My DeFi Pet Preisvorhersage bis zu $0.008077 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.002706 | $0.008077 |
| 2027 | $0.002605 | $0.006843 |
| 2028 | $0.0047013 | $0.011514 |
| 2029 | $0.010327 | $0.033972 |
| 2030 | $0.008783 | $0.025394 |
| 2031 | $0.010384 | $0.023182 |
| 2032 | $0.01585 | $0.0430017 |
| 2033 | $0.036833 | $0.11454 |
| 2034 | $0.029612 | $0.066335 |
| 2035 | $0.035011 | $0.07816 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in My DeFi Pet eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.47 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige My DeFi Pet Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'My DeFi Pet'
'name_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'name_lang' => 'My DeFi Pet'
'name_lang_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'name_with_lang' => 'My DeFi Pet'
'name_with_lang_with_ticker' => 'My DeFi Pet <small>DPET</small>'
'image' => '/uploads/coins/my-defi-pet.PNG?1719975034'
'price_for_sd' => 0.007832
'ticker' => 'DPET'
'marketcap' => '$393.42K'
'low24h' => '$0.00621'
'high24h' => '$0.008122'
'volume24h' => '$14.8K'
'current_supply' => '50.23M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007832'
'change_24h_pct' => '21.5383%'
'ath_price' => '$9.92'
'ath_days' => 1625
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26.07.2021'
'ath_pct' => '-99.92%'
'fdv' => '$783.23K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.386182'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007899'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006922'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002706'
'current_year_max_price_prediction' => '$0.008077'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008783'
'grand_prediction_max_price' => '$0.025394'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.007980646638747
107 => 0.0080104434763214
108 => 0.0080775772728406
109 => 0.0075039263319296
110 => 0.0077614787628919
111 => 0.007912766686683
112 => 0.0072292423430932
113 => 0.0078992556081085
114 => 0.0074939403453065
115 => 0.0073563702574806
116 => 0.0075415902572573
117 => 0.007469409843212
118 => 0.0074073533617919
119 => 0.0073727247788938
120 => 0.0075087299047445
121 => 0.0075023851030623
122 => 0.0072798543197132
123 => 0.0069895719843495
124 => 0.0070870002642904
125 => 0.0070516036567929
126 => 0.0069233217849686
127 => 0.0070097682777659
128 => 0.0066291016730555
129 => 0.0059741845649795
130 => 0.006406842867228
131 => 0.0063901859932331
201 => 0.0063817868420358
202 => 0.0067069175983784
203 => 0.0066756637781989
204 => 0.0066189377885347
205 => 0.0069222799676834
206 => 0.006811555991766
207 => 0.0071527811956936
208 => 0.0073775341840627
209 => 0.0073205295562148
210 => 0.0075319108281014
211 => 0.0070892448150828
212 => 0.0072362807079297
213 => 0.0072665846016625
214 => 0.0069185367722793
215 => 0.0066807772897027
216 => 0.0066649214428714
217 => 0.0062526792653587
218 => 0.0064728957090834
219 => 0.0066666770663855
220 => 0.0065738708342786
221 => 0.0065444911537009
222 => 0.0066945855700972
223 => 0.006706249191723
224 => 0.0064403173826009
225 => 0.0064956130266825
226 => 0.0067262050546389
227 => 0.0064898026992162
228 => 0.0060305115387355
301 => 0.0059166009807392
302 => 0.0059014032125144
303 => 0.0055924687448681
304 => 0.0059242130289091
305 => 0.0057793977587311
306 => 0.0062368674620699
307 => 0.005975563220982
308 => 0.0059642989174109
309 => 0.0059472712704491
310 => 0.0056813586122238
311 => 0.0057395765847441
312 => 0.0059331019922492
313 => 0.0060021540378667
314 => 0.0059949513437821
315 => 0.005932153612175
316 => 0.0059609020921283
317 => 0.0058682932215643
318 => 0.0058355911018811
319 => 0.0057323742167345
320 => 0.0055806739099613
321 => 0.0056017687680502
322 => 0.0053012107657879
323 => 0.005137450814335
324 => 0.0050921242180942
325 => 0.0050315115992723
326 => 0.0050989705746742
327 => 0.0053003593227307
328 => 0.0050574417655683
329 => 0.0046409766524988
330 => 0.0046660069154163
331 => 0.0047222424846401
401 => 0.004617447873427
402 => 0.0045182685686588
403 => 0.0046044969274834
404 => 0.0044280351689133
405 => 0.0047435670451073
406 => 0.0047350327921241
407 => 0.0048526435632089
408 => 0.0049261879919842
409 => 0.0047566918939487
410 => 0.004714064083659
411 => 0.004738346821726
412 => 0.0043370072519459
413 => 0.0048198455580358
414 => 0.0048240211637572
415 => 0.0047882670924871
416 => 0.0050453635845198
417 => 0.0055879173731155
418 => 0.0053837868136702
419 => 0.0053047412911742
420 => 0.0051544756951273
421 => 0.0053546956799715
422 => 0.0053393219090538
423 => 0.0052697958866344
424 => 0.0052277463313408
425 => 0.0053052239262791
426 => 0.0052181459999213
427 => 0.0052025044116061
428 => 0.0051077334046317
429 => 0.0050739044669479
430 => 0.0050488588682556
501 => 0.0050212861250251
502 => 0.0050821047258921
503 => 0.0049442817749743
504 => 0.004778080807118
505 => 0.0047642629949601
506 => 0.0048024151892025
507 => 0.0047855356833471
508 => 0.0047641821823801
509 => 0.0047234125337543
510 => 0.0047113170499127
511 => 0.0047506215045033
512 => 0.0047062490668626
513 => 0.0047717230156932
514 => 0.0047539177244501
515 => 0.0046544588149515
516 => 0.0045304961893117
517 => 0.0045293926619231
518 => 0.0045026851175685
519 => 0.0044686690443266
520 => 0.0044592065509331
521 => 0.0045972350156136
522 => 0.004882949806658
523 => 0.0048268571566005
524 => 0.004867389844873
525 => 0.0050667705544979
526 => 0.0051301476865005
527 => 0.0050851640993747
528 => 0.0050235877908501
529 => 0.0050262968359201
530 => 0.005236721722565
531 => 0.0052498456646327
601 => 0.0052830056322934
602 => 0.0053256255617431
603 => 0.0050924224576538
604 => 0.0050153129906891
605 => 0.0049787742473709
606 => 0.004866249060224
607 => 0.0049875978273814
608 => 0.0049168930974311
609 => 0.0049264335811189
610 => 0.0049202203286014
611 => 0.0049236131846142
612 => 0.0047434788475173
613 => 0.0048091103323734
614 => 0.0046999852593644
615 => 0.0045538790364695
616 => 0.004553389237179
617 => 0.0045891485282439
618 => 0.0045678775026573
619 => 0.0045106377197317
620 => 0.0045187683607321
621 => 0.0044475353901059
622 => 0.0045274173330807
623 => 0.0045297080613739
624 => 0.0044989491621298
625 => 0.0046220183168663
626 => 0.0046724398499767
627 => 0.0046521936835748
628 => 0.0046710193249698
629 => 0.0048291880594535
630 => 0.00485497646456
701 => 0.0048664299706219
702 => 0.0048510837897978
703 => 0.0046739103590818
704 => 0.0046817687541336
705 => 0.0046241090653701
706 => 0.0045753927043933
707 => 0.0045773411033487
708 => 0.0046023876455744
709 => 0.0047117673644344
710 => 0.0049419505344887
711 => 0.0049506858175306
712 => 0.0049612732354035
713 => 0.0049182088861045
714 => 0.0049052202662856
715 => 0.0049223556084739
716 => 0.0050088003046902
717 => 0.0052311595328645
718 => 0.0051525629307542
719 => 0.0050886626698095
720 => 0.0051447204260447
721 => 0.0051360907738675
722 => 0.0050632478249171
723 => 0.005061203365951
724 => 0.0049213944576156
725 => 0.0048697102874989
726 => 0.0048265191264562
727 => 0.0047793555061314
728 => 0.004751395331064
729 => 0.0047943548676398
730 => 0.004804180221937
731 => 0.0047102484444098
801 => 0.0046974458902227
802 => 0.0047741526074097
803 => 0.0047403968410903
804 => 0.0047751154838525
805 => 0.0047831705067843
806 => 0.0047818734625694
807 => 0.0047466285657069
808 => 0.0047690926119491
809 => 0.0047159584457319
810 => 0.0046581830204643
811 => 0.0046213258986798
812 => 0.0045891631715351
813 => 0.0046070089218636
814 => 0.0045433920804475
815 => 0.0045230397725245
816 => 0.0047614822985393
817 => 0.0049376223561956
818 => 0.0049350612099981
819 => 0.0049194708911945
820 => 0.0048963068398331
821 => 0.0050071057100531
822 => 0.0049685055991618
823 => 0.0049965904049824
824 => 0.0050037391667794
825 => 0.0050253763156694
826 => 0.0050331097366218
827 => 0.0050097339672975
828 => 0.0049312820303352
829 => 0.0047357872624115
830 => 0.0046447839202151
831 => 0.0046147513015097
901 => 0.0046158429301595
902 => 0.004585730938751
903 => 0.0045946002697456
904 => 0.004582646547386
905 => 0.004560009089153
906 => 0.0046056111226084
907 => 0.0046108663321518
908 => 0.0046002222726396
909 => 0.0046027293339753
910 => 0.0045146010673515
911 => 0.0045213012680584
912 => 0.0044839936991022
913 => 0.0044769989796723
914 => 0.0043826886940927
915 => 0.0042156043526938
916 => 0.0043081852970982
917 => 0.0041963605351084
918 => 0.0041540108033213
919 => 0.0043544878468672
920 => 0.0043343655120628
921 => 0.0042999248218464
922 => 0.0042489798629475
923 => 0.0042300838821312
924 => 0.004115277884432
925 => 0.0041084945336218
926 => 0.0041653954861042
927 => 0.0041391376543758
928 => 0.0041022617140106
929 => 0.0039687007960619
930 => 0.0038185341037874
1001 => 0.003823066692313
1002 => 0.0038708319231749
1003 => 0.0040097157739248
1004 => 0.0039554514507218
1005 => 0.0039160820616267
1006 => 0.0039087093584886
1007 => 0.0040009941740606
1008 => 0.0041315965223615
1009 => 0.0041928722221215
1010 => 0.00413214986463
1011 => 0.0040623952898678
1012 => 0.004066640927622
1013 => 0.0040948852535215
1014 => 0.0040978533328202
1015 => 0.0040524502755362
1016 => 0.0040652309702117
1017 => 0.0040458159263083
1018 => 0.0039266658377108
1019 => 0.0039245107904371
1020 => 0.0038952694371405
1021 => 0.0038943840205839
1022 => 0.0038446371840291
1023 => 0.0038376772577114
1024 => 0.0037389018943145
1025 => 0.0038039161376217
1026 => 0.0037603079966122
1027 => 0.0036945802419904
1028 => 0.0036832487523193
1029 => 0.0036829081140566
1030 => 0.0037503958215962
1031 => 0.0038031275044658
1101 => 0.0037610665788953
1102 => 0.0037514901214597
1103 => 0.0038537416328164
1104 => 0.003840729195953
1105 => 0.0038294605095506
1106 => 0.0041199025145303
1107 => 0.0038899950041166
1108 => 0.0037897422069143
1109 => 0.0036656603328866
1110 => 0.0037060620167451
1111 => 0.0037145752451584
1112 => 0.0034161807055607
1113 => 0.0032951220780086
1114 => 0.0032535793190308
1115 => 0.0032296708739108
1116 => 0.0032405662525753
1117 => 0.0031315992890177
1118 => 0.0032048268906757
1119 => 0.0031104707109829
1120 => 0.0030946515903958
1121 => 0.0032633721281742
1122 => 0.003286848605355
1123 => 0.003186690660132
1124 => 0.0032510082750636
1125 => 0.0032276858138077
1126 => 0.003112088176865
1127 => 0.0031076731974125
1128 => 0.0030496703666481
1129 => 0.002958907168063
1130 => 0.0029174259508079
1201 => 0.0028958221727049
1202 => 0.0029047363125994
1203 => 0.0029002290506916
1204 => 0.0028708161179135
1205 => 0.0029019149655689
1206 => 0.0028224702607404
1207 => 0.0027908347391482
1208 => 0.0027765457079835
1209 => 0.0027060339597816
1210 => 0.0028182495078876
1211 => 0.0028403573845187
1212 => 0.0028625088204962
1213 => 0.003055321947253
1214 => 0.0030456895483245
1215 => 0.0031327617434698
1216 => 0.003129378278082
1217 => 0.0031045438775505
1218 => 0.0029997716267687
1219 => 0.0030415319785445
1220 => 0.0029130001067781
1221 => 0.0030093049244232
1222 => 0.0029653554274353
1223 => 0.0029944455552824
1224 => 0.0029421388824623
1225 => 0.0029710875548905
1226 => 0.0028455999822161
1227 => 0.0027284214525105
1228 => 0.0027755775135186
1229 => 0.002826841544784
1230 => 0.0029379950263998
1231 => 0.0028717929297457
]
'min_raw' => 0.0027060339597816
'max_raw' => 0.0080775772728406
'avg_raw' => 0.0053918056163111
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002706'
'max' => '$0.008077'
'avg' => '$0.005391'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0051261960402184
'max_diff' => 0.00024534727284063
'year' => 2026
]
1 => [
'items' => [
101 => 0.002895601707081
102 => 0.0028158462885492
103 => 0.0026512880791091
104 => 0.0026522194607035
105 => 0.0026269057652766
106 => 0.0026050310365678
107 => 0.0028793970369183
108 => 0.0028452752876901
109 => 0.0027909067460391
110 => 0.0028636811995589
111 => 0.0028829239201555
112 => 0.0028834717333588
113 => 0.0029365660960663
114 => 0.002964902566961
115 => 0.0029698969927735
116 => 0.0030534421196735
117 => 0.0030814453442235
118 => 0.0031967866629803
119 => 0.0029624984153815
120 => 0.0029576734030999
121 => 0.0028647052853617
122 => 0.0028057434353244
123 => 0.0028687424536778
124 => 0.0029245509837154
125 => 0.0028664394119557
126 => 0.0028740275564252
127 => 0.0027960175192277
128 => 0.0028239024368124
129 => 0.0028479206843404
130 => 0.0028346592197828
131 => 0.0028148061654778
201 => 0.0029199753206844
202 => 0.0029140412647864
203 => 0.0030119771999432
204 => 0.0030883252648638
205 => 0.0032251546460507
206 => 0.0030823660537052
207 => 0.0030771622698669
208 => 0.0031280300915997
209 => 0.003081437556625
210 => 0.0031108824304093
211 => 0.003220410621668
212 => 0.0032227247797571
213 => 0.0031839596501415
214 => 0.0031816007884814
215 => 0.0031890460556681
216 => 0.0032326532181294
217 => 0.0032174155356527
218 => 0.0032350489675857
219 => 0.0032570998442306
220 => 0.003348311619412
221 => 0.0033703024696122
222 => 0.0033168761045742
223 => 0.0033216999071475
224 => 0.0033017169800368
225 => 0.0032824137228332
226 => 0.0033258046260126
227 => 0.0034051023544232
228 => 0.0034046090473703
301 => 0.003423004579034
302 => 0.0034344648428637
303 => 0.0033852690010809
304 => 0.0033532443170615
305 => 0.0033655246186981
306 => 0.0033851610884453
307 => 0.0033591567762129
308 => 0.0031986461147455
309 => 0.0032473347959739
310 => 0.0032392306186626
311 => 0.0032276892846697
312 => 0.0032766461301434
313 => 0.0032719241229664
314 => 0.0031304816753081
315 => 0.0031395363618983
316 => 0.0031310323207897
317 => 0.0031585106173747
318 => 0.0030799536384333
319 => 0.0031041172360664
320 => 0.0031192724179821
321 => 0.0031281989365581
322 => 0.0031604476426257
323 => 0.0031566636291818
324 => 0.003160212423037
325 => 0.0032080287407924
326 => 0.0034498672674205
327 => 0.0034630300048382
328 => 0.0033982118717483
329 => 0.0034241054374366
330 => 0.0033743954536154
331 => 0.0034077660987825
401 => 0.0034305974466834
402 => 0.0033274269757351
403 => 0.0033213178900164
404 => 0.0032714027354091
405 => 0.0032982243121562
406 => 0.003255549255012
407 => 0.003266020221325
408 => 0.0032367424866713
409 => 0.0032894365799092
410 => 0.0033483567639835
411 => 0.0033632423293092
412 => 0.003324084815576
413 => 0.0032957321950272
414 => 0.0032459543332775
415 => 0.0033287360267394
416 => 0.003352943916634
417 => 0.0033286088729993
418 => 0.003322969911658
419 => 0.0033122840901055
420 => 0.0033252369592155
421 => 0.0033528120752667
422 => 0.0033398081597694
423 => 0.0033483974750549
424 => 0.0033156638624501
425 => 0.0033852852869515
426 => 0.0034958608643681
427 => 0.0034962163829305
428 => 0.0034832123973372
429 => 0.0034778914466072
430 => 0.0034912343249737
501 => 0.003498472289134
502 => 0.003541620711106
503 => 0.0035879206869908
504 => 0.0038039824721833
505 => 0.0037433131874864
506 => 0.0039350160568823
507 => 0.0040866281370723
508 => 0.0041320899707285
509 => 0.0040902672229093
510 => 0.0039471938618405
511 => 0.0039401740001789
512 => 0.0041539860056308
513 => 0.0040935743208804
514 => 0.0040863885432077
515 => 0.0040099440093335
516 => 0.0040551321966928
517 => 0.0040452488772466
518 => 0.0040296475739923
519 => 0.0041158634876376
520 => 0.0042772519814339
521 => 0.004252098071184
522 => 0.0042333218440388
523 => 0.004151049882366
524 => 0.0042005959794009
525 => 0.0041829535632398
526 => 0.004258756579222
527 => 0.0042138525517965
528 => 0.0040931166429519
529 => 0.0041123442343861
530 => 0.0041094380226214
531 => 0.0041692476548035
601 => 0.0041512942877887
602 => 0.0041059323395705
603 => 0.0042767003731072
604 => 0.0042656116468711
605 => 0.0042813329254382
606 => 0.0042882539184602
607 => 0.0043921974112037
608 => 0.0044347797343599
609 => 0.0044444466672249
610 => 0.0044848965807882
611 => 0.0044434402365264
612 => 0.0046092951714463
613 => 0.0047195790252643
614 => 0.0048476793966291
615 => 0.0050348684693269
616 => 0.005105253292257
617 => 0.0050925389039848
618 => 0.0052344635225449
619 => 0.0054894989072904
620 => 0.0051440888469826
621 => 0.0055078064792079
622 => 0.0053926576761674
623 => 0.0051196419355967
624 => 0.0051020629405481
625 => 0.0052869523698405
626 => 0.0056970193290628
627 => 0.0055943022067186
628 => 0.0056971873374776
629 => 0.0055771663673817
630 => 0.0055712063146003
701 => 0.0056913581868518
702 => 0.0059720995855052
703 => 0.0058387298704389
704 => 0.0056475116802957
705 => 0.0057887042162129
706 => 0.0056663901748491
707 => 0.0053907824061119
708 => 0.0055942236608709
709 => 0.0054581882874869
710 => 0.0054978906414786
711 => 0.0057838167625972
712 => 0.0057494133752375
713 => 0.0057939345441488
714 => 0.0057153558463422
715 => 0.0056419509518676
716 => 0.0055049352652116
717 => 0.0054643716751844
718 => 0.0054755819921428
719 => 0.0054643661199081
720 => 0.0053877071024632
721 => 0.0053711525949447
722 => 0.005343561023811
723 => 0.0053521128054379
724 => 0.0053002325795077
725 => 0.0053981412848397
726 => 0.0054163140033178
727 => 0.00548756379415
728 => 0.0054949611837963
729 => 0.0056933908370865
730 => 0.0055840991185291
731 => 0.0056574214391304
801 => 0.0056508628006394
802 => 0.005125559014551
803 => 0.0051979412414795
804 => 0.005310545271786
805 => 0.0052598173087641
806 => 0.0051880998375663
807 => 0.0051301841343266
808 => 0.0050424359217336
809 => 0.005165939845903
810 => 0.0053283343730076
811 => 0.0054990797769954
812 => 0.0057042191922047
813 => 0.0056584344628161
814 => 0.0054952448383201
815 => 0.0055025654056649
816 => 0.0055478182724533
817 => 0.0054892116983058
818 => 0.0054719274754534
819 => 0.0055454436856507
820 => 0.0055459499513865
821 => 0.0054785160049887
822 => 0.0054035755138495
823 => 0.0054032615104553
824 => 0.0053899265738963
825 => 0.0055795386229718
826 => 0.0056838060780229
827 => 0.0056957601737091
828 => 0.005683001472138
829 => 0.005687911789998
830 => 0.0056272408552803
831 => 0.005765916620638
901 => 0.005893179216542
902 => 0.005859070122271
903 => 0.0058079357410652
904 => 0.0057672047434692
905 => 0.0058494751936871
906 => 0.0058458118200446
907 => 0.0058920676887883
908 => 0.0058899692553952
909 => 0.0058744151465079
910 => 0.0058590706777572
911 => 0.0059199097618938
912 => 0.0059023890827083
913 => 0.0058848411890686
914 => 0.0058496462019261
915 => 0.0058544297852056
916 => 0.0058033042330717
917 => 0.0057796512133084
918 => 0.0054239665475989
919 => 0.0053289159825896
920 => 0.0053588208252742
921 => 0.0053686662759649
922 => 0.0053273001482622
923 => 0.0053866085493015
924 => 0.0053773653978227
925 => 0.005413325093164
926 => 0.0053908590367032
927 => 0.0053917810514969
928 => 0.0054578489332799
929 => 0.0054770287204343
930 => 0.0054672737258877
1001 => 0.0054741057896865
1002 => 0.0056315478162962
1003 => 0.0056091645948249
1004 => 0.0055972739545324
1005 => 0.0056005677431555
1006 => 0.0056407975565494
1007 => 0.0056520597078333
1008 => 0.0056043411814661
1009 => 0.0056268455143584
1010 => 0.0057226661075888
1011 => 0.0057561978922436
1012 => 0.0058632152526919
1013 => 0.0058177523758915
1014 => 0.0059012014538458
1015 => 0.00615769546959
1016 => 0.0063626006374023
1017 => 0.0061741613770179
1018 => 0.0065504436231895
1019 => 0.0068434333263164
1020 => 0.0068321878935105
1021 => 0.0067810983617964
1022 => 0.0064475373743206
1023 => 0.0061405895805313
1024 => 0.0063973644437278
1025 => 0.0063980190156603
1026 => 0.0063759618271894
1027 => 0.0062389665239611
1028 => 0.0063711946875916
1029 => 0.0063816904790384
1030 => 0.0063758156268844
1031 => 0.0062707816491018
1101 => 0.0061104141785515
1102 => 0.0061417495984316
1103 => 0.0061930776554203
1104 => 0.0060959029353862
1105 => 0.0060648497243114
1106 => 0.0061225835518146
1107 => 0.0063086139733506
1108 => 0.0062734459997601
1109 => 0.0062725276218447
1110 => 0.0064229911264067
1111 => 0.0063152917291969
1112 => 0.0061421448384262
1113 => 0.0060984229649796
1114 => 0.0059432397688275
1115 => 0.0060504253551534
1116 => 0.0060542827735864
1117 => 0.0059955783233659
1118 => 0.0061469083810229
1119 => 0.0061455138479004
1120 => 0.0062891792151391
1121 => 0.0065638134390517
1122 => 0.0064825905851113
1123 => 0.0063881372430001
1124 => 0.0063984069401947
1125 => 0.0065110401706468
1126 => 0.0064429395483489
1127 => 0.0064674290069416
1128 => 0.0065110031029181
1129 => 0.0065372924369047
1130 => 0.0063946243096039
1201 => 0.0063613615445247
1202 => 0.0062933176008167
1203 => 0.0062755662060037
1204 => 0.0063309865783703
1205 => 0.0063163852682824
1206 => 0.0060539585725038
1207 => 0.0060265335226666
1208 => 0.0060273746097911
1209 => 0.0059584130179854
1210 => 0.0058532300378033
1211 => 0.0061296446295726
1212 => 0.0061074446694338
1213 => 0.006082937631581
1214 => 0.0060859396038827
1215 => 0.00620592180961
1216 => 0.0061363260710416
1217 => 0.0063213577485431
1218 => 0.0062833207982101
1219 => 0.0062443083436277
1220 => 0.0062389156340559
1221 => 0.0062238991674279
1222 => 0.0061724021159793
1223 => 0.006110216331862
1224 => 0.0060691558907474
1225 => 0.005598475494848
1226 => 0.005685831038505
1227 => 0.0057863256287741
1228 => 0.0058210159586282
1229 => 0.005761675748915
1230 => 0.0061747452291416
1231 => 0.0062502170036155
]
'min_raw' => 0.0026050310365678
'max_raw' => 0.0068434333263164
'avg_raw' => 0.0047242321814421
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002605'
'max' => '$0.006843'
'avg' => '$0.004724'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00010100292321388
'max_diff' => -0.0012341439465242
'year' => 2027
]
2 => [
'items' => [
101 => 0.0060216080758319
102 => 0.0059788446794846
103 => 0.0061775487902868
104 => 0.0060577059208834
105 => 0.0061116711576377
106 => 0.0059950278331813
107 => 0.0062320380632163
108 => 0.0062302324423642
109 => 0.0061380301097617
110 => 0.006215958889903
111 => 0.0062024168466204
112 => 0.0060983206401965
113 => 0.006235338098633
114 => 0.0062354060575829
115 => 0.0061466633171046
116 => 0.0060430312245099
117 => 0.0060245042540347
118 => 0.00601054667053
119 => 0.0061082384477109
120 => 0.0061958285896572
121 => 0.0063588121283813
122 => 0.00639979006241
123 => 0.0065597296669793
124 => 0.0064644934197763
125 => 0.0065067104146455
126 => 0.0065525429345345
127 => 0.0065745167300045
128 => 0.0065387116094651
129 => 0.0067871636491288
130 => 0.0068081406136503
131 => 0.0068151740084042
201 => 0.0067313973785293
202 => 0.0068058106340226
203 => 0.0067709951360853
204 => 0.0068615753896943
205 => 0.006875779530047
206 => 0.0068637491284952
207 => 0.0068682577468403
208 => 0.0066562477609305
209 => 0.0066452539247193
210 => 0.0064953521878926
211 => 0.0065564382536672
212 => 0.0064422407816329
213 => 0.0064784539763793
214 => 0.0064944164075715
215 => 0.0064860785393767
216 => 0.0065598919681733
217 => 0.0064971354746089
218 => 0.0063315107699699
219 => 0.0061658409409908
220 => 0.0061637610912397
221 => 0.0061201431495849
222 => 0.006088615366793
223 => 0.0060946887362669
224 => 0.006116092082455
225 => 0.0060873713654034
226 => 0.0060935003865636
227 => 0.0061952829752786
228 => 0.0062156947475652
229 => 0.0061463275699411
301 => 0.0058678083421446
302 => 0.0057994590250308
303 => 0.0058485871587464
304 => 0.0058251070750874
305 => 0.0047013160405624
306 => 0.004965334074696
307 => 0.0048084635240191
308 => 0.004880756691038
309 => 0.004720632480229
310 => 0.004797052146456
311 => 0.0047829402245033
312 => 0.0052074734105285
313 => 0.005200844908755
314 => 0.0052040176217815
315 => 0.0050525757625689
316 => 0.0052938267563891
317 => 0.0054126756710501
318 => 0.0053906799000078
319 => 0.0053962157616989
320 => 0.0053010913166591
321 => 0.0052049386343412
322 => 0.0050982905118589
323 => 0.0052964295413247
324 => 0.0052743998635941
325 => 0.0053249280182802
326 => 0.005453435342159
327 => 0.005472358533752
328 => 0.0054977914951531
329 => 0.0054886755889323
330 => 0.0057058534586037
331 => 0.0056795517856007
401 => 0.00574293125003
402 => 0.0056125548830874
403 => 0.0054650216484535
404 => 0.0054930628931326
405 => 0.0054903622957766
406 => 0.0054559805918328
407 => 0.0054249423268222
408 => 0.0053732723605564
409 => 0.0055367637795374
410 => 0.0055301263264971
411 => 0.0056375789760234
412 => 0.0056185856764803
413 => 0.0054917437736825
414 => 0.0054962739570554
415 => 0.0055267416173698
416 => 0.0056321905375914
417 => 0.0056634949566232
418 => 0.0056489935024622
419 => 0.0056833173688295
420 => 0.0057104455533095
421 => 0.0056867242511273
422 => 0.0060225678662273
423 => 0.0058831021823026
424 => 0.0059510767862515
425 => 0.0059672883287637
426 => 0.0059257628035107
427 => 0.0059347682030205
428 => 0.0059484089294534
429 => 0.0060312327492255
430 => 0.0062485864175731
501 => 0.0063448508777078
502 => 0.0066344672556277
503 => 0.0063368574543596
504 => 0.0063191985203841
505 => 0.0063713671756242
506 => 0.0065414026484703
507 => 0.0066792004285922
508 => 0.0067249159020033
509 => 0.0067309579564947
510 => 0.0068167232237211
511 => 0.0068658822754678
512 => 0.0068063090644294
513 => 0.0067558270056496
514 => 0.006575006537164
515 => 0.006595936998749
516 => 0.0067401271233295
517 => 0.0069438041670555
518 => 0.007118580259557
519 => 0.0070573797635248
520 => 0.0075242963474338
521 => 0.0075705892195452
522 => 0.0075641930414471
523 => 0.0076696550934199
524 => 0.0074603343972274
525 => 0.0073708457442076
526 => 0.0067667417997535
527 => 0.0069364703670654
528 => 0.0071831808074625
529 => 0.0071505277555593
530 => 0.0069713600391539
531 => 0.0071184443447778
601 => 0.007069813673587
602 => 0.0070314566455305
603 => 0.0072071776269332
604 => 0.0070139651896609
605 => 0.0071812533656009
606 => 0.0069667045495832
607 => 0.0070576593222355
608 => 0.0070060289942907
609 => 0.007039440144046
610 => 0.0068441192452785
611 => 0.0069495096611067
612 => 0.0068397346574886
613 => 0.0068396826098437
614 => 0.0068372593205546
615 => 0.0069664091254944
616 => 0.0069706206959968
617 => 0.0068751787950118
618 => 0.0068614241259971
619 => 0.0069122823464582
620 => 0.0068527406900874
621 => 0.0068805998563525
622 => 0.0068535845158529
623 => 0.0068475027936764
624 => 0.0067990425966536
625 => 0.0067781646113353
626 => 0.006786351407338
627 => 0.0067584056519982
628 => 0.0067415673235638
629 => 0.0068339097532144
630 => 0.006784574918135
701 => 0.0068263484821773
702 => 0.0067787422337071
703 => 0.006613718235454
704 => 0.0065188111889615
705 => 0.0062070961539941
706 => 0.0062954981512296
707 => 0.0063541087668551
708 => 0.0063347379587405
709 => 0.0063763539500783
710 => 0.0063789088339554
711 => 0.0063653790509467
712 => 0.0063497132954951
713 => 0.0063420880721119
714 => 0.006398920239982
715 => 0.0064319132263135
716 => 0.006359991126242
717 => 0.0063431407844924
718 => 0.0064158579985926
719 => 0.0064602154571863
720 => 0.0067877260091396
721 => 0.0067634629696057
722 => 0.0068243584374546
723 => 0.006817502542292
724 => 0.0068813306940064
725 => 0.00698566274627
726 => 0.0067735265123175
727 => 0.0068103460274126
728 => 0.0068013187325981
729 => 0.0068998763702994
730 => 0.0069001840564864
731 => 0.0068410938293653
801 => 0.0068731276001171
802 => 0.006855247228084
803 => 0.006887559477025
804 => 0.0067631389219203
805 => 0.0069146697276689
806 => 0.007000577930099
807 => 0.007001770765573
808 => 0.0070424905717152
809 => 0.0070838642530878
810 => 0.0071632774315943
811 => 0.0070816494626409
812 => 0.0069348086928162
813 => 0.0069454101221048
814 => 0.0068593174324835
815 => 0.00686076466615
816 => 0.0068530392194167
817 => 0.0068762238666077
818 => 0.0067682266481929
819 => 0.0067935733794931
820 => 0.0067580878072425
821 => 0.0068102688887088
822 => 0.0067541306708929
823 => 0.0068013143793632
824 => 0.0068216773037743
825 => 0.0068968169332336
826 => 0.0067430324865276
827 => 0.0064294555894023
828 => 0.0064953732549304
829 => 0.0063978758498935
830 => 0.0064068996059285
831 => 0.0064251290292392
901 => 0.0063660415039929
902 => 0.006377313541748
903 => 0.0063769108252392
904 => 0.0063734404319321
905 => 0.0063580694845471
906 => 0.0063357785697895
907 => 0.006424578713402
908 => 0.0064396675881862
909 => 0.0064732082877152
910 => 0.0065730026586398
911 => 0.0065630308476711
912 => 0.0065792952850875
913 => 0.0065437901095284
914 => 0.0064085465891913
915 => 0.0064158909630218
916 => 0.0063243065036698
917 => 0.0064708662671796
918 => 0.0064361589806861
919 => 0.0064137829672995
920 => 0.0064076774647347
921 => 0.0065077192066024
922 => 0.0065376532637313
923 => 0.0065190003681284
924 => 0.0064807427350549
925 => 0.0065542087004099
926 => 0.0065738650934587
927 => 0.0065782654349624
928 => 0.0067084330398699
929 => 0.006585540358095
930 => 0.0066151218480465
1001 => 0.0068459081882387
1002 => 0.0066366168240223
1003 => 0.0067474831274021
1004 => 0.0067420567987721
1005 => 0.00679877224807
1006 => 0.0067374044765297
1007 => 0.0067381652036066
1008 => 0.0067885246803458
1009 => 0.006717803877645
1010 => 0.0067002924123474
1011 => 0.0066761004484583
1012 => 0.006728922716565
1013 => 0.0067605872773492
1014 => 0.007015780382213
1015 => 0.0071806467661745
1016 => 0.0071734894816426
1017 => 0.0072388936643891
1018 => 0.0072094284810281
1019 => 0.0071142776314329
1020 => 0.007276688529282
1021 => 0.0072252949256419
1022 => 0.0072295317518828
1023 => 0.0072293740569985
1024 => 0.0072635463105123
1025 => 0.0072393321370567
1026 => 0.0071916035156419
1027 => 0.0072232880019386
1028 => 0.0073173795988286
1029 => 0.0076094428026579
1030 => 0.0077728852408436
1031 => 0.0075996033626547
1101 => 0.0077191308818926
1102 => 0.0076474569623597
1103 => 0.0076344316790662
1104 => 0.0077095037941618
1105 => 0.007784707313057
1106 => 0.0077799171740172
1107 => 0.0077253232810427
1108 => 0.0076944845761701
1109 => 0.0079280055811891
1110 => 0.0081000598797606
1111 => 0.0080883269300647
1112 => 0.0081401123542628
1113 => 0.0082921559613715
1114 => 0.0083060569233329
1115 => 0.0083043057216357
1116 => 0.0082698507369988
1117 => 0.0084195574135546
1118 => 0.0085444453569758
1119 => 0.0082618754035556
1120 => 0.0083694743427057
1121 => 0.0084177789731115
1122 => 0.0084887045018852
1123 => 0.0086083677574253
1124 => 0.0087383537920528
1125 => 0.0087567352425735
1126 => 0.0087436927237957
1127 => 0.0086579634397467
1128 => 0.008800195709892
1129 => 0.008883512037986
1130 => 0.0089331250047057
1201 => 0.0090589352334963
1202 => 0.008418077286064
1203 => 0.0079644461781647
1204 => 0.0078936051301537
1205 => 0.0080376631869708
1206 => 0.008075650147712
1207 => 0.0080603376514688
1208 => 0.0075497345971923
1209 => 0.0078909169107446
1210 => 0.0082580003927033
1211 => 0.0082721015642398
1212 => 0.0084558712306619
1213 => 0.0085157141670221
1214 => 0.0086636728357327
1215 => 0.0086544179807201
1216 => 0.0086904435620145
1217 => 0.008682161904751
1218 => 0.0089562241821639
1219 => 0.0092585555727924
1220 => 0.0092480867980899
1221 => 0.0092046230836644
1222 => 0.0092691741112508
1223 => 0.0095812125061802
1224 => 0.0095524850110885
1225 => 0.0095803913255679
1226 => 0.0099483021789029
1227 => 0.010426638622947
1228 => 0.010204403320495
1229 => 0.010686589980331
1230 => 0.010990100923081
1231 => 0.01151499171495
]
'min_raw' => 0.0047013160405624
'max_raw' => 0.01151499171495
'avg_raw' => 0.0081081538777562
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0047013'
'max' => '$0.011514'
'avg' => '$0.0081081'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0020962850039946
'max_diff' => 0.0046715583886335
'year' => 2028
]
3 => [
'items' => [
101 => 0.011449272802666
102 => 0.011653608936114
103 => 0.011331622233728
104 => 0.010592275680799
105 => 0.010475271258693
106 => 0.010709517074773
107 => 0.011285387556233
108 => 0.010691380863962
109 => 0.010811547644173
110 => 0.010776939603388
111 => 0.010775095487969
112 => 0.010845477872942
113 => 0.010743384552641
114 => 0.010327437999496
115 => 0.010518063853614
116 => 0.010444454056734
117 => 0.010526129614346
118 => 0.010966898913219
119 => 0.01077202429956
120 => 0.010566739724398
121 => 0.010824212137945
122 => 0.01115206299751
123 => 0.011131546679923
124 => 0.011091736448649
125 => 0.011316144637946
126 => 0.011686801221234
127 => 0.011786988206278
128 => 0.011860944190405
129 => 0.01187114147112
130 => 0.011976179800053
131 => 0.011411362232309
201 => 0.012307742217863
202 => 0.012462522279371
203 => 0.012433430042784
204 => 0.01260546156701
205 => 0.012554845528564
206 => 0.012481510830269
207 => 0.012754217388321
208 => 0.012441581325799
209 => 0.011997833794835
210 => 0.011754385123017
211 => 0.012074977972511
212 => 0.012270752838548
213 => 0.012400147571379
214 => 0.012439302339351
215 => 0.011455207412263
216 => 0.01092483482697
217 => 0.011264797573409
218 => 0.01167957558704
219 => 0.0114090581195
220 => 0.011419661892071
221 => 0.011033975074099
222 => 0.011713700312346
223 => 0.011614670062523
224 => 0.012128439173789
225 => 0.01200582405213
226 => 0.012424782817966
227 => 0.012314456934084
228 => 0.01277241350984
301 => 0.012955104786588
302 => 0.013261871873875
303 => 0.01348753099205
304 => 0.013620042342414
305 => 0.013612086857976
306 => 0.014137162845009
307 => 0.013827543880213
308 => 0.013438589488843
309 => 0.013431554531038
310 => 0.013632999521855
311 => 0.014055172958873
312 => 0.014164636388719
313 => 0.014225811512726
314 => 0.014132119680787
315 => 0.013796050485093
316 => 0.013650937510301
317 => 0.013774577969151
318 => 0.013623376312523
319 => 0.013884392791555
320 => 0.014242824167376
321 => 0.01416880950566
322 => 0.014416229422878
323 => 0.014672283007864
324 => 0.01503845113448
325 => 0.015134181041944
326 => 0.0152924189387
327 => 0.015455297712903
328 => 0.01550760998547
329 => 0.015607490345347
330 => 0.015606963926549
331 => 0.015907960113761
401 => 0.016239968229333
402 => 0.016365293606956
403 => 0.016653472402318
404 => 0.01615997631425
405 => 0.016534298765924
406 => 0.016871946987232
407 => 0.016469388858186
408 => 0.017024221455062
409 => 0.017045764347521
410 => 0.017371036446751
411 => 0.017041310859587
412 => 0.01684552085845
413 => 0.017410759255577
414 => 0.017684260311104
415 => 0.017601879567353
416 => 0.016974958039776
417 => 0.016610062820797
418 => 0.015655061649697
419 => 0.016786301789845
420 => 0.017337295863384
421 => 0.016973531098236
422 => 0.017156992886844
423 => 0.018157900917804
424 => 0.018538981891998
425 => 0.018459719713323
426 => 0.018473113716752
427 => 0.018678738093319
428 => 0.019590589818425
429 => 0.019044187128184
430 => 0.019461891511555
501 => 0.01968344041035
502 => 0.019889227374605
503 => 0.019383879630033
504 => 0.018726429639377
505 => 0.018518187629463
506 => 0.016937361861362
507 => 0.016855073014954
508 => 0.016808881791858
509 => 0.016517652664115
510 => 0.016288826344082
511 => 0.016106855158614
512 => 0.015629308426752
513 => 0.015790466430224
514 => 0.015029356611385
515 => 0.015516287701402
516 => 0.014301538052895
517 => 0.015313217656653
518 => 0.014762606443755
519 => 0.015132327064575
520 => 0.015131037144158
521 => 0.014450264261199
522 => 0.014057608669676
523 => 0.014307824094979
524 => 0.014576074893029
525 => 0.014619597682508
526 => 0.014967391844242
527 => 0.015064453718971
528 => 0.014770351707156
529 => 0.014276365066469
530 => 0.014391106896465
531 => 0.014055283430153
601 => 0.013466765722706
602 => 0.013889449414728
603 => 0.014033772211274
604 => 0.014097513380118
605 => 0.013518773806558
606 => 0.013336921267498
607 => 0.013240104501594
608 => 0.014201657055023
609 => 0.014254333074482
610 => 0.013984835111291
611 => 0.015202991459759
612 => 0.014927285160987
613 => 0.015235316646398
614 => 0.01438069527806
615 => 0.01441334296523
616 => 0.014008751513544
617 => 0.014235295691678
618 => 0.014075181568432
619 => 0.014216993160838
620 => 0.014301994444614
621 => 0.014706519506825
622 => 0.015317836683066
623 => 0.014646096952253
624 => 0.014353410332047
625 => 0.014534991465091
626 => 0.015018565950867
627 => 0.015751206050541
628 => 0.015317468365778
629 => 0.015509953784932
630 => 0.015552003285937
701 => 0.015232181175035
702 => 0.015762998347959
703 => 0.01604746758328
704 => 0.016339274156106
705 => 0.016592641627056
706 => 0.016222720193955
707 => 0.016618589153527
708 => 0.016299588652391
709 => 0.016013412225205
710 => 0.016013846236717
711 => 0.015834323583573
712 => 0.015486475821797
713 => 0.015422327357583
714 => 0.015756035769481
715 => 0.016023638313518
716 => 0.016045679340775
717 => 0.016193837859069
718 => 0.016281516544042
719 => 0.017140886850164
720 => 0.01748653269637
721 => 0.017909181894371
722 => 0.018073827576195
723 => 0.018569352049744
724 => 0.018169175792823
725 => 0.018082595142412
726 => 0.016880614854403
727 => 0.017077439059229
728 => 0.017392573601865
729 => 0.01688581130694
730 => 0.017207235342468
731 => 0.017270691255774
801 => 0.016868591718074
802 => 0.017083370454855
803 => 0.016512981807422
804 => 0.015330269596887
805 => 0.015764315044746
806 => 0.016083918592487
807 => 0.015627804923027
808 => 0.016445371021498
809 => 0.015967765784761
810 => 0.01581638785381
811 => 0.01522580857504
812 => 0.015504539261138
813 => 0.015881526505125
814 => 0.015648592217812
815 => 0.016131965839245
816 => 0.016816551798231
817 => 0.017304428520402
818 => 0.017341881637141
819 => 0.017028209589987
820 => 0.01753087104738
821 => 0.017534532387329
822 => 0.016967528209957
823 => 0.016620241308409
824 => 0.01654133699368
825 => 0.016738455441976
826 => 0.016977793628281
827 => 0.017355163240772
828 => 0.017583199794144
829 => 0.018177798184096
830 => 0.018338679459945
831 => 0.018515439205948
901 => 0.018751644737295
902 => 0.019035270039532
903 => 0.018414714025034
904 => 0.018439369872352
905 => 0.017861516703835
906 => 0.017243997720747
907 => 0.017712617654083
908 => 0.018325275879021
909 => 0.018184731405293
910 => 0.018168917280936
911 => 0.018195512251633
912 => 0.018089546308195
913 => 0.017610266273308
914 => 0.017369574840239
915 => 0.017680128195831
916 => 0.017845173483189
917 => 0.018101144330418
918 => 0.018069590520608
919 => 0.01872894393381
920 => 0.018985148732368
921 => 0.018919600581275
922 => 0.018931663018581
923 => 0.019395509568434
924 => 0.019911402329189
925 => 0.020394603977681
926 => 0.020886137448522
927 => 0.020293574664546
928 => 0.019992707827034
929 => 0.020303125604746
930 => 0.020138413562446
1001 => 0.02108489781427
1002 => 0.021150430330308
1003 => 0.022096846140548
1004 => 0.022995107441563
1005 => 0.022430925612418
1006 => 0.022962923665994
1007 => 0.023538322935375
1008 => 0.024648361481176
1009 => 0.024274539550577
1010 => 0.023988197810275
1011 => 0.023717606249282
1012 => 0.024280664332507
1013 => 0.025005029561503
1014 => 0.025161050893945
1015 => 0.025413865057238
1016 => 0.025148061877181
1017 => 0.025468192530299
1018 => 0.026598394408344
1019 => 0.026293003884328
1020 => 0.025859300246249
1021 => 0.026751486083223
1022 => 0.027074364669339
1023 => 0.029340495679531
1024 => 0.032201579689101
1025 => 0.031017072122249
1026 => 0.030281810051683
1027 => 0.030454614078915
1028 => 0.031499385105405
1029 => 0.031834932399738
1030 => 0.030922799183651
1031 => 0.031244980055764
1101 => 0.033020228337231
1102 => 0.033972592083454
1103 => 0.032679154196567
1104 => 0.029110610365138
1105 => 0.025820249978895
1106 => 0.026693001720186
1107 => 0.026594058757363
1108 => 0.028501341569066
1109 => 0.02628572042133
1110 => 0.02632302579918
1111 => 0.028269749199582
1112 => 0.027750396771643
1113 => 0.026909112352015
1114 => 0.025826392286179
1115 => 0.023824884104997
1116 => 0.022052092492739
1117 => 0.025528945093902
1118 => 0.025379016887494
1119 => 0.025161898626499
1120 => 0.025645071821693
1121 => 0.027991223706451
1122 => 0.027937137311754
1123 => 0.027593067263818
1124 => 0.027854041362684
1125 => 0.026863362330693
1126 => 0.027118682874579
1127 => 0.025819728768999
1128 => 0.026406910273836
1129 => 0.026907307333491
1130 => 0.027007769451721
1201 => 0.027234115733818
1202 => 0.025300011535507
1203 => 0.026168367538233
1204 => 0.02667844533588
1205 => 0.024373895289321
1206 => 0.026632891791153
1207 => 0.025266343084408
1208 => 0.024802515928466
1209 => 0.025426998089361
1210 => 0.025183636783931
1211 => 0.024974409024178
1212 => 0.024857656339247
1213 => 0.025316207116627
1214 => 0.025294815174775
1215 => 0.024544537102111
1216 => 0.023565829941567
1217 => 0.023894316189613
1218 => 0.023774974056123
1219 => 0.023342462768913
1220 => 0.02363392315488
1221 => 0.022350479119805
1222 => 0.020142380365075
1223 => 0.021601118038344
1224 => 0.021544958224724
1225 => 0.021516639900053
1226 => 0.022612840944966
1227 => 0.022507466508159
1228 => 0.022316210873524
1229 => 0.023338950209198
1230 => 0.022965636593892
1231 => 0.024116101192516
]
'min_raw' => 0.010327437999496
'max_raw' => 0.033972592083454
'avg_raw' => 0.022150015041475
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.010327'
'max' => '$0.033972'
'avg' => '$0.02215'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0056261219589341
'max_diff' => 0.022457600368504
'year' => 2029
]
4 => [
'items' => [
101 => 0.024873871584556
102 => 0.02468167650183
103 => 0.025394363218165
104 => 0.023901883849319
105 => 0.02439762562777
106 => 0.024499797321241
107 => 0.023326329764552
108 => 0.022524707069208
109 => 0.022471247974596
110 => 0.021081344691282
111 => 0.021823819806321
112 => 0.022477167181848
113 => 0.022164264490775
114 => 0.022065208846484
115 => 0.022571262650621
116 => 0.022610587365261
117 => 0.02171397970404
118 => 0.021900412828679
119 => 0.022677869950356
120 => 0.021880822903963
121 => 0.020332290689717
122 => 0.019948233290451
123 => 0.019896992953807
124 => 0.018855398827022
125 => 0.019973897842312
126 => 0.019485643048228
127 => 0.02102803409255
128 => 0.020147028600042
129 => 0.020109050214104
130 => 0.020051640313539
131 => 0.019155097220904
201 => 0.019351383179905
202 => 0.020003867602821
203 => 0.020236681395681
204 => 0.020212397009698
205 => 0.020000670073187
206 => 0.020097597580505
207 => 0.019785360307653
208 => 0.019675102827952
209 => 0.019327099893308
210 => 0.018815631717645
211 => 0.018886754504487
212 => 0.01787340221557
213 => 0.017321274105892
214 => 0.017168452322065
215 => 0.016964092645868
216 => 0.017191535291271
217 => 0.017870531515857
218 => 0.017051518011922
219 => 0.015647376806542
220 => 0.015731768085526
221 => 0.015921370233406
222 => 0.015568047885175
223 => 0.015233657934671
224 => 0.01552438286672
225 => 0.014929429727534
226 => 0.015993267477854
227 => 0.015964493648079
228 => 0.016361026574113
301 => 0.016608986750437
302 => 0.016037518822071
303 => 0.0158937961835
304 => 0.01597566713026
305 => 0.014622522750112
306 => 0.016250445809789
307 => 0.01626452415601
308 => 0.016143976808453
309 => 0.017010795581245
310 => 0.018840053559391
311 => 0.018151813126281
312 => 0.017885305628404
313 => 0.017378674680123
314 => 0.018053730337938
315 => 0.018001896595926
316 => 0.017767484757188
317 => 0.017625711745709
318 => 0.017886932866356
319 => 0.017593343558054
320 => 0.017540606850989
321 => 0.017221079784274
322 => 0.017107023159012
323 => 0.017022580174393
324 => 0.016929616745524
325 => 0.017134670904566
326 => 0.016669991203056
327 => 0.016109633036147
328 => 0.016063045317728
329 => 0.016191678104317
330 => 0.016134767671836
331 => 0.016062772852473
401 => 0.015925315135685
402 => 0.015884534367433
403 => 0.016017052080235
404 => 0.015867447308744
405 => 0.016088197298472
406 => 0.01602816551592
407 => 0.015692832858546
408 => 0.015274884211407
409 => 0.015271163591771
410 => 0.015181117241318
411 => 0.015066429675457
412 => 0.01503452621833
413 => 0.01549989882384
414 => 0.016463206189816
415 => 0.016274085903883
416 => 0.016410744692296
417 => 0.017082970675113
418 => 0.01729665110051
419 => 0.017144985795862
420 => 0.01693737697255
421 => 0.016946510707143
422 => 0.017655972903863
423 => 0.017700221190829
424 => 0.017812022336952
425 => 0.01795571840472
426 => 0.017169457857562
427 => 0.016909477906079
428 => 0.016786284981928
429 => 0.016406898457205
430 => 0.016816034297977
501 => 0.016577648364503
502 => 0.016609814771351
503 => 0.016588866356693
504 => 0.016600305607622
505 => 0.015992970113522
506 => 0.016214251246958
507 => 0.015846328444439
508 => 0.015353721113138
509 => 0.015352069720633
510 => 0.015472634667093
511 => 0.015400917919232
512 => 0.015207929994744
513 => 0.015235343018541
514 => 0.014995176084747
515 => 0.015264503632666
516 => 0.01527222698304
517 => 0.01516852120672
518 => 0.015583457454329
519 => 0.01575345717353
520 => 0.015685195809963
521 => 0.015748667774291
522 => 0.016281944705591
523 => 0.016368892113897
524 => 0.016407508409243
525 => 0.016355767689158
526 => 0.015758415097645
527 => 0.015784910225218
528 => 0.015590506558881
529 => 0.01542625594658
530 => 0.015432825109691
531 => 0.015517271275498
601 => 0.015886052634283
602 => 0.016662131262997
603 => 0.01669158287965
604 => 0.016727279098199
605 => 0.01658208463788
606 => 0.016538292599324
607 => 0.016596065601864
608 => 0.016887519930533
609 => 0.017637219592948
610 => 0.017372225661494
611 => 0.017156781470345
612 => 0.017345784109319
613 => 0.017316688634501
614 => 0.017071093546382
615 => 0.017064200510239
616 => 0.01659282501464
617 => 0.016418568226617
618 => 0.016272946211652
619 => 0.016113930772868
620 => 0.016019661090511
621 => 0.016164502167415
622 => 0.016197629035413
623 => 0.015880931489372
624 => 0.015837766784085
625 => 0.016096388836573
626 => 0.015982578913675
627 => 0.016099635241725
628 => 0.016126793313924
629 => 0.016122420238796
630 => 0.016003589608305
701 => 0.0160793287086
702 => 0.015900183157489
703 => 0.015705389277448
704 => 0.01558112291807
705 => 0.015472684037971
706 => 0.015532852231155
707 => 0.015318363608734
708 => 0.015249744381619
709 => 0.016053670005603
710 => 0.016647538507698
711 => 0.016638903424479
712 => 0.016586339576152
713 => 0.016508240359724
714 => 0.016881806486401
715 => 0.016751663517557
716 => 0.0168463534012
717 => 0.016870455950709
718 => 0.016943407108849
719 => 0.016969480877521
720 => 0.0168906678392
721 => 0.016626161656392
722 => 0.015967037397329
723 => 0.015660213275463
724 => 0.015558956204687
725 => 0.015562636706895
726 => 0.015461112025509
727 => 0.015491015594194
728 => 0.015450712784677
729 => 0.015374389013747
730 => 0.015528139453375
731 => 0.015545857759257
801 => 0.015509970569467
802 => 0.015518423301798
803 => 0.015221292697957
804 => 0.015243882892433
805 => 0.015118097818966
806 => 0.015094514634052
807 => 0.014776540921687
808 => 0.014213204399204
809 => 0.014525347517059
810 => 0.014148322524655
811 => 0.01400553744717
812 => 0.014681459796346
813 => 0.014613615939656
814 => 0.014497496748019
815 => 0.014325732262228
816 => 0.014262023143631
817 => 0.013874946706889
818 => 0.013852076166034
819 => 0.014043921700026
820 => 0.013955391587091
821 => 0.013831061779553
822 => 0.013380751819764
823 => 0.012874454332457
824 => 0.012889736271126
825 => 0.013050780081839
826 => 0.013519036681203
827 => 0.01333608072691
828 => 0.013203344082893
829 => 0.013178486499517
830 => 0.013489631198338
831 => 0.013929966134
901 => 0.014136561433873
902 => 0.013931831766091
903 => 0.013696649347171
904 => 0.01371096381128
905 => 0.013806191528006
906 => 0.013816198614587
907 => 0.013663119037013
908 => 0.013706210041431
909 => 0.013640750865396
910 => 0.013239028022896
911 => 0.013231762130552
912 => 0.013133172866347
913 => 0.013130187622608
914 => 0.01296246268995
915 => 0.012938996812444
916 => 0.012605968778476
917 => 0.012825168838935
918 => 0.012678140946899
919 => 0.012456535233226
920 => 0.01241833032466
921 => 0.012417181838975
922 => 0.012644721356786
923 => 0.01282250990719
924 => 0.012680698560029
925 => 0.012648410865178
926 => 0.012993158974689
927 => 0.012949286635305
928 => 0.012911293472345
929 => 0.013890538970147
930 => 0.013115389747157
1001 => 0.012777380441963
1002 => 0.012359029740559
1003 => 0.012495246838443
1004 => 0.012523949782413
1005 => 0.011517891758918
1006 => 0.011109734144083
1007 => 0.010969669831767
1008 => 0.01088906083981
1009 => 0.010925795369669
1010 => 0.010558405644203
1011 => 0.010805297615781
1012 => 0.010487169168209
1013 => 0.010433833898694
1014 => 0.011002686971505
1015 => 0.011081839553396
1016 => 0.010744150048272
1017 => 0.010961001377526
1018 => 0.01088236807108
1019 => 0.010492622567358
1020 => 0.01047773715589
1021 => 0.01028217656234
1022 => 0.0099761621014258
1023 => 0.009836305281324
1024 => 0.0097634666351224
1025 => 0.0097935212801421
1026 => 0.0097783247319329
1027 => 0.0096791569755261
1028 => 0.0097840089116485
1029 => 0.009516155542667
1030 => 0.0094094941728974
1031 => 0.0093613177066974
1101 => 0.0091235824246617
1102 => 0.0095019249797403
1103 => 0.0095764632293247
1104 => 0.0096511483422868
1105 => 0.01030123126093
1106 => 0.01026875495543
1107 => 0.010562324940549
1108 => 0.010550917350768
1109 => 0.010467186435493
1110 => 0.010113939477018
1111 => 0.010254737418644
1112 => 0.0098213832391752
1113 => 0.010146081655653
1114 => 0.0099979028581028
1115 => 0.010095982255147
1116 => 0.0099196266557987
1117 => 0.010017229126022
1118 => 0.0095941390134879
1119 => 0.0091990634194418
1120 => 0.0093580533714615
1121 => 0.0095308936320134
1122 => 0.0099056553557692
1123 => 0.0096824503648173
1124 => 0.0097627233198788
1125 => 0.0094938223579533
1126 => 0.0089390028657388
1127 => 0.0089421430838115
1128 => 0.0088567961923339
1129 => 0.0087830440172471
1130 => 0.0097080881430514
1201 => 0.0095930442832241
1202 => 0.0094097369491573
1203 => 0.0096551011001496
1204 => 0.0097199792761246
1205 => 0.0097218262665867
1206 => 0.0099008376173852
1207 => 0.0099963760073959
1208 => 0.010013215062722
1209 => 0.010294893291
1210 => 0.010389308117693
1211 => 0.010778189426755
1212 => 0.0099882702424931
1213 => 0.009972002376714
1214 => 0.0096585538769331
1215 => 0.0094597598829473
1216 => 0.009672165471777
1217 => 0.0098603278272258
1218 => 0.0096644006058174
1219 => 0.0096899845646839
1220 => 0.0094269682777854
1221 => 0.0095209842242851
1222 => 0.0096019634227263
1223 => 0.0095572514690843
1224 => 0.0094903155103993
1225 => 0.0098449006598542
1226 => 0.0098248935760915
1227 => 0.010155091419141
1228 => 0.010412504250473
1229 => 0.010873834062267
1230 => 0.010392412353993
1231 => 0.010374867433465
]
'min_raw' => 0.0087830440172471
'max_raw' => 0.025394363218165
'avg_raw' => 0.017088703617706
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008783'
'max' => '$0.025394'
'avg' => '$0.017088'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0015443939822493
'max_diff' => -0.0085782288652889
'year' => 2030
]
5 => [
'items' => [
101 => 0.010546371845915
102 => 0.010389281861261
103 => 0.010488557309001
104 => 0.010857839252843
105 => 0.01086564159841
106 => 0.010734942257416
107 => 0.010726989190639
108 => 0.010752091428771
109 => 0.010899116021564
110 => 0.010847741111232
111 => 0.010907193458121
112 => 0.010981539528273
113 => 0.011289066396499
114 => 0.011363210083302
115 => 0.011183079363467
116 => 0.011199343150629
117 => 0.011131969316712
118 => 0.01106688703734
119 => 0.011213182496865
120 => 0.011480540324592
121 => 0.011478877105422
122 => 0.011540898924761
123 => 0.011579538004393
124 => 0.011413670789078
125 => 0.011305697331015
126 => 0.011347101225366
127 => 0.011413306954093
128 => 0.011325631599838
129 => 0.010784458698205
130 => 0.010948615986302
131 => 0.010921292186681
201 => 0.010882379773334
202 => 0.011047441195906
203 => 0.011031520619029
204 => 0.010554637531552
205 => 0.010585166039569
206 => 0.010556494071238
207 => 0.010649139066648
208 => 0.010384278727474
209 => 0.010465747983942
210 => 0.010516844737872
211 => 0.010546941118481
212 => 0.01065566988252
213 => 0.010642911817003
214 => 0.010654876823255
215 => 0.010816092876996
216 => 0.011631468354149
217 => 0.011675847442346
218 => 0.011457308581176
219 => 0.011544610545725
220 => 0.011377009864631
221 => 0.011489521324676
222 => 0.011566498808158
223 => 0.011218652362224
224 => 0.0111980551532
225 => 0.011029762724477
226 => 0.011120193543102
227 => 0.010976311608463
228 => 0.011011615202447
301 => 0.010912903275956
302 => 0.011090565090292
303 => 0.011289218604574
304 => 0.011339406327347
305 => 0.011207384035905
306 => 0.011111791196208
307 => 0.01094396165994
308 => 0.01122306591908
309 => 0.01130468451
310 => 0.011222637211368
311 => 0.011203625059505
312 => 0.011167597066081
313 => 0.011211268568626
314 => 0.011304239997626
315 => 0.011260396388622
316 => 0.011289355864794
317 => 0.011178992204509
318 => 0.011413725698028
319 => 0.011786538977429
320 => 0.011787737633083
321 => 0.011743893787746
322 => 0.011725953830863
323 => 0.011770940276846
324 => 0.011795343578351
325 => 0.011940821495556
326 => 0.012096925096812
327 => 0.012825392490541
328 => 0.012620841761391
329 => 0.013267181369826
330 => 0.013778352083404
331 => 0.01393162982962
401 => 0.013790621515377
402 => 0.01330823968947
403 => 0.013284571735767
404 => 0.014005453840026
405 => 0.01380177162708
406 => 0.013777544275962
407 => 0.013519806192818
408 => 0.013672161321439
409 => 0.013638839019895
410 => 0.013586238136724
411 => 0.013876921108982
412 => 0.014421053683601
413 => 0.014336245519004
414 => 0.01427294015827
415 => 0.013995554495445
416 => 0.014162602620796
417 => 0.014103119982955
418 => 0.014358695143736
419 => 0.014207298080172
420 => 0.01380022853399
421 => 0.013865055700939
422 => 0.013855257205069
423 => 0.014056909555746
424 => 0.013996378525391
425 => 0.013843437549904
426 => 0.014419193897616
427 => 0.014381807482921
428 => 0.014434812871234
429 => 0.014458147482416
430 => 0.014808600225304
501 => 0.014952169500828
502 => 0.014984762239906
503 => 0.015121141947608
504 => 0.014981368988539
505 => 0.015540560481243
506 => 0.015912390194164
507 => 0.016344289539902
508 => 0.016975410567627
509 => 0.017212717912247
510 => 0.017169850464497
511 => 0.017648359224833
512 => 0.018508228830504
513 => 0.017343654696416
514 => 0.018569954087418
515 => 0.018181721858534
516 => 0.01726123022785
517 => 0.017201961418717
518 => 0.017825329038144
519 => 0.019207898421123
520 => 0.018861580471659
521 => 0.019208464873223
522 => 0.018803805792949
523 => 0.018783711058879
524 => 0.01918881148491
525 => 0.020135350711209
526 => 0.019685685405287
527 => 0.019040979926791
528 => 0.019517020419384
529 => 0.019104630089232
530 => 0.018175399254615
531 => 0.01886131564885
601 => 0.018402662889799
602 => 0.018536522148212
603 => 0.019500542028288
604 => 0.019384548605837
605 => 0.01953465483519
606 => 0.019269721269345
607 => 0.019022231542658
608 => 0.018560273588967
609 => 0.018423510613132
610 => 0.018461306979436
611 => 0.01842349188313
612 => 0.018165030653652
613 => 0.018109215975755
614 => 0.018016189067296
615 => 0.018045021996117
616 => 0.017870104192232
617 => 0.018200210228026
618 => 0.018261480817154
619 => 0.018501704461446
620 => 0.018526645277108
621 => 0.019195664707092
622 => 0.018827180047471
623 => 0.01907439137058
624 => 0.019052278462998
625 => 0.017281180072662
626 => 0.017525221804316
627 => 0.017904874154257
628 => 0.017733841285216
629 => 0.017492040823918
630 => 0.0172967739869
701 => 0.017000924761759
702 => 0.017417326864864
703 => 0.017964851351021
704 => 0.01854053140163
705 => 0.019232173262384
706 => 0.019077806850663
707 => 0.018527601638139
708 => 0.018552283442048
709 => 0.018704856641879
710 => 0.01850726048536
711 => 0.018448985521268
712 => 0.018696850556686
713 => 0.01869855746696
714 => 0.018471199208592
715 => 0.018218532110538
716 => 0.018217473426172
717 => 0.018172513756548
718 => 0.018811804018296
719 => 0.019163349022722
720 => 0.019203653090937
721 => 0.019160636237805
722 => 0.019177191717298
723 => 0.018972635424988
724 => 0.019440190449924
725 => 0.019869265177205
726 => 0.019754263984449
727 => 0.019581860848126
728 => 0.019444533445984
729 => 0.019721914012832
730 => 0.019709562692828
731 => 0.019865517583779
801 => 0.019858442569086
802 => 0.01980600080502
803 => 0.01975426585731
804 => 0.019959389077126
805 => 0.019900316883997
806 => 0.019841152935436
807 => 0.01972249057905
808 => 0.019738618764056
809 => 0.019566245395564
810 => 0.019486497588031
811 => 0.018287281904481
812 => 0.017966812288334
813 => 0.018067638553334
814 => 0.018100833177725
815 => 0.017961364390085
816 => 0.018161326804969
817 => 0.018130162874422
818 => 0.018251403497891
819 => 0.018175657620004
820 => 0.018178766257253
821 => 0.018401518733397
822 => 0.018466184724878
823 => 0.018433295079692
824 => 0.01845632985979
825 => 0.018987156644755
826 => 0.018911690050818
827 => 0.018871599926894
828 => 0.018882705165202
829 => 0.019018342789815
830 => 0.019056313919167
831 => 0.018895427575919
901 => 0.018971302505468
902 => 0.019294368325524
903 => 0.019407423078602
904 => 0.019768239581067
905 => 0.019614958317818
906 => 0.01989631271037
907 => 0.020761100192291
908 => 0.021451952271593
909 => 0.020816616148798
910 => 0.022085278012953
911 => 0.023073113252933
912 => 0.023035198491097
913 => 0.022862946567965
914 => 0.021738322410206
915 => 0.020703426493035
916 => 0.021569160871751
917 => 0.021571367806722
918 => 0.021497000455808
919 => 0.021035111226268
920 => 0.021480927711823
921 => 0.021516315005479
922 => 0.021496507531273
923 => 0.02114237814194
924 => 0.020601688018481
925 => 0.020707337574376
926 => 0.020880393702124
927 => 0.020552762349006
928 => 0.020448064279802
929 => 0.020642717910076
930 => 0.021269932464514
1001 => 0.021151361186204
1002 => 0.021148264810943
1003 => 0.0216555630216
1004 => 0.021292446984576
1005 => 0.020708670153612
1006 => 0.020561258804724
1007 => 0.020038047824352
1008 => 0.020399431512108
1009 => 0.020412437067672
1010 => 0.020214510915139
1011 => 0.020724730770057
1012 => 0.020720029004271
1013 => 0.021204406820312
1014 => 0.022130355280583
1015 => 0.021856506757724
1016 => 0.021538050720274
1017 => 0.021572675721373
1018 => 0.021952426521644
1019 => 0.021722820518933
1020 => 0.021805388438377
1021 => 0.021952301545209
1022 => 0.022040937870207
1023 => 0.021559922318242
1024 => 0.021447774583445
1025 => 0.021218359676557
1026 => 0.021158509609582
1027 => 0.021345363264343
1028 => 0.021296133927951
1029 => 0.020411344001087
1030 => 0.020318878530805
1031 => 0.020321714314768
1101 => 0.02008920549325
1102 => 0.019734573731925
1103 => 0.020666524826726
1104 => 0.020591676111166
1105 => 0.020509048922018
1106 => 0.020519170281225
1107 => 0.020923698664725
1108 => 0.020689051773122
1109 => 0.021312898992317
1110 => 0.021184654758615
1111 => 0.021053121544227
1112 => 0.021034939647399
1113 => 0.020984310581747
1114 => 0.020810684677378
1115 => 0.020601020964554
1116 => 0.020462582820588
1117 => 0.018875651003957
1118 => 0.019170176318366
1119 => 0.019509000845766
1120 => 0.019625961714871
1121 => 0.019425892054822
1122 => 0.020818584646996
1123 => 0.021073043003906
1124 => 0.020302272042918
1125 => 0.020158092266488
1126 => 0.020828037049135
1127 => 0.02042397844778
1128 => 0.020605926011229
1129 => 0.020212654899048
1130 => 0.021011751437137
1201 => 0.021005663660369
1202 => 0.020694797058639
1203 => 0.020957539381699
1204 => 0.020911881437296
1205 => 0.020560913809573
1206 => 0.021022877736945
1207 => 0.02102310686529
1208 => 0.020723904519947
1209 => 0.020374501684402
1210 => 0.020312036709933
1211 => 0.02026497774266
1212 => 0.020594352390047
1213 => 0.020889668668967
1214 => 0.021439179048923
1215 => 0.021577339014489
1216 => 0.022116586557921
1217 => 0.021795490901293
1218 => 0.021937828446991
1219 => 0.022092355987722
1220 => 0.02216644217331
1221 => 0.022045722709578
1222 => 0.022883396107672
1223 => 0.02295412140812
1224 => 0.022977834989589
1225 => 0.022695376232868
1226 => 0.022946265719132
1227 => 0.022828882837096
1228 => 0.02313428048625
1229 => 0.02318217073715
1230 => 0.023141609398383
1231 => 0.023156810519915
]
'min_raw' => 0.010384278727474
'max_raw' => 0.02318217073715
'avg_raw' => 0.016783224732312
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.010384'
'max' => '$0.023182'
'avg' => '$0.016783'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.001601234710227
'max_diff' => -0.002212192481015
'year' => 2031
]
6 => [
'items' => [
101 => 0.022442004050355
102 => 0.022404937564004
103 => 0.021899533392488
104 => 0.02210548932814
105 => 0.021720464578164
106 => 0.021842559892575
107 => 0.021896378343801
108 => 0.021868266639051
109 => 0.022117133767728
110 => 0.021905545868157
111 => 0.021347130612919
112 => 0.020788563217818
113 => 0.020781550859172
114 => 0.020634489923575
115 => 0.020528191802693
116 => 0.020548668591903
117 => 0.02062083146791
118 => 0.020523997565154
119 => 0.020544661987911
120 => 0.020887829091996
121 => 0.020956648807365
122 => 0.020722772524944
123 => 0.019783725502837
124 => 0.01955328100819
125 => 0.019718919941029
126 => 0.019639755199646
127 => 0.01585081526616
128 => 0.016740970501392
129 => 0.016212070487433
130 => 0.016455811947385
131 => 0.015915941991127
201 => 0.016173596231262
202 => 0.016126016901135
203 => 0.01755736017778
204 => 0.017535011721264
205 => 0.017545708744744
206 => 0.017035111943076
207 => 0.017848506512347
208 => 0.018249213925893
209 => 0.018175053648128
210 => 0.018193718192321
211 => 0.017872999484493
212 => 0.017548814002892
213 => 0.017189242412009
214 => 0.017857281983478
215 => 0.017783007386946
216 => 0.017953366588234
217 => 0.018386638002786
218 => 0.018450438864417
219 => 0.018536187869453
220 => 0.018505452955178
221 => 0.019237683305649
222 => 0.019149005378796
223 => 0.019362693668132
224 => 0.018923120644398
225 => 0.018425702043388
226 => 0.018520245057601
227 => 0.018511139805065
228 => 0.018395219489765
229 => 0.018290571812259
301 => 0.018116362913512
302 => 0.018667585647213
303 => 0.018645207010876
304 => 0.019007491120858
305 => 0.018943453885378
306 => 0.018515797554277
307 => 0.018531071383806
308 => 0.01863379522774
309 => 0.018989323624476
310 => 0.019094868658846
311 => 0.019045975993683
312 => 0.019161701305556
313 => 0.01925316587356
314 => 0.019173187847084
315 => 0.020305508043246
316 => 0.019835289752711
317 => 0.02006447087576
318 => 0.020119129223194
319 => 0.019979123015584
320 => 0.020009485348768
321 => 0.020055476010301
322 => 0.020334722301238
323 => 0.02106754536922
324 => 0.021392107717534
325 => 0.022368569556061
326 => 0.021365157332632
327 => 0.021305619003827
328 => 0.021481509267268
329 => 0.022054795735466
330 => 0.022519390571881
331 => 0.022673523482239
401 => 0.0226938946908
402 => 0.022983058277193
403 => 0.023148801452332
404 => 0.022947946212048
405 => 0.022777742426327
406 => 0.022168093592345
407 => 0.022238662104897
408 => 0.022724809176954
409 => 0.023411520550153
410 => 0.024000790348499
411 => 0.023794448603244
412 => 0.025368690464968
413 => 0.025524770115357
414 => 0.025503204954332
415 => 0.025858777625684
416 => 0.025153038284167
417 => 0.024851321042612
418 => 0.022814542416694
419 => 0.023386794131457
420 => 0.024218595606029
421 => 0.024108503561774
422 => 0.023504427096822
423 => 0.024000332102331
424 => 0.023836370399127
425 => 0.023707047001032
426 => 0.024299502558279
427 => 0.023648073336353
428 => 0.024212097101223
429 => 0.023488730788699
430 => 0.023795391154956
501 => 0.023621315899575
502 => 0.023733963923667
503 => 0.023075425876603
504 => 0.023430757021691
505 => 0.023060642932747
506 => 0.023060467450479
507 => 0.023052297161452
508 => 0.023487734745758
509 => 0.023501934349749
510 => 0.023180145317037
511 => 0.023133770490134
512 => 0.023305242531226
513 => 0.023104493679706
514 => 0.023198422803834
515 => 0.023107338697189
516 => 0.023086833746258
517 => 0.022923446808613
518 => 0.022853055223458
519 => 0.022880657577765
520 => 0.022786436512526
521 => 0.022729664912595
522 => 0.023041003861305
523 => 0.022874668020387
524 => 0.023015510508092
525 => 0.022855002717613
526 => 0.022298612785895
527 => 0.021978627052447
528 => 0.020927658048806
529 => 0.021225711554515
530 => 0.021423321337159
531 => 0.021358011305174
601 => 0.021498322525506
602 => 0.021506936494873
603 => 0.02146131988684
604 => 0.021408501698587
605 => 0.021382792725574
606 => 0.021574406347444
607 => 0.021685644504357
608 => 0.021443154122526
609 => 0.021386342018863
610 => 0.021631513183156
611 => 0.021781067451744
612 => 0.02288529214371
613 => 0.022803487611931
614 => 0.023008800933369
615 => 0.022985685804165
616 => 0.023200886874009
617 => 0.023552649672447
618 => 0.022837417548798
619 => 0.022961557114597
620 => 0.022931120959864
621 => 0.023263414916449
622 => 0.02326445230191
623 => 0.023065225475624
624 => 0.02317322957024
625 => 0.023112944647563
626 => 0.023221887650836
627 => 0.022802395062535
628 => 0.02331329175366
629 => 0.023602937256072
630 => 0.023606958984154
701 => 0.023744248653528
702 => 0.023883742908894
703 => 0.02415148998468
704 => 0.02387627558827
705 => 0.023381191680711
706 => 0.023416935139726
707 => 0.023126667625868
708 => 0.023131547075217
709 => 0.023105500192183
710 => 0.023183668848887
711 => 0.022819548686877
712 => 0.022905006961108
713 => 0.022785364876741
714 => 0.022961297036072
715 => 0.02277202311526
716 => 0.022931106282629
717 => 0.022999761303975
718 => 0.023253099810778
719 => 0.022734604811822
720 => 0.021677358409924
721 => 0.021899604421477
722 => 0.021570885113343
723 => 0.021601309336834
724 => 0.021662771110264
725 => 0.021463553393536
726 => 0.021501557855816
727 => 0.02150020006899
728 => 0.02148849939566
729 => 0.021436675173386
730 => 0.021361519797979
731 => 0.021660915681997
801 => 0.021711788876803
802 => 0.021824873687002
803 => 0.022161337375995
804 => 0.022127716719104
805 => 0.0221825534054
806 => 0.022062845227111
807 => 0.021606862255893
808 => 0.021631624325031
809 => 0.021322840926102
810 => 0.021816977401252
811 => 0.021699959361654
812 => 0.021624517070277
813 => 0.021603931942107
814 => 0.021941229659506
815 => 0.022042154423045
816 => 0.021979264883216
817 => 0.021850276602246
818 => 0.022097972233671
819 => 0.0221642451352
820 => 0.022179081193802
821 => 0.022617950361759
822 => 0.022203609105062
823 => 0.022303345163747
824 => 0.023081457422693
825 => 0.022375816975981
826 => 0.022749610458264
827 => 0.022731315212434
828 => 0.022922535309488
829 => 0.022715629583179
830 => 0.022718194427631
831 => 0.022887984919444
901 => 0.022649544795569
902 => 0.022590503667707
903 => 0.022508938772426
904 => 0.02268703273728
905 => 0.022793792014713
906 => 0.023654193384775
907 => 0.024210051908905
908 => 0.0241859206244
909 => 0.024406435392904
910 => 0.024307091470009
911 => 0.023986283737379
912 => 0.024533863418644
913 => 0.024360586295784
914 => 0.024374871051261
915 => 0.024374339371949
916 => 0.024489553510501
917 => 0.024407913734116
918 => 0.02424699335471
919 => 0.024353819812399
920 => 0.02467105620058
921 => 0.025655767683492
922 => 0.026206825275022
923 => 0.025622593324554
924 => 0.026025588700809
925 => 0.02578393507699
926 => 0.02574001942497
927 => 0.025993130302383
928 => 0.02624668421688
929 => 0.02623053392867
930 => 0.026046466806883
1001 => 0.025942491960315
1002 => 0.026729824332653
1003 => 0.027309917412734
1004 => 0.027270358953666
1005 => 0.027444957126893
1006 => 0.027957582763605
1007 => 0.028004450827393
1008 => 0.027998546528606
1009 => 0.027882379142332
1010 => 0.028387125654526
1011 => 0.028808194075168
1012 => 0.027855489748808
1013 => 0.028218267084471
1014 => 0.028381129518405
1015 => 0.028620259890528
1016 => 0.029023712911203
1017 => 0.029461969902285
1018 => 0.029523944246068
1019 => 0.029479970483409
1020 => 0.02919092821681
1021 => 0.029670474245945
1022 => 0.029951381063074
1023 => 0.030118654644236
1024 => 0.030542832614393
1025 => 0.028382135301352
1026 => 0.026852686349557
1027 => 0.026613840810224
1028 => 0.027099542606595
1029 => 0.027227618296899
1030 => 0.027175991146731
1031 => 0.025454457300071
1101 => 0.026604777290801
1102 => 0.027842424879175
1103 => 0.027889967963523
1104 => 0.028509560224253
1105 => 0.028711324862292
1106 => 0.029210177843994
1107 => 0.029178974454166
1108 => 0.029300437216726
1109 => 0.029272515031055
1110 => 0.03019653513377
1111 => 0.031215866525377
1112 => 0.031180570320561
1113 => 0.031034029372836
1114 => 0.031251667669152
1115 => 0.032303726903482
1116 => 0.032206870148091
1117 => 0.032300958235714
1118 => 0.033541395364449
1119 => 0.035154140081928
1120 => 0.034404858243737
1121 => 0.036030584232571
1122 => 0.03705389256651
1123 => 0.038823598518002
1124 => 0.03860202261689
1125 => 0.039290956157103
1126 => 0.038205355509613
1127 => 0.035712596986885
1128 => 0.035318108408767
1129 => 0.036107884532201
1130 => 0.038049472066436
1201 => 0.036046737031224
1202 => 0.03645188772048
1203 => 0.036335204294718
1204 => 0.036328986730832
1205 => 0.036566285855709
1206 => 0.036222071098385
1207 => 0.034819678253998
1208 => 0.035462386630228
1209 => 0.035214206060774
1210 => 0.03548958090567
1211 => 0.036975665370348
1212 => 0.036318632004685
1213 => 0.035626500727015
1214 => 0.036494586945439
1215 => 0.037599959008281
1216 => 0.037530786811133
1217 => 0.03739656383693
1218 => 0.038153171714824
1219 => 0.039402866263796
1220 => 0.039740653678704
1221 => 0.039990001442629
1222 => 0.04002438228651
1223 => 0.040378526346052
1224 => 0.038474204482098
1225 => 0.041496412186648
1226 => 0.04201826397042
1227 => 0.041920177463611
1228 => 0.042500193758395
1229 => 0.042329538250876
1230 => 0.042082285195511
1231 => 0.043001734395747
]
'min_raw' => 0.01585081526616
'max_raw' => 0.043001734395747
'avg_raw' => 0.029426274830953
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.01585'
'max' => '$0.0430017'
'avg' => '$0.029426'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.005466536538686
'max_diff' => 0.019819563658596
'year' => 2032
]
7 => [
'items' => [
101 => 0.041947660083401
102 => 0.040451534301292
103 => 0.039630730107214
104 => 0.040711631282361
105 => 0.041371699911771
106 => 0.041807963287561
107 => 0.041939976321478
108 => 0.038622031567487
109 => 0.036833843366738
110 => 0.037980051501799
111 => 0.039378504533633
112 => 0.038466436004896
113 => 0.038502187364448
114 => 0.037201817329863
115 => 0.039493558427515
116 => 0.039159671026163
117 => 0.04089187945501
118 => 0.040478474011625
119 => 0.041891022741406
120 => 0.041519051321192
121 => 0.043063083889859
122 => 0.043679040284514
123 => 0.044713326937097
124 => 0.045474152409041
125 => 0.045920923678438
126 => 0.045894101207221
127 => 0.047664431557137
128 => 0.046620529600423
129 => 0.045309142713989
130 => 0.045285423862586
131 => 0.045964609713566
201 => 0.047387996931681
202 => 0.047757060527897
203 => 0.047963316729599
204 => 0.047647428176862
205 => 0.046514347419976
206 => 0.046025088894002
207 => 0.046441951333316
208 => 0.045932164391433
209 => 0.046812199674075
210 => 0.048020676082537
211 => 0.047771130483023
212 => 0.04860532400823
213 => 0.049468626547101
214 => 0.05070318795103
215 => 0.051025948017693
216 => 0.051559458134422
217 => 0.052108615293479
218 => 0.052284989772768
219 => 0.052621743379517
220 => 0.052619968521783
221 => 0.053634798181854
222 => 0.05475418672357
223 => 0.055176729984163
224 => 0.056148344912727
225 => 0.05448448839701
226 => 0.055746542677187
227 => 0.056884947229175
228 => 0.055527694391385
301 => 0.057398351228926
302 => 0.057470984594928
303 => 0.058567662187257
304 => 0.057455969349427
305 => 0.056795849690973
306 => 0.05870159041057
307 => 0.059623718314513
308 => 0.059345965885319
309 => 0.057232256184829
310 => 0.056001986477869
311 => 0.052782133353453
312 => 0.056596188466628
313 => 0.058453903454742
314 => 0.0572274451518
315 => 0.057845999380985
316 => 0.061220630688535
317 => 0.062505471799254
318 => 0.062238233829942
319 => 0.062283392647644
320 => 0.062976669589472
321 => 0.066051041344123
322 => 0.064208806525357
323 => 0.065617126017082
324 => 0.066364093597419
325 => 0.067057918714992
326 => 0.065354103511914
327 => 0.063137464966725
328 => 0.062435362491307
329 => 0.057105498044424
330 => 0.056828055453536
331 => 0.056672318519899
401 => 0.055690419182747
402 => 0.05491891526861
403 => 0.054305386711984
404 => 0.052695304564262
405 => 0.053238660024661
406 => 0.050672525131453
407 => 0.052314247297891
408 => 0.048218634046837
409 => 0.05162958246412
410 => 0.049773158317386
411 => 0.05101969720355
412 => 0.051015348146808
413 => 0.048720074841866
414 => 0.047396209100707
415 => 0.048239827876599
416 => 0.049144254170897
417 => 0.049290994294291
418 => 0.05046360659279
419 => 0.050790857480084
420 => 0.0497992720137
421 => 0.048133761565579
422 => 0.048520621656429
423 => 0.047388369393314
424 => 0.04540414085366
425 => 0.046829248432146
426 => 0.047315842816998
427 => 0.04753075061802
428 => 0.045579489739458
429 => 0.044966361207479
430 => 0.0446399367217
501 => 0.047881878289041
502 => 0.048059479166369
503 => 0.047150847967725
504 => 0.051257947145545
505 => 0.050328384110035
506 => 0.051366933769173
507 => 0.04848551815806
508 => 0.048595592114745
509 => 0.04723148378771
510 => 0.047995293301098
511 => 0.047455457355765
512 => 0.047933585040529
513 => 0.048220172803382
514 => 0.049584057293663
515 => 0.051645155834161
516 => 0.049380338432355
517 => 0.048393525057605
518 => 0.049005738525251
519 => 0.050636143666138
520 => 0.053106290913486
521 => 0.05164391402671
522 => 0.052292892056291
523 => 0.052434664884732
524 => 0.051356362308558
525 => 0.053146049467544
526 => 0.054105157355437
527 => 0.055089003589003
528 => 0.055943249706862
529 => 0.054696033768075
530 => 0.05603073360396
531 => 0.054955201142474
601 => 0.053990337338019
602 => 0.053991800638131
603 => 0.053386527479186
604 => 0.052213734464403
605 => 0.051997453438604
606 => 0.053122574648093
607 => 0.054024815308728
608 => 0.054099128170979
609 => 0.054598654959506
610 => 0.054894269767421
611 => 0.057791696753831
612 => 0.058957065856539
613 => 0.060382057136021
614 => 0.060937171547488
615 => 0.06260786690647
616 => 0.061258644716849
617 => 0.060966732009119
618 => 0.056914171548514
619 => 0.057577778096909
620 => 0.058640276209398
621 => 0.056931691751046
622 => 0.05801539532794
623 => 0.058229341369999
624 => 0.056873634704949
625 => 0.057597776211379
626 => 0.055674671063295
627 => 0.051687074271149
628 => 0.053150488802689
629 => 0.054228054477907
630 => 0.052690235396481
701 => 0.05544671657812
702 => 0.053836437177128
703 => 0.053326055914056
704 => 0.051334876642755
705 => 0.052274636611291
706 => 0.053545675424801
707 => 0.052760321212174
708 => 0.054390049124904
709 => 0.056698178481888
710 => 0.058343088913155
711 => 0.058469364711134
712 => 0.057411797504269
713 => 0.059106555702573
714 => 0.059118900165838
715 => 0.057207205994861
716 => 0.056036303959494
717 => 0.05577027255346
718 => 0.056434871164263
719 => 0.057241816569449
720 => 0.058514144565067
721 => 0.059282985725764
722 => 0.06128771571102
723 => 0.061830138164917
724 => 0.062426095989537
725 => 0.063222479429817
726 => 0.064178741938396
727 => 0.06208649400968
728 => 0.062169622920326
729 => 0.060221350618251
730 => 0.058139342252973
731 => 0.059719327076213
801 => 0.061784947056025
802 => 0.061311091550349
803 => 0.061257773125971
804 => 0.061347439926477
805 => 0.060990168349871
806 => 0.059374242249986
807 => 0.058562734278856
808 => 0.059609786599377
809 => 0.060166248308796
810 => 0.061029271891545
811 => 0.060922886018753
812 => 0.063145942085948
813 => 0.064009754451934
814 => 0.0637887542841
815 => 0.063829423633647
816 => 0.065393314661208
817 => 0.067132683122577
818 => 0.068761831216532
819 => 0.070419070631242
820 => 0.068421203833653
821 => 0.067406810285132
822 => 0.068453405495365
823 => 0.067898067344921
824 => 0.071089205081365
825 => 0.071310152534524
826 => 0.074501059515388
827 => 0.077529610206363
828 => 0.075627431779483
829 => 0.077421100360033
830 => 0.079361099169843
831 => 0.08310367162743
901 => 0.081843304889001
902 => 0.08087788371983
903 => 0.079965565379844
904 => 0.081863955018897
905 => 0.084306202962023
906 => 0.084832239777412
907 => 0.085684620379873
908 => 0.084788446400527
909 => 0.085867789248323
910 => 0.089678343788325
911 => 0.088648698314921
912 => 0.087186436218918
913 => 0.090194503058702
914 => 0.091283110754455
915 => 0.098923529671531
916 => 0.1085698741643
917 => 0.10457622420298
918 => 0.10209723679771
919 => 0.10267985764032
920 => 0.10620237609971
921 => 0.10733369722972
922 => 0.10425837640857
923 => 0.10534463171285
924 => 0.1113300052377
925 => 0.1145409661
926 => 0.11018004995941
927 => 0.098148455283974
928 => 0.08705477551613
929 => 0.089997318945472
930 => 0.089663725838339
1001 => 0.096094263000228
1002 => 0.088624141610907
1003 => 0.088749919296909
1004 => 0.09531343315725
1005 => 0.093562400186425
1006 => 0.090725951029048
1007 => 0.087075484733981
1008 => 0.080327260160286
1009 => 0.074350169467201
1010 => 0.086072620758119
1011 => 0.08556712734256
1012 => 0.084835097966904
1013 => 0.086464150128576
1014 => 0.09437436501113
1015 => 0.09419200895522
1016 => 0.093031952766399
1017 => 0.093911845161353
1018 => 0.090571701637995
1019 => 0.091432532677619
1020 => 0.087053018220575
1021 => 0.089032741659839
1022 => 0.09071986528307
1023 => 0.091058580328726
1024 => 0.091821722621808
1025 => 0.085300755282359
1026 => 0.088228478172229
1027 => 0.089948241079491
1028 => 0.082178289698972
1029 => 0.089794654122997
1030 => 0.085187239748822
1031 => 0.083623414109186
1101 => 0.085728899314595
1102 => 0.084908389682396
1103 => 0.084202963682573
1104 => 0.083809323853914
1105 => 0.085355359814844
1106 => 0.085283235389354
1107 => 0.082753620484624
1108 => 0.079453840961697
1109 => 0.080561355281162
1110 => 0.080158984945898
1111 => 0.078700742944097
1112 => 0.0796834219845
1113 => 0.075356200813044
1114 => 0.067911441696939
1115 => 0.072829677608177
1116 => 0.072640330875606
1117 => 0.072544853666852
1118 => 0.076240772024091
1119 => 0.075885494753387
1120 => 0.075240663028174
1121 => 0.07868890010378
1122 => 0.07743024718585
1123 => 0.081309118902986
1124 => 0.083863994685586
1125 => 0.083215995545545
1126 => 0.085618868567866
1127 => 0.080586870174218
1128 => 0.082258298191853
1129 => 0.082602777189789
1130 => 0.078646349393523
1201 => 0.075943622508663
1202 => 0.075763381438785
1203 => 0.071077225479143
1204 => 0.073580532167454
1205 => 0.075783338459299
1206 => 0.074728365190179
1207 => 0.074394392169606
1208 => 0.076100587901805
1209 => 0.076233173922775
1210 => 0.07321019859382
1211 => 0.073838770889888
1212 => 0.076460021855942
1213 => 0.073772722090981
1214 => 0.068551737615586
1215 => 0.06725686127993
1216 => 0.067084100907447
1217 => 0.063572293587212
1218 => 0.067343391108371
1219 => 0.065697205981254
1220 => 0.070897485073488
1221 => 0.06792711354566
1222 => 0.067799066765902
1223 => 0.067605505277919
1224 => 0.064582747646458
1225 => 0.065244539461479
1226 => 0.067444436248347
1227 => 0.068229384205513
1228 => 0.068147507702692
1229 => 0.067433655553942
1230 => 0.067760453412125
1231 => 0.066707723646996
]
'min_raw' => 0.036833843366738
'max_raw' => 0.1145409661
'avg_raw' => 0.07568740473337
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.036833'
'max' => '$0.11454'
'avg' => '$0.075687'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.020983028100578
'max_diff' => 0.071539231704255
'year' => 2033
]
8 => [
'items' => [
101 => 0.066335982856254
102 => 0.065162666665311
103 => 0.063438216001495
104 => 0.063678011442969
105 => 0.060261423450889
106 => 0.058399884980754
107 => 0.057884635666904
108 => 0.057195622750672
109 => 0.057962461509185
110 => 0.060251744686379
111 => 0.057490383476164
112 => 0.052756223368219
113 => 0.053040754457323
114 => 0.0536800113365
115 => 0.05248876037126
116 => 0.051361341306775
117 => 0.052341540712945
118 => 0.050335614665879
119 => 0.053922417915863
120 => 0.053825404939851
121 => 0.055162343385021
122 => 0.055998358431524
123 => 0.054071614412419
124 => 0.053587043502085
125 => 0.053863077115131
126 => 0.04930085636394
127 => 0.054789512617598
128 => 0.054836978744801
129 => 0.054430544946167
130 => 0.057353084957989
131 => 0.063520555946022
201 => 0.061200105274379
202 => 0.060301556638325
203 => 0.058593415024353
204 => 0.060869412305558
205 => 0.06069465122545
206 => 0.05990431534503
207 => 0.059426317738554
208 => 0.060307042984693
209 => 0.059317186134002
210 => 0.059139380644171
211 => 0.058062072830075
212 => 0.057677522954826
213 => 0.057392817536562
214 => 0.057079384845631
215 => 0.057770739259265
216 => 0.056204039202722
217 => 0.054314752520032
218 => 0.054157678774732
219 => 0.054591373195571
220 => 0.054399495699102
221 => 0.054156760139099
222 => 0.053693311849957
223 => 0.053555816642575
224 => 0.054002609363376
225 => 0.053498206431225
226 => 0.054242480433863
227 => 0.054040079087705
228 => 0.05290948162119
301 => 0.051500338577119
302 => 0.05148779424825
303 => 0.051184196690862
304 => 0.050797519555331
305 => 0.050689954822201
306 => 0.052258991052956
307 => 0.055506849093316
308 => 0.054869216845337
309 => 0.055329971491683
310 => 0.057596428326069
311 => 0.058316866798986
312 => 0.05780551663543
313 => 0.05710554899285
314 => 0.057136344016728
315 => 0.059528345346038
316 => 0.059677531534858
317 => 0.060054476904719
318 => 0.060538958229739
319 => 0.057888025900038
320 => 0.057011485342394
321 => 0.056596131797563
322 => 0.055317003641537
323 => 0.056696433693651
324 => 0.055892698875368
325 => 0.056001150161846
326 => 0.055930521119254
327 => 0.055969089352424
328 => 0.053921415331256
329 => 0.054667480121991
330 => 0.053427002705748
331 => 0.051766142695522
401 => 0.051760574910395
402 => 0.052167068044959
403 => 0.051925270022443
404 => 0.051274597761046
405 => 0.051367022684691
406 => 0.050557283099487
407 => 0.051465339731143
408 => 0.051491379546156
409 => 0.051141728280789
410 => 0.052540714809524
411 => 0.053113880731811
412 => 0.052883732778691
413 => 0.053097732937893
414 => 0.054895713343977
415 => 0.055188862601554
416 => 0.055319060137417
417 => 0.055144612687229
418 => 0.053130596719117
419 => 0.05321992689156
420 => 0.052564481357674
421 => 0.05201069895069
422 => 0.052032847342763
423 => 0.052317563486627
424 => 0.053560935585261
425 => 0.056177538866049
426 => 0.056276837047843
427 => 0.056397189340909
428 => 0.055907656080792
429 => 0.055760008165338
430 => 0.055954793876982
501 => 0.056937452494782
502 => 0.059465117248974
503 => 0.058571671707789
504 => 0.057845286575498
505 => 0.058482522168543
506 => 0.058384424743812
507 => 0.057556383757318
508 => 0.057533143404704
509 => 0.055943868010905
510 => 0.055356349083868
511 => 0.054865374293406
512 => 0.054329242639443
513 => 0.054011405823678
514 => 0.054499747626943
515 => 0.05461143717524
516 => 0.053543669287648
517 => 0.053398136470107
518 => 0.054270098776485
519 => 0.053886380675479
520 => 0.054281044258115
521 => 0.054372609594648
522 => 0.054357865466537
523 => 0.053957219699344
524 => 0.054212579363924
525 => 0.053608577630813
526 => 0.05295181646418
527 => 0.052532843757535
528 => 0.052167234502323
529 => 0.052370095766449
530 => 0.051646932400841
531 => 0.051415577885781
601 => 0.054126069255339
602 => 0.056128338372725
603 => 0.056099224586772
604 => 0.055922001902245
605 => 0.055658684941346
606 => 0.056918189218992
607 => 0.056479403113243
608 => 0.056798656666981
609 => 0.056879920095437
610 => 0.057125880018394
611 => 0.057213789549881
612 => 0.056948065888631
613 => 0.056056264826063
614 => 0.053833981368045
615 => 0.052799502419398
616 => 0.052458107135735
617 => 0.052470516205894
618 => 0.052128218654374
619 => 0.052229040623997
620 => 0.052093156887856
621 => 0.051835825965412
622 => 0.052354206307128
623 => 0.052413944812464
624 => 0.052292948646524
625 => 0.052321447623728
626 => 0.05131965104788
627 => 0.051395815465754
628 => 0.050971722308526
629 => 0.050892209954065
630 => 0.049820139382609
701 => 0.047920810966159
702 => 0.048973223281142
703 => 0.047702057196207
704 => 0.047220647338533
705 => 0.049499566730169
706 => 0.049270826430634
707 => 0.048879322468847
708 => 0.048300206512789
709 => 0.04808540677141
710 => 0.046780351540121
711 => 0.046703241914858
712 => 0.04735006252694
713 => 0.047051577070202
714 => 0.046632390443661
715 => 0.045114138974593
716 => 0.043407121647575
717 => 0.04345864577075
718 => 0.044001616222288
719 => 0.045580376039676
720 => 0.0449635272662
721 => 0.044515996403519
722 => 0.044432187325668
723 => 0.045481233401172
724 => 0.046965853379957
725 => 0.047662403857504
726 => 0.046972143488808
727 => 0.046179209543507
728 => 0.046227471758656
729 => 0.046548538654184
730 => 0.046582278245263
731 => 0.046066159761799
801 => 0.046211444091712
802 => 0.045990743909496
803 => 0.044636307298613
804 => 0.044611809835287
805 => 0.044279409247736
806 => 0.044269344290049
807 => 0.043703847969412
808 => 0.043624731125063
809 => 0.042501903857265
810 => 0.043240952165164
811 => 0.042745237362003
812 => 0.041998078226339
813 => 0.041869267709729
814 => 0.041865395510056
815 => 0.042632560880658
816 => 0.043231987391143
817 => 0.042753860533238
818 => 0.042645000315793
819 => 0.043807342636555
820 => 0.043659423981252
821 => 0.043531327379734
822 => 0.046832921944311
823 => 0.044219452219811
824 => 0.043079830248293
825 => 0.041669331650196
826 => 0.042128597106087
827 => 0.042225371085657
828 => 0.038833376218715
829 => 0.037457244323643
830 => 0.036985007715691
831 => 0.036713228871369
901 => 0.03683708190351
902 => 0.035598401793773
903 => 0.036430815313395
904 => 0.035358223041386
905 => 0.035178399456466
906 => 0.037096327307504
907 => 0.037363195763604
908 => 0.036224652020351
909 => 0.036955781417008
910 => 0.036690663734321
911 => 0.035376609557363
912 => 0.035326422353331
913 => 0.034667076158571
914 => 0.033635327038353
915 => 0.033163790004888
916 => 0.032918209423788
917 => 0.03301954075782
918 => 0.032968304534543
919 => 0.032633953520146
920 => 0.032987469143311
921 => 0.032084382808865
922 => 0.031724766553828
923 => 0.031562336234461
924 => 0.03076079513293
925 => 0.032036403472411
926 => 0.03228771438498
927 => 0.032539520457679
928 => 0.034731320405225
929 => 0.034621824273808
930 => 0.035611615975039
1001 => 0.035573154489639
1002 => 0.035290849862885
1003 => 0.034099853079469
1004 => 0.034574563169862
1005 => 0.033113479297959
1006 => 0.034208222678835
1007 => 0.03370862751738
1008 => 0.0340393090522
1009 => 0.033444713836242
1010 => 0.033773787378988
1011 => 0.03234730952537
1012 => 0.031015284576746
1013 => 0.031551330300305
1014 => 0.032134073306077
1015 => 0.033397608622747
1016 => 0.032645057412078
1017 => 0.032915703284547
1018 => 0.03200908491735
1019 => 0.030138472263088
1020 => 0.030149059727563
1021 => 0.029861306724217
1022 => 0.0296126461167
1023 => 0.032731496971367
1024 => 0.032343618565854
1025 => 0.031725585090938
1026 => 0.032552847456786
1027 => 0.032771588756736
1028 => 0.032777816014031
1029 => 0.033381365281422
1030 => 0.033703479633621
1031 => 0.033760253684319
1101 => 0.034709951497104
1102 => 0.035028277677132
1103 => 0.036339418161461
1104 => 0.033676150481324
1105 => 0.033621302236064
1106 => 0.032564488734777
1107 => 0.031894240904701
1108 => 0.032610381177125
1109 => 0.033244783695596
1110 => 0.032584201389416
1111 => 0.03267045949295
1112 => 0.031783681718461
1113 => 0.032100663046068
1114 => 0.0323736900674
1115 => 0.032222940594007
1116 => 0.031997261335981
1117 => 0.033192769923713
1118 => 0.033125314643957
1119 => 0.034238599725476
1120 => 0.035106485058301
1121 => 0.036661890727782
1122 => 0.035038743826547
1123 => 0.034979589902041
1124 => 0.035557829002671
1125 => 0.035028189151738
1126 => 0.035362903254982
1127 => 0.03660796311109
1128 => 0.03663426926391
1129 => 0.036193607310612
1130 => 0.036166792990707
1201 => 0.036251426939151
1202 => 0.036747130618683
1203 => 0.036573916521619
1204 => 0.036774364259985
1205 => 0.037025027226178
1206 => 0.038061875533244
1207 => 0.038311856149844
1208 => 0.037704532851595
1209 => 0.037759367345516
1210 => 0.037532211760574
1211 => 0.037312782311771
1212 => 0.037806027667583
1213 => 0.038707443250092
1214 => 0.038701835590537
1215 => 0.038910946484664
1216 => 0.039041220839337
1217 => 0.038481987942424
1218 => 0.038117947890098
1219 => 0.03825754401063
1220 => 0.038480761247369
1221 => 0.038185157669202
1222 => 0.036360555447859
1223 => 0.036914023205773
1224 => 0.036821899107665
1225 => 0.036690703189287
1226 => 0.03724721929971
1227 => 0.037193541963229
1228 => 0.035585697338889
1229 => 0.0356886263351
1230 => 0.03559195679206
1231 => 0.03590431586235
]
'min_raw' => 0.0296126461167
'max_raw' => 0.066335982856254
'avg_raw' => 0.047974314486477
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.029612'
'max' => '$0.066335'
'avg' => '$0.047974'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0072211972500388
'max_diff' => -0.048204983243748
'year' => 2034
]
9 => [
'items' => [
101 => 0.035011320736868
102 => 0.035286000023052
103 => 0.035458276296389
104 => 0.035559748344873
105 => 0.035926334964032
106 => 0.0358833202554
107 => 0.035923661109348
108 => 0.036467212290281
109 => 0.039216307639201
110 => 0.039365934833506
111 => 0.038629115805174
112 => 0.03892346047388
113 => 0.038358383076068
114 => 0.038737723318909
115 => 0.038997258278863
116 => 0.037824469700532
117 => 0.037755024772259
118 => 0.037187615099016
119 => 0.03749250891769
120 => 0.037007400929539
121 => 0.037126429461474
122 => 0.036793615309462
123 => 0.037392614520447
124 => 0.038062388713395
125 => 0.038231600124718
126 => 0.03778647775162
127 => 0.037464179818503
128 => 0.036898330819489
129 => 0.037839350315617
130 => 0.038114533093334
131 => 0.037837904897634
201 => 0.037773804100245
202 => 0.03765233320502
203 => 0.037799574724897
204 => 0.038113034388828
205 => 0.037965212600009
206 => 0.038062851495809
207 => 0.037690752709813
208 => 0.038482173071783
209 => 0.039739139072273
210 => 0.039743180423499
211 => 0.039595357837866
212 => 0.039534872020707
213 => 0.039686546964191
214 => 0.039768824398999
215 => 0.0402593133538
216 => 0.040785627544243
217 => 0.043241706222167
218 => 0.042552049157564
219 => 0.044731228273393
220 => 0.046454676023021
221 => 0.046971462645898
222 => 0.04649604326954
223 => 0.044869659264672
224 => 0.044789861106319
225 => 0.047220365451207
226 => 0.046533636649625
227 => 0.04645195244383
228 => 0.045582970501811
301 => 0.046096646455051
302 => 0.045984297988906
303 => 0.045806950438821
304 => 0.046787008374626
305 => 0.048621589340077
306 => 0.04833565269202
307 => 0.048122214248465
308 => 0.047186989119804
309 => 0.047750203537353
310 => 0.047549653670925
311 => 0.048411343169188
312 => 0.047900897399177
313 => 0.046528434003536
314 => 0.046747003322991
315 => 0.046713967010056
316 => 0.047393851989281
317 => 0.0471897673943
318 => 0.046674116217445
319 => 0.048615318941782
320 => 0.0484892680344
321 => 0.048667979401818
322 => 0.048746653672588
323 => 0.049928229563063
324 => 0.050412283399179
325 => 0.050522172094533
326 => 0.050981985800776
327 => 0.050510731510641
328 => 0.052396084669796
329 => 0.053649734507228
330 => 0.055105913305636
331 => 0.057233781914071
401 => 0.058033880194728
402 => 0.05788934960173
403 => 0.059502675295617
404 => 0.062401785705317
405 => 0.058475342704269
406 => 0.062609896718521
407 => 0.061300944653331
408 => 0.058197442853805
409 => 0.057997613925799
410 => 0.060099341376834
411 => 0.064760770579459
412 => 0.063593135433694
413 => 0.064762680412264
414 => 0.063398344070723
415 => 0.063330593271836
416 => 0.064696417641411
417 => 0.067887740728134
418 => 0.066371662754589
419 => 0.064197993221942
420 => 0.065802996978804
421 => 0.064412594188524
422 => 0.061279627552786
423 => 0.063592242565103
424 => 0.062045862765851
425 => 0.062497178601344
426 => 0.065747438932738
427 => 0.065356359010543
428 => 0.065862452642889
429 => 0.064969210628574
430 => 0.064134781735866
501 => 0.062577258242125
502 => 0.062116152320608
503 => 0.062243585408462
504 => 0.062116089171098
505 => 0.061244669090729
506 => 0.061056486007342
507 => 0.060742839290541
508 => 0.060840051523113
509 => 0.060250303934942
510 => 0.06136327948189
511 => 0.06156985755091
512 => 0.06237978833952
513 => 0.062463878040836
514 => 0.064719523758472
515 => 0.063477152001784
516 => 0.064310642237387
517 => 0.0642360870256
518 => 0.058264705148442
519 => 0.059087508885166
520 => 0.060367533289472
521 => 0.059790884030364
522 => 0.058975636893131
523 => 0.05831728111903
524 => 0.057319804800932
525 => 0.058723733563819
526 => 0.060569750595836
527 => 0.06251069607916
528 => 0.064842614901587
529 => 0.064322157766949
530 => 0.062467102478823
531 => 0.06255031890393
601 => 0.063064730099482
602 => 0.062398520862056
603 => 0.06220204275199
604 => 0.063037737024286
605 => 0.06304349199145
606 => 0.062276937749715
607 => 0.061425052987973
608 => 0.061421483559716
609 => 0.061269898894594
610 => 0.063425310645901
611 => 0.064610569172411
612 => 0.064746457152336
613 => 0.064601422828664
614 => 0.064657240783639
615 => 0.063967564962452
616 => 0.065543959372674
617 => 0.066990614772742
618 => 0.066602880222239
619 => 0.066021611011321
620 => 0.065558602087106
621 => 0.06649381003433
622 => 0.066452166696593
623 => 0.066977979499857
624 => 0.066954125593859
625 => 0.066777314524942
626 => 0.066602886536719
627 => 0.067294473793575
628 => 0.067095307770152
629 => 0.066895832386884
630 => 0.066495753967586
701 => 0.066550131269367
702 => 0.065968962422773
703 => 0.065700087121862
704 => 0.061656847718208
705 => 0.060576362032893
706 => 0.060916304824807
707 => 0.061028222818516
708 => 0.060557994063587
709 => 0.0612321813063
710 => 0.061127109938664
711 => 0.06153588116544
712 => 0.061280498649734
713 => 0.061290979637259
714 => 0.062042005162659
715 => 0.062260031067773
716 => 0.062149141332747
717 => 0.062226804702082
718 => 0.064016524268737
719 => 0.063762083378369
720 => 0.063626916726555
721 => 0.063664358812853
722 => 0.064121670534154
723 => 0.064249692847824
724 => 0.063707253308836
725 => 0.063963070931228
726 => 0.065052309899284
727 => 0.065433481892517
728 => 0.066649999921981
729 => 0.066133201441181
730 => 0.067081807419204
731 => 0.069997498792038
801 => 0.072326754811154
802 => 0.070184674715398
803 => 0.07446205676554
804 => 0.077792612245588
805 => 0.077664779978933
806 => 0.07708402059385
807 => 0.073292271727215
808 => 0.069803047888346
809 => 0.07272193178983
810 => 0.072729372625168
811 => 0.072478637909401
812 => 0.070921346123928
813 => 0.072424447530892
814 => 0.072543758262114
815 => 0.072476975979914
816 => 0.071283004019256
817 => 0.069460029518233
818 => 0.069816234372149
819 => 0.070399705189244
820 => 0.069295073207719
821 => 0.06894207635761
822 => 0.069598364662362
823 => 0.07171306232337
824 => 0.071313290980166
825 => 0.071302851334792
826 => 0.073013242670453
827 => 0.071788971599672
828 => 0.069820727256083
829 => 0.069323719601373
830 => 0.067559677251626
831 => 0.068778107585899
901 => 0.0688219567245
902 => 0.068154634882475
903 => 0.069874876745742
904 => 0.06985902441413
905 => 0.071492138039091
906 => 0.074614037920549
907 => 0.073690738506239
908 => 0.072617041742086
909 => 0.072733782350732
910 => 0.074014138687197
911 => 0.073240006018478
912 => 0.073518389523594
913 => 0.074013717320421
914 => 0.074312560878544
915 => 0.072690783361659
916 => 0.072312669443887
917 => 0.071539181068078
918 => 0.071337392388674
919 => 0.071967382531406
920 => 0.071801402386676
921 => 0.068818271374193
922 => 0.068506517585404
923 => 0.068516078629025
924 => 0.067732158904031
925 => 0.066536493161123
926 => 0.069678631343992
927 => 0.069426273673712
928 => 0.069147690336655
929 => 0.06918181520587
930 => 0.070545710894109
1001 => 0.069754582516547
1002 => 0.071857926971687
1003 => 0.071425542584032
1004 => 0.070982069168369
1005 => 0.070920767633794
1006 => 0.070750068204138
1007 => 0.070164676345386
1008 => 0.069457780499347
1009 => 0.068991026631522
1010 => 0.063640575215709
1011 => 0.06463358787634
1012 => 0.065775958426444
1013 => 0.066170300162577
1014 => 0.065495751335304
1015 => 0.070191311644511
1016 => 0.071049235760548
1017 => 0.068450527652066
1018 => 0.067964415469522
1019 => 0.070223181078269
1020 => 0.068860869293329
1021 => 0.069474318206672
1022 => 0.06814837719464
1023 => 0.070842586963945
1024 => 0.070822061599539
1025 => 0.069773953147792
1026 => 0.070659807234071
1027 => 0.070505868286782
1028 => 0.069322556426137
1029 => 0.070880100060563
1030 => 0.070880872582773
1031 => 0.069872090985809
1101 => 0.068694054931243
1102 => 0.068483449908656
1103 => 0.068324787314941
1104 => 0.069435296934812
1105 => 0.070430976387515
1106 => 0.072283688999126
1107 => 0.072749504969051
1108 => 0.074567615710793
1109 => 0.073485019286291
1110 => 0.073964920259302
1111 => 0.074485920651643
1112 => 0.074735707398886
1113 => 0.074328693298549
1114 => 0.077152967644711
1115 => 0.077391422933057
1116 => 0.077471374928609
1117 => 0.076519045509684
1118 => 0.077364936929166
1119 => 0.076969172346969
1120 => 0.077998841843276
1121 => 0.078160307167777
1122 => 0.07802355178222
1123 => 0.078074803424774
1124 => 0.07566478350646
1125 => 0.075539811259828
1126 => 0.073835805809369
1127 => 0.074530200625803
1128 => 0.073232062799688
1129 => 0.073643715676651
1130 => 0.073825168342443
1201 => 0.073730387767181
1202 => 0.074569460666863
1203 => 0.073856077290865
1204 => 0.071973341270521
1205 => 0.070090092300008
1206 => 0.070066449643245
1207 => 0.069570623431414
1208 => 0.069212231895361
1209 => 0.069281270819828
1210 => 0.069524572994536
1211 => 0.069198090730668
1212 => 0.069267762274735
1213 => 0.070424774125323
1214 => 0.070656804600527
1215 => 0.069868274385624
1216 => 0.066702211788419
1217 => 0.065925252085599
1218 => 0.066483715312205
1219 => 0.066216805859526
1220 => 0.053442130338441
1221 => 0.056443350862679
1222 => 0.054660127538996
1223 => 0.055481918888709
1224 => 0.053661709638669
1225 => 0.054530408898129
1226 => 0.054369991864724
1227 => 0.059195865655128
1228 => 0.059120516273663
1229 => 0.05915658203517
1230 => 0.057435069269615
1231 => 0.060177485849309
]
'min_raw' => 0.035011320736868
'max_raw' => 0.078160307167777
'avg_raw' => 0.056585813952322
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.035011'
'max' => '$0.07816'
'avg' => '$0.056585'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0053986746201679
'max_diff' => 0.011824324311523
'year' => 2035
]
10 => [
'items' => [
101 => 0.061528498870577
102 => 0.061278462316388
103 => 0.061341391130251
104 => 0.060260065614943
105 => 0.059167051629819
106 => 0.057954730906669
107 => 0.060207072962911
108 => 0.059956650975018
109 => 0.060531028916257
110 => 0.061991833740464
111 => 0.062206942799887
112 => 0.062496051557171
113 => 0.062392426647847
114 => 0.064861192397153
115 => 0.064562208575471
116 => 0.065282673562209
117 => 0.06380062242268
118 => 0.062123540880718
119 => 0.062442299253919
120 => 0.062411600259287
121 => 0.062020766822954
122 => 0.061667939871975
123 => 0.061080582406974
124 => 0.062939068338787
125 => 0.06286361720395
126 => 0.064085083374624
127 => 0.063869177364268
128 => 0.062427304185948
129 => 0.062478800968589
130 => 0.062825141580362
131 => 0.064023830392157
201 => 0.064379682844455
202 => 0.064214837810282
203 => 0.064605013778946
204 => 0.064913392955822
205 => 0.064643741455672
206 => 0.068461438053103
207 => 0.066876064256972
208 => 0.067648764414246
209 => 0.067833048848743
210 => 0.067361008144865
211 => 0.067463376871025
212 => 0.067618437597351
213 => 0.068559935963596
214 => 0.071030700101371
215 => 0.072124984718931
216 => 0.075417193981913
217 => 0.07203411961462
218 => 0.071833381982219
219 => 0.072426408285677
220 => 0.07435928363879
221 => 0.075925697566738
222 => 0.076445367435226
223 => 0.076514050387161
224 => 0.077488985607443
225 => 0.078047800294244
226 => 0.077370602828359
227 => 0.076796748881552
228 => 0.074741275273462
229 => 0.074979201940467
301 => 0.07661828073561
302 => 0.078933576075009
303 => 0.080920340341635
304 => 0.080224644741188
305 => 0.085532311088048
306 => 0.086058544526466
307 => 0.085985836080441
308 => 0.087184674167193
309 => 0.08480522470412
310 => 0.083787963958994
311 => 0.076920822618371
312 => 0.078850209228031
313 => 0.081654685974074
314 => 0.081283502960487
315 => 0.079246816983632
316 => 0.080918795332688
317 => 0.080365987002893
318 => 0.079929964137145
319 => 0.081927469412327
320 => 0.07973113030927
321 => 0.081632775811409
322 => 0.079193895784912
323 => 0.08022782262009
324 => 0.079640915743029
325 => 0.080020716421089
326 => 0.077800409417754
327 => 0.078998433181848
328 => 0.077750567690431
329 => 0.077749976039711
330 => 0.077722429339825
331 => 0.079190537556594
401 => 0.079238412512836
402 => 0.078153478322455
403 => 0.077997122355764
404 => 0.078575252314101
405 => 0.077898413545365
406 => 0.078215102145284
407 => 0.07790800572044
408 => 0.077838871846768
409 => 0.077288001379185
410 => 0.077050671235252
411 => 0.077143734499933
412 => 0.076826061600176
413 => 0.076634652187342
414 => 0.077684353189907
415 => 0.077123540289054
416 => 0.077598400569662
417 => 0.077057237347764
418 => 0.075181329847072
419 => 0.074102475606063
420 => 0.070559060233973
421 => 0.071563968437905
422 => 0.072230223616764
423 => 0.072010026284126
424 => 0.072483095359689
425 => 0.072512137958821
426 => 0.072358338379987
427 => 0.072180258170643
428 => 0.072093578573188
429 => 0.072739617277357
430 => 0.07311466448979
501 => 0.072297091237307
502 => 0.072105545263316
503 => 0.072932156961032
504 => 0.073436389619121
505 => 0.077159360262593
506 => 0.076883550572288
507 => 0.077575778770036
508 => 0.077497844498077
509 => 0.078223409929916
510 => 0.079409402764144
511 => 0.076997947723348
512 => 0.077416492936588
513 => 0.077313875315922
514 => 0.07843422759057
515 => 0.078437725208081
516 => 0.077766018053683
517 => 0.078130161399286
518 => 0.077926906573521
519 => 0.078294215515216
520 => 0.076879866965721
521 => 0.078602390829515
522 => 0.0795789508633
523 => 0.079592510400317
524 => 0.080055392105872
525 => 0.080525706727016
526 => 0.081428434686531
527 => 0.080500530134181
528 => 0.078831320174192
529 => 0.078951831741788
530 => 0.077973174552986
531 => 0.077989625957138
601 => 0.077901807072452
602 => 0.078165358156093
603 => 0.076937701607817
604 => 0.077225830145892
605 => 0.076822448505308
606 => 0.077415616063681
607 => 0.076777465824982
608 => 0.077313825830598
609 => 0.077545301028407
610 => 0.078399449491624
611 => 0.076651307402478
612 => 0.073086727343893
613 => 0.073836045288564
614 => 0.072727745190742
615 => 0.072830322584392
616 => 0.073037545244634
617 => 0.072365868803752
618 => 0.072494003501715
619 => 0.072489425628634
620 => 0.072449975991587
621 => 0.072275247007938
622 => 0.072021855412572
623 => 0.073031289538691
624 => 0.073202812066833
625 => 0.073584085399749
626 => 0.074718496218332
627 => 0.074605141826306
628 => 0.074790027542729
629 => 0.074386423061867
630 => 0.072849044638693
701 => 0.072932531683622
702 => 0.071891446895567
703 => 0.07355746252104
704 => 0.073162928030597
705 => 0.072908569078009
706 => 0.072839164881176
707 => 0.073976387684759
708 => 0.074316662571374
709 => 0.074104626097034
710 => 0.073669733102069
711 => 0.074504856216973
712 => 0.074728299931506
713 => 0.074778320738903
714 => 0.076257998779538
715 => 0.074861018304202
716 => 0.075197285389407
717 => 0.077820745196506
718 => 0.075441629164174
719 => 0.076701899987119
720 => 0.076640216288469
721 => 0.077284928196248
722 => 0.0765873310943
723 => 0.076595978646441
724 => 0.077168439143982
725 => 0.076364521618981
726 => 0.076165460334273
727 => 0.075890458595153
728 => 0.076490914831784
729 => 0.076850861189345
730 => 0.079751764479814
731 => 0.081625880302719
801 => 0.081544519992218
802 => 0.082288000930079
803 => 0.081953055958068
804 => 0.080871430289424
805 => 0.082717633415601
806 => 0.082133417498059
807 => 0.082181579548479
808 => 0.082179786954557
809 => 0.08256823946668
810 => 0.082292985260691
811 => 0.081750430966421
812 => 0.082110603826906
813 => 0.083180188458393
814 => 0.086500211973392
815 => 0.088358141116846
816 => 0.086388362306071
817 => 0.087747089353355
818 => 0.086932337288934
819 => 0.086784272602054
820 => 0.087637653596888
821 => 0.088492528322185
822 => 0.088438076497908
823 => 0.087817481345646
824 => 0.087466922891152
825 => 0.090121468954278
826 => 0.092077293274578
827 => 0.091943919167946
828 => 0.092532589099036
829 => 0.094260942223591
830 => 0.094418961172873
831 => 0.094399054417288
901 => 0.094007387963918
902 => 0.095709176070057
903 => 0.097128837648311
904 => 0.093916728496295
905 => 0.095139857611786
906 => 0.095688959678489
907 => 0.096495204423651
908 => 0.097855474451048
909 => 0.099333088494606
910 => 0.099542039321579
911 => 0.099393778710624
912 => 0.0984192525285
913 => 0.10003607544656
914 => 0.1009831723928
915 => 0.10154714695036
916 => 0.1029772925919
917 => 0.095692350745916
918 => 0.090535706822224
919 => 0.089730422410699
920 => 0.091367999927781
921 => 0.0917998160596
922 => 0.091625751518315
923 => 0.085821479960645
924 => 0.089699864122169
925 => 0.093872679376167
926 => 0.094032974204398
927 => 0.096121972770001
928 => 0.096802236333906
929 => 0.098484153990518
930 => 0.09837894958316
1001 => 0.09878846976739
1002 => 0.098694328168936
1003 => 0.10180972645826
1004 => 0.10524647341251
1005 => 0.10512746979367
1006 => 0.10463339675725
1007 => 0.10536717946831
1008 => 0.10891427062928
1009 => 0.10858771131615
1010 => 0.1089049358726
1011 => 0.11308715625668
1012 => 0.1185246376699
1013 => 0.11599838163925
1014 => 0.12147963031517
1015 => 0.12492978580816
1016 => 0.13089647298053
1017 => 0.13014941436
1018 => 0.13247220189063
1019 => 0.1288120235134
1020 => 0.12040751411518
1021 => 0.11907746833174
1022 => 0.12174025367231
1023 => 0.1282864516013
1024 => 0.12153409060358
1025 => 0.12290008443913
1026 => 0.1225066781226
1027 => 0.12248571517186
1028 => 0.12328578573907
1029 => 0.12212524165245
1030 => 0.11739697626566
1031 => 0.11956391242858
1101 => 0.11872715431126
1102 => 0.11965559982688
1103 => 0.12466603735464
1104 => 0.12245080348971
1105 => 0.12011723456398
1106 => 0.12304404785724
1107 => 0.12677088694172
1108 => 0.12653766804959
1109 => 0.12608512592092
1110 => 0.12863608220591
1111 => 0.13284951462866
1112 => 0.13398838848159
1113 => 0.13482908187657
1114 => 0.1349449992921
1115 => 0.1361390207144
1116 => 0.12971846659457
1117 => 0.13990805087426
1118 => 0.14166751059778
1119 => 0.14133680509189
1120 => 0.1432923705252
1121 => 0.14271699356681
1122 => 0.14188336262799
1123 => 0.14498334980048
1124 => 0.14142946466329
1125 => 0.13638517213274
1126 => 0.13361777348569
1127 => 0.13726210726381
1128 => 0.13948757473238
1129 => 0.1409584671628
1130 => 0.1414035583235
1201 => 0.13021687593392
1202 => 0.12418787456778
1203 => 0.12805239532083
1204 => 0.13276737735453
1205 => 0.12969227463131
1206 => 0.12981281283612
1207 => 0.12542852447558
1208 => 0.13315528959056
1209 => 0.13202956490563
1210 => 0.13786982656242
1211 => 0.136476001247
1212 => 0.14123850791046
1213 => 0.13998438029699
1214 => 0.14519019390317
1215 => 0.14726693389245
1216 => 0.15075410355322
1217 => 0.15331927975101
1218 => 0.15482560027836
1219 => 0.15473516644397
1220 => 0.16070395881923
1221 => 0.15718437048926
1222 => 0.15276293804354
1223 => 0.15268296828004
1224 => 0.15497289079586
1225 => 0.15977194017945
1226 => 0.16101626386129
1227 => 0.16171167104568
1228 => 0.16064663073549
1229 => 0.15682636985448
1230 => 0.15517680057522
1231 => 0.15658228139377
]
'min_raw' => 0.057954730906669
'max_raw' => 0.16171167104568
'avg_raw' => 0.10983320097618
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.057954'
'max' => '$0.161711'
'avg' => '$0.109833'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.022943410169802
'max_diff' => 0.083551363877904
'year' => 2036
]
11 => [
'items' => [
101 => 0.15486349912703
102 => 0.15783059952456
103 => 0.16190506210881
104 => 0.16106370169733
105 => 0.1638762434091
106 => 0.16678692819276
107 => 0.17094933816043
108 => 0.17203754625958
109 => 0.17383631286661
110 => 0.17568783456931
111 => 0.1762824934403
112 => 0.17741788173684
113 => 0.17741189768007
114 => 0.18083346673215
115 => 0.18460756335376
116 => 0.18603219745787
117 => 0.18930806502551
118 => 0.18369825661602
119 => 0.18795336073546
120 => 0.19179157116335
121 => 0.18721549846037
122 => 0.19352254859323
123 => 0.19376743705781
124 => 0.19746496212793
125 => 0.19371681210927
126 => 0.19149117259271
127 => 0.1979165104834
128 => 0.20102552909246
129 => 0.20008906738538
130 => 0.19296254755567
131 => 0.18881460734397
201 => 0.17795864773204
202 => 0.19081800083493
203 => 0.19708141661888
204 => 0.19294632682192
205 => 0.1950318255917
206 => 0.20640963065434
207 => 0.21074156216387
208 => 0.20984055069237
209 => 0.20999280679914
210 => 0.21233023841157
211 => 0.22269569742815
212 => 0.21648447411596
213 => 0.22123272160803
214 => 0.22375117495675
215 => 0.22609045478197
216 => 0.22034592286821
217 => 0.21287237125235
218 => 0.21050518373725
219 => 0.19253517363533
220 => 0.19159975656973
221 => 0.19107467862477
222 => 0.18776413645554
223 => 0.18516295714434
224 => 0.18309440278048
225 => 0.17766589840709
226 => 0.17949785927769
227 => 0.17084595632342
228 => 0.17638113722895
301 => 0.16257249120643
302 => 0.17407274194012
303 => 0.16781367831801
304 => 0.17201647120328
305 => 0.17200180805483
306 => 0.16426313385635
307 => 0.15979962808068
308 => 0.16264394768318
309 => 0.16569328407944
310 => 0.16618802865053
311 => 0.17014157288409
312 => 0.17124492209853
313 => 0.16790172246833
314 => 0.16228633771026
315 => 0.16359066351627
316 => 0.15977319595985
317 => 0.153083230904
318 => 0.1578880806027
319 => 0.15952866754416
320 => 0.16025324419969
321 => 0.15367443191493
322 => 0.1516072262621
323 => 0.15050666331807
324 => 0.16143709565749
325 => 0.1620358894151
326 => 0.15897237589026
327 => 0.17281974751679
328 => 0.16968566084255
329 => 0.17318720352756
330 => 0.16347230962067
331 => 0.16384343165076
401 => 0.15924424518716
402 => 0.16181948228902
403 => 0.15999938770919
404 => 0.16161142858018
405 => 0.16257767923156
406 => 0.16717611101392
407 => 0.17412524864451
408 => 0.16648925864982
409 => 0.16316214845974
410 => 0.16522626890929
411 => 0.17072329367304
412 => 0.17905156757765
413 => 0.17412106180399
414 => 0.17630913654092
415 => 0.17678713353027
416 => 0.17315156111002
417 => 0.17918561631851
418 => 0.18241931552531
419 => 0.18573642179173
420 => 0.18861657221965
421 => 0.18441149660419
422 => 0.18891153028665
423 => 0.18528529750147
424 => 0.18203219182011
425 => 0.1820371254386
426 => 0.1799964047244
427 => 0.17604225119326
428 => 0.17531304461452
429 => 0.17910646932577
430 => 0.18214843670553
501 => 0.18239898770897
502 => 0.18408317715233
503 => 0.18507986311638
504 => 0.19484874049296
505 => 0.19877786378621
506 => 0.2035823213747
507 => 0.20545392836981
508 => 0.21108679441684
509 => 0.20653779760485
510 => 0.20555359353004
511 => 0.19189010299638
512 => 0.19412749880582
513 => 0.19770978537333
514 => 0.19194917358244
515 => 0.1956029558537
516 => 0.19632428987174
517 => 0.19175343019811
518 => 0.19419492384498
519 => 0.1877110405713
520 => 0.17426657958147
521 => 0.17920058384689
522 => 0.18283367175412
523 => 0.177648807354
524 => 0.18694247610926
525 => 0.1815133066827
526 => 0.17979252062057
527 => 0.17307912068768
528 => 0.17624758703355
529 => 0.18053298313439
530 => 0.17788510657484
531 => 0.18337984801658
601 => 0.1911618672921
602 => 0.19670779765509
603 => 0.19713354532427
604 => 0.19356788364934
605 => 0.19928187923916
606 => 0.19932349945892
607 => 0.19287808909125
608 => 0.18893031112924
609 => 0.18803336767008
610 => 0.19027410828719
611 => 0.19299478105991
612 => 0.19728452372824
613 => 0.1998767253803
614 => 0.20663581249137
615 => 0.20846462766541
616 => 0.21047394107956
617 => 0.21315900345018
618 => 0.21638310926197
619 => 0.20932894929422
620 => 0.20960922422034
621 => 0.20304048812987
622 => 0.19602085156515
623 => 0.20134788070772
624 => 0.20831226268664
625 => 0.20671462576572
626 => 0.20653485897535
627 => 0.2068371768536
628 => 0.20563261078916
629 => 0.20018440312304
630 => 0.1974483473407
701 => 0.20097855734219
702 => 0.20285470684642
703 => 0.20576445111004
704 => 0.2054057637123
705 => 0.21290095245166
706 => 0.21581335615304
707 => 0.21506823865745
708 => 0.21520535820889
709 => 0.2204781259957
710 => 0.22634252820203
711 => 0.23183531474428
712 => 0.23742281313574
713 => 0.23068686574107
714 => 0.22726676706953
715 => 0.23079543589177
716 => 0.22892307454508
717 => 0.23968221822162
718 => 0.24042715798601
719 => 0.251185523654
720 => 0.26139649375528
721 => 0.2549831663832
722 => 0.26103064523246
723 => 0.26757148666613
724 => 0.28018983100495
725 => 0.27594041655034
726 => 0.27268543167493
727 => 0.26960948669563
728 => 0.27601003990503
729 => 0.28424424935759
730 => 0.28601781920739
731 => 0.2888916799199
801 => 0.28587016677966
802 => 0.28950924654832
803 => 0.30235679722436
804 => 0.29888527562323
805 => 0.29395515687467
806 => 0.30409706424152
807 => 0.30776738109192
808 => 0.33352758690785
809 => 0.3660509108515
810 => 0.35258604117917
811 => 0.34422796206493
812 => 0.34619230891306
813 => 0.35806872583329
814 => 0.36188305400943
815 => 0.3515143951489
816 => 0.3551767807472
817 => 0.37535688547164
818 => 0.38618286420103
819 => 0.3714797309636
820 => 0.33091436949624
821 => 0.29351125362296
822 => 0.30343224423682
823 => 0.30230751178539
824 => 0.32398851679247
825 => 0.29880248098115
826 => 0.29922654923102
827 => 0.32135589446106
828 => 0.31545216454671
829 => 0.30588887817806
830 => 0.29358107619682
831 => 0.27082896590061
901 => 0.25067678732173
902 => 0.29019985028448
903 => 0.2884955439415
904 => 0.28602745579281
905 => 0.29151991889268
906 => 0.31818976064278
907 => 0.31757493446858
908 => 0.31366372403544
909 => 0.31663034267715
910 => 0.30536881558678
911 => 0.30827116753817
912 => 0.29350532877831
913 => 0.30018010457367
914 => 0.3058683596606
915 => 0.30701036108536
916 => 0.30958334860738
917 => 0.28759745194303
918 => 0.29746847407331
919 => 0.30326677478515
920 => 0.27706984122505
921 => 0.30274894563823
922 => 0.2872147263963
923 => 0.28194217906945
924 => 0.28904096943977
925 => 0.28627456392866
926 => 0.28389617091898
927 => 0.28256898675361
928 => 0.28778155493667
929 => 0.28753838240056
930 => 0.27900960913719
1001 => 0.26788417209239
1002 => 0.27161823394465
1003 => 0.27026161426671
1004 => 0.26534504954643
1005 => 0.26865822053961
1006 => 0.25406869224311
1007 => 0.22896816710668
1008 => 0.24555034286168
1009 => 0.24491194713305
1010 => 0.24459003905773
1011 => 0.25705108583994
1012 => 0.2558532437171
1013 => 0.25367914853483
1014 => 0.26530512058346
1015 => 0.26106148439432
1016 => 0.27413937120282
1017 => 0.28275331327958
1018 => 0.28056853893708
1019 => 0.28866999309507
1020 => 0.27170425918798
1021 => 0.27733959544481
1022 => 0.27850103043711
1023 => 0.26516165789303
1024 => 0.25604922550236
1025 => 0.25544153015124
1026 => 0.23964182815634
1027 => 0.24808190143128
1028 => 0.25550881663925
1029 => 0.25195190060653
1030 => 0.25082588725042
1031 => 0.25657844528431
1101 => 0.25702546831087
1102 => 0.2468332959319
1103 => 0.24895257131361
1104 => 0.25779030195556
1105 => 0.24872988317672
1106 => 0.23112696950043
1107 => 0.22676120352939
1108 => 0.22617872987182
1109 => 0.21433842630508
1110 => 0.22705294488729
1111 => 0.22150271679825
1112 => 0.2390358208296
1113 => 0.22902100583881
1114 => 0.22858928718092
1115 => 0.22793668111015
1116 => 0.21774524271348
1117 => 0.21997652002266
1118 => 0.22739362563147
1119 => 0.23004013247237
1120 => 0.22976408012667
1121 => 0.2273572777676
1122 => 0.22845909956276
1123 => 0.22490974766038
1124 => 0.22365639763028
1125 => 0.2197004801742
1126 => 0.21388637436384
1127 => 0.21469486143676
1128 => 0.2031755964829
1129 => 0.19689928956238
1130 => 0.19516209052717
1201 => 0.19283903537475
1202 => 0.19542448578805
1203 => 0.20314296385261
1204 => 0.19383284174028
1205 => 0.17787129040784
1206 => 0.17883060684008
1207 => 0.18098590603972
1208 => 0.17696952023993
1209 => 0.17316834815013
1210 => 0.17647315888337
1211 => 0.1697100391664
1212 => 0.18180319674633
1213 => 0.18147611072447
1214 => 0.18598369203442
1215 => 0.18880237513242
1216 => 0.18230622315103
1217 => 0.18067245849518
1218 => 0.18160312509362
1219 => 0.1662212793069
1220 => 0.18472666707184
1221 => 0.18488670243369
1222 => 0.18351638250529
1223 => 0.19336993020038
1224 => 0.21416398923561
1225 => 0.20634042778747
1226 => 0.20331090832635
1227 => 0.1975517896162
1228 => 0.20522547335484
1229 => 0.20463625417183
1230 => 0.20197158157151
1231 => 0.20035997926854
]
'min_raw' => 0.15050666331807
'max_raw' => 0.38618286420103
'avg_raw' => 0.26834476375955
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.1505066'
'max' => '$0.386182'
'avg' => '$0.268344'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.092551932411396
'max_diff' => 0.22447119315535
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0047242321814421
]
1 => [
'year' => 2028
'avg' => 0.0081081538777562
]
2 => [
'year' => 2029
'avg' => 0.022150015041475
]
3 => [
'year' => 2030
'avg' => 0.017088703617706
]
4 => [
'year' => 2031
'avg' => 0.016783224732312
]
5 => [
'year' => 2032
'avg' => 0.029426274830953
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0047242321814421
'min' => '$0.004724'
'max_raw' => 0.029426274830953
'max' => '$0.029426'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.029426274830953
]
1 => [
'year' => 2033
'avg' => 0.07568740473337
]
2 => [
'year' => 2034
'avg' => 0.047974314486477
]
3 => [
'year' => 2035
'avg' => 0.056585813952322
]
4 => [
'year' => 2036
'avg' => 0.10983320097618
]
5 => [
'year' => 2037
'avg' => 0.26834476375955
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.029426274830953
'min' => '$0.029426'
'max_raw' => 0.26834476375955
'max' => '$0.268344'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.26834476375955
]
]
]
]
'prediction_2025_max_price' => '$0.008077'
'last_price' => 0.00783223
'sma_50day_nextmonth' => '$0.006291'
'sma_200day_nextmonth' => '$0.01290029'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005899'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005183'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0050095'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004875'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00891'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.011452'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014681'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006381'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005819'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005352'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005526'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007748'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.01024'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012431'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.011918'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.011344'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.026669'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.059278'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006291'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.006538'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0083041'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010762'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015749'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.075956'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.344597'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.39'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 71.99
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005046'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005648'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 83.25
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 202.56
'cci_20_action' => 'SELL'
'adx_14' => 17.25
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000178'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -16.75
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.29
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008057'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767687031
'last_updated_date' => '6. Januar 2026'
]
My DeFi Pet Preisprognose für 2026
Die Preisprognose für My DeFi Pet im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.002706 am unteren Ende und $0.008077 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte My DeFi Pet im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn DPET das prognostizierte Preisziel erreicht.
My DeFi Pet Preisprognose 2027-2032
Die Preisprognose für DPET für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.004724 am unteren Ende und $0.029426 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte My DeFi Pet, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| My DeFi Pet Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.002605 | $0.004724 | $0.006843 |
| 2028 | $0.0047013 | $0.0081081 | $0.011514 |
| 2029 | $0.010327 | $0.02215 | $0.033972 |
| 2030 | $0.008783 | $0.017088 | $0.025394 |
| 2031 | $0.010384 | $0.016783 | $0.023182 |
| 2032 | $0.01585 | $0.029426 | $0.0430017 |
My DeFi Pet Preisprognose 2032-2037
Die Preisprognose für My DeFi Pet für die Jahre 2032-2037 wird derzeit zwischen $0.029426 am unteren Ende und $0.268344 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte My DeFi Pet bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| My DeFi Pet Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.01585 | $0.029426 | $0.0430017 |
| 2033 | $0.036833 | $0.075687 | $0.11454 |
| 2034 | $0.029612 | $0.047974 | $0.066335 |
| 2035 | $0.035011 | $0.056585 | $0.07816 |
| 2036 | $0.057954 | $0.109833 | $0.161711 |
| 2037 | $0.1505066 | $0.268344 | $0.386182 |
My DeFi Pet Potenzielles Preishistogramm
My DeFi Pet Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für My DeFi Pet Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 14 anzeigen bärische Signale. Die Preisprognose für DPET wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von My DeFi Pet
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von My DeFi Pet im nächsten Monat steigen, und bis zum 04.02.2026 $0.01290029 erreichen. Der kurzfristige 50-Tage-SMA für My DeFi Pet wird voraussichtlich bis zum 04.02.2026 $0.006291 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 57.39, was darauf hindeutet, dass sich der DPET-Markt in einem NEUTRAL Zustand befindet.
Beliebte DPET Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005899 | BUY |
| SMA 5 | $0.005183 | BUY |
| SMA 10 | $0.0050095 | BUY |
| SMA 21 | $0.004875 | BUY |
| SMA 50 | $0.00891 | SELL |
| SMA 100 | $0.011452 | SELL |
| SMA 200 | $0.014681 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.006381 | BUY |
| EMA 5 | $0.005819 | BUY |
| EMA 10 | $0.005352 | BUY |
| EMA 21 | $0.005526 | BUY |
| EMA 50 | $0.007748 | BUY |
| EMA 100 | $0.01024 | SELL |
| EMA 200 | $0.012431 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.011918 | SELL |
| SMA 50 | $0.011344 | SELL |
| SMA 100 | $0.026669 | SELL |
| SMA 200 | $0.059278 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.010762 | SELL |
| EMA 50 | $0.015749 | SELL |
| EMA 100 | $0.075956 | SELL |
| EMA 200 | $0.344597 | SELL |
My DeFi Pet Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 57.39 | NEUTRAL |
| Stoch RSI (14) | 71.99 | NEUTRAL |
| Stochastic Fast (14) | 83.25 | SELL |
| Commodity Channel Index (20) | 202.56 | SELL |
| Average Directional Index (14) | 17.25 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000178 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -16.75 | SELL |
| Ultimate Oscillator (7, 14, 28) | 68.29 | NEUTRAL |
| VWMA (10) | 0.005046 | BUY |
| Hull Moving Average (9) | 0.005648 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.0008057 | SELL |
Auf weltweiten Geldflüssen basierende My DeFi Pet-Preisprognose
Definition weltweiter Geldflüsse, die für My DeFi Pet-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
My DeFi Pet-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.0110055 | $0.015464 | $0.02173 | $0.030534 | $0.0429067 | $0.060291 |
| Amazon.com aktie | $0.016342 | $0.034099 | $0.07115 | $0.148459 | $0.309769 | $0.646353 |
| Apple aktie | $0.0111094 | $0.015757 | $0.022351 | $0.0317036 | $0.044969 | $0.063785 |
| Netflix aktie | $0.012358 | $0.019499 | $0.030766 | $0.048544 | $0.076595 | $0.120856 |
| Google aktie | $0.010142 | $0.013134 | $0.0170094 | $0.022027 | $0.028525 | $0.036939 |
| Tesla aktie | $0.017755 | $0.040249 | $0.091242 | $0.206839 | $0.468889 | $1.06 |
| Kodak aktie | $0.005873 | $0.0044043 | $0.0033028 | $0.002476 | $0.001857 | $0.001392 |
| Nokia aktie | $0.005188 | $0.003437 | $0.002276 | $0.0015084 | $0.000999 | $0.000661 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
My DeFi Pet Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in My DeFi Pet investieren?", "Sollte ich heute DPET kaufen?", "Wird My DeFi Pet auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere My DeFi Pet-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie My DeFi Pet.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich My DeFi Pet zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der My DeFi Pet-Preis entspricht heute $0.007832 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige My DeFi Pet-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige My DeFi Pet-Prognose
basierend auf dem Preisverlauf des letzten Monats
My DeFi Pet-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von My DeFi Pet 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008035 | $0.008244 | $0.008458 | $0.008678 |
| Wenn die Wachstumsrate von My DeFi Pet 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008239 | $0.008667 | $0.009118 | $0.009592 |
| Wenn die Wachstumsrate von My DeFi Pet 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00885 | $0.01000037 | $0.011300082 | $0.012768 |
| Wenn die Wachstumsrate von My DeFi Pet 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009868 | $0.012433 | $0.015664 | $0.019736 |
| Wenn die Wachstumsrate von My DeFi Pet 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0119039 | $0.018092 | $0.027497 | $0.041793 |
| Wenn die Wachstumsrate von My DeFi Pet 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018011 | $0.04142 | $0.095252 | $0.219048 |
| Wenn die Wachstumsrate von My DeFi Pet 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.02819 | $0.101467 | $0.365213 | $1.31 |
Fragefeld
Ist DPET eine gute Investition?
Die Entscheidung, My DeFi Pet zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von My DeFi Pet in den letzten 2026 Stunden um 21.5383% gestiegen, und My DeFi Pet hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in My DeFi Pet investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann My DeFi Pet steigen?
Es scheint, dass der Durchschnittswert von My DeFi Pet bis zum Ende dieses Jahres potenziell auf $0.008077 steigen könnte. Betrachtet man die Aussichten von My DeFi Pet in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.025394 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird My DeFi Pet nächste Woche kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Prognose wird der Preis von My DeFi Pet in der nächsten Woche um 0.86% steigen und $0.007899 erreichen bis zum 13. Januar 2026.
Wie viel wird My DeFi Pet nächsten Monat kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Prognose wird der Preis von My DeFi Pet im nächsten Monat um -11.62% fallen und $0.006922 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von My DeFi Pet in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von My DeFi Pet im Jahr 2026 wird erwartet, dass DPET innerhalb der Spanne von $0.002706 bis $0.008077 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte My DeFi Pet-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird My DeFi Pet in 5 Jahren sein?
Die Zukunft von My DeFi Pet scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.025394 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der My DeFi Pet-Prognose für 2030 könnte der Wert von My DeFi Pet seinen höchsten Gipfel von ungefähr $0.025394 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.008783 liegen wird.
Wie viel wird My DeFi Pet im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen My DeFi Pet-Preisprognosesimulation wird der Wert von DPET im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.008077 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.008077 und $0.002706 während des Jahres 2026 liegen.
Wie viel wird My DeFi Pet im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von My DeFi Pet könnte der Wert von DPET um -12.62% fallen und bis zu $0.006843 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.006843 und $0.002605 im Laufe des Jahres schwanken.
Wie viel wird My DeFi Pet im Jahr 2028 kosten?
Unser neues experimentelles My DeFi Pet-Preisprognosemodell deutet darauf hin, dass der Wert von DPET im Jahr 2028 um 47.02% steigen, und im besten Fall $0.011514 erreichen wird. Der Preis wird voraussichtlich zwischen $0.011514 und $0.0047013 im Laufe des Jahres liegen.
Wie viel wird My DeFi Pet im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von My DeFi Pet im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.033972 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.033972 und $0.010327.
Wie viel wird My DeFi Pet im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für My DeFi Pet-Preisprognosen wird der Wert von DPET im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.025394 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.025394 und $0.008783 während des Jahres 2030 liegen.
Wie viel wird My DeFi Pet im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von My DeFi Pet im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.023182 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.023182 und $0.010384 während des Jahres schwanken.
Wie viel wird My DeFi Pet im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen My DeFi Pet-Preisprognose könnte DPET eine 449.04% Steigerung im Wert erfahren und $0.0430017 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.0430017 und $0.01585 liegen.
Wie viel wird My DeFi Pet im Jahr 2033 kosten?
Laut unserer experimentellen My DeFi Pet-Preisprognose wird der Wert von DPET voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.11454 beträgt. Im Laufe des Jahres könnte der Preis von DPET zwischen $0.11454 und $0.036833 liegen.
Wie viel wird My DeFi Pet im Jahr 2034 kosten?
Die Ergebnisse unserer neuen My DeFi Pet-Preisprognosesimulation deuten darauf hin, dass DPET im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.066335 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.066335 und $0.029612.
Wie viel wird My DeFi Pet im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von My DeFi Pet könnte DPET um 897.93% steigen, wobei der Wert im Jahr 2035 $0.07816 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.07816 und $0.035011.
Wie viel wird My DeFi Pet im Jahr 2036 kosten?
Unsere jüngste My DeFi Pet-Preisprognosesimulation deutet darauf hin, dass der Wert von DPET im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.161711 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.161711 und $0.057954.
Wie viel wird My DeFi Pet im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von My DeFi Pet um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.386182 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.386182 und $0.1505066 liegen.
Verwandte Prognosen
B3Coin-Preisprognose
Spintop-Preisprognose
DegenX (Avalanche)-Preisprognose
Winkies-Preisprognose
rETH2-Preisprognose
Cirus-Preisprognose
BiFi-Preisprognose
InfinityBit Token-Preisprognose
CocktailBar-Preisprognose
Utopia-Preisprognose
mStable USD-Preisprognose
EQIFi-Preisprognose
NAOS Finance-Preisprognose
InsurAce-Preisprognose
Mizar-Preisprognose
VelasPad-Preisprognose
LGCY Network-Preisprognose
Shroom.Finance-Preisprognose
MetFi [OLD]-Preisprognose
Ethereans-Preisprognose
Cashaa-Preisprognose
Slam Token-Preisprognose
Brazil Fan Token-Preisprognose
S.C. Corinthians Fan Token-Preisprognose
Alvara Protocol-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von My DeFi Pet?
My DeFi Pet-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
My DeFi Pet Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von My DeFi Pet. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von DPET über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von DPET über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von DPET einzuschätzen.
Wie liest man My DeFi Pet-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von My DeFi Pet in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von DPET innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von My DeFi Pet?
Die Preisentwicklung von My DeFi Pet wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von DPET. Die Marktkapitalisierung von My DeFi Pet kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von DPET-„Walen“, großen Inhabern von My DeFi Pet, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen My DeFi Pet-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


