APF coin Preisvorhersage bis zu $0.0951046 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.03186 | $0.0951046 |
| 2027 | $0.030671 | $0.080573 |
| 2028 | $0.055352 | $0.135576 |
| 2029 | $0.121594 | $0.39999 |
| 2030 | $0.10341 | $0.298991 |
| 2031 | $0.122263 | $0.272944 |
| 2032 | $0.186626 | $0.506298 |
| 2033 | $0.433678 | $1.34 |
| 2034 | $0.348656 | $0.781034 |
| 2035 | $0.41222 | $0.920252 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in APF coin eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.52 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige APF coin Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'APF coin'
'name_with_ticker' => 'APF coin <small>APFC</small>'
'name_lang' => 'APF coin'
'name_lang_with_ticker' => 'APF coin <small>APFC</small>'
'name_with_lang' => 'APF coin'
'name_with_lang_with_ticker' => 'APF coin <small>APFC</small>'
'image' => '/uploads/coins/apf-coin.jpg?1717253802'
'price_for_sd' => 0.09221
'ticker' => 'APFC'
'marketcap' => '$8.54M'
'low24h' => '$0.085'
'high24h' => '$0.09596'
'volume24h' => '$187.14K'
'current_supply' => '92.6M'
'max_supply' => '250M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.09221'
'change_24h_pct' => '1.3403%'
'ath_price' => '$1.15'
'ath_days' => 313
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27.02.2025'
'ath_pct' => '-91.98%'
'fdv' => '$23.05M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$4.54'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.09300515'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.081502'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.03186'
'current_year_max_price_prediction' => '$0.0951046'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.10341'
'grand_prediction_max_price' => '$0.298991'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.093963444694384
107 => 0.094314270088142
108 => 0.095104697613869
109 => 0.088350580948877
110 => 0.091382981041011
111 => 0.093164231997676
112 => 0.085116475373001
113 => 0.093005153724716
114 => 0.088233006804293
115 => 0.08661326846426
116 => 0.088794032754815
117 => 0.087944186789923
118 => 0.087213539133938
119 => 0.086805825187778
120 => 0.08840713780059
121 => 0.08833243465322
122 => 0.085712376417275
123 => 0.082294617255721
124 => 0.083441729414458
125 => 0.083024972812955
126 => 0.081514593126436
127 => 0.082532406671211
128 => 0.078050470923668
129 => 0.070339533420769
130 => 0.075433614927588
131 => 0.075237498330869
201 => 0.075138607449625
202 => 0.078966668911927
203 => 0.078598689130731
204 => 0.077930802224592
205 => 0.081502326859641
206 => 0.080198672324063
207 => 0.084216228423077
208 => 0.086862450709125
209 => 0.08619128314106
210 => 0.08868006799139
211 => 0.083468156561755
212 => 0.085199344473087
213 => 0.08555613990229
214 => 0.081458254800038
215 => 0.078658895173817
216 => 0.078472209801785
217 => 0.073618505985437
218 => 0.076211315386401
219 => 0.078492880361507
220 => 0.077400187795026
221 => 0.07705427397174
222 => 0.078821472675354
223 => 0.078958799149658
224 => 0.075827740982316
225 => 0.076478787123023
226 => 0.079193757757188
227 => 0.076410376828939
228 => 0.071002722348046
301 => 0.069661549270112
302 => 0.069482612058791
303 => 0.065845244301656
304 => 0.069751172868248
305 => 0.068046130376553
306 => 0.073432339178272
307 => 0.070355765597548
308 => 0.070223140659552
309 => 0.070022658613924
310 => 0.066891825927587
311 => 0.067577279311098
312 => 0.069855830755385
313 => 0.070668843580426
314 => 0.070584039681956
315 => 0.069844664610249
316 => 0.070183146731863
317 => 0.069092777883153
318 => 0.068707745948609
319 => 0.067492479251808
320 => 0.065706372933506
321 => 0.065954741971892
322 => 0.062415997995194
323 => 0.060487902461331
324 => 0.059954231029449
325 => 0.059240583287071
326 => 0.060034839440894
327 => 0.062405973178128
328 => 0.05954588282694
329 => 0.054642458531839
330 => 0.054937162687003
331 => 0.055599275425208
401 => 0.054365432717877
402 => 0.053197704143959
403 => 0.054212949398167
404 => 0.052135303883633
405 => 0.05585034895957
406 => 0.05574986740156
407 => 0.057134606469023
408 => 0.058000512225614
409 => 0.056004879796989
410 => 0.055502983637954
411 => 0.055788886500049
412 => 0.051063549046114
413 => 0.056748445586995
414 => 0.056797608808351
415 => 0.056376643459244
416 => 0.059403675365774
417 => 0.065791656843481
418 => 0.063388241255608
419 => 0.062457566096363
420 => 0.060688351938319
421 => 0.063045724758371
422 => 0.062864715306535
423 => 0.06204612191954
424 => 0.061551034084918
425 => 0.06246324860043
426 => 0.061438000611415
427 => 0.061253837900658
428 => 0.060138012244471
429 => 0.059739713252045
430 => 0.059444828534793
501 => 0.059120189435872
502 => 0.059836262393069
503 => 0.058213546864818
504 => 0.056256711014512
505 => 0.056094021286817
506 => 0.056543221928811
507 => 0.056344484083783
508 => 0.056093069806475
509 => 0.055613051482488
510 => 0.05547064029973
511 => 0.05593340755561
512 => 0.055410970304728
513 => 0.056181854927034
514 => 0.055972216964759
515 => 0.054801196348877
516 => 0.053341671094129
517 => 0.053328678257904
518 => 0.053014225935869
519 => 0.052613723625535
520 => 0.052502313045052
521 => 0.054127448274607
522 => 0.057491429563582
523 => 0.056830999543306
524 => 0.057308227916546
525 => 0.059655719182606
526 => 0.060401916064561
527 => 0.059872283192391
528 => 0.059147289050632
529 => 0.059179185113462
530 => 0.061656709566504
531 => 0.061811229727647
601 => 0.062201652324761
602 => 0.062703455695467
603 => 0.059957742476281
604 => 0.059049862267756
605 => 0.05861965825768
606 => 0.057294796416552
607 => 0.058723546327139
608 => 0.057891074939411
609 => 0.058003403770888
610 => 0.057930249472028
611 => 0.057970196665877
612 => 0.055849310528759
613 => 0.056622049966631
614 => 0.055337220775889
615 => 0.053616978718331
616 => 0.05361121186376
617 => 0.054032238670282
618 => 0.053781795450982
619 => 0.05310785918733
620 => 0.053203588652692
621 => 0.052364897804841
622 => 0.053305420906609
623 => 0.053332391743814
624 => 0.052970239118994
625 => 0.054419244724445
626 => 0.055012903503275
627 => 0.054774526887557
628 => 0.054996178364453
629 => 0.056858443392311
630 => 0.057162073848172
701 => 0.057296926439963
702 => 0.057116241831508
703 => 0.055030217150554
704 => 0.055122741215616
705 => 0.054443861016872
706 => 0.053870278787565
707 => 0.053893219068695
708 => 0.054188114895029
709 => 0.055475942264041
710 => 0.058186099040556
711 => 0.058288947509125
712 => 0.058413602853334
713 => 0.057906566921682
714 => 0.057753640033016
715 => 0.057955390072946
716 => 0.058973182464931
717 => 0.061591220825057
718 => 0.060665831215686
719 => 0.059913475058719
720 => 0.060573494242142
721 => 0.060471889462256
722 => 0.059614242868577
723 => 0.059590171585173
724 => 0.0579440735657
725 => 0.057335548607739
726 => 0.056827019605564
727 => 0.056271719210674
728 => 0.055942518522745
729 => 0.05644832039844
730 => 0.056564003271884
731 => 0.055458058630772
801 => 0.055307322462795
802 => 0.056210460730199
803 => 0.055813023251103
804 => 0.056221797554329
805 => 0.056316636699078
806 => 0.056301365412443
807 => 0.055886395038862
808 => 0.056150884780388
809 => 0.055525287693493
810 => 0.054845044823139
811 => 0.054411092252482
812 => 0.054032411079128
813 => 0.054242525403184
814 => 0.053493506203284
815 => 0.053253879886458
816 => 0.056061281607167
817 => 0.058135139442908
818 => 0.058104984728639
819 => 0.057921425660686
820 => 0.057648694119305
821 => 0.05895323045394
822 => 0.05849875607998
823 => 0.05882942415964
824 => 0.058913593064009
825 => 0.059168346987482
826 => 0.059259399618284
827 => 0.058984175327883
828 => 0.058060488993478
829 => 0.055758750469604
830 => 0.054687284973315
831 => 0.054333683512871
901 => 0.054346536254373
902 => 0.053992000266573
903 => 0.054096427004169
904 => 0.053955684908864
905 => 0.053689153429526
906 => 0.054226067835401
907 => 0.054287942218974
908 => 0.054162619980993
909 => 0.054192137904769
910 => 0.053154523300119
911 => 0.05323341088493
912 => 0.052794154788152
913 => 0.052711799565317
914 => 0.051601398403066
915 => 0.049634161788917
916 => 0.050724201837435
917 => 0.049407586741651
918 => 0.048908964654903
919 => 0.051269364061922
920 => 0.051032445428746
921 => 0.050626943714802
922 => 0.050027122165918
923 => 0.049804642518748
924 => 0.04845292661104
925 => 0.048373060024088
926 => 0.049043006927348
927 => 0.048733849482959
928 => 0.048299675343957
929 => 0.046727140624017
930 => 0.044959090950452
1001 => 0.045012457256533
1002 => 0.045574840961961
1003 => 0.047210047433266
1004 => 0.046571143975568
1005 => 0.046107612186435
1006 => 0.046020806616045
1007 => 0.047107360069249
1008 => 0.048645060845518
1009 => 0.049366515645628
1010 => 0.048651575849627
1011 => 0.047830291507074
1012 => 0.04788027927954
1013 => 0.048212825534839
1014 => 0.048247771444321
1015 => 0.047713199766713
1016 => 0.047863678562688
1017 => 0.047635087511532
1018 => 0.046232224652537
1019 => 0.046206851311944
1020 => 0.045862566142127
1021 => 0.045852141324012
1022 => 0.045266426364193
1023 => 0.045184480792458
1024 => 0.04402150818938
1025 => 0.044786980278531
1026 => 0.044273541790217
1027 => 0.043499668880432
1028 => 0.043366252899095
1029 => 0.043362242253591
1030 => 0.044156836697124
1031 => 0.044777694979823
1101 => 0.044282473272543
1102 => 0.044169720889265
1103 => 0.045373621358386
1104 => 0.045220414049894
1105 => 0.045087737508821
1106 => 0.048507376606653
1107 => 0.045800465422953
1108 => 0.044620097641771
1109 => 0.043159168366796
1110 => 0.043634854305373
1111 => 0.043735088321911
1112 => 0.040221816767892
1113 => 0.038796482935976
1114 => 0.038307362077435
1115 => 0.038025866108191
1116 => 0.038154147356179
1117 => 0.036871179732471
1118 => 0.037733355193929
1119 => 0.036622413678351
1120 => 0.036436160717949
1121 => 0.038422661767046
1122 => 0.038699071783057
1123 => 0.037519820780893
1124 => 0.038277090827678
1125 => 0.038002494181873
1126 => 0.036641457582041
1127 => 0.036589475995035
1128 => 0.035906555671989
1129 => 0.034837917605854
1130 => 0.034349521334243
1201 => 0.034095160315537
1202 => 0.034200114629252
1203 => 0.034147046516583
1204 => 0.03380074118476
1205 => 0.034166896332833
1206 => 0.033231521235259
1207 => 0.032859047334577
1208 => 0.032690809514967
1209 => 0.031860610277689
1210 => 0.033181826455475
1211 => 0.033442122686741
1212 => 0.033702931781993
1213 => 0.035973096894229
1214 => 0.035859685860641
1215 => 0.036884866370857
1216 => 0.036845029741416
1217 => 0.036552631653079
1218 => 0.035319052215538
1219 => 0.035810734992903
1220 => 0.034297411828643
1221 => 0.035431296439279
1222 => 0.034913838855138
1223 => 0.035256343509565
1224 => 0.034640489258505
1225 => 0.034981328429041
1226 => 0.033503848579528
1227 => 0.032124198684756
1228 => 0.032679410076904
1229 => 0.033282988356292
1230 => 0.034591699854892
1231 => 0.033812242082961
]
'min_raw' => 0.031860610277689
'max_raw' => 0.095104697613869
'avg_raw' => 0.063482653945779
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.03186'
'max' => '$0.0951046'
'avg' => '$0.063482'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.060355389722311
'max_diff' => 0.0028886976138688
'year' => 2026
]
1 => [
'items' => [
101 => 0.034092564572309
102 => 0.033153531158412
103 => 0.031216037003908
104 => 0.031227003010412
105 => 0.030928961745346
106 => 0.030671410577592
107 => 0.033901772184481
108 => 0.033500025654204
109 => 0.032859895137495
110 => 0.033716735271886
111 => 0.033943297403301
112 => 0.033949747308673
113 => 0.034574875752481
114 => 0.034908506915001
115 => 0.034967310853435
116 => 0.03595096396656
117 => 0.036280671515381
118 => 0.037638690247016
119 => 0.034880200641812
120 => 0.034823391363668
121 => 0.033728792769737
122 => 0.033034581036547
123 => 0.033776326041032
124 => 0.034433410856716
125 => 0.033749210226577
126 => 0.03383855238461
127 => 0.032920068939893
128 => 0.033248383552716
129 => 0.033531172326034
130 => 0.033375032986964
131 => 0.033141284839146
201 => 0.034379537395127
202 => 0.034309670333167
203 => 0.0354627595806
204 => 0.036361675107177
205 => 0.037972692431173
206 => 0.03629151186935
207 => 0.03623024296759
208 => 0.036829156310138
209 => 0.036280579824869
210 => 0.036627261227342
211 => 0.037916836697561
212 => 0.03794408339516
213 => 0.037487666104985
214 => 0.037459893071398
215 => 0.037547553004635
216 => 0.038060979971608
217 => 0.03788157281333
218 => 0.038089187318922
219 => 0.038348812437271
220 => 0.039422732005533
221 => 0.039681650377703
222 => 0.039052612967114
223 => 0.039109408002257
224 => 0.038874130743233
225 => 0.038646855859032
226 => 0.039157736607885
227 => 0.0400913812178
228 => 0.040085573063138
301 => 0.04030216046518
302 => 0.040437092622346
303 => 0.039857865027415
304 => 0.039480809161905
305 => 0.03962539637343
306 => 0.039856594473358
307 => 0.039550421945633
308 => 0.037660583271606
309 => 0.038233839601944
310 => 0.038138421717773
311 => 0.038002535047503
312 => 0.038578948720518
313 => 0.038523352215585
314 => 0.036858021045119
315 => 0.036964630143498
316 => 0.036864504297492
317 => 0.03718803138976
318 => 0.036263108300161
319 => 0.036547608413069
320 => 0.036726044216863
321 => 0.036831144276106
322 => 0.037210837757876
323 => 0.037166285110196
324 => 0.037208068302741
325 => 0.037771053500843
326 => 0.040618439439655
327 => 0.040773416373901
328 => 0.040010253269521
329 => 0.040315121876994
330 => 0.03972984081808
331 => 0.040122743913972
401 => 0.040391558233524
402 => 0.039176838013489
403 => 0.039104910165527
404 => 0.038517213443487
405 => 0.038833008373068
406 => 0.038330555933646
407 => 0.03845384018724
408 => 0.038109126666464
409 => 0.038729542372084
410 => 0.039423263533821
411 => 0.039598524895155
412 => 0.039137487708246
413 => 0.038803666401093
414 => 0.038217586153307
415 => 0.039192250667025
416 => 0.039477272273199
417 => 0.039190753569865
418 => 0.039124360925746
419 => 0.038998546985108
420 => 0.039151052948013
421 => 0.039475719984321
422 => 0.039322613005657
423 => 0.039423742862462
424 => 0.039038340132976
425 => 0.039858056775851
426 => 0.04115996408029
427 => 0.041164149925157
428 => 0.04101104212119
429 => 0.04094839370656
430 => 0.041105491604789
501 => 0.041190710770085
502 => 0.041698736566131
503 => 0.042243868485928
504 => 0.044787761295934
505 => 0.044073446374436
506 => 0.046330539412333
507 => 0.04811560695846
508 => 0.048650870664
509 => 0.048158453241006
510 => 0.046473919836813
511 => 0.046391268591512
512 => 0.048908672689036
513 => 0.048197390727073
514 => 0.048112786000978
515 => 0.047212734657268
516 => 0.047744776474928
517 => 0.047628411124823
518 => 0.047444722726895
519 => 0.048459821452637
520 => 0.050359995648736
521 => 0.050063835680554
522 => 0.049842766002771
523 => 0.048874103027141
524 => 0.049457454497178
525 => 0.04924973421206
526 => 0.05014223237948
527 => 0.049613536236355
528 => 0.048192002066646
529 => 0.04841838606861
530 => 0.048384168582135
531 => 0.049088362029123
601 => 0.048876980635493
602 => 0.048342892972478
603 => 0.05035350105991
604 => 0.050222943354302
605 => 0.050408044331207
606 => 0.050489531505679
607 => 0.05171335321761
608 => 0.052214713815061
609 => 0.052328531448235
610 => 0.052804785239193
611 => 0.052316681820059
612 => 0.054269443508438
613 => 0.055567916084406
614 => 0.057076158800181
615 => 0.059280106785353
616 => 0.060108811615437
617 => 0.059959113505331
618 => 0.061630121714378
619 => 0.064632886321609
620 => 0.060566058084778
621 => 0.064848438093191
622 => 0.063492686024983
623 => 0.060278222260198
624 => 0.060071248689784
625 => 0.062248120871988
626 => 0.067076213855933
627 => 0.065866831323232
628 => 0.067078191972507
629 => 0.065665075429919
630 => 0.065594902282898
701 => 0.067009560056169
702 => 0.070314985052398
703 => 0.068744701538693
704 => 0.066493315072482
705 => 0.068155703803679
706 => 0.066715588837902
707 => 0.063470606757208
708 => 0.065865906531202
709 => 0.064264237786542
710 => 0.064731689875628
711 => 0.068098159346656
712 => 0.067693096833329
713 => 0.068217285233354
714 => 0.067292106427709
715 => 0.06642784353593
716 => 0.06481463266742
717 => 0.064337040459589
718 => 0.064469029763866
719 => 0.064336975052245
720 => 0.063434398397486
721 => 0.063239487054826
722 => 0.062914626277798
723 => 0.063015314216547
724 => 0.062404480914361
725 => 0.063557249560186
726 => 0.063771213579013
727 => 0.064610102466518
728 => 0.064697198693725
729 => 0.067033492304589
730 => 0.065746701043544
731 => 0.066609991717665
801 => 0.066532770874165
802 => 0.060347889437087
803 => 0.061200111529446
804 => 0.06252590166313
805 => 0.061928635004971
806 => 0.061084239689209
807 => 0.060402345198118
808 => 0.059369205316824
809 => 0.060823329860051
810 => 0.06273534900549
811 => 0.064745690654566
812 => 0.067160984423127
813 => 0.066621918971103
814 => 0.064700538417606
815 => 0.064786730145666
816 => 0.065319533493342
817 => 0.064629504747813
818 => 0.064426001799796
819 => 0.065291575313284
820 => 0.065297536042361
821 => 0.064503574577871
822 => 0.063621231703505
823 => 0.063617534654644
824 => 0.063460530262572
825 => 0.065693006162481
826 => 0.066920642178659
827 => 0.06706138866948
828 => 0.066911168818418
829 => 0.066968982477079
830 => 0.066254648128378
831 => 0.067887404620237
901 => 0.069385783440047
902 => 0.068984185908143
903 => 0.068382134117367
904 => 0.06790257086727
905 => 0.06887121604716
906 => 0.068828083802088
907 => 0.069372696408213
908 => 0.069347989634564
909 => 0.069164856899041
910 => 0.06898419244839
911 => 0.069700506573837
912 => 0.069494219609361
913 => 0.069287612224251
914 => 0.068873229483406
915 => 0.068929550980055
916 => 0.068327603142009
917 => 0.068049114528869
918 => 0.063861313974868
919 => 0.062742196826508
920 => 0.063094293863112
921 => 0.063210213349758
922 => 0.062723172132604
923 => 0.06342146412738
924 => 0.063312636059668
925 => 0.063736022408843
926 => 0.063471508999177
927 => 0.063482364721776
928 => 0.064260242259399
929 => 0.064486063417899
930 => 0.064371208954086
1001 => 0.06445164908356
1002 => 0.066305357915635
1003 => 0.066041819797985
1004 => 0.065901820425493
1005 => 0.065940601208446
1006 => 0.066414263559007
1007 => 0.066546863156158
1008 => 0.065985029345419
1009 => 0.066249993418486
1010 => 0.067378176812659
1011 => 0.067772977150969
1012 => 0.069032990315942
1013 => 0.068497714328513
1014 => 0.069480236569641
1015 => 0.072500174972352
1016 => 0.07491271073228
1017 => 0.072694043145193
1018 => 0.077124357833725
1019 => 0.080573993309644
1020 => 0.080441590554409
1021 => 0.079840066817677
1022 => 0.075912748541648
1023 => 0.072298771711029
1024 => 0.075322016787403
1025 => 0.075329723660839
1026 => 0.075070024227595
1027 => 0.073457053351804
1028 => 0.075013896337434
1029 => 0.075137472880011
1030 => 0.075068302877823
1031 => 0.073831641889164
1101 => 0.071943489132636
1102 => 0.072312429661663
1103 => 0.072916761774391
1104 => 0.07177263500811
1105 => 0.071407017181199
1106 => 0.072086770283066
1107 => 0.074277076409464
1108 => 0.073863011723848
1109 => 0.07385219882154
1110 => 0.075623743137359
1111 => 0.074355699730424
1112 => 0.072317083183245
1113 => 0.071802305619033
1114 => 0.069975192061801
1115 => 0.071237185903737
1116 => 0.071282602815424
1117 => 0.07059142168546
1118 => 0.072373168722625
1119 => 0.072356749610007
1120 => 0.074048253243746
1121 => 0.077281772891703
1122 => 0.076325462019964
1123 => 0.075213376522458
1124 => 0.075334291050823
1125 => 0.076660424984501
1126 => 0.075858614135507
1127 => 0.076146950907229
1128 => 0.076659988552264
1129 => 0.076969516901522
1130 => 0.075289754684736
1201 => 0.074898121759689
1202 => 0.07409697823952
1203 => 0.07388797484916
1204 => 0.074540489529929
1205 => 0.07436857496523
1206 => 0.071278785699859
1207 => 0.070955885530203
1208 => 0.070965788417411
1209 => 0.070153840587743
1210 => 0.068915425257693
1211 => 0.072169906803128
1212 => 0.07190852638859
1213 => 0.071619982640176
1214 => 0.071655327602949
1215 => 0.073067987737209
1216 => 0.072248573518291
1217 => 0.074427120518632
1218 => 0.073979276748479
1219 => 0.073519947475491
1220 => 0.073456454178453
1221 => 0.073279651596484
1222 => 0.072673329757571
1223 => 0.071941159702791
1224 => 0.07145771761314
1225 => 0.06591596725746
1226 => 0.066944483888596
1227 => 0.068127698520476
1228 => 0.068536139469966
1229 => 0.06783747296261
1230 => 0.072700917369704
1231 => 0.073589515528197
]
'min_raw' => 0.030671410577592
'max_raw' => 0.080573993309644
'avg_raw' => 0.055622701943618
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.030671'
'max' => '$0.080573'
'avg' => '$0.055622'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0011891997000971
'max_diff' => -0.014530704304225
'year' => 2027
]
2 => [
'items' => [
101 => 0.070897893744299
102 => 0.070394401206725
103 => 0.072733926256646
104 => 0.071322906656238
105 => 0.071958288695904
106 => 0.070584940261541
107 => 0.073375478253008
108 => 0.073354219028942
109 => 0.072268636723103
110 => 0.073186163454252
111 => 0.073026720605491
112 => 0.071801100855869
113 => 0.073414332585169
114 => 0.07341513272798
115 => 0.072370283361204
116 => 0.071150128047747
117 => 0.070931993096483
118 => 0.070767657713013
119 => 0.071917872265512
120 => 0.072949151036655
121 => 0.074868105154064
122 => 0.075350575812406
123 => 0.077233690911804
124 => 0.076112387557322
125 => 0.076609446811055
126 => 0.077149074944305
127 => 0.077407792515553
128 => 0.076986226116755
129 => 0.079911478987219
130 => 0.080158459956918
131 => 0.080241270539681
201 => 0.07925489173051
202 => 0.080131026977889
203 => 0.07972111231019
204 => 0.080787596397967
205 => 0.080954834720483
206 => 0.080813189810988
207 => 0.080866273894232
208 => 0.07837008661926
209 => 0.078240646140615
210 => 0.076475716029624
211 => 0.077194938095558
212 => 0.075850386916506
213 => 0.076276757945795
214 => 0.076464698232893
215 => 0.076366528892431
216 => 0.077235601832054
217 => 0.076496712293502
218 => 0.074546661316578
219 => 0.07259607904957
220 => 0.072571591078117
221 => 0.07205803719785
222 => 0.071686831804503
223 => 0.07175833913248
224 => 0.072010340283121
225 => 0.071672185039514
226 => 0.071744347605644
227 => 0.072942727020056
228 => 0.073183053465165
229 => 0.07236633030308
301 => 0.069087068954718
302 => 0.068282329994426
303 => 0.068860760400416
304 => 0.068584307922042
305 => 0.055352889278851
306 => 0.058461414824662
307 => 0.056614434500895
308 => 0.057465608009565
309 => 0.055580319372235
310 => 0.056480077926412
311 => 0.056313925375377
312 => 0.061312342465083
313 => 0.061234299057325
314 => 0.061271654306653
315 => 0.059488590927622
316 => 0.062329059305865
317 => 0.063728376168927
318 => 0.063469399859187
319 => 0.063534578616923
320 => 0.062414591611461
321 => 0.061282498229037
322 => 0.060026832440005
323 => 0.062359704271043
324 => 0.062100328746882
325 => 0.06269524287894
326 => 0.064208277018491
327 => 0.064431077042997
328 => 0.064730522535349
329 => 0.064623192642322
330 => 0.06718022613465
331 => 0.066870552506879
401 => 0.067616776850625
402 => 0.066081736759363
403 => 0.064344693188758
404 => 0.064674848383298
405 => 0.064643051783123
406 => 0.064238244568463
407 => 0.063872802715221
408 => 0.063264444992176
409 => 0.065189378847891
410 => 0.065111230048691
411 => 0.066376368269697
412 => 0.066152742800237
413 => 0.064659317184749
414 => 0.064712655172769
415 => 0.065071378775568
416 => 0.066312925260689
417 => 0.066681500788404
418 => 0.066510761918771
419 => 0.066914888158798
420 => 0.067234293061361
421 => 0.066955000496916
422 => 0.070909194233572
423 => 0.069267137308687
424 => 0.070067464428517
425 => 0.070258337730796
426 => 0.069769419780643
427 => 0.069875448577192
428 => 0.070036053312846
429 => 0.071011213818106
430 => 0.073570317148873
501 => 0.074703726593665
502 => 0.078113644829757
503 => 0.074609612717096
504 => 0.074401697952657
505 => 0.075015927196643
506 => 0.077017910177732
507 => 0.078640329347204
508 => 0.079178579385326
509 => 0.079249718013403
510 => 0.080259510867105
511 => 0.080838305299325
512 => 0.080136895454477
513 => 0.07954252405164
514 => 0.077413559462773
515 => 0.077659992910912
516 => 0.079357674992301
517 => 0.08175575092524
518 => 0.083813549552976
519 => 0.083092980195066
520 => 0.088590415753234
521 => 0.089135464033816
522 => 0.08906015598496
523 => 0.090301857082185
524 => 0.087837333272225
525 => 0.086783701595567
526 => 0.079671033895336
527 => 0.081669403397155
528 => 0.084574150828176
529 => 0.084189696613436
530 => 0.082080191384908
531 => 0.083811949304097
601 => 0.083239375978936
602 => 0.082787763641292
603 => 0.084856687309396
604 => 0.082581820749616
605 => 0.08455145729406
606 => 0.082025378052529
607 => 0.083096271695196
608 => 0.082488380670321
609 => 0.082881760663737
610 => 0.080582069260301
611 => 0.081822926919742
612 => 0.080530445502107
613 => 0.080529832697628
614 => 0.080501301098698
615 => 0.082021899754807
616 => 0.082071486422391
617 => 0.08094776171803
618 => 0.080785815432252
619 => 0.081384615730256
620 => 0.08068357740734
621 => 0.08101158882635
622 => 0.080693512539072
623 => 0.080621906867094
624 => 0.080051340690072
625 => 0.079805525092968
626 => 0.07990191572248
627 => 0.079572884811179
628 => 0.079374631785552
629 => 0.080461863581945
630 => 0.079880999491938
701 => 0.080372837829388
702 => 0.079812325968917
703 => 0.077869347657132
704 => 0.076751920283402
705 => 0.073081814366626
706 => 0.074122651851871
707 => 0.074812728181413
708 => 0.074584657958616
709 => 0.075074641048644
710 => 0.075104722030894
711 => 0.07494542353354
712 => 0.074760976281005
713 => 0.074671197559044
714 => 0.075340334598215
715 => 0.075728791171572
716 => 0.074881986573113
717 => 0.07468359210375
718 => 0.075539758306155
719 => 0.076062019195031
720 => 0.079918100165446
721 => 0.07963242923218
722 => 0.080349407214588
723 => 0.080268686496693
724 => 0.081020193645806
725 => 0.082248590223988
726 => 0.079750916515459
727 => 0.080184426308201
728 => 0.080078139718224
729 => 0.081238548837755
730 => 0.081242171508363
731 => 0.08054644827447
801 => 0.080923611126384
802 => 0.080713089169367
803 => 0.081093530799445
804 => 0.079628613922701
805 => 0.081412724550571
806 => 0.082424200311023
807 => 0.082438244652938
808 => 0.082917676135825
809 => 0.083404806289236
810 => 0.084339810198615
811 => 0.083378729537678
812 => 0.081649838987969
813 => 0.081774659301375
814 => 0.080761011404657
815 => 0.080778051008932
816 => 0.080687092265898
817 => 0.080960066300797
818 => 0.0796885163727
819 => 0.079986946599287
820 => 0.07956914253446
821 => 0.08018351808376
822 => 0.07952255155263
823 => 0.080078088463612
824 => 0.080317839778051
825 => 0.081202527289809
826 => 0.079391882487826
827 => 0.075699855166705
828 => 0.076475964071109
829 => 0.075328038039457
830 => 0.075434282964149
831 => 0.075648914620781
901 => 0.074953223198528
902 => 0.075085939198138
903 => 0.075081197648723
904 => 0.075040337537464
905 => 0.074859361329659
906 => 0.074596910023289
907 => 0.075642435249614
908 => 0.075820090358962
909 => 0.076214995660233
910 => 0.077389965969988
911 => 0.077272558728336
912 => 0.077464054810651
913 => 0.077046019938162
914 => 0.075453674402931
915 => 0.075540146426499
916 => 0.07446183890698
917 => 0.076187420912593
918 => 0.075778780317094
919 => 0.075515327066811
920 => 0.075443441406595
921 => 0.076621324240483
922 => 0.076973765245434
923 => 0.076754147662585
924 => 0.076303705592893
925 => 0.077168687527946
926 => 0.077400120203108
927 => 0.077451929444168
928 => 0.078984511589246
929 => 0.077537583761214
930 => 0.077885873670647
1001 => 0.080603132120305
1002 => 0.0781389536625
1003 => 0.079444283949337
1004 => 0.079380394824407
1005 => 0.080048157629184
1006 => 0.079325618783879
1007 => 0.079334575518822
1008 => 0.079927503651293
1009 => 0.079094843024389
1010 => 0.078888664543435
1011 => 0.078603830448675
1012 => 0.079225755274137
1013 => 0.07959857107976
1014 => 0.082603192670051
1015 => 0.08454431524477
1016 => 0.084460045994455
1017 => 0.085230109196908
1018 => 0.084883188671233
1019 => 0.083762890780814
1020 => 0.085675102673985
1021 => 0.085069998820642
1022 => 0.08511988284711
1023 => 0.085118026161154
1024 => 0.08552036732453
1025 => 0.085235271736252
1026 => 0.084673319067294
1027 => 0.085046369474181
1028 => 0.086154195814675
1029 => 0.089592922767832
1030 => 0.091517279927892
1031 => 0.089477074050503
1101 => 0.09088438074528
1102 => 0.090040498203061
1103 => 0.089887139641809
1104 => 0.090771032245277
1105 => 0.091656471985739
1106 => 0.091600073302133
1107 => 0.090957289518391
1108 => 0.09059419726899
1109 => 0.093343653426283
1110 => 0.095369405887212
1111 => 0.095231263150194
1112 => 0.095840980264969
1113 => 0.09763112857179
1114 => 0.097794797298096
1115 => 0.097774178800464
1116 => 0.097368508785248
1117 => 0.099131142273445
1118 => 0.10060156213989
1119 => 0.097274607897659
1120 => 0.09854146852007
1121 => 0.09911020306917
1122 => 0.099945274123186
1123 => 0.10135417896547
1124 => 0.10288462331774
1125 => 0.10310104492962
1126 => 0.10294748343927
1127 => 0.10193811424839
1128 => 0.10361274472065
1129 => 0.10459370397638
1130 => 0.10517784276431
1201 => 0.10665912153909
1202 => 0.099113715380125
1203 => 0.093772701869792
1204 => 0.092938625484983
1205 => 0.094634752611925
1206 => 0.09508200780894
1207 => 0.094901719799833
1208 => 0.08888992351025
1209 => 0.092906974621688
1210 => 0.097228983854346
1211 => 0.097395009830909
1212 => 0.099558698021728
1213 => 0.10026328358923
1214 => 0.10200533618394
1215 => 0.10189637031983
1216 => 0.10232053240453
1217 => 0.10222302488672
1218 => 0.10544981048596
1219 => 0.10900943418421
1220 => 0.10888617573445
1221 => 0.10837443771227
1222 => 0.10913445593951
1223 => 0.11280836906857
1224 => 0.1124701340209
1225 => 0.11279870055892
1226 => 0.11713045119075
1227 => 0.12276234319647
1228 => 0.1201457639271
1229 => 0.12582298804123
1230 => 0.12939649968436
1231 => 0.13557651856315
]
'min_raw' => 0.055352889278851
'max_raw' => 0.13557651856315
'avg_raw' => 0.095464703920998
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.055352'
'max' => '$0.135576'
'avg' => '$0.095464'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.02468147870126
'max_diff' => 0.055002525253501
'year' => 2028
]
3 => [
'items' => [
101 => 0.13480274976229
102 => 0.13720858576072
103 => 0.13341754211833
104 => 0.12471253961905
105 => 0.12333493965213
106 => 0.12609292967229
107 => 0.13287317901614
108 => 0.1258793954916
109 => 0.12729422878989
110 => 0.1268867567048
111 => 0.12686504424903
112 => 0.12769372037481
113 => 0.12649168243353
114 => 0.12159436361822
115 => 0.1238387759712
116 => 0.12297210057618
117 => 0.12393374154188
118 => 0.12912332122287
119 => 0.12682888434178
120 => 0.12441188147246
121 => 0.12744333944646
122 => 0.13130342716933
123 => 0.13106186981687
124 => 0.13059314758998
125 => 0.13323531024151
126 => 0.13759938886081
127 => 0.13877898177533
128 => 0.1396497331491
129 => 0.13976979505208
130 => 0.14100650727082
131 => 0.13435639397906
201 => 0.14491029456011
202 => 0.14673266164483
203 => 0.14639013216228
204 => 0.14841561648003
205 => 0.14781966761217
206 => 0.14695623120415
207 => 0.15016705468065
208 => 0.14648610466494
209 => 0.14126145953636
210 => 0.13839511588706
211 => 0.14216974842581
212 => 0.1444747848007
213 => 0.14599826721665
214 => 0.14645927207521
215 => 0.13487262334345
216 => 0.12862806230203
217 => 0.13263075433554
218 => 0.13751431486747
219 => 0.13432926555372
220 => 0.13445411345673
221 => 0.12991307015155
222 => 0.13791609643784
223 => 0.13675012282397
224 => 0.14279919599528
225 => 0.1413555361361
226 => 0.14628832048363
227 => 0.14498935304932
228 => 0.15038129424486
301 => 0.15253228556873
302 => 0.15614413477659
303 => 0.15880102575677
304 => 0.16036120295855
305 => 0.16026753577143
306 => 0.16644973512209
307 => 0.1628043081546
308 => 0.15822479272227
309 => 0.15814196373628
310 => 0.16051375967092
311 => 0.1654843932795
312 => 0.16677320625442
313 => 0.16749347688431
314 => 0.16639035734184
315 => 0.16243350763873
316 => 0.16072495999861
317 => 0.16218069208938
318 => 0.16040045683486
319 => 0.16347364232996
320 => 0.16769378241175
321 => 0.1668223401731
322 => 0.16973544092297
323 => 0.17275019373195
324 => 0.17706142564981
325 => 0.1781885413176
326 => 0.18005162065608
327 => 0.18196934128505
328 => 0.18258526146706
329 => 0.18376124420332
330 => 0.18375504619382
331 => 0.1872989493223
401 => 0.19120798421856
402 => 0.19268355439754
403 => 0.19607654666067
404 => 0.19026616631468
405 => 0.19467340655195
406 => 0.19864884756635
407 => 0.19390916290079
408 => 0.20044171400737
409 => 0.20069535816376
410 => 0.20452508378503
411 => 0.20064292318122
412 => 0.19833770860698
413 => 0.20499277670756
414 => 0.20821295452875
415 => 0.20724301076233
416 => 0.19986169080785
417 => 0.19556544599464
418 => 0.18432134463473
419 => 0.19764046840457
420 => 0.2041278250687
421 => 0.19984489012132
422 => 0.20200495338533
423 => 0.2137895581509
424 => 0.21827637264898
425 => 0.21734314659858
426 => 0.21750084643889
427 => 0.21992185010061
428 => 0.23065791360773
429 => 0.22422461549426
430 => 0.22914263085093
501 => 0.23175112846288
502 => 0.23417404641802
503 => 0.22822412569129
504 => 0.22048336624751
505 => 0.21803154279669
506 => 0.19941903664823
507 => 0.19845017487318
508 => 0.19790632339933
509 => 0.19447741678603
510 => 0.19178323544455
511 => 0.18964072241326
512 => 0.1840181284106
513 => 0.18591558883352
514 => 0.17695434751986
515 => 0.18268743214544
516 => 0.1683850746321
517 => 0.18029650296606
518 => 0.17381365407008
519 => 0.17816671274807
520 => 0.17815152533642
521 => 0.17013616417173
522 => 0.16551307112825
523 => 0.16845908594903
524 => 0.17161744769185
525 => 0.17212988125862
526 => 0.17622477969986
527 => 0.17736757783526
528 => 0.17390484613285
529 => 0.16808869006266
530 => 0.16943965046537
531 => 0.16548569395881
601 => 0.15855653726781
602 => 0.16353317857475
603 => 0.16523242272442
604 => 0.16598290574471
605 => 0.15916887595813
606 => 0.15702775985941
607 => 0.15588784761415
608 => 0.16720908438414
609 => 0.16782928729064
610 => 0.1646562415331
611 => 0.17899870923774
612 => 0.17575256707292
613 => 0.17937930319517
614 => 0.16931706496892
615 => 0.16970145601976
616 => 0.16493783118894
617 => 0.16760514278868
618 => 0.16571997292145
619 => 0.1673896503703
620 => 0.16839044814881
621 => 0.17315329131567
622 => 0.18035088698437
623 => 0.17244188137337
624 => 0.16899581436961
625 => 0.17113373495732
626 => 0.17682729921429
627 => 0.18545334051179
628 => 0.18034655044841
629 => 0.18261285715962
630 => 0.18310794435505
701 => 0.17934238642596
702 => 0.18559218200377
703 => 0.18894149822717
704 => 0.19237720362904
705 => 0.1953603303632
706 => 0.19100490733875
707 => 0.19566583430028
708 => 0.19190994993365
709 => 0.1885405333806
710 => 0.18854564339468
711 => 0.18643195917162
712 => 0.18233642964811
713 => 0.18158115116728
714 => 0.18551020520572
715 => 0.18866093446175
716 => 0.18892044361426
717 => 0.19066484922071
718 => 0.1916971704898
719 => 0.20181532229962
720 => 0.20588492665927
721 => 0.21086116183658
722 => 0.21279968588339
723 => 0.21863394826495
724 => 0.21392230755621
725 => 0.21290291445127
726 => 0.19875090228628
727 => 0.20106829348548
728 => 0.20477866039041
729 => 0.19881208486993
730 => 0.2025965037213
731 => 0.20334362816751
801 => 0.19860934291688
802 => 0.20113812922563
803 => 0.19442242252247
804 => 0.18049727103859
805 => 0.18560768467809
806 => 0.18937066926339
807 => 0.18400042628751
808 => 0.19362637896467
809 => 0.18800309613067
810 => 0.18622078543747
811 => 0.17926735598366
812 => 0.18254910702381
813 => 0.18698772229577
814 => 0.18424517410211
815 => 0.18993637339964
816 => 0.19799662939235
817 => 0.2037408478093
818 => 0.20418181757311
819 => 0.20048866996376
820 => 0.2064069625771
821 => 0.20645007087764
822 => 0.19977421263285
823 => 0.19568528662926
824 => 0.19475627403807
825 => 0.19707712963451
826 => 0.19989507678217
827 => 0.20433819402789
828 => 0.20702307672487
829 => 0.21402382684683
830 => 0.2159180291026
831 => 0.21799918309545
901 => 0.22078024663402
902 => 0.22411962646213
903 => 0.21681325350923
904 => 0.21710354932743
905 => 0.21029995599731
906 => 0.2030293407901
907 => 0.20854683143739
908 => 0.21576021649771
909 => 0.21410545799479
910 => 0.21391926385956
911 => 0.21423239074907
912 => 0.21298475687723
913 => 0.20734175511436
914 => 0.20450787495611
915 => 0.20816430336019
916 => 0.21010753232805
917 => 0.21312131098983
918 => 0.21274979915661
919 => 0.22051296933315
920 => 0.22352950251768
921 => 0.22275774424434
922 => 0.22289976634004
923 => 0.22836105558221
924 => 0.23443513241931
925 => 0.24012430692228
926 => 0.24591157958243
927 => 0.23893479650952
928 => 0.23539241633325
929 => 0.23904724845507
930 => 0.23710794308575
1001 => 0.24825176697322
1002 => 0.24902334116078
1003 => 0.26016635922295
1004 => 0.27074241024985
1005 => 0.26409978208949
1006 => 0.27036348125417
1007 => 0.27713818258765
1008 => 0.29020768061563
1009 => 0.28580633347029
1010 => 0.28243497053487
1011 => 0.2792490488512
1012 => 0.28587844612409
1013 => 0.29440705980846
1014 => 0.29624404151002
1015 => 0.29922065364758
1016 => 0.29609110994776
1017 => 0.29986030062627
1018 => 0.31316719998772
1019 => 0.309571558317
1020 => 0.30446516911635
1021 => 0.31496968815401
1022 => 0.31877123275846
1023 => 0.34545246367684
1024 => 0.37913861985796
1025 => 0.36519233000375
1026 => 0.35653541784728
1027 => 0.35856999754875
1028 => 0.37087104143775
1029 => 0.37482174631928
1030 => 0.36408236856164
1031 => 0.36787569834164
1101 => 0.38877731838137
1102 => 0.39999036692842
1103 => 0.38476154088818
1104 => 0.34274581382716
1105 => 0.30400539463904
1106 => 0.31428109831154
1107 => 0.31311615240729
1108 => 0.33557233560978
1109 => 0.30948580345232
1110 => 0.30992503375121
1111 => 0.33284558704081
1112 => 0.3267307763809
1113 => 0.31682556623764
1114 => 0.30407771363485
1115 => 0.28051212906495
1116 => 0.25963943363645
1117 => 0.30057559606642
1118 => 0.29881035430486
1119 => 0.29625402263994
1120 => 0.30194286213623
1121 => 0.32956625192494
1122 => 0.32892944338212
1123 => 0.32487839233529
1124 => 0.32795107884999
1125 => 0.31628690943539
1126 => 0.31929303148173
1127 => 0.30399925795871
1128 => 0.31091268231552
1129 => 0.31680431410533
1130 => 0.31798714641423
1201 => 0.32065212800311
1202 => 0.29788015210972
1203 => 0.30810410073576
1204 => 0.31410971269913
1205 => 0.28697613936261
1206 => 0.31357336919535
1207 => 0.29748374267249
1208 => 0.29202268177255
1209 => 0.29937528083425
1210 => 0.29650996582927
1211 => 0.29404653624493
1212 => 0.29267190020977
1213 => 0.29807083748394
1214 => 0.29781897060698
1215 => 0.28898526133786
1216 => 0.27746204770436
1217 => 0.28132961643636
1218 => 0.27992449245737
1219 => 0.27483214189293
1220 => 0.27826377132061
1221 => 0.26315261202901
1222 => 0.23715464787752
1223 => 0.25432969933517
1224 => 0.25366847853691
1225 => 0.25333506102646
1226 => 0.26624163751333
1227 => 0.26500096798949
1228 => 0.26274914065507
1229 => 0.27479078531803
1230 => 0.27039542303307
1231 => 0.28394089391771
]
'min_raw' => 0.12159436361822
'max_raw' => 0.39999036692842
'avg_raw' => 0.26079236527332
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.121594'
'max' => '$0.39999'
'avg' => '$0.260792'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.066241474339373
'max_diff' => 0.26441384836528
'year' => 2029
]
4 => [
'items' => [
101 => 0.29286281710846
102 => 0.2905999287933
103 => 0.2989910406776
104 => 0.28141871740855
105 => 0.28725553831929
106 => 0.28845849901951
107 => 0.27464219329206
108 => 0.26520395686721
109 => 0.26457453410145
110 => 0.24820993280985
111 => 0.25695177072938
112 => 0.26464422633672
113 => 0.26096013705947
114 => 0.25979386445333
115 => 0.26575209826444
116 => 0.26621510406039
117 => 0.25565852284569
118 => 0.25785357036368
119 => 0.26700728340996
120 => 0.25762292028092
121 => 0.23939063564821
122 => 0.23486877697824
123 => 0.23426547767727
124 => 0.22200183833119
125 => 0.23517094919667
126 => 0.22942227939366
127 => 0.24758225842175
128 => 0.23720937579482
129 => 0.23676222155679
130 => 0.23608628234275
131 => 0.22553046135301
201 => 0.22784151529234
202 => 0.23552381057014
203 => 0.2382649400725
204 => 0.237979017808
205 => 0.23548616313221
206 => 0.23662737923731
207 => 0.23295112453676
208 => 0.23165296248737
209 => 0.2275556059719
210 => 0.22153362381778
211 => 0.22237101737127
212 => 0.21043989498662
213 => 0.20393918627887
214 => 0.20213987578653
215 => 0.1997337625978
216 => 0.20241165267361
217 => 0.21040609561597
218 => 0.20076310131181
219 => 0.18423086395472
220 => 0.18522447958944
221 => 0.18745683891354
222 => 0.18329685208163
223 => 0.17935977366645
224 => 0.18278274392318
225 => 0.17577781701435
226 => 0.18830335086403
227 => 0.1879645702758
228 => 0.19263331472115
301 => 0.19555277643511
302 => 0.18882436237139
303 => 0.18713218442993
304 => 0.18809612589059
305 => 0.17216432075212
306 => 0.1913313463465
307 => 0.19149710357977
308 => 0.19007778951439
309 => 0.20028363892788
310 => 0.22182116447459
311 => 0.21371788101896
312 => 0.2105800447419
313 => 0.20461501568547
314 => 0.21256306273479
315 => 0.21195277673025
316 => 0.20919283197363
317 => 0.20752360877327
318 => 0.2105992037011
319 => 0.20714250852561
320 => 0.20652159108846
321 => 0.20275950698417
322 => 0.20141661412286
323 => 0.20042238971045
324 => 0.19932784632286
325 => 0.20174213629266
326 => 0.19627103759479
327 => 0.18967342890356
328 => 0.189124909128
329 => 0.19063942045468
330 => 0.18996936193473
331 => 0.1891217011456
401 => 0.18750328585247
402 => 0.18702313660697
403 => 0.18858338871955
404 => 0.1868219550528
405 => 0.18942104637835
406 => 0.18871423735208
407 => 0.18476605958759
408 => 0.1798451682904
409 => 0.17980136203594
410 => 0.17874116407784
411 => 0.17739084257637
412 => 0.17701521402583
413 => 0.1824944709156
414 => 0.19383636869705
415 => 0.19160968277394
416 => 0.19321869155334
417 => 0.20113342225346
418 => 0.20364927713878
419 => 0.20186358293247
420 => 0.19941921456605
421 => 0.1995267543688
422 => 0.20787990103746
423 => 0.20840087654901
424 => 0.20971721359362
425 => 0.21140907869274
426 => 0.20215171487468
427 => 0.19909073336547
428 => 0.19764027050961
429 => 0.19317340631335
430 => 0.19799053638903
501 => 0.19518380098401
502 => 0.19556252548188
503 => 0.1953158806558
504 => 0.19545056540889
505 => 0.18829984972205
506 => 0.19090519468778
507 => 0.18657330336729
508 => 0.18077338716677
509 => 0.18075394381395
510 => 0.18217346508729
511 => 0.18132907828803
512 => 0.1790568551224
513 => 0.17937961369849
514 => 0.17655190894944
515 => 0.17972294825227
516 => 0.17981388231295
517 => 0.17859285945368
518 => 0.1834782830188
519 => 0.18547984503956
520 => 0.18467614163674
521 => 0.18542345506631
522 => 0.19170221162693
523 => 0.19272592290766
524 => 0.19318058783599
525 => 0.19257139706359
526 => 0.18553821921016
527 => 0.18585017055534
528 => 0.18356127856737
529 => 0.18162740603503
530 => 0.1817047507945
531 => 0.18269901266196
601 => 0.18704101254982
602 => 0.19617849533894
603 => 0.19652525613137
604 => 0.19694554032753
605 => 0.19523603328385
606 => 0.1947204296017
607 => 0.19540064394706
608 => 0.19883220205663
609 => 0.2076591011734
610 => 0.20453908549676
611 => 0.20200246418572
612 => 0.2042277649437
613 => 0.20388519733449
614 => 0.20099358196493
615 => 0.20091242395233
616 => 0.19536248955278
617 => 0.19331080517116
618 => 0.19159626413597
619 => 0.18972403008476
620 => 0.18861410698135
621 => 0.19031945331922
622 => 0.19070948620375
623 => 0.18698071663166
624 => 0.18647249911726
625 => 0.18951749284091
626 => 0.18817750463194
627 => 0.18955571573498
628 => 0.18987547253296
629 => 0.18982398432386
630 => 0.18842488273702
701 => 0.18931662836666
702 => 0.1872073841104
703 => 0.18491389777996
704 => 0.18345079639039
705 => 0.18217404637575
706 => 0.18288246148902
707 => 0.18035709096171
708 => 0.17954917410436
709 => 0.18901452501225
710 => 0.19600668149759
711 => 0.19590501277309
712 => 0.1952861305598
713 => 0.19436659712653
714 => 0.19876493245857
715 => 0.19723264037638
716 => 0.19834751089346
717 => 0.19863129223102
718 => 0.19949021287036
719 => 0.19979720317221
720 => 0.19886926526157
721 => 0.1957549922954
722 => 0.18799452015991
723 => 0.18438199943184
724 => 0.18318980742029
725 => 0.18323314133561
726 => 0.18203779849983
727 => 0.18238988053648
728 => 0.18191535873586
729 => 0.18101672924464
730 => 0.18282697365021
731 => 0.18303558745436
801 => 0.18261305477929
802 => 0.18271257652017
803 => 0.17921418643666
804 => 0.1794801614366
805 => 0.17799917883843
806 => 0.17772151245479
807 => 0.17397771741053
808 => 0.16734504181785
809 => 0.17102018794559
810 => 0.16658112822703
811 => 0.16489998904887
812 => 0.17285824044746
813 => 0.17205945273458
814 => 0.17069227539479
815 => 0.16866993516452
816 => 0.16791982950106
817 => 0.16336242494443
818 => 0.16309314917042
819 => 0.16535192192895
820 => 0.16430957602051
821 => 0.1628457275978
822 => 0.15754381699865
823 => 0.15158271408294
824 => 0.15176264230981
825 => 0.15365875823703
826 => 0.15917197102151
827 => 0.15701786340707
828 => 0.15545503361725
829 => 0.15516236257611
830 => 0.15882575340432
831 => 0.16401021893036
901 => 0.16644265415929
902 => 0.16403218472157
903 => 0.16126316722041
904 => 0.16143170448532
905 => 0.1625529074027
906 => 0.16267072997636
907 => 0.1608683842427
908 => 0.16137573400943
909 => 0.16060502332074
910 => 0.15587517324688
911 => 0.15578962525756
912 => 0.1546288437703
913 => 0.15459369576818
914 => 0.15261891688784
915 => 0.15234263167148
916 => 0.14842158834405
917 => 0.15100243093618
918 => 0.14927133722569
919 => 0.14666217068027
920 => 0.14621234938439
921 => 0.14619882721306
922 => 0.14887785785624
923 => 0.1509711249033
924 => 0.14930145034193
925 => 0.14892129780959
926 => 0.15298033229488
927 => 0.15246378315771
928 => 0.1520164549363
929 => 0.16354600690622
930 => 0.15441946685987
1001 => 0.15043977447497
1002 => 0.14551414942556
1003 => 0.14711795777881
1004 => 0.14745590376368
1005 => 0.13561066343052
1006 => 0.13080505090258
1007 => 0.12915594577868
1008 => 0.12820686246496
1009 => 0.12863937164886
1010 => 0.12431375673159
1011 => 0.12722064149506
1012 => 0.12347502461183
1013 => 0.12284705975207
1014 => 0.12954468673218
1015 => 0.13047662239949
1016 => 0.12650069531302
1017 => 0.12905388414666
1018 => 0.1281280623836
1019 => 0.12353923246272
1020 => 0.12336397291289
1021 => 0.12106145936377
1022 => 0.11745847151387
1023 => 0.1158118093854
1024 => 0.11495421345191
1025 => 0.11530807424828
1026 => 0.11512915140131
1027 => 0.11396155879681
1028 => 0.11519607644267
1029 => 0.1120423939954
1030 => 0.11078657223395
1031 => 0.11021934667915
1101 => 0.107420271988
1102 => 0.11187484457578
1103 => 0.11275245149279
1104 => 0.11363178756654
1105 => 0.12128580774031
1106 => 0.12090343452247
1107 => 0.12435990218848
1108 => 0.12422559021101
1109 => 0.1232397496416
1110 => 0.11908065044217
1111 => 0.12073839325425
1112 => 0.11563611854909
1113 => 0.11945908967915
1114 => 0.11771444530648
1115 => 0.1188692236618
1116 => 0.11679282805678
1117 => 0.11794199111687
1118 => 0.11296056464989
1119 => 0.10830897870558
1120 => 0.11018091267783
1121 => 0.11221591898728
1122 => 0.11662833117613
1123 => 0.11400033487806
1124 => 0.11494546172239
1125 => 0.11177944500621
1126 => 0.10524704819278
1127 => 0.10528402084933
1128 => 0.10427915391559
1129 => 0.10341080217185
1130 => 0.11430219186613
1201 => 0.11294767539025
1202 => 0.11078943066068
1203 => 0.11367832699645
1204 => 0.11444219704058
1205 => 0.11446394334686
1206 => 0.11657160754023
1207 => 0.11769646829805
1208 => 0.11789472988204
1209 => 0.12121118502941
1210 => 0.1223228170497
1211 => 0.12690147201725
1212 => 0.11760103172171
1213 => 0.11740949527415
1214 => 0.11371897969228
1215 => 0.11137839636551
1216 => 0.11387924143512
1217 => 0.11609464876739
1218 => 0.11378781857352
1219 => 0.11408904189699
1220 => 0.11099231083667
1221 => 0.11209924647599
1222 => 0.11305268856892
1223 => 0.11252625388594
1224 => 0.1117381556858
1225 => 0.11591301063032
1226 => 0.11567744895296
1227 => 0.1195651698568
1228 => 0.12259592631493
1229 => 0.12802758370042
1230 => 0.12235936605996
1231 => 0.12215279368002
]
'min_raw' => 0.10341080217185
'max_raw' => 0.2989910406776
'avg_raw' => 0.20120092142473
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.10341'
'max' => '$0.298991'
'avg' => '$0.20120092'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.01818356144637
'max_diff' => -0.10099932625082
'year' => 2030
]
5 => [
'items' => [
101 => 0.12417207182921
102 => 0.12232250790874
103 => 0.1234913684617
104 => 0.12783926219483
105 => 0.12793112633809
106 => 0.12639228357822
107 => 0.12629864485644
108 => 0.12659419644156
109 => 0.12832525130704
110 => 0.1277203675471
111 => 0.12842035434788
112 => 0.12929569856084
113 => 0.13291649336391
114 => 0.13378945473278
115 => 0.13166861118499
116 => 0.13186009961128
117 => 0.13106684590595
118 => 0.13030057276604
119 => 0.13202304287935
120 => 0.13517089086666
121 => 0.13515130826771
122 => 0.13588154781534
123 => 0.13633648100389
124 => 0.1343835747272
125 => 0.13311230455143
126 => 0.13359979042985
127 => 0.13437929096549
128 => 0.13334700891198
129 => 0.12697528587818
130 => 0.12890805961939
131 => 0.12858635156104
201 => 0.12812820016492
202 => 0.13007161910741
203 => 0.12988417160941
204 => 0.12426939129847
205 => 0.12462883131687
206 => 0.12429125003649
207 => 0.12538204421602
208 => 0.12226360144336
209 => 0.1232228134372
210 => 0.12382442220768
211 => 0.12417877439527
212 => 0.12545893747841
213 => 0.12530872511619
214 => 0.12544960006706
215 => 0.12734774396884
216 => 0.13694790445968
217 => 0.13747042001363
218 => 0.13489736232487
219 => 0.13592524812021
220 => 0.13395193216706
221 => 0.13527663238648
222 => 0.13618295863287
223 => 0.13208744460196
224 => 0.13184493484072
225 => 0.12986347431068
226 => 0.13092819896386
227 => 0.12923414548424
228 => 0.12964980695267
301 => 0.12848758125024
302 => 0.13057935611778
303 => 0.13291828544864
304 => 0.13350919136474
305 => 0.13195477230048
306 => 0.13082927045676
307 => 0.12885325998253
308 => 0.13213940943944
309 => 0.13310037968423
310 => 0.13213436187184
311 => 0.1319105144368
312 => 0.13148632395189
313 => 0.13200050845345
314 => 0.13309514603389
315 => 0.13257893516574
316 => 0.13291990153862
317 => 0.1316204893282
318 => 0.13438422122044
319 => 0.13877369259362
320 => 0.13878780546184
321 => 0.13827159181112
322 => 0.13806036830722
323 => 0.13859003483932
324 => 0.13887735720493
325 => 0.14059020164553
326 => 0.14242815197302
327 => 0.15100506419088
328 => 0.14859670156117
329 => 0.15620664832365
330 => 0.16222512818485
331 => 0.16402980713899
401 => 0.16236958741789
402 => 0.15669006543528
403 => 0.15641140099122
404 => 0.16489900466557
405 => 0.16250086787069
406 => 0.16221561712975
407 => 0.15918103118485
408 => 0.16097484731906
409 => 0.16058251341682
410 => 0.15996319515849
411 => 0.16338567138425
412 => 0.16979224135233
413 => 0.16879371734237
414 => 0.16804836548914
415 => 0.16478245063691
416 => 0.16674926084644
417 => 0.1660489174026
418 => 0.16905803728629
419 => 0.16727550132736
420 => 0.16248269962584
421 => 0.16324596909408
422 => 0.16313060244944
423 => 0.16550483982118
424 => 0.16479215269438
425 => 0.16299143884972
426 => 0.16977034439266
427 => 0.16933015997296
428 => 0.16995424083993
429 => 0.17022898053792
430 => 0.17435518088419
501 => 0.17604555314238
502 => 0.17642929723912
503 => 0.17803502014631
504 => 0.17638934539041
505 => 0.18297321776025
506 => 0.18735110870659
507 => 0.19243625432497
508 => 0.19986701883171
509 => 0.20266105502466
510 => 0.20215633739485
511 => 0.20779025823772
512 => 0.21791428875733
513 => 0.20420269341997
514 => 0.21864103660456
515 => 0.21407002385101
516 => 0.20323223484134
517 => 0.20253440899826
518 => 0.20987388554492
519 => 0.22615213812698
520 => 0.22207462048159
521 => 0.22615880748512
522 => 0.22139438640113
523 => 0.22115779273662
524 => 0.22592741018746
525 => 0.23707188133965
526 => 0.23177756083949
527 => 0.22418685418188
528 => 0.22979171385339
529 => 0.22493626570065
530 => 0.21399558205818
531 => 0.22207150248069
601 => 0.21667136448313
602 => 0.21824741183794
603 => 0.22959769869891
604 => 0.22823200215466
605 => 0.22999933994301
606 => 0.22688003500586
607 => 0.22396611232532
608 => 0.21852705925135
609 => 0.21691682377823
610 => 0.21736183493279
611 => 0.2169166032528
612 => 0.21387350304539
613 => 0.21321634584534
614 => 0.21212105505453
615 => 0.21246053146983
616 => 0.21040106434449
617 => 0.21428770431763
618 => 0.21500909894559
619 => 0.21783747139917
620 => 0.21813112241006
621 => 0.2260080994339
622 => 0.22166959285639
623 => 0.22458023763722
624 => 0.22431988217197
625 => 0.20346712259223
626 => 0.20634044887686
627 => 0.21081044287629
628 => 0.20879671663848
629 => 0.20594977887759
630 => 0.20365072399253
701 => 0.20016742075122
702 => 0.20507010317245
703 => 0.21151660921421
704 => 0.21829461644164
705 => 0.22643794801277
706 => 0.22462045120492
707 => 0.2181423825223
708 => 0.21843298395117
709 => 0.220229367637
710 => 0.21790288754518
711 => 0.21721676314782
712 => 0.22013510468096
713 => 0.2201552016952
714 => 0.21747830518506
715 => 0.21450342458092
716 => 0.21449095972256
717 => 0.21396160845299
718 => 0.22148855681603
719 => 0.22562761735538
720 => 0.22610215397579
721 => 0.22559567725992
722 => 0.22579060004652
723 => 0.22338217191664
724 => 0.22888712442436
725 => 0.23393901322882
726 => 0.23258499911136
727 => 0.23055513946484
728 => 0.22893825848511
729 => 0.23220411333775
730 => 0.2320586899621
731 => 0.23389488938728
801 => 0.23381158877496
802 => 0.23319414397122
803 => 0.23258502116226
804 => 0.23500012424766
805 => 0.23430461334443
806 => 0.23360802212067
807 => 0.23221090177863
808 => 0.23240079363682
809 => 0.23037128447419
810 => 0.22943234067154
811 => 0.21531287872083
812 => 0.21153969712087
813 => 0.21272681686241
814 => 0.21311764750488
815 => 0.21147555403711
816 => 0.21382989425068
817 => 0.21346297282226
818 => 0.2148904494584
819 => 0.21399862402997
820 => 0.21403522485663
821 => 0.21665789328441
822 => 0.21741926508662
823 => 0.21703202524299
824 => 0.21730323475566
825 => 0.22355314350482
826 => 0.22266460634152
827 => 0.22219258868272
828 => 0.22232334080004
829 => 0.223920326485
830 => 0.2243673952846
831 => 0.22247313336571
901 => 0.22336647823726
902 => 0.22717022731796
903 => 0.22850132422265
904 => 0.23274954657967
905 => 0.23094482621628
906 => 0.23425746854975
907 => 0.24443940171986
908 => 0.25257343447232
909 => 0.24509304180004
910 => 0.26003015708712
911 => 0.27166084394003
912 => 0.2712144388067
913 => 0.26918635953126
914 => 0.25594513176702
915 => 0.24376035656278
916 => 0.25395343841401
917 => 0.25397942267587
918 => 0.25310382790506
919 => 0.24766558398329
920 => 0.25291458880466
921 => 0.25333123574579
922 => 0.25309802425412
923 => 0.24892853538994
924 => 0.24256249654469
925 => 0.24380640529691
926 => 0.24584395320809
927 => 0.2419864499352
928 => 0.24075374390515
929 => 0.24304557894694
930 => 0.25043034897438
1001 => 0.24903430097775
1002 => 0.24899784452269
1003 => 0.25497072986874
1004 => 0.2506954329903
1005 => 0.24382209496982
1006 => 0.24208648647146
1007 => 0.23592624554826
1008 => 0.24018114589594
1009 => 0.2403342721846
1010 => 0.2380039067482
1011 => 0.24401119128161
1012 => 0.24395583309707
1013 => 0.24965885569524
1014 => 0.26056089294546
1015 => 0.2573366240739
1016 => 0.25358715017573
1017 => 0.25399482195009
1018 => 0.2584659750952
1019 => 0.25576261383717
1020 => 0.25673476139406
1021 => 0.25846450363344
1022 => 0.25950810007354
1023 => 0.2538446644824
1024 => 0.25252424673266
1025 => 0.24982313542036
1026 => 0.24911846589761
1027 => 0.25131846470094
1028 => 0.25073884274337
1029 => 0.24032140251297
1030 => 0.23923272204681
1031 => 0.23926611032243
1101 => 0.23652857152632
1102 => 0.23235316777765
1103 => 0.24332587952873
1104 => 0.24244461721212
1105 => 0.24147177181886
1106 => 0.24159093982856
1107 => 0.24635382209999
1108 => 0.24359110985124
1109 => 0.25093623316418
1110 => 0.24942629662566
1111 => 0.24787763591244
1112 => 0.24766356382851
1113 => 0.24706746157944
1114 => 0.24502320516751
1115 => 0.24255464270933
1116 => 0.24092468395123
1117 => 0.2222402857144
1118 => 0.22570800134501
1119 => 0.2296972920858
1120 => 0.23107437926344
1121 => 0.22871877635456
1122 => 0.24511621872792
1123 => 0.24811218945922
1124 => 0.23903719869178
1125 => 0.23733963844862
1126 => 0.24522751049485
1127 => 0.24047015939783
1128 => 0.24261239430552
1129 => 0.23798205417494
1130 => 0.24739054784231
1201 => 0.2473188708841
1202 => 0.24365875434703
1203 => 0.24675225978077
1204 => 0.24621468708423
1205 => 0.24208242452834
1206 => 0.24752154793592
1207 => 0.24752424567327
1208 => 0.24400146308413
1209 => 0.23988762425629
1210 => 0.2391521670384
1211 => 0.2385980988195
1212 => 0.24247612748867
1213 => 0.24595315586717
1214 => 0.25242304365111
1215 => 0.25404972716073
1216 => 0.26039878119325
1217 => 0.25661822864671
1218 => 0.25829409862424
1219 => 0.26011349255113
1220 => 0.26098577690568
1221 => 0.2595644363593
1222 => 0.2694271306467
1223 => 0.27025984422971
1224 => 0.27053904589114
1225 => 0.26721340086925
1226 => 0.2701673520256
1227 => 0.26878529610412
1228 => 0.27238102166561
1229 => 0.27294487734618
1230 => 0.27246731164448
1231 => 0.27264628833735
]
'min_raw' => 0.12226360144336
'max_raw' => 0.27294487734618
'avg_raw' => 0.19760423939477
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.122263'
'max' => '$0.272944'
'avg' => '$0.1976042'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.01885279927151
'max_diff' => -0.026046163331424
'year' => 2031
]
6 => [
'items' => [
101 => 0.26423021866155
102 => 0.26379380105056
103 => 0.25784321595786
104 => 0.26026812336764
105 => 0.2557348751939
106 => 0.25717241488742
107 => 0.25780606868695
108 => 0.25747508390161
109 => 0.26040522399429
110 => 0.25791400632744
111 => 0.25133927331053
112 => 0.24476274901201
113 => 0.24468018610656
114 => 0.24294870334405
115 => 0.24169715844365
116 => 0.24193825039241
117 => 0.24278788986595
118 => 0.24164777585289
119 => 0.24189107698282
120 => 0.24593149684669
121 => 0.24674177423543
122 => 0.24398813507267
123 => 0.23293187648595
124 => 0.23021864289625
125 => 0.23216886139477
126 => 0.23123678256263
127 => 0.18662613081896
128 => 0.19710674172699
129 => 0.19087951861336
130 => 0.19374930952488
131 => 0.18739292725747
201 => 0.19042652604202
202 => 0.1898663311158
203 => 0.20671884331208
204 => 0.20645571451401
205 => 0.20658166034518
206 => 0.20056993767326
207 => 0.21014677512568
208 => 0.21486466962668
209 => 0.21399151291724
210 => 0.21421126764958
211 => 0.21043515326567
212 => 0.20661822138659
213 => 0.20238465651109
214 => 0.21025009676534
215 => 0.20937559407661
216 => 0.21138138860842
217 => 0.21648268884659
218 => 0.21723387468461
219 => 0.21824347606869
220 => 0.21788160584082
221 => 0.22650282278658
222 => 0.22545873652983
223 => 0.22797468400449
224 => 0.22279918916372
225 => 0.21694262548892
226 => 0.21805576677801
227 => 0.21794856232055
228 => 0.21658372653359
229 => 0.21535161381104
301 => 0.21330049327362
302 => 0.21979054216275
303 => 0.21952705803007
304 => 0.22379255987133
305 => 0.22303859098801
306 => 0.21800340225775
307 => 0.2181832350083
308 => 0.21939269668041
309 => 0.22357865733701
310 => 0.22482133546182
311 => 0.22424567744224
312 => 0.22560821727569
313 => 0.22668511320482
314 => 0.22574345882421
315 => 0.23907529908033
316 => 0.23353898951333
317 => 0.23623734827489
318 => 0.23688089093987
319 => 0.23523246993577
320 => 0.23558995342603
321 => 0.23613144350535
322 => 0.23941926523237
323 => 0.24804746078294
324 => 0.25186882985818
325 => 0.26336560726405
326 => 0.2515515183525
327 => 0.25085051920805
328 => 0.25292143598827
329 => 0.259671261383
330 => 0.26514136088656
331 => 0.26695610846951
401 => 0.26719595732081
402 => 0.27060054442855
403 => 0.27255199026692
404 => 0.27018713800414
405 => 0.26818317332179
406 => 0.26100522057086
407 => 0.2618360881467
408 => 0.26755994181248
409 => 0.2756452222487
410 => 0.28258323399302
411 => 0.28015378409428
412 => 0.29868877189734
413 => 0.30052644022938
414 => 0.30027253388482
415 => 0.30445901582692
416 => 0.29614970173408
417 => 0.29259730897401
418 => 0.26861645323208
419 => 0.27535409552917
420 => 0.28514765429584
421 => 0.28385144006911
422 => 0.27673909591018
423 => 0.2825778386422
424 => 0.28064736770063
425 => 0.27912472517369
426 => 0.28610024576834
427 => 0.27843037433593
428 => 0.28507114146116
429 => 0.27655428893312
430 => 0.28016488161678
501 => 0.27811533458481
502 => 0.27944164269753
503 => 0.27168807257152
504 => 0.27587171080424
505 => 0.27151401946651
506 => 0.27151195335343
507 => 0.27141575707562
508 => 0.2765425616095
509 => 0.27670974652129
510 => 0.27292103022458
511 => 0.27237501701536
512 => 0.27439391402698
513 => 0.27203031437633
514 => 0.27313622777655
515 => 0.27206381136662
516 => 0.27182238784419
517 => 0.26989868414271
518 => 0.26906989969477
519 => 0.26939488743195
520 => 0.2682855367423
521 => 0.26761711282481
522 => 0.27128279073445
523 => 0.26932436690035
524 => 0.27098263419412
525 => 0.26909282932286
526 => 0.26254194229026
527 => 0.25877445788344
528 => 0.24640043954642
529 => 0.24990969579688
530 => 0.25223633632152
531 => 0.251467381642
601 => 0.25311939383956
602 => 0.2532208139714
603 => 0.25268372796571
604 => 0.25206185117609
605 => 0.25175915594685
606 => 0.25401519819207
607 => 0.25532490665031
608 => 0.2524698458246
609 => 0.25180094501968
610 => 0.25468756914671
611 => 0.25644840819664
612 => 0.26944945441137
613 => 0.26848629491496
614 => 0.27090363624045
615 => 0.27063148070433
616 => 0.27316523952612
617 => 0.27730686435337
618 => 0.26888578306305
619 => 0.27034739159597
620 => 0.26998903893717
621 => 0.27390143930084
622 => 0.27391365338773
623 => 0.27156797393081
624 => 0.27283960481871
625 => 0.27212981534245
626 => 0.27341250085985
627 => 0.26847343133268
628 => 0.27448868487716
629 => 0.27789894602251
630 => 0.27794629750182
701 => 0.27956273421921
702 => 0.28120512754178
703 => 0.28435755850214
704 => 0.28111720795328
705 => 0.27528813275765
706 => 0.27570897315898
707 => 0.27229138850456
708 => 0.27234883872004
709 => 0.27204216496736
710 => 0.27296251598446
711 => 0.2686753966251
712 => 0.26968157496977
713 => 0.26827291939506
714 => 0.27034432945386
715 => 0.26811583464694
716 => 0.26998886612867
717 => 0.2707972044242
718 => 0.273779990137
719 => 0.26767527477193
720 => 0.25522734688966
721 => 0.25784405224705
722 => 0.2539737394857
723 => 0.25433195166708
724 => 0.25505559728252
725 => 0.25271002508077
726 => 0.25315748633939
727 => 0.25314149987449
728 => 0.25300373715662
729 => 0.25239356323665
730 => 0.25150869033346
731 => 0.25503375163025
801 => 0.25563272823491
802 => 0.25696417902955
803 => 0.26092567346269
804 => 0.26052982675035
805 => 0.26117546916171
806 => 0.25976603540285
807 => 0.2543973312568
808 => 0.25468887772155
809 => 0.25105328863446
810 => 0.25687120884267
811 => 0.25549344854457
812 => 0.25460519751753
813 => 0.25436282999521
814 => 0.25833414420682
815 => 0.25952242366165
816 => 0.25878196764787
817 => 0.25726327076104
818 => 0.26017961774618
819 => 0.2609599091686
820 => 0.26113458764204
821 => 0.26630179534564
822 => 0.26142337715216
823 => 0.26259766089864
824 => 0.27175908747459
825 => 0.26345093776065
826 => 0.26785194995797
827 => 0.26763654331267
828 => 0.26988795223069
829 => 0.26745186206769
830 => 0.26748206032489
831 => 0.26948115892044
901 => 0.26667378548232
902 => 0.26597864033886
903 => 0.2650183023019
904 => 0.26711516527235
905 => 0.26837213979018
906 => 0.27850243125782
907 => 0.28504706154334
908 => 0.28476294188241
909 => 0.28735926373358
910 => 0.28618959696004
911 => 0.2824124344058
912 => 0.28885959030999
913 => 0.28681944042144
914 => 0.28698762789947
915 => 0.28698136795314
916 => 0.28833788927603
917 => 0.28737666959541
918 => 0.28548200693773
919 => 0.2867397724301
920 => 0.29047488628304
921 => 0.30206879428986
922 => 0.30855689880933
923 => 0.30167820225109
924 => 0.30642303502754
925 => 0.30357782611845
926 => 0.30306076702204
927 => 0.30604087264604
928 => 0.30902619455044
929 => 0.30883604245103
930 => 0.30666885204642
1001 => 0.30544466117727
1002 => 0.31471464457248
1003 => 0.32154461042802
1004 => 0.32107885254535
1005 => 0.3231345563669
1006 => 0.32917016636751
1007 => 0.32972198690524
1008 => 0.32965247020094
1009 => 0.32828472542166
1010 => 0.33422756729026
1011 => 0.3391851905314
1012 => 0.3279681320232
1013 => 0.33223944106104
1014 => 0.33415696930111
1015 => 0.33697246966253
1016 => 0.34172269070489
1017 => 0.34688269069079
1018 => 0.34761237126532
1019 => 0.34709462797926
1020 => 0.34369146928031
1021 => 0.34933760283649
1022 => 0.35264497545558
1023 => 0.35461444016236
1024 => 0.3596086749711
1025 => 0.33416881130272
1026 => 0.31616121135498
1027 => 0.31334906459024
1028 => 0.31906767561854
1029 => 0.32057562774163
1030 => 0.31996777413163
1031 => 0.29969858321108
1101 => 0.31324235149485
1102 => 0.3278143073758
1103 => 0.32837407554735
1104 => 0.33566910134658
1105 => 0.33804466078002
1106 => 0.34391811272929
1107 => 0.3435507267107
1108 => 0.34498081879331
1109 => 0.34465206538926
1110 => 0.35553139832407
1111 => 0.36753291814773
1112 => 0.36711734367873
1113 => 0.36539198320854
1114 => 0.36795443772445
1115 => 0.38034129234349
1116 => 0.37920090926547
1117 => 0.38030869428817
1118 => 0.39491349397656
1119 => 0.41390181107999
1120 => 0.40507983138958
1121 => 0.42422098886151
1122 => 0.43626933286092
1123 => 0.45710569798589
1124 => 0.45449688245099
1125 => 0.46260832648983
1126 => 0.44982655816727
1127 => 0.4204770344771
1128 => 0.41583236000766
1129 => 0.42513111591736
1130 => 0.44799119996201
1201 => 0.42441117051866
1202 => 0.42918137976436
1203 => 0.42780755918069
1204 => 0.42773435412014
1205 => 0.43052829353454
1206 => 0.42647553869188
1207 => 0.40996388638621
1208 => 0.41753107933412
1209 => 0.41460902273048
1210 => 0.41785126238597
1211 => 0.4353482926053
1212 => 0.42761243846823
1213 => 0.41946334454458
1214 => 0.42968411675354
1215 => 0.44269867201392
1216 => 0.44188424453513
1217 => 0.440303914822
1218 => 0.44921215067154
1219 => 0.46392594642678
1220 => 0.4679030262946
1221 => 0.47083882534521
1222 => 0.47124362243355
1223 => 0.47541328402352
1224 => 0.45299196276426
1225 => 0.48857517542308
1226 => 0.49471941328284
1227 => 0.49356455121777
1228 => 0.50039361300985
1229 => 0.49838432979404
1230 => 0.49547319366122
1231 => 0.50629870918476
]
'min_raw' => 0.18662613081896
'max_raw' => 0.50629870918476
'avg_raw' => 0.34646242000186
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.186626'
'max' => '$0.506298'
'avg' => '$0.346462'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.064362529375601
'max_diff' => 0.23335383183858
'year' => 2032
]
7 => [
'items' => [
101 => 0.49388812921108
102 => 0.47627287338701
103 => 0.46660879565167
104 => 0.47933523279248
105 => 0.48710682386292
106 => 0.49224335119446
107 => 0.4937976612614
108 => 0.4547324661083
109 => 0.43367849257582
110 => 0.44717384822584
111 => 0.46363911351856
112 => 0.4529004973842
113 => 0.45332143080578
114 => 0.43801098625687
115 => 0.46499374813453
116 => 0.4610625866897
117 => 0.48145745921956
118 => 0.47659005921123
119 => 0.49322128603494
120 => 0.48884172663915
121 => 0.50702103283321
122 => 0.51427325025909
123 => 0.52645085203464
124 => 0.5354087454725
125 => 0.54066899183641
126 => 0.54035318637541
127 => 0.56119690311353
128 => 0.54890609157706
129 => 0.53346593556537
130 => 0.53318667185619
131 => 0.54118334744334
201 => 0.5579421856932
202 => 0.56228750862021
203 => 0.56471595133656
204 => 0.56099670678178
205 => 0.54765591174933
206 => 0.54189542409369
207 => 0.54680352647369
208 => 0.54080133902099
209 => 0.5511627984807
210 => 0.56539129540721
211 => 0.56245316705746
212 => 0.57227488962185
213 => 0.58243933920064
214 => 0.59697495861232
215 => 0.60077510777896
216 => 0.60705660984468
217 => 0.61352233883625
218 => 0.61559895673206
219 => 0.61956386463185
220 => 0.61954296761008
221 => 0.63149148443519
222 => 0.64467106850804
223 => 0.64964605638747
224 => 0.66108576669378
225 => 0.64149566368948
226 => 0.65635498185312
227 => 0.66975845878959
228 => 0.65377828102544
301 => 0.67580323316943
302 => 0.67665841215157
303 => 0.68957059946658
304 => 0.67648162394704
305 => 0.66870943206503
306 => 0.69114745880817
307 => 0.70200451315795
308 => 0.69873428003016
309 => 0.67384764445632
310 => 0.65936255511434
311 => 0.62145228234131
312 => 0.66635863804287
313 => 0.68823121396875
314 => 0.6737909997687
315 => 0.68107380387411
316 => 0.72080642161606
317 => 0.73593402995571
318 => 0.73278759317102
319 => 0.73331928919288
320 => 0.74148187206744
321 => 0.77767925974973
322 => 0.75598894600162
323 => 0.7725703781415
324 => 0.78136510995969
325 => 0.78953414700816
326 => 0.7694735738678
327 => 0.74337506296054
328 => 0.73510856901526
329 => 0.67235520505202
330 => 0.66908861993369
331 => 0.66725498671911
401 => 0.65569418867375
402 => 0.6466105681792
403 => 0.63938693590872
404 => 0.62042996767179
405 => 0.62682738796411
406 => 0.59661393722121
407 => 0.61594343230757
408 => 0.56772203539261
409 => 0.60788224764993
410 => 0.58602486997906
411 => 0.60070151123276
412 => 0.60065030581405
413 => 0.57362595603264
414 => 0.55803887506251
415 => 0.56797156971494
416 => 0.57862020684063
417 => 0.58034791238796
418 => 0.59415414837929
419 => 0.59800717208041
420 => 0.58633233038552
421 => 0.56672275412384
422 => 0.57127761144262
423 => 0.55794657102432
424 => 0.53458443546233
425 => 0.55136352908671
426 => 0.55709264937474
427 => 0.55962295527472
428 => 0.53664897810889
429 => 0.52943005569408
430 => 0.52558676197306
501 => 0.56375710216659
502 => 0.56584815956706
503 => 0.55515001426052
504 => 0.60350664548584
505 => 0.59256205053873
506 => 0.60478984458552
507 => 0.57086430588269
508 => 0.57216030714794
509 => 0.55609941344514
510 => 0.5650924407294
511 => 0.55873645890369
512 => 0.56436589299566
513 => 0.56774015257937
514 => 0.58379841084754
515 => 0.60806560716462
516 => 0.581399842558
517 => 0.56978118705811
518 => 0.57698933558444
519 => 0.59618558498877
520 => 0.62526888547425
521 => 0.60805098623088
522 => 0.6156919975362
523 => 0.61736121858148
524 => 0.60466537712069
525 => 0.62573699925807
526 => 0.63702945274705
527 => 0.64861317338274
528 => 0.65867099344223
529 => 0.64398638062937
530 => 0.65970102129569
531 => 0.64703779492614
601 => 0.63567757177237
602 => 0.6356948005416
603 => 0.62856836661086
604 => 0.6147600028816
605 => 0.61221352875161
606 => 0.62546060876002
607 => 0.63608351242362
608 => 0.63695846564963
609 => 0.6428398509423
610 => 0.64632039417541
611 => 0.680434449429
612 => 0.69415540465826
613 => 0.71093312898821
614 => 0.71746899815545
615 => 0.73713962111009
616 => 0.72125399550433
617 => 0.71781704047926
618 => 0.67010254340306
619 => 0.67791578962627
620 => 0.69042555069576
621 => 0.67030882475546
622 => 0.68306825713255
623 => 0.68558723936552
624 => 0.66962526610577
625 => 0.67815124569995
626 => 0.65550877167458
627 => 0.60855915122363
628 => 0.62578926760689
629 => 0.63847643285944
630 => 0.62037028372786
701 => 0.65282485524147
702 => 0.63386556456156
703 => 0.62785637962248
704 => 0.60441240674601
705 => 0.61547705950244
706 => 0.63044216078607
707 => 0.62119546807254
708 => 0.640383743851
709 => 0.66755945967953
710 => 0.6869264931208
711 => 0.68841325346701
712 => 0.67596154845474
713 => 0.69591548520261
714 => 0.69606082784761
715 => 0.67355270568178
716 => 0.65976660618096
717 => 0.65663437536817
718 => 0.66445930204854
719 => 0.67396020759966
720 => 0.68894048760215
721 => 0.69799275706753
722 => 0.72159627488051
723 => 0.72798271003481
724 => 0.73499946602323
725 => 0.74437601591117
726 => 0.75563496814969
727 => 0.73100102162432
728 => 0.7319797742432
729 => 0.70904098431898
730 => 0.68452759752972
731 => 0.70313020246597
801 => 0.72745063381928
802 => 0.72187149999514
803 => 0.72124373346856
804 => 0.72229946263835
805 => 0.71809297793243
806 => 0.69906720350713
807 => 0.68951257869839
808 => 0.70184048234642
809 => 0.70839221448348
810 => 0.71855337965697
811 => 0.71730080157316
812 => 0.7434748718306
813 => 0.75364532406984
814 => 0.75104328716886
815 => 0.75152212458015
816 => 0.76993524255518
817 => 0.79041441668995
818 => 0.80959586573219
819 => 0.82910805956037
820 => 0.80558534832662
821 => 0.79364196624125
822 => 0.80596448791219
823 => 0.79942598446154
824 => 0.8369981647351
825 => 0.83959958097804
826 => 0.87716904435531
827 => 0.91282693878882
828 => 0.89043085417267
829 => 0.9115493532239
830 => 0.93439073176429
831 => 0.97845545684882
901 => 0.96361600765607
902 => 0.95224922213824
903 => 0.9415076647478
904 => 0.96385914050309
905 => 0.99261395698874
906 => 0.99880746904953
907 => 1.0088433246917
908 => 0.99829184961
909 => 1.0109999391391
910 => 1.0558650793943
911 => 1.0437421224618
912 => 1.0265255747551
913 => 1.0619422940926
914 => 1.0747594671419
915 => 1.1647171000073
916 => 1.2782923274643
917 => 1.2312714375219
918 => 1.2020840537801
919 => 1.2089437812934
920 => 1.2504176095966
921 => 1.2637376869341
922 => 1.2275291250248
923 => 1.2403186012199
924 => 1.3107898724883
925 => 1.3485954485348
926 => 1.2972503982974
927 => 1.1555914410668
928 => 1.0249754130044
929 => 1.059620665363
930 => 1.0556929689128
1001 => 1.1314055584207
1002 => 1.0434529939483
1003 => 1.0449338895671
1004 => 1.1222121352449
1005 => 1.1015956241826
1006 => 1.0681995166249
1007 => 1.0252192415479
1008 => 0.94576622787391
1009 => 0.87539247795166
1010 => 1.0134116076559
1011 => 1.0074599718115
1012 => 0.99884112112591
1013 => 1.0180214406697
1014 => 1.1111556279458
1015 => 1.1090085834832
1016 => 1.0953501820435
1017 => 1.1057099591559
1018 => 1.0663833976083
1019 => 1.0765187479682
1020 => 1.0249547227582
1021 => 1.0482638156571
1022 => 1.068127863577
1023 => 1.0721158652892
1024 => 1.0811010367791
1025 => 1.004323730166
1026 => 1.038794486772
1027 => 1.0590428268049
1028 => 0.96756008989526
1029 => 1.0572345072356
1030 => 1.002987208072
1031 => 0.9845748599687
1101 => 1.0093646610473
1102 => 0.99970405145811
1103 => 0.99139842662334
1104 => 0.98676374525679
1105 => 1.0049666392184
1106 => 1.0041174524579
1107 => 0.97433398490724
1108 => 0.9354826656168
1109 => 0.94852244362175
1110 => 0.94378497002398
1111 => 0.92661575455941
1112 => 0.93818573276355
1113 => 0.88723740418446
1114 => 0.79958345292782
1115 => 0.8574903380411
1116 => 0.85526098595481
1117 => 0.85413684553983
1118 => 0.89765226927371
1119 => 0.89346926535333
1120 => 0.88587707227776
1121 => 0.9264763179797
1122 => 0.91165704716158
1123 => 0.9573265479637
1124 => 0.9874074349101
1125 => 0.97977794896574
1126 => 1.0080691685324
1127 => 0.94882285377034
1128 => 0.96850210298471
1129 => 0.97255796897353
1130 => 0.9259753295898
1201 => 0.89415365652679
1202 => 0.89203151372712
1203 => 0.83685711793252
1204 => 0.86633083481383
1205 => 0.89226648596411
1206 => 0.87984532175096
1207 => 0.8759131522328
1208 => 0.89600175351755
1209 => 0.89756280988461
1210 => 0.86197055928231
1211 => 0.86937131524252
1212 => 0.90023369786989
1213 => 0.86859366238502
1214 => 0.80712224180838
1215 => 0.79187647959649
1216 => 0.78984241388227
1217 => 0.74849469760698
1218 => 0.79289527432793
1219 => 0.77351323272776
1220 => 0.8347408699102
1221 => 0.79976797192199
1222 => 0.79826036018917
1223 => 0.79598138393644
1224 => 0.76039169648565
1225 => 0.76818357619474
1226 => 0.79408497108456
1227 => 0.80332688058134
1228 => 0.80236287370409
1229 => 0.79395804011914
1230 => 0.79780572989462
1231 => 0.78541098050381
]
'min_raw' => 0.43367849257582
'max_raw' => 1.3485954485348
'avg_raw' => 0.89113697055531
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.433678'
'max' => '$1.34'
'avg' => '$0.891136'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.24705236175686
'max_diff' => 0.84229673935004
'year' => 2033
]
8 => [
'items' => [
101 => 0.78103413651952
102 => 0.76721961295931
103 => 0.74691607968533
104 => 0.74973941051588
105 => 0.70951279839166
106 => 0.68759520511849
107 => 0.68152870416972
108 => 0.67341632556448
109 => 0.68244501891939
110 => 0.70939884145372
111 => 0.67688681290487
112 => 0.62114722041151
113 => 0.62449726489601
114 => 0.63202382021553
115 => 0.61799813417074
116 => 0.60472399941595
117 => 0.61626478262065
118 => 0.59264718247915
119 => 0.63487789435822
120 => 0.63373567195209
121 => 0.6494766698109
122 => 0.65931983880981
123 => 0.63663452103113
124 => 0.63092922495741
125 => 0.63417922089225
126 => 0.58046402754479
127 => 0.64508699253525
128 => 0.64564585462001
129 => 0.64086053815525
130 => 0.67527027200247
131 => 0.74788554308522
201 => 0.72056475716138
202 => 0.70998532307654
203 => 0.68987381114774
204 => 0.71667120668945
205 => 0.71461358481634
206 => 0.7053082383762
207 => 0.69968033581476
208 => 0.71004991884513
209 => 0.69839542972221
210 => 0.69630196323178
211 => 0.68361783401384
212 => 0.67909017697414
213 => 0.67573807995317
214 => 0.67204775050333
215 => 0.68018769769687
216 => 0.66174150645707
217 => 0.63949720812428
218 => 0.63764783540456
219 => 0.64275411608224
220 => 0.64049496700025
221 => 0.63763701946791
222 => 0.63218041931297
223 => 0.63056156260882
224 => 0.6358220615397
225 => 0.62988326495288
226 => 0.63864628281972
227 => 0.63626322683984
228 => 0.62295166985388
301 => 0.60636054127977
302 => 0.60621284543439
303 => 0.602638313998
304 => 0.59808561077936
305 => 0.59681915289567
306 => 0.61529285004901
307 => 0.65353285028519
308 => 0.64602542323318
309 => 0.65145030867033
310 => 0.67813537581465
311 => 0.68661775621187
312 => 0.68059716352211
313 => 0.6723558049144
314 => 0.67271838286753
315 => 0.70088160005901
316 => 0.70263810536954
317 => 0.70707622761915
318 => 0.7127804689231
319 => 0.68156862048201
320 => 0.67124830761279
321 => 0.6663579708262
322 => 0.651297626322
323 => 0.66753891669342
324 => 0.65807581231539
325 => 0.65935270840166
326 => 0.65852112815036
327 => 0.65897522719878
328 => 0.63486609001358
329 => 0.64365019246492
330 => 0.62904491843488
331 => 0.6094900960276
401 => 0.60942454140608
402 => 0.61421055648697
403 => 0.61136364744007
404 => 0.60370268839559
405 => 0.60479089146915
406 => 0.59525708748367
407 => 0.60594846788808
408 => 0.60625505842248
409 => 0.60213829460336
410 => 0.61860984124254
411 => 0.62535824734012
412 => 0.62264850520474
413 => 0.62516812460828
414 => 0.64633739072119
415 => 0.64978890477743
416 => 0.65132183932699
417 => 0.64926791010549
418 => 0.62555505993186
419 => 0.62660682567188
420 => 0.61888966652911
421 => 0.61236948026766
422 => 0.61263025352425
423 => 0.61598247682751
424 => 0.63062183259818
425 => 0.66142949378039
426 => 0.66259862200214
427 => 0.66401563951279
428 => 0.65825191716105
429 => 0.65651352334837
430 => 0.65880691350481
501 => 0.67037665125497
502 => 0.70013715790156
503 => 0.68961780721525
504 => 0.68106541136383
505 => 0.68856816823489
506 => 0.68741317762314
507 => 0.67766389451853
508 => 0.67739026461278
509 => 0.65867827330066
510 => 0.651760876164
511 => 0.6459801813584
512 => 0.63966781353955
513 => 0.63592563030405
514 => 0.64167532454564
515 => 0.64299034764708
516 => 0.63041854070038
517 => 0.62870504986797
518 => 0.63897145880194
519 => 0.6344535950004
520 => 0.63910032995792
521 => 0.64017841232701
522 => 0.64000481623525
523 => 0.63528764755309
524 => 0.6382942302031
525 => 0.63118276593039
526 => 0.62345011664122
527 => 0.6185171681558
528 => 0.6142125163416
529 => 0.61660098735595
530 => 0.60808652430738
531 => 0.60536257621586
601 => 0.63727566765153
602 => 0.66085021141861
603 => 0.66050742821569
604 => 0.65842082362461
605 => 0.65532055245456
606 => 0.67014984710849
607 => 0.66498361737216
608 => 0.66874248115828
609 => 0.66969926975086
610 => 0.67259518065432
611 => 0.67363021989036
612 => 0.67050161243809
613 => 0.66000162370107
614 => 0.63383665007739
615 => 0.62165678422456
616 => 0.61763722562142
617 => 0.61778332894242
618 => 0.61375314711541
619 => 0.61494021628355
620 => 0.6133403329027
621 => 0.61031054083274
622 => 0.61641390623336
623 => 0.617117262239
624 => 0.61569266382471
625 => 0.61602820832249
626 => 0.60423314190611
627 => 0.60512989518821
628 => 0.60013665895959
629 => 0.59920048736108
630 => 0.58657802098593
701 => 0.56421549214659
702 => 0.57660650390678
703 => 0.56163990414039
704 => 0.55597182602786
705 => 0.58280362624556
706 => 0.580110457702
707 => 0.57550092384764
708 => 0.56868246256601
709 => 0.56615342895092
710 => 0.55078782130042
711 => 0.5498799392281
712 => 0.557495549286
713 => 0.55398120728142
714 => 0.5490457401216
715 => 0.53116997836901
716 => 0.51107170369777
717 => 0.51167834427684
718 => 0.51807123150807
719 => 0.53665941333116
720 => 0.52939668911407
721 => 0.52412749936441
722 => 0.52314073851556
723 => 0.53549211646267
724 => 0.55297190395151
725 => 0.56117302915307
726 => 0.5530459631502
727 => 0.54371002731841
728 => 0.54427826247393
729 => 0.54805847638977
730 => 0.54845572342297
731 => 0.54237898894619
801 => 0.54408955410673
802 => 0.54149104921051
803 => 0.5255440294589
804 => 0.52525559844014
805 => 0.52134194261267
806 => 0.5212234386696
807 => 0.51456533379986
808 => 0.51363381890328
809 => 0.50041374756634
810 => 0.50911523855438
811 => 0.50327873524838
812 => 0.49448174807431
813 => 0.49296514416971
814 => 0.49291955322498
815 => 0.50195209208242
816 => 0.50900968807883
817 => 0.50338026372222
818 => 0.50209855291802
819 => 0.51578387107791
820 => 0.51404228959762
821 => 0.51253409126768
822 => 0.55140678070187
823 => 0.52063601374093
824 => 0.50721820301198
825 => 0.49061111426176
826 => 0.49601846609905
827 => 0.49715787458169
828 => 0.45722081979016
829 => 0.44101836163507
830 => 0.435458288573
831 => 0.43225838791789
901 => 0.43371662282825
902 => 0.41913251012988
903 => 0.42893327506215
904 => 0.41630466622972
905 => 0.41418743886192
906 => 0.43676895583873
907 => 0.43991104200674
908 => 0.42650592624434
909 => 0.43511418065491
910 => 0.43199270794195
911 => 0.41652114748185
912 => 0.41593024767337
913 => 0.40816716248613
914 => 0.39601943739761
915 => 0.39046760106518
916 => 0.3875761565
917 => 0.38876922288072
918 => 0.3881659720102
919 => 0.38422935202538
920 => 0.38839161445968
921 => 0.37775875390563
922 => 0.37352466315823
923 => 0.37161222259778
924 => 0.36217494685144
925 => 0.37719384933944
926 => 0.38015276233273
927 => 0.38311750529866
928 => 0.40892356870115
929 => 0.40763437070074
930 => 0.41928809275955
1001 => 0.41883525055017
1002 => 0.41551142024121
1003 => 0.40148872691128
1004 => 0.40707792254211
1005 => 0.38987524714425
1006 => 0.40276466122055
1007 => 0.39688247091093
1008 => 0.40077588675992
1009 => 0.39377517400828
1010 => 0.39764965749738
1011 => 0.38085443037187
1012 => 0.36517128359729
1013 => 0.37148263967898
1014 => 0.37834380553089
1015 => 0.39322056129037
1016 => 0.38436008829059
1017 => 0.38754664943289
1018 => 0.37687220303008
1019 => 0.35484777109622
1020 => 0.35497242698912
1021 => 0.35158444796442
1022 => 0.34865673943405
1023 => 0.38537782020084
1024 => 0.3808109733331
1025 => 0.37353430054352
1026 => 0.38327441623586
1027 => 0.38584985742134
1028 => 0.38592317661125
1029 => 0.39302931359161
1030 => 0.39682186017187
1031 => 0.39749031294448
1101 => 0.40867197302133
1102 => 0.41241991798943
1103 => 0.427857172884
1104 => 0.39650008909159
1105 => 0.39585431058598
1106 => 0.38341147963814
1107 => 0.37552003953764
1108 => 0.38395181329324
1109 => 0.39142121378881
1110 => 0.38364357473241
1111 => 0.38465917019825
1112 => 0.3742183252215
1113 => 0.37795043601327
1114 => 0.38116503259676
1115 => 0.37939012130861
1116 => 0.37673299320357
1117 => 0.39080880812809
1118 => 0.39001459548648
1119 => 0.40312231794578
1120 => 0.41334072494503
1121 => 0.43165393704643
1122 => 0.41254314552928
1123 => 0.41184667232788
1124 => 0.41865480958939
1125 => 0.41241887569909
1126 => 0.41635977066064
1127 => 0.43101899794212
1128 => 0.43132872431487
1129 => 0.42614040851142
1130 => 0.42582469902327
1201 => 0.42682117182727
1202 => 0.43265754416461
1203 => 0.43061813633634
1204 => 0.43297819070671
1205 => 0.43592947483529
1206 => 0.44813723730963
1207 => 0.45108048751301
1208 => 0.44392991541907
1209 => 0.44457553201759
1210 => 0.44190102176686
1211 => 0.43931747837617
1212 => 0.44512490662223
1213 => 0.45573809588718
1214 => 0.45567207178759
1215 => 0.45813412540614
1216 => 0.45966796441374
1217 => 0.45308360455433
1218 => 0.44879742839948
1219 => 0.45044102107373
1220 => 0.45306916155264
1221 => 0.44958875053761
1222 => 0.42810604146963
1223 => 0.43462252308009
1224 => 0.43353786190044
1225 => 0.43199317248131
1226 => 0.43854554513108
1227 => 0.43791355280439
1228 => 0.41898292897463
1229 => 0.42019480609195
1230 => 0.419056627236
1231 => 0.42273431596908
]
'min_raw' => 0.34865673943405
'max_raw' => 0.78103413651952
'avg_raw' => 0.56484543797679
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.348656'
'max' => '$0.781034'
'avg' => '$0.564845'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.085021753141771
'max_diff' => -0.56756131201528
'year' => 2034
]
9 => [
'items' => [
101 => 0.41222026843836
102 => 0.41545431864562
103 => 0.41748268461827
104 => 0.41867740775881
105 => 0.42299356697175
106 => 0.42248711550503
107 => 0.42296208523748
108 => 0.42936180992649
109 => 0.46172942128316
110 => 0.46349111895419
111 => 0.45481587531137
112 => 0.45828146403506
113 => 0.45162829152651
114 => 0.45609461080388
115 => 0.45915035302125
116 => 0.4453420415264
117 => 0.44452440293487
118 => 0.43784377041671
119 => 0.4414335639216
120 => 0.43572194434003
121 => 0.43712337600138
122 => 0.43320485090164
123 => 0.4402574159106
124 => 0.44814327944843
125 => 0.45013556000028
126 => 0.44489472759908
127 => 0.44110001955293
128 => 0.43443776227843
129 => 0.44551724460401
130 => 0.44875722287712
131 => 0.44550022637745
201 => 0.44474550912169
202 => 0.44331532128578
203 => 0.44504893023201
204 => 0.44873957725962
205 => 0.44699913627695
206 => 0.44814872820863
207 => 0.44376766921913
208 => 0.45308578425142
209 => 0.46788519344921
210 => 0.46793277596973
211 => 0.46619232560543
212 => 0.46548017081489
213 => 0.46726597850802
214 => 0.46823470592387
215 => 0.47400968054232
216 => 0.48020645839306
217 => 0.50912411675645
218 => 0.50100415400389
219 => 0.52666162082309
220 => 0.54695334587197
221 => 0.55303794696454
222 => 0.54744040026198
223 => 0.52829149536607
224 => 0.5273519587372
225 => 0.55596850711081
226 => 0.54788302147432
227 => 0.54692127868566
228 => 0.53668996030441
301 => 0.54273793664116
302 => 0.54141515549786
303 => 0.53932708075048
304 => 0.55086619829531
305 => 0.57246639623511
306 => 0.56909980282082
307 => 0.56658679700883
308 => 0.55557553706566
309 => 0.56220677500539
310 => 0.55984551818805
311 => 0.56999097596596
312 => 0.56398103152773
313 => 0.54782176596833
314 => 0.5503951822703
315 => 0.55000621557325
316 => 0.55801112263602
317 => 0.55560824822978
318 => 0.54953701578068
319 => 0.5723925691068
320 => 0.57090845660307
321 => 0.573012588818
322 => 0.57393889289147
323 => 0.58785066544106
324 => 0.59354987352755
325 => 0.59484369354187
326 => 0.60025750043147
327 => 0.59470899309459
328 => 0.61690697846079
329 => 0.63166734344095
330 => 0.64881226692685
331 => 0.67386560826074
401 => 0.68328589635864
402 => 0.68158420563148
403 => 0.70057936310101
404 => 0.73471323883511
405 => 0.6884836378422
406 => 0.73716351994197
407 => 0.72175203130545
408 => 0.6852116689891
409 => 0.6828589004385
410 => 0.70760445804146
411 => 0.76248772313318
412 => 0.74874008770854
413 => 0.76251020933978
414 => 0.74644663101387
415 => 0.74564893895552
416 => 0.76173003719507
417 => 0.7993043997668
418 => 0.78145422856289
419 => 0.75586163110054
420 => 0.77475880680182
421 => 0.75838832435832
422 => 0.72150104560358
423 => 0.74872957515083
424 => 0.73052263286646
425 => 0.73583638655932
426 => 0.77410467116279
427 => 0.76950012991398
428 => 0.77545883265898
429 => 0.76494187828046
430 => 0.75511738451943
501 => 0.73677923733799
502 => 0.7313502160173
503 => 0.73285060219461
504 => 0.73134947250042
505 => 0.72108944768868
506 => 0.71887379630745
507 => 0.71518094693548
508 => 0.71632551537115
509 => 0.70938187817066
510 => 0.72248595619663
511 => 0.72491818855098
512 => 0.73445424374886
513 => 0.73544430863415
514 => 0.76200208662299
515 => 0.74737450879207
516 => 0.75718795088536
517 => 0.75631014425684
518 => 0.68600360944057
519 => 0.69569122961844
520 => 0.71076212647253
521 => 0.70397270786788
522 => 0.69437405844019
523 => 0.6866226343803
524 => 0.67487843430577
525 => 0.69140817038329
526 => 0.71314301558376
527 => 0.73599554017639
528 => 0.76345135111772
529 => 0.75732353373649
530 => 0.73548227288871
531 => 0.73646205589529
601 => 0.74251868891157
602 => 0.73467479885235
603 => 0.73236148254297
604 => 0.74220087477404
605 => 0.74226863326071
606 => 0.7332432897818
607 => 0.72321327212542
608 => 0.72317124598521
609 => 0.72138650122173
610 => 0.74676413314246
611 => 0.76071926473087
612 => 0.76231919807766
613 => 0.76061157646903
614 => 0.76126877225311
615 => 0.75314858866216
616 => 0.77170892038544
617 => 0.78874171620129
618 => 0.78417656307003
619 => 0.77733274955152
620 => 0.77188132244131
621 => 0.78289238009171
622 => 0.78240207502755
623 => 0.78859294958892
624 => 0.78831209575859
625 => 0.78623033749417
626 => 0.78417663741618
627 => 0.79231932608571
628 => 0.78997436251646
629 => 0.7876257565711
630 => 0.78291526779408
701 => 0.78355550145181
702 => 0.7767128696142
703 => 0.77354715502859
704 => 0.72594240327241
705 => 0.71322085807302
706 => 0.71722331516368
707 => 0.71854102796168
708 => 0.7130045951878
709 => 0.72094241759265
710 => 0.71970531637909
711 => 0.72451815352106
712 => 0.72151130182385
713 => 0.72163470406634
714 => 0.73047721377944
715 => 0.73304423196788
716 => 0.73173862579886
717 => 0.73265302760608
718 => 0.75372503130856
719 => 0.75072926622681
720 => 0.74913782573494
721 => 0.74957866562729
722 => 0.75496301436213
723 => 0.75647033803334
724 => 0.75008370172066
725 => 0.75309567632642
726 => 0.76592028192129
727 => 0.77040816806968
728 => 0.78473134634777
729 => 0.77864660564104
730 => 0.78981541054965
731 => 0.82414450911254
801 => 0.85156896843751
802 => 0.82634830227855
803 => 0.87670982934503
804 => 0.91592350209826
805 => 0.9144184160242
806 => 0.90758060515108
807 => 0.86293688127095
808 => 0.82185506095603
809 => 0.85622174807569
810 => 0.85630935582874
811 => 0.85335722692685
812 => 0.83502180785857
813 => 0.8527191940876
814 => 0.85412394833899
815 => 0.85333765951252
816 => 0.83927993670253
817 => 0.81781639227313
818 => 0.82201031747817
819 => 0.82888005251778
820 => 0.81587421091094
821 => 0.81171805646582
822 => 0.81944513832003
823 => 0.84434340605573
824 => 0.83963653276614
825 => 0.83951361728258
826 => 0.85965161724036
827 => 0.84523715532299
828 => 0.82206321630581
829 => 0.81621149107727
830 => 0.79544180871041
831 => 0.80978750230027
901 => 0.81030377827343
902 => 0.80244678850369
903 => 0.82270076772329
904 => 0.82251412373913
905 => 0.84174226260117
906 => 0.87849924234622
907 => 0.86762839473449
908 => 0.8549867817069
909 => 0.8563612755569
910 => 0.87143608055158
911 => 0.86232150932747
912 => 0.86559917268871
913 => 0.87143111941553
914 => 0.87494967767491
915 => 0.85585500917092
916 => 0.85140312853906
917 => 0.84229614316406
918 => 0.83992030066965
919 => 0.84733775023411
920 => 0.84538351433624
921 => 0.810260387277
922 => 0.80658982507608
923 => 0.80670239597842
924 => 0.79747259279848
925 => 0.78339492754249
926 => 0.82039019130152
927 => 0.81741895387329
928 => 0.81413893770803
929 => 0.81454072097276
930 => 0.83059911108473
1001 => 0.82128443385165
1002 => 0.84604902992137
1003 => 0.84095817346133
1004 => 0.83573675574266
1005 => 0.83501499676566
1006 => 0.8330051964144
1007 => 0.82611284319614
1008 => 0.81778991251888
1009 => 0.81229439276584
1010 => 0.74929863960734
1011 => 0.76099028496412
1012 => 0.77444045722009
1013 => 0.77908340278467
1014 => 0.77114132311441
1015 => 0.82642644490907
1016 => 0.83652756940164
1017 => 0.80593060443359
1018 => 0.80020716155391
1019 => 0.82680167287141
1020 => 0.81076193150017
1021 => 0.81798462605752
1022 => 0.80237311102724
1023 => 0.83409450430683
1024 => 0.83385284043791
1025 => 0.82151250199199
1026 => 0.83194247154349
1027 => 0.83013000766497
1028 => 0.81619779595244
1029 => 0.83453618026856
1030 => 0.83454527587839
1031 => 0.82266796842628
1101 => 0.80879787359915
1102 => 0.80631822824108
1103 => 0.80445014855725
1104 => 0.81752519297066
1105 => 0.82924823690712
1106 => 0.85106191528382
1107 => 0.85654639230793
1108 => 0.87795267125537
1109 => 0.86520627439498
1110 => 0.87085658702972
1111 => 0.87699080068025
1112 => 0.87993176828255
1113 => 0.87513961939562
1114 => 0.90839238177692
1115 => 0.91119993376022
1116 => 0.91214128165498
1117 => 0.90092863727457
1118 => 0.91088808983647
1119 => 0.90622839180516
1120 => 0.91835163158124
1121 => 0.92025271037542
1122 => 0.91864256426959
1123 => 0.91924599668535
1124 => 0.89087063018217
1125 => 0.889399217737
1126 => 0.8693364046404
1127 => 0.87751214927409
1128 => 0.86222798655505
1129 => 0.86707475199758
1130 => 0.86921116002297
1201 => 0.86809522171059
1202 => 0.87797439360889
1203 => 0.86957507931386
1204 => 0.84740790791414
1205 => 0.8252346970834
1206 => 0.82495633048333
1207 => 0.81911851546127
1208 => 0.81489884444948
1209 => 0.81571170278723
1210 => 0.81857632159221
1211 => 0.81473234759694
1212 => 0.81555265434326
1213 => 0.8291752120074
1214 => 0.83190711879531
1215 => 0.82262303210511
1216 => 0.78534608435667
1217 => 0.77619822787706
1218 => 0.78277352570472
1219 => 0.77963095684651
1220 => 0.6292230298765
1221 => 0.66455914128579
1222 => 0.64356362378735
1223 => 0.65323932420794
1224 => 0.63180833760493
1225 => 0.64203632770614
1226 => 0.64014759140084
1227 => 0.69696701287542
1228 => 0.69607985576166
1229 => 0.69650449092471
1230 => 0.67623554821128
1231 => 0.70852452431554
]
'min_raw' => 0.41222026843836
'max_raw' => 0.92025271037542
'avg_raw' => 0.66623648940689
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.41222'
'max' => '$0.920252'
'avg' => '$0.666236'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.063563529004306
'max_diff' => 0.1392185738559
'year' => 2035
]
10 => [
'items' => [
101 => 0.72443123501852
102 => 0.72148732621079
103 => 0.72222824463367
104 => 0.70949681134843
105 => 0.69662775902844
106 => 0.68235399947262
107 => 0.70887288043734
108 => 0.70592443356646
109 => 0.71268710987056
110 => 0.72988649978494
111 => 0.73241917528396
112 => 0.73582311683851
113 => 0.73460304610026
114 => 0.76367008094704
115 => 0.76014987123663
116 => 0.76863256380528
117 => 0.75118302160813
118 => 0.73143720828631
119 => 0.73519024185952
120 => 0.73482879454643
121 => 0.73022715540088
122 => 0.72607300133347
123 => 0.71915750523688
124 => 0.74103915818734
125 => 0.74015080303814
126 => 0.75453224030375
127 => 0.75199018157323
128 => 0.73501369122348
129 => 0.73562000989748
130 => 0.73969779436695
131 => 0.75381105297509
201 => 0.75800082903391
202 => 0.75605995782976
203 => 0.76065385600771
204 => 0.76428468581924
205 => 0.7611098323308
206 => 0.8060590625537
207 => 0.78739300831575
208 => 0.79649071327376
209 => 0.79866046229945
210 => 0.79310269579504
211 => 0.79430797634115
212 => 0.79613364794922
213 => 0.80721876845023
214 => 0.83630933215036
215 => 0.84919334478698
216 => 0.88795553249025
217 => 0.84812350689162
218 => 0.84576003933391
219 => 0.8527422798452
220 => 0.87549978742128
221 => 0.89394260980771
222 => 0.90006115798524
223 => 0.90086982513312
224 => 0.91234862826755
225 => 0.9189280641572
226 => 0.91095479964454
227 => 0.90419829280565
228 => 0.87999732395723
229 => 0.88279865199849
301 => 0.90209702425937
302 => 0.92935711174633
303 => 0.95274910273884
304 => 0.94455804278645
305 => 1.007050048236
306 => 1.0132458753194
307 => 1.0123898123515
308 => 1.0265048285101
309 => 0.99848939590833
310 => 0.98651225569762
311 => 0.90565912627382
312 => 0.92837555768562
313 => 0.9613952248319
314 => 0.9570249480677
315 => 0.93304518316783
316 => 0.95273091193684
317 => 0.94622219437615
318 => 0.9410884987891
319 => 0.96460695348926
320 => 0.93874744646156
321 => 0.96113725646781
322 => 0.93242209354187
323 => 0.94459545885835
324 => 0.93768526794529
325 => 0.94215700834719
326 => 0.91601530533035
327 => 0.93012073372427
328 => 0.91542847313482
329 => 0.91542150709031
330 => 0.91509717462348
331 => 0.93238255405151
401 => 0.93294622965409
402 => 0.92017230814002
403 => 0.91833138648369
404 => 0.92513823871325
405 => 0.91716919746985
406 => 0.92089786171109
407 => 0.91728213491127
408 => 0.91646815864977
409 => 0.90998225731151
410 => 0.90718795268141
411 => 0.90828367152723
412 => 0.90454341822467
413 => 0.902289780319
414 => 0.9146488693208
415 => 0.90804590663136
416 => 0.91363687058883
417 => 0.90726526152339
418 => 0.88517848852467
419 => 0.87247615180972
420 => 0.83075628506007
421 => 0.84258798751694
422 => 0.85043241848662
423 => 0.84783983409794
424 => 0.85340970856181
425 => 0.85375165361724
426 => 0.85194083065089
427 => 0.84984412963664
428 => 0.84882357153774
429 => 0.85642997547936
430 => 0.86084574898725
501 => 0.85121971207938
502 => 0.84896446631443
503 => 0.85869692109635
504 => 0.86463371289107
505 => 0.9084676479081
506 => 0.90522028842029
507 => 0.91337052347257
508 => 0.91245293208124
509 => 0.92099567685029
510 => 0.93495945411438
511 => 0.90656719060296
512 => 0.91149510581793
513 => 0.9102868948094
514 => 0.92347782579061
515 => 0.9235190064373
516 => 0.91561038437819
517 => 0.91989777669917
518 => 0.91750467192406
519 => 0.9218293357002
520 => 0.90517691795451
521 => 0.92545776525134
522 => 0.93695569879971
523 => 0.93711534761819
524 => 0.94256527686687
525 => 0.94810272062215
526 => 0.9587313617007
527 => 0.94780629359117
528 => 0.92815315959608
529 => 0.92957205239129
530 => 0.91804942712077
531 => 0.9182431245333
601 => 0.91720915256488
602 => 0.92031218027589
603 => 0.90585785803869
604 => 0.90925025857688
605 => 0.90450087795755
606 => 0.911484781592
607 => 0.90397125576196
608 => 0.91028631217347
609 => 0.91301168117324
610 => 0.9230683514554
611 => 0.90248587738446
612 => 0.86051681944279
613 => 0.86933922424777
614 => 0.85629019455627
615 => 0.85749793193538
616 => 0.85993775365115
617 => 0.85202949321033
618 => 0.85353814008451
619 => 0.85348424060198
620 => 0.85301976398039
621 => 0.85096252000822
622 => 0.84797910923526
623 => 0.85986409950932
624 => 0.86188359095112
625 => 0.86637267026417
626 => 0.87972912532825
627 => 0.87839450050045
628 => 0.88057132896764
629 => 0.87581932464612
630 => 0.85771836378677
701 => 0.85870133304779
702 => 0.84644369061195
703 => 0.86605921478815
704 => 0.86141399975096
705 => 0.85841919939757
706 => 0.85760204037452
707 => 0.87099160350726
708 => 0.87499797065227
709 => 0.8725014715048
710 => 0.86738107891882
711 => 0.87721374639207
712 => 0.87984455340097
713 => 0.88043349406984
714 => 0.89785509560545
715 => 0.88140716806583
716 => 0.88536634770295
717 => 0.91625473703415
718 => 0.88824323021712
719 => 0.90308155010924
720 => 0.90235529156541
721 => 0.90994607392086
722 => 0.90173262585393
723 => 0.90183444138645
724 => 0.90857454187395
725 => 0.89910928632279
726 => 0.89676555593813
727 => 0.89352770919784
728 => 0.90059742910101
729 => 0.90483540644703
730 => 0.93899039140455
731 => 0.96105606934366
801 => 0.96009814007024
802 => 0.96885182046086
803 => 0.96490820727036
804 => 0.95217324000565
805 => 0.9739102762627
806 => 0.96703176847474
807 => 0.9675988242994
808 => 0.96757771845328
809 => 0.97215132480269
810 => 0.96891050553927
811 => 0.9625225181078
812 => 0.9667631622797
813 => 0.97935635941221
814 => 1.018446029718
815 => 1.0403211270904
816 => 1.017129121389
817 => 1.0331266563685
818 => 1.0235338358853
819 => 1.0217905350419
820 => 1.0318381692175
821 => 1.0419033904467
822 => 1.0412622793676
823 => 1.03395544561
824 => 1.0298280006244
825 => 1.0610823968509
826 => 1.0841101035859
827 => 1.0825397683663
828 => 1.0894707173253
829 => 1.1098201978352
830 => 1.111680699305
831 => 1.1114463188829
901 => 1.1068348718667
902 => 1.1268715781427
903 => 1.1435865510304
904 => 1.10576745512
905 => 1.1201684717543
906 => 1.1266335520933
907 => 1.1361262081337
908 => 1.1521419100279
909 => 1.1695392102401
910 => 1.1719993792418
911 => 1.1702537716051
912 => 1.1587797844507
913 => 1.1778161179358
914 => 1.1889671556344
915 => 1.195607343397
916 => 1.212445754741
917 => 1.1266734782285
918 => 1.0659595977542
919 => 1.0564782485991
920 => 1.0757589449416
921 => 1.0808431108065
922 => 1.0787936899214
923 => 1.010454697583
924 => 1.0561184579475
925 => 1.1052488245816
926 => 1.1071361220537
927 => 1.1317318108583
928 => 1.1397411753444
929 => 1.1595439286627
930 => 1.1583052610509
1001 => 1.1631269163533
1002 => 1.1620185012987
1003 => 1.1986989318591
1004 => 1.239162893864
1005 => 1.2377617555273
1006 => 1.2319445822412
1007 => 1.2405840765464
1008 => 1.2823472217171
1009 => 1.2785023405506
1010 => 1.2822373150977
1011 => 1.3314784169216
1012 => 1.3954988537578
1013 => 1.3657549333006
1014 => 1.4302906821102
1015 => 1.4709125150927
1016 => 1.5411637748601
1017 => 1.5323679711425
1018 => 1.5597162710424
1019 => 1.5166216467483
1020 => 1.4176676785086
1021 => 1.4020078342541
1022 => 1.433359239022
1023 => 1.5104336084187
1024 => 1.4309318928453
1025 => 1.4470149863626
1026 => 1.4423830543476
1027 => 1.442136238375
1028 => 1.4515562001773
1029 => 1.4378920542709
1030 => 1.3822218657156
1031 => 1.407735185064
1101 => 1.3978832672134
1102 => 1.4088147045778
1103 => 1.4678071635659
1104 => 1.4417251912427
1105 => 1.4142499521276
1106 => 1.4487099992216
1107 => 1.4925894809292
1108 => 1.4898435818229
1109 => 1.48451538986
1110 => 1.5145501289799
1111 => 1.5641587186531
1112 => 1.5775677210983
1113 => 1.5874659725684
1114 => 1.5888307742138
1115 => 1.6028890793808
1116 => 1.5272940293486
1117 => 1.6472653151683
1118 => 1.6679810420895
1119 => 1.6640873440073
1120 => 1.6871120026291
1121 => 1.6803375639833
1122 => 1.6705224652625
1123 => 1.7070214466635
1124 => 1.6651783098032
1125 => 1.6057872449344
1126 => 1.5732041321254
1127 => 1.6161122034771
1128 => 1.6423146653662
1129 => 1.6596328258854
1130 => 1.6648732907946
1201 => 1.5331622578911
1202 => 1.4621773161848
1203 => 1.5076778499745
1204 => 1.563191641477
1205 => 1.5269856474338
1206 => 1.5284048538533
1207 => 1.4767846211155
1208 => 1.5677588866623
1209 => 1.5545047013862
1210 => 1.6232674380451
1211 => 1.606856659086
1212 => 1.6629300014773
1213 => 1.6481640112034
1214 => 1.7094568112752
1215 => 1.7339081686602
1216 => 1.7749658032595
1217 => 1.8051679664054
1218 => 1.82290325428
1219 => 1.8218384941194
1220 => 1.8921145403638
1221 => 1.8506752111515
1222 => 1.7986176471609
1223 => 1.7976760900678
1224 => 1.8246374401199
1225 => 1.8811410333441
1226 => 1.8957915929733
1227 => 1.9039792571399
1228 => 1.8914395644541
1229 => 1.8464601425776
1230 => 1.8270382562622
1231 => 1.8435862661091
]
'min_raw' => 0.68235399947262
'max_raw' => 1.9039792571399
'avg_raw' => 1.2931666283062
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.682353'
'max' => '$1.90'
'avg' => '$1.29'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.27013373103426
'max_diff' => 0.98372654676443
'year' => 2036
]
11 => [
'items' => [
101 => 1.823349472053
102 => 1.8582838560354
103 => 1.9062562268251
104 => 1.8963501219603
105 => 1.9294647453169
106 => 1.963734896731
107 => 2.012742752422
108 => 2.0255552206553
109 => 2.0467337434304
110 => 2.0685334001482
111 => 2.0755348623688
112 => 2.088902826174
113 => 2.0888323704061
114 => 2.1291176291007
115 => 2.1735535169715
116 => 2.1903270359496
117 => 2.2288968179424
118 => 2.1628474179261
119 => 2.2129466465593
120 => 2.2581374048514
121 => 2.2042591198192
122 => 2.2785177837057
123 => 2.2814010793507
124 => 2.3249354203834
125 => 2.2808050255762
126 => 2.2546005380089
127 => 2.3302519117463
128 => 2.366857228502
129 => 2.3558314091912
130 => 2.2719243798246
131 => 2.2230868897915
201 => 2.0952697583265
202 => 2.246674671836
203 => 2.3204195886646
204 => 2.2717333983055
205 => 2.2962878808161
206 => 2.4302491755758
207 => 2.4812529632688
208 => 2.4706445319721
209 => 2.4724371822316
210 => 2.4999579002865
211 => 2.6219999200783
212 => 2.5488695129072
213 => 2.6047749690454
214 => 2.634427021399
215 => 2.6619695001518
216 => 2.5943338772246
217 => 2.506340925561
218 => 2.4784698640763
219 => 2.2668925161742
220 => 2.2558789963821
221 => 2.249696773979
222 => 2.2107187362199
223 => 2.1800926755244
224 => 2.1557376949865
225 => 2.0918229530425
226 => 2.1133923022117
227 => 2.0115255435962
228 => 2.0766962858221
301 => 1.9141144794129
302 => 2.049517438935
303 => 1.9758237640842
304 => 2.0253070847615
305 => 2.0251344421172
306 => 1.9340199600493
307 => 1.8814670283033
308 => 1.9149558018026
309 => 1.950858425336
310 => 1.9566835052133
311 => 2.0032321937787
312 => 2.0162229321966
313 => 1.9768603883108
314 => 1.9107453328477
315 => 1.9261023523079
316 => 1.8811558187941
317 => 1.8023887476546
318 => 1.8589606332881
319 => 1.8782767623336
320 => 1.8868078653357
321 => 1.8093494973293
322 => 1.7850103963987
323 => 1.7720524632881
324 => 1.9007464302186
325 => 1.9077965762372
326 => 1.8717270324156
327 => 2.0347647907439
328 => 1.9978643247526
329 => 2.0390911860986
330 => 1.9247088637566
331 => 1.9290784225062
401 => 1.8749279980515
402 => 1.9052486174135
403 => 1.8838189809276
404 => 1.9027990110032
405 => 1.914175562773
406 => 1.9683171016759
407 => 2.0501356483405
408 => 1.960230161225
409 => 1.9210570530185
410 => 1.9453598290319
411 => 2.0100813241379
412 => 2.1081377022559
413 => 2.0500863528416
414 => 2.0758485559358
415 => 2.0814764512313
416 => 2.0386715353509
417 => 2.1097159805608
418 => 2.1477892759128
419 => 2.1868445987855
420 => 2.2207552413307
421 => 2.1712450439852
422 => 2.2242280521529
423 => 2.1815331003297
424 => 2.1432313148213
425 => 2.1432894028196
426 => 2.1192621332704
427 => 2.0727062708881
428 => 2.0641206555697
429 => 2.1087841106996
430 => 2.1445999720689
501 => 2.1475499379577
502 => 2.1673794390971
503 => 2.1791143336113
504 => 2.2941322526661
505 => 2.340393411188
506 => 2.3969606801497
507 => 2.4189968193669
508 => 2.4853176980175
509 => 2.4317582021888
510 => 2.4201702683612
511 => 2.2592975101489
512 => 2.2856404152939
513 => 2.3278179481433
514 => 2.2599930021307
515 => 2.3030123192252
516 => 2.3115052436933
517 => 2.2576883364187
518 => 2.2864342718854
519 => 2.2100935898618
520 => 2.0517996665936
521 => 2.1098922069481
522 => 2.1526678703866
523 => 2.0916217244585
524 => 2.2010445782225
525 => 2.1371220059998
526 => 2.1168616194298
527 => 2.0378186280708
528 => 2.0751238773485
529 => 2.1255797611563
530 => 2.0944038910892
531 => 2.1590985025589
601 => 2.2507233258226
602 => 2.316020631233
603 => 2.3210333475425
604 => 2.2790515547434
605 => 2.3463276456282
606 => 2.3468176785033
607 => 2.2709299731543
608 => 2.2244491761726
609 => 2.2138886413019
610 => 2.2402709279237
611 => 2.2723038943213
612 => 2.3228109542395
613 => 2.3533313127513
614 => 2.4329122210027
615 => 2.4544445330121
616 => 2.4781020157213
617 => 2.5097157083183
618 => 2.5476760518654
619 => 2.4646209812679
620 => 2.4679209140568
621 => 2.3905811822921
622 => 2.3079325872621
623 => 2.3706525685971
624 => 2.4526506009031
625 => 2.4338401616923
626 => 2.4317236030187
627 => 2.4352830676233
628 => 2.4211006107499
629 => 2.3569538839378
630 => 2.3247397993126
701 => 2.3663041871686
702 => 2.3883938094961
703 => 2.4226528873084
704 => 2.4184297328466
705 => 2.5066774381348
706 => 2.5409678279377
707 => 2.5321948788576
708 => 2.5338093126212
709 => 2.5958904254368
710 => 2.6649373908424
711 => 2.7296089854944
712 => 2.795395709284
713 => 2.7160872460561
714 => 2.675819299495
715 => 2.7173655416396
716 => 2.6953205207519
717 => 2.8219977497501
718 => 2.8307686062383
719 => 2.9574366750309
720 => 3.0776597556682
721 => 3.0021497927401
722 => 3.0733522867379
723 => 3.1503635892209
724 => 3.2989308863443
725 => 3.2488986473337
726 => 3.2105747363567
727 => 3.1743588256632
728 => 3.2497183867024
729 => 3.3466672580809
730 => 3.3675491164111
731 => 3.4013857043898
801 => 3.3658106694713
802 => 3.4086568805691
803 => 3.5599228333235
804 => 3.5190494376278
805 => 3.4610026450136
806 => 3.5804125869766
807 => 3.6236265807787
808 => 3.9269250206256
809 => 4.309851829566
810 => 4.1513176162317
811 => 4.052910314148
812 => 4.0760383643901
813 => 4.2158702721246
814 => 4.260779842846
815 => 4.1387001483678
816 => 4.1818207602922
817 => 4.4194195715209
818 => 4.5468837106625
819 => 4.3737702889904
820 => 3.8961572243748
821 => 3.4557761664424
822 => 3.5725850536236
823 => 3.559342550819
824 => 3.8146128324288
825 => 3.5180746206582
826 => 3.5230675636297
827 => 3.7836165643273
828 => 3.7141065578819
829 => 3.6015092496093
830 => 3.4565982514004
831 => 3.1887168685663
901 => 2.9514468573651
902 => 3.4167879893508
903 => 3.3967216335717
904 => 3.3676625767361
905 => 3.4323303632053
906 => 3.746338778028
907 => 3.7390998677203
908 => 3.6930496136671
909 => 3.7279783254981
910 => 3.5953860775475
911 => 3.6295581189137
912 => 3.4557064078328
913 => 3.5342946419302
914 => 3.6012676663558
915 => 3.6147134925618
916 => 3.6450076255649
917 => 3.3861475758983
918 => 3.5023681384668
919 => 3.5706368305818
920 => 3.2621963959701
921 => 3.5645399549011
922 => 3.3816413983452
923 => 3.319562881206
924 => 3.4031434263112
925 => 3.370572006599
926 => 3.3425690125883
927 => 3.3269428607779
928 => 3.388315188655
929 => 3.3854520962037
930 => 3.2850350559413
1001 => 3.154045120441
1002 => 3.198009642393
1003 => 3.1820369193982
1004 => 3.1241497107431
1005 => 3.1631587000484
1006 => 2.9913828531453
1007 => 2.6958514366801
1008 => 2.8910885427691
1009 => 2.8835721265618
1010 => 2.8797820086677
1011 => 3.0264972979364
1012 => 3.0123940081708
1013 => 2.9867963991465
1014 => 3.1236795905795
1015 => 3.0737153843677
1016 => 3.2276932948648
1017 => 3.329113105385
1018 => 3.3033897608499
1019 => 3.3987755828487
1020 => 3.1990224961829
1021 => 3.2653724588704
1022 => 3.2790470942233
1023 => 3.121990473245
1024 => 3.0147014807948
1025 => 3.0075465281824
1026 => 2.8215222006077
1027 => 2.9208948948622
1028 => 3.0083387534847
1029 => 2.9664599311221
1030 => 2.9532023470563
1031 => 3.0209324688292
1101 => 3.0261956793602
1102 => 2.9061939214829
1103 => 2.9311460869071
1104 => 3.035200764678
1105 => 2.928524176004
1106 => 2.7212689897323
1107 => 2.6698668380098
1108 => 2.6630088434404
1109 => 2.5236021312129
1110 => 2.6733017755769
1111 => 2.607953869111
1112 => 2.8143871226487
1113 => 2.6964735553517
1114 => 2.6913905371364
1115 => 2.6837068095873
1116 => 2.5637136935543
1117 => 2.5899845600051
1118 => 2.6773129212538
1119 => 2.7084726643717
1120 => 2.7052224478803
1121 => 2.6768849646419
1122 => 2.689857719357
1123 => 2.6480679564121
1124 => 2.6333111213376
1125 => 2.5867344906551
1126 => 2.5182797106745
1127 => 2.5277987676883
1128 => 2.3921719363792
1129 => 2.3182752404212
1130 => 2.2978216089228
1201 => 2.2704701580671
1202 => 2.3009110280764
1203 => 2.3917877226067
1204 => 2.2821711484369
1205 => 2.0942412207315
1206 => 2.1055361296036
1207 => 2.1309124363507
1208 => 2.0836238566085
1209 => 2.0388691845122
1210 => 2.0777797408386
1211 => 1.9981513530334
1212 => 2.1405351465878
1213 => 2.1366840639981
1214 => 2.1897559372805
1215 => 2.2229428687884
1216 => 2.1464577360593
1217 => 2.1272219320157
1218 => 2.1381795202175
1219 => 1.9570749955715
1220 => 2.1749558338682
1221 => 2.1768400764054
1222 => 2.1607060478444
1223 => 2.2767208679212
1224 => 2.521548324213
1225 => 2.4294343869944
1226 => 2.3937650863449
1227 => 2.325957719736
1228 => 2.4163070097393
1229 => 2.4093695939355
1230 => 2.377995968734
1231 => 2.3590211023205
]
'min_raw' => 1.7720524632881
'max_raw' => 4.5468837106625
'avg_raw' => 3.1594680869753
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$1.77'
'max' => '$4.54'
'avg' => '$3.15'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.0896984638154
'max_diff' => 2.6429044535227
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.055622701943618
]
1 => [
'year' => 2028
'avg' => 0.095464703920998
]
2 => [
'year' => 2029
'avg' => 0.26079236527332
]
3 => [
'year' => 2030
'avg' => 0.20120092142473
]
4 => [
'year' => 2031
'avg' => 0.19760423939477
]
5 => [
'year' => 2032
'avg' => 0.34646242000186
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.055622701943618
'min' => '$0.055622'
'max_raw' => 0.34646242000186
'max' => '$0.346462'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.34646242000186
]
1 => [
'year' => 2033
'avg' => 0.89113697055531
]
2 => [
'year' => 2034
'avg' => 0.56484543797679
]
3 => [
'year' => 2035
'avg' => 0.66623648940689
]
4 => [
'year' => 2036
'avg' => 1.2931666283062
]
5 => [
'year' => 2037
'avg' => 3.1594680869753
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.34646242000186
'min' => '$0.346462'
'max_raw' => 3.1594680869753
'max' => '$3.15'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 3.1594680869753
]
]
]
]
'prediction_2025_max_price' => '$0.0951046'
'last_price' => 0.092216
'sma_50day_nextmonth' => '$0.08369'
'sma_200day_nextmonth' => '$0.065085'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.090633'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.087955'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.083119'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.08235'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.067897'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.055096'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.081353'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.090342'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.088254'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.085234'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.081661'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.072072'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.076735'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.155251'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.064758'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.372745'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.479325'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.088133'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.083264'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.075395'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.1066046'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.259548'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.319016'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.270251'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '66.92'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'SELL'
'vwma_10' => '0.083229'
'vwma_10_action' => 'BUY'
'hma_9' => '0.093449'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 181.51
'cci_20_action' => 'SELL'
'adx_14' => 21.97
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.007799'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 75.59
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '0.010261'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 9
'buy_signals' => 24
'sell_pct' => 27.27
'buy_pct' => 72.73
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767689753
'last_updated_date' => '6. Januar 2026'
]
APF coin Preisprognose für 2026
Die Preisprognose für APF coin im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.03186 am unteren Ende und $0.0951046 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte APF coin im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn APFC das prognostizierte Preisziel erreicht.
APF coin Preisprognose 2027-2032
Die Preisprognose für APFC für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.055622 am unteren Ende und $0.346462 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte APF coin, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| APF coin Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.030671 | $0.055622 | $0.080573 |
| 2028 | $0.055352 | $0.095464 | $0.135576 |
| 2029 | $0.121594 | $0.260792 | $0.39999 |
| 2030 | $0.10341 | $0.20120092 | $0.298991 |
| 2031 | $0.122263 | $0.1976042 | $0.272944 |
| 2032 | $0.186626 | $0.346462 | $0.506298 |
APF coin Preisprognose 2032-2037
Die Preisprognose für APF coin für die Jahre 2032-2037 wird derzeit zwischen $0.346462 am unteren Ende und $3.15 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte APF coin bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| APF coin Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.186626 | $0.346462 | $0.506298 |
| 2033 | $0.433678 | $0.891136 | $1.34 |
| 2034 | $0.348656 | $0.564845 | $0.781034 |
| 2035 | $0.41222 | $0.666236 | $0.920252 |
| 2036 | $0.682353 | $1.29 | $1.90 |
| 2037 | $1.77 | $3.15 | $4.54 |
APF coin Potenzielles Preishistogramm
APF coin Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für APF coin Bullisch, mit 24 technischen Indikatoren, die bullische Signale zeigen, und 9 anzeigen bärische Signale. Die Preisprognose für APFC wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von APF coin
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von APF coin im nächsten Monat steigen, und bis zum 04.02.2026 $0.065085 erreichen. Der kurzfristige 50-Tage-SMA für APF coin wird voraussichtlich bis zum 04.02.2026 $0.08369 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 66.92, was darauf hindeutet, dass sich der APFC-Markt in einem NEUTRAL Zustand befindet.
Beliebte APFC Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.090633 | BUY |
| SMA 5 | $0.087955 | BUY |
| SMA 10 | $0.083119 | BUY |
| SMA 21 | $0.08235 | BUY |
| SMA 50 | $0.067897 | BUY |
| SMA 100 | $0.055096 | BUY |
| SMA 200 | $0.081353 | BUY |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.090342 | BUY |
| EMA 5 | $0.088254 | BUY |
| EMA 10 | $0.085234 | BUY |
| EMA 21 | $0.081661 | BUY |
| EMA 50 | $0.072072 | BUY |
| EMA 100 | $0.076735 | BUY |
| EMA 200 | $0.155251 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.064758 | BUY |
| SMA 50 | $0.372745 | SELL |
| SMA 100 | $0.479325 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.1066046 | SELL |
| EMA 50 | $0.259548 | SELL |
| EMA 100 | $0.319016 | SELL |
| EMA 200 | $0.270251 | SELL |
APF coin Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 66.92 | NEUTRAL |
| Stoch RSI (14) | 108 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 181.51 | SELL |
| Average Directional Index (14) | 21.97 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.007799 | NEUTRAL |
| Momentum (10) | 0.01 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 75.59 | SELL |
| VWMA (10) | 0.083229 | BUY |
| Hull Moving Average (9) | 0.093449 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | 0.010261 | BUY |
Auf weltweiten Geldflüssen basierende APF coin-Preisprognose
Definition weltweiter Geldflüsse, die für APF coin-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
APF coin-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.129578 | $0.182079 | $0.255852 | $0.359515 | $0.505179 | $0.709862 |
| Amazon.com aktie | $0.192414 | $0.401483 | $0.837719 | $1.74 | $3.64 | $7.61 |
| Apple aktie | $0.1308013 | $0.185531 | $0.263162 | $0.373276 | $0.529463 | $0.7510037 |
| Netflix aktie | $0.1455023 | $0.229579 | $0.362241 | $0.571559 | $0.901831 | $1.42 |
| Google aktie | $0.119419 | $0.154647 | $0.200267 | $0.259345 | $0.335851 | $0.434926 |
| Tesla aktie | $0.209046 | $0.473893 | $1.07 | $2.43 | $5.52 | $12.51 |
| Kodak aktie | $0.069152 | $0.051856 | $0.038887 | $0.029161 | $0.021867 | $0.016398 |
| Nokia aktie | $0.061089 | $0.040469 | $0.026809 | $0.017759 | $0.011765 | $0.007793 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
APF coin Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in APF coin investieren?", "Sollte ich heute APFC kaufen?", "Wird APF coin auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere APF coin-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie APF coin.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich APF coin zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der APF coin-Preis entspricht heute $0.09221 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
APF coin-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von APF coin 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.094612 | $0.097072 | $0.099595 | $0.102184 |
| Wenn die Wachstumsrate von APF coin 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0970099 | $0.102053 | $0.107358 | $0.112939 |
| Wenn die Wachstumsrate von APF coin 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.10420095 | $0.117743 | $0.133046 | $0.150337 |
| Wenn die Wachstumsrate von APF coin 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.116185 | $0.146386 | $0.184436 | $0.232377 |
| Wenn die Wachstumsrate von APF coin 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.140155 | $0.213017 | $0.323758 | $0.492068 |
| Wenn die Wachstumsrate von APF coin 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.212065 | $0.487678 | $1.12 | $2.57 |
| Wenn die Wachstumsrate von APF coin 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.331915 | $1.19 | $4.29 | $15.47 |
Fragefeld
Ist APFC eine gute Investition?
Die Entscheidung, APF coin zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von APF coin in den letzten 2026 Stunden um 1.3403% gestiegen, und APF coin hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in APF coin investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann APF coin steigen?
Es scheint, dass der Durchschnittswert von APF coin bis zum Ende dieses Jahres potenziell auf $0.0951046 steigen könnte. Betrachtet man die Aussichten von APF coin in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.298991 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird APF coin nächste Woche kosten?
Basierend auf unserer neuen experimentellen APF coin-Prognose wird der Preis von APF coin in der nächsten Woche um 0.86% steigen und $0.09300515 erreichen bis zum 13. Januar 2026.
Wie viel wird APF coin nächsten Monat kosten?
Basierend auf unserer neuen experimentellen APF coin-Prognose wird der Preis von APF coin im nächsten Monat um -11.62% fallen und $0.081502 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von APF coin in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von APF coin im Jahr 2026 wird erwartet, dass APFC innerhalb der Spanne von $0.03186 bis $0.0951046 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte APF coin-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird APF coin in 5 Jahren sein?
Die Zukunft von APF coin scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.298991 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der APF coin-Prognose für 2030 könnte der Wert von APF coin seinen höchsten Gipfel von ungefähr $0.298991 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.10341 liegen wird.
Wie viel wird APF coin im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen APF coin-Preisprognosesimulation wird der Wert von APFC im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.0951046 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.0951046 und $0.03186 während des Jahres 2026 liegen.
Wie viel wird APF coin im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von APF coin könnte der Wert von APFC um -12.62% fallen und bis zu $0.080573 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.080573 und $0.030671 im Laufe des Jahres schwanken.
Wie viel wird APF coin im Jahr 2028 kosten?
Unser neues experimentelles APF coin-Preisprognosemodell deutet darauf hin, dass der Wert von APFC im Jahr 2028 um 47.02% steigen, und im besten Fall $0.135576 erreichen wird. Der Preis wird voraussichtlich zwischen $0.135576 und $0.055352 im Laufe des Jahres liegen.
Wie viel wird APF coin im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von APF coin im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.39999 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.39999 und $0.121594.
Wie viel wird APF coin im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für APF coin-Preisprognosen wird der Wert von APFC im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.298991 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.298991 und $0.10341 während des Jahres 2030 liegen.
Wie viel wird APF coin im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von APF coin im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.272944 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.272944 und $0.122263 während des Jahres schwanken.
Wie viel wird APF coin im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen APF coin-Preisprognose könnte APFC eine 449.04% Steigerung im Wert erfahren und $0.506298 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.506298 und $0.186626 liegen.
Wie viel wird APF coin im Jahr 2033 kosten?
Laut unserer experimentellen APF coin-Preisprognose wird der Wert von APFC voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $1.34 beträgt. Im Laufe des Jahres könnte der Preis von APFC zwischen $1.34 und $0.433678 liegen.
Wie viel wird APF coin im Jahr 2034 kosten?
Die Ergebnisse unserer neuen APF coin-Preisprognosesimulation deuten darauf hin, dass APFC im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.781034 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.781034 und $0.348656.
Wie viel wird APF coin im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von APF coin könnte APFC um 897.93% steigen, wobei der Wert im Jahr 2035 $0.920252 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.920252 und $0.41222.
Wie viel wird APF coin im Jahr 2036 kosten?
Unsere jüngste APF coin-Preisprognosesimulation deutet darauf hin, dass der Wert von APFC im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $1.90 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $1.90 und $0.682353.
Wie viel wird APF coin im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von APF coin um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $4.54 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $4.54 und $1.77 liegen.
Verwandte Prognosen
Ramses Exchange-Preisprognose
Wombat-Preisprognose
Octus Bridge-Preisprognose
BLOCX.-Preisprognose
Warped Games-Preisprognose
Hold-Preisprognose
Neos Credits-Preisprognose
FlokiFork-Preisprognose
VinuChain-Preisprognose
AI Power Grid-Preisprognose
dotmoovs-Preisprognose
Eve AI-Preisprognose
Bullieverse-Preisprognose
Wownero-Preisprognose
Metronome-Preisprognose
Bag-Preisprognose
Titanium22-PreisprognoseAri10-Preisprognose
Horizon Protocol-Preisprognose
REV3AL-Preisprognose
Real Smurf Cat-Preisprognose
Blink Galaxy-Preisprognose
Reddex-Preisprognose
ION-Preisprognose
Baby Grok-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von APF coin?
APF coin-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
APF coin Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von APF coin. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von APFC über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von APFC über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von APFC einzuschätzen.
Wie liest man APF coin-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von APF coin in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von APFC innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von APF coin?
Die Preisentwicklung von APF coin wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von APFC. Die Marktkapitalisierung von APF coin kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von APFC-„Walen“, großen Inhabern von APF coin, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen APF coin-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


