473
1026 => 0.0065373832194
1027 => 0.0063969195810133
1028 => 0.0065324953892567
1029 => 0.006543256904576
1030 => 0.0065372333177151
1031 => 0.0064295401754985
1101 => 0.0062651126523534
1102 => 0.006297241396792
1103 => 0.0063498689355912
1104 => 0.0062502340253896
1105 => 0.0062183946344882
1106 => 0.006277590119866
1107 => 0.0064683303076226
1108 => 0.0064322719800099
1109 => 0.0064313303513528
1110 => 0.0065856031679906
1111 => 0.0064751771254355
1112 => 0.0062976466431499
1113 => 0.0062528178550334
1114 => 0.0060937058575099
1115 => 0.0062036050809369
1116 => 0.0062075601583382
1117 => 0.0061473694768101
1118 => 0.0063025307852261
1119 => 0.0063011009464535
1120 => 0.0064484035160815
1121 => 0.0067299907048916
1122 => 0.0066467115170964
1123 => 0.0065498668824405
1124 => 0.006560396579438
1125 => 0.0066758813659944
1126 => 0.0066060566277812
1127 => 0.006631166090478
1128 => 0.0066758433598153
1129 => 0.0067027982656807
1130 => 0.0065565181832965
1201 => 0.0065224132987075
1202 => 0.0064526466740265
1203 => 0.006434445863903
1204 => 0.0064912693239773
1205 => 0.0064762983498502
1206 => 0.0062072277493974
1207 => 0.0061791083745554
1208 => 0.0061799707556366
1209 => 0.006109263250593
1210 => 0.0060014173336559
1211 => 0.0062848299642216
1212 => 0.0062620679636299
1213 => 0.0062369404766157
1214 => 0.0062400184503995
1215 => 0.0063630382675827
1216 => 0.0062916805609668
1217 => 0.0064813967193035
1218 => 0.0064423967805392
1219 => 0.0064023966405058
1220 => 0.0063968674027191
1221 => 0.0063814707614579
1222 => 0.0063286699497351
1223 => 0.006264909796743
1224 => 0.0062228098209278
1225 => 0.0057402131233233
1226 => 0.0058297802632628
1227 => 0.0059328190934616
1228 => 0.005968387684744
1229 => 0.0059075451480838
1230 => 0.0063310723839221
1231 => 0.0064084548911197
]
'min_raw' => 0.002670983083972
'max_raw' => 0.0070166897800052
'avg_raw' => 0.0048438364319886
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00267'
'max' => '$0.007016'
'avg' => '$0.004843'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00010356003270174
'max_diff' => -0.001265388994634
'year' => 2027
]
2 => [
'items' => [
101 => 0.006174058229282
102 => 0.0061302121842048
103 => 0.0063339469233378
104 => 0.0062110699700817
105 => 0.006266401454609
106 => 0.0061468050497648
107 => 0.0063898157111601
108 => 0.0063879643770745
109 => 0.006293427741147
110 => 0.006373329458474
111 => 0.0063594445688037
112 => 0.006252712939675
113 => 0.0063931992941773
114 => 0.0063932689736564
115 => 0.0063022795169799
116 => 0.006196023751735
117 => 0.0061770277305583
118 => 0.0061627167803581
119 => 0.006262881838137
120 => 0.0063526895157335
121 => 0.0065197993385292
122 => 0.0065618147184115
123 => 0.0067258035432144
124 => 0.0066281561825153
125 => 0.0066714419927682
126 => 0.0067184348629494
127 => 0.0067409649730199
128 => 0.0067042533676924
129 => 0.0069589955131044
130 => 0.0069805035552749
131 => 0.0069877150157708
201 => 0.0069018173976284
202 => 0.0069781145871267
203 => 0.0069424176588578
204 => 0.0070352911493212
205 => 0.0070498548984941
206 => 0.0070375199210651
207 => 0.0070421426849257
208 => 0.0068247652034104
209 => 0.0068134930342363
210 => 0.0066597962077104
211 => 0.0067224288005893
212 => 0.0066053401702604
213 => 0.0066424701810843
214 => 0.0066588367360677
215 => 0.0066502877765381
216 => 0.0067259699534175
217 => 0.0066616246422228
218 => 0.0064918067866315
219 => 0.006321942664279
220 => 0.0063198101585911
221 => 0.0062750879335265
222 => 0.0062427619560889
223 => 0.0062489890861691
224 => 0.0062709343047888
225 => 0.0062414864600885
226 => 0.0062477706507989
227 => 0.0063521300879359
228 => 0.0063730586287963
229 => 0.006301935269644
301 => 0.0060163647195957
302 => 0.0059462849903144
303 => 0.0059966569099804
304 => 0.0059725823767472
305 => 0.0048203401189772
306 => 0.0050910423459893
307 => 0.0049302002748777
308 => 0.0050043237012338
309 => 0.0048401455964813
310 => 0.0049184999933809
311 => 0.004904030797318
312 => 0.0053393119676921
313 => 0.0053325156509264
314 => 0.0053357686881091
315 => 0.005180492747637
316 => 0.0054278515370103
317 => 0.0055497093713899
318 => 0.0055271567293875
319 => 0.0055328327435019
320 => 0.0054353000154818
321 => 0.0053367130181123
322 => 0.0052273648655994
323 => 0.0054305202171283
324 => 0.0054079328100158
325 => 0.0054597401952393
326 => 0.0055915009625502
327 => 0.0056109032360472
328 => 0.0056369800883857
329 => 0.0056276333930991
330 => 0.0058503095946347
331 => 0.0058233420373639
401 => 0.0058883260912909
402 => 0.005754648962011
403 => 0.0056033806014812
404 => 0.0056321317714826
405 => 0.0056293628026092
406 => 0.0055941106507757
407 => 0.0055622865843306
408 => 0.0055093084800747
409 => 0.0056769390412246
410 => 0.0056701335465712
411 => 0.0057803065944865
412 => 0.0057608324381036
413 => 0.005630779255644
414 => 0.0056354241304983
415 => 0.0056666631461436
416 => 0.0057747817359728
417 => 0.0058068786947091
418 => 0.0057920101045798
419 => 0.0058272029545523
420 => 0.0058550179482424
421 => 0.0058306960895126
422 => 0.0061750423188664
423 => 0.0060320457567034
424 => 0.006101741286138
425 => 0.0061183632592382
426 => 0.0060757864246644
427 => 0.0060850198155213
428 => 0.0060990058867211
429 => 0.006183926572293
430 => 0.0064067830232321
501 => 0.0065054846283178
502 => 0.0068024332770697
503 => 0.0064972888340081
504 => 0.0064791828255701
505 => 0.0065326722442004
506 => 0.0067070125362245
507 => 0.0068482989679591
508 => 0.0068951718283752
509 => 0.0069013668506658
510 => 0.0069893034528553
511 => 0.0070397070733098
512 => 0.0069786256363873
513 => 0.0069268655140884
514 => 0.0067414671807168
515 => 0.0067629275426275
516 => 0.006910768154975
517 => 0.0071196017276845
518 => 0.0072988026584993
519 => 0.0072360527383109
520 => 0.0077147903348081
521 => 0.0077622552120331
522 => 0.0077556971007238
523 => 0.0078638291547631
524 => 0.0076492090482049
525 => 0.0075574547945826
526 => 0.0069380566400318
527 => 0.0071120822565382
528 => 0.0073650387102963
529 => 0.0073315589751034
530 => 0.0071478552368388
531 => 0.0072986633027407
601 => 0.0072488014399493
602 => 0.0072094733199951
603 => 0.0073896430616363
604 => 0.0071915390297368
605 => 0.0073630624710364
606 => 0.0071430818833868
607 => 0.0072363393746607
608 => 0.0071834019122563
609 => 0.0072176589382033
610 => 0.0070173930645032
611 => 0.0071254516687725
612 => 0.0070128974713019
613 => 0.0070128441059573
614 => 0.0070103594658098
615 => 0.0071427789799923
616 => 0.0071470971755958
617 => 0.0070492389545401
618 => 0.0070351360560533
619 => 0.0070872818633874
620 => 0.0070262327800078
621 => 0.0070547972618828
622 => 0.0070270979690647
623 => 0.0070208622748149
624 => 0.0069711752021172
625 => 0.0069497686450245
626 => 0.0069581627076396
627 => 0.0069295094444985
628 => 0.0069122448170221
629 => 0.0070069250968604
630 => 0.0069563412427344
701 => 0.006999172395741
702 => 0.0069503608911675
703 => 0.0067811589501557
704 => 0.0066838491246017
705 => 0.0063642423430584
706 => 0.0064548824298331
707 => 0.0065149769011387
708 => 0.0064951156787307
709 => 0.0065377852697358
710 => 0.0065404048360755
711 => 0.0065265325170747
712 => 0.006510470148826
713 => 0.0065026518762671
714 => 0.00656092287453
715 => 0.0065947511503333
716 => 0.0065210081852945
717 => 0.0065037312403596
718 => 0.0065782894494745
719 => 0.0066237699139637
720 => 0.0069595721104865
721 => 0.0069346947991413
722 => 0.0069971319686919
723 => 0.006990102501577
724 => 0.0070555466022872
725 => 0.0071625200482079
726 => 0.0069450131224053
727 => 0.006982764803901
728 => 0.0069735089634119
729 => 0.0070745618028603
730 => 0.0070748772787948
731 => 0.0070142910535818
801 => 0.007047135829169
802 => 0.0070288027764855
803 => 0.0070619330805453
804 => 0.0069343625474813
805 => 0.0070897296863651
806 => 0.007177812842475
807 => 0.0071790358771831
808 => 0.007220786594108
809 => 0.0072632077405422
810 => 0.0073446314370194
811 => 0.0072609368778402
812 => 0.007110378513378
813 => 0.0071212483409916
814 => 0.0070329760269945
815 => 0.0070344599005405
816 => 0.0070265388672588
817 => 0.0070503104844048
818 => 0.0069395790806508
819 => 0.0069655675197851
820 => 0.006929183552809
821 => 0.0069826857122625
822 => 0.0069251262329143
823 => 0.0069735044999654
824 => 0.0069943829562596
825 => 0.0070714249094665
826 => 0.0069137470737848
827 => 0.0065922312929788
828 => 0.0066598178081062
829 => 0.0065598520434265
830 => 0.0065691042555441
831 => 0.0065877951965003
901 => 0.0065272117415659
902 => 0.0065387691555633
903 => 0.0065383562434071
904 => 0.0065347979895176
905 => 0.0065190378930451
906 => 0.00649618263512
907 => 0.0065872309482164
908 => 0.0066027018308043
909 => 0.0066370916863604
910 => 0.0067394125696334
911 => 0.0067291883005018
912 => 0.0067458645076562
913 => 0.006709460441071
914 => 0.0065707929357836
915 => 0.0065783232484702
916 => 0.0064844201286032
917 => 0.0066346903724624
918 => 0.0065991043952463
919 => 0.0065761618842345
920 => 0.0065699018075441
921 => 0.0066724763244956
922 => 0.0067031682276261
923 => 0.0066840430932522
924 => 0.006644816884682
925 => 0.0067201428013243
926 => 0.0067402968388724
927 => 0.0067448085846272
928 => 0.0068782716666053
929 => 0.0067522676883198
930 => 0.006782598098265
1001 => 0.0070192272984596
1002 => 0.0068046372664806
1003 => 0.0069183103923487
1004 => 0.0069127466843638
1005 => 0.0069708980090691
1006 => 0.006907976578428
1007 => 0.0069087565649715
1008 => 0.0069603910017978
1009 => 0.006887879747595
1010 => 0.0068699249413263
1011 => 0.0068451205050609
1012 => 0.0068992800841943
1013 => 0.0069317463024577
1014 => 0.0071934001778509
1015 => 0.0073624405142213
1016 => 0.0073551020274073
1017 => 0.0074221620598156
1018 => 0.0073919509010162
1019 => 0.0072943910999517
1020 => 0.0074609137842185
1021 => 0.0074082190393114
1022 => 0.0074125631300574
1023 => 0.0074124014427829
1024 => 0.0074474388414915
1025 => 0.007422611633376
1026 => 0.0073736746577197
1027 => 0.0074061613059534
1028 => 0.0075026350370182
1029 => 0.0078020924584186
1030 => 0.0079696727987175
1031 => 0.0077920039115126
1101 => 0.0079145575308253
1102 => 0.0078410690295572
1103 => 0.0078277139827832
1104 => 0.007904686712353
1105 => 0.0079817941724963
1106 => 0.0079768827606299
1107 => 0.0079209067040777
1108 => 0.0078892872500712
1109 => 0.0081287203491024
1110 => 0.0083051305778322
1111 => 0.008293100582902
1112 => 0.0083461970681599
1113 => 0.0085020899910897
1114 => 0.0085163428862487
1115 => 0.0085145473490577
1116 => 0.0084792200612704
1117 => 0.0086327168891488
1118 => 0.0087607666434848
1119 => 0.0084710428148511
1120 => 0.0085813658560314
1121 => 0.0086308934236036
1122 => 0.0087036145869668
1123 => 0.0088263073790426
1124 => 0.0089595842938928
1125 => 0.0089784311109596
1126 => 0.0089650583923474
1127 => 0.008877158684328
1128 => 0.0090229918748813
1129 => 0.0091084175376983
1130 => 0.0091592865649743
1201 => 0.0092882819543472
1202 => 0.0086311992889997
1203 => 0.0081660835193394
1204 => 0.0080934489755538
1205 => 0.0082411541765541
1206 => 0.008280102860131
1207 => 0.0082644026946187
1208 => 0.0077408726093902
1209 => 0.0080906926980021
1210 => 0.00846706969964
1211 => 0.0084815278731165
1212 => 0.0086699500698084
1213 => 0.008731308060738
1214 => 0.0088830126261369
1215 => 0.0088735234642665
1216 => 0.0089104611117943
1217 => 0.0089019697862985
1218 => 0.0091829705485348
1219 => 0.0094929561182984
1220 => 0.0094822223037112
1221 => 0.0094376582104749
1222 => 0.0095038434882379
1223 => 0.0098237818163065
1224 => 0.0097943270219651
1225 => 0.0098229398457143
1226 => 0.010200165165441
1227 => 0.010690611740762
1228 => 0.010462750066494
1229 => 0.010957144334225
1230 => 0.011268339319047
1231 => 0.011806518867135
]
'min_raw' => 0.0048203401189772
'max_raw' => 0.011806518867135
'avg_raw' => 0.008313429493056
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00482'
'max' => '$0.0118065'
'avg' => '$0.008313'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0021493570350052
'max_diff' => 0.0047898290871296
'year' => 2028
]
3 => [
'items' => [
101 => 0.011739136137124
102 => 0.011948645485851
103 => 0.011618506987205
104 => 0.010860442262314
105 => 0.010740475617845
106 => 0.010980651878112
107 => 0.01157110177792
108 => 0.010962056509534
109 => 0.011085265574106
110 => 0.011049781355221
111 => 0.011047890551994
112 => 0.011120054820686
113 => 0.011015376785114
114 => 0.010588899636976
115 => 0.010784351600722
116 => 0.010708878211146
117 => 0.010792621563795
118 => 0.011244549899656
119 => 0.011044741609746
120 => 0.010834259807433
121 => 0.011098250697184
122 => 0.01143440181695
123 => 0.011413366083996
124 => 0.011372547969813
125 => 0.011602637542299
126 => 0.011982678106126
127 => 0.012085401543402
128 => 0.012161229884711
129 => 0.012171685331847
130 => 0.012279382935374
131 => 0.01170026577792
201 => 0.012619339579583
202 => 0.012778038236229
203 => 0.012748209466165
204 => 0.012924596343966
205 => 0.012872698850014
206 => 0.012797507523744
207 => 0.013077118243624
208 => 0.012756567116703
209 => 0.012301585148304
210 => 0.012051973041917
211 => 0.012380682399241
212 => 0.012581413733384
213 => 0.012714084376341
214 => 0.012754230432738
215 => 0.011745220994318
216 => 0.011201420869239
217 => 0.011549990514733
218 => 0.011975269539229
219 => 0.011697903331466
220 => 0.011708775561687
221 => 0.011313324239974
222 => 0.01201025820645
223 => 0.011908720789671
224 => 0.012435497087534
225 => 0.012309777696405
226 => 0.012739343317973
227 => 0.012626224293503
228 => 0.013095775039681
301 => 0.01328309154491
302 => 0.013597625110676
303 => 0.013828997282036
304 => 0.013964863446503
305 => 0.013956706551609
306 => 0.014495075983481
307 => 0.014177618338701
308 => 0.013778816717836
309 => 0.013771603654718
310 => 0.013978148665227
311 => 0.014411010344396
312 => 0.014523245079924
313 => 0.014585968985739
314 => 0.014489905140548
315 => 0.014145327619534
316 => 0.013996540793008
317 => 0.014123311479978
318 => 0.013968281823343
319 => 0.014235906504333
320 => 0.01460341235288
321 => 0.014527523848431
322 => 0.014781207740964
323 => 0.015043743881412
324 => 0.015419182353489
325 => 0.015517335872536
326 => 0.015679579907077
327 => 0.015846582313009
328 => 0.015900218984953
329 => 0.016002628034177
330 => 0.016002088287937
331 => 0.016310704850695
401 => 0.016651118476478
402 => 0.016779616739617
403 => 0.01707509141027
404 => 0.016569101391444
405 => 0.016952900633118
406 => 0.017299097156226
407 => 0.016886347389369
408 => 0.01745522678462
409 => 0.017477315082429
410 => 0.017810822154912
411 => 0.017472748844726
412 => 0.017272001992306
413 => 0.017851550633356
414 => 0.018131975965149
415 => 0.018047509573036
416 => 0.017404716158435
417 => 0.017030582820431
418 => 0.016051403709942
419 => 0.017211283663706
420 => 0.017776227355022
421 => 0.017403253090755
422 => 0.017591359615034
423 => 0.018617607817754
424 => 0.019008336688699
425 => 0.018927067814943
426 => 0.018940800916808
427 => 0.01915163112334
428 => 0.020086568365416
429 => 0.019526332298288
430 => 0.019954611779962
501 => 0.020181769672765
502 => 0.020392766583248
503 => 0.019874624857361
504 => 0.019200530084996
505 => 0.018987015974014
506 => 0.017366168150693
507 => 0.017281795982504
508 => 0.017234435327761
509 => 0.016935833098904
510 => 0.016701213541057
511 => 0.016514635357791
512 => 0.01602499848794
513 => 0.016190236558074
514 => 0.015409857582688
515 => 0.015909116396207
516 => 0.014663612708582
517 => 0.015700905189978
518 => 0.015136354052256
519 => 0.015515434957682
520 => 0.015514112380115
521 => 0.014816104245514
522 => 0.014413507720535
523 => 0.014670057895543
524 => 0.01494510004813
525 => 0.014989724712034
526 => 0.015346324042198
527 => 0.015445843250169
528 => 0.015144295403908
529 => 0.014637802413052
530 => 0.014755449182953
531 => 0.014411123612498
601 => 0.013807706294568
602 => 0.014241091146961
603 => 0.014389067790155
604 => 0.014454422705832
605 => 0.013861031076595
606 => 0.01367457454353
607 => 0.013575306649848
608 => 0.014561203005211
609 => 0.014615212633093
610 => 0.014338891740657
611 => 0.015587888376289
612 => 0.015305201970704
613 => 0.015621031945593
614 => 0.014744773971699
615 => 0.01477824820634
616 => 0.014363413638841
617 => 0.014595693277385
618 => 0.014431525515585
619 => 0.014576927378023
620 => 0.014664080654854
621 => 0.015078847152081
622 => 0.015705641157128
623 => 0.015016894868639
624 => 0.014716798247716
625 => 0.01490297650353
626 => 0.015398793733044
627 => 0.016149982216174
628 => 0.015705263515084
629 => 0.015902622122814
630 => 0.01594573619873
701 => 0.015617817092927
702 => 0.016162073061344
703 => 0.016453744256346
704 => 0.016752938549569
705 => 0.01701272057114
706 => 0.016633433769432
707 => 0.017039325015887
708 => 0.016712248320695
709 => 0.01641882671254
710 => 0.016419271712
711 => 0.016235204050999
712 => 0.015878549763791
713 => 0.015812777241171
714 => 0.016154934209993
715 => 0.016429311696602
716 => 0.016451910740578
717 => 0.016603820215189
718 => 0.016693718677472
719 => 0.017574845818876
720 => 0.017929242444215
721 => 0.018362591929295
722 => 0.018531405975972
723 => 0.019039475733285
724 => 0.018629168140847
725 => 0.018540395512267
726 => 0.017307984469376
727 => 0.017509791708609
728 => 0.017832904570122
729 => 0.017313312481453
730 => 0.017642874068101
731 => 0.017707936506374
801 => 0.017295656941104
802 => 0.017515873270463
803 => 0.016931043989277
804 => 0.015718388837304
805 => 0.016163423093184
806 => 0.016491118102423
807 => 0.016023456919736
808 => 0.016861721488715
809 => 0.016372024632811
810 => 0.016216814239083
811 => 0.015611283156653
812 => 0.015897070518531
813 => 0.016283602017553
814 => 0.016044770490267
815 => 0.016540381770119
816 => 0.017242299517089
817 => 0.017742527903504
818 => 0.017780929227652
819 => 0.017459315887886
820 => 0.01797470331737
821 => 0.017978457352133
822 => 0.017397098226256
823 => 0.017041018998677
824 => 0.016960117048974
825 => 0.017162225981093
826 => 0.017407623536054
827 => 0.017794547084073
828 => 0.018028356880591
829 => 0.018638008826777
830 => 0.018802963163323
831 => 0.018984197968158
901 => 0.019226383558162
902 => 0.019517189454071
903 => 0.01888092270941
904 => 0.018906202773325
905 => 0.018313719990408
906 => 0.017680567166237
907 => 0.018161051236169
908 => 0.018789220241489
909 => 0.018645117577604
910 => 0.018628903084166
911 => 0.018656171364602
912 => 0.018547522661986
913 => 0.01805610860676
914 => 0.01780932354464
915 => 0.018127739236359
916 => 0.018296963005455
917 => 0.01855941431346
918 => 0.018527061650073
919 => 0.019203108034281
920 => 0.019465799216603
921 => 0.019398591570976
922 => 0.019410959395213
923 => 0.01988654923304
924 => 0.020415502945214
925 => 0.020910937898255
926 => 0.021414915611914
927 => 0.020807350807513
928 => 0.020498866869226
929 => 0.020817143550614
930 => 0.020648261463401
1001 => 0.021618708030209
1002 => 0.021685899644947
1003 => 0.022656276037424
1004 => 0.023577278784155
1005 => 0.022998813460411
1006 => 0.023544280206051
1007 => 0.024134246964017
1008 => 0.02527238855879
1009 => 0.024889102509975
1010 => 0.02459551140344
1011 => 0.024318069226387
1012 => 0.02489538235413
1013 => 0.025638086470168
1014 => 0.025798057823231
1015 => 0.026057272528954
1016 => 0.025784739961153
1017 => 0.026112975420591
1018 => 0.027271790826379
1019 => 0.026958668674589
1020 => 0.026513984882149
1021 => 0.027428758351203
1022 => 0.027759811313562
1023 => 0.030083314377181
1024 => 0.033016832974124
1025 => 0.031802337012468
1026 => 0.031048460177528
1027 => 0.031225639115936
1028 => 0.032296860801669
1029 => 0.032640903208249
1030 => 0.031705677348634
1031 => 0.032036014932837
1101 => 0.033856207499869
1102 => 0.034832682413313
1103 => 0.033506498322779
1104 => 0.02984760901422
1105 => 0.02647394597203
1106 => 0.027368793328846
1107 => 0.027267345408929
1108 => 0.029222915248558
1109 => 0.026951200814825
1110 => 0.026989450659752
1111 => 0.02898545961268
1112 => 0.028452958644296
1113 => 0.027590375273084
1114 => 0.026480243785232
1115 => 0.024428063055204
1116 => 0.022610389353324
1117 => 0.026175266067963
1118 => 0.02602154210172
1119 => 0.025798927017985
1120 => 0.02629433279737
1121 => 0.028699882638677
1122 => 0.02864442692883
1123 => 0.028291645996534
1124 => 0.028559227224412
1125 => 0.0275434669901
1126 => 0.027805251530913
1127 => 0.026473411566568
1128 => 0.027075458853002
1129 => 0.027588524556575
1130 => 0.027691530092635
1201 => 0.027923606824971
1202 => 0.025940536556781
1203 => 0.026830876887314
1204 => 0.027353868417895
1205 => 0.024990973656136
1206 => 0.027307161585741
1207 => 0.025906015715345
1208 => 0.025430445762428
1209 => 0.026070738052454
1210 => 0.025821215524326
1211 => 0.025606690707096
1212 => 0.025486982173078
1213 => 0.025957142164392
1214 => 0.025935208638834
1215 => 0.025165935638923
1216 => 0.024162450370118
1217 => 0.02449925296461
1218 => 0.02437688942449
1219 => 0.023933428169884
1220 => 0.024232267511772
1221 => 0.022916330289225
1222 => 0.020652328694298
1223 => 0.022147997496151
1224 => 0.022090415874254
1225 => 0.022061380609375
1226 => 0.023185334376719
1227 => 0.023077292156014
1228 => 0.022881194467482
1229 => 0.023929826682052
1230 => 0.023547061817641
1231 => 0.024726652939013
]
'min_raw' => 0.010588899636976
'max_raw' => 0.034832682413313
'avg_raw' => 0.022710791025145
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.010588'
'max' => '$0.034832'
'avg' => '$0.02271'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0057685595179992
'max_diff' => 0.023026163546178
'year' => 2029
]
4 => [
'items' => [
101 => 0.025503607942719
102 => 0.025306547021918
103 => 0.026037276958253
104 => 0.024507012216142
105 => 0.025015304779906
106 => 0.025120063172835
107 => 0.023916886723299
108 => 0.023094969199502
109 => 0.023040156671211
110 => 0.021615064952158
111 => 0.022376337445537
112 => 0.023046225736115
113 => 0.02272540123036
114 => 0.022623837776197
115 => 0.023142703437088
116 => 0.023183023742724
117 => 0.022263716501288
118 => 0.022454869587457
119 => 0.023252009733336
120 => 0.022434783701031
121 => 0.020847047013378
122 => 0.020453266362662
123 => 0.02040072876504
124 => 0.019332764409163
125 => 0.020479580668679
126 => 0.019978964638635
127 => 0.021560404679242
128 => 0.02065709460948
129 => 0.020618154717796
130 => 0.020559291360275
131 => 0.019640050322119
201 => 0.01984130568866
202 => 0.020510309179098
203 => 0.02074901716135
204 => 0.020724117963124
205 => 0.020507030697021
206 => 0.020606412135776
207 => 0.020286269894757
208 => 0.020173221006269
209 => 0.019816407617652
210 => 0.019291990508601
211 => 0.019364913924051
212 => 0.01832590640982
213 => 0.017759799971764
214 => 0.017603109170873
215 => 0.017393575683362
216 => 0.017626776535834
217 => 0.018322963032076
218 => 0.017483214413404
219 => 0.016043524308208
220 => 0.016130052136642
221 => 0.016324454476793
222 => 0.015962187002023
223 => 0.015619331239957
224 => 0.015917416508306
225 => 0.015307400831635
226 => 0.016398171956934
227 => 0.016368669654846
228 => 0.016775241677523
301 => 0.017029479507001
302 => 0.016443543620529
303 => 0.01629618232962
304 => 0.016380126018119
305 => 0.01499272383411
306 => 0.016661861319755
307 => 0.016676296090043
308 => 0.016552696823232
309 => 0.017441461005499
310 => 0.019317030642584
311 => 0.018611365900499
312 => 0.018338111183533
313 => 0.017818653766835
314 => 0.018510799932256
315 => 0.018457653905914
316 => 0.018217307419763
317 => 0.018071945115012
318 => 0.018339779618567
319 => 0.018038757456028
320 => 0.0179846856041
321 => 0.017657069012173
322 => 0.01754012479446
323 => 0.017453543951348
324 => 0.017358226950341
325 => 0.017568472503047
326 => 0.017092028420509
327 => 0.016517483563358
328 => 0.016469716375148
329 => 0.016601605781531
330 => 0.016543254537218
331 => 0.016469437011839
401 => 0.016328499252884
402 => 0.016286686030461
403 => 0.016422558718445
404 => 0.016269166375581
405 => 0.01649550513319
406 => 0.016433953515015
407 => 0.016090131179397
408 => 0.015661601249886
409 => 0.015657786434641
410 => 0.015565460364258
411 => 0.015447869232307
412 => 0.015415158069519
413 => 0.015892312598433
414 => 0.016880008193253
415 => 0.016686099914437
416 => 0.016826218518401
417 => 0.017515463369425
418 => 0.017734553581249
419 => 0.017579048538332
420 => 0.017366183644454
421 => 0.017375548619477
422 => 0.018102972400444
423 => 0.018148340929387
424 => 0.018262972565583
425 => 0.018410306612992
426 => 0.017604140163696
427 => 0.017337578252213
428 => 0.01721126643026
429 => 0.016822274907472
430 => 0.017241768915186
501 => 0.016997347721416
502 => 0.017030328491072
503 => 0.017008849721567
504 => 0.017020578582105
505 => 0.016397867064175
506 => 0.016624750412555
507 => 0.016247512841124
508 => 0.015742434079883
509 => 0.015740740878771
510 => 0.015864358190041
511 => 0.015790825776152
512 => 0.015592951941068
513 => 0.015621058985404
514 => 0.015374811701403
515 => 0.015650957864132
516 => 0.015658876747981
517 => 0.015552545433547
518 => 0.015977986698058
519 => 0.016152290331256
520 => 0.016082300782258
521 => 0.01614737967792
522 => 0.016694157678866
523 => 0.016783306350616
524 => 0.016822900301777
525 => 0.016769849652415
526 => 0.016157373776043
527 => 0.016184539685609
528 => 0.01598521426608
529 => 0.015816805290974
530 => 0.01582354076679
531 => 0.015910124871629
601 => 0.016288242735551
602 => 0.017083969488909
603 => 0.017114166737531
604 => 0.017150766683775
605 => 0.017001896308738
606 => 0.01695699557913
607 => 0.017016231231345
608 => 0.017315064362582
609 => 0.018083744308525
610 => 0.017812041477221
611 => 0.017591142846065
612 => 0.017784930499433
613 => 0.017755098409154
614 => 0.017503285545253
615 => 0.017496217996852
616 => 0.017012908601581
617 => 0.016834240122572
618 => 0.016684931368409
619 => 0.016521890106666
620 => 0.016425233781512
621 => 0.016573741826462
622 => 0.016607707373438
623 => 0.016282991937677
624 => 0.016238734423648
625 => 0.016503904057959
626 => 0.016387212788419
627 => 0.016507232652946
628 => 0.016535078291027
629 => 0.016530594501957
630 => 0.01640875541465
701 => 0.016486412015605
702 => 0.016302731003798
703 => 0.016103005491454
704 => 0.015975593057918
705 => 0.015864408810851
706 => 0.01592610029319
707 => 0.01570618142307
708 => 0.015635824950426
709 => 0.01646010370653
710 => 0.017069007286154
711 => 0.017060153586954
712 => 0.017006258970061
713 => 0.016926182501481
714 => 0.017309206270139
715 => 0.017175768447941
716 => 0.017272855612693
717 => 0.017297568370858
718 => 0.017372366446817
719 => 0.017399100329861
720 => 0.017318291967428
721 => 0.017047089233193
722 => 0.01637127780466
723 => 0.01605668576036
724 => 0.015952865145797
725 => 0.015956638827952
726 => 0.015852543827632
727 => 0.015883204470437
728 => 0.015841881307316
729 => 0.015763625233513
730 => 0.015921268201153
731 => 0.015939435084627
801 => 0.015902639332287
802 => 0.015911306063989
803 => 0.015606652950283
804 => 0.015629815064846
805 => 0.015500845467659
806 => 0.015476665222938
807 => 0.015150641311915
808 => 0.014573042695618
809 => 0.014893088397901
810 => 0.014506518194778
811 => 0.014360118201362
812 => 0.015053153000327
813 => 0.014983591528304
814 => 0.014864532525846
815 => 0.014688419447139
816 => 0.01462309739313
817 => 0.014226221271414
818 => 0.014202771712891
819 => 0.01439947423537
820 => 0.014308702789367
821 => 0.014181225301343
822 => 0.013719514761907
823 => 0.013200399248475
824 => 0.013216068082781
825 => 0.013381189069117
826 => 0.013861300606486
827 => 0.013673712722822
828 => 0.013537615560901
829 => 0.013512128653538
830 => 0.013831150659631
831 => 0.014282633635428
901 => 0.014494459346309
902 => 0.014284546500068
903 => 0.014043409924816
904 => 0.014058086790833
905 => 0.014155725405087
906 => 0.014165985842909
907 => 0.014009030721661
908 => 0.014053212668923
909 => 0.01398609625095
910 => 0.013574202917742
911 => 0.013566753073472
912 => 0.013465667806826
913 => 0.013462606985125
914 => 0.013290635729658
915 => 0.013266575762237
916 => 0.012925116396598
917 => 0.013149865985096
918 => 0.012999115761014
919 => 0.01277189961494
920 => 0.012732727465714
921 => 0.012731549903607
922 => 0.012964850081024
923 => 0.013147139736689
924 => 0.013001738125704
925 => 0.012968632997374
926 => 0.013322109157854
927 => 0.013277126094426
928 => 0.013238171051608
929 => 0.014242208286854
930 => 0.013447434469154
1001 => 0.013100867720533
1002 => 0.012671925557875
1003 => 0.01281159128895
1004 => 0.012841020910605
1005 => 0.011809492332047
1006 => 0.011391001316195
1007 => 0.011247390970055
1008 => 0.0111647411855
1009 => 0.011202405730173
1010 => 0.010825714731805
1011 => 0.011078857312602
1012 => 0.010752674748914
1013 => 0.010697989180621
1014 => 0.011281244010762
1015 => 0.011362400513051
1016 => 0.011016161660938
1017 => 0.011238503054973
1018 => 0.01115787897472
1019 => 0.010758266212767
1020 => 0.010743003944613
1021 => 0.010542492307733
1022 => 0.01022873042272
1023 => 0.010085332821914
1024 => 0.010010650106379
1025 => 0.010041465650346
1026 => 0.010025884368345
1027 => 0.009924205963704
1028 => 0.010031712455478
1029 => 0.0097570777937443
1030 => 0.00964771605856
1031 => 0.0095983198999502
1101 => 0.0093545658302799
1102 => 0.0097424869530521
1103 => 0.0098189123011398
1104 => 0.0098954882307722
1105 => 0.010562029417614
1106 => 0.010528730903546
1107 => 0.010829733253694
1108 => 0.010818036855875
1109 => 0.010732186109698
1110 => 0.010369995933339
1111 => 0.010514358482217
1112 => 0.010070032995694
1113 => 0.010402951861393
1114 => 0.010251021594112
1115 => 0.010351584085197
1116 => 0.010170763658872
1117 => 0.010270837148693
1118 => 0.0098370355863649
1119 => 0.009431957791216
1120 => 0.0095949729209419
1121 => 0.0097721890099953
1122 => 0.010156438644883
1123 => 0.0099275827323345
1124 => 0.010009887972487
1125 => 0.0097341791957068
1126 => 0.0091653132368906
1127 => 0.0091685329564389
1128 => 0.0090810253220936
1129 => 0.0090054059496954
1130 => 0.0099538695868912
1201 => 0.0098359131406146
1202 => 0.009647964981231
1203 => 0.009899541061329
1204 => 0.0099660617699562
1205 => 0.0099679555210137
1206 => 0.010151498934935
1207 => 0.010249456087846
1208 => 0.010266721460618
1209 => 0.01055553098814
1210 => 0.010652336132276
1211 => 0.011051062820595
1212 => 0.01024114510781
1213 => 0.010224465385497
1214 => 0.0099030812526941
1215 => 0.0096992543547886
1216 => 0.0099170374547752
1217 => 0.010109963551006
1218 => 0.0099090760042834
1219 => 0.0099353076769177
1220 => 0.0096656325585588
1221 => 0.0097620287239784
1222 => 0.0098450580876036
1223 => 0.0097992141532502
1224 => 0.0097305835646516
1225 => 0.010094145811215
1226 => 0.010073632204452
1227 => 0.010412189726712
1228 => 0.010676119525794
1229 => 0.011149128908844
1230 => 0.010655518959094
1231 => 0.010637529850603
]
'min_raw' => 0.0090054059496954
'max_raw' => 0.026037276958253
'avg_raw' => 0.017521341453974
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0090054'
'max' => '$0.026037'
'avg' => '$0.017521'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.001583493687281
'max_diff' => -0.0087954054550594
'year' => 2030
]
5 => [
'items' => [
101 => 0.010813376271644
102 => 0.010652309211105
103 => 0.01075409803352
104 => 0.011132729155904
105 => 0.01114072903488
106 => 0.011006720754756
107 => 0.010998566338732
108 => 0.01102430409482
109 => 0.01117505093613
110 => 0.011122375357794
111 => 0.011183332870627
112 => 0.01125956117384
113 => 0.011574873756059
114 => 0.011650894552146
115 => 0.011466203429918
116 => 0.011482878970356
117 => 0.011413799420758
118 => 0.011347069441411
119 => 0.011497068689853
120 => 0.011771195264624
121 => 0.011769489937429
122 => 0.011833081974517
123 => 0.011872699286798
124 => 0.011702632780844
125 => 0.011591925738986
126 => 0.011634377863307
127 => 0.011702259734582
128 => 0.011612364687341
129 => 0.011057490812336
130 => 0.011225804100532
131 => 0.011197788539277
201 => 0.011157890973241
202 => 0.011327131286051
203 => 0.011310807645016
204 => 0.010821851221157
205 => 0.010853152624997
206 => 0.010823754763198
207 => 0.010918745268908
208 => 0.010647179412065
209 => 0.010730711240606
210 => 0.010783101620404
211 => 0.010813959956588
212 => 0.010925441426641
213 => 0.010912360362844
214 => 0.010924628289348
215 => 0.01108992587942
216 => 0.011925944366721
217 => 0.011971447008414
218 => 0.011747375358908
219 => 0.011836887563268
220 => 0.011665043705065
221 => 0.01178040363833
222 => 0.011859329974846
223 => 0.011502677036793
224 => 0.01148155836446
225 => 0.011309005245526
226 => 0.011401725517733
227 => 0.011254200897828
228 => 0.011290398279361
301 => 0.011189187244965
302 => 0.011371346955962
303 => 0.011575029817613
304 => 0.011626488152146
305 => 0.011491123428196
306 => 0.011393110447085
307 => 0.011221031939738
308 => 0.011507202332476
309 => 0.011590887276197
310 => 0.011506762771092
311 => 0.011487269285103
312 => 0.011450329164376
313 => 0.011495106306342
314 => 0.011590431510021
315 => 0.011545477904346
316 => 0.011575170552875
317 => 0.011462012795609
318 => 0.011702689079934
319 => 0.012084940941344
320 => 0.012086169943582
321 => 0.012041216095591
322 => 0.012022821949537
323 => 0.012068947325604
324 => 0.012093968449958
325 => 0.012243129458212
326 => 0.012403185162904
327 => 0.01315009529893
328 => 0.012940365921543
329 => 0.013603069028108
330 => 0.014127181144172
331 => 0.014284339451135
401 => 0.014139761203599
402 => 0.013645166828743
403 => 0.013620899669125
404 => 0.014360032477519
405 => 0.014151193604721
406 => 0.014126352885321
407 => 0.013862089599967
408 => 0.014018301931256
409 => 0.013984136002906
410 => 0.013930203413552
411 => 0.014228245659806
412 => 0.014786154138379
413 => 0.01469919886996
414 => 0.014634290795825
415 => 0.014349882509421
416 => 0.014521159822727
417 => 0.014460171252059
418 => 0.01472221685595
419 => 0.014566986845226
420 => 0.014149611444861
421 => 0.014216079853056
422 => 0.014206033286873
423 => 0.014412790907009
424 => 0.014350727401484
425 => 0.014193914391336
426 => 0.014784247267851
427 => 0.014745914334454
428 => 0.014800261669883
429 => 0.014824187047685
430 => 0.015183512266788
501 => 0.01533071631193
502 => 0.015364134207347
503 => 0.015503966665062
504 => 0.015360655048414
505 => 0.015934003694457
506 => 0.016315247088254
507 => 0.016758080908755
508 => 0.017405180143016
509 => 0.017648495441101
510 => 0.017604542710333
511 => 0.018095165964509
512 => 0.01897680504632
513 => 0.017782747175793
514 => 0.019040093012857
515 => 0.018642031837598
516 => 0.017698235951875
517 => 0.017637466623457
518 => 0.018276616154964
519 => 0.019694188299986
520 => 0.019339102555628
521 => 0.019694769093057
522 => 0.019279865184806
523 => 0.019259261708676
524 => 0.019674618136316
525 => 0.020645121069398
526 => 0.02018407150465
527 => 0.019523043899591
528 => 0.020011136396438
529 => 0.019588305504841
530 => 0.018635549163159
531 => 0.019338831028251
601 => 0.018868566473378
602 => 0.019005814671129
603 => 0.019994240818899
604 => 0.019875310769748
605 => 0.020029217265975
606 => 0.019757576328568
607 => 0.019503820859186
608 => 0.019030167431456
609 => 0.018889942002337
610 => 0.018928695266163
611 => 0.018889922798144
612 => 0.018624918058429
613 => 0.018567690310119
614 => 0.018472308222396
615 => 0.018501871119752
616 => 0.018322524889821
617 => 0.018660988280524
618 => 0.018723810068367
619 => 0.018970115498617
620 => 0.018995687745472
621 => 0.019681644862778
622 => 0.019303831209607
623 => 0.019557301227015
624 => 0.019534628482906
625 => 0.017718690870558
626 => 0.017968911051386
627 => 0.018358175129337
628 => 0.018182812189855
629 => 0.017934890022036
630 => 0.017734679578777
701 => 0.01743134028467
702 => 0.01785828451601
703 => 0.018419670779765
704 => 0.019009925427549
705 => 0.019719077711845
706 => 0.019560803177433
707 => 0.01899666831887
708 => 0.019021974996525
709 => 0.019178410919973
710 => 0.018975812185405
711 => 0.018916061863384
712 => 0.019170202143256
713 => 0.019171952267691
714 => 0.018938837938695
715 => 0.018679774021488
716 => 0.018678688534216
717 => 0.018632590612409
718 => 0.019288065902688
719 => 0.019648511036314
720 => 0.019689835489998
721 => 0.019645729571325
722 => 0.019662704188921
723 => 0.01945296910753
724 => 0.019932361308583
725 => 0.020372298999244
726 => 0.020254386300249
727 => 0.020077618402178
728 => 0.019936814257068
729 => 0.020221217318481
730 => 0.020208553297849
731 => 0.020368456527309
801 => 0.020361202393175
802 => 0.020307432951372
803 => 0.020254388220525
804 => 0.020464704582429
805 => 0.020404136847778
806 => 0.020343475034706
807 => 0.020221808481731
808 => 0.020238344986948
809 => 0.020061607610346
810 => 0.019979840812978
811 => 0.018750264366543
812 => 0.018421681362487
813 => 0.018525060264487
814 => 0.018559095283257
815 => 0.018416095538801
816 => 0.018621120438731
817 => 0.018589167525252
818 => 0.018713477619769
819 => 0.018635814069632
820 => 0.018639001408819
821 => 0.018867393350159
822 => 0.018933696502379
823 => 0.018899974184028
824 => 0.018923592139868
825 => 0.019467857963676
826 => 0.019390480768172
827 => 0.019349375675245
828 => 0.019360762066903
829 => 0.019499833654076
830 => 0.019538766105458
831 => 0.01937380657322
901 => 0.019451602442243
902 => 0.019782847378778
903 => 0.019898764359726
904 => 0.020268715719604
905 => 0.020111553806567
906 => 0.020400031299754
907 => 0.021286712764589
908 => 0.02199505527239
909 => 0.021343634228724
910 => 0.022644415037425
911 => 0.023657259482924
912 => 0.023618384826125
913 => 0.023441771969538
914 => 0.022288675496201
915 => 0.021227578929736
916 => 0.022115231264124
917 => 0.022117494072472
918 => 0.022041243949728
919 => 0.021567660986049
920 => 0.022024764289142
921 => 0.022061047489387
922 => 0.022040738545732
923 => 0.021677643597853
924 => 0.021123264723606
925 => 0.021231589028639
926 => 0.021409026450038
927 => 0.021073100394006
928 => 0.020965751664626
929 => 0.021165333376474
930 => 0.02180842723655
1001 => 0.021686854067492
1002 => 0.021683679300732
1003 => 0.022203820873011
1004 => 0.021831511760836
1005 => 0.021232955345028
1006 => 0.021081811956047
1007 => 0.020545354747551
1008 => 0.020915887652254
1009 => 0.020929222471847
1010 => 0.020726285386696
1011 => 0.021249422571037
1012 => 0.021244601769787
1013 => 0.021741242667625
1014 => 0.022690633534488
1015 => 0.022409851938469
1016 => 0.022083333491251
1017 => 0.022118835099838
1018 => 0.022508200120603
1019 => 0.022272781140709
1020 => 0.022357439447278
1021 => 0.022508071980116
1022 => 0.022598952327173
1023 => 0.022105758816465
1024 => 0.021990771816947
1025 => 0.021755548770885
1026 => 0.021694183468813
1027 => 0.021885767731741
1028 => 0.021835292047231
1029 => 0.020928101731895
1030 => 0.020833295296384
1031 => 0.020836202874408
1101 => 0.020597807584514
1102 => 0.020234197545999
1103 => 0.021189743017189
1104 => 0.021112999343002
1105 => 0.021028280266188
1106 => 0.021038657869697
1107 => 0.0214534277723
1108 => 0.021212840282408
1109 => 0.0218524815558
1110 => 0.021720990539367
1111 => 0.021586127274524
1112 => 0.021567485063287
1113 => 0.021515574212316
1114 => 0.021337552589158
1115 => 0.021122580781753
1116 => 0.020980637773965
1117 => 0.019353529314167
1118 => 0.019655511179851
1119 => 0.020002913789807
1120 => 0.020122835778636
1121 => 0.019917700918396
1122 => 0.021345652563752
1123 => 0.021606553089443
1124 => 0.020816268379004
1125 => 0.020668438376794
1126 => 0.021355344274086
1127 => 0.020941056047188
1128 => 0.021127610010393
1129 => 0.020724382381506
1130 => 0.021543709792863
1201 => 0.021537467890737
1202 => 0.02121873102237
1203 => 0.021488125240898
1204 => 0.021441311365963
1205 => 0.021081458226591
1206 => 0.021555117779239
1207 => 0.021555352708468
1208 => 0.021248575402602
1209 => 0.020890326671538
1210 => 0.020826280259882
1211 => 0.020778029892123
1212 => 0.021115743377725
1213 => 0.021418536232914
1214 => 0.021981958667705
1215 => 0.022123616454398
1216 => 0.022676516226555
1217 => 0.022347291332437
1218 => 0.022493232463823
1219 => 0.022651672206577
1220 => 0.022727634045681
1221 => 0.022603858305198
1222 => 0.023462739233983
1223 => 0.023535255099804
1224 => 0.023559569042354
1225 => 0.023269959225607
1226 => 0.0235272005269
1227 => 0.023406845840961
1228 => 0.023719975298279
1229 => 0.023769077995424
1230 => 0.023727489757821
1231 => 0.023743075728928
]
'min_raw' => 0.010647179412065
'max_raw' => 0.023769077995424
'avg_raw' => 0.017208128703744
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.010647'
'max' => '$0.023769'
'avg' => '$0.0172081'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0016417734623692
'max_diff' => -0.0022681989628293
'year' => 2031
]
6 => [
'items' => [
101 => 0.023010172373189
102 => 0.02297216746782
103 => 0.022453967886418
104 => 0.022665138046177
105 => 0.022270365554157
106 => 0.022395551977984
107 => 0.022450732960787
108 => 0.022421909546864
109 => 0.022677077290173
110 => 0.022460132581034
111 => 0.021887579824604
112 => 0.021314871076558
113 => 0.021307681184745
114 => 0.021156897080533
115 => 0.021047907790675
116 => 0.021068902994504
117 => 0.021142892831247
118 => 0.021043607366857
119 => 0.021064794954586
120 => 0.021416650083036
121 => 0.021487212119731
122 => 0.021247414748675
123 => 0.020284593701288
124 => 0.020048315001205
125 => 0.020218147445214
126 => 0.020136978475588
127 => 0.016252113256531
128 => 0.017164804714729
129 => 0.016622514442341
130 => 0.016872426749433
131 => 0.016318888806711
201 => 0.016583066126387
202 => 0.016534282221654
203 => 0.018001863077931
204 => 0.017978948821452
205 => 0.017989916663433
206 => 0.017466392989111
207 => 0.018300380417523
208 => 0.018711232613976
209 => 0.01863519480689
210 => 0.018654331884763
211 => 0.018325493482726
212 => 0.01799310053797
213 => 0.017624425607328
214 => 0.018309378058862
215 => 0.01823322303878
216 => 0.018407895255137
217 => 0.018852135881369
218 => 0.018917552001087
219 => 0.019005471929374
220 => 0.01897395889365
221 => 0.019724727253883
222 => 0.01963380425173
223 => 0.019852902526586
224 => 0.01940220075218
225 => 0.018892188913434
226 => 0.018989125490437
227 => 0.018979789718557
228 => 0.018860934627423
229 => 0.018753637565519
301 => 0.018575018188207
302 => 0.019140196328715
303 => 0.019117251128347
304 => 0.01948870725143
305 => 0.019423048773543
306 => 0.018984565388857
307 => 0.019000225908723
308 => 0.01910555043101
309 => 0.019470079805218
310 => 0.019578296942535
311 => 0.019528166452823
312 => 0.019646821603591
313 => 0.019740601796798
314 => 0.019658598951993
315 => 0.020819586305745
316 => 0.020337463412711
317 => 0.020572446756187
318 => 0.020628488899003
319 => 0.020484938128618
320 => 0.020516069150547
321 => 0.020563224166073
322 => 0.020849540186452
323 => 0.021600916270133
324 => 0.021933695622806
325 => 0.022934878724365
326 => 0.021906062930079
327 => 0.021845017258509
328 => 0.022025360567933
329 => 0.022613161034542
330 => 0.023089518103439
331 => 0.023247553224891
401 => 0.023268440175066
402 => 0.023564924568886
403 => 0.023734863894316
404 => 0.023528923565162
405 => 0.023354410699055
406 => 0.022729327273995
407 => 0.022801682382491
408 => 0.023300137328923
409 => 0.024004234299607
410 => 0.024608422749259
411 => 0.024396857012284
412 => 0.026010954243266
413 => 0.026170985390722
414 => 0.02614887426057
415 => 0.026513449030302
416 => 0.025789842356744
417 => 0.025480486484579
418 => 0.023392142361513
419 => 0.023978881877645
420 => 0.024831742222346
421 => 0.024718862957663
422 => 0.024099492978318
423 => 0.024607952901589
424 => 0.024439840149944
425 => 0.024307242647717
426 => 0.02491469751071
427 => 0.024246775935979
428 => 0.024825079193705
429 => 0.02408339928389
430 => 0.02439782342675
501 => 0.024219341076278
502 => 0.024334841031007
503 => 0.023659630655711
504 => 0.024023957784415
505 => 0.02364447344936
506 => 0.023644293524375
507 => 0.023635916386646
508 => 0.024082378023947
509 => 0.024096937121911
510 => 0.023767001297379
511 => 0.023719452390498
512 => 0.023895265620629
513 => 0.023689434373703
514 => 0.023785741518653
515 => 0.023692351419014
516 => 0.023671327340489
517 => 0.023503803905848
518 => 0.023431630204052
519 => 0.023459931372213
520 => 0.023363324895026
521 => 0.023305115998112
522 => 0.023624337171953
523 => 0.023453790176115
524 => 0.023598198398852
525 => 0.023433627003273
526 => 0.022863150845849
527 => 0.022535063975038
528 => 0.021457487396832
529 => 0.021763086777682
530 => 0.021965699483351
531 => 0.021898735985336
601 => 0.022042599490505
602 => 0.022051431541312
603 => 0.022004660049266
604 => 0.021950504653277
605 => 0.021924144801491
606 => 0.022120609540485
607 => 0.02223466393417
608 => 0.021986034378973
609 => 0.021927783952887
610 => 0.022179162160406
611 => 0.022332502721776
612 => 0.023464683272313
613 => 0.023380807680234
614 => 0.023591318956598
615 => 0.023567618617439
616 => 0.023788267972144
617 => 0.024148936413714
618 => 0.023415596627521
619 => 0.023542879057422
620 => 0.023511672344991
621 => 0.023852379048475
622 => 0.023853442697614
623 => 0.023649172009313
624 => 0.023759910463355
625 => 0.023698099296259
626 => 0.023809800429481
627 => 0.023379687470565
628 => 0.0239035186267
629 => 0.024200497137294
630 => 0.024204620684202
701 => 0.024345386141256
702 => 0.024488411998209
703 => 0.024762937675703
704 => 0.024480755626062
705 => 0.023973137588629
706 => 0.024009785971335
707 => 0.023712169701718
708 => 0.023717172684979
709 => 0.023690466368241
710 => 0.02377061403513
711 => 0.023397275376353
712 => 0.02348489721335
713 => 0.023362226128442
714 => 0.023542612394441
715 => 0.023348546591144
716 => 0.023511657296169
717 => 0.023582050469253
718 => 0.023841802793387
719 => 0.023310180961671
720 => 0.022226168059169
721 => 0.022454040713661
722 => 0.022116999158657
723 => 0.02214819363778
724 => 0.022211211450174
725 => 0.02200695010206
726 => 0.022045916730266
727 => 0.022044524568102
728 => 0.022032527666685
729 => 0.021979391401093
730 => 0.021902333303295
731 => 0.02220930904769
801 => 0.022261470208478
802 => 0.022377418007508
803 => 0.022722400009279
804 => 0.022687928172066
805 => 0.022744153168783
806 => 0.02262141431664
807 => 0.022153887141107
808 => 0.02217927611608
809 => 0.021862675191342
810 => 0.022369321810046
811 => 0.022249341203328
812 => 0.022171988925657
813 => 0.022150882640031
814 => 0.022496719785457
815 => 0.022600199679702
816 => 0.022535717953886
817 => 0.022403464053005
818 => 0.022657430640052
819 => 0.022725381384756
820 => 0.022740593050568
821 => 0.023190573149552
822 => 0.022765741939446
823 => 0.022868003034177
824 => 0.023665814903557
825 => 0.022942309628542
826 => 0.02332556650881
827 => 0.023306808078894
828 => 0.023502869330133
829 => 0.023290725333693
830 => 0.023293355112781
831 => 0.023467444221542
901 => 0.023222967465424
902 => 0.023162431582524
903 => 0.023078801693865
904 => 0.023261404496214
905 => 0.023370866617808
906 => 0.024253050926787
907 => 0.024822982222879
908 => 0.024798240002228
909 => 0.025024337583475
910 => 0.024922478552307
911 => 0.02459354887161
912 => 0.025154991727858
913 => 0.024977327716375
914 => 0.02499197412162
915 => 0.024991428981685
916 => 0.025109560017664
917 => 0.025025853352122
918 => 0.024860858922027
919 => 0.024970389924692
920 => 0.025295657844557
921 => 0.026305299448259
922 => 0.026870308265662
923 => 0.026271285208005
924 => 0.026684483291938
925 => 0.026436711679109
926 => 0.026391684206492
927 => 0.0266512031383
928 => 0.026911176323644
929 => 0.026894617155633
930 => 0.026705889972844
1001 => 0.026599282776061
1002 => 0.02740654818613
1003 => 0.028001327588861
1004 => 0.027960767621047
1005 => 0.028139786128172
1006 => 0.028665390001926
1007 => 0.02871344463306
1008 => 0.02870739085406
1009 => 0.028588282436813
1010 => 0.029105807708811
1011 => 0.029537536395703
1012 => 0.028560712279593
1013 => 0.028932674115441
1014 => 0.029099659767415
1015 => 0.029344844246924
1016 => 0.029758511561545
1017 => 0.030207863985059
1018 => 0.030271407344642
1019 => 0.030226320290188
1020 => 0.029929960287639
1021 => 0.030421647071338
1022 => 0.030709665657755
1023 => 0.030881174134778
1024 => 0.031316091096219
1025 => 0.029100691013953
1026 => 0.027532520723197
1027 => 0.027287628287642
1028 => 0.027785626685263
1029 => 0.027916944891253
1030 => 0.027864010687077
1031 => 0.026098892453026
1101 => 0.027278335305439
1102 => 0.028547316644265
1103 => 0.028596063385578
1104 => 0.029231341976943
1105 => 0.02943821472724
1106 => 0.029949697261157
1107 => 0.029917703889399
1108 => 0.030042241746943
1109 => 0.030013612650188
1110 => 0.030961026338915
1111 => 0.032006164329874
1112 => 0.031969974524583
1113 => 0.031819723572871
1114 => 0.032042871857757
1115 => 0.033121566268221
1116 => 0.033022257372631
1117 => 0.033118727505585
1118 => 0.034390569008075
1119 => 0.036044143878656
1120 => 0.035275892335068
1121 => 0.036942777126226
1122 => 0.037991992744494
1123 => 0.039806502665369
1124 => 0.039579317086626
1125 => 0.040285692483333
1126 => 0.039172607485614
1127 => 0.036616739339258
1128 => 0.036212263421627
1129 => 0.037022034451686
1130 => 0.039012777512784
1201 => 0.036959338868239
1202 => 0.037374746831626
1203 => 0.037255109310225
1204 => 0.037248734335136
1205 => 0.037492041205376
1206 => 0.03713911190006
1207 => 0.03570121441943
1208 => 0.03636019436122
1209 => 0.036105730558879
1210 => 0.036388077119109
1211 => 0.037911785056093
1212 => 0.037238117456492
1213 => 0.036528463364624
1214 => 0.037418527080676
1215 => 0.038551884050287
1216 => 0.038480960607967
1217 => 0.038343339486167
1218 => 0.039119102544144
1219 => 0.040400435838674
1220 => 0.040746775079371
1221 => 0.04100243562626
1222 => 0.041037686896255
1223 => 0.041400796885752
1224 => 0.039448262956728
1225 => 0.042546984446718
1226 => 0.043082048047585
1227 => 0.042981478266736
1228 => 0.043576178940182
1229 => 0.043401202915954
1230 => 0.043147690109746
1231 => 0.044090417173618
]
'min_raw' => 0.016252113256531
'max_raw' => 0.044090417173618
'avg_raw' => 0.030171265215075
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.016252'
'max' => '$0.04409'
'avg' => '$0.030171'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0056049338444668
'max_diff' => 0.020321339178194
'year' => 2032
]
7 => [
'items' => [
101 => 0.043009656669039
102 => 0.041475653196753
103 => 0.040634068552709
104 => 0.041742335100683
105 => 0.042419114808359
106 => 0.042866423143859
107 => 0.04300177837591
108 => 0.039599832607487
109 => 0.037766372518869
110 => 0.03894159941501
111 => 0.04037545733813
112 => 0.039440297803568
113 => 0.039476954286831
114 => 0.038143662546147
115 => 0.040493424072496
116 => 0.040151083582712
117 => 0.0419271466493
118 => 0.041503274944662
119 => 0.042951585429094
120 => 0.042570196740373
121 => 0.044153319864099
122 => 0.044784870539501
123 => 0.045845342416514
124 => 0.046625429846142
125 => 0.047083512105514
126 => 0.047056010564885
127 => 0.048871160692193
128 => 0.047800830078635
129 => 0.046456242570448
130 => 0.046431923224544
131 => 0.047128304147986
201 => 0.048587727520745
202 => 0.048966134767554
203 => 0.049177612795255
204 => 0.048853726834228
205 => 0.047691959664497
206 => 0.0471903144909
207 => 0.047617730712864
208 => 0.047095037401696
209 => 0.047997352698612
210 => 0.049236424325426
211 => 0.048980560934309
212 => 0.049835873889629
213 => 0.050721032816838
214 => 0.051986849837722
215 => 0.052317781280049
216 => 0.052864798370021
217 => 0.053427858641356
218 => 0.053608698425609
219 => 0.053953977685037
220 => 0.053952157892905
221 => 0.054992680181166
222 => 0.056140408487412
223 => 0.056573649353048
224 => 0.057569862834537
225 => 0.05586388215897
226 => 0.057157888098282
227 => 0.05832511384661
228 => 0.056933499190384
301 => 0.058851515789362
302 => 0.058925988027581
303 => 0.060050430407178
304 => 0.058910592638362
305 => 0.05823376060973
306 => 0.060187749315825
307 => 0.061133222900637
308 => 0.060848438562372
309 => 0.058681215686642
310 => 0.057419799016405
311 => 0.054118428281291
312 => 0.058029044525636
313 => 0.059933791624017
314 => 0.05867628285181
315 => 0.059310497131594
316 => 0.062770564597425
317 => 0.064087934265636
318 => 0.063813930583757
319 => 0.06386023269551
320 => 0.064571061456526
321 => 0.067723267643418
322 => 0.065834392628665
323 => 0.067278366802647
324 => 0.068044245497891
325 => 0.068755636312917
326 => 0.067008685308589
327 => 0.064735927719765
328 => 0.064016049987512
329 => 0.058551248387203
330 => 0.058266781731477
331 => 0.058107101977396
401 => 0.057100343715064
402 => 0.056309307495168
403 => 0.055680246123814
404 => 0.054029401231756
405 => 0.054586512921766
406 => 0.051955410721931
407 => 0.053638696668849
408 => 0.049439394027729
409 => 0.052936698050205
410 => 0.051033274473673
411 => 0.052311372212901
412 => 0.052306913050293
413 => 0.049953529891116
414 => 0.048596147598757
415 => 0.049461124425557
416 => 0.050388448245834
417 => 0.050538903415782
418 => 0.051741202954398
419 => 0.052076738912284
420 => 0.051060049295214
421 => 0.049352372814334
422 => 0.049749027112889
423 => 0.048588109412057
424 => 0.046553645795403
425 => 0.048014833083211
426 => 0.048513746667138
427 => 0.04873409532828
428 => 0.046733434021027
429 => 0.046104782801818
430 => 0.045770094167605
501 => 0.049094112562796
502 => 0.049276209794032
503 => 0.048344574613076
504 => 0.052555653972271
505 => 0.051602557019306
506 => 0.052667399830191
507 => 0.049713034892828
508 => 0.049825895612016
509 => 0.04842725190487
510 => 0.049210398923465
511 => 0.048656895852729
512 => 0.049147128383572
513 => 0.049440971741256
514 => 0.050839385944732
515 => 0.052952665694105
516 => 0.050630509495736
517 => 0.049618712786218
518 => 0.050246425774242
519 => 0.051918108180402
520 => 0.054450792597583
521 => 0.052951392447588
522 => 0.05361680077269
523 => 0.053762162889769
524 => 0.052656560729973
525 => 0.054491557726229
526 => 0.055474947524011
527 => 0.056483701972689
528 => 0.057359575195819
529 => 0.056080783262902
530 => 0.057449273938746
531 => 0.056346512025139
601 => 0.055357220587202
602 => 0.055358720933952
603 => 0.054738123963692
604 => 0.053535639133564
605 => 0.053313882481461
606 => 0.054467488590478
607 => 0.055392571443005
608 => 0.055468765697587
609 => 0.055980939097219
610 => 0.056284038039315
611 => 0.059254819714893
612 => 0.060449692680405
613 => 0.061910760724846
614 => 0.062479929069438
615 => 0.064192921728517
616 => 0.062809541033849
617 => 0.062510237918685
618 => 0.058355078043388
619 => 0.059035485240192
620 => 0.060124882811804
621 => 0.058373041808094
622 => 0.059484181706733
623 => 0.059703544259885
624 => 0.058313514921138
625 => 0.059055989650585
626 => 0.05708419689759
627 => 0.052995645387833
628 => 0.054496109452833
629 => 0.055600956055417
630 => 0.054024203726927
701 => 0.056850471247004
702 => 0.055199424107779
703 => 0.054676121428884
704 => 0.052634531107638
705 => 0.053598083151248
706 => 0.054901301086966
707 => 0.054096063918039
708 => 0.055767051950533
709 => 0.058133616640774
710 => 0.059820171570404
711 => 0.059949644315865
712 => 0.058865302486518
713 => 0.060602967188224
714 => 0.060615624178524
715 => 0.058655531296431
716 => 0.057454985319991
717 => 0.057182218748174
718 => 0.05786364312361
719 => 0.058691018113269
720 => 0.059995557869554
721 => 0.060783863922594
722 => 0.062839348023699
723 => 0.06339550308611
724 => 0.064006548884021
725 => 0.064823094509575
726 => 0.065803566891054
727 => 0.063658349138702
728 => 0.063743582639189
729 => 0.06174598557076
730 => 0.059611266618746
731 => 0.061231252206851
801 => 0.063349167865646
802 => 0.062863315673429
803 => 0.062808647376745
804 => 0.062900584288047
805 => 0.062534267601565
806 => 0.060877430804937
807 => 0.060045377738017
808 => 0.06111893847372
809 => 0.061689488226054
810 => 0.062574361134758
811 => 0.062465281871359
812 => 0.064744619455768
813 => 0.065630301117478
814 => 0.065403705847957
815 => 0.065445404830869
816 => 0.067048889173725
817 => 0.068832293544688
818 => 0.070502687079028
819 => 0.072201883127231
820 => 0.070153435970372
821 => 0.069113360834776
822 => 0.070186452887445
823 => 0.069617055139434
824 => 0.072888983493846
825 => 0.073115524714103
826 => 0.076387216470853
827 => 0.079492441533816
828 => 0.077542105307655
829 => 0.079381184523852
830 => 0.081370298638498
831 => 0.085207622487785
901 => 0.083915346814026
902 => 0.082925483900468
903 => 0.081990068230139
904 => 0.083936519747038
905 => 0.086440598528207
906 => 0.086979953113903
907 => 0.087853913592039
908 => 0.086935051012082
909 => 0.088041719780247
910 => 0.091948746826768
911 => 0.090893033630516
912 => 0.089393751177474
913 => 0.092477973795836
914 => 0.093594141971809
915 => 0.1014279947726
916 => 0.11131855753392
917 => 0.1072237996058
918 => 0.1046820512228
919 => 0.10527942238388
920 => 0.10889112108764
921 => 0.1100510840817
922 => 0.10689790480062
923 => 0.1080116610292
924 => 0.11414856735073
925 => 0.11744082069671
926 => 0.11296949844426
927 => 0.10063329768496
928 => 0.089258757196582
929 => 0.092275797536333
930 => 0.091933758791467
1001 => 0.098527099039302
1002 => 0.090867855219933
1003 => 0.090996817242626
1004 => 0.097726500784317
1005 => 0.095931136591378
1006 => 0.093022876531689
1007 => 0.089279990713491
1008 => 0.082360920103518
1009 => 0.076232506311707
1010 => 0.088251737046855
1011 => 0.087733445962002
1012 => 0.086982883664701
1013 => 0.088653178838023
1014 => 0.096763658078117
1015 => 0.096576685280574
1016 => 0.095387259736961
1017 => 0.096289428528675
1018 => 0.092864721980579
1019 => 0.093747346837142
1020 => 0.089256955411254
1021 => 0.091286799871067
1022 => 0.093016636711767
1023 => 0.093363927068209
1024 => 0.09414638997436
1025 => 0.087460330111614
1026 => 0.090462174697583
1027 => 0.092225477157038
1028 => 0.084258812495724
1029 => 0.092068001811464
1030 => 0.087343940684544
1031 => 0.085740523385051
1101 => 0.087899313544653
1102 => 0.087058030919964
1103 => 0.086334745521029
1104 => 0.085931139840803
1105 => 0.087516317077039
1106 => 0.087442366664272
1107 => 0.084848709036147
1108 => 0.081465388391266
1109 => 0.082600941853402
1110 => 0.082188384634738
1111 => 0.080693224053357
1112 => 0.081700781758831
1113 => 0.07726400753721
1114 => 0.069630768092369
1115 => 0.074673519882079
1116 => 0.074479379423633
1117 => 0.074381485000916
1118 => 0.078170973599461
1119 => 0.077806701709087
1120 => 0.0771455446611
1121 => 0.080681081385685
1122 => 0.079390562921532
1123 => 0.083367636743661
1124 => 0.085987194783923
1125 => 0.085322790131087
1126 => 0.087786497129376
1127 => 0.082627102711674
1128 => 0.084340846578259
1129 => 0.084694046814016
1130 => 0.080637453411311
1201 => 0.077866301095379
1202 => 0.077681496829356
1203 => 0.072876700601842
1204 => 0.07544338396362
1205 => 0.07770195910541
1206 => 0.076620276885004
1207 => 0.07627784860836
1208 => 0.0780272404101
1209 => 0.078163183135622
1210 => 0.075063674587141
1211 => 0.07570816056304
1212 => 0.078395774219421
1213 => 0.075640439594606
1214 => 0.070287274499946
1215 => 0.068959615543172
1216 => 0.068782481364729
1217 => 0.065181764975999
1218 => 0.069048336063112
1219 => 0.067360474165925
1220 => 0.072692409675449
1221 => 0.069646836708152
1222 => 0.069515548144642
1223 => 0.069317086225051
1224 => 0.06621780088555
1225 => 0.066896347405042
1226 => 0.069151939381386
1227 => 0.069956760009608
1228 => 0.069872810624384
1229 => 0.069140885750168
1230 => 0.069475957209522
1231 => 0.068396575292308
]
'min_raw' => 0.037766372518869
'max_raw' => 0.11744082069671
'avg_raw' => 0.077603596607788
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.037766'
'max' => '$0.11744'
'avg' => '$0.0776035'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.021514259262337
'max_diff' => 0.07335040352309
'year' => 2033
]
8 => [
'items' => [
101 => 0.068015423071948
102 => 0.066812401820313
103 => 0.065044292923512
104 => 0.065290159310054
105 => 0.061787072934634
106 => 0.059878405554439
107 => 0.059350111579433
108 => 0.058643654797129
109 => 0.059429907752804
110 => 0.061777149131072
111 => 0.058945878033843
112 => 0.054091862328219
113 => 0.054383596942967
114 => 0.055039038005522
115 => 0.053817627921628
116 => 0.0526616657824
117 => 0.053666681076286
118 => 0.051609970632454
119 => 0.055287581636609
120 => 0.055188112565332
121 => 0.056558898525742
122 => 0.057416079118146
123 => 0.055440555368167
124 => 0.054943716487432
125 => 0.055226738493967
126 => 0.050549015165253
127 => 0.056176628733562
128 => 0.056225296569393
129 => 0.055808573011912
130 => 0.058805103503961
131 => 0.065128717483482
201 => 0.062749519537603
202 => 0.06182822218132
203 => 0.060076835233562
204 => 0.062410454354382
205 => 0.062231268816033
206 => 0.061420923857518
207 => 0.060930824698178
208 => 0.061833847426522
209 => 0.060818930188826
210 => 0.060636623164875
211 => 0.059532040951731
212 => 0.059137755356927
213 => 0.058845841999496
214 => 0.058524474075778
215 => 0.059233331635602
216 => 0.057626967147063
217 => 0.055689849047738
218 => 0.055528798637687
219 => 0.055973472979534
220 => 0.055776737685378
221 => 0.055527856744789
222 => 0.055052675250512
223 => 0.054911699051806
224 => 0.055369803305671
225 => 0.054852630312195
226 => 0.05561574723594
227 => 0.055408221657867
228 => 0.054249000648423
301 => 0.05280418207207
302 => 0.052791320156131
303 => 0.052480036363833
304 => 0.05208356965251
305 => 0.051973281683349
306 => 0.05358204149145
307 => 0.056912126148089
308 => 0.056258350847819
309 => 0.056730770503852
310 => 0.059054607640616
311 => 0.059793285586173
312 => 0.059268989476963
313 => 0.0585513006255
314 => 0.058582875292632
315 => 0.061035435357269
316 => 0.061188398520129
317 => 0.061574887084889
318 => 0.062071634112262
319 => 0.059353587643719
320 => 0.058454855548394
321 => 0.05802898642187
322 => 0.056717474344271
323 => 0.058131827679414
324 => 0.057307744559675
325 => 0.057418941527215
326 => 0.057346524356229
327 => 0.057386069028415
328 => 0.055286553669383
329 => 0.056051506718936
330 => 0.054779623908971
331 => 0.053076715601973
401 => 0.053071006856211
402 => 0.05348779125184
403 => 0.053239871584545
404 => 0.052572726134451
405 => 0.052667490996799
406 => 0.051837251086356
407 => 0.052768297153906
408 => 0.05279499622368
409 => 0.052436492773251
410 => 0.053870897699912
411 => 0.054458574568727
412 => 0.054222599917767
413 => 0.054442017958156
414 => 0.056285518163164
415 => 0.056586089134133
416 => 0.056719582904834
417 => 0.05654071893663
418 => 0.054475713757742
419 => 0.054567305518506
420 => 0.05389526595011
421 => 0.0533274633326
422 => 0.053350172459568
423 => 0.053642096814141
424 => 0.054916947591701
425 => 0.057599795896517
426 => 0.057701608028549
427 => 0.05782500730264
428 => 0.057323080439405
429 => 0.05717169449466
430 => 0.057371411631806
501 => 0.058378948397633
502 => 0.060970606502902
503 => 0.060054541437475
504 => 0.059309766279881
505 => 0.059963134883032
506 => 0.059862553907849
507 => 0.059013549256191
508 => 0.058989720523317
509 => 0.057360209153579
510 => 0.056757815902365
511 => 0.056254411013298
512 => 0.055704706016154
513 => 0.055378822467568
514 => 0.055879527709619
515 => 0.055994044922647
516 => 0.054899244160072
517 => 0.054750026861561
518 => 0.055644064797195
519 => 0.055250632034816
520 => 0.055655287387586
521 => 0.055749170900498
522 => 0.055734053492599
523 => 0.05532326450321
524 => 0.055585089155142
525 => 0.054965795799637
526 => 0.054292407290379
527 => 0.053862827375059
528 => 0.053487961923436
529 => 0.053695959063304
530 => 0.05295448723845
531 => 0.052717275478799
601 => 0.055496388854309
602 => 0.057549349785301
603 => 0.057519498920303
604 => 0.057337789456644
605 => 0.057067806052066
606 => 0.058359197429965
607 => 0.057909302496091
608 => 0.058236638650464
609 => 0.058319959440007
610 => 0.058572146375338
611 => 0.058662281528519
612 => 0.058389830492716
613 => 0.057475451539472
614 => 0.055196906124528
615 => 0.054136237083055
616 => 0.053786198632529
617 => 0.053798921865388
618 => 0.053447958304126
619 => 0.053551332802001
620 => 0.053412008872449
621 => 0.053148163055957
622 => 0.053679667327634
623 => 0.05374091824364
624 => 0.053616858795627
625 => 0.053646079286652
626 => 0.052618920043592
627 => 0.052697012729969
628 => 0.052262182728682
629 => 0.052180657345394
630 => 0.05108144496712
701 => 0.049134030905624
702 => 0.050213087335749
703 => 0.048909738906453
704 => 0.048416141107327
705 => 0.050752756318182
706 => 0.05051822495863
707 => 0.050116809219408
708 => 0.049523031678728
709 => 0.049302793812993
710 => 0.047964698259624
711 => 0.047885636435869
712 => 0.048548832723737
713 => 0.048242790456077
714 => 0.047812991205011
715 => 0.046256301885702
716 => 0.044506067688677
717 => 0.044558896257505
718 => 0.045115613191314
719 => 0.04673434275987
720 => 0.046101877113129
721 => 0.045643016029712
722 => 0.045557085142101
723 => 0.046632690109046
724 => 0.048154896483481
725 => 0.048869081656917
726 => 0.048161345840168
727 => 0.047348337041088
728 => 0.047397821119568
729 => 0.047727016524438
730 => 0.047761610306917
731 => 0.047232425157371
801 => 0.047381387677249
802 => 0.047155099988136
803 => 0.04576637285775
804 => 0.045741255187663
805 => 0.045400439153616
806 => 0.045390119379554
807 => 0.044810306285096
808 => 0.044729186425123
809 => 0.043577932333938
810 => 0.044335691263075
811 => 0.043827426357539
812 => 0.043061351257327
813 => 0.042929279621299
814 => 0.042925309388439
815 => 0.043711897225099
816 => 0.044326499526229
817 => 0.043836267843178
818 => 0.043724651591689
819 => 0.044916421145664
820 => 0.0447647576067
821 => 0.044633417960082
822 => 0.048018599598356
823 => 0.045338964182645
824 => 0.044170490193153
825 => 0.042724281743964
826 => 0.043195174507436
827 => 0.043294398531553
828 => 0.039816527909921
829 => 0.038405556231865
830 => 0.037921363923303
831 => 0.037642704404251
901 => 0.037769693046269
902 => 0.036499653045548
903 => 0.037353140930555
904 => 0.03625339364374
905 => 0.036069017432218
906 => 0.03803550181359
907 => 0.038309126627223
908 => 0.037141758163699
909 => 0.037891397697068
910 => 0.0376195679815
911 => 0.036272245654506
912 => 0.036220787851847
913 => 0.035544748868831
914 => 0.034486878767354
915 => 0.034003403744534
916 => 0.033751605754927
917 => 0.033855502512884
918 => 0.033802969132768
919 => 0.033460153292562
920 => 0.033822618935443
921 => 0.032896668999027
922 => 0.03252794827346
923 => 0.032361405675978
924 => 0.031539571811719
925 => 0.032847474960933
926 => 0.033105148357858
927 => 0.033363329450974
928 => 0.035610619598832
929 => 0.035498351333821
930 => 0.036513201772658
1001 => 0.036473766550795
1002 => 0.036184314766152
1003 => 0.034963165299249
1004 => 0.03544989371186
1005 => 0.033951819312233
1006 => 0.035074278511591
1007 => 0.034562035008021
1008 => 0.034901088467763
1009 => 0.034291439775928
1010 => 0.034628844533767
1011 => 0.033166252279322
1012 => 0.031800504211348
1013 => 0.032350121102572
1014 => 0.032947617519648
1015 => 0.034243141991124
1016 => 0.033471538303758
1017 => 0.033749036167301
1018 => 0.032819464777014
1019 => 0.030901493479912
1020 => 0.030912348989163
1021 => 0.03061731089038
1022 => 0.030362354896763
1023 => 0.033560166269185
1024 => 0.033162467875108
1025 => 0.032528787533624
1026 => 0.033376993852156
1027 => 0.03360127306562
1028 => 0.033607657979528
1029 => 0.034226487414155
1030 => 0.034556756794346
1031 => 0.034614968204074
1101 => 0.035588709690154
1102 => 0.035915094992328
1103 => 0.037259429860202
1104 => 0.034528735744901
1105 => 0.034472498896579
1106 => 0.033388929854512
1107 => 0.032701713237484
1108 => 0.033435984164219
1109 => 0.03408644796733
1110 => 0.033409141578035
1111 => 0.033497583493759
1112 => 0.032588355004096
1113 => 0.032913361405974
1114 => 0.033193300702361
1115 => 0.033038734676967
1116 => 0.032807341855872
1117 => 0.034033117353266
1118 => 0.03396395429585
1119 => 0.03510542461948
1120 => 0.035995282364075
1121 => 0.037590066523489
1122 => 0.035925826115162
1123 => 0.035865174579927
1124 => 0.03645805306567
1125 => 0.035915004225721
1126 => 0.03625819234716
1127 => 0.037534773611458
1128 => 0.037561745761962
1129 => 0.037109927489363
1130 => 0.037082434306414
1201 => 0.037169210948017
1202 => 0.037677464448304
1203 => 0.037499865058251
1204 => 0.037705387568687
1205 => 0.037962396615059
1206 => 0.039025495000431
1207 => 0.039281804422042
1208 => 0.038659105408727
1209 => 0.038715328157564
1210 => 0.038482421633114
1211 => 0.038257436848805
1212 => 0.038763169787542
1213 => 0.039687406673288
1214 => 0.03968165704359
1215 => 0.039896062036485
1216 => 0.040029634570832
1217 => 0.039456243472344
1218 => 0.039082986951403
1219 => 0.039226117252461
1220 => 0.039454985720826
1221 => 0.039151898292783
1222 => 0.037281102283147
1223 => 0.037848582285559
1224 => 0.037754125864803
1225 => 0.037619608435354
1226 => 0.038190213965972
1227 => 0.038135177670542
1228 => 0.036486626949655
1229 => 0.036592161818096
1230 => 0.036493044874547
1231 => 0.036813311996573
]
'min_raw' => 0.030362354896763
'max_raw' => 0.068015423071948
'avg_raw' => 0.049188888984356
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.030362'
'max' => '$0.068015'
'avg' => '$0.049188'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0074040176221052
'max_diff' => -0.04942539762476
'year' => 2034
]
9 => [
'items' => [
101 => 0.035897708750104
102 => 0.036179342142036
103 => 0.036355979965307
104 => 0.036460021000209
105 => 0.036835888559881
106 => 0.03679178484
107 => 0.036833147010728
108 => 0.037390459376365
109 => 0.040209154075245
110 => 0.040362569408606
111 => 0.039607096198116
112 => 0.039908892844656
113 => 0.039329509278969
114 => 0.039718453348148
115 => 0.039984559002171
116 => 0.038782078720814
117 => 0.038710875642584
118 => 0.038129100754823
119 => 0.038441713626092
120 => 0.037944324070243
121 => 0.0380663660693
122 => 0.037725126000505
123 => 0.038339290184116
124 => 0.039026021172858
125 => 0.039199516540442
126 => 0.038743124922779
127 => 0.038412667313917
128 => 0.03783249261226
129 => 0.038797336071153
130 => 0.039079485701605
131 => 0.038795854059259
201 => 0.038730130410253
202 => 0.038605584214148
203 => 0.038756553474525
204 => 0.039077949054122
205 => 0.038926384834029
206 => 0.039026495671618
207 => 0.038644976392574
208 => 0.039456433288656
209 => 0.040745222127372
210 => 0.040749365794227
211 => 0.040597800757145
212 => 0.040535783609486
213 => 0.040691298535267
214 => 0.040775659002947
215 => 0.041278565756362
216 => 0.041818204739466
217 => 0.044336464410677
218 => 0.04362934717198
219 => 0.045863696964217
220 => 0.047630777555867
221 => 0.048160647760233
222 => 0.047673192104536
223 => 0.046005632638231
224 => 0.045923814215302
225 => 0.048415852083408
226 => 0.047711737243102
227 => 0.047627985023323
228 => 0.046737002906478
301 => 0.047263683687815
302 => 0.047148490874996
303 => 0.046966653384535
304 => 0.047971523626426
305 => 0.049852551013859
306 => 0.049559375255364
307 => 0.04934053315168
308 => 0.048381630757315
309 => 0.048959104177326
310 => 0.048753476953235
311 => 0.049636982002192
312 => 0.049113613183223
313 => 0.047706402880671
314 => 0.047930505759578
315 => 0.047896633060264
316 => 0.048593730811909
317 => 0.048384479369895
318 => 0.047855773357845
319 => 0.049846121866742
320 => 0.049716879705475
321 => 0.049900115541281
322 => 0.049980781622959
323 => 0.05119227168645
324 => 0.051688580402105
325 => 0.051801251169665
326 => 0.052272706063643
327 => 0.051789520942417
328 => 0.053722605932473
329 => 0.055007994652223
330 => 0.056501039795712
331 => 0.058682780043051
401 => 0.059503134558276
402 => 0.059354944857809
403 => 0.061009115413485
404 => 0.063981623131887
405 => 0.059955773654947
406 => 0.064195002929691
407 => 0.062852911885563
408 => 0.059670838163121
409 => 0.05946595012958
410 => 0.061620887399054
411 => 0.066400330857719
412 => 0.065203134479323
413 => 0.06640228904211
414 => 0.065003411547774
415 => 0.064933945489514
416 => 0.066334348684564
417 => 0.0696064670818
418 => 0.068052006284797
419 => 0.065823305562868
420 => 0.067468943493517
421 => 0.066043339621388
422 => 0.062831055096084
423 => 0.065202219005815
424 => 0.063616689226238
425 => 0.064079431107317
426 => 0.067411978874233
427 => 0.06701099791009
428 => 0.067529904407528
429 => 0.066614048021697
430 => 0.065758493740034
501 => 0.064161538139016
502 => 0.063688758314514
503 => 0.06381941764917
504 => 0.063688693566237
505 => 0.062795211584246
506 => 0.062602264235305
507 => 0.062280676867185
508 => 0.062380350239636
509 => 0.061775671903868
510 => 0.062916824856382
511 => 0.063128632900174
512 => 0.063959068854755
513 => 0.064045287470425
514 => 0.066358039783418
515 => 0.065084214673645
516 => 0.065938806534049
517 => 0.065862363794324
518 => 0.059739803349578
519 => 0.060583438159056
520 => 0.061895869175416
521 => 0.061304620781504
522 => 0.060468733883329
523 => 0.059793710395633
524 => 0.058770980787078
525 => 0.060210453071337
526 => 0.062103206054326
527 => 0.064093290809592
528 => 0.066484247247526
529 => 0.06595061360438
530 => 0.064048593542099
531 => 0.064133916772667
601 => 0.064661351410581
602 => 0.063978275631992
603 => 0.063776823249663
604 => 0.06463367494676
605 => 0.064639575613481
606 => 0.063853614377749
607 => 0.062980162293621
608 => 0.062976502497497
609 => 0.062821080135672
610 => 0.065031060840669
611 => 0.066246326774167
612 => 0.066385655054943
613 => 0.066236948870761
614 => 0.066294179979115
615 => 0.065587043508971
616 => 0.067203347784915
617 => 0.068686628424446
618 => 0.068289077527383
619 => 0.067693092217495
620 => 0.067218361211627
621 => 0.068177245989569
622 => 0.068134548359832
623 => 0.068673673262046
624 => 0.068649215442345
625 => 0.068467928015244
626 => 0.068289084001728
627 => 0.068998180299707
628 => 0.068793971953627
629 => 0.068589446415582
630 => 0.068179239137739
701 => 0.068234993119619
702 => 0.067639110714998
703 => 0.067363428248896
704 => 0.063217825413455
705 => 0.062109984874344
706 => 0.062458534060122
707 => 0.062573285502156
708 => 0.062091151879799
709 => 0.062782407644293
710 => 0.062674676165618
711 => 0.063093796328337
712 => 0.062831948246752
713 => 0.062842694583357
714 => 0.0636127339594
715 => 0.063836279666247
716 => 0.06372258251551
717 => 0.063802212102576
718 => 0.065637242326971
719 => 0.065376359710026
720 => 0.065237771019357
721 => 0.065276161033804
722 => 0.065745050599629
723 => 0.065876314077638
724 => 0.06532014149759
725 => 0.065582435701536
726 => 0.066699251131848
727 => 0.067090073326179
728 => 0.068337390165185
729 => 0.067807507802686
730 => 0.068780129811824
731 => 0.071769638276638
801 => 0.074157864496582
802 => 0.071961552967099
803 => 0.076347226281251
804 => 0.07976210204379
805 => 0.07963103342425
806 => 0.079035570847552
807 => 0.075147825581071
808 => 0.071570264423838
809 => 0.074563046243134
810 => 0.074570675459462
811 => 0.074313592847018
812 => 0.072716874820469
813 => 0.074258030520781
814 => 0.074380361863616
815 => 0.074311888842158
816 => 0.073087688874907
817 => 0.071218561794886
818 => 0.071583784752264
819 => 0.072182027406796
820 => 0.071049429255276
821 => 0.070687495519323
822 => 0.07136039919517
823 => 0.073528635043796
824 => 0.073118742616348
825 => 0.073108038668562
826 => 0.074861732294624
827 => 0.073606466129135
828 => 0.071588391383363
829 => 0.071078800894919
830 => 0.069270097962231
831 => 0.070519375520218
901 => 0.070564334795484
902 => 0.069880118244282
903 => 0.07164391178556
904 => 0.071627658117567
905 => 0.073302117578988
906 => 0.07650305517097
907 => 0.075556380416448
908 => 0.07445550067486
909 => 0.074575196826855
910 => 0.075887968178961
911 => 0.075094236651823
912 => 0.075379668043075
913 => 0.075887536144365
914 => 0.07619394557953
915 => 0.074531109224508
916 => 0.074143422527495
917 => 0.073350351604948
918 => 0.073143454204625
919 => 0.073789393923072
920 => 0.073619211628648
921 => 0.070560556142488
922 => 0.070240909625986
923 => 0.070250712728297
924 => 0.069446946364189
925 => 0.068221009732894
926 => 0.071442698003066
927 => 0.071183951347472
928 => 0.070898315065098
929 => 0.070933303879871
930 => 0.072331729564806
1001 => 0.071520572045354
1002 => 0.07367716725692
1003 => 0.073233836114608
1004 => 0.072779135201337
1005 => 0.072716281684595
1006 => 0.072541260626244
1007 => 0.071941048294694
1008 => 0.071216255837177
1009 => 0.070737685076277
1010 => 0.06525177530298
1011 => 0.066269928246835
1012 => 0.067441220401179
1013 => 0.067845545759199
1014 => 0.067153919255842
1015 => 0.07196835792456
1016 => 0.07284800226242
1017 => 0.070183502185261
1018 => 0.069685083011646
1019 => 0.072001034202604
1020 => 0.070604232520938
1021 => 0.071233212232665
1022 => 0.069873702129419
1023 => 0.072636121700422
1024 => 0.07261507669161
1025 => 0.071540433086414
1026 => 0.072448714502683
1027 => 0.072290878254899
1028 => 0.071077608271363
1029 => 0.072674584522971
1030 => 0.072675376603267
1031 => 0.071641055498033
1101 => 0.070433194889124
1102 => 0.070217257940645
1103 => 0.070054578457014
1104 => 0.071193203052125
1105 => 0.072214090303715
1106 => 0.074113708379511
1107 => 0.074591317497579
1108 => 0.076455457681635
1109 => 0.075345452965368
1110 => 0.075837503679122
1111 => 0.076371694333724
1112 => 0.076627804977752
1113 => 0.076210486426964
1114 => 0.079106263443515
1115 => 0.079350755748027
1116 => 0.07943273190288
1117 => 0.078456292185805
1118 => 0.079323599193129
1119 => 0.078917814966591
1120 => 0.079973552793938
1121 => 0.080139105965603
1122 => 0.079998888318928
1123 => 0.080051437508693
1124 => 0.077580402675138
1125 => 0.077452266483271
1126 => 0.075705120415035
1127 => 0.076417095352093
1128 => 0.07508609233311
1129 => 0.07550816710128
1130 => 0.075694213637413
1201 => 0.075597033484985
1202 => 0.076457349346795
1203 => 0.075725905113337
1204 => 0.073795503520676
1205 => 0.071864575991392
1206 => 0.071840334769161
1207 => 0.071331955634403
1208 => 0.070964490634255
1209 => 0.071035277429805
1210 => 0.071284739330189
1211 => 0.070949991455108
1212 => 0.071021426886404
1213 => 0.072207731017716
1214 => 0.072445635850916
1215 => 0.071637142272282
1216 => 0.068390923888999
1217 => 0.067594293755219
1218 => 0.068166895697518
1219 => 0.067893228849387
1220 => 0.054795134530709
1221 => 0.057872337504103
1222 => 0.056043967989251
1223 => 0.056886564780931
1224 => 0.055020272960258
1225 => 0.055910965237819
1226 => 0.055746486897027
1227 => 0.060694538217189
1228 => 0.060617281201647
1229 => 0.060654260046637
1230 => 0.058889163427406
1231 => 0.061701010269437
]
'min_raw' => 0.035897708750104
'max_raw' => 0.080139105965603
'avg_raw' => 0.058018407357854
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.035897'
'max' => '$0.080139'
'avg' => '$0.058018'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0055353538533406
'max_diff' => 0.012123682893656
'year' => 2035
]
10 => [
'items' => [
101 => 0.063086227134564
102 => 0.062829860359182
103 => 0.06289438235334
104 => 0.061785680722107
105 => 0.060664994701929
106 => 0.059421981433209
107 => 0.061731346445407
108 => 0.061474584478226
109 => 0.062063504050899
110 => 0.06356129233813
111 => 0.063781847352969
112 => 0.064078275529561
113 => 0.063972027129447
114 => 0.066503295072947
115 => 0.066196741823145
116 => 0.066935446953778
117 => 0.065415874454374
118 => 0.063696333932153
119 => 0.064023162369412
120 => 0.063991686162716
121 => 0.063590957924763
122 => 0.063229198389309
123 => 0.062626970687895
124 => 0.064532508248098
125 => 0.064455146903074
126 => 0.065707537156286
127 => 0.065486165013961
128 => 0.064007787668561
129 => 0.064060588204671
130 => 0.064415697185084
131 => 0.065644733420855
201 => 0.0660095950548
202 => 0.065840576608734
203 => 0.066240630733788
204 => 0.066556817202711
205 => 0.066280338886193
206 => 0.070194688806918
207 => 0.068569177812308
208 => 0.069361440560848
209 => 0.069550390558092
210 => 0.069066399113343
211 => 0.069171359527274
212 => 0.06933034595438
213 => 0.070295680407033
214 => 0.072828997332568
215 => 0.073950986154016
216 => 0.077326544881296
217 => 0.073857820601233
218 => 0.073652000857463
219 => 0.074260040916353
220 => 0.076241851228446
221 => 0.07784792234442
222 => 0.078380748790054
223 => 0.07845117060085
224 => 0.079450788434492
225 => 0.080023750734967
226 => 0.079329408536929
227 => 0.078741026224751
228 => 0.076633513815228
229 => 0.076877464115196
301 => 0.078558039768103
302 => 0.080931951863247
303 => 0.082969015404337
304 => 0.082255706751079
305 => 0.087697748258004
306 => 0.088237304444669
307 => 0.088162755225612
308 => 0.089391944515563
309 => 0.086952254095057
310 => 0.085909239173515
311 => 0.078868241159067
312 => 0.08084647440255
313 => 0.083721952599518
314 => 0.083341372277659
315 => 0.081253123149268
316 => 0.082967431280115
317 => 0.082400627400685
318 => 0.081953565664265
319 => 0.084001642145989
320 => 0.081749697923988
321 => 0.083699487733256
322 => 0.081198862134877
323 => 0.082258965084922
324 => 0.081657199379067
325 => 0.082046615540386
326 => 0.079770096618391
327 => 0.080998450969327
328 => 0.079718993038937
329 => 0.079718386409288
330 => 0.079690142304561
331 => 0.081195418885679
401 => 0.081244505900948
402 => 0.080132104233155
403 => 0.079971789773846
404 => 0.08056455635412
405 => 0.079870581934432
406 => 0.080195288197582
407 => 0.07988041695636
408 => 0.079809532807758
409 => 0.079244715851753
410 => 0.07900137717714
411 => 0.079096796541521
412 => 0.078771081058835
413 => 0.078574825698873
414 => 0.079651102173789
415 => 0.079076091070111
416 => 0.07956297347533
417 => 0.079008109525124
418 => 0.077084709330996
419 => 0.075978541539765
420 => 0.07234541687235
421 => 0.073375766521152
422 => 0.074058889404281
423 => 0.073833117295482
424 => 0.074318163147391
425 => 0.074347941023319
426 => 0.074190247672406
427 => 0.074007658973819
428 => 0.073918784893135
429 => 0.074581179477385
430 => 0.074965721828718
501 => 0.074127449924609
502 => 0.073931054546146
503 => 0.074778593723461
504 => 0.075295592132016
505 => 0.079112817904474
506 => 0.078830025489773
507 => 0.079539778955463
508 => 0.079459871607281
509 => 0.080203806311918
510 => 0.081419825143734
511 => 0.078947318854438
512 => 0.079376460453425
513 => 0.07927124484368
514 => 0.08041996128186
515 => 0.080423547449194
516 => 0.079734834561863
517 => 0.080108196991175
518 => 0.079899796325796
519 => 0.080276404495176
520 => 0.078826248624665
521 => 0.080592381940295
522 => 0.08159366572314
523 => 0.081607568549436
524 => 0.082082169115825
525 => 0.082564390778288
526 => 0.083489973266729
527 => 0.082538576785046
528 => 0.080827107131079
529 => 0.080950669712082
530 => 0.079947235680163
531 => 0.079964103587525
601 => 0.079874061376066
602 => 0.080144284830714
603 => 0.078885547476977
604 => 0.079180970617971
605 => 0.078767376490584
606 => 0.079375561380566
607 => 0.078721254975509
608 => 0.079271194105528
609 => 0.079508529603272
610 => 0.08038430269942
611 => 0.078591902577139
612 => 0.074937077392988
613 => 0.075705365957168
614 => 0.074569006822981
615 => 0.074674181187274
616 => 0.074886650141523
617 => 0.074197968745287
618 => 0.074329347452844
619 => 0.074324653680912
620 => 0.074284205290186
621 => 0.074105052660888
622 => 0.073845245904138
623 => 0.074880236058727
624 => 0.075056101054099
625 => 0.075447027153746
626 => 0.076610158058591
627 => 0.076493933852681
628 => 0.076683500354616
629 => 0.076269677745263
630 => 0.07469337723125
701 => 0.074778977932972
702 => 0.073711535810847
703 => 0.075419730258747
704 => 0.075015207266419
705 => 0.074754408661687
706 => 0.074683247346104
707 => 0.075849261427487
708 => 0.076198151115668
709 => 0.07598074647511
710 => 0.075534843214618
711 => 0.076391109294227
712 => 0.076620209974165
713 => 0.076671497167495
714 => 0.078188636487827
715 => 0.076756288402186
716 => 0.077101068822716
717 => 0.079790947241774
718 => 0.077351598693537
719 => 0.078643776023502
720 => 0.078580530667367
721 => 0.07924156486448
722 => 0.078526306569061
723 => 0.078535173052862
724 => 0.079122126637564
725 => 0.078297856185487
726 => 0.078093755229811
727 => 0.077811791221344
728 => 0.078427449318386
729 => 0.078796508503741
730 => 0.081770854493603
731 => 0.08369241764971
801 => 0.083608997525341
802 => 0.084371301306144
803 => 0.08402787647099
804 => 0.082918867087384
805 => 0.084811810875913
806 => 0.08421280425709
807 => 0.084262185634953
808 => 0.084260347657602
809 => 0.084658634693052
810 => 0.084376411825965
811 => 0.083820121585354
812 => 0.08418941300805
813 => 0.085286076509358
814 => 0.088690153667162
815 => 0.090595120342694
816 => 0.088575472281349
817 => 0.089968598469899
818 => 0.089133219178385
819 => 0.088981405910736
820 => 0.089856392108362
821 => 0.090732909853499
822 => 0.090677079462424
823 => 0.090040772589139
824 => 0.08968133898211
825 => 0.092403090673628
826 => 0.094408430956108
827 => 0.094271680192815
828 => 0.094875253588261
829 => 0.096647363745113
830 => 0.096809383289048
831 => 0.096788972550489
901 => 0.096387390205855
902 => 0.098132262792859
903 => 0.099587866203049
904 => 0.096294435495902
905 => 0.09754853079501
906 => 0.098111534579206
907 => 0.098938191170103
908 => 0.10033289940268
909 => 0.10184792247134
910 => 0.10206216334463
911 => 0.10191014919266
912 => 0.10091095075287
913 => 0.10256870707259
914 => 0.10353978184551
915 => 0.10411803465013
916 => 0.10558438755056
917 => 0.098115011498908
918 => 0.092827815877471
919 => 0.092002143933153
920 => 0.093681180299869
921 => 0.094123928799708
922 => 0.093945457434582
923 => 0.087994238071859
924 => 0.091970811994842
925 => 0.096249271176139
926 => 0.096413624217866
927 => 0.098555510342386
928 => 0.099252996263408
929 => 0.10097749533708
930 => 0.10086962745049
1001 => 0.10128951553216
1002 => 0.10119299053363
1003 => 0.10438726193148
1004 => 0.1079110176372
1005 => 0.10778900118197
1006 => 0.10728241960809
1007 => 0.1080347796303
1008 => 0.11167167314722
1009 => 0.11133684627221
1010 => 0.11166210206079
1011 => 0.11595020448358
1012 => 0.12152534760865
1013 => 0.11893513389184
1014 => 0.12455515234341
1015 => 0.12809265605429
1016 => 0.13421040293756
1017 => 0.13344443089723
1018 => 0.13582602486479
1019 => 0.13207318108187
1020 => 0.12345589318141
1021 => 0.12209217438551
1022 => 0.12482237394976
1023 => 0.1315343031695
1024 => 0.1246109914129
1025 => 0.12601156836432
1026 => 0.12560820210809
1027 => 0.12558670843449
1028 => 0.12640703453465
1029 => 0.12521710874104
1030 => 0.1203691369943
1031 => 0.12259093387656
1101 => 0.12173299140087
1102 => 0.12268494254149
1103 => 0.12782223023292
1104 => 0.1255509128869
1105 => 0.1231582645697
1106 => 0.12615917653063
1107 => 0.12998036868213
1108 => 0.12974124534463
1109 => 0.12927724612409
1110 => 0.1318927854361
1111 => 0.13621289009845
1112 => 0.13738059702909
1113 => 0.13824257441257
1114 => 0.13836142653053
1115 => 0.13958567721165
1116 => 0.13300257274838
1117 => 0.1434501285977
1118 => 0.14525413288497
1119 => 0.14491505484728
1120 => 0.14692012968848
1121 => 0.14633018580636
1122 => 0.14547544968053
1123 => 0.14865391979548
1124 => 0.145010060298
1125 => 0.13983806049049
1126 => 0.13700059910553
1127 => 0.14073719714872
1128 => 0.1430190071844
1129 => 0.14452713846761
1130 => 0.14498349808267
1201 => 0.13351360040816
1202 => 0.12733196171129
1203 => 0.13129432124336
1204 => 0.13612867333992
1205 => 0.13297571767839
1206 => 0.13309930757098
1207 => 0.12860402137981
1208 => 0.13652640642101
1209 => 0.13537218155825
1210 => 0.14136030218802
1211 => 0.13993118914205
1212 => 0.14481426905812
1213 => 0.14352839046639
1214 => 0.14886600060816
1215 => 0.15099531780374
1216 => 0.15457077277687
1217 => 0.15720089200983
1218 => 0.15874534832958
1219 => 0.15865262496525
1220 => 0.16477253034921
1221 => 0.1611638359575
1222 => 0.15663046529755
1223 => 0.15654847092491
1224 => 0.15889636782806
1225 => 0.163816915623
1226 => 0.16509274207517
1227 => 0.16580575501048
1228 => 0.16471375087989
1229 => 0.16079677175514
1230 => 0.15910544002861
1231 => 0.16054650366221
]
'min_raw' => 0.059421981433209
'max_raw' => 0.16580575501048
'avg_raw' => 0.11261386822185
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.059421'
'max' => '$0.1658057'
'avg' => '$0.112613'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.023524272683105
'max_diff' => 0.08566664904488
'year' => 2036
]
11 => [
'items' => [
101 => 0.15878420667033
102 => 0.16182642569152
103 => 0.16600404219054
104 => 0.16514138090358
105 => 0.16802512824849
106 => 0.1710095033714
107 => 0.17527729383383
108 => 0.17639305229653
109 => 0.17823735860688
110 => 0.1801357556233
111 => 0.18074546958174
112 => 0.18190960271153
113 => 0.1819034671553
114 => 0.18541166069712
115 => 0.18928130681346
116 => 0.19074200863986
117 => 0.19410081194611
118 => 0.18834897899067
119 => 0.19271181035967
120 => 0.19664719346325
121 => 0.19195526749036
122 => 0.19842199436545
123 => 0.1986730827161
124 => 0.20246421870497
125 => 0.19862117608647
126 => 0.19633918964704
127 => 0.20292719899277
128 => 0.20611492919482
129 => 0.20515475891535
130 => 0.19784781567916
131 => 0.19359486130616
201 => 0.18246405937837
202 => 0.19564897507669
203 => 0.20207096290408
204 => 0.19783118428213
205 => 0.19996948200584
206 => 0.21163534104109
207 => 0.21607694485327
208 => 0.21515312230949
209 => 0.21530923311198
210 => 0.21770584190822
211 => 0.22833372514734
212 => 0.22196525115805
213 => 0.22683371090069
214 => 0.22941592439365
215 => 0.23181442819423
216 => 0.22592446091492
217 => 0.21826170002533
218 => 0.21583458199078
219 => 0.19740962185508
220 => 0.19645052266447
221 => 0.1959121512251
222 => 0.19251779545403
223 => 0.18985076161026
224 => 0.18772983727708
225 => 0.1821638984652
226 => 0.18404223942436
227 => 0.17517129465993
228 => 0.18084661075323
301 => 0.16668836871275
302 => 0.1784797733985
303 => 0.17206224791743
304 => 0.17637144367917
305 => 0.17635640930111
306 => 0.16842181367198
307 => 0.16384530450389
308 => 0.1667616342662
309 => 0.16988817126994
310 => 0.17039544137987
311 => 0.17444907821618
312 => 0.17558036112457
313 => 0.17215252109762
314 => 0.16639497061616
315 => 0.16773231827726
316 => 0.16381820319622
317 => 0.15695886707096
318 => 0.16188536202864
319 => 0.16356748400988
320 => 0.16431040490518
321 => 0.15756503562606
322 => 0.15544549414947
323 => 0.15431706805201
324 => 0.16552422814695
325 => 0.16613818167568
326 => 0.1629971086184
327 => 0.1771950566861
328 => 0.17398162376607
329 => 0.17757181564792
330 => 0.16761096799443
331 => 0.16799148578885
401 => 0.16327586088003
402 => 0.1659162957308
403 => 0.16405012148346
404 => 0.16570297468814
405 => 0.16669368808406
406 => 0.17140853920524
407 => 0.17853360942473
408 => 0.17070429767417
409 => 0.16729295442663
410 => 0.16940933259128
411 => 0.17504552653679
412 => 0.18358464887569
413 => 0.17852931658521
414 => 0.18077278721061
415 => 0.1812628857372
416 => 0.17753527086477
417 => 0.18372209135305
418 => 0.18703765871436
419 => 0.19043874476706
420 => 0.19339181249036
421 => 0.18908027620613
422 => 0.1936942380647
423 => 0.1899761992806
424 => 0.18664073412747
425 => 0.18664579265129
426 => 0.18455340663736
427 => 0.18049914507777
428 => 0.17975147704265
429 => 0.18364094058141
430 => 0.18675992200593
501 => 0.18701681625496
502 => 0.18874364463063
503 => 0.1897655638756
504 => 0.19978176170816
505 => 0.20381035933475
506 => 0.2087364522551
507 => 0.21065544306696
508 => 0.21643091741437
509 => 0.21176675281774
510 => 0.21075763146829
511 => 0.19674821984473
512 => 0.19904226021326
513 => 0.20271524018526
514 => 0.19680878593162
515 => 0.20055507167719
516 => 0.20129466784055
517 => 0.19660808687622
518 => 0.19911139226448
519 => 0.19246335533158
520 => 0.17867851846288
521 => 0.18373743781709
522 => 0.18746250527563
523 => 0.18214637471479
524 => 0.19167533298243
525 => 0.1861087122801
526 => 0.18434436076238
527 => 0.17746099645501
528 => 0.1807096794431
529 => 0.18510356970114
530 => 0.18238865636624
531 => 0.18802250918245
601 => 0.19600154726387
602 => 0.20168788496062
603 => 0.20212441136145
604 => 0.19846847717747
605 => 0.20432713503915
606 => 0.20436980896563
607 => 0.19776121896434
608 => 0.19371349438533
609 => 0.19279384284449
610 => 0.19509131270181
611 => 0.19788086524492
612 => 0.20227921211329
613 => 0.20493704100889
614 => 0.21186724916508
615 => 0.2137423647875
616 => 0.21580254835701
617 => 0.21855558894297
618 => 0.22186132003152
619 => 0.21462856860514
620 => 0.21491593930285
621 => 0.20818090131886
622 => 0.20098354733083
623 => 0.20644544184491
624 => 0.21358614235669
625 => 0.21194805776951
626 => 0.21176373979042
627 => 0.21207371150571
628 => 0.21083864922182
629 => 0.20525250828533
630 => 0.20244718327813
701 => 0.20606676825216
702 => 0.20799041657667
703 => 0.21097382736822
704 => 0.210606059016
705 => 0.2182910048201
706 => 0.22127714237887
707 => 0.22051316060731
708 => 0.22065375163953
709 => 0.22606001105317
710 => 0.23207288340319
711 => 0.23770473182737
712 => 0.24343368993796
713 => 0.2365272073306
714 => 0.23302052139521
715 => 0.23663852617168
716 => 0.23471876191018
717 => 0.24575029679582
718 => 0.24651409633652
719 => 0.25754483351663
720 => 0.2680143166163
721 => 0.26143862186167
722 => 0.26763920583949
723 => 0.27434564295253
724 => 0.28728344822379
725 => 0.28292645056591
726 => 0.27958905864283
727 => 0.27643523940168
728 => 0.28299783658781
729 => 0.29144051302772
730 => 0.29325898466992
731 => 0.29620560343993
801 => 0.29310759409867
802 => 0.29683880511568
803 => 0.31001161958295
804 => 0.30645220883424
805 => 0.30139727336725
806 => 0.31179594525861
807 => 0.31555918419227
808 => 0.34197156585229
809 => 0.37531828873912
810 => 0.36151252649758
811 => 0.3529428443651
812 => 0.35495692294181
813 => 0.36713401728227
814 => 0.37104491350277
815 => 0.36041374940868
816 => 0.36416885629329
817 => 0.38485986442147
818 => 0.39595992643521
819 => 0.38088455128332
820 => 0.33929218913731
821 => 0.3009421317357
822 => 0.3111142938842
823 => 0.3099610863755
824 => 0.33219099335339
825 => 0.30636731806506
826 => 0.30680212252841
827 => 0.32949172044072
828 => 0.3234385247159
829 => 0.31363312287643
830 => 0.30101372202043
831 => 0.27768559238482
901 => 0.25702321741355
902 => 0.29754689299299
903 => 0.29579943841448
904 => 0.29326886522654
905 => 0.29890038201968
906 => 0.32624542903324
907 => 0.3256150371923
908 => 0.32160480592897
909 => 0.32464653099765
910 => 0.31309989376536
911 => 0.31607572509217
912 => 0.30093605689067
913 => 0.30777981920614
914 => 0.31361208488791
915 => 0.3147829985717
916 => 0.3174211268896
917 => 0.29487860925656
918 => 0.30499953786025
919 => 0.31094463521215
920 => 0.28408446909176
921 => 0.31041369608997
922 => 0.29448619417714
923 => 0.28908016080488
924 => 0.29635867254989
925 => 0.29352222944428
926 => 0.29108362222359
927 => 0.28972283749386
928 => 0.29506737321937
929 => 0.29481804423968
930 => 0.28607334646306
1001 => 0.27466624469294
1002 => 0.27849484247234
1003 => 0.27710387700579
1004 => 0.27206283871689
1005 => 0.27545988986632
1006 => 0.26050099581245
1007 => 0.23476499608841
1008 => 0.2517669858211
1009 => 0.251112427711
1010 => 0.25078236983004
1011 => 0.26355889521367
1012 => 0.26233072710263
1013 => 0.26010158995483
1014 => 0.27202189886506
1015 => 0.26767082576204
1016 => 0.28107980782378
1017 => 0.28991183064822
1018 => 0.28767174397394
1019 => 0.2959783041292
1020 => 0.2785830456325
1021 => 0.28436105272847
1022 => 0.28555189198297
1023 => 0.27187480410345
1024 => 0.26253167059461
1025 => 0.26190859010909
1026 => 0.24570888416786
1027 => 0.25436263632221
1028 => 0.26197758010143
1029 => 0.25833061297469
1030 => 0.25717609213241
1031 => 0.26307428873061
1101 => 0.26353262912093
1102 => 0.25308241964895
1103 => 0.25525534911327
1104 => 0.26431682619895
1105 => 0.25502702314006
1106 => 0.23697845327736
1107 => 0.23250215841041
1108 => 0.23190493816068
1109 => 0.21976487146209
1110 => 0.23280128583766
1111 => 0.22711054160854
1112 => 0.24508753444275
1113 => 0.23481917254839
1114 => 0.23437652399024
1115 => 0.23370739577217
1116 => 0.22325793886485
1117 => 0.22554570582993
1118 => 0.23315059165857
1119 => 0.23586410059741
1120 => 0.23558105938396
1121 => 0.23311332356918
1122 => 0.23424304038834
1123 => 0.23060382889441
1124 => 0.22931874757227
1125 => 0.22526267743012
1126 => 0.21930137483913
1127 => 0.2201303305272
1128 => 0.20831943023479
1129 => 0.20188422490357
1130 => 0.20010304488252
1201 => 0.19772117651775
1202 => 0.20037208325224
1203 => 0.20828597143823
1204 => 0.19874014326088
1205 => 0.18237449041282
1206 => 0.1833580940347
1207 => 0.18556795933854
1208 => 0.18144988996456
1209 => 0.17755248290545
1210 => 0.18094096213672
1211 => 0.1740066192804
1212 => 0.18640594154351
1213 => 0.18607057462499
1214 => 0.19069227519573
1215 => 0.19358231940946
1216 => 0.18692170315974
1217 => 0.18524657618516
1218 => 0.18620080464016
1219 => 0.17042953384919
1220 => 0.18940342590217
1221 => 0.18956751290856
1222 => 0.1881625003398
1223 => 0.19826551210482
1224 => 0.21958601813741
1225 => 0.21156438615258
1226 => 0.20845816779294
1227 => 0.20255324442065
1228 => 0.21042120421458
1229 => 0.2098170676617
1230 => 0.20708493305758
1231 => 0.20543252952424
]
'min_raw' => 0.15431706805201
'max_raw' => 0.39595992643521
'avg_raw' => 0.27513849724361
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.154317'
'max' => '$0.395959'
'avg' => '$0.275138'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0948950866188
'max_diff' => 0.23015417142473
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0048438364319886
]
1 => [
'year' => 2028
'avg' => 0.008313429493056
]
2 => [
'year' => 2029
'avg' => 0.022710791025145
]
3 => [
'year' => 2030
'avg' => 0.017521341453974
]
4 => [
'year' => 2031
'avg' => 0.017208128703744
]
5 => [
'year' => 2032
'avg' => 0.030171265215075
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0048438364319886
'min' => '$0.004843'
'max_raw' => 0.030171265215075
'max' => '$0.030171'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.030171265215075
]
1 => [
'year' => 2033
'avg' => 0.077603596607788
]
2 => [
'year' => 2034
'avg' => 0.049188888984356
]
3 => [
'year' => 2035
'avg' => 0.058018407357854
]
4 => [
'year' => 2036
'avg' => 0.11261386822185
]
5 => [
'year' => 2037
'avg' => 0.27513849724361
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.030171265215075
'min' => '$0.030171'
'max_raw' => 0.27513849724361
'max' => '$0.275138'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.27513849724361
]
]
]
]
'prediction_2025_max_price' => '$0.008282'
'last_price' => 0.00803052
'sma_50day_nextmonth' => '$0.0064044'
'sma_200day_nextmonth' => '$0.012928'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005965'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005222'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005029'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004885'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.008914'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011454'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014682'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00648'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005885'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005388'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005544'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007756'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.010244'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012433'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.011927'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.011348'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.026671'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.059279'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006391'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.006605'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00834'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.01078'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015757'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.07596'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.344599'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.99'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 73.22
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005070'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0057084'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 87.67
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 212.81
'cci_20_action' => 'SELL'
'adx_14' => 17.34
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000212'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -12.33
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.94
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008057'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767706194
'last_updated_date' => '6. Januar 2026'
]
My DeFi Pet Preisprognose für 2026
Die Preisprognose für My DeFi Pet im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.002774 am unteren Ende und $0.008282 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte My DeFi Pet im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn DPET das prognostizierte Preisziel erreicht.
My DeFi Pet Preisprognose 2027-2032
Die Preisprognose für DPET für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.004843 am unteren Ende und $0.030171 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte My DeFi Pet, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| My DeFi Pet Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.00267 | $0.004843 | $0.007016 |
| 2028 | $0.00482 | $0.008313 | $0.0118065 |
| 2029 | $0.010588 | $0.02271 | $0.034832 |
| 2030 | $0.0090054 | $0.017521 | $0.026037 |
| 2031 | $0.010647 | $0.0172081 | $0.023769 |
| 2032 | $0.016252 | $0.030171 | $0.04409 |
My DeFi Pet Preisprognose 2032-2037
Die Preisprognose für My DeFi Pet für die Jahre 2032-2037 wird derzeit zwischen $0.030171 am unteren Ende und $0.275138 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte My DeFi Pet bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| My DeFi Pet Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.016252 | $0.030171 | $0.04409 |
| 2033 | $0.037766 | $0.0776035 | $0.11744 |
| 2034 | $0.030362 | $0.049188 | $0.068015 |
| 2035 | $0.035897 | $0.058018 | $0.080139 |
| 2036 | $0.059421 | $0.112613 | $0.1658057 |
| 2037 | $0.154317 | $0.275138 | $0.395959 |
My DeFi Pet Potenzielles Preishistogramm
My DeFi Pet Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für My DeFi Pet Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 14 anzeigen bärische Signale. Die Preisprognose für DPET wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von My DeFi Pet
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von My DeFi Pet im nächsten Monat steigen, und bis zum 04.02.2026 $0.012928 erreichen. Der kurzfristige 50-Tage-SMA für My DeFi Pet wird voraussichtlich bis zum 04.02.2026 $0.0064044 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 57.99, was darauf hindeutet, dass sich der DPET-Markt in einem NEUTRAL Zustand befindet.
Beliebte DPET Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005965 | BUY |
| SMA 5 | $0.005222 | BUY |
| SMA 10 | $0.005029 | BUY |
| SMA 21 | $0.004885 | BUY |
| SMA 50 | $0.008914 | SELL |
| SMA 100 | $0.011454 | SELL |
| SMA 200 | $0.014682 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.00648 | BUY |
| EMA 5 | $0.005885 | BUY |
| EMA 10 | $0.005388 | BUY |
| EMA 21 | $0.005544 | BUY |
| EMA 50 | $0.007756 | BUY |
| EMA 100 | $0.010244 | SELL |
| EMA 200 | $0.012433 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.011927 | SELL |
| SMA 50 | $0.011348 | SELL |
| SMA 100 | $0.026671 | SELL |
| SMA 200 | $0.059279 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.01078 | SELL |
| EMA 50 | $0.015757 | SELL |
| EMA 100 | $0.07596 | SELL |
| EMA 200 | $0.344599 | SELL |
My DeFi Pet Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 57.99 | NEUTRAL |
| Stoch RSI (14) | 73.22 | NEUTRAL |
| Stochastic Fast (14) | 87.67 | SELL |
| Commodity Channel Index (20) | 212.81 | SELL |
| Average Directional Index (14) | 17.34 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000212 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -12.33 | SELL |
| Ultimate Oscillator (7, 14, 28) | 68.94 | NEUTRAL |
| VWMA (10) | 0.005070 | BUY |
| Hull Moving Average (9) | 0.0057084 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.0008057 | SELL |
Auf weltweiten Geldflüssen basierende My DeFi Pet-Preisprognose
Definition weltweiter Geldflüsse, die für My DeFi Pet-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
My DeFi Pet-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.011284 | $0.015856 | $0.02228 | $0.031308 | $0.043992 | $0.061817 |
| Amazon.com aktie | $0.016756 | $0.034962 | $0.072951 | $0.152218 | $0.317612 | $0.662717 |
| Apple aktie | $0.01139 | $0.016156 | $0.022917 | $0.0325063 | $0.0461077 | $0.06540026 |
| Netflix aktie | $0.01267 | $0.019992 | $0.031545 | $0.049773 | $0.078534 | $0.123915 |
| Google aktie | $0.010399 | $0.013467 | $0.01744 | $0.022584 | $0.029247 | $0.037875 |
| Tesla aktie | $0.0182045 | $0.041268 | $0.093552 | $0.212076 | $0.48076 | $1.08 |
| Kodak aktie | $0.006022 | $0.004515 | $0.003386 | $0.002539 | $0.0019043 | $0.001428 |
| Nokia aktie | $0.005319 | $0.003524 | $0.002334 | $0.001546 | $0.001024 | $0.000678 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
My DeFi Pet Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in My DeFi Pet investieren?", "Sollte ich heute DPET kaufen?", "Wird My DeFi Pet auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere My DeFi Pet-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie My DeFi Pet.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich My DeFi Pet zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der My DeFi Pet-Preis entspricht heute $0.00803 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige My DeFi Pet-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige My DeFi Pet-Prognose
basierend auf dem Preisverlauf des letzten Monats
My DeFi Pet-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von My DeFi Pet 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008239 | $0.008453 | $0.008673 | $0.008898 |
| Wenn die Wachstumsrate von My DeFi Pet 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008447 | $0.008887 | $0.009349 | $0.009835 |
| Wenn die Wachstumsrate von My DeFi Pet 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009074 | $0.010253 | $0.011586 | $0.013091 |
| Wenn die Wachstumsrate von My DeFi Pet 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.010117 | $0.012747 | $0.016061 | $0.020236 |
| Wenn die Wachstumsrate von My DeFi Pet 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0122053 | $0.01855 | $0.028194 | $0.042851 |
| Wenn die Wachstumsrate von My DeFi Pet 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018467 | $0.042468 | $0.097664 | $0.224594 |
| Wenn die Wachstumsrate von My DeFi Pet 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0289044 | $0.104036 | $0.37446 | $1.34 |
Fragefeld
Ist DPET eine gute Investition?
Die Entscheidung, My DeFi Pet zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von My DeFi Pet in den letzten 2026 Stunden um 24.7366% gestiegen, und My DeFi Pet hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in My DeFi Pet investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann My DeFi Pet steigen?
Es scheint, dass der Durchschnittswert von My DeFi Pet bis zum Ende dieses Jahres potenziell auf $0.008282 steigen könnte. Betrachtet man die Aussichten von My DeFi Pet in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.026037 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird My DeFi Pet nächste Woche kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Prognose wird der Preis von My DeFi Pet in der nächsten Woche um 0.86% steigen und $0.0080992 erreichen bis zum 13. Januar 2026.
Wie viel wird My DeFi Pet nächsten Monat kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Prognose wird der Preis von My DeFi Pet im nächsten Monat um -11.62% fallen und $0.0070975 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von My DeFi Pet in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von My DeFi Pet im Jahr 2026 wird erwartet, dass DPET innerhalb der Spanne von $0.002774 bis $0.008282 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte My DeFi Pet-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird My DeFi Pet in 5 Jahren sein?
Die Zukunft von My DeFi Pet scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.026037 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der My DeFi Pet-Prognose für 2030 könnte der Wert von My DeFi Pet seinen höchsten Gipfel von ungefähr $0.026037 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.0090054 liegen wird.
Wie viel wird My DeFi Pet im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Preisprognosesimulation wird der Wert von DPET im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.008282 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.008282 und $0.002774 während des Jahres 2026 liegen.
Wie viel wird My DeFi Pet im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von My DeFi Pet könnte der Wert von DPET um -12.62% fallen und bis zu $0.007016 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.007016 und $0.00267 im Laufe des Jahres schwanken.
Wie viel wird My DeFi Pet im Jahr 2028 kosten?
Unser neues experimentelles My DeFi Pet-Preisprognosemodell deutet darauf hin, dass der Wert von DPET im Jahr 2028 um 47.02% steigen, und im besten Fall $0.0118065 erreichen wird. Der Preis wird voraussichtlich zwischen $0.0118065 und $0.00482 im Laufe des Jahres liegen.
Wie viel wird My DeFi Pet im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von My DeFi Pet im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.034832 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.034832 und $0.010588.
Wie viel wird My DeFi Pet im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für My DeFi Pet-Preisprognosen wird der Wert von DPET im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.026037 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.026037 und $0.0090054 während des Jahres 2030 liegen.
Wie viel wird My DeFi Pet im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von My DeFi Pet im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.023769 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.023769 und $0.010647 während des Jahres schwanken.
Wie viel wird My DeFi Pet im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen My DeFi Pet-Preisprognose könnte DPET eine 449.04% Steigerung im Wert erfahren und $0.04409 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.04409 und $0.016252 liegen.
Wie viel wird My DeFi Pet im Jahr 2033 kosten?
Laut unserer experimentellen My DeFi Pet-Preisprognose wird der Wert von DPET voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.11744 beträgt. Im Laufe des Jahres könnte der Preis von DPET zwischen $0.11744 und $0.037766 liegen.
Wie viel wird My DeFi Pet im Jahr 2034 kosten?
Die Ergebnisse unserer neuen My DeFi Pet-Preisprognosesimulation deuten darauf hin, dass DPET im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.068015 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.068015 und $0.030362.
Wie viel wird My DeFi Pet im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von My DeFi Pet könnte DPET um 897.93% steigen, wobei der Wert im Jahr 2035 $0.080139 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.080139 und $0.035897.
Wie viel wird My DeFi Pet im Jahr 2036 kosten?
Unsere jüngste My DeFi Pet-Preisprognosesimulation deutet darauf hin, dass der Wert von DPET im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.1658057 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.1658057 und $0.059421.
Wie viel wird My DeFi Pet im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von My DeFi Pet um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.395959 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.395959 und $0.154317 liegen.
Verwandte Prognosen
B3Coin-Preisprognose
Spintop-Preisprognose
DegenX (Avalanche)-Preisprognose
Winkies-Preisprognose
rETH2-Preisprognose
Cirus-Preisprognose
BiFi-Preisprognose
InfinityBit Token-Preisprognose
CocktailBar-Preisprognose
Utopia-Preisprognose
mStable USD-Preisprognose
EQIFi-Preisprognose
NAOS Finance-Preisprognose
InsurAce-Preisprognose
Mizar-Preisprognose
VelasPad-Preisprognose
LGCY Network-Preisprognose
Shroom.Finance-Preisprognose
MetFi [OLD]-Preisprognose
Ethereans-Preisprognose
Cashaa-Preisprognose
Slam Token-Preisprognose
Brazil Fan Token-Preisprognose
S.C. Corinthians Fan Token-Preisprognose
Alvara Protocol-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von My DeFi Pet?
My DeFi Pet-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
My DeFi Pet Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von My DeFi Pet. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von DPET über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von DPET über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von DPET einzuschätzen.
Wie liest man My DeFi Pet-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von My DeFi Pet in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von DPET innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von My DeFi Pet?
Die Preisentwicklung von My DeFi Pet wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von DPET. Die Marktkapitalisierung von My DeFi Pet kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von DPET-„Walen“, großen Inhabern von My DeFi Pet, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen My DeFi Pet-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


