SigmaDotMoney Preisvorhersage bis zu $0.01708 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.005721 | $0.01708 |
| 2027 | $0.0055083 | $0.01447 |
| 2028 | $0.009941 | $0.024348 |
| 2029 | $0.021837 | $0.071835 |
| 2030 | $0.018571 | $0.053696 |
| 2031 | $0.021957 | $0.049019 |
| 2032 | $0.033516 | $0.090927 |
| 2033 | $0.077885 | $0.242198 |
| 2034 | $0.062616 | $0.140268 |
| 2035 | $0.074032 | $0.165271 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in SigmaDotMoney eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.43 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige SigmaDotMoney Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'SigmaDotMoney'
'name_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_lang' => 'SigmaDotMoney'
'name_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_with_lang' => 'SigmaDotMoney'
'name_with_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'image' => '/uploads/coins/sigmadotmoney.png?1762828399'
'price_for_sd' => 0.01656
'ticker' => 'SIGMA'
'marketcap' => '$2.4M'
'low24h' => '$0.01631'
'high24h' => '$0.01658'
'volume24h' => '$264.94K'
'current_supply' => '145M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01656'
'change_24h_pct' => '1.2167%'
'ath_price' => '$0.04297'
'ath_days' => 77
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21.10.2025'
'ath_pct' => '-61.48%'
'fdv' => '$16.56M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.81659'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016703'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014637'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005721'
'current_year_max_price_prediction' => '$0.01708'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.018571'
'grand_prediction_max_price' => '$0.053696'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.016875209439714
107 => 0.016938215346061
108 => 0.017080170870222
109 => 0.015867176458696
110 => 0.016411775337826
111 => 0.016731676157301
112 => 0.015286352616823
113 => 0.016703106757975
114 => 0.01584606092466
115 => 0.015555166696437
116 => 0.015946817452339
117 => 0.015794190771871
118 => 0.015662971314544
119 => 0.015589748602719
120 => 0.015877333692938
121 => 0.01586391750474
122 => 0.015393372479283
123 => 0.014779565675442
124 => 0.014985579386332
125 => 0.014910732673777
126 => 0.014639478532058
127 => 0.014822271072227
128 => 0.014017345234513
129 => 0.01263251216713
130 => 0.013547375310027
131 => 0.013512154074205
201 => 0.013494393929948
202 => 0.014181888296875
203 => 0.014115801576688
204 => 0.013995853532427
205 => 0.014637275592161
206 => 0.014403147912014
207 => 0.015124674254808
208 => 0.01559991816957
209 => 0.015479380940256
210 => 0.015926350139143
211 => 0.014990325526142
212 => 0.015301235355792
213 => 0.01536531344078
214 => 0.014629360543509
215 => 0.014126614181419
216 => 0.014093086730796
217 => 0.013221393821648
218 => 0.013687045137656
219 => 0.014096799025781
220 => 0.013900558711555
221 => 0.013838434890584
222 => 0.014155812018914
223 => 0.014180474939936
224 => 0.013618157726964
225 => 0.013735081281811
226 => 0.014222671942447
227 => 0.013722795248192
228 => 0.012751616485648
301 => 0.01251075072494
302 => 0.012478614792425
303 => 0.011825367746081
304 => 0.012526846526815
305 => 0.012220632240562
306 => 0.013187959501825
307 => 0.012635427358071
308 => 0.012611608801686
309 => 0.012575603560287
310 => 0.012013326842203
311 => 0.012136429708914
312 => 0.012545642386957
313 => 0.012691654080593
314 => 0.012676423864709
315 => 0.012543637021589
316 => 0.012604426158391
317 => 0.012408603168414
318 => 0.012339453994951
319 => 0.012121200182521
320 => 0.011800427372403
321 => 0.011845032799064
322 => 0.011209497927449
323 => 0.010863224799005
324 => 0.010767380960858
325 => 0.010639214574898
326 => 0.01078185769519
327 => 0.011207697537009
328 => 0.010694044340813
329 => 0.0098134219645184
330 => 0.0098663488698412
331 => 0.0099852599119624
401 => 0.0097636699716449
402 => 0.0095539536897683
403 => 0.0097362849820402
404 => 0.0093631536721645
405 => 0.010030351048105
406 => 0.010012305228885
407 => 0.010260995151426
408 => 0.010416506063623
409 => 0.010058103758266
410 => 0.0099679665476917
411 => 0.010019312799343
412 => 0.0091706736347415
413 => 0.010191643226507
414 => 0.010200472613933
415 => 0.010124870038313
416 => 0.010668504827028
417 => 0.01181574379516
418 => 0.011384106347768
419 => 0.011216963281827
420 => 0.010899224191293
421 => 0.01132259266395
422 => 0.011290084570827
423 => 0.011143070645396
424 => 0.011054156164584
425 => 0.011217983821747
426 => 0.011033856104861
427 => 0.011000781707417
428 => 0.010800386844206
429 => 0.010728854995426
430 => 0.010675895662353
501 => 0.010617592640317
502 => 0.010746194578721
503 => 0.010454765667303
504 => 0.010103330969263
505 => 0.010074112976697
506 => 0.010154786423044
507 => 0.010119094428467
508 => 0.010073942097158
509 => 0.0099877340001849
510 => 0.0099621578993574
511 => 0.010045267819287
512 => 0.0099514415652959
513 => 0.01008988731404
514 => 0.010052237730934
515 => 0.0098419302202261
516 => 0.009579809196071
517 => 0.0095774757691386
518 => 0.009521002224449
519 => 0.0094490746744325
520 => 0.0094290660754973
521 => 0.0097209295491684
522 => 0.010325078204929
523 => 0.010206469367751
524 => 0.010292176408134
525 => 0.010713770219446
526 => 0.010847782214294
527 => 0.010752663674599
528 => 0.010622459550808
529 => 0.010628187871458
530 => 0.011073134777918
531 => 0.011100885570691
601 => 0.011171002871283
602 => 0.011261123417691
603 => 0.010768011593344
604 => 0.010604962348876
605 => 0.01052770057122
606 => 0.010289764200108
607 => 0.010546358177229
608 => 0.01039685185521
609 => 0.010417025365914
610 => 0.010403887340603
611 => 0.010411061590812
612 => 0.010030164552841
613 => 0.010168943414119
614 => 0.0099381966406415
615 => 0.0096292526134966
616 => 0.0096282169247878
617 => 0.0097038305377509
618 => 0.0096588526019995
619 => 0.009537818133381
620 => 0.0095550105083817
621 => 0.0094043872127086
622 => 0.0095732989035992
623 => 0.0095781426864988
624 => 0.009513102484824
625 => 0.0097733342499624
626 => 0.0098799514164686
627 => 0.0098371405624301
628 => 0.0098769476928243
629 => 0.010211398100422
630 => 0.010265928109955
701 => 0.01029014673814
702 => 0.010257696984726
703 => 0.0098830608323159
704 => 0.0098996775387512
705 => 0.0097777551722868
706 => 0.0096747436204868
707 => 0.0096788635423344
708 => 0.0097318248705239
709 => 0.0099631100968686
710 => 0.010449836220702
711 => 0.01046830712131
712 => 0.01049069439168
713 => 0.010399634112143
714 => 0.010372169460506
715 => 0.010408402425244
716 => 0.010591191166512
717 => 0.011061373435713
718 => 0.010895179619359
719 => 0.010760061459703
720 => 0.010878596513316
721 => 0.010860348970921
722 => 0.010706321349427
723 => 0.010701998307097
724 => 0.010406370055842
725 => 0.010297083022482
726 => 0.010205754597415
727 => 0.01010602634143
728 => 0.01004690408836
729 => 0.010137742739658
730 => 0.010158518613981
731 => 0.0099598983153303
801 => 0.0099328271025514
802 => 0.010095024725947
803 => 0.010023647599227
804 => 0.010097060744126
805 => 0.010114093223469
806 => 0.010111350602003
807 => 0.010036824684097
808 => 0.010084325281776
809 => 0.0099719722076567
810 => 0.0098498051144384
811 => 0.0097718701202439
812 => 0.0097038615012324
813 => 0.0097415966357441
814 => 0.0096070777713732
815 => 0.0095640424793311
816 => 0.01006823314808
817 => 0.010440684216047
818 => 0.010435268630012
819 => 0.010402302642799
820 => 0.010353321872707
821 => 0.010587607918097
822 => 0.010505987344581
823 => 0.010565373131441
824 => 0.010580489306611
825 => 0.010626241416149
826 => 0.010642593862782
827 => 0.010593165411552
828 => 0.010427277492049
829 => 0.010013900568798
830 => 0.009821472495135
831 => 0.0097579680256831
901 => 0.0097602762925355
902 => 0.0096966039881889
903 => 0.0097153583354115
904 => 0.0096900819915846
905 => 0.0096422147113807
906 => 0.009738640966078
907 => 0.0097497531936592
908 => 0.0097272461536049
909 => 0.0097325473763044
910 => 0.0095461986975375
911 => 0.0095603663828561
912 => 0.0094814789106598
913 => 0.0094666884606257
914 => 0.0092672678004314
915 => 0.0089139651944103
916 => 0.0091097291340597
917 => 0.0088732738235387
918 => 0.0087837246145617
919 => 0.0092076366420993
920 => 0.009165087632024
921 => 0.009092262222385
922 => 0.0089845382633837
923 => 0.0089445823991189
924 => 0.0087018232163349
925 => 0.0086874797087462
926 => 0.0088077977147832
927 => 0.0087522750948869
928 => 0.0086743003084921
929 => 0.0083918835363472
930 => 0.0080743535794765
1001 => 0.0080839378129522
1002 => 0.0081849381843779
1003 => 0.008478610386054
1004 => 0.0083638675762785
1005 => 0.0082806203512643
1006 => 0.0082650306484215
1007 => 0.0084601684187523
1008 => 0.008736329246397
1009 => 0.0088658977279776
1010 => 0.0087374992977845
1011 => 0.0085900020946411
1012 => 0.0085989795659602
1013 => 0.0086587026606682
1014 => 0.0086649787134829
1015 => 0.008568973197194
1016 => 0.0085959981876738
1017 => 0.0085549447559181
1018 => 0.0083029999210119
1019 => 0.0082984430378741
1020 => 0.0082366117122288
1021 => 0.0082347394842616
1022 => 0.008129548974792
1023 => 0.0081148320953695
1024 => 0.0079059699542101
1025 => 0.0080434436480141
1026 => 0.0079512335119032
1027 => 0.007812251086612
1028 => 0.0077882904641061
1029 => 0.0077875701788603
1030 => 0.0079302740537328
1031 => 0.0080417760701499
1101 => 0.0079528375466994
1102 => 0.0079325879689106
1103 => 0.0081488004824798
1104 => 0.0081212854693073
1105 => 0.0080974576453527
1106 => 0.0087116020732399
1107 => 0.0082254588362798
1108 => 0.0080134726368794
1109 => 0.0077510994600339
1110 => 0.0078365294894152
1111 => 0.0078545308518341
1112 => 0.0072235706578406
1113 => 0.0069675901857185
1114 => 0.0068797473341068
1115 => 0.0068291925310886
1116 => 0.0068522309896512
1117 => 0.0066218185412266
1118 => 0.0067766595172381
1119 => 0.0065771418131819
1120 => 0.0065436920208101
1121 => 0.0069004543911634
1122 => 0.0069500957908225
1123 => 0.0067383101575027
1124 => 0.0068743108190736
1125 => 0.0068249950886374
1126 => 0.0065805619715674
1127 => 0.0065712264244236
1128 => 0.0064485784785174
1129 => 0.0062566581924963
1130 => 0.0061689454718759
1201 => 0.00612326392542
1202 => 0.0061421130218033
1203 => 0.00613258234188
1204 => 0.0060703882085805
1205 => 0.0061361472367989
1206 => 0.0059681600932073
1207 => 0.0059012662590647
1208 => 0.0058710518661077
1209 => 0.0057219536071909
1210 => 0.0059592352414242
1211 => 0.0060059827125634
1212 => 0.0060528222906618
1213 => 0.0064605288392702
1214 => 0.0064401609722685
1215 => 0.0066242765704105
1216 => 0.0066171221768336
1217 => 0.0065646094257685
1218 => 0.0063430667669533
1219 => 0.0064313697221389
1220 => 0.0061595869514037
1221 => 0.0063632250826705
1222 => 0.006270293143692
1223 => 0.0063318047006208
1224 => 0.0062212013749894
1225 => 0.0062824138220932
1226 => 0.0060170682721874
1227 => 0.0057692923311979
1228 => 0.0058690046028827
1229 => 0.0059774032456855
1230 => 0.0062124391227424
1231 => 0.0060724536933712
]
'min_raw' => 0.0057219536071909
'max_raw' => 0.017080170870222
'avg_raw' => 0.011401062238706
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005721'
'max' => '$0.01708'
'avg' => '$0.011401'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010839426392809
'max_diff' => 0.00051879087022181
'year' => 2026
]
1 => [
'items' => [
101 => 0.0061227977472082
102 => 0.005954153594347
103 => 0.0056061925361737
104 => 0.0056081619579745
105 => 0.0055546357299182
106 => 0.0055083812539203
107 => 0.0060885327038759
108 => 0.0060163817002367
109 => 0.0059014185188276
110 => 0.0060553013055989
111 => 0.0060959903568695
112 => 0.0060971487169571
113 => 0.0062094176258959
114 => 0.0062693355627219
115 => 0.0062798963587866
116 => 0.0064565539127321
117 => 0.0065157671946452
118 => 0.0067596583226677
119 => 0.0062642519444055
120 => 0.0062540493760564
121 => 0.006057466751983
122 => 0.0059327909439473
123 => 0.006066003411224
124 => 0.006184011471916
125 => 0.0060611335913749
126 => 0.0060771788484799
127 => 0.0059122253333452
128 => 0.0059711884532216
129 => 0.0060219754352491
130 => 0.0059939338488944
131 => 0.0059519542368931
201 => 0.0061743361566854
202 => 0.006161788497249
203 => 0.0063688756534978
204 => 0.0065303149007384
205 => 0.0068196428925109
206 => 0.006517714050087
207 => 0.0065067105630106
208 => 0.0066142714141971
209 => 0.0065157507276393
210 => 0.0065780124007253
211 => 0.006809611574415
212 => 0.0068145049000059
213 => 0.006732535391665
214 => 0.006727547539633
215 => 0.0067432906803581
216 => 0.0068354987473126
217 => 0.006803278415451
218 => 0.0068405645992003
219 => 0.0068871915429251
220 => 0.0070800603515853
221 => 0.007126560368399
222 => 0.0070135894350362
223 => 0.007023789445437
224 => 0.0069815352152378
225 => 0.0069407181583094
226 => 0.007032468941432
227 => 0.0072001453009548
228 => 0.0071991021950246
301 => 0.0072379998512712
302 => 0.0072622327688673
303 => 0.0071582073469652
304 => 0.0070904906224277
305 => 0.0071164575235425
306 => 0.0071579791639106
307 => 0.0071029926151858
308 => 0.0067635901642091
309 => 0.0068665431867229
310 => 0.006849406769631
311 => 0.0068250024278326
312 => 0.0069285224880824
313 => 0.0069185377257325
314 => 0.0066194553285353
315 => 0.0066386016132334
316 => 0.0066206196775223
317 => 0.0066787229905629
318 => 0.0065126129580563
319 => 0.0065637072852872
320 => 0.0065957531683468
321 => 0.006614628439657
322 => 0.0066828188625242
323 => 0.0066748175034516
324 => 0.0066823214868098
325 => 0.0067834298823176
326 => 0.0072948014505846
327 => 0.0073226342767677
328 => 0.0071855752612646
329 => 0.0072403276345885
330 => 0.0071352150508344
331 => 0.0072057778325016
401 => 0.0072540550956181
402 => 0.0070358994267788
403 => 0.0070229816638887
404 => 0.0069174352431108
405 => 0.006974149911182
406 => 0.0068839127963517
407 => 0.0069060538279708
408 => 0.0068441455733435
409 => 0.0069555681058621
410 => 0.0070801558105291
411 => 0.0071116315848456
412 => 0.0070288323737919
413 => 0.0069688802882551
414 => 0.0068636241754972
415 => 0.007038667436799
416 => 0.0070898554207504
417 => 0.0070383985681107
418 => 0.0070264748909997
419 => 0.0070038795444199
420 => 0.0070312686005917
421 => 0.0070895766399966
422 => 0.0070620796453937
423 => 0.0070802418947636
424 => 0.0070110261289956
425 => 0.0071582417837083
426 => 0.0073920556727687
427 => 0.0073928074226544
428 => 0.0073653102798324
429 => 0.0073540590414239
430 => 0.0073822727786254
501 => 0.0073975775736692
502 => 0.0074888156262643
503 => 0.0075867176917833
504 => 0.0080435839135427
505 => 0.0079152977066524
506 => 0.0083206565976905
507 => 0.0086412428512373
508 => 0.0087373726511381
509 => 0.0086489377584859
510 => 0.0083464067678819
511 => 0.0083315631541825
512 => 0.0087836721794346
513 => 0.0086559306718957
514 => 0.0086407362260441
515 => 0.008479092993604
516 => 0.0085746441638799
517 => 0.0085537457212894
518 => 0.0085207565072736
519 => 0.0087030614840078
520 => 0.0090443201259768
521 => 0.0089911317663226
522 => 0.0089514291231778
523 => 0.0087774636981829
524 => 0.0088822297406142
525 => 0.0088449245595658
526 => 0.0090052112918027
527 => 0.0089102609824114
528 => 0.0086549629043389
529 => 0.0086956199647454
530 => 0.0086894747318556
531 => 0.0088159431892717
601 => 0.0087779804974954
602 => 0.0086820619070069
603 => 0.0090431537410381
604 => 0.0090197064458344
605 => 0.0090529493496353
606 => 0.0090675839039594
607 => 0.0092873741401824
608 => 0.0093774151674598
609 => 0.0093978560570418
610 => 0.0094833880689324
611 => 0.0093957279426681
612 => 0.0097464309483362
613 => 0.0099796279830178
614 => 0.01025049833901
615 => 0.010646312732203
616 => 0.010795142605531
617 => 0.010768257821039
618 => 0.01106835977659
619 => 0.011607636319825
620 => 0.010877261028933
621 => 0.011646347983732
622 => 0.011402863933378
623 => 0.010825567630082
624 => 0.010788396554026
625 => 0.011179348313166
626 => 0.012046441687228
627 => 0.011829244631517
628 => 0.012046796943802
629 => 0.01179301061555
630 => 0.011780407985273
701 => 0.0120344711083
702 => 0.012628103443514
703 => 0.012346090973029
704 => 0.011941756944295
705 => 0.012240310898978
706 => 0.011981675833567
707 => 0.0113988986438
708 => 0.011829078545022
709 => 0.011541429495893
710 => 0.011625380780693
711 => 0.012229976297394
712 => 0.012157229765264
713 => 0.012251370513988
714 => 0.012085214556582
715 => 0.011929998691974
716 => 0.011640276754203
717 => 0.011554504371548
718 => 0.011578208772346
719 => 0.011554492624824
720 => 0.011392395863323
721 => 0.01135739108311
722 => 0.011299048249161
723 => 0.011317131132988
724 => 0.011207429536365
725 => 0.011414459114699
726 => 0.011452885628776
727 => 0.011603544491053
728 => 0.011619186393926
729 => 0.012038769180873
730 => 0.011807670032625
731 => 0.01196271129341
801 => 0.011948842943741
802 => 0.010838079391489
803 => 0.01099113280864
804 => 0.011229235894918
805 => 0.011121970777291
806 => 0.010970322997138
807 => 0.010847859283825
808 => 0.010662314235598
809 => 0.0109234653279
810 => 0.011266851243955
811 => 0.01162789522743
812 => 0.012061665917037
813 => 0.011964853348764
814 => 0.011619786186113
815 => 0.011635265646958
816 => 0.011730953582957
817 => 0.011607029011672
818 => 0.011570481236305
819 => 0.011725932479851
820 => 0.011727002987131
821 => 0.011584412791082
822 => 0.011425949881905
823 => 0.01142528591653
824 => 0.011397088972412
825 => 0.011798026789269
826 => 0.012018502049154
827 => 0.012043779182386
828 => 0.01201680069669
829 => 0.012027183645097
830 => 0.01189889394921
831 => 0.012192126150879
901 => 0.01246122501679
902 => 0.012389100772267
903 => 0.012280976276662
904 => 0.012194849907931
905 => 0.01236881213693
906 => 0.012361065872714
907 => 0.012458874672953
908 => 0.012454437500803
909 => 0.012421548080058
910 => 0.012389101946852
911 => 0.012517747197469
912 => 0.012480699431271
913 => 0.012443594119659
914 => 0.012369173736682
915 => 0.01237928870272
916 => 0.012271182876334
917 => 0.012221168174461
918 => 0.011469067060349
919 => 0.011268081067045
920 => 0.011331315351985
921 => 0.011352133720465
922 => 0.011264664358609
923 => 0.011390072954475
924 => 0.01137052815765
925 => 0.011446565528773
926 => 0.011399060680455
927 => 0.011401010296
928 => 0.011540711925804
929 => 0.01158126790327
930 => 0.011560640805804
1001 => 0.011575087317813
1002 => 0.011908001089581
1003 => 0.011860671397219
1004 => 0.011835528441467
1005 => 0.011842493212041
1006 => 0.011927559818479
1007 => 0.011951373823817
1008 => 0.011850472209819
1009 => 0.011898057994286
1010 => 0.012100672225011
1011 => 0.012171575738793
1012 => 0.012397865719166
1013 => 0.01230173371352
1014 => 0.01247818817038
1015 => 0.013020549013009
1016 => 0.013453824382617
1017 => 0.013055366446863
1018 => 0.013851021485863
1019 => 0.01447055306366
1020 => 0.01444677440982
1021 => 0.014338744749208
1022 => 0.013633424518985
1023 => 0.012984378327401
1024 => 0.013527333026618
1025 => 0.013528717129806
1026 => 0.01348207683962
1027 => 0.013192398002944
1028 => 0.013471996644019
1029 => 0.013494190168795
1030 => 0.013481767696655
1031 => 0.013259671611763
1101 => 0.012920571940352
1102 => 0.012986831204456
1103 => 0.01309536523071
1104 => 0.01288988767644
1105 => 0.012824225147527
1106 => 0.012946304281584
1107 => 0.013339668687713
1108 => 0.013265305425339
1109 => 0.013263363500033
1110 => 0.0135815210714
1111 => 0.013353788913003
1112 => 0.012987666945967
1113 => 0.012895216320736
1114 => 0.012567078883366
1115 => 0.012793724580143
1116 => 0.01280188115528
1117 => 0.012677749623418
1118 => 0.01299773953565
1119 => 0.012994790772276
1120 => 0.013298573569727
1121 => 0.013879292182845
1122 => 0.013707545113518
1123 => 0.01350782195792
1124 => 0.013529537402656
1125 => 0.013767702233125
1126 => 0.013623702339849
1127 => 0.013675485705474
1128 => 0.013767623852799
1129 => 0.013823213084742
1130 => 0.013521538967649
1201 => 0.013451204300213
1202 => 0.013307324254754
1203 => 0.013269788636542
1204 => 0.013386975931413
1205 => 0.013356101219503
1206 => 0.012801195626724
1207 => 0.012743204904813
1208 => 0.012744983397462
1209 => 0.012599162969908
1210 => 0.012376751816976
1211 => 0.012961235047402
1212 => 0.012914292864161
1213 => 0.0128624723269
1214 => 0.01286882004703
1215 => 0.013122524407383
1216 => 0.012975363066001
1217 => 0.013366615611335
1218 => 0.013286185850142
1219 => 0.013203693369065
1220 => 0.013192290395397
1221 => 0.01316053782811
1222 => 0.013051646460272
1223 => 0.012920153590251
1224 => 0.012833330607746
1225 => 0.011838069118356
1226 => 0.012022783861617
1227 => 0.012235281336461
1228 => 0.012308634613246
1229 => 0.012183158757412
1230 => 0.013056601011845
1231 => 0.013216187328429
]
'min_raw' => 0.0055083812539203
'max_raw' => 0.01447055306366
'avg_raw' => 0.0099894671587902
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0055083'
'max' => '$0.01447'
'avg' => '$0.009989'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00021357235327051
'max_diff' => -0.0026096178065618
'year' => 2027
]
2 => [
'items' => [
101 => 0.012732789965938
102 => 0.012642366056401
103 => 0.0130625291883
104 => 0.012809119456911
105 => 0.012923229843439
106 => 0.012676585602809
107 => 0.013177747657996
108 => 0.013173929642812
109 => 0.012978966284086
110 => 0.01314374797983
111 => 0.013115113105116
112 => 0.012894999953288
113 => 0.013184725637518
114 => 0.013184869337843
115 => 0.012997221343938
116 => 0.012778089568485
117 => 0.012738913982695
118 => 0.012709400441302
119 => 0.012915971321469
120 => 0.013101182126697
121 => 0.013445813517572
122 => 0.013532462037478
123 => 0.013870656979189
124 => 0.013669278357813
125 => 0.013758546892379
126 => 0.013855460514457
127 => 0.013901924468761
128 => 0.013826213948615
129 => 0.014351569899685
130 => 0.014395926038446
131 => 0.014410798268093
201 => 0.014233651197274
202 => 0.014390999257949
203 => 0.01431738131118
204 => 0.01450891475702
205 => 0.01453894964695
206 => 0.014513511163702
207 => 0.014523044711834
208 => 0.014074746086736
209 => 0.014051499438061
210 => 0.013734529733872
211 => 0.013863697231251
212 => 0.01362222478606
213 => 0.013698798185872
214 => 0.01373255101089
215 => 0.013714920450557
216 => 0.013871000167751
217 => 0.013738300523156
218 => 0.013388084343228
219 => 0.013037772747137
220 => 0.013033374870405
221 => 0.012941144010668
222 => 0.012874477992002
223 => 0.012887320232301
224 => 0.012932577962155
225 => 0.012871847530469
226 => 0.01288480744718
227 => 0.01310002841606
228 => 0.013143189446483
229 => 0.012996511401002
301 => 0.012407577882854
302 => 0.012263052120273
303 => 0.012366934372346
304 => 0.012317285346729
305 => 0.0099410105995162
306 => 0.010499281103592
307 => 0.010167575727145
308 => 0.010320440825643
309 => 0.009981855530981
310 => 0.010143446180369
311 => 0.010113606287773
312 => 0.011011288737902
313 => 0.010997272661165
314 => 0.011003981415385
315 => 0.010683755096913
316 => 0.011193884317331
317 => 0.011445192314962
318 => 0.011398681892946
319 => 0.01141038756414
320 => 0.011209245350289
321 => 0.01100592891169
322 => 0.010780419691108
323 => 0.011199387949167
324 => 0.011152805830897
325 => 0.01125964845049
326 => 0.011531379314311
327 => 0.011571392716214
328 => 0.011625171134147
329 => 0.011605895399526
330 => 0.012065121600393
331 => 0.012009506277396
401 => 0.012143523204199
402 => 0.011867840217877
403 => 0.011555878750786
404 => 0.011615172426891
405 => 0.011609461969072
406 => 0.011536761286884
407 => 0.01147113036167
408 => 0.011361873362589
409 => 0.011707578674676
410 => 0.011693543670337
411 => 0.011920754076672
412 => 0.011880592430348
413 => 0.011612383126975
414 => 0.011621962274716
415 => 0.011686386646852
416 => 0.0119093601344
417 => 0.011975553846698
418 => 0.011944890281798
419 => 0.012017468665474
420 => 0.012074831660672
421 => 0.012024672574495
422 => 0.012734819458619
423 => 0.012439916961063
424 => 0.012583650386453
425 => 0.012617929961482
426 => 0.012530123550867
427 => 0.012549165617218
428 => 0.012578009159086
429 => 0.012753141497169
430 => 0.013212739427247
501 => 0.01341629222189
502 => 0.014028690847691
503 => 0.013399389995886
504 => 0.013362049887646
505 => 0.01347236137282
506 => 0.013831904195143
507 => 0.014123279882496
508 => 0.014219946007857
509 => 0.014232722032107
510 => 0.014414074109528
511 => 0.01451802173829
512 => 0.014392053197296
513 => 0.01428530804826
514 => 0.013902960174108
515 => 0.01394721798164
516 => 0.014252110387178
517 => 0.014682788868073
518 => 0.01505235580914
519 => 0.014922946347087
520 => 0.015910249193712
521 => 0.016008136238184
522 => 0.015994611413705
523 => 0.016217612668558
524 => 0.01577500059109
525 => 0.015585775352767
526 => 0.014308387561091
527 => 0.014667281426581
528 => 0.015188954737169
529 => 0.015119909318338
530 => 0.014741056215821
531 => 0.015052068415089
601 => 0.014949238055761
602 => 0.014868131484923
603 => 0.015239696409214
604 => 0.01483114551191
605 => 0.015184879129443
606 => 0.014731212106051
607 => 0.014923537478609
608 => 0.014814364295413
609 => 0.014885012724703
610 => 0.014472003450661
611 => 0.014694853229701
612 => 0.014462732167191
613 => 0.014462622111584
614 => 0.014457498026264
615 => 0.014730587426924
616 => 0.014739492862476
617 => 0.014537679382773
618 => 0.014508594907428
619 => 0.014616135456567
620 => 0.01449023363844
621 => 0.014549142306725
622 => 0.014492017921991
623 => 0.014479158019764
624 => 0.014376688130886
625 => 0.014332541285289
626 => 0.014349852400971
627 => 0.014290760638655
628 => 0.014255155714416
629 => 0.01445041531067
630 => 0.014346095985141
701 => 0.014434426877883
702 => 0.014333762677356
703 => 0.013984816701027
704 => 0.013784134180003
705 => 0.013125007578025
706 => 0.013311935064702
707 => 0.013435868181759
708 => 0.013394908287311
709 => 0.013482905989961
710 => 0.013488308334215
711 => 0.013459699384054
712 => 0.0134265738848
713 => 0.013410450223718
714 => 0.013530622783554
715 => 0.013600386999361
716 => 0.013448306528067
717 => 0.013412676201475
718 => 0.013566437954546
719 => 0.013660232535094
720 => 0.014352759019238
721 => 0.014301454420461
722 => 0.014430218895371
723 => 0.014415721991548
724 => 0.014550687675043
725 => 0.014771299526804
726 => 0.01432273394813
727 => 0.014400589422357
728 => 0.014381501058022
729 => 0.014589902814594
730 => 0.01459055342213
731 => 0.014465606158626
801 => 0.01453334209721
802 => 0.01449553375453
803 => 0.014563858539856
804 => 0.014300769216266
805 => 0.014621183613661
806 => 0.014802837929936
807 => 0.014805360200294
808 => 0.01489146290451
809 => 0.014978948238727
810 => 0.015146868719389
811 => 0.01497426502766
812 => 0.014663767788871
813 => 0.014686184686612
814 => 0.014504140269117
815 => 0.014507200468664
816 => 0.014490864883649
817 => 0.014539889203964
818 => 0.014311527297698
819 => 0.014365123380655
820 => 0.014290088550657
821 => 0.014400426311291
822 => 0.014281721120334
823 => 0.014381491853035
824 => 0.014424549593817
825 => 0.014583433584269
826 => 0.014258253825759
827 => 0.013595190285425
828 => 0.013734574280472
829 => 0.013528414403421
830 => 0.013547495284948
831 => 0.013586041702333
901 => 0.013461100151987
902 => 0.013484935062432
903 => 0.013484083511707
904 => 0.013476745307606
905 => 0.01344424318489
906 => 0.013397108676602
907 => 0.013584878050384
908 => 0.013616783725916
909 => 0.013687706090347
910 => 0.013898722939794
911 => 0.013877637380414
912 => 0.013912028802594
913 => 0.013836952521075
914 => 0.013550977858324
915 => 0.013566507658377
916 => 0.013372850802868
917 => 0.013682753849152
918 => 0.013609364717272
919 => 0.013562050266524
920 => 0.013549140080272
921 => 0.013760679999673
922 => 0.01382397605904
923 => 0.013784534202483
924 => 0.013703637803982
925 => 0.013858982803977
926 => 0.013900546572497
927 => 0.013909851167455
928 => 0.014185092722997
929 => 0.013925234112858
930 => 0.013987784663091
1001 => 0.014475786200167
1002 => 0.014033236145648
1003 => 0.01426766477957
1004 => 0.014256190717848
1005 => 0.01437611647433
1006 => 0.014246353305446
1007 => 0.014247961875444
1008 => 0.014354447822726
1009 => 0.01420490751461
1010 => 0.01416787923133
1011 => 0.014116724923181
1012 => 0.014228418483582
1013 => 0.014295373721577
1014 => 0.014834983766612
1015 => 0.015183596464913
1016 => 0.015168462268279
1017 => 0.015306760495483
1018 => 0.015244455877461
1019 => 0.01504325783074
1020 => 0.015386678363005
1021 => 0.015278005737271
1022 => 0.0152869645765
1023 => 0.015286631128056
1024 => 0.015358888923843
1025 => 0.015307687653198
1026 => 0.015206764693054
1027 => 0.015273762063875
1028 => 0.015472720303215
1029 => 0.016090292782909
1030 => 0.016435894524293
1031 => 0.016069487124127
1101 => 0.016322230042371
1102 => 0.016170674352935
1103 => 0.016143132175773
1104 => 0.016301873405985
1105 => 0.016460892491706
1106 => 0.016450763663404
1107 => 0.016335323972891
1108 => 0.016270115020893
1109 => 0.016763899052019
1110 => 0.017127710714761
1111 => 0.017102901198386
1112 => 0.017212402335177
1113 => 0.017533901059537
1114 => 0.017563294873739
1115 => 0.017559591928759
1116 => 0.017486736293331
1117 => 0.017803293539349
1118 => 0.018067371163272
1119 => 0.017469872318731
1120 => 0.017697392056898
1121 => 0.017799532997589
1122 => 0.017949506202375
1123 => 0.018202536137277
1124 => 0.018477393759456
1125 => 0.018516261640893
1126 => 0.018488683019014
1127 => 0.018307407028618
1128 => 0.01860815951854
1129 => 0.018784333273622
1130 => 0.018889240713109
1201 => 0.019155268524714
1202 => 0.017800163785266
1203 => 0.016840953297609
1204 => 0.016691158728794
1205 => 0.01699577187486
1206 => 0.017076095932233
1207 => 0.017043717405424
1208 => 0.015964038793964
1209 => 0.01668547444435
1210 => 0.017461678544132
1211 => 0.017491495704795
1212 => 0.017880079706809
1213 => 0.018006618586461
1214 => 0.018319479640951
1215 => 0.01829991009681
1216 => 0.018376086784872
1217 => 0.018358575083483
1218 => 0.018938084306258
1219 => 0.019577369036932
1220 => 0.01955523263951
1221 => 0.019463327895802
1222 => 0.019599822112296
1223 => 0.020259632464267
1224 => 0.020198887700303
1225 => 0.020257896064267
1226 => 0.021035849654522
1227 => 0.022047299984462
1228 => 0.021577379758252
1229 => 0.022596971433225
1230 => 0.023238750346388
1231 => 0.024348640615526
]
'min_raw' => 0.0099410105995162
'max_raw' => 0.024348640615526
'avg_raw' => 0.017144825607521
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009941'
'max' => '$0.024348'
'avg' => '$0.017144'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0044326293455959
'max_diff' => 0.0098780875518655
'year' => 2028
]
3 => [
'items' => [
101 => 0.024209676887505
102 => 0.024641749024529
103 => 0.023960902811742
104 => 0.022397542285462
105 => 0.022150134497875
106 => 0.022645451153988
107 => 0.02386313882075
108 => 0.022607101835979
109 => 0.022861196482132
110 => 0.022788017206946
111 => 0.022784117794363
112 => 0.02293294251259
113 => 0.022717064496627
114 => 0.021837538623879
115 => 0.022240620148281
116 => 0.022084971014144
117 => 0.02225767533288
118 => 0.023189689312418
119 => 0.022777623715626
120 => 0.022343546082897
121 => 0.022887975763878
122 => 0.023581221834102
123 => 0.02353783974091
124 => 0.02345366034781
125 => 0.023928175179226
126 => 0.024711934660923
127 => 0.024923781699426
128 => 0.025080162852226
129 => 0.025101725171116
130 => 0.025323830456589
131 => 0.024129514358862
201 => 0.026024924678167
202 => 0.026352209680657
203 => 0.026290693664763
204 => 0.026654457170773
205 => 0.026547428719515
206 => 0.026392361285892
207 => 0.026969003817635
208 => 0.026307929687645
209 => 0.025369618187043
210 => 0.024854841940116
211 => 0.025532740827885
212 => 0.025946710023235
213 => 0.026220317327975
214 => 0.026303110733072
215 => 0.024222225717747
216 => 0.023100744105661
217 => 0.023819600961195
218 => 0.024696655937797
219 => 0.024124642274184
220 => 0.024147064126832
221 => 0.023331522965066
222 => 0.024768813234402
223 => 0.024559412131674
224 => 0.025645785423053
225 => 0.025386513718375
226 => 0.026272408964727
227 => 0.026039123056779
228 => 0.027007479817828
301 => 0.027393783547024
302 => 0.028042447631717
303 => 0.028519607572955
304 => 0.028799805017065
305 => 0.028782983013515
306 => 0.029893264880892
307 => 0.029238570453994
308 => 0.02841611995418
309 => 0.028401244419437
310 => 0.028827203187504
311 => 0.029719895909291
312 => 0.0299513581439
313 => 0.030080713956387
314 => 0.029882601026655
315 => 0.029171977148629
316 => 0.028865133361042
317 => 0.029126573158186
318 => 0.028806854752057
319 => 0.029358778418177
320 => 0.030116687496294
321 => 0.02996018226876
322 => 0.030483355779831
323 => 0.031024785324331
324 => 0.031799053890088
325 => 0.032001476364258
326 => 0.032336073016626
327 => 0.032680482881186
328 => 0.032791098047577
329 => 0.033002296722087
330 => 0.033001183600821
331 => 0.033637645021768
401 => 0.034339681678642
402 => 0.034604684264426
403 => 0.035214043098108
404 => 0.034170537449908
405 => 0.034962048470996
406 => 0.035676011224825
407 => 0.034824795396481
408 => 0.035997998108001
409 => 0.036043550910755
410 => 0.036731344149559
411 => 0.03603413393679
412 => 0.035620132738022
413 => 0.036815338686443
414 => 0.03739366119625
415 => 0.037219465749751
416 => 0.035893829800808
417 => 0.035122252819323
418 => 0.033102887032691
419 => 0.035494913037067
420 => 0.036659999127443
421 => 0.035890812509299
422 => 0.036278745498577
423 => 0.038395182100386
424 => 0.039200984129233
425 => 0.039033382940214
426 => 0.039061704782208
427 => 0.039496500930632
428 => 0.041424626499358
429 => 0.040269248964977
430 => 0.041152491798841
501 => 0.041620960613154
502 => 0.042056100555938
503 => 0.040987534383851
504 => 0.03959734549432
505 => 0.039157014316847
506 => 0.035814332059135
507 => 0.035640330931088
508 => 0.035542658825142
509 => 0.034926850013142
510 => 0.03444299297114
511 => 0.034058211886879
512 => 0.033048431416422
513 => 0.033389202682785
514 => 0.031779823370439
515 => 0.032809447221577
516 => 0.030240838979251
517 => 0.032380052250066
518 => 0.031215775724853
519 => 0.031997556098417
520 => 0.031994828540342
521 => 0.030555323008918
522 => 0.029725046260107
523 => 0.030254130919304
524 => 0.030821351672756
525 => 0.030913381331643
526 => 0.03164879784447
527 => 0.031854036785475
528 => 0.03123215321254
529 => 0.030187610282706
530 => 0.030430233781819
531 => 0.029720129502641
601 => 0.02847569906715
602 => 0.029369470731591
603 => 0.029674643674197
604 => 0.029809425430971
605 => 0.028585671021466
606 => 0.028201140816999
607 => 0.027996420162662
608 => 0.030029638955688
609 => 0.030141023270902
610 => 0.029571165366113
611 => 0.032146977131905
612 => 0.031563991598748
613 => 0.032215329274208
614 => 0.030408218242333
615 => 0.030477252317349
616 => 0.02962173699462
617 => 0.030100768409794
618 => 0.029762204445452
619 => 0.030062067405328
620 => 0.030241804027097
621 => 0.031097178968179
622 => 0.032389819257885
623 => 0.030969414476222
624 => 0.03035052377228
625 => 0.030734480084232
626 => 0.031757006340132
627 => 0.033306185959976
628 => 0.032389040444883
629 => 0.03279605405034
630 => 0.032884968416358
701 => 0.032208699268101
702 => 0.033331120968092
703 => 0.033932635875656
704 => 0.034549665704844
705 => 0.035085415416744
706 => 0.034303210422289
707 => 0.035140281891038
708 => 0.034465750050232
709 => 0.033860625257209
710 => 0.033861542981735
711 => 0.03348193935961
712 => 0.032746409508606
713 => 0.032610766519029
714 => 0.033316398480632
715 => 0.033882248490243
716 => 0.033928854607273
717 => 0.034242138247017
718 => 0.034427536277939
719 => 0.036244689017377
720 => 0.036975562881455
721 => 0.037869261607715
722 => 0.038217407627694
723 => 0.039265202330573
724 => 0.038419023010273
725 => 0.038235946791608
726 => 0.035694339573457
727 => 0.036110527613046
728 => 0.0367768848206
729 => 0.035705327558375
730 => 0.036384984002774
731 => 0.036519162581991
801 => 0.035668916452641
802 => 0.036123069647293
803 => 0.034916973409335
804 => 0.032416108859992
805 => 0.033333905145246
806 => 0.034009712138082
807 => 0.033045252232904
808 => 0.034774009283182
809 => 0.033764105103199
810 => 0.033444013962094
811 => 0.032195224299912
812 => 0.032784604950139
813 => 0.03358175071869
814 => 0.033089207311868
815 => 0.034111308836789
816 => 0.035558877180597
817 => 0.036590500586579
818 => 0.036669695821972
819 => 0.036006431085325
820 => 0.0370693170587
821 => 0.037077059022637
822 => 0.035878119302653
823 => 0.035143775399888
824 => 0.034976930920107
825 => 0.035393741142387
826 => 0.035899825699647
827 => 0.03669777999273
828 => 0.037179967060051
829 => 0.038437255199365
830 => 0.038777441320587
831 => 0.039151202729823
901 => 0.039650663236312
902 => 0.040250393633397
903 => 0.038938217667245
904 => 0.038990352864582
905 => 0.037768472773214
906 => 0.036462718660257
907 => 0.037453623267444
908 => 0.038749099226824
909 => 0.038451915610368
910 => 0.038418476382607
911 => 0.038474711888433
912 => 0.038250645146735
913 => 0.037237199578337
914 => 0.036728253558392
915 => 0.037384923770098
916 => 0.037733914762591
917 => 0.038275169356735
918 => 0.038208448303509
919 => 0.039602662011524
920 => 0.040144411299625
921 => 0.04000580864897
922 => 0.040031314872349
923 => 0.041012126081137
924 => 0.042102989864519
925 => 0.04312472774981
926 => 0.044164083411391
927 => 0.042911099594613
928 => 0.042274911685751
929 => 0.042931295215785
930 => 0.042583008875482
1001 => 0.044584365495304
1002 => 0.044722935085379
1003 => 0.046724146984338
1004 => 0.048623535376331
1005 => 0.047430563558398
1006 => 0.048555482250078
1007 => 0.049772173531096
1008 => 0.052119368413226
1009 => 0.051328915752236
1010 => 0.050723441401891
1011 => 0.050151271066444
1012 => 0.051341866705025
1013 => 0.052873548973829
1014 => 0.053203458664259
1015 => 0.053738038397957
1016 => 0.053175993173273
1017 => 0.053852914739154
1018 => 0.056242745321122
1019 => 0.055596992002256
1020 => 0.054679918479441
1021 => 0.056566460202136
1022 => 0.057249192317833
1023 => 0.062040963855387
1024 => 0.068090773359757
1025 => 0.065586112499756
1026 => 0.064031388679054
1027 => 0.064396785655461
1028 => 0.066605971287481
1029 => 0.067315491596439
1030 => 0.065386770810374
1031 => 0.066068027598261
1101 => 0.06982181947921
1102 => 0.071835608387276
1103 => 0.069100612562188
1104 => 0.061554867552279
1105 => 0.05459734604263
1106 => 0.056442794048266
1107 => 0.056233577515346
1108 => 0.060266558596351
1109 => 0.055581590999166
1110 => 0.055660473838234
1111 => 0.059776852696993
1112 => 0.058678673390075
1113 => 0.056899763557048
1114 => 0.054610334053071
1115 => 0.050378111868371
1116 => 0.046629514655136
1117 => 0.05398137704067
1118 => 0.053664351366112
1119 => 0.053205251208778
1120 => 0.054226928929098
1121 => 0.059187905930691
1122 => 0.059073539353689
1123 => 0.058345997541141
1124 => 0.058897831593699
1125 => 0.056803024379556
1126 => 0.057342903896514
1127 => 0.054596243935676
1128 => 0.055837848948627
1129 => 0.056895946815495
1130 => 0.057108375627676
1201 => 0.057586988588402
1202 => 0.053497293241377
1203 => 0.055333446385044
1204 => 0.056412014332666
1205 => 0.051539005106675
1206 => 0.056315690608187
1207 => 0.053426100744137
1208 => 0.052445330544095
1209 => 0.053765808411803
1210 => 0.05325121690255
1211 => 0.052808801340722
1212 => 0.052561925855558
1213 => 0.053531539065778
1214 => 0.053486305450583
1215 => 0.051899830044848
1216 => 0.049830337551076
1217 => 0.050524927160761
1218 => 0.05027257624375
1219 => 0.049358023966586
1220 => 0.049974321777932
1221 => 0.047260458117951
1222 => 0.042591396745313
1223 => 0.045675921705296
1224 => 0.045557170849654
1225 => 0.045497291283317
1226 => 0.047815226540735
1227 => 0.0475924105496
1228 => 0.047187997343868
1229 => 0.049350596600919
1230 => 0.04856121878103
1231 => 0.050993895221121
]
'min_raw' => 0.021837538623879
'max_raw' => 0.071835608387276
'avg_raw' => 0.046836573505577
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.021837'
'max' => '$0.071835'
'avg' => '$0.046836'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.011896528024362
'max_diff' => 0.047486967771751
'year' => 2029
]
4 => [
'items' => [
101 => 0.052596213260212
102 => 0.05218981357594
103 => 0.05369680143638
104 => 0.050540929102495
105 => 0.05158918330019
106 => 0.051805227037517
107 => 0.049323910461778
108 => 0.047628866001361
109 => 0.047515825860773
110 => 0.044576852357925
111 => 0.046146828280581
112 => 0.047528342122501
113 => 0.046866704202026
114 => 0.046657249402275
115 => 0.047727308549002
116 => 0.047810461309139
117 => 0.045914569565869
118 => 0.046308785494378
119 => 0.047952731449207
120 => 0.046267362274247
121 => 0.042992965270794
122 => 0.042180869541857
123 => 0.042072521001723
124 => 0.039870052976721
125 => 0.042235137661651
126 => 0.04120271481635
127 => 0.044464126214331
128 => 0.042601225515105
129 => 0.042520919589293
130 => 0.042399525404112
131 => 0.040503770192185
201 => 0.040918820102068
202 => 0.042298509216406
203 => 0.042790797835712
204 => 0.042739448099516
205 => 0.042291747987059
206 => 0.042496702805946
207 => 0.041836471923317
208 => 0.041603330657143
209 => 0.04086747269054
210 => 0.039785964765586
211 => 0.039936355075824
212 => 0.037793604884548
213 => 0.036626120855981
214 => 0.036302976664065
215 => 0.035870854745511
216 => 0.036351785984599
217 => 0.037787534742479
218 => 0.036055717129385
219 => 0.033086637304616
220 => 0.03326508406115
221 => 0.033666000941766
222 => 0.032918894987069
223 => 0.032211821900799
224 => 0.032826564582658
225 => 0.031568526320216
226 => 0.033818028855433
227 => 0.033757186116013
228 => 0.034595661552839
301 => 0.035119977450733
302 => 0.033911599055373
303 => 0.033607695156743
304 => 0.033780812629065
305 => 0.030919566435518
306 => 0.034361836695975
307 => 0.034391605592131
308 => 0.034136706230024
309 => 0.035969608875546
310 => 0.039837605154271
311 => 0.038382309364425
312 => 0.037818774848048
313 => 0.036747495320475
314 => 0.038174911684682
315 => 0.038065308379075
316 => 0.037569640665301
317 => 0.037269859285433
318 => 0.037822215669639
319 => 0.037201416216772
320 => 0.03708990357661
321 => 0.036414258304172
322 => 0.036173083681812
323 => 0.035994527592856
324 => 0.035797954883474
325 => 0.036231545297504
326 => 0.035248972375743
327 => 0.034064085754911
328 => 0.03396557525304
329 => 0.034237571409839
330 => 0.034117233358188
331 => 0.033964999120746
401 => 0.033674342502943
402 => 0.033588110893337
403 => 0.033868321790927
404 => 0.033551980024858
405 => 0.034018759532721
406 => 0.033891821334671
407 => 0.033182754879117
408 => 0.032298995545473
409 => 0.032291128233655
410 => 0.032100723734877
411 => 0.031858214978176
412 => 0.03179075458991
413 => 0.032774792668649
414 => 0.034811722041857
415 => 0.034411824066308
416 => 0.034700791336835
417 => 0.036122224306412
418 => 0.036574055103459
419 => 0.036253356305914
420 => 0.035814364011993
421 => 0.035833677445002
422 => 0.037333847005333
423 => 0.037427410740666
424 => 0.037663816115046
425 => 0.037967663829275
426 => 0.036305102885522
427 => 0.035755370974063
428 => 0.035494877496449
429 => 0.034692658409059
430 => 0.035557782917742
501 => 0.035053711914858
502 => 0.035121728314664
503 => 0.035077432545062
504 => 0.035101621030531
505 => 0.033817400073629
506 => 0.034285302693658
507 => 0.033507323836655
508 => 0.032465697479352
509 => 0.032462205582561
510 => 0.03271714215784
511 => 0.032565495907195
512 => 0.032157419745891
513 => 0.032215385038539
514 => 0.031707548080995
515 => 0.03227704563987
516 => 0.032293376792098
517 => 0.03207408921119
518 => 0.032951478776156
519 => 0.033310945996804
520 => 0.033166606213455
521 => 0.033300818732824
522 => 0.034428441632623
523 => 0.034612293366927
524 => 0.03469394816274
525 => 0.034584541553537
526 => 0.033321429609426
527 => 0.033377453995314
528 => 0.032966384224431
529 => 0.0326190735855
530 => 0.032632964189653
531 => 0.032811527005286
601 => 0.033591321293726
602 => 0.035232352402364
603 => 0.035294628333359
604 => 0.035370108578441
605 => 0.035063092488359
606 => 0.034970493497841
607 => 0.035092655468161
608 => 0.035708940471249
609 => 0.037294192818937
610 => 0.036733858763819
611 => 0.03627829845489
612 => 0.036677947663998
613 => 0.03661642480081
614 => 0.03609710992108
615 => 0.036082534482038
616 => 0.035085803192827
617 => 0.034717334329678
618 => 0.034409414168215
619 => 0.034073173390357
620 => 0.03387383858635
621 => 0.034180107441353
622 => 0.034250154752159
623 => 0.03358049254803
624 => 0.033489220064095
625 => 0.034036080675649
626 => 0.033795427709522
627 => 0.03404294525309
628 => 0.034100371446363
629 => 0.034091124506609
630 => 0.033839855171156
701 => 0.034000006752614
702 => 0.033621200518981
703 => 0.033209305634761
704 => 0.032946542360587
705 => 0.03271724655338
706 => 0.032844473193969
707 => 0.032390933450935
708 => 0.032245836959187
709 => 0.033945751000341
710 => 0.035201495779697
711 => 0.035183236753275
712 => 0.035072089625776
713 => 0.034906947539683
714 => 0.035696859299045
715 => 0.035421669836867
716 => 0.03562189316345
717 => 0.035672858403412
718 => 0.035827114835029
719 => 0.035882248250543
720 => 0.035715596776239
721 => 0.03515629407371
722 => 0.033762564915914
723 => 0.03311378023066
724 => 0.032899670478162
725 => 0.032907452961013
726 => 0.03269277734145
727 => 0.032756008932498
728 => 0.032670787974547
729 => 0.032509400097353
730 => 0.032834507947331
731 => 0.032871973598452
801 => 0.032796089541518
802 => 0.032813962983969
803 => 0.032185675403057
804 => 0.032233442743265
805 => 0.031967468123008
806 => 0.031917601088081
807 => 0.03124524040913
808 => 0.03005405600613
809 => 0.03071408779646
810 => 0.029916862208256
811 => 0.029614940798064
812 => 0.031044189795499
813 => 0.030900732837353
814 => 0.030655196884248
815 => 0.030291998035428
816 => 0.03015728404943
817 => 0.029338804515769
818 => 0.029290444378502
819 => 0.029696104936191
820 => 0.029508906546745
821 => 0.029246009110389
822 => 0.028293821245393
823 => 0.02722324682657
824 => 0.027255560738883
825 => 0.027596090542766
826 => 0.028586226874255
827 => 0.028199363480009
828 => 0.027918689648738
829 => 0.027866127877166
830 => 0.02852404849392
831 => 0.029455144005257
901 => 0.029891993187089
902 => 0.029459088915201
903 => 0.028961791796877
904 => 0.028992059968216
905 => 0.029193420551758
906 => 0.029214580702002
907 => 0.028890891400943
908 => 0.028982008043171
909 => 0.028843593531747
910 => 0.027994143930634
911 => 0.027978780080984
912 => 0.027770311449645
913 => 0.027763999102339
914 => 0.027409341955495
915 => 0.027359722969023
916 => 0.026655529677815
917 => 0.027119031834582
918 => 0.026808138922778
919 => 0.026339549972465
920 => 0.02625876506081
921 => 0.026256336568815
922 => 0.026737472646213
923 => 0.027113409479386
924 => 0.026813547038083
925 => 0.026745274172788
926 => 0.027474249757762
927 => 0.027381480969814
928 => 0.027301143797746
929 => 0.029371774614562
930 => 0.027732708749714
1001 => 0.027017982478032
1002 => 0.026133372993987
1003 => 0.02642140630258
1004 => 0.026482099152791
1005 => 0.024354772806507
1006 => 0.023491716772762
1007 => 0.023195548465561
1008 => 0.023025099417562
1009 => 0.023102775189099
1010 => 0.022325923532352
1011 => 0.022847980693627
1012 => 0.02217529282452
1013 => 0.022062514514148
1014 => 0.023265363754148
1015 => 0.023432733198951
1016 => 0.022718683149812
1017 => 0.023177218875561
1018 => 0.023010947447281
1019 => 0.022186824127305
1020 => 0.022155348678322
1021 => 0.021741832565693
1022 => 0.021094759921927
1023 => 0.020799030360448
1024 => 0.020645011837189
1025 => 0.020708562881647
1026 => 0.020676429528875
1027 => 0.0204667376662
1028 => 0.020688448820987
1029 => 0.02012206843788
1030 => 0.01989653120569
1031 => 0.019794661270333
1101 => 0.019291966080687
1102 => 0.02009197767698
1103 => 0.02024959003973
1104 => 0.020407512947523
1105 => 0.021782124041319
1106 => 0.021713452355683
1107 => 0.02233421094936
1108 => 0.022310089411912
1109 => 0.022133039005373
1110 => 0.021386092463562
1111 => 0.021683812042086
1112 => 0.020767477455285
1113 => 0.021454057632412
1114 => 0.021140731111845
1115 => 0.02134812162063
1116 => 0.020975214786186
1117 => 0.021181596825313
1118 => 0.020286965777971
1119 => 0.019451571893761
1120 => 0.019787758779435
1121 => 0.020153232371796
1122 => 0.020945672240975
1123 => 0.020473701592379
1124 => 0.0206434400848
1125 => 0.02007484454907
1126 => 0.018901669547573
1127 => 0.018908309590675
1128 => 0.018727842175702
1129 => 0.01857189198049
1130 => 0.020527913098896
1201 => 0.020284650952705
1202 => 0.019897044560111
1203 => 0.020415871119463
1204 => 0.020553057096641
1205 => 0.02055696258855
1206 => 0.020935485053402
1207 => 0.021137502560748
1208 => 0.021173109022012
1209 => 0.021768722298975
1210 => 0.021968364013085
1211 => 0.022790659979147
1212 => 0.021120362786667
1213 => 0.021085964115158
1214 => 0.020423172073134
1215 => 0.020002818881755
1216 => 0.020451954015775
1217 => 0.020849826431458
1218 => 0.020435535078154
1219 => 0.020489632782728
1220 => 0.019933480489765
1221 => 0.020132278765101
1222 => 0.020303510620841
1223 => 0.020208966454645
1224 => 0.02006742926186
1225 => 0.020817205430649
1226 => 0.02077490012081
1227 => 0.021473108926466
1228 => 0.022017412619866
1229 => 0.022992902144362
1230 => 0.021974927972132
1231 => 0.021937828947215
]
'min_raw' => 0.01857189198049
'max_raw' => 0.05369680143638
'avg_raw' => 0.036134346708435
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.018571'
'max' => '$0.053696'
'avg' => '$0.036134'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032656466433883
'max_diff' => -0.018138806950896
'year' => 2030
]
5 => [
'items' => [
101 => 0.022300477866649
102 => 0.021968308493424
103 => 0.022178228071205
104 => 0.022959080855038
105 => 0.022975579043909
106 => 0.022699213123609
107 => 0.022682396232242
108 => 0.022735475330348
109 => 0.023046361265847
110 => 0.022937728167424
111 => 0.023063441139173
112 => 0.02322064713533
113 => 0.023870917789398
114 => 0.024027695842613
115 => 0.023646806453402
116 => 0.02368119650061
117 => 0.023538733413397
118 => 0.023401115856207
119 => 0.02371046002734
120 => 0.024275792580261
121 => 0.02427227567579
122 => 0.024403421839573
123 => 0.024485124813136
124 => 0.02413439584037
125 => 0.023906084175761
126 => 0.023993633395821
127 => 0.024133626505271
128 => 0.023948235517207
129 => 0.022803916457416
130 => 0.023151029760772
131 => 0.023093253134121
201 => 0.023010972191891
202 => 0.023359997302563
203 => 0.023326332979186
204 => 0.022317955795769
205 => 0.02238250883138
206 => 0.022321881479671
207 => 0.022517780856231
208 => 0.021957729284203
209 => 0.022129997375754
210 => 0.022238042307862
211 => 0.022301681602914
212 => 0.022531590374514
213 => 0.022504613233763
214 => 0.022529913437567
215 => 0.022870807452184
216 => 0.024594932397419
217 => 0.024688772714121
218 => 0.024226668674198
219 => 0.024411270123548
220 => 0.024056875708695
221 => 0.024294783053622
222 => 0.02445755321683
223 => 0.023722026148196
224 => 0.023678473008722
225 => 0.023322615882054
226 => 0.023513833345148
227 => 0.023209592612343
228 => 0.023284242646284
301 => 0.023075514643512
302 => 0.023451183491172
303 => 0.023871239635892
304 => 0.023977362406568
305 => 0.023698199085645
306 => 0.023496066443536
307 => 0.023141188110626
308 => 0.023731358687235
309 => 0.023903942548958
310 => 0.023730452177681
311 => 0.023690250667816
312 => 0.023614068879266
313 => 0.023706412994392
314 => 0.023903002620183
315 => 0.0238102945831
316 => 0.023871529874899
317 => 0.023638164088122
318 => 0.024134511946254
319 => 0.024922831797586
320 => 0.024925366374811
321 => 0.024832657837997
322 => 0.024794723502167
323 => 0.024889848086962
324 => 0.024941449271998
325 => 0.02524906473636
326 => 0.025579148385562
327 => 0.027119504749604
328 => 0.026686978846417
329 => 0.028053674648806
330 => 0.029134553585256
331 => 0.02945866191719
401 => 0.029160497502286
402 => 0.028140493145426
403 => 0.02809044686549
404 => 0.029614764009372
405 => 0.029184074598077
406 => 0.029132845463046
407 => 0.028587854019304
408 => 0.028910011461059
409 => 0.028839550902783
410 => 0.028728325464495
411 => 0.029342979421681
412 => 0.030493556758997
413 => 0.03031422849093
414 => 0.030180368257618
415 => 0.029593831681369
416 => 0.029947057707958
417 => 0.029821280685489
418 => 0.030361698594088
419 => 0.030041566996756
420 => 0.029180811702192
421 => 0.029317889819938
422 => 0.029297170738203
423 => 0.029723567972127
424 => 0.029595574106333
425 => 0.029272177881679
426 => 0.030489624210742
427 => 0.030410570017925
428 => 0.030522650789035
429 => 0.030571992210691
430 => 0.031313030337381
501 => 0.03161660994731
502 => 0.031685527833673
503 => 0.031973904983417
504 => 0.031678352747482
505 => 0.032860772416394
506 => 0.03364701250012
507 => 0.034560270816912
508 => 0.03589478667844
509 => 0.036396576987337
510 => 0.036305933059385
511 => 0.037317747754977
512 => 0.039135956271578
513 => 0.036673444985161
514 => 0.039266475349202
515 => 0.038445551873922
516 => 0.036499157081816
517 => 0.036373832203691
518 => 0.037691953355014
519 => 0.040615419204188
520 => 0.039883124166645
521 => 0.040616616976532
522 => 0.039760958652034
523 => 0.039718468004169
524 => 0.040575059561576
525 => 0.042576532425835
526 => 0.041625707692114
527 => 0.040262467284536
528 => 0.041269062787122
529 => 0.040397056606766
530 => 0.038432182623262
531 => 0.039882564194431
601 => 0.038912735342279
602 => 0.039195782960275
603 => 0.041234218956343
604 => 0.040988948944264
605 => 0.041306351051286
606 => 0.040746144640251
607 => 0.040222823515901
608 => 0.039246005774965
609 => 0.038956818198406
610 => 0.039036739240688
611 => 0.038956778593507
612 => 0.038410258044872
613 => 0.038292236984429
614 => 0.038095530046402
615 => 0.038156497751733
616 => 0.037786631159599
617 => 0.038484645837294
618 => 0.038614203512358
619 => 0.039122160385191
620 => 0.03917489815281
621 => 0.040589550813336
622 => 0.039810383900191
623 => 0.040333116335563
624 => 0.040286358226395
625 => 0.036541341358946
626 => 0.037057371640717
627 => 0.037860152819929
628 => 0.037498500986838
629 => 0.036987209908343
630 => 0.036574314948765
701 => 0.035948736864328
702 => 0.036829226005011
703 => 0.037986975595428
704 => 0.039204260593001
705 => 0.040666748757913
706 => 0.040340338424744
707 => 0.039176920394044
708 => 0.039229110477023
709 => 0.039551729033964
710 => 0.039133908689739
711 => 0.039010685313405
712 => 0.039534800034279
713 => 0.039538409324313
714 => 0.039057656523008
715 => 0.03852338776119
716 => 0.03852114915557
717 => 0.038426081189829
718 => 0.039777871031945
719 => 0.040521218763741
720 => 0.040606442383226
721 => 0.040515482535123
722 => 0.040550489370591
723 => 0.040117951704008
724 => 0.041106604544755
725 => 0.042013890159056
726 => 0.041770718233093
727 => 0.041406168947149
728 => 0.041115787881822
729 => 0.041702313682545
730 => 0.041676196611916
731 => 0.042005965810714
801 => 0.041991005575017
802 => 0.041880116596708
803 => 0.041770722193288
804 => 0.042204458637467
805 => 0.042079549507138
806 => 0.041954446358428
807 => 0.041703532841357
808 => 0.041737636155559
809 => 0.041373149814189
810 => 0.041204521754911
811 => 0.038668760338656
812 => 0.037991122029839
813 => 0.038204320836392
814 => 0.038274511419215
815 => 0.0379796023588
816 => 0.038402426195513
817 => 0.038336529548442
818 => 0.038592894853944
819 => 0.038432728941154
820 => 0.038439302206083
821 => 0.038910316004625
822 => 0.039047053314178
823 => 0.038977507614934
824 => 0.039026215038797
825 => 0.04014865706361
826 => 0.039989081701357
827 => 0.039904310470615
828 => 0.039927792680868
829 => 0.040214600683636
830 => 0.040294891265274
831 => 0.039954694428952
901 => 0.040115133223616
902 => 0.040798261248581
903 => 0.041037317395621
904 => 0.041800269863512
905 => 0.041476154094753
906 => 0.042071082615712
907 => 0.043899690063061
908 => 0.045360508222014
909 => 0.044017079472177
910 => 0.046699685987024
911 => 0.048788479955882
912 => 0.048708308564289
913 => 0.048344079021143
914 => 0.04596604262106
915 => 0.043777738071177
916 => 0.045608347747473
917 => 0.045613014348006
918 => 0.045455763353325
919 => 0.044479090930741
920 => 0.045421777270079
921 => 0.045496604288362
922 => 0.045454721056234
923 => 0.044705908599769
924 => 0.043562610382421
925 => 0.043786008117422
926 => 0.044151938164543
927 => 0.043459156244337
928 => 0.043237770443695
929 => 0.043649368767461
930 => 0.044975624326552
1001 => 0.044724903395581
1002 => 0.044718356058831
1003 => 0.045791046523745
1004 => 0.045023231651957
1005 => 0.043788825878278
1006 => 0.043477122140613
1007 => 0.042370783860697
1008 => 0.043134935651277
1009 => 0.043162436113826
1010 => 0.042743917987568
1011 => 0.043822786317639
1012 => 0.043812844356047
1013 => 0.04483706926709
1014 => 0.046795002615696
1015 => 0.046215945380465
1016 => 0.045542564817139
1017 => 0.04561577995519
1018 => 0.046418769309254
1019 => 0.045933263615323
1020 => 0.046107854847926
1021 => 0.046418505044513
1022 => 0.046605928021124
1023 => 0.045588812673131
1024 => 0.045351674431263
1025 => 0.044866572812614
1026 => 0.044740018855159
1027 => 0.045135124001572
1028 => 0.045031027754763
1029 => 0.043160124806436
1030 => 0.04296460503873
1031 => 0.042970601350868
1101 => 0.042478957598513
1102 => 0.041729082868152
1103 => 0.043699708886848
1104 => 0.043541440038653
1105 => 0.043366723479282
1106 => 0.043388125260886
1107 => 0.044243507224889
1108 => 0.043747342487943
1109 => 0.045066477760916
1110 => 0.044795303205629
1111 => 0.044517174046234
1112 => 0.044478728124384
1113 => 0.044371672126882
1114 => 0.044004537277664
1115 => 0.043561199885849
1116 => 0.043268470138546
1117 => 0.039912876540131
1118 => 0.040535655193407
1119 => 0.04125210526594
1120 => 0.041499420959985
1121 => 0.041076370351596
1122 => 0.044021241894207
1123 => 0.04455929830253
1124 => 0.042929490345168
1125 => 0.042624619820966
1126 => 0.044041229155018
1127 => 0.043186840553137
1128 => 0.043571571688249
1129 => 0.042739993410816
1130 => 0.044429696269896
1201 => 0.044416823565136
1202 => 0.043759490989284
1203 => 0.044315063981175
1204 => 0.044218519501854
1205 => 0.043476392642656
1206 => 0.04445322301504
1207 => 0.044453707510718
1208 => 0.043821039198103
1209 => 0.043082221117871
1210 => 0.042950137895229
1211 => 0.042850630929854
1212 => 0.043547099074654
1213 => 0.044171550235484
1214 => 0.045333499031215
1215 => 0.045625640565685
1216 => 0.046765888423682
1217 => 0.046086926341905
1218 => 0.046387901438726
1219 => 0.046714652481852
1220 => 0.046871308947798
1221 => 0.046616045643188
1222 => 0.048387319911401
1223 => 0.048536869730079
1224 => 0.048587012490681
1225 => 0.047989748773402
1226 => 0.048520258745659
1227 => 0.048272050698284
1228 => 0.048917819083373
1229 => 0.04901908381174
1230 => 0.048933316189411
1231 => 0.048965459212549
]
'min_raw' => 0.021957729284203
'max_raw' => 0.04901908381174
'avg_raw' => 0.035488406547972
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.021957'
'max' => '$0.049019'
'avg' => '$0.035488'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0033858373037129
'max_diff' => -0.0046777176246398
'year' => 2031
]
6 => [
'items' => [
101 => 0.047453989098823
102 => 0.047375611399786
103 => 0.046306925911992
104 => 0.046742423147592
105 => 0.045928281939563
106 => 0.046186454503213
107 => 0.046300254509311
108 => 0.046240811844219
109 => 0.046767045507879
110 => 0.046319639391333
111 => 0.045138861089394
112 => 0.043957761085196
113 => 0.043942933336747
114 => 0.043631970553788
115 => 0.043407201417384
116 => 0.043450499927169
117 => 0.043603089523165
118 => 0.043398332632672
119 => 0.043442027896696
120 => 0.044167660419524
121 => 0.044313180847003
122 => 0.043818645575929
123 => 0.041833015101467
124 => 0.041345736402458
125 => 0.041695982668149
126 => 0.041528587511897
127 => 0.033516811295465
128 => 0.035399059277159
129 => 0.034280691441538
130 => 0.034796086793822
131 => 0.033654522833601
201 => 0.034199336989912
202 => 0.034098729708669
203 => 0.037125328763466
204 => 0.037078072582176
205 => 0.037100691615418
206 => 0.036021026225202
207 => 0.037740962507926
208 => 0.038588264967705
209 => 0.038431451832624
210 => 0.038470918320318
211 => 0.037792753303017
212 => 0.037107257735181
213 => 0.036346937653439
214 => 0.037759518386913
215 => 0.037602463522908
216 => 0.037962690874379
217 => 0.038878850453393
218 => 0.039013758431555
219 => 0.039195076122306
220 => 0.039130086637243
221 => 0.040678399835617
222 => 0.040490888891194
223 => 0.040942736316672
224 => 0.040013251880718
225 => 0.038961452013963
226 => 0.039161364782705
227 => 0.039142111575478
228 => 0.038896996149679
229 => 0.038675716903118
301 => 0.038307349302636
302 => 0.039472918898709
303 => 0.039425598901689
304 => 0.040191654649972
305 => 0.040056246855394
306 => 0.039151960463297
307 => 0.039184257228699
308 => 0.039401468497322
309 => 0.040153239178103
310 => 0.04037641590061
311 => 0.04027303155069
312 => 0.040517734638514
313 => 0.040711137981782
314 => 0.040542023120739
315 => 0.042936332921435
316 => 0.041942048561489
317 => 0.042426655840341
318 => 0.042542231820875
319 => 0.042246186377038
320 => 0.042310388033213
321 => 0.042407636048416
322 => 0.042998106953609
323 => 0.044547673462971
324 => 0.045233965921712
325 => 0.047298710644906
326 => 0.045176978886666
327 => 0.045051084104731
328 => 0.045423006978695
329 => 0.046635230706636
330 => 0.047617624179746
331 => 0.047943540770416
401 => 0.04798661602817
402 => 0.048598057218792
403 => 0.048948523906553
404 => 0.048523812175751
405 => 0.048163913453067
406 => 0.046874800900688
407 => 0.047024019188763
408 => 0.048051985220942
409 => 0.049504047788292
410 => 0.050750068532439
411 => 0.050313755496046
412 => 0.053642515974724
413 => 0.053972548979418
414 => 0.053926949089414
415 => 0.054678813389603
416 => 0.05318651586823
417 => 0.052548529765941
418 => 0.048241727641935
419 => 0.049451763366605
420 => 0.051210621355319
421 => 0.050977829905134
422 => 0.049700500219321
423 => 0.050749099563331
424 => 0.050402399827468
425 => 0.050128943361208
426 => 0.051381700445291
427 => 0.050004242570917
428 => 0.051196880159322
429 => 0.049667310115936
430 => 0.050315748537244
501 => 0.049947663527872
502 => 0.050185859639738
503 => 0.048793370036919
504 => 0.049544723625825
505 => 0.048762111257399
506 => 0.048761740197237
507 => 0.048744463985828
508 => 0.049665203966647
509 => 0.049695229264366
510 => 0.049014801027379
511 => 0.048916740688143
512 => 0.049279321157805
513 => 0.048854834387806
514 => 0.049053449075801
515 => 0.048860850224374
516 => 0.048817492166165
517 => 0.048472007781593
518 => 0.048323163609428
519 => 0.048381529244576
520 => 0.04818229724227
521 => 0.048062252754344
522 => 0.048720584115703
523 => 0.04836886422634
524 => 0.048666677998285
525 => 0.048327281618059
526 => 0.047150785896234
527 => 0.046474170765395
528 => 0.044251879408077
529 => 0.044882118480269
530 => 0.045299967637161
531 => 0.045161868493301
601 => 0.045458558891587
602 => 0.045476773272422
603 => 0.045380316199539
604 => 0.045268631266056
605 => 0.045214269217001
606 => 0.045619439392667
607 => 0.045854654317042
608 => 0.045341904390156
609 => 0.04522177425642
610 => 0.045740192742202
611 => 0.046056427719048
612 => 0.048391329110994
613 => 0.048218352074247
614 => 0.048652490491454
615 => 0.048603613168073
616 => 0.04905865939298
617 => 0.049802467653819
618 => 0.048290097487473
619 => 0.048552592654525
620 => 0.048488234901462
621 => 0.04919087597389
622 => 0.049193069542622
623 => 0.048771801120177
624 => 0.049000177566284
625 => 0.048872704099247
626 => 0.049103065883255
627 => 0.048216041860462
628 => 0.049296341371898
629 => 0.04990880158192
630 => 0.04991730559253
701 => 0.050207606871295
702 => 0.050502569783637
703 => 0.051068725408022
704 => 0.050486780010555
705 => 0.049439916891753
706 => 0.049515497027584
707 => 0.048901721564063
708 => 0.048912039240492
709 => 0.048856962675101
710 => 0.04902225159381
711 => 0.048252313483116
712 => 0.048433016418765
713 => 0.048180031250661
714 => 0.048552042714176
715 => 0.048151819875132
716 => 0.048488203866205
717 => 0.048633376045446
718 => 0.04916906451218
719 => 0.048072698253041
720 => 0.045837133233186
721 => 0.046307076103965
722 => 0.045611993684866
723 => 0.045676326209119
724 => 0.045806288146556
725 => 0.045385038986425
726 => 0.045465400051091
727 => 0.045462528988369
728 => 0.045437787720904
729 => 0.04532820454494
730 => 0.045169287259421
731 => 0.045802364812768
801 => 0.045909937025408
802 => 0.046149056728728
803 => 0.046860514769363
804 => 0.046789423333768
805 => 0.046905376414779
806 => 0.04665225148998
807 => 0.045688067948401
808 => 0.045740427753536
809 => 0.045087500144497
810 => 0.046132359901783
811 => 0.045884923319783
812 => 0.045725399345697
813 => 0.045681871751388
814 => 0.046395093358895
815 => 0.046608500442241
816 => 0.046475519469117
817 => 0.046202771613564
818 => 0.046726528126889
819 => 0.046866663274342
820 => 0.046898034365871
821 => 0.047826030487133
822 => 0.046949899040299
823 => 0.047160792587549
824 => 0.04880612384098
825 => 0.047314035434311
826 => 0.048104427940866
827 => 0.048065742340674
828 => 0.048470080401604
829 => 0.048032574817934
830 => 0.04803799822399
831 => 0.048397023029862
901 => 0.047892837440479
902 => 0.04776799399817
903 => 0.047595523676766
904 => 0.047972106313852
905 => 0.048197850573417
906 => 0.050017183514625
907 => 0.051192555566307
908 => 0.05114152956572
909 => 0.051607811694413
910 => 0.051397747324782
911 => 0.050719394063063
912 => 0.05187726036445
913 => 0.051510863019507
914 => 0.051541068371452
915 => 0.051539944126744
916 => 0.051783566330119
917 => 0.05161093767138
918 => 0.051270668865039
919 => 0.051496555178369
920 => 0.052167356773123
921 => 0.054249545505945
922 => 0.055414765906164
923 => 0.054179397774758
924 => 0.055031538169564
925 => 0.054520557581349
926 => 0.054427697208114
927 => 0.054962904348733
928 => 0.055499048298601
929 => 0.055464898246808
930 => 0.0550756852705
1001 => 0.054855828736098
1002 => 0.056520656071937
1003 => 0.05774727249339
1004 => 0.057663625476788
1005 => 0.058032816204603
1006 => 0.059116771600108
1007 => 0.059215874896902
1008 => 0.059203390159369
1009 => 0.058957752297906
1010 => 0.060025047154176
1011 => 0.060915403300543
1012 => 0.058900894230138
1013 => 0.059667992912288
1014 => 0.060012368225081
1015 => 0.060518013355812
1016 => 0.06137112144732
1017 => 0.062297823110443
1018 => 0.062428868886376
1019 => 0.062335885637234
1020 => 0.061724700979326
1021 => 0.062738708996966
1022 => 0.063332691112285
1023 => 0.063686393868918
1024 => 0.064583325209214
1025 => 0.060014494969773
1026 => 0.056780449840701
1027 => 0.056275406993618
1028 => 0.05730243148299
1029 => 0.05757324965047
1030 => 0.057464083186736
1031 => 0.053823871367445
1101 => 0.056256242031749
1102 => 0.058873268347005
1103 => 0.05897379898595
1104 => 0.060283937078807
1105 => 0.060710571746216
1106 => 0.061765404634691
1107 => 0.061699424550317
1108 => 0.061956259572604
1109 => 0.061897217648743
1110 => 0.063851073453373
1111 => 0.066006466556274
1112 => 0.065931832146851
1113 => 0.065621968886856
1114 => 0.066082168667486
1115 => 0.068306765335643
1116 => 0.068101960122875
1117 => 0.068300910941813
1118 => 0.070923835786344
1119 => 0.074334011190943
1120 => 0.072749642339494
1121 => 0.076187266857283
1122 => 0.078351069270585
1123 => 0.082093141803045
1124 => 0.081624615891886
1125 => 0.083081377268176
1126 => 0.080785856726601
1127 => 0.075514877561901
1128 => 0.07468072493259
1129 => 0.07635071962058
1130 => 0.080456238605306
1201 => 0.07622142221745
1202 => 0.077078120057276
1203 => 0.076831391021773
1204 => 0.076818243880002
1205 => 0.077320016808114
1206 => 0.076592169005172
1207 => 0.073626786118665
1208 => 0.07498580362044
1209 => 0.074461021697624
1210 => 0.075043306366073
1211 => 0.078185656569224
1212 => 0.076796348640138
1213 => 0.075332825595057
1214 => 0.077168408275351
1215 => 0.079505735802008
1216 => 0.079359470045971
1217 => 0.079075653344916
1218 => 0.080675513228601
1219 => 0.083318013041485
1220 => 0.084032270122483
1221 => 0.084559520097333
1222 => 0.084632218960903
1223 => 0.085381062437771
1224 => 0.081354342329799
1225 => 0.087744850554657
1226 => 0.088848314790863
1227 => 0.088640909248363
1228 => 0.089867363306032
1229 => 0.08950650941013
1230 => 0.088983688731208
1231 => 0.090927879286873
]
'min_raw' => 0.033516811295465
'max_raw' => 0.090927879286873
'avg_raw' => 0.062222345291169
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.033516'
'max' => '$0.090927'
'avg' => '$0.062222'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011559082011262
'max_diff' => 0.041908795475133
'year' => 2032
]
7 => [
'items' => [
101 => 0.088699021702891
102 => 0.085535438967794
103 => 0.083799834910749
104 => 0.086085418340252
105 => 0.08748114438478
106 => 0.088403630515364
107 => 0.088682774261098
108 => 0.081666925149179
109 => 0.077885771594684
110 => 0.080309447672102
111 => 0.083266499759738
112 => 0.081337915756147
113 => 0.081413512597795
114 => 0.078663858631634
115 => 0.083509783123104
116 => 0.082803772685337
117 => 0.086466556085383
118 => 0.085592403431289
119 => 0.088579261105594
120 => 0.087792721379448
121 => 0.091057603807835
122 => 0.092360053801681
123 => 0.094547070051504
124 => 0.096155848107632
125 => 0.09710055335321
126 => 0.097043836793766
127 => 0.10078722962703
128 => 0.098579881657439
129 => 0.095806932375658
130 => 0.095756778471694
131 => 0.097192928197723
201 => 0.10020270403505
202 => 0.10098309511921
203 => 0.10141922727234
204 => 0.10075127569794
205 => 0.098355357679005
206 => 0.097320812426007
207 => 0.098202274955223
208 => 0.097124322026931
209 => 0.098985171201336
210 => 0.10154051457373
211 => 0.10101284627225
212 => 0.10277676229164
213 => 0.10460222980232
214 => 0.10721273032947
215 => 0.10789521183383
216 => 0.10902332780808
217 => 0.11018452971237
218 => 0.11055747646876
219 => 0.11126954754529
220 => 0.11126579457923
221 => 0.11341166869627
222 => 0.11577863429955
223 => 0.11667210901941
224 => 0.11872660487125
225 => 0.1152083527231
226 => 0.11787698739224
227 => 0.12028416266406
228 => 0.11741422906881
301 => 0.12136976392109
302 => 0.12152334837597
303 => 0.12384229130079
304 => 0.12149159839078
305 => 0.12009576444449
306 => 0.12412548474621
307 => 0.12607533946521
308 => 0.1254880273554
309 => 0.1210185532006
310 => 0.11841712753773
311 => 0.11160869480049
312 => 0.11967357748016
313 => 0.12360174657758
314 => 0.12100838019161
315 => 0.12231632334958
316 => 0.12945203711746
317 => 0.13216885491702
318 => 0.1316037758067
319 => 0.13169926487435
320 => 0.13316521044526
321 => 0.13966602041765
322 => 0.1357705843946
323 => 0.13874849927502
324 => 0.14032797458992
325 => 0.14179507928752
326 => 0.13819233383342
327 => 0.13350521493248
328 => 0.13202060762469
329 => 0.12075052101419
330 => 0.12016386406261
331 => 0.11983455573816
401 => 0.1177583133341
402 => 0.11612695553517
403 => 0.11482963924503
404 => 0.11142509388826
405 => 0.1125740280047
406 => 0.10714789328985
407 => 0.11061934199
408 => 0.1019590999665
409 => 0.10917160686415
410 => 0.10524616727221
411 => 0.10788199438384
412 => 0.10787279823136
413 => 0.10301940482909
414 => 0.10022006880241
415 => 0.1020039146704
416 => 0.10391633904275
417 => 0.104226623463
418 => 0.10670613158113
419 => 0.10739810900006
420 => 0.10530138511538
421 => 0.10177963569979
422 => 0.10259765776648
423 => 0.10020349161133
424 => 0.096007807514717
425 => 0.099021221082524
426 => 0.10005013296502
427 => 0.10050455906814
428 => 0.096378585636691
429 => 0.095082115205288
430 => 0.09439188522605
501 => 0.10124702434154
502 => 0.10162256433689
503 => 0.099701248624685
504 => 0.10838577783049
505 => 0.1064202014027
506 => 0.10861623185046
507 => 0.10252343083803
508 => 0.10275618404175
509 => 0.099871754400995
510 => 0.10148684226216
511 => 0.1003453502186
512 => 0.10135635912359
513 => 0.10196235369269
514 => 0.10484631002692
515 => 0.10920453701293
516 => 0.10441554312205
517 => 0.10232890990414
518 => 0.10362344541686
519 => 0.10707096407913
520 => 0.1122941313277
521 => 0.10920191119051
522 => 0.1105741859781
523 => 0.11087396697093
524 => 0.10859387832197
525 => 0.11237820144848
526 => 0.11440625095576
527 => 0.11648661010451
528 => 0.11829292766303
529 => 0.11565566891242
530 => 0.11847791381177
531 => 0.11620368261618
601 => 0.11416346212804
602 => 0.11416655630036
603 => 0.11288669618528
604 => 0.11040680593957
605 => 0.10994947612992
606 => 0.11232856355411
607 => 0.1142363663679
608 => 0.1143935021454
609 => 0.11544975980956
610 => 0.1160748422149
611 => 0.12220149954546
612 => 0.12466569180619
613 => 0.12767885945782
614 => 0.12885265807096
615 => 0.13238537106641
616 => 0.12953241840966
617 => 0.12891516415646
618 => 0.12034595797112
619 => 0.12174916500391
620 => 0.12399583485276
621 => 0.12038300472942
622 => 0.12267451388381
623 => 0.12312690633169
624 => 0.1202602421443
625 => 0.12179145134803
626 => 0.11772501367481
627 => 0.10929317424191
628 => 0.11238758849613
629 => 0.11466611895582
630 => 0.11141437504907
701 => 0.11724300014205
702 => 0.11383803768997
703 => 0.11275882805969
704 => 0.10854844652593
705 => 0.11053558453742
706 => 0.11322321715103
707 => 0.11156257266664
708 => 0.11500865931876
709 => 0.11988923705591
710 => 0.12336742739482
711 => 0.12363443966018
712 => 0.12139819629291
713 => 0.12498179056048
714 => 0.12500789313242
715 => 0.12096558415919
716 => 0.11848969242077
717 => 0.11792716460847
718 => 0.11933246937365
719 => 0.12103876879215
720 => 0.12372912740267
721 => 0.12535485476537
722 => 0.12959388950812
723 => 0.13074085076686
724 => 0.13200101345328
725 => 0.13368497942213
726 => 0.13570701232774
727 => 0.13128291944466
728 => 0.13145869690244
729 => 0.12733904286545
730 => 0.12293660170878
731 => 0.12627750577466
801 => 0.13064529341895
802 => 0.12964331810737
803 => 0.12953057541632
804 => 0.12972017735046
805 => 0.12896472068698
806 => 0.12554781819661
807 => 0.12383187115689
808 => 0.12604588062291
809 => 0.12722252811988
810 => 0.12904740577322
811 => 0.12882245108395
812 => 0.13352313994142
813 => 0.13534968548998
814 => 0.13488237697637
815 => 0.13496837298928
816 => 0.13827524645776
817 => 0.14195316986511
818 => 0.14539803048083
819 => 0.14890229065934
820 => 0.14467776824054
821 => 0.14253281628859
822 => 0.14474585918733
823 => 0.14357158747443
824 => 0.15031930104841
825 => 0.15078649809597
826 => 0.15753372373346
827 => 0.16393764430813
828 => 0.15991545653334
829 => 0.16370819844165
830 => 0.16781035804228
831 => 0.17572408946329
901 => 0.17305902312912
902 => 0.17101762408406
903 => 0.16908851185045
904 => 0.17310268817066
905 => 0.17826686187857
906 => 0.17937917543341
907 => 0.18118154832874
908 => 0.17928657361298
909 => 0.1815688619335
910 => 0.18962634259325
911 => 0.18744914019363
912 => 0.18435716278343
913 => 0.19071776991563
914 => 0.19301964891054
915 => 0.20917544120021
916 => 0.2295727963284
917 => 0.22112815736908
918 => 0.21588629746022
919 => 0.21711825887738
920 => 0.22456668247616
921 => 0.22695887973493
922 => 0.22045606294573
923 => 0.22275296776992
924 => 0.23540913917792
925 => 0.24219876907972
926 => 0.23297753970412
927 => 0.20753653357612
928 => 0.1840787640477
929 => 0.19030082084377
930 => 0.18959543269599
1001 => 0.20319290998435
1002 => 0.18739721463645
1003 => 0.18766317363579
1004 => 0.20154183235449
1005 => 0.19783924414879
1006 => 0.19184152544722
1007 => 0.18412255403169
1008 => 0.16985332145166
1009 => 0.15721466422854
1010 => 0.18200198155201
1011 => 0.18093310735621
1012 => 0.17938521912241
1013 => 0.18282987688773
1014 => 0.19955615721295
1015 => 0.19917056231377
1016 => 0.19671760429742
1017 => 0.19857815133344
1018 => 0.19151536255619
1019 => 0.1933356040408
1020 => 0.18407504821716
1021 => 0.18826120620442
1022 => 0.1918286570366
1023 => 0.19254487560817
1024 => 0.19415855262095
1025 => 0.18036985922504
1026 => 0.18656057774503
1027 => 0.19019704488365
1028 => 0.17376735405558
1029 => 0.18987228272146
1030 => 0.18012982875009
1031 => 0.17682309354546
1101 => 0.18127517686926
1102 => 0.17954019566819
1103 => 0.17804856071301
1104 => 0.17721620277849
1105 => 0.18048532141298
1106 => 0.18033281312124
1107 => 0.17498390052662
1108 => 0.16800646209652
1109 => 0.17034831946027
1110 => 0.16949750072499
1111 => 0.16641402387053
1112 => 0.16849191497002
1113 => 0.15934193416449
1114 => 0.14359986776318
1115 => 0.15399955902042
1116 => 0.1535991822197
1117 => 0.15339729408114
1118 => 0.1612123746346
1119 => 0.16046113496397
1120 => 0.15909762760562
1121 => 0.16638898198862
1122 => 0.16372753955627
1123 => 0.17192947801808
1124 => 0.17733180515715
1125 => 0.1759616002477
1126 => 0.18104251503371
1127 => 0.17040227112405
1128 => 0.17393653333835
1129 => 0.17466493988244
1130 => 0.16629900780734
1201 => 0.16058404706482
1202 => 0.16020292433862
1203 => 0.15029396998119
1204 => 0.15558725341664
1205 => 0.16024512378889
1206 => 0.15801436534593
1207 => 0.1573081738649
1208 => 0.16091595298723
1209 => 0.16119630832358
1210 => 0.15480417694421
1211 => 0.15613330347045
1212 => 0.1616759820338
1213 => 0.1559936421917
1214 => 0.14495378408346
1215 => 0.14221574663464
1216 => 0.14185044196692
1217 => 0.13442466724922
1218 => 0.1423987153894
1219 => 0.13891782968501
1220 => 0.14991390591777
1221 => 0.14363300614676
1222 => 0.14336224911111
1223 => 0.14295296014029
1224 => 0.13656128908588
1225 => 0.13796065883491
1226 => 0.14261237701072
1227 => 0.1442721624612
1228 => 0.1440990332405
1229 => 0.14258958105392
1230 => 0.14328060053529
1231 => 0.14105458601865
]
'min_raw' => 0.077885771594684
'max_raw' => 0.24219876907972
'avg_raw' => 0.1600422703372
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.077885'
'max' => '$0.242198'
'avg' => '$0.160042'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.044368960299219
'max_diff' => 0.15127088979284
'year' => 2033
]
8 => [
'items' => [
101 => 0.14026853396235
102 => 0.13778753745198
103 => 0.13414115797453
104 => 0.13464820940541
105 => 0.12742377753348
106 => 0.12348752362004
107 => 0.12239802041579
108 => 0.12094109119759
109 => 0.12256258444772
110 => 0.12740331162569
111 => 0.1215643676315
112 => 0.11155390770776
113 => 0.11215555340617
114 => 0.11350727266029
115 => 0.11098835277276
116 => 0.10860440649613
117 => 0.11067705436798
118 => 0.10643549053273
119 => 0.11401984538547
120 => 0.11381470984161
121 => 0.11664168831735
122 => 0.11840945597367
123 => 0.11433532384743
124 => 0.1133106906353
125 => 0.11389436827991
126 => 0.10424747697254
127 => 0.11585333148731
128 => 0.11595369939909
129 => 0.11509428840324
130 => 0.1212740476418
131 => 0.13431526715039
201 => 0.12940863578942
202 => 0.12750863982274
203 => 0.12389674610118
204 => 0.12870938003213
205 => 0.12833984483501
206 => 0.12666866653161
207 => 0.12565793267932
208 => 0.12752024079296
209 => 0.12542717209479
210 => 0.12505119944291
211 => 0.12277321423484
212 => 0.12196007715728
213 => 0.12135806283698
214 => 0.12069530422303
215 => 0.12215718457625
216 => 0.11884437136948
217 => 0.1148494434012
218 => 0.11451730836636
219 => 0.11543436239917
220 => 0.1150286342563
221 => 0.11451536589611
222 => 0.11353539681619
223 => 0.1132446609239
224 => 0.11418941152883
225 => 0.11312284317825
226 => 0.11469662287851
227 => 0.11426864188124
228 => 0.11187797482091
301 => 0.10889831852542
302 => 0.10887179333435
303 => 0.1082298312731
304 => 0.10741219606846
305 => 0.10718474865949
306 => 0.1105025017453
307 => 0.11737015134094
308 => 0.11602186739639
309 => 0.11699614072402
310 => 0.12178860122223
311 => 0.1233119803003
312 => 0.1222307219139
313 => 0.12075062874548
314 => 0.12081574533329
315 => 0.12587367174444
316 => 0.12618912841053
317 => 0.12698618563554
318 => 0.12801062941804
319 => 0.12240518911988
320 => 0.12055172959934
321 => 0.11967345765249
322 => 0.1169687199902
323 => 0.11988554767229
324 => 0.11818603709295
325 => 0.11841535913366
326 => 0.11826601285381
327 => 0.11834756602136
328 => 0.11401772540372
329 => 0.11559529175506
330 => 0.11297228172193
331 => 0.10946036573425
401 => 0.10944859256042
402 => 0.11030812902308
403 => 0.10979684310143
404 => 0.10842098583262
405 => 0.10861641986379
406 => 0.10690421210539
407 => 0.10882431288618
408 => 0.10887937450613
409 => 0.10814003111692
410 => 0.11109821129259
411 => 0.11231018012421
412 => 0.11182352846716
413 => 0.11227603534663
414 => 0.11607789468142
415 => 0.11669776363975
416 => 0.11697306848479
417 => 0.11660419646333
418 => 0.1123455263561
419 => 0.11253441648462
420 => 0.11114846605212
421 => 0.10997748398451
422 => 0.11002431712622
423 => 0.11062635412598
424 => 0.11325548501296
425 => 0.11878833596886
426 => 0.11899830361818
427 => 0.11925279053434
428 => 0.11821766435144
429 => 0.11790546038986
430 => 0.11831733800187
501 => 0.12039518591742
502 => 0.12573997488644
503 => 0.12385076949834
504 => 0.12231481611057
505 => 0.1236622613217
506 => 0.12345483269307
507 => 0.12170392631866
508 => 0.1216547842083
509 => 0.11829423507717
510 => 0.11705191657939
511 => 0.11601374225672
512 => 0.11488008299859
513 => 0.11420801178976
514 => 0.11524061861742
515 => 0.11547678801635
516 => 0.1132189751408
517 => 0.11291124358877
518 => 0.11475502232122
519 => 0.11394364404407
520 => 0.11477816672333
521 => 0.11497178314332
522 => 0.11494060644034
523 => 0.11409343433279
524 => 0.11463339657111
525 => 0.113356224907
526 => 0.11196749254728
527 => 0.11108156782285
528 => 0.11030848099993
529 => 0.11073743450136
530 => 0.10920829359258
531 => 0.10871909064034
601 => 0.1144504695143
602 => 0.1186843007112
603 => 0.11862273912881
604 => 0.11824799882841
605 => 0.11769121075529
606 => 0.12035445340186
607 => 0.11942663291701
608 => 0.12010169984173
609 => 0.12027353270654
610 => 0.12079361903558
611 => 0.12097950519528
612 => 0.12041762811443
613 => 0.11853190000358
614 => 0.11383284484101
615 => 0.11164542197798
616 => 0.11092353599877
617 => 0.11094977518305
618 => 0.11022598134352
619 => 0.11043917106743
620 => 0.11015184265776
621 => 0.10960771216206
622 => 0.11070383597657
623 => 0.11083015403509
624 => 0.11057430563908
625 => 0.11063456719819
626 => 0.1085162517535
627 => 0.10867730267602
628 => 0.10778055067407
629 => 0.10761242048421
630 => 0.10534550951241
701 => 0.10132934813185
702 => 0.1035546913949
703 => 0.10086678966375
704 => 0.09984884054981
705 => 0.10466765333164
706 => 0.10418397818141
707 => 0.10335613657274
708 => 0.10213158629621
709 => 0.10167738868699
710 => 0.098917827794834
711 => 0.098754778215641
712 => 0.1001224911082
713 => 0.099491338668413
714 => 0.098604961606826
715 => 0.095394593740359
716 => 0.091785077342177
717 => 0.091894025953627
718 => 0.093042145962449
719 => 0.096380459733175
720 => 0.095076122789538
721 => 0.094129811371387
722 => 0.093952595688784
723 => 0.096170820982721
724 => 0.099310074506208
725 => 0.10078294202259
726 => 0.099323375045507
727 => 0.097646703090901
728 => 0.097748754343829
729 => 0.098427655609785
730 => 0.09849899853369
731 => 0.097407657455904
801 => 0.097714863576734
802 => 0.097248189387677
803 => 0.094384210750847
804 => 0.094332410459081
805 => 0.093629543913709
806 => 0.093608261394052
807 => 0.092412510062097
808 => 0.092245216184918
809 => 0.089870979338404
810 => 0.091433709220631
811 => 0.090385512062635
812 => 0.088805631700821
813 => 0.088533259730951
814 => 0.088525071900638
815 => 0.090147255777436
816 => 0.091414753057549
817 => 0.09040374590097
818 => 0.090173559168967
819 => 0.092631351249157
820 => 0.092318574803681
821 => 0.09204771241909
822 => 0.099028988784814
823 => 0.093502763785555
824 => 0.091093014259983
825 => 0.088110491623065
826 => 0.08908161603283
827 => 0.089286246214753
828 => 0.082113816913077
829 => 0.079203963238656
830 => 0.078205411113117
831 => 0.077630730247415
901 => 0.077892619534304
902 => 0.075273409935531
903 => 0.077033562103634
904 => 0.074765547987373
905 => 0.074385308040025
906 => 0.078440798232936
907 => 0.079005096001449
908 => 0.076597626407396
909 => 0.078143611620702
910 => 0.077583015891555
911 => 0.074804426579801
912 => 0.074698304906011
913 => 0.07330410646151
914 => 0.071122455865882
915 => 0.070125383002179
916 => 0.069606098797779
917 => 0.069820365581162
918 => 0.069712025738811
919 => 0.069005034983584
920 => 0.069752549621327
921 => 0.067842958616267
922 => 0.067082544091431
923 => 0.066739082492046
924 => 0.065044210563097
925 => 0.067741505515022
926 => 0.068272906600178
927 => 0.06880535470963
928 => 0.073439951984643
929 => 0.073208420602019
930 => 0.075301351540581
1001 => 0.075220024092961
1002 => 0.07462308628605
1003 => 0.072104703870195
1004 => 0.073108486215305
1005 => 0.070019000179469
1006 => 0.072333853182147
1007 => 0.071277450942297
1008 => 0.071976682522209
1009 => 0.070719401094358
1010 => 0.071415232548408
1011 => 0.068398921511149
1012 => 0.065582332705198
1013 => 0.066715810262066
1014 => 0.067948029995262
1015 => 0.070619796340582
1016 => 0.069028514346903
1017 => 0.069600799524864
1018 => 0.067683739978077
1019 => 0.063728298552068
1020 => 0.06375068592098
1021 => 0.063142227431564
1022 => 0.062616430460314
1023 => 0.069211292226053
1024 => 0.068391116916147
1025 => 0.067084274901703
1026 => 0.068833534869874
1027 => 0.069296066969947
1028 => 0.069309234608593
1029 => 0.070585449526436
1030 => 0.071266565656863
1031 => 0.071386615326977
1101 => 0.073394767074652
1102 => 0.07406787305231
1103 => 0.076840301312762
1104 => 0.07120877771189
1105 => 0.071092800189257
1106 => 0.068858150544911
1107 => 0.067440900412053
1108 => 0.068955190874018
1109 => 0.070296645502057
1110 => 0.068899833279494
1111 => 0.069082227467445
1112 => 0.067207121182406
1113 => 0.067877383447357
1114 => 0.068454703604009
1115 => 0.068135941346816
1116 => 0.06765873881953
1117 => 0.070186661520305
1118 => 0.070044026214518
1119 => 0.072398085950171
1120 => 0.074233243854539
1121 => 0.077522174892882
1122 => 0.074090003898519
1123 => 0.07396492194584
1124 => 0.075187618097051
1125 => 0.0740676858639
1126 => 0.074775444376504
1127 => 0.077408144054597
1128 => 0.077463768850241
1129 => 0.076531981854699
1130 => 0.076475282531339
1201 => 0.076654242416466
1202 => 0.077702416053364
1203 => 0.077336151977509
1204 => 0.07776000203876
1205 => 0.078290033030577
1206 => 0.080482465941214
1207 => 0.081011054093523
1208 => 0.079726858924949
1209 => 0.079842807370147
1210 => 0.079362483125155
1211 => 0.078898495922938
1212 => 0.079941471393633
1213 => 0.081847529566063
1214 => 0.081835672077097
1215 => 0.082277840524624
1216 => 0.082553307804313
1217 => 0.081370800585517
1218 => 0.080601031868077
1219 => 0.080896210176
1220 => 0.081368206718515
1221 => 0.080743148058672
1222 => 0.076884996454784
1223 => 0.078055313191725
1224 => 0.077860515261134
1225 => 0.077583099319733
1226 => 0.078759861848519
1227 => 0.078646360231887
1228 => 0.075246546155351
1229 => 0.075464191221861
1230 => 0.075259781872709
1231 => 0.075920270298039
]
'min_raw' => 0.062616430460314
'max_raw' => 0.14026853396235
'avg_raw' => 0.10144248221133
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.062616'
'max' => '$0.140268'
'avg' => '$0.101442'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01526934113437
'max_diff' => -0.10193023511737
'year' => 2034
]
9 => [
'items' => [
101 => 0.074032017321394
102 => 0.074612831219432
103 => 0.07497711225149
104 => 0.07519167657791
105 => 0.075966830053077
106 => 0.075875874739554
107 => 0.075961176143081
108 => 0.077110524113824
109 => 0.082923531741243
110 => 0.083239920920725
111 => 0.08168190488705
112 => 0.082304301561996
113 => 0.08110943604929
114 => 0.081911557272873
115 => 0.082460348242378
116 => 0.079980467377618
117 => 0.079833624927101
118 => 0.078633827779387
119 => 0.079278530806584
120 => 0.078252761934525
121 => 0.078504449735856
122 => 0.077800708701585
123 => 0.079067302449831
124 => 0.080483551069139
125 => 0.080841351399729
126 => 0.079900132772674
127 => 0.079218628457356
128 => 0.078022131381135
129 => 0.080011932684567
130 => 0.080593811223787
131 => 0.080008876324314
201 => 0.079873334127026
202 => 0.079616481908085
203 => 0.079927826539493
204 => 0.080590642188297
205 => 0.080278070568604
206 => 0.080484529630215
207 => 0.079697720587016
208 => 0.081371192044611
209 => 0.08402906746211
210 => 0.084037612966183
211 => 0.083725039661613
212 => 0.083597141399869
213 => 0.083917860578892
214 => 0.084091837576923
215 => 0.085128984592045
216 => 0.086241884661031
217 => 0.091435303686648
218 => 0.089977012406057
219 => 0.094584922723465
220 => 0.098229181522266
221 => 0.099321935391902
222 => 0.098316653249879
223 => 0.094877637346293
224 => 0.094708902819371
225 => 0.099848244494392
226 => 0.098396145074438
227 => 0.098223422468976
228 => 0.096385945766313
301 => 0.097472122073504
302 => 0.097234559381876
303 => 0.096859555051177
304 => 0.0989319037816
305 => 0.1028111556051
306 => 0.10220653782902
307 => 0.10175521870658
308 => 0.099777669689084
309 => 0.10096859589918
310 => 0.10054452988645
311 => 0.10236658659607
312 => 0.10128724056479
313 => 0.098385143993152
314 => 0.098847312437621
315 => 0.098777456606994
316 => 0.10021508465127
317 => 0.099783544396502
318 => 0.098693191446276
319 => 0.1027978967441
320 => 0.10253136001363
321 => 0.10290924815866
322 => 0.10307560620668
323 => 0.10557406798844
324 => 0.10659760783857
325 => 0.10682996930414
326 => 0.10780225299835
327 => 0.1068057780001
328 => 0.11079238846774
329 => 0.11344325180355
330 => 0.11652236598027
331 => 0.12102177938034
401 => 0.12271360044066
402 => 0.12240798810902
403 => 0.12581939199785
404 => 0.13194960895483
405 => 0.12364708022564
406 => 0.1323896631376
407 => 0.12962186232564
408 => 0.12305945639111
409 => 0.12263691481461
410 => 0.12708105230458
411 => 0.13693772152494
412 => 0.13446873767865
413 => 0.13694175989802
414 => 0.13405684811682
415 => 0.13391358793094
416 => 0.13680164617205
417 => 0.14354975167227
418 => 0.14034397969807
419 => 0.13574771948551
420 => 0.13914152650073
421 => 0.13620149678214
422 => 0.12957678696363
423 => 0.13446684969324
424 => 0.13119700400692
425 => 0.13215131881274
426 => 0.13902404809254
427 => 0.13819710312261
428 => 0.13926724648675
429 => 0.13737847145958
430 => 0.13561405775172
501 => 0.13232064853892
502 => 0.13134563243412
503 => 0.13161509180808
504 => 0.13134549890343
505 => 0.12950286671686
506 => 0.12910495047161
507 => 0.12844173929642
508 => 0.12864729617157
509 => 0.12740026513293
510 => 0.1297536703526
511 => 0.13019048309951
512 => 0.13190309516068
513 => 0.13208090422625
514 => 0.1368505044391
515 => 0.13422348879174
516 => 0.13598591769361
517 => 0.135828269464
518 => 0.12320168362667
519 => 0.12494151574974
520 => 0.12764814854385
521 => 0.12642881413886
522 => 0.12470496057051
523 => 0.12331285638689
524 => 0.12120367619874
525 => 0.12417230681034
526 => 0.12807574038593
527 => 0.13217990174337
528 => 0.13711078269903
529 => 0.13601026747151
530 => 0.13208772235375
531 => 0.13226368486231
601 => 0.13335141585155
602 => 0.13194270538971
603 => 0.13152724917322
604 => 0.13329433854717
605 => 0.13330650752051
606 => 0.13168561588582
607 => 0.1298842914539
608 => 0.12987674383875
609 => 0.12955621555482
610 => 0.13411386938647
611 => 0.1366201181631
612 => 0.13690745554632
613 => 0.13660077806783
614 => 0.13671880605771
615 => 0.13526047511601
616 => 0.13859378719412
617 => 0.1416527639874
618 => 0.14083289286129
619 => 0.13960378949171
620 => 0.1386247494562
621 => 0.14060226214326
622 => 0.1405142066162
623 => 0.1416260464937
624 => 0.14157560701456
625 => 0.14120173708217
626 => 0.14083290621336
627 => 0.14229527891743
628 => 0.14187413906364
629 => 0.14145234506335
630 => 0.14060637262232
701 => 0.14072135432717
702 => 0.13949246317961
703 => 0.13892392190452
704 => 0.13037442524841
705 => 0.12808972037904
706 => 0.1288085350404
707 => 0.12904518749093
708 => 0.12805088100385
709 => 0.12947646108995
710 => 0.12925428594359
711 => 0.13011863946995
712 => 0.12957862891255
713 => 0.12960079113419
714 => 0.1311888470411
715 => 0.13164986642696
716 => 0.13141538824643
717 => 0.13157960872663
718 => 0.13536400037968
719 => 0.13482598090465
720 => 0.13454016878167
721 => 0.13461934069301
722 => 0.13558633389864
723 => 0.13585703920034
724 => 0.1347100418149
725 => 0.13525097241259
726 => 0.13755418624323
727 => 0.13836018073334
728 => 0.14093252824648
729 => 0.13983974930307
730 => 0.14184559234806
731 => 0.14801087002609
801 => 0.15293612044007
802 => 0.1484066566148
803 => 0.15745125177321
804 => 0.16449376647415
805 => 0.16422346303001
806 => 0.1629954376956
807 => 0.15497772194352
808 => 0.14759970037104
809 => 0.15377172870376
810 => 0.15378746247327
811 => 0.15325727976579
812 => 0.14996436050396
813 => 0.15314269331329
814 => 0.15339497782969
815 => 0.15325376558837
816 => 0.15072909211098
817 => 0.14687438234866
818 => 0.14762758340935
819 => 0.14886134211164
820 => 0.14652557949918
821 => 0.14577916181565
822 => 0.1471668943011
823 => 0.15163845751478
824 => 0.15079313439124
825 => 0.15077105958827
826 => 0.15438771038358
827 => 0.15179896893623
828 => 0.14763708368681
829 => 0.14658615277281
830 => 0.14285605602
831 => 0.14543244713331
901 => 0.14552516686282
902 => 0.14411410378014
903 => 0.14775158367916
904 => 0.14771806366152
905 => 0.1511713094582
906 => 0.15777261844157
907 => 0.1558202865445
908 => 0.15354993696132
909 => 0.15379678691098
910 => 0.15650412158113
911 => 0.15486720523712
912 => 0.15545585176741
913 => 0.15650323059411
914 => 0.1571351402452
915 => 0.15370586483672
916 => 0.1529063366978
917 => 0.15127078272181
918 => 0.15084409721854
919 => 0.15217622180503
920 => 0.15182525404114
921 => 0.14551737412859
922 => 0.14485816558101
923 => 0.14487838256603
924 => 0.1432207713295
925 => 0.1406925163215
926 => 0.14733661952825
927 => 0.14680300505658
928 => 0.14621393597834
929 => 0.14628609357925
930 => 0.14917007359175
1001 => 0.14749721954002
1002 => 0.15194477621193
1003 => 0.15103049226597
1004 => 0.15009276038672
1005 => 0.14996313727699
1006 => 0.149602190507
1007 => 0.14836436973033
1008 => 0.146869626761
1009 => 0.14588266798022
1010 => 0.1345690498831
1011 => 0.13666879159364
1012 => 0.13908435303413
1013 => 0.13991819516364
1014 => 0.138491850501
1015 => 0.14842069051128
1016 => 0.15023478525784
1017 => 0.14473977394004
1018 => 0.14371188168231
1019 => 0.14848807895657
1020 => 0.14560744813382
1021 => 0.14690459601692
1022 => 0.14410087179561
1023 => 0.14979782295629
1024 => 0.14975442173345
1025 => 0.14753817906047
1026 => 0.1494113321915
1027 => 0.14908582573895
1028 => 0.14658369321952
1029 => 0.14987714502013
1030 => 0.14987877853113
1031 => 0.14774569314366
1101 => 0.14525471640353
1102 => 0.14480938859663
1103 => 0.14447389391552
1104 => 0.14682208489156
1105 => 0.14892746557809
1106 => 0.15284505706757
1107 => 0.15383003264771
1108 => 0.15767445791051
1109 => 0.15538528984818
1110 => 0.15640004840052
1111 => 0.15750171235545
1112 => 0.15802989056779
1113 => 0.15716925251438
1114 => 0.16314122737608
1115 => 0.16364544503099
1116 => 0.16381450484922
1117 => 0.16180078852679
1118 => 0.16358943993728
1119 => 0.16275258917622
1120 => 0.16492984237266
1121 => 0.16527126347442
1122 => 0.16498209194764
1123 => 0.1650904643943
1124 => 0.1599944373784
1125 => 0.15973018149394
1126 => 0.1561270337586
1127 => 0.15759534309388
1128 => 0.15485040916948
1129 => 0.15572085599286
1130 => 0.15610454065868
1201 => 0.15590412556317
1202 => 0.15767835910066
1203 => 0.15616989814183
1204 => 0.15218882165753
1205 => 0.14820666053161
1206 => 0.14815666774247
1207 => 0.147108235009
1208 => 0.14635041017273
1209 => 0.14649639412148
1210 => 0.14701086059784
1211 => 0.14632050844588
1212 => 0.14646783007924
1213 => 0.148914350792
1214 => 0.14940498307316
1215 => 0.14773762287938
1216 => 0.14104293110244
1217 => 0.13940003694802
1218 => 0.14058091668621
1219 => 0.14001653222975
1220 => 0.1130042693517
1221 => 0.11935039983634
1222 => 0.11557974459659
1223 => 0.11731743601057
1224 => 0.11346857341723
1225 => 0.11530545238295
1226 => 0.11496624791006
1227 => 0.12517063793371
1228 => 0.12501131041917
1229 => 0.12508757206895
1230 => 0.12144740482601
1231 => 0.12724629008533
]
'min_raw' => 0.074032017321394
'max_raw' => 0.16527126347442
'avg_raw' => 0.11965164039791
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.074032'
'max' => '$0.165271'
'avg' => '$0.119651'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01141558686108
'max_diff' => 0.025002729512077
'year' => 2035
]
10 => [
'items' => [
101 => 0.13010302948524
102 => 0.12957432305198
103 => 0.1297073870707
104 => 0.1274209063669
105 => 0.12510971020017
106 => 0.12254623796072
107 => 0.12730885252686
108 => 0.12677933108765
109 => 0.12799386275341
110 => 0.13108275873827
111 => 0.13153761040562
112 => 0.13214893565918
113 => 0.13192981907287
114 => 0.13715006512096
115 => 0.13651785888025
116 => 0.13804129402222
117 => 0.13490747235188
118 => 0.13136125566679
119 => 0.13203527552407
120 => 0.13197036199169
121 => 0.13114393822019
122 => 0.13039787979119
123 => 0.12915590270756
124 => 0.13308570197819
125 => 0.13292615930446
126 => 0.1355089697441
127 => 0.13505243291081
128 => 0.13200356820459
129 => 0.13211245900403
130 => 0.13284480196141
131 => 0.13537944929861
201 => 0.13613190520024
202 => 0.13578333764642
203 => 0.13660837119165
204 => 0.13726044406646
205 => 0.13669026150523
206 => 0.14476284416365
207 => 0.14141054502538
208 => 0.14304443230023
209 => 0.14343410478786
210 => 0.14243596690473
211 => 0.14265242727094
212 => 0.14298030574383
213 => 0.14497111962606
214 => 0.15019559129965
215 => 0.1525094742397
216 => 0.15947090522982
217 => 0.15231733847234
218 => 0.15189287542535
219 => 0.15314683936174
220 => 0.15723393629525
221 => 0.16054614447837
222 => 0.16164499501858
223 => 0.16179022625752
224 => 0.16385174292116
225 => 0.16503336582775
226 => 0.16360142057492
227 => 0.16238799690407
228 => 0.15804166393076
229 => 0.15854476380709
301 => 0.16201062305488
302 => 0.16690635338047
303 => 0.17110739931375
304 => 0.16963633944915
305 => 0.18085948780965
306 => 0.18197221712714
307 => 0.18181847391431
308 => 0.18435343689589
309 => 0.17932205161369
310 => 0.17717103692706
311 => 0.16265035287465
312 => 0.16673007280237
313 => 0.17266018531086
314 => 0.17187531268358
315 => 0.16756870646756
316 => 0.17110413236675
317 => 0.16993521000149
318 => 0.16901323243337
319 => 0.17323699040707
320 => 0.16859279501258
321 => 0.17261385590918
322 => 0.16745680371674
323 => 0.1696430591267
324 => 0.16840203481873
325 => 0.1692051296402
326 => 0.16451025372378
327 => 0.16704349480661
328 => 0.16440486256621
329 => 0.16440361151097
330 => 0.16434536355802
331 => 0.16744970268736
401 => 0.16755093507492
402 => 0.16525682376794
403 => 0.16492620648785
404 => 0.16614867185587
405 => 0.1647174850741
406 => 0.16538712836151
407 => 0.1647377678871
408 => 0.16459158316669
409 => 0.16342675844315
410 => 0.16292491992473
411 => 0.16312170373859
412 => 0.16244997913288
413 => 0.1620452407606
414 => 0.16426485090865
415 => 0.16307900274537
416 => 0.16408310267017
417 => 0.16293880407834
418 => 0.1589721666119
419 => 0.15669091145852
420 => 0.14919830099189
421 => 0.15132319602567
422 => 0.15273200363143
423 => 0.15226639272613
424 => 0.15326670511822
425 => 0.15332811617489
426 => 0.15300290441925
427 => 0.15262635086841
428 => 0.15244306542459
429 => 0.15380912495992
430 => 0.15460216849964
501 => 0.15287339632208
502 => 0.15246836918898
503 => 0.15421625330861
504 => 0.15528246161187
505 => 0.16315474467242
506 => 0.16257154051616
507 => 0.16403526850035
508 => 0.16387047519207
509 => 0.16540469530965
510 => 0.16791249679211
511 => 0.16281343518596
512 => 0.1636984559685
513 => 0.16348146931073
514 => 0.16585047274326
515 => 0.16585786851339
516 => 0.16443753261509
517 => 0.16520751974788
518 => 0.16477773405385
519 => 0.16555441489198
520 => 0.16256375146909
521 => 0.166206056696
522 => 0.16827100905469
523 => 0.1682996809202
524 => 0.16927845194974
525 => 0.17027294000236
526 => 0.17218177321769
527 => 0.17021970368
528 => 0.16669013158532
529 => 0.1669449552901
530 => 0.16487556846241
531 => 0.16491035522885
601 => 0.16472466074331
602 => 0.16528194387284
603 => 0.16268604377727
604 => 0.16329529634109
605 => 0.16244233918397
606 => 0.16369660180622
607 => 0.16234722256171
608 => 0.1634813646732
609 => 0.16397082281111
610 => 0.16577693387727
611 => 0.16208045848874
612 => 0.15454309494213
613 => 0.15612754014133
614 => 0.15378402123623
615 => 0.1540009228333
616 => 0.15443909857902
617 => 0.15301882762496
618 => 0.15328977056512
619 => 0.1532800905767
620 => 0.15319667366606
621 => 0.15282720633744
622 => 0.15229140561407
623 => 0.15442587078524
624 => 0.15478855801061
625 => 0.15559476678515
626 => 0.15799349724157
627 => 0.15775380750302
628 => 0.15814475141123
629 => 0.15729132305465
630 => 0.15404051092707
701 => 0.15421704566573
702 => 0.15201565464591
703 => 0.15553847226738
704 => 0.15470422255569
705 => 0.15416637633945
706 => 0.15401962001624
707 => 0.15642429646149
708 => 0.1571438133426
709 => 0.15669545870728
710 => 0.15577587026964
711 => 0.15754175192182
712 => 0.15801422735538
713 => 0.15811999718073
714 => 0.16124880089419
715 => 0.15829486255164
716 => 0.15900590487031
717 => 0.16455325406462
718 => 0.15952257382725
719 => 0.16218743734654
720 => 0.16205700614455
721 => 0.16342026014695
722 => 0.16194517952595
723 => 0.16196346491811
724 => 0.16317394211742
725 => 0.16147404520171
726 => 0.16105312681967
727 => 0.16047163108956
728 => 0.16174130574266
729 => 0.16250241827474
730 => 0.1686364263078
731 => 0.1725992752419
801 => 0.1724272375184
802 => 0.17399934027006
803 => 0.17329109358163
804 => 0.17100397819863
805 => 0.1749078052734
806 => 0.17367247104388
807 => 0.17377431049683
808 => 0.1737705200273
809 => 0.17459190929514
810 => 0.17400987971966
811 => 0.17286263968227
812 => 0.17362423115854
813 => 0.17588588556912
814 => 0.18290613025561
815 => 0.18683475218804
816 => 0.18266962228235
817 => 0.18554267311798
818 => 0.18381986638929
819 => 0.18350678115763
820 => 0.18531126939919
821 => 0.18711891615855
822 => 0.18700377687465
823 => 0.18569151815104
824 => 0.18495025649541
825 => 0.19056333809273
826 => 0.19469896099728
827 => 0.19441693924076
828 => 0.19566169155566
829 => 0.19931632285095
830 => 0.19965045653527
831 => 0.19960836337102
901 => 0.19878017817121
902 => 0.20237863729527
903 => 0.20538053520542
904 => 0.19858847722602
905 => 0.20117480399001
906 => 0.20233588940061
907 => 0.20404070726189
908 => 0.20691702075451
909 => 0.21004146011197
910 => 0.21048329009485
911 => 0.21016979057849
912 => 0.2081091388328
913 => 0.21152793766005
914 => 0.21353058983236
915 => 0.21472312337109
916 => 0.21774719000664
917 => 0.20234305986882
918 => 0.19143925092234
919 => 0.18973646370243
920 => 0.19319914847291
921 => 0.19411223083249
922 => 0.19374416847825
923 => 0.18147094017804
924 => 0.18967184769543
925 => 0.19849533463226
926 => 0.19883428070029
927 => 0.20325150275128
928 => 0.20468993131913
929 => 0.2082463740487
930 => 0.20802391758765
1001 => 0.20888985479694
1002 => 0.20869079082847
1003 => 0.21527835208764
1004 => 0.22254541041881
1005 => 0.22229377529663
1006 => 0.22124904968159
1007 => 0.22280064537211
1008 => 0.23030102835518
1009 => 0.22961051328129
1010 => 0.23028128985764
1011 => 0.23912466409775
1012 => 0.25062230856519
1013 => 0.24528049836543
1014 => 0.25687068943444
1015 => 0.26416610034275
1016 => 0.2767827591491
1017 => 0.27520309132819
1018 => 0.28011466401618
1019 => 0.27237515624214
1020 => 0.25460368198034
1021 => 0.25179127815194
1022 => 0.2574217818378
1023 => 0.27126382573299
1024 => 0.25698584661589
1025 => 0.2598742631956
1026 => 0.25904239902633
1027 => 0.25899807251994
1028 => 0.26068983497974
1029 => 0.25823584529541
1030 => 0.24823784985713
1031 => 0.25281987224794
1101 => 0.25105053335606
1102 => 0.25301374676955
1103 => 0.26360839987136
1104 => 0.25892425119007
1105 => 0.25398988106366
1106 => 0.26017867622656
1107 => 0.26805913916968
1108 => 0.26756599396125
1109 => 0.2666090861382
1110 => 0.27200312543469
1111 => 0.28091249804727
1112 => 0.2833206656637
1113 => 0.28509832576532
1114 => 0.28534343505952
1115 => 0.28786821312436
1116 => 0.27429184514371
1117 => 0.29583788979486
1118 => 0.29955829650864
1119 => 0.29885901424151
1120 => 0.30299408972523
1121 => 0.30177744562118
1122 => 0.30001471920002
1123 => 0.3065696933975
1124 => 0.29905494443923
1125 => 0.28838870437356
1126 => 0.28253699411923
1127 => 0.29024299822614
1128 => 0.29494878603174
1129 => 0.29805901242693
1130 => 0.29900016505487
1201 => 0.27534573994309
1202 => 0.2625973167424
1203 => 0.27076890985307
1204 => 0.28073881742132
1205 => 0.27423646180378
1206 => 0.2744913418334
1207 => 0.26522069151178
1208 => 0.28155906426641
1209 => 0.27917870078341
1210 => 0.29152803074403
1211 => 0.28858076403936
1212 => 0.29865116322403
1213 => 0.29599928962288
1214 => 0.30700706867699
1215 => 0.3113983697654
1216 => 0.31877204774428
1217 => 0.32419615528181
1218 => 0.32738129497449
1219 => 0.3271900711345
1220 => 0.3398111814272
1221 => 0.3323689536356
1222 => 0.32301976153094
1223 => 0.32285066414209
1224 => 0.32769274321217
1225 => 0.33784041258354
1226 => 0.34047155560896
1227 => 0.34194200561303
1228 => 0.33968996024506
1229 => 0.33161195536655
1230 => 0.32812391381643
1231 => 0.33109582627542
]
'min_raw' => 0.12254623796072
'max_raw' => 0.34194200561303
'avg_raw' => 0.23224412178687
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.122546'
'max' => '$0.341942'
'avg' => '$0.232244'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.048514220639327
'max_diff' => 0.1766707421386
'year' => 2036
]
11 => [
'items' => [
101 => 0.32746143271742
102 => 0.33373541562926
103 => 0.34235093421767
104 => 0.34057186369861
105 => 0.34651902971065
106 => 0.35267372087299
107 => 0.36147520565962
108 => 0.36377623970088
109 => 0.3675797614706
110 => 0.37149483476346
111 => 0.37275225079094
112 => 0.37515304814068
113 => 0.37514039475358
114 => 0.38237535915932
115 => 0.39035574894706
116 => 0.39336816134548
117 => 0.40029503755026
118 => 0.38843300479627
119 => 0.39743049290138
120 => 0.40554645239393
121 => 0.39587027090518
122 => 0.40920663282629
123 => 0.40972445353884
124 => 0.41754293151328
125 => 0.40961740624704
126 => 0.40491125464312
127 => 0.41849773798644
128 => 0.42507180930606
129 => 0.42309164552303
130 => 0.40802250136137
131 => 0.39925161311329
201 => 0.37629650679007
202 => 0.40348782181672
203 => 0.41673191818467
204 => 0.40798820235132
205 => 0.41239802402609
206 => 0.43645658119413
207 => 0.4456165220875
208 => 0.4437113184145
209 => 0.44403326647292
210 => 0.44897580431429
211 => 0.47089373900826
212 => 0.45776000448589
213 => 0.4678002524166
214 => 0.47312556371624
215 => 0.47807200963417
216 => 0.46592510180002
217 => 0.4501221531813
218 => 0.4451166959911
219 => 0.4071188121315
220 => 0.40514085726016
221 => 0.40403057125271
222 => 0.39703037502882
223 => 0.39153013831196
224 => 0.38715614586402
225 => 0.37567748349591
226 => 0.37955119508548
227 => 0.36125660305374
228 => 0.37296083471511
301 => 0.34376222409408
302 => 0.36807969466068
303 => 0.35484480101099
304 => 0.36373167614543
305 => 0.36370067067528
306 => 0.34733711596645
307 => 0.33789895910907
308 => 0.34391331999715
309 => 0.35036119228974
310 => 0.35140733787597
311 => 0.35976717260999
312 => 0.36210022279021
313 => 0.35503097182444
314 => 0.34315714778907
315 => 0.3459151662994
316 => 0.33784306795199
317 => 0.32369702608693
318 => 0.33385696032061
319 => 0.33732600856876
320 => 0.33885813790247
321 => 0.32494713041207
322 => 0.32057598983592
323 => 0.3182488312706
324 => 0.34136141140901
325 => 0.3426275707227
326 => 0.33614972065701
327 => 0.36543021720885
328 => 0.35880313905039
329 => 0.36620720902696
330 => 0.34566490502777
331 => 0.34644964870442
401 => 0.33672459278618
402 => 0.34216997427192
403 => 0.33832135415064
404 => 0.34173004126018
405 => 0.3437731942591
406 => 0.35349665439136
407 => 0.36819072095638
408 => 0.35204429369642
409 => 0.34500906411816
410 => 0.34937368098088
411 => 0.36099723084879
412 => 0.37860750389724
413 => 0.36818186781278
414 => 0.37280858806828
415 => 0.37381932061565
416 => 0.366131842545
417 => 0.37889095217901
418 => 0.38572866268669
419 => 0.39274273880276
420 => 0.39883286456438
421 => 0.38994116255916
422 => 0.39945655828017
423 => 0.3917888290225
424 => 0.38491008320309
425 => 0.38492051542107
426 => 0.38060537768611
427 => 0.37224425458229
428 => 0.3707023351993
429 => 0.37872359455256
430 => 0.38515588493778
501 => 0.3856856791825
502 => 0.38924692564277
503 => 0.39135443461421
504 => 0.41201088755377
505 => 0.42031908380521
506 => 0.43047818891536
507 => 0.43443573289155
508 => 0.44634652140185
509 => 0.43672759233284
510 => 0.43464647652286
511 => 0.40575479958609
512 => 0.41048581006594
513 => 0.4180606143188
514 => 0.40587970531824
515 => 0.41360568842033
516 => 0.41513096114338
517 => 0.40546580269149
518 => 0.41062838142749
519 => 0.39691810290259
520 => 0.36848956756235
521 => 0.37892260126557
522 => 0.38660482579231
523 => 0.3756413441812
524 => 0.39529296062378
525 => 0.38381289198973
526 => 0.38017426137321
527 => 0.3659786660727
528 => 0.37267844061597
529 => 0.38173998161727
530 => 0.37614100279568
531 => 0.38775972454139
601 => 0.40421493313322
602 => 0.41594189470037
603 => 0.41684214519523
604 => 0.40930249455296
605 => 0.42138483282461
606 => 0.42147283946833
607 => 0.40784391254011
608 => 0.39949627068276
609 => 0.39759966888918
610 => 0.40233775202022
611 => 0.40809065963971
612 => 0.41716139152991
613 => 0.42264264483791
614 => 0.43693484643305
615 => 0.44080190639516
616 => 0.4450506328742
617 => 0.45072824170891
618 => 0.45754566682401
619 => 0.4426295287884
620 => 0.44322217475972
621 => 0.42933247354894
622 => 0.41448933582058
623 => 0.42575342713317
624 => 0.4404797281251
625 => 0.43710149840643
626 => 0.43672137855211
627 => 0.43736063471062
628 => 0.43481355982542
629 => 0.42329323451863
630 => 0.41750779927062
701 => 0.4249724867625
702 => 0.42893963594942
703 => 0.43509233836657
704 => 0.43433388792586
705 => 0.45018258860043
706 => 0.45634091444273
707 => 0.45476535116265
708 => 0.45505529272423
709 => 0.46620464750174
710 => 0.47860502305403
711 => 0.49021961113242
712 => 0.50203446898392
713 => 0.48779119670219
714 => 0.48055934144043
715 => 0.48802077008327
716 => 0.48406163101816
717 => 0.50681201844318
718 => 0.50838720590768
719 => 0.53113594822074
720 => 0.55272721354568
721 => 0.53916612664278
722 => 0.55195362078744
723 => 0.56578433828459
724 => 0.59246603628963
725 => 0.58348057907499
726 => 0.57659785966863
727 => 0.57009372308669
728 => 0.58362779881111
729 => 0.60103917101844
730 => 0.60478941382784
731 => 0.6108662398821
801 => 0.60447720032499
802 => 0.61217209474191
803 => 0.63933845334158
804 => 0.63199786344387
805 => 0.62157304573041
806 => 0.64301827676004
807 => 0.65077922250343
808 => 0.70524960416944
809 => 0.77402071108201
810 => 0.74554902124477
811 => 0.72787572458711
812 => 0.73202936851786
813 => 0.75714224871344
814 => 0.76520770878929
815 => 0.74328300797233
816 => 0.75102718295186
817 => 0.7936983484796
818 => 0.81659005973033
819 => 0.78550004108484
820 => 0.69972391268995
821 => 0.62063440495571
822 => 0.64161250385378
823 => 0.63923423846494
824 => 0.68507908248818
825 => 0.63182279280251
826 => 0.63271949213744
827 => 0.67951235898455
828 => 0.66702882434257
829 => 0.64680709699288
830 => 0.62078204594407
831 => 0.57267233205449
901 => 0.53006021682386
902 => 0.61363238777517
903 => 0.61002860379762
904 => 0.60480979054726
905 => 0.61642369470136
906 => 0.67281751660945
907 => 0.67151745648548
908 => 0.66324713727329
909 => 0.66952010150449
910 => 0.64570741603381
911 => 0.65184448728437
912 => 0.62062187677361
913 => 0.63473580069587
914 => 0.64676371024802
915 => 0.64917849116686
916 => 0.65461911587878
917 => 0.60812957339866
918 => 0.62900201311098
919 => 0.64126261595884
920 => 0.58586876624763
921 => 0.64016765765486
922 => 0.60732029389398
923 => 0.59617140528269
924 => 0.6111819150434
925 => 0.60533230479145
926 => 0.60030315339747
927 => 0.59749680050783
928 => 0.60851886222659
929 => 0.6080046698732
930 => 0.58997043761131
1001 => 0.56644551679502
1002 => 0.57434125240017
1003 => 0.57147265763191
1004 => 0.56107650013562
1005 => 0.56808225505127
1006 => 0.53723245593416
1007 => 0.48415697998618
1008 => 0.51922026514321
1009 => 0.51787036680618
1010 => 0.51718968685163
1011 => 0.54353877656912
1012 => 0.54100591956971
1013 => 0.53640875931398
1014 => 0.56099206968239
1015 => 0.55201883070573
1016 => 0.57967223887078
1017 => 0.59788656199859
1018 => 0.59326682048175
1019 => 0.61039747942091
1020 => 0.57452315420137
1021 => 0.58643916601119
1022 => 0.58889503953032
1023 => 0.56068871544841
1024 => 0.54142032629918
1025 => 0.54013534441865
1026 => 0.50672661298148
1027 => 0.52457328764936
1028 => 0.54027762281151
1029 => 0.53275646497448
1030 => 0.53037549109147
1031 => 0.54253937028952
1101 => 0.54348460787979
1102 => 0.52193309064988
1103 => 0.52641433352977
1104 => 0.54510186128354
1105 => 0.52594345577763
1106 => 0.48872180338741
1107 => 0.47949031896503
1108 => 0.47825866877307
1109 => 0.45322215086131
1110 => 0.4801072108962
1111 => 0.46837116171615
1112 => 0.50544520045644
1113 => 0.48426870836005
1114 => 0.48335583211069
1115 => 0.48197588576996
1116 => 0.46042592055778
1117 => 0.46514399336751
1118 => 0.48082758596984
1119 => 0.48642366849866
1120 => 0.48583995124355
1121 => 0.48075072780993
1122 => 0.4830805482368
1123 => 0.4755753848786
1124 => 0.47292515549035
1125 => 0.46456030253802
1126 => 0.45226627954769
1127 => 0.45397583884812
1128 => 0.42961816239819
1129 => 0.41634680750853
1130 => 0.41267347138872
1201 => 0.40776133281002
1202 => 0.41322831051189
1203 => 0.42954916016119
1204 => 0.40986275282272
1205 => 0.37611178828183
1206 => 0.37814027875959
1207 => 0.38269769459887
1208 => 0.37420498033269
1209 => 0.36616733901923
1210 => 0.37315541602683
1211 => 0.35885468741975
1212 => 0.3844258693285
1213 => 0.38373424052027
1214 => 0.39326559582457
1215 => 0.39922574789945
1216 => 0.385489526989
1217 => 0.38203490457672
1218 => 0.38400281450659
1219 => 0.35147764693933
1220 => 0.39060759573076
1221 => 0.39094599315281
1222 => 0.38804842897815
1223 => 0.40888391870795
1224 => 0.45285330079005
1225 => 0.43631025058646
1226 => 0.4299042815313
1227 => 0.41772652967469
1228 => 0.43395266098026
1229 => 0.43270674726307
1230 => 0.4270722529352
1231 => 0.42366449318502
]
'min_raw' => 0.3182488312706
'max_raw' => 0.81659005973033
'avg_raw' => 0.56741944550047
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.318248'
'max' => '$0.81659'
'avg' => '$0.567419'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19570259330988
'max_diff' => 0.4746480541173
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0099894671587902
]
1 => [
'year' => 2028
'avg' => 0.017144825607521
]
2 => [
'year' => 2029
'avg' => 0.046836573505577
]
3 => [
'year' => 2030
'avg' => 0.036134346708435
]
4 => [
'year' => 2031
'avg' => 0.035488406547972
]
5 => [
'year' => 2032
'avg' => 0.062222345291169
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0099894671587902
'min' => '$0.009989'
'max_raw' => 0.062222345291169
'max' => '$0.062222'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.062222345291169
]
1 => [
'year' => 2033
'avg' => 0.1600422703372
]
2 => [
'year' => 2034
'avg' => 0.10144248221133
]
3 => [
'year' => 2035
'avg' => 0.11965164039791
]
4 => [
'year' => 2036
'avg' => 0.23224412178687
]
5 => [
'year' => 2037
'avg' => 0.56741944550047
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.062222345291169
'min' => '$0.062222'
'max_raw' => 0.56741944550047
'max' => '$0.567419'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.56741944550047
]
]
]
]
'prediction_2025_max_price' => '$0.01708'
'last_price' => 0.01656138
'sma_50day_nextmonth' => '$0.015226'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'sinken'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.016338'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.016058'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015737'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015142'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014676'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.01633'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.016141'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.01580026'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015372'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.015975'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.012831'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006415'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.016134'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.015962'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.016542'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.010331'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.004339'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.002169'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001084'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '66.09'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 114.88
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.015739'
'vwma_10_action' => 'BUY'
'hma_9' => '0.016496'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 168.08
'cci_20_action' => 'SELL'
'adx_14' => 19.66
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001354'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.06
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 1
'buy_signals' => 28
'sell_pct' => 3.45
'buy_pct' => 96.55
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767690411
'last_updated_date' => '6. Januar 2026'
]
SigmaDotMoney Preisprognose für 2026
Die Preisprognose für SigmaDotMoney im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.005721 am unteren Ende und $0.01708 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte SigmaDotMoney im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SIGMA das prognostizierte Preisziel erreicht.
SigmaDotMoney Preisprognose 2027-2032
Die Preisprognose für SIGMA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.009989 am unteren Ende und $0.062222 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte SigmaDotMoney, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.0055083 | $0.009989 | $0.01447 |
| 2028 | $0.009941 | $0.017144 | $0.024348 |
| 2029 | $0.021837 | $0.046836 | $0.071835 |
| 2030 | $0.018571 | $0.036134 | $0.053696 |
| 2031 | $0.021957 | $0.035488 | $0.049019 |
| 2032 | $0.033516 | $0.062222 | $0.090927 |
SigmaDotMoney Preisprognose 2032-2037
Die Preisprognose für SigmaDotMoney für die Jahre 2032-2037 wird derzeit zwischen $0.062222 am unteren Ende und $0.567419 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte SigmaDotMoney bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.033516 | $0.062222 | $0.090927 |
| 2033 | $0.077885 | $0.160042 | $0.242198 |
| 2034 | $0.062616 | $0.101442 | $0.140268 |
| 2035 | $0.074032 | $0.119651 | $0.165271 |
| 2036 | $0.122546 | $0.232244 | $0.341942 |
| 2037 | $0.318248 | $0.567419 | $0.81659 |
SigmaDotMoney Potenzielles Preishistogramm
SigmaDotMoney Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für SigmaDotMoney Bullisch, mit 28 technischen Indikatoren, die bullische Signale zeigen, und 1 anzeigen bärische Signale. Die Preisprognose für SIGMA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von SigmaDotMoney
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von SigmaDotMoney im nächsten Monat sinken, und bis zum 04.02.2026 — erreichen. Der kurzfristige 50-Tage-SMA für SigmaDotMoney wird voraussichtlich bis zum 04.02.2026 $0.015226 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 66.09, was darauf hindeutet, dass sich der SIGMA-Markt in einem NEUTRAL Zustand befindet.
Beliebte SIGMA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.016338 | BUY |
| SMA 5 | $0.016058 | BUY |
| SMA 10 | $0.015737 | BUY |
| SMA 21 | $0.015142 | BUY |
| SMA 50 | $0.014676 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.01633 | BUY |
| EMA 5 | $0.016141 | BUY |
| EMA 10 | $0.01580026 | BUY |
| EMA 21 | $0.015372 | BUY |
| EMA 50 | $0.015975 | BUY |
| EMA 100 | $0.012831 | BUY |
| EMA 200 | $0.006415 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.010331 | BUY |
| EMA 50 | $0.004339 | BUY |
| EMA 100 | $0.002169 | BUY |
| EMA 200 | $0.001084 | BUY |
SigmaDotMoney Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 66.09 | NEUTRAL |
| Stoch RSI (14) | 114.88 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 168.08 | SELL |
| Average Directional Index (14) | 19.66 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.001354 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 83.06 | SELL |
| VWMA (10) | 0.015739 | BUY |
| Hull Moving Average (9) | 0.016496 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | — | — |
Auf weltweiten Geldflüssen basierende SigmaDotMoney-Preisprognose
Definition weltweiter Geldflüsse, die für SigmaDotMoney-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
SigmaDotMoney-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.023271 | $0.03270035 | $0.045949 | $0.064566 | $0.090726 | $0.127486 |
| Amazon.com aktie | $0.034556 | $0.0721037 | $0.150448 | $0.31392 | $0.655013 | $1.36 |
| Apple aktie | $0.023491 | $0.03332 | $0.047262 | $0.067037 | $0.095088 | $0.134875 |
| Netflix aktie | $0.026131 | $0.041231 | $0.065056 | $0.102648 | $0.161963 | $0.255552 |
| Google aktie | $0.021446 | $0.027773 | $0.035966 | $0.046576 | $0.060316 | $0.0781099 |
| Tesla aktie | $0.037543 | $0.085108 | $0.192933 | $0.437365 | $0.991474 | $2.24 |
| Kodak aktie | $0.012419 | $0.009313 | $0.006983 | $0.005237 | $0.003927 | $0.002945 |
| Nokia aktie | $0.010971 | $0.007267 | $0.004814 | $0.003189 | $0.002112 | $0.001399 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
SigmaDotMoney Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in SigmaDotMoney investieren?", "Sollte ich heute SIGMA kaufen?", "Wird SigmaDotMoney auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere SigmaDotMoney-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie SigmaDotMoney.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich SigmaDotMoney zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der SigmaDotMoney-Preis entspricht heute $0.01656 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
SigmaDotMoney-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von SigmaDotMoney 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.016991 | $0.017433 | $0.017886 | $0.018351 |
| Wenn die Wachstumsrate von SigmaDotMoney 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017422 | $0.018328 | $0.01928 | $0.020283 |
| Wenn die Wachstumsrate von SigmaDotMoney 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018713 | $0.021145 | $0.023894 | $0.026999 |
| Wenn die Wachstumsrate von SigmaDotMoney 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020866 | $0.02629 | $0.033123 | $0.041733 |
| Wenn die Wachstumsrate von SigmaDotMoney 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.025171 | $0.038256 | $0.058144 | $0.088372 |
| Wenn die Wachstumsrate von SigmaDotMoney 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.038085 | $0.087583 | $0.201413 | $0.463181 |
| Wenn die Wachstumsrate von SigmaDotMoney 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0596097 | $0.214554 | $0.77225 | $2.77 |
Fragefeld
Ist SIGMA eine gute Investition?
Die Entscheidung, SigmaDotMoney zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von SigmaDotMoney in den letzten 2026 Stunden um 1.2167% gestiegen, und SigmaDotMoney hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in SigmaDotMoney investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann SigmaDotMoney steigen?
Es scheint, dass der Durchschnittswert von SigmaDotMoney bis zum Ende dieses Jahres potenziell auf $0.01708 steigen könnte. Betrachtet man die Aussichten von SigmaDotMoney in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.053696 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird SigmaDotMoney nächste Woche kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney in der nächsten Woche um 0.86% steigen und $0.016703 erreichen bis zum 13. Januar 2026.
Wie viel wird SigmaDotMoney nächsten Monat kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney im nächsten Monat um -11.62% fallen und $0.014637 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von SigmaDotMoney in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von SigmaDotMoney im Jahr 2026 wird erwartet, dass SIGMA innerhalb der Spanne von $0.005721 bis $0.01708 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte SigmaDotMoney-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird SigmaDotMoney in 5 Jahren sein?
Die Zukunft von SigmaDotMoney scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.053696 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der SigmaDotMoney-Prognose für 2030 könnte der Wert von SigmaDotMoney seinen höchsten Gipfel von ungefähr $0.053696 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.018571 liegen wird.
Wie viel wird SigmaDotMoney im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Preisprognosesimulation wird der Wert von SIGMA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.01708 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.01708 und $0.005721 während des Jahres 2026 liegen.
Wie viel wird SigmaDotMoney im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von SigmaDotMoney könnte der Wert von SIGMA um -12.62% fallen und bis zu $0.01447 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.01447 und $0.0055083 im Laufe des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2028 kosten?
Unser neues experimentelles SigmaDotMoney-Preisprognosemodell deutet darauf hin, dass der Wert von SIGMA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.024348 erreichen wird. Der Preis wird voraussichtlich zwischen $0.024348 und $0.009941 im Laufe des Jahres liegen.
Wie viel wird SigmaDotMoney im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von SigmaDotMoney im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.071835 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.071835 und $0.021837.
Wie viel wird SigmaDotMoney im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für SigmaDotMoney-Preisprognosen wird der Wert von SIGMA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.053696 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.053696 und $0.018571 während des Jahres 2030 liegen.
Wie viel wird SigmaDotMoney im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von SigmaDotMoney im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.049019 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.049019 und $0.021957 während des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen SigmaDotMoney-Preisprognose könnte SIGMA eine 449.04% Steigerung im Wert erfahren und $0.090927 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.090927 und $0.033516 liegen.
Wie viel wird SigmaDotMoney im Jahr 2033 kosten?
Laut unserer experimentellen SigmaDotMoney-Preisprognose wird der Wert von SIGMA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.242198 beträgt. Im Laufe des Jahres könnte der Preis von SIGMA zwischen $0.242198 und $0.077885 liegen.
Wie viel wird SigmaDotMoney im Jahr 2034 kosten?
Die Ergebnisse unserer neuen SigmaDotMoney-Preisprognosesimulation deuten darauf hin, dass SIGMA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.140268 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.140268 und $0.062616.
Wie viel wird SigmaDotMoney im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von SigmaDotMoney könnte SIGMA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.165271 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.165271 und $0.074032.
Wie viel wird SigmaDotMoney im Jahr 2036 kosten?
Unsere jüngste SigmaDotMoney-Preisprognosesimulation deutet darauf hin, dass der Wert von SIGMA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.341942 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.341942 und $0.122546.
Wie viel wird SigmaDotMoney im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von SigmaDotMoney um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.81659 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.81659 und $0.318248 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von SigmaDotMoney?
SigmaDotMoney-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
SigmaDotMoney Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von SigmaDotMoney. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SIGMA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SIGMA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SIGMA einzuschätzen.
Wie liest man SigmaDotMoney-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von SigmaDotMoney in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SIGMA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von SigmaDotMoney?
Die Preisentwicklung von SigmaDotMoney wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SIGMA. Die Marktkapitalisierung von SigmaDotMoney kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SIGMA-„Walen“, großen Inhabern von SigmaDotMoney, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen SigmaDotMoney-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


