Saros Preisvorhersage bis zu $0.0044082 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001476 | $0.0044082 |
| 2027 | $0.001421 | $0.003734 |
| 2028 | $0.002565 | $0.006284 |
| 2029 | $0.005636 | $0.01854 |
| 2030 | $0.004793 | $0.013858 |
| 2031 | $0.005667 | $0.012651 |
| 2032 | $0.00865 | $0.023467 |
| 2033 | $0.0201016 | $0.0625094 |
| 2034 | $0.01616 | $0.0362021 |
| 2035 | $0.019107 | $0.042655 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Saros eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.64 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Saros Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Saros'
'name_with_ticker' => 'Saros <small>SAROS</small>'
'name_lang' => 'Saros'
'name_lang_with_ticker' => 'Saros <small>SAROS</small>'
'name_with_lang' => 'Saros'
'name_with_lang_with_ticker' => 'Saros <small>SAROS</small>'
'image' => '/uploads/coins/saros-finance.png?1755784946'
'price_for_sd' => 0.004274
'ticker' => 'SAROS'
'marketcap' => '$11.23M'
'low24h' => '$0.003916'
'high24h' => '$0.004361'
'volume24h' => '$1.7M'
'current_supply' => '2.62B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004274'
'change_24h_pct' => '2.2258%'
'ath_price' => '$0.4271'
'ath_days' => 114
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14.09.2025'
'ath_pct' => '-98.99%'
'fdv' => '$42.77M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.210754'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00431'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003777'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001476'
'current_year_max_price_prediction' => '$0.0044082'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004793'
'grand_prediction_max_price' => '$0.013858'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0043553466841919
107 => 0.0043716079677198
108 => 0.00440824546983
109 => 0.0040951820256662
110 => 0.0042357383210359
111 => 0.0043183019762218
112 => 0.0039452763784006
113 => 0.0043109284595216
114 => 0.0040897322876066
115 => 0.0040146549846036
116 => 0.0041157366824146
117 => 0.0040763450464725
118 => 0.0040424784310439
119 => 0.0040235802777325
120 => 0.004097803520625
121 => 0.0040943409176281
122 => 0.0039728972861453
123 => 0.0038144790195518
124 => 0.0038676493897229
125 => 0.0038483320957649
126 => 0.0037783237304804
127 => 0.0038255009158399
128 => 0.0036177564673439
129 => 0.0032603429413232
130 => 0.0034964612644848
131 => 0.0034873709658904
201 => 0.0034827872251269
202 => 0.0036602236191517
203 => 0.0036431672040203
204 => 0.00361220964354
205 => 0.003777755170605
206 => 0.0037173288263247
207 => 0.0039035485811592
208 => 0.0040262049556319
209 => 0.0039950953315475
210 => 0.0041104542445888
211 => 0.0038688743276626
212 => 0.0039491174855615
213 => 0.0039656554891922
214 => 0.003775712364498
215 => 0.0036459578444761
216 => 0.0036373046973004
217 => 0.0034123282408568
218 => 0.0035325088479425
219 => 0.0036382628087665
220 => 0.0035876148683707
221 => 0.0035715812435055
222 => 0.0036534935556725
223 => 0.0036598588438594
224 => 0.0035147295986354
225 => 0.003544906564363
226 => 0.00367074952795
227 => 0.0035417356445603
228 => 0.0032910827434325
301 => 0.0032289173584053
302 => 0.0032206233501073
303 => 0.0030520258955147
304 => 0.0032330715466882
305 => 0.0031540402682292
306 => 0.0034036991299411
307 => 0.0032610953270786
308 => 0.0032549479621558
309 => 0.0032456553184526
310 => 0.0031005365246116
311 => 0.0031323083176823
312 => 0.0032379225968301
313 => 0.00327560696146
314 => 0.0032716761734902
315 => 0.0032374050292446
316 => 0.0032530941835836
317 => 0.0032025539509939
318 => 0.0031847071429626
319 => 0.0031283777076643
320 => 0.0030455889991794
321 => 0.0030571012768669
322 => 0.0028930751825145
323 => 0.0028037050607876
324 => 0.0027789685889729
325 => 0.0027458899450539
326 => 0.0027827049098224
327 => 0.002892610517198
328 => 0.0027600410369278
329 => 0.0025327599616722
330 => 0.0025464199415632
331 => 0.0025771098606938
401 => 0.0025199193994281
402 => 0.0024657934274717
403 => 0.0025128515687089
404 => 0.0024165495809296
405 => 0.0025887474958287
406 => 0.0025840900248098
407 => 0.0026482747588365
408 => 0.0026884107902268
409 => 0.0025959102320667
410 => 0.0025726465918375
411 => 0.0025858986185856
412 => 0.0023668721356951
413 => 0.002630375622395
414 => 0.0026326544114902
415 => 0.0026131420357641
416 => 0.0027534495076743
417 => 0.0030495420364029
418 => 0.0029381401168009
419 => 0.0028950019263901
420 => 0.0028129961948854
421 => 0.0029222639630969
422 => 0.002913873903341
423 => 0.002875930871289
424 => 0.0028529828071145
425 => 0.0028952653189821
426 => 0.0028477435359743
427 => 0.0028392073179348
428 => 0.0027874871241125
429 => 0.0027690253680368
430 => 0.002755357018822
501 => 0.0027403095093608
502 => 0.0027735005656265
503 => 0.0026982852654814
504 => 0.0026075829869532
505 => 0.0026000420739059
506 => 0.0026208631978335
507 => 0.0026116514004459
508 => 0.002599997971364
509 => 0.0025777484016241
510 => 0.0025711474295692
511 => 0.0025925973864115
512 => 0.0025683816357467
513 => 0.0026041132949528
514 => 0.0025943962607716
515 => 0.0025401176977295
516 => 0.0024724665116812
517 => 0.0024718642742222
518 => 0.0024572889371582
519 => 0.0024387250539907
520 => 0.0024335610063776
521 => 0.0025088884633097
522 => 0.002664814044798
523 => 0.0026342021221689
524 => 0.0026563223735045
525 => 0.0027651321168579
526 => 0.0027997194622468
527 => 0.002775170183736
528 => 0.0027415656171767
529 => 0.0027430440475593
530 => 0.0028578810242863
531 => 0.0028650432656629
601 => 0.0028831399389948
602 => 0.0029063992783456
603 => 0.0027791313498036
604 => 0.0027370497395699
605 => 0.0027171091380424
606 => 0.0026556998033214
607 => 0.0027219245059795
608 => 0.0026833382077652
609 => 0.0026885448176899
610 => 0.002685154006146
611 => 0.0026870056185347
612 => 0.0025886993630021
613 => 0.0026245169956935
614 => 0.0025649632343999
615 => 0.0024852274332513
616 => 0.0024849601308868
617 => 0.0025044753552563
618 => 0.0024928669361706
619 => 0.0024616289788905
620 => 0.0024660661832831
621 => 0.0024271916037577
622 => 0.0024707862610845
623 => 0.0024720363998674
624 => 0.0024552500821796
625 => 0.0025224136666949
626 => 0.002549930642071
627 => 0.0025388815281711
628 => 0.0025491554067851
629 => 0.0026354741857587
630 => 0.0026495479130838
701 => 0.0026557985331033
702 => 0.0026474235303256
703 => 0.0025507331556072
704 => 0.0025550217848851
705 => 0.0025235546687935
706 => 0.0024969682716191
707 => 0.0024980315880788
708 => 0.0025117004522162
709 => 0.0025713931835723
710 => 0.0026970130176325
711 => 0.0027017801985082
712 => 0.002707558160798
713 => 0.0026840562843942
714 => 0.0026769678935881
715 => 0.0026863193107302
716 => 0.0027334955156261
717 => 0.0028548455228331
718 => 0.0028119523255917
719 => 0.002777079488562
720 => 0.0028076723682864
721 => 0.0028029628342478
722 => 0.002763209627454
723 => 0.0027620938873415
724 => 0.0026857947736353
725 => 0.0026575887285448
726 => 0.0026340176460814
727 => 0.00260827863937
728 => 0.0025930196934122
729 => 0.0026164643694703
730 => 0.0026218264442741
731 => 0.0025705642503301
801 => 0.0025635774027159
802 => 0.0026054392168618
803 => 0.0025870173932219
804 => 0.0026059646956748
805 => 0.0026103606323708
806 => 0.0026096527853157
807 => 0.0025904182857027
808 => 0.002602677782175
809 => 0.0025736804182862
810 => 0.0025421501403204
811 => 0.0025220357873839
812 => 0.0025044833466651
813 => 0.0025142224609298
814 => 0.0024795042968683
815 => 0.0024683972574465
816 => 0.0025985245406176
817 => 0.0026946509638002
818 => 0.0026932532475368
819 => 0.0026847450092473
820 => 0.0026721034929823
821 => 0.0027325707099722
822 => 0.0027115051406531
823 => 0.00272683210242
824 => 0.0027307334574602
825 => 0.002742541684154
826 => 0.0027467621102457
827 => 0.0027340050513223
828 => 0.0026911908034319
829 => 0.0025845017683455
830 => 0.0025348377345113
831 => 0.0025184477761261
901 => 0.0025190435199844
902 => 0.0025026102448537
903 => 0.0025074505808674
904 => 0.0025009269735209
905 => 0.0024885728394367
906 => 0.0025134596279631
907 => 0.0025163275985043
908 => 0.0025105187246873
909 => 0.0025118869247555
910 => 0.0024637919305529
911 => 0.0024674484885052
912 => 0.0024470883091734
913 => 0.0024432710209943
914 => 0.0023918022606071
915 => 0.0023006178910651
916 => 0.0023511428832723
917 => 0.002290115797575
918 => 0.0022670039155102
919 => 0.0023764119705699
920 => 0.002365430436349
921 => 0.002346634823321
922 => 0.0023188321943035
923 => 0.0023085199287543
924 => 0.0022458658677442
925 => 0.0022421639315733
926 => 0.0022732169760119
927 => 0.0022588870644735
928 => 0.0022387624415117
929 => 0.0021658730971444
930 => 0.002083921341243
1001 => 0.0020863949496233
1002 => 0.0021124622784089
1003 => 0.0021882565525113
1004 => 0.0021586424183652
1005 => 0.0021371570242592
1006 => 0.0021331334557918
1007 => 0.0021834968390734
1008 => 0.0022547715778719
1009 => 0.0022882120906338
1010 => 0.0022550735580903
1011 => 0.0022170057962096
1012 => 0.0022193228044862
1013 => 0.0022347368225128
1014 => 0.0022363566178649
1015 => 0.0022115784183097
1016 => 0.0022185533363454
1017 => 0.0022079577980493
1018 => 0.0021429329990844
1019 => 0.002141756906667
1020 => 0.0021257987723345
1021 => 0.0021253155663691
1022 => 0.0020981667989263
1023 => 0.0020943684986905
1024 => 0.0020404629731205
1025 => 0.0020759437532916
1026 => 0.0020521451087774
1027 => 0.0020162749379617
1028 => 0.0020100909069928
1029 => 0.0020099050075544
1030 => 0.0020467356525587
1031 => 0.0020755133657609
1101 => 0.0020525590963878
1102 => 0.0020473328542013
1103 => 0.002103135447788
1104 => 0.0020960340591022
1105 => 0.0020898843022993
1106 => 0.0022483897067607
1107 => 0.0021229203107985
1108 => 0.0020682084926163
1109 => 0.0020004922281233
1110 => 0.0020225409852972
1111 => 0.0020271869823974
1112 => 0.0018643415730658
1113 => 0.0017982752107811
1114 => 0.0017756037249033
1115 => 0.0017625559642529
1116 => 0.0017685019926248
1117 => 0.0017090345177571
1118 => 0.0017489976443694
1119 => 0.0016975038377945
1120 => 0.0016888707335469
1121 => 0.0017809480385613
1122 => 0.0017937600576463
1123 => 0.0017391000038476
1124 => 0.0017742006070453
1125 => 0.0017614726403909
1126 => 0.0016983865513121
1127 => 0.0016959771267391
1128 => 0.0016643227448226
1129 => 0.0016147897666195
1130 => 0.0015921518664334
1201 => 0.0015803618514652
1202 => 0.0015852266414239
1203 => 0.0015827668547558
1204 => 0.0015667150828823
1205 => 0.00158368692353
1206 => 0.001540330883924
1207 => 0.0015230661596095
1208 => 0.0015152680841752
1209 => 0.0014767871035443
1210 => 0.0015380274562978
1211 => 0.0015500925772759
1212 => 0.0015621814702694
1213 => 0.0016674070303401
1214 => 0.0016621502587233
1215 => 0.0017096689139875
1216 => 0.0017078224264251
1217 => 0.0016942693361926
1218 => 0.0016370910778768
1219 => 0.001659881312537
1220 => 0.0015897365126416
1221 => 0.001642293766106
1222 => 0.0016183088304682
1223 => 0.0016341844352402
1224 => 0.0016056386664146
1225 => 0.0016214370735086
1226 => 0.0015529536650463
1227 => 0.0014890048218117
1228 => 0.0015147397031124
1229 => 0.0015427164622269
1230 => 0.0016033772043328
1231 => 0.0015672481667748
]
'min_raw' => 0.0014767871035443
'max_raw' => 0.00440824546983
'avg_raw' => 0.0029425162866871
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001476'
'max' => '$0.0044082'
'avg' => '$0.002942'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0027975628964557
'max_diff' => 0.00013389546982997
'year' => 2026
]
1 => [
'items' => [
101 => 0.0015802415348708
102 => 0.0015367159268127
103 => 0.0014469101649134
104 => 0.0014474184557729
105 => 0.0014336037958296
106 => 0.0014216659126652
107 => 0.0015713980213492
108 => 0.00155277646672
109 => 0.0015231054565471
110 => 0.0015628212827426
111 => 0.0015733227775635
112 => 0.0015736217403577
113 => 0.0016025973819361
114 => 0.0016180616870406
115 => 0.0016207873378414
116 => 0.0016663811359251
117 => 0.001681663575646
118 => 0.0017446097820046
119 => 0.0016167496487956
120 => 0.0016141164534928
121 => 0.0015633801658641
122 => 0.001531202410141
123 => 0.0015655834043277
124 => 0.0015960402717035
125 => 0.0015643265456317
126 => 0.0015684676887433
127 => 0.0015258946025986
128 => 0.0015411124776454
129 => 0.001554220161705
130 => 0.0015469828690014
131 => 0.0015361482915351
201 => 0.0015935431559042
202 => 0.0015903047127242
203 => 0.0016437521299269
204 => 0.0016854182136978
205 => 0.0017600912845188
206 => 0.0016821660423219
207 => 0.0016793261367715
208 => 0.0017070866690622
209 => 0.0016816593256531
210 => 0.0016977285289656
211 => 0.0017575022874362
212 => 0.0017587652127625
213 => 0.0017376095863607
214 => 0.0017363222645716
215 => 0.0017403854340392
216 => 0.001764183544522
217 => 0.0017558677534772
218 => 0.0017654909974043
219 => 0.0017775250112914
220 => 0.0018273027950448
221 => 0.0018393040501858
222 => 0.0018101472221305
223 => 0.0018127797572487
224 => 0.0018018743031832
225 => 0.0017913397712008
226 => 0.0018150198606523
227 => 0.0018582956895582
228 => 0.0018580264728726
301 => 0.0018680656240169
302 => 0.001874319932011
303 => 0.0018474718636672
304 => 0.0018299947584062
305 => 0.0018366965926604
306 => 0.0018474129715797
307 => 0.0018332214154086
308 => 0.0017456245565519
309 => 0.00177219584782
310 => 0.0017677730856832
311 => 0.0017614745345742
312 => 0.001788192173414
313 => 0.0017856151919698
314 => 0.0017084245928494
315 => 0.0017133660845608
316 => 0.0017087251013271
317 => 0.0017237210676111
318 => 0.0016808494942612
319 => 0.0016940365014792
320 => 0.0017023072687858
321 => 0.0017071788142684
322 => 0.0017247781770016
323 => 0.0017227130949159
324 => 0.0017246498085996
325 => 0.0017507450174734
326 => 0.0018827256291629
327 => 0.0018899090426584
328 => 0.0018545352873967
329 => 0.0018686664049073
330 => 0.0018415377494227
331 => 0.0018597493975957
401 => 0.00187220934475
402 => 0.0018159052394699
403 => 0.0018125712757658
404 => 0.0017853306506698
405 => 0.0017999682196086
406 => 0.0017766787949486
407 => 0.0017823932051307
408 => 0.0017664152160883
409 => 0.0017951724151787
410 => 0.0018273274321787
411 => 0.001835451059313
412 => 0.001814081293764
413 => 0.0017986081751704
414 => 0.0017714424760821
415 => 0.001816619639093
416 => 0.0018298308183065
417 => 0.0018165502463928
418 => 0.0018134728476941
419 => 0.0018076411827209
420 => 0.0018147100629862
421 => 0.0018297588673872
422 => 0.0018226621291395
423 => 0.0018273496497806
424 => 0.0018094856548471
425 => 0.001847480751495
426 => 0.0019078261089896
427 => 0.0019080201291814
428 => 0.0019009233526797
429 => 0.0018980195046373
430 => 0.0019053012279966
501 => 0.001909251264207
502 => 0.0019327990223111
503 => 0.0019580667049409
504 => 0.0020759799546204
505 => 0.0020428703859479
506 => 0.0021474900357542
507 => 0.0022302305955896
508 => 0.0022550408716781
509 => 0.0022322165850904
510 => 0.0021541359336176
511 => 0.0021503049243529
512 => 0.002266990382454
513 => 0.0022340213960079
514 => 0.0022300998399766
515 => 0.0021883811093768
516 => 0.0022130420461266
517 => 0.0022076483375053
518 => 0.0021991341045773
519 => 0.0022461854540001
520 => 0.0023342613798167
521 => 0.0023205339208074
522 => 0.0023102870094554
523 => 0.0022653880267422
524 => 0.0022924272428864
525 => 0.0022827990959195
526 => 0.0023241677254623
527 => 0.0022996618657485
528 => 0.0022337716235097
529 => 0.0022442648617633
530 => 0.0022426788299107
531 => 0.0022753192530492
601 => 0.0022655214082081
602 => 0.0022407656434557
603 => 0.0023339603458773
604 => 0.0023279088002783
605 => 0.0023364885083618
606 => 0.0023402655611965
607 => 0.0023969915342857
608 => 0.0024202303504317
609 => 0.0024255059685495
610 => 0.0024475810465336
611 => 0.0024249567204993
612 => 0.0025154701555076
613 => 0.0025756563081828
614 => 0.002645565621666
615 => 0.0027477219185171
616 => 0.0027861336311317
617 => 0.0027791948990578
618 => 0.0028566486374366
619 => 0.0029958312836034
620 => 0.0028073276912323
621 => 0.0030058224317215
622 => 0.0029429812886146
623 => 0.002793986068772
624 => 0.0027843925331524
625 => 0.0028852938258999
626 => 0.0031090831818243
627 => 0.0030530264863631
628 => 0.0031091748704963
629 => 0.0030436747979079
630 => 0.0030404221672259
701 => 0.0031059936781696
702 => 0.0032592050876065
703 => 0.0031864200900268
704 => 0.0030820649483828
705 => 0.0031591191610269
706 => 0.0030923676710038
707 => 0.0029419578814162
708 => 0.0030529836208645
709 => 0.0029787438707264
710 => 0.0030004109766189
711 => 0.0031564518890798
712 => 0.0031376766336594
713 => 0.0031619735527152
714 => 0.0031190901265429
715 => 0.0030790302444023
716 => 0.003004255499501
717 => 0.0029821183838861
718 => 0.0029882362862321
719 => 0.0029821153521576
720 => 0.0029402795696007
721 => 0.0029312451363407
722 => 0.0029161873517666
723 => 0.0029208543888425
724 => 0.0028925413485328
725 => 0.0029459739053698
726 => 0.0029558914587648
727 => 0.0029947752177253
728 => 0.0029988122585725
729 => 0.0031071029738019
730 => 0.0030474582676051
731 => 0.0030874730859981
801 => 0.003083893784007
802 => 0.002797215246979
803 => 0.0028367170199953
804 => 0.0028981693824694
805 => 0.0028704851764715
806 => 0.0028313461862971
807 => 0.0027997393532313
808 => 0.002751851769172
809 => 0.0028192526241358
810 => 0.0029078775811314
811 => 0.0030010599337354
812 => 0.0031130124248395
813 => 0.0030880259320957
814 => 0.0029989670597867
815 => 0.003002962175741
816 => 0.0030276584105498
817 => 0.0029956745425828
818 => 0.0029862418755201
819 => 0.0030263625069439
820 => 0.0030266387956826
821 => 0.0029898374902069
822 => 0.0029489395737386
823 => 0.0029487682099753
824 => 0.0029414908207667
825 => 0.0030449694292813
826 => 0.0031018722010969
827 => 0.0031083960121822
828 => 0.0031014330966319
829 => 0.0031041128464789
830 => 0.0030710023773264
831 => 0.0031466830912044
901 => 0.0032161351983058
902 => 0.0031975205499748
903 => 0.0031696145458984
904 => 0.0031473860695163
905 => 0.0031922842273703
906 => 0.0031902849830773
907 => 0.0032155285947389
908 => 0.0032143833986998
909 => 0.0032058949215582
910 => 0.003197520853125
911 => 0.003230723087901
912 => 0.0032211613774971
913 => 0.0032115848151159
914 => 0.0031923775531621
915 => 0.0031949881390605
916 => 0.0031670869533492
917 => 0.0031541785881677
918 => 0.0029600677473375
919 => 0.002908194987913
920 => 0.0029245152139954
921 => 0.0029298882561761
922 => 0.0029073131647978
923 => 0.0029396800467692
924 => 0.0029346357024989
925 => 0.0029542602952117
926 => 0.0029419997016855
927 => 0.0029425028807205
928 => 0.0029785586720468
929 => 0.0029890258216611
930 => 0.002983702144887
1001 => 0.0029874306656146
1002 => 0.0030733528520722
1003 => 0.0030611374647948
1004 => 0.0030546482837654
1005 => 0.0030564458312584
1006 => 0.0030784007920908
1007 => 0.0030845469824274
1008 => 0.0030585051420859
1009 => 0.003070786624537
1010 => 0.0031230796180618
1011 => 0.0031413792062684
1012 => 0.0031997827075231
1013 => 0.0031749718621506
1014 => 0.00322051324262
1015 => 0.0033604919199822
1016 => 0.0034723165732468
1017 => 0.0033694780007554
1018 => 0.0035748297356921
1019 => 0.0037347255172972
1020 => 0.0037285884508788
1021 => 0.0037007069228999
1022 => 0.0035186698265918
1023 => 0.0033511565765489
1024 => 0.0034912885231981
1025 => 0.0034916457483485
1026 => 0.0034796082898545
1027 => 0.0034048446689759
1028 => 0.0034770066779075
1029 => 0.0034827346361225
1030 => 0.0034795285027091
1031 => 0.0034222074098741
1101 => 0.0033346886958238
1102 => 0.003351789643059
1103 => 0.0033798013434802
1104 => 0.00332676935073
1105 => 0.0033098224157246
1106 => 0.003341329992186
1107 => 0.0034428539684089
1108 => 0.0034236614487923
1109 => 0.003423160254542
1110 => 0.0035052739923568
1111 => 0.0034464982773351
1112 => 0.0033520053407684
1113 => 0.0033281446280766
1114 => 0.0032434551725228
1115 => 0.0033019504811273
1116 => 0.0033040556231468
1117 => 0.0032720183404317
1118 => 0.0033546049896932
1119 => 0.0033538439391812
1120 => 0.0034322476712545
1121 => 0.0035821261598817
1122 => 0.0035377997157222
1123 => 0.003486252883868
1124 => 0.0034918574537292
1125 => 0.003553325751849
1126 => 0.003516160615621
1127 => 0.0035295254577331
1128 => 0.0035533055225598
1129 => 0.0035676526260955
1130 => 0.0034897931263198
1201 => 0.0034716403524716
1202 => 0.0034345061479363
1203 => 0.0034248185271158
1204 => 0.0034550635618792
1205 => 0.0034470950637919
1206 => 0.0033038786941116
1207 => 0.0032889117866316
1208 => 0.0032893708003162
1209 => 0.0032517357998202
1210 => 0.0031943333906288
1211 => 0.0033451834946642
1212 => 0.0033330681201643
1213 => 0.0033196936843719
1214 => 0.003321331976443
1215 => 0.0033868108938204
1216 => 0.0033488298149769
1217 => 0.0034498087380587
1218 => 0.0034290505071773
1219 => 0.0034077599060019
1220 => 0.0034048168963918
1221 => 0.003396621831368
1222 => 0.0033685179041519
1223 => 0.0033345807232544
1224 => 0.0033121724568375
1225 => 0.003055304010659
1226 => 0.0031029773001347
1227 => 0.0031578210741194
1228 => 0.0031767529251263
1229 => 0.0031443686839348
1230 => 0.0033697966313785
1231 => 0.0034109844896542
]
'min_raw' => 0.0014216659126652
'max_raw' => 0.0037347255172972
'avg_raw' => 0.0025781957149812
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001421'
'max' => '$0.003734'
'avg' => '$0.002578'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.5121190879131E-5
'max_diff' => -0.00067351995253279
'year' => 2027
]
2 => [
'items' => [
101 => 0.0032862237803195
102 => 0.0032628861455492
103 => 0.0033713266428287
104 => 0.0033059237666575
105 => 0.0033353746777927
106 => 0.0032717179167055
107 => 0.0034010635407168
108 => 0.0034000781437751
109 => 0.0033497597746312
110 => 0.0033922885156663
111 => 0.0033848981003305
112 => 0.0033280887854958
113 => 0.003402864497326
114 => 0.0034029015851462
115 => 0.003354471248861
116 => 0.0032979152188437
117 => 0.0032878043364704
118 => 0.003280187144808
119 => 0.0033335013155861
120 => 0.0033813026343967
121 => 0.0034702490377513
122 => 0.003492612276869
123 => 0.0035798974879508
124 => 0.0035279233945914
125 => 0.0035509628370004
126 => 0.0035759754108635
127 => 0.0035879673585805
128 => 0.0035684271232991
129 => 0.0037040169841353
130 => 0.0037154649227558
131 => 0.003719303317551
201 => 0.0036735831793648
202 => 0.0037141933630058
203 => 0.0036951932029481
204 => 0.0037446263410217
205 => 0.0037523780882656
206 => 0.0037458126341264
207 => 0.0037482731610546
208 => 0.0036325711345215
209 => 0.0036265713740689
210 => 0.0035447642145747
211 => 0.0035781012367566
212 => 0.0035157792716727
213 => 0.0035355422087882
214 => 0.0035442535231605
215 => 0.0035397032268951
216 => 0.0035799860619723
217 => 0.0035457374229172
218 => 0.0034553496334532
219 => 0.0033649372178963
220 => 0.0033638021636674
221 => 0.0033399981705629
222 => 0.0033227922434673
223 => 0.0033261067154389
224 => 0.0033377873469805
225 => 0.0033221133439278
226 => 0.0033254581871713
227 => 0.003381004871586
228 => 0.0033921443630046
229 => 0.0033542880186841
301 => 0.0032022893335929
302 => 0.0031649884750116
303 => 0.0031917995924516
304 => 0.0031789856051724
305 => 0.0025656894930279
306 => 0.0027097743174264
307 => 0.0026241640074271
308 => 0.0026636171770158
309 => 0.0025762312191888
310 => 0.0026179363785543
311 => 0.002610234958448
312 => 0.002841919092301
313 => 0.002838301663222
314 => 0.002840033135092
315 => 0.0027573854714093
316 => 0.0028890454437844
317 => 0.0029539058805159
318 => 0.0029419019398815
319 => 0.0029449230731245
320 => 0.0028930099945178
321 => 0.0028405357671693
322 => 0.0027823337733141
323 => 0.0028904658839131
324 => 0.0028784434390912
325 => 0.0029060186019736
326 => 0.00297615000514
327 => 0.0029864771206595
328 => 0.003000356868645
329 => 0.0029953819670199
330 => 0.003113904307047
331 => 0.0030995504696341
401 => 0.0031341390879182
402 => 0.003062987675863
403 => 0.0029824730993685
404 => 0.0029977762881403
405 => 0.0029963024680011
406 => 0.0029775390460572
407 => 0.0029606002676954
408 => 0.0029324019741944
409 => 0.003021625547394
410 => 0.0030180032332634
411 => 0.0030766442885571
412 => 0.0030662789124251
413 => 0.002997056393778
414 => 0.0029995286895737
415 => 0.0030161560669445
416 => 0.0030737036098728
417 => 0.0030907876387494
418 => 0.0030828736358929
419 => 0.0031016054936406
420 => 0.003116410390245
421 => 0.0031034647607139
422 => 0.0032867475749574
423 => 0.0032106357720503
424 => 0.0032477321352047
425 => 0.0032565793992325
426 => 0.0032339173184631
427 => 0.0032388319123137
428 => 0.0032462761828507
429 => 0.003291476335814
430 => 0.0034100946159591
501 => 0.0034626298447735
502 => 0.003620684672704
503 => 0.0034582675253461
504 => 0.0034486303639709
505 => 0.0034771008112797
506 => 0.0035698957270776
507 => 0.0036450972905485
508 => 0.0036700459876341
509 => 0.0036733433698121
510 => 0.0037201487841027
511 => 0.0037469767747047
512 => 0.0037144653757032
513 => 0.0036869153691347
514 => 0.0035882346652392
515 => 0.0035996572254138
516 => 0.0036783473378085
517 => 0.0037895017563904
518 => 0.0038848838111799
519 => 0.0038514843399928
520 => 0.004106298728798
521 => 0.0041315625346246
522 => 0.004128071893536
523 => 0.0041856266029674
524 => 0.0040713922255588
525 => 0.0040225548160299
526 => 0.0036928719932607
527 => 0.0037854994188712
528 => 0.0039201388218142
529 => 0.0039023187919628
530 => 0.0038045400586241
531 => 0.0038848096372426
601 => 0.0038582700042895
602 => 0.0038373370946491
603 => 0.0039332348117563
604 => 0.0038277913325358
605 => 0.0039190869424489
606 => 0.0038019993784032
607 => 0.0038516369059639
608 => 0.0038234602446234
609 => 0.0038416939977124
610 => 0.0037350998497307
611 => 0.003792615464555
612 => 0.0037327070110602
613 => 0.003732678606653
614 => 0.0037313561242216
615 => 0.0038018381540834
616 => 0.0038041365705468
617 => 0.0037520502439865
618 => 0.0037445437905878
619 => 0.0037722990830943
620 => 0.0037398049046919
621 => 0.0037550087262504
622 => 0.0037402654129585
623 => 0.0037369463825948
624 => 0.0037104997839704
625 => 0.0036991058621186
626 => 0.0037035737124619
627 => 0.0036883226359055
628 => 0.0036791333106248
629 => 0.0037295281361313
630 => 0.0037026042137846
701 => 0.0037254016588883
702 => 0.0036994210929257
703 => 0.0036093611321057
704 => 0.0035575666962714
705 => 0.0033874517788452
706 => 0.0034356961584004
707 => 0.0034676822319578
708 => 0.0034571108348379
709 => 0.0034798222864392
710 => 0.0034812165851127
711 => 0.0034738328606813
712 => 0.0034652834537034
713 => 0.0034611220751984
714 => 0.0034921375812211
715 => 0.0035101431264012
716 => 0.0034708924623578
717 => 0.0034616965809476
718 => 0.003501381169384
719 => 0.0035255887454051
720 => 0.0037043238856833
721 => 0.0036910826091846
722 => 0.0037243156147271
723 => 0.0037205740883051
724 => 0.0037554075725465
725 => 0.0038123455975525
726 => 0.0036965746725932
727 => 0.0037166685021087
728 => 0.0037117419591458
729 => 0.0037655286634061
730 => 0.0037656965796258
731 => 0.0037334487635766
801 => 0.0037509308278179
802 => 0.0037411728191538
803 => 0.0037588068596839
804 => 0.0036909057638642
805 => 0.0037736019691022
806 => 0.0038204853886465
807 => 0.0038211363649723
808 => 0.0038433587337464
809 => 0.0038659379474538
810 => 0.0039092767819299
811 => 0.0038647292508824
812 => 0.0037845925791427
813 => 0.0037903781880025
814 => 0.0037433940866823
815 => 0.0037441838979139
816 => 0.0037399678236612
817 => 0.0037526205798648
818 => 0.0036936823323247
819 => 0.0037075150212182
820 => 0.0036881491757631
821 => 0.0037166264045428
822 => 0.0036859896138304
823 => 0.0037117395834176
824 => 0.0037228524166665
825 => 0.0037638590105968
826 => 0.0036799329065655
827 => 0.0035088018991477
828 => 0.0035447757116698
829 => 0.0034915676172676
830 => 0.0034964922289821
831 => 0.0035064407283913
901 => 0.0034741943868594
902 => 0.0034803459726247
903 => 0.0034801261946931
904 => 0.0034782322672124
905 => 0.0034698437483672
906 => 0.0034576787364237
907 => 0.0035061403998133
908 => 0.0035143749807607
909 => 0.003532679434158
910 => 0.003587141071439
911 => 0.0035816990695808
912 => 0.003590575200398
913 => 0.0035711986566613
914 => 0.0034973910512727
915 => 0.0035013991593445
916 => 0.0034514179874647
917 => 0.0035314013032201
918 => 0.003512460198321
919 => 0.0035002487447734
920 => 0.0034969167365346
921 => 0.0035515133736804
922 => 0.0035678495432118
923 => 0.0035576699386394
924 => 0.0035367912726748
925 => 0.0035768844835503
926 => 0.0035876117353838
927 => 0.0035900131714635
928 => 0.0036610506540242
929 => 0.0035939833776107
930 => 0.0036101271376348
1001 => 0.0037360761449036
1002 => 0.0036218577750857
1003 => 0.0036823617929518
1004 => 0.003679400436125
1005 => 0.003710352244321
1006 => 0.0036768614844374
1007 => 0.0036772766425444
1008 => 0.0037047597513653
1009 => 0.0036661646816312
1010 => 0.0036566079996013
1011 => 0.0036434055118233
1012 => 0.0036722326608832
1013 => 0.0036895132330048
1014 => 0.0038287819531235
1015 => 0.0039187558977453
1016 => 0.0039148498915199
1017 => 0.0039505434766831
1018 => 0.0039344631896513
1019 => 0.0038825357010603
1020 => 0.0039711695922025
1021 => 0.0039431221204456
1022 => 0.0039454343199396
1023 => 0.0039453482597589
1024 => 0.0039639973765247
1025 => 0.0039507827681297
1026 => 0.0039247354185314
1027 => 0.0039420268647736
1028 => 0.0039933762783081
1029 => 0.0041527664335114
1030 => 0.0042419632760018
1031 => 0.0041473966715946
1101 => 0.0042126274490174
1102 => 0.0041735122266662
1103 => 0.004166403827188
1104 => 0.0042073735759261
1105 => 0.0042484150367859
1106 => 0.0042458008731562
1107 => 0.0042160068800743
1108 => 0.004199177009377
1109 => 0.0043266184287177
1110 => 0.00442051509558
1111 => 0.0044141119723912
1112 => 0.0044423732757392
1113 => 0.0045253493364582
1114 => 0.0045329356275605
1115 => 0.0045319799292505
1116 => 0.0045131765152059
1117 => 0.0045948772227867
1118 => 0.0046630333904379
1119 => 0.0045088240681374
1120 => 0.0045675449593212
1121 => 0.0045939066592425
1122 => 0.004632613455891
1123 => 0.0046979183098493
1124 => 0.004768856702505
1125 => 0.0047788881690264
1126 => 0.0047717703634796
1127 => 0.0047249845865968
1128 => 0.0048026062223118
1129 => 0.0048480751560622
1130 => 0.0048751508655726
1201 => 0.0049438103599224
1202 => 0.0045940694601266
1203 => 0.0043465054680006
1204 => 0.0043078447757627
1205 => 0.0043864628136851
1206 => 0.0044071937633181
1207 => 0.0043988371435154
1208 => 0.0041201813628441
1209 => 0.0043063777107467
1210 => 0.0045067093252562
1211 => 0.0045144048784457
1212 => 0.0046146950734056
1213 => 0.0046473536719186
1214 => 0.0047281004241977
1215 => 0.0047230496928577
1216 => 0.0047427102420762
1217 => 0.0047381906222841
1218 => 0.0048877569776465
1219 => 0.0050527508784299
1220 => 0.0050470376642942
1221 => 0.0050233178389374
1222 => 0.0050585458244235
1223 => 0.005228837211853
1224 => 0.0052131595097624
1225 => 0.0052283890619199
1226 => 0.0054291722049012
1227 => 0.005690218851846
1228 => 0.0055689364756853
1229 => 0.0058320843338904
1230 => 0.0059977219617619
1231 => 0.0062841751119153
]
'min_raw' => 0.0025656894930279
'max_raw' => 0.0062841751119153
'avg_raw' => 0.0044249323024716
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002565'
'max' => '$0.006284'
'avg' => '$0.004424'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011440235803627
'max_diff' => 0.0025494495946181
'year' => 2028
]
3 => [
'items' => [
101 => 0.0062483097667046
102 => 0.006359823875969
103 => 0.006184103313454
104 => 0.0057806133829346
105 => 0.0057167595569325
106 => 0.0058445965336251
107 => 0.0061588712666741
108 => 0.0058346989038726
109 => 0.0059002785506643
110 => 0.0058813916079765
111 => 0.005880385203065
112 => 0.0059187955851922
113 => 0.0058630793225659
114 => 0.0056360812454624
115 => 0.0057401131264909
116 => 0.0056999414212045
117 => 0.0057445149232187
118 => 0.005985059730079
119 => 0.0058787091370941
120 => 0.0057666774266051
121 => 0.005907190053385
122 => 0.006086110912653
123 => 0.0060749143668317
124 => 0.0060531883881453
125 => 0.0061756565924653
126 => 0.0063779381861848
127 => 0.006432614088134
128 => 0.0064729747211532
129 => 0.0064785397705481
130 => 0.0065358632379741
131 => 0.0062276205062503
201 => 0.0067168096377308
202 => 0.0068012790871605
203 => 0.0067854023315677
204 => 0.006879286569591
205 => 0.0068516634451513
206 => 0.0068116418717736
207 => 0.0069604683587906
208 => 0.0067898508011038
209 => 0.0065476806581207
210 => 0.0064148213280979
211 => 0.0065897812113284
212 => 0.0066966231067588
213 => 0.0067672388032175
214 => 0.0067886070702987
215 => 0.0062515485120595
216 => 0.0059621037358017
217 => 0.0061476345188918
218 => 0.0063739948789124
219 => 0.0062263630630211
220 => 0.0062321499507001
221 => 0.0060216657781978
222 => 0.0063926180577022
223 => 0.0063385734307781
224 => 0.0066189570508633
225 => 0.0065520412497109
226 => 0.0067806832074609
227 => 0.0067204741173589
228 => 0.0069703986841275
301 => 0.007070100360249
302 => 0.0072375149917838
303 => 0.0073606658762409
304 => 0.0074329824310952
305 => 0.0074286408163943
306 => 0.0077151950346916
307 => 0.0075462240236035
308 => 0.0073339566102674
309 => 0.0073301173624552
310 => 0.0074400536636745
311 => 0.0076704499914789
312 => 0.0077301884071483
313 => 0.007763574031843
314 => 0.0077124427854611
315 => 0.0075290368631865
316 => 0.0074498431158375
317 => 0.0075173184830426
318 => 0.0074348019071752
319 => 0.0075772486671844
320 => 0.0077728584936632
321 => 0.0077324658380204
322 => 0.0078674924298289
323 => 0.008007230747139
324 => 0.0082070628169329
325 => 0.0082593063197371
326 => 0.00834566284323
327 => 0.0084345520725445
328 => 0.0084631008973684
329 => 0.0085176094621373
330 => 0.0085173221750948
331 => 0.0086815874038754
401 => 0.0088627770380912
402 => 0.008931171930458
403 => 0.009088442214139
404 => 0.0088191223647433
405 => 0.0090234045642334
406 => 0.0092076722216886
407 => 0.0089879807240067
408 => 0.0092907742720072
409 => 0.0093025310593311
410 => 0.0094800445896216
411 => 0.0093001006191947
412 => 0.0091932504639567
413 => 0.0095017228585057
414 => 0.0096509829334385
415 => 0.00960602458415
416 => 0.0092638893261966
417 => 0.0090647519311962
418 => 0.0085435709577453
419 => 0.0091609323341404
420 => 0.0094616310519042
421 => 0.009263110589161
422 => 0.009363232763323
423 => 0.0099094668808266
424 => 0.010117437466732
425 => 0.010074181038688
426 => 0.010081490662966
427 => 0.010193707816187
428 => 0.010691340472686
429 => 0.010393147449877
430 => 0.010621104842735
501 => 0.010742012621945
502 => 0.01085431850554
503 => 0.010578530750071
504 => 0.010219734932333
505 => 0.010106089235632
506 => 0.0092433716415519
507 => 0.0091984634441874
508 => 0.0091732551121491
509 => 0.0090143201444368
510 => 0.0088894407957664
511 => 0.0087901321012308
512 => 0.0085295164306828
513 => 0.0086174665690395
514 => 0.0082020995849038
515 => 0.0084678366616518
516 => 0.0078049009255847
517 => 0.0083570135058231
518 => 0.008056523729878
519 => 0.0082582945327785
520 => 0.0082575905734552
521 => 0.0078860665538239
522 => 0.0076717792528091
523 => 0.0078083314612023
524 => 0.0079547262681276
525 => 0.0079784783330199
526 => 0.0081682830214939
527 => 0.0082212534302089
528 => 0.0080607506188506
529 => 0.0077911630559701
530 => 0.0078537820981896
531 => 0.0076705102799172
601 => 0.0073493334678434
602 => 0.0075800082614839
603 => 0.0076587707780875
604 => 0.0076935567924213
605 => 0.0073777162851528
606 => 0.007278472340538
607 => 0.0072256356971625
608 => 0.007750392012637
609 => 0.0077791393481691
610 => 0.0076320639151233
611 => 0.0082968588187554
612 => 0.0081463952575273
613 => 0.0083144999198866
614 => 0.00784810007645
615 => 0.0078659171785599
616 => 0.007645116018288
617 => 0.0077687499141014
618 => 0.0076813694614469
619 => 0.0077587615170936
620 => 0.0078051499961489
621 => 0.0080259149251231
622 => 0.0083595342866924
623 => 0.0079929400065959
624 => 0.0078332096290311
625 => 0.0079323054569146
626 => 0.0081962107052638
627 => 0.0085960406655739
628 => 0.0083593332817425
629 => 0.0084643799991348
630 => 0.0084873280336819
701 => 0.0083127887722282
702 => 0.0086024761771039
703 => 0.0087577220107931
704 => 0.0089169721125593
705 => 0.0090552445138364
706 => 0.0088533641199291
707 => 0.0090694050798277
708 => 0.0088953142025126
709 => 0.0087391366883769
710 => 0.0087393735451986
711 => 0.0086414011091918
712 => 0.0084515671691074
713 => 0.0084165588779806
714 => 0.0085986764294817
715 => 0.0087447174591893
716 => 0.0087567460978854
717 => 0.0088376019157905
718 => 0.0088854515559456
719 => 0.0093544430778971
720 => 0.0095430753477274
721 => 0.0097737313166497
722 => 0.009863584815603
723 => 0.01013401163319
724 => 0.0099156200149963
725 => 0.0098683696146524
726 => 0.0092124026111233
727 => 0.0093198171712033
728 => 0.0094917982458547
729 => 0.0092152385156998
730 => 0.0093906520092081
731 => 0.0094252823485924
801 => 0.009205841121896
802 => 0.0093230541625703
803 => 0.009011771077784
804 => 0.0083663194073023
805 => 0.0086031947493253
806 => 0.0087776147324323
807 => 0.0085286959107098
808 => 0.0089748732641586
809 => 0.0087142256652439
810 => 0.0086316128896792
811 => 0.0083093109986201
812 => 0.0084614250846625
813 => 0.0086671615640988
814 => 0.0085400403392401
815 => 0.0088038359681698
816 => 0.0091774409304589
817 => 0.0094436940751462
818 => 0.0094641336855168
819 => 0.0092929507510581
820 => 0.009567272496003
821 => 0.0095692706304311
822 => 0.009259834581496
823 => 0.0090703067244704
824 => 0.0090272455965842
825 => 0.0091348207366754
826 => 0.0092654368162126
827 => 0.0094713819688894
828 => 0.0095958303114311
829 => 0.0099203255864791
830 => 0.010008124703898
831 => 0.010104589314913
901 => 0.010233495783813
902 => 0.010388281050668
903 => 0.01004961969872
904 => 0.010063075345577
905 => 0.0097477185837284
906 => 0.0094107146569592
907 => 0.0096664586292445
908 => 0.010000809852813
909 => 0.0099241093127008
910 => 0.0099154789350884
911 => 0.0099299928363654
912 => 0.0098721631339265
913 => 0.0096106015330644
914 => 0.0094792469345737
915 => 0.0096487278787587
916 => 0.0097387994578641
917 => 0.0098784926219893
918 => 0.0098612724909459
919 => 0.010221107079782
920 => 0.01036092792017
921 => 0.010325155765928
922 => 0.010331738703213
923 => 0.010584877656023
924 => 0.010866420233544
925 => 0.011130122010207
926 => 0.011398370783683
927 => 0.01107498641733
928 => 0.01091079177967
929 => 0.011080198733777
930 => 0.010990309019352
1001 => 0.011506841981456
1002 => 0.011542605603047
1003 => 0.012059101213939
1004 => 0.012549317051829
1005 => 0.012241421267179
1006 => 0.012531753124173
1007 => 0.012845770698616
1008 => 0.013451561547231
1009 => 0.013247552501396
1010 => 0.013091284769516
1011 => 0.01294361251797
1012 => 0.013250895031128
1013 => 0.013646209075348
1014 => 0.013731355934202
1015 => 0.013869326374149
1016 => 0.013724267326767
1017 => 0.013898974971609
1018 => 0.014515769728328
1019 => 0.014349106340465
1020 => 0.014112417537222
1021 => 0.014599317760054
1022 => 0.01477552505792
1023 => 0.016012240154822
1024 => 0.017573644050814
1025 => 0.016927212585143
1026 => 0.016525951714188
1027 => 0.016620257536897
1028 => 0.017190429382856
1029 => 0.017373550483428
1030 => 0.016875764206444
1031 => 0.017051590734868
1101 => 0.018020412193366
1102 => 0.018540153822336
1103 => 0.017834274879581
1104 => 0.015886782872084
1105 => 0.014091106300158
1106 => 0.014567400587403
1107 => 0.014513403596362
1108 => 0.015554281390579
1109 => 0.014345131473783
1110 => 0.014365490457344
1111 => 0.015427892502037
1112 => 0.015144461850695
1113 => 0.014685340494576
1114 => 0.014094458394152
1115 => 0.013002158181539
1116 => 0.012034677422182
1117 => 0.013932129988792
1118 => 0.013850308383827
1119 => 0.013731818574554
1120 => 0.013995504823154
1121 => 0.015275890397711
1122 => 0.015246373366014
1123 => 0.015058601070078
1124 => 0.015201024701597
1125 => 0.014660372943363
1126 => 0.014799711211872
1127 => 0.014090821855815
1128 => 0.014411269450587
1129 => 0.014684355426348
1130 => 0.014739181479089
1201 => 0.014862707375402
1202 => 0.013807192116012
1203 => 0.014281087479178
1204 => 0.014559456607048
1205 => 0.013301774760178
1206 => 0.014534596280691
1207 => 0.013788817943656
1208 => 0.013535689574851
1209 => 0.01387649357632
1210 => 0.013743681925505
1211 => 0.013629498267096
1212 => 0.013565781823779
1213 => 0.013816030669293
1214 => 0.013804356261537
1215 => 0.01339490057907
1216 => 0.012860782332839
1217 => 0.013040049948108
1218 => 0.012974920342838
1219 => 0.012738882251454
1220 => 0.012897943425699
1221 => 0.01219751851334
1222 => 0.010992473856546
1223 => 0.011788563268341
1224 => 0.011757914691965
1225 => 0.011742460289954
1226 => 0.012340699480622
1227 => 0.012283192586166
1228 => 0.012178817009619
1229 => 0.012736965312138
1230 => 0.012533233673564
1231 => 0.013161086578437
]
'min_raw' => 0.0056360812454624
'max_raw' => 0.018540153822336
'avg_raw' => 0.012088117533899
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005636'
'max' => '$0.01854'
'avg' => '$0.012088'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0030703917524345
'max_diff' => 0.01225597871042
'year' => 2029
]
4 => [
'items' => [
101 => 0.013574631108566
102 => 0.013469742838961
103 => 0.013858683468382
104 => 0.013044179911894
105 => 0.013314725321149
106 => 0.013370484355036
107 => 0.012730077848724
108 => 0.012292601425299
109 => 0.012263426735453
110 => 0.011504902905199
111 => 0.01191010021273
112 => 0.012266657075154
113 => 0.012095894007983
114 => 0.012041835522318
115 => 0.012318008601724
116 => 0.012339469615257
117 => 0.011850156232384
118 => 0.011951899979222
119 => 0.012376188317031
120 => 0.011941209001721
121 => 0.011096115245542
122 => 0.010886520309674
123 => 0.010858556481629
124 => 0.010290118392371
125 => 0.010900526445506
126 => 0.010634066972394
127 => 0.011475809255281
128 => 0.01099501057765
129 => 0.010974284307618
130 => 0.010942953510581
131 => 0.010453675365275
201 => 0.010560796183849
202 => 0.010916882099749
203 => 0.011043937566137
204 => 0.011030684640058
205 => 0.010915137084499
206 => 0.010968034163735
207 => 0.010797634240953
208 => 0.010737462481651
209 => 0.010547543857747
210 => 0.010268415946967
211 => 0.010307230394952
212 => 0.0097542049659067
213 => 0.0094528873608818
214 => 0.0093694866191131
215 => 0.0092579596616631
216 => 0.009382083885719
217 => 0.0097526383143502
218 => 0.0093056710559135
219 => 0.0085393770424315
220 => 0.0085854326183432
221 => 0.0086889058233937
222 => 0.0084960841903259
223 => 0.0083135946969203
224 => 0.0084722545055959
225 => 0.0081475656302081
226 => 0.0087281429227649
227 => 0.0087124399340503
228 => 0.0089288432460565
301 => 0.009064164678097
302 => 0.0087522925880775
303 => 0.0086738576008294
304 => 0.0087185377342373
305 => 0.0079800746552313
306 => 0.008868495057866
307 => 0.0088761781544005
308 => 0.0088103908173294
309 => 0.0092834472548297
310 => 0.010281743887958
311 => 0.0099061445381863
312 => 0.0097607011174042
313 => 0.0094842130681787
314 => 0.0098526169775357
315 => 0.0098243293052933
316 => 0.0096964017236323
317 => 0.0096190307230853
318 => 0.0097615891639175
319 => 0.0096013661546418
320 => 0.009572585699542
321 => 0.0093982074550814
322 => 0.0093359623555135
323 => 0.0092898785618423
324 => 0.0092391448331103
325 => 0.0093510507966355
326 => 0.0090974571608319
327 => 0.0087916480961433
328 => 0.0087662233813144
329 => 0.0088364232543208
330 => 0.0088053650362813
331 => 0.0087660746865153
401 => 0.008691058708722
402 => 0.0086688030705735
403 => 0.0087411230976555
404 => 0.0086594780035994
405 => 0.0087799497873176
406 => 0.0087471881281541
407 => 0.0085641841632494
408 => 0.0083360934662324
409 => 0.0083340629805925
410 => 0.0082849212140639
411 => 0.0082223317858757
412 => 0.0082049208388058
413 => 0.0084588926190474
414 => 0.0089846066034118
415 => 0.0088813963690117
416 => 0.0089559763407761
417 => 0.0093228359873459
418 => 0.009439449637136
419 => 0.0093566800306606
420 => 0.0092433798883102
421 => 0.0092483645195657
422 => 0.0096355454042626
423 => 0.0096596934011154
424 => 0.0097207075987234
425 => 0.0097991280852598
426 => 0.0093700353786176
427 => 0.0092281542916705
428 => 0.0091609231614119
429 => 0.0089538773019375
430 => 0.0091771585106102
501 => 0.0090470621121713
502 => 0.0090646165610465
503 => 0.0090531842031874
504 => 0.0090594270436311
505 => 0.0087279806395794
506 => 0.0088487422889057
507 => 0.0086479526247936
508 => 0.0083791178042451
509 => 0.008378216575661
510 => 0.0084440135171322
511 => 0.0084048749217105
512 => 0.0082995539677762
513 => 0.0083145143121817
514 => 0.0081834459531754
515 => 0.0083304283840343
516 => 0.0083346433142229
517 => 0.0082780470721551
518 => 0.0085044937865601
519 => 0.0085972691902147
520 => 0.0085600163312767
521 => 0.0085946554303231
522 => 0.0088856852202172
523 => 0.0089331357744899
524 => 0.0089542101762902
525 => 0.0089259732697011
526 => 0.0085999749206315
527 => 0.0086144343336647
528 => 0.008508340754798
529 => 0.0084187028605215
530 => 0.0084222879062037
531 => 0.0084683734359724
601 => 0.008669631647353
602 => 0.0090931676883837
603 => 0.00910924057154
604 => 0.0091287213748045
605 => 0.0090494831576605
606 => 0.0090255841531622
607 => 0.0090571131089519
608 => 0.0092161709774959
609 => 0.0096253109991813
610 => 0.0094806935899744
611 => 0.0093631173851852
612 => 0.0094662634151026
613 => 0.0094503848922821
614 => 0.0093163541800967
615 => 0.0093125923844088
616 => 0.0090553445955143
617 => 0.0089602459452087
618 => 0.0088807743950028
619 => 0.0087939935368352
620 => 0.0087425469351928
621 => 0.0088215922973778
622 => 0.0088396709069468
623 => 0.0086668368410527
624 => 0.0086432801965152
625 => 0.0087844202256067
626 => 0.0087223097610342
627 => 0.0087861919141124
628 => 0.0088010131215976
629 => 0.0087986265658311
630 => 0.0087337761074759
701 => 0.008775109855763
702 => 0.0086773432188807
703 => 0.0085710366853452
704 => 0.0085032197400806
705 => 0.0084440404607248
706 => 0.0084768765644313
707 => 0.0083598218503533
708 => 0.0083223736914739
709 => 0.0087611069118821
710 => 0.0090852038589747
711 => 0.0090804913610075
712 => 0.0090518052415882
713 => 0.009009183486898
714 => 0.0092130529306658
715 => 0.0091420288929553
716 => 0.0091937048146467
717 => 0.0092068585055487
718 => 0.009246670766271
719 => 0.0092609002274997
720 => 0.0092178889126701
721 => 0.0090735376867123
722 => 0.0087138281561281
723 => 0.0085463823986238
724 => 0.0084911225096177
725 => 0.0084931311016296
726 => 0.0084377251671918
727 => 0.0084540446980035
728 => 0.008432049900371
729 => 0.0083903970747681
730 => 0.0084743046198249
731 => 0.0084839741827398
801 => 0.0084643891591031
802 => 0.0084690021411577
803 => 0.0083068465103184
804 => 0.0083191748507476
805 => 0.008250529084628
806 => 0.0082376588310177
807 => 0.0080641283119381
808 => 0.0077566938437377
809 => 0.0079270423825067
810 => 0.0077212853023031
811 => 0.0076433619783015
812 => 0.0080122388745619
813 => 0.0079752138652298
814 => 0.007911843143638
815 => 0.0078181046387881
816 => 0.0077833361155097
817 => 0.0075720935744471
818 => 0.007559612238186
819 => 0.007664309745565
820 => 0.0076159954483309
821 => 0.0075481438769589
822 => 0.0073023923634531
823 => 0.0070260862967426
824 => 0.0070344262400986
825 => 0.0071223140590621
826 => 0.0073778597459855
827 => 0.0072780136251193
828 => 0.0072055741188286
829 => 0.0071920083768239
830 => 0.0073618120398171
831 => 0.0076021197979197
901 => 0.0077148668214384
902 => 0.0076031379453094
903 => 0.0074747898283223
904 => 0.0074826017834954
905 => 0.0075345712214444
906 => 0.0075400324745646
907 => 0.0074564910448056
908 => 0.007480007467936
909 => 0.0074442838708141
910 => 0.0072250482212174
911 => 0.0072210829435199
912 => 0.0071672789794565
913 => 0.0071656498168077
914 => 0.007074115851908
915 => 0.0070613096174741
916 => 0.0068795633744511
917 => 0.0069991893019871
918 => 0.006918950510439
919 => 0.0067980117251586
920 => 0.0067771618329917
921 => 0.0067765350600561
922 => 0.0069007121511216
923 => 0.0069977382203786
924 => 0.0069203462985712
925 => 0.0069027256581551
926 => 0.0070908679984452
927 => 0.0070669251706878
928 => 0.0070461908362645
929 => 0.0075806028739002
930 => 0.0071575740454202
1001 => 0.0069731093305616
1002 => 0.0067447992170247
1003 => 0.0068191381412318
1004 => 0.0068348024448283
1005 => 0.0062857577777634
1006 => 0.0060630104247143
1007 => 0.0059865719272048
1008 => 0.0059425804912063
1009 => 0.0059626279410005
1010 => 0.0057621291975977
1011 => 0.0058968676691075
1012 => 0.0057232527050576
1013 => 0.0056941455913427
1014 => 0.0060045906538309
1015 => 0.0060477872706824
1016 => 0.005863497083057
1017 => 0.0059818412173838
1018 => 0.0059389279891704
1019 => 0.0057262288353111
1020 => 0.0057181052921427
1021 => 0.0056113803334729
1022 => 0.0054443764391788
1023 => 0.0053680511781737
1024 => 0.0053283003195559
1025 => 0.0053447022985504
1026 => 0.005336408956062
1027 => 0.0052822892864918
1028 => 0.0053395110321715
1029 => 0.0051933331176177
1030 => 0.0051351238942068
1031 => 0.0051088321384359
1101 => 0.0049790908255825
1102 => 0.0051855669505559
1103 => 0.0052262453482934
1104 => 0.0052670038950406
1105 => 0.005621779217433
1106 => 0.005604055644911
1107 => 0.0057642681087806
1108 => 0.0057580425470465
1109 => 0.005712347357081
1110 => 0.0055195668671106
1111 => 0.005596405734431
1112 => 0.0053599076442301
1113 => 0.0055371080937155
1114 => 0.0054562412086381
1115 => 0.0055097669185261
1116 => 0.0054135228659288
1117 => 0.0054667882984557
1118 => 0.005235891705466
1119 => 0.005020283715735
1120 => 0.0051070506647923
1121 => 0.0052013762614219
1122 => 0.0054058981886298
1123 => 0.005284086616054
1124 => 0.0053278946637578
1125 => 0.0051811450373288
1126 => 0.0048783586410473
1127 => 0.0048800723791678
1128 => 0.0048334952886601
1129 => 0.0047932458820949
1130 => 0.0052980781404851
1201 => 0.0052352942689373
1202 => 0.0051352563865758
1203 => 0.0052691610674641
1204 => 0.005304567590444
1205 => 0.0053055755643775
1206 => 0.0054032689629735
1207 => 0.0054554079473167
1208 => 0.0054645976692905
1209 => 0.005618320342787
1210 => 0.0056698461552919
1211 => 0.0058820736847937
1212 => 0.00545098431877
1213 => 0.005442106316963
1214 => 0.0052710453809284
1215 => 0.0051625558309288
1216 => 0.0052784737532337
1217 => 0.0053811612080215
1218 => 0.0052742361663888
1219 => 0.0052881983195152
1220 => 0.0051446601872202
1221 => 0.0051959683154188
1222 => 0.0052401617873747
1223 => 0.0052157607497329
1224 => 0.0051792312153595
1225 => 0.0053727420077612
1226 => 0.005361823370479
1227 => 0.0055420250691573
1228 => 0.0056825051796242
1229 => 0.0059342706514044
1230 => 0.0056715402567709
1231 => 0.0056619653169317
]
'min_raw' => 0.0047932458820949
'max_raw' => 0.013858683468382
'avg_raw' => 0.0093259646752384
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004793'
'max' => '$0.013858'
'avg' => '$0.009325'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00084283536336746
'max_diff' => -0.0046814703539538
'year' => 2030
]
5 => [
'items' => [
101 => 0.0057555618897284
102 => 0.0056698318261442
103 => 0.0057240102670282
104 => 0.0059255416669825
105 => 0.0059297997078945
106 => 0.0058584720364425
107 => 0.0058541317411523
108 => 0.0058678310006939
109 => 0.0059480679917177
110 => 0.0059200307216203
111 => 0.0059524761603938
112 => 0.0059930496784023
113 => 0.0061608789517005
114 => 0.0062013420213094
115 => 0.0061030377398561
116 => 0.0061119135158049
117 => 0.0060751450160285
118 => 0.0060396271059525
119 => 0.0061194661808292
120 => 0.0062653736594075
121 => 0.0062644659765559
122 => 0.0062983136755499
123 => 0.0063194005116137
124 => 0.0062288803747204
125 => 0.0061699550941205
126 => 0.0061925507962155
127 => 0.0062286818159358
128 => 0.006180833993482
129 => 0.0058854950680292
130 => 0.005975082031688
131 => 0.0059601703803565
201 => 0.0059389343755416
202 => 0.006029014760256
203 => 0.0060203262873977
204 => 0.005760072793188
205 => 0.0057767333774969
206 => 0.0057610859785014
207 => 0.0058116459258125
208 => 0.0056671014230658
209 => 0.0057115623385886
210 => 0.0057394478080093
211 => 0.0057558725637244
212 => 0.0058152100439276
213 => 0.0058082474754964
214 => 0.005814777240898
215 => 0.0059027590595254
216 => 0.0063477409064286
217 => 0.0063719602865585
218 => 0.006252695200977
219 => 0.006300339250267
220 => 0.0062088730942384
221 => 0.0062702749375504
222 => 0.0063122845193067
223 => 0.0061224512973279
224 => 0.0061112106059297
225 => 0.0060193669365389
226 => 0.0060687185221782
227 => 0.0059901966009215
228 => 0.0060094631338177
301 => 0.0059555922282138
302 => 0.0060525491327105
303 => 0.0061609620175176
304 => 0.0061883513935744
305 => 0.0061163017370367
306 => 0.0060641330373996
307 => 0.005972541986275
308 => 0.006124859945535
309 => 0.0061694023586283
310 => 0.0061246259832013
311 => 0.0061142503186317
312 => 0.0060945884530208
313 => 0.0061184216763687
314 => 0.0061691597710806
315 => 0.0061452326226
316 => 0.0061610369257136
317 => 0.0061008072195712
318 => 0.0062289103406522
319 => 0.0064323689266239
320 => 0.0064330230792466
321 => 0.0064090958017897
322 => 0.0063993052753747
323 => 0.0064238561140741
324 => 0.0064371739369404
325 => 0.0065165668474404
326 => 0.0066017586035599
327 => 0.0069993113572946
328 => 0.0068876801348789
329 => 0.0072404125885115
330 => 0.0075193781627581
331 => 0.0076030277407886
401 => 0.0075260740650174
402 => 0.0072628196971599
403 => 0.0072499031819515
404 => 0.0076433163506578
405 => 0.0075321591110337
406 => 0.0075189373110798
407 => 0.0073782796981539
408 => 0.0074614257681773
409 => 0.007443240502984
410 => 0.0074145341722226
411 => 0.0075731710818219
412 => 0.0078701252149772
413 => 0.0078238421285067
414 => 0.0077892939514671
415 => 0.0076379138965026
416 => 0.0077290785015506
417 => 0.007696616531836
418 => 0.0078360937546049
419 => 0.0077534705376354
420 => 0.0075313169856173
421 => 0.0075666956710039
422 => 0.0075613482538797
423 => 0.0076713977193725
424 => 0.0076383636014273
425 => 0.0075548978121723
426 => 0.0078691102580331
427 => 0.0078487070495404
428 => 0.0078776341343602
429 => 0.0078903687316978
430 => 0.0080816243104489
501 => 0.0081599756015673
502 => 0.0081777627163836
503 => 0.0082521903830398
504 => 0.0081759108882352
505 => 0.0084810832538118
506 => 0.0086840050696191
507 => 0.0089197092009403
508 => 0.0092641362880986
509 => 0.0093936440589988
510 => 0.0093702496393648
511 => 0.0096313903259562
512 => 0.01010065433493
513 => 0.0094651013123498
514 => 0.01013434018837
515 => 0.0099224668869562
516 => 0.0094201191007427
517 => 0.0093877738256019
518 => 0.0097279695788034
519 => 0.010482491016776
520 => 0.010293491954276
521 => 0.010482800151536
522 => 0.010261962083735
523 => 0.010250995612299
524 => 0.010472074539502
525 => 0.010988637503298
526 => 0.010743237802272
527 => 0.010391397156376
528 => 0.010651190814059
529 => 0.010426133505006
530 => 0.0099190163981346
531 => 0.010293347430254
601 => 0.01004304292941
602 => 0.010116095089675
603 => 0.010642197920466
604 => 0.01057889583597
605 => 0.010660814594923
606 => 0.010516230129558
607 => 0.010381165440029
608 => 0.010129057166989
609 => 0.010054420336129
610 => 0.010075047271027
611 => 0.010054410114444
612 => 0.0099133578526727
613 => 0.0098828976301729
614 => 0.0098321292581801
615 => 0.0098478644995236
616 => 0.0097524051073661
617 => 0.0099325567032841
618 => 0.0099659944269769
619 => 0.01009709373509
620 => 0.010110704900163
621 => 0.010475814607175
622 => 0.010274718315972
623 => 0.01040963106993
624 => 0.010397563203368
625 => 0.0094310065005216
626 => 0.0095641894861719
627 => 0.0097713804167203
628 => 0.0096780411833489
629 => 0.0095460813453786
630 => 0.0094395167009787
701 => 0.0092780603679186
702 => 0.0095053070562065
703 => 0.0098041122863141
704 => 0.010118283093902
705 => 0.010495738733933
706 => 0.010411495029146
707 => 0.010111226823265
708 => 0.010124696635634
709 => 0.010207961715529
710 => 0.010100125871635
711 => 0.010068322976066
712 => 0.010203592486044
713 => 0.010204524012816
714 => 0.01008044584202
715 => 0.0099425556612458
716 => 0.0099419778963535
717 => 0.0099174416705459
718 => 0.010266327023798
719 => 0.0104581786918
720 => 0.010480174176351
721 => 0.010456698220438
722 => 0.010465733184142
723 => 0.010354098925695
724 => 0.010609261736394
725 => 0.010843424364477
726 => 0.010780663777996
727 => 0.010686576736917
728 => 0.010611631876852
729 => 0.010763009150746
730 => 0.01075626855903
731 => 0.0108413791582
801 => 0.010837518049799
802 => 0.010808898556469
803 => 0.010780664800088
804 => 0.010892608452741
805 => 0.010860370478537
806 => 0.010828082429855
807 => 0.010763323805169
808 => 0.010772125577791
809 => 0.010678054782167
810 => 0.010634533327724
811 => 0.009980075075479
812 => 0.0098051824454388
813 => 0.0098602072271172
814 => 0.0098783228139636
815 => 0.0098022093172391
816 => 0.0099113365195889
817 => 0.009894329160697
818 => 0.0099604948451733
819 => 0.0099191573980926
820 => 0.0099208539013398
821 => 0.010042418519131
822 => 0.010077709244849
823 => 0.010059760096918
824 => 0.010072331064868
825 => 0.010362023715405
826 => 0.010320838684349
827 => 0.010298959957448
828 => 0.010305020514321
829 => 0.010379043197614
830 => 0.010399765507447
831 => 0.010311963624553
901 => 0.010353371500102
902 => 0.010529680978751
903 => 0.010591379318026
904 => 0.010788290800109
905 => 0.010704639302697
906 => 0.010858185246548
907 => 0.011330133130273
908 => 0.011707157756103
909 => 0.011360430328988
910 => 0.012052788040528
911 => 0.012591887831776
912 => 0.01257119628387
913 => 0.012477191765663
914 => 0.011863440986037
915 => 0.011298658368115
916 => 0.011771123009943
917 => 0.011772327419478
918 => 0.011731742287737
919 => 0.011479671520116
920 => 0.011722970771419
921 => 0.011742282982454
922 => 0.011731473279806
923 => 0.011538211213282
924 => 0.0112431357585
925 => 0.011300792796053
926 => 0.011395236199738
927 => 0.011216435133605
928 => 0.011159297359037
929 => 0.011265527352865
930 => 0.011607822526879
1001 => 0.011543113607012
1002 => 0.011541423795605
1003 => 0.011818275995646
1004 => 0.011620109568861
1005 => 0.01130152003594
1006 => 0.011221071977198
1007 => 0.010935535564969
1008 => 0.011132756581941
1009 => 0.011139854215237
1010 => 0.011031838279791
1011 => 0.011310284933792
1012 => 0.011307718998856
1013 => 0.011572062655515
1014 => 0.012077388444103
1015 => 0.011927938742846
1016 => 0.011754145000364
1017 => 0.01177304119895
1018 => 0.01198028585764
1019 => 0.011854981006061
1020 => 0.011900041504345
1021 => 0.011980217653179
1022 => 0.012028589914433
1023 => 0.011766081174962
1024 => 0.011704877830547
1025 => 0.011579677267329
1026 => 0.011547014777365
1027 => 0.01164898802371
1028 => 0.011622121676066
1029 => 0.011139257686641
1030 => 0.011088795713117
1031 => 0.011090343309802
1101 => 0.010963454278038
1102 => 0.01076991804774
1103 => 0.011278519705514
1104 => 0.011237671874519
1105 => 0.011192579030471
1106 => 0.011198102646571
1107 => 0.011418869388101
1108 => 0.011290813529026
1109 => 0.011631271018319
1110 => 0.011561283193609
1111 => 0.011489500445284
1112 => 0.01147957788291
1113 => 0.011451947649021
1114 => 0.011357193296258
1115 => 0.011242771721444
1116 => 0.011167220686724
1117 => 0.010301170786451
1118 => 0.010461904610361
1119 => 0.010646814223421
1120 => 0.01071064428087
1121 => 0.010601458550697
1122 => 0.01136150461438
1123 => 0.011500372354201
1124 => 0.011079732912165
1125 => 0.011001048447155
1126 => 0.011366663154807
1127 => 0.011146152791513
1128 => 0.011245448594602
1129 => 0.011030825380223
1130 => 0.0114669231822
1201 => 0.011463600847613
1202 => 0.011293948952928
1203 => 0.01143733757259
1204 => 0.011412420271303
1205 => 0.011220883700038
1206 => 0.011472995233147
1207 => 0.011473120277322
1208 => 0.011309834017238
1209 => 0.011119151413419
1210 => 0.011085061867578
1211 => 0.011059379974073
1212 => 0.011239132423128
1213 => 0.01140029790688
1214 => 0.011700186915829
1215 => 0.011775586137866
1216 => 0.012069874321087
1217 => 0.011894640036611
1218 => 0.011972319125255
1219 => 0.012056650764357
1220 => 0.012097082453335
1221 => 0.012031201185829
1222 => 0.01248835186822
1223 => 0.012526949392548
1224 => 0.012539890808589
1225 => 0.012385742170616
1226 => 0.012522662240074
1227 => 0.01245860187389
1228 => 0.012625269150217
1229 => 0.012651404707259
1230 => 0.012629268820244
1231 => 0.012637564658571
]
'min_raw' => 0.0056671014230658
'max_raw' => 0.012651404707259
'avg_raw' => 0.0091592530651626
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005667'
'max' => '$0.012651'
'avg' => '$0.009159'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00087385554097094
'max_diff' => -0.0012072787611225
'year' => 2031
]
6 => [
'items' => [
101 => 0.012247467198057
102 => 0.012227238586801
103 => 0.011951420036973
104 => 0.012063818134776
105 => 0.011853695278315
106 => 0.011920327400604
107 => 0.011949698205214
108 => 0.011934356563664
109 => 0.012070172954585
110 => 0.011954701276847
111 => 0.011649952533995
112 => 0.011345120762552
113 => 0.011341293847972
114 => 0.011261037023279
115 => 0.011203026038796
116 => 0.011214201012458
117 => 0.011253583077216
118 => 0.0112007370816
119 => 0.011212014454124
120 => 0.011399293978774
121 => 0.011436851551826
122 => 0.011309216243904
123 => 0.01079674206491
124 => 0.010670979615941
125 => 0.010761375170282
126 => 0.010718171917526
127 => 0.0086504012564636
128 => 0.0091361933016044
129 => 0.0088475521643208
130 => 0.0089805712801213
131 => 0.0086859434222148
201 => 0.0088265552787769
202 => 0.0088005894031927
203 => 0.0095817286361476
204 => 0.0095695322214469
205 => 0.0095753699997442
206 => 0.0092967176313624
207 => 0.0097406184204309
208 => 0.009959299911282
209 => 0.0099188277873449
210 => 0.0099290137490022
211 => 0.0097539851800243
212 => 0.0095770646588854
213 => 0.0093808325730693
214 => 0.0097454075334967
215 => 0.0097048730213993
216 => 0.0097978446082937
217 => 0.010034297530487
218 => 0.010069116121478
219 => 0.010115912660864
220 => 0.010099139432698
221 => 0.010498745777065
222 => 0.010450350812075
223 => 0.01056696875352
224 => 0.010327076800143
225 => 0.010055616284143
226 => 0.010107212053522
227 => 0.010102242966024
228 => 0.010038980778919
229 => 0.0099818705050451
301 => 0.0098867979897642
302 => 0.010187621496198
303 => 0.010175408611205
304 => 0.010373121023315
305 => 0.010338173433999
306 => 0.010104784879418
307 => 0.010113120397303
308 => 0.010169180760995
309 => 0.010363206319819
310 => 0.010420806315945
311 => 0.010394123702777
312 => 0.01045727946899
313 => 0.010507195211536
314 => 0.010463548117737
315 => 0.011081498922357
316 => 0.010824882664899
317 => 0.010949955643259
318 => 0.010979784811625
319 => 0.010903378024095
320 => 0.010919947920389
321 => 0.010945046798247
322 => 0.011097442269736
323 => 0.011497372082909
324 => 0.011674498274749
325 => 0.012207391162153
326 => 0.011659790410233
327 => 0.011627298047811
328 => 0.011723288148656
329 => 0.012036152686002
330 => 0.01228970000765
331 => 0.012373816281737
401 => 0.012384933635966
402 => 0.012542741358096
403 => 0.012633193801481
404 => 0.012523579349874
405 => 0.012430692579249
406 => 0.012097983696398
407 => 0.012136495655524
408 => 0.012401804863431
409 => 0.012776569746234
410 => 0.013098157003319
411 => 0.012985548354335
412 => 0.013844672856765
413 => 0.013929851541971
414 => 0.013918082601832
415 => 0.014112132323022
416 => 0.013726983143999
417 => 0.013562324408053
418 => 0.012450775753368
419 => 0.012763075585854
420 => 0.013217021733099
421 => 0.0131569402583
422 => 0.012827272432156
423 => 0.013097906920711
424 => 0.013008426695272
425 => 0.01293784992893
426 => 0.013261175777522
427 => 0.012905665725501
428 => 0.013213475248379
429 => 0.012818706351406
430 => 0.012986062741158
501 => 0.012891063160217
502 => 0.012952539531797
503 => 0.012593149919711
504 => 0.012787067830703
505 => 0.012585082297071
506 => 0.012584986529629
507 => 0.012580527687779
508 => 0.012818162772356
509 => 0.012825912043932
510 => 0.012650299357383
511 => 0.012624990825666
512 => 0.012718569732164
513 => 0.012609013341009
514 => 0.012660274086891
515 => 0.012610565976782
516 => 0.012599375634183
517 => 0.012510209080478
518 => 0.012471793677457
519 => 0.012486857346824
520 => 0.012435437277419
521 => 0.012404454825656
522 => 0.012574364498306
523 => 0.012483588614346
524 => 0.01256045179218
525 => 0.012472856500132
526 => 0.012169213054441
527 => 0.011994584497854
528 => 0.011421030176707
529 => 0.011583689470692
530 => 0.011691532750888
531 => 0.011655890547427
601 => 0.011732463792163
602 => 0.011737164767488
603 => 0.011712270025052
604 => 0.011683445102526
605 => 0.011669414724358
606 => 0.011773985668347
607 => 0.011834692621029
608 => 0.011702356266812
609 => 0.011671351710602
610 => 0.011805151071205
611 => 0.011886768603879
612 => 0.012489386608216
613 => 0.012444742720024
614 => 0.012556790118465
615 => 0.012544175300908
616 => 0.012661618825025
617 => 0.012853589351618
618 => 0.01246325959525
619 => 0.012531007344368
620 => 0.012514397160808
621 => 0.01269574278949
622 => 0.012696308930748
623 => 0.012587583167467
624 => 0.012646525167616
625 => 0.012613625360122
626 => 0.012673079758939
627 => 0.012444146473679
628 => 0.012722962503304
629 => 0.012881033225593
630 => 0.012883228037726
701 => 0.012958152305564
702 => 0.013034279701009
703 => 0.013180399607266
704 => 0.01303020449613
705 => 0.012760018112396
706 => 0.012779524696604
707 => 0.012621114518678
708 => 0.012623777422389
709 => 0.012609562633689
710 => 0.012652222284616
711 => 0.012453507868098
712 => 0.01250014574447
713 => 0.012434852444438
714 => 0.012530865409485
715 => 0.012427571330606
716 => 0.012514389150875
717 => 0.012551856844046
718 => 0.012690113438472
719 => 0.012407150719196
720 => 0.011830170579702
721 => 0.011951458800232
722 => 0.011772063995084
723 => 0.011788667667305
724 => 0.011822209727645
725 => 0.011713488935803
726 => 0.0117342294367
727 => 0.01173348844006
728 => 0.011727102931329
729 => 0.011698820454374
730 => 0.011657805267273
731 => 0.011821197148876
801 => 0.01184896061346
802 => 0.011910675356066
803 => 0.012094296568549
804 => 0.012075948479335
805 => 0.012105874974097
806 => 0.012040545604062
807 => 0.011791698109412
808 => 0.011805211725613
809 => 0.011636696715046
810 => 0.011906366048372
811 => 0.011842504790779
812 => 0.011801333022567
813 => 0.011790098924157
814 => 0.011974175298109
815 => 0.012029253834239
816 => 0.011994932586706
817 => 0.011924538706704
818 => 0.01205971576639
819 => 0.012095883444899
820 => 0.012103980054305
821 => 0.012343487886437
822 => 0.012117365881521
823 => 0.012171795695563
824 => 0.012596441567049
825 => 0.012211346358736
826 => 0.012415339879227
827 => 0.01240535545793
828 => 0.012509711640249
829 => 0.012396795205052
830 => 0.012398194939595
831 => 0.012490856159794
901 => 0.012360730187564
902 => 0.012328509166874
903 => 0.012283996057562
904 => 0.012381188803265
905 => 0.012439451458664
906 => 0.012909005671975
907 => 0.013212359108048
908 => 0.01319918973535
909 => 0.013319533149775
910 => 0.013265317339357
911 => 0.013090240186111
912 => 0.013389075538318
913 => 0.013294511529077
914 => 0.013302307271104
915 => 0.013302017113196
916 => 0.013364893912412
917 => 0.013320339937594
918 => 0.013232519479855
919 => 0.013290818798111
920 => 0.013463946930944
921 => 0.014001341967477
922 => 0.014302075349458
923 => 0.01398323744027
924 => 0.014203167560618
925 => 0.014071287857524
926 => 0.01404732139239
927 => 0.014185453760677
928 => 0.014323827911389
929 => 0.014315014076197
930 => 0.014214561548371
1001 => 0.014157818464291
1002 => 0.014587496107274
1003 => 0.014904075275256
1004 => 0.014882486698373
1005 => 0.014977771655752
1006 => 0.01525753123767
1007 => 0.015283108947779
1008 => 0.015279886744202
1009 => 0.015216489720938
1010 => 0.015491949360709
1011 => 0.015721742638456
1012 => 0.015201815141769
1013 => 0.015399796726157
1014 => 0.015488677037957
1015 => 0.015619179705279
1016 => 0.015839359579839
1017 => 0.016078533323438
1018 => 0.01611235511319
1019 => 0.016088356934839
1020 => 0.0159306154216
1021 => 0.016192322185783
1022 => 0.016345623870462
1023 => 0.016436911515442
1024 => 0.016668401794295
1025 => 0.015489225932504
1026 => 0.014654546648685
1027 => 0.014524199425602
1028 => 0.014789265629393
1029 => 0.014859161473469
1030 => 0.014830986546364
1031 => 0.013891479126706
1101 => 0.014519253113473
1102 => 0.015194685138498
1103 => 0.015220631233363
1104 => 0.015558766627708
1105 => 0.015668877372745
1106 => 0.015941120685613
1107 => 0.015924091792269
1108 => 0.015990378706615
1109 => 0.015975140492936
1110 => 0.01647941390243
1111 => 0.017035702358427
1112 => 0.017016439858085
1113 => 0.016936466810829
1114 => 0.017055240423435
1115 => 0.017629389725518
1116 => 0.017576531258338
1117 => 0.01762787875673
1118 => 0.018304833141523
1119 => 0.019184970137392
1120 => 0.018776058138502
1121 => 0.019663279514837
1122 => 0.020221738341655
1123 => 0.021187535136918
1124 => 0.021066612621501
1125 => 0.021442590226553
1126 => 0.020850136081616
1127 => 0.019489741610102
1128 => 0.019274453977604
1129 => 0.019705465269816
1130 => 0.020765064474252
1201 => 0.019672094720075
1202 => 0.019893201077858
1203 => 0.019829522431942
1204 => 0.019826129267518
1205 => 0.019955632552587
1206 => 0.019767781283157
1207 => 0.019002441417703
1208 => 0.019353192167865
1209 => 0.019217750458793
1210 => 0.019368033132856
1211 => 0.020179046743488
1212 => 0.019820478294078
1213 => 0.01944275556036
1214 => 0.019916503691827
1215 => 0.020519747860704
1216 => 0.02048199792475
1217 => 0.020408747270749
1218 => 0.020821657372071
1219 => 0.021503663888146
1220 => 0.021688007508917
1221 => 0.021824086201031
1222 => 0.021842849153605
1223 => 0.022036119226229
1224 => 0.020996857335402
1225 => 0.022646192646283
1226 => 0.022930987292504
1227 => 0.022877457702543
1228 => 0.023193994965826
1229 => 0.023100861673193
1230 => 0.022965926144333
1231 => 0.023467705036044
]
'min_raw' => 0.0086504012564636
'max_raw' => 0.023467705036044
'avg_raw' => 0.016059053146254
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00865'
'max' => '$0.023467'
'avg' => '$0.016059'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0029832998333977
'max_diff' => 0.010816300328785
'year' => 2032
]
7 => [
'items' => [
101 => 0.022892456028166
102 => 0.022075962483319
103 => 0.021628017976205
104 => 0.022217907437826
105 => 0.022578132347732
106 => 0.022816218098573
107 => 0.022888262702922
108 => 0.021077532277587
109 => 0.020101649006045
110 => 0.020727178994579
111 => 0.021490368752365
112 => 0.020992617777763
113 => 0.0210121286736
114 => 0.020302466590473
115 => 0.021553158099883
116 => 0.021370942866933
117 => 0.02231627581781
118 => 0.022090664522312
119 => 0.022861546846138
120 => 0.022658547695195
121 => 0.023501185821231
122 => 0.023837336983223
123 => 0.024401787101959
124 => 0.024816998907027
125 => 0.025060819220699
126 => 0.025046181163613
127 => 0.026012318717179
128 => 0.025442621156116
129 => 0.024726946752015
130 => 0.024714002459969
131 => 0.025084660375037
201 => 0.025861457679988
202 => 0.02606286991922
203 => 0.026175431883788
204 => 0.026003039316742
205 => 0.025384673444801
206 => 0.025117666196483
207 => 0.025345164107994
208 => 0.025066953711334
209 => 0.02554722290802
210 => 0.026206735095036
211 => 0.026070548436411
212 => 0.026525800017949
213 => 0.026996937510977
214 => 0.027670685286117
215 => 0.027846827903346
216 => 0.028137984951523
217 => 0.028437681194204
218 => 0.028533935550313
219 => 0.028717714982098
220 => 0.028716746373776
221 => 0.029270578061243
222 => 0.029881471563257
223 => 0.030112069718051
224 => 0.030642317459742
225 => 0.029734286784193
226 => 0.030423038482301
227 => 0.031044309754568
228 => 0.030303604531763
301 => 0.031324494119218
302 => 0.031364132948513
303 => 0.031962632209486
304 => 0.031355938549905
305 => 0.030995685791481
306 => 0.032035722006557
307 => 0.032538962770199
308 => 0.032387382556681
309 => 0.03123384964737
310 => 0.030562444016797
311 => 0.028805245977114
312 => 0.030886722960425
313 => 0.03190054968148
314 => 0.031231224081085
315 => 0.031568792981579
316 => 0.033410459445591
317 => 0.034111646796013
318 => 0.033965804728795
319 => 0.03399044963739
320 => 0.034368797604228
321 => 0.036046600849216
322 => 0.035041222253644
323 => 0.035809796519141
324 => 0.03621744553826
325 => 0.036596092665745
326 => 0.035666254993297
327 => 0.03445654984347
328 => 0.034073385442552
329 => 0.031164672841092
330 => 0.031013261718287
331 => 0.03092827006683
401 => 0.030392409726703
402 => 0.029971370283863
403 => 0.029636544086725
404 => 0.028757860157867
405 => 0.02905439018982
406 => 0.027653951402809
407 => 0.028549902510235
408 => 0.02631476839139
409 => 0.028176254502933
410 => 0.027163132243808
411 => 0.027843416592975
412 => 0.027841043144967
413 => 0.026588423973802
414 => 0.025865939377369
415 => 0.026326334681737
416 => 0.026819914994245
417 => 0.026899996739345
418 => 0.027539936498276
419 => 0.027718529929534
420 => 0.027177383495091
421 => 0.026268450204837
422 => 0.026479574677602
423 => 0.025861660946667
424 => 0.024778790900911
425 => 0.02555652707287
426 => 0.025822080396622
427 => 0.02593936387263
428 => 0.024874485551095
429 => 0.024539877662835
430 => 0.024361735230758
501 => 0.026130987785696
502 => 0.026227911434517
503 => 0.025732036343525
504 => 0.027973438775618
505 => 0.027466140373907
506 => 0.028032916979744
507 => 0.026460417344601
508 => 0.026520488948315
509 => 0.025776042420613
510 => 0.026192882732191
511 => 0.025898273435358
512 => 0.026159206154312
513 => 0.026315608150187
514 => 0.027059932521538
515 => 0.028184753491629
516 => 0.026948755281489
517 => 0.02641021316151
518 => 0.026744321663869
519 => 0.027634096633954
520 => 0.028982151260376
521 => 0.028184075789407
522 => 0.028538248131223
523 => 0.028615619031879
524 => 0.028027147725946
525 => 0.029003849036813
526 => 0.029527271204014
527 => 0.030064194040606
528 => 0.030530389095382
529 => 0.029849735252485
530 => 0.030578132432281
531 => 0.029991172884776
601 => 0.029464609491902
602 => 0.029465408071213
603 => 0.029135087162999
604 => 0.028495048780222
605 => 0.028377015882487
606 => 0.028991037922415
607 => 0.029483425450333
608 => 0.029523980845509
609 => 0.02979659188075
610 => 0.029957920283288
611 => 0.03153915794349
612 => 0.032175144811107
613 => 0.032952817514214
614 => 0.033255764859306
615 => 0.034167527755399
616 => 0.033431205167042
617 => 0.033271897143365
618 => 0.031060258592813
619 => 0.031422414281568
620 => 0.03200226048209
621 => 0.031069820043089
622 => 0.031661238883431
623 => 0.031777997490479
624 => 0.031038136073775
625 => 0.031433328023961
626 => 0.030383815370513
627 => 0.028207629999487
628 => 0.029006271753226
629 => 0.029594340903886
630 => 0.028755093717491
701 => 0.030259411815752
702 => 0.029380620238177
703 => 0.029102085497521
704 => 0.028015422169415
705 => 0.028528285430774
706 => 0.029221940335255
707 => 0.028793342250324
708 => 0.029682747630883
709 => 0.030942382845506
710 => 0.03184007391202
711 => 0.031908987485433
712 => 0.031331832270295
713 => 0.032256727185909
714 => 0.032263464035639
715 => 0.031220178792519
716 => 0.030581172390145
717 => 0.030435988791044
718 => 0.030798685886518
719 => 0.031239067118001
720 => 0.031933425578883
721 => 0.032353011854468
722 => 0.033447070329829
723 => 0.033743091184147
724 => 0.034068328355127
725 => 0.034502945514986
726 => 0.035024814848949
727 => 0.033882994456276
728 => 0.033928361109096
729 => 0.032865113769019
730 => 0.031728881501053
731 => 0.032591140159087
801 => 0.033718428653004
802 => 0.033459827426957
803 => 0.033430729506283
804 => 0.033479664137766
805 => 0.033284687258453
806 => 0.032402814059498
807 => 0.031959942859802
808 => 0.032531359695903
809 => 0.032835042313454
810 => 0.033306027569367
811 => 0.033247968695283
812 => 0.034461176134392
813 => 0.034932591859742
814 => 0.034811983544181
815 => 0.034834178376845
816 => 0.03568765402984
817 => 0.036636894486626
818 => 0.037525983437716
819 => 0.038430402906024
820 => 0.037340089936886
821 => 0.036786496252313
822 => 0.037357663625699
823 => 0.037054594177618
824 => 0.038796121122533
825 => 0.038916700669661
826 => 0.040658101682356
827 => 0.042310898605578
828 => 0.041272806471035
829 => 0.042251680597213
830 => 0.043310412773453
831 => 0.045352878914524
901 => 0.044665048173036
902 => 0.044138180604739
903 => 0.043640293298503
904 => 0.044676317745396
905 => 0.046009146645428
906 => 0.046296225224819
907 => 0.046761402195889
908 => 0.046272325489942
909 => 0.046861364512223
910 => 0.048940931097737
911 => 0.048379013849489
912 => 0.047581001024272
913 => 0.049222619119837
914 => 0.049816714326993
915 => 0.053986385620891
916 => 0.059250767869967
917 => 0.057071279051052
918 => 0.055718400009487
919 => 0.056036358674974
920 => 0.057958732861751
921 => 0.058576138437437
922 => 0.056897817250258
923 => 0.057490628666655
924 => 0.060757077854934
925 => 0.062509423044208
926 => 0.060129502905816
927 => 0.053563397632992
928 => 0.047509148700609
929 => 0.049115008143859
930 => 0.048932953518615
1001 => 0.052442345673585
1002 => 0.048365612308957
1003 => 0.048434254043452
1004 => 0.052016216711676
1005 => 0.05106061048218
1006 => 0.049512650775196
1007 => 0.047520450519544
1008 => 0.043837684090753
1009 => 0.040575755163233
1010 => 0.046973148967467
1011 => 0.046697281713723
1012 => 0.046297785049065
1013 => 0.047186821646208
1014 => 0.051503731004493
1015 => 0.051404212271313
1016 => 0.050771124865722
1017 => 0.051251316083086
1018 => 0.049428470933101
1019 => 0.049898259633665
1020 => 0.047508189676646
1021 => 0.048588601115357
1022 => 0.049509329548889
1023 => 0.049694179413537
1024 => 0.05011065559726
1025 => 0.046551912206505
1026 => 0.048149683509737
1027 => 0.049088224459461
1028 => 0.044847862304197
1029 => 0.049004406133455
1030 => 0.046489962401561
1031 => 0.045636522433279
1101 => 0.046785566918405
1102 => 0.046337783165069
1103 => 0.045952804988695
1104 => 0.045737980551513
1105 => 0.046581712005978
1106 => 0.04654235092515
1107 => 0.045161842504427
1108 => 0.043361025546317
1109 => 0.04396543882726
1110 => 0.043745849815889
1111 => 0.042950030911133
1112 => 0.043486316765397
1113 => 0.041124785271275
1114 => 0.037061893077362
1115 => 0.039745964110414
1116 => 0.039642630295349
1117 => 0.039590524699978
1118 => 0.041607529899042
1119 => 0.041413641389379
1120 => 0.04106173184578
1121 => 0.042943567816393
1122 => 0.042256672372854
1123 => 0.044373522276922
1124 => 0.045767816533009
1125 => 0.045414178408972
1126 => 0.046725518896031
1127 => 0.04397936328851
1128 => 0.044891526024689
1129 => 0.045079521500412
1130 => 0.042920346252626
1201 => 0.04144536394742
1202 => 0.041346999443692
1203 => 0.038789583391547
1204 => 0.040155734403862
1205 => 0.041357890759529
1206 => 0.040782151156266
1207 => 0.040599889197604
1208 => 0.041531026016611
1209 => 0.041603383322095
1210 => 0.039953629088969
1211 => 0.040296665234958
1212 => 0.041727182988746
1213 => 0.040260619857893
1214 => 0.037411327256372
1215 => 0.036704663296643
1216 => 0.036610381298014
1217 => 0.034693852593003
1218 => 0.036751885961477
1219 => 0.035853499244273
1220 => 0.038691492119596
1221 => 0.037070445809673
1222 => 0.037000565743196
1223 => 0.03689493177354
1224 => 0.035245296346333
1225 => 0.035606461665091
1226 => 0.036807030191673
1227 => 0.037235406567329
1228 => 0.037190723401764
1229 => 0.036801146750924
1230 => 0.036979492946724
1231 => 0.03640497771012
]
'min_raw' => 0.020101649006045
'max_raw' => 0.062509423044208
'avg_raw' => 0.041305536025127
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0201016'
'max' => '$0.0625094'
'avg' => '$0.0413055'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011451247749582
'max_diff' => 0.039041718008164
'year' => 2033
]
8 => [
'items' => [
101 => 0.036202104422575
102 => 0.035561780522389
103 => 0.034620681283107
104 => 0.034751546904426
105 => 0.032886983059398
106 => 0.031871069716733
107 => 0.031589878293006
108 => 0.0312138573694
109 => 0.031632350856881
110 => 0.032881700984295
111 => 0.031374719666218
112 => 0.028791105898824
113 => 0.028946385488508
114 => 0.029295252623604
115 => 0.02864514102534
116 => 0.028029864957313
117 => 0.028564797579537
118 => 0.027470086367113
119 => 0.029427543243581
120 => 0.029374599520782
121 => 0.030104218396008
122 => 0.030560464051973
123 => 0.029508965526258
124 => 0.029244516490595
125 => 0.029395158679847
126 => 0.026905378851133
127 => 0.029900750266147
128 => 0.02992665436253
129 => 0.02970484776247
130 => 0.031299790569248
131 => 0.034665617366686
201 => 0.033399257935421
202 => 0.032908885287718
203 => 0.031976686525975
204 => 0.033218786027512
205 => 0.033123412165565
206 => 0.032692095392376
207 => 0.032431233662161
208 => 0.032911879398539
209 => 0.032371676336353
210 => 0.032274641022597
211 => 0.031686712596697
212 => 0.03147684889769
213 => 0.03132147416986
214 => 0.031150421861324
215 => 0.031527720630375
216 => 0.03067271198192
217 => 0.029641655369416
218 => 0.029555934168273
219 => 0.029792617941313
220 => 0.029687902990777
221 => 0.029555432833377
222 => 0.029302511226798
223 => 0.029227474788941
224 => 0.029471306809471
225 => 0.029196034674583
226 => 0.02960221370446
227 => 0.029491755483244
228 => 0.028874744838639
301 => 0.028105721128862
302 => 0.028098875204764
303 => 0.027933190307944
304 => 0.027722165680953
305 => 0.027663463457313
306 => 0.028519747046142
307 => 0.030292228448604
308 => 0.029944247937416
309 => 0.030195699519227
310 => 0.031432592430959
311 => 0.031825763492932
312 => 0.031546699985911
313 => 0.031164700645613
314 => 0.031181506677907
315 => 0.032486914062768
316 => 0.032568330720117
317 => 0.032774044347227
318 => 0.033038444492729
319 => 0.031591728473988
320 => 0.031113366483525
321 => 0.030886692033931
322 => 0.030188622463232
323 => 0.030941430647269
324 => 0.030502801556891
325 => 0.030561987606886
326 => 0.030523442614183
327 => 0.0305444907866
328 => 0.029426996094491
329 => 0.029834152426503
330 => 0.029157176055263
331 => 0.028250780688336
401 => 0.028247742133243
402 => 0.028469581115209
403 => 0.028337622608175
404 => 0.027982525658711
405 => 0.028032965504372
406 => 0.027591059381082
407 => 0.028086620908708
408 => 0.028100831840116
409 => 0.027910013658561
410 => 0.028673494566182
411 => 0.028986293316976
412 => 0.028860692702155
413 => 0.028977480843014
414 => 0.029958708098693
415 => 0.030118690955316
416 => 0.030189744772353
417 => 0.03009454207035
418 => 0.028995415875984
419 => 0.029044166796549
420 => 0.028686464888183
421 => 0.028384244469312
422 => 0.02839633170113
423 => 0.028551712282334
424 => 0.029230268393403
425 => 0.03065824972608
426 => 0.030712440573814
427 => 0.030778121462127
428 => 0.03051096428079
429 => 0.030430387118549
430 => 0.030536689194275
501 => 0.031072963903137
502 => 0.032452408051494
503 => 0.031964820359488
504 => 0.031568403976132
505 => 0.031916168017424
506 => 0.031862632469132
507 => 0.031410738565274
508 => 0.031398055408472
509 => 0.030530726527747
510 => 0.030210094788666
511 => 0.02994215090862
512 => 0.029649563186462
513 => 0.029476107377138
514 => 0.029742614334515
515 => 0.029803567628885
516 => 0.029220845508834
517 => 0.029141422637104
518 => 0.029617286099268
519 => 0.029407876331547
520 => 0.02962325947076
521 => 0.02967323020658
522 => 0.029665183767189
523 => 0.02944653591913
524 => 0.02958589553731
525 => 0.029256268495213
526 => 0.028897848595313
527 => 0.028669199029526
528 => 0.028469671957412
529 => 0.028580381173602
530 => 0.028185723032589
531 => 0.02805946395038
601 => 0.029538683634362
602 => 0.030631399119211
603 => 0.030615510603298
604 => 0.030518793348875
605 => 0.030375091127181
606 => 0.031062451190554
607 => 0.030822988688673
608 => 0.030997217666553
609 => 0.031041566253791
610 => 0.031175796070419
611 => 0.031223771692422
612 => 0.031078756041519
613 => 0.030592065804922
614 => 0.02937928000844
615 => 0.028814724946325
616 => 0.028628412372418
617 => 0.028635184480622
618 => 0.028448379504346
619 => 0.028503401941871
620 => 0.028429244946025
621 => 0.028288809536397
622 => 0.028571709682794
623 => 0.028604311289269
624 => 0.028538279014695
625 => 0.028553832005761
626 => 0.028007112975041
627 => 0.028048678835535
628 => 0.027817234842369
629 => 0.027773841883749
630 => 0.027188771623159
701 => 0.026152234849232
702 => 0.026726576841047
703 => 0.02603285247964
704 => 0.025770128552336
705 => 0.02701382276224
706 => 0.026888990358273
707 => 0.026675331546024
708 => 0.026359285632309
709 => 0.026242061128615
710 => 0.025529842152939
711 => 0.025487760456316
712 => 0.025840755412191
713 => 0.025677860385869
714 => 0.025449094075743
715 => 0.024620525690136
716 => 0.023688940495148
717 => 0.023717059196449
718 => 0.024013379114216
719 => 0.024874969239308
720 => 0.024538331071774
721 => 0.02429409621875
722 => 0.024248358372452
723 => 0.024820863277546
724 => 0.025631077661741
725 => 0.02601121212328
726 => 0.02563451041675
727 => 0.025201775779349
728 => 0.025228114331628
729 => 0.025403332920064
730 => 0.025421745916251
731 => 0.025140080153142
801 => 0.025219367415591
802 => 0.025098922813752
803 => 0.024359754514593
804 => 0.024346385303989
805 => 0.024164981482676
806 => 0.024159488647061
807 => 0.023850875493704
808 => 0.023807698380208
809 => 0.023194928232738
810 => 0.023598255399442
811 => 0.023327724711644
812 => 0.022919971153394
813 => 0.022849674286261
814 => 0.022847561077549
815 => 0.023266232809843
816 => 0.023593362976487
817 => 0.023332430708782
818 => 0.023273021489385
819 => 0.023907356525352
820 => 0.023826631609933
821 => 0.0237567243538
822 => 0.025558531850146
823 => 0.024132260619996
824 => 0.023510324954935
825 => 0.022740561467042
826 => 0.022991200340185
827 => 0.023044013633407
828 => 0.021192871205323
829 => 0.020441862952794
830 => 0.020184145221675
831 => 0.020035825023823
901 => 0.020103416400472
902 => 0.019427420888714
903 => 0.019881701052549
904 => 0.019296346079845
905 => 0.019198209413762
906 => 0.020244896616523
907 => 0.020390537026129
908 => 0.01976918979182
909 => 0.020168195303226
910 => 0.020023510358199
911 => 0.019306380310782
912 => 0.019278991217822
913 => 0.018919160568368
914 => 0.018356095278916
915 => 0.018098759332577
916 => 0.017964736537431
917 => 0.018020036954761
918 => 0.017992075371538
919 => 0.017809607127068
920 => 0.018002534237722
921 => 0.017509685192987
922 => 0.01731342873222
923 => 0.017224784242006
924 => 0.016787352347472
925 => 0.017483501018522
926 => 0.017620651076569
927 => 0.017758071362598
928 => 0.018954221131666
929 => 0.018894464869488
930 => 0.019434632377101
1001 => 0.01941364246106
1002 => 0.019259577937755
1003 => 0.018609605056316
1004 => 0.018868672662205
1005 => 0.018071302839323
1006 => 0.018668746526504
1007 => 0.018396098177519
1008 => 0.018576563845453
1009 => 0.018252070302576
1010 => 0.018431658427214
1011 => 0.017653174443264
1012 => 0.016926237052616
1013 => 0.017218777879238
1014 => 0.017536803213878
1015 => 0.018226363170724
1016 => 0.017815666949172
1017 => 0.017963368840586
1018 => 0.017468592229349
1019 => 0.016447726754415
1020 => 0.016453504742137
1021 => 0.016296466829582
1022 => 0.016160763145224
1023 => 0.017862840350649
1024 => 0.017651160144296
1025 => 0.017313875439492
1026 => 0.017765344420033
1027 => 0.017884719984264
1028 => 0.017888118438756
1029 => 0.018217498552857
1030 => 0.018393288778798
1031 => 0.018424272568039
1101 => 0.018942559294306
1102 => 0.019116282168584
1103 => 0.019831822101552
1104 => 0.018378374206305
1105 => 0.01834844140337
1106 => 0.017771697514436
1107 => 0.017405917422114
1108 => 0.017796742790296
1109 => 0.018142960713522
1110 => 0.01778245547039
1111 => 0.017829529844462
1112 => 0.017345581009917
1113 => 0.017518569946358
1114 => 0.017667571322547
1115 => 0.017585301520511
1116 => 0.017462139644961
1117 => 0.018114574792035
1118 => 0.018077761844123
1119 => 0.018685324452498
1120 => 0.019158962952945
1121 => 0.020007807818756
1122 => 0.019121993949999
1123 => 0.01908971137183
1124 => 0.019405278751718
1125 => 0.019116233856862
1126 => 0.01929890025292
1127 => 0.019978377438339
1128 => 0.019992733720561
1129 => 0.019752247496322
1130 => 0.019737613887721
1201 => 0.019783801897717
1202 => 0.020054326514922
1203 => 0.019959796901289
1204 => 0.020069188963382
1205 => 0.0202059854121
1206 => 0.020771833524491
1207 => 0.020908257588718
1208 => 0.020576817840413
1209 => 0.020606743138711
1210 => 0.02048277557462
1211 => 0.020363024461018
1212 => 0.020632207476151
1213 => 0.021124144727112
1214 => 0.021121084411006
1215 => 0.021235204291335
1216 => 0.02130630003136
1217 => 0.02100110506991
1218 => 0.020802434372336
1219 => 0.020878617359531
1220 => 0.021000435615105
1221 => 0.020839113341073
1222 => 0.019843357534004
1223 => 0.020145406236742
1224 => 0.020095130563179
1225 => 0.020023531890295
1226 => 0.020327244196572
1227 => 0.02029795040372
1228 => 0.019420487577673
1229 => 0.019476659900876
1230 => 0.019423903602696
1231 => 0.019594369995038
]
'min_raw' => 0.016160763145224
'max_raw' => 0.036202104422575
'avg_raw' => 0.026181433783899
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01616'
'max' => '$0.0362021'
'avg' => '$0.026181'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0039408858608216
'max_diff' => -0.026307318621633
'year' => 2034
]
9 => [
'items' => [
101 => 0.019107028112253
102 => 0.0192569311931
103 => 0.019350949000153
104 => 0.019406326210786
105 => 0.019606386668102
106 => 0.019582911882525
107 => 0.01960492744247
108 => 0.019901564286667
109 => 0.021401851651142
110 => 0.021483508982192
111 => 0.021081398419332
112 => 0.021242033657915
113 => 0.020933649126901
114 => 0.021140669728567
115 => 0.021282307966474
116 => 0.02064227200484
117 => 0.020604373228991
118 => 0.02029471588532
119 => 0.02046110820192
120 => 0.020196366062178
121 => 0.020261324522984
122 => 0.020079695003594
123 => 0.020406591976419
124 => 0.020772113586692
125 => 0.020864458780333
126 => 0.02062153833297
127 => 0.020445647919841
128 => 0.020136842296291
129 => 0.020650392930437
130 => 0.020800570786033
131 => 0.020649604110094
201 => 0.020614621832592
202 => 0.020548330479937
203 => 0.020628685856437
204 => 0.020799752885179
205 => 0.020719080833536
206 => 0.020772366144905
207 => 0.020569297485542
208 => 0.021001206102141
209 => 0.02168718092977
210 => 0.021689386451009
211 => 0.021608713964514
212 => 0.021575704521153
213 => 0.021658479387912
214 => 0.021703381357527
215 => 0.021971060098313
216 => 0.022258290051969
217 => 0.023598666917432
218 => 0.023222294457215
219 => 0.02441155655163
220 => 0.025352108461958
221 => 0.025634138854514
222 => 0.025374684163917
223 => 0.024487103682853
224 => 0.024443554750026
225 => 0.025769974715549
226 => 0.025395200321406
227 => 0.025350622099745
228 => 0.024876385137364
301 => 0.025156717917521
302 => 0.025095405026267
303 => 0.024998619627893
304 => 0.025533475044283
305 => 0.026534676636891
306 => 0.026378629979474
307 => 0.026262148388508
308 => 0.025751759964178
309 => 0.026059127795006
310 => 0.025949679997691
311 => 0.026419937192245
312 => 0.026141367247664
313 => 0.025392361036769
314 => 0.025511642744611
315 => 0.025493613554432
316 => 0.025864653010749
317 => 0.025753276175728
318 => 0.02547186543986
319 => 0.026531254638692
320 => 0.026462463796752
321 => 0.026559993482847
322 => 0.026602929066872
323 => 0.027247760603669
324 => 0.027511927451988
325 => 0.027571897951448
326 => 0.027822836025953
327 => 0.027565654383555
328 => 0.02859456432055
329 => 0.029278729390093
330 => 0.03007342232518
331 => 0.031234682296665
401 => 0.031671326788199
402 => 0.031592450869057
403 => 0.03247290492616
404 => 0.034055061295381
405 => 0.031912249906858
406 => 0.034168635502125
407 => 0.033454289873888
408 => 0.031760589239867
409 => 0.031651534886455
410 => 0.032798528620083
411 => 0.035342450327213
412 => 0.034705226792498
413 => 0.035343492596637
414 => 0.034598921632625
415 => 0.034561947408525
416 => 0.035307330446829
417 => 0.037048958544539
418 => 0.03622157631927
419 => 0.035035321016901
420 => 0.035911233471994
421 => 0.035152437041522
422 => 0.033442656309921
423 => 0.034704739519671
424 => 0.033860820419371
425 => 0.034107120878046
426 => 0.035880913303382
427 => 0.035667485905893
428 => 0.035943680721089
429 => 0.035456204101545
430 => 0.035000824070884
501 => 0.03415082342669
502 => 0.033899180140469
503 => 0.033968725291604
504 => 0.033899145677346
505 => 0.033423578128829
506 => 0.033320879362006
507 => 0.033149710251298
508 => 0.033202762716087
509 => 0.032880914710666
510 => 0.033488308394086
511 => 0.033601046014064
512 => 0.034043056484427
513 => 0.034088947477774
514 => 0.035319940346111
515 => 0.034641930160226
516 => 0.035096797929501
517 => 0.035056110274835
518 => 0.031797296868356
519 => 0.032246332603014
520 => 0.032944891290967
521 => 0.032630191548919
522 => 0.03218527974206
523 => 0.03182598960336
524 => 0.031281628303926
525 => 0.032047806379346
526 => 0.033055249074569
527 => 0.034114497887058
528 => 0.035387115930533
529 => 0.035103082398137
530 => 0.03409070717795
531 => 0.034136121590787
601 => 0.034416855621033
602 => 0.034053279544489
603 => 0.033946053861667
604 => 0.034402124458776
605 => 0.034405265166326
606 => 0.033986926950625
607 => 0.033522020578959
608 => 0.033520072604286
609 => 0.033437347005911
610 => 0.0346136383328
611 => 0.035260479626121
612 => 0.035334638937964
613 => 0.035255488113564
614 => 0.035285950124491
615 => 0.034909567428083
616 => 0.035769866659251
617 => 0.036559362308547
618 => 0.036347760609421
619 => 0.036030539581478
620 => 0.035777857753286
621 => 0.036288236801043
622 => 0.036265510425458
623 => 0.036552466752791
624 => 0.036539448756243
625 => 0.036442956136335
626 => 0.036347764055477
627 => 0.036725189896053
628 => 0.036616497315241
629 => 0.036507635904829
630 => 0.036289297680399
701 => 0.036318973471313
702 => 0.036001807216052
703 => 0.035855071593828
704 => 0.033648519903568
705 => 0.033058857190774
706 => 0.03324437708391
707 => 0.033305455049753
708 => 0.033048833081471
709 => 0.033416763063212
710 => 0.033359421565292
711 => 0.033582503790044
712 => 0.033443131701123
713 => 0.033448851580268
714 => 0.033858715176522
715 => 0.033977700322199
716 => 0.03391718351678
717 => 0.033959567412901
718 => 0.034936286409883
719 => 0.034797428202227
720 => 0.034723662546957
721 => 0.03474409613759
722 => 0.03499366878241
723 => 0.035063535496799
724 => 0.034767505318488
725 => 0.03490711486191
726 => 0.035501554578709
727 => 0.035709574837215
728 => 0.036373475646977
729 => 0.036091438783094
730 => 0.03660912965302
731 => 0.03820033489335
801 => 0.039471499742353
802 => 0.038302484014101
803 => 0.040636816377428
804 => 0.042454428962368
805 => 0.042384665963966
806 => 0.042067723167645
807 => 0.039998419563422
808 => 0.038094215535237
809 => 0.039687163061587
810 => 0.039691223812425
811 => 0.039554388207196
812 => 0.038704514015141
813 => 0.039524814427522
814 => 0.039589926895363
815 => 0.039553481228174
816 => 0.038901884677761
817 => 0.037907017180453
818 => 0.038101411908051
819 => 0.038419834437401
820 => 0.037816994159443
821 => 0.037624350163255
822 => 0.037982512004188
823 => 0.03913658408166
824 => 0.038918413440498
825 => 0.038912716123361
826 => 0.039846142645
827 => 0.039178010701557
828 => 0.038103863848104
829 => 0.037832627601351
830 => 0.036869921652005
831 => 0.037534866080259
901 => 0.037558796246454
902 => 0.037194612978667
903 => 0.038133415313156
904 => 0.038124764084371
905 => 0.039016017178682
906 => 0.040719758355628
907 => 0.040215878253593
908 => 0.039629920516926
909 => 0.039693630369748
910 => 0.040392370205883
911 => 0.039969896150276
912 => 0.040121820766266
913 => 0.040392140249781
914 => 0.04055523070584
915 => 0.03967016416294
916 => 0.039463812814164
917 => 0.039041690374049
918 => 0.038931566508711
919 => 0.039275376428311
920 => 0.039184794661481
921 => 0.037556785008648
922 => 0.037386648941766
923 => 0.037391866772039
924 => 0.036964051542337
925 => 0.036311530629622
926 => 0.038026316628239
927 => 0.037888595314135
928 => 0.037736561642148
929 => 0.037755184899474
930 => 0.038499515381984
1001 => 0.038067766112538
1002 => 0.039215642307673
1003 => 0.03897967347027
1004 => 0.03873765292258
1005 => 0.038704198310763
1006 => 0.038611041048125
1007 => 0.038291570132248
1008 => 0.037905789804102
1009 => 0.03765106421574
1010 => 0.034731116511296
1011 => 0.035273041820686
1012 => 0.035896477491094
1013 => 0.036111684986257
1014 => 0.035743557673875
1015 => 0.038306106042304
1016 => 0.038774308322546
1017 => 0.037356093075613
1018 => 0.037090802908259
1019 => 0.03832349842151
1020 => 0.037580032336121
1021 => 0.037914815068849
1022 => 0.037191197917057
1023 => 0.038661532103799
1024 => 0.038650330620779
1025 => 0.038078337413133
1026 => 0.038561782155395
1027 => 0.038477771734436
1028 => 0.037831992811761
1029 => 0.038682004447503
1030 => 0.038682426042669
1031 => 0.038131895016514
1101 => 0.037488995304703
1102 => 0.037374060020845
1103 => 0.037287471723841
1104 => 0.037893519655745
1105 => 0.038436900336427
1106 => 0.039447997067682
1107 => 0.039702210808986
1108 => 0.04069442396526
1109 => 0.04010360934068
1110 => 0.040365509811426
1111 => 0.040649839820504
1112 => 0.040786158082746
1113 => 0.040564034789664
1114 => 0.042105350232586
1115 => 0.042235484480654
1116 => 0.042279117368374
1117 => 0.041759394473134
1118 => 0.042221030046765
1119 => 0.042005046049627
1120 => 0.042566976408099
1121 => 0.042655094263395
1122 => 0.042580461574843
1123 => 0.042608431572959
1124 => 0.041293190749102
1125 => 0.041224988573937
1126 => 0.040295047076155
1127 => 0.040674005110281
1128 => 0.039965561229413
1129 => 0.040190216081817
1130 => 0.040289241800167
1201 => 0.040237516384561
1202 => 0.040695430828947
1203 => 0.040306110005478
1204 => 0.039278628342075
1205 => 0.03825086674198
1206 => 0.038237964032287
1207 => 0.037967372544481
1208 => 0.037771784460101
1209 => 0.037809461664013
1210 => 0.037942241044913
1211 => 0.037764067081103
1212 => 0.037802089529931
1213 => 0.038433515522727
1214 => 0.038560143502459
1215 => 0.038129812150587
1216 => 0.036401969676303
1217 => 0.035977952799149
1218 => 0.036282727721827
1219 => 0.036137064938806
1220 => 0.029165431787896
1221 => 0.030803313585006
1222 => 0.029830139838374
1223 => 0.030278623074393
1224 => 0.029285264681201
1225 => 0.029759347372806
1226 => 0.029671801610395
1227 => 0.032305467071702
1228 => 0.032264346008012
1229 => 0.032284028485122
1230 => 0.031344532570236
1231 => 0.032841175072743
]
'min_raw' => 0.019107028112253
'max_raw' => 0.042655094263395
'avg_raw' => 0.030881061187824
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.019107'
'max' => '$0.042655'
'avg' => '$0.030881'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0029462649670291
'max_diff' => 0.0064529898408192
'year' => 2035
]
10 => [
'items' => [
101 => 0.033578474987002
102 => 0.033442020395475
103 => 0.033476363076364
104 => 0.03288624203595
105 => 0.032289742146734
106 => 0.031628131968918
107 => 0.03285732190181
108 => 0.032720656964245
109 => 0.033034117160528
110 => 0.033831334696319
111 => 0.033948728006799
112 => 0.03410650580657
113 => 0.034049953696741
114 => 0.035397254386397
115 => 0.035234087383104
116 => 0.03562727291469
117 => 0.034818460445158
118 => 0.033903212362698
119 => 0.03407717110146
120 => 0.034060417476029
121 => 0.033847124595382
122 => 0.033654573319703
123 => 0.033334029696683
124 => 0.034348277151449
125 => 0.034307100557019
126 => 0.034973701758289
127 => 0.034855873520946
128 => 0.034068987714508
129 => 0.034097091495026
130 => 0.034286102925223
131 => 0.03494027364323
201 => 0.035134476051673
202 => 0.035044513758454
203 => 0.035257447833636
204 => 0.035425742244637
205 => 0.035278583020551
206 => 0.037362047302273
207 => 0.036496847673879
208 => 0.036918539952738
209 => 0.037019111076491
210 => 0.036761500257781
211 => 0.036817366820007
212 => 0.036901989439053
213 => 0.037415801411092
214 => 0.038764192698413
215 => 0.039361386020758
216 => 0.041158071596032
217 => 0.03931179742867
218 => 0.039202247160221
219 => 0.039525884487034
220 => 0.040580729118203
221 => 0.041435581615247
222 => 0.04171918550614
223 => 0.041756668442111
224 => 0.042288728195057
225 => 0.042593694923119
226 => 0.042224122146489
227 => 0.041910947914178
228 => 0.040789196686655
229 => 0.040919042445668
301 => 0.041813550963423
302 => 0.043077096931042
303 => 0.044161350820809
304 => 0.043781682898676
305 => 0.046678281140773
306 => 0.046965467024934
307 => 0.046925787221574
308 => 0.047580039404683
309 => 0.046281482057352
310 => 0.045726323633004
311 => 0.041978659737882
312 => 0.043031600427188
313 => 0.044562111556132
314 => 0.044359542669094
315 => 0.043248044576575
316 => 0.044160507649836
317 => 0.043858818822457
318 => 0.043620864327223
319 => 0.04471097999964
320 => 0.043512353038334
321 => 0.044550154335291
322 => 0.043219163437263
323 => 0.043783417189763
324 => 0.043463119469961
325 => 0.043670391348885
326 => 0.042458684179956
327 => 0.043112491955781
328 => 0.042431483626961
329 => 0.042431160740343
330 => 0.04241612744374
331 => 0.043217330722543
401 => 0.043243457932701
402 => 0.042651367499114
403 => 0.042566038017443
404 => 0.042881545834172
405 => 0.042512168812411
406 => 0.042684997996062
407 => 0.04251740363232
408 => 0.042479674610964
409 => 0.042179043349738
410 => 0.042049523136373
411 => 0.042100311349358
412 => 0.041926944995322
413 => 0.04182248549608
414 => 0.042395347820133
415 => 0.042089290589592
416 => 0.042348440160074
417 => 0.042053106517226
418 => 0.041029351440373
419 => 0.040440579069661
420 => 0.038506800631632
421 => 0.039055217797812
422 => 0.039418818946368
423 => 0.03929864876894
424 => 0.039556820809742
425 => 0.039572670476261
426 => 0.039488736114044
427 => 0.039391550875254
428 => 0.039344246475691
429 => 0.03969681471426
430 => 0.03990149244365
501 => 0.039455311185982
502 => 0.039350777160049
503 => 0.039801891045894
504 => 0.04007707025566
505 => 0.042108838930728
506 => 0.041958318944752
507 => 0.042336094571495
508 => 0.042293562833363
509 => 0.042689531874567
510 => 0.043336773907931
511 => 0.042020749882382
512 => 0.042249166148531
513 => 0.042193163754973
514 => 0.04280458320322
515 => 0.042806491987998
516 => 0.042439915486108
517 => 0.042638642554807
518 => 0.042527718556851
519 => 0.042728173213435
520 => 0.041956308658572
521 => 0.042896356368766
522 => 0.043429302845109
523 => 0.04343670280745
524 => 0.043689315207512
525 => 0.043945984036298
526 => 0.04443863750201
527 => 0.043932244198528
528 => 0.043021291941957
529 => 0.043087059752524
530 => 0.042552968777801
531 => 0.042561946943577
601 => 0.042514020791031
602 => 0.042657850782535
603 => 0.041987871253445
604 => 0.042145114109787
605 => 0.041924973190096
606 => 0.042248687605164
607 => 0.04190042440646
608 => 0.042193136748923
609 => 0.042319461692362
610 => 0.042785603453234
611 => 0.041831574889371
612 => 0.039886246065599
613 => 0.040295177769188
614 => 0.039690335658688
615 => 0.039746316098811
616 => 0.039859405497081
617 => 0.03949284575674
618 => 0.039562773803572
619 => 0.039560275481663
620 => 0.039538746293155
621 => 0.039443389947484
622 => 0.039305104380582
623 => 0.039855991517065
624 => 0.039949597976294
625 => 0.040157673539773
626 => 0.040776765277683
627 => 0.040714903413877
628 => 0.040815802680368
629 => 0.040595540148143
630 => 0.039756533445953
701 => 0.039802095546465
702 => 0.039233935422998
703 => 0.040143144408018
704 => 0.039927831719393
705 => 0.039789018228344
706 => 0.039751141681214
707 => 0.040371768027796
708 => 0.04055746915782
709 => 0.040441752675528
710 => 0.04020441479436
711 => 0.04066017368885
712 => 0.040782115542091
713 => 0.040809413825989
714 => 0.041616931203925
715 => 0.040854545077017
716 => 0.04103805899523
717 => 0.042469782198771
718 => 0.041171406817456
719 => 0.041859185214165
720 => 0.041825522040672
721 => 0.042177366195276
722 => 0.041796660550433
723 => 0.041801379853173
724 => 0.042113793626474
725 => 0.041675064825993
726 => 0.041566429405137
727 => 0.041416350349287
728 => 0.041744042477205
729 => 0.041940479087651
730 => 0.043523613901059
731 => 0.044546391190239
801 => 0.044501989730733
802 => 0.044907735954573
803 => 0.044724943564523
804 => 0.044134658718858
805 => 0.045142202972841
806 => 0.044823373813438
807 => 0.044849657701962
808 => 0.044848679414318
809 => 0.045060672932792
810 => 0.044910456096033
811 => 0.044614363291338
812 => 0.044810923513167
813 => 0.045394637100434
814 => 0.047206501985829
815 => 0.048220445579712
816 => 0.047145461308332
817 => 0.047886971064117
818 => 0.047442329437587
819 => 0.047361524827104
820 => 0.047827247750878
821 => 0.048293785860978
822 => 0.048264069400264
823 => 0.047925386689329
824 => 0.047734073419677
825 => 0.049182761592129
826 => 0.050250130359832
827 => 0.050177342965606
828 => 0.050498602851993
829 => 0.051441831814618
830 => 0.05152806885003
831 => 0.051517204965704
901 => 0.05130345747553
902 => 0.052232188882993
903 => 0.053006952962573
904 => 0.051253981107314
905 => 0.05192148984171
906 => 0.052221156018369
907 => 0.052661154872652
908 => 0.053403506692198
909 => 0.05420989766732
910 => 0.05432393019283
911 => 0.054243018659022
912 => 0.053711182133976
913 => 0.0545935447612
914 => 0.055110412094278
915 => 0.055418194762828
916 => 0.056198680400116
917 => 0.052223006654657
918 => 0.049408827173815
919 => 0.048969352410638
920 => 0.049863041623051
921 => 0.050098700341327
922 => 0.050003706607481
923 => 0.046836091747789
924 => 0.048952675573954
925 => 0.051229941803486
926 => 0.051317420873821
927 => 0.052457467963716
928 => 0.052828714028295
929 => 0.053746601365048
930 => 0.05368918726222
1001 => 0.053912678221942
1002 => 0.053861301520626
1003 => 0.055561494527979
1004 => 0.057437059896194
1005 => 0.057372115031426
1006 => 0.057102480319063
1007 => 0.057502933846472
1008 => 0.05943871830427
1009 => 0.05926050229171
1010 => 0.059433623967509
1011 => 0.061716022939284
1012 => 0.064683466270059
1013 => 0.063304790916475
1014 => 0.066296119730607
1015 => 0.068179002655576
1016 => 0.071435253980583
1017 => 0.071027555277316
1018 => 0.072295190022665
1019 => 0.070297689509182
1020 => 0.065711024568765
1021 => 0.064985167284896
1022 => 0.066438351948836
1023 => 0.070010864645446
1024 => 0.066325840810526
1025 => 0.067071316332945
1026 => 0.066856619332338
1027 => 0.066845179041579
1028 => 0.067281808408819
1029 => 0.06664845473858
1030 => 0.064068057947878
1031 => 0.065250638590683
1101 => 0.064793987412309
1102 => 0.065300675940316
1103 => 0.068035064951722
1104 => 0.066826126390087
1105 => 0.065552607821598
1106 => 0.067149882722877
1107 => 0.06918376255541
1108 => 0.069056486010724
1109 => 0.068809516316563
1110 => 0.070201671551632
1111 => 0.072501104136754
1112 => 0.073122631524644
1113 => 0.073581430335817
1114 => 0.073644690940408
1115 => 0.074296314483945
1116 => 0.070792370460072
1117 => 0.076353219613622
1118 => 0.077313424647083
1119 => 0.077132945897213
1120 => 0.0782001733803
1121 => 0.077886167981828
1122 => 0.077431223425379
1123 => 0.079123005991867
1124 => 0.077183513799202
1125 => 0.074430648806991
1126 => 0.072920372626769
1127 => 0.07490922613139
1128 => 0.07612374956524
1129 => 0.076926472296817
1130 => 0.077169375710374
1201 => 0.071064371660196
1202 => 0.067774113076197
1203 => 0.069883131105649
1204 => 0.072456278658229
1205 => 0.070778076495496
1206 => 0.070843858843018
1207 => 0.068451183582731
1208 => 0.0726679773272
1209 => 0.072053625947449
1210 => 0.075240881992367
1211 => 0.07448021775792
1212 => 0.077079301333984
1213 => 0.07639487552363
1214 => 0.079235888796677
1215 => 0.080369245908659
1216 => 0.082272328892626
1217 => 0.083672244482574
1218 => 0.084494301693109
1219 => 0.084444948461647
1220 => 0.087702348677064
1221 => 0.085781573574928
1222 => 0.083368627354712
1223 => 0.083324984770336
1224 => 0.084574683809498
1225 => 0.087193710157394
1226 => 0.08787278558412
1227 => 0.088252296106486
1228 => 0.087671062530626
1229 => 0.085586198820449
1230 => 0.084685965240894
1231 => 0.085452990332953
]
'min_raw' => 0.031628131968918
'max_raw' => 0.088252296106486
'avg_raw' => 0.059940214037702
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.031628'
'max' => '$0.088252'
'avg' => '$0.05994'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012521103856666
'max_diff' => 0.045597201843092
'year' => 2036
]
11 => [
'items' => [
101 => 0.084514984556582
102 => 0.086134245684535
103 => 0.088357837068727
104 => 0.087898674240925
105 => 0.08943358673273
106 => 0.091022059684245
107 => 0.093293647347696
108 => 0.09388752447957
109 => 0.094869180795433
110 => 0.095879627601757
111 => 0.096204155883643
112 => 0.096823781068975
113 => 0.096820515338393
114 => 0.098687797539979
115 => 0.10074746763324
116 => 0.10152494541198
117 => 0.10331271269381
118 => 0.10025122387451
119 => 0.1025733983118
120 => 0.10466805778202
121 => 0.10217071840895
122 => 0.10561271892928
123 => 0.10574636400975
124 => 0.107764246054
125 => 0.10571873602272
126 => 0.10450411869565
127 => 0.10801067340779
128 => 0.10970738477756
129 => 0.10919632150469
130 => 0.10530710476385
131 => 0.10304341380433
201 => 0.097118897929892
202 => 0.10413674290321
203 => 0.10755493047636
204 => 0.10529825248381
205 => 0.10643638960014
206 => 0.1126456966646
207 => 0.11500979877188
208 => 0.11451808205989
209 => 0.11460117408987
210 => 0.11587680067547
211 => 0.12153363145643
212 => 0.11814392732817
213 => 0.12073522912444
214 => 0.12210964625354
215 => 0.12338628148015
216 => 0.1202512688483
217 => 0.11617266347675
218 => 0.11488079794737
219 => 0.10507387033171
220 => 0.10456337715999
221 => 0.10427682187318
222 => 0.10247013132386
223 => 0.1010505674463
224 => 0.099921677545825
225 => 0.096959133331929
226 => 0.097958905037721
227 => 0.093237227891802
228 => 0.096257989603798
301 => 0.08872207887003
302 => 0.094998209259908
303 => 0.09158239682933
304 => 0.093876023008483
305 => 0.093868020762816
306 => 0.089644727772154
307 => 0.087208820513016
308 => 0.088761075425468
309 => 0.090425215909764
310 => 0.0906952171045
311 => 0.092852818680901
312 => 0.093454958903384
313 => 0.091630445918022
314 => 0.088565913870234
315 => 0.089277734770401
316 => 0.087194395485194
317 => 0.083543423522356
318 => 0.086165615325921
319 => 0.087060946897293
320 => 0.087456376325126
321 => 0.083866064716638
322 => 0.082737910859793
323 => 0.082137291212537
324 => 0.088102449726781
325 => 0.088429234575775
326 => 0.086757357085599
327 => 0.094314401875124
328 => 0.092604009895312
329 => 0.09451493679297
330 => 0.089213144484665
331 => 0.089415680090652
401 => 0.08690572664691
402 => 0.088311132860256
403 => 0.087317837047019
404 => 0.088197589926712
405 => 0.088724910175443
406 => 0.091234451760524
407 => 0.095026864193678
408 => 0.090859609933549
409 => 0.089043877576231
410 => 0.090170347718645
411 => 0.093170286152392
412 => 0.097715346443543
413 => 0.095024579273319
414 => 0.096218696051274
415 => 0.0964795574447
416 => 0.094495485350992
417 => 0.097788502011688
418 => 0.099553256392575
419 => 0.1013635292229
420 => 0.10293533839878
421 => 0.10064046644572
422 => 0.10309630839247
423 => 0.10111733329785
424 => 0.099341988055289
425 => 0.099344680521191
426 => 0.098230980516879
427 => 0.096073046423293
428 => 0.095675090267787
429 => 0.097745308445052
430 => 0.099405427372827
501 => 0.099542162719152
502 => 0.10046128985756
503 => 0.10100521983031
504 => 0.10633647300016
505 => 0.10848074712752
506 => 0.11110272494142
507 => 0.11212413306651
508 => 0.11519820532794
509 => 0.11271564231289
510 => 0.11217852418853
511 => 0.10472183040367
512 => 0.10594286359321
513 => 0.10789785554184
514 => 0.10475406750084
515 => 0.1067480774126
516 => 0.10714173720808
517 => 0.10464724278619
518 => 0.10597966003766
519 => 0.10244115485193
520 => 0.095103993937108
521 => 0.097796670369225
522 => 0.099779386568351
523 => 0.096949806085055
524 => 0.10202171958148
525 => 0.099058812422413
526 => 0.098119713097615
527 => 0.094455951818498
528 => 0.096185106111137
529 => 0.098523812051036
530 => 0.097078763683926
531 => 0.10007745602078
601 => 0.10432440409181
602 => 0.10735103219735
603 => 0.1075833791215
604 => 0.10563746001797
605 => 0.10875580780007
606 => 0.10877852155928
607 => 0.10526101252225
608 => 0.10310655782265
609 => 0.10261706118188
610 => 0.10383991976198
611 => 0.10532469583036
612 => 0.10766577385978
613 => 0.10908043828249
614 => 0.1127691328169
615 => 0.11376718779475
616 => 0.11486374762404
617 => 0.1163290897225
618 => 0.11808860861771
619 => 0.11423888144446
620 => 0.11439183828184
621 => 0.11080702564121
622 => 0.10697613922057
623 => 0.1098833044871
624 => 0.11368403634912
625 => 0.11281214426053
626 => 0.11271403858943
627 => 0.11287902511598
628 => 0.11222164695453
629 => 0.10924834989383
630 => 0.10775517872378
701 => 0.10968175048174
702 => 0.11070563762926
703 => 0.11229359730271
704 => 0.11209784775519
705 => 0.11618826133959
706 => 0.1177776723708
707 => 0.11737103301428
708 => 0.1174458644422
709 => 0.12032341719404
710 => 0.12352384766795
711 => 0.12652147314076
712 => 0.12957078652271
713 => 0.12589472022404
714 => 0.12402824046582
715 => 0.12595397114283
716 => 0.12493215133899
717 => 0.1308038310233
718 => 0.13121037338504
719 => 0.13708162848007
720 => 0.14265414870131
721 => 0.13915414859242
722 => 0.14245449105164
723 => 0.14602408050215
724 => 0.15291039769721
725 => 0.15059132832947
726 => 0.14881495753824
727 => 0.14713629572388
728 => 0.1506293244795
729 => 0.1551230501711
730 => 0.1560909556447
731 => 0.15765933228028
801 => 0.15601037601994
802 => 0.15799636220895
803 => 0.16500776614271
804 => 0.16311322290844
805 => 0.16042266695274
806 => 0.16595749697605
807 => 0.16796053044538
808 => 0.18201886832991
809 => 0.1997681006301
810 => 0.19241980191008
811 => 0.18785847576644
812 => 0.1889304956063
813 => 0.1954119143929
814 => 0.19749354039721
815 => 0.19183496333799
816 => 0.19383366841714
817 => 0.20484672991162
818 => 0.2107548840621
819 => 0.20273081715479
820 => 0.18059273479663
821 => 0.16018041182694
822 => 0.16559467905739
823 => 0.16498086917773
824 => 0.17681302984614
825 => 0.16306803867886
826 => 0.16329946907913
827 => 0.17537630629969
828 => 0.17215441317865
829 => 0.16693535895146
830 => 0.16021851669855
831 => 0.14780181256134
901 => 0.1368039914416
902 => 0.15837325130435
903 => 0.15744314559791
904 => 0.15609621470105
905 => 0.15909366365887
906 => 0.17364842495732
907 => 0.17331289060022
908 => 0.17117839221152
909 => 0.17279739042675
910 => 0.16665154073659
911 => 0.16823546614014
912 => 0.16017717841069
913 => 0.16381986100822
914 => 0.16692416120508
915 => 0.16754739542955
916 => 0.16895157396041
917 => 0.15695302215495
918 => 0.16234001965663
919 => 0.16550437599546
920 => 0.15120769893635
921 => 0.16522177665732
922 => 0.15674415406239
923 => 0.15386672162405
924 => 0.15774080532937
925 => 0.15623107114174
926 => 0.15493309034177
927 => 0.15420879475325
928 => 0.15705349425943
929 => 0.15692078562732
930 => 0.15226630510283
1001 => 0.14619472499954
1002 => 0.14823254657502
1003 => 0.14749218689197
1004 => 0.14480902789228
1005 => 0.14661715309222
1006 => 0.13865508478292
1007 => 0.12495676008907
1008 => 0.13400629297286
1009 => 0.13365789580083
1010 => 0.13348221814814
1011 => 0.14028269199959
1012 => 0.1396289833524
1013 => 0.13844249575661
1014 => 0.14478723711713
1015 => 0.14247132117173
1016 => 0.14960842841704
1017 => 0.15430938884795
1018 => 0.15311707322253
1019 => 0.15753834922952
1020 => 0.1482794938683
1021 => 0.1513549142185
1022 => 0.15198875409032
1023 => 0.14470894399361
1024 => 0.13973593817163
1025 => 0.13940429537972
1026 => 0.13078178860683
1027 => 0.13538786212647
1028 => 0.13944101621147
1029 => 0.13749986994222
1030 => 0.13688536102347
1031 => 0.14002475381864
1101 => 0.14026871152591
1102 => 0.13470644994676
1103 => 0.13586302026298
1104 => 0.14068611074544
1105 => 0.1357414907576
1106 => 0.12613490182032
1107 => 0.12375233494239
1108 => 0.12343445660145
1109 => 0.11697274626475
1110 => 0.12391154945386
1111 => 0.12088257591345
1112 => 0.13045106703493
1113 => 0.12498559622319
1114 => 0.12474999070019
1115 => 0.12439383839637
1116 => 0.11883197737967
1117 => 0.12004967146762
1118 => 0.12409747207601
1119 => 0.12554177293482
1120 => 0.12539112052244
1121 => 0.12407763564476
1122 => 0.12467894229563
1123 => 0.12274192406405
1124 => 0.12205792261093
1125 => 0.11989902587546
1126 => 0.11672604408477
1127 => 0.1171672666638
1128 => 0.11088075948059
1129 => 0.10745553671699
1130 => 0.10650748019974
1201 => 0.10523969940286
1202 => 0.10665067941418
1203 => 0.1108629505956
1204 => 0.10578205786763
1205 => 0.097071223668707
1206 => 0.097594759646602
1207 => 0.098770989549704
1208 => 0.096579092906813
1209 => 0.094504646686258
1210 => 0.096308209369889
1211 => 0.092617314086907
1212 => 0.099217016611191
1213 => 0.099038513153362
1214 => 0.10149847413155
1215 => 0.10303673821469
1216 => 0.09949153752196
1217 => 0.098599929134981
1218 => 0.099107829793546
1219 => 0.090713363270159
1220 => 0.10081246712603
1221 => 0.10089980459555
1222 => 0.10015196815741
1223 => 0.10552942918581
1224 => 0.1168775492279
1225 => 0.11260792999099
1226 => 0.11095460437254
1227 => 0.10781163116329
1228 => 0.11199945635333
1229 => 0.11167789671899
1230 => 0.11022368210461
1231 => 0.1093441685684
]
'min_raw' => 0.082137291212537
'max_raw' => 0.2107548840621
'avg_raw' => 0.14644608763732
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.082137'
'max' => '$0.210754'
'avg' => '$0.146446'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.050509159243619
'max_diff' => 0.12250258795561
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0025781957149812
]
1 => [
'year' => 2028
'avg' => 0.0044249323024716
]
2 => [
'year' => 2029
'avg' => 0.012088117533899
]
3 => [
'year' => 2030
'avg' => 0.0093259646752384
]
4 => [
'year' => 2031
'avg' => 0.0091592530651626
]
5 => [
'year' => 2032
'avg' => 0.016059053146254
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0025781957149812
'min' => '$0.002578'
'max_raw' => 0.016059053146254
'max' => '$0.016059'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.016059053146254
]
1 => [
'year' => 2033
'avg' => 0.041305536025127
]
2 => [
'year' => 2034
'avg' => 0.026181433783899
]
3 => [
'year' => 2035
'avg' => 0.030881061187824
]
4 => [
'year' => 2036
'avg' => 0.059940214037702
]
5 => [
'year' => 2037
'avg' => 0.14644608763732
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.016059053146254
'min' => '$0.016059'
'max_raw' => 0.14644608763732
'max' => '$0.146446'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14644608763732
]
]
]
]
'prediction_2025_max_price' => '$0.0044082'
'last_price' => 0.00427435
'sma_50day_nextmonth' => '$0.00376'
'sma_200day_nextmonth' => '$0.171984'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.004075'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003784'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003521'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003553'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005879'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.08420084'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.206484'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0041035'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003911'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00369'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004285'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.023391'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.078691'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.130943'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.153584'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.158173'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0815036'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0041023'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007419'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.036276'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.099545'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.127566'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.074352'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.040991'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '39.23'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 171.98
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003798'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004184'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 86.72
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 183.42
'cci_20_action' => 'SELL'
'adx_14' => 41.34
'adx_14_action' => 'SELL'
'ao_5_34' => '0.0003030'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -13.28
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 75.03
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.102664'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767699447
'last_updated_date' => '6. Januar 2026'
]
Saros Preisprognose für 2026
Die Preisprognose für Saros im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001476 am unteren Ende und $0.0044082 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Saros im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SAROS das prognostizierte Preisziel erreicht.
Saros Preisprognose 2027-2032
Die Preisprognose für SAROS für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.002578 am unteren Ende und $0.016059 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Saros, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Saros Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001421 | $0.002578 | $0.003734 |
| 2028 | $0.002565 | $0.004424 | $0.006284 |
| 2029 | $0.005636 | $0.012088 | $0.01854 |
| 2030 | $0.004793 | $0.009325 | $0.013858 |
| 2031 | $0.005667 | $0.009159 | $0.012651 |
| 2032 | $0.00865 | $0.016059 | $0.023467 |
Saros Preisprognose 2032-2037
Die Preisprognose für Saros für die Jahre 2032-2037 wird derzeit zwischen $0.016059 am unteren Ende und $0.146446 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Saros bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Saros Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.00865 | $0.016059 | $0.023467 |
| 2033 | $0.0201016 | $0.0413055 | $0.0625094 |
| 2034 | $0.01616 | $0.026181 | $0.0362021 |
| 2035 | $0.019107 | $0.030881 | $0.042655 |
| 2036 | $0.031628 | $0.05994 | $0.088252 |
| 2037 | $0.082137 | $0.146446 | $0.210754 |
Saros Potenzielles Preishistogramm
Saros Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Saros Bärisch, mit 15 technischen Indikatoren, die bullische Signale zeigen, und 18 anzeigen bärische Signale. Die Preisprognose für SAROS wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Saros
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Saros im nächsten Monat steigen, und bis zum 04.02.2026 $0.171984 erreichen. Der kurzfristige 50-Tage-SMA für Saros wird voraussichtlich bis zum 04.02.2026 $0.00376 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 39.23, was darauf hindeutet, dass sich der SAROS-Markt in einem NEUTRAL Zustand befindet.
Beliebte SAROS Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.004075 | BUY |
| SMA 5 | $0.003784 | BUY |
| SMA 10 | $0.003521 | BUY |
| SMA 21 | $0.003553 | BUY |
| SMA 50 | $0.005879 | SELL |
| SMA 100 | $0.08420084 | SELL |
| SMA 200 | $0.206484 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.0041035 | BUY |
| EMA 5 | $0.003911 | BUY |
| EMA 10 | $0.00369 | BUY |
| EMA 21 | $0.004285 | SELL |
| EMA 50 | $0.023391 | SELL |
| EMA 100 | $0.078691 | SELL |
| EMA 200 | $0.130943 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.153584 | SELL |
| SMA 50 | $0.158173 | SELL |
| SMA 100 | $0.0815036 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.099545 | SELL |
| EMA 50 | $0.127566 | SELL |
| EMA 100 | $0.074352 | SELL |
| EMA 200 | $0.040991 | SELL |
Saros Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 39.23 | NEUTRAL |
| Stoch RSI (14) | 171.98 | SELL |
| Stochastic Fast (14) | 86.72 | SELL |
| Commodity Channel Index (20) | 183.42 | SELL |
| Average Directional Index (14) | 41.34 | SELL |
| Awesome Oscillator (5, 34) | 0.0003030 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Prozentbereich (14) | -13.28 | SELL |
| Ultimate Oscillator (7, 14, 28) | 75.03 | SELL |
| VWMA (10) | 0.003798 | BUY |
| Hull Moving Average (9) | 0.004184 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.102664 | SELL |
Auf weltweiten Geldflüssen basierende Saros-Preisprognose
Definition weltweiter Geldflüsse, die für Saros-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Saros-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.0060061 | $0.008439 | $0.011859 | $0.016664 | $0.023415 | $0.0329031 |
| Amazon.com aktie | $0.008918 | $0.0186093 | $0.038829 | $0.08102 | $0.169053 | $0.352739 |
| Apple aktie | $0.006062 | $0.008599 | $0.012197 | $0.0173019 | $0.024541 | $0.03481 |
| Netflix aktie | $0.006744 | $0.010641 | $0.01679 | $0.026492 | $0.0418012 | $0.065955 |
| Google aktie | $0.005535 | $0.007168 | $0.009282 | $0.012021 | $0.015567 | $0.020159 |
| Tesla aktie | $0.009689 | $0.021965 | $0.049794 | $0.11288 | $0.255891 | $0.580085 |
| Kodak aktie | $0.0032053 | $0.0024036 | $0.0018024 | $0.001351 | $0.001013 | $0.00076 |
| Nokia aktie | $0.002831 | $0.001875 | $0.001242 | $0.000823 | $0.000545 | $0.000361 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Saros Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Saros investieren?", "Sollte ich heute SAROS kaufen?", "Wird Saros auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Saros-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Saros.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Saros zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Saros-Preis entspricht heute $0.004274 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Saros-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Saros-Prognose
basierend auf dem Preisverlauf des letzten Monats
Saros-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Saros 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004385 | $0.004499 | $0.004616 | $0.004736 |
| Wenn die Wachstumsrate von Saros 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004496 | $0.00473 | $0.004976 | $0.005234 |
| Wenn die Wachstumsrate von Saros 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004829 | $0.005457 | $0.006166 | $0.006968 |
| Wenn die Wachstumsrate von Saros 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005385 | $0.006785 | $0.008548 | $0.010771 |
| Wenn die Wachstumsrate von Saros 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006496 | $0.009873 | $0.0150066 | $0.0228081 |
| Wenn die Wachstumsrate von Saros 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009829 | $0.0226046 | $0.051982 | $0.119543 |
| Wenn die Wachstumsrate von Saros 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.015384 | $0.055374 | $0.199311 | $0.717385 |
Fragefeld
Ist SAROS eine gute Investition?
Die Entscheidung, Saros zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Saros in den letzten 2026 Stunden um 2.2258% gestiegen, und Saros hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Saros investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Saros steigen?
Es scheint, dass der Durchschnittswert von Saros bis zum Ende dieses Jahres potenziell auf $0.0044082 steigen könnte. Betrachtet man die Aussichten von Saros in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.013858 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Saros nächste Woche kosten?
Basierend auf unserer neuen experimentellen Saros-Prognose wird der Preis von Saros in der nächsten Woche um 0.86% steigen und $0.00431 erreichen bis zum 13. Januar 2026.
Wie viel wird Saros nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Saros-Prognose wird der Preis von Saros im nächsten Monat um -11.62% fallen und $0.003777 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Saros in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Saros im Jahr 2026 wird erwartet, dass SAROS innerhalb der Spanne von $0.001476 bis $0.0044082 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Saros-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Saros in 5 Jahren sein?
Die Zukunft von Saros scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.013858 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Saros-Prognose für 2030 könnte der Wert von Saros seinen höchsten Gipfel von ungefähr $0.013858 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.004793 liegen wird.
Wie viel wird Saros im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Saros-Preisprognosesimulation wird der Wert von SAROS im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.0044082 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.0044082 und $0.001476 während des Jahres 2026 liegen.
Wie viel wird Saros im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Saros könnte der Wert von SAROS um -12.62% fallen und bis zu $0.003734 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.003734 und $0.001421 im Laufe des Jahres schwanken.
Wie viel wird Saros im Jahr 2028 kosten?
Unser neues experimentelles Saros-Preisprognosemodell deutet darauf hin, dass der Wert von SAROS im Jahr 2028 um 47.02% steigen, und im besten Fall $0.006284 erreichen wird. Der Preis wird voraussichtlich zwischen $0.006284 und $0.002565 im Laufe des Jahres liegen.
Wie viel wird Saros im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Saros im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.01854 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.01854 und $0.005636.
Wie viel wird Saros im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Saros-Preisprognosen wird der Wert von SAROS im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.013858 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.013858 und $0.004793 während des Jahres 2030 liegen.
Wie viel wird Saros im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Saros im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.012651 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.012651 und $0.005667 während des Jahres schwanken.
Wie viel wird Saros im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Saros-Preisprognose könnte SAROS eine 449.04% Steigerung im Wert erfahren und $0.023467 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.023467 und $0.00865 liegen.
Wie viel wird Saros im Jahr 2033 kosten?
Laut unserer experimentellen Saros-Preisprognose wird der Wert von SAROS voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.0625094 beträgt. Im Laufe des Jahres könnte der Preis von SAROS zwischen $0.0625094 und $0.0201016 liegen.
Wie viel wird Saros im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Saros-Preisprognosesimulation deuten darauf hin, dass SAROS im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.0362021 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.0362021 und $0.01616.
Wie viel wird Saros im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Saros könnte SAROS um 897.93% steigen, wobei der Wert im Jahr 2035 $0.042655 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.042655 und $0.019107.
Wie viel wird Saros im Jahr 2036 kosten?
Unsere jüngste Saros-Preisprognosesimulation deutet darauf hin, dass der Wert von SAROS im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.088252 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.088252 und $0.031628.
Wie viel wird Saros im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Saros um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.210754 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.210754 und $0.082137 liegen.
Verwandte Prognosen
Kasta-Preisprognose
UX Chain-Preisprognose
Guacamole-Preisprognose
RMRK-Preisprognose
Cult DAO-Preisprognose
Wrapped Ampleforth-Preisprognose
SpaceN-Preisprognose
Polaris Share-Preisprognose
Prisma mkUSD-Preisprognose
Source-Preisprognose
VLaunch-Preisprognose
agEUR-Preisprognose
Solve.Care-PreisprognoseHubble-Preisprognose
NumberGoUpTech-Preisprognose
Geodnet-Preisprognose
AC Milan Fan Token-Preisprognose
Electra Protocol-Preisprognose
Concentrated Voting Power-Preisprognose
Vita Inu-Preisprognose
Hapi-Preisprognose
Hydra-Preisprognose
Bitrock-Preisprognose
Rejuve.AI-Preisprognose
Beoble-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Saros?
Saros-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Saros Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Saros. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SAROS über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SAROS über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SAROS einzuschätzen.
Wie liest man Saros-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Saros in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SAROS innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Saros?
Die Preisentwicklung von Saros wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SAROS. Die Marktkapitalisierung von Saros kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SAROS-„Walen“, großen Inhabern von Saros, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Saros-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


