SigmaDotMoney Preisvorhersage bis zu $0.017112 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.005732 | $0.017112 |
| 2027 | $0.005518 | $0.014497 |
| 2028 | $0.009959 | $0.024394 |
| 2029 | $0.021878 | $0.071971 |
| 2030 | $0.0186071 | $0.053798 |
| 2031 | $0.021999 | $0.049112 |
| 2032 | $0.03358 | $0.09110033 |
| 2033 | $0.078033 | $0.242658 |
| 2034 | $0.062735 | $0.140534 |
| 2035 | $0.074172 | $0.165584 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in SigmaDotMoney eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.48 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige SigmaDotMoney Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'SigmaDotMoney'
'name_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_lang' => 'SigmaDotMoney'
'name_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_with_lang' => 'SigmaDotMoney'
'name_with_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'image' => '/uploads/coins/sigmadotmoney.png?1762828399'
'price_for_sd' => 0.01659
'ticker' => 'SIGMA'
'marketcap' => '$2.4M'
'low24h' => '$0.01631'
'high24h' => '$0.01667'
'volume24h' => '$283.54K'
'current_supply' => '145M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01659'
'change_24h_pct' => '1.6876%'
'ath_price' => '$0.04297'
'ath_days' => 77
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21.10.2025'
'ath_pct' => '-61.44%'
'fdv' => '$16.57M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.818138'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016734'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014665'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005732'
'current_year_max_price_prediction' => '$0.017112'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0186071'
'grand_prediction_max_price' => '$0.053798'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.016907214642692
107 => 0.016970340044849
108 => 0.017112564799172
109 => 0.015897269845393
110 => 0.016442901600454
111 => 0.016763409137771
112 => 0.015315344424009
113 => 0.016734785554263
114 => 0.015876114264034
115 => 0.015584668331321
116 => 0.015977061884638
117 => 0.015824145735295
118 => 0.015692677409628
119 => 0.015619315824993
120 => 0.015907446343652
121 => 0.015894004710566
122 => 0.015422567258315
123 => 0.014807596320102
124 => 0.015014000752699
125 => 0.014939012087285
126 => 0.014667243490093
127 => 0.014850382711135
128 => 0.014043930266304
129 => 0.012656470750724
130 => 0.013573069005751
131 => 0.013537780969999
201 => 0.013519987142189
202 => 0.014208785397926
203 => 0.014142573338916
204 => 0.014022397803463
205 => 0.014665036372141
206 => 0.014430464649865
207 => 0.015153359425871
208 => 0.015629504679251
209 => 0.015508738841309
210 => 0.015956555753523
211 => 0.015018755893948
212 => 0.015330255389299
213 => 0.015394455003571
214 => 0.014657106311958
215 => 0.014153406450629
216 => 0.014119815412477
217 => 0.013246469267048
218 => 0.013713003728532
219 => 0.014123534748131
220 => 0.013926922248237
221 => 0.013864680604402
222 => 0.014182659664189
223 => 0.014207369360441
224 => 0.013643985667281
225 => 0.01376113097713
226 => 0.014249646392989
227 => 0.013748821642052
228 => 0.012775800960239
301 => 0.012534478378086
302 => 0.01250228149717
303 => 0.011847795514836
304 => 0.012550604706955
305 => 0.012243809660479
306 => 0.013212971536326
307 => 0.012659391470562
308 => 0.012635527740353
309 => 0.012599454212095
310 => 0.012036111090624
311 => 0.012159447431903
312 => 0.01256943621497
313 => 0.012715724831622
314 => 0.012700465730398
315 => 0.012567427046264
316 => 0.012628331474592
317 => 0.012432137090438
318 => 0.01236285676996
319 => 0.012144189021478
320 => 0.011822807839717
321 => 0.011867497864186
322 => 0.011230757649157
323 => 0.010883827785648
324 => 0.010787802171891
325 => 0.010659392707989
326 => 0.010802306362524
327 => 0.01122895384413
328 => 0.010714326463
329 => 0.0098320339149661
330 => 0.0098850612004563
331 => 0.01000419776701
401 => 0.0097821875634041
402 => 0.0095720735375947
403 => 0.0097547506359462
404 => 0.009380911652287
405 => 0.010049374422149
406 => 0.010031294377569
407 => 0.010280455960713
408 => 0.010436261811964
409 => 0.010077179767575
410 => 0.0099868716044722
411 => 0.010038315238453
412 => 0.0091880665608665
413 => 0.010210972504245
414 => 0.01021981863732
415 => 0.010144072675285
416 => 0.010688738511456
417 => 0.011838153311312
418 => 0.011405697228503
419 => 0.011238237162185
420 => 0.010919895453702
421 => 0.011344066878995
422 => 0.011311497131638
423 => 0.011164204382378
424 => 0.011075121268043
425 => 0.011239259637641
426 => 0.011054782707611
427 => 0.011021645581891
428 => 0.010820870653574
429 => 0.010749203138841
430 => 0.0106961433641
501 => 0.010637729765655
502 => 0.010766575608062
503 => 0.010474593978085
504 => 0.010122492755644
505 => 0.010093219348786
506 => 0.010174045798865
507 => 0.010138286111527
508 => 0.010093048145161
509 => 0.010006676547542
510 => 0.0099810519395653
511 => 0.010064319484196
512 => 0.0099703152811073
513 => 0.010109023603439
514 => 0.010071302614846
515 => 0.0098605962388923
516 => 0.0095979780809615
517 => 0.0095956402284957
518 => 0.0095390595771496
519 => 0.0094669956107025
520 => 0.0094469490638372
521 => 0.0097393660802509
522 => 0.010344660552923
523 => 0.010225826764468
524 => 0.010311696355203
525 => 0.010734089753361
526 => 0.010868355912823
527 => 0.010773056973105
528 => 0.010642605906637
529 => 0.010648345091511
530 => 0.011094135875857
531 => 0.011121939300258
601 => 0.011192189583996
602 => 0.011282481051327
603 => 0.010788434000423
604 => 0.010625075519842
605 => 0.01054766720896
606 => 0.010309279572228
607 => 0.010566360200632
608 => 0.010416570327751
609 => 0.010436782099154
610 => 0.010423619156513
611 => 0.010430807013269
612 => 0.010049187573181
613 => 0.010188229639822
614 => 0.0099570452363795
615 => 0.0096475152718372
616 => 0.0096464776188609
617 => 0.0097222346391718
618 => 0.0096771713991184
619 => 0.0095559073788164
620 => 0.0095731323605503
621 => 0.0094222233955841
622 => 0.0095914554411921
623 => 0.0095963084107188
624 => 0.0095311448550279
625 => 0.0097918701708091
626 => 0.0098986895454163
627 => 0.0098557974971219
628 => 0.0098956801249665
629 => 0.010230764844881
630 => 0.010285398274998
701 => 0.010309662835774
702 => 0.010277151538772
703 => 0.0099018048585228
704 => 0.0099184530798892
705 => 0.0097962994777711
706 => 0.0096930925562107
707 => 0.0096972202918241
708 => 0.0097502820654668
709 => 0.0099820059429963
710 => 0.010469655182389
711 => 0.010488161114557
712 => 0.0105105908442
713 => 0.01041935786146
714 => 0.010391841120884
715 => 0.010428142804378
716 => 0.010611278219314
717 => 0.011082352227312
718 => 0.01091584321091
719 => 0.010780468788709
720 => 0.010899228653662
721 => 0.010880946503323
722 => 0.010726626755957
723 => 0.010722295514626
724 => 0.010426106580422
725 => 0.010316612275343
726 => 0.010225110638512
727 => 0.010125193239803
728 => 0.010065958856587
729 => 0.010156969790753
730 => 0.010177785068206
731 => 0.0099787880700539
801 => 0.009951665514525
802 => 0.010114170758864
803 => 0.010042658259637
804 => 0.010116210638517
805 => 0.010133275421338
806 => 0.010130527598269
807 => 0.010055860335917
808 => 0.01010345102233
809 => 0.009990884861496
810 => 0.0098684860684799
811 => 0.0097904032642498
812 => 0.0097222656613781
813 => 0.0097600723636321
814 => 0.0096252983733278
815 => 0.0095821814613649
816 => 0.010087328368597
817 => 0.010460485820214
818 => 0.010455059963081
819 => 0.010422031453201
820 => 0.010372957787107
821 => 0.010607688174979
822 => 0.010525912801426
823 => 0.010585411218247
824 => 0.010600556062468
825 => 0.010646394944591
826 => 0.010662778404965
827 => 0.01061325620867
828 => 0.010447053669278
829 => 0.010032892743174
830 => 0.0098400997140668
831 => 0.0097764748032395
901 => 0.0097787874479072
902 => 0.0097149943838726
903 => 0.0097337843002354
904 => 0.0097084600177729
905 => 0.009660501953391
906 => 0.0097571110882988
907 => 0.0097682443911205
908 => 0.0097456946646399
909 => 0.0097510059415381
910 => 0.0095643038373924
911 => 0.0095784983928749
912 => 0.0094994613041912
913 => 0.0094846428028694
914 => 0.0092848439252236
915 => 0.0089308712521637
916 => 0.0091270064739976
917 => 0.0088901027068079
918 => 0.0088003836604953
919 => 0.0092250996715648
920 => 0.0091824699638418
921 => 0.0091095064349086
922 => 0.0090015781686847
923 => 0.0089615465248835
924 => 0.008718326929626
925 => 0.0087039562184122
926 => 0.0088245024173032
927 => 0.0087688744942564
928 => 0.0086907518223568
929 => 0.0084077994239046
930 => 0.0080896672457248
1001 => 0.0080992696564764
1002 => 0.0082004615832959
1003 => 0.0084946907581139
1004 => 0.0083797303292961
1005 => 0.0082963252191698
1006 => 0.0082807059491916
1007 => 0.0084762138141259
1008 => 0.0087528984031719
1009 => 0.0088827126218836
1010 => 0.0087540706736568
1011 => 0.0086062937301082
1012 => 0.0086152882279296
1013 => 0.0086751245923292
1014 => 0.008681412548187
1015 => 0.0085852249496521
1016 => 0.0086123011952176
1017 => 0.0085711699022998
1018 => 0.008318747233586
1019 => 0.0083141817079499
1020 => 0.0082522331141821
1021 => 0.0082503573353828
1022 => 0.0081449673235829
1023 => 0.0081302225324053
1024 => 0.0079209642672602
1025 => 0.0080586986910711
1026 => 0.0079663136709605
1027 => 0.0078270676542308
1028 => 0.0078030615884616
1029 => 0.0078023399371364
1030 => 0.0079453144614782
1031 => 0.0080570279505103
1101 => 0.0079679207479388
1102 => 0.0079476327651838
1103 => 0.0081642553433159
1104 => 0.00813668814569
1105 => 0.0081128151303353
1106 => 0.008728124332926
1107 => 0.0082410590858996
1108 => 0.0080286708374837
1109 => 0.0077658000486346
1110 => 0.0078513921029935
1111 => 0.0078694276064558
1112 => 0.0072372707452948
1113 => 0.0069808047854519
1114 => 0.0068927953327496
1115 => 0.0068421446484485
1116 => 0.0068652268013158
1117 => 0.0066343773570004
1118 => 0.0067895120014777
1119 => 0.0065896158959184
1120 => 0.0065561026633032
1121 => 0.0069135416624189
1122 => 0.0069632772110175
1123 => 0.0067510899090721
1124 => 0.0068873485069249
1125 => 0.0068379392452073
1126 => 0.0065930425409116
1127 => 0.0065836892881458
1128 => 0.0064608087304656
1129 => 0.0062685244520608
1130 => 0.0061806453771538
1201 => 0.0061348771919411
1202 => 0.006153762037164
1203 => 0.0061442132815335
1204 => 0.0060819011920173
1205 => 0.0061477849375646
1206 => 0.0059794791927345
1207 => 0.0059124584890115
1208 => 0.0058821867920084
1209 => 0.0057328057561544
1210 => 0.0059705374142463
1211 => 0.0060173735457549
1212 => 0.006064301958911
1213 => 0.0064727817560465
1214 => 0.0064523752597336
1215 => 0.006636840048036
1216 => 0.0066296720855715
1217 => 0.0065770597398162
1218 => 0.0063550969073854
1219 => 0.0064435673362853
1220 => 0.0061712691074888
1221 => 0.0063752934549829
1222 => 0.006282185263047
1223 => 0.0063438134816309
1224 => 0.0062330003878246
1225 => 0.0062943289292975
1226 => 0.0060284801300415
1227 => 0.0057802342618899
1228 => 0.0058801356459828
1229 => 0.0059887398756008
1230 => 0.0062242215172557
1231 => 0.0060839705941674
]
'min_raw' => 0.0057328057561544
'max_raw' => 0.017112564799172
'avg_raw' => 0.011422685277663
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005732'
'max' => '$0.017112'
'avg' => '$0.011422'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010859984243846
'max_diff' => 0.00051977479917179
'year' => 2026
]
1 => [
'items' => [
101 => 0.0061344101295845
102 => 0.0059654461294134
103 => 0.0056168251348799
104 => 0.0056187982918488
105 => 0.005565170546961
106 => 0.005518828345599
107 => 0.0061000800998193
108 => 0.0060277922559515
109 => 0.0059126110375474
110 => 0.006066785675501
111 => 0.0061075518968565
112 => 0.0061087124538679
113 => 0.0062211942898955
114 => 0.0062812258659469
115 => 0.0062918066914177
116 => 0.006468799290738
117 => 0.0065281248754413
118 => 0.0067724785627634
119 => 0.0062761326061362
120 => 0.006265910687789
121 => 0.0060689552288297
122 => 0.0059440429630152
123 => 0.0060775080785372
124 => 0.0061957399510846
125 => 0.0060726290226799
126 => 0.006088704710916
127 => 0.005923438348065
128 => 0.0059825132962791
129 => 0.006033396599936
130 => 0.006005301830439
131 => 0.0059632426006998
201 => 0.0061860462858342
202 => 0.0061734748287442
203 => 0.0063809547425759
204 => 0.0065427001724387
205 => 0.0068325768982069
206 => 0.0065300754232523
207 => 0.0065190510671705
208 => 0.0066268159162325
209 => 0.0065281083772044
210 => 0.0065904881346017
211 => 0.0068225265549029
212 => 0.0068274291610825
213 => 0.0067453041909228
214 => 0.006740306879025
215 => 0.0067560798778929
216 => 0.0068484628249229
217 => 0.0068161813845894
218 => 0.0068535382846094
219 => 0.0069002536601136
220 => 0.0070934882601076
221 => 0.0071400764679735
222 => 0.0070268912760757
223 => 0.0070371106316232
224 => 0.0069947762628504
225 => 0.006953881793064
226 => 0.0070458065889862
227 => 0.0072138009603203
228 => 0.0072127558760552
301 => 0.0072517273048607
302 => 0.0072760061821499
303 => 0.0071717834676005
304 => 0.0071039383128043
305 => 0.0071299544622526
306 => 0.0071715548517783
307 => 0.0071164640166054
308 => 0.006776417861361
309 => 0.0068795661426297
310 => 0.0068623972249333
311 => 0.0068379465983219
312 => 0.0069416629927596
313 => 0.0069316592934983
314 => 0.0066320096622847
315 => 0.0066511922594641
316 => 0.0066331762195539
317 => 0.0066913897302388
318 => 0.006524964656587
319 => 0.0065761558883523
320 => 0.0066082625490275
321 => 0.0066271736188202
322 => 0.0066954933703534
323 => 0.0066874768360545
324 => 0.0066949950513256
325 => 0.0067962952071036
326 => 0.0073086366330128
327 => 0.0073365222464074
328 => 0.0071992032873685
329 => 0.0072540595030078
330 => 0.0071487475647159
331 => 0.0072194441744199
401 => 0.0072678129992803
402 => 0.0070492435805266
403 => 0.0070363013180517
404 => 0.0069305547199289
405 => 0.0069873769519666
406 => 0.0068969686951315
407 => 0.0069191517190123
408 => 0.0068571260503604
409 => 0.0069687599047464
410 => 0.0070935839000971
411 => 0.0071251193707716
412 => 0.0070421631243006
413 => 0.0069820973347726
414 => 0.0068766415952625
415 => 0.0070520168403022
416 => 0.0071033019064156
417 => 0.0070517474616827
418 => 0.0070398011703512
419 => 0.0070171629698645
420 => 0.0070446039716021
421 => 0.0071030225969315
422 => 0.0070754734520488
423 => 0.0070936701475973
424 => 0.0070243231085174
425 => 0.0071718179696557
426 => 0.0074060753057148
427 => 0.0074068284813552
428 => 0.0073792791879723
429 => 0.0073680066106778
430 => 0.0073962738575196
501 => 0.0074116076793481
502 => 0.0075030187723077
503 => 0.0076011065170321
504 => 0.0080588392226247
505 => 0.0079303097105413
506 => 0.0083364373975835
507 => 0.008657631668954
508 => 0.0087539437868147
509 => 0.0086653411702181
510 => 0.0083622364050606
511 => 0.0083473646392443
512 => 0.0088003311259207
513 => 0.0086723473462552
514 => 0.008657124082905
515 => 0.0084951742809683
516 => 0.0085909066717861
517 => 0.0085699685936048
518 => 0.0085369168128697
519 => 0.008719567545774
520 => 0.0090614734124273
521 => 0.0090081841767365
522 => 0.0089684062343098
523 => 0.0087941108697809
524 => 0.0088990756095063
525 => 0.0088616996761573
526 => 0.0090222904051782
527 => 0.0089271600148264
528 => 0.0086713777432487
529 => 0.0087121119130669
530 => 0.0087059550252446
531 => 0.0088326633403445
601 => 0.0087946286492452
602 => 0.0086985281413725
603 => 0.009060304815345
604 => 0.0090368130504449
605 => 0.0090701190021082
606 => 0.0090847813120512
607 => 0.0093049883982782
608 => 0.0093952001956646
609 => 0.0094156798530511
610 => 0.0095013740833373
611 => 0.0094135477025359
612 => 0.0097649158448899
613 => 0.0099985551566558
614 => 0.010269939240241
615 => 0.010666504327524
616 => 0.010815616468774
617 => 0.010788680695109
618 => 0.011089351818352
619 => 0.011629651143276
620 => 0.010897890636425
621 => 0.011668436226992
622 => 0.011424490389395
623 => 0.010846099196851
624 => 0.010808857622835
625 => 0.011200550853686
626 => 0.012069288740637
627 => 0.011851679753099
628 => 0.012069644670984
629 => 0.011815377016383
630 => 0.011802750484196
701 => 0.012057295458536
702 => 0.012652053665607
703 => 0.012369506335606
704 => 0.011964405454601
705 => 0.012263525641067
706 => 0.012004400053284
707 => 0.011420517579324
708 => 0.011851513351608
709 => 0.011563318752734
710 => 0.011647429257953
711 => 0.012253171439074
712 => 0.012180286937246
713 => 0.012274606231534
714 => 0.012108135145882
715 => 0.011952624901802
716 => 0.011662353482884
717 => 0.011576418425951
718 => 0.011600167784068
719 => 0.011576406656948
720 => 0.011414002465796
721 => 0.011378931296179
722 => 0.011320477810315
723 => 0.011338594989798
724 => 0.011228685335202
725 => 0.011436107561917
726 => 0.011474606954994
727 => 0.011625551554019
728 => 0.011641223123029
729 => 0.012061601682752
730 => 0.011830064236231
731 => 0.011985399545339
801 => 0.01197150489322
802 => 0.010858634687829
803 => 0.011011978383195
804 => 0.011250533051281
805 => 0.011143064496662
806 => 0.010991129104198
807 => 0.010868433128523
808 => 0.010682536179068
809 => 0.010944182565591
810 => 0.011288219740878
811 => 0.011649948473542
812 => 0.012084541844433
813 => 0.011987545663275
814 => 0.01164182405277
815 => 0.011657332871668
816 => 0.011753202287596
817 => 0.011629042683314
818 => 0.011592425592128
819 => 0.011748171661561
820 => 0.011749244199145
821 => 0.011606383569228
822 => 0.011447620122295
823 => 0.011446954897656
824 => 0.011418704475747
825 => 0.011820402703682
826 => 0.012041296112775
827 => 0.01206662118614
828 => 0.012039591533558
829 => 0.012049994174068
830 => 0.011921461166371
831 => 0.012215249506687
901 => 0.012484858740416
902 => 0.012412597706415
903 => 0.012304268143937
904 => 0.012217978429565
905 => 0.012392270592036
906 => 0.012384509636402
907 => 0.012482503938961
908 => 0.012478058351354
909 => 0.012445106553156
910 => 0.012412598883228
911 => 0.012541488119993
912 => 0.012504370089703
913 => 0.012467194404859
914 => 0.012392632877591
915 => 0.012402767027483
916 => 0.012294456169631
917 => 0.012244346610821
918 => 0.011490819075964
919 => 0.011289451896427
920 => 0.011352806110316
921 => 0.01137366396252
922 => 0.011286028707927
923 => 0.011411675151364
924 => 0.011392093286246
925 => 0.011468274868409
926 => 0.011420679923294
927 => 0.011422633236443
928 => 0.011562599821716
929 => 0.011603232716881
930 => 0.011582566498452
1001 => 0.011597040409443
1002 => 0.011930585579172
1003 => 0.011883166122211
1004 => 0.011857975480805
1005 => 0.01186495346063
1006 => 0.011950181402785
1007 => 0.011974040573316
1008 => 0.011872947591225
1009 => 0.01192062362599
1010 => 0.012123622131033
1011 => 0.012194660119077
1012 => 0.012421379276747
1013 => 0.012325064948957
1014 => 0.012501854066001
1015 => 0.013045243539944
1016 => 0.013479340651421
1017 => 0.013080127007885
1018 => 0.013877291071179
1019 => 0.014497997640847
1020 => 0.014474173888862
1021 => 0.014365939341239
1022 => 0.01365928141401
1023 => 0.013009004253698
1024 => 0.013552988710526
1025 => 0.013554375438778
1026 => 0.0135076466915
1027 => 0.013217418455423
1028 => 0.013497547377991
1029 => 0.013519782994586
1030 => 0.01350733696222
1031 => 0.013284819654096
1101 => 0.012945076852662
1102 => 0.013011461782833
1103 => 0.013120201652669
1104 => 0.012914334393557
1105 => 0.012848547330333
1106 => 0.012970857997366
1107 => 0.013364968450987
1108 => 0.013290464152656
1109 => 0.013288518544331
1110 => 0.013607279527329
1111 => 0.013379115456428
1112 => 0.013012299109397
1113 => 0.012919673144058
1114 => 0.012590913367432
1115 => 0.01281798891615
1116 => 0.012826160960893
1117 => 0.012701794003517
1118 => 0.013022390802562
1119 => 0.013019436446619
1120 => 0.013323795392777
1121 => 0.01390561538583
1122 => 0.013733542584261
1123 => 0.013533440637504
1124 => 0.013555197267342
1125 => 0.013793813796723
1126 => 0.013649540795973
1127 => 0.01370142237295
1128 => 0.013793735267742
1129 => 0.013849429929171
1130 => 0.013547183662654
1201 => 0.013476715599819
1202 => 0.013332562674188
1203 => 0.013294955866633
1204 => 0.01341236541671
1205 => 0.013381432148405
1206 => 0.012825474132176
1207 => 0.012767373426159
1208 => 0.012769155291864
1209 => 0.012623058304046
1210 => 0.012400225330329
1211 => 0.012985817080592
1212 => 0.012938785867695
1213 => 0.012886867048583
1214 => 0.012893226807679
1215 => 0.013147412338923
1216 => 0.012999971894124
1217 => 0.013391966481634
1218 => 0.013311384178878
1219 => 0.013228735244121
1220 => 0.013217310643789
1221 => 0.013185497855184
1222 => 0.013076399966038
1223 => 0.012944657709127
1224 => 0.012857670059796
1225 => 0.011860520976294
1226 => 0.012045586046042
1227 => 0.012258486539576
1228 => 0.012331978936799
1229 => 0.012206265105831
1230 => 0.013081363914319
1231 => 0.013241252899292
]
'min_raw' => 0.005518828345599
'max_raw' => 0.014497997640847
'avg_raw' => 0.010008412993223
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005518'
'max' => '$0.014497'
'avg' => '$0.0100084'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00021397741055537
'max_diff' => -0.002614567158325
'year' => 2027
]
2 => [
'items' => [
101 => 0.012756938734509
102 => 0.012666343328695
103 => 0.013087303334042
104 => 0.01283341299055
105 => 0.012947739796678
106 => 0.012700627775248
107 => 0.013202740324908
108 => 0.013198915068548
109 => 0.013003581946004
110 => 0.013168676163595
111 => 0.013139986980519
112 => 0.012919456366252
113 => 0.013209731538734
114 => 0.013209875511598
115 => 0.013021871628057
116 => 0.012802324251425
117 => 0.01276307436596
118 => 0.012733504849743
119 => 0.012940467508333
120 => 0.01312602958087
121 => 0.013471314593122
122 => 0.013558127448971
123 => 0.013896963804811
124 => 0.013695203252551
125 => 0.013784641092132
126 => 0.013881738518751
127 => 0.013928290595712
128 => 0.013852436484426
129 => 0.014378788815654
130 => 0.014423229079428
131 => 0.014438129515465
201 => 0.014260646470863
202 => 0.014418292954893
203 => 0.014344535385718
204 => 0.014536432090269
205 => 0.014566523943802
206 => 0.014541037214408
207 => 0.014550588843687
208 => 0.014101439983899
209 => 0.014078149246069
210 => 0.013760578383135
211 => 0.013889990857146
212 => 0.013648060439884
213 => 0.013724779067357
214 => 0.013758595907345
215 => 0.013740931909224
216 => 0.013897307644258
217 => 0.013764356324027
218 => 0.013413475930718
219 => 0.013062499940281
220 => 0.013058093722619
221 => 0.012965687939578
222 => 0.012898895483402
223 => 0.012911762080051
224 => 0.012957105644859
225 => 0.012896260032986
226 => 0.01290924452923
227 => 0.013124873682128
228 => 0.013168116570945
229 => 0.013021160338657
301 => 0.01243110986034
302 => 0.012286309992932
303 => 0.012390389266119
304 => 0.012340646077099
305 => 0.0099598645321553
306 => 0.010519193841508
307 => 0.010186859358919
308 => 0.010340014378471
309 => 0.010000786929344
310 => 0.010162684048501
311 => 0.010132787562129
312 => 0.011032172539811
313 => 0.011018129880448
314 => 0.011024851358364
315 => 0.010704017704714
316 => 0.011215114426561
317 => 0.011466899050187
318 => 0.011420300417384
319 => 0.011432028289333
320 => 0.011230504592964
321 => 0.011026802548254
322 => 0.010800865631151
323 => 0.011220628496481
324 => 0.011173958031448
325 => 0.011281003286732
326 => 0.011553249510168
327 => 0.011593338800732
328 => 0.011647219213795
329 => 0.011627906921181
330 => 0.012088004081773
331 => 0.012032283279806
401 => 0.012166554380577
402 => 0.011890348539119
403 => 0.01157779541181
404 => 0.01163720154318
405 => 0.011631480255015
406 => 0.011558641690088
407 => 0.011492886290504
408 => 0.011383422076665
409 => 0.011729783046906
410 => 0.011715721424044
411 => 0.011943362753337
412 => 0.011903124937195
413 => 0.011634406953131
414 => 0.011644004268502
415 => 0.011708550826684
416 => 0.01193194720153
417 => 0.01199826645557
418 => 0.011967544734733
419 => 0.012040260769199
420 => 0.012097732557969
421 => 0.012047478341017
422 => 0.012758972076287
423 => 0.012463510272233
424 => 0.012607516299719
425 => 0.012641860888741
426 => 0.012553887946149
427 => 0.012572966127322
428 => 0.012601864373307
429 => 0.012777328864068
430 => 0.013237798458886
501 => 0.013441737307909
502 => 0.014055297397358
503 => 0.013424803025463
504 => 0.01338739209868
505 => 0.013497912798529
506 => 0.013858137522967
507 => 0.014150065827937
508 => 0.014246915288443
509 => 0.014259715543459
510 => 0.014441411569799
511 => 0.014545556343667
512 => 0.014419348893121
513 => 0.014312401293255
514 => 0.013929328265358
515 => 0.013973670011411
516 => 0.014279140670117
517 => 0.014710635967672
518 => 0.015080903822408
519 => 0.014951248924817
520 => 0.015940424271342
521 => 0.016038496966531
522 => 0.016024946491126
523 => 0.016248370685941
524 => 0.01580491915878
525 => 0.01561533503945
526 => 0.014335524578253
527 => 0.014695099115059
528 => 0.015217761821379
529 => 0.015148585452313
530 => 0.014769013824169
531 => 0.015080615883291
601 => 0.014977590497848
602 => 0.014896330101822
603 => 0.015268599729119
604 => 0.014859273981912
605 => 0.015213678483932
606 => 0.014759151044246
607 => 0.014951841177467
608 => 0.014842460938478
609 => 0.014913243358242
610 => 0.014499450778624
611 => 0.014722723210339
612 => 0.014490161911413
613 => 0.014490051647077
614 => 0.014484917843514
615 => 0.014758525180365
616 => 0.014767447505797
617 => 0.014565251270466
618 => 0.014536111634056
619 => 0.014643856142566
620 => 0.014517715541433
621 => 0.014576735934783
622 => 0.014519503209022
623 => 0.014506618916948
624 => 0.014403954685617
625 => 0.014359724111947
626 => 0.014377068059565
627 => 0.014317864224929
628 => 0.014282191773065
629 => 0.014477821694975
630 => 0.014373304519387
701 => 0.014461802938829
702 => 0.014360947820484
703 => 0.014011340039817
704 => 0.01381027690812
705 => 0.013149900219099
706 => 0.013337182228911
707 => 0.013461350395173
708 => 0.013420312816964
709 => 0.013508477414392
710 => 0.01351389000463
711 => 0.013485226795275
712 => 0.013452038470826
713 => 0.013435884229914
714 => 0.013556284706753
715 => 0.013626181236052
716 => 0.013473812331813
717 => 0.013438114429418
718 => 0.013592167804121
719 => 0.013686140273696
720 => 0.014379980190468
721 => 0.01432857828836
722 => 0.014457586975537
723 => 0.014443062577161
724 => 0.014578284234018
725 => 0.014799314494043
726 => 0.014349898174379
727 => 0.014427901307826
728 => 0.01440877674086
729 => 0.014617573748261
730 => 0.014618225589727
731 => 0.014493041353606
801 => 0.014560905758889
802 => 0.014523025709623
803 => 0.014591480078443
804 => 0.014327891784619
805 => 0.014648913873899
806 => 0.014830912712314
807 => 0.014833439766362
808 => 0.014919705771338
809 => 0.015007357028585
810 => 0.015175595984053
811 => 0.015002664935429
812 => 0.014691578813451
813 => 0.014714038226656
814 => 0.014531648547162
815 => 0.014534714550626
816 => 0.014518347983849
817 => 0.014567465282762
818 => 0.014338670269625
819 => 0.0143923680019
820 => 0.014317190862262
821 => 0.014427737887406
822 => 0.014308807562429
823 => 0.014408767518415
824 => 0.014451906921693
825 => 0.014611092248515
826 => 0.014285295760228
827 => 0.013620974666127
828 => 0.013760623014222
829 => 0.013554072138248
830 => 0.013573189208214
831 => 0.013611808732005
901 => 0.013486630219878
902 => 0.013510510335164
903 => 0.013509657169404
904 => 0.013502305047804
905 => 0.013469741282176
906 => 0.013422517379471
907 => 0.013610642873096
908 => 0.013642609060329
909 => 0.013713665934774
910 => 0.013925082994786
911 => 0.013903957444933
912 => 0.013938414093233
913 => 0.013863195423459
914 => 0.013576678386573
915 => 0.013592237640151
916 => 0.013398213498713
917 => 0.013708704301252
918 => 0.013635175980932
919 => 0.013587771794492
920 => 0.013574837123026
921 => 0.013786778245036
922 => 0.013850194350512
923 => 0.013810677689276
924 => 0.013729627864196
925 => 0.013885267488579
926 => 0.013926910086156
927 => 0.013936232328033
928 => 0.014211995901502
929 => 0.013951644448439
930 => 0.014014313630862
1001 => 0.014503240702421
1002 => 0.014059851315841
1003 => 0.014294724562676
1004 => 0.014283228739465
1005 => 0.014403381944868
1006 => 0.014273372669612
1007 => 0.014274984290394
1008 => 0.014381672196909
1009 => 0.014231848273474
1010 => 0.014194749763053
1011 => 0.01414349843661
1012 => 0.014255403832905
1013 => 0.014322486056937
1014 => 0.014863119516176
1015 => 0.015212393386725
1016 => 0.01519723048686
1017 => 0.015335791007866
1018 => 0.015273368224084
1019 => 0.015071788588954
1020 => 0.015415860446103
1021 => 0.015306981713923
1022 => 0.015315957544317
1023 => 0.015315623463461
1024 => 0.015388018302017
1025 => 0.015336719924011
1026 => 0.01523560555529
1027 => 0.015302729992057
1028 => 0.015502065571829
1029 => 0.016120809327805
1030 => 0.016467066530913
1031 => 0.016099964209404
1101 => 0.016353186475085
1102 => 0.016201343347996
1103 => 0.016173748934862
1104 => 0.016332791230688
1105 => 0.016492111908999
1106 => 0.016481963870553
1107 => 0.016366305239306
1108 => 0.016300972613244
1109 => 0.016795693145822
1110 => 0.01716019480688
1111 => 0.017135338237246
1112 => 0.017245047051821
1113 => 0.01756715552458
1114 => 0.017596605086535
1115 => 0.017592895118619
1116 => 0.017519901306571
1117 => 0.017837058929073
1118 => 0.018101637397622
1119 => 0.017503005348076
1120 => 0.017730956595874
1121 => 0.017833291255141
1122 => 0.01798354889627
1123 => 0.01823705872296
1124 => 0.018512437634905
1125 => 0.018551379232431
1126 => 0.018523748305459
1127 => 0.018342128510449
1128 => 0.018643451401853
1129 => 0.018819959284747
1130 => 0.018925065689699
1201 => 0.019191598044619
1202 => 0.017833923239158
1203 => 0.016872893531036
1204 => 0.016722814864676
1205 => 0.017028005734272
1206 => 0.017108482132733
1207 => 0.017076042197422
1208 => 0.015994315887933
1209 => 0.016717119799525
1210 => 0.017494796033319
1211 => 0.017524669744645
1212 => 0.017913990727726
1213 => 0.018040769598623
1214 => 0.01835422401947
1215 => 0.018334617360102
1216 => 0.018410938523429
1217 => 0.018393393609679
1218 => 0.018974001918683
1219 => 0.019614499104683
1220 => 0.019592320723788
1221 => 0.019500241675282
1222 => 0.019636994764125
1223 => 0.020298056499927
1224 => 0.020237196528593
1225 => 0.020296316806704
1226 => 0.021075745849021
1227 => 0.022089114476522
1228 => 0.021618303008501
1229 => 0.022639828421756
1230 => 0.023282824520665
1231 => 0.02439481978669
]
'min_raw' => 0.0099598645321553
'max_raw' => 0.02439481978669
'avg_raw' => 0.017177342159422
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009959'
'max' => '$0.024394'
'avg' => '$0.017177'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0044410361865563
'max_diff' => 0.0098968221458428
'year' => 2028
]
3 => [
'items' => [
101 => 0.024255592502691
102 => 0.024688484099556
103 => 0.024006346606723
104 => 0.022440021040444
105 => 0.022192144023927
106 => 0.02268840008824
107 => 0.023908397198394
108 => 0.02264997803764
109 => 0.022904554594892
110 => 0.022831236529277
111 => 0.022827329721142
112 => 0.022976436697514
113 => 0.02276014925139
114 => 0.02187895528651
115 => 0.022282801287706
116 => 0.022126856952367
117 => 0.022299888818846
118 => 0.023233670438466
119 => 0.022820823325858
120 => 0.022385922429702
121 => 0.022931384665717
122 => 0.023625945533323
123 => 0.023582481162474
124 => 0.02349814211633
125 => 0.023973556903598
126 => 0.024758802848701
127 => 0.024971051672289
128 => 0.025127729414625
129 => 0.025149332628201
130 => 0.025371859154357
131 => 0.024175277939313
201 => 0.026074283057972
202 => 0.026402188783007
203 => 0.026340556097
204 => 0.026705009509994
205 => 0.026597778070601
206 => 0.026442416539017
207 => 0.027020152720076
208 => 0.026357824809397
209 => 0.025417733724954
210 => 0.024901981163136
211 => 0.025581165741111
212 => 0.025995920062605
213 => 0.026270046285784
214 => 0.026352996715286
215 => 0.024268165132807
216 => 0.023144556539912
217 => 0.023864776765759
218 => 0.024743495148238
219 => 0.024170396614331
220 => 0.024192860991841
221 => 0.023375773090136
222 => 0.024815789297007
223 => 0.024605991048108
224 => 0.02569442473452
225 => 0.025434661300031
226 => 0.026322236718548
227 => 0.026088508364961
228 => 0.027058701693124
301 => 0.027445738078663
302 => 0.028095632407388
303 => 0.028573697321144
304 => 0.028854426182426
305 => 0.028837572274582
306 => 0.029949959881545
307 => 0.029294023773582
308 => 0.028470013429709
309 => 0.028455109682308
310 => 0.028881876315716
311 => 0.029776262101632
312 => 0.030008163323136
313 => 0.03013776446941
314 => 0.029939275802443
315 => 0.029227304168613
316 => 0.028919878426904
317 => 0.029181814065822
318 => 0.028861489287811
319 => 0.029414459721916
320 => 0.030173806236052
321 => 0.030017004183665
322 => 0.030541169935719
323 => 0.03108362634525
324 => 0.031859363374121
325 => 0.032062169758927
326 => 0.032397401000975
327 => 0.032742464066769
328 => 0.032853289023792
329 => 0.033064888253713
330 => 0.033063773021323
331 => 0.03370144154296
401 => 0.034404809669276
402 => 0.034670314853951
403 => 0.035280829386069
404 => 0.034235344644797
405 => 0.035028356830715
406 => 0.035743673672795
407 => 0.034890843444615
408 => 0.036066271230203
409 => 0.036111910427541
410 => 0.03680100812199
411 => 0.036102475593521
412 => 0.035687689207911
413 => 0.036885161961324
414 => 0.037464581306662
415 => 0.037290055484375
416 => 0.035961905359369
417 => 0.035188865019578
418 => 0.033165669341997
419 => 0.03556223201764
420 => 0.036729527788254
421 => 0.035958882345321
422 => 0.036347551080968
423 => 0.038468001676398
424 => 0.039275331974128
425 => 0.039107412915865
426 => 0.039135788472529
427 => 0.039571409247103
428 => 0.041503191662306
429 => 0.04034562286075
430 => 0.041230540836264
501 => 0.041699898139668
502 => 0.042135863360636
503 => 0.041065270566162
504 => 0.039672445070683
505 => 0.039231278769428
506 => 0.035882256843783
507 => 0.035707925708489
508 => 0.035610068359474
509 => 0.034993091616131
510 => 0.034508316900016
511 => 0.034122806047231
512 => 0.033111110446236
513 => 0.033452528012936
514 => 0.031840096382233
515 => 0.032871672998488
516 => 0.030298193182363
517 => 0.032441463644598
518 => 0.031274978974553
519 => 0.032058242057984
520 => 0.032055509326873
521 => 0.030613273656491
522 => 0.029781422220506
523 => 0.030311510331658
524 => 0.03087980686526
525 => 0.030972011065858
526 => 0.03170882235573
527 => 0.031914450549028
528 => 0.031291387523473
529 => 0.030244863533279
530 => 0.03048794718753
531 => 0.029776496138011
601 => 0.028529705539298
602 => 0.029425172314169
603 => 0.029730924042005
604 => 0.029865961423309
605 => 0.028639886064342
606 => 0.028254626567164
607 => 0.028049517643506
608 => 0.030086592600831
609 => 0.03019818816543
610 => 0.029627249478919
611 => 0.032207946480577
612 => 0.031623855268087
613 => 0.03227642825826
614 => 0.030465889893789
615 => 0.030535054897525
616 => 0.02967791702062
617 => 0.030157856957713
618 => 0.029818650879362
619 => 0.030119082553655
620 => 0.0302991600605
621 => 0.031156157289514
622 => 0.03245124917634
623 => 0.031028150481838
624 => 0.030408086001495
625 => 0.030792770517725
626 => 0.031817236077578
627 => 0.033369353842181
628 => 0.032450468886255
629 => 0.032858254426017
630 => 0.032947337425339
701 => 0.032269785677808
702 => 0.033394336141563
703 => 0.03399699187092
704 => 0.034615191947209
705 => 0.035151957751878
706 => 0.034368269242228
707 => 0.035206928284889
708 => 0.034531117139754
709 => 0.033924844678497
710 => 0.033925764143562
711 => 0.033545440572388
712 => 0.032808515729384
713 => 0.032672615481879
714 => 0.033379585731711
715 => 0.033946508921745
716 => 0.033993203431055
717 => 0.034307081238623
718 => 0.034492830891944
719 => 0.03631343000889
720 => 0.037045690034512
721 => 0.03794108373287
722 => 0.038289890040004
723 => 0.039339671970495
724 => 0.038491887802503
725 => 0.038308464364946
726 => 0.035762036782627
727 => 0.036179014156578
728 => 0.036846635164606
729 => 0.035773045607149
730 => 0.036453991075103
731 => 0.036588424134874
801 => 0.035736565444801
802 => 0.03619157997781
803 => 0.034983196280544
804 => 0.032477588638808
805 => 0.033397125599134
806 => 0.034074214314727
807 => 0.033107925233139
808 => 0.034839961011334
809 => 0.033828141466188
810 => 0.033507443246281
811 => 0.03225628515325
812 => 0.032846783611669
813 => 0.033645441231804
814 => 0.033151963676475
815 => 0.034176003699811
816 => 0.035626317474355
817 => 0.036659897437773
818 => 0.036739242873351
819 => 0.036074720201352
820 => 0.037139622024157
821 => 0.037147378671356
822 => 0.035946165064981
823 => 0.035210428419462
824 => 0.035043267505596
825 => 0.035460868242259
826 => 0.035967912629916
827 => 0.036767380308016
828 => 0.037250481882207
829 => 0.03851015457042
830 => 0.038850985882204
831 => 0.039225456160258
901 => 0.039725863934095
902 => 0.040326731768506
903 => 0.03901206715424
904 => 0.039064301230206
905 => 0.037840103744172
906 => 0.036531873162667
907 => 0.037524657100785
908 => 0.038822590035362
909 => 0.038524842786082
910 => 0.038491340138113
911 => 0.038547682299137
912 => 0.038323190596695
913 => 0.037307822946604
914 => 0.036797911669266
915 => 0.037455827309273
916 => 0.03780548019148
917 => 0.038347761318848
918 => 0.038280913723734
919 => 0.039677771671092
920 => 0.040220548430644
921 => 0.040081682908824
922 => 0.040107237506824
923 => 0.041089908903595
924 => 0.042182841598591
925 => 0.043206517292627
926 => 0.044247844176494
927 => 0.042992483974312
928 => 0.042355089483498
929 => 0.043012717898118
930 => 0.04266377100453
1001 => 0.044668923359456
1002 => 0.044807755757994
1003 => 0.046812763117582
1004 => 0.048715753853666
1005 => 0.047520519467952
1006 => 0.048647571659141
1007 => 0.049866570493825
1008 => 0.052218217021365
1009 => 0.051426265202812
1010 => 0.050819642521268
1011 => 0.050246387018388
1012 => 0.051439240718133
1013 => 0.052973827946551
1014 => 0.053304363337459
1015 => 0.053839956944967
1016 => 0.053276845755943
1017 => 0.053955051158459
1018 => 0.056349414247898
1019 => 0.055702436205504
1020 => 0.054783623378395
1021 => 0.056673743080431
1022 => 0.057357770052944
1023 => 0.062158629573744
1024 => 0.06821991303237
1025 => 0.065710501879966
1026 => 0.064152829399477
1027 => 0.064518919380877
1028 => 0.066732294912573
1029 => 0.067443160884327
1030 => 0.065510782122907
1031 => 0.06619333096953
1101 => 0.069954242221145
1102 => 0.071971850443158
1103 => 0.069231667476729
1104 => 0.061671611349584
1105 => 0.054700894336262
1106 => 0.056549842383673
1107 => 0.056340229054635
1108 => 0.060380859011262
1109 => 0.055687005993163
1110 => 0.055766038439931
1111 => 0.05989022434496
1112 => 0.058789962251944
1113 => 0.057007678572181
1114 => 0.054713906979518
1115 => 0.050473658042288
1116 => 0.046717951310494
1117 => 0.054083757099146
1118 => 0.053766130159691
1119 => 0.053306159281684
1120 => 0.054329774696641
1121 => 0.059300160593363
1122 => 0.059185577110874
1123 => 0.058456655456289
1124 => 0.059009536106871
1125 => 0.056910755920995
1126 => 0.057451659363232
1127 => 0.054699790139073
1128 => 0.055943749956603
1129 => 0.057003854591868
1130 => 0.057216686292515
1201 => 0.057696206981528
1202 => 0.053598755195678
1203 => 0.055438390752661
1204 => 0.056519004291847
1205 => 0.051636753008746
1206 => 0.056422497881615
1207 => 0.053527427676093
1208 => 0.052544797365844
1209 => 0.053867779626895
1210 => 0.053352212153121
1211 => 0.052908957514308
1212 => 0.052661613809769
1213 => 0.053633065970061
1214 => 0.053587746565647
1215 => 0.05199826228067
1216 => 0.049924844826585
1217 => 0.050620751781784
1218 => 0.050367922260798
1219 => 0.049451635461087
1220 => 0.050069102131202
1221 => 0.047350091408745
1222 => 0.042672174782637
1223 => 0.045762549794305
1224 => 0.045643573718037
1225 => 0.045583580585247
1226 => 0.047905911994824
1227 => 0.047682673415095
1228 => 0.047277493206928
1229 => 0.049444194008818
1230 => 0.048653319069889
1231 => 0.051090609278095
]
'min_raw' => 0.02187895528651
'max_raw' => 0.071971850443158
'avg_raw' => 0.046925402864834
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.021878'
'max' => '$0.071971'
'avg' => '$0.046925'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.011919090754355
'max_diff' => 0.047577030656468
'year' => 2029
]
4 => [
'items' => [
101 => 0.052695966243266
102 => 0.052288795789041
103 => 0.053798641774148
104 => 0.050636784072497
105 => 0.051687026369273
106 => 0.051903479851066
107 => 0.04941745725725
108 => 0.047719198007577
109 => 0.047605943477196
110 => 0.044661395972803
111 => 0.046234349482093
112 => 0.047618483477029
113 => 0.046955590706592
114 => 0.046745738658829
115 => 0.047817827259491
116 => 0.04790113772558
117 => 0.046001650269896
118 => 0.046396613860878
119 => 0.048043677692504
120 => 0.046355112078251
121 => 0.043074504915386
122 => 0.042260868981053
123 => 0.042152314949127
124 => 0.039945669764936
125 => 0.042315240024736
126 => 0.041280859105798
127 => 0.044548456034937
128 => 0.042682022193487
129 => 0.042601563960976
130 => 0.042479939541879
131 => 0.040580588876481
201 => 0.040996425962171
202 => 0.042378731768783
203 => 0.042871954053371
204 => 0.042820506928237
205 => 0.042371957716216
206 => 0.042577301248536
207 => 0.041915818184504
208 => 0.041682234747015
209 => 0.040944981166114
210 => 0.03986142207369
211 => 0.040012097611345
212 => 0.037865283520593
213 => 0.036695585263903
214 => 0.036371828202827
215 => 0.035938886730017
216 => 0.036420730094194
217 => 0.037859201866007
218 => 0.03612409972039
219 => 0.033149388794995
220 => 0.033328173990272
221 => 0.033729851242259
222 => 0.032981328340543
223 => 0.032272914232834
224 => 0.032888822824033
225 => 0.031628398590022
226 => 0.033882167489191
227 => 0.033821209356583
228 => 0.034661275030059
301 => 0.035186585335567
302 => 0.033975915152602
303 => 0.033671434875587
304 => 0.033844880679232
305 => 0.030978207900283
306 => 0.034427006705396
307 => 0.034456832060677
308 => 0.034201449261262
309 => 0.036037828155267
310 => 0.039913160402559
311 => 0.038455104526249
312 => 0.03789050122097
313 => 0.036817189924911
314 => 0.03824731349999
315 => 0.038137502322828
316 => 0.037640894535045
317 => 0.037340544595483
318 => 0.037893948568357
319 => 0.037271971718993
320 => 0.037160247586066
321 => 0.036483320897587
322 => 0.036241688868001
323 => 0.036062794132944
324 => 0.03586584860748
325 => 0.036300261360887
326 => 0.035315824909911
327 => 0.03412869105553
328 => 0.034029993720505
329 => 0.034302505740068
330 => 0.034181939457545
331 => 0.034029416495529
401 => 0.033738208623883
402 => 0.033651813469037
403 => 0.033932555809315
404 => 0.033615614075437
405 => 0.034083278868484
406 => 0.033956099921849
407 => 0.03324568866427
408 => 0.032360253209392
409 => 0.03235237097658
410 => 0.032161605360232
411 => 0.03191863666601
412 => 0.031851048333648
413 => 0.032836952720391
414 => 0.034877745295314
415 => 0.034477088880829
416 => 0.034766604201215
417 => 0.036190733033671
418 => 0.036643420764461
419 => 0.036322113735643
420 => 0.035882288857242
421 => 0.035901638919743
422 => 0.037404653673282
423 => 0.037498394859825
424 => 0.037735248596166
425 => 0.038039672582221
426 => 0.036373958456835
427 => 0.035823183934233
428 => 0.035562196409617
429 => 0.034758455848682
430 => 0.035625221136142
501 => 0.035120194121729
502 => 0.035188339520153
503 => 0.035143959740032
504 => 0.035168194100926
505 => 0.033881537514852
506 => 0.034350327550138
507 => 0.033570873193152
508 => 0.032527271307006
509 => 0.032523772787549
510 => 0.032779192870714
511 => 0.032627259010659
512 => 0.032218408899827
513 => 0.032276484128353
514 => 0.031767684016842
515 => 0.032338261674014
516 => 0.032354623799596
517 => 0.03213492032201
518 => 0.033013973927427
519 => 0.033374122906805
520 => 0.033229509371354
521 => 0.033363976435648
522 => 0.034493737963706
523 => 0.034677938387731
524 => 0.034759748048486
525 => 0.034650133940778
526 => 0.033384626402448
527 => 0.033440757043127
528 => 0.033028907645093
529 => 0.032680938303375
530 => 0.032694855252185
531 => 0.032873756726676
601 => 0.033655029958212
602 => 0.035299173415405
603 => 0.035361567457752
604 => 0.03543719085724
605 => 0.035129592486249
606 => 0.035036817874238
607 => 0.035159211534639
608 => 0.035776665372205
609 => 0.037364924279506
610 => 0.03680352750542
611 => 0.036347103189427
612 => 0.036747510365665
613 => 0.036685870819378
614 => 0.036165571016872
615 => 0.036150967934328
616 => 0.035152346263409
617 => 0.034783178569186
618 => 0.03447467441217
619 => 0.034137795926413
620 => 0.033938083067788
621 => 0.034244932786507
622 => 0.034315112947718
623 => 0.033644180674922
624 => 0.033552735085319
625 => 0.034100632862364
626 => 0.033859523478374
627 => 0.034107510459032
628 => 0.034165045565738
629 => 0.034155781088413
630 => 0.033904035200291
701 => 0.034064490522209
702 => 0.03368496585184
703 => 0.033272289775575
704 => 0.033009028149546
705 => 0.032779297464248
706 => 0.032906765400477
707 => 0.032452365482547
708 => 0.032306993803537
709 => 0.034010131869503
710 => 0.035268258270651
711 => 0.035249964614505
712 => 0.035138606687466
713 => 0.034973151396017
714 => 0.035764561287078
715 => 0.035488849905773
716 => 0.035689452972129
717 => 0.035740514871801
718 => 0.035895063863248
719 => 0.035950301843755
720 => 0.035783334301417
721 => 0.035222970835964
722 => 0.033826598357814
723 => 0.033176583199799
724 => 0.032962067370796
725 => 0.032969864613756
726 => 0.032754781844474
727 => 0.032818133359361
728 => 0.032732750772954
729 => 0.032571056810566
730 => 0.032896781253941
731 => 0.032934317961707
801 => 0.032858289984506
802 => 0.03287619732539
803 => 0.032246718146138
804 => 0.03229457608098
805 => 0.032028097018289
806 => 0.031978135406488
807 => 0.031304499540993
808 => 0.030111055960189
809 => 0.030772339554326
810 => 0.029973601963153
811 => 0.029671107934526
812 => 0.031103067618572
813 => 0.030959338582673
814 => 0.030713336950724
815 => 0.030349449265839
816 => 0.030214479783843
817 => 0.029394447937382
818 => 0.029345996081194
819 => 0.029752426007022
820 => 0.029564872580652
821 => 0.029301476537992
822 => 0.028347482771505
823 => 0.027274877921492
824 => 0.02730725311976
825 => 0.027648428766026
826 => 0.02864044297135
827 => 0.02825284585931
828 => 0.027971639707361
829 => 0.027918978248126
830 => 0.028578146664676
831 => 0.029511008074146
901 => 0.029948685775871
902 => 0.02951496046593
903 => 0.0290167201833
904 => 0.02904704576068
905 => 0.029248788240895
906 => 0.029269988523081
907 => 0.028945685319017
908 => 0.029036974771344
909 => 0.028898297745576
910 => 0.02804723709442
911 => 0.028031844105983
912 => 0.027822980096982
913 => 0.027816655777797
914 => 0.027461325994918
915 => 0.027411612902015
916 => 0.026706084051133
917 => 0.027170465277321
918 => 0.026858982731903
919 => 0.026389505064652
920 => 0.026308566937861
921 => 0.026306133840034
922 => 0.026788182431015
923 => 0.027164832258873
924 => 0.026864401104137
925 => 0.026795998753817
926 => 0.027526356900095
927 => 0.027433412168619
928 => 0.02735292263059
929 => 0.029427480566641
930 => 0.027785306080482
1001 => 0.027069224272474
1002 => 0.026182937054817
1003 => 0.026471516641934
1004 => 0.026532324601056
1005 => 0.024400963607869
1006 => 0.023536270718377
1007 => 0.023239540703968
1008 => 0.023068768385528
1009 => 0.023146591475465
1010 => 0.022368266456562
1011 => 0.022891313741573
1012 => 0.022217350065379
1013 => 0.022104357861798
1014 => 0.02330948840291
1015 => 0.023477175277435
1016 => 0.022761770974482
1017 => 0.023221176350414
1018 => 0.023054589574889
1019 => 0.022228903238214
1020 => 0.022197368093491
1021 => 0.021783067714026
1022 => 0.021134767844524
1023 => 0.020838477407954
1024 => 0.020684166776077
1025 => 0.020747838350244
1026 => 0.020715644053963
1027 => 0.020505554493668
1028 => 0.020727686141637
1029 => 0.02016023157221
1030 => 0.019934266590372
1031 => 0.019832203450424
1101 => 0.019328554858591
1102 => 0.020130083741742
1103 => 0.020287995029118
1104 => 0.020446217450511
1105 => 0.021823435605702
1106 => 0.021754633678646
1107 => 0.022376569591328
1108 => 0.022352402305428
1109 => 0.022175016108438
1110 => 0.021426652921947
1111 => 0.021724937149791
1112 => 0.020806864660148
1113 => 0.02149474699225
1114 => 0.021180826222532
1115 => 0.021388610064232
1116 => 0.021014995981741
1117 => 0.021221769441139
1118 => 0.020325441653477
1119 => 0.01948846337703
1120 => 0.019825287868392
1121 => 0.020191454611054
1122 => 0.020985397406697
1123 => 0.020512531627498
1124 => 0.020682592042732
1125 => 0.020112918119466
1126 => 0.018937518096455
1127 => 0.018944170732938
1128 => 0.018763361046879
1129 => 0.018607115079478
1130 => 0.020566845950533
1201 => 0.020323122437957
1202 => 0.019934780918411
1203 => 0.020454591474401
1204 => 0.020592037635908
1205 => 0.020595950534899
1206 => 0.020975190898297
1207 => 0.021177591548226
1208 => 0.02121326554003
1209 => 0.021810008445867
1210 => 0.022010028796674
1211 => 0.02283388431371
1212 => 0.021160419267174
1213 => 0.021125955355795
1214 => 0.020461906274922
1215 => 0.020040755849633
1216 => 0.020490742804852
1217 => 0.020889369817831
1218 => 0.020474292727384
1219 => 0.020528493032641
1220 => 0.01997128595176
1221 => 0.020170461264145
1222 => 0.020342017874983
1223 => 0.02024729439811
1224 => 0.020105488768562
1225 => 0.020856686948649
1226 => 0.02081430140336
1227 => 0.021513834418628
1228 => 0.022059170428116
1229 => 0.02303651004759
1230 => 0.022016605204802
1231 => 0.021979435818576
]
'min_raw' => 0.018607115079478
'max_raw' => 0.053798641774148
'avg_raw' => 0.036202878426813
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0186071'
'max' => '$0.053798'
'avg' => '$0.0362028'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032718402070326
'max_diff' => -0.01817320866901
'year' => 2030
]
5 => [
'items' => [
101 => 0.02234277253109
102 => 0.022009973171717
103 => 0.022220290878997
104 => 0.023002624613448
105 => 0.023019154092471
106 => 0.022742264021796
107 => 0.022725415235831
108 => 0.02277859500275
109 => 0.023090070558633
110 => 0.02298123142873
111 => 0.023107182825323
112 => 0.023264686975399
113 => 0.023916190920488
114 => 0.024073266315992
115 => 0.023691654539171
116 => 0.023726109809892
117 => 0.023583376529884
118 => 0.023445497969838
119 => 0.023755428837274
120 => 0.024321833589219
121 => 0.024318310014654
122 => 0.02444970490777
123 => 0.024531562837648
124 => 0.024180168678947
125 => 0.023951424002754
126 => 0.024039139267008
127 => 0.024179397884741
128 => 0.023993655287636
129 => 0.022847165933965
130 => 0.023194937565846
131 => 0.023137051361137
201 => 0.023054614366428
202 => 0.023404301431522
203 => 0.023370573261027
204 => 0.022360283608521
205 => 0.022424959074198
206 => 0.0223642167378
207 => 0.022560487653412
208 => 0.021999373898168
209 => 0.022171968710122
210 => 0.022280218558204
211 => 0.022343978550339
212 => 0.022574323362565
213 => 0.02254729505748
214 => 0.022572643245172
215 => 0.022914183792928
216 => 0.024641578680917
217 => 0.024735596973389
218 => 0.024272616515685
219 => 0.024457568076652
220 => 0.024102501524056
221 => 0.024340860079553
222 => 0.024503938949573
223 => 0.023767016894215
224 => 0.023723381152682
225 => 0.023366849114119
226 => 0.023558429236636
227 => 0.023253611486613
228 => 0.023328403100396
301 => 0.023119279228043
302 => 0.023495660562132
303 => 0.02391651337739
304 => 0.024022837418505
305 => 0.023743144641708
306 => 0.023540628638655
307 => 0.023185077250212
308 => 0.023776367133172
309 => 0.023949278314182
310 => 0.023775458904349
311 => 0.023735181149061
312 => 0.023658854875571
313 => 0.023751374128799
314 => 0.023948336602756
315 => 0.023855452737364
316 => 0.023916804166858
317 => 0.023682995782945
318 => 0.024180285005035
319 => 0.024970099968883
320 => 0.02497263935314
321 => 0.024879754987069
322 => 0.024841748705694
323 => 0.024937053701978
324 => 0.024988752752846
325 => 0.025296951634878
326 => 0.025627661314484
327 => 0.027170939089266
328 => 0.026737592865633
329 => 0.028106880717425
330 => 0.029189809628419
331 => 0.029514532658084
401 => 0.029215802750191
402 => 0.028193863872364
403 => 0.0281437226756
404 => 0.02967093081054
405 => 0.029239424561856
406 => 0.029188098266616
407 => 0.028642073202412
408 => 0.028964841641877
409 => 0.028894247449438
410 => 0.028782811063089
411 => 0.029398630761342
412 => 0.030551390261869
413 => 0.030371721883202
414 => 0.030237607773103
415 => 0.02964995878268
416 => 0.030003854731069
417 => 0.029877839162278
418 => 0.030419282017259
419 => 0.030098543264396
420 => 0.029236155477624
421 => 0.029373493575135
422 => 0.029352735197982
423 => 0.029779941128833
424 => 0.029651704512295
425 => 0.029327694940478
426 => 0.030547450255218
427 => 0.030468246129714
428 => 0.030580539471094
429 => 0.030629974472757
430 => 0.031372418038339
501 => 0.031676573411614
502 => 0.031745622006336
503 => 0.032034546086726
504 => 0.031738433312012
505 => 0.032923095535699
506 => 0.033710826787494
507 => 0.034625817172733
508 => 0.035962864051797
509 => 0.036465606046701
510 => 0.036374790205191
511 => 0.037388523889392
512 => 0.039210180785869
513 => 0.036742999147132
514 => 0.039340947403507
515 => 0.038518466980293
516 => 0.036568380692646
517 => 0.036442818125729
518 => 0.037763439200691
519 => 0.040692449639889
520 => 0.039958765745431
521 => 0.040693649683905
522 => 0.039836368534016
523 => 0.039793797299192
524 => 0.040652013451942
525 => 0.042657282271771
526 => 0.041704654221848
527 => 0.040338828318302
528 => 0.041347332910876
529 => 0.040473672900095
530 => 0.038505072373765
531 => 0.039958204711184
601 => 0.038986536499979
602 => 0.039270120940732
603 => 0.041312422995947
604 => 0.041066687809403
605 => 0.041384691895257
606 => 0.04082342300734
607 => 0.040299109362046
608 => 0.039320439007062
609 => 0.039030702962817
610 => 0.039110775581835
611 => 0.039030663282803
612 => 0.038483106213635
613 => 0.038364861316681
614 => 0.038167781307997
615 => 0.038228864643525
616 => 0.037858296569409
617 => 0.038557635088536
618 => 0.038687438480236
619 => 0.039196358734464
620 => 0.039249196523537
621 => 0.040666532187536
622 => 0.039885887521163
623 => 0.040409611360984
624 => 0.04036276457127
625 => 0.036610644975678
626 => 0.037127653950719
627 => 0.037931957669529
628 => 0.037569619934413
629 => 0.037057359150932
630 => 0.036643681102585
701 => 0.036016916558587
702 => 0.036899075618317
703 => 0.038059020974705
704 => 0.039278614651976
705 => 0.040743876544274
706 => 0.040416847147442
707 => 0.039251222600114
708 => 0.039303511665818
709 => 0.03962674209501
710 => 0.039208129320625
711 => 0.039084672241167
712 => 0.039609780988105
713 => 0.039613397123451
714 => 0.039131732535477
715 => 0.038596450489633
716 => 0.038594207638316
717 => 0.038498959368469
718 => 0.039853312989627
719 => 0.040598070540668
720 => 0.040683455793658
721 => 0.040592323432828
722 => 0.040627396661597
723 => 0.040194038652259
724 => 0.04118456655328
725 => 0.042093572908313
726 => 0.041849939787076
727 => 0.041484699103853
728 => 0.04119376730729
729 => 0.041781405501752
730 => 0.04175523889798
731 => 0.042085633530802
801 => 0.042070644921805
802 => 0.041959545633558
803 => 0.041849943754782
804 => 0.042284502815296
805 => 0.042159356784673
806 => 0.042034016367698
807 => 0.041782626972797
808 => 0.041816794966699
809 => 0.04145161734743
810 => 0.041282669471364
811 => 0.03874209877798
812 => 0.038063175273165
813 => 0.038276778428542
814 => 0.038347102133495
815 => 0.038051633754136
816 => 0.038475259510538
817 => 0.038409237885134
818 => 0.038666089408224
819 => 0.038505619727794
820 => 0.038512205459453
821 => 0.038984112573855
822 => 0.039121109216802
823 => 0.0390514316185
824 => 0.039100231419942
825 => 0.040224802247065
826 => 0.040064924237199
827 => 0.039979992230944
828 => 0.040003518977113
829 => 0.040290870934513
830 => 0.04037131379375
831 => 0.040030471746544
901 => 0.04019121482639
902 => 0.040875638459044
903 => 0.04111514799545
904 => 0.041879547464558
905 => 0.041554816983964
906 => 0.042150873835101
907 => 0.043982949384741
908 => 0.045446538103778
909 => 0.04410056143239
910 => 0.046788255728003
911 => 0.048881011263986
912 => 0.048800687820848
913 => 0.048435767486842
914 => 0.04605322094791
915 => 0.043860766101016
916 => 0.045694847676993
917 => 0.045699523128112
918 => 0.045541973894169
919 => 0.044563449133146
920 => 0.045507923353561
921 => 0.045582892287351
922 => 0.045540929620277
923 => 0.044790696980273
924 => 0.043645230405155
925 => 0.043869051832074
926 => 0.0442356758952
927 => 0.043541580057911
928 => 0.043319774381147
929 => 0.043732153334507
930 => 0.045060924244801
1001 => 0.044809727801256
1002 => 0.04480316804695
1003 => 0.045877892956307
1004 => 0.045108621861359
1005 => 0.043871874937043
1006 => 0.043559580027965
1007 => 0.042451143487797
1008 => 0.043216744554206
1009 => 0.043244297173613
1010 => 0.042824985293794
1011 => 0.04390589978513
1012 => 0.043895938967801
1013 => 0.044922106404435
1014 => 0.04688375313239
1015 => 0.046303597668161
1016 => 0.045628939983997
1017 => 0.045702293980494
1018 => 0.046506806268976
1019 => 0.046020379774131
1020 => 0.046195302133163
1021 => 0.046506541503036
1022 => 0.046694319942518
1023 => 0.045675275552799
1024 => 0.045437687559027
1025 => 0.044951665905825
1026 => 0.044824871928529
1027 => 0.045220726423887
1028 => 0.045116432750106
1029 => 0.043241981482641
1030 => 0.043046090895843
1031 => 0.043052098580472
1101 => 0.042559522385878
1102 => 0.041808225457289
1103 => 0.043782588928012
1104 => 0.043624019910114
1105 => 0.043448971986622
1106 => 0.04347041435844
1107 => 0.044327418623694
1108 => 0.043830312870094
1109 => 0.045151949990071
1110 => 0.044880261130252
1111 => 0.044601604476354
1112 => 0.044563085638697
1113 => 0.044455826600815
1114 => 0.044087995450587
1115 => 0.043643817233463
1116 => 0.043350532300459
1117 => 0.039988574546706
1118 => 0.040612534350194
1119 => 0.041330343228381
1120 => 0.041578127976693
1121 => 0.041154275018523
1122 => 0.04410473174879
1123 => 0.044643808624718
1124 => 0.043010909604417
1125 => 0.042705460868546
1126 => 0.044124756917062
1127 => 0.043268747897922
1128 => 0.043654208706826
1129 => 0.042821053273764
1130 => 0.044513960791321
1201 => 0.044501063672433
1202 => 0.043842484412053
1203 => 0.04439911109317
1204 => 0.044302383509416
1205 => 0.043558849146456
1206 => 0.044537532156845
1207 => 0.044538017571408
1208 => 0.04390414935204
1209 => 0.043163930043414
1210 => 0.043031596314231
1211 => 0.042931900625827
1212 => 0.043629689678936
1213 => 0.044255325162023
1214 => 0.045419477687859
1215 => 0.045712173292436
1216 => 0.04685458372295
1217 => 0.046174333934533
1218 => 0.046475879855029
1219 => 0.046803250608001
1220 => 0.046960204185637
1221 => 0.046704456753473
1222 => 0.048479090386954
1223 => 0.048628923838989
1224 => 0.048679161699402
1225 => 0.048080765223056
1226 => 0.048612281350491
1227 => 0.048363602556428
1228 => 0.04901059569362
1229 => 0.049112052478755
1230 => 0.049026122191176
1231 => 0.049058326176164
]
'min_raw' => 0.021999373898168
'max_raw' => 0.049112052478755
'avg_raw' => 0.035555713188461
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.021999'
'max' => '$0.049112'
'avg' => '$0.035555'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0033922588186899
'max_diff' => -0.0046865892953935
'year' => 2031
]
6 => [
'items' => [
101 => 0.047543989436814
102 => 0.047465463088116
103 => 0.046394750751643
104 => 0.046831073943061
105 => 0.046015388650219
106 => 0.046274050859069
107 => 0.046388066696106
108 => 0.04632851129318
109 => 0.04685574300165
110 => 0.046407488343128
111 => 0.0452244705994
112 => 0.044041130543278
113 => 0.044026274672801
114 => 0.043714722123711
115 => 0.043489526694415
116 => 0.043532907323335
117 => 0.043685786317871
118 => 0.043480641089334
119 => 0.043524419224969
120 => 0.044251427968712
121 => 0.044397224387481
122 => 0.043901751190167
123 => 0.041912354806512
124 => 0.04142415194394
125 => 0.041775062480074
126 => 0.041607349845335
127 => 0.033580378645697
128 => 0.035466196463305
129 => 0.034345707552405
130 => 0.034862080393764
131 => 0.033718351364931
201 => 0.034264198805464
202 => 0.034163400714355
203 => 0.037195739959662
204 => 0.037148394153193
205 => 0.037171056085266
206 => 0.036089343022096
207 => 0.037812541303436
208 => 0.03866145074103
209 => 0.038504340197124
210 => 0.038543881536212
211 => 0.037864430323969
212 => 0.037177634658207
213 => 0.036415872567782
214 => 0.037831132375152
215 => 0.037673779643863
216 => 0.038034690195714
217 => 0.038952587345653
218 => 0.039087751187734
219 => 0.039269412762187
220 => 0.039204300019297
221 => 0.040755549719191
222 => 0.040567683145059
223 => 0.041020387535816
224 => 0.040089140257265
225 => 0.039035345566781
226 => 0.039235637486298
227 => 0.039216347763802
228 => 0.038970767456723
229 => 0.03874906853613
301 => 0.038380002296625
302 => 0.039547782489944
303 => 0.039500372746712
304 => 0.040267881381836
305 => 0.040132216775397
306 => 0.039226215330835
307 => 0.039258573349671
308 => 0.039476196577078
309 => 0.04022939305191
310 => 0.040452993047167
311 => 0.040349412620444
312 => 0.040594579807516
313 => 0.040788349955906
314 => 0.040618914354816
315 => 0.043017765158185
316 => 0.042021595057332
317 => 0.042507121433181
318 => 0.042622916612933
319 => 0.042326309694907
320 => 0.04239063311473
321 => 0.042488065568678
322 => 0.04307965634982
323 => 0.044632161737709
324 => 0.045319755805743
325 => 0.047388416484719
326 => 0.045262660690165
327 => 0.045136527138568
328 => 0.045509155394419
329 => 0.046723678202949
330 => 0.047707934864936
331 => 0.048034469582846
401 => 0.048077626536319
402 => 0.048690227374736
403 => 0.049041358750987
404 => 0.04861584151995
405 => 0.048255260220158
406 => 0.046963702761299
407 => 0.047113204053957
408 => 0.048143119707065
409 => 0.04959793622881
410 => 0.050846320152328
411 => 0.050409179612884
412 => 0.053744253355713
413 => 0.05407491229476
414 => 0.054029225920867
415 => 0.054782516192664
416 => 0.053287388408044
417 => 0.052648192313382
418 => 0.048333221989944
419 => 0.049545552645478
420 => 0.051307746450979
421 => 0.051074513492934
422 => 0.049794761247803
423 => 0.050845349345492
424 => 0.050497992065469
425 => 0.050224016966848
426 => 0.051479150006317
427 => 0.050099079671397
428 => 0.05129397919369
429 => 0.049761508196696
430 => 0.050411176434047
501 => 0.05004239332161
502 => 0.050281041191715
503 => 0.048885910619458
504 => 0.049638689211368
505 => 0.048854592555128
506 => 0.048854220791221
507 => 0.048836911814076
508 => 0.049759398052924
509 => 0.049789480296055
510 => 0.049107761571746
511 => 0.049009515253126
512 => 0.049372783386047
513 => 0.048947491542471
514 => 0.049146482919325
515 => 0.04895351878856
516 => 0.048910078498278
517 => 0.048563938874558
518 => 0.048414812407353
519 => 0.04847328873766
520 => 0.048273678875707
521 => 0.048153406713676
522 => 0.048812986653842
523 => 0.04846059969919
524 => 0.048758978299101
525 => 0.048418938226121
526 => 0.047240211184766
527 => 0.046562312798471
528 => 0.044335806685406
529 => 0.044967241057099
530 => 0.045385882698798
531 => 0.045247521638714
601 => 0.045544774734396
602 => 0.045563023660282
603 => 0.045466383648739
604 => 0.045354486895724
605 => 0.045300021744635
606 => 0.045705960358391
607 => 0.045941621386942
608 => 0.045427898988245
609 => 0.04530754101797
610 => 0.045826942726444
611 => 0.046143777468565
612 => 0.048483107190319
613 => 0.048309802088596
614 => 0.048744763884513
615 => 0.048695793861325
616 => 0.049151703118294
617 => 0.049896922071809
618 => 0.048381683572816
619 => 0.048644676583236
620 => 0.048580196770476
621 => 0.049284170458669
622 => 0.049286368187683
623 => 0.048864300795517
624 => 0.049093110376072
625 => 0.048965395145269
626 => 0.049196193829078
627 => 0.048307487493304
628 => 0.049389835880356
629 => 0.050003457670826
630 => 0.050011977809982
701 => 0.05030282966866
702 => 0.050598352002082
703 => 0.051165581386513
704 => 0.050582532282414
705 => 0.049533683702826
706 => 0.049609407182512
707 => 0.048994467644059
708 => 0.049004804888798
709 => 0.048949623866235
710 => 0.04911522626878
711 => 0.048343827908031
712 => 0.04852487356145
713 => 0.048271408586462
714 => 0.048644125599881
715 => 0.048243143705772
716 => 0.048580165676358
717 => 0.048725613186408
718 => 0.049262317629754
719 => 0.048163872023108
720 => 0.045924067072929
721 => 0.046394901228467
722 => 0.045698500529202
723 => 0.045762955065303
724 => 0.045893163486091
725 => 0.045471115392773
726 => 0.045551628868714
727 => 0.045548752360789
728 => 0.045523964169504
729 => 0.045414173160161
730 => 0.045254954475125
731 => 0.045889232711383
801 => 0.045997008943446
802 => 0.046236582156672
803 => 0.046949389535168
804 => 0.046878163268901
805 => 0.046994336264332
806 => 0.046740731267589
807 => 0.045774719073745
808 => 0.045827178183496
809 => 0.045173012244306
810 => 0.046219853662841
811 => 0.045971947797301
812 => 0.045812121273063
813 => 0.045768511125143
814 => 0.046483085415258
815 => 0.04669689724244
816 => 0.046563664060118
817 => 0.046290398916143
818 => 0.046815148776163
819 => 0.046955549701285
820 => 0.046986980290633
821 => 0.047916736431782
822 => 0.047038943330621
823 => 0.047250236854583
824 => 0.048898688612143
825 => 0.047403770338829
826 => 0.04819566188886
827 => 0.04815690291829
828 => 0.048562007839137
829 => 0.048123672490654
830 => 0.048129106182639
831 => 0.048488811908166
901 => 0.047983670089933
902 => 0.047858589871913
903 => 0.047685792446559
904 => 0.048063089303151
905 => 0.048289261705008
906 => 0.050112045158654
907 => 0.051289646398734
908 => 0.0512385236232
909 => 0.051705690093756
910 => 0.051495227320016
911 => 0.050815587506334
912 => 0.051975649795043
913 => 0.051608557547828
914 => 0.051638820186672
915 => 0.051637693809742
916 => 0.051881778062379
917 => 0.051708821999393
918 => 0.051367907845671
919 => 0.051594222570709
920 => 0.052266296395077
921 => 0.054352434167659
922 => 0.055519864502846
923 => 0.054282153395612
924 => 0.05513590994377
925 => 0.054623960239438
926 => 0.054530923748977
927 => 0.055067145953333
928 => 0.055604306743674
929 => 0.055570091923539
930 => 0.055180140773263
1001 => 0.054959867263117
1002 => 0.056627852078986
1003 => 0.057856794877939
1004 => 0.057772989217987
1005 => 0.058142880145953
1006 => 0.059228891350755
1007 => 0.059328182604986
1008 => 0.059315674189136
1009 => 0.059069570455552
1010 => 0.060138889523056
1011 => 0.061030934302046
1012 => 0.059012604551848
1013 => 0.059781158098847
1014 => 0.060126186547343
1015 => 0.060632790675064
1016 => 0.061487516755239
1017 => 0.062415975983205
1018 => 0.062547270298077
1019 => 0.062454110698664
1020 => 0.061841766879497
1021 => 0.062857698045559
1022 => 0.063452806696121
1023 => 0.063807180278712
1024 => 0.064705812722019
1025 => 0.06012831732558
1026 => 0.056888138567697
1027 => 0.056382137865905
1028 => 0.057411110190494
1029 => 0.057682441986587
1030 => 0.057573068479803
1031 => 0.053925952703641
1101 => 0.056362936556131
1102 => 0.058984926273989
1103 => 0.059085647577441
1104 => 0.060398270453419
1105 => 0.060825714268068
1106 => 0.061882547732644
1107 => 0.06181644251169
1108 => 0.062073764642421
1109 => 0.062014610740764
1110 => 0.06397217219135
1111 => 0.066131653172035
1112 => 0.066056877212403
1113 => 0.065746426271611
1114 => 0.066207498858439
1115 => 0.068436314654552
1116 => 0.068231121012091
1117 => 0.068430449157389
1118 => 0.07105834859156
1119 => 0.074474991670318
1120 => 0.072887617934878
1121 => 0.076331762186294
1122 => 0.078499668426319
1123 => 0.082248838102752
1124 => 0.081779423594212
1125 => 0.08323894783657
1126 => 0.080939073654163
1127 => 0.075658097650096
1128 => 0.074822362982688
1129 => 0.076495524951011
1130 => 0.080608830385374
1201 => 0.076365982324871
1202 => 0.077224304961614
1203 => 0.07697710798449
1204 => 0.076963935908098
1205 => 0.077466660489253
1206 => 0.076737432263937
1207 => 0.073766425288347
1208 => 0.075128020277006
1209 => 0.074602243062723
1210 => 0.075185632081258
1211 => 0.078333942006357
1212 => 0.076941999142136
1213 => 0.075475700406935
1214 => 0.077314764418615
1215 => 0.079656524876441
1216 => 0.079509981715538
1217 => 0.079225626733098
1218 => 0.080828520880772
1219 => 0.08347603240881
1220 => 0.084191644136275
1221 => 0.084719894083453
1222 => 0.084792730826313
1223 => 0.085542994545552
1224 => 0.081508637436401
1225 => 0.087911265778263
1226 => 0.089016822823864
1227 => 0.088809023919935
1228 => 0.090037804047169
1229 => 0.089676265762593
1230 => 0.089152453511863
1231 => 0.091100331382556
]
'min_raw' => 0.033580378645697
'max_raw' => 0.091100331382556
'avg_raw' => 0.062340355014127
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.03358'
'max' => '$0.09110033'
'avg' => '$0.06234'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.01158100474753
'max_diff' => 0.041988278903801
'year' => 2032
]
7 => [
'items' => [
101 => 0.088867246589445
102 => 0.085697663863182
103 => 0.083958768092316
104 => 0.086248686316113
105 => 0.087647059468253
106 => 0.088571295168581
107 => 0.088850968333062
108 => 0.081821813094442
109 => 0.078033488275648
110 => 0.080461761051263
111 => 0.083424421427947
112 => 0.08149217970842
113 => 0.081567919925608
114 => 0.078813051017753
115 => 0.083668166197938
116 => 0.082960816754131
117 => 0.086630546919881
118 => 0.0857547363644
119 => 0.088747258856465
120 => 0.087959227393954
121 => 0.09123030193659
122 => 0.092535222132455
123 => 0.094726386235923
124 => 0.096338215470077
125 => 0.097284712425753
126 => 0.097227888298755
127 => 0.10097838078005
128 => 0.098766846396057
129 => 0.095988637991127
130 => 0.095938388966217
131 => 0.097377262466648
201 => 0.10039274658788
202 => 0.10117461774701
203 => 0.10161157706014
204 => 0.10094235866142
205 => 0.098541896589693
206 => 0.09750538923774
207 => 0.098388523532113
208 => 0.09730852617869
209 => 0.099172904604436
210 => 0.10173309439273
211 => 0.10120442532553
212 => 0.10297168675467
213 => 0.1048006164125
214 => 0.10741606796557
215 => 0.10809984385143
216 => 0.10923009938909
217 => 0.11039350360695
218 => 0.11076715768711
219 => 0.11148057926417
220 => 0.1114768191803
221 => 0.1136267631216
222 => 0.11599821786707
223 => 0.11689338713418
224 => 0.11895177950398
225 => 0.11542685470537
226 => 0.11810055065653
227 => 0.12051229133143
228 => 0.11763691467442
301 => 0.12159995151927
302 => 0.12175382725953
303 => 0.12407716824763
304 => 0.12172201705791
305 => 0.12032353579937
306 => 0.12436089879237
307 => 0.12631445156895
308 => 0.1257260255741
309 => 0.12124807469917
310 => 0.11864171522161
311 => 0.11182036973963
312 => 0.11990054812323
313 => 0.12383616731184
314 => 0.12123788239624
315 => 0.12254830617446
316 => 0.12969755340209
317 => 0.13241952386689
318 => 0.13185337303822
319 => 0.13194904320863
320 => 0.13341776906417
321 => 0.13993090834977
322 => 0.13602808431646
323 => 0.1390116470539
324 => 0.14059411797181
325 => 0.14206400515242
326 => 0.13845442679945
327 => 0.13375841839747
328 => 0.13227099541154
329 => 0.12097953416799
330 => 0.12039176457393
331 => 0.12006183168954
401 => 0.11798165152342
402 => 0.11634719972215
403 => 0.11504742296648
404 => 0.11163642061339
405 => 0.11278753377654
406 => 0.10735110795724
407 => 0.11082914054132
408 => 0.10215247366663
409 => 0.10937865966842
410 => 0.10544577516201
411 => 0.10808660133348
412 => 0.10807738773975
413 => 0.10321478948337
414 => 0.10041014428893
415 => 0.10219737336526
416 => 0.10411342480549
417 => 0.1044242977053
418 => 0.10690850841162
419 => 0.10760179822183
420 => 0.1055010977303
421 => 0.10197266903139
422 => 0.10279224254326
423 => 0.10039353565788
424 => 0.096189894106174
425 => 0.099209022857146
426 => 0.10023988615445
427 => 0.10069517411352
428 => 0.09656137543892
429 => 0.095262446146224
430 => 0.094570907089865
501 => 0.10143904753252
502 => 0.10181529976992
503 => 0.099890340126679
504 => 0.10859134024628
505 => 0.10662203594342
506 => 0.10882223134098
507 => 0.10271787483742
508 => 0.10295106947646
509 => 0.10006116928102
510 => 0.10167932028726
511 => 0.10053566331149
512 => 0.10154858967684
513 => 0.10215573356378
514 => 0.10504515955503
515 => 0.10941165227189
516 => 0.10461357566581
517 => 0.10252298497881
518 => 0.10381997568309
519 => 0.10727403284404
520 => 0.1125071062528
521 => 0.1094090214694
522 => 0.11078389888738
523 => 0.11108424843917
524 => 0.10879983541722
525 => 0.11259133581937
526 => 0.11462323168698
527 => 0.11670753640554
528 => 0.11851727979177
529 => 0.11587501926611
530 => 0.11870261678174
531 => 0.11642407232229
601 => 0.11437998239057
602 => 0.11438308243123
603 => 0.11310079495768
604 => 0.11061620139904
605 => 0.11015800422632
606 => 0.11254160378272
607 => 0.11445302489923
608 => 0.11461045869748
609 => 0.11566871963994
610 => 0.11629498756474
611 => 0.12243326459769
612 => 0.12490213039884
613 => 0.12792101276724
614 => 0.12909703758463
615 => 0.13263645065671
616 => 0.12977808714393
617 => 0.12915966221799
618 => 0.1205742038383
619 => 0.12198007216701
620 => 0.12423100300739
621 => 0.12061132085879
622 => 0.12290717604609
623 => 0.12336042649293
624 => 0.12048832544447
625 => 0.12202243871061
626 => 0.11794828870862
627 => 0.10950045760857
628 => 0.11260074067033
629 => 0.11488359254778
630 => 0.11162568144505
701 => 0.11746536099811
702 => 0.11405394075867
703 => 0.11297268431982
704 => 0.10875431745609
705 => 0.11074522423594
706 => 0.11343795416272
707 => 0.11177416013142
708 => 0.11522678256629
709 => 0.12011661671484
710 => 0.12360140372375
711 => 0.12386892239953
712 => 0.12162843781539
713 => 0.12521882866005
714 => 0.12524498073763
715 => 0.12119500519768
716 => 0.11871441772982
717 => 0.11815082303792
718 => 0.11955879307754
719 => 0.12126832863123
720 => 0.12396378972499
721 => 0.12559260041145
722 => 0.1298396748273
723 => 0.13098881139107
724 => 0.1322513640782
725 => 0.13393852382505
726 => 0.13596439168002
727 => 0.13153190814607
728 => 0.13170801898006
729 => 0.12758055168515
730 => 0.12316976094187
731 => 0.12651700130319
801 => 0.1308930728109
802 => 0.1298891971719
803 => 0.1297762406552
804 => 0.12996620218477
805 => 0.12920931273648
806 => 0.12578592981349
807 => 0.12406672834108
808 => 0.12628493685557
809 => 0.12746381595991
810 => 0.12929215464169
811 => 0.12906677330762
812 => 0.13377637740264
813 => 0.13560638714293
814 => 0.13513819234084
815 => 0.13522435145216
816 => 0.1385374966743
817 => 0.1422223955616
818 => 0.1456737896348
819 => 0.14918469592688
820 => 0.14495216135877
821 => 0.14280314133153
822 => 0.14502038144557
823 => 0.14384388263114
824 => 0.15060439379104
825 => 0.15107247691568
826 => 0.15783249921368
827 => 0.16424856534295
828 => 0.16021874916292
829 => 0.16401868431378
830 => 0.1681286239927
831 => 0.17605736444702
901 => 0.17338724359846
902 => 0.17134197287459
903 => 0.16940920192321
904 => 0.17343099145428
905 => 0.17860495943636
906 => 0.17971938258405
907 => 0.18152517382571
908 => 0.17962660513675
909 => 0.18191322200212
910 => 0.18998598432726
911 => 0.18780465268676
912 => 0.1847068110907
913 => 0.19107948163006
914 => 0.19338572632512
915 => 0.20957215938481
916 => 0.23000819975086
917 => 0.22154754484904
918 => 0.21629574332785
919 => 0.21753004125973
920 => 0.22499259139779
921 => 0.22738932565263
922 => 0.22087417574413
923 => 0.22317543683456
924 => 0.23585561169782
925 => 0.24265811868324
926 => 0.23341940049846
927 => 0.20793014343953
928 => 0.18442788434919
929 => 0.19066174178047
930 => 0.18995501580688
1001 => 0.20357828181342
1002 => 0.18775262864855
1003 => 0.1880190920607
1004 => 0.20192407278097
1005 => 0.19821446231652
1006 => 0.19220536845512
1007 => 0.18447175738444
1008 => 0.17017546204784
1009 => 0.15751283458653
1010 => 0.18234716306711
1011 => 0.18127626166473
1012 => 0.17972543773539
1013 => 0.18317662857346
1014 => 0.19993463164552
1015 => 0.19954830543435
1016 => 0.19709069518423
1017 => 0.19895477089856
1018 => 0.19187858696973
1019 => 0.1937022806899
1020 => 0.18442416147128
1021 => 0.18861825884658
1022 => 0.19219247563852
1023 => 0.19291005257668
1024 => 0.19452679005876
1025 => 0.18071194528781
1026 => 0.18691440500743
1027 => 0.19055776900083
1028 => 0.17409691793196
1029 => 0.19023239090087
1030 => 0.18047145957561
1031 => 0.17715845287954
1101 => 0.18161897994035
1102 => 0.17988070820675
1103 => 0.17838624424494
1104 => 0.1775523076761
1105 => 0.18082762645915
1106 => 0.18067482892307
1107 => 0.17531577168202
1108 => 0.16832509997419
1109 => 0.17067139886031
1110 => 0.16981896647831
1111 => 0.16672964155999
1112 => 0.16881147354843
1113 => 0.1596441390624
1114 => 0.14387221655576
1115 => 0.1542916316707
1116 => 0.15389049552291
1117 => 0.15368822448713
1118 => 0.16151812697452
1119 => 0.16076546251694
1120 => 0.15939936915632
1121 => 0.16670455218412
1122 => 0.16403806211039
1123 => 0.17225555621353
1124 => 0.17766812930405
1125 => 0.17629532568989
1126 => 0.18138587684276
1127 => 0.17072545284779
1128 => 0.17426641807695
1129 => 0.17499620610311
1130 => 0.16661440735951
1201 => 0.16088860773056
1202 => 0.1605067621742
1203 => 0.1505790146814
1204 => 0.15588233725807
1205 => 0.16054904165915
1206 => 0.15831405240193
1207 => 0.15760652157149
1208 => 0.16122114313946
1209 => 0.16150203019243
1210 => 0.15509777561761
1211 => 0.15642942294009
1212 => 0.16198261364274
1213 => 0.1562894967824
1214 => 0.14522870068812
1215 => 0.14248547032927
1216 => 0.14211947283163
1217 => 0.13467961453008
1218 => 0.14266878609911
1219 => 0.13918129861274
1220 => 0.15019822979567
1221 => 0.14390541778897
1222 => 0.14363414724064
1223 => 0.14322408202011
1224 => 0.13682028864329
1225 => 0.13822231241052
1226 => 0.14288285294702
1227 => 0.14454578631519
1228 => 0.14437232874087
1229 => 0.14286001375584
1230 => 0.14355234381168
1231 => 0.14132210747803
]
'min_raw' => 0.078033488275648
'max_raw' => 0.24265811868324
'avg_raw' => 0.16034580347944
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.078033'
'max' => '$0.242658'
'avg' => '$0.160345'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.044453109629951
'max_diff' => 0.15155778730068
'year' => 2033
]
8 => [
'items' => [
101 => 0.14053456461026
102 => 0.13804886268885
103 => 0.13439556755706
104 => 0.1349035806521
105 => 0.12766544705935
106 => 0.1237217277212
107 => 0.12263015818578
108 => 0.12117046578319
109 => 0.12279503432675
110 => 0.12764494233631
111 => 0.1217949243114
112 => 0.11176547873874
113 => 0.112368265507
114 => 0.11372254840629
115 => 0.11119885118295
116 => 0.10881038355892
117 => 0.11088696237551
118 => 0.10663735407053
119 => 0.1142360932672
120 => 0.11403056866715
121 => 0.11686290873679
122 => 0.1186340291078
123 => 0.11455217005964
124 => 0.11352559354755
125 => 0.11411037818414
126 => 0.10444519076521
127 => 0.11607305672409
128 => 0.11617361499176
129 => 0.11531257405328
130 => 0.1215040537063
131 => 0.1345700069451
201 => 0.12965406975991
202 => 0.12775047029682
203 => 0.12413172632595
204 => 0.12895348780737
205 => 0.1285832517568
206 => 0.12690890392824
207 => 0.12589625313724
208 => 0.12776209326922
209 => 0.12566505489655
210 => 0.12528836918206
211 => 0.12300606359034
212 => 0.12219138433238
213 => 0.1215882282431
214 => 0.12092421265371
215 => 0.12238886558154
216 => 0.11906976935592
217 => 0.11506726468284
218 => 0.11473449972697
219 => 0.11565329302711
220 => 0.11524679538792
221 => 0.11473255357267
222 => 0.11375072590193
223 => 0.11345943860545
224 => 0.1144059810065
225 => 0.11333738982256
226 => 0.11491415432363
227 => 0.1144853616257
228 => 0.11209016047145
301 => 0.1091048530162
302 => 0.10907827751795
303 => 0.1084350979236
304 => 0.1076159120075
305 => 0.10738803322608
306 => 0.11071207869963
307 => 0.11759275334957
308 => 0.11624191227519
309 => 0.11721803339119
310 => 0.12201958317931
311 => 0.12354585146932
312 => 0.12246254238872
313 => 0.1209796421036
314 => 0.1210448821903
315 => 0.12611240136899
316 => 0.12642845632422
317 => 0.1272270252329
318 => 0.12825341195609
319 => 0.1226373404859
320 => 0.1207803657291
321 => 0.11990042806829
322 => 0.11719056065172
323 => 0.12011292033401
324 => 0.11841018649506
325 => 0.11863994346361
326 => 0.11849031393643
327 => 0.11857202177617
328 => 0.11423396926473
329 => 0.11581452759857
330 => 0.11318654281423
331 => 0.10966796619313
401 => 0.10965617069053
402 => 0.11051733733378
403 => 0.11000508171692
404 => 0.10862661502324
405 => 0.1088224197109
406 => 0.10710696461165
407 => 0.10903070701927
408 => 0.10908587306804
409 => 0.10834512745415
410 => 0.11130891805837
411 => 0.11252318548715
412 => 0.11203561085578
413 => 0.11248897595123
414 => 0.11629804582052
415 => 0.11691909041058
416 => 0.11719491739358
417 => 0.11682534577643
418 => 0.11255859875604
419 => 0.11274784713
420 => 0.11135926813012
421 => 0.11018606520008
422 => 0.11023298716464
423 => 0.11083616597639
424 => 0.11347028322327
425 => 0.11901362767962
426 => 0.11922399354961
427 => 0.11947896312084
428 => 0.11844187373721
429 => 0.1181290776555
430 => 0.1185417364268
501 => 0.1206235251494
502 => 0.12597845094406
503 => 0.12408566252476
504 => 0.12254679607686
505 => 0.12389679682708
506 => 0.12368897479324
507 => 0.12193474768292
508 => 0.12188551237057
509 => 0.11851858968553
510 => 0.11727391502999
511 => 0.11623377172553
512 => 0.1150979623907
513 => 0.11442461654434
514 => 0.11545918179457
515 => 0.11569579910791
516 => 0.11343370410718
517 => 0.11312538891731
518 => 0.11497266452562
519 => 0.11415974740378
520 => 0.11499585282296
521 => 0.11518983645219
522 => 0.11515860062007
523 => 0.11430982178193
524 => 0.11485080810241
525 => 0.11357121417869
526 => 0.11217984797544
527 => 0.11129224302294
528 => 0.11051768997818
529 => 0.1109474570247
530 => 0.10941541597621
531 => 0.1089252852109
601 => 0.11466753410961
602 => 0.11890939511066
603 => 0.11884771677174
604 => 0.11847226574597
605 => 0.11791442167913
606 => 0.12058271538131
607 => 0.11965313520969
608 => 0.12032948245357
609 => 0.12050164121334
610 => 0.12102271392827
611 => 0.12120895263614
612 => 0.12064600990985
613 => 0.11875670536274
614 => 0.11404873806105
615 => 0.11185716657319
616 => 0.11113391147869
617 => 0.11116020042772
618 => 0.11043503385448
619 => 0.11064862790999
620 => 0.1103607545587
621 => 0.10981559207539
622 => 0.11091379477759
623 => 0.11104035240855
624 => 0.11078401877531
625 => 0.11084439462535
626 => 0.10872206162367
627 => 0.10888341799232
628 => 0.10798496522749
629 => 0.10781651616509
630 => 0.10554530581282
701 => 0.10152152745657
702 => 0.10375109126355
703 => 0.10105809170883
704 => 0.10003821197186
705 => 0.10486616402285
706 => 0.10438157154348
707 => 0.10355215986607
708 => 0.10232528713066
709 => 0.10187022809884
710 => 0.099105433475703
711 => 0.098942074659763
712 => 0.10031238153072
713 => 0.099680032059156
714 => 0.098791973911602
715 => 0.095575517322173
716 => 0.091959155183475
717 => 0.0920683104248
718 => 0.093218607936311
719 => 0.09656325308978
720 => 0.095256442365371
721 => 0.094308336190887
722 => 0.094130784404373
723 => 0.096353216742438
724 => 0.099498424114769
725 => 0.10097408504382
726 => 0.099511749879619
727 => 0.097831897980704
728 => 0.097934142782107
729 => 0.098614331639362
730 => 0.098685809870906
731 => 0.097592398976278
801 => 0.097900187738425
802 => 0.097432628463929
803 => 0.094563218059398
804 => 0.094511319524178
805 => 0.093807119935413
806 => 0.093785797051732
807 => 0.092587777880422
808 => 0.09242016671684
809 => 0.090041426937639
810 => 0.091607120663797
811 => 0.0905569355149
812 => 0.08897405878188
813 => 0.088701170236485
814 => 0.088692966877288
815 => 0.090318227357339
816 => 0.091588128548815
817 => 0.090575203935189
818 => 0.090344580635385
819 => 0.092807034117538
820 => 0.092493664466172
821 => 0.092222288369106
822 => 0.099216805291513
823 => 0.093680099358467
824 => 0.091265779547532
825 => 0.088277600314603
826 => 0.089250566540553
827 => 0.089455584820208
828 => 0.082269552424806
829 => 0.079354179976955
830 => 0.078353734016345
831 => 0.077777963221785
901 => 0.07804034920294
902 => 0.075416172060793
903 => 0.0771796625002
904 => 0.074907346911272
905 => 0.074526385808034
906 => 0.078589567566922
907 => 0.079154935571908
908 => 0.076742900016567
909 => 0.078291817316182
910 => 0.07773015837178
911 => 0.074946299240103
912 => 0.074839976297954
913 => 0.073443133643059
914 => 0.071257345370183
915 => 0.070258381476949
916 => 0.069738112407951
917 => 0.069952785565662
918 => 0.069844240248016
919 => 0.069135908627497
920 => 0.069884840987361
921 => 0.067971628288126
922 => 0.067209771575488
923 => 0.066865658573331
924 => 0.065167572182345
925 => 0.067869982772849
926 => 0.06840239170325
927 => 0.068935849643713
928 => 0.073579236808241
929 => 0.073347266307577
930 => 0.075444166659362
1001 => 0.075362684967644
1002 => 0.074764615019782
1003 => 0.072241456287479
1004 => 0.073247142387195
1005 => 0.07015179689059
1006 => 0.072471040199681
1007 => 0.071412634407328
1008 => 0.072113192136626
1009 => 0.070853526172605
1010 => 0.071550677327427
1011 => 0.068528645611717
1012 => 0.065706714916721
1013 => 0.06684234220568
1014 => 0.068076898943511
1015 => 0.070753732510337
1016 => 0.069159432521333
1017 => 0.069732803084536
1018 => 0.067812107678879
1019 => 0.063849164437491
1020 => 0.063871594265862
1021 => 0.063261981785586
1022 => 0.062735187597748
1023 => 0.069342557053551
1024 => 0.068520826214668
1025 => 0.067211505668381
1026 => 0.068964083249916
1027 => 0.06942749257962
1028 => 0.06944068519176
1029 => 0.070719320554673
1030 => 0.071401728477068
1031 => 0.071522005831115
1101 => 0.073533966201404
1102 => 0.074208348779126
1103 => 0.076986035174568
1104 => 0.071343830932572
1105 => 0.071227633449163
1106 => 0.068988745610576
1107 => 0.067568807547928
1108 => 0.069085969984536
1109 => 0.070429968790045
1110 => 0.069030507399846
1111 => 0.069213247513163
1112 => 0.067334584937017
1113 => 0.068006118408699
1114 => 0.068584533499839
1115 => 0.068265166684179
1116 => 0.067787059103608
1117 => 0.070319776214753
1118 => 0.070176870389544
1119 => 0.072535394790358
1120 => 0.07437403322049
1121 => 0.07766920198322
1122 => 0.074230521598279
1123 => 0.074105202417535
1124 => 0.075330217511135
1125 => 0.074208161235698
1126 => 0.074917262069708
1127 => 0.077554954876205
1128 => 0.077610685168784
1129 => 0.076677130963653
1130 => 0.076620324105429
1201 => 0.076799623402489
1202 => 0.077849784985677
1203 => 0.077482826260305
1204 => 0.077907480187564
1205 => 0.078438516426132
1206 => 0.080635107463552
1207 => 0.08116469812615
1208 => 0.079878067377314
1209 => 0.07999423572814
1210 => 0.079513000509272
1211 => 0.079048133317704
1212 => 0.080093086875946
1213 => 0.082002760042247
1214 => 0.081990880064592
1215 => 0.082433887120432
1216 => 0.082709876846152
1217 => 0.081525126906536
1218 => 0.080753898260309
1219 => 0.081049636397826
1220 => 0.081522528120055
1221 => 0.080896283985782
1222 => 0.077030815084551
1223 => 0.078203351422075
1224 => 0.078008184041413
1225 => 0.077730241958187
1226 => 0.078909236312523
1227 => 0.078795519430871
1228 => 0.075389257331276
1229 => 0.075607315179302
1230 => 0.075402518151245
1231 => 0.076064259246427
]
'min_raw' => 0.062735187597748
'max_raw' => 0.14053456461026
'avg_raw' => 0.101634876104
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.062735'
'max' => '$0.140534'
'avg' => '$0.101634'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0152983006779
'max_diff' => -0.10212355407298
'year' => 2034
]
9 => [
'items' => [
101 => 0.074172425044909
102 => 0.074754340503598
103 => 0.075119312424169
104 => 0.075334283689232
105 => 0.076110907305816
106 => 0.076019779488166
107 => 0.076105242672722
108 => 0.077256770475082
109 => 0.083080802942797
110 => 0.083397792180012
111 => 0.081836821242601
112 => 0.082460398343306
113 => 0.081263266671273
114 => 0.082066909182794
115 => 0.08261674097887
116 => 0.080132156818977
117 => 0.079985035869846
118 => 0.078782963209559
119 => 0.079428888968321
120 => 0.078401174642425
121 => 0.078653339790079
122 => 0.077948264053876
123 => 0.079217259999863
124 => 0.08063619464951
125 => 0.080994673577438
126 => 0.080051669852941
127 => 0.079368873009431
128 => 0.078170106679491
129 => 0.080163681802432
130 => 0.080746663921481
131 => 0.080160619645543
201 => 0.080024820381488
202 => 0.079767481021488
203 => 0.080079416143234
204 => 0.080743488875659
205 => 0.080430324438545
206 => 0.080637175066506
207 => 0.079848873776161
208 => 0.081525519108063
209 => 0.084188435401797
210 => 0.084196997113112
211 => 0.083883830987926
212 => 0.083755690156758
213 => 0.084077017605709
214 => 0.084251324565223
215 => 0.085290438613753
216 => 0.086405449387956
217 => 0.091608718153848
218 => 0.090147661105602
219 => 0.094764310698546
220 => 0.098415481129642
221 => 0.099510307495595
222 => 0.098503118754479
223 => 0.09505758047839
224 => 0.094888525932756
225 => 0.10003761478597
226 => 0.098582761341729
227 => 0.098409711153841
228 => 0.096568749527625
301 => 0.097656985856252
302 => 0.097418972607718
303 => 0.097043257050899
304 => 0.09911953615872
305 => 0.10300614529784
306 => 0.10240038081512
307 => 0.10194820572938
308 => 0.099966906129823
309 => 0.10116009102804
310 => 0.10073522073974
311 => 0.10256073312764
312 => 0.1014793400291
313 => 0.098571739396001
314 => 0.099034784380398
315 => 0.098964796062523
316 => 0.10040515068495
317 => 0.0999727919791
318 => 0.098880371086096
319 => 0.10299286129034
320 => 0.10272581905134
321 => 0.10310442389188
322 => 0.10327109745143
323 => 0.10577429776854
324 => 0.10679977884499
325 => 0.10703258100291
326 => 0.10800670871198
327 => 0.1070083438181
328 => 0.11100251521574
329 => 0.1136584061288
330 => 0.11674336009522
331 => 0.12125130699762
401 => 0.12294633673376
402 => 0.12264014478355
403 => 0.12605801867646
404 => 0.13219986208696
405 => 0.12388158693884
406 => 0.13264075086816
407 => 0.12986770069755
408 => 0.12329284862807
409 => 0.12286950566721
410 => 0.12732207182426
411 => 0.13719743501699
412 => 0.13472376854266
413 => 0.13720148104918
414 => 0.13431109779887
415 => 0.13416756590843
416 => 0.13706110158617
417 => 0.14382200541562
418 => 0.14061015343494
419 => 0.13600517604221
420 => 0.13940541968762
421 => 0.13645981396427
422 => 0.12982253984645
423 => 0.13472187697652
424 => 0.13144582976273
425 => 0.13240195450397
426 => 0.1392877184721
427 => 0.13845920513398
428 => 0.13953137811178
429 => 0.13763902086962
430 => 0.13587126080811
501 => 0.13257160537769
502 => 0.1315947400758
503 => 0.13186471050131
504 => 0.13159460629186
505 => 0.12974847940395
506 => 0.12934980847827
507 => 0.12868533946931
508 => 0.12889128619974
509 => 0.12764189006562
510 => 0.12999975870912
511 => 0.13043739990682
512 => 0.13215326007562
513 => 0.1323314063705
514 => 0.13711005251689
515 => 0.13447805452134
516 => 0.13624382601253
517 => 0.13608587879027
518 => 0.12343534560911
519 => 0.12517847746487
520 => 0.12789024360753
521 => 0.12666859663598
522 => 0.12494147363956
523 => 0.12354672921748
524 => 0.12143354879809
525 => 0.12440780965835
526 => 0.12831864641221
527 => 0.13243059164444
528 => 0.13737082441564
529 => 0.13626822197176
530 => 0.13233823742913
531 => 0.13251453366486
601 => 0.13360432762411
602 => 0.13219294542866
603 => 0.13177670126577
604 => 0.13354714206799
605 => 0.13355933412078
606 => 0.13193536833368
607 => 0.13013062754392
608 => 0.13012306561411
609 => 0.1298019294223
610 => 0.13436822721399
611 => 0.13687922929463
612 => 0.1371671116365
613 => 0.1368598525193
614 => 0.13697810435883
615 => 0.13551700757426
616 => 0.138856641549
617 => 0.14192141993979
618 => 0.14109999386162
619 => 0.13986855939784
620 => 0.13888766253352
621 => 0.14086892573373
622 => 0.14078070320223
623 => 0.1418946517742
624 => 0.1418441166325
625 => 0.14146953762547
626 => 0.14110000723901
627 => 0.14256515345148
628 => 0.14214321487182
629 => 0.141720620905
630 => 0.14087304400864
701 => 0.14098824378562
702 => 0.13975702194636
703 => 0.13918740238665
704 => 0.13062169091692
705 => 0.12833265291951
706 => 0.12905283087116
707 => 0.12928993215225
708 => 0.1282937398823
709 => 0.12972202369662
710 => 0.12949942717708
711 => 0.13036542001998
712 => 0.12982438528878
713 => 0.12984658954287
714 => 0.13143765732657
715 => 0.13189955107307
716 => 0.13166462818566
717 => 0.13182916012332
718 => 0.13562072918199
719 => 0.1350816893094
720 => 0.13479533512055
721 => 0.13487465718784
722 => 0.13584348437449
723 => 0.13611470309075
724 => 0.13496553033176
725 => 0.13550748684819
726 => 0.13781506891061
727 => 0.13862259203462
728 => 0.14119981821339
729 => 0.14010496672611
730 => 0.14211461401508
731 => 0.14829158464212
801 => 0.15322617619285
802 => 0.14868812187218
803 => 0.15774987083866
804 => 0.16480574223975
805 => 0.16453492614321
806 => 0.16330457175918
807 => 0.15527164975909
808 => 0.14787963517048
809 => 0.15406336925537
810 => 0.15407913286525
811 => 0.15354794462327
812 => 0.15024878007306
813 => 0.15343314084828
814 => 0.15368590384271
815 => 0.15354442378094
816 => 0.15101496205559
817 => 0.14715294152366
818 => 0.14790757109123
819 => 0.14914366971693
820 => 0.14680347714129
821 => 0.1460556438161
822 => 0.14744600824873
823 => 0.15192605214461
824 => 0.15107912579722
825 => 0.1510570091276
826 => 0.15468051919439
827 => 0.15208686798898
828 => 0.14791708938673
829 => 0.14686416529704
830 => 0.1431269941133
831 => 0.14570827156126
901 => 0.14580116714125
902 => 0.14438742786302
903 => 0.1480318065376
904 => 0.14799822294653
905 => 0.15145801810387
906 => 0.15807184700497
907 => 0.15611581235216
908 => 0.1538411568669
909 => 0.15408847498751
910 => 0.15680094433738
911 => 0.15516092344879
912 => 0.15575068639496
913 => 0.15680005166052
914 => 0.15743315977951
915 => 0.15399738047216
916 => 0.1531963359633
917 => 0.15155768002658
918 => 0.15113018527965
919 => 0.15246483634843
920 => 0.15211320294573
921 => 0.14579335962746
922 => 0.14513290083743
923 => 0.1451531561656
924 => 0.14349240113495
925 => 0.14095935108634
926 => 0.14761605537354
927 => 0.14708142885876
928 => 0.14649124256325
929 => 0.14656353701689
930 => 0.14945298673132
1001 => 0.14777695997624
1002 => 0.1522329518
1003 => 0.15131693384041
1004 => 0.15037742347661
1005 => 0.15024755452615
1006 => 0.14988592319134
1007 => 0.1486457547872
1008 => 0.14714817691663
1009 => 0.14615934628851
1010 => 0.13482427099734
1011 => 0.13692799503828
1012 => 0.1393481377869
1013 => 0.14018356136561
1014 => 0.13875451152468
1015 => 0.14870218238508
1016 => 0.15051971770942
1017 => 0.14501428465711
1018 => 0.14398444291837
1019 => 0.14876969863802
1020 => 0.14588360446535
1021 => 0.14718321249459
1022 => 0.14437417078296
1023 => 0.15008192667343
1024 => 0.15003844313666
1025 => 0.14781799717975
1026 => 0.14969470289757
1027 => 0.14936857909564
1028 => 0.14686170107901
1029 => 0.150161399178
1030 => 0.15016303578709
1031 => 0.14802590483022
1101 => 0.14553020375073
1102 => 0.14508403134354
1103 => 0.14474790036956
1104 => 0.14710054488019
1105 => 0.14920991859189
1106 => 0.15313494011128
1107 => 0.15412178377747
1108 => 0.1579735003045
1109 => 0.15567999064933
1110 => 0.15669667377354
1111 => 0.15780042712348
1112 => 0.15832960706863
1113 => 0.15746733674537
1114 => 0.16345063794162
1115 => 0.16395581188619
1116 => 0.16412519234007
1117 => 0.16210765684136
1118 => 0.16389970057428
1119 => 0.1630612626579
1120 => 0.16524264519156
1121 => 0.16558471382613
1122 => 0.16529499386209
1123 => 0.16540357184589
1124 => 0.16029787980156
1125 => 0.16003312273439
1126 => 0.15642314133722
1127 => 0.1578942354402
1128 => 0.15514409552606
1129 => 0.15601619322241
1130 => 0.15640060557731
1201 => 0.15619981037832
1202 => 0.15797740889357
1203 => 0.15646608701622
1204 => 0.15247746009758
1205 => 0.1484877464802
1206 => 0.14843765887569
1207 => 0.14738723770453
1208 => 0.14662797559201
1209 => 0.14677423641115
1210 => 0.1472896786149
1211 => 0.14659801715411
1212 => 0.14674561819489
1213 => 0.14919677893255
1214 => 0.14968834173761
1215 => 0.14801781926004
1216 => 0.14131043045732
1217 => 0.13966442042093
1218 => 0.14084753979329
1219 => 0.14028208493595
1220 => 0.11321859111114
1221 => 0.1195767575468
1222 => 0.11579895095366
1223 => 0.1175399380403
1224 => 0.11368377576698
1225 => 0.11552413852259
1226 => 0.11518429072092
1227 => 0.12540803419764
1228 => 0.12524840450555
1229 => 0.12532481079173
1230 => 0.12167773967646
1231 => 0.12748762299186
]
'min_raw' => 0.074172425044909
'max_raw' => 0.16558471382613
'avg_raw' => 0.11987856943552
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.074172'
'max' => '$0.165584'
'avg' => '$0.119878'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.011437237447161
'max_diff' => 0.025050149215869
'year' => 2035
]
10 => [
'items' => [
101 => 0.13034978042968
102 => 0.12982007126179
103 => 0.12995338764721
104 => 0.12766257044737
105 => 0.12534699090971
106 => 0.12277865683731
107 => 0.12755030408814
108 => 0.12701977836858
109 => 0.12823661349212
110 => 0.13133136781867
111 => 0.13178708214909
112 => 0.13239956683056
113 => 0.13218003467188
114 => 0.13741018133987
115 => 0.13677677606876
116 => 0.138303100529
117 => 0.13516333531176
118 => 0.1316103929392
119 => 0.13228569112978
120 => 0.13222065448363
121 => 0.13139266333244
122 => 0.13064518994313
123 => 0.12940085734926
124 => 0.13333810980285
125 => 0.1331782645435
126 => 0.13576597349256
127 => 0.13530857080015
128 => 0.13225392367481
129 => 0.13236302099448
130 => 0.13309675289965
131 => 0.13563620740104
201 => 0.1363900903963
202 => 0.13604086175586
203 => 0.13686746004409
204 => 0.13752076962799
205 => 0.1369495056693
206 => 0.14503739863527
207 => 0.14167874158987
208 => 0.14331572766441
209 => 0.14370613919751
210 => 0.14270610826495
211 => 0.1429229791658
212 => 0.14325147948681
213 => 0.14524606910898
214 => 0.15048044941671
215 => 0.15279872082337
216 => 0.15977335473181
217 => 0.15260622065494
218 => 0.15218095257937
219 => 0.15343729476005
220 => 0.15753214320428
221 => 0.16085063325878
222 => 0.16195156785814
223 => 0.16209707453989
224 => 0.16416250103704
225 => 0.16534636498728
226 => 0.16391170393418
227 => 0.16269597890694
228 => 0.15834140276074
229 => 0.15884545680678
301 => 0.16231788933765
302 => 0.16722290481276
303 => 0.17143191837028
304 => 0.16995806852137
305 => 0.18120250249273
306 => 0.1823173421916
307 => 0.1821633073923
308 => 0.18470307813671
309 => 0.17966215042437
310 => 0.17750705616397
311 => 0.1629588324569
312 => 0.16704628990425
313 => 0.17298764935194
314 => 0.17220128815008
315 => 0.16788651410618
316 => 0.17142864522726
317 => 0.17025750590595
318 => 0.16933377973261
319 => 0.17356554840578
320 => 0.16891254491816
321 => 0.17294123208279
322 => 0.16777439912272
323 => 0.16996480094333
324 => 0.16872142293214
325 => 0.16952604088806
326 => 0.16482226075879
327 => 0.16736030633873
328 => 0.16471666971834
329 => 0.16471541629037
330 => 0.16465705786546
331 => 0.16776728462567
401 => 0.16786870900866
402 => 0.16557024673357
403 => 0.165239002411
404 => 0.16646378628371
405 => 0.16502988514017
406 => 0.16570079846037
407 => 0.16505020642117
408 => 0.16490374444958
409 => 0.16373671054151
410 => 0.16323392024565
411 => 0.16343107727597
412 => 0.16275807869008
413 => 0.16235257269866
414 => 0.16457639251732
415 => 0.16338829529685
416 => 0.16439429957857
417 => 0.16324783073168
418 => 0.15927367021566
419 => 0.15698808847691
420 => 0.14948126766702
421 => 0.15161019273652
422 => 0.15302167226014
423 => 0.152555178286
424 => 0.15355738785165
425 => 0.15361891537937
426 => 0.15329308683326
427 => 0.15291581911809
428 => 0.15273218605856
429 => 0.15410083643656
430 => 0.15489538404765
501 => 0.15316333311349
502 => 0.15275753781358
503 => 0.15450873693717
504 => 0.15557696739093
505 => 0.16346418087461
506 => 0.16287987062438
507 => 0.16434637468737
508 => 0.16418126883522
509 => 0.16571839872565
510 => 0.16823095645696
511 => 0.16312222406703
512 => 0.16400892336324
513 => 0.16379152517269
514 => 0.1661650216123
515 => 0.16617243140911
516 => 0.16474940172862
517 => 0.16552084920444
518 => 0.16509024838699
519 => 0.1658684022633
520 => 0.16287206680475
521 => 0.16652127995885
522 => 0.16859014866712
523 => 0.16861887491114
524 => 0.1695995022593
525 => 0.17059587643914
526 => 0.17250832991145
527 => 0.17054253914979
528 => 0.16700627293544
529 => 0.16726157993404
530 => 0.16518826834644
531 => 0.1652231210888
601 => 0.16503707441861
602 => 0.16559541448078
603 => 0.16299459105021
604 => 0.16360499911091
605 => 0.16275042425138
606 => 0.16400706568439
607 => 0.16265512723274
608 => 0.1637914203367
609 => 0.16428180677165
610 => 0.1660913432739
611 => 0.16238785722007
612 => 0.15483619845235
613 => 0.15642364868034
614 => 0.15407568510162
615 => 0.15429299807016
616 => 0.15473200485171
617 => 0.15330904023863
618 => 0.15358049704404
619 => 0.15357079869674
620 => 0.15348722357916
621 => 0.1531170555258
622 => 0.15258023861291
623 => 0.15471875197034
624 => 0.15508212706144
625 => 0.1558898648763
626 => 0.15829314471952
627 => 0.15805300038994
628 => 0.15844468575498
629 => 0.15758963880232
630 => 0.15433266124596
701 => 0.15450953079706
702 => 0.15230396466068
703 => 0.1558334635914
704 => 0.1549976316575
705 => 0.1544587653723
706 => 0.15431173071382
707 => 0.15672096782293
708 => 0.15744184932614
709 => 0.1569926443499
710 => 0.15607131183822
711 => 0.15784054262814
712 => 0.15831391414967
713 => 0.15841988457607
714 => 0.16155462231946
715 => 0.15859508159334
716 => 0.15930747246142
717 => 0.16486534265326
718 => 0.15982512132292
719 => 0.16249503897195
720 => 0.16236436039661
721 => 0.16373019992077
722 => 0.16225232168976
723 => 0.16227064176165
724 => 0.16348341472912
725 => 0.16178029382107
726 => 0.16135857713319
727 => 0.16077597854929
728 => 0.16204806124331
729 => 0.16281061728702
730 => 0.16895625896367
731 => 0.17292662376209
801 => 0.1727542597551
802 => 0.1743293441271
803 => 0.17361975419139
804 => 0.17132830110863
805 => 0.17523953210798
806 => 0.17400185496693
807 => 0.17410388756666
808 => 0.1741000899082
809 => 0.17492303700738
810 => 0.17433990356562
811 => 0.17319048769448
812 => 0.17395352359073
813 => 0.17621946741229
814 => 0.18325302656204
815 => 0.1871890994445
816 => 0.18301607003223
817 => 0.18589456984172
818 => 0.18416849567038
819 => 0.18385481664719
820 => 0.18566272724702
821 => 0.18747380235502
822 => 0.18735844470013
823 => 0.18604369717146
824 => 0.18530102965299
825 => 0.19092475691468
826 => 0.19506822336339
827 => 0.19478566672974
828 => 0.19603277981834
829 => 0.19969434241821
830 => 0.20002910981414
831 => 0.1999869368168
901 => 0.19915718089661
902 => 0.20276246479017
903 => 0.20577005604311
904 => 0.19896511637503
905 => 0.20155634831744
906 => 0.20271963582066
907 => 0.20442768700724
908 => 0.20730945566162
909 => 0.21043982077166
910 => 0.21088248872093
911 => 0.21056839462731
912 => 0.20850383468851
913 => 0.21192911754494
914 => 0.21393556790946
915 => 0.21513036318474
916 => 0.21816016520787
917 => 0.20272681988825
918 => 0.19180233098399
919 => 0.19009631429006
920 => 0.19356556632296
921 => 0.19448038041727
922 => 0.19411162000293
923 => 0.18181511453011
924 => 0.19003157573356
925 => 0.19887179712879
926 => 0.19921138603552
927 => 0.20363698570629
928 => 0.20507814237055
929 => 0.20864133018212
930 => 0.20841845181436
1001 => 0.20928603134377
1002 => 0.20908658983434
1003 => 0.21568664493757
1004 => 0.2229674858341
1005 => 0.22271537346551
1006 => 0.22166866644363
1007 => 0.22322320486119
1008 => 0.23073781292873
1009 => 0.23004598823701
1010 => 0.23071803699553
1011 => 0.23957818341191
1012 => 0.25109763409435
1013 => 0.24574569271842
1014 => 0.25735786552454
1015 => 0.26466711277116
1016 => 0.27730770009393
1017 => 0.27572503630491
1018 => 0.28064592418875
1019 => 0.27289173781067
1020 => 0.25508655850699
1021 => 0.2522688207267
1022 => 0.25791000311933
1023 => 0.27177829957311
1024 => 0.25747324111093
1025 => 0.26036713580688
1026 => 0.25953369393976
1027 => 0.25948928336456
1028 => 0.26118425438904
1029 => 0.25872561051429
1030 => 0.24870865306701
1031 => 0.2532993656348
1101 => 0.25152667104825
1102 => 0.25349360785516
1103 => 0.26410835457561
1104 => 0.25941532202655
1105 => 0.25447159346711
1106 => 0.26067212618183
1107 => 0.26856753506189
1108 => 0.26807345456359
1109 => 0.26711473188726
1110 => 0.27251900141664
1111 => 0.28144527137677
1112 => 0.28385800627834
1113 => 0.28563903785648
1114 => 0.28588461202033
1115 => 0.28841417853148
1116 => 0.27481206186816
1117 => 0.29639897033999
1118 => 0.30012643310676
1119 => 0.29942582459411
1120 => 0.30356874258376
1121 => 0.30234979101552
1122 => 0.30058372144078
1123 => 0.30715112767831
1124 => 0.29962212638934
1125 => 0.28893565693454
1126 => 0.28307284843724
1127 => 0.29079346760576
1128 => 0.29550818031949
1129 => 0.29862430551122
1130 => 0.29956724311143
1201 => 0.27586795546448
1202 => 0.26309535384552
1203 => 0.2712824450451
1204 => 0.28127126135143
1205 => 0.27475657348923
1206 => 0.2750119369195
1207 => 0.26572370405786
1208 => 0.28209306386117
1209 => 0.27970818582581
1210 => 0.29208093729202
1211 => 0.28912808085707
1212 => 0.29921757937032
1213 => 0.29656067627586
1214 => 0.30758933247549
1215 => 0.31198896202247
1216 => 0.3193766247795
1217 => 0.32481101957678
1218 => 0.32800220014515
1219 => 0.32781061363364
1220 => 0.34045566088535
1221 => 0.33299931830532
1222 => 0.32363239469978
1223 => 0.32346297660402
1224 => 0.32831423906966
1225 => 0.33848115431879
1226 => 0.34111728752029
1227 => 0.34259052635202
1228 => 0.34033420979741
1229 => 0.33224088432767
1230 => 0.32874622742392
1231 => 0.33172377635587
]
'min_raw' => 0.12277865683731
'max_raw' => 0.34259052635202
'avg_raw' => 0.23268459159466
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.122778'
'max' => '$0.34259'
'avg' => '$0.232684'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0486062317924
'max_diff' => 0.17700581252589
'year' => 2036
]
11 => [
'items' => [
101 => 0.3280824898758
102 => 0.33436837190494
103 => 0.34300023052291
104 => 0.34121778585237
105 => 0.34717623114695
106 => 0.35334259518012
107 => 0.36216077269629
108 => 0.36446617083518
109 => 0.36827690629234
110 => 0.37219940483913
111 => 0.37345920565806
112 => 0.37586455631464
113 => 0.37585187892937
114 => 0.38310056503173
115 => 0.39109609027576
116 => 0.39411421595855
117 => 0.4010542295457
118 => 0.38916969948479
119 => 0.39818425205563
120 => 0.40631560412341
121 => 0.39662107097191
122 => 0.40998272638474
123 => 0.41050152918625
124 => 0.41833483553812
125 => 0.41039427887059
126 => 0.40567920166856
127 => 0.41929145287917
128 => 0.42587799245809
129 => 0.42389407313388
130 => 0.40879634911849
131 => 0.40000882616969
201 => 0.37701018362608
202 => 0.4042530691864
203 => 0.41752228405697
204 => 0.40876198505758
205 => 0.41318017031671
206 => 0.43728435648914
207 => 0.44646166995312
208 => 0.44455285290688
209 => 0.44487541156589
210 => 0.44982732333103
211 => 0.4717868271653
212 => 0.45862818345049
213 => 0.46868747352549
214 => 0.4740228847098
215 => 0.47897871196348
216 => 0.46680876653373
217 => 0.45097584634162
218 => 0.44596089589601
219 => 0.40789094596871
220 => 0.40590923974559
221 => 0.4047968479907
222 => 0.39778337532708
223 => 0.39227270696532
224 => 0.38789041888605
225 => 0.37638998630405
226 => 0.38027104470173
227 => 0.36194175549284
228 => 0.37366818517856
301 => 0.34441419702501
302 => 0.36877778764624
303 => 0.35551779294764
304 => 0.36442152276134
305 => 0.3643904584868
306 => 0.34799586896967
307 => 0.33853981188255
308 => 0.34456557949371
309 => 0.35102568069891
310 => 0.35207381038506
311 => 0.36044950022349
312 => 0.36278697522254
313 => 0.35570431684913
314 => 0.34380797314373
315 => 0.34657122245978
316 => 0.33848381472335
317 => 0.32431094374291
318 => 0.33449014711565
319 => 0.33796577469509
320 => 0.3395008098363
321 => 0.32556341899226
322 => 0.32118398819359
323 => 0.31885241598336
324 => 0.34200883100402
325 => 0.3432773916915
326 => 0.33678725585793
327 => 0.3661232852456
328 => 0.35948363829608
329 => 0.36690175069169
330 => 0.34632048654736
331 => 0.34710671855402
401 => 0.3373632182787
402 => 0.34281892737196
403 => 0.33896300803056
404 => 0.34237815999159
405 => 0.34442518799583
406 => 0.35416708945863
407 => 0.36888902451232
408 => 0.35271197424387
409 => 0.34566340178229
410 => 0.35003629649478
411 => 0.36168189136747
412 => 0.37932556372664
413 => 0.36888015457801
414 => 0.37351564978362
415 => 0.37452829926722
416 => 0.36682624127109
417 => 0.37960954959106
418 => 0.38646022837113
419 => 0.39348760725127
420 => 0.3995892834302
421 => 0.39068071759117
422 => 0.40021416003168
423 => 0.39253188830376
424 => 0.38564009638516
425 => 0.38565054838869
426 => 0.38132722664514
427 => 0.37295024599342
428 => 0.3714054022353
429 => 0.37944187455729
430 => 0.38588636430278
501 => 0.38641716334524
502 => 0.38998516399818
503 => 0.39209667003126
504 => 0.41279229960869
505 => 0.42111625302796
506 => 0.43129462570467
507 => 0.4352596754839
508 => 0.44719305377036
509 => 0.43755588162245
510 => 0.43547081880759
511 => 0.40652434646292
512 => 0.41126432968775
513 => 0.41885350017105
514 => 0.40664948908892
515 => 0.4143901251444
516 => 0.41591829067084
517 => 0.40623480146227
518 => 0.41140717144744
519 => 0.39767089026766
520 => 0.36918843790511
521 => 0.37964125870268
522 => 0.38733805319112
523 => 0.37635377844819
524 => 0.39604266577475
525 => 0.38454082425971
526 => 0.3808952926852
527 => 0.36667277428719
528 => 0.37338525549611
529 => 0.38246398244466
530 => 0.37685438470575
531 => 0.38849514229932
601 => 0.40498155952846
602 => 0.41673076222907
603 => 0.41763272012199
604 => 0.41007876992095
605 => 0.42218402332679
606 => 0.42227219688225
607 => 0.40861742158904
608 => 0.40025394775207
609 => 0.3983537488994
610 => 0.40310081818928
611 => 0.40886463666453
612 => 0.41795257193323
613 => 0.42344422088256
614 => 0.43776352879686
615 => 0.44163792295174
616 => 0.44589470748504
617 => 0.45158308436526
618 => 0.45841343927987
619 => 0.44346901157904
620 => 0.44406278155149
621 => 0.43014673739616
622 => 0.4152754484536
623 => 0.42656090302867
624 => 0.44131513364447
625 => 0.43793049683923
626 => 0.43754965605678
627 => 0.43819012461643
628 => 0.43563821899718
629 => 0.42409604445936
630 => 0.41829963666431
701 => 0.42577848154127
702 => 0.42975315474829
703 => 0.43591752626444
704 => 0.43515763736098
705 => 0.45103639638142
706 => 0.45720640198801
707 => 0.45562785052442
708 => 0.45591834198368
709 => 0.46708884241654
710 => 0.47951273628651
711 => 0.49114935237293
712 => 0.50298661806032
713 => 0.48871633225782
714 => 0.48147076119619
715 => 0.48894634104344
716 => 0.48497969315008
717 => 0.5077732285295
718 => 0.50935140346474
719 => 0.53214329061211
720 => 0.5537755055224
721 => 0.54018869891863
722 => 0.55300044558277
723 => 0.56685739415708
724 => 0.59358969616579
725 => 0.58458719730298
726 => 0.57769142426121
727 => 0.57117495205687
728 => 0.58473469625327
729 => 0.60217909053974
730 => 0.60593644598871
731 => 0.6120247972363
801 => 0.60562364034763
802 => 0.61333312875573
803 => 0.64055101055719
804 => 0.63319649863555
805 => 0.62275190941003
806 => 0.64423781305913
807 => 0.6520134780654
808 => 0.7065871672268
809 => 0.77548870411973
810 => 0.74696301541417
811 => 0.72925619991641
812 => 0.73341772156966
813 => 0.75857823037874
814 => 0.76665898725359
815 => 0.74469270446383
816 => 0.75245156689913
817 => 0.79520366175215
818 => 0.81813878898937
819 => 0.78698980560268
820 => 0.70105099582539
821 => 0.62181148842699
822 => 0.64282937399057
823 => 0.64044659802859
824 => 0.68637839051571
825 => 0.63302109595852
826 => 0.63391949595645
827 => 0.68080110926959
828 => 0.66829389859197
829 => 0.64803381909674
830 => 0.62195940942846
831 => 0.57375845156565
901 => 0.53106551900342
902 => 0.61479619135313
903 => 0.61118557250707
904 => 0.60595686135423
905 => 0.61759279221923
906 => 0.6740935695831
907 => 0.67279104378969
908 => 0.66450503924654
909 => 0.67078990066303
910 => 0.64693205250357
911 => 0.65308076320737
912 => 0.62179893648418
913 => 0.63593962860754
914 => 0.64799035006541
915 => 0.65040971081206
916 => 0.65586065410988
917 => 0.60928294044298
918 => 0.63019496642959
919 => 0.64247882250487
920 => 0.58697991386624
921 => 0.64138178752368
922 => 0.6084721260741
923 => 0.59730209269158
924 => 0.61234107110114
925 => 0.60648036658905
926 => 0.60144167700167
927 => 0.59863000163623
928 => 0.60967296758874
929 => 0.60915780002785
930 => 0.59108936438223
1001 => 0.56751982664617
1002 => 0.57543053715409
1003 => 0.57255650186326
1004 => 0.56214062721134
1005 => 0.56915966910923
1006 => 0.53825136084672
1007 => 0.48507522295515
1008 => 0.52020500847548
1009 => 0.5188525499468
1010 => 0.51817057902752
1011 => 0.5445696419301
1012 => 0.54203198116202
1013 => 0.53742610201911
1014 => 0.5620560366289
1015 => 0.55306577917696
1016 => 0.58077163427279
1017 => 0.59902050234126
1018 => 0.59439199911006
1019 => 0.61155514773289
1020 => 0.57561278394681
1021 => 0.5875513954392
1022 => 0.59001192672158
1023 => 0.56175210705902
1024 => 0.54244717384746
1025 => 0.5411597548946
1026 => 0.50768766108941
1027 => 0.52556818342284
1028 => 0.54130230312997
1029 => 0.53376688080727
1030 => 0.53138139121424
1031 => 0.54356834019545
1101 => 0.54451537050546
1102 => 0.52292297907568
1103 => 0.52741272099604
1104 => 0.54613569116142
1105 => 0.52694095018606
1106 => 0.48964870391408
1107 => 0.48039971123299
1108 => 0.47916572511657
1109 => 0.45408172341858
1110 => 0.48101777314972
1111 => 0.46925946560082
1112 => 0.50640381826162
1113 => 0.48518716323093
1114 => 0.48427255563775
1115 => 0.48288999211689
1116 => 0.46129915564837
1117 => 0.46602617666574
1118 => 0.48173951447309
1119 => 0.48734621042618
1120 => 0.48676138610397
1121 => 0.48166251054546
1122 => 0.48399674966568
1123 => 0.47647735215663
1124 => 0.47382209639346
1125 => 0.46544137881926
1126 => 0.45312403921752
1127 => 0.45483684083577
1128 => 0.43043296807748
1129 => 0.41713644298721
1130 => 0.4134561400876
1201 => 0.40853468523981
1202 => 0.41401203150815
1203 => 0.43036383497214
1204 => 0.41064009076594
1205 => 0.37682511478421
1206 => 0.37885745245863
1207 => 0.38342351180657
1208 => 0.37491469041918
1209 => 0.36686180506727
1210 => 0.37386313552952
1211 => 0.3595352844311
1212 => 0.3851549641597
1213 => 0.38446202362136
1214 => 0.39401145591382
1215 => 0.39998291190037
1216 => 0.3862206391332
1217 => 0.3827594647494
1218 => 0.38473110698002
1219 => 0.35214425279527
1220 => 0.39134841470731
1221 => 0.39168745392751
1222 => 0.38878439428745
1223 => 0.40965940021291
1224 => 0.45371217379325
1225 => 0.43713774835361
1226 => 0.43071962985872
1227 => 0.41851878190833
1228 => 0.43477568738756
1229 => 0.43352741069399
1230 => 0.42788223009077
1231 => 0.42446800724791
]
'min_raw' => 0.31885241598336
'max_raw' => 0.81813878898937
'avg_raw' => 0.56849560248637
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.318852'
'max' => '$0.818138'
'avg' => '$0.568495'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19607375914605
'max_diff' => 0.47554826263735
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010008412993223
]
1 => [
'year' => 2028
'avg' => 0.017177342159422
]
2 => [
'year' => 2029
'avg' => 0.046925402864834
]
3 => [
'year' => 2030
'avg' => 0.036202878426813
]
4 => [
'year' => 2031
'avg' => 0.035555713188461
]
5 => [
'year' => 2032
'avg' => 0.062340355014127
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010008412993223
'min' => '$0.0100084'
'max_raw' => 0.062340355014127
'max' => '$0.06234'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.062340355014127
]
1 => [
'year' => 2033
'avg' => 0.16034580347944
]
2 => [
'year' => 2034
'avg' => 0.101634876104
]
3 => [
'year' => 2035
'avg' => 0.11987856943552
]
4 => [
'year' => 2036
'avg' => 0.23268459159466
]
5 => [
'year' => 2037
'avg' => 0.56849560248637
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.062340355014127
'min' => '$0.06234'
'max_raw' => 0.56849560248637
'max' => '$0.568495'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.56849560248637
]
]
]
]
'prediction_2025_max_price' => '$0.017112'
'last_price' => 0.01659279
'sma_50day_nextmonth' => '$0.015244'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'sinken'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.016348'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.016064'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.01574'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015143'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014677'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.016346'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.016151'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0158059'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015375'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.015977'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.012831'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006415'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.01615'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.015972'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.016547'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.010332'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.004339'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.002169'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001084'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '66.36'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 115.53
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.015748'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0165060'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 171.24
'cci_20_action' => 'SELL'
'adx_14' => 19.7
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001359'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.24
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 1
'buy_signals' => 28
'sell_pct' => 3.45
'buy_pct' => 96.55
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767712882
'last_updated_date' => '6. Januar 2026'
]
SigmaDotMoney Preisprognose für 2026
Die Preisprognose für SigmaDotMoney im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.005732 am unteren Ende und $0.017112 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte SigmaDotMoney im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SIGMA das prognostizierte Preisziel erreicht.
SigmaDotMoney Preisprognose 2027-2032
Die Preisprognose für SIGMA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.0100084 am unteren Ende und $0.06234 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte SigmaDotMoney, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.005518 | $0.0100084 | $0.014497 |
| 2028 | $0.009959 | $0.017177 | $0.024394 |
| 2029 | $0.021878 | $0.046925 | $0.071971 |
| 2030 | $0.0186071 | $0.0362028 | $0.053798 |
| 2031 | $0.021999 | $0.035555 | $0.049112 |
| 2032 | $0.03358 | $0.06234 | $0.09110033 |
SigmaDotMoney Preisprognose 2032-2037
Die Preisprognose für SigmaDotMoney für die Jahre 2032-2037 wird derzeit zwischen $0.06234 am unteren Ende und $0.568495 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte SigmaDotMoney bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.03358 | $0.06234 | $0.09110033 |
| 2033 | $0.078033 | $0.160345 | $0.242658 |
| 2034 | $0.062735 | $0.101634 | $0.140534 |
| 2035 | $0.074172 | $0.119878 | $0.165584 |
| 2036 | $0.122778 | $0.232684 | $0.34259 |
| 2037 | $0.318852 | $0.568495 | $0.818138 |
SigmaDotMoney Potenzielles Preishistogramm
SigmaDotMoney Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für SigmaDotMoney Bullisch, mit 28 technischen Indikatoren, die bullische Signale zeigen, und 1 anzeigen bärische Signale. Die Preisprognose für SIGMA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von SigmaDotMoney
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von SigmaDotMoney im nächsten Monat sinken, und bis zum 04.02.2026 — erreichen. Der kurzfristige 50-Tage-SMA für SigmaDotMoney wird voraussichtlich bis zum 04.02.2026 $0.015244 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 66.36, was darauf hindeutet, dass sich der SIGMA-Markt in einem NEUTRAL Zustand befindet.
Beliebte SIGMA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.016348 | BUY |
| SMA 5 | $0.016064 | BUY |
| SMA 10 | $0.01574 | BUY |
| SMA 21 | $0.015143 | BUY |
| SMA 50 | $0.014677 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.016346 | BUY |
| EMA 5 | $0.016151 | BUY |
| EMA 10 | $0.0158059 | BUY |
| EMA 21 | $0.015375 | BUY |
| EMA 50 | $0.015977 | BUY |
| EMA 100 | $0.012831 | BUY |
| EMA 200 | $0.006415 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.010332 | BUY |
| EMA 50 | $0.004339 | BUY |
| EMA 100 | $0.002169 | BUY |
| EMA 200 | $0.001084 | BUY |
SigmaDotMoney Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 66.36 | NEUTRAL |
| Stoch RSI (14) | 115.53 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 171.24 | SELL |
| Average Directional Index (14) | 19.7 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.001359 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 83.24 | SELL |
| VWMA (10) | 0.015748 | BUY |
| Hull Moving Average (9) | 0.0165060 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | — | — |
Auf weltweiten Geldflüssen basierende SigmaDotMoney-Preisprognose
Definition weltweiter Geldflüsse, die für SigmaDotMoney-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
SigmaDotMoney-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.023315 | $0.032762 | $0.046036 | $0.064689 | $0.090899 | $0.127728 |
| Amazon.com aktie | $0.034621 | $0.07224 | $0.150734 | $0.314515 | $0.656255 | $1.36 |
| Apple aktie | $0.023535 | $0.033383 | $0.047351 | $0.067165 | $0.095268 | $0.135131 |
| Netflix aktie | $0.02618 | $0.0413092 | $0.065179 | $0.102843 | $0.16227 | $0.256036 |
| Google aktie | $0.021487 | $0.027826 | $0.036034 | $0.046665 | $0.060431 | $0.078258 |
| Tesla aktie | $0.037614 | $0.085269 | $0.193299 | $0.438195 | $0.993355 | $2.25 |
| Kodak aktie | $0.012442 | $0.00933 | $0.006997 | $0.005247 | $0.003934 | $0.00295 |
| Nokia aktie | $0.010992 | $0.007281 | $0.004823 | $0.003195 | $0.002116 | $0.0014023 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
SigmaDotMoney Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in SigmaDotMoney investieren?", "Sollte ich heute SIGMA kaufen?", "Wird SigmaDotMoney auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere SigmaDotMoney-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie SigmaDotMoney.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich SigmaDotMoney zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der SigmaDotMoney-Preis entspricht heute $0.01659 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
SigmaDotMoney-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von SigmaDotMoney 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017024 | $0.017466 | $0.01792 | $0.018386 |
| Wenn die Wachstumsrate von SigmaDotMoney 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017455 | $0.018362 | $0.019317 | $0.020321 |
| Wenn die Wachstumsrate von SigmaDotMoney 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018749 | $0.021186 | $0.023939 | $0.02705 |
| Wenn die Wachstumsrate von SigmaDotMoney 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0209057 | $0.026339 | $0.033186 | $0.041812 |
| Wenn die Wachstumsrate von SigmaDotMoney 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.025218 | $0.038329 | $0.058255 | $0.088539 |
| Wenn die Wachstumsrate von SigmaDotMoney 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.038157 | $0.087749 | $0.201795 | $0.46406 |
| Wenn die Wachstumsrate von SigmaDotMoney 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.059722 | $0.214961 | $0.773715 | $2.78 |
Fragefeld
Ist SIGMA eine gute Investition?
Die Entscheidung, SigmaDotMoney zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von SigmaDotMoney in den letzten 2026 Stunden um 1.6876% gestiegen, und SigmaDotMoney hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in SigmaDotMoney investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann SigmaDotMoney steigen?
Es scheint, dass der Durchschnittswert von SigmaDotMoney bis zum Ende dieses Jahres potenziell auf $0.017112 steigen könnte. Betrachtet man die Aussichten von SigmaDotMoney in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.053798 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird SigmaDotMoney nächste Woche kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney in der nächsten Woche um 0.86% steigen und $0.016734 erreichen bis zum 13. Januar 2026.
Wie viel wird SigmaDotMoney nächsten Monat kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney im nächsten Monat um -11.62% fallen und $0.014665 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von SigmaDotMoney in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von SigmaDotMoney im Jahr 2026 wird erwartet, dass SIGMA innerhalb der Spanne von $0.005732 bis $0.017112 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte SigmaDotMoney-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird SigmaDotMoney in 5 Jahren sein?
Die Zukunft von SigmaDotMoney scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.053798 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der SigmaDotMoney-Prognose für 2030 könnte der Wert von SigmaDotMoney seinen höchsten Gipfel von ungefähr $0.053798 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.0186071 liegen wird.
Wie viel wird SigmaDotMoney im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Preisprognosesimulation wird der Wert von SIGMA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.017112 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.017112 und $0.005732 während des Jahres 2026 liegen.
Wie viel wird SigmaDotMoney im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von SigmaDotMoney könnte der Wert von SIGMA um -12.62% fallen und bis zu $0.014497 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.014497 und $0.005518 im Laufe des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2028 kosten?
Unser neues experimentelles SigmaDotMoney-Preisprognosemodell deutet darauf hin, dass der Wert von SIGMA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.024394 erreichen wird. Der Preis wird voraussichtlich zwischen $0.024394 und $0.009959 im Laufe des Jahres liegen.
Wie viel wird SigmaDotMoney im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von SigmaDotMoney im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.071971 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.071971 und $0.021878.
Wie viel wird SigmaDotMoney im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für SigmaDotMoney-Preisprognosen wird der Wert von SIGMA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.053798 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.053798 und $0.0186071 während des Jahres 2030 liegen.
Wie viel wird SigmaDotMoney im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von SigmaDotMoney im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.049112 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.049112 und $0.021999 während des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen SigmaDotMoney-Preisprognose könnte SIGMA eine 449.04% Steigerung im Wert erfahren und $0.09110033 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.09110033 und $0.03358 liegen.
Wie viel wird SigmaDotMoney im Jahr 2033 kosten?
Laut unserer experimentellen SigmaDotMoney-Preisprognose wird der Wert von SIGMA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.242658 beträgt. Im Laufe des Jahres könnte der Preis von SIGMA zwischen $0.242658 und $0.078033 liegen.
Wie viel wird SigmaDotMoney im Jahr 2034 kosten?
Die Ergebnisse unserer neuen SigmaDotMoney-Preisprognosesimulation deuten darauf hin, dass SIGMA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.140534 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.140534 und $0.062735.
Wie viel wird SigmaDotMoney im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von SigmaDotMoney könnte SIGMA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.165584 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.165584 und $0.074172.
Wie viel wird SigmaDotMoney im Jahr 2036 kosten?
Unsere jüngste SigmaDotMoney-Preisprognosesimulation deutet darauf hin, dass der Wert von SIGMA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.34259 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.34259 und $0.122778.
Wie viel wird SigmaDotMoney im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von SigmaDotMoney um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.818138 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.818138 und $0.318852 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von SigmaDotMoney?
SigmaDotMoney-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
SigmaDotMoney Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von SigmaDotMoney. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SIGMA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SIGMA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SIGMA einzuschätzen.
Wie liest man SigmaDotMoney-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von SigmaDotMoney in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SIGMA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von SigmaDotMoney?
Die Preisentwicklung von SigmaDotMoney wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SIGMA. Die Marktkapitalisierung von SigmaDotMoney kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SIGMA-„Walen“, großen Inhabern von SigmaDotMoney, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen SigmaDotMoney-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


