Saros Preisvorhersage bis zu $0.004211 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.00141 | $0.004211 |
| 2027 | $0.001358 | $0.003568 |
| 2028 | $0.002451 | $0.0060038 |
| 2029 | $0.005384 | $0.017713 |
| 2030 | $0.004579 | $0.01324 |
| 2031 | $0.005414 | $0.012087 |
| 2032 | $0.008264 | $0.02242 |
| 2033 | $0.0192049 | $0.059721 |
| 2034 | $0.015439 | $0.034587 |
| 2035 | $0.018254 | $0.040752 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Saros eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,956.43 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Saros Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Saros'
'name_with_ticker' => 'Saros <small>SAROS</small>'
'name_lang' => 'Saros'
'name_lang_with_ticker' => 'Saros <small>SAROS</small>'
'name_with_lang' => 'Saros'
'name_with_lang_with_ticker' => 'Saros <small>SAROS</small>'
'image' => '/uploads/coins/saros-finance.png?1755784946'
'price_for_sd' => 0.004083
'ticker' => 'SAROS'
'marketcap' => '$10.69M'
'low24h' => '$0.003916'
'high24h' => '$0.004439'
'volume24h' => '$1.97M'
'current_supply' => '2.62B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004083'
'change_24h_pct' => '-7.3328%'
'ath_price' => '$0.4271'
'ath_days' => 114
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14.09.2025'
'ath_pct' => '-99.05%'
'fdv' => '$40.72M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.201353'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004118'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003609'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00141'
'current_year_max_price_prediction' => '$0.004211'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004579'
'grand_prediction_max_price' => '$0.01324'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0041610635879843
107 => 0.0041765994889558
108 => 0.0042116026671272
109 => 0.0039125043420807
110 => 0.0040467907089611
111 => 0.0041256713685724
112 => 0.0037692856787457
113 => 0.0041186267693518
114 => 0.0039072977056753
115 => 0.0038355694474075
116 => 0.0039321420976857
117 => 0.0038945076419523
118 => 0.0038621517468821
119 => 0.0038440966014881
120 => 0.0039150088975179
121 => 0.0039117007541496
122 => 0.0037956744743612
123 => 0.0036443229222135
124 => 0.0036951214710596
125 => 0.0036766658820249
126 => 0.0036097804465447
127 => 0.0036548531542801
128 => 0.0034563757601887
129 => 0.0031149057196118
130 => 0.0033404912879272
131 => 0.0033318064889369
201 => 0.0033274272194617
202 => 0.0034969485393235
203 => 0.0034806529759411
204 => 0.0034510763688353
205 => 0.0036092372489609
206 => 0.0035515064001511
207 => 0.0037294192730844
208 => 0.0038466041978815
209 => 0.0038168823104177
210 => 0.0039270952985933
211 => 0.0036962917670264
212 => 0.0037729554419825
213 => 0.0037887557191397
214 => 0.0036072855682509
215 => 0.0034833191316411
216 => 0.0034750519836401
217 => 0.003260111266186
218 => 0.0033749308625091
219 => 0.0034759673557157
220 => 0.0034275787162184
221 => 0.003412260318523
222 => 0.0034905186901936
223 => 0.00349660003591
224 => 0.0033579447091032
225 => 0.0033867755421895
226 => 0.0035070049088864
227 => 0.0033837460706255
228 => 0.0031442742821015
301 => 0.003084881967591
302 => 0.0030769579380178
303 => 0.0029158812706015
304 => 0.003088850846042
305 => 0.0030133449910658
306 => 0.0032518670822366
307 => 0.0031156245429795
308 => 0.0031097513994166
309 => 0.0031008732815185
310 => 0.00296222793988
311 => 0.0029925824583277
312 => 0.0030934855007716
313 => 0.0031294888430697
314 => 0.0031257333995013
315 => 0.0030929910208161
316 => 0.0031079803141101
317 => 0.0030596945777943
318 => 0.0030426438793204
319 => 0.002988827184773
320 => 0.0029097315110295
321 => 0.0029207302495855
322 => 0.0027640210233909
323 => 0.0026786375197719
324 => 0.0026550044913067
325 => 0.0026234014179507
326 => 0.0026585741425348
327 => 0.0027635770858426
328 => 0.0026369212585963
329 => 0.0024197787266559
330 => 0.0024328293628184
331 => 0.0024621502675069
401 => 0.0024075109555971
402 => 0.0023557994324044
403 => 0.002400758406332
404 => 0.0023087522530094
405 => 0.0024732687715713
406 => 0.0024688190607964
407 => 0.002530140645283
408 => 0.0025684862905081
409 => 0.0024801119928144
410 => 0.0024578860959339
411 => 0.0024705469769077
412 => 0.0022612908168716
413 => 0.0025130399526622
414 => 0.0025152170896427
415 => 0.0024965751210381
416 => 0.002630623763964
417 => 0.002913508211358
418 => 0.0028070757032478
419 => 0.002765861819168
420 => 0.0026875141954051
421 => 0.0027919077522476
422 => 0.0027838919558753
423 => 0.0027476414847791
424 => 0.0027257170867518
425 => 0.0027661134623558
426 => 0.0027207115287675
427 => 0.0027125560939334
428 => 0.0026631430320389
429 => 0.0026455048170937
430 => 0.0026324461849458
501 => 0.0026180699140657
502 => 0.0026497803852838
503 => 0.0025779202856437
504 => 0.0024912640500102
505 => 0.0024840595216508
506 => 0.0025039518578799
507 => 0.0024951509799087
508 => 0.002484017386433
509 => 0.002462760324434
510 => 0.0024564538082242
511 => 0.0024769469264194
512 => 0.0024538113908
513 => 0.0024879491338643
514 => 0.0024786655566783
515 => 0.0024268082491757
516 => 0.0023621748439931
517 => 0.0023615994711139
518 => 0.0023476743099873
519 => 0.0023299385236307
520 => 0.0023250048336061
521 => 0.0023969720869486
522 => 0.0025459421475688
523 => 0.0025166957601176
524 => 0.0025378292723415
525 => 0.0026417852358769
526 => 0.0026748297106199
527 => 0.0026513755251486
528 => 0.0026192699894843
529 => 0.0026206824701152
530 => 0.0027303968044866
531 => 0.002737239552943
601 => 0.0027545289707381
602 => 0.0027767507585936
603 => 0.0026551599917101
604 => 0.0026149555559294
605 => 0.0025959044637994
606 => 0.0025372344737393
607 => 0.0026005050280343
608 => 0.0025636399855619
609 => 0.0025686143392806
610 => 0.0025653747848956
611 => 0.0025671438006475
612 => 0.0024732227858515
613 => 0.0025074426673
614 => 0.0024505454773367
615 => 0.0023743665269853
616 => 0.0023741111484319
617 => 0.0023927558386078
618 => 0.0023816652473244
619 => 0.0023518207513459
620 => 0.0023560600211376
621 => 0.0023189195569931
622 => 0.0023605695459346
623 => 0.0023617639185866
624 => 0.0023457264041539
625 => 0.0024098939587092
626 => 0.0024361834581662
627 => 0.0024256272226097
628 => 0.0024354428045388
629 => 0.0025179110795558
630 => 0.0025313570067266
701 => 0.0025373287993878
702 => 0.0025293273883327
703 => 0.002436950173217
704 => 0.0024410474955256
705 => 0.0024109840630409
706 => 0.0023855836305978
707 => 0.0023865995146878
708 => 0.0023996586387886
709 => 0.0024566885996445
710 => 0.0025767047901659
711 => 0.0025812593168655
712 => 0.0025867795360903
713 => 0.002564326030263
714 => 0.0025575538380544
715 => 0.0025664881076287
716 => 0.002611559878637
717 => 0.0027274967105369
718 => 0.0026865168909828
719 => 0.0026531996597965
720 => 0.0026824278538079
721 => 0.002677928402438
722 => 0.0026399485047882
723 => 0.0026388825355572
724 => 0.0025659869690594
725 => 0.0025390391378769
726 => 0.0025165195131306
727 => 0.0024919286707973
728 => 0.0024773503951696
729 => 0.0024997492522415
730 => 0.0025048721358693
731 => 0.0024558966434167
801 => 0.002449221464766
802 => 0.0024892159091123
803 => 0.0024716158452987
804 => 0.0024897179473916
805 => 0.0024939177903541
806 => 0.0024932415189065
807 => 0.0024748650309307
808 => 0.0024865776563717
809 => 0.0024588738055019
810 => 0.0024287500286649
811 => 0.0024095329358204
812 => 0.0023927634735362
813 => 0.0024020681458584
814 => 0.0023688986879959
815 => 0.0023582871108564
816 => 0.0024826096824147
817 => 0.0025744481027177
818 => 0.0025731127357145
819 => 0.002564984032511
820 => 0.0025529064283977
821 => 0.0026106763266694
822 => 0.0025905504492571
823 => 0.0026051937066479
824 => 0.0026089210302294
825 => 0.0026202025161126
826 => 0.0026242346776394
827 => 0.0026120466849892
828 => 0.0025711422930173
829 => 0.0024692124372963
830 => 0.0024217638143037
831 => 0.0024061049783968
901 => 0.0024066741473417
902 => 0.0023909739269606
903 => 0.0023955983454974
904 => 0.0023893657429148
905 => 0.0023775627014519
906 => 0.0024013393413081
907 => 0.0024040793775568
908 => 0.0023985296257047
909 => 0.0023998367931698
910 => 0.0023538872181642
911 => 0.0023573806645546
912 => 0.0023379287111269
913 => 0.002334281704356
914 => 0.0022851088599661
915 => 0.0021979920384116
916 => 0.0022462632141873
917 => 0.0021879584218047
918 => 0.0021658775134677
919 => 0.0022704050992495
920 => 0.0022599134287809
921 => 0.0022419562495583
922 => 0.0022153938388839
923 => 0.0022055415823822
924 => 0.0021456823907236
925 => 0.0021421455903441
926 => 0.0021718134220642
927 => 0.0021581227385331
928 => 0.0021388958337882
929 => 0.002069257933802
930 => 0.0019909618779013
1001 => 0.0019933251436774
1002 => 0.0020182296623096
1003 => 0.0020906429090644
1004 => 0.0020623498007954
1005 => 0.0020418228261202
1006 => 0.0020379787408022
1007 => 0.0020860955166955
1008 => 0.0021541908353607
1009 => 0.0021861396353316
1010 => 0.0021544793448599
1011 => 0.0021181097078772
1012 => 0.0021203233591597
1013 => 0.0021350497894087
1014 => 0.0021365973290074
1015 => 0.0021129244341907
1016 => 0.0021195882154168
1017 => 0.0021094653223854
1018 => 0.0020473411465372
1019 => 0.002046217517194
1020 => 0.0020309712425531
1021 => 0.0020305095914163
1022 => 0.0020045718748908
1023 => 0.0020009430090499
1024 => 0.0019494420985817
1025 => 0.001983340153811
1026 => 0.0019606031180909
1027 => 0.0019263330421363
1028 => 0.0019204248681246
1029 => 0.0019202472612795
1030 => 0.0019554349666361
1031 => 0.0019829289649866
1101 => 0.0019609986385619
1102 => 0.0019560055283365
1103 => 0.0020093188825021
1104 => 0.0020025342722225
1105 => 0.0019966588434764
1106 => 0.0021480936464502
1107 => 0.0020282211832914
1108 => 0.0019759499472732
1109 => 0.0019112543666622
1110 => 0.0019323195739326
1111 => 0.0019367583226167
1112 => 0.001781177113502
1113 => 0.0017180578363406
1114 => 0.0016963976790186
1115 => 0.0016839319522501
1116 => 0.0016896127404733
1117 => 0.0016327979878752
1118 => 0.0016709784412504
1119 => 0.0016217816679319
1120 => 0.0016135336687849
1121 => 0.001701503593789
1122 => 0.0017137440949405
1123 => 0.0016615223142027
1124 => 0.0016950571513747
1125 => 0.001682896953247
1126 => 0.0016226250054072
1127 => 0.0016203230603301
1128 => 0.0015900807155655
1129 => 0.0015427573020807
1130 => 0.0015211292322614
1201 => 0.0015098651457161
1202 => 0.0015145129273574
1203 => 0.0015121628667351
1204 => 0.0014968271315323
1205 => 0.0015130418931255
1206 => 0.0014716198776569
1207 => 0.0014551252973374
1208 => 0.0014476750780784
1209 => 0.0014109106551877
1210 => 0.0014694192012199
1211 => 0.0014809461218595
1212 => 0.0014924957540935
1213 => 0.0015930274174224
1214 => 0.001588005139622
1215 => 0.0016334040849889
1216 => 0.0016316399654553
1217 => 0.0016186914508225
1218 => 0.001564063797514
1219 => 0.0015858374064784
1220 => 0.0015188216224559
1221 => 0.0015690344044759
1222 => 0.0015461193876979
1223 => 0.0015612868142529
1224 => 0.0015340144137153
1225 => 0.0015491080862226
1226 => 0.0014836795823637
1227 => 0.0014225833660641
1228 => 0.0014471702670128
1229 => 0.0014738990401972
1230 => 0.0015318538308257
1231 => 0.001497336435644
]
'min_raw' => 0.0014109106551877
'max_raw' => 0.0042116026671272
'avg_raw' => 0.0028112566611575
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00141'
'max' => '$0.004211'
'avg' => '$0.002811'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0026727693448123
'max_diff' => 0.00012792266712722
'year' => 2026
]
1 => [
'items' => [
101 => 0.0015097501961986
102 => 0.0014681661763792
103 => 0.0013823664656038
104 => 0.001382852082649
105 => 0.0013696536663945
106 => 0.0013582483077503
107 => 0.0015013011737044
108 => 0.0014835102884918
109 => 0.0014551628413191
110 => 0.0014931070258425
111 => 0.0015031400704857
112 => 0.0015034256971619
113 => 0.0015311087947091
114 => 0.0015458832688324
115 => 0.0015484873339329
116 => 0.0015920472860562
117 => 0.0016066480074383
118 => 0.0016667863124397
119 => 0.0015446297579266
120 => 0.0015421140240737
121 => 0.0014936409783326
122 => 0.001462898606395
123 => 0.0014957459348404
124 => 0.0015248441837355
125 => 0.0014945451420368
126 => 0.001498501557235
127 => 0.0014578275692772
128 => 0.0014723666060831
129 => 0.0014848895832001
130 => 0.0014779751313026
131 => 0.0014676238621489
201 => 0.0015224584591582
202 => 0.0015193644762964
203 => 0.0015704277136734
204 => 0.0016102351587759
205 => 0.0016815772168315
206 => 0.0016071280601048
207 => 0.0016044148369251
208 => 0.0016309370287215
209 => 0.0016066439470289
210 => 0.00162199633609
211 => 0.0016791037096067
212 => 0.0016803102984205
213 => 0.0016600983811877
214 => 0.0016588684841872
215 => 0.0016627504039859
216 => 0.0016854869294966
217 => 0.0016775420888603
218 => 0.0016867360595833
219 => 0.0016982332607556
220 => 0.0017457905595163
221 => 0.001757256463243
222 => 0.0017294002615765
223 => 0.0017319153646944
224 => 0.0017214963806013
225 => 0.0017114317725168
226 => 0.0017340555416727
227 => 0.0017754009244763
228 => 0.0017751437169957
301 => 0.0017847350421667
302 => 0.0017907103582895
303 => 0.001765059927292
304 => 0.0017483624399051
305 => 0.0017547653190579
306 => 0.0017650036622599
307 => 0.0017514451623465
308 => 0.0016677558199726
309 => 0.0016931418203529
310 => 0.0016889163485776
311 => 0.0016828987629347
312 => 0.0017084245826213
313 => 0.0017059625550419
314 => 0.0016322152704686
315 => 0.0016369363323545
316 => 0.0016325023738785
317 => 0.0016468294008169
318 => 0.001605870240557
319 => 0.0016184690023888
320 => 0.0016263708277036
321 => 0.0016310250635188
322 => 0.0016478393547224
323 => 0.0016458663917195
324 => 0.001647716712572
325 => 0.0016726478676187
326 => 0.0017987410945056
327 => 0.0018056040706361
328 => 0.0017718082661542
329 => 0.0017853090234519
330 => 0.0017593905217314
331 => 0.0017767897855753
401 => 0.0017886939200039
402 => 0.0017349014255544
403 => 0.0017317161831435
404 => 0.0017056907065466
405 => 0.0017196753235114
406 => 0.0016974247923908
407 => 0.0017028842944373
408 => 0.0016876190507646
409 => 0.0017150934500958
410 => 0.0017458140976381
411 => 0.0017535753464024
412 => 0.0017331588423312
413 => 0.0017183759478704
414 => 0.0016924220549854
415 => 0.0017355839572733
416 => 0.0017482058128375
417 => 0.0017355176600393
418 => 0.0017325775377944
419 => 0.0017270060114529
420 => 0.0017337595634461
421 => 0.0017481370715014
422 => 0.0017413569042134
423 => 0.0017458353241583
424 => 0.0017287682054549
425 => 0.0017650684186519
426 => 0.0018227218933309
427 => 0.0018229072586793
428 => 0.0018161270548436
429 => 0.0018133527415156
430 => 0.0018203096421081
501 => 0.0018240834752926
502 => 0.0018465808161314
503 => 0.0018707213591851
504 => 0.0019833747402726
505 => 0.001951742121653
506 => 0.0020516949031335
507 => 0.0021307445760402
508 => 0.0021544481165217
509 => 0.0021326419746165
510 => 0.0020580443411034
511 => 0.0020543842253165
512 => 0.0021658645840935
513 => 0.0021343662766151
514 => 0.0021306196531673
515 => 0.0020907619097032
516 => 0.002114322772568
517 => 0.0021091696662425
518 => 0.002101035235809
519 => 0.0021459877208912
520 => 0.002230134760029
521 => 0.0022170196548534
522 => 0.0022072298372321
523 => 0.0021643337061885
524 => 0.0021901667582745
525 => 0.0021809681032262
526 => 0.0022204913629244
527 => 0.0021970786594266
528 => 0.0021341276459565
529 => 0.0021441528023408
530 => 0.0021426375201211
531 => 0.0021738219208281
601 => 0.0021644611377803
602 => 0.0021408096769959
603 => 0.0022298471545972
604 => 0.0022240655560542
605 => 0.0022322625409307
606 => 0.0022358711071735
607 => 0.0022900666507731
608 => 0.0023122688309218
609 => 0.0023173091145195
610 => 0.0023383994684826
611 => 0.0023167843673
612 => 0.0024032601833363
613 => 0.0024607615549966
614 => 0.0025275523571737
615 => 0.0026251516708295
616 => 0.0026618499156082
617 => 0.0026552207061622
618 => 0.0027292193918905
619 => 0.0028621933852458
620 => 0.0026820985520913
621 => 0.0028717388487074
622 => 0.0028117009203013
623 => 0.0026693520720865
624 => 0.0026601864844441
625 => 0.0027565867771593
626 => 0.0029703933482172
627 => 0.0029168372271412
628 => 0.0029704809468453
629 => 0.0029079026983566
630 => 0.0029047951608682
701 => 0.0029674416609935
702 => 0.0031138186232191
703 => 0.0030442804153241
704 => 0.0029445803428385
705 => 0.0030181973248569
706 => 0.0029544234821025
707 => 0.0028107231652021
708 => 0.0029167962737848
709 => 0.0028458682068638
710 => 0.0028665687875347
711 => 0.0030156490344491
712 => 0.0029977113047229
713 => 0.0030209243879776
714 => 0.0029799539036253
715 => 0.0029416810107878
716 => 0.0028702418141243
717 => 0.0028490921899021
718 => 0.0028549371851534
719 => 0.0028490892934128
720 => 0.0028091197194397
721 => 0.0028004882937457
722 => 0.0027861022061043
723 => 0.002790561056214
724 => 0.0027635110026498
725 => 0.0028145600425516
726 => 0.0028240351942
727 => 0.0028611844283039
728 => 0.0028650413850264
729 => 0.0029685014732194
730 => 0.0029115173952188
731 => 0.0029497472345102
801 => 0.0029463275978508
802 => 0.0026724372032667
803 => 0.002710176883085
804 => 0.0027688879815183
805 => 0.0027424387112551
806 => 0.002705045631279
807 => 0.0026748487143083
808 => 0.0026290972973042
809 => 0.0026934915381593
810 => 0.0027781631173195
811 => 0.0028671887960033
812 => 0.0029741473157482
813 => 0.0029502754192756
814 => 0.0028651892808754
815 => 0.0028690061828886
816 => 0.0028926007692384
817 => 0.0028620436361212
818 => 0.0028530317410188
819 => 0.0028913626732384
820 => 0.0028916266373023
821 => 0.002856466962698
822 => 0.0028173934185279
823 => 0.0028172296989511
824 => 0.0028102769391717
825 => 0.0029091395788757
826 => 0.0029635040345726
827 => 0.0029697368318056
828 => 0.0029630845176585
829 => 0.0029656447293528
830 => 0.0029340112504218
831 => 0.0030063160026413
901 => 0.0030726699934767
902 => 0.0030548857064866
903 => 0.003028224532103
904 => 0.0030069876225303
905 => 0.00304988296551
906 => 0.0030479729034106
907 => 0.0030720904492527
908 => 0.0030709963380637
909 => 0.0030628865145037
910 => 0.0030548859961139
911 => 0.0030866071471919
912 => 0.0030774719651075
913 => 0.0030683225935622
914 => 0.0030499721282293
915 => 0.003052466261237
916 => 0.0030258096902811
917 => 0.0030134771408351
918 => 0.0028280251870922
919 => 0.0027784663652346
920 => 0.0027940585794538
921 => 0.0027991919412265
922 => 0.0027776238784427
923 => 0.0028085469400939
924 => 0.0028037276136912
925 => 0.0028224767935125
926 => 0.0028107631199549
927 => 0.0028112438532036
928 => 0.0028456912695179
929 => 0.0028556915010237
930 => 0.0028506053025681
1001 => 0.0028541675016218
1002 => 0.0029362568753028
1003 => 0.0029245863914357
1004 => 0.0029183866794827
1005 => 0.0029201040420633
1006 => 0.0029410796370548
1007 => 0.0029469516584274
1008 => 0.0029220714912521
1009 => 0.0029338051219225
1010 => 0.0029837654320977
1011 => 0.0030012487131503
1012 => 0.0030570469538194
1013 => 0.0030333428694485
1014 => 0.0030768527422
1015 => 0.0032105872574292
1016 => 0.003317423641919
1017 => 0.0032191724875419
1018 => 0.0034153639021257
1019 => 0.0035681270603662
1020 => 0.0035622637559125
1021 => 0.0035356259657978
1022 => 0.0033617091715598
1023 => 0.0032016683445486
1024 => 0.0033355492920359
1025 => 0.0033358905821039
1026 => 0.0033243900899816
1027 => 0.003252961521121
1028 => 0.0033219045306157
1029 => 0.0033273769763451
1030 => 0.0033243138619774
1031 => 0.0032695497457051
1101 => 0.0031859350622578
1102 => 0.0032022731712581
1103 => 0.0032290353270891
1104 => 0.0031783689829305
1105 => 0.0031621780159898
1106 => 0.0031922801039901
1107 => 0.003289275303546
1108 => 0.0032709389229249
1109 => 0.0032704600859238
1110 => 0.0033489108980564
1111 => 0.0032927570473143
1112 => 0.0032024792471345
1113 => 0.0031796829119712
1114 => 0.0030987712795929
1115 => 0.0031546572322739
1116 => 0.0031566684682191
1117 => 0.0031260603030762
1118 => 0.0032049629310446
1119 => 0.0032042358294373
1120 => 0.0032791421315869
1121 => 0.0034223348477747
1122 => 0.0033799857155124
1123 => 0.0033307382822637
1124 => 0.0033360928437411
1125 => 0.0033948191669635
1126 => 0.0033593118913517
1127 => 0.0033720805552272
1128 => 0.0033947998400615
1129 => 0.0034085069486901
1130 => 0.0033341206017498
1201 => 0.0033167775859678
1202 => 0.0032812998622491
1203 => 0.003272044386354
1204 => 0.0033009402520558
1205 => 0.0032933272123494
1206 => 0.0031564994316258
1207 => 0.0031422001672376
1208 => 0.0031426387052617
1209 => 0.0031066825250646
1210 => 0.003051840719792
1211 => 0.0031959617096144
1212 => 0.0031843867771597
1213 => 0.0031716089475583
1214 => 0.0031731741587752
1215 => 0.0032357321957435
1216 => 0.0031994453750453
1217 => 0.0032959198351645
1218 => 0.0032760875864517
1219 => 0.0032557467153934
1220 => 0.003252934987415
1221 => 0.0032451054874591
1222 => 0.0032182552188818
1223 => 0.0031858319061236
1224 => 0.0031644232265814
1225 => 0.0029190131557424
1226 => 0.0029645598374054
1227 => 0.0030169571429481
1228 => 0.0030350444828523
1229 => 0.0030041048363402
1230 => 0.0032194769047054
1231 => 0.0032588274569726
]
'min_raw' => 0.0013582483077503
'max_raw' => 0.0035681270603662
'avg_raw' => 0.0024631876840582
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001358'
'max' => '$0.003568'
'avg' => '$0.002463'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.2662347437456E-5
'max_diff' => -0.00064347560676106
'year' => 2027
]
2 => [
'items' => [
101 => 0.0031396320673822
102 => 0.0031173354767056
103 => 0.0032209386654782
104 => 0.0031584532776736
105 => 0.003186590443976
106 => 0.0031257732806373
107 => 0.0032493490612501
108 => 0.0032484076208479
109 => 0.0032003338511039
110 => 0.0032409654720966
111 => 0.003233904728054
112 => 0.0031796295604135
113 => 0.0032510696808732
114 => 0.0032511051142817
115 => 0.003204835156117
116 => 0.0031508019747769
117 => 0.00314114211816
118 => 0.0031338647138184
119 => 0.0031848006486209
120 => 0.0032304696484923
121 => 0.0033154483349478
122 => 0.0033368139957665
123 => 0.0034202055923345
124 => 0.0033705499568414
125 => 0.0033925616569073
126 => 0.003416458471074
127 => 0.0034279154825618
128 => 0.0034092468971596
129 => 0.0035387883719802
130 => 0.0035497256415033
131 => 0.0035533928133674
201 => 0.0035097121569147
202 => 0.0035485108034296
203 => 0.0035303582016014
204 => 0.0035775862286203
205 => 0.0035849921862946
206 => 0.0035787196036191
207 => 0.00358107037148
208 => 0.0034705295754027
209 => 0.003464797451977
210 => 0.0033866395423338
211 => 0.0034184894682275
212 => 0.0033589475583759
213 => 0.0033778289113395
214 => 0.0033861516318177
215 => 0.0033818043149501
216 => 0.0034202902152503
217 => 0.0033875693378452
218 => 0.0033012135625627
219 => 0.0032148342597071
220 => 0.0032137498379228
221 => 0.0031910076922022
222 => 0.003174569286278
223 => 0.0031777359064428
224 => 0.0031888954889322
225 => 0.0031739206710567
226 => 0.003177116307693
227 => 0.0032301851682708
228 => 0.0032408277497899
229 => 0.003204660099463
301 => 0.0030594417644335
302 => 0.0030238048207647
303 => 0.0030494199491625
304 => 0.0030371775676139
305 => 0.0024512393390546
306 => 0.00258889683451
307 => 0.0025071054251173
308 => 0.0025447986696072
309 => 0.0024613108204
310 => 0.0025011555980148
311 => 0.0024937977224876
312 => 0.0027151469015985
313 => 0.0027116908386226
314 => 0.0027133450730784
315 => 0.0026343841524173
316 => 0.002760171043053
317 => 0.0028221381885305
318 => 0.0028106697191048
319 => 0.0028135560857807
320 => 0.0027639587432972
321 => 0.002713825283768
322 => 0.0026582195616661
323 => 0.0027615281202565
324 => 0.0027500419720772
325 => 0.0027763870634149
326 => 0.0028433900483091
327 => 0.0028532564923543
328 => 0.0028665170932068
329 => 0.002861764111755
330 => 0.002974999412917
331 => 0.0029612858707957
401 => 0.0029943315616526
402 => 0.0029263540683773
403 => 0.0028494310822533
404 => 0.0028640516271136
405 => 0.0028626435510725
406 => 0.0028447171269556
407 => 0.0028285339528075
408 => 0.0028015935274318
409 => 0.0028868370197531
410 => 0.0028833762896378
411 => 0.0029394014875466
412 => 0.0029294984896165
413 => 0.0028633638457645
414 => 0.0028657258575077
415 => 0.0028816115216254
416 => 0.0029365919865161
417 => 0.0029529139318512
418 => 0.0029453529564549
419 => 0.0029632492243897
420 => 0.0029773937048757
421 => 0.0029650255533665
422 => 0.003140132496614
423 => 0.0030674158853641
424 => 0.0031028574557284
425 => 0.0031113100614264
426 => 0.0030896588896701
427 => 0.0030943542535537
428 => 0.0031014664504273
429 => 0.0031446503171328
430 => 0.0032579772787207
501 => 0.0033081690185653
502 => 0.0034591733443045
503 => 0.0033040012932739
504 => 0.0032947940259316
505 => 0.003321994464891
506 => 0.0034106499895311
507 => 0.0034824969652619
508 => 0.0035063327520633
509 => 0.003509483044775
510 => 0.0035542005653876
511 => 0.0035798318142703
512 => 0.0035487706821977
513 => 0.0035224496250022
514 => 0.0034281708652179
515 => 0.0034390838883755
516 => 0.0035142637960068
517 => 0.0036204598436105
518 => 0.00371158710027
519 => 0.0036796775110934
520 => 0.0039231251518518
521 => 0.0039472619910386
522 => 0.0039439270603004
523 => 0.0039989143720111
524 => 0.0038897757562367
525 => 0.003843116883532
526 => 0.0035281405363245
527 => 0.0036166360421716
528 => 0.0037452694570791
529 => 0.0037282443422655
530 => 0.0036348273179787
531 => 0.0037115162350802
601 => 0.0036861604808023
602 => 0.003666161345392
603 => 0.0037577812617294
604 => 0.0036570414001778
605 => 0.0037442644998981
606 => 0.0036323999722993
607 => 0.0036798232714089
608 => 0.0036529035132274
609 => 0.0036703238959323
610 => 0.0035684846945964
611 => 0.0036234346556304
612 => 0.0035661985955587
613 => 0.0035661714582139
614 => 0.0035649079690155
615 => 0.0036322459398663
616 => 0.0036344418286782
617 => 0.0035846789664775
618 => 0.0035775073605923
619 => 0.0036040245463405
620 => 0.0035729798666913
621 => 0.0035875054769063
622 => 0.0035734198326273
623 => 0.003570248857411
624 => 0.0035449819873909
625 => 0.0035340963250591
626 => 0.0035383648737483
627 => 0.0035237941164843
628 => 0.0035150147081854
629 => 0.0035631615237303
630 => 0.0035374386224217
701 => 0.0035592191201864
702 => 0.0035343974940655
703 => 0.0034483549236627
704 => 0.0033988709315403
705 => 0.0032363444921999
706 => 0.0032824367887834
707 => 0.0033129960291042
708 => 0.0033028962003605
709 => 0.0033245945406169
710 => 0.003325926642482
711 => 0.0033188722908763
712 => 0.0033107042554352
713 => 0.0033067285075032
714 => 0.0033363604753193
715 => 0.0033535628300027
716 => 0.0033160630577003
717 => 0.0033072773857274
718 => 0.0033451917259443
719 => 0.0033683194515742
720 => 0.0035390815832787
721 => 0.0035264309730076
722 => 0.0035581815222312
723 => 0.0035546068976405
724 => 0.0035878865314859
725 => 0.0036422846678006
726 => 0.0035316780467148
727 => 0.0035508755316461
728 => 0.0035461687516756
729 => 0.0035975561412094
730 => 0.0035977165670304
731 => 0.0035669072600144
801 => 0.0035836094851717
802 => 0.0035742867612905
803 => 0.0035911341833855
804 => 0.0035262620163947
805 => 0.0036052693132718
806 => 0.0036500613594834
807 => 0.0036506832970885
808 => 0.0036719143715011
809 => 0.0036934863727252
810 => 0.0037348919505496
811 => 0.0036923315936326
812 => 0.0036157696547062
813 => 0.0036212971794031
814 => 0.0035764089426235
815 => 0.0035771635219935
816 => 0.0035731355181791
817 => 0.0035852238608402
818 => 0.0035289147278224
819 => 0.0035421303687926
820 => 0.0035236283940436
821 => 0.0035508353119663
822 => 0.0035215651657461
823 => 0.0035461664819238
824 => 0.0035567835944395
825 => 0.0035959609681926
826 => 0.0035157786357886
827 => 0.0033522814321503
828 => 0.0033866505265671
829 => 0.0033358159362906
830 => 0.0033405208711616
831 => 0.0033500255883859
901 => 0.003319217690112
902 => 0.0033250948662342
903 => 0.003324884892146
904 => 0.0033230754488916
905 => 0.0033150611246931
906 => 0.0033034387690195
907 => 0.0033497386568507
908 => 0.0033576059100057
909 => 0.0033750938392229
910 => 0.0034271260543975
911 => 0.0034219268090975
912 => 0.0034304069938965
913 => 0.0034118947980944
914 => 0.0033413795988306
915 => 0.0033452089134095
916 => 0.0032974572992502
917 => 0.0033738727230886
918 => 0.0033557765420893
919 => 0.0033441098164765
920 => 0.0033409264423016
921 => 0.0033930876352735
922 => 0.0034086950817372
923 => 0.0033989695684778
924 => 0.0033790222570442
925 => 0.0034173269918899
926 => 0.0034275757229876
927 => 0.0034298700359217
928 => 0.003497738681864
929 => 0.0034336631393033
930 => 0.0034490867592538
1001 => 0.003569417439241
1002 => 0.0034602941169914
1003 => 0.0035180991745275
1004 => 0.0035152699177641
1005 => 0.0035448410291831
1006 => 0.0035128442235117
1007 => 0.0035132408622658
1008 => 0.0035394980058852
1009 => 0.0035026245831725
1010 => 0.0034934942051567
1011 => 0.003480880653321
1012 => 0.0035084218822969
1013 => 0.0035249316034853
1014 => 0.0036579878312097
1015 => 0.0037439482224209
1016 => 0.003740216455134
1017 => 0.0037743178225604
1018 => 0.0037589548442021
1019 => 0.0037093437345341
1020 => 0.003794023849307
1021 => 0.0037672275178264
1022 => 0.0037694365748361
1023 => 0.0037693543536239
1024 => 0.0037871715714826
1025 => 0.0037745464397057
1026 => 0.0037496610090302
1027 => 0.003766181119267
1028 => 0.0038152399406228
1029 => 0.0039675200274198
1030 => 0.0040527379814342
1031 => 0.0039623897995853
1101 => 0.0040247107656143
1102 => 0.0039873403932276
1103 => 0.0039805490848927
1104 => 0.0040196912570421
1105 => 0.0040589019423823
1106 => 0.0040564043912386
1107 => 0.0040279394471725
1108 => 0.0040118603225409
1109 => 0.0041336168411538
1110 => 0.0042233249699997
1111 => 0.0042172074770233
1112 => 0.0042442081015057
1113 => 0.0043234827700838
1114 => 0.0043307306522761
1115 => 0.0043298175857105
1116 => 0.0043118529534586
1117 => 0.0043899091597903
1118 => 0.0044550250203805
1119 => 0.0043076946601404
1120 => 0.0043637961326238
1121 => 0.0043889818910982
1122 => 0.0044259620568163
1123 => 0.0044883537949782
1124 => 0.0045561277712133
1125 => 0.0045657117545568
1126 => 0.0045589114597388
1127 => 0.0045142127005495
1128 => 0.0045883717940576
1129 => 0.0046318124517899
1130 => 0.0046576803693477
1201 => 0.0047232771042633
1202 => 0.0043891374297682
1203 => 0.0041526167603413
1204 => 0.0041156806424104
1205 => 0.0041907916906639
1206 => 0.004210597875089
1207 => 0.0042026140269821
1208 => 0.0039363885100236
1209 => 0.0041142790201602
1210 => 0.0043056742516083
1211 => 0.0043130265219299
1212 => 0.0044088429766783
1213 => 0.0044400447419936
1214 => 0.004517189547016
1215 => 0.0045123641184576
1216 => 0.0045311476508385
1217 => 0.0045268296420296
1218 => 0.0046697241485782
1219 => 0.004827358009341
1220 => 0.0048218996499877
1221 => 0.0047992379174639
1222 => 0.0048328944546614
1223 => 0.0049955894920397
1224 => 0.0049806111401327
1225 => 0.0049951613331573
1226 => 0.0051869879513168
1227 => 0.0054363898419424
1228 => 0.0053205176242064
1229 => 0.005571926995361
1230 => 0.0057301758678648
1231 => 0.0060038509296211
]
'min_raw' => 0.0024512393390546
'max_raw' => 0.0060038509296211
'avg_raw' => 0.0042275451343379
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002451'
'max' => '$0.0060038'
'avg' => '$0.004227'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0010929910313043
'max_diff' => 0.002435723869255
'year' => 2028
]
3 => [
'items' => [
101 => 0.0059695854640112
102 => 0.0060761251572325
103 => 0.0059082431291508
104 => 0.0055227520581193
105 => 0.005461746620528
106 => 0.0055838810514895
107 => 0.0058841366323047
108 => 0.0055744249347307
109 => 0.0056370792077806
110 => 0.0056190347729272
111 => 0.0056180732616778
112 => 0.0056547702353194
113 => 0.0056015393610668
114 => 0.0053846672033104
115 => 0.0054840584351745
116 => 0.0054456787073928
117 => 0.0054882638767649
118 => 0.0057180784724061
119 => 0.0056164719615774
120 => 0.005509437756262
121 => 0.0056436824025191
122 => 0.0058146219686696
123 => 0.0058039248778278
124 => 0.0057831680505577
125 => 0.0059001731990873
126 => 0.0060934314251662
127 => 0.0061456683471009
128 => 0.0061842285749363
129 => 0.0061895453788744
130 => 0.0062443117638121
131 => 0.0059498191090959
201 => 0.0064171865152383
202 => 0.006497887955515
203 => 0.006482719429475
204 => 0.0065724156839068
205 => 0.0065460247704786
206 => 0.0065077884775286
207 => 0.0066499761197436
208 => 0.0064869694618952
209 => 0.006255602033047
210 => 0.006128669285652
211 => 0.0062958245667944
212 => 0.0063979004640726
213 => 0.0064653661389272
214 => 0.0064857812113743
215 => 0.0059726797355684
216 => 0.0056961464980216
217 => 0.0058734011328291
218 => 0.0060896640207557
219 => 0.0059486177578341
220 => 0.0059541465043047
221 => 0.0057530515996843
222 => 0.0061074564576783
223 => 0.0060558226508826
224 => 0.0063236989318772
225 => 0.0062597681075764
226 => 0.0064782108158302
227 => 0.0064206875299346
228 => 0.0066594634736036
301 => 0.0067547176621338
302 => 0.0069146642698065
303 => 0.0070323216455104
304 => 0.0071014123069507
305 => 0.0070972643627904
306 => 0.0073710359842477
307 => 0.0072096024239263
308 => 0.0070068038251937
309 => 0.007003135838364
310 => 0.007108168106326
311 => 0.0073282869257788
312 => 0.0073853605330643
313 => 0.0074172568934122
314 => 0.0073684065072191
315 => 0.0071931819475377
316 => 0.0071175208710759
317 => 0.0071819863003337
318 => 0.0071031506199289
319 => 0.0072392431216928
320 => 0.0074261271944044
321 => 0.0073875363724092
322 => 0.0075165397044799
323 => 0.0076500445816268
324 => 0.007840962552026
325 => 0.0078908755791603
326 => 0.007973379914991
327 => 0.0080583039778231
328 => 0.0080855792980372
329 => 0.0081376563473606
330 => 0.0081373818756047
331 => 0.0082943195689305
401 => 0.0084674267046246
402 => 0.0085327706409097
403 => 0.0086830254193117
404 => 0.0084257193768538
405 => 0.0086208889657769
406 => 0.0087969368203973
407 => 0.0085870453105178
408 => 0.008876331858437
409 => 0.0088875641995553
410 => 0.0090571592147919
411 => 0.008885242176376
412 => 0.0087831583877433
413 => 0.0090778704604963
414 => 0.0092204723491582
415 => 0.0091775194997606
416 => 0.008850646195001
417 => 0.0086603919113753
418 => 0.0081624597538164
419 => 0.0087522819035134
420 => 0.0090395670672828
421 => 0.0088499021958298
422 => 0.008945558124844
423 => 0.0094674258570061
424 => 0.00966611930098
425 => 0.0096247924536055
426 => 0.0096317760105139
427 => 0.0097389873863412
428 => 0.010214421669142
429 => 0.0099295304264074
430 => 0.010147319106807
501 => 0.010262833437595
502 => 0.010370129585715
503 => 0.010106644157229
504 => 0.0097638534861374
505 => 0.0096552772912293
506 => 0.0088310437622499
507 => 0.0087881388276017
508 => 0.0087640549876311
509 => 0.0086122097833433
510 => 0.008492901046675
511 => 0.008398022309627
512 => 0.0081490321704238
513 => 0.0082330590332227
514 => 0.0078362207196135
515 => 0.0080901038095744
516 => 0.007456740279058
517 => 0.007984224247771
518 => 0.0076971387053536
519 => 0.0078899089259459
520 => 0.0078892363688063
521 => 0.0075342852748417
522 => 0.0073295568914833
523 => 0.0074600177855071
524 => 0.0075998822198994
525 => 0.0076225747538191
526 => 0.0078039126438439
527 => 0.007854520151105
528 => 0.0077011770414655
529 => 0.007443615227673
530 => 0.0075034409626575
531 => 0.0073283445248733
601 => 0.0070214947526437
602 => 0.007241879616142
603 => 0.0073171286981788
604 => 0.0073503629796519
605 => 0.0070486114705985
606 => 0.00695379459511
607 => 0.0069033148861905
608 => 0.0074046628970874
609 => 0.0074321278728535
610 => 0.007291613173678
611 => 0.0079267529381017
612 => 0.0077830012482036
613 => 0.0079436071058389
614 => 0.0074980124042713
615 => 0.007515034721944
616 => 0.0073040830492501
617 => 0.0074222018901628
618 => 0.0073387193005537
619 => 0.0074126590550902
620 => 0.0074569782390944
621 => 0.0076678952966946
622 => 0.007986632581768
623 => 0.0076363913217532
624 => 0.0074837861892175
625 => 0.0075784615551588
626 => 0.0078305945308343
627 => 0.0082125888954323
628 => 0.0079864405432372
629 => 0.0080868013416933
630 => 0.0081087257114148
701 => 0.0079419722889733
702 => 0.0082187373319723
703 => 0.0083670579669506
704 => 0.0085192042478076
705 => 0.0086513086004337
706 => 0.0084584336774649
707 => 0.0086648374925756
708 => 0.0084985124527745
709 => 0.0083493016977063
710 => 0.0083495279888302
711 => 0.0082559259025546
712 => 0.0080745600657738
713 => 0.0080411134228203
714 => 0.00821510708331
715 => 0.0083546335217617
716 => 0.0083661255875192
717 => 0.0084433745929733
718 => 0.008489089758673
719 => 0.0089371605292844
720 => 0.0091173782998602
721 => 0.0093377451783724
722 => 0.0094235904967496
723 => 0.0096819541278152
724 => 0.0094733045124616
725 => 0.0094281618557122
726 => 0.0088014561968468
727 => 0.0089040792133773
728 => 0.0090683885644909
729 => 0.0088041655975278
730 => 0.0089717542543224
731 => 0.0090048398051867
801 => 0.0087951874022165
802 => 0.0089071718091885
803 => 0.0086097744253336
804 => 0.0079931150320428
805 => 0.0082194238501585
806 => 0.0083860633150161
807 => 0.0081482482521664
808 => 0.0085745225476105
809 => 0.0083255019042996
810 => 0.008246574315469
811 => 0.0079386496517236
812 => 0.0080839782399042
813 => 0.0082805372363234
814 => 0.0081590866289723
815 => 0.0084111148751262
816 => 0.0087680540851583
817 => 0.0090224302223245
818 => 0.0090419580635351
819 => 0.0088784112492148
820 => 0.0091404960629049
821 => 0.0091424050646482
822 => 0.0088467723241578
823 => 0.0086656989166974
824 => 0.0086245586575407
825 => 0.008727335090937
826 => 0.0088521246546565
827 => 0.0090488830158303
828 => 0.0091677799726707
829 => 0.0094778001780371
830 => 0.0095616827566335
831 => 0.009653844278902
901 => 0.0097770004942137
902 => 0.0099248811073009
903 => 0.0096013267447142
904 => 0.0096141821627205
905 => 0.0093128928201949
906 => 0.0089909219484438
907 => 0.0092352577058671
908 => 0.0095546942060743
909 => 0.0094814151199808
910 => 0.0094731697258394
911 => 0.0094870361917036
912 => 0.0094317861538603
913 => 0.0091818922803571
914 => 0.0090563971415022
915 => 0.0092183178878495
916 => 0.0093043715582698
917 => 0.0094378332964229
918 => 0.00942138132016
919 => 0.0097651644248982
920 => 0.009898748143938
921 => 0.009864571712238
922 => 0.0098708609981726
923 => 0.010112707940704
924 => 0.010381691480416
925 => 0.010633630060861
926 => 0.010889912805903
927 => 0.010580953953869
928 => 0.010424083702739
929 => 0.010585933759554
930 => 0.010500053841203
1001 => 0.010993545325683
1002 => 0.011027713605355
1003 => 0.011521169404784
1004 => 0.011989517718065
1005 => 0.011695356533825
1006 => 0.011972737281253
1007 => 0.01227274717478
1008 => 0.012851514934246
1009 => 0.012656606314153
1010 => 0.01250730936577
1011 => 0.012366224470945
1012 => 0.012659799740479
1013 => 0.013037479634755
1014 => 0.013118828266609
1015 => 0.013250644127782
1016 => 0.013112055867436
1017 => 0.013278970162027
1018 => 0.013868250967791
1019 => 0.013709022092348
1020 => 0.0134828914919
1021 => 0.013948072092921
1022 => 0.014116419144086
1023 => 0.015297966913202
1024 => 0.016789719779014
1025 => 0.01617212429719
1026 => 0.015788762851941
1027 => 0.01587886188503
1028 => 0.016423599532603
1029 => 0.016598551975895
1030 => 0.016122970925304
1031 => 0.016290954192372
1101 => 0.017216558509669
1102 => 0.017713115528957
1103 => 0.017038724400259
1104 => 0.015178106022921
1105 => 0.013462530905478
1106 => 0.013917578679978
1107 => 0.013865990384127
1108 => 0.014860436751572
1109 => 0.013705224536329
1110 => 0.013724675347327
1111 => 0.014739685812514
1112 => 0.014468898422087
1113 => 0.014030257529424
1114 => 0.013465733469424
1115 => 0.012422158532358
1116 => 0.01149783510836
1117 => 0.013310646201793
1118 => 0.013232474491061
1119 => 0.013119270269522
1120 => 0.01337119401458
1121 => 0.014594464210775
1122 => 0.014566263873413
1123 => 0.014386867715058
1124 => 0.014522938120045
1125 => 0.014006403729538
1126 => 0.014139526403242
1127 => 0.013462259149614
1128 => 0.013768412233433
1129 => 0.014029316403072
1130 => 0.014081696777879
1201 => 0.014199712436928
1202 => 0.013191281551655
1203 => 0.013644037413167
1204 => 0.013909989064318
1205 => 0.012708409829013
1206 => 0.013886237706208
1207 => 0.013173727013499
1208 => 0.012931890182842
1209 => 0.013257491615742
1210 => 0.013130604420683
1211 => 0.013021514261437
1212 => 0.012960640078171
1213 => 0.013199725835174
1214 => 0.013188572198841
1215 => 0.012797381495838
1216 => 0.012287089170744
1217 => 0.01245836002482
1218 => 0.012396135717862
1219 => 0.012170626802348
1220 => 0.012322592583354
1221 => 0.011653412191926
1222 => 0.010502122109444
1223 => 0.0112626996029
1224 => 0.011233418196751
1225 => 0.011218653183965
1226 => 0.01179020614948
1227 => 0.011735264519816
1228 => 0.011635544923986
1229 => 0.012168795373769
1230 => 0.011974151786368
1231 => 0.012573997458943
]
'min_raw' => 0.0053846672033104
'max_raw' => 0.017713115528957
'avg_raw' => 0.011548891366133
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005384'
'max' => '$0.017713'
'avg' => '$0.011548'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0029334278642558
'max_diff' => 0.011709264599335
'year' => 2029
]
4 => [
'items' => [
101 => 0.012969094614486
102 => 0.012868885195786
103 => 0.013240475980245
104 => 0.01246230575938
105 => 0.012720782691981
106 => 0.012774054429556
107 => 0.012162215145993
108 => 0.011744253649903
109 => 0.011716380383224
110 => 0.010991692747646
111 => 0.011378815033098
112 => 0.011719466624086
113 => 0.011556320947634
114 => 0.011504673900308
115 => 0.01176852746422
116 => 0.011789031145889
117 => 0.011321545030954
118 => 0.011418750197609
119 => 0.011824111901574
120 => 0.01140853612272
121 => 0.010601140268325
122 => 0.010400894933314
123 => 0.01037417851437
124 => 0.0098310972841621
125 => 0.01041427628411
126 => 0.010159703022407
127 => 0.01096389690587
128 => 0.010504545672614
129 => 0.010484743959042
130 => 0.010454810764698
131 => 0.0099873583154556
201 => 0.010089700693687
202 => 0.010429902346112
203 => 0.010551290128343
204 => 0.010538628388156
205 => 0.010428235172419
206 => 0.010478772621278
207 => 0.010315973890087
208 => 0.010258486269741
209 => 0.010077039526712
210 => 0.0098103629404027
211 => 0.0098474459553516
212 => 0.0093190898581477
213 => 0.0090312134144105
214 => 0.0089515330089346
215 => 0.0088449810406589
216 => 0.0089635683372754
217 => 0.0093175930917088
218 => 0.0088905641273206
219 => 0.008158452920476
220 => 0.0082024540514642
221 => 0.0083013115287415
222 => 0.0081170912738428
223 => 0.0079427422630153
224 => 0.0080943245825475
225 => 0.0077841194129559
226 => 0.0083387983414639
227 => 0.0083237958309175
228 => 0.0085305458343505
301 => 0.0086598308544342
302 => 0.0083618707396634
303 => 0.0082869345765684
304 => 0.008329621620726
305 => 0.0076240998673658
306 => 0.0084728896552473
307 => 0.0084802300245796
308 => 0.0084173773258885
309 => 0.0088693316844907
310 => 0.0098230963492409
311 => 0.0094642517172671
312 => 0.0093252962296305
313 => 0.0090611417460573
314 => 0.0094131119114773
315 => 0.0093860860943629
316 => 0.0092638651001351
317 => 0.0091899454614734
318 => 0.0093261446622074
319 => 0.0091730688732526
320 => 0.009145572255315
321 => 0.0089789726672281
322 => 0.0089195041940794
323 => 0.0088754761040682
324 => 0.0088270055030767
325 => 0.0089339195707428
326 => 0.0086916382276944
327 => 0.008399470679111
328 => 0.008375180108743
329 => 0.0084422485091779
330 => 0.0084125757346407
331 => 0.0083750380469145
401 => 0.0083033683782642
402 => 0.0082821055185559
403 => 0.008351199497335
404 => 0.0082731964237226
405 => 0.008388294207885
406 => 0.0083569939792437
407 => 0.008182153446437
408 => 0.0079642374083039
409 => 0.0079622974984701
410 => 0.0079153478455083
411 => 0.0078555504035338
412 => 0.0078389161231566
413 => 0.0080815587423939
414 => 0.0085838217025327
415 => 0.0084852154653235
416 => 0.0085564685772808
417 => 0.0089069633663141
418 => 0.0090183751200017
419 => 0.0089392976961662
420 => 0.0088310516411371
421 => 0.0088358139182004
422 => 0.009205723456544
423 => 0.0092287942607102
424 => 0.0092870867399147
425 => 0.0093620090491452
426 => 0.0089520572894014
427 => 0.0088165052271828
428 => 0.0087522731399615
429 => 0.0085544631722662
430 => 0.0087677842634807
501 => 0.0086434911989499
502 => 0.0086602625798108
503 => 0.0086493401960233
504 => 0.0086553045561396
505 => 0.008338643297399
506 => 0.0084540180168583
507 => 0.0082621851684624
508 => 0.008005342518708
509 => 0.0080044814920854
510 => 0.008067343366744
511 => 0.0080299506639117
512 => 0.0079293278620441
513 => 0.0079436208561231
514 => 0.0078183991881954
515 => 0.007958825033821
516 => 0.0079628519446057
517 => 0.0079087803449924
518 => 0.0081251257352111
519 => 0.0082137626181048
520 => 0.0081781715329133
521 => 0.0082112654526892
522 => 0.00848931299966
523 => 0.0085346468818812
524 => 0.0085547811977757
525 => 0.0085278038817628
526 => 0.0082163476514287
527 => 0.0082301620596582
528 => 0.0081288010980742
529 => 0.0080431617666907
530 => 0.0080465868908269
531 => 0.0080906166394918
601 => 0.0082828971342221
602 => 0.0086875400998278
603 => 0.0087028960045823
604 => 0.0087215078091082
605 => 0.0086458042465579
606 => 0.0086229713277073
607 => 0.0086530938413477
608 => 0.0088050564641128
609 => 0.0091959455873142
610 => 0.0090577792645681
611 => 0.0089454478934886
612 => 0.0090439927902455
613 => 0.0090288225758102
614 => 0.0089007706992121
615 => 0.008897176709526
616 => 0.0086514042176728
617 => 0.0085605477234035
618 => 0.0084846212363014
619 => 0.008401711494497
620 => 0.0083525598203956
621 => 0.0084280791308517
622 => 0.0084453512906712
623 => 0.0082802269985074
624 => 0.0082577211676407
625 => 0.0083925652290771
626 => 0.0083332253851322
627 => 0.0083942578861868
628 => 0.0084084179499586
629 => 0.0084061378535574
630 => 0.0083441802413413
701 => 0.0083836701757652
702 => 0.0082902647083366
703 => 0.0081887002915555
704 => 0.0081239085213359
705 => 0.0080673691084382
706 => 0.0080987404608038
707 => 0.0079869073178029
708 => 0.0079511296446004
709 => 0.0083702918745341
710 => 0.0086799315205394
711 => 0.0086754292374557
712 => 0.008648022747077
713 => 0.0086073022615779
714 => 0.0088020775069663
715 => 0.0087342217061269
716 => 0.0087835924707795
717 => 0.008796159402468
718 => 0.0088341957197715
719 => 0.0088477904338756
720 => 0.008806697765717
721 => 0.0086687857523303
722 => 0.0083251221272514
723 => 0.0081651457820749
724 => 0.0081123509235499
725 => 0.0081142699163856
726 => 0.0080613355272165
727 => 0.0080769270771797
728 => 0.0080559134224261
729 => 0.0080161186440719
730 => 0.0080962832453792
731 => 0.0081055214688949
801 => 0.0080868100930541
802 => 0.0080912172994263
803 => 0.007936295099198
804 => 0.007948073497608
805 => 0.0078824898785345
806 => 0.0078701937405805
807 => 0.0077044040625815
808 => 0.0074106836164083
809 => 0.0075734332557219
810 => 0.0073768545774934
811 => 0.0073024072533953
812 => 0.0076548293067416
813 => 0.0076194559072518
814 => 0.0075589120237724
815 => 0.0074693550016555
816 => 0.0074361374309976
817 => 0.0072343179870853
818 => 0.0072223934176741
819 => 0.0073224205836604
820 => 0.0072762614882824
821 => 0.0072114366365551
822 => 0.0069766475947889
823 => 0.0067126669758634
824 => 0.0067206348914258
825 => 0.006804602214772
826 => 0.0070487485319373
827 => 0.0069533563420466
828 => 0.0068841482137817
829 => 0.0068711876117464
830 => 0.0070334166810767
831 => 0.0072630048022199
901 => 0.0073707224119156
902 => 0.0072639775321396
903 => 0.0071413547618054
904 => 0.0071488182416565
905 => 0.0071984694294075
906 => 0.0072036870672102
907 => 0.0071238722495471
908 => 0.0071463396532013
909 => 0.0071122096125881
910 => 0.0069027536163442
911 => 0.0068989652215643
912 => 0.0068475613421519
913 => 0.0068460048531124
914 => 0.0067585540309332
915 => 0.0067463190563914
916 => 0.006572680141069
917 => 0.0066869698009612
918 => 0.006610310297582
919 => 0.0064947663438407
920 => 0.0064748465226646
921 => 0.0064742477087861
922 => 0.0065928855141231
923 => 0.0066855834491316
924 => 0.0066116438224641
925 => 0.0065948092027313
926 => 0.0067745588985204
927 => 0.0067516841112763
928 => 0.0067318746930496
929 => 0.0072424477041161
930 => 0.0068382893253481
1001 => 0.0066620532036515
1002 => 0.0064439275367201
1003 => 0.006514950353758
1004 => 0.0065299159048502
1005 => 0.0060053629959869
1006 => 0.00579255194619
1007 => 0.0057195232135149
1008 => 0.0056774941453857
1009 => 0.0056966473195
1010 => 0.0055050924144363
1011 => 0.0056338204786648
1012 => 0.0054679501226127
1013 => 0.0054401414176317
1014 => 0.0057367381616471
1015 => 0.0057780078658838
1016 => 0.0056019384861179
1017 => 0.0057150035309709
1018 => 0.0056740045739856
1019 => 0.0054707934937904
1020 => 0.0054630323252465
1021 => 0.0053610681484194
1022 => 0.0052015139558402
1023 => 0.005128593408421
1024 => 0.0050906157541998
1025 => 0.0051062860745012
1026 => 0.0050983626810371
1027 => 0.0050466571790941
1028 => 0.0051013263798842
1029 => 0.0049616691627389
1030 => 0.0049060565335769
1031 => 0.0048809375991877
1101 => 0.0047569837806017
1102 => 0.0049542494284853
1103 => 0.0049931132462055
1104 => 0.0050320536376523
1105 => 0.0053710031594621
1106 => 0.0053540701992139
1107 => 0.0055071359131716
1108 => 0.005501188060997
1109 => 0.0054575312398761
1110 => 0.0052733502927655
1111 => 0.0053467615355741
1112 => 0.0051208131408494
1113 => 0.0052901090411745
1114 => 0.0052128494622319
1115 => 0.0052639874998179
1116 => 0.0051720366973074
1117 => 0.0052229260679723
1118 => 0.0050023292991396
1119 => 0.0047963391402839
1120 => 0.004879235593435
1121 => 0.0049693535183696
1122 => 0.0051647521412481
1123 => 0.0050483743334653
1124 => 0.0050902281938761
1125 => 0.0049500247677515
1126 => 0.0046607450525278
1127 => 0.0046623823443003
1128 => 0.0046178829624143
1129 => 0.0045794289994486
1130 => 0.005061741724645
1201 => 0.0050017585130309
1202 => 0.0049061831157326
1203 => 0.0050341145830317
1204 => 0.005067941693531
1205 => 0.0050689047038116
1206 => 0.0051622401999639
1207 => 0.0052120533709917
1208 => 0.005220833158288
1209 => 0.0053676985781305
1210 => 0.00541692592966
1211 => 0.0056196864236944
1212 => 0.0052078270714553
1213 => 0.0051993450991275
1214 => 0.0050359148411313
1215 => 0.00493226478778
1216 => 0.0050430118489608
1217 => 0.0051411186266855
1218 => 0.0050389632921868
1219 => 0.0050523026222555
1220 => 0.0049151674320885
1221 => 0.0049641868097628
1222 => 0.0050064089014391
1223 => 0.0049830963441153
1224 => 0.0049481963174609
1225 => 0.005133074989707
1226 => 0.0051226434104735
1227 => 0.0052948066804114
1228 => 0.0054290202608415
1229 => 0.0056695549905195
1230 => 0.0054185444607414
1231 => 0.0054093966393598
]
'min_raw' => 0.0045794289994486
'max_raw' => 0.013240475980245
'avg_raw' => 0.008909952489847
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004579'
'max' => '$0.01324'
'avg' => '$0.0089099'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00080523820386174
'max_diff' => -0.0044726395487113
'year' => 2030
]
5 => [
'items' => [
101 => 0.0054988180607217
102 => 0.0054169122397063
103 => 0.0054686738912952
104 => 0.0056612153882165
105 => 0.0056652834866435
106 => 0.005597137596542
107 => 0.0055929909129362
108 => 0.0056060790765646
109 => 0.0056827368597372
110 => 0.0056559502748409
111 => 0.0056869483890362
112 => 0.0057257120054974
113 => 0.0058860547586137
114 => 0.0059247128535522
115 => 0.0058307937247758
116 => 0.0058392735705364
117 => 0.0058041452382363
118 => 0.0057702117093911
119 => 0.0058464893266412
120 => 0.005985888171406
121 => 0.0059850209784275
122 => 0.0060173588008866
123 => 0.0060375049963776
124 => 0.0059510227774137
125 => 0.0058947260329075
126 => 0.0059163137870061
127 => 0.0059508330759299
128 => 0.0059051196468474
129 => 0.0056229551860305
130 => 0.0057085458587068
131 => 0.0056942993856034
201 => 0.0056740106754739
202 => 0.005760072758703
203 => 0.0057517718608257
204 => 0.0055031277420159
205 => 0.0055190451317782
206 => 0.0055040957312074
207 => 0.0055524003028114
208 => 0.0054143036343176
209 => 0.005456781239451
210 => 0.0054834227951879
211 => 0.005499114876187
212 => 0.0055558054329164
213 => 0.0055491534504042
214 => 0.0055553919363436
215 => 0.0056394490662212
216 => 0.0060645811842185
217 => 0.0060877201874
218 => 0.0059737752730417
219 => 0.0060192940188638
220 => 0.0059319079807408
221 => 0.0059905708135683
222 => 0.0060307064339145
223 => 0.0058493412832061
224 => 0.0058386020160312
225 => 0.005750855304644
226 => 0.0057980054171157
227 => 0.0057229861979602
228 => 0.0057413932902801
301 => 0.0056899254554522
302 => 0.0057825573109987
303 => 0.0058861341190347
304 => 0.0059123017111167
305 => 0.0058434660422057
306 => 0.0057936244814225
307 => 0.0057061191195179
308 => 0.0058516424865494
309 => 0.0058941979538136
310 => 0.0058514189607962
311 => 0.0058415061333746
312 => 0.0058227213433228
313 => 0.0058454914153856
314 => 0.0058939661875996
315 => 0.005871106380212
316 => 0.0058862056857295
317 => 0.0058286627034329
318 => 0.0059510514066267
319 => 0.0061454341217438
320 => 0.0061460590939576
321 => 0.0061231991633471
322 => 0.0061138453722653
323 => 0.0061373010483283
324 => 0.0061500247903903
325 => 0.0062258761457427
326 => 0.0063072676720871
327 => 0.0066870864116314
328 => 0.0065804348294366
329 => 0.0069174326106782
330 => 0.0071839541019552
331 => 0.0072638722436168
401 => 0.0071903513137272
402 => 0.0069388401840976
403 => 0.0069264998481808
404 => 0.0073023636611074
405 => 0.0071961649183024
406 => 0.0071835329157673
407 => 0.0070491497508994
408 => 0.0071285868450151
409 => 0.0071112127872602
410 => 0.007083786987126
411 => 0.0072353474290627
412 => 0.0075190550464744
413 => 0.0074748365537076
414 => 0.0074418295000941
415 => 0.0072972021993683
416 => 0.0073843001380823
417 => 0.0073532862303574
418 => 0.0074865416598558
419 => 0.0074076040953901
420 => 0.0071953603583763
421 => 0.0072291608730603
422 => 0.007224051993263
423 => 0.0073291923774719
424 => 0.0072976318438772
425 => 0.0072178892925501
426 => 0.0075180853646811
427 => 0.0074985923015352
428 => 0.0075262290083414
429 => 0.0075383955413711
430 => 0.0077211196004291
501 => 0.0077959758009074
502 => 0.0078129694689582
503 => 0.0078840770698263
504 => 0.0078112002470711
505 => 0.008102759498386
506 => 0.0082966293875564
507 => 0.0085218192402812
508 => 0.0088508821404383
509 => 0.0089746128348994
510 => 0.0089522619924155
511 => 0.0092017537277717
512 => 0.009650084830317
513 => 0.0090428825265167
514 => 0.0096822680268208
515 => 0.0094798459594851
516 => 0.0089999068792497
517 => 0.0089690044605926
518 => 0.0092940247779353
519 => 0.010014888559755
520 => 0.0098343203583786
521 => 0.010015183904646
522 => 0.0098041969707923
523 => 0.0097937196911889
524 => 0.0100049367402
525 => 0.010498456888057
526 => 0.010264003965136
527 => 0.0099278582099144
528 => 0.010176063004563
529 => 0.009961045041169
530 => 0.0094765493899036
531 => 0.0098341822812781
601 => 0.0095950433516143
602 => 0.0096648368046149
603 => 0.010167471265537
604 => 0.010106992957393
605 => 0.010185257488272
606 => 0.01004712263981
607 => 0.0099180829094806
608 => 0.0096772206702043
609 => 0.0096059132355195
610 => 0.0096256200450936
611 => 0.0096059034698033
612 => 0.0094711432605665
613 => 0.0094420418062124
614 => 0.009393538107325
615 => 0.0094085714317766
616 => 0.0093173702876107
617 => 0.0094894856897697
618 => 0.0095214318250861
619 => 0.009646683061544
620 => 0.0096596870604181
621 => 0.010008509971114
622 => 0.0098163841736334
623 => 0.0099452787459265
624 => 0.0099337492021778
625 => 0.0090103086144209
626 => 0.0091375505798285
627 => 0.0093354991472744
628 => 0.009246323585953
629 => 0.0091202502061122
630 => 0.0090184391922638
701 => 0.0088641850955728
702 => 0.0090812947744778
703 => 0.0093667709151976
704 => 0.0096669272064541
705 => 0.01002754532338
706 => 0.0099470595577395
707 => 0.009660185701599
708 => 0.0096730546532239
709 => 0.0097526054484238
710 => 0.0096495799406881
711 => 0.00961919570716
712 => 0.0097484311213186
713 => 0.0097493210945894
714 => 0.009630777796891
715 => 0.0094990386146937
716 => 0.0094984866227101
717 => 0.0094750449076876
718 => 0.0098083671998187
719 => 0.0099916607578059
720 => 0.010012675068837
721 => 0.0099902463272403
722 => 0.0099988782597159
723 => 0.009892223776921
724 => 0.010136004297186
725 => 0.010359721409975
726 => 0.010299760444728
727 => 0.01020987043387
728 => 0.010138268710532
729 => 0.010282893354246
730 => 0.010276453446521
731 => 0.010357767436161
801 => 0.010354078563899
802 => 0.010326735727557
803 => 0.010299761421227
804 => 0.010406711496787
805 => 0.010375911592591
806 => 0.010345063847637
807 => 0.010283193972579
808 => 0.010291603116149
809 => 0.010201728626069
810 => 0.010160148574581
811 => 0.0095348843646945
812 => 0.0093677933367154
813 => 0.0094203635755691
814 => 0.0094376710631854
815 => 0.0093649528336759
816 => 0.009469212095012
817 => 0.0094529633995707
818 => 0.0095161775683641
819 => 0.0094766841001421
820 => 0.0094783049258538
821 => 0.0095944467949994
822 => 0.0096281632737152
823 => 0.009611014800515
824 => 0.0096230250033292
825 => 0.0098997950579917
826 => 0.0098604472068268
827 => 0.0098395444451272
828 => 0.00984533465297
829 => 0.0099160553359532
830 => 0.0099358532659824
831 => 0.009851968045273
901 => 0.0098915288002942
902 => 0.010059973474167
903 => 0.01011891957688
904 => 0.010307047241004
905 => 0.010227127265582
906 => 0.010373823839326
907 => 0.010824719094467
908 => 0.011184925423852
909 => 0.010853664797193
910 => 0.01151513784911
911 => 0.012030189502701
912 => 0.012010420962372
913 => 0.011920609793209
914 => 0.011334237178953
915 => 0.010794648356991
916 => 0.011246037318714
917 => 0.011247188002006
918 => 0.011208413289877
919 => 0.01096758688298
920 => 0.011200033052939
921 => 0.011218483785789
922 => 0.011208156281839
923 => 0.011023515240318
924 => 0.010741602497285
925 => 0.01079668757247
926 => 0.010886918049328
927 => 0.010716092932586
928 => 0.010661503957128
929 => 0.010762995248482
930 => 0.011090021335773
1001 => 0.011028198948304
1002 => 0.011026584515923
1003 => 0.01129108690629
1004 => 0.011101760277976
1005 => 0.010797382371675
1006 => 0.010720522936082
1007 => 0.010447723718449
1008 => 0.010636147109746
1009 => 0.010642928132155
1010 => 0.010539730566382
1011 => 0.010805756285383
1012 => 0.01080330481155
1013 => 0.011055856639038
1014 => 0.011538640879061
1015 => 0.011395857822917
1016 => 0.011229816663373
1017 => 0.011247869941237
1018 => 0.011445869840123
1019 => 0.011326154581359
1020 => 0.011369205023095
1021 => 0.011445804678123
1022 => 0.011492019151864
1023 => 0.011241220389666
1024 => 0.011182747201106
1025 => 0.011063131578613
1026 => 0.011031926095436
1027 => 0.011129350524095
1028 => 0.011103682629199
1029 => 0.010642358213479
1030 => 0.010594147245251
1031 => 0.010595625806817
1101 => 0.010474397034903
1102 => 0.010289494059493
1103 => 0.010775408038886
1104 => 0.010736382345979
1105 => 0.010693301001358
1106 => 0.010698578220255
1107 => 0.010909497009557
1108 => 0.010787153460108
1109 => 0.011112423838032
1110 => 0.011045558026853
1111 => 0.010976977359926
1112 => 0.010967497422738
1113 => 0.010941099716998
1114 => 0.010850572161864
1115 => 0.010741254699176
1116 => 0.010669073841394
1117 => 0.0098416566535761
1118 => 0.0099952204707706
1119 => 0.010171881644671
1120 => 0.010232864373976
1121 => 0.010128549195623
1122 => 0.010854691160914
1123 => 0.01098736429525
1124 => 0.01058548871729
1125 => 0.010510314205126
1126 => 0.010859619589416
1127 => 0.010648945741842
1128 => 0.010743812162505
1129 => 0.01053876285019
1130 => 0.010955407222312
1201 => 0.010952233090266
1202 => 0.010790149019171
1203 => 0.010927141366157
1204 => 0.010903335574652
1205 => 0.010720343057581
1206 => 0.010961208411501
1207 => 0.010961327877711
1208 => 0.010805325483294
1209 => 0.010623148839929
1210 => 0.010590579958916
1211 => 0.010566043682086
1212 => 0.010737777742506
1213 => 0.01089175396408
1214 => 0.011178265538487
1215 => 0.01125030135564
1216 => 0.011531461945685
1217 => 0.011364044503774
1218 => 0.011438258487354
1219 => 0.011518828264739
1220 => 0.011557456378873
1221 => 0.011494513939791
1222 => 0.011931272066445
1223 => 0.011968147834258
1224 => 0.011980511960232
1225 => 0.011833239577316
1226 => 0.011964051922876
1227 => 0.011902849158438
1228 => 0.012062081748887
1229 => 0.012087051452254
1230 => 0.012065903001825
1231 => 0.012073828779794
]
'min_raw' => 0.0054143036343176
'max_raw' => 0.012087051452254
'avg_raw' => 0.0087506775432857
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005414'
'max' => '$0.012087'
'avg' => '$0.00875'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00083487463486898
'max_diff' => -0.0011534245279916
'year' => 2031
]
6 => [
'items' => [
101 => 0.011701132768107
102 => 0.011681806513773
103 => 0.011418291664601
104 => 0.011525675913442
105 => 0.011324926207294
106 => 0.011388586007065
107 => 0.011416646640231
108 => 0.011401989357892
109 => 0.011531747257753
110 => 0.011421426535083
111 => 0.011130272009551
112 => 0.010839038159163
113 => 0.010835381955405
114 => 0.010758705223302
115 => 0.010703281990036
116 => 0.010713958471008
117 => 0.010751583782508
118 => 0.010701095138532
119 => 0.010711869450564
120 => 0.010890794819152
121 => 0.010926677025784
122 => 0.010804735267563
123 => 0.01031512151219
124 => 0.010194969068519
125 => 0.010281332262303
126 => 0.010240056218176
127 => 0.0082645245716881
128 => 0.0087286464285554
129 => 0.0084528809812939
130 => 0.0085799663867502
131 => 0.0082984812742125
201 => 0.0084328207238142
202 => 0.008408013132764
203 => 0.0091543073442425
204 => 0.0091426549866244
205 => 0.0091482323535871
206 => 0.0088820100967029
207 => 0.0093061093806415
208 => 0.0095150359380266
209 => 0.0094763691926549
210 => 0.0094861007794226
211 => 0.0093188798764635
212 => 0.0091498514174546
213 => 0.0089623728431204
214 => 0.0093106848611812
215 => 0.0092719585106573
216 => 0.009360782825458
217 => 0.0095866880670277
218 => 0.0096199534719794
219 => 0.0096646625135789
220 => 0.0096486375047718
221 => 0.010030418228476
222 => 0.0099841820637647
223 => 0.010095597917665
224 => 0.0098664070530505
225 => 0.0096070558347421
226 => 0.0096563500225124
227 => 0.0096516025958313
228 => 0.0095911624053382
229 => 0.0095365997038245
301 => 0.00944576817875
302 => 0.009733172564622
303 => 0.0097215044714176
304 => 0.0099103973377216
305 => 0.009877008688795
306 => 0.0096540311196745
307 => 0.0096619948071774
308 => 0.0097155544328519
309 => 0.0099009249088443
310 => 0.0099559554871033
311 => 0.0099304631306643
312 => 0.009990801647484
313 => 0.010038490750979
314 => 0.0099967906646486
315 => 0.010587175949384
316 => 0.010342006817643
317 => 0.010461500546578
318 => 0.010489999096831
319 => 0.010417000659618
320 => 0.010432831406771
321 => 0.010456810675088
322 => 0.010602408096687
323 => 0.010984497859917
324 => 0.011153722815078
325 => 0.011662844442093
326 => 0.011139671038277
327 => 0.011108628093601
328 => 0.011200336272627
329 => 0.011499244563682
330 => 0.011741481658554
331 => 0.011821845677917
401 => 0.011832467109741
402 => 0.011983235352563
403 => 0.012069652897688
404 => 0.011964928122286
405 => 0.011876184840274
406 => 0.011558317419329
407 => 0.011595111438827
408 => 0.0118485857463
409 => 0.012206633135167
410 => 0.012513875043296
411 => 0.012406289635531
412 => 0.01322709035332
413 => 0.013308469391818
414 => 0.013297225439997
415 => 0.013482619000521
416 => 0.013114650537623
417 => 0.01295733689068
418 => 0.011895372145124
419 => 0.012193740921646
420 => 0.012627437460905
421 => 0.012570036097656
422 => 0.012255074078104
423 => 0.012513636116361
424 => 0.012428147420531
425 => 0.0123607189392
426 => 0.01266962188383
427 => 0.012329970407176
428 => 0.012624049177606
429 => 0.012246890112675
430 => 0.012406781076611
501 => 0.012316019232425
502 => 0.012374753268967
503 => 0.012031395291477
504 => 0.012216662921587
505 => 0.012023687548961
506 => 0.012023596053508
507 => 0.012019336111462
508 => 0.012246370781572
509 => 0.012253774374014
510 => 0.012085995409772
511 => 0.012061815839825
512 => 0.012151220382945
513 => 0.012046551078038
514 => 0.012095525187023
515 => 0.012048034453908
516 => 0.012037343289576
517 => 0.011952154273227
518 => 0.011915452502663
519 => 0.011929844212589
520 => 0.011880717887175
521 => 0.011851117499137
522 => 0.01201344784925
523 => 0.011926721291572
524 => 0.012000155760452
525 => 0.011916467914995
526 => 0.011626369381581
527 => 0.011459530647279
528 => 0.010911561409809
529 => 0.011066964805801
530 => 0.011169997418121
531 => 0.011135945140364
601 => 0.011209102609468
602 => 0.011213593883911
603 => 0.011189809644953
604 => 0.01116227054319
605 => 0.011148866031459
606 => 0.011248772279789
607 => 0.011306771219634
608 => 0.011180338119166
609 => 0.011150716612713
610 => 0.011278547457849
611 => 0.011356524199537
612 => 0.01193226064881
613 => 0.011889608233043
614 => 0.011996657426503
615 => 0.011984605330123
616 => 0.012096809939143
617 => 0.012280217053684
618 => 0.011907299108386
619 => 0.011972024769157
620 => 0.01195615553187
621 => 0.012129411703436
622 => 0.012129952590292
623 => 0.012026076860651
624 => 0.012082389578881
625 => 0.012050957364423
626 => 0.012107759624266
627 => 0.011889038584027
628 => 0.012155417201561
629 => 0.012306436712644
630 => 0.012308533618702
701 => 0.012380115668391
702 => 0.012452847176627
703 => 0.012592448973107
704 => 0.012448953758292
705 => 0.012190819835818
706 => 0.012209456271253
707 => 0.012058112446954
708 => 0.012060656563983
709 => 0.012047075867896
710 => 0.012087832559159
711 => 0.011897982385811
712 => 0.011942539842029
713 => 0.011880159142396
714 => 0.011971889165699
715 => 0.011873202824141
716 => 0.011956147879243
717 => 0.011991944215353
718 => 0.012124033466239
719 => 0.011853693134387
720 => 0.01130245089731
721 => 0.01141832869871
722 => 0.011246936328435
723 => 0.011262799344841
724 => 0.01129484516256
725 => 0.011190974182591
726 => 0.011210789492219
727 => 0.01121008154992
728 => 0.011203980885657
729 => 0.011176960032079
730 => 0.011137774448479
731 => 0.011293877752857
801 => 0.011320402746143
802 => 0.011379364520467
803 => 0.011554794766701
804 => 0.011537265148172
805 => 0.01156585668329
806 => 0.011503441522663
807 => 0.011265694605131
808 => 0.011278605406588
809 => 0.011117607505539
810 => 0.011375247442164
811 => 0.01131423490449
812 => 0.011274899724542
813 => 0.011264166756255
814 => 0.011440031860138
815 => 0.011492653455568
816 => 0.0114598632086
817 => 0.011392609455425
818 => 0.011521756543308
819 => 0.011556310855748
820 => 0.011564046291989
821 => 0.011792870170221
822 => 0.011576835004866
823 => 0.011628836816372
824 => 0.012034540105168
825 => 0.011666623205457
826 => 0.01186151699276
827 => 0.01185197795605
828 => 0.011951679022788
829 => 0.011843799558521
830 => 0.011845136853773
831 => 0.011933664646701
901 => 0.011809343327605
902 => 0.011778559620662
903 => 0.011736032149998
904 => 0.011828889326357
905 => 0.011884553004016
906 => 0.012333161365478
907 => 0.012622982826009
908 => 0.012610400912058
909 => 0.012725376053218
910 => 0.012673578699074
911 => 0.012506311379091
912 => 0.012791816298225
913 => 0.012701470595778
914 => 0.012708918585717
915 => 0.01270864137116
916 => 0.012768713365129
917 => 0.012726146851884
918 => 0.012642243884917
919 => 0.012697942589977
920 => 0.012863347831356
921 => 0.013376770775848
922 => 0.013664089057535
923 => 0.013359473854523
924 => 0.013569593342601
925 => 0.013443596522983
926 => 0.013420699152778
927 => 0.013552669718999
928 => 0.013684871282226
929 => 0.013676450614171
930 => 0.013580479067894
1001 => 0.01352626717659
1002 => 0.013936777779862
1003 => 0.014239234999487
1004 => 0.014218609444808
1005 => 0.014309643935373
1006 => 0.014576924015265
1007 => 0.014601360756107
1008 => 0.014598282288433
1009 => 0.014537713276545
1010 => 0.014800885225903
1011 => 0.015020427896127
1012 => 0.0145236933003
1013 => 0.014712843331658
1014 => 0.014797758874768
1015 => 0.014922440085359
1016 => 0.015132798186624
1017 => 0.015361302879329
1018 => 0.015393615948303
1019 => 0.015370688279543
1020 => 0.015219983292169
1021 => 0.015470015853554
1022 => 0.015616479064028
1023 => 0.015703694554115
1024 => 0.0159248585257
1025 => 0.014798283284253
1026 => 0.014000837333934
1027 => 0.013876304633533
1028 => 0.014129546776806
1029 => 0.014196324710419
1030 => 0.014169406609112
1031 => 0.013271808691414
1101 => 0.013871578966258
1102 => 0.014516881351874
1103 => 0.014541670044582
1104 => 0.014864721911458
1105 => 0.014969920841656
1106 => 0.015230019937867
1107 => 0.015213750668582
1108 => 0.015277080659429
1109 => 0.015262522191256
1110 => 0.01574430099666
1111 => 0.016275774563866
1112 => 0.016257371324217
1113 => 0.016180965710821
1114 => 0.016294441075806
1115 => 0.016842978753332
1116 => 0.016792478194123
1117 => 0.016841535185767
1118 => 0.017488292021799
1119 => 0.018329167908727
1120 => 0.01793849663669
1121 => 0.01878614088438
1122 => 0.019319688006609
1123 => 0.020242402584704
1124 => 0.020126874175061
1125 => 0.020486080189121
1126 => 0.019920054210294
1127 => 0.018620344150185
1128 => 0.018414660058082
1129 => 0.018826444819222
1130 => 0.019838777473116
1201 => 0.018794562861365
1202 => 0.019005806117334
1203 => 0.018944968045404
1204 => 0.018941726243096
1205 => 0.01906545265183
1206 => 0.018885981042826
1207 => 0.01815478142142
1208 => 0.018489885898924
1209 => 0.018360485967121
1210 => 0.01850406483886
1211 => 0.019278900793207
1212 => 0.018936327348008
1213 => 0.018575454051898
1214 => 0.019028069249415
1215 => 0.019604403931311
1216 => 0.019568337942691
1217 => 0.019498354850355
1218 => 0.019892845877661
1219 => 0.020544429479744
1220 => 0.020720549909113
1221 => 0.020850558409449
1222 => 0.020868484385133
1223 => 0.021053133075618
1224 => 0.020060230529422
1225 => 0.021635992369781
1226 => 0.021908082910068
1227 => 0.021856941165492
1228 => 0.022159358349701
1229 => 0.022070379542523
1230 => 0.02194146321127
1231 => 0.022420858774222
]
'min_raw' => 0.0082645245716881
'max_raw' => 0.022420858774222
'avg_raw' => 0.015342691672955
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008264'
'max' => '$0.02242'
'avg' => '$0.015342'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0028502209373705
'max_diff' => 0.010333807321968
'year' => 2032
]
7 => [
'items' => [
101 => 0.021871270446524
102 => 0.021091199006605
103 => 0.020663236386601
104 => 0.021226812087382
105 => 0.021570968101767
106 => 0.021798433334842
107 => 0.021867264176932
108 => 0.020137306727652
109 => 0.019204955610328
110 => 0.019802581987105
111 => 0.020531727412742
112 => 0.020056180089767
113 => 0.020074820644497
114 => 0.019396815133572
115 => 0.020591715856055
116 => 0.020417628871486
117 => 0.021320792455384
118 => 0.021105245217747
119 => 0.021841740059807
120 => 0.021647796285263
121 => 0.022452846050147
122 => 0.022774002197211
123 => 0.023313273352095
124 => 0.023709963408857
125 => 0.023942907397659
126 => 0.023928922314322
127 => 0.024851962450189
128 => 0.024307677930634
129 => 0.023623928296061
130 => 0.023611561422374
131 => 0.023965685046927
201 => 0.024707831014917
202 => 0.024900258666633
203 => 0.025007799472478
204 => 0.024843096984803
205 => 0.024252315148049
206 => 0.023997218546271
207 => 0.024214568241846
208 => 0.02394876824123
209 => 0.024407613612602
210 => 0.025037706311578
211 => 0.024907594660896
212 => 0.025342538401698
213 => 0.025792659416011
214 => 0.026436352682679
215 => 0.026604637938479
216 => 0.026882807067
217 => 0.027169134474048
218 => 0.027261095120452
219 => 0.027436676528149
220 => 0.027435751127461
221 => 0.027964877517549
222 => 0.028548520311496
223 => 0.028768831954849
224 => 0.029275426430685
225 => 0.028407901144004
226 => 0.029065929039364
227 => 0.029659486672485
228 => 0.028951822792769
301 => 0.02992717258642
302 => 0.029965043208718
303 => 0.030536844643334
304 => 0.02995721434545
305 => 0.029613031724813
306 => 0.030606674054239
307 => 0.031087466278009
308 => 0.030942647747392
309 => 0.02984057157883
310 => 0.029199115978456
311 => 0.027520302944733
312 => 0.029508929502504
313 => 0.030477531489762
314 => 0.02983806313368
315 => 0.030160573776835
316 => 0.031920087271461
317 => 0.032589996090152
318 => 0.032450659738881
319 => 0.032474205288574
320 => 0.032835675927435
321 => 0.03443863580566
322 => 0.033478105090309
323 => 0.034212394831796
324 => 0.034601859463002
325 => 0.034963615917566
326 => 0.034075256399458
327 => 0.032919513718993
328 => 0.032553441497313
329 => 0.029774480608211
330 => 0.029629823625518
331 => 0.029548623277577
401 => 0.029036666569828
402 => 0.02863440883428
403 => 0.028314518548101
404 => 0.027475030909841
405 => 0.027758333344336
406 => 0.026420365263636
407 => 0.02727634982699
408 => 0.025140920463825
409 => 0.026919369492095
410 => 0.025951440542163
411 => 0.026601378799677
412 => 0.026599111226324
413 => 0.025402368831129
414 => 0.024712112792956
415 => 0.025151970805647
416 => 0.025623533511223
417 => 0.025700042973675
418 => 0.026311436330501
419 => 0.026482063074535
420 => 0.025965056074312
421 => 0.025096668436719
422 => 0.025298375079118
423 => 0.024708025214286
424 => 0.023673459783647
425 => 0.024416502737711
426 => 0.024670210271521
427 => 0.024782261971851
428 => 0.02376488569146
429 => 0.023445203975848
430 => 0.023275008112845
501 => 0.024965337934584
502 => 0.025057938017923
503 => 0.02458418289923
504 => 0.026725600959027
505 => 0.026240932100113
506 => 0.026782425962273
507 => 0.025280072315509
508 => 0.025337464248003
509 => 0.02462622595534
510 => 0.025024471874272
511 => 0.024743004494836
512 => 0.024992297539565
513 => 0.025141722762702
514 => 0.025852844348159
515 => 0.026927489358311
516 => 0.025746626497107
517 => 0.025232107638213
518 => 0.025551312244507
519 => 0.026401396175359
520 => 0.027689316845596
521 => 0.026926841886997
522 => 0.027265215325959
523 => 0.027339134869185
524 => 0.026776914063071
525 => 0.027710046728661
526 => 0.028210120104906
527 => 0.02872309191333
528 => 0.02916849096144
529 => 0.028518199692554
530 => 0.029214104565854
531 => 0.028653328081721
601 => 0.028150253603446
602 => 0.028151016559769
603 => 0.027835430590802
604 => 0.027223943009537
605 => 0.02711117531765
606 => 0.02769780709184
607 => 0.028168230220505
608 => 0.028206976522557
609 => 0.028467426937798
610 => 0.028621558810686
611 => 0.030132260697105
612 => 0.030739877493004
613 => 0.031482859809432
614 => 0.031772293293869
615 => 0.03264338431438
616 => 0.031939907568764
617 => 0.031787705949774
618 => 0.029674724065717
619 => 0.03002072473086
620 => 0.030574705179852
621 => 0.029683858999277
622 => 0.030248895856327
623 => 0.030360446101025
624 => 0.029653588386948
625 => 0.030031151633556
626 => 0.029028455590267
627 => 0.026949345392003
628 => 0.027712361372657
629 => 0.02827419796282
630 => 0.027472387874705
701 => 0.028909601423316
702 => 0.028070010938327
703 => 0.027803901062036
704 => 0.026765711559605
705 => 0.027255697041174
706 => 0.027918409420912
707 => 0.027508930218817
708 => 0.028358661046775
709 => 0.029562106514098
710 => 0.030419753420529
711 => 0.030485592900561
712 => 0.029934183397606
713 => 0.03081782064514
714 => 0.030824256977799
715 => 0.029827510552817
716 => 0.029217008917423
717 => 0.029078301661355
718 => 0.029424819582172
719 => 0.029845556308781
720 => 0.030508940860709
721 => 0.030909810251817
722 => 0.031955065019129
723 => 0.032237880989361
724 => 0.032548609996202
725 => 0.032963839774618
726 => 0.033462429586336
727 => 0.03237154346303
728 => 0.032414886402375
729 => 0.0313990683487
730 => 0.030313521075303
731 => 0.031137316140433
801 => 0.032214318603226
802 => 0.031967253048279
803 => 0.031939453126257
804 => 0.031986204884044
805 => 0.031799925524021
806 => 0.030957390882471
807 => 0.030534275260031
808 => 0.031080202361287
809 => 0.031370338319184
810 => 0.031820313887368
811 => 0.031764844900758
812 => 0.032923933640552
813 => 0.033374320475812
814 => 0.033259092250214
815 => 0.033280297016846
816 => 0.034095700868805
817 => 0.035002597652776
818 => 0.035852026166535
819 => 0.036716101334535
820 => 0.035674424994084
821 => 0.035145525990067
822 => 0.035691214756628
823 => 0.035401664615966
824 => 0.037065505610365
825 => 0.037180706350833
826 => 0.03884442703059
827 => 0.040423496067853
828 => 0.039431711097508
829 => 0.040366919653567
830 => 0.041378423955617
831 => 0.04332977986493
901 => 0.042672631844202
902 => 0.042169266759147
903 => 0.041693589186012
904 => 0.042683398704017
905 => 0.043956772836338
906 => 0.044231045428214
907 => 0.044675471807247
908 => 0.044208211811566
909 => 0.044770975009364
910 => 0.046757776388271
911 => 0.046220925117709
912 => 0.045458510010364
913 => 0.047026898884578
914 => 0.047594492721198
915 => 0.051578163517802
916 => 0.056607712455747
917 => 0.054525446169639
918 => 0.053232916291539
919 => 0.053536691472111
920 => 0.055373312483273
921 => 0.055963176860621
922 => 0.054359722144544
923 => 0.054926089457682
924 => 0.058046829037078
925 => 0.059721005696111
926 => 0.057447248921221
927 => 0.051174044157801
928 => 0.045389862871711
929 => 0.04692408821386
930 => 0.046750154672616
1001 => 0.050103000030485
1002 => 0.046208121392455
1003 => 0.046273701159746
1004 => 0.049695879808891
1005 => 0.048782901216294
1006 => 0.047303992821751
1007 => 0.04540066053965
1008 => 0.041882174779259
1009 => 0.038765753821047
1010 => 0.044877772988984
1011 => 0.044614211608477
1012 => 0.044232535671895
1013 => 0.045081914167109
1014 => 0.04920625503958
1015 => 0.049111175633281
1016 => 0.048506328960345
1017 => 0.048965099830893
1018 => 0.047223568070019
1019 => 0.047672400458737
1020 => 0.045388946627844
1021 => 0.046421163124863
1022 => 0.047300819748548
1023 => 0.047477423839291
1024 => 0.047875321873365
1025 => 0.044475326737272
1026 => 0.046001824734765
1027 => 0.046898499294772
1028 => 0.042847291011359
1029 => 0.046818419932637
1030 => 0.044416140386259
1031 => 0.04360077062719
1101 => 0.044698558590979
1102 => 0.044270749553857
1103 => 0.043902944465528
1104 => 0.043697702906548
1105 => 0.044503797228718
1106 => 0.044466191965098
1107 => 0.043147265197861
1108 => 0.041426778996335
1109 => 0.042004230638601
1110 => 0.041794437043328
1111 => 0.041034117990144
1112 => 0.041546481230717
1113 => 0.039290292820335
1114 => 0.03540863792674
1115 => 0.037972978047754
1116 => 0.03787425374256
1117 => 0.037824472471091
1118 => 0.039751503198877
1119 => 0.039566263658563
1120 => 0.039230052079023
1121 => 0.041027943200826
1122 => 0.04037168875632
1123 => 0.042394110321294
1124 => 0.043726207966011
1125 => 0.043388344914466
1126 => 0.04464118918791
1127 => 0.042017533958151
1128 => 0.042889006982699
1129 => 0.043068616365249
1130 => 0.041005757503462
1201 => 0.039596571138255
1202 => 0.039502594473596
1203 => 0.03705925951417
1204 => 0.038364469327585
1205 => 0.039512999950138
1206 => 0.038962942911512
1207 => 0.038788811285569
1208 => 0.039678411997967
1209 => 0.039747541592235
1210 => 0.038171379516895
1211 => 0.03849911352292
1212 => 0.039865818809288
1213 => 0.038464676056308
1214 => 0.035742484562636
1215 => 0.035067343434963
1216 => 0.034977267163212
1217 => 0.033146230878846
1218 => 0.035112459593427
1219 => 0.034254148067859
1220 => 0.036965543892978
1221 => 0.035416809139178
1222 => 0.035350046279358
1223 => 0.035249124424759
1224 => 0.033673075855649
1225 => 0.034018130329172
1226 => 0.035165143952444
1227 => 0.035574411335261
1228 => 0.035531721394204
1229 => 0.035159522959939
1230 => 0.035329913497181
1231 => 0.034781026208725
]
'min_raw' => 0.019204955610328
'max_raw' => 0.059721005696111
'avg_raw' => 0.03946298065322
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0192049'
'max' => '$0.059721'
'avg' => '$0.039462'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.01094043103864
'max_diff' => 0.037300146921889
'year' => 2033
]
8 => [
'items' => [
101 => 0.03458720268307
102 => 0.033975442320743
103 => 0.033076323591235
104 => 0.033201351565189
105 => 0.031419962094821
106 => 0.03044936656587
107 => 0.0301807185157
108 => 0.029821471115437
109 => 0.03022129646548
110 => 0.031414915642272
111 => 0.029975157674627
112 => 0.027506793626378
113 => 0.027655146511565
114 => 0.027988451398215
115 => 0.027367339946976
116 => 0.026779510084312
117 => 0.027290580457754
118 => 0.026244702070643
119 => 0.028114840804554
120 => 0.028064258792805
121 => 0.028761330864203
122 => 0.029197224335808
123 => 0.028192631005947
124 => 0.027939978500196
125 => 0.028083900849888
126 => 0.025705185000478
127 => 0.028566939030931
128 => 0.028591687598623
129 => 0.028379775336751
130 => 0.029903571011224
131 => 0.033119255168151
201 => 0.03190938543772
202 => 0.03144088730959
203 => 0.030550272025547
204 => 0.031736964012032
205 => 0.031645844582749
206 => 0.031233767967512
207 => 0.03098454274486
208 => 0.031443747859259
209 => 0.030927642149388
210 => 0.030834935382259
211 => 0.030273233239412
212 => 0.030072731130235
213 => 0.029924287350819
214 => 0.029760865335467
215 => 0.030121333579105
216 => 0.029304465115474
217 => 0.028319401826939
218 => 0.028237504473029
219 => 0.028463630267662
220 => 0.028363586436622
221 => 0.028237025501656
222 => 0.027995386209985
223 => 0.027923696993953
224 => 0.028156652167394
225 => 0.027893659358709
226 => 0.028281719573883
227 => 0.028176188667707
228 => 0.027586701604373
301 => 0.026851982467396
302 => 0.026845441925951
303 => 0.02668714789307
304 => 0.026485536642529
305 => 0.026429453004869
306 => 0.027247539536394
307 => 0.028940954173382
308 => 0.028608496360164
309 => 0.028848731201861
310 => 0.030030448853851
311 => 0.03040608135993
312 => 0.030139466304459
313 => 0.02977450717243
314 => 0.02979056352204
315 => 0.031037739356825
316 => 0.031115524183824
317 => 0.031312061347313
318 => 0.031564667143792
319 => 0.030182486163898
320 => 0.029725462922185
321 => 0.029508899955577
322 => 0.028841969838841
323 => 0.029561196791474
324 => 0.029142134046544
325 => 0.029198679928057
326 => 0.029161854348541
327 => 0.029181963605091
328 => 0.028114318062664
329 => 0.028503311984527
330 => 0.027856534142818
331 => 0.02699057121699
401 => 0.026987668205617
402 => 0.027199611404905
403 => 0.02707353929663
404 => 0.026734282494874
405 => 0.026782472322316
406 => 0.026360278726201
407 => 0.026833734268947
408 => 0.026847311279807
409 => 0.026665005106552
410 => 0.027394428694428
411 => 0.027693274133533
412 => 0.02757327630492
413 => 0.027684854765988
414 => 0.02862231148326
415 => 0.028775157832279
416 => 0.028843042084051
417 => 0.028752086179617
418 => 0.027701989753866
419 => 0.027748565995703
420 => 0.027406820436926
421 => 0.027118081452019
422 => 0.027129629497179
423 => 0.027278078868862
424 => 0.027926365981441
425 => 0.02929064799125
426 => 0.029342421496245
427 => 0.029405172494638
428 => 0.029149932648046
429 => 0.029072949867998
430 => 0.029174510025823
501 => 0.029686862618167
502 => 0.031004772588048
503 => 0.030538935184445
504 => 0.030160202124124
505 => 0.030492453123725
506 => 0.030441305686606
507 => 0.030009569844359
508 => 0.029997452457208
509 => 0.029168813341637
510 => 0.028862484327811
511 => 0.028606492875528
512 => 0.028326956892461
513 => 0.028161238591568
514 => 0.02841585721936
515 => 0.028474091512096
516 => 0.027917363432455
517 => 0.027841483452381
518 => 0.028296119620026
519 => 0.02809605119319
520 => 0.028301826531649
521 => 0.028349568175279
522 => 0.028341880671072
523 => 0.028132986255743
524 => 0.028266129326752
525 => 0.027951206271955
526 => 0.027608774749776
527 => 0.027390324772864
528 => 0.027199698194824
529 => 0.027305468899602
530 => 0.026928415650034
531 => 0.026807788726915
601 => 0.028221023450108
602 => 0.029264995134965
603 => 0.029249815373209
604 => 0.029157412477437
605 => 0.029020120517563
606 => 0.029676818856164
607 => 0.029448038286093
608 => 0.029614495266076
609 => 0.029656865553659
610 => 0.029785107653058
611 => 0.029830943180813
612 => 0.029692396381118
613 => 0.029227416399275
614 => 0.028068730493494
615 => 0.027529359076539
616 => 0.027351357525003
617 => 0.027357827543328
618 => 0.027179355554484
619 => 0.027231923553752
620 => 0.027161074549624
621 => 0.02702690367602
622 => 0.027297184226241
623 => 0.027328331541816
624 => 0.027265244831783
625 => 0.027280104035768
626 => 0.026757773021375
627 => 0.026797484713956
628 => 0.026576364963348
629 => 0.026534907675747
630 => 0.025975936201308
701 => 0.024985637210128
702 => 0.025534358981891
703 => 0.024871580243559
704 => 0.024620575892616
705 => 0.025808791450795
706 => 0.025689527564723
707 => 0.025485399634533
708 => 0.025183451881794
709 => 0.025071456523145
710 => 0.024391008177411
711 => 0.024350803659094
712 => 0.02468805223289
713 => 0.024532423620098
714 => 0.024313862106573
715 => 0.023522254459811
716 => 0.022632225372566
717 => 0.022659089756186
718 => 0.022942191449259
719 => 0.023765347803333
720 => 0.023443726375047
721 => 0.023210386338645
722 => 0.023166688764002
723 => 0.023713655397721
724 => 0.024487727777486
725 => 0.024850905219179
726 => 0.024491007404324
727 => 0.024077576172894
728 => 0.024102739816296
729 => 0.024270142262334
730 => 0.024287733892469
731 => 0.024018632662225
801 => 0.024094383082269
802 => 0.023979311267459
803 => 0.023273115752372
804 => 0.023260342914874
805 => 0.023087031146531
806 => 0.023081783335064
807 => 0.022786936782465
808 => 0.022745685711579
809 => 0.022160249985487
810 => 0.022545585553263
811 => 0.022287122685425
812 => 0.021897558178365
813 => 0.021830397110512
814 => 0.021828378167713
815 => 0.022228373811433
816 => 0.022540911371278
817 => 0.022291618757668
818 => 0.022234859661884
819 => 0.022840898310959
820 => 0.0227637743687
821 => 0.022696985532099
822 => 0.024418418085979
823 => 0.023055769894525
824 => 0.022461577505812
825 => 0.021726151590705
826 => 0.021965609977003
827 => 0.022016067377372
828 => 0.020247500622025
829 => 0.019529993309642
830 => 0.019283771838724
831 => 0.019142067901151
901 => 0.019206644164909
902 => 0.01856080342855
903 => 0.018994819084603
904 => 0.018435575598475
905 => 0.01834181660809
906 => 0.019341813238261
907 => 0.019480956927454
908 => 0.018887326720802
909 => 0.019268533413473
910 => 0.019130302567541
911 => 0.018445162222919
912 => 0.018418994901305
913 => 0.018075215560221
914 => 0.017537267460223
915 => 0.017291410743449
916 => 0.017163366430727
917 => 0.01721620000969
918 => 0.017189485735432
919 => 0.017015157025668
920 => 0.017199478053014
921 => 0.016728613994853
922 => 0.016541112132883
923 => 0.016456421891842
924 => 0.0160385029383
925 => 0.016703597842787
926 => 0.016834629917616
927 => 0.01696592016611
928 => 0.018108712143592
929 => 0.018051621485894
930 => 0.018567693227209
1001 => 0.018547639628337
1002 => 0.018400447607906
1003 => 0.017779468685619
1004 => 0.018026979816157
1005 => 0.01726517902813
1006 => 0.017835971975938
1007 => 0.017575485911442
1008 => 0.017747901375507
1009 => 0.017437882825043
1010 => 0.017609459891222
1011 => 0.016865702483528
1012 => 0.016171192281172
1013 => 0.016450683460617
1014 => 0.016754522336366
1015 => 0.017413322435697
1016 => 0.017020946531519
1017 => 0.017162059744037
1018 => 0.016689354104167
1019 => 0.015714027347426
1020 => 0.015719547590949
1021 => 0.015569514818072
1022 => 0.015439864597164
1023 => 0.017066015624162
1024 => 0.016863778038311
1025 => 0.016541538913459
1026 => 0.016972868787348
1027 => 0.017086919252129
1028 => 0.017090166108526
1029 => 0.01740485325028
1030 => 0.017572801834244
1031 => 0.017602403500099
1101 => 0.018097570516914
1102 => 0.01826354396954
1103 => 0.018947165131462
1104 => 0.017558552570286
1105 => 0.017529955008391
1106 => 0.01697893848322
1107 => 0.016629475091731
1108 => 0.017002866540615
1109 => 0.01733364039131
1110 => 0.01698921654879
1111 => 0.017034191031439
1112 => 0.016571830163318
1113 => 0.01673710241757
1114 => 0.016879457147509
1115 => 0.016800857232861
1116 => 0.016683189356354
1117 => 0.017306520707648
1118 => 0.017271349909953
1119 => 0.017851810394604
1120 => 0.018304320851517
1121 => 0.019115300486225
1122 => 0.018269000960083
1123 => 0.018238158441614
1124 => 0.01853964900694
1125 => 0.018263497812905
1126 => 0.01843801583512
1127 => 0.019087182934808
1128 => 0.019100898812681
1129 => 0.018871140186409
1130 => 0.01885715935312
1201 => 0.018901287010579
1202 => 0.019159744078621
1203 => 0.019069431237464
1204 => 0.019173943543693
1205 => 0.019304637782981
1206 => 0.019845244569886
1207 => 0.019975583035993
1208 => 0.019658928136099
1209 => 0.019687518528125
1210 => 0.019569080903194
1211 => 0.019454671641529
1212 => 0.01971184695362
1213 => 0.020181839891261
1214 => 0.020178916089589
1215 => 0.020287945315764
1216 => 0.020355869620425
1217 => 0.020064288781192
1218 => 0.019874480376576
1219 => 0.019947264996729
1220 => 0.020063649189395
1221 => 0.019909523171634
1222 => 0.018958185991896
1223 => 0.019246760920574
1224 => 0.019198727941849
1225 => 0.019130323139135
1226 => 0.019420487461405
1227 => 0.019392500404661
1228 => 0.018554179398316
1229 => 0.018607845989216
1230 => 0.018557443041458
1231 => 0.018720305277138
]
'min_raw' => 0.015439864597164
'max_raw' => 0.03458720268307
'avg_raw' => 0.025013533640117
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.015439'
'max' => '$0.034587'
'avg' => '$0.025013'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0037650910131646
'max_diff' => -0.02513380301304
'year' => 2034
]
9 => [
'items' => [
101 => 0.01825470271771
102 => 0.018397918929109
103 => 0.01848774279433
104 => 0.018540649741005
105 => 0.018731785911026
106 => 0.018709358287559
107 => 0.018730391778461
108 => 0.019013796260525
109 => 0.02044715887813
110 => 0.020525173642869
111 => 0.020141000408731
112 => 0.020294470038287
113 => 0.019999841909657
114 => 0.020197627746243
115 => 0.02033294779242
116 => 0.019721462524296
117 => 0.019685254335225
118 => 0.019389410171503
119 => 0.019548380067617
120 => 0.019295447532559
121 => 0.019357508329458
122 => 0.019183980930966
123 => 0.019496295699291
124 => 0.019845512139086
125 => 0.019933738002754
126 => 0.019701653739067
127 => 0.01953360943706
128 => 0.019238578999969
129 => 0.019729221192033
130 => 0.019872699921042
131 => 0.01972846755935
201 => 0.019695045769607
202 => 0.019631711538435
203 => 0.01970848242615
204 => 0.01987191850507
205 => 0.019794845068442
206 => 0.019845753431194
207 => 0.019651743248859
208 => 0.020064385306583
209 => 0.020719760201968
210 => 0.020721867339421
211 => 0.020644793487338
212 => 0.020613256527645
213 => 0.020692338977115
214 => 0.02073523796182
215 => 0.020990976102163
216 => 0.021265393315808
217 => 0.022545978714279
218 => 0.022186395458734
219 => 0.023322607006624
220 => 0.0242212028224
221 => 0.024490652416719
222 => 0.024242771468529
223 => 0.023394784135036
224 => 0.023353177830918
225 => 0.024620428918173
226 => 0.024262372442247
227 => 0.024219782763762
228 => 0.023766700541077
301 => 0.024034528250008
302 => 0.02397595040127
303 => 0.023883482401309
304 => 0.024394479012911
305 => 0.025351019052848
306 => 0.025201933317248
307 => 0.025090647731511
308 => 0.024603026689558
309 => 0.024896683470916
310 => 0.0247921179157
311 => 0.025241397899851
312 => 0.02497525439001
313 => 0.024259659812283
314 => 0.024373620607417
315 => 0.02435639566249
316 => 0.024710883808518
317 => 0.024604475266017
318 => 0.02433561768677
319 => 0.02534774970298
320 => 0.025282027479622
321 => 0.025375206566152
322 => 0.025416226881702
323 => 0.026032293804202
324 => 0.026284676710408
325 => 0.026341972048701
326 => 0.026581716289602
327 => 0.026336006993586
328 => 0.027319019365411
329 => 0.027972665232313
330 => 0.028731908543028
331 => 0.029841367085345
401 => 0.030258533760322
402 => 0.030183176334402
403 => 0.031024355139112
404 => 0.032535934752821
405 => 0.030488709792047
406 => 0.032644442646793
407 => 0.031961962514113
408 => 0.030343814396823
409 => 0.030239624734782
410 => 0.031335453426897
411 => 0.033765895996405
412 => 0.033157097698595
413 => 0.033766891772324
414 => 0.0330555345942
415 => 0.033020209714517
416 => 0.033732342741962
417 => 0.035396280376938
418 => 0.03460580597833
419 => 0.033472467095652
420 => 0.034309306889915
421 => 0.033584358814257
422 => 0.03195084789961
423 => 0.03315663216201
424 => 0.032350358564502
425 => 0.032585672064116
426 => 0.034280339241933
427 => 0.034076432403565
428 => 0.034340306733678
429 => 0.033874575447822
430 => 0.033439508987749
501 => 0.032627425131565
502 => 0.032387007136999
503 => 0.032453450021364
504 => 0.032386974211205
505 => 0.031932620757106
506 => 0.031834503171953
507 => 0.031670969564734
508 => 0.031721655467715
509 => 0.031414164442699
510 => 0.031994463537792
511 => 0.032102172163419
512 => 0.032524465451899
513 => 0.032568309342013
514 => 0.033744390139461
515 => 0.033096624599462
516 => 0.03353120164908
517 => 0.033492328987364
518 => 0.030378884573179
519 => 0.030807889743301
520 => 0.031475287158772
521 => 0.031174625527738
522 => 0.030749560325443
523 => 0.030406297384035
524 => 0.029886218927364
525 => 0.030618219367906
526 => 0.03158072210765
527 => 0.032592719999865
528 => 0.033808569158632
529 => 0.03353720578044
530 => 0.032569990545569
531 => 0.032613379114454
601 => 0.032881590174529
602 => 0.032534232482187
603 => 0.032431789917488
604 => 0.032867516139252
605 => 0.03287051674627
606 => 0.032470839741651
607 => 0.032026671891137
608 => 0.032024810811626
609 => 0.031945775432779
610 => 0.033069594812518
611 => 0.03368758184042
612 => 0.033758433057233
613 => 0.033682812989015
614 => 0.033711916152019
615 => 0.033352323116898
616 => 0.034174246161182
617 => 0.034928524026382
618 => 0.034726361445712
619 => 0.034423290998184
620 => 0.034181880788878
621 => 0.034669492872527
622 => 0.034647780274014
623 => 0.034921936067247
624 => 0.034909498776866
625 => 0.034817310495122
626 => 0.034726364738046
627 => 0.03508695438481
628 => 0.034983110357435
629 => 0.034879105031602
630 => 0.034670506428226
701 => 0.034698858442881
702 => 0.034395840324739
703 => 0.03425565027812
704 => 0.032147528339935
705 => 0.031584169273181
706 => 0.031761413503813
707 => 0.031819766906681
708 => 0.031574592318865
709 => 0.031926109697609
710 => 0.031871326086481
711 => 0.03208445707004
712 => 0.031951302084584
713 => 0.031956766811634
714 => 0.032348347232224
715 => 0.032462024694224
716 => 0.032404207419561
717 => 0.032444700656875
718 => 0.033377850219638
719 => 0.033245186192256
720 => 0.033174711071802
721 => 0.033194233161803
722 => 0.033432672882041
723 => 0.033499422985382
724 => 0.033216598107081
725 => 0.033349979954679
726 => 0.033917902933073
727 => 0.034116643833855
728 => 0.034750929388105
729 => 0.034481473611133
730 => 0.034976071351538
731 => 0.036496296184748
801 => 0.037710756973073
802 => 0.036593888642414
803 => 0.038824091219525
804 => 0.040560623829364
805 => 0.040493972815452
806 => 0.040191168188203
807 => 0.038214171980009
808 => 0.036394910593876
809 => 0.037916799993295
810 => 0.037920679602354
811 => 0.037789947953247
812 => 0.036977984908431
813 => 0.037761693399319
814 => 0.037823901333315
815 => 0.037789081432702
816 => 0.03716655126999
817 => 0.036216062774333
818 => 0.036401785951237
819 => 0.036706004303654
820 => 0.036130055495931
821 => 0.035946004953894
822 => 0.036288189928589
823 => 0.037390781214124
824 => 0.03718234271847
825 => 0.037176899546982
826 => 0.038068687823069
827 => 0.037430359877346
828 => 0.036404128515265
829 => 0.036144991562011
830 => 0.035225229953528
831 => 0.035860512572586
901 => 0.035883375263074
902 => 0.035535437465047
903 => 0.036432361749981
904 => 0.036424096434795
905 => 0.037275592553777
906 => 0.038903333325935
907 => 0.038421930283349
908 => 0.037862110921324
909 => 0.037922978808083
910 => 0.038590549291087
911 => 0.038186920937911
912 => 0.03833206850791
913 => 0.038590329592856
914 => 0.038746144917666
915 => 0.037900559380705
916 => 0.037703412943007
917 => 0.037300120520476
918 => 0.037194909055247
919 => 0.037523382318426
920 => 0.03743684121871
921 => 0.035881453742467
922 => 0.035718907097105
923 => 0.035723892170655
924 => 0.035315160902222
925 => 0.034691747611116
926 => 0.036330040518068
927 => 0.036198462669745
928 => 0.036053210908514
929 => 0.03607100342047
930 => 0.036782130844479
1001 => 0.036369641025758
1002 => 0.03746631281458
1003 => 0.037240870063769
1004 => 0.037009645557074
1005 => 0.036977683286978
1006 => 0.036888681579049
1007 => 0.03658346160648
1008 => 0.036214890148728
1009 => 0.035971527347206
1010 => 0.033181832530057
1011 => 0.033699583661211
1012 => 0.034295209143105
1013 => 0.034500816672635
1014 => 0.034149110765765
1015 => 0.036597349099356
1016 => 0.037044665834715
1017 => 0.035689714265565
1018 => 0.035436258149285
1019 => 0.036613965640144
1020 => 0.035903664054271
1021 => 0.036223512814897
1022 => 0.035532174742341
1023 => 0.03693692033213
1024 => 0.036926218524329
1025 => 0.036379740762282
1026 => 0.036841620024646
1027 => 0.03676135713652
1028 => 0.036144385089085
1029 => 0.036956479446507
1030 => 0.036956882235176
1031 => 0.036430909270658
1101 => 0.035816687998388
1102 => 0.035706879742165
1103 => 0.035624153971765
1104 => 0.03620316734656
1105 => 0.036722308927874
1106 => 0.037688302704587
1107 => 0.037931176491499
1108 => 0.038879129050838
1109 => 0.038314669456724
1110 => 0.038564887083819
1111 => 0.038836533713476
1112 => 0.038966771097207
1113 => 0.03875455626934
1114 => 0.040227116786835
1115 => 0.0403514460126
1116 => 0.040393132526555
1117 => 0.039896593405324
1118 => 0.040337636361406
1119 => 0.040131286968063
1120 => 0.040668150764029
1121 => 0.040752337862257
1122 => 0.0406810343851
1123 => 0.040707756698881
1124 => 0.039451186074676
1125 => 0.039386026258873
1126 => 0.038497567546867
1127 => 0.038859621039165
1128 => 0.03818277938899
1129 => 0.038397412848502
1130 => 0.038492021232352
1201 => 0.038442603181607
1202 => 0.038880091000398
1203 => 0.038508136981569
1204 => 0.037526489170977
1205 => 0.036544573911095
1206 => 0.036532246764858
1207 => 0.036273725809175
1208 => 0.036086862508691
1209 => 0.036122859009696
1210 => 0.036249715374335
1211 => 0.036079489386166
1212 => 0.036115815731418
1213 => 0.036719075103782
1214 => 0.036840054468661
1215 => 0.036428919317114
1216 => 0.034778152357136
1217 => 0.034373050004522
1218 => 0.034664229542052
1219 => 0.034525064477476
1220 => 0.027864421604126
1221 => 0.029429240848507
1222 => 0.028499478389736
1223 => 0.028927955707052
1224 => 0.027978908997468
1225 => 0.028431843831081
1226 => 0.028348203305845
1227 => 0.030864386344442
1228 => 0.030825099607191
1229 => 0.030843904089305
1230 => 0.029946317163176
1231 => 0.031376197508641
]
'min_raw' => 0.01825470271771
'max_raw' => 0.040752337862257
'avg_raw' => 0.029503520289984
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.018254'
'max' => '$0.040752'
'avg' => '$0.0295035'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0028148381205464
'max_diff' => 0.0061651351791867
'year' => 2035
]
10 => [
'items' => [
101 => 0.032080607983652
102 => 0.031950240352005
103 => 0.03198305107623
104 => 0.031419254126912
105 => 0.030849362876174
106 => 0.03021726577347
107 => 0.031391624060731
108 => 0.031261055466152
109 => 0.031560532845018
110 => 0.032322188139171
111 => 0.032434344774482
112 => 0.03258508442972
113 => 0.032531054993696
114 => 0.033818255358743
115 => 0.033662366901314
116 => 0.034038013231547
117 => 0.033265280229902
118 => 0.032390859490052
119 => 0.03255705828573
120 => 0.03254105200522
121 => 0.032337273683173
122 => 0.032153311725573
123 => 0.03184706689713
124 => 0.032816070850031
125 => 0.032776731059152
126 => 0.033413596545975
127 => 0.033301024384998
128 => 0.032549239942911
129 => 0.032576090071334
130 => 0.032756670088709
131 => 0.033381659590671
201 => 0.033567199027383
202 => 0.03348124976783
203 => 0.033684685289988
204 => 0.033845472431967
205 => 0.033704877679498
206 => 0.035695402886368
207 => 0.034868798041542
208 => 0.035271679491431
209 => 0.035367764343314
210 => 0.035121645015662
211 => 0.035175019484957
212 => 0.035255867262267
213 => 0.035746759134476
214 => 0.037035001447859
215 => 0.037605555199094
216 => 0.039322094310312
217 => 0.037558178652546
218 => 0.037453515197223
219 => 0.037762715725668
220 => 0.038770505898071
221 => 0.039587225175886
222 => 0.039858178078003
223 => 0.039893988976963
224 => 0.040402314633942
225 => 0.040693677420811
226 => 0.040340590528893
227 => 0.040041386357731
228 => 0.038969674155219
229 => 0.039093727760835
301 => 0.03994833408549
302 => 0.041155515855125
303 => 0.042191403399329
304 => 0.041828671685675
305 => 0.044596058612175
306 => 0.044870433722176
307 => 0.044832523953583
308 => 0.045457591286655
309 => 0.044216959923255
310 => 0.043686565979301
311 => 0.040106077695648
312 => 0.041112048857135
313 => 0.042574287018972
314 => 0.042380754315141
315 => 0.041318837876277
316 => 0.042190597840486
317 => 0.041902366733864
318 => 0.041675026901352
319 => 0.042716514746085
320 => 0.041571356078838
321 => 0.042562863185266
322 => 0.041291245065445
323 => 0.041830328613588
324 => 0.041524318719125
325 => 0.041722344624005
326 => 0.040564689230409
327 => 0.041189331980297
328 => 0.040538702038379
329 => 0.040538393555072
330 => 0.040524030863043
331 => 0.041289494104375
401 => 0.041314455833194
402 => 0.040748777341299
403 => 0.040667254233058
404 => 0.040968687892215
405 => 0.040615788022943
406 => 0.04078090765065
407 => 0.040620789328256
408 => 0.040584743321277
409 => 0.040297522604948
410 => 0.040173780023055
411 => 0.040222302677868
412 => 0.040056669841846
413 => 0.039956870066941
414 => 0.040504178175891
415 => 0.040211773531625
416 => 0.040459362970484
417 => 0.040177203556626
418 => 0.039199116097189
419 => 0.03863660765618
420 => 0.036789091114059
421 => 0.037313044513568
422 => 0.037660426159511
423 => 0.037545616527599
424 => 0.037792272042375
425 => 0.037807414687729
426 => 0.03772722446552
427 => 0.037634374461206
428 => 0.037589180214033
429 => 0.037926021105508
430 => 0.038121568580553
501 => 0.037695290555048
502 => 0.037595419577936
503 => 0.038026410197176
504 => 0.038289314225937
505 => 0.040230449861297
506 => 0.040086644263644
507 => 0.040447568093329
508 => 0.040406933608934
509 => 0.04078523928212
510 => 0.041403609173872
511 => 0.040146290284999
512 => 0.040364517369291
513 => 0.040311013127822
514 => 0.040895158406617
515 => 0.040896982044416
516 => 0.040546757769557
517 => 0.040736620030698
518 => 0.040630644125128
519 => 0.040822156909996
520 => 0.040084723652213
521 => 0.040982837759191
522 => 0.041492010584653
523 => 0.041499080449829
524 => 0.041740424328052
525 => 0.041985643686022
526 => 0.042456320889541
527 => 0.041972516754277
528 => 0.04110220021232
529 => 0.041165034255544
530 => 0.040654767985431
531 => 0.040663345653619
601 => 0.040617557388589
602 => 0.040754971418724
603 => 0.040114878304366
604 => 0.040265106878906
605 => 0.040054785994813
606 => 0.040364060172764
607 => 0.040031332282142
608 => 0.040310987326457
609 => 0.040431677172872
610 => 0.040877025304409
611 => 0.039965554001012
612 => 0.038107002312203
613 => 0.038497692409952
614 => 0.037919831067337
615 => 0.037973314334669
616 => 0.038081359046479
617 => 0.037731150785473
618 => 0.037797959485342
619 => 0.037795572608457
620 => 0.037775003792958
621 => 0.037683901098585
622 => 0.037551784167626
623 => 0.03807809735712
624 => 0.038167528223901
625 => 0.038366321962614
626 => 0.038957797285942
627 => 0.038898694953193
628 => 0.038995093310039
629 => 0.038784656238298
630 => 0.037983075906879
701 => 0.038026605575394
702 => 0.037483789911492
703 => 0.038352440945672
704 => 0.038146732915145
705 => 0.038014111609654
706 => 0.037977924657723
707 => 0.038570866133974
708 => 0.038748283516887
709 => 0.038637728909893
710 => 0.038410978185556
711 => 0.038846406609117
712 => 0.038962908886012
713 => 0.03898898944937
714 => 0.039760485130802
715 => 0.039032107487714
716 => 0.039207435225857
717 => 0.040575292189334
718 => 0.039334834674818
719 => 0.039991932685761
720 => 0.039959771157498
721 => 0.040295920264912
722 => 0.039932197119233
723 => 0.039936705903542
724 => 0.040235183538212
725 => 0.039816025531043
726 => 0.039712236113835
727 => 0.039568851777317
728 => 0.039881926230494
729 => 0.040069600206033
730 => 0.041582114617539
731 => 0.042559267906408
801 => 0.04251684710508
802 => 0.042904493820808
803 => 0.042729855424935
804 => 0.042165901977382
805 => 0.043128501745559
806 => 0.042823894902023
807 => 0.042849006320107
808 => 0.042848071671871
809 => 0.04305060859363
810 => 0.042907092622328
811 => 0.042624207911278
812 => 0.04281199998415
813 => 0.043369675303683
814 => 0.045100716607084
815 => 0.046069430253713
816 => 0.045042398829204
817 => 0.045750831353332
818 => 0.045326024279173
819 => 0.045248824196883
820 => 0.045693772174788
821 => 0.046139498975226
822 => 0.046111108104968
823 => 0.045787533336174
824 => 0.045604754159688
825 => 0.046988819319556
826 => 0.048008574952411
827 => 0.047939034454779
828 => 0.048245963595546
829 => 0.0491471170458
830 => 0.049229507223669
831 => 0.049219127954974
901 => 0.049014915302601
902 => 0.049902217903939
903 => 0.050642421344579
904 => 0.048967645973847
905 => 0.049605378510602
906 => 0.049891677192811
907 => 0.050312048599284
908 => 0.051021285624433
909 => 0.051791705149574
910 => 0.051900650917649
911 => 0.051823348681665
912 => 0.051315236294846
913 => 0.052158238532272
914 => 0.052652049472121
915 => 0.052946102586139
916 => 0.053691772357515
917 => 0.049893445276004
918 => 0.047204800578606
919 => 0.046784929884607
920 => 0.047638753451454
921 => 0.047863899916916
922 => 0.047773143658998
923 => 0.044746829611194
924 => 0.046768996967456
925 => 0.048944679014133
926 => 0.04902825582229
927 => 0.050117447746222
928 => 0.05047213328414
929 => 0.051349075546555
930 => 0.051294222569275
1001 => 0.051507744054974
1002 => 0.051458659163089
1003 => 0.053083010042232
1004 => 0.054874910280368
1005 => 0.054812862473015
1006 => 0.054555255612982
1007 => 0.054937845728628
1008 => 0.056787278806083
1009 => 0.056617012644872
1010 => 0.056782411717252
1011 => 0.058962997545052
1012 => 0.06179806930591
1013 => 0.06048089383644
1014 => 0.063338785598157
1015 => 0.065137676971826
1016 => 0.068248673593745
1017 => 0.067859161494699
1018 => 0.069070249650065
1019 => 0.067161853543779
1020 => 0.062779790333261
1021 => 0.062086312056332
1022 => 0.06347467312841
1023 => 0.066887823349822
1024 => 0.063367180881568
1025 => 0.064079402267601
1026 => 0.06387428246051
1027 => 0.063863352497693
1028 => 0.06428050472304
1029 => 0.063675403662977
1030 => 0.061210113088678
1031 => 0.062339941230831
1101 => 0.061903660326342
1102 => 0.062387746516768
1103 => 0.065000160034168
1104 => 0.063845149745965
1105 => 0.062628440232761
1106 => 0.064154463971775
1107 => 0.066097616590189
1108 => 0.06597601759151
1109 => 0.065740064709634
1110 => 0.06707011875068
1111 => 0.069266978357219
1112 => 0.06986078068117
1113 => 0.070299113416956
1114 => 0.070359552095529
1115 => 0.070982108047257
1116 => 0.067634467790515
1117 => 0.072947258851464
1118 => 0.073864631104799
1119 => 0.073692203142356
1120 => 0.074711823793012
1121 => 0.07441182553231
1122 => 0.073977175120837
1123 => 0.075593490731659
1124 => 0.073740515313796
1125 => 0.071110449991258
1126 => 0.06966754413852
1127 => 0.0715676789613
1128 => 0.072728024992005
1129 => 0.073494939906433
1130 => 0.073727007896157
1201 => 0.067894335574136
1202 => 0.064750848687404
1203 => 0.066765787741649
1204 => 0.069224152451492
1205 => 0.067620811450426
1206 => 0.067683659382141
1207 => 0.065397716465223
1208 => 0.069426407676381
1209 => 0.068839461253542
1210 => 0.071884540333522
1211 => 0.071157807772798
1212 => 0.073640951553233
1213 => 0.072987056576634
1214 => 0.07570133806572
1215 => 0.076784138437954
1216 => 0.078602328787357
1217 => 0.079939797009743
1218 => 0.080725183931618
1219 => 0.080678032246741
1220 => 0.083790126509423
1221 => 0.081955033251011
1222 => 0.079649723620174
1223 => 0.079608027842111
1224 => 0.080801980366412
1225 => 0.083304177312468
1226 => 0.083952960575095
1227 => 0.084315541910263
1228 => 0.083760235973906
1229 => 0.081768373764219
1230 => 0.080908297761047
1231 => 0.08164110743455
]
'min_raw' => 0.03021726577347
'max_raw' => 0.084315541910263
'avg_raw' => 0.057266403841867
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.030217'
'max' => '$0.084315'
'avg' => '$0.057266'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.01196256305576
'max_diff' => 0.043563204048006
'year' => 2036
]
11 => [
'items' => [
101 => 0.080744944174909
102 => 0.082291973380051
103 => 0.084416374906317
104 => 0.083977694391938
105 => 0.085444137580852
106 => 0.086961752007055
107 => 0.089132008796855
108 => 0.089699394286085
109 => 0.090637260924045
110 => 0.091602633767646
111 => 0.091912685507484
112 => 0.092504670482237
113 => 0.092501550429209
114 => 0.094285536995814
115 => 0.096253329424245
116 => 0.096996125511479
117 => 0.098704144156056
118 => 0.095779222083329
119 => 0.097997809074576
120 => 0.099999030075514
121 => 0.097613091897538
122 => 0.10090155182358
123 => 0.1010292352707
124 => 0.10295710372941
125 => 0.1010028397116
126 => 0.099842403976057
127 => 0.10319253846361
128 => 0.10481356301389
129 => 0.10432529722701
130 => 0.1006095704802
131 => 0.098446858138541
201 => 0.092786622784362
202 => 0.099491416065358
203 => 0.10275712529103
204 => 0.10060111308224
205 => 0.10168848023262
206 => 0.10762080282506
207 => 0.10987944717881
208 => 0.10940966494235
209 => 0.10948905040704
210 => 0.11070777390303
211 => 0.11611226504755
212 => 0.11287376867863
213 => 0.11534947780853
214 => 0.11666258500419
215 => 0.11788227214778
216 => 0.1148871060092
217 => 0.11099043887064
218 => 0.1097562008169
219 => 0.10038674015844
220 => 0.099899019041659
221 => 0.099625246399349
222 => 0.097899148615494
223 => 0.096542908575359
224 => 0.095464376141479
225 => 0.09263398495793
226 => 0.093589158895373
227 => 0.089078106097347
228 => 0.091964117815629
301 => 0.0847643686268
302 => 0.090760533692959
303 => 0.08749709365962
304 => 0.089688405872069
305 => 0.089680760590194
306 => 0.085645860050906
307 => 0.08331861362607
308 => 0.084801625625761
309 => 0.086391532211069
310 => 0.086649489205447
311 => 0.088710844594107
312 => 0.089286124574396
313 => 0.087542999376866
314 => 0.084615169827833
315 => 0.085295237855391
316 => 0.083304832069198
317 => 0.079816722488746
318 => 0.082321943685977
319 => 0.083177336349512
320 => 0.083555126480374
321 => 0.080124971320092
322 => 0.07904714209644
323 => 0.078473314861631
324 => 0.084172379870684
325 => 0.084484587516792
326 => 0.082887289057592
327 => 0.090107229555231
328 => 0.088473134658904
329 => 0.090298819021071
330 => 0.085233528810026
331 => 0.085427029717406
401 => 0.08302904015662
402 => 0.08437175407694
403 => 0.083422767155748
404 => 0.084263276061135
405 => 0.084767073633477
406 => 0.087164669707771
407 => 0.090787910388816
408 => 0.086806548807055
409 => 0.085071812551734
410 => 0.086148033168008
411 => 0.089014150491841
412 => 0.093356464951294
413 => 0.090785727394075
414 => 0.091926577068014
415 => 0.092175801968901
416 => 0.090280235268085
417 => 0.093426357199361
418 => 0.095112389501381
419 => 0.096841909768029
420 => 0.098343603755501
421 => 0.096151101340564
422 => 0.098497393207422
423 => 0.096606696139003
424 => 0.094910545411962
425 => 0.094913117772474
426 => 0.093849097644593
427 => 0.091787424571659
428 => 0.09140722042527
429 => 0.093385090409276
430 => 0.094971154831463
501 => 0.095101790694011
502 => 0.095979917453067
503 => 0.096499583823651
504 => 0.10159302070755
505 => 0.10364164315737
506 => 0.10614665991058
507 => 0.10712250511096
508 => 0.11005944930424
509 => 0.10768762834122
510 => 0.10717446995642
511 => 0.10005040401064
512 => 0.10121696941016
513 => 0.10308475317162
514 => 0.10008120307692
515 => 0.10198626429007
516 => 0.10236236372826
517 => 0.099979143594022
518 => 0.10125212444058
519 => 0.097871464724633
520 => 0.090861599532347
521 => 0.093434161183197
522 => 0.09532843247311
523 => 0.092625073780438
524 => 0.097470739602624
525 => 0.094640001664149
526 => 0.093742793637037
527 => 0.090242465245514
528 => 0.091894485506317
529 => 0.094128866563705
530 => 0.092748278844918
531 => 0.09561320565769
601 => 0.099670706072649
602 => 0.10256232249668
603 => 0.10278430490037
604 => 0.10092518926297
605 => 0.10390443393662
606 => 0.10392613448155
607 => 0.10056553431911
608 => 0.098507185431512
609 => 0.098039524233448
610 => 0.099207833596592
611 => 0.10062637684526
612 => 0.10286302417811
613 => 0.10421458331804
614 => 0.10773873274339
615 => 0.10869226653261
616 => 0.10973991107358
617 => 0.11113988726192
618 => 0.11282091762256
619 => 0.1091429188946
620 => 0.10928905264071
621 => 0.10586415115059
622 => 0.10220415272784
623 => 0.10498163530546
624 => 0.10861282430268
625 => 0.10777982553461
626 => 0.10768609615658
627 => 0.10784372297206
628 => 0.10721566910414
629 => 0.10437500473626
630 => 0.10294844087422
701 => 0.10478907221151
702 => 0.10576728585021
703 => 0.10728440989463
704 => 0.10709739233355
705 => 0.11100534094476
706 => 0.11252385160485
707 => 0.11213535159726
708 => 0.11220684494843
709 => 0.11495603596499
710 => 0.11801370178966
711 => 0.12087760932901
712 => 0.12379089908572
713 => 0.12027881457637
714 => 0.11849559465778
715 => 0.12033542243301
716 => 0.11935918391802
717 => 0.12496893999631
718 => 0.12535734733585
719 => 0.13096669776492
720 => 0.13629063927114
721 => 0.1329467669994
722 => 0.13609988794033
723 => 0.13951024531567
724 => 0.14608937800323
725 => 0.14387375757074
726 => 0.14217662704265
727 => 0.14057284689408
728 => 0.14391005879033
729 => 0.14820332858159
730 => 0.1491280577742
731 => 0.15062647233997
801 => 0.14905107264148
802 => 0.15094846805373
803 => 0.15764710761675
804 => 0.1558370760763
805 => 0.15326654031176
806 => 0.15855447290258
807 => 0.16046815515089
808 => 0.17389937937265
809 => 0.19085685476883
810 => 0.18383634860602
811 => 0.17947849388045
812 => 0.18050269311066
813 => 0.18669498907857
814 => 0.18868375800982
815 => 0.18327759848493
816 => 0.18518714542368
817 => 0.19570893679869
818 => 0.2013535402919
819 => 0.19368741057673
820 => 0.17253686273569
821 => 0.153035091691
822 => 0.15820783954825
823 => 0.15762141047029
824 => 0.16892576268254
825 => 0.15579390742267
826 => 0.15601501418673
827 => 0.16755312843121
828 => 0.16447495736414
829 => 0.15948871445784
830 => 0.15307149678232
831 => 0.14120867638834
901 => 0.13070144554616
902 => 0.15130854489841
903 => 0.15041992930277
904 => 0.14913308223481
905 => 0.15199682113314
906 => 0.16590232433696
907 => 0.16558175748039
908 => 0.16354247469354
909 => 0.16508925271395
910 => 0.1592175567923
911 => 0.16073082652734
912 => 0.15303200251083
913 => 0.15651219249759
914 => 0.15947801622
915 => 0.16007344924205
916 => 0.16141499024428
917 => 0.14995166926286
918 => 0.1550983638381
919 => 0.15812156472098
920 => 0.14446263314712
921 => 0.15785157156058
922 => 0.14975211834817
923 => 0.14700304227817
924 => 0.15070431104319
925 => 0.14926192300586
926 => 0.14802184247123
927 => 0.14732985622562
928 => 0.15004765951252
929 => 0.14992087074071
930 => 0.14547401706045
1001 => 0.13967327771149
1002 => 0.14162019623978
1003 => 0.14091286248599
1004 => 0.1383493937144
1005 => 0.14007686215205
1006 => 0.1324699654044
1007 => 0.11938269492216
1008 => 0.12802854667667
1009 => 0.12769569078899
1010 => 0.12752784975662
1011 => 0.13402496839634
1012 => 0.13340042035316
1013 => 0.1322668595392
1014 => 0.1383285749811
1015 => 0.13611596730323
1016 => 0.1429347028105
1017 => 0.14742596302376
1018 => 0.14628683415663
1019 => 0.15051088609534
1020 => 0.14166504931045
1021 => 0.14460328145701
1022 => 0.14520884703021
1023 => 0.13825377435349
1024 => 0.13350260413694
1025 => 0.1331857552508
1026 => 0.1249478808469
1027 => 0.12934848685966
1028 => 0.13322083804145
1029 => 0.13136628233197
1030 => 0.13077918539762
1031 => 0.13377853630941
1101 => 0.13401161156296
1102 => 0.12869747108182
1103 => 0.12980244916479
1104 => 0.1344103914581
1105 => 0.12968634084176
1106 => 0.12050828216351
1107 => 0.11823199671471
1108 => 0.11792829827558
1109 => 0.11175483160397
1110 => 0.11838410899288
1111 => 0.11549025175903
1112 => 0.12463191208703
1113 => 0.11941024473539
1114 => 0.11918514909227
1115 => 0.11884488401335
1116 => 0.1135311262264
1117 => 0.11469450147482
1118 => 0.11856173798761
1119 => 0.11994161154292
1120 => 0.11979767942613
1121 => 0.11854278641894
1122 => 0.11911727001154
1123 => 0.11726665819642
1124 => 0.11661316864735
1125 => 0.11455057587402
1126 => 0.11151913430302
1127 => 0.11194067484638
1128 => 0.10593459587439
1129 => 0.10266216528372
1130 => 0.10175639962616
1201 => 0.10054517193432
1202 => 0.10189321101691
1203 => 0.10591758140729
1204 => 0.10106333689868
1205 => 0.092741075174336
1206 => 0.093241257284414
1207 => 0.094365017980355
1208 => 0.092270897357889
1209 => 0.090288987934946
1210 => 0.092012097380801
1211 => 0.088485845377758
1212 => 0.094791148688055
1213 => 0.09462060790392
1214 => 0.096970835060657
1215 => 0.098440480333282
1216 => 0.09505342378319
1217 => 0.094201588220416
1218 => 0.09468683247074
1219 => 0.086666825907818
1220 => 0.096315429422776
1221 => 0.09639887094664
1222 => 0.095684393960495
1223 => 0.100821977465
1224 => 0.11166388111198
1225 => 0.10758472084542
1226 => 0.10600514669694
1227 => 0.10300237508601
1228 => 0.10700338997063
1229 => 0.10669617445305
1230 => 0.10530682937451
1231 => 0.10446654913599
]
'min_raw' => 0.078473314861631
'max_raw' => 0.2013535402919
'avg_raw' => 0.13991342757677
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.078473'
'max' => '$0.201353'
'avg' => '$0.139913'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.048256049088161
'max_diff' => 0.11703799838164
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0024631876840582
]
1 => [
'year' => 2028
'avg' => 0.0042275451343379
]
2 => [
'year' => 2029
'avg' => 0.011548891366133
]
3 => [
'year' => 2030
'avg' => 0.008909952489847
]
4 => [
'year' => 2031
'avg' => 0.0087506775432857
]
5 => [
'year' => 2032
'avg' => 0.015342691672955
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0024631876840582
'min' => '$0.002463'
'max_raw' => 0.015342691672955
'max' => '$0.015342'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.015342691672955
]
1 => [
'year' => 2033
'avg' => 0.03946298065322
]
2 => [
'year' => 2034
'avg' => 0.025013533640117
]
3 => [
'year' => 2035
'avg' => 0.029503520289984
]
4 => [
'year' => 2036
'avg' => 0.057266403841867
]
5 => [
'year' => 2037
'avg' => 0.13991342757677
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.015342691672955
'min' => '$0.015342'
'max_raw' => 0.13991342757677
'max' => '$0.139913'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.13991342757677
]
]
]
]
'prediction_2025_max_price' => '$0.004211'
'last_price' => 0.00408368
'sma_50day_nextmonth' => '$0.003651'
'sma_200day_nextmonth' => '$0.171957'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.004012'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003746'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0035021'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003544'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005875'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.084198'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.206483'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0040082'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003847'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003656'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004268'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.023383'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.078687'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.130941'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.153575'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.158169'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0815017'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0040069'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007356'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.036241'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.099528'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.127558'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.074348'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.04099'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '38.33'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 169.26
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003779'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004127'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 72.08
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 147.89
'cci_20_action' => 'SELL'
'adx_14' => 41.47
'adx_14_action' => 'SELL'
'ao_5_34' => '0.000270'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -27.92
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 68.38
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.102664'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767680778
'last_updated_date' => '6. Januar 2026'
]
Saros Preisprognose für 2026
Die Preisprognose für Saros im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.00141 am unteren Ende und $0.004211 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Saros im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SAROS das prognostizierte Preisziel erreicht.
Saros Preisprognose 2027-2032
Die Preisprognose für SAROS für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.002463 am unteren Ende und $0.015342 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Saros, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Saros Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001358 | $0.002463 | $0.003568 |
| 2028 | $0.002451 | $0.004227 | $0.0060038 |
| 2029 | $0.005384 | $0.011548 | $0.017713 |
| 2030 | $0.004579 | $0.0089099 | $0.01324 |
| 2031 | $0.005414 | $0.00875 | $0.012087 |
| 2032 | $0.008264 | $0.015342 | $0.02242 |
Saros Preisprognose 2032-2037
Die Preisprognose für Saros für die Jahre 2032-2037 wird derzeit zwischen $0.015342 am unteren Ende und $0.139913 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Saros bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Saros Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.008264 | $0.015342 | $0.02242 |
| 2033 | $0.0192049 | $0.039462 | $0.059721 |
| 2034 | $0.015439 | $0.025013 | $0.034587 |
| 2035 | $0.018254 | $0.0295035 | $0.040752 |
| 2036 | $0.030217 | $0.057266 | $0.084315 |
| 2037 | $0.078473 | $0.139913 | $0.201353 |
Saros Potenzielles Preishistogramm
Saros Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Saros Bärisch, mit 15 technischen Indikatoren, die bullische Signale zeigen, und 18 anzeigen bärische Signale. Die Preisprognose für SAROS wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Saros
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Saros im nächsten Monat steigen, und bis zum 04.02.2026 $0.171957 erreichen. Der kurzfristige 50-Tage-SMA für Saros wird voraussichtlich bis zum 04.02.2026 $0.003651 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 38.33, was darauf hindeutet, dass sich der SAROS-Markt in einem NEUTRAL Zustand befindet.
Beliebte SAROS Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.004012 | BUY |
| SMA 5 | $0.003746 | BUY |
| SMA 10 | $0.0035021 | BUY |
| SMA 21 | $0.003544 | BUY |
| SMA 50 | $0.005875 | SELL |
| SMA 100 | $0.084198 | SELL |
| SMA 200 | $0.206483 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.0040082 | BUY |
| EMA 5 | $0.003847 | BUY |
| EMA 10 | $0.003656 | BUY |
| EMA 21 | $0.004268 | SELL |
| EMA 50 | $0.023383 | SELL |
| EMA 100 | $0.078687 | SELL |
| EMA 200 | $0.130941 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.153575 | SELL |
| SMA 50 | $0.158169 | SELL |
| SMA 100 | $0.0815017 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.099528 | SELL |
| EMA 50 | $0.127558 | SELL |
| EMA 100 | $0.074348 | SELL |
| EMA 200 | $0.04099 | SELL |
Saros Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 38.33 | NEUTRAL |
| Stoch RSI (14) | 169.26 | SELL |
| Stochastic Fast (14) | 72.08 | NEUTRAL |
| Commodity Channel Index (20) | 147.89 | SELL |
| Average Directional Index (14) | 41.47 | SELL |
| Awesome Oscillator (5, 34) | 0.000270 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Prozentbereich (14) | -27.92 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 68.38 | NEUTRAL |
| VWMA (10) | 0.003779 | BUY |
| Hull Moving Average (9) | 0.004127 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.102664 | SELL |
Auf weltweiten Geldflüssen basierende Saros-Preisprognose
Definition weltweiter Geldflüsse, die für Saros-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Saros-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.005738 | $0.008063 | $0.01133 | $0.01592 | $0.022371 | $0.031435 |
| Amazon.com aktie | $0.00852 | $0.017779 | $0.037097 | $0.077406 | $0.161512 | $0.3370049 |
| Apple aktie | $0.005792 | $0.008216 | $0.011653 | $0.01653 | $0.023446 | $0.033257 |
| Netflix aktie | $0.006443 | $0.010166 | $0.016041 | $0.02531 | $0.039936 | $0.063013 |
| Google aktie | $0.005288 | $0.006848 | $0.008868 | $0.011484 | $0.014872 | $0.01926 |
| Tesla aktie | $0.009257 | $0.020985 | $0.047573 | $0.107844 | $0.244476 | $0.5542094 |
| Kodak aktie | $0.003062 | $0.002296 | $0.001722 | $0.001291 | $0.000968 | $0.000726 |
| Nokia aktie | $0.0027052 | $0.001792 | $0.001187 | $0.000786 | $0.000521 | $0.000345 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Saros Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Saros investieren?", "Sollte ich heute SAROS kaufen?", "Wird Saros auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Saros-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Saros.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Saros zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Saros-Preis entspricht heute $0.004083 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Saros-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Saros-Prognose
basierend auf dem Preisverlauf des letzten Monats
Saros-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Saros 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004189 | $0.004298 | $0.00441 | $0.004525 |
| Wenn die Wachstumsrate von Saros 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004295 | $0.004519 | $0.004754 | $0.0050014 |
| Wenn die Wachstumsrate von Saros 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004614 | $0.005214 | $0.005891 | $0.006657 |
| Wenn die Wachstumsrate von Saros 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005145 | $0.006482 | $0.008167 | $0.01029 |
| Wenn die Wachstumsrate von Saros 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0062066 | $0.009433 | $0.014337 | $0.02179 |
| Wenn die Wachstumsrate von Saros 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009391 | $0.021596 | $0.049664 | $0.11421 |
| Wenn die Wachstumsrate von Saros 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.014698 | $0.0529045 | $0.19042 | $0.685384 |
Fragefeld
Ist SAROS eine gute Investition?
Die Entscheidung, Saros zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Saros in den letzten 2026 Stunden um -7.3328% gefallen, und Saros hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Saros investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Saros steigen?
Es scheint, dass der Durchschnittswert von Saros bis zum Ende dieses Jahres potenziell auf $0.004211 steigen könnte. Betrachtet man die Aussichten von Saros in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.01324 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Saros nächste Woche kosten?
Basierend auf unserer neuen experimentellen Saros-Prognose wird der Preis von Saros in der nächsten Woche um 0.86% steigen und $0.004118 erreichen bis zum 13. Januar 2026.
Wie viel wird Saros nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Saros-Prognose wird der Preis von Saros im nächsten Monat um -11.62% fallen und $0.003609 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Saros in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Saros im Jahr 2026 wird erwartet, dass SAROS innerhalb der Spanne von $0.00141 bis $0.004211 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Saros-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Saros in 5 Jahren sein?
Die Zukunft von Saros scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.01324 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Saros-Prognose für 2030 könnte der Wert von Saros seinen höchsten Gipfel von ungefähr $0.01324 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.004579 liegen wird.
Wie viel wird Saros im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Saros-Preisprognosesimulation wird der Wert von SAROS im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.004211 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.004211 und $0.00141 während des Jahres 2026 liegen.
Wie viel wird Saros im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Saros könnte der Wert von SAROS um -12.62% fallen und bis zu $0.003568 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.003568 und $0.001358 im Laufe des Jahres schwanken.
Wie viel wird Saros im Jahr 2028 kosten?
Unser neues experimentelles Saros-Preisprognosemodell deutet darauf hin, dass der Wert von SAROS im Jahr 2028 um 47.02% steigen, und im besten Fall $0.0060038 erreichen wird. Der Preis wird voraussichtlich zwischen $0.0060038 und $0.002451 im Laufe des Jahres liegen.
Wie viel wird Saros im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Saros im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.017713 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.017713 und $0.005384.
Wie viel wird Saros im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Saros-Preisprognosen wird der Wert von SAROS im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.01324 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.01324 und $0.004579 während des Jahres 2030 liegen.
Wie viel wird Saros im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Saros im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.012087 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.012087 und $0.005414 während des Jahres schwanken.
Wie viel wird Saros im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Saros-Preisprognose könnte SAROS eine 449.04% Steigerung im Wert erfahren und $0.02242 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.02242 und $0.008264 liegen.
Wie viel wird Saros im Jahr 2033 kosten?
Laut unserer experimentellen Saros-Preisprognose wird der Wert von SAROS voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.059721 beträgt. Im Laufe des Jahres könnte der Preis von SAROS zwischen $0.059721 und $0.0192049 liegen.
Wie viel wird Saros im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Saros-Preisprognosesimulation deuten darauf hin, dass SAROS im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.034587 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.034587 und $0.015439.
Wie viel wird Saros im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Saros könnte SAROS um 897.93% steigen, wobei der Wert im Jahr 2035 $0.040752 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.040752 und $0.018254.
Wie viel wird Saros im Jahr 2036 kosten?
Unsere jüngste Saros-Preisprognosesimulation deutet darauf hin, dass der Wert von SAROS im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.084315 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.084315 und $0.030217.
Wie viel wird Saros im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Saros um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.201353 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.201353 und $0.078473 liegen.
Verwandte Prognosen
Kasta-Preisprognose
UX Chain-Preisprognose
Guacamole-Preisprognose
RMRK-Preisprognose
Cult DAO-Preisprognose
Wrapped Ampleforth-Preisprognose
SpaceN-Preisprognose
Polaris Share-Preisprognose
Prisma mkUSD-Preisprognose
Source-Preisprognose
VLaunch-Preisprognose
agEUR-Preisprognose
Solve.Care-PreisprognoseHubble-Preisprognose
NumberGoUpTech-Preisprognose
Geodnet-Preisprognose
AC Milan Fan Token-Preisprognose
Electra Protocol-Preisprognose
Concentrated Voting Power-Preisprognose
Vita Inu-Preisprognose
Hapi-Preisprognose
Hydra-Preisprognose
Bitrock-Preisprognose
Rejuve.AI-Preisprognose
Beoble-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Saros?
Saros-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Saros Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Saros. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SAROS über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SAROS über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SAROS einzuschätzen.
Wie liest man Saros-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Saros in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SAROS innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Saros?
Die Preisentwicklung von Saros wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SAROS. Die Marktkapitalisierung von Saros kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SAROS-„Walen“, großen Inhabern von Saros, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Saros-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


