My DeFi Pet Preisvorhersage bis zu $0.008145 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.002728 | $0.008145 |
| 2027 | $0.002626 | $0.0069008 |
| 2028 | $0.00474 | $0.011611 |
| 2029 | $0.010414 | $0.034257 |
| 2030 | $0.008856 | $0.0256072 |
| 2031 | $0.010471 | $0.023376 |
| 2032 | $0.015983 | $0.043362 |
| 2033 | $0.037142 | $0.1155011 |
| 2034 | $0.02986 | $0.066892 |
| 2035 | $0.0353048 | $0.078815 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in My DeFi Pet eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.35 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige My DeFi Pet Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'My DeFi Pet'
'name_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'name_lang' => 'My DeFi Pet'
'name_lang_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'name_with_lang' => 'My DeFi Pet'
'name_with_lang_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'image' => '/uploads/coins/my-defi-pet.PNG?1719975034'
'price_for_sd' => 0.007897
'ticker' => 'DPET'
'marketcap' => '$389.08K'
'low24h' => '$0.006031'
'high24h' => '$0.008122'
'volume24h' => '$14.74K'
'current_supply' => '50.23M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007897'
'change_24h_pct' => '22.2277%'
'ath_price' => '$9.92'
'ath_days' => 1625
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26.07.2021'
'ath_pct' => '-99.92%'
'fdv' => '$774.6K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.38942'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007965'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00698'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002728'
'current_year_max_price_prediction' => '$0.008145'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008856'
'grand_prediction_max_price' => '$0.0256072'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0080475508612099
107 => 0.0080775974948647
108 => 0.0081452940947081
109 => 0.0075668340610125
110 => 0.0078265456334475
111 => 0.0079791018505696
112 => 0.0072898473115692
113 => 0.0079654775044558
114 => 0.0075567643587833
115 => 0.0074180409784765
116 => 0.0076048137346439
117 => 0.007532028209923
118 => 0.0074694514898774
119 => 0.0074345326048875
120 => 0.0075716779036599
121 => 0.0075652799115481
122 => 0.0073408835840009
123 => 0.0070481677222801
124 => 0.0071464127735443
125 => 0.0071107194253677
126 => 0.0069813621270425
127 => 0.0070685333274539
128 => 0.0066846754771767
129 => 0.0060242679969697
130 => 0.0064605534072227
131 => 0.0064437568935151
201 => 0.0064352873296425
202 => 0.0067631437574046
203 => 0.00673162792681
204 => 0.0066744263856769
205 => 0.0069803115758816
206 => 0.0068686593667205
207 => 0.007212745166786
208 => 0.0074393823287834
209 => 0.0073818998135567
210 => 0.0075950531598477
211 => 0.0071486761410983
212 => 0.0072969446811893
213 => 0.0073275026218107
214 => 0.0069765370001158
215 => 0.0067367843064581
216 => 0.006720795535172
217 => 0.0063050974043259
218 => 0.0065271599904258
219 => 0.0067225658766195
220 => 0.0066289816212421
221 => 0.0065993556417397
222 => 0.0067507083459264
223 => 0.00676246974729
224 => 0.0064943085497834
225 => 0.0065500677543057
226 => 0.0067825929063602
227 => 0.006544208717072
228 => 0.0060810671771212
301 => 0.0059662016717807
302 => 0.0059508764959769
303 => 0.0056393521353952
304 => 0.0059738775340983
305 => 0.0058278482328411
306 => 0.0062891530458129
307 => 0.0060256582106708
308 => 0.0060142994749682
309 => 0.0059971290799896
310 => 0.0057289871939277
311 => 0.0057876932256694
312 => 0.0059828410163599
313 => 0.0060524719465755
314 => 0.0060452088700847
315 => 0.0059818846857231
316 => 0.0060108741730515
317 => 0.0059174889337596
318 => 0.00588451266212
319 => 0.0057804304779872
320 => 0.0056274584207492
321 => 0.0056487301235403
322 => 0.0053456524508357
323 => 0.0051805196491967
324 => 0.0051348130661184
325 => 0.0050736923130164
326 => 0.0051417168178174
327 => 0.0053447938698686
328 => 0.0050998398598948
329 => 0.0046798833913207
330 => 0.004705123490653
331 => 0.0047618304999999
401 => 0.0046561573632363
402 => 0.0045561466077636
403 => 0.004643097845518
404 => 0.0044651567535949
405 => 0.0047833338308352
406 => 0.0047747280325768
407 => 0.0048933247710336
408 => 0.0049674857454406
409 => 0.0047965687093329
410 => 0.0047535835369606
411 => 0.004778069844711
412 => 0.0043733657215213
413 => 0.0048602518100663
414 => 0.0048644624211784
415 => 0.0048284086125003
416 => 0.005087660423729
417 => 0.0056347626080893
418 => 0.0054289207591986
419 => 0.0053492125737053
420 => 0.0051976872548162
421 => 0.0053995857455527
422 => 0.0053840830915712
423 => 0.0053139742110601
424 => 0.0052715721413739
425 => 0.0053496992548891
426 => 0.0052618913274149
427 => 0.00524611861084
428 => 0.0051505531092813
429 => 0.0051164405731782
430 => 0.0050911850095065
501 => 0.0050633811154645
502 => 0.0051247095774225
503 => 0.0049857312141947
504 => 0.0048181369323589
505 => 0.0048042032812195
506 => 0.0048426753170745
507 => 0.0048256543051149
508 => 0.0048041217911627
509 => 0.0047630103579967
510 => 0.0047508134739832
511 => 0.0047904474299403
512 => 0.0047457030044679
513 => 0.0048117258416074
514 => 0.0047937712831157
515 => 0.0046934785788999
516 => 0.0045684767363322
517 => 0.0045673639577331
518 => 0.004540432515796
519 => 0.0045061312753197
520 => 0.0044965894549252
521 => 0.0046357750548011
522 => 0.0049238850810696
523 => 0.0048673221890245
524 => 0.0049081946753254
525 => 0.0051092468549396
526 => 0.005173155296989
527 => 0.0051277945985767
528 => 0.005065702076864
529 => 0.0050684338326945
530 => 0.0052806227760713
531 => 0.0052938567401935
601 => 0.0053272946980915
602 => 0.0053702719235563
603 => 0.0051351138059122
604 => 0.0050573579065009
605 => 0.0050205128476268
606 => 0.0049070443271268
607 => 0.0050294103984303
608 => 0.0049581129289194
609 => 0.0049677333934248
610 => 0.0049614680532948
611 => 0.0049648893526662
612 => 0.0047832448938577
613 => 0.0048494265876958
614 => 0.0047393866855393
615 => 0.0045920556091104
616 => 0.0045915617036812
617 => 0.0046276207759134
618 => 0.0046061714287581
619 => 0.0045484517870762
620 => 0.0045566505897481
621 => 0.0044848204511568
622 => 0.0045653720690997
623 => 0.0045676820012748
624 => 0.0045366652406905
625 => 0.0046607661221128
626 => 0.0047116103544882
627 => 0.0046911944582282
628 => 0.004710177920782
629 => 0.0048696726325551
630 => 0.0048956772298163
701 => 0.0049072267541524
702 => 0.0048917519215608
703 => 0.0047130931913246
704 => 0.0047210174657262
705 => 0.0046628743980062
706 => 0.0046137496327484
707 => 0.0046157143657332
708 => 0.0046409708808482
709 => 0.0047512675636304
710 => 0.004983380430201
711 => 0.004992188943815
712 => 0.0050028651192777
713 => 0.004959439748255
714 => 0.0049463422408298
715 => 0.0049636212338772
716 => 0.0050507906226464
717 => 0.0052750139568189
718 => 0.0051957584551493
719 => 0.0051313224986066
720 => 0.0051878502043037
721 => 0.0051791482070905
722 => 0.00510569459323
723 => 0.0051036329949338
724 => 0.0049626520253948
725 => 0.0049105345709376
726 => 0.0048669813250692
727 => 0.0048194223175673
728 => 0.0047912277437278
729 => 0.0048345474233499
730 => 0.0048444551466229
731 => 0.0047497359100307
801 => 0.0047368260280828
802 => 0.0048141758013407
803 => 0.0047801370500201
804 => 0.0048151467498738
805 => 0.0048232693005475
806 => 0.0048219613828108
807 => 0.0047864210171064
808 => 0.0048090733863774
809 => 0.0047554937800551
810 => 0.0046972340055763
811 => 0.004660067899171
812 => 0.0046276355419638
813 => 0.004645630898722
814 => 0.0045814807377012
815 => 0.004560957810103
816 => 0.0048013992733628
817 => 0.0049790159674542
818 => 0.0049764333503781
819 => 0.0049607123331231
820 => 0.0049373540903739
821 => 0.0050490818216998
822 => 0.0050101581141723
823 => 0.0050384783635831
824 => 0.0050456870556553
825 => 0.0050675055954386
826 => 0.0050753038480443
827 => 0.0050517321124353
828 => 0.0049726224886864
829 => 0.0047754888278214
830 => 0.0046837225765366
831 => 0.0046534381851248
901 => 0.0046545389652344
902 => 0.0046241745357136
903 => 0.0046331182210458
904 => 0.0046210642869444
905 => 0.0045982370519164
906 => 0.0046442213812845
907 => 0.0046495206468705
908 => 0.0046387873549242
909 => 0.0046413154337284
910 => 0.0045524483606616
911 => 0.0045592047312178
912 => 0.0045215844014032
913 => 0.0045145310430828
914 => 0.0044194301252884
915 => 0.0042509450643172
916 => 0.0043443021433358
917 => 0.0042315399198731
918 => 0.0041888351572212
919 => 0.0043909928616619
920 => 0.0043707018351179
921 => 0.0043359724179719
922 => 0.0042846003717683
923 => 0.0042655459801162
924 => 0.0041497775283255
925 => 0.004142937310593
926 => 0.0042003152813116
927 => 0.0041738373220804
928 => 0.0041366522393325
929 => 0.0040019716390108
930 => 0.0038505460530349
1001 => 0.0038551166396482
1002 => 0.003903282301174
1003 => 0.0040433304580845
1004 => 0.0039886112203218
1005 => 0.0039489117854941
1006 => 0.0039414772747115
1007 => 0.0040345357423584
1008 => 0.0041662329704304
1009 => 0.0042280223632824
1010 => 0.0041667909515378
1011 => 0.004096451602659
1012 => 0.0041007328329041
1013 => 0.0041292139396998
1014 => 0.0041322069013228
1015 => 0.0040864232162046
1016 => 0.0040993110553859
1017 => 0.0040797332491808
1018 => 0.0039595842886378
1019 => 0.003957411174938
1020 => 0.0039279246823571
1021 => 0.0039270318430804
1022 => 0.0038768679634499
1023 => 0.0038698496899231
1024 => 0.0037702462621869
1025 => 0.0038358055399498
1026 => 0.003791831818443
1027 => 0.00372555304778
1028 => 0.0037141265627357
1029 => 0.0037137830687974
1030 => 0.0037818365466063
1031 => 0.0038350102954389
1101 => 0.0037925967601554
1102 => 0.0037829400203231
1103 => 0.0038860487376397
1104 => 0.0038729272135044
1105 => 0.0038615640582279
1106 => 0.0041544409281244
1107 => 0.0039226060321342
1108 => 0.0038215127848092
1109 => 0.0036963906941576
1110 => 0.0037371310777941
1111 => 0.0037457156752271
1112 => 0.0034448196021619
1113 => 0.0033227461027936
1114 => 0.0032808550780532
1115 => 0.0032567462010629
1116 => 0.0032677329190476
1117 => 0.0031578524518228
1118 => 0.003231693943053
1119 => 0.003136546746401
1120 => 0.0031205950092465
1121 => 0.0032907299833362
1122 => 0.0033144032710667
1123 => 0.0032134056708945
1124 => 0.0032782624802313
1125 => 0.0032547444995887
1126 => 0.0031381777719986
1127 => 0.0031337257804115
1128 => 0.0030752366940254
1129 => 0.0029837125995499
1130 => 0.0029418836324554
1201 => 0.0029200987432168
1202 => 0.0029290876130956
1203 => 0.0029245425654209
1204 => 0.0028948830549547
1205 => 0.0029262426138427
1206 => 0.0028461318995483
1207 => 0.0028142311676204
1208 => 0.0027998223470999
1209 => 0.0027287194771629
1210 => 0.0028418757628224
1211 => 0.0028641689766026
1212 => 0.0028865061149007
1213 => 0.0030809356535738
1214 => 0.0030712225032738
1215 => 0.0031590246514892
1216 => 0.0031556128214673
1217 => 0.0031305702264958
1218 => 0.0030249196376179
1219 => 0.003067030079304
1220 => 0.0029374206852099
1221 => 0.0030345328558473
1222 => 0.0029902149166696
1223 => 0.0030195489160315
1224 => 0.0029668037402387
1225 => 0.0029959950983174
1226 => 0.0028694555246136
1227 => 0.0027512946511489
1228 => 0.002798846035962
1229 => 0.0028505398294144
1230 => 0.0029626251449526
1231 => 0.0028958680557018
]
'min_raw' => 0.0027287194771629
'max_raw' => 0.0081452940947081
'avg_raw' => 0.0054370067859355
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002728'
'max' => '$0.008145'
'avg' => '$0.005437'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0051691705228371
'max_diff' => 0.00024740409470806
'year' => 2026
]
1 => [
'items' => [
101 => 0.0029198764293614
102 => 0.002839452396555
103 => 0.0026735146448859
104 => 0.0026744538345396
105 => 0.0026489279265957
106 => 0.0026268698152886
107 => 0.0029035359104504
108 => 0.0028691281080733
109 => 0.0028143037781672
110 => 0.0028876883223787
111 => 0.0029070923606376
112 => 0.002907644766328
113 => 0.0029611842354554
114 => 0.0029897582597263
115 => 0.0029947945553509
116 => 0.0030790400668198
117 => 0.003107278051039
118 => 0.0032235863116488
119 => 0.0029873339534025
120 => 0.0029824684915546
121 => 0.0028887209934087
122 => 0.0028292648479953
123 => 0.0028927920065521
124 => 0.0029490683967115
125 => 0.0028904696577208
126 => 0.0028981214159461
127 => 0.0028194573965439
128 => 0.002847576081994
129 => 0.0028717956818997
130 => 0.0028584230423941
131 => 0.0028384035538111
201 => 0.002944454374486
202 => 0.002938470571567
203 => 0.0030372275338772
204 => 0.0031142156481762
205 => 0.0032521921122716
206 => 0.0031082064791123
207 => 0.003102959070349
208 => 0.0031542533327218
209 => 0.0031072701981547
210 => 0.0031369619173984
211 => 0.0032474083172692
212 => 0.0032497418756594
213 => 0.0032106517660048
214 => 0.0032082731292798
215 => 0.0032157808124379
216 => 0.0032597535471931
217 => 0.003244388122524
218 => 0.0032621693809561
219 => 0.0032844051169016
220 => 0.0033763815485293
221 => 0.00339855675481
222 => 0.0033446825000742
223 => 0.0033495467420723
224 => 0.0033293962919198
225 => 0.0033099312095568
226 => 0.0033536858720618
227 => 0.0034336483777896
228 => 0.0034331509351916
301 => 0.0034517006822714
302 => 0.0034632570210278
303 => 0.0034136487553285
304 => 0.0033813555985048
305 => 0.003393738849698
306 => 0.003413539938028
307 => 0.0033873176236249
308 => 0.0032254613517717
309 => 0.0032745582052333
310 => 0.0032663860881038
311 => 0.0032547479995481
312 => 0.0033041152653584
313 => 0.0032993536721388
314 => 0.0031567254688127
315 => 0.0031658560636336
316 => 0.0031572807305253
317 => 0.0031849893861464
318 => 0.0031057738398191
319 => 0.0031301400083445
320 => 0.003145422240825
321 => 0.0031544235931597
322 => 0.0031869426500775
323 => 0.0031831269140818
324 => 0.0031867054585705
325 => 0.003234922635267
326 => 0.0034787885688607
327 => 0.0034920616535663
328 => 0.003426700130073
329 => 0.0034528107695096
330 => 0.0034026840515606
331 => 0.0034363344531396
401 => 0.0034593572032724
402 => 0.0033553218224425
403 => 0.0033491615223737
404 => 0.0032988279136287
405 => 0.003325874343927
406 => 0.0032828415286153
407 => 0.0032934002762688
408 => 0.0032638770973345
409 => 0.0033170129414099
410 => 0.0033764270715617
411 => 0.0033914374271731
412 => 0.0033519516439238
413 => 0.0033233613346114
414 => 0.0032731661696923
415 => 0.0033566418476251
416 => 0.0033810526797278
417 => 0.003356513627916
418 => 0.0033508273934224
419 => 0.0033400519893317
420 => 0.0033531134463388
421 => 0.0033809197330937
422 => 0.0033678068017616
423 => 0.0033764681239266
424 => 0.0033434600953503
425 => 0.0034136651777287
426 => 0.0035251677443186
427 => 0.0035255262433027
428 => 0.003512413241287
429 => 0.0035070476833858
430 => 0.0035205024192174
501 => 0.0035278010614638
502 => 0.0035713112099666
503 => 0.0036179993328309
504 => 0.0038358724306145
505 => 0.0037746945365901
506 => 0.0039680045102723
507 => 0.0041208876012964
508 => 0.0041667305555272
509 => 0.0041245571947125
510 => 0.0039802844055258
511 => 0.0039732056941986
512 => 0.0041888101516441
513 => 0.004127892017106
514 => 0.0041206459988426
515 => 0.004043560606861
516 => 0.0040891276207336
517 => 0.0040791614463719
518 => 0.00406342935258
519 => 0.0041503680408233
520 => 0.0043131095041446
521 => 0.0042877447209062
522 => 0.0042688110868572
523 => 0.0041858494139523
524 => 0.0042358108712015
525 => 0.0042180205532238
526 => 0.004294459049271
527 => 0.0042491785775326
528 => 0.0041274305023222
529 => 0.0041468192845864
530 => 0.004143888709152
531 => 0.0042041997439294
601 => 0.0041860958683011
602 => 0.0041403536368787
603 => 0.0043125532715152
604 => 0.0043013715850666
605 => 0.0043172246599614
606 => 0.0043242036738027
607 => 0.004429018556908
608 => 0.0044719578608141
609 => 0.0044817058345591
610 => 0.0045224948522249
611 => 0.0044806909666416
612 => 0.0046479363146401
613 => 0.0047591447120226
614 => 0.004888318988314
615 => 0.0050770773247481
616 => 0.0051480522053596
617 => 0.0051352312284487
618 => 0.0052783456448639
619 => 0.0055355190699073
620 => 0.0051872133305196
621 => 0.0055539801198473
622 => 0.0054378659888723
623 => 0.0051625614731348
624 => 0.0051448351079483
625 => 0.0053312745223569
626 => 0.0057447791993866
627 => 0.0056412009677219
628 => 0.0057449486162677
629 => 0.0056239214733582
630 => 0.0056179114556159
701 => 0.0057390705980743
702 => 0.0060221655384693
703 => 0.0058876777439428
704 => 0.0056948565127289
705 => 0.0058372327092266
706 => 0.0057138932715253
707 => 0.0054359749978495
708 => 0.0056411217634002
709 => 0.00550394596352
710 => 0.0055439811545916
711 => 0.0058323042825797
712 => 0.0057976124810118
713 => 0.0058425068846149
714 => 0.0057632694373464
715 => 0.0056892491669991
716 => 0.0055510848355783
717 => 0.0055101811884639
718 => 0.0055214854849672
719 => 0.0055101755866159
720 => 0.0054328739129818
721 => 0.0054161806239204
722 => 0.0053883577441351
723 => 0.0053969812179852
724 => 0.0053446660641182
725 => 0.0054433955683276
726 => 0.0054617206343103
727 => 0.0055335677341165
728 => 0.005541027138362
729 => 0.0057411202886428
730 => 0.0056309123438969
731 => 0.0057048493481286
801 => 0.0056982357265481
802 => 0.0051685281567871
803 => 0.0052415171862507
804 => 0.0053550652108769
805 => 0.0053039119796935
806 => 0.0052315932788129
807 => 0.0051731920503683
808 => 0.0050847082174427
809 => 0.005209247513104
810 => 0.0053730034436212
811 => 0.0055451802589983
812 => 0.0057520394212021
813 => 0.0057058708643043
814 => 0.0055413131708491
815 => 0.0055486951087681
816 => 0.0055943273442974
817 => 0.0055352294531611
818 => 0.0055178003313372
819 => 0.0055919328506012
820 => 0.0055924433605188
821 => 0.0055244440945478
822 => 0.0054488753541554
823 => 0.0054485587183739
824 => 0.0054351119909285
825 => 0.0056263136162987
826 => 0.0057314551775875
827 => 0.0057435094881452
828 => 0.0057306438264433
829 => 0.0057355953090125
830 => 0.0056744157511347
831 => 0.005814254078209
901 => 0.0059425835557096
902 => 0.00590818851438
903 => 0.0058566254578838
904 => 0.0058155529997712
905 => 0.0058985131485502
906 => 0.0058948190637165
907 => 0.0059414627096758
908 => 0.0059393466844683
909 => 0.0059236621806885
910 => 0.005908189074523
911 => 0.0059695381914683
912 => 0.0059518706310247
913 => 0.0059341756279799
914 => 0.005898685590404
915 => 0.0059035092759377
916 => 0.0058519551225302
917 => 0.0058281038122063
918 => 0.0054694373322306
919 => 0.0053735899290157
920 => 0.0054037454732209
921 => 0.0054136734613616
922 => 0.0053719605486507
923 => 0.00543176615031
924 => 0.0054224455106412
925 => 0.0054587066672007
926 => 0.0054360522708588
927 => 0.0054369820151868
928 => 0.0055036037644019
929 => 0.0055229443416283
930 => 0.0055131075679533
1001 => 0.0055199969070504
1002 => 0.0056787588187333
1003 => 0.0056561879518122
1004 => 0.0056441976286143
1005 => 0.0056475190300835
1006 => 0.0056880861024122
1007 => 0.0056994426677843
1008 => 0.0056513241022913
1009 => 0.0056740170959479
1010 => 0.005770640982768
1011 => 0.0058044538747166
1012 => 0.0059123683947078
1013 => 0.0058665243885879
1014 => 0.0059506730459031
1015 => 0.0062093173300988
1016 => 0.0064159402811374
1017 => 0.0062259212763077
1018 => 0.006605358012616
1019 => 0.0069008039387992
1020 => 0.0068894642320613
1021 => 0.0068379464010439
1022 => 0.0065015890689207
1023 => 0.0061920680370957
1024 => 0.0064509955231746
1025 => 0.0064516555825855
1026 => 0.0064294134818999
1027 => 0.0062912697047874
1028 => 0.0064246063779004
1029 => 0.0064351901588044
1030 => 0.0064292660559527
1031 => 0.0063233515459358
1101 => 0.0061616396654133
1102 => 0.0061932377797839
1103 => 0.0062449961357069
1104 => 0.0061470067700205
1105 => 0.0061156932302986
1106 => 0.0061739110582862
1107 => 0.0063615010302284
1108 => 0.0063260382326675
1109 => 0.0063251121557067
1110 => 0.0064768370422391
1111 => 0.0063682347677618
1112 => 0.0061936363331973
1113 => 0.0061495479257993
1114 => 0.0059930637810464
1115 => 0.0061011479372046
1116 => 0.0061050376935663
1117 => 0.0060458411058317
1118 => 0.0061984398100409
1119 => 0.0061970335861171
1120 => 0.006341903344444
1121 => 0.0066188399117686
1122 => 0.0065369361415899
1123 => 0.0064416909679769
1124 => 0.0064520467592109
1125 => 0.0065656242287764
1126 => 0.0064969526979556
1127 => 0.0065216474592337
1128 => 0.0065655868502976
1129 => 0.0065920965758801
1130 => 0.0064482324176611
1201 => 0.006414690800562
1202 => 0.0063460764234853
1203 => 0.006328176213254
1204 => 0.0063840611916971
1205 => 0.0063693374743227
1206 => 0.006104710774606
1207 => 0.0060770558121165
1208 => 0.0060779039503339
1209 => 0.0060083642322323
1210 => 0.0059022994706828
1211 => 0.0061810313312371
1212 => 0.0061586452619847
1213 => 0.0061339327740742
1214 => 0.0061369599128357
1215 => 0.0062579479664031
1216 => 0.0061877687852908
1217 => 0.0063743516404193
1218 => 0.0063359958145989
1219 => 0.006296656306576
1220 => 0.0062912183882565
1221 => 0.0062760760339568
1222 => 0.0062241472668412
1223 => 0.006161440160114
1224 => 0.0061200354966562
1225 => 0.005645409241813
1226 => 0.005733497113938
1227 => 0.0058348341813556
1228 => 0.0058698153309453
1229 => 0.0058099776539502
1230 => 0.0062265100230439
1231 => 0.0063026145006831
]
'min_raw' => 0.0026268698152886
'max_raw' => 0.0069008039387992
'avg_raw' => 0.0047638368770439
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002626'
'max' => '$0.0069008'
'avg' => '$0.004763'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00010184966187429
'max_diff' => -0.0012444901559089
'year' => 2027
]
2 => [
'items' => [
101 => 0.0060720890737417
102 => 0.0060289671786521
103 => 0.006229337087307
104 => 0.006108489538163
105 => 0.0061629071821429
106 => 0.0060452860007181
107 => 0.0062842831606191
108 => 0.0062824624026904
109 => 0.0061894871094932
110 => 0.0062680691906361
111 => 0.0062544136202275
112 => 0.006149444743196
113 => 0.0062876108612506
114 => 0.0062876793899213
115 => 0.0061981926916763
116 => 0.0060936918192832
117 => 0.0060750095314998
118 => 0.0060609349372672
119 => 0.00615944569475
120 => 0.006247770131874
121 => 0.0064121200118768
122 => 0.0064534414765663
123 => 0.0066147219041753
124 => 0.0065186872621357
125 => 0.006561258175095
126 => 0.0066074749231357
127 => 0.006629632931711
128 => 0.0065935276458018
129 => 0.0068440625355509
130 => 0.0068652153564364
131 => 0.0068723077143082
201 => 0.0067878287591034
202 => 0.0068628658438709
203 => 0.0068277584768752
204 => 0.0069190980926905
205 => 0.0069334213107331
206 => 0.0069212900546143
207 => 0.0069258364700976
208 => 0.0067120491390798
209 => 0.0067009631381485
210 => 0.0065498047288237
211 => 0.0066114028979302
212 => 0.0064962480732628
213 => 0.006532764854391
214 => 0.0065488611035676
215 => 0.0065404533364518
216 => 0.0066148855659903
217 => 0.0065516029653827
218 => 0.0063845897777565
219 => 0.006217531087499
220 => 0.0062154338017259
221 => 0.0061714501974119
222 => 0.0061396581074918
223 => 0.0061457823918954
224 => 0.0061673651689366
225 => 0.0061384036772548
226 => 0.00614458407989
227 => 0.0062472199434418
228 => 0.0062678028339116
229 => 0.0061978541298407
301 => 0.0059169999894463
302 => 0.0058480776789242
303 => 0.0058976176689387
304 => 0.0058739407444957
305 => 0.0047407286230865
306 => 0.0050069600018386
307 => 0.0048487743569475
308 => 0.0049216735798849
309 => 0.0047602069984252
310 => 0.0048372673142864
311 => 0.004823037087739
312 => 0.0052511292664132
313 => 0.0052444451958647
314 => 0.0052476445067231
315 => 0.0050949330636913
316 => 0.0053382065390085
317 => 0.0054580518007809
318 => 0.0054358716324052
319 => 0.0054414539029324
320 => 0.005345532000328
321 => 0.0052485732404152
322 => 0.0051410310538258
323 => 0.005340831143893
324 => 0.0053186167845788
325 => 0.0053695685323713
326 => 0.0054991531727853
327 => 0.0055182350033304
328 => 0.0055438811770919
329 => 0.0055346888494174
330 => 0.0057536873881604
331 => 0.0057271652201197
401 => 0.0057910760141492
402 => 0.0056596066619069
403 => 0.0055108366106594
404 => 0.0055391129337421
405 => 0.0055363896964454
406 => 0.0055017197600722
407 => 0.005470421291712
408 => 0.0054183181601811
409 => 0.0055831801781575
410 => 0.005576487081301
411 => 0.0056848405395328
412 => 0.005665688013301
413 => 0.0055377827557068
414 => 0.0055423509170043
415 => 0.005573073997113
416 => 0.0056794069281594
417 => 0.005710973781792
418 => 0.0056963507574677
419 => 0.0057309623713942
420 => 0.0057583179798126
421 => 0.0057343978146372
422 => 0.006073056910356
423 => 0.0059324220425838
424 => 0.0060009664986049
425 => 0.0060173139474785
426 => 0.0059754403009385
427 => 0.0059845211954901
428 => 0.0059982762763403
429 => 0.0060817944337412
430 => 0.0063009702449349
501 => 0.0063980417197324
502 => 0.0066900860410828
503 => 0.0063899812850506
504 => 0.0063721743107846
505 => 0.0064247803119534
506 => 0.006596241244617
507 => 0.0067351942260345
508 => 0.0067812929463604
509 => 0.0067873856532584
510 => 0.0068738699171749
511 => 0.0069234410844158
512 => 0.0068633684527735
513 => 0.0068124631873233
514 => 0.006630126845075
515 => 0.0066512327731756
516 => 0.0067966316880471
517 => 0.0070020162192563
518 => 0.0071782575136523
519 => 0.007116543954984
520 => 0.0075873748446399
521 => 0.0076340558041776
522 => 0.0076276060049456
523 => 0.0077339521778306
524 => 0.0075228766816753
525 => 0.0074326378176738
526 => 0.006823469483513
527 => 0.0069946209377587
528 => 0.0072433996278774
529 => 0.007210472835368
530 => 0.0070298031007304
531 => 0.0071781204594575
601 => 0.0071290821023497
602 => 0.0070904035154954
603 => 0.0072675976200877
604 => 0.0070727654233559
605 => 0.0072414560276761
606 => 0.0070251085827545
607 => 0.0071168258573217
608 => 0.007064762696412
609 => 0.0070984539421416
610 => 0.0069014956080316
611 => 0.007007769544224
612 => 0.0068970742628897
613 => 0.0068970217789134
614 => 0.0068945781744426
615 => 0.0070248106820345
616 => 0.0070290575594315
617 => 0.0069328155395508
618 => 0.006918945560903
619 => 0.0069702301415138
620 => 0.0069101893290715
621 => 0.0069382820473209
622 => 0.0069110402288888
623 => 0.0069049075217593
624 => 0.0068560410679569
625 => 0.0068349880560478
626 => 0.0068432434844866
627 => 0.0068150634512597
628 => 0.0067980839619241
629 => 0.0068912005266462
630 => 0.0068414521024267
701 => 0.0068835758671417
702 => 0.006835570520806
703 => 0.0066691630754727
704 => 0.0065734603939347
705 => 0.0062591321556783
706 => 0.0063482752541249
707 => 0.0064073772206201
708 => 0.006387844021046
709 => 0.006429808892076
710 => 0.0064323851943327
711 => 0.0064187419869796
712 => 0.0064029449006678
713 => 0.006395255752685
714 => 0.0064525643621487
715 => 0.0064858339388614
716 => 0.0064133088936402
717 => 0.0063963172902781
718 => 0.0064696441152143
719 => 0.0065143734360658
720 => 0.0068446296099991
721 => 0.0068201631659207
722 => 0.0068815691392603
723 => 0.0068746557690137
724 => 0.0069390190118123
725 => 0.0070442257118519
726 => 0.0068303110744153
727 => 0.0068674392588627
728 => 0.0068583362854512
729 => 0.0069577201622302
730 => 0.0069580304278454
731 => 0.0068984448291235
801 => 0.0069307471488566
802 => 0.0069127168801494
803 => 0.0069453000126402
804 => 0.0068198364016436
805 => 0.0069726375368776
806 => 0.0070592659342677
807 => 0.0070604687696495
808 => 0.0071015299424869
809 => 0.0071432504721924
810 => 0.0072233293958699
811 => 0.007141017114474
812 => 0.0069929453331818
813 => 0.0070036356375221
814 => 0.0069168212063279
815 => 0.0069182805726005
816 => 0.0069104903610644
817 => 0.0069338693723042
818 => 0.0068249667798949
819 => 0.0068505260006619
820 => 0.0068147429419135
821 => 0.0068673614734812
822 => 0.0068107526316692
823 => 0.0068583318957218
824 => 0.0068788655288093
825 => 0.0069546350769597
826 => 0.006799561407801
827 => 0.006483355698822
828 => 0.006549825972473
829 => 0.0064515112166159
830 => 0.0064606106215811
831 => 0.0064789928677705
901 => 0.006419409993574
902 => 0.0064307765282986
903 => 0.0064303704356931
904 => 0.0064268709490085
905 => 0.0064113711422302
906 => 0.0063888933558584
907 => 0.0064784379384659
908 => 0.0064936533079416
909 => 0.0065274751895007
910 => 0.006628106167419
911 => 0.0066180507596831
912 => 0.0066344515468953
913 => 0.0065986487204976
914 => 0.0064622714120127
915 => 0.0064696773559945
916 => 0.0063773251158698
917 => 0.0065251135350846
918 => 0.0064901152867027
919 => 0.0064675516882938
920 => 0.0064613950014177
921 => 0.006562275424066
922 => 0.0065924604276293
923 => 0.0065736511590489
924 => 0.0065350728004365
925 => 0.0066091546536402
926 => 0.0066289758322951
927 => 0.006633413063219
928 => 0.0067646719033096
929 => 0.0066407489742762
930 => 0.0066705784549825
1001 => 0.0069032995482524
1002 => 0.0066922536299723
1003 => 0.0068040493597708
1004 => 0.0067985775405541
1005 => 0.0068557684529578
1006 => 0.0067938862164593
1007 => 0.0067946533209459
1008 => 0.0068454349767124
1009 => 0.0067741212997082
1010 => 0.0067564630303955
1011 => 0.0067320682578109
1012 => 0.0067853333512845
1013 => 0.006817263365849
1014 => 0.0070745958332271
1015 => 0.0072408443429396
1016 => 0.0072336270566837
1017 => 0.0072995795428686
1018 => 0.0072698673437868
1019 => 0.0071739188152694
1020 => 0.007337691253772
1021 => 0.0072858668016999
1022 => 0.007290139146562
1023 => 0.0072899801296729
1024 => 0.0073244388597286
1025 => 0.0073000216913879
1026 => 0.0072518929462175
1027 => 0.0072838430533361
1028 => 0.0073787234491061
1029 => 0.0076732351088622
1030 => 0.0078380477354222
1031 => 0.0076633131817984
1101 => 0.0077838427370992
1102 => 0.0077115679529905
1103 => 0.0076984334747294
1104 => 0.0077741349425225
1105 => 0.0078499689157137
1106 => 0.0078451386194607
1107 => 0.0077900870490415
1108 => 0.0077589898137935
1109 => 0.0079944684974289
1110 => 0.0081679651802567
1111 => 0.0081561338696244
1112 => 0.0082083534270072
1113 => 0.0083616716625732
1114 => 0.0083756891605867
1115 => 0.0083739232780255
1116 => 0.0083391794466245
1117 => 0.0084901411604279
1118 => 0.0086160760780014
1119 => 0.0083311372535009
1120 => 0.0084396382277476
1121 => 0.00848834781077
1122 => 0.008559867930129
1123 => 0.0086805343596513
1124 => 0.0088116101073023
1125 => 0.0088301456551925
1126 => 0.0088169937969567
1127 => 0.0087305458178757
1128 => 0.0088739704650143
1129 => 0.0089579852595862
1130 => 0.0090080141471094
1201 => 0.0091348790818551
1202 => 0.008488648624572
1203 => 0.0080312145871694
1204 => 0.0079597796568014
1205 => 0.0081050453967446
1206 => 0.0081433508138951
1207 => 0.0081279099482726
1208 => 0.0076130263510927
1209 => 0.0079570689012198
1210 => 0.0083272297572373
1211 => 0.0083414491432445
1212 => 0.0085267594074654
1213 => 0.0085871040256201
1214 => 0.0087363030774895
1215 => 0.0087269706361725
1216 => 0.0087632982310273
1217 => 0.0087549471460764
1218 => 0.0090313069720974
1219 => 0.0093361729000299
1220 => 0.0093256163623599
1221 => 0.0092817882782096
1222 => 0.0093468804569716
1223 => 0.0096615347660162
1224 => 0.009632566439472
1225 => 0.0096607067011936
1226 => 0.010031701864697
1227 => 0.010514048350698
1228 => 0.010289949981155
1229 => 0.010776178960494
1230 => 0.011082234329098
1231 => 0.011611525442382
]
'min_raw' => 0.0047407286230865
'max_raw' => 0.011611525442382
'avg_raw' => 0.0081761270327342
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00474'
'max' => '$0.011611'
'avg' => '$0.008176'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0021138588077979
'max_diff' => 0.0047107215035826
'year' => 2028
]
3 => [
'items' => [
101 => 0.011545255588185
102 => 0.011751304734469
103 => 0.011426618718237
104 => 0.010681073995098
105 => 0.01056308868883
106 => 0.010799298259841
107 => 0.011379996441179
108 => 0.010781010007582
109 => 0.010902184182977
110 => 0.010867286012311
111 => 0.010865426437104
112 => 0.01093639885932
113 => 0.010833449659223
114 => 0.010414016097822
115 => 0.010606240027275
116 => 0.010532013136762
117 => 0.010614373405767
118 => 0.01105883780963
119 => 0.010862329501974
120 => 0.010655323962897
121 => 0.010914954847106
122 => 0.011245554181556
123 => 0.01122486586935
124 => 0.011184721896627
125 => 0.011411011368995
126 => 0.011784775280753
127 => 0.011885802164196
128 => 0.01196037814415
129 => 0.011970660911814
130 => 0.01207657980946
131 => 0.011507027201822
201 => 0.012410921817291
202 => 0.012566999447798
203 => 0.012537663322017
204 => 0.012711137039575
205 => 0.012660096671266
206 => 0.012586147185575
207 => 0.012861139926821
208 => 0.012545882939752
209 => 0.012098415336359
210 => 0.011852925759231
211 => 0.012176206237472
212 => 0.0123736223446
213 => 0.012504101833388
214 => 0.012543584847858
215 => 0.011551239949445
216 => 0.011016421087171
217 => 0.011359233846178
218 => 0.011777489071839
219 => 0.011504703772925
220 => 0.011515396440192
221 => 0.011126476290657
222 => 0.011811899875243
223 => 0.011712039424289
224 => 0.01223011562049
225 => 0.012106472578446
226 => 0.012528943604846
227 => 0.012417692825049
228 => 0.012879488592039
301 => 0.013063711426113
302 => 0.013373050236518
303 => 0.013600601124687
304 => 0.013734223358574
305 => 0.013726201180856
306 => 0.014255679041852
307 => 0.01394346444577
308 => 0.013551249329761
309 => 0.013544155395735
310 => 0.013747289162048
311 => 0.014173001809211
312 => 0.014283382904753
313 => 0.014345070878696
314 => 0.014250593599229
315 => 0.013911707031804
316 => 0.013765377530184
317 => 0.013890054505138
318 => 0.013737585278384
319 => 0.014000789939071
320 => 0.014362226155677
321 => 0.014287591006222
322 => 0.014537085120924
323 => 0.014795285282095
324 => 0.015164523109064
325 => 0.01526105554987
326 => 0.015420620003724
327 => 0.015584864240932
328 => 0.015637615063417
329 => 0.01573833275116
330 => 0.01573780191923
331 => 0.016041321450324
401 => 0.016376112892339
402 => 0.01650248891126
403 => 0.016793083598354
404 => 0.016295450380358
405 => 0.016672910892607
406 => 0.017013389723105
407 => 0.01660745682509
408 => 0.017166940754768
409 => 0.01718866424794
410 => 0.017516663203511
411 => 0.017184173425043
412 => 0.016986742055933
413 => 0.017556719020895
414 => 0.017832512920134
415 => 0.017749441553198
416 => 0.017117264349076
417 => 0.016749310100922
418 => 0.015786302860427
419 => 0.01692702653561
420 => 0.017482639762426
421 => 0.017115825445045
422 => 0.017300825250417
423 => 0.018310124202139
424 => 0.018694399895687
425 => 0.018614473237718
426 => 0.01862797952721
427 => 0.018835327716351
428 => 0.019754823775737
429 => 0.019203840423201
430 => 0.019625046551263
501 => 0.019848452762815
502 => 0.020055964902667
503 => 0.019546380672074
504 => 0.018883419075351
505 => 0.018673431308434
506 => 0.017079352990302
507 => 0.016996374291112
508 => 0.016949795832744
509 => 0.016656125241392
510 => 0.016425380599735
511 => 0.016241883893689
512 => 0.015760333740271
513 => 0.015922842780996
514 => 0.015155352343775
515 => 0.015646365527318
516 => 0.014421432257809
517 => 0.015441593083745
518 => 0.014886365927209
519 => 0.015259186030036
520 => 0.015257885295819
521 => 0.014571405283793
522 => 0.014175457939328
523 => 0.014427770997722
524 => 0.014698270624956
525 => 0.014742158279405
526 => 0.015092868106876
527 => 0.015190743681241
528 => 0.014894176121542
529 => 0.014396048238473
530 => 0.014511751984622
531 => 0.014173113206606
601 => 0.013579661773684
602 => 0.014005888953476
603 => 0.014151421652544
604 => 0.014215697183267
605 => 0.013632105857346
606 => 0.013448728792357
607 => 0.01335110038164
608 => 0.014320713926722
609 => 0.014373831545501
610 => 0.014102074297756
611 => 0.015330442826643
612 => 0.015052425196924
613 => 0.015363039005293
614 => 0.014501253082409
615 => 0.014534174465211
616 => 0.014126191198586
617 => 0.014354634566445
618 => 0.014193178157116
619 => 0.014336178599843
620 => 0.014421892475601
621 => 0.014829808796187
622 => 0.015446250832881
623 => 0.014768879700702
624 => 0.014473739398278
625 => 0.014656842781969
626 => 0.015144471221822
627 => 0.01588325326944
628 => 0.015445879427876
629 => 0.015639978511672
630 => 0.015682380526615
701 => 0.015359877248305
702 => 0.015895144425325
703 => 0.016181998453992
704 => 0.016476251331328
705 => 0.01673174285994
706 => 0.016358720261361
707 => 0.016757907912529
708 => 0.016436233131794
709 => 0.016147657599346
710 => 0.01614809524931
711 => 0.01596706760239
712 => 0.015616303725531
713 => 0.015551617484954
714 => 0.015888123477403
715 => 0.016157969416112
716 => 0.016180195220099
717 => 0.016329595796952
718 => 0.016418009519386
719 => 0.017284584191864
720 => 0.017633127693816
721 => 0.018059320090412
722 => 0.018225346047774
723 => 0.018725024655833
724 => 0.018321493597913
725 => 0.018234187115203
726 => 0.01702213025568
727 => 0.017220604498526
728 => 0.017538380911239
729 => 0.017027370271681
730 => 0.017351488904045
731 => 0.017415476787845
801 => 0.01701000632569
802 => 0.017226585618871
803 => 0.016651415227466
804 => 0.015458787975654
805 => 0.015896472160387
806 => 0.016218755043253
807 => 0.01575881763221
808 => 0.016583237639469
809 => 0.016101628490712
810 => 0.015948981511872
811 => 0.015353451224839
812 => 0.015634518596256
813 => 0.016014666240593
814 => 0.0157797791933
815 => 0.016267205084902
816 => 0.016957530139147
817 => 0.01744949688237
818 => 0.017487263980139
819 => 0.017170962323458
820 => 0.017677837746899
821 => 0.01768152978099
822 => 0.017109772232702
823 => 0.016759573917936
824 => 0.016680008123997
825 => 0.016878779077048
826 => 0.017120123709195
827 => 0.01750065692755
828 => 0.017730605181688
829 => 0.018330188273351
830 => 0.018492418266561
831 => 0.018670659844037
901 => 0.018908845559213
902 => 0.019194848579845
903 => 0.018569090252863
904 => 0.018593952797753
905 => 0.018011255307881
906 => 0.01738855947268
907 => 0.017861107991466
908 => 0.018478902319284
909 => 0.01833717961788
910 => 0.01832123291884
911 => 0.01834805084338
912 => 0.018241196554753
913 => 0.017757898567495
914 => 0.0175151893439
915 => 0.017828346164065
916 => 0.017994775076976
917 => 0.018252891806774
918 => 0.018221073471643
919 => 0.01888595444789
920 => 0.019144307090303
921 => 0.019078209428841
922 => 0.019090372989279
923 => 0.019558108107836
924 => 0.020078325756735
925 => 0.020565578233695
926 => 0.021061232381238
927 => 0.020463701960664
928 => 0.020160312863649
929 => 0.020473332969342
930 => 0.020307240095184
1001 => 0.021261659016441
1002 => 0.021327740911776
1003 => 0.022282090817682
1004 => 0.023187882520259
1005 => 0.022618970980814
1006 => 0.023155428938172
1007 => 0.023735651957114
1008 => 0.024854996298445
1009 => 0.024478040503293
1010 => 0.024189298271858
1011 => 0.023916438258343
1012 => 0.024484216631159
1013 => 0.025214654437306
1014 => 0.025371983744704
1015 => 0.025626917327109
1016 => 0.025358885837005
1017 => 0.025681700244135
1018 => 0.026821376953143
1019 => 0.026513426246164
1020 => 0.026076086736709
1021 => 0.026975752042755
1022 => 0.027301337419653
1023 => 0.029586466105108
1024 => 0.032471535464453
1025 => 0.031277097805298
1026 => 0.030535671805997
1027 => 0.030709924502693
1028 => 0.031763454166964
1029 => 0.032101814457768
1030 => 0.031182034547577
1031 => 0.03150691636132
1101 => 0.033297047096719
1102 => 0.03425739480199
1103 => 0.032953113626327
1104 => 0.029354653591214
1105 => 0.026036709098917
1106 => 0.026916777387262
1107 => 0.026817004955062
1108 => 0.028740277106891
1109 => 0.026506081723649
1110 => 0.026543699843989
1111 => 0.028506743227138
1112 => 0.027983036907597
1113 => 0.027134699741179
1114 => 0.026042902899058
1115 => 0.024024615457413
1116 => 0.022236961986239
1117 => 0.025742962115219
1118 => 0.025591777014409
1119 => 0.025372838584061
1120 => 0.025860062369189
1121 => 0.028225882768884
1122 => 0.028171342951258
1123 => 0.027824388457979
1124 => 0.028087550383215
1125 => 0.027088566183316
1126 => 0.027346027158077
1127 => 0.026036183519558
1128 => 0.026628287548071
1129 => 0.027132879590628
1130 => 0.027234183913784
1201 => 0.027462427726582
1202 => 0.025512109336187
1203 => 0.026387745035135
1204 => 0.026902098972297
1205 => 0.024578229171842
1206 => 0.026856163538153
1207 => 0.025478158632077
1208 => 0.025010443070016
1209 => 0.025640160457492
1210 => 0.025394758979172
1211 => 0.025183777198571
1212 => 0.025066045739869
1213 => 0.025528440689859
1214 => 0.025506869412761
1215 => 0.024750301527584
1216 => 0.023763389563024
1217 => 0.024094629612611
1218 => 0.023974286997204
1219 => 0.023538149834462
1220 => 0.023832053622748
1221 => 0.022537850080439
1222 => 0.020311240152743
1223 => 0.021782206873886
1224 => 0.021725576255226
1225 => 0.021697020529303
1226 => 0.022802411365708
1227 => 0.022696153542493
1228 => 0.022503294552879
1229 => 0.023534607827876
1230 => 0.023158164609381
1231 => 0.024318273907605
]
'min_raw' => 0.010414016097822
'max_raw' => 0.03425739480199
'avg_raw' => 0.022335705449906
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.010414'
'max' => '$0.034257'
'avg' => '$0.022335'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0056732874747353
'max_diff' => 0.022645869359608
'year' => 2029
]
4 => [
'items' => [
101 => 0.025082396922581
102 => 0.024888590609193
103 => 0.025607251998105
104 => 0.024102260714343
105 => 0.024602158449038
106 => 0.024705186679331
107 => 0.023521881582149
108 => 0.022713538636484
109 => 0.022659631377792
110 => 0.021258076106528
111 => 0.022006775619479
112 => 0.022665600207584
113 => 0.022350074356735
114 => 0.022250188298423
115 => 0.022760484507697
116 => 0.022800138893549
117 => 0.021896014693738
118 => 0.022084010744769
119 => 0.022867985529308
120 => 0.02206425659167
121 => 0.020502742554216
122 => 0.020115465483307
123 => 0.020063795583115
124 => 0.019013469451478
125 => 0.020141345189023
126 => 0.019648997204394
127 => 0.021204318588602
128 => 0.020315927355298
129 => 0.020277630584836
130 => 0.020219739399366
131 => 0.01931568030944
201 => 0.019513611794181
202 => 0.020171566195278
203 => 0.020406331737976
204 => 0.020381843768496
205 => 0.020168341859767
206 => 0.020266081940276
207 => 0.019951227086055
208 => 0.019840045283892
209 => 0.019489124933302
210 => 0.018973368962156
211 => 0.019045087993259
212 => 0.018023240459528
213 => 0.017466483689598
214 => 0.017312380753618
215 => 0.01710630786722
216 => 0.017335657234476
217 => 0.018020345693854
218 => 0.017194466147084
219 => 0.015778553592862
220 => 0.015863652349968
221 => 0.016054843991138
222 => 0.015698559632677
223 => 0.015361366388073
224 => 0.015654528556904
225 => 0.015054587742034
226 => 0.016127343972364
227 => 0.016098328922698
228 => 0.016498186106565
301 => 0.016748225009533
302 => 0.016171966289249
303 => 0.016027038779467
304 => 0.016109596075627
305 => 0.014745107868753
306 => 0.016386678309584
307 => 0.016400874678924
308 => 0.016279316745769
309 => 0.01715340232771
310 => 0.018997995539735
311 => 0.018303985374781
312 => 0.018035243662343
313 => 0.017524365470548
314 => 0.018205080328169
315 => 0.01815281204791
316 => 0.017916435062421
317 => 0.017773473524056
318 => 0.018036884541933
319 => 0.0177408339839
320 => 0.017687655168752
321 => 0.017365449408077
322 => 0.017250436610944
323 => 0.017165285714738
324 => 0.017071542944769
325 => 0.017278316136077
326 => 0.016809740881295
327 => 0.016244685059026
328 => 0.016197706781393
329 => 0.01632741793631
330 => 0.016270030406119
331 => 0.016197432031977
401 => 0.01605882196475
402 => 0.016017699318739
403 => 0.016151327968403
404 => 0.016000469013966
405 => 0.01622306961895
406 => 0.016162534571448
407 => 0.015824390716971
408 => 0.015402938277404
409 => 0.015399186466665
410 => 0.015308385229881
411 => 0.015192736202779
412 => 0.015160565289131
413 => 0.01562983925674
414 => 0.016601222325505
415 => 0.016410516585879
416 => 0.016548321027069
417 => 0.017226182487653
418 => 0.017441654261967
419 => 0.017288717500288
420 => 0.017079368228172
421 => 0.017088578533679
422 => 0.017803988370833
423 => 0.017848607604837
424 => 0.017961346014454
425 => 0.018106246730683
426 => 0.01731339471883
427 => 0.017051235275221
428 => 0.016927009586787
429 => 0.016544442547802
430 => 0.016957008300528
501 => 0.016716623904242
502 => 0.016749059972001
503 => 0.016727935940321
504 => 0.016739471090019
505 => 0.016127044115135
506 => 0.016350180316569
507 => 0.015979173103707
508 => 0.0154824360932
509 => 0.015480770856562
510 => 0.015602346536157
511 => 0.015530028564677
512 => 0.01533542276289
513 => 0.015363065598521
514 => 0.01512088527124
515 => 0.015392470675069
516 => 0.015400258772671
517 => 0.01529568359884
518 => 0.015714098385002
519 => 0.015885523264287
520 => 0.015816689644654
521 => 0.015880693714037
522 => 0.016418441270346
523 => 0.016506117585595
524 => 0.016545057613256
525 => 0.016492883134755
526 => 0.015890522752209
527 => 0.015917239996609
528 => 0.015721206584372
529 => 0.015555579008524
530 => 0.015562203242956
531 => 0.015647357347019
601 => 0.016019230313688
602 => 0.016801815048934
603 => 0.016831513567574
604 => 0.016867509038533
605 => 0.016721097368268
606 => 0.016676938207545
607 => 0.016735195538985
608 => 0.017029093219193
609 => 0.017785077845128
610 => 0.017517862387807
611 => 0.017300612061549
612 => 0.017491199167945
613 => 0.017461859776786
614 => 0.017214205789288
615 => 0.017207254966696
616 => 0.016731927784918
617 => 0.016556210148491
618 => 0.016409367339256
619 => 0.016249018824999
620 => 0.016153958850817
621 => 0.016300014175147
622 => 0.016333418755897
623 => 0.01601406623664
624 => 0.015970539668313
625 => 0.016231329829241
626 => 0.016116565802654
627 => 0.01623460345001
628 => 0.016261989196705
629 => 0.016257579460739
630 => 0.016137752636418
701 => 0.016214126680953
702 => 0.016033479297429
703 => 0.015837052400206
704 => 0.015711744277606
705 => 0.015602396320927
706 => 0.015663068922633
707 => 0.01544678217593
708 => 0.015377587692668
709 => 0.016188252873135
710 => 0.016787099958066
711 => 0.016778392484281
712 => 0.016725387976999
713 => 0.01664663403075
714 => 0.017023331877496
715 => 0.016892097880001
716 => 0.016987581578146
717 => 0.017011886186762
718 => 0.017085448916964
719 => 0.01711174127008
720 => 0.017032267517749
721 => 0.016765543898022
722 => 0.016100893996983
723 => 0.015791497673861
724 => 0.015689391733827
725 => 0.015693103090821
726 => 0.015590727296715
727 => 0.01562088155624
728 => 0.015580240875839
729 => 0.015503277259195
730 => 0.015658316636183
731 => 0.015676183480089
801 => 0.015639995436918
802 => 0.015648519031111
803 => 0.015348897489765
804 => 0.01537167706481
805 => 0.015244837496273
806 => 0.015221056606246
807 => 0.014900417222168
808 => 0.014332358075852
809 => 0.014647117985747
810 => 0.014266932276535
811 => 0.014122950187703
812 => 0.014804539002425
813 => 0.014736126389758
814 => 0.014619033735119
815 => 0.014445829294662
816 => 0.014381586082872
817 => 0.013991264664964
818 => 0.013968202393311
819 => 0.01416165622759
820 => 0.01407238393941
821 => 0.013947011836746
822 => 0.013492926789662
823 => 0.012982384854348
824 => 0.012997794906223
825 => 0.013160188796876
826 => 0.01363237093575
827 => 0.013447881205258
828 => 0.01331403178901
829 => 0.013288965816846
830 => 0.013602718937652
831 => 0.014046745336903
901 => 0.014255072588901
902 => 0.014048626609164
903 => 0.013811472583482
904 => 0.01382590705016
905 => 0.013921933090209
906 => 0.013932024069283
907 => 0.013777661178392
908 => 0.013821113427992
909 => 0.013755105487493
910 => 0.013350014878489
911 => 0.013342688073929
912 => 0.013243272305511
913 => 0.013240262035553
914 => 0.013071131013049
915 => 0.013047468413853
916 => 0.012711648503151
917 => 0.012932686185331
918 => 0.012784425713124
919 => 0.012560962210398
920 => 0.012522437018299
921 => 0.012521278904504
922 => 0.012750725956279
923 => 0.012930004962941
924 => 0.012787004767514
925 => 0.012754446394957
926 => 0.013102084634211
927 => 0.013057844499473
928 => 0.013019532828108
929 => 0.014006987642974
930 => 0.013225340104948
1001 => 0.012884497163487
1002 => 0.012462639299109
1003 => 0.012599998346942
1004 => 0.012628941916545
1005 => 0.011614449798313
1006 => 0.011202870472293
1007 => 0.011061631957643
1008 => 0.010980347195642
1009 => 0.011017389682396
1010 => 0.010646920015538
1011 => 0.010895881758669
1012 => 0.010575086342192
1013 => 0.010521303946661
1014 => 0.011094925890249
1015 => 0.011174742032648
1016 => 0.01083422157224
1017 => 0.011052890833077
1018 => 0.010973598319368
1019 => 0.010580585458869
1020 => 0.010565575258404
1021 => 0.010368375220076
1022 => 0.010059795345544
1023 => 0.0099187660625794
1024 => 0.0098453167875391
1025 => 0.0098756233899185
1026 => 0.0098602994443581
1027 => 0.0097603003340603
1028 => 0.0098660312763056
1029 => 0.0095959324099106
1030 => 0.0094883768649777
1031 => 0.0094397965206012
1101 => 0.0092000682303649
1102 => 0.0095815825477853
1103 => 0.0096567456745079
1104 => 0.0097320568958092
1105 => 0.010387589660082
1106 => 0.010354841095695
1107 => 0.010650872168554
1108 => 0.010639368945429
1109 => 0.010554936088064
1110 => 0.010198727751374
1111 => 0.010340706045575
1112 => 0.0099037189243484
1113 => 0.010231139387808
1114 => 0.01008171836169
1115 => 0.010180619988573
1116 => 0.010002785945837
1117 => 0.010101206647675
1118 => 0.009674569640222
1119 => 0.009276182005607
1120 => 0.0094365048194361
1121 => 0.009610794053206
1122 => 0.0099886975200902
1123 => 0.0097636213328499
1124 => 0.0098445672408544
1125 => 0.0095734119992206
1126 => 0.0090139412840646
1127 => 0.009017107827554
1128 => 0.0089310454467593
1129 => 0.0088566749844394
1130 => 0.0097894740404871
1201 => 0.0096734657324967
1202 => 0.0094886216765059
1203 => 0.0097360427908603
1204 => 0.0098014648605967
1205 => 0.0098033273349495
1206 => 0.0099838393931192
1207 => 0.010080178710923
1208 => 0.010097158933244
1209 => 0.010381198556996
1210 => 0.010476404892304
1211 => 0.010868546313333
1212 => 0.010072004992893
1213 => 0.010055600748577
1214 => 0.0097395245133367
1215 => 0.0095390639679798
1216 => 0.0097532502183787
1217 => 0.0099429899968933
1218 => 0.0097454202571527
1219 => 0.009771218694238
1220 => 0.009505997460677
1221 => 0.0096008015718561
1222 => 0.0096824596438965
1223 => 0.0096373728561554
1224 => 0.0095698757526818
1225 => 0.009927433498819
1226 => 0.0099072586895019
1227 => 0.010240224682922
1228 => 0.010499795485419
1229 => 0.010964992767326
1230 => 0.010479535152374
1231 => 0.010461843147366
]
'min_raw' => 0.0088566749844394
'max_raw' => 0.025607251998105
'avg_raw' => 0.017231963491272
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008856'
'max' => '$0.0256072'
'avg' => '$0.017231'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0015573411133824
'max_diff' => -0.0086501428038855
'year' => 2030
]
5 => [
'items' => [
101 => 0.010634785334207
102 => 0.010476378415756
103 => 0.010576486120196
104 => 0.010948863868482
105 => 0.010956731623518
106 => 0.010824936589633
107 => 0.010816916849844
108 => 0.010842229527781
109 => 0.010990486673086
110 => 0.010938681071035
111 => 0.010998631825286
112 => 0.011073601161476
113 => 0.011383706122298
114 => 0.011458471378497
115 => 0.011276830567275
116 => 0.011293230698782
117 => 0.011225292049234
118 => 0.011159664165038
119 => 0.011307186064527
120 => 0.011576785235392
121 => 0.011575108072942
122 => 0.011637649840324
123 => 0.011676612843279
124 => 0.011509355111935
125 => 0.011400476479068
126 => 0.011442227475037
127 => 0.011508988226809
128 => 0.011420577863016
129 => 0.010874868142019
130 => 0.011040401611297
131 => 0.011012848747836
201 => 0.010973610119725
202 => 0.011140055303117
203 => 0.011124001259133
204 => 0.010643120313636
205 => 0.010673904751553
206 => 0.010644992417267
207 => 0.01073841408425
208 => 0.010471333339155
209 => 0.01055348557753
210 => 0.01060501069131
211 => 0.01063535937916
212 => 0.010744999649967
213 => 0.010732134629651
214 => 0.010744199942241
215 => 0.010906767519888
216 => 0.011728978541176
217 => 0.011773729672958
218 => 0.011553358733104
219 => 0.011641392576951
220 => 0.011472386847651
221 => 0.01158584152597
222 => 0.01166346433544
223 => 0.011312701785454
224 => 0.011291931903673
225 => 0.011122228627609
226 => 0.011213417555681
227 => 0.011068329414403
228 => 0.011103928969305
301 => 0.011004389510285
302 => 0.011183540718412
303 => 0.01138385960638
304 => 0.011434468068314
305 => 0.01130133899328
306 => 0.011204944769321
307 => 0.011035708266282
308 => 0.011317152342518
309 => 0.011399455167262
310 => 0.011316720040817
311 => 0.011297548504221
312 => 0.011261218477015
313 => 0.011305256091236
314 => 0.011399006928403
315 => 0.011354795764901
316 => 0.011383998017295
317 => 0.011272709144403
318 => 0.011509410481204
319 => 0.011885349169323
320 => 0.011886557873677
321 => 0.011842346471861
322 => 0.011824256118785
323 => 0.011869619700021
324 => 0.01189422758193
325 => 0.012040925085389
326 => 0.012198337351286
327 => 0.012932911711877
328 => 0.01272664617087
329 => 0.013378404243611
330 => 0.013893860258955
331 => 0.014048422979797
401 => 0.013906232549361
402 => 0.013419806767813
403 => 0.013395940398354
404 => 0.014122865879654
405 => 0.01391747613589
406 => 0.013893045679414
407 => 0.013633146898418
408 => 0.013786779267077
409 => 0.0137531776144
410 => 0.013700135761801
411 => 0.013993255619079
412 => 0.014541949824913
413 => 0.014456430687312
414 => 0.014392594618212
415 => 0.014112883545814
416 => 0.014281332087127
417 => 0.014221350787985
418 => 0.014479068514173
419 => 0.014326402242326
420 => 0.013915920106575
421 => 0.01398129073966
422 => 0.013971410099976
423 => 0.01417475296451
424 => 0.014113714483858
425 => 0.013959491356996
426 => 0.014540074447768
427 => 0.014502374611226
428 => 0.01455582436006
429 => 0.014579354592485
430 => 0.014932745288816
501 => 0.015077518149862
502 => 0.015110384123925
503 => 0.015247907144784
504 => 0.015106962425886
505 => 0.01567084179336
506 => 0.016045788669457
507 => 0.016481308760634
508 => 0.017117720670608
509 => 0.017357017435897
510 => 0.01731379061711
511 => 0.017796310863983
512 => 0.018663389021792
513 => 0.017489051903516
514 => 0.018725631740574
515 => 0.018334144841162
516 => 0.017405936445206
517 => 0.017346170767364
518 => 0.017974764269827
519 => 0.019368924158407
520 => 0.019019702918749
521 => 0.01936949535925
522 => 0.018961443897086
523 => 0.018941180702661
524 => 0.019349677210521
525 => 0.02030415156712
526 => 0.019850716578236
527 => 0.01920060633485
528 => 0.019680637621731
529 => 0.019264790096236
530 => 0.018327769232904
531 => 0.019019435875848
601 => 0.018556938089243
602 => 0.018691919531109
603 => 0.019664021087199
604 => 0.019547055256108
605 => 0.019698419872284
606 => 0.019431265286636
607 => 0.01918170077723
608 => 0.018715870087519
609 => 0.018577960585471
610 => 0.018616073810373
611 => 0.01857794169845
612 => 0.018317313708762
613 => 0.018261031119203
614 => 0.018167224337475
615 => 0.018196298981633
616 => 0.018019914787843
617 => 0.018352788204359
618 => 0.018414572443735
619 => 0.018656809956936
620 => 0.018681959859148
621 => 0.019356587885378
622 => 0.018985014105194
623 => 0.019234297877078
624 => 0.019211999590171
625 => 0.01742605353572
626 => 0.017672141144488
627 => 0.018054976237185
628 => 0.017882509546846
629 => 0.017638681997696
630 => 0.017441778178552
701 => 0.017143448758099
702 => 0.017563341688477
703 => 0.01811545624129
704 => 0.018695962395335
705 => 0.019393402503151
706 => 0.019237741990184
707 => 0.018682924237649
708 => 0.018707812956733
709 => 0.018861665224761
710 => 0.018662412558712
711 => 0.01860364905762
712 => 0.018853592022086
713 => 0.018855313241916
714 => 0.018626048969138
715 => 0.018371263684864
716 => 0.018370196125219
717 => 0.018324859544817
718 => 0.018969509174024
719 => 0.019324001288658
720 => 0.019364643238309
721 => 0.019321265761629
722 => 0.019337960030812
723 => 0.019131688880007
724 => 0.019603163562938
725 => 0.020035835356009
726 => 0.019919870072782
727 => 0.019746021627787
728 => 0.019607542967673
729 => 0.019887248901374
730 => 0.019874794036444
731 => 0.020032056345352
801 => 0.020024922018628
802 => 0.019972040619077
803 => 0.019919871961343
804 => 0.020126714792382
805 => 0.020067147378837
806 => 0.020007487440646
807 => 0.019887830301124
808 => 0.019904093693679
809 => 0.01973027526607
810 => 0.019649858908068
811 => 0.018440589829535
812 => 0.018117433617745
813 => 0.018219105140425
814 => 0.018252578045592
815 => 0.018111940048084
816 => 0.018313578809573
817 => 0.018282153622183
818 => 0.018404410643196
819 => 0.01832802976425
820 => 0.018331164462165
821 => 0.018555784341025
822 => 0.01862099244746
823 => 0.018587827078233
824 => 0.018611054965997
825 => 0.019146331835639
826 => 0.019070232581967
827 => 0.019029806370168
828 => 0.019041004707114
829 => 0.019177779423773
830 => 0.019216068876815
831 => 0.019053833773724
901 => 0.019130344786211
902 => 0.01945611896669
903 => 0.019570121492635
904 => 0.019933962831137
905 => 0.019779396563777
906 => 0.020063109636987
907 => 0.02093514689912
908 => 0.021631790604501
909 => 0.020991128263014
910 => 0.022270425710904
911 => 0.023266542278407
912 => 0.023228309665427
913 => 0.023054613701292
914 => 0.021920561472319
915 => 0.020876989703453
916 => 0.021749981800508
917 => 0.021752207236896
918 => 0.02167721644154
919 => 0.021211455052115
920 => 0.021661008954784
921 => 0.021696692911038
922 => 0.021676719384666
923 => 0.021319621219429
924 => 0.020774398323885
925 => 0.020880933572595
926 => 0.021055440483242
927 => 0.020725062495432
928 => 0.020619486710018
929 => 0.020815772181717
930 => 0.021448244869234
1001 => 0.021328679571324
1002 => 0.021325557238194
1003 => 0.021837108286231
1004 => 0.021470948135462
1005 => 0.020882277323254
1006 => 0.020733630179558
1007 => 0.020206032960149
1008 => 0.020570446238832
1009 => 0.020583560823979
1010 => 0.020383975395458
1011 => 0.020898472580801
1012 => 0.020893731398662
1013 => 0.021382169903345
1014 => 0.022315880875174
1015 => 0.022039736595677
1016 => 0.021718610843036
1017 => 0.021753526116199
1018 => 0.022136460484565
1019 => 0.02190492962391
1020 => 0.021988189735692
1021 => 0.022136334460414
1022 => 0.022225713851065
1023 => 0.021740665797355
1024 => 0.021627577893505
1025 => 0.021396239730688
1026 => 0.02133588792214
1027 => 0.021524308028725
1028 => 0.021474665987621
1029 => 0.020582458593879
1030 => 0.020489217957038
1031 => 0.020492077514253
1101 => 0.020257619499566
1102 => 0.019900014750797
1103 => 0.020839778679092
1104 => 0.020764302483663
1105 => 0.020680982605301
1106 => 0.020691188814984
1107 => 0.021099108484703
1108 => 0.020862494475829
1109 => 0.021491571598693
1110 => 0.021362252254021
1111 => 0.021229616356126
1112 => 0.021211282034848
1113 => 0.021160228530121
1114 => 0.02098514706624
1115 => 0.020773725677839
1116 => 0.02063412696421
1117 => 0.019033891408659
1118 => 0.019330885819627
1119 => 0.019672550817554
1120 => 0.019790492205701
1121 => 0.019588745299979
1122 => 0.02099311326374
1123 => 0.021249704823546
1124 => 0.020472472251841
1125 => 0.020327083771872
1126 => 0.021002644908282
1127 => 0.020595198959037
1128 => 0.020778671845034
1129 => 0.020382103819811
1130 => 0.021187899430666
1201 => 0.021181760618188
1202 => 0.020868287925847
1203 => 0.021133232898846
1204 => 0.021087192189811
1205 => 0.020733282292207
1206 => 0.021199119005678
1207 => 0.021199350054876
1208 => 0.020897639403981
1209 => 0.02054530741669
1210 => 0.020482318779072
1211 => 0.02043486530196
1212 => 0.020767001198615
1213 => 0.021064793204994
1214 => 0.021618910299966
1215 => 0.021758228503139
1216 => 0.022301996725062
1217 => 0.021978209224501
1218 => 0.02212174002975
1219 => 0.022277563022519
1220 => 0.022352270295454
1221 => 0.02223053880322
1222 => 0.023075234675797
1223 => 0.023146552888255
1224 => 0.023170465267992
1225 => 0.022885638572387
1226 => 0.023138631342603
1227 => 0.023020264403659
1228 => 0.023328222295508
1229 => 0.023376514025154
1230 => 0.023335612648172
1231 => 0.023350941205395
]
'min_raw' => 0.010471333339155
'max_raw' => 0.023376514025154
'avg_raw' => 0.016923923682155
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.010471'
'max' => '$0.023376'
'avg' => '$0.016923'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0016146583547157
'max_diff' => -0.0022307379729507
'year' => 2031
]
6 => [
'items' => [
101 => 0.022630142292714
102 => 0.022592765066574
103 => 0.022083123935992
104 => 0.022290806463781
105 => 0.021902553932562
106 => 0.022025672809656
107 => 0.022079942437559
108 => 0.022051595063717
109 => 0.022302548522298
110 => 0.0220891868161
111 => 0.021526090193529
112 => 0.020962840155661
113 => 0.020955769010249
114 => 0.020807475217467
115 => 0.020700285966649
116 => 0.0207209344191
117 => 0.020793702258755
118 => 0.020696056567524
119 => 0.02071689422651
120 => 0.021062938206282
121 => 0.021132334858552
122 => 0.020896497919115
123 => 0.019949578576165
124 => 0.019717202194238
125 => 0.019884229729343
126 => 0.019804401325514
127 => 0.015983697539839
128 => 0.016881315220983
129 => 0.016347981275064
130 => 0.016593766094858
131 => 0.01604937024223
201 => 0.016309184477336
202 => 0.016261206275008
203 => 0.01770454894385
204 => 0.017682013133329
205 => 0.017692799833256
206 => 0.017177922541102
207 => 0.017998136047946
208 => 0.01840220271534
209 => 0.018327420729092
210 => 0.018346241743916
211 => 0.018022834352232
212 => 0.017695931123742
213 => 0.017333345133299
214 => 0.018006985086558
215 => 0.017932087823173
216 => 0.018103875198193
217 => 0.01854077886066
218 => 0.018605114584593
219 => 0.018691582449989
220 => 0.018660589875446
221 => 0.019398958738808
222 => 0.01930953739754
223 => 0.01952501710172
224 => 0.019081759001738
225 => 0.018580170387164
226 => 0.018675505984627
227 => 0.018666324399951
228 => 0.018549432288891
229 => 0.018443907317625
301 => 0.018268237971944
302 => 0.01882408177585
303 => 0.018801515532501
304 => 0.019166836781927
305 => 0.01910226270255
306 => 0.018671021196511
307 => 0.018686423071264
308 => 0.018790008080868
309 => 0.019148516981819
310 => 0.019254946832768
311 => 0.019205644285312
312 => 0.019322339758171
313 => 0.019414571101861
314 => 0.01933392259492
315 => 0.020475735380559
316 => 0.020001575105052
317 => 0.020232677524148
318 => 0.020287794089368
319 => 0.020146614166533
320 => 0.020177231036522
321 => 0.020223607251957
322 => 0.020505194550686
323 => 0.021244161100492
324 => 0.021571444355086
325 => 0.022556092174402
326 => 0.021544268036795
327 => 0.021484230579814
328 => 0.021661595385588
329 => 0.022239687891083
330 => 0.02270817756932
331 => 0.022863602623408
401 => 0.022884144610094
402 => 0.023175732344027
403 => 0.023342864995328
404 => 0.023140325923609
405 => 0.022968695267052
406 => 0.022353935558845
407 => 0.022425095669005
408 => 0.022915318261922
409 => 0.023607786548384
410 => 0.024201996377214
411 => 0.023993924805461
412 => 0.025581364022299
413 => 0.02573875213654
414 => 0.025717006188119
415 => 0.026075559734854
416 => 0.025363903962746
417 => 0.025059657332488
418 => 0.02300580376309
419 => 0.023582852840493
420 => 0.024421627563401
421 => 0.02431061258358
422 => 0.023701471959292
423 => 0.024201534289427
424 => 0.02403619804469
425 => 0.023905790488658
426 => 0.024503212783588
427 => 0.023846322429557
428 => 0.024415074579625
429 => 0.023685644064175
430 => 0.023994875258874
501 => 0.023819340676933
502 => 0.023932933064158
503 => 0.023268874289514
504 => 0.023627184285197
505 => 0.02325396741568
506 => 0.02325379046229
507 => 0.02324555167921
508 => 0.023684639671099
509 => 0.023698958314751
510 => 0.023374471625319
511 => 0.023327708023937
512 => 0.023500617568042
513 => 0.023298185776977
514 => 0.023392902337926
515 => 0.023301054645119
516 => 0.02328037779486
517 => 0.023115621134118
518 => 0.023044639434592
519 => 0.023072473187949
520 => 0.022977462238458
521 => 0.022920214704693
522 => 0.023234163703844
523 => 0.023066433418264
524 => 0.023208456631988
525 => 0.023046603255191
526 => 0.022485548935053
527 => 0.0221628806625
528 => 0.021103101061522
529 => 0.021403653241706
530 => 0.021602919648113
531 => 0.021537062101984
601 => 0.021678549594555
602 => 0.021687235777486
603 => 0.021641236751356
604 => 0.021587975771939
605 => 0.021562051272675
606 => 0.021755271250642
607 => 0.021867441951336
608 => 0.021622918697836
609 => 0.021565630320785
610 => 0.021812856830573
611 => 0.021963664858725
612 => 0.023077146606891
613 => 0.022994656282488
614 => 0.023201690808831
615 => 0.023178381898368
616 => 0.023395387065161
617 => 0.023750098799643
618 => 0.023028870664482
619 => 0.023154050930553
620 => 0.023123359620147
621 => 0.023458439299468
622 => 0.023459485381652
623 => 0.023258588375427
624 => 0.023367497901683
625 => 0.023306707591904
626 => 0.023416563897979
627 => 0.022993554573914
628 => 0.02350873426959
629 => 0.023800807959592
630 => 0.023804863403061
701 => 0.023943304014082
702 => 0.024083967692819
703 => 0.024353959374929
704 => 0.024076437771343
705 => 0.023577203422674
706 => 0.023613246530131
707 => 0.02332054561417
708 => 0.023325465969448
709 => 0.023299200727358
710 => 0.023378024696024
711 => 0.02301085200238
712 => 0.023097026699683
713 => 0.02297638161882
714 => 0.023153788671709
715 => 0.022962928009236
716 => 0.023123344819868
717 => 0.023192575397435
718 => 0.023448037719085
719 => 0.022925196016619
720 => 0.021859086392018
721 => 0.022083195560439
722 => 0.02175172049695
723 => 0.02178239977609
724 => 0.021844376802525
725 => 0.021643488982228
726 => 0.021681812047638
727 => 0.021680442878066
728 => 0.021668644114383
729 => 0.021616385433668
730 => 0.021540600007566
731 => 0.021842505819631
801 => 0.021893805500121
802 => 0.022007838335166
803 => 0.022347122703048
804 => 0.02231322019382
805 => 0.022368516592972
806 => 0.022247804864099
807 => 0.021787999246983
808 => 0.021812968904184
809 => 0.021501596878776
810 => 0.021999875852417
811 => 0.021881876814497
812 => 0.021805802067122
813 => 0.021785044367473
814 => 0.022125169755678
815 => 0.022226940602641
816 => 0.022163523840401
817 => 0.022033454210884
818 => 0.02228322635119
819 => 0.022350054838896
820 => 0.022365015272753
821 => 0.022807563616318
822 => 0.02238974880906
823 => 0.022490320985889
824 => 0.023274956399916
825 => 0.022563400351679
826 => 0.022940327460024
827 => 0.022921878839504
828 => 0.023114701993615
829 => 0.022906061712781
830 => 0.022908648059115
831 => 0.023079861956994
901 => 0.022839422916012
902 => 0.022779886828163
903 => 0.022697638149206
904 => 0.022877225130702
905 => 0.022984879404089
906 => 0.023852493784233
907 => 0.024413012241829
908 => 0.024388678657322
909 => 0.02461104206915
910 => 0.024510865315507
911 => 0.024187368152698
912 => 0.024739538363336
913 => 0.024564808604907
914 => 0.024579213113895
915 => 0.024578676977351
916 => 0.024694856991566
917 => 0.024612532803753
918 => 0.024450263379169
919 => 0.024557985396005
920 => 0.024877881274681
921 => 0.025870847897696
922 => 0.026426525174994
923 => 0.025837395427874
924 => 0.026243769238675
925 => 0.026000089757989
926 => 0.025955805947511
927 => 0.026211038731483
928 => 0.026466718266656
929 => 0.026450432585599
930 => 0.026264822372353
1001 => 0.026159975872575
1002 => 0.026953908695048
1003 => 0.027538864874354
1004 => 0.027498974784521
1005 => 0.02767503666809
1006 => 0.028191959803638
1007 => 0.028239220776861
1008 => 0.028233266980516
1009 => 0.028116125727211
1010 => 0.028625103685109
1011 => 0.029049702052204
1012 => 0.028089010911607
1013 => 0.028454829521576
1014 => 0.02861905728153
1015 => 0.028860192357324
1016 => 0.02926702764912
1017 => 0.029708958683741
1018 => 0.029771452577564
1019 => 0.029727110169289
1020 => 0.029435644772212
1021 => 0.029919210983629
1022 => 0.030202472729253
1023 => 0.030371148616443
1024 => 0.030798882601365
1025 => 0.028620071496266
1026 => 0.027077800702138
1027 => 0.026836952846975
1028 => 0.027326726431323
1029 => 0.027455875819645
1030 => 0.027403815863152
1031 => 0.025667849867235
1101 => 0.026827813345273
1102 => 0.028075836515141
1103 => 0.02812377816783
1104 => 0.028748564661601
1105 => 0.028952020754836
1106 => 0.029455055774959
1107 => 0.029423590797488
1108 => 0.029546071819853
1109 => 0.029517915553887
1110 => 0.030449682002143
1111 => 0.031477558763227
1112 => 0.031441966659439
1113 => 0.031294197213747
1114 => 0.031513660039034
1115 => 0.03257453901044
1116 => 0.032476870274992
1117 => 0.032571747132077
1118 => 0.033822583227884
1119 => 0.035448848081793
1120 => 0.03469328478283
1121 => 0.036332639734096
1122 => 0.037364526777446
1123 => 0.039149068719808
1124 => 0.03892563527957
1125 => 0.039620344362158
1126 => 0.038525642789578
1127 => 0.036011986703244
1128 => 0.035614191005692
1129 => 0.036410588065982
1130 => 0.038368452527414
1201 => 0.036348927946643
1202 => 0.036757475139099
1203 => 0.036639813520187
1204 => 0.036633543832545
1205 => 0.036872832309182
1206 => 0.036525731893372
1207 => 0.035111582357192
1208 => 0.035759678755988
1209 => 0.035509417612267
1210 => 0.035787101009429
1211 => 0.037285643778568
1212 => 0.036623102299534
1213 => 0.035925168671871
1214 => 0.036800532324831
1215 => 0.037915171062636
1216 => 0.037845418973623
1217 => 0.037710070766825
1218 => 0.038473021521941
1219 => 0.039733192645795
1220 => 0.040073811836795
1221 => 0.040325249959938
1222 => 0.040359919029038
1223 => 0.04071703198747
1224 => 0.038796745605927
1225 => 0.041844289409887
1226 => 0.042370516038133
1227 => 0.042271607241882
1228 => 0.042856485992175
1229 => 0.042684399826897
1230 => 0.042435073972901
1231 => 0.043362231199393
]
'min_raw' => 0.015983697539839
'max_raw' => 0.043362231199393
'avg_raw' => 0.029672964369616
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.015983'
'max' => '$0.043362'
'avg' => '$0.029672'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.005512364200684
'max_diff' => 0.019985717174239
'year' => 2032
]
7 => [
'items' => [
101 => 0.04229932025695
102 => 0.040790651990918
103 => 0.039962966742098
104 => 0.041052929445209
105 => 0.041718531633542
106 => 0.04215845233978
107 => 0.042291572079681
108 => 0.038945811971372
109 => 0.037142632837357
110 => 0.03829844998877
111 => 0.039708626683733
112 => 0.038788912003185
113 => 0.038824963077413
114 => 0.037513691639718
115 => 0.039824645109896
116 => 0.039487958627469
117 => 0.041234688693888
118 => 0.040817817545153
119 => 0.042242208106647
120 => 0.041867118335279
121 => 0.043424095005239
122 => 0.044045215152346
123 => 0.045088172548971
124 => 0.045855376255529
125 => 0.046305892946287
126 => 0.04627884561402
127 => 0.048064017189331
128 => 0.047011363880514
129 => 0.045688983233305
130 => 0.045665065539454
131 => 0.046349945214923
201 => 0.047785265127142
202 => 0.048157422697325
203 => 0.048365408008388
204 => 0.048046871264474
205 => 0.046904291542096
206 => 0.046410931410984
207 => 0.04683128853671
208 => 0.046317227893646
209 => 0.047204640783517
210 => 0.048423248222474
211 => 0.048171610605225
212 => 0.049012797432067
213 => 0.049883337302414
214 => 0.051128248415401
215 => 0.051453714279261
216 => 0.051991696975863
217 => 0.052545457888777
218 => 0.052723310969729
219 => 0.053062887685838
220 => 0.053061097948925
221 => 0.054084435239067
222 => 0.055213207960212
223 => 0.055639293531296
224 => 0.056619053807508
225 => 0.05494124866939
226 => 0.056213883139889
227 => 0.057361831288385
228 => 0.055993200181401
301 => 0.057879539312229
302 => 0.057952781586143
303 => 0.059058652965007
304 => 0.057937640463207
305 => 0.057271986818037
306 => 0.059193703949927
307 => 0.060123562336526
308 => 0.059843481423043
309 => 0.057712051842144
310 => 0.056471468404745
311 => 0.0532246222584
312 => 0.057070651772062
313 => 0.058943940557947
314 => 0.057707200476742
315 => 0.058330940236828
316 => 0.061733862119559
317 => 0.063029474449628
318 => 0.062759996141987
319 => 0.062805533539988
320 => 0.063504622436266
321 => 0.066604767597649
322 => 0.064747088756146
323 => 0.066167214624577
324 => 0.066920444264548
325 => 0.067620085932097
326 => 0.065901987120616
327 => 0.063666765810765
328 => 0.062958777393727
329 => 0.057584231049149
330 => 0.057304462571442
331 => 0.057147420047053
401 => 0.056157289144883
402 => 0.055379317475458
403 => 0.054760645519694
404 => 0.053137065556686
405 => 0.053684976133511
406 => 0.05109732853995
407 => 0.05275281376971
408 => 0.04862286572945
409 => 0.052062409179448
410 => 0.050190422056465
411 => 0.051447411062615
412 => 0.051443025546388
413 => 0.049128510257337
414 => 0.047793546141314
415 => 0.048644237233625
416 => 0.049556245612525
417 => 0.049704215903637
418 => 0.050886658572734
419 => 0.05121665290516
420 => 0.050216754671949
421 => 0.048537281736002
422 => 0.048927384994323
423 => 0.047785640711235
424 => 0.045784777771684
425 => 0.047221832466585
426 => 0.047712506122259
427 => 0.047929215561666
428 => 0.045961596661278
429 => 0.045343328083692
430 => 0.045014167080761
501 => 0.048283286844262
502 => 0.048462376604527
503 => 0.04754612807027
504 => 0.051687658327364
505 => 0.050750302478197
506 => 0.051797558619475
507 => 0.0488919872125
508 => 0.049002983953117
509 => 0.047627439885207
510 => 0.048397652649349
511 => 0.04785329109277
512 => 0.048335427069397
513 => 0.048624417385866
514 => 0.04999973574053
515 => 0.052078113105854
516 => 0.049794309041168
517 => 0.048799222905508
518 => 0.049416568747495
519 => 0.051060642077589
520 => 0.053551497331247
521 => 0.052076860887948
522 => 0.052731279500533
523 => 0.052874240854325
524 => 0.051786898535045
525 => 0.053591589193528
526 => 0.054558737578689
527 => 0.055550831698705
528 => 0.056412239225269
529 => 0.055154567490554
530 => 0.056500456526861
531 => 0.055415907544994
601 => 0.054442954989647
602 => 0.054444430557056
603 => 0.053834083206518
604 => 0.052651458306135
605 => 0.052433364129783
606 => 0.053567917577424
607 => 0.05447772199982
608 => 0.054552657849718
609 => 0.055056372325395
610 => 0.05535446536343
611 => 0.058276182374
612 => 0.059451321125363
613 => 0.06088825854629
614 => 0.061448026653097
615 => 0.063132727966613
616 => 0.061772194831198
617 => 0.061477834929196
618 => 0.057391300604207
619 => 0.058060470370992
620 => 0.059131875732894
621 => 0.057408967684002
622 => 0.058501756282257
623 => 0.05871749589998
624 => 0.057350423927779
625 => 0.058080636135825
626 => 0.056141409004088
627 => 0.052120382958029
628 => 0.053596065744988
629 => 0.054682664985645
630 => 0.053131953892507
701 => 0.055911543506149
702 => 0.054287764636236
703 => 0.053773104689605
704 => 0.051765232748279
705 => 0.052712871014506
706 => 0.053994565338452
707 => 0.053202627259212
708 => 0.054846017683736
709 => 0.05717349680108
710 => 0.058832197023877
711 => 0.05895953143082
712 => 0.057893098311846
713 => 0.059602064190888
714 => 0.059614512141596
715 => 0.057686791648707
716 => 0.056506073580404
717 => 0.056237811951034
718 => 0.056907982096992
719 => 0.057721692374418
720 => 0.059004686688082
721 => 0.059779973281384
722 => 0.06180150953648
723 => 0.062348479285122
724 => 0.062949433208014
725 => 0.063752492976324
726 => 0.064716772128479
727 => 0.062606984240008
728 => 0.062690810045953
729 => 0.060726204776211
730 => 0.058626742292596
731 => 0.060219972615966
801 => 0.062302909325225
802 => 0.061825081342681
803 => 0.061771315933504
804 => 0.061861734438458
805 => 0.061501467744022
806 => 0.059871994837197
807 => 0.059053683744429
808 => 0.060109513827524
809 => 0.060670640527099
810 => 0.061540899102748
811 => 0.061433621364369
812 => 0.063675313996293
813 => 0.064546367967793
814 => 0.064323515087382
815 => 0.064364525380632
816 => 0.065941526989071
817 => 0.067695477112772
818 => 0.069338282857722
819 => 0.071009415421633
820 => 0.068994799890424
821 => 0.067971902367888
822 => 0.069027271508598
823 => 0.068467277787141
824 => 0.07168516781556
825 => 0.071907967539371
826 => 0.075125624877715
827 => 0.078179564843312
828 => 0.076261439867938
829 => 0.07807014532547
830 => 0.080026407743709
831 => 0.083800355340632
901 => 0.082529422559066
902 => 0.081555907966442
903 => 0.0806359413804
904 => 0.08255024580537
905 => 0.085012967866333
906 => 0.085543414610606
907 => 0.08640294098258
908 => 0.085499254100334
909 => 0.086587645412155
910 => 0.090430145006259
911 => 0.08939186769725
912 => 0.087917347007051
913 => 0.090950631399013
914 => 0.092048365228869
915 => 0.099752836134471
916 => 0.10948004890861
917 => 0.1054529189478
918 => 0.10295314942644
919 => 0.10354065455929
920 => 0.10709270337747
921 => 0.10823350872148
922 => 0.10513240653728
923 => 0.10622776825484
924 => 0.11226331901218
925 => 0.11550119834984
926 => 0.11110372330408
927 => 0.098971264059245
928 => 0.087784582551979
929 => 0.090751794230539
930 => 0.090415404509489
1001 => 0.096899850847954
1002 => 0.089367105126812
1003 => 0.089493937245952
1004 => 0.096112475067549
1005 => 0.094346762647211
1006 => 0.091486534661624
1007 => 0.087805465381591
1008 => 0.081000668359755
1009 => 0.074973469871711
1010 => 0.086794194087679
1011 => 0.086284462964894
1012 => 0.085546296761182
1013 => 0.087189005769618
1014 => 0.095165534423497
1015 => 0.094981649620522
1016 => 0.093811868322842
1017 => 0.094699137127153
1018 => 0.091330992150346
1019 => 0.092199039802105
1020 => 0.087782810524473
1021 => 0.089779130595989
1022 => 0.09148039789696
1023 => 0.091821952495323
1024 => 0.092591492445645
1025 => 0.086015857825548
1026 => 0.088968124719482
1027 => 0.090702304929669
1028 => 0.082867215650027
1029 => 0.090547430406343
1030 => 0.085901390656279
1031 => 0.084324454983932
1101 => 0.08644759112127
1102 => 0.085620202903732
1103 => 0.084908863100159
1104 => 0.084511923267395
1105 => 0.086070920124672
1106 => 0.085998191057876
1107 => 0.08344736961112
1108 => 0.080119927018612
1109 => 0.081236725972237
1110 => 0.080830982442339
1111 => 0.079360515548031
1112 => 0.080351432689945
1113 => 0.075987935088645
1114 => 0.068480764260477
1115 => 0.073440231260426
1116 => 0.07324929717579
1117 => 0.073153019552145
1118 => 0.076879921933007
1119 => 0.076521666263354
1120 => 0.075871428714885
1121 => 0.079348573425531
1122 => 0.078079368831949
1123 => 0.081990758327157
1124 => 0.084567052421512
1125 => 0.0839136209048
1126 => 0.086336637952852
1127 => 0.081262454764512
1128 => 0.082947894878784
1129 => 0.083295261750416
1130 => 0.079305665999544
1201 => 0.076580281321532
1202 => 0.076398529235168
1203 => 0.071673087784637
1204 => 0.07419738046508
1205 => 0.076418653561541
1206 => 0.075354836126092
1207 => 0.075018063306671
1208 => 0.076738562603982
1209 => 0.076872260134463
1210 => 0.073823942270866
1211 => 0.07445778408238
1212 => 0.077101009803827
1213 => 0.074391181576018
1214 => 0.069126427977314
1215 => 0.067820696293922
1216 => 0.067646487617948
1217 => 0.064105239733703
1218 => 0.067907951528605
1219 => 0.06624796592379
1220 => 0.071491840559719
1221 => 0.068496567491141
1222 => 0.06836744725573
1223 => 0.068172263082088
1224 => 0.065124164741011
1225 => 0.065791504560951
1226 => 0.068009843761159
1227 => 0.068801372179173
1228 => 0.068718809280373
1229 => 0.067998972688867
1230 => 0.068328510194299
1231 => 0.067266955070826
]
'min_raw' => 0.037142632837357
'max_raw' => 0.11550119834984
'avg_raw' => 0.076321915593596
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.037142'
'max' => '$0.1155011'
'avg' => '$0.076321'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.021158935297518
'max_diff' => 0.072138967150443
'year' => 2033
]
8 => [
'items' => [
101 => 0.066892097862368
102 => 0.065708945399878
103 => 0.063970038134228
104 => 0.064211843854855
105 => 0.060766613551765
106 => 0.05888946923043
107 => 0.058369900422649
108 => 0.057675111298609
109 => 0.058448378702972
110 => 0.060756853647186
111 => 0.057972343094184
112 => 0.053198495061767
113 => 0.053485411462756
114 => 0.054130027429536
115 => 0.052928789840004
116 => 0.05179191927374
117 => 0.052780335993882
118 => 0.05075759365002
119 => 0.054374466178026
120 => 0.054276639912311
121 => 0.055624786324855
122 => 0.056467809943368
123 => 0.054524913434833
124 => 0.054036280217087
125 => 0.054314627905057
126 => 0.049714160650058
127 => 0.055248830002106
128 => 0.055296694052495
129 => 0.05488685299396
130 => 0.05783389356018
131 => 0.064053068359909
201 => 0.061713164634524
202 => 0.060807083188091
203 => 0.059084621696079
204 => 0.061379699364541
205 => 0.061203473208392
206 => 0.060406511698502
207 => 0.059924506890649
208 => 0.060812615528192
209 => 0.059814460402194
210 => 0.059635164314096
211 => 0.058548825096291
212 => 0.05816105142082
213 => 0.057873959229216
214 => 0.057557898935355
215 => 0.058255049186293
216 => 0.056675214999916
217 => 0.0547700898442
218 => 0.054611699301242
219 => 0.055049029516188
220 => 0.054855543451479
221 => 0.054610772964403
222 => 0.0541434394453
223 => 0.054004791573182
224 => 0.054455329895179
225 => 0.053946698397661
226 => 0.05469721187884
227 => 0.054493113739764
228 => 0.053353038125947
301 => 0.051932081801077
302 => 0.051919432309228
303 => 0.051613289599871
304 => 0.051223370830639
305 => 0.051114904349172
306 => 0.05269709429463
307 => 0.055972180130768
308 => 0.055329202414972
309 => 0.055793819709642
310 => 0.058079276950776
311 => 0.058805755081636
312 => 0.058290118111929
313 => 0.057584282424692
314 => 0.057615335612754
315 => 0.060027389827038
316 => 0.060177826689697
317 => 0.060557932108865
318 => 0.061046474990274
319 => 0.058373319077153
320 => 0.057489430209638
321 => 0.057070594627923
322 => 0.055780743146008
323 => 0.057171737385745
324 => 0.056361264610562
325 => 0.056470625077627
326 => 0.056399403929984
327 => 0.05643829549255
328 => 0.054373455188442
329 => 0.055125774470448
330 => 0.053874897749389
331 => 0.052200114237393
401 => 0.052194499775806
402 => 0.052604400667703
403 => 0.052360575577779
404 => 0.05170444853011
405 => 0.051797648280399
406 => 0.050981120398482
407 => 0.051896789548979
408 => 0.051923047663793
409 => 0.051570465164016
410 => 0.052981179828349
411 => 0.05355915077736
412 => 0.053327073422958
413 => 0.053542867611505
414 => 0.055355921041934
415 => 0.055651527860161
416 => 0.055782816882127
417 => 0.055606906985155
418 => 0.053576006899944
419 => 0.053666085954777
420 => 0.053005145618804
421 => 0.052446720683083
422 => 0.052469054751959
423 => 0.052756157759079
424 => 0.054009953429544
425 => 0.056648492502746
426 => 0.056748623131827
427 => 0.056869984375289
428 => 0.056376347206852
429 => 0.05622746151338
430 => 0.056423880173728
501 => 0.057414776721829
502 => 0.059963631669332
503 => 0.059062696098587
504 => 0.058330221455673
505 => 0.058972799191254
506 => 0.058873879385552
507 => 0.058038896676053
508 => 0.058015461492394
509 => 0.056412862712746
510 => 0.055820418433319
511 => 0.055325327649743
512 => 0.054784701438751
513 => 0.054464200098921
514 => 0.054956635822155
515 => 0.055069261698386
516 => 0.053992542383232
517 => 0.053845789519191
518 => 0.054725061754547
519 => 0.05433812682634
520 => 0.054736098995525
521 => 0.054828431952518
522 => 0.054813564219834
523 => 0.054409559715592
524 => 0.054667060139008
525 => 0.054057994873059
526 => 0.053395727874984
527 => 0.052973242790904
528 => 0.05260456852053
529 => 0.052809130433208
530 => 0.052079904566041
531 => 0.051846610534717
601 => 0.054579824789498
602 => 0.056598879546509
603 => 0.056569521690709
604 => 0.056390813293752
605 => 0.056125288865548
606 => 0.057395351956056
607 => 0.056952887371036
608 => 0.057274817325791
609 => 0.057356762010634
610 => 0.057604783891494
611 => 0.0576934303957
612 => 0.057425479091033
613 => 0.056526201785075
614 => 0.054285288239348
615 => 0.053242136934581
616 => 0.052897879628949
617 => 0.052910392728171
618 => 0.052565225590693
619 => 0.052666892781987
620 => 0.052529869890571
621 => 0.052270381683629
622 => 0.052793107767648
623 => 0.0528533470793
624 => 0.052731336565179
625 => 0.0527600744581
626 => 0.051749879512545
627 => 0.051826682440228
628 => 0.051399033979248
629 => 0.051318855048194
630 => 0.050237796978448
701 => 0.048322545906021
702 => 0.049383780918066
703 => 0.04810195825574
704 => 0.047616512590735
705 => 0.04991453686658
706 => 0.049683878966557
707 => 0.049289092906296
708 => 0.048705122042546
709 => 0.048488521568678
710 => 0.047172525656832
711 => 0.047094769597795
712 => 0.047747012706584
713 => 0.047446024954193
714 => 0.04702332415686
715 => 0.045492344717411
716 => 0.043771016937599
717 => 0.043822973003391
718 => 0.044370495343707
719 => 0.045962490391625
720 => 0.045340470384609
721 => 0.044889187732662
722 => 0.044804676057459
723 => 0.045862516609801
724 => 0.047359582615811
725 => 0.048061972490866
726 => 0.047365925456584
727 => 0.046566344101433
728 => 0.046615010913618
729 => 0.046938769411967
730 => 0.046972791852445
731 => 0.046452346588534
801 => 0.046598848881799
802 => 0.046376298501878
803 => 0.045010507231101
804 => 0.044985804397983
805 => 0.044650617193775
806 => 0.044640467858444
807 => 0.044070230807719
808 => 0.04399045070246
809 => 0.042858210427331
810 => 0.04360345440516
811 => 0.043103583871897
812 => 0.042350161070732
813 => 0.042220270695828
814 => 0.042216366034312
815 => 0.042989962788853
816 => 0.043594414476673
817 => 0.043112279333836
818 => 0.04300250650761
819 => 0.04417459310258
820 => 0.044025434399564
821 => 0.043896263924722
822 => 0.047225536774936
823 => 0.044590157527591
824 => 0.04344098175356
825 => 0.042018658510637
826 => 0.042481774130509
827 => 0.0425793593962
828 => 0.039158928390003
829 => 0.037771259956776
830 => 0.037295064443674
831 => 0.037021007193468
901 => 0.037145898523781
902 => 0.035896834176604
903 => 0.036736226075525
904 => 0.03565464193165
905 => 0.03547331083015
906 => 0.037407317261963
907 => 0.037676422958648
908 => 0.036528334452003
909 => 0.037265593131914
910 => 0.036998252885916
911 => 0.035673182587462
912 => 0.035622574648619
913 => 0.034957700951328
914 => 0.033917302359984
915 => 0.033441812286118
916 => 0.033194172927255
917 => 0.033296353753117
918 => 0.033244688000777
919 => 0.032907534018693
920 => 0.033264013272371
921 => 0.03235335608662
922 => 0.03199072505759
923 => 0.031826933034753
924 => 0.031018672366927
925 => 0.032304974524589
926 => 0.032558392254056
927 => 0.032812309294735
928 => 0.035022483777318
929 => 0.034912069706056
930 => 0.035910159136427
1001 => 0.035871375216531
1002 => 0.035586703943013
1003 => 0.034385722666189
1004 => 0.034864412397698
1005 => 0.033391079809015
1006 => 0.034495000761334
1007 => 0.033991217339537
1008 => 0.034324671079664
1009 => 0.033725091188604
1010 => 0.034056923456364
1011 => 0.032618486998891
1012 => 0.03127529527425
1013 => 0.031815834834456
1014 => 0.032403463154597
1015 => 0.033677591077574
1016 => 0.032918730997976
1017 => 0.033191645778276
1018 => 0.032277426949654
1019 => 0.030391132372507
1020 => 0.030401808594963
1021 => 0.03011164326943
1022 => 0.029860898063338
1023 => 0.033005895206754
1024 => 0.032614765096922
1025 => 0.03199155045675
1026 => 0.032825748018186
1027 => 0.033046323093926
1028 => 0.03305260255624
1029 => 0.033661211563308
1030 => 0.03398602629948
1031 => 0.034043276304558
1101 => 0.035000935727048
1102 => 0.035321930533634
1103 => 0.036644062713074
1104 => 0.03395846803847
1105 => 0.033903159983451
1106 => 0.032837486888601
1107 => 0.032161620164222
1108 => 0.032883764061449
1109 => 0.033523484971919
1110 => 0.032857364800505
1111 => 0.032944346032327
1112 => 0.032050134126221
1113 => 0.032369772806073
1114 => 0.032645088697142
1115 => 0.032493075444414
1116 => 0.032265504247555
1117 => 0.033471035152542
1118 => 0.033403014374368
1119 => 0.034525632468127
1120 => 0.035400793551402
1121 => 0.036969238666388
1122 => 0.035332484424008
1123 => 0.035272834593906
1124 => 0.035855921251279
1125 => 0.035321841266104
1126 => 0.035659361380921
1127 => 0.03691485895785
1128 => 0.036941385643264
1129 => 0.036497029484886
1130 => 0.036469990372266
1201 => 0.036555333833206
1202 => 0.037055193149587
1203 => 0.036880526945318
1204 => 0.037082655098905
1205 => 0.037335419450062
1206 => 0.03838095997631
1207 => 0.038633036257528
1208 => 0.038020621580736
1209 => 0.038075915769134
1210 => 0.037846855868855
1211 => 0.037625586875297
1212 => 0.038122967259073
1213 => 0.039031939686458
1214 => 0.039026285016163
1215 => 0.039237148951417
1216 => 0.03936851543619
1217 => 0.038804594317403
1218 => 0.038437502405027
1219 => 0.038578268802897
1220 => 0.038803357338585
1221 => 0.038505275624441
1222 => 0.036665377199864
1223 => 0.037223484848714
1224 => 0.037130588445876
1225 => 0.036998292671645
1226 => 0.037559474228283
1227 => 0.037505346898134
1228 => 0.035884023216356
1229 => 0.035987815098091
1230 => 0.035890335144453
1231 => 0.036205312817179
]
'min_raw' => 0.029860898063338
'max_raw' => 0.066892097862368
'avg_raw' => 0.048376497962853
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.02986'
'max' => '$0.066892'
'avg' => '$0.048376'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0072817347740182
'max_diff' => -0.048609100487468
'year' => 2034
]
9 => [
'items' => [
101 => 0.035304831438109
102 => 0.035581813445476
103 => 0.035755533963952
104 => 0.035857856683918
105 => 0.036227516511782
106 => 0.03618414119758
107 => 0.036224820241349
108 => 0.036772928179495
109 => 0.039545070042705
110 => 0.039695951607933
111 => 0.038952955598409
112 => 0.039249767849266
113 => 0.038679953233325
114 => 0.039062473602432
115 => 0.039324184324011
116 => 0.038141563897273
117 => 0.038071536790744
118 => 0.03749937034719
119 => 0.037806820184792
120 => 0.037317645386741
121 => 0.037437671771575
122 => 0.037102067535867
123 => 0.037706088342004
124 => 0.038381477458608
125 => 0.038552107421387
126 => 0.038103253450134
127 => 0.037778253594028
128 => 0.037207660908315
129 => 0.038156569261143
130 => 0.038434058980968
131 => 0.038155111725776
201 => 0.03809047355163
202 => 0.037967984328422
203 => 0.038116460219378
204 => 0.03843254771236
205 => 0.038283486687889
206 => 0.03838194412067
207 => 0.038006725915774
208 => 0.038804780998758
209 => 0.040072284532951
210 => 0.040076359764071
211 => 0.039927297936105
212 => 0.039866305047684
213 => 0.040019251529005
214 => 0.040102218720928
215 => 0.040596819595931
216 => 0.041127546040578
217 => 0.043604214783656
218 => 0.04290877611115
219 => 0.045106223957691
220 => 0.046844119901414
221 => 0.047365238905958
222 => 0.046885833942322
223 => 0.04524581545867
224 => 0.045165348327741
225 => 0.04761622834026
226 => 0.046923742479307
227 => 0.046841373489619
228 => 0.045965106603937
301 => 0.04648308886114
302 => 0.046369798543148
303 => 0.046190964233847
304 => 0.047179238297634
305 => 0.049029199121208
306 => 0.048740865378032
307 => 0.048525637614167
308 => 0.047582572204775
309 => 0.048150508222514
310 => 0.047948277084695
311 => 0.048817190391817
312 => 0.048302465397464
313 => 0.046918496217832
314 => 0.047138897871311
315 => 0.047105584604774
316 => 0.047791169269496
317 => 0.047585373770404
318 => 0.047065399730676
319 => 0.04902287615623
320 => 0.04889576852521
321 => 0.049075978085146
322 => 0.049155311906596
323 => 0.050346793312226
324 => 0.050834905120961
325 => 0.050945715047144
326 => 0.051409383513519
327 => 0.050934178553308
328 => 0.052835337209548
329 => 0.054099496780264
330 => 0.055567883174708
331 => 0.057713590362046
401 => 0.058520396113386
402 => 0.058374653875844
403 => 0.060001504576666
404 => 0.062924919123183
405 => 0.058965559539316
406 => 0.063134774795204
407 => 0.061814849381095
408 => 0.058685329968686
409 => 0.058483825813137
410 => 0.060603172693688
411 => 0.065303680095171
412 => 0.064126256303813
413 => 0.065305605938693
414 => 0.063929831944762
415 => 0.063861513170029
416 => 0.065238787666593
417 => 0.06845686459914
418 => 0.066928076876297
419 => 0.064736184801473
420 => 0.066354643799905
421 => 0.064952584834154
422 => 0.061793353572721
423 => 0.06412535595003
424 => 0.062566012371928
425 => 0.063021111727282
426 => 0.066298619993601
427 => 0.065904261527786
428 => 0.066414597899162
429 => 0.065513867561513
430 => 0.064672443394012
501 => 0.063101862700392
502 => 0.062636891185704
503 => 0.062765392584441
504 => 0.062636827506792
505 => 0.061758102043094
506 => 0.061568341362872
507 => 0.061252065248897
508 => 0.061350092441601
509 => 0.060755400817486
510 => 0.061877706781749
511 => 0.062086016658443
512 => 0.062902737346683
513 => 0.062987531997903
514 => 0.065262087489361
515 => 0.064009300547018
516 => 0.064849778188362
517 => 0.064774597957238
518 => 0.058753156143886
519 => 0.059582857698135
520 => 0.060873612941855
521 => 0.060292129454137
522 => 0.059470047848683
523 => 0.058806172875053
524 => 0.057800334405301
525 => 0.05921603273606
526 => 0.061077525498274
527 => 0.063034742526284
528 => 0.065386210543497
529 => 0.06486139025616
530 => 0.062990783467349
531 => 0.063074697521416
601 => 0.063593421184695
602 => 0.062921626909734
603 => 0.062723501663066
604 => 0.063566201818222
605 => 0.063572005031051
606 => 0.062799024528659
607 => 0.061939998154188
608 => 0.061936398802314
609 => 0.061783543356187
610 => 0.063957024589057
611 => 0.065152219503398
612 => 0.065289246674174
613 => 0.065142996483029
614 => 0.065199282377138
615 => 0.064503824790806
616 => 0.06609343460162
617 => 0.067552217760139
618 => 0.067161232711299
619 => 0.066575090541289
620 => 0.066108200070444
621 => 0.067051248154361
622 => 0.067009255707679
623 => 0.067539476561864
624 => 0.067515422681214
625 => 0.067337129350567
626 => 0.067161239078716
627 => 0.067858624124871
628 => 0.067657788431239
629 => 0.067456640784303
630 => 0.067053208384209
701 => 0.067108041547685
702 => 0.066522000583384
703 => 0.066250871217888
704 => 0.062173736091146
705 => 0.061084192361047
706 => 0.061426984998244
707 => 0.061539841235016
708 => 0.061065670407389
709 => 0.061745509569715
710 => 0.061639557356394
711 => 0.062051755438453
712 => 0.061794231972343
713 => 0.06180480082522
714 => 0.062562122429258
715 => 0.062781976112787
716 => 0.062670156754908
717 => 0.062748471200223
718 => 0.064553194538058
719 => 0.064296620591222
720 => 0.064160320795673
721 => 0.064198076770529
722 => 0.064659222277051
723 => 0.064788317841266
724 => 0.064241330864303
725 => 0.064499293084733
726 => 0.065597663479042
727 => 0.06598203095467
728 => 0.067208747430019
729 => 0.066687616468144
730 => 0.067644174902685
731 => 0.070584309415664
801 => 0.072933092306465
802 => 0.070773054492526
803 => 0.075086295155784
804 => 0.078444771709756
805 => 0.078315867785779
806 => 0.077730239715632
807 => 0.073906703448654
808 => 0.070388228370067
809 => 0.073331582175648
810 => 0.073339085389805
811 => 0.073086248687574
812 => 0.071515901644705
813 => 0.073031604014407
814 => 0.073151914964291
815 => 0.07308457282562
816 => 0.071880591429725
817 => 0.070042334371151
818 => 0.070401525400231
819 => 0.070989887633162
820 => 0.069875995181004
821 => 0.069520039049415
822 => 0.070181829221463
823 => 0.072314255045258
824 => 0.071911132295572
825 => 0.07190060513143
826 => 0.073625335205241
827 => 0.072390800692438
828 => 0.070406055949397
829 => 0.069904881726212
830 => 0.068126050865315
831 => 0.069354695676914
901 => 0.06939891241637
902 => 0.068725996209502
903 => 0.070460659390931
904 => 0.070444674164333
905 => 0.072091478684558
906 => 0.075239550415696
907 => 0.074308510697597
908 => 0.073225812802281
909 => 0.073343532083458
910 => 0.074634622042027
911 => 0.073853999580359
912 => 0.074134716860268
913 => 0.074634197142803
914 => 0.074935545998654
915 => 0.073300172620596
916 => 0.07291888885722
917 => 0.072138916089768
918 => 0.071935435753621
919 => 0.072570707298045
920 => 0.072403335690564
921 => 0.069395196170634
922 => 0.069080828853671
923 => 0.069090470050469
924 => 0.068299978484615
925 => 0.067094289106973
926 => 0.070262768803444
927 => 0.070008295540972
928 => 0.06972737675387
929 => 0.06976178770239
930 => 0.071137117348887
1001 => 0.070339356698107
1002 => 0.072460334138606
1003 => 0.072024324939257
1004 => 0.071577133749159
1005 => 0.07151531830491
1006 => 0.071343187849282
1007 => 0.070752888470009
1008 => 0.070040066498045
1009 => 0.069569399688573
1010 => 0.064174093788155
1011 => 0.065175431180222
1012 => 0.06632737857502
1013 => 0.066725026199564
1014 => 0.066044822421403
1015 => 0.070779747061062
1016 => 0.071644863419597
1017 => 0.069024369539451
1018 => 0.068534182128536
1019 => 0.070811883666115
1020 => 0.069438151201266
1021 => 0.070056742846072
1022 => 0.06871968606154
1023 => 0.07143648222239
1024 => 0.071415784787523
1025 => 0.070358889719328
1026 => 0.071252170193661
1027 => 0.071096940728693
1028 => 0.069903708799718
1029 => 0.071474309802868
1030 => 0.07147508880137
1031 => 0.070457850277113
1101 => 0.069269938382927
1102 => 0.069057567793473
1103 => 0.068897575082294
1104 => 0.070017394446854
1105 => 0.071021420987534
1106 => 0.072889665460451
1107 => 0.073359386509336
1108 => 0.075192739034236
1109 => 0.074101066869972
1110 => 0.074584991000869
1111 => 0.075110359100205
1112 => 0.075362239886799
1113 => 0.074951813661713
1114 => 0.077799764770887
1115 => 0.078040219103469
1116 => 0.078120841361262
1117 => 0.077160528271064
1118 => 0.078013511059237
1119 => 0.077614428660472
1120 => 0.078652730193775
1121 => 0.078815549131897
1122 => 0.07867764728376
1123 => 0.078729328584641
1124 => 0.076299104725964
1125 => 0.076173084798439
1126 => 0.074454794144676
1127 => 0.075155010287048
1128 => 0.073845989771116
1129 => 0.074261093661124
1130 => 0.074444067500584
1201 => 0.074348492350524
1202 => 0.075194599457142
1203 => 0.074475235568254
1204 => 0.072576715991108
1205 => 0.070677679163573
1206 => 0.070653838303125
1207 => 0.070153855427219
1208 => 0.069792459384371
1209 => 0.069862077083437
1210 => 0.070107418935325
1211 => 0.069778199669932
1212 => 0.069848455292044
1213 => 0.071015166729864
1214 => 0.071249142388114
1215 => 0.070454001681191
1216 => 0.067261397004638
1217 => 0.06647792380897
1218 => 0.067041068805067
1219 => 0.066771921768115
1220 => 0.053890152201693
1221 => 0.056916532883335
1222 => 0.055118360248481
1223 => 0.055947040928566
1224 => 0.054111572302926
1225 => 0.054987554136235
1226 => 0.054825792277357
1227 => 0.059692122856323
1228 => 0.059616141797751
1229 => 0.059652509909661
1230 => 0.05791656517158
1231 => 0.06068197227538
]
'min_raw' => 0.035304831438109
'max_raw' => 0.078815549131897
'avg_raw' => 0.057060190285003
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0353048'
'max' => '$0.078815'
'avg' => '$0.05706'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0054439333747703
'max_diff' => 0.011923451269528
'year' => 2035
]
10 => [
'items' => [
101 => 0.062044311255535
102 => 0.061792178567786
103 => 0.061855634933307
104 => 0.060765244332661
105 => 0.059663067274152
106 => 0.058440583292431
107 => 0.060711807426881
108 => 0.060459286074219
109 => 0.061038479202911
110 => 0.062511530404556
111 => 0.062728442789575
112 => 0.06301997523475
113 => 0.062915481605847
114 => 0.065404943779939
115 => 0.065103453484656
116 => 0.06582995835161
117 => 0.064335482720229
118 => 0.062644341686393
119 => 0.062965772309359
120 => 0.062934815955586
121 => 0.062540706042
122 => 0.06218492123386
123 => 0.061592639770055
124 => 0.063466705962698
125 => 0.063390622297724
126 => 0.064622328396077
127 => 0.064404612379038
128 => 0.062950651533108
129 => 0.063002580029163
130 => 0.063351824121116
131 => 0.064560561910964
201 => 0.064919397584136
202 => 0.064753170603193
203 => 0.065146617537355
204 => 0.065457581951993
205 => 0.065185669880141
206 => 0.069035371405746
207 => 0.067436706932061
208 => 0.068215884873099
209 => 0.068401714220854
210 => 0.06792571625415
211 => 0.068028943168919
212 => 0.068185303817143
213 => 0.069134695054605
214 => 0.071626172370272
215 => 0.072729630713322
216 => 0.076049439582062
217 => 0.072638003858813
218 => 0.07243558338092
219 => 0.073033581206804
220 => 0.074982660450212
221 => 0.07656220610929
222 => 0.077086232530581
223 => 0.077155491272888
224 => 0.078138599675848
225 => 0.078702099078539
226 => 0.078019224457411
227 => 0.077440559715958
228 => 0.075367854438586
229 => 0.075607775718231
301 => 0.077260595416499
302 => 0.079595300590898
303 => 0.081598720515204
304 => 0.080897192683946
305 => 0.086249354834981
306 => 0.086779999850634
307 => 0.086706681867278
308 => 0.087915570183502
309 => 0.085516173061621
310 => 0.084490384305887
311 => 0.077565673601184
312 => 0.079511234853927
313 => 0.082339222393594
314 => 0.08196492763831
315 => 0.07991116749468
316 => 0.08159716255397
317 => 0.081039719861429
318 => 0.080600041681503
319 => 0.082614292659552
320 => 0.080399540968317
321 => 0.082317128551277
322 => 0.079857802641227
323 => 0.080900397203987
324 => 0.08030857010554
325 => 0.080691554769836
326 => 0.078452634248022
327 => 0.079660701414869
328 => 0.078402374682125
329 => 0.078401778071414
330 => 0.078374000439046
331 => 0.079854416259845
401 => 0.079902692566613
402 => 0.078808663038258
403 => 0.078650996291269
404 => 0.079233972891375
405 => 0.078551459974464
406 => 0.078870803472602
407 => 0.078561132563703
408 => 0.078491419119442
409 => 0.07793593053481
410 => 0.077696610779073
411 => 0.077790454221808
412 => 0.077470118172144
413 => 0.07727710411516
414 => 0.078335605085019
415 => 0.077770090716631
416 => 0.078248931897445
417 => 0.077703231937332
418 => 0.075811598125425
419 => 0.074723699516532
420 => 0.071150578600385
421 => 0.072163911259762
422 => 0.072835751861297
423 => 0.072613708546497
424 => 0.073090743506043
425 => 0.073120029578241
426 => 0.072964940650097
427 => 0.072785367539429
428 => 0.072697961280171
429 => 0.073349415926072
430 => 0.073727607274973
501 => 0.072903180053729
502 => 0.072710028290754
503 => 0.073543569729306
504 => 0.074052029525302
505 => 0.077806210980057
506 => 0.077528089092042
507 => 0.078226120452295
508 => 0.078147532833295
509 => 0.078879180903956
510 => 0.080075116281941
511 => 0.077643445269706
512 => 0.078065499276573
513 => 0.077962021380739
514 => 0.079091765914087
515 => 0.079095292853204
516 => 0.078417954570538
517 => 0.07878515064213
518 => 0.078580191868464
519 => 0.078950580074318
520 => 0.077524374604665
521 => 0.079261338917335
522 => 0.080246085755111
523 => 0.080259758965909
524 => 0.08072652115158
525 => 0.081200778565265
526 => 0.082111074371718
527 => 0.081175390909287
528 => 0.079492187447323
529 => 0.079613709300563
530 => 0.078626847726673
531 => 0.078643437048021
601 => 0.078554881950536
602 => 0.078820642464206
603 => 0.077582694092405
604 => 0.077873238100891
605 => 0.077466474787588
606 => 0.078064615052569
607 => 0.077421115003577
608 => 0.077961971480565
609 => 0.078195387206357
610 => 0.07905669625961
611 => 0.077293898956103
612 => 0.073699435923366
613 => 0.074455035631499
614 => 0.073337444312094
615 => 0.073440881643675
616 => 0.073649841515398
617 => 0.072972534203728
618 => 0.073101743094388
619 => 0.073097126843585
620 => 0.073057346488062
621 => 0.072881152697447
622 => 0.072625636842176
623 => 0.073643533365942
624 => 0.073816493820345
625 => 0.074200963485217
626 => 0.07534488441961
627 => 0.075230579742751
628 => 0.075417015413163
629 => 0.075010027391444
630 => 0.073459760650733
701 => 0.073543947593312
702 => 0.072494135070348
703 => 0.074174117418704
704 => 0.07377627542393
705 => 0.073519784101784
706 => 0.073449798068161
707 => 0.074596554561291
708 => 0.074939682077241
709 => 0.074725868035732
710 => 0.074287329198645
711 => 0.075129453408221
712 => 0.075354770320335
713 => 0.07540521046759
714 => 0.076897293105658
715 => 0.075488601312087
716 => 0.075827687427992
717 => 0.07847314050788
718 => 0.076074079611993
719 => 0.077344915673986
720 => 0.077282714861863
721 => 0.077932831588432
722 => 0.077229386314799
723 => 0.077238106362038
724 => 0.077815365972509
725 => 0.077004708958922
726 => 0.076803978882062
727 => 0.076526671718537
728 => 0.077132161765015
729 => 0.077495125663919
730 => 0.080420348121477
731 => 0.082310175235411
801 => 0.082228132856331
802 => 0.082977846624226
803 => 0.082640093705198
804 => 0.081549400434938
805 => 0.083411080851397
806 => 0.082821967271613
807 => 0.082870533079357
808 => 0.082868725457567
809 => 0.083260434486921
810 => 0.082982872740019
811 => 0.082435770045745
812 => 0.082798962346417
813 => 0.083877513635791
814 => 0.087225369932003
815 => 0.089098874668559
816 => 0.08711258259442
817 => 0.088482700269651
818 => 0.087661117887357
819 => 0.087511811928536
820 => 0.088372347079481
821 => 0.089234388483292
822 => 0.089179480172577
823 => 0.088553682379726
824 => 0.088200185085576
825 => 0.090876985027164
826 => 0.092849205626029
827 => 0.092714713403121
828 => 0.093308318335823
829 => 0.095051160777745
830 => 0.095210504448621
831 => 0.095190430808563
901 => 0.094795480894503
902 => 0.096511535615264
903 => 0.097943098654434
904 => 0.094704061400598
905 => 0.095937444384747
906 => 0.09649114974345
907 => 0.097304153487003
908 => 0.098675827077625
909 => 0.10016582841549
910 => 0.1003765309417
911 => 0.10022702741631
912 => 0.099244331480602
913 => 0.10087470872391
914 => 0.10182974547599
915 => 0.10239844800622
916 => 0.10384058299982
917 => 0.096494569239242
918 => 0.091294695578932
919 => 0.090482660219788
920 => 0.09213396605432
921 => 0.092569402233968
922 => 0.092393878455942
923 => 0.086540947899434
924 => 0.0904518457517
925 => 0.094659643003108
926 => 0.094821281632328
927 => 0.096927792917274
928 => 0.097613759340468
929 => 0.099309777031595
930 => 0.099203690663239
1001 => 0.099616643981493
1002 => 0.099521713164981
1003 => 0.10266322879913
1004 => 0.10612878706319
1005 => 0.10600878580031
1006 => 0.10551057079723
1007 => 0.10625050503509
1008 => 0.10982733255539
1009 => 0.10949803559481
1010 => 0.10981791954256
1011 => 0.11403520077016
1012 => 0.1195182662673
1013 => 0.1169708318531
1014 => 0.12249803152741
1015 => 0.12597711073811
1016 => 0.13199381848953
1017 => 0.13124049704614
1018 => 0.13358275722112
1019 => 0.12989189443955
1020 => 0.12141692744661
1021 => 0.1200757314791
1022 => 0.12276083977054
1023 => 0.12936191649599
1024 => 0.12255294837321
1025 => 0.12393039375643
1026 => 0.1235336893934
1027 => 0.12351255070378
1028 => 0.12431932850935
1029 => 0.12314905522367
1030 => 0.11838115132967
1031 => 0.12056625358686
1101 => 0.11972248066813
1102 => 0.12065870962889
1103 => 0.12571115119996
1104 => 0.12347734634623
1105 => 0.12112421439239
1106 => 0.12407556406429
1107 => 0.12783364639039
1108 => 0.12759847235234
1109 => 0.12714213642342
1110 => 0.12971447816181
1111 => 0.13396323308822
1112 => 0.13511165447195
1113 => 0.13595939565898
1114 => 0.13607628484596
1115 => 0.13728031611815
1116 => 0.13080593651266
1117 => 0.14108094322043
1118 => 0.14285515303753
1119 => 0.14252167512537
1120 => 0.14449363466692
1121 => 0.14391343414601
1122 => 0.14307281462189
1123 => 0.14619878994306
1124 => 0.14261511149054
1125 => 0.13752853109976
1126 => 0.13473793249622
1127 => 0.13841281784853
1128 => 0.14065694209735
1129 => 0.14214016547272
1130 => 0.14258898796991
1201 => 0.13130852417124
1202 => 0.12522897982696
1203 => 0.12912589804953
1204 => 0.13388040723199
1205 => 0.13077952497409
1206 => 0.13090107368786
1207 => 0.12648003048562
1208 => 0.13427157145595
1209 => 0.13313640947374
1210 => 0.13902563184547
1211 => 0.1376201216625
1212 => 0.14242255388835
1213 => 0.14115791253625
1214 => 0.14640736808366
1215 => 0.14850151802486
1216 => 0.15201792170454
1217 => 0.15460460256565
1218 => 0.15612355104261
1219 => 0.15603235907349
1220 => 0.16205118967635
1221 => 0.15850209555177
1222 => 0.15404359687403
1223 => 0.15396295669933
1224 => 0.15627207634195
1225 => 0.16111135763683
1226 => 0.16236611286791
1227 => 0.16306734986523
1228 => 0.1619933809936
1229 => 0.15814109368724
1230 => 0.15647769555989
1231 => 0.15789495895767
]
'min_raw' => 0.058440583292431
'max_raw' => 0.16306734986523
'avg_raw' => 0.11075396657883
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.05844'
'max' => '$0.163067'
'avg' => '$0.110753'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.023135751854322
'max_diff' => 0.084251800733337
'year' => 2036
]
11 => [
'items' => [
101 => 0.15616176760901
102 => 0.1591537421244
103 => 0.1632623621853
104 => 0.16241394838997
105 => 0.16525006850645
106 => 0.16818515445848
107 => 0.17238245919284
108 => 0.17347979007614
109 => 0.17529363629849
110 => 0.17716067987873
111 => 0.17776032395847
112 => 0.17890523056531
113 => 0.17889919634236
114 => 0.1823494494632
115 => 0.18615518550094
116 => 0.18759176275219
117 => 0.19089509292811
118 => 0.18523825576434
119 => 0.18952903173412
120 => 0.19339941906396
121 => 0.18878498373199
122 => 0.19514490781157
123 => 0.19539184925168
124 => 0.199120371815
125 => 0.19534079989859
126 => 0.19309650215944
127 => 0.19957570563961
128 => 0.20271078811067
129 => 0.20176647575624
130 => 0.19458021211258
131 => 0.19039749843862
201 => 0.17945052996865
202 => 0.19241768699517
203 => 0.19873361092563
204 => 0.19456385539541
205 => 0.19666683754466
206 => 0.20814002625671
207 => 0.2125082736843
208 => 0.21159970875571
209 => 0.21175324127239
210 => 0.21411026829502
211 => 0.22456262415185
212 => 0.21829933023873
213 => 0.22308738375416
214 => 0.22562695007414
215 => 0.2279858408037
216 => 0.22219315070697
217 => 0.21465694600263
218 => 0.21226991362442
219 => 0.19414925538483
220 => 0.19320599642943
221 => 0.19267651659409
222 => 0.1893382211287
223 => 0.18671523532898
224 => 0.18462933963583
225 => 0.17915532643581
226 => 0.18100264519947
227 => 0.17227821067399
228 => 0.17785979470842
301 => 0.16393538654692
302 => 0.17553204742984
303 => 0.16922051214674
304 => 0.17345853834114
305 => 0.173443752267
306 => 0.16564020237566
307 => 0.16113927765427
308 => 0.16400744206535
309 => 0.16708234198921
310 => 0.16758123415665
311 => 0.17156792217102
312 => 0.17268052110226
313 => 0.16930929439833
314 => 0.16364683413773
315 => 0.1649620945093
316 => 0.16111262394482
317 => 0.15436657484834
318 => 0.15921170508415
319 => 0.160866045572
320 => 0.16159669657713
321 => 0.1549627320797
322 => 0.15287819640424
323 => 0.15176840710157
324 => 0.16279047262687
325 => 0.16339428625725
326 => 0.16030509035357
327 => 0.17426854876777
328 => 0.17110818807821
329 => 0.17463908527562
330 => 0.16484274841648
331 => 0.16521698167702
401 => 0.16057923881464
402 => 0.16317606492348
403 => 0.16134071192937
404 => 0.16296626703622
405 => 0.16394061806486
406 => 0.16857759991927
407 => 0.17558499431413
408 => 0.16788498945994
409 => 0.16452998707886
410 => 0.16661141168683
411 => 0.17215451970478
412 => 0.18055261209845
413 => 0.17558077237403
414 => 0.17778719041641
415 => 0.17826919460197
416 => 0.1746031440567
417 => 0.18068778461125
418 => 0.18394859291597
419 => 0.1872935075074
420 => 0.19019780312476
421 => 0.18595747506333
422 => 0.19049523391622
423 => 0.18683860130306
424 => 0.18355822383333
425 => 0.18356319881187
426 => 0.18150537010644
427 => 0.17751806768656
428 => 0.17678274794414
429 => 0.18060797410486
430 => 0.18367544323548
501 => 0.18392809468527
502 => 0.18562640320824
503 => 0.18663144469816
504 => 0.19648221758707
505 => 0.20044427993285
506 => 0.20528901477128
507 => 0.20717631202514
508 => 0.21285640012574
509 => 0.2082692676703
510 => 0.20727681270915
511 => 0.19349877691974
512 => 0.19575492950839
513 => 0.19936724748918
514 => 0.19355834271274
515 => 0.19724275576782
516 => 0.19797013695143
517 => 0.19336095835124
518 => 0.19582291979245
519 => 0.18928468012529
520 => 0.17572751007193
521 => 0.18070287761704
522 => 0.18436642282085
523 => 0.17913809210315
524 => 0.18850967255029
525 => 0.18303498872176
526 => 0.18129977677928
527 => 0.17453009634396
528 => 0.17772512492054
529 => 0.18204644681876
530 => 0.17937637229325
531 => 0.18491717784739
601 => 0.19276443619092
602 => 0.19835685979883
603 => 0.19878617664204
604 => 0.19519062292544
605 => 0.20095252070281
606 => 0.20099448983771
607 => 0.19449504560679
608 => 0.19051417220441
609 => 0.18960970939156
610 => 0.19186923482844
611 => 0.19461271584022
612 => 0.19893842074454
613 => 0.20155235362264
614 => 0.20836810424585
615 => 0.2102122509416
616 => 0.2122384090499
617 => 0.2149459811266
618 => 0.21819711561191
619 => 0.21108381844524
620 => 0.21136644300252
621 => 0.20474263917122
622 => 0.19766415482792
623 => 0.20303584209895
624 => 0.21005860864022
625 => 0.20844757823618
626 => 0.20826630440537
627 => 0.20857115670764
628 => 0.20735649239433
629 => 0.2018626107228
630 => 0.19910361774088
701 => 0.20266342258174
702 => 0.20455530042597
703 => 0.20748943797328
704 => 0.20712774358844
705 => 0.21468576680696
706 => 0.21762258608692
707 => 0.21687122204152
708 => 0.21700949110846
709 => 0.22232646213405
710 => 0.22824002743299
711 => 0.23377886169912
712 => 0.2394132018131
713 => 0.23262078489366
714 => 0.22917201448001
715 => 0.23273026522143
716 => 0.23084220729203
717 => 0.24169154818875
718 => 0.24244273301296
719 => 0.25329128937885
720 => 0.26358786119214
721 => 0.25712076891846
722 => 0.26321894564831
723 => 0.26981462097328
724 => 0.28253874878491
725 => 0.27825371017817
726 => 0.27497143776052
727 => 0.27186970618567
728 => 0.27832391720692
729 => 0.28662715657722
730 => 0.28841559481014
731 => 0.29131354798347
801 => 0.28826670456657
802 => 0.29193629186343
803 => 0.30489154751971
804 => 0.30139092308218
805 => 0.29641947362742
806 => 0.30664640373208
807 => 0.31034748998077
808 => 0.33632365154799
809 => 0.36911962854831
810 => 0.35554187872018
811 => 0.34711373125061
812 => 0.34909454582429
813 => 0.36107052641093
814 => 0.36491683127673
815 => 0.35446124875068
816 => 0.35815433725714
817 => 0.37850361802419
818 => 0.38942035427263
819 => 0.37459396013397
820 => 0.33368852672874
821 => 0.29597184899783
822 => 0.3059760103362
823 => 0.3048418489057
824 => 0.32670461246542
825 => 0.30130743434708
826 => 0.3017350576919
827 => 0.32404992004896
828 => 0.31809669734569
829 => 0.30845323899754
830 => 0.29604225691586
831 => 0.27309940866098
901 => 0.25277828815298
902 => 0.29263268514373
903 => 0.29091409107497
904 => 0.28842531218203
905 => 0.29396382029426
906 => 0.32085724355426
907 => 0.3202372631026
908 => 0.31629326378595
909 => 0.31928475250681
910 => 0.30792881656114
911 => 0.31085549982419
912 => 0.29596587448338
913 => 0.30269660698311
914 => 0.30843254846702
915 => 0.30958412364198
916 => 0.31217868131206
917 => 0.29000847009425
918 => 0.29996224404784
919 => 0.30580915370308
920 => 0.27939260316831
921 => 0.3052869834347
922 => 0.28962253604122
923 => 0.28430578732377
924 => 0.29146408904343
925 => 0.2886744919016
926 => 0.2862761600897
927 => 0.28493784973008
928 => 0.29019411648008
929 => 0.28994890535359
930 => 0.28134863275319
1001 => 0.27012992773792
1002 => 0.27389529338248
1003 => 0.27252730074332
1004 => 0.26756951894444
1005 => 0.27091046527203
1006 => 0.25619862845957
1007 => 0.23088767787848
1008 => 0.24760886712773
1009 => 0.24696511953079
1010 => 0.24664051280078
1011 => 0.25920602438187
1012 => 0.25799814037903
1013 => 0.25580581908623
1014 => 0.26752925524466
1015 => 0.26325004334436
1016 => 0.27643756611195
1017 => 0.28512372152218
1018 => 0.28292063154246
1019 => 0.29109000268961
1020 => 0.27398203980197
1021 => 0.2796646188209
1022 => 0.28083579048099
1023 => 0.26738458986225
1024 => 0.25819576514005
1025 => 0.25758297529135
1026 => 0.2416508195211
1027 => 0.2501616485337
1028 => 0.25765082586275
1029 => 0.25406409110577
1030 => 0.25292863803236
1031 => 0.25872942153467
1101 => 0.25918019209315
1102 => 0.24890257558928
1103 => 0.25103961751022
1104 => 0.25995143757421
1105 => 0.25081506250998
1106 => 0.23306457817859
1107 => 0.22866221264476
1108 => 0.22807485593086
1109 => 0.21613529144709
1110 => 0.22895639976046
1111 => 0.22335964239734
1112 => 0.24103973184801
1113 => 0.23094095957401
1114 => 0.23050562168543
1115 => 0.22984754461667
1116 => 0.2195706682483
1117 => 0.22182065104341
1118 => 0.22929993653641
1119 => 0.23196862986049
1120 => 0.23169026328283
1121 => 0.22926328395718
1122 => 0.23037434266432
1123 => 0.22679523545012
1124 => 0.22553137820011
1125 => 0.22154229706776
1126 => 0.21567944981499
1127 => 0.21649471468442
1128 => 0.20487888017925
1129 => 0.19854995704184
1130 => 0.19679819453127
1201 => 0.19445566449094
1202 => 0.19706278953256
1203 => 0.20484597397955
1204 => 0.19545780224178
1205 => 0.17936244030106
1206 => 0.18032979897886
1207 => 0.18250316671651
1208 => 0.17845311031567
1209 => 0.17462007182775
1210 => 0.17795258780876
1211 => 0.17113277077306
1212 => 0.18332730902321
1213 => 0.18299748093834
1214 => 0.18754285069281
1215 => 0.19038516368066
1216 => 0.18383455245343
1217 => 0.18218709144452
1218 => 0.18312556010812
1219 => 0.16761476356353
1220 => 0.18627528770223
1221 => 0.18643666468988
1222 => 0.18505485694684
1223 => 0.19499100997165
1224 => 0.21595939201786
1225 => 0.20807024324086
1226 => 0.20501532638362
1227 => 0.19920792720489
1228 => 0.20694594180131
1229 => 0.20635178301214
1230 => 0.20366477163947
1231 => 0.20203965877729
]
'min_raw' => 0.15176840710157
'max_raw' => 0.38942035427263
'avg_raw' => 0.2705943806871
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.151768'
'max' => '$0.38942'
'avg' => '$0.270594'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.093327823809137
'max_diff' => 0.22635300440739
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0047638368770439
]
1 => [
'year' => 2028
'avg' => 0.0081761270327342
]
2 => [
'year' => 2029
'avg' => 0.022335705449906
]
3 => [
'year' => 2030
'avg' => 0.017231963491272
]
4 => [
'year' => 2031
'avg' => 0.016923923682155
]
5 => [
'year' => 2032
'avg' => 0.029672964369616
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0047638368770439
'min' => '$0.004763'
'max_raw' => 0.029672964369616
'max' => '$0.029672'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.029672964369616
]
1 => [
'year' => 2033
'avg' => 0.076321915593596
]
2 => [
'year' => 2034
'avg' => 0.048376497962853
]
3 => [
'year' => 2035
'avg' => 0.057060190285003
]
4 => [
'year' => 2036
'avg' => 0.11075396657883
]
5 => [
'year' => 2037
'avg' => 0.2705943806871
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.029672964369616
'min' => '$0.029672'
'max_raw' => 0.2705943806871
'max' => '$0.270594'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.2705943806871
]
]
]
]
'prediction_2025_max_price' => '$0.008145'
'last_price' => 0.00789789
'sma_50day_nextmonth' => '$0.006328'
'sma_200day_nextmonth' => '$0.0129096'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005921'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005196'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005016'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004879'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.008911'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011453'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014681'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006414'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005841'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005364'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005532'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007751'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.010242'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012432'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.011921'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.011346'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.026669'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.059278'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006324'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.00656'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.008316'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010768'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015752'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.075957'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.344597'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.59'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 72.4
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005052'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005668'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 84.71
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 205.99
'cci_20_action' => 'SELL'
'adx_14' => 17.28
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000189'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -15.29
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.51
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008057'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767682667
'last_updated_date' => '6. Januar 2026'
]
My DeFi Pet Preisprognose für 2026
Die Preisprognose für My DeFi Pet im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.002728 am unteren Ende und $0.008145 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte My DeFi Pet im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn DPET das prognostizierte Preisziel erreicht.
My DeFi Pet Preisprognose 2027-2032
Die Preisprognose für DPET für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.004763 am unteren Ende und $0.029672 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte My DeFi Pet, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| My DeFi Pet Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.002626 | $0.004763 | $0.0069008 |
| 2028 | $0.00474 | $0.008176 | $0.011611 |
| 2029 | $0.010414 | $0.022335 | $0.034257 |
| 2030 | $0.008856 | $0.017231 | $0.0256072 |
| 2031 | $0.010471 | $0.016923 | $0.023376 |
| 2032 | $0.015983 | $0.029672 | $0.043362 |
My DeFi Pet Preisprognose 2032-2037
Die Preisprognose für My DeFi Pet für die Jahre 2032-2037 wird derzeit zwischen $0.029672 am unteren Ende und $0.270594 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte My DeFi Pet bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| My DeFi Pet Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.015983 | $0.029672 | $0.043362 |
| 2033 | $0.037142 | $0.076321 | $0.1155011 |
| 2034 | $0.02986 | $0.048376 | $0.066892 |
| 2035 | $0.0353048 | $0.05706 | $0.078815 |
| 2036 | $0.05844 | $0.110753 | $0.163067 |
| 2037 | $0.151768 | $0.270594 | $0.38942 |
My DeFi Pet Potenzielles Preishistogramm
My DeFi Pet Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für My DeFi Pet Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 14 anzeigen bärische Signale. Die Preisprognose für DPET wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von My DeFi Pet
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von My DeFi Pet im nächsten Monat steigen, und bis zum 04.02.2026 $0.0129096 erreichen. Der kurzfristige 50-Tage-SMA für My DeFi Pet wird voraussichtlich bis zum 04.02.2026 $0.006328 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 57.59, was darauf hindeutet, dass sich der DPET-Markt in einem NEUTRAL Zustand befindet.
Beliebte DPET Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005921 | BUY |
| SMA 5 | $0.005196 | BUY |
| SMA 10 | $0.005016 | BUY |
| SMA 21 | $0.004879 | BUY |
| SMA 50 | $0.008911 | SELL |
| SMA 100 | $0.011453 | SELL |
| SMA 200 | $0.014681 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.006414 | BUY |
| EMA 5 | $0.005841 | BUY |
| EMA 10 | $0.005364 | BUY |
| EMA 21 | $0.005532 | BUY |
| EMA 50 | $0.007751 | BUY |
| EMA 100 | $0.010242 | SELL |
| EMA 200 | $0.012432 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.011921 | SELL |
| SMA 50 | $0.011346 | SELL |
| SMA 100 | $0.026669 | SELL |
| SMA 200 | $0.059278 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.010768 | SELL |
| EMA 50 | $0.015752 | SELL |
| EMA 100 | $0.075957 | SELL |
| EMA 200 | $0.344597 | SELL |
My DeFi Pet Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 57.59 | NEUTRAL |
| Stoch RSI (14) | 72.4 | NEUTRAL |
| Stochastic Fast (14) | 84.71 | SELL |
| Commodity Channel Index (20) | 205.99 | SELL |
| Average Directional Index (14) | 17.28 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000189 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -15.29 | SELL |
| Ultimate Oscillator (7, 14, 28) | 68.51 | NEUTRAL |
| VWMA (10) | 0.005052 | BUY |
| Hull Moving Average (9) | 0.005668 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.0008057 | SELL |
Auf weltweiten Geldflüssen basierende My DeFi Pet-Preisprognose
Definition weltweiter Geldflüsse, die für My DeFi Pet-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
My DeFi Pet-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.011097 | $0.015594 | $0.021912 | $0.03079 | $0.043266 | $0.060796 |
| Amazon.com aktie | $0.016479 | $0.034385 | $0.071746 | $0.1497042 | $0.312366 | $0.651771 |
| Apple aktie | $0.0112025 | $0.015889 | $0.022538 | $0.031969 | $0.045346 | $0.06432 |
| Netflix aktie | $0.012461 | $0.019662 | $0.031024 | $0.048951 | $0.077237 | $0.121869 |
| Google aktie | $0.010227 | $0.013244 | $0.017152 | $0.022211 | $0.028764 | $0.037249 |
| Tesla aktie | $0.0179039 | $0.040586 | $0.0920072 | $0.208573 | $0.47282 | $1.07 |
| Kodak aktie | $0.005922 | $0.004441 | $0.00333 | $0.002497 | $0.001872 | $0.0014044 |
| Nokia aktie | $0.005232 | $0.003465 | $0.002296 | $0.001521 | $0.0010076 | $0.000667 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
My DeFi Pet Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in My DeFi Pet investieren?", "Sollte ich heute DPET kaufen?", "Wird My DeFi Pet auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere My DeFi Pet-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie My DeFi Pet.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich My DeFi Pet zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der My DeFi Pet-Preis entspricht heute $0.007897 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige My DeFi Pet-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige My DeFi Pet-Prognose
basierend auf dem Preisverlauf des letzten Monats
My DeFi Pet-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von My DeFi Pet 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0081031 | $0.008313 | $0.008529 | $0.008751 |
| Wenn die Wachstumsrate von My DeFi Pet 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0083084 | $0.00874 | $0.009194 | $0.009672 |
| Wenn die Wachstumsrate von My DeFi Pet 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008924 | $0.010084 | $0.011394 | $0.012875 |
| Wenn die Wachstumsrate von My DeFi Pet 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00995 | $0.012537 | $0.015796 | $0.0199021 |
| Wenn die Wachstumsrate von My DeFi Pet 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0120037 | $0.018244 | $0.027728 | $0.042143 |
| Wenn die Wachstumsrate von My DeFi Pet 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018162 | $0.041767 | $0.096051 | $0.220884 |
| Wenn die Wachstumsrate von My DeFi Pet 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.028427 | $0.102318 | $0.368275 | $1.32 |
Fragefeld
Ist DPET eine gute Investition?
Die Entscheidung, My DeFi Pet zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von My DeFi Pet in den letzten 2026 Stunden um 22.2277% gestiegen, und My DeFi Pet hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in My DeFi Pet investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann My DeFi Pet steigen?
Es scheint, dass der Durchschnittswert von My DeFi Pet bis zum Ende dieses Jahres potenziell auf $0.008145 steigen könnte. Betrachtet man die Aussichten von My DeFi Pet in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.0256072 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird My DeFi Pet nächste Woche kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Prognose wird der Preis von My DeFi Pet in der nächsten Woche um 0.86% steigen und $0.007965 erreichen bis zum 13. Januar 2026.
Wie viel wird My DeFi Pet nächsten Monat kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Prognose wird der Preis von My DeFi Pet im nächsten Monat um -11.62% fallen und $0.00698 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von My DeFi Pet in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von My DeFi Pet im Jahr 2026 wird erwartet, dass DPET innerhalb der Spanne von $0.002728 bis $0.008145 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte My DeFi Pet-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird My DeFi Pet in 5 Jahren sein?
Die Zukunft von My DeFi Pet scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.0256072 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der My DeFi Pet-Prognose für 2030 könnte der Wert von My DeFi Pet seinen höchsten Gipfel von ungefähr $0.0256072 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.008856 liegen wird.
Wie viel wird My DeFi Pet im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Preisprognosesimulation wird der Wert von DPET im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.008145 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.008145 und $0.002728 während des Jahres 2026 liegen.
Wie viel wird My DeFi Pet im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von My DeFi Pet könnte der Wert von DPET um -12.62% fallen und bis zu $0.0069008 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.0069008 und $0.002626 im Laufe des Jahres schwanken.
Wie viel wird My DeFi Pet im Jahr 2028 kosten?
Unser neues experimentelles My DeFi Pet-Preisprognosemodell deutet darauf hin, dass der Wert von DPET im Jahr 2028 um 47.02% steigen, und im besten Fall $0.011611 erreichen wird. Der Preis wird voraussichtlich zwischen $0.011611 und $0.00474 im Laufe des Jahres liegen.
Wie viel wird My DeFi Pet im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von My DeFi Pet im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.034257 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.034257 und $0.010414.
Wie viel wird My DeFi Pet im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für My DeFi Pet-Preisprognosen wird der Wert von DPET im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.0256072 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.0256072 und $0.008856 während des Jahres 2030 liegen.
Wie viel wird My DeFi Pet im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von My DeFi Pet im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.023376 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.023376 und $0.010471 während des Jahres schwanken.
Wie viel wird My DeFi Pet im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen My DeFi Pet-Preisprognose könnte DPET eine 449.04% Steigerung im Wert erfahren und $0.043362 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.043362 und $0.015983 liegen.
Wie viel wird My DeFi Pet im Jahr 2033 kosten?
Laut unserer experimentellen My DeFi Pet-Preisprognose wird der Wert von DPET voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.1155011 beträgt. Im Laufe des Jahres könnte der Preis von DPET zwischen $0.1155011 und $0.037142 liegen.
Wie viel wird My DeFi Pet im Jahr 2034 kosten?
Die Ergebnisse unserer neuen My DeFi Pet-Preisprognosesimulation deuten darauf hin, dass DPET im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.066892 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.066892 und $0.02986.
Wie viel wird My DeFi Pet im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von My DeFi Pet könnte DPET um 897.93% steigen, wobei der Wert im Jahr 2035 $0.078815 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.078815 und $0.0353048.
Wie viel wird My DeFi Pet im Jahr 2036 kosten?
Unsere jüngste My DeFi Pet-Preisprognosesimulation deutet darauf hin, dass der Wert von DPET im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.163067 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.163067 und $0.05844.
Wie viel wird My DeFi Pet im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von My DeFi Pet um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.38942 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.38942 und $0.151768 liegen.
Verwandte Prognosen
B3Coin-Preisprognose
Spintop-Preisprognose
DegenX (Avalanche)-Preisprognose
Winkies-Preisprognose
rETH2-Preisprognose
Cirus-Preisprognose
BiFi-Preisprognose
InfinityBit Token-Preisprognose
CocktailBar-Preisprognose
Utopia-Preisprognose
mStable USD-Preisprognose
EQIFi-Preisprognose
NAOS Finance-Preisprognose
InsurAce-Preisprognose
Mizar-Preisprognose
VelasPad-Preisprognose
LGCY Network-Preisprognose
Shroom.Finance-Preisprognose
MetFi [OLD]-Preisprognose
Ethereans-Preisprognose
Cashaa-Preisprognose
Slam Token-Preisprognose
Brazil Fan Token-Preisprognose
S.C. Corinthians Fan Token-Preisprognose
Alvara Protocol-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von My DeFi Pet?
My DeFi Pet-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
My DeFi Pet Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von My DeFi Pet. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von DPET über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von DPET über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von DPET einzuschätzen.
Wie liest man My DeFi Pet-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von My DeFi Pet in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von DPET innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von My DeFi Pet?
Die Preisentwicklung von My DeFi Pet wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von DPET. Die Marktkapitalisierung von My DeFi Pet kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von DPET-„Walen“, großen Inhabern von My DeFi Pet, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen My DeFi Pet-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


