Brazil National Football Team Fan Token Preisvorhersage bis zu $0.02795 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.009363 | $0.02795 |
| 2027 | $0.009014 | $0.02368 |
| 2028 | $0.016267 | $0.039844 |
| 2029 | $0.035735 | $0.117553 |
| 2030 | $0.030391 | $0.087871 |
| 2031 | $0.035932 | $0.080216 |
| 2032 | $0.054847 | $0.148797 |
| 2033 | $0.127454 | $0.396341 |
| 2034 | $0.102467 | $0.229539 |
| 2035 | $0.121148 | $0.270454 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Brazil National Football Team Fan Token eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.58 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Brazil Fan Token Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Brazil National Football Team Fan Token'
'name_with_ticker' => 'Brazil National Football Team Fan Token <small>BFT</small>'
'name_lang' => 'Brazil Fan Token'
'name_lang_with_ticker' => 'Brazil Fan Token <small>BFT</small>'
'name_with_lang' => 'Brazil Fan Token/Brazil National Football Team Fan Token'
'name_with_lang_with_ticker' => 'Brazil Fan Token/Brazil National Football Team Fan Token <small>BFT</small>'
'image' => '/uploads/coins/brazil-fan-token.png?1717112709'
'price_for_sd' => 0.0271
'ticker' => 'BFT'
'marketcap' => '$771.86K'
'low24h' => '$0.02602'
'high24h' => '$0.02948'
'volume24h' => '$57.33K'
'current_supply' => '28.48M'
'max_supply' => '28.48M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0271'
'change_24h_pct' => '4.1337%'
'ath_price' => '$1.67'
'ath_days' => 1196
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28.09.2022'
'ath_pct' => '-98.38%'
'fdv' => '$771.86K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.33'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.027333'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.023952'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.009363'
'current_year_max_price_prediction' => '$0.02795'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.030391'
'grand_prediction_max_price' => '$0.087871'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.027615089738095
107 => 0.0277181944589
108 => 0.02795049465953
109 => 0.025965514879234
110 => 0.026856712524642
111 => 0.027380207647393
112 => 0.02501503763789
113 => 0.027333455840906
114 => 0.02593096079744
115 => 0.025454932914919
116 => 0.026095841746829
117 => 0.02584607895173
118 => 0.025631347567066
119 => 0.025511523764871
120 => 0.025982136476499
121 => 0.025960181830998
122 => 0.025190168092783
123 => 0.024185716561057
124 => 0.024522843465102
125 => 0.024400362100281
126 => 0.023956473833759
127 => 0.024255600930121
128 => 0.022938396582501
129 => 0.020672214964746
130 => 0.022169323956455
131 => 0.022111686888815
201 => 0.022082623665679
202 => 0.023207659695895
203 => 0.023099513440587
204 => 0.022903226928232
205 => 0.02395286887803
206 => 0.023569735446677
207 => 0.024750462404516
208 => 0.025528165543581
209 => 0.025330914871453
210 => 0.026062348432709
211 => 0.02453061018807
212 => 0.025039392190267
213 => 0.025144251455779
214 => 0.023939916459301
215 => 0.023117207505423
216 => 0.023062342197768
217 => 0.021635878248021
218 => 0.022397883775961
219 => 0.023068417106617
220 => 0.022747283676721
221 => 0.022645622426405
222 => 0.023164987706637
223 => 0.023205346836974
224 => 0.022285154388224
225 => 0.022476491537024
226 => 0.023274399254676
227 => 0.02245638630976
228 => 0.020867120779444
301 => 0.020472960954611
302 => 0.020420372768171
303 => 0.019351380062014
304 => 0.020499300598855
305 => 0.019998202522166
306 => 0.02158116534235
307 => 0.020676985469061
308 => 0.020638008081885
309 => 0.020579088044428
310 => 0.019658961862706
311 => 0.019860411019434
312 => 0.02053005869797
313 => 0.020768996533793
314 => 0.020744073359956
315 => 0.02052677705902
316 => 0.020626254192852
317 => 0.020305803684649
318 => 0.020192645940602
319 => 0.019835488973901
320 => 0.01931056689998
321 => 0.019383560533893
322 => 0.018343552552124
323 => 0.017776901006255
324 => 0.017620059326706
325 => 0.017410324077948
326 => 0.017643749481138
327 => 0.018340606340182
328 => 0.017500049121745
329 => 0.016058972728967
330 => 0.016145583875647
331 => 0.016340173407158
401 => 0.015977557102526
402 => 0.015634371202271
403 => 0.015932743498991
404 => 0.015322140433996
405 => 0.016413961870372
406 => 0.016384431160313
407 => 0.016791394674009
408 => 0.017045877310855
409 => 0.016459377222657
410 => 0.016311874036539
411 => 0.016395898554998
412 => 0.015007160431809
413 => 0.016677905141508
414 => 0.016692353811137
415 => 0.016568635529735
416 => 0.017458255509194
417 => 0.019335631145282
418 => 0.018629286913725
419 => 0.018355769077899
420 => 0.017835811472054
421 => 0.018528624109815
422 => 0.018475426908796
423 => 0.018234848991347
424 => 0.018089346716225
425 => 0.018357439119481
426 => 0.018056127100615
427 => 0.018002003182526
428 => 0.017674071126311
429 => 0.0175570143022
430 => 0.017470350089795
501 => 0.017374941307387
502 => 0.017585389306992
503 => 0.017108486453146
504 => 0.016533388362769
505 => 0.016485575179202
506 => 0.016617591582809
507 => 0.016559184151678
508 => 0.016485295546893
509 => 0.016344222077993
510 => 0.016302368593328
511 => 0.016438372114065
512 => 0.016284832068651
513 => 0.016511388769418
514 => 0.016449777882763
515 => 0.016105624478236
516 => 0.015676681914285
517 => 0.015672863425728
518 => 0.015580448453931
519 => 0.015462744092665
520 => 0.015430001432071
521 => 0.015907615416389
522 => 0.016896262070143
523 => 0.016702167075702
524 => 0.016842420600841
525 => 0.017532329130508
526 => 0.017751630305816
527 => 0.017595975526016
528 => 0.017382905663056
529 => 0.017392279655678
530 => 0.018120403878046
531 => 0.01816581609266
601 => 0.018280558108453
602 => 0.018428034024837
603 => 0.01762109131228
604 => 0.017354272726484
605 => 0.017227839278002
606 => 0.016838473192581
607 => 0.017258371133983
608 => 0.017013714585351
609 => 0.017046727112419
610 => 0.017025227660858
611 => 0.017036967815197
612 => 0.01641365668403
613 => 0.016640758499958
614 => 0.016263157683855
615 => 0.015757592578774
616 => 0.015755897747268
617 => 0.015879634090503
618 => 0.015806030871743
619 => 0.015607966502572
620 => 0.015636100611375
621 => 0.015389616214158
622 => 0.015666028279942
623 => 0.015673954788938
624 => 0.015567521087345
625 => 0.015993372012199
626 => 0.016167843483572
627 => 0.016097786541153
628 => 0.016162928101735
629 => 0.016710232599007
630 => 0.016799467112632
701 => 0.016839099189083
702 => 0.016785997456882
703 => 0.016172931823244
704 => 0.016200123891052
705 => 0.016000606539696
706 => 0.01583203540242
707 => 0.015838777363872
708 => 0.015925444841146
709 => 0.01630392679738
710 => 0.017100419761545
711 => 0.017130646087306
712 => 0.017167281275893
713 => 0.01701826755254
714 => 0.016973323587707
715 => 0.017032616278343
716 => 0.017331737158073
717 => 0.018101157271264
718 => 0.017829192815421
719 => 0.017608081479441
720 => 0.017802055732283
721 => 0.017772194916479
722 => 0.017520139580225
723 => 0.017513065226433
724 => 0.017029290449196
725 => 0.01685044992907
726 => 0.016700997404472
727 => 0.016537799149168
728 => 0.016441049752968
729 => 0.016589700797345
730 => 0.016623699049981
731 => 0.016298670943477
801 => 0.01625437081358
802 => 0.016519795781571
803 => 0.016402992149198
804 => 0.016523127581684
805 => 0.016551000032523
806 => 0.016546511925981
807 => 0.016424555518973
808 => 0.016502286896007
809 => 0.016318429016481
810 => 0.016118511187057
811 => 0.015990976067205
812 => 0.015879684760056
813 => 0.015941435645551
814 => 0.015721305014027
815 => 0.015650880794648
816 => 0.016475953254479
817 => 0.017085443151581
818 => 0.017076580927092
819 => 0.017022634414699
820 => 0.016942480839932
821 => 0.017325873424833
822 => 0.01719230711443
823 => 0.017289487765087
824 => 0.017314224319338
825 => 0.017389094418882
826 => 0.017415854044167
827 => 0.017334967870802
828 => 0.017063503993574
829 => 0.016387041821533
830 => 0.016072146854373
831 => 0.01596822627022
901 => 0.01597200358608
902 => 0.015867808351962
903 => 0.015898498518113
904 => 0.015857135564632
905 => 0.015778804137513
906 => 0.015936598900659
907 => 0.015954783277151
908 => 0.015917952093926
909 => 0.015926627170884
910 => 0.015621680704583
911 => 0.015644865122107
912 => 0.015515771339201
913 => 0.015491567811155
914 => 0.015165229969448
915 => 0.014587075179439
916 => 0.014907429055948
917 => 0.014520486621697
918 => 0.014373945658712
919 => 0.015067647785689
920 => 0.014998019332442
921 => 0.014878845687245
922 => 0.014702563028035
923 => 0.014637178074967
924 => 0.014239919798483
925 => 0.014216447660218
926 => 0.014413339588919
927 => 0.014322480738461
928 => 0.01419488050148
929 => 0.013732725377766
930 => 0.013213110004407
1001 => 0.013228793926343
1002 => 0.013394073908821
1003 => 0.013874647748917
1004 => 0.013686879235579
1005 => 0.013550651024758
1006 => 0.013525139575876
1007 => 0.013844468770469
1008 => 0.014296386482353
1009 => 0.01450841616168
1010 => 0.014298301188904
1011 => 0.014056932421572
1012 => 0.014071623420045
1013 => 0.014169356051197
1014 => 0.014179626368867
1015 => 0.014022520114444
1016 => 0.014066744604809
1017 => 0.013999563559972
1018 => 0.013587273611819
1019 => 0.013579816594042
1020 => 0.013478633991692
1021 => 0.013475570222705
1022 => 0.013303433374924
1023 => 0.013279350239993
1024 => 0.012937562080764
1025 => 0.013162528082199
1026 => 0.013011632699681
1027 => 0.012784197765606
1028 => 0.012744987897246
1029 => 0.012743809201255
1030 => 0.01297733402503
1031 => 0.013159799208668
1101 => 0.013014257589464
1102 => 0.012981120583977
1103 => 0.013334937109102
1104 => 0.013289910731171
1105 => 0.013250918178271
1106 => 0.01425592220793
1107 => 0.013460383097013
1108 => 0.013113482636868
1109 => 0.012684127442827
1110 => 0.012823927659004
1111 => 0.012853385618645
1112 => 0.011820863774069
1113 => 0.011401969790317
1114 => 0.01125822116078
1115 => 0.011175491792174
1116 => 0.011213192604298
1117 => 0.010836138887557
1118 => 0.0110895252211
1119 => 0.01076302857396
1120 => 0.010708290348555
1121 => 0.011292106798814
1122 => 0.011373341447262
1123 => 0.011026769199358
1124 => 0.011249324687462
1125 => 0.011168622973723
1126 => 0.010768625421873
1127 => 0.010753348457575
1128 => 0.01055264374665
1129 => 0.010238579738143
1130 => 0.010095044058793
1201 => 0.010020289430753
1202 => 0.010051134647221
1203 => 0.010035538361896
1204 => 0.0099337620504142
1205 => 0.010041372060935
1206 => 0.0097664729515813
1207 => 0.0096570059112241
1208 => 0.0096075621887109
1209 => 0.0093635734065574
1210 => 0.0097518680612675
1211 => 0.0098283669998525
1212 => 0.0099050166649783
1213 => 0.010572199668949
1214 => 0.010538869091511
1215 => 0.010840161278908
1216 => 0.010828453618546
1217 => 0.010742520206091
1218 => 0.010379981274301
1219 => 0.010524482830877
1220 => 0.010079729500264
1221 => 0.010412968935846
1222 => 0.010260892373858
1223 => 0.010361551697263
1224 => 0.010180557157696
1225 => 0.010280727008973
1226 => 0.0098465077361146
1227 => 0.009441039888749
1228 => 0.0096042119868733
1229 => 0.0097815987185272
1230 => 0.010166218350052
1231 => 0.0099371420705587
]
'min_raw' => 0.0093635734065574
'max_raw' => 0.02795049465953
'avg_raw' => 0.018657034033044
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.009363'
'max' => '$0.02795'
'avg' => '$0.018657'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.017737956593443
'max_diff' => 0.00084896465952973
'year' => 2026
]
1 => [
'items' => [
101 => 0.010019526562997
102 => 0.0097435523043251
103 => 0.0091741385805341
104 => 0.0091773614003726
105 => 0.0090897695043197
106 => 0.0090140773175037
107 => 0.0099634542369098
108 => 0.0098453842095536
109 => 0.0096572550735845
110 => 0.0099090733980338
111 => 0.0099756581599124
112 => 0.0099775537344759
113 => 0.010161273883622
114 => 0.010259325360156
115 => 0.010276607357874
116 => 0.010565694982093
117 => 0.010662593340573
118 => 0.011061703965583
119 => 0.010251006377419
120 => 0.010234310594085
121 => 0.0099126169982737
122 => 0.0097085938340354
123 => 0.0099265866388785
124 => 0.010119698504984
125 => 0.0099186175222508
126 => 0.0099448744535446
127 => 0.0096749396631449
128 => 0.0097714286491004
129 => 0.0098545379622753
130 => 0.0098086498844798
131 => 0.0097399532110118
201 => 0.010103865534182
202 => 0.010083332174725
203 => 0.01042221569637
204 => 0.010686399635285
205 => 0.011159864482348
206 => 0.010665779232157
207 => 0.010647772801829
208 => 0.010823788546607
209 => 0.010662566393479
210 => 0.010764453229056
211 => 0.011143448937972
212 => 0.011151456520088
213 => 0.011017319202462
214 => 0.011009156934494
215 => 0.011034919473646
216 => 0.011185811470134
217 => 0.011133085170119
218 => 0.011194101379364
219 => 0.011270403083338
220 => 0.011586019282228
221 => 0.011662113279266
222 => 0.011477244316676
223 => 0.011493935914108
224 => 0.011424789847333
225 => 0.011357995613226
226 => 0.011508139296984
227 => 0.011782529830134
228 => 0.011780822860868
301 => 0.011844476131169
302 => 0.011884131591234
303 => 0.011713901327063
304 => 0.011603087684628
305 => 0.011645580686393
306 => 0.011713527921592
307 => 0.011623546313788
308 => 0.011068138146883
309 => 0.01123661350511
310 => 0.011208570967477
311 => 0.011168634983798
312 => 0.011338038259278
313 => 0.011321698900096
314 => 0.010832271656707
315 => 0.010863603200886
316 => 0.010834177031682
317 => 0.010929259004408
318 => 0.01065743165492
319 => 0.010741043916837
320 => 0.010793484743696
321 => 0.010824372793585
322 => 0.010935961609918
323 => 0.010922867950275
324 => 0.01093514768965
325 => 0.011100604445917
326 => 0.011937427941214
327 => 0.011982974397716
328 => 0.011758686988066
329 => 0.011848285384348
330 => 0.011676276056502
331 => 0.011791747070647
401 => 0.01187074940588
402 => 0.011513753044241
403 => 0.011492614036592
404 => 0.011319894765063
405 => 0.011412704318263
406 => 0.011265037645879
407 => 0.011301269882121
408 => 0.011199961390919
409 => 0.011382296504764
410 => 0.011586175494055
411 => 0.011637683378175
412 => 0.011502188310593
413 => 0.011404080952104
414 => 0.01123183674917
415 => 0.011518282697362
416 => 0.011602048221895
417 => 0.011517842712721
418 => 0.011498330456319
419 => 0.011461354765695
420 => 0.01150617502388
421 => 0.011601592016859
422 => 0.011556595125045
423 => 0.011586316364831
424 => 0.011473049647177
425 => 0.011713957680364
426 => 0.01209657761474
427 => 0.012097807800394
428 => 0.012052810666031
429 => 0.012034398808126
430 => 0.012080568598637
501 => 0.012105613816006
502 => 0.012254918452428
503 => 0.012415128275868
504 => 0.013162757616841
505 => 0.012952826289583
506 => 0.013616167517562
507 => 0.014140784304816
508 => 0.014298093940601
509 => 0.014153376477669
510 => 0.013658305854461
511 => 0.013634015327827
512 => 0.014373859852326
513 => 0.014164819887129
514 => 0.014139955248429
515 => 0.013875437502125
516 => 0.014031800251351
517 => 0.013997601424392
518 => 0.013943616902974
519 => 0.014241946136172
520 => 0.014800391828686
521 => 0.014713352830437
522 => 0.014648382255867
523 => 0.014363700110753
524 => 0.014535142348171
525 => 0.014474095051186
526 => 0.014736392980605
527 => 0.014581013497828
528 => 0.014163236203796
529 => 0.014229768614883
530 => 0.014219712374792
531 => 0.014426669083273
601 => 0.014364545816368
602 => 0.014207581809886
603 => 0.01479848312202
604 => 0.014760113277576
605 => 0.01481451294443
606 => 0.014838461360145
607 => 0.015198132575992
608 => 0.015345478364929
609 => 0.015378928438669
610 => 0.015518895542027
611 => 0.01537544592963
612 => 0.015949346657058
613 => 0.016330957152761
614 => 0.016774217381017
615 => 0.017421939711617
616 => 0.017665489299689
617 => 0.017621494246531
618 => 0.018112589925239
619 => 0.018995077943434
620 => 0.017799870306307
621 => 0.019058426850392
622 => 0.018659982379269
623 => 0.017715277705945
624 => 0.017654449862319
625 => 0.018294214835341
626 => 0.019713151970406
627 => 0.019357724311524
628 => 0.019713733322728
629 => 0.019298429900627
630 => 0.019277806585267
701 => 0.019693562962491
702 => 0.020665000399574
703 => 0.020203506887004
704 => 0.019541842773882
705 => 0.020030405258377
706 => 0.019607167219984
707 => 0.018653493462617
708 => 0.019357452522692
709 => 0.01888673514682
710 => 0.019024115501811
711 => 0.02001349341197
712 => 0.01989444884425
713 => 0.020048503538109
714 => 0.019776601035761
715 => 0.019522601223479
716 => 0.01904849171158
717 => 0.018908131258423
718 => 0.018946921838036
719 => 0.018908112035738
720 => 0.018642852121122
721 => 0.018585569267817
722 => 0.018490095336021
723 => 0.018519686699696
724 => 0.018340167776036
725 => 0.018678957075484
726 => 0.018741839354863
727 => 0.018988381954318
728 => 0.019013978824867
729 => 0.019700596455036
730 => 0.019322419002479
731 => 0.019576133087925
801 => 0.019553438512073
802 => 0.017735752320811
803 => 0.017986213440386
804 => 0.018375852343415
805 => 0.018200320545743
806 => 0.017952159651951
807 => 0.017751756424668
808 => 0.017448125043052
809 => 0.017875480381952
810 => 0.018437407208432
811 => 0.019028230216507
812 => 0.019738065348453
813 => 0.019579638410394
814 => 0.019014960342467
815 => 0.019040291388096
816 => 0.01919687794478
817 => 0.018994084126486
818 => 0.018934276270465
819 => 0.019188661263775
820 => 0.019190413073416
821 => 0.018957074277017
822 => 0.018697760905369
823 => 0.018696674372873
824 => 0.018650532063058
825 => 0.019306638515037
826 => 0.019667430723781
827 => 0.019708794969068
828 => 0.0196646465805
829 => 0.019681637543073
830 => 0.019471700506319
831 => 0.019951554317445
901 => 0.020391915627157
902 => 0.020273889389207
903 => 0.020096951280101
904 => 0.019956011553705
905 => 0.020240688468797
906 => 0.020228012253891
907 => 0.02038806945528
908 => 0.02038080833609
909 => 0.020326987119318
910 => 0.020273891311332
911 => 0.020484410188319
912 => 0.020423784132577
913 => 0.020363063907824
914 => 0.020241280201282
915 => 0.020257832629614
916 => 0.020080925071368
917 => 0.019999079540184
918 => 0.018768319126066
919 => 0.018439419727157
920 => 0.018542898173418
921 => 0.018576965964744
922 => 0.018433828524843
923 => 0.01863905084467
924 => 0.018607067163509
925 => 0.018731496957078
926 => 0.01865375862417
927 => 0.018656949032469
928 => 0.018885560893992
929 => 0.018951927889977
930 => 0.018918173100172
1001 => 0.018941813797905
1002 => 0.019486603699047
1003 => 0.019409151996505
1004 => 0.019368007323199
1005 => 0.019379404678892
1006 => 0.019518610179061
1007 => 0.01955758011877
1008 => 0.019392461745855
1009 => 0.01947033252506
1010 => 0.019801896419641
1011 => 0.019917925017853
1012 => 0.020288232606459
1013 => 0.020130919361126
1014 => 0.020419674631292
1015 => 0.021307209887855
1016 => 0.022016234463566
1017 => 0.021364186162062
1018 => 0.022666219501621
1019 => 0.023680039222056
1020 => 0.023641127132581
1021 => 0.02346434421425
1022 => 0.022310137416326
1023 => 0.021248019112622
1024 => 0.022136526173596
1025 => 0.022138791160817
1026 => 0.022062467616302
1027 => 0.021588428636305
1028 => 0.022045972087337
1029 => 0.022082290224926
1030 => 0.022061961725649
1031 => 0.021698517151128
1101 => 0.021143604461621
1102 => 0.021252033072877
1103 => 0.021429641349999
1104 => 0.021093391828439
1105 => 0.020985939732224
1106 => 0.021185713622686
1107 => 0.021829426722297
1108 => 0.021707736489592
1109 => 0.021704558665827
1110 => 0.022225201086031
1111 => 0.021852533474832
1112 => 0.021253400704902
1113 => 0.021102111778904
1114 => 0.020565138012044
1115 => 0.020936027705449
1116 => 0.020949375365233
1117 => 0.020746242870555
1118 => 0.021269883787318
1119 => 0.021265058344084
1120 => 0.021762177460885
1121 => 0.022712482502794
1122 => 0.022431430540231
1123 => 0.022104597686136
1124 => 0.022140133479468
1125 => 0.02252987342251
1126 => 0.022294227756049
1127 => 0.022378967580689
1128 => 0.022529745158637
1129 => 0.022620713015009
1130 => 0.022127044604852
1201 => 0.022011946883554
1202 => 0.021776497339591
1203 => 0.021715072948444
1204 => 0.021906841689187
1205 => 0.021856317401291
1206 => 0.020948253546112
1207 => 0.020853355820827
1208 => 0.020856266198578
1209 => 0.020617641356207
1210 => 0.020253681195065
1211 => 0.021210146767613
1212 => 0.02113332919641
1213 => 0.02104852854301
1214 => 0.021058916139186
1215 => 0.021474085426603
1216 => 0.021233266273349
1217 => 0.021873523461756
1218 => 0.021741905831713
1219 => 0.021606912706097
1220 => 0.021588252544146
1221 => 0.021536291707856
1222 => 0.021358098666443
1223 => 0.021142919861195
1224 => 0.021000840175502
1225 => 0.019372164961689
1226 => 0.019674437607804
1227 => 0.020022174734142
1228 => 0.020142212196685
1229 => 0.019936879810666
1230 => 0.021366206440559
1231 => 0.021627358189174
]
'min_raw' => 0.0090140773175037
'max_raw' => 0.023680039222056
'avg_raw' => 0.01634705826978
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.009014'
'max' => '$0.02368'
'avg' => '$0.016347'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00034949608905366
'max_diff' => -0.0042704554374738
'year' => 2027
]
2 => [
'items' => [
101 => 0.020836312508111
102 => 0.020688340159366
103 => 0.021375907483108
104 => 0.020961220335205
105 => 0.021147953932514
106 => 0.020744338032948
107 => 0.021564454380349
108 => 0.021558206467852
109 => 0.021239162685546
110 => 0.021508816305634
111 => 0.021461957353294
112 => 0.02110175770884
113 => 0.021575873351554
114 => 0.021576108506998
115 => 0.021269035803138
116 => 0.020910442111888
117 => 0.020846334029497
118 => 0.020798037201125
119 => 0.021136075873384
120 => 0.021439160289911
121 => 0.02200312524807
122 => 0.022144919438028
123 => 0.022698351601208
124 => 0.022368809694157
125 => 0.022514891353271
126 => 0.022673483658751
127 => 0.022749518642037
128 => 0.022625623717034
129 => 0.023485331668219
130 => 0.02355791736007
131 => 0.023582254714684
201 => 0.023292366030636
202 => 0.023549855031362
203 => 0.023429384455062
204 => 0.023742815426904
205 => 0.023791965405377
206 => 0.023750337122172
207 => 0.023765938101119
208 => 0.023032329027658
209 => 0.022994287527102
210 => 0.022475588967732
211 => 0.022686962464701
212 => 0.022291809843512
213 => 0.022417116810214
214 => 0.022472350927168
215 => 0.02244349975898
216 => 0.022698913205078
217 => 0.022481759598375
218 => 0.021908655526927
219 => 0.021335395313658
220 => 0.021328198498648
221 => 0.021177269203378
222 => 0.021068174966976
223 => 0.021089190387233
224 => 0.021163251469303
225 => 0.021063870402251
226 => 0.021085078391654
227 => 0.021437272323847
228 => 0.021507902305216
229 => 0.021267874031609
301 => 0.020304125877162
302 => 0.020067619662681
303 => 0.020237615639528
304 => 0.020156368511738
305 => 0.016267762529035
306 => 0.017181332824163
307 => 0.016638520376714
308 => 0.016888673326098
309 => 0.016334602377854
310 => 0.016599034075703
311 => 0.01655020319661
312 => 0.018019197196666
313 => 0.01799626087589
314 => 0.018007239278882
315 => 0.017483211499986
316 => 0.018318001980672
317 => 0.018729249789554
318 => 0.018653138765136
319 => 0.018672294270234
320 => 0.01834313922742
321 => 0.018010426219194
322 => 0.017641396288906
323 => 0.018327008285903
324 => 0.018250779935624
325 => 0.018425620345069
326 => 0.018870288733679
327 => 0.018935767843033
328 => 0.019023772430028
329 => 0.018992229050183
330 => 0.019743720330474
331 => 0.019652709777932
401 => 0.019872019024036
402 => 0.019420883265767
403 => 0.018910380333087
404 => 0.019007410250991
405 => 0.018998065489632
406 => 0.018879095952107
407 => 0.018771695573118
408 => 0.018592904201969
409 => 0.019158626556427
410 => 0.019135659261966
411 => 0.019507473062725
412 => 0.019441751361834
413 => 0.019002845758458
414 => 0.019018521357947
415 => 0.019123947297946
416 => 0.019488827680016
417 => 0.019597149020365
418 => 0.019546970259656
419 => 0.019665739664292
420 => 0.019759610159097
421 => 0.019677528353184
422 => 0.020839633629706
423 => 0.020357046497197
424 => 0.020592256107762
425 => 0.020648352213947
426 => 0.020504663217529
427 => 0.020535824215735
428 => 0.020583024637153
429 => 0.020869616353212
430 => 0.021621715942133
501 => 0.02195481573035
502 => 0.022956962878058
503 => 0.021927156429912
504 => 0.021866051977042
505 => 0.022046568940288
506 => 0.022634935404042
507 => 0.023111751160462
508 => 0.023269938455027
509 => 0.023290845517392
510 => 0.023587615398089
511 => 0.023757718359274
512 => 0.02355157972875
513 => 0.023376898822994
514 => 0.022751213500771
515 => 0.022823638280503
516 => 0.023322573192658
517 => 0.024027348143195
518 => 0.024632118370093
519 => 0.024420348915004
520 => 0.026036000371397
521 => 0.026196185613954
522 => 0.026174053192842
523 => 0.026538979014147
524 => 0.025814675574707
525 => 0.025505021821629
526 => 0.023414666817531
527 => 0.02400197130921
528 => 0.024855652879048
529 => 0.024742664922139
530 => 0.024122698547148
531 => 0.024631648070004
601 => 0.024463373441425
602 => 0.024330648260143
603 => 0.024938688045634
604 => 0.024270123324589
605 => 0.024848983434531
606 => 0.02410658935599
607 => 0.024421316260036
608 => 0.024242662047672
609 => 0.024358273218109
610 => 0.023682412678061
611 => 0.024047090619884
612 => 0.023667240876732
613 => 0.023667060778496
614 => 0.023658675574362
615 => 0.024105567112669
616 => 0.024120140229689
617 => 0.023789886707665
618 => 0.023742292015612
619 => 0.023918274537521
620 => 0.023712245094261
621 => 0.023808644974028
622 => 0.023715164948415
623 => 0.023694120625659
624 => 0.023526435881541
625 => 0.023454192683188
626 => 0.02348252110274
627 => 0.023385821602506
628 => 0.023327556655842
629 => 0.023647085209963
630 => 0.023476373993241
701 => 0.023620921267657
702 => 0.02345619140514
703 => 0.02288516593227
704 => 0.022556763144338
705 => 0.021478148960175
706 => 0.021784042604787
707 => 0.021986850407634
708 => 0.021919822430003
709 => 0.022063824462339
710 => 0.022072665017589
711 => 0.022025848488949
712 => 0.021971640946354
713 => 0.021945255712483
714 => 0.022141909628737
715 => 0.022256073846188
716 => 0.022007204883869
717 => 0.021948898368044
718 => 0.022200518629381
719 => 0.02235400684344
720 => 0.023487277578477
721 => 0.023403321222009
722 => 0.023614035201141
723 => 0.02359031204076
724 => 0.023811173860259
725 => 0.02417218959197
726 => 0.023438143667815
727 => 0.02356554865885
728 => 0.023534311897259
729 => 0.02387534666959
730 => 0.023876411342924
731 => 0.023671943960961
801 => 0.023782789045827
802 => 0.023720918360331
803 => 0.023832727051348
804 => 0.023402199933683
805 => 0.023926535490468
806 => 0.024223799963729
807 => 0.024227927481228
808 => 0.024368828482317
809 => 0.024511992059859
810 => 0.02478678208003
811 => 0.024504328315339
812 => 0.023996221488978
813 => 0.024032905160666
814 => 0.02373500231428
815 => 0.023740010114948
816 => 0.023713278082513
817 => 0.023793502924146
818 => 0.023419804774987
819 => 0.023507510983658
820 => 0.023384721777912
821 => 0.023565281739097
822 => 0.023371029068493
823 => 0.023534296833947
824 => 0.023604757789104
825 => 0.023864760230552
826 => 0.02333262649649
827 => 0.02224756979045
828 => 0.0224756618651
829 => 0.022138295770446
830 => 0.02216952028695
831 => 0.022232598779632
901 => 0.022028140746851
902 => 0.022067144896292
903 => 0.022065751393606
904 => 0.022053742940289
905 => 0.022000555509419
906 => 0.021923423211845
907 => 0.022230694545312
908 => 0.022282905932443
909 => 0.022398965378412
910 => 0.022744279565744
911 => 0.02270977453536
912 => 0.022766053671516
913 => 0.022643196633282
914 => 0.022175219272591
915 => 0.022200632694784
916 => 0.021883726912821
917 => 0.022390861385066
918 => 0.02227076524819
919 => 0.022193338487475
920 => 0.02217221187846
921 => 0.022518382032871
922 => 0.022621961568623
923 => 0.022557417752906
924 => 0.022425036503827
925 => 0.022679247637061
926 => 0.022747263812008
927 => 0.022762490125239
928 => 0.023212903513179
929 => 0.022787663230156
930 => 0.022890022792804
1001 => 0.023688602880763
1002 => 0.022964400937504
1003 => 0.023348026858479
1004 => 0.02332925036594
1005 => 0.023525500405917
1006 => 0.023313152134552
1007 => 0.023315784445873
1008 => 0.023490041186244
1009 => 0.023245329021762
1010 => 0.023184734848441
1011 => 0.023101024431982
1012 => 0.023283803063836
1013 => 0.023393370587265
1014 => 0.02427640435763
1015 => 0.024846884444517
1016 => 0.024822118399411
1017 => 0.025048433691586
1018 => 0.024946476579651
1019 => 0.024617230170285
1020 => 0.02517921364375
1021 => 0.025001378558359
1022 => 0.025016039066729
1023 => 0.025015493401875
1024 => 0.025133738187047
1025 => 0.025049950919777
1026 => 0.024884797615401
1027 => 0.024994434086228
1028 => 0.025320015208828
1029 => 0.026330629003428
1030 => 0.026896181871738
1031 => 0.026296582010626
1101 => 0.026710177965859
1102 => 0.026462167772027
1103 => 0.026417096942143
1104 => 0.02667686576653
1105 => 0.026937089281856
1106 => 0.026920514168907
1107 => 0.026731605259406
1108 => 0.026624895409814
1109 => 0.027432938141342
1110 => 0.028028290261283
1111 => 0.027987691237994
1112 => 0.028166882123281
1113 => 0.028692992104648
1114 => 0.028741093007919
1115 => 0.028735033399694
1116 => 0.028615810292126
1117 => 0.029133833892796
1118 => 0.029565978294233
1119 => 0.02858821358741
1120 => 0.028960533587888
1121 => 0.029127680031504
1122 => 0.029373100600847
1123 => 0.029787166238593
1124 => 0.03023695134667
1125 => 0.030300555892595
1126 => 0.030255425423504
1127 => 0.029958780053854
1128 => 0.030450940286165
1129 => 0.030739236207675
1130 => 0.030910909831399
1201 => 0.031346245577397
1202 => 0.029128712271037
1203 => 0.027559031978238
1204 => 0.02731390373406
1205 => 0.027812381657789
1206 => 0.027943826310989
1207 => 0.027890841136102
1208 => 0.026124023257469
1209 => 0.02730460180358
1210 => 0.028574805053332
1211 => 0.028623598733221
1212 => 0.029259489038744
1213 => 0.029466560988247
1214 => 0.029978536032241
1215 => 0.029946511853843
1216 => 0.030071169629753
1217 => 0.030042512965843
1218 => 0.030990838925777
1219 => 0.032036983287352
1220 => 0.032000758634646
1221 => 0.031850363005252
1222 => 0.032073726161168
1223 => 0.033153459253957
1224 => 0.033054054733143
1225 => 0.033150617757857
1226 => 0.034423683925345
1227 => 0.03607885103463
1228 => 0.035309859736306
1229 => 0.036978349582383
1230 => 0.038028575497643
1231 => 0.039844832622697
]
'min_raw' => 0.016267762529035
'max_raw' => 0.039844832622697
'avg_raw' => 0.028056297575866
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.016267'
'max' => '$0.039844'
'avg' => '$0.028056'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0072536852115311
'max_diff' => 0.016164793400641
'year' => 2028
]
3 => [
'items' => [
101 => 0.039617428285385
102 => 0.040324483855859
103 => 0.03921032706088
104 => 0.03665199785137
105 => 0.036247132461074
106 => 0.037057683225271
107 => 0.039050343186661
108 => 0.036994927271812
109 => 0.037410735234407
110 => 0.037290982513206
111 => 0.03728460139961
112 => 0.037528142551722
113 => 0.037174873408331
114 => 0.035735591366251
115 => 0.036395205844394
116 => 0.036140497017094
117 => 0.036423115450784
118 => 0.037948290576702
119 => 0.0372739742979
120 => 0.036563636875188
121 => 0.037454557639762
122 => 0.038589005926654
123 => 0.03851801419166
124 => 0.038380260553528
125 => 0.039156770599131
126 => 0.040439337698371
127 => 0.040786010431524
128 => 0.041041917155725
129 => 0.041077202369413
130 => 0.041440662000036
131 => 0.039486247962557
201 => 0.042587953232948
202 => 0.043123532050266
203 => 0.043022865430077
204 => 0.043618138744924
205 => 0.04344299423507
206 => 0.043189237319623
207 => 0.044132872141919
208 => 0.04305107096556
209 => 0.041515590390698
210 => 0.040673195378966
211 => 0.041782529084481
212 => 0.042459960468028
213 => 0.042907699519825
214 => 0.043043185086367
215 => 0.039637963560783
216 => 0.037802738020738
217 => 0.038979096551004
218 => 0.040414335145856
219 => 0.039478275139696
220 => 0.039514966919741
221 => 0.038180391343199
222 => 0.040532415471208
223 => 0.040189745339393
224 => 0.041967518589419
225 => 0.041543238735779
226 => 0.042992943808415
227 => 0.042611187877882
228 => 0.044195835401837
301 => 0.044827994201761
302 => 0.045889487214495
303 => 0.046670325795716
304 => 0.047128849145671
305 => 0.047101321123618
306 => 0.048918219071565
307 => 0.04784685782924
308 => 0.046500975608422
309 => 0.046476632845251
310 => 0.047173684318712
311 => 0.048634512980351
312 => 0.049013284598122
313 => 0.049224966259481
314 => 0.048900768426418
315 => 0.047737882583026
316 => 0.047235754371814
317 => 0.047663582155821
318 => 0.047140385539641
319 => 0.048043569682211
320 => 0.049283834419682
321 => 0.049027724655933
322 => 0.049883861198026
323 => 0.050769872450901
324 => 0.052036908335768
325 => 0.052368158434275
326 => 0.052915702250795
327 => 0.053479304696767
328 => 0.053660318612901
329 => 0.054005930344122
330 => 0.0540041087997
331 => 0.055045633014084
401 => 0.056194466475871
402 => 0.05662812451214
403 => 0.057625297254496
404 => 0.055917673878312
405 => 0.057212925824911
406 => 0.058381275503002
407 => 0.056988320851378
408 => 0.058908184321834
409 => 0.058982728269887
410 => 0.060108253382846
411 => 0.058967318056341
412 => 0.058289834301458
413 => 0.060245704516822
414 => 0.061192088504702
415 => 0.060907029945624
416 => 0.058737720235965
417 => 0.057475088938873
418 => 0.054170539290995
419 => 0.058084921094827
420 => 0.059991502287392
421 => 0.058732782651272
422 => 0.059367607620382
423 => 0.062831006809159
424 => 0.064149644981754
425 => 0.063875377459831
426 => 0.063921724156208
427 => 0.064633237379165
428 => 0.067788478847243
429 => 0.065897785021646
430 => 0.067343149608369
501 => 0.068109765773517
502 => 0.068821841591689
503 => 0.067073208436131
504 => 0.064798262393272
505 => 0.06407769148576
506 => 0.058607627790113
507 => 0.058322887219472
508 => 0.058163053708649
509 => 0.057155326031808
510 => 0.056363528117652
511 => 0.055733861018744
512 => 0.054081426516697
513 => 0.054639074653414
514 => 0.052005438947035
515 => 0.053690345741658
516 => 0.049486999562919
517 => 0.052987671163679
518 => 0.051082414767391
519 => 0.052361743195792
520 => 0.052357279739425
521 => 0.050001630491292
522 => 0.048642941166115
523 => 0.049508750885098
524 => 0.050436967631908
525 => 0.050587567676182
526 => 0.051791024917358
527 => 0.052126883965143
528 => 0.051109215370594
529 => 0.049399894556194
530 => 0.049796930795922
531 => 0.048634895239389
601 => 0.046598472623618
602 => 0.048061066898793
603 => 0.048560460890068
604 => 0.048781021726463
605 => 0.04677843396857
606 => 0.046149177416744
607 => 0.045814166508526
608 => 0.04914138562407
609 => 0.049323658197992
610 => 0.048391125939062
611 => 0.052606260175761
612 => 0.051652245479133
613 => 0.052718113634542
614 => 0.049760903918703
615 => 0.04987387331226
616 => 0.048473882841394
617 => 0.049257783957682
618 => 0.048703747915002
619 => 0.049194452494147
620 => 0.049488578795636
621 => 0.050888339541842
622 => 0.053003654182934
623 => 0.050679261964266
624 => 0.049666490988683
625 => 0.050294808405894
626 => 0.05196810048663
627 => 0.05450322364319
628 => 0.053002379710398
629 => 0.053668428761789
630 => 0.053813930849058
701 => 0.052707264097279
702 => 0.054544028024861
703 => 0.055528364735496
704 => 0.056538090520825
705 => 0.057414807128352
706 => 0.056134783837819
707 => 0.057504592242821
708 => 0.056400768472123
709 => 0.055410524438604
710 => 0.055412026230048
711 => 0.054790831682664
712 => 0.053587188971558
713 => 0.053365218788438
714 => 0.054519935712773
715 => 0.055445909333991
716 => 0.055522176956549
717 => 0.056034843531497
718 => 0.056338234329666
719 => 0.05931187659151
720 => 0.060507900108483
721 => 0.061970375025471
722 => 0.062540091426207
723 => 0.064254733537791
724 => 0.062870020776264
725 => 0.062570429460056
726 => 0.058411268552514
727 => 0.059092330918123
728 => 0.060182777478208
729 => 0.058429249614653
730 => 0.059541459437602
731 => 0.059761033216477
801 => 0.058369665408845
802 => 0.059112855072355
803 => 0.057139163666451
804 => 0.053046675262106
805 => 0.054548584134355
806 => 0.055654494601391
807 => 0.054076224007154
808 => 0.056905212959816
809 => 0.055252576015857
810 => 0.054728769445185
811 => 0.052685213262468
812 => 0.05364969311702
813 => 0.054954165930321
814 => 0.054148153392943
815 => 0.055820750431395
816 => 0.05818959390318
817 => 0.059877772828242
818 => 0.060007370243907
819 => 0.058921984294296
820 => 0.060661322205388
821 => 0.060673991383192
822 => 0.058712011114076
823 => 0.057510309123595
824 => 0.057237279902955
825 => 0.057919360426645
826 => 0.058747532101416
827 => 0.060053328008075
828 => 0.060842393126478
829 => 0.06289985646747
830 => 0.063456547055446
831 => 0.064068181233591
901 => 0.064885513116588
902 => 0.065866929601719
903 => 0.063719646204324
904 => 0.063804961776739
905 => 0.061805441208247
906 => 0.059668666720558
907 => 0.061290212204014
908 => 0.063410167218477
909 => 0.062923847195817
910 => 0.062869126258651
911 => 0.062961151696642
912 => 0.062594482281283
913 => 0.06093605010502
914 => 0.060103195848435
915 => 0.061177790323211
916 => 0.061748889461857
917 => 0.062634614420817
918 => 0.06252543012424
919 => 0.064806962498607
920 => 0.065693496989328
921 => 0.065466683529652
922 => 0.065508422664803
923 => 0.067113451013847
924 => 0.06889857263724
925 => 0.070570574605093
926 => 0.072271406820948
927 => 0.070220987200124
928 => 0.06917991056897
929 => 0.070254035909415
930 => 0.069684089884366
1001 => 0.072959168801268
1002 => 0.073185928159637
1003 => 0.076460770251057
1004 => 0.079568985356756
1005 => 0.077616771138324
1006 => 0.079457621216646
1007 => 0.08144865066306
1008 => 0.085289669498079
1009 => 0.083996149483117
1010 => 0.083005333423699
1011 => 0.082069017035137
1012 => 0.084017342803693
1013 => 0.086523832779677
1014 => 0.087063706713642
1015 => 0.08793850873438
1016 => 0.087018761375275
1017 => 0.088126495762468
1018 => 0.092037284912413
1019 => 0.090980555162607
1020 => 0.089479829040099
1021 => 0.092567021477798
1022 => 0.093684264419845
1023 => 0.1015256604918
1024 => 0.11142574694456
1025 => 0.10732704614564
1026 => 0.10478285029551
1027 => 0.10538079666942
1028 => 0.10899597310289
1029 => 0.11015705303336
1030 => 0.1070008375341
1031 => 0.10811566620626
1101 => 0.11425848179743
1102 => 0.11755390527698
1103 => 0.11307827755734
1104 => 0.10073019818482
1105 => 0.089344705072567
1106 => 0.092364650541373
1107 => 0.092022282445029
1108 => 0.098621971465889
1109 => 0.090955352507558
1110 => 0.091084438708676
1111 => 0.097820602309296
1112 => 0.096023509347731
1113 => 0.093112448904272
1114 => 0.089365959035377
1115 => 0.082440226004355
1116 => 0.076305911120426
1117 => 0.088336715256158
1118 => 0.087817925105227
1119 => 0.087066640086287
1120 => 0.088738543598409
1121 => 0.09685683247518
1122 => 0.096669679640234
1123 => 0.095479108790521
1124 => 0.096382146286818
1125 => 0.092954142065049
1126 => 0.093837616807204
1127 => 0.089342901552288
1128 => 0.0913747005634
1129 => 0.093106203075984
1130 => 0.093453827840718
1201 => 0.094237044185824
1202 => 0.087544546269694
1203 => 0.090549281352621
1204 => 0.092314281708237
1205 => 0.084339945890301
1206 => 0.092156654728561
1207 => 0.087428044770438
1208 => 0.085823083529313
1209 => 0.087983952402923
1210 => 0.087141859701363
1211 => 0.086417877845905
1212 => 0.086013883530972
1213 => 0.087600587145356
1214 => 0.087526565525224
1215 => 0.084930410446191
1216 => 0.08154383197841
1217 => 0.082680478872846
1218 => 0.082267524399976
1219 => 0.080770924118108
1220 => 0.08177945200788
1221 => 0.077338405585609
1222 => 0.069697816041598
1223 => 0.074745423531959
1224 => 0.074551096134321
1225 => 0.074453107448385
1226 => 0.078246244971767
1227 => 0.077881622321466
1228 => 0.077219828640774
1229 => 0.080758769758178
1230 => 0.07946700864485
1231 => 0.083447912018929
]
'min_raw' => 0.035735591366251
'max_raw' => 0.11755390527698
'avg_raw' => 0.076644748321614
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.035735'
'max' => '$0.117553'
'avg' => '$0.076644'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.019467828837216
'max_diff' => 0.077709072654279
'year' => 2029
]
4 => [
'items' => [
101 => 0.086069992449785
102 => 0.085404948037104
103 => 0.087871027355938
104 => 0.08270666492159
105 => 0.084422058964023
106 => 0.084775599298735
107 => 0.080715099774124
108 => 0.07794127909642
109 => 0.077756296881088
110 => 0.072946874081983
111 => 0.07551602892096
112 => 0.077776778860409
113 => 0.076694055080696
114 => 0.076351297077491
115 => 0.078102373380722
116 => 0.078238447006438
117 => 0.075135953919691
118 => 0.075781060475604
119 => 0.078471262053803
120 => 0.075713274298179
121 => 0.070354954603745
122 => 0.06902601723496
123 => 0.068848712492788
124 => 0.06524452894929
125 => 0.069114823184503
126 => 0.067425336033396
127 => 0.07276240570058
128 => 0.069713900129963
129 => 0.069582485147785
130 => 0.069383832127835
131 => 0.066281562464999
201 => 0.066960762361638
202 => 0.069218526263131
203 => 0.070024121858714
204 => 0.069940091638045
205 => 0.069207461988295
206 => 0.069542856090279
207 => 0.068462434828735
208 => 0.06808091559426
209 => 0.066876735945123
210 => 0.065106924524011
211 => 0.065353027657001
212 => 0.061846568135428
213 => 0.059936062886184
214 => 0.059407260213247
215 => 0.058700123178811
216 => 0.059487133222906
217 => 0.061836634776167
218 => 0.059002637428374
219 => 0.054143947757383
220 => 0.054435963285414
221 => 0.055092035476711
222 => 0.05386944928858
223 => 0.052712374065396
224 => 0.053718357095475
225 => 0.051659666230901
226 => 0.055340818432183
227 => 0.055241253581448
228 => 0.05661335948116
301 => 0.057471365458698
302 => 0.055493939463207
303 => 0.05499662217287
304 => 0.055279916703257
305 => 0.050597689162327
306 => 0.056230721598748
307 => 0.056279436297175
308 => 0.055862311473692
309 => 0.058861727345721
310 => 0.065191430376974
311 => 0.062809941484902
312 => 0.061887757005009
313 => 0.06013468363462
314 => 0.062470549813467
315 => 0.06229119173612
316 => 0.061480066490828
317 => 0.06098949541161
318 => 0.061893387666799
319 => 0.06087749315826
320 => 0.060695010589612
321 => 0.059589364766599
322 => 0.059194699511463
323 => 0.058902505068636
324 => 0.058580827697517
325 => 0.059290367821199
326 => 0.05768245655316
327 => 0.05574347318939
328 => 0.055582267702783
329 => 0.056027370224636
330 => 0.055830445492702
331 => 0.055581324902929
401 => 0.055105685853098
402 => 0.054964573907433
403 => 0.05542311927306
404 => 0.054905448290123
405 => 0.055669300024444
406 => 0.055461574618553
407 => 0.054301237387165
408 => 0.052855027584989
409 => 0.052842153284222
410 => 0.052530569754603
411 => 0.052133721282736
412 => 0.052023327116526
413 => 0.053633636010596
414 => 0.056966927228833
415 => 0.056312522403795
416 => 0.056785396955989
417 => 0.05911147173164
418 => 0.05985086095531
419 => 0.059326059997742
420 => 0.05860768007871
421 => 0.058639285149308
422 => 0.06109420680103
423 => 0.06124731725318
424 => 0.061634177970458
425 => 0.062131403318987
426 => 0.05941073962466
427 => 0.05851114213397
428 => 0.058084862935113
429 => 0.056772087993444
430 => 0.058187803219217
501 => 0.057362926584129
502 => 0.057474230624001
503 => 0.057401743722018
504 => 0.057441326472044
505 => 0.05533978947512
506 => 0.056105479103266
507 => 0.054832371588528
508 => 0.053127823539318
509 => 0.053122109296565
510 => 0.053539295016778
511 => 0.053291136625916
512 => 0.052623348776844
513 => 0.052718204888935
514 => 0.051887165534727
515 => 0.052819108112989
516 => 0.052845832891483
517 => 0.052486984235597
518 => 0.053922770360703
519 => 0.054511013107649
520 => 0.054274811235062
521 => 0.054494440554602
522 => 0.056339715878736
523 => 0.056640576271576
524 => 0.056774198584354
525 => 0.056595162386796
526 => 0.054528168800108
527 => 0.054619848755213
528 => 0.053947162075258
529 => 0.053378812716672
530 => 0.053401543710416
531 => 0.053693749160974
601 => 0.054969827501184
602 => 0.057655259139229
603 => 0.057757169306867
604 => 0.057880687402975
605 => 0.057378277230884
606 => 0.057226745515564
607 => 0.057426654961726
608 => 0.058435161891688
609 => 0.06102931552251
610 => 0.060112368371682
611 => 0.059366876064926
612 => 0.060020873801234
613 => 0.059920195975933
614 => 0.059070373811811
615 => 0.059046522134085
616 => 0.057415441696554
617 => 0.056812468396704
618 => 0.05630857877558
619 => 0.055758344463684
620 => 0.05543214711957
621 => 0.05593333449417
622 => 0.056047961976615
623 => 0.054952107022798
624 => 0.054802746041916
625 => 0.055697644852875
626 => 0.055303833251362
627 => 0.055708878249576
628 => 0.055802852163573
629 => 0.055787720199017
630 => 0.055376535658063
701 => 0.055638612422768
702 => 0.055018722745398
703 => 0.054344685825677
704 => 0.053914692264879
705 => 0.053539465852714
706 => 0.05374766327447
707 => 0.053005477481256
708 => 0.052768037308758
709 => 0.0555498267118
710 => 0.057604764453102
711 => 0.057574884844499
712 => 0.057393000411538
713 => 0.057122757038069
714 => 0.058415391905676
715 => 0.057965063764852
716 => 0.058292715113477
717 => 0.058376116133186
718 => 0.058628545901065
719 => 0.05871876784601
720 => 0.058446054465216
721 => 0.057530795050139
722 => 0.055250055608022
723 => 0.054188365240978
724 => 0.053837989736002
725 => 0.05385072522015
726 => 0.053499423713641
727 => 0.053602897751537
728 => 0.053463439666008
729 => 0.05319933979055
730 => 0.053731355851375
731 => 0.053792665746312
801 => 0.053668486840597
802 => 0.053697735468235
803 => 0.05266958716642
804 => 0.052747755048787
805 => 0.052312506346677
806 => 0.052230902462033
807 => 0.05113063164454
808 => 0.049181342404547
809 => 0.050261437865588
810 => 0.048956834433055
811 => 0.048462761345186
812 => 0.050801626499025
813 => 0.050566869307601
814 => 0.050165067042381
815 => 0.049570717749191
816 => 0.049350267814889
817 => 0.048010883800036
818 => 0.047931745847103
819 => 0.048595580731275
820 => 0.048289243773393
821 => 0.047859030665649
822 => 0.046300842399404
823 => 0.04454892288974
824 => 0.044601802327563
825 => 0.045159055327966
826 => 0.046779343582444
827 => 0.046146268930148
828 => 0.045686966006213
829 => 0.045600952375155
830 => 0.046677593049578
831 => 0.048201265167081
901 => 0.048916138034372
902 => 0.048207720733899
903 => 0.047393929083012
904 => 0.047443460810054
905 => 0.04777297319946
906 => 0.047807600292532
907 => 0.047277905586938
908 => 0.047427011543858
909 => 0.047200505960762
910 => 0.045810441615396
911 => 0.04578529975933
912 => 0.045444155551162
913 => 0.045433825840118
914 => 0.044853454439613
915 => 0.044772256468764
916 => 0.043619893827035
917 => 0.044378382407497
918 => 0.043869628090161
919 => 0.043102815330925
920 => 0.042970616522203
921 => 0.042966642466378
922 => 0.043753987713918
923 => 0.044369181819864
924 => 0.043878478089327
925 => 0.043766754361776
926 => 0.044959671478915
927 => 0.044807861902078
928 => 0.044676395787604
929 => 0.048064837040741
930 => 0.045382621385515
1001 => 0.04421302226432
1002 => 0.042765421250991
1003 => 0.043236767440368
1004 => 0.043336087007987
1005 => 0.039854867520626
1006 => 0.038442537208162
1007 => 0.037957878667469
1008 => 0.037678950825235
1009 => 0.037806061745497
1010 => 0.036534798814456
1011 => 0.037389108528863
1012 => 0.036288302287763
1013 => 0.036103748539109
1014 => 0.038072126461922
1015 => 0.038346014750785
1016 => 0.037177522220076
1017 => 0.037927883586548
1018 => 0.037655792124262
1019 => 0.036307172451261
1020 => 0.036255665099527
1021 => 0.035578975153889
1022 => 0.034520086421958
1023 => 0.034036145857688
1024 => 0.033784105410052
1025 => 0.033888102210917
1026 => 0.033835518246045
1027 => 0.03349237230609
1028 => 0.033855186969651
1029 => 0.032928345429623
1030 => 0.032559269660314
1031 => 0.03239256669781
1101 => 0.031569941484027
1102 => 0.032879104022249
1103 => 0.033137025534674
1104 => 0.033395455232154
1105 => 0.035644909311273
1106 => 0.035532532942371
1107 => 0.036548360587729
1108 => 0.036508887393418
1109 => 0.036219156893645
1110 => 0.034996831573456
1111 => 0.03548402866023
1112 => 0.033984511754379
1113 => 0.035108051777481
1114 => 0.03459531503109
1115 => 0.034934694967759
1116 => 0.034324459240973
1117 => 0.034662188888192
1118 => 0.033198188293527
1119 => 0.031831125137273
1120 => 0.032381271258411
1121 => 0.032979343008928
1122 => 0.034276114949898
1123 => 0.033503768279993
1124 => 0.033781533348151
1125 => 0.03285106686713
1126 => 0.030931248742172
1127 => 0.030942114704268
1128 => 0.030646792511254
1129 => 0.030391591018745
1130 => 0.033592481585902
1201 => 0.033194400245285
1202 => 0.032560109728608
1203 => 0.033409132790883
1204 => 0.033633627964356
1205 => 0.033640019026342
1206 => 0.03425944433612
1207 => 0.034590031734987
1208 => 0.034648299196885
1209 => 0.035622978305392
1210 => 0.035949677886235
1211 => 0.037295307223472
1212 => 0.034561983703879
1213 => 0.034505692704707
1214 => 0.033421080286498
1215 => 0.032733201943826
1216 => 0.033468179905126
1217 => 0.034119270044341
1218 => 0.03344131147203
1219 => 0.033529838549087
1220 => 0.03261973455701
1221 => 0.032945053909804
1222 => 0.033225262761681
1223 => 0.03307054790359
1224 => 0.032838932272744
1225 => 0.03406588807786
1226 => 0.033996658422857
1227 => 0.035139227876173
1228 => 0.036029942470958
1229 => 0.037626262259093
1230 => 0.035960419342142
1231 => 0.035899709405122
]
'min_raw' => 0.030391591018745
'max_raw' => 0.087871027355938
'avg_raw' => 0.059131309187341
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.030391'
'max' => '$0.087871'
'avg' => '$0.059131'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0053440003475064
'max_diff' => -0.029682877921038
'year' => 2030
]
5 => [
'items' => [
101 => 0.036493158777669
102 => 0.035949587032228
103 => 0.036293105611888
104 => 0.037570916105133
105 => 0.037597914227308
106 => 0.037145660895764
107 => 0.037118141239438
108 => 0.037205001438871
109 => 0.037713744339976
110 => 0.037535973938239
111 => 0.037741694347725
112 => 0.037998950869889
113 => 0.039063072920065
114 => 0.039319629143794
115 => 0.038696330529283
116 => 0.038752607415395
117 => 0.038519476623638
118 => 0.038294275199921
119 => 0.03880049511241
120 => 0.03972562195226
121 => 0.039719866786203
122 => 0.039934478231152
123 => 0.040068179383418
124 => 0.039494236162667
125 => 0.039120620230435
126 => 0.039263888352652
127 => 0.039492977200051
128 => 0.039189597927023
129 => 0.037317000514943
130 => 0.037885026947782
131 => 0.037790479574284
201 => 0.03765583261707
202 => 0.038226987587708
203 => 0.038171898297448
204 => 0.036521760175645
205 => 0.036627396664343
206 => 0.036528184280401
207 => 0.036848759789859
208 => 0.035932274902678
209 => 0.036214179481355
210 => 0.03639098739041
211 => 0.036495128607146
212 => 0.036871358092296
213 => 0.036827211904638
214 => 0.036868613903287
215 => 0.037426462908863
216 => 0.040247871748407
217 => 0.040401434806455
218 => 0.039645234145574
219 => 0.039947321394198
220 => 0.03936737993606
221 => 0.039756698522178
222 => 0.04002306041118
223 => 0.038819422253225
224 => 0.038748150613058
225 => 0.038165815530225
226 => 0.038478729418594
227 => 0.037980860922894
228 => 0.038103020437038
301 => 0.037761451785816
302 => 0.038376207352376
303 => 0.039063599599147
304 => 0.039237262026623
305 => 0.038780430946308
306 => 0.038449655137524
307 => 0.037868921781625
308 => 0.038834694294972
309 => 0.039117115609259
310 => 0.038833210856039
311 => 0.038767423921276
312 => 0.038642757798776
313 => 0.038793872428499
314 => 0.039115577482128
315 => 0.038963867319796
316 => 0.039064074554806
317 => 0.038682187908203
318 => 0.039494426161755
319 => 0.040784455984177
320 => 0.040788603640997
321 => 0.040636892660891
322 => 0.04057481579649
323 => 0.040730480468671
324 => 0.04081492216763
325 => 0.041318313173444
326 => 0.041858471778665
327 => 0.044379156299568
328 => 0.043671358172781
329 => 0.045907859435919
330 => 0.047676641561719
331 => 0.048207021981778
401 => 0.047719096951651
402 => 0.046049931780778
403 => 0.045968034574322
404 => 0.048462472042964
405 => 0.047757679205599
406 => 0.047673846340227
407 => 0.046782006290526
408 => 0.047309194216438
409 => 0.047193890483661
410 => 0.04701187790062
411 => 0.048017715739031
412 => 0.049900554380774
413 => 0.049607096321309
414 => 0.049388043493047
415 => 0.048428217764919
416 => 0.04900624723809
417 => 0.048800422014119
418 => 0.049684777796212
419 => 0.049160905021779
420 => 0.047752339706673
421 => 0.047976658375796
422 => 0.047942753060224
423 => 0.048640522052126
424 => 0.048431069120448
425 => 0.047901854013715
426 => 0.049894119042987
427 => 0.049764752433547
428 => 0.049948164708409
429 => 0.050028908464017
430 => 0.051241565079687
501 => 0.051738351694444
502 => 0.051851130953467
503 => 0.05232303981463
504 => 0.051839389431102
505 => 0.053774335802094
506 => 0.055060962231552
507 => 0.056555445038558
508 => 0.058739286098704
509 => 0.059560430538978
510 => 0.059412098145621
511 => 0.06106786151359
512 => 0.064043231480278
513 => 0.060013505484972
514 => 0.064256816742968
515 => 0.062913433390071
516 => 0.059728295626786
517 => 0.059523210305138
518 => 0.061680222578644
519 => 0.066464268196544
520 => 0.065265919029456
521 => 0.066466228266484
522 => 0.065066003783312
523 => 0.064996470835704
524 => 0.066398222488696
525 => 0.069673491631418
526 => 0.068117534033339
527 => 0.065886687280037
528 => 0.067533909806855
529 => 0.066106933210877
530 => 0.062891555554538
531 => 0.065265002674433
601 => 0.063677946177241
602 => 0.064141133635685
603 => 0.067476890335944
604 => 0.067075523264452
605 => 0.067594929420553
606 => 0.06667819115026
607 => 0.065821813049449
608 => 0.064223319728814
609 => 0.063750084661342
610 => 0.063880869808777
611 => 0.063750019850718
612 => 0.062855677528734
613 => 0.062662544389453
614 => 0.062340647362627
615 => 0.06244041671126
616 => 0.061835156126531
617 => 0.062977407903133
618 => 0.063189419898358
619 => 0.064020655485476
620 => 0.064106957121649
621 => 0.066421936399874
622 => 0.065146884715074
623 => 0.066002299467904
624 => 0.065925783120935
625 => 0.059797327220298
626 => 0.060641774371582
627 => 0.061955469136865
628 => 0.061363651425776
629 => 0.060526959646313
630 => 0.059851286173822
701 => 0.058827571771838
702 => 0.060268430133937
703 => 0.062163005661892
704 => 0.064155006683563
705 => 0.066548265390024
706 => 0.066014117907345
707 => 0.064110266376762
708 => 0.06419567176566
709 => 0.064723614274042
710 => 0.064039880757052
711 => 0.063838234394828
712 => 0.064695911160363
713 => 0.064701817508877
714 => 0.063915099465623
715 => 0.063040806328429
716 => 0.063037143008261
717 => 0.062881570989168
718 => 0.065093679699904
719 => 0.066310115821392
720 => 0.066449578262335
721 => 0.066300728887938
722 => 0.066358015104523
723 => 0.06565019772777
724 => 0.067268058354304
725 => 0.068752767255045
726 => 0.068354833553467
727 => 0.067758274365193
728 => 0.06728308623755
729 => 0.06824289433229
730 => 0.06820015558871
731 => 0.068739799618029
801 => 0.068715318247724
802 => 0.068533856257702
803 => 0.068354840034046
804 => 0.069064619125766
805 => 0.068860214146054
806 => 0.068655491668951
807 => 0.068244889399677
808 => 0.068300697067453
809 => 0.067704240883533
810 => 0.067428292960874
811 => 0.063278698295728
812 => 0.062169791009284
813 => 0.062518675815489
814 => 0.062633537752481
815 => 0.062150939880317
816 => 0.062842861259779
817 => 0.062735026045716
818 => 0.063154549782144
819 => 0.062892449565227
820 => 0.062903206249553
821 => 0.06367398710185
822 => 0.063897748062407
823 => 0.063783941431895
824 => 0.063863647694843
825 => 0.065700444882561
826 => 0.065439311059935
827 => 0.065300588921255
828 => 0.065339015901713
829 => 0.065808356964551
830 => 0.065939746837073
831 => 0.065383038714593
901 => 0.065645585483446
902 => 0.066763476303077
903 => 0.067154674822807
904 => 0.068403192711843
905 => 0.067872800121945
906 => 0.068846358675557
907 => 0.071838745758792
908 => 0.074229271618317
909 => 0.072030845245239
910 => 0.076420741554624
911 => 0.079838905524704
912 => 0.079707710698282
913 => 0.079111674746542
914 => 0.075220185943196
915 => 0.071639179927528
916 => 0.074634843517181
917 => 0.074642480079735
918 => 0.074385149920661
919 => 0.072786894403257
920 => 0.074329534093075
921 => 0.074451983229609
922 => 0.074383444275003
923 => 0.073158065517118
924 => 0.071287138641677
925 => 0.071652713274772
926 => 0.072251531981302
927 => 0.071117843243172
928 => 0.070755560998716
929 => 0.071429112618176
930 => 0.07359943627613
1001 => 0.073189149160423
1002 => 0.073178434905731
1003 => 0.074933817175541
1004 => 0.073677342305561
1005 => 0.071657324341627
1006 => 0.071147243164971
1007 => 0.069336798619692
1008 => 0.070587279115698
1009 => 0.070632281682562
1010 => 0.0699474062945
1011 => 0.071712898204805
1012 => 0.071696628886043
1013 => 0.073372700696085
1014 => 0.076576720493061
1015 => 0.075629134178856
1016 => 0.074527194392534
1017 => 0.074647005800783
1018 => 0.075961041229524
1019 => 0.075166545412796
1020 => 0.075452251647913
1021 => 0.075960608778919
1022 => 0.076267313257852
1023 => 0.074602875746179
1024 => 0.074214815742958
1025 => 0.073420981166922
1026 => 0.073213884543659
1027 => 0.073860446241938
1028 => 0.073690100077803
1029 => 0.070628499391076
1030 => 0.070308545084727
1031 => 0.070318357626513
1101 => 0.069513817310202
1102 => 0.068286700216027
1103 => 0.071511490672165
1104 => 0.071252494867623
1105 => 0.070966583544093
1106 => 0.071001606049838
1107 => 0.072401378288558
1108 => 0.071589439699908
1109 => 0.073748111511952
1110 => 0.07330435348301
1111 => 0.072849214735078
1112 => 0.072786300696248
1113 => 0.072611111108908
1114 => 0.072010320828743
1115 => 0.071284830463545
1116 => 0.070805798883542
1117 => 0.0653146066897
1118 => 0.066333740020081
1119 => 0.067506160019759
1120 => 0.06791087470547
1121 => 0.067218582230158
1122 => 0.07203765675524
1123 => 0.072918148108731
1124 => 0.070251082365979
1125 => 0.069752183261087
1126 => 0.0720703644975
1127 => 0.070672217825812
1128 => 0.071301803186463
1129 => 0.069940984001516
1130 => 0.072706063525471
1201 => 0.072684998252274
1202 => 0.071609319865302
1203 => 0.072518475872043
1204 => 0.072360487642641
1205 => 0.071146049393029
1206 => 0.072744563384138
1207 => 0.072745356227135
1208 => 0.071710039166939
1209 => 0.070501015500677
1210 => 0.070284870625014
1211 => 0.07012203449618
1212 => 0.071261755480806
1213 => 0.072283625751807
1214 => 0.074185072983015
1215 => 0.074663141994213
1216 => 0.076529077171774
1217 => 0.075418003624271
1218 => 0.075910528137068
1219 => 0.076445233167555
1220 => 0.076701590422297
1221 => 0.076283870032584
1222 => 0.079182435412895
1223 => 0.079427163140742
1224 => 0.079509218231003
1225 => 0.078531838293356
1226 => 0.079399980436609
1227 => 0.078993805477627
1228 => 0.080050559882245
1229 => 0.080216272466207
1230 => 0.080075919802987
1231 => 0.080128519592732
]
'min_raw' => 0.035932274902678
'max_raw' => 0.080216272466207
'avg_raw' => 0.058074273684442
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.035932'
'max' => '$0.080216'
'avg' => '$0.058074'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0055406838839333
'max_diff' => -0.0076547548897315
'year' => 2031
]
6 => [
'items' => [
101 => 0.077655105382608
102 => 0.077526845807514
103 => 0.075778017400218
104 => 0.076490677902878
105 => 0.075158393251863
106 => 0.075580874438752
107 => 0.075767100120385
108 => 0.075669826392514
109 => 0.076530970658431
110 => 0.075798822112251
111 => 0.073866561722516
112 => 0.07193377488973
113 => 0.071909510325458
114 => 0.071400641668907
115 => 0.071032822834164
116 => 0.07110367779081
117 => 0.071353379899787
118 => 0.071018309693657
119 => 0.071089813910625
120 => 0.072277260342407
121 => 0.072515394255821
122 => 0.071706122173116
123 => 0.068456777983651
124 => 0.067659380769193
125 => 0.068232534073871
126 => 0.067958603710035
127 => 0.054847897145551
128 => 0.057928063179017
129 => 0.056097933114486
130 => 0.056941341248458
131 => 0.055073252362455
201 => 0.055964802293783
202 => 0.055800165575657
203 => 0.060752981408732
204 => 0.060675650001874
205 => 0.06071266445405
206 => 0.058945868211049
207 => 0.061760422599895
208 => 0.063146973299942
209 => 0.062890359667215
210 => 0.062954943790049
211 => 0.06184517458233
212 => 0.060723409445816
213 => 0.059479199271004
214 => 0.061790787986779
215 => 0.06153377878172
216 => 0.062123265429132
217 => 0.063622495947086
218 => 0.063843263335877
219 => 0.064139976945215
220 => 0.06403362623778
221 => 0.066567331556728
222 => 0.066260483124677
223 => 0.0669998995596
224 => 0.065478863853304
225 => 0.063757667573595
226 => 0.064084810716222
227 => 0.064053304200868
228 => 0.063652190098917
229 => 0.063290082222699
301 => 0.062687274632057
302 => 0.064594647047585
303 => 0.064517211210785
304 => 0.065770807399254
305 => 0.065549222096158
306 => 0.064069421210965
307 => 0.064122272589077
308 => 0.064477723506389
309 => 0.06570794318967
310 => 0.066073156151411
311 => 0.065903974956313
312 => 0.066304414296256
313 => 0.066620905223321
314 => 0.066344160683916
315 => 0.070262279759311
316 => 0.068635203548898
317 => 0.06942822917273
318 => 0.069617361111236
319 => 0.06913290362777
320 => 0.069237965108812
321 => 0.06939710462505
322 => 0.070363368604938
323 => 0.0728991248789
324 => 0.074022194071161
325 => 0.077401003147337
326 => 0.073928938808622
327 => 0.073722920879593
328 => 0.074331546424471
329 => 0.07631526503545
330 => 0.077922882648434
331 => 0.078456222156346
401 => 0.078526711776792
402 => 0.079527292149374
403 => 0.080100806159219
404 => 0.079405795374266
405 => 0.078816846504681
406 => 0.076707304756852
407 => 0.076951489958254
408 => 0.078633683849106
409 => 0.08100988180066
410 => 0.083048906844354
411 => 0.08233491134125
412 => 0.087782193027662
413 => 0.08832226875672
414 => 0.088247647753703
415 => 0.089478020638541
416 => 0.087035981023219
417 => 0.085991961775379
418 => 0.078944183935139
419 => 0.080924322033124
420 => 0.083802569047979
421 => 0.08342162226269
422 => 0.08133136234474
423 => 0.083047321194768
424 => 0.082479971535954
425 => 0.082032479320689
426 => 0.084082527909453
427 => 0.081828415274752
428 => 0.083780082550141
429 => 0.081277049082042
430 => 0.082338172812565
501 => 0.08173582766234
502 => 0.082125618795181
503 => 0.079846907797336
504 => 0.081076444939191
505 => 0.079795755009892
506 => 0.079795147796115
507 => 0.079766876494943
508 => 0.081273602517315
509 => 0.081322736798811
510 => 0.080209263991742
511 => 0.080048795164529
512 => 0.080642132523852
513 => 0.079947489871385
514 => 0.080272508796446
515 => 0.079957334363523
516 => 0.079886381960083
517 => 0.079321021137916
518 => 0.079077448150807
519 => 0.079172959395155
520 => 0.078846930278774
521 => 0.078650485943166
522 => 0.079727798772159
523 => 0.079152233986303
524 => 0.079639585213965
525 => 0.079084186981416
526 => 0.077158934731909
527 => 0.076051701804045
528 => 0.072415078775705
529 => 0.073446420555326
530 => 0.074130201222214
531 => 0.073904211715887
601 => 0.074389724621808
602 => 0.074419531171059
603 => 0.074261685976126
604 => 0.074078921461615
605 => 0.073989961803463
606 => 0.074652994212049
607 => 0.075037906841878
608 => 0.074198827759942
609 => 0.074002243271008
610 => 0.074850598549671
611 => 0.075368094779578
612 => 0.07918899618519
613 => 0.078905931467713
614 => 0.079616368359934
615 => 0.079536384068413
616 => 0.080281035112933
617 => 0.081498224857712
618 => 0.079023337774972
619 => 0.079452892597379
620 => 0.079347575674794
621 => 0.080497398219995
622 => 0.080500987840473
623 => 0.07981161178673
624 => 0.080185333729313
625 => 0.079976732393488
626 => 0.080353703201485
627 => 0.078902150965835
628 => 0.080669984903476
629 => 0.081672232829416
630 => 0.08168614904284
701 => 0.082161206605404
702 => 0.082643892602448
703 => 0.083570366340683
704 => 0.082618053752733
705 => 0.080904936112773
706 => 0.081028617673042
707 => 0.080024217427539
708 => 0.080041101577125
709 => 0.079950972663397
710 => 0.080221456318083
711 => 0.078961506917423
712 => 0.079257214523407
713 => 0.078843222143368
714 => 0.079451992658796
715 => 0.078797056217567
716 => 0.079347524887785
717 => 0.079585088917526
718 => 0.080461705301658
719 => 0.078667579264875
720 => 0.075009234824222
721 => 0.075778263178786
722 => 0.074640809836512
723 => 0.07474608547393
724 => 0.074958759016007
725 => 0.074269414483682
726 => 0.074400919696707
727 => 0.074396221405109
728 => 0.074355734066347
729 => 0.07417640892974
730 => 0.073916352003263
731 => 0.074952338757047
801 => 0.075128373094041
802 => 0.07551967561914
803 => 0.076683926510794
804 => 0.076567590391791
805 => 0.076757339428624
806 => 0.076343118346613
807 => 0.074765300001909
808 => 0.07485098312914
809 => 0.073782513159597
810 => 0.07549235243977
811 => 0.07508743992945
812 => 0.074826390199934
813 => 0.074755160362627
814 => 0.07592229720705
815 => 0.076271522843531
816 => 0.076053908862537
817 => 0.075607576238705
818 => 0.076464666822857
819 => 0.076693988105428
820 => 0.076745324683552
821 => 0.078263924867851
822 => 0.076830197564311
823 => 0.077175309976297
824 => 0.07986777849793
825 => 0.077426081084067
826 => 0.07871950266054
827 => 0.078656196405013
828 => 0.079317867116537
829 => 0.078601920093947
830 => 0.078610795115347
831 => 0.079198313881723
901 => 0.078373249733915
902 => 0.078168952248014
903 => 0.077886716734449
904 => 0.078502967652939
905 => 0.078872382207943
906 => 0.081849592216175
907 => 0.083773005658764
908 => 0.083689505208579
909 => 0.084452543016975
910 => 0.084108787495667
911 => 0.082998710239239
912 => 0.084893476756462
913 => 0.084293893350015
914 => 0.084343322277548
915 => 0.084341482530397
916 => 0.084740153079193
917 => 0.084457658457752
918 => 0.083900832561412
919 => 0.084270479577379
920 => 0.085368199063573
921 => 0.088775554030868
922 => 0.090682355012015
923 => 0.088660762217553
924 => 0.090055229856967
925 => 0.089219046172942
926 => 0.089067086723245
927 => 0.089942915451146
928 => 0.090820277201295
929 => 0.090764393050749
930 => 0.090127473473166
1001 => 0.089767693765025
1002 => 0.092492066250112
1003 => 0.09449933748865
1004 => 0.094362455047099
1005 => 0.094966609627551
1006 => 0.096740426161556
1007 => 0.096902601715233
1008 => 0.096882171323032
1009 => 0.096480202291975
1010 => 0.098226755028887
1011 => 0.099683760049691
1012 => 0.096387158075288
1013 => 0.097642460951452
1014 => 0.098206006855895
1015 => 0.099033459440152
1016 => 0.10042951064695
1017 => 0.10194599254183
1018 => 0.10216043970914
1019 => 0.10200827918169
1020 => 0.1010081186068
1021 => 0.10266747119156
1022 => 0.10363948101911
1023 => 0.10421829062737
1024 => 0.10568605548917
1025 => 0.098209487123546
1026 => 0.092917200424798
1027 => 0.092090733435242
1028 => 0.093771386557713
1029 => 0.094214561383152
1030 => 0.094035918166711
1031 => 0.088078968333614
1101 => 0.09205937132719
1102 => 0.096341950266488
1103 => 0.096506461564899
1104 => 0.098650410126414
1105 => 0.099348567661464
1106 => 0.10107472726725
1107 => 0.10096675551392
1108 => 0.10138704790873
1109 => 0.10129042996561
1110 => 0.10448777714954
1111 => 0.10801492590405
1112 => 0.10789279195833
1113 => 0.10738572259354
1114 => 0.10813880706843
1115 => 0.11177920257532
1116 => 0.1114440532932
1117 => 0.11176962227283
1118 => 0.11606185373916
1119 => 0.12164236520819
1120 => 0.11904965735664
1121 => 0.12467508736293
1122 => 0.12821599736066
1123 => 0.1343396350648
1124 => 0.13357292546469
1125 => 0.13595681268558
1126 => 0.13220035526337
1127 => 0.12357476971667
1128 => 0.12220973778648
1129 => 0.12494256627882
1130 => 0.13166095846173
1201 => 0.12473098020025
1202 => 0.12613290577693
1203 => 0.12572915111653
1204 => 0.12570763674653
1205 => 0.12652875274437
1206 => 0.12533768116297
1207 => 0.12048504127063
1208 => 0.1227089775365
1209 => 0.12185020894206
1210 => 0.12280307672303
1211 => 0.12794531114439
1212 => 0.12567180673115
1213 => 0.1232768545163
1214 => 0.12628065607616
1215 => 0.13010552768007
1216 => 0.12986617408905
1217 => 0.12940172808044
1218 => 0.13201978591339
1219 => 0.13634405043446
1220 => 0.1375128817582
1221 => 0.13837568914568
1222 => 0.13849465570716
1223 => 0.13972008522775
1224 => 0.13313064184756
1225 => 0.14358825772083
1226 => 0.14539399909633
1227 => 0.14505459455805
1228 => 0.14706160009971
1229 => 0.14647108815654
1230 => 0.14561552899936
1231 => 0.14879705968522
]
'min_raw' => 0.054847897145551
'max_raw' => 0.14879705968522
'avg_raw' => 0.10182247841538
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.054847'
'max' => '$0.148797'
'avg' => '$0.101822'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.018915622242873
'max_diff' => 0.068580787219011
'year' => 2032
]
7 => [
'items' => [
101 => 0.14514969149017
102 => 0.1399727115282
103 => 0.137132517932
104 => 0.14087271397135
105 => 0.14315672117773
106 => 0.144666304651
107 => 0.1451231036979
108 => 0.13364216157942
109 => 0.1274545705398
110 => 0.13142074545532
111 => 0.13625975258303
112 => 0.13310376091864
113 => 0.1332274698168
114 => 0.12872785508339
115 => 0.13665786864406
116 => 0.13550253237018
117 => 0.14149641900281
118 => 0.14006592985398
119 => 0.14495371172155
120 => 0.14366659494841
121 => 0.14900934471198
122 => 0.15114071224185
123 => 0.15471961004535
124 => 0.15735226183835
125 => 0.1588982053258
126 => 0.1588053926775
127 => 0.16493119096077
128 => 0.16131902173222
129 => 0.15678128585824
130 => 0.15669921253265
131 => 0.159049370242
201 => 0.16397465606652
202 => 0.16525171102082
203 => 0.16596541052123
204 => 0.16487235489229
205 => 0.1609516040812
206 => 0.15925864375963
207 => 0.16070109500339
208 => 0.15893710108352
209 => 0.16198224947849
210 => 0.1661638886334
211 => 0.1653003966839
212 => 0.16818692080911
213 => 0.17117416960751
214 => 0.17544606955496
215 => 0.17656290238922
216 => 0.17840898459491
217 => 0.18030920959097
218 => 0.1809195106472
219 => 0.18208476472885
220 => 0.18207862326466
221 => 0.18559019487036
222 => 0.18946356709576
223 => 0.19092567544208
224 => 0.19428771296331
225 => 0.18853034152805
226 => 0.19289737389761
227 => 0.19683654640886
228 => 0.19214010254792
301 => 0.19861305627915
302 => 0.19886438640451
303 => 0.2026591729045
304 => 0.19881242979363
305 => 0.19652824601364
306 => 0.20312259899923
307 => 0.20631339868879
308 => 0.20535230385471
309 => 0.19803832471222
310 => 0.19378127513997
311 => 0.18263975528587
312 => 0.1958373668309
313 => 0.20226553843488
314 => 0.1980216773007
315 => 0.20016203400612
316 => 0.21183912617789
317 => 0.21628500684117
318 => 0.21536029474226
319 => 0.21551655586492
320 => 0.21791547237238
321 => 0.22855358927393
322 => 0.22217898303691
323 => 0.22705213065317
324 => 0.2296368305774
325 => 0.23203764391392
326 => 0.22614200514428
327 => 0.21847186572913
328 => 0.2160424106058
329 => 0.19759970894827
330 => 0.1966396862344
331 => 0.19610079639344
401 => 0.19270317217367
402 => 0.19003357022453
403 => 0.18791060363861
404 => 0.18233930534567
405 => 0.18421945497236
406 => 0.17533996831373
407 => 0.18102074920823
408 => 0.16684887409836
409 => 0.1786516328094
410 => 0.17222792784857
411 => 0.17654127296478
412 => 0.17652622411001
413 => 0.16858398820375
414 => 0.16400307228326
415 => 0.16692221019971
416 => 0.17005175776761
417 => 0.17055951633143
418 => 0.17461705644276
419 => 0.1757494286713
420 => 0.17231828795342
421 => 0.1665551934867
422 => 0.16789382888913
423 => 0.16397594487955
424 => 0.15711000385199
425 => 0.16204124256582
426 => 0.16372498427398
427 => 0.16446862053295
428 => 0.157716756091
429 => 0.15559517369323
430 => 0.15446566102646
501 => 0.16568361257353
502 => 0.16629815728237
503 => 0.16315405966407
504 => 0.17736567903437
505 => 0.17414915187752
506 => 0.17774280078001
507 => 0.16777236175728
508 => 0.16815324595492
509 => 0.16343308033818
510 => 0.16607605768198
511 => 0.16420808648252
512 => 0.16586253123101
513 => 0.16685419859172
514 => 0.17157358967573
515 => 0.17870552067472
516 => 0.1708686700256
517 => 0.16745404197201
518 => 0.16957245801186
519 => 0.17521407908758
520 => 0.18376142380657
521 => 0.17870122370159
522 => 0.18094685458041
523 => 0.18143742502627
524 => 0.17770622080764
525 => 0.18389899862825
526 => 0.18721775857235
527 => 0.19062211955439
528 => 0.19357803080706
529 => 0.18926234291466
530 => 0.19388074758909
531 => 0.19015912867967
601 => 0.18682045178403
602 => 0.18682551517873
603 => 0.18473111439181
604 => 0.18067294895567
605 => 0.17992456098581
606 => 0.18381776971597
607 => 0.18693975442932
608 => 0.18719689604361
609 => 0.18892538719428
610 => 0.18994829045238
611 => 0.19997413295126
612 => 0.20400660974243
613 => 0.20893744603179
614 => 0.2108582846532
615 => 0.2166393202449
616 => 0.21197066449185
617 => 0.21096057145246
618 => 0.19693767006934
619 => 0.19923391938525
620 => 0.20291043609512
621 => 0.19699829447574
622 => 0.20074818754582
623 => 0.20148849587145
624 => 0.19679740216582
625 => 0.19930311800419
626 => 0.19264867963045
627 => 0.17885056924679
628 => 0.1839143598695
629 => 0.18764301422132
630 => 0.18232176472151
701 => 0.19185989848912
702 => 0.18628791764913
703 => 0.1845218672251
704 => 0.17763187487854
705 => 0.18088368604599
706 => 0.18528180721142
707 => 0.18256427966765
708 => 0.18820355735979
709 => 0.19619027851228
710 => 0.20188209162302
711 => 0.20231903835813
712 => 0.19865958384979
713 => 0.20452388305373
714 => 0.20456659807123
715 => 0.19795164461282
716 => 0.19390002245176
717 => 0.19297948537208
718 => 0.19527916747904
719 => 0.19807140610164
720 => 0.20247398816869
721 => 0.20513437630616
722 => 0.21207125760782
723 => 0.21394817879207
724 => 0.21601034612662
725 => 0.21876603763444
726 => 0.22207495183437
727 => 0.21483523594151
728 => 0.21512288335045
729 => 0.20838136015171
730 => 0.20117707578164
731 => 0.2066442295918
801 => 0.21379180593359
802 => 0.21215214402342
803 => 0.21196764856327
804 => 0.21227791875246
805 => 0.21104166721854
806 => 0.20545014734823
807 => 0.20264212107413
808 => 0.20626519137163
809 => 0.20819069199044
810 => 0.21117697552892
811 => 0.21080885305
812 => 0.21850119874168
813 => 0.22149021167301
814 => 0.2207254942581
815 => 0.2208662206664
816 => 0.2262776858047
817 => 0.23229634799118
818 => 0.23793361936125
819 => 0.24366809392532
820 => 0.23675496101798
821 => 0.2332448984704
822 => 0.23686638704874
823 => 0.23494477423293
824 => 0.24598693145998
825 => 0.24675146646855
826 => 0.25779282522194
827 => 0.26827238945946
828 => 0.26169036292277
829 => 0.26789691748588
830 => 0.2746098122737
831 => 0.28756007544734
901 => 0.28319888240621
902 => 0.27985827688531
903 => 0.27670142080975
904 => 0.2832703371662
905 => 0.29172114311778
906 => 0.29354136577893
907 => 0.29649082186858
908 => 0.29338982943265
909 => 0.29712463325861
910 => 0.31031013192023
911 => 0.30674729379025
912 => 0.30168749089086
913 => 0.31209617573545
914 => 0.31586303831797
915 => 0.34230085264336
916 => 0.37567968532079
917 => 0.3618606294151
918 => 0.35328269547629
919 => 0.35529871342323
920 => 0.36748753317223
921 => 0.37140219522181
922 => 0.36076079430613
923 => 0.36451951700918
924 => 0.3852304486525
925 => 0.3963411989929
926 => 0.38125130765778
927 => 0.33961889593797
928 => 0.30123191100027
929 => 0.31141386799421
930 => 0.31025955005401
1001 => 0.33251086236341
1002 => 0.30666232127915
1003 => 0.30709754441873
1004 => 0.32980899030215
1005 => 0.32374996591321
1006 => 0.31393512238434
1007 => 0.30130357021979
1008 => 0.27795297776646
1009 => 0.2572707068511
1010 => 0.29783340295864
1011 => 0.29608426574401
1012 => 0.29355125584961
1013 => 0.2991881952693
1014 => 0.32655957301817
1015 => 0.32592857416855
1016 => 0.32191448142574
1017 => 0.32495913539257
1018 => 0.31340137982326
1019 => 0.31638007659868
1020 => 0.30122583030573
1021 => 0.30807618252737
1022 => 0.31391406413819
1023 => 0.31508610530288
1024 => 0.31772677389282
1025 => 0.29516254991331
1026 => 0.3052932240293
1027 => 0.31124404595665
1028 => 0.28435801599613
1029 => 0.31071259558951
1030 => 0.29476975697469
1031 => 0.28935851809542
1101 => 0.29664403836985
1102 => 0.2938048640335
1103 => 0.29136390866103
1104 => 0.29000181362225
1105 => 0.29535149563825
1106 => 0.29510192657795
1107 => 0.28634880847123
1108 => 0.27493072272375
1109 => 0.27876300708649
1110 => 0.27737070224965
1111 => 0.27232480991004
1112 => 0.27572513210358
1113 => 0.26075183402693
1114 => 0.23499105293037
1115 => 0.25200941399682
1116 => 0.25135422560818
1117 => 0.2510238499122
1118 => 0.26381267790068
1119 => 0.26258332717805
1120 => 0.26035204357864
1121 => 0.27228383063694
1122 => 0.26792856785548
1123 => 0.28135046151898
1124 => 0.29019098875942
1125 => 0.28794874509015
1126 => 0.29626330368976
1127 => 0.27885129517809
1128 => 0.28463486595714
1129 => 0.28582685187901
1130 => 0.27213659423677
1201 => 0.26278446415991
1202 => 0.26216078370587
1203 => 0.24594547895552
1204 => 0.25460756386779
1205 => 0.26222984012916
1206 => 0.2585793613125
1207 => 0.25742372877409
1208 => 0.26332760478668
1209 => 0.26378638651614
1210 => 0.25332611446502
1211 => 0.25550113625818
1212 => 0.26457133870296
1213 => 0.25527259042832
1214 => 0.2372066414726
1215 => 0.23272603635029
1216 => 0.23212824103304
1217 => 0.21997648458008
1218 => 0.23302545180941
1219 => 0.22732922792323
1220 => 0.24532353092844
1221 => 0.23504528155725
1222 => 0.23460220676973
1223 => 0.23393243424346
1224 => 0.22347291548166
1225 => 0.2257628853534
1226 => 0.23337509397932
1227 => 0.23609121577472
1228 => 0.23580790201893
1229 => 0.23333779000423
1230 => 0.23446859463554
1231 => 0.23082587891964
]
'min_raw' => 0.1274545705398
'max_raw' => 0.3963411989929
'avg_raw' => 0.26189788476635
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.127454'
'max' => '$0.396341'
'avg' => '$0.261897'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.072606673394252
'max_diff' => 0.24754413930768
'year' => 2033
]
8 => [
'items' => [
101 => 0.22953956018378
102 => 0.22547958442358
103 => 0.21951254165301
104 => 0.22034229554826
105 => 0.20852002245809
106 => 0.20207862062305
107 => 0.20029572549142
108 => 0.19791156360909
109 => 0.20056502292004
110 => 0.20848653144382
111 => 0.19893151152236
112 => 0.18255010007373
113 => 0.18353465081436
114 => 0.18574664401282
115 => 0.18162460932129
116 => 0.17772344942192
117 => 0.18111519144332
118 => 0.1741741714602
119 => 0.18658543311666
120 => 0.18624974327101
121 => 0.19087589410927
122 => 0.1937687211666
123 => 0.18710169136333
124 => 0.18542495139737
125 => 0.18638009868556
126 => 0.17059364162863
127 => 0.18958580377379
128 => 0.18975004878069
129 => 0.18834368331559
130 => 0.19845642334067
131 => 0.21979745903629
201 => 0.21176810296642
202 => 0.2086588936076
203 => 0.20274828434366
204 => 0.21062382025061
205 => 0.21001910197045
206 => 0.207284336575
207 => 0.20563034193083
208 => 0.20867787777695
209 => 0.20525271851392
210 => 0.20463746579319
211 => 0.20090970370718
212 => 0.19957906224484
213 => 0.19859390828048
214 => 0.19750935056496
215 => 0.19990161463046
216 => 0.19448042952949
217 => 0.18794301174304
218 => 0.18739949618994
219 => 0.18890019041843
220 => 0.18823624493587
221 => 0.18739631747441
222 => 0.18579266720984
223 => 0.18531689843292
224 => 0.18686291614774
225 => 0.18511755228614
226 => 0.18769293173882
227 => 0.18699257102994
228 => 0.18308041304215
301 => 0.17820441572297
302 => 0.17816100911908
303 => 0.17711048349491
304 => 0.17577248116493
305 => 0.17540027952608
306 => 0.18082954839061
307 => 0.19206797245586
308 => 0.18986160089916
309 => 0.19145593046693
310 => 0.19929845397439
311 => 0.2017913563645
312 => 0.20002195329563
313 => 0.19759988524293
314 => 0.19770644394504
315 => 0.20598338369098
316 => 0.20649960627023
317 => 0.20780393418829
318 => 0.20948036416602
319 => 0.20030745656992
320 => 0.19727440082217
321 => 0.19583717074136
322 => 0.1914110583705
323 => 0.19618424109628
324 => 0.19340311193003
325 => 0.19377838127146
326 => 0.19353398662055
327 => 0.19366744262584
328 => 0.18658196391609
329 => 0.18916353995612
330 => 0.18487116908465
331 => 0.179124166329
401 => 0.1791049003606
402 => 0.18051147114328
403 => 0.17967478780262
404 => 0.17742329444602
405 => 0.17774310845057
406 => 0.17494120124654
407 => 0.17808331071531
408 => 0.17817341517186
409 => 0.17696353187453
410 => 0.18180438503871
411 => 0.18378768652984
412 => 0.18299131542532
413 => 0.18373181101018
414 => 0.18995328559851
415 => 0.19096765741837
416 => 0.19141817437511
417 => 0.19081454133514
418 => 0.18384552814474
419 => 0.18415463351426
420 => 0.18188662340731
421 => 0.17997039386395
422 => 0.18004703299639
423 => 0.18103222407408
424 => 0.18533461129104
425 => 0.19438873154956
426 => 0.19473232879489
427 => 0.19514877867968
428 => 0.19345486770731
429 => 0.19294396794951
430 => 0.19361797660447
501 => 0.19701822813054
502 => 0.20576459821488
503 => 0.20267304687666
504 => 0.20015956751582
505 => 0.20236456654445
506 => 0.20202512422735
507 => 0.19915988946832
508 => 0.1990794718716
509 => 0.19358017029806
510 => 0.19154720371936
511 => 0.18984830468129
512 => 0.1879931512826
513 => 0.18689335416255
514 => 0.1885831423878
515 => 0.1889696169479
516 => 0.18527486546096
517 => 0.18477128448586
518 => 0.18778849830685
519 => 0.1864607349973
520 => 0.18782637248812
521 => 0.18814321210021
522 => 0.18809219362523
523 => 0.18670585623741
524 => 0.18758946634723
525 => 0.18549946502066
526 => 0.18322690248607
527 => 0.18177714917465
528 => 0.18051204712856
529 => 0.18121399927189
530 => 0.17871166805231
531 => 0.17791112193319
601 => 0.18729011912388
602 => 0.19421848518985
603 => 0.19411774400332
604 => 0.19350450793883
605 => 0.19259336353739
606 => 0.19695157224241
607 => 0.19543325947471
608 => 0.19653795887249
609 => 0.19681915123331
610 => 0.1976702358198
611 => 0.19797442540628
612 => 0.19705495320269
613 => 0.19396909218339
614 => 0.18627941991815
615 => 0.1826998567208
616 => 0.18151854124334
617 => 0.18156147981731
618 => 0.18037704226103
619 => 0.18072591220412
620 => 0.1802557195321
621 => 0.17936528836313
622 => 0.18115901765638
623 => 0.18136572824768
624 => 0.18094705039717
625 => 0.18104566418732
626 => 0.17757919040473
627 => 0.17784273887764
628 => 0.17637526749038
629 => 0.1761001342959
630 => 0.17239049441627
701 => 0.1658183296486
702 => 0.16945994690536
703 => 0.16506138534807
704 => 0.16339558343724
705 => 0.17128123059776
706 => 0.17048973033665
707 => 0.16913502594652
708 => 0.16713113580839
709 => 0.16638787346357
710 => 0.16187204674469
711 => 0.16160522761114
712 => 0.16384339327059
713 => 0.16281055682933
714 => 0.16136006330005
715 => 0.15610652277118
716 => 0.15019980382923
717 => 0.15037809054578
718 => 0.1522569079428
719 => 0.15771982291768
720 => 0.15558536752761
721 => 0.15403679565205
722 => 0.15374679468966
723 => 0.15737676389213
724 => 0.16251393081568
725 => 0.16492417459858
726 => 0.16253569620992
727 => 0.15979194084183
728 => 0.15995894051775
729 => 0.16106991454446
730 => 0.16118666220634
731 => 0.15940075952432
801 => 0.15990348066832
802 => 0.1591398012808
803 => 0.15445310228921
804 => 0.15436833476613
805 => 0.15321814325036
806 => 0.15318331590838
807 => 0.15122655321134
808 => 0.15095278858356
809 => 0.14706751748158
810 => 0.14962481468659
811 => 0.1479095139856
812 => 0.14532415123068
813 => 0.14487843371725
814 => 0.14486503491057
815 => 0.14751962438335
816 => 0.14959379426302
817 => 0.14793935237568
818 => 0.14756266802794
819 => 0.15158467137519
820 => 0.15107283478787
821 => 0.15062958760425
822 => 0.16205395386262
823 => 0.15301067651471
824 => 0.14906729141879
825 => 0.14418660353408
826 => 0.14577578011991
827 => 0.1461106429764
828 => 0.13437346842378
829 => 0.12961169816956
830 => 0.12797763806183
831 => 0.12703721336762
901 => 0.12746577670988
902 => 0.12317962498114
903 => 0.12605998982926
904 => 0.12234854473155
905 => 0.12172630888283
906 => 0.12836283247736
907 => 0.12928626596553
908 => 0.1253466118167
909 => 0.12787650755232
910 => 0.1269591321904
911 => 0.12241216680526
912 => 0.12223850617276
913 => 0.11995699877606
914 => 0.1163868814871
915 => 0.11475524208701
916 => 0.11390547012091
917 => 0.11425610259585
918 => 0.11407881208699
919 => 0.11292187159274
920 => 0.11414512656185
921 => 0.11102021559964
922 => 0.10977585087536
923 => 0.10921380019845
924 => 0.10644026185632
925 => 0.11085419475675
926 => 0.11172379514339
927 => 0.11259510891144
928 => 0.12017930039105
929 => 0.11980041561743
930 => 0.12322534944658
1001 => 0.12309226281603
1002 => 0.12211541620771
1003 => 0.11799426105066
1004 => 0.11963688004373
1005 => 0.11458115410273
1006 => 0.11836924773368
1007 => 0.11664051999508
1008 => 0.11778476314631
1009 => 0.11572731078816
1010 => 0.11686598987329
1011 => 0.11193000965512
1012 => 0.1073208607785
1013 => 0.1091757168359
1014 => 0.1111921574988
1015 => 0.11556431463551
1016 => 0.1129602939144
1017 => 0.11389679823463
1018 => 0.11075966553077
1019 => 0.10428686468506
1020 => 0.1043235000349
1021 => 0.10332780064242
1022 => 0.10246737099282
1023 => 0.11325939701904
1024 => 0.11191723798599
1025 => 0.10977868322427
1026 => 0.11264122375563
1027 => 0.11339812490674
1028 => 0.11341967281844
1029 => 0.11550810849725
1030 => 0.11662270699341
1031 => 0.1168191598093
1101 => 0.12010535847355
1102 => 0.1212068489198
1103 => 0.12574373217913
1104 => 0.11652814109827
1105 => 0.11633835206445
1106 => 0.11268150557124
1107 => 0.11036227571279
1108 => 0.11284030522383
1109 => 0.11503550108586
1110 => 0.11274971642576
1111 => 0.11304819164682
1112 => 0.1099797124961
1113 => 0.11107654940712
1114 => 0.11202129311477
1115 => 0.11149966116887
1116 => 0.11071875289859
1117 => 0.11485552005886
1118 => 0.11462210744355
1119 => 0.11847436012706
1120 => 0.12147746657109
1121 => 0.12685957018827
1122 => 0.12124306448833
1123 => 0.12103837669704
1124 => 0.12303923268989
1125 => 0.12120654259917
1126 => 0.1223647394742
1127 => 0.12667296676605
1128 => 0.12676399281991
1129 => 0.12523918913729
1130 => 0.12514640469463
1201 => 0.1254392599214
1202 => 0.12715452213177
1203 => 0.12655515681079
1204 => 0.12724875753431
1205 => 0.12811611585986
1206 => 0.13170387764666
1207 => 0.13256887486714
1208 => 0.130467380071
1209 => 0.13065712152165
1210 => 0.12987110478057
1211 => 0.12911182245745
1212 => 0.13081857823555
1213 => 0.1339377079664
1214 => 0.13391830402223
1215 => 0.13464188149256
1216 => 0.13509266426215
1217 => 0.13315757462195
1218 => 0.13189790242139
1219 => 0.13238094089811
1220 => 0.13315332994159
1221 => 0.13213046554131
1222 => 0.12581687262591
1223 => 0.12773201340256
1224 => 0.12741324033173
1225 => 0.12695926871473
1226 => 0.128884957575
1227 => 0.12869922018668
1228 => 0.12313566430005
1229 => 0.123491825097
1230 => 0.12315732361776
1231 => 0.12423816632976
]
'min_raw' => 0.10246737099282
'max_raw' => 0.22953956018378
'avg_raw' => 0.1660034655883
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.102467'
'max' => '$0.229539'
'avg' => '$0.1660034'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.02498719954698
'max_diff' => -0.16680163880911
'year' => 2034
]
9 => [
'items' => [
101 => 0.1211481735457
102 => 0.12209863451466
103 => 0.12269475472437
104 => 0.1230458741075
105 => 0.12431435808419
106 => 0.12416551613031
107 => 0.12430510585935
108 => 0.12618593272943
109 => 0.13569850961642
110 => 0.13621625818807
111 => 0.13366667486366
112 => 0.13468518311345
113 => 0.13272986999712
114 => 0.13404248479157
115 => 0.13494054249714
116 => 0.13088239241226
117 => 0.13064209510141
118 => 0.1286787117123
119 => 0.12973372273389
120 => 0.12805512434057
121 => 0.12846699367141
122 => 0.12731537111625
123 => 0.12938806242977
124 => 0.13170565338195
125 => 0.13229116838091
126 => 0.1307509304987
127 => 0.12963569676536
128 => 0.12767771371044
129 => 0.13093388316727
130 => 0.13188608634641
131 => 0.13092888164934
201 => 0.13070707640569
202 => 0.13028675586977
203 => 0.13079624939437
204 => 0.1318809004434
205 => 0.13136939903904
206 => 0.13170725472812
207 => 0.13041969723662
208 => 0.13315821521714
209 => 0.13750764083044
210 => 0.13752162494499
211 => 0.13701012078344
212 => 0.13680082430104
213 => 0.13732565861146
214 => 0.13761035969503
215 => 0.13930757761677
216 => 0.14112876006694
217 => 0.14962742391774
218 => 0.14724103311639
219 => 0.15478155327259
220 => 0.16074512570215
221 => 0.16253334031836
222 => 0.16088826701345
223 => 0.15526056010246
224 => 0.15498443795301
225 => 0.1633946080346
226 => 0.16101834977636
227 => 0.16073570141773
228 => 0.15772880042388
301 => 0.15950625132318
302 => 0.15911749673787
303 => 0.15850382860644
304 => 0.161895081104
305 => 0.16824320304023
306 => 0.16725378870416
307 => 0.16651523679989
308 => 0.16327911734462
309 => 0.16522798407014
310 => 0.16453402995726
311 => 0.16751569722034
312 => 0.16574942358571
313 => 0.16100034728294
314 => 0.16175665333732
315 => 0.16164233919867
316 => 0.16399491607155
317 => 0.16328873088886
318 => 0.16150444520789
319 => 0.16822150584958
320 => 0.16778533729376
321 => 0.1684037245839
322 => 0.16867595779328
323 => 0.17276451423799
324 => 0.17443946499418
325 => 0.17481970813997
326 => 0.17641078181301
327 => 0.17478012077755
328 => 0.18130392756099
329 => 0.1856418783973
330 => 0.19068063152258
331 => 0.19804360412777
401 => 0.20081214993863
402 => 0.20031203691819
403 => 0.205894558715
404 => 0.21592622629139
405 => 0.20233972375173
406 => 0.2166463439166
407 => 0.21211703315027
408 => 0.20137811880214
409 => 0.2006866593216
410 => 0.20795917679952
411 => 0.22408892061167
412 => 0.22004860272876
413 => 0.22409552912432
414 => 0.21937457451875
415 => 0.21914013933126
416 => 0.2238662428965
417 => 0.23490904148317
418 => 0.22966302180776
419 => 0.22214156622625
420 => 0.22769529198082
421 => 0.22288414075916
422 => 0.21204327050031
423 => 0.22004551317382
424 => 0.2146946413888
425 => 0.21625631024366
426 => 0.22750304685368
427 => 0.22614980974958
428 => 0.22790102386866
429 => 0.22481017678574
430 => 0.22192283822845
501 => 0.21653340639469
502 => 0.21493786132449
503 => 0.2153788125802
504 => 0.21493764281095
505 => 0.21192230523139
506 => 0.21127114336818
507 => 0.2101858450681
508 => 0.21052222439269
509 => 0.20848154607333
510 => 0.21233272768762
511 => 0.21304754093173
512 => 0.21585010974871
513 => 0.21614108174045
514 => 0.22394619600368
515 => 0.21964727022711
516 => 0.22253136078943
517 => 0.22227338058342
518 => 0.2016108636393
519 => 0.20445797616727
520 => 0.20888718978766
521 => 0.20689183505533
522 => 0.20407087030492
523 => 0.2017927900184
524 => 0.19834126543865
525 => 0.20319922000399
526 => 0.20958691367153
527 => 0.21630308419316
528 => 0.22437212301398
529 => 0.22257120748314
530 => 0.21615223912511
531 => 0.2164401893566
601 => 0.21822018438338
602 => 0.21591492909409
603 => 0.21523506430536
604 => 0.21812678140144
605 => 0.21814669506782
606 => 0.21549422025809
607 => 0.21254647990484
608 => 0.21253412876513
609 => 0.21200960684107
610 => 0.21946788580381
611 => 0.22356918511627
612 => 0.22403939247286
613 => 0.22353753641475
614 => 0.22373068089356
615 => 0.22134422518961
616 => 0.22679895524739
617 => 0.23180475496531
618 => 0.23046309370759
619 => 0.22845175275389
620 => 0.22684962280497
621 => 0.23008568280805
622 => 0.22994158615014
623 => 0.23176103367173
624 => 0.23167849302252
625 => 0.23106668125389
626 => 0.23046311555732
627 => 0.23285618532024
628 => 0.23216701966005
629 => 0.23147678353522
630 => 0.23009240931703
701 => 0.23028056876531
702 => 0.22826957509798
703 => 0.22733919741067
704 => 0.21334854928168
705 => 0.209609790944
706 => 0.21078608042648
707 => 0.21117334546645
708 => 0.20954623304654
709 => 0.2118790942858
710 => 0.21151552033278
711 => 0.21292997390036
712 => 0.21204628471977
713 => 0.21208255163198
714 => 0.2146812930897
715 => 0.21543571879071
716 => 0.21505201179022
717 => 0.21532074702066
718 => 0.22151363698013
719 => 0.22063320606537
720 => 0.22016549468954
721 => 0.22029505393704
722 => 0.22187747009874
723 => 0.2223204602273
724 => 0.22044347992424
725 => 0.22132867468586
726 => 0.22509772163289
727 => 0.22641667475476
728 => 0.23062613998639
729 => 0.22883788433871
730 => 0.23212030497391
731 => 0.24220934694683
801 => 0.2502691717834
802 => 0.24285702377734
803 => 0.2576578656772
804 => 0.26918244415092
805 => 0.26874011163391
806 => 0.26673053480871
807 => 0.25361010861316
808 => 0.24153649681348
809 => 0.25163658575655
810 => 0.25166233296037
811 => 0.25079472636283
812 => 0.24540609629927
813 => 0.25060721371715
814 => 0.2510200595301
815 => 0.25078897565941
816 => 0.24665752562399
817 => 0.24034956503949
818 => 0.24158212543858
819 => 0.24360108451583
820 => 0.23977877378361
821 => 0.23855731390269
822 => 0.24082824021357
823 => 0.24814563795352
824 => 0.24676232629758
825 => 0.24672620243984
826 => 0.25264459631938
827 => 0.24840830357097
828 => 0.24159767197242
829 => 0.23987789767259
830 => 0.23377385748698
831 => 0.23798993978503
901 => 0.23814166908119
902 => 0.23583256389386
903 => 0.24178504313216
904 => 0.24173018998807
905 => 0.24738118311522
906 => 0.25818375955825
907 => 0.25498890614154
908 => 0.25127363921698
909 => 0.25167759174486
910 => 0.25610795393588
911 => 0.25342925581986
912 => 0.25439253433893
913 => 0.25610649589847
914 => 0.25714057146262
915 => 0.2515288041847
916 => 0.25022043279035
917 => 0.24754396409349
918 => 0.24684572336913
919 => 0.24902565127638
920 => 0.24845131729081
921 => 0.23812891682137
922 => 0.23705016853902
923 => 0.23708325220874
924 => 0.23437068836109
925 => 0.23023337740349
926 => 0.24110598357404
927 => 0.24023276113652
928 => 0.23926879114755
929 => 0.23938687197086
930 => 0.24410630180268
1001 => 0.24136879416331
1002 => 0.24864690689127
1003 => 0.24715074571449
1004 => 0.24561621364907
1005 => 0.24540409457464
1006 => 0.24481343064957
1007 => 0.24278782427416
1008 => 0.24034178285577
1009 => 0.23872669443887
1010 => 0.22021275657454
1011 => 0.22364883575154
1012 => 0.2276017316362
1013 => 0.22896625545535
1014 => 0.22663214304052
1015 => 0.24287998925888
1016 => 0.24584862733111
1017 => 0.23685642897084
1018 => 0.23517435580667
1019 => 0.24299026569548
1020 => 0.23827631657641
1021 => 0.24039900757609
1022 => 0.23581091068468
1023 => 0.24513356935138
1024 => 0.24506254631206
1025 => 0.24143582152892
1026 => 0.24450110448089
1027 => 0.24396843613508
1028 => 0.23987387278714
1029 => 0.24526337431285
1030 => 0.24526604743837
1031 => 0.24177540368639
1101 => 0.23769909598425
1102 => 0.2369703484452
1103 => 0.23642133506798
1104 => 0.24026398394042
1105 => 0.24370929090381
1106 => 0.25012015299863
1107 => 0.2517319960476
1108 => 0.25802312677418
1109 => 0.2542770647361
1110 => 0.25593764551795
1111 => 0.25774044086015
1112 => 0.25860476724281
1113 => 0.25719639378458
1114 => 0.26696910933568
1115 => 0.26779422595646
1116 => 0.26807088042217
1117 => 0.26477557572391
1118 => 0.26770257757163
1119 => 0.2663331303392
1120 => 0.2698960515946
1121 => 0.27045476314111
1122 => 0.26998155433796
1123 => 0.27015889820148
1124 => 0.26181960950379
1125 => 0.26138717339156
1126 => 0.25549087631706
1127 => 0.25789366095815
1128 => 0.2534017702401
1129 => 0.25482619505839
1130 => 0.25545406794588
1201 => 0.25512610278093
1202 => 0.25802951079664
1203 => 0.25556102085622
1204 => 0.24904627004611
1205 => 0.24252974429651
1206 => 0.24244793462397
1207 => 0.24073224842033
1208 => 0.2394921215387
1209 => 0.23973101397197
1210 => 0.24057290206603
1211 => 0.23944318947221
1212 => 0.23968427093198
1213 => 0.2436878294816
1214 => 0.24449071459665
1215 => 0.24176219726824
1216 => 0.23080680647149
1217 => 0.22811832609045
1218 => 0.23005075247346
1219 => 0.22912717712658
1220 => 0.18492351458412
1221 => 0.19530850941627
1222 => 0.18913809812811
1223 => 0.19198170753667
1224 => 0.18568331543171
1225 => 0.18868923827121
1226 => 0.18813415408148
1227 => 0.20483291845725
1228 => 0.20457219021992
1229 => 0.2046969870297
1230 => 0.19874011014265
1231 => 0.20822957677055
]
'min_raw' => 0.1211481735457
'max_raw' => 0.27045476314111
'avg_raw' => 0.19580146834341
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.121148'
'max' => '$0.270454'
'avg' => '$0.1958014'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.018680802552877
'max_diff' => 0.040915202957329
'year' => 2035
]
10 => [
'items' => [
101 => 0.21290442926164
102 => 0.21203923848271
103 => 0.21225698836196
104 => 0.20851532399653
105 => 0.20473321451963
106 => 0.20053827304727
107 => 0.20833195579248
108 => 0.20746543131381
109 => 0.2094529267022
110 => 0.21450768706642
111 => 0.21525201973121
112 => 0.21625241038098
113 => 0.21589384154569
114 => 0.22443640592618
115 => 0.22340184501405
116 => 0.2258948391488
117 => 0.2207665610697
118 => 0.21496342764258
119 => 0.21606641358835
120 => 0.21596018717212
121 => 0.2146078029725
122 => 0.21338693098626
123 => 0.21135452310773
124 => 0.21778536237517
125 => 0.21752428204501
126 => 0.22175086911772
127 => 0.22100377879774
128 => 0.21601452679691
129 => 0.21619271890818
130 => 0.21739114649269
131 => 0.22153891804607
201 => 0.22277025904493
202 => 0.2221998528338
203 => 0.22354996202621
204 => 0.2246170332835
205 => 0.2236839697472
206 => 0.23689418176424
207 => 0.231408380722
208 => 0.23408212198003
209 => 0.23471979351547
210 => 0.23308641128622
211 => 0.23344063340471
212 => 0.23397718339448
213 => 0.23723500986507
214 => 0.24578448918358
215 => 0.24957099537547
216 => 0.26096288607672
217 => 0.24925657874695
218 => 0.24856197491552
219 => 0.25061399843295
220 => 0.25730224422868
221 => 0.26272243925113
222 => 0.26452063063863
223 => 0.26475829131539
224 => 0.26813181789984
225 => 0.27006546042551
226 => 0.26772218303993
227 => 0.26573650080703
228 => 0.25862403352072
229 => 0.25944732097572
301 => 0.26511895512575
302 => 0.27313047242026
303 => 0.28000518771525
304 => 0.27759790202696
305 => 0.29596379254977
306 => 0.29778469557717
307 => 0.29753310565562
308 => 0.30168139373874
309 => 0.29344788667793
310 => 0.28992790289274
311 => 0.26616582784423
312 => 0.27284200169042
313 => 0.28254621245379
314 => 0.28126182377033
315 => 0.27421436651968
316 => 0.27999984158697
317 => 0.27808698260119
318 => 0.27657823135451
319 => 0.28349011330135
320 => 0.27589021517634
321 => 0.28247039765637
322 => 0.27403124556246
323 => 0.27760889830521
324 => 0.27557804957683
325 => 0.27689225759555
326 => 0.2692094243718
327 => 0.2733548946891
328 => 0.26903695917756
329 => 0.26903491191391
330 => 0.26893959324817
331 => 0.27401962522885
401 => 0.27418528488936
402 => 0.27043113358014
403 => 0.26989010172561
404 => 0.27189058005806
405 => 0.26954854385687
406 => 0.27064436785481
407 => 0.26958173524943
408 => 0.2693425142675
409 => 0.26743636078333
410 => 0.26661513745157
411 => 0.26693716028027
412 => 0.26583793035177
413 => 0.26517560455896
414 => 0.26880783997749
415 => 0.26686728311732
416 => 0.26851042180716
417 => 0.26663785788946
418 => 0.26014673551343
419 => 0.2564136223926
420 => 0.24415249395164
421 => 0.24762973476761
422 => 0.24993514902607
423 => 0.2491732096274
424 => 0.25081015028714
425 => 0.25091064514897
426 => 0.25037845905385
427 => 0.24976225573297
428 => 0.24946232203454
429 => 0.25169778209154
430 => 0.25299554189675
501 => 0.25016652818937
502 => 0.24950372985984
503 => 0.25236401891213
504 => 0.25410879358169
505 => 0.26699122943753
506 => 0.26603685697961
507 => 0.26843214456285
508 => 0.26816247193966
509 => 0.27067311492614
510 => 0.27477695513213
511 => 0.26643270054157
512 => 0.26788097461588
513 => 0.26752589125839
514 => 0.27140259824758
515 => 0.27141470090365
516 => 0.26909042140775
517 => 0.2703504510296
518 => 0.26964713706179
519 => 0.27091812046021
520 => 0.26602411075358
521 => 0.27198448630056
522 => 0.27536363515758
523 => 0.27541055464274
524 => 0.27701224438238
525 => 0.27863965392148
526 => 0.28176332481427
527 => 0.27855253643565
528 => 0.27277664070647
529 => 0.27319364172209
530 => 0.26980723616939
531 => 0.26986416225853
601 => 0.2695602863333
602 => 0.27047224085964
603 => 0.26622423348846
604 => 0.26722123232768
605 => 0.26582542811435
606 => 0.26787794041012
607 => 0.26566977647231
608 => 0.26752572002645
609 => 0.26832668373891
610 => 0.27128225708141
611 => 0.26523323588652
612 => 0.2528988721874
613 => 0.25549170497666
614 => 0.25165670161873
615 => 0.25201164578039
616 => 0.2527286894759
617 => 0.25040451625666
618 => 0.25084789526378
619 => 0.25083205464563
620 => 0.25069554875626
621 => 0.25009094153811
622 => 0.2492141414539
623 => 0.25270704312457
624 => 0.25330055518207
625 => 0.25461985896531
626 => 0.25854521213192
627 => 0.25815297678438
628 => 0.25879272890991
629 => 0.25739615361192
630 => 0.25207642890299
701 => 0.25236531554865
702 => 0.24876289444815
703 => 0.25452773695842
704 => 0.25316254615978
705 => 0.25228239877081
706 => 0.25204224240122
707 => 0.25597732575909
708 => 0.25715476437464
709 => 0.25642106364439
710 => 0.2549162220412
711 => 0.25780596278582
712 => 0.25857913550071
713 => 0.25875222035806
714 => 0.2638722869047
715 => 0.25903837520117
716 => 0.26020194579316
717 => 0.269279791396
718 => 0.26104743809129
719 => 0.26540829924018
720 => 0.26519485777977
721 => 0.26742572678004
722 => 0.26501186140756
723 => 0.26504178416184
724 => 0.26702264470193
725 => 0.26424088332345
726 => 0.26355208008615
727 => 0.26260050334711
728 => 0.26467823634406
729 => 0.26592374330795
730 => 0.27596161471287
731 => 0.282446537423
801 => 0.28216500982539
802 => 0.28473764507
803 => 0.28357864932966
804 => 0.27983594635649
805 => 0.28622428395769
806 => 0.28420274664127
807 => 0.28436939972147
808 => 0.2843631968855
809 => 0.28570734247506
810 => 0.28475489213572
811 => 0.28287751474987
812 => 0.28412380547213
813 => 0.28782484336016
814 => 0.29931297852632
815 => 0.30574189116285
816 => 0.29892594991322
817 => 0.30362749491813
818 => 0.30080824324696
819 => 0.30029590135284
820 => 0.30324881905736
821 => 0.30620690545343
822 => 0.30601848813816
823 => 0.30387106931403
824 => 0.30265804690902
825 => 0.3118434589521
826 => 0.31861111407604
827 => 0.31814960536752
828 => 0.32018655471624
829 => 0.32616710100456
830 => 0.32671388720651
831 => 0.3266450047128
901 => 0.32528973806001
902 => 0.33117836255293
903 => 0.33609075670541
904 => 0.32497603298731
905 => 0.32920837427675
906 => 0.33110840863909
907 => 0.33389822279781
908 => 0.33860510691071
909 => 0.34371803149668
910 => 0.3444410550935
911 => 0.34392803525169
912 => 0.34055592404446
913 => 0.34615054713629
914 => 0.34942774613344
915 => 0.35137924313887
916 => 0.35632791484651
917 => 0.33112014260447
918 => 0.31327682850398
919 => 0.31049033734661
920 => 0.31615677668847
921 => 0.31765097155392
922 => 0.31704866347722
923 => 0.29696439121397
924 => 0.31038459780968
925 => 0.32482361170363
926 => 0.32537827303204
927 => 0.33260674529289
928 => 0.33496063216612
929 => 0.34078049979363
930 => 0.34041646548895
1001 => 0.34183351064192
1002 => 0.34150775650106
1003 => 0.3522878357633
1004 => 0.36417986404682
1005 => 0.36376808092169
1006 => 0.36205846115585
1007 => 0.36459753804162
1008 => 0.37687138565741
1009 => 0.37574140645334
1010 => 0.37683908499869
1011 => 0.39131064306145
1012 => 0.41012572709816
1013 => 0.40138423155955
1014 => 0.42035076158074
1015 => 0.43228918685653
1016 => 0.45293545891478
1017 => 0.45035044396805
1018 => 0.45838788617099
1019 => 0.44572272770451
1020 => 0.41664096381464
1021 => 0.41203866335855
1022 => 0.42125258542046
1023 => 0.44390411372828
1024 => 0.4205392081841
1025 => 0.42526589814517
1026 => 0.4239046111184
1027 => 0.42383207391784
1028 => 0.42660052383307
1029 => 0.42258474283839
1030 => 0.40622372864088
1031 => 0.41372188503154
1101 => 0.41082648675806
1102 => 0.41403914700873
1103 => 0.43137654937968
1104 => 0.42371127051943
1105 => 0.41563652191685
1106 => 0.42576404859465
1107 => 0.43865987025123
1108 => 0.43785287290798
1109 => 0.43628696076335
1110 => 0.44511392553411
1111 => 0.45969348527738
1112 => 0.46363428169057
1113 => 0.46654329703676
1114 => 0.46694440110478
1115 => 0.47107602229019
1116 => 0.44885925387363
1117 => 0.48411783591778
1118 => 0.49020601903814
1119 => 0.48906169294085
1120 => 0.49582845224921
1121 => 0.49383750000457
1122 => 0.49095292257293
1123 => 0.50167967540767
1124 => 0.48938231888696
1125 => 0.47192776949996
1126 => 0.4623518584944
1127 => 0.47496219057322
1128 => 0.48266288033382
1129 => 0.48775254640971
1130 => 0.48929267628902
1201 => 0.45058387836278
1202 => 0.42972198316889
1203 => 0.44309421880606
1204 => 0.45940926918581
1205 => 0.44876862294501
1206 => 0.44918571613224
1207 => 0.43401495090549
1208 => 0.46075154528114
1209 => 0.45685624837076
1210 => 0.47706505563246
1211 => 0.47224206159364
1212 => 0.48872155941418
1213 => 0.48438195534992
1214 => 0.50239540919667
1215 => 0.50958146363094
1216 => 0.52164796744613
1217 => 0.5305241367721
1218 => 0.53573639317436
1219 => 0.53542346885065
1220 => 0.55607702545227
1221 => 0.5438983447046
1222 => 0.52859905139087
1223 => 0.52832233544347
1224 => 0.53624605624332
1225 => 0.55285200127316
1226 => 0.55715768121272
1227 => 0.55956396890728
1228 => 0.55587865553959
1229 => 0.54265957044191
1230 => 0.53695163651901
1231 => 0.54181496159609
]
'min_raw' => 0.20053827304727
'max_raw' => 0.55956396890728
'avg_raw' => 0.38005112097727
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.200538'
'max' => '$0.559563'
'avg' => '$0.380051'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.079390099501571
'max_diff' => 0.28910920576617
'year' => 2036
]
11 => [
'items' => [
101 => 0.53586753293711
102 => 0.54613446335625
103 => 0.56023315171973
104 => 0.55732182832493
105 => 0.56705394594376
106 => 0.57712566383061
107 => 0.59152867275797
108 => 0.59529415263345
109 => 0.60151834767926
110 => 0.60792508892296
111 => 0.60998276154391
112 => 0.61391149703564
113 => 0.61389079066032
114 => 0.62573029949903
115 => 0.63878964438719
116 => 0.64371924475794
117 => 0.65505458899074
118 => 0.63564320922992
119 => 0.65036696376036
120 => 0.6636481589063
121 => 0.6478137705339
122 => 0.66963778596594
123 => 0.67048516303088
124 => 0.68327955065914
125 => 0.67030998768981
126 => 0.66260870259894
127 => 0.6848420240929
128 => 0.69560002802077
129 => 0.69235962968616
130 => 0.66770003836155
131 => 0.65334709851101
201 => 0.61578268644681
202 => 0.6602793551987
203 => 0.68195238456212
204 => 0.66764391045132
205 => 0.67486027251857
206 => 0.71423040404424
207 => 0.72922000110197
208 => 0.72610226969915
209 => 0.726629114984
210 => 0.73471722947592
211 => 0.7705843833391
212 => 0.74909195335017
213 => 0.76552211077072
214 => 0.77423660702324
215 => 0.78233111680674
216 => 0.76245355907456
217 => 0.73659314852432
218 => 0.72840207095687
219 => 0.66622121469021
220 => 0.66298443108376
221 => 0.66116752636087
222 => 0.64971219908938
223 => 0.64071144973219
224 => 0.63355371966697
225 => 0.61476969849668
226 => 0.62110875423092
227 => 0.59117094501539
228 => 0.61032409442067
301 => 0.562542628039
302 => 0.6023364530756
303 => 0.58067848331138
304 => 0.59522122751882
305 => 0.59517048925429
306 => 0.56839268638714
307 => 0.55294780853185
308 => 0.56278988582488
309 => 0.57334137394807
310 => 0.57505331739659
311 => 0.58873359717033
312 => 0.59255146919855
313 => 0.58098313871364
314 => 0.56155246335269
315 => 0.56606576607252
316 => 0.55285634659629
317 => 0.52970734705718
318 => 0.54633336266892
319 => 0.55201021539308
320 => 0.55451743695923
321 => 0.53175305459307
322 => 0.52459999141484
323 => 0.52079176059876
324 => 0.55861386745209
325 => 0.5606858478441
326 => 0.5500853032101
327 => 0.59800077014066
328 => 0.58715602426055
329 => 0.59927226243588
330 => 0.5656562311569
331 => 0.56694040882174
401 => 0.55102604089347
402 => 0.55993702353486
403 => 0.5536390282183
404 => 0.55921710419748
405 => 0.56256057994013
406 => 0.57847233647722
407 => 0.60251813977585
408 => 0.57609565066089
409 => 0.5645829937765
410 => 0.57172538135794
411 => 0.59074650070014
412 => 0.61956447017677
413 => 0.60250365223092
414 => 0.61007495352381
415 => 0.61172894603256
416 => 0.5991489305051
417 => 0.62002831329321
418 => 0.63121774415316
419 => 0.64269578488901
420 => 0.65266184605254
421 => 0.63811120301159
422 => 0.65368247681815
423 => 0.6411347788299
424 => 0.62987819657727
425 => 0.62989526816603
426 => 0.62283384968653
427 => 0.6091514615865
428 => 0.60662821929536
429 => 0.61975444434425
430 => 0.63028043377531
501 => 0.63114740468094
502 => 0.63697513327485
503 => 0.64042392302634
504 => 0.67422675099329
505 => 0.68782252803325
506 => 0.70444718684283
507 => 0.7109234283636
508 => 0.73041459348001
509 => 0.71467389465347
510 => 0.71126829544871
511 => 0.66398910438782
512 => 0.67173106927541
513 => 0.68412670204895
514 => 0.66419350380666
515 => 0.67683653010161
516 => 0.67933253130815
517 => 0.66351618135792
518 => 0.67196437725048
519 => 0.64952847367536
520 => 0.60300718116353
521 => 0.62008010479059
522 => 0.63265152326406
523 => 0.6147105590577
524 => 0.64686904298641
525 => 0.62808272056111
526 => 0.6221283582548
527 => 0.59889826801446
528 => 0.60986197639973
529 => 0.62469054897599
530 => 0.61552821513045
531 => 0.63454143359129
601 => 0.66146922157199
602 => 0.68065956686453
603 => 0.68213276328862
604 => 0.6697946569188
605 => 0.68956655111719
606 => 0.68971056778095
607 => 0.66740779035461
608 => 0.65374746336337
609 => 0.65064380832938
610 => 0.65839734711169
611 => 0.66781157457563
612 => 0.68265518739318
613 => 0.691624871741
614 => 0.71501305136713
615 => 0.72134122218231
616 => 0.72829396332667
617 => 0.7375849696415
618 => 0.74874120488758
619 => 0.72433199729399
620 => 0.72530182061613
621 => 0.70257230447347
622 => 0.67828255673269
623 => 0.69671544750814
624 => 0.72081400017234
625 => 0.71528576556464
626 => 0.71466372623969
627 => 0.71570982384493
628 => 0.71154171548599
629 => 0.69268951585579
630 => 0.68322205922252
701 => 0.69543749368522
702 => 0.70192945345571
703 => 0.71199791690135
704 => 0.71075676626219
705 => 0.73669204682413
706 => 0.74676971260832
707 => 0.74419141445309
708 => 0.74466588336386
709 => 0.76291101589408
710 => 0.78320335566538
711 => 0.80220980967127
712 => 0.82154399103226
713 => 0.79823588077565
714 => 0.78640145983173
715 => 0.79861156141788
716 => 0.79213270964664
717 => 0.82936211367642
718 => 0.83193979683596
719 => 0.86916650875608
720 => 0.90449909124267
721 => 0.88230732923181
722 => 0.90323316126914
723 => 0.92586615472563
724 => 0.96952887117405
725 => 0.95482480434711
726 => 0.94356171959977
727 => 0.93291815893637
728 => 0.95506571905924
729 => 0.98355820134139
730 => 0.98969520912736
731 => 0.99963950625805
801 => 0.98918429375593
802 => 1.0017764456109
803 => 1.0462322749306
804 => 1.034219917426
805 => 1.0171604386865
806 => 1.0522540463512
807 => 1.0649542865422
808 => 1.1540912233694
809 => 1.2666302881771
810 => 1.2200383763754
811 => 1.1911172732085
812 => 1.1979144184704
813 => 1.2390098752504
814 => 1.2522084316636
815 => 1.2163302055174
816 => 1.2290030015364
817 => 1.2988313535629
818 => 1.3362920240634
819 => 1.2854154018845
820 => 1.145048819089
821 => 1.0156244192778
822 => 1.0499535981644
823 => 1.0460617346371
824 => 1.1210835876253
825 => 1.0339334266722
826 => 1.0354008118736
827 => 1.1119740373321
828 => 1.0915456135772
829 => 1.0584541833691
830 => 1.0158660233395
831 => 0.93713787059681
901 => 0.86740615021565
902 => 1.0041661121392
903 => 0.99826877389923
904 => 0.98972855419115
905 => 1.0087338890032
906 => 1.1010184000921
907 => 1.0988909434156
908 => 1.0853571494783
909 => 1.0956224128984
910 => 1.0566546330597
911 => 1.066697517204
912 => 1.0156039177916
913 => 1.0387003585832
914 => 1.058383184022
915 => 1.062334802638
916 => 1.0712380011546
917 => 0.99516114462388
918 => 1.029317419707
919 => 1.0493810313082
920 => 0.95873290417364
921 => 1.0475892092907
922 => 0.9938368158074
923 => 0.97559244612532
924 => 1.0001560863893
925 => 0.99058361188951
926 => 0.98235376042914
927 => 0.97776136190746
928 => 0.99579818832729
929 => 0.99495674881614
930 => 0.96544499999614
1001 => 0.92694812671322
1002 => 0.93986894100376
1003 => 0.93517468803873
1004 => 0.91816210972277
1005 => 0.92962653340119
1006 => 0.87914301353349
1007 => 0.79228874150613
1008 => 0.8496673340257
1009 => 0.8474583206296
1010 => 0.8463444359045
1011 => 0.88946286235514
1012 => 0.88531802056326
1013 => 0.8777950921246
1014 => 0.91802394524244
1015 => 0.9033398727
1016 => 0.9485927242732
1017 => 0.97839917909024
1018 => 0.97083929801084
1019 => 0.99887241283337
1020 => 0.94016661046864
1021 => 0.95966632314622
1022 => 0.96368518690363
1023 => 0.91752752743953
1024 => 0.88599616794054
1025 => 0.88389338574577
1026 => 0.82922235366351
1027 => 0.8584271777127
1028 => 0.88412621429826
1029 => 0.87181837009958
1030 => 0.86792207431266
1031 => 0.88782740448456
1101 => 0.88937421911654
1102 => 0.85410668158332
1103 => 0.86143991941414
1104 => 0.89202074021801
1105 => 0.86066936119219
1106 => 0.7997587529637
1107 => 0.78465207996799
1108 => 0.78263657131914
1109 => 0.74166607602944
1110 => 0.78566158009294
1111 => 0.76645636356301
1112 => 0.82712541246722
1113 => 0.79247157710777
1114 => 0.79097771952717
1115 => 0.78871953469283
1116 => 0.75345453692713
1117 => 0.76117533023029
1118 => 0.78684042308003
1119 => 0.79599801734678
1120 => 0.7950428052388
1121 => 0.78671465012352
1122 => 0.79052723688824
1123 => 0.77824556652579
1124 => 0.77390865309995
1125 => 0.76022016136597
1126 => 0.74010186005938
1127 => 0.74289943324877
1128 => 0.70303981412053
1129 => 0.68132217810935
1130 => 0.6753110226953
1201 => 0.66727265445216
1202 => 0.67621897777765
1203 => 0.70292689682763
1204 => 0.67071148005224
1205 => 0.61548040763957
1206 => 0.61879988920074
1207 => 0.62625777870576
1208 => 0.61236005095202
1209 => 0.59920701798098
1210 => 0.61064251301001
1211 => 0.58724037953039
1212 => 0.62908581473176
1213 => 0.62795401298004
1214 => 0.64355140351876
1215 => 0.65330477191329
1216 => 0.6308264154544
1217 => 0.62517316959293
1218 => 0.62839351536133
1219 => 0.57516837321864
1220 => 0.63920177388146
1221 => 0.63975553738944
1222 => 0.63501387803457
1223 => 0.66910968707807
1224 => 0.74106247890939
1225 => 0.7139909443281
1226 => 0.70350802789676
1227 => 0.68357999609782
1228 => 0.71013291526047
1229 => 0.70809406535884
1230 => 0.69887361289283
1231 => 0.69329705447182
]
'min_raw' => 0.52079176059876
'max_raw' => 1.3362920240634
'avg_raw' => 0.92854189233109
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.520791'
'max' => '$1.33'
'avg' => '$0.928541'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.32025348755149
'max_diff' => 0.77672805515613
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01634705826978
]
1 => [
'year' => 2028
'avg' => 0.028056297575866
]
2 => [
'year' => 2029
'avg' => 0.076644748321614
]
3 => [
'year' => 2030
'avg' => 0.059131309187341
]
4 => [
'year' => 2031
'avg' => 0.058074273684442
]
5 => [
'year' => 2032
'avg' => 0.10182247841538
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01634705826978
'min' => '$0.016347'
'max_raw' => 0.10182247841538
'max' => '$0.101822'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.10182247841538
]
1 => [
'year' => 2033
'avg' => 0.26189788476635
]
2 => [
'year' => 2034
'avg' => 0.1660034655883
]
3 => [
'year' => 2035
'avg' => 0.19580146834341
]
4 => [
'year' => 2036
'avg' => 0.38005112097727
]
5 => [
'year' => 2037
'avg' => 0.92854189233109
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.10182247841538
'min' => '$0.101822'
'max_raw' => 0.92854189233109
'max' => '$0.928541'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.92854189233109
]
]
]
]
'prediction_2025_max_price' => '$0.02795'
'last_price' => 0.02710153
'sma_50day_nextmonth' => '$0.021876'
'sma_200day_nextmonth' => '$0.018082'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.027842'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.026273'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.021985'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.017059'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014251'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.015139'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.0163058'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.026839'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.025815'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.022972'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01923'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.016216'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0157039'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.016083'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.017897'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.016448'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.029357'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.123833'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.024485'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.021583'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.018577'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.017222'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.019632'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.046788'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.13899'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '67.83'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 76.78
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0.01
'momentum_10_action' => 'SELL'
'vwma_10' => '0.022163'
'vwma_10_action' => 'BUY'
'hma_9' => '0.030294'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 81.66
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 127.5
'cci_20_action' => 'SELL'
'adx_14' => 25.52
'adx_14_action' => 'SELL'
'ao_5_34' => '0.011017'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -18.34
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.51
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000821'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 26
'sell_pct' => 21.21
'buy_pct' => 78.79
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767703002
'last_updated_date' => '6. Januar 2026'
]
Brazil Fan Token Preisprognose für 2026
Die Preisprognose für Brazil Fan Token im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.009363 am unteren Ende und $0.02795 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Brazil Fan Token im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn BFT das prognostizierte Preisziel erreicht.
Brazil Fan Token Preisprognose 2027-2032
Die Preisprognose für BFT für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.016347 am unteren Ende und $0.101822 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Brazil Fan Token, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Brazil Fan Token Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.009014 | $0.016347 | $0.02368 |
| 2028 | $0.016267 | $0.028056 | $0.039844 |
| 2029 | $0.035735 | $0.076644 | $0.117553 |
| 2030 | $0.030391 | $0.059131 | $0.087871 |
| 2031 | $0.035932 | $0.058074 | $0.080216 |
| 2032 | $0.054847 | $0.101822 | $0.148797 |
Brazil Fan Token Preisprognose 2032-2037
Die Preisprognose für Brazil Fan Token für die Jahre 2032-2037 wird derzeit zwischen $0.101822 am unteren Ende und $0.928541 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Brazil Fan Token bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Brazil Fan Token Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.054847 | $0.101822 | $0.148797 |
| 2033 | $0.127454 | $0.261897 | $0.396341 |
| 2034 | $0.102467 | $0.1660034 | $0.229539 |
| 2035 | $0.121148 | $0.1958014 | $0.270454 |
| 2036 | $0.200538 | $0.380051 | $0.559563 |
| 2037 | $0.520791 | $0.928541 | $1.33 |
Brazil Fan Token Potenzielles Preishistogramm
Brazil Fan Token Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Brazil Fan Token Bullisch, mit 26 technischen Indikatoren, die bullische Signale zeigen, und 7 anzeigen bärische Signale. Die Preisprognose für BFT wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Brazil Fan Token
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Brazil Fan Token im nächsten Monat steigen, und bis zum 04.02.2026 $0.018082 erreichen. Der kurzfristige 50-Tage-SMA für Brazil Fan Token wird voraussichtlich bis zum 04.02.2026 $0.021876 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 67.83, was darauf hindeutet, dass sich der BFT-Markt in einem NEUTRAL Zustand befindet.
Beliebte BFT Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.027842 | SELL |
| SMA 5 | $0.026273 | BUY |
| SMA 10 | $0.021985 | BUY |
| SMA 21 | $0.017059 | BUY |
| SMA 50 | $0.014251 | BUY |
| SMA 100 | $0.015139 | BUY |
| SMA 200 | $0.0163058 | BUY |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.026839 | BUY |
| EMA 5 | $0.025815 | BUY |
| EMA 10 | $0.022972 | BUY |
| EMA 21 | $0.01923 | BUY |
| EMA 50 | $0.016216 | BUY |
| EMA 100 | $0.0157039 | BUY |
| EMA 200 | $0.016083 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.017897 | BUY |
| SMA 50 | $0.016448 | BUY |
| SMA 100 | $0.029357 | SELL |
| SMA 200 | $0.123833 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.017222 | BUY |
| EMA 50 | $0.019632 | BUY |
| EMA 100 | $0.046788 | SELL |
| EMA 200 | $0.13899 | SELL |
Brazil Fan Token Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 67.83 | NEUTRAL |
| Stoch RSI (14) | 76.78 | NEUTRAL |
| Stochastic Fast (14) | 81.66 | SELL |
| Commodity Channel Index (20) | 127.5 | SELL |
| Average Directional Index (14) | 25.52 | SELL |
| Awesome Oscillator (5, 34) | 0.011017 | BUY |
| Momentum (10) | 0.01 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Prozentbereich (14) | -18.34 | SELL |
| Ultimate Oscillator (7, 14, 28) | 71.51 | SELL |
| VWMA (10) | 0.022163 | BUY |
| Hull Moving Average (9) | 0.030294 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000821 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Brazil Fan Token-Preisprognose
Definition weltweiter Geldflüsse, die für Brazil Fan Token-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Brazil Fan Token-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.038082 | $0.053511 | $0.075193 | $0.105658 | $0.148468 | $0.208622 |
| Amazon.com aktie | $0.056548 | $0.117992 | $0.246198 | $0.5137086 | $1.07 | $2.23 |
| Apple aktie | $0.038441 | $0.054526 | $0.077341 | $0.1097027 | $0.155605 | $0.220713 |
| Netflix aktie | $0.042761 | $0.067471 | $0.106459 | $0.167976 | $0.265041 | $0.418193 |
| Google aktie | $0.035096 | $0.045449 | $0.058857 | $0.076219 | $0.098704 | $0.127821 |
| Tesla aktie | $0.061437 | $0.139273 | $0.315722 | $0.715718 | $1.62 | $3.67 |
| Kodak aktie | $0.020323 | $0.01524 | $0.011428 | $0.00857 | $0.006426 | $0.004819 |
| Nokia aktie | $0.017953 | $0.011893 | $0.007878 | $0.005219 | $0.003457 | $0.00229 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Brazil Fan Token Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Brazil Fan Token investieren?", "Sollte ich heute BFT kaufen?", "Wird Brazil Fan Token auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Brazil Fan Token/Brazil National Football Team Fan Token-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Brazil Fan Token.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Brazil Fan Token zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Brazil Fan Token-Preis entspricht heute $0.0271 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Brazil Fan Token-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Brazil Fan Token 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0278059 | $0.028528 | $0.02927 | $0.030031 |
| Wenn die Wachstumsrate von Brazil Fan Token 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.02851 | $0.029992 | $0.031551 | $0.033192 |
| Wenn die Wachstumsrate von Brazil Fan Token 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.030623 | $0.0346038 | $0.0391011 | $0.044183 |
| Wenn die Wachstumsrate von Brazil Fan Token 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.034146 | $0.043021 | $0.0542044 | $0.068293 |
| Wenn die Wachstumsrate von Brazil Fan Token 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.04119 | $0.0626041 | $0.095149 | $0.144614 |
| Wenn die Wachstumsrate von Brazil Fan Token 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.062324 | $0.143324 | $0.329598 | $0.757964 |
| Wenn die Wachstumsrate von Brazil Fan Token 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.097547 | $0.3511033 | $1.26 | $4.54 |
Fragefeld
Ist BFT eine gute Investition?
Die Entscheidung, Brazil Fan Token zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Brazil Fan Token in den letzten 2026 Stunden um 4.1337% gestiegen, und Brazil Fan Token hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Brazil Fan Token investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Brazil Fan Token steigen?
Es scheint, dass der Durchschnittswert von Brazil Fan Token bis zum Ende dieses Jahres potenziell auf $0.02795 steigen könnte. Betrachtet man die Aussichten von Brazil Fan Token in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.087871 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Brazil Fan Token nächste Woche kosten?
Basierend auf unserer neuen experimentellen Brazil Fan Token-Prognose wird der Preis von Brazil Fan Token in der nächsten Woche um 0.86% steigen und $0.027333 erreichen bis zum 13. Januar 2026.
Wie viel wird Brazil Fan Token nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Brazil Fan Token-Prognose wird der Preis von Brazil Fan Token im nächsten Monat um -11.62% fallen und $0.023952 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Brazil Fan Token in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Brazil Fan Token im Jahr 2026 wird erwartet, dass BFT innerhalb der Spanne von $0.009363 bis $0.02795 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Brazil Fan Token-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Brazil Fan Token in 5 Jahren sein?
Die Zukunft von Brazil Fan Token scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.087871 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Brazil Fan Token-Prognose für 2030 könnte der Wert von Brazil Fan Token seinen höchsten Gipfel von ungefähr $0.087871 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.030391 liegen wird.
Wie viel wird Brazil Fan Token im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Brazil Fan Token-Preisprognosesimulation wird der Wert von BFT im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.02795 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.02795 und $0.009363 während des Jahres 2026 liegen.
Wie viel wird Brazil Fan Token im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Brazil Fan Token könnte der Wert von BFT um -12.62% fallen und bis zu $0.02368 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.02368 und $0.009014 im Laufe des Jahres schwanken.
Wie viel wird Brazil Fan Token im Jahr 2028 kosten?
Unser neues experimentelles Brazil Fan Token-Preisprognosemodell deutet darauf hin, dass der Wert von BFT im Jahr 2028 um 47.02% steigen, und im besten Fall $0.039844 erreichen wird. Der Preis wird voraussichtlich zwischen $0.039844 und $0.016267 im Laufe des Jahres liegen.
Wie viel wird Brazil Fan Token im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Brazil Fan Token im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.117553 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.117553 und $0.035735.
Wie viel wird Brazil Fan Token im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Brazil Fan Token-Preisprognosen wird der Wert von BFT im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.087871 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.087871 und $0.030391 während des Jahres 2030 liegen.
Wie viel wird Brazil Fan Token im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Brazil Fan Token im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.080216 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.080216 und $0.035932 während des Jahres schwanken.
Wie viel wird Brazil Fan Token im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Brazil Fan Token-Preisprognose könnte BFT eine 449.04% Steigerung im Wert erfahren und $0.148797 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.148797 und $0.054847 liegen.
Wie viel wird Brazil Fan Token im Jahr 2033 kosten?
Laut unserer experimentellen Brazil Fan Token-Preisprognose wird der Wert von BFT voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.396341 beträgt. Im Laufe des Jahres könnte der Preis von BFT zwischen $0.396341 und $0.127454 liegen.
Wie viel wird Brazil Fan Token im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Brazil Fan Token-Preisprognosesimulation deuten darauf hin, dass BFT im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.229539 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.229539 und $0.102467.
Wie viel wird Brazil Fan Token im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Brazil Fan Token könnte BFT um 897.93% steigen, wobei der Wert im Jahr 2035 $0.270454 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.270454 und $0.121148.
Wie viel wird Brazil Fan Token im Jahr 2036 kosten?
Unsere jüngste Brazil Fan Token-Preisprognosesimulation deutet darauf hin, dass der Wert von BFT im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.559563 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.559563 und $0.200538.
Wie viel wird Brazil Fan Token im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Brazil Fan Token um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $1.33 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $1.33 und $0.520791 liegen.
Verwandte Prognosen
S.C. Corinthians Fan Token-Preisprognose
Alvara Protocol-Preisprognose
ArbiDoge-Preisprognose
DiFy.Finance-Preisprognose
UniX-Preisprognose
CrowdSwap-Preisprognose
2DAI.io[Old]-Preisprognose
DecentraWeb-Preisprognose
Valencia CF Fan Token-Preisprognose
Vidya-Preisprognose
Giveth-Preisprognose
UniLayer-Preisprognose
BitBoost-PreisprognoseALL.ART-Preisprognose
MCH Coin-Preisprognose
Sanin Inu-Preisprognose
Charli3-Preisprognose
web3war-Preisprognose
Safe Haven-Preisprognose
Civilization-Preisprognose
Göztepe S.K. Fan Token-Preisprognose
Alfa Romeo Racing ORLEN Fan Token-Preisprognose
Kick-Preisprognose
apM Coin-Preisprognose
BSC Station-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Brazil Fan Token?
Brazil Fan Token-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Brazil Fan Token Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Brazil Fan Token. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von BFT über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von BFT über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von BFT einzuschätzen.
Wie liest man Brazil Fan Token-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Brazil Fan Token in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von BFT innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Brazil Fan Token?
Die Preisentwicklung von Brazil Fan Token wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von BFT. Die Marktkapitalisierung von Brazil Fan Token kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von BFT-„Walen“, großen Inhabern von Brazil Fan Token, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Brazil Fan Token-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


