My DeFi Pet Preisvorhersage bis zu $0.008282 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.002774 | $0.008282 |
| 2027 | $0.00267 | $0.007016 |
| 2028 | $0.00482 | $0.0118064 |
| 2029 | $0.010588 | $0.034832 |
| 2030 | $0.0090053 | $0.026037 |
| 2031 | $0.010647 | $0.023768 |
| 2032 | $0.016252 | $0.04409 |
| 2033 | $0.037766 | $0.11744 |
| 2034 | $0.030362 | $0.068015 |
| 2035 | $0.035897 | $0.080138 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in My DeFi Pet eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.54 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige My DeFi Pet Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'My DeFi Pet'
'name_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'name_lang' => 'My DeFi Pet'
'name_lang_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'name_with_lang' => 'My DeFi Pet'
'name_with_lang_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'image' => '/uploads/coins/my-defi-pet.PNG?1719975034'
'price_for_sd' => 0.00803
'ticker' => 'DPET'
'marketcap' => '$403.38K'
'low24h' => '$0.006224'
'high24h' => '$0.008122'
'volume24h' => '$14.93K'
'current_supply' => '50.23M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00803'
'change_24h_pct' => '24.551%'
'ath_price' => '$9.92'
'ath_days' => 1625
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26.07.2021'
'ath_pct' => '-99.92%'
'fdv' => '$803.07K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.395958'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0080992'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0070975'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002774'
'current_year_max_price_prediction' => '$0.008282'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0090053'
'grand_prediction_max_price' => '$0.026037'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0081826635614623
107 => 0.0082132146568939
108 => 0.008282047834879
109 => 0.0076938758654046
110 => 0.0079579478118768
111 => 0.008113065340234
112 => 0.0074122387038923
113 => 0.0080992122509629
114 => 0.0076836370999806
115 => 0.0075425846520078
116 => 0.0077324931909562
117 => 0.0076584856486359
118 => 0.0075948583096176
119 => 0.007559353161189
120 => 0.007698801032752
121 => 0.0076922956228674
122 => 0.0074641318393246
123 => 0.0071665014848388
124 => 0.0072663960011876
125 => 0.007230103386882
126 => 0.007098574270798
127 => 0.0071872090141526
128 => 0.0067969064614363
129 => 0.0061254112056492
130 => 0.0065690215400781
131 => 0.0065519430247578
201 => 0.0065433312628843
202 => 0.0068766921687185
203 => 0.0068446472095671
204 => 0.0067864852949224
205 => 0.0070975060816245
206 => 0.0069839793106583
207 => 0.0073338420685048
208 => 0.0075642843085269
209 => 0.0075058367024318
210 => 0.0077225687429966
211 => 0.0072686973690857
212 => 0.00741945523334
213 => 0.0074505262202214
214 => 0.0070936681333951
215 => 0.006849890161191
216 => 0.0068336329497173
217 => 0.0064109555405894
218 => 0.0066367464008127
219 => 0.0068354330139486
220 => 0.0067402775449605
221 => 0.0067101541661677
222 => 0.0068640479754566
223 => 0.0068760068424497
224 => 0.0066033434076633
225 => 0.0066600387698834
226 => 0.0068964678551609
227 => 0.0066540813635489
228 => 0.0061831640039555
301 => 0.0060663699878345
302 => 0.0060507875131431
303 => 0.0057340328783726
304 => 0.006074174722464
305 => 0.0059256936922834
306 => 0.006394743487548
307 => 0.0061268247600574
308 => 0.0061152753191976
309 => 0.0060978166454035
310 => 0.0058251728462873
311 => 0.0058848645108764
312 => 0.0060832886952678
313 => 0.006154088679667
314 => 0.006146703661247
315 => 0.0060823163085143
316 => 0.0061117925088787
317 => 0.0060168393973159
318 => 0.005983309477345
319 => 0.0058774798267855
320 => 0.0057219394766504
321 => 0.0057435683163211
322 => 0.0054354021833568
323 => 0.0052674969185033
324 => 0.0052210229541476
325 => 0.0051588760267306
326 => 0.005228042614966
327 => 0.0054345291874211
328 => 0.0051854625724702
329 => 0.0047584553311285
330 => 0.0047841191939181
331 => 0.004841778273937
401 => 0.0047343309597747
402 => 0.0046326410942897
403 => 0.0047210521819694
404 => 0.0045401235846759
405 => 0.0048636426305233
406 => 0.0048548923469848
407 => 0.0049754802409931
408 => 0.0050508863258292
409 => 0.0048770997132919
410 => 0.0048333928502077
411 => 0.0048582902657866
412 => 0.0044467914459457
413 => 0.004941852008349
414 => 0.0049461333126505
415 => 0.0049094741859658
416 => 0.0051730786521655
417 => 0.0057293662961417
418 => 0.0055200685078593
419 => 0.0054390220781771
420 => 0.0052849527561068
421 => 0.0054902409800344
422 => 0.0054744780474319
423 => 0.0054031920882889
424 => 0.0053600781177735
425 => 0.0054395169303946
426 => 0.0053502347697793
427 => 0.0053341972404231
428 => 0.0052370272615284
429 => 0.0052023420000154
430 => 0.0051766624132512
501 => 0.0051483917114478
502 => 0.005210749835006
503 => 0.0050694381231289
504 => 0.004899030051563
505 => 0.0048848624642532
506 => 0.0049239804184426
507 => 0.0049066736357029
508 => 0.0048847796060358
509 => 0.004842977940917
510 => 0.0048305762798275
511 => 0.0048708756619377
512 => 0.0048253800091353
513 => 0.0048925113231218
514 => 0.0048742553202625
515 => 0.0047722787723139
516 => 0.0046451782370162
517 => 0.0046440467756497
518 => 0.0046166631738065
519 => 0.004581786039707
520 => 0.0045720840188813
521 => 0.0047136064467636
522 => 0.00500655363707
523 => 0.0049490410939807
524 => 0.0049905998004852
525 => 0.0051950275043238
526 => 0.0052600089240185
527 => 0.0052138866514885
528 => 0.0051507516401515
529 => 0.0051535292602347
530 => 0.0053692807062409
531 => 0.0053827368592822
601 => 0.0054167362168981
602 => 0.0054604349996518
603 => 0.0052213287431503
604 => 0.0051422673770559
605 => 0.0051048037156428
606 => 0.0049894301387521
607 => 0.0051138506500458
608 => 0.0050413561463324
609 => 0.0050511381316483
610 => 0.0050447676008787
611 => 0.0050482463414523
612 => 0.0048635522003567
613 => 0.0049308450381336
614 => 0.0048189576436689
615 => 0.0046691529824301
616 => 0.0046686507846773
617 => 0.0047053152632874
618 => 0.0046835057967289
619 => 0.0046248170829927
620 => 0.0046331535377761
621 => 0.0045601174218443
622 => 0.0046420214446117
623 => 0.004644370158918
624 => 0.0046128326488103
625 => 0.0047390170964606
626 => 0.0047907149676197
627 => 0.0047699563028678
628 => 0.0047892584843623
629 => 0.0049514309997996
630 => 0.0049778721958988
701 => 0.0049896156285987
702 => 0.0049738809844876
703 => 0.0047922227002402
704 => 0.0048002800176173
705 => 0.0047411607688186
706 => 0.0046912112334167
707 => 0.004693208952882
708 => 0.0047188895070636
709 => 0.0048310379933196
710 => 0.0050670478711307
711 => 0.0050760042734727
712 => 0.0050868596943878
713 => 0.0050427052420285
714 => 0.0050293878366958
715 => 0.0050469569318436
716 => 0.0051355898331397
717 => 0.005363577718871
718 => 0.0052829915732547
719 => 0.0052174737824705
720 => 0.0052749505484578
721 => 0.0052661024508518
722 => 0.0051914156026468
723 => 0.0051893193915699
724 => 0.0050459714510347
725 => 0.0049929789812935
726 => 0.0049486945071602
727 => 0.004900337017482
728 => 0.0048716690766431
729 => 0.0049157160631178
730 => 0.0049257901300732
731 => 0.0048294806243367
801 => 0.0048163539945806
802 => 0.0048950024159502
803 => 0.0048603921780141
804 => 0.0048959896660239
805 => 0.0049042485885918
806 => 0.0049029187118393
807 => 0.0048667816484735
808 => 0.0048898143350401
809 => 0.0048353351649358
810 => 0.0047760972499542
811 => 0.0047383071508484
812 => 0.0047053302772493
813 => 0.0047236277633492
814 => 0.0046584005663921
815 => 0.0046375330733214
816 => 0.0048820113790832
817 => 0.0050626101321341
818 => 0.0050599841547398
819 => 0.0050439991926985
820 => 0.0050202487815362
821 => 0.005133852342631
822 => 0.0050942751335205
823 => 0.0051230708599348
824 => 0.0051304005808601
825 => 0.0051525854385303
826 => 0.0051605146182944
827 => 0.0051365471298778
828 => 0.0050561093113694
829 => 0.0048556659154447
830 => 0.0047623589735551
831 => 0.0047315661285816
901 => 0.0047326853900124
902 => 0.0047018111631465
903 => 0.0047109050066443
904 => 0.0046986486954952
905 => 0.0046754382072989
906 => 0.0047221945811086
907 => 0.0047275828176244
908 => 0.0047166693212801
909 => 0.0047192398447435
910 => 0.0046288807562285
911 => 0.0046357505614787
912 => 0.0045974986128731
913 => 0.0045903268336437
914 => 0.0044936292385469
915 => 0.0043223154322925
916 => 0.004417239910791
917 => 0.0043025844891663
918 => 0.0042591627436839
919 => 0.0044647145333307
920 => 0.0044440828347693
921 => 0.0044087703352161
922 => 0.004356535788607
923 => 0.0043371614871647
924 => 0.0042194493647598
925 => 0.0042124943045984
926 => 0.0042708356109569
927 => 0.0042439131054742
928 => 0.0042061037114264
929 => 0.0040691619188619
930 => 0.00391519400415
1001 => 0.0039198413276874
1002 => 0.0039688156566823
1003 => 0.0041112151233232
1004 => 0.0040555771881708
1005 => 0.004015211227846
1006 => 0.0040076518968735
1007 => 0.004102272750526
1008 => 0.0042361810821259
1009 => 0.0042990078752826
1010 => 0.0042367484313424
1011 => 0.0041652281344305
1012 => 0.0041695812435104
1013 => 0.0041985405279916
1014 => 0.0042015837393283
1015 => 0.004155031378444
1016 => 0.0041681355953509
1017 => 0.0041482290915946
1018 => 0.0040260629147865
1019 => 0.0040238533160412
1020 => 0.0039938717660567
1021 => 0.0039929639366386
1022 => 0.003941957840867
1023 => 0.00393482173548
1024 => 0.0038335460364767
1025 => 0.0039002060082518
1026 => 0.0038554939989906
1027 => 0.0037881024545374
1028 => 0.0037764841268723
1029 => 0.0037761348659131
1030 => 0.003845330913593
1031 => 0.0038993974121467
1101 => 0.0038562717835346
1102 => 0.0038464529138548
1103 => 0.0039512927537771
1104 => 0.0039379509285106
1105 => 0.0039263969938754
1106 => 0.0042241910597506
1107 => 0.0039884638194496
1108 => 0.003885673287838
1109 => 0.003758450485576
1110 => 0.0037998748715055
1111 => 0.0038086035982717
1112 => 0.0035026556924654
1113 => 0.0033785326651831
1114 => 0.0033359383196975
1115 => 0.0033114246716748
1116 => 0.0033225958489017
1117 => 0.0032108705661687
1118 => 0.0032859518039309
1119 => 0.0031892071529872
1120 => 0.0031729875974221
1121 => 0.0033459790176721
1122 => 0.0033700497631986
1123 => 0.0032673564845879
1124 => 0.0033333021939876
1125 => 0.0033093893630453
1126 => 0.0031908655623536
1127 => 0.0031863388249693
1128 => 0.0031268677480952
1129 => 0.003033807028657
1130 => 0.0029912757827213
1201 => 0.0029691251405647
1202 => 0.0029782649272259
1203 => 0.0029736435714079
1204 => 0.00294348609869
1205 => 0.0029753721624431
1206 => 0.0028939164457853
1207 => 0.0028614801230789
1208 => 0.0028468293886294
1209 => 0.0027745327516795
1210 => 0.0028895888515271
1211 => 0.0029122563526357
1212 => 0.0029349685157237
1213 => 0.003132662389153
1214 => 0.0031227861619136
1215 => 0.0032120624462404
1216 => 0.003208593334
1217 => 0.0031831302915301
1218 => 0.0030757059038166
1219 => 0.0031185233501036
1220 => 0.0029867379057408
1221 => 0.0030854805211966
1222 => 0.0030404185150928
1223 => 0.0030702450116046
1224 => 0.0030166142815296
1225 => 0.0030462957419117
1226 => 0.0029176316580573
1227 => 0.0027974869469067
1228 => 0.0028458366859165
1229 => 0.0028983983816834
1230 => 0.0030123655305773
1231 => 0.0029444876369047
]
'min_raw' => 0.0027745327516795
'max_raw' => 0.008282047834879
'avg_raw' => 0.0055282902932792
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002774'
'max' => '$0.008282'
'avg' => '$0.005528'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0052559572483205
'max_diff' => 0.00025155783487895
'year' => 2026
]
1 => [
'items' => [
101 => 0.0029688990942167
102 => 0.0028871247986501
103 => 0.0027184010692235
104 => 0.0027193560272087
105 => 0.0026934015572827
106 => 0.002670973105852
107 => 0.0029522842295237
108 => 0.0029172987444243
109 => 0.0028615539527056
110 => 0.0029361705716311
111 => 0.0029559003899999
112 => 0.002956462070192
113 => 0.0030109004292264
114 => 0.0030399541912016
115 => 0.0030450750426759
116 => 0.003130734976835
117 => 0.0031594470568833
118 => 0.0032777080511165
119 => 0.0030374891824853
120 => 0.0030325420329663
121 => 0.0029372205804789
122 => 0.0028767662083389
123 => 0.0029413599430603
124 => 0.0029985811740994
125 => 0.0029389986036309
126 => 0.0029467788294774
127 => 0.0028667940966982
128 => 0.0028953848750353
129 => 0.0029200111049329
130 => 0.0029064139482463
131 => 0.0028860583465767
201 => 0.0029938896856965
202 => 0.002987805418949
203 => 0.0030882204409692
204 => 0.003166501131381
205 => 0.0033067941229463
206 => 0.0031603910726089
207 => 0.0031550555635552
208 => 0.0032072110203978
209 => 0.0031594390721546
210 => 0.0031896292944127
211 => 0.0033019300114015
212 => 0.0033043027485903
213 => 0.0032645563435783
214 => 0.0032621377712212
215 => 0.0032697715030818
216 => 0.0033144825090244
217 => 0.0032988591097176
218 => 0.0033169389029315
219 => 0.0033395479611931
220 => 0.0034330686122051
221 => 0.0034556161245515
222 => 0.0034008373590947
223 => 0.0034057832682836
224 => 0.0033852945062921
225 => 0.0033655026189316
226 => 0.0034099918913448
227 => 0.0034912969111188
228 => 0.0034907911168105
301 => 0.0035096523010543
302 => 0.0035214026625837
303 => 0.0034709615091092
304 => 0.0034381261729698
305 => 0.0034507173302124
306 => 0.0034708508648429
307 => 0.0034441882962847
308 => 0.00327961457184
309 => 0.0033295357268263
310 => 0.0033212264056168
311 => 0.0033093929217665
312 => 0.0033595890291341
313 => 0.0033547474921243
314 => 0.0032097246619092
315 => 0.0032190085529741
316 => 0.0032102892460741
317 => 0.0032384631104706
318 => 0.0031579175910185
319 => 0.0031826928503196
320 => 0.0031982316606996
321 => 0.0032073841393882
322 => 0.0032404491683249
323 => 0.0032365693688143
324 => 0.0032402079945398
325 => 0.0032892347036088
326 => 0.003537194974145
327 => 0.0035506909045768
328 => 0.003484232007226
329 => 0.0035107810258739
330 => 0.0034598127157021
331 => 0.0034940280837784
401 => 0.0035174373696401
402 => 0.003411655308178
403 => 0.0034053915810181
404 => 0.0033542129064999
405 => 0.0033817134272777
406 => 0.0033379581213628
407 => 0.0033486941429386
408 => 0.0033186752906629
409 => 0.0033727032480654
410 => 0.0034331148995371
411 => 0.0034483772684273
412 => 0.0034082285467402
413 => 0.003379158226309
414 => 0.0033281203199908
415 => 0.003412997495652
416 => 0.0034378181684003
417 => 0.0034128671232245
418 => 0.0034070854208661
419 => 0.0033961291053444
420 => 0.0034094098549979
421 => 0.003437682989686
422 => 0.0034243499014899
423 => 0.0034331566411422
424 => 0.0033995944310582
425 => 0.0034709782072298
426 => 0.0035843528232317
427 => 0.0035847173411607
428 => 0.0035713841810943
429 => 0.0035659285392621
430 => 0.003579609170614
501 => 0.0035870303519136
502 => 0.003631271005107
503 => 0.003678742988609
504 => 0.0039002740219635
505 => 0.0038380689942683
506 => 0.0040346245060005
507 => 0.0041900743962419
508 => 0.0042366870213254
509 => 0.004193805599542
510 => 0.0040471105720301
511 => 0.0040399130141348
512 => 0.0042591373182807
513 => 0.0041971964112503
514 => 0.0041898287374533
515 => 0.0041114491361352
516 => 0.0041577811880167
517 => 0.00414764768862
518 => 0.0041316514640746
519 => 0.0042200497915458
520 => 0.0043855235691986
521 => 0.0043597329291482
522 => 0.0043404814127439
523 => 0.0042561268718924
524 => 0.0043069271467538
525 => 0.0042888381418908
526 => 0.0043665599863483
527 => 0.0043205192874413
528 => 0.0041967271479589
529 => 0.0042164414541957
530 => 0.0042134616764677
531 => 0.0042747852909609
601 => 0.0042563774640357
602 => 0.0042098672528255
603 => 0.0043849579978159
604 => 0.0043735885787422
605 => 0.0043897078155777
606 => 0.0043968040021367
607 => 0.0045033786531674
608 => 0.0045470388776862
609 => 0.0045569505130318
610 => 0.0045984243495217
611 => 0.0045559186061981
612 => 0.0047259718855738
613 => 0.0048390473934747
614 => 0.004970390414714
615 => 0.0051623178704207
616 => 0.0052344843691946
617 => 0.0052214481371284
618 => 0.0053669653436074
619 => 0.0056284565289843
620 => 0.0052743029820122
621 => 0.0056472275269258
622 => 0.0055291639216271
623 => 0.0052492372373373
624 => 0.0052312132589879
625 => 0.0054207828596045
626 => 0.0058412299883744
627 => 0.0057359127512894
628 => 0.0058414022496454
629 => 0.0057183431464085
630 => 0.0057122322247093
701 => 0.0058354255436743
702 => 0.0061232734483542
703 => 0.0059865276986581
704 => 0.0057904691350353
705 => 0.0059352357274053
706 => 0.0058098255075788
707 => 0.0055272411821994
708 => 0.005735832217183
709 => 0.0055963533324201
710 => 0.0056370606860993
711 => 0.0059302245559527
712 => 0.0058949503035165
713 => 0.0059405984524767
714 => 0.005860030664382
715 => 0.0057847676459275
716 => 0.0056442836328771
717 => 0.005602693242391
718 => 0.0056141873300558
719 => 0.0056026875464919
720 => 0.0055240880323049
721 => 0.0055071144746998
722 => 0.0054788244683959
723 => 0.0054875927242869
724 => 0.0054343992359023
725 => 0.0055347863388195
726 => 0.005553419069729
727 => 0.0056264724316425
728 => 0.0056340570740216
729 => 0.0058375096471011
730 => 0.0057254513887305
731 => 0.0058006297430901
801 => 0.00579390508347
802 => 0.0052553040973978
803 => 0.0053295185611618
804 => 0.0054449729769969
805 => 0.005392960919158
806 => 0.0053194280383208
807 => 0.0052600462944612
808 => 0.0051700768804188
809 => 0.0052967071029739
810 => 0.005463212380011
811 => 0.0056382799226228
812 => 0.0058486121041911
813 => 0.0058016684098015
814 => 0.0056343479087924
815 => 0.00564185378424
816 => 0.0056882521528037
817 => 0.0056281620497774
818 => 0.0056104403052967
819 => 0.005685817457248
820 => 0.0056863365382669
821 => 0.0056171956126035
822 => 0.0055403581263846
823 => 0.0055400361745117
824 => 0.0055263636860011
825 => 0.005720775451741
826 => 0.0058276822656513
827 => 0.0058399389595772
828 => 0.0058268572924939
829 => 0.0058318919069615
830 => 0.0057696851874779
831 => 0.0059118713013877
901 => 0.0060423553402605
902 => 0.0060073828304577
903 => 0.0059549540666281
904 => 0.0059131920309264
905 => 0.005997545022063
906 => 0.0059937889161516
907 => 0.0060412156760128
908 => 0.0060390641242352
909 => 0.0060231162887046
910 => 0.0060073834000051
911 => 0.0060697625253333
912 => 0.0060517983390169
913 => 0.0060338062493573
914 => 0.0059977203590939
915 => 0.0060026250309038
916 => 0.0059502053196395
917 => 0.0059259535626458
918 => 0.0055612653255622
919 => 0.0054638087120815
920 => 0.0054944705465948
921 => 0.0055045652186508
922 => 0.0054621519755699
923 => 0.0055229616710797
924 => 0.0055134845444479
925 => 0.0055503545002385
926 => 0.0055273197525679
927 => 0.0055282651066472
928 => 0.0055960053880203
929 => 0.0056156706798907
930 => 0.0056056687537271
1001 => 0.0056126737599661
1002 => 0.0057741011721168
1003 => 0.0057511513562671
1004 => 0.0057389597240037
1005 => 0.0057423368894597
1006 => 0.005783585054307
1007 => 0.0057951322883979
1008 => 0.0057462058461449
1009 => 0.0057692798391518
1010 => 0.0058675259728495
1011 => 0.0059019065593941
1012 => 0.0060116328880267
1013 => 0.0059650191933936
1014 => 0.0060505806472861
1015 => 0.0063135673865026
1016 => 0.0065236593910869
1017 => 0.0063304501012519
1018 => 0.0067162573126155
1019 => 0.0070166635674196
1020 => 0.0070051334750074
1021 => 0.0069527506959604
1022 => 0.0066107461615795
1023 => 0.0062960284900419
1024 => 0.0065593031859013
1025 => 0.006559974327244
1026 => 0.0065373587973829
1027 => 0.0063968956837331
1028 => 0.0065324709854993
1029 => 0.0065432324606164
1030 => 0.006537208896258
1031 => 0.0064295161563559
1101 => 0.0062650892474706
1102 => 0.0062972178718843
1103 => 0.0063498452140803
1104 => 0.0062502106760897
1105 => 0.0062183714041321
1106 => 0.0062775666683705
1107 => 0.0064683061435699
1108 => 0.006432247950662
1109 => 0.0064313063255226
1110 => 0.006585578565836
1111 => 0.0064751529358048
1112 => 0.0062976231167283
1113 => 0.0062527944960809
1114 => 0.0060936830929597
1115 => 0.0062035819058309
1116 => 0.006207536968457
1117 => 0.0061473465117861
1118 => 0.0063025072405586
1119 => 0.0063010774071275
1120 => 0.0064483794264702
1121 => 0.0067299655633415
1122 => 0.0066466866866564
1123 => 0.0065498424137876
1124 => 0.0065603720714489
1125 => 0.0066758564265831
1126 => 0.0066060319492176
1127 => 0.0066311413181118
1128 => 0.006675818420546
1129 => 0.0067027732257147
1130 => 0.006556493689796
1201 => 0.0065223889326143
1202 => 0.0064526225685638
1203 => 0.0064344218264339
1204 => 0.0064912450742301
1205 => 0.0064762741560308
1206 => 0.0062072045607581
1207 => 0.006179085290963
1208 => 0.0061799476688225
1209 => 0.0061092404279243
1210 => 0.0060013949138724
1211 => 0.0062848064856799
1212 => 0.0062620445701213
1213 => 0.006236917176977
1214 => 0.0062399951392623
1215 => 0.0063630144968745
1216 => 0.0062916570568329
1217 => 0.0064813725064379
1218 => 0.0064423727133675
1219 => 0.0064023727227646
1220 => 0.0063968435056338
1221 => 0.0063814469218905
1222 => 0.0063286463074183
1223 => 0.006264886392618
1224 => 0.0062227865740777
1225 => 0.0057401916793329
1226 => 0.0058297584846722
1227 => 0.0059327969299438
1228 => 0.0059683653883509
1229 => 0.0059075230789832
1230 => 0.0063310487326303
1231 => 0.0064084309507464
]
'min_raw' => 0.002670973105852
'max_raw' => 0.0070166635674196
'avg_raw' => 0.0048438183366358
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00267'
'max' => '$0.007016'
'avg' => '$0.004843'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00010355964582754
'max_diff' => -0.0012653842674594
'year' => 2027
]
2 => [
'items' => [
101 => 0.0061740351645556
102 => 0.0061301892832762
103 => 0.0063339232613075
104 => 0.0062110467670887
105 => 0.0062663780449116
106 => 0.0061467820868494
107 => 0.0063897918404181
108 => 0.0063879405132486
109 => 0.0062934042304862
110 => 0.0063733056493205
111 => 0.0063594208115206
112 => 0.0062526895811144
113 => 0.006393175410795
114 => 0.0063932450900138
115 => 0.006302255973251
116 => 0.0061960006049509
117 => 0.0061770046547386
118 => 0.0061626937580005
119 => 0.0062628584415879
120 => 0.0063526657836856
121 => 0.0065197749822011
122 => 0.0065617902051246
123 => 0.0067257784173065
124 => 0.0066281314213933
125 => 0.0066714170699413
126 => 0.006718409764569
127 => 0.0067409397904727
128 => 0.0067042283222905
129 => 0.0069589695160501
130 => 0.0069804774778719
131 => 0.0069876889114276
201 => 0.006901791614177
202 => 0.0069780885186483
203 => 0.006942391723734
204 => 0.0070352648672455
205 => 0.007049828562012
206 => 0.0070374936306633
207 => 0.0070421163772544
208 => 0.0068247397078067
209 => 0.0068134675807425
210 => 0.0066597713283892
211 => 0.0067224036872885
212 => 0.0066053154943733
213 => 0.0066424453664888
214 => 0.0066588118603308
215 => 0.0066502629327381
216 => 0.0067259448268879
217 => 0.0066615997560711
218 => 0.0064917825348765
219 => 0.0063219190470936
220 => 0.0063197865493722
221 => 0.0062750644913786
222 => 0.0062427386347027
223 => 0.0062489657415198
224 => 0.0062709108781578
225 => 0.0062414631434672
226 => 0.0062477473107015
227 => 0.0063521063579779
228 => 0.0063730348206545
229 => 0.0063019117272011
301 => 0.0060163422439726
302 => 0.0059462627764915
303 => 0.0059966345079806
304 => 0.0059725600646838
305 => 0.0048203221114007
306 => 0.0050910233271374
307 => 0.0049301818568913
308 => 0.0050043050063409
309 => 0.0048401275149165
310 => 0.0049184816191038
311 => 0.0049040124770942
312 => 0.0053392920213675
313 => 0.0053324957299911
314 => 0.0053357487550212
315 => 0.0051804733946209
316 => 0.0054278312599241
317 => 0.0055496886390736
318 => 0.0055271360813221
319 => 0.0055328120742324
320 => 0.00543527971057
321 => 0.0053366930814967
322 => 0.0052273453374809
323 => 0.0054304999300726
324 => 0.0054079126073409
325 => 0.0054597197990251
326 => 0.005591480074111
327 => 0.005610882275126
328 => 0.0056369590300479
329 => 0.0056276123696782
330 => 0.0058502877393516
331 => 0.0058233202828248
401 => 0.0058883040939877
402 => 0.0057546274640919
403 => 0.0056033596686626
404 => 0.0056321107312569
405 => 0.0056293417727277
406 => 0.0055940897525874
407 => 0.005562265805029
408 => 0.0055092878986859
409 => 0.0056769178336102
410 => 0.0056701123643805
411 => 0.0057802850007171
412 => 0.0057608109170847
413 => 0.005630758220471
414 => 0.0056354030779732
415 => 0.0056666419769174
416 => 0.0057747601628428
417 => 0.0058068570016729
418 => 0.0057919884670889
419 => 0.0058271811855898
420 => 0.0058549960753701
421 => 0.0058306743075006
422 => 0.0061750192504637
423 => 0.0060320232224998
424 => 0.0061017184915694
425 => 0.0061183404025742
426 => 0.0060757637270567
427 => 0.00608499708342
428 => 0.0060989831023714
429 => 0.006183903470701
430 => 0.0064067590891045
501 => 0.0065054603254659
502 => 0.0068024078648924
503 => 0.0064972645617736
504 => 0.006479158620975
505 => 0.0065326478397823
506 => 0.006706987480515
507 => 0.0068482733844391
508 => 0.00689514606975
509 => 0.0069013410688976
510 => 0.0069892773425781
511 => 0.0070396807747374
512 => 0.0069785995659997
513 => 0.0069268396370636
514 => 0.0067414419962935
515 => 0.0067629022780337
516 => 0.0069107423380859
517 => 0.0071195751306458
518 => 0.007298775392011
519 => 0.0072360257062405
520 => 0.0077147615142946
521 => 0.0077622262142028
522 => 0.0077556681273929
523 => 0.0078637997774781
524 => 0.0076491804726866
525 => 0.0075574265618351
526 => 0.0069380307211997
527 => 0.0071120556875902
528 => 0.0073650111963668
529 => 0.0073315315862457
530 => 0.0071478285342521
531 => 0.007298636036773
601 => 0.0072487743602529
602 => 0.0072094463872187
603 => 0.0073896154557911
604 => 0.0071915121639584
605 => 0.0073630349644896
606 => 0.0071430551986321
607 => 0.0072363123415195
608 => 0.0071833750768761
609 => 0.0072176319748475
610 => 0.0070173668492903
611 => 0.0071254250498799
612 => 0.0070128712728834
613 => 0.0070128179077381
614 => 0.0070103332768727
615 => 0.0071427522963692
616 => 0.0071470704758409
617 => 0.007049212620359
618 => 0.007035109774557
619 => 0.0070872553870876
620 => 0.0070262065317719
621 => 0.0070547709069372
622 => 0.0070270717175966
623 => 0.0070208360466419
624 => 0.0069711491595626
625 => 0.0069497426824394
626 => 0.0069581367136963
627 => 0.0069294835575966
628 => 0.0069122189946166
629 => 0.0070068989207532
630 => 0.0069563152555957
701 => 0.0069991462485959
702 => 0.0069503349263699
703 => 0.0067811336174539
704 => 0.0066838241554249
705 => 0.0063642185678521
706 => 0.0064548583160182
707 => 0.006514952562826
708 => 0.0064950914146145
709 => 0.0065377608462168
710 => 0.0065403804027704
711 => 0.0065265081355932
712 => 0.0065104458273493
713 => 0.0065026275839976
714 => 0.0065608983645747
715 => 0.0065947265140041
716 => 0.0065209838244504
717 => 0.0065037069440579
718 => 0.0065782648746421
719 => 0.0066237451692277
720 => 0.006959546111278
721 => 0.0069346688928682
722 => 0.0069971058291694
723 => 0.0069900763883147
724 => 0.0070555202445423
725 => 0.0071624932908372
726 => 0.0069449871775856
727 => 0.0069827387180505
728 => 0.0069734829121389
729 => 0.0070745353740794
730 => 0.0070748508488353
731 => 0.0070142648499571
801 => 0.0070471095028446
802 => 0.0070287765186487
803 => 0.007061906698942
804 => 0.0069343366424494
805 => 0.0070897032009208
806 => 0.0071777860279742
807 => 0.0071790090581133
808 => 0.0072207596190681
809 => 0.0072631806070275
810 => 0.0073446039993263
811 => 0.0072609097528089
812 => 0.0071103519507948
813 => 0.0071212217378015
814 => 0.0070329497535676
815 => 0.0070344336215702
816 => 0.0070265126178794
817 => 0.0070502841462207
818 => 0.0069395531561313
819 => 0.0069655414981794
820 => 0.0069291576671246
821 => 0.0069826596267074
822 => 0.006925100362387
823 => 0.006973478448709
824 => 0.0069943568270066
825 => 0.0070713984924042
826 => 0.0069137212457672
827 => 0.0065922066660631
828 => 0.0066597929287044
829 => 0.0065598275374716
830 => 0.0065690797150253
831 => 0.0065877705861568
901 => 0.0065271873575469
902 => 0.0065387447283688
903 => 0.006538331817755
904 => 0.0065347735771583
905 => 0.0065190135395616
906 => 0.0064961583670179
907 => 0.0065872063399808
908 => 0.0066026771647734
909 => 0.0066370668918576
910 => 0.0067393873928856
911 => 0.0067291631619493
912 => 0.0067458393068056
913 => 0.0067094353762168
914 => 0.0065707683889563
915 => 0.0065782986735115
916 => 0.006484395904443
917 => 0.0066346655869303
918 => 0.0065990797426544
919 => 0.0065761373173501
920 => 0.0065698772640458
921 => 0.0066724513978047
922 => 0.006703143186278
923 => 0.0066840181233508
924 => 0.0066447920613198
925 => 0.0067201176965634
926 => 0.0067402716588212
927 => 0.0067447833877212
928 => 0.0068782459711149
929 => 0.0067522424635485
930 => 0.0067825727601869
1001 => 0.0070192010763945
1002 => 0.0068046118460698
1003 => 0.0069182845472837
1004 => 0.0069127208600834
1005 => 0.00697087196755
1006 => 0.0069079507719675
1007 => 0.0069087307555971
1008 => 0.0069603649995302
1009 => 0.0068878540162112
1010 => 0.0068698992770171
1011 => 0.0068450949334149
1012 => 0.0068992543102217
1013 => 0.0069317204071995
1014 => 0.0071933733051197
1015 => 0.007362413009998
1016 => 0.0073550745505987
1017 => 0.0074221343324877
1018 => 0.0073919232865495
1019 => 0.0072943638499439
1020 => 0.0074608859121238
1021 => 0.0074081913640711
1022 => 0.0074125354385887
1023 => 0.0074123737519182
1024 => 0.0074474110197359
1025 => 0.0074225839043686
1026 => 0.0073736471115285
1027 => 0.0074061336384003
1028 => 0.0075026070090634
1029 => 0.0078020633117664
1030 => 0.0079696430260273
1031 => 0.0077919748025486
1101 => 0.0079145279640319
1102 => 0.0078410397372983
1103 => 0.0078276847404154
1104 => 0.0079046571824345
1105 => 0.0079817643545237
1106 => 0.0079768529610051
1107 => 0.0079208771135654
1108 => 0.0078892577776812
1109 => 0.0081286899822507
1110 => 0.0083050995519563
1111 => 0.0082930696019671
1112 => 0.00834616588887
1113 => 0.008502058229423
1114 => 0.0085163110713368
1115 => 0.0085145155408535
1116 => 0.00847918838504
1117 => 0.008632684639493
1118 => 0.0087607339154673
1119 => 0.0084710111691688
1120 => 0.00858133379821
1121 => 0.0086308611807597
1122 => 0.008703582072455
1123 => 0.0088262744061814
1124 => 0.0089595508231426
1125 => 0.0089783975698025
1126 => 0.0089650249011474
1127 => 0.0088771255214991
1128 => 0.0090229581672564
1129 => 0.0091083835109447
1130 => 0.0091592523481868
1201 => 0.0092882472556654
1202 => 0.0086311670450132
1203 => 0.0081660530129082
1204 => 0.008093418740467
1205 => 0.0082411233896779
1206 => 0.0082800719277524
1207 => 0.0082643718208919
1208 => 0.0077408436914399
1209 => 0.0080906624732121
1210 => 0.0084670380688003
1211 => 0.0084814961882647
1212 => 0.0086699176810587
1213 => 0.0087312754427704
1214 => 0.0088829794414392
1215 => 0.0088734903150179
1216 => 0.0089104278245559
1217 => 0.0089019365307816
1218 => 0.0091829362432699
1219 => 0.0094929206550055
1220 => 0.0094821868805171
1221 => 0.009437622953761
1222 => 0.0095038079842725
1223 => 0.009823745117132
1224 => 0.0097942904328264
1225 => 0.0098229031496853
1226 => 0.010200127060193
1227 => 0.010690571803329
1228 => 0.010462710980296
1229 => 0.010957103401093
1230 => 0.011268297223369
1231 => 0.011806474760954
]
'min_raw' => 0.0048203221114007
'max_raw' => 0.011806474760954
'avg_raw' => 0.0083133984361774
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00482'
'max' => '$0.0118064'
'avg' => '$0.008313'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0021493490055487
'max_diff' => 0.0047898111935346
'year' => 2028
]
3 => [
'items' => [
101 => 0.011739092282668
102 => 0.011948600848721
103 => 0.011618463583389
104 => 0.010860401690438
105 => 0.010740435494134
106 => 0.010980610857162
107 => 0.011571058551198
108 => 0.010962015558052
109 => 0.011085224162346
110 => 0.011049740076021
111 => 0.011047849279858
112 => 0.011120013278962
113 => 0.011015335634441
114 => 0.010588860079515
115 => 0.010784311313101
116 => 0.010708838205474
117 => 0.010792581245279
118 => 0.01124450789285
119 => 0.011044700349373
120 => 0.010834219333367
121 => 0.011098209236915
122 => 0.011434359100904
123 => 0.011413323446535
124 => 0.011372505484838
125 => 0.011602594197767
126 => 0.011982633341859
127 => 0.012085356395386
128 => 0.012161184453419
129 => 0.012171639861497
130 => 0.012279337062692
131 => 0.011700222068674
201 => 0.012619292436909
202 => 0.012777990500696
203 => 0.012748161842065
204 => 0.01292454806093
205 => 0.012872650760853
206 => 0.012797459715479
207 => 0.013077069390804
208 => 0.012756519461382
209 => 0.01230153919268
210 => 0.012051928018781
211 => 0.01238063614813
212 => 0.012581366732391
213 => 0.012714036879724
214 => 0.012754182786146
215 => 0.011745177117131
216 => 0.011201379023552
217 => 0.011549947366878
218 => 0.011975224802638
219 => 0.011697859631046
220 => 0.011708731820651
221 => 0.011313281976244
222 => 0.01201021333915
223 => 0.01190867630169
224 => 0.012435450631649
225 => 0.012309731710176
226 => 0.012739295726995
227 => 0.012626177125109
228 => 0.013095726117164
301 => 0.013283041922626
302 => 0.013597574313374
303 => 0.013828945620385
304 => 0.01396481127729
305 => 0.013956654412869
306 => 0.014495021833528
307 => 0.01417756537469
308 => 0.013778765243648
309 => 0.013771552207476
310 => 0.013978096446384
311 => 0.014410956508492
312 => 0.014523190824738
313 => 0.014585914496233
314 => 0.014489851009912
315 => 0.014145274776153
316 => 0.013996488505457
317 => 0.014123258718844
318 => 0.013968229641361
319 => 0.014235853322572
320 => 0.01460335779821
321 => 0.014527469577261
322 => 0.014781152522095
323 => 0.015043687681774
324 => 0.015419124751307
325 => 0.015517277903678
326 => 0.015679521332116
327 => 0.015846523114169
328 => 0.01590015958574
329 => 0.016002568252389
330 => 0.016002028508165
331 => 0.01631064391801
401 => 0.016651056272093
402 => 0.016779554055195
403 => 0.017075027622029
404 => 0.016569039493455
405 => 0.016952837301351
406 => 0.017299032531156
407 => 0.016886284306229
408 => 0.017455161576289
409 => 0.017477249791582
410 => 0.017810755618167
411 => 0.017472683570938
412 => 0.017271937468457
413 => 0.01785148394446
414 => 0.018131908228654
415 => 0.018047442152086
416 => 0.0174046511388
417 => 0.017030519198463
418 => 0.016051343745941
419 => 0.017211219366685
420 => 0.017776160947514
421 => 0.017403188076585
422 => 0.017591293898145
423 => 0.01861753826706
424 => 0.019008265678341
425 => 0.018926997108185
426 => 0.018940730158747
427 => 0.01915155957767
428 => 0.020086493327056
429 => 0.019526259352829
430 => 0.019954537234559
501 => 0.020181694278757
502 => 0.020392690401009
503 => 0.019874550610769
504 => 0.019200458356652
505 => 0.018986945043305
506 => 0.017366103275063
507 => 0.017281731422067
508 => 0.017234370944252
509 => 0.016935769830898
510 => 0.01670115114953
511 => 0.016514573663274
512 => 0.016024938622582
513 => 0.016190176075428
514 => 0.015409800015341
515 => 0.015909056963755
516 => 0.014663557929018
517 => 0.015700846535351
518 => 0.01513629750665
519 => 0.015515376995925
520 => 0.015514054423299
521 => 0.014816048896281
522 => 0.014413453875301
523 => 0.014670003091902
524 => 0.014945044217
525 => 0.014989668714198
526 => 0.015346266712196
527 => 0.015445785548389
528 => 0.015144238828635
529 => 0.014637747729909
530 => 0.014755394060311
531 => 0.01441106977617
601 => 0.013807654712455
602 => 0.014241037945831
603 => 0.014389014036222
604 => 0.01445436870775
605 => 0.013860979295275
606 => 0.013674523458764
607 => 0.013575255935922
608 => 0.014561148608224
609 => 0.014615158034339
610 => 0.014338838174169
611 => 0.015587830143864
612 => 0.015305144794324
613 => 0.015620973589353
614 => 0.014744718888938
615 => 0.014778192998527
616 => 0.014363359980746
617 => 0.014595638751551
618 => 0.01443147160304
619 => 0.014576872922294
620 => 0.014664025873542
621 => 0.015078790821307
622 => 0.015705582484808
623 => 0.015016838769303
624 => 0.014716743269465
625 => 0.014902920829763
626 => 0.015398736207029
627 => 0.016149921883909
628 => 0.015705204844175
629 => 0.015902562714624
630 => 0.015945676629476
701 => 0.015617758748697
702 => 0.01616201268391
703 => 0.016453682789302
704 => 0.01675287596481
705 => 0.017012657015902
706 => 0.016633371631113
707 => 0.017039261361261
708 => 0.016712185887945
709 => 0.016418765375939
710 => 0.016419210373737
711 => 0.016235143400366
712 => 0.015878490445529
713 => 0.015812718168619
714 => 0.016154873859227
715 => 0.016429250320831
716 => 0.016451849280384
717 => 0.016603758187499
718 => 0.016693656313944
719 => 0.017574780163679
720 => 0.017929175465082
721 => 0.018362523331277
722 => 0.018531336747307
723 => 0.0190394046066
724 => 0.018629098546967
725 => 0.018540326250019
726 => 0.017307919811106
727 => 0.017509726296437
728 => 0.017832837950882
729 => 0.017313247803278
730 => 0.017642808158767
731 => 0.017707870353983
801 => 0.017295592328886
802 => 0.017515807835572
803 => 0.016930980739161
804 => 0.015718330117362
805 => 0.016163362710707
806 => 0.01649105649576
807 => 0.016023397060137
808 => 0.016861658497571
809 => 0.01637196347105
810 => 0.01621675365715
811 => 0.015611224836831
812 => 0.01589701113108
813 => 0.016283541186117
814 => 0.016044710551046
815 => 0.016540319979419
816 => 0.017242235104201
817 => 0.017742461621889
818 => 0.01778086280258
819 => 0.01745925066428
820 => 0.017974636168406
821 => 0.017978390189145
822 => 0.017397033235079
823 => 0.017040955337722
824 => 0.016960053690248
825 => 0.01716216186734
826 => 0.017407558505557
827 => 0.017794480608127
828 => 0.018028289531191
829 => 0.01863793919987
830 => 0.018802892920189
831 => 0.018984127047976
901 => 0.019226311733235
902 => 0.019517116542768
903 => 0.018880852175038
904 => 0.018906132144513
905 => 0.018313651574963
906 => 0.017680501116091
907 => 0.018160983391056
908 => 0.018789150049695
909 => 0.018645047924141
910 => 0.018628833491277
911 => 0.018656101669845
912 => 0.018547453373113
913 => 0.018056041153686
914 => 0.017809257013493
915 => 0.018127671515691
916 => 0.01829689465261
917 => 0.018559344980163
918 => 0.018526992437638
919 => 0.019203036296307
920 => 0.01946572649728
921 => 0.019398519102724
922 => 0.019410886880758
923 => 0.019886474941902
924 => 0.020415426678038
925 => 0.020910859780258
926 => 0.021414835611184
927 => 0.020807273076491
928 => 0.020498790290622
929 => 0.020817065783009
930 => 0.020648184326697
1001 => 0.021618627268162
1002 => 0.021685818631889
1003 => 0.022656191399283
1004 => 0.02357719070538
1005 => 0.022998727542637
1006 => 0.023544192250551
1007 => 0.02413415680455
1008 => 0.025272294147512
1009 => 0.024889009530557
1010 => 0.024595419520805
1011 => 0.024317978380206
1012 => 0.024895289351252
1013 => 0.025637990692735
1014 => 0.025797961448185
1015 => 0.026057175185547
1016 => 0.025784643635859
1017 => 0.026112877869093
1018 => 0.027271688945838
1019 => 0.026958567963793
1020 => 0.026513885832579
1021 => 0.027428655884271
1022 => 0.0277597076099
1023 => 0.030083201993496
1024 => 0.033016709631552
1025 => 0.031802218206947
1026 => 0.031048344188301
1027 => 0.031225522464814
1028 => 0.032296740148732
1029 => 0.032640781270056
1030 => 0.03170555890421
1031 => 0.032035895254355
1101 => 0.033856081021606
1102 => 0.034832552287185
1103 => 0.033506373150941
1104 => 0.029847497511071
1105 => 0.026473847072036
1106 => 0.027368691085927
1107 => 0.027267243544995
1108 => 0.029222806079107
1109 => 0.026951100131927
1110 => 0.026989349833963
1111 => 0.028985351330304
1112 => 0.028452852351209
1113 => 0.027590272202391
1114 => 0.026480144861711
1115 => 0.024427971798113
1116 => 0.022610304886605
1117 => 0.026175168283762
1118 => 0.026021444891793
1119 => 0.025798830639692
1120 => 0.026294234568365
1121 => 0.028699775423144
1122 => 0.028644319920466
1123 => 0.028291540306071
1124 => 0.028559120534333
1125 => 0.027543364094645
1126 => 0.027805147657497
1127 => 0.02647331266857
1128 => 0.027075357705907
1129 => 0.027588421492796
1130 => 0.027691426644053
1201 => 0.027923502509409
1202 => 0.025940439649471
1203 => 0.026830776653916
1204 => 0.027353766230732
1205 => 0.024990880296153
1206 => 0.027307059573063
1207 => 0.025905918936996
1208 => 0.025430350760688
1209 => 0.026070640658743
1210 => 0.025821119062769
1211 => 0.02560659504695
1212 => 0.025486886960132
1213 => 0.025957045195047
1214 => 0.025935111751427
1215 => 0.025165841625326
1216 => 0.02416236010529
1217 => 0.024499161441572
1218 => 0.024376798358571
1219 => 0.023933338760625
1220 => 0.024232176986125
1221 => 0.022916244679588
1222 => 0.0206522515424
1223 => 0.022147914756811
1224 => 0.022090333350025
1225 => 0.022061298193614
1226 => 0.02318524776215
1227 => 0.023077205945063
1228 => 0.022881108989103
1229 => 0.023929737286247
1230 => 0.023546973851749
1231 => 0.024726560566466
]
'min_raw' => 0.010588860079515
'max_raw' => 0.034832552287185
'avg_raw' => 0.02271070618335
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.010588'
'max' => '$0.034832'
'avg' => '$0.02271'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0057685379681139
'max_diff' => 0.023026077526231
'year' => 2029
]
4 => [
'items' => [
101 => 0.025503512667664
102 => 0.025306452483033
103 => 0.026037179689545
104 => 0.024506920664117
105 => 0.025015211329028
106 => 0.025119969330606
107 => 0.023916797375835
108 => 0.023094882922514
109 => 0.023040070598989
110 => 0.021614984203719
111 => 0.022376253853177
112 => 0.023046139641221
113 => 0.022725316333985
114 => 0.022623753259238
115 => 0.023142616981778
116 => 0.023182937136786
117 => 0.022263633329651
118 => 0.02245478570172
119 => 0.023251922869685
120 => 0.02243469989033
121 => 0.020846969134061
122 => 0.020453189954411
123 => 0.020400652553056
124 => 0.019332692186824
125 => 0.020479504162124
126 => 0.019978890002255
127 => 0.021560324135001
128 => 0.020657017439778
129 => 0.020618077693563
130 => 0.020559214555941
131 => 0.019639976951838
201 => 0.019841231566539
202 => 0.020510232557749
203 => 0.020748939648248
204 => 0.02072404054304
205 => 0.02050695408792
206 => 0.020606335155411
207 => 0.020286194110362
208 => 0.020173145644196
209 => 0.019816333588545
210 => 0.019291918438584
211 => 0.019364841581611
212 => 0.018325837948849
213 => 0.017759733625624
214 => 0.017603043410091
215 => 0.017393510705344
216 => 0.017626710686637
217 => 0.018322894582102
218 => 0.017483149100519
219 => 0.016043464373642
220 => 0.016129991878831
221 => 0.016324393492743
222 => 0.015962127371313
223 => 0.01561927289007
224 => 0.015917357044847
225 => 0.015307343647041
226 => 0.016398110697494
227 => 0.016368608505619
228 => 0.016775179009446
301 => 0.017029415889155
302 => 0.016443482191592
303 => 0.016296121451188
304 => 0.016380064826094
305 => 0.01499266782507
306 => 0.016661799075238
307 => 0.016676233791601
308 => 0.016552634986526
309 => 0.017441395848594
310 => 0.019316958479023
311 => 0.018611296373123
312 => 0.018338042676969
313 => 0.017818587200833
314 => 0.01851073078057
315 => 0.018457584952768
316 => 0.018217239364491
317 => 0.018071877602777
318 => 0.01833971110577
319 => 0.018038690067774
320 => 0.017984618417845
321 => 0.01765700304981
322 => 0.017540059268971
323 => 0.017453478749304
324 => 0.017358162104377
325 => 0.017568406871659
326 => 0.017091964568996
327 => 0.0165174218582
328 => 0.016469654848436
329 => 0.016601543762114
330 => 0.016543192735786
331 => 0.016469375486171
401 => 0.016328438253724
402 => 0.016286625187504
403 => 0.016422497367902
404 => 0.016269105598073
405 => 0.016495443510138
406 => 0.016433892121904
407 => 0.01609007107072
408 => 0.015661542742088
409 => 0.015657727941095
410 => 0.015565402215618
411 => 0.015447811522958
412 => 0.015415100482371
413 => 0.015892253228756
414 => 0.016879945133794
415 => 0.016686037579371
416 => 0.016826155659887
417 => 0.017515397936065
418 => 0.017734487329424
419 => 0.017578982867435
420 => 0.017366118768766
421 => 0.017375483708804
422 => 0.018102904772299
423 => 0.018148273131756
424 => 0.018262904339718
425 => 0.018410237836723
426 => 0.017604074399063
427 => 0.017337513483387
428 => 0.017211202133304
429 => 0.016822212063691
430 => 0.01724170450428
501 => 0.016997284223606
502 => 0.017030264870055
503 => 0.017008786180789
504 => 0.017020514997511
505 => 0.016397805805874
506 => 0.016624688306675
507 => 0.016247452144508
508 => 0.015742375270114
509 => 0.015740682075328
510 => 0.015864298924794
511 => 0.015790766785604
512 => 0.015592893689728
513 => 0.015621000629062
514 => 0.01537475426498
515 => 0.015650899396096
516 => 0.015658818250362
517 => 0.015552487333155
518 => 0.015977927008325
519 => 0.016152229990368
520 => 0.016082240702833
521 => 0.016147319355377
522 => 0.016694095313697
523 => 0.016783243652411
524 => 0.016822837455659
525 => 0.016769787004481
526 => 0.016157313416164
527 => 0.016184479224245
528 => 0.015985154549346
529 => 0.015816746203373
530 => 0.015823481654027
531 => 0.015910065435409
601 => 0.016288181886779
602 => 0.017083905667502
603 => 0.017114102803314
604 => 0.017150702612831
605 => 0.017001832793936
606 => 0.016956932232065
607 => 0.017016167662991
608 => 0.017314999677863
609 => 0.018083676752212
610 => 0.017811974935921
611 => 0.017591077129986
612 => 0.017784864059412
613 => 0.017755032080579
614 => 0.017503220157386
615 => 0.017496152635388
616 => 0.01701284504564
617 => 0.016834177234092
618 => 0.016684869037708
619 => 0.016521828385046
620 => 0.016425172420976
621 => 0.016573679911137
622 => 0.016607645331226
623 => 0.016282931108521
624 => 0.016238673759826
625 => 0.016503842403531
626 => 0.01638715156992
627 => 0.016507170986082
628 => 0.016535016520139
629 => 0.016530532747819
630 => 0.016408694115672
701 => 0.016486350426523
702 => 0.016302670100902
703 => 0.016102945334682
704 => 0.015975533377126
705 => 0.015864349545415
706 => 0.015926040797291
707 => 0.015706122748732
708 => 0.015635766538923
709 => 0.016460042215729
710 => 0.017068943520642
711 => 0.017060089854518
712 => 0.017006195438961
713 => 0.016926119269526
714 => 0.017309141607305
715 => 0.017175704283596
716 => 0.017272791085656
717 => 0.0172975037515
718 => 0.017372301548032
719 => 0.017399035331205
720 => 0.017318227270651
721 => 0.017047025549561
722 => 0.01637121664569
723 => 0.016056625776627
724 => 0.015952805549911
725 => 0.015956579217969
726 => 0.015852484606521
727 => 0.015883145134786
728 => 0.015841822126038
729 => 0.01576356634458
730 => 0.015921208723305
731 => 0.015939375538913
801 => 0.015902579924032
802 => 0.015911246623357
803 => 0.015606594647759
804 => 0.015629756675794
805 => 0.015500787560404
806 => 0.015476607406015
807 => 0.015150584712936
808 => 0.014572988254401
809 => 0.014893032761074
810 => 0.01450646400208
811 => 0.014360064555577
812 => 0.015053096765539
813 => 0.01498353555338
814 => 0.014864476995696
815 => 0.014688364574904
816 => 0.014623042764921
817 => 0.014226168125835
818 => 0.014202718654914
819 => 0.014399420442562
820 => 0.014308649335657
821 => 0.014181172323857
822 => 0.013719463509256
823 => 0.013200349935108
824 => 0.01321601871088
825 => 0.013381139080365
826 => 0.013861248824158
827 => 0.013673661641275
828 => 0.013537564987779
829 => 0.013512078175629
830 => 0.013831098989936
831 => 0.014282580279106
901 => 0.01449440519866
902 => 0.0142844931366
903 => 0.014043357462174
904 => 0.014058034273361
905 => 0.014155672522862
906 => 0.014165932922355
907 => 0.014008978387451
908 => 0.01405316016966
909 => 0.013986044002418
910 => 0.013574152207939
911 => 0.0135667023915
912 => 0.013465617502482
913 => 0.013462556692217
914 => 0.013290586079191
915 => 0.013266526201652
916 => 0.012925068111618
917 => 0.013149816860509
918 => 0.012999067199592
919 => 0.01277185190234
920 => 0.012732679899452
921 => 0.012731502341743
922 => 0.01296480164761
923 => 0.013147090622286
924 => 0.013001689554485
925 => 0.012968584549828
926 => 0.01332205938981
927 => 0.013277076494428
928 => 0.013238121597135
929 => 0.014242155081551
930 => 0.013447384232926
1001 => 0.013100818778991
1002 => 0.012671878218753
1003 => 0.012811543428072
1004 => 0.012840972939785
1005 => 0.011809448214758
1006 => 0.011390958762283
1007 => 0.011247348952636
1008 => 0.011164699476839
1009 => 0.011202363880807
1010 => 0.010825674289662
1011 => 0.011078815924782
1012 => 0.010752634579629
1013 => 0.010697949215628
1014 => 0.011281201866876
1015 => 0.011362358065985
1016 => 0.011016120507333
1017 => 0.011238461070757
1018 => 0.011157837291694
1019 => 0.010758226022595
1020 => 0.010742963811457
1021 => 0.010542452923638
1022 => 0.01022869221076
1023 => 0.010085295145651
1024 => 0.010010612709112
1025 => 0.010041428137959
1026 => 0.010025846914166
1027 => 0.0099241688893703
1028 => 0.010031674979527
1029 => 0.0097570413437593
1030 => 0.0096476800171229
1031 => 0.0095982840430447
1101 => 0.0093545308839783
1102 => 0.0097424505575748
1103 => 0.0098188756201567
1104 => 0.0098954512637207
1105 => 0.010561989960533
1106 => 0.010528691570859
1107 => 0.010829692796538
1108 => 0.010817996442414
1109 => 0.010732146016954
1110 => 0.010369957193647
1111 => 0.010514319203222
1112 => 0.010069995376587
1113 => 0.010402912998585
1114 => 0.010250983298877
1115 => 0.010351545414286
1116 => 0.010170725663461
1117 => 0.010270798779432
1118 => 0.0098369988376777
1119 => 0.0094319225557974
1120 => 0.0095949370765399
1121 => 0.0097721525035587
1122 => 0.010156400702986
1123 => 0.009927545645386
1124 => 0.010009850578067
1125 => 0.0097341428312653
1126 => 0.009165278997589
1127 => 0.0091684987051092
1128 => 0.0090809913976703
1129 => 0.0090053723077671
1130 => 0.0099538324017417
1201 => 0.0098358763961207
1202 => 0.009647928938864
1203 => 0.0098995040791371
1204 => 0.0099660245392597
1205 => 0.0099679182832426
1206 => 0.010151461011492
1207 => 0.01024941779846
1208 => 0.010266683106732
1209 => 0.010555491555335
1210 => 0.010652296337831
1211 => 0.011051021536608
1212 => 0.010241106849472
1213 => 0.010224427189469
1214 => 0.009903044257277
1215 => 0.0096992181208174
1216 => 0.0099170004072212
1217 => 0.010109925782728
1218 => 0.0099090389864714
1219 => 0.0099352705611108
1220 => 0.0096655964501901
1221 => 0.009761992255498
1222 => 0.0098450213089464
1223 => 0.0097991775458544
1224 => 0.0097305472136424
1225 => 0.010094108102029
1226 => 0.010073594571899
1227 => 0.010412150829393
1228 => 0.0106760796425
1229 => 0.011149087258506
1230 => 0.010655479152759
1231 => 0.010637490111471
]
'min_raw' => 0.0090053723077671
'max_raw' => 0.026037179689545
'avg_raw' => 0.017521275998656
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0090053'
'max' => '$0.026037'
'avg' => '$0.017521'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0015834877717474
'max_diff' => -0.00879537259764
'year' => 2030
]
5 => [
'items' => [
101 => 0.010813335875594
102 => 0.010652269416761
103 => 0.010754057858918
104 => 0.011132687566832
105 => 0.011140687415923
106 => 0.01100667963642
107 => 0.010998525250858
108 => 0.011024262910796
109 => 0.011175009188955
110 => 0.011122333807401
111 => 0.011183291092513
112 => 0.011259519110956
113 => 0.011574830515246
114 => 0.011650851027339
115 => 0.01146616059507
116 => 0.011482836073213
117 => 0.011413756781678
118 => 0.011347027051617
119 => 0.0114970257397
120 => 0.011771151290403
121 => 0.01176944596958
122 => 0.011833037769103
123 => 0.011872654933384
124 => 0.011702589062755
125 => 0.011591882434472
126 => 0.011634334400201
127 => 0.011702216017887
128 => 0.011612321306472
129 => 0.011057449504336
130 => 0.011225762163756
131 => 0.01119774670716
201 => 0.011157849290171
202 => 0.011327088970741
203 => 0.011310765390687
204 => 0.010821810793447
205 => 0.010853112080353
206 => 0.010823714328376
207 => 0.010918704479226
208 => 0.010647139636884
209 => 0.010730671153371
210 => 0.010783061337453
211 => 0.010813919558357
212 => 0.010925400611943
213 => 0.010912319597015
214 => 0.010924587477689
215 => 0.011089884450251
216 => 0.011925899814397
217 => 0.011971402286103
218 => 0.011747331473673
219 => 0.011836843343638
220 => 0.0116650001274
221 => 0.01178035962971
222 => 0.011859285671376
223 => 0.011502634065689
224 => 0.01148151547225
225 => 0.011308962997931
226 => 0.011401682923758
227 => 0.011254158854968
228 => 0.011290356101277
301 => 0.01118914544498
302 => 0.011371304475474
303 => 0.011574986576217
304 => 0.011626444718515
305 => 0.011491080500253
306 => 0.011393067885294
307 => 0.011220990020789
308 => 0.011507159344466
309 => 0.011590843975562
310 => 0.011506719784725
311 => 0.011487226371558
312 => 0.011450286388831
313 => 0.01149506336352
314 => 0.011590388211088
315 => 0.011545434773349
316 => 0.011575127310953
317 => 0.011461969976416
318 => 0.011702645361635
319 => 0.012084895795048
320 => 0.012086124792696
321 => 0.01204117111264
322 => 0.012022777035302
323 => 0.012068902239057
324 => 0.012093923269938
325 => 0.012243083720964
326 => 0.012403138827729
327 => 0.013150046173486
328 => 0.012940317579596
329 => 0.013603018210468
330 => 0.014127128368582
331 => 0.014284286088441
401 => 0.014139708381013
402 => 0.013645115853836
403 => 0.013620848784875
404 => 0.014359978832055
405 => 0.014151140739426
406 => 0.014126300112825
407 => 0.013862037814692
408 => 0.014018249562411
409 => 0.013984083761697
410 => 0.013930151373821
411 => 0.014228192506664
412 => 0.014786098901031
413 => 0.014699143957456
414 => 0.014634236125801
415 => 0.014349828901874
416 => 0.014521105575331
417 => 0.014460117232502
418 => 0.014722161857456
419 => 0.014566932426632
420 => 0.014149558585476
421 => 0.014216026745363
422 => 0.014205980216711
423 => 0.014412737064453
424 => 0.014350673790781
425 => 0.014193861366447
426 => 0.014784192037627
427 => 0.014745859247433
428 => 0.014800206379833
429 => 0.014824131668256
430 => 0.015183455545011
501 => 0.015330659040236
502 => 0.015364076810811
503 => 0.015503908746148
504 => 0.015360597664876
505 => 0.015933944169032
506 => 0.0163151861386
507 => 0.016758018304785
508 => 0.017405115121647
509 => 0.017648429510768
510 => 0.017604476944196
511 => 0.018095098365527
512 => 0.018976734153757
513 => 0.017782680743929
514 => 0.019040021883866
515 => 0.018641962195663
516 => 0.017698169835723
517 => 0.017637400734324
518 => 0.01827654787813
519 => 0.019694114727459
520 => 0.019339030309612
521 => 0.019694695518361
522 => 0.019279793160086
523 => 0.019259189760926
524 => 0.019674544636899
525 => 0.020645043944426
526 => 0.020183996102043
527 => 0.019522970966417
528 => 0.020011061639873
529 => 0.019588232327866
530 => 0.018635479545441
531 => 0.01933875878325
601 => 0.018868495985167
602 => 0.019005743670193
603 => 0.019994166125451
604 => 0.019875236520593
605 => 0.020029142441864
606 => 0.01975750251924
607 => 0.019503747997824
608 => 0.019030096339544
609 => 0.018889871434272
610 => 0.018928624553326
611 => 0.018889852230151
612 => 0.018624848480426
613 => 0.018567620945905
614 => 0.018472239214506
615 => 0.018501802001422
616 => 0.018322456441483
617 => 0.018660918567772
618 => 0.018723740120929
619 => 0.018970044631043
620 => 0.018995616782367
621 => 0.01968157133711
622 => 0.019303759095356
623 => 0.019557228165864
624 => 0.019534555506454
625 => 0.017718624677992
626 => 0.017968843924061
627 => 0.018358106547819
628 => 0.018182744263449
629 => 0.017934823021804
630 => 0.017734613326481
701 => 0.017431275165573
702 => 0.017858217801957
703 => 0.018419601968515
704 => 0.019009854411256
705 => 0.019719004046338
706 => 0.019560730103199
707 => 0.018996597352103
708 => 0.019021903935217
709 => 0.019178339274261
710 => 0.01897574129655
711 => 0.018915991197741
712 => 0.01917013052821
713 => 0.019171880646106
714 => 0.018938767187967
715 => 0.018679704238557
716 => 0.01867861875534
717 => 0.018632521005744
718 => 0.019287993847332
719 => 0.019648437634426
720 => 0.019689761933732
721 => 0.019645656179828
722 => 0.019662630734011
723 => 0.019452896436138
724 => 0.019932286846302
725 => 0.020372222893466
726 => 0.020254310634964
727 => 0.020077543397253
728 => 0.019936739778152
729 => 0.020221141777107
730 => 0.020208477803784
731 => 0.020368380435886
801 => 0.020361126328852
802 => 0.020307357087918
803 => 0.020254312555233
804 => 0.020464628131448
805 => 0.020404060623063
806 => 0.020343399036608
807 => 0.020221732938148
808 => 0.020238269381589
809 => 0.020061532665234
810 => 0.019979766173326
811 => 0.018750194320279
812 => 0.018421612543725
813 => 0.018524991059528
814 => 0.018559025951152
815 => 0.018416026740907
816 => 0.018621050874915
817 => 0.018589098080804
818 => 0.018713407710931
819 => 0.018635744450924
820 => 0.018638931778205
821 => 0.01886732286633
822 => 0.018933625770858
823 => 0.018899903578485
824 => 0.018923521446094
825 => 0.019467785236662
826 => 0.01939040833022
827 => 0.019349303390851
828 => 0.019360689739972
829 => 0.01949976080761
830 => 0.019538693113549
831 => 0.019373734197558
901 => 0.019451529775956
902 => 0.019782773475044
903 => 0.019898690022955
904 => 0.020268640000787
905 => 0.020111478674867
906 => 0.020399955090376
907 => 0.021286633242792
908 => 0.021994973104403
909 => 0.021343554494283
910 => 0.022644330443595
911 => 0.023657171105361
912 => 0.023618296593788
913 => 0.023441684396983
914 => 0.022288592231323
915 => 0.021227499628848
916 => 0.02211514864719
917 => 0.022117411447085
918 => 0.022041161609192
919 => 0.0215675804147
920 => 0.022024682010171
921 => 0.02206096507487
922 => 0.022040656207084
923 => 0.021677562615637
924 => 0.02112318581241
925 => 0.02123150971277
926 => 0.021408946471307
927 => 0.021073021670211
928 => 0.020965673341859
929 => 0.02116525430812
930 => 0.021808345765759
1001 => 0.021686773050868
1002 => 0.021683598295968
1003 => 0.022203737925129
1004 => 0.021831430203807
1005 => 0.021232876024055
1006 => 0.021081733199707
1007 => 0.020545277995281
1008 => 0.020915809515766
1009 => 0.020929144285544
1010 => 0.020726207958515
1011 => 0.021249343188547
1012 => 0.021244522405306
1013 => 0.021741161447819
1014 => 0.022690548767997
1015 => 0.022409768220907
1016 => 0.022083250993479
1017 => 0.022118752469441
1018 => 0.022508116035637
1019 => 0.022272697935209
1020 => 0.022357355925516
1021 => 0.022507987895629
1022 => 0.022598867903179
1023 => 0.022105676234919
1024 => 0.021990689664963
1025 => 0.021755467497634
1026 => 0.021694102424808
1027 => 0.021885685972025
1028 => 0.02183521047608
1029 => 0.020928023549779
1030 => 0.02083321746844
1031 => 0.020836125035603
1101 => 0.020597730636293
1102 => 0.020234121956133
1103 => 0.021189663857646
1104 => 0.021112920470154
1105 => 0.02102820170983
1106 => 0.021038579274571
1107 => 0.021453347627698
1108 => 0.02121276103658
1109 => 0.021852399920433
1110 => 0.021720909395218
1111 => 0.02158604663419
1112 => 0.021567404492596
1113 => 0.02151549383555
1114 => 0.021337472877436
1115 => 0.021122501873112
1116 => 0.020980559395587
1117 => 0.019353457014256
1118 => 0.019655437751812
1119 => 0.02000283906396
1120 => 0.02012276060479
1121 => 0.019917626510882
1122 => 0.02134557282177
1123 => 0.021606472372803
1124 => 0.020816190614669
1125 => 0.020668361164714
1126 => 0.021355264495898
1127 => 0.020940977816677
1128 => 0.021127531082963
1129 => 0.020724304960433
1130 => 0.02154362931099
1201 => 0.021537387432182
1202 => 0.021218651754536
1203 => 0.021488044966675
1204 => 0.021441231266624
1205 => 0.021081379471573
1206 => 0.021555037254749
1207 => 0.0215552721831
1208 => 0.021248496023277
1209 => 0.02089024863054
1210 => 0.020826202458144
1211 => 0.020777952270637
1212 => 0.021115664494627
1213 => 0.021418456218657
1214 => 0.021981876548644
1215 => 0.02212353380614
1216 => 0.022676431512802
1217 => 0.022347207848586
1218 => 0.022493148434773
1219 => 0.022651587585635
1220 => 0.022727549140965
1221 => 0.022603773862877
1222 => 0.023462651583099
1223 => 0.023535167178019
1224 => 0.023559481029738
1225 => 0.0232698722949
1226 => 0.023527112635205
1227 => 0.023406758398881
1228 => 0.023719886686426
1229 => 0.023768989200136
1230 => 0.023727401117896
1231 => 0.023742987030778
]
'min_raw' => 0.010647139636884
'max_raw' => 0.023768989200136
'avg_raw' => 0.01720806441851
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.010647'
'max' => '$0.023768'
'avg' => '$0.017208'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0016417673291171
'max_diff' => -0.0022681904894093
'year' => 2031
]
6 => [
'items' => [
101 => 0.02301008641298
102 => 0.022972081649589
103 => 0.02245388400405
104 => 0.022665053374931
105 => 0.022270282357681
106 => 0.022395468313843
107 => 0.022450649090503
108 => 0.022421825784257
109 => 0.022676992574324
110 => 0.022460048675636
111 => 0.021887498058119
112 => 0.021314791449569
113 => 0.021307601584615
114 => 0.021156818043695
115 => 0.021047829160993
116 => 0.02106882428639
117 => 0.021142813846725
118 => 0.021043528753241
119 => 0.021064716261818
120 => 0.021416570075826
121 => 0.021487131848919
122 => 0.021247335373685
123 => 0.020284517923155
124 => 0.02004824010575
125 => 0.020218071915308
126 => 0.020136903248909
127 => 0.01625205254273
128 => 0.017164740591342
129 => 0.016622452344814
130 => 0.016872363718297
131 => 0.016318827843453
201 => 0.016583004176229
202 => 0.01653422045374
203 => 0.018001795827505
204 => 0.017978881656628
205 => 0.017989849457636
206 => 0.017466327739067
207 => 0.018300312051911
208 => 0.018711162713524
209 => 0.018635125190496
210 => 0.018654262196878
211 => 0.018325425023298
212 => 0.017993033320279
213 => 0.017624359766914
214 => 0.018309309659637
215 => 0.018233154924051
216 => 0.018407826487877
217 => 0.018852065454538
218 => 0.018917481329878
219 => 0.019005400929718
220 => 0.018973888011719
221 => 0.01972465356727
222 => 0.019633730904783
223 => 0.019852828361143
224 => 0.019402128270445
225 => 0.018892118336975
226 => 0.018989054551847
227 => 0.018979718814843
228 => 0.018860864167722
229 => 0.018753567506652
301 => 0.018574948796617
302 => 0.019140124825763
303 => 0.019117179711112
304 => 0.019488634446529
305 => 0.019422976213925
306 => 0.018984494467303
307 => 0.019000154928665
308 => 0.019105479057486
309 => 0.019470007069904
310 => 0.019578223802949
311 => 0.019528093500512
312 => 0.019646748208014
313 => 0.019740528050882
314 => 0.019658525512419
315 => 0.020819508529015
316 => 0.020337387437071
317 => 0.020572369902707
318 => 0.020628411836165
319 => 0.020484861602049
320 => 0.02051599250768
321 => 0.020563147347047
322 => 0.020849462297821
323 => 0.021600835574551
324 => 0.021933613684044
325 => 0.022934793045435
326 => 0.021905981094545
327 => 0.021844935651027
328 => 0.022025278286733
329 => 0.022613076557469
330 => 0.023089431846815
331 => 0.023247466377888
401 => 0.023268353250035
402 => 0.023564836536263
403 => 0.023734775226843
404 => 0.02352883566703
405 => 0.02335432345286
406 => 0.022729242362953
407 => 0.022801597201149
408 => 0.023300050285479
409 => 0.024004144625834
410 => 0.02460833081839
411 => 0.024396765871772
412 => 0.026010857072893
413 => 0.026170887622513
414 => 0.026148776574962
415 => 0.026513349982735
416 => 0.025789746012389
417 => 0.0254803912959
418 => 0.023392054974361
419 => 0.023978792298582
420 => 0.024831649457212
421 => 0.024718770614217
422 => 0.024099402948683
423 => 0.024607860972475
424 => 0.024439748848857
425 => 0.024307151841981
426 => 0.024914604435675
427 => 0.024246685356131
428 => 0.024824986453462
429 => 0.024083309314376
430 => 0.024397732282627
501 => 0.02421925059892
502 => 0.024334750122171
503 => 0.02365954226929
504 => 0.02402386803696
505 => 0.023644385119563
506 => 0.02364420519525
507 => 0.023635828088816
508 => 0.024082288058249
509 => 0.024096847101824
510 => 0.023766912509849
511 => 0.023719363780598
512 => 0.023895176353935
513 => 0.023689345875944
514 => 0.023785652661114
515 => 0.023692262910357
516 => 0.023671238910373
517 => 0.023503716101557
518 => 0.023431542669384
519 => 0.023459843731819
520 => 0.023363237615529
521 => 0.023305028936069
522 => 0.02362424891738
523 => 0.023453702558663
524 => 0.023598110241927
525 => 0.023433539461145
526 => 0.022863065434876
527 => 0.022534979789716
528 => 0.021457407237064
529 => 0.021763005476272
530 => 0.02196561742503
531 => 0.021898654177174
601 => 0.022042517144906
602 => 0.022051349162718
603 => 0.022004577845399
604 => 0.021950422651721
605 => 0.021924062898408
606 => 0.02212052690346
607 => 0.022234580871067
608 => 0.021985952244686
609 => 0.02192770203621
610 => 0.022179079304643
611 => 0.022332419293171
612 => 0.023464595614167
613 => 0.023380720335426
614 => 0.023591230825373
615 => 0.023567530574752
616 => 0.023788179105167
617 => 0.02414884619937
618 => 0.02341550915275
619 => 0.023542791107156
620 => 0.023511584511305
621 => 0.023852289941995
622 => 0.023853353587161
623 => 0.023649083661964
624 => 0.023759821702314
625 => 0.02369801076613
626 => 0.023809711482064
627 => 0.023379600129942
628 => 0.023903429329175
629 => 0.024200406730332
630 => 0.024204530261835
701 => 0.024345295193025
702 => 0.02448832051567
703 => 0.024762845167605
704 => 0.024480664172126
705 => 0.023973048031025
706 => 0.024009696276822
707 => 0.023712081119025
708 => 0.023717084083596
709 => 0.023690377866625
710 => 0.023770525234103
711 => 0.023397187970026
712 => 0.023484809479689
713 => 0.02336213885305
714 => 0.023542524445171
715 => 0.023348459366855
716 => 0.02351156946254
717 => 0.023581962372652
718 => 0.023841713726417
719 => 0.023310093880707
720 => 0.022226085027804
721 => 0.022453956831021
722 => 0.022116916535119
723 => 0.022148110897707
724 => 0.022211128474682
725 => 0.022006867889638
726 => 0.022045834372274
727 => 0.022044442215311
728 => 0.022032445358711
729 => 0.021979309291623
730 => 0.021902251481695
731 => 0.022209226079305
801 => 0.022261387045232
802 => 0.022377334411111
803 => 0.022722315124116
804 => 0.022687843415681
805 => 0.022744068202355
806 => 0.022621329808734
807 => 0.022153804379765
808 => 0.022179193259891
809 => 0.021862593517894
810 => 0.022369238243895
811 => 0.022249258085394
812 => 0.022171906096692
813 => 0.022150799889913
814 => 0.022496635743379
815 => 0.022600115251048
816 => 0.02253563376612
817 => 0.022403380359307
818 => 0.022657345997598
819 => 0.022725296488455
820 => 0.02274050809744
821 => 0.023190486515412
822 => 0.022765656892368
823 => 0.022867917605078
824 => 0.023665726494033
825 => 0.022942223921852
826 => 0.023325479370369
827 => 0.023306721010529
828 => 0.023502781529334
829 => 0.02329063832541
830 => 0.023293268094674
831 => 0.023467356553082
901 => 0.023222880710267
902 => 0.023162345053514
903 => 0.023078715477275
904 => 0.023261317597466
905 => 0.023370779310137
906 => 0.024252960323497
907 => 0.02482288949047
908 => 0.02479814736225
909 => 0.025024244098853
910 => 0.024922385448205
911 => 0.024593456996307
912 => 0.025154897755145
913 => 0.02497723440737
914 => 0.024991880757899
915 => 0.024991335620001
916 => 0.025109466214673
917 => 0.025025759861838
918 => 0.02486076604812
919 => 0.024970296641605
920 => 0.025295563346351
921 => 0.026305201178286
922 => 0.026870207884958
923 => 0.026271187065101
924 => 0.02668438360543
925 => 0.026436612918214
926 => 0.026391585613807
927 => 0.026651103576118
928 => 0.026911075790268
929 => 0.026894516684118
930 => 0.026705790206366
1001 => 0.026599183407841
1002 => 0.027406445802169
1003 => 0.028001222982955
1004 => 0.027960663166662
1005 => 0.028139681005019
1006 => 0.028665282915249
1007 => 0.028713337366863
1008 => 0.028707283610479
1009 => 0.02858817563819
1010 => 0.029105698976845
1011 => 0.029537426050907
1012 => 0.028560605583966
1013 => 0.028932566030258
1014 => 0.029099551058416
1015 => 0.029344734621977
1016 => 0.029758400391241
1017 => 0.030207751136088
1018 => 0.030271294258289
1019 => 0.030226207372269
1020 => 0.029929848476846
1021 => 0.030421533423727
1022 => 0.030709550934179
1023 => 0.03088105877049
1024 => 0.03131597410719
1025 => 0.029100582301102
1026 => 0.027532417868635
1027 => 0.027287526347936
1028 => 0.02778552288516
1029 => 0.027916840600578
1030 => 0.027863906594152
1031 => 0.026098794954138
1101 => 0.02727823340045
1102 => 0.02854720999868
1103 => 0.028595956557888
1104 => 0.029231232776012
1105 => 0.029438104753485
1106 => 0.029949585376632
1107 => 0.029917592124393
1108 => 0.030042129516695
1109 => 0.030013500526892
1110 => 0.030960910676319
1111 => 0.032006044762906
1112 => 0.03196985509281
1113 => 0.031819604702398
1114 => 0.032042752153659
1115 => 0.033121442534392
1116 => 0.033022134009795
1117 => 0.033118603782361
1118 => 0.034390440533571
1119 => 0.036044009226813
1120 => 0.03527576055322
1121 => 0.036942639117316
1122 => 0.037991850815979
1123 => 0.039806353958302
1124 => 0.039579169228267
1125 => 0.040285541986134
1126 => 0.03917246114662
1127 => 0.036616602548343
1128 => 0.036212128141732
1129 => 0.03702189614669
1130 => 0.039012631770874
1201 => 0.036959200797458
1202 => 0.037374607208986
1203 => 0.03725497013452
1204 => 0.037248595183247
1205 => 0.037491901144554
1206 => 0.037138973157692
1207 => 0.035701081048686
1208 => 0.036360058528692
1209 => 0.036105595676964
1210 => 0.036387941182419
1211 => 0.037911643427213
1212 => 0.037237978344265
1213 => 0.036528326903486
1214 => 0.037418387294484
1215 => 0.038551740030158
1216 => 0.038480816852791
1217 => 0.038343196245109
1218 => 0.039118956405031
1219 => 0.040400284912822
1220 => 0.040746622859683
1221 => 0.041002282451488
1222 => 0.041037533589794
1223 => 0.041400642222803
1224 => 0.039448115587954
1225 => 0.042546825501901
1226 => 0.043081887103905
1227 => 0.04298131769876
1228 => 0.043576016150554
1229 => 0.043401040779992
1230 => 0.043147528920843
1231 => 0.044090252462925
]
'min_raw' => 0.01625205254273
'max_raw' => 0.044090252462925
'avg_raw' => 0.030171152502828
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.016252'
'max' => '$0.04409'
'avg' => '$0.030171'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0056049129058458
'max_diff' => 0.02032126326279
'year' => 2032
]
7 => [
'items' => [
101 => 0.043009495995795
102 => 0.04147549825416
103 => 0.040633916754064
104 => 0.041742179161834
105 => 0.042418956341231
106 => 0.042866263005699
107 => 0.043001617732097
108 => 0.039599684672487
109 => 0.037766231433214
110 => 0.038941453939004
111 => 0.040375306505592
112 => 0.039440150464549
113 => 0.039476806810874
114 => 0.038143520051032
115 => 0.040493272799263
116 => 0.040150933588377
117 => 0.041926990020041
118 => 0.041503119898881
119 => 0.04295142497279
120 => 0.042570037708841
121 => 0.044153154918417
122 => 0.044784703234505
123 => 0.045845171149862
124 => 0.04662525566528
125 => 0.047083336213372
126 => 0.047055834775482
127 => 0.048870978121847
128 => 0.047800651506774
129 => 0.046456069021627
130 => 0.046431749766575
131 => 0.047128128088513
201 => 0.048587546009233
202 => 0.048965951842409
203 => 0.049177429080081
204 => 0.04885354432901
205 => 0.047691781499348
206 => 0.047190138199771
207 => 0.047617552825016
208 => 0.047094861466499
209 => 0.047997173392593
210 => 0.049236240390546
211 => 0.048980377955271
212 => 0.049835687715357
213 => 0.050720843335835
214 => 0.051986655627946
215 => 0.052317585833997
216 => 0.052864600880451
217 => 0.053427659048334
218 => 0.053608498157014
219 => 0.053953776126566
220 => 0.053951956341233
221 => 0.054992474742365
222 => 0.056140198760986
223 => 0.056573438008144
224 => 0.057569647768031
225 => 0.055863673465578
226 => 0.057157674570809
227 => 0.058324895958676
228 => 0.056933286501171
301 => 0.058851295934923
302 => 0.058925767894932
303 => 0.060050206073896
304 => 0.058910372563227
305 => 0.058233543063069
306 => 0.060187524469554
307 => 0.061132994522315
308 => 0.060848211247933
309 => 0.058680996468401
310 => 0.057419584510499
311 => 0.054118226108474
312 => 0.058028827743742
313 => 0.059933567726468
314 => 0.058676063651997
315 => 0.059310275562516
316 => 0.062770330102407
317 => 0.064087694849256
318 => 0.063813692190986
319 => 0.063859994129766
320 => 0.064570820235304
321 => 0.067723014646348
322 => 0.065834146687956
323 => 0.067278115467615
324 => 0.068043991301729
325 => 0.068755379459178
326 => 0.067008434981019
327 => 0.064735685882645
328 => 0.064015810839674
329 => 0.058551029654488
330 => 0.058266564061457
331 => 0.058106884903899
401 => 0.057100130402562
402 => 0.056309097137778
403 => 0.05568003811644
404 => 0.054029199391522
405 => 0.054586309000303
406 => 0.051955216629604
407 => 0.053638496288189
408 => 0.049439209334606
409 => 0.052936500292035
410 => 0.051033083826214
411 => 0.052311176790791
412 => 0.052306717644841
413 => 0.049953343277311
414 => 0.04859596605579
415 => 0.049460939651255
416 => 0.050388260007283
417 => 0.050538714615169
418 => 0.051741009662297
419 => 0.052076544366705
420 => 0.051059858547731
421 => 0.0493521884463
422 => 0.049748841263054
423 => 0.048587927899119
424 => 0.046553471882709
425 => 0.048014653711889
426 => 0.048513565432
427 => 0.048733913269976
428 => 0.046733259436689
429 => 0.046104610565962
430 => 0.045769923182062
501 => 0.049093929159558
502 => 0.049276025710524
503 => 0.048344394009922
504 => 0.052555457637586
505 => 0.051602364245151
506 => 0.052667203078051
507 => 0.049712849177452
508 => 0.04982570947502
509 => 0.048427070992855
510 => 0.04921021508581
511 => 0.048656714082822
512 => 0.04914694478228
513 => 0.049440787042239
514 => 0.050839196021591
515 => 0.052952467876284
516 => 0.050630320352906
517 => 0.049618527423205
518 => 0.050246238066252
519 => 0.051917914227428
520 => 0.054450589183137
521 => 0.052951194634523
522 => 0.053616600473827
523 => 0.05376196204787
524 => 0.052656364018326
525 => 0.054491354159495
526 => 0.05547474028358
527 => 0.056483490963806
528 => 0.057359360914894
529 => 0.056080573759221
530 => 0.057449059322729
531 => 0.056346301528763
601 => 0.05535701378657
602 => 0.055358514127714
603 => 0.054737919475849
604 => 0.053535439137901
605 => 0.053313683314225
606 => 0.05446728511366
607 => 0.05539236451031
608 => 0.05546855848025
609 => 0.055980729966531
610 => 0.056283827776326
611 => 0.059254598353812
612 => 0.06044946685558
613 => 0.061910529441838
614 => 0.062479695660161
615 => 0.064192681919931
616 => 0.062809306393225
617 => 0.062510004396182
618 => 0.058354860043515
619 => 0.059035264698489
620 => 0.060124658200386
621 => 0.058372823741113
622 => 0.059483959488813
623 => 0.059703321222482
624 => 0.058313297076535
625 => 0.059055769032283
626 => 0.057083983645409
627 => 0.05299544740945
628 => 0.054495905869095
629 => 0.05560074834425
630 => 0.054024001906109
701 => 0.056850258867963
702 => 0.055199217896634
703 => 0.054675917172666
704 => 0.052634334478288
705 => 0.05359788292231
706 => 0.054901095989534
707 => 0.05409586182877
708 => 0.055766843618873
709 => 0.058133399468225
710 => 0.059819948097311
711 => 0.059949420359095
712 => 0.058865082580575
713 => 0.060602740790804
714 => 0.060615397733821
715 => 0.05865531217414
716 => 0.057454770682638
717 => 0.057182005129808
718 => 0.057863426959614
719 => 0.058690798858409
720 => 0.059995333741262
721 => 0.060783636849389
722 => 0.062839113271723
723 => 0.063395266256479
724 => 0.064006309771677
725 => 0.064822852346822
726 => 0.065803321065503
727 => 0.063658111327144
728 => 0.06374334450922
729 => 0.061745754903311
730 => 0.05961104392607
731 => 0.061231023462316
801 => 0.063348931209111
802 => 0.062863080831916
803 => 0.062808412739459
804 => 0.062900349307308
805 => 0.062534033989293
806 => 0.06087720338219
807 => 0.060045153423611
808 => 0.061118710148761
809 => 0.061689257769665
810 => 0.062574127372707
811 => 0.0624650485168
812 => 0.064744377586177
813 => 0.065630055939204
814 => 0.065403461516186
815 => 0.065445160343321
816 => 0.067048638695964
817 => 0.068832036404577
818 => 0.070502423698748
819 => 0.072201613399182
820 => 0.070153173894806
821 => 0.069113102644668
822 => 0.070186190688536
823 => 0.069616795067652
824 => 0.072888711198963
825 => 0.073115251572919
826 => 0.076386931107453
827 => 0.079492144570078
828 => 0.077541815629881
829 => 0.079380887975742
830 => 0.081369994659558
831 => 0.08520730417357
901 => 0.083915033327427
902 => 0.082925174111748
903 => 0.081989761935896
904 => 0.083936206181343
905 => 0.086440275607904
906 => 0.086979628178707
907 => 0.087853585391947
908 => 0.086934726244629
909 => 0.088041390878558
910 => 0.09194840332941
911 => 0.090892694077037
912 => 0.089393417224936
913 => 0.09247762832142
914 => 0.09359379232767
915 => 0.10142761586316
916 => 0.11131814167583
917 => 0.10722339904469
918 => 0.10468166015703
919 => 0.10527902908648
920 => 0.10889071429784
921 => 0.11005067295857
922 => 0.10689750545698
923 => 0.10801125752484
924 => 0.11414814092044
925 => 0.11744038196738
926 => 0.11296907641867
927 => 0.10063292174431
928 => 0.089258423748348
929 => 0.092275452817196
930 => 0.091933415350101
1001 => 0.098526730966877
1002 => 0.090867515760514
1003 => 0.090996477301437
1004 => 0.097726135702726
1005 => 0.095930778216815
1006 => 0.093022529021653
1007 => 0.089279657185934
1008 => 0.082360612423866
1009 => 0.076232221526265
1010 => 0.088251407360595
1011 => 0.087733118211947
1012 => 0.086982558718557
1013 => 0.088652847652077
1014 => 0.096763296593464
1015 => 0.096576324494404
1016 => 0.095386903394185
1017 => 0.096289068815624
1018 => 0.092864375061369
1019 => 0.093746996620668
1020 => 0.089256621969751
1021 => 0.091286458846576
1022 => 0.093016289225041
1023 => 0.093363578284095
1024 => 0.094146038267161
1025 => 0.087460003381851
1026 => 0.090461836753684
1027 => 0.092225132625886
1028 => 0.084258497726024
1029 => 0.0920676578686
1030 => 0.087343614389583
1031 => 0.085740203080052
1101 => 0.087898985174958
1102 => 0.087057705693089
1103 => 0.086334422996166
1104 => 0.085930818823709
1105 => 0.087515990138123
1106 => 0.087442040001616
1107 => 0.084848392062742
1108 => 0.081465084057095
1109 => 0.08260063327709
1110 => 0.082188077599635
1111 => 0.080692922603797
1112 => 0.081700476545289
1113 => 0.07726371889834
1114 => 0.069630507969359
1115 => 0.074673240920618
1116 => 0.074479101187432
1117 => 0.074381207130424
1118 => 0.078170681572393
1119 => 0.077806411042848
1120 => 0.077145256464777
1121 => 0.080680779981487
1122 => 0.079390266338386
1123 => 0.08336732530317
1124 => 0.085986873557422
1125 => 0.085322471386635
1126 => 0.087786169181135
1127 => 0.082626794037631
1128 => 0.084340531502101
1129 => 0.08469373041839
1130 => 0.080637152170096
1201 => 0.077866010206492
1202 => 0.07768120663085
1203 => 0.072876428352845
1204 => 0.07544310212614
1205 => 0.077701668830463
1206 => 0.076619990650949
1207 => 0.076277563653531
1208 => 0.078026948919984
1209 => 0.078162891137659
1210 => 0.07506339416816
1211 => 0.075707877736422
1212 => 0.078395481352555
1213 => 0.075640157020976
1214 => 0.070287011924393
1215 => 0.068959357927418
1216 => 0.068782224410704
1217 => 0.065181521473344
1218 => 0.069048078115921
1219 => 0.06736022252416
1220 => 0.072692138114917
1221 => 0.069646576525114
1222 => 0.069515288452064
1223 => 0.069316827273877
1224 => 0.066217553512525
1225 => 0.066896097497139
1226 => 0.069151681047159
1227 => 0.069956498668774
1228 => 0.069872549597163
1229 => 0.069140627457235
1230 => 0.069475697664846
1231 => 0.068396319779931
]
'min_raw' => 0.037766231433214
'max_raw' => 0.11744038196738
'avg_raw' => 0.077603306700299
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.037766'
'max' => '$0.11744'
'avg' => '$0.0776033'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.021514178890484
'max_diff' => 0.073350129504458
'year' => 2033
]
8 => [
'items' => [
101 => 0.068015168983459
102 => 0.066812152226009
103 => 0.065044049934418
104 => 0.065289915402465
105 => 0.061786842113693
106 => 0.059878181863798
107 => 0.059349889862365
108 => 0.058643435719207
109 => 0.059429685737638
110 => 0.061776918347204
111 => 0.05894565782689
112 => 0.054091660254646
113 => 0.054383393779548
114 => 0.05503883239354
115 => 0.053817426872526
116 => 0.052661469051681
117 => 0.053666480591083
118 => 0.051609777830604
119 => 0.05528737509613
120 => 0.055187906396445
121 => 0.056558687235944
122 => 0.057415864626137
123 => 0.055440348256217
124 => 0.054943511231546
125 => 0.055226532180783
126 => 0.050548826326865
127 => 0.056176418871827
128 => 0.056225086525847
129 => 0.055808364525141
130 => 0.058804883822906
131 => 0.065128474178998
201 => 0.062749285121204
202 => 0.061827991206656
203 => 0.060076610801638
204 => 0.062410221204645
205 => 0.062231036335688
206 => 0.061420694404417
207 => 0.060930597075964
208 => 0.061833616430843
209 => 0.060818702984622
210 => 0.060636396641724
211 => 0.059531818555021
212 => 0.059137534433169
213 => 0.058845622166252
214 => 0.058524255443085
215 => 0.059233110354795
216 => 0.057626751867229
217 => 0.055689641004489
218 => 0.055528591196083
219 => 0.055973263876738
220 => 0.055776529317536
221 => 0.055527649306702
222 => 0.055052469587584
223 => 0.05491149391553
224 => 0.055369596458033
225 => 0.054852425396585
226 => 0.055615539469517
227 => 0.055408014666707
228 => 0.054248797987821
301 => 0.052803984808946
302 => 0.052791122941056
303 => 0.052479840311636
304 => 0.052083375081413
305 => 0.05197308752426
306 => 0.05358184132244
307 => 0.056911913538721
308 => 0.056258140680791
309 => 0.056730558571983
310 => 0.059054387027477
311 => 0.059793062213519
312 => 0.059268768062947
313 => 0.05855108189259
314 => 0.058582656441766
315 => 0.061035207344256
316 => 0.061188169935684
317 => 0.061574657056621
318 => 0.062071402228272
319 => 0.059353365913666
320 => 0.058454637175777
321 => 0.058028769640194
322 => 0.056717262462073
323 => 0.058131610513548
324 => 0.057307530472376
325 => 0.057418727024513
326 => 0.057346310124059
327 => 0.057385854648516
328 => 0.055286347132745
329 => 0.056051297324625
330 => 0.054779419266094
331 => 0.053076517320733
401 => 0.053070808596298
402 => 0.053487591434925
403 => 0.053239672693795
404 => 0.052572529735989
405 => 0.052667294244319
406 => 0.051837057435443
407 => 0.052768100024839
408 => 0.052794798994873
409 => 0.052436296883722
410 => 0.053870696451807
411 => 0.05445837112521
412 => 0.054222397355791
413 => 0.05444181457649
414 => 0.056285307894645
415 => 0.056585877742757
416 => 0.056719371014759
417 => 0.056540507714746
418 => 0.054475510250197
419 => 0.054567101668797
420 => 0.053895064610972
421 => 0.053327264114629
422 => 0.053349973156762
423 => 0.053641896420779
424 => 0.054916742435818
425 => 0.057599580718189
426 => 0.057701392469875
427 => 0.057824791282978
428 => 0.057322866294815
429 => 0.05717148091561
430 => 0.057371197306663
501 => 0.058378730308586
502 => 0.060970378732074
503 => 0.060054317088835
504 => 0.059309544713533
505 => 0.059962910875864
506 => 0.059862330276426
507 => 0.059013328796436
508 => 0.05898950015258
509 => 0.057359994870286
510 => 0.056757603869461
511 => 0.056254200860988
512 => 0.055704497917403
513 => 0.055378615586237
514 => 0.055879318957779
515 => 0.055993835742999
516 => 0.054899039070324
517 => 0.054749822329251
518 => 0.055643856924985
519 => 0.055250425632372
520 => 0.055655079473451
521 => 0.055748962635638
522 => 0.055733845284213
523 => 0.055323057829429
524 => 0.05558488150325
525 => 0.054965590461269
526 => 0.054292204467621
527 => 0.053862626157104
528 => 0.053487762105883
529 => 0.053695758468727
530 => 0.052954289413824
531 => 0.052717078540337
601 => 0.055496181533779
602 => 0.057549134795426
603 => 0.057519284041943
604 => 0.057337575257105
605 => 0.057067592861118
606 => 0.058358979414703
607 => 0.057909086161523
608 => 0.058236421093051
609 => 0.058319741571328
610 => 0.058571927564552
611 => 0.058662062381011
612 => 0.058389612363017
613 => 0.057475236825662
614 => 0.05519669992279
615 => 0.05413603484371
616 => 0.053785997700839
617 => 0.053798720886168
618 => 0.053447758636016
619 => 0.053551132747711
620 => 0.053411809338638
621 => 0.053147964507807
622 => 0.053679466793918
623 => 0.053740717481106
624 => 0.053616658496548
625 => 0.053645878878412
626 => 0.052618723472561
627 => 0.052696815867203
628 => 0.052261987490331
629 => 0.052180462411602
630 => 0.051081254139708
701 => 0.049133847353261
702 => 0.050212899752303
703 => 0.048909556191988
704 => 0.048415960236819
705 => 0.050752566718669
706 => 0.050518036235266
707 => 0.050116621995632
708 => 0.049522846673156
709 => 0.049302609630174
710 => 0.047964519075593
711 => 0.047885457547193
712 => 0.048548651357527
713 => 0.048242610233163
714 => 0.047812812587719
715 => 0.046256129083809
716 => 0.044505901425218
717 => 0.044558729796692
718 => 0.045115444650747
719 => 0.046734168172137
720 => 0.046101704888129
721 => 0.045642845518901
722 => 0.045556914952306
723 => 0.046632515901062
724 => 0.048154716588917
725 => 0.048868899094338
726 => 0.048161165921511
727 => 0.047348160159628
728 => 0.047397644053248
729 => 0.047726838228326
730 => 0.047761431881571
731 => 0.047232248708928
801 => 0.047381210672319
802 => 0.047154923828561
803 => 0.045766201886109
804 => 0.045741084309855
805 => 0.045400269549011
806 => 0.045389949813501
807 => 0.044810138885079
808 => 0.044729019328149
809 => 0.04357776953776
810 => 0.0443355256361
811 => 0.043827262629314
812 => 0.043061190390965
813 => 0.042929119248324
814 => 0.042925149030295
815 => 0.043711733928462
816 => 0.044326333933592
817 => 0.043836104081923
818 => 0.043724488247405
819 => 0.044916253349229
820 => 0.044764590376841
821 => 0.044633251220875
822 => 0.048018420212963
823 => 0.045338794807695
824 => 0.044170325183327
825 => 0.042724122136809
826 => 0.043195013141144
827 => 0.043294236794586
828 => 0.039816379165402
829 => 0.038405412758381
830 => 0.037921222258639
831 => 0.037642563780589
901 => 0.037769551948209
902 => 0.036499516692038
903 => 0.037353001388629
904 => 0.036253258210193
905 => 0.036068882687454
906 => 0.038035359722536
907 => 0.038308983513975
908 => 0.037141619411446
909 => 0.037891256144351
910 => 0.03761942744427
911 => 0.036272110150533
912 => 0.036220652540107
913 => 0.035544616082603
914 => 0.034486749933061
915 => 0.034003276716383
916 => 0.03375147966743
917 => 0.033855376037254
918 => 0.03380284285339
919 => 0.033460028293857
920 => 0.033822492582658
921 => 0.032896546105357
922 => 0.032527826757239
923 => 0.032361284781917
924 => 0.031539453987823
925 => 0.03284735225104
926 => 0.033105024685362
927 => 0.033363204813979
928 => 0.035610486566527
929 => 0.035498218720922
930 => 0.036513065368533
1001 => 0.03647363029399
1002 => 0.036184179590666
1003 => 0.03496303468567
1004 => 0.035449761279987
1005 => 0.033951692476788
1006 => 0.035074147482921
1007 => 0.034561905892964
1008 => 0.034900958086088
1009 => 0.034291311671747
1010 => 0.034628715169127
1011 => 0.033166128378557
1012 => 0.031800385412675
1013 => 0.032350000250668
1014 => 0.032947494435648
1015 => 0.034243014067371
1016 => 0.033471413262522
1017 => 0.033748910089403
1018 => 0.03281934217176
1019 => 0.030901378039716
1020 => 0.030912233508413
1021 => 0.030617196511818
1022 => 0.030362241470653
1023 => 0.033560040896858
1024 => 0.033162343988481
1025 => 0.032528666014268
1026 => 0.033376869164114
1027 => 0.033601147539728
1028 => 0.033607532429783
1029 => 0.034226359552619
1030 => 0.034556627699007
1031 => 0.034614838891272
1101 => 0.035588576739699
1102 => 0.035914960822579
1103 => 0.037259290668358
1104 => 0.034528606754241
1105 => 0.034472370116007
1106 => 0.03338880512188
1107 => 0.03270159107212
1108 => 0.033435859255804
1109 => 0.034086320628946
1110 => 0.033409016769898
1111 => 0.033497458355224
1112 => 0.03258823326221
1113 => 0.032913238449946
1114 => 0.033193176700551
1115 => 0.033038611252576
1116 => 0.032807219295907
1117 => 0.034032990214112
1118 => 0.033963827415072
1119 => 0.035105293474456
1120 => 0.035995147894767
1121 => 0.037589926096469
1122 => 0.035925691905325
1123 => 0.035865040596668
1124 => 0.036457916867567
1125 => 0.035914870056311
1126 => 0.036258056895686
1127 => 0.037534633390998
1128 => 0.037561605440741
1129 => 0.037109788856022
1130 => 0.03708229577578
1201 => 0.037169072093208
1202 => 0.037677323694787
1203 => 0.037499724968201
1204 => 0.037705246710856
1205 => 0.037962254797107
1206 => 0.039025349211012
1207 => 0.039281657675115
1208 => 0.038658960988047
1209 => 0.03871518352685
1210 => 0.03848227787248
1211 => 0.038257293928658
1212 => 0.038763024978103
1213 => 0.039687258411133
1214 => 0.039681508802914
1215 => 0.039895912994847
1216 => 0.0400294850302
1217 => 0.039456096073757
1218 => 0.039082840947208
1219 => 0.039225970713568
1220 => 0.039454838326937
1221 => 0.039151752031153
1222 => 0.03728096301034
1223 => 0.037848440892789
1224 => 0.037753984824899
1225 => 0.037619467897973
1226 => 0.038190071296952
1227 => 0.038135035207124
1228 => 0.036486490644807
1229 => 0.036592025118997
1230 => 0.036492908545723
1231 => 0.036813174471312
]
'min_raw' => 0.030362241470653
'max_raw' => 0.068015168983459
'avg_raw' => 0.049188705227056
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.030362'
'max' => '$0.068015'
'avg' => '$0.049188'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0074039899625602
'max_diff' => -0.049425212983924
'year' => 2034
]
9 => [
'items' => [
101 => 0.035897574645306
102 => 0.036179206985127
103 => 0.036355844148523
104 => 0.036459884794754
105 => 0.036835750950279
106 => 0.036791647395159
107 => 0.036833009411369
108 => 0.037390319695027
109 => 0.040209003863974
110 => 0.040362418624214
111 => 0.039606948235981
112 => 0.039908743755085
113 => 0.039329362353829
114 => 0.03971830497001
115 => 0.03998440962993
116 => 0.038781933840736
117 => 0.038710731028503
118 => 0.038128958314107
119 => 0.038441570017533
120 => 0.037944182319806
121 => 0.038066223862945
122 => 0.037724985068937
123 => 0.038339146958185
124 => 0.039025875381473
125 => 0.039199370100922
126 => 0.038742980188223
127 => 0.038412523813868
128 => 0.037832351279597
129 => 0.038797191134078
130 => 0.03907933971049
131 => 0.03879570912772
201 => 0.038729985724242
202 => 0.03860543999341
203 => 0.038756408689803
204 => 0.039077803068748
205 => 0.03892623941486
206 => 0.039026349878461
207 => 0.038644832024676
208 => 0.03945628588936
209 => 0.040745069913485
210 => 0.04074921356486
211 => 0.040597649093988
212 => 0.040535632178009
213 => 0.040691146522825
214 => 0.040775506675356
215 => 0.041278411550038
216 => 0.041818048517187
217 => 0.044336298780814
218 => 0.043629184183729
219 => 0.045863525628997
220 => 0.047630599619279
221 => 0.048160467844184
222 => 0.047673014009498
223 => 0.046005460772776
224 => 0.045923642655499
225 => 0.048415671213979
226 => 0.04771155900407
227 => 0.047627807097168
228 => 0.046736828308808
301 => 0.047263507122598
302 => 0.04714831474011
303 => 0.046966477928949
304 => 0.047971344416897
305 => 0.049852364777285
306 => 0.049559190114022
307 => 0.049340348827876
308 => 0.048381450015729
309 => 0.048958921278445
310 => 0.048753294822525
311 => 0.04963679657093
312 => 0.049113429707135
313 => 0.047706224661566
314 => 0.047930326703282
315 => 0.047896454130507
316 => 0.048593549277971
317 => 0.048384298617667
318 => 0.04785559458073
319 => 0.049845935654187
320 => 0.049716693975735
321 => 0.049899929127018
322 => 0.049980594907349
323 => 0.051192080445018
324 => 0.051688387306588
325 => 0.051801057653239
326 => 0.05227251078598
327 => 0.051789327469812
328 => 0.053722405238349
329 => 0.055007789156211
330 => 0.056500828722059
331 => 0.058682560818966
401 => 0.059502912269554
402 => 0.059354723122686
403 => 0.061008887498797
404 => 0.063981384112659
405 => 0.059955549675278
406 => 0.06419476311333
407 => 0.062852677082916
408 => 0.0596706152479
409 => 0.059465727979769
410 => 0.06162065719894
411 => 0.066400082802809
412 => 0.065202890896836
413 => 0.066402040979884
414 => 0.065003168711401
415 => 0.06493370291265
416 => 0.066334100876146
417 => 0.069606207049572
418 => 0.068051752059643
419 => 0.065823059663579
420 => 0.067468691446538
421 => 0.066043092900107
422 => 0.062830820375088
423 => 0.065201975426748
424 => 0.063616451570311
425 => 0.064079191722703
426 => 0.06741172704006
427 => 0.067010747573881
428 => 0.067529652132815
429 => 0.066613799168392
430 => 0.065758248082865
501 => 0.064161298447671
502 => 0.063688520389355
503 => 0.063819179235901
504 => 0.06368845564132
505 => 0.062794976997153
506 => 0.062602030369014
507 => 0.062280444202264
508 => 0.06238011720236
509 => 0.061775441125518
510 => 0.062916589814972
511 => 0.063128397067503
512 => 0.063958829919784
513 => 0.064045048213363
514 => 0.066357791886496
515 => 0.065083971535413
516 => 0.065938560203277
517 => 0.065862117749123
518 => 0.05973958017672
519 => 0.060583211834591
520 => 0.061895637948039
521 => 0.061304391762882
522 => 0.060468507987371
523 => 0.059793487021392
524 => 0.058770761233497
525 => 0.06021022814025
526 => 0.062102974052391
527 => 0.064093051373202
528 => 0.066483998879125
529 => 0.0659503672295
530 => 0.064048354272687
531 => 0.064133677184508
601 => 0.064661109852059
602 => 0.06397803662527
603 => 0.063776584995516
604 => 0.064633433491631
605 => 0.064639334136308
606 => 0.06385337583673
607 => 0.062979927015599
608 => 0.062976267233146
609 => 0.062820845451941
610 => 0.065030817901006
611 => 0.066246079294576
612 => 0.066385407054857
613 => 0.066236701426204
614 => 0.066293932320757
615 => 0.065586798492297
616 => 0.067203096730135
617 => 0.068686371828504
618 => 0.06828882241659
619 => 0.067692839333153
620 => 0.067218110100761
621 => 0.068176991296551
622 => 0.068134293826321
623 => 0.0686734167145
624 => 0.068648958986168
625 => 0.068467672236311
626 => 0.068288828890911
627 => 0.068997922539885
628 => 0.068793714956676
629 => 0.068589190182687
630 => 0.068178984437275
701 => 0.068234738210872
702 => 0.067638858032317
703 => 0.067363176596096
704 => 0.063217589247583
705 => 0.062109752847086
706 => 0.062458300730771
707 => 0.062573051744123
708 => 0.062090919922895
709 => 0.062782173105032
710 => 0.062674442028814
711 => 0.063093560625806
712 => 0.06283171352242
713 => 0.062842459818879
714 => 0.063612496318249
715 => 0.063836041189986
716 => 0.063722344463992
717 => 0.063801973753582
718 => 0.065636997122767
719 => 0.065376115480413
720 => 0.065237527307476
721 => 0.065275917178508
722 => 0.06574480499268
723 => 0.065876067980322
724 => 0.065319897477995
725 => 0.065582190702076
726 => 0.066699001960247
727 => 0.067089822694564
728 => 0.068337134873909
729 => 0.067807254490917
730 => 0.068779872866584
731 => 0.071769370163347
801 => 0.074157587461479
802 => 0.071961284136863
803 => 0.076346941067244
804 => 0.079761804072668
805 => 0.079630735942767
806 => 0.079035275590567
807 => 0.075147544847723
808 => 0.071569997055357
809 => 0.074562767694374
810 => 0.074570396882202
811 => 0.074313315230153
812 => 0.072716603168541
813 => 0.074257753111483
814 => 0.07438008399732
815 => 0.07431161123166
816 => 0.073087415837711
817 => 0.071218295740278
818 => 0.071583517333275
819 => 0.072181757752923
820 => 0.071049163832504
821 => 0.070687231448645
822 => 0.071360132610693
823 => 0.073528360359336
824 => 0.073118469463143
825 => 0.073107765555345
826 => 0.074861452630049
827 => 0.073606191153918
828 => 0.071588123947164
829 => 0.071078535362423
830 => 0.069269839186593
831 => 0.070519112077593
901 => 0.070564071184903
902 => 0.069879857189762
903 => 0.071643644141952
904 => 0.071627390534679
905 => 0.07330184374074
906 => 0.076502769374826
907 => 0.075556098156842
908 => 0.074455222527863
909 => 0.074574918232704
910 => 0.075887684680627
911 => 0.07509395611867
912 => 0.075379386443622
913 => 0.075887252647645
914 => 0.076193660938141
915 => 0.074530830795057
916 => 0.074143145546344
917 => 0.07335007758651
918 => 0.073143180959104
919 => 0.073789118264483
920 => 0.073618936605817
921 => 0.070560292546024
922 => 0.07024064722364
923 => 0.07025045028933
924 => 0.06944668692789
925 => 0.068220754876385
926 => 0.071442431111141
927 => 0.07118368542216
928 => 0.070898050206851
929 => 0.070933038890914
930 => 0.072331459351683
1001 => 0.071520304862511
1002 => 0.073676892017582
1003 => 0.073233562531443
1004 => 0.07277886331682
1005 => 0.072716010034883
1006 => 0.072540989630367
1007 => 0.071940779541058
1008 => 0.071215989791183
1009 => 0.070737420818103
1010 => 0.065251531538783
1011 => 0.066269680679075
1012 => 0.067440968457767
1013 => 0.06784529230533
1014 => 0.067153668385714
1015 => 0.071968089068902
1016 => 0.072847730120632
1017 => 0.070183239997375
1018 => 0.069684822685728
1019 => 0.072000765224876
1020 => 0.070603968761309
1021 => 0.071232946123326
1022 => 0.069873441098868
1023 => 0.072635850350167
1024 => 0.072614805419974
1025 => 0.071540165829376
1026 => 0.072448443852535
1027 => 0.072290608194386
1028 => 0.071077342743322
1029 => 0.072674313029028
1030 => 0.072675105106366
1031 => 0.071640787865095
1101 => 0.070432931768449
1102 => 0.070216995626656
1103 => 0.070054316750754
1104 => 0.071192937092251
1105 => 0.072213820530063
1106 => 0.074113431509365
1107 => 0.074591038843205
1108 => 0.076455172063303
1109 => 0.075345171493734
1110 => 0.07583722036931
1111 => 0.076371409028311
1112 => 0.076627518715574
1113 => 0.076210201723783
1114 => 0.079105967922441
1115 => 0.079350459313591
1116 => 0.079432435162202
1117 => 0.078455999092859
1118 => 0.079323302860143
1119 => 0.078917520149512
1120 => 0.079973254032889
1121 => 0.080138806586089
1122 => 0.079998589463231
1123 => 0.080051138456686
1124 => 0.077580112854295
1125 => 0.077451977141112
1126 => 0.075704837599774
1127 => 0.076416809877073
1128 => 0.075085811830382
1129 => 0.075507885021787
1130 => 0.075693930862897
1201 => 0.075596751073509
1202 => 0.076457063721397
1203 => 0.07572562222043
1204 => 0.073795227839263
1205 => 0.071864307523438
1206 => 0.071840066391766
1207 => 0.071331689156184
1208 => 0.070964225528793
1209 => 0.071035012059901
1210 => 0.071284473028358
1211 => 0.070949726403811
1212 => 0.071021161568243
1213 => 0.072207461267821
1214 => 0.072445365212269
1215 => 0.071636874653963
1216 => 0.068390668397734
1217 => 0.067594041239963
1218 => 0.068166641043166
1219 => 0.067892975217385
1220 => 0.054794929829888
1221 => 0.057872121307627
1222 => 0.056043758623103
1223 => 0.056886352267054
1224 => 0.055020067418377
1225 => 0.055910756368535
1226 => 0.055746278642194
1227 => 0.060694311477683
1228 => 0.060617054750753
1229 => 0.060654033457599
1230 => 0.058888943432324
1231 => 0.061700779770004
]
'min_raw' => 0.035897574645306
'max_raw' => 0.080138806586089
'avg_raw' => 0.058018190615698
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.035897'
'max' => '$0.080138'
'avg' => '$0.058018'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0055353331746529
'max_diff' => 0.01212363760263
'year' => 2035
]
10 => [
'items' => [
101 => 0.06308599146031
102 => 0.062829625642649
103 => 0.06289414739577
104 => 0.061785449906367
105 => 0.060664768072789
106 => 0.059421759447654
107 => 0.061731115832646
108 => 0.061474354824663
109 => 0.062063272197281
110 => 0.063561054889152
111 => 0.063781609080053
112 => 0.064078036149264
113 => 0.063971788146067
114 => 0.066503046633387
115 => 0.066196494528792
116 => 0.066935196899808
117 => 0.065415630077144
118 => 0.063696095978693
119 => 0.064022923195004
120 => 0.063991447105895
121 => 0.063590720364961
122 => 0.06322896218095
123 => 0.062626736729307
124 => 0.064532267170902
125 => 0.06445490611488
126 => 0.065707291689478
127 => 0.065485920374143
128 => 0.064007548551589
129 => 0.064060348890449
130 => 0.064415456544264
131 => 0.065644488188666
201 => 0.066009348459579
202 => 0.065840330644924
203 => 0.066240383275477
204 => 0.066556568563206
205 => 0.066280091279541
206 => 0.070194426577241
207 => 0.068568921655131
208 => 0.069361181443977
209 => 0.069550130735351
210 => 0.069066141098672
211 => 0.069171101120498
212 => 0.069330086953671
213 => 0.070295417800077
214 => 0.072828725261779
215 => 0.073950709891759
216 => 0.077326256008802
217 => 0.073857544687019
218 => 0.073651725712139
219 => 0.074259763499545
220 => 0.076241566408094
221 => 0.077847631524191
222 => 0.078380455979319
223 => 0.078450877527038
224 => 0.079450491626359
225 => 0.080023451786391
226 => 0.079329112182241
227 => 0.07874073206811
228 => 0.076633227531723
229 => 0.076877176920354
301 => 0.078557746295054
302 => 0.08093164952186
303 => 0.082968705452994
304 => 0.082255399464477
305 => 0.087697420641306
306 => 0.088236974812326
307 => 0.088162425871766
308 => 0.089391610569775
309 => 0.086951929263338
310 => 0.085908918238237
311 => 0.078867946527183
312 => 0.080846172380485
313 => 0.083721639835391
314 => 0.083341060935285
315 => 0.081252819608067
316 => 0.08296712133469
317 => 0.082400319572697
318 => 0.081953259506386
319 => 0.084001328337013
320 => 0.081749392527708
321 => 0.083699175053052
322 => 0.081198558796381
323 => 0.082258657786148
324 => 0.081656894328338
325 => 0.082046309034897
326 => 0.079769798617403
327 => 0.080998148379516
328 => 0.079718695228859
329 => 0.079718088601476
330 => 0.079689844602262
331 => 0.081195115560045
401 => 0.081244202391938
402 => 0.080131804879797
403 => 0.079971491019383
404 => 0.080564255385231
405 => 0.079870283558056
406 => 0.080194988608185
407 => 0.079880118543242
408 => 0.079809234659446
409 => 0.079244419813455
410 => 0.079001082047894
411 => 0.079096501055812
412 => 0.078770786789918
413 => 0.078574532163116
414 => 0.079650804617334
415 => 0.079075795661752
416 => 0.079562676248101
417 => 0.079007814370728
418 => 0.077084421361939
419 => 0.075978257703072
420 => 0.072345146608095
421 => 0.07337549240777
422 => 0.074058612738925
423 => 0.073832841473553
424 => 0.074317885513453
425 => 0.074347663278138
426 => 0.074189970516328
427 => 0.074007382499846
428 => 0.073918508751173
429 => 0.074580900860884
430 => 0.074965441775664
501 => 0.074127173003127
502 => 0.073930778358348
503 => 0.074778314369471
504 => 0.07529531084665
505 => 0.079112522358913
506 => 0.078829731000654
507 => 0.079539481814884
508 => 0.079459574765215
509 => 0.080203506690699
510 => 0.081419520979776
511 => 0.07894702392714
512 => 0.079376163922962
513 => 0.079270948706277
514 => 0.080419660853141
515 => 0.080423247007078
516 => 0.079734536692605
517 => 0.080107897727129
518 => 0.079899497840282
519 => 0.080276104602749
520 => 0.078825954149655
521 => 0.080592080867456
522 => 0.081593360909757
523 => 0.081607263684116
524 => 0.082081862477517
525 => 0.082564082338521
526 => 0.083489661369219
527 => 0.082538268441713
528 => 0.080826805181365
529 => 0.08095036730077
530 => 0.079946937017428
531 => 0.079963804861775
601 => 0.079873762986692
602 => 0.080143985431853
603 => 0.078885252780441
604 => 0.079180674817809
605 => 0.078767082235505
606 => 0.079375264853462
607 => 0.078720960892729
608 => 0.079270897968313
609 => 0.079508232579433
610 => 0.080384002403912
611 => 0.078591608977587
612 => 0.074936797446942
613 => 0.07570508314099
614 => 0.074568728251954
615 => 0.074673902223343
616 => 0.074886370383861
617 => 0.074197691560365
618 => 0.074329069777124
619 => 0.074324376022727
620 => 0.074283927783106
621 => 0.074104775823077
622 => 0.073844970036899
623 => 0.074879956325027
624 => 0.075055820663411
625 => 0.075446745302657
626 => 0.076609871862337
627 => 0.076493648090612
628 => 0.076683213884374
629 => 0.076269392820958
630 => 0.074693098195607
701 => 0.074778698577546
702 => 0.073711260443116
703 => 0.075419448509631
704 => 0.0750149270285
705 => 0.074754129398046
706 => 0.074682968348304
707 => 0.075848978073751
708 => 0.076197866458569
709 => 0.075980462630179
710 => 0.07553456103547
711 => 0.076390823916285
712 => 0.07661992374036
713 => 0.076671210742094
714 => 0.078188344394776
715 => 0.076756001660026
716 => 0.077100780792543
717 => 0.079790649162894
718 => 0.077351309727448
719 => 0.078643482230164
720 => 0.078580237110297
721 => 0.079241268837954
722 => 0.078526013214559
723 => 0.078534879665237
724 => 0.079121831057228
725 => 0.078297563684418
726 => 0.078093463491212
727 => 0.077811500536092
728 => 0.078427156333189
729 => 0.078796214139833
730 => 0.081770549018288
731 => 0.083692104995919
801 => 0.083608685183186
802 => 0.084370986116214
803 => 0.084027562564009
804 => 0.082918557323383
805 => 0.08481149404035
806 => 0.084212489659265
807 => 0.084261870852652
808 => 0.084260032882167
809 => 0.084658318429717
810 => 0.084376096616944
811 => 0.083819808454493
812 => 0.084189098497609
813 => 0.085285757902058
814 => 0.088689822343088
815 => 0.090594781902144
816 => 0.088575141385695
817 => 0.089968262369877
818 => 0.08913288619913
819 => 0.088981073498616
820 => 0.089856056427515
821 => 0.090732570898202
822 => 0.090676740715695
823 => 0.090040436219493
824 => 0.089681003955217
825 => 0.092402745478956
826 => 0.09440807826999
827 => 0.094271328017563
828 => 0.094874899158211
829 => 0.096647002694906
830 => 0.096809021633577
831 => 0.096788610971267
901 => 0.096387030126844
902 => 0.098131896195443
903 => 0.099587494167866
904 => 0.096294075764146
905 => 0.09754816637827
906 => 0.098111168059226
907 => 0.098937821561942
908 => 0.10033252458424
909 => 0.10184754199316
910 => 0.1020617820661
911 => 0.10190976848201
912 => 0.10091057377498
913 => 0.10256832390173
914 => 0.10353939504696
915 => 0.10411764569138
916 => 0.10558399311388
917 => 0.098114644965939
918 => 0.092827469096133
919 => 0.092001800236318
920 => 0.093680830330576
921 => 0.094123577176418
922 => 0.093945106478017
923 => 0.08799390934755
924 => 0.091970468415054
925 => 0.096248911613106
926 => 0.096413264040851
927 => 0.098555142163824
928 => 0.099252625479215
929 => 0.10097711811059
930 => 0.10086925062697
1001 => 0.10128913714004
1002 => 0.10119261250211
1003 => 0.10438687196696
1004 => 0.10791061450882
1005 => 0.10778859850941
1006 => 0.10728201882799
1007 => 0.10803437603958
1008 => 0.11167125596998
1009 => 0.1113364303458
1010 => 0.11166168491931
1011 => 0.11594977132282
1012 => 0.12152489362056
1013 => 0.11893468958013
1014 => 0.12455468703673
1015 => 0.12809217753239
1016 => 0.1342099015613
1017 => 0.13344393238245
1018 => 0.13582551745297
1019 => 0.13207268768973
1020 => 0.12345543198129
1021 => 0.1220917182799
1022 => 0.12482190764481
1023 => 0.13153381179047
1024 => 0.12461052589763
1025 => 0.12601109761684
1026 => 0.12560773286749
1027 => 0.12558623927418
1028 => 0.12640656230981
1029 => 0.12521664096146
1030 => 0.12036868732553
1031 => 0.12259047590771
1101 => 0.12173253663707
1102 => 0.12268448422145
1103 => 0.12782175272127
1104 => 0.12555044386031
1105 => 0.12315780448145
1106 => 0.12615870523173
1107 => 0.12997988310821
1108 => 0.12974076066402
1109 => 0.12927676317686
1110 => 0.13189229271788
1111 => 0.1362123812414
1112 => 0.13738008380978
1113 => 0.13824205797314
1114 => 0.13836090964709
1115 => 0.13958515575472
1116 => 0.13300207588427
1117 => 0.14344959270415
1118 => 0.14525359025212
1119 => 0.14491451348114
1120 => 0.14691958083189
1121 => 0.14632963915365
1122 => 0.14547490622089
1123 => 0.14865336446188
1124 => 0.14500951857694
1125 => 0.13983753809072
1126 => 0.1370000873058
1127 => 0.14073667139001
1128 => 0.14301847290142
1129 => 0.14452659855063
1130 => 0.14498295646084
1201 => 0.13351310163498
1202 => 0.12733148603116
1203 => 0.13129383076084
1204 => 0.13612816479748
1205 => 0.1329752209146
1206 => 0.1330988103455
1207 => 0.12860354094758
1208 => 0.13652589639274
1209 => 0.13537167584188
1210 => 0.14135977410153
1211 => 0.13993066639438
1212 => 0.14481372806849
1213 => 0.14352785428048
1214 => 0.14886544448228
1215 => 0.15099475372326
1216 => 0.1545701953394
1217 => 0.15720030474689
1218 => 0.15874475529695
1219 => 0.15865203227901
1220 => 0.16477191480054
1221 => 0.16116323389
1222 => 0.15662988016558
1223 => 0.15654788609925
1224 => 0.15889577423125
1225 => 0.16381630364426
1226 => 0.16509212533027
1227 => 0.16580513560195
1228 => 0.1647131355508
1229 => 0.16079617105891
1230 => 0.15910484565077
1231 => 0.16054590390092
]
'min_raw' => 0.059421759447654
'max_raw' => 0.16580513560195
'avg_raw' => 0.1126134475248
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.059421'
'max' => '$0.1658051'
'avg' => '$0.112613'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.023524184802348
'max_diff' => 0.085666329015858
'year' => 2036
]
11 => [
'items' => [
101 => 0.15878361349253
102 => 0.16182582114876
103 => 0.16600342204126
104 => 0.16514076397698
105 => 0.16802450054893
106 => 0.17100886452297
107 => 0.17527663904201
108 => 0.17639239333652
109 => 0.17823669275701
110 => 0.18013508268149
111 => 0.18074479436219
112 => 0.18190892314307
113 => 0.18190278760977
114 => 0.18541096804586
115 => 0.18928059970618
116 => 0.19074129607577
117 => 0.19410008683437
118 => 0.18834827536633
119 => 0.19271109043688
120 => 0.19664645883887
121 => 0.19195455039383
122 => 0.19842125311086
123 => 0.1986723405235
124 => 0.20246346234964
125 => 0.19862043408779
126 => 0.19633845617328
127 => 0.20292644090787
128 => 0.20611415920136
129 => 0.20515399250885
130 => 0.19784707656956
131 => 0.19359413808452
201 => 0.18246337773861
202 => 0.1956482441814
203 => 0.20207020801786
204 => 0.19783044523465
205 => 0.19996873497023
206 => 0.21163455042476
207 => 0.21607613764423
208 => 0.21515231855162
209 => 0.21530842877092
210 => 0.21770502861403
211 => 0.22833287215005
212 => 0.22196442195179
213 => 0.22683286350708
214 => 0.22941506735354
215 => 0.23181356219392
216 => 0.22592361691804
217 => 0.2182608846546
218 => 0.21583377568715
219 => 0.19740888438245
220 => 0.1964497887748
221 => 0.19591141934665
222 => 0.19251707625604
223 => 0.18985005237564
224 => 0.1877291359657
225 => 0.18216321794676
226 => 0.18404155188891
227 => 0.1751706402641
228 => 0.18084593515585
301 => 0.16668774600699
302 => 0.17847910664302
303 => 0.17206160513621
304 => 0.17637078479989
305 => 0.17635575047799
306 => 0.16842118449051
307 => 0.1638446924191
308 => 0.16676101128674
309 => 0.16988753661053
310 => 0.17039480482542
311 => 0.17444842651837
312 => 0.17557970520057
313 => 0.17215187797916
314 => 0.16639434900646
315 => 0.16773169167157
316 => 0.16381759121268
317 => 0.15695828071217
318 => 0.1618847572657
319 => 0.16356687296296
320 => 0.16430979108289
321 => 0.15756444700278
322 => 0.15544491344426
323 => 0.15431649156231
324 => 0.16552360979013
325 => 0.16613756102528
326 => 0.16299649970226
327 => 0.17719439473
328 => 0.17398097381455
329 => 0.17757115228434
330 => 0.16761034184207
331 => 0.16799085821498
401 => 0.16327525092254
402 => 0.16591567590931
403 => 0.16404950863353
404 => 0.16570235566357
405 => 0.16669306535843
406 => 0.17140789886611
407 => 0.17853294246814
408 => 0.17070365996591
409 => 0.16729232946229
410 => 0.16940869972068
411 => 0.17504487261079
412 => 0.18358396304968
413 => 0.17852864964465
414 => 0.18077211188901
415 => 0.18126220858472
416 => 0.17753460763772
417 => 0.18372140501359
418 => 0.18703695998877
419 => 0.19043803333588
420 => 0.19339109002726
421 => 0.18907956984984
422 => 0.19369351447182
423 => 0.18997548957737
424 => 0.1866400368847
425 => 0.18664509538962
426 => 0.18455271719232
427 => 0.18049847077843
428 => 0.17975080553641
429 => 0.18364025454511
430 => 0.1867592243179
501 => 0.18701611760725
502 => 0.18874293953191
503 => 0.18976485495925
504 => 0.19978101537382
505 => 0.20380959795059
506 => 0.20873567246829
507 => 0.21065465611128
508 => 0.21643010888298
509 => 0.21176596171049
510 => 0.21075684413087
511 => 0.19674748484294
512 => 0.19904151664151
513 => 0.20271448289219
514 => 0.19680805070357
515 => 0.20055432245396
516 => 0.20129391585437
517 => 0.19660735239793
518 => 0.19911064843447
519 => 0.19246263633696
520 => 0.17867785096494
521 => 0.1837367514203
522 => 0.18746180496292
523 => 0.18214569426181
524 => 0.19167461693166
525 => 0.18610801702483
526 => 0.18434367209828
527 => 0.17746033350543
528 => 0.18070900435725
529 => 0.18510287820083
530 => 0.18238797500816
531 => 0.18802180677772
601 => 0.19600081505146
602 => 0.20168713150549
603 => 0.20212365627556
604 => 0.19846773574923
605 => 0.20432637172444
606 => 0.2043690454915
607 => 0.19776048017824
608 => 0.19371277072051
609 => 0.19279312261526
610 => 0.1950905838898
611 => 0.19788012601185
612 => 0.2022784564491
613 => 0.20493627541572
614 => 0.2118664576824
615 => 0.21374156629987
616 => 0.21580174217305
617 => 0.21855477247434
618 => 0.22186049121351
619 => 0.21462776680687
620 => 0.21491513643103
621 => 0.20818012360746
622 => 0.20098279650692
623 => 0.20644467061674
624 => 0.21358534445266
625 => 0.21194726598495
626 => 0.21176294869443
627 => 0.21207291925174
628 => 0.21083786158173
629 => 0.20525174151366
630 => 0.20244642698644
701 => 0.20606599843862
702 => 0.20798963957686
703 => 0.21097303922314
704 => 0.21060527224481
705 => 0.21829018933989
706 => 0.22127631574321
707 => 0.22051233682568
708 => 0.22065292733269
709 => 0.22605916654991
710 => 0.23207201643735
711 => 0.23770384382236
712 => 0.24343278053101
713 => 0.23652632372453
714 => 0.23301965088923
715 => 0.23663764214975
716 => 0.23471788506001
717 => 0.24574937873461
718 => 0.24651317542195
719 => 0.257543871394
720 => 0.26801331538232
721 => 0.26143764519283
722 => 0.26763820600683
723 => 0.27434461806631
724 => 0.28728237500519
725 => 0.28292539362395
726 => 0.27958801416853
727 => 0.27643420670925
728 => 0.28299677937917
729 => 0.29143942427937
730 => 0.29325788912822
731 => 0.29620449689041
801 => 0.29310649912253
802 => 0.29683769620068
803 => 0.31001046145762
804 => 0.30645106400598
805 => 0.30139614742296
806 => 0.31179478046749
807 => 0.31555800534265
808 => 0.34197028833265
809 => 0.37531688664453
810 => 0.36151117597784
811 => 0.35294152585953
812 => 0.35495559691215
813 => 0.36713264576206
814 => 0.37104352737244
815 => 0.36041240299369
816 => 0.36416749585017
817 => 0.38485842668195
818 => 0.39595844722866
819 => 0.38088312839458
820 => 0.33929092162715
821 => 0.30094100749169
822 => 0.31111313163956
823 => 0.30995992843895
824 => 0.33218975237151
825 => 0.30636617355393
826 => 0.30680097639296
827 => 0.32949048954265
828 => 0.32343731643104
829 => 0.31363195122208
830 => 0.30101259750899
831 => 0.2776845550214
901 => 0.25702225723955
902 => 0.29754578143275
903 => 0.29579833338229
904 => 0.29326776964793
905 => 0.29889926540314
906 => 0.32624421026249
907 => 0.32561382077654
908 => 0.32160360449442
909 => 0.32464531819998
910 => 0.31309872410303
911 => 0.31607454431287
912 => 0.30093493266936
913 => 0.30777866941826
914 => 0.31361091331216
915 => 0.3147818226217
916 => 0.31741994108422
917 => 0.29487750766435
918 => 0.3049983984588
919 => 0.31094347360131
920 => 0.28408340782374
921 => 0.31041253646259
922 => 0.2944850940509
923 => 0.28907908087421
924 => 0.29635756542854
925 => 0.29352113291916
926 => 0.2910825348085
927 => 0.28972175516232
928 => 0.29506627092199
929 => 0.29481694287372
930 => 0.28607227776509
1001 => 0.27466521860903
1002 => 0.27849380208576
1003 => 0.2771028418155
1004 => 0.27206182235865
1005 => 0.27545886081756
1006 => 0.26050002264634
1007 => 0.23476411906551
1008 => 0.25176604528306
1009 => 0.25111148961822
1010 => 0.25078143297027
1011 => 0.26355791062403
1012 => 0.26232974710111
1013 => 0.2601006182808
1014 => 0.27202088265976
1015 => 0.26766982581126
1016 => 0.28107875778042
1017 => 0.28991074761065
1018 => 0.28767066930476
1019 => 0.29597719842881
1020 => 0.27858200491641
1021 => 0.2843599904272
1022 => 0.28555082523303
1023 => 0.27187378844766
1024 => 0.26253068984241
1025 => 0.26190761168456
1026 => 0.24570796626136
1027 => 0.25436168608747
1028 => 0.26197660141918
1029 => 0.25832964791659
1030 => 0.25717513138731
1031 => 0.26307330595133
1101 => 0.26353164462941
1102 => 0.25308147419677
1103 => 0.25525439554358
1104 => 0.26431583877786
1105 => 0.25502607042334
1106 => 0.23697756798555
1107 => 0.23250128984091
1108 => 0.23190407182224
1109 => 0.21976405047588
1110 => 0.2328004161507
1111 => 0.22710969318076
1112 => 0.24508661885745
1113 => 0.23481829532311
1114 => 0.23437564841859
1115 => 0.23370652270021
1116 => 0.22325710482943
1117 => 0.22554486324798
1118 => 0.23314972066669
1119 => 0.23586321946854
1120 => 0.23558017931246
1121 => 0.23311245271652
1122 => 0.23424216531534
1123 => 0.23060296741659
1124 => 0.22931789089519
1125 => 0.22526183590549
1126 => 0.21930055558444
1127 => 0.22012950817574
1128 => 0.20831865200587
1129 => 0.20188347071495
1130 => 0.20010229734795
1201 => 0.19772043788124
1202 => 0.2003713347126
1203 => 0.2082851933343
1204 => 0.19873940081777
1205 => 0.18237380910766
1206 => 0.18335740905505
1207 => 0.18556726610339
1208 => 0.18144921211348
1209 => 0.1775518196141
1210 => 0.18094028618686
1211 => 0.1740059692355
1212 => 0.18640524517787
1213 => 0.18606987951219
1214 => 0.19069156281743
1215 => 0.19358159623468
1216 => 0.18692100486734
1217 => 0.18524588415061
1218 => 0.18620010904085
1219 => 0.17042889716738
1220 => 0.18940271833868
1221 => 0.18956680473208
1222 => 0.1881617974121
1223 => 0.19826477143481
1224 => 0.21958519781935
1225 => 0.21156359580132
1226 => 0.20845738904574
1227 => 0.20255248773275
1228 => 0.21042041813396
1229 => 0.20981628383798
1230 => 0.20708415944044
1231 => 0.20543176208005
]
'min_raw' => 0.15431649156231
'max_raw' => 0.39595844722866
'avg_raw' => 0.27513746939549
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.154316'
'max' => '$0.395958'
'avg' => '$0.275137'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.094894732114659
'max_diff' => 0.23015331162672
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0048438183366358
]
1 => [
'year' => 2028
'avg' => 0.0083133984361774
]
2 => [
'year' => 2029
'avg' => 0.02271070618335
]
3 => [
'year' => 2030
'avg' => 0.017521275998656
]
4 => [
'year' => 2031
'avg' => 0.01720806441851
]
5 => [
'year' => 2032
'avg' => 0.030171152502828
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0048438183366358
'min' => '$0.004843'
'max_raw' => 0.030171152502828
'max' => '$0.030171'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.030171152502828
]
1 => [
'year' => 2033
'avg' => 0.077603306700299
]
2 => [
'year' => 2034
'avg' => 0.049188705227056
]
3 => [
'year' => 2035
'avg' => 0.058018190615698
]
4 => [
'year' => 2036
'avg' => 0.1126134475248
]
5 => [
'year' => 2037
'avg' => 0.27513746939549
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.030171152502828
'min' => '$0.030171'
'max_raw' => 0.27513746939549
'max' => '$0.275137'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.27513746939549
]
]
]
]
'prediction_2025_max_price' => '$0.008282'
'last_price' => 0.00803049
'sma_50day_nextmonth' => '$0.0064044'
'sma_200day_nextmonth' => '$0.012928'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005965'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005222'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005029'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004885'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.008914'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011454'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014682'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00648'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005885'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005388'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005544'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007756'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.010244'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012433'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.011927'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.011348'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.026671'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.059279'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006391'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.006605'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00834'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.01078'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015757'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.07596'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.344599'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.99'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 73.22
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005071'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0057083'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 87.66
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 212.81
'cci_20_action' => 'SELL'
'adx_14' => 17.34
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000212'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -12.34
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.94
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008057'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767700591
'last_updated_date' => '6. Januar 2026'
]
My DeFi Pet Preisprognose für 2026
Die Preisprognose für My DeFi Pet im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.002774 am unteren Ende und $0.008282 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte My DeFi Pet im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn DPET das prognostizierte Preisziel erreicht.
My DeFi Pet Preisprognose 2027-2032
Die Preisprognose für DPET für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.004843 am unteren Ende und $0.030171 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte My DeFi Pet, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| My DeFi Pet Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.00267 | $0.004843 | $0.007016 |
| 2028 | $0.00482 | $0.008313 | $0.0118064 |
| 2029 | $0.010588 | $0.02271 | $0.034832 |
| 2030 | $0.0090053 | $0.017521 | $0.026037 |
| 2031 | $0.010647 | $0.017208 | $0.023768 |
| 2032 | $0.016252 | $0.030171 | $0.04409 |
My DeFi Pet Preisprognose 2032-2037
Die Preisprognose für My DeFi Pet für die Jahre 2032-2037 wird derzeit zwischen $0.030171 am unteren Ende und $0.275137 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte My DeFi Pet bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| My DeFi Pet Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.016252 | $0.030171 | $0.04409 |
| 2033 | $0.037766 | $0.0776033 | $0.11744 |
| 2034 | $0.030362 | $0.049188 | $0.068015 |
| 2035 | $0.035897 | $0.058018 | $0.080138 |
| 2036 | $0.059421 | $0.112613 | $0.1658051 |
| 2037 | $0.154316 | $0.275137 | $0.395958 |
My DeFi Pet Potenzielles Preishistogramm
My DeFi Pet Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für My DeFi Pet Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 14 anzeigen bärische Signale. Die Preisprognose für DPET wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von My DeFi Pet
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von My DeFi Pet im nächsten Monat steigen, und bis zum 04.02.2026 $0.012928 erreichen. Der kurzfristige 50-Tage-SMA für My DeFi Pet wird voraussichtlich bis zum 04.02.2026 $0.0064044 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 57.99, was darauf hindeutet, dass sich der DPET-Markt in einem NEUTRAL Zustand befindet.
Beliebte DPET Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005965 | BUY |
| SMA 5 | $0.005222 | BUY |
| SMA 10 | $0.005029 | BUY |
| SMA 21 | $0.004885 | BUY |
| SMA 50 | $0.008914 | SELL |
| SMA 100 | $0.011454 | SELL |
| SMA 200 | $0.014682 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.00648 | BUY |
| EMA 5 | $0.005885 | BUY |
| EMA 10 | $0.005388 | BUY |
| EMA 21 | $0.005544 | BUY |
| EMA 50 | $0.007756 | BUY |
| EMA 100 | $0.010244 | SELL |
| EMA 200 | $0.012433 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.011927 | SELL |
| SMA 50 | $0.011348 | SELL |
| SMA 100 | $0.026671 | SELL |
| SMA 200 | $0.059279 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.01078 | SELL |
| EMA 50 | $0.015757 | SELL |
| EMA 100 | $0.07596 | SELL |
| EMA 200 | $0.344599 | SELL |
My DeFi Pet Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 57.99 | NEUTRAL |
| Stoch RSI (14) | 73.22 | NEUTRAL |
| Stochastic Fast (14) | 87.66 | SELL |
| Commodity Channel Index (20) | 212.81 | SELL |
| Average Directional Index (14) | 17.34 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000212 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -12.34 | SELL |
| Ultimate Oscillator (7, 14, 28) | 68.94 | NEUTRAL |
| VWMA (10) | 0.005071 | BUY |
| Hull Moving Average (9) | 0.0057083 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.0008057 | SELL |
Auf weltweiten Geldflüssen basierende My DeFi Pet-Preisprognose
Definition weltweiter Geldflüsse, die für My DeFi Pet-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
My DeFi Pet-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.011284 | $0.015856 | $0.02228 | $0.0313078 | $0.043992 | $0.061817 |
| Amazon.com aktie | $0.016756 | $0.034962 | $0.072951 | $0.152217 | $0.317611 | $0.662714 |
| Apple aktie | $0.01139 | $0.016156 | $0.022917 | $0.0325061 | $0.0461075 | $0.065400019 |
| Netflix aktie | $0.01267 | $0.019992 | $0.031545 | $0.049773 | $0.078534 | $0.123915 |
| Google aktie | $0.010399 | $0.013467 | $0.01744 | $0.022584 | $0.029247 | $0.037874 |
| Tesla aktie | $0.0182045 | $0.041268 | $0.093552 | $0.212075 | $0.480758 | $1.08 |
| Kodak aktie | $0.006022 | $0.004515 | $0.003386 | $0.002539 | $0.0019043 | $0.001428 |
| Nokia aktie | $0.005319 | $0.003524 | $0.002334 | $0.001546 | $0.001024 | $0.000678 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
My DeFi Pet Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in My DeFi Pet investieren?", "Sollte ich heute DPET kaufen?", "Wird My DeFi Pet auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere My DeFi Pet-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie My DeFi Pet.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich My DeFi Pet zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der My DeFi Pet-Preis entspricht heute $0.00803 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige My DeFi Pet-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige My DeFi Pet-Prognose
basierend auf dem Preisverlauf des letzten Monats
My DeFi Pet-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von My DeFi Pet 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008239 | $0.008453 | $0.008673 | $0.008898 |
| Wenn die Wachstumsrate von My DeFi Pet 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008447 | $0.008887 | $0.009349 | $0.009835 |
| Wenn die Wachstumsrate von My DeFi Pet 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009074 | $0.010253 | $0.011586 | $0.013091 |
| Wenn die Wachstumsrate von My DeFi Pet 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.010117 | $0.012747 | $0.016061 | $0.020236 |
| Wenn die Wachstumsrate von My DeFi Pet 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0122052 | $0.01855 | $0.028193 | $0.042851 |
| Wenn die Wachstumsrate von My DeFi Pet 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018467 | $0.042468 | $0.097663 | $0.224593 |
| Wenn die Wachstumsrate von My DeFi Pet 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0289043 | $0.104035 | $0.374458 | $1.34 |
Fragefeld
Ist DPET eine gute Investition?
Die Entscheidung, My DeFi Pet zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von My DeFi Pet in den letzten 2026 Stunden um 24.551% gestiegen, und My DeFi Pet hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in My DeFi Pet investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann My DeFi Pet steigen?
Es scheint, dass der Durchschnittswert von My DeFi Pet bis zum Ende dieses Jahres potenziell auf $0.008282 steigen könnte. Betrachtet man die Aussichten von My DeFi Pet in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.026037 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird My DeFi Pet nächste Woche kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Prognose wird der Preis von My DeFi Pet in der nächsten Woche um 0.86% steigen und $0.0080992 erreichen bis zum 13. Januar 2026.
Wie viel wird My DeFi Pet nächsten Monat kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Prognose wird der Preis von My DeFi Pet im nächsten Monat um -11.62% fallen und $0.0070975 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von My DeFi Pet in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von My DeFi Pet im Jahr 2026 wird erwartet, dass DPET innerhalb der Spanne von $0.002774 bis $0.008282 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte My DeFi Pet-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird My DeFi Pet in 5 Jahren sein?
Die Zukunft von My DeFi Pet scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.026037 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der My DeFi Pet-Prognose für 2030 könnte der Wert von My DeFi Pet seinen höchsten Gipfel von ungefähr $0.026037 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.0090053 liegen wird.
Wie viel wird My DeFi Pet im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Preisprognosesimulation wird der Wert von DPET im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.008282 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.008282 und $0.002774 während des Jahres 2026 liegen.
Wie viel wird My DeFi Pet im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von My DeFi Pet könnte der Wert von DPET um -12.62% fallen und bis zu $0.007016 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.007016 und $0.00267 im Laufe des Jahres schwanken.
Wie viel wird My DeFi Pet im Jahr 2028 kosten?
Unser neues experimentelles My DeFi Pet-Preisprognosemodell deutet darauf hin, dass der Wert von DPET im Jahr 2028 um 47.02% steigen, und im besten Fall $0.0118064 erreichen wird. Der Preis wird voraussichtlich zwischen $0.0118064 und $0.00482 im Laufe des Jahres liegen.
Wie viel wird My DeFi Pet im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von My DeFi Pet im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.034832 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.034832 und $0.010588.
Wie viel wird My DeFi Pet im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für My DeFi Pet-Preisprognosen wird der Wert von DPET im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.026037 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.026037 und $0.0090053 während des Jahres 2030 liegen.
Wie viel wird My DeFi Pet im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von My DeFi Pet im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.023768 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.023768 und $0.010647 während des Jahres schwanken.
Wie viel wird My DeFi Pet im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen My DeFi Pet-Preisprognose könnte DPET eine 449.04% Steigerung im Wert erfahren und $0.04409 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.04409 und $0.016252 liegen.
Wie viel wird My DeFi Pet im Jahr 2033 kosten?
Laut unserer experimentellen My DeFi Pet-Preisprognose wird der Wert von DPET voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.11744 beträgt. Im Laufe des Jahres könnte der Preis von DPET zwischen $0.11744 und $0.037766 liegen.
Wie viel wird My DeFi Pet im Jahr 2034 kosten?
Die Ergebnisse unserer neuen My DeFi Pet-Preisprognosesimulation deuten darauf hin, dass DPET im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.068015 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.068015 und $0.030362.
Wie viel wird My DeFi Pet im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von My DeFi Pet könnte DPET um 897.93% steigen, wobei der Wert im Jahr 2035 $0.080138 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.080138 und $0.035897.
Wie viel wird My DeFi Pet im Jahr 2036 kosten?
Unsere jüngste My DeFi Pet-Preisprognosesimulation deutet darauf hin, dass der Wert von DPET im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.1658051 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.1658051 und $0.059421.
Wie viel wird My DeFi Pet im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von My DeFi Pet um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.395958 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.395958 und $0.154316 liegen.
Verwandte Prognosen
B3Coin-Preisprognose
Spintop-Preisprognose
DegenX (Avalanche)-Preisprognose
Winkies-Preisprognose
rETH2-Preisprognose
Cirus-Preisprognose
BiFi-Preisprognose
InfinityBit Token-Preisprognose
CocktailBar-Preisprognose
Utopia-Preisprognose
mStable USD-Preisprognose
EQIFi-Preisprognose
NAOS Finance-Preisprognose
InsurAce-Preisprognose
Mizar-Preisprognose
VelasPad-Preisprognose
LGCY Network-Preisprognose
Shroom.Finance-Preisprognose
MetFi [OLD]-Preisprognose
Ethereans-Preisprognose
Cashaa-Preisprognose
Slam Token-Preisprognose
Brazil Fan Token-Preisprognose
S.C. Corinthians Fan Token-Preisprognose
Alvara Protocol-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von My DeFi Pet?
My DeFi Pet-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
My DeFi Pet Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von My DeFi Pet. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von DPET über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von DPET über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von DPET einzuschätzen.
Wie liest man My DeFi Pet-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von My DeFi Pet in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von DPET innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von My DeFi Pet?
Die Preisentwicklung von My DeFi Pet wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von DPET. Die Marktkapitalisierung von My DeFi Pet kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von DPET-„Walen“, großen Inhabern von My DeFi Pet, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen My DeFi Pet-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


