MaidSafeCoin Preisvorhersage bis zu $0.0522067 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.017489 | $0.0522067 |
| 2027 | $0.016836 | $0.04423 |
| 2028 | $0.030385 | $0.074423 |
| 2029 | $0.066747 | $0.21957 |
| 2030 | $0.056766 | $0.164127 |
| 2031 | $0.067115 | $0.14983 |
| 2032 | $0.102446 | $0.277927 |
| 2033 | $0.238063 | $0.740297 |
| 2034 | $0.191391 | $0.42874 |
| 2035 | $0.226283 | $0.505163 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in MaidSafeCoin eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.49 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige MaidSafeCoin Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'MaidSafeCoin'
'name_with_ticker' => 'MaidSafeCoin <small>EMAID</small>'
'name_lang' => 'MaidSafeCoin'
'name_lang_with_ticker' => 'MaidSafeCoin <small>EMAID</small>'
'name_with_lang' => 'MaidSafeCoin'
'name_with_lang_with_ticker' => 'MaidSafeCoin <small>EMAID</small>'
'image' => '/uploads/coins/maidsafecoin.png?1717124404'
'price_for_sd' => 0.05062
'ticker' => 'EMAID'
'marketcap' => '$1.56M'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$20.36'
'current_supply' => '30.85M'
'max_supply' => '30.85M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.03 USD 1.69x'
'price' => '$0.05062'
'change_24h_pct' => '0%'
'ath_price' => '$1.37'
'ath_days' => 1730
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12.04.2021'
'ath_pct' => '-96.32%'
'fdv' => '$1.56M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.49'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0510541'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.044739'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.017489'
'current_year_max_price_prediction' => '$0.0522067'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.056766'
'grand_prediction_max_price' => '$0.164127'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.051580241323354
107 => 0.051772823220828
108 => 0.052206720069312
109 => 0.048499119005521
110 => 0.050163723033715
111 => 0.051141521947974
112 => 0.046723790880722
113 => 0.051054197608863
114 => 0.048434577919668
115 => 0.047545439651788
116 => 0.048742547194429
117 => 0.048276033220837
118 => 0.047874951900962
119 => 0.047651141633019
120 => 0.048530165292397
121 => 0.048489157788026
122 => 0.047050904470145
123 => 0.045174761647673
124 => 0.045804456761184
125 => 0.045575682623022
126 => 0.044746575633874
127 => 0.0453052936378
128 => 0.04284498230922
129 => 0.038612144544252
130 => 0.041408486827117
131 => 0.041300830691062
201 => 0.041246545585446
202 => 0.043347919525794
203 => 0.043145920908375
204 => 0.042779291439783
205 => 0.044739842196169
206 => 0.044024214796959
207 => 0.046229609818303
208 => 0.047682225615366
209 => 0.047313795262032
210 => 0.048679987440272
211 => 0.045818963664793
212 => 0.046769280998657
213 => 0.046965140084083
214 => 0.044715649304163
215 => 0.043178970380344
216 => 0.043076491415548
217 => 0.040412101929045
218 => 0.041835397286534
219 => 0.043087838301161
220 => 0.042488016248504
221 => 0.042298130505806
222 => 0.043268215584054
223 => 0.04334359950285
224 => 0.041624838165457
225 => 0.041982223073594
226 => 0.043472577550822
227 => 0.041944669964624
228 => 0.038976195106928
301 => 0.038239972299843
302 => 0.0381417466061
303 => 0.036145051962719
304 => 0.038289170228199
305 => 0.03735320514652
306 => 0.04030990762496
307 => 0.038621055026389
308 => 0.038548251966331
309 => 0.038438199463167
310 => 0.036719561901193
311 => 0.03709583430215
312 => 0.038346621070837
313 => 0.038792915881027
314 => 0.038746363675938
315 => 0.038340491533307
316 => 0.038526297721802
317 => 0.037927751249491
318 => 0.037716392032451
319 => 0.037049284204539
320 => 0.03606881999075
321 => 0.036205159553214
322 => 0.03426260339328
323 => 0.03320419569809
324 => 0.03291124239765
325 => 0.032519493000941
326 => 0.032955491534414
327 => 0.034257100375748
328 => 0.032687083961379
329 => 0.029995400942789
330 => 0.030157175678611
331 => 0.030520635478653
401 => 0.029843330545802
402 => 0.029202318268753
403 => 0.029759626436677
404 => 0.02861912485787
405 => 0.030658459645641
406 => 0.030603301354801
407 => 0.031363439252065
408 => 0.031838769078824
409 => 0.030743287718003
410 => 0.030467777118254
411 => 0.03062472047713
412 => 0.028030796350561
413 => 0.031151460311218
414 => 0.031178447942738
415 => 0.030947363456997
416 => 0.032609020676356
417 => 0.036115635693089
418 => 0.034796306070532
419 => 0.034285421763729
420 => 0.033314230323042
421 => 0.034608285254115
422 => 0.03450892202581
423 => 0.034059563825031
424 => 0.033787790583116
425 => 0.034288541114366
426 => 0.033725742050734
427 => 0.033624647874221
428 => 0.033012127156105
429 => 0.032793485127655
430 => 0.03263161127418
501 => 0.0324534040669
502 => 0.032846484759689
503 => 0.031955712195757
504 => 0.030881527807166
505 => 0.030792220998091
506 => 0.031038804949882
507 => 0.030929709907231
508 => 0.030791698692999
509 => 0.030528197699911
510 => 0.03045002258407
511 => 0.030704053785379
512 => 0.030417267370041
513 => 0.030840436347937
514 => 0.030725357800957
515 => 0.030082538392215
516 => 0.029281347406696
517 => 0.02927421512637
518 => 0.029101599842757
519 => 0.028881748326193
520 => 0.028820590663806
521 => 0.029712691497234
522 => 0.031559313524096
523 => 0.031196777434303
524 => 0.031458746913372
525 => 0.032747377469666
526 => 0.033156994373039
527 => 0.032866257997332
528 => 0.032468280114427
529 => 0.032485789121503
530 => 0.033845800023488
531 => 0.033930622235222
601 => 0.03414494059959
602 => 0.034420400264165
603 => 0.032913169969331
604 => 0.03241479871016
605 => 0.032178642758979
606 => 0.031451373833199
607 => 0.032235671018328
608 => 0.031778694635507
609 => 0.031840356362086
610 => 0.03180019908176
611 => 0.031822127672241
612 => 0.030657889610006
613 => 0.031082076769333
614 => 0.030376783344499
615 => 0.029432474621548
616 => 0.029429308967591
617 => 0.029660427189732
618 => 0.029522949027546
619 => 0.029152998827989
620 => 0.02920554850772
621 => 0.028745158017902
622 => 0.029261448248823
623 => 0.029276253605271
624 => 0.029077453743847
625 => 0.029872870078903
626 => 0.030198752800374
627 => 0.030067898472879
628 => 0.030189571711926
629 => 0.031211842445586
630 => 0.031378517179972
701 => 0.031452543087071
702 => 0.031353358178112
703 => 0.030208256944328
704 => 0.030259047053393
705 => 0.029886382932843
706 => 0.029571521021356
707 => 0.029584113846582
708 => 0.02974599379827
709 => 0.030452933041424
710 => 0.031940645002299
711 => 0.03199710258371
712 => 0.032065530819366
713 => 0.031787198795681
714 => 0.031703251194059
715 => 0.031813999749313
716 => 0.032372706141638
717 => 0.033809850670005
718 => 0.033301867810025
719 => 0.032888869837636
720 => 0.033251180402875
721 => 0.03319540553124
722 => 0.032724609484799
723 => 0.03271139580781
724 => 0.031807787672088
725 => 0.031473744318474
726 => 0.031194592689482
727 => 0.03088976639806
728 => 0.030709055154636
729 => 0.030986709756327
730 => 0.031050212648846
731 => 0.030443116009677
801 => 0.030360370981057
802 => 0.030856139201694
803 => 0.030637970091894
804 => 0.030862362431657
805 => 0.030914423379284
806 => 0.030906040367651
807 => 0.030678246760456
808 => 0.030823435612779
809 => 0.030480020694156
810 => 0.030106608549407
811 => 0.029868394865456
812 => 0.029660521831749
813 => 0.029775861872501
814 => 0.029364695687478
815 => 0.029233155349749
816 => 0.030774248896465
817 => 0.031912671268971
818 => 0.03189611815681
819 => 0.031795355343645
820 => 0.031645642242272
821 => 0.032361753695767
822 => 0.03211227478447
823 => 0.032293791537099
824 => 0.032339995168878
825 => 0.032479839646627
826 => 0.032529822027383
827 => 0.032378740557742
828 => 0.031871692692579
829 => 0.030608177621257
830 => 0.030020007944762
831 => 0.029825902154778
901 => 0.029832957531585
902 => 0.029638338742672
903 => 0.029695662698209
904 => 0.029618403810311
905 => 0.029472094167564
906 => 0.029766827664351
907 => 0.029800792954224
908 => 0.02973199863427
909 => 0.02974820218701
910 => 0.029178614600235
911 => 0.029221919107379
912 => 0.028980794108734
913 => 0.028935586078294
914 => 0.028326043078876
915 => 0.027246149300737
916 => 0.027844515281651
917 => 0.027121773319696
918 => 0.026848059987376
919 => 0.028143776331423
920 => 0.028013722348058
921 => 0.027791126461645
922 => 0.027461860752591
923 => 0.027339732898212
924 => 0.026597722715987
925 => 0.026553880795951
926 => 0.026921641078222
927 => 0.026751932361812
928 => 0.026513597050256
929 => 0.025650370711464
930 => 0.024679818502243
1001 => 0.024709113372766
1002 => 0.025017827972753
1003 => 0.025915457308053
1004 => 0.025564737997606
1005 => 0.025310287113837
1006 => 0.025262636112072
1007 => 0.025859088163285
1008 => 0.026703192776318
1009 => 0.027099227774977
1010 => 0.026706769119068
1011 => 0.026255933746634
1012 => 0.026283374006784
1013 => 0.026465921764109
1014 => 0.026485104952318
1015 => 0.026191657471488
1016 => 0.026274261218463
1017 => 0.026148778573363
1018 => 0.025378691812007
1019 => 0.025364763384466
1020 => 0.025175771673903
1021 => 0.025170049080017
1022 => 0.024848527034157
1023 => 0.024803543877364
1024 => 0.024165142340316
1025 => 0.024585340165259
1026 => 0.024303493525663
1027 => 0.023878684158892
1028 => 0.02380544686394
1029 => 0.023803245262417
1030 => 0.024239429496455
1031 => 0.024580243098525
1101 => 0.024308396368628
1102 => 0.024246502137758
1103 => 0.024907370594939
1104 => 0.024823269059813
1105 => 0.02475043767279
1106 => 0.026627612466442
1107 => 0.025141682139491
1108 => 0.024493731703003
1109 => 0.023691769995398
1110 => 0.023952892771236
1111 => 0.024007915176797
1112 => 0.02207934183447
1113 => 0.021296919869676
1114 => 0.021028422136309
1115 => 0.020873897894755
1116 => 0.020944316532024
1117 => 0.020240044994767
1118 => 0.02071332711538
1119 => 0.020103487494706
1120 => 0.020001245897711
1121 => 0.021091714684107
1122 => 0.021243447045308
1123 => 0.020596109652876
1124 => 0.021011805053222
1125 => 0.020861068122458
1126 => 0.020113941444657
1127 => 0.020085406701057
1128 => 0.019710524796909
1129 => 0.019123907208358
1130 => 0.018855807229339
1201 => 0.018716178432515
1202 => 0.018773791995396
1203 => 0.018744660814999
1204 => 0.018554560157822
1205 => 0.018755557162145
1206 => 0.018242092873797
1207 => 0.018037627256914
1208 => 0.017945274881334
1209 => 0.017489545771524
1210 => 0.018214813448887
1211 => 0.018357700318009
1212 => 0.018500868718403
1213 => 0.019747051898616
1214 => 0.019684796108609
1215 => 0.020247558130467
1216 => 0.02022569023315
1217 => 0.020065181388376
1218 => 0.019388020974698
1219 => 0.019657925046366
1220 => 0.018827202266176
1221 => 0.019449636256753
1222 => 0.019165583376919
1223 => 0.01935359769235
1224 => 0.019015531000638
1225 => 0.019202631066263
1226 => 0.018391584095431
1227 => 0.017634239845808
1228 => 0.017939017280113
1229 => 0.018270345206731
1230 => 0.018988748572422
1231 => 0.018560873454515
]
'min_raw' => 0.017489545771524
'max_raw' => 0.052206720069312
'avg_raw' => 0.034848132920418
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.017489'
'max' => '$0.0522067'
'avg' => '$0.034848'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.033131454228476
'max_diff' => 0.0015857200693118
'year' => 2026
]
1 => [
'items' => [
101 => 0.018714753526664
102 => 0.018199281044179
103 => 0.017135714075376
104 => 0.017141733748916
105 => 0.016978127141832
106 => 0.016836747146355
107 => 0.01861002005889
108 => 0.01838948554092
109 => 0.018038092649379
110 => 0.018508445998505
111 => 0.018632814889526
112 => 0.018636355497011
113 => 0.018979513158956
114 => 0.019162656464651
115 => 0.019194936266068
116 => 0.019734902261551
117 => 0.019915891740914
118 => 0.020661361791817
119 => 0.019147118034714
120 => 0.019115933181012
121 => 0.018515064834702
122 => 0.018133984630119
123 => 0.018541157722338
124 => 0.018901857497374
125 => 0.018526272782159
126 => 0.01857531621694
127 => 0.018071124423162
128 => 0.018251349265009
129 => 0.018406583177715
130 => 0.018320872135346
131 => 0.018192558556459
201 => 0.018872284229187
202 => 0.018833931442865
203 => 0.019466907616135
204 => 0.01996035780776
205 => 0.020844708765924
206 => 0.019921842438822
207 => 0.019888209521801
208 => 0.020216976680571
209 => 0.019915841408375
210 => 0.020106148505566
211 => 0.02081404735043
212 => 0.020829004137529
213 => 0.02057845868288
214 => 0.020563212969195
215 => 0.020611332964427
216 => 0.020893173279504
217 => 0.020794689613338
218 => 0.020908657405127
219 => 0.021051175873895
220 => 0.0216406926873
221 => 0.021782823195212
222 => 0.021437519747205
223 => 0.021468696782361
224 => 0.021339543814015
225 => 0.021214783664875
226 => 0.021495226260386
227 => 0.022007740615796
228 => 0.022004552290591
301 => 0.02212344565919
302 => 0.022197515242862
303 => 0.021879554367494
304 => 0.021672573529374
305 => 0.021751943153242
306 => 0.021878856910252
307 => 0.021710786732345
308 => 0.020673379736618
309 => 0.020988062749306
310 => 0.020935684108781
311 => 0.020861090555214
312 => 0.021177506757844
313 => 0.021146987643198
314 => 0.020232821672215
315 => 0.020291343611673
316 => 0.020236380585184
317 => 0.020413977368147
318 => 0.019906250599272
319 => 0.020062423933786
320 => 0.020160374385159
321 => 0.020218067953509
322 => 0.020426496683238
323 => 0.020402039977479
324 => 0.020424976420069
325 => 0.020734021203112
326 => 0.022297063664383
327 => 0.022382136616892
328 => 0.021963206284771
329 => 0.022130560689418
330 => 0.021809276828881
331 => 0.022024956836874
401 => 0.022172519620665
402 => 0.021505711775406
403 => 0.021466227742357
404 => 0.02114361782904
405 => 0.021316970122897
406 => 0.0210411541589
407 => 0.021108829748832
408 => 0.02091960289953
409 => 0.021260173553584
410 => 0.021640984464145
411 => 0.021737192338831
412 => 0.021484110840626
413 => 0.021300863157041
414 => 0.020979140590207
415 => 0.021514172388907
416 => 0.021670631991646
417 => 0.021513350573221
418 => 0.021476905031905
419 => 0.021407840796967
420 => 0.021491557335835
421 => 0.021669779879048
422 => 0.021585733418922
423 => 0.021641247586543
424 => 0.021429684825533
425 => 0.021879659625774
426 => 0.022594327900889
427 => 0.022596625676253
428 => 0.022512578763086
429 => 0.022478188577034
430 => 0.022564425810337
501 => 0.022611205971767
502 => 0.022890081371065
503 => 0.023189325785397
504 => 0.02458576889652
505 => 0.024193653258874
506 => 0.025432660661834
507 => 0.0264125546526
508 => 0.02670638201486
509 => 0.026436074667227
510 => 0.02551136783269
511 => 0.02546599730384
512 => 0.026847899715794
513 => 0.026457448989277
514 => 0.026411006117762
515 => 0.025916932431309
516 => 0.026208991172219
517 => 0.026145113641339
518 => 0.026044279833848
519 => 0.026601507566517
520 => 0.02764458813801
521 => 0.027482014248995
522 => 0.027360660382431
523 => 0.026828923064728
524 => 0.027149147697815
525 => 0.027035121839471
526 => 0.027525049289512
527 => 0.02723482712133
528 => 0.026454490941005
529 => 0.026578762049743
530 => 0.026559978721656
531 => 0.026946538282687
601 => 0.026830502697463
602 => 0.026537320911337
603 => 0.027641023002014
604 => 0.027569354727359
605 => 0.027670963955171
606 => 0.027715695479624
607 => 0.028387499492806
608 => 0.028662716101676
609 => 0.028725195090235
610 => 0.028986629582645
611 => 0.028718690361902
612 => 0.029790638282301
613 => 0.03050342109947
614 => 0.031331355021081
615 => 0.032541189008213
616 => 0.032996097778965
617 => 0.032913922581259
618 => 0.033831204902658
619 => 0.035479540844172
620 => 0.033247098402767
621 => 0.03559786571436
622 => 0.034853639924424
623 => 0.033089093964534
624 => 0.032975478007347
625 => 0.034170449018184
626 => 0.036820779708523
627 => 0.036156901930395
628 => 0.036821865574741
629 => 0.036046150161988
630 => 0.036007629353502
701 => 0.036784190808573
702 => 0.038598668976506
703 => 0.037736678413618
704 => 0.03650080357296
705 => 0.037413354322959
706 => 0.036622818410725
707 => 0.034841519743392
708 => 0.03615639427557
709 => 0.035277175121373
710 => 0.035533778012429
711 => 0.037381765900571
712 => 0.037159411108701
713 => 0.037447158798881
714 => 0.036939291657381
715 => 0.036464863663923
716 => 0.035579308582648
717 => 0.03531713938042
718 => 0.035389593516056
719 => 0.035317103475749
720 => 0.034821643546447
721 => 0.034714649021887
722 => 0.03453632012675
723 => 0.034591591708118
724 => 0.034256281213302
725 => 0.034889081395703
726 => 0.035006534685773
727 => 0.035467033887369
728 => 0.035514844442126
729 => 0.036797328163774
730 => 0.036090957681154
731 => 0.036564851985989
801 => 0.036522462418898
802 => 0.033127337026056
803 => 0.033595155349745
804 => 0.034322933851927
805 => 0.033995070623174
806 => 0.033531548725898
807 => 0.033157229941376
808 => 0.032590098706764
809 => 0.03338832502869
810 => 0.034437907760117
811 => 0.03554146359227
812 => 0.03686731361676
813 => 0.036571399325889
814 => 0.035516677748304
815 => 0.0355639917878
816 => 0.035856468562575
817 => 0.035477684564924
818 => 0.035365973769275
819 => 0.035841121214689
820 => 0.035844393294009
821 => 0.035408556527136
822 => 0.034924203718044
823 => 0.034922174262088
824 => 0.034835988358003
825 => 0.036061482442862
826 => 0.036735380278107
827 => 0.036812641578877
828 => 0.036730179976979
829 => 0.036761916174766
830 => 0.036369789872762
831 => 0.0372660743177
901 => 0.038088593557719
902 => 0.037868140830833
903 => 0.03753765085403
904 => 0.037274399668952
905 => 0.037806127217872
906 => 0.037782450227135
907 => 0.038081409569708
908 => 0.038067847047056
909 => 0.037967318264578
910 => 0.037868144421033
911 => 0.038261357500588
912 => 0.038148118448485
913 => 0.038034703504856
914 => 0.037807232472451
915 => 0.037838149563648
916 => 0.037507716650599
917 => 0.037354843265441
918 => 0.035055994347204
919 => 0.034441666799196
920 => 0.03463494675159
921 => 0.03469857953043
922 => 0.034431223394254
923 => 0.034814543415374
924 => 0.034754803396118
925 => 0.034987216864297
926 => 0.034842015019599
927 => 0.034847974153954
928 => 0.035274981818915
929 => 0.035398943960673
930 => 0.035335895814878
1001 => 0.035380052575029
1002 => 0.036397626475312
1003 => 0.036252960006873
1004 => 0.036176108828825
1005 => 0.036197397130354
1006 => 0.036457409078907
1007 => 0.036530198228376
1008 => 0.036221785487274
1009 => 0.036367234718891
1010 => 0.036986539086857
1011 => 0.037203260566054
1012 => 0.037894931495438
1013 => 0.037601097391165
1014 => 0.0381404426064
1015 => 0.0397982059217
1016 => 0.041122541966457
1017 => 0.039904627809196
1018 => 0.042336602302214
1019 => 0.04423024329105
1020 => 0.044157562195875
1021 => 0.043827362088766
1022 => 0.041671502168027
1023 => 0.039687647726902
1024 => 0.041347226205812
1025 => 0.04135145681265
1026 => 0.041208897549504
1027 => 0.0403234742097
1028 => 0.041178086736545
1029 => 0.04124592277543
1030 => 0.041207952632713
1031 => 0.04052910063407
1101 => 0.039492619104962
1102 => 0.039695145114763
1103 => 0.040026886850237
1104 => 0.03939883053641
1105 => 0.039198128488868
1106 => 0.039571271780375
1107 => 0.040773617213103
1108 => 0.040546320773758
1109 => 0.04054038514515
1110 => 0.041512855701356
1111 => 0.040816776655394
1112 => 0.039697699616325
1113 => 0.039415117905148
1114 => 0.038412143200317
1115 => 0.039104901401417
1116 => 0.039129832535781
1117 => 0.038750415948856
1118 => 0.03972848718127
1119 => 0.039719474082677
1120 => 0.040648007151163
1121 => 0.042423013637014
1122 => 0.041898056876384
1123 => 0.041287589278904
1124 => 0.04135396403318
1125 => 0.042081931260741
1126 => 0.041641785657082
1127 => 0.041800065084962
1128 => 0.04208169168587
1129 => 0.042251604006592
1130 => 0.04132951626503
1201 => 0.041114533503917
1202 => 0.040674754223375
1203 => 0.04056002401795
1204 => 0.040918215065656
1205 => 0.040823844379662
1206 => 0.039127737170476
1207 => 0.038950484530064
1208 => 0.038955920615487
1209 => 0.038510210423269
1210 => 0.037830395397433
1211 => 0.039616908695683
1212 => 0.039473426675596
1213 => 0.039315033630047
1214 => 0.039334435874348
1215 => 0.040109900746565
1216 => 0.039660091958765
1217 => 0.040855982343343
1218 => 0.040610143232029
1219 => 0.040357999275146
1220 => 0.040323145299812
1221 => 0.040226091388323
1222 => 0.03989325741366
1223 => 0.039491340389032
1224 => 0.039225959955916
1225 => 0.036183874582935
1226 => 0.036748467933163
1227 => 0.037397981118299
1228 => 0.037622190467047
1229 => 0.037238664861199
1230 => 0.039908401342195
1231 => 0.040396187923493
]
'min_raw' => 0.016836747146355
'max_raw' => 0.04423024329105
'avg_raw' => 0.030533495218703
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.016836'
'max' => '$0.04423'
'avg' => '$0.030533'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00065279862516933
'max_diff' => -0.0079764767782616
'year' => 2027
]
2 => [
'items' => [
101 => 0.038918650551208
102 => 0.038642263636307
103 => 0.039926521222322
104 => 0.03915195690385
105 => 0.039500743169031
106 => 0.038746858039597
107 => 0.040278694420117
108 => 0.040267024393425
109 => 0.039671105443309
110 => 0.04017477205927
111 => 0.04008724759012
112 => 0.039414456563123
113 => 0.040300023095708
114 => 0.04030046232566
115 => 0.039726903292569
116 => 0.039057111910135
117 => 0.038937369030722
118 => 0.038847158856277
119 => 0.039478556996101
120 => 0.040044666593937
121 => 0.041098056205039
122 => 0.04136290338119
123 => 0.042396619541581
124 => 0.041781091898794
125 => 0.042053947330424
126 => 0.042350170499216
127 => 0.042492190779581
128 => 0.042260776353954
129 => 0.043866563045589
130 => 0.044002140642395
131 => 0.044047598637863
201 => 0.043506136400301
202 => 0.043987081598071
203 => 0.043762063267265
204 => 0.044347498452129
205 => 0.044439302164327
206 => 0.044361547686107
207 => 0.044390687633382
208 => 0.043020431972256
209 => 0.042949376987552
210 => 0.041980537229284
211 => 0.04237534659208
212 => 0.041637269412037
213 => 0.041871321288866
214 => 0.041974489126044
215 => 0.041920600102626
216 => 0.042397668521085
217 => 0.041992062906756
218 => 0.040921603002803
219 => 0.039850851452766
220 => 0.03983740903927
221 => 0.03955549905648
222 => 0.039351729773312
223 => 0.039390982966354
224 => 0.039529316338508
225 => 0.039343689586246
226 => 0.039383302465356
227 => 0.040041140197821
228 => 0.040173064863582
229 => 0.03972473330303
301 => 0.037924617393476
302 => 0.037482864434022
303 => 0.037800387700936
304 => 0.037648632030469
305 => 0.030385384403843
306 => 0.032091776696443
307 => 0.031077896339787
308 => 0.031545139054526
309 => 0.030510229753426
310 => 0.031004142716155
311 => 0.030912935026752
312 => 0.033656763337436
313 => 0.033613922232377
314 => 0.033634428002268
315 => 0.032655634177878
316 => 0.034214879317279
317 => 0.03498301954159
318 => 0.03484085722946
319 => 0.034876636420657
320 => 0.034261831373772
321 => 0.033640380659019
322 => 0.032951096175778
323 => 0.034231701547503
324 => 0.034089320090829
325 => 0.034415891925206
326 => 0.035246456048332
327 => 0.035368759770469
328 => 0.035533137213303
329 => 0.03547421960123
330 => 0.036877876151233
331 => 0.036707884081404
401 => 0.037117516059637
402 => 0.036274872001559
403 => 0.035321340265335
404 => 0.03550257547509
405 => 0.035485121066989
406 => 0.035262906418628
407 => 0.035062300969975
408 => 0.034728349418202
409 => 0.03578502154354
410 => 0.035742122584961
411 => 0.036436606859768
412 => 0.036313850018335
413 => 0.035494049787555
414 => 0.035523329113177
415 => 0.03572024664915
416 => 0.036401780489518
417 => 0.036604106135701
418 => 0.036510380835106
419 => 0.036732221669629
420 => 0.036907555620057
421 => 0.036754240914314
422 => 0.038924853835535
423 => 0.038023464016039
424 => 0.038462795142231
425 => 0.038567573027139
426 => 0.03829918667819
427 => 0.038357390067082
428 => 0.03844555234178
429 => 0.038980856409802
430 => 0.040385649175773
501 => 0.041007822329074
502 => 0.042879660958262
503 => 0.040956159509761
504 => 0.040842026894047
505 => 0.041179201555275
506 => 0.04227816898485
507 => 0.043168778865759
508 => 0.043464245543773
509 => 0.043503296342896
510 => 0.044057611473104
511 => 0.044375334568374
512 => 0.043990303036361
513 => 0.043664029127462
514 => 0.042495356484395
515 => 0.04263063352502
516 => 0.04356255818714
517 => 0.044878956662472
518 => 0.046008563502225
519 => 0.045613014557717
520 => 0.04863077379028
521 => 0.048929972291748
522 => 0.048888632733091
523 => 0.049570251446141
524 => 0.048217377109973
525 => 0.047638997120556
526 => 0.043734573249933
527 => 0.044831557098198
528 => 0.046426087545253
529 => 0.046215045461403
530 => 0.04505705482883
531 => 0.046007685062491
601 => 0.045693376978287
602 => 0.045445469151621
603 => 0.046581182964875
604 => 0.04533241897465
605 => 0.046413630169196
606 => 0.045026965628493
607 => 0.045614821391977
608 => 0.045281126029239
609 => 0.045497067825096
610 => 0.044234676498934
611 => 0.044915832215714
612 => 0.044206338181684
613 => 0.044206001789133
614 => 0.044190339669008
615 => 0.045025056253666
616 => 0.045052276331524
617 => 0.044435419514275
618 => 0.044346520809795
619 => 0.044675225913955
620 => 0.044290398324987
621 => 0.044470456731789
622 => 0.0442958521107
623 => 0.044256544932757
624 => 0.043943338651342
625 => 0.043808400773522
626 => 0.043861313392336
627 => 0.043680695346
628 => 0.043571866439842
629 => 0.044168690860389
630 => 0.043849831648319
701 => 0.044119821113054
702 => 0.043812134042601
703 => 0.042745556603536
704 => 0.042132156639478
705 => 0.040117490728865
706 => 0.040688847481929
707 => 0.041067657600322
708 => 0.040942460858453
709 => 0.041211431904696
710 => 0.041227944542443
711 => 0.041140499313474
712 => 0.041039248940756
713 => 0.040989965858813
714 => 0.04135728157474
715 => 0.041570520711115
716 => 0.041105676263529
717 => 0.040996769713324
718 => 0.041466753114599
719 => 0.041753442717876
720 => 0.0438701976715
721 => 0.043713381627507
722 => 0.044106959124335
723 => 0.044062648338131
724 => 0.044475180256619
725 => 0.045149495594349
726 => 0.043778423971209
727 => 0.044016394596897
728 => 0.043958049695023
729 => 0.044595044034831
730 => 0.04459703266163
731 => 0.044215122734687
801 => 0.044422162301864
802 => 0.044306598495299
803 => 0.044515437913147
804 => 0.043711287253633
805 => 0.044690655954221
806 => 0.045245894898329
807 => 0.045253604391607
808 => 0.045516783244465
809 => 0.04578418820126
810 => 0.046297448729766
811 => 0.045769873643693
812 => 0.044820817422247
813 => 0.044889336216003
814 => 0.044332904900615
815 => 0.044342258611555
816 => 0.044292327769498
817 => 0.044442173985129
818 => 0.043744170071381
819 => 0.043907990194787
820 => 0.043678641062689
821 => 0.044015896036675
822 => 0.04365306543491
823 => 0.043958021559344
824 => 0.044089630513194
825 => 0.044575270386239
826 => 0.0435813360308
827 => 0.041554636596619
828 => 0.041980673389039
829 => 0.041350531508581
830 => 0.041408853538737
831 => 0.041526673321534
901 => 0.041144780857256
902 => 0.041217633904625
903 => 0.041215031081114
904 => 0.041192601354255
905 => 0.041093256374909
906 => 0.040949186500053
907 => 0.041523116539111
908 => 0.041620638436508
909 => 0.041837417534014
910 => 0.042482405085525
911 => 0.042417955619275
912 => 0.042523075372711
913 => 0.042293599541183
914 => 0.041419498264409
915 => 0.041466966169166
916 => 0.040875040636226
917 => 0.041822280667307
918 => 0.041597961724989
919 => 0.041453341843596
920 => 0.041413880969064
921 => 0.042060467319961
922 => 0.042253936090148
923 => 0.042133379335774
924 => 0.041886113915349
925 => 0.042360936620024
926 => 0.042487979144633
927 => 0.042516419280745
928 => 0.043357714075206
929 => 0.042563438314136
930 => 0.042754628384248
1001 => 0.044246238733647
1002 => 0.0428935539749
1003 => 0.043610101260078
1004 => 0.043575029999201
1005 => 0.04394159134366
1006 => 0.043544961269831
1007 => 0.043549877974953
1008 => 0.043875359615816
1009 => 0.043418279352147
1010 => 0.043305099850929
1011 => 0.043148743180602
1012 => 0.043490142250066
1013 => 0.043694795552058
1014 => 0.045344150864824
1015 => 0.046409709616612
1016 => 0.046363450900986
1017 => 0.046786168969124
1018 => 0.046595730607774
1019 => 0.045980754903873
1020 => 0.047030443442134
1021 => 0.046698278067794
1022 => 0.046725661377674
1023 => 0.046724642169512
1024 => 0.046945503105047
1025 => 0.046789002890613
1026 => 0.046480524903547
1027 => 0.046685306987426
1028 => 0.047293436565614
1029 => 0.049181089436003
1030 => 0.050237444990347
1031 => 0.049117495505232
1101 => 0.049890021663343
1102 => 0.049426781247692
1103 => 0.049342596683959
1104 => 0.049827800200488
1105 => 0.050313853001541
1106 => 0.050282893539378
1107 => 0.049930044164901
1108 => 0.04973072850648
1109 => 0.051240013447686
1110 => 0.052352028882369
1111 => 0.05227619688477
1112 => 0.052610894660287
1113 => 0.053593577681016
1114 => 0.053683421901047
1115 => 0.053672103594369
1116 => 0.053449415320747
1117 => 0.054416994372171
1118 => 0.055224165839802
1119 => 0.053397869419487
1120 => 0.054093299188367
1121 => 0.054405500016965
1122 => 0.054863903459159
1123 => 0.055637306903478
1124 => 0.05647742817914
1125 => 0.056596230538979
1126 => 0.056511934579457
1127 => 0.055957852014486
1128 => 0.056877122739046
1129 => 0.057415609969943
1130 => 0.057736266792881
1201 => 0.058549399143643
1202 => 0.054407428062997
1203 => 0.051475535062795
1204 => 0.051017677633766
1205 => 0.051948748720051
1206 => 0.052194264740352
1207 => 0.05209529754042
1208 => 0.048795185412644
1209 => 0.051000303226387
1210 => 0.053372824582402
1211 => 0.053463962790084
1212 => 0.054651696587988
1213 => 0.055038471399439
1214 => 0.055994752786579
1215 => 0.055934937125446
1216 => 0.056167776425454
1217 => 0.056114250702597
1218 => 0.05788556060347
1219 => 0.059839578466199
1220 => 0.059771917041009
1221 => 0.059491003854352
1222 => 0.059908207839354
1223 => 0.061924963678971
1224 => 0.061739293119113
1225 => 0.061919656252634
1226 => 0.064297525046921
1227 => 0.067389092727385
1228 => 0.065952749151489
1229 => 0.069069201414452
1230 => 0.071030842917952
1231 => 0.074423299060737
]
'min_raw' => 0.030385384403843
'max_raw' => 0.074423299060737
'avg_raw' => 0.05240434173229
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.030385'
'max' => '$0.074423'
'avg' => '$0.0524043'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.013548637257487
'max_diff' => 0.030193055769687
'year' => 2028
]
3 => [
'items' => [
101 => 0.073998546843462
102 => 0.075319205124855
103 => 0.073238151726076
104 => 0.068459632472196
105 => 0.067703413508833
106 => 0.069217383024
107 => 0.072939329346055
108 => 0.069100165689036
109 => 0.069876823496714
110 => 0.069653145995854
111 => 0.069641227172401
112 => 0.07009612018623
113 => 0.069436274144048
114 => 0.066747942664159
115 => 0.067979989138955
116 => 0.067504236827305
117 => 0.068032119486765
118 => 0.070880884484501
119 => 0.069621377572927
120 => 0.068294589355616
121 => 0.069958676217999
122 => 0.072077630636099
123 => 0.071945030276741
124 => 0.071687730156937
125 => 0.073138117460476
126 => 0.075533732362315
127 => 0.076181257443922
128 => 0.076659247221097
129 => 0.076725153935666
130 => 0.07740403405652
131 => 0.073753524546865
201 => 0.079546976890421
202 => 0.080547346069262
203 => 0.080359318124694
204 => 0.081471186365006
205 => 0.081144046523331
206 => 0.080670072219414
207 => 0.082432619881464
208 => 0.080412001217185
209 => 0.077543987412058
210 => 0.075970538315683
211 => 0.078042583012307
212 => 0.07930790840414
213 => 0.080144207998333
214 => 0.080397271750229
215 => 0.074036903208432
216 => 0.070609017326615
217 => 0.072806252876068
218 => 0.075487031891498
219 => 0.073738632684079
220 => 0.073807166622852
221 => 0.071314408824301
222 => 0.075707585644353
223 => 0.075067536734105
224 => 0.078388111612702
225 => 0.077595629768646
226 => 0.080303429678168
227 => 0.079590375213734
228 => 0.082550224429262
301 => 0.083730988416054
302 => 0.085713674921119
303 => 0.087172147185231
304 => 0.088028589994846
305 => 0.087977172380993
306 => 0.091370825470802
307 => 0.08936970680895
308 => 0.086855830142207
309 => 0.086810362044485
310 => 0.088112334392099
311 => 0.090840911254027
312 => 0.091548391535147
313 => 0.091943776496057
314 => 0.091338230664973
315 => 0.089166159778999
316 => 0.088228270583085
317 => 0.08902737935127
318 => 0.088050137995979
319 => 0.089737130740707
320 => 0.092053732101425
321 => 0.091575363081271
322 => 0.093174478994553
323 => 0.0948293957329
324 => 0.097196000995697
325 => 0.097814719246531
326 => 0.098837436987413
327 => 0.099890149488056
328 => 0.10022825237187
329 => 0.10087379568422
330 => 0.10087039335232
331 => 0.10281578157418
401 => 0.10496160502655
402 => 0.10577160370389
403 => 0.10763415099885
404 => 0.10444460402767
405 => 0.10686391204418
406 => 0.10904618843429
407 => 0.10644438855731
408 => 0.1100303635461
409 => 0.11016959882892
410 => 0.11227188629177
411 => 0.11014081519863
412 => 0.10887539198614
413 => 0.1125286213858
414 => 0.11429630401666
415 => 0.11376386362237
416 => 0.10971196593199
417 => 0.10735358768212
418 => 0.10118125690503
419 => 0.10849264933534
420 => 0.11205381531191
421 => 0.10970274337242
422 => 0.11088848730501
423 => 0.11735752172244
424 => 0.11982051118964
425 => 0.11930822659806
426 => 0.11939479426111
427 => 0.12072377867119
428 => 0.12661722743056
429 => 0.12308573632488
430 => 0.12578542895273
501 => 0.12721733618807
502 => 0.12854737142932
503 => 0.12528122523877
504 => 0.12103201703409
505 => 0.11968611442604
506 => 0.10946897560261
507 => 0.10893712915606
508 => 0.10863858762902
509 => 0.10675632553056
510 => 0.10527738311614
511 => 0.10410127319859
512 => 0.10101480955879
513 => 0.10205640043313
514 => 0.097137221586304
515 => 0.10028433788751
516 => 0.092433209670248
517 => 0.098971862547118
518 => 0.095413171062303
519 => 0.097802736683655
520 => 0.097794399714313
521 => 0.093394451792932
522 => 0.09085665365645
523 => 0.092473837401598
524 => 0.094207586748601
525 => 0.09448888174712
526 => 0.096736733030998
527 => 0.097364060006926
528 => 0.095463229982766
529 => 0.092270512488744
530 => 0.093012107944473
531 => 0.09084162524821
601 => 0.087037937809421
602 => 0.089769812533971
603 => 0.090702594676985
604 => 0.091114564410766
605 => 0.087374074671171
606 => 0.086198731585007
607 => 0.085572988788017
608 => 0.091787662234421
609 => 0.092128116074647
610 => 0.090386306092729
611 => 0.098259452376201
612 => 0.096477516892929
613 => 0.098468375412537
614 => 0.092944815929901
615 => 0.093155823340597
616 => 0.09054088176255
617 => 0.092005074315797
618 => 0.090970230212291
619 => 0.091886782026927
620 => 0.092436159405536
621 => 0.095050671897401
622 => 0.099001716080026
623 => 0.094660150917424
624 => 0.092768468803721
625 => 0.093942057747839
626 => 0.097067479759767
627 => 0.10180265409525
628 => 0.098999335584378
629 => 0.10024340073607
630 => 0.1005151736271
701 => 0.098448110341681
702 => 0.10187886966701
703 => 0.10371744146089
704 => 0.10560343568259
705 => 0.10724099162093
706 => 0.10485012811654
707 => 0.10740869478306
708 => 0.10534694169766
709 => 0.10349733603994
710 => 0.10350014112824
711 => 0.10233985648073
712 => 0.1000916587709
713 => 0.099677056619663
714 => 0.10183386936886
715 => 0.10356342894279
716 => 0.10370588375333
717 => 0.10466345680144
718 => 0.10523013866752
719 => 0.11078439132178
720 => 0.1130183576865
721 => 0.11575000947047
722 => 0.11681414178779
723 => 0.12001679855036
724 => 0.11743039310752
725 => 0.11687080802071
726 => 0.10910221029576
727 => 0.11037431773801
728 => 0.11241108449318
729 => 0.10913579582936
730 => 0.11121321261902
731 => 0.11162333869901
801 => 0.10902450277387
802 => 0.11041265333056
803 => 0.10672613700996
804 => 0.099082072061728
805 => 0.10188737969647
806 => 0.10395303037198
807 => 0.10100509216513
808 => 0.10628915729993
809 => 0.10320231553343
810 => 0.10222393488798
811 => 0.098406923172213
812 => 0.1002084057718
813 => 0.10264493678249
814 => 0.10113944389502
815 => 0.10426356768742
816 => 0.10868816015084
817 => 0.11184138822932
818 => 0.11208345392739
819 => 0.11005613952281
820 => 0.1133049237943
821 => 0.11332858764094
822 => 0.10966394571102
823 => 0.10741937293376
824 => 0.10690940127614
825 => 0.1081834104627
826 => 0.10973029281025
827 => 0.11216929513193
828 => 0.11364313315357
829 => 0.11748612105072
830 => 0.1185259233886
831 => 0.11966835090955
901 => 0.12119498638914
902 => 0.12302810370369
903 => 0.11901734737888
904 => 0.11917670220465
905 => 0.11544194144769
906 => 0.11145081396
907 => 0.11447958222209
908 => 0.11843929382461
909 => 0.1175309316079
910 => 0.11742872230236
911 => 0.11760061000378
912 => 0.11691573455671
913 => 0.11381806829231
914 => 0.11226243968675
915 => 0.11426959747111
916 => 0.11533631250519
917 => 0.11699069449571
918 => 0.11678675699561
919 => 0.12104826733553
920 => 0.12270416139225
921 => 0.12228051283284
922 => 0.12235847436344
923 => 0.12535639145731
924 => 0.12869069183436
925 => 0.13181370413716
926 => 0.13499056638807
927 => 0.13116073494956
928 => 0.12921618273625
929 => 0.13122246425831
930 => 0.13015790304224
1001 => 0.13627518755912
1002 => 0.13669873506658
1003 => 0.14281557723415
1004 => 0.1486211888312
1005 => 0.14497478820543
1006 => 0.14841317975804
1007 => 0.15213208055836
1008 => 0.15930644357209
1009 => 0.1568903705062
1010 => 0.15503969640242
1011 => 0.15329081831674
1012 => 0.15692995598646
1013 => 0.16161164846191
1014 => 0.16262004018043
1015 => 0.16425401999972
1016 => 0.16253609001329
1017 => 0.16460514745817
1018 => 0.1719098294285
1019 => 0.1699360398799
1020 => 0.16713294141839
1021 => 0.17289928628486
1022 => 0.17498610407593
1023 => 0.18963248420865
1024 => 0.208124144138
1025 => 0.20046847550447
1026 => 0.19571635493675
1027 => 0.19683321599197
1028 => 0.20358574421597
1029 => 0.20575444196699
1030 => 0.19985917388478
1031 => 0.20194148223467
1101 => 0.21341520597058
1102 => 0.21957049063377
1103 => 0.21121078729614
1104 => 0.18814669733826
1105 => 0.1668805530713
1106 => 0.17252129215785
1107 => 0.17188180739795
1108 => 0.18420889217601
1109 => 0.16988896565194
1110 => 0.17013007648911
1111 => 0.18271207232576
1112 => 0.17935541154656
1113 => 0.17391805097288
1114 => 0.16692025182083
1115 => 0.15398417287018
1116 => 0.14252632699435
1117 => 0.16499780134118
1118 => 0.16402879050562
1119 => 0.16262551921637
1120 => 0.16574834762078
1121 => 0.18091191592232
1122 => 0.18056234659328
1123 => 0.17833856487383
1124 => 0.18002528370852
1125 => 0.173622361006
1126 => 0.17527253997828
1127 => 0.1668771844054
1128 => 0.17067223574536
1129 => 0.17390638483914
1130 => 0.17455568815211
1201 => 0.17601860167048
1202 => 0.16351816582747
1203 => 0.16913049452747
1204 => 0.17242721183463
1205 => 0.15753252310526
1206 => 0.17213279172853
1207 => 0.1633005610504
1208 => 0.1603027693026
1209 => 0.16433890096199
1210 => 0.16276601652906
1211 => 0.16141374285649
1212 => 0.16065915091219
1213 => 0.16362284055126
1214 => 0.16348458088722
1215 => 0.15863540941034
1216 => 0.15230986289627
1217 => 0.15443292393538
1218 => 0.15366159595607
1219 => 0.15086620385575
1220 => 0.15274996061443
1221 => 0.14445484919667
1222 => 0.13018354114479
1223 => 0.13961160438585
1224 => 0.13924863420683
1225 => 0.13906560818318
1226 => 0.14615053713631
1227 => 0.14546948469459
1228 => 0.14423336784398
1229 => 0.15084350160042
1230 => 0.14843071386047
1231 => 0.15586635715069
]
'min_raw' => 0.066747942664159
'max_raw' => 0.21957049063377
'avg_raw' => 0.14315921664896
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.066747'
'max' => '$0.21957'
'avg' => '$0.143159'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.036362558260317
'max_diff' => 0.14514719157303
'year' => 2029
]
4 => [
'items' => [
101 => 0.16076395272889
102 => 0.15952176406964
103 => 0.16412797638307
104 => 0.15448183497374
105 => 0.1576858962139
106 => 0.15834624879486
107 => 0.15076193357593
108 => 0.14558091329677
109 => 0.14523539831211
110 => 0.13625222313663
111 => 0.14105096280571
112 => 0.14527365512917
113 => 0.1432513132004
114 => 0.14261110016149
115 => 0.14588180973198
116 => 0.14613597187734
117 => 0.14034104802824
118 => 0.14154599619784
119 => 0.14657083037104
120 => 0.14141938326907
121 => 0.13141096303405
122 => 0.12892873643853
123 => 0.12859756165417
124 => 0.12186556625925
125 => 0.12909461068887
126 => 0.12593893906899
127 => 0.13590766790543
128 => 0.13021358345742
129 => 0.12996812285749
130 => 0.12959707315945
131 => 0.12380256662782
201 => 0.12507119529814
202 => 0.12928831021592
203 => 0.13079302432778
204 => 0.13063607031815
205 => 0.12926764405218
206 => 0.12989410258926
207 => 0.12787606136869
208 => 0.12716344901181
209 => 0.12491424839402
210 => 0.12160854484341
211 => 0.12206822319718
212 => 0.11551875947902
213 => 0.11195026403902
214 => 0.11096255153324
215 => 0.10964174109117
216 => 0.11111174058722
217 => 0.11550020567121
218 => 0.11020678571511
219 => 0.10113158849063
220 => 0.10167702330721
221 => 0.102902453399
222 => 0.10061887252997
223 => 0.098457654883854
224 => 0.10033665828202
225 => 0.0964913775818
226 => 0.10336713720058
227 => 0.10318116717198
228 => 0.10574402516374
301 => 0.10734663286112
302 => 0.10365314096905
303 => 0.10272423774646
304 => 0.10325338323835
305 => 0.094507786943621
306 => 0.10502932336478
307 => 0.10512031404866
308 => 0.10434119657118
309 => 0.10994358989945
310 => 0.12176638725241
311 => 0.11731817531731
312 => 0.11559569320812
313 => 0.11232125345942
314 => 0.11668425000756
315 => 0.11634923994602
316 => 0.1148341973989
317 => 0.11391789493918
318 => 0.11560621031658
319 => 0.11370869398017
320 => 0.11336784790588
321 => 0.11130269153992
322 => 0.1105655246759
323 => 0.11001975567724
324 => 0.10941891763587
325 => 0.11074421663563
326 => 0.10774091474457
327 => 0.10411922708128
328 => 0.10381812293928
329 => 0.10464949794869
330 => 0.10428167639562
331 => 0.1038163619512
401 => 0.10292794995595
402 => 0.10266437709488
403 => 0.10352086102599
404 => 0.10255394060388
405 => 0.10398068435758
406 => 0.1035926890019
407 => 0.10142537848511
408 => 0.098724107140068
409 => 0.098700060158988
410 => 0.098118075678671
411 => 0.097376830941035
412 => 0.097170633612407
413 => 0.1001784138568
414 => 0.1064044289474
415 => 0.1051821132092
416 => 0.106065361598
417 => 0.11041006948786
418 => 0.11179112147612
419 => 0.11081088348686
420 => 0.10946907326872
421 => 0.10952810610852
422 => 0.11411347781749
423 => 0.11439946182644
424 => 0.11512205115514
425 => 0.11605078264624
426 => 0.11096905047574
427 => 0.10928875698028
428 => 0.10849254070299
429 => 0.10604050274343
430 => 0.10868481546097
501 => 0.10714408768122
502 => 0.10735198449746
503 => 0.10721659142315
504 => 0.10729052519697
505 => 0.10336521528563
506 => 0.10479539190911
507 => 0.10241744588526
508 => 0.099233643096305
509 => 0.099222969872971
510 => 0.10000220109508
511 => 0.099538683872849
512 => 0.098291370945944
513 => 0.09846854586006
514 => 0.096916307180201
515 => 0.098657015739984
516 => 0.098706933032923
517 => 0.098036665420371
518 => 0.10071846712821
519 => 0.10181720347605
520 => 0.10137601897495
521 => 0.10178624879535
522 => 0.10523290594655
523 => 0.10579486145039
524 => 0.10604444496449
525 => 0.10571003611907
526 => 0.10184924736095
527 => 0.10202048975972
528 => 0.1007640266587
529 => 0.099702447741167
530 => 0.099744905330621
531 => 0.10029069488983
601 => 0.10267418990505
602 => 0.10769011464987
603 => 0.10788046532734
604 => 0.10811117590136
605 => 0.10717276005099
606 => 0.10688972485108
607 => 0.10726312133734
608 => 0.1091468389467
609 => 0.11399227206232
610 => 0.11227957238366
611 => 0.11088712088515
612 => 0.11210867625157
613 => 0.11192062737778
614 => 0.11033330563727
615 => 0.11028875480276
616 => 0.10724217688526
617 => 0.10611592639639
618 => 0.1051747471895
619 => 0.10414700406568
620 => 0.10353772349162
621 => 0.10447385536645
622 => 0.1046879598022
623 => 0.10264109109711
624 => 0.10236211045604
625 => 0.10403362762536
626 => 0.10329805523958
627 => 0.10405460967967
628 => 0.10423013679937
629 => 0.10420187289037
630 => 0.10343385083967
701 => 0.10392336519204
702 => 0.10276551781744
703 => 0.10150653270061
704 => 0.10070337863362
705 => 0.10000252018725
706 => 0.10039139718743
707 => 0.099005121687914
708 => 0.098561624255407
709 => 0.10375752874388
710 => 0.10759579925489
711 => 0.10753998928154
712 => 0.10720026042192
713 => 0.10669549224801
714 => 0.10910991201077
715 => 0.10826877644327
716 => 0.10888077284785
717 => 0.10903655161823
718 => 0.10950804703859
719 => 0.10967656612497
720 => 0.1091671844019
721 => 0.10745763712355
722 => 0.10319760784479
723 => 0.10121455271579
724 => 0.10056011149283
725 => 0.10058389918832
726 => 0.099927728353648
727 => 0.10012100007197
728 => 0.09986051633738
729 => 0.099367223161846
730 => 0.1003609377239
731 => 0.10047545407009
801 => 0.1002435092173
802 => 0.10029814062666
803 => 0.09837773631051
804 => 0.098523740479767
805 => 0.097710770712028
806 => 0.097558348681074
807 => 0.095503231901604
808 => 0.091862294632833
809 => 0.093879727314064
810 => 0.0914429523291
811 => 0.090520108719127
812 => 0.09488870683711
813 => 0.094450220752114
814 => 0.093699723179922
815 => 0.092589580853251
816 => 0.092177818265518
817 => 0.089676079130649
818 => 0.089528263036301
819 => 0.090768192504182
820 => 0.090196007718123
821 => 0.089392443575172
822 => 0.086482015705396
823 => 0.083209731170215
824 => 0.083308500871485
825 => 0.084349353699108
826 => 0.087375773673549
827 => 0.086193299031938
828 => 0.085335400112116
829 => 0.08517474143278
830 => 0.087185721166395
831 => 0.090031678802741
901 => 0.091366938451001
902 => 0.090043736692013
903 => 0.088523713757531
904 => 0.088616230510445
905 => 0.089231703019345
906 => 0.089296380477718
907 => 0.088307001808252
908 => 0.088585506108388
909 => 0.088162432609515
910 => 0.085566031327862
911 => 0.085519070661954
912 => 0.08488187191481
913 => 0.084862577789985
914 => 0.083778543764416
915 => 0.083626879910666
916 => 0.081474464556737
917 => 0.082891190860807
918 => 0.081940925237506
919 => 0.080508650798192
920 => 0.080261726144998
921 => 0.080254303291753
922 => 0.081724928890224
923 => 0.082874005744449
924 => 0.081957455514868
925 => 0.081748774794172
926 => 0.083976938937919
927 => 0.08369338474046
928 => 0.083447828634189
929 => 0.089776854511142
930 => 0.084766936669486
1001 => 0.082582326534411
1002 => 0.079878456646042
1003 => 0.08075885031579
1004 => 0.08094436219768
1005 => 0.074442042525334
1006 => 0.071804052244075
1007 => 0.070898793390114
1008 => 0.070377804121178
1009 => 0.070615225473203
1010 => 0.068240724814672
1011 => 0.069836428527821
1012 => 0.067780311669077
1013 => 0.067435596986526
1014 => 0.071112188633962
1015 => 0.071623764883366
1016 => 0.069441221669126
1017 => 0.070842767734318
1018 => 0.070334547648132
1019 => 0.067815557891207
1020 => 0.067719351010927
1021 => 0.066455410497674
1022 => 0.064477588341542
1023 => 0.063573670544137
1024 => 0.063102902307074
1025 => 0.063297150456776
1026 => 0.063198932648195
1027 => 0.062557995010119
1028 => 0.063235670443355
1029 => 0.06150448974626
1030 => 0.060815119643605
1031 => 0.060503747161502
1101 => 0.058967224649786
1102 => 0.061412515260587
1103 => 0.061894268315875
1104 => 0.062376970573502
1105 => 0.066578564171319
1106 => 0.066368664428753
1107 => 0.068266055876235
1108 => 0.068192326733665
1109 => 0.067651159957139
1110 => 0.065368066344592
1111 => 0.066278066766323
1112 => 0.0634772269137
1113 => 0.065575806569882
1114 => 0.064618102453582
1115 => 0.065252005844797
1116 => 0.064112190390628
1117 => 0.064743011324792
1118 => 0.062008509837144
1119 => 0.059455070823452
1120 => 0.060482649222093
1121 => 0.06159974445926
1122 => 0.064021891564011
1123 => 0.062579280730701
1124 => 0.063098098137514
1125 => 0.061360146673675
1126 => 0.057774256382481
1127 => 0.057794552132103
1128 => 0.057242941033669
1129 => 0.056766268508083
1130 => 0.062744981938657
1201 => 0.062001434414092
1202 => 0.060816688746793
1203 => 0.062402517902394
1204 => 0.062821836301628
1205 => 0.062833773706962
1206 => 0.063990753722714
1207 => 0.064608234164521
1208 => 0.064717067768703
1209 => 0.066537600821697
1210 => 0.067147819487649
1211 => 0.069661223811326
1212 => 0.06455584526313
1213 => 0.064450703351617
1214 => 0.062424833770743
1215 => 0.061139995254822
1216 => 0.062512807763156
1217 => 0.063728932237944
1218 => 0.062462622148109
1219 => 0.062627975512576
1220 => 0.060928057678308
1221 => 0.06153569831549
1222 => 0.062059080290265
1223 => 0.061770099526765
1224 => 0.061337481336978
1225 => 0.063629223899512
1226 => 0.063499914802722
1227 => 0.065634038163888
1228 => 0.067297739936542
1229 => 0.070279390935403
1230 => 0.06716788268111
1231 => 0.067054486953198
]
'min_raw' => 0.056766268508083
'max_raw' => 0.16412797638307
'avg_raw' => 0.11044712244557
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.056766'
'max' => '$0.164127'
'avg' => '$0.110447'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0099816741560759
'max_diff' => -0.055442514250704
'year' => 2030
]
5 => [
'items' => [
101 => 0.068162948382781
102 => 0.067147649787979
103 => 0.067789283452978
104 => 0.070176013832354
105 => 0.07022644168431
106 => 0.069381710191434
107 => 0.069330308203323
108 => 0.06949254812688
109 => 0.070442792426624
110 => 0.070110747870235
111 => 0.070494998237228
112 => 0.070975509205002
113 => 0.072963106300147
114 => 0.073442309230808
115 => 0.072278094547535
116 => 0.072383210098275
117 => 0.071947761848323
118 => 0.07152712429502
119 => 0.072472656085664
120 => 0.074200634017539
121 => 0.074189884356507
122 => 0.07459074164961
123 => 0.074840472422333
124 => 0.073768445131709
125 => 0.073070594785049
126 => 0.07333819501333
127 => 0.073766093605926
128 => 0.073199433266824
129 => 0.069701743151288
130 => 0.070762718899032
131 => 0.070586120655544
201 => 0.070334623281737
202 => 0.071401442600376
203 => 0.071298545274571
204 => 0.068216370878372
205 => 0.068413681683126
206 => 0.068228370001923
207 => 0.068827149955094
208 => 0.06711531370548
209 => 0.067641863006468
210 => 0.067972109791954
211 => 0.068166627685681
212 => 0.068869359699992
213 => 0.068786902209015
214 => 0.068864234026577
215 => 0.069906200089426
216 => 0.075176106875741
217 => 0.075462936274726
218 => 0.074050483411199
219 => 0.074614730470777
220 => 0.073531499503654
221 => 0.074258679708901
222 => 0.074756197936956
223 => 0.072508008731628
224 => 0.072374885557516
225 => 0.071287183710865
226 => 0.071871653072674
227 => 0.070941720293202
228 => 0.071169893269617
301 => 0.070531901735799
302 => 0.071680159473824
303 => 0.072964090046149
304 => 0.073288461612673
305 => 0.072435179671888
306 => 0.071817347312739
307 => 0.070732637216705
308 => 0.072536534280751
309 => 0.073064048755044
310 => 0.072533763471787
311 => 0.072410884784694
312 => 0.07217802989469
313 => 0.072460286050384
314 => 0.073061175797928
315 => 0.072777807289678
316 => 0.072964977181688
317 => 0.072251678562101
318 => 0.073768800017349
319 => 0.076178354003446
320 => 0.076186101113513
321 => 0.075902731077801
322 => 0.07578678216448
323 => 0.076077537017452
324 => 0.076235259597801
325 => 0.077175507476992
326 => 0.078184430912491
327 => 0.082892636358185
328 => 0.081570591109223
329 => 0.085747991073038
330 => 0.089051772076919
331 => 0.090042431543149
401 => 0.089131071448348
402 => 0.086013357794736
403 => 0.085860387889051
404 => 0.0905195683523
405 => 0.089203136467448
406 => 0.089046551083596
407 => 0.087380747154596
408 => 0.088365443590465
409 => 0.088150076035316
410 => 0.08781010781337
411 => 0.08968884001846
412 => 0.093205658990808
413 => 0.092657529773448
414 => 0.092248376739672
415 => 0.090455587248321
416 => 0.091535246956144
417 => 0.091150800813707
418 => 0.092802625417164
419 => 0.091824121114471
420 => 0.089193163201173
421 => 0.089612151920617
422 => 0.089548822618561
423 => 0.090852135167302
424 => 0.090460913090376
425 => 0.089472430229151
426 => 0.093193638885888
427 => 0.092952004294169
428 => 0.093294586899868
429 => 0.093445402357615
430 => 0.095710436491919
501 => 0.096638348503735
502 => 0.096849000775804
503 => 0.097730445419739
504 => 0.096827069630085
505 => 0.10044121688472
506 => 0.10284441391772
507 => 0.10563585093893
508 => 0.10971489069445
509 => 0.11124864737576
510 => 0.11097158795941
511 => 0.11406426934861
512 => 0.11962174905856
513 => 0.11209491350321
514 => 0.12002068961958
515 => 0.11751148040863
516 => 0.11156219050819
517 => 0.11117912637613
518 => 0.11520805456937
519 => 0.12414382953203
520 => 0.12190551925261
521 => 0.1241474906058
522 => 0.12153211193298
523 => 0.12140223633773
524 => 0.12402046750129
525 => 0.1301381073273
526 => 0.12723184596226
527 => 0.12306500765096
528 => 0.12614173621684
529 => 0.12347638919529
530 => 0.11747061637207
531 => 0.12190380765892
601 => 0.11893945889542
602 => 0.11980461345806
603 => 0.12603523364533
604 => 0.12528554894022
605 => 0.12625571036756
606 => 0.12454340084185
607 => 0.1229438337384
608 => 0.1199581229544
609 => 0.11907420118502
610 => 0.1193184853619
611 => 0.11907408012991
612 => 0.11740360238636
613 => 0.11704286287669
614 => 0.11644161455621
615 => 0.11662796655173
616 => 0.11549744380783
617 => 0.11763097380349
618 => 0.11802697577129
619 => 0.11957958098049
620 => 0.11974077760388
621 => 0.12406476101157
622 => 0.12168318361221
623 => 0.1232809513472
624 => 0.12313803196221
625 => 0.11169112966016
626 => 0.11326841180051
627 => 0.11572216783249
628 => 0.11461675406607
629 => 0.11305395762734
630 => 0.11179191571122
701 => 0.10987979315789
702 => 0.11257106893264
703 => 0.11610981039117
704 => 0.11983052592708
705 => 0.12430072185255
706 => 0.1233030261608
707 => 0.11974695872366
708 => 0.11990648131118
709 => 0.12089258717741
710 => 0.11961549048348
711 => 0.11923884973655
712 => 0.1208408425225
713 => 0.12085187456637
714 => 0.11938242047771
715 => 0.11774939116542
716 => 0.11774254871298
717 => 0.11745196692005
718 => 0.12158380578841
719 => 0.12385589938999
720 => 0.12411639125974
721 => 0.12383836621166
722 => 0.12394536701825
723 => 0.12262328581366
724 => 0.12564517139635
725 => 0.12841835244053
726 => 0.12767508068032
727 => 0.12656081064945
728 => 0.12567324089935
729 => 0.12746599745457
730 => 0.12738616882722
731 => 0.12839413112338
801 => 0.12834840413135
802 => 0.12800946432254
803 => 0.12767509278493
804 => 0.12900083813591
805 => 0.12861904476564
806 => 0.12823665836482
807 => 0.12746972389754
808 => 0.12757396302908
809 => 0.12645988539265
810 => 0.12594446210131
811 => 0.11819373247297
812 => 0.11612248425388
813 => 0.11677414110775
814 => 0.1169886834643
815 => 0.11608727358498
816 => 0.11737966379873
817 => 0.1171782461529
818 => 0.11796184438745
819 => 0.11747228623038
820 => 0.11749237786792
821 => 0.11893206402305
822 => 0.11935001103875
823 => 0.11913743981332
824 => 0.1192863174131
825 => 0.12271713886264
826 => 0.12222938576401
827 => 0.12197027665164
828 => 0.12204205164655
829 => 0.12291870008455
830 => 0.12316411378396
831 => 0.12212427869465
901 => 0.12261467093398
902 => 0.12470269884903
903 => 0.12543339044716
904 => 0.1277654072765
905 => 0.1267747250791
906 => 0.12859316512815
907 => 0.13418242988702
908 => 0.1386475213241
909 => 0.13454123871085
910 => 0.1427408105091
911 => 0.14912535331275
912 => 0.14888030392593
913 => 0.14776701121098
914 => 0.14049837897087
915 => 0.13380967521433
916 => 0.13940505992404
917 => 0.13941932371037
918 => 0.1389386752015
919 => 0.13595340859307
920 => 0.13883479439447
921 => 0.13906350833573
922 => 0.13893548934857
923 => 0.13664669243921
924 => 0.13315212259899
925 => 0.13383495318095
926 => 0.13495344360357
927 => 0.13283590789201
928 => 0.13215922692616
929 => 0.1334173055855
930 => 0.13747109715702
1001 => 0.13670475134244
1002 => 0.13668473895618
1003 => 0.13996349133215
1004 => 0.13761661223
1005 => 0.13384356586132
1006 => 0.13289082189286
1007 => 0.12950922265007
1008 => 0.13184490529191
1009 => 0.13192896235205
1010 => 0.13064973283921
1011 => 0.13394736828605
1012 => 0.13391697999487
1013 => 0.13704759406338
1014 => 0.14303215235742
1015 => 0.14126222398765
1016 => 0.13920398986125
1017 => 0.13942777697943
1018 => 0.1418821693122
1019 => 0.14039818767948
1020 => 0.1409318378213
1021 => 0.1418813615688
1022 => 0.14245423282102
1023 => 0.13934534962223
1024 => 0.13862052023352
1025 => 0.13713777368476
1026 => 0.13675095278697
1027 => 0.13795861891241
1028 => 0.13764044155583
1029 => 0.13192189768163
1030 => 0.1313242780291
1031 => 0.13134260617064
1101 => 0.12983986313908
1102 => 0.12754781931631
1103 => 0.13357117363173
1104 => 0.13308741398342
1105 => 0.1325533807717
1106 => 0.13261879679298
1107 => 0.13523333075089
1108 => 0.13371676901817
1109 => 0.13774879694418
1110 => 0.13691993321644
1111 => 0.13606981226168
1112 => 0.13595229965042
1113 => 0.13562507561175
1114 => 0.13450290262844
1115 => 0.13314781131896
1116 => 0.13225306266044
1117 => 0.12199645943381
1118 => 0.12390002533276
1119 => 0.126089904384
1120 => 0.12684584185711
1121 => 0.12555275850009
1122 => 0.13455396144081
1123 => 0.13619856795583
1124 => 0.13121694754681
1125 => 0.1302850897665
1126 => 0.13461505388175
1127 => 0.13200355620367
1128 => 0.13317951344821
1129 => 0.13063773709974
1130 => 0.13580243040607
1201 => 0.1357630840963
1202 => 0.13375390175025
1203 => 0.13545204891084
1204 => 0.13515695405234
1205 => 0.13288859213205
1206 => 0.13587434152494
1207 => 0.13587582241939
1208 => 0.13394202809471
1209 => 0.13168377968549
1210 => 0.13128005820737
1211 => 0.13097590830596
1212 => 0.13310471121719
1213 => 0.1350133892508
1214 => 0.13856496586994
1215 => 0.13945791661537
1216 => 0.14294316282189
1217 => 0.14086786839947
1218 => 0.14178781953737
1219 => 0.14278655663259
1220 => 0.14326538792338
1221 => 0.14248515803054
1222 => 0.14789917997383
1223 => 0.14835628930719
1224 => 0.14850955411269
1225 => 0.14668397637506
1226 => 0.14830551668786
1227 => 0.14754685167527
1228 => 0.14952068727482
1229 => 0.14983020990003
1230 => 0.14956805524806
1231 => 0.14966630261479
]
'min_raw' => 0.06711531370548
'max_raw' => 0.14983020990003
'avg_raw' => 0.10847276180275
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.067115'
'max' => '$0.14983'
'avg' => '$0.108472'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.010349045197396
'max_diff' => -0.01429776648304
'year' => 2031
]
6 => [
'items' => [
101 => 0.1450463899851
102 => 0.14480682314327
103 => 0.14154031225604
104 => 0.14287143958742
105 => 0.140382960844
106 => 0.14117208308771
107 => 0.1415199206537
108 => 0.14133823004884
109 => 0.14294669952953
110 => 0.14157917188234
111 => 0.13797004157904
112 => 0.1343599279706
113 => 0.13431460593498
114 => 0.13336412674568
115 => 0.13267710438076
116 => 0.13280944926167
117 => 0.13327584988401
118 => 0.13264999632872
119 => 0.13278355391632
120 => 0.13500149976009
121 => 0.13544629298139
122 => 0.13393471182348
123 => 0.12786549535434
124 => 0.12637609440933
125 => 0.1274466462725
126 => 0.12693499143427
127 => 0.10244644495735
128 => 0.10819966570836
129 => 0.10478129729902
130 => 0.10635663873361
131 => 0.10286736976989
201 => 0.10453263180763
202 => 0.1042251187149
203 => 0.11347612743234
204 => 0.11333168565556
205 => 0.11340082229042
206 => 0.11010075057429
207 => 0.1153578544248
208 => 0.1179476928209
209 => 0.1174683826601
210 => 0.11758901470124
211 => 0.11551615656135
212 => 0.11342089208826
213 => 0.1110969213287
214 => 0.11541457174849
215 => 0.11493452272656
216 => 0.11603558246668
217 => 0.11883588739593
218 => 0.11924824293409
219 => 0.11980245295907
220 => 0.11960380811647
221 => 0.12433633417498
222 => 0.12376319404308
223 => 0.12514429685728
224 => 0.12230326358394
225 => 0.1190883647618
226 => 0.11969941192493
227 => 0.11964056316939
228 => 0.11889135096791
229 => 0.11821499569195
301 => 0.1170890547194
302 => 0.12065169856446
303 => 0.12050706173051
304 => 0.12284856395036
305 => 0.12243468068886
306 => 0.11967066697416
307 => 0.11976938426471
308 => 0.12043330548559
309 => 0.12273114441156
310 => 0.12341329945359
311 => 0.12309729805895
312 => 0.12384524992098
313 => 0.12443640057627
314 => 0.12391948934176
315 => 0.13123786235301
316 => 0.12819876364356
317 => 0.12967999920863
318 => 0.13003326516296
319 => 0.12912838184934
320 => 0.12932461863862
321 => 0.12962186390306
322 => 0.13142667894213
323 => 0.1361630358321
324 => 0.1382607360572
325 => 0.14457177068311
326 => 0.1380865512549
327 => 0.13770174517254
328 => 0.13883855308365
329 => 0.14254379849992
330 => 0.1455465518938
331 => 0.14654273842755
401 => 0.14667440092323
402 => 0.14854331308577
403 => 0.14961453868419
404 => 0.14831637799197
405 => 0.1472163227284
406 => 0.14327606131818
407 => 0.14373215730539
408 => 0.14687420636863
409 => 0.15131253573622
410 => 0.15512108406308
411 => 0.15378746318032
412 => 0.16396204912613
413 => 0.1649708177632
414 => 0.16483143855495
415 => 0.1671295636351
416 => 0.16256825335604
417 => 0.16061820484052
418 => 0.14745416716254
419 => 0.15115272479594
420 => 0.15652879552474
421 => 0.15581725240456
422 => 0.15191300613851
423 => 0.15511812234218
424 => 0.154058410692
425 => 0.15322257214602
426 => 0.15705171056042
427 => 0.15284141558145
428 => 0.15648679461162
429 => 0.15181155829881
430 => 0.15379355504818
501 => 0.15266847783484
502 => 0.15339654067615
503 => 0.14914030018264
504 => 0.15143686423854
505 => 0.14904475556752
506 => 0.14904362139655
507 => 0.14899081546505
508 => 0.15180512070828
509 => 0.15189689510122
510 => 0.1498171192743
511 => 0.14951739108543
512 => 0.15062564329357
513 => 0.14932817020956
514 => 0.14993524969937
515 => 0.14934655802886
516 => 0.14921403113409
517 => 0.14815803428893
518 => 0.1477030818128
519 => 0.14788148040137
520 => 0.1472725140478
521 => 0.1469055897925
522 => 0.14891782499532
523 => 0.14784276889979
524 => 0.14875305723021
525 => 0.14771566879015
526 => 0.14411962848828
527 => 0.14205150768324
528 => 0.13525892090613
529 => 0.13718529008994
530 => 0.13846247485178
531 => 0.13804036529561
601 => 0.13894721995697
602 => 0.13900289346801
603 => 0.13870806577331
604 => 0.13836669307262
605 => 0.13820053172102
606 => 0.13943896230243
607 => 0.1401579129386
608 => 0.13859065742916
609 => 0.13822347139153
610 => 0.13980805324212
611 => 0.1407746472556
612 => 0.14791143436885
613 => 0.14738271812798
614 => 0.14870969213724
615 => 0.14856029522788
616 => 0.14995117539312
617 => 0.15222467663347
618 => 0.14760201293089
619 => 0.14840434750997
620 => 0.14820763359979
621 => 0.15035530448998
622 => 0.15036200928407
623 => 0.14907437330129
624 => 0.14977242165706
625 => 0.14938279021482
626 => 0.1500869068928
627 => 0.14737565680024
628 => 0.15067766675161
629 => 0.15254969361722
630 => 0.15257568671206
701 => 0.15346301258904
702 => 0.15436458707049
703 => 0.15609508077705
704 => 0.15431632454024
705 => 0.15111651522865
706 => 0.15134753112563
707 => 0.149471484097
708 => 0.14950302078649
709 => 0.14933467546643
710 => 0.14983989244436
711 => 0.14748652351608
712 => 0.1480388544997
713 => 0.14726558788819
714 => 0.14840266657937
715 => 0.1471793578735
716 => 0.14820753873839
717 => 0.14865126751494
718 => 0.1502886362532
719 => 0.14693751717956
720 => 0.14010435853758
721 => 0.14154077132816
722 => 0.1394162039831
723 => 0.13961284077968
724 => 0.1400100784033
725 => 0.1387225012971
726 => 0.13896813043275
727 => 0.13895935483156
728 => 0.13888373144146
729 => 0.13854878290755
730 => 0.13806304126583
731 => 0.13999808646303
801 => 0.14032688834887
802 => 0.14105777421114
803 => 0.14323239477265
804 => 0.14301509889747
805 => 0.14336951748541
806 => 0.14259582369792
807 => 0.13964873021548
808 => 0.13980877157047
809 => 0.13781305330924
810 => 0.14100673920822
811 => 0.14025043223274
812 => 0.13976283620559
813 => 0.13962979111203
814 => 0.1418098021373
815 => 0.14246209560355
816 => 0.14205563008917
817 => 0.14122195746069
818 => 0.14282285536056
819 => 0.14325118810211
820 => 0.14334707600663
821 => 0.14618356014349
822 => 0.14350560396048
823 => 0.14415021463032
824 => 0.14917928306423
825 => 0.14461861195868
826 => 0.14703450115839
827 => 0.14691625595375
828 => 0.14815214311909
829 => 0.14681487713335
830 => 0.14683145414794
831 => 0.14792883822451
901 => 0.14638776020323
902 => 0.14600616761293
903 => 0.14547900018245
904 => 0.14663005098087
905 => 0.14732005387697
906 => 0.15288097046827
907 => 0.15647357619486
908 => 0.15631761170545
909 => 0.15774283518541
910 => 0.15710075895413
911 => 0.1550273254322
912 => 0.15856642362586
913 => 0.15744650487523
914 => 0.15753882961633
915 => 0.15753539328485
916 => 0.15828004134903
917 => 0.15775238994957
918 => 0.15671233487893
919 => 0.15740277197215
920 => 0.15945312330327
921 => 0.1658174767475
922 => 0.16937905325136
923 => 0.16560306536992
924 => 0.16820769124804
925 => 0.16664584384426
926 => 0.16636200971006
927 => 0.16799790724186
928 => 0.16963666819573
929 => 0.16953228620753
930 => 0.16834262990632
1001 => 0.16767062324818
1002 => 0.17275928280237
1003 => 0.17650852047884
1004 => 0.17625284760452
1005 => 0.17738130452252
1006 => 0.18069448893565
1007 => 0.18099740499621
1008 => 0.18095924453502
1009 => 0.18020843547291
1010 => 0.18347069579899
1011 => 0.18619213075702
1012 => 0.18003464486799
1013 => 0.18237933488712
1014 => 0.18343194177791
1015 => 0.18497748098797
1016 => 0.1875850646978
1017 => 0.19041759223409
1018 => 0.1908181426848
1019 => 0.19053393297191
1020 => 0.1886658049193
1021 => 0.19176519034859
1022 => 0.19358073764354
1023 => 0.19466185450962
1024 => 0.1974033870013
1025 => 0.18343844231972
1026 => 0.1735533603713
1027 => 0.17200966208275
1028 => 0.17514883325547
1029 => 0.17597660765929
1030 => 0.17564293283505
1031 => 0.16451637438978
1101 => 0.17195108305523
1102 => 0.17995020445118
1103 => 0.18025748328145
1104 => 0.18426201070601
1105 => 0.18556604898657
1106 => 0.18879021844875
1107 => 0.18858854577104
1108 => 0.18937357972734
1109 => 0.18919311401568
1110 => 0.19516520901538
1111 => 0.20175331666474
1112 => 0.20152519144575
1113 => 0.2005780730242
1114 => 0.20198470538789
1115 => 0.20878433850655
1116 => 0.20815833725088
1117 => 0.2087664441481
1118 => 0.21678359480554
1119 => 0.22720703108658
1120 => 0.22236429843814
1121 => 0.23287163482648
1122 => 0.23948544611296
1123 => 0.25092334885209
1124 => 0.24949126709629
1125 => 0.25394395869742
1126 => 0.24692754186893
1127 => 0.23081643057891
1128 => 0.22826678554641
1129 => 0.23337123946878
1130 => 0.24592004135158
1201 => 0.23297603304009
1202 => 0.23559458906319
1203 => 0.23484044475238
1204 => 0.23480025960696
1205 => 0.2363339631627
1206 => 0.23410924616251
1207 => 0.22504534888475
1208 => 0.22919927959326
1209 => 0.22759524745857
1210 => 0.22937504070053
1211 => 0.23897985078482
1212 => 0.23473333529648
1213 => 0.23025997618842
1214 => 0.23587056122778
1215 => 0.24301476398908
1216 => 0.24256769261964
1217 => 0.2417001873016
1218 => 0.24659026935829
1219 => 0.25466725225633
1220 => 0.25685042827773
1221 => 0.25846200418365
1222 => 0.25868421327328
1223 => 0.26097310499864
1224 => 0.2486651573164
1225 => 0.26819818637863
1226 => 0.27157100090864
1227 => 0.27093705156583
1228 => 0.27468579296621
1229 => 0.27358281814983
1230 => 0.27198478069234
1231 => 0.27792733319209
]
'min_raw' => 0.10244644495735
'max_raw' => 0.27792733319209
'avg_raw' => 0.19018688907472
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.102446'
'max' => '$0.277927'
'avg' => '$0.190186'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.035331131251869
'max_diff' => 0.12809712329206
'year' => 2032
]
7 => [
'items' => [
101 => 0.27111467629038
102 => 0.26144496750806
103 => 0.25613997402493
104 => 0.26312601738514
105 => 0.2673921502859
106 => 0.2702117927563
107 => 0.27106501486416
108 => 0.24962058825874
109 => 0.23806323168084
110 => 0.24547136474191
111 => 0.25450979835845
112 => 0.2486149483613
113 => 0.24884601532076
114 => 0.24044150836416
115 => 0.25525341073477
116 => 0.25309544114708
117 => 0.26429099118541
118 => 0.26161908331886
119 => 0.27074861976636
120 => 0.26834450685565
121 => 0.27832384513588
122 => 0.28230487335566
123 => 0.28898963933423
124 => 0.29390698039997
125 => 0.29679453712751
126 => 0.29662117905254
127 => 0.30806311738213
128 => 0.30131620610005
129 => 0.29284049540486
130 => 0.29268719653891
131 => 0.2970768872097
201 => 0.30627647460284
202 => 0.30866179376533
203 => 0.30999486176594
204 => 0.30795322171858
205 => 0.30062993307737
206 => 0.29746777417201
207 => 0.30016202517594
208 => 0.29686718771777
209 => 0.30255500153869
210 => 0.31036558476629
211 => 0.30875273021618
212 => 0.31414426116452
213 => 0.31972392849045
214 => 0.32770310336508
215 => 0.32978915514529
216 => 0.33323731941255
217 => 0.33678661310651
218 => 0.33792655058486
219 => 0.34010304493286
220 => 0.3400915737333
221 => 0.34665058594597
222 => 0.35388537953224
223 => 0.3566163466252
224 => 0.36289605486907
225 => 0.35214227456868
226 => 0.36029914045705
227 => 0.36765683766795
228 => 0.35888468773086
301 => 0.37097505277034
302 => 0.37144449424747
303 => 0.37853250320549
304 => 0.37134744822833
305 => 0.36708098551839
306 => 0.3793981034997
307 => 0.38535796890527
308 => 0.38356280894212
309 => 0.36990155298455
310 => 0.36195011605842
311 => 0.34113967190508
312 => 0.36579054194899
313 => 0.37779726167164
314 => 0.36987045848108
315 => 0.3738682769358
316 => 0.39567907812773
317 => 0.40398321907682
318 => 0.40225601580973
319 => 0.40254788472968
320 => 0.40702864845499
321 => 0.42689882241467
322 => 0.414992153591
323 => 0.42409435577233
324 => 0.42892213098887
325 => 0.43340643766483
326 => 0.42239439774835
327 => 0.40806789561601
328 => 0.40353009100505
329 => 0.369082294124
330 => 0.36728913669714
331 => 0.36628258309521
401 => 0.3599364050149
402 => 0.35495004740825
403 => 0.35098471070785
404 => 0.34057848305623
405 => 0.34409027941064
406 => 0.32750492448246
407 => 0.33811564681662
408 => 0.31164501988385
409 => 0.33369054457239
410 => 0.32169216777143
411 => 0.32974875509796
412 => 0.32972064642376
413 => 0.31488591481227
414 => 0.30632955121171
415 => 0.31178199911664
416 => 0.31762745608658
417 => 0.31857586181347
418 => 0.32615464935703
419 => 0.32826972605494
420 => 0.32186094491677
421 => 0.31109647497726
422 => 0.31359681583279
423 => 0.30627888188408
424 => 0.29345448411923
425 => 0.30266519048645
426 => 0.30581013060639
427 => 0.30719911532664
428 => 0.29458779301694
429 => 0.29062504174211
430 => 0.28851530621409
501 => 0.30946851163328
502 => 0.31061637552533
503 => 0.304743741562
504 => 0.33128860394225
505 => 0.32528068404964
506 => 0.3319930025458
507 => 0.31336993610748
508 => 0.31408136232471
509 => 0.30526490422494
510 => 0.31020153164487
511 => 0.30671248249939
512 => 0.30980270093404
513 => 0.31165496512232
514 => 0.32046997652808
515 => 0.33379119784289
516 => 0.31915330777878
517 => 0.3127753694594
518 => 0.31673220652186
519 => 0.32726978504507
520 => 0.34323475591646
521 => 0.33378317183562
522 => 0.33797762435239
523 => 0.3388939256291
524 => 0.33192467744455
525 => 0.34349172203785
526 => 0.34969059520591
527 => 0.35604935640027
528 => 0.36157049057689
529 => 0.35350952734709
530 => 0.36213591349667
531 => 0.35518456902225
601 => 0.34894849441191
602 => 0.34895795196296
603 => 0.34504597126538
604 => 0.33746601572254
605 => 0.33606815562305
606 => 0.34334000039083
607 => 0.34917133124833
608 => 0.34965162758795
609 => 0.35288015197525
610 => 0.35479075945122
611 => 0.37351731006057
612 => 0.3810492836298
613 => 0.3902592383373
614 => 0.39384703474047
615 => 0.40464501561783
616 => 0.39592476909023
617 => 0.39403808890107
618 => 0.36784571928522
619 => 0.37213471834249
620 => 0.37900181966004
621 => 0.36795895525664
622 => 0.37496311100359
623 => 0.37634587971634
624 => 0.36758372294981
625 => 0.37226396946926
626 => 0.35983462231
627 => 0.33406212364548
628 => 0.34352041419633
629 => 0.35048489966793
630 => 0.34054572018509
701 => 0.35836131470871
702 => 0.34795381217653
703 => 0.34465513352205
704 => 0.33178581202709
705 => 0.3378596363871
706 => 0.3460745708028
707 => 0.34099869642253
708 => 0.35153189790797
709 => 0.36644972031358
710 => 0.37708104893151
711 => 0.37789719033306
712 => 0.37106195827543
713 => 0.38201546126964
714 => 0.38209524558075
715 => 0.3697396494569
716 => 0.36217191562729
717 => 0.36045251057856
718 => 0.36474792149951
719 => 0.36996334333416
720 => 0.37818660994739
721 => 0.38315575773744
722 => 0.39611265974154
723 => 0.39961842592036
724 => 0.40347020006899
725 => 0.40861735817472
726 => 0.41479784118489
727 => 0.40127529621372
728 => 0.40181257213461
729 => 0.38922056548984
730 => 0.37576420051349
731 => 0.38597590417096
801 => 0.3993263482971
802 => 0.39626374166364
803 => 0.395919135854
804 => 0.39649866724013
805 => 0.39418956185388
806 => 0.3837455637713
807 => 0.37850065331712
808 => 0.38526792592238
809 => 0.38886443013542
810 => 0.39444229452173
811 => 0.39375470500168
812 => 0.40812268464189
813 => 0.41370564706493
814 => 0.41227728636868
815 => 0.41254013911221
816 => 0.42264782590208
817 => 0.43388965241674
818 => 0.44441910643738
819 => 0.45513011931775
820 => 0.44221757523252
821 => 0.43566138168104
822 => 0.44242569990677
823 => 0.43883645744152
824 => 0.45946130928532
825 => 0.46088932927788
826 => 0.48151268971014
827 => 0.50108671454443
828 => 0.48879262025109
829 => 0.50038539743154
830 => 0.51292393112519
831 => 0.53711279692401
901 => 0.52896683789752
902 => 0.52272716094669
903 => 0.51683069637805
904 => 0.529100303108
905 => 0.54488495615432
906 => 0.54828481923697
907 => 0.55379389627852
908 => 0.54800177538722
909 => 0.55497774701961
910 => 0.57960599227918
911 => 0.57295122301051
912 => 0.56350038084145
913 => 0.58294201515207
914 => 0.58997786703165
915 => 0.63935916022673
916 => 0.70170508272499
917 => 0.67589346142531
918 => 0.65987135514879
919 => 0.66363693017321
920 => 0.68640355052692
921 => 0.69371546640811
922 => 0.67383915847446
923 => 0.68085980645823
924 => 0.71954426710368
925 => 0.74029723909387
926 => 0.7121119156352
927 => 0.63434972605886
928 => 0.56264943590803
929 => 0.58166758156218
930 => 0.57951151404677
1001 => 0.62107314102555
1002 => 0.57279250896433
1003 => 0.57360543098566
1004 => 0.61602650839584
1005 => 0.60470929222418
1006 => 0.58637685142564
1007 => 0.56278328301376
1008 => 0.51916838966346
1009 => 0.48053746233182
1010 => 0.5563016070004
1011 => 0.55303451931413
1012 => 0.54830329218915
1013 => 0.55883212618355
1014 => 0.6099571553987
1015 => 0.60877855799972
1016 => 0.60128092267309
1017 => 0.60696781298722
1018 => 0.58537991205786
1019 => 0.59094360567472
1020 => 0.56263807821575
1021 => 0.57543335877045
1022 => 0.5863375182412
1023 => 0.5885266896938
1024 => 0.59345900475836
1025 => 0.55131291256108
1026 => 0.5702352706134
1027 => 0.58135038318396
1028 => 0.53113190021892
1029 => 0.58035772524047
1030 => 0.55057924286252
1031 => 0.54047197868565
1101 => 0.55408007836901
1102 => 0.54877698868809
1103 => 0.54421770358831
1104 => 0.54167354416418
1105 => 0.55166583070048
1106 => 0.5511996785902
1107 => 0.53485035839756
1108 => 0.51352333668982
1109 => 0.52068138521056
1110 => 0.51808079907591
1111 => 0.50865593944166
1112 => 0.51500715687325
1113 => 0.48703960958209
1114 => 0.43892289809425
1115 => 0.47071027155785
1116 => 0.46948649225751
1117 => 0.4688694072403
1118 => 0.49275673985972
1119 => 0.4904605240029
1120 => 0.48629286973814
1121 => 0.50857939720277
1122 => 0.50044451488208
1123 => 0.52551430537511
1124 => 0.5420268908062
1125 => 0.53783876501469
1126 => 0.55336893142489
1127 => 0.52084629219125
1128 => 0.53164900836286
1129 => 0.5338754331939
1130 => 0.5083043849133
1201 => 0.49083621331485
1202 => 0.48967128542097
1203 => 0.45938388313159
1204 => 0.47556316896321
1205 => 0.48980027095069
1206 => 0.48298180394243
1207 => 0.48082328098353
1208 => 0.49185070665407
1209 => 0.49270763207219
1210 => 0.47316964172627
1211 => 0.47723220860687
1212 => 0.49417378784454
1213 => 0.4768053242777
1214 => 0.44306123668975
1215 => 0.43469223641943
1216 => 0.43357565751209
1217 => 0.41087826502519
1218 => 0.43525149303542
1219 => 0.42461192584705
1220 => 0.45822219111352
1221 => 0.43902418784878
1222 => 0.4381966002986
1223 => 0.43694558033581
1224 => 0.41740899700486
1225 => 0.42168626713969
1226 => 0.43590456451452
1227 => 0.44097781319845
1228 => 0.44044863179681
1229 => 0.43583488710062
1230 => 0.43794703579634
1231 => 0.43114306892604
]
'min_raw' => 0.23806323168084
'max_raw' => 0.74029723909387
'avg_raw' => 0.48918023538736
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.238063'
'max' => '$0.740297'
'avg' => '$0.48918'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.1356167867235
'max_diff' => 0.46236990590178
'year' => 2033
]
8 => [
'items' => [
101 => 0.42874044661181
102 => 0.42115710969477
103 => 0.41001169937702
104 => 0.41156153704048
105 => 0.38947956284576
106 => 0.3774481313254
107 => 0.37411798965229
108 => 0.36966478503079
109 => 0.37462099096381
110 => 0.38941700738732
111 => 0.37156987243057
112 => 0.34097221137819
113 => 0.34281118294332
114 => 0.34694280605459
115 => 0.33924355372015
116 => 0.33195685753486
117 => 0.33829204867962
118 => 0.32532741632989
119 => 0.3485095199348
120 => 0.34788250899938
121 => 0.35652336365162
122 => 0.36192666739385
123 => 0.34947380160836
124 => 0.34634193953944
125 => 0.3481259905091
126 => 0.31863960200339
127 => 0.35411369663753
128 => 0.35442047808102
129 => 0.35179362910945
130 => 0.37068248936233
131 => 0.41054387607917
201 => 0.39554641897573
202 => 0.38973895028474
203 => 0.37869894805793
204 => 0.39340909553469
205 => 0.39227958572252
206 => 0.38717151399802
207 => 0.3840821362809
208 => 0.3897744094502
209 => 0.38337680064162
210 => 0.38222761430507
211 => 0.37526479543262
212 => 0.37277938588323
213 => 0.37093928759987
214 => 0.36891352019421
215 => 0.37338185830131
216 => 0.36325601629178
217 => 0.35104524347683
218 => 0.35003004983966
219 => 0.35283308872863
220 => 0.35159295268196
221 => 0.35002411254538
222 => 0.34702876947647
223 => 0.3461401151733
224 => 0.34902781054482
225 => 0.34576777083347
226 => 0.35057813701112
227 => 0.3492699835805
228 => 0.34196274485635
301 => 0.33285521991979
302 => 0.33277414384417
303 => 0.33081194253592
304 => 0.32831278415093
305 => 0.32761757546122
306 => 0.33775851655169
307 => 0.35874996111615
308 => 0.35462883826545
309 => 0.35760677187474
310 => 0.37225525786321
311 => 0.3769115710636
312 => 0.37360663024478
313 => 0.36908262341212
314 => 0.36928165675303
315 => 0.38474155761026
316 => 0.38570577266322
317 => 0.3881420330345
318 => 0.39127331609869
319 => 0.37413990129067
320 => 0.36847467445635
321 => 0.36579017568744
322 => 0.35752295851095
323 => 0.36643844345816
324 => 0.36124377217855
325 => 0.36194471080941
326 => 0.36148822360652
327 => 0.36173749648683
328 => 0.34850304006439
329 => 0.35332498040217
330 => 0.34530756935989
331 => 0.33457315597091
401 => 0.33453717045326
402 => 0.33716440292278
403 => 0.33560162224629
404 => 0.33139621962862
405 => 0.33199357722152
406 => 0.32676009613853
407 => 0.33262901658023
408 => 0.33279731621849
409 => 0.33053746216618
410 => 0.33957934386157
411 => 0.34328381016965
412 => 0.34179632582165
413 => 0.34317944430246
414 => 0.35480008952565
415 => 0.35669476174133
416 => 0.35753624998451
417 => 0.35640876721447
418 => 0.34339184836482
419 => 0.34396920406802
420 => 0.3397329509995
421 => 0.33615376356195
422 => 0.33629691228909
423 => 0.33813707989379
424 => 0.3461731997479
425 => 0.36308474022574
426 => 0.3637265208247
427 => 0.3645043776327
428 => 0.36134044307506
429 => 0.3603861701377
430 => 0.36164510246082
501 => 0.36799618789774
502 => 0.38433290394438
503 => 0.37855841740092
504 => 0.37386366995585
505 => 0.37798222916
506 => 0.37734820925285
507 => 0.37199644318147
508 => 0.37184623693246
509 => 0.36157448677835
510 => 0.35777725462282
511 => 0.35460400321575
512 => 0.35113889551906
513 => 0.349084663525
514 => 0.35224089749962
515 => 0.35296276555308
516 => 0.34606160480604
517 => 0.34512100209688
518 => 0.35075663893482
519 => 0.34827660528016
520 => 0.35082738139585
521 => 0.35141918333484
522 => 0.35132388959231
523 => 0.3487344496268
524 => 0.3503848814426
525 => 0.34648111818082
526 => 0.34223636195991
527 => 0.33952847194863
528 => 0.33716547876429
529 => 0.33847660472093
530 => 0.33380268008766
531 => 0.33230739752996
601 => 0.3498257522793
602 => 0.36276674928669
603 => 0.362578582065
604 => 0.36143316249568
605 => 0.35973130135554
606 => 0.3678716861551
607 => 0.36503573886306
608 => 0.36709912746935
609 => 0.36762434646979
610 => 0.3692140261983
611 => 0.36978220006365
612 => 0.36806478402044
613 => 0.3623009260147
614 => 0.34793793987559
615 => 0.34125193105569
616 => 0.33904543678084
617 => 0.339125638657
618 => 0.33691331287552
619 => 0.33756494196766
620 => 0.33668670287008
621 => 0.33502353048814
622 => 0.33837390851304
623 => 0.33876000836948
624 => 0.33797799010443
625 => 0.33816218371533
626 => 0.33168740648509
627 => 0.33217966973543
628 => 0.32943868540376
629 => 0.32892478388463
630 => 0.32199581417898
701 => 0.30972013997519
702 => 0.31652205511262
703 => 0.30830629812061
704 => 0.30519486645871
705 => 0.31992390001927
706 => 0.31844551356958
707 => 0.31591515860687
708 => 0.31217223624484
709 => 0.31078394993195
710 => 0.30234916177289
711 => 0.30185078949061
712 => 0.30603129826068
713 => 0.30410213730581
714 => 0.3013928646948
715 => 0.29158015393226
716 => 0.28054741815829
717 => 0.280880427102
718 => 0.28438973508036
719 => 0.29459352132208
720 => 0.29060672551014
721 => 0.28771425940537
722 => 0.28717258745116
723 => 0.29395274602517
724 => 0.30354809089452
725 => 0.30805001202348
726 => 0.30358874491006
727 => 0.29846388146184
728 => 0.2987758081536
729 => 0.30085091668828
730 => 0.30106898125482
731 => 0.2977332219945
801 => 0.29867221868696
802 => 0.29724579684746
803 => 0.28849184865142
804 => 0.28833351748762
805 => 0.28618515742383
806 => 0.28612010593491
807 => 0.28246520953287
808 => 0.28195386426111
809 => 0.2746968456185
810 => 0.27947343726535
811 => 0.27626955037096
812 => 0.27144053710061
813 => 0.27060801339263
814 => 0.27058298672467
815 => 0.27554130360571
816 => 0.27941549644572
817 => 0.27632528335519
818 => 0.27562170173574
819 => 0.28313411271184
820 => 0.28217808993798
821 => 0.28135018038151
822 => 0.30268893300414
823 => 0.2857976452197
824 => 0.27843207962468
825 => 0.26931579351788
826 => 0.27228410224256
827 => 0.27290956850438
828 => 0.2509865437516
829 => 0.24209237533974
830 => 0.23904023191045
831 => 0.23728368021592
901 => 0.23808416288051
902 => 0.23007836812793
903 => 0.23545839460528
904 => 0.22852605306253
905 => 0.2273638234431
906 => 0.23975970887386
907 => 0.24148452391584
908 => 0.23412592708873
909 => 0.23885133750035
910 => 0.23713783799698
911 => 0.22864488816126
912 => 0.22832051994744
913 => 0.2240590562615
914 => 0.21739069077497
915 => 0.21434306881149
916 => 0.21275584083225
917 => 0.21341076203094
918 => 0.21307961383196
919 => 0.21091864783635
920 => 0.21320347787329
921 => 0.20736668128586
922 => 0.20504242185448
923 => 0.20399260779173
924 => 0.19881211486691
925 => 0.20705658288596
926 => 0.20868084694679
927 => 0.21030831130957
928 => 0.22447427747051
929 => 0.22376658583372
930 => 0.23016377357054
1001 => 0.22991519061876
1002 => 0.22809060904865
1003 => 0.22039299953344
1004 => 0.22346112948951
1005 => 0.21401790237799
1006 => 0.22109341020697
1007 => 0.2178644439141
1008 => 0.2200016934553
1009 => 0.21615872607219
1010 => 0.21828558289424
1011 => 0.20906602021183
1012 => 0.20045692230175
1013 => 0.203921474616
1014 => 0.20768783920121
1015 => 0.21585427727379
1016 => 0.21099041412941
1017 => 0.21273964323916
1018 => 0.20688001853893
1019 => 0.1947899390633
1020 => 0.19485836760016
1021 => 0.19299857226953
1022 => 0.19139143756931
1023 => 0.21154908732093
1024 => 0.20904216492903
1025 => 0.20504771219543
1026 => 0.21039444591259
1027 => 0.21180820717149
1028 => 0.21184845496701
1029 => 0.21574929386789
1030 => 0.21783117228854
1031 => 0.21819811238356
1101 => 0.22433616667729
1102 => 0.22639356151365
1103 => 0.23486767967122
1104 => 0.21765453944983
1105 => 0.21730004615439
1106 => 0.21046968542077
1107 => 0.20613776265979
1108 => 0.21076629587834
1109 => 0.21486654445219
1110 => 0.21059709157336
1111 => 0.21115459198627
1112 => 0.20542320032356
1113 => 0.20747190315593
1114 => 0.20923652202525
1115 => 0.20826220320512
1116 => 0.20680360077381
1117 => 0.21453037082775
1118 => 0.21409439617985
1119 => 0.22128974209176
1120 => 0.22689902877421
1121 => 0.2369518732891
1122 => 0.22646120597118
1123 => 0.22607888435748
1124 => 0.22981613945763
1125 => 0.22639298935937
1126 => 0.22855630205834
1127 => 0.23660333016861
1128 => 0.23677335119224
1129 => 0.23392527998673
1130 => 0.23375197459505
1201 => 0.23429897782455
1202 => 0.23750279282507
1203 => 0.2363832814206
1204 => 0.23767880836042
1205 => 0.23929888463647
1206 => 0.24600020701235
1207 => 0.24761587314995
1208 => 0.24369064206243
1209 => 0.24404504648068
1210 => 0.24257690230394
1211 => 0.24115869342501
1212 => 0.24434661987208
1213 => 0.25017261811296
1214 => 0.25013637488028
1215 => 0.25148789323094
1216 => 0.25232987796682
1217 => 0.24871546310993
1218 => 0.24636261194381
1219 => 0.24726484479671
1220 => 0.24870753477657
1221 => 0.24679699988033
1222 => 0.23500429345487
1223 => 0.23858144726335
1224 => 0.23798603395574
1225 => 0.23713809300096
1226 => 0.2407349488167
1227 => 0.24038802329868
1228 => 0.22999625713135
1229 => 0.23066150428538
1230 => 0.23003671301416
1231 => 0.23205554143175
]
'min_raw' => 0.19139143756931
'max_raw' => 0.42874044661181
'avg_raw' => 0.31006594209056
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.191391'
'max' => '$0.42874'
'avg' => '$0.310065'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.046671794111538
'max_diff' => -0.31155679248206
'year' => 2034
]
9 => [
'items' => [
101 => 0.22628396599959
102 => 0.22805926373037
103 => 0.22917271382473
104 => 0.22982854448424
105 => 0.23219785453367
106 => 0.23191984334584
107 => 0.23218057296789
108 => 0.23569363429653
109 => 0.25346149295973
110 => 0.2544285583042
111 => 0.24966637486051
112 => 0.25156877321635
113 => 0.24791658438192
114 => 0.25036832321401
115 => 0.25204574065551
116 => 0.24446581378619
117 => 0.24401697971031
118 => 0.24034971699341
119 => 0.2423202962531
120 => 0.23918496296127
121 => 0.23995426408178
122 => 0.23780323108237
123 => 0.24167466221492
124 => 0.24600352378068
125 => 0.24709716516412
126 => 0.24422026552652
127 => 0.24213720059197
128 => 0.23848002477115
129 => 0.24456198966665
130 => 0.24634054154662
131 => 0.24455264769078
201 => 0.24413835361813
202 => 0.24335326709907
203 => 0.24430491343449
204 => 0.24633085517111
205 => 0.24537545846139
206 => 0.24600651482009
207 => 0.24360157872323
208 => 0.24871665963164
209 => 0.25684063912545
210 => 0.25686675904793
211 => 0.25591135718826
212 => 0.2555204273317
213 => 0.25650072761836
214 => 0.25703250030984
215 => 0.26020261168054
216 => 0.26360426748411
217 => 0.27947831086068
218 => 0.27502094300155
219 => 0.2891053386363
220 => 0.30024426695351
221 => 0.30358434450954
222 => 0.30051163032079
223 => 0.29000004106582
224 => 0.28948429234879
225 => 0.30519304457422
226 => 0.3007546025641
227 => 0.30022666401001
228 => 0.29461028976067
301 => 0.29793026254351
302 => 0.29720413579484
303 => 0.29605790919873
304 => 0.30239218599708
305 => 0.31424938669881
306 => 0.31240133077332
307 => 0.31102184275379
308 => 0.30497732781514
309 => 0.3086174758995
310 => 0.3073212888891
311 => 0.31289053086637
312 => 0.30959143529285
313 => 0.30072097700055
314 => 0.30213362672101
315 => 0.30192010755762
316 => 0.30631431681008
317 => 0.30499528426347
318 => 0.30166254528318
319 => 0.31420886007586
320 => 0.31339417217949
321 => 0.31454921335296
322 => 0.31505769819835
323 => 0.32269441892179
324 => 0.32582293905438
325 => 0.32653316789693
326 => 0.32950502005445
327 => 0.32645922550795
328 => 0.33864457530866
329 => 0.34674712189126
330 => 0.35615864670018
331 => 0.36991141402541
401 => 0.3750825817599
402 => 0.37414845659399
403 => 0.38457564782181
404 => 0.40331307867476
405 => 0.37793582709302
406 => 0.40465813462938
407 => 0.39619816058724
408 => 0.37613971432178
409 => 0.37484818685583
410 => 0.38843199955015
411 => 0.41855958871264
412 => 0.41101296933172
413 => 0.41857193227844
414 => 0.40975400048314
415 => 0.40931611584614
416 => 0.41814366501314
417 => 0.43876971480649
418 => 0.42897105170558
419 => 0.41492226541967
420 => 0.42529567058986
421 => 0.41630926701811
422 => 0.39606038463498
423 => 0.41100719857411
424 => 0.40101268975376
425 => 0.40392961876485
426 => 0.42493658973423
427 => 0.42240897540964
428 => 0.42567994239644
429 => 0.41990677128085
430 => 0.41451371911337
501 => 0.40444718674944
502 => 0.40146698279053
503 => 0.40229060394827
504 => 0.40146657464479
505 => 0.39583444230338
506 => 0.39461818386049
507 => 0.39259103317018
508 => 0.39321933193375
509 => 0.3894076955721
510 => 0.39660104091079
511 => 0.39793618919319
512 => 0.40317090605547
513 => 0.40371439172562
514 => 0.41829300367553
515 => 0.41026334919714
516 => 0.41565033466826
517 => 0.41516847198345
518 => 0.37657444167488
519 => 0.38189235853339
520 => 0.39016536831099
521 => 0.38643838861998
522 => 0.38116931131583
523 => 0.37691424888268
524 => 0.37046739419399
525 => 0.37954121836745
526 => 0.39147233226192
527 => 0.40401698446332
528 => 0.41908856212512
529 => 0.41572476144351
530 => 0.4037352318025
531 => 0.40427307334384
601 => 0.40759779811955
602 => 0.40329197745191
603 => 0.40202210687741
604 => 0.4074233374028
605 => 0.40746053270897
606 => 0.40250616565503
607 => 0.39700029331418
608 => 0.39697722350804
609 => 0.3959975067054
610 => 0.40992828992587
611 => 0.41758881213609
612 => 0.41846707866194
613 => 0.41752969780124
614 => 0.41789045849121
615 => 0.41343296940517
616 => 0.42362146762852
617 => 0.4329714411363
618 => 0.43046544850317
619 => 0.42670860929825
620 => 0.42371610591765
621 => 0.42976050980982
622 => 0.42949136201928
623 => 0.43288977727445
624 => 0.43273560552828
625 => 0.43159284629883
626 => 0.4304654893147
627 => 0.43493533232611
628 => 0.43364808932231
629 => 0.43235884687457
630 => 0.42977307377249
701 => 0.43012452328221
702 => 0.42636833274855
703 => 0.4246305471361
704 => 0.39849842105549
705 => 0.39151506307489
706 => 0.39371216965495
707 => 0.39443551418895
708 => 0.39139634784638
709 => 0.39575373168385
710 => 0.39507463802839
711 => 0.39771659418528
712 => 0.39606601467886
713 => 0.39613375503754
714 => 0.40098775742527
715 => 0.40239689496883
716 => 0.40168019624104
717 => 0.40218214746299
718 => 0.41374940151243
719 => 0.41210490788656
720 => 0.4112313034238
721 => 0.4114732978303
722 => 0.41442897924466
723 => 0.41525640866646
724 => 0.41175053206387
725 => 0.41340392373688
726 => 0.42044385563392
727 => 0.42290743337225
728 => 0.43076999092859
729 => 0.42742983673284
730 => 0.43356083431763
731 => 0.45240543068216
801 => 0.46745979820503
802 => 0.45361517968295
803 => 0.48126060847656
804 => 0.50278654029362
805 => 0.50196033917716
806 => 0.49820679506109
807 => 0.47370009398387
808 => 0.4511486622783
809 => 0.47001389248438
810 => 0.47006198383585
811 => 0.4684414438304
812 => 0.4583764090354
813 => 0.46809120243676
814 => 0.46886232745801
815 => 0.46843070250481
816 => 0.4607138639262
817 => 0.44893167772684
818 => 0.45123388870763
819 => 0.45500495725799
820 => 0.44786553776484
821 => 0.4455840606441
822 => 0.44982576068034
823 => 0.46349340199041
824 => 0.46090961357199
825 => 0.46084214041448
826 => 0.47189668296526
827 => 0.4639840162185
828 => 0.4512629269608
829 => 0.44805068415267
830 => 0.43664938620987
831 => 0.44452430330899
901 => 0.44480770755595
902 => 0.44049469594046
903 => 0.45161290408303
904 => 0.45151044783767
905 => 0.46206553174215
906 => 0.48224288785903
907 => 0.47627545078787
908 => 0.46933597072943
909 => 0.47009048462269
910 => 0.47836563973282
911 => 0.47336229204982
912 => 0.47516153076121
913 => 0.47836291636954
914 => 0.48029439179298
915 => 0.46981257503298
916 => 0.46736876214297
917 => 0.46236957863178
918 => 0.46106538496789
919 => 0.46513711562637
920 => 0.46406435845422
921 => 0.44478388852639
922 => 0.44276897214341
923 => 0.44283076675223
924 => 0.43776416370318
925 => 0.4300363779293
926 => 0.45034453754093
927 => 0.4487135081116
928 => 0.44691297785328
929 => 0.44713353253624
930 => 0.45594861631626
1001 => 0.45083542255145
1002 => 0.46442968621118
1003 => 0.46163511428371
1004 => 0.45876887213118
1005 => 0.45837267015783
1006 => 0.4572694114654
1007 => 0.45348592690457
1008 => 0.4489171419452
1009 => 0.44590043437364
1010 => 0.4113195805019
1011 => 0.41773758583292
1012 => 0.42512091594667
1013 => 0.4276696119151
1014 => 0.42330989109671
1015 => 0.45365807525529
1016 => 0.45920298094344
1017 => 0.44240709992878
1018 => 0.43926527636224
1019 => 0.45386405268526
1020 => 0.44505920593466
1021 => 0.44902402788733
1022 => 0.44045425146732
1023 => 0.45786737553696
1024 => 0.45773471670651
1025 => 0.45096061815018
1026 => 0.45668603986297
1027 => 0.45569110694466
1028 => 0.44804316635843
1029 => 0.45810982889493
1030 => 0.45811482183395
1031 => 0.45159489925508
1101 => 0.44398105707754
1102 => 0.44261988192712
1103 => 0.44159441929944
1104 => 0.44877182694292
1105 => 0.45520706819289
1106 => 0.46718145672749
1107 => 0.47019210250954
1108 => 0.48194285342693
1109 => 0.47494585338931
1110 => 0.47804753287967
1111 => 0.48141484472581
1112 => 0.48302925785364
1113 => 0.48039865829602
1114 => 0.49865241127277
1115 => 0.50019358730455
1116 => 0.50071033029688
1117 => 0.4945552674967
1118 => 0.50002240387365
1119 => 0.4974645118154
1120 => 0.50411943634807
1121 => 0.50516301348914
1122 => 0.50427914077699
1123 => 0.50461038863331
1124 => 0.48903403065034
1125 => 0.48822631431709
1126 => 0.47721304480027
1127 => 0.48170103353435
1128 => 0.47331095371089
1129 => 0.47597153445031
1130 => 0.4771442930893
1201 => 0.47653171052976
1202 => 0.48195477768365
1203 => 0.47734406274342
1204 => 0.46517562794441
1205 => 0.45300387786348
1206 => 0.45285107145611
1207 => 0.44964646450904
1208 => 0.44733012063934
1209 => 0.44777633064536
1210 => 0.44934883290665
1211 => 0.44723872394926
1212 => 0.44768902268056
1213 => 0.45516698194486
1214 => 0.45666663334494
1215 => 0.45157023193581
1216 => 0.43110744487095
1217 => 0.42608582559821
1218 => 0.42969526594841
1219 => 0.42797018593875
1220 => 0.34540534175608
1221 => 0.36480272719515
1222 => 0.35327745944022
1223 => 0.35858883307377
1224 => 0.3468245191496
1225 => 0.35243906637473
1226 => 0.35140226451269
1227 => 0.38259268628835
1228 => 0.38210569075335
1229 => 0.38233878974473
1230 => 0.37121236755013
1231 => 0.3889370602214
]
'min_raw' => 0.22628396599959
'max_raw' => 0.50516301348914
'avg_raw' => 0.36572348974436
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.226283'
'max' => '$0.505163'
'avg' => '$0.365723'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.034892528430283
'max_diff' => 0.07642256687733
'year' => 2035
]
10 => [
'items' => [
101 => 0.3976688811906
102 => 0.39605285351909
103 => 0.39645957286806
104 => 0.3894707869271
105 => 0.38240645646936
106 => 0.37457102679907
107 => 0.3891282866381
108 => 0.38750976784471
109 => 0.39122206763206
110 => 0.40066349121209
111 => 0.40205377669873
112 => 0.40392233449165
113 => 0.40325258953589
114 => 0.41920863155657
115 => 0.41727624958651
116 => 0.42193273415011
117 => 0.41235399211444
118 => 0.40151473627854
119 => 0.40357492445097
120 => 0.40337651176298
121 => 0.40085049051735
122 => 0.39857011148284
123 => 0.39477392288319
124 => 0.40678562534269
125 => 0.40629797215878
126 => 0.41419251037148
127 => 0.41279707405893
128 => 0.40347800884254
129 => 0.40381084107986
130 => 0.40604929782955
131 => 0.41379662219845
201 => 0.41609655554921
202 => 0.41503113478464
203 => 0.4175529067078
204 => 0.41954601241494
205 => 0.41780321009822
206 => 0.44247761565814
207 => 0.43223108217611
208 => 0.43722517130033
209 => 0.43841623212957
210 => 0.43536535486077
211 => 0.43602698089665
212 => 0.4370291640587
213 => 0.4431142239711
214 => 0.45908318190752
215 => 0.46615572467318
216 => 0.48743381853679
217 => 0.46556844845104
218 => 0.46427104787805
219 => 0.46810387511976
220 => 0.48059636873268
221 => 0.4907203614457
222 => 0.49407907389575
223 => 0.49452298319233
224 => 0.50082415103162
225 => 0.50443586292728
226 => 0.50005902351876
227 => 0.49635011039423
228 => 0.48306524394942
229 => 0.48460300341389
301 => 0.49519664120146
302 => 0.51016077853855
303 => 0.52300156512691
304 => 0.51850516921026
305 => 0.55280949609346
306 => 0.55621062998332
307 => 0.55574070325156
308 => 0.56348899240925
309 => 0.54811021634289
310 => 0.54153549162477
311 => 0.49715201950971
312 => 0.50962196479574
313 => 0.52774776260319
314 => 0.52534874529512
315 => 0.51218530642339
316 => 0.52299157947813
317 => 0.51941868766283
318 => 0.51660059964868
319 => 0.52951080715472
320 => 0.51531550367974
321 => 0.52760615359219
322 => 0.51184326794898
323 => 0.51852570836806
324 => 0.51473243199291
325 => 0.5171871466941
326 => 0.50283693470903
327 => 0.51057996076447
328 => 0.50251479936842
329 => 0.5025109754318
330 => 0.50233293654697
331 => 0.51182156316303
401 => 0.51213098693632
402 => 0.50511887753054
403 => 0.50410832301543
404 => 0.50784487271085
405 => 0.50347035162143
406 => 0.50551716250626
407 => 0.50353234743801
408 => 0.50308552375955
409 => 0.49952515666876
410 => 0.49799125263171
411 => 0.49859273592848
412 => 0.49653956335073
413 => 0.49530245260614
414 => 0.50208684408225
415 => 0.49846221739814
416 => 0.50153131805844
417 => 0.49803369050464
418 => 0.48590938955938
419 => 0.4789365758736
420 => 0.45603489531129
421 => 0.46252978350932
422 => 0.46683590110406
423 => 0.46541272926468
424 => 0.46847025307005
425 => 0.46865796019952
426 => 0.46766392804263
427 => 0.46651296614835
428 => 0.46595274155041
429 => 0.4701281967201
430 => 0.47255218898547
501 => 0.46726807761311
502 => 0.46603008425114
503 => 0.47137261259238
504 => 0.47463155179426
505 => 0.49869372782116
506 => 0.49691112410128
507 => 0.50138510961986
508 => 0.50088140750937
509 => 0.50557085709463
510 => 0.51323612525727
511 => 0.49765049183995
512 => 0.50035561889054
513 => 0.49969238420824
514 => 0.50693340656011
515 => 0.5069560122415
516 => 0.50261465762567
517 => 0.50496817639335
518 => 0.50365450678264
519 => 0.50602848532229
520 => 0.4968873163418
521 => 0.50802027343182
522 => 0.51433194270995
523 => 0.514419580244
524 => 0.51741126138933
525 => 0.52045098269947
526 => 0.52628546305035
527 => 0.52028826220915
528 => 0.50949988171156
529 => 0.51027876793723
530 => 0.50395354439881
531 => 0.50405987254924
601 => 0.50349228454918
602 => 0.50519565886339
603 => 0.49726111121472
604 => 0.49912333368852
605 => 0.49651621132005
606 => 0.50034995151567
607 => 0.49622548080514
608 => 0.49969206437639
609 => 0.50118812692668
610 => 0.50670862994518
611 => 0.49541009802072
612 => 0.47237162658339
613 => 0.47721459259398
614 => 0.47005146545755
615 => 0.47071444014597
616 => 0.47205375452823
617 => 0.46771259841893
618 => 0.46854075419903
619 => 0.46851116664693
620 => 0.46825619710735
621 => 0.46712689473992
622 => 0.46548918288148
623 => 0.47201332286438
624 => 0.47312190137868
625 => 0.47558613409216
626 => 0.48291801914246
627 => 0.48218539092818
628 => 0.48338033794213
629 => 0.48077177532003
630 => 0.47083544388447
701 => 0.47137503448656
702 => 0.46464633103222
703 => 0.47541406601665
704 => 0.47286412424518
705 => 0.47122016019676
706 => 0.47077158937493
707 => 0.47812164875012
708 => 0.48032090171324
709 => 0.478950474853
710 => 0.47613968938091
711 => 0.48153722842146
712 => 0.48298138216482
713 => 0.48330467492962
714 => 0.49286807923401
715 => 0.48383916299406
716 => 0.48601251287273
717 => 0.50296836821599
718 => 0.48759174716775
719 => 0.49573708627657
720 => 0.49533841431349
721 => 0.49950529417832
722 => 0.49499660854247
723 => 0.49505249910453
724 => 0.49875240613561
725 => 0.49355655399221
726 => 0.49226998793208
727 => 0.49049260613456
728 => 0.49437345426523
729 => 0.4966998472039
730 => 0.51544886574228
731 => 0.52756158677719
801 => 0.52703574161204
802 => 0.53184098208065
803 => 0.52967617723858
804 => 0.52268545135688
805 => 0.53461776800875
806 => 0.53084188375076
807 => 0.53115316306129
808 => 0.53114157722981
809 => 0.53365221016783
810 => 0.53187319663511
811 => 0.52836657835012
812 => 0.53069443521472
813 => 0.53760733787852
814 => 0.55906519986071
815 => 0.5710733037048
816 => 0.55834229693148
817 => 0.56712397492875
818 => 0.56185809736219
819 => 0.56090113076206
820 => 0.56641667350526
821 => 0.57194187047588
822 => 0.57158993931493
823 => 0.56757893003626
824 => 0.56531321267034
825 => 0.58246998363615
826 => 0.59511080022579
827 => 0.59424878127948
828 => 0.59805345256489
829 => 0.60922408513289
830 => 0.61024538777998
831 => 0.61011672712082
901 => 0.60758532194809
902 => 0.61858426040123
903 => 0.62775976836675
904 => 0.60699937478993
905 => 0.61490466089048
906 => 0.61845359851342
907 => 0.62366449186625
908 => 0.63245614239961
909 => 0.64200620674896
910 => 0.64335669055909
911 => 0.64239845766921
912 => 0.6360999335113
913 => 0.64654972787833
914 => 0.6526709723407
915 => 0.65631603333585
916 => 0.66555930153925
917 => 0.61847551554398
918 => 0.58514727160053
919 => 0.57994258504308
920 => 0.59052651982184
921 => 0.5933174190177
922 => 0.59219241105134
923 => 0.55467844242161
924 => 0.57974508176194
925 => 0.60671467802924
926 => 0.607750690059
927 => 0.62125223385807
928 => 0.62564888996603
929 => 0.63651940241208
930 => 0.63583944889886
1001 => 0.63848624569184
1002 => 0.63787779294527
1003 => 0.65801312819513
1004 => 0.68022539310194
1005 => 0.67945625299889
1006 => 0.67626297711495
1007 => 0.68100553633705
1008 => 0.70393097413185
1009 => 0.70182036719236
1010 => 0.703870642053
1011 => 0.73090102523413
1012 => 0.76604436839676
1013 => 0.74971675716375
1014 => 0.78514297539581
1015 => 0.80744190190975
1016 => 0.84600558956358
1017 => 0.84117722593915
1018 => 0.85618978654938
1019 => 0.83253344734154
1020 => 0.77821371078537
1021 => 0.76961740454776
1022 => 0.7868274273286
1023 => 0.82913658900584
1024 => 0.78549496126187
1025 => 0.79432360571549
1026 => 0.79178095551891
1027 => 0.79164546849551
1028 => 0.79681645711344
1029 => 0.7893156684225
1030 => 0.75875610592945
1031 => 0.77276137333138
1101 => 0.76735326699932
1102 => 0.77335396417578
1103 => 0.80573725196138
1104 => 0.7914198285102
1105 => 0.77633758595742
1106 => 0.79525406513616
1107 => 0.81934124353818
1108 => 0.8178339112026
1109 => 0.81490905645555
1110 => 0.8313963095243
1111 => 0.85862842128199
1112 => 0.8659891516626
1113 => 0.87142269234606
1114 => 0.87217188580589
1115 => 0.87988904406325
1116 => 0.83839193913913
1117 => 0.90424891037496
1118 => 0.91562059004527
1119 => 0.91348318557508
1120 => 0.9261223289352
1121 => 0.92240357233453
1122 => 0.9170156774752
1123 => 0.93705140812388
1124 => 0.91408205973526
1125 => 0.88147996145817
1126 => 0.86359380554697
1127 => 0.88714773848588
1128 => 0.90153130341269
1129 => 0.91103792486277
1130 => 0.91391462276951
1201 => 0.84161324126728
1202 => 0.80264680665603
1203 => 0.82762384449076
1204 => 0.8580975544722
1205 => 0.83822265614152
1206 => 0.83900171452793
1207 => 0.81066533253979
1208 => 0.86060469551632
1209 => 0.8533289503868
1210 => 0.89107552898935
1211 => 0.88206700507063
1212 => 0.91284787460728
1213 => 0.90474224007901
1214 => 0.93838827582594
1215 => 0.95181059041544
1216 => 0.97434874562767
1217 => 0.99092790434858
1218 => 1.0006635034583
1219 => 1.000079014605
1220 => 1.0386563085339
1221 => 1.015908626092
1222 => 0.98733217572798
1223 => 0.98681531789844
1224 => 1.0016154664734
1225 => 1.0326325176641
1226 => 1.0406747877581
1227 => 1.045169319594
1228 => 1.0382857876315
1229 => 1.013594808682
1230 => 1.0029333691577
1231 => 1.0120172245241
]
'min_raw' => 0.37457102679907
'max_raw' => 1.045169319594
'avg_raw' => 0.70987017319652
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.374571'
'max' => '$1.04'
'avg' => '$0.70987'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.14828706079948
'max_diff' => 0.54000630610482
'year' => 2036
]
11 => [
'items' => [
101 => 1.0009084499956
102 => 1.0200853114033
103 => 1.0464192380727
104 => 1.0409813863511
105 => 1.0591593093681
106 => 1.0779715473174
107 => 1.1048738924954
108 => 1.1119071617159
109 => 1.1235328882861
110 => 1.135499579779
111 => 1.1393429585752
112 => 1.1466811612275
113 => 1.1466424852773
114 => 1.1687566528879
115 => 1.1931492645812
116 => 1.2023569108051
117 => 1.2235293855845
118 => 1.1872722644968
119 => 1.2147737073336
120 => 1.2395806971782
121 => 1.2100047812133
122 => 1.2507682910663
123 => 1.2523510457818
124 => 1.2762487628527
125 => 1.2520238483527
126 => 1.2376391714512
127 => 1.2791671946789
128 => 1.2992612969983
129 => 1.2932087898485
130 => 1.2471489115891
131 => 1.2203400868411
201 => 1.1501762214393
202 => 1.2332883508611
203 => 1.2737698446884
204 => 1.2470440742997
205 => 1.2605229983386
206 => 1.3340596373387
207 => 1.3620576283251
208 => 1.3562342419207
209 => 1.3572182983619
210 => 1.3723255060988
211 => 1.439319184895
212 => 1.399175019659
213 => 1.4298637298088
214 => 1.4461409110159
215 => 1.4612600640581
216 => 1.4241322026437
217 => 1.37582940046
218 => 1.3605298753948
219 => 1.2443867231419
220 => 1.238340967683
221 => 1.2349473019388
222 => 1.213550719465
223 => 1.1967388666578
224 => 1.1833694571215
225 => 1.1482841340544
226 => 1.1601244006491
227 => 1.1042057185563
228 => 1.1399805097228
301 => 1.0507329428989
302 => 1.1250609685556
303 => 1.0846076034713
304 => 1.1117709501357
305 => 1.1116761797781
306 => 1.0616598464221
307 => 1.0328114691566
308 => 1.0511947779458
309 => 1.0709031442367
310 => 1.0741007603605
311 => 1.0996531716977
312 => 1.1067843004546
313 => 1.0851766474005
314 => 1.0488834854481
315 => 1.0573135592108
316 => 1.0326406339808
317 => 0.98940228154578
318 => 1.0204568211338
319 => 1.0310602063209
320 => 1.0357432652811
321 => 0.99322331161953
322 => 0.97986261902596
323 => 0.97274949839621
324 => 1.0433946933731
325 => 1.0472647966265
326 => 1.0274648012049
327 => 1.116962658023
328 => 1.0967065366455
329 => 1.1193375870944
330 => 1.0565486183766
331 => 1.0589472415382
401 => 1.0292219375094
402 => 1.04586612152
403 => 1.0341025487284
404 => 1.044521435933
405 => 1.0507664739647
406 => 1.0804869003637
407 => 1.1254003280845
408 => 1.0760476597486
409 => 1.0545439954113
410 => 1.0678847478249
411 => 1.1034129295262
412 => 1.1572399434577
413 => 1.1253732678406
414 => 1.1395151573483
415 => 1.1426045310768
416 => 1.1191072242452
417 => 1.1581063226768
418 => 1.1790062563544
419 => 1.2004452636758
420 => 1.2190601530255
421 => 1.1918820526977
422 => 1.2209665158761
423 => 1.1975295726532
424 => 1.1765042117157
425 => 1.1765360985093
426 => 1.1633465824616
427 => 1.1377902331333
428 => 1.1330772502125
429 => 1.157594782551
430 => 1.1772555216676
501 => 1.1788748743098
502 => 1.18976006969
503 => 1.1962018161896
504 => 1.259339689015
505 => 1.2847342637693
506 => 1.3157862690841
507 => 1.3278827751494
508 => 1.3642889215683
509 => 1.3348880015724
510 => 1.3285269275908
511 => 1.2402175247381
512 => 1.2546781845081
513 => 1.2778310960459
514 => 1.2405993077216
515 => 1.264214307837
516 => 1.2688764090939
517 => 1.2393341858013
518 => 1.255113963706
519 => 1.2132075519692
520 => 1.1263137733434
521 => 1.1582030602923
522 => 1.1816843093047
523 => 1.1481736717469
524 => 1.2082401925284
525 => 1.1731505711126
526 => 1.1620288457226
527 => 1.118639029795
528 => 1.1391173526856
529 => 1.1668145776166
530 => 1.1497009127573
531 => 1.1852143369701
601 => 1.2355108167397
602 => 1.2713550834307
603 => 1.2741067611472
604 => 1.2510612990442
605 => 1.2879917991384
606 => 1.2882607975136
607 => 1.2466030425419
608 => 1.2210878995731
609 => 1.2152908054062
610 => 1.2297730832223
611 => 1.2473572420669
612 => 1.2750825595835
613 => 1.2918363882925
614 => 1.3355214880214
615 => 1.347341423458
616 => 1.3603279489224
617 => 1.377681951839
618 => 1.3985198818153
619 => 1.3529276773311
620 => 1.3547391406098
621 => 1.3122843110611
622 => 1.2669152370499
623 => 1.3013447088895
624 => 1.346356663359
625 => 1.3360308712699
626 => 1.3348690087231
627 => 1.336822939253
628 => 1.3290376292267
629 => 1.2938249605146
630 => 1.2761413787304
701 => 1.2989577107949
702 => 1.3110835758491
703 => 1.3298897350616
704 => 1.3275714789888
705 => 1.3760141254861
706 => 1.3948374730853
707 => 1.390021655273
708 => 1.3909078816496
709 => 1.4249866533577
710 => 1.4628892563312
711 => 1.4983900457048
712 => 1.53450297345
713 => 1.4909674295416
714 => 1.4688627652439
715 => 1.4916691364116
716 => 1.4795677548472
717 => 1.5491058828197
718 => 1.5539205519258
719 => 1.6234536515002
720 => 1.6894488428438
721 => 1.6479984455875
722 => 1.6870843032333
723 => 1.7293588449938
724 => 1.8109132948472
725 => 1.7834486252568
726 => 1.7624111187767
727 => 1.7425307768055
728 => 1.7838986125321
729 => 1.8371176723271
730 => 1.8485805480811
731 => 1.8671547859582
801 => 1.8476262459802
802 => 1.8711462213855
803 => 1.9541820697674
804 => 1.9317450505569
805 => 1.8998808763472
806 => 1.965429703797
807 => 1.9891515696365
808 => 2.1556440473355
809 => 2.3658476778917
810 => 2.27882199457
811 => 2.2248023446309
812 => 2.2374982437298
813 => 2.314257493767
814 => 2.3389101286621
815 => 2.2718957687443
816 => 2.2955663735876
817 => 2.4259937335165
818 => 2.4959638275077
819 => 2.4009350416303
820 => 2.138754390291
821 => 1.8970118560931
822 => 1.9611328619706
823 => 1.9538635298105
824 => 2.0939914569096
825 => 1.9312099350692
826 => 1.9339507584205
827 => 2.0769763826539
828 => 2.0388195981884
829 => 1.977010494106
830 => 1.8974631309549
831 => 1.7504124729298
901 => 1.620165604306
902 => 1.8756097077397
903 => 1.8645944935047
904 => 1.8486428309291
905 => 1.884141529841
906 => 2.0565131352754
907 => 2.0525394118577
908 => 2.0272606108858
909 => 2.0464343586258
910 => 1.9736492434234
911 => 1.9924076248973
912 => 1.8969735628406
913 => 1.9401137445687
914 => 1.9768778795285
915 => 1.984258823924
916 => 2.0008884685274
917 => 1.8587899761381
918 => 1.9225880274283
919 => 1.9600634054923
920 => 1.7907482840332
921 => 1.9567165899307
922 => 1.8563163575262
923 => 1.8222390106872
924 => 1.8681196688568
925 => 1.8502399317477
926 => 1.8348679837147
927 => 1.8262901725887
928 => 1.859979864285
929 => 1.8584081998995
930 => 1.8032853253969
1001 => 1.7313797827042
1002 => 1.7555136430508
1003 => 1.7467455853307
1004 => 1.7149690130512
1005 => 1.7363825860496
1006 => 1.6420880477257
1007 => 1.4798591955429
1008 => 1.587032544499
1009 => 1.5829064871463
1010 => 1.5808259419273
1011 => 1.661363751614
1012 => 1.653621899536
1013 => 1.6395703622061
1014 => 1.7147109455487
1015 => 1.6872836218452
1016 => 1.7718081708093
1017 => 1.8274815054621
1018 => 1.8133609469505
1019 => 1.865721987284
1020 => 1.7560696384497
1021 => 1.7924917502438
1022 => 1.7999982970057
1023 => 1.7137837224141
1024 => 1.6548885622811
1025 => 1.6509609265542
1026 => 1.5488448351366
1027 => 1.6033944269196
1028 => 1.6513958102731
1029 => 1.6284068727046
1030 => 1.6211292618454
1031 => 1.6583089974039
1101 => 1.6611981812797
1102 => 1.5953244827296
1103 => 1.6090217106069
1104 => 1.6661414278299
1105 => 1.6075824402869
1106 => 1.4938118930472
1107 => 1.4655952243309
1108 => 1.4618306005877
1109 => 1.3853047571368
1110 => 1.4674807970578
1111 => 1.4316087534513
1112 => 1.544928109391
1113 => 1.4802007010221
1114 => 1.4774104318164
1115 => 1.4731925306684
1116 => 1.4073235759674
1117 => 1.4217446908565
1118 => 1.4696826731455
1119 => 1.4867874852863
1120 => 1.4850033132444
1121 => 1.4694477508798
1122 => 1.476569007673
1123 => 1.453628958332
1124 => 1.4455283494538
1125 => 1.4199605995863
1126 => 1.3823830705523
1127 => 1.3876084564409
1128 => 1.3131575387292
1129 => 1.2725927273506
1130 => 1.2613649221966
1201 => 1.2463506319024
1202 => 1.2630608262368
1203 => 1.3129466286336
1204 => 1.2527737670797
1205 => 1.1496116165812
1206 => 1.1558118376059
1207 => 1.1697418933863
1208 => 1.143783326596
1209 => 1.1192157216665
1210 => 1.1405752609199
1211 => 1.0968640977911
1212 => 1.1750241786178
1213 => 1.1729101674726
1214 => 1.2020434122178
1215 => 1.2202610280314
1216 => 1.1782753216043
1217 => 1.1677160299793
1218 => 1.1737310823819
1219 => 1.074315664861
1220 => 1.1939190516422
1221 => 1.1949533866978
1222 => 1.1860967819893
1223 => 1.2497818931101
1224 => 1.384177341459
1225 => 1.3336123677458
1226 => 1.3140320815896
1227 => 1.2768099432935
1228 => 1.3264062325411
1229 => 1.3225980113495
1230 => 1.3053757908962
1231 => 1.2949597382295
]
'min_raw' => 0.97274949839621
'max_raw' => 2.4959638275077
'avg_raw' => 1.7343566629519
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.972749'
'max' => '$2.49'
'avg' => '$1.73'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.59817847159714
'max_diff' => 1.4507945079137
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.030533495218703
]
1 => [
'year' => 2028
'avg' => 0.05240434173229
]
2 => [
'year' => 2029
'avg' => 0.14315921664896
]
3 => [
'year' => 2030
'avg' => 0.11044712244557
]
4 => [
'year' => 2031
'avg' => 0.10847276180275
]
5 => [
'year' => 2032
'avg' => 0.19018688907472
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.030533495218703
'min' => '$0.030533'
'max_raw' => 0.19018688907472
'max' => '$0.190186'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.19018688907472
]
1 => [
'year' => 2033
'avg' => 0.48918023538736
]
2 => [
'year' => 2034
'avg' => 0.31006594209056
]
3 => [
'year' => 2035
'avg' => 0.36572348974436
]
4 => [
'year' => 2036
'avg' => 0.70987017319652
]
5 => [
'year' => 2037
'avg' => 1.7343566629519
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.19018688907472
'min' => '$0.190186'
'max_raw' => 1.7343566629519
'max' => '$1.73'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.7343566629519
]
]
]
]
'prediction_2025_max_price' => '$0.0522067'
'last_price' => 0.050621
'sma_50day_nextmonth' => '$0.049421'
'sma_200day_nextmonth' => '$0.109054'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.050444'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.050412'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0510017'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.054013'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0593016'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.075676'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.17283'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0505079'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.05060099'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.051355'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.053597'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.061243'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.085552'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.147738'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.06376'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.1719067'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.2975099'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.260366'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.051124'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.052379'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.056284'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.076528'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.154872'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.222528'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.25705'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '19.50'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 8.83
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.051914'
'vwma_10_action' => 'SELL'
'hma_9' => '0.050189'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 4.28
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -69.77
'cci_20_action' => 'NEUTRAL'
'adx_14' => 56.42
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.005898'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -95.72
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 10.94
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.013929'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 13
'sell_pct' => 62.86
'buy_pct' => 37.14
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767710176
'last_updated_date' => '6. Januar 2026'
]
MaidSafeCoin Preisprognose für 2026
Die Preisprognose für MaidSafeCoin im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.017489 am unteren Ende und $0.0522067 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte MaidSafeCoin im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn EMAID das prognostizierte Preisziel erreicht.
MaidSafeCoin Preisprognose 2027-2032
Die Preisprognose für EMAID für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.030533 am unteren Ende und $0.190186 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte MaidSafeCoin, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| MaidSafeCoin Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.016836 | $0.030533 | $0.04423 |
| 2028 | $0.030385 | $0.0524043 | $0.074423 |
| 2029 | $0.066747 | $0.143159 | $0.21957 |
| 2030 | $0.056766 | $0.110447 | $0.164127 |
| 2031 | $0.067115 | $0.108472 | $0.14983 |
| 2032 | $0.102446 | $0.190186 | $0.277927 |
MaidSafeCoin Preisprognose 2032-2037
Die Preisprognose für MaidSafeCoin für die Jahre 2032-2037 wird derzeit zwischen $0.190186 am unteren Ende und $1.73 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte MaidSafeCoin bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| MaidSafeCoin Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.102446 | $0.190186 | $0.277927 |
| 2033 | $0.238063 | $0.48918 | $0.740297 |
| 2034 | $0.191391 | $0.310065 | $0.42874 |
| 2035 | $0.226283 | $0.365723 | $0.505163 |
| 2036 | $0.374571 | $0.70987 | $1.04 |
| 2037 | $0.972749 | $1.73 | $2.49 |
MaidSafeCoin Potenzielles Preishistogramm
MaidSafeCoin Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für MaidSafeCoin Bärisch, mit 13 technischen Indikatoren, die bullische Signale zeigen, und 22 anzeigen bärische Signale. Die Preisprognose für EMAID wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von MaidSafeCoin
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von MaidSafeCoin im nächsten Monat steigen, und bis zum 04.02.2026 $0.109054 erreichen. Der kurzfristige 50-Tage-SMA für MaidSafeCoin wird voraussichtlich bis zum 04.02.2026 $0.049421 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 19.50, was darauf hindeutet, dass sich der EMAID-Markt in einem BUY Zustand befindet.
Beliebte EMAID Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.050444 | BUY |
| SMA 5 | $0.050412 | BUY |
| SMA 10 | $0.0510017 | SELL |
| SMA 21 | $0.054013 | SELL |
| SMA 50 | $0.0593016 | SELL |
| SMA 100 | $0.075676 | SELL |
| SMA 200 | $0.17283 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.0505079 | BUY |
| EMA 5 | $0.05060099 | BUY |
| EMA 10 | $0.051355 | SELL |
| EMA 21 | $0.053597 | SELL |
| EMA 50 | $0.061243 | SELL |
| EMA 100 | $0.085552 | SELL |
| EMA 200 | $0.147738 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.06376 | SELL |
| SMA 50 | $0.1719067 | SELL |
| SMA 100 | $0.2975099 | SELL |
| SMA 200 | $0.260366 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.076528 | SELL |
| EMA 50 | $0.154872 | SELL |
| EMA 100 | $0.222528 | SELL |
| EMA 200 | $0.25705 | SELL |
MaidSafeCoin Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 19.50 | BUY |
| Stoch RSI (14) | 8.83 | BUY |
| Stochastic Fast (14) | 4.28 | BUY |
| Commodity Channel Index (20) | -69.77 | NEUTRAL |
| Average Directional Index (14) | 56.42 | SELL |
| Awesome Oscillator (5, 34) | -0.005898 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -95.72 | BUY |
| Ultimate Oscillator (7, 14, 28) | 10.94 | BUY |
| VWMA (10) | 0.051914 | SELL |
| Hull Moving Average (9) | 0.050189 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.013929 | SELL |
Auf weltweiten Geldflüssen basierende MaidSafeCoin-Preisprognose
Definition weltweiter Geldflüsse, die für MaidSafeCoin-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
MaidSafeCoin-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.07113 | $0.09995 | $0.140447 | $0.197352 | $0.277313 | $0.389671 |
| Amazon.com aktie | $0.105623 | $0.22039 | $0.459857 | $0.959519 | $2.00 | $4.17 |
| Apple aktie | $0.071802 | $0.101845 | $0.14446 | $0.2049059 | $0.290643 | $0.412255 |
| Netflix aktie | $0.079872 | $0.126025 | $0.198848 | $0.313751 | $0.495051 | $0.781113 |
| Google aktie | $0.065553 | $0.084892 | $0.109934 | $0.142365 | $0.184362 | $0.238748 |
| Tesla aktie | $0.114753 | $0.260138 | $0.589714 | $1.33 | $3.03 | $6.86 |
| Kodak aktie | $0.03796 | $0.028466 | $0.021346 | $0.0160077 | $0.012004 | $0.0090017 |
| Nokia aktie | $0.033534 | $0.022215 | $0.014716 | $0.009749 | $0.006458 | $0.004278 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
MaidSafeCoin Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in MaidSafeCoin investieren?", "Sollte ich heute EMAID kaufen?", "Wird MaidSafeCoin auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere MaidSafeCoin-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie MaidSafeCoin.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich MaidSafeCoin zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der MaidSafeCoin-Preis entspricht heute $0.05062 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
MaidSafeCoin-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von MaidSafeCoin 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.051936 | $0.053286 | $0.054671 | $0.056093 |
| Wenn die Wachstumsrate von MaidSafeCoin 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.053252 | $0.056021 | $0.058933 | $0.061997 |
| Wenn die Wachstumsrate von MaidSafeCoin 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.057200012 | $0.064634 | $0.073034 | $0.082526 |
| Wenn die Wachstumsrate von MaidSafeCoin 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.063779 | $0.080357 | $0.101244 | $0.127561 |
| Wenn die Wachstumsrate von MaidSafeCoin 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.076937 | $0.116933 | $0.177723 | $0.270115 |
| Wenn die Wachstumsrate von MaidSafeCoin 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.116411 | $0.267706 | $0.615633 | $1.41 |
| Wenn die Wachstumsrate von MaidSafeCoin 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.1822012 | $0.6558008 | $2.36 | $8.49 |
Fragefeld
Ist EMAID eine gute Investition?
Die Entscheidung, MaidSafeCoin zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von MaidSafeCoin in den letzten 2026 Stunden um 0% gefallen, und MaidSafeCoin hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in MaidSafeCoin investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann MaidSafeCoin steigen?
Es scheint, dass der Durchschnittswert von MaidSafeCoin bis zum Ende dieses Jahres potenziell auf $0.0522067 steigen könnte. Betrachtet man die Aussichten von MaidSafeCoin in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.164127 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird MaidSafeCoin nächste Woche kosten?
Basierend auf unserer neuen experimentellen MaidSafeCoin-Prognose wird der Preis von MaidSafeCoin in der nächsten Woche um 0.86% steigen und $0.0510541 erreichen bis zum 13. Januar 2026.
Wie viel wird MaidSafeCoin nächsten Monat kosten?
Basierend auf unserer neuen experimentellen MaidSafeCoin-Prognose wird der Preis von MaidSafeCoin im nächsten Monat um -11.62% fallen und $0.044739 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von MaidSafeCoin in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von MaidSafeCoin im Jahr 2026 wird erwartet, dass EMAID innerhalb der Spanne von $0.017489 bis $0.0522067 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte MaidSafeCoin-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird MaidSafeCoin in 5 Jahren sein?
Die Zukunft von MaidSafeCoin scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.164127 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der MaidSafeCoin-Prognose für 2030 könnte der Wert von MaidSafeCoin seinen höchsten Gipfel von ungefähr $0.164127 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.056766 liegen wird.
Wie viel wird MaidSafeCoin im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen MaidSafeCoin-Preisprognosesimulation wird der Wert von EMAID im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.0522067 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.0522067 und $0.017489 während des Jahres 2026 liegen.
Wie viel wird MaidSafeCoin im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von MaidSafeCoin könnte der Wert von EMAID um -12.62% fallen und bis zu $0.04423 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.04423 und $0.016836 im Laufe des Jahres schwanken.
Wie viel wird MaidSafeCoin im Jahr 2028 kosten?
Unser neues experimentelles MaidSafeCoin-Preisprognosemodell deutet darauf hin, dass der Wert von EMAID im Jahr 2028 um 47.02% steigen, und im besten Fall $0.074423 erreichen wird. Der Preis wird voraussichtlich zwischen $0.074423 und $0.030385 im Laufe des Jahres liegen.
Wie viel wird MaidSafeCoin im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von MaidSafeCoin im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.21957 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.21957 und $0.066747.
Wie viel wird MaidSafeCoin im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für MaidSafeCoin-Preisprognosen wird der Wert von EMAID im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.164127 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.164127 und $0.056766 während des Jahres 2030 liegen.
Wie viel wird MaidSafeCoin im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von MaidSafeCoin im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.14983 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.14983 und $0.067115 während des Jahres schwanken.
Wie viel wird MaidSafeCoin im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen MaidSafeCoin-Preisprognose könnte EMAID eine 449.04% Steigerung im Wert erfahren und $0.277927 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.277927 und $0.102446 liegen.
Wie viel wird MaidSafeCoin im Jahr 2033 kosten?
Laut unserer experimentellen MaidSafeCoin-Preisprognose wird der Wert von EMAID voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.740297 beträgt. Im Laufe des Jahres könnte der Preis von EMAID zwischen $0.740297 und $0.238063 liegen.
Wie viel wird MaidSafeCoin im Jahr 2034 kosten?
Die Ergebnisse unserer neuen MaidSafeCoin-Preisprognosesimulation deuten darauf hin, dass EMAID im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.42874 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.42874 und $0.191391.
Wie viel wird MaidSafeCoin im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von MaidSafeCoin könnte EMAID um 897.93% steigen, wobei der Wert im Jahr 2035 $0.505163 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.505163 und $0.226283.
Wie viel wird MaidSafeCoin im Jahr 2036 kosten?
Unsere jüngste MaidSafeCoin-Preisprognosesimulation deutet darauf hin, dass der Wert von EMAID im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $1.04 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $1.04 und $0.374571.
Wie viel wird MaidSafeCoin im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von MaidSafeCoin um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $2.49 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $2.49 und $0.972749 liegen.
Verwandte Prognosen
Syndicate-Preisprognose
LORDS-Preisprognose
Bad Idea AI-Preisprognose
Vector ETH-Preisprognose
Terracoin-Preisprognose
Phantasma-Preisprognose
Bifrost Native Coin-Preisprognose
NvirWorld-Preisprognose
OPEN Ticketing Ecosystem-Preisprognose
BabyBonk [OLD]-Preisprognose
Everest-Preisprognose
Saros-Preisprognose
Kasta-Preisprognose
UX Chain-Preisprognose
Guacamole-Preisprognose
RMRK-Preisprognose
Cult DAO-Preisprognose
Wrapped Ampleforth-Preisprognose
SpaceN-Preisprognose
Polaris Share-Preisprognose
Prisma mkUSD-Preisprognose
Source-Preisprognose
VLaunch-Preisprognose
agEUR-Preisprognose
Solve.Care-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von MaidSafeCoin?
MaidSafeCoin-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
MaidSafeCoin Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von MaidSafeCoin. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von EMAID über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von EMAID über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von EMAID einzuschätzen.
Wie liest man MaidSafeCoin-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von MaidSafeCoin in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von EMAID innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von MaidSafeCoin?
Die Preisentwicklung von MaidSafeCoin wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von EMAID. Die Marktkapitalisierung von MaidSafeCoin kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von EMAID-„Walen“, großen Inhabern von MaidSafeCoin, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen MaidSafeCoin-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


