SigmaDotMoney Preisvorhersage bis zu $0.017131 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.005739 | $0.017131 |
| 2027 | $0.005525 | $0.014514 |
| 2028 | $0.009971 | $0.024422 |
| 2029 | $0.0219034 | $0.072052 |
| 2030 | $0.018627 | $0.053858 |
| 2031 | $0.022023 | $0.049166 |
| 2032 | $0.033617 | $0.0912022 |
| 2033 | $0.07812 | $0.242929 |
| 2034 | $0.0628053 | $0.140691 |
| 2035 | $0.074255 | $0.165769 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in SigmaDotMoney eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.43 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige SigmaDotMoney Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'SigmaDotMoney'
'name_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_lang' => 'SigmaDotMoney'
'name_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_with_lang' => 'SigmaDotMoney'
'name_with_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'image' => '/uploads/coins/sigmadotmoney.png?1762828399'
'price_for_sd' => 0.01661
'ticker' => 'SIGMA'
'marketcap' => '$2.4M'
'low24h' => '$0.01631'
'high24h' => '$0.0166'
'volume24h' => '$271.65K'
'current_supply' => '145M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01661'
'change_24h_pct' => '0.9775%'
'ath_price' => '$0.04297'
'ath_days' => 77
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21.10.2025'
'ath_pct' => '-61.47%'
'fdv' => '$16.56M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.819053'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016753'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014681'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005739'
'current_year_max_price_prediction' => '$0.017131'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.018627'
'grand_prediction_max_price' => '$0.053858'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.01692612634493
107 => 0.016989322356518
108 => 0.017131706197494
109 => 0.015915051865675
110 => 0.016461293941568
111 => 0.016782159985193
112 => 0.015332475526886
113 => 0.016753504384544
114 => 0.01589387262057
115 => 0.015602100688642
116 => 0.015994933156954
117 => 0.015841845962011
118 => 0.01571023058138
119 => 0.015636786937549
120 => 0.01592523974694
121 => 0.015911783078606
122 => 0.015439818296164
123 => 0.014824159477215
124 => 0.015030794785166
125 => 0.014955722240571
126 => 0.014683649654407
127 => 0.014866993727312
128 => 0.014059639218551
129 => 0.012670627748862
130 => 0.01358825127231
131 => 0.01355292376484
201 => 0.013535110033599
202 => 0.014224678750218
203 => 0.014158392629172
204 => 0.014038082670399
205 => 0.014681440067666
206 => 0.014446605963285
207 => 0.015170309339113
208 => 0.015646987188633
209 => 0.015526086267082
210 => 0.01597440408854
211 => 0.015035555245316
212 => 0.015347403170957
213 => 0.01541167459623
214 => 0.01467350113725
215 => 0.01416923785835
216 => 0.01413560924667
217 => 0.013261286212818
218 => 0.013728342520212
219 => 0.014139332742616
220 => 0.013942500320215
221 => 0.013880189055483
222 => 0.01419852379333
223 => 0.014223261128814
224 => 0.013659247258248
225 => 0.013776523601935
226 => 0.01426558545068
227 => 0.01376420049815
228 => 0.012790091436152
301 => 0.012548498920665
302 => 0.012516266025666
303 => 0.011861047962721
304 => 0.01256464328777
305 => 0.012257505073204
306 => 0.013227751012937
307 => 0.012673551735695
308 => 0.012649661312517
309 => 0.01261354743392
310 => 0.012049574180427
311 => 0.012173048480572
312 => 0.012583495859921
313 => 0.012729948108893
314 => 0.012714671939478
315 => 0.012581484443843
316 => 0.012642456997314
317 => 0.012446043158338
318 => 0.012376685343795
319 => 0.012157773002728
320 => 0.011836032337436
321 => 0.011880772350295
322 => 0.011243319904328
323 => 0.010896001979603
324 => 0.010799868955615
325 => 0.010671315858264
326 => 0.010814389370028
327 => 0.01124151408164
328 => 0.010726311059873
329 => 0.0098430316163449
330 => 0.0098961182159359
331 => 0.010015388043664
401 => 0.0097931295087416
402 => 0.0095827804581824
403 => 0.0097656618914857
404 => 0.0093914047471955
405 => 0.010060615231517
406 => 0.010042514963357
407 => 0.010291955248213
408 => 0.010447935377363
409 => 0.010088451678838
410 => 0.009998042500806
411 => 0.010049543677481
412 => 0.0091983439473319
413 => 0.01022239407046
414 => 0.010231250098449
415 => 0.010155419410153
416 => 0.010700694486719
417 => 0.011851394973833
418 => 0.011418455163761
419 => 0.011250807783626
420 => 0.01093210999144
421 => 0.011356755877125
422 => 0.011324149698612
423 => 0.011176692193851
424 => 0.011087509434876
425 => 0.01125183140278
426 => 0.011067148124582
427 => 0.01103397393306
428 => 0.010832974426316
429 => 0.010761226747304
430 => 0.01070810762212
501 => 0.01064962868467
502 => 0.010778618648641
503 => 0.01048631042024
504 => 0.010133815352118
505 => 0.010104509201253
506 => 0.010185426060414
507 => 0.010149626373787
508 => 0.010104337806127
509 => 0.010017869596855
510 => 0.0099922163262657
511 => 0.010075577010485
512 => 0.0099814676582312
513 => 0.010120331133883
514 => 0.010082567952173
515 => 0.0098716258888905
516 => 0.0096087139772865
517 => 0.0096063735097969
518 => 0.0095497295697037
519 => 0.0094775849955218
520 => 0.0094575160254286
521 => 0.0097502601272707
522 => 0.01035623165699
523 => 0.010237264946036
524 => 0.010323230586899
525 => 0.010746096456623
526 => 0.010880512800588
527 => 0.010785107263467
528 => 0.010654510279899
529 => 0.010660255884386
530 => 0.011106545311633
531 => 0.011134379835781
601 => 0.011204708698544
602 => 0.011295101162129
603 => 0.010800501490884
604 => 0.010636960284349
605 => 0.010559465387771
606 => 0.010320811100613
607 => 0.010578179288641
608 => 0.010428221867082
609 => 0.010448456246525
610 => 0.010435278580368
611 => 0.010442474477159
612 => 0.010060428173548
613 => 0.010199625766821
614 => 0.0099681827701871
615 => 0.0096583065783893
616 => 0.0096572677647378
617 => 0.009733109523679
618 => 0.0096879958777725
619 => 0.0095665962166159
620 => 0.0095838404654929
621 => 0.0094327627000785
622 => 0.0096021840415655
623 => 0.0096070424394206
624 => 0.0095418059945053
625 => 0.0098028229467057
626 => 0.0099097618049918
627 => 0.0098668217794485
628 => 0.0099067490183304
629 => 0.010242208549979
630 => 0.010296903090763
701 => 0.010321194792861
702 => 0.010288647130084
703 => 0.0099128806027572
704 => 0.0099295474461268
705 => 0.009807257208105
706 => 0.0097039348436044
707 => 0.00970806719633
708 => 0.0097611883226505
709 => 0.009993171396805
710 => 0.010481366100214
711 => 0.010499892732343
712 => 0.010522347550943
713 => 0.010431012518809
714 => 0.010403464999159
715 => 0.010439807288195
716 => 0.010623147550738
717 => 0.011094748482392
718 => 0.010928053215979
719 => 0.010792527369618
720 => 0.010911420074382
721 => 0.010893117474395
722 => 0.010738625111422
723 => 0.010734289025347
724 => 0.010437768786605
725 => 0.010328152005782
726 => 0.010236548019052
727 => 0.010136518856925
728 => 0.010077218216609
729 => 0.010168330951794
730 => 0.010189169512345
731 => 0.0099899499244847
801 => 0.009962797030801
802 => 0.010125484046701
803 => 0.010053891556587
804 => 0.010127526208078
805 => 0.01014461007885
806 => 0.010141859182181
807 => 0.010067108400156
808 => 0.010114752319518
809 => 0.010002060246891
810 => 0.009879524543711
811 => 0.0098013543993262
812 => 0.0097331405805855
813 => 0.0097709895718333
814 => 0.0096360648289877
815 => 0.0095928996882528
816 => 0.010098611631661
817 => 0.010472186481575
818 => 0.010466754555306
819 => 0.010433689101117
820 => 0.010384560543276
821 => 0.010619553490729
822 => 0.010537686646668
823 => 0.010597251615926
824 => 0.010612413400536
825 => 0.010658303556113
826 => 0.01067470534234
827 => 0.01062512775259
828 => 0.010458739305997
829 => 0.010044115116826
830 => 0.0098511064375107
831 => 0.0097874103585227
901 => 0.0097897255900179
902 => 0.0097258611697335
903 => 0.0097446721037098
904 => 0.0097193194945656
905 => 0.0096713077863013
906 => 0.0097680249841414
907 => 0.0097791707402094
908 => 0.0097565957905491
909 => 0.0097619130084192
910 => 0.0095750020671188
911 => 0.0095892125000366
912 => 0.0095100870037755
913 => 0.0094952519270987
914 => 0.0092952295627958
915 => 0.008940860950728
916 => 0.009137215561207
917 => 0.0089000468033847
918 => 0.0088102274011042
919 => 0.0092354184817169
920 => 0.0091927410901882
921 => 0.0091196959473072
922 => 0.0090116469570446
923 => 0.0089715705355232
924 => 0.0087280788850123
925 => 0.0087136920993227
926 => 0.0088343731361435
927 => 0.0087786829900316
928 => 0.0087004729333829
929 => 0.0084172040362277
930 => 0.0080987160087164
1001 => 0.0081083291603226
1002 => 0.0082096342761935
1003 => 0.0085041925634444
1004 => 0.0083891035447054
1005 => 0.0083056051411159
1006 => 0.0082899684000764
1007 => 0.0084856949519207
1008 => 0.0087626890287607
1009 => 0.0088926484522208
1010 => 0.0087638626104982
1011 => 0.0086159203698493
1012 => 0.0086249249285393
1013 => 0.0086848282233902
1014 => 0.0086911232126921
1015 => 0.0085948280227378
1016 => 0.0086219345546576
1017 => 0.0085807572539981
1018 => 0.0083280522358584
1019 => 0.0083234816034165
1020 => 0.0082614637165461
1021 => 0.0082595858395791
1022 => 0.0081540779429257
1023 => 0.0081393166588422
1024 => 0.0079298243261653
1025 => 0.0080677128139345
1026 => 0.0079752244558094
1027 => 0.0078358226843169
1028 => 0.0078117897663679
1029 => 0.0078110673078337
1030 => 0.0079542017574908
1031 => 0.0080660402045533
1101 => 0.0079768333303967
1102 => 0.0079565226543539
1103 => 0.0081733875374298
1104 => 0.0081457895042911
1105 => 0.0081218897855812
1106 => 0.0087378872472773
1107 => 0.0082502771894635
1108 => 0.0080376513724476
1109 => 0.0077744865473429
1110 => 0.0078601743413892
1111 => 0.0078782300186104
1112 => 0.0072453660532588
1113 => 0.0069886132213339
1114 => 0.0069005053249436
1115 => 0.0068497979849082
1116 => 0.006872905956505
1117 => 0.0066417982936691
1118 => 0.0067971064652628
1119 => 0.0065969867642913
1120 => 0.0065634360451776
1121 => 0.0069212748605884
1122 => 0.0069710660412888
1123 => 0.0067586413955136
1124 => 0.0068950524065276
1125 => 0.006845587877679
1126 => 0.0066004172421861
1127 => 0.0065910535272633
1128 => 0.0064680355205375
1129 => 0.0062755361609916
1130 => 0.0061875587882317
1201 => 0.0061417394086438
1202 => 0.0061606453776637
1203 => 0.006151085941195
1204 => 0.0060887041519851
1205 => 0.006154661592331
1206 => 0.0059861675877432
1207 => 0.0059190719174679
1208 => 0.0058887663598122
1209 => 0.0057392182325875
1210 => 0.0059772158073561
1211 => 0.0060241043278
1212 => 0.0060710852331137
1213 => 0.0064800219386434
1214 => 0.0064595926164783
1215 => 0.0066442637393677
1216 => 0.0066370877591206
1217 => 0.0065844165633987
1218 => 0.0063622054526392
1219 => 0.0064507748408557
1220 => 0.0061781720306641
1221 => 0.0063824245912489
1222 => 0.0062892122523889
1223 => 0.0063509094057172
1224 => 0.0062399723610249
1225 => 0.0063013695020359
1226 => 0.0060352233354466
1227 => 0.0057866997898632
1228 => 0.0058867129194605
1229 => 0.0059954386292215
1230 => 0.006231183670779
1231 => 0.0060907758688818
]
'min_raw' => 0.0057392182325875
'max_raw' => 0.017131706197494
'avg_raw' => 0.011435462215041
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005739'
'max' => '$0.017131'
'avg' => '$0.011435'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010872131767413
'max_diff' => 0.00052035619749436
'year' => 2026
]
1 => [
'items' => [
101 => 0.0061412718238508
102 => 0.0059721188276252
103 => 0.0056231078802472
104 => 0.0056250832443069
105 => 0.0055713955136695
106 => 0.0055250014758619
107 => 0.006106903393952
108 => 0.0060345346919295
109 => 0.0059192246366381
110 => 0.006073571727885
111 => 0.0061143835486285
112 => 0.0061155454037904
113 => 0.0062281530572891
114 => 0.0062882517821474
115 => 0.0062988444428864
116 => 0.006476035018716
117 => 0.0065354269625339
118 => 0.0067800539736572
119 => 0.0062831528252296
120 => 0.0062729194730726
121 => 0.0060757437079853
122 => 0.0059506917205414
123 => 0.0060843061245522
124 => 0.0062026702463208
125 => 0.0060794216111873
126 => 0.0060955152810151
127 => 0.0059300640581319
128 => 0.005989205085109
129 => 0.0060401453046984
130 => 0.0060120191095688
131 => 0.0059699128341367
201 => 0.0061929657381424
202 => 0.006180380219147
203 => 0.0063880922113212
204 => 0.0065500185628481
205 => 0.0068402195325818
206 => 0.006537379692146
207 => 0.0065263430046811
208 => 0.0066342283949902
209 => 0.0065354104458427
210 => 0.0065978599786242
211 => 0.0068301579473847
212 => 0.0068350660374143
213 => 0.0067528492057023
214 => 0.0067478463040207
215 => 0.0067636369459046
216 => 0.0068561232286302
217 => 0.0068238056796295
218 => 0.0068612043655134
219 => 0.0069079719948802
220 => 0.0071014227390052
221 => 0.0071480630584893
222 => 0.007034751262376
223 => 0.0070449820488666
224 => 0.0070026003266419
225 => 0.0069616601140142
226 => 0.0070536877331633
227 => 0.0072218700159658
228 => 0.0072208237627131
301 => 0.0072598387833269
302 => 0.0072841448179513
303 => 0.0071798055242383
304 => 0.0071118844806932
305 => 0.0071379297307167
306 => 0.007179576652696
307 => 0.007124424195222
308 => 0.0067839976785893
309 => 0.0068872613372056
310 => 0.0068700732150769
311 => 0.0068455952390186
312 => 0.0069494276462715
313 => 0.0069394127572911
314 => 0.0066394279505491
315 => 0.0066586320045784
316 => 0.0066405958126805
317 => 0.0066988744385605
318 => 0.0065322632087911
319 => 0.0065835117009244
320 => 0.0066156542747656
321 => 0.006634586497689
322 => 0.006702982668835
323 => 0.0066949571675767
324 => 0.0067024837924085
325 => 0.0068038972582983
326 => 0.0073168117678701
327 => 0.007344728572944
328 => 0.0072072560146683
329 => 0.0072621735901732
330 => 0.0071567438543574
331 => 0.0072275195423284
401 => 0.0072759424705305
402 => 0.0070571285691785
403 => 0.0070441718300309
404 => 0.006938306948192
405 => 0.0069951927391988
406 => 0.0069046833554738
407 => 0.0069268911923561
408 => 0.0068647961443889
409 => 0.0069765548677292
410 => 0.0071015184859736
411 => 0.0071330892309049
412 => 0.0070500401930508
413 => 0.0069899072164461
414 => 0.0068843335185622
415 => 0.0070599049310064
416 => 0.007111247362447
417 => 0.0070596352510712
418 => 0.0070476755971186
419 => 0.0070250120744889
420 => 0.0070524837705818
421 => 0.007110967740539
422 => 0.0070833877803365
423 => 0.0071016048299466
424 => 0.007032180222173
425 => 0.007179840064886
426 => 0.0074143594313907
427 => 0.0074151134495018
428 => 0.0073875333406331
429 => 0.0073762481543058
430 => 0.007404547019706
501 => 0.0074198979933054
502 => 0.0075114113348855
503 => 0.0076096087964532
504 => 0.0080678535026807
505 => 0.0079391802228679
506 => 0.0083457621873325
507 => 0.0086673157331635
508 => 0.0087637355817258
509 => 0.0086750338579529
510 => 0.0083715900524989
511 => 0.0083567016517482
512 => 0.0088101748077667
513 => 0.0086820478708051
514 => 0.0086668075793501
515 => 0.0085046766271472
516 => 0.0086005161002082
517 => 0.0085795546015695
518 => 0.0085464658504967
519 => 0.0087293208888615
520 => 0.0090716091970985
521 => 0.0090182603543004
522 => 0.0089784379179331
523 => 0.0088039475939089
524 => 0.0089090297427963
525 => 0.0088716120022935
526 => 0.0090323823613785
527 => 0.008937145562156
528 => 0.0086810771832413
529 => 0.0087218569165959
530 => 0.0087156931419368
531 => 0.0088425431876515
601 => 0.0088044659525396
602 => 0.0087082579506634
603 => 0.0090704392928725
604 => 0.0090469212510679
605 => 0.0090802644573739
606 => 0.0090949431679628
607 => 0.0093153965686143
608 => 0.0094057092731393
609 => 0.0094262118382128
610 => 0.0095120019224763
611 => 0.0094240773027634
612 => 0.0097758384708064
613 => 0.010009739121722
614 => 0.010281426764178
615 => 0.010678435432559
616 => 0.010827714364406
617 => 0.010800748461512
618 => 0.011101755902882
619 => 0.011642659584003
620 => 0.010910080560495
621 => 0.01168148805109
622 => 0.011437269345895
623 => 0.010858231189186
624 => 0.010820947958305
625 => 0.0112130793208
626 => 0.012082788941569
627 => 0.011864936545731
628 => 0.012083145270045
629 => 0.011828593202294
630 => 0.011815952546597
701 => 0.012070782244286
702 => 0.012666205722978
703 => 0.012383342347367
704 => 0.011977788337482
705 => 0.012277243107262
706 => 0.012017827672448
707 => 0.011433292092005
708 => 0.01186476995811
709 => 0.011576252996828
710 => 0.011660457584535
711 => 0.012266877323491
712 => 0.012193911296113
713 => 0.012288336092013
714 => 0.012121678798776
715 => 0.01196599460745
716 => 0.011675398503079
717 => 0.01158936732279
718 => 0.011613143245944
719 => 0.011589355540623
720 => 0.011426769690944
721 => 0.011391659292186
722 => 0.0113331404227
723 => 0.011351277867301
724 => 0.011241245272369
725 => 0.0114488995129
726 => 0.011487441969786
727 => 0.011638555409118
728 => 0.011654244507689
729 => 0.012075093285263
730 => 0.011843296850651
731 => 0.01199880591133
801 => 0.011984895717235
802 => 0.010870780701839
803 => 0.01102429592104
804 => 0.011263117426388
805 => 0.011155528661944
806 => 0.011003423320913
807 => 0.010880590102659
808 => 0.010694485216661
809 => 0.010956424269875
810 => 0.011300846270738
811 => 0.011662979618013
812 => 0.012098059106848
813 => 0.012000954429824
814 => 0.011654846109605
815 => 0.011670372276017
816 => 0.01176634892746
817 => 0.011642050443444
818 => 0.011605392393913
819 => 0.011761312674377
820 => 0.011762386411656
821 => 0.011619365983822
822 => 0.011460424950746
823 => 0.011459758982014
824 => 0.011431476960367
825 => 0.011833624511117
826 => 0.012054765002326
827 => 0.012080118403257
828 => 0.012053058516438
829 => 0.012063472792906
830 => 0.01193479601357
831 => 0.012228912973219
901 => 0.012498823780546
902 => 0.012426481918379
903 => 0.012318031182989
904 => 0.012231644948556
905 => 0.012406132066941
906 => 0.012398362430227
907 => 0.012496466345109
908 => 0.012492015784854
909 => 0.012459027128154
910 => 0.012426483096508
911 => 0.012555516503376
912 => 0.012518356954411
913 => 0.012481139686403
914 => 0.012406494757734
915 => 0.012416640243261
916 => 0.012308208233419
917 => 0.012258042624156
918 => 0.011503672224955
919 => 0.011302079804524
920 => 0.011365504883784
921 => 0.011386386066708
922 => 0.011298652786989
923 => 0.011424439773275
924 => 0.011404836004704
925 => 0.011481102800394
926 => 0.011433454617566
927 => 0.01143541011561
928 => 0.011575533261643
929 => 0.011616211607063
930 => 0.011595522272268
1001 => 0.011610012373169
1002 => 0.011943930632557
1003 => 0.011896458134177
1004 => 0.011871239315574
1005 => 0.011878225100676
1006 => 0.011963548375238
1007 => 0.011987434233637
1008 => 0.01188622817317
1009 => 0.011933957536351
1010 => 0.01213718310702
1011 => 0.012208300555183
1012 => 0.012435273311407
1013 => 0.012338851250444
1014 => 0.012515838116391
1015 => 0.013059835403043
1016 => 0.013494418077369
1017 => 0.01309475789017
1018 => 0.0138928136278
1019 => 0.014514214493842
1020 => 0.014490364093606
1021 => 0.014382008479351
1022 => 0.013674560114159
1023 => 0.013023555581049
1024 => 0.013568148516108
1025 => 0.013569536795496
1026 => 0.013522755779399
1027 => 0.013232202906171
1028 => 0.013512645169221
1029 => 0.013534905657645
1030 => 0.013522445703669
1031 => 0.013299679497002
1101 => 0.012959556673499
1102 => 0.013026015859073
1103 => 0.013134877360773
1104 => 0.012928779827166
1105 => 0.012862919177289
1106 => 0.012985366655912
1107 => 0.013379917944981
1108 => 0.013305330309262
1109 => 0.013303382524662
1110 => 0.013622500060345
1111 => 0.01339408077467
1112 => 0.013026854122235
1113 => 0.01293412454937
1114 => 0.012604997035827
1115 => 0.012832326581743
1116 => 0.012840507767394
1117 => 0.012716001698347
1118 => 0.013036957103546
1119 => 0.013033999442984
1120 => 0.013338698832312
1121 => 0.013921169624844
1122 => 0.013748904349845
1123 => 0.013548578577431
1124 => 0.013570359543323
1125 => 0.013809242979161
1126 => 0.013664808600675
1127 => 0.013716748210211
1128 => 0.013809164362341
1129 => 0.013864921321485
1130 => 0.013562336974953
1201 => 0.013491790089494
1202 => 0.013347475920437
1203 => 0.013309827047482
1204 => 0.013427367926965
1205 => 0.013396400058002
1206 => 0.012839820170419
1207 => 0.012781654475385
1208 => 0.012783438334211
1209 => 0.01263717792842
1210 => 0.012414095703071
1211 => 0.013000342471742
1212 => 0.012953258651699
1213 => 0.012901281758371
1214 => 0.012907648631227
1215 => 0.013162118483761
1216 => 0.013014513118256
1217 => 0.013406946174494
1218 => 0.013326273735749
1219 => 0.013243532353355
1220 => 0.013232094973944
1221 => 0.013200246600886
1222 => 0.01309102667941
1223 => 0.012959137061128
1224 => 0.012872052111055
1225 => 0.011873787658348
1226 => 0.012059059734133
1227 => 0.012272198369243
1228 => 0.012345772971983
1229 => 0.012219918522788
1230 => 0.013095996180156
1231 => 0.013256064010251
]
'min_raw' => 0.0055250014758619
'max_raw' => 0.014514214493842
'avg_raw' => 0.010019607984852
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005525'
'max' => '$0.014514'
'avg' => '$0.010019'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0002142167567256
'max_diff' => -0.0026174917036522
'year' => 2027
]
2 => [
'items' => [
101 => 0.012771208111926
102 => 0.012680511369885
103 => 0.013101942243465
104 => 0.012847767908867
105 => 0.012962222596173
106 => 0.012714834165585
107 => 0.013217508357314
108 => 0.013213678822183
109 => 0.013018127208189
110 => 0.013183406093257
111 => 0.013154684819663
112 => 0.012933907529085
113 => 0.013224507391219
114 => 0.013224651525125
115 => 0.013036437348314
116 => 0.01281664439518
117 => 0.012777350606438
118 => 0.012747748014998
119 => 0.012954942173351
120 => 0.013140711807851
121 => 0.013486383041457
122 => 0.013573293002531
123 => 0.013912508366529
124 => 0.013710522133364
125 => 0.013800060014366
126 => 0.013897266050101
127 => 0.013943870198265
128 => 0.013867931239748
129 => 0.01439487232665
130 => 0.014439362299442
131 => 0.014454279402483
201 => 0.01427659783278
202 => 0.014434420653565
203 => 0.014360580582262
204 => 0.01455269193443
205 => 0.014582817447451
206 => 0.014557302209668
207 => 0.014566864523
208 => 0.014117213264106
209 => 0.014093896474233
210 => 0.013775970389831
211 => 0.013905527619216
212 => 0.013663326588721
213 => 0.013740131030438
214 => 0.013773985696527
215 => 0.013756301940198
216 => 0.01391285259058
217 => 0.01377975255657
218 => 0.013428479683148
219 => 0.013077111105666
220 => 0.013072699959394
221 => 0.012980190815114
222 => 0.012913323647694
223 => 0.012926204636379
224 => 0.0129715989206
225 => 0.012910685249373
226 => 0.01292368426953
227 => 0.013139554616169
228 => 0.01318284587467
229 => 0.013035725263296
301 => 0.012445014779224
302 => 0.012300052944748
303 => 0.012404248636652
304 => 0.012354449806984
305 => 0.0099710052195091
306 => 0.010530960171203
307 => 0.01019825395318
308 => 0.010351580285522
309 => 0.010011973390778
310 => 0.010174051601272
311 => 0.010144121673942
312 => 0.011044512665995
313 => 0.011030454299101
314 => 0.011037183295381
315 => 0.010715990770642
316 => 0.011227659183878
317 => 0.011479725443239
318 => 0.011433074687157
319 => 0.011444815677412
320 => 0.011243066565076
321 => 0.01103913666779
322 => 0.010812947027113
323 => 0.011233179421606
324 => 0.011186456752944
325 => 0.011293621744568
326 => 0.011566172491228
327 => 0.011606306623994
328 => 0.01166024730543
329 => 0.011640913410894
330 => 0.012101525216902
331 => 0.01204574208798
401 => 0.01218016337878
402 => 0.011903648585036
403 => 0.011590745848888
404 => 0.011650218429469
405 => 0.011644490741711
406 => 0.011571570702615
407 => 0.011505741751794
408 => 0.01139615509587
409 => 0.011742903490988
410 => 0.011728826139383
411 => 0.011956722098734
412 => 0.011916439274255
413 => 0.011647420713508
414 => 0.011657028764034
415 => 0.011721647521293
416 => 0.011945293777969
417 => 0.012011687213948
418 => 0.011980931129081
419 => 0.012053728500658
420 => 0.012111264574964
421 => 0.01206095414575
422 => 0.012773243728115
423 => 0.01247745143286
424 => 0.012621618539458
425 => 0.0126560015449
426 => 0.012567930199458
427 => 0.012587029720686
428 => 0.012615960291038
429 => 0.01279162104903
430 => 0.013252605705853
501 => 0.013456772672331
502 => 0.014071019064401
503 => 0.013439819447906
504 => 0.013402366674827
505 => 0.013513010998503
506 => 0.013873638655232
507 => 0.014165893498977
508 => 0.014262851291234
509 => 0.014275665864079
510 => 0.014457565127985
511 => 0.014561826393836
512 => 0.014435477772921
513 => 0.014328410545949
514 => 0.013944909028606
515 => 0.013989300373478
516 => 0.014295112718871
517 => 0.014727090668994
518 => 0.015097772689846
519 => 0.014967972765716
520 => 0.015958254562359
521 => 0.016056436957558
522 => 0.016042871325158
523 => 0.01626654543292
524 => 0.015822597879452
525 => 0.015632801699266
526 => 0.014351559695685
527 => 0.014711536437509
528 => 0.015234783772443
529 => 0.015165530025588
530 => 0.014785533824517
531 => 0.015097484428652
601 => 0.014994343803328
602 => 0.014912992512826
603 => 0.015285678545339
604 => 0.014875894943493
605 => 0.015230695867547
606 => 0.014775660012502
607 => 0.014968565680836
608 => 0.014859063093692
609 => 0.014929924687707
610 => 0.014515669257039
611 => 0.014739191431945
612 => 0.01450636999969
613 => 0.014506259612017
614 => 0.014501120065996
615 => 0.014775033448556
616 => 0.014783965754127
617 => 0.014581543350555
618 => 0.014552371119768
619 => 0.014660236146773
620 => 0.014533954450046
621 => 0.014593040861137
622 => 0.014535744117245
623 => 0.014522845413341
624 => 0.014420066346101
625 => 0.014375786297964
626 => 0.014393149645795
627 => 0.01433387958823
628 => 0.014298167234655
629 => 0.014494015980003
630 => 0.014389381895879
701 => 0.014477979305947
702 => 0.01437701137529
703 => 0.014027012538001
704 => 0.013825724505505
705 => 0.013164609146776
706 => 0.0133521006424
707 => 0.013476407697973
708 => 0.013435324216848
709 => 0.013523587431502
710 => 0.013529006076038
711 => 0.013500310805217
712 => 0.013467085357698
713 => 0.013450913047328
714 => 0.013571448199098
715 => 0.013641422911728
716 => 0.013488883574014
717 => 0.01345314574144
718 => 0.013607371433796
719 => 0.01370144901704
720 => 0.014396065034086
721 => 0.014344605635963
722 => 0.014473758626855
723 => 0.014459217982095
724 => 0.014594590892234
725 => 0.014815868387452
726 => 0.014365949369514
727 => 0.014444039753999
728 => 0.014424893795093
729 => 0.014633924354082
730 => 0.014634576924671
731 => 0.014509252662706
801 => 0.014577192978271
802 => 0.014539270557968
803 => 0.014607801496978
804 => 0.014343918364328
805 => 0.014665299535472
806 => 0.014847501950166
807 => 0.014850031830871
808 => 0.014936394329388
809 => 0.01502414362966
810 => 0.015192570770178
811 => 0.015019446288125
812 => 0.014708012198239
813 => 0.014730496733603
814 => 0.014547903040652
815 => 0.014550972473619
816 => 0.014534587599886
817 => 0.014583759839353
818 => 0.014354708905696
819 => 0.014408466702005
820 => 0.014333205472367
821 => 0.014443876150784
822 => 0.014324812795326
823 => 0.014424884562332
824 => 0.01446807221954
825 => 0.014627435604402
826 => 0.014301274693807
827 => 0.013636210517952
828 => 0.01377601507084
829 => 0.013569233155708
830 => 0.013588371609227
831 => 0.0136270343312
901 => 0.013501715799632
902 => 0.013525622626214
903 => 0.013524768506139
904 => 0.013517408160763
905 => 0.013484807970671
906 => 0.013437531245287
907 => 0.01362586716821
908 => 0.013657869111481
909 => 0.013729005467171
910 => 0.013940659009451
911 => 0.013919509829443
912 => 0.013954005019508
913 => 0.01387870221328
914 => 0.013591864690435
915 => 0.013607441347942
916 => 0.013413200179225
917 => 0.013724038283773
918 => 0.013650427717754
919 => 0.013602970506976
920 => 0.013590021367327
921 => 0.013802199557801
922 => 0.013865686597876
923 => 0.013826125734958
924 => 0.013744985250938
925 => 0.013900798967287
926 => 0.013942488144529
927 => 0.013951820813876
928 => 0.01422789284493
929 => 0.013967250173634
930 => 0.01402998945518
1001 => 0.014519463420086
1002 => 0.014075578076707
1003 => 0.014310714042919
1004 => 0.014299205360961
1005 => 0.014419492964708
1006 => 0.014289338266522
1007 => 0.014290951689995
1008 => 0.014397758933134
1009 => 0.014247767422933
1010 => 0.014210627415672
1011 => 0.014159318761642
1012 => 0.014271349330626
1013 => 0.014338506590025
1014 => 0.01487974477921
1015 => 0.015229409332884
1016 => 0.015214229472434
1017 => 0.015352944981436
1018 => 0.015290452374142
1019 => 0.015088647260474
1020 => 0.015433103981993
1021 => 0.015324103462623
1022 => 0.015333089333005
1023 => 0.01533275487846
1024 => 0.01540523069485
1025 => 0.015353874936627
1026 => 0.015252647465608
1027 => 0.015319846984959
1028 => 0.015519405533162
1029 => 0.016138841389991
1030 => 0.016485485901906
1031 => 0.016117972955114
1101 => 0.016371478464617
1102 => 0.016219465492164
1103 => 0.016191840213075
1104 => 0.016351060406953
1105 => 0.016510559294703
1106 => 0.016500399905086
1107 => 0.016384611902938
1108 => 0.016319206198536
1109 => 0.016814480104783
1110 => 0.017179389482135
1111 => 0.017154505108983
1112 => 0.017264336639244
1113 => 0.01758680540905
1114 => 0.017616287912051
1115 => 0.017612573794321
1116 => 0.017539498334452
1117 => 0.017857010716188
1118 => 0.018121885131131
1119 => 0.017522583476845
1120 => 0.017750789701363
1121 => 0.017853238827894
1122 => 0.018003664540928
1123 => 0.018257457933093
1124 => 0.018533144872356
1125 => 0.018572130028322
1126 => 0.018544468194553
1127 => 0.018362645247246
1128 => 0.018664305185817
1129 => 0.018841010503037
1130 => 0.018946234475611
1201 => 0.019213064962461
1202 => 0.017853871518821
1203 => 0.016891766843116
1204 => 0.016741520305044
1205 => 0.017047052548366
1206 => 0.017127618964356
1207 => 0.017095142743092
1208 => 0.016012206459855
1209 => 0.016735818869632
1210 => 0.017514364979493
1211 => 0.017544272106301
1212 => 0.017934028567529
1213 => 0.018060949247962
1214 => 0.018374754285797
1215 => 0.018355125695241
1216 => 0.018431532228225
1217 => 0.018413967689468
1218 => 0.018995225442612
1219 => 0.019636439061941
1220 => 0.019614235873238
1221 => 0.019522053828964
1222 => 0.019658959884085
1223 => 0.02032076105586
1224 => 0.02025983300911
1225 => 0.020319019416689
1226 => 0.021099320295691
1227 => 0.022113822434899
1228 => 0.021642484336888
1229 => 0.022665152385689
1230 => 0.023308867713106
1231 => 0.024422106810466
]
'min_raw' => 0.0099710052195091
'max_raw' => 0.024422106810466
'avg_raw' => 0.017196556014987
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009971'
'max' => '$0.024422'
'avg' => '$0.017196'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0044460037436472
'max_diff' => 0.0099078923166235
'year' => 2028
]
3 => [
'items' => [
101 => 0.024282723792658
102 => 0.024716099603934
103 => 0.024033199100669
104 => 0.022465121508208
105 => 0.022216967226842
106 => 0.022713778382405
107 => 0.023935140130234
108 => 0.022675313354509
109 => 0.022930174670436
110 => 0.022856774594303
111 => 0.022852863416177
112 => 0.023002137177368
113 => 0.022785607801164
114 => 0.021903428169619
115 => 0.022307725896039
116 => 0.022151607127897
117 => 0.022324832540576
118 => 0.023259658649209
119 => 0.022846349743111
120 => 0.022410962385026
121 => 0.022957034752254
122 => 0.023652372526559
123 => 0.023608859538285
124 => 0.023524426154016
125 => 0.024000372720355
126 => 0.024786497008687
127 => 0.02499898324492
128 => 0.025155836240417
129 => 0.025177463618443
130 => 0.025400239053452
131 => 0.024202319392773
201 => 0.026103448659029
202 => 0.026431721165675
203 => 0.026370019539927
204 => 0.026734880615246
205 => 0.026627529231255
206 => 0.026471993918768
207 => 0.027050376331324
208 => 0.026387307568383
209 => 0.025446164937423
210 => 0.024929835476388
211 => 0.025609779761788
212 => 0.026024998010097
213 => 0.026299430859388
214 => 0.026382474073767
215 => 0.024295310485992
216 => 0.02317044507158
217 => 0.02389147090561
218 => 0.024771172185671
219 => 0.024197432607745
220 => 0.024219922112967
221 => 0.023401920250954
222 => 0.024843547199647
223 => 0.024633514279214
224 => 0.025723165441964
225 => 0.025463111446977
226 => 0.026351679670185
227 => 0.02611768987785
228 => 0.027088968423639
301 => 0.027476437731871
302 => 0.028127059005174
303 => 0.028605658662322
304 => 0.028886701535151
305 => 0.028869828775232
306 => 0.029983460652386
307 => 0.029326790841762
308 => 0.028501858794428
309 => 0.028486938376319
310 => 0.028914182373011
311 => 0.029809568581411
312 => 0.030041729197909
313 => 0.030171475310598
314 => 0.02997276462252
315 => 0.029259996607038
316 => 0.028952226991769
317 => 0.029214455620923
318 => 0.028893772541031
319 => 0.029447361504704
320 => 0.030207557392051
321 => 0.030050579947454
322 => 0.030575332009367
323 => 0.03111839518792
324 => 0.031894999923745
325 => 0.032098033159279
326 => 0.032433639376955
327 => 0.032779088415844
328 => 0.032890037337022
329 => 0.03310187325298
330 => 0.033100756773138
331 => 0.033739138564078
401 => 0.034443293448523
402 => 0.034709095616179
403 => 0.035320293044285
404 => 0.034273638867565
405 => 0.035067538083704
406 => 0.035783655049246
407 => 0.034929870880889
408 => 0.036106613450772
409 => 0.036152303698204
410 => 0.036842172188475
411 => 0.036142858310775
412 => 0.035727607962485
413 => 0.03692642015877
414 => 0.037506487618322
415 => 0.037331766578759
416 => 0.036002130840646
417 => 0.035228225810305
418 => 0.033202767070769
419 => 0.035602010441055
420 => 0.036770611899832
421 => 0.035999104445181
422 => 0.036388207929399
423 => 0.038511030372061
424 => 0.039319263715652
425 => 0.039151156830163
426 => 0.039179564126536
427 => 0.039615672168265
428 => 0.041549615394376
429 => 0.040390751784837
430 => 0.041276659592539
501 => 0.041746541899365
502 => 0.042182994772772
503 => 0.041111204458033
504 => 0.039716821006286
505 => 0.039275161234882
506 => 0.035922393233566
507 => 0.035747867098764
508 => 0.035649900290617
509 => 0.035032233422927
510 => 0.034546916458117
511 => 0.034160974389037
512 => 0.033148147147712
513 => 0.033489946609804
514 => 0.031875711380606
515 => 0.032908441875263
516 => 0.03033208347239
517 => 0.032477751307206
518 => 0.031309961856261
519 => 0.032094101064974
520 => 0.032091365277145
521 => 0.030647516382342
522 => 0.029814734472177
523 => 0.030345415517691
524 => 0.030914347723996
525 => 0.031006655060351
526 => 0.031744290516475
527 => 0.031950148716858
528 => 0.031326388759097
529 => 0.030278694170994
530 => 0.030522049728441
531 => 0.029809802879573
601 => 0.028561617673111
602 => 0.029458086079615
603 => 0.029764179808529
604 => 0.029899368236992
605 => 0.028671921441476
606 => 0.028286231009158
607 => 0.028080892659249
608 => 0.03012024620331
609 => 0.030231966594034
610 => 0.029660389279419
611 => 0.032243972940665
612 => 0.031659228388205
613 => 0.032312531319197
614 => 0.030499967762335
615 => 0.030569210131148
616 => 0.02971111349571
617 => 0.030191590273517
618 => 0.029852004773452
619 => 0.030152772498034
620 => 0.030333051432037
621 => 0.031191007262261
622 => 0.032487547784634
623 => 0.031062857271531
624 => 0.030442099213028
625 => 0.030827214021247
626 => 0.031852825505371
627 => 0.033406679403905
628 => 0.032486766621749
629 => 0.032895008293338
630 => 0.032984190937172
701 => 0.032305881308632
702 => 0.03343168964744
703 => 0.034035019482258
704 => 0.034653911051262
705 => 0.035191277259681
706 => 0.034406712148884
707 => 0.035246309280428
708 => 0.034569742201249
709 => 0.033962791589006
710 => 0.033963712082547
711 => 0.033582963097354
712 => 0.032845213961082
713 => 0.032709161701251
714 => 0.033416922738398
715 => 0.03398448006497
716 => 0.034031226804803
717 => 0.034345455702941
718 => 0.034531413128045
719 => 0.036354048690918
720 => 0.037087127791938
721 => 0.037983523040188
722 => 0.03833271950745
723 => 0.039383675680044
724 => 0.038534943216187
725 => 0.038351314608854
726 => 0.035802038699284
727 => 0.036219482486663
728 => 0.036887850267591
729 => 0.035813059837816
730 => 0.036494766982853
731 => 0.036629350413815
801 => 0.035776538870286
802 => 0.036232062363497
803 => 0.035022327018833
804 => 0.032513916709322
805 => 0.033434482225182
806 => 0.034112328303856
807 => 0.033144958371769
808 => 0.034878931532649
809 => 0.033865980208534
810 => 0.033544923269028
811 => 0.032292365682952
812 => 0.032883524648218
813 => 0.033683075613319
814 => 0.033189046074663
815 => 0.034214231546284
816 => 0.035666167581077
817 => 0.036700903663757
818 => 0.036780337851816
819 => 0.036115071872586
820 => 0.037181164849972
821 => 0.037188930173433
822 => 0.035986372939823
823 => 0.035249813330104
824 => 0.035082465437042
825 => 0.0355005332844
826 => 0.036008144830674
827 => 0.036808506759837
828 => 0.037292148711217
829 => 0.038553230416545
830 => 0.038894442967961
831 => 0.039269332112785
901 => 0.039770299621801
902 => 0.040371839561808
903 => 0.039055704418761
904 => 0.039107996921578
905 => 0.037882430099504
906 => 0.036572736186058
907 => 0.037566630610713
908 => 0.038866015358714
909 => 0.03856793506183
910 => 0.038534394939203
911 => 0.038590800122208
912 => 0.038366057312749
913 => 0.037349553914927
914 => 0.036839072272189
915 => 0.037497723829078
916 => 0.037847767818356
917 => 0.038390655518683
918 => 0.038323733150648
919 => 0.039722153564807
920 => 0.040265537451711
921 => 0.040126516600734
922 => 0.040152099783037
923 => 0.041135870354879
924 => 0.042230025558617
925 => 0.043254846293413
926 => 0.044297337961922
927 => 0.043040573566392
928 => 0.042402466112794
929 => 0.043060830123017
930 => 0.042711492912048
1001 => 0.044718888146424
1002 => 0.044857875837069
1003 => 0.046865125913921
1004 => 0.048770245255746
1005 => 0.047573673930904
1006 => 0.048701986795474
1007 => 0.049922349151204
1008 => 0.052276626132064
1009 => 0.051483788469373
1010 => 0.050876487245102
1011 => 0.050302590522624
1012 => 0.051496778498562
1013 => 0.053033082251987
1014 => 0.05336398736594
1015 => 0.053900180066027
1016 => 0.05333643900441
1017 => 0.054015403019087
1018 => 0.056412444342804
1019 => 0.055764742617866
1020 => 0.054844902045207
1021 => 0.056737135955986
1022 => 0.057421928052423
1023 => 0.062228157613627
1024 => 0.068296220970088
1025 => 0.065784002895461
1026 => 0.064224588067769
1027 => 0.064591087542091
1028 => 0.066806938862963
1029 => 0.067518599979621
1030 => 0.065584059740245
1031 => 0.066267372057424
1101 => 0.070032490106861
1102 => 0.072052355140935
1103 => 0.069309107120597
1104 => 0.061740594631277
1105 => 0.054762080465833
1106 => 0.056613096669097
1107 => 0.056403248875367
1108 => 0.060448398511446
1109 => 0.055749295145936
1110 => 0.055828415995089
1111 => 0.059957215041753
1112 => 0.058855722241638
1113 => 0.057071444973992
1114 => 0.054775107664486
1115 => 0.050530115762374
1116 => 0.046770208054316
1117 => 0.054144252924849
1118 => 0.053826270701201
1119 => 0.053365785319034
1120 => 0.054390545707325
1121 => 0.059366491269555
1122 => 0.059251779618782
1123 => 0.05852204262296
1124 => 0.059075541702684
1125 => 0.056974413909187
1126 => 0.057515922383362
1127 => 0.054760975033535
1128 => 0.056006326292421
1129 => 0.057067616716335
1130 => 0.057280686481609
1201 => 0.057760743542383
1202 => 0.053658708518563
1203 => 0.055500401814837
1204 => 0.056582224083073
1205 => 0.051694511718152
1206 => 0.056485609724812
1207 => 0.053587301215002
1208 => 0.05260357177564
1209 => 0.053928033869243
1210 => 0.053411889703284
1211 => 0.052968139258395
1212 => 0.052720518885547
1213 => 0.053693057671542
1214 => 0.05364768757474
1215 => 0.052056425359208
1216 => 0.049980688667192
1217 => 0.050677374034767
1218 => 0.050424261709267
1219 => 0.049506949989515
1220 => 0.050125107331988
1221 => 0.047403055238007
1222 => 0.042719906090269
1223 => 0.045813737866003
1224 => 0.045694628708078
1225 => 0.045634568469483
1226 => 0.047959497541717
1227 => 0.047736009256661
1228 => 0.047330375830882
1229 => 0.049499500213549
1230 => 0.048707740635035
1231 => 0.051147757093996
]
'min_raw' => 0.021903428169619
'max_raw' => 0.072052355140935
'avg_raw' => 0.046977891655277
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0219034'
'max' => '$0.072052'
'avg' => '$0.046977'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.01193242295011
'max_diff' => 0.047630248330469
'year' => 2029
]
4 => [
'items' => [
101 => 0.052754909744237
102 => 0.052347283846194
103 => 0.053858818681789
104 => 0.050693424258529
105 => 0.051744841312355
106 => 0.051961536909947
107 => 0.049472733555371
108 => 0.047772574704023
109 => 0.047659193491868
110 => 0.044711352339951
111 => 0.046286065289163
112 => 0.047671747518419
113 => 0.04700811326389
114 => 0.046798026484416
115 => 0.047871314278488
116 => 0.047954717932175
117 => 0.046053105789373
118 => 0.046448511170086
119 => 0.048097417338336
120 => 0.046406962965304
121 => 0.043122686252655
122 => 0.04230814021924
123 => 0.042199464763321
124 => 0.039990351318239
125 => 0.042362572080097
126 => 0.041327034145982
127 => 0.044598286072201
128 => 0.04272976451602
129 => 0.0426492162863
130 => 0.042527455823222
131 => 0.040625980623713
201 => 0.041042282847352
202 => 0.042426134843349
203 => 0.042919908825729
204 => 0.042868404153996
205 => 0.04241935321361
206 => 0.042624926434606
207 => 0.041962703463321
208 => 0.041728858749182
209 => 0.040990780507301
210 => 0.039906009391054
211 => 0.040056853468056
212 => 0.037907638040969
213 => 0.036736631408795
214 => 0.036412512206629
215 => 0.035979086463618
216 => 0.036461468797604
217 => 0.037901549583698
218 => 0.036164506625487
219 => 0.033186468313029
220 => 0.033365453489938
221 => 0.033767580041277
222 => 0.03301821987319
223 => 0.032309013363128
224 => 0.032925610883884
225 => 0.031663776792111
226 => 0.033920066662784
227 => 0.033859040344961
228 => 0.034700045680719
301 => 0.035225943576335
302 => 0.034013919188406
303 => 0.033709098332504
304 => 0.033882738145361
305 => 0.031012858826296
306 => 0.034465515313318
307 => 0.034495374029993
308 => 0.034239705570074
309 => 0.036078138560603
310 => 0.039957805592251
311 => 0.0384981187957
312 => 0.037932883948809
313 => 0.036858372091684
314 => 0.038290095343102
315 => 0.038180161335755
316 => 0.037682998063298
317 => 0.037382312164872
318 => 0.037936335152255
319 => 0.037313662585635
320 => 0.037201813482772
321 => 0.036524129612448
322 => 0.036282227303393
323 => 0.036103132464178
324 => 0.035905966643697
325 => 0.036340865313016
326 => 0.035355327712654
327 => 0.03416686598006
328 => 0.034068058246329
329 => 0.034340875086425
330 => 0.034220173943508
331 => 0.034067480375694
401 => 0.033775946771118
402 => 0.03368945497827
403 => 0.033970511345173
404 => 0.033653215093544
405 => 0.034121402996844
406 => 0.033994081793164
407 => 0.033282875899304
408 => 0.032396450033408
409 => 0.032388558983861
410 => 0.032197579985083
411 => 0.031954339516255
412 => 0.031886675582415
413 => 0.032873682760517
414 => 0.034916758080547
415 => 0.034515653508576
416 => 0.034805492668675
417 => 0.036231214472001
418 => 0.036684408560328
419 => 0.036362742130924
420 => 0.035922425282834
421 => 0.035941796989504
422 => 0.037446492952401
423 => 0.03754033899391
424 => 0.037777457664921
425 => 0.038082222166898
426 => 0.03641464484345
427 => 0.035863254247533
428 => 0.035601974793201
429 => 0.034797335201736
430 => 0.035665070016546
501 => 0.035159478100066
502 => 0.035227699723078
503 => 0.035183270301594
504 => 0.035207531770029
505 => 0.033919435983782
506 => 0.034388750387969
507 => 0.033608424165982
508 => 0.032563654950471
509 => 0.032560152517718
510 => 0.03281585830309
511 => 0.032663754496182
512 => 0.032254447062739
513 => 0.032312587251783
514 => 0.031803218017776
515 => 0.032374433899219
516 => 0.03239081432679
517 => 0.032170865098095
518 => 0.033050901976061
519 => 0.033411453803005
520 => 0.033266678508909
521 => 0.03340129598243
522 => 0.03453232121442
523 => 0.034716727677325
524 => 0.03479862884694
525 => 0.034688892129481
526 => 0.033421969047418
527 => 0.033478162473481
528 => 0.033065852397958
529 => 0.032717493832308
530 => 0.032731426348034
531 => 0.032910527934222
601 => 0.033692675065275
602 => 0.035338657592484
603 => 0.035401121426194
604 => 0.035476829414849
605 => 0.035168886977202
606 => 0.035076008591396
607 => 0.03519853915622
608 => 0.03581668365179
609 => 0.037406719118989
610 => 0.036844694389983
611 => 0.036387759536864
612 => 0.036788614591801
613 => 0.036726906098099
614 => 0.036206024310024
615 => 0.036191404893083
616 => 0.035191666205785
617 => 0.034822085576039
618 => 0.034513236339193
619 => 0.03417598103527
620 => 0.033976044786205
621 => 0.03428323773417
622 => 0.034353496395969
623 => 0.033681813646431
624 => 0.033590265769622
625 => 0.034138776402174
626 => 0.033897397323325
627 => 0.034145661691834
628 => 0.034203261154901
629 => 0.034193986314719
630 => 0.03394195883419
701 => 0.034102593634711
702 => 0.03372264444394
703 => 0.033309506765499
704 => 0.03304595066604
705 => 0.032815963013619
706 => 0.032943573530143
707 => 0.032488665339494
708 => 0.032343131053813
709 => 0.034048174178692
710 => 0.035307707867343
711 => 0.03528939374868
712 => 0.035177911261328
713 => 0.035012270898519
714 => 0.03580456602754
715 => 0.03552854624703
716 => 0.035729373699576
717 => 0.03578049271495
718 => 0.035935214578426
719 => 0.035990514345825
720 => 0.035823360040587
721 => 0.035262369776029
722 => 0.033864435374103
723 => 0.033213693136355
724 => 0.032998937358929
725 => 0.033006743323559
726 => 0.032791419971699
727 => 0.032854842348938
728 => 0.032769364257145
729 => 0.032607489430662
730 => 0.032933578215759
731 => 0.032971156910514
801 => 0.032895043891602
802 => 0.032912971262887
803 => 0.032282787974587
804 => 0.032330699441311
805 => 0.032063922306301
806 => 0.032013904809533
807 => 0.03133951544317
808 => 0.030144736926357
809 => 0.030806760204628
810 => 0.030007129179036
811 => 0.029704296793257
812 => 0.031137858207436
813 => 0.030993968402257
814 => 0.030747691603184
815 => 0.030383396888774
816 => 0.030248276435569
817 => 0.029427327335827
818 => 0.029378821283421
819 => 0.029785705824743
820 => 0.029597942608965
821 => 0.029334251942523
822 => 0.028379191078561
823 => 0.027305386457683
824 => 0.027337797869492
825 => 0.027679355140548
826 => 0.028672478971417
827 => 0.02828444830948
828 => 0.028002927612105
829 => 0.027950207247968
830 => 0.028610112982703
831 => 0.029544017851878
901 => 0.029982185121551
902 => 0.029547974664643
903 => 0.029049177071298
904 => 0.029079536569599
905 => 0.029281504710503
906 => 0.029302728706437
907 => 0.02897806275039
908 => 0.029069454315276
909 => 0.028930622171195
910 => 0.028078609559236
911 => 0.028063199352847
912 => 0.027854101717312
913 => 0.027847770324009
914 => 0.027492043084116
915 => 0.027442274384229
916 => 0.026735956358321
917 => 0.027200857021901
918 => 0.026889026065152
919 => 0.026419023259844
920 => 0.026337994599054
921 => 0.026335558779666
922 => 0.026818146570013
923 => 0.027195217702595
924 => 0.026894450498151
925 => 0.026825971635826
926 => 0.02755714673014
927 => 0.027464098034579
928 => 0.027383518464324
929 => 0.029460396914001
930 => 0.027816385560235
1001 => 0.027099502773106
1002 => 0.026212224191684
1003 => 0.026501126571842
1004 => 0.0265620025482
1005 => 0.024428257503866
1006 => 0.023562597405121
1007 => 0.023265535480944
1008 => 0.023094572143741
1009 => 0.023172482283327
1010 => 0.022393286662654
1011 => 0.022916919006452
1012 => 0.022242201462716
1013 => 0.022129082870787
1014 => 0.023335561420453
1015 => 0.023503435862494
1016 => 0.022787231338248
1017 => 0.023247150585794
1018 => 0.023080377473278
1019 => 0.022253767558446
1020 => 0.022222197139831
1021 => 0.021807433341311
1022 => 0.021158408310726
1023 => 0.020861786456082
1024 => 0.020707303218795
1025 => 0.020771046013318
1026 => 0.020738815705845
1027 => 0.020528491148167
1028 => 0.020750871263294
1029 => 0.020182781962951
1030 => 0.019956564226147
1031 => 0.019854386922645
1101 => 0.01935017497059
1102 => 0.020152600410382
1103 => 0.020310688330711
1104 => 0.020469087733078
1105 => 0.021847846386821
1106 => 0.021778967500811
1107 => 0.022401599084959
1108 => 0.022377404766545
1109 => 0.022199820152783
1110 => 0.021450619878573
1111 => 0.021749237754662
1112 => 0.020830138347581
1113 => 0.021518790116051
1114 => 0.021204518207706
1115 => 0.021412534467711
1116 => 0.021038502476153
1117 => 0.021245507223683
1118 => 0.020348176841296
1119 => 0.019510262356001
1120 => 0.019847463605132
1121 => 0.020214039926578
1122 => 0.021008870793383
1123 => 0.020535476086326
1124 => 0.02070572672402
1125 => 0.02013541558736
1126 => 0.018958700811109
1127 => 0.018965360888951
1128 => 0.01878434895675
1129 => 0.018627928219153
1130 => 0.020589851163088
1201 => 0.020345855031598
1202 => 0.019957079129492
1203 => 0.020477471123801
1204 => 0.020615071026828
1205 => 0.020618988302624
1206 => 0.020998652868411
1207 => 0.021201279915229
1208 => 0.021236993810467
1209 => 0.021834404207927
1210 => 0.022034648293122
1211 => 0.022859425340437
1212 => 0.021184088425983
1213 => 0.021149585964716
1214 => 0.020484794106352
1215 => 0.020063172599834
1216 => 0.020513662891616
1217 => 0.020912735792078
1218 => 0.020497194413781
1219 => 0.020551455345229
1220 => 0.019993624995843
1221 => 0.020193023097391
1222 => 0.020364771604269
1223 => 0.020269942173681
1224 => 0.020127977926296
1225 => 0.020880016365207
1226 => 0.020837583409222
1227 => 0.021537898892825
1228 => 0.022083844892335
1229 => 0.023062277722977
1230 => 0.022041232057345
1231 => 0.022004021095
]
'min_raw' => 0.018627928219153
'max_raw' => 0.053858818681789
'avg_raw' => 0.036243373450471
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.018627'
'max' => '$0.053858'
'avg' => '$0.036243'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032754999504659
'max_diff' => -0.018193536459146
'year' => 2030
]
5 => [
'items' => [
101 => 0.022367764220745
102 => 0.022034592605945
103 => 0.022245145565805
104 => 0.023028354386007
105 => 0.023044902354214
106 => 0.022767702565901
107 => 0.02275083493359
108 => 0.022804074185169
109 => 0.023115898144564
110 => 0.023006937271769
111 => 0.02313302955232
112 => 0.023290709879941
113 => 0.023942942570059
114 => 0.024100193663523
115 => 0.023718155031749
116 => 0.023752648842693
117 => 0.023609755907215
118 => 0.023471723121987
119 => 0.023782000665111
120 => 0.024349038973692
121 => 0.024345511457803
122 => 0.024477053323744
123 => 0.024559002816474
124 => 0.024207215602983
125 => 0.023978215062575
126 => 0.024066028441451
127 => 0.024206443946599
128 => 0.024020493585604
129 => 0.022872721816956
130 => 0.02322088245162
131 => 0.023162931497826
201 => 0.023080402292548
202 => 0.023430480502949
203 => 0.023396714605534
204 => 0.022385294885333
205 => 0.022450042694277
206 => 0.022389232414046
207 => 0.022585722870084
208 => 0.022023981476492
209 => 0.022196769345775
210 => 0.022305140277604
211 => 0.022368971588996
212 => 0.022599574055283
213 => 0.022572515517467
214 => 0.02259789205858
215 => 0.02293981463929
216 => 0.024669141718859
217 => 0.024763265176254
218 => 0.024299766848
219 => 0.024484925288037
220 => 0.024129461572866
221 => 0.02436808674626
222 => 0.024531348029475
223 => 0.023793601683968
224 => 0.023749917133321
225 => 0.023392986292951
226 => 0.02358478070897
227 => 0.023279622002578
228 => 0.023354497275128
301 => 0.023145139485568
302 => 0.023521941824055
303 => 0.023943265387647
304 => 0.024049708358382
305 => 0.023769702728959
306 => 0.023566960199986
307 => 0.02321101110665
308 => 0.02380296238171
309 => 0.023976066973926
310 => 0.02380205313698
311 => 0.023761730328682
312 => 0.02368531867982
313 => 0.02377794142121
314 => 0.023975124209141
315 => 0.023882136447747
316 => 0.023943556502381
317 => 0.023709486590201
318 => 0.024207332059189
319 => 0.024998030476979
320 => 0.025000572701684
321 => 0.024907584439052
322 => 0.024869535645442
323 => 0.024964947245903
324 => 0.025016704125164
325 => 0.025325247745559
326 => 0.025656327343162
327 => 0.027201331363832
328 => 0.026767500417261
329 => 0.0281383198971
330 => 0.029222460127021
331 => 0.029547546378268
401 => 0.029248482323611
402 => 0.028225400347753
403 => 0.028175203065147
404 => 0.029704119471148
405 => 0.029272130557645
406 => 0.029220746850961
407 => 0.028674111025987
408 => 0.028997240500711
409 => 0.028926567344565
410 => 0.028815006310141
411 => 0.029431514838519
412 => 0.030585563767546
413 => 0.030405694419355
414 => 0.030271430294829
415 => 0.029683123984856
416 => 0.030037415786431
417 => 0.029911259261903
418 => 0.030453307752186
419 => 0.030132210234386
420 => 0.029268857816752
421 => 0.029406349534907
422 => 0.029385567938303
423 => 0.029813251723817
424 => 0.02968487166717
425 => 0.029360499671816
426 => 0.030581619353768
427 => 0.030502326633847
428 => 0.030614745581856
429 => 0.030664235879441
430 => 0.031407509911302
501 => 0.03171200550004
502 => 0.031781131329629
503 => 0.032070378588396
504 => 0.031773934594333
505 => 0.03295992193157
506 => 0.033748534306553
507 => 0.034664548161718
508 => 0.036003090605427
509 => 0.036506394946471
510 => 0.036415477522164
511 => 0.037430345126411
512 => 0.039254039652002
513 => 0.036784098327208
514 => 0.039384952539702
515 => 0.038561552124332
516 => 0.036609284551832
517 => 0.036483581535885
518 => 0.037805679802275
519 => 0.040737966509886
520 => 0.04000346194735
521 => 0.040739167896221
522 => 0.03988092782754
523 => 0.039838308974315
524 => 0.040697485091713
525 => 0.042704996921264
526 => 0.0417513033015
527 => 0.040383949642299
528 => 0.041393582305874
529 => 0.040518945055593
530 => 0.038548142535158
531 => 0.040002900285553
601 => 0.03903014520698
602 => 0.039314046853412
603 => 0.041358633342176
604 => 0.041112623286543
605 => 0.04143098307845
606 => 0.040869086378661
607 => 0.040344186258081
608 => 0.039364421203424
609 => 0.039074361072573
610 => 0.03915452325747
611 => 0.039074321348176
612 => 0.038526151804601
613 => 0.038407774643857
614 => 0.038210474189729
615 => 0.038271625850518
616 => 0.037900643274474
617 => 0.038600764044381
618 => 0.038730712628718
619 => 0.03924020213983
620 => 0.03929309903104
621 => 0.040712020067356
622 => 0.039930502204552
623 => 0.040454811859927
624 => 0.040407912669356
625 => 0.036651596109921
626 => 0.037169183389549
627 => 0.037974386768816
628 => 0.037611643737884
629 => 0.037098809960943
630 => 0.036684669189655
701 => 0.036057203573087
702 => 0.036940349378997
703 => 0.038101592201683
704 => 0.039322550065366
705 => 0.040789450938253
706 => 0.040462055740033
707 => 0.039295127373902
708 => 0.039347474927965
709 => 0.039671066909179
710 => 0.039251985892075
711 => 0.039128390718698
712 => 0.03965408683029
713 => 0.039657707010493
714 => 0.039175503652682
715 => 0.038639622862759
716 => 0.038637377502683
717 => 0.03854202269211
718 => 0.039897891236509
719 => 0.040643481842157
720 => 0.040728962603515
721 => 0.040637728305843
722 => 0.040672840766057
723 => 0.040238998020599
724 => 0.041230633884647
725 => 0.04214065701612
726 => 0.041896751377077
727 => 0.041531102150921
728 => 0.041239844930235
729 => 0.041828140432171
730 => 0.041801944559533
731 => 0.042132708757954
801 => 0.042117703383327
802 => 0.042006479824068
803 => 0.04189675534922
804 => 0.042331800489301
805 => 0.042206514475569
806 => 0.042081033858053
807 => 0.041829363269502
808 => 0.041863569482292
809 => 0.041497983390631
810 => 0.041328846536547
811 => 0.038785434067182
812 => 0.038105751146967
813 => 0.038319593229888
814 => 0.038389995595993
815 => 0.038094196718079
816 => 0.038518296324511
817 => 0.038452200850081
818 => 0.038709339676528
819 => 0.038548690501434
820 => 0.038555283599617
821 => 0.039027718569553
822 => 0.039164868451208
823 => 0.039095112914463
824 => 0.039143967301319
825 => 0.040269796026273
826 => 0.040109739183561
827 => 0.040024712175921
828 => 0.040048265238122
829 => 0.040335938615388
830 => 0.040416471454638
831 => 0.040075248155792
901 => 0.040236171036116
902 => 0.040921360236382
903 => 0.041161137678125
904 => 0.041926392172467
905 => 0.041601298461956
906 => 0.042198022037325
907 => 0.044032146869949
908 => 0.045497372698033
909 => 0.044149890473508
910 => 0.046840591111402
911 => 0.048935687516085
912 => 0.048855274226507
913 => 0.048489945707898
914 => 0.046104734152187
915 => 0.04390982691712
916 => 0.045745960019937
917 => 0.045750640700821
918 => 0.045592915238903
919 => 0.044613295941061
920 => 0.045558826610786
921 => 0.045633879401685
922 => 0.04559186979693
923 => 0.044840797978113
924 => 0.043694050132056
925 => 0.043918121916249
926 => 0.044285156069698
927 => 0.043590283845874
928 => 0.043368230066569
929 => 0.043781070289756
930 => 0.045111327507543
1001 => 0.044859850086176
1002 => 0.044853282994404
1003 => 0.045929210046035
1004 => 0.045159078476657
1005 => 0.043920948179025
1006 => 0.043608303949941
1007 => 0.042498627559079
1008 => 0.043265084994779
1009 => 0.043292668433392
1010 => 0.042872887528864
1011 => 0.043955011085883
1012 => 0.043945039126801
1013 => 0.044972354391354
1014 => 0.046936195335186
1015 => 0.046355390933351
1016 => 0.045679978605356
1017 => 0.045753414652562
1018 => 0.046558826834797
1019 => 0.046071856243646
1020 => 0.046246974263504
1021 => 0.046558561772701
1022 => 0.046746550253282
1023 => 0.045726366003185
1024 => 0.045488512253433
1025 => 0.045001946956764
1026 => 0.044875011153035
1027 => 0.045271308434654
1028 => 0.045166898102337
1029 => 0.043290350152185
1030 => 0.04309424045038
1031 => 0.043100254854954
1101 => 0.042607127685257
1102 => 0.041854990387388
1103 => 0.043831562298404
1104 => 0.043672815911843
1105 => 0.043497572187075
1106 => 0.043519038543432
1107 => 0.044377001417766
1108 => 0.043879339622489
1109 => 0.045202455070399
1110 => 0.044930462310799
1111 => 0.044651493963239
1112 => 0.044612932040022
1113 => 0.044505553026673
1114 => 0.044137310435925
1115 => 0.043692635379649
1116 => 0.043399022390401
1117 => 0.040033304091501
1118 => 0.040657961830294
1119 => 0.041376573619431
1120 => 0.041624635529386
1121 => 0.041200308467047
1122 => 0.04415406545465
1123 => 0.044693745319396
1124 => 0.043059019806635
1125 => 0.0427532294086
1126 => 0.044174113022237
1127 => 0.043317146507257
1128 => 0.043703038476479
1129 => 0.042868951110641
1130 => 0.04456375224365
1201 => 0.044550840698585
1202 => 0.043891524779025
1203 => 0.044448774079436
1204 => 0.044351938300258
1205 => 0.043607572250898
1206 => 0.044587349975116
1207 => 0.044587835932643
1208 => 0.043953258694831
1209 => 0.043212211407887
1210 => 0.043079729655736
1211 => 0.042979922451911
1212 => 0.043678492022631
1213 => 0.044304827315369
1214 => 0.045470282013466
1215 => 0.045763305015089
1216 => 0.046906993298066
1217 => 0.046225982610725
1218 => 0.046527865827859
1219 => 0.046855602764046
1220 => 0.04701273190338
1221 => 0.046756698402849
1222 => 0.048533317067192
1223 => 0.048683318116651
1224 => 0.048733612171031
1225 => 0.048134546353447
1226 => 0.048666657012562
1227 => 0.048417700056815
1228 => 0.049065416893435
1229 => 0.049166987163881
1230 => 0.04908096075828
1231 => 0.049113200765297
]
'min_raw' => 0.022023981476492
'max_raw' => 0.049166987163881
'avg_raw' => 0.035595484320186
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.022023'
'max' => '$0.049166'
'avg' => '$0.035595'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0033960532573392
'max_diff' => -0.0046918315179085
'year' => 2031
]
6 => [
'items' => [
101 => 0.04759717015229
102 => 0.047518555967307
103 => 0.046446645976855
104 => 0.046883457221123
105 => 0.046066859536872
106 => 0.046325811074436
107 => 0.046439954444814
108 => 0.046380332425708
109 => 0.046908153873487
110 => 0.046459397816077
111 => 0.045275056798244
112 => 0.044090393107493
113 => 0.044075520619862
114 => 0.043763619581138
115 => 0.043538172257666
116 => 0.04358160141034
117 => 0.043734651408918
118 => 0.043529276713519
119 => 0.043573103817543
120 => 0.04430092576282
121 => 0.044446885263357
122 => 0.043950857850475
123 => 0.04195923621134
124 => 0.041470487265492
125 => 0.041821790315455
126 => 0.041653890084386
127 => 0.033617940250928
128 => 0.035505867465371
129 => 0.034384125222499
130 => 0.034901075656894
131 => 0.033756067300668
201 => 0.034302525303288
202 => 0.034201614463655
203 => 0.037237345556651
204 => 0.037189946791145
205 => 0.037212634071906
206 => 0.036129711049805
207 => 0.037854836828576
208 => 0.038704695820715
209 => 0.038547409539535
210 => 0.038586995107908
211 => 0.037906783889994
212 => 0.037219220003363
213 => 0.036456605837766
214 => 0.037873448695486
215 => 0.037715919956022
216 => 0.038077234207302
217 => 0.038996158078552
218 => 0.039131473109246
219 => 0.039313337882728
220 => 0.039248152307451
221 => 0.040801137170294
222 => 0.04061306045648
223 => 0.041066271223409
224 => 0.040133982290652
225 => 0.03907900886956
226 => 0.03927952482723
227 => 0.039260213528059
228 => 0.039014358525133
229 => 0.038792411621412
301 => 0.038422932559868
302 => 0.039592018983205
303 => 0.03954455620942
304 => 0.04031292334756
305 => 0.040177106992373
306 => 0.039270092132539
307 => 0.0393024863457
308 => 0.039520352997335
309 => 0.0402743919662
310 => 0.040498242071047
311 => 0.040394545783598
312 => 0.040639987204417
313 => 0.04083397409598
314 => 0.040664348971323
315 => 0.043065883028738
316 => 0.042068598653729
317 => 0.042554668119048
318 => 0.04267059282244
319 => 0.042373654132337
320 => 0.042438049501643
321 => 0.042535590939454
322 => 0.043127843449268
323 => 0.044682085404666
324 => 0.045370448586629
325 => 0.047441423182806
326 => 0.045313289606845
327 => 0.04518701496754
328 => 0.045560060029753
329 => 0.046775941352633
330 => 0.047761298962902
331 => 0.048088198928873
401 => 0.048131404155906
402 => 0.048744690223966
403 => 0.049096214361069
404 => 0.048670221164278
405 => 0.048309236533345
406 => 0.047016234392402
407 => 0.047165902910945
408 => 0.04819697058457
409 => 0.04965341440315
410 => 0.050903194716644
411 => 0.0504655652101
412 => 0.053804369426747
413 => 0.054135398227035
414 => 0.054089660750278
415 => 0.054843793621025
416 => 0.05334699344908
417 => 0.052707082376436
418 => 0.048387285507902
419 => 0.049600972225736
420 => 0.051365137147428
421 => 0.051131643304763
422 => 0.049850459582367
423 => 0.050902222823904
424 => 0.050554477004574
425 => 0.050280195448882
426 => 0.051536732427605
427 => 0.050155118403804
428 => 0.051351354490661
429 => 0.04981716933579
430 => 0.050467564264822
501 => 0.05009836864704
502 => 0.050337283458658
503 => 0.048940592351771
504 => 0.049694212970287
505 => 0.048909239256366
506 => 0.048908867076619
507 => 0.048891538738377
508 => 0.049815056831699
509 => 0.049845172723567
510 => 0.049162691457243
511 => 0.049064335244405
512 => 0.049428009713846
513 => 0.049002242156625
514 => 0.0492014561169
515 => 0.049008276144539
516 => 0.048964787263768
517 => 0.048618260462761
518 => 0.048468967188934
519 => 0.048527508928415
520 => 0.048327675791231
521 => 0.048207269097797
522 => 0.04886758681646
523 => 0.048514805696519
524 => 0.048813518050236
525 => 0.048473097622671
526 => 0.047293052106612
527 => 0.046614395451572
528 => 0.044385398862013
529 => 0.04501753952975
530 => 0.045436649446457
531 => 0.045298133621485
601 => 0.045595719212032
602 => 0.045613988550402
603 => 0.045517240441389
604 => 0.045405218525353
605 => 0.045350692451827
606 => 0.045757085131516
607 => 0.045993009760624
608 => 0.045478712733566
609 => 0.045358220135906
610 => 0.045878202825379
611 => 0.046195391965573
612 => 0.048537338363585
613 => 0.048363839410033
614 => 0.048799287735999
615 => 0.048750262936994
616 => 0.049206682154964
617 => 0.049952734679192
618 => 0.048435801297871
619 => 0.048699088481258
620 => 0.048634536544081
621 => 0.049339297667759
622 => 0.04934149785506
623 => 0.048918958355986
624 => 0.049148023873354
625 => 0.049020165785643
626 => 0.049251222631195
627 => 0.048361522225731
628 => 0.049445081282362
629 => 0.050059389444468
630 => 0.050067919113895
701 => 0.050359096307282
702 => 0.050654949199609
703 => 0.051222813063075
704 => 0.050639111784666
705 => 0.049589090006982
706 => 0.049664898187781
707 => 0.049049270803713
708 => 0.049059619611261
709 => 0.049004376865517
710 => 0.049170164503974
711 => 0.048397903289325
712 => 0.048579151452829
713 => 0.048325402962535
714 => 0.048698536881596
715 => 0.048297106465933
716 => 0.048634505415182
717 => 0.048780115616725
718 => 0.049317420395184
719 => 0.048217746113286
720 => 0.04597543581109
721 => 0.046446796621996
722 => 0.045749616958074
723 => 0.04581414359032
724 => 0.045944497656795
725 => 0.045521977478154
726 => 0.045602581013097
727 => 0.045599701287631
728 => 0.045574885369314
729 => 0.045464971552346
730 => 0.045305574771956
731 => 0.045940562485287
801 => 0.046048459271329
802 => 0.046288300461118
803 => 0.047001905156096
804 => 0.04693059921911
805 => 0.047046902160789
806 => 0.046793013492117
807 => 0.045825920757489
808 => 0.045878438545803
809 => 0.04522354088399
810 => 0.046271553255495
811 => 0.046023370092835
812 => 0.045863364793341
813 => 0.045819705864936
814 => 0.046535079447926
815 => 0.046749130436063
816 => 0.046615748224683
817 => 0.046342177417763
818 => 0.046867514241
819 => 0.047008072212717
820 => 0.047039537959005
821 => 0.047970334086437
822 => 0.047091559122674
823 => 0.047303088990723
824 => 0.048953384637383
825 => 0.047456794211095
826 => 0.048249571537849
827 => 0.048210769213119
828 => 0.048616327267364
829 => 0.048177501615318
830 => 0.048182941385203
831 => 0.048543049462491
901 => 0.048037342613774
902 => 0.04791212248626
903 => 0.047739131776944
904 => 0.048116850661998
905 => 0.048343276050832
906 => 0.050168098393713
907 => 0.051347016849222
908 => 0.051295836889893
909 => 0.051763525913299
910 => 0.051552827724714
911 => 0.050872427694399
912 => 0.052033787580202
913 => 0.051666284718972
914 => 0.051696581208336
915 => 0.051695453571489
916 => 0.051939810846549
917 => 0.051766661322153
918 => 0.051425365836136
919 => 0.051651933707348
920 => 0.05232475928535
921 => 0.054413230524279
922 => 0.055581966698147
923 => 0.054342871139104
924 => 0.055197582663581
925 => 0.05468506031375
926 => 0.054591919756567
927 => 0.055128741756624
928 => 0.055666503392529
929 => 0.05563225030113
930 => 0.055241862967828
1001 => 0.055021343068958
1002 => 0.056691193622789
1003 => 0.057921511065689
1004 => 0.057837611664236
1005 => 0.058207916336702
1006 => 0.059295142308157
1007 => 0.059394544625427
1008 => 0.059382022218187
1009 => 0.059135643203273
1010 => 0.060206158366303
1011 => 0.061099200949225
1012 => 0.059078613579895
1013 => 0.059848026798705
1014 => 0.060193441181574
1015 => 0.060700611975456
1016 => 0.061556294116429
1017 => 0.062485791880004
1018 => 0.062617233055198
1019 => 0.062523969251359
1020 => 0.06191094049004
1021 => 0.062928008034158
1022 => 0.063523782348334
1023 => 0.063878552318373
1024 => 0.064778189934298
1025 => 0.06019557434321
1026 => 0.056951771257065
1027 => 0.056445204564079
1028 => 0.057475327854017
1029 => 0.057746963150495
1030 => 0.057637467303086
1031 => 0.053986272015956
1101 => 0.056425981776524
1102 => 0.059050904342273
1103 => 0.059151738308357
1104 => 0.060465829429313
1105 => 0.060893751364711
1106 => 0.061951766958942
1107 => 0.061885587795456
1108 => 0.062143197755946
1109 => 0.062083977687212
1110 => 0.064043728784056
1111 => 0.066205625269728
1112 => 0.066130765668839
1113 => 0.065819967470625
1114 => 0.066281555793941
1115 => 0.068512864650062
1116 => 0.068307441486586
1117 => 0.068506992591999
1118 => 0.071137831484423
1119 => 0.074558296277042
1120 => 0.07296914697182
1121 => 0.076417143698757
1122 => 0.078587474867911
1123 => 0.082340838208532
1124 => 0.081870898632582
1125 => 0.083332055437633
1126 => 0.081029608712283
1127 => 0.075742725629621
1128 => 0.074906056144414
1129 => 0.076581089641644
1130 => 0.080698996047204
1201 => 0.076451402114548
1202 => 0.077310684835046
1203 => 0.077063211353736
1204 => 0.077050024543611
1205 => 0.077553311451429
1206 => 0.07682326754196
1207 => 0.073848937322391
1208 => 0.075212055334181
1209 => 0.074685690007525
1210 => 0.075269731580584
1211 => 0.078421563073317
1212 => 0.077028063240102
1213 => 0.075560124364543
1214 => 0.077401245476207
1215 => 0.07974562532921
1216 => 0.079598918251265
1217 => 0.07931424520125
1218 => 0.08091893227919
1219 => 0.083569405202747
1220 => 0.084285817383522
1221 => 0.084814658208967
1222 => 0.084887576423957
1223 => 0.085638679356772
1224 => 0.081599809584715
1225 => 0.088009599638502
1226 => 0.089116393313915
1227 => 0.088908361974835
1228 => 0.090138516564058
1229 => 0.089776573877899
1230 => 0.089252175712722
1231 => 0.091202232398025
]
'min_raw' => 0.033617940250928
'max_raw' => 0.091202232398025
'avg_raw' => 0.062410086324477
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.033617'
'max' => '$0.0912022'
'avg' => '$0.06241'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011593958774436
'max_diff' => 0.042035245234144
'year' => 2032
]
7 => [
'items' => [
101 => 0.088966649769784
102 => 0.085793521681024
103 => 0.084052680854172
104 => 0.086345160484594
105 => 0.087745097798379
106 => 0.088670367310055
107 => 0.088950353305225
108 => 0.081913335547932
109 => 0.078120773267648
110 => 0.080551762207495
111 => 0.083517736492003
112 => 0.081583333447809
113 => 0.081659158384832
114 => 0.078901207995988
115 => 0.083761753904685
116 => 0.083053613249414
117 => 0.086727448221641
118 => 0.085850658021152
119 => 0.088846527823551
120 => 0.088057614902049
121 => 0.091332348331677
122 => 0.092638728156624
123 => 0.094832343204495
124 => 0.096445975363328
125 => 0.097393531030859
126 => 0.097336643342772
127 => 0.10109133096789
128 => 0.098877322854153
129 => 0.09609600686165
130 => 0.096045701630285
131 => 0.097486184594354
201 => 0.10050504170984
202 => 0.1012877874373
203 => 0.10172523551482
204 => 0.10105526855643
205 => 0.098652121428356
206 => 0.097614454682687
207 => 0.098498576814097
208 => 0.097417371420863
209 => 0.099283835262237
210 => 0.10184688877161
211 => 0.10131762835733
212 => 0.10308686657109
213 => 0.10491784199304
214 => 0.10753621908069
215 => 0.10822075980962
216 => 0.10935227960379
217 => 0.11051698515689
218 => 0.11089105719085
219 => 0.11160527677141
220 => 0.11160151248167
221 => 0.11375386126022
222 => 0.11612796861565
223 => 0.11702413918162
224 => 0.11908483398292
225 => 0.11555596635105
226 => 0.11823265298653
227 => 0.12064709133355
228 => 0.11776849840062
301 => 0.12173596813253
302 => 0.12189001599174
303 => 0.12421595577177
304 => 0.12185817020856
305 => 0.12045812466745
306 => 0.12450000368562
307 => 0.12645574162452
308 => 0.125866657441
309 => 0.12138369771774
310 => 0.11877442287562
311 => 0.11194544732227
312 => 0.12003466385501
313 => 0.12397468526243
314 => 0.12137349401414
315 => 0.12268538357752
316 => 0.12984262765368
317 => 0.13256764280065
318 => 0.13200085869937
319 => 0.13209663588243
320 => 0.13356700459321
321 => 0.14008742920365
322 => 0.13618023963481
323 => 0.13916713966059
324 => 0.14075138066419
325 => 0.14222291199905
326 => 0.1386092961229
327 => 0.13390803496258
328 => 0.1324189482076
329 => 0.12111485680837
330 => 0.12052642975986
331 => 0.12019612782637
401 => 0.11811362085783
402 => 0.11647734082723
403 => 0.11517611019571
404 => 0.11176129243824
405 => 0.11291369318836
406 => 0.10747118641081
407 => 0.11095310937649
408 => 0.1022667371456
409 => 0.10950100605643
410 => 0.10556372239011
411 => 0.10820750247914
412 => 0.10819827857947
413 => 0.10333024122433
414 => 0.10052245887123
415 => 0.10231168706715
416 => 0.10422988172228
417 => 0.1045411023515
418 => 0.10702809179188
419 => 0.10772215708703
420 => 0.10561910683991
421 => 0.10208673138843
422 => 0.1029072216409
423 => 0.10050583166245
424 => 0.096297488093358
425 => 0.099319993915313
426 => 0.10035201029313
427 => 0.10080780751825
428 => 0.096669384949566
429 => 0.095369002728961
430 => 0.094676690145975
501 => 0.10155251300289
502 => 0.10192918610029
503 => 0.10000207327781
504 => 0.10871280597175
505 => 0.10674129888757
506 => 0.10894395533157
507 => 0.10283277075046
508 => 0.10306622623126
509 => 0.10017309351449
510 => 0.10179305451668
511 => 0.10064811829411
512 => 0.10166217767647
513 => 0.10227000068913
514 => 0.1051626586713
515 => 0.10953403556405
516 => 0.1047305920304
517 => 0.10263766289622
518 => 0.10393610435999
519 => 0.10739402508462
520 => 0.11263295199014
521 => 0.10953140181884
522 => 0.11090781711713
523 => 0.11120850262735
524 => 0.10892153435666
525 => 0.11271727577238
526 => 0.11475144443361
527 => 0.11683808056814
528 => 0.11864984825753
529 => 0.11600463220989
530 => 0.11883539255769
531 => 0.11655429941384
601 => 0.11450792304872
602 => 0.11451102655696
603 => 0.11322730477034
604 => 0.1107399320494
605 => 0.11028122235651
606 => 0.11266748810755
607 => 0.11458104725967
608 => 0.11473865715677
609 => 0.11579810182561
610 => 0.11642507026748
611 => 0.12257021332006
612 => 0.12504184069109
613 => 0.12806409985489
614 => 0.12924144012438
615 => 0.1327848122357
616 => 0.12992325147719
617 => 0.12930413480703
618 => 0.12070907309315
619 => 0.1221165139673
620 => 0.12436996260465
621 => 0.12074623163119
622 => 0.12304465486595
623 => 0.12349841229976
624 => 0.12062309863935
625 => 0.12215892790034
626 => 0.11808022072478
627 => 0.10962294023465
628 => 0.1127266911432
629 => 0.11501209652316
630 => 0.11175054125751
701 => 0.11759675283156
702 => 0.11418151672031
703 => 0.11309905083328
704 => 0.10887596548105
705 => 0.11086909920584
706 => 0.11356484110755
707 => 0.11189918602593
708 => 0.11535567041966
709 => 0.1202509741319
710 => 0.12373965907762
711 => 0.12400747698858
712 => 0.12176448629222
713 => 0.12535889319771
714 => 0.12538507452792
715 => 0.12133056885494
716 => 0.11884720670582
717 => 0.1182829816005
718 => 0.11969252653644
719 => 0.12140397430501
720 => 0.12410245042867
721 => 0.12573308303455
722 => 0.12998490804997
723 => 0.13113532998977
724 => 0.13239929491547
725 => 0.13408834184855
726 => 0.13611647575446
727 => 0.13167903423006
728 => 0.13185534205425
729 => 0.12772325794729
730 => 0.1233075334782
731 => 0.12665851792241
801 => 0.13103948432044
802 => 0.1300344857882
803 => 0.12992140292306
804 => 0.13011157693565
805 => 0.12935384086252
806 => 0.12592662868676
807 => 0.12420550418758
808 => 0.12642619389721
809 => 0.12760639164635
810 => 0.12943677543121
811 => 0.12921114199502
812 => 0.13392601405595
813 => 0.1357580707685
814 => 0.1352893522633
815 => 0.1353756077486
816 => 0.13869245891623
817 => 0.14238147957711
818 => 0.14583673423517
819 => 0.14935156767999
820 => 0.14511429877598
821 => 0.14296287494493
822 => 0.14518259517091
823 => 0.14400478037418
824 => 0.15077285355874
825 => 0.15124146026155
826 => 0.15800904403739
827 => 0.16443228690954
828 => 0.16039796314589
829 => 0.16420214874507
830 => 0.1683166856304
831 => 0.17625429484174
901 => 0.17358118730782
902 => 0.17153362882977
903 => 0.16959869596175
904 => 0.17362498409816
905 => 0.17880473946414
906 => 0.17992040915889
907 => 0.18172822028301
908 => 0.17982752793462
909 => 0.18211670251386
910 => 0.19019849469285
911 => 0.18801472310614
912 => 0.1849134163942
913 => 0.19129321513594
914 => 0.19360203949974
915 => 0.20980657802557
916 => 0.23026547729053
917 => 0.22179535865446
918 => 0.21653768268803
919 => 0.21777336125388
920 => 0.225244258688
921 => 0.22764367382941
922 => 0.22112123634707
923 => 0.22342507153177
924 => 0.2361194299076
925 => 0.24292954589245
926 => 0.23368049366442
927 => 0.20816272539001
928 => 0.18463417765692
929 => 0.19087500802005
930 => 0.19016749153238
1001 => 0.20380599595375
1002 => 0.18796264087601
1003 => 0.18822940234297
1004 => 0.20214993659235
1005 => 0.19843617671299
1006 => 0.19242036133086
1007 => 0.18467809976671
1008 => 0.17036581319287
1009 => 0.15768902184678
1010 => 0.18255112896715
1011 => 0.18147902969931
1012 => 0.17992647108327
1013 => 0.18338152227888
1014 => 0.20015827015136
1015 => 0.19977151181187
1016 => 0.19731115258185
1017 => 0.19917731337321
1018 => 0.19209321432138
1019 => 0.19391894794897
1020 => 0.18463045061475
1021 => 0.18882923933173
1022 => 0.19240745409289
1023 => 0.19312583368256
1024 => 0.19474437957948
1025 => 0.18091408210173
1026 => 0.18712347963304
1027 => 0.19077091894081
1028 => 0.1742916554533
1029 => 0.19044517688654
1030 => 0.18067332739228
1031 => 0.17735661490567
1101 => 0.18182213132524
1102 => 0.18008191523368
1103 => 0.17858577962707
1104 => 0.17775091025171
1105 => 0.18102989266918
1106 => 0.18087692422017
1107 => 0.17551187256213
1108 => 0.16851338138169
1109 => 0.17086230473948
1110 => 0.17000891886232
1111 => 0.16691613835452
1112 => 0.16900029899304
1113 => 0.15982271031057
1114 => 0.14403314599194
1115 => 0.15446421582826
1116 => 0.15406263098638
1117 => 0.15386013369869
1118 => 0.16169879438709
1119 => 0.16094528803057
1120 => 0.15957766661513
1121 => 0.16689102091472
1122 => 0.16422154821688
1123 => 0.17244823406477
1124 => 0.17786686143287
1125 => 0.17649252225809
1126 => 0.18158876748829
1127 => 0.17091641918949
1128 => 0.17446134519406
1129 => 0.17519194953054
1130 => 0.16680077525789
1201 => 0.16106857098927
1202 => 0.16068629831646
1203 => 0.15074744606108
1204 => 0.15605670071229
1205 => 0.16072862509348
1206 => 0.15849113587087
1207 => 0.15778281362608
1208 => 0.16140147835835
1209 => 0.16168267959982
1210 => 0.15527126149404
1211 => 0.15660439834144
1212 => 0.16216380061064
1213 => 0.15646431566821
1214 => 0.14539114743064
1215 => 0.14264484860919
1216 => 0.14227844172208
1217 => 0.13483026150661
1218 => 0.14282836942838
1219 => 0.13933698098456
1220 => 0.15036623524532
1221 => 0.14406638436265
1222 => 0.14379481038245
1223 => 0.14338428648014
1224 => 0.13697333008824
1225 => 0.13837692210053
1226 => 0.14304267572249
1227 => 0.14470746917829
1228 => 0.1445338175816
1229 => 0.14301981098435
1230 => 0.1437129154516
1231 => 0.14148018446899
]
'min_raw' => 0.078120773267648
'max_raw' => 0.24292954589245
'avg_raw' => 0.16052515958005
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.07812'
'max' => '$0.242929'
'avg' => '$0.160525'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.044502833016719
'max_diff' => 0.15172731349443
'year' => 2033
]
8 => [
'items' => [
101 => 0.14069176068875
102 => 0.13820327836527
103 => 0.13454589681054
104 => 0.13505447814775
105 => 0.1278082482819
106 => 0.12386011766445
107 => 0.12276732714507
108 => 0.12130600199169
109 => 0.12293238770958
110 => 0.12778772062313
111 => 0.12193115901305
112 => 0.1118904949226
113 => 0.1124939559429
114 => 0.11384975368632
115 => 0.11132323356096
116 => 0.10893209429707
117 => 0.11101099588776
118 => 0.1067566341489
119 => 0.114363872977
120 => 0.11415811848574
121 => 0.11699362669237
122 => 0.11876672816446
123 => 0.11468030331971
124 => 0.11365257852213
125 => 0.11423801727432
126 => 0.10456201878151
127 => 0.11620289118429
128 => 0.11630356193223
129 => 0.11544155786941
130 => 0.12163996305227
131 => 0.13472053131917
201 => 0.12979909537252
202 => 0.12789336662279
203 => 0.12427057487648
204 => 0.12909772977836
205 => 0.12872707959724
206 => 0.12705085891332
207 => 0.12603707541356
208 => 0.12790500259617
209 => 0.1258056185642
210 => 0.12542851150484
211 => 0.12314365302166
212 => 0.12232806249761
213 => 0.12172423174319
214 => 0.12105947341376
215 => 0.12252576464103
216 => 0.11920295581337
217 => 0.11519597410618
218 => 0.11486283693337
219 => 0.11578265795722
220 => 0.11537570562679
221 => 0.11486088860218
222 => 0.11387796270012
223 => 0.11358634958187
224 => 0.11453395074561
225 => 0.11346416428033
226 => 0.11504269248414
227 => 0.11461342015665
228 => 0.11221553983069
301 => 0.10922689313555
302 => 0.10920028791106
303 => 0.10855638888296
304 => 0.1077362866598
305 => 0.10750815298271
306 => 0.11083591659432
307 => 0.11772428767876
308 => 0.11637193561014
309 => 0.11734914857433
310 => 0.12215606917497
311 => 0.12368404468476
312 => 0.12259952385999
313 => 0.12111496486472
314 => 0.12118027792625
315 => 0.12625346541967
316 => 0.12656987390074
317 => 0.12736933605515
318 => 0.12839687085154
319 => 0.122774517479
320 => 0.12091546558801
321 => 0.12003454366578
322 => 0.11732164510501
323 => 0.12024727361646
324 => 0.11854263517074
325 => 0.11877264913581
326 => 0.11862285223931
327 => 0.11870465147402
328 => 0.11436174659872
329 => 0.11594407287892
330 => 0.11331314854085
331 => 0.1097906361873
401 => 0.10977882749074
402 => 0.11064095739893
403 => 0.11012812879439
404 => 0.10874812020561
405 => 0.10894414391219
406 => 0.10722676997671
407 => 0.10915266420201
408 => 0.10920789195721
409 => 0.1084663177763
410 => 0.11143342355258
411 => 0.11264904921004
412 => 0.11216092919811
413 => 0.11261480140878
414 => 0.11642813194409
415 => 0.11704987120862
416 => 0.11732600672014
417 => 0.11695602171565
418 => 0.11268450209073
419 => 0.11287396215
420 => 0.11148382994381
421 => 0.1103093147181
422 => 0.11035628916761
423 => 0.11096014266991
424 => 0.11359720633003
425 => 0.11914675133934
426 => 0.11935735251578
427 => 0.1196126072853
428 => 0.11857435785691
429 => 0.11826121189461
430 => 0.11867433224872
501 => 0.12075844957301
502 => 0.1261193651634
503 => 0.12422445955024
504 => 0.12268387179078
505 => 0.12403538259531
506 => 0.12382732810044
507 => 0.12207113878514
508 => 0.12202184840023
509 => 0.11865115961648
510 => 0.11740509271999
511 => 0.1163637859548
512 => 0.11522670615121
513 => 0.11455260712839
514 => 0.11558832959997
515 => 0.11582521158354
516 => 0.11356058629807
517 => 0.11325192623974
518 => 0.11510126813318
519 => 0.1142874417163
520 => 0.11512448236799
521 => 0.11531868297918
522 => 0.11528741220796
523 => 0.11443768396136
524 => 0.11497927540648
525 => 0.11369825018259
526 => 0.11230532765538
527 => 0.11141672986515
528 => 0.11064131043779
529 => 0.11107155820373
530 => 0.10953780347828
531 => 0.10904712447323
601 => 0.11479579641107
602 => 0.11904240218019
603 => 0.11898065485047
604 => 0.1186047838609
605 => 0.11804631581305
606 => 0.12071759415682
607 => 0.11978697419575
608 => 0.12046407797333
609 => 0.12063642930268
610 => 0.12115808486773
611 => 0.12134453189442
612 => 0.12078095948397
613 => 0.11888954163992
614 => 0.11417630820316
615 => 0.11198228531522
616 => 0.11125822121786
617 => 0.11128453957261
618 => 0.11055856185842
619 => 0.11077239483128
620 => 0.11048419947692
621 => 0.10993842719769
622 => 0.11103785830343
623 => 0.11116455749646
624 => 0.11090793713916
625 => 0.1109683805231
626 => 0.1088436735686
627 => 0.10900521042373
628 => 0.10810575268726
629 => 0.1079371152048
630 => 0.10566336437174
701 => 0.10163508518553
702 => 0.10386714288922
703 => 0.10117113105798
704 => 0.10015011052624
705 => 0.10498346292221
706 => 0.10449832839798
707 => 0.10366798897541
708 => 0.10243974391153
709 => 0.10198417586974
710 => 0.099216288663126
711 => 0.099052747120855
712 => 0.10042458675969
713 => 0.09979152996849
714 => 0.098902478476283
715 => 0.095682424093216
716 => 0.092062016843281
717 => 0.092171294181088
718 => 0.093322878367221
719 => 0.096671264700688
720 => 0.095362992232531
721 => 0.094413825546185
722 => 0.094236075157679
723 => 0.096460993415483
724 => 0.099609718885062
725 => 0.10108703042663
726 => 0.099623059555555
727 => 0.097941328644657
728 => 0.098043687812812
729 => 0.098724637500837
730 => 0.098796195684938
731 => 0.097701561746674
801 => 0.098009694788441
802 => 0.097541612521721
803 => 0.09466899251488
804 => 0.094617035928133
805 => 0.093912048651199
806 => 0.093890701916633
807 => 0.09269134269125
808 => 0.092523544044841
809 => 0.090142143506942
810 => 0.091709588552532
811 => 0.090658228710509
812 => 0.089073581437865
813 => 0.088800387650771
814 => 0.08879217511564
815 => 0.090419253543999
816 => 0.091690575193765
817 => 0.090676517565087
818 => 0.090445636299718
819 => 0.09291084417921
820 => 0.092597124005676
821 => 0.092325444358674
822 => 0.099327785054785
823 => 0.093784885994354
824 => 0.091367865626389
825 => 0.088376343941314
826 => 0.089350398486536
827 => 0.089555646091053
828 => 0.082361575700759
829 => 0.079442942239382
830 => 0.078441377221818
831 => 0.07786496239416
901 => 0.078127641869286
902 => 0.075500529432485
903 => 0.077265992438445
904 => 0.074991135132462
905 => 0.074609747902088
906 => 0.078677474565929
907 => 0.079243474967888
908 => 0.076828741410589
909 => 0.078379391264227
910 => 0.077817104071653
911 => 0.075030131031736
912 => 0.074923689161198
913 => 0.073525284056607
914 => 0.071337050852508
915 => 0.0703369695601
916 => 0.069816118539909
917 => 0.070031031822024
918 => 0.069922365090132
919 => 0.069213241159526
920 => 0.069963011243763
921 => 0.068047658504926
922 => 0.067284949611276
923 => 0.066940451698726
924 => 0.065240465899418
925 => 0.067945899293233
926 => 0.068478903753967
927 => 0.069012958398141
928 => 0.073661539461089
929 => 0.073429309487938
930 => 0.075528555344641
1001 => 0.075446982510915
1002 => 0.074848243587055
1003 => 0.072322262555063
1004 => 0.073329073573132
1005 => 0.070230265752686
1006 => 0.072552103270214
1007 => 0.071492513589467
1008 => 0.072193854933302
1009 => 0.070932779959687
1010 => 0.071630710918595
1011 => 0.068605298884769
1012 => 0.065780211696277
1013 => 0.066917109250362
1014 => 0.068153046911659
1015 => 0.070832874672408
1016 => 0.069236791366205
1017 => 0.069810803277707
1018 => 0.067887959462607
1019 => 0.063920583438874
1020 => 0.063943038356312
1021 => 0.063332743989046
1022 => 0.062805360551291
1023 => 0.069420120733855
1024 => 0.068597470741269
1025 => 0.067286685643853
1026 => 0.069041223585274
1027 => 0.069505151265247
1028 => 0.06951835863409
1029 => 0.070798424224972
1030 => 0.07148159546029
1031 => 0.071602007351548
1101 => 0.073616218216448
1102 => 0.074291355130279
1103 => 0.077072148529395
1104 => 0.071423633154025
1105 => 0.071307305696978
1106 => 0.069065913532218
1107 => 0.067644387186319
1108 => 0.06916324665729
1109 => 0.070508748803578
1110 => 0.069107722034476
1111 => 0.069290666553231
1112 => 0.067409902583804
1113 => 0.068082187204705
1114 => 0.068661249286742
1115 => 0.068341525240737
1116 => 0.067862882869048
1117 => 0.070398432971486
1118 => 0.070255367297806
1119 => 0.072616529845241
1120 => 0.07445722489932
1121 => 0.077756079499829
1122 => 0.074313552751018
1123 => 0.074188093393487
1124 => 0.075414478737668
1125 => 0.074291167377072
1126 => 0.075001061381579
1127 => 0.077641704600784
1128 => 0.077697497230935
1129 => 0.076762898791167
1130 => 0.07670602839117
1201 => 0.076885528244914
1202 => 0.07793686449487
1203 => 0.077569495304835
1204 => 0.077994624232193
1205 => 0.078526254465659
1206 => 0.080725302517821
1207 => 0.081255485558356
1208 => 0.079967415638247
1209 => 0.080083713930125
1210 => 0.079601940421695
1211 => 0.079136553249155
1212 => 0.080182675648686
1213 => 0.082094484895415
1214 => 0.082082591629314
1215 => 0.082526094214294
1216 => 0.082802392650562
1217 => 0.081616317499281
1218 => 0.080844226188988
1219 => 0.081140295126801
1220 => 0.081613715805906
1221 => 0.080986771181171
1222 => 0.07711697852831
1223 => 0.078290826415876
1224 => 0.078095440729156
1225 => 0.077817187751555
1226 => 0.0789975008796
1227 => 0.078883656799008
1228 => 0.07547358459728
1229 => 0.075691886355682
1230 => 0.075486860250246
1231 => 0.076149341541304
]
'min_raw' => 0.062805360551291
'max_raw' => 0.14069176068875
'avg_raw' => 0.10174856062002
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0628053'
'max' => '$0.140691'
'avg' => '$0.101748'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.015315412716357
'max_diff' => -0.10223778520371
'year' => 2034
]
9 => [
'items' => [
101 => 0.074255391213277
102 => 0.074837957578228
103 => 0.075203337741105
104 => 0.075418549464022
105 => 0.076196041779259
106 => 0.076104812029848
107 => 0.076190370809943
108 => 0.077343186663078
109 => 0.083173733649605
110 => 0.083491077457705
111 => 0.081928360483577
112 => 0.082552635091512
113 => 0.081354164358125
114 => 0.082158705790504
115 => 0.0827091526054
116 => 0.080221789293718
117 => 0.080074503781255
118 => 0.078871086532832
119 => 0.079517734797097
120 => 0.078488870912995
121 => 0.078741318122023
122 => 0.07803545371763
123 => 0.079305869109337
124 => 0.08072639091986
125 => 0.081085270827304
126 => 0.080141212298333
127 => 0.079457651706869
128 => 0.078257544487115
129 => 0.080253349539699
130 => 0.080836983758132
131 => 0.080250283957611
201 => 0.080114332794186
202 => 0.079856705585155
203 => 0.080168989624464
204 => 0.080833805160836
205 => 0.080520290431099
206 => 0.080727372433509
207 => 0.079938189382354
208 => 0.081616710139508
209 => 0.084282605059887
210 => 0.084291176347974
211 => 0.083977659928275
212 => 0.08384937576414
213 => 0.084171062636518
214 => 0.084345564568497
215 => 0.085385840926485
216 => 0.086502098905044
217 => 0.091711187829469
218 => 0.090248496503996
219 => 0.094870310087833
220 => 0.098525564565265
221 => 0.09962161555814
222 => 0.098613300217879
223 => 0.09516390790697
224 => 0.094994664264002
225 => 0.10014951267237
226 => 0.098693031889991
227 => 0.098519788135411
228 => 0.096676767286618
301 => 0.097766220870827
302 => 0.097527941390641
303 => 0.097151805574135
304 => 0.099230407120813
305 => 0.10312136365815
306 => 0.10251492159265
307 => 0.10206224072279
308 => 0.10007872492448
309 => 0.10127324446935
310 => 0.10084789893894
311 => 0.10267545326854
312 => 0.10159285056897
313 => 0.098681997615576
314 => 0.099145560542701
315 => 0.099075493938825
316 => 0.10051745968162
317 => 0.10008461735742
318 => 0.098990974528155
319 => 0.10310806479171
320 => 0.10284072385045
321 => 0.10321975218251
322 => 0.10338661217612
323 => 0.10589261246827
324 => 0.10691924060491
325 => 0.10715230316558
326 => 0.10812752049311
327 => 0.10712803887006
328 => 0.11112667798055
329 => 0.11378553966197
330 => 0.1168739443287
331 => 0.12138693363171
401 => 0.12308385935713
402 => 0.12277732491343
403 => 0.12619902189694
404 => 0.13234773531625
405 => 0.12402015569392
406 => 0.13278911725718
407 => 0.13001296526878
408 => 0.12343075884513
409 => 0.12300694235056
410 => 0.12746448896165
411 => 0.13735089832207
412 => 0.13487446490801
413 => 0.13735494887998
414 => 0.13446133256802
415 => 0.13431764012881
416 => 0.13721441239438
417 => 0.14398287868772
418 => 0.14076743406392
419 => 0.13615730573634
420 => 0.13956135275188
421 => 0.13661245219734
422 => 0.12996775390265
423 => 0.13487257122605
424 => 0.13159285956305
425 => 0.13255005378538
426 => 0.13944351988072
427 => 0.13861407980228
428 => 0.13968745206786
429 => 0.13779297811415
430 => 0.13602324071026
501 => 0.13271989442347
502 => 0.13174193644095
503 => 0.13201220884408
504 => 0.13174180250737
505 => 0.12989361061923
506 => 0.12949449375696
507 => 0.12882928150079
508 => 0.12903545859461
509 => 0.1277846649383
510 => 0.13014517099491
511 => 0.13058330171973
512 => 0.13230108117786
513 => 0.13247942673972
514 => 0.13726341807956
515 => 0.13462847604129
516 => 0.13639622265051
517 => 0.13623809875511
518 => 0.12357341521732
519 => 0.12531849686738
520 => 0.12803329627808
521 => 0.12681028282338
522 => 0.12508122793952
523 => 0.12368492341474
524 => 0.12156937928023
525 => 0.12454696702412
526 => 0.12846217827619
527 => 0.13257872295815
528 => 0.13752448166684
529 => 0.13642064589804
530 => 0.13248626543929
531 => 0.13266275887261
601 => 0.13375377182974
602 => 0.13234081092127
603 => 0.13192410116509
604 => 0.13369652230825
605 => 0.13370872799856
606 => 0.13208294571134
607 => 0.13027618621411
608 => 0.13026861582585
609 => 0.12994712042454
610 => 0.1345185258857
611 => 0.13703233666812
612 => 0.13732054102311
613 => 0.13701293821873
614 => 0.13713132232982
615 => 0.13566859122358
616 => 0.13901196077302
617 => 0.14208016729657
618 => 0.14125782240558
619 => 0.14002501051079
620 => 0.13904301645632
621 => 0.14102649581457
622 => 0.14093817460103
623 => 0.14205336918923
624 => 0.14200277752103
625 => 0.14162777952561
626 => 0.14125783579794
627 => 0.14272462086161
628 => 0.14230221031912
629 => 0.14187914365639
630 => 0.14103061869601
701 => 0.14114594733063
702 => 0.13991334829819
703 => 0.13934309158589
704 => 0.13076779887004
705 => 0.12847620045059
706 => 0.12919718396313
707 => 0.12943455045579
708 => 0.12843724388688
709 => 0.12986712531966
710 => 0.12964427981298
711 => 0.13051124131921
712 => 0.12996960140921
713 => 0.12999183050005
714 => 0.13158467798555
715 => 0.13204708838704
716 => 0.13181190272473
717 => 0.13197661870092
718 => 0.13577242884996
719 => 0.13523278602994
720 => 0.13494611153728
721 => 0.13502552233092
722 => 0.13599543320708
723 => 0.13626695529724
724 => 0.13511649712173
725 => 0.13565905984802
726 => 0.1379692230751
727 => 0.13877764946066
728 => 0.1413577584167
729 => 0.14026168227439
730 => 0.14227357747066
731 => 0.14845745739835
801 => 0.15339756857654
802 => 0.14885443817835
803 => 0.15792632323773
804 => 0.16499008704108
805 => 0.16471896802099
806 => 0.16348723741408
807 => 0.15544533012384
808 => 0.14804504713729
809 => 0.15423569808815
810 => 0.15425147933055
811 => 0.15371969692365
812 => 0.15041684206614
813 => 0.15360476473396
814 => 0.1538578104585
815 => 0.15371617214305
816 => 0.15118388106775
817 => 0.14731754064139
818 => 0.14807301430599
819 => 0.14931049557985
820 => 0.14696768536279
821 => 0.14621901554257
822 => 0.14761093517863
823 => 0.15209599026399
824 => 0.15124811658026
825 => 0.15122597517185
826 => 0.15485353834525
827 => 0.15225698599022
828 => 0.14808254324826
829 => 0.14702844140178
830 => 0.14328708997486
831 => 0.14587125473167
901 => 0.14596425422077
902 => 0.14454893359299
903 => 0.14819738871693
904 => 0.14816376756066
905 => 0.15162743269996
906 => 0.15824865955309
907 => 0.15629043696184
908 => 0.15401323714222
909 => 0.15426083190251
910 => 0.156976335307
911 => 0.15533447995974
912 => 0.15592490259004
913 => 0.15697544163164
914 => 0.15760925791886
915 => 0.15416963549266
916 => 0.15336769496896
917 => 0.15172720610033
918 => 0.15129923317568
919 => 0.15263537712926
920 => 0.15228335040415
921 => 0.14595643797382
922 => 0.14529524042224
923 => 0.14531551840718
924 => 0.1436529057255
925 => 0.14111702231319
926 => 0.14778117251102
927 => 0.14724594798542
928 => 0.14665510153223
929 => 0.14672747685142
930 => 0.1496201585833
1001 => 0.14794225709488
1002 => 0.15240323320448
1003 => 0.15148619062556
1004 => 0.15054562936482
1005 => 0.15041561514838
1006 => 0.15005357930791
1007 => 0.14881202370333
1008 => 0.14731277070487
1009 => 0.14632283401222
1010 => 0.13497507978053
1011 => 0.13708115695908
1012 => 0.13950400677803
1013 => 0.14034036482657
1014 => 0.13890971651033
1015 => 0.14886851441876
1016 => 0.15068808276199
1017 => 0.14517649156283
1018 => 0.14414549788625
1019 => 0.14893610619255
1020 => 0.14604678375581
1021 => 0.14734784547216
1022 => 0.14453566168412
1023 => 0.15024980203129
1024 => 0.15020626985565
1025 => 0.14798334020088
1026 => 0.14986214512312
1027 => 0.14953565653277
1028 => 0.14702597442737
1029 => 0.15032936343047
1030 => 0.1503310018702
1031 => 0.14819148040815
1101 => 0.14569298774195
1102 => 0.14524631626499
1103 => 0.14490980930898
1104 => 0.14726508538923
1105 => 0.14937681855803
1106 => 0.15330623044211
1107 => 0.1542941779503
1108 => 0.15815020284612
1109 => 0.1558541277671
1110 => 0.15687194811048
1111 => 0.1579769360727
1112 => 0.15850670793637
1113 => 0.15764347311364
1114 => 0.16363346698003
1115 => 0.16413920599102
1116 => 0.16430877590678
1117 => 0.16228898367735
1118 => 0.16408303191534
1119 => 0.16324365615742
1120 => 0.16542747869423
1121 => 0.16576992995245
1122 => 0.16547988591979
1123 => 0.16558858535438
1124 => 0.16047718229675
1125 => 0.16021212908341
1126 => 0.15659810971223
1127 => 0.15807084931947
1128 => 0.15531763321399
1129 => 0.15619070640231
1130 => 0.15657554874477
1201 => 0.15637452894468
1202 => 0.15815411580718
1203 => 0.15664110342848
1204 => 0.1526480149988
1205 => 0.14865383865486
1206 => 0.14860369502445
1207 => 0.14755209889615
1208 => 0.14679198750484
1209 => 0.1469384119252
1210 => 0.14745443068102
1211 => 0.14676199555668
1212 => 0.14690976169781
1213 => 0.14936366420121
1214 => 0.14985577684784
1215 => 0.14818338579378
1216 => 0.14146849438685
1217 => 0.13982064319257
1218 => 0.14100508595271
1219 => 0.14043899860124
1220 => 0.11334523268564
1221 => 0.1197105111
1222 => 0.11592847881062
1223 => 0.11767141329251
1224 => 0.11381093767756
1225 => 0.11565335898587
1226 => 0.11531313104468
1227 => 0.12554831037269
1228 => 0.12538850212551
1229 => 0.12546499387657
1230 => 0.12181384330029
1231 => 0.12763022530785
]
'min_raw' => 0.074255391213277
'max_raw' => 0.16576992995245
'avg_raw' => 0.12001266058286
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.074255'
'max' => '$0.165769'
'avg' => '$0.120012'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.011450030661986
'max_diff' => 0.025078169263699
'year' => 2035
]
10 => [
'items' => [
101 => 0.13049558423511
102 => 0.12996528255673
103 => 0.13009874806428
104 => 0.12780536845225
105 => 0.1254871988043
106 => 0.12291599190097
107 => 0.12769297651658
108 => 0.12716185737317
109 => 0.12838005359751
110 => 0.13147826958665
111 => 0.13193449366003
112 => 0.13254766344122
113 => 0.13232788572306
114 => 0.13756388261408
115 => 0.13692976884235
116 => 0.13845780058522
117 => 0.1353145233581
118 => 0.13175760681299
119 => 0.13243366036385
120 => 0.13236855097043
121 => 0.13153963366301
122 => 0.13079132418128
123 => 0.12954559972908
124 => 0.13348725622837
125 => 0.13332723217281
126 => 0.13591783562473
127 => 0.13545992130082
128 => 0.13240185737513
129 => 0.1325110767265
130 => 0.13324562935345
131 => 0.1357879243823
201 => 0.1365426506395
202 => 0.13619303136652
203 => 0.13702055425299
204 => 0.13767459460163
205 => 0.137102691651
206 => 0.14519963139533
207 => 0.14183721749681
208 => 0.14347603463542
209 => 0.14386688286651
210 => 0.14286573334123
211 => 0.14308284682479
212 => 0.14341171459249
213 => 0.14540853527908
214 => 0.15064877054541
215 => 0.15296963507339
216 => 0.15995207051522
217 => 0.15277691958233
218 => 0.1523511758197
219 => 0.15360892329212
220 => 0.15770835206234
221 => 0.16103055404083
222 => 0.16213272009953
223 => 0.16227838953896
224 => 0.16434612633569
225 => 0.16553131450657
226 => 0.16409504870169
227 => 0.16287796381536
228 => 0.15851851682265
229 => 0.15902313468243
301 => 0.16249945133091
302 => 0.16740995335091
303 => 0.17162367493473
304 => 0.1701481764991
305 => 0.18140518802339
306 => 0.18252127473526
307 => 0.18236706763908
308 => 0.18490967926468
309 => 0.17986311298172
310 => 0.17770560812313
311 => 0.16314111138228
312 => 0.16723314088836
313 => 0.17318114609191
314 => 0.17239390529934
315 => 0.16807430492989
316 => 0.1716203981305
317 => 0.17044794882179
318 => 0.16952318940705
319 => 0.17375969155942
320 => 0.16910148341697
321 => 0.17313467690234
322 => 0.16796206453931
323 => 0.17015491645167
324 => 0.1689101476499
325 => 0.16971566561777
326 => 0.16500662403704
327 => 0.16754750856848
328 => 0.16490091488688
329 => 0.16489966005687
330 => 0.16484123635467
331 => 0.16795494208428
401 => 0.16805647991633
402 => 0.1657554466776
403 => 0.16542383183901
404 => 0.16664998570367
405 => 0.16521448065836
406 => 0.1658861444341
407 => 0.16523482466989
408 => 0.16508819887207
409 => 0.16391985956875
410 => 0.16341650687272
411 => 0.16361388443463
412 => 0.16294013306071
413 => 0.16253417348727
414 => 0.16476048077765
415 => 0.16357105460138
416 => 0.16457818415737
417 => 0.16343043291844
418 => 0.1594518270729
419 => 0.15716368877813
420 => 0.14964847115287
421 => 0.15177977754879
422 => 0.15319283589429
423 => 0.15272582011953
424 => 0.15372915071482
425 => 0.15379074706466
426 => 0.15346455406039
427 => 0.15308686434935
428 => 0.15290302588557
429 => 0.15427320717857
430 => 0.15506864353734
501 => 0.15333465520354
502 => 0.15292840599801
503 => 0.1546815639396
504 => 0.1557509892712
505 => 0.16364702506158
506 => 0.16306206122637
507 => 0.16453020565939
508 => 0.16436491512674
509 => 0.1659037643863
510 => 0.16841913255946
511 => 0.16330468575543
512 => 0.16419237687634
513 => 0.16397473551328
514 => 0.16635088684661
515 => 0.16635830493171
516 => 0.16493368350981
517 => 0.16570599389446
518 => 0.16527491142498
519 => 0.16605393571163
520 => 0.16305424867771
521 => 0.16670754368882
522 => 0.16877872654698
523 => 0.16880748492298
524 => 0.16978920915983
525 => 0.1707866978421
526 => 0.17270129050476
527 => 0.17073330089188
528 => 0.16719307915824
529 => 0.16744867173256
530 => 0.16537304102545
531 => 0.16540793275263
601 => 0.16522167797843
602 => 0.16578064257641
603 => 0.16317690997366
604 => 0.16378800081126
605 => 0.16293247006008
606 => 0.16419051711957
607 => 0.16283706644619
608 => 0.16397463056002
609 => 0.1644655655207
610 => 0.1662771260947
611 => 0.16256949747647
612 => 0.15500939173952
613 => 0.15659861762285
614 => 0.1542480277104
615 => 0.15446558375612
616 => 0.15490508159227
617 => 0.15348052531057
618 => 0.15375228575619
619 => 0.15374257656072
620 => 0.15365890795953
621 => 0.15328832585168
622 => 0.15275090847787
623 => 0.15489181388679
624 => 0.15525559543405
625 => 0.1560642367506
626 => 0.158470204802
627 => 0.15822979185703
628 => 0.15862191534492
629 => 0.15776591197255
630 => 0.15450529129749
701 => 0.15468235868747
702 => 0.15247432549717
703 => 0.15600777237758
704 => 0.15517100551708
705 => 0.15463153647862
706 => 0.15448433735334
707 => 0.15689626933418
708 => 0.15761795718525
709 => 0.15716824974713
710 => 0.15624588667149
711 => 0.15801709644888
712 => 0.15849099746397
713 => 0.15859708642445
714 => 0.1617353305542
715 => 0.15877247940976
716 => 0.15948566712843
717 => 0.16504975412111
718 => 0.16000389501027
719 => 0.16267679911737
720 => 0.16254597437045
721 => 0.1639133416655
722 => 0.16243381034179
723 => 0.16245215090575
724 => 0.16366628043027
725 => 0.1619612544825
726 => 0.16153906608
727 => 0.16095581582571
728 => 0.16222932141816
729 => 0.16299273042513
730 => 0.16914524635918
731 => 0.17312005224139
801 => 0.17294749543524
802 => 0.17452434163066
803 => 0.17381395797736
804 => 0.17151994177115
805 => 0.17543554770969
806 => 0.17419648615482
807 => 0.17429863288395
808 => 0.17429483097759
809 => 0.17511869859093
810 => 0.17453491288052
811 => 0.17338421132092
812 => 0.17414810071717
813 => 0.17641657912859
814 => 0.18345800572304
815 => 0.1873984813318
816 => 0.18322078414359
817 => 0.18610250372242
818 => 0.1843744988368
819 => 0.18406046894539
820 => 0.1858704017983
821 => 0.18768350269907
822 => 0.18756801600994
823 => 0.18625179785974
824 => 0.18550829962449
825 => 0.19113831735197
826 => 0.19528641850873
827 => 0.19500354581907
828 => 0.19625205387613
829 => 0.19991771214658
830 => 0.20025285399931
831 => 0.20021063382901
901 => 0.1993799497786
902 => 0.20298926639174
903 => 0.2060002218103
904 => 0.1991876704217
905 => 0.20178180080763
906 => 0.20294638951554
907 => 0.20465635125664
908 => 0.20754134333675
909 => 0.21067520994211
910 => 0.2111183730412
911 => 0.21080392761509
912 => 0.208737058346
913 => 0.21216617258038
914 => 0.21417486727626
915 => 0.2153709989995
916 => 0.21840419003228
917 => 0.20295358161892
918 => 0.19201687303889
919 => 0.19030894806613
920 => 0.19378208065907
921 => 0.19469791802611
922 => 0.19432874513182
923 => 0.18201848530294
924 => 0.19024413709579
925 => 0.19909424679246
926 => 0.19943421554911
927 => 0.20386476551033
928 => 0.20530753419208
929 => 0.20887470763632
930 => 0.20865157996614
1001 => 0.20952012993369
1002 => 0.20932046533734
1003 => 0.2159279029858
1004 => 0.22321688792604
1005 => 0.22296449355511
1006 => 0.22191661573059
1007 => 0.22347289298972
1008 => 0.23099590658314
1009 => 0.23030330804529
1010 => 0.23097610852941
1011 => 0.23984616553452
1012 => 0.25137850139206
1013 => 0.24602057355864
1014 => 0.25764573525496
1015 => 0.26496315831944
1016 => 0.27761788487381
1017 => 0.27603345078336
1018 => 0.2809598429663
1019 => 0.27319698308008
1020 => 0.2553718876485
1021 => 0.25255099806473
1022 => 0.25819849044774
1023 => 0.27208229939713
1024 => 0.25776123989564
1025 => 0.26065837158101
1026 => 0.25982399746072
1027 => 0.25977953720971
1028 => 0.26147640415779
1029 => 0.25901501014698
1030 => 0.24898684815059
1031 => 0.25358269569721
1101 => 0.25180801824873
1102 => 0.25377715518878
1103 => 0.26440377512038
1104 => 0.25970549314164
1105 => 0.25475623473447
1106 => 0.26096370310542
1107 => 0.2688679434592
1108 => 0.26837331030314
1109 => 0.26741351523978
1110 => 0.27282382975873
1111 => 0.28176008427061
1112 => 0.28417551795639
1113 => 0.28595854172187
1114 => 0.2862043905747
1115 => 0.28873678655301
1116 => 0.27511945513164
1117 => 0.29673050981524
1118 => 0.30046214196575
1119 => 0.29976074978176
1120 => 0.30390830186598
1121 => 0.30268798682956
1122 => 0.30091994180336
1123 => 0.30749469406647
1124 => 0.29995727115196
1125 => 0.28925884825997
1126 => 0.28338948187062
1127 => 0.2911187370004
1128 => 0.29583872339433
1129 => 0.2989583341532
1130 => 0.29990232648391
1201 => 0.27617652980631
1202 => 0.26338964129009
1203 => 0.27158589022701
1204 => 0.28158587960494
1205 => 0.27506390468573
1206 => 0.27531955375484
1207 => 0.2660209314649
1208 => 0.28240860134855
1209 => 0.2800210556885
1210 => 0.29240764679634
1211 => 0.28945148741985
1212 => 0.29955227162359
1213 => 0.2968923966286
1214 => 0.30793338902118
1215 => 0.31233793980952
1216 => 0.31973386609672
1217 => 0.32517433958043
1218 => 0.32836908966973
1219 => 0.32817728885758
1220 => 0.34083648032958
1221 => 0.333371797397
1222 => 0.323994396343
1223 => 0.32382478874325
1224 => 0.32868147762792
1225 => 0.33885976516267
1226 => 0.34149884703236
1227 => 0.34297373376735
1228 => 0.34071489339154
1229 => 0.33261251506687
1230 => 0.32911394918627
1231 => 0.33209482867975
]
'min_raw' => 0.12291599190097
'max_raw' => 0.34297373376735
'avg_raw' => 0.23294486283416
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.122915'
'max' => '$0.342973'
'avg' => '$0.232944'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.048660600687689
'max_diff' => 0.17720380381491
'year' => 2036
]
11 => [
'items' => [
101 => 0.32844946920912
102 => 0.33474238236265
103 => 0.34338389621617
104 => 0.34159945777767
105 => 0.34756456793963
106 => 0.35373782940936
107 => 0.3625658705696
108 => 0.3648738474303
109 => 0.36868884541655
110 => 0.37261573150595
111 => 0.37387694148531
112 => 0.3762849826664
113 => 0.37627229110073
114 => 0.3835290852798
115 => 0.39153355398353
116 => 0.39455505561531
117 => 0.40150283201101
118 => 0.38960500841249
119 => 0.39862964428431
120 => 0.40677009174199
121 => 0.39706471469169
122 => 0.41044131589269
123 => 0.4109606990053
124 => 0.41880276736559
125 => 0.41085332872392
126 => 0.406132977434
127 => 0.41976045473874
128 => 0.42635436174499
129 => 0.42436822329172
130 => 0.40925361159452
131 => 0.40045625929056
201 => 0.37743189142857
202 => 0.40470524973977
203 => 0.41798930699839
204 => 0.40921920909541
205 => 0.41364233635154
206 => 0.43777348445716
207 => 0.44696106327964
208 => 0.44505011111059
209 => 0.44537303057021
210 => 0.45033048133647
211 => 0.47231454815208
212 => 0.45914118572949
213 => 0.46921172770508
214 => 0.4745531068569
215 => 0.4795144774914
216 => 0.46733091927036
217 => 0.4514802890368
218 => 0.44645972907764
219 => 0.4083471956987
220 => 0.40636327282198
221 => 0.40524963679227
222 => 0.39822831915185
223 => 0.39271148678724
224 => 0.38832429686405
225 => 0.37681100037979
226 => 0.38069639996686
227 => 0.36234660838268
228 => 0.37408615476155
301 => 0.34479944432199
302 => 0.36919028703536
303 => 0.355915460262
304 => 0.36482914941499
305 => 0.36479805039325
306 => 0.34838512257489
307 => 0.33891848833832
308 => 0.34495099612078
309 => 0.35141832332464
310 => 0.35246762540476
311 => 0.36085268393908
312 => 0.36319277353977
313 => 0.35610219280132
314 => 0.34419254234406
315 => 0.34695888251508
316 => 0.33886242854305
317 => 0.32467370438268
318 => 0.33486429378601
319 => 0.3383438090569
320 => 0.33988056122413
321 => 0.32592758059839
322 => 0.32154325115183
323 => 0.31920907094257
324 => 0.3423913877593
325 => 0.34366136740564
326 => 0.33716397197793
327 => 0.3665328154195
328 => 0.35988574163896
329 => 0.36731215162444
330 => 0.34670786613996
331 => 0.34749497759282
401 => 0.33774057864614
402 => 0.34320239026711
403 => 0.33934215785582
404 => 0.34276112986281
405 => 0.34481044758685
406 => 0.35456324593264
407 => 0.36930164832633
408 => 0.35310650308694
409 => 0.34605004638739
410 => 0.35042783243677
411 => 0.36208645358418
412 => 0.37974986141634
413 => 0.36929276847049
414 => 0.37393344874691
415 => 0.37494723093781
416 => 0.36723655774216
417 => 0.38003416493546
418 => 0.38689250659792
419 => 0.39392774600976
420 => 0.40003624726814
421 => 0.39111771668044
422 => 0.40066182283042
423 => 0.39297095803507
424 => 0.38607145724665
425 => 0.38608192094136
426 => 0.38175376331116
427 => 0.3733674125197
428 => 0.37182084076405
429 => 0.37986630234743
430 => 0.38631800062925
501 => 0.38684939340129
502 => 0.39042138507033
503 => 0.39253525294563
504 => 0.41325403178759
505 => 0.42158729603256
506 => 0.43177705381068
507 => 0.43574653872854
508 => 0.44769326519219
509 => 0.43804531330711
510 => 0.43595791822831
511 => 0.40697906757193
512 => 0.41172435274348
513 => 0.41932201215506
514 => 0.40710435017723
515 => 0.41485364458403
516 => 0.41638351945243
517 => 0.40668919869837
518 => 0.41186735427999
519 => 0.39811570827135
520 => 0.36960139663041
521 => 0.38006590951556
522 => 0.38777131331598
523 => 0.37677475202334
524 => 0.39648566251471
525 => 0.38497095552144
526 => 0.38132134620798
527 => 0.36708291909652
528 => 0.37380290860581
529 => 0.3828917906381
530 => 0.37727591823809
531 => 0.3889296966956
601 => 0.40543455494062
602 => 0.41719689980732
603 => 0.41809986659257
604 => 0.41053746685918
605 => 0.42265626069452
606 => 0.42274453287723
607 => 0.40907448392423
608 => 0.40070165505568
609 => 0.39879933072016
610 => 0.40355170988294
611 => 0.40932197552415
612 => 0.41842007617665
613 => 0.4239178678545
614 => 0.43825319274696
615 => 0.44213192063688
616 => 0.44639346663109
617 => 0.45208820629147
618 => 0.45892620135503
619 => 0.44396505744323
620 => 0.44455949158191
621 => 0.43062788152238
622 => 0.4157399581788
623 => 0.42703803619074
624 => 0.44180877027101
625 => 0.43842034755278
626 => 0.43803908077779
627 => 0.43868026573874
628 => 0.43612550566474
629 => 0.42457042053386
630 => 0.4187675291198
701 => 0.42625473951943
702 => 0.43023385862944
703 => 0.43640512535341
704 => 0.43564438647004
705 => 0.45154090680533
706 => 0.4577178139218
707 => 0.45613749675665
708 => 0.4564283131475
709 => 0.46761130843433
710 => 0.48004909915168
711 => 0.49169873146951
712 => 0.50354923782656
713 => 0.48926298988
714 => 0.48200931422601
715 => 0.48949325594381
716 => 0.48552217112424
717 => 0.50834120239776
718 => 0.50992114261339
719 => 0.53273852381121
720 => 0.55439493561116
721 => 0.54079293137453
722 => 0.55361900872195
723 => 0.56749145709861
724 => 0.59425366074082
725 => 0.5852410920598
726 => 0.57833760569509
727 => 0.57181384443785
728 => 0.58538875599624
729 => 0.60285266285159
730 => 0.60661422112102
731 => 0.61270938254334
801 => 0.60630106558865
802 => 0.61401917750761
803 => 0.64126750409179
804 => 0.63390476572111
805 => 0.6234484936155
806 => 0.6449584304966
807 => 0.65274279303611
808 => 0.7073775260407
809 => 0.77635613330725
810 => 0.74779853696095
811 => 0.73007191536092
812 => 0.73423809191801
813 => 0.75942674421854
814 => 0.76751653988961
815 => 0.74552568653585
816 => 0.75329322770973
817 => 0.79609314326563
818 => 0.81905392477568
819 => 0.78787009944066
820 => 0.70183516210981
821 => 0.62250702071694
822 => 0.64354841600709
823 => 0.6411629747717
824 => 0.68714614463831
825 => 0.63372916684599
826 => 0.63462857175654
827 => 0.68156262487897
828 => 0.66904142415928
829 => 0.6487586825876
830 => 0.62265510717664
831 => 0.57440023374099
901 => 0.53165954665234
902 => 0.61548387662556
903 => 0.61186921909247
904 => 0.6066346593223
905 => 0.61828360565227
906 => 0.67484758241949
907 => 0.67354359967528
908 => 0.66524832675445
909 => 0.67154021815372
910 => 0.64765568360446
911 => 0.65381127199855
912 => 0.62249445473404
913 => 0.63665096404341
914 => 0.64871516493363
915 => 0.65113723187589
916 => 0.6565942723706
917 => 0.60996445882383
918 => 0.63089987612693
919 => 0.64319747240918
920 => 0.5876364850156
921 => 0.6420992103306
922 => 0.60915273751195
923 => 0.59797020979789
924 => 0.61302601017888
925 => 0.60715875012816
926 => 0.60211442447362
927 => 0.59929960408588
928 => 0.61035492223762
929 => 0.60983917843188
930 => 0.59175053219084
1001 => 0.56815463055694
1002 => 0.57607418965434
1003 => 0.57319693958799
1004 => 0.5627694141749
1005 => 0.5697963072791
1006 => 0.53885342627739
1007 => 0.48561780778495
1008 => 0.52078688801215
1009 => 0.51943291668
1010 => 0.51875018293662
1011 => 0.54517877472538
1012 => 0.54263827543624
1013 => 0.53802724434982
1014 => 0.56268472897298
1015 => 0.55368441539556
1016 => 0.58142126110059
1017 => 0.59969054158864
1018 => 0.59505686110756
1019 => 0.61223920770966
1020 => 0.57625664030068
1021 => 0.58820860582391
1022 => 0.59067188935354
1023 => 0.56238045944021
1024 => 0.54305393253883
1025 => 0.54176507353305
1026 => 0.50825553924551
1027 => 0.5261560619824
1028 => 0.5419077812169
1029 => 0.53436393008637
1030 => 0.53197577218458
1031 => 0.54417635297655
1101 => 0.545124442595
1102 => 0.52350789882044
1103 => 0.52800266277808
1104 => 0.54674657567379
1105 => 0.52753036426504
1106 => 0.49019640444815
1107 => 0.48093706623118
1108 => 0.47970169982958
1109 => 0.45458964021779
1110 => 0.48155581948609
1111 => 0.4697843595868
1112 => 0.50697026036491
1113 => 0.48572987327244
1114 => 0.48481424263751
1115 => 0.48343013263899
1116 => 0.46181514556501
1117 => 0.46654745403012
1118 => 0.48227836811908
1119 => 0.48789133548746
1120 => 0.48730585700525
1121 => 0.48220127805808
1122 => 0.48453812816042
1123 => 0.47701031976823
1124 => 0.47435209394716
1125 => 0.46596200205327
1126 => 0.45363088479128
1127 => 0.4553456022777
1128 => 0.43091443236935
1129 => 0.41760303434296
1130 => 0.41391861481066
1201 => 0.40899165502958
1202 => 0.41447512802808
1203 => 0.43084522193462
1204 => 0.41109941557417
1205 => 0.37724661557645
1206 => 0.37928122653867
1207 => 0.38385239328938
1208 => 0.37533405429073
1209 => 0.36727216131851
1210 => 0.3742813231758
1211 => 0.35993744554319
1212 => 0.3855857823726
1213 => 0.38489206674
1214 => 0.39445218062749
1215 => 0.40043031603462
1216 => 0.3866526493655
1217 => 0.38318760345699
1218 => 0.38516145108403
1219 => 0.3525381466089
1220 => 0.39178616065461
1221 => 0.39212557910989
1222 => 0.38921927222889
1223 => 0.41011762806175
1224 => 0.45421967722972
1225 => 0.43762671233191
1226 => 0.43120141479846
1227 => 0.41898691949051
1228 => 0.43526200926339
1229 => 0.43401233629978
1230 => 0.42836084123396
1231 => 0.42494279938441
]
'min_raw' => 0.31920907094257
'max_raw' => 0.81905392477568
'avg_raw' => 0.56913149785913
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.319209'
'max' => '$0.819053'
'avg' => '$0.569131'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19629307904161
'max_diff' => 0.47608019100832
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010019607984852
]
1 => [
'year' => 2028
'avg' => 0.017196556014987
]
2 => [
'year' => 2029
'avg' => 0.046977891655277
]
3 => [
'year' => 2030
'avg' => 0.036243373450471
]
4 => [
'year' => 2031
'avg' => 0.035595484320186
]
5 => [
'year' => 2032
'avg' => 0.062410086324477
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010019607984852
'min' => '$0.010019'
'max_raw' => 0.062410086324477
'max' => '$0.06241'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.062410086324477
]
1 => [
'year' => 2033
'avg' => 0.16052515958005
]
2 => [
'year' => 2034
'avg' => 0.10174856062002
]
3 => [
'year' => 2035
'avg' => 0.12001266058286
]
4 => [
'year' => 2036
'avg' => 0.23294486283416
]
5 => [
'year' => 2037
'avg' => 0.56913149785913
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.062410086324477
'min' => '$0.06241'
'max_raw' => 0.56913149785913
'max' => '$0.569131'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.56913149785913
]
]
]
]
'prediction_2025_max_price' => '$0.017131'
'last_price' => 0.01661135
'sma_50day_nextmonth' => '$0.015254'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'sinken'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.016354'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.016068'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015742'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015144'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014677'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.016355'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.016157'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0158093'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015377'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.015977'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.012831'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006415'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.016159'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.015978'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.016551'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.010333'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.00434'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.00217'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001085'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '66.52'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 115.91
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.015746'
'vwma_10_action' => 'BUY'
'hma_9' => '0.016511'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 173.11
'cci_20_action' => 'SELL'
'adx_14' => 19.72
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001362'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.34
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 1
'buy_signals' => 28
'sell_pct' => 3.45
'buy_pct' => 96.55
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767709000
'last_updated_date' => '6. Januar 2026'
]
SigmaDotMoney Preisprognose für 2026
Die Preisprognose für SigmaDotMoney im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.005739 am unteren Ende und $0.017131 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte SigmaDotMoney im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SIGMA das prognostizierte Preisziel erreicht.
SigmaDotMoney Preisprognose 2027-2032
Die Preisprognose für SIGMA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.010019 am unteren Ende und $0.06241 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte SigmaDotMoney, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.005525 | $0.010019 | $0.014514 |
| 2028 | $0.009971 | $0.017196 | $0.024422 |
| 2029 | $0.0219034 | $0.046977 | $0.072052 |
| 2030 | $0.018627 | $0.036243 | $0.053858 |
| 2031 | $0.022023 | $0.035595 | $0.049166 |
| 2032 | $0.033617 | $0.06241 | $0.0912022 |
SigmaDotMoney Preisprognose 2032-2037
Die Preisprognose für SigmaDotMoney für die Jahre 2032-2037 wird derzeit zwischen $0.06241 am unteren Ende und $0.569131 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte SigmaDotMoney bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.033617 | $0.06241 | $0.0912022 |
| 2033 | $0.07812 | $0.160525 | $0.242929 |
| 2034 | $0.0628053 | $0.101748 | $0.140691 |
| 2035 | $0.074255 | $0.120012 | $0.165769 |
| 2036 | $0.122915 | $0.232944 | $0.342973 |
| 2037 | $0.319209 | $0.569131 | $0.819053 |
SigmaDotMoney Potenzielles Preishistogramm
SigmaDotMoney Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für SigmaDotMoney Bullisch, mit 28 technischen Indikatoren, die bullische Signale zeigen, und 1 anzeigen bärische Signale. Die Preisprognose für SIGMA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von SigmaDotMoney
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von SigmaDotMoney im nächsten Monat sinken, und bis zum 04.02.2026 — erreichen. Der kurzfristige 50-Tage-SMA für SigmaDotMoney wird voraussichtlich bis zum 04.02.2026 $0.015254 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 66.52, was darauf hindeutet, dass sich der SIGMA-Markt in einem NEUTRAL Zustand befindet.
Beliebte SIGMA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.016354 | BUY |
| SMA 5 | $0.016068 | BUY |
| SMA 10 | $0.015742 | BUY |
| SMA 21 | $0.015144 | BUY |
| SMA 50 | $0.014677 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.016355 | BUY |
| EMA 5 | $0.016157 | BUY |
| EMA 10 | $0.0158093 | BUY |
| EMA 21 | $0.015377 | BUY |
| EMA 50 | $0.015977 | BUY |
| EMA 100 | $0.012831 | BUY |
| EMA 200 | $0.006415 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.010333 | BUY |
| EMA 50 | $0.00434 | BUY |
| EMA 100 | $0.00217 | BUY |
| EMA 200 | $0.001085 | BUY |
SigmaDotMoney Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 66.52 | NEUTRAL |
| Stoch RSI (14) | 115.91 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 173.11 | SELL |
| Average Directional Index (14) | 19.72 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.001362 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 83.34 | SELL |
| VWMA (10) | 0.015746 | BUY |
| Hull Moving Average (9) | 0.016511 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | — | — |
Auf weltweiten Geldflüssen basierende SigmaDotMoney-Preisprognose
Definition weltweiter Geldflüsse, die für SigmaDotMoney-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
SigmaDotMoney-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.023341 | $0.032799 | $0.046088 | $0.064761 | $0.09100068 | $0.127871 |
| Amazon.com aktie | $0.03466 | $0.072321 | $0.1509027 | $0.314867 | $0.656989 | $1.37 |
| Apple aktie | $0.023561 | $0.03342 | $0.0474048 | $0.06724 | $0.095375 | $0.135282 |
| Netflix aktie | $0.02621 | $0.041355 | $0.065252 | $0.102958 | $0.162451 | $0.256323 |
| Google aktie | $0.021511 | $0.027857 | $0.036075 | $0.046717 | $0.060498 | $0.078345 |
| Tesla aktie | $0.037656 | $0.085364 | $0.193515 | $0.438685 | $0.994466 | $2.25 |
| Kodak aktie | $0.012456 | $0.009341 | $0.0070049 | $0.005252 | $0.003939 | $0.002953 |
| Nokia aktie | $0.0110043 | $0.007289 | $0.004829 | $0.003199 | $0.002119 | $0.0014039 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
SigmaDotMoney Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in SigmaDotMoney investieren?", "Sollte ich heute SIGMA kaufen?", "Wird SigmaDotMoney auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere SigmaDotMoney-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie SigmaDotMoney.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich SigmaDotMoney zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der SigmaDotMoney-Preis entspricht heute $0.01661 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
SigmaDotMoney-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von SigmaDotMoney 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017043 | $0.017486 | $0.01794 | $0.0184069 |
| Wenn die Wachstumsrate von SigmaDotMoney 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017474 | $0.018383 | $0.019339 | $0.020344 |
| Wenn die Wachstumsrate von SigmaDotMoney 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01877 | $0.0212097 | $0.023966 | $0.027081 |
| Wenn die Wachstumsrate von SigmaDotMoney 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020929 | $0.026369 | $0.033223 | $0.041859 |
| Wenn die Wachstumsrate von SigmaDotMoney 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.025246 | $0.038372 | $0.05832 | $0.088638 |
| Wenn die Wachstumsrate von SigmaDotMoney 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.03820046 | $0.087848 | $0.20202 | $0.464579 |
| Wenn die Wachstumsrate von SigmaDotMoney 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.059789 | $0.2152019 | $0.77458 | $2.78 |
Fragefeld
Ist SIGMA eine gute Investition?
Die Entscheidung, SigmaDotMoney zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von SigmaDotMoney in den letzten 2026 Stunden um 0.9775% gestiegen, und SigmaDotMoney hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in SigmaDotMoney investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann SigmaDotMoney steigen?
Es scheint, dass der Durchschnittswert von SigmaDotMoney bis zum Ende dieses Jahres potenziell auf $0.017131 steigen könnte. Betrachtet man die Aussichten von SigmaDotMoney in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.053858 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird SigmaDotMoney nächste Woche kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney in der nächsten Woche um 0.86% steigen und $0.016753 erreichen bis zum 13. Januar 2026.
Wie viel wird SigmaDotMoney nächsten Monat kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney im nächsten Monat um -11.62% fallen und $0.014681 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von SigmaDotMoney in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von SigmaDotMoney im Jahr 2026 wird erwartet, dass SIGMA innerhalb der Spanne von $0.005739 bis $0.017131 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte SigmaDotMoney-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird SigmaDotMoney in 5 Jahren sein?
Die Zukunft von SigmaDotMoney scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.053858 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der SigmaDotMoney-Prognose für 2030 könnte der Wert von SigmaDotMoney seinen höchsten Gipfel von ungefähr $0.053858 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.018627 liegen wird.
Wie viel wird SigmaDotMoney im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Preisprognosesimulation wird der Wert von SIGMA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.017131 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.017131 und $0.005739 während des Jahres 2026 liegen.
Wie viel wird SigmaDotMoney im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von SigmaDotMoney könnte der Wert von SIGMA um -12.62% fallen und bis zu $0.014514 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.014514 und $0.005525 im Laufe des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2028 kosten?
Unser neues experimentelles SigmaDotMoney-Preisprognosemodell deutet darauf hin, dass der Wert von SIGMA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.024422 erreichen wird. Der Preis wird voraussichtlich zwischen $0.024422 und $0.009971 im Laufe des Jahres liegen.
Wie viel wird SigmaDotMoney im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von SigmaDotMoney im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.072052 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.072052 und $0.0219034.
Wie viel wird SigmaDotMoney im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für SigmaDotMoney-Preisprognosen wird der Wert von SIGMA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.053858 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.053858 und $0.018627 während des Jahres 2030 liegen.
Wie viel wird SigmaDotMoney im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von SigmaDotMoney im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.049166 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.049166 und $0.022023 während des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen SigmaDotMoney-Preisprognose könnte SIGMA eine 449.04% Steigerung im Wert erfahren und $0.0912022 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.0912022 und $0.033617 liegen.
Wie viel wird SigmaDotMoney im Jahr 2033 kosten?
Laut unserer experimentellen SigmaDotMoney-Preisprognose wird der Wert von SIGMA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.242929 beträgt. Im Laufe des Jahres könnte der Preis von SIGMA zwischen $0.242929 und $0.07812 liegen.
Wie viel wird SigmaDotMoney im Jahr 2034 kosten?
Die Ergebnisse unserer neuen SigmaDotMoney-Preisprognosesimulation deuten darauf hin, dass SIGMA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.140691 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.140691 und $0.0628053.
Wie viel wird SigmaDotMoney im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von SigmaDotMoney könnte SIGMA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.165769 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.165769 und $0.074255.
Wie viel wird SigmaDotMoney im Jahr 2036 kosten?
Unsere jüngste SigmaDotMoney-Preisprognosesimulation deutet darauf hin, dass der Wert von SIGMA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.342973 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.342973 und $0.122915.
Wie viel wird SigmaDotMoney im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von SigmaDotMoney um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.819053 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.819053 und $0.319209 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von SigmaDotMoney?
SigmaDotMoney-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
SigmaDotMoney Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von SigmaDotMoney. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SIGMA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SIGMA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SIGMA einzuschätzen.
Wie liest man SigmaDotMoney-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von SigmaDotMoney in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SIGMA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von SigmaDotMoney?
Die Preisentwicklung von SigmaDotMoney wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SIGMA. Die Marktkapitalisierung von SigmaDotMoney kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SIGMA-„Walen“, großen Inhabern von SigmaDotMoney, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen SigmaDotMoney-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


