Veno Finance Preisvorhersage bis zu $0.009061 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.003035 | $0.009061 |
| 2027 | $0.002922 | $0.007677 |
| 2028 | $0.005274 | $0.012918 |
| 2029 | $0.011585 | $0.038112 |
| 2030 | $0.009853 | $0.028489 |
| 2031 | $0.011649 | $0.0260072 |
| 2032 | $0.017782 | $0.048242 |
| 2033 | $0.041322 | $0.128499 |
| 2034 | $0.033221 | $0.07442 |
| 2035 | $0.039277 | $0.087685 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Veno Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.51 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Veno Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Veno Finance'
'name_with_ticker' => 'Veno Finance <small>VNO</small>'
'name_lang' => 'Veno Finance'
'name_lang_with_ticker' => 'Veno Finance <small>VNO</small>'
'name_with_lang' => 'Veno Finance'
'name_with_lang_with_ticker' => 'Veno Finance <small>VNO</small>'
'image' => '/uploads/coins/veno-finance.png?1717218716'
'price_for_sd' => 0.008786
'ticker' => 'VNO'
'marketcap' => '$4.59M'
'low24h' => '$0.008415'
'high24h' => '$0.008829'
'volume24h' => '$125.49K'
'current_supply' => '522.93M'
'max_supply' => '1.89B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.008786'
'change_24h_pct' => '3.0329%'
'ath_price' => '$0.5217'
'ath_days' => 1063
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '08.02.2023'
'ath_pct' => '-98.32%'
'fdv' => '$16.59M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.433245'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.008861'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.007765'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003035'
'current_year_max_price_prediction' => '$0.009061'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.009853'
'grand_prediction_max_price' => '$0.028489'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0089532135326905
107 => 0.0089866415820051
108 => 0.0090619566839893
109 => 0.0084183973836353
110 => 0.0087073366155858
111 => 0.008877061344412
112 => 0.0081102388449369
113 => 0.0088619037291197
114 => 0.0084071944480063
115 => 0.0082528592884922
116 => 0.0084606512486668
117 => 0.0083796745197025
118 => 0.008310055483252
119 => 0.0082712068647057
120 => 0.0084237863470962
121 => 0.0084166683318708
122 => 0.0081670186842786
123 => 0.007841360896016
124 => 0.0079506623391094
125 => 0.0079109521001271
126 => 0.0077670370713324
127 => 0.0078640184243732
128 => 0.007436961626721
129 => 0.0067022326028412
130 => 0.0071876171013748
131 => 0.007168930326178
201 => 0.007159507606746
202 => 0.0075242606423519
203 => 0.0074891980542627
204 => 0.0074255591135469
205 => 0.0077658682922799
206 => 0.007641650864238
207 => 0.0080244597081562
208 => 0.0082766023712845
209 => 0.0082126508359545
210 => 0.0084497922293379
211 => 0.0079531804236004
212 => 0.008118134944859
213 => 0.0081521318430733
214 => 0.0077616689298391
215 => 0.0074949347273004
216 => 0.0074771465969836
217 => 0.0070146662480187
218 => 0.0072617195174248
219 => 0.0074791161707432
220 => 0.0073750000444655
221 => 0.0073420399892668
222 => 0.0075104257631133
223 => 0.0075235107798678
224 => 0.0072251710111773
225 => 0.0072872052962798
226 => 0.0075458985774991
227 => 0.0072806868893317
228 => 0.0067654239013056
301 => 0.006637631556207
302 => 0.0066205817016906
303 => 0.0062739987264445
304 => 0.0066461712517694
305 => 0.0064837079708615
306 => 0.0069969275286406
307 => 0.0067037792696889
308 => 0.0066911422341534
309 => 0.0066720395014916
310 => 0.0063737212175348
311 => 0.0064390339626054
312 => 0.0066561434746318
313 => 0.0067336105944366
314 => 0.0067255301391716
315 => 0.0066550795195792
316 => 0.0066873314524631
317 => 0.0065834367393259
318 => 0.0065467493537358
319 => 0.0064309538731528
320 => 0.0062607665060138
321 => 0.0062844321032342
322 => 0.0059472463969848
323 => 0.0057635297284203
324 => 0.0057126793759084
325 => 0.005644680159347
326 => 0.005720360068358
327 => 0.0059462911922442
328 => 0.0056737703228757
329 => 0.0052065524074596
330 => 0.0052346330002767
331 => 0.0052977217551339
401 => 0.0051801562778314
402 => 0.0050688904200872
403 => 0.0051656270561114
404 => 0.0049676606661247
405 => 0.0053216450475682
406 => 0.0053120707620799
407 => 0.0054440142492347
408 => 0.0055265212195055
409 => 0.0053363693649801
410 => 0.0052885466877922
411 => 0.0053157886581379
412 => 0.0048655395705623
413 => 0.0054072192930046
414 => 0.005411903761738
415 => 0.005371792496419
416 => 0.0056602202261343
417 => 0.0062688926986985
418 => 0.0060398856307264
419 => 0.0059512071722323
420 => 0.0057826293578115
421 => 0.006007249286367
422 => 0.0059900019804707
423 => 0.005912003122361
424 => 0.005864829169605
425 => 0.0059517486239903
426 => 0.0058540588873116
427 => 0.0058365111262697
428 => 0.005730190786508
429 => 0.0056922392624803
430 => 0.0056641414649838
501 => 0.0056332085507728
502 => 0.0057014388515203
503 => 0.0055468200135829
504 => 0.005360364852502
505 => 0.0053448631233309
506 => 0.0053876647604983
507 => 0.0053687282222588
508 => 0.0053447724624713
509 => 0.0052990343930738
510 => 0.0052854648849228
511 => 0.0053295592034241
512 => 0.0052797792886946
513 => 0.0053532322645302
514 => 0.0053332571194415
515 => 0.0052216775827475
516 => 0.0050826081679914
517 => 0.0050813701584921
518 => 0.0050514078812024
519 => 0.0050132464162155
520 => 0.0050026307696722
521 => 0.0051574801664459
522 => 0.005478013783515
523 => 0.0054150853647649
524 => 0.0054605575964756
525 => 0.0056842359709702
526 => 0.0057553365999787
527 => 0.0057048710576192
528 => 0.0056357907106584
529 => 0.005638829895336
530 => 0.0058748983529441
531 => 0.0058896216530777
601 => 0.0059268226825985
602 => 0.0059746365185425
603 => 0.0057130139606333
604 => 0.0056265074963858
605 => 0.0055855159344294
606 => 0.0054592777893347
607 => 0.0055954148059787
608 => 0.0055160935963485
609 => 0.005526796737526
610 => 0.0055198263027931
611 => 0.005523632631496
612 => 0.0053215461017193
613 => 0.0053951758118146
614 => 0.0052727521380641
615 => 0.0051088405816143
616 => 0.0051082910926023
617 => 0.0051484082138301
618 => 0.0051245449803407
619 => 0.0050603296326007
620 => 0.0050694511196592
621 => 0.0049895372949464
622 => 0.0050791541048659
623 => 0.00508172399431
624 => 0.0050472166410304
625 => 0.005185283701448
626 => 0.0052418498887532
627 => 0.0052191364096054
628 => 0.0052402562505066
629 => 0.0054177003246688
630 => 0.005446631451185
701 => 0.0054594807465005
702 => 0.0054422643929831
703 => 0.0052434996024437
704 => 0.0052523156661172
705 => 0.0051876292404307
706 => 0.0051329760272132
707 => 0.0051351618691235
708 => 0.0051632607251377
709 => 0.0052859700773279
710 => 0.0055442046749007
711 => 0.0055540044891115
712 => 0.0055658821498158
713 => 0.0055175697344974
714 => 0.0055029982477499
715 => 0.0055222217999898
716 => 0.005619201137508
717 => 0.0058686583232382
718 => 0.0057804834931159
719 => 0.0057087959837035
720 => 0.0057716852562719
721 => 0.0057620039457024
722 => 0.0056802839415693
723 => 0.0056779903332302
724 => 0.0055211435178328
725 => 0.0054631608214096
726 => 0.0054147061403488
727 => 0.0053617948935718
728 => 0.0053304273328814
729 => 0.0053786221624033
730 => 0.0053896448901394
731 => 0.0052842660530883
801 => 0.0052699033069865
802 => 0.0053559579400825
803 => 0.005318088504497
804 => 0.0053570381581135
805 => 0.0053660748118565
806 => 0.0053646197024721
807 => 0.0053250796624439
808 => 0.0053502813048569
809 => 0.0052906719075789
810 => 0.005225855641081
811 => 0.0051845069012515
812 => 0.0051484246416358
813 => 0.0051684451763838
814 => 0.0050970756256123
815 => 0.0050742430699352
816 => 0.0053417435554623
817 => 0.0055393490402359
818 => 0.005536475778227
819 => 0.0055189855346904
820 => 0.0054929985805613
821 => 0.0056173000299507
822 => 0.0055739958904694
823 => 0.005605503270124
824 => 0.0056135232206066
825 => 0.0056377971952631
826 => 0.0056464730547842
827 => 0.0056202485815396
828 => 0.0055322360462814
829 => 0.0053129171763986
830 => 0.0052108236504281
831 => 0.0051771310863557
901 => 0.0051783557470685
902 => 0.0051445741374849
903 => 0.0051545243354928
904 => 0.0051411138646825
905 => 0.0051157176773093
906 => 0.0051668770333781
907 => 0.0051727726725826
908 => 0.0051608314675674
909 => 0.0051636440536264
910 => 0.0050647759762556
911 => 0.0050722927014479
912 => 0.0050304386203978
913 => 0.0050225914847594
914 => 0.0049167880125164
915 => 0.0047293418249794
916 => 0.0048332052087165
917 => 0.0047077528465638
918 => 0.0046602421361031
919 => 0.0048851504499927
920 => 0.0048625758932638
921 => 0.0048239380650678
922 => 0.0047667846643369
923 => 0.0047455859120533
924 => 0.0046167890038875
925 => 0.0046091789954483
926 => 0.0046730142209443
927 => 0.0046435564608139
928 => 0.0046021866090646
929 => 0.0044523491996233
930 => 0.0042838823419499
1001 => 0.0042889672974381
1002 => 0.0043425534704267
1003 => 0.004498362495471
1004 => 0.0044374852138627
1005 => 0.0043933180475696
1006 => 0.004385046864983
1007 => 0.0044885780319475
1008 => 0.0046350963236523
1009 => 0.0047038394279582
1010 => 0.0046357170993502
1011 => 0.0045574618362119
1012 => 0.0045622248714792
1013 => 0.0045939112112348
1014 => 0.0045972409975224
1015 => 0.0045463048659904
1016 => 0.0045606430886566
1017 => 0.0045388620173121
1018 => 0.004405191622676
1019 => 0.0044027739491104
1020 => 0.0043699690785404
1021 => 0.0043689757600971
1022 => 0.004313166491699
1023 => 0.0043053583892589
1024 => 0.0041945456994741
1025 => 0.0042674829474622
1026 => 0.0042185604708892
1027 => 0.0041448227590481
1028 => 0.0041321103497333
1029 => 0.0041317281993586
1030 => 0.0042074403419687
1031 => 0.004266598206994
1101 => 0.0042194114983147
1102 => 0.0042086679994244
1103 => 0.0043233804602883
1104 => 0.0043087822540161
1105 => 0.0042961403015327
1106 => 0.0046219772176568
1107 => 0.0043640518731729
1108 => 0.004251581701114
1109 => 0.0041123785056846
1110 => 0.0041577037680398
1111 => 0.0041672544667847
1112 => 0.003832495875039
1113 => 0.0036966843560594
1114 => 0.0036500789606946
1115 => 0.0036232568967587
1116 => 0.0036354800481046
1117 => 0.0035132337519205
1118 => 0.0035953852847233
1119 => 0.0034895303254501
1120 => 0.0034717833970461
1121 => 0.0036610651771398
1122 => 0.0036874026310717
1123 => 0.0035750388701926
1124 => 0.0036471945947175
1125 => 0.0036210299259651
1126 => 0.0034913449049047
1127 => 0.0034863918909986
1128 => 0.0034213205060794
1129 => 0.0033194963889838
1130 => 0.0032729600351653
1201 => 0.0032487234980495
1202 => 0.0032587239656242
1203 => 0.0032536674231991
1204 => 0.0032206700634981
1205 => 0.0032555587932318
1206 => 0.0031664325057806
1207 => 0.0031309416999783
1208 => 0.0031149113263778
1209 => 0.0030358066163472
1210 => 0.0031616973880301
1211 => 0.0031864994559818
1212 => 0.0032113503916691
1213 => 0.0034276608203727
1214 => 0.0034168545626416
1215 => 0.0035145378696698
1216 => 0.0035107420759868
1217 => 0.0034828812144576
1218 => 0.0033653408225556
1219 => 0.0034121903278117
1220 => 0.003267994832663
1221 => 0.003376035901969
1222 => 0.0033267304698407
1223 => 0.0033593656857696
1224 => 0.0033006846249306
1225 => 0.0033331611468805
1226 => 0.0031923809463892
1227 => 0.0030609223760013
1228 => 0.0031138251422403
1229 => 0.0031713364993072
1230 => 0.0032960357750496
1231 => 0.0032217659151642
]
'min_raw' => 0.0030358066163472
'max_raw' => 0.0090619566839893
'avg_raw' => 0.0060488816501682
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003035'
'max' => '$0.009061'
'avg' => '$0.006048'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0057509033836528
'max_diff' => 0.0002752466839893
'year' => 2026
]
1 => [
'items' => [
101 => 0.0032484761652333
102 => 0.0031590012987435
103 => 0.002974389091943
104 => 0.0029754339769846
105 => 0.0029470354109639
106 => 0.0029224949036635
107 => 0.0032302967019942
108 => 0.0031920166827455
109 => 0.0031310224820376
110 => 0.0032126656434983
111 => 0.0032342533912397
112 => 0.0032348679640691
113 => 0.0032944327071558
114 => 0.0033262224212187
115 => 0.0033318254961068
116 => 0.0034255519063353
117 => 0.0034569677627626
118 => 0.0035863652292483
119 => 0.0033235252860829
120 => 0.00331811227042
121 => 0.0032138145302092
122 => 0.0031476672544855
123 => 0.0032183436907695
124 => 0.0032809533650214
125 => 0.003215759987312
126 => 0.0032242728661336
127 => 0.0031367560830533
128 => 0.0031680392149571
129 => 0.0031949844624456
130 => 0.0031801068805509
131 => 0.0031578344203714
201 => 0.0032758200857241
202 => 0.0032691628720953
203 => 0.0033790338361505
204 => 0.0034646861095795
205 => 0.0036181902957395
206 => 0.0034580006751273
207 => 0.0034521627286561
208 => 0.003509229591848
209 => 0.0034569590261231
210 => 0.0034899922193426
211 => 0.0036128681376207
212 => 0.0036154643121485
213 => 0.0035719750438246
214 => 0.0035693287178948
215 => 0.0035776813075969
216 => 0.0036266026863703
217 => 0.0036095080534247
218 => 0.0036292903954525
219 => 0.0036540285170762
220 => 0.003756355876858
221 => 0.0037810266568737
222 => 0.0037210894517683
223 => 0.0037265011103009
224 => 0.0037040829502784
225 => 0.0036824272885954
226 => 0.0037311060535034
227 => 0.0038200674531562
228 => 0.0038195140289061
301 => 0.003840151344463
302 => 0.0038530082210863
303 => 0.0037978170948105
304 => 0.0037618897010389
305 => 0.0037756665499304
306 => 0.0037976960313286
307 => 0.0037685226860189
308 => 0.003588451284359
309 => 0.0036430734446169
310 => 0.0036339816462628
311 => 0.0036210338198062
312 => 0.0036759568243262
313 => 0.0036706593665547
314 => 0.0035119799394612
315 => 0.0035221380815496
316 => 0.0035125976897265
317 => 0.0035434246474876
318 => 0.0034552942692386
319 => 0.0034824025800208
320 => 0.0034994046584188
321 => 0.0035094190132114
322 => 0.0035455977296294
323 => 0.0035413525748309
324 => 0.0035453338448467
325 => 0.0035989773304676
326 => 0.0038702876725168
327 => 0.003885054495822
328 => 0.0038123372571553
329 => 0.0038413863597185
330 => 0.0037856184351375
331 => 0.0038230558165214
401 => 0.0038486695220578
402 => 0.0037329261119708
403 => 0.003726072538394
404 => 0.0036700744397504
405 => 0.003700164646067
406 => 0.0036522889642549
407 => 0.0036640359819513
408 => 0.0036311902963855
409 => 0.0036903059908933
410 => 0.0037564065230032
411 => 0.0037731061278033
412 => 0.0037291766572062
413 => 0.0036973688254007
414 => 0.0036415247509014
415 => 0.00373439469136
416 => 0.0037615526921103
417 => 0.0037342520419436
418 => 0.003727925884769
419 => 0.0037159378283542
420 => 0.0037304692076086
421 => 0.0037614047838057
422 => 0.0037468161373616
423 => 0.0037564521953568
424 => 0.0037197294789388
425 => 0.0037978353653698
426 => 0.0039218863102274
427 => 0.0039222851542995
428 => 0.003907696429217
429 => 0.0039017270372318
430 => 0.0039166959544842
501 => 0.0039248159780365
502 => 0.0039732227116009
503 => 0.0040251650653248
504 => 0.0042675573659299
505 => 0.0041994945778685
506 => 0.0044145594469478
507 => 0.0045846478357114
508 => 0.0046356499064378
509 => 0.0045887304012024
510 => 0.0044282213083339
511 => 0.0044203459664887
512 => 0.0046602143164253
513 => 0.0045924405209018
514 => 0.0045843790435787
515 => 0.0044986185449419
516 => 0.0045493136212806
517 => 0.0045382258644335
518 => 0.0045207232978186
519 => 0.0046174459720233
520 => 0.0047985021836418
521 => 0.0047702828751266
522 => 0.0047492184703761
523 => 0.0046569203805154
524 => 0.0047125044461363
525 => 0.0046927120250113
526 => 0.0047777528267449
527 => 0.0047273765396823
528 => 0.0045919270677433
529 => 0.0046134978425969
530 => 0.0046102374633722
531 => 0.0046773358367844
601 => 0.0046571945705701
602 => 0.0046063045578881
603 => 0.0047978833531938
604 => 0.0047854432918439
605 => 0.0048030804546441
606 => 0.0048108448791561
607 => 0.0049274555158617
608 => 0.0049752271625958
609 => 0.0049860721627648
610 => 0.0050314515323704
611 => 0.0049849430827094
612 => 0.0051710100413163
613 => 0.0052947337114819
614 => 0.0054384451211411
615 => 0.0056484461166385
616 => 0.0057274084335633
617 => 0.0057131445977751
618 => 0.005872364955853
619 => 0.0061584804000493
620 => 0.0057709767094008
621 => 0.0061790190365861
622 => 0.0060498375468745
623 => 0.0057435505586439
624 => 0.0057238292874882
625 => 0.005931250391983
626 => 0.006391290438211
627 => 0.0062760556243619
628 => 0.0063914789210847
629 => 0.0062568315143882
630 => 0.0062501451357483
701 => 0.0063849393970801
702 => 0.0066998935359347
703 => 0.0065502706304443
704 => 0.0063357495063821
705 => 0.0064941485660712
706 => 0.0063569286414276
707 => 0.0060477337457668
708 => 0.0062759675064715
709 => 0.0061233540904115
710 => 0.0061678947985933
711 => 0.0064886654996189
712 => 0.0064500695202175
713 => 0.0065000162914544
714 => 0.0064118615475559
715 => 0.0063295111160275
716 => 0.0061757979201564
717 => 0.006130291020828
718 => 0.0061428674906357
719 => 0.0061302847885541
720 => 0.0060442836681615
721 => 0.0060257117344009
722 => 0.0059947576978116
723 => 0.0060043516480836
724 => 0.0059461490033728
725 => 0.006055989419222
726 => 0.0060763767683141
727 => 0.0061563094630387
728 => 0.0061646083405715
729 => 0.0063872197576088
730 => 0.0062646091299376
731 => 0.0063468669246717
801 => 0.0063395090132703
802 => 0.0057501887264222
803 => 0.005831391862333
804 => 0.0059577184588623
805 => 0.0059008084983575
806 => 0.0058203511290835
807 => 0.0057553774895436
808 => 0.0056569357817449
809 => 0.0057954905950661
810 => 0.0059776754409216
811 => 0.0061692288489132
812 => 0.0063993677175386
813 => 0.0063480034011732
814 => 0.0061649265628455
815 => 0.0061731392560752
816 => 0.0062239068940453
817 => 0.0061581581901477
818 => 0.0061387676138011
819 => 0.0062212429266178
820 => 0.0062218108887696
821 => 0.0061461590589391
822 => 0.0060620858942212
823 => 0.0060617336245913
824 => 0.0060467736169801
825 => 0.0062594928665084
826 => 0.006376466945407
827 => 0.0063898778350395
828 => 0.0063755642856823
829 => 0.0063810730027454
830 => 0.0063130083635823
831 => 0.0064685839447675
901 => 0.0066113554828934
902 => 0.0065730896608066
903 => 0.0065157237536914
904 => 0.0064700290455577
905 => 0.006562325439769
906 => 0.0065582156266228
907 => 0.006610108498059
908 => 0.0066077543376629
909 => 0.0065903047167885
910 => 0.0065730902839875
911 => 0.0066413435642123
912 => 0.0066216877156217
913 => 0.0066020013360691
914 => 0.0065625172880426
915 => 0.00656788382593
916 => 0.0065105278238475
917 => 0.006483992312852
918 => 0.0060849618950737
919 => 0.0059783279287483
920 => 0.0060118771452888
921 => 0.0060229224184789
922 => 0.005976515179679
923 => 0.0060430512390766
924 => 0.0060326816646986
925 => 0.0060730236126053
926 => 0.006047819714997
927 => 0.0060488540917463
928 => 0.0061229733805748
929 => 0.0061444905254477
930 => 0.0061335467319007
1001 => 0.0061412113897697
1002 => 0.006317840195312
1003 => 0.0062927292274351
1004 => 0.0062793895262307
1005 => 0.0062830847146294
1006 => 0.0063282171614098
1007 => 0.006340851782368
1008 => 0.0062873180055488
1009 => 0.0063125648441718
1010 => 0.0064200626787277
1011 => 0.0064576808369718
1012 => 0.0065777399403465
1013 => 0.0065267366993525
1014 => 0.0066203553555655
1015 => 0.0069081071878125
1016 => 0.0071379832623236
1017 => 0.0069265797241726
1018 => 0.0073487178604708
1019 => 0.007677412951698
1020 => 0.0076647970866264
1021 => 0.0076074814946165
1022 => 0.0072332708720654
1023 => 0.0068889166780278
1024 => 0.0071769835833917
1025 => 0.0071777179251749
1026 => 0.0071529727225303
1027 => 0.0069992823941271
1028 => 0.0071476246322449
1029 => 0.0071593995004069
1030 => 0.0071528087054264
1031 => 0.0070349746909857
1101 => 0.0068550639303009
1102 => 0.0068902180622932
1103 => 0.0069478012476214
1104 => 0.0068387842646842
1105 => 0.0068039467330638
1106 => 0.0068687163324577
1107 => 0.0070774174769867
1108 => 0.0070379637345369
1109 => 0.0070369334378764
1110 => 0.0072057332790672
1111 => 0.0070849090220603
1112 => 0.0068906614684767
1113 => 0.0068416113993864
1114 => 0.0066675166982015
1115 => 0.006787764528414
1116 => 0.0067920920337502
1117 => 0.0067262335260459
1118 => 0.00689600552341
1119 => 0.0068944410445665
1120 => 0.0070556142888366
1121 => 0.007363716997975
1122 => 0.0072725958660692
1123 => 0.0071666319036138
1124 => 0.0071781531243947
1125 => 0.007304512479565
1126 => 0.0072281127289255
1127 => 0.0072555866119335
1128 => 0.0073044708945526
1129 => 0.0073339639959852
1130 => 0.0071739095209716
1201 => 0.0071365931665554
1202 => 0.0070602570016805
1203 => 0.0070403423211467
1204 => 0.0071025165346309
1205 => 0.0070861358260252
1206 => 0.0067917283236836
1207 => 0.0067609611016211
1208 => 0.0067619046883963
1209 => 0.0066845390456182
1210 => 0.0065665378705
1211 => 0.0068766379132267
1212 => 0.0068517325399484
1213 => 0.006824238935372
1214 => 0.0068276067450563
1215 => 0.0069622106633384
1216 => 0.0068841335930739
1217 => 0.007091714280952
1218 => 0.0070490419319709
1219 => 0.007005275198256
1220 => 0.0069992253024893
1221 => 0.0069823788440113
1222 => 0.0069246060695991
1223 => 0.0068548419728909
1224 => 0.0068087776733816
1225 => 0.0062807374930684
1226 => 0.0063787386790661
1227 => 0.0064914801104673
1228 => 0.0065303980008041
1229 => 0.006463826256347
1230 => 0.0069272347278298
1231 => 0.0070119039210849
]
'min_raw' => 0.0029224949036635
'max_raw' => 0.007677412951698
'avg_raw' => 0.0052999539276807
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002922'
'max' => '$0.007677'
'avg' => '$0.005299'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001133117126837
'max_diff' => -0.0013845437322913
'year' => 2027
]
2 => [
'items' => [
101 => 0.0067554354118805
102 => 0.0067074606253486
103 => 0.0069303799468479
104 => 0.0067959323452051
105 => 0.0068564740919925
106 => 0.0067256159500031
107 => 0.0069915095918331
108 => 0.0069894839277761
109 => 0.0068860452956239
110 => 0.0069734709192017
111 => 0.0069582785656662
112 => 0.0068414966047245
113 => 0.0069952117882952
114 => 0.0069952880291085
115 => 0.0068957305946118
116 => 0.0067794693070445
117 => 0.0067586845347965
118 => 0.006743026000949
119 => 0.0068526230525516
120 => 0.0069508874263175
121 => 0.0071337330640915
122 => 0.0071797048017331
123 => 0.0073591355542602
124 => 0.0072522932774551
125 => 0.0072996550749237
126 => 0.0073510730058111
127 => 0.0073757246527103
128 => 0.0073355561169683
129 => 0.0076142859322871
130 => 0.0076378192687608
131 => 0.0076457097929179
201 => 0.0075517236674481
202 => 0.0076352053445919
203 => 0.0075961470324788
204 => 0.0076977659098853
205 => 0.0077137010473976
206 => 0.0077002045528337
207 => 0.0077052626169991
208 => 0.0074674158909334
209 => 0.0074550822834455
210 => 0.0072869126701945
211 => 0.0073554430306413
212 => 0.0072273288065317
213 => 0.0072679551467196
214 => 0.0072858628503725
215 => 0.0072765088822374
216 => 0.0073593176343989
217 => 0.0072889132783513
218 => 0.0071031046071939
219 => 0.0069172453125883
220 => 0.0069149120005422
221 => 0.0068659785289616
222 => 0.0068306085916212
223 => 0.0068374220963689
224 => 0.0068614337757992
225 => 0.0068292129891619
226 => 0.0068360889276263
227 => 0.0069502753202741
228 => 0.0069731745869795
229 => 0.0068953539313934
301 => 0.0065828927697483
302 => 0.0065062140169311
303 => 0.0065613291838503
304 => 0.0065349876839343
305 => 0.0052742450958118
306 => 0.005570437866032
307 => 0.0053944501797232
308 => 0.0054755534023784
309 => 0.0052959155464476
310 => 0.0053816481469245
311 => 0.0053658164660697
312 => 0.0058420856756026
313 => 0.0058346493869826
314 => 0.0058382087448254
315 => 0.0056683113211335
316 => 0.0059389625302924
317 => 0.0060722950482267
318 => 0.0060476187476871
319 => 0.0060538292409029
320 => 0.0059471123911072
321 => 0.0058392419972029
322 => 0.0057195971292283
323 => 0.0059418825053724
324 => 0.0059171681660831
325 => 0.0059738539684742
326 => 0.0061180219241904
327 => 0.0061392512033104
328 => 0.0061677835697339
329 => 0.0061575567474432
330 => 0.0064012011449162
331 => 0.0063716942007647
401 => 0.0064427974464426
402 => 0.006296532675467
403 => 0.0061310202035286
404 => 0.0061624787134337
405 => 0.0061594490059565
406 => 0.0061208773524351
407 => 0.0060860565882911
408 => 0.0060280898266809
409 => 0.0062115052378823
410 => 0.0062040589071434
411 => 0.0063246063463936
412 => 0.0063032984155708
413 => 0.0061609988386007
414 => 0.0061660810958307
415 => 0.0062002617181517
416 => 0.006318561242272
417 => 0.0063536805954767
418 => 0.006337411911808
419 => 0.0063759186793376
420 => 0.0064063528583456
421 => 0.0063797407436481
422 => 0.0067565121677808
423 => 0.0066000504040688
424 => 0.0066763087790481
425 => 0.0066944959521402
426 => 0.0066479098906998
427 => 0.0066580127393044
428 => 0.006673315802079
429 => 0.0067662330025992
430 => 0.0070100746225728
501 => 0.0071180704161731
502 => 0.0074429810896381
503 => 0.0071091028688886
504 => 0.0070892919169948
505 => 0.0071478181406482
506 => 0.0073385751012598
507 => 0.0074931657009453
508 => 0.0075444523214067
509 => 0.0075512306949505
510 => 0.007647447804406
511 => 0.007702597657203
512 => 0.0076357645165569
513 => 0.0075791304275808
514 => 0.0073762741505502
515 => 0.0073997553169758
516 => 0.0075615172684958
517 => 0.0077900155527491
518 => 0.007986090851833
519 => 0.0079174321160079
520 => 0.0084412498048397
521 => 0.008493184189084
522 => 0.0084860085364211
523 => 0.0086043227926023
524 => 0.008369493088362
525 => 0.008269098840188
526 => 0.0075913753604416
527 => 0.0077817880142689
528 => 0.0080585639891498
529 => 0.0080219316510177
530 => 0.0078209295398161
531 => 0.0079859383737074
601 => 0.0079313812929196
602 => 0.0078883498597269
603 => 0.0080854851972363
604 => 0.0078687267957714
605 => 0.0080564016582837
606 => 0.0078157067058639
607 => 0.0079177457433298
608 => 0.0078598234505912
609 => 0.0078973062726823
610 => 0.0076781824606378
611 => 0.0077964163506872
612 => 0.0076732635420948
613 => 0.0076732051516286
614 => 0.0076704865465531
615 => 0.0078153752797189
616 => 0.0078201000961057
617 => 0.0077130271033815
618 => 0.0076975962123355
619 => 0.0077546523041902
620 => 0.0076878545636424
621 => 0.0077191088060248
622 => 0.007688801222805
623 => 0.0076819783474469
624 => 0.0076276125157767
625 => 0.0076041902206735
626 => 0.0076133747061017
627 => 0.0075820233224086
628 => 0.0075631329797045
629 => 0.0076667287819263
630 => 0.0076113817238419
701 => 0.0076582460514863
702 => 0.0076048382353858
703 => 0.0074197034761039
704 => 0.0073132305182764
705 => 0.0069635281199941
706 => 0.0070627032863425
707 => 0.0071284565242356
708 => 0.0071067250795041
709 => 0.00715341263174
710 => 0.0071562788682667
711 => 0.0071411002691115
712 => 0.0071235253957889
713 => 0.0071149709194069
714 => 0.0071787289778074
715 => 0.0072157426767065
716 => 0.007135055741323
717 => 0.0071161519212928
718 => 0.0071977308678133
719 => 0.0072474939780642
720 => 0.0076149168246804
721 => 0.0075876969534429
722 => 0.0076560134886191
723 => 0.0076483220951609
724 => 0.007719928707703
725 => 0.007836975255997
726 => 0.0075989868965857
727 => 0.0076402934467612
728 => 0.0076301660345657
729 => 0.007740734465366
730 => 0.007741079647938
731 => 0.0076747883503705
801 => 0.0077107259382353
802 => 0.0076906665625853
803 => 0.0077269165655721
804 => 0.0075873334154674
805 => 0.0077573306252249
806 => 0.0078537080887793
807 => 0.0078550462899542
808 => 0.0079007284427801
809 => 0.0079471441557831
810 => 0.0080362350749357
811 => 0.0079446594584021
812 => 0.0077799238389648
813 => 0.0077918172185953
814 => 0.0076952327851936
815 => 0.0076968563869685
816 => 0.0076881894734502
817 => 0.0077141995333334
818 => 0.0075930411609392
819 => 0.0076214767887722
820 => 0.0075816667432872
821 => 0.0076402069074971
822 => 0.007577227367843
823 => 0.0076301611508209
824 => 0.0076530056167715
825 => 0.0077373021879353
826 => 0.0075647766957427
827 => 0.0072129855382129
828 => 0.0072869363045812
829 => 0.0071775573124152
830 => 0.0071876807545753
831 => 0.0072081317188727
901 => 0.0071418434524457
902 => 0.0071544891646967
903 => 0.0071540373708685
904 => 0.0071501440557367
905 => 0.0071328999174647
906 => 0.0071078925053216
907 => 0.0072075143384243
908 => 0.0072244420291272
909 => 0.0072620701886627
910 => 0.0073740260680159
911 => 0.0073628390355671
912 => 0.0073810855496367
913 => 0.0073412535118726
914 => 0.0071895284485661
915 => 0.007197767849475
916 => 0.0070950223881143
917 => 0.0072594427562124
918 => 0.007220505842804
919 => 0.0071954029614299
920 => 0.0071885534076705
921 => 0.0073007868039939
922 => 0.0073343687952168
923 => 0.0073134427518903
924 => 0.0072705228265174
925 => 0.0073529417713702
926 => 0.0073749936040367
927 => 0.0073799301961304
928 => 0.0075259607641445
929 => 0.0073880916826852
930 => 0.0074212781408932
1001 => 0.0076801894143403
1002 => 0.0074453926166373
1003 => 0.007569769716974
1004 => 0.0075636821051397
1005 => 0.0076273092209804
1006 => 0.0075584628245044
1007 => 0.0075593162581004
1008 => 0.0076158128264928
1009 => 0.0075364735853955
1010 => 0.0075168280735496
1011 => 0.0074896879396382
1012 => 0.0075489474291317
1013 => 0.0075844708130069
1014 => 0.0078707631979902
1015 => 0.0080557211352083
1016 => 0.0080476916233618
1017 => 0.0081210663310225
1018 => 0.0080880103531861
1019 => 0.0079812638810259
1020 => 0.0081634670926578
1021 => 0.0081058103727913
1022 => 0.0081105635227242
1023 => 0.0081103866102463
1024 => 0.0081487232885196
1025 => 0.008121558238458
1026 => 0.0080680131363514
1027 => 0.008103558873975
1028 => 0.0082091170068835
1029 => 0.0085367726903503
1030 => 0.0087201331516787
1031 => 0.0085257341603441
1101 => 0.0086598279814605
1102 => 0.0085794194713045
1103 => 0.0085648068530632
1104 => 0.0086490276821798
1105 => 0.0087333959287089
1106 => 0.0087280220361389
1107 => 0.0086667750215162
1108 => 0.0086321781370414
1109 => 0.0088941573370917
1110 => 0.0090871791489896
1111 => 0.0090740163554528
1112 => 0.0091321126453544
1113 => 0.0093026851493562
1114 => 0.0093182801614379
1115 => 0.0093163155483628
1116 => 0.0092776616837471
1117 => 0.0094456124655755
1118 => 0.0095857199625895
1119 => 0.0092687144309061
1120 => 0.009389425987464
1121 => 0.0094436172942863
1122 => 0.0095231862105377
1123 => 0.0096574323095525
1124 => 0.0098032591801017
1125 => 0.0098238806985077
1126 => 0.0098092487443681
1127 => 0.0097130720032042
1128 => 0.0098726375050356
1129 => 0.009966107233737
1130 => 0.010021766318162
1201 => 0.010162908495475
1202 => 0.0094439519613483
1203 => 0.0089350387920352
1204 => 0.0088555646518517
1205 => 0.009017178441081
1206 => 0.009059794708455
1207 => 0.0090426161445128
1208 => 0.0084697881040898
1209 => 0.0088525488307684
1210 => 0.0092643671892385
1211 => 0.0092801868095704
1212 => 0.0094863516905363
1213 => 0.0095534874267629
1214 => 0.0097194771785891
1215 => 0.0097090944744182
1216 => 0.0097495103375141
1217 => 0.0097402194304936
1218 => 0.010047680492486
1219 => 0.010386855702273
1220 => 0.010375111143269
1221 => 0.010326350693923
1222 => 0.010398768276094
1223 => 0.010748833440818
1224 => 0.01071660505013
1225 => 0.010747912186476
1226 => 0.011160658744494
1227 => 0.011697287982431
1228 => 0.011447969824715
1229 => 0.011988918487592
1230 => 0.012329416996416
1231 => 0.012918273959226
]
'min_raw' => 0.0052742450958118
'max_raw' => 0.012918273959226
'avg_raw' => 0.0090962595275188
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005274'
'max' => '$0.012918'
'avg' => '$0.009096'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0023517501921483
'max_diff' => 0.0052408610075279
'year' => 2028
]
3 => [
'items' => [
101 => 0.0128445461673
102 => 0.01307378386169
103 => 0.012712558032299
104 => 0.011883110512233
105 => 0.011751847267185
106 => 0.012014639607886
107 => 0.012660688934598
108 => 0.011994293215494
109 => 0.012129104201553
110 => 0.012090278628499
111 => 0.012088209778709
112 => 0.012167169360573
113 => 0.012052634368824
114 => 0.011585998207989
115 => 0.011799854810595
116 => 0.011717274506091
117 => 0.011808903510708
118 => 0.012303387457949
119 => 0.012084764317849
120 => 0.011854462599255
121 => 0.012143312062414
122 => 0.01251111668846
123 => 0.01248810013597
124 => 0.012443438403968
125 => 0.012695194248852
126 => 0.013111021147059
127 => 0.013223417486717
128 => 0.01330638616681
129 => 0.013317826146027
130 => 0.013435665041875
131 => 0.012802015599676
201 => 0.013807633537718
202 => 0.013981275975983
203 => 0.013948638394331
204 => 0.014141634656472
205 => 0.014084850260307
206 => 0.014002578579464
207 => 0.014308518706439
208 => 0.013957783038957
209 => 0.013459957915359
210 => 0.013186841206689
211 => 0.013546503320362
212 => 0.013766136422705
213 => 0.013911299932064
214 => 0.013955226322286
215 => 0.012851204002105
216 => 0.012256197203412
217 => 0.012637589739608
218 => 0.013102914956073
219 => 0.012799430694603
220 => 0.012811326703081
221 => 0.012378637900487
222 => 0.013141198314081
223 => 0.013030099675963
224 => 0.013606479607049
225 => 0.013468921910758
226 => 0.013938937369618
227 => 0.013815166547367
228 => 0.014328932310599
301 => 0.014533887383205
302 => 0.014878038848821
303 => 0.015131198067876
304 => 0.015279858003469
305 => 0.015270933018546
306 => 0.015859997745452
307 => 0.015512646856349
308 => 0.015076292275317
309 => 0.015068399997627
310 => 0.015294394218336
311 => 0.015768016106455
312 => 0.015890819371126
313 => 0.015959449642948
314 => 0.015854339992616
315 => 0.015477315497357
316 => 0.015314518231862
317 => 0.015453226218755
318 => 0.015283598270098
319 => 0.015576423698676
320 => 0.01597853555625
321 => 0.015895501047783
322 => 0.016173072960357
323 => 0.016460330688454
324 => 0.016871122141185
325 => 0.016978518238492
326 => 0.017156039903433
327 => 0.017338768009486
328 => 0.01739745535249
329 => 0.017509507699897
330 => 0.017508917128716
331 => 0.017846594419621
401 => 0.018219062928484
402 => 0.018359661167914
403 => 0.018682959066852
404 => 0.018129322744631
405 => 0.018549262254751
406 => 0.018928058204647
407 => 0.018476442057257
408 => 0.019098889703367
409 => 0.019123057934969
410 => 0.01948796953831
411 => 0.01911806171972
412 => 0.018898411637829
413 => 0.019532533194067
414 => 0.019839364640489
415 => 0.01974694451175
416 => 0.019043622768698
417 => 0.018634259347354
418 => 0.017562876313388
419 => 0.018831975797423
420 => 0.019450117135957
421 => 0.019042021931963
422 => 0.019247841415377
423 => 0.020370725779692
424 => 0.020798247444245
425 => 0.02070932592662
426 => 0.020724352199326
427 => 0.020955035129451
428 => 0.021978010281038
429 => 0.021365019857829
430 => 0.021833628068059
501 => 0.022082176173073
502 => 0.022313041504746
503 => 0.021746109215894
504 => 0.021008538637988
505 => 0.020774919074858
506 => 0.019001444906603
507 => 0.018909127874338
508 => 0.018857307526635
509 => 0.018530587564501
510 => 0.018273875170393
511 => 0.018069727943478
512 => 0.017533984656531
513 => 0.017714782288967
514 => 0.016860919307888
515 => 0.017407190584136
516 => 0.016044404649092
517 => 0.017179373271199
518 => 0.016561661450877
519 => 0.016976438324917
520 => 0.016974991207478
521 => 0.016211255477242
522 => 0.0157707486468
523 => 0.01605145674394
524 => 0.016352398106711
525 => 0.016401224830332
526 => 0.016791403162537
527 => 0.016900293548201
528 => 0.016570350596035
529 => 0.016016163939669
530 => 0.016144888860291
531 => 0.015768140040392
601 => 0.015107902224954
602 => 0.015582096550648
603 => 0.015744007342293
604 => 0.015815516371737
605 => 0.01516624830908
606 => 0.014962234187497
607 => 0.014853618781011
608 => 0.015932351585939
609 => 0.015991447004094
610 => 0.01568910648956
611 => 0.017055714284358
612 => 0.016746408851233
613 => 0.017091978801705
614 => 0.016133208422975
615 => 0.016169834742598
616 => 0.015715937480331
617 => 0.015970089617774
618 => 0.015790463078735
619 => 0.015949556636649
620 => 0.016044916659296
621 => 0.016498739441489
622 => 0.017184555198386
623 => 0.016430953451485
624 => 0.016102598378585
625 => 0.016306308019073
626 => 0.016848813636237
627 => 0.017670737416591
628 => 0.017184141995864
629 => 0.017400084780656
630 => 0.017447258672508
701 => 0.017088461224005
702 => 0.0176839667903
703 => 0.018003103061157
704 => 0.018330470839109
705 => 0.018614715108068
706 => 0.018199712949623
707 => 0.018643824747382
708 => 0.018285949034674
709 => 0.017964897523864
710 => 0.017965384426482
711 => 0.017763984123936
712 => 0.017373745659683
713 => 0.017301779699543
714 => 0.017676155712492
715 => 0.017976369821337
716 => 0.01800109689327
717 => 0.018167310849485
718 => 0.018265674556633
719 => 0.019229772605657
720 => 0.019617540816412
721 => 0.020091696444446
722 => 0.020276406783513
723 => 0.020832318681781
724 => 0.020383374674972
725 => 0.020286242815109
726 => 0.018937782387307
727 => 0.019158592706817
728 => 0.01951213133338
729 => 0.018943612109042
730 => 0.019304206701798
731 => 0.019375395712845
801 => 0.018924294043346
802 => 0.019165246935978
803 => 0.0185253474907
804 => 0.01719850325765
805 => 0.01768544394723
806 => 0.018043996197225
807 => 0.017532297927309
808 => 0.018449497270676
809 => 0.017913688349119
810 => 0.017743862644349
811 => 0.017081312022807
812 => 0.017394010412263
813 => 0.017816939461411
814 => 0.017555618479817
815 => 0.018097898754168
816 => 0.018865912243516
817 => 0.019413244392019
818 => 0.019455261758131
819 => 0.019103363855049
820 => 0.01966728249052
821 => 0.019671390022136
822 => 0.019035287497649
823 => 0.018645678243235
824 => 0.018557158200887
825 => 0.018778298622049
826 => 0.019046803918112
827 => 0.019470161933361
828 => 0.019725988315359
829 => 0.020393047839782
830 => 0.020573535020995
831 => 0.020771835712855
901 => 0.021036826590848
902 => 0.021355016082144
903 => 0.020658835589725
904 => 0.020686496138531
905 => 0.020038222503265
906 => 0.01934544915214
907 => 0.019871177770227
908 => 0.020558498003628
909 => 0.020400825982664
910 => 0.020383084659359
911 => 0.020412920644126
912 => 0.020294041089406
913 => 0.019756353269291
914 => 0.019486329812132
915 => 0.019834728962197
916 => 0.020019887604995
917 => 0.020307052512443
918 => 0.020271653376284
919 => 0.021011359338611
920 => 0.021298786708024
921 => 0.021225250487217
922 => 0.021238782921593
923 => 0.021759156444595
924 => 0.02233791882515
925 => 0.022880006168962
926 => 0.023431440698282
927 => 0.022766664850331
928 => 0.022429132672416
929 => 0.022777379722311
930 => 0.022592594935705
1001 => 0.023654423130273
1002 => 0.023727941810649
1003 => 0.024789693222953
1004 => 0.025797421744236
1005 => 0.02516448551535
1006 => 0.025761315871116
1007 => 0.026406836561169
1008 => 0.02765215070424
1009 => 0.027232772711533
1010 => 0.026911535741611
1011 => 0.026607968357241
1012 => 0.027239643894151
1013 => 0.028052284381122
1014 => 0.028227319358642
1015 => 0.028510942890732
1016 => 0.028212747426575
1017 => 0.028571891017999
1018 => 0.029839825711418
1019 => 0.029497218564887
1020 => 0.029010661339966
1021 => 0.030011574006677
1022 => 0.030373800409811
1023 => 0.03291609500644
1024 => 0.036125846951637
1025 => 0.034796988569958
1026 => 0.033972123290458
1027 => 0.034165986197207
1028 => 0.035338078950632
1029 => 0.035714517942668
1030 => 0.034691226996013
1031 => 0.035052670657754
1101 => 0.037044260770308
1102 => 0.038112684967833
1103 => 0.036661621399081
1104 => 0.03265819456291
1105 => 0.0289668521854
1106 => 0.029945962407229
1107 => 0.029834961693401
1108 => 0.031974676813414
1109 => 0.02948904749775
1110 => 0.029530899120674
1111 => 0.031714861283371
1112 => 0.031132217620954
1113 => 0.0301884095072
1114 => 0.028973743029111
1115 => 0.026728319701313
1116 => 0.024739485641621
1117 => 0.028640047233807
1118 => 0.028471847925241
1119 => 0.028228270400696
1120 => 0.028770325823729
1121 => 0.031402393092862
1122 => 0.031341715423138
1123 => 0.030955715046374
1124 => 0.031248492930098
1125 => 0.030137084128623
1126 => 0.030423519483071
1127 => 0.028966267457908
1128 => 0.029625006233502
1129 => 0.030186384518873
1130 => 0.030299089521009
1201 => 0.030553019645681
1202 => 0.028383214532662
1203 => 0.029357393326277
1204 => 0.029929632099316
1205 => 0.027344236504499
1206 => 0.029878527141087
1207 => 0.028345443053025
1208 => 0.027825091287387
1209 => 0.028525676388687
1210 => 0.028252657693369
1211 => 0.02801793225133
1212 => 0.027886951421578
1213 => 0.028401383799216
1214 => 0.02837738491392
1215 => 0.027535673697081
1216 => 0.026437695727253
1217 => 0.026806213173826
1218 => 0.026672327330616
1219 => 0.026187107763208
1220 => 0.026514087166007
1221 => 0.02507423535657
1222 => 0.022597045155416
1223 => 0.024233552880686
1224 => 0.024170549113441
1225 => 0.024138779757003
1226 => 0.025368570082792
1227 => 0.025250354119057
1228 => 0.025035790987305
1229 => 0.026183167143031
1230 => 0.025764359411804
1231 => 0.027055026155935
]
'min_raw' => 0.011585998207989
'max_raw' => 0.038112684967833
'avg_raw' => 0.024849341587911
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.011585'
'max' => '$0.038112'
'avg' => '$0.024849'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.006311753112177
'max_diff' => 0.025194411008607
'year' => 2029
]
4 => [
'items' => [
101 => 0.02790514274871
102 => 0.027689525682391
103 => 0.028489064446867
104 => 0.026814703071494
105 => 0.027370858756674
106 => 0.027485481672591
107 => 0.026169008699372
108 => 0.025269695712726
109 => 0.025209721789435
110 => 0.023650437003553
111 => 0.024483394350064
112 => 0.025216362344877
113 => 0.024865327555976
114 => 0.024754200428676
115 => 0.025321924821518
116 => 0.025366041869073
117 => 0.024360168509515
118 => 0.024569321432834
119 => 0.025441523891853
120 => 0.024547344168708
121 => 0.022810099030065
122 => 0.022379238216388
123 => 0.022321753441503
124 => 0.02115322474281
125 => 0.022408030396199
126 => 0.021860274101794
127 => 0.023590629672692
128 => 0.022602259850678
129 => 0.022559653203081
130 => 0.022495247006201
131 => 0.021489446083924
201 => 0.021709652563919
202 => 0.022441652441818
203 => 0.022702838244822
204 => 0.022675594425736
205 => 0.022438065243076
206 => 0.022546804886551
207 => 0.022196516607512
208 => 0.022072822525564
209 => 0.021682409978196
210 => 0.021108611387784
211 => 0.021188401601092
212 => 0.020051556450918
213 => 0.019432142876165
214 => 0.019260697362412
215 => 0.019031433256222
216 => 0.019286593353255
217 => 0.020048335911445
218 => 0.019129512773569
219 => 0.017554254951631
220 => 0.017648930630838
221 => 0.017861638772555
222 => 0.01746525855767
223 => 0.017090117949952
224 => 0.017416272272244
225 => 0.016748814766831
226 => 0.017942297823268
227 => 0.017910017451289
228 => 0.018354874130232
301 => 0.018633052140953
302 => 0.017991941887442
303 => 0.01783070439243
304 => 0.017922552597424
305 => 0.016404506363276
306 => 0.01823081736636
307 => 0.018246611379754
308 => 0.018111373448252
309 => 0.019083827676368
310 => 0.021136009413773
311 => 0.020363896095343
312 => 0.020064910481197
313 => 0.019496538610151
314 => 0.020253860381738
315 => 0.02019570988574
316 => 0.019932731289917
317 => 0.01977368101462
318 => 0.020066736023602
319 => 0.019737368255911
320 => 0.019678204754412
321 => 0.019319738305857
322 => 0.019191782092906
323 => 0.019097048406922
324 => 0.018992755926992
325 => 0.01922279914965
326 => 0.018701490942401
327 => 0.018072844348933
328 => 0.018020579186737
329 => 0.018164887894761
330 => 0.01810104203398
331 => 0.018020273517319
401 => 0.017866064423015
402 => 0.017820313878891
403 => 0.017968980952285
404 => 0.017801144494252
405 => 0.018048796330605
406 => 0.017981448734318
407 => 0.01760525053612
408 => 0.017136368294753
409 => 0.017132194259291
410 => 0.01703117434951
411 => 0.016902510305958
412 => 0.016866718912476
413 => 0.017388804464939
414 => 0.01846950593383
415 => 0.018257338376492
416 => 0.018410651180474
417 => 0.019164798436808
418 => 0.019404519171598
419 => 0.019234371072141
420 => 0.019001461859327
421 => 0.019011708682657
422 => 0.019807629969256
423 => 0.019857270603604
424 => 0.019982696471926
425 => 0.020143904158067
426 => 0.019261825438173
427 => 0.018970162854274
428 => 0.018831956941198
429 => 0.018406336221345
430 => 0.018865331677744
501 => 0.018597894681445
502 => 0.018633981069195
503 => 0.018610479761832
504 => 0.018623313064804
505 => 0.017941964220431
506 => 0.018190211928679
507 => 0.017777451965281
508 => 0.017224812708772
509 => 0.017222960068204
510 => 0.017358217743311
511 => 0.017277761185524
512 => 0.017061254657246
513 => 0.017092008387706
514 => 0.016822573348281
515 => 0.017124722679771
516 => 0.017133387241455
517 => 0.017017043290647
518 => 0.017482546024379
519 => 0.017673262874204
520 => 0.017596682793452
521 => 0.017667889811591
522 => 0.018266154896378
523 => 0.018363698209334
524 => 0.0184070205056
525 => 0.018348974367709
526 => 0.01767882499909
527 => 0.017708548973284
528 => 0.01749045417282
529 => 0.017306187048691
530 => 0.017313556767302
531 => 0.017408294022154
601 => 0.017822017170356
602 => 0.018692673145437
603 => 0.01872571390325
604 => 0.018765760265586
605 => 0.018602871584275
606 => 0.018553742799357
607 => 0.018618556347879
608 => 0.018945528955203
609 => 0.019786591273437
610 => 0.01948930367751
611 => 0.019247604234464
612 => 0.019459639807717
613 => 0.019426998593205
614 => 0.019151473893761
615 => 0.019143740833111
616 => 0.018614920844304
617 => 0.018419428135091
618 => 0.018256059794896
619 => 0.018077665832242
620 => 0.017971907911362
621 => 0.01813440014395
622 => 0.018171564040095
623 => 0.017816271933662
624 => 0.017767846932404
625 => 0.01805798613603
626 => 0.017930306689994
627 => 0.01806162816654
628 => 0.018092095875554
629 => 0.018087189872672
630 => 0.017953877867119
701 => 0.018038846964037
702 => 0.017837869719319
703 => 0.017619337151494
704 => 0.017479926988282
705 => 0.017358273130805
706 => 0.017425773761497
707 => 0.017185146338208
708 => 0.017108164782624
709 => 0.018010061345866
710 => 0.018676302034155
711 => 0.018666614630687
712 => 0.018607645053474
713 => 0.018520028223276
714 => 0.018939119238343
715 => 0.018793116308683
716 => 0.018899345638964
717 => 0.018926385461951
718 => 0.01900822686226
719 => 0.019037478128364
720 => 0.018949060485886
721 => 0.018652320078424
722 => 0.01791287119626
723 => 0.017568655745508
724 => 0.017455058913398
725 => 0.017459187942494
726 => 0.017345290887226
727 => 0.017378838674511
728 => 0.017333624335885
729 => 0.017247999317051
730 => 0.017420486657869
731 => 0.017440364217067
801 => 0.01740010361065
802 => 0.017409586440917
803 => 0.017076245815312
804 => 0.017101588979099
805 => 0.01696047502268
806 => 0.016934017857006
807 => 0.016577294063376
808 => 0.01594530615502
809 => 0.0162954888048
810 => 0.015872517406998
811 => 0.015712331729587
812 => 0.016470625812463
813 => 0.016394514118346
814 => 0.016264243982977
815 => 0.016071547302089
816 => 0.016000074228716
817 => 0.015565826460522
818 => 0.015540168785755
819 => 0.015755393705348
820 => 0.015656074810393
821 => 0.015516593466869
822 => 0.015011406179624
823 => 0.014443408406998
824 => 0.014460552689447
825 => 0.014641222212945
826 => 0.015166543219121
827 => 0.014961291213862
828 => 0.014812378529052
829 => 0.014784491659486
830 => 0.015133554217222
831 => 0.015627550867285
901 => 0.015859323042942
902 => 0.015629643855891
903 => 0.015365800772613
904 => 0.015381859678561
905 => 0.015488692385317
906 => 0.015499918992263
907 => 0.015328184268556
908 => 0.015376526587338
909 => 0.015303090184594
910 => 0.01485241111651
911 => 0.014844259761287
912 => 0.014733655849797
913 => 0.014730306807314
914 => 0.014542141962431
915 => 0.01451581639991
916 => 0.014142203679606
917 => 0.014388116703514
918 => 0.014223171158089
919 => 0.013974559314415
920 => 0.013931698538858
921 => 0.013930410092189
922 => 0.014185678867052
923 => 0.014385133739255
924 => 0.014226040456471
925 => 0.014189817999875
926 => 0.014576579070647
927 => 0.014527360198986
928 => 0.014484736973555
929 => 0.015583318885474
930 => 0.014713705578774
1001 => 0.014334504541261
1002 => 0.013865171249014
1003 => 0.014017988535554
1004 => 0.01405018938318
1005 => 0.012921527419011
1006 => 0.012463629400714
1007 => 0.012306496056357
1008 => 0.01221606359514
1009 => 0.012257274803296
1010 => 0.011845112880748
1011 => 0.012122092509229
1012 => 0.011765195123482
1013 => 0.011705360115317
1014 => 0.012343536852135
1015 => 0.012432335416889
1016 => 0.012053493152097
1017 => 0.012296771215085
1018 => 0.012208555207628
1019 => 0.011771313104803
1020 => 0.011754613672611
1021 => 0.011535220955216
1022 => 0.011191913835296
1023 => 0.011035013269332
1024 => 0.010953298092305
1025 => 0.010987015366944
1026 => 0.010969966881121
1027 => 0.010858713979087
1028 => 0.010976343767238
1029 => 0.010675848266497
1030 => 0.010556188536846
1031 => 0.010502141013047
1101 => 0.010235433960264
1102 => 0.010659883486406
1103 => 0.01074350539013
1104 => 0.010827292054837
1105 => 0.011556597767523
1106 => 0.011520163715114
1107 => 0.01184950980479
1108 => 0.011836712021374
1109 => 0.011742777181545
1110 => 0.011346481543839
1111 => 0.011504437921738
1112 => 0.011018272742436
1113 => 0.011382540750788
1114 => 0.011216304043972
1115 => 0.011326335952995
1116 => 0.011128488659395
1117 => 0.011237985520588
1118 => 0.010763335245671
1119 => 0.010320113497464
1120 => 0.010498478867392
1121 => 0.010692382423058
1122 => 0.011112814737449
1123 => 0.010862408719489
1124 => 0.010952464192447
1125 => 0.010650793433141
1126 => 0.010028360488701
1127 => 0.01003188339157
1128 => 0.0099361356435067
1129 => 0.0098533956097798
1130 => 0.010891170862887
1201 => 0.010762107105364
1202 => 0.010556460899199
1203 => 0.010831726518207
1204 => 0.010904511116925
1205 => 0.010906583192128
1206 => 0.011107409882122
1207 => 0.011214591122572
1208 => 0.011233482280752
1209 => 0.011549487416606
1210 => 0.011655408169936
1211 => 0.012091680762435
1212 => 0.011205497543154
1213 => 0.011187247182922
1214 => 0.010835600069966
1215 => 0.010612579911608
1216 => 0.01085087045101
1217 => 0.011061963339019
1218 => 0.010842159314415
1219 => 0.010870861079712
1220 => 0.01057579213533
1221 => 0.010681265398663
1222 => 0.010772113181827
1223 => 0.01072195237575
1224 => 0.010646859221241
1225 => 0.011044656129474
1226 => 0.011022210868932
1227 => 0.01139264849519
1228 => 0.011681431115107
1229 => 0.012198981196065
1230 => 0.011658890706089
1231 => 0.011639207661969
]
'min_raw' => 0.0098533956097798
'max_raw' => 0.028489064446867
'avg_raw' => 0.019171230028323
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.009853'
'max' => '$0.028489'
'avg' => '$0.019171'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.001732602598209
'max_diff' => -0.0096236205209656
'year' => 2030
]
5 => [
'items' => [
101 => 0.011831612575502
102 => 0.011655378713746
103 => 0.011766752430989
104 => 0.012181037168386
105 => 0.012189790352066
106 => 0.012043163247588
107 => 0.012034240974955
108 => 0.012062402314295
109 => 0.012227344158411
110 => 0.012169708409926
111 => 0.012236405957232
112 => 0.012319812261447
113 => 0.012664816099219
114 => 0.012747995356501
115 => 0.012545912884806
116 => 0.012564158669379
117 => 0.012488574277677
118 => 0.012415560702363
119 => 0.012579684556893
120 => 0.012879624126909
121 => 0.012877758218411
122 => 0.012947338368662
123 => 0.012990686225836
124 => 0.012804605490276
125 => 0.012683473773804
126 => 0.012729923381711
127 => 0.012804197316294
128 => 0.012705837345764
129 => 0.012098714042884
130 => 0.012282876469791
131 => 0.012252222836872
201 => 0.012208568335984
202 => 0.012393745080325
203 => 0.012375884331592
204 => 0.011840885564503
205 => 0.011875134449773
206 => 0.011842968352652
207 => 0.011946903593013
208 => 0.01164976586968
209 => 0.011741163432124
210 => 0.01179848712649
211 => 0.011832251222853
212 => 0.011954230291174
213 => 0.011939917455384
214 => 0.011953340585205
215 => 0.012134203342244
216 => 0.013048945102747
217 => 0.013098732478507
218 => 0.012853561231386
219 => 0.012951502308822
220 => 0.012763476857505
221 => 0.012889699602635
222 => 0.012976057999143
223 => 0.012585821011088
224 => 0.012562713709272
225 => 0.012373912210033
226 => 0.012475363441461
227 => 0.012313947237658
228 => 0.012353553127972
301 => 0.012242811605874
302 => 0.012442124297233
303 => 0.012664986856234
304 => 0.012721290739746
305 => 0.01257317946257
306 => 0.012465937136886
307 => 0.012277654940803
308 => 0.012590772429032
309 => 0.012682337524672
310 => 0.012590291476565
311 => 0.012568962395972
312 => 0.012528543826791
313 => 0.012577537386495
314 => 0.012681838841497
315 => 0.012632652201463
316 => 0.012665140843763
317 => 0.012541327641461
318 => 0.012804667090742
319 => 0.01322291351229
320 => 0.013224258242925
321 => 0.013175071337758
322 => 0.01315494511591
323 => 0.013205413865523
324 => 0.013232791091851
325 => 0.013395997773714
326 => 0.013571125045793
327 => 0.014388367610573
328 => 0.014158889168632
329 => 0.014883995390083
330 => 0.015457460267991
331 => 0.015629417310296
401 => 0.01547122492258
402 => 0.014930057309587
403 => 0.014903505044717
404 => 0.015712237933601
405 => 0.015483733850179
406 => 0.015456554016549
407 => 0.015167406507789
408 => 0.015338328497082
409 => 0.015300945350749
410 => 0.015241934225417
411 => 0.015568041474459
412 => 0.016178485132872
413 => 0.016083341764004
414 => 0.016012321652718
415 => 0.015701132198706
416 => 0.015888537756702
417 => 0.015821806227017
418 => 0.01610852722742
419 => 0.015938680058429
420 => 0.015482002707007
421 => 0.015554730080449
422 => 0.01554373748426
423 => 0.015769964334878
424 => 0.015702056649619
425 => 0.015530477418834
426 => 0.016176398702811
427 => 0.016134456167433
428 => 0.016193921093201
429 => 0.016220099392538
430 => 0.016613260295686
501 => 0.01677432573796
502 => 0.016810890413203
503 => 0.016963890126115
504 => 0.016807083640966
505 => 0.01743442138269
506 => 0.017851564374764
507 => 0.01833609742604
508 => 0.019044130444161
509 => 0.019310357408646
510 => 0.019262265890417
511 => 0.019799088444087
512 => 0.020763746640137
513 => 0.019457250892472
514 => 0.020832994087183
515 => 0.020397449675456
516 => 0.019364781710362
517 => 0.019298290067766
518 => 0.019997624803249
519 => 0.021548681938077
520 => 0.021160159717747
521 => 0.021549317421245
522 => 0.021095344288786
523 => 0.021072800696374
524 => 0.021527268959489
525 => 0.022589158828033
526 => 0.022084694755834
527 => 0.021361421808672
528 => 0.021895475297483
529 => 0.021432828741158
530 => 0.020390356563139
531 => 0.021159862622127
601 => 0.020645315834753
602 => 0.02079548794212
603 => 0.021876988756124
604 => 0.021746859716886
605 => 0.021915258743284
606 => 0.021618038869462
607 => 0.021340388640041
608 => 0.020822133868249
609 => 0.020668704179973
610 => 0.02071110662599
611 => 0.020668683167426
612 => 0.020378724385616
613 => 0.020316107814291
614 => 0.020211744118789
615 => 0.020244090791959
616 => 0.020047856511737
617 => 0.020418191142586
618 => 0.020486928513449
619 => 0.020756427174436
620 => 0.020784407419447
621 => 0.021534957354221
622 => 0.021121567062627
623 => 0.021398904960629
624 => 0.021374097248626
625 => 0.019387162756489
626 => 0.019660944798634
627 => 0.020086863738674
628 => 0.019894987833505
629 => 0.019623720195644
630 => 0.019404657033621
701 => 0.019072753942797
702 => 0.019539901169497
703 => 0.020154150097039
704 => 0.020799985785914
705 => 0.021575915049268
706 => 0.0214027366705
707 => 0.020785480328061
708 => 0.020813169996677
709 => 0.020984336632576
710 => 0.020762660286958
711 => 0.020697283604999
712 => 0.020975354880402
713 => 0.020977269804451
714 => 0.020722204378335
715 => 0.020438745833688
716 => 0.020437558132036
717 => 0.020387119421901
718 => 0.021104317223269
719 => 0.021498703497145
720 => 0.02154391924786
721 => 0.021495660116862
722 => 0.021514233141046
723 => 0.021284748457986
724 => 0.021809282391893
725 => 0.022290646600674
726 => 0.022161630709875
727 => 0.021968217548876
728 => 0.021814154650101
729 => 0.022125338387112
730 => 0.022111481865152
731 => 0.022286442304244
801 => 0.022278505088106
802 => 0.022219672473034
803 => 0.022161632810973
804 => 0.022391753510542
805 => 0.022325482444691
806 => 0.022259108441571
807 => 0.022125985216961
808 => 0.022144078874128
809 => 0.021950699108639
810 => 0.021861232780667
811 => 0.020515873867714
812 => 0.020156350005302
813 => 0.0202694635312
814 => 0.020306703440917
815 => 0.020150238195253
816 => 0.020374569164911
817 => 0.020339607420915
818 => 0.020475623114867
819 => 0.020390646414401
820 => 0.020394133887829
821 => 0.020644032244958
822 => 0.020716578801176
823 => 0.020679681037161
824 => 0.020705522966296
825 => 0.021301039316011
826 => 0.021216375934622
827 => 0.021171400200663
828 => 0.021183858786339
829 => 0.021336025981706
830 => 0.021378624488388
831 => 0.021198131622233
901 => 0.021283253101329
902 => 0.021645689555793
903 => 0.021772521802729
904 => 0.022177309452015
905 => 0.022005348464072
906 => 0.02232099029974
907 => 0.023291165692352
908 => 0.024066208927001
909 => 0.023353447138401
910 => 0.024776715337674
911 => 0.025884933786505
912 => 0.025842398516604
913 => 0.025649154996496
914 => 0.024387477756014
915 => 0.023226463548774
916 => 0.024197701232397
917 => 0.02420017711699
918 => 0.024116746938618
919 => 0.023598569266091
920 => 0.02409871547883
921 => 0.024138415268933
922 => 0.024116193943501
923 => 0.023718908336906
924 => 0.023112326646289
925 => 0.023230851256684
926 => 0.023424996986348
927 => 0.023057438617053
928 => 0.022939981446916
929 => 0.023158356673341
930 => 0.023862007153169
1001 => 0.023728986105927
1002 => 0.023725512388804
1003 => 0.024294632838607
1004 => 0.023887265420428
1005 => 0.02323234623159
1006 => 0.023066970499085
1007 => 0.022479998059137
1008 => 0.022885422014133
1009 => 0.022900012500511
1010 => 0.022677965943692
1011 => 0.023250364085907
1012 => 0.023245089336258
1013 => 0.023788496182071
1014 => 0.024827285976976
1015 => 0.024520064718881
1016 => 0.024162799821295
1017 => 0.024201644421544
1018 => 0.024627673809629
1019 => 0.024370086716288
1020 => 0.024462716831014
1021 => 0.024627533602856
1022 => 0.024726971653479
1023 => 0.024187336816324
1024 => 0.024061522122065
1025 => 0.023804149412569
1026 => 0.02373700567675
1027 => 0.023946630378377
1028 => 0.023891401675648
1029 => 0.022898786226628
1030 => 0.022795052389346
1031 => 0.022798233758037
1101 => 0.022537390091915
1102 => 0.022139540891424
1103 => 0.023185064835971
1104 => 0.023101094631126
1105 => 0.023008398023754
1106 => 0.023019752829238
1107 => 0.023473579337471
1108 => 0.023210337043908
1109 => 0.02391020982591
1110 => 0.023766337022032
1111 => 0.023618774423616
1112 => 0.023598376777648
1113 => 0.023541577766707
1114 => 0.02334679282421
1115 => 0.023111578301385
1116 => 0.022956269299483
1117 => 0.021175944964969
1118 => 0.021506362805784
1119 => 0.021886478413109
1120 => 0.022017692797539
1121 => 0.021793241513212
1122 => 0.023355655528962
1123 => 0.023641123625436
1124 => 0.022776422140594
1125 => 0.022614671798309
1126 => 0.023366259854474
1127 => 0.022912960378703
1128 => 0.023117081104887
1129 => 0.022675883742946
1130 => 0.023572362720477
1201 => 0.023565533052681
1202 => 0.023216782482526
1203 => 0.023511544076281
1204 => 0.023460321995639
1205 => 0.023066583460868
1206 => 0.023584844934328
1207 => 0.023585101985553
1208 => 0.023249437144269
1209 => 0.022857454096132
1210 => 0.022787376785352
1211 => 0.022734582945241
1212 => 0.023104097056541
1213 => 0.023435402253292
1214 => 0.024051879086922
1215 => 0.024206876010025
1216 => 0.024811839319625
1217 => 0.024451613123887
1218 => 0.024611296730748
1219 => 0.02478465587462
1220 => 0.024867770623264
1221 => 0.024732339600532
1222 => 0.025672096633173
1223 => 0.02575144092014
1224 => 0.025778044373234
1225 => 0.025461163589311
1226 => 0.025742627892306
1227 => 0.025610940066052
1228 => 0.025953555206032
1229 => 0.02600728163471
1230 => 0.025961777260993
1231 => 0.025978830877469
]
'min_raw' => 0.01164976586968
'max_raw' => 0.02600728163471
'avg_raw' => 0.018828523752195
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.011649'
'max' => '$0.0260072'
'avg' => '$0.018828'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0017963702599003
'max_diff' => -0.0024817828121569
'year' => 2031
]
6 => [
'items' => [
101 => 0.02517691403461
102 => 0.02513533041586
103 => 0.024568334823557
104 => 0.02479938971844
105 => 0.024367443667205
106 => 0.024504418209589
107 => 0.024564795282731
108 => 0.02453325772609
109 => 0.024812453215525
110 => 0.024575080013635
111 => 0.023948613106081
112 => 0.023321975518037
113 => 0.023314108593567
114 => 0.023149125977707
115 => 0.023029873764514
116 => 0.023052845971474
117 => 0.023133803025115
118 => 0.023025168393384
119 => 0.02304835109998
120 => 0.023433338495031
121 => 0.023510544971504
122 => 0.023248167197931
123 => 0.022194682576103
124 => 0.02193615480744
125 => 0.022121979440726
126 => 0.022033167234655
127 => 0.017782485576563
128 => 0.018781120180879
129 => 0.018187765409421
130 => 0.018461210587049
131 => 0.017855549013864
201 => 0.018144602462031
202 => 0.018091224844696
203 => 0.019696999736691
204 => 0.019671927770423
205 => 0.019683928393897
206 => 0.01911110736806
207 => 0.020023626816003
208 => 0.020473166709198
209 => 0.020389968839085
210 => 0.020410907950564
211 => 0.020051104640746
212 => 0.019687412076427
213 => 0.019284021050713
214 => 0.020033471715852
215 => 0.019950145595438
216 => 0.020141265735876
217 => 0.020627338064058
218 => 0.020698914060792
219 => 0.020795112926255
220 => 0.020760632480888
221 => 0.021582096577677
222 => 0.021482611855361
223 => 0.021722341412434
224 => 0.02122919952521
225 => 0.020671162670358
226 => 0.020777227232866
227 => 0.020767012362579
228 => 0.020636965339745
229 => 0.020519564702325
301 => 0.020324125718446
302 => 0.020942523582967
303 => 0.020917417758994
304 => 0.02132385186678
305 => 0.021252010690339
306 => 0.020772237731545
307 => 0.020789372916628
308 => 0.020904615271198
309 => 0.021303470376178
310 => 0.021421877727463
311 => 0.021367026724631
312 => 0.021496854979813
313 => 0.021599465939185
314 => 0.021509741336484
315 => 0.022780052498288
316 => 0.022252530738122
317 => 0.022509641173554
318 => 0.022570960497422
319 => 0.022413892338741
320 => 0.02244795479817
321 => 0.02249955014274
322 => 0.022812826971566
323 => 0.023634956017785
324 => 0.023999071375934
325 => 0.02509453039606
326 => 0.02396883666417
327 => 0.023902042656704
328 => 0.024099367905921
329 => 0.024742518316849
330 => 0.02526373131686
331 => 0.025436647738463
401 => 0.025459501498117
402 => 0.02578390420031
403 => 0.025969845779455
404 => 0.025744513179626
405 => 0.025553567394577
406 => 0.024869623293595
407 => 0.024948791685602
408 => 0.02549418339901
409 => 0.026264581317611
410 => 0.026925662878013
411 => 0.026694175156579
412 => 0.028460263066258
413 => 0.028635363468681
414 => 0.02861117025474
415 => 0.029010075029892
416 => 0.02821833028676
417 => 0.027879844069739
418 => 0.025594852040631
419 => 0.026236841597197
420 => 0.027170011120389
421 => 0.027046502634789
422 => 0.026368809983353
423 => 0.026925148787367
424 => 0.026741205780437
425 => 0.026596122299069
426 => 0.027260777853032
427 => 0.026529961768905
428 => 0.027162720670905
429 => 0.026351200834037
430 => 0.026695232572991
501 => 0.026499943519018
502 => 0.026626319470665
503 => 0.025887528239621
504 => 0.026286162054749
505 => 0.025870943762325
506 => 0.025870746894792
507 => 0.025861580927973
508 => 0.026350083407649
509 => 0.026366013455974
510 => 0.026005009385407
511 => 0.025952983058894
512 => 0.026145351656112
513 => 0.025920138410186
514 => 0.026025514270479
515 => 0.025923330137646
516 => 0.025900326337018
517 => 0.025717028139841
518 => 0.025638058236608
519 => 0.025669024370469
520 => 0.025563320991465
521 => 0.025499630882156
522 => 0.025848911362175
523 => 0.025662304891635
524 => 0.025820311244251
525 => 0.025640243063454
526 => 0.025016048296839
527 => 0.024657067285818
528 => 0.023478021234568
529 => 0.0238123972321
530 => 0.024034088864402
531 => 0.023960819781248
601 => 0.024118230123232
602 => 0.024127893839796
603 => 0.024076718133009
604 => 0.024017463220563
605 => 0.023988621206187
606 => 0.024203585951529
607 => 0.024328380221582
608 => 0.024056338585554
609 => 0.0239926030365
610 => 0.024267652150354
611 => 0.024435431950914
612 => 0.025674223730925
613 => 0.025582450034617
614 => 0.025812784002671
615 => 0.025786851932631
616 => 0.026028278626231
617 => 0.026422909235733
618 => 0.025620514866162
619 => 0.025759782784009
620 => 0.025725637506719
621 => 0.026098426690803
622 => 0.026099590497945
623 => 0.025876084759885
624 => 0.025997250846454
625 => 0.025929619260949
626 => 0.026051838676913
627 => 0.025581224340951
628 => 0.026154381802475
629 => 0.026479325149708
630 => 0.026483836988399
701 => 0.026637857556078
702 => 0.026794351373109
703 => 0.027094727627162
704 => 0.026785974042413
705 => 0.026230556400006
706 => 0.0262706557598
707 => 0.025945014599276
708 => 0.025950488686017
709 => 0.025921267581985
710 => 0.026008962314846
711 => 0.025600468403311
712 => 0.025696341107862
713 => 0.025562118760061
714 => 0.025759491010839
715 => 0.025547151095804
716 => 0.025725621040833
717 => 0.025802642752735
718 => 0.026086854527812
719 => 0.025505172785539
720 => 0.024319084336653
721 => 0.024568414508542
722 => 0.024199635599857
723 => 0.024233767491896
724 => 0.024302719345865
725 => 0.024079223827508
726 => 0.024121859729257
727 => 0.024120336474822
728 => 0.024107209891033
729 => 0.024049070074901
730 => 0.023964755838899
731 => 0.024300637804579
801 => 0.024357710695638
802 => 0.024484576662626
803 => 0.024862043726375
804 => 0.02482432586542
805 => 0.024885845261537
806 => 0.024751548765231
807 => 0.024239997121188
808 => 0.024267776836608
809 => 0.023921363340172
810 => 0.024475718090678
811 => 0.024344439568633
812 => 0.024259803451453
813 => 0.024236709702733
814 => 0.024615112434323
815 => 0.02472833646235
816 => 0.024657782846265
817 => 0.024513075321297
818 => 0.024790956548175
819 => 0.02486530584162
820 => 0.024881949906526
821 => 0.025374302162114
822 => 0.024909466928262
823 => 0.025021357389115
824 => 0.02589429482415
825 => 0.025102661027705
826 => 0.025522007105222
827 => 0.0255014822969
828 => 0.02571600556026
829 => 0.025483885127839
830 => 0.025486762538793
831 => 0.025677244663592
901 => 0.025409746872944
902 => 0.025343510658149
903 => 0.025252005801804
904 => 0.025451803307996
905 => 0.025571572876895
906 => 0.026536827641162
907 => 0.027160426239844
908 => 0.027133354180051
909 => 0.027380742129787
910 => 0.027269291592617
911 => 0.026909388408929
912 => 0.027523699257967
913 => 0.027329305601474
914 => 0.027345331178327
915 => 0.027344734705556
916 => 0.027473989492936
917 => 0.02738240063005
918 => 0.027201869579898
919 => 0.02732171451602
920 => 0.027677611130954
921 => 0.028782325143952
922 => 0.029400537741139
923 => 0.028745107969351
924 => 0.029197214649376
925 => 0.028926111743442
926 => 0.028876844280821
927 => 0.029160800686299
928 => 0.029445254119874
929 => 0.029427135665881
930 => 0.029220637079951
1001 => 0.029103991268467
1002 => 0.02998727243224
1003 => 0.030638058947406
1004 => 0.03059367967
1005 => 0.030789555367557
1006 => 0.031364652473791
1007 => 0.031417232145833
1008 => 0.031410608315686
1009 => 0.031280284112407
1010 => 0.031846541899291
1011 => 0.032318924107466
1012 => 0.031250117824776
1013 => 0.031657105265523
1014 => 0.031839815039991
1015 => 0.032108087196457
1016 => 0.032560707292048
1017 => 0.033052372767412
1018 => 0.033121899656466
1019 => 0.033072567001514
1020 => 0.032748300403835
1021 => 0.033286286633767
1022 => 0.033601426349931
1023 => 0.033789084839063
1024 => 0.034264955544106
1025 => 0.031840943393356
1026 => 0.030125107111834
1027 => 0.029857154499498
1028 => 0.030402046673399
1029 => 0.030545730394223
1030 => 0.030487811666523
1031 => 0.02855648193466
1101 => 0.029846986448158
1102 => 0.031235460795979
1103 => 0.031288797750419
1104 => 0.031983897040568
1105 => 0.032210249862523
1106 => 0.03276989589984
1107 => 0.03273488988783
1108 => 0.032871154792004
1109 => 0.032839829850313
1110 => 0.033876456287066
1111 => 0.035020009187319
1112 => 0.034980411586659
1113 => 0.034816012327344
1114 => 0.035060173261666
1115 => 0.036240442405304
1116 => 0.036131782135985
1117 => 0.036237336331969
1118 => 0.037628940169372
1119 => 0.039438223111333
1120 => 0.038597629535755
1121 => 0.040421475720475
1122 => 0.041569490215824
1123 => 0.043554862578616
1124 => 0.043306284180629
1125 => 0.044079175072129
1126 => 0.042861276968356
1127 => 0.040064736744277
1128 => 0.039622173549091
1129 => 0.040508196273339
1130 => 0.04268639668407
1201 => 0.040439596990848
1202 => 0.040894121642549
1203 => 0.040763218512281
1204 => 0.040756243240772
1205 => 0.041022460983808
1206 => 0.04063629826255
1207 => 0.039063001866797
1208 => 0.039784034333477
1209 => 0.039505609071269
1210 => 0.039814542657667
1211 => 0.041481729809555
1212 => 0.040744626628927
1213 => 0.039968148305536
1214 => 0.040942024437403
1215 => 0.042182103413415
1216 => 0.042104501499732
1217 => 0.041953921352104
1218 => 0.042802733760163
1219 => 0.044204723179575
1220 => 0.044583675285992
1221 => 0.044863409983614
1222 => 0.04490198067226
1223 => 0.04529928273686
1224 => 0.043162889402493
1225 => 0.046553400490606
1226 => 0.047138848094544
1227 => 0.047028808209321
1228 => 0.047679508581697
1229 => 0.047488056025469
1230 => 0.04721067130948
1231 => 0.048242169807635
]
'min_raw' => 0.017782485576563
'max_raw' => 0.048242169807635
'avg_raw' => 0.033012327692099
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.017782'
'max' => '$0.048242'
'avg' => '$0.033012'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0061327197068827
'max_diff' => 0.022234888172924
'year' => 2032
]
7 => [
'items' => [
101 => 0.047059640017137
102 => 0.045381187855886
103 => 0.044460355804204
104 => 0.045672981731261
105 => 0.046413490070102
106 => 0.0469029189769
107 => 0.047051019868376
108 => 0.043328731535508
109 => 0.041322624571668
110 => 0.042608516135427
111 => 0.044177392590707
112 => 0.04315417421457
113 => 0.043194282437706
114 => 0.041735441930393
115 => 0.044306467605092
116 => 0.043931890790017
117 => 0.045875195969237
118 => 0.045411410592217
119 => 0.046996100527198
120 => 0.046578798558575
121 => 0.048310995699292
122 => 0.049002016036089
123 => 0.0501623467303
124 => 0.051015890712357
125 => 0.051517108064315
126 => 0.051487016854522
127 => 0.053473089708475
128 => 0.0523019719346
129 => 0.050830771999345
130 => 0.050804162634093
131 => 0.051566117927625
201 => 0.053162967190643
202 => 0.053577006971332
203 => 0.053808398724391
204 => 0.053454014199776
205 => 0.052182849791001
206 => 0.051633967444242
207 => 0.052101631106333
208 => 0.051529718634392
209 => 0.05251700001126
210 => 0.053872748213623
211 => 0.053592791571045
212 => 0.054528644653739
213 => 0.055497154139712
214 => 0.056882166203136
215 => 0.057244259643364
216 => 0.057842786330879
217 => 0.058458866898107
218 => 0.058656735372464
219 => 0.059034527684993
220 => 0.059032536533023
221 => 0.060171039095184
222 => 0.061426842677738
223 => 0.061900879458232
224 => 0.062990900896438
225 => 0.061124277382417
226 => 0.062540132760027
227 => 0.06381726975179
228 => 0.062294614380032
301 => 0.0643932400768
302 => 0.064474724957018
303 => 0.065705049904994
304 => 0.06445787986848
305 => 0.063717314281905
306 => 0.065855299381716
307 => 0.066889803025615
308 => 0.066578202109002
309 => 0.064206903747948
310 => 0.062826706392044
311 => 0.059214463691455
312 => 0.063493321207575
313 => 0.065577427887692
314 => 0.06420150641513
315 => 0.064895441173318
316 => 0.068681324204889
317 => 0.070122743345538
318 => 0.069822938240563
319 => 0.069873600368092
320 => 0.070651363972778
321 => 0.074100396118196
322 => 0.072033656108722
323 => 0.073613601406694
324 => 0.074451598695822
325 => 0.07522997728006
326 => 0.073318525486249
327 => 0.070831754787304
328 => 0.070044090119416
329 => 0.064064698141132
330 => 0.063753444821479
331 => 0.063578728901218
401 => 0.062477169738023
402 => 0.061611645978201
403 => 0.060923349349554
404 => 0.059117053453212
405 => 0.059726625293855
406 => 0.056847766638338
407 => 0.058689558385651
408 => 0.054094830458973
409 => 0.057921456409388
410 => 0.055838797879909
411 => 0.057237247069533
412 => 0.057232368012052
413 => 0.054657379675236
414 => 0.053172180141196
415 => 0.054118607089117
416 => 0.055133251904753
417 => 0.055297874612414
418 => 0.056613388100826
419 => 0.056980519638574
420 => 0.055868093939465
421 => 0.053999614935451
422 => 0.054433619992615
423 => 0.053163385042564
424 => 0.050937347151483
425 => 0.052536126427751
426 => 0.053082019966031
427 => 0.053323117651404
428 => 0.051134065047705
429 => 0.050446217192979
430 => 0.050080012766725
501 => 0.053717035733259
502 => 0.05391628006148
503 => 0.052896917907988
504 => 0.057504531501658
505 => 0.056461686638861
506 => 0.0576267998538
507 => 0.054394238582703
508 => 0.05451772677648
509 => 0.05298738046665
510 => 0.053844272142377
511 => 0.053238648724881
512 => 0.053775043762947
513 => 0.054096556737124
514 => 0.055626651932183
515 => 0.05793892763869
516 => 0.055398106734219
517 => 0.054291034680916
518 => 0.054977855956376
519 => 0.056806951521175
520 => 0.059578124931525
521 => 0.057937534497535
522 => 0.058665600673107
523 => 0.05882465074306
524 => 0.057614940094996
525 => 0.059622728688632
526 => 0.060698718907207
527 => 0.061802462226662
528 => 0.062760811624759
529 => 0.061361602873036
530 => 0.062858956806075
531 => 0.061652353854596
601 => 0.060569906270799
602 => 0.060571547896969
603 => 0.059892512715617
604 => 0.058576796487809
605 => 0.058334158228692
606 => 0.05959639309445
607 => 0.060608585922701
608 => 0.060691954972112
609 => 0.061252356930177
610 => 0.061583997036361
611 => 0.064834520919822
612 => 0.066141908515494
613 => 0.067740557319901
614 => 0.068363321124127
615 => 0.070237616901668
616 => 0.068723970838443
617 => 0.068396483991385
618 => 0.063850055512547
619 => 0.064594532921261
620 => 0.065786513083998
621 => 0.063869710826397
622 => 0.065085480671783
623 => 0.065325499392788
624 => 0.063804578619157
625 => 0.064616968119461
626 => 0.062459502463355
627 => 0.05798595449432
628 => 0.059627709026353
629 => 0.060836592970529
630 => 0.059111366527874
701 => 0.06220376815085
702 => 0.060397250962834
703 => 0.059824671742351
704 => 0.057590836064016
705 => 0.05864512051597
706 => 0.060071055333137
707 => 0.059189993398843
708 => 0.061018329204618
709 => 0.063607740304944
710 => 0.065453108857134
711 => 0.065594773340538
712 => 0.064408324991571
713 => 0.066309616042603
714 => 0.066323464872223
715 => 0.064178800799657
716 => 0.06286520599675
717 => 0.062566754493703
718 => 0.063312344863179
719 => 0.064217629215299
720 => 0.065645010321622
721 => 0.066507546829757
722 => 0.068756584588958
723 => 0.069365109721632
724 => 0.070033694349148
725 => 0.070927129595373
726 => 0.071999927680561
727 => 0.069652706544598
728 => 0.069745966016098
729 => 0.067560266193778
730 => 0.065224532472568
731 => 0.066997063213648
801 => 0.069314411367726
802 => 0.068782809140738
803 => 0.068722993030554
804 => 0.068823587136278
805 => 0.068422776417635
806 => 0.066609924391951
807 => 0.065699521453706
808 => 0.066874173512602
809 => 0.067498448804157
810 => 0.068466645338832
811 => 0.068347294679783
812 => 0.070841264976389
813 => 0.071810346419903
814 => 0.071562413917319
815 => 0.071608039464623
816 => 0.073362515128742
817 => 0.075313852902682
818 => 0.077141538229675
819 => 0.079000738245204
820 => 0.076759400060672
821 => 0.075621386757088
822 => 0.076795525999642
823 => 0.076172511190336
824 => 0.0797525390828
825 => 0.080000412446599
826 => 0.083580181462298
827 => 0.086977808529161
828 => 0.084843819843276
829 => 0.086856075057105
830 => 0.089032493132435
831 => 0.093231156710854
901 => 0.091817194528408
902 => 0.090734121656267
903 => 0.089710623025463
904 => 0.091840361200333
905 => 0.094580235338905
906 => 0.095170377986166
907 => 0.096126634526569
908 => 0.095121247699821
909 => 0.096332125392913
910 => 0.10060705573615
911 => 0.09945193182155
912 => 0.097811470167389
913 => 0.1011861171047
914 => 0.1024073887127
915 => 0.11097891244258
916 => 0.12180081522353
917 => 0.11732047641177
918 => 0.11453938553168
919 => 0.11519300785686
920 => 0.11914480040794
921 => 0.12041399075172
922 => 0.11696389388118
923 => 0.11818252642193
924 => 0.12489731153479
925 => 0.12849957831174
926 => 0.12360721617967
927 => 0.11010938309118
928 => 0.097663764544112
929 => 0.1009649030163
930 => 0.10059065635981
1001 => 0.10780485527707
1002 => 0.099424382498212
1003 => 0.099565488166888
1004 => 0.10692886907779
1005 => 0.10496444529107
1006 => 0.10178233034097
1007 => 0.097686997504787
1008 => 0.090116395984667
1009 => 0.083410903096455
1010 => 0.096561918833024
1011 => 0.095994823120892
1012 => 0.09517358449085
1013 => 0.097001162194708
1014 => 0.10587536075766
1015 => 0.1056707817578
1016 => 0.10436935453786
1017 => 0.10535647561393
1018 => 0.10160928324367
1019 => 0.10257502003947
1020 => 0.097661793094547
1021 => 0.099882776868136
1022 => 0.10177550295145
1023 => 0.10215549573496
1024 => 0.10301163887913
1025 => 0.095695989449628
1026 => 0.09898050126729
1027 => 0.10090984424303
1028 => 0.092193002488544
1029 => 0.10073754030833
1030 => 0.095568640268911
1031 => 0.093814237961261
1101 => 0.096176309543584
1102 => 0.095255807950762
1103 => 0.094464414734922
1104 => 0.094022803722621
1105 => 0.095757248400352
1106 => 0.095676334483026
1107 => 0.092838446349054
1108 => 0.089136536965405
1109 => 0.090379019265591
1110 => 0.0899276137976
1111 => 0.088291662149135
1112 => 0.089394096034645
1113 => 0.084539535131882
1114 => 0.076187515416798
1115 => 0.081705115469865
1116 => 0.081492693869816
1117 => 0.081385581266519
1118 => 0.085531905211134
1119 => 0.085133331835829
1120 => 0.084409917256807
1121 => 0.088278376073083
1122 => 0.086866336567029
1123 => 0.091217909606339
1124 => 0.094084137052127
1125 => 0.093357169059131
1126 => 0.096052869825574
1127 => 0.090407643548325
1128 => 0.092282761270461
1129 => 0.092669220434192
1130 => 0.088230639891776
1201 => 0.085198543369269
1202 => 0.084996337099649
1203 => 0.079739099578261
1204 => 0.082547473427248
1205 => 0.08501872619595
1206 => 0.083835187896703
1207 => 0.083460515028363
1208 => 0.085374637456084
1209 => 0.085523381162068
1210 => 0.082132008902484
1211 => 0.082837182586043
1212 => 0.085777874071857
1213 => 0.082763084705638
1214 => 0.076905841430122
1215 => 0.075453164115069
1216 => 0.075259350183087
1217 => 0.071319574091375
1218 => 0.075550238959508
1219 => 0.073703440369798
1220 => 0.079537454986647
1221 => 0.076205097125951
1222 => 0.076061445838876
1223 => 0.075844295849399
1224 => 0.072453167817162
1225 => 0.073195609338793
1226 => 0.075663598033729
1227 => 0.076544204203965
1228 => 0.076452349765816
1229 => 0.075651503542718
1230 => 0.076018126842656
1231 => 0.074837105453529
]
'min_raw' => 0.041322624571668
'max_raw' => 0.12849957831174
'avg_raw' => 0.084911101441703
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.041322'
'max' => '$0.128499'
'avg' => '$0.084911'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.023540138995105
'max_diff' => 0.080257408504103
'year' => 2033
]
8 => [
'items' => [
101 => 0.074420062220194
102 => 0.07310375905901
103 => 0.071169157050098
104 => 0.071438175325041
105 => 0.067605222529236
106 => 0.065516826415879
107 => 0.06493878589632
108 => 0.06416580595559
109 => 0.065026096037447
110 => 0.06759436425555
111 => 0.06449648789602
112 => 0.059185396168366
113 => 0.059504601830858
114 => 0.060221762181466
115 => 0.058885338612599
116 => 0.057620525862194
117 => 0.058720177931169
118 => 0.056469798351277
119 => 0.06049370980238
120 => 0.060384874274509
121 => 0.061884739626466
122 => 0.062822636211379
123 => 0.060661088230778
124 => 0.060117464759104
125 => 0.060427137394879
126 => 0.055308938529844
127 => 0.061466473585705
128 => 0.061519724204566
129 => 0.061063760076496
130 => 0.064342457401175
131 => 0.071261531407591
201 => 0.06865829744727
202 => 0.067650246574671
203 => 0.06573394112898
204 => 0.068287304356405
205 => 0.06809124589921
206 => 0.067204595202813
207 => 0.066668346095113
208 => 0.067656401518345
209 => 0.066545915093849
210 => 0.066346441217884
211 => 0.065137846559249
212 => 0.06470643325367
213 => 0.064387032017278
214 => 0.064035402639727
215 => 0.064811009426023
216 => 0.063053382408708
217 => 0.060933856528127
218 => 0.060757640884744
219 => 0.061244187769161
220 => 0.061028926991962
221 => 0.06075661029896
222 => 0.06023668357098
223 => 0.060082432417265
224 => 0.060583673834817
225 => 0.060017801498591
226 => 0.060852776955354
227 => 0.060625709832414
228 => 0.059357331341869
301 => 0.057776462128788
302 => 0.057762389076807
303 => 0.057421793397993
304 => 0.056987993592122
305 => 0.056867320410123
306 => 0.058627568301099
307 => 0.062271228755632
308 => 0.061555891023002
309 => 0.062072795845587
310 => 0.064615455973197
311 => 0.065423691167307
312 => 0.064850024970628
313 => 0.064064755298423
314 => 0.064099303178689
315 => 0.066782807365908
316 => 0.066950174230411
317 => 0.067373056302415
318 => 0.067916579271399
319 => 0.064942589282505
320 => 0.063959228517659
321 => 0.063493257632496
322 => 0.062058247659623
323 => 0.06360578288691
324 => 0.062704100382035
325 => 0.062825768157803
326 => 0.062746531859222
327 => 0.062789800236182
328 => 0.060492585037122
329 => 0.061329569517583
330 => 0.059937920483007
331 => 0.058074658645644
401 => 0.058068412338621
402 => 0.058524443033634
403 => 0.058253178131757
404 => 0.057523211255665
405 => 0.057626899605068
406 => 0.056718480558294
407 => 0.057737198124804
408 => 0.057766411299465
409 => 0.057374149546438
410 => 0.05894362451358
411 => 0.059586639688188
412 => 0.059328444599284
413 => 0.059568524032455
414 => 0.061585616535349
415 => 0.061914490625237
416 => 0.062060554771762
417 => 0.06186484816521
418 => 0.059605392780579
419 => 0.059705609234833
420 => 0.058970287388175
421 => 0.058349017914057
422 => 0.058373865434892
423 => 0.058693278703968
424 => 0.06008817518336
425 => 0.063023652590603
426 => 0.063135051812402
427 => 0.063270070918967
428 => 0.062720880357402
429 => 0.062555239228988
430 => 0.062773762632969
501 => 0.06387617360706
502 => 0.066711873934081
503 => 0.065709548048455
504 => 0.064894641501309
505 => 0.065609534240383
506 => 0.065499482106717
507 => 0.064570531346023
508 => 0.064544458792137
509 => 0.062761505278842
510 => 0.062102387960863
511 => 0.061551580195885
512 => 0.060950112495729
513 => 0.060593542281696
514 => 0.061141396188714
515 => 0.061266696859266
516 => 0.060068804716724
517 => 0.059905536444059
518 => 0.060883761025957
519 => 0.060453280859352
520 => 0.060896040386099
521 => 0.060998764394226
522 => 0.060982223462983
523 => 0.060532752728715
524 => 0.060819231971327
525 => 0.060141623158977
526 => 0.059404825349099
527 => 0.058934794250523
528 => 0.058524629776437
529 => 0.058752212865559
530 => 0.057940920707869
531 => 0.057681372018539
601 => 0.060722179249917
602 => 0.062968456245922
603 => 0.062935794488777
604 => 0.062736974442078
605 => 0.062441568181855
606 => 0.063854562799152
607 => 0.063362303728205
608 => 0.063720463331941
609 => 0.063811629983003
610 => 0.064087563978129
611 => 0.064186186664058
612 => 0.063888080409321
613 => 0.062887599407808
614 => 0.060394495874918
615 => 0.059233949450354
616 => 0.058850949799818
617 => 0.058864871109695
618 => 0.058480859235821
619 => 0.058593967942882
620 => 0.05844152464344
621 => 0.058152833914293
622 => 0.058734387026543
623 => 0.058801405605188
624 => 0.058665664159747
625 => 0.05869763618406
626 => 0.057573754991735
627 => 0.057659201237846
628 => 0.057183425681517
629 => 0.057094223500266
630 => 0.055891504324383
701 => 0.053760712967374
702 => 0.054941378220079
703 => 0.053515300621469
704 => 0.052975223426274
705 => 0.055531864869092
706 => 0.055275248978428
707 => 0.054836034121858
708 => 0.054186343808595
709 => 0.053945367351624
710 => 0.052481270682947
711 => 0.05239476404111
712 => 0.053120409884042
713 => 0.052785549295477
714 => 0.052315278207511
715 => 0.050612003997514
716 => 0.048696959850766
717 => 0.048754762996018
718 => 0.049363902908436
719 => 0.051135059357498
720 => 0.050443037891532
721 => 0.049940968377942
722 => 0.0498469458502
723 => 0.051023834634377
724 => 0.05268937882981
725 => 0.053470814901856
726 => 0.052696435487025
727 => 0.051806870110815
728 => 0.051861013833416
729 => 0.052221207763064
730 => 0.052259059052202
731 => 0.051680043441088
801 => 0.051843032944013
802 => 0.051595436984997
803 => 0.050075941041542
804 => 0.050048458178299
805 => 0.049675549368593
806 => 0.049664257838038
807 => 0.049029846926266
808 => 0.048941088454234
809 => 0.047681427082921
810 => 0.048510540012125
811 => 0.047954414589598
812 => 0.047116202401123
813 => 0.046971694303889
814 => 0.046967350215988
815 => 0.047828006712735
816 => 0.048500482739862
817 => 0.04796408862942
818 => 0.047841962088036
819 => 0.049145954040936
820 => 0.048980009178779
821 => 0.048836301998381
822 => 0.052540247614958
823 => 0.049608285636956
824 => 0.048329782864009
825 => 0.046747392901395
826 => 0.047262627052324
827 => 0.04737119445829
828 => 0.043565831845432
829 => 0.042021996707323
830 => 0.041492210666124
831 => 0.041187311309339
901 => 0.041326257774911
902 => 0.039936625076813
903 => 0.040870481232338
904 => 0.039667176778513
905 => 0.039465438870938
906 => 0.041617096295195
907 => 0.04191648685598
908 => 0.040639193710315
909 => 0.041459422684809
910 => 0.041161996256622
911 => 0.039687803979681
912 => 0.039631500678126
913 => 0.038891802813921
914 => 0.037734318890171
915 => 0.037205317677577
916 => 0.036929809253059
917 => 0.037043489398567
918 => 0.036986009238329
919 => 0.036610912311692
920 => 0.037007509355091
921 => 0.035994367794419
922 => 0.035590926661523
923 => 0.035408701661557
924 => 0.034509480212209
925 => 0.035940541423716
926 => 0.036222478510417
927 => 0.036504971100274
928 => 0.038963876229093
929 => 0.038841036277651
930 => 0.039951449613205
1001 => 0.039908300992904
1002 => 0.039591593122101
1003 => 0.038255454711098
1004 => 0.038788015667347
1005 => 0.037148875822361
1006 => 0.0383770308449
1007 => 0.037816552181593
1008 => 0.038187532445045
1009 => 0.037520476481417
1010 => 0.037889652793754
1011 => 0.03628933625285
1012 => 0.034794983184015
1013 => 0.0353963544818
1014 => 0.036050113857642
1015 => 0.037467630759258
1016 => 0.036623369386916
1017 => 0.036926997701467
1018 => 0.035909893674487
1019 => 0.033811317545424
1020 => 0.03382319525841
1021 => 0.03350037504092
1022 => 0.033221411240485
1023 => 0.036720342961491
1024 => 0.036285195492059
1025 => 0.035591844950212
1026 => 0.03651992220313
1027 => 0.036765320559368
1028 => 0.036772306705581
1029 => 0.037449407912169
1030 => 0.037810776947502
1031 => 0.037874469806242
1101 => 0.038939903184548
1102 => 0.03929702239955
1103 => 0.040767945904741
1104 => 0.037780117309599
1105 => 0.037718584945877
1106 => 0.036532982153327
1107 => 0.035781054118654
1108 => 0.036584467309164
1109 => 0.037296181719119
1110 => 0.036555097103941
1111 => 0.036651867109533
1112 => 0.035657021562494
1113 => 0.036012632033727
1114 => 0.036318931677456
1115 => 0.03614981101765
1116 => 0.035896629204387
1117 => 0.037237829253786
1118 => 0.037162153490794
1119 => 0.038411109810851
1120 => 0.039384760576058
1121 => 0.041129716808203
1122 => 0.039308764013334
1123 => 0.039242401255857
1124 => 0.039891107855114
1125 => 0.03929692308595
1126 => 0.039672427349501
1127 => 0.041069217266071
1128 => 0.041098729235976
1129 => 0.040604365716051
1130 => 0.040574283650936
1201 => 0.040669231572682
1202 => 0.041225344515991
1203 => 0.041031021565974
1204 => 0.041255897003389
1205 => 0.041537107181292
1206 => 0.04270031170774
1207 => 0.042980756381056
1208 => 0.042299421218789
1209 => 0.042360938155356
1210 => 0.0421061001016
1211 => 0.041859929734783
1212 => 0.042413284769092
1213 => 0.043424551970513
1214 => 0.043418260929738
1215 => 0.043652855264243
1216 => 0.043799005591154
1217 => 0.043171621399471
1218 => 0.042763217360241
1219 => 0.042919825456306
1220 => 0.043170245212394
1221 => 0.04283861770448
1222 => 0.040791659100825
1223 => 0.041412575580952
1224 => 0.041309224717394
1225 => 0.041162040519793
1226 => 0.041786376841966
1227 => 0.041726158080614
1228 => 0.039922372384951
1229 => 0.040037844892819
1230 => 0.039929394650612
1231 => 0.040279819570017
]
'min_raw' => 0.033221411240485
'max_raw' => 0.074420062220194
'avg_raw' => 0.05382073673034
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.033221'
'max' => '$0.07442'
'avg' => '$0.05382'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0081012133311825
'max_diff' => -0.054079516091543
'year' => 2034
]
9 => [
'items' => [
101 => 0.039277998990306
102 => 0.03958615225326
103 => 0.039779423091028
104 => 0.039893261099249
105 => 0.040304522044399
106 => 0.040256265319242
107 => 0.040301522338608
108 => 0.040911313751401
109 => 0.043995429462164
110 => 0.044163291075583
111 => 0.043336679098607
112 => 0.043666894279209
113 => 0.043032953342575
114 => 0.043458522140372
115 => 0.04374968550355
116 => 0.042433974252845
117 => 0.042356066371474
118 => 0.041719508935089
119 => 0.042061558844946
120 => 0.041517332844105
121 => 0.041650866868494
122 => 0.041277494095015
123 => 0.0419494907495
124 => 0.042700887426936
125 => 0.042890719901211
126 => 0.042391352389413
127 => 0.042029777400949
128 => 0.041394970831412
129 => 0.04245066830414
130 => 0.042759386416963
131 => 0.042449046739318
201 => 0.042377134254952
202 => 0.042240860227021
203 => 0.042406045434187
204 => 0.04275770507182
205 => 0.042591868880846
206 => 0.042701406606642
207 => 0.04228396175072
208 => 0.043171829089744
209 => 0.044581976101025
210 => 0.044586509954248
211 => 0.044420672869356
212 => 0.044352815907227
213 => 0.044522974820163
214 => 0.044615279050147
215 => 0.045165541772773
216 => 0.045755995597585
217 => 0.048511385962795
218 => 0.047737683374116
219 => 0.050182429625037
220 => 0.052115906498945
221 => 0.052695671672734
222 => 0.052162314992908
223 => 0.050337730602585
224 => 0.050248207787757
225 => 0.052974907186558
226 => 0.052204489715652
227 => 0.052112851008936
228 => 0.051137969995515
301 => 0.051714245415809
302 => 0.051588205527941
303 => 0.051389245398857
304 => 0.052488738757086
305 => 0.05454689217124
306 => 0.054226109660403
307 => 0.053986660396736
308 => 0.052937463425981
309 => 0.053569314349003
310 => 0.053344324337622
311 => 0.054311024208704
312 => 0.053738372620099
313 => 0.052198653045584
314 => 0.052443858462808
315 => 0.052406796157279
316 => 0.053169535778793
317 => 0.052940580276776
318 => 0.052362088920906
319 => 0.05453985762662
320 => 0.054398445440257
321 => 0.054598935589193
322 => 0.054687197553119
323 => 0.056012766987698
324 => 0.056555810371555
325 => 0.056679090727003
326 => 0.057194939941184
327 => 0.056666255928626
328 => 0.058781368924169
329 => 0.06018779564594
330 => 0.061821432657335
331 => 0.064208615411216
401 => 0.06510621820935
402 => 0.064944074297999
403 => 0.066754009017451
404 => 0.070006421475718
405 => 0.065601479845845
406 => 0.070239894078136
407 => 0.06877142568526
408 => 0.06528971354237
409 => 0.065065532327058
410 => 0.067423388213732
411 => 0.072652885635156
412 => 0.071342955843558
413 => 0.072655028211025
414 => 0.071124426099548
415 => 0.071048418803785
416 => 0.072580690282839
417 => 0.076160926113418
418 => 0.074460090273443
419 => 0.072021525034781
420 => 0.073822123658732
421 => 0.07226227849313
422 => 0.068747510761857
423 => 0.071341954164934
424 => 0.069607123746791
425 => 0.070113439491462
426 => 0.07375979499385
427 => 0.073321055852742
428 => 0.073888824927486
429 => 0.072886727371668
430 => 0.071950610238253
501 => 0.070203278091764
502 => 0.069685979185622
503 => 0.069828941992815
504 => 0.069685908340355
505 => 0.068708292063206
506 => 0.068497175921235
507 => 0.068145306435407
508 => 0.068254365502373
509 => 0.067592747925967
510 => 0.068841356989812
511 => 0.069073109834767
512 => 0.069981743386078
513 => 0.070076080735651
514 => 0.072606612242465
515 => 0.071212838012366
516 => 0.072147902098594
517 => 0.072064261165557
518 => 0.065365172801981
519 => 0.066288248071925
520 => 0.06772426351498
521 => 0.067077340504357
522 => 0.066162742724006
523 => 0.065424155978743
524 => 0.064305121535296
525 => 0.065880141025294
526 => 0.067951124169992
527 => 0.070128604285843
528 => 0.07274470397089
529 => 0.072160820975945
530 => 0.070079698121952
531 => 0.070173055772921
601 => 0.07075015603633
602 => 0.070002758760128
603 => 0.069782336712448
604 => 0.070719873431789
605 => 0.070726329731914
606 => 0.069866358839666
607 => 0.068910658565944
608 => 0.068906654146902
609 => 0.068736596514163
610 => 0.071154678974627
611 => 0.07248437983217
612 => 0.072636827892567
613 => 0.072474118863063
614 => 0.072536739110829
615 => 0.071763015479783
616 => 0.073531518259738
617 => 0.075154471297421
618 => 0.074719485213988
619 => 0.074067379238005
620 => 0.073547945418456
621 => 0.074597123113946
622 => 0.074550404882725
623 => 0.07514029621847
624 => 0.075113535340104
625 => 0.074915177070828
626 => 0.074719492297986
627 => 0.075495360303099
628 => 0.075271922777685
629 => 0.07504813819208
630 => 0.074599303945942
701 => 0.074660307974339
702 => 0.074008314593648
703 => 0.073706672622552
704 => 0.069170701117569
705 => 0.067958541314292
706 => 0.068339911464191
707 => 0.06846546841981
708 => 0.067937934919999
709 => 0.06869428244649
710 => 0.068576406485657
711 => 0.069034992894129
712 => 0.068748488015623
713 => 0.068760246275774
714 => 0.06960279603418
715 => 0.069847391813508
716 => 0.069722988426012
717 => 0.069810116294316
718 => 0.071817941245003
719 => 0.071532492743643
720 => 0.071380853916495
721 => 0.071422858907933
722 => 0.071935901231086
723 => 0.072079525070497
724 => 0.071470980770646
725 => 0.071757973780409
726 => 0.07297995359114
727 => 0.073407577366829
728 => 0.074772347187771
729 => 0.074192568710985
730 => 0.075256777197349
731 => 0.078527791269023
801 => 0.081140903646434
802 => 0.078737777512731
803 => 0.083536425615991
804 => 0.087272861489566
805 => 0.087129450857379
806 => 0.086477916837502
807 => 0.082224083933724
808 => 0.078309643474592
809 => 0.081584239134577
810 => 0.081592586752341
811 => 0.081311296081054
812 => 0.079564223880118
813 => 0.08125050175546
814 => 0.081384352369542
815 => 0.081309431619407
816 => 0.079969955459177
817 => 0.077924822939081
818 => 0.078324436938152
819 => 0.078979012820536
820 => 0.077739764116349
821 => 0.077343749066635
822 => 0.078080016389
823 => 0.080452423109048
824 => 0.080003933361039
825 => 0.07999222148123
826 => 0.081911050812463
827 => 0.080537583120587
828 => 0.078329477350422
829 => 0.077771901522118
830 => 0.075792882959723
831 => 0.077159798129791
901 => 0.07720899097329
902 => 0.076460345504178
903 => 0.078390225804219
904 => 0.078372441617506
905 => 0.08020457573762
906 => 0.083706928057126
907 => 0.082671110135958
908 => 0.081466566590308
909 => 0.08159753387209
910 => 0.083033921698441
911 => 0.082165448829084
912 => 0.082477757728113
913 => 0.083033448981518
914 => 0.083368711311735
915 => 0.081549294782166
916 => 0.08112510175637
917 => 0.080257351697114
918 => 0.080030971903976
919 => 0.080737736221041
920 => 0.080551528793847
921 => 0.077204856505278
922 => 0.076855110630414
923 => 0.076865836837074
924 => 0.075986384205218
925 => 0.074645007848821
926 => 0.078170064824011
927 => 0.077886953415763
928 => 0.077574420332139
929 => 0.077612703851594
930 => 0.079142811609258
1001 => 0.078255271837519
1002 => 0.080614941785595
1003 => 0.080129864582442
1004 => 0.079632346979392
1005 => 0.079563574891893
1006 => 0.079372073060926
1007 => 0.078715342027847
1008 => 0.077922299841988
1009 => 0.077398664698746
1010 => 0.071396176906657
1011 => 0.072510203726003
1012 => 0.073791790034922
1013 => 0.074234188493126
1014 => 0.073477435317327
1015 => 0.078745223255693
1016 => 0.0797076988737
1017 => 0.076792297446025
1018 => 0.076246944873963
1019 => 0.078780976479526
1020 => 0.077252645648607
1021 => 0.077940852928189
1022 => 0.076453325218988
1023 => 0.079475866681898
1024 => 0.079452839980093
1025 => 0.078277003083826
1026 => 0.079270812376767
1027 => 0.079098113555673
1028 => 0.077770596595746
1029 => 0.079517951337377
1030 => 0.079518818003529
1031 => 0.07838710055577
1101 => 0.077065502341594
1102 => 0.076829231795656
1103 => 0.076651233677773
1104 => 0.077897076302673
1105 => 0.079014094904509
1106 => 0.081092589590131
1107 => 0.081615172537912
1108 => 0.083654848573418
1109 => 0.082440320804298
1110 => 0.082978705233581
1111 => 0.083563197690695
1112 => 0.083843424868634
1113 => 0.083386809720002
1114 => 0.086555266167293
1115 => 0.086822780970442
1116 => 0.086912476369943
1117 => 0.085844090683036
1118 => 0.086793067231793
1119 => 0.08634907253143
1120 => 0.087504223396495
1121 => 0.087685365801844
1122 => 0.087531944628842
1123 => 0.087589442087438
1124 => 0.084885723463694
1125 => 0.084745521389801
1126 => 0.082833856163983
1127 => 0.08361287387382
1128 => 0.082156537604571
1129 => 0.082618356837476
1130 => 0.082821922354965
1201 => 0.08271559128087
1202 => 0.083656918366305
1203 => 0.082856598043267
1204 => 0.080744421125925
1205 => 0.078631668747394
1206 => 0.078605144862293
1207 => 0.078048894454203
1208 => 0.077646827291497
1209 => 0.077724279691133
1210 => 0.077997232049726
1211 => 0.077630962804216
1212 => 0.077709124918068
1213 => 0.079007136799444
1214 => 0.079267443825257
1215 => 0.078382818843025
1216 => 0.074830921888583
1217 => 0.073959277466705
1218 => 0.074585798191691
1219 => 0.07428636163825
1220 => 0.059954891654877
1221 => 0.063321857945772
1222 => 0.061321320907094
1223 => 0.0622432604148
1224 => 0.060201230134865
1225 => 0.061175794016427
1226 => 0.060995827652877
1227 => 0.066409809812859
1228 => 0.06632527792812
1229 => 0.066365738868017
1230 => 0.064434432786323
1231 => 0.067511055815136
]
'min_raw' => 0.039277998990306
'max_raw' => 0.087685365801844
'avg_raw' => 0.063481682396075
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.039277'
'max' => '$0.087685'
'avg' => '$0.063481'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0060565877498203
'max_diff' => 0.01326530358165
'year' => 2035
]
10 => [
'items' => [
101 => 0.069026710950915
102 => 0.068746203523138
103 => 0.068816801199414
104 => 0.067603699219695
105 => 0.06637748434689
106 => 0.065017423339833
107 => 0.067544248582324
108 => 0.067263308749704
109 => 0.067907683646773
110 => 0.069546510437726
111 => 0.069787833907992
112 => 0.07011217509929
113 => 0.069995921870388
114 => 0.072765545425503
115 => 0.072430125738414
116 => 0.073238390677469
117 => 0.071575728374625
118 => 0.069694268157602
119 => 0.070051872235289
120 => 0.070017432086938
121 => 0.069578969469859
122 => 0.069183145024148
123 => 0.068524208844886
124 => 0.070609180420277
125 => 0.070524534381921
126 => 0.071894855352644
127 => 0.071652637810481
128 => 0.07003504978323
129 => 0.070092822256076
130 => 0.070481369900473
131 => 0.07182613773409
201 => 0.072225356385883
202 => 0.07204042240026
203 => 0.072478147426927
204 => 0.072824107440518
205 => 0.07252159467814
206 => 0.076804537450456
207 => 0.075025961005662
208 => 0.075892826789599
209 => 0.076099569171198
210 => 0.075570002908056
211 => 0.075684846868185
212 => 0.075858804174675
213 => 0.076915038875351
214 => 0.079686904353896
215 => 0.080914544705618
216 => 0.08460796127448
217 => 0.080812606263986
218 => 0.080587405604404
219 => 0.081252701458951
220 => 0.083421127972722
221 => 0.085178433992187
222 => 0.08576143378026
223 => 0.085838486826532
224 => 0.08693223318605
225 => 0.087559148202164
226 => 0.08679942360962
227 => 0.086155636563919
228 => 0.083849671276007
229 => 0.084116593037018
301 => 0.085955419276808
302 => 0.088552869646836
303 => 0.090781752282971
304 => 0.090001275268198
305 => 0.095955763960004
306 => 0.096546127191891
307 => 0.096464558081973
308 => 0.09780949338204
309 => 0.095140070702717
310 => 0.093998840789677
311 => 0.086294830630493
312 => 0.088459343242733
313 => 0.091605589441992
314 => 0.091189171959703
315 => 0.088904283870398
316 => 0.090780018990464
317 => 0.09015984230011
318 => 0.089670683213273
319 => 0.091911615818227
320 => 0.089447618366642
321 => 0.091581009182553
322 => 0.088844913394045
323 => 0.090004840421459
324 => 0.089346409741342
325 => 0.089772495085607
326 => 0.087281608869386
327 => 0.088625630608814
328 => 0.087225693146292
329 => 0.087225029393658
330 => 0.087194125696581
331 => 0.088841145912965
401 => 0.088894855183091
402 => 0.087677704754674
403 => 0.087502294362476
404 => 0.08815087851874
405 => 0.087391556336215
406 => 0.087746838406302
407 => 0.087402317468186
408 => 0.087324758548295
409 => 0.086706755879041
410 => 0.086440503336789
411 => 0.086544907819089
412 => 0.0861885214968
413 => 0.085973785846564
414 => 0.087151409370931
415 => 0.086522252627059
416 => 0.087054982076555
417 => 0.086447869633038
418 => 0.084343353397509
419 => 0.0831330238556
420 => 0.079157787775443
421 => 0.08028515979651
422 => 0.081032608612829
423 => 0.080785576783494
424 => 0.081316296741532
425 => 0.081348878636627
426 => 0.081176336168219
427 => 0.080976554093862
428 => 0.080879311228707
429 => 0.08160407987599
430 => 0.082024832470328
501 => 0.081107625101122
502 => 0.080892736247611
503 => 0.081820083538286
504 => 0.082385764849886
505 => 0.086562437825872
506 => 0.086253016401335
507 => 0.087029603456035
508 => 0.086942171671375
509 => 0.087756158624721
510 => 0.089086683276887
511 => 0.086381354638489
512 => 0.086850906146889
513 => 0.086735782960557
514 => 0.087992667722008
515 => 0.087996591579039
516 => 0.0872430263785
517 => 0.087651546298911
518 => 0.087423521686495
519 => 0.087835592980506
520 => 0.086248883889565
521 => 0.088181324287669
522 => 0.089276893469685
523 => 0.08929210544884
524 => 0.089811396546141
525 => 0.090339026376311
526 => 0.091351765888449
527 => 0.090310781620983
528 => 0.088438152261587
529 => 0.088573350052779
530 => 0.087475428144534
531 => 0.087493884410168
601 => 0.087395363417773
602 => 0.087691032332263
603 => 0.08631376658939
604 => 0.086637008106403
605 => 0.086184468089685
606 => 0.086849922413272
607 => 0.086134003564633
608 => 0.086735727444671
609 => 0.086995411523833
610 => 0.087953651366539
611 => 0.085992470760744
612 => 0.081993490745274
613 => 0.082834124827472
614 => 0.08159076098952
615 => 0.081705839046542
616 => 0.081938315036264
617 => 0.081184784292164
618 => 0.081328534211655
619 => 0.081323398452978
620 => 0.081279141259262
621 => 0.081083118809984
622 => 0.08079884747667
623 => 0.08193129697449
624 => 0.082123722211396
625 => 0.082551459676596
626 => 0.083824116235935
627 => 0.083696947834349
628 => 0.083904364773502
629 => 0.083451574759926
630 => 0.081726842676639
701 => 0.081820503926698
702 => 0.080652546637643
703 => 0.082521592382789
704 => 0.08207897768014
705 => 0.081793621101963
706 => 0.081715758915798
707 => 0.082991570144588
708 => 0.083373312860133
709 => 0.083135436417606
710 => 0.082647544894019
711 => 0.083584440851487
712 => 0.083835114685238
713 => 0.08389123131212
714 => 0.085551231316771
715 => 0.08398400687208
716 => 0.084361253372788
717 => 0.087304422881554
718 => 0.084635374266733
719 => 0.086049228844891
720 => 0.085980028020634
721 => 0.086703308180589
722 => 0.085920697936552
723 => 0.085930399328476
724 => 0.086572623111274
725 => 0.085670735634004
726 => 0.08544741561136
727 => 0.085138900599525
728 => 0.08581253184107
729 => 0.086216343304656
730 => 0.089470767134319
731 => 0.091573273348038
801 => 0.091481998008335
802 => 0.092316083752946
803 => 0.091940320485649
804 => 0.090726881774205
805 => 0.092798073691553
806 => 0.092142661906554
807 => 0.092196693257784
808 => 0.092194682208192
809 => 0.092630473748124
810 => 0.092321675502375
811 => 0.091713002462512
812 => 0.092117068031954
813 => 0.093316998317113
814 => 0.097041618740604
815 => 0.099125965674247
816 => 0.096916138438015
817 => 0.098440447674802
818 => 0.097526405299646
819 => 0.097360296609675
820 => 0.098317675455944
821 => 0.099276730067148
822 => 0.099215642434522
823 => 0.098519418034787
824 => 0.098126138537417
825 => 0.1011041826498
826 => 0.10329835482215
827 => 0.10314872698991
828 => 0.10380913557983
829 => 0.10574811562549
830 => 0.10592539166078
831 => 0.10590305895498
901 => 0.10546366180468
902 => 0.10737283946801
903 => 0.10896550906355
904 => 0.10536195405979
905 => 0.10673414063122
906 => 0.10735015939223
907 => 0.10825465769791
908 => 0.10978069795113
909 => 0.1114383824283
910 => 0.11167279718896
911 => 0.1115064686985
912 => 0.11041318122485
913 => 0.11222703936006
914 => 0.11328955491546
915 => 0.11392225861347
916 => 0.11552668991976
917 => 0.10735396371438
918 => 0.10156890189536
919 => 0.10066548095502
920 => 0.10250262296248
921 => 0.10298706265892
922 => 0.10279178562472
923 => 0.096280172592608
924 => 0.10063119866001
925 => 0.10531253686388
926 => 0.10549236612964
927 => 0.10783594191666
928 => 0.10859910625933
929 => 0.11048599194738
930 => 0.11036796673385
1001 => 0.11082739337198
1002 => 0.11072177914403
1003 => 0.11421683755049
1004 => 0.11807240599401
1005 => 0.11793889991877
1006 => 0.117384616338
1007 => 0.11820782197484
1008 => 0.12218718179637
1009 => 0.12182082611195
1010 => 0.12217670945326
1011 => 0.12686859894974
1012 => 0.13296872270867
1013 => 0.13013460278024
1014 => 0.13628382752889
1015 => 0.14015443855178
1016 => 0.1468482600872
1017 => 0.1460101606632
1018 => 0.14861601626541
1019 => 0.14450978777761
1020 => 0.13508105716392
1021 => 0.13358892445258
1022 => 0.13657621192751
1023 => 0.14392016668939
1024 => 0.13634492465714
1025 => 0.13787738625425
1026 => 0.13743603721119
1027 => 0.1374125195963
1028 => 0.13831009130367
1029 => 0.13700811672793
1030 => 0.1317036380856
1031 => 0.13413464938789
1101 => 0.13319591917733
1102 => 0.13423751033292
1103 => 0.1398585482148
1104 => 0.13737335337842
1105 => 0.13475540249912
1106 => 0.13803889387157
1107 => 0.14221990671874
1108 => 0.14195826644877
1109 => 0.14145057496787
1110 => 0.14431240526383
1111 => 0.14903931047515
1112 => 0.15031697395953
1113 => 0.15126011902302
1114 => 0.1513901627927
1115 => 0.15272969444225
1116 => 0.14552669515721
1117 => 0.15695804000871
1118 => 0.15893191748003
1119 => 0.15856091032426
1120 => 0.16075479206018
1121 => 0.16010929640006
1122 => 0.15917407446372
1123 => 0.16265184366718
1124 => 0.15866486191692
1125 => 0.15300584326947
1126 => 0.14990119371679
1127 => 0.1539896466927
1128 => 0.15648632225775
1129 => 0.15813646598785
1130 => 0.15863579848354
1201 => 0.1460858434874
1202 => 0.13932211379689
1203 => 0.14365758698219
1204 => 0.14894716348662
1205 => 0.14549731129265
1206 => 0.14563253896722
1207 => 0.14071395634382
1208 => 0.14938234890935
1209 => 0.14811943702521
1210 => 0.15467142611418
1211 => 0.1531077413351
1212 => 0.15845063409041
1213 => 0.1570436713681
1214 => 0.16288389496617
1215 => 0.16521371827718
1216 => 0.16912585422441
1217 => 0.17200363735246
1218 => 0.17369352664846
1219 => 0.17359207203375
1220 => 0.18028825532403
1221 => 0.17633974998457
1222 => 0.17137949668696
1223 => 0.17128978135421
1224 => 0.17385876682437
1225 => 0.17924265560309
1226 => 0.18063861963102
1227 => 0.18141877308171
1228 => 0.18022394091464
1229 => 0.17593812136059
1230 => 0.17408752620675
1231 => 0.17566428689472
]
'min_raw' => 0.065017423339833
'max_raw' => 0.18141877308171
'avg_raw' => 0.12321809821077
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.065017'
'max' => '$0.181418'
'avg' => '$0.123218'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.025739424349528
'max_diff' => 0.09373340727987
'year' => 2036
]
11 => [
'items' => [
101 => 0.17373604406592
102 => 0.17706473215782
103 => 0.1816357318774
104 => 0.180691838511
105 => 0.18384713251848
106 => 0.18711252986961
107 => 0.1917821947399
108 => 0.19300301805418
109 => 0.19502099256894
110 => 0.19709815121472
111 => 0.19776527859075
112 => 0.19903903174906
113 => 0.19903231844117
114 => 0.20287085931721
115 => 0.20710488877319
116 => 0.20870313687482
117 => 0.2123782202566
118 => 0.20608476875559
119 => 0.21085842401306
120 => 0.21516438054765
121 => 0.21003064165337
122 => 0.21710630471139
123 => 0.21738103667413
124 => 0.22152916313478
125 => 0.21732424228204
126 => 0.21482737370226
127 => 0.22203573973563
128 => 0.22552364099777
129 => 0.22447305675213
130 => 0.21647805876908
131 => 0.21182462702134
201 => 0.19964569855757
202 => 0.21407216541346
203 => 0.22109887659316
204 => 0.21645986128465
205 => 0.21879951077086
206 => 0.23156387973371
207 => 0.23642372500308
208 => 0.23541291115993
209 => 0.23558372206001
210 => 0.23820600635493
211 => 0.24983465903694
212 => 0.24286650079982
213 => 0.24819339668019
214 => 0.25101876304759
215 => 0.25364312078901
216 => 0.24719852761287
217 => 0.23881420658059
218 => 0.23615854015982
219 => 0.21599860263722
220 => 0.21494919033899
221 => 0.21436012341555
222 => 0.21064613978844
223 => 0.20772796600326
224 => 0.20540732586444
225 => 0.19931727313837
226 => 0.20137248715805
227 => 0.19166621420548
228 => 0.19787594367134
301 => 0.18238449767288
302 => 0.1952862342312
303 => 0.18826440559249
304 => 0.19297937467191
305 => 0.19296292458897
306 => 0.18428117163144
307 => 0.17927371770911
308 => 0.18246466224144
309 => 0.1858856080776
310 => 0.18644064503007
311 => 0.19087599060247
312 => 0.19211380021429
313 => 0.18836317930266
314 => 0.18206347188759
315 => 0.18352675023909
316 => 0.17924406442002
317 => 0.17173882225324
318 => 0.17712921820638
319 => 0.17896973638376
320 => 0.1797826140629
321 => 0.17240207037475
322 => 0.17008294330854
323 => 0.16884825951785
324 => 0.18111073637835
325 => 0.18178250254175
326 => 0.17834565187165
327 => 0.19388054279602
328 => 0.190364518532
329 => 0.19429277908177
330 => 0.18339397306605
331 => 0.18381032213303
401 => 0.17865065270408
402 => 0.18153972281506
403 => 0.17949782117969
404 => 0.18130631450044
405 => 0.18239031794019
406 => 0.18754914071817
407 => 0.19534513970059
408 => 0.18677858462672
409 => 0.1830460139057
410 => 0.18536167978825
411 => 0.19152860318834
412 => 0.20087180781848
413 => 0.19534044262792
414 => 0.19779516857082
415 => 0.19833141698619
416 => 0.19425279307694
417 => 0.20102219249971
418 => 0.20464996864487
419 => 0.20837131630731
420 => 0.21160245821281
421 => 0.20688492821674
422 => 0.2119333615439
423 => 0.20786521545066
424 => 0.20421566784781
425 => 0.20422120270506
426 => 0.20193178818241
427 => 0.19749575905998
428 => 0.1966776872289
429 => 0.20093340020523
430 => 0.20434607899472
501 => 0.20462716356546
502 => 0.20651659789309
503 => 0.20763474566546
504 => 0.21859411388288
505 => 0.22300206244057
506 => 0.22839201849873
507 => 0.23049171014466
508 => 0.23681102921779
509 => 0.23170766583623
510 => 0.23060352106697
511 => 0.21527492002907
512 => 0.2177849775903
513 => 0.22180382193037
514 => 0.21534118929201
515 => 0.21944024220806
516 => 0.22024948208351
517 => 0.21512159150791
518 => 0.21786061942741
519 => 0.21058657333841
520 => 0.19550369402766
521 => 0.20103898405605
522 => 0.20511482067542
523 => 0.19929809927255
524 => 0.209724347249
525 => 0.2036335484226
526 => 0.20170305760454
527 => 0.1941715246536
528 => 0.19772611829115
529 => 0.20253375708282
530 => 0.19956319525757
531 => 0.20572755707707
601 => 0.21445793738873
602 => 0.22067972630195
603 => 0.22115735799845
604 => 0.21715716455473
605 => 0.22356750007719
606 => 0.22361419237315
607 => 0.21638330771683
608 => 0.21195443112656
609 => 0.21094818104682
610 => 0.21346199103297
611 => 0.21651422043108
612 => 0.22132673548761
613 => 0.22423483754516
614 => 0.23181762537311
615 => 0.23386931034379
616 => 0.23612349009455
617 => 0.23913576940485
618 => 0.24275278304943
619 => 0.23483896311179
620 => 0.23515339393112
621 => 0.22778415437948
622 => 0.2199090650627
623 => 0.22588527621039
624 => 0.23369837730395
625 => 0.23190604328038
626 => 0.23170436908866
627 => 0.23204352913937
628 => 0.23069216781775
629 => 0.22458001064387
630 => 0.22151052357528
701 => 0.22547094500343
702 => 0.22757573273442
703 => 0.2308400749484
704 => 0.23043767586862
705 => 0.23884627084707
706 => 0.24211359659298
707 => 0.24127767485043
708 => 0.24143150456864
709 => 0.24734684176379
710 => 0.25392591330669
711 => 0.26008808199156
712 => 0.26635650464911
713 => 0.25879967647473
714 => 0.25496278516814
715 => 0.2589214776002
716 => 0.25682093967312
717 => 0.26889125366213
718 => 0.26972697601414
719 => 0.28179641718206
720 => 0.29325175405274
721 => 0.28605686220794
722 => 0.29284132115254
723 => 0.30017926664617
724 => 0.31433535404214
725 => 0.30956808182434
726 => 0.30591642601818
727 => 0.30246562892603
728 => 0.30964618987618
729 => 0.31888386682628
730 => 0.32087357396396
731 => 0.32409765965363
801 => 0.32070792777338
802 => 0.32479048645642
803 => 0.33920371257474
804 => 0.3353091316485
805 => 0.32977820064812
806 => 0.34115605840758
807 => 0.34527366090043
808 => 0.37417315160039
809 => 0.4106599523875
810 => 0.39555417727639
811 => 0.3861775352046
812 => 0.38838126850839
813 => 0.4017050129997
814 => 0.40598417685579
815 => 0.39435193437869
816 => 0.39846063907204
817 => 0.42110000589137
818 => 0.43324529983208
819 => 0.41675035932999
820 => 0.37124147268355
821 => 0.32928020082677
822 => 0.34041021966388
823 => 0.33914842093245
824 => 0.36347159626128
825 => 0.33521624718144
826 => 0.33569199479506
827 => 0.360518147631
828 => 0.35389495568238
829 => 0.34316623295995
830 => 0.32935853237576
831 => 0.30383372078815
901 => 0.28122568335298
902 => 0.32556525108342
903 => 0.32365324829661
904 => 0.32088438491838
905 => 0.32704619074433
906 => 0.35696617077607
907 => 0.35627641839482
908 => 0.35188856566002
909 => 0.3552167132866
910 => 0.34258279258965
911 => 0.34583884162229
912 => 0.32927355394692
913 => 0.33676175580371
914 => 0.3431432139395
915 => 0.34442438613937
916 => 0.34731093252393
917 => 0.32264570971004
918 => 0.33371967062058
919 => 0.34022458516571
920 => 0.31083514460001
921 => 0.33964365041998
922 => 0.32221634305602
923 => 0.31630125318732
924 => 0.32426514244169
925 => 0.32116160705413
926 => 0.31849336957361
927 => 0.31700444721335
928 => 0.32285224853937
929 => 0.32257944161788
930 => 0.31301130363917
1001 => 0.30053005769314
1002 => 0.30471917351556
1003 => 0.3031972284641
1004 => 0.29768150326281
1005 => 0.30139843607728
1006 => 0.285030945059
1007 => 0.2568715274702
1008 => 0.27547450127565
1009 => 0.27475830702028
1010 => 0.2743971693999
1011 => 0.28837679006626
1012 => 0.28703297210392
1013 => 0.28459392934355
1014 => 0.2976367083298
1015 => 0.29287591854968
1016 => 0.30754755086885
1017 => 0.31721123681593
1018 => 0.31476021347226
1019 => 0.32384895681414
1020 => 0.30481568228328
1021 => 0.3111377726
1022 => 0.31244074665224
1023 => 0.29747576246168
1024 => 0.28725283734183
1025 => 0.28657108478622
1026 => 0.26884594143426
1027 => 0.27831456994052
1028 => 0.28664657118755
1029 => 0.28265618917964
1030 => 0.2813929534452
1031 => 0.28784655085003
1101 => 0.28834805063971
1102 => 0.27691380228847
1103 => 0.27929134459624
1104 => 0.28920609125319
1105 => 0.27904151841911
1106 => 0.25929341377604
1107 => 0.25439561078565
1108 => 0.25374215358231
1109 => 0.24045892342272
1110 => 0.25472290540122
1111 => 0.24849629501666
1112 => 0.26816608261525
1113 => 0.25693080543012
1114 => 0.25644647508633
1115 => 0.25571433873589
1116 => 0.2442809138142
1117 => 0.24678410723999
1118 => 0.25510510343444
1119 => 0.25807412861935
1120 => 0.25776443496806
1121 => 0.25506432601358
1122 => 0.25630042206614
1123 => 0.25231852599642
1124 => 0.25091243561821
1125 => 0.24647442760892
1126 => 0.23995178186628
1127 => 0.2408587957625
1128 => 0.22793572780323
1129 => 0.22089455449988
1130 => 0.21894565053069
1201 => 0.21633949469278
1202 => 0.2192400227673
1203 => 0.2278991183754
1204 => 0.21745441194242
1205 => 0.19954769537405
1206 => 0.20062391955137
1207 => 0.20304187574398
1208 => 0.19853603037543
1209 => 0.19427162588104
1210 => 0.19797917960684
1211 => 0.19039186773675
1212 => 0.20395876613467
1213 => 0.2035918195538
1214 => 0.20864872030517
1215 => 0.21181090412306
1216 => 0.204523094192
1217 => 0.20269022970267
1218 => 0.20373431261484
1219 => 0.18647794780014
1220 => 0.20723850714635
1221 => 0.20741804532568
1222 => 0.20588073043349
1223 => 0.21693508737498
1224 => 0.24026322846193
1225 => 0.23148624341272
1226 => 0.22808752951589
1227 => 0.22162657191357
1228 => 0.23023541430496
1229 => 0.22957438952816
1230 => 0.22658498480128
1231 => 0.22477698349496
]
'min_raw' => 0.16884825951785
'max_raw' => 0.43324529983208
'avg_raw' => 0.30104677967497
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.168848'
'max' => '$0.433245'
'avg' => '$0.301046'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.10383083617802
'max_diff' => 0.25182652675037
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0052999539276807
]
1 => [
'year' => 2028
'avg' => 0.0090962595275188
]
2 => [
'year' => 2029
'avg' => 0.024849341587911
]
3 => [
'year' => 2030
'avg' => 0.019171230028323
]
4 => [
'year' => 2031
'avg' => 0.018828523752195
]
5 => [
'year' => 2032
'avg' => 0.033012327692099
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0052999539276807
'min' => '$0.005299'
'max_raw' => 0.033012327692099
'max' => '$0.033012'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.033012327692099
]
1 => [
'year' => 2033
'avg' => 0.084911101441703
]
2 => [
'year' => 2034
'avg' => 0.05382073673034
]
3 => [
'year' => 2035
'avg' => 0.063481682396075
]
4 => [
'year' => 2036
'avg' => 0.12321809821077
]
5 => [
'year' => 2037
'avg' => 0.30104677967497
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.033012327692099
'min' => '$0.033012'
'max_raw' => 0.30104677967497
'max' => '$0.301046'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.30104677967497
]
]
]
]
'prediction_2025_max_price' => '$0.009061'
'last_price' => 0.00878671
'sma_50day_nextmonth' => '$0.007724'
'sma_200day_nextmonth' => '$0.013156'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.008433'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.008048'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007432'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.007174'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007953'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.010516'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.013964'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.008449'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.008148'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007723'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007529'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.008343'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.010341'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.013636'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.013125'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015893'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.04116'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00818'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.008142'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.009068'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.011531'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.020157'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.049522'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.064534'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '67.87'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 117.78
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007783'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0087032'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 246.46
'cci_20_action' => 'SELL'
'adx_14' => 24.09
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000627'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 85.37
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001527'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 21
'sell_pct' => 38.24
'buy_pct' => 61.76
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767687635
'last_updated_date' => '6. Januar 2026'
]
Veno Finance Preisprognose für 2026
Die Preisprognose für Veno Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.003035 am unteren Ende und $0.009061 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Veno Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn VNO das prognostizierte Preisziel erreicht.
Veno Finance Preisprognose 2027-2032
Die Preisprognose für VNO für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.005299 am unteren Ende und $0.033012 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Veno Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Veno Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.002922 | $0.005299 | $0.007677 |
| 2028 | $0.005274 | $0.009096 | $0.012918 |
| 2029 | $0.011585 | $0.024849 | $0.038112 |
| 2030 | $0.009853 | $0.019171 | $0.028489 |
| 2031 | $0.011649 | $0.018828 | $0.0260072 |
| 2032 | $0.017782 | $0.033012 | $0.048242 |
Veno Finance Preisprognose 2032-2037
Die Preisprognose für Veno Finance für die Jahre 2032-2037 wird derzeit zwischen $0.033012 am unteren Ende und $0.301046 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Veno Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Veno Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.017782 | $0.033012 | $0.048242 |
| 2033 | $0.041322 | $0.084911 | $0.128499 |
| 2034 | $0.033221 | $0.05382 | $0.07442 |
| 2035 | $0.039277 | $0.063481 | $0.087685 |
| 2036 | $0.065017 | $0.123218 | $0.181418 |
| 2037 | $0.168848 | $0.301046 | $0.433245 |
Veno Finance Potenzielles Preishistogramm
Veno Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Veno Finance Bullisch, mit 21 technischen Indikatoren, die bullische Signale zeigen, und 13 anzeigen bärische Signale. Die Preisprognose für VNO wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Veno Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Veno Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.013156 erreichen. Der kurzfristige 50-Tage-SMA für Veno Finance wird voraussichtlich bis zum 04.02.2026 $0.007724 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 67.87, was darauf hindeutet, dass sich der VNO-Markt in einem NEUTRAL Zustand befindet.
Beliebte VNO Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.008433 | BUY |
| SMA 5 | $0.008048 | BUY |
| SMA 10 | $0.007432 | BUY |
| SMA 21 | $0.007174 | BUY |
| SMA 50 | $0.007953 | BUY |
| SMA 100 | $0.010516 | SELL |
| SMA 200 | $0.013964 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.008449 | BUY |
| EMA 5 | $0.008148 | BUY |
| EMA 10 | $0.007723 | BUY |
| EMA 21 | $0.007529 | BUY |
| EMA 50 | $0.008343 | BUY |
| EMA 100 | $0.010341 | SELL |
| EMA 200 | $0.013636 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.013125 | SELL |
| SMA 50 | $0.015893 | SELL |
| SMA 100 | $0.04116 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.011531 | SELL |
| EMA 50 | $0.020157 | SELL |
| EMA 100 | $0.049522 | SELL |
| EMA 200 | $0.064534 | SELL |
Veno Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 67.87 | NEUTRAL |
| Stoch RSI (14) | 117.78 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 246.46 | SELL |
| Average Directional Index (14) | 24.09 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000627 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 85.37 | SELL |
| VWMA (10) | 0.007783 | BUY |
| Hull Moving Average (9) | 0.0087032 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.001527 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Veno Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Veno Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Veno Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.012346 | $0.017349 | $0.024378 | $0.034256 | $0.048135 | $0.067638 |
| Amazon.com aktie | $0.018333 | $0.038254 | $0.079821 | $0.166551 | $0.34752 | $0.725121 |
| Apple aktie | $0.012463 | $0.017678 | $0.025075 | $0.035567 | $0.050449 | $0.071558 |
| Netflix aktie | $0.013864 | $0.021875 | $0.034515 | $0.05446 | $0.08593 | $0.135584 |
| Google aktie | $0.011378 | $0.014735 | $0.019082 | $0.024711 | $0.0320013 | $0.041441 |
| Tesla aktie | $0.019918 | $0.045154 | $0.102361 | $0.232046 | $0.526031 | $1.19 |
| Kodak aktie | $0.006589 | $0.004941 | $0.0037053 | $0.002778 | $0.002083 | $0.001562 |
| Nokia aktie | $0.00582 | $0.003856 | $0.002554 | $0.001692 | $0.001121 | $0.000742 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Veno Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Veno Finance investieren?", "Sollte ich heute VNO kaufen?", "Wird Veno Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Veno Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Veno Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Veno Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Veno Finance-Preis entspricht heute $0.008786 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Veno Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Veno Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009015 | $0.009249 | $0.009489 | $0.009736 |
| Wenn die Wachstumsrate von Veno Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009243 | $0.009724 | $0.010229 | $0.010761 |
| Wenn die Wachstumsrate von Veno Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009928 | $0.011219 | $0.012677 | $0.014324 |
| Wenn die Wachstumsrate von Veno Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01107 | $0.013948 | $0.017573 | $0.022141 |
| Wenn die Wachstumsrate von Veno Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.013354 | $0.020297 | $0.030848 | $0.046886 |
| Wenn die Wachstumsrate von Veno Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0202064 | $0.046467 | $0.10686 | $0.245743 |
| Wenn die Wachstumsrate von Veno Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.031626 | $0.113832 | $0.40972 | $1.47 |
Fragefeld
Ist VNO eine gute Investition?
Die Entscheidung, Veno Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Veno Finance in den letzten 2026 Stunden um 3.0329% gestiegen, und Veno Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Veno Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Veno Finance steigen?
Es scheint, dass der Durchschnittswert von Veno Finance bis zum Ende dieses Jahres potenziell auf $0.009061 steigen könnte. Betrachtet man die Aussichten von Veno Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.028489 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Veno Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Veno Finance-Prognose wird der Preis von Veno Finance in der nächsten Woche um 0.86% steigen und $0.008861 erreichen bis zum 13. Januar 2026.
Wie viel wird Veno Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Veno Finance-Prognose wird der Preis von Veno Finance im nächsten Monat um -11.62% fallen und $0.007765 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Veno Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Veno Finance im Jahr 2026 wird erwartet, dass VNO innerhalb der Spanne von $0.003035 bis $0.009061 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Veno Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Veno Finance in 5 Jahren sein?
Die Zukunft von Veno Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.028489 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Veno Finance-Prognose für 2030 könnte der Wert von Veno Finance seinen höchsten Gipfel von ungefähr $0.028489 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.009853 liegen wird.
Wie viel wird Veno Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Veno Finance-Preisprognosesimulation wird der Wert von VNO im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.009061 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.009061 und $0.003035 während des Jahres 2026 liegen.
Wie viel wird Veno Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Veno Finance könnte der Wert von VNO um -12.62% fallen und bis zu $0.007677 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.007677 und $0.002922 im Laufe des Jahres schwanken.
Wie viel wird Veno Finance im Jahr 2028 kosten?
Unser neues experimentelles Veno Finance-Preisprognosemodell deutet darauf hin, dass der Wert von VNO im Jahr 2028 um 47.02% steigen, und im besten Fall $0.012918 erreichen wird. Der Preis wird voraussichtlich zwischen $0.012918 und $0.005274 im Laufe des Jahres liegen.
Wie viel wird Veno Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Veno Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.038112 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.038112 und $0.011585.
Wie viel wird Veno Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Veno Finance-Preisprognosen wird der Wert von VNO im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.028489 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.028489 und $0.009853 während des Jahres 2030 liegen.
Wie viel wird Veno Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Veno Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.0260072 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.0260072 und $0.011649 während des Jahres schwanken.
Wie viel wird Veno Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Veno Finance-Preisprognose könnte VNO eine 449.04% Steigerung im Wert erfahren und $0.048242 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.048242 und $0.017782 liegen.
Wie viel wird Veno Finance im Jahr 2033 kosten?
Laut unserer experimentellen Veno Finance-Preisprognose wird der Wert von VNO voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.128499 beträgt. Im Laufe des Jahres könnte der Preis von VNO zwischen $0.128499 und $0.041322 liegen.
Wie viel wird Veno Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Veno Finance-Preisprognosesimulation deuten darauf hin, dass VNO im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.07442 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.07442 und $0.033221.
Wie viel wird Veno Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Veno Finance könnte VNO um 897.93% steigen, wobei der Wert im Jahr 2035 $0.087685 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.087685 und $0.039277.
Wie viel wird Veno Finance im Jahr 2036 kosten?
Unsere jüngste Veno Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von VNO im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.181418 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.181418 und $0.065017.
Wie viel wird Veno Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Veno Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.433245 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.433245 und $0.168848 liegen.
Verwandte Prognosen
Contentos-Preisprognose
Onyxcoin-Preisprognose
DIAdata-Preisprognose
PaLM AI-Preisprognose
Astroport-Preisprognose
DeFiChain-Preisprognose
Grok-Preisprognose
SmartKey-Preisprognose
Marinade-Preisprognose
MELD-Preisprognose
Welshcorgicoin-Preisprognose
Lista USD-Preisprognose
Cratos-Preisprognose
Everscale-Preisprognose
Komodo-Preisprognose
Solcasino Token-Preisprognose
Cornucopias-Preisprognose
Doge Eat Doge-Preisprognose
Vertex-Preisprognose
YES Money-Preisprognose
Strike-Preisprognose
Persistence-Preisprognose
CEEK Smart VR Token-Preisprognose
TOPIA-Preisprognose
Measurable Data Token-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Veno Finance?
Veno Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Veno Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Veno Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von VNO über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von VNO über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von VNO einzuschätzen.
Wie liest man Veno Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Veno Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von VNO innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Veno Finance?
Die Preisentwicklung von Veno Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von VNO. Die Marktkapitalisierung von Veno Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von VNO-„Walen“, großen Inhabern von Veno Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Veno Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


