Abyss Preisvorhersage bis zu $0.006185 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.002072 | $0.006185 |
| 2027 | $0.001994 | $0.00524 |
| 2028 | $0.00360017 | $0.008817 |
| 2029 | $0.0079085 | $0.026015 |
| 2030 | $0.006725 | $0.019446 |
| 2031 | $0.007952 | $0.017752 |
| 2032 | $0.012138 | $0.032929 |
| 2033 | $0.0282066 | $0.087713 |
| 2034 | $0.022676 | $0.050798 |
| 2035 | $0.02681 | $0.059853 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Abyss eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,956.09 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Abyss Token Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Abyss'
'name_with_ticker' => 'Abyss <small>ABYSS</small>'
'name_lang' => 'Abyss Token'
'name_lang_with_ticker' => 'Abyss Token <small>ABYSS</small>'
'name_with_lang' => 'Abyss Token/Abyss'
'name_with_lang_with_ticker' => 'Abyss Token/Abyss <small>ABYSS</small>'
'image' => '/uploads/coins/the-abyss.png?1717106982'
'price_for_sd' => 0.005997
'ticker' => 'ABYSS'
'marketcap' => '$1.38M'
'low24h' => '$0.005879'
'high24h' => '$0.006848'
'volume24h' => '$48.96K'
'current_supply' => '229.05M'
'max_supply' => '508.63M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.11 USD 0.05x'
'price' => '$0.005997'
'change_24h_pct' => '1.6422%'
'ath_price' => '$0.1566'
'ath_days' => 1784
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17.02.2021'
'ath_pct' => '-96.17%'
'fdv' => '$3.06M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.295731'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006049'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0053'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002072'
'current_year_max_price_prediction' => '$0.006185'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006725'
'grand_prediction_max_price' => '$0.019446'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.006111424586673
107 => 0.0061342424276325
108 => 0.0061856521884221
109 => 0.0057463614112274
110 => 0.0059435900732882
111 => 0.0060594434344224
112 => 0.0055360137340366
113 => 0.0060490969122006
114 => 0.0057387143361302
115 => 0.0056333658280221
116 => 0.0057752037155791
117 => 0.0057199293528563
118 => 0.0056724077016067
119 => 0.0056458898036838
120 => 0.0057500398942293
121 => 0.005745181168019
122 => 0.0055747714052251
123 => 0.005352478816451
124 => 0.0054270875057491
125 => 0.0053999814694669
126 => 0.005301745697232
127 => 0.0053679447466859
128 => 0.0050764376354629
129 => 0.0045749148018249
130 => 0.004906236147786
131 => 0.0048934806363748
201 => 0.0048870487291049
202 => 0.0051360275635453
203 => 0.0051120939935328
204 => 0.0050686543296021
205 => 0.0053009478937381
206 => 0.0052161576180391
207 => 0.0054774612686419
208 => 0.0056495727529894
209 => 0.0056059197133356
210 => 0.0057677913962514
211 => 0.0054288063392621
212 => 0.0055414035774741
213 => 0.0055646097122165
214 => 0.0052980814272146
215 => 0.0051160098215783
216 => 0.0051038677212507
217 => 0.0047881806480901
218 => 0.0049568181344354
219 => 0.005105212143726
220 => 0.0050341429291161
221 => 0.005011644538903
222 => 0.0051265839351962
223 => 0.0051355157106776
224 => 0.0049318702831559
225 => 0.0049742146161496
226 => 0.0051507975238931
227 => 0.0049697651799396
228 => 0.0046180489071033
301 => 0.004530818408582
302 => 0.0045191802521022
303 => 0.0042826042217744
304 => 0.0045366475676021
305 => 0.0044257508392099
306 => 0.004776072275454
307 => 0.0045759705498829
308 => 0.0045673445644318
309 => 0.0045543051222655
310 => 0.0043506743601295
311 => 0.0043952565556273
312 => 0.0045434545635218
313 => 0.0045963332823086
314 => 0.0045908175987166
315 => 0.004542728312434
316 => 0.0045647433414372
317 => 0.0044938252624733
318 => 0.004468782612759
319 => 0.0043897411217372
320 => 0.0042735719657044
321 => 0.0042897259993576
322 => 0.0040595645039433
323 => 0.0039341603056465
324 => 0.0038994500763587
325 => 0.0038530341071148
326 => 0.003904692883593
327 => 0.0040589124853451
328 => 0.0038728909261184
329 => 0.0035539700107195
330 => 0.0035731377011498
331 => 0.0036162018106082
401 => 0.00353595212753
402 => 0.0034600025373418
403 => 0.0035260345440254
404 => 0.0033909035479107
405 => 0.0036325317458927
406 => 0.0036259963802925
407 => 0.0037160604303126
408 => 0.0037723793290906
409 => 0.0036425825008674
410 => 0.0036099389495772
411 => 0.0036285341999588
412 => 0.0033211961325834
413 => 0.0036909443533477
414 => 0.003694141951315
415 => 0.003666762176201
416 => 0.0038636416890624
417 => 0.00427911886946
418 => 0.0041227996416636
419 => 0.0040622681118871
420 => 0.0039471976295338
421 => 0.0041005222150604
422 => 0.0040887492791281
423 => 0.0040355075980888
424 => 0.0040033068632721
425 => 0.0040626377045003
426 => 0.0039959551154586
427 => 0.0039839770901517
428 => 0.0039114032890119
429 => 0.0038854977439026
430 => 0.0038663183096331
501 => 0.0038452036370347
502 => 0.0038917773433382
503 => 0.0037862351975731
504 => 0.0036589617162045
505 => 0.0036483803033468
506 => 0.0036775965145741
507 => 0.0036646705159972
508 => 0.0036483184186386
509 => 0.0036170978115525
510 => 0.0036078353243527
511 => 0.0036379339142319
512 => 0.0036039543611151
513 => 0.003654093042701
514 => 0.0036404580956094
515 => 0.0035642943895355
516 => 0.0034693662123518
517 => 0.0034685211524563
518 => 0.0034480690323954
519 => 0.0034220201825012
520 => 0.0034147739883775
521 => 0.0035204735126007
522 => 0.0037392683644223
523 => 0.0036963136996926
524 => 0.0037273528471309
525 => 0.0038800347319538
526 => 0.0039285677118346
527 => 0.0038941201522819
528 => 0.0038469662081332
529 => 0.0038490407423654
530 => 0.0040101800439912
531 => 0.0040202301045761
601 => 0.0040456233654017
602 => 0.0040782608816973
603 => 0.0038996784624356
604 => 0.0038406295264778
605 => 0.0038126488647108
606 => 0.0037264792563471
607 => 0.0038194057913434
608 => 0.003765261478912
609 => 0.0037725673964921
610 => 0.0037678094080837
611 => 0.0037704075914885
612 => 0.003632464205887
613 => 0.0036827235255092
614 => 0.0035991576586819
615 => 0.0034872723437087
616 => 0.0034868972649009
617 => 0.0035142810372328
618 => 0.0034979920979227
619 => 0.0034541589810661
620 => 0.0034603852684291
621 => 0.0034058364395218
622 => 0.0034670084838969
623 => 0.0034687626792454
624 => 0.0034452081100973
625 => 0.0035394520845725
626 => 0.0035780639178108
627 => 0.0035625597958097
628 => 0.0035769761072803
629 => 0.0036980986599408
630 => 0.003717846920972
701 => 0.0037266177940251
702 => 0.0037148659860519
703 => 0.0035791900051952
704 => 0.003585207811885
705 => 0.0035410531392726
706 => 0.0035037470938199
707 => 0.0035052391399936
708 => 0.0035244192968027
709 => 0.0036081801664895
710 => 0.0037844499787724
711 => 0.0037911392892969
712 => 0.0037992469287937
713 => 0.0037662690843873
714 => 0.0037563226509589
715 => 0.0037694445640433
716 => 0.0038356422377103
717 => 0.0040059206268749
718 => 0.0039457328716329
719 => 0.0038967992897429
720 => 0.0039397272334594
721 => 0.0039331188130046
722 => 0.0038773370938868
723 => 0.0038757714868179
724 => 0.0037687085333364
725 => 0.0037291297971398
726 => 0.0036960548427568
727 => 0.0036599378560142
728 => 0.0036385264956208
729 => 0.0036714240764743
730 => 0.0036789481424482
731 => 0.0036070170069607
801 => 0.0035972130589884
802 => 0.0036559535769689
803 => 0.003630104065073
804 => 0.003656690929095
805 => 0.003662859309606
806 => 0.0036618660582739
807 => 0.003634876199057
808 => 0.0036520787304727
809 => 0.0036113896153531
810 => 0.0035671463139681
811 => 0.0035389218441395
812 => 0.0035142922507814
813 => 0.0035279581806569
814 => 0.0034792416359512
815 => 0.0034636562328295
816 => 0.0036462508998982
817 => 0.0037811355436854
818 => 0.0037791742675445
819 => 0.0037672355034364
820 => 0.0037494969216616
821 => 0.0038343445499667
822 => 0.003804785332847
823 => 0.0038262921330568
824 => 0.0038317665163477
825 => 0.0038483358257907
826 => 0.0038542579297362
827 => 0.0038363572184471
828 => 0.0037762802449728
829 => 0.0036265741390222
830 => 0.0035568855425783
831 => 0.0035338871449965
901 => 0.0035347230930684
902 => 0.0035116639134081
903 => 0.003518455875258
904 => 0.0035093019462548
905 => 0.0034919666192961
906 => 0.0035268877730668
907 => 0.0035309121107259
908 => 0.0035227610961591
909 => 0.0035246809551606
910 => 0.0034571940358913
911 => 0.0034623249197895
912 => 0.0034337555062433
913 => 0.0034283990856128
914 => 0.0033561780959916
915 => 0.0032282281442777
916 => 0.0032991248379295
917 => 0.0032134916015818
918 => 0.0031810609974217
919 => 0.0033345824335221
920 => 0.0033191731393594
921 => 0.0032927991260121
922 => 0.0032537864634454
923 => 0.0032393162874086
924 => 0.0031514000785102
925 => 0.0031462055198737
926 => 0.0031897791669411
927 => 0.0031696714280972
928 => 0.0031414325473641
929 => 0.0030391541838782
930 => 0.0029241594401177
1001 => 0.0029276304086006
1002 => 0.0029642080970376
1003 => 0.0030705626593414
1004 => 0.0030290080918967
1005 => 0.0029988597764318
1006 => 0.0029932139032003
1007 => 0.0030638838271291
1008 => 0.0031638965752952
1009 => 0.0032108203190756
1010 => 0.0031643203140845
1011 => 0.0031109036120888
1012 => 0.0031141548392301
1013 => 0.0031357837968259
1014 => 0.0031380566944522
1015 => 0.0031032879127787
1016 => 0.0031130751211605
1017 => 0.0030982074566674
1018 => 0.0030069646271173
1019 => 0.0030053143336648
1020 => 0.0029829218718038
1021 => 0.002982243836958
1022 => 0.0029441486732711
1023 => 0.0029388188965318
1024 => 0.0028631786368203
1025 => 0.0029129652848222
1026 => 0.0028795710152588
1027 => 0.002829237974115
1028 => 0.0028205605388501
1029 => 0.0028202996846678
1030 => 0.0028719804636604
1031 => 0.0029123613648297
1101 => 0.0028801519228752
1102 => 0.002872818457296
1103 => 0.0029511206837717
1104 => 0.002941156011712
1105 => 0.0029325266699736
1106 => 0.0031549415306463
1107 => 0.0029788828131758
1108 => 0.0029021111632784
1109 => 0.0028070916679895
1110 => 0.0028380304947854
1111 => 0.0028445497601773
1112 => 0.0026160450025587
1113 => 0.0025233406508514
1114 => 0.0024915280108352
1115 => 0.0024732193867412
1116 => 0.002481562856646
1117 => 0.0023981180669735
1118 => 0.0024541943456829
1119 => 0.0023819382112389
1120 => 0.0023698242351576
1121 => 0.0024990271543608
1122 => 0.0025170049857754
1123 => 0.0024403059716862
1124 => 0.002489559155174
1125 => 0.0024716992661708
1126 => 0.0023831768352763
1127 => 0.002379795929543
1128 => 0.002335378485434
1129 => 0.0022658737863154
1130 => 0.0022341082737582
1201 => 0.0022175645190175
1202 => 0.0022243907946548
1203 => 0.0022209392208051
1204 => 0.0021984153667012
1205 => 0.0022222302617569
1206 => 0.0021613930458836
1207 => 0.0021371671763241
1208 => 0.00212622491308
1209 => 0.0020722283823329
1210 => 0.0021581608751177
1211 => 0.0021750906587453
1212 => 0.0021920537992765
1213 => 0.002339706356373
1214 => 0.0023323300518823
1215 => 0.0023990082520727
1216 => 0.0023964172598266
1217 => 0.0023773995570171
1218 => 0.002297166997124
1219 => 0.0023291462654895
1220 => 0.0022307190481422
1221 => 0.002304467411779
1222 => 0.0022708117384204
1223 => 0.0022930883947619
1224 => 0.0022530329580548
1225 => 0.002275201290577
1226 => 0.002179105338497
1227 => 0.0020893722905512
1228 => 0.0021254834885155
1229 => 0.0021647404905192
1230 => 0.0022498596733612
1231 => 0.0021991633902785
]
'min_raw' => 0.0020722283823329
'max_raw' => 0.0061856521884221
'avg_raw' => 0.0041289402853775
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002072'
'max' => '$0.006185'
'avg' => '$0.004128'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0039255416176671
'max_diff' => 0.00018788218842212
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022173956907137
102 => 0.0021563205363059
103 => 0.0020303050475073
104 => 0.0020310182814886
105 => 0.0020116335439336
106 => 0.0019948823004681
107 => 0.0022049864682367
108 => 0.0021788566937193
109 => 0.0021372223178061
110 => 0.0021929515844502
111 => 0.0022076872870933
112 => 0.0022081067918316
113 => 0.0022487654261945
114 => 0.0022704649466425
115 => 0.0022742895811726
116 => 0.0023382668208306
117 => 0.0023597111476838
118 => 0.0024480372950773
119 => 0.0022686238939386
120 => 0.0022649289930084
121 => 0.0021937358095184
122 => 0.0021485839670293
123 => 0.0021968273948027
124 => 0.0022395644859253
125 => 0.0021950637700687
126 => 0.0022008746240982
127 => 0.0021411360489028
128 => 0.0021624897785739
129 => 0.0021808824872247
130 => 0.0021707271145812
131 => 0.0021555240302083
201 => 0.0022360605318206
202 => 0.0022315163467745
203 => 0.0023065137886021
204 => 0.0023649796576253
205 => 0.0024697609469389
206 => 0.002360416209168
207 => 0.0023564312523176
208 => 0.0023953848447369
209 => 0.0023597051840917
210 => 0.0023822534979994
211 => 0.0024661280649728
212 => 0.0024679002024051
213 => 0.0024382146171434
214 => 0.0024364082465824
215 => 0.0024421096879566
216 => 0.0024755032081668
217 => 0.0024638344861261
218 => 0.0024773378266875
219 => 0.0024942239608299
220 => 0.0025640721712157
221 => 0.0025809123382697
222 => 0.002539999462954
223 => 0.002543693437513
224 => 0.0025283908990614
225 => 0.0025136088386574
226 => 0.002546836751699
227 => 0.0026075614158788
228 => 0.0026071836508946
301 => 0.0026212705926655
302 => 0.0026300466406863
303 => 0.0025923734181214
304 => 0.0025678495355144
305 => 0.0025772535526011
306 => 0.0025922907807156
307 => 0.0025723771821903
308 => 0.0024494612272159
309 => 0.0024867460760535
310 => 0.002480540054071
311 => 0.0024717019240898
312 => 0.0025091921279112
313 => 0.0025055761062947
314 => 0.0023972622200462
315 => 0.0024041961236203
316 => 0.0023976838936884
317 => 0.0024187262408753
318 => 0.0023585688282885
319 => 0.0023770728432339
320 => 0.0023886783879432
321 => 0.002395514142935
322 => 0.0024202095772865
323 => 0.002417311853099
324 => 0.0024200294506824
325 => 0.0024566462604727
326 => 0.0026418415190203
327 => 0.0026519212883328
328 => 0.0026022848177359
329 => 0.0026221136087033
330 => 0.0025840466661258
331 => 0.0026096012597044
401 => 0.0026270850636146
402 => 0.0025480791156867
403 => 0.0025434008961947
404 => 0.0025051768378041
405 => 0.0025257162816619
406 => 0.0024930365496459
407 => 0.0025010550127941
408 => 0.0024786346907946
409 => 0.0025189868065522
410 => 0.0025641067420539
411 => 0.0025755058196019
412 => 0.0025455197541846
413 => 0.0025238078666444
414 => 0.0024856889444643
415 => 0.0025490815615855
416 => 0.0025676194946867
417 => 0.0025489841897147
418 => 0.0025446659823632
419 => 0.0025364829872351
420 => 0.0025464020434632
421 => 0.0025675185331218
422 => 0.0025575603865591
423 => 0.0025641379178037
424 => 0.0025390711514201
425 => 0.0025923858895256
426 => 0.0026770625245277
427 => 0.0026773347737552
428 => 0.0026673765735144
429 => 0.0026633018925283
430 => 0.0026735196102895
501 => 0.0026790623030222
502 => 0.0027121045286528
503 => 0.0027475601532147
504 => 0.0029130160825444
505 => 0.0028665567196712
506 => 0.0030133590631898
507 => 0.0031294606570144
508 => 0.003164274448495
509 => 0.0031322473984483
510 => 0.0030226845903058
511 => 0.0030173089162414
512 => 0.0031810420078307
513 => 0.003134779910006
514 => 0.0031292771806746
515 => 0.0030707374375957
516 => 0.0031053416760435
517 => 0.0030977732214814
518 => 0.0030858260456937
519 => 0.0031518485221001
520 => 0.0032754367040657
521 => 0.0032561743269037
522 => 0.0032417958559083
523 => 0.0031787935815162
524 => 0.0032167350227676
525 => 0.0032032248022584
526 => 0.0032612732833638
527 => 0.0032268866490883
528 => 0.003134429429115
529 => 0.0031491535461387
530 => 0.0031469280254714
531 => 0.0031927290831028
601 => 0.003178980742454
602 => 0.0031442434413067
603 => 0.0032750142930955
604 => 0.003266522761366
605 => 0.003278561811924
606 => 0.0032838617742996
607 => 0.0033634596873426
608 => 0.0033960684054671
609 => 0.0034034711553774
610 => 0.0034344469155469
611 => 0.0034027004502461
612 => 0.0035297089462957
613 => 0.0036141621850174
614 => 0.0037122589677167
615 => 0.0038556047331698
616 => 0.0039095040670027
617 => 0.00389976763478
618 => 0.0040084507581639
619 => 0.0042037519149947
620 => 0.0039392435824493
621 => 0.0042177714988961
622 => 0.0041295927763084
623 => 0.0039205226113207
624 => 0.0039070609574708
625 => 0.004048645700555
626 => 0.0043626670336894
627 => 0.0042840082513397
628 => 0.0043627956912786
629 => 0.0042708859575486
630 => 0.0042663218645929
701 => 0.0043583318406577
702 => 0.0045733181649358
703 => 0.0044711862209131
704 => 0.0043247550353765
705 => 0.0044328775440552
706 => 0.0043392118207719
707 => 0.0041281567308296
708 => 0.0042839481024513
709 => 0.0041797748489307
710 => 0.0042101781424627
711 => 0.004429134826761
712 => 0.0044027893792187
713 => 0.0044368828278612
714 => 0.0043767087833881
715 => 0.0043204967372744
716 => 0.0042155727788418
717 => 0.0041845099674385
718 => 0.0041930946109875
719 => 0.0041845057133155
720 => 0.0041258017228734
721 => 0.0041131246017267
722 => 0.0040919955110847
723 => 0.0040985442997807
724 => 0.0040588154278404
725 => 0.0041337920175956
726 => 0.0041477083333456
727 => 0.0042022700428408
728 => 0.0042079348205221
729 => 0.0043598884048288
730 => 0.0042761949240689
731 => 0.0043323437367101
801 => 0.0043273212584144
802 => 0.0039250537957521
803 => 0.0039804827028711
804 => 0.004066712687799
805 => 0.004027866196471
806 => 0.0039729463464122
807 => 0.0039285956228737
808 => 0.0038613997416185
809 => 0.0039559766541025
810 => 0.0040803352368858
811 => 0.0042110887594044
812 => 0.0043681805494003
813 => 0.0043331194906233
814 => 0.0042081520376612
815 => 0.0042137579863123
816 => 0.0042484117550139
817 => 0.0042035319759184
818 => 0.0041902960529058
819 => 0.0042465933424434
820 => 0.004246981030936
821 => 0.0041953414211841
822 => 0.0041379534448938
823 => 0.0041377129871778
824 => 0.004127501351099
825 => 0.0042727025849218
826 => 0.0043525485820237
827 => 0.0043617027969132
828 => 0.0043519324304247
829 => 0.0043556926567141
830 => 0.004309232030287
831 => 0.0044154272448286
901 => 0.0045128824753103
902 => 0.0044867623917139
903 => 0.0044476046732142
904 => 0.0044164136643379
905 => 0.0044794147812871
906 => 0.0044766094407223
907 => 0.0045120312888901
908 => 0.0045104243492507
909 => 0.004498513313995
910 => 0.0044867628170944
911 => 0.0045333522090891
912 => 0.0045199352123974
913 => 0.0045064973754039
914 => 0.0044795457360836
915 => 0.0044832089114866
916 => 0.0044440579541191
917 => 0.004425944929815
918 => 0.0041535685035031
919 => 0.0040807806222361
920 => 0.0041036811714167
921 => 0.0041112206268194
922 => 0.0040795432476118
923 => 0.0041249604721445
924 => 0.0041178822458098
925 => 0.0041454194838541
926 => 0.0041282154130519
927 => 0.0041289214741186
928 => 0.0041795149780532
929 => 0.0041942024874856
930 => 0.0041867323016456
1001 => 0.0041919641637449
1002 => 0.0043125302175941
1003 => 0.0042953895802221
1004 => 0.0042862839582438
1005 => 0.0042888062777607
1006 => 0.0043196134894845
1007 => 0.0043282378267558
1008 => 0.004291695903716
1009 => 0.0043089292858679
1010 => 0.0043823068398289
1011 => 0.0044079848309053
1012 => 0.0044899366522865
1013 => 0.0044551220619863
1014 => 0.0045190257492224
1015 => 0.004715443897414
1016 => 0.0048723563052914
1017 => 0.0047280531703278
1018 => 0.00501620282472
1019 => 0.0052405686632773
1020 => 0.0052319571286926
1021 => 0.0051928337550648
1022 => 0.0049373992129418
1023 => 0.0047023445389657
1024 => 0.0048989777546953
1025 => 0.0048994790132002
1026 => 0.0048825880455837
1027 => 0.0047776796963851
1028 => 0.0048789374624336
1029 => 0.0048869749361883
1030 => 0.0048824760882224
1031 => 0.0048020431028625
1101 => 0.0046792368007184
1102 => 0.0047032328582006
1103 => 0.0047425388898628
1104 => 0.0046681243718291
1105 => 0.0046443444243827
1106 => 0.0046885558710057
1107 => 0.0048310143638457
1108 => 0.0048040834109801
1109 => 0.0048033801349643
1110 => 0.0049186021718244
1111 => 0.0048361280599044
1112 => 0.0047035355253315
1113 => 0.0046700541616712
1114 => 0.0045512178764261
1115 => 0.0046332985219252
1116 => 0.0046362524582314
1117 => 0.0045912977275354
1118 => 0.0047071833539678
1119 => 0.004706115447519
1120 => 0.0048161316025174
1121 => 0.0050264411706935
1122 => 0.0049642422826785
1123 => 0.0048919117431368
1124 => 0.0048997760782933
1125 => 0.004986028424127
1126 => 0.0049338782868864
1127 => 0.0049526318398418
1128 => 0.0049860000383785
1129 => 0.0050061319010415
1130 => 0.0048968794130679
1201 => 0.0048714074319707
1202 => 0.0048193006980963
1203 => 0.0048057070238467
1204 => 0.0048481468713447
1205 => 0.0048369654709509
1206 => 0.004636004191323
1207 => 0.0046150026194639
1208 => 0.0046156467076895
1209 => 0.0045628372566794
1210 => 0.0044822901681686
1211 => 0.0046939631075583
1212 => 0.0046769628081644
1213 => 0.0046581957933522
1214 => 0.0046604946455836
1215 => 0.0047523746943112
1216 => 0.0046990796259955
1217 => 0.0048407733000026
1218 => 0.0048116453403284
1219 => 0.0047817703583985
1220 => 0.0047776407258816
1221 => 0.0047661414066523
1222 => 0.0047267059623066
1223 => 0.0046790852935565
1224 => 0.004647642003216
1225 => 0.00428720407454
1226 => 0.0043540992575313
1227 => 0.0044310560678749
1228 => 0.0044576212504205
1229 => 0.0044121796674216
1230 => 0.0047285002729732
1231 => 0.0047862950957486
]
'min_raw' => 0.0019948823004681
'max_raw' => 0.0052405686632773
'avg_raw' => 0.0036177254818727
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001994'
'max' => '$0.00524'
'avg' => '$0.003617'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.7346081864875E-5
'max_diff' => -0.00094508352514479
'year' => 2027
]
2 => [
'items' => [
101 => 0.0046112308076987
102 => 0.0045784834272324
103 => 0.0047306471857847
104 => 0.0046388738381147
105 => 0.0046801993709511
106 => 0.0045908761728167
107 => 0.004772374015372
108 => 0.0047709913059037
109 => 0.004700384545835
110 => 0.0047600608959509
111 => 0.0047496906615554
112 => 0.0046699758033346
113 => 0.0047749011185624
114 => 0.0047749531602097
115 => 0.0047069956887669
116 => 0.0046276362399251
117 => 0.0046134486448587
118 => 0.0046027601978114
119 => 0.0046775706681912
120 => 0.0047446455020075
121 => 0.004869455138478
122 => 0.0049008352464905
123 => 0.0050233138971555
124 => 0.0049503838240618
125 => 0.0049827127808617
126 => 0.0050178104366781
127 => 0.00503463754355
128 => 0.0050072186758945
129 => 0.005197478434601
130 => 0.0052135421876443
131 => 0.0052189282250887
201 => 0.0051547737049373
202 => 0.0052117579343842
203 => 0.0051850969005453
204 => 0.0052544615039455
205 => 0.0052653387594503
206 => 0.0052561261110073
207 => 0.0052595787235904
208 => 0.0050972255836557
209 => 0.0050888067168691
210 => 0.0049740148708575
211 => 0.0050207933966057
212 => 0.0049333431848726
213 => 0.0049610745478502
214 => 0.0049732982684165
215 => 0.0049669132904827
216 => 0.0050234381842656
217 => 0.0049753804772772
218 => 0.0048485482871165
219 => 0.0047216815416103
220 => 0.0047200888329639
221 => 0.0046866870582562
222 => 0.0046625436929827
223 => 0.0046671945616663
224 => 0.0046835848295295
225 => 0.0046615910608186
226 => 0.0046662845464854
227 => 0.0047442276810866
228 => 0.0047598586208658
229 => 0.0047067385800935
301 => 0.0044934539512074
302 => 0.0044411133682947
303 => 0.0044787347413334
304 => 0.0044607541481477
305 => 0.003600176745142
306 => 0.0038023566408531
307 => 0.0036822282122021
308 => 0.0037375889189678
309 => 0.0036149689004208
310 => 0.0036734896003372
311 => 0.0036626829638965
312 => 0.0039877822532619
313 => 0.0039827062750179
314 => 0.0039851358771885
315 => 0.0038691646352907
316 => 0.0040539099725963
317 => 0.0041449221689805
318 => 0.004128078233641
319 => 0.0041323174892776
320 => 0.0040594730321145
321 => 0.003985841170764
322 => 0.0039041721046639
323 => 0.0040559031348761
324 => 0.0040390332344516
325 => 0.0040777267164269
326 => 0.0041761351354775
327 => 0.0041906261489999
328 => 0.0042101022181274
329 => 0.0042031214337462
330 => 0.0043694320389479
331 => 0.0043492907273053
401 => 0.0043978254933132
402 => 0.0042979857972934
403 => 0.004185007704376
404 => 0.0042064811463075
405 => 0.004204413081171
406 => 0.0041780842383685
407 => 0.0041543157363285
408 => 0.0041147478771658
409 => 0.0042399464384978
410 => 0.0042348636055471
411 => 0.0043171487628713
412 => 0.0043026040620389
413 => 0.0042054709901879
414 => 0.0042089401168515
415 => 0.0042322716608695
416 => 0.0043130224011105
417 => 0.0043369947187436
418 => 0.0043258897860843
419 => 0.0043521743379912
420 => 0.0043729485761109
421 => 0.0043547832624532
422 => 0.0046119657965894
423 => 0.0045051656777124
424 => 0.0045572193125426
425 => 0.0045696337977318
426 => 0.0045378343549682
427 => 0.0045447305154509
428 => 0.0045551763194911
429 => 0.0046186011961245
430 => 0.0047850464245467
501 => 0.0048587638831839
502 => 0.0050805464946492
503 => 0.0048526426744406
504 => 0.0048391198049092
505 => 0.0048790695504273
506 => 0.0050092794214311
507 => 0.0051148022918884
508 => 0.0051498103157795
509 => 0.0051544372040562
510 => 0.0052201145841654
511 => 0.0052577596336334
512 => 0.0052121396227336
513 => 0.0051734814401102
514 => 0.0050350126283837
515 => 0.0050510407703791
516 => 0.0051614587743838
517 => 0.0053174307086284
518 => 0.0054512708543241
519 => 0.0054044047001015
520 => 0.0057619603744716
521 => 0.0057974105591015
522 => 0.0057925124898273
523 => 0.0058732732861089
524 => 0.0057129795521401
525 => 0.0056444508753236
526 => 0.0051818397779824
527 => 0.0053118146266738
528 => 0.0055007407024021
529 => 0.005475735627843
530 => 0.0053385324616407
531 => 0.0054511667734193
601 => 0.0054139263475447
602 => 0.0053845532785507
603 => 0.0055191170018617
604 => 0.0053711586605082
605 => 0.0054992647047648
606 => 0.0053349673779184
607 => 0.0054046187807463
608 => 0.0053650812758419
609 => 0.0053906668870494
610 => 0.0052410939267302
611 => 0.0053217998654401
612 => 0.0052377362943434
613 => 0.0052376964372653
614 => 0.0052358407292741
615 => 0.0053347411478744
616 => 0.0053379662869743
617 => 0.0052648787281984
618 => 0.0052543456691366
619 => 0.005293291909088
620 => 0.0052476960621413
621 => 0.0052690300719508
622 => 0.0052483422475651
623 => 0.0052436849825437
624 => 0.0052065751024843
625 => 0.0051905871457974
626 => 0.0051968564355732
627 => 0.0051754561175278
628 => 0.0051625616518221
629 => 0.0052332756954962
630 => 0.0051954960345576
701 => 0.0052274854206208
702 => 0.0051910294778194
703 => 0.0050646572969714
704 => 0.0049919793194042
705 => 0.0047532739844899
706 => 0.0048209705213585
707 => 0.0048658533953396
708 => 0.0048510196057566
709 => 0.0048828883256954
710 => 0.0048848448062726
711 => 0.0048744839605574
712 => 0.0048624874285257
713 => 0.0048566481801824
714 => 0.0049001691533263
715 => 0.0049254345430849
716 => 0.004870357992199
717 => 0.0048574543269292
718 => 0.0049131397607346
719 => 0.0049471078431875
720 => 0.0051979090790026
721 => 0.0051793289133761
722 => 0.0052259614829253
723 => 0.0052207113712292
724 => 0.0052695897332676
725 => 0.0053494851976634
726 => 0.0051870353794236
727 => 0.0052152310507779
728 => 0.005208318123295
729 => 0.0052837916528869
730 => 0.0052840272730081
731 => 0.0052387771218353
801 => 0.0052633079628859
802 => 0.0052496155203799
803 => 0.0052743596146329
804 => 0.0051790807639364
805 => 0.0052951201193684
806 => 0.0053609069564874
807 => 0.0053618204067846
808 => 0.0053930028454624
809 => 0.0054246860091241
810 => 0.0054854990827508
811 => 0.0054229899655071
812 => 0.0053105421487255
813 => 0.0053186605178929
814 => 0.0052527324040569
815 => 0.0052538406675614
816 => 0.0052479246701183
817 => 0.0052656790237804
818 => 0.0051829768461513
819 => 0.0052023868819381
820 => 0.0051752127181716
821 => 0.0052151719794529
822 => 0.0051721824198167
823 => 0.005208314789672
824 => 0.0052239083226946
825 => 0.0052814487952524
826 => 0.0051636836452352
827 => 0.0049235525323502
828 => 0.004974031003587
829 => 0.0048993693796295
830 => 0.0049062795971836
831 => 0.0049202393363959
901 => 0.0048749912542664
902 => 0.0048836231624058
903 => 0.0048833147699053
904 => 0.0048806572099427
905 => 0.004868886436217
906 => 0.0048518164855381
907 => 0.0049198179151891
908 => 0.0049313726831816
909 => 0.004957057501096
910 => 0.0050334780970311
911 => 0.0050258418773754
912 => 0.0050382968684575
913 => 0.0050111076928571
914 => 0.0049075408250593
915 => 0.0049131650042559
916 => 0.0048430313995523
917 => 0.0049552640271419
918 => 0.0049286858595304
919 => 0.00491155074197
920 => 0.004906875266388
921 => 0.0049834852941989
922 => 0.005006408215235
923 => 0.0049921241891453
924 => 0.0049628272349037
925 => 0.0050190860479145
926 => 0.0050341385329074
927 => 0.0050375082291831
928 => 0.0051371880592808
929 => 0.0050430792243807
930 => 0.0050657321563026
1001 => 0.0052424638645919
1002 => 0.0050821925924821
1003 => 0.0051670918597945
1004 => 0.005162936482454
1005 => 0.0052063680747765
1006 => 0.0051593738242104
1007 => 0.0051599563742683
1008 => 0.0051985206859397
1009 => 0.0051443640653074
1010 => 0.0051309541244326
1011 => 0.0051124283871579
1012 => 0.0051528786567468
1013 => 0.005177126763957
1014 => 0.0053725486997989
1015 => 0.0054988001826757
1016 => 0.0054933192728394
1017 => 0.0055434045289098
1018 => 0.0055208406623217
1019 => 0.0054479759850616
1020 => 0.0055723471042438
1021 => 0.0055329908782259
1022 => 0.005536235357681
1023 => 0.0055361145979937
1024 => 0.0055622830477146
1025 => 0.0055437403027841
1026 => 0.0055071906491525
1027 => 0.0055314540149341
1028 => 0.0056035075369934
1029 => 0.0058271638803377
1030 => 0.0059523249331256
1031 => 0.005819629027803
1101 => 0.0059111608864256
1102 => 0.005856274387388
1103 => 0.005846299877781
1104 => 0.0059037886491472
1105 => 0.0059613780469973
1106 => 0.0059577098513201
1107 => 0.0059159029057292
1108 => 0.0058922872229768
1109 => 0.0060711130846117
1110 => 0.0062028689332453
1111 => 0.0061938840676709
1112 => 0.0062335403422814
1113 => 0.0063499723910604
1114 => 0.0063606174784268
1115 => 0.0063592764420931
1116 => 0.0063328914823555
1117 => 0.0064475339549905
1118 => 0.006543170722605
1119 => 0.006326784126511
1120 => 0.0064091813095951
1121 => 0.0064461720597529
1122 => 0.0065004854556457
1123 => 0.0065921212584989
1124 => 0.0066916620455937
1125 => 0.0067057382042981
1126 => 0.0066957504960911
1127 => 0.0066301006712021
1128 => 0.0067390193882099
1129 => 0.0068028214181748
1130 => 0.0068408140669354
1201 => 0.0069371571028184
1202 => 0.0064464005020327
1203 => 0.006099018587811
1204 => 0.0060447698856496
1205 => 0.0061550867547196
1206 => 0.0061841764333329
1207 => 0.0061724504203592
1208 => 0.0057814404933208
1209 => 0.0060427112993051
1210 => 0.006323816718271
1211 => 0.0063346151222513
1212 => 0.0064753423726228
1213 => 0.0065211689339486
1214 => 0.00663447281604
1215 => 0.0066273856273658
1216 => 0.0066549733195965
1217 => 0.0066486313869049
1218 => 0.0068585029695319
1219 => 0.0070900224914011
1220 => 0.0070820057065458
1221 => 0.0070487220360625
1222 => 0.0070981539624394
1223 => 0.0073371069201482
1224 => 0.0073151079609455
1225 => 0.007336478075944
1226 => 0.0076182170798812
1227 => 0.0079845178619056
1228 => 0.0078143343726581
1229 => 0.0081835835753454
1230 => 0.0084160063753779
1231 => 0.008817957575068
]
'min_raw' => 0.003600176745142
'max_raw' => 0.008817957575068
'avg_raw' => 0.006209067160105
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00360017'
'max' => '$0.008817'
'avg' => '$0.006209'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001605294444674
'max_diff' => 0.0035773889117907
'year' => 2028
]
3 => [
'items' => [
101 => 0.0087676313052154
102 => 0.0089241079576006
103 => 0.0086775367787698
104 => 0.0081113595119172
105 => 0.0080217597921983
106 => 0.0082011407001019
107 => 0.0086421311584498
108 => 0.0081872523412167
109 => 0.0082792737335075
110 => 0.0082527715663372
111 => 0.0082513593784756
112 => 0.0083052568453678
113 => 0.0082270757585378
114 => 0.0079085519462835
115 => 0.008054529532367
116 => 0.0079981605759607
117 => 0.0080607061356776
118 => 0.0083982387257187
119 => 0.0082490075218896
120 => 0.0080918045712142
121 => 0.0082889719574886
122 => 0.0085400337942805
123 => 0.0085243227957356
124 => 0.0084938368918704
125 => 0.0086656843357682
126 => 0.0089495259665104
127 => 0.009026247218732
128 => 0.009082881278625
129 => 0.009090690158644
130 => 0.0091711264760312
131 => 0.0087386001248781
201 => 0.0094250305522226
202 => 0.0095435581247672
203 => 0.0095212798535934
204 => 0.0096530182620739
205 => 0.0096142574804181
206 => 0.0095580991891791
207 => 0.0097669325881838
208 => 0.0095275219482112
209 => 0.0091877086857315
210 => 0.009001280409191
211 => 0.0092467842024797
212 => 0.0093967048021395
213 => 0.0094957927817736
214 => 0.0095257767445403
215 => 0.0087721759142735
216 => 0.0083660268633778
217 => 0.0086263637484936
218 => 0.0089439927158269
219 => 0.0087368356799271
220 => 0.0087449558435342
221 => 0.0084496043502524
222 => 0.0089701247693671
223 => 0.0088942893225679
224 => 0.0092877237547128
225 => 0.0091938274699728
226 => 0.0095146579763503
227 => 0.0094301725518199
228 => 0.0097808668255288
301 => 0.0099207682659797
302 => 0.010155684558417
303 => 0.010328489939416
304 => 0.010429964564378
305 => 0.010423872408517
306 => 0.010825965427076
307 => 0.010588865222092
308 => 0.010291011484404
309 => 0.010285624250006
310 => 0.010439886921375
311 => 0.010763179160666
312 => 0.010847004134603
313 => 0.010893850859421
314 => 0.010822103469616
315 => 0.010564748190231
316 => 0.010453623485413
317 => 0.010548304953511
318 => 0.010432517654099
319 => 0.010632399017062
320 => 0.010906878820765
321 => 0.010850199826711
322 => 0.011039669206044
323 => 0.011235750080894
324 => 0.011516154538471
325 => 0.011589462647029
326 => 0.011710638162818
327 => 0.011835367572647
328 => 0.011875427297533
329 => 0.011951913742142
330 => 0.011951510620824
331 => 0.012182007669784
401 => 0.012436253052687
402 => 0.012532224798939
403 => 0.012752906537531
404 => 0.012374996793802
405 => 0.012661645675535
406 => 0.012920210142145
407 => 0.012611938925691
408 => 0.013036818979591
409 => 0.013053316109285
410 => 0.013302403181371
411 => 0.013049905714503
412 => 0.012899973524678
413 => 0.013332822138819
414 => 0.013542263948598
415 => 0.013479178370998
416 => 0.012999094010547
417 => 0.012719664320978
418 => 0.011988342925412
419 => 0.012854624709193
420 => 0.013276565296286
421 => 0.01299800128636
422 => 0.013138492769866
423 => 0.013904968749357
424 => 0.014196793176703
425 => 0.014136095735822
426 => 0.014146352604166
427 => 0.014303815768174
428 => 0.015002094153933
429 => 0.01458366955922
430 => 0.014903539483807
501 => 0.015073197338432
502 => 0.015230785008942
503 => 0.014843799496264
504 => 0.014340337030215
505 => 0.014180869333301
506 => 0.012970303585469
507 => 0.012907288381074
508 => 0.012871916037291
509 => 0.012648898413255
510 => 0.012473667650432
511 => 0.012334317641934
512 => 0.011968621606199
513 => 0.01209203328314
514 => 0.011509190128873
515 => 0.01188207252428
516 => 0.01095184077683
517 => 0.011726565418092
518 => 0.01130491801826
519 => 0.011588042907077
520 => 0.011587055111012
521 => 0.011065732425873
522 => 0.010765044380811
523 => 0.010956654506078
524 => 0.011162075770395
525 => 0.01119540467941
526 => 0.01146173871064
527 => 0.011536066813926
528 => 0.011310849190923
529 => 0.010932563791502
530 => 0.011020430862016
531 => 0.010763263757432
601 => 0.010312588298438
602 => 0.010636271281126
603 => 0.010746790882752
604 => 0.010795602634993
605 => 0.010352415081498
606 => 0.01021315593012
607 => 0.010139015526424
608 => 0.010875353843657
609 => 0.010915692118864
610 => 0.010709315799644
611 => 0.011642156331926
612 => 0.011431025789591
613 => 0.011666910333618
614 => 0.011012457846346
615 => 0.011037458812697
616 => 0.010727630517156
617 => 0.010901113659925
618 => 0.010778501366239
619 => 0.010887097936383
620 => 0.010952190272767
621 => 0.011261967728533
622 => 0.011730102579034
623 => 0.011215697306809
624 => 0.010991563563282
625 => 0.01113061487719
626 => 0.011500926850096
627 => 0.01206196844497
628 => 0.011729820528791
629 => 0.011877222133754
630 => 0.011909422826997
701 => 0.011664509250391
702 => 0.012070998757881
703 => 0.01228883978726
704 => 0.012512299607553
705 => 0.012706323508312
706 => 0.012423044841341
707 => 0.012726193621402
708 => 0.012481909217636
709 => 0.012262760853801
710 => 0.012263093211409
711 => 0.012125618241529
712 => 0.011859243164424
713 => 0.011810119513279
714 => 0.012065666950168
715 => 0.012270591794121
716 => 0.012287470385793
717 => 0.012400927308824
718 => 0.012468069947174
719 => 0.013126159078999
720 => 0.013390847971818
721 => 0.013714504539652
722 => 0.013840587013108
723 => 0.014220050055143
724 => 0.013913602830218
725 => 0.013847301045463
726 => 0.012926847826902
727 => 0.013077571989876
728 => 0.013318895917517
729 => 0.012930827169583
730 => 0.013176967469035
731 => 0.013225560778111
801 => 0.012917640742025
802 => 0.013082114137738
803 => 0.012645321561688
804 => 0.011739623463576
805 => 0.012072007058772
806 => 0.012316753263944
807 => 0.011967470252174
808 => 0.012593546531653
809 => 0.012227805694019
810 => 0.012111883407145
811 => 0.011659629236771
812 => 0.011873075796328
813 => 0.01216176532439
814 => 0.011983388759808
815 => 0.012353546914691
816 => 0.01287778957958
817 => 0.01325139612177
818 => 0.013280076992989
819 => 0.013039873016055
820 => 0.013424801422053
821 => 0.013427605205255
822 => 0.01299340439081
823 => 0.012727458809603
824 => 0.012667035413999
825 => 0.012817984902923
826 => 0.013001265449291
827 => 0.013290247787745
828 => 0.013464873762559
829 => 0.013920205690413
830 => 0.014043405454701
831 => 0.014178764643819
901 => 0.014359646263708
902 => 0.014576841025481
903 => 0.014101631251627
904 => 0.014120512221844
905 => 0.013678003460159
906 => 0.013205119386122
907 => 0.013563979452484
908 => 0.014033141252098
909 => 0.013925515016889
910 => 0.013913404866823
911 => 0.013933770780158
912 => 0.013852624113554
913 => 0.013485600747942
914 => 0.01330128391142
915 => 0.013539099654774
916 => 0.013665488138405
917 => 0.013861505654284
918 => 0.013837342358024
919 => 0.014342262428183
920 => 0.014538459099456
921 => 0.014488263595216
922 => 0.014497500776018
923 => 0.014852705477784
924 => 0.015247766159566
925 => 0.015617792620903
926 => 0.015994199430382
927 => 0.015540426330148
928 => 0.015310028334683
929 => 0.015547740255122
930 => 0.0154216069641
1001 => 0.016146406267882
1002 => 0.016196589799101
1003 => 0.016921336691644
1004 => 0.017609207793921
1005 => 0.017177168279072
1006 => 0.017584562082088
1007 => 0.018025191695354
1008 => 0.018875237708923
1009 => 0.018588972116532
1010 => 0.018369697159115
1011 => 0.018162483383884
1012 => 0.018593662355878
1013 => 0.019148367215097
1014 => 0.019267845328875
1015 => 0.019461445517349
1016 => 0.019257898591474
1017 => 0.019503048443732
1018 => 0.020368535146507
1019 => 0.020134672999555
1020 => 0.019802551155667
1021 => 0.020485769785281
1022 => 0.020733023951394
1023 => 0.022468383177182
1024 => 0.024659345883854
1025 => 0.023752272936655
1026 => 0.023189223487268
1027 => 0.023321553463585
1028 => 0.024121618875294
1029 => 0.024378574492728
1030 => 0.023680080546629
1031 => 0.023926800416875
1101 => 0.02528625115889
1102 => 0.02601555286558
1103 => 0.025025063189608
1104 => 0.022292341456994
1105 => 0.019772647217448
1106 => 0.020440983593086
1107 => 0.020365214988981
1108 => 0.021825775216343
1109 => 0.020129095464694
1110 => 0.020157663200334
1111 => 0.021648426266437
1112 => 0.02125071623855
1113 => 0.020606476928224
1114 => 0.019777350877372
1115 => 0.018244634687493
1116 => 0.016887065215165
1117 => 0.019549571579978
1118 => 0.019434759464074
1119 => 0.019268494506042
1120 => 0.019638499178394
1121 => 0.021435136839679
1122 => 0.021393718526438
1123 => 0.021130236349406
1124 => 0.021330085258459
1125 => 0.020571442448212
1126 => 0.020766961974388
1127 => 0.019772248085007
1128 => 0.020221900305929
1129 => 0.020605094680007
1130 => 0.020682026623893
1201 => 0.02085535822171
1202 => 0.019374258696095
1203 => 0.020039228900299
1204 => 0.020429836595986
1205 => 0.018665056816441
1206 => 0.020394952573944
1207 => 0.019348476048503
1208 => 0.018993286198219
1209 => 0.019471502538922
1210 => 0.019285141165869
1211 => 0.019124918600826
1212 => 0.019035511656558
1213 => 0.019386660958359
1214 => 0.019370279423716
1215 => 0.018795731010827
1216 => 0.018046256027802
1217 => 0.018297804432783
1218 => 0.018206414538974
1219 => 0.017875205774282
1220 => 0.018098400491386
1221 => 0.017115563913521
1222 => 0.015424644664704
1223 => 0.01654171771473
1224 => 0.016498711617445
1225 => 0.016477025993023
1226 => 0.017316475516486
1227 => 0.017235781814201
1228 => 0.017089321954398
1229 => 0.017872515924101
1230 => 0.017586639589714
1231 => 0.01846764309136
]
'min_raw' => 0.0079085519462835
'max_raw' => 0.02601555286558
'avg_raw' => 0.016962052405932
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0079085'
'max' => '$0.026015'
'avg' => '$0.016962'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0043083752011414
'max_diff' => 0.017197595290512
'year' => 2029
]
4 => [
'items' => [
101 => 0.019047928977277
102 => 0.018900749706327
103 => 0.019446511386797
104 => 0.018303599599977
105 => 0.018683229049897
106 => 0.018761470153381
107 => 0.017862851432087
108 => 0.017248984301851
109 => 0.017208046362861
110 => 0.016143685355133
111 => 0.01671225841424
112 => 0.017212579177102
113 => 0.01697296435815
114 => 0.01689710946476
115 => 0.017284635664174
116 => 0.017314749768806
117 => 0.016628144991847
118 => 0.016770911866923
119 => 0.017366273469005
120 => 0.016755910282091
121 => 0.015570074312177
122 => 0.015275970596174
123 => 0.015236731739052
124 => 0.014439099135591
125 => 0.015295624012789
126 => 0.014921727950452
127 => 0.016102861131411
128 => 0.015428204192992
129 => 0.015399121080796
130 => 0.015355157691148
131 => 0.014668602359561
201 => 0.014818914344311
202 => 0.015318574274781
203 => 0.015496858567045
204 => 0.015478262054722
205 => 0.015316125668534
206 => 0.015390350875858
207 => 0.015151245621289
208 => 0.015066812579356
209 => 0.014800318673875
210 => 0.014408646253639
211 => 0.014463110705939
212 => 0.013687105154788
213 => 0.013264296144788
214 => 0.013147268183354
215 => 0.012990773502388
216 => 0.013164944673985
217 => 0.013684906828561
218 => 0.013057722154018
219 => 0.011982458021403
220 => 0.012047083227934
221 => 0.012192276879613
222 => 0.011921709470261
223 => 0.011665640124311
224 => 0.011888271645052
225 => 0.011432668057107
226 => 0.012247334396545
227 => 0.012225299955139
228 => 0.012528957187853
301 => 0.012718840287143
302 => 0.012281221218663
303 => 0.012171161206388
304 => 0.012233856391329
305 => 0.011197644639514
306 => 0.012444276580817
307 => 0.012455057505613
308 => 0.012362744682221
309 => 0.013026537705522
310 => 0.014427348026923
311 => 0.013900306836548
312 => 0.01369622055773
313 => 0.013308252392511
314 => 0.013825196937395
315 => 0.013785503661939
316 => 0.0136059956171
317 => 0.013497428591482
318 => 0.01369746666503
319 => 0.013472641660446
320 => 0.013432256911844
321 => 0.013187569274361
322 => 0.013100226920357
323 => 0.013035562118652
324 => 0.012964372525807
325 => 0.013121399028282
326 => 0.012765556315117
327 => 0.012336444886733
328 => 0.012300768914512
329 => 0.012399273410476
330 => 0.012355692503809
331 => 0.012300560265898
401 => 0.012195297809354
402 => 0.012164068687074
403 => 0.012265548184268
404 => 0.012150983748558
405 => 0.012320029814096
406 => 0.012274058638015
407 => 0.012017267385406
408 => 0.011697210408358
409 => 0.01169436122992
410 => 0.011625405479213
411 => 0.011537579963122
412 => 0.011513148913721
413 => 0.011869522239345
414 => 0.01260720435803
415 => 0.012462379706895
416 => 0.012567030359567
417 => 0.013081807994157
418 => 0.013245440324289
419 => 0.013129297972205
420 => 0.012970315157325
421 => 0.012977309594328
422 => 0.013520602000146
423 => 0.013554486481081
424 => 0.013640101632855
425 => 0.013750141297725
426 => 0.013148038202957
427 => 0.012948950592711
428 => 0.012854611838016
429 => 0.012564084987248
430 => 0.012877393287911
501 => 0.012694841958314
502 => 0.012719474369518
503 => 0.012703432479406
504 => 0.012712192436155
505 => 0.0122471066807
506 => 0.0124165594858
507 => 0.012134811331409
508 => 0.011757582180394
509 => 0.011756317576006
510 => 0.011848643876297
511 => 0.011793724580156
512 => 0.011645938166343
513 => 0.011666930528893
514 => 0.011483015343754
515 => 0.011689261162261
516 => 0.011695175554352
517 => 0.011615759679942
518 => 0.011933509819789
519 => 0.012063692311344
520 => 0.012011419081554
521 => 0.012060024682192
522 => 0.012468397824994
523 => 0.01253498046584
524 => 0.012564552076701
525 => 0.012524930035635
526 => 0.012067488993582
527 => 0.012087778448986
528 => 0.011938907887493
529 => 0.011813127950624
530 => 0.01181815848847
531 => 0.011882825726268
601 => 0.012165231346414
602 => 0.012759537325291
603 => 0.012782090802757
604 => 0.012809426275378
605 => 0.012698239170522
606 => 0.01266470407578
607 => 0.012708945521887
608 => 0.012932135600429
609 => 0.013506241077956
610 => 0.013303313858982
611 => 0.013138330871207
612 => 0.01328306543058
613 => 0.013260784679631
614 => 0.01307271271907
615 => 0.013067434165531
616 => 0.012706463942971
617 => 0.012573021470585
618 => 0.012461506952663
619 => 0.012339736010253
620 => 0.012267546113793
621 => 0.012378462604476
622 => 0.012403830518221
623 => 0.012161309672853
624 => 0.012128254977775
625 => 0.012326302735278
626 => 0.012239149301166
627 => 0.012328788769452
628 => 0.012349585895007
629 => 0.012346237078794
630 => 0.012255238884073
701 => 0.012313238419783
702 => 0.012176052227334
703 => 0.012026882847746
704 => 0.011931722077149
705 => 0.011848681683559
706 => 0.011894757320259
707 => 0.011730506088503
708 => 0.01167795881374
709 => 0.012293589482115
710 => 0.012748362475989
711 => 0.012741749896548
712 => 0.012701497519819
713 => 0.012641690652897
714 => 0.0129277603556
715 => 0.012828099391323
716 => 0.012900611069787
717 => 0.012919068335261
718 => 0.012974932918881
719 => 0.012994899705801
720 => 0.012934546207902
721 => 0.012731992497393
722 => 0.012227247909034
723 => 0.011992287940621
724 => 0.011914747237477
725 => 0.011917565694766
726 => 0.011839820060601
727 => 0.011862719634177
728 => 0.011831856523436
729 => 0.011773409258281
730 => 0.011891148366336
731 => 0.011904716701723
801 => 0.011877234987026
802 => 0.01188370792569
803 => 0.011656171065587
804 => 0.011673470198877
805 => 0.011577146426453
806 => 0.011559086880324
807 => 0.011315588771508
808 => 0.010884196576124
809 => 0.01112322972862
810 => 0.010834511293552
811 => 0.010725169247394
812 => 0.011242777487731
813 => 0.011190823976619
814 => 0.011101902149243
815 => 0.010970368233622
816 => 0.010921581024839
817 => 0.010625165388424
818 => 0.010607651571309
819 => 0.010754563164612
820 => 0.010686768519222
821 => 0.010591559161254
822 => 0.010246720517915
823 => 0.0098590077106493
824 => 0.0098707103232249
825 => 0.0099940345535627
826 => 0.010352616385808
827 => 0.010212512260421
828 => 0.010110865109943
829 => 0.010091829654161
830 => 0.010330098236704
831 => 0.010667298199813
901 => 0.010825504878079
902 => 0.010668726864725
903 => 0.010488628724512
904 => 0.010499590463812
905 => 0.010572514004432
906 => 0.010580177237467
907 => 0.010462951862576
908 => 0.010495950118957
909 => 0.010445822750091
910 => 0.010138191179892
911 => 0.010132627100297
912 => 0.010057129351741
913 => 0.01005484330992
914 => 0.0099264028058297
915 => 0.0099084330914402
916 => 0.0096534066747883
917 => 0.0098212658345197
918 => 0.0097086747231733
919 => 0.0095389733608161
920 => 0.0095097167819814
921 => 0.0095088372938933
922 => 0.0096830826485039
923 => 0.0098192296761005
924 => 0.0097106332937596
925 => 0.0096859080025531
926 => 0.0099499094260027
927 => 0.0099163128384423
928 => 0.0098872184102898
929 => 0.010637105641558
930 => 0.010043511383579
1001 => 0.0097846704059242
1002 => 0.0094643055435082
1003 => 0.0095686179581307
1004 => 0.0095905981165599
1005 => 0.0088201783725563
1006 => 0.0085076191783637
1007 => 0.0084003606414615
1008 => 0.0083386318370612
1009 => 0.008366762428368
1010 => 0.0080854224940577
1011 => 0.0082744875828472
1012 => 0.0080308709808072
1013 => 0.0079900278646782
1014 => 0.0084256445274316
1015 => 0.0084862580412182
1016 => 0.0082276619602622
1017 => 0.0083937225071386
1018 => 0.008333506644427
1019 => 0.0080350470882271
1020 => 0.0080236481285002
1021 => 0.0078738916145598
1022 => 0.0076395516688183
1023 => 0.0075324520254342
1024 => 0.0074766736012781
1025 => 0.0074996888661847
1026 => 0.0074880516439692
1027 => 0.0074121108972924
1028 => 0.0074924044786756
1029 => 0.0072872875578401
1030 => 0.007205608347224
1031 => 0.007168715742732
1101 => 0.006986662669401
1102 => 0.0072763900684398
1103 => 0.0073334700159401
1104 => 0.0073906624285698
1105 => 0.007888483333593
1106 => 0.0078636136080053
1107 => 0.0080884238152704
1108 => 0.0080796881040155
1109 => 0.0080155685912196
1110 => 0.0077450589138816
1111 => 0.0078528792498972
1112 => 0.0075210250146417
1113 => 0.0077696727715897
1114 => 0.0076562003190972
1115 => 0.007731307621259
1116 => 0.0075962579198197
1117 => 0.0076710000006617
1118 => 0.0073470057890189
1119 => 0.0070444645529083
1120 => 0.0071662159780485
1121 => 0.0072985737011401
1122 => 0.0075855589689235
1123 => 0.0074146329110088
1124 => 0.0074761043848647
1125 => 0.0072701852376477
1126 => 0.0068453152190426
1127 => 0.0068477199372071
1128 => 0.0067823629411412
1129 => 0.0067258849542626
1130 => 0.0074342658248991
1201 => 0.007346167465791
1202 => 0.0072057942605806
1203 => 0.0073936893739642
1204 => 0.0074433718242393
1205 => 0.0074447862137533
1206 => 0.0075818696382032
1207 => 0.0076550310864056
1208 => 0.0076679261087512
1209 => 0.0078836298390065
1210 => 0.0079559308841871
1211 => 0.0082537286568589
1212 => 0.0076488238486763
1213 => 0.0076363662322204
1214 => 0.0073963334435343
1215 => 0.0072441008541813
1216 => 0.007406756939168
1217 => 0.0075508480256963
1218 => 0.0074008107552451
1219 => 0.0074204024553064
1220 => 0.007218989678221
1221 => 0.007290985268677
1222 => 0.0073529975700311
1223 => 0.007318758022138
1224 => 0.0072674997617291
1225 => 0.0075390341997941
1226 => 0.0075237131626464
1227 => 0.0077765722739223
1228 => 0.0079736940332904
1229 => 0.0083269714658073
1230 => 0.0079583080482068
1231 => 0.0079448724879651
]
'min_raw' => 0.0067258849542626
'max_raw' => 0.019446511386797
'avg_raw' => 0.01308619817053
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006725'
'max' => '$0.019446'
'avg' => '$0.013086'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0011826669920209
'max_diff' => -0.0065690414787824
'year' => 2030
]
5 => [
'items' => [
101 => 0.0080762072444596
102 => 0.0079559107775201
103 => 0.008031933992133
104 => 0.0083147229506189
105 => 0.0083206978356987
106 => 0.0082206108124074
107 => 0.0082145205079442
108 => 0.0082337433155994
109 => 0.0083463319004491
110 => 0.0083069899894048
111 => 0.0083525174448805
112 => 0.0084094502250941
113 => 0.0086449483430558
114 => 0.0087017261420213
115 => 0.0085637855264488
116 => 0.0085762400195794
117 => 0.0085246464428008
118 => 0.0084748076940982
119 => 0.0085868379228169
120 => 0.0087915753677599
121 => 0.0087903017067408
122 => 0.0088377968144403
123 => 0.0088673858730664
124 => 0.0087403679729285
125 => 0.0086576839905163
126 => 0.0086893902906916
127 => 0.0087400893551453
128 => 0.0086729492673942
129 => 0.00825852954348
130 => 0.0083842380144811
131 => 0.0083633139780763
201 => 0.0083335156057862
202 => 0.0084599164454526
203 => 0.0084477247761099
204 => 0.0080825369463893
205 => 0.008105915086399
206 => 0.0080839586485141
207 => 0.0081549043911847
208 => 0.0079520794745918
209 => 0.0080144670528891
210 => 0.00805359595715
211 => 0.008076643182362
212 => 0.0081599055634582
213 => 0.0081501356840474
214 => 0.0081592982540365
215 => 0.0082827543847485
216 => 0.0089071531288618
217 => 0.0089411377748457
218 => 0.0087737849487206
219 => 0.008840639101869
220 => 0.0087122937472202
221 => 0.0087984528436351
222 => 0.0088574007091984
223 => 0.0085910266397404
224 => 0.0085752536961005
225 => 0.008446378614518
226 => 0.0085156287835027
227 => 0.0084054467853847
228 => 0.0084324815937201
301 => 0.0083568899127619
302 => 0.0084929398883332
303 => 0.0086450649010508
304 => 0.008683497686862
305 => 0.0085823975737472
306 => 0.00850919442903
307 => 0.0083806738215215
308 => 0.0085944064560767
309 => 0.0086569083918046
310 => 0.0085940781600162
311 => 0.0085795190224431
312 => 0.00855192948305
313 => 0.0085853722736495
314 => 0.0086565679928397
315 => 0.0086229934064481
316 => 0.0086451700122678
317 => 0.0085606556592997
318 => 0.0087404100211386
319 => 0.0090259032079818
320 => 0.0090268211152603
321 => 0.0089932463478892
322 => 0.0089795082764594
323 => 0.0090139580252694
324 => 0.0090326456007962
325 => 0.0091440497714442
326 => 0.0092635908850874
327 => 0.0098214371025865
328 => 0.0096647961169705
329 => 0.010159750467556
330 => 0.01055119509709
331 => 0.010668572225688
401 => 0.010560590790398
402 => 0.010191192133315
403 => 0.010173067672889
404 => 0.010725105222662
405 => 0.01056912932993
406 => 0.0105505764938
407 => 0.010353205662895
408 => 0.010469876268813
409 => 0.010444358695844
410 => 0.010404077958551
411 => 0.010626677347297
412 => 0.011043363531445
413 => 0.010978419081988
414 => 0.010929941063154
415 => 0.010717524496362
416 => 0.010845446714529
417 => 0.010799896062828
418 => 0.01099561056969
419 => 0.010879673631432
420 => 0.010567947659136
421 => 0.010617591047686
422 => 0.010610087549375
423 => 0.010764509012907
424 => 0.010718155522531
425 => 0.010601036286432
426 => 0.011041939343368
427 => 0.011013309551282
428 => 0.011053900050778
429 => 0.011071769243959
430 => 0.011340139165132
501 => 0.011450081734957
502 => 0.011475040623123
503 => 0.011579477561193
504 => 0.011472442136964
505 => 0.011900660148845
506 => 0.012185400139532
507 => 0.012516140291301
508 => 0.012999440547608
509 => 0.013181165914757
510 => 0.013148338853742
511 => 0.013514771592245
512 => 0.014173243077991
513 => 0.013281434767432
514 => 0.01422051108393
515 => 0.013923210364284
516 => 0.013218315706215
517 => 0.013172928800398
518 => 0.013650291646837
519 => 0.014709036495769
520 => 0.014443832919297
521 => 0.014709470273814
522 => 0.014399590189611
523 => 0.014384202031555
524 => 0.014694420089789
525 => 0.015419261491959
526 => 0.015074916512062
527 => 0.014581213546526
528 => 0.014945756133409
529 => 0.014629955607827
530 => 0.013918368636691
531 => 0.01444363012312
601 => 0.014092402725731
602 => 0.014194909552564
603 => 0.014933137300743
604 => 0.014844311784974
605 => 0.014959260227401
606 => 0.014756379235242
607 => 0.01456685639717
608 => 0.014213097945758
609 => 0.014108367508375
610 => 0.014137311233461
611 => 0.014108353165302
612 => 0.013910428562945
613 => 0.013867686763911
614 => 0.013796448559625
615 => 0.013818528257936
616 => 0.013684579592408
617 => 0.013937368399466
618 => 0.013984288229623
619 => 0.014168246842563
620 => 0.014187346036018
621 => 0.014699668154568
622 => 0.014417489740894
623 => 0.014606799382899
624 => 0.014589865746666
625 => 0.013233592910883
626 => 0.013420475341158
627 => 0.013711205755727
628 => 0.013580232098039
629 => 0.013395065989185
630 => 0.013245534428306
701 => 0.013018978823187
702 => 0.013337851486777
703 => 0.013757135131069
704 => 0.01419797976116
705 => 0.01472762569893
706 => 0.014609414891378
707 => 0.014188078398768
708 => 0.01420697924604
709 => 0.014323816846666
710 => 0.014172501538039
711 => 0.0141278756995
712 => 0.014317685941727
713 => 0.014318993060547
714 => 0.014144886510907
715 => 0.013951398942143
716 => 0.013950588222165
717 => 0.013916158978172
718 => 0.014405715075632
719 => 0.014674921429531
720 => 0.014705785504157
721 => 0.014672844031396
722 => 0.014685521896862
723 => 0.014528876651085
724 => 0.014886921231226
725 => 0.015215498344901
726 => 0.01512743265941
727 => 0.014995409677584
728 => 0.014890247013471
729 => 0.015102659677863
730 => 0.015093201276286
731 => 0.015212628510458
801 => 0.015207210601271
802 => 0.015167051714304
803 => 0.01512743409361
804 => 0.015284513481488
805 => 0.015239277140397
806 => 0.015193970534774
807 => 0.015103101201102
808 => 0.015115451852728
809 => 0.014983451666531
810 => 0.014922382340478
811 => 0.014004046202453
812 => 0.013758636778874
813 => 0.013835847579301
814 => 0.01386126737958
815 => 0.013754464883937
816 => 0.013907592227378
817 => 0.013883727493105
818 => 0.01397657121376
819 => 0.013918566487901
820 => 0.013920947022083
821 => 0.014091526552924
822 => 0.014141046516424
823 => 0.014115860263313
824 => 0.014133499851658
825 => 0.014539996719863
826 => 0.014482205864243
827 => 0.014451505624008
828 => 0.014460009800362
829 => 0.01456387846558
830 => 0.014592956020822
831 => 0.014469752376018
901 => 0.014527855927139
902 => 0.014775253473376
903 => 0.01486182861307
904 => 0.01513813490055
905 => 0.015020755078676
906 => 0.015236210821806
907 => 0.015898448321911
908 => 0.016427489460344
909 => 0.015940961365891
910 => 0.016912478043641
911 => 0.017668943133059
912 => 0.017639908742969
913 => 0.017508001557276
914 => 0.016646786164638
915 => 0.015854282920334
916 => 0.01651724553566
917 => 0.016518935563706
918 => 0.016461986487097
919 => 0.016108280663307
920 => 0.016449678291131
921 => 0.016476777195053
922 => 0.016461609015037
923 => 0.016190423589244
924 => 0.015776373567503
925 => 0.015857277950656
926 => 0.015989800980664
927 => 0.015738907237658
928 => 0.015658731484579
929 => 0.015807793463613
930 => 0.016288102218358
1001 => 0.016197302630512
1002 => 0.016194931486324
1003 => 0.016583410628143
1004 => 0.016305343401646
1005 => 0.015858298414019
1006 => 0.015745413658844
1007 => 0.015344748826256
1008 => 0.015621489453243
1009 => 0.015631448855737
1010 => 0.015479880842556
1011 => 0.015870597322949
1012 => 0.015866996801798
1013 => 0.016237923949458
1014 => 0.016946997341909
1015 => 0.016737289448379
1016 => 0.016493421984357
1017 => 0.016519937139407
1018 => 0.016810742945332
1019 => 0.016634915116619
1020 => 0.016698144029739
1021 => 0.016810647240799
1022 => 0.016878523221329
1023 => 0.016510170830361
1024 => 0.016424290267695
1025 => 0.016248608776461
1026 => 0.016202776754649
1027 => 0.016345865663544
1028 => 0.016308166791456
1029 => 0.015630611806522
1030 => 0.015559803540716
1031 => 0.015561975129137
1101 => 0.015383924378019
1102 => 0.015112354245486
1103 => 0.015826024339172
1104 => 0.015768706642842
1105 => 0.015705432342132
1106 => 0.015713183082931
1107 => 0.016022963082076
1108 => 0.015843275038307
1109 => 0.016321005152958
1110 => 0.016222798203267
1111 => 0.016122072615886
1112 => 0.016108149271533
1113 => 0.016069378513895
1114 => 0.015936419159989
1115 => 0.015775862750529
1116 => 0.015669849501845
1117 => 0.014454607860341
1118 => 0.014680149640269
1119 => 0.014939614899296
1120 => 0.01502918126697
1121 => 0.014875971797259
1122 => 0.015942468803676
1123 => 0.016137328083769
1124 => 0.01554708661401
1125 => 0.015436676534419
1126 => 0.015949707270112
1127 => 0.015640287021032
1128 => 0.015779618940247
1129 => 0.01547845954139
1130 => 0.01609039218934
1201 => 0.01608573028783
1202 => 0.015847674666652
1203 => 0.016048877647537
1204 => 0.016013913678246
1205 => 0.015745149468241
1206 => 0.016098912494183
1207 => 0.016099087956231
1208 => 0.015869964596622
1209 => 0.015602398674152
1210 => 0.01555456420684
1211 => 0.015518527361376
1212 => 0.015770756085362
1213 => 0.015996903570589
1214 => 0.01641770797388
1215 => 0.016523508198933
1216 => 0.016936453520836
1217 => 0.016690564687586
1218 => 0.016799564022572
1219 => 0.016917898219597
1220 => 0.016974631985247
1221 => 0.016882187358623
1222 => 0.017523661418614
1223 => 0.017577821483534
1224 => 0.017595980884819
1225 => 0.017379679441004
1226 => 0.017571805749095
1227 => 0.017481916212094
1228 => 0.017715783815339
1229 => 0.0177524572417
1230 => 0.017721396154267
1231 => 0.017733036878645
]
'min_raw' => 0.0079520794745918
'max_raw' => 0.0177524572417
'avg_raw' => 0.012852268358146
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007952'
'max' => '$0.017752'
'avg' => '$0.012852'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012261945203292
'max_diff' => -0.0016940541450975
'year' => 2031
]
6 => [
'items' => [
101 => 0.017185651932221
102 => 0.017157267135063
103 => 0.016770238411725
104 => 0.016927955477257
105 => 0.01663311098282
106 => 0.016726609209241
107 => 0.016767822336563
108 => 0.016746294937674
109 => 0.016936872563505
110 => 0.016774842649112
111 => 0.016347219064845
112 => 0.015919478974817
113 => 0.015914109046416
114 => 0.015801492630952
115 => 0.015720091589296
116 => 0.015735772317776
117 => 0.015791033250209
118 => 0.015716879723445
119 => 0.015732704138059
120 => 0.015995494858183
121 => 0.016048195662966
122 => 0.015869097736779
123 => 0.015149993719432
124 => 0.014973523789839
125 => 0.01510036687568
126 => 0.015039744050389
127 => 0.01213824725256
128 => 0.0128199108867
129 => 0.012414889502404
130 => 0.012601541990425
131 => 0.012188120036838
201 => 0.012385426662391
202 => 0.012348991333135
203 => 0.013445086284939
204 => 0.013427972269895
205 => 0.013436163843243
206 => 0.013045158704331
207 => 0.013668040507564
208 => 0.013974894481942
209 => 0.013918103977939
210 => 0.013932396924293
211 => 0.01368679675113
212 => 0.013438541789775
213 => 0.013163188831466
214 => 0.013674760593349
215 => 0.013617882546249
216 => 0.013748340322221
217 => 0.014080131177707
218 => 0.014128988641528
219 => 0.014194653568367
220 => 0.014171117366443
221 => 0.014731845183316
222 => 0.014663937344891
223 => 0.014827575697076
224 => 0.01449095919136
225 => 0.014110045663211
226 => 0.014182444871911
227 => 0.014175472245915
228 => 0.014086702714186
229 => 0.014006565550094
301 => 0.013873159750387
302 => 0.014295275441003
303 => 0.014278138314837
304 => 0.014555568467722
305 => 0.014506529993387
306 => 0.014179039060027
307 => 0.01419073546278
308 => 0.014269399392393
309 => 0.014541656150952
310 => 0.014622480493546
311 => 0.014585039437763
312 => 0.014673659639646
313 => 0.014743701433878
314 => 0.014682455810619
315 => 0.015549564680371
316 => 0.01518948062303
317 => 0.015364983087129
318 => 0.015406839390696
319 => 0.015299625349253
320 => 0.015322876235795
321 => 0.015358094993419
322 => 0.015571936393172
323 => 0.016133118101632
324 => 0.016381661660216
325 => 0.017129417219139
326 => 0.016361023577569
327 => 0.016315430278807
328 => 0.016450123635024
329 => 0.016889135306076
330 => 0.017244913031194
331 => 0.017362945027925
401 => 0.017378544904789
402 => 0.017599980777275
403 => 0.01772690368985
404 => 0.017573092638014
405 => 0.017442753876271
406 => 0.016975896609952
407 => 0.017029936609738
408 => 0.017402218619379
409 => 0.017928088885297
410 => 0.018379340280931
411 => 0.018221327769879
412 => 0.019426851689758
413 => 0.01954637446229
414 => 0.01952986027976
415 => 0.019802150942962
416 => 0.019261709427535
417 => 0.019030660209129
418 => 0.017470934595968
419 => 0.017909153872885
420 => 0.0185461313276
421 => 0.018461824972926
422 => 0.017999234918856
423 => 0.018378989364894
424 => 0.018253430669014
425 => 0.018154397316139
426 => 0.018608088304221
427 => 0.018109236426226
428 => 0.018541154898515
429 => 0.017987214990179
430 => 0.018222049557719
501 => 0.018088746099514
502 => 0.01817500977403
503 => 0.017670714095464
504 => 0.017942819802533
505 => 0.017659393603449
506 => 0.017659259222527
507 => 0.017653002573474
508 => 0.017986452239791
509 => 0.017997326021439
510 => 0.017750906214216
511 => 0.017715393270194
512 => 0.01784670323733
513 => 0.017692973655949
514 => 0.017764902759514
515 => 0.01769515231522
516 => 0.01767945002104
517 => 0.017554331469491
518 => 0.017500426957278
519 => 0.017521564305465
520 => 0.017449411639052
521 => 0.017405937047663
522 => 0.017644354383007
523 => 0.01751697761846
524 => 0.017624832067
525 => 0.017501918310572
526 => 0.01707584567982
527 => 0.016830806804238
528 => 0.0160259951017
529 => 0.016254238702173
530 => 0.016405564445423
531 => 0.016355551288182
601 => 0.016462998902458
602 => 0.016469595313322
603 => 0.016434662998621
604 => 0.016394215853305
605 => 0.016374528419833
606 => 0.016521262419325
607 => 0.016606446444869
608 => 0.016420752008235
609 => 0.016377246399873
610 => 0.016564993727781
611 => 0.016679519489346
612 => 0.01752511336628
613 => 0.017462469040645
614 => 0.017619694004662
615 => 0.017601992886527
616 => 0.017766789696718
617 => 0.018036162833052
618 => 0.017488451928972
619 => 0.017583515603502
620 => 0.017560208185848
621 => 0.017814672460261
622 => 0.01781546686995
623 => 0.017662902826006
624 => 0.017745610269297
625 => 0.017699445243412
626 => 0.017782871684764
627 => 0.017461632387484
628 => 0.017852867175932
629 => 0.018074672090369
630 => 0.018077751851821
701 => 0.018182885620911
702 => 0.018289707619245
703 => 0.01849474314281
704 => 0.018283989289776
705 => 0.017904863624641
706 => 0.017932235273095
707 => 0.017709954034343
708 => 0.017713690622125
709 => 0.017693744423704
710 => 0.017753604466645
711 => 0.017474768300687
712 => 0.017540210591507
713 => 0.017448591001129
714 => 0.017583316440406
715 => 0.017438374138657
716 => 0.017560196946306
717 => 0.017612771631597
718 => 0.017806773352173
719 => 0.01740971992679
720 => 0.016600101114279
721 => 0.016770292804348
722 => 0.016518565926468
723 => 0.016541864207407
724 => 0.016588930442799
725 => 0.01643637337478
726 => 0.016465476455732
727 => 0.016464436688885
728 => 0.016455476539927
729 => 0.016415790554501
730 => 0.016358238024001
731 => 0.016587509591778
801 => 0.016626467298793
802 => 0.016713065455648
803 => 0.016970722830359
804 => 0.016944976782646
805 => 0.016986969654659
806 => 0.016895299450834
807 => 0.016546116525246
808 => 0.016565078838075
809 => 0.016328618493245
810 => 0.016707018632995
811 => 0.016617408485265
812 => 0.016559636240074
813 => 0.016543872547718
814 => 0.016802168605224
815 => 0.016879454833924
816 => 0.016831295242684
817 => 0.016732518516011
818 => 0.016922199031941
819 => 0.016972949536026
820 => 0.016984310702284
821 => 0.017320388208882
822 => 0.017003093701547
823 => 0.017079469643099
824 => 0.01767533293661
825 => 0.017134967152909
826 => 0.017421210960131
827 => 0.017407200815308
828 => 0.01755363346112
829 => 0.017395189064303
830 => 0.017397153172495
831 => 0.01752717544177
901 => 0.017344582614213
902 => 0.017299370062302
903 => 0.017236909245654
904 => 0.017373290153721
905 => 0.017455044340129
906 => 0.018113923040744
907 => 0.01853958872986
908 => 0.018521109459682
909 => 0.018689975397364
910 => 0.018613899745804
911 => 0.018368231399172
912 => 0.018787557310809
913 => 0.018654865047026
914 => 0.018665804036031
915 => 0.018665396886314
916 => 0.018753625641571
917 => 0.018691107482424
918 => 0.01856787777339
919 => 0.018649683405137
920 => 0.018892616885376
921 => 0.019646689862149
922 => 0.020068679090089
923 => 0.019621285580761
924 => 0.019929891632658
925 => 0.0197448379691
926 => 0.019711208213561
927 => 0.01990503561996
928 => 0.020099202295576
929 => 0.020086834717744
930 => 0.019945879681817
1001 => 0.019866257758623
1002 => 0.020469181636348
1003 => 0.020913405678916
1004 => 0.020883112577328
1005 => 0.02101681647589
1006 => 0.021409375257375
1007 => 0.021445265912647
1008 => 0.02144074451502
1009 => 0.021351785781125
1010 => 0.021738310881696
1011 => 0.022060756920854
1012 => 0.021331194404494
1013 => 0.021609002260049
1014 => 0.021733719156818
1015 => 0.021916840563111
1016 => 0.022225797070238
1017 => 0.022561405783644
1018 => 0.022608864535482
1019 => 0.022575190279942
1020 => 0.022353847311805
1021 => 0.022721074370658
1022 => 0.0229361873692
1023 => 0.023064282237059
1024 => 0.023389109508994
1025 => 0.021734489365914
1026 => 0.020563266988685
1027 => 0.020380363701824
1028 => 0.020752304727971
1029 => 0.020850382610392
1030 => 0.020810847538968
1031 => 0.019492530270516
1101 => 0.020373423034238
1102 => 0.021321189580435
1103 => 0.021357597153375
1104 => 0.021832068903265
1105 => 0.021986576354283
1106 => 0.022368588303379
1107 => 0.022344693351952
1108 => 0.022437707182419
1109 => 0.02241632491357
1110 => 0.023123921607163
1111 => 0.023904505839322
1112 => 0.023877476689468
1113 => 0.023765258470642
1114 => 0.023931921661648
1115 => 0.024737568241726
1116 => 0.024663397214856
1117 => 0.024735448049587
1118 => 0.025685350771751
1119 => 0.02692035943265
1120 => 0.02634657391682
1121 => 0.027591523383837
1122 => 0.028375153081388
1123 => 0.02973035961448
1124 => 0.029560681082004
1125 => 0.030088253040371
1126 => 0.029256921095893
1127 => 0.027348014911465
1128 => 0.02704592320078
1129 => 0.027650718455752
1130 => 0.029137548575043
1201 => 0.027603892884117
1202 => 0.027914149432954
1203 => 0.027824795526017
1204 => 0.027820034236045
1205 => 0.028001753308674
1206 => 0.027738160315997
1207 => 0.026664235044359
1208 => 0.027156408667669
1209 => 0.026966356795591
1210 => 0.027177233516968
1211 => 0.028315248210064
1212 => 0.027812104787364
1213 => 0.027282084063603
1214 => 0.027946847672214
1215 => 0.028793320183536
1216 => 0.028740349455035
1217 => 0.028637564101696
1218 => 0.029216959756802
1219 => 0.030173951632039
1220 => 0.030432622690411
1221 => 0.030623568377404
1222 => 0.030649896561587
1223 => 0.030921093221542
1224 => 0.029462800430604
1225 => 0.031777148541438
1226 => 0.032176772527603
1227 => 0.032101659780921
1228 => 0.032545825022795
1229 => 0.032415140341251
1230 => 0.032225798741492
1231 => 0.032929895126519
]
'min_raw' => 0.01213824725256
'max_raw' => 0.032929895126519
'avg_raw' => 0.022534071189539
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012138'
'max' => '$0.032929'
'avg' => '$0.022534'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0041861677779681
'max_diff' => 0.015177437884819
'year' => 2032
]
7 => [
'items' => [
101 => 0.032122705438734
102 => 0.03097700129928
103 => 0.030348445348917
104 => 0.031176178528517
105 => 0.031681646297392
106 => 0.03201572833883
107 => 0.032116821362712
108 => 0.029576003548737
109 => 0.028206643667221
110 => 0.02908438765153
111 => 0.030155295891041
112 => 0.029456851481262
113 => 0.029484229179795
114 => 0.028488430999413
115 => 0.030243401934033
116 => 0.029987717430488
117 => 0.031314209087179
118 => 0.030997631207549
119 => 0.032079333659471
120 => 0.031794485152083
121 => 0.032976875380585
122 => 0.033448562854672
123 => 0.034240599535957
124 => 0.03482322494288
125 => 0.035165353725673
126 => 0.035144813596847
127 => 0.036500498282156
128 => 0.035701098387244
129 => 0.034696863715146
130 => 0.034678700278248
131 => 0.035198807645043
201 => 0.036288810001357
202 => 0.03657143175346
203 => 0.036729378756917
204 => 0.036487477422948
205 => 0.035619786130528
206 => 0.035245121429756
207 => 0.035564346609895
208 => 0.035173961645917
209 => 0.035847875616418
210 => 0.036773303438172
211 => 0.036582206252518
212 => 0.037221015493268
213 => 0.037882115852753
214 => 0.03882751905869
215 => 0.039074682464902
216 => 0.039483234176587
217 => 0.039903768090157
218 => 0.040038832249489
219 => 0.0402967116376
220 => 0.040295352485932
221 => 0.041072489379292
222 => 0.041929695438595
223 => 0.042253270881615
224 => 0.042997314770788
225 => 0.041723165684988
226 => 0.042689622402937
227 => 0.043561390554507
228 => 0.042522032625423
301 => 0.043954545391327
302 => 0.044010166615884
303 => 0.044849981070125
304 => 0.043998668231769
305 => 0.043493161385841
306 => 0.044952540708943
307 => 0.045658688393374
308 => 0.045445990964003
309 => 0.043827353024321
310 => 0.042885236316779
311 => 0.040419535172402
312 => 0.04334026468828
313 => 0.044762866836616
314 => 0.043823668828432
315 => 0.044297345673875
316 => 0.046881572952374
317 => 0.047865479383702
318 => 0.047660833724011
319 => 0.047695415471744
320 => 0.048226313522923
321 => 0.050580607852749
322 => 0.049169860118202
323 => 0.050248323901554
324 => 0.050820337203554
325 => 0.051351655037099
326 => 0.050046906362638
327 => 0.04834944750773
328 => 0.047811791033906
329 => 0.043730284096088
330 => 0.043517823934889
331 => 0.043398563608205
401 => 0.042646644118177
402 => 0.042055841367096
403 => 0.041586013084337
404 => 0.040353043367776
405 => 0.040769134452909
406 => 0.03880403806549
407 => 0.040061237095421
408 => 0.036924895812188
409 => 0.039536934029749
410 => 0.038115320382735
411 => 0.039069895712529
412 => 0.039066565289129
413 => 0.037308889458596
414 => 0.036295098721303
415 => 0.036941125636432
416 => 0.03763371777113
417 => 0.037746088514825
418 => 0.038644052295966
419 => 0.038894654685616
420 => 0.038135317745471
421 => 0.036859902110278
422 => 0.0371561520732
423 => 0.03628909522526
424 => 0.034769611450105
425 => 0.035860931225063
426 => 0.036233555778176
427 => 0.036398128008784
428 => 0.03490389022981
429 => 0.034434368278176
430 => 0.034184398730797
501 => 0.036667014776847
502 => 0.036803018088038
503 => 0.036107205919052
504 => 0.039252342902486
505 => 0.038540501538342
506 => 0.039335802747459
507 => 0.03712927049421
508 => 0.037213562997773
509 => 0.036168955267837
510 => 0.036753865795888
511 => 0.036340469887208
512 => 0.03670661080542
513 => 0.03692607416214
514 => 0.037970510482227
515 => 0.039548859814823
516 => 0.037814506524888
517 => 0.037058823960067
518 => 0.037527645173162
519 => 0.038776177844171
520 => 0.040667768751962
521 => 0.039547908862735
522 => 0.04004488366512
523 => 0.040153450550571
524 => 0.039327707327721
525 => 0.040698215082416
526 => 0.041432681322142
527 => 0.042186091707727
528 => 0.042840256835451
529 => 0.041885163031875
530 => 0.04290725030902
531 => 0.042083628386333
601 => 0.041344754377214
602 => 0.041345874944092
603 => 0.040882368484944
604 => 0.039984266314774
605 => 0.039818642495235
606 => 0.040680238520458
607 => 0.041371156939241
608 => 0.041428064289488
609 => 0.041810592226796
610 => 0.042036968319743
611 => 0.044255761774006
612 => 0.045148178856133
613 => 0.046239409571567
614 => 0.046664505433621
615 => 0.047943891573105
616 => 0.04691068335881
617 => 0.046687142262463
618 => 0.043583769972093
619 => 0.044091947010787
620 => 0.044905587481527
621 => 0.043597186603773
622 => 0.04442706580834
623 => 0.044590901542566
624 => 0.043552727642613
625 => 0.044107261179424
626 => 0.042634584513389
627 => 0.039580960141782
628 => 0.040701614639266
629 => 0.04152679355764
630 => 0.040349161497294
701 => 0.04246002138481
702 => 0.041226900615516
703 => 0.040836060531885
704 => 0.039311254021092
705 => 0.040030903999002
706 => 0.041004240898519
707 => 0.040402831857177
708 => 0.041650845919984
709 => 0.043418366666111
710 => 0.044678007207481
711 => 0.044774706767229
712 => 0.04396484228849
713 => 0.045262655284155
714 => 0.045272108434974
715 => 0.043808170074142
716 => 0.042911515979374
717 => 0.042707794282467
718 => 0.043216731023333
719 => 0.04383467418165
720 => 0.04480899831185
721 => 0.045397761977932
722 => 0.046932945362953
723 => 0.047348321969783
724 => 0.04780469492637
725 => 0.048414549936579
726 => 0.049146837239949
727 => 0.047544634309314
728 => 0.047608292818628
729 => 0.04611634363363
730 => 0.044521981962304
731 => 0.045731903730852
801 => 0.047313715494082
802 => 0.04695084612785
803 => 0.046910015911401
804 => 0.046978681010111
805 => 0.046705089358178
806 => 0.045467644456265
807 => 0.044846207373339
808 => 0.045648019755822
809 => 0.046074147352548
810 => 0.046735034092838
811 => 0.046653565852471
812 => 0.048355939121404
813 => 0.049017429896616
814 => 0.048848192249531
815 => 0.048879336049526
816 => 0.05007693350113
817 => 0.051408908172014
818 => 0.052656478220836
819 => 0.053925560058877
820 => 0.052395632370011
821 => 0.051618829442426
822 => 0.052420291778706
823 => 0.051995024581677
824 => 0.05443873603825
825 => 0.054607933317457
826 => 0.057051468065877
827 => 0.059370673512833
828 => 0.057914022124482
829 => 0.059287578774678
830 => 0.060773192279582
831 => 0.063639181762646
901 => 0.062674017331476
902 => 0.061934716503254
903 => 0.06123608079286
904 => 0.062689830800894
905 => 0.064560056962006
906 => 0.064962885764306
907 => 0.065615622316478
908 => 0.064929349644697
909 => 0.065755889487402
910 => 0.068673938332161
911 => 0.067885455775978
912 => 0.066765683791301
913 => 0.069069203101848
914 => 0.06990283778563
915 => 0.075753722574288
916 => 0.083140706307965
917 => 0.080082446536672
918 => 0.078184086007205
919 => 0.078630245761344
920 => 0.081327722155702
921 => 0.082194065959949
922 => 0.079839044853389
923 => 0.080670878121353
924 => 0.085254361211877
925 => 0.087713252834199
926 => 0.084373747737882
927 => 0.075160185623833
928 => 0.066664860575771
929 => 0.06891820332799
930 => 0.068662744189255
1001 => 0.073587124968863
1002 => 0.067866650727781
1003 => 0.067962968843027
1004 => 0.072989180602147
1005 => 0.071648273475898
1006 => 0.069476175661784
1007 => 0.066680719293602
1008 => 0.0615130596486
1009 => 0.056935919390172
1010 => 0.065912745489397
1011 => 0.0655256484247
1012 => 0.064965074510447
1013 => 0.066212571096184
1014 => 0.072270060408441
1015 => 0.072130415673614
1016 => 0.071242067118014
1017 => 0.071915871667891
1018 => 0.069358054466393
1019 => 0.070017262199634
1020 => 0.06666351487288
1021 => 0.068179548729433
1022 => 0.069471515315413
1023 => 0.069730896735441
1024 => 0.070315296319107
1025 => 0.065321665861431
1026 => 0.06756365933164
1027 => 0.068880620449008
1028 => 0.062930542209282
1029 => 0.068763006533169
1030 => 0.065234737864988
1031 => 0.06403719048619
1101 => 0.065649530266871
1102 => 0.065021199886288
1103 => 0.06448099832186
1104 => 0.064179556567068
1105 => 0.065363480954553
1106 => 0.065308249466781
1107 => 0.063371119379035
1108 => 0.060844212147095
1109 => 0.061692325157036
1110 => 0.061384197749423
1111 => 0.060267504275004
1112 => 0.061020020846678
1113 => 0.057706318704948
1114 => 0.05200526640135
1115 => 0.055771556181061
1116 => 0.055626558121477
1117 => 0.055553443524697
1118 => 0.058383706201546
1119 => 0.058111641750436
1120 => 0.05761784210761
1121 => 0.060258435257321
1122 => 0.059294583236687
1123 => 0.062264948052185
1124 => 0.064221422430823
1125 => 0.063725197243084
1126 => 0.065565270852655
1127 => 0.061711863967838
1128 => 0.062991811163124
1129 => 0.063255606506142
1130 => 0.060225850747742
1201 => 0.058156154859316
1202 => 0.058018129739818
1203 => 0.054429562290949
1204 => 0.056346546056231
1205 => 0.0580334124395
1206 => 0.057225534348033
1207 => 0.056969784278947
1208 => 0.058276355916489
1209 => 0.058377887722756
1210 => 0.056062951780024
1211 => 0.056544300267005
1212 => 0.058551603475244
1213 => 0.056493721376367
1214 => 0.05249559261138
1215 => 0.051504001399209
1216 => 0.051371704852853
1217 => 0.048682430841353
1218 => 0.051570264265484
1219 => 0.050309647586726
1220 => 0.054291920570414
1221 => 0.05201726759949
1222 => 0.051919211856205
1223 => 0.051770986218579
1224 => 0.049456216984371
1225 => 0.049963004335403
1226 => 0.051647642676128
1227 => 0.052248740614908
1228 => 0.052186041175243
1229 => 0.051639387029207
1230 => 0.05188964249794
1231 => 0.051083482438366
]
'min_raw' => 0.028206643667221
'max_raw' => 0.087713252834199
'avg_raw' => 0.05795994825071
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0282066'
'max' => '$0.087713'
'avg' => '$0.057959'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016068396414662
'max_diff' => 0.05478335770768
'year' => 2033
]
8 => [
'items' => [
101 => 0.05079881054256
102 => 0.049900307734221
103 => 0.048579756823699
104 => 0.048763387527217
105 => 0.046147030632532
106 => 0.044721500535737
107 => 0.044326932593129
108 => 0.043799299850144
109 => 0.044386530115426
110 => 0.046139618822177
111 => 0.044025021903319
112 => 0.040399693807664
113 => 0.040617582203471
114 => 0.041107112737205
115 => 0.040194875826161
116 => 0.039331520148098
117 => 0.040082137863913
118 => 0.038546038557929
119 => 0.041292742999532
120 => 0.041218452341937
121 => 0.042242253902704
122 => 0.042882458029174
123 => 0.041406994786207
124 => 0.041035919770678
125 => 0.041247300963943
126 => 0.037753640696705
127 => 0.041956747323872
128 => 0.041993095964521
129 => 0.04168185683538
130 => 0.043919881357988
131 => 0.048642811158045
201 => 0.046865854987853
202 => 0.046177763849969
203 => 0.044869702093862
204 => 0.046612616718853
205 => 0.046478788069358
206 => 0.04587356416333
207 => 0.045507522856551
208 => 0.046181965187731
209 => 0.045423951987995
210 => 0.045287791988513
211 => 0.044462810535191
212 => 0.04416832969062
213 => 0.043950307796919
214 => 0.043710287114344
215 => 0.044239712930678
216 => 0.043039964379099
217 => 0.041593185238696
218 => 0.041472901207539
219 => 0.041805015993044
220 => 0.041658079923496
221 => 0.041472197734168
222 => 0.041117298012739
223 => 0.041012006846624
224 => 0.041354152056487
225 => 0.040967890062857
226 => 0.041537840675237
227 => 0.041382845645475
228 => 0.040517056008714
301 => 0.03943796156493
302 => 0.039428355360903
303 => 0.039195866233059
304 => 0.038899756373776
305 => 0.038817385384999
306 => 0.040018922933531
307 => 0.042506069699998
308 => 0.042017783277362
309 => 0.042370620259322
310 => 0.044106228994967
311 => 0.044657926820453
312 => 0.044266344771602
313 => 0.043730323111406
314 => 0.043753905344099
315 => 0.045585653621779
316 => 0.04569989751499
317 => 0.045988554976656
318 => 0.046359561389487
319 => 0.044329528767984
320 => 0.043658290990184
321 => 0.043340221292208
322 => 0.042360689730907
323 => 0.043417030541081
324 => 0.042801545988016
325 => 0.042884595882171
326 => 0.042830509529652
327 => 0.04286004433543
328 => 0.041291975239663
329 => 0.041863297202875
330 => 0.040913363629318
331 => 0.039641509209372
401 => 0.039637245507387
402 => 0.039948530074834
403 => 0.03976336583355
404 => 0.039265093621263
405 => 0.03933587083724
406 => 0.038715787949997
407 => 0.039411160126715
408 => 0.039431100912582
409 => 0.039163344747367
410 => 0.040234661528469
411 => 0.040673580887798
412 => 0.04049733804396
413 => 0.040661215220047
414 => 0.042038073782704
415 => 0.042262561804968
416 => 0.042362264555611
417 => 0.042228676077832
418 => 0.040686381667037
419 => 0.040754788982498
420 => 0.040252861490612
421 => 0.039828785651785
422 => 0.039845746461353
423 => 0.04006377656851
424 => 0.041015926833764
425 => 0.043019670934666
426 => 0.043095711558578
427 => 0.04318787501302
428 => 0.042812999926163
429 => 0.042699934012896
430 => 0.042849097137284
501 => 0.043601598069723
502 => 0.045537234769967
503 => 0.044853051483272
504 => 0.044296799821242
505 => 0.044784782493214
506 => 0.044709661385798
507 => 0.044075563640002
508 => 0.044057766628205
509 => 0.042840730320709
510 => 0.042390819708404
511 => 0.042014840725536
512 => 0.041604281491424
513 => 0.041360888215372
514 => 0.041734850907653
515 => 0.041820380599974
516 => 0.041002704637552
517 => 0.040891258425291
518 => 0.041558990266966
519 => 0.041265146378997
520 => 0.041567372104751
521 => 0.04163749106557
522 => 0.041626200297901
523 => 0.041319393531106
524 => 0.041514943015152
525 => 0.041052410189277
526 => 0.040549475211321
527 => 0.040228634029342
528 => 0.039948657544658
529 => 0.040104004770689
530 => 0.03955022027517
531 => 0.039373053469573
601 => 0.04144869524996
602 => 0.042981994150041
603 => 0.042959699376781
604 => 0.04282398567831
605 => 0.0426223426509
606 => 0.043586846626311
607 => 0.043250832727143
608 => 0.043495310913689
609 => 0.043557540872881
610 => 0.043745892216894
611 => 0.043813211633033
612 => 0.043609725601119
613 => 0.04292680162429
614 => 0.041225020004497
615 => 0.040432836066611
616 => 0.040171402172241
617 => 0.040180904797768
618 => 0.039918779964154
619 => 0.039995987475264
620 => 0.039891930342607
621 => 0.039694871307478
622 => 0.040091836930568
623 => 0.040137583520638
624 => 0.040044927000823
625 => 0.040066750965455
626 => 0.039299594555503
627 => 0.039357919791175
628 => 0.039033157467338
629 => 0.038972268446687
630 => 0.038151297572317
701 => 0.03669682866674
702 => 0.037502745629142
703 => 0.036529311267633
704 => 0.036160656924993
705 => 0.037905809245541
706 => 0.037730644355549
707 => 0.037430838206229
708 => 0.036987362426309
709 => 0.036822872945682
710 => 0.035823486932431
711 => 0.035764437875251
712 => 0.03625976056911
713 => 0.036031186188907
714 => 0.035710181191215
715 => 0.03454753362933
716 => 0.033240332830391
717 => 0.03327978900574
718 => 0.033695585258547
719 => 0.034904568941347
720 => 0.034432198100847
721 => 0.034089487636233
722 => 0.03402530826805
723 => 0.034828647429473
724 => 0.035965540647645
725 => 0.036498945509059
726 => 0.035970357491144
727 => 0.035363144037364
728 => 0.035400102306739
729 => 0.035645969115297
730 => 0.035671806240507
731 => 0.035276572704648
801 => 0.035387828629898
802 => 0.035218820705987
803 => 0.03418161938891
804 => 0.034162859706085
805 => 0.033908313775744
806 => 0.033900606226136
807 => 0.033467560099167
808 => 0.033406973952498
809 => 0.03254713458338
810 => 0.033113083459967
811 => 0.032733474667202
812 => 0.032161314675844
813 => 0.032062674077674
814 => 0.032059708822181
815 => 0.032647189200672
816 => 0.033106218409696
817 => 0.032740078124677
818 => 0.032656715079109
819 => 0.03354681431026
820 => 0.033433541069662
821 => 0.033335447173837
822 => 0.035863744329512
823 => 0.033862399845308
824 => 0.032989699417446
825 => 0.03190956691665
826 => 0.03226126350541
827 => 0.03233537114416
828 => 0.029737847188262
829 => 0.028684032042856
830 => 0.028322402397138
831 => 0.028114279423335
901 => 0.028209123675941
902 => 0.027260566444887
903 => 0.027898012591844
904 => 0.027076642209298
905 => 0.026938936791694
906 => 0.028407648783951
907 => 0.028612011477583
908 => 0.027740136736038
909 => 0.028300021463809
910 => 0.028096999478539
911 => 0.027090722247031
912 => 0.027052289858462
913 => 0.026547375316046
914 => 0.025757281827886
915 => 0.025396187902758
916 => 0.02520812705139
917 => 0.025285724623897
918 => 0.025246488916713
919 => 0.024990449387279
920 => 0.025261164802831
921 => 0.024569598783428
922 => 0.024294211622175
923 => 0.024169825630371
924 => 0.023556020983096
925 => 0.024532857137076
926 => 0.024725306165268
927 => 0.024918134377496
928 => 0.026596572315527
929 => 0.02651272229936
930 => 0.027270685608901
1001 => 0.027241232548498
1002 => 0.027025049134425
1003 => 0.026113006870897
1004 => 0.026476530661549
1005 => 0.025357660938063
1006 => 0.026195994210645
1007 => 0.025813413914673
1008 => 0.026066643427735
1009 => 0.025611313930464
1010 => 0.025863312074348
1011 => 0.024770942969241
1012 => 0.02375090406894
1013 => 0.024161397499213
1014 => 0.024607650803537
1015 => 0.02557524167054
1016 => 0.024998952532605
1017 => 0.025206207898511
1018 => 0.024511937116853
1019 => 0.023079458185649
1020 => 0.023087565860832
1021 => 0.022867210185516
1022 => 0.022676790709588
1023 => 0.025065146272512
1024 => 0.024768116503948
1025 => 0.024294838442037
1026 => 0.024928339935228
1027 => 0.025095847785048
1028 => 0.025100616498044
1029 => 0.025562802834436
1030 => 0.02580947176502
1031 => 0.02585294823316
1101 => 0.026580208419669
1102 => 0.026823976441393
1103 => 0.027828022423533
1104 => 0.02578854362964
1105 => 0.025746541905996
1106 => 0.024937254600386
1107 => 0.024423991796843
1108 => 0.024972398143661
1109 => 0.025458211302009
1110 => 0.024952350169415
1111 => 0.025018404954021
1112 => 0.024339327713886
1113 => 0.02458206587368
1114 => 0.024791144677256
1115 => 0.024675703651006
1116 => 0.0245028828473
1117 => 0.025418380163165
1118 => 0.025366724216741
1119 => 0.026219256364467
1120 => 0.026883866138778
1121 => 0.028074965667552
1122 => 0.026831991215854
1123 => 0.026786692286458
1124 => 0.027229496587479
1125 => 0.026823908650361
1126 => 0.0270802262262
1127 => 0.02803366894343
1128 => 0.02805381368563
1129 => 0.02771636329875
1130 => 0.027695829412041
1201 => 0.027760640450144
1202 => 0.028140240724649
1203 => 0.028007596724799
1204 => 0.02816109571956
1205 => 0.02835304856297
1206 => 0.029147046909632
1207 => 0.029338477222943
1208 => 0.028873400806834
1209 => 0.028915391999969
1210 => 0.028741440653711
1211 => 0.02857340583283
1212 => 0.028951123570656
1213 => 0.029641410160593
1214 => 0.029637115923543
1215 => 0.029797248995155
1216 => 0.029897010572155
1217 => 0.029468760853733
1218 => 0.029189986034219
1219 => 0.029296886038923
1220 => 0.029467821474425
1221 => 0.029241453981001
1222 => 0.027844208947963
1223 => 0.028268043834628
1224 => 0.02819749698502
1225 => 0.028097029692388
1226 => 0.028523198948348
1227 => 0.028482093883964
1228 => 0.027250837619461
1229 => 0.027329658650713
1230 => 0.027255630987434
1231 => 0.027494829512122
]
'min_raw' => 0.022676790709588
'max_raw' => 0.05079881054256
'avg_raw' => 0.036737800626074
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.022676'
'max' => '$0.050798'
'avg' => '$0.036737'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0055298529576333
'max_diff' => -0.03691444229164
'year' => 2034
]
9 => [
'items' => [
101 => 0.026810991145046
102 => 0.027021335221037
103 => 0.027153261053645
104 => 0.027230966382553
105 => 0.027511691313613
106 => 0.027478751483068
107 => 0.027509643727497
108 => 0.027925884691624
109 => 0.03003108865153
110 => 0.030145670258197
111 => 0.029581428520715
112 => 0.029806831965663
113 => 0.029374106641678
114 => 0.029664598050677
115 => 0.029863344895032
116 => 0.028965246122211
117 => 0.028912066541497
118 => 0.028477555206171
119 => 0.028711036985795
120 => 0.028339550686479
121 => 0.028430700430292
122 => 0.028175837800298
123 => 0.028634539791643
124 => 0.029147439893049
125 => 0.029277018713703
126 => 0.028936152623752
127 => 0.028689343110458
128 => 0.028256026909221
129 => 0.02897664140896
130 => 0.029187371049012
131 => 0.028975534535871
201 => 0.028926447387057
202 => 0.028833427328752
203 => 0.02894618203216
204 => 0.029186223370136
205 => 0.029073024308014
206 => 0.029147794282856
207 => 0.028862848241221
208 => 0.029468902622209
209 => 0.030431462834149
210 => 0.030434557622625
211 => 0.030321357950318
212 => 0.030275039083331
213 => 0.030391188816648
214 => 0.030454195282261
215 => 0.030829802221592
216 => 0.031232843432334
217 => 0.033113660902212
218 => 0.032585534882883
219 => 0.03425430803249
220 => 0.035574090930756
221 => 0.035969836114834
222 => 0.035605769166732
223 => 0.034360315803784
224 => 0.034299207920049
225 => 0.036160441061139
226 => 0.035634557448903
227 => 0.035572005266575
228 => 0.034906555730188
301 => 0.035299918823721
302 => 0.035213884544877
303 => 0.035078075226781
304 => 0.035828584607331
305 => 0.037233471169288
306 => 0.037014506423665
307 => 0.036851059398539
308 => 0.036134882113151
309 => 0.036566180802942
310 => 0.03641260360049
311 => 0.037072468724726
312 => 0.036681579242931
313 => 0.035630573363319
314 => 0.035797949513808
315 => 0.035772650945376
316 => 0.036293293691037
317 => 0.036137009661937
318 => 0.035742133980425
319 => 0.03722866941975
320 => 0.037132142076865
321 => 0.037268995779853
322 => 0.03732924301225
323 => 0.038234070938475
324 => 0.038604749988585
325 => 0.03868890062261
326 => 0.039041017050868
327 => 0.038680139645104
328 => 0.040123906569389
329 => 0.041083927327902
330 => 0.042199040841132
331 => 0.043828521398217
401 => 0.044441221161219
402 => 0.044330542433096
403 => 0.045565995994473
404 => 0.047786078581678
405 => 0.04477928459856
406 => 0.04794544596385
407 => 0.04694307583069
408 => 0.044566474276837
409 => 0.04441344915506
410 => 0.046022911320241
411 => 0.04959254349762
412 => 0.048698391123619
413 => 0.049594006010582
414 => 0.048549223671554
415 => 0.048497341422305
416 => 0.049543263264373
417 => 0.051987116658599
418 => 0.050826133517477
419 => 0.049161579499933
420 => 0.050390660283159
421 => 0.049325916762672
422 => 0.04692675160807
423 => 0.04869770738215
424 => 0.047513519689939
425 => 0.047859128613407
426 => 0.050348115007809
427 => 0.050048633579793
428 => 0.050436190278879
429 => 0.049752162849117
430 => 0.049113173368495
501 => 0.047920452050931
502 => 0.047567346069251
503 => 0.047664931859165
504 => 0.04756729771058
505 => 0.046899981095078
506 => 0.046755874135496
507 => 0.046515689556056
508 => 0.046590132800464
509 => 0.046138515522639
510 => 0.046990810634786
511 => 0.047149004118
512 => 0.047769233425106
513 => 0.047833627689302
514 => 0.049560957481183
515 => 0.048609573258413
516 => 0.049247843933609
517 => 0.049190750996783
518 => 0.044617982438995
519 => 0.04524806960038
520 => 0.04622828749125
521 => 0.045786700660067
522 => 0.045162400196179
523 => 0.044658244098716
524 => 0.043894396058451
525 => 0.044969497506721
526 => 0.046383141586903
527 => 0.047869480036043
528 => 0.049655218293933
529 => 0.049256662303057
530 => 0.047836096901446
531 => 0.047899822427638
601 => 0.048293748555491
602 => 0.047783578427959
603 => 0.047633119297646
604 => 0.048273077781443
605 => 0.048277484823806
606 => 0.047690472435961
607 => 0.047038115589005
608 => 0.047035382189997
609 => 0.0469193015901
610 => 0.048569874152401
611 => 0.049477522169958
612 => 0.049581582552423
613 => 0.049470518077109
614 => 0.049513262385666
615 => 0.048985122002909
616 => 0.050192294302726
617 => 0.051300114982005
618 => 0.051003195374822
619 => 0.050558070674044
620 => 0.050203507409765
621 => 0.05091967153794
622 => 0.050887781876659
623 => 0.051290439134813
624 => 0.051272172275722
625 => 0.051136773784511
626 => 0.051003200210328
627 => 0.05153280433349
628 => 0.051380286851201
629 => 0.051227532467136
630 => 0.050921160164368
701 => 0.050962801248619
702 => 0.050517753404897
703 => 0.050311853908387
704 => 0.047215619502854
705 => 0.046388204497317
706 => 0.046648526101645
707 => 0.046734230733037
708 => 0.046374138662266
709 => 0.046890418191688
710 => 0.046809956573903
711 => 0.047122985660232
712 => 0.046927418677237
713 => 0.046935444814435
714 => 0.047510565612149
715 => 0.047677525626464
716 => 0.047592608415651
717 => 0.047652081519312
718 => 0.049022614091172
719 => 0.048827768186618
720 => 0.048724260183247
721 => 0.048752932607567
722 => 0.049103133064227
723 => 0.049201170071856
724 => 0.048785780381595
725 => 0.048981680560861
726 => 0.049815798660743
727 => 0.050107692788706
728 => 0.051039278728033
729 => 0.050643524463387
730 => 0.051369948543988
731 => 0.053602728511537
801 => 0.055386427646238
802 => 0.053746064207483
803 => 0.057021600515645
804 => 0.059572075379326
805 => 0.05947418390602
806 => 0.05902944961999
807 => 0.056125801795572
808 => 0.053453821776593
809 => 0.055689046520734
810 => 0.055694744568285
811 => 0.05550273678044
812 => 0.05431019290058
813 => 0.05546123883841
814 => 0.05555260468497
815 => 0.055501464107036
816 => 0.054587143510414
817 => 0.053191144954065
818 => 0.053463919730427
819 => 0.053910730378563
820 => 0.053064824607176
821 => 0.052794506457979
822 => 0.053297079327468
823 => 0.054916473828174
824 => 0.054610336678329
825 => 0.054602342200149
826 => 0.055912126749542
827 => 0.054974603681374
828 => 0.053467360293903
829 => 0.053086761460468
830 => 0.051735892003872
831 => 0.052668942349175
901 => 0.052702521170025
902 => 0.052191499031446
903 => 0.053508826924045
904 => 0.053496687515603
905 => 0.054747294291245
906 => 0.057137984739816
907 => 0.056430939935441
908 => 0.055608723754209
909 => 0.055698121450691
910 => 0.056678593528779
911 => 0.056085777728367
912 => 0.056298958423454
913 => 0.056678270854265
914 => 0.056907119461571
915 => 0.05566519365788
916 => 0.055375641344861
917 => 0.054783318931477
918 => 0.054628793070047
919 => 0.055111227316536
920 => 0.054984122937239
921 => 0.052699699000156
922 => 0.052460963988316
923 => 0.052468285650294
924 => 0.051867975111791
925 => 0.050952357449537
926 => 0.053358545997251
927 => 0.053165295382283
928 => 0.052951961659767
929 => 0.05297809382351
930 => 0.054022538718776
1001 => 0.05341670793379
1002 => 0.055027408369388
1003 => 0.054696296781916
1004 => 0.054356693431624
1005 => 0.054309749904043
1006 => 0.054179031587777
1007 => 0.053730749843157
1008 => 0.053189422698972
1009 => 0.052831991629426
1010 => 0.048734719589635
1011 => 0.049495149447485
1012 => 0.050369954683579
1013 => 0.050671933945517
1014 => 0.050155377521644
1015 => 0.05375114663922
1016 => 0.054408128306694
1017 => 0.05241808798206
1018 => 0.052045832690132
1019 => 0.053775551634185
1020 => 0.05273231966138
1021 => 0.053202086954856
1022 => 0.052186707015332
1023 => 0.054249880661668
1024 => 0.054234162735245
1025 => 0.05343154158793
1026 => 0.054109911485528
1027 => 0.053992028021957
1028 => 0.053085870723407
1029 => 0.054278607464316
1030 => 0.054279199046859
1031 => 0.053506693643057
1101 => 0.052604576454593
1102 => 0.052443299208353
1103 => 0.052321798467861
1104 => 0.053172205220826
1105 => 0.053934677256381
1106 => 0.055353448681702
1107 => 0.055710161527205
1108 => 0.057102435510924
1109 => 0.056273404142209
1110 => 0.056640903010207
1111 => 0.057039875017307
1112 => 0.05723115686922
1113 => 0.056919473356277
1114 => 0.059082247935826
1115 => 0.059264852376041
1116 => 0.059326078065323
1117 => 0.058596802645813
1118 => 0.059244569907375
1119 => 0.058941501057487
1120 => 0.059730002009944
1121 => 0.059853649027375
1122 => 0.059748924402481
1123 => 0.059788171917449
1124 => 0.057942625353385
1125 => 0.057846924028004
1126 => 0.056542029665786
1127 => 0.057073783763682
1128 => 0.056079694965302
1129 => 0.056394930763517
1130 => 0.056533883699694
1201 => 0.056461302571345
1202 => 0.057103848342539
1203 => 0.056557553173596
1204 => 0.055115790403511
1205 => 0.053673634826125
1206 => 0.053655529737605
1207 => 0.05327583563024
1208 => 0.053001386335059
1209 => 0.053054255005923
1210 => 0.053240571097815
1211 => 0.052990557305094
1212 => 0.053043910423792
1213 => 0.053929927684151
1214 => 0.05410761212693
1215 => 0.053503770964573
1216 => 0.051079261563849
1217 => 0.05048428087549
1218 => 0.050911941195303
1219 => 0.050707547107284
1220 => 0.040924948077366
1221 => 0.043223224612103
1222 => 0.041857666737259
1223 => 0.042486978632284
1224 => 0.041093097651565
1225 => 0.041758330715126
1226 => 0.041635486458708
1227 => 0.045331047115618
1228 => 0.045273346019038
1229 => 0.045300964480497
1230 => 0.043982663355547
1231 => 0.046082752843368
]
'min_raw' => 0.026810991145046
'max_raw' => 0.059853649027375
'avg_raw' => 0.04333232008621
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.02681'
'max' => '$0.059853'
'avg' => '$0.043332'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0041342004354576
'max_diff' => 0.0090548384848155
'year' => 2035
]
10 => [
'items' => [
101 => 0.047117332441843
102 => 0.04692585929261
103 => 0.046974048959145
104 => 0.04614599082807
105 => 0.045308981893251
106 => 0.044380610169785
107 => 0.046105410081772
108 => 0.045913641774875
109 => 0.046353489274837
110 => 0.047472145309004
111 => 0.047636871659397
112 => 0.047858265544814
113 => 0.047778911596781
114 => 0.049669444580135
115 => 0.049440488561713
116 => 0.049992206690969
117 => 0.048857280640134
118 => 0.047573004085445
119 => 0.047817103072328
120 => 0.047793594376971
121 => 0.047494301703053
122 => 0.04722411365932
123 => 0.046774326691514
124 => 0.048197519213599
125 => 0.048139740196257
126 => 0.049075115326263
127 => 0.048909778686285
128 => 0.047805620139775
129 => 0.047845055378273
130 => 0.048110276309103
131 => 0.049028208978946
201 => 0.049300713892977
202 => 0.049174478759354
203 => 0.049473267957267
204 => 0.049709418756681
205 => 0.049502924861832
206 => 0.052426442955807
207 => 0.051212394416218
208 => 0.051804113227118
209 => 0.051945234676909
210 => 0.051583755050736
211 => 0.051662147038038
212 => 0.051780889538262
213 => 0.05250187074746
214 => 0.054393934057989
215 => 0.055231916018511
216 => 0.057753026092045
217 => 0.055162333281962
218 => 0.055008612291964
219 => 0.055462740346438
220 => 0.056942898846206
221 => 0.05814242828605
222 => 0.05854038140376
223 => 0.058592977477755
224 => 0.059339563982002
225 => 0.059767493443222
226 => 0.059248908743212
227 => 0.058809462508035
228 => 0.057235420639705
229 => 0.057417620271938
301 => 0.058672795059341
302 => 0.060445803375974
303 => 0.06196722896172
304 => 0.061434478748626
305 => 0.06549898681149
306 => 0.065901966183897
307 => 0.065846287464513
308 => 0.066764334446226
309 => 0.064942198144543
310 => 0.064163199573345
311 => 0.058904475772007
312 => 0.060381962659626
313 => 0.062529576620544
314 => 0.062245331859677
315 => 0.060685677195373
316 => 0.061966045823799
317 => 0.061542715914413
318 => 0.061208818050906
319 => 0.062738468892917
320 => 0.061056554957532
321 => 0.062512798242441
322 => 0.060645151166637
323 => 0.061436912306724
324 => 0.060987470390434
325 => 0.061278314391803
326 => 0.059578046302716
327 => 0.060495469691913
328 => 0.059539878473517
329 => 0.059539425398858
330 => 0.059518330669748
331 => 0.06064257950045
401 => 0.060679241214458
402 => 0.059848419629923
403 => 0.059728685259719
404 => 0.060171405981687
405 => 0.059653095965004
406 => 0.059895609959605
407 => 0.059660441466847
408 => 0.059607500085721
409 => 0.059185654153675
410 => 0.059003911327254
411 => 0.059075177372429
412 => 0.058831909620081
413 => 0.058685331999912
414 => 0.059489172691791
415 => 0.059059713036961
416 => 0.05942335184037
417 => 0.05900893952901
418 => 0.057572405906986
419 => 0.056746240229893
420 => 0.054032761384627
421 => 0.054802300619084
422 => 0.055312505927676
423 => 0.05514388307623
424 => 0.055506150209516
425 => 0.055528390469288
426 => 0.055410613731381
427 => 0.055274243357018
428 => 0.055207865800533
429 => 0.05570258972446
430 => 0.055989793613942
501 => 0.055363711856059
502 => 0.055217029660002
503 => 0.055850032884143
504 => 0.056236164485194
505 => 0.059087143278756
506 => 0.058875933561189
507 => 0.059406028504469
508 => 0.059346347948826
509 => 0.05990197190013
510 => 0.060810182236311
511 => 0.058963536683251
512 => 0.059284050499064
513 => 0.059205467913171
514 => 0.060063411980482
515 => 0.060066090388213
516 => 0.059551710062375
517 => 0.05983056398188
518 => 0.059674915373969
519 => 0.059956193445634
520 => 0.058873112726642
521 => 0.060192188131035
522 => 0.060940018885985
523 => 0.060950402516743
524 => 0.061304868359437
525 => 0.061665026184891
526 => 0.062356317767715
527 => 0.061645746437845
528 => 0.060367497788134
529 => 0.060459783211926
530 => 0.059710346496293
531 => 0.05972294466288
601 => 0.059655694662304
602 => 0.059857516976375
603 => 0.058917401375127
604 => 0.059138044627664
605 => 0.058829142782028
606 => 0.059283379006779
607 => 0.058794695916885
608 => 0.059205430018269
609 => 0.059382689240375
610 => 0.060036779586066
611 => 0.058698086241001
612 => 0.055968399888842
613 => 0.056542213054314
614 => 0.055693498310529
615 => 0.055772050091351
616 => 0.055930737190035
617 => 0.055416380384013
618 => 0.055514503453356
619 => 0.055510997806838
620 => 0.055480788039046
621 => 0.055346983968397
622 => 0.055152941593628
623 => 0.055925946691616
624 => 0.056057295320757
625 => 0.056349267052685
626 => 0.057217976880585
627 => 0.057131172283189
628 => 0.05727275418303
629 => 0.056963681690626
630 => 0.055786387077833
701 => 0.055850319839443
702 => 0.055053077277713
703 => 0.056328879767936
704 => 0.056026752898481
705 => 0.055831969740292
706 => 0.055778821350927
707 => 0.056649684542463
708 => 0.056910260458479
709 => 0.056747887034217
710 => 0.056414854403867
711 => 0.057054375506398
712 => 0.057225484374206
713 => 0.057263789339456
714 => 0.058396898117133
715 => 0.05732711753286
716 => 0.057584624352199
717 => 0.059593619048119
718 => 0.057771738081237
719 => 0.058736829062188
720 => 0.058689592880762
721 => 0.059183300769718
722 => 0.058649094423614
723 => 0.058655716551514
724 => 0.059094095710238
725 => 0.058478471243908
726 => 0.058326033968498
727 => 0.058115442964297
728 => 0.058575260717654
729 => 0.058850900665023
730 => 0.061072356205588
731 => 0.062507517795473
801 => 0.062445213645887
802 => 0.063014556944625
803 => 0.062758062573957
804 => 0.061929774591272
805 => 0.063343561178756
806 => 0.062896179947133
807 => 0.0629330615123
808 => 0.062931688778602
809 => 0.063229158186885
810 => 0.063018373848446
811 => 0.062602896280813
812 => 0.062878709679734
813 => 0.063697776869435
814 => 0.066240186558317
815 => 0.067662952702664
816 => 0.06615453424995
817 => 0.067195021100104
818 => 0.066571099753384
819 => 0.066457714684633
820 => 0.067111217317904
821 => 0.067765863821025
822 => 0.067724165668891
823 => 0.067248925924095
824 => 0.066980475051022
825 => 0.069013274999572
826 => 0.070511007373821
827 => 0.070408872066823
828 => 0.070859664095733
829 => 0.072183203435086
830 => 0.072304211285142
831 => 0.072288967077368
901 => 0.071989036495142
902 => 0.073292232858037
903 => 0.074379382191522
904 => 0.071919611231185
905 => 0.072856259812115
906 => 0.073276751537027
907 => 0.073894158143471
908 => 0.074935826577904
909 => 0.076067354786605
910 => 0.076227365281891
911 => 0.076113830178278
912 => 0.075367556907529
913 => 0.076605688575429
914 => 0.077330957068724
915 => 0.077762837859007
916 => 0.078858015685053
917 => 0.073279348350768
918 => 0.069330490333804
919 => 0.068713819132254
920 => 0.069967844270003
921 => 0.070298520698165
922 => 0.070165225444606
923 => 0.065720426732049
924 => 0.068690418186905
925 => 0.071885879268355
926 => 0.072008629942419
927 => 0.073608344573733
928 => 0.074129277232207
929 => 0.075417257189805
930 => 0.075336693692778
1001 => 0.075650296316216
1002 => 0.075578204503928
1003 => 0.0779639161592
1004 => 0.080595710396574
1005 => 0.080504579730727
1006 => 0.080126228171129
1007 => 0.08068814475566
1008 => 0.083404438448841
1009 => 0.083154365653292
1010 => 0.083397290073018
1011 => 0.086599953420882
1012 => 0.090763871346655
1013 => 0.088829313419609
1014 => 0.093026747467251
1015 => 0.095668809703823
1016 => 0.10023798314764
1017 => 0.099665900128821
1018 => 0.10144464582036
1019 => 0.098641752127805
1020 => 0.092205741651433
1021 => 0.091187218357489
1022 => 0.093226327785083
1023 => 0.098239279339435
1024 => 0.093068452101056
1025 => 0.094114503716881
1026 => 0.093813240781152
1027 => 0.093797187759591
1028 => 0.094409866300178
1029 => 0.093521144121894
1030 => 0.089900330089498
1031 => 0.091559727822954
1101 => 0.090918954667242
1102 => 0.091629940256308
1103 => 0.095466836247731
1104 => 0.093770453069746
1105 => 0.091983451194718
1106 => 0.094224748113465
1107 => 0.09707868928421
1108 => 0.09690009477477
1109 => 0.096553546779743
1110 => 0.098507019683048
1111 => 0.10173358460545
1112 => 0.10260571213859
1113 => 0.10324949885369
1114 => 0.10333826616483
1115 => 0.10425262463822
1116 => 0.099335888678819
1117 => 0.10713887491712
1118 => 0.10848623508733
1119 => 0.10823298721769
1120 => 0.10973052134129
1121 => 0.10928990881336
1122 => 0.10865153039036
1123 => 0.11102544051092
1124 => 0.10830394412237
1125 => 0.10444112262569
1126 => 0.10232190235466
1127 => 0.10511266256017
1128 => 0.10681688243357
1129 => 0.10794326336114
1130 => 0.10828410554924
1201 => 0.099717560895194
1202 => 0.09510066844901
1203 => 0.098060043574235
1204 => 0.10167068547217
1205 => 0.09931583138077
1206 => 0.099408137202824
1207 => 0.096050734113256
1208 => 0.10196774114749
1209 => 0.10110568299246
1210 => 0.10557804222569
1211 => 0.10451067780175
1212 => 0.10815771314046
1213 => 0.10719732651031
1214 => 0.11118383771756
1215 => 0.11277416496861
1216 => 0.1154445719378
1217 => 0.11740893417484
1218 => 0.1185624452527
1219 => 0.1184931927743
1220 => 0.1230639783417
1221 => 0.12036874578369
1222 => 0.11698289847328
1223 => 0.11692165917765
1224 => 0.11867523747753
1225 => 0.12235025652338
1226 => 0.12330313549262
1227 => 0.12383566484228
1228 => 0.12302007760579
1229 => 0.12009459583313
1230 => 0.11883138763622
1231 => 0.11990767761865
]
'min_raw' => 0.044380610169785
'max_raw' => 0.12383566484228
'avg_raw' => 0.084108137506033
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.04438'
'max' => '$0.123835'
'avg' => '$0.0841081'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017569619024739
'max_diff' => 0.063982015814905
'year' => 2036
]
11 => [
'items' => [
101 => 0.11859146745679
102 => 0.1208636154595
103 => 0.12398375997186
104 => 0.12333946246844
105 => 0.12549325242387
106 => 0.12772219844242
107 => 0.13090969135719
108 => 0.13174302003763
109 => 0.13312048065774
110 => 0.13453834010808
111 => 0.13499371835115
112 => 0.13586317671273
113 => 0.13585859423799
114 => 0.13847876553192
115 => 0.14136889560907
116 => 0.14245985280653
117 => 0.14496844872636
118 => 0.14067256612534
119 => 0.14393104242576
120 => 0.14687026961369
121 => 0.14336600179012
122 => 0.14819581859522
123 => 0.14838334943716
124 => 0.15121484250361
125 => 0.14834458183233
126 => 0.14664023020792
127 => 0.15156062948637
128 => 0.15394145570608
129 => 0.1532243314729
130 => 0.14776698064957
131 => 0.14459056839361
201 => 0.13627728483558
202 => 0.14612472831719
203 => 0.15092113078321
204 => 0.14775455912591
205 => 0.14935159368138
206 => 0.15806449637583
207 => 0.1613818056032
208 => 0.16069182847365
209 => 0.16080842325055
210 => 0.16259838309622
211 => 0.17053605080081
212 => 0.16577961631853
213 => 0.16941573226003
214 => 0.17134431504442
215 => 0.17313569021564
216 => 0.16873663896506
217 => 0.16301353792294
218 => 0.16120079158346
219 => 0.1474397059809
220 => 0.14672338171392
221 => 0.14632128719602
222 => 0.14378613813804
223 => 0.14179420541424
224 => 0.14021014655656
225 => 0.13605310307397
226 => 0.13745598321805
227 => 0.13083052354922
228 => 0.13506925785347
301 => 0.12449486424469
302 => 0.13330153346188
303 => 0.12850846379708
304 => 0.1317268811678
305 => 0.13171565241279
306 => 0.12578952563314
307 => 0.12237145938174
308 => 0.12454958423026
309 => 0.12688470696763
310 => 0.12726357277548
311 => 0.13029112035742
312 => 0.13113604381063
313 => 0.12857588630172
314 => 0.12427573344099
315 => 0.12527456087449
316 => 0.12235121817568
317 => 0.11722817254078
318 => 0.12090763335556
319 => 0.1221639630522
320 => 0.12271882981776
321 => 0.1176809028216
322 => 0.11609787678069
323 => 0.11525508699938
324 => 0.12362540032936
325 => 0.12408394498849
326 => 0.1217379656807
327 => 0.1323420146068
328 => 0.12994199174841
329 => 0.1326234053011
330 => 0.12518392775411
331 => 0.12546812581499
401 => 0.12194615792133
402 => 0.1239182246038
403 => 0.12252443143531
404 => 0.1237589011042
405 => 0.12449883713383
406 => 0.12802022710721
407 => 0.13334174207889
408 => 0.1274942488732
409 => 0.12494641234583
410 => 0.12652707579783
411 => 0.13073659086791
412 => 0.13711422168018
413 => 0.13333853587753
414 => 0.13501412112145
415 => 0.13538016195564
416 => 0.13259611102825
417 => 0.137216873609
418 => 0.13969317781504
419 => 0.14223335353147
420 => 0.14443891693194
421 => 0.14121875149066
422 => 0.14466479010542
423 => 0.14188789128963
424 => 0.13939672598135
425 => 0.13940050405081
426 => 0.13783775966281
427 => 0.13480974549259
428 => 0.13425133322152
429 => 0.13715626437528
430 => 0.13948574406259
501 => 0.13967761116709
502 => 0.14096733081497
503 => 0.14173057361742
504 => 0.14921139065968
505 => 0.15222023715864
506 => 0.15589939770302
507 => 0.15733263808118
508 => 0.16164617777434
509 => 0.15816264414355
510 => 0.15740895973008
511 => 0.14694572338256
512 => 0.1486590777483
513 => 0.15140232340197
514 => 0.14699095849299
515 => 0.1497889541715
516 => 0.15034133778809
517 => 0.14684106200141
518 => 0.14871071053707
519 => 0.14374547833852
520 => 0.13344997057241
521 => 0.13722833545227
522 => 0.14001048378772
523 => 0.13604001507662
524 => 0.14315692656291
525 => 0.1389993737955
526 => 0.13768162916595
527 => 0.13254063755622
528 => 0.1349669877011
529 => 0.13824866101404
530 => 0.13622096844211
531 => 0.14042873498842
601 => 0.14638805458835
602 => 0.15063502061888
603 => 0.15096104993591
604 => 0.14823053530291
605 => 0.15260620242821
606 => 0.15263807438619
607 => 0.14770230399373
608 => 0.14467917211083
609 => 0.14399231018631
610 => 0.14570822594097
611 => 0.14779166444265
612 => 0.15107666627276
613 => 0.15306172407912
614 => 0.1582377020448
615 => 0.1596381732754
616 => 0.16117686656147
617 => 0.16323303530711
618 => 0.16570199307709
619 => 0.16030005403422
620 => 0.16051468314286
621 => 0.15548447230108
622 => 0.15010897061142
623 => 0.15418830632813
624 => 0.15952149512642
625 => 0.15829805572345
626 => 0.15816039379801
627 => 0.15839190297236
628 => 0.15746946961631
629 => 0.15329733773386
630 => 0.15120211922143
701 => 0.15390548564972
702 => 0.15534220459336
703 => 0.15757043037989
704 => 0.15729575451956
705 => 0.16303542485167
706 => 0.16526568718411
707 => 0.16469509064117
708 => 0.16480009413724
709 => 0.16883787755891
710 => 0.1733287231573
711 => 0.17753499267946
712 => 0.18181379070088
713 => 0.17665553268173
714 => 0.17403648737673
715 => 0.1767386735998
716 => 0.17530485555381
717 => 0.18354399934413
718 => 0.18411445978396
719 => 0.19235300779041
720 => 0.20017237087657
721 => 0.19526116902059
722 => 0.19989221116539
723 => 0.2049010608194
724 => 0.21456394445854
725 => 0.21130982519323
726 => 0.20881722083454
727 => 0.20646172175976
728 => 0.21136314140943
729 => 0.21766873948664
730 => 0.2190269049182
731 => 0.22122765177646
801 => 0.21891383554953
802 => 0.22170057233637
803 => 0.23153897774814
804 => 0.22888055375988
805 => 0.22510516433356
806 => 0.23287164051565
807 => 0.23568229805453
808 => 0.25540896461523
809 => 0.28031469601605
810 => 0.27000355967626
811 => 0.26360310461186
812 => 0.26510736337282
813 => 0.27420209336819
814 => 0.2771230319904
815 => 0.26918291390731
816 => 0.27198749784699
817 => 0.28744103109526
818 => 0.29573135587426
819 => 0.28447198128522
820 => 0.25340781334734
821 => 0.22476523182315
822 => 0.23236253423562
823 => 0.23150123591379
824 => 0.24810412952152
825 => 0.22881715122696
826 => 0.22914189447722
827 => 0.246088118342
828 => 0.2415671563467
829 => 0.23424377691539
830 => 0.22481870059753
831 => 0.20739557530993
901 => 0.19196342736292
902 => 0.22222942329844
903 => 0.22092429851856
904 => 0.21903428442863
905 => 0.22324030626487
906 => 0.24366355440155
907 => 0.24319273242839
908 => 0.24019760325067
909 => 0.24246938233412
910 => 0.23384552305817
911 => 0.23606808795521
912 => 0.22476069469189
913 => 0.22987210868537
914 => 0.23422806423223
915 => 0.23510258679928
916 => 0.23707293079709
917 => 0.22023655706489
918 => 0.22779559458068
919 => 0.23223582093518
920 => 0.21217471672874
921 => 0.23183927740639
922 => 0.21994347325576
923 => 0.21590585865805
924 => 0.22134197479859
925 => 0.21922351505183
926 => 0.21740218776169
927 => 0.21638585583942
928 => 0.22037753957078
929 => 0.22019132275362
930 => 0.21366015341668
1001 => 0.20514050926117
1002 => 0.20799998148754
1003 => 0.20696110842001
1004 => 0.20319609840595
1005 => 0.20573326056638
1006 => 0.19456088244024
1007 => 0.1753393865639
1008 => 0.18803769551016
1009 => 0.18754882442883
1010 => 0.18730231346108
1011 => 0.19684474167871
1012 => 0.19592745738686
1013 => 0.19426257741508
1014 => 0.20316552157966
1015 => 0.19991582719809
1016 => 0.20993061955779
1017 => 0.21652700952205
1018 => 0.21485395165625
1019 => 0.22105788830076
1020 => 0.20806585795232
1021 => 0.21238128928428
1022 => 0.21327069370087
1023 => 0.20305566063064
1024 => 0.19607753644125
1025 => 0.19561217511426
1026 => 0.18351306941462
1027 => 0.1899763140188
1028 => 0.19566370180324
1029 => 0.19293988441362
1030 => 0.19207760519979
1031 => 0.19648280269768
1101 => 0.19682512427124
1102 => 0.18902015611665
1103 => 0.19064305614718
1104 => 0.1974108190592
1105 => 0.19047252588609
1106 => 0.1769925556145
1107 => 0.17364933661198
1108 => 0.17320328956929
1109 => 0.1641362144804
1110 => 0.17387274649195
1111 => 0.16962248934607
1112 => 0.183049000744
1113 => 0.17537984944133
1114 => 0.17504924765681
1115 => 0.17454949457077
1116 => 0.16674508848561
1117 => 0.16845375742238
1118 => 0.17413363320583
1119 => 0.17616027687374
1120 => 0.17594888133537
1121 => 0.17410579871584
1122 => 0.17494955250095
1123 => 0.1722315275758
1124 => 0.17127173640393
1125 => 0.16824237145416
1126 => 0.16379004186141
1127 => 0.16440916559901
1128 => 0.15558793566037
1129 => 0.1507816614117
1130 => 0.14945134804534
1201 => 0.14767239741422
1202 => 0.14965228525273
1203 => 0.15556294622429
1204 => 0.14843343507591
1205 => 0.13621038828909
1206 => 0.13694501422803
1207 => 0.13859550060045
1208 => 0.13551983016451
1209 => 0.13260896621836
1210 => 0.13513972625368
1211 => 0.12996066019653
1212 => 0.13922136599018
1213 => 0.13897088985128
1214 => 0.14242270829295
1215 => 0.14458120120297
1216 => 0.13960657386575
1217 => 0.13835546854327
1218 => 0.13906815499452
1219 => 0.12728903548396
1220 => 0.14146010292899
1221 => 0.14158265490872
1222 => 0.1405332904548
1223 => 0.14807894638665
1224 => 0.16400263395197
1225 => 0.15801150216105
1226 => 0.15569155484869
1227 => 0.15128133331202
1228 => 0.15715769165659
1229 => 0.1567064790212
1230 => 0.15466592436664
1231 => 0.15343179054465
]
'min_raw' => 0.11525508699938
'max_raw' => 0.29573135587426
'avg_raw' => 0.20549322143682
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.115255'
'max' => '$0.295731'
'avg' => '$0.205493'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0708744768296
'max_diff' => 0.17189569103197
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0036177254818727
]
1 => [
'year' => 2028
'avg' => 0.006209067160105
]
2 => [
'year' => 2029
'avg' => 0.016962052405932
]
3 => [
'year' => 2030
'avg' => 0.01308619817053
]
4 => [
'year' => 2031
'avg' => 0.012852268358146
]
5 => [
'year' => 2032
'avg' => 0.022534071189539
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0036177254818727
'min' => '$0.003617'
'max_raw' => 0.022534071189539
'max' => '$0.022534'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.022534071189539
]
1 => [
'year' => 2033
'avg' => 0.05795994825071
]
2 => [
'year' => 2034
'avg' => 0.036737800626074
]
3 => [
'year' => 2035
'avg' => 0.04333232008621
]
4 => [
'year' => 2036
'avg' => 0.084108137506033
]
5 => [
'year' => 2037
'avg' => 0.20549322143682
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.022534071189539
'min' => '$0.022534'
'max_raw' => 0.20549322143682
'max' => '$0.205493'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.20549322143682
]
]
]
]
'prediction_2025_max_price' => '$0.006185'
'last_price' => 0.00599777
'sma_50day_nextmonth' => '$0.005621'
'sma_200day_nextmonth' => '$0.007217'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.006179'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.0060043'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.005799'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005761'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005815'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.00678'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.007318'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006113'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.00604'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.005918'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005857'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006053'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.006511'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.006774'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007276'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.00637'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.007182'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.011825'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005883'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005897'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006176'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.006594'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0068081'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.008073'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0108068'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.39'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 101.99
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.005816'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006299'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 47.29
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 54.33
'cci_20_action' => 'NEUTRAL'
'adx_14' => 6.35
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000148'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -52.71
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 55.93
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000910'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 24
'buy_signals' => 10
'sell_pct' => 70.59
'buy_pct' => 29.41
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767693673
'last_updated_date' => '6. Januar 2026'
]
Abyss Token Preisprognose für 2026
Die Preisprognose für Abyss Token im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.002072 am unteren Ende und $0.006185 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Abyss Token im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn ABYSS das prognostizierte Preisziel erreicht.
Abyss Token Preisprognose 2027-2032
Die Preisprognose für ABYSS für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.003617 am unteren Ende und $0.022534 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Abyss Token, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Abyss Token Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001994 | $0.003617 | $0.00524 |
| 2028 | $0.00360017 | $0.006209 | $0.008817 |
| 2029 | $0.0079085 | $0.016962 | $0.026015 |
| 2030 | $0.006725 | $0.013086 | $0.019446 |
| 2031 | $0.007952 | $0.012852 | $0.017752 |
| 2032 | $0.012138 | $0.022534 | $0.032929 |
Abyss Token Preisprognose 2032-2037
Die Preisprognose für Abyss Token für die Jahre 2032-2037 wird derzeit zwischen $0.022534 am unteren Ende und $0.205493 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Abyss Token bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Abyss Token Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.012138 | $0.022534 | $0.032929 |
| 2033 | $0.0282066 | $0.057959 | $0.087713 |
| 2034 | $0.022676 | $0.036737 | $0.050798 |
| 2035 | $0.02681 | $0.043332 | $0.059853 |
| 2036 | $0.04438 | $0.0841081 | $0.123835 |
| 2037 | $0.115255 | $0.205493 | $0.295731 |
Abyss Token Potenzielles Preishistogramm
Abyss Token Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Abyss Token Bärisch, mit 10 technischen Indikatoren, die bullische Signale zeigen, und 24 anzeigen bärische Signale. Die Preisprognose für ABYSS wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Abyss Token
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Abyss Token im nächsten Monat steigen, und bis zum 04.02.2026 $0.007217 erreichen. Der kurzfristige 50-Tage-SMA für Abyss Token wird voraussichtlich bis zum 04.02.2026 $0.005621 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 51.39, was darauf hindeutet, dass sich der ABYSS-Markt in einem NEUTRAL Zustand befindet.
Beliebte ABYSS Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.006179 | SELL |
| SMA 5 | $0.0060043 | SELL |
| SMA 10 | $0.005799 | BUY |
| SMA 21 | $0.005761 | BUY |
| SMA 50 | $0.005815 | BUY |
| SMA 100 | $0.00678 | SELL |
| SMA 200 | $0.007318 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.006113 | SELL |
| EMA 5 | $0.00604 | SELL |
| EMA 10 | $0.005918 | BUY |
| EMA 21 | $0.005857 | BUY |
| EMA 50 | $0.006053 | SELL |
| EMA 100 | $0.006511 | SELL |
| EMA 200 | $0.006774 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.007276 | SELL |
| SMA 50 | $0.00637 | SELL |
| SMA 100 | $0.007182 | SELL |
| SMA 200 | $0.011825 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.006594 | SELL |
| EMA 50 | $0.0068081 | SELL |
| EMA 100 | $0.008073 | SELL |
| EMA 200 | $0.0108068 | SELL |
Abyss Token Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 51.39 | NEUTRAL |
| Stoch RSI (14) | 101.99 | SELL |
| Stochastic Fast (14) | 47.29 | NEUTRAL |
| Commodity Channel Index (20) | 54.33 | NEUTRAL |
| Average Directional Index (14) | 6.35 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000148 | BUY |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Prozentbereich (14) | -52.71 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 55.93 | NEUTRAL |
| VWMA (10) | 0.005816 | BUY |
| Hull Moving Average (9) | 0.006299 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000910 | SELL |
Auf weltweiten Geldflüssen basierende Abyss Token-Preisprognose
Definition weltweiter Geldflüsse, die für Abyss Token-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Abyss Token-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.008427 | $0.011842 | $0.01664 | $0.023383 | $0.032857 | $0.046169 |
| Amazon.com aktie | $0.012514 | $0.026112 | $0.054485 | $0.113687 | $0.237215 | $0.494964 |
| Apple aktie | $0.0085073 | $0.012067 | $0.017116 | $0.024278 | $0.034436 | $0.048845 |
| Netflix aktie | $0.009463 | $0.014931 | $0.02356 | $0.037174 | $0.058655 | $0.092549 |
| Google aktie | $0.007767 | $0.010058 | $0.013025 | $0.016867 | $0.021843 | $0.028287 |
| Tesla aktie | $0.013596 | $0.030822 | $0.069871 | $0.158393 | $0.359066 | $0.813976 |
| Kodak aktie | $0.004497 | $0.003372 | $0.002529 | $0.001896 | $0.001422 | $0.001066 |
| Nokia aktie | $0.003973 | $0.002632 | $0.001743 | $0.001155 | $0.000765 | $0.0005069 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Abyss Token Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Abyss Token investieren?", "Sollte ich heute ABYSS kaufen?", "Wird Abyss Token auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Abyss Token/Abyss-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Abyss Token.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Abyss Token zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Abyss Token-Preis entspricht heute $0.005997 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Abyss Token-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Abyss Token-Prognose
basierend auf dem Preisverlauf des letzten Monats
Abyss Token-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Abyss Token 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006153 | $0.006313 | $0.006477 | $0.006646 |
| Wenn die Wachstumsrate von Abyss Token 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0063095 | $0.006637 | $0.006982 | $0.007345 |
| Wenn die Wachstumsrate von Abyss Token 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006777 | $0.007658 | $0.008653 | $0.009778 |
| Wenn die Wachstumsrate von Abyss Token 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.007556 | $0.009521 | $0.011995 | $0.015113 |
| Wenn die Wachstumsrate von Abyss Token 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009115 | $0.013854 | $0.021057 | $0.0320043 |
| Wenn die Wachstumsrate von Abyss Token 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.013792 | $0.031718 | $0.072942 | $0.167743 |
| Wenn die Wachstumsrate von Abyss Token 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.021587 | $0.0777017 | $0.279673 | $1.00 |
Fragefeld
Ist ABYSS eine gute Investition?
Die Entscheidung, Abyss Token zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Abyss Token in den letzten 2026 Stunden um 1.6422% gestiegen, und Abyss Token hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Abyss Token investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Abyss Token steigen?
Es scheint, dass der Durchschnittswert von Abyss Token bis zum Ende dieses Jahres potenziell auf $0.006185 steigen könnte. Betrachtet man die Aussichten von Abyss Token in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.019446 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Abyss Token nächste Woche kosten?
Basierend auf unserer neuen experimentellen Abyss Token-Prognose wird der Preis von Abyss Token in der nächsten Woche um 0.86% steigen und $0.006049 erreichen bis zum 13. Januar 2026.
Wie viel wird Abyss Token nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Abyss Token-Prognose wird der Preis von Abyss Token im nächsten Monat um -11.62% fallen und $0.0053 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Abyss Token in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Abyss Token im Jahr 2026 wird erwartet, dass ABYSS innerhalb der Spanne von $0.002072 bis $0.006185 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Abyss Token-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Abyss Token in 5 Jahren sein?
Die Zukunft von Abyss Token scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.019446 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Abyss Token-Prognose für 2030 könnte der Wert von Abyss Token seinen höchsten Gipfel von ungefähr $0.019446 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.006725 liegen wird.
Wie viel wird Abyss Token im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Abyss Token-Preisprognosesimulation wird der Wert von ABYSS im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.006185 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.006185 und $0.002072 während des Jahres 2026 liegen.
Wie viel wird Abyss Token im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Abyss Token könnte der Wert von ABYSS um -12.62% fallen und bis zu $0.00524 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.00524 und $0.001994 im Laufe des Jahres schwanken.
Wie viel wird Abyss Token im Jahr 2028 kosten?
Unser neues experimentelles Abyss Token-Preisprognosemodell deutet darauf hin, dass der Wert von ABYSS im Jahr 2028 um 47.02% steigen, und im besten Fall $0.008817 erreichen wird. Der Preis wird voraussichtlich zwischen $0.008817 und $0.00360017 im Laufe des Jahres liegen.
Wie viel wird Abyss Token im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Abyss Token im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.026015 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.026015 und $0.0079085.
Wie viel wird Abyss Token im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Abyss Token-Preisprognosen wird der Wert von ABYSS im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.019446 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.019446 und $0.006725 während des Jahres 2030 liegen.
Wie viel wird Abyss Token im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Abyss Token im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.017752 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.017752 und $0.007952 während des Jahres schwanken.
Wie viel wird Abyss Token im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Abyss Token-Preisprognose könnte ABYSS eine 449.04% Steigerung im Wert erfahren und $0.032929 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.032929 und $0.012138 liegen.
Wie viel wird Abyss Token im Jahr 2033 kosten?
Laut unserer experimentellen Abyss Token-Preisprognose wird der Wert von ABYSS voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.087713 beträgt. Im Laufe des Jahres könnte der Preis von ABYSS zwischen $0.087713 und $0.0282066 liegen.
Wie viel wird Abyss Token im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Abyss Token-Preisprognosesimulation deuten darauf hin, dass ABYSS im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.050798 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.050798 und $0.022676.
Wie viel wird Abyss Token im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Abyss Token könnte ABYSS um 897.93% steigen, wobei der Wert im Jahr 2035 $0.059853 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.059853 und $0.02681.
Wie viel wird Abyss Token im Jahr 2036 kosten?
Unsere jüngste Abyss Token-Preisprognosesimulation deutet darauf hin, dass der Wert von ABYSS im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.123835 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.123835 und $0.04438.
Wie viel wird Abyss Token im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Abyss Token um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.295731 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.295731 und $0.115255 liegen.
Verwandte Prognosen
Kromatika-Preisprognose
Materium-Preisprognose
Africarare-PreisprognoseAlpha Impact-Preisprognose
Tune.Fm-Preisprognose
TitanSwap-Preisprognose
CitaDAO-Preisprognose
UPCX-Preisprognose
Kintsugi-Preisprognose
Good Entry-Preisprognose
Mt Pelerin Shares-Preisprognose
Glo Dollar-Preisprognose
Jarvis Reward Token-Preisprognose
Urus Token-Preisprognose
Penta Network Token-Preisprognose
daCat-Preisprognose
Divergence Protocol-Preisprognose
Nabox-Preisprognose
CNH Tether-Preisprognose
AI PIN-Preisprognose
Nexus-Preisprognose
Alchemist-Preisprognose
Mintra-Preisprognose
Stakenet-Preisprognose
IDLE-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Abyss Token?
Abyss Token-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Abyss Token Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Abyss Token. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von ABYSS über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von ABYSS über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von ABYSS einzuschätzen.
Wie liest man Abyss Token-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Abyss Token in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von ABYSS innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Abyss Token?
Die Preisentwicklung von Abyss Token wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von ABYSS. Die Marktkapitalisierung von Abyss Token kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von ABYSS-„Walen“, großen Inhabern von Abyss Token, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Abyss Token-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


