SKALE Preisvorhersage bis zu $0.011581 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.003879 | $0.011581 |
| 2027 | $0.003735 | $0.009812 |
| 2028 | $0.00674 | $0.01651 |
| 2029 | $0.0148075 | $0.04871 |
| 2030 | $0.012593 | $0.03641 |
| 2031 | $0.014889 | $0.033238 |
| 2032 | $0.022726 | $0.061656 |
| 2033 | $0.052812 | $0.164229 |
| 2034 | $0.042458 | $0.095112 |
| 2035 | $0.050199 | $0.112066 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in SKALE eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.53 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige SKALE Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'SKALE'
'name_with_ticker' => 'SKALE <small>SKL</small>'
'name_lang' => 'SKALE'
'name_lang_with_ticker' => 'SKALE <small>SKL</small>'
'name_with_lang' => 'SKALE'
'name_with_lang_with_ticker' => 'SKALE <small>SKL</small>'
'image' => '/uploads/coins/skale.png?1717117469'
'price_for_sd' => 0.01122
'ticker' => 'SKL'
'marketcap' => '$67.77M'
'low24h' => '$0.01071'
'high24h' => '$0.01144'
'volume24h' => '$7.59M'
'current_supply' => '6.06B'
'max_supply' => '6.08B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01122'
'change_24h_pct' => '2.989%'
'ath_price' => '$1.22'
'ath_days' => 1761
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12.03.2021'
'ath_pct' => '-99.08%'
'fdv' => '$67.92M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-67.51%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.55371'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.011325'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.009925'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003879'
'current_year_max_price_prediction' => '$0.011581'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.012593'
'grand_prediction_max_price' => '$0.03641'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.011442690508578
107 => 0.01148541336124
108 => 0.011581670129772
109 => 0.010759166581634
110 => 0.011128446527312
111 => 0.011345363898547
112 => 0.010365323323789
113 => 0.011325991647454
114 => 0.010744848624766
115 => 0.010547599954391
116 => 0.010813169303515
117 => 0.010709676669887
118 => 0.010620699780784
119 => 0.010571049147848
120 => 0.010766053968026
121 => 0.010756956760083
122 => 0.010437891025468
123 => 0.010021682781446
124 => 0.01016137592971
125 => 0.010110624099315
126 => 0.0099266929188496
127 => 0.010050640326548
128 => 0.009504838671391
129 => 0.0085658152919944
130 => 0.0091861628994878
131 => 0.0091622801914076
201 => 0.0091502374469991
202 => 0.0096164115288818
203 => 0.0095715996473747
204 => 0.0094902656436401
205 => 0.0099251991560881
206 => 0.0097664425733633
207 => 0.010255692953566
208 => 0.010577944896698
209 => 0.010496211380161
210 => 0.010799290890256
211 => 0.010164594177705
212 => 0.010375414966002
213 => 0.010418864838285
214 => 0.0099198321440575
215 => 0.0095789314253871
216 => 0.0095561972340046
217 => 0.008965122366843
218 => 0.0092808697898911
219 => 0.0095587144556572
220 => 0.0094256484223723
221 => 0.009383523691469
222 => 0.0095987298059147
223 => 0.0096154531641229
224 => 0.0092341588247148
225 => 0.0093134419918991
226 => 0.0096440659787875
227 => 0.0093051111157233
228 => 0.0086465771847521
301 => 0.0084832516649273
302 => 0.0084614610298961
303 => 0.008018509266621
304 => 0.0084941658571334
305 => 0.0082865290085706
306 => 0.0089424513253089
307 => 0.00856779201577
308 => 0.0085516412017578
309 => 0.0085272268775691
310 => 0.0081459599968114
311 => 0.008229433212923
312 => 0.0085069108966079
313 => 0.0086059180601565
314 => 0.0085955908018566
315 => 0.0085055511045804
316 => 0.0085467708169156
317 => 0.0084139877615841
318 => 0.0083670993011063
319 => 0.0082191064221512
320 => 0.0080015977741634
321 => 0.0080318436857241
322 => 0.0076009021398266
323 => 0.0073661023138228
324 => 0.0073011128165969
325 => 0.0072142061448083
326 => 0.0073109291564252
327 => 0.0075996813365721
328 => 0.0072513849451226
329 => 0.0066542552121336
330 => 0.0066901437265458
331 => 0.0067707745630344
401 => 0.0066205195326642
402 => 0.0064783157563677
403 => 0.0066019504025005
404 => 0.0063489386628109
405 => 0.0068013498229981
406 => 0.0067891133689826
407 => 0.0069577442725819
408 => 0.0070631926372571
409 => 0.0068201682959943
410 => 0.0067590483313744
411 => 0.0067938650409694
412 => 0.0062184223865431
413 => 0.0069107183310157
414 => 0.0069167053350917
415 => 0.0068654409713773
416 => 0.0072340671895696
417 => 0.0080119834873562
418 => 0.0077193000845183
419 => 0.0076059642245368
420 => 0.007390512671864
421 => 0.0076775890735532
422 => 0.0076555460849929
423 => 0.0075558593311684
424 => 0.0074955684714137
425 => 0.0076066562291304
426 => 0.0074818034688788
427 => 0.0074593764824132
428 => 0.0073234933452336
429 => 0.0072749892475494
430 => 0.0072390787446277
501 => 0.007199544809404
502 => 0.0072867468192645
503 => 0.0070891355925409
504 => 0.0068508358251796
505 => 0.0068310237779627
506 => 0.0068857265822215
507 => 0.0068615246634818
508 => 0.0068309079084869
509 => 0.0067724521852247
510 => 0.0067551096208416
511 => 0.0068114645416703
512 => 0.0067478431217507
513 => 0.0068417199924801
514 => 0.0068161906780859
515 => 0.006673586003148
516 => 0.0064958477791625
517 => 0.0064942655361504
518 => 0.0064559721273419
519 => 0.0064071997137716
520 => 0.006393632344078
521 => 0.0065915382374482
522 => 0.0070011975138997
523 => 0.0069207715956166
524 => 0.0069788875639557
525 => 0.0072647606086964
526 => 0.0073556310531171
527 => 0.0072911333640518
528 => 0.0072028449492149
529 => 0.0072067291913964
530 => 0.0075084374316147
531 => 0.0075272546044743
601 => 0.0075747995296404
602 => 0.007635908194673
603 => 0.0073015404339482
604 => 0.0071909804999355
605 => 0.0071385910695686
606 => 0.0069772519013
607 => 0.0071512423621028
608 => 0.0070498655716074
609 => 0.0070635447641695
610 => 0.0070546361720681
611 => 0.0070595008657518
612 => 0.0068012233648586
613 => 0.0068953261115183
614 => 0.0067388620436687
615 => 0.0065293742207339
616 => 0.0065286719440956
617 => 0.0065799437919777
618 => 0.0065494452905898
619 => 0.0064673746075432
620 => 0.0064790323607073
621 => 0.0063768981761257
622 => 0.0064914332999146
623 => 0.0064947177574384
624 => 0.0064506154960094
625 => 0.0066270726570075
626 => 0.0066993672998438
627 => 0.0066703382466092
628 => 0.0066973305440833
629 => 0.0069241136556225
630 => 0.0069610891980443
701 => 0.0069775112915208
702 => 0.0069555078617727
703 => 0.0067014757230506
704 => 0.006712743128631
705 => 0.0066300703825232
706 => 0.0065602206239014
707 => 0.0065630142479325
708 => 0.0065989261036972
709 => 0.0067557552840237
710 => 0.0070857930484357
711 => 0.0070983177403407
712 => 0.0071134980323005
713 => 0.0070517521558963
714 => 0.0070331290087443
715 => 0.0070576977468799
716 => 0.0071816425786318
717 => 0.0075004623365912
718 => 0.0073877701408727
719 => 0.007296149631595
720 => 0.0073765255189435
721 => 0.0073641522810932
722 => 0.0072597097016505
723 => 0.0072567783463023
724 => 0.0070563196440392
725 => 0.0069822146260363
726 => 0.0069202869263287
727 => 0.0068526634949114
728 => 0.0068125740580094
729 => 0.0068741696534142
730 => 0.0068882572948609
731 => 0.0067535774490015
801 => 0.00673522108367
802 => 0.0068452035530652
803 => 0.0067968043688441
804 => 0.0068465841300575
805 => 0.0068581334616619
806 => 0.0068562737532699
807 => 0.0068057394463322
808 => 0.0068379485066196
809 => 0.0067617644770569
810 => 0.0066789257873788
811 => 0.0066260798643969
812 => 0.0065799647876007
813 => 0.0066055521124312
814 => 0.0065143379714713
815 => 0.0064851567320003
816 => 0.006827036801721
817 => 0.0070795872850538
818 => 0.0070759151010052
819 => 0.0070535616250182
820 => 0.0070203488939386
821 => 0.007179212860484
822 => 0.0071238678311249
823 => 0.0071641359642156
824 => 0.0071743858941354
825 => 0.0072054093449213
826 => 0.0072164975620215
827 => 0.0071829812686826
828 => 0.0070704964945668
829 => 0.0067901951322015
830 => 0.0066597140913614
831 => 0.0066166531745506
901 => 0.0066182183570923
902 => 0.0065750436353083
903 => 0.006587760525829
904 => 0.006570621219758
905 => 0.006538163520503
906 => 0.0066035479409656
907 => 0.0066110828863259
908 => 0.0065958213813043
909 => 0.0065994160182115
910 => 0.0064730572749064
911 => 0.0064826640557231
912 => 0.006429172279365
913 => 0.0064191432161508
914 => 0.0062839206635791
915 => 0.006044354310876
916 => 0.0061770973255421
917 => 0.0060167624303179
918 => 0.0059560411760264
919 => 0.0062434861497499
920 => 0.0062146346468706
921 => 0.006165253415388
922 => 0.0060922082820749
923 => 0.0060651151315917
924 => 0.0059005057259049
925 => 0.0058907797240599
926 => 0.0059723645903461
927 => 0.0059347159817189
928 => 0.0058818430765632
929 => 0.0056903427737296
930 => 0.0054750330297733
1001 => 0.0054815318775545
1002 => 0.0055500179011268
1003 => 0.0057491502512619
1004 => 0.0056713457970395
1005 => 0.0056148977727979
1006 => 0.0056043267546788
1007 => 0.0057366451783645
1008 => 0.0059239034694464
1009 => 0.006011760869954
1010 => 0.0059246968543199
1011 => 0.005824682401019
1012 => 0.0058307698173691
1013 => 0.0058712666711356
1014 => 0.0058755223178717
1015 => 0.0058104231904248
1016 => 0.0058287482134808
1017 => 0.0058009108277835
1018 => 0.005630072843143
1019 => 0.005626982925734
1020 => 0.0055850565291685
1021 => 0.0055837870145432
1022 => 0.0055124597549556
1023 => 0.0055024805782773
1024 => 0.005360855975111
1025 => 0.0054540737177938
1026 => 0.0053915481501533
1027 => 0.0052973073714288
1028 => 0.0052810602256552
1029 => 0.0052805718168342
1030 => 0.0053773360247318
1031 => 0.0054529429716857
1101 => 0.005392635809172
1102 => 0.0053789050372728
1103 => 0.005525513758527
1104 => 0.0055068564623793
1105 => 0.005490699364242
1106 => 0.005907136543347
1107 => 0.005577494021087
1108 => 0.0054337510660444
1109 => 0.0052558418631322
1110 => 0.0053137699966965
1111 => 0.0053259763055798
1112 => 0.0048981367431203
1113 => 0.0047245622859145
1114 => 0.0046649980732168
1115 => 0.004630718026695
1116 => 0.0046463398743568
1117 => 0.0044901025046183
1118 => 0.0045950966010101
1119 => 0.0044598082452327
1120 => 0.0044371267121203
1121 => 0.0046790390512615
1122 => 0.0047126997400216
1123 => 0.0045690927842147
1124 => 0.0046613116976971
1125 => 0.0046278718377296
1126 => 0.0044621273757914
1127 => 0.0044557971564791
1128 => 0.0043726324116781
1129 => 0.0042424956899324
1130 => 0.0041830197160601
1201 => 0.0041520441124734
1202 => 0.0041648252502158
1203 => 0.004158362715864
1204 => 0.0041161903077917
1205 => 0.0041607799889294
1206 => 0.004046871779351
1207 => 0.004001512612476
1208 => 0.0039810249291233
1209 => 0.0038799248368105
1210 => 0.0040408200430952
1211 => 0.0040725184256377
1212 => 0.004104279263786
1213 => 0.0043807356758212
1214 => 0.0043669246947336
1215 => 0.0044917692375447
1216 => 0.0044869180081854
1217 => 0.0044513103222282
1218 => 0.0043010873523548
1219 => 0.0043609635506793
1220 => 0.0041766739190635
1221 => 0.0043147562415469
1222 => 0.0042517412360211
1223 => 0.0042934508047913
1224 => 0.0042184532393424
1225 => 0.0042599599886354
1226 => 0.004080035288071
1227 => 0.0039120241342929
1228 => 0.0039796367271246
1229 => 0.0040531393479704
1230 => 0.0042125117580838
1231 => 0.0041175908654141
]
'min_raw' => 0.0038799248368105
'max_raw' => 0.011581670129772
'avg_raw' => 0.007730797483291
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003879'
'max' => '$0.011581'
'avg' => '$0.00773'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0073499651631895
'max_diff' => 0.00035178012977151
'year' => 2026
]
1 => [
'items' => [
101 => 0.0041517280077745
102 => 0.0040373742953559
103 => 0.0038014299231134
104 => 0.0038027653426368
105 => 0.0037664704412948
106 => 0.003735106347393
107 => 0.0041284936717791
108 => 0.0040795697394584
109 => 0.0040016158563113
110 => 0.0041059602266679
111 => 0.004133550534358
112 => 0.0041343359916305
113 => 0.0042104629507247
114 => 0.0042510919224397
115 => 0.0042582529548005
116 => 0.004378040369767
117 => 0.0044181915312295
118 => 0.0045835684828887
119 => 0.0042476448380485
120 => 0.0042407267116437
121 => 0.0041074285659424
122 => 0.0040228887745783
123 => 0.004113217077784
124 => 0.0041932356233813
125 => 0.0041099149652049
126 => 0.0041207948841676
127 => 0.0040089437081137
128 => 0.004048925240466
129 => 0.0040833627222218
130 => 0.0040643483689379
131 => 0.0040358829617667
201 => 0.0041866750151618
202 => 0.0041781667365504
203 => 0.0043185877633663
204 => 0.0044280559953732
205 => 0.0046242426369167
206 => 0.0044195116490251
207 => 0.0044120504380944
208 => 0.0044849849717582
209 => 0.0044181803653324
210 => 0.0044603985705769
211 => 0.0046174406313609
212 => 0.0046207586826416
213 => 0.0045651770486218
214 => 0.0045617949011404
215 => 0.0045724699619504
216 => 0.0046349941265437
217 => 0.0046131462622613
218 => 0.0046384291639292
219 => 0.0046700458196104
220 => 0.0048008257126921
221 => 0.0048323563021608
222 => 0.004755753316488
223 => 0.004762669708407
224 => 0.0047340180889664
225 => 0.0047063409835906
226 => 0.0047685550745589
227 => 0.0048822525486245
228 => 0.0048815452425393
301 => 0.0049079208465594
302 => 0.0049243526293567
303 => 0.0048538153887907
304 => 0.0048078982389085
305 => 0.0048255057959575
306 => 0.0048536606631215
307 => 0.004816375551998
308 => 0.0045862345739999
309 => 0.0046560446452619
310 => 0.0046444248358658
311 => 0.0046278768142687
312 => 0.004698071380748
313 => 0.0046913009435703
314 => 0.0044885000645698
315 => 0.0045014827188576
316 => 0.004489289582777
317 => 0.0045286880999344
318 => 0.004416052716111
319 => 0.0044506986015642
320 => 0.0044724281761355
321 => 0.0044852270624924
322 => 0.0045314654162921
323 => 0.0045260398791548
324 => 0.0045311281572858
325 => 0.004599687429498
326 => 0.004946436701646
327 => 0.0049653094994699
328 => 0.0048723729405836
329 => 0.0049094992627661
330 => 0.0048382248428099
331 => 0.0048860718384236
401 => 0.0049188075376406
402 => 0.0047708812075919
403 => 0.0047621219703604
404 => 0.0046905533755193
405 => 0.0047290102845345
406 => 0.0046678225771417
407 => 0.0046828359002807
408 => 0.0046408573399459
409 => 0.0047164103907005
410 => 0.0048008904412013
411 => 0.0048222334381761
412 => 0.0047660892018734
413 => 0.0047254370747047
414 => 0.0046540653310397
415 => 0.0047727581313777
416 => 0.004807467523294
417 => 0.0047725758177182
418 => 0.0047644906471374
419 => 0.0047491692634965
420 => 0.0047677411511057
421 => 0.0048072784884914
422 => 0.0047886334103203
423 => 0.0048009488129363
424 => 0.004754015197752
425 => 0.0048538387395524
426 => 0.0050123825477749
427 => 0.0050128922920429
428 => 0.0049942471133678
429 => 0.00498661790797
430 => 0.0050057489927746
501 => 0.005016126821483
502 => 0.0050779932417002
503 => 0.0051443783754603
504 => 0.0054541688286154
505 => 0.0053671809090159
506 => 0.0056420454285717
507 => 0.0058594275768493
508 => 0.0059246109781485
509 => 0.0058646453160693
510 => 0.0056595060253777
511 => 0.0056494409131077
512 => 0.0059560056209755
513 => 0.0058693870494497
514 => 0.0058590840459847
515 => 0.0057494774963163
516 => 0.0058142685422056
517 => 0.0058000977900423
518 => 0.0057777285644957
519 => 0.005901345366669
520 => 0.0061327449849895
521 => 0.0060966791844224
522 => 0.0060697577373434
523 => 0.0059517957929585
524 => 0.0060228352312323
525 => 0.0059975394479338
526 => 0.0061062261860849
527 => 0.0060418425701102
528 => 0.0058687308285787
529 => 0.0058962994440013
530 => 0.0058921325032405
531 => 0.0059778878488248
601 => 0.0059521462226589
602 => 0.0058871060375933
603 => 0.0061319540862504
604 => 0.006116055015887
605 => 0.0061385962626288
606 => 0.0061485196165558
607 => 0.0062975543090668
608 => 0.0063586090540103
609 => 0.0063724695500262
610 => 0.0064304668355791
611 => 0.0063710265247274
612 => 0.0066088301483579
613 => 0.006766955681846
614 => 0.0069506266260581
615 => 0.0072190192416476
616 => 0.0073199373478797
617 => 0.0073017073952718
618 => 0.0075051996132892
619 => 0.0078708706056885
620 => 0.0073756199577695
621 => 0.0078971200925908
622 => 0.007732019170915
623 => 0.0073405678556603
624 => 0.0073153630058658
625 => 0.0075804583813994
626 => 0.0081684144098487
627 => 0.0080211380932642
628 => 0.0081686553011423
629 => 0.0079965686423147
630 => 0.0079880230892437
701 => 0.0081602974362277
702 => 0.0085628258381417
703 => 0.0083715996829439
704 => 0.0080974300988909
705 => 0.0082998726532044
706 => 0.0081244981774841
707 => 0.0077293303994611
708 => 0.0080210254738405
709 => 0.0078259772846005
710 => 0.0078829027155528
711 => 0.0082928649981069
712 => 0.0082435372516443
713 => 0.0083073719231932
714 => 0.0081947053987536
715 => 0.0080894570990469
716 => 0.0078930033318029
717 => 0.0078348430563756
718 => 0.0078509164641162
719 => 0.007834835091193
720 => 0.0077249210139233
721 => 0.0077011850794019
722 => 0.0076616241486378
723 => 0.007673885735309
724 => 0.007599499611514
725 => 0.0077398815960727
726 => 0.0077659377294486
727 => 0.0078680960309244
728 => 0.0078787024446808
729 => 0.0081632118601585
730 => 0.0080065088550999
731 => 0.0081116387599797
801 => 0.0081022349517662
802 => 0.0073490517926461
803 => 0.0074528337865816
804 => 0.0076142860005614
805 => 0.0075415519970068
806 => 0.0074387231331163
807 => 0.0073556833121898
808 => 0.0072298694922286
809 => 0.0074069500277836
810 => 0.007639792101623
811 => 0.0078846077039213
812 => 0.008178737609129
813 => 0.0081130912383361
814 => 0.0078791091499359
815 => 0.0078896054154975
816 => 0.0079544891990711
817 => 0.0078704588040299
818 => 0.0078456766000641
819 => 0.0079510845048029
820 => 0.0079518103911116
821 => 0.0078551232662042
822 => 0.0077476732204267
823 => 0.0077472230008116
824 => 0.0077281033030098
825 => 0.007999969994079
826 => 0.0081494691853443
827 => 0.0081666090266928
828 => 0.0081483155374584
829 => 0.0081553559754221
830 => 0.0080683656900147
831 => 0.0082671996862882
901 => 0.0084496694239129
902 => 0.0084007636363321
903 => 0.0083274469083812
904 => 0.0082690466031562
905 => 0.0083870063804095
906 => 0.0083817538172143
907 => 0.0084480757099379
908 => 0.0084450669657901
909 => 0.0084227654077597
910 => 0.008400764432791
911 => 0.0084879958116646
912 => 0.0084628745754421
913 => 0.0084377143190011
914 => 0.008387251572866
915 => 0.0083941102981632
916 => 0.008320806229379
917 => 0.0082868924129935
918 => 0.0077769099851786
919 => 0.00764062601631
920 => 0.007683503727232
921 => 0.0076976201829869
922 => 0.0076383092250826
923 => 0.0077233459029824
924 => 0.0077100930268078
925 => 0.0077616522153297
926 => 0.007729440272781
927 => 0.0077307622621392
928 => 0.0078254907168648
929 => 0.0078529907902753
930 => 0.0078390040309859
1001 => 0.0078487998777542
1002 => 0.0080745410319598
1003 => 0.0080424478586275
1004 => 0.0080253989999354
1005 => 0.0080301216503071
1006 => 0.0080878033551516
1007 => 0.0081039510832037
1008 => 0.0080355320247661
1009 => 0.0080677988482512
1010 => 0.0082051868873808
1011 => 0.0082532649255866
1012 => 0.008406706944772
1013 => 0.0083415220478077
1014 => 0.008461171747322
1015 => 0.0088289341320408
1016 => 0.0091227281721754
1017 => 0.0088525430313154
1018 => 0.0093920583715773
1019 => 0.0098121484528503
1020 => 0.0097960246958344
1021 => 0.0097227722733058
1022 => 0.0092445108844492
1023 => 0.0088044076239478
1024 => 0.0091725726891287
1025 => 0.0091735112175937
1026 => 0.0091418855119852
1027 => 0.0089454609706004
1028 => 0.0091350503637199
1029 => 0.0091500992812582
1030 => 0.0091416758892669
1031 => 0.0089910776539289
1101 => 0.008761141983774
1102 => 0.008806070863334
1103 => 0.0088796652845777
1104 => 0.0087403356917588
1105 => 0.0086958114445755
1106 => 0.008778590491174
1107 => 0.0090453218270135
1108 => 0.0089948978130425
1109 => 0.0089935810382583
1110 => 0.0092093163531361
1111 => 0.0090548964262784
1112 => 0.0088066375603875
1113 => 0.0087439489226179
1114 => 0.0085214464906622
1115 => 0.0086751297129404
1116 => 0.0086806604985133
1117 => 0.0085964897682759
1118 => 0.0088134675512549
1119 => 0.0088114680627865
1120 => 0.009017456174844
1121 => 0.0094112280794961
1122 => 0.0092947703509519
1123 => 0.0091593426832198
1124 => 0.0091740674257042
1125 => 0.0093355615069967
1126 => 0.0092379184988959
1127 => 0.0092730316054002
1128 => 0.0093355083591046
1129 => 0.0093732021358249
1130 => 0.0091686438713084
1201 => 0.0091209515546967
1202 => 0.0090233898126378
1203 => 0.0089979377752107
1204 => 0.0090773997784252
1205 => 0.0090564643480122
1206 => 0.0086801956574021
1207 => 0.0086408734856941
1208 => 0.0086420794405613
1209 => 0.0085432019701342
1210 => 0.0083923900944209
1211 => 0.0087887146992863
1212 => 0.0087568842869563
1213 => 0.0087217459752222
1214 => 0.0087260502179132
1215 => 0.0088980812961981
1216 => 0.0087982945830152
1217 => 0.0090635939147327
1218 => 0.0090090563477594
1219 => 0.0089531200979824
1220 => 0.0089453880044034
1221 => 0.0089238573204958
1222 => 0.0088500205941621
1223 => 0.0087608583102149
1224 => 0.0087019856472481
1225 => 0.0080271217743654
1226 => 0.0081523725836699
1227 => 0.0082964622228042
1228 => 0.0083462013888304
1229 => 0.0082611191034971
1230 => 0.0088533801613698
1231 => 0.0089615919638126
]
'min_raw' => 0.003735106347393
'max_raw' => 0.0098121484528503
'avg_raw' => 0.0067736274001216
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003735'
'max' => '$0.009812'
'avg' => '$0.006773'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00014481848941749
'max_diff' => -0.0017695216769213
'year' => 2027
]
2 => [
'items' => [
101 => 0.0086338113557319
102 => 0.008572496987154
103 => 0.008857399921166
104 => 0.0086855686239896
105 => 0.0087629442465867
106 => 0.0085957004727344
107 => 0.0089355269094156
108 => 0.0089329380013331
109 => 0.0088007378421359
110 => 0.0089124725114218
111 => 0.0088930558629782
112 => 0.0087438022088392
113 => 0.0089402585164707
114 => 0.0089403559563483
115 => 0.0088131161774004
116 => 0.0086645279719584
117 => 0.0086379639103221
118 => 0.0086179514582588
119 => 0.0087580224101648
120 => 0.0088836095876532
121 => 0.0091172961892575
122 => 0.0091760505531576
123 => 0.0094053727469589
124 => 0.0092688225460452
125 => 0.0093293534814891
126 => 0.009395068374537
127 => 0.0094265745108494
128 => 0.0093752369524409
129 => 0.0097314687121951
130 => 0.0097615455873774
131 => 0.0097716301034621
201 => 0.0096515107583884
202 => 0.0097582048510966
203 => 0.0097082862184554
204 => 0.0098381606327923
205 => 0.0098585265992801
206 => 0.0098412773502052
207 => 0.0098477418294233
208 => 0.0095437608660619
209 => 0.0095279978494842
210 => 0.0093130679999557
211 => 0.0094006535023198
212 => 0.0092369166037325
213 => 0.0092888392609515
214 => 0.0093117262735164
215 => 0.009299771396979
216 => 0.0094056054552113
217 => 0.0093156248852442
218 => 0.0090781513669258
219 => 0.0088406131491062
220 => 0.0088376310502759
221 => 0.0087750914304218
222 => 0.0087298867399699
223 => 0.0087385947670735
224 => 0.0087692829903923
225 => 0.0087281030846425
226 => 0.0087368909054085
227 => 0.0088828272830664
228 => 0.0089120937828351
229 => 0.0088126347814615
301 => 0.0084132925390811
302 => 0.0083152929511267
303 => 0.008385733111532
304 => 0.0083520672517856
305 => 0.0067407701243134
306 => 0.0071193204837049
307 => 0.00689439871451
308 => 0.006998053013908
309 => 0.0067684661307698
310 => 0.0068780370250829
311 => 0.0068578032817916
312 => 0.0074665010575737
313 => 0.0074569970790412
314 => 0.0074615461306253
315 => 0.0072444080460246
316 => 0.0075903149107351
317 => 0.0077607210707001
318 => 0.0077291834257036
319 => 0.0077371207714973
320 => 0.0076007308730766
321 => 0.0074628666829756
322 => 0.0073099540790068
323 => 0.0075940467966118
324 => 0.0075624605360385
325 => 0.0076349080534157
326 => 0.0078191624881494
327 => 0.0078462946535784
328 => 0.0078827605590623
329 => 0.0078696901277663
330 => 0.0081810808283514
331 => 0.0081433693598885
401 => 0.0082342431485541
402 => 0.0080473088706581
403 => 0.0078357749912543
404 => 0.0078759806661655
405 => 0.0078721085363579
406 => 0.007822811879684
407 => 0.0077783090622412
408 => 0.00770422440979
409 => 0.0079386392126111
410 => 0.0079291223997082
411 => 0.0080831885385204
412 => 0.0080559558519667
413 => 0.0078740893061925
414 => 0.0078805847054538
415 => 0.0079242693870691
416 => 0.0080754625689226
417 => 0.0081203469993135
418 => 0.0080995547428211
419 => 0.0081487684716926
420 => 0.0081876649963873
421 => 0.0081536532763329
422 => 0.0086351875079341
423 => 0.0084352209225238
424 => 0.0085326832448942
425 => 0.0085559274344982
426 => 0.0084963879316002
427 => 0.008509299917829
428 => 0.0085288580586601
429 => 0.0086476112599094
430 => 0.0089592540215034
501 => 0.0090972784791894
502 => 0.0095125318701444
503 => 0.0090858174693718
504 => 0.0090604980027497
505 => 0.0091352976779117
506 => 0.0093790953774378
507 => 0.0095766705141503
508 => 0.0096422175853808
509 => 0.0096508807129082
510 => 0.0097738513760237
511 => 0.0098443358668544
512 => 0.0097589195030719
513 => 0.0096865380782324
514 => 0.0094272767987702
515 => 0.009457286997813
516 => 0.0096640275095352
517 => 0.0099560606592982
518 => 0.010206655482665
519 => 0.010118905909634
520 => 0.010788373210322
521 => 0.010854748158657
522 => 0.010845577286956
523 => 0.010996789297179
524 => 0.010696664250677
525 => 0.010568354978648
526 => 0.0097021877638467
527 => 0.0099455454207044
528 => 0.010299280066841
529 => 0.010252461959988
530 => 0.0099955704046094
531 => 0.010206460607385
601 => 0.010136733711201
602 => 0.010081737215209
603 => 0.010333686824943
604 => 0.010056657879521
605 => 0.010296516491194
606 => 0.0099888953407036
607 => 0.010119306742292
608 => 0.010045278923461
609 => 0.010093183994753
610 => 0.0098131319268409
611 => 0.0099642412248064
612 => 0.0098068452832443
613 => 0.0098067706570744
614 => 0.0098032961329408
615 => 0.0099884717601881
616 => 0.0099945103307446
617 => 0.009857665262424
618 => 0.0098379437501572
619 => 0.0099108645174704
620 => 0.0098254933969259
621 => 0.0098654380069092
622 => 0.0098267032784701
623 => 0.0098179832752202
624 => 0.0097485008057391
625 => 0.0097185658474264
626 => 0.0097303041159096
627 => 0.009690235354084
628 => 0.0096660924757337
629 => 0.0097984935067694
630 => 0.0097277569769294
701 => 0.0097876521190668
702 => 0.0097193940452316
703 => 0.0094827818226919
704 => 0.0093467036313804
705 => 0.0088997650769674
706 => 0.0090265162965734
707 => 0.0091105524863058
708 => 0.0090827785261005
709 => 0.0091424477397172
710 => 0.00914611094482
711 => 0.0091267118752176
712 => 0.0091042502377927
713 => 0.0090933171549008
714 => 0.0091748033974707
715 => 0.0092221089039833
716 => 0.0091189866422046
717 => 0.0090948265391036
718 => 0.009199088839298
719 => 0.0092626887821862
720 => 0.0097322750267518
721 => 0.0096974865610108
722 => 0.0097847987831291
723 => 0.0097749687668339
724 => 0.0098664858855416
725 => 0.010016077696609
726 => 0.0097119157181811
727 => 0.0097647077205063
728 => 0.0097517643406815
729 => 0.0098930767676717
730 => 0.009893517929644
731 => 0.0098087940705841
801 => 0.0098547242490681
802 => 0.0098290872834669
803 => 0.0098754167453521
804 => 0.0096970219398413
805 => 0.0099142875564241
806 => 0.01003746316074
807 => 0.010039173454125
808 => 0.010097557712988
809 => 0.010156879501382
810 => 0.010270742508364
811 => 0.010153703923916
812 => 0.0099431629039711
813 => 0.0099583632855678
814 => 0.0098349231626079
815 => 0.0098369982133761
816 => 0.0098259214297506
817 => 0.0098591636912321
818 => 0.0097043167468619
819 => 0.009740659015202
820 => 0.0096897796267059
821 => 0.0097645971186522
822 => 0.0096841058650925
823 => 0.0097517580989918
824 => 0.0097809545604357
825 => 0.0098886901317186
826 => 0.0096681932336169
827 => 0.0092185851320599
828 => 0.0093130982059785
829 => 0.0091733059458111
830 => 0.0091862442517163
831 => 0.0092123816887608
901 => 0.0091276617036622
902 => 0.0091438236069855
903 => 0.0091432461900692
904 => 0.0091382703230306
905 => 0.0091162313828655
906 => 0.0090842705593545
907 => 0.0092115926431995
908 => 0.0092332271462784
909 => 0.0092813179666749
910 => 0.0094244036278597
911 => 0.0094101059961151
912 => 0.0094334260266936
913 => 0.0093825185308771
914 => 0.009188605704441
915 => 0.0091991361038592
916 => 0.0090678218543756
917 => 0.0092779599660809
918 => 0.0092281964875415
919 => 0.0091961136491966
920 => 0.0091873595495088
921 => 0.0093307998923719
922 => 0.0093737194911084
923 => 0.0093469748774029
924 => 0.009292120894428
925 => 0.0093974567578642
926 => 0.0094256401911564
927 => 0.0094319494225055
928 => 0.009618584376366
929 => 0.0094423802431706
930 => 0.0094847943293492
1001 => 0.0098156969220796
1002 => 0.0095156139319096
1003 => 0.0096745745844519
1004 => 0.0096667942877013
1005 => 0.0097481131786067
1006 => 0.0096601237651264
1007 => 0.0096612144993609
1008 => 0.0097334201654661
1009 => 0.0096320203297818
1010 => 0.0096069123044773
1011 => 0.0095722257473462
1012 => 0.0096479625758597
1013 => 0.0096933633792714
1014 => 0.010059260511554
1015 => 0.010295646745945
1016 => 0.010285384596086
1017 => 0.01037916143586
1018 => 0.010336914110644
1019 => 0.010200486353242
1020 => 0.010433351899535
1021 => 0.01035966349718
1022 => 0.010365738279539
1023 => 0.010365512175836
1024 => 0.01041450852145
1025 => 0.010379790120133
1026 => 0.010311356587367
1027 => 0.010356785960076
1028 => 0.010491694955726
1029 => 0.010910456617737
1030 => 0.011144801191653
1031 => 0.010896348780136
1101 => 0.01106772792669
1102 => 0.010964961507391
1103 => 0.010946285791968
1104 => 0.011053924560824
1105 => 0.011161751737095
1106 => 0.011154883612116
1107 => 0.01107660661913
1108 => 0.011032389931997
1109 => 0.011367213500643
1110 => 0.01161390580245
1111 => 0.011597083041313
1112 => 0.011671333237917
1113 => 0.011889334111619
1114 => 0.011909265379434
1115 => 0.011906754497805
1116 => 0.011857352770911
1117 => 0.012072002942062
1118 => 0.012251067891245
1119 => 0.011845917698489
1120 => 0.012000193588085
1121 => 0.012069453005383
1122 => 0.012171146378321
1123 => 0.012342720144254
1124 => 0.012529094761752
1125 => 0.01255545017616
1126 => 0.012536749748415
1127 => 0.012413830678156
1128 => 0.012617764008534
1129 => 0.012737223370644
1130 => 0.012808358687002
1201 => 0.012988746013497
1202 => 0.012069880727966
1203 => 0.0114194622083
1204 => 0.011317889964296
1205 => 0.011524441116608
1206 => 0.011578907008258
1207 => 0.011556951875628
1208 => 0.010824846698279
1209 => 0.01131403558205
1210 => 0.011840361688818
1211 => 0.01186058001811
1212 => 0.012124069872118
1213 => 0.012209872969397
1214 => 0.012422016838278
1215 => 0.012408747181519
1216 => 0.012460400837645
1217 => 0.012448526556618
1218 => 0.012841478401559
1219 => 0.013274962640441
1220 => 0.013259952459644
1221 => 0.013197633971552
1222 => 0.01329018755325
1223 => 0.013737589742772
1224 => 0.013696400118634
1225 => 0.01373641232996
1226 => 0.014263924725888
1227 => 0.014949765878357
1228 => 0.014631123805709
1229 => 0.015322485416569
1230 => 0.015757660903101
1231 => 0.016510251909073
]
'min_raw' => 0.0067407701243134
'max_raw' => 0.016510251909073
'avg_raw' => 0.011625511016693
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00674'
'max' => '$0.01651'
'avg' => '$0.011625'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0030056637769204
'max_diff' => 0.0066981034562228
'year' => 2028
]
3 => [
'items' => [
101 => 0.016416023808536
102 => 0.016709001964393
103 => 0.016247335842578
104 => 0.015187257108773
105 => 0.01501949559133
106 => 0.015355358397649
107 => 0.016181044333971
108 => 0.015329354609147
109 => 0.015501650331236
110 => 0.015452029151684
111 => 0.015449385049902
112 => 0.015550299660579
113 => 0.01540391775444
114 => 0.014807531535229
115 => 0.015080851824967
116 => 0.014975309735181
117 => 0.015092416552483
118 => 0.015724393746936
119 => 0.015444981564814
120 => 0.01515064352855
121 => 0.015519808744864
122 => 0.015989882924162
123 => 0.015960466526826
124 => 0.015903386420894
125 => 0.016225143989416
126 => 0.016756593226492
127 => 0.016900241819737
128 => 0.017006280274505
129 => 0.017020901185883
130 => 0.017171505659923
131 => 0.016361667445795
201 => 0.017646901489737
202 => 0.017868825905252
203 => 0.01782711331296
204 => 0.018073772960797
205 => 0.018001199435252
206 => 0.017896051783174
207 => 0.018287059791009
208 => 0.017838800662746
209 => 0.017202553264432
210 => 0.01685349535817
211 => 0.017313162966833
212 => 0.017593865935256
213 => 0.017779392741321
214 => 0.017835533040738
215 => 0.016424532881044
216 => 0.015664082052626
217 => 0.016151522315056
218 => 0.01674623307655
219 => 0.016358363797487
220 => 0.016373567538893
221 => 0.015820567877204
222 => 0.016795161275986
223 => 0.016653171215404
224 => 0.017389815900878
225 => 0.017214009734747
226 => 0.017814714879369
227 => 0.017656529082969
228 => 0.01831314947978
301 => 0.018575093133355
302 => 0.019014937295982
303 => 0.019338488452499
304 => 0.019528483880153
305 => 0.019517077267332
306 => 0.020269933807043
307 => 0.019826000608379
308 => 0.019268315883836
309 => 0.019258229126642
310 => 0.019547061947936
311 => 0.020152376303955
312 => 0.020309325509505
313 => 0.020397038704003
314 => 0.020262702893311
315 => 0.01978084522314
316 => 0.019572781524235
317 => 0.019750057823888
318 => 0.019533264142938
319 => 0.019907510857821
320 => 0.02042143153214
321 => 0.020315308945156
322 => 0.020670060842657
323 => 0.021037191735583
324 => 0.021562205401347
325 => 0.021699463414777
326 => 0.021926345691523
327 => 0.02215988208124
328 => 0.022234887675634
329 => 0.022378096628203
330 => 0.022377341846333
331 => 0.022808911663974
401 => 0.023284946537436
402 => 0.023464638681935
403 => 0.023877830859929
404 => 0.023170253735096
405 => 0.023706959112342
406 => 0.024191080797225
407 => 0.023613890966513
408 => 0.024409412680167
409 => 0.024440300985617
410 => 0.02490667772563
411 => 0.024433915552654
412 => 0.024153190883452
413 => 0.024963632484823
414 => 0.025355779647056
415 => 0.025237661730392
416 => 0.024338778552379
417 => 0.023815589987863
418 => 0.022446304598986
419 => 0.024068282290837
420 => 0.0248583003108
421 => 0.024336732596562
422 => 0.024599781013841
423 => 0.026034887884784
424 => 0.02658128366495
425 => 0.02646763716227
426 => 0.026486841550442
427 => 0.026781666795635
428 => 0.028089084296048
429 => 0.0273056494241
430 => 0.027904556028959
501 => 0.028222213932658
502 => 0.028517272296881
503 => 0.027792702208503
504 => 0.026850047169572
505 => 0.026551468748776
506 => 0.024284872966357
507 => 0.024166886812555
508 => 0.02410065760908
509 => 0.023683091849476
510 => 0.023354999543315
511 => 0.02309408836017
512 => 0.022409379500921
513 => 0.022640448641078
514 => 0.021549165629281
515 => 0.022247329827533
516 => 0.020505615790755
517 => 0.021956166995896
518 => 0.021166697923408
519 => 0.021696805172881
520 => 0.021694955678627
521 => 0.02071886016169
522 => 0.020155868638115
523 => 0.020514628748895
524 => 0.020899248066065
525 => 0.02096165125626
526 => 0.021460320240562
527 => 0.021599488035226
528 => 0.02117780312027
529 => 0.020469522638672
530 => 0.020634040040389
531 => 0.020152534698221
601 => 0.019308715106905
602 => 0.019914761069064
603 => 0.020121691806506
604 => 0.020213084208744
605 => 0.01938328455402
606 => 0.019122543486679
607 => 0.018983727130256
608 => 0.020362405923425
609 => 0.020437933059906
610 => 0.020051525551207
611 => 0.02179812413119
612 => 0.021402815080317
613 => 0.021844472143211
614 => 0.020619111810573
615 => 0.020665922225447
616 => 0.020085817006706
617 => 0.020410637166556
618 => 0.020181064747016
619 => 0.020384394907575
620 => 0.020506270167453
621 => 0.021086280196636
622 => 0.021962789778746
623 => 0.020999646039906
624 => 0.020579990520421
625 => 0.020840342444477
626 => 0.021533693927015
627 => 0.022584156915068
628 => 0.021962261683603
629 => 0.022238248226861
630 => 0.022298539008776
701 => 0.021839976488907
702 => 0.022601064769263
703 => 0.023008938161775
704 => 0.023427331864987
705 => 0.023790611394361
706 => 0.02326021621925
707 => 0.023827815085781
708 => 0.023370430594045
709 => 0.022960109421418
710 => 0.022960731709263
711 => 0.022703331243839
712 => 0.022204585407533
713 => 0.022112609023184
714 => 0.022591081789903
715 => 0.022974771637272
716 => 0.023006374170852
717 => 0.023218804585052
718 => 0.023344518715968
719 => 0.02457668809902
720 => 0.025072276817923
721 => 0.025678273322384
722 => 0.025914343112963
723 => 0.026624828546901
724 => 0.02605105385619
725 => 0.025926914092643
726 => 0.024203508827922
727 => 0.024485716343473
728 => 0.024937557804845
729 => 0.024210959527196
730 => 0.024671818894495
731 => 0.024762802295936
801 => 0.024186269995758
802 => 0.024494220807773
803 => 0.023676394752113
804 => 0.021980616151899
805 => 0.022602952655609
806 => 0.023061201798541
807 => 0.022407223769865
808 => 0.023579454073822
809 => 0.022894661329995
810 => 0.022677614906051
811 => 0.021830839423607
812 => 0.022230484855943
813 => 0.022771011025549
814 => 0.022437028695645
815 => 0.023130092177896
816 => 0.024111654902044
817 => 0.024811174952342
818 => 0.024864875415829
819 => 0.024415130887691
820 => 0.025135849364263
821 => 0.025141099011539
822 => 0.024328125625743
823 => 0.023830183953598
824 => 0.023717050558009
825 => 0.0239996799613
826 => 0.024342844233162
827 => 0.024883918644615
828 => 0.025210878579442
829 => 0.026063416683319
830 => 0.026294089050046
831 => 0.026547528045586
901 => 0.02688620070132
902 => 0.027292864058415
903 => 0.026403107784449
904 => 0.026438459459927
905 => 0.025609930737124
906 => 0.024724528973771
907 => 0.025396438545268
908 => 0.026274870929615
909 => 0.026073357570065
910 => 0.026050683200571
911 => 0.026088815200714
912 => 0.025936880708423
913 => 0.02524968663075
914 => 0.024904582067004
915 => 0.0253498549998
916 => 0.025586497746762
917 => 0.025953510009885
918 => 0.025908268001766
919 => 0.02685365217733
920 => 0.027220999881021
921 => 0.027127016618722
922 => 0.027144311800819
923 => 0.027809377271538
924 => 0.028549066856123
925 => 0.029241883762725
926 => 0.029946646877298
927 => 0.029097027435307
928 => 0.028665643079906
929 => 0.029110721620469
930 => 0.028874556681912
1001 => 0.030231630469928
1002 => 0.030325591314609
1003 => 0.031682566970745
1004 => 0.032970498454072
1005 => 0.032161571765083
1006 => 0.032924353197941
1007 => 0.03374936350806
1008 => 0.035340942249378
1009 => 0.034804954521717
1010 => 0.034394396322328
1011 => 0.034006420807708
1012 => 0.034813736264254
1013 => 0.035852334701922
1014 => 0.036076038857823
1015 => 0.036438525051948
1016 => 0.036057415141529
1017 => 0.036516420050749
1018 => 0.038136909077276
1019 => 0.037699038637856
1020 => 0.037077192222694
1021 => 0.038356412675716
1022 => 0.038819357584822
1023 => 0.042068547403052
1024 => 0.046170783765906
1025 => 0.044472430974948
1026 => 0.043418208592099
1027 => 0.043665975858558
1028 => 0.045163973708807
1029 => 0.045645083074232
1030 => 0.044337261970664
1031 => 0.04479920649399
1101 => 0.047344566234902
1102 => 0.048710070070984
1103 => 0.046855532449952
1104 => 0.041738936705556
1105 => 0.037021201756778
1106 => 0.038272557507567
1107 => 0.038130692599518
1108 => 0.040865364101033
1109 => 0.037688595572689
1110 => 0.03774208420743
1111 => 0.040533305819529
1112 => 0.039788655747074
1113 => 0.038582417997272
1114 => 0.037030008627254
1115 => 0.03416023632629
1116 => 0.031618398969806
1117 => 0.036603527376055
1118 => 0.03638855957431
1119 => 0.036077254340939
1120 => 0.036770030451061
1121 => 0.040133954593881
1122 => 0.040056405254429
1123 => 0.039563075922857
1124 => 0.039937261872849
1125 => 0.038516821391075
1126 => 0.038882901246057
1127 => 0.037020454443458
1128 => 0.037862358180882
1129 => 0.038579829952809
1130 => 0.038723873033375
1201 => 0.039048409448911
1202 => 0.036275281311003
1203 => 0.037520334430159
1204 => 0.038251686491962
1205 => 0.034947411269918
1206 => 0.038186371594877
1207 => 0.036227007319775
1208 => 0.035561969656141
1209 => 0.036457355258174
1210 => 0.036108422618271
1211 => 0.035808430824494
1212 => 0.035641030249053
1213 => 0.036298502615084
1214 => 0.036267830743359
1215 => 0.035192078342646
1216 => 0.033788803189194
1217 => 0.034259788391629
1218 => 0.034088675052075
1219 => 0.033468538235469
1220 => 0.033886435574256
1221 => 0.032046227187239
1222 => 0.028880244303085
1223 => 0.030971789573036
1224 => 0.030891267355306
1225 => 0.030850664401735
1226 => 0.032422402866037
1227 => 0.032271316478871
1228 => 0.031997093206721
1229 => 0.033463501910027
1230 => 0.03292824300734
1231 => 0.034577784822564
]
'min_raw' => 0.014807531535229
'max_raw' => 0.048710070070984
'avg_raw' => 0.031758800803106
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0148075'
'max' => '$0.04871'
'avg' => '$0.031758'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0080667614109154
'max_diff' => 0.032199818161911
'year' => 2029
]
4 => [
'items' => [
101 => 0.035664279747745
102 => 0.035388709490291
103 => 0.03641056321891
104 => 0.034270638939437
105 => 0.034981435946217
106 => 0.035127930224193
107 => 0.033445406654253
108 => 0.032296036080328
109 => 0.032219386166831
110 => 0.030226535984667
111 => 0.031291100466254
112 => 0.03222787315538
113 => 0.031779231733786
114 => 0.031637205262491
115 => 0.032362787702555
116 => 0.032419171672342
117 => 0.031133611185907
118 => 0.031400919919443
119 => 0.032515641774667
120 => 0.031372831788773
121 => 0.029152538663133
122 => 0.02860187527002
123 => 0.028528406622639
124 => 0.027034963826852
125 => 0.028638673231047
126 => 0.027938611099376
127 => 0.030150098985293
128 => 0.028886908965305
129 => 0.028832455368249
130 => 0.028750140769693
131 => 0.027464672862015
201 => 0.027746108638049
202 => 0.028681644021466
203 => 0.029015453585829
204 => 0.028980634513445
205 => 0.028677059387707
206 => 0.028816034525714
207 => 0.028368347184047
208 => 0.028210259465898
209 => 0.027711291141968
210 => 0.026977945549308
211 => 0.027079921751838
212 => 0.025626972242466
213 => 0.024835328235894
214 => 0.024616211608575
215 => 0.02432319969701
216 => 0.024649308083661
217 => 0.02562285621906
218 => 0.02444855061801
219 => 0.022435286032971
220 => 0.022556286664968
221 => 0.022828139159655
222 => 0.02232154383429
223 => 0.021842093874156
224 => 0.022258936715488
225 => 0.021405889970409
226 => 0.022931225783319
227 => 0.022889969724284
228 => 0.023458520589202
301 => 0.023814047112874
302 => 0.022994673578889
303 => 0.022788603350914
304 => 0.022905990318138
305 => 0.020965845232617
306 => 0.023299969343965
307 => 0.023320154946207
308 => 0.02314731356478
309 => 0.024390162596076
310 => 0.027012961706445
311 => 0.026026159179275
312 => 0.02564403941449
313 => 0.024917629462306
314 => 0.025885527593636
315 => 0.025811208118713
316 => 0.025475107268287
317 => 0.02527183242525
318 => 0.025646372556292
319 => 0.025225422758162
320 => 0.025149808607491
321 => 0.024691669123432
322 => 0.024528134171642
323 => 0.02440705940385
324 => 0.024273767981072
325 => 0.024567775645567
326 => 0.023901515597893
327 => 0.023098071294676
328 => 0.023031273594251
329 => 0.023215707918038
330 => 0.023134109459283
331 => 0.023030882932224
401 => 0.022833795379997
402 => 0.02277532371336
403 => 0.022965328263509
404 => 0.022750824204345
405 => 0.023067336628283
406 => 0.022981262762403
407 => 0.022500461144509
408 => 0.021901204313055
409 => 0.021895869670272
410 => 0.021766760768913
411 => 0.02160232117138
412 => 0.021556577837214
413 => 0.02222383137406
414 => 0.023605026226114
415 => 0.023333864627464
416 => 0.023529806672247
417 => 0.024493647601609
418 => 0.024800023649345
419 => 0.024582565187576
420 => 0.024284894632853
421 => 0.024297990626557
422 => 0.02531522102305
423 => 0.025378664435119
424 => 0.025538965469797
425 => 0.025744997600425
426 => 0.02461765335033
427 => 0.024244892813758
428 => 0.024068258191563
429 => 0.023524291921404
430 => 0.024110912907627
501 => 0.02376911398057
502 => 0.023815234333344
503 => 0.023785198393096
504 => 0.023801600047493
505 => 0.022930799420872
506 => 0.02324807340128
507 => 0.022720543872552
508 => 0.022014241051555
509 => 0.022011873276837
510 => 0.022184739891658
511 => 0.022081912064891
512 => 0.021805205027008
513 => 0.021844509955719
514 => 0.021500157421621
515 => 0.021886320588062
516 => 0.021897394365917
517 => 0.021748700512388
518 => 0.022343638150538
519 => 0.022587384586312
520 => 0.022489511106587
521 => 0.022580517522063
522 => 0.023345132616109
523 => 0.023469798238934
524 => 0.023525166473644
525 => 0.023450980374018
526 => 0.022594493282359
527 => 0.022632482126938
528 => 0.022353745191409
529 => 0.022118241853461
530 => 0.022127660751927
531 => 0.022248740080923
601 => 0.022777500611857
602 => 0.023890245977073
603 => 0.023932473850277
604 => 0.023983655264474
605 => 0.023775474731218
606 => 0.023712685490368
607 => 0.023795520706327
608 => 0.02421340936013
609 => 0.025288332433375
610 => 0.024908382827592
611 => 0.024599477883823
612 => 0.024870470799683
613 => 0.024828753564399
614 => 0.02447661811586
615 => 0.024466734846643
616 => 0.023790874336383
617 => 0.023541024094339
618 => 0.023332230531121
619 => 0.023104233410781
620 => 0.02296906907531
621 => 0.023176742925685
622 => 0.02322424039239
623 => 0.022770157889029
624 => 0.022708268121713
625 => 0.02307908169601
626 => 0.022915900467285
627 => 0.023083736407728
628 => 0.023122675785581
629 => 0.023116405648897
630 => 0.022946025704863
701 => 0.023054620800387
702 => 0.022797761025718
703 => 0.022518464599855
704 => 0.022340290880937
705 => 0.022184810679867
706 => 0.022271080131983
707 => 0.021963545287369
708 => 0.021865158701123
709 => 0.023017831225491
710 => 0.023869322812559
711 => 0.023856941787655
712 => 0.023781575482695
713 => 0.023669596441022
714 => 0.024205217395757
715 => 0.024018617765206
716 => 0.024154384587353
717 => 0.024188942941705
718 => 0.024293540672018
719 => 0.024330925370126
720 => 0.024217922847101
721 => 0.023838672577733
722 => 0.022893616964502
723 => 0.022453691025415
724 => 0.02230850813797
725 => 0.022313785260187
726 => 0.022168218671329
727 => 0.022211094555585
728 => 0.022153308188538
729 => 0.022043874789376
730 => 0.02226432292796
731 => 0.022289727522315
801 => 0.022238272292611
802 => 0.022250391861913
803 => 0.021824364536774
804 => 0.021856754469021
805 => 0.021676403210353
806 => 0.02164258952352
807 => 0.021186677246587
808 => 0.02037896256246
809 => 0.020826514904228
810 => 0.020285934610755
811 => 0.020081208662489
812 => 0.021050349460164
813 => 0.020953074603859
814 => 0.020786582334228
815 => 0.020540305567415
816 => 0.020448959118978
817 => 0.019893967015043
818 => 0.019861175120775
819 => 0.020136244193532
820 => 0.020009309281003
821 => 0.019831044589802
822 => 0.019185387948675
823 => 0.01845945611448
824 => 0.018481367433509
825 => 0.018712272843525
826 => 0.019383661464982
827 => 0.019121338315438
828 => 0.018931019860632
829 => 0.018895378934998
830 => 0.019341499738632
831 => 0.019972854140971
901 => 0.02026907150079
902 => 0.019975529093465
903 => 0.019638323381374
904 => 0.019658847530609
905 => 0.019795385500482
906 => 0.019809733710573
907 => 0.01959024745731
908 => 0.019652031551955
909 => 0.019558175862533
910 => 0.01898218366979
911 => 0.018971765797514
912 => 0.018830408024286
913 => 0.018826127767092
914 => 0.018585642931483
915 => 0.018551997440588
916 => 0.018074500203099
917 => 0.018388790330809
918 => 0.018177981014113
919 => 0.017860241648962
920 => 0.017805463262647
921 => 0.017803816558207
922 => 0.018130063840995
923 => 0.018384977941359
924 => 0.018181648132432
925 => 0.018135353876322
926 => 0.018629655415925
927 => 0.018566751039352
928 => 0.01851227625493
929 => 0.019916323278997
930 => 0.018804910500292
1001 => 0.018320271091553
1002 => 0.017720437792711
1003 => 0.017915746539436
1004 => 0.017956900962053
1005 => 0.016514410006417
1006 => 0.015929191605366
1007 => 0.015728366703615
1008 => 0.01561278913341
1009 => 0.015665459283485
1010 => 0.015138694083267
1011 => 0.015492689009705
1012 => 0.01503655487267
1013 => 0.014960082500208
1014 => 0.015775706841403
1015 => 0.015889196203672
1016 => 0.015405015325851
1017 => 0.015715937831176
1018 => 0.015603193008599
1019 => 0.015044373983266
1020 => 0.015023031206892
1021 => 0.014742635463419
1022 => 0.014303870420197
1023 => 0.014103343021807
1024 => 0.013998906611667
1025 => 0.014041999109916
1026 => 0.014020210224149
1027 => 0.01387802300595
1028 => 0.014028360229058
1029 => 0.013644310747647
1030 => 0.013491379149652
1031 => 0.013422303494824
1101 => 0.013081437475008
1102 => 0.013623906896342
1103 => 0.013730780206194
1104 => 0.013837864089482
1105 => 0.014769956184229
1106 => 0.01472339149724
1107 => 0.015144313589695
1108 => 0.015127957331209
1109 => 0.015007903531955
1110 => 0.014501416300793
1111 => 0.014703293083868
1112 => 0.014081947724183
1113 => 0.014547501915036
1114 => 0.014335042424339
1115 => 0.014475669147516
1116 => 0.014222809619443
1117 => 0.014362752522593
1118 => 0.013756123832699
1119 => 0.013189662497572
1120 => 0.013417623074864
1121 => 0.013665442292835
1122 => 0.014202777500558
1123 => 0.013882745083757
1124 => 0.013997840842605
1125 => 0.013612289317264
1126 => 0.012816786393138
1127 => 0.012821288853298
1128 => 0.012698918059394
1129 => 0.012593171827033
1130 => 0.013919504656627
1201 => 0.013754554203048
1202 => 0.013491727243451
1203 => 0.013843531573199
1204 => 0.01393655422187
1205 => 0.013939202445903
1206 => 0.014195869803504
1207 => 0.014332853218265
1208 => 0.014356997138837
1209 => 0.014760868771687
1210 => 0.014896241215822
1211 => 0.015453821154591
1212 => 0.014321231132573
1213 => 0.014297906186391
1214 => 0.013848482181579
1215 => 0.013563450372616
1216 => 0.013867998553395
1217 => 0.014137786666592
1218 => 0.013856865250288
1219 => 0.013893547656682
1220 => 0.013516433607417
1221 => 0.013651234135164
1222 => 0.013767342509252
1223 => 0.013703234289615
1224 => 0.013607261181947
1225 => 0.014115667117933
1226 => 0.014086980862566
1227 => 0.014560420158358
1228 => 0.014929499945398
1229 => 0.015590956904675
1230 => 0.014900692085138
1231 => 0.01487553609156
]
'min_raw' => 0.012593171827033
'max_raw' => 0.03641056321891
'avg_raw' => 0.024501867522971
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.012593'
'max' => '$0.03641'
'avg' => '$0.0245018'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0022143597081958
'max_diff' => -0.012299506852074
'year' => 2030
]
5 => [
'items' => [
101 => 0.015121439963934
102 => 0.014896203569221
103 => 0.015038545195784
104 => 0.015568023468043
105 => 0.015579210509595
106 => 0.015391813149912
107 => 0.015380410003544
108 => 0.015416401716374
109 => 0.015627206302598
110 => 0.015553544702801
111 => 0.01563878777097
112 => 0.015745385533003
113 => 0.016186319073289
114 => 0.016292626657078
115 => 0.016034354342633
116 => 0.016057673440875
117 => 0.015961072505539
118 => 0.01586775721241
119 => 0.016077516363759
120 => 0.016460855335675
121 => 0.016458470603826
122 => 0.016547397794266
123 => 0.016602798697197
124 => 0.016364977465876
125 => 0.016210164589215
126 => 0.016269529697127
127 => 0.01636445579748
128 => 0.016238746442164
129 => 0.015462810066913
130 => 0.015698179596157
131 => 0.015659002597509
201 => 0.015603209787348
202 => 0.015839875669061
203 => 0.01581704866742
204 => 0.015133291344764
205 => 0.015177063270116
206 => 0.015135953260522
207 => 0.015268788111835
208 => 0.014889030051323
209 => 0.015005841073027
210 => 0.015079103850804
211 => 0.015122256189746
212 => 0.015278152027841
213 => 0.015259859450584
214 => 0.015277014935555
215 => 0.015508167308474
216 => 0.016677256688782
217 => 0.016740887644301
218 => 0.016427545547393
219 => 0.016552719534708
220 => 0.016312412851605
221 => 0.016473732337887
222 => 0.016584103033331
223 => 0.016085359083685
224 => 0.016055826703809
225 => 0.015814528189542
226 => 0.015944188343262
227 => 0.015737889715798
228 => 0.015788508182958
301 => 0.01564697453594
302 => 0.015901706921505
303 => 0.016186537309977
304 => 0.016258496714398
305 => 0.016069202501838
306 => 0.015932141016848
307 => 0.015691506200065
308 => 0.016091687263271
309 => 0.01620871240145
310 => 0.01609107258004
311 => 0.016063812862938
312 => 0.016012155748288
313 => 0.01607477216401
314 => 0.016208075057415
315 => 0.016145211874603
316 => 0.016186734114357
317 => 0.016028494153963
318 => 0.0163650561946
319 => 0.016899597713197
320 => 0.016901316351586
321 => 0.016838452829918
322 => 0.016812730431265
323 => 0.016877232219374
324 => 0.016912221793421
325 => 0.017120808748559
326 => 0.017344630861893
327 => 0.018389111003584
328 => 0.018095825159352
329 => 0.019022550077462
330 => 0.019755469167517
331 => 0.019975239555957
401 => 0.019773061139588
402 => 0.019081419698653
403 => 0.019047484469911
404 => 0.020081088786152
405 => 0.019789048224737
406 => 0.019754310929222
407 => 0.019384764794531
408 => 0.019603212329313
409 => 0.019555434649024
410 => 0.019480015243324
411 => 0.019896797922501
412 => 0.020676977891474
413 => 0.020555379526828
414 => 0.020464611988405
415 => 0.020066895057072
416 => 0.020306409483027
417 => 0.020221122983541
418 => 0.020587567909483
419 => 0.020370494053104
420 => 0.019786835730255
421 => 0.019879785241931
422 => 0.01986573611023
423 => 0.020154866245114
424 => 0.020068076555273
425 => 0.019848789030364
426 => 0.020674311321156
427 => 0.020620706495388
428 => 0.020696705882558
429 => 0.020730163163149
430 => 0.02123264403422
501 => 0.021438494369503
502 => 0.02148522599953
503 => 0.021680767897012
504 => 0.021480360738986
505 => 0.022282132258975
506 => 0.022815263535102
507 => 0.023434522947009
508 => 0.024339427389043
509 => 0.024679679830082
510 => 0.02461821627209
511 => 0.025304304492508
512 => 0.026537189773716
513 => 0.024867417636961
514 => 0.026625691751487
515 => 0.026069042467079
516 => 0.02474923702744
517 => 0.024664257116612
518 => 0.025558044683591
519 => 0.027540379483287
520 => 0.027043827099418
521 => 0.027541191665102
522 => 0.026960989480158
523 => 0.026932177551347
524 => 0.027513012540015
525 => 0.028870165150703
526 => 0.02822543281747
527 => 0.027301050922926
528 => 0.027983600128882
529 => 0.027392312839736
530 => 0.026059977086399
531 => 0.027043447395169
601 => 0.026385828807316
602 => 0.026577756872178
603 => 0.027959973330462
604 => 0.02779366138931
605 => 0.028008884441232
606 => 0.027629021387958
607 => 0.027274169397295
608 => 0.026611811805068
609 => 0.026415720375844
610 => 0.026469912992251
611 => 0.026415693520675
612 => 0.026045110535204
613 => 0.025965083174776
614 => 0.025831700734648
615 => 0.025873041530187
616 => 0.025622243520339
617 => 0.026095551182435
618 => 0.026183401255293
619 => 0.026527835101184
620 => 0.02656359536568
621 => 0.027522838723776
622 => 0.026994503601566
623 => 0.027348956415805
624 => 0.02731725081986
625 => 0.024777841213317
626 => 0.025127749451698
627 => 0.025672096863365
628 => 0.025426869092255
629 => 0.025080174398366
630 => 0.024800199844457
701 => 0.024376009766417
702 => 0.024973049155409
703 => 0.025758092463873
704 => 0.026583505359501
705 => 0.027575184870403
706 => 0.027353853547992
707 => 0.026564966600843
708 => 0.02660035549301
709 => 0.026819115699369
710 => 0.026535801355673
711 => 0.026452246424764
712 => 0.026807636534935
713 => 0.026810083911305
714 => 0.026484096519201
715 => 0.026121821187939
716 => 0.026120303241073
717 => 0.02605583984504
718 => 0.026972457375106
719 => 0.027476504336157
720 => 0.027534292507929
721 => 0.027472614731765
722 => 0.027496352059907
723 => 0.027203058239188
724 => 0.02787344093977
725 => 0.028488650399802
726 => 0.028323761122481
727 => 0.028076568655384
728 => 0.027879667948939
729 => 0.028277377573637
730 => 0.028259668190102
731 => 0.028483277081866
801 => 0.028473132890908
802 => 0.028397941630964
803 => 0.028323763807797
804 => 0.02861787049197
805 => 0.028533172490137
806 => 0.028448342928913
807 => 0.028278204257123
808 => 0.028301328928323
809 => 0.028054179142491
810 => 0.02793983634276
811 => 0.026220394981546
812 => 0.025760904065462
813 => 0.025905469261462
814 => 0.025953063877619
815 => 0.025753092842086
816 => 0.026039799938696
817 => 0.025995116941387
818 => 0.026168952345237
819 => 0.026060347531968
820 => 0.026064804711387
821 => 0.026384188310224
822 => 0.026476906727722
823 => 0.026429749392253
824 => 0.026462776773556
825 => 0.027223878835705
826 => 0.027115674461141
827 => 0.027058193043747
828 => 0.0270741157892
829 => 0.027268593684292
830 => 0.027323036876818
831 => 0.027092357244429
901 => 0.027201147092607
902 => 0.027664360458659
903 => 0.027826458921171
904 => 0.028343799401835
905 => 0.028124023970655
906 => 0.028527431286243
907 => 0.029767367842672
908 => 0.030757914961031
909 => 0.029846966894897
910 => 0.031665980532348
911 => 0.033082343571113
912 => 0.033027981198609
913 => 0.032781005541733
914 => 0.031168513878059
915 => 0.02968467500825
916 => 0.030925969229972
917 => 0.030929133544217
918 => 0.030822505269722
919 => 0.03016024621452
920 => 0.030799460090131
921 => 0.030850198566293
922 => 0.030821798512092
923 => 0.030314046047217
924 => 0.029538801881694
925 => 0.029690282735965
926 => 0.029938411465386
927 => 0.029468652015516
928 => 0.029318535407553
929 => 0.029597630742609
930 => 0.030496934063979
1001 => 0.030326925980383
1002 => 0.030322486382264
1003 => 0.031049853058533
1004 => 0.030529215493878
1005 => 0.029692193394646
1006 => 0.029480834275625
1007 => 0.028730651791662
1008 => 0.029248805505393
1009 => 0.029267452935099
1010 => 0.028983665441491
1011 => 0.02971522118571
1012 => 0.029708479770739
1013 => 0.030402983072172
1014 => 0.031730612540983
1015 => 0.031337967178377
1016 => 0.03088136334136
1017 => 0.030931008838695
1018 => 0.031475497408929
1019 => 0.031146287189901
1020 => 0.031264673479999
1021 => 0.031475318217101
1022 => 0.031602405417009
1023 => 0.030912722946389
1024 => 0.030751924971162
1025 => 0.030422988746267
1026 => 0.030337175425077
1027 => 0.030605087116775
1028 => 0.030534501851472
1029 => 0.029265885690839
1030 => 0.029133308243539
1031 => 0.029137374204571
1101 => 0.028804001909621
1102 => 0.028295529141305
1103 => 0.029631765217109
1104 => 0.02952444675961
1105 => 0.02940597548832
1106 => 0.029420487543065
1107 => 0.030000502334329
1108 => 0.029664064463947
1109 => 0.03055853968344
1110 => 0.030374662468699
1111 => 0.030186069497232
1112 => 0.030160000203892
1113 => 0.030087407999874
1114 => 0.029838462321924
1115 => 0.029537845456484
1116 => 0.029339352162933
1117 => 0.027064001498018
1118 => 0.027486293346321
1119 => 0.027972101624679
1120 => 0.028139800695614
1121 => 0.027852939830358
1122 => 0.029849789337322
1123 => 0.030214632984365
1124 => 0.029109497779309
1125 => 0.028902772104817
1126 => 0.029863342238126
1127 => 0.029284001022817
1128 => 0.029544878336597
1129 => 0.028981004276466
1130 => 0.030126752833661
1201 => 0.030118024149309
1202 => 0.029672302082656
1203 => 0.030049023321218
1204 => 0.029983558735364
1205 => 0.029480339619877
1206 => 0.030142705777198
1207 => 0.030143034302548
1208 => 0.029714036504227
1209 => 0.029213060995483
1210 => 0.029123498407032
1211 => 0.029056025027676
1212 => 0.029528284021469
1213 => 0.029951709958588
1214 => 0.030739600651374
1215 => 0.030937695091362
1216 => 0.031710870878527
1217 => 0.031250482342516
1218 => 0.0314545666175
1219 => 0.031676128967479
1220 => 0.031782354105744
1221 => 0.031609265943296
1222 => 0.032810326192614
1223 => 0.032911732477192
1224 => 0.03294573312725
1225 => 0.032540742368869
1226 => 0.032900468951578
1227 => 0.032732164796421
1228 => 0.0331700454519
1229 => 0.03323871072982
1230 => 0.03318055368226
1231 => 0.033202349125279
]
'min_raw' => 0.014889030051323
'max_raw' => 0.03323871072982
'avg_raw' => 0.024063870390571
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.014889'
'max' => '$0.033238'
'avg' => '$0.024063'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0022958582242901
'max_diff' => -0.00317185248909
'year' => 2031
]
6 => [
'items' => [
101 => 0.032177456084033
102 => 0.032124309973103
103 => 0.031399658979495
104 => 0.03169495961574
105 => 0.031142909230407
106 => 0.031317970094345
107 => 0.031395135255128
108 => 0.031354828554219
109 => 0.031711655470647
110 => 0.031408279696761
111 => 0.030607621149879
112 => 0.029806744464111
113 => 0.029796690109701
114 => 0.029585833414986
115 => 0.029433422645037
116 => 0.029462782366392
117 => 0.029566249853894
118 => 0.02942740892657
119 => 0.029457037677828
120 => 0.029949072364055
121 => 0.030047746411346
122 => 0.02971241344421
123 => 0.028366003192839
124 => 0.028035590739938
125 => 0.028273084658719
126 => 0.028159577862109
127 => 0.022726977099664
128 => 0.024003286065894
129 => 0.023244946617517
130 => 0.02359442432485
131 => 0.022820356119105
201 => 0.023189782039277
202 => 0.023121562561096
203 => 0.025173829610066
204 => 0.025141786282898
205 => 0.025157123727918
206 => 0.02442502751559
207 => 0.025591276660407
208 => 0.026165812926107
209 => 0.026059481554114
210 => 0.026086242869625
211 => 0.025626394804661
212 => 0.025161576062365
213 => 0.024646020542067
214 => 0.025603858974192
215 => 0.025497363691387
216 => 0.025741625554349
217 => 0.026362852245287
218 => 0.026454330235339
219 => 0.026577277581646
220 => 0.026533209709983
221 => 0.02758308519761
222 => 0.027455938348757
223 => 0.027762325671848
224 => 0.027132063702587
225 => 0.026418862459354
226 => 0.026554418699387
227 => 0.026541363543397
228 => 0.026375156423638
229 => 0.026225112067543
301 => 0.025975330489378
302 => 0.026765676363408
303 => 0.026733589764264
304 => 0.027253034507823
305 => 0.027161217603782
306 => 0.026548041847187
307 => 0.026569941539292
308 => 0.026717227493325
309 => 0.027226985861914
310 => 0.027378316852708
311 => 0.027308214308275
312 => 0.027474141831158
313 => 0.027605284179835
314 => 0.027490611291049
315 => 0.029114137572539
316 => 0.028439936268607
317 => 0.028768537293081
318 => 0.028846906701188
319 => 0.028646165110252
320 => 0.028689698773309
321 => 0.028755640410627
322 => 0.029156025119722
323 => 0.030206750448639
324 => 0.030672109544288
325 => 0.032072165343958
326 => 0.030633467949505
327 => 0.03054810160004
328 => 0.030800293927196
329 => 0.03162227489256
330 => 0.032288413260241
331 => 0.032509409787245
401 => 0.032538618126544
402 => 0.032953222302775
403 => 0.033190865684681
404 => 0.032902878450609
405 => 0.032658839423252
406 => 0.031784721918501
407 => 0.031885903399819
408 => 0.032582943469252
409 => 0.033567553622781
410 => 0.034412451565736
411 => 0.034116597753779
412 => 0.036373753498766
413 => 0.036597541271227
414 => 0.036566621036998
415 => 0.03707644288675
416 => 0.036064550338406
417 => 0.035631946669495
418 => 0.032711603430927
419 => 0.033532100761712
420 => 0.034724741818126
421 => 0.034566891302136
422 => 0.033700763487581
423 => 0.034411794530121
424 => 0.034176705431461
425 => 0.033991280905492
426 => 0.034840746605269
427 => 0.033906724174236
428 => 0.034715424229887
429 => 0.033678258043584
430 => 0.034117949189072
501 => 0.033868359229425
502 => 0.034029874521911
503 => 0.033085659422336
504 => 0.033595134970541
505 => 0.033064463564531
506 => 0.033064211957189
507 => 0.033052497356489
508 => 0.033676829912303
509 => 0.033697189374533
510 => 0.033235806672473
511 => 0.033169314216953
512 => 0.033415171675115
513 => 0.033127336981778
514 => 0.033262013023181
515 => 0.033131416181876
516 => 0.033102016082107
517 => 0.032867751085141
518 => 0.032766823283197
519 => 0.032806399674928
520 => 0.032671305046922
521 => 0.032589905646962
522 => 0.033036304967043
523 => 0.032797811818021
524 => 0.032999752471482
525 => 0.032769615609921
526 => 0.03197186098189
527 => 0.031513063859208
528 => 0.030006179318751
529 => 0.03043352990514
530 => 0.030716863786042
531 => 0.030623221940094
601 => 0.030824400859774
602 => 0.030836751611535
603 => 0.030771346293971
604 => 0.030695615315171
605 => 0.030658753662878
606 => 0.03093349021889
607 => 0.031092984036862
608 => 0.030745300131509
609 => 0.030663842657099
610 => 0.031015370281566
611 => 0.03122980192942
612 => 0.032813044738437
613 => 0.032695752997338
614 => 0.032990132250155
615 => 0.032956989663906
616 => 0.03326554601915
617 => 0.03376990525433
618 => 0.03274440190815
619 => 0.032922393829809
620 => 0.032878754321052
621 => 0.033355199034768
622 => 0.033356686443159
623 => 0.033071034037107
624 => 0.033225890840609
625 => 0.033139454021168
626 => 0.033295657036534
627 => 0.032694186494627
628 => 0.033426712689937
629 => 0.033842007839732
630 => 0.03384777421329
701 => 0.034044620818307
702 => 0.034244628369591
703 => 0.034628525447293
704 => 0.034233921688454
705 => 0.033524067940204
706 => 0.033575317088014
707 => 0.03315913009514
708 => 0.033166126273681
709 => 0.033128780124331
710 => 0.033240858729816
711 => 0.032718781445804
712 => 0.032841311940848
713 => 0.032669768530249
714 => 0.032922020927936
715 => 0.032650639046839
716 => 0.032878733276759
717 => 0.032977171184949
718 => 0.033340409185387
719 => 0.032596988498835
720 => 0.0310811033938
721 => 0.031399760821209
722 => 0.030928441456071
723 => 0.030972063857754
724 => 0.031060188051607
725 => 0.030774548706887
726 => 0.030829039692329
727 => 0.030827092890882
728 => 0.030810316407757
729 => 0.030736010582281
730 => 0.03062825243438
731 => 0.031057527729408
801 => 0.031130469967011
802 => 0.031292611525572
803 => 0.031775034822178
804 => 0.031726829358522
805 => 0.03180545446977
806 => 0.031633816293377
807 => 0.030980025660487
808 => 0.031015529637334
809 => 0.030572794477132
810 => 0.031281289792121
811 => 0.03111350874985
812 => 0.031005339220418
813 => 0.030975824162129
814 => 0.031459443292777
815 => 0.031604149716468
816 => 0.03151397838411
817 => 0.031329034350727
818 => 0.031684181568618
819 => 0.031779203981667
820 => 0.031800475995657
821 => 0.032429728773034
822 => 0.031835644235786
823 => 0.031978646288594
824 => 0.033094307482866
825 => 0.032082556730382
826 => 0.032618503668707
827 => 0.032592271855009
828 => 0.032866444173201
829 => 0.032569781722427
830 => 0.032573459209051
831 => 0.032816905653564
901 => 0.032475029028044
902 => 0.032390375567743
903 => 0.032273427418637
904 => 0.032528779423747
905 => 0.032681851402233
906 => 0.033915499129846
907 => 0.034712491823056
908 => 0.034677892268325
909 => 0.034994067430913
910 => 0.034851627624334
911 => 0.03439165191517
912 => 0.035176774362652
913 => 0.03492832876935
914 => 0.0349488103222
915 => 0.03494804799778
916 => 0.035113242597835
917 => 0.034996187083833
918 => 0.034765458650234
919 => 0.034918626952103
920 => 0.035373482049981
921 => 0.036785366230457
922 => 0.037575475322828
923 => 0.036737800671006
924 => 0.037315617428922
925 => 0.036969133271334
926 => 0.03690616679289
927 => 0.037269078417184
928 => 0.037632625270236
929 => 0.037609468907353
930 => 0.037345552560375
1001 => 0.037196472912596
1002 => 0.03832535395092
1003 => 0.03915709426997
1004 => 0.039100375156269
1005 => 0.039350714878103
1006 => 0.040085720044123
1007 => 0.040152919705119
1008 => 0.0401444540924
1009 => 0.039977892721062
1010 => 0.040701600759491
1011 => 0.041305330737579
1012 => 0.039939338576017
1013 => 0.04045949050899
1014 => 0.04069300346995
1015 => 0.041035869776812
1016 => 0.041614342707555
1017 => 0.042242717742708
1018 => 0.042331576862461
1019 => 0.042268527064696
1020 => 0.041854096837385
1021 => 0.042541672298923
1022 => 0.042944437878663
1023 => 0.043184275564272
1024 => 0.043792464029791
1025 => 0.040694445566499
1026 => 0.038501514116673
1027 => 0.038159056204469
1028 => 0.038855457835429
1029 => 0.039039093391814
1030 => 0.038965070129294
1031 => 0.03649672640991
1101 => 0.038146060885622
1102 => 0.039920606101506
1103 => 0.039988773610311
1104 => 0.040877148049373
1105 => 0.04116643918243
1106 => 0.041881697047775
1107 => 0.041836957473554
1108 => 0.042011111381526
1109 => 0.041971076414009
1110 => 0.043295940994247
1111 => 0.044757463370543
1112 => 0.044706855498008
1113 => 0.044496744364468
1114 => 0.044808795227047
1115 => 0.046317242945641
1116 => 0.046178369252095
1117 => 0.046313273216142
1118 => 0.048091818088753
1119 => 0.050404179418204
1120 => 0.049329855423392
1121 => 0.051660829363732
1122 => 0.053128053899557
1123 => 0.055665467020417
1124 => 0.055347770400663
1125 => 0.056335566708216
1126 => 0.054779027146016
1127 => 0.051204897682658
1128 => 0.050639278013864
1129 => 0.051771662914561
1130 => 0.054555520696424
1201 => 0.051683989326102
1202 => 0.052264896382428
1203 => 0.052097595111126
1204 => 0.052088680337363
1205 => 0.052428920992893
1206 => 0.051935384176288
1207 => 0.049924626399862
1208 => 0.050846144839328
1209 => 0.0504903023149
1210 => 0.05088513612557
1211 => 0.053015891359908
1212 => 0.052073833679947
1213 => 0.051081452440659
1214 => 0.052326118741752
1215 => 0.053911006656789
1216 => 0.053811827219383
1217 => 0.053619377657027
1218 => 0.054704205763695
1219 => 0.056496023971096
1220 => 0.056980345232449
1221 => 0.057337861286066
1222 => 0.057387156709577
1223 => 0.057894930208672
1224 => 0.05516450412864
1225 => 0.059497760439965
1226 => 0.060245994101141
1227 => 0.060105357183948
1228 => 0.06093698740786
1229 => 0.060692300699562
1230 => 0.060337788049408
1231 => 0.061656098847129
]
'min_raw' => 0.022726977099664
'max_raw' => 0.061656098847129
'avg_raw' => 0.042191537973396
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.022726'
'max' => '$0.061656'
'avg' => '$0.042191'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0078379470483406
'max_diff' => 0.028417388117309
'year' => 2032
]
7 => [
'items' => [
101 => 0.060144761899737
102 => 0.057999609374946
103 => 0.056822736273539
104 => 0.058372537709117
105 => 0.059318947365207
106 => 0.059944463944924
107 => 0.060133744883999
108 => 0.055376459332707
109 => 0.052812546271713
110 => 0.054455985148487
111 => 0.056461094002244
112 => 0.055153365647717
113 => 0.055204626123358
114 => 0.053340149154769
115 => 0.0566260588427
116 => 0.056147329440019
117 => 0.058630978427986
118 => 0.058038235664479
119 => 0.060063554999468
120 => 0.059530220542723
121 => 0.061744062054343
122 => 0.062627223370695
123 => 0.064110188673932
124 => 0.065201063987748
125 => 0.06584164683714
126 => 0.065803188645629
127 => 0.06834149703203
128 => 0.066844745258309
129 => 0.064964472273209
130 => 0.064930464067094
131 => 0.065904284089752
201 => 0.067945143702766
202 => 0.068474308907121
203 => 0.06877004006631
204 => 0.068317117501536
205 => 0.066692500724329
206 => 0.065990999436925
207 => 0.066588698858242
208 => 0.065857763826868
209 => 0.067119562755167
210 => 0.06885228218943
211 => 0.06849448247817
212 => 0.069690553268581
213 => 0.070928360706341
214 => 0.072698480935747
215 => 0.073161255911076
216 => 0.073926205347539
217 => 0.074713589590459
218 => 0.074966476188685
219 => 0.075449315170801
220 => 0.075446770371029
221 => 0.076901838142447
222 => 0.078506822954018
223 => 0.079112667564902
224 => 0.080505773841164
225 => 0.078120128163332
226 => 0.07992966781429
227 => 0.081561917875169
228 => 0.079615882062818
301 => 0.082298039061953
302 => 0.082402181140331
303 => 0.083974602880668
304 => 0.082380652207281
305 => 0.081434169385495
306 => 0.084166629827744
307 => 0.085488781364051
308 => 0.085090538561289
309 => 0.0820598911686
310 => 0.080295924395473
311 => 0.075679283106422
312 => 0.081147894137365
313 => 0.083811495048967
314 => 0.082052993085718
315 => 0.08293987919003
316 => 0.087778442201374
317 => 0.08962065372234
318 => 0.089237486604009
319 => 0.08930223553954
320 => 0.090296259437748
321 => 0.094704308821364
322 => 0.092062903452917
323 => 0.094082158885524
324 => 0.095153164686011
325 => 0.096147974561306
326 => 0.093705035920472
327 => 0.090526808642643
328 => 0.08952013065085
329 => 0.081878144721758
330 => 0.081480346166686
331 => 0.081257049783195
401 => 0.079849197671179
402 => 0.078743011554284
403 => 0.077863331284071
404 => 0.075554787560268
405 => 0.07633385329904
406 => 0.072654516433819
407 => 0.075008425772495
408 => 0.069136115294907
409 => 0.074026749957291
410 => 0.071364999860427
411 => 0.073152293462932
412 => 0.073146057763926
413 => 0.069855083579762
414 => 0.067956918351216
415 => 0.069166503112541
416 => 0.07046327399364
417 => 0.070673670706238
418 => 0.072354968002766
419 => 0.072824181938862
420 => 0.071402441806986
421 => 0.069014424712716
422 => 0.069569106618844
423 => 0.067945677740092
424 => 0.065100681074369
425 => 0.067144007348568
426 => 0.067841688777293
427 => 0.068149824642253
428 => 0.065352097171589
429 => 0.064472990458688
430 => 0.064004961421159
501 => 0.06865327322861
502 => 0.068907918242393
503 => 0.067605118348704
504 => 0.073493897404734
505 => 0.072161085340119
506 => 0.073650162963178
507 => 0.069518775049763
508 => 0.069676599631708
509 => 0.067720734385069
510 => 0.068815888232223
511 => 0.068041868791511
512 => 0.068727410623894
513 => 0.069138321571631
514 => 0.071093865880028
515 => 0.074049079132058
516 => 0.070801772772009
517 => 0.069386874888652
518 => 0.070264669577799
519 => 0.072602352509429
520 => 0.076144061814636
521 => 0.074047298622411
522 => 0.074977806521772
523 => 0.075181081102368
524 => 0.073635005550814
525 => 0.076201067825521
526 => 0.077576241445189
527 => 0.078986885026883
528 => 0.080211707323533
529 => 0.078423442959637
530 => 0.080337142166633
531 => 0.07879503841918
601 => 0.077411611937959
602 => 0.077413710024877
603 => 0.076545866384571
604 => 0.074864309976143
605 => 0.074554205174725
606 => 0.076167409513621
607 => 0.077461046622396
608 => 0.077567596770779
609 => 0.078283820743671
610 => 0.078707674713135
611 => 0.082862019815414
612 => 0.084532931782096
613 => 0.086576091306209
614 => 0.087372017087013
615 => 0.089767468332046
616 => 0.087832946902643
617 => 0.087414401022682
618 => 0.081603819848362
619 => 0.082555302190142
620 => 0.084078717223722
621 => 0.081628940401157
622 => 0.083182759934179
623 => 0.083489516824395
624 => 0.081545697922145
625 => 0.082583975585293
626 => 0.079826617939844
627 => 0.07410918199374
628 => 0.076207432966144
629 => 0.077752451945474
630 => 0.075547519362504
701 => 0.079499775674803
702 => 0.077190949128289
703 => 0.076459161956263
704 => 0.073604199297226
705 => 0.074951631774701
706 => 0.07677405349386
707 => 0.075648008750685
708 => 0.077984720669243
709 => 0.081294127924227
710 => 0.083652608612738
711 => 0.083833663474631
712 => 0.082317318397852
713 => 0.084747271060575
714 => 0.084764970612883
715 => 0.082023974082684
716 => 0.08034512896987
717 => 0.079963691827918
718 => 0.08091659659367
719 => 0.082073598895217
720 => 0.08389786905004
721 => 0.085000237297921
722 => 0.087874629037454
723 => 0.088652357026902
724 => 0.089506844294912
725 => 0.090648702799088
726 => 0.092019796699863
727 => 0.089019921301388
728 => 0.089139111943436
729 => 0.086345669508478
730 => 0.083360475646558
731 => 0.085625865678087
801 => 0.088587561792105
802 => 0.087908145431166
803 => 0.087831697211344
804 => 0.087960261912117
805 => 0.087448004163633
806 => 0.085131081352397
807 => 0.083967537221299
808 => 0.085468806002182
809 => 0.086266663545435
810 => 0.087504071014531
811 => 0.087351534425462
812 => 0.090538963177992
813 => 0.091777501608383
814 => 0.091460630477842
815 => 0.091518942391791
816 => 0.093761257059708
817 => 0.096255172137614
818 => 0.098591052709154
819 => 0.10096721075493
820 => 0.09810265948772
821 => 0.096648217015192
822 => 0.098148830389089
823 => 0.097352583810237
824 => 0.1019280528344
825 => 0.10224484838238
826 => 0.10681998654805
827 => 0.1111623374646
828 => 0.10843498465521
829 => 0.11100675551179
830 => 0.11378833537274
831 => 0.11915445421957
901 => 0.1173473341743
902 => 0.1159631085408
903 => 0.11465502200567
904 => 0.11737694243238
905 => 0.1208786495776
906 => 0.12163288375775
907 => 0.12285503126922
908 => 0.121570092598
909 => 0.12311765969613
910 => 0.128581251588
911 => 0.12710494083036
912 => 0.12500834222571
913 => 0.12932132329539
914 => 0.13088217437822
915 => 0.14183704470158
916 => 0.15566802100793
917 => 0.14994190599801
918 => 0.14638752163078
919 => 0.14722288626821
920 => 0.15227349060719
921 => 0.15389558442271
922 => 0.14948617426287
923 => 0.1510436524752
924 => 0.15962551055303
925 => 0.16422940207281
926 => 0.15797669900382
927 => 0.14072573922228
928 => 0.12481956646074
929 => 0.1290385997414
930 => 0.12856029229922
1001 => 0.13778042819524
1002 => 0.12706973130704
1003 => 0.12725007197352
1004 => 0.13666087051558
1005 => 0.13415023080649
1006 => 0.1300833160162
1007 => 0.12484925943943
1008 => 0.11517362176563
1009 => 0.10660363965282
1010 => 0.12341134812504
1011 => 0.12268656917288
1012 => 0.12163698184394
1013 => 0.1239727248673
1014 => 0.1353144299765
1015 => 0.13505296696421
1016 => 0.13338967267966
1017 => 0.13465126673489
1018 => 0.1298621524786
1019 => 0.13109641626855
1020 => 0.12481704684171
1021 => 0.12765558407228
1022 => 0.13007459024361
1023 => 0.1305602415465
1024 => 0.13165443872989
1025 => 0.12230464359931
1026 => 0.12650242711738
1027 => 0.12896823165512
1028 => 0.11782763704687
1029 => 0.12874801791946
1030 => 0.1221418844675
1031 => 0.11989966355311
1101 => 0.12291851862419
1102 => 0.12174206786706
1103 => 0.12073062458958
1104 => 0.12016622186195
1105 => 0.12238293584728
1106 => 0.12227952349032
1107 => 0.11865254916468
1108 => 0.11392130901127
1109 => 0.11550926850442
1110 => 0.11493234793336
1111 => 0.1128415133596
1112 => 0.11425048341399
1113 => 0.10804609235791
1114 => 0.097371760022118
1115 => 0.10442355092678
1116 => 0.10415206464783
1117 => 0.10401516895505
1118 => 0.10931439492273
1119 => 0.10880499661988
1120 => 0.10788043371217
1121 => 0.11282453303675
1122 => 0.11101987027576
1123 => 0.11658141567312
1124 => 0.12024460917002
1125 => 0.11931550480731
1126 => 0.1227607559969
1127 => 0.11554585188391
1128 => 0.11794235361854
1129 => 0.11843626930463
1130 => 0.11276352361854
1201 => 0.10888834048206
1202 => 0.10862990994718
1203 => 0.10191087642165
1204 => 0.10550012989685
1205 => 0.10865852442161
1206 => 0.10714589854557
1207 => 0.10666704638162
1208 => 0.10911339823685
1209 => 0.10930350072759
1210 => 0.1049691437926
1211 => 0.10587039385062
1212 => 0.1096287564129
1213 => 0.10577569275702
1214 => 0.098289819468004
1215 => 0.096433219392034
1216 => 0.096185514717971
1217 => 0.09115026806313
1218 => 0.096557286286789
1219 => 0.094196977933082
1220 => 0.10165316374161
1221 => 0.097394230396103
1222 => 0.097210636291801
1223 => 0.096933106875749
1224 => 0.092599062076507
1225 => 0.093547942444625
1226 => 0.096702165306809
1227 => 0.097827627558901
1228 => 0.097710232625367
1229 => 0.096686707894005
1230 => 0.097155272274728
1231 => 0.095645863145766
]
'min_raw' => 0.052812546271713
'max_raw' => 0.16422940207281
'avg_raw' => 0.10852097417226
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.052812'
'max' => '$0.164229'
'avg' => '$0.10852'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.03008556917205
'max_diff' => 0.10257330322568
'year' => 2033
]
8 => [
'items' => [
101 => 0.095112859366695
102 => 0.093430552825709
103 => 0.090958026959502
104 => 0.091301846846081
105 => 0.08640312613354
106 => 0.083734043094562
107 => 0.082995276087322
108 => 0.082007365970041
109 => 0.083106863163797
110 => 0.086389248673253
111 => 0.082429995351916
112 => 0.075642133241813
113 => 0.076050095320585
114 => 0.076966664986556
115 => 0.075258643477734
116 => 0.073642144463013
117 => 0.075047559205602
118 => 0.072171452546746
119 => 0.077314228735516
120 => 0.077175131052074
121 => 0.079092039988101
122 => 0.080290722484731
123 => 0.077528147408067
124 => 0.076833367247083
125 => 0.077229145602777
126 => 0.070687810990337
127 => 0.078557473395091
128 => 0.078625530562362
129 => 0.078042783777482
130 => 0.082233136059445
131 => 0.09107608637804
201 => 0.087749012761332
202 => 0.08646066929561
203 => 0.0840115274255
204 => 0.087274863551767
205 => 0.087024290253244
206 => 0.085891102770219
207 => 0.085205747444726
208 => 0.086468535646089
209 => 0.085049274011919
210 => 0.08479433562372
211 => 0.083249686366939
212 => 0.082698316859332
213 => 0.082290104826552
214 => 0.081840703488547
215 => 0.08283197085635
216 => 0.080585628588826
217 => 0.07787676002584
218 => 0.077651546915191
219 => 0.07827338011463
220 => 0.077998265213916
221 => 0.077650229770891
222 => 0.076985735328344
223 => 0.076788594021917
224 => 0.077429207628438
225 => 0.07670599221677
226 => 0.077773135952269
227 => 0.077482931903969
228 => 0.075861875680743
301 => 0.073841439434721
302 => 0.073823453314123
303 => 0.073388153639097
304 => 0.072833734055208
305 => 0.072679507210371
306 => 0.074929199096002
307 => 0.079585993971644
308 => 0.078671753709899
309 => 0.079332385994121
310 => 0.082582042980689
311 => 0.083615011216124
312 => 0.082881834829806
313 => 0.081878217771863
314 => 0.08192237182897
315 => 0.085352035131503
316 => 0.085565939024772
317 => 0.08610640515505
318 => 0.086801056868167
319 => 0.083000137020308
320 => 0.081743348845947
321 => 0.081147812884981
322 => 0.079313792626628
323 => 0.081291626238248
324 => 0.080139227292037
325 => 0.080294725281434
326 => 0.080193457011846
327 => 0.080248756334772
328 => 0.077312791224761
329 => 0.078382502601066
330 => 0.076603899964026
331 => 0.074222550690546
401 => 0.074214567572772
402 => 0.074797399433802
403 => 0.074450708236648
404 => 0.073517771139355
405 => 0.073650290450687
406 => 0.07248928184005
407 => 0.073791257916757
408 => 0.073828593931943
409 => 0.073327262223294
410 => 0.075333136007539
411 => 0.076154944133581
412 => 0.075824956863383
413 => 0.076131791347025
414 => 0.078709744520321
415 => 0.079130063371551
416 => 0.079316741240563
417 => 0.079066617626166
418 => 0.076178911598618
419 => 0.076306993640414
420 => 0.075367212601485
421 => 0.074573196655277
422 => 0.07460495312906
423 => 0.075013180540259
424 => 0.076795933587186
425 => 0.080547632275412
426 => 0.080690006498174
427 => 0.080862568209511
428 => 0.080160673006937
429 => 0.079948974697608
430 => 0.080228259411583
501 => 0.081637200183935
502 => 0.085261378374112
503 => 0.083980351750981
504 => 0.082938857166008
505 => 0.083852528701953
506 => 0.083711876130589
507 => 0.082524626880527
508 => 0.082491304748334
509 => 0.080212593850919
510 => 0.079370206315882
511 => 0.07866624423999
512 => 0.077897536030512
513 => 0.077441820036601
514 => 0.078142006922463
515 => 0.078302147947628
516 => 0.076771177084517
517 => 0.076562511413006
518 => 0.077812735268124
519 => 0.07726255836253
520 => 0.077828428953664
521 => 0.077959715784756
522 => 0.077938575581158
523 => 0.077364127704302
524 => 0.077730263650728
525 => 0.076864242987053
526 => 0.075922575587404
527 => 0.07532185045438
528 => 0.074797638101191
529 => 0.075088501582141
530 => 0.074051626382127
531 => 0.073719909137467
601 => 0.077606225030398
602 => 0.080477088365443
603 => 0.080435344875565
604 => 0.080181242116485
605 => 0.079803696959355
606 => 0.081609580404107
607 => 0.080980446721735
608 => 0.081438194041539
609 => 0.081554709946024
610 => 0.081907368496553
611 => 0.082033413616341
612 => 0.081652417720378
613 => 0.080373748958797
614 => 0.077187427977114
615 => 0.075704186958831
616 => 0.075214692717465
617 => 0.075232484903457
618 => 0.074741696985988
619 => 0.074886256023254
620 => 0.074691425252242
621 => 0.074322462906569
622 => 0.075065719197004
623 => 0.075151372560565
624 => 0.074977887661127
625 => 0.075018749635189
626 => 0.073582368764206
627 => 0.073691573682172
628 => 0.073083506821849
629 => 0.072969501615894
630 => 0.071432361543438
701 => 0.068709095093065
702 => 0.070218049060442
703 => 0.068395444858886
704 => 0.067705197030797
705 => 0.070972722893411
706 => 0.070644753923864
707 => 0.070083413612685
708 => 0.069253074298879
709 => 0.068945093370366
710 => 0.067073898743639
711 => 0.066963338582657
712 => 0.067890753166168
713 => 0.067462783246265
714 => 0.066861751393838
715 => 0.064684874949969
716 => 0.062237345088038
717 => 0.062311220629946
718 => 0.063089734341114
719 => 0.065353367953213
720 => 0.064468927139707
721 => 0.063827255181719
722 => 0.063707089312576
723 => 0.065211216749186
724 => 0.06733987219643
725 => 0.068338589706296
726 => 0.067348890985521
727 => 0.066211978384258
728 => 0.066281176986351
729 => 0.066741524284557
730 => 0.066789900276638
731 => 0.066049887049719
801 => 0.066258196438445
802 => 0.065941755428761
803 => 0.063999757536439
804 => 0.063964632952709
805 => 0.063488035350986
806 => 0.063473604165018
807 => 0.062662792751645
808 => 0.06254935463004
809 => 0.060939439356053
810 => 0.061999090464664
811 => 0.061288332135188
812 => 0.060217051681727
813 => 0.060032362527761
814 => 0.060026810548774
815 => 0.061126776040552
816 => 0.061986236727461
817 => 0.061300696080631
818 => 0.061144611763995
819 => 0.062811183915797
820 => 0.062599097418338
821 => 0.062415431879349
822 => 0.067149274448427
823 => 0.06340206866866
824 => 0.061768073065653
825 => 0.059745693219583
826 => 0.060404190295187
827 => 0.060542945304352
828 => 0.055679486335921
829 => 0.053706381638133
830 => 0.053029286460735
831 => 0.052639608613421
901 => 0.052817189701708
902 => 0.051041164051602
903 => 0.052234682661226
904 => 0.050696794571945
905 => 0.050438962629056
906 => 0.053188897040468
907 => 0.053571534348932
908 => 0.05193908471493
909 => 0.052987381649549
910 => 0.052607254608639
911 => 0.050723157249229
912 => 0.050651198588582
913 => 0.049705824762855
914 => 0.048226497786036
915 => 0.047550405661988
916 => 0.047198291013683
917 => 0.047343580380151
918 => 0.047270117630537
919 => 0.046790723497184
920 => 0.047297595941102
921 => 0.046002746301046
922 => 0.045487126741064
923 => 0.045254233348103
924 => 0.044104979763789
925 => 0.045933953291821
926 => 0.046294284117644
927 => 0.046655324906507
928 => 0.049797938480538
929 => 0.049640942387313
930 => 0.051060110609868
1001 => 0.051004964342422
1002 => 0.050600194576349
1003 => 0.04889253751468
1004 => 0.049573179183401
1005 => 0.047478269922278
1006 => 0.049047918380694
1007 => 0.04833159637436
1008 => 0.048805729189797
1009 => 0.047953195636808
1010 => 0.04842502290528
1011 => 0.046379731923839
1012 => 0.044469867983391
1013 => 0.045238452985431
1014 => 0.046073992781006
1015 => 0.047885655949392
1016 => 0.046806644312198
1017 => 0.04719469769888
1018 => 0.045894783812847
1019 => 0.043212690163916
1020 => 0.043227870522695
1021 => 0.042815288847393
1022 => 0.042458758042022
1023 => 0.046930581778598
1024 => 0.046374439807883
1025 => 0.04548830036361
1026 => 0.046674433223551
1027 => 0.046988065578179
1028 => 0.0469969942504
1029 => 0.047862366166493
1030 => 0.048324215313238
1031 => 0.04840561822712
1101 => 0.04976729963469
1102 => 0.050223717281495
1103 => 0.052103636974043
1104 => 0.048285030639897
1105 => 0.048206388955349
1106 => 0.046691124545345
1107 => 0.045730119901138
1108 => 0.046756925355509
1109 => 0.04766653481516
1110 => 0.046719388646783
1111 => 0.046843065941026
1112 => 0.045571599594665
1113 => 0.046026088985437
1114 => 0.046417556475102
1115 => 0.046201411136704
1116 => 0.04587783110357
1117 => 0.047591957212518
1118 => 0.047495239499737
1119 => 0.049091473139978
1120 => 0.050335851410308
1121 => 0.052565999729963
1122 => 0.050238723698142
1123 => 0.050153908509458
1124 => 0.050982990583628
1125 => 0.050223590353349
1126 => 0.05070350508528
1127 => 0.052488678047196
1128 => 0.052526395938843
1129 => 0.051894572657004
1130 => 0.051856126152884
1201 => 0.051977474725551
1202 => 0.052688217105912
1203 => 0.052439861879306
1204 => 0.052727264835119
1205 => 0.053086666632234
1206 => 0.054573304848303
1207 => 0.054931728289207
1208 => 0.054060945149057
1209 => 0.054139567116867
1210 => 0.053813870318919
1211 => 0.053499251293071
1212 => 0.05420646891676
1213 => 0.055498923024448
1214 => 0.055490882734523
1215 => 0.055790706965789
1216 => 0.055977494977989
1217 => 0.055175664092442
1218 => 0.05465370167009
1219 => 0.054853855276152
1220 => 0.055173905251023
1221 => 0.054750067382827
1222 => 0.052133943719522
1223 => 0.052927508520342
1224 => 0.052795420534149
1225 => 0.052607311179363
1226 => 0.053405246723043
1227 => 0.053328283893278
1228 => 0.051022948341534
1229 => 0.051170528443914
1230 => 0.05103192317636
1231 => 0.051479785151795
]
'min_raw' => 0.042458758042022
'max_raw' => 0.095112859366695
'avg_raw' => 0.068785808704359
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.042458'
'max' => '$0.095112'
'avg' => '$0.068785'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.010353788229692
'max_diff' => -0.069116542706116
'year' => 2034
]
9 => [
'items' => [
101 => 0.050199404336918
102 => 0.050593240852078
103 => 0.050840251422398
104 => 0.050985742545941
105 => 0.051511356248377
106 => 0.051449681547007
107 => 0.051507522462345
108 => 0.052286868826184
109 => 0.056228535295106
110 => 0.056443071504213
111 => 0.05538661674764
112 => 0.055808649585242
113 => 0.054998438825482
114 => 0.055542338736449
115 => 0.055914461241973
116 => 0.054232911194552
117 => 0.054133340713914
118 => 0.05331978592614
119 => 0.053756944186991
120 => 0.053061393961185
121 => 0.053232057657284
122 => 0.052754867084799
123 => 0.053613715107577
124 => 0.054574040648534
125 => 0.054816656804584
126 => 0.054178438150838
127 => 0.053716325784867
128 => 0.052905008699498
129 => 0.054254247093847
130 => 0.054648805517649
131 => 0.054252174646415
201 => 0.054160266606994
202 => 0.053986101038366
203 => 0.054197216655713
204 => 0.054646656667737
205 => 0.05443470905792
206 => 0.054574704188241
207 => 0.054041187113811
208 => 0.05517592953183
209 => 0.056978173582278
210 => 0.056983968091597
211 => 0.056772019339303
212 => 0.056685294476364
213 => 0.056902766758343
214 => 0.057020736550137
215 => 0.057724002032461
216 => 0.058478633914327
217 => 0.062000171635314
218 => 0.061011337934922
219 => 0.064135855698197
220 => 0.066606943581095
221 => 0.067347914789599
222 => 0.066666256143164
223 => 0.06433433873619
224 => 0.064219923743204
225 => 0.067704792859359
226 => 0.066720157716928
227 => 0.066603038499819
228 => 0.065357087905818
301 => 0.066093599020856
302 => 0.065932513236031
303 => 0.065678231444098
304 => 0.067083443345781
305 => 0.069713874581599
306 => 0.069303897205469
307 => 0.068997868112491
308 => 0.067656937710791
309 => 0.068464477320262
310 => 0.068176927932732
311 => 0.069412422584913
312 => 0.068680542922519
313 => 0.066712698137308
314 => 0.067026083905455
315 => 0.066978716277044
316 => 0.067953538713228
317 => 0.067660921214466
318 => 0.066921578014068
319 => 0.069704884053599
320 => 0.069524151640954
321 => 0.069780388880904
322 => 0.069893192438329
323 => 0.071587341777239
324 => 0.072281380554658
325 => 0.072438939507991
326 => 0.073098222667653
327 => 0.072422535942385
328 => 0.075125764599928
329 => 0.076923253919429
330 => 0.079011130261984
331 => 0.082062078766713
401 => 0.083209263627342
402 => 0.083002034950323
403 => 0.085315229286614
404 => 0.089471988089507
405 => 0.08384223475067
406 => 0.089770378686575
407 => 0.08789359676018
408 => 0.083443780574564
409 => 0.083157264872097
410 => 0.086170732056425
411 => 0.092854312235795
412 => 0.091180151205401
413 => 0.092857050563489
414 => 0.090900858388526
415 => 0.090803716958957
416 => 0.092762042675854
417 => 0.09733777745616
418 => 0.09516401738089
419 => 0.092047399285152
420 => 0.094348661587096
421 => 0.09235509520938
422 => 0.087863032196291
423 => 0.091178871006013
424 => 0.088961664023604
425 => 0.089608762894277
426 => 0.094269002186652
427 => 0.09370826986553
428 => 0.094433909411477
429 => 0.093153174606174
430 => 0.091956766344679
501 => 0.089723581478155
502 => 0.08906244553386
503 => 0.089245159723684
504 => 0.089062354989782
505 => 0.08781290858099
506 => 0.087543090747972
507 => 0.087093382538619
508 => 0.0872327659171
509 => 0.086387182916738
510 => 0.087982972744783
511 => 0.08827916539892
512 => 0.089440448157943
513 => 0.089561016386393
514 => 0.092795172340447
515 => 0.091013853588737
516 => 0.092208915999046
517 => 0.092102018368704
518 => 0.083540221584329
519 => 0.084719961639844
520 => 0.0865552669434
521 => 0.085728464391845
522 => 0.084559559025948
523 => 0.083615605270246
524 => 0.08218541880613
525 => 0.084198378790075
526 => 0.086845207114534
527 => 0.089628144320633
528 => 0.092971661028492
529 => 0.092225427022122
530 => 0.089565639601481
531 => 0.089684955722195
601 => 0.090422521031286
602 => 0.089467306941139
603 => 0.08918559565796
604 => 0.090383818226949
605 => 0.09039206972725
606 => 0.089292980475056
607 => 0.088071543902452
608 => 0.088066426038614
609 => 0.087849083198197
610 => 0.090939523197007
611 => 0.092638952717625
612 => 0.092833789573397
613 => 0.092625838644853
614 => 0.092705870703972
615 => 0.091717010110298
616 => 0.093977252189937
617 => 0.096051473836988
618 => 0.095495538126296
619 => 0.094662111465051
620 => 0.093998246986103
621 => 0.095339152752972
622 => 0.095279444329955
623 => 0.096033357320412
624 => 0.095999155472352
625 => 0.095745642889764
626 => 0.095495547180029
627 => 0.096487148399591
628 => 0.096201583172985
629 => 0.095915574384707
630 => 0.095341939974062
701 => 0.095419906417527
702 => 0.094586623659146
703 => 0.094201108926694
704 => 0.0884038923298
705 => 0.086854686625592
706 => 0.087342098277126
707 => 0.087502566848449
708 => 0.086828350540617
709 => 0.087795003534089
710 => 0.087644351688995
711 => 0.088230449889873
712 => 0.08786428117939
713 => 0.087879308870993
714 => 0.088956132973124
715 => 0.089268739591109
716 => 0.089109745342157
717 => 0.089221099464119
718 => 0.091787208205102
719 => 0.091422389601672
720 => 0.091228586989705
721 => 0.09128227163769
722 => 0.091937967439003
723 => 0.092121526463707
724 => 0.091343773977572
725 => 0.091710566546167
726 => 0.093272322750337
727 => 0.09381884903405
728 => 0.095563098584165
729 => 0.094822110373713
730 => 0.096182226303217
731 => 0.10036275897282
801 => 0.10370245774016
802 => 0.10063113273483
803 => 0.10676406421297
804 => 0.11153943108548
805 => 0.11135614455112
806 => 0.11052344888067
807 => 0.10508682065602
808 => 0.10008395430814
809 => 0.10426906444107
810 => 0.10427973314747
811 => 0.10392022847547
812 => 0.1016873758334
813 => 0.10384253004351
814 => 0.10401359835834
815 => 0.10391784559277
816 => 0.1022059227073
817 => 0.099592132877419
818 => 0.10010286115365
819 => 0.10093944448869
820 => 0.099355617705893
821 => 0.098849489081341
822 => 0.099790478489294
823 => 0.10282254242465
824 => 0.10224934830122
825 => 0.1022343798862
826 => 0.10468674741836
827 => 0.10293138151937
828 => 0.10010930307279
829 => 0.099396691046389
830 => 0.096867398425641
831 => 0.098614389847823
901 => 0.098677260958998
902 => 0.097720451610889
903 => 0.10018694287811
904 => 0.10016421372687
905 => 0.10250578009632
906 => 0.10698197554255
907 => 0.1056581442889
908 => 0.10411867257333
909 => 0.10428605583374
910 => 0.10612183706326
911 => 0.10501188182508
912 => 0.10541102946761
913 => 0.1061212329055
914 => 0.10654971627293
915 => 0.10422440367115
916 => 0.10368226207111
917 => 0.10257323062328
918 => 0.1022839050196
919 => 0.10318718799315
920 => 0.10294920484308
921 => 0.098671976885553
922 => 0.09822498276572
923 => 0.098238691437214
924 => 0.097114703469482
925 => 0.095400352030669
926 => 0.099905565253265
927 => 0.099543733581071
928 => 0.099144299418517
929 => 0.09919322782429
930 => 0.10114878818838
1001 => 0.10001446441904
1002 => 0.10303025007183
1003 => 0.10241029520443
1004 => 0.10177444083399
1005 => 0.10168654639139
1006 => 0.10144179670732
1007 => 0.10060245897328
1008 => 0.099588908223048
1009 => 0.098919674225483
1010 => 0.091248170598813
1011 => 0.092671957048839
1012 => 0.094309893577376
1013 => 0.094875302703408
1014 => 0.09390813126821
1015 => 0.10064064879652
1016 => 0.1018707446251
1017 => 0.098144704123175
1018 => 0.097447714078497
1019 => 0.10068634334781
1020 => 0.098733053992089
1021 => 0.09961262006937
1022 => 0.09771147930721
1023 => 0.1015744505614
1024 => 0.10154502119269
1025 => 0.10004223812565
1026 => 0.1013123800833
1027 => 0.1010916616615
1028 => 0.099395023279998
1029 => 0.10162823702433
1030 => 0.10162934467049
1031 => 0.10018294864178
1101 => 0.098493874737056
1102 => 0.098191908217036
1103 => 0.097964417007695
1104 => 0.099556671177337
1105 => 0.10098428128699
1106 => 0.10364070976649
1107 => 0.10430859900142
1108 => 0.10691541514926
1109 => 0.1053631830568
1110 => 0.10605126743861
1111 => 0.10679828037055
1112 => 0.10715642584062
1113 => 0.1065728470163
1114 => 0.11062230550222
1115 => 0.11096420387064
1116 => 0.11107883943616
1117 => 0.10971338481872
1118 => 0.11092622810764
1119 => 0.1103587788979
1120 => 0.1118351240997
1121 => 0.11206663387826
1122 => 0.11187055333202
1123 => 0.11194403818987
1124 => 0.10848853974556
1125 => 0.10830935392201
1126 => 0.10586614250355
1127 => 0.10686176921588
1128 => 0.10500049279881
1129 => 0.10559072272393
1130 => 0.10585089045101
1201 => 0.10571499359477
1202 => 0.10691806045637
1203 => 0.10589520785369
1204 => 0.10319573166268
1205 => 0.10049552000119
1206 => 0.10046162104333
1207 => 0.099750702975551
1208 => 0.099236839423688
1209 => 0.099335827774066
1210 => 0.09968467563205
1211 => 0.099216563752011
1212 => 0.099316459155492
1213 => 0.10097538845287
1214 => 0.10130807489252
1215 => 0.10017747638161
1216 => 0.095637960215756
1217 => 0.09452395156214
1218 => 0.095324678890607
1219 => 0.094941982801044
1220 => 0.076625590038386
1221 => 0.080928754827078
1222 => 0.078371960431306
1223 => 0.079550248921332
1224 => 0.076940423921947
1225 => 0.078185969204301
1226 => 0.077955962470681
1227 => 0.084875324110996
1228 => 0.084767287796253
1229 => 0.084818999062966
1230 => 0.082350685569775
1231 => 0.086282775986443
]
'min_raw' => 0.050199404336918
'max_raw' => 0.11206663387826
'avg_raw' => 0.08113301910759
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.050199'
'max' => '$0.112066'
'avg' => '$0.081133'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0077406462948964
'max_diff' => 0.016953774511567
'year' => 2035
]
10 => [
'items' => [
101 => 0.088219865119091
102 => 0.087861361474596
103 => 0.087951589118258
104 => 0.086401179261665
105 => 0.084834010419406
106 => 0.083095778987785
107 => 0.086325198135838
108 => 0.085966141854598
109 => 0.086789687779391
110 => 0.088884196940552
111 => 0.089192621370799
112 => 0.089607146932784
113 => 0.089458569026751
114 => 0.092998297533252
115 => 0.092569613055234
116 => 0.093602619306316
117 => 0.091477647073468
118 => 0.089073039287785
119 => 0.089530076615292
120 => 0.089486060245391
121 => 0.088925681336914
122 => 0.088419796314574
123 => 0.0875776402846
124 => 0.090242346579079
125 => 0.090134164369849
126 => 0.091885508589233
127 => 0.091575941486807
128 => 0.089508576612884
129 => 0.0895824129538
130 => 0.090078997831
131 => 0.091797683760893
201 => 0.092307906761946
202 => 0.092071551138987
203 => 0.092630987367077
204 => 0.093073142951708
205 => 0.09268651530096
206 => 0.098160347509989
207 => 0.09588723074255
208 => 0.096995132038755
209 => 0.097259359969767
210 => 0.096582545680595
211 => 0.096729322465014
212 => 0.096951649299128
213 => 0.098301574299813
214 => 0.10184416810556
215 => 0.10341315878687
216 => 0.10813354466423
217 => 0.10328287595219
218 => 0.10299505734488
219 => 0.10384534138339
220 => 0.10661670759699
221 => 0.10886263961193
222 => 0.10960774483221
223 => 0.10970622278741
224 => 0.11110408971432
225 => 0.11190532096814
226 => 0.11093435190184
227 => 0.11011155728285
228 => 0.10716440908665
229 => 0.10750554951517
301 => 0.10985566877505
302 => 0.11317535065096
303 => 0.11602398305452
304 => 0.11502649127166
305 => 0.12263664945546
306 => 0.12339116555468
307 => 0.12328691582619
308 => 0.12500581578726
309 => 0.12159414941243
310 => 0.12013559593927
311 => 0.11028945481859
312 => 0.11305581885463
313 => 0.11707689144387
314 => 0.11654468740843
315 => 0.11362447701055
316 => 0.11602176781307
317 => 0.11522914850354
318 => 0.11460397676831
319 => 0.11746800968291
320 => 0.11431888784532
321 => 0.11704547654458
322 => 0.11354859833483
323 => 0.1150310477301
324 => 0.11418953775534
325 => 0.11473409784059
326 => 0.11155061070938
327 => 0.1132683430906
328 => 0.11147914739494
329 => 0.11147829908322
330 => 0.11143880248907
331 => 0.11354378329051
401 => 0.11361242663887
402 => 0.11205684264616
403 => 0.11183265869002
404 => 0.11266158427544
405 => 0.11169112951087
406 => 0.11214519918724
407 => 0.1117048828188
408 => 0.11160575832979
409 => 0.11081591753665
410 => 0.11047563240585
411 => 0.1106090669737
412 => 0.11015358600337
413 => 0.10987914224328
414 => 0.11138420871754
415 => 0.11058011241455
416 => 0.11126096942675
417 => 0.11048504693035
418 => 0.10779536150449
419 => 0.10624849497318
420 => 0.10116792853771
421 => 0.10260877087638
422 => 0.10356405083759
423 => 0.10324833081611
424 => 0.10392661958967
425 => 0.10396826101154
426 => 0.10374774241691
427 => 0.10349241013452
428 => 0.10336812850022
429 => 0.10429442198031
430 => 0.1048321665231
501 => 0.10365992596169
502 => 0.10338528639954
503 => 0.1045704863283
504 => 0.10529345760018
505 => 0.11063147126927
506 => 0.1102360139751
507 => 0.11122853417888
508 => 0.1111167916354
509 => 0.11215711092982
510 => 0.11385759330447
511 => 0.11040003717446
512 => 0.11100014936534
513 => 0.11085301571475
514 => 0.11245938233135
515 => 0.11246439723259
516 => 0.11150130020197
517 => 0.11202341072673
518 => 0.11173198295516
519 => 0.11225863232721
520 => 0.11023073240184
521 => 0.11270049561267
522 => 0.11410069220519
523 => 0.11412013393624
524 => 0.11478381600844
525 => 0.11545815543168
526 => 0.11675249123199
527 => 0.11542205710871
528 => 0.11302873563608
529 => 0.11320152571602
530 => 0.1117983222123
531 => 0.1118219103167
601 => 0.11169599516675
602 => 0.11207387601022
603 => 0.1103136559969
604 => 0.11072677611575
605 => 0.11014840553013
606 => 0.11099889210064
607 => 0.11008390914124
608 => 0.11085294476245
609 => 0.11118483504262
610 => 0.11240951732157
611 => 0.10990302257288
612 => 0.10479211010554
613 => 0.10586648587
614 => 0.10427739972397
615 => 0.10442447569686
616 => 0.10472159256907
617 => 0.10375853957565
618 => 0.1039422597375
619 => 0.1039356959605
620 => 0.10387913287635
621 => 0.10362860559789
622 => 0.10326529147881
623 => 0.10471262310704
624 => 0.10495855295378
625 => 0.10550522453883
626 => 0.10713174836506
627 => 0.10696922027875
628 => 0.10723431033075
629 => 0.10665562023565
630 => 0.10445131947065
701 => 0.1045710236074
702 => 0.103078311104
703 => 0.10546705252405
704 => 0.10490136702593
705 => 0.1045366659053
706 => 0.1044371538256
707 => 0.10606770948979
708 => 0.10655559730034
709 => 0.10625157835774
710 => 0.10562802663681
711 => 0.10682543027751
712 => 0.10714580497736
713 => 0.10721752505769
714 => 0.10933909472964
715 => 0.10733609723465
716 => 0.10781823863978
717 => 0.11157976824925
718 => 0.10816857994906
719 => 0.10997556247025
720 => 0.10988712007892
721 => 0.1108115111918
722 => 0.10981129302671
723 => 0.10982369192961
724 => 0.11064448861418
725 => 0.10949182770217
726 => 0.10920641265045
727 => 0.10881211380068
728 => 0.10967305091402
729 => 0.11018914377663
730 => 0.11434847322081
731 => 0.11703558973022
801 => 0.11691893491578
802 => 0.11798494155109
803 => 0.11750469579838
804 => 0.11595385558045
805 => 0.11860095072764
806 => 0.1177632990639
807 => 0.11783235404931
808 => 0.11782978381931
809 => 0.11838674894691
810 => 0.1179920881089
811 => 0.11721417108608
812 => 0.11773058870969
813 => 0.11926416442916
814 => 0.12402443051824
815 => 0.12668833848682
816 => 0.12386405991363
817 => 0.12581220945482
818 => 0.12464401392676
819 => 0.12443171804851
820 => 0.1256552999275
821 => 0.12688102352459
822 => 0.12680295023041
823 => 0.12591313784052
824 => 0.12541050539963
825 => 0.12921660663629
826 => 0.13202087719222
827 => 0.13182964474038
828 => 0.1326736825907
829 => 0.13515180382436
830 => 0.13537837217314
831 => 0.13534982976881
901 => 0.1347882564764
902 => 0.13722828865564
903 => 0.13926380642785
904 => 0.13465826848461
905 => 0.13641199704248
906 => 0.13719930229371
907 => 0.13835529998546
908 => 0.14030566185915
909 => 0.14242427216191
910 => 0.1427238668881
911 => 0.14251129009294
912 => 0.14111400964697
913 => 0.14343221832053
914 => 0.14479017059282
915 => 0.14559880009478
916 => 0.14764934996864
917 => 0.13720416442291
918 => 0.12981054293424
919 => 0.12865592217359
920 => 0.13100388889358
921 => 0.13162302899296
922 => 0.13137345439524
923 => 0.12305126121108
924 => 0.1286121075488
925 => 0.13459511063894
926 => 0.13482494215418
927 => 0.1378201585998
928 => 0.13879552385256
929 => 0.14120706568328
930 => 0.14105622308518
1001 => 0.14164339514495
1002 => 0.14150841445681
1003 => 0.14597528788817
1004 => 0.15090291262009
1005 => 0.15073228464451
1006 => 0.15002388028829
1007 => 0.15107598155817
1008 => 0.15616181835787
1009 => 0.15569359600422
1010 => 0.1561484341377
1011 => 0.16214492234975
1012 => 0.1699412100159
1013 => 0.16631905166049
1014 => 0.17417809304375
1015 => 0.17912494300463
1016 => 0.18768000849814
1017 => 0.18660887216376
1018 => 0.18993929638041
1019 => 0.18469131457234
1020 => 0.17264088754887
1021 => 0.17073386134523
1022 => 0.17455177609852
1023 => 0.18393774697281
1024 => 0.17425617847385
1025 => 0.17621474717189
1026 => 0.1756506792551
1027 => 0.17562062247295
1028 => 0.17676776759791
1029 => 0.17510377376308
1030 => 0.16832436353324
1031 => 0.17143132729026
1101 => 0.17023157937502
1102 => 0.17156278913411
1103 => 0.17874677917126
1104 => 0.17557056593091
1105 => 0.1722246832968
1106 => 0.17642116263076
1107 => 0.18176472288965
1108 => 0.18143033249195
1109 => 0.18078147535607
1110 => 0.18443904905798
1111 => 0.19048028924498
1112 => 0.19211321219186
1113 => 0.19331860252761
1114 => 0.19348480548967
1115 => 0.19519679929348
1116 => 0.1859909771324
1117 => 0.20060085332432
1118 => 0.20312357535298
1119 => 0.20264940816771
1120 => 0.2054533075302
1121 => 0.20462832920969
1122 => 0.20343306505841
1123 => 0.20787784195445
1124 => 0.20278226391814
1125 => 0.19554973241104
1126 => 0.19158182258299
1127 => 0.19680708632672
1128 => 0.19999797255845
1129 => 0.20210694537913
1130 => 0.2027451192804
1201 => 0.18670559890115
1202 => 0.17806118700931
1203 => 0.1836021559236
1204 => 0.19036252041627
1205 => 0.1859534229663
1206 => 0.18612625123881
1207 => 0.17984003696559
1208 => 0.19091871089334
1209 => 0.18930464128838
1210 => 0.19767843725415
1211 => 0.19567996364301
1212 => 0.2025084691842
1213 => 0.20071029482706
1214 => 0.20817441604897
1215 => 0.2111520560874
1216 => 0.2161519771446
1217 => 0.21982993942761
1218 => 0.2219897092284
1219 => 0.22186004475066
1220 => 0.23041812869444
1221 => 0.22537172558947
1222 => 0.21903225394374
1223 => 0.21891759290244
1224 => 0.22220089509878
1225 => 0.22908179577232
1226 => 0.23086591320394
1227 => 0.23186299145444
1228 => 0.23033593140526
1229 => 0.22485842251378
1230 => 0.22249326194604
1231 => 0.22450844727505
]
'min_raw' => 0.083095778987785
'max_raw' => 0.23186299145444
'avg_raw' => 0.15747938522111
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.083095'
'max' => '$0.231862'
'avg' => '$0.157479'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.032896374650866
'max_diff' => 0.11979635757617
'year' => 2036
]
11 => [
'items' => [
101 => 0.22204404878452
102 => 0.22629829196727
103 => 0.23214027651449
104 => 0.2309339298072
105 => 0.23496656598407
106 => 0.23913992018143
107 => 0.24510800412073
108 => 0.24666828225996
109 => 0.24924736269206
110 => 0.25190208364048
111 => 0.25275470846238
112 => 0.25438263380132
113 => 0.25437405383122
114 => 0.25927991641214
115 => 0.26469123476081
116 => 0.26673388216513
117 => 0.27143083723912
118 => 0.26338746627585
119 => 0.26948845554708
120 => 0.27499170058739
121 => 0.26843050497817
122 => 0.27747358456297
123 => 0.27782470685119
124 => 0.28312623653172
125 => 0.27775212055031
126 => 0.27456098763534
127 => 0.28377366879068
128 => 0.28823139500501
129 => 0.28688869159107
130 => 0.27667065231358
131 => 0.27072331518176
201 => 0.25515798675212
202 => 0.27359579064917
203 => 0.28257630708931
204 => 0.27664739494553
205 => 0.27963759336663
206 => 0.29595114637706
207 => 0.3021622911391
208 => 0.30087041644777
209 => 0.30108872200454
210 => 0.30444014297788
211 => 0.31930218923492
212 => 0.31039650661817
213 => 0.31720456728911
214 => 0.3208155381207
215 => 0.32416960907066
216 => 0.31593307088256
217 => 0.30521745571862
218 => 0.30182337058527
219 => 0.27605788147892
220 => 0.27471667587709
221 => 0.27396381653009
222 => 0.26921714484133
223 => 0.26548756111677
224 => 0.26252165766844
225 => 0.25473824132626
226 => 0.25736491585716
227 => 0.24495977473297
228 => 0.25289614441302
301 => 0.23309723964621
302 => 0.24958635586364
303 => 0.24061207957461
304 => 0.24663806474031
305 => 0.24661704064574
306 => 0.23552129141536
307 => 0.22912149482165
308 => 0.23319969429497
309 => 0.23757184785825
310 => 0.2382812150642
311 => 0.24394982628387
312 => 0.24553181382889
313 => 0.24073831771154
314 => 0.23268695135218
315 => 0.23455710012535
316 => 0.22908359631645
317 => 0.21949149142664
318 => 0.22638070862059
319 => 0.2287329902681
320 => 0.22977189185017
321 => 0.22033915835173
322 => 0.21737518869191
323 => 0.21579719611514
324 => 0.23146930390873
325 => 0.23232785735145
326 => 0.22793537655129
327 => 0.24778980628012
328 => 0.2432961373503
329 => 0.24831666652053
330 => 0.23438740372616
331 => 0.23491952032314
401 => 0.22832518408995
402 => 0.23201757174683
403 => 0.22940791116215
404 => 0.23171926331304
405 => 0.23310467826222
406 => 0.23969793242972
407 => 0.24966164023534
408 => 0.23871312012275
409 => 0.23394269312399
410 => 0.23690223920412
411 => 0.24478390041992
412 => 0.25672502061667
413 => 0.24965563712276
414 => 0.25279290947144
415 => 0.25347826391209
416 => 0.24826556224648
417 => 0.2569172203624
418 => 0.26155371423267
419 => 0.26630979755634
420 => 0.27043937144386
421 => 0.26441011328836
422 => 0.27086228377495
423 => 0.26566297332417
424 => 0.26099865435498
425 => 0.26100572820151
426 => 0.25807973277731
427 => 0.25241024794377
428 => 0.25136470795497
429 => 0.25680373901389
430 => 0.26116532684498
501 => 0.26152456810935
502 => 0.26393936723911
503 => 0.2653684204897
504 => 0.27937508504915
505 => 0.28500868140416
506 => 0.29189733638855
507 => 0.2945808557283
508 => 0.30265728684599
509 => 0.29613491278279
510 => 0.29472375612656
511 => 0.27513297601551
512 => 0.2783409651612
513 => 0.28347726530836
514 => 0.27521767171312
515 => 0.28045648275292
516 => 0.28149073502537
517 => 0.27493701388333
518 => 0.27843763951487
519 => 0.26914101570067
520 => 0.24986428122975
521 => 0.25693868087842
522 => 0.26214782023701
523 => 0.25471373609005
524 => 0.26803904418469
525 => 0.26025467428599
526 => 0.25778740274376
527 => 0.24816169681169
528 => 0.25270465948423
529 => 0.25884908154779
530 => 0.25505254307824
531 => 0.26293093045568
601 => 0.27408882807129
602 => 0.28204061037647
603 => 0.28265104948419
604 => 0.27753858619
605 => 0.28573134124625
606 => 0.2857910165226
607 => 0.27654955535076
608 => 0.27088921183969
609 => 0.26960316988451
610 => 0.27281595483193
611 => 0.27671686887091
612 => 0.28286752306437
613 => 0.286584234577
614 => 0.29627544701045
615 => 0.29889761122611
616 => 0.30177857470861
617 => 0.30562843037745
618 => 0.31025116919063
619 => 0.30013687984006
620 => 0.30053873941135
621 => 0.29112045320997
622 => 0.28105566368492
623 => 0.28869358434071
624 => 0.29867914956814
625 => 0.29638844987189
626 => 0.29613069936132
627 => 0.29656416422608
628 => 0.29483705146237
629 => 0.2870253844419
630 => 0.28310241416785
701 => 0.28816404667783
702 => 0.29085407908955
703 => 0.29502608476463
704 => 0.29451179700482
705 => 0.30525843558315
706 => 0.3094342543732
707 => 0.30836590123335
708 => 0.30856250392243
709 => 0.31612262437873
710 => 0.32453103318348
711 => 0.3324066176164
712 => 0.34041800036578
713 => 0.33075996577181
714 => 0.32585621142975
715 => 0.33091563418932
716 => 0.32823103325656
717 => 0.34365754652057
718 => 0.34472564482854
719 => 0.36015104258006
720 => 0.37479158186845
721 => 0.36559612145392
722 => 0.37426702645218
723 => 0.38364531715707
724 => 0.40173756149962
725 => 0.39564473009788
726 => 0.39097771673098
727 => 0.38656741165011
728 => 0.39574455640719
729 => 0.4075508065287
730 => 0.41009375972601
731 => 0.41421431538855
801 => 0.40988205494696
802 => 0.41509978546602
803 => 0.43352066698524
804 => 0.42854318219313
805 => 0.42147435361772
806 => 0.43601587041688
807 => 0.44127838881778
808 => 0.47821349895759
809 => 0.5248456012224
810 => 0.50553960468188
811 => 0.49355574962856
812 => 0.49637223982693
813 => 0.51340070497776
814 => 0.51886970752774
815 => 0.50400307331867
816 => 0.5092542198512
817 => 0.53818855352679
818 => 0.55371089521918
819 => 0.5326294702723
820 => 0.47446665494528
821 => 0.42083788294623
822 => 0.43506264821546
823 => 0.43345000127979
824 => 0.46453633318257
825 => 0.428424470827
826 => 0.42903250197504
827 => 0.46076166630057
828 => 0.45229686923411
829 => 0.43858498207573
830 => 0.42093799489697
831 => 0.38831590694829
901 => 0.35942161391793
902 => 0.41608997650875
903 => 0.4136463336691
904 => 0.41010757670972
905 => 0.41798269738934
906 => 0.45622204801757
907 => 0.45534050721689
908 => 0.44973259440904
909 => 0.45398614684792
910 => 0.43783931376757
911 => 0.44200072030893
912 => 0.42082938787475
913 => 0.43039971432794
914 => 0.43855556252421
915 => 0.440192969799
916 => 0.44388213199721
917 => 0.4123586449326
918 => 0.42651176514365
919 => 0.43482539729962
920 => 0.39726410476643
921 => 0.434082931315
922 => 0.41180989115623
923 => 0.40425008679651
924 => 0.41442836743839
925 => 0.41046188157354
926 => 0.40705172994682
927 => 0.40514880674526
928 => 0.41262261271282
929 => 0.4122739507313
930 => 0.40004535356515
1001 => 0.3840936470633
1002 => 0.38944756336224
1003 => 0.3875024353776
1004 => 0.38045304063478
1005 => 0.38520348154428
1006 => 0.36428494392197
1007 => 0.32829568719376
1008 => 0.35207129256916
1009 => 0.35115595762509
1010 => 0.35069440423915
1011 => 0.3685611145693
1012 => 0.3668436426262
1013 => 0.36372641423193
1014 => 0.38039579029076
1015 => 0.37431124379454
1016 => 0.39306238239643
1017 => 0.40541309502724
1018 => 0.40228055480037
1019 => 0.41389645972583
1020 => 0.38957090678038
1021 => 0.39765087969707
1022 => 0.39931615091684
1023 => 0.38019009277771
1024 => 0.36712464227642
1025 => 0.36625332568503
1026 => 0.34359963504578
1027 => 0.35570105373107
1028 => 0.36634980138338
1029 => 0.36124987763412
1030 => 0.359635394131
1031 => 0.36788344020973
1101 => 0.36852438402978
1102 => 0.35391079700835
1103 => 0.35694942450222
1104 => 0.36962100628145
1105 => 0.35663013315331
1106 => 0.33139098871243
1107 => 0.32513133193262
1108 => 0.32429617832983
1109 => 0.30731949268333
1110 => 0.32554963213036
1111 => 0.31759168772437
1112 => 0.34273073875207
1113 => 0.32837144762848
1114 => 0.3277524472877
1115 => 0.32681673748499
1116 => 0.312204202851
1117 => 0.31540341926082
1118 => 0.32603810186149
1119 => 0.32983267642168
1120 => 0.32943687120702
1121 => 0.32598598611501
1122 => 0.32756578363874
1123 => 0.32247670537687
1124 => 0.3206796459226
1125 => 0.31500763196477
1126 => 0.30667133838061
1127 => 0.30783055113295
1128 => 0.29131417223286
1129 => 0.28231517241751
1130 => 0.27982436787354
1201 => 0.27649355993945
1202 => 0.28020059149264
1203 => 0.29126738340661
1204 => 0.27791848440748
1205 => 0.25503273338987
1206 => 0.25640820602145
1207 => 0.25949848464312
1208 => 0.25373977087587
1209 => 0.24828963158738
1210 => 0.25302808551495
1211 => 0.24333109111126
1212 => 0.26067032008887
1213 => 0.26020134253765
1214 => 0.26666433484978
1215 => 0.2707057765765
1216 => 0.2613915618287
1217 => 0.25904906200794
1218 => 0.26038345636652
1219 => 0.23832889001928
1220 => 0.26486200625919
1221 => 0.26509146575025
1222 => 0.26312669427894
1223 => 0.27725475955863
1224 => 0.30706938395285
1225 => 0.29585192296526
1226 => 0.29150818302131
1227 => 0.28325073021261
1228 => 0.29425329580117
1229 => 0.29340847043073
1230 => 0.28958784971509
1231 => 0.28727712638521
]
'min_raw' => 0.21579719611514
'max_raw' => 0.55371089521918
'avg_raw' => 0.38475404566716
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.215797'
'max' => '$0.55371'
'avg' => '$0.384754'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.13270141712736
'max_diff' => 0.32184790376474
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0067736274001216
]
1 => [
'year' => 2028
'avg' => 0.011625511016693
]
2 => [
'year' => 2029
'avg' => 0.031758800803106
]
3 => [
'year' => 2030
'avg' => 0.024501867522971
]
4 => [
'year' => 2031
'avg' => 0.024063870390571
]
5 => [
'year' => 2032
'avg' => 0.042191537973396
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0067736274001216
'min' => '$0.006773'
'max_raw' => 0.042191537973396
'max' => '$0.042191'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.042191537973396
]
1 => [
'year' => 2033
'avg' => 0.10852097417226
]
2 => [
'year' => 2034
'avg' => 0.068785808704359
]
3 => [
'year' => 2035
'avg' => 0.08113301910759
]
4 => [
'year' => 2036
'avg' => 0.15747938522111
]
5 => [
'year' => 2037
'avg' => 0.38475404566716
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.042191537973396
'min' => '$0.042191'
'max_raw' => 0.38475404566716
'max' => '$0.384754'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.38475404566716
]
]
]
]
'prediction_2025_max_price' => '$0.011581'
'last_price' => 0.01122989
'sma_50day_nextmonth' => '$0.0103061'
'sma_200day_nextmonth' => '$0.01896'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.010972'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.010757'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.010359'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.010292'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0120056'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0159043'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.020314'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.010988'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.010794'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.010559'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0107061'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.012323'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.015282'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.019443'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.019384'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.023044'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.041687'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.047392'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.011046'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.011428'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.013263'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.016923'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.024214'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.038377'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.083524'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.75'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 111.93
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.010422'
'vwma_10_action' => 'BUY'
'hma_9' => '0.011193'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 202.37
'cci_20_action' => 'SELL'
'adx_14' => 28.96
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000281'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 77.86
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002748'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767687238
'last_updated_date' => '6. Januar 2026'
]
SKALE Preisprognose für 2026
Die Preisprognose für SKALE im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.003879 am unteren Ende und $0.011581 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte SKALE im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SKL das prognostizierte Preisziel erreicht.
SKALE Preisprognose 2027-2032
Die Preisprognose für SKL für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.006773 am unteren Ende und $0.042191 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte SKALE, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| SKALE Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.003735 | $0.006773 | $0.009812 |
| 2028 | $0.00674 | $0.011625 | $0.01651 |
| 2029 | $0.0148075 | $0.031758 | $0.04871 |
| 2030 | $0.012593 | $0.0245018 | $0.03641 |
| 2031 | $0.014889 | $0.024063 | $0.033238 |
| 2032 | $0.022726 | $0.042191 | $0.061656 |
SKALE Preisprognose 2032-2037
Die Preisprognose für SKALE für die Jahre 2032-2037 wird derzeit zwischen $0.042191 am unteren Ende und $0.384754 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte SKALE bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| SKALE Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.022726 | $0.042191 | $0.061656 |
| 2033 | $0.052812 | $0.10852 | $0.164229 |
| 2034 | $0.042458 | $0.068785 | $0.095112 |
| 2035 | $0.050199 | $0.081133 | $0.112066 |
| 2036 | $0.083095 | $0.157479 | $0.231862 |
| 2037 | $0.215797 | $0.384754 | $0.55371 |
SKALE Potenzielles Preishistogramm
SKALE Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für SKALE Neutral, mit 17 technischen Indikatoren, die bullische Signale zeigen, und 17 anzeigen bärische Signale. Die Preisprognose für SKL wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von SKALE
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von SKALE im nächsten Monat steigen, und bis zum 04.02.2026 $0.01896 erreichen. Der kurzfristige 50-Tage-SMA für SKALE wird voraussichtlich bis zum 04.02.2026 $0.0103061 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 53.75, was darauf hindeutet, dass sich der SKL-Markt in einem NEUTRAL Zustand befindet.
Beliebte SKL Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.010972 | BUY |
| SMA 5 | $0.010757 | BUY |
| SMA 10 | $0.010359 | BUY |
| SMA 21 | $0.010292 | BUY |
| SMA 50 | $0.0120056 | SELL |
| SMA 100 | $0.0159043 | SELL |
| SMA 200 | $0.020314 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.010988 | BUY |
| EMA 5 | $0.010794 | BUY |
| EMA 10 | $0.010559 | BUY |
| EMA 21 | $0.0107061 | BUY |
| EMA 50 | $0.012323 | SELL |
| EMA 100 | $0.015282 | SELL |
| EMA 200 | $0.019443 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.019384 | SELL |
| SMA 50 | $0.023044 | SELL |
| SMA 100 | $0.041687 | SELL |
| SMA 200 | $0.047392 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.016923 | SELL |
| EMA 50 | $0.024214 | SELL |
| EMA 100 | $0.038377 | SELL |
| EMA 200 | $0.083524 | SELL |
SKALE Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 53.75 | NEUTRAL |
| Stoch RSI (14) | 111.93 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 202.37 | SELL |
| Average Directional Index (14) | 28.96 | SELL |
| Awesome Oscillator (5, 34) | -0.000281 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 77.86 | SELL |
| VWMA (10) | 0.010422 | BUY |
| Hull Moving Average (9) | 0.011193 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.002748 | SELL |
Auf weltweiten Geldflüssen basierende SKALE-Preisprognose
Definition weltweiter Geldflüsse, die für SKALE-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
SKALE-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.015779 | $0.022173 | $0.031157 | $0.043781 | $0.061519 | $0.086445 |
| Amazon.com aktie | $0.023431 | $0.048891 | $0.102015 | $0.212862 | $0.444149 | $0.926744 |
| Apple aktie | $0.015928 | $0.022593 | $0.032047 | $0.045456 | $0.064477 | $0.091455 |
| Netflix aktie | $0.017719 | $0.027957 | $0.044113 | $0.0696034 | $0.109823 | $0.173284 |
| Google aktie | $0.014542 | $0.018832 | $0.024388 | $0.031582 | $0.040899 | $0.052964 |
| Tesla aktie | $0.025457 | $0.0577098 | $0.130823 | $0.296567 | $0.672296 | $1.52 |
| Kodak aktie | $0.008421 | $0.006315 | $0.004735 | $0.003551 | $0.002663 | $0.001996 |
| Nokia aktie | $0.007439 | $0.004928 | $0.003264 | $0.002162 | $0.001432 | $0.000949 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
SKALE Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in SKALE investieren?", "Sollte ich heute SKL kaufen?", "Wird SKALE auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere SKALE-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie SKALE.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich SKALE zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der SKALE-Preis entspricht heute $0.01122 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige SKALE-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige SKALE-Prognose
basierend auf dem Preisverlauf des letzten Monats
SKALE-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von SKALE 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.011521 | $0.011821 | $0.012128 | $0.012443 |
| Wenn die Wachstumsrate von SKALE 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.011813 | $0.012427 | $0.013073 | $0.013753 |
| Wenn die Wachstumsrate von SKALE 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.012689 | $0.014338 | $0.0162021 | $0.0183078 |
| Wenn die Wachstumsrate von SKALE 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.014148 | $0.017826 | $0.02246 | $0.028298 |
| Wenn die Wachstumsrate von SKALE 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017067 | $0.02594 | $0.039426 | $0.059923 |
| Wenn die Wachstumsrate von SKALE 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.025824 | $0.059388 | $0.136573 | $0.314072 |
| Wenn die Wachstumsrate von SKALE 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.040419 | $0.145484 | $0.523645 | $1.88 |
Fragefeld
Ist SKL eine gute Investition?
Die Entscheidung, SKALE zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von SKALE in den letzten 2026 Stunden um 2.989% gestiegen, und SKALE hat in den letzten 30 Tagen ein Rückgang von -67.51% erfahren. Daher hängt die Entscheidung, ob Sie in SKALE investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann SKALE steigen?
Es scheint, dass der Durchschnittswert von SKALE bis zum Ende dieses Jahres potenziell auf $0.011581 steigen könnte. Betrachtet man die Aussichten von SKALE in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.03641 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird SKALE nächste Woche kosten?
Basierend auf unserer neuen experimentellen SKALE-Prognose wird der Preis von SKALE in der nächsten Woche um 0.86% steigen und $0.011325 erreichen bis zum 13. Januar 2026.
Wie viel wird SKALE nächsten Monat kosten?
Basierend auf unserer neuen experimentellen SKALE-Prognose wird der Preis von SKALE im nächsten Monat um -11.62% fallen und $0.009925 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von SKALE in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von SKALE im Jahr 2026 wird erwartet, dass SKL innerhalb der Spanne von $0.003879 bis $0.011581 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte SKALE-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird SKALE in 5 Jahren sein?
Die Zukunft von SKALE scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.03641 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der SKALE-Prognose für 2030 könnte der Wert von SKALE seinen höchsten Gipfel von ungefähr $0.03641 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.012593 liegen wird.
Wie viel wird SKALE im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen SKALE-Preisprognosesimulation wird der Wert von SKL im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.011581 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.011581 und $0.003879 während des Jahres 2026 liegen.
Wie viel wird SKALE im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von SKALE könnte der Wert von SKL um -12.62% fallen und bis zu $0.009812 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.009812 und $0.003735 im Laufe des Jahres schwanken.
Wie viel wird SKALE im Jahr 2028 kosten?
Unser neues experimentelles SKALE-Preisprognosemodell deutet darauf hin, dass der Wert von SKL im Jahr 2028 um 47.02% steigen, und im besten Fall $0.01651 erreichen wird. Der Preis wird voraussichtlich zwischen $0.01651 und $0.00674 im Laufe des Jahres liegen.
Wie viel wird SKALE im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von SKALE im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.04871 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.04871 und $0.0148075.
Wie viel wird SKALE im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für SKALE-Preisprognosen wird der Wert von SKL im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.03641 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.03641 und $0.012593 während des Jahres 2030 liegen.
Wie viel wird SKALE im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von SKALE im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.033238 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.033238 und $0.014889 während des Jahres schwanken.
Wie viel wird SKALE im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen SKALE-Preisprognose könnte SKL eine 449.04% Steigerung im Wert erfahren und $0.061656 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.061656 und $0.022726 liegen.
Wie viel wird SKALE im Jahr 2033 kosten?
Laut unserer experimentellen SKALE-Preisprognose wird der Wert von SKL voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.164229 beträgt. Im Laufe des Jahres könnte der Preis von SKL zwischen $0.164229 und $0.052812 liegen.
Wie viel wird SKALE im Jahr 2034 kosten?
Die Ergebnisse unserer neuen SKALE-Preisprognosesimulation deuten darauf hin, dass SKL im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.095112 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.095112 und $0.042458.
Wie viel wird SKALE im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von SKALE könnte SKL um 897.93% steigen, wobei der Wert im Jahr 2035 $0.112066 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.112066 und $0.050199.
Wie viel wird SKALE im Jahr 2036 kosten?
Unsere jüngste SKALE-Preisprognosesimulation deutet darauf hin, dass der Wert von SKL im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.231862 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.231862 und $0.083095.
Wie viel wird SKALE im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von SKALE um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.55371 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.55371 und $0.215797 liegen.
Verwandte Prognosen
FOX Token-Preisprognose
Zilliqa-Preisprognose
Tether Gold-Preisprognose
Ankr-Preisprognose
Terra-Preisprognose
cUSDT-Preisprognose
GMT-Preisprognose
Biconomy-Preisprognose
Celo-Preisprognose
Fasttoken-Preisprognose
Rocket Pool-Preisprognose
BitClout-Preisprognose
EthereumPoW-Preisprognose
0x-Preisprognose
Wootrade Network-Preisprognose
MX Token-Preisprognose
Ravencoin-Preisprognose
Holo-Preisprognose
Siacoin-Preisprognose
Frax Share-Preisprognose
Saga-Preisprognose
Golem-Preisprognose
APENFT-Preisprognose
Qtum-Preisprognose
Jeo Boden-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von SKALE?
SKALE-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
SKALE Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von SKALE. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SKL über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SKL über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SKL einzuschätzen.
Wie liest man SKALE-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von SKALE in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SKL innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von SKALE?
Die Preisentwicklung von SKALE wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SKL. Die Marktkapitalisierung von SKALE kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SKL-„Walen“, großen Inhabern von SKALE, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen SKALE-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


