Saros Preisvorhersage bis zu $0.004362 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001461 | $0.004362 |
| 2027 | $0.001407 | $0.003696 |
| 2028 | $0.002539 | $0.006219 |
| 2029 | $0.005578 | $0.018349 |
| 2030 | $0.004743 | $0.013715 |
| 2031 | $0.0056087 | $0.012521 |
| 2032 | $0.008561 | $0.023225 |
| 2033 | $0.019894 | $0.061865 |
| 2034 | $0.015994 | $0.035829 |
| 2035 | $0.01891 | $0.042215 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Saros eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.54 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Saros Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Saros'
'name_with_ticker' => 'Saros <small>SAROS</small>'
'name_lang' => 'Saros'
'name_lang_with_ticker' => 'Saros <small>SAROS</small>'
'name_with_lang' => 'Saros'
'name_with_lang_with_ticker' => 'Saros <small>SAROS</small>'
'image' => '/uploads/coins/saros-finance.png?1755784946'
'price_for_sd' => 0.00423
'ticker' => 'SAROS'
'marketcap' => '$11.13M'
'low24h' => '$0.003916'
'high24h' => '$0.004361'
'volume24h' => '$1.83M'
'current_supply' => '2.62B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00423'
'change_24h_pct' => '0.2044%'
'ath_price' => '$0.4271'
'ath_days' => 114
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14.09.2025'
'ath_pct' => '-99.02%'
'fdv' => '$42.41M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.208583'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004266'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003738'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001461'
'current_year_max_price_prediction' => '$0.004362'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004743'
'grand_prediction_max_price' => '$0.013715'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0043104823388517
107 => 0.0043265761151999
108 => 0.0043628362150809
109 => 0.0040529976316437
110 => 0.0041921060592241
111 => 0.0042738192277306
112 => 0.0039046361596677
113 => 0.0042665216654891
114 => 0.0040476040312347
115 => 0.0039733000981362
116 => 0.0040733405552545
117 => 0.004034354691823
118 => 0.0040008369357712
119 => 0.0039821334519862
120 => 0.0040555921226316
121 => 0.0040521651878439
122 => 0.0039319725449545
123 => 0.0037751861419843
124 => 0.0038278088051593
125 => 0.0038086904982877
126 => 0.0037394032878744
127 => 0.0037860945019233
128 => 0.0035804900251346
129 => 0.0032267582092104
130 => 0.0034604442819085
131 => 0.0034514476223111
201 => 0.0034469110985761
202 => 0.0036225197236001
203 => 0.0036056390062843
204 => 0.0035750003390598
205 => 0.0037388405847237
206 => 0.0036790366910941
207 => 0.0038633381996911
208 => 0.0039847310931273
209 => 0.0039539419287031
210 => 0.0040681125317226
211 => 0.003829021125036
212 => 0.003908437699655
213 => 0.0039248053456174
214 => 0.0037368188215244
215 => 0.0036084009004045
216 => 0.0035998368891373
217 => 0.003377177910995
218 => 0.0034961205398781
219 => 0.0036007851311149
220 => 0.0035506589142129
221 => 0.0035347904514198
222 => 0.0036158589863798
223 => 0.0036221587058513
224 => 0.0034785244342881
225 => 0.0035083905476519
226 => 0.0036329372052072
227 => 0.0035052522914353
228 => 0.0032571813611888
301 => 0.0031956563406387
302 => 0.0031874477687662
303 => 0.0030205870334235
304 => 0.0031997677367052
305 => 0.0031215505579784
306 => 0.0033686376883906
307 => 0.003227502844654
308 => 0.0032214188036232
309 => 0.0032122218832703
310 => 0.0030685979554306
311 => 0.0031000424678507
312 => 0.0032045688162696
313 => 0.0032418649949591
314 => 0.0032379746979632
315 => 0.0032040565801382
316 => 0.0032195841207896
317 => 0.0031695645021977
318 => 0.0031519015338045
319 => 0.0030961523469735
320 => 0.0030142164434379
321 => 0.0030256101333666
322 => 0.0028632736687671
323 => 0.0027748241470051
324 => 0.0027503424851273
325 => 0.0027176045837052
326 => 0.0027540403182051
327 => 0.0028628137899594
328 => 0.0027316099054444
329 => 0.0025066700483258
330 => 0.0025201893170175
331 => 0.0025505630998608
401 => 0.0024939617564749
402 => 0.0024403933351509
403 => 0.0024869667313487
404 => 0.0023916567485578
405 => 0.0025620808559323
406 => 0.0025574713614358
407 => 0.0026209949297089
408 => 0.0026607175205849
409 => 0.0025691698089572
410 => 0.0025461458070542
411 => 0.0025592613249207
412 => 0.0023424910297644
413 => 0.0026032801719396
414 => 0.0026055354872706
415 => 0.0025862241081646
416 => 0.0027250862754114
417 => 0.0030181287604983
418 => 0.002907874390002
419 => 0.0028651805652898
420 => 0.002784019573303
421 => 0.0028921617762626
422 => 0.0028838581423565
423 => 0.0028463059607733
424 => 0.0028235942841818
425 => 0.0028654412446796
426 => 0.0028184089826764
427 => 0.0028099606960604
428 => 0.0027587732709945
429 => 0.0027405016891254
430 => 0.0027269741373222
501 => 0.0027120816319766
502 => 0.0027449307877879
503 => 0.0026704902790533
504 => 0.0025807223230124
505 => 0.0025732590887703
506 => 0.0025938657346869
507 => 0.0025847488278532
508 => 0.002573215440528
509 => 0.0025511950631929
510 => 0.0025446620876285
511 => 0.0025658910888636
512 => 0.0025419247841969
513 => 0.0025772883722448
514 => 0.0025676714330524
515 => 0.0025139519924805
516 => 0.0024469976800438
517 => 0.0024464016462216
518 => 0.0024319764494342
519 => 0.0024136037924826
520 => 0.0024084929396281
521 => 0.0024830444498247
522 => 0.0026373638447928
523 => 0.0026070672550104
524 => 0.0026289596460476
525 => 0.0027366485422547
526 => 0.0027708796040409
527 => 0.0027465832071922
528 => 0.0027133248006492
529 => 0.0027147880017478
530 => 0.0028284420449095
531 => 0.0028355305081706
601 => 0.0028534407680065
602 => 0.0028764605133344
603 => 0.0027505035693617
604 => 0.0027088554410138
605 => 0.0026891202472524
606 => 0.0026283434889484
607 => 0.0026938860121738
608 => 0.0026556971907011
609 => 0.0026608501674337
610 => 0.0026574942845765
611 => 0.0026593268235403
612 => 0.002562033218921
613 => 0.002597481894843
614 => 0.0025385415957389
615 => 0.0024596271515977
616 => 0.0024593626027099
617 => 0.0024786768011155
618 => 0.0024671879601392
619 => 0.0024362717844771
620 => 0.0024406632813097
621 => 0.0024021891481063
622 => 0.0024453347376773
623 => 0.0024465719988038
624 => 0.0024299585966629
625 => 0.0024964303303409
626 => 0.0025236638538646
627 => 0.0025127285566818
628 => 0.0025228966042629
629 => 0.0026083262150968
630 => 0.0026222549692179
701 => 0.0026284412017167
702 => 0.0026201524696871
703 => 0.0025244581007236
704 => 0.002528702552911
705 => 0.0024975595789981
706 => 0.0024712470478075
707 => 0.002472299411064
708 => 0.0024858274724857
709 => 0.0025449053101242
710 => 0.0026692311366058
711 => 0.0026739492108398
712 => 0.0026796676544473
713 => 0.0026564078704361
714 => 0.0026493924970121
715 => 0.0026586475853798
716 => 0.0027053378290649
717 => 0.0028254378121004
718 => 0.0027829864568875
719 => 0.0027484728443047
720 => 0.002778750587343
721 => 0.002774089566127
722 => 0.0027347458563785
723 => 0.0027336416094841
724 => 0.0026581284515318
725 => 0.0026302129563882
726 => 0.0026068846792076
727 => 0.0025814108095265
728 => 0.0025663090456877
729 => 0.002589512218573
730 => 0.0025948190587438
731 => 0.002544084915708
801 => 0.0025371700394813
802 => 0.0025786006358569
803 => 0.0025603685750803
804 => 0.0025791207017224
805 => 0.0025834713559561
806 => 0.0025827708004204
807 => 0.0025637344350308
808 => 0.0025758676466575
809 => 0.0025471689840758
810 => 0.002515963498918
811 => 0.0024960563435577
812 => 0.0024786847102049
813 => 0.0024883235020343
814 => 0.0024539629691364
815 => 0.0024429703431214
816 => 0.0025717571875643
817 => 0.0026668934142462
818 => 0.0026655100958321
819 => 0.0026570895007473
820 => 0.0026445782045066
821 => 0.0027044225498168
822 => 0.0026835739765362
823 => 0.0026987430555545
824 => 0.0027026042228088
825 => 0.0027142908131787
826 => 0.0027184677647395
827 => 0.0027058421160433
828 => 0.0026634688969256
829 => 0.0025578788636091
830 => 0.0025087264180654
831 => 0.0024925052923372
901 => 0.0024930948994491
902 => 0.0024768309031805
903 => 0.0024816213789828
904 => 0.0024751649711944
905 => 0.0024629380968161
906 => 0.0024875685269959
907 => 0.0024904069546258
908 => 0.0024846579179101
909 => 0.0024860120241748
910 => 0.0024384124556146
911 => 0.0024420313474314
912 => 0.0024218808979289
913 => 0.0024181029315645
914 => 0.0023671643499226
915 => 0.0022769192688784
916 => 0.0023269238040789
917 => 0.0022665253572584
918 => 0.0022436515502617
919 => 0.0023519325949773
920 => 0.0023410641813365
921 => 0.0023224621815694
922 => 0.0022949459469173
923 => 0.0022847399078241
924 => 0.0022227312451333
925 => 0.0022190674425382
926 => 0.0022498006101425
927 => 0.0022356183107568
928 => 0.0022157009911626
929 => 0.0021435624785785
930 => 0.0020624549061933
1001 => 0.0020649030339795
1002 => 0.0020907018436952
1003 => 0.0021657153623872
1004 => 0.0021364062828872
1005 => 0.002115142209427
1006 => 0.0021111600876636
1007 => 0.002161004678669
1008 => 0.0022315452177064
1009 => 0.0022646412603671
1010 => 0.0022318440872321
1011 => 0.0021941684606598
1012 => 0.0021964616014772
1013 => 0.0022117168399903
1014 => 0.0022133199498605
1015 => 0.002188796990079
1016 => 0.0021957000596134
1017 => 0.0021852136657607
1018 => 0.0021208586860428
1019 => 0.0021196947085315
1020 => 0.0021039009586445
1021 => 0.0021034227301748
1022 => 0.0020765536216814
1023 => 0.0020727944476658
1024 => 0.002019444201914
1025 => 0.0020545594952273
1026 => 0.0020310060001083
1027 => 0.0019955053272563
1028 => 0.0019893849978756
1029 => 0.0019892010133839
1030 => 0.0020256522665978
1031 => 0.0020541335411105
1101 => 0.0020314157232401
1102 => 0.0020262433164774
1103 => 0.0020814710885834
1104 => 0.0020744428511706
1105 => 0.0020683564428984
1106 => 0.002225229086131
1107 => 0.0021010521480874
1108 => 0.0020469039153285
1109 => 0.001979885194819
1110 => 0.0020017068281546
1111 => 0.0020063049669249
1112 => 0.0018451370251317
1113 => 0.0017797512112184
1114 => 0.0017573132638958
1115 => 0.0017443999079856
1116 => 0.0017502846864296
1117 => 0.0016914297849166
1118 => 0.0017309812521036
1119 => 0.0016800178822743
1120 => 0.0016714737074732
1121 => 0.001762602525878
1122 => 0.0017752825685922
1123 => 0.001721185566993
1124 => 0.0017559245995287
1125 => 0.0017433277434226
1126 => 0.0016808915029763
1127 => 0.0016785068978411
1128 => 0.0016471785871251
1129 => 0.0015981558472108
1130 => 0.0015757511396143
1201 => 0.0015640825733715
1202 => 0.0015688972512191
1203 => 0.0015664628027678
1204 => 0.0015505763798984
1205 => 0.0015673733939306
1206 => 0.0015244639640837
1207 => 0.0015073770833739
1208 => 0.0014996593357699
1209 => 0.0014615747470061
1210 => 0.0015221842640228
1211 => 0.0015341251024136
1212 => 0.0015460894679448
1213 => 0.0016502311014747
1214 => 0.0016450284797648
1215 => 0.0016920576462432
1216 => 0.0016902301793149
1217 => 0.0016768166992133
1218 => 0.0016202274330749
1219 => 0.001642782905951
1220 => 0.0015733606663371
1221 => 0.0016253765285093
1222 => 0.0016016386612482
1223 => 0.0016173507317102
1224 => 0.0015890990123193
1225 => 0.0016047346803151
1226 => 0.001536956718172
1227 => 0.0014736666107844
1228 => 0.0014991363975506
1229 => 0.0015268249685889
1230 => 0.0015868608455165
1231 => 0.0015511039725036
]
'min_raw' => 0.0014615747470061
'max_raw' => 0.0043628362150809
'avg_raw' => 0.0029122054810435
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001461'
'max' => '$0.004362'
'avg' => '$0.002912'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0027687452529939
'max_diff' => 0.00013251621508091
'year' => 2026
]
1 => [
'items' => [
101 => 0.0015639634961561
102 => 0.0015208862445785
103 => 0.0014320055701654
104 => 0.0014325086251302
105 => 0.0014188362697425
106 => 0.0014070213584909
107 => 0.0015552110795031
108 => 0.0015367813451624
109 => 0.0015074159755145
110 => 0.0015467226897216
111 => 0.0015571160088394
112 => 0.0015574118920234
113 => 0.0015860890560557
114 => 0.0016013940636404
115 => 0.0016040916375629
116 => 0.001649215774779
117 => 0.001664340790372
118 => 0.0017266385890275
119 => 0.001600095540677
120 => 0.0015974894698702
121 => 0.0015472758157985
122 => 0.0015154295225397
123 => 0.0015494563587436
124 => 0.0015795994904939
125 => 0.0015482124469256
126 => 0.001552310932199
127 => 0.0015101763906243
128 => 0.0015252375066228
129 => 0.0015382101686721
130 => 0.0015310474271863
131 => 0.0015203244565014
201 => 0.0015771280974381
202 => 0.0015739230134012
203 => 0.0016268198697515
204 => 0.001668056751967
205 => 0.0017419606168717
206 => 0.0016648380811481
207 => 0.001662027429412
208 => 0.0016895020009749
209 => 0.0016643365841583
210 => 0.0016802402589057
211 => 0.001739398289
212 => 0.0017406482049559
213 => 0.001719710502269
214 => 0.0017184364411577
215 => 0.0017224577559921
216 => 0.0017460107225806
217 => 0.001737780592345
218 => 0.001747304707415
219 => 0.0017592147591485
220 => 0.0018084797828755
221 => 0.0018203574133101
222 => 0.0017915009291993
223 => 0.0017941063466221
224 => 0.0017833132294365
225 => 0.0017728872134725
226 => 0.0017963233747622
227 => 0.0018391534201579
228 => 0.0018388869766684
301 => 0.0018488227147031
302 => 0.0018550125971866
303 => 0.0018284410902964
304 => 0.0018111440163723
305 => 0.0018177768151562
306 => 0.0018283828048553
307 => 0.0018143374356408
308 => 0.001727642910401
309 => 0.001753940491291
310 => 0.0017495632879449
311 => 0.001743329618094
312 => 0.0017697720390321
313 => 0.0017672216030259
314 => 0.0016908261428341
315 => 0.0016957167323311
316 => 0.0016911235557795
317 => 0.0017059650488931
318 => 0.0016635350948245
319 => 0.0016765862629259
320 => 0.001684771833212
321 => 0.001689593196995
322 => 0.0017070112690194
323 => 0.001704967459306
324 => 0.001706884222938
325 => 0.0017327106255497
326 => 0.0018633317074083
327 => 0.0018704411246947
328 => 0.0018354317538293
329 => 0.0018494173069607
330 => 0.0018225681032526
331 => 0.0018405921535759
401 => 0.0018529237510458
402 => 0.001797199633309
403 => 0.0017939000127031
404 => 0.0017669399927806
405 => 0.0017814267803934
406 => 0.0017583772596645
407 => 0.0017640328058134
408 => 0.0017482194057395
409 => 0.0017766803774559
410 => 0.0018085041662227
411 => 0.0018165441120247
412 => 0.001795394476034
413 => 0.0017800807457477
414 => 0.0017531948800214
415 => 0.0017979066739148
416 => 0.0018109817650165
417 => 0.0017978379960275
418 => 0.0017947922975557
419 => 0.0017890207044552
420 => 0.0017960167683161
421 => 0.0018109105552623
422 => 0.0018038869203836
423 => 0.0018085261549615
424 => 0.0017908461767083
425 => 0.0018284498865709
426 => 0.0018881736276583
427 => 0.0018883656492517
428 => 0.0018813419765129
429 => 0.0018784680409553
430 => 0.0018856747554174
501 => 0.0018895841023782
502 => 0.0019128892954632
503 => 0.0019378966961633
504 => 0.0020545953236468
505 => 0.0020218268160265
506 => 0.0021253687807623
507 => 0.002207257031627
508 => 0.002231811737522
509 => 0.0022092225634867
510 => 0.0021319462193553
511 => 0.0021281546732459
512 => 0.0022436381566093
513 => 0.0022110087830805
514 => 0.0022071276229251
515 => 0.0021658386361947
516 => 0.0021902455410928
517 => 0.0021849073929639
518 => 0.0021764808649913
519 => 0.0022230475393372
520 => 0.002310216196677
521 => 0.0022966301439681
522 => 0.0022864887858597
523 => 0.0022420523067339
524 => 0.0022688129924146
525 => 0.0022592840248109
526 => 0.0023002265168687
527 => 0.0022759730915609
528 => 0.0022107615834841
529 => 0.0022211467310853
530 => 0.0022195770369174
531 => 0.002251881231663
601 => 0.0022421843142398
602 => 0.0022176835581606
603 => 0.0023099182636826
604 => 0.0023039290549424
605 => 0.0023124203836123
606 => 0.0023161585290958
607 => 0.0023723001689893
608 => 0.0023952996025216
609 => 0.0024005208765951
610 => 0.0024223685596107
611 => 0.0023999772863389
612 => 0.0024895583441335
613 => 0.0025491245203672
614 => 0.0026183136993101
615 => 0.0027194176860438
616 => 0.0027574337203198
617 => 0.0027505664639962
618 => 0.0028272223528538
619 => 0.0029649712811663
620 => 0.0027784094608007
621 => 0.0029748595106531
622 => 0.0029126656929948
623 => 0.0027652052701457
624 => 0.0027557105573584
625 => 0.0028555724677625
626 => 0.003077056573686
627 => 0.0030215773172041
628 => 0.0030771473178747
629 => 0.0030123219603181
630 => 0.0030091028349244
701 => 0.0030739988949511
702 => 0.0032256320765036
703 => 0.0031535968358329
704 => 0.0030503166545656
705 => 0.0031265771331957
706 => 0.0030605132490322
707 => 0.0029116528278949
708 => 0.0030215348932623
709 => 0.0029480598854121
710 => 0.0029695037988491
711 => 0.0031239373367675
712 => 0.0031053554849046
713 => 0.0031294021218483
714 => 0.0030869604370528
715 => 0.0030473132110145
716 => 0.0029733087193723
717 => 0.0029513996377744
718 => 0.0029574545197219
719 => 0.0029513966372757
720 => 0.0029099918043382
721 => 0.0029010504346076
722 => 0.0028861477599928
723 => 0.0028907667220064
724 => 0.0028627453337993
725 => 0.0029156274828603
726 => 0.0029254428757219
727 => 0.0029639260938032
728 => 0.0029679215491676
729 => 0.0030750967637498
730 => 0.0030160664565642
731 => 0.0030556690830558
801 => 0.003052126651388
802 => 0.002768401184648
803 => 0.0028074960506338
804 => 0.0028683153934629
805 => 0.002840916361957
806 => 0.0028021805417938
807 => 0.0027708992901286
808 => 0.0027235049951838
809 => 0.0027902115551919
810 => 0.0028779235881507
811 => 0.0029701460710703
812 => 0.0030809453416418
813 => 0.003056216234296
814 => 0.0029680747557774
815 => 0.0029720287181163
816 => 0.0029964705574689
817 => 0.002964816154732
818 => 0.0029554806533976
819 => 0.0029951880029419
820 => 0.0029954614456355
821 => 0.0029590392297243
822 => 0.0029185626019343
823 => 0.0029183930033859
824 => 0.0029111905784285
825 => 0.0030136032557177
826 => 0.0030699198731373
827 => 0.0030763764825656
828 => 0.0030694852918792
829 => 0.0030721374376728
830 => 0.0030393680388484
831 => 0.0031142691670977
901 => 0.0031830058493331
902 => 0.003164582950149
903 => 0.0031369644053025
904 => 0.003114964904043
905 => 0.0031594005668064
906 => 0.0031574219166918
907 => 0.0031824054943783
908 => 0.0031812720949823
909 => 0.0031728710574862
910 => 0.0031645832501765
911 => 0.0031974434693484
912 => 0.0031879802539459
913 => 0.003178502339556
914 => 0.003159492931251
915 => 0.0031620766255525
916 => 0.0031344628494372
917 => 0.0031216874530859
918 => 0.0029295761444236
919 => 0.0028782377253309
920 => 0.0028943898370673
921 => 0.0028997075316404
922 => 0.0028773649858593
923 => 0.0029093984571803
924 => 0.0029044060746067
925 => 0.0029238285147542
926 => 0.0029116942173744
927 => 0.0029121922131715
928 => 0.0029478765944606
929 => 0.0029582359221611
930 => 0.0029529670844826
1001 => 0.0029566571977874
1002 => 0.0030416943013975
1003 => 0.0030296047445976
1004 => 0.0030231824085015
1005 => 0.0030249614394911
1006 => 0.0030466902426796
1007 => 0.0030527731212237
1008 => 0.0030269995373961
1009 => 0.0030391545085245
1010 => 0.0030909088328937
1011 => 0.0031090199173819
1012 => 0.0031668218052544
1013 => 0.0031422665359395
1014 => 0.0031873387954941
1015 => 0.0033258755550993
1016 => 0.0034365483046866
1017 => 0.0033347690704213
1018 => 0.0035380054809487
1019 => 0.0036962541790758
1020 => 0.0036901803304647
1021 => 0.0036625860095879
1022 => 0.0034824240740295
1023 => 0.0033166363748655
1024 => 0.0034553248249337
1025 => 0.0034556783703145
1026 => 0.0034437649094569
1027 => 0.0033697714272491
1028 => 0.0034411900966663
1029 => 0.0034468590512901
1030 => 0.0034436859441975
1031 => 0.0033869553148756
1101 => 0.003300338129474
1102 => 0.0033172629201692
1103 => 0.0033449860725844
1104 => 0.003292500361407
1105 => 0.0032757279964645
1106 => 0.0033069110139657
1107 => 0.0034073891935942
1108 => 0.0033883943757659
1109 => 0.0033878983443083
1110 => 0.0034691662300342
1111 => 0.0034109959625619
1112 => 0.0033174763959806
1113 => 0.0032938614720472
1114 => 0.0032100444010028
1115 => 0.0032679371505194
1116 => 0.00327002060751
1117 => 0.0032383133402494
1118 => 0.00332004926597
1119 => 0.0033192960550252
1120 => 0.0033968921517099
1121 => 0.0035452267448082
1122 => 0.003501356906527
1123 => 0.0034503410576308
1124 => 0.0034558878949219
1125 => 0.0035167230092439
1126 => 0.0034799407103942
1127 => 0.0034931678815159
1128 => 0.0035167029883362
1129 => 0.0035309023026248
1130 => 0.0034538448321108
1201 => 0.0034358790496491
1202 => 0.0033991273638653
1203 => 0.003389539535047
1204 => 0.0034194730162689
1205 => 0.0034115866015324
1206 => 0.0032698455010175
1207 => 0.0032550327673736
1208 => 0.0032554870527668
1209 => 0.0032182397297122
1210 => 0.0031614286216722
1211 => 0.0033107248215864
1212 => 0.0032987342473343
1213 => 0.0032854975813567
1214 => 0.0032871189974116
1215 => 0.0033519234176766
1216 => 0.0033143335812212
1217 => 0.0034142723222909
1218 => 0.0033937279215605
1219 => 0.0033726566344725
1220 => 0.0033697439407499
1221 => 0.0033616332929387
1222 => 0.0033338188637552
1223 => 0.003300231269128
1224 => 0.0032780538298475
1225 => 0.0030238313807645
1226 => 0.0030710135885704
1227 => 0.0031252924178574
1228 => 0.0031440292522186
1229 => 0.0031119786004944
1230 => 0.0033350844188363
1231 => 0.0033758480017485
]
'min_raw' => 0.0014070213584909
'max_raw' => 0.0036962541790758
'avg_raw' => 0.0025516377687833
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001407'
'max' => '$0.003696'
'avg' => '$0.002551'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.4553388515167E-5
'max_diff' => -0.00066658203600513
'year' => 2027
]
2 => [
'items' => [
101 => 0.0032523724501647
102 => 0.0032292752159369
103 => 0.003336598669667
104 => 0.0032718695073091
105 => 0.0033010170451554
106 => 0.0032380160111825
107 => 0.003366029248322
108 => 0.0033650540019358
109 => 0.0033152539613785
110 => 0.0033573446146416
111 => 0.003350030327837
112 => 0.0032938062046998
113 => 0.0033678116533106
114 => 0.0033678483590898
115 => 0.0033199169027996
116 => 0.0032639434553976
117 => 0.0032539367250359
118 => 0.0032463979979235
119 => 0.0032991629804182
120 => 0.0033464718987311
121 => 0.0034345020668359
122 => 0.0034566349426427
123 => 0.0035430210303854
124 => 0.0034915823211969
125 => 0.0035143844347374
126 => 0.0035391393545414
127 => 0.0035510077734275
128 => 0.0035316688217471
129 => 0.0036658619739439
130 => 0.0036771919875613
131 => 0.0036809908431229
201 => 0.0036357416672314
202 => 0.0036759335261246
203 => 0.0036571290863629
204 => 0.0037060530145989
205 => 0.0037137249112383
206 => 0.0037072270877203
207 => 0.0037096622688064
208 => 0.0035951520867006
209 => 0.0035892141296691
210 => 0.0035082496642062
211 => 0.0035412432823415
212 => 0.0034795632946629
213 => 0.00349912265413
214 => 0.0035077442334147
215 => 0.0035032408096667
216 => 0.0035431086920076
217 => 0.0035092128475476
218 => 0.0034197561410248
219 => 0.0033302750620822
220 => 0.0033291517000258
221 => 0.0033055929114125
222 => 0.0032885642222524
223 => 0.0032918445519098
224 => 0.0033034048614827
225 => 0.0032878923160445
226 => 0.0032912027041198
227 => 0.0033461772031695
228 => 0.0033572019468938
229 => 0.0033197355600734
301 => 0.0031693026106155
302 => 0.0031323859874861
303 => 0.0031589209241031
304 => 0.0031462389334689
305 => 0.0025392603731902
306 => 0.0026818609824875
307 => 0.0025971325427022
308 => 0.0026361793059233
309 => 0.0025496935092256
310 => 0.0025909690645187
311 => 0.0025833469765981
312 => 0.0028126445364892
313 => 0.00280906437048
314 => 0.0028107780064904
315 => 0.0027289816948571
316 => 0.0028592854403009
317 => 0.0029234777508777
318 => 0.0029115974626129
319 => 0.0029145874752184
320 => 0.0028632091522707
321 => 0.002811275460964
322 => 0.0027536730047671
323 => 0.0028606912485022
324 => 0.0028487926466612
325 => 0.0028760837583027
326 => 0.0029454927391869
327 => 0.0029557134752812
328 => 0.0029694502482404
329 => 0.0029645265929846
330 => 0.0030818280365873
331 => 0.0030676220577872
401 => 0.0031018543793564
402 => 0.003031435896676
403 => 0.0029517506993393
404 => 0.0029668962502476
405 => 0.0029654376119023
406 => 0.0029468674716194
407 => 0.0029301031792992
408 => 0.002902195355896
409 => 0.0029904998387244
410 => 0.0029869148379845
411 => 0.0030449518328562
412 => 0.0030346932302713
413 => 0.0029661837715037
414 => 0.0029686306002263
415 => 0.0029850866992915
416 => 0.0030420414460484
417 => 0.0030589494926607
418 => 0.0030511170118007
419 => 0.0030696559130295
420 => 0.0030843083046688
421 => 0.0030714960278272
422 => 0.0032528908492037
423 => 0.0031775630725653
424 => 0.0032142773067716
425 => 0.0032230334352969
426 => 0.0032006047962008
427 => 0.0032054687649114
428 => 0.0032128363521558
429 => 0.0032575708991824
430 => 0.0033749672946259
501 => 0.0034269613590235
502 => 0.0035833880671057
503 => 0.0034226439757676
504 => 0.0034131060866128
505 => 0.0034412832603724
506 => 0.0035331222974653
507 => 0.003607549211027
508 => 0.0036322409120471
509 => 0.0036355043279524
510 => 0.0036818276005393
511 => 0.0037083792365082
512 => 0.0036762027368242
513 => 0.003648936522362
514 => 0.0035512723265654
515 => 0.0035625772231596
516 => 0.0036404567501674
517 => 0.003750466169147
518 => 0.0038448656951608
519 => 0.0038118102713064
520 => 0.0040639998218229
521 => 0.0040890033856547
522 => 0.0040855487015951
523 => 0.0041425105410331
524 => 0.0040294528898256
525 => 0.0039811185535456
526 => 0.0036548317874134
527 => 0.0037465050596323
528 => 0.003879757544585
529 => 0.0038621210785303
530 => 0.0037653495621086
531 => 0.0038447922852879
601 => 0.0038185260366011
602 => 0.0037978087564743
603 => 0.0038927186329778
604 => 0.0037883613250793
605 => 0.0038787165006095
606 => 0.0037628350533874
607 => 0.0038119612656982
608 => 0.0037840748516231
609 => 0.00380212077916
610 => 0.0036966246555179
611 => 0.0037535478030615
612 => 0.0036942564654341
613 => 0.0036942283536201
614 => 0.0036929194940558
615 => 0.0037626754898364
616 => 0.0037649502303545
617 => 0.0037134004440771
618 => 0.0037059713145156
619 => 0.0037334407002691
620 => 0.0037012812437952
621 => 0.0037163284510701
622 => 0.0037017370083747
623 => 0.0036984521672812
624 => 0.0036722779945782
625 => 0.0036610014413039
626 => 0.0036654232684038
627 => 0.0036503292929039
628 => 0.0036412346266923
629 => 0.0036911103360368
630 => 0.0036644637565144
701 => 0.0036870263655593
702 => 0.0036613134249244
703 => 0.0035721811700889
704 => 0.0035209202677765
705 => 0.0033525577009567
706 => 0.0034003051160537
707 => 0.0034319617016613
708 => 0.0034214992003068
709 => 0.0034439767016667
710 => 0.0034453566376955
711 => 0.0034380489728724
712 => 0.0034295876331771
713 => 0.0034254691209549
714 => 0.0034561651368257
715 => 0.0034739852072192
716 => 0.0034351388635375
717 => 0.003426037708731
718 => 0.0034653135069586
719 => 0.0034892717211885
720 => 0.0036661657141048
721 => 0.0036530608357495
722 => 0.0036859515087188
723 => 0.003682248523691
724 => 0.003716723188858
725 => 0.0037730746963254
726 => 0.0036584963255148
727 => 0.0036783831688656
728 => 0.0036735073741303
729 => 0.0037267400225485
730 => 0.0037269062090663
731 => 0.0036949905771716
801 => 0.0037122925589937
802 => 0.0037026350673956
803 => 0.0037200874600016
804 => 0.0036528858121094
805 => 0.0037347301652725
806 => 0.0037811306395824
807 => 0.0037817749102132
808 => 0.0038037683667791
809 => 0.0038261149924252
810 => 0.003869007394372
811 => 0.0038249187466148
812 => 0.003745607561243
813 => 0.0037513335726533
814 => 0.0037048334536886
815 => 0.0037056151290893
816 => 0.0037014424845392
817 => 0.0037139649049361
818 => 0.0036556337791897
819 => 0.0036693239778118
820 => 0.0036501576195712
821 => 0.0036783415049459
822 => 0.0036480203032459
823 => 0.0036735050228744
824 => 0.0036845033830342
825 => 0.0037250875688018
826 => 0.00364202598601
827 => 0.0034726577959228
828 => 0.0035082610428699
829 => 0.0034556010440604
830 => 0.003460474927441
831 => 0.0034703209475425
901 => 0.0034384067749761
902 => 0.0034444949933706
903 => 0.0034442774793674
904 => 0.0034424030611985
905 => 0.0034341009523302
906 => 0.0034220612519489
907 => 0.0034700237126436
908 => 0.0034781734693255
909 => 0.0034962893688882
910 => 0.0035501899978546
911 => 0.0035448040539565
912 => 0.003553588751915
913 => 0.0035344118055956
914 => 0.0034613644909799
915 => 0.0034653313116048
916 => 0.0034158649948488
917 => 0.0034950244039533
918 => 0.0034762784110242
919 => 0.0034641927474329
920 => 0.0034608950621491
921 => 0.0035149293003492
922 => 0.0035310971913016
923 => 0.0035210224466469
924 => 0.0035003588514328
925 => 0.0035400390628873
926 => 0.0035506558134988
927 => 0.0035530325124301
928 => 0.0036233382392017
929 => 0.0035569618215574
930 => 0.0035729392850092
1001 => 0.0036975908938923
1002 => 0.0035845490853816
1003 => 0.0036444298524828
1004 => 0.0036414990005377
1005 => 0.003672131974732
1006 => 0.0036389862025442
1007 => 0.0036393970841154
1008 => 0.0036665970899425
1009 => 0.0036283995873052
1010 => 0.0036189413484795
1011 => 0.003605874859283
1012 => 0.0036344050604156
1013 => 0.0036515076256846
1014 => 0.0037893417413027
1015 => 0.0038783888659913
1016 => 0.0038745230954635
1017 => 0.0039098490016685
1018 => 0.0038939343573749
1019 => 0.0038425417728799
1020 => 0.0039302626479549
1021 => 0.0039025040926839
1022 => 0.0039047924742538
1023 => 0.0039047073005775
1024 => 0.0039231643131377
1025 => 0.0039100858281784
1026 => 0.0038843067918447
1027 => 0.0039014201192203
1028 => 0.0039522405833992
1029 => 0.0041099888635727
1030 => 0.0041982668910445
1031 => 0.0041046744154737
1101 => 0.0041692332518692
1102 => 0.0041305209546974
1103 => 0.0041234857787102
1104 => 0.0041640334988271
1105 => 0.0042046521923605
1106 => 0.0042020649571818
1107 => 0.0041725778714696
1108 => 0.0041559213649579
1109 => 0.0042820500126038
1110 => 0.0043749794516439
1111 => 0.0043686422869082
1112 => 0.0043966124710951
1113 => 0.0044787337969529
1114 => 0.0044862419418114
1115 => 0.004485296088132
1116 => 0.0044666863677063
1117 => 0.0045475454778151
1118 => 0.0046149995700486
1119 => 0.0044623787551143
1120 => 0.0045204947634881
1121 => 0.004546584912028
1122 => 0.0045848929906827
1123 => 0.0046495251405527
1124 => 0.0047197327981426
1125 => 0.0047296609307136
1126 => 0.0047226164455496
1127 => 0.0046763126080859
1128 => 0.0047531346647724
1129 => 0.0047981352238804
1130 => 0.0048249320270097
1201 => 0.0048928842611828
1202 => 0.0045467460359032
1203 => 0.0043017321958642
1204 => 0.0042634697466994
1205 => 0.0043412779416726
1206 => 0.0043617953421783
1207 => 0.0043535248037611
1208 => 0.0040777394511135
1209 => 0.0042620177938928
1210 => 0.0044602857961603
1211 => 0.0044679020775992
1212 => 0.0045671591851227
1213 => 0.0045994813680187
1214 => 0.0046793963495016
1215 => 0.0046743976456513
1216 => 0.0046938556719173
1217 => 0.0046893826086448
1218 => 0.0048374082837572
1219 => 0.0050007025854316
1220 => 0.0049950482230087
1221 => 0.0049715727351325
1222 => 0.0050064378377941
1223 => 0.005174975056803
1224 => 0.0051594588504305
1225 => 0.0051745315232541
1226 => 0.0053732464028069
1227 => 0.0056316040130876
1228 => 0.0055115709644323
1229 => 0.0057720081414351
1230 => 0.0059359395391768
1231 => 0.0062194419407483
]
'min_raw' => 0.0025392603731902
'max_raw' => 0.0062194419407483
'avg_raw' => 0.0043793511569693
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002539'
'max' => '$0.006219'
'avg' => '$0.004379'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011322390146993
'max_diff' => 0.0025231877616725
'year' => 2028
]
3 => [
'items' => [
101 => 0.0061839460437928
102 => 0.0062943114482878
103 => 0.0061204009800252
104 => 0.0057210673917896
105 => 0.0056578713228637
106 => 0.0057843914532326
107 => 0.0060954288480908
108 => 0.0057745957787804
109 => 0.005839499890848
110 => 0.0058208075022062
111 => 0.005819811464253
112 => 0.005857826181747
113 => 0.0058026838513077
114 => 0.0055780240771823
115 => 0.0056809843277356
116 => 0.0056412264304397
117 => 0.0056853407816371
118 => 0.0059234077409074
119 => 0.0058181526634065
120 => 0.0057072749894875
121 => 0.0058463401983075
122 => 0.0060234179971257
123 => 0.0060123367867151
124 => 0.0059908346069318
125 => 0.0061120412685526
126 => 0.0063122391633304
127 => 0.0063663518498286
128 => 0.0064062967287163
129 => 0.0064118044526407
130 => 0.006468537432093
131 => 0.0061634699030263
201 => 0.0066476199063449
202 => 0.0067312192375441
203 => 0.0067155060281159
204 => 0.0068084231663462
205 => 0.0067810845871986
206 => 0.0067414752753053
207 => 0.0068887687034424
208 => 0.00671990867405
209 => 0.006480233121214
210 => 0.0063487423726833
211 => 0.0065218999974047
212 => 0.0066276413164537
213 => 0.0066975296019341
214 => 0.0067186777548928
215 => 0.0061871514268919
216 => 0.005900688215901
217 => 0.0060843078498388
218 => 0.006308336475993
219 => 0.0061622254126966
220 => 0.0061679526897529
221 => 0.0059596367108041
222 => 0.0063267678177638
223 => 0.0062732799035384
224 => 0.0065507752971582
225 => 0.0064845487944311
226 => 0.006710835515619
227 => 0.0066512466382363
228 => 0.0068985967366823
301 => 0.006997271387689
302 => 0.0071629614842123
303 => 0.0072848437936948
304 => 0.0073564154170601
305 => 0.0073521185252516
306 => 0.0076357209538658
307 => 0.0074684905100262
308 => 0.0072584096593742
309 => 0.0072546099595825
310 => 0.0073634138090038
311 => 0.0075914368285126
312 => 0.0076505598798712
313 => 0.0076836015998657
314 => 0.0076329970555036
315 => 0.0074514803942296
316 => 0.0073731024202018
317 => 0.007439882724902
318 => 0.0073582161507507
319 => 0.0074991955693295
320 => 0.0076927904226171
321 => 0.0076528138509702
322 => 0.0077864495363631
323 => 0.0079247484118607
324 => 0.0081225220152134
325 => 0.0081742273586651
326 => 0.0082596943252127
327 => 0.0083476679082261
328 => 0.0083759226521355
329 => 0.0084298697251906
330 => 0.0084295853974866
331 => 0.008592158533195
401 => 0.0087714817363524
402 => 0.0088391720942026
403 => 0.008994822339611
404 => 0.0087282767489842
405 => 0.0089304546413297
406 => 0.0091128241610662
407 => 0.0088953957014236
408 => 0.0091950701787072
409 => 0.0092067058595832
410 => 0.0093823908262935
411 => 0.0092043004553655
412 => 0.009098550961593
413 => 0.0094038457877323
414 => 0.0095515683374042
415 => 0.009507073103237
416 => 0.0091684621742243
417 => 0.008971376089833
418 => 0.0084555637919143
419 => 0.009066565740232
420 => 0.0093641669660864
421 => 0.0091676914589445
422 => 0.0092667822764491
423 => 0.0098073896464487
424 => 0.01001321793121
425 => 0.0099704070868276
426 => 0.0099776414148017
427 => 0.010088702621211
428 => 0.010581209172953
429 => 0.010286087830937
430 => 0.010511697038923
501 => 0.010631359349344
502 => 0.010742508372116
503 => 0.010469561501197
504 => 0.010114461632517
505 => 0.010001986598028
506 => 0.0091481558418683
507 => 0.0091037102430112
508 => 0.0090787615815332
509 => 0.0089214637999728
510 => 0.0087978708311548
511 => 0.008699585113638
512 => 0.0084416540402742
513 => 0.0085286982058884
514 => 0.0081176099093454
515 => 0.0083806096333989
516 => 0.0077245027860422
517 => 0.0082709280648411
518 => 0.0079735336284996
519 => 0.0081732259941052
520 => 0.0081725292862538
521 => 0.0078048323286517
522 => 0.0075927523971465
523 => 0.007727897983776
524 => 0.0078727847805129
525 => 0.0078962921758257
526 => 0.0080841416897274
527 => 0.0081365664512455
528 => 0.0079777169763674
529 => 0.0077109064299675
530 => 0.0077728804345955
531 => 0.0075914964959208
601 => 0.0072736281202258
602 => 0.0075019267370993
603 => 0.0075798779224816
604 => 0.0076143056067275
605 => 0.007301718566661
606 => 0.0072034969320773
607 => 0.0071512045579843
608 => 0.0076705553683949
609 => 0.0076990065781573
610 => 0.0075534461664169
611 => 0.0082113930300881
612 => 0.008062479391211
613 => 0.008228852410564
614 => 0.0077672569432563
615 => 0.0077848905117282
616 => 0.0075663638201092
617 => 0.007688724165457
618 => 0.0076022438172232
619 => 0.0076788386587414
620 => 0.0077247492909351
621 => 0.0079432401244743
622 => 0.0082734228791935
623 => 0.0079106048799707
624 => 0.0077525198820599
625 => 0.00785059492566
626 => 0.0081117816909452
627 => 0.0085074930102567
628 => 0.0082732239447918
629 => 0.0083771885778984
630 => 0.0083999002251676
701 => 0.008227158889406
702 => 0.0085138622297019
703 => 0.0086675088789402
704 => 0.0088251185483645
705 => 0.008961966608203
706 => 0.0087621657804856
707 => 0.0089759813064668
708 => 0.0088036837360471
709 => 0.0086491150035852
710 => 0.0086493494205492
711 => 0.0085523861967869
712 => 0.0083645077325952
713 => 0.0083298600612254
714 => 0.0085101016232094
715 => 0.0086546382869811
716 => 0.0086665430188933
717 => 0.0087465659425192
718 => 0.0087939226844193
719 => 0.0092580831334097
720 => 0.0094447723057302
721 => 0.0096730522917986
722 => 0.0097619802115273
723 => 0.010029621367487
724 => 0.0098134793972976
725 => 0.0097667157224504
726 => 0.0091175058228473
727 => 0.0092238139075379
728 => 0.009394023408332
729 => 0.0091203125148233
730 => 0.0092939190771914
731 => 0.0093281926900926
801 => 0.0091110119233986
802 => 0.0092270175547169
803 => 0.0089189409912083
804 => 0.0082801381064019
805 => 0.0085145733999241
806 => 0.0086871966860231
807 => 0.0084408419724622
808 => 0.008882423261276
809 => 0.0086244605884391
810 => 0.0085426988055418
811 => 0.0082237169402792
812 => 0.0083742641019452
813 => 0.0085778812937261
814 => 0.0084520695422448
815 => 0.0087131478172981
816 => 0.0090829042818063
817 => 0.0093464147577929
818 => 0.0093666438201166
819 => 0.0091972242378879
820 => 0.0094687201996307
821 => 0.0094706977513131
822 => 0.0091644491973737
823 => 0.0089768736632849
824 => 0.0089342561072776
825 => 0.0090407231178478
826 => 0.0091699937235744
827 => 0.0093738174390567
828 => 0.0094969838415322
829 => 0.0098181364967759
830 => 0.0099050311971167
831 => 0.010000502127964
901 => 0.010128080733721
902 => 0.010281271560415
903 => 0.0099460987527669
904 => 0.009959415793255
905 => 0.0096473075155562
906 => 0.0093137750599804
907 => 0.0095668846183549
908 => 0.0098977916961761
909 => 0.0098218812469041
910 => 0.0098133397706512
911 => 0.0098277041645006
912 => 0.009770470164753
913 => 0.0095116029050857
914 => 0.0093816013878755
915 => 0.0095493365120008
916 => 0.0096384802654419
917 => 0.0097767344528767
918 => 0.0097596917060835
919 => 0.0101158196455
920 => 0.010254200194007
921 => 0.010218796528062
922 => 0.010225311654632
923 => 0.010475843027788
924 => 0.010754485440445
925 => 0.011015470830002
926 => 0.011280956377843
927 => 0.010960903187843
928 => 0.010798399916098
929 => 0.010966061812315
930 => 0.01087709805017
1001 => 0.011388310215821
1002 => 0.011423705437009
1003 => 0.011934880636202
1004 => 0.012420046769846
1005 => 0.012115322613959
1006 => 0.012402663767883
1007 => 0.012713446653121
1008 => 0.01331299726145
1009 => 0.01311108970901
1010 => 0.012956431688135
1011 => 0.01281028060571
1012 => 0.013114397807405
1013 => 0.013505639728994
1014 => 0.013589909491636
1015 => 0.013726458700642
1016 => 0.013582893903815
1017 => 0.01375580188845
1018 => 0.014366243053831
1019 => 0.014201296462432
1020 => 0.013967045786157
1021 => 0.014448930458832
1022 => 0.014623322648594
1023 => 0.015847298366242
1024 => 0.017392618269688
1025 => 0.016752845682544
1026 => 0.016355718192371
1027 => 0.016449052572552
1028 => 0.01701335108891
1029 => 0.017194585862425
1030 => 0.016701927272639
1031 => 0.016875942615258
1101 => 0.017834784261897
1102 => 0.018349172041995
1103 => 0.017650564345126
1104 => 0.015723133416645
1105 => 0.013945954075751
1106 => 0.014417342064385
1107 => 0.014363901295346
1108 => 0.015394057026728
1109 => 0.014197362540778
1110 => 0.014217511806827
1111 => 0.015268970067781
1112 => 0.014988459030316
1113 => 0.014534067074764
1114 => 0.013949271639887
1115 => 0.012868223191486
1116 => 0.011910708433471
1117 => 0.013788615376417
1118 => 0.013707636614285
1119 => 0.013590367366338
1120 => 0.013851337387787
1121 => 0.01511853373431
1122 => 0.015089320757008
1123 => 0.014903482700007
1124 => 0.015044439228341
1125 => 0.014509356713832
1126 => 0.014647259661423
1127 => 0.013945672561463
1128 => 0.014262819231511
1129 => 0.014533092153705
1130 => 0.014587353444294
1201 => 0.014709606902643
1202 => 0.013664964486345
1203 => 0.014133978262173
1204 => 0.014409479914824
1205 => 0.013164753425311
1206 => 0.014384875674227
1207 => 0.013646779585997
1208 => 0.01339625868782
1209 => 0.013733552073596
1210 => 0.013602108513131
1211 => 0.013489101058467
1212 => 0.013426040957051
1213 => 0.013673711993852
1214 => 0.013662157843954
1215 => 0.013256919956871
1216 => 0.012728303652779
1217 => 0.012905724635671
1218 => 0.012841265929256
1219 => 0.012607659261869
1220 => 0.012765081949911
1221 => 0.012071872101572
1222 => 0.010879240587417
1223 => 0.011667129496959
1224 => 0.011636796631
1225 => 0.011621501424497
1226 => 0.012213578164368
1227 => 0.012156663647364
1228 => 0.012053363241693
1229 => 0.01260576206891
1230 => 0.012404129066163
1231 => 0.013025514469918
]
'min_raw' => 0.0055780240771823
'max_raw' => 0.018349172041995
'avg_raw' => 0.011963598059589
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005578'
'max' => '$0.018349'
'avg' => '$0.011963'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0030387637039921
'max_diff' => 0.012129730101247
'year' => 2029
]
4 => [
'items' => [
101 => 0.013434799085519
102 => 0.013330991268032
103 => 0.01371592542725
104 => 0.012909812056777
105 => 0.013177570582793
106 => 0.013232755243908
107 => 0.012598945553128
108 => 0.01216597556622
109 => 0.012137101404312
110 => 0.011386391113952
111 => 0.01178741449154
112 => 0.012140298468344
113 => 0.011971294428358
114 => 0.01191779279815
115 => 0.012191121023792
116 => 0.012212360967823
117 => 0.011728087993023
118 => 0.011828783679414
119 => 0.012248701430932
120 => 0.011818202829474
121 => 0.010981814368389
122 => 0.010774378466064
123 => 0.010746702692892
124 => 0.010184120073839
125 => 0.010788240324951
126 => 0.010524525645925
127 => 0.011357597157182
128 => 0.010881751177804
129 => 0.010861238408694
130 => 0.010830230349616
131 => 0.010345992249402
201 => 0.010452009618412
202 => 0.010804427499903
203 => 0.010930174170291
204 => 0.010917057762357
205 => 0.010802700460023
206 => 0.010855052647427
207 => 0.010686408011086
208 => 0.01062685607996
209 => 0.010438893804275
210 => 0.010162641184923
211 => 0.010201055805999
212 => 0.0096537270816321
213 => 0.0093555133436629
214 => 0.0092729717113869
215 => 0.0091625935910551
216 => 0.0092854392137833
217 => 0.0096521765681242
218 => 0.0092098135111191
219 => 0.0084514130780443
220 => 0.0084969942363236
221 => 0.0085994015658097
222 => 0.0084085661848046
223 => 0.0082279565122828
224 => 0.0083849819692146
225 => 0.0080636377079046
226 => 0.0086382344845487
227 => 0.0086226932520293
228 => 0.0088368673975359
301 => 0.0089707948860171
302 => 0.0086621353846072
303 => 0.0085845083547067
304 => 0.0086287282388898
305 => 0.0078978720543517
306 => 0.0087771408549116
307 => 0.0087847448080113
308 => 0.0087196351450781
309 => 0.0091878186369977
310 => 0.010175831835041
311 => 0.0098041015271984
312 => 0.0096601563163936
313 => 0.0093865163654305
314 => 0.0097511253529563
315 => 0.0097231290715005
316 => 0.0095965192694833
317 => 0.0095199452661766
318 => 0.0096610352151563
319 => 0.0095024626601247
320 => 0.0094739786719586
321 => 0.009301396694557
322 => 0.0092397927806043
323 => 0.0091941836952361
324 => 0.009143972573702
325 => 0.0092547257959744
326 => 0.0090037444235054
327 => 0.008701085492315
328 => 0.0086759226770016
329 => 0.0087453994224194
330 => 0.0087146611345074
331 => 0.0086757755139049
401 => 0.0086015322743062
402 => 0.0085795058910731
403 => 0.0086510809508987
404 => 0.0085702768814408
405 => 0.0086895076875514
406 => 0.0086570835056307
407 => 0.0084759646611711
408 => 0.0082502235221898
409 => 0.0082482139525448
410 => 0.0081995783944409
411 => 0.0081376336987906
412 => 0.0081204021015633
413 => 0.0083717577232114
414 => 0.0088920563375823
415 => 0.0087899092698907
416 => 0.0088637209947505
417 => 0.0092268016269114
418 => 0.0093422140416599
419 => 0.0092602970433643
420 => 0.0091481640036769
421 => 0.0091530972883383
422 => 0.0095362898299297
423 => 0.0095601890787152
424 => 0.0096205747702063
425 => 0.0096981874487668
426 => 0.0092735148181298
427 => 0.0091330952456255
428 => 0.0090665566619917
429 => 0.008861643578072
430 => 0.0090826247711593
501 => 0.0089538684933055
502 => 0.0089712421141287
503 => 0.0089599275207757
504 => 0.0089661060538359
505 => 0.0086380738730393
506 => 0.0087575915588577
507 => 0.0085588702253482
508 => 0.0082928046672954
509 => 0.0082919127222502
510 => 0.0083570318906488
511 => 0.008318296461172
512 => 0.0082140604164289
513 => 0.0082288666546044
514 => 0.008099148428331
515 => 0.0082446167958983
516 => 0.0082487883081692
517 => 0.0081927750629403
518 => 0.008416889153944
519 => 0.008508708879888
520 => 0.0084718397619583
521 => 0.0085061220442885
522 => 0.0087941539417196
523 => 0.0088411157087137
524 => 0.0088619730234922
525 => 0.0088340269847536
526 => 0.0085113867386259
527 => 0.0085256972055139
528 => 0.0084206964946336
529 => 0.008331981958642
530 => 0.0083355300748352
531 => 0.0083811408784173
601 => 0.0085803259326986
602 => 0.0089994991368333
603 => 0.0090154064535186
604 => 0.0090346865853903
605 => 0.0089562645996501
606 => 0.0089326117783535
607 => 0.0089638159549549
608 => 0.0091212353713478
609 => 0.0095261608492652
610 => 0.0093830331413058
611 => 0.0092666680868194
612 => 0.0093687516113974
613 => 0.0093530366529458
614 => 0.0092203865886384
615 => 0.0092166635431381
616 => 0.0089620656589413
617 => 0.0088679466180671
618 => 0.0087892937028245
619 => 0.008703406772666
620 => 0.008652490121512
621 => 0.0087307212388886
622 => 0.008748613621036
623 => 0.0085775599156461
624 => 0.0085542459276667
625 => 0.0086939320759387
626 => 0.0086324614101087
627 => 0.008695685514314
628 => 0.008710354048816
629 => 0.0087079920769161
630 => 0.0086438096419286
701 => 0.0086847176120419
702 => 0.0085879580674711
703 => 0.0084827465955641
704 => 0.0084156282313937
705 => 0.008357058556696
706 => 0.0083895564163077
707 => 0.0082737074806665
708 => 0.0082366450745764
709 => 0.008670858912226
710 => 0.0089916173426831
711 => 0.00898695338807
712 => 0.0089585627638343
713 => 0.0089163800550479
714 => 0.0091181494434602
715 => 0.0090478570230437
716 => 0.009099000632025
717 => 0.0091120188270012
718 => 0.0091514209823649
719 => 0.0091655038661777
720 => 0.0091229356101037
721 => 0.0089800713434447
722 => 0.0086240671740573
723 => 0.0084583462721925
724 => 0.0084036556142773
725 => 0.0084056435158201
726 => 0.0083508083168844
727 => 0.0083669597405122
728 => 0.0083451915108818
729 => 0.0083039677502621
730 => 0.008387010965255
731 => 0.0083965809221818
801 => 0.00837719764351
802 => 0.0083817631073221
803 => 0.0082212778386257
804 => 0.0082334791850491
805 => 0.008165540537692
806 => 0.0081528028603251
807 => 0.0079810598759011
808 => 0.0076767922844504
809 => 0.0078453860660839
810 => 0.0076417484857438
811 => 0.0075646278484561
812 => 0.0079297049506561
813 => 0.0078930613352578
814 => 0.0078303433942926
815 => 0.007737570488041
816 => 0.0077031601146755
817 => 0.0074940935791068
818 => 0.0074817408128588
819 => 0.0075853598331579
820 => 0.0075375432206027
821 => 0.0074703905870078
822 => 0.0072271705552804
823 => 0.0069537107122337
824 => 0.006961964745988
825 => 0.0070489472341599
826 => 0.0073018605497064
827 => 0.0072030429418776
828 => 0.0071313496335964
829 => 0.0071179236320483
830 => 0.0072859781506613
831 => 0.0075238105030088
901 => 0.0076353961215313
902 => 0.0075248181624811
903 => 0.0073977921570644
904 => 0.0074055236414323
905 => 0.0074569577431658
906 => 0.0074623627400189
907 => 0.007379681868977
908 => 0.0074029560498693
909 => 0.0073676004408582
910 => 0.007150623133618
911 => 0.0071466987021725
912 => 0.0070934489717441
913 => 0.0070918365910695
914 => 0.0070012455158429
915 => 0.0069885711981922
916 => 0.0068086971198446
917 => 0.0069270907829219
918 => 0.006847678529676
919 => 0.0067279855325776
920 => 0.0067073504147628
921 => 0.0067067300982036
922 => 0.0068296280433593
923 => 0.006925654648878
924 => 0.0068490599398205
925 => 0.0068316208092942
926 => 0.0070178250988296
927 => 0.0069941289056965
928 => 0.0069736081552672
929 => 0.0075025152244241
930 => 0.0070838440080531
1001 => 0.0069012794607978
1002 => 0.0066753211655021
1003 => 0.006748894325831
1004 => 0.0067643972717269
1005 => 0.0062210083035849
1006 => 0.0060005554668844
1007 => 0.0059249043609187
1008 => 0.0058813660798858
1009 => 0.0059012070212718
1010 => 0.0057027736117027
1011 => 0.0058361241447188
1012 => 0.0056642975851905
1013 => 0.0056354903033136
1014 => 0.0059427374769764
1015 => 0.0059854891262796
1016 => 0.0058030973084557
1017 => 0.0059202223820517
1018 => 0.0058777512022055
1019 => 0.0056672430583815
1020 => 0.0056592031956805
1021 => 0.0055535776088287
1022 => 0.0053882940185494
1023 => 0.005312754982641
1024 => 0.0052734135968799
1025 => 0.0052896466193933
1026 => 0.0052814387064718
1027 => 0.0052278765226133
1028 => 0.005284508828153
1029 => 0.0051398366895833
1030 => 0.0050822270783022
1031 => 0.0050562061534194
1101 => 0.0049278013034212
1102 => 0.0051321505216643
1103 => 0.0051724098919818
1104 => 0.0052127485856956
1105 => 0.0055638693740782
1106 => 0.0055463283717477
1107 => 0.0057048904900012
1108 => 0.0056987290576629
1109 => 0.005653504573001
1110 => 0.005462709911279
1111 => 0.0055387572628535
1112 => 0.0053046953350894
1113 => 0.0054800704460343
1114 => 0.0054000365692388
1115 => 0.0054530109117829
1116 => 0.0053577582673847
1117 => 0.0054104750136799
1118 => 0.0051819568822083
1119 => 0.0049685698663769
1120 => 0.0050544430307027
1121 => 0.0051477969811125
1122 => 0.005350212131745
1123 => 0.005229655337917
1124 => 0.0052730121197346
1125 => 0.0051277741584832
1126 => 0.0048281067592489
1127 => 0.0048298028441847
1128 => 0.0047837055434217
1129 => 0.0047438707452463
1130 => 0.0052435027359147
1201 => 0.0051813655998621
1202 => 0.0050823582058697
1203 => 0.005214883537126
1204 => 0.00524992533817
1205 => 0.0052509229289828
1206 => 0.0053476099896934
1207 => 0.0053992118913269
1208 => 0.0054083069501452
1209 => 0.0055604461292357
1210 => 0.0056114411753025
1211 => 0.0058214825529628
1212 => 0.0053948338304957
1213 => 0.0053860472808205
1214 => 0.0052167484403123
1215 => 0.0051093764391533
1216 => 0.0052241002930924
1217 => 0.0053257299663147
1218 => 0.0052199063575509
1219 => 0.0052337246867972
1220 => 0.0050916651381383
1221 => 0.0051424447422608
1222 => 0.0051861829780825
1223 => 0.0051620332950764
1224 => 0.0051258800507585
1225 => 0.00531739749208
1226 => 0.0053065913274778
1227 => 0.0054849367718033
1228 => 0.0056239697992602
1229 => 0.0058731418395894
1230 => 0.0056131178258737
1231 => 0.005603641517312
]
'min_raw' => 0.0047438707452463
'max_raw' => 0.01371592542725
'avg_raw' => 0.009229898086248
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004743'
'max' => '$0.013715'
'avg' => '$0.009229'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00083415333193599
'max_diff' => -0.0046332466147456
'year' => 2030
]
5 => [
'items' => [
101 => 0.0056962739535498
102 => 0.0056114269937592
103 => 0.0056650473435294
104 => 0.005864502772274
105 => 0.0058687169511857
106 => 0.0057981240247531
107 => 0.0057938284387641
108 => 0.0058073865824875
109 => 0.0058867970537562
110 => 0.0058590485950576
111 => 0.0058911598139687
112 => 0.0059313153849214
113 => 0.006097415851991
114 => 0.006137462112271
115 => 0.006040170461396
116 => 0.0060489548081416
117 => 0.0060125650599988
118 => 0.005977413019255
119 => 0.0060564296733037
120 => 0.0062008341616537
121 => 0.0061999358288263
122 => 0.0062334348633014
123 => 0.0062543044842583
124 => 0.0061647167936147
125 => 0.0061063985012364
126 => 0.0061287614454236
127 => 0.0061645202801805
128 => 0.0061171653372575
129 => 0.0058248686925931
130 => 0.0059135328226023
131 => 0.0058987747759143
201 => 0.0058777575227909
202 => 0.0059669099911346
203 => 0.0059583110180739
204 => 0.0057007383902766
205 => 0.0057172273542158
206 => 0.0057017411387869
207 => 0.0057517802690194
208 => 0.0056087247165122
209 => 0.0056527276409695
210 => 0.0056803258626874
211 => 0.0056965814272988
212 => 0.00575530767322
213 => 0.0057484168260769
214 => 0.0057548793284864
215 => 0.0058419548480334
216 => 0.0062823529451924
217 => 0.0063063228419371
218 => 0.0061882863037882
219 => 0.0062354395726109
220 => 0.0061449156077576
221 => 0.0062056849518215
222 => 0.006247261793656
223 => 0.0060593840401727
224 => 0.0060482591389279
225 => 0.0059573615494705
226 => 0.0060062047653423
227 => 0.0059284916969388
228 => 0.0059475597656373
301 => 0.0058942437832319
302 => 0.0059902019364553
303 => 0.0060974980621486
304 => 0.0061246053007511
305 => 0.0060532978263879
306 => 0.0060016665155573
307 => 0.0059110189421499
308 => 0.0060617678769393
309 => 0.0061058514594622
310 => 0.0060615363246473
311 => 0.0060512675396058
312 => 0.0060318082105075
313 => 0.0060553959282642
314 => 0.0061056113708044
315 => 0.0060819306954361
316 => 0.0060975721987166
317 => 0.0060379629176592
318 => 0.0061647464508681
319 => 0.0063661092137227
320 => 0.0063667566279314
321 => 0.0063430758249154
322 => 0.0063333861505312
323 => 0.006357684091497
324 => 0.0063708647277171
325 => 0.0064494398133199
326 => 0.0065337540107412
327 => 0.0069272115809399
328 => 0.006816730269674
329 => 0.0071658292328499
330 => 0.007441921187895
331 => 0.0075247090931751
401 => 0.0074485481157893
402 => 0.007188005526288
403 => 0.007175222063863
404 => 0.007564582690822
405 => 0.0074545704798596
406 => 0.0074414848774216
407 => 0.0073022761759553
408 => 0.0073845657598549
409 => 0.0073665678207407
410 => 0.0073381571933596
411 => 0.0074951599870981
412 => 0.0077890552012405
413 => 0.0077432488759845
414 => 0.0077090565790752
415 => 0.0075592358872467
416 => 0.0076494614073905
417 => 0.0076173338278233
418 => 0.0077553742983097
419 => 0.0076736021815644
420 => 0.0074537370291615
421 => 0.0074887512793667
422 => 0.0074834589458871
423 => 0.0075923747938788
424 => 0.0075596809597692
425 => 0.0074770749500599
426 => 0.007788050699349
427 => 0.0077678576639282
428 => 0.0077964867713844
429 => 0.0078090901898711
430 => 0.0079983756484561
501 => 0.0080759198443792
502 => 0.008093523734456
503 => 0.0081671847230996
504 => 0.0080916909819549
505 => 0.008393719772659
506 => 0.0085945512946087
507 => 0.0088278274420489
508 => 0.0091687065921764
509 => 0.0092968803059328
510 => 0.0092737268717811
511 => 0.0095321775530078
512 => 0.0099966076821363
513 => 0.0093676014794436
514 => 0.010029946538225
515 => 0.0098202557397565
516 => 0.0093230826287631
517 => 0.0092910705417011
518 => 0.0096277619447643
519 => 0.010374511071412
520 => 0.010187458884745
521 => 0.01037481702178
522 => 0.010156253802816
523 => 0.010145400296799
524 => 0.010364201894077
525 => 0.010875443752372
526 => 0.01063257190911
527 => 0.010284355567176
528 => 0.010541473095214
529 => 0.010318734097324
530 => 0.0098168407943563
531 => 0.010187315849463
601 => 0.0099395897306354
602 => 0.010011889381954
603 => 0.010532572837251
604 => 0.010469922826352
605 => 0.01055099774169
606 => 0.010407902638219
607 => 0.01027422924755
608 => 0.010024717937149
609 => 0.0099508499388989
610 => 0.0099712643961232
611 => 0.0099508398225078
612 => 0.0098112405374662
613 => 0.0097810940851528
614 => 0.0097308486772174
615 => 0.009746421830132
616 => 0.009651945763401
617 => 0.0098302416210738
618 => 0.0098633349033956
619 => 0.0099930837599692
620 => 0.010006554716684
621 => 0.010367903435382
622 => 0.010168878633342
623 => 0.010302401653525
624 => 0.010290458097833
625 => 0.0093338578776391
626 => 0.0094656689478266
627 => 0.0096707256084458
628 => 0.0095783478607846
629 => 0.0094477473386555
630 => 0.0093422804146793
701 => 0.0091824872403087
702 => 0.0094073930646792
703 => 0.0097031203076585
704 => 0.01001405484759
705 => 0.01038762232408
706 => 0.010304246412132
707 => 0.010007071263465
708 => 0.010020402323548
709 => 0.0101028096914
710 => 0.0099960846625328
711 => 0.0099646093679998
712 => 0.010098485469267
713 => 0.0100994074004
714 => 0.0099766073565373
715 => 0.0098401375799551
716 => 0.0098395657666083
717 => 0.0098152822880072
718 => 0.010160573779713
719 => 0.010350449187243
720 => 0.010372218096717
721 => 0.01034898396619
722 => 0.0103579258609
723 => 0.010247441544877
724 => 0.0104999759282
725 => 0.010731726451398
726 => 0.010669612360553
727 => 0.010576494508338
728 => 0.010502321653886
729 => 0.010652139593291
730 => 0.010645468436285
731 => 0.010729702312753
801 => 0.010725880977558
802 => 0.010697556293098
803 => 0.010669613372117
804 => 0.010780403895282
805 => 0.010748498003852
806 => 0.01071654255376
807 => 0.010652451006465
808 => 0.01066116211219
809 => 0.010568060338085
810 => 0.010524987197337
811 => 0.0098772705073988
812 => 0.0097041794430939
813 => 0.0097586374155178
814 => 0.0097765663940403
815 => 0.0097012369410326
816 => 0.0098092400260969
817 => 0.0097924078596932
818 => 0.009857891972682
819 => 0.0098169803418763
820 => 0.0098186593694751
821 => 0.0099389717523954
822 => 0.0099738989490026
823 => 0.0099561346949111
824 => 0.0099685761695538
825 => 0.010255284701476
826 => 0.010214523916659
827 => 0.010192870562118
828 => 0.010198868689308
829 => 0.010272128866314
830 => 0.010292637716019
831 => 0.01020574027869
901 => 0.010246721612482
902 => 0.010421214930465
903 => 0.010482277716292
904 => 0.010677160816853
905 => 0.010594371011964
906 => 0.010746335281897
907 => 0.011213421639233
908 => 0.011586562541392
909 => 0.011243406747067
910 => 0.011928632494673
911 => 0.01246217902898
912 => 0.012441700624325
913 => 0.012348664444915
914 => 0.011741235900675
915 => 0.011182271098016
916 => 0.011649868890339
917 => 0.011651060893274
918 => 0.011610893828222
919 => 0.011361419636898
920 => 0.011602212667131
921 => 0.011621325943439
922 => 0.011610627591336
923 => 0.011419356313772
924 => 0.011127320425771
925 => 0.011184383539252
926 => 0.011277854083188
927 => 0.011100894843518
928 => 0.011044345644105
929 => 0.011149481364739
930 => 0.011488250562519
1001 => 0.011424208208035
1002 => 0.011422535803344
1003 => 0.011696536154012
1004 => 0.01150041103591
1005 => 0.011185103287854
1006 => 0.011105483923071
1007 => 0.010822888816124
1008 => 0.011018078263062
1009 => 0.011025102783768
1010 => 0.010918199518468
1011 => 0.011193777898656
1012 => 0.011191238395367
1013 => 0.011452859052927
1014 => 0.011952979489948
1015 => 0.011805069267289
1016 => 0.011633065770922
1017 => 0.011651767320117
1018 => 0.011856877155426
1019 => 0.011732863066796
1020 => 0.011777459397724
1021 => 0.011856809653538
1022 => 0.011904683633026
1023 => 0.011644878991207
1024 => 0.011584306101307
1025 => 0.011460395226766
1026 => 0.011428069192504
1027 => 0.011528992014333
1028 => 0.011502402416437
1029 => 0.011024512400003
1030 => 0.010974570234331
1031 => 0.010976101889251
1101 => 0.010850519939047
1102 => 0.010658977321866
1103 => 0.011162339883404
1104 => 0.011121912825158
1105 => 0.01107728448166
1106 => 0.011082751199093
1107 => 0.011301243826516
1108 => 0.011174507068469
1109 => 0.011511457511485
1110 => 0.011442190630058
1111 => 0.011371147314491
1112 => 0.011361326964247
1113 => 0.011333981348885
1114 => 0.011240203058951
1115 => 0.011126960138654
1116 => 0.011052187353741
1117 => 0.010195058617413
1118 => 0.010354136725187
1119 => 0.010537141587755
1120 => 0.010600314132968
1121 => 0.010492253122974
1122 => 0.011244469966265
1123 => 0.011381907232076
1124 => 0.010965600789123
1125 => 0.010887726851327
1126 => 0.011249575368662
1127 => 0.011031336478527
1128 => 0.011129609437392
1129 => 0.01091719705276
1130 => 0.011348802619375
1201 => 0.011345514508095
1202 => 0.011177610194428
1203 => 0.01131952177058
1204 => 0.011294861141951
1205 => 0.011105297585351
1206 => 0.011354812122238
1207 => 0.011354935878335
1208 => 0.011193331626985
1209 => 0.011004613241128
1210 => 0.010970874851066
1211 => 0.010945457506269
1212 => 0.011123358328683
1213 => 0.011282863649779
1214 => 0.011579663507614
1215 => 0.011654286043665
1216 => 0.011945542769773
1217 => 0.011772113570408
1218 => 0.011848992488203
1219 => 0.011932455428655
1220 => 0.011972470631557
1221 => 0.011907268005763
1222 => 0.012359709587462
1223 => 0.012397909519409
1224 => 0.012410717626163
1225 => 0.012258156870448
1226 => 0.012393666528812
1227 => 0.012330266047272
1228 => 0.012495216487079
1229 => 0.012521082822233
1230 => 0.012499174956579
1231 => 0.012507385339629
]
'min_raw' => 0.0056087247165122
'max_raw' => 0.012521082822233
'avg_raw' => 0.0090649037693728
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0056087'
'max' => '$0.012521'
'avg' => '$0.009064'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00086485397126585
'max_diff' => -0.0011948426050163
'year' => 2031
]
6 => [
'items' => [
101 => 0.012121306265814
102 => 0.012101286029108
103 => 0.011828308681041
104 => 0.011939548968125
105 => 0.011731590583307
106 => 0.011797536329342
107 => 0.011826604585839
108 => 0.011811420978254
109 => 0.011945838327053
110 => 0.011831556120924
111 => 0.011529946589214
112 => 0.01122825488419
113 => 0.011224467390586
114 => 0.011145037289954
115 => 0.011087623875546
116 => 0.011098683736011
117 => 0.011137660126851
118 => 0.011085358496855
119 => 0.011096519701375
120 => 0.011281870063118
121 => 0.011319040756307
122 => 0.011192720217323
123 => 0.010685525025332
124 => 0.010561058053015
125 => 0.010650522444429
126 => 0.010607764227578
127 => 0.0085612936337087
128 => 0.009042081544011
129 => 0.0087564136937241
130 => 0.0088880625820821
131 => 0.0085964696802704
201 => 0.0087356330967083
202 => 0.0087099346951265
203 => 0.009483027427344
204 => 0.0094709566476847
205 => 0.0094767342911361
206 => 0.0092009523156281
207 => 0.009640280490909
208 => 0.0098567093477826
209 => 0.0098166541264428
210 => 0.0098267351626982
211 => 0.0096535095597601
212 => 0.009478411493625
213 => 0.009284200790882
214 => 0.0096450202714101
215 => 0.0096049033045693
216 => 0.009696917192873
217 => 0.0099309344179046
218 => 0.0099653943432355
219 => 0.010011708832338
220 => 0.0099951083848848
221 => 0.010390598391716
222 => 0.010342701942362
223 => 0.010458118604557
224 => 0.010220697773739
225 => 0.009952033567475
226 => 0.010003097849791
227 => 0.009998179948771
228 => 0.0099355694242816
229 => 0.0098790474422783
301 => 0.0097849542672124
302 => 0.010082678996291
303 => 0.010070591915999
304 => 0.010266267696223
305 => 0.010231680101375
306 => 0.010000695677962
307 => 0.010008945331833
308 => 0.010064428218759
309 => 0.010256455123904
310 => 0.010313461783539
311 => 0.010287054027473
312 => 0.010349559227311
313 => 0.01039896078872
314 => 0.010355763302824
315 => 0.010967348607677
316 => 0.010713375749523
317 => 0.010837160353455
318 => 0.010866682252112
319 => 0.010791062529482
320 => 0.010807461739581
321 => 0.010832302074364
322 => 0.010983127722931
323 => 0.011378937866523
324 => 0.011554239484749
325 => 0.012081643052412
326 => 0.011539683125672
327 => 0.011507525466472
328 => 0.01160252677507
329 => 0.011912168500626
330 => 0.01216310403602
331 => 0.012246353829929
401 => 0.012257356664498
402 => 0.012413538812212
403 => 0.012503059506658
404 => 0.012394574191482
405 => 0.012302644245756
406 => 0.011973362590931
407 => 0.012011477839081
408 => 0.012274054101763
409 => 0.012644958538465
410 => 0.012963233131185
411 => 0.012851784461804
412 => 0.013702059138683
413 => 0.013786360399835
414 => 0.013774712691329
415 => 0.013966763509943
416 => 0.013585581745464
417 => 0.0134226191561
418 => 0.012322520543471
419 => 0.012631603381181
420 => 0.01308087343759
421 => 0.013021410860948
422 => 0.01269513893696
423 => 0.012962985624673
424 => 0.012874427133375
425 => 0.012804577376993
426 => 0.013124572652021
427 => 0.012772724702446
428 => 0.013077363485143
429 => 0.01268666109525
430 => 0.012852293549938
501 => 0.012758272557917
502 => 0.012819115662534
503 => 0.01246342811617
504 => 0.012655348482361
505 => 0.012455443597961
506 => 0.012455348817017
507 => 0.012450935905615
508 => 0.012686123115597
509 => 0.012693792562071
510 => 0.012519988858546
511 => 0.012494941029544
512 => 0.012587555981463
513 => 0.01247912812866
514 => 0.01252986083855
515 => 0.01248066477076
516 => 0.012469589699673
517 => 0.012381341648983
518 => 0.012343321962314
519 => 0.012358230461104
520 => 0.012307340068878
521 => 0.012276676766776
522 => 0.012444836203042
523 => 0.012354995399778
524 => 0.012431066811444
525 => 0.012344373836873
526 => 0.01204385821668
527 => 0.011871028505612
528 => 0.01130338235688
529 => 0.011464366100497
530 => 0.011571098489065
531 => 0.01153582343528
601 => 0.011611607900444
602 => 0.011616260451109
603 => 0.011591622148953
604 => 0.011563094151419
605 => 0.011549208299916
606 => 0.011652702060552
607 => 0.011712783672041
608 => 0.011581810512153
609 => 0.011551125333301
610 => 0.011683546429174
611 => 0.011764323221159
612 => 0.012360733668621
613 => 0.012316549656292
614 => 0.012427442856562
615 => 0.012414957984006
616 => 0.012531191724561
617 => 0.012721184766324
618 => 0.01233487578953
619 => 0.012401925670342
620 => 0.012385486587975
621 => 0.012564964178702
622 => 0.012565524488149
623 => 0.012457918706938
624 => 0.012516253546637
625 => 0.01248369263945
626 => 0.012542534599608
627 => 0.01231595955187
628 => 0.01259190350275
629 => 0.012748345941463
630 => 0.012750518144876
701 => 0.012824670619222
702 => 0.01290001382778
703 => 0.013044628555595
704 => 0.012895980601511
705 => 0.0126285774027
706 => 0.012647883049947
707 => 0.012491104652323
708 => 0.012493740125511
709 => 0.012479671763086
710 => 0.012521891977741
711 => 0.012325224514738
712 => 0.012371381975212
713 => 0.012306761260251
714 => 0.012401785197528
715 => 0.012299555149038
716 => 0.012385478660551
717 => 0.012422560399711
718 => 0.012559392815524
719 => 0.012279344889967
720 => 0.011708308212179
721 => 0.011828347045
722 => 0.01165080018241
723 => 0.011667232820511
724 => 0.011700429364711
725 => 0.011592828503727
726 => 0.01161335535711
727 => 0.011612621993462
728 => 0.011606302261738
729 => 0.011578311122053
730 => 0.011537718431633
731 => 0.011699427216497
801 => 0.011726904690148
802 => 0.011787983710335
803 => 0.011969713444117
804 => 0.01195155435823
805 => 0.011981172580725
806 => 0.011916516167318
807 => 0.01167023204609
808 => 0.011683606458782
809 => 0.011516827318211
810 => 0.01178371879274
811 => 0.011720515368776
812 => 0.011679767710184
813 => 0.011668649334013
814 => 0.011850829540654
815 => 0.011905340713806
816 => 0.011871373008807
817 => 0.011801704254856
818 => 0.011935488858159
819 => 0.011971283974084
820 => 0.011979297180466
821 => 0.012216337846866
822 => 0.011992545120525
823 => 0.012046414254063
824 => 0.01246668585631
825 => 0.012085557506589
826 => 0.012287449693613
827 => 0.012277568121654
828 => 0.012380849332876
829 => 0.012269096047781
830 => 0.012270481363685
831 => 0.012362188082375
901 => 0.012233402535369
902 => 0.012201513422815
903 => 0.012157458842216
904 => 0.012253650407249
905 => 0.012311312900117
906 => 0.012776030244194
907 => 0.013076258842153
908 => 0.013063225126919
909 => 0.013182328886066
910 => 0.013128671551705
911 => 0.012955397864964
912 => 0.013251154919755
913 => 0.013157565012619
914 => 0.013165280450851
915 => 0.013164993281855
916 => 0.013227222388329
917 => 0.013183127363178
918 => 0.013096211542344
919 => 0.013153910320405
920 => 0.013325255063556
921 => 0.013857114403794
922 => 0.014154749936791
923 => 0.013839196370986
924 => 0.014056860995247
925 => 0.013926339782526
926 => 0.013902620195505
927 => 0.014039329664831
928 => 0.014176278425985
929 => 0.014167555381945
930 => 0.014068137613744
1001 => 0.014011979039119
1002 => 0.014437230580679
1003 => 0.014750548672528
1004 => 0.014729182479175
1005 => 0.014823485907977
1006 => 0.015100363691635
1007 => 0.015125677926227
1008 => 0.01512248891451
1009 => 0.015059744942805
1010 => 0.01533236707794
1011 => 0.015559793259399
1012 => 0.015045221526204
1013 => 0.015241163705966
1014 => 0.015329128463324
1015 => 0.015458286825093
1016 => 0.015676198630852
1017 => 0.015912908650159
1018 => 0.015946382042282
1019 => 0.015922631068721
1020 => 0.015766514447882
1021 => 0.016025525375545
1022 => 0.016177247902416
1023 => 0.01626759519506
1024 => 0.016496700896848
1025 => 0.015329671703719
1026 => 0.014503590435707
1027 => 0.014374585916949
1028 => 0.014636921678696
1029 => 0.01470609752698
1030 => 0.014678212829276
1031 => 0.013748383258106
1101 => 0.01436969055669
1102 => 0.015038164968964
1103 => 0.015063843793587
1104 => 0.015398496061513
1105 => 0.015507472557809
1106 => 0.015776911497365
1107 => 0.015760058018335
1108 => 0.015825662112407
1109 => 0.015810580867284
1110 => 0.016309659765748
1111 => 0.016860217904688
1112 => 0.016841153827004
1113 => 0.016762004580623
1114 => 0.016879554708451
1115 => 0.017447789709232
1116 => 0.01739547573614
1117 => 0.017446294304905
1118 => 0.018116275395147
1119 => 0.018987346116161
1120 => 0.01858264631218
1121 => 0.019460728437588
1122 => 0.020013434590399
1123 => 0.020969282730803
1124 => 0.020849605835973
1125 => 0.021221710502694
1126 => 0.020635359216905
1127 => 0.019288978143588
1128 => 0.019075908184996
1129 => 0.019502479637888
1130 => 0.02055116393059
1201 => 0.019469452837561
1202 => 0.019688281582857
1203 => 0.01962525888949
1204 => 0.01962190067799
1205 => 0.019750069952124
1206 => 0.019564153735133
1207 => 0.018806697621425
1208 => 0.01915383529462
1209 => 0.019019788768079
1210 => 0.019168523383107
1211 => 0.019971182757591
1212 => 0.019616307915122
1213 => 0.019242476096272
1214 => 0.019711344157032
1215 => 0.020308374318924
1216 => 0.02027101324436
1217 => 0.020198517143986
1218 => 0.020607173866019
1219 => 0.021282155045633
1220 => 0.021464599746189
1221 => 0.021599276694222
1222 => 0.02161784636997
1223 => 0.021809125571163
1224 => 0.02078056909778
1225 => 0.022412914636243
1226 => 0.0226947756181
1227 => 0.022641797435451
1228 => 0.022955074054262
1229 => 0.022862900125947
1230 => 0.022729354565465
1231 => 0.023225964642128
]
'min_raw' => 0.0085612936337087
'max_raw' => 0.023225964642128
'avg_raw' => 0.015893629137918
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008561'
'max' => '$0.023225'
'avg' => '$0.015893'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0029525689171965
'max_diff' => 0.010704881819895
'year' => 2032
]
7 => [
'items' => [
101 => 0.022656641263601
102 => 0.021848558403602
103 => 0.021405228164539
104 => 0.021989041185767
105 => 0.022345555425564
106 => 0.022581188659505
107 => 0.022652491133722
108 => 0.020860413008884
109 => 0.019894582292806
110 => 0.02051366870854
111 => 0.021268996862798
112 => 0.020776373211746
113 => 0.020795683126207
114 => 0.020093331259024
115 => 0.021331139418414
116 => 0.021150801181196
117 => 0.022086396274895
118 => 0.021863108997164
119 => 0.022626050476483
120 => 0.022425142416025
121 => 0.023259100542368
122 => 0.023591789017481
123 => 0.024150424746022
124 => 0.024561359461994
125 => 0.024802668187141
126 => 0.024788180916409
127 => 0.025744366304971
128 => 0.025180537187909
129 => 0.02447223493256
130 => 0.024459423979425
131 => 0.024826263754191
201 => 0.025595059284524
202 => 0.025794396780019
203 => 0.02590579924588
204 => 0.025735182491467
205 => 0.025123186394893
206 => 0.024858929583283
207 => 0.025084084043031
208 => 0.024808739486502
209 => 0.025284061439109
210 => 0.025936780003329
211 => 0.025801996200947
212 => 0.026252558244395
213 => 0.026718842558854
214 => 0.027385650070669
215 => 0.027559978246069
216 => 0.027848136090897
217 => 0.028144745168146
218 => 0.02824000800992
219 => 0.028421894333189
220 => 0.028420935702484
221 => 0.028969062380019
222 => 0.02957366307941
223 => 0.029801885846892
224 => 0.03032667151644
225 => 0.029427994448023
226 => 0.030109651327675
227 => 0.0307245228961
228 => 0.029991447664045
301 => 0.03100182108681
302 => 0.031041051597261
303 => 0.031633385728458
304 => 0.031032941609001
305 => 0.030676399807553
306 => 0.031705722628886
307 => 0.032203779518764
308 => 0.032053760730211
309 => 0.030912110341985
310 => 0.030247620848348
311 => 0.028508523673051
312 => 0.030568559400598
313 => 0.03157194271142
314 => 0.030909511821609
315 => 0.031243603431126
316 => 0.033066298923081
317 => 0.033760263355624
318 => 0.033615923604833
319 => 0.033640314646682
320 => 0.034014765258136
321 => 0.035675285483045
322 => 0.034680263273722
323 => 0.035440920469979
324 => 0.035844370304119
325 => 0.036219116994573
326 => 0.035298857562727
327 => 0.034101613563191
328 => 0.033722396131654
329 => 0.030843646124704
330 => 0.030693794685064
331 => 0.030609678531031
401 => 0.03007933807832
402 => 0.029662635754965
403 => 0.029331258596267
404 => 0.028461625974249
405 => 0.028755101455846
406 => 0.027369088562783
407 => 0.028255810494484
408 => 0.026043700450704
409 => 0.027886011428369
410 => 0.026883325322827
411 => 0.027556602075542
412 => 0.027554253076378
413 => 0.026314537112041
414 => 0.025599494816023
415 => 0.026055147596908
416 => 0.02654364354778
417 => 0.026622900372311
418 => 0.027256248123665
419 => 0.027433001867303
420 => 0.026897429772235
421 => 0.02599785938693
422 => 0.026206809070421
423 => 0.025595260457357
424 => 0.02452354503584
425 => 0.025293269761929
426 => 0.025556087625823
427 => 0.025672162966923
428 => 0.024618253937208
429 => 0.024287092838594
430 => 0.024110785448402
501 => 0.025861812965617
502 => 0.025957738205731
503 => 0.025466971114845
504 => 0.027685284902096
505 => 0.027183212171803
506 => 0.027744150422345
507 => 0.026187849076751
508 => 0.02624730188399
509 => 0.025510523886151
510 => 0.025923070333417
511 => 0.025631495801482
512 => 0.025889740657342
513 => 0.02604453155916
514 => 0.026781188658981
515 => 0.02789442286914
516 => 0.026671156653617
517 => 0.026138162046019
518 => 0.026468828902897
519 => 0.027349438317534
520 => 0.028683606658274
521 => 0.027893752147916
522 => 0.028244276167013
523 => 0.028320850071458
524 => 0.027738440597523
525 => 0.028705080926319
526 => 0.029223111331492
527 => 0.029754503335912
528 => 0.030215896124084
529 => 0.029542253683786
530 => 0.030263147657755
531 => 0.029682234369653
601 => 0.029161095096513
602 => 0.029161885449674
603 => 0.028834967171003
604 => 0.028201521811725
605 => 0.028084704768679
606 => 0.028692401778972
607 => 0.029179717232106
608 => 0.02921985486691
609 => 0.029489657740937
610 => 0.029649324302595
611 => 0.031214273663014
612 => 0.031843709241714
613 => 0.032613371152743
614 => 0.032913197842858
615 => 0.033815568686285
616 => 0.033086830943241
617 => 0.032929163948558
618 => 0.030740307445658
619 => 0.031098732575386
620 => 0.031672605790961
621 => 0.030749770403612
622 => 0.031335097049459
623 => 0.031450652928263
624 => 0.030718412810278
625 => 0.031109533895522
626 => 0.030070832252433
627 => 0.027917063726515
628 => 0.028707478686375
629 => 0.029289490147631
630 => 0.028458888030924
701 => 0.02994771017638
702 => 0.029077971014532
703 => 0.028802305455068
704 => 0.027726835825733
705 => 0.028234416092157
706 => 0.028920925670345
707 => 0.028496742566329
708 => 0.029376986198575
709 => 0.030623645934236
710 => 0.031512089901739
711 => 0.031580293597711
712 => 0.03100908364773
713 => 0.031924451237988
714 => 0.031931118691554
715 => 0.030898580310356
716 => 0.03026615630107
717 => 0.030122468235528
718 => 0.030481429194955
719 => 0.030917274067548
720 => 0.031604479954814
721 => 0.032019744079964
722 => 0.03310253267928
723 => 0.033395504228273
724 => 0.033717391137193
725 => 0.034147531313756
726 => 0.034664024881398
727 => 0.033533966359393
728 => 0.033578865691165
729 => 0.032526570842199
730 => 0.031402042881733
731 => 0.032255419429338
801 => 0.033371095745406
802 => 0.033115158365787
803 => 0.033086360182254
804 => 0.033134790739007
805 => 0.032941822312908
806 => 0.032069033273405
807 => 0.031630724081715
808 => 0.032196254763595
809 => 0.03249680915214
810 => 0.032962942797676
811 => 0.032905481986976
812 => 0.034106192198777
813 => 0.034572751879491
814 => 0.03445338594795
815 => 0.034475352152055
816 => 0.035320036168192
817 => 0.036259498516654
818 => 0.037139428978965
819 => 0.038034532039119
820 => 0.036955450363636
821 => 0.036407559237331
822 => 0.036972843026207
823 => 0.036672895490884
824 => 0.038396482999069
825 => 0.038515820458521
826 => 0.040239283331712
827 => 0.041875054824511
828 => 0.040847656057774
829 => 0.04181644681975
830 => 0.042864273015497
831 => 0.044885699750767
901 => 0.044204954340978
902 => 0.04368351402572
903 => 0.043190755447383
904 => 0.044216107825681
905 => 0.045535207279958
906 => 0.045819328668231
907 => 0.046279713859958
908 => 0.04579567512408
909 => 0.046378646466328
910 => 0.048436791475049
911 => 0.047880662525944
912 => 0.047090870016025
913 => 0.048715577834063
914 => 0.049303553277519
915 => 0.053430272864825
916 => 0.058640426810083
917 => 0.056483388865031
918 => 0.055144445805358
919 => 0.055459129184535
920 => 0.057361701030501
921 => 0.057972746722814
922 => 0.056311713891027
923 => 0.056898418768029
924 => 0.060131220323858
925 => 0.061865514637869
926 => 0.05951011001264
927 => 0.053011642068338
928 => 0.047019757841814
929 => 0.048609075356751
930 => 0.048428896072822
1001 => 0.051902138044353
1002 => 0.047867399034432
1003 => 0.047935333691694
1004 => 0.05148039862897
1005 => 0.050534636081504
1006 => 0.049002621878724
1007 => 0.047030943240923
1008 => 0.043386112920747
1009 => 0.040157785062554
1010 => 0.046489279431973
1011 => 0.046216253881689
1012 => 0.045820872424757
1013 => 0.046700751072417
1014 => 0.050973192027543
1015 => 0.050874698434985
1016 => 0.050248132451007
1017 => 0.050723377227555
1018 => 0.048919309171621
1019 => 0.049384258587501
1020 => 0.047018808696739
1021 => 0.048088090837277
1022 => 0.048999334864308
1023 => 0.049182280593933
1024 => 0.049594466664218
1025 => 0.046072381823066
1026 => 0.047653694513765
1027 => 0.048582567570589
1028 => 0.044385885307167
1029 => 0.048499612655603
1030 => 0.046011070161913
1031 => 0.0451664214629
1101 => 0.046303629662116
1102 => 0.04586045852091
1103 => 0.045479445997584
1104 => 0.045266834462942
1105 => 0.046101874655357
1106 => 0.046062919032292
1107 => 0.044696631203184
1108 => 0.042914364427128
1109 => 0.043512551658085
1110 => 0.043295224629043
1111 => 0.042507603440051
1112 => 0.043038365023687
1113 => 0.040701159621645
1114 => 0.036680119204798
1115 => 0.039336541671966
1116 => 0.039234272296612
1117 => 0.039182703440011
1118 => 0.041178931505964
1119 => 0.04098704023824
1120 => 0.040638755708316
1121 => 0.042501206921531
1122 => 0.041821387175203
1123 => 0.043916431447708
1124 => 0.045296363104547
1125 => 0.04494636780026
1126 => 0.046244200193306
1127 => 0.043526332683718
1128 => 0.044429099248485
1129 => 0.044615158186303
1130 => 0.042478224562661
1201 => 0.041018436022799
1202 => 0.040921084769997
1203 => 0.038390012613129
1204 => 0.039742090929228
1205 => 0.040931863894592
1206 => 0.040362054974294
1207 => 0.040181670492685
1208 => 0.041103215688605
1209 => 0.041174827642828
1210 => 0.039542067497431
1211 => 0.039881570034449
1212 => 0.041297352051412
1213 => 0.039845895960144
1214 => 0.037025953868817
1215 => 0.036326569241418
1216 => 0.036233258439907
1217 => 0.034336471861507
1218 => 0.036373305466459
1219 => 0.03548417301415
1220 => 0.03829293177755
1221 => 0.036688583835571
1222 => 0.036619423602362
1223 => 0.036514877766266
1224 => 0.034882235202971
1225 => 0.035239680164485
1226 => 0.036427881656962
1227 => 0.036851845335526
1228 => 0.03680762245042
1229 => 0.036422058821428
1230 => 0.036598567876375
1231 => 0.036029970710559
]
'min_raw' => 0.019894582292806
'max_raw' => 0.061865514637869
'avg_raw' => 0.040880048465337
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.019894'
'max' => '$0.061865'
'avg' => '$0.04088'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011333288659097
'max_diff' => 0.038639549995741
'year' => 2033
]
8 => [
'items' => [
101 => 0.035829187216982
102 => 0.035195459281405
103 => 0.034264054287916
104 => 0.034393571864899
105 => 0.032548214857424
106 => 0.031542766419242
107 => 0.031264471543151
108 => 0.030892324004098
109 => 0.031306506597934
110 => 0.032542987192879
111 => 0.031051529261384
112 => 0.028494529251445
113 => 0.028648209308958
114 => 0.028993482770172
115 => 0.028350067959412
116 => 0.02774112983874
117 => 0.028270552129953
118 => 0.027187117517407
119 => 0.029124410666928
120 => 0.029072012316435
121 => 0.029794115401172
122 => 0.030245661279105
123 => 0.029204994220183
124 => 0.028943269269127
125 => 0.029092359695985
126 => 0.026628227043065
127 => 0.02959274319274
128 => 0.029618380451507
129 => 0.029398858677116
130 => 0.03097737200765
131 => 0.034308527485732
201 => 0.033055212799459
202 => 0.032569891471297
203 => 0.031647295271694
204 => 0.032876599929324
205 => 0.032782208511758
206 => 0.032355334724642
207 => 0.032097160126268
208 => 0.032572854739838
209 => 0.032038216299367
210 => 0.031942180544577
211 => 0.031360308358478
212 => 0.031152606461539
213 => 0.030998832245895
214 => 0.030829541944014
215 => 0.031202954165449
216 => 0.03035675294521
217 => 0.02933631722773
218 => 0.029251479039089
219 => 0.029485724736976
220 => 0.029382088453202
221 => 0.029250982868434
222 => 0.029000666602629
223 => 0.028926403113726
224 => 0.029167723425139
225 => 0.028895286863402
226 => 0.029297281850633
227 => 0.029187961457503
228 => 0.028577306628094
301 => 0.027816204617275
302 => 0.027809429212913
303 => 0.02764545103314
304 => 0.027436600166914
305 => 0.02737850263379
306 => 0.028225965661266
307 => 0.029980188765707
308 => 0.029635792795304
309 => 0.029884654179039
310 => 0.03110880587985
311 => 0.031497926894012
312 => 0.031221738014996
313 => 0.030843673642811
314 => 0.030860306556478
315 => 0.032152266964102
316 => 0.032232844949975
317 => 0.032436439524831
318 => 0.032698116089342
319 => 0.031266302665454
320 => 0.030792868272974
321 => 0.030568528792677
322 => 0.029877650023667
323 => 0.030622703544575
324 => 0.030188592764314
325 => 0.030247169139908
326 => 0.030209021198458
327 => 0.030229852554042
328 => 0.029123869154011
329 => 0.029526831376206
330 => 0.028856828525998
331 => 0.027959769920919
401 => 0.027956762665925
402 => 0.028176316488657
403 => 0.028045717283754
404 => 0.027694278181374
405 => 0.027744198447122
406 => 0.027306844390604
407 => 0.027797301148134
408 => 0.027811365693001
409 => 0.027622513125992
410 => 0.028378129430957
411 => 0.028687706047626
412 => 0.028563399242406
413 => 0.028678984350795
414 => 0.029650104002729
415 => 0.029808438878915
416 => 0.029878760771902
417 => 0.029784538751165
418 => 0.028696734635323
419 => 0.028744983373561
420 => 0.028390966145912
421 => 0.028091858893965
422 => 0.028103821615432
423 => 0.028257601624154
424 => 0.02892916794132
425 => 0.030342439664798
426 => 0.030396072293616
427 => 0.030461076604317
428 => 0.030196671404146
429 => 0.030116924265757
430 => 0.030222131325775
501 => 0.030752881878816
502 => 0.032118116398609
503 => 0.031635551338367
504 => 0.031243218432817
505 => 0.031587400163176
506 => 0.031534416083573
507 => 0.031087177130429
508 => 0.031074624622589
509 => 0.030216230080564
510 => 0.029898901163075
511 => 0.029633717367963
512 => 0.029344143586499
513 => 0.029172474542247
514 => 0.029436236216404
515 => 0.02949656163202
516 => 0.02891984212171
517 => 0.028841237383507
518 => 0.029312198984981
519 => 0.02910494634339
520 => 0.029318110824885
521 => 0.029367566813082
522 => 0.029359603259915
523 => 0.02914320769928
524 => 0.02928113177662
525 => 0.028954900216564
526 => 0.028600172393399
527 => 0.028373878142544
528 => 0.028176406395096
529 => 0.028285975197706
530 => 0.027895382422877
531 => 0.027770423933129
601 => 0.029234406202607
602 => 0.030315865645532
603 => 0.030300140796927
604 => 0.030204419825146
605 => 0.03006219787737
606 => 0.030742477457491
607 => 0.030505481654396
608 => 0.03067791590281
609 => 0.030721807656073
610 => 0.030854654773853
611 => 0.030902136199863
612 => 0.030758614352489
613 => 0.030276937502983
614 => 0.029076644590476
615 => 0.028517904999576
616 => 0.028333511628034
617 => 0.028340213976877
618 => 0.028155333275194
619 => 0.028209788927611
620 => 0.028136395821603
621 => 0.027997407034523
622 => 0.028277393031763
623 => 0.028309658809695
624 => 0.028244306732356
625 => 0.028259699512349
626 => 0.027718612224216
627 => 0.027759749915553
628 => 0.027530690022663
629 => 0.027487744054105
630 => 0.026908700591407
701 => 0.025882841163546
702 => 0.026451266869165
703 => 0.025764688549527
704 => 0.02550467093652
705 => 0.026735553875457
706 => 0.026612007367766
707 => 0.026400549450975
708 => 0.02608775912035
709 => 0.025971742144093
710 => 0.025266859722864
711 => 0.025225211509016
712 => 0.025574570270404
713 => 0.025413353222724
714 => 0.025186943430112
715 => 0.024366910112063
716 => 0.023444921158874
717 => 0.023472750209955
718 => 0.02376601774175
719 => 0.024618732642959
720 => 0.024285562178939
721 => 0.024043843184602
722 => 0.023998576483009
723 => 0.024565184025704
724 => 0.025367052406569
725 => 0.025743271110076
726 => 0.025370449800832
727 => 0.024942172754897
728 => 0.024968239994239
729 => 0.025141653659247
730 => 0.025159876983503
731 => 0.024881112654191
801 => 0.024959583180021
802 => 0.02484037927579
803 => 0.024108825135558
804 => 0.024095593640944
805 => 0.023916058457027
806 => 0.02391062220301
807 => 0.023605188068017
808 => 0.023562455721165
809 => 0.022955997707609
810 => 0.023355170208655
811 => 0.02308742625245
812 => 0.022683872956035
813 => 0.022614300215624
814 => 0.022612208775036
815 => 0.023026567777589
816 => 0.023350328182459
817 => 0.023092083773199
818 => 0.023033286527069
819 => 0.023661087289606
820 => 0.023581193920042
821 => 0.023512006777257
822 => 0.025295253888032
823 => 0.023883674651346
824 => 0.023268145534025
825 => 0.022506311365531
826 => 0.022754368412294
827 => 0.022806637676763
828 => 0.020974563832466
829 => 0.020231291702005
830 => 0.01997622871645
831 => 0.019829436362202
901 => 0.019896331481335
902 => 0.019227299386795
903 => 0.019676900019095
904 => 0.019097574777098
905 => 0.01900044901499
906 => 0.020036354312307
907 => 0.020180494482757
908 => 0.019565547734774
909 => 0.019960443097815
910 => 0.01981724854972
911 => 0.019107505645608
912 => 0.019080398687187
913 => 0.018724274646573
914 => 0.018167009482214
915 => 0.017912324348682
916 => 0.017779682119861
917 => 0.017834412888618
918 => 0.017806739337145
919 => 0.017626150694674
920 => 0.017817090466742
921 => 0.017329318250868
922 => 0.017135083424259
923 => 0.017047352059294
924 => 0.016614426142585
925 => 0.017303403799098
926 => 0.017439141076943
927 => 0.017575145799157
928 => 0.01875897405166
929 => 0.018699833337628
930 => 0.019234436589774
1001 => 0.019213662890468
1002 => 0.019061185382957
1003 => 0.018417907860104
1004 => 0.018674306815394
1005 => 0.017885150684255
1006 => 0.018476440115105
1007 => 0.018206600311702
1008 => 0.01838520700614
1009 => 0.018064056065224
1010 => 0.018241794255924
1011 => 0.017471329421041
1012 => 0.01675188019896
1013 => 0.017041407567957
1014 => 0.017356156929529
1015 => 0.018038613742061
1016 => 0.017632148094663
1017 => 0.017778328511635
1018 => 0.017288648585085
1019 => 0.016278299026457
1020 => 0.016284017495235
1021 => 0.016128597227302
1022 => 0.015994291424077
1023 => 0.017678835563807
1024 => 0.017469335871329
1025 => 0.017135525530008
1026 => 0.017582343936962
1027 => 0.017700489815722
1028 => 0.017703853262797
1029 => 0.018029840438458
1030 => 0.018203819852545
1031 => 0.018234484478348
1101 => 0.01874743234267
1102 => 0.018919365700844
1103 => 0.019627534870246
1104 => 0.018189058914786
1105 => 0.018159434449099
1106 => 0.017588631588258
1107 => 0.017226619389877
1108 => 0.017613418873196
1109 => 0.017956070412022
1110 => 0.017599278726707
1111 => 0.017645868188525
1112 => 0.017166904501941
1113 => 0.017338111482559
1114 => 0.017485577998338
1115 => 0.017404155656006
1116 => 0.017282262468649
1117 => 0.017927976893385
1118 => 0.017891543154966
1119 => 0.018492847272191
1120 => 0.018961606831238
1121 => 0.019801707761844
1122 => 0.018925018645305
1123 => 0.018893068609375
1124 => 0.01920538533554
1125 => 0.018919317886781
1126 => 0.019100102639684
1127 => 0.01977258054323
1128 => 0.019786788941655
1129 => 0.019548779961547
1130 => 0.019534297093477
1201 => 0.01958000932164
1202 => 0.019847747269785
1203 => 0.019754191403947
1204 => 0.019862456620439
1205 => 0.019997843931478
1206 => 0.020557863252968
1207 => 0.020692882015443
1208 => 0.020364856421831
1209 => 0.020394473460188
1210 => 0.020271782883673
1211 => 0.020153265324068
1212 => 0.02041967548996
1213 => 0.020906545304432
1214 => 0.020903516512584
1215 => 0.021016460846145
1216 => 0.021086824230272
1217 => 0.020784773076454
1218 => 0.020588148882047
1219 => 0.020663547109705
1220 => 0.02078411051769
1221 => 0.020624450021409
1222 => 0.019638951476423
1223 => 0.019937888781081
1224 => 0.019888130996298
1225 => 0.019817269860015
1226 => 0.020117853631462
1227 => 0.020088861593427
1228 => 0.019220437495662
1229 => 0.019276031188806
1230 => 0.019223818332274
1231 => 0.019392528753473
]
'min_raw' => 0.015994291424077
'max_raw' => 0.035829187216982
'avg_raw' => 0.02591173932053
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.015994'
'max' => '$0.035829'
'avg' => '$0.025911'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0039002908687288
'max_diff' => -0.026036327420886
'year' => 2034
]
9 => [
'items' => [
101 => 0.018910206970376
102 => 0.01905856590237
103 => 0.019151615233738
104 => 0.019206422004752
105 => 0.019404421643011
106 => 0.019381188670765
107 => 0.019402977448836
108 => 0.019696558642407
109 => 0.021181391574592
110 => 0.021262207754992
111 => 0.020864239325575
112 => 0.021023219863546
113 => 0.020718011995862
114 => 0.020922900082154
115 => 0.021063079307201
116 => 0.020429636344126
117 => 0.020392127962864
118 => 0.020085660393741
119 => 0.020250338706177
120 => 0.019988323670301
121 => 0.020052612995208
122 => 0.019872854438126
123 => 0.020196384051303
124 => 0.020558140430254
125 => 0.020649534377769
126 => 0.020409116249425
127 => 0.020235037680177
128 => 0.019929413057622
129 => 0.020437673616219
130 => 0.020586304492513
131 => 0.0204368929215
201 => 0.020402270995789
202 => 0.020336662509127
203 => 0.020416190146386
204 => 0.02058549501684
205 => 0.020505653966504
206 => 0.020558390386869
207 => 0.020357413533997
208 => 0.020784873067954
209 => 0.021463781681618
210 => 0.021465964483823
211 => 0.021386123003114
212 => 0.021353453589416
213 => 0.02143537579381
214 => 0.021479815229069
215 => 0.021744736616116
216 => 0.022029007819352
217 => 0.023355577487607
218 => 0.022983082033115
219 => 0.024160093560774
220 => 0.025090956863333
221 => 0.025370082066052
222 => 0.025113300013406
223 => 0.0242348624824
224 => 0.024191762146321
225 => 0.025504518684404
226 => 0.025133604834337
227 => 0.02508948581211
228 => 0.024620133955875
301 => 0.024897579033268
302 => 0.024836897724968
303 => 0.024741109311186
304 => 0.025270455191861
305 => 0.02626134342545
306 => 0.026106904201754
307 => 0.025991622485495
308 => 0.025486491562848
309 => 0.025790693203358
310 => 0.025682372825771
311 => 0.026147785909694
312 => 0.02587208550894
313 => 0.025130794797119
314 => 0.025248847786303
315 => 0.025231004314477
316 => 0.025598221700243
317 => 0.025487992155932
318 => 0.025209480226829
319 => 0.026257956677191
320 => 0.026189874448437
321 => 0.026286399483046
322 => 0.026328892788417
323 => 0.026967081927525
324 => 0.027228527598042
325 => 0.027287880342501
326 => 0.027536233508559
327 => 0.027281701089485
328 => 0.02830001224432
329 => 0.028977129742183
330 => 0.029763636560098
331 => 0.030912934414175
401 => 0.031345081038908
402 => 0.031267017619144
403 => 0.03213840213535
404 => 0.033704260741183
405 => 0.031583522412994
406 => 0.033816665022132
407 => 0.03310967785495
408 => 0.031433423999718
409 => 0.031325493013176
410 => 0.032460671585646
411 => 0.034978388402498
412 => 0.034347728895584
413 => 0.034979419935524
414 => 0.034242518783189
415 => 0.034205925429885
416 => 0.034943630291349
417 => 0.036667317910357
418 => 0.035848458534031
419 => 0.03467442282551
420 => 0.035541312522663
421 => 0.034790332440135
422 => 0.033098164128109
423 => 0.034347246642145
424 => 0.033512020736831
425 => 0.033755784059053
426 => 0.035511304681545
427 => 0.035300075795716
428 => 0.035573425533248
429 => 0.035090970401312
430 => 0.034640281231893
501 => 0.033799036428555
502 => 0.033549985315155
503 => 0.033618814082978
504 => 0.033549951207035
505 => 0.033079282471007
506 => 0.032977641602274
507 => 0.032808235701398
508 => 0.032860741673732
509 => 0.03254220901864
510 => 0.033143345951003
511 => 0.03325492226285
512 => 0.033692379591564
513 => 0.03373779786264
514 => 0.034956110296293
515 => 0.034285084280746
516 => 0.034735266465574
517 => 0.034694997933684
518 => 0.031469753503607
519 => 0.031914163729499
520 => 0.032605526577376
521 => 0.032294068551527
522 => 0.031853739772932
523 => 0.031498150675281
524 => 0.030959396831487
525 => 0.031717682520775
526 => 0.032714747567497
527 => 0.033763085077633
528 => 0.035022593906267
529 => 0.034741486198015
530 => 0.033739539436178
531 => 0.033784486035991
601 => 0.034062328230203
602 => 0.033702497344074
603 => 0.033596376191021
604 => 0.034047748813374
605 => 0.034050857168555
606 => 0.033636828247048
607 => 0.033176710867285
608 => 0.033174782958664
609 => 0.033092909515142
610 => 0.034257083886909
611 => 0.034897262080076
612 => 0.034970657478224
613 => 0.034892321984997
614 => 0.034922470207315
615 => 0.034549964622075
616 => 0.035401401926834
617 => 0.036182764996103
618 => 0.035973343002152
619 => 0.035659389662128
620 => 0.035409310704758
621 => 0.035914432347419
622 => 0.035891940075806
623 => 0.036175940471339
624 => 0.036163056572932
625 => 0.036067557921709
626 => 0.035973346412709
627 => 0.036346884396709
628 => 0.036239311456153
629 => 0.036131571425109
630 => 0.035915482298676
701 => 0.035944852399818
702 => 0.035630953268265
703 => 0.035485729166962
704 => 0.0333019071247
705 => 0.032718318516564
706 => 0.032901927372725
707 => 0.032962376175575
708 => 0.032708397665425
709 => 0.033072537607254
710 => 0.03301578678304
711 => 0.033236571041936
712 => 0.033098634622316
713 => 0.033104295581091
714 => 0.033509937180049
715 => 0.03362769666195
716 => 0.03356780323902
717 => 0.033609750539413
718 => 0.03457640837214
719 => 0.034438980540303
720 => 0.034365974743678
721 => 0.034386197848274
722 => 0.034633199649913
723 => 0.034702346668574
724 => 0.034409365891634
725 => 0.034547537319741
726 => 0.035135853724053
727 => 0.035341731169737
728 => 0.035998793149583
729 => 0.035719661542199
730 => 0.036232019688085
731 => 0.037806833952774
801 => 0.039064904556265
802 => 0.037907930837328
803 => 0.040218217286315
804 => 0.04201710667776
805 => 0.041948062306709
806 => 0.04163438433225
807 => 0.039586396586039
808 => 0.037701807728198
809 => 0.039278346331651
810 => 0.03928236525277
811 => 0.03914693918857
812 => 0.038305819534791
813 => 0.039117670047851
814 => 0.03918211179337
815 => 0.039146041552323
816 => 0.038501157085879
817 => 0.037516537700192
818 => 0.037708929971309
819 => 0.038024072436096
820 => 0.03742744200465
821 => 0.03723678243069
822 => 0.037591254853149
823 => 0.038733438855575
824 => 0.038517515586138
825 => 0.038511876956958
826 => 0.039435688269327
827 => 0.03877443874063
828 => 0.037711356653973
829 => 0.037442914406763
830 => 0.03649012527353
831 => 0.037148220121572
901 => 0.03717190378357
902 => 0.036811471960863
903 => 0.037740603709933
904 => 0.037732041597295
905 => 0.038614113910026
906 => 0.040300304880737
907 => 0.03980161523828
908 => 0.03922169344138
909 => 0.03928474702019
910 => 0.039976289150245
911 => 0.039558166992043
912 => 0.039708526635383
913 => 0.039976061562916
914 => 0.040137472027216
915 => 0.039261522538344
916 => 0.03905729681098
917 => 0.038639522646285
918 => 0.03853053316484
919 => 0.03887080150484
920 => 0.038781152819108
921 => 0.037169913263486
922 => 0.037001529765072
923 => 0.037006693846572
924 => 0.036583285533609
925 => 0.035937486226702
926 => 0.03763460824658
927 => 0.037498305597177
928 => 0.037347838021222
929 => 0.037366269440721
930 => 0.038102932588748
1001 => 0.037675630760511
1002 => 0.03881168270427
1003 => 0.038578144577481
1004 => 0.038338617078959
1005 => 0.038305507082477
1006 => 0.038213309431072
1007 => 0.03789712937917
1008 => 0.037515322967022
1009 => 0.037263221302216
1010 => 0.034373351924869
1011 => 0.034909694871708
1012 => 0.035526708542848
1013 => 0.035739699189599
1014 => 0.035375363949828
1015 => 0.037911515555085
1016 => 0.038374894892331
1017 => 0.036971288654328
1018 => 0.036708731236063
1019 => 0.037928728775716
1020 => 0.037192921120671
1021 => 0.037524255262684
1022 => 0.036808092077739
1023 => 0.038263280379319
1024 => 0.038252194282568
1025 => 0.037686093166335
1026 => 0.038164557953282
1027 => 0.03808141292211
1028 => 0.037442286156128
1029 => 0.038283541837791
1030 => 0.038283959090113
1031 => 0.037739099073838
1101 => 0.037102821860024
1102 => 0.036989070522391
1103 => 0.036903374169826
1104 => 0.037503179213235
1105 => 0.038040962539613
1106 => 0.03904164398221
1107 => 0.039293239072483
1108 => 0.040275231459454
1109 => 0.039690502805354
1110 => 0.039949705444213
1111 => 0.040231106575146
1112 => 0.040366020625499
1113 => 0.040146185420336
1114 => 0.041671623801494
1115 => 0.041800417539088
1116 => 0.041843600965242
1117 => 0.041329231725897
1118 => 0.041786112000054
1119 => 0.041572352850061
1120 => 0.042128494774342
1121 => 0.042215704929246
1122 => 0.042141841030634
1123 => 0.042169522910319
1124 => 0.040867830357771
1125 => 0.040800330731946
1126 => 0.03987996854427
1127 => 0.040255022938722
1128 => 0.039553876725119
1129 => 0.039776217412059
1130 => 0.039874223068322
1201 => 0.039823030475262
1202 => 0.040276227951457
1203 => 0.039890917514564
1204 => 0.038874019920701
1205 => 0.037856845273769
1206 => 0.037844075474649
1207 => 0.037576271344736
1208 => 0.037382698009581
1209 => 0.037419987101315
1210 => 0.037551398724277
1211 => 0.037375060127161
1212 => 0.03741269090745
1213 => 0.038037612592816
1214 => 0.038162936180079
1215 => 0.037737037663474
1216 => 0.036026993662442
1217 => 0.035607344575268
1218 => 0.035908980017125
1219 => 0.035764817703728
1220 => 0.028864999216483
1221 => 0.030486009223607
1222 => 0.029522860121672
1223 => 0.029966723540203
1224 => 0.028983597713378
1225 => 0.029452796887978
1226 => 0.02936615293284
1227 => 0.031972689055122
1228 => 0.031931991578746
1229 => 0.031951471307025
1230 => 0.031021653122117
1231 => 0.03250287873799
]
'min_raw' => 0.018910206970376
'max_raw' => 0.042215704929246
'avg_raw' => 0.030562955949811
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01891'
'max' => '$0.042215'
'avg' => '$0.030562'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0029159155462989
'max_diff' => 0.0063865177122638
'year' => 2035
]
10 => [
'items' => [
101 => 0.03323258373952
102 => 0.033097534764206
103 => 0.033131523681777
104 => 0.032547481467245
105 => 0.031957126112315
106 => 0.031302331168658
107 => 0.03251885923887
108 => 0.03238360208429
109 => 0.03269383333291
110 => 0.033482838745665
111 => 0.033599022789833
112 => 0.033755175323418
113 => 0.033699205755822
114 => 0.035032627926085
115 => 0.034871141703064
116 => 0.035260277037789
117 => 0.03445979613049
118 => 0.033553976001537
119 => 0.03372614279456
120 => 0.033709561747914
121 => 0.033498465993271
122 => 0.033307898184708
123 => 0.032990656475597
124 => 0.033994456186161
125 => 0.033953703751066
126 => 0.034613438305736
127 => 0.034496823814879
128 => 0.033718043704526
129 => 0.033745857988522
130 => 0.033932922415485
131 => 0.03458035453307
201 => 0.034772556466109
202 => 0.034683520872803
203 => 0.034894261518029
204 => 0.035060822331427
205 => 0.034915178991776
206 => 0.03697718154661
207 => 0.036120894323526
208 => 0.036538242758049
209 => 0.036637777900523
210 => 0.036382820726074
211 => 0.03643811180788
212 => 0.036521862730898
213 => 0.037030381935352
214 => 0.038364883469054
215 => 0.038955925114072
216 => 0.040734103064589
217 => 0.03890684733315
218 => 0.038798425539983
219 => 0.0391187290847
220 => 0.040162707780906
221 => 0.041008754458248
222 => 0.041289436950726
223 => 0.04132653377567
224 => 0.041853112790978
225 => 0.042154938062435
226 => 0.041789172248116
227 => 0.041479224017758
228 => 0.040369027928806
229 => 0.040497536149066
301 => 0.041382830351185
302 => 0.042633360555248
303 => 0.043706445565826
304 => 0.04333068859591
305 => 0.046197449033288
306 => 0.046481676620988
307 => 0.046442405558546
308 => 0.047089918302062
309 => 0.045804737369859
310 => 0.045255297622135
311 => 0.041546238343223
312 => 0.042588332710036
313 => 0.044103078072253
314 => 0.04390259584356
315 => 0.042802547272258
316 => 0.04370561108034
317 => 0.043407029943972
318 => 0.043171526613576
319 => 0.044250413024689
320 => 0.043064133097459
321 => 0.044091244022522
322 => 0.042773963637027
323 => 0.043332405022097
324 => 0.04301540668316
325 => 0.043220543458307
326 => 0.042021318062431
327 => 0.042668390976495
328 => 0.041994397701827
329 => 0.041994078141259
330 => 0.041979199702364
331 => 0.042772149801067
401 => 0.042798007875318
402 => 0.042212016554295
403 => 0.042127566050031
404 => 0.042439823826597
405 => 0.04207425175068
406 => 0.042245300624118
407 => 0.042079432646806
408 => 0.042042092271399
409 => 0.041744557807214
410 => 0.041616371779162
411 => 0.041666636823708
412 => 0.041495056313266
413 => 0.041391672849387
414 => 0.041958634129275
415 => 0.041655729588583
416 => 0.041912209664151
417 => 0.041619918247676
418 => 0.040606708852864
419 => 0.040024001415413
420 => 0.038110142793174
421 => 0.038652910724307
422 => 0.039012766424182
423 => 0.03889383411752
424 => 0.039149346732923
425 => 0.039165033132321
426 => 0.039081963376411
427 => 0.038985779240961
428 => 0.038938962123141
429 => 0.039287898562829
430 => 0.039490467910729
501 => 0.039048882757912
502 => 0.03894542553504
503 => 0.039391892505122
504 => 0.039664237098956
505 => 0.04167507656262
506 => 0.041526107080226
507 => 0.041899991247251
508 => 0.041857897627764
509 => 0.042249787799225
510 => 0.04289036260442
511 => 0.041587894917926
512 => 0.041813958272358
513 => 0.041758532758416
514 => 0.042363653986277
515 => 0.042365543108699
516 => 0.04200274270455
517 => 0.042199422689404
518 => 0.042089641317491
519 => 0.042288031094379
520 => 0.041524117501966
521 => 0.042454481798149
522 => 0.042981938402733
523 => 0.042989262138199
524 => 0.043239272382618
525 => 0.043493297270564
526 => 0.043980875922071
527 => 0.043479698966607
528 => 0.04257813041232
529 => 0.042643220749891
530 => 0.042114631436384
531 => 0.042123517118241
601 => 0.042076084652102
602 => 0.042218433053534
603 => 0.041555354971136
604 => 0.041710978071733
605 => 0.041493104819569
606 => 0.041813484658457
607 => 0.041468808912498
608 => 0.041758506030555
609 => 0.041883529703097
610 => 0.042344869746344
611 => 0.041400668613007
612 => 0.039475378585335
613 => 0.039880097891037
614 => 0.039281486247888
615 => 0.039336890034537
616 => 0.039448814501015
617 => 0.039086030685754
618 => 0.039155238405074
619 => 0.039152765818333
620 => 0.039131458401595
621 => 0.039037084319871
622 => 0.038900223230026
623 => 0.039445435688344
624 => 0.039538077909174
625 => 0.039744010090136
626 => 0.040356724575547
627 => 0.040295499949651
628 => 0.040395359854672
629 => 0.040177366242702
630 => 0.039347002132976
701 => 0.039392094899136
702 => 0.038829787382553
703 => 0.039729630622697
704 => 0.039516535866081
705 => 0.039379152290227
706 => 0.039341665908705
707 => 0.039955899194813
708 => 0.040139687420943
709 => 0.040025162931988
710 => 0.039790269863927
711 => 0.040241333994505
712 => 0.04036201972698
713 => 0.040389036811763
714 => 0.04118823596818
715 => 0.040433703166611
716 => 0.04061532671136
717 => 0.042032301760761
718 => 0.040747300920145
719 => 0.041427994524357
720 => 0.04139467811459
721 => 0.041742897929089
722 => 0.041366113926026
723 => 0.041370784615316
724 => 0.041679980220138
725 => 0.041245770756886
726 => 0.041138254387484
727 => 0.040989721293201
728 => 0.041314037870593
729 => 0.041508450991162
730 => 0.043075277962247
731 => 0.044087519641558
801 => 0.044043575560661
802 => 0.044445142200182
803 => 0.044264232751149
804 => 0.04368002841872
805 => 0.044677193978048
806 => 0.044361649071897
807 => 0.044387662210573
808 => 0.044386694000253
809 => 0.044596503777428
810 => 0.044447834321516
811 => 0.044154791563306
812 => 0.044349327021938
813 => 0.044927027786378
814 => 0.046720228685225
815 => 0.047723727664971
816 => 0.046659816786614
817 => 0.04739368826417
818 => 0.046953626882781
819 => 0.04687365463909
820 => 0.047334580159672
821 => 0.047796312469361
822 => 0.047766902117357
823 => 0.04743170817074
824 => 0.047242365615527
825 => 0.048676130878008
826 => 0.049732504699851
827 => 0.049660467087221
828 => 0.049978417681482
829 => 0.050911930460073
830 => 0.050997279169385
831 => 0.050986527193729
901 => 0.050774981512484
902 => 0.05169414607496
903 => 0.052460929324139
904 => 0.050726014799418
905 => 0.051386647538733
906 => 0.051683226859669
907 => 0.052118693293922
908 => 0.052853398161157
909 => 0.053651482517814
910 => 0.053764340396395
911 => 0.053684262330795
912 => 0.053157904243921
913 => 0.054031177670102
914 => 0.054542720762377
915 => 0.054847332967372
916 => 0.0556197788366
917 => 0.051685058432587
918 => 0.048899867762335
919 => 0.048464920020534
920 => 0.049349403356961
921 => 0.049582634559154
922 => 0.049488619353997
923 => 0.046353634036171
924 => 0.048448414971636
925 => 0.050702223124012
926 => 0.050788801074068
927 => 0.051917104560054
928 => 0.052284526425813
929 => 0.053192958622151
930 => 0.05313613594093
1001 => 0.053357324724425
1002 => 0.053306477253555
1003 => 0.054989156604303
1004 => 0.056845401808478
1005 => 0.056781125939556
1006 => 0.056514268729359
1007 => 0.056910597192417
1008 => 0.058826441170452
1009 => 0.058650060957729
1010 => 0.058821399310359
1011 => 0.061080287332696
1012 => 0.06401716308481
1013 => 0.062652689440449
1014 => 0.065613204631998
1015 => 0.067476692014912
1016 => 0.070699400755469
1017 => 0.070295901748976
1018 => 0.071550478612346
1019 => 0.06957355431457
1020 => 0.065034136524557
1021 => 0.064315756283094
1022 => 0.065753971718787
1023 => 0.06928968402843
1024 => 0.065642619555625
1025 => 0.066380415948527
1026 => 0.066167930537737
1027 => 0.0661566080932
1028 => 0.066588739749435
1029 => 0.065961910243596
1030 => 0.063408094072331
1031 => 0.064578492973888
1101 => 0.064126545750826
1102 => 0.064628014889711
1103 => 0.067334237010672
1104 => 0.066137751702718
1105 => 0.064877351625361
1106 => 0.066458173027534
1107 => 0.06847110190167
1108 => 0.068345136430308
1109 => 0.068100710766382
1110 => 0.069478525436219
1111 => 0.071754271608969
1112 => 0.072369396654774
1113 => 0.07282346938791
1114 => 0.072886078346188
1115 => 0.073530989527699
1116 => 0.070063139566169
1117 => 0.075566706515821
1118 => 0.076517020495057
1119 => 0.07633840085344
1120 => 0.077394634846035
1121 => 0.077083864011343
1122 => 0.076633605830325
1123 => 0.078307961376002
1124 => 0.076388447856409
1125 => 0.073663940075378
1126 => 0.072169221222051
1127 => 0.074137587583643
1128 => 0.075339600234147
1129 => 0.076134054133768
1130 => 0.076374455403771
1201 => 0.07033233888698
1202 => 0.067075973195574
1203 => 0.069163266269456
1204 => 0.071709907876866
1205 => 0.070048992843456
1206 => 0.070114097568238
1207 => 0.067746069211389
1208 => 0.071919425841777
1209 => 0.071311402884184
1210 => 0.074465827063753
1211 => 0.073712998417463
1212 => 0.07628530888186
1213 => 0.075607933329073
1214 => 0.078419681377135
1215 => 0.079541363798547
1216 => 0.081424843160025
1217 => 0.082810338245469
1218 => 0.08362392745994
1219 => 0.083575082615199
1220 => 0.086798928411468
1221 => 0.084897939178001
1222 => 0.082509848672005
1223 => 0.082466655649081
1224 => 0.08370348156164
1225 => 0.086295529367747
1226 => 0.086967609651108
1227 => 0.087343210842629
1228 => 0.086767964543044
1229 => 0.084704576975241
1230 => 0.083813616685077
1231 => 0.084572740665902
]
'min_raw' => 0.031302331168658
'max_raw' => 0.087343210842629
'avg_raw' => 0.059322771005644
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0313023'
'max' => '$0.087343'
'avg' => '$0.059322'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012392124198283
'max_diff' => 0.045127505913383
'year' => 2036
]
11 => [
'items' => [
101 => 0.08364439726962
102 => 0.085246978418754
103 => 0.087447664629377
104 => 0.08699323162934
105 => 0.088512333016062
106 => 0.090084443137192
107 => 0.092332631218292
108 => 0.092920390832855
109 => 0.093891935125232
110 => 0.094891973337762
111 => 0.095213158659841
112 => 0.095826401097643
113 => 0.095823169007291
114 => 0.097671216369582
115 => 0.099709669839453
116 => 0.10047913883402
117 => 0.10224849035827
118 => 0.09921853787847
119 => 0.10151679163998
120 => 0.10358987406189
121 => 0.10111825973534
122 => 0.10452480427221
123 => 0.10465707267718
124 => 0.10665416855596
125 => 0.10462972928554
126 => 0.10342762370901
127 => 0.10689805746615
128 => 0.1085772910436
129 => 0.10807149222402
130 => 0.10422233823263
131 => 0.10198196551166
201 => 0.096118477965253
202 => 0.10306403224778
203 => 0.1064470091342
204 => 0.10421357713976
205 => 0.10533999032677
206 => 0.11148533543444
207 => 0.1138250849698
208 => 0.11333843342253
209 => 0.11342066952305
210 => 0.11468315590288
211 => 0.12028171577498
212 => 0.11692692892602
213 => 0.11949153777058
214 => 0.12085179705436
215 => 0.1221152816852
216 => 0.11901256276027
217 => 0.11497597102693
218 => 0.11369741298038
219 => 0.10399150634404
220 => 0.10348627175301
221 => 0.10320266826688
222 => 0.10141458840338
223 => 0.10000964742696
224 => 0.098892386200394
225 => 0.095960359099448
226 => 0.096949832175459
227 => 0.092276792938166
228 => 0.095266437839844
301 => 0.087808154382647
302 => 0.09401963446989
303 => 0.090639008259748
304 => 0.092909007838208
305 => 0.092901088023526
306 => 0.088721299095558
307 => 0.086310484071876
308 => 0.087846749235291
309 => 0.089493747439352
310 => 0.089760967356793
311 => 0.09189634351941
312 => 0.092492281106639
313 => 0.090686562395669
314 => 0.087653598035615
315 => 0.088358086481904
316 => 0.086296207635997
317 => 0.082682844267571
318 => 0.085278024922047
319 => 0.086164133699523
320 => 0.086555489816161
321 => 0.0830021619409
322 => 0.081885629175992
323 => 0.081291196500572
324 => 0.087194908027699
325 => 0.087518326672031
326 => 0.085863671160844
327 => 0.093342870972282
328 => 0.091650097708502
329 => 0.093541340183663
330 => 0.088294161539501
331 => 0.088494610829972
401 => 0.086010512370057
402 => 0.08740144152009
403 => 0.086418377628586
404 => 0.087289068190197
405 => 0.087810956522835
406 => 0.090294647366636
407 => 0.094047994229719
408 => 0.089923666778362
409 => 0.088126638246349
410 => 0.089241504640738
411 => 0.092210540764371
412 => 0.096708782473838
413 => 0.094045732846282
414 => 0.095227549049476
415 => 0.095485723314531
416 => 0.093522089110627
417 => 0.096781184467834
418 => 0.098527760146605
419 => 0.10031938539011
420 => 0.10187500338885
421 => 0.099603770869171
422 => 0.10203431523362
423 => 0.10007572552471
424 => 0.098318668080539
425 => 0.0983213328114
426 => 0.097219105010157
427 => 0.095083399755609
428 => 0.094689542939073
429 => 0.096738435837326
430 => 0.098381453910845
501 => 0.098516780748906
502 => 0.099426439975723
503 => 0.099964766935918
504 => 0.10524110296584
505 => 0.10736328896522
506 => 0.10995825783434
507 => 0.11096914445329
508 => 0.11401155075342
509 => 0.1115545605739
510 => 0.11102297529337
511 => 0.10364309277277
512 => 0.10485154812209
513 => 0.10678640173495
514 => 0.10367499779619
515 => 0.10564846744887
516 => 0.10603807216211
517 => 0.10356927348094
518 => 0.10488796552705
519 => 0.10138591041754
520 => 0.094124329461094
521 => 0.096789268683272
522 => 0.098751560959637
523 => 0.095951127932371
524 => 0.10097079574202
525 => 0.0980384094346
526 => 0.097108983754514
527 => 0.093482962812318
528 => 0.095194305118689
529 => 0.097508920092117
530 => 0.096078757141411
531 => 0.099046560004174
601 => 0.10324976034196
602 => 0.10624521120757
603 => 0.10647516473037
604 => 0.1045492905034
605 => 0.10763551624289
606 => 0.10765799602809
607 => 0.10417672078635
608 => 0.10204445908461
609 => 0.10156000473966
610 => 0.10277026667622
611 => 0.10423974809388
612 => 0.10655671072198
613 => 0.10795680271274
614 => 0.11160750007322
615 => 0.11259527410527
616 => 0.11368053829212
617 => 0.11513078592883
618 => 0.11687218005257
619 => 0.11306210884746
620 => 0.1132134900793
621 => 0.10966560452713
622 => 0.10587417999639
623 => 0.10875139860748
624 => 0.11251297920114
625 => 0.11165006845678
626 => 0.11155297337037
627 => 0.11171626037378
628 => 0.11106565385256
629 => 0.10812298466969
630 => 0.10664519462813
701 => 0.10855192080619
702 => 0.1095652609112
703 => 0.11113686304154
704 => 0.11094312990648
705 => 0.11499140821647
706 => 0.11656444675416
707 => 0.1161619961821
708 => 0.11623605677288
709 => 0.11908396790724
710 => 0.12225143080624
711 => 0.12521817779471
712 => 0.12823608025612
713 => 0.12459788104815
714 => 0.12275062786327
715 => 0.12465652162432
716 => 0.12364522756731
717 => 0.1294564231882
718 => 0.12985877776462
719 => 0.13566955316991
720 => 0.14118467096381
721 => 0.13772072429106
722 => 0.14098706998387
723 => 0.14451988915972
724 => 0.15133527052919
725 => 0.14904008985196
726 => 0.14728201742327
727 => 0.1456206474731
728 => 0.14907769460435
729 => 0.15352513051103
730 => 0.15448306560831
731 => 0.15603528642529
801 => 0.15440331603277
802 => 0.15636884461492
803 => 0.16330802420692
804 => 0.16143299662733
805 => 0.15877015603858
806 => 0.16424797188057
807 => 0.16623037213932
808 => 0.18014389534628
809 => 0.19771029313405
810 => 0.19043768910273
811 => 0.18592334909502
812 => 0.18698432607841
813 => 0.19339897989041
814 => 0.19545916310389
815 => 0.18985887494191
816 => 0.19183699139715
817 => 0.20273660754963
818 => 0.20858390191387
819 => 0.20064249077082
820 => 0.17873245238806
821 => 0.15853039637834
822 => 0.16388889134255
823 => 0.16328140430707
824 => 0.1749916821081
825 => 0.16138827783967
826 => 0.16161732427967
827 => 0.17356975822423
828 => 0.17038105376441
829 => 0.16521576091793
830 => 0.15856810873237
831 => 0.14627930883397
901 => 0.13539477606542
902 => 0.15674185138274
903 => 0.15582132667792
904 => 0.15448827049122
905 => 0.15745484278297
906 => 0.17185967575548
907 => 0.17152759773157
908 => 0.16941508677115
909 => 0.17101740771581
910 => 0.16493486630922
911 => 0.16650247572659
912 => 0.15852719626945
913 => 0.16213235566117
914 => 0.16520467851933
915 => 0.16582149281962
916 => 0.1672112069335
917 => 0.15533625198744
918 => 0.16066775812786
919 => 0.16379951849079
920 => 0.14965011123667
921 => 0.16351983020319
922 => 0.15512953544122
923 => 0.15228174338101
924 => 0.15611592022201
925 => 0.15462173777822
926 => 0.15333712745438
927 => 0.15262029282127
928 => 0.15543568913064
929 => 0.15530434752768
930 => 0.15069781272067
1001 => 0.14468877585131
1002 => 0.14670560586458
1003 => 0.14597287261287
1004 => 0.14331735278423
1005 => 0.14510685252005
1006 => 0.1372268013286
1007 => 0.12366958282312
1008 => 0.13262589663667
1009 => 0.13228108829744
1010 => 0.13210722029699
1011 => 0.13883764259354
1012 => 0.13819066778699
1013 => 0.1370164021779
1014 => 0.14329578647545
1015 => 0.14100372673721
1016 => 0.14806731477328
1017 => 0.15271985069806
1018 => 0.15153981709377
1019 => 0.15591554961868
1020 => 0.14675206955466
1021 => 0.14979581005692
1022 => 0.15042312075599
1023 => 0.14321829984794
1024 => 0.13829652086662
1025 => 0.13796829432095
1026 => 0.12943460783025
1027 => 0.13399323427207
1028 => 0.13800463689209
1029 => 0.13608348633452
1030 => 0.13547530746074
1031 => 0.13858236142901
1101 => 0.13882380613246
1102 => 0.13331884130658
1103 => 0.13446349781345
1104 => 0.13923690573038
1105 => 0.13434322018124
1106 => 0.12483558853826
1107 => 0.12247756443751
1108 => 0.12216296055547
1109 => 0.11576781217698
1110 => 0.12263513888326
1111 => 0.11963736674305
1112 => 0.12910729301513
1113 => 0.12369812191675
1114 => 0.12346494336188
1115 => 0.12311245977632
1116 => 0.11760789138671
1117 => 0.11881304203046
1118 => 0.12281914631993
1119 => 0.1242485694624
1120 => 0.12409946891772
1121 => 0.12279951422339
1122 => 0.12339462682561
1123 => 0.12147756178287
1124 => 0.12080060621602
1125 => 0.11866394823575
1126 => 0.11552365127158
1127 => 0.11596032882501
1128 => 0.1097385788356
1129 => 0.1063486392281
1130 => 0.10541034862343
1201 => 0.104155627213
1202 => 0.10555207274543
1203 => 0.1097209533996
1204 => 0.1046923988533
1205 => 0.096071294795748
1206 => 0.096589437839253
1207 => 0.097753551419959
1208 => 0.095584233463696
1209 => 0.093531156075148
1210 => 0.095316140293057
1211 => 0.091663264853867
1212 => 0.098194983964967
1213 => 0.098018319267943
1214 => 0.10045294023376
1215 => 0.10197535868714
1216 => 0.09846667704093
1217 => 0.097584253095393
1218 => 0.098086921878703
1219 => 0.089778926599136
1220 => 0.099773999773674
1221 => 0.099860437581542
1222 => 0.099120304592663
1223 => 0.10444237249484
1224 => 0.11567359576304
1225 => 0.11144795779464
1226 => 0.10981166305269
1227 => 0.10670106555211
1228 => 0.11084575203262
1229 => 0.1105275047781
1230 => 0.10908827000146
1231 => 0.10821781631787
]
'min_raw' => 0.081291196500572
'max_raw' => 0.20858390191387
'avg_raw' => 0.14493754920722
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.081291'
'max' => '$0.208583'
'avg' => '$0.144937'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.049988865331914
'max_diff' => 0.12124069107125
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0025516377687833
]
1 => [
'year' => 2028
'avg' => 0.0043793511569693
]
2 => [
'year' => 2029
'avg' => 0.011963598059589
]
3 => [
'year' => 2030
'avg' => 0.009229898086248
]
4 => [
'year' => 2031
'avg' => 0.0090649037693728
]
5 => [
'year' => 2032
'avg' => 0.015893629137918
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0025516377687833
'min' => '$0.002551'
'max_raw' => 0.015893629137918
'max' => '$0.015893'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.015893629137918
]
1 => [
'year' => 2033
'avg' => 0.040880048465337
]
2 => [
'year' => 2034
'avg' => 0.02591173932053
]
3 => [
'year' => 2035
'avg' => 0.030562955949811
]
4 => [
'year' => 2036
'avg' => 0.059322771005644
]
5 => [
'year' => 2037
'avg' => 0.14493754920722
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.015893629137918
'min' => '$0.015893'
'max_raw' => 0.14493754920722
'max' => '$0.144937'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14493754920722
]
]
]
]
'prediction_2025_max_price' => '$0.004362'
'last_price' => 0.00423032
'sma_50day_nextmonth' => '$0.003735'
'sma_200day_nextmonth' => '$0.171978'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.00406'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003776'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003516'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003551'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005878'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0842004'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.206483'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004081'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003896'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003682'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004281'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.023389'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.07869'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.130943'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.153582'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.158172'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0815032'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00408'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007405'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.036268'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.099541'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.127564'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.074351'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.04099'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '39.02'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 171.34
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003797'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004171'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 83.34
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 175.54
'cci_20_action' => 'SELL'
'adx_14' => 41.37
'adx_14_action' => 'SELL'
'ao_5_34' => '0.000295'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -16.66
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 73.37
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.102664'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767687619
'last_updated_date' => '6. Januar 2026'
]
Saros Preisprognose für 2026
Die Preisprognose für Saros im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001461 am unteren Ende und $0.004362 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Saros im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SAROS das prognostizierte Preisziel erreicht.
Saros Preisprognose 2027-2032
Die Preisprognose für SAROS für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.002551 am unteren Ende und $0.015893 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Saros, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Saros Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001407 | $0.002551 | $0.003696 |
| 2028 | $0.002539 | $0.004379 | $0.006219 |
| 2029 | $0.005578 | $0.011963 | $0.018349 |
| 2030 | $0.004743 | $0.009229 | $0.013715 |
| 2031 | $0.0056087 | $0.009064 | $0.012521 |
| 2032 | $0.008561 | $0.015893 | $0.023225 |
Saros Preisprognose 2032-2037
Die Preisprognose für Saros für die Jahre 2032-2037 wird derzeit zwischen $0.015893 am unteren Ende und $0.144937 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Saros bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Saros Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.008561 | $0.015893 | $0.023225 |
| 2033 | $0.019894 | $0.04088 | $0.061865 |
| 2034 | $0.015994 | $0.025911 | $0.035829 |
| 2035 | $0.01891 | $0.030562 | $0.042215 |
| 2036 | $0.0313023 | $0.059322 | $0.087343 |
| 2037 | $0.081291 | $0.144937 | $0.208583 |
Saros Potenzielles Preishistogramm
Saros Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Saros Bärisch, mit 15 technischen Indikatoren, die bullische Signale zeigen, und 18 anzeigen bärische Signale. Die Preisprognose für SAROS wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Saros
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Saros im nächsten Monat steigen, und bis zum 04.02.2026 $0.171978 erreichen. Der kurzfristige 50-Tage-SMA für Saros wird voraussichtlich bis zum 04.02.2026 $0.003735 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 39.02, was darauf hindeutet, dass sich der SAROS-Markt in einem NEUTRAL Zustand befindet.
Beliebte SAROS Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.00406 | BUY |
| SMA 5 | $0.003776 | BUY |
| SMA 10 | $0.003516 | BUY |
| SMA 21 | $0.003551 | BUY |
| SMA 50 | $0.005878 | SELL |
| SMA 100 | $0.0842004 | SELL |
| SMA 200 | $0.206483 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.004081 | BUY |
| EMA 5 | $0.003896 | BUY |
| EMA 10 | $0.003682 | BUY |
| EMA 21 | $0.004281 | SELL |
| EMA 50 | $0.023389 | SELL |
| EMA 100 | $0.07869 | SELL |
| EMA 200 | $0.130943 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.153582 | SELL |
| SMA 50 | $0.158172 | SELL |
| SMA 100 | $0.0815032 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.099541 | SELL |
| EMA 50 | $0.127564 | SELL |
| EMA 100 | $0.074351 | SELL |
| EMA 200 | $0.04099 | SELL |
Saros Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 39.02 | NEUTRAL |
| Stoch RSI (14) | 171.34 | SELL |
| Stochastic Fast (14) | 83.34 | SELL |
| Commodity Channel Index (20) | 175.54 | SELL |
| Average Directional Index (14) | 41.37 | SELL |
| Awesome Oscillator (5, 34) | 0.000295 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Prozentbereich (14) | -16.66 | SELL |
| Ultimate Oscillator (7, 14, 28) | 73.37 | SELL |
| VWMA (10) | 0.003797 | BUY |
| Hull Moving Average (9) | 0.004171 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.102664 | SELL |
Auf weltweiten Geldflüssen basierende Saros-Preisprognose
Definition weltweiter Geldflüsse, die für Saros-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Saros-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.005944 | $0.008352 | $0.011736 | $0.016492 | $0.023174 | $0.032564 |
| Amazon.com aktie | $0.008826 | $0.018417 | $0.038429 | $0.080185 | $0.167311 | $0.3491063 |
| Apple aktie | $0.00600038 | $0.008511 | $0.012072 | $0.017123 | $0.024288 | $0.034451 |
| Netflix aktie | $0.006674 | $0.010531 | $0.016617 | $0.026219 | $0.04137 | $0.065276 |
| Google aktie | $0.005478 | $0.007094 | $0.009187 | $0.011897 | $0.0154068 | $0.019951 |
| Tesla aktie | $0.009589 | $0.021739 | $0.049281 | $0.111717 | $0.253255 | $0.57411 |
| Kodak aktie | $0.003172 | $0.002378 | $0.001783 | $0.001337 | $0.0010031 | $0.000752 |
| Nokia aktie | $0.0028024 | $0.001856 | $0.001229 | $0.000814 | $0.000539 | $0.000357 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Saros Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Saros investieren?", "Sollte ich heute SAROS kaufen?", "Wird Saros auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Saros-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Saros.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Saros zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Saros-Preis entspricht heute $0.00423 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Saros-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Saros-Prognose
basierend auf dem Preisverlauf des letzten Monats
Saros-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Saros 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00434 | $0.004453 | $0.004568 | $0.004687 |
| Wenn die Wachstumsrate von Saros 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00445 | $0.004681 | $0.004924 | $0.005181 |
| Wenn die Wachstumsrate von Saros 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00478 | $0.0054013 | $0.0061033 | $0.006896 |
| Wenn die Wachstumsrate von Saros 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005329 | $0.006715 | $0.00846 | $0.01066 |
| Wenn die Wachstumsrate von Saros 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006429 | $0.009771 | $0.014852 | $0.022573 |
| Wenn die Wachstumsrate von Saros 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009728 | $0.022371 | $0.051447 | $0.118311 |
| Wenn die Wachstumsrate von Saros 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.015226 | $0.0548042 | $0.197258 | $0.709995 |
Fragefeld
Ist SAROS eine gute Investition?
Die Entscheidung, Saros zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Saros in den letzten 2026 Stunden um 0.2044% gestiegen, und Saros hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Saros investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Saros steigen?
Es scheint, dass der Durchschnittswert von Saros bis zum Ende dieses Jahres potenziell auf $0.004362 steigen könnte. Betrachtet man die Aussichten von Saros in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.013715 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Saros nächste Woche kosten?
Basierend auf unserer neuen experimentellen Saros-Prognose wird der Preis von Saros in der nächsten Woche um 0.86% steigen und $0.004266 erreichen bis zum 13. Januar 2026.
Wie viel wird Saros nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Saros-Prognose wird der Preis von Saros im nächsten Monat um -11.62% fallen und $0.003738 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Saros in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Saros im Jahr 2026 wird erwartet, dass SAROS innerhalb der Spanne von $0.001461 bis $0.004362 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Saros-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Saros in 5 Jahren sein?
Die Zukunft von Saros scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.013715 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Saros-Prognose für 2030 könnte der Wert von Saros seinen höchsten Gipfel von ungefähr $0.013715 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.004743 liegen wird.
Wie viel wird Saros im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Saros-Preisprognosesimulation wird der Wert von SAROS im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.004362 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.004362 und $0.001461 während des Jahres 2026 liegen.
Wie viel wird Saros im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Saros könnte der Wert von SAROS um -12.62% fallen und bis zu $0.003696 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.003696 und $0.001407 im Laufe des Jahres schwanken.
Wie viel wird Saros im Jahr 2028 kosten?
Unser neues experimentelles Saros-Preisprognosemodell deutet darauf hin, dass der Wert von SAROS im Jahr 2028 um 47.02% steigen, und im besten Fall $0.006219 erreichen wird. Der Preis wird voraussichtlich zwischen $0.006219 und $0.002539 im Laufe des Jahres liegen.
Wie viel wird Saros im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Saros im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.018349 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.018349 und $0.005578.
Wie viel wird Saros im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Saros-Preisprognosen wird der Wert von SAROS im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.013715 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.013715 und $0.004743 während des Jahres 2030 liegen.
Wie viel wird Saros im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Saros im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.012521 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.012521 und $0.0056087 während des Jahres schwanken.
Wie viel wird Saros im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Saros-Preisprognose könnte SAROS eine 449.04% Steigerung im Wert erfahren und $0.023225 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.023225 und $0.008561 liegen.
Wie viel wird Saros im Jahr 2033 kosten?
Laut unserer experimentellen Saros-Preisprognose wird der Wert von SAROS voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.061865 beträgt. Im Laufe des Jahres könnte der Preis von SAROS zwischen $0.061865 und $0.019894 liegen.
Wie viel wird Saros im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Saros-Preisprognosesimulation deuten darauf hin, dass SAROS im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.035829 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.035829 und $0.015994.
Wie viel wird Saros im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Saros könnte SAROS um 897.93% steigen, wobei der Wert im Jahr 2035 $0.042215 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.042215 und $0.01891.
Wie viel wird Saros im Jahr 2036 kosten?
Unsere jüngste Saros-Preisprognosesimulation deutet darauf hin, dass der Wert von SAROS im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.087343 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.087343 und $0.0313023.
Wie viel wird Saros im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Saros um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.208583 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.208583 und $0.081291 liegen.
Verwandte Prognosen
Kasta-Preisprognose
UX Chain-Preisprognose
Guacamole-Preisprognose
RMRK-Preisprognose
Cult DAO-Preisprognose
Wrapped Ampleforth-Preisprognose
SpaceN-Preisprognose
Polaris Share-Preisprognose
Prisma mkUSD-Preisprognose
Source-Preisprognose
VLaunch-Preisprognose
agEUR-Preisprognose
Solve.Care-PreisprognoseHubble-Preisprognose
NumberGoUpTech-Preisprognose
Geodnet-Preisprognose
AC Milan Fan Token-Preisprognose
Electra Protocol-Preisprognose
Concentrated Voting Power-Preisprognose
Vita Inu-Preisprognose
Hapi-Preisprognose
Hydra-Preisprognose
Bitrock-Preisprognose
Rejuve.AI-Preisprognose
Beoble-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Saros?
Saros-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Saros Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Saros. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SAROS über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SAROS über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SAROS einzuschätzen.
Wie liest man Saros-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Saros in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SAROS innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Saros?
Die Preisentwicklung von Saros wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SAROS. Die Marktkapitalisierung von Saros kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SAROS-„Walen“, großen Inhabern von Saros, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Saros-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


