Saros Preisvorhersage bis zu $0.004373 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001464 | $0.004373 |
| 2027 | $0.00141 | $0.0037049 |
| 2028 | $0.002545 | $0.006234 |
| 2029 | $0.005591 | $0.018392 |
| 2030 | $0.004754 | $0.013748 |
| 2031 | $0.005621 | $0.01255 |
| 2032 | $0.008581 | $0.02328 |
| 2033 | $0.019941 | $0.06201 |
| 2034 | $0.016031 | $0.035913 |
| 2035 | $0.018954 | $0.042314 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Saros eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.52 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Saros Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Saros'
'name_with_ticker' => 'Saros <small>SAROS</small>'
'name_lang' => 'Saros'
'name_lang_with_ticker' => 'Saros <small>SAROS</small>'
'name_with_lang' => 'Saros'
'name_with_lang_with_ticker' => 'Saros <small>SAROS</small>'
'image' => '/uploads/coins/saros-finance.png?1755784946'
'price_for_sd' => 0.00424
'ticker' => 'SAROS'
'marketcap' => '$11.13M'
'low24h' => '$0.003916'
'high24h' => '$0.004361'
'volume24h' => '$1.9M'
'current_supply' => '2.62B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00424'
'change_24h_pct' => '0.6599%'
'ath_price' => '$0.4271'
'ath_days' => 114
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14.09.2025'
'ath_pct' => '-99.02%'
'fdv' => '$42.41M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.209072'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004276'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003747'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001464'
'current_year_max_price_prediction' => '$0.004373'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004754'
'grand_prediction_max_price' => '$0.013748'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.004320580128139
107 => 0.0043367116059669
108 => 0.0043730566492068
109 => 0.0040624922340685
110 => 0.0042019265387734
111 => 0.00428383112956
112 => 0.0039137832086716
113 => 0.0042765164719588
114 => 0.0040570859985444
115 => 0.0039826080001324
116 => 0.0040828828132639
117 => 0.0040438056210661
118 => 0.0040102093459042
119 => 0.0039914620471065
120 => 0.004065092802943
121 => 0.0040616578401755
122 => 0.003941183632513
123 => 0.0037840299397743
124 => 0.0038367758774515
125 => 0.0038176127837976
126 => 0.0037481632603074
127 => 0.0037949638537723
128 => 0.0035888777253911
129 => 0.003234317252936
130 => 0.0034685507615208
131 => 0.0034595330262373
201 => 0.0034549858751857
202 => 0.0036310058831485
203 => 0.0036140856208554
204 => 0.0035833751791097
205 => 0.0037475992389613
206 => 0.0036876552479902
207 => 0.0038723885035827
208 => 0.0039940657735138
209 => 0.003963204482012
210 => 0.0040776425424995
211 => 0.0038379910373238
212 => 0.0039175936541936
213 => 0.003933999643206
214 => 0.0037455727395546
215 => 0.0036168539850229
216 => 0.0036082699115969
217 => 0.0033850893297761
218 => 0.003504310595134
219 => 0.0036092203749379
220 => 0.0035589767317396
221 => 0.0035430710952892
222 => 0.0036243295424028
223 => 0.003630644019675
224 => 0.0034866732686892
225 => 0.0035166093467799
226 => 0.003641447768877
227 => 0.0035134637388455
228 => 0.0032648116745668
301 => 0.003203142524742
302 => 0.0031949147233674
303 => 0.0030276630980005
304 => 0.0032072635522158
305 => 0.0031288631409579
306 => 0.0033765291007405
307 => 0.0032350636327719
308 => 0.0032289653391912
309 => 0.0032197468740188
310 => 0.0030757864909878
311 => 0.003107304665712
312 => 0.0032120758788486
313 => 0.003249459428028
314 => 0.0032455600175742
315 => 0.0032115624427465
316 => 0.0032271263584069
317 => 0.0031769895632372
318 => 0.0031592852173557
319 => 0.0031034054317894
320 => 0.0030212775841919
321 => 0.0030326979651197
322 => 0.0028699812091086
323 => 0.002781324484402
324 => 0.00275678547148
325 => 0.0027239708778448
326 => 0.0027604919671474
327 => 0.0028695202529832
328 => 0.002738009008624
329 => 0.0025125422046116
330 => 0.0025260931437095
331 => 0.0025565380805525
401 => 0.0024998041421589
402 => 0.0024461102307879
403 => 0.0024927927304003
404 => 0.0023972594732638
405 => 0.0025680828182619
406 => 0.0025634625255066
407 => 0.0026271349048771
408 => 0.0026669505503862
409 => 0.002575188377956
410 => 0.0025521104397411
411 => 0.0025652566821821
412 => 0.0023479785782489
413 => 0.0026093786482969
414 => 0.0026116392469575
415 => 0.0025922826287758
416 => 0.0027314700962546
417 => 0.0030251990662947
418 => 0.0029146864125452
419 => 0.0028718925727507
420 => 0.0027905414520194
421 => 0.0028989369902423
422 => 0.0028906139041406
423 => 0.002852973752352
424 => 0.0028302088711058
425 => 0.0028721538628113
426 => 0.0028250114224488
427 => 0.0028165433447721
428 => 0.0027652360074106
429 => 0.0027469216223076
430 => 0.0027333623806941
501 => 0.0027184349879811
502 => 0.0027513610966314
503 => 0.0026767462026395
504 => 0.0025867679550736
505 => 0.0025792872373666
506 => 0.002599942156667
507 => 0.0025908038924545
508 => 0.0025792434868733
509 => 0.0025571715243297
510 => 0.0025506232445359
511 => 0.0025719019770921
512 => 0.0025478795286633
513 => 0.0025833259598904
514 => 0.0025736864919372
515 => 0.0025198412075388
516 => 0.0024527300471009
517 => 0.0024521326170026
518 => 0.0024376736275706
519 => 0.0024192579306054
520 => 0.0024141351050037
521 => 0.002488861260491
522 => 0.0026435421659841
523 => 0.0026131746030354
524 => 0.0026351182794588
525 => 0.0027430594490073
526 => 0.0027773707009026
527 => 0.0027530173870139
528 => 0.002719681068916
529 => 0.0027211476977277
530 => 0.0028350679882577
531 => 0.0028421730570406
601 => 0.0028601252736729
602 => 0.0028831989453413
603 => 0.0027569469330724
604 => 0.0027152012393034
605 => 0.0026954198136328
606 => 0.0026345006789425
607 => 0.0027001967428941
608 => 0.0026619184598154
609 => 0.0026670835079751
610 => 0.0026637197635853
611 => 0.0026655565954775
612 => 0.0025680350696556
613 => 0.0026035667880846
614 => 0.0025444884147062
615 => 0.0024653891046112
616 => 0.002465123935988
617 => 0.0024844833800738
618 => 0.0024729676251965
619 => 0.0024419790249186
620 => 0.002446380809326
621 => 0.0024078165461419
622 => 0.0024510632091051
623 => 0.0024523033686548
624 => 0.0024356510477524
625 => 0.0025022784989366
626 => 0.0025295758200496
627 => 0.0025186149057043
628 => 0.0025288067730796
629 => 0.0026144365123773
630 => 0.0026283978961702
701 => 0.0026345986206138
702 => 0.002626290471298
703 => 0.0025303719275212
704 => 0.0025346263228148
705 => 0.0025034103929857
706 => 0.0024770362217337
707 => 0.0024780910502695
708 => 0.0024916508026953
709 => 0.0025508670368076
710 => 0.0026754841105094
711 => 0.0026802132373625
712 => 0.0026859450770668
713 => 0.0026626308043976
714 => 0.002655598996673
715 => 0.0026648757661253
716 => 0.0027116753869532
717 => 0.0028320567176957
718 => 0.0027895059154126
719 => 0.0027549114508137
720 => 0.0027852601228676
721 => 0.0027805881826857
722 => 0.0027411523058756
723 => 0.0027400454721588
724 => 0.0026643554161478
725 => 0.0026363745258198
726 => 0.0026129915995283
727 => 0.0025874580544447
728 => 0.002572320913027
729 => 0.0025955784419524
730 => 0.0026008977139926
731 => 0.0025500447205253
801 => 0.002543113645424
802 => 0.0025846412976275
803 => 0.0025663665261996
804 => 0.0025851625818057
805 => 0.0025895234279359
806 => 0.0025888212312701
807 => 0.0025697402710553
808 => 0.0025819019060938
809 => 0.0025531360136699
810 => 0.0025218574261562
811 => 0.0025019036360473
812 => 0.0024844913076912
813 => 0.0024941526794737
814 => 0.002459711653166
815 => 0.0024486932756892
816 => 0.0025777818177882
817 => 0.0026731409117724
818 => 0.0026717543527795
819 => 0.0026633140315044
820 => 0.0026507734261462
821 => 0.0027107579635606
822 => 0.0026898605501542
823 => 0.0027050651644447
824 => 0.0027089353769173
825 => 0.0027206493444384
826 => 0.0027248360809777
827 => 0.0027121808552805
828 => 0.0026697083721352
829 => 0.0025638709822995
830 => 0.0025146033916284
831 => 0.0024983442660903
901 => 0.0024989352544231
902 => 0.0024826331579155
903 => 0.0024874348559457
904 => 0.0024809633232965
905 => 0.0024687078060909
906 => 0.0024933959358213
907 => 0.0024962410127869
908 => 0.0024904785083067
909 => 0.0024918357867175
910 => 0.0024441247108188
911 => 0.0024477520802963
912 => 0.0024275544261014
913 => 0.0024237676094262
914 => 0.0023727096984323
915 => 0.0022822532081441
916 => 0.0023323748845878
917 => 0.0022718349476181
918 => 0.0022489075561579
919 => 0.0023574422613894
920 => 0.0023465483872683
921 => 0.0023279028102262
922 => 0.0023003221157022
923 => 0.0022900921678155
924 => 0.0022279382428638
925 => 0.0022242658573994
926 => 0.0022550710209026
927 => 0.0022408554978868
928 => 0.0022208915197331
929 => 0.0021485840145764
930 => 0.0020672864385881
1001 => 0.0020697403013888
1002 => 0.0020955995477155
1003 => 0.0021707887940049
1004 => 0.0021414110546925
1005 => 0.0021200971677506
1006 => 0.0021161057174195
1007 => 0.0021660670749808
1008 => 0.0022367728631581
1009 => 0.0022699464370181
1010 => 0.0022370724328193
1011 => 0.0021993085468578
1012 => 0.0022016070596153
1013 => 0.0022168980352389
1014 => 0.0022185049005742
1015 => 0.0021939244930035
1016 => 0.0022008437337541
1017 => 0.0021903327743453
1018 => 0.0021258270358552
1019 => 0.0021246603315959
1020 => 0.0021088295830748
1021 => 0.0021083502343012
1022 => 0.0020814181819016
1023 => 0.0020776502015985
1024 => 0.0020241749769005
1025 => 0.0020593725317346
1026 => 0.0020357638599064
1027 => 0.0020001800227387
1028 => 0.0019940453557987
1029 => 0.0019938609403026
1030 => 0.0020303975846735
1031 => 0.0020589455797724
1101 => 0.0020361745428606
1102 => 0.0020309900191538
1103 => 0.0020863471685225
1104 => 0.0020793024666737
1105 => 0.0020732018003061
1106 => 0.0022304419353347
1107 => 0.0021059740988588
1108 => 0.0020516990177796
1109 => 0.0019845232983857
1110 => 0.0020063960513498
1111 => 0.0020110049617769
1112 => 0.0018494594659681
1113 => 0.0017839204784377
1114 => 0.0017614299677019
1115 => 0.0017484863608043
1116 => 0.0017543849250032
1117 => 0.0016953921492693
1118 => 0.0017350362702129
1119 => 0.0016839535129626
1120 => 0.0016753893224719
1121 => 0.0017667316203748
1122 => 0.001779441367514
1123 => 0.0017252176376092
1124 => 0.0017600380502325
1125 => 0.0017474116845754
1126 => 0.0016848291802192
1127 => 0.0016824389888786
1128 => 0.001651037288074
1129 => 0.0016018997068824
1130 => 0.0015794425137405
1201 => 0.0015677466125699
1202 => 0.0015725725693415
1203 => 0.0015701324179211
1204 => 0.0015542087793209
1205 => 0.0015710451422461
1206 => 0.0015280351922376
1207 => 0.0015109082835895
1208 => 0.0015031724562944
1209 => 0.0014649986501016
1210 => 0.0015257501517231
1211 => 0.0015377189628698
1212 => 0.0015497113562718
1213 => 0.0016540969532816
1214 => 0.0016488821438456
1215 => 0.0016960214814316
1216 => 0.0016941897334567
1217 => 0.0016807448307705
1218 => 0.0016240229979167
1219 => 0.0016466313095228
1220 => 0.001577046440511
1221 => 0.0016291841556858
1222 => 0.0016053906798031
1223 => 0.0016211395575558
1224 => 0.0015928216553374
1225 => 0.0016084939516426
1226 => 0.0015405572120063
1227 => 0.0014771188404297
1228 => 0.0015026482930336
1229 => 0.0015304017276612
1230 => 0.0015905782453773
1231 => 0.001554737607871
]
'min_raw' => 0.0014649986501016
'max_raw' => 0.0043730566492068
'avg_raw' => 0.0029190276496542
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001464'
'max' => '$0.004373'
'avg' => '$0.002919'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0027752313498984
'max_diff' => 0.00013282664920681
'year' => 2026
]
1 => [
'items' => [
101 => 0.0015676272564028
102 => 0.0015244490915224
103 => 0.0014353602041412
104 => 0.0014358644375687
105 => 0.001422160053152
106 => 0.0014103174641431
107 => 0.0015588543362302
108 => 0.0015403814281657
109 => 0.0015109472668394
110 => 0.0015503460614417
111 => 0.0015607637280775
112 => 0.0015610603044012
113 => 0.001589804647913
114 => 0.0016051455091979
115 => 0.0016078494024905
116 => 0.001653079248069
117 => 0.0016682396957108
118 => 0.0017306834339605
119 => 0.0016038439442985
120 => 0.001601231768478
121 => 0.0015509004832786
122 => 0.0015189795864991
123 => 0.0015530861343906
124 => 0.0015832998798145
125 => 0.0015518393085694
126 => 0.0015559473950051
127 => 0.0015137141485317
128 => 0.001528810546887
129 => 0.0015418135988551
130 => 0.0015346340778424
131 => 0.0015238859873936
201 => 0.0015808226972428
202 => 0.0015776101049363
203 => 0.0016306308781171
204 => 0.0016719643623634
205 => 0.0017460413553769
206 => 0.0016687381514463
207 => 0.0016659209154427
208 => 0.0016934598492771
209 => 0.0016682354796435
210 => 0.0016841764105363
211 => 0.0017434730249642
212 => 0.0017447258689887
213 => 0.0017237391173803
214 => 0.0017224620716376
215 => 0.0017264928068539
216 => 0.0017501009489135
217 => 0.001741851538673
218 => 0.0017513979650529
219 => 0.001763335917421
220 => 0.0018127163500024
221 => 0.0018246218051211
222 => 0.0017956977214534
223 => 0.0017983092423593
224 => 0.0017874908410838
225 => 0.0017770404010057
226 => 0.0018005314641369
227 => 0.0018434618437272
228 => 0.0018431947760639
301 => 0.0018531537896815
302 => 0.0018593581726604
303 => 0.0018327244190292
304 => 0.0018153868247656
305 => 0.0018220351616261
306 => 0.0018326659970479
307 => 0.0018185877249776
308 => 0.0017316901080698
309 => 0.0017580492939983
310 => 0.0017536618365615
311 => 0.0017474135636383
312 => 0.0017739179289191
313 => 0.0017713615182299
314 => 0.0016947870930874
315 => 0.0016996891393399
316 => 0.0016950852027561
317 => 0.0017099614637352
318 => 0.0016674321127309
319 => 0.0016805138546603
320 => 0.0016887186005646
321 => 0.0016935512589342
322 => 0.0017110101347497
323 => 0.0017089615371823
324 => 0.0017108827910485
325 => 0.0017367696949107
326 => 0.0018676967713326
327 => 0.001874822843228
328 => 0.001839731458977
329 => 0.0018537497748383
330 => 0.0018268376738532
331 => 0.0018449039475399
401 => 0.0018572644331627
402 => 0.0018014097754179
403 => 0.00179810242508
404 => 0.001771079248281
405 => 0.0017855999728218
406 => 0.0017624964560003
407 => 0.0017681652509016
408 => 0.001752314806161
409 => 0.001780842450902
410 => 0.0018127407904704
411 => 0.0018207995707489
412 => 0.0017996003893591
413 => 0.0017842507849387
414 => 0.0017573019360505
415 => 0.0018021184723458
416 => 0.0018152241933177
417 => 0.0018020496335728
418 => 0.0017989968002101
419 => 0.0017932116865041
420 => 0.0018002241394308
421 => 0.0018151528167467
422 => 0.0018081127282139
423 => 0.0018127628307202
424 => 0.0017950414351311
425 => 0.0018327332359099
426 => 0.0018925968865725
427 => 0.0018927893579981
428 => 0.0018857492315166
429 => 0.001882868563442
430 => 0.0018900921604426
501 => 0.001894010665488
502 => 0.0019173704536068
503 => 0.0019424364369533
504 => 0.0020594084440862
505 => 0.0020265631725544
506 => 0.0021303476959785
507 => 0.0022124277792733
508 => 0.0022370400073264
509 => 0.0022143979156124
510 => 0.0021369405429605
511 => 0.0021331401147283
512 => 0.0022488941311294
513 => 0.0022161883196263
514 => 0.002212298067417
515 => 0.0021709123565953
516 => 0.0021953764374109
517 => 0.0021900257840701
518 => 0.0021815795160087
519 => 0.0022282552780224
520 => 0.0023156281377379
521 => 0.0023020102581738
522 => 0.0022918451427944
523 => 0.0022473045662225
524 => 0.0022741279418167
525 => 0.0022645766515355
526 => 0.0023056150559821
527 => 0.0022813048142999
528 => 0.0022159405409371
529 => 0.0022263500169136
530 => 0.0022247766455607
531 => 0.0022571565165128
601 => 0.0022474368829708
602 => 0.0022228787311171
603 => 0.0023153295068021
604 => 0.0023093262676673
605 => 0.0023178374882289
606 => 0.0023215843907383
607 => 0.0023778575487324
608 => 0.0024009108610223
609 => 0.0024061443665172
610 => 0.0024280432301855
611 => 0.0024055995028397
612 => 0.0024953904143292
613 => 0.0025550961310248
614 => 0.0026244473933948
615 => 0.0027257882275794
616 => 0.0027638933186879
617 => 0.0027570099750446
618 => 0.0028338454389364
619 => 0.0029719170595935
620 => 0.0027849181971981
621 => 0.0029818284533692
622 => 0.0029194889397037
623 => 0.0027716830742426
624 => 0.0027621661190236
625 => 0.0028622619671752
626 => 0.0030842649245071
627 => 0.0030286557016321
628 => 0.0030843558812742
629 => 0.0030193786630325
630 => 0.0030161519964758
701 => 0.0030812000828161
702 => 0.0032331884821368
703 => 0.0031609844908195
704 => 0.0030574623641211
705 => 0.0031339014914925
706 => 0.0030676828452561
707 => 0.0029184737018535
708 => 0.0030286131783074
709 => 0.0029549660469944
710 => 0.0029764601952083
711 => 0.0031312555110444
712 => 0.0031126301291054
713 => 0.0031367330979984
714 => 0.0030941919887868
715 => 0.003054451884666
716 => 0.0029802740291856
717 => 0.0029583136231019
718 => 0.0029643826892908
719 => 0.0029583106155741
720 => 0.0029168087871625
721 => 0.0029078464712684
722 => 0.0028929088854636
723 => 0.0028975386679148
724 => 0.0028694516364568
725 => 0.0029224576678948
726 => 0.0029322960544172
727 => 0.0029708694237616
728 => 0.0029748742389292
729 => 0.0030823005234958
730 => 0.0030231319311819
731 => 0.0030628273312765
801 => 0.0030592766010645
802 => 0.0027748864755338
803 => 0.0028140729256366
804 => 0.0028750347446111
805 => 0.0028475715277949
806 => 0.0028087449646197
807 => 0.0027773904331072
808 => 0.0027298851117003
809 => 0.0027967479393217
810 => 0.0028846654475747
811 => 0.0029771039720245
812 => 0.0030881628023388
813 => 0.00306337576428
814 => 0.0029750278044427
815 => 0.0029789910293827
816 => 0.0030034901264908
817 => 0.0029717615697582
818 => 0.0029624041989627
819 => 0.0030022045674357
820 => 0.0030024786506995
821 => 0.0029659711116544
822 => 0.002925399662815
823 => 0.002925229666963
824 => 0.0029180103695158
825 => 0.0030206629600106
826 => 0.0030771115054353
827 => 0.0030835832401968
828 => 0.0030766759061217
829 => 0.0030793342648649
830 => 0.0030464881000412
831 => 0.0031215646926007
901 => 0.0031904623982388
902 => 0.003171996341343
903 => 0.0031443130969515
904 => 0.003122262059388
905 => 0.0031668018176851
906 => 0.0031648185323602
907 => 0.0031898606368851
908 => 0.0031887245823737
909 => 0.0031803038645031
910 => 0.0031719966420734
911 => 0.0032049338400015
912 => 0.0031954484559534
913 => 0.003185948338484
914 => 0.0031668943985038
915 => 0.0031694841453995
916 => 0.0031418056809105
917 => 0.0031290003567575
918 => 0.0029364390057653
919 => 0.0028849803206566
920 => 0.0029011702705299
921 => 0.0029065004224001
922 => 0.0028841055366946
923 => 0.0029162140500221
924 => 0.0029112099722314
925 => 0.0029306779116276
926 => 0.0029185151882925
927 => 0.0029190143507007
928 => 0.0029547823266632
929 => 0.002965165922253
930 => 0.0029598847417301
1001 => 0.00296358349954
1002 => 0.0030488198121217
1003 => 0.0030367019341764
1004 => 0.0030302645530362
1005 => 0.0030320477516059
1006 => 0.0030538274569577
1007 => 0.0030599245853283
1008 => 0.0030340906239842
1009 => 0.0030462740694985
1010 => 0.0030981496341887
1011 => 0.0031163031459275
1012 => 0.0031742404412181
1013 => 0.0031496276484254
1014 => 0.0031948054948132
1015 => 0.0033336667923464
1016 => 0.0034445988052869
1017 => 0.0033425811417275
1018 => 0.0035462936563861
1019 => 0.0037049130698724
1020 => 0.0036988249925883
1021 => 0.0036711660289138
1022 => 0.003490582043775
1023 => 0.0033244059682946
1024 => 0.0034634193116428
1025 => 0.0034637736852433
1026 => 0.0034518323157649
1027 => 0.0033776654955097
1028 => 0.0034492514711859
1029 => 0.003454933705973
1030 => 0.0034517531655204
1031 => 0.0033948896383241
1101 => 0.0033080695424317
1102 => 0.0033250339813511
1103 => 0.0033528220783663
1104 => 0.0033002134135122
1105 => 0.0032834017574199
1106 => 0.0033146578246439
1107 => 0.0034153713856999
1108 => 0.0033963320703762
1109 => 0.0033958348769092
1110 => 0.0034772931417902
1111 => 0.0034189866039292
1112 => 0.0033252479572535
1113 => 0.0033015777127071
1114 => 0.0032175642907544
1115 => 0.0032755926605427
1116 => 0.0032776809982654
1117 => 0.003245899453168
1118 => 0.0033278268544801
1119 => 0.003327071879054
1120 => 0.0034048497533154
1121 => 0.0035535318368677
1122 => 0.0035095592285603
1123 => 0.0034584238693049
1124 => 0.0034639837006857
1125 => 0.0035249613280996
1126 => 0.0034880928625813
1127 => 0.0035013510198378
1128 => 0.0035249412602907
1129 => 0.0035391738380687
1130 => 0.0034619358517704
1201 => 0.0034439279824443
1202 => 0.0034070902017064
1203 => 0.0033974799123217
1204 => 0.0034274835160872
1205 => 0.0034195786265379
1206 => 0.0032775054815663
1207 => 0.0032626580474292
1208 => 0.0032631133970369
1209 => 0.0032257788179423
1210 => 0.0031688346234973
1211 => 0.0033184805665376
1212 => 0.0033064619030178
1213 => 0.0032931942286627
1214 => 0.0032948194430669
1215 => 0.003359775674969
1216 => 0.0033220977800974
1217 => 0.0034222706388991
1218 => 0.0034016781106013
1219 => 0.0033805574616553
1220 => 0.0033776379446203
1221 => 0.0033695082967051
1222 => 0.0033416287090955
1223 => 0.0033079624317533
1224 => 0.003285733039329
1225 => 0.0030309150455897
1226 => 0.0030782077830197
1227 => 0.0031326137665641
1228 => 0.0031513944940654
1229 => 0.0031192687600877
1230 => 0.0033428972288816
1231 => 0.0033837563050677
]
'min_raw' => 0.0014103174641431
'max_raw' => 0.0037049130698724
'avg_raw' => 0.0025576152670078
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00141'
'max' => '$0.0037049'
'avg' => '$0.002557'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.4681185958431E-5
'max_diff' => -0.00066814357933442
'year' => 2027
]
2 => [
'items' => [
101 => 0.0032599914981282
102 => 0.0032368401560336
103 => 0.003344415027015
104 => 0.0032795342293201
105 => 0.0033087500485494
106 => 0.0032456014275743
107 => 0.0033739145501079
108 => 0.0033729370190975
109 => 0.0033230203163486
110 => 0.0033652095716971
111 => 0.0033578781503537
112 => 0.0033015223158897
113 => 0.0033757011305805
114 => 0.0033757379223471
115 => 0.003327694181234
116 => 0.0032715896097412
117 => 0.0032615594374892
118 => 0.0032540030500613
119 => 0.0033068916404571
120 => 0.0033543113852277
121 => 0.0034425477738941
122 => 0.0034647324984497
123 => 0.003551320955311
124 => 0.0034997617451655
125 => 0.0035226172752195
126 => 0.0035474301862051
127 => 0.0035593264081962
128 => 0.0035399421528482
129 => 0.0036744496675845
130 => 0.003685806223032
131 => 0.0036896139778398
201 => 0.0036442588006687
202 => 0.003684544813508
203 => 0.003665696322233
204 => 0.0037147348602689
205 => 0.0037224247291884
206 => 0.0037159116837886
207 => 0.00371835256956
208 => 0.0036035741344841
209 => 0.0035976222671209
210 => 0.0035164681332989
211 => 0.0035495390426925
212 => 0.0034877145627112
213 => 0.003507319742176
214 => 0.003515961518479
215 => 0.0035114475449548
216 => 0.0035514088222904
217 => 0.0035174335730055
218 => 0.0034277673040947
219 => 0.0033380766056688
220 => 0.0033369506120106
221 => 0.0033133366342874
222 => 0.0032962680535092
223 => 0.0032995560677075
224 => 0.0033111434586048
225 => 0.0032955945732856
226 => 0.0032989127163169
227 => 0.0033540159993087
228 => 0.0033650665697341
229 => 0.0033275124136921
301 => 0.0031767270581446
302 => 0.0031397239536768
303 => 0.0031663210513648
304 => 0.0031536093517424
305 => 0.0025452088759745
306 => 0.0026881435432244
307 => 0.0026032166175472
308 => 0.0026423548521992
309 => 0.0025556664528035
310 => 0.0025970387007234
311 => 0.0025893987572052
312 => 0.0028192334723987
313 => 0.0028156449194483
314 => 0.0028173625698436
315 => 0.0027353746411581
316 => 0.002865983637769
317 => 0.0029303263260472
318 => 0.0029184182068721
319 => 0.0029214152239181
320 => 0.0028699165414751
321 => 0.0028178611896602
322 => 0.0027601237932364
323 => 0.002867392739234
324 => 0.0028554662635811
325 => 0.0028828213077185
326 => 0.0029523928869406
327 => 0.0029626375662578
328 => 0.0029764065191514
329 => 0.0029714713296798
330 => 0.0030890475650964
331 => 0.0030748083071945
401 => 0.003109120821824
402 => 0.0030385373759343
403 => 0.0029586655070679
404 => 0.0029738465381312
405 => 0.0029723844827617
406 => 0.0029537708398383
407 => 0.0029369672752793
408 => 0.0029089940746636
409 => 0.0029975054206666
410 => 0.0029939120216596
411 => 0.0030520849747139
412 => 0.0030418023401997
413 => 0.0029731323903259
414 => 0.0029755849510197
415 => 0.0029920796003462
416 => 0.003049167769998
417 => 0.0030661154256096
418 => 0.003058264596283
419 => 0.0030768469269713
420 => 0.0030915336434846
421 => 0.0030786913524447
422 => 0.0032605111115752
423 => 0.0031850068711548
424 => 0.0032218071125806
425 => 0.003230583753321
426 => 0.0032081025726173
427 => 0.0032129779357212
428 => 0.0032203627823667
429 => 0.003265202125097
430 => 0.0033828735347897
501 => 0.0034349894011262
502 => 0.0035917825563512
503 => 0.0034306619039149
504 => 0.0034211016711828
505 => 0.0034493448531385
506 => 0.0035413990334966
507 => 0.0036160003004673
508 => 0.0036407498445719
509 => 0.0036440209053957
510 => 0.0036904526954544
511 => 0.0037170665316145
512 => 0.003684814654864
513 => 0.0036574845662302
514 => 0.0035595915810796
515 => 0.0035709229606645
516 => 0.0036489849292163
517 => 0.0037592520576226
518 => 0.0038538727251347
519 => 0.0038207398652351
520 => 0.0040735201981146
521 => 0.0040985823356045
522 => 0.0040951195585594
523 => 0.0041522148375075
524 => 0.0040388923360467
525 => 0.0039904447711522
526 => 0.0036633936416025
527 => 0.0037552816687638
528 => 0.0038888463126372
529 => 0.0038711685311789
530 => 0.0037741703166048
531 => 0.0038537991432909
601 => 0.0038274713629648
602 => 0.0038067055502811
603 => 0.0039018377638362
604 => 0.0037972359872164
605 => 0.0038878028298993
606 => 0.0037716499173644
607 => 0.0038208912133483
608 => 0.0037929394722143
609 => 0.0038110276743645
610 => 0.0037052844141972
611 => 0.0037623409106109
612 => 0.003702910676362
613 => 0.0037028824986929
614 => 0.0037015705729779
615 => 0.0037714899800178
616 => 0.0037737700493712
617 => 0.0037220995019264
618 => 0.0037146529687939
619 => 0.0037421867046706
620 => 0.0037099519110559
621 => 0.0037250343681048
622 => 0.0037104087433151
623 => 0.0037071162071122
624 => 0.0036808807184682
625 => 0.0036695777486006
626 => 0.0036740099343274
627 => 0.0036588805994936
628 => 0.0036497646280044
629 => 0.0036997571768031
630 => 0.0036730481746736
701 => 0.0036956636391657
702 => 0.0036698904630778
703 => 0.0035805494059187
704 => 0.003529168419182
705 => 0.003360411444129
706 => 0.0034082707129117
707 => 0.0034400014576286
708 => 0.0034295144466889
709 => 0.0034520446041218
710 => 0.0034534277728058
711 => 0.0034461029889566
712 => 0.0034376218276222
713 => 0.0034334936673222
714 => 0.0034642615920599
715 => 0.0034821234079708
716 => 0.0034431860623635
717 => 0.0034340635870791
718 => 0.0034734313932778
719 => 0.003497445732317
720 => 0.0036747541192909
721 => 0.0036616185412853
722 => 0.0036945862643523
723 => 0.0036908746046659
724 => 0.0037254300306103
725 => 0.0037819135478167
726 => 0.0036670667642963
727 => 0.0036870001948124
728 => 0.00368211297798
729 => 0.0037354703298594
730 => 0.0037356369056878
731 => 0.0037036465078387
801 => 0.0037209890214976
802 => 0.0037113089061402
803 => 0.0037288021829372
804 => 0.0036614431076327
805 => 0.0037434791903907
806 => 0.003789988363026
807 => 0.0037906341429332
808 => 0.0038126791216428
809 => 0.0038350780967707
810 => 0.0038780709789893
811 => 0.0038338790486201
812 => 0.0037543820678836
813 => 0.0037601214931191
814 => 0.0037135124424001
815 => 0.0037142959489633
816 => 0.0037101135295245
817 => 0.0037226652850983
818 => 0.0036641975121347
819 => 0.0036779197815856
820 => 0.0036587085239969
821 => 0.0036869584332903
822 => 0.0036565662007679
823 => 0.0036821106212161
824 => 0.0036931347462706
825 => 0.0037338140050541
826 => 0.0036505578411702
827 => 0.0034807928870643
828 => 0.0035164795386185
829 => 0.0034636961778438
830 => 0.0034685814788439
831 => 0.0034784505643541
901 => 0.0034464616292519
902 => 0.0034525641099822
903 => 0.003452346086428
904 => 0.0034504672772239
905 => 0.0034421457197326
906 => 0.0034300778150001
907 => 0.003478152633149
908 => 0.0034863214815518
909 => 0.0035044798196451
910 => 0.0035585067168921
911 => 0.0035531081558152
912 => 0.0035619134329158
913 => 0.0035426915624446
914 => 0.0034694731262855
915 => 0.0034734492396334
916 => 0.0034238670424714
917 => 0.0035032118913876
918 => 0.0034844219838634
919 => 0.003472308008247
920 => 0.0034690025977649
921 => 0.0035231634172402
922 => 0.0035393691832941
923 => 0.0035292708374178
924 => 0.0035085588354098
925 => 0.0035483320022189
926 => 0.0035589736237619
927 => 0.0035613558903774
928 => 0.0036318263162149
929 => 0.003565294404353
930 => 0.0035813092968084
1001 => 0.0037062529160935
1002 => 0.0035929462944429
1003 => 0.0036529673389704
1004 => 0.0036500296211752
1005 => 0.0036807343565541
1006 => 0.0036475109366701
1007 => 0.0036479227807775
1008 => 0.003675186505675
1009 => 0.0036368995210951
1010 => 0.0036274191252821
1011 => 0.0036143220263662
1012 => 0.0036429190627012
1013 => 0.0036600616926513
1014 => 0.0037982187001749
1015 => 0.0038874744277602
1016 => 0.0038835996012304
1017 => 0.0039190082623407
1018 => 0.0039030563362043
1019 => 0.0038515433588047
1020 => 0.0039394697298876
1021 => 0.0039116461470813
1022 => 0.0039139398894422
1023 => 0.003913854516237
1024 => 0.0039323547664233
1025 => 0.0039192456436433
1026 => 0.0038934062170199
1027 => 0.003910559634288
1028 => 0.0039614991511154
1029 => 0.0041196169743629
1030 => 0.0042081018030347
1031 => 0.004114290076572
1101 => 0.0041790001492969
1102 => 0.0041401971642184
1103 => 0.0041331455075408
1104 => 0.0041737882152489
1105 => 0.0042145020626365
1106 => 0.0042119087665687
1107 => 0.0041823526040445
1108 => 0.0041656570777944
1109 => 0.0042920811959717
1110 => 0.0043852283326661
1111 => 0.0043788763224098
1112 => 0.0044069120298964
1113 => 0.0044892257341889
1114 => 0.0044967514677204
1115 => 0.0044958033982725
1116 => 0.0044771500824854
1117 => 0.0045581986141465
1118 => 0.0046258107251714
1119 => 0.0044728323788268
1120 => 0.0045310845304812
1121 => 0.004557235798126
1122 => 0.00459563361776
1123 => 0.0046604171757044
1124 => 0.0047307893026221
1125 => 0.0047407406929594
1126 => 0.0047336797052972
1127 => 0.0046872673958907
1128 => 0.0047642694168781
1129 => 0.004809375394853
1130 => 0.004836234972505
1201 => 0.0049043463924231
1202 => 0.004557397299452
1203 => 0.0043118094869583
1204 => 0.0042734574037064
1205 => 0.0043514478731203
1206 => 0.0043720133379424
1207 => 0.0043637234248595
1208 => 0.0040872920140308
1209 => 0.0042720020495372
1210 => 0.0044707345168811
1211 => 0.0044783686403153
1212 => 0.0045778582687676
1213 => 0.0046102561700093
1214 => 0.0046903583613171
1215 => 0.0046853479474414
1216 => 0.0047048515563206
1217 => 0.0047003680143947
1218 => 0.004848740456286
1219 => 0.005012417293213
1220 => 0.0050067496848106
1221 => 0.004983219202966
1222 => 0.0050181659810487
1223 => 0.0051870980174331
1224 => 0.0051715454626036
1225 => 0.005186653444857
1226 => 0.0053858338363467
1227 => 0.0056447966783635
1228 => 0.0055244824388024
1229 => 0.0057855297191601
1230 => 0.0059498451446235
1231 => 0.0062340116824304
]
'min_raw' => 0.0025452088759745
'max_raw' => 0.0062340116824304
'avg_raw' => 0.0043896102792025
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002545'
'max' => '$0.006234'
'avg' => '$0.004389'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011348914118314
'max_diff' => 0.002529098612558
'year' => 2028
]
3 => [
'items' => [
101 => 0.0061984326323473
102 => 0.0063090565802051
103 => 0.0061347387071267
104 => 0.0057344696350839
105 => 0.0056711255222646
106 => 0.0057979420402571
107 => 0.0061097080751669
108 => 0.0057881234183367
109 => 0.0058531795755807
110 => 0.0058344433979179
111 => 0.0058334450266338
112 => 0.0058715487978756
113 => 0.0058162772903304
114 => 0.0055910912254371
115 => 0.0056942926719479
116 => 0.0056544416373095
117 => 0.0056986593313322
118 => 0.0059372839892084
119 => 0.00583178233986
120 => 0.0057206449225294
121 => 0.0058600359072291
122 => 0.0060375285306909
123 => 0.0060264213612996
124 => 0.0060048688102438
125 => 0.0061263594120905
126 => 0.006327026292935
127 => 0.0063812657444824
128 => 0.0064213041987379
129 => 0.0064268248251245
130 => 0.0064836907079568
131 => 0.00617790852392
201 => 0.0066631927030298
202 => 0.0067469878750572
203 => 0.0067312378556701
204 => 0.0068243726627386
205 => 0.006796970039897
206 => 0.0067572679387394
207 => 0.0069049064182846
208 => 0.0067356508152969
209 => 0.0064954137955439
210 => 0.0063636150151579
211 => 0.0065371782810746
212 => 0.0066431673110466
213 => 0.0067132193176897
214 => 0.0067344170125733
215 => 0.0062016455244166
216 => 0.0059145112411614
217 => 0.0060985610247267
218 => 0.0063231144631139
219 => 0.0061766611182318
220 => 0.0061824018120783
221 => 0.0059735978295385
222 => 0.0063415889823741
223 => 0.0062879757666987
224 => 0.0065661212244627
225 => 0.0064997395787106
226 => 0.0067265564019727
227 => 0.0066668279309483
228 => 0.0069147574747968
301 => 0.0070136632822624
302 => 0.007179741526457
303 => 0.0073019093589465
304 => 0.0073736486468827
305 => 0.0073693416891223
306 => 0.0076536084882965
307 => 0.007485986288349
308 => 0.0072754132996956
309 => 0.0072716046986802
310 => 0.007380663433346
311 => 0.0076092206224031
312 => 0.0076684821761537
313 => 0.0077016013000904
314 => 0.0076508782088963
315 => 0.0074689363244445
316 => 0.0073903747412046
317 => 0.0074573114862732
318 => 0.0073754535989943
319 => 0.0075167632777043
320 => 0.0077108116486918
321 => 0.0076707414274333
322 => 0.0078046901694371
323 => 0.0079433130255924
324 => 0.0081415499358366
325 => 0.008193376404866
326 => 0.0082790435873874
327 => 0.0083672232584054
328 => 0.0083955441922277
329 => 0.0084496176423639
330 => 0.0084493326485903
331 => 0.008612286630139
401 => 0.008792029918052
402 => 0.0088598788481724
403 => 0.0090158937217726
404 => 0.0087487237181456
405 => 0.0089513752349245
406 => 0.0091341719757555
407 => 0.0089162341655117
408 => 0.0092166106639356
409 => 0.0092282736027016
410 => 0.0094043701311898
411 => 0.0092258625635542
412 => 0.0091198653397085
413 => 0.0094258753532868
414 => 0.0095739439596323
415 => 0.0095293444903787
416 => 0.009189940327212
417 => 0.0089923925465196
418 => 0.0084753719003265
419 => 0.009087805189372
420 => 0.0093861035795421
421 => 0.009189167806445
422 => 0.0092884907553254
423 => 0.0098303645588422
424 => 0.010036675019491
425 => 0.009993763885895
426 => 0.010001015161095
427 => 0.010112336540862
428 => 0.010605996844549
429 => 0.010310184147623
430 => 0.010536321870533
501 => 0.010656264503363
502 => 0.010767673905212
503 => 0.010494087625574
504 => 0.010138155895546
505 => 0.010025417375649
506 => 0.0091695864249904
507 => 0.0091250367073232
508 => 0.009100029600802
509 => 0.0089423633315113
510 => 0.0088184808322745
511 => 0.0087199648694192
512 => 0.00846142956353
513 => 0.0085486776398841
514 => 0.0081366263228086
515 => 0.0084002421532714
516 => 0.007742598301892
517 => 0.0082903036433134
518 => 0.0079922125270838
519 => 0.0081923726944971
520 => 0.0081916743545292
521 => 0.0078231160254824
522 => 0.0076105392729044
523 => 0.0077460014532581
524 => 0.0078912276635986
525 => 0.0079147901276267
526 => 0.008103079700125
527 => 0.0081556272725385
528 => 0.0079964056749141
529 => 0.0077289700948253
530 => 0.0077910892805237
531 => 0.0076092804295889
601 => 0.007290667411502
602 => 0.0075195008435416
603 => 0.0075976346383357
604 => 0.0076321429733009
605 => 0.0073188236629648
606 => 0.007220371933164
607 => 0.0071679570583081
608 => 0.0076885245063563
609 => 0.0077170423662749
610 => 0.0075711409629121
611 => 0.008230629141051
612 => 0.00808136665524
613 => 0.0082481294220877
614 => 0.0077854526155241
615 => 0.0078031274926118
616 => 0.0075840888776598
617 => 0.0077067358658674
618 => 0.0076200529276992
619 => 0.0076968272012414
620 => 0.0077428453842503
621 => 0.0079618480571209
622 => 0.0082928043020487
623 => 0.0079291363608896
624 => 0.0077706810311057
625 => 0.007868985826517
626 => 0.0081307844511518
627 => 0.0085274227686985
628 => 0.0082926049016208
629 => 0.0083968130835639
630 => 0.0084195779354192
701 => 0.008246431933666
702 => 0.008533806908756
703 => 0.0086878134925369
704 => 0.0088457923803239
705 => 0.0089829610221214
706 => 0.0087826921385116
707 => 0.0089970085513909
708 => 0.0088243073545498
709 => 0.0086693765274618
710 => 0.0086696114935738
711 => 0.0085724211225633
712 => 0.0083841025319556
713 => 0.0083493736945219
714 => 0.0085300374926203
715 => 0.0086749127497697
716 => 0.0086868453698543
717 => 0.0087670557561717
718 => 0.0088145234365617
719 => 0.0092797712335658
720 => 0.0094668977462525
721 => 0.0096957125038421
722 => 0.0097848487472164
723 => 0.010053116882661
724 => 0.0098364685756168
725 => 0.0097895953516061
726 => 0.0091388646048554
727 => 0.0092454217281812
728 => 0.0094160299638589
729 => 0.0091416778718228
730 => 0.009315691127073
731 => 0.0093500450297641
801 => 0.0091323554927175
802 => 0.0092486328802637
803 => 0.0089398346127837
804 => 0.0082995352604315
805 => 0.0085345197449745
806 => 0.0087075474205204
807 => 0.0084606155933578
808 => 0.0089032313359653
809 => 0.0086446643565775
810 => 0.0085627110375155
811 => 0.0082429819213866
812 => 0.0083938817566972
813 => 0.0085979759446322
814 => 0.0084718694649844
815 => 0.0087335593452368
816 => 0.009104182005816
817 => 0.0093683097847058
818 => 0.0093885862358812
819 => 0.0092187697692419
820 => 0.0094909017407856
821 => 0.0094928839251051
822 => 0.0091859179495121
823 => 0.0089979029986551
824 => 0.0089551856062335
825 => 0.0090619020277407
826 => 0.0091914754643885
827 => 0.0093957766598299
828 => 0.0095192315934445
829 => 0.0098411365848741
830 => 0.0099282348458155
831 => 0.010023929428047
901 => 0.010151806901026
902 => 0.010305356594447
903 => 0.00996939860683
904 => 0.009982746843982
905 => 0.0096699074175682
906 => 0.0093355936247331
907 => 0.0095892961206924
908 => 0.0099209783855304
909 => 0.0098448901075002
910 => 0.0098363286218793
911 => 0.0098507266659355
912 => 0.0097933585891116
913 => 0.0095338849037973
914 => 0.0094035788434236
915 => 0.009571706905927
916 => 0.0096610594886285
917 => 0.0097996375520343
918 => 0.0097825548806915
919 => 0.010139517089827
920 => 0.010278221810321
921 => 0.010242735207309
922 => 0.010249265596296
923 => 0.010500383867348
924 => 0.010779679031169
925 => 0.011041275808331
926 => 0.011307383285903
927 => 0.010986580335338
928 => 0.010823696381417
929 => 0.010991751044468
930 => 0.010902578874712
1001 => 0.011414988612311
1002 => 0.011450466750783
1003 => 0.011962839435325
1004 => 0.01244914212516
1005 => 0.012143704118692
1006 => 0.012431718401561
1007 => 0.012743229330633
1008 => 0.013344184453639
1009 => 0.013141803910067
1010 => 0.012986783585398
1011 => 0.012840290127638
1012 => 0.013145119758054
1013 => 0.013537278207812
1014 => 0.013621745381843
1015 => 0.013758614472717
1016 => 0.013614713359219
1017 => 0.01378802640024
1018 => 0.014399897592651
1019 => 0.014234564595325
1020 => 0.013999765160517
1021 => 0.014482778702192
1022 => 0.014657579425256
1023 => 0.015884422443572
1024 => 0.017433362432553
1025 => 0.016792091106227
1026 => 0.016394033300279
1027 => 0.016487586326734
1028 => 0.017053206775783
1029 => 0.017234866112122
1030 => 0.016741053414225
1031 => 0.016915476407339
1101 => 0.017876564248289
1102 => 0.018392157039569
1103 => 0.01769191277566
1104 => 0.015759966623627
1105 => 0.013978624040409
1106 => 0.01445111630838
1107 => 0.014397550348334
1108 => 0.015430119335285
1109 => 0.014230621458018
1110 => 0.014250817925988
1111 => 0.015304739346079
1112 => 0.015023571179986
1113 => 0.014568114760213
1114 => 0.013981949376311
1115 => 0.012898368450432
1116 => 0.011938610606492
1117 => 0.01382091675749
1118 => 0.013739748293507
1119 => 0.013622204329168
1120 => 0.01388378570222
1121 => 0.015153950598591
1122 => 0.015124669186607
1123 => 0.014938395783073
1124 => 0.015079682517915
1125 => 0.014543346512484
1126 => 0.014681572513228
1127 => 0.013978341866642
1128 => 0.014296231488405
1129 => 0.014567137555292
1130 => 0.014621525959053
1201 => 0.014744065809866
1202 => 0.013696976201312
1203 => 0.014167088694617
1204 => 0.01444323574085
1205 => 0.013195593339654
1206 => 0.014418573862055
1207 => 0.013678748700791
1208 => 0.013427640929258
1209 => 0.013765724462694
1210 => 0.013633972980917
1211 => 0.013520700793591
1212 => 0.013457492966801
1213 => 0.013705744200839
1214 => 0.013694162984046
1215 => 0.013287975781672
1216 => 0.012758121134483
1217 => 0.012935957745965
1218 => 0.012871348037787
1219 => 0.012637194120529
1220 => 0.012794985588909
1221 => 0.012100151818597
1222 => 0.010904726431093
1223 => 0.011694461058948
1224 => 0.011664057134842
1225 => 0.011648726097599
1226 => 0.01224218984377
1227 => 0.012185141998114
1228 => 0.012081599599634
1229 => 0.012635292483182
1230 => 0.012433187132466
1231 => 0.013056028201361
]
'min_raw' => 0.0055910912254371
'max_raw' => 0.018392157039569
'avg_raw' => 0.011991624132503
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005591'
'max' => '$0.018392'
'avg' => '$0.011991'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0030458823494625
'max_diff' => 0.012158145357139
'year' => 2029
]
4 => [
'items' => [
101 => 0.013466271612169
102 => 0.013362220613204
103 => 0.013748056523948
104 => 0.012940054742314
105 => 0.013208440522768
106 => 0.013263754460153
107 => 0.012628459998946
108 => 0.012194475731186
109 => 0.012165533928309
110 => 0.01141306501473
111 => 0.011815027834647
112 => 0.012168738481823
113 => 0.011999338530881
114 => 0.011945711567092
115 => 0.012219680094819
116 => 0.012240969795805
117 => 0.01175556235714
118 => 0.011856493934493
119 => 0.012277395390533
120 => 0.011845888297722
121 => 0.011007540502674
122 => 0.010799618658437
123 => 0.010771878051656
124 => 0.010207977519596
125 => 0.010813512990286
126 => 0.010549180529988
127 => 0.01138420360488
128 => 0.01090724290282
129 => 0.010886682080244
130 => 0.010855601381303
131 => 0.010370228898921
201 => 0.010476494625532
202 => 0.010829738085515
203 => 0.010955779331609
204 => 0.010942632197016
205 => 0.010828006999849
206 => 0.010880481828136
207 => 0.010711442122782
208 => 0.010651750684565
209 => 0.010463348086126
210 => 0.010186448313968
211 => 0.010224952925611
212 => 0.0096763420221991
213 => 0.0093774296850356
214 => 0.00929469468971
215 => 0.0091840579962272
216 => 0.0093071913986319
217 => 0.009674787876439
218 => 0.0092313885342604
219 => 0.0084712114629428
220 => 0.0085168994002077
221 => 0.0086195466303716
222 => 0.0084282641960405
223 => 0.008247231425064
224 => 0.0084046247317751
225 => 0.0080825276854206
226 => 0.0086584705195867
227 => 0.0086428928799836
228 => 0.0088575687524948
301 => 0.0089918099811684
302 => 0.0086824274101896
303 => 0.0086046185302479
304 => 0.0086489420044791
305 => 0.0079163737071956
306 => 0.0087977022937324
307 => 0.0088053240599468
308 => 0.0087400618703112
309 => 0.0092093421346747
310 => 0.010199669864667
311 => 0.009827068736803
312 => 0.0096827863181655
313 => 0.0094085053348658
314 => 0.0097739684599193
315 => 0.0097459065940281
316 => 0.0096190001943213
317 => 0.0095422468078065
318 => 0.0096836672758473
319 => 0.0095247232467853
320 => 0.0094961725316759
321 => 0.0093231862615976
322 => 0.0092614380335534
323 => 0.0092157221037773
324 => 0.0091653933570483
325 => 0.0092764060311902
326 => 0.0090248367066511
327 => 0.0087214687629019
328 => 0.0086962470008658
329 => 0.0087658865033675
330 => 0.0087350762075617
331 => 0.008696099493023
401 => 0.0086216823302922
402 => 0.008599604347781
403 => 0.0086713470802278
404 => 0.0085903537181565
405 => 0.0087098638358295
406 => 0.0086773636966189
407 => 0.0084958205609122
408 => 0.0082695505979441
409 => 0.0082675363206564
410 => 0.0082187868282921
411 => 0.0081566970202308
412 => 0.0081394250560506
413 => 0.0083913695064895
414 => 0.0089128869788354
415 => 0.0088105006201585
416 => 0.0088844852572786
417 => 0.0092484164466231
418 => 0.0093640992279231
419 => 0.0092819903298532
420 => 0.0091695946059189
421 => 0.0091745394473541
422 => 0.009558629660537
423 => 0.0095825848959986
424 => 0.0096431120477581
425 => 0.0097209065427402
426 => 0.0092952390687416
427 => 0.0091544905476084
428 => 0.0090877960898649
429 => 0.0088824029740182
430 => 0.0091039018403839
501 => 0.0089748439364797
502 => 0.0089922582569622
503 => 0.0089809171579027
504 => 0.0089871101648709
505 => 0.0086583095318268
506 => 0.0087781072012556
507 => 0.0085789203406901
508 => 0.0083122314941674
509 => 0.0083113374596407
510 => 0.0083766091770093
511 => 0.0083377830054359
512 => 0.008233302776044
513 => 0.0082481436994963
514 => 0.0081181215937003
515 => 0.0082639307372662
516 => 0.0082681120217734
517 => 0.0082119675592229
518 => 0.0084366066626705
519 => 0.0085286414866411
520 => 0.0084916859986593
521 => 0.0085260485910885
522 => 0.0088147552356082
523 => 0.0088618270158189
524 => 0.0088827331912013
525 => 0.0088547216857264
526 => 0.0085313256185641
527 => 0.008545669609329
528 => 0.0084404229224835
529 => 0.0083515005627216
530 => 0.0083550569907757
531 => 0.0084007746427909
601 => 0.0086004263104462
602 => 0.0090205814749179
603 => 0.0090365260562802
604 => 0.0090558513540275
605 => 0.0089772456559727
606 => 0.0089535374252841
607 => 0.0089848147011759
608 => 0.0091426028902424
609 => 0.009548476951597
610 => 0.0094050139508972
611 => 0.0092883762981936
612 => 0.0093906989649
613 => 0.0093749471923921
614 => 0.0092419863804021
615 => 0.0092382546132492
616 => 0.0089830603048972
617 => 0.0088887207795928
618 => 0.0088098836110573
619 => 0.0087237954811129
620 => 0.0086727595519816
621 => 0.0087511739345422
622 => 0.0087691082316055
623 => 0.0085976538136879
624 => 0.0085742852100716
625 => 0.0087142985888438
626 => 0.008652683921071
627 => 0.0087160561348455
628 => 0.008730759032038
629 => 0.0087283915269536
630 => 0.0086640587373993
701 => 0.0087050625390298
702 => 0.0086080763243521
703 => 0.0085026183827485
704 => 0.0084353427862674
705 => 0.0083766359055246
706 => 0.0084092098950247
707 => 0.0082930895702326
708 => 0.0082559403412913
709 => 0.0086911713736521
710 => 0.0090126812167792
711 => 0.0090080063363283
712 => 0.0089795492038648
713 => 0.0089372676773426
714 => 0.009139509733222
715 => 0.0090690526449112
716 => 0.009120316063544
717 => 0.009133364755105
718 => 0.0091728592144455
719 => 0.0091869750889963
720 => 0.0091443071119986
721 => 0.00900110816974
722 => 0.0086442700205784
723 => 0.0084781608988774
724 => 0.0084233421219499
725 => 0.0084253346803755
726 => 0.0083703710238239
727 => 0.0083865602839767
728 => 0.008364741059822
729 => 0.0083234207279104
730 => 0.0084066584809668
731 => 0.0084162508565932
801 => 0.0083968221704128
802 => 0.0084013983293369
803 => 0.0082405371058634
804 => 0.0082527670353119
805 => 0.0081846692340385
806 => 0.008171901717231
807 => 0.0079997564055656
808 => 0.0076947760330886
809 => 0.0078637647646019
810 => 0.0076596501403453
811 => 0.007582348839298
812 => 0.0079482811756369
813 => 0.0079115517184516
814 => 0.0078486868536616
815 => 0.0077556966164513
816 => 0.0077212056329191
817 => 0.0075116493354962
818 => 0.007499267631505
819 => 0.0076031293910039
820 => 0.0075552007626601
821 => 0.0074878908164744
822 => 0.0072441010144899
823 => 0.0069700005610297
824 => 0.0069782739307856
825 => 0.0070654601852111
826 => 0.0073189659786214
827 => 0.0072199168794412
828 => 0.0071480556215285
829 => 0.007134598168063
830 => 0.0073030463732717
831 => 0.007541435874632
901 => 0.0076532828950058
902 => 0.0075424458946598
903 => 0.0074151223165504
904 => 0.0074228719127892
905 => 0.0074744265046862
906 => 0.0074798441633518
907 => 0.0073969696030779
908 => 0.0074202983063545
909 => 0.007384859872856
910 => 0.0071673742718899
911 => 0.0071634406470227
912 => 0.0071100661731166
913 => 0.0071084500152591
914 => 0.0070176467202582
915 => 0.0070049427115941
916 => 0.0068246472580039
917 => 0.0069433182715419
918 => 0.0068637199861684
919 => 0.0067437465947733
920 => 0.0067230631368761
921 => 0.0067224413671557
922 => 0.006845627214559
923 => 0.0069418787731926
924 => 0.0068651046324215
925 => 0.0068476246487721
926 => 0.0070342651427813
927 => 0.0070105134386528
928 => 0.0069899446160595
929 => 0.0075200907094641
930 => 0.0071004387087188
1001 => 0.0069174464834951
1002 => 0.0066909588554996
1003 => 0.0067647043692247
1004 => 0.0067802436325136
1005 => 0.006235581714648
1006 => 0.0060146124424033
1007 => 0.0059387841152202
1008 => 0.0058951438408712
1009 => 0.0059150312618921
1010 => 0.0057161329997613
1011 => 0.0058497959213868
1012 => 0.0056775668388331
1013 => 0.0056486920726611
1014 => 0.0059566590073563
1015 => 0.0059995108072024
1016 => 0.0058166917160483
1017 => 0.0059340911682916
1018 => 0.0058915204949337
1019 => 0.0056805192121261
1020 => 0.0056724605151432
1021 => 0.005566587488484
1022 => 0.0054009167028201
1023 => 0.0053252007082311
1024 => 0.0052857671608527
1025 => 0.0053020382110455
1026 => 0.0052938110701657
1027 => 0.0052401234108721
1028 => 0.0052968883839519
1029 => 0.0051518773346394
1030 => 0.0050941327663698
1031 => 0.0050680508845462
1101 => 0.0049393452317569
1102 => 0.0051441731610083
1103 => 0.0051845268434251
1104 => 0.0052249600350621
1105 => 0.0055769033633503
1106 => 0.0055593212692505
1107 => 0.0057182548370852
1108 => 0.0057120789708992
1109 => 0.0056667485427996
1110 => 0.0054755069231412
1111 => 0.0055517324241829
1112 => 0.0053171221800493
1113 => 0.0054929081269001
1114 => 0.0054126867617541
1115 => 0.0054657852026488
1116 => 0.0053703094182267
1117 => 0.0054231496594244
1118 => 0.005194096198549
1119 => 0.0049802092996528
1120 => 0.0050662836315165
1121 => 0.0051598562740461
1122 => 0.0053627456049162
1123 => 0.0052419063932506
1124 => 0.0052853647432021
1125 => 0.0051397865457047
1126 => 0.0048394171419112
1127 => 0.0048411172001167
1128 => 0.0047949119112462
1129 => 0.0047549837955795
1130 => 0.0052557862303343
1201 => 0.0051935035310576
1202 => 0.0050942642011184
1203 => 0.0052270999878562
1204 => 0.0052622238782571
1205 => 0.0052632238060385
1206 => 0.0053601373670545
1207 => 0.0054118601519415
1208 => 0.0054209765169572
1209 => 0.005573472099172
1210 => 0.005624586606865
1211 => 0.0058351200300567
1212 => 0.0054074718350108
1213 => 0.0053986647018555
1214 => 0.0052289692597878
1215 => 0.0051213457276497
1216 => 0.0052363383351093
1217 => 0.0053382060872622
1218 => 0.0052321345748025
1219 => 0.0052459852750379
1220 => 0.0051035929359217
1221 => 0.0051544914969734
1222 => 0.0051983321945278
1223 => 0.0051741259381754
1224 => 0.0051378880008197
1225 => 0.0053298540932702
1226 => 0.0053190226140129
1227 => 0.0054977858525842
1228 => 0.0056371445805323
1229 => 0.0058869003343677
1230 => 0.0056262671851785
1231 => 0.0056167686772991
]
'min_raw' => 0.0047549837955795
'max_raw' => 0.013748056523948
'avg_raw' => 0.0092515201597637
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004754'
'max' => '$0.013748'
'avg' => '$0.009251'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00083610742985753
'max_diff' => -0.0046441005156212
'year' => 2030
]
5 => [
'items' => [
101 => 0.0057096181154288
102 => 0.0056245723920998
103 => 0.0056783183535651
104 => 0.0058782410290663
105 => 0.0058824650801656
106 => 0.0058117067818697
107 => 0.0058074011329878
108 => 0.0058209910381865
109 => 0.0059005875374083
110 => 0.0058727740748268
111 => 0.0059049605178768
112 => 0.0059452101577671
113 => 0.0061116997338471
114 => 0.0061518398069921
115 => 0.0060543202394914
116 => 0.0060631251645564
117 => 0.0060266501693391
118 => 0.0059914157809896
119 => 0.0060706175404302
120 => 0.0062153603125222
121 => 0.0062144598752492
122 => 0.0062480373849771
123 => 0.0062689558953665
124 => 0.0061791583354898
125 => 0.0061207034259578
126 => 0.0061431187578549
127 => 0.0061789613617008
128 => 0.0061314954845022
129 => 0.0058385141020997
130 => 0.0059273859377974
131 => 0.0059125933187266
201 => 0.0058915268303257
202 => 0.0059808881483454
203 => 0.0059722690312241
204 => 0.0057140930106003
205 => 0.0057306206017906
206 => 0.0057150981081617
207 => 0.0057652544606801
208 => 0.0056218637844647
209 => 0.0056659697907176
210 => 0.0056936326643713
211 => 0.0057099263094695
212 => 0.0057687901282214
213 => 0.0057618831384945
214 => 0.0057683607800421
215 => 0.0058556402837792
216 => 0.0062970700629724
217 => 0.0063210961118939
218 => 0.0062027830598896
219 => 0.0062500467905435
220 => 0.0061593107631295
221 => 0.0062202224662111
222 => 0.00626189670647
223 => 0.0060735788282356
224 => 0.0060624278656595
225 => 0.0059713173383837
226 => 0.0060202749749777
227 => 0.0059423798549781
228 => 0.0059614925927703
301 => 0.0059080517116846
302 => 0.0060042346576656
303 => 0.0061117821365912
304 => 0.0061389528769464
305 => 0.006067478356811
306 => 0.0060157260938325
307 => 0.0059248661682976
308 => 0.0060759682494077
309 => 0.0061201551026768
310 => 0.0060757361546784
311 => 0.006065443313854
312 => 0.0060459383990905
313 => 0.0060695813737268
314 => 0.0061199144515843
315 => 0.0060961783015727
316 => 0.0061118564468325
317 => 0.0060521075243353
318 => 0.0061791880622186
319 => 0.0063810225399742
320 => 0.0063816714708234
321 => 0.0063579351928651
322 => 0.0063482228193298
323 => 0.0063725776809528
324 => 0.0063857891942946
325 => 0.0064645483508656
326 => 0.0065490600637694
327 => 0.0069434393525428
328 => 0.0068326992263895
329 => 0.0071826159931181
330 => 0.0074593547245949
331 => 0.0075423365698467
401 => 0.0074659971768125
402 => 0.0072048442370157
403 => 0.0071920308278934
404 => 0.007582303575877
405 => 0.0074720336489474
406 => 0.0074589173920151
407 => 0.0073193825785215
408 => 0.0074018649350191
409 => 0.0073838248337099
410 => 0.0073553476512414
411 => 0.007512718241668
412 => 0.0078073019383772
413 => 0.0077613883066567
414 => 0.0077271159104494
415 => 0.0075769442468135
416 => 0.0076673811303777
417 => 0.0076351782883449
418 => 0.0077735421341463
419 => 0.007691578457028
420 => 0.0074711982457974
421 => 0.0075062945208186
422 => 0.007500989789453
423 => 0.0076101607850586
424 => 0.0075773903619685
425 => 0.0074945908383982
426 => 0.0078062950833272
427 => 0.0077860547434517
428 => 0.0078147509178094
429 => 0.0078273838612203
430 => 0.0080171127422637
501 => 0.0080948385941802
502 => 0.0081124837233478
503 => 0.0081863172711353
504 => 0.008110646677418
505 => 0.0084133830045061
506 => 0.0086146849968652
507 => 0.0088485076198962
508 => 0.0091901853177406
509 => 0.0093186592928255
510 => 0.0092954516191524
511 => 0.0095545077501443
512 => 0.010020025859043
513 => 0.0093895461386328
514 => 0.010053442815149
515 => 0.0098432607924195
516 => 0.0093449229975417
517 => 0.0093128359185682
518 => 0.0096503160590802
519 => 0.010398814529476
520 => 0.010211324152041
521 => 0.010399121196567
522 => 0.0101800459687
523 => 0.010169167037126
524 => 0.010388481201735
525 => 0.010900920701536
526 => 0.010657479903688
527 => 0.01030844782584
528 => 0.010566167680582
529 => 0.010342906891558
530 => 0.0098398378471259
531 => 0.010211180781683
601 => 0.0099628743365826
602 => 0.01003534335796
603 => 0.010557246572765
604 => 0.010494449797175
605 => 0.010575714639613
606 => 0.010432284319781
607 => 0.010298297784172
608 => 0.010048201965487
609 => 0.0099741609231494
610 => 0.009994623203534
611 => 0.0099741507830595
612 => 0.0098342244710046
613 => 0.0098040073972389
614 => 0.0097536442837889
615 => 0.0097692539185642
616 => 0.0096745565310298
617 => 0.0098532700667859
618 => 0.0098864408738406
619 => 0.010016493681692
620 => 0.010029996195637
621 => 0.010392191414316
622 => 0.010192700374311
623 => 0.010326536187174
624 => 0.01031456465236
625 => 0.009355723488649
626 => 0.0094878433410812
627 => 0.0096933803699721
628 => 0.0096007862170556
629 => 0.0094698797485267
630 => 0.0093641657564288
701 => 0.0092039982485897
702 => 0.0094294309401286
703 => 0.0097258509574082
704 => 0.010037513896442
705 => 0.010411956496727
706 => 0.010328385267336
707 => 0.010030513952487
708 => 0.010043876242076
709 => 0.010126476658448
710 => 0.010019501614207
711 => 0.0099879525852592
712 => 0.010122142306339
713 => 0.010123066397198
714 => 0.0099999786804332
715 => 0.0098631892080631
716 => 0.0098626160551792
717 => 0.0098382756898005
718 => 0.010184376065629
719 => 0.01037469627764
720 => 0.01039651618323
721 => 0.010373227624142
722 => 0.010382190466245
723 => 0.010271447328296
724 => 0.01052457330179
725 => 0.010756866726634
726 => 0.01069460712655
727 => 0.010601271135302
728 => 0.010526924522602
729 => 0.010677093427368
730 => 0.010670406642426
731 => 0.010754837846216
801 => 0.010751007559114
802 => 0.010722616520897
803 => 0.010694608140484
804 => 0.0108056582029
805 => 0.010773677568334
806 => 0.010741647259008
807 => 0.010677405570062
808 => 0.010686137082531
809 => 0.010592817207058
810 => 0.010549643162637
811 => 0.0099004091235623
812 => 0.0097269125739874
813 => 0.0097814981203316
814 => 0.0097994690995012
815 => 0.0097239631787843
816 => 0.0098322192732127
817 => 0.0098153476755676
818 => 0.0098809851924501
819 => 0.0098399777215516
820 => 0.0098416606824613
821 => 0.0099622549106592
822 => 0.0099972639281495
823 => 0.0099794580592965
824 => 0.0099919286794917
825 => 0.01027930885837
826 => 0.010238452586834
827 => 0.010216748506877
828 => 0.010222760685353
829 => 0.010296192482557
830 => 0.010316749376547
831 => 0.010229648372206
901 => 0.010270725709378
902 => 0.010445627797567
903 => 0.010506833629832
904 => 0.010702173265957
905 => 0.010619189516646
906 => 0.010771509779959
907 => 0.011239690339579
908 => 0.011613705366234
909 => 0.011269745690897
910 => 0.011956576656822
911 => 0.012491373083845
912 => 0.012470846706226
913 => 0.01237759257911
914 => 0.011768741065243
915 => 0.011208466824718
916 => 0.011677160017418
917 => 0.011678354812754
918 => 0.011638093651838
919 => 0.011388035039185
920 => 0.011629392154151
921 => 0.011648550205456
922 => 0.011637826791262
923 => 0.011446107439235
924 => 0.011153387424348
925 => 0.011210584214584
926 => 0.011304273723774
927 => 0.011126899937199
928 => 0.011070218264931
929 => 0.011175600277806
930 => 0.011515163080503
1001 => 0.011450970699606
1002 => 0.011449294377119
1003 => 0.0117239366044
1004 => 0.011527352041169
1005 => 0.011211305649279
1006 => 0.011131499767187
1007 => 0.010848242649444
1008 => 0.011043889349596
1009 => 0.011050930326031
1010 => 0.010943776627819
1011 => 0.011220000581331
1012 => 0.011217455128971
1013 => 0.011479688662321
1014 => 0.011980980687669
1015 => 0.011832723968692
1016 => 0.011660317534805
1017 => 0.011679062894481
1018 => 0.011884653222629
1019 => 0.01176034861706
1020 => 0.011805049419905
1021 => 0.01188458556261
1022 => 0.011932571692275
1023 => 0.011672158428887
1024 => 0.011611443640184
1025 => 0.011487242490495
1026 => 0.011454840728865
1027 => 0.011555999973745
1028 => 0.011529348086728
1029 => 0.011050338559226
1030 => 0.011000279398418
1031 => 0.011001814641412
1101 => 0.010875938501378
1102 => 0.01068394717409
1103 => 0.011188488918996
1104 => 0.011147967155823
1105 => 0.011103234265415
1106 => 0.011108713789248
1107 => 0.011327718260205
1108 => 0.011200684607059
1109 => 0.011538424394354
1110 => 0.011468995247474
1111 => 0.011397785504956
1112 => 0.011387942149438
1113 => 0.011360532473898
1114 => 0.011266534497782
1115 => 0.011153026293218
1116 => 0.011078078344653
1117 => 0.010218941687937
1118 => 0.010378392454055
1119 => 0.01056182602608
1120 => 0.010625146560079
1121 => 0.010516832405026
1122 => 0.011270811400806
1123 => 0.011408570628857
1124 => 0.010991288941277
1125 => 0.01091323257503
1126 => 0.011275928763182
1127 => 0.011057178623921
1128 => 0.011155681798236
1129 => 0.010942771813722
1130 => 0.01137538846488
1201 => 0.01137209265083
1202 => 0.011203795002439
1203 => 0.011346039022406
1204 => 0.011321320623484
1205 => 0.011131312992949
1206 => 0.011381412045679
1207 => 0.011381536091689
1208 => 0.011219553264219
1209 => 0.011030392784335
1210 => 0.010996575358303
1211 => 0.01097109847052
1212 => 0.011149416045603
1213 => 0.011309295025838
1214 => 0.011606790170694
1215 => 0.011681587518421
1216 => 0.011973526546142
1217 => 0.011799691069388
1218 => 0.011876750084687
1219 => 0.011960408546457
1220 => 0.012000517489468
1221 => 0.011935162119196
1222 => 0.012388663596145
1223 => 0.012426953015725
1224 => 0.012439791126909
1225 => 0.012286872980479
1226 => 0.012422700085446
1227 => 0.012359151081153
1228 => 0.012524487935902
1229 => 0.012550414865854
1230 => 0.012528455678562
1231 => 0.012536685295358
]
'min_raw' => 0.0056218637844647
'max_raw' => 0.012550414865854
'avg_raw' => 0.0090861393251593
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005621'
'max' => '$0.01255'
'avg' => '$0.009086'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00086687998888515
'max_diff' => -0.0011976416580941
'year' => 2031
]
6 => [
'items' => [
101 => 0.012149701787925
102 => 0.012129634651564
103 => 0.011856017823382
104 => 0.01196751870334
105 => 0.011759073152636
106 => 0.011825173383991
107 => 0.011854309736146
108 => 0.011839090559254
109 => 0.011973822795798
110 => 0.011859272870758
111 => 0.011556956784826
112 => 0.011254558333079
113 => 0.011250761966845
114 => 0.011171145792276
115 => 0.011113597880493
116 => 0.011124683649924
117 => 0.01116375134734
118 => 0.011111327194898
119 => 0.011122514545793
120 => 0.011308299111588
121 => 0.011345556881304
122 => 0.011218940422261
123 => 0.010710557068535
124 => 0.010585798518348
125 => 0.010675472490153
126 => 0.010632614107373
127 => 0.0085813494261571
128 => 0.0090632636361698
129 => 0.0087769265768405
130 => 0.0089088838675141
131 => 0.0086166078765609
201 => 0.0087560972989409
202 => 0.0087303386959654
203 => 0.0095052424847877
204 => 0.0094931434279705
205 => 0.009498934606201
206 => 0.0092225065804233
207 => 0.0096628639313261
208 => 0.009879799797119
209 => 0.0098396507419218
210 => 0.0098497553941375
211 => 0.0096761239907576
212 => 0.0095006157377252
213 => 0.0093059500745858
214 => 0.0096676148152957
215 => 0.0096274038699517
216 => 0.0097196333111292
217 => 0.0099541987478091
218 => 0.0099887393993877
219 => 0.010035162385386
220 => 0.010018523049519
221 => 0.010414939536136
222 => 0.010366930883967
223 => 0.010482617922664
224 => 0.010244640906867
225 => 0.0099753473245085
226 => 0.010026531230644
227 => 0.010021601808889
228 => 0.0099588446122095
229 => 0.0099021902211114
301 => 0.0098078766222088
302 => 0.010106298804923
303 => 0.010094183409288
304 => 0.010290317582016
305 => 0.010255648961841
306 => 0.010024123431458
307 => 0.01003239241107
308 => 0.010088005272894
309 => 0.010280482022644
310 => 0.010337622226786
311 => 0.010311152607584
312 => 0.010373804232876
313 => 0.010423321522995
314 => 0.010380022842133
315 => 0.010993040854292
316 => 0.010738473036177
317 => 0.010862547619455
318 => 0.010892138676477
319 => 0.010816341806148
320 => 0.01083277943324
321 => 0.010857677959299
322 => 0.011008856933897
323 => 0.011405594307231
324 => 0.011581306589199
325 => 0.012109945658988
326 => 0.011566716130214
327 => 0.011534483138084
328 => 0.011629706997924
329 => 0.011940074094019
330 => 0.012191597474105
331 => 0.012275042290011
401 => 0.012286070899957
402 => 0.012442618921904
403 => 0.012532349328636
404 => 0.012423609874418
405 => 0.012331464572463
406 => 0.012001411538358
407 => 0.01203961607576
408 => 0.012302807452845
409 => 0.012674580774872
410 => 0.012993600961593
411 => 0.012881891211179
412 => 0.013734157752042
413 => 0.013818656498371
414 => 0.0138069815038
415 => 0.013999482223039
416 => 0.01361740749744
417 => 0.013454063149897
418 => 0.012351387432639
419 => 0.012661194331631
420 => 0.013111516853636
421 => 0.013051914979226
422 => 0.01272487872659
423 => 0.012993352875269
424 => 0.012904586925753
425 => 0.012834573538467
426 => 0.013155318438387
427 => 0.012802646245451
428 => 0.013107998678731
429 => 0.012716381024582
430 => 0.012882401491909
501 => 0.012788160245148
502 => 0.012849145881575
503 => 0.012492625097162
504 => 0.012684995058379
505 => 0.012484621874322
506 => 0.012484526871343
507 => 0.0124801036222
508 => 0.012715841784652
509 => 0.012723529197666
510 => 0.012549318339433
511 => 0.012524211833077
512 => 0.012617043745929
513 => 0.012508361888696
514 => 0.01255921344566
515 => 0.012509902130553
516 => 0.012498801114867
517 => 0.012410346333201
518 => 0.012372237581144
519 => 0.012387181004767
520 => 0.012336171396079
521 => 0.012305436261746
522 => 0.012473989630389
523 => 0.012383938364946
524 => 0.012460187982443
525 => 0.012373291919837
526 => 0.012072072308032
527 => 0.011898837723943
528 => 0.011329861800316
529 => 0.011491222666444
530 => 0.011598205087627
531 => 0.011562847398064
601 => 0.011638809396854
602 => 0.011643472846642
603 => 0.011618776826495
604 => 0.01159018199892
605 => 0.01157626361825
606 => 0.01167999982465
607 => 0.011740222184066
608 => 0.011608942204833
609 => 0.0115781851425
610 => 0.011710916449672
611 => 0.01179188247037
612 => 0.012389690076329
613 => 0.012345402557986
614 => 0.01245655553804
615 => 0.012444041418267
616 => 0.012560547449421
617 => 0.012750985571236
618 => 0.01236377162225
619 => 0.012430978574943
620 => 0.012414500982178
621 => 0.012594399019331
622 => 0.012594960641366
623 => 0.01248710278152
624 => 0.012545574277137
625 => 0.012512937092365
626 => 0.012571916896427
627 => 0.012344811071178
628 => 0.012621401451773
629 => 0.01277821037448
630 => 0.012780387666524
701 => 0.012854713851374
702 => 0.012930233559865
703 => 0.013075187063932
704 => 0.01292619088531
705 => 0.012658161264455
706 => 0.01267751213735
707 => 0.012520366468711
708 => 0.012523008115792
709 => 0.012508906796646
710 => 0.012551225916899
711 => 0.012354097738263
712 => 0.012400363327775
713 => 0.012335591231527
714 => 0.012430837773056
715 => 0.012328368239189
716 => 0.012414493036184
717 => 0.012451661643485
718 => 0.012588814604609
719 => 0.012308110635315
720 => 0.011735736239936
721 => 0.011856056277213
722 => 0.011678093491145
723 => 0.011694564624548
724 => 0.011727838935383
725 => 0.01161998600729
726 => 0.011640560947134
727 => 0.011639825865499
728 => 0.011633491329093
729 => 0.011605434617018
730 => 0.011564746833658
731 => 0.011726834439524
801 => 0.011754376282245
802 => 0.011815598386901
803 => 0.011997753843007
804 => 0.01197955221742
805 => 0.01200923982393
806 => 0.011944431945608
807 => 0.01169757087615
808 => 0.011710976619906
809 => 0.011543806780456
810 => 0.011811323478257
811 => 0.01174797199317
812 => 0.011707128878608
813 => 0.011695984456391
814 => 0.01187859144064
815 => 0.011933230312341
816 => 0.011899183034175
817 => 0.01182935107334
818 => 0.01196344908211
819 => 0.011999328052117
820 => 0.012007360030336
821 => 0.012244955991135
822 => 0.012020639005182
823 => 0.01207463433322
824 => 0.012495890468925
825 => 0.012113869283214
826 => 0.012316234425374
827 => 0.012306329704723
828 => 0.012409852863789
829 => 0.012297837784065
830 => 0.012299226345227
831 => 0.012391147897211
901 => 0.012262060655588
902 => 0.012230096839204
903 => 0.012185939055799
904 => 0.012282355960384
905 => 0.012340153534121
906 => 0.012805959530801
907 => 0.013106891447991
908 => 0.013093827199814
909 => 0.013213209972901
910 => 0.013159426940204
911 => 0.01298574734038
912 => 0.013282197239309
913 => 0.013188388087297
914 => 0.013196121599811
915 => 0.013195833758089
916 => 0.013258208643239
917 => 0.013214010320536
918 => 0.013126890889624
919 => 0.013184724833557
920 => 0.013356470971024
921 => 0.013889576251537
922 => 0.014187909029217
923 => 0.013871616243723
924 => 0.014089790771828
925 => 0.013958963798498
926 => 0.013935188645678
927 => 0.014072218372299
928 => 0.014209487951317
929 => 0.014200744472566
930 => 0.01410109380707
1001 => 0.014044803674674
1002 => 0.014471051415758
1003 => 0.014785103490449
1004 => 0.014763687244387
1005 => 0.014858211589568
1006 => 0.01513573799055
1007 => 0.015161111526581
1008 => 0.015157915044245
1009 => 0.015095024087736
1010 => 0.015368284870859
1011 => 0.015596243823707
1012 => 0.015080466648399
1013 => 0.015276867844737
1014 => 0.015365038669425
1015 => 0.015494499599171
1016 => 0.015712921887824
1017 => 0.015950186426952
1018 => 0.015983738234258
1019 => 0.015959931621373
1020 => 0.015803449279805
1021 => 0.016063066969673
1022 => 0.016215144923614
1023 => 0.016305703864944
1024 => 0.016535346272585
1025 => 0.015365583182421
1026 => 0.014537566726205
1027 => 0.014408259999864
1028 => 0.014671210312614
1029 => 0.014740548213097
1030 => 0.014712598192354
1031 => 0.013780590390921
1101 => 0.014403353171673
1102 => 0.015073393560381
1103 => 0.015099132540537
1104 => 0.015434568769008
1105 => 0.015543800554994
1106 => 0.015813870685544
1107 => 0.015796977725346
1108 => 0.015862735504381
1109 => 0.015847618929747
1110 => 0.016347866976616
1111 => 0.016899714859868
1112 => 0.016880606122439
1113 => 0.016801271460054
1114 => 0.016919096962266
1115 => 0.017488663117395
1116 => 0.017436226592942
1117 => 0.017487164209915
1118 => 0.018158714806153
1119 => 0.019031826108221
1120 => 0.018626178249469
1121 => 0.019506317380934
1122 => 0.020060318310021
1123 => 0.021018405632111
1124 => 0.020898448380706
1125 => 0.021271424744426
1126 => 0.020683699864856
1127 => 0.01933416474257
1128 => 0.019120595643655
1129 => 0.019548166388113
1130 => 0.020599307341621
1201 => 0.019515062218794
1202 => 0.019734403595018
1203 => 0.01967123326391
1204 => 0.019667867185422
1205 => 0.019796336710484
1206 => 0.019609984963862
1207 => 0.018850754424085
1208 => 0.019198705306291
1209 => 0.019064344760697
1210 => 0.019213427803276
1211 => 0.020017967497547
1212 => 0.019662261320879
1213 => 0.019287553758982
1214 => 0.019757520195865
1215 => 0.020355948968006
1216 => 0.020318500370925
1217 => 0.020245834440289
1218 => 0.020655448486618
1219 => 0.0213320108855
1220 => 0.021514882983269
1221 => 0.021649875427187
1222 => 0.021668488604488
1223 => 0.021860215898706
1224 => 0.020829249916196
1225 => 0.022465419407524
1226 => 0.022747940680406
1227 => 0.022694838390411
1228 => 0.023008848894907
1229 => 0.022916459038807
1230 => 0.022782600632842
1231 => 0.023280374074418
]
'min_raw' => 0.0085813494261571
'max_raw' => 0.023280374074418
'avg_raw' => 0.015930861750287
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008581'
'max' => '$0.02328'
'avg' => '$0.01593'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0029594856416924
'max_diff' => 0.010729959208564
'year' => 2032
]
7 => [
'items' => [
101 => 0.022709716991896
102 => 0.021899741106986
103 => 0.021455372317017
104 => 0.022040552985856
105 => 0.022397902400324
106 => 0.022634087631596
107 => 0.022705557139872
108 => 0.020909280870634
109 => 0.019941187587564
110 => 0.0205617242828
111 => 0.021318821878143
112 => 0.020825044200827
113 => 0.020844399350933
114 => 0.020140402145571
115 => 0.021381110009678
116 => 0.021200349309873
117 => 0.02213813614022
118 => 0.021914325786949
119 => 0.022679054542422
120 => 0.022477675832254
121 => 0.023313587599228
122 => 0.023647055434481
123 => 0.024206999829996
124 => 0.02461889720672
125 => 0.024860771224674
126 => 0.024846250015882
127 => 0.025804675376172
128 => 0.025239525426041
129 => 0.02452956389306
130 => 0.024516722928828
131 => 0.024884422066992
201 => 0.025655018587251
202 => 0.02585482305323
203 => 0.025966486491887
204 => 0.025795470048552
205 => 0.025182040282347
206 => 0.024917164419458
207 => 0.025142846328832
208 => 0.024866856746736
209 => 0.025343292194433
210 => 0.025997539825242
211 => 0.025862440276655
212 => 0.026314057812324
213 => 0.02678143445019
214 => 0.027449804033538
215 => 0.027624540592279
216 => 0.027913373479241
217 => 0.028210677396587
218 => 0.028306163402273
219 => 0.028488475814695
220 => 0.02848751493829
221 => 0.029036925664165
222 => 0.029642942708639
223 => 0.029871700113601
224 => 0.030397715152555
225 => 0.029496932832112
226 => 0.030180186569609
227 => 0.030796498543782
228 => 0.030061706000613
301 => 0.031074446336666
302 => 0.031113768748997
303 => 0.031707490489461
304 => 0.031105639762178
305 => 0.030748262721492
306 => 0.031779996847208
307 => 0.032279220491322
308 => 0.032128850266898
309 => 0.030984525434339
310 => 0.030318479299389
311 => 0.028575308093521
312 => 0.030640169686264
313 => 0.031645903535251
314 => 0.030981920826638
315 => 0.031316795083295
316 => 0.033143760444273
317 => 0.033839350566486
318 => 0.033694672683608
319 => 0.033719120864214
320 => 0.034094448668306
321 => 0.035758858848449
322 => 0.034761505687782
323 => 0.035523944809002
324 => 0.035928339769719
325 => 0.036303964346408
326 => 0.035381549103425
327 => 0.034181500425275
328 => 0.033801394634289
329 => 0.030915900831935
330 => 0.030765698348458
331 => 0.030681385142882
401 => 0.030149802308061
402 => 0.029732123812684
403 => 0.029399970365752
404 => 0.028528300531588
405 => 0.028822463512482
406 => 0.027433203728458
407 => 0.028322002905933
408 => 0.02610471074578
409 => 0.027951337543948
410 => 0.026946302533523
411 => 0.027621156512693
412 => 0.027618802010735
413 => 0.026376181872433
414 => 0.025659464509481
415 => 0.026116184708211
416 => 0.026605825015744
417 => 0.026685267508294
418 => 0.02732009894793
419 => 0.027497266757076
420 => 0.026960440024189
421 => 0.026058762294163
422 => 0.026268201465769
423 => 0.025655220231353
424 => 0.024580994196023
425 => 0.025352522088784
426 => 0.02561595563306
427 => 0.02573230289369
428 => 0.024675924963636
429 => 0.024343988082933
430 => 0.024167267672866
501 => 0.025922397168819
502 => 0.026018547124588
503 => 0.02552663035664
504 => 0.027750140793229
505 => 0.027246891901144
506 => 0.027809144212575
507 => 0.026249197056183
508 => 0.026308789138305
509 => 0.025570285155206
510 => 0.025983798038887
511 => 0.025691540460844
512 => 0.0259503902843
513 => 0.026105543801202
514 => 0.026843926603063
515 => 0.027959768689464
516 => 0.026733636835362
517 => 0.026199393627997
518 => 0.026530835109148
519 => 0.027413507450301
520 => 0.028750801230312
521 => 0.027959096397
522 => 0.028310441558004
523 => 0.028387194845425
524 => 0.027803421011847
525 => 0.028772325804243
526 => 0.029291569753856
527 => 0.029824206603764
528 => 0.030286680256393
529 => 0.029611459732976
530 => 0.030334042482092
531 => 0.02975176833933
601 => 0.029229408238878
602 => 0.029230200443529
603 => 0.028902516322052
604 => 0.028267587045834
605 => 0.028150496345737
606 => 0.028759616954569
607 => 0.029248073998916
608 => 0.02928830566064
609 => 0.029558740578219
610 => 0.029718781176742
611 => 0.031287396606905
612 => 0.031918306709184
613 => 0.032689771639734
614 => 0.032990300707564
615 => 0.033894785456099
616 => 0.033164340562997
617 => 0.033006304215661
618 => 0.030812320070421
619 => 0.031171584851295
620 => 0.031746802429369
621 => 0.030821805196418
622 => 0.031408503035711
623 => 0.031524329617147
624 => 0.030790374144397
625 => 0.031182411474737
626 => 0.030141276556321
627 => 0.027982462585592
628 => 0.028774729181322
629 => 0.029358104069831
630 => 0.028525556174323
701 => 0.030017866052969
702 => 0.029146089429393
703 => 0.028869778092377
704 => 0.027791789054575
705 => 0.028300558384814
706 => 0.028988676188838
707 => 0.028563499388232
708 => 0.029445805090107
709 => 0.030695385266298
710 => 0.031585910513638
711 => 0.031654273984432
712 => 0.031081725910951
713 => 0.031999237852658
714 => 0.032005920925483
715 => 0.030970963707091
716 => 0.030337058173492
717 => 0.030193033502509
718 => 0.030552835368323
719 => 0.03098970125651
720 => 0.031678517000795
721 => 0.032094753928825
722 => 0.033180079082118
723 => 0.033473736949889
724 => 0.033796377915066
725 => 0.034227525743331
726 => 0.034745229255199
727 => 0.033612523444111
728 => 0.033657527957613
729 => 0.032602767989708
730 => 0.03147560569612
731 => 0.03233098137419
801 => 0.033449271287407
802 => 0.033192734345715
803 => 0.0331638686992
804 => 0.033212412709975
805 => 0.033018992233652
806 => 0.03214415858774
807 => 0.031704822607512
808 => 0.032271678108569
809 => 0.032572936579545
810 => 0.033040162195529
811 => 0.032982566776422
812 => 0.03418608978683
813 => 0.034653742436027
814 => 0.034534096876377
815 => 0.034556114538784
816 => 0.035402777322154
817 => 0.036344440466744
818 => 0.037226432265048
819 => 0.038123632204712
820 => 0.037042022659137
821 => 0.036492848036297
822 => 0.037059456065975
823 => 0.036758805869842
824 => 0.038486431075461
825 => 0.038606048096323
826 => 0.040333548374975
827 => 0.041973151846323
828 => 0.040943346282517
829 => 0.041914406545725
830 => 0.042964687392089
831 => 0.044990849546652
901 => 0.04430850941424
902 => 0.043785847566445
903 => 0.043291934645762
904 => 0.044319689027234
905 => 0.045641878620222
906 => 0.045926665594777
907 => 0.046388129290553
908 => 0.04590295663954
909 => 0.046487293657671
910 => 0.048550260102368
911 => 0.047992828358702
912 => 0.047201185671073
913 => 0.048829699549758
914 => 0.049419052391766
915 => 0.053555439283463
916 => 0.05877779859985
917 => 0.056615707551006
918 => 0.055273627866746
919 => 0.055589048427103
920 => 0.057496077261428
921 => 0.058108554396944
922 => 0.056443630409083
923 => 0.057031709708192
924 => 0.060272084464966
925 => 0.062010441558306
926 => 0.059649519133044
927 => 0.053135827797289
928 => 0.047129906908602
929 => 0.048722947578424
930 => 0.048542346204274
1001 => 0.052023724635443
1002 => 0.047979533795971
1003 => 0.048047627597802
1004 => 0.051600997248085
1005 => 0.050653019145567
1006 => 0.049117416027351
1007 => 0.047141118510765
1008 => 0.043487749765961
1009 => 0.040251859186963
1010 => 0.046598185793471
1011 => 0.046324520650153
1012 => 0.045928212967725
1013 => 0.046810152829998
1014 => 0.051092602458194
1015 => 0.050993878133328
1016 => 0.050365844348119
1017 => 0.050842202438964
1018 => 0.049033908150869
1019 => 0.049499946763006
1020 => 0.047128955540048
1021 => 0.048200742594165
1022 => 0.049114121312734
1023 => 0.04929749561329
1024 => 0.049710647275766
1025 => 0.046180311555064
1026 => 0.047765328648448
1027 => 0.048696377694793
1028 => 0.04448986423155
1029 => 0.048613228448597
1030 => 0.046118856264455
1031 => 0.045272228880944
1101 => 0.046412101118165
1102 => 0.045967891798758
1103 => 0.045585986710778
1104 => 0.045372877109723
1105 => 0.04620987347763
1106 => 0.04617082659664
1107 => 0.04480133808475
1108 => 0.043014896148481
1109 => 0.04361448470025
1110 => 0.04339664855822
1111 => 0.04260718227808
1112 => 0.043139187230372
1113 => 0.040796506662023
1114 => 0.036766046506118
1115 => 0.039428691941442
1116 => 0.039326182988583
1117 => 0.039274493326141
1118 => 0.041275397780672
1119 => 0.041083056986089
1120 => 0.040733956560514
1121 => 0.042600770774997
1122 => 0.041919358474516
1123 => 0.044019310623668
1124 => 0.045402474925489
1125 => 0.045051659717869
1126 => 0.046352532429145
1127 => 0.043628298009485
1128 => 0.044533179406382
1129 => 0.044719674208171
1130 => 0.042577734577368
1201 => 0.041114526318802
1202 => 0.041016947009751
1203 => 0.038479945531915
1204 => 0.039835191243414
1205 => 0.041027751385656
1206 => 0.040456607623927
1207 => 0.040275800571399
1208 => 0.041199504590502
1209 => 0.041271284303777
1210 => 0.039634699234251
1211 => 0.039974997094114
1212 => 0.041394095739556
1213 => 0.039939239449281
1214 => 0.037112691326702
1215 => 0.036411668312217
1216 => 0.036318138919667
1217 => 0.034416908905548
1218 => 0.036458514022117
1219 => 0.035567298677119
1220 => 0.038382637273568
1221 => 0.03677453096624
1222 => 0.036705208717413
1223 => 0.036600417970947
1224 => 0.034963950758972
1225 => 0.035322233075478
1226 => 0.03651321806348
1227 => 0.036938174924606
1228 => 0.036893848442421
1229 => 0.036507381587299
1230 => 0.036684304134544
1231 => 0.036114374965968
]
'min_raw' => 0.019941187587564
'max_raw' => 0.062010441558306
'avg_raw' => 0.040975814572935
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.019941'
'max' => '$0.06201'
'avg' => '$0.040975'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011359838161407
'max_diff' => 0.038730067483888
'year' => 2033
]
8 => [
'items' => [
101 => 0.035913121114494
102 => 0.035277908600009
103 => 0.034344321685653
104 => 0.034474142672115
105 => 0.03262446270847
106 => 0.031616658894331
107 => 0.031337712081218
108 => 0.030964692744733
109 => 0.03137984560784
110 => 0.032619222797533
111 => 0.031124270958225
112 => 0.028561280888409
113 => 0.028715320958727
114 => 0.029061403261826
115 => 0.028416481179566
116 => 0.027806116552914
117 => 0.02833677907534
118 => 0.027250806395458
119 => 0.029192637871894
120 => 0.029140116772376
121 => 0.029863911464738
122 => 0.030316515139635
123 => 0.029273410201178
124 => 0.029011072130012
125 => 0.029160511817949
126 => 0.026690606657372
127 => 0.029662067519278
128 => 0.029687764836205
129 => 0.029467728807388
130 => 0.031049939982791
131 => 0.034388899066933
201 => 0.033132648350161
202 => 0.032646190102248
203 => 0.031721432617366
204 => 0.032953617059304
205 => 0.032859004519235
206 => 0.032431130732302
207 => 0.032172351330917
208 => 0.032649160312578
209 => 0.032113269421478
210 => 0.032017008692139
211 => 0.031433773405055
212 => 0.03122558494308
213 => 0.031071450494056
214 => 0.030901763610618
215 => 0.031276050592145
216 => 0.030427867050452
217 => 0.029405040847628
218 => 0.029320003915996
219 => 0.029554798360755
220 => 0.02945091929734
221 => 0.029319506583005
222 => 0.029068603923218
223 => 0.028994166463746
224 => 0.029236052095108
225 => 0.028962977320109
226 => 0.029365914025773
227 => 0.029256337537337
228 => 0.028644252180365
301 => 0.027881367202554
302 => 0.027874575926046
303 => 0.027710213608959
304 => 0.027500873486108
305 => 0.027442639852985
306 => 0.02829208815784
307 => 0.030050420727041
308 => 0.029705217970374
309 => 0.029954662339867
310 => 0.031181681753606
311 => 0.031571714327473
312 => 0.03129487844497
313 => 0.030915928414507
314 => 0.030932600292644
315 => 0.032227587262712
316 => 0.032308354011572
317 => 0.0325124255296
318 => 0.03277471510087
319 => 0.03133954749313
320 => 0.030865004027381
321 => 0.030640139006641
322 => 0.029947641776474
323 => 0.030694440668983
324 => 0.030259312935435
325 => 0.030318026532771
326 => 0.030279789225482
327 => 0.030300669380857
328 => 0.029192095090421
329 => 0.029596001296907
330 => 0.028924428889728
331 => 0.028025268824056
401 => 0.028022254524229
402 => 0.028242322676463
403 => 0.028111417528247
404 => 0.027759155140276
405 => 0.027809192349855
406 => 0.02737081374231
407 => 0.027862419449912
408 => 0.027876516942556
409 => 0.027687221967186
410 => 0.028444608388261
411 => 0.028754910222944
412 => 0.028630312215064
413 => 0.028746168094558
414 => 0.029719562703411
415 => 0.029878268496838
416 => 0.029948755126762
417 => 0.029854312380353
418 => 0.028763959961122
419 => 0.028812321727452
420 => 0.028457475174663
421 => 0.028157667230365
422 => 0.028169657975852
423 => 0.028323798231525
424 => 0.028996937768259
425 => 0.030413520239573
426 => 0.030467278508851
427 => 0.030532435099455
428 => 0.030267410500388
429 => 0.030187476545366
430 => 0.030292930064745
501 => 0.030824923960602
502 => 0.032193356695681
503 => 0.031709661172555
504 => 0.031316409183084
505 => 0.031661397197825
506 => 0.031608288997061
507 => 0.031160002336409
508 => 0.03114742042291
509 => 0.030287014995203
510 => 0.029968942699064
511 => 0.029703137681111
512 => 0.029412885540523
513 => 0.029240814342242
514 => 0.029505193907762
515 => 0.029565660642444
516 => 0.028987590101869
517 => 0.028908801223233
518 => 0.029380866105185
519 => 0.029173127950991
520 => 0.029386791794238
521 => 0.029436363638646
522 => 0.02942838142996
523 => 0.029211478938406
524 => 0.029349726118397
525 => 0.02902273032425
526 => 0.028667171511295
527 => 0.028440347140727
528 => 0.028242412793519
529 => 0.028352238273362
530 => 0.027960730491063
531 => 0.027835479272011
601 => 0.029302891084476
602 => 0.03038688396768
603 => 0.030371122281849
604 => 0.030275177072935
605 => 0.030132621954264
606 => 0.03081449516575
607 => 0.030576944173354
608 => 0.030749782368372
609 => 0.030793776943
610 => 0.030926935270082
611 => 0.030974527926669
612 => 0.030830669863238
613 => 0.030347864631582
614 => 0.02914475989804
615 => 0.028584711396857
616 => 0.028399886063121
617 => 0.028406604112969
618 => 0.028221290307465
619 => 0.028275873528368
620 => 0.028202308490761
621 => 0.028062994106828
622 => 0.028343636002732
623 => 0.028375977366874
624 => 0.028310472194949
625 => 0.02832590103426
626 => 0.027783546188347
627 => 0.027824780249349
628 => 0.027595183757919
629 => 0.027552137183603
630 => 0.026971737246521
701 => 0.025943474627665
702 => 0.026513231934379
703 => 0.025825045227869
704 => 0.025564418494384
705 => 0.026798184914931
706 => 0.026674348985661
707 => 0.026462395704937
708 => 0.026148872627812
709 => 0.026032583868749
710 => 0.025326050181234
711 => 0.025284304401765
712 => 0.025634481575312
713 => 0.025472886858581
714 => 0.025245946675586
715 => 0.024423992337334
716 => 0.023499843521411
717 => 0.023527737765171
718 => 0.023821692309116
719 => 0.024676404790809
720 => 0.024342453837535
721 => 0.02410016858929
722 => 0.024054795845362
723 => 0.024622730729901
724 => 0.02542647757756
725 => 0.02580357761566
726 => 0.025429882930602
727 => 0.025000602597557
728 => 0.025026730902336
729 => 0.025200550808343
730 => 0.025218816822784
731 => 0.024939399456703
801 => 0.025018053808558
802 => 0.024898570655785
803 => 0.024165302767769
804 => 0.024152040276892
805 => 0.023972084511631
806 => 0.023966635522577
807 => 0.023660485873798
808 => 0.023617653421622
809 => 0.023009774712016
810 => 0.023409882319505
811 => 0.023141511142993
812 => 0.02273701247763
813 => 0.022667276755257
814 => 0.022665180415234
815 => 0.023080510100315
816 => 0.023405028950318
817 => 0.023146179574508
818 => 0.023087244589221
819 => 0.023716516045596
820 => 0.023636435516836
821 => 0.023567086295393
822 => 0.025354510862925
823 => 0.023939624843245
824 => 0.023322653779794
825 => 0.022559034929147
826 => 0.022807673077418
827 => 0.022860064788513
828 => 0.021023699105349
829 => 0.020278685776393
830 => 0.020023025277131
831 => 0.019875889045297
901 => 0.019942940873764
902 => 0.019272341496357
903 => 0.019722995368665
904 => 0.019142312992184
905 => 0.019044959702063
906 => 0.020083291723953
907 => 0.020227769558951
908 => 0.019611382229104
909 => 0.02000720267891
910 => 0.019863672681495
911 => 0.019152267124869
912 => 0.019125096665351
913 => 0.018768138364151
914 => 0.018209567743521
915 => 0.017954285981442
916 => 0.017821333023293
917 => 0.017876192005027
918 => 0.01784845362515
919 => 0.017667441933489
920 => 0.017858829003431
921 => 0.017369914126326
922 => 0.017175224282808
923 => 0.017087287397261
924 => 0.01665334730294
925 => 0.01734393896704
926 => 0.017479994224713
927 => 0.017616317553272
928 => 0.018802919056494
929 => 0.018743639798694
930 => 0.019279495419036
1001 => 0.019258673055005
1002 => 0.019105838351798
1003 => 0.018461053879056
1004 => 0.018718053477713
1005 => 0.017927048659652
1006 => 0.018519723252443
1007 => 0.018249251318976
1008 => 0.018428276419667
1009 => 0.018106373146581
1010 => 0.018284527708967
1011 => 0.017512257973624
1012 => 0.016791123360889
1013 => 0.017081328980285
1014 => 0.017396815677607
1015 => 0.018080871221917
1016 => 0.017673453383062
1017 => 0.017819976244088
1018 => 0.01732914918728
1019 => 0.016316432771269
1020 => 0.016322164636203
1021 => 0.016166380278826
1022 => 0.016031759849164
1023 => 0.017720250222849
1024 => 0.017510259753798
1025 => 0.017175667424239
1026 => 0.017623532553524
1027 => 0.017741955202283
1028 => 0.01774532652861
1029 => 0.018072077365865
1030 => 0.01824646434628
1031 => 0.018277200807415
1101 => 0.018791350309754
1102 => 0.018963686441142
1103 => 0.019673514576407
1104 => 0.018231668829366
1105 => 0.018201974965039
1106 => 0.01762983493435
1107 => 0.017266974681711
1108 => 0.017654680286289
1109 => 0.017998134524852
1110 => 0.017640507014917
1111 => 0.017687205617786
1112 => 0.01720711990494
1113 => 0.01737872795715
1114 => 0.017526539929814
1115 => 0.017444926846495
1116 => 0.017322748110649
1117 => 0.01796997519399
1118 => 0.017933456105444
1119 => 0.018536168845138
1120 => 0.019006026526131
1121 => 0.019848095487577
1122 => 0.01896935262826
1123 => 0.01893732774578
1124 => 0.019250376108975
1125 => 0.018963638515069
1126 => 0.019144846776572
1127 => 0.01981890003518
1128 => 0.019833141718375
1129 => 0.019594575175484
1130 => 0.019580058379668
1201 => 0.019625877693862
1202 => 0.019894242848238
1203 => 0.019800467817271
1204 => 0.0199089866572
1205 => 0.02004469112823
1206 => 0.020606022357914
1207 => 0.020741357417013
1208 => 0.020412563386586
1209 => 0.020442249806183
1210 => 0.020319271813205
1211 => 0.020200476612898
1212 => 0.020467510874542
1213 => 0.020955521236268
1214 => 0.020952485349136
1215 => 0.02106569426749
1216 => 0.021136222485752
1217 => 0.020833463743162
1218 => 0.020636378934484
1219 => 0.020711953790963
1220 => 0.02083279963228
1221 => 0.020672765113344
1222 => 0.019684957927266
1223 => 0.019984595526155
1224 => 0.01993472117817
1225 => 0.019863694041711
1226 => 0.020164981964422
1227 => 0.02013592200928
1228 => 0.019265463530473
1229 => 0.019321187458091
1230 => 0.019268852287075
1231 => 0.019437957931395
]
'min_raw' => 0.016031759849164
'max_raw' => 0.035913121114494
'avg_raw' => 0.025972440481829
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.016031'
'max' => '$0.035913'
'avg' => '$0.025972'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0039094277384004
'max_diff' => -0.026097320443812
'year' => 2034
]
9 => [
'items' => [
101 => 0.018954506255318
102 => 0.019103212734783
103 => 0.019196480044666
104 => 0.019251415206701
105 => 0.019449878681364
106 => 0.019426591283269
107 => 0.019448431104001
108 => 0.019742700044511
109 => 0.021231011364704
110 => 0.021312016866088
111 => 0.020913116150901
112 => 0.02107246911865
113 => 0.020766546267236
114 => 0.020971914326895
115 => 0.021112421937531
116 => 0.020477495063129
117 => 0.020439898814268
118 => 0.020132713310424
119 => 0.020297777400313
120 => 0.020035148564771
121 => 0.020099588494647
122 => 0.019919408832943
123 => 0.020243696350597
124 => 0.020606300184519
125 => 0.020697908232628
126 => 0.020456926897799
127 => 0.02028244052994
128 => 0.019976099947361
129 => 0.020485551163435
130 => 0.020634530224259
131 => 0.02048476863985
201 => 0.020450065608388
202 => 0.020384303426473
203 => 0.020464017366159
204 => 0.020633718852299
205 => 0.02055369076533
206 => 0.020606550726686
207 => 0.02040510306295
208 => 0.020833563968904
209 => 0.02151406300229
210 => 0.021516250917955
211 => 0.021436222399605
212 => 0.021403476454134
213 => 0.021485590570498
214 => 0.021530134110128
215 => 0.021795676105296
216 => 0.022080613245771
217 => 0.023410290552553
218 => 0.023036922485598
219 => 0.024216691295032
220 => 0.025149735249488
221 => 0.025429514334361
222 => 0.025172130740901
223 => 0.02429163537126
224 => 0.0242484340678
225 => 0.0255642658856
226 => 0.025192483128156
227 => 0.025148260752161
228 => 0.024677809386458
301 => 0.024955904410124
302 => 0.02489508094904
303 => 0.024799068140134
304 => 0.025329654073021
305 => 0.026322863573653
306 => 0.02616806255872
307 => 0.026052510782085
308 => 0.025546196533486
309 => 0.025851110800524
310 => 0.02574253667028
311 => 0.026209040036655
312 => 0.025932693776729
313 => 0.02518966650811
314 => 0.025307996049688
315 => 0.025290110777524
316 => 0.025658188411284
317 => 0.025547700641878
318 => 0.025268536267282
319 => 0.026319468891556
320 => 0.02625122717253
321 => 0.02634797832788
322 => 0.026390571178594
323 => 0.027030255347479
324 => 0.027292313483861
325 => 0.027351805268793
326 => 0.027600740230053
327 => 0.027345611540183
328 => 0.028366308203336
329 => 0.029045011925031
330 => 0.029833361223554
331 => 0.030985351437011
401 => 0.031418510413777
402 => 0.03134026412168
403 => 0.032213689954041
404 => 0.033783216759628
405 => 0.031657510363578
406 => 0.033895884360237
407 => 0.033187240996165
408 => 0.031507060327901
409 => 0.031398876500893
410 => 0.03253671435674
411 => 0.035060329208175
412 => 0.034428192310493
413 => 0.035061363157682
414 => 0.034322735731586
415 => 0.03428605665424
416 => 0.035025489672244
417 => 0.036753215223207
418 => 0.035932437576768
419 => 0.034755651557663
420 => 0.035624572041352
421 => 0.034871832703586
422 => 0.033175700297125
423 => 0.034427708927321
424 => 0.033590526411462
425 => 0.03383486077666
426 => 0.035594493903494
427 => 0.035382770190262
428 => 0.035656760280273
429 => 0.035173174942973
430 => 0.034721429983526
501 => 0.033878214469698
502 => 0.033628579926076
503 => 0.033697569933023
504 => 0.033628545738055
505 => 0.033156774407619
506 => 0.033054895433729
507 => 0.032885092680492
508 => 0.032937721653967
509 => 0.032618442800334
510 => 0.033220987963517
511 => 0.033332825655413
512 => 0.033771307777081
513 => 0.033816832445561
514 => 0.035037998913002
515 => 0.034365400943604
516 => 0.034816637730791
517 => 0.03477627486534
518 => 0.031543474937735
519 => 0.031988926244524
520 => 0.032681908687566
521 => 0.032369721036291
522 => 0.031928360738048
523 => 0.031571938632975
524 => 0.031031922697757
525 => 0.031791984756488
526 => 0.032791385540131
527 => 0.033842178898696
528 => 0.035104638268304
529 => 0.034822872033655
530 => 0.03381857809893
531 => 0.033863629991204
601 => 0.03414212306198
602 => 0.033781449231562
603 => 0.033675079477782
604 => 0.034127509491229
605 => 0.03413062512808
606 => 0.033715626297297
607 => 0.033254431040865
608 => 0.033252498615901
609 => 0.033170433374636
610 => 0.034337334955698
611 => 0.034979012838225
612 => 0.035052580173342
613 => 0.034974061170418
614 => 0.035004280018336
615 => 0.0346309017969
616 => 0.035484333689229
617 => 0.036267527189297
618 => 0.03605761460079
619 => 0.035742925789786
620 => 0.035492260994354
621 => 0.035998565941228
622 => 0.035976020978942
623 => 0.036260686677317
624 => 0.03624777259693
625 => 0.036152050229385
626 => 0.036057618019337
627 => 0.036432031058042
628 => 0.036324206115785
629 => 0.03621621369161
630 => 0.035999618352114
701 => 0.036029057256019
702 => 0.035714422780475
703 => 0.035568858475394
704 => 0.033379920584582
705 => 0.032794964854548
706 => 0.032979003835088
707 => 0.033039594246052
708 => 0.0327850207627
709 => 0.033150013743265
710 => 0.033093129973867
711 => 0.033314431444702
712 => 0.033176171893517
713 => 0.033181846113725
714 => 0.033588437973714
715 => 0.033706473320434
716 => 0.03364643959043
717 => 0.033688485157089
718 => 0.034657407494421
719 => 0.034519657722444
720 => 0.034446480901537
721 => 0.034466751381027
722 => 0.034714331812145
723 => 0.034783640815467
724 => 0.034489973698133
725 => 0.034628468808337
726 => 0.035218163409941
727 => 0.035424523146679
728 => 0.036083124368052
729 => 0.035803338863509
730 => 0.03631689726593
731 => 0.03789540071001
801 => 0.039156418485272
802 => 0.037996734425378
803 => 0.04031243298
804 => 0.042115536472002
805 => 0.042046330356753
806 => 0.041731917556387
807 => 0.03967913216873
808 => 0.037790128449701
809 => 0.039370360272003
810 => 0.039374388607896
811 => 0.039238645292922
812 => 0.038395555221829
813 => 0.039209307585951
814 => 0.039273900293501
815 => 0.03923774555386
816 => 0.038591350373083
817 => 0.037604424405833
818 => 0.037797267377467
819 => 0.038113148098893
820 => 0.037515119993612
821 => 0.037324013778174
822 => 0.037679316592118
823 => 0.038824176288927
824 => 0.038607747194966
825 => 0.038602095356664
826 => 0.039528070800849
827 => 0.038865272220821
828 => 0.037799699744908
829 => 0.037530628641566
830 => 0.036575607492714
831 => 0.037235244001895
901 => 0.037258983145532
902 => 0.036897706970776
903 => 0.037829015315383
904 => 0.037820433145034
905 => 0.038704571811284
906 => 0.040394712873837
907 => 0.039894854994849
908 => 0.03931357466597
909 => 0.039376775954874
910 => 0.040069938100083
911 => 0.039650836443737
912 => 0.03980154832144
913 => 0.040069709979606
914 => 0.040231498566057
915 => 0.039353497067069
916 => 0.039148792917988
917 => 0.038730040070363
918 => 0.038620795268809
919 => 0.038961860725635
920 => 0.038872002027782
921 => 0.037256987962432
922 => 0.037088210006749
923 => 0.03709338618569
924 => 0.036668985991172
925 => 0.036021673826814
926 => 0.037722771545746
927 => 0.037586149592068
928 => 0.037435329528908
929 => 0.037453804126077
930 => 0.038192192990314
1001 => 0.037763890159525
1002 => 0.038902603432631
1003 => 0.038668518216535
1004 => 0.03842842959793
1005 => 0.038395242037561
1006 => 0.038302828402796
1007 => 0.03798590766359
1008 => 0.037603206827014
1009 => 0.037350514585728
1010 => 0.034453875364604
1011 => 0.034991474755069
1012 => 0.035609933850073
1013 => 0.03582342345135
1014 => 0.035458234715336
1015 => 0.038000327540739
1016 => 0.038464792396156
1017 => 0.037057898052805
1018 => 0.036794725564281
1019 => 0.038017581085273
1020 => 0.037280049718108
1021 => 0.037612160047583
1022 => 0.036894319169895
1023 => 0.038352916413605
1024 => 0.038341804346427
1025 => 0.037774377074711
1026 => 0.038253962719191
1027 => 0.038170622911439
1028 => 0.037529998919184
1029 => 0.03837322533682
1030 => 0.038373643566603
1031 => 0.037827507154509
1101 => 0.037189739389817
1102 => 0.037075721576892
1103 => 0.036989824470991
1104 => 0.037591034625119
1105 => 0.038130077769375
1106 => 0.039133103420707
1107 => 0.039385287900754
1108 => 0.040369580715247
1109 => 0.039783482268563
1110 => 0.040043292118733
1111 => 0.040325352463438
1112 => 0.040460582565116
1113 => 0.04024023237128
1114 => 0.041769244263273
1115 => 0.041898339714671
1116 => 0.041941624302854
1117 => 0.041426050095762
1118 => 0.041884000663305
1119 => 0.04166974075848
1120 => 0.042227185507718
1121 => 0.042314599962211
1122 => 0.042240563029115
1123 => 0.042268309756714
1124 => 0.040963567843079
1125 => 0.040895910091795
1126 => 0.039973391852264
1127 => 0.040349324853784
1128 => 0.039646536126381
1129 => 0.039869397671366
1130 => 0.039967632916893
1201 => 0.039916320399431
1202 => 0.040370579541644
1203 => 0.039984366471751
1204 => 0.038965086680997
1205 => 0.037945529188145
1206 => 0.037932729474336
1207 => 0.037664297983152
1208 => 0.037470271180707
1209 => 0.037507647626328
1210 => 0.037639367095786
1211 => 0.037462615405689
1212 => 0.037500334340309
1213 => 0.038126719974952
1214 => 0.038252337146802
1215 => 0.037825440915059
1216 => 0.036111390943781
1217 => 0.035690758781461
1218 => 0.035993100838238
1219 => 0.035848600808421
1220 => 0.028932618720973
1221 => 0.030557426126207
1222 => 0.029592020739263
1223 => 0.030036923957733
1224 => 0.029051495048176
1225 => 0.029521793374571
1226 => 0.029434946446231
1227 => 0.0320475886723
1228 => 0.032006795857511
1229 => 0.032026321219243
1230 => 0.031094324830744
1231 => 0.032579020384082
]
'min_raw' => 0.018954506255318
'max_raw' => 0.042314599962211
'avg_raw' => 0.030634553108764
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.018954'
'max' => '$0.042314'
'avg' => '$0.030634'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0029227464061544
'max_diff' => 0.0064014788477166
'year' => 2035
]
10 => [
'items' => [
101 => 0.033310434801581
102 => 0.033175069458866
103 => 0.033209137999296
104 => 0.032623727600243
105 => 0.032031989271549
106 => 0.031375660397152
107 => 0.032595038321081
108 => 0.032459464311416
109 => 0.0327704223116
110 => 0.033561276058202
111 => 0.03367773227655
112 => 0.033834250614993
113 => 0.033778149932395
114 => 0.035114695793942
115 => 0.034952831271295
116 => 0.035342878199272
117 => 0.034540522075491
118 => 0.03363257996109
119 => 0.033805150074174
120 => 0.033788530184563
121 => 0.033576939914391
122 => 0.033385925679321
123 => 0.033067940795856
124 => 0.034074092020048
125 => 0.034033244117793
126 => 0.034694524174798
127 => 0.034577636501391
128 => 0.033797032011111
129 => 0.033824911453193
130 => 0.034012414099599
131 => 0.034661362899677
201 => 0.034854015087344
202 => 0.034764770918154
203 => 0.034976005247024
204 => 0.035142956247846
205 => 0.034996971722305
206 => 0.037063804749849
207 => 0.036205511577717
208 => 0.036623837697849
209 => 0.03672360601258
210 => 0.036468051572298
211 => 0.036523472179677
212 => 0.036607419298644
213 => 0.03711712976648
214 => 0.038454757519996
215 => 0.039047183746488
216 => 0.040829527278684
217 => 0.038997990995349
218 => 0.038889315211947
219 => 0.039210369103713
220 => 0.040256793437336
221 => 0.041104822074098
222 => 0.041386162096857
223 => 0.041423345825282
224 => 0.04195115841111
225 => 0.042253690742185
226 => 0.041887068080342
227 => 0.041576393761422
228 => 0.040463596913369
229 => 0.040592406178576
301 => 0.041479774281853
302 => 0.042733233993452
303 => 0.04380883282626
304 => 0.043432195603414
305 => 0.046305671749281
306 => 0.046590565172047
307 => 0.046551202112728
308 => 0.047200231727613
309 => 0.045912040114649
310 => 0.045361313242569
311 => 0.041643565075476
312 => 0.042688100665452
313 => 0.044206394488907
314 => 0.044005442608063
315 => 0.04290281704936
316 => 0.043807996385898
317 => 0.043508715789664
318 => 0.04327266076625
319 => 0.044354074590025
320 => 0.043165015668753
321 => 0.044194532716584
322 => 0.042874166453751
323 => 0.043433916050523
324 => 0.043116175107353
325 => 0.043321792438449
326 => 0.042119757722315
327 => 0.042768346477398
328 => 0.042092774297741
329 => 0.042092453988566
330 => 0.042077540695256
331 => 0.042872348368676
401 => 0.042898267018372
402 => 0.042310902946827
403 => 0.042226254607766
404 => 0.042539243883265
405 => 0.042172815413677
406 => 0.042344264988324
407 => 0.042178008446635
408 => 0.042140580597202
409 => 0.041842349125098
410 => 0.04171386280687
411 => 0.041764245602932
412 => 0.041592263145862
413 => 0.0414886374946
414 => 0.042056926945001
415 => 0.041753312816383
416 => 0.04201039372535
417 => 0.041717417583384
418 => 0.040701834631702
419 => 0.040117762136594
420 => 0.038199420085455
421 => 0.038743459511462
422 => 0.039104158213754
423 => 0.038984947294798
424 => 0.039241058477217
425 => 0.039256781623769
426 => 0.03917351726762
427 => 0.039077107810024
428 => 0.039030181017844
429 => 0.039379934880356
430 => 0.039582978769717
501 => 0.039140359154055
502 => 0.039036659571012
503 => 0.039484172440145
504 => 0.039757155031796
505 => 0.041772705112881
506 => 0.041623386652733
507 => 0.041998146685436
508 => 0.041955954456915
509 => 0.042348762675143
510 => 0.042990838098806
511 => 0.041685319235387
512 => 0.04191191216863
513 => 0.041856356814194
514 => 0.042462895606534
515 => 0.042464789154438
516 => 0.04210113884957
517 => 0.042298279579391
518 => 0.042188241032278
519 => 0.042387095559513
520 => 0.041621392413662
521 => 0.042553936192762
522 => 0.043082628423718
523 => 0.043089969315857
524 => 0.043340565237369
525 => 0.043595185207163
526 => 0.044083906066455
527 => 0.043581555047651
528 => 0.042677874467708
529 => 0.042743117286709
530 => 0.042213289693332
531 => 0.042222196190898
601 => 0.042174652608877
602 => 0.042317334477437
603 => 0.041652703060114
604 => 0.041808690725313
605 => 0.041590307080572
606 => 0.041911437445236
607 => 0.041565954257608
608 => 0.04185633002372
609 => 0.041981646578265
610 => 0.042444067362408
611 => 0.041497654331807
612 => 0.039567854095883
613 => 0.039973521502041
614 => 0.039373507543847
615 => 0.039429041120092
616 => 0.03954122778221
617 => 0.039177594105093
618 => 0.039246963951273
619 => 0.039244485572219
620 => 0.039223128240464
621 => 0.039128533076847
622 => 0.038991351374519
623 => 0.03953784105429
624 => 0.039630700299934
625 => 0.039837114900172
626 => 0.040451264738122
627 => 0.04038989668666
628 => 0.04048999052473
629 => 0.040271486238226
630 => 0.039439176907257
701 => 0.03948437530829
702 => 0.038920750523158
703 => 0.039822701747215
704 => 0.039609107792184
705 => 0.039471402379865
706 => 0.039433828182281
707 => 0.040049500378889
708 => 0.040233719149593
709 => 0.040118926374152
710 => 0.039883483042682
711 => 0.040335603841677
712 => 0.040456572294043
713 => 0.040483652669383
714 => 0.041284724039637
715 => 0.040528423660187
716 => 0.0407104726785
717 => 0.042130767151192
718 => 0.0408427560517
719 => 0.041525044257176
720 => 0.041491649799975
721 => 0.041840685358522
722 => 0.041463018696589
723 => 0.041467700327493
724 => 0.041777620257767
725 => 0.041342393610052
726 => 0.041234625371471
727 => 0.041085744321723
728 => 0.041410820647144
729 => 0.041605689202296
730 => 0.043176186641639
731 => 0.044190799610839
801 => 0.044146752585995
802 => 0.044549259940496
803 => 0.044367926690748
804 => 0.043782353794019
805 => 0.044781855325729
806 => 0.044465571220176
807 => 0.044491645297552
808 => 0.04449067481909
809 => 0.044700976099247
810 => 0.044551958368426
811 => 0.044258229124623
812 => 0.04445322030443
813 => 0.045032274397832
814 => 0.046829676071302
815 => 0.047835525860181
816 => 0.04676912265103
817 => 0.047504713304995
818 => 0.047063621030365
819 => 0.046983461442706
820 => 0.047445466733119
821 => 0.047908280702632
822 => 0.047878801453574
823 => 0.047542822277468
824 => 0.047353036166041
825 => 0.048790160184775
826 => 0.04984900868101
827 => 0.049776802312177
828 => 0.050095497741436
829 => 0.051031197378619
830 => 0.051116746026873
831 => 0.051105968863506
901 => 0.050893927612729
902 => 0.051815245421488
903 => 0.052583824946599
904 => 0.050844846189635
905 => 0.051507026535384
906 => 0.051804300626708
907 => 0.052240787190021
908 => 0.052977213185972
909 => 0.053777167144924
910 => 0.053890289405768
911 => 0.0538100237483
912 => 0.053282432608455
913 => 0.054157751775776
914 => 0.054670493215231
915 => 0.054975819008548
916 => 0.055750074419031
917 => 0.051806136490292
918 => 0.049014421197897
919 => 0.048578454542132
920 => 0.049465009880172
921 => 0.049698787452667
922 => 0.049604552006326
923 => 0.046462222633085
924 => 0.048561910828302
925 => 0.050820998779556
926 => 0.050907779548189
927 => 0.052038726211889
928 => 0.05240700880466
929 => 0.053317569105506
930 => 0.053260613310769
1001 => 0.053482320253846
1002 => 0.053431353667062
1003 => 0.055117974883286
1004 => 0.056978568550456
1005 => 0.056914142108088
1006 => 0.056646659754887
1007 => 0.057043916661909
1008 => 0.058964248719763
1009 => 0.05878745531657
1010 => 0.058959195048546
1011 => 0.061223374769928
1012 => 0.064167130483535
1013 => 0.062799460406323
1014 => 0.065766910937409
1015 => 0.067634763748934
1016 => 0.070865022046882
1017 => 0.070460577798621
1018 => 0.071718093649282
1019 => 0.069736538184173
1020 => 0.06518648629785
1021 => 0.064466423169941
1022 => 0.065908007786918
1023 => 0.069452002899987
1024 => 0.0657963947688
1025 => 0.066535919532665
1026 => 0.066322936350921
1027 => 0.066311587382286
1028 => 0.066744731355488
1029 => 0.066116433431089
1030 => 0.063556634658447
1031 => 0.06472977535096
1101 => 0.064276769390738
1102 => 0.064779413277436
1103 => 0.067491975027838
1104 => 0.06629268681859
1105 => 0.065029334112409
1106 => 0.066613858766368
1107 => 0.068631503152603
1108 => 0.068505242592968
1109 => 0.068260244334457
1110 => 0.069641286689995
1111 => 0.071922364053901
1112 => 0.072538930099254
1113 => 0.072994066548796
1114 => 0.073056822175594
1115 => 0.073703244134023
1116 => 0.070227270344243
1117 => 0.075743730017961
1118 => 0.076696270214489
1119 => 0.076517232136288
1120 => 0.07757594047571
1121 => 0.077264441625414
1122 => 0.076813128664007
1123 => 0.078491406575713
1124 => 0.076567396379986
1125 => 0.0738365061333
1126 => 0.072338285733084
1127 => 0.074311263214081
1128 => 0.075516091714301
1129 => 0.076312406711461
1130 => 0.076553371148456
1201 => 0.070497100294715
1202 => 0.067233106200729
1203 => 0.069325288993206
1204 => 0.07187789639477
1205 => 0.070213090481243
1206 => 0.070278347721159
1207 => 0.067904771991766
1208 => 0.07208790517906
1209 => 0.071478457859359
1210 => 0.074640271632061
1211 => 0.073885679400065
1212 => 0.076464015790799
1213 => 0.075785053409657
1214 => 0.078603388293503
1215 => 0.079727698382041
1216 => 0.081615590005588
1217 => 0.08300433076897
1218 => 0.083819825907606
1219 => 0.083770866638327
1220 => 0.087002264655667
1221 => 0.08509682214129
1222 => 0.082703137264912
1223 => 0.082659843057477
1224 => 0.08389956637373
1225 => 0.086497686343114
1226 => 0.087171341050068
1227 => 0.087547822129589
1228 => 0.086971228250901
1229 => 0.08490300696584
1230 => 0.08400995950107
1231 => 0.08477086181513
]
'min_raw' => 0.031375660397152
'max_raw' => 0.087547822129589
'avg_raw' => 0.059461741263371
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.031375'
'max' => '$0.087547'
'avg' => '$0.059461'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012421154141834
'max_diff' => 0.045233222167379
'year' => 2036
]
11 => [
'items' => [
101 => 0.083840343670116
102 => 0.085446679045688
103 => 0.087652520611071
104 => 0.087197023050663
105 => 0.088719683103098
106 => 0.09029547606886
107 => 0.092548930783189
108 => 0.093138067290702
109 => 0.094111887534765
110 => 0.095114268449191
111 => 0.095436206183982
112 => 0.096050885211109
113 => 0.096047645549223
114 => 0.097900022170142
115 => 0.099943250946346
116 => 0.10071452250851
117 => 0.10248801893754
118 => 0.099450968453552
119 => 0.10175460613278
120 => 0.10383254498323
121 => 0.10135514062236
122 => 0.10476966537263
123 => 0.10490224363121
124 => 0.10690401793151
125 => 0.1048748361846
126 => 0.10366991454066
127 => 0.10714847817889
128 => 0.1088316455497
129 => 0.10832466183954
130 => 0.10446649077236
131 => 0.10222086972652
201 => 0.096343646301606
202 => 0.10330547132557
203 => 0.10669637321553
204 => 0.10445770915565
205 => 0.10558676109214
206 => 0.11174650236132
207 => 0.11409173302292
208 => 0.11360394143971
209 => 0.11368637018754
210 => 0.11495181408359
211 => 0.12056348921135
212 => 0.11720084339718
213 => 0.11977146012618
214 => 0.12113490597019
215 => 0.12240135045577
216 => 0.11929136306307
217 => 0.11524531515997
218 => 0.11396376194752
219 => 0.10423511813414
220 => 0.10372869997429
221 => 0.10344443211513
222 => 0.1016521634736
223 => 0.10024393126506
224 => 0.099124052728517
225 => 0.096185157024588
226 => 0.097176948052476
227 => 0.092492961695617
228 => 0.095489610176451
301 => 0.088013854852099
302 => 0.094239886029489
303 => 0.090851340322536
304 => 0.09312665763011
305 => 0.093118719262372
306 => 0.088929138709119
307 => 0.086512676080319
308 => 0.088052540117523
309 => 0.089703396599965
310 => 0.089971242510094
311 => 0.092111621031343
312 => 0.092708954669341
313 => 0.090899005859365
314 => 0.087858936439456
315 => 0.0885650752291
316 => 0.086498366200285
317 => 0.082876538122101
318 => 0.085477798278904
319 => 0.086365982865772
320 => 0.086758255778093
321 => 0.083196603832964
322 => 0.082077455464579
323 => 0.081481630263816
324 => 0.087399171898649
325 => 0.087723348187501
326 => 0.08606481645983
327 => 0.093561537137333
328 => 0.09186479836195
329 => 0.093760471285145
330 => 0.088501000535336
331 => 0.088701919400795
401 => 0.086212001661078
402 => 0.087606189218956
403 => 0.08662082238981
404 => 0.08749355264191
405 => 0.088016663556616
406 => 0.090506172725333
407 => 0.094268312225242
408 => 0.090134323073342
409 => 0.088333084800044
410 => 0.089450562894249
411 => 0.09242655431866
412 => 0.096935333664839
413 => 0.09426604554426
414 => 0.095450630284721
415 => 0.095709409352005
416 => 0.093741175114308
417 => 0.097007905268643
418 => 0.09875857249722
419 => 0.1005543948242
420 => 0.10211365703292
421 => 0.099837103895826
422 => 0.10227334208359
423 => 0.10031016415818
424 => 0.098548990609492
425 => 0.098551661582784
426 => 0.09744685168905
427 => 0.095306143304934
428 => 0.094911363834544
429 => 0.096965056494664
430 => 0.098611923522661
501 => 0.098747567379048
502 => 0.099659357584831
503 => 0.10019894563643
504 => 0.10548764207645
505 => 0.10761479953502
506 => 0.11021584741033
507 => 0.11122910214479
508 => 0.11427863562359
509 => 0.11181588966846
510 => 0.11128305908967
511 => 0.10388588836491
512 => 0.1050971746567
513 => 0.10703656088158
514 => 0.10391786812944
515 => 0.10589596085656
516 => 0.10628647826262
517 => 0.10381189614311
518 => 0.10513367737352
519 => 0.10162341830636
520 => 0.094344826280475
521 => 0.097016008422264
522 => 0.098982897588808
523 => 0.096175904232464
524 => 0.10120733117807
525 => 0.098268075426179
526 => 0.09733647246199
527 => 0.093701957158247
528 => 0.09541730847629
529 => 0.097737345695408
530 => 0.096303832427269
531 => 0.099278587701758
601 => 0.10349163450869
602 => 0.10649410255458
603 => 0.10672459476935
604 => 0.10479420896558
605 => 0.10788766453568
606 => 0.10791019698231
607 => 0.10442076646209
608 => 0.10228350969769
609 => 0.10179792046399
610 => 0.10301101757515
611 => 0.10448394141817
612 => 0.10680633179161
613 => 0.10820970365519
614 => 0.11186895318451
615 => 0.11285904118823
616 => 0.1139468477284
617 => 0.11540049273318
618 => 0.11714596626834
619 => 0.11332696954327
620 => 0.11347870540265
621 => 0.10992250852987
622 => 0.10612220216108
623 => 0.10900616098012
624 => 0.11277655349904
625 => 0.11191162128928
626 => 0.11181429874672
627 => 0.11197796826829
628 => 0.11132583762818
629 => 0.10837627491205
630 => 0.10689502298125
701 => 0.10880621587965
702 => 0.10982192984774
703 => 0.11139721363269
704 => 0.11120302665598
705 => 0.11526078851287
706 => 0.1168375120701
707 => 0.11643411871235
708 => 0.11650835279838
709 => 0.11936293548462
710 => 0.12253781852143
711 => 0.12551151544811
712 => 0.12853648768519
713 => 0.12488976558672
714 => 0.12303818500366
715 => 0.12494854353503
716 => 0.12393488040804
717 => 0.12975968940773
718 => 0.13016298654496
719 => 0.13598737434465
720 => 0.14151541192176
721 => 0.13804335056466
722 => 0.14131734803933
723 => 0.14485844324111
724 => 0.15168979040734
725 => 0.14938923301145
726 => 0.14762704210052
727 => 0.14596178020454
728 => 0.1494269258572
729 => 0.15388478038228
730 => 0.15484495955019
731 => 0.15640081661886
801 => 0.1547650231523
802 => 0.15673515620603
803 => 0.16369059160605
804 => 0.16181117156364
805 => 0.15914209297157
806 => 0.16463274121276
807 => 0.1666197854669
808 => 0.18056590266556
809 => 0.19817345171425
810 => 0.19088381079069
811 => 0.1863588954342
812 => 0.1874223578754
813 => 0.19385203873483
814 => 0.19591704815901
815 => 0.19030364069265
816 => 0.19228639110799
817 => 0.20321154083619
818 => 0.2090725331446
819 => 0.20111251835349
820 => 0.17915115324359
821 => 0.15890177164737
822 => 0.16427281948823
823 => 0.16366390934609
824 => 0.17540161978886
825 => 0.16176634801719
826 => 0.16199593102422
827 => 0.1739763648885
828 => 0.17078019053014
829 => 0.16560279740469
830 => 0.15893957234684
831 => 0.14662198455367
901 => 0.13571195354391
902 => 0.15710903678413
903 => 0.15618635564674
904 => 0.15485017662612
905 => 0.15782369844684
906 => 0.17226227635939
907 => 0.17192942040539
908 => 0.16981196065064
909 => 0.17141803521219
910 => 0.1653212447688
911 => 0.1668925264874
912 => 0.15889856404187
913 => 0.16251216892461
914 => 0.16559168904433
915 => 0.16620994830144
916 => 0.1676029179768
917 => 0.15570014461429
918 => 0.16104414040699
919 => 0.16418323727052
920 => 0.1500006834398
921 => 0.16390289378167
922 => 0.15549294381133
923 => 0.15263848047819
924 => 0.15648163930932
925 => 0.15498395657523
926 => 0.15369633690734
927 => 0.15297782300855
928 => 0.15579981470017
929 => 0.15566816541475
930 => 0.15105083928227
1001 => 0.14502772556875
1002 => 0.14704928023298
1003 => 0.14631483047129
1004 => 0.14365308978902
1005 => 0.14544678162907
1006 => 0.13754827053215
1007 => 0.12395929271877
1008 => 0.13293658770394
1009 => 0.13259097161242
1010 => 0.13241669630664
1011 => 0.13916288537378
1012 => 0.13851439495604
1013 => 0.1373373784978
1014 => 0.14363147295874
1015 => 0.14133404381298
1016 => 0.14841417909782
1017 => 0.15307761411086
1018 => 0.15189481614523
1019 => 0.15628079931533
1020 => 0.14709585276947
1021 => 0.15014672357591
1022 => 0.1507755038208
1023 => 0.1435538048101
1024 => 0.1386204960084
1025 => 0.13829150055516
1026 => 0.12973782294485
1027 => 0.13430712848141
1028 => 0.13832792826287
1029 => 0.13640227719422
1030 => 0.13579267359307
1031 => 0.13890700618443
1101 => 0.13914901649924
1102 => 0.13363115567461
1103 => 0.13477849366798
1104 => 0.13956308382939
1105 => 0.1346579342719
1106 => 0.12512802993334
1107 => 0.12276448189614
1108 => 0.12244914101915
1109 => 0.1160390112869
1110 => 0.12292242547773
1111 => 0.1199176307194
1112 => 0.12940974135799
1113 => 0.12398789866844
1114 => 0.12375417386659
1115 => 0.12340086454863
1116 => 0.11788340108896
1117 => 0.11909137493353
1118 => 0.1231068639725
1119 => 0.12453963569933
1120 => 0.12439018586987
1121 => 0.12308718588557
1122 => 0.12368369260594
1123 => 0.1217621366229
1124 => 0.12108359521156
1125 => 0.11894193186986
1126 => 0.11579427840715
1127 => 0.11623197892682
1128 => 0.10999565378886
1129 => 0.10659777286687
1130 => 0.10565728421101
1201 => 0.10439962347468
1202 => 0.10579934033769
1203 => 0.10997798706329
1204 => 0.10493765256286
1205 => 0.096296352600224
1206 => 0.096815709452037
1207 => 0.097982550099628
1208 => 0.095808150272265
1209 => 0.093750263319212
1210 => 0.095539429063246
1211 => 0.091877996352833
1212 => 0.09842501674998
1213 => 0.098247938196049
1214 => 0.10068826253508
1215 => 0.10221424742477
1216 => 0.098697346297506
1217 => 0.09781285517471
1218 => 0.098316701516135
1219 => 0.08998924382398
1220 => 0.10000773158067
1221 => 0.10009437187881
1222 => 0.099352505045233
1223 => 0.10468704048956
1224 => 0.11594457416043
1225 => 0.1117090371602
1226 => 0.11006890921393
1227 => 0.10695102478915
1228 => 0.11110542066352
1229 => 0.11078642787904
1230 => 0.1093438215332
1231 => 0.10847132871403
]
'min_raw' => 0.081481630263816
'max_raw' => 0.2090725331446
'avg_raw' => 0.14527708170421
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.081481'
'max' => '$0.209072'
'avg' => '$0.145277'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.050105969866663
'max_diff' => 0.12152471101501
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0025576152670078
]
1 => [
'year' => 2028
'avg' => 0.0043896102792025
]
2 => [
'year' => 2029
'avg' => 0.011991624132503
]
3 => [
'year' => 2030
'avg' => 0.0092515201597637
]
4 => [
'year' => 2031
'avg' => 0.0090861393251593
]
5 => [
'year' => 2032
'avg' => 0.015930861750287
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0025576152670078
'min' => '$0.002557'
'max_raw' => 0.015930861750287
'max' => '$0.01593'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.015930861750287
]
1 => [
'year' => 2033
'avg' => 0.040975814572935
]
2 => [
'year' => 2034
'avg' => 0.025972440481829
]
3 => [
'year' => 2035
'avg' => 0.030634553108764
]
4 => [
'year' => 2036
'avg' => 0.059461741263371
]
5 => [
'year' => 2037
'avg' => 0.14527708170421
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.015930861750287
'min' => '$0.01593'
'max_raw' => 0.14527708170421
'max' => '$0.145277'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14527708170421
]
]
]
]
'prediction_2025_max_price' => '$0.004373'
'last_price' => 0.00424023
'sma_50day_nextmonth' => '$0.00374'
'sma_200day_nextmonth' => '$0.171979'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.004064'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003778'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003517'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003551'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005878'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0842005'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.206483'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004086'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00390017'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003684'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004282'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.02339'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.07869'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.130943'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.153582'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.158172'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0815033'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.004085'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0074083'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.036269'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.099542'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.127564'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.074352'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.04099'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '39.06'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 171.48
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0038012'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004174'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 84.1
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 177.33
'cci_20_action' => 'SELL'
'adx_14' => 41.36
'adx_14_action' => 'SELL'
'ao_5_34' => '0.000297'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -15.9
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 73.74
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.102664'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767687408
'last_updated_date' => '6. Januar 2026'
]
Saros Preisprognose für 2026
Die Preisprognose für Saros im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001464 am unteren Ende und $0.004373 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Saros im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SAROS das prognostizierte Preisziel erreicht.
Saros Preisprognose 2027-2032
Die Preisprognose für SAROS für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.002557 am unteren Ende und $0.01593 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Saros, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Saros Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.00141 | $0.002557 | $0.0037049 |
| 2028 | $0.002545 | $0.004389 | $0.006234 |
| 2029 | $0.005591 | $0.011991 | $0.018392 |
| 2030 | $0.004754 | $0.009251 | $0.013748 |
| 2031 | $0.005621 | $0.009086 | $0.01255 |
| 2032 | $0.008581 | $0.01593 | $0.02328 |
Saros Preisprognose 2032-2037
Die Preisprognose für Saros für die Jahre 2032-2037 wird derzeit zwischen $0.01593 am unteren Ende und $0.145277 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Saros bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Saros Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.008581 | $0.01593 | $0.02328 |
| 2033 | $0.019941 | $0.040975 | $0.06201 |
| 2034 | $0.016031 | $0.025972 | $0.035913 |
| 2035 | $0.018954 | $0.030634 | $0.042314 |
| 2036 | $0.031375 | $0.059461 | $0.087547 |
| 2037 | $0.081481 | $0.145277 | $0.209072 |
Saros Potenzielles Preishistogramm
Saros Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Saros Bärisch, mit 15 technischen Indikatoren, die bullische Signale zeigen, und 18 anzeigen bärische Signale. Die Preisprognose für SAROS wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Saros
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Saros im nächsten Monat steigen, und bis zum 04.02.2026 $0.171979 erreichen. Der kurzfristige 50-Tage-SMA für Saros wird voraussichtlich bis zum 04.02.2026 $0.00374 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 39.06, was darauf hindeutet, dass sich der SAROS-Markt in einem NEUTRAL Zustand befindet.
Beliebte SAROS Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.004064 | BUY |
| SMA 5 | $0.003778 | BUY |
| SMA 10 | $0.003517 | BUY |
| SMA 21 | $0.003551 | BUY |
| SMA 50 | $0.005878 | SELL |
| SMA 100 | $0.0842005 | SELL |
| SMA 200 | $0.206483 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.004086 | BUY |
| EMA 5 | $0.00390017 | BUY |
| EMA 10 | $0.003684 | BUY |
| EMA 21 | $0.004282 | SELL |
| EMA 50 | $0.02339 | SELL |
| EMA 100 | $0.07869 | SELL |
| EMA 200 | $0.130943 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.153582 | SELL |
| SMA 50 | $0.158172 | SELL |
| SMA 100 | $0.0815033 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.099542 | SELL |
| EMA 50 | $0.127564 | SELL |
| EMA 100 | $0.074352 | SELL |
| EMA 200 | $0.04099 | SELL |
Saros Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 39.06 | NEUTRAL |
| Stoch RSI (14) | 171.48 | SELL |
| Stochastic Fast (14) | 84.1 | SELL |
| Commodity Channel Index (20) | 177.33 | SELL |
| Average Directional Index (14) | 41.36 | SELL |
| Awesome Oscillator (5, 34) | 0.000297 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Prozentbereich (14) | -15.9 | SELL |
| Ultimate Oscillator (7, 14, 28) | 73.74 | SELL |
| VWMA (10) | 0.0038012 | BUY |
| Hull Moving Average (9) | 0.004174 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.102664 | SELL |
Auf weltweiten Geldflüssen basierende Saros-Preisprognose
Definition weltweiter Geldflüsse, die für Saros-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Saros-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.005958 | $0.008372 | $0.011764 | $0.016531 | $0.023228 | $0.03264 |
| Amazon.com aktie | $0.008847 | $0.01846 | $0.038519 | $0.080373 | $0.1677039 | $0.349924 |
| Apple aktie | $0.006014 | $0.008531 | $0.01210061 | $0.017163 | $0.024345 | $0.034532 |
| Netflix aktie | $0.00669 | $0.010556 | $0.016656 | $0.026281 | $0.041467 | $0.065429 |
| Google aktie | $0.005491 | $0.00711 | $0.0092086 | $0.011925 | $0.015442 | $0.019998 |
| Tesla aktie | $0.009612 | $0.02179 | $0.049396 | $0.111979 | $0.253848 | $0.575455 |
| Kodak aktie | $0.003179 | $0.002384 | $0.001788 | $0.00134 | $0.0010055 | $0.000754 |
| Nokia aktie | $0.0028089 | $0.00186 | $0.001232 | $0.000816 | $0.00054 | $0.000358 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Saros Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Saros investieren?", "Sollte ich heute SAROS kaufen?", "Wird Saros auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Saros-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Saros.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Saros zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Saros-Preis entspricht heute $0.00424 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Saros-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Saros-Prognose
basierend auf dem Preisverlauf des letzten Monats
Saros-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Saros 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00435 | $0.004463 | $0.004579 | $0.004698 |
| Wenn die Wachstumsrate von Saros 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00446 | $0.004692 | $0.004936 | $0.005193 |
| Wenn die Wachstumsrate von Saros 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004791 | $0.005414 | $0.006117 | $0.006912 |
| Wenn die Wachstumsrate von Saros 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005342 | $0.006731 | $0.00848 | $0.010685 |
| Wenn die Wachstumsrate von Saros 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006444 | $0.009794 | $0.014886 | $0.022626 |
| Wenn die Wachstumsrate von Saros 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009751 | $0.022424 | $0.051568 | $0.118589 |
| Wenn die Wachstumsrate von Saros 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.015261 | $0.054932 | $0.19772 | $0.711658 |
Fragefeld
Ist SAROS eine gute Investition?
Die Entscheidung, Saros zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Saros in den letzten 2026 Stunden um 0.6599% gestiegen, und Saros hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Saros investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Saros steigen?
Es scheint, dass der Durchschnittswert von Saros bis zum Ende dieses Jahres potenziell auf $0.004373 steigen könnte. Betrachtet man die Aussichten von Saros in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.013748 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Saros nächste Woche kosten?
Basierend auf unserer neuen experimentellen Saros-Prognose wird der Preis von Saros in der nächsten Woche um 0.86% steigen und $0.004276 erreichen bis zum 13. Januar 2026.
Wie viel wird Saros nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Saros-Prognose wird der Preis von Saros im nächsten Monat um -11.62% fallen und $0.003747 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Saros in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Saros im Jahr 2026 wird erwartet, dass SAROS innerhalb der Spanne von $0.001464 bis $0.004373 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Saros-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Saros in 5 Jahren sein?
Die Zukunft von Saros scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.013748 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Saros-Prognose für 2030 könnte der Wert von Saros seinen höchsten Gipfel von ungefähr $0.013748 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.004754 liegen wird.
Wie viel wird Saros im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Saros-Preisprognosesimulation wird der Wert von SAROS im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.004373 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.004373 und $0.001464 während des Jahres 2026 liegen.
Wie viel wird Saros im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Saros könnte der Wert von SAROS um -12.62% fallen und bis zu $0.0037049 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.0037049 und $0.00141 im Laufe des Jahres schwanken.
Wie viel wird Saros im Jahr 2028 kosten?
Unser neues experimentelles Saros-Preisprognosemodell deutet darauf hin, dass der Wert von SAROS im Jahr 2028 um 47.02% steigen, und im besten Fall $0.006234 erreichen wird. Der Preis wird voraussichtlich zwischen $0.006234 und $0.002545 im Laufe des Jahres liegen.
Wie viel wird Saros im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Saros im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.018392 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.018392 und $0.005591.
Wie viel wird Saros im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Saros-Preisprognosen wird der Wert von SAROS im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.013748 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.013748 und $0.004754 während des Jahres 2030 liegen.
Wie viel wird Saros im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Saros im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.01255 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.01255 und $0.005621 während des Jahres schwanken.
Wie viel wird Saros im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Saros-Preisprognose könnte SAROS eine 449.04% Steigerung im Wert erfahren und $0.02328 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.02328 und $0.008581 liegen.
Wie viel wird Saros im Jahr 2033 kosten?
Laut unserer experimentellen Saros-Preisprognose wird der Wert von SAROS voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.06201 beträgt. Im Laufe des Jahres könnte der Preis von SAROS zwischen $0.06201 und $0.019941 liegen.
Wie viel wird Saros im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Saros-Preisprognosesimulation deuten darauf hin, dass SAROS im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.035913 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.035913 und $0.016031.
Wie viel wird Saros im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Saros könnte SAROS um 897.93% steigen, wobei der Wert im Jahr 2035 $0.042314 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.042314 und $0.018954.
Wie viel wird Saros im Jahr 2036 kosten?
Unsere jüngste Saros-Preisprognosesimulation deutet darauf hin, dass der Wert von SAROS im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.087547 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.087547 und $0.031375.
Wie viel wird Saros im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Saros um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.209072 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.209072 und $0.081481 liegen.
Verwandte Prognosen
Kasta-Preisprognose
UX Chain-Preisprognose
Guacamole-Preisprognose
RMRK-Preisprognose
Cult DAO-Preisprognose
Wrapped Ampleforth-Preisprognose
SpaceN-Preisprognose
Polaris Share-Preisprognose
Prisma mkUSD-Preisprognose
Source-Preisprognose
VLaunch-Preisprognose
agEUR-Preisprognose
Solve.Care-PreisprognoseHubble-Preisprognose
NumberGoUpTech-Preisprognose
Geodnet-Preisprognose
AC Milan Fan Token-Preisprognose
Electra Protocol-Preisprognose
Concentrated Voting Power-Preisprognose
Vita Inu-Preisprognose
Hapi-Preisprognose
Hydra-Preisprognose
Bitrock-Preisprognose
Rejuve.AI-Preisprognose
Beoble-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Saros?
Saros-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Saros Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Saros. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SAROS über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SAROS über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SAROS einzuschätzen.
Wie liest man Saros-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Saros in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SAROS innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Saros?
Die Preisentwicklung von Saros wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SAROS. Die Marktkapitalisierung von Saros kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SAROS-„Walen“, großen Inhabern von Saros, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Saros-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


