SigmaDotMoney Preisvorhersage bis zu $0.017126 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.005737 | $0.017126 |
| 2027 | $0.005523 | $0.0145099 |
| 2028 | $0.009968 | $0.024414 |
| 2029 | $0.021897 | $0.072031 |
| 2030 | $0.018622 | $0.053843 |
| 2031 | $0.022017 | $0.049152 |
| 2032 | $0.0336081 | $0.091175 |
| 2033 | $0.078097 | $0.242858 |
| 2034 | $0.062786 | $0.14065 |
| 2035 | $0.074233 | $0.165721 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in SigmaDotMoney eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.47 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige SigmaDotMoney Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'SigmaDotMoney'
'name_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_lang' => 'SigmaDotMoney'
'name_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_with_lang' => 'SigmaDotMoney'
'name_with_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'image' => '/uploads/coins/sigmadotmoney.png?1762828399'
'price_for_sd' => 0.0166
'ticker' => 'SIGMA'
'marketcap' => '$2.41M'
'low24h' => '$0.01631'
'high24h' => '$0.01667'
'volume24h' => '$273.7K'
'current_supply' => '145M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0166'
'change_24h_pct' => '1.1013%'
'ath_price' => '$0.04297'
'ath_days' => 77
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21.10.2025'
'ath_pct' => '-61.25%'
'fdv' => '$16.61M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.818814'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016748'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014677'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005737'
'current_year_max_price_prediction' => '$0.017126'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.018622'
'grand_prediction_max_price' => '$0.053843'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.016921174250486
107 => 0.016984351772751
108 => 0.017126693956339
109 => 0.015910395582347
110 => 0.016456477843625
111 => 0.016777250011138
112 => 0.015327989688525
113 => 0.016748602794287
114 => 0.015889222533676
115 => 0.015597535965766
116 => 0.015990253502673
117 => 0.01583721109661
118 => 0.015705634222828
119 => 0.015632212066481
120 => 0.015920580482933
121 => 0.01590712775163
122 => 0.015435301052417
123 => 0.01481982235741
124 => 0.015026397209854
125 => 0.014951346629312
126 => 0.014679353643709
127 => 0.014862644075447
128 => 0.014055525775236
129 => 0.012666920690083
130 => 0.013584275743459
131 => 0.013548958571794
201 => 0.013531150052335
202 => 0.014220517021116
203 => 0.01415425029347
204 => 0.014033975533906
205 => 0.014677144703429
206 => 0.014442379304707
207 => 0.015165870945883
208 => 0.015642409333267
209 => 0.015521543783825
210 => 0.015969730440469
211 => 0.015031156277232
212 => 0.0153429129652
213 => 0.015407165586514
214 => 0.014669208095713
215 => 0.014165092349647
216 => 0.014131473576725
217 => 0.013257406344475
218 => 0.013724326004719
219 => 0.014135195983285
220 => 0.01393842114835
221 => 0.01387612811409
222 => 0.014194369716411
223 => 0.014219099814466
224 => 0.013655250958027
225 => 0.013772492990052
226 => 0.014261411753461
227 => 0.01376017349165
228 => 0.012786349425757
301 => 0.012544827593244
302 => 0.012512604128657
303 => 0.011857577763544
304 => 0.012560967236974
305 => 0.012253918882156
306 => 0.013223880956023
307 => 0.012669843821441
308 => 0.012645960387909
309 => 0.012609857075188
310 => 0.012046048823938
311 => 0.012169486999078
312 => 0.012579814293409
313 => 0.012726223694694
314 => 0.012710951994643
315 => 0.012577803465813
316 => 0.012638758180481
317 => 0.012442401806507
318 => 0.012373064284052
319 => 0.012154215990396
320 => 0.011832569457107
321 => 0.011877296380333
322 => 0.011240030434493
323 => 0.010892814124936
324 => 0.010796709226688
325 => 0.01066819374025
326 => 0.010811225392847
327 => 0.011238225140137
328 => 0.010723172851856
329 => 0.0098401518303158
330 => 0.009893222898305
331 => 0.010012457831135
401 => 0.0097902643226241
402 => 0.0095799768141061
403 => 0.0097628047415977
404 => 0.0093886570941107
405 => 0.010057671786822
406 => 0.010039576814277
407 => 0.010288944120128
408 => 0.01044487861401
409 => 0.010085500090005
410 => 0.0099951173630807
411 => 0.010046603472003
412 => 0.0091956527782467
413 => 0.010219403293962
414 => 0.010228256730934
415 => 0.010152448228502
416 => 0.010697563773369
417 => 0.011847927598841
418 => 0.011415114454421
419 => 0.011247516123054
420 => 0.010928911572614
421 => 0.01135343321921
422 => 0.01132083658032
423 => 0.011173422217355
424 => 0.011084265550673
425 => 0.011248539442728
426 => 0.011063910197509
427 => 0.011030745711795
428 => 0.010829805011687
429 => 0.010758078323967
430 => 0.010704974739901
501 => 0.010646512911695
502 => 0.010775465136938
503 => 0.010483242429461
504 => 0.010130850491188
505 => 0.010101552914454
506 => 0.010182446099685
507 => 0.01014665688701
508 => 0.010101381569473
509 => 0.010014938658296
510 => 0.0099892928931103
511 => 0.010072629188407
512 => 0.0099785473698249
513 => 0.010117370218045
514 => 0.010079618084748
515 => 0.0098687377370052
516 => 0.0096059027458135
517 => 0.0096035629630768
518 => 0.0095469355953604
519 => 0.0094748121285917
520 => 0.0094547490300981
521 => 0.0097474074834929
522 => 0.01035320172349
523 => 0.010234269818751
524 => 0.010320210308556
525 => 0.010742952459972
526 => 0.010877329477607
527 => 0.010781951853383
528 => 0.010651393078711
529 => 0.0106571370022
530 => 0.011103295858084
531 => 0.011131122238656
601 => 0.01120143052523
602 => 0.011291796542598
603 => 0.010797341576895
604 => 0.010633848217781
605 => 0.010556375993966
606 => 0.010317791530141
607 => 0.01057508441969
608 => 0.01042517087133
609 => 0.01044539933078
610 => 0.010432225520026
611 => 0.010439419311507
612 => 0.010057484783581
613 => 0.01019664165167
614 => 0.0099652663685543
615 => 0.0096554808375573
616 => 0.0096544423278326
617 => 0.0097302618976712
618 => 0.0096851614507111
619 => 0.00956379730758
620 => 0.0095810365112892
621 => 0.0094300029468543
622 => 0.0095993747205625
623 => 0.0096042316969912
624 => 0.0095390143383706
625 => 0.009799954924569
626 => 0.0099068624956418
627 => 0.0098639350331065
628 => 0.0099038505904344
629 => 0.010239211976338
630 => 0.010293890515083
701 => 0.010318175110133
702 => 0.010285636969859
703 => 0.0099099803809372
704 => 0.009926642348071
705 => 0.0098043878886318
706 => 0.0097010957532632
707 => 0.009705226896982
708 => 0.0097583324815992
709 => 0.0099902476842236
710 => 0.010478299555999
711 => 0.010496820767772
712 => 0.010519269016742
713 => 0.010427960706594
714 => 0.01040042124655
715 => 0.010436752902885
716 => 0.010620039525376
717 => 0.011091502480254
718 => 0.010924855984048
719 => 0.010789369788625
720 => 0.010908227708827
721 => 0.010889930463651
722 => 0.01073548330067
723 => 0.010731148483207
724 => 0.010434714997702
725 => 0.010325130287574
726 => 0.010233553101518
727 => 0.010133553205028
728 => 0.010074269914362
729 => 0.010165355992599
730 => 0.01018618845639
731 => 0.0099870271544128
801 => 0.0099598822048796
802 => 0.01012252162327
803 => 0.010050950079045
804 => 0.010124563187169
805 => 0.010141642059695
806 => 0.010138891967859
807 => 0.010064163055749
808 => 0.01011179303588
809 => 0.0099991339336896
810 => 0.0098766340809081
811 => 0.009798486806844
812 => 0.0097302929454913
813 => 0.0097681308632202
814 => 0.0096332455954474
815 => 0.0095900930835828
816 => 0.01009565707032
817 => 0.010469122623051
818 => 0.010463692286006
819 => 0.010430636505812
820 => 0.010381522321564
821 => 0.010616446516885
822 => 0.010534603624692
823 => 0.010594151166965
824 => 0.010609308515676
825 => 0.010655185245122
826 => 0.010671582232661
827 => 0.010622019147878
828 => 0.010455679381727
829 => 0.010041176499588
830 => 0.0098482242890227
831 => 0.009784546845663
901 => 0.0097868613997884
902 => 0.0097230156643841
903 => 0.0097418210948259
904 => 0.0097164759031209
905 => 0.0096684782416922
906 => 0.0097651671428809
907 => 0.0097763096380234
908 => 0.0097537412931397
909 => 0.0097590569553458
910 => 0.0095722006987745
911 => 0.0095864069741311
912 => 0.0095073046276991
913 => 0.0094924738913361
914 => 0.009292510047785
915 => 0.0089382451137117
916 => 0.0091345422765175
917 => 0.0088974429074061
918 => 0.0088076497836819
919 => 0.0092327164656965
920 => 0.0091900515603367
921 => 0.0091170277883494
922 => 0.0090090104100926
923 => 0.0089689457137716
924 => 0.008725525301867
925 => 0.0087111427253343
926 => 0.0088317884543782
927 => 0.0087761146015905
928 => 0.0086979274269397
929 => 0.0084147414060612
930 => 0.0080963465589244
1001 => 0.0081059568980008
1002 => 0.0082072323749283
1003 => 0.0085017044829538
1004 => 0.008386649135929
1005 => 0.0083031751615546
1006 => 0.0082875429953727
1007 => 0.0084832122832955
1008 => 0.0087601253196895
1009 => 0.0088900467207856
1010 => 0.008761298558071
1011 => 0.0086133996010378
1012 => 0.0086224015252547
1013 => 0.0086822872941361
1014 => 0.0086885804417064
1015 => 0.0085923134249363
1016 => 0.0086194120262698
1017 => 0.0085782467728961
1018 => 0.0083256156889271
1019 => 0.00832104639372
1020 => 0.0082590466514874
1021 => 0.0082571693239329
1022 => 0.0081516922958349
1023 => 0.0081369353304757
1024 => 0.0079275042891891
1025 => 0.0080653524347795
1026 => 0.0079728911360699
1027 => 0.0078335301494991
1028 => 0.0078095042628859
1029 => 0.0078087820157222
1030 => 0.0079518745883841
1031 => 0.0080636803147554
1101 => 0.0079744995399471
1102 => 0.0079541948062199
1103 => 0.0081709962409108
1104 => 0.0081434062821574
1105 => 0.0081195135558132
1106 => 0.0087353307944892
1107 => 0.0082478633972587
1108 => 0.0080352997884
1109 => 0.0077722119577027
1110 => 0.0078578746819817
1111 => 0.0078759250766346
1112 => 0.0072432462689536
1113 => 0.0069865685554725
1114 => 0.0068984864369014
1115 => 0.0068477939323654
1116 => 0.0068708951432389
1117 => 0.006639855095813
1118 => 0.0067951178287329
1119 => 0.0065950566769911
1120 => 0.0065615157738463
1121 => 0.0069192498959815
1122 => 0.0069690265092242
1123 => 0.0067566640127493
1124 => 0.0068930351138514
1125 => 0.0068435850568917
1126 => 0.0065984861512274
1127 => 0.0065891251758565
1128 => 0.0064661431606372
1129 => 0.0062737001208298
1130 => 0.0061857484877016
1201 => 0.0061399425135374
1202 => 0.0061588429512182
1203 => 0.0061492863115638
1204 => 0.0060869227734591
1205 => 0.0061528609165679
1206 => 0.0059844162084467
1207 => 0.0059173401684217
1208 => 0.0058870434772947
1209 => 0.0057375391035215
1210 => 0.0059754670470914
1211 => 0.0060223418493119
1212 => 0.0060693090093731
1213 => 0.0064781260718643
1214 => 0.0064577027267273
1215 => 0.0066423198201936
1216 => 0.0066351459394305
1217 => 0.0065824901537753
1218 => 0.0063603440555523
1219 => 0.0064488875309305
1220 => 0.0061763644764275
1221 => 0.0063805572786276
1222 => 0.0062873722109987
1223 => 0.0063490513135265
1224 => 0.0062381467258011
1225 => 0.0062995259037865
1226 => 0.0060334576038589
1227 => 0.0057850067690684
1228 => 0.0058849906377201
1229 => 0.0059936845374868
1230 => 0.0062293606068716
1231 => 0.0060889938842314
]
'min_raw' => 0.0057375391035215
'max_raw' => 0.017126693956339
'avg_raw' => 0.01143211652993
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005737'
'max' => '$0.017126'
'avg' => '$0.011432'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010868950896478
'max_diff' => 0.00052020395633877
'year' => 2026
]
1 => [
'items' => [
101 => 0.0061394750655462
102 => 0.0059703715585892
103 => 0.0056214627217081
104 => 0.0056234375078335
105 => 0.0055697654846715
106 => 0.0055233850204159
107 => 0.0061051166908548
108 => 0.0060327691618189
109 => 0.0059174928429107
110 => 0.0060717947766681
111 => 0.0061125946570546
112 => 0.0061137561722913
113 => 0.0062263308800513
114 => 0.006286412021763
115 => 0.0062970015833962
116 => 0.0064741403183942
117 => 0.0065335148858491
118 => 0.0067780703261926
119 => 0.0062813145566523
120 => 0.0062710841984779
121 => 0.0060739661213098
122 => 0.0059489507204564
123 => 0.0060825260327616
124 => 0.0062008555246156
125 => 0.0060776429484639
126 => 0.0060937319097499
127 => 0.0059283290931036
128 => 0.0059874528171288
129 => 0.006038378133085
130 => 0.0060102601668657
131 => 0.0059681662105104
201 => 0.0061911538556953
202 => 0.0061785720188583
203 => 0.0063862232405183
204 => 0.0065481022170836
205 => 0.0068382182824169
206 => 0.006535467044149
207 => 0.0065244335856994
208 => 0.0066322874118672
209 => 0.0065334983739903
210 => 0.0065959296358468
211 => 0.0068281596409482
212 => 0.0068330662950128
213 => 0.006750873517565
214 => 0.0067458720795876
215 => 0.0067616581015869
216 => 0.0068541173255043
217 => 0.0068218092316826
218 => 0.0068591969757939
219 => 0.0069059509223066
220 => 0.0070993450683456
221 => 0.0071459717422228
222 => 0.0070326930978599
223 => 0.0070429208911186
224 => 0.0070005515685586
225 => 0.0069596233338516
226 => 0.0070516240283842
227 => 0.0072197571059207
228 => 0.0072187111587715
301 => 0.0072577147647199
302 => 0.0072820136881025
303 => 0.0071777049210454
304 => 0.007109803749231
305 => 0.0071358413791685
306 => 0.0071774761164643
307 => 0.0071223397950024
308 => 0.0067820128773108
309 => 0.0068852463239707
310 => 0.0068680632305889
311 => 0.0068435924160776
312 => 0.0069473944449748
313 => 0.0069373824860609
314 => 0.0066374854461868
315 => 0.006656683881666
316 => 0.0066386529666355
317 => 0.0066969145418771
318 => 0.006530352057729
319 => 0.0065815855560375
320 => 0.0066137187258924
321 => 0.0066326454097956
322 => 0.0067010215702024
323 => 0.0066929984169734
324 => 0.0067005228397327
325 => 0.006801906634979
326 => 0.0073146710806176
327 => 0.0073425797180428
328 => 0.0072051473802568
329 => 0.0072600488884693
330 => 0.0071546499983414
331 => 0.0072254049793955
401 => 0.007273813740451
402 => 0.0070550638577104
403 => 0.0070421109093295
404 => 0.0069362770004895
405 => 0.0069931461483611
406 => 0.0069026632450609
407 => 0.0069248645845732
408 => 0.0068627877038189
409 => 0.006974513729793
410 => 0.0070994407873012
411 => 0.0071310022955467
412 => 0.0070479775554363
413 => 0.0069878621719993
414 => 0.0068823193619223
415 => 0.0070578394072553
416 => 0.0071091668173871
417 => 0.0070575698062206
418 => 0.0070456136513163
419 => 0.0070229567593771
420 => 0.0070504204180473
421 => 0.0071088872772884
422 => 0.0070813153861836
423 => 0.0070995271060125
424 => 0.0070301228098688
425 => 0.0071777394515876
426 => 0.0074121902045166
427 => 0.0074129440020238
428 => 0.0073853719622963
429 => 0.0073740900776877
430 => 0.0074023806636594
501 => 0.0074177271460084
502 => 0.0075092137134346
503 => 0.0076073824452686
504 => 0.0080654930823644
505 => 0.0079368574486272
506 => 0.0083433204589823
507 => 0.008664779927557
508 => 0.0087611715664636
509 => 0.0086724957942466
510 => 0.0083691407676633
511 => 0.0083542567228275
512 => 0.0088075972057316
513 => 0.0086795077550017
514 => 0.0086642719224146
515 => 0.0085021884050336
516 => 0.0085979998382399
517 => 0.0085770444723288
518 => 0.0085439654020664
519 => 0.0087267669423419
520 => 0.0090689551069314
521 => 0.0090156218724599
522 => 0.0089758110869844
523 => 0.0088013718137763
524 => 0.0089064232186698
525 => 0.0088690164255143
526 => 0.0090297397478476
527 => 0.0089345308121549
528 => 0.0086785373514329
529 => 0.0087193051538184
530 => 0.0087131431825013
531 => 0.0088399561155657
601 => 0.0088018900207503
602 => 0.0087057101665496
603 => 0.0090677855449855
604 => 0.0090442743838789
605 => 0.0090776078349283
606 => 0.0090922822509515
607 => 0.0093126711533216
608 => 0.0094029574349643
609 => 0.0094234540015811
610 => 0.0095092189861501
611 => 0.0094213200906349
612 => 0.009772978343546
613 => 0.010006810561904
614 => 0.010278418716423
615 => 0.010675311231564
616 => 0.010824546488718
617 => 0.010797588475266
618 => 0.011098507850575
619 => 0.011639253278942
620 => 0.010906888586843
621 => 0.011678070385944
622 => 0.011433923132071
623 => 0.010855054385158
624 => 0.010817782062271
625 => 0.011209798698485
626 => 0.012079253867403
627 => 0.011861465208868
628 => 0.012079610091628
629 => 0.011825132498441
630 => 0.011812495541033
701 => 0.012067250682931
702 => 0.012662499957955
703 => 0.012379719339977
704 => 0.011974283983452
705 => 0.012273651141437
706 => 0.012014311604068
707 => 0.01142994704181
708 => 0.011861298669985
709 => 0.011572866120411
710 => 0.011657046072295
711 => 0.012263288390395
712 => 0.012190343710763
713 => 0.012284740880702
714 => 0.012118132346563
715 => 0.011962493703923
716 => 0.011671982619558
717 => 0.011585976609501
718 => 0.011609745576509
719 => 0.011585964830782
720 => 0.011423426549014
721 => 0.011388326422542
722 => 0.011329824673983
723 => 0.011347956812093
724 => 0.011237956409512
725 => 0.011445549896425
726 => 0.011484081076904
727 => 0.011635150304819
728 => 0.011650834813214
729 => 0.012071560462623
730 => 0.011839831844936
731 => 0.011995295408167
801 => 0.011981389283791
802 => 0.010867600226187
803 => 0.011021070531281
804 => 0.011259822164372
805 => 0.011152264877285
806 => 0.011000204037873
807 => 0.010877406757061
808 => 0.010691356319964
809 => 0.010953218737395
810 => 0.011297539970354
811 => 0.011659567367899
812 => 0.012094519565074
813 => 0.011997443298066
814 => 0.011651436239119
815 => 0.011666957863025
816 => 0.011762906434478
817 => 0.011638644316599
818 => 0.011601996992152
819 => 0.011757871654857
820 => 0.011758945077992
821 => 0.011615966493794
822 => 0.011457071962262
823 => 0.011456406188373
824 => 0.011428132441226
825 => 0.011830162335248
826 => 0.012051238127152
827 => 0.012076584110413
828 => 0.012049532140533
829 => 0.012059943370085
830 => 0.011931304237849
831 => 0.012225335147392
901 => 0.012495166986633
902 => 0.0124228462896
903 => 0.012314427283755
904 => 0.012228066323432
905 => 0.012402502391939
906 => 0.012394735028396
907 => 0.012492810240913
908 => 0.012488360982763
909 => 0.012455381977589
910 => 0.012422847467384
911 => 0.012551843122813
912 => 0.012514694445657
913 => 0.012477488066343
914 => 0.012402864976619
915 => 0.012413007493871
916 => 0.012304607208096
917 => 0.012254456275836
918 => 0.01150030658357
919 => 0.011298773143245
920 => 0.011362179666163
921 => 0.011383054739857
922 => 0.011295347128355
923 => 0.011421097313012
924 => 0.011401499279935
925 => 0.01147774376217
926 => 0.01143010951982
927 => 0.011432064445742
928 => 0.0115721465958
929 => 0.011612813039914
930 => 0.011592129758219
1001 => 0.011606615619737
1002 => 0.011940436184311
1003 => 0.011892977575009
1004 => 0.011867766134703
1005 => 0.011874749875966
1006 => 0.011960048187408
1007 => 0.011983927057497
1008 => 0.011882750606992
1009 => 0.011930466005944
1010 => 0.012133632118696
1011 => 0.012204728759953
1012 => 0.012431635110521
1013 => 0.012335241259861
1014 => 0.012512176344576
1015 => 0.013056014473374
1016 => 0.013490470001394
1017 => 0.013090926743192
1018 => 0.013888748992823
1019 => 0.014509968054965
1020 => 0.014486124632666
1021 => 0.014377800720125
1022 => 0.01367055933384
1023 => 0.013019745265805
1024 => 0.013564178868741
1025 => 0.013565566741959
1026 => 0.013518799412632
1027 => 0.013228331546762
1028 => 0.013508691760526
1029 => 0.013530945736176
1030 => 0.013518489427621
1031 => 0.013295788395896
1101 => 0.012955765082483
1102 => 0.013022204824023
1103 => 0.013131034476
1104 => 0.012924997240564
1105 => 0.012859155859606
1106 => 0.012981567513642
1107 => 0.013376003368429
1108 => 0.013301437554893
1109 => 0.013299490340157
1110 => 0.01361851451129
1111 => 0.013390162054484
1112 => 0.013023042841933
1113 => 0.012930340399057
1114 => 0.012601309178693
1115 => 0.012828572214567
1116 => 0.01283675100664
1117 => 0.012712281364464
1118 => 0.013033142867405
1119 => 0.013030186072168
1120 => 0.013334796315279
1121 => 0.013917096693723
1122 => 0.013744881818556
1123 => 0.013544614655661
1124 => 0.013566389249074
1125 => 0.013805202794535
1126 => 0.013660810673366
1127 => 0.013712735086876
1128 => 0.013805124200717
1129 => 0.013860864846989
1130 => 0.013558369027875
1201 => 0.013487842782392
1202 => 0.013343570835482
1203 => 0.013305932977497
1204 => 0.013423439467922
1205 => 0.01339248065926
1206 => 0.012836063610836
1207 => 0.012777914933401
1208 => 0.01277969827032
1209 => 0.01263348065609
1210 => 0.01241046369814
1211 => 0.012996538947982
1212 => 0.012949468903302
1213 => 0.012897507216907
1214 => 0.012903872227001
1215 => 0.013158267629024
1216 => 0.013010705448575
1217 => 0.013403023690265
1218 => 0.013322374853939
1219 => 0.013239657679278
1220 => 0.013228223646113
1221 => 0.013196384590966
1222 => 0.013087196624076
1223 => 0.012955345592878
1224 => 0.012868286121339
1225 => 0.011870313731905
1226 => 0.012055531602446
1227 => 0.012268607879363
1228 => 0.012342160956305
1229 => 0.012216343328477
1230 => 0.01309216467089
1231 => 0.013252185669774
]
'min_raw' => 0.0055233850204159
'max_raw' => 0.014509968054965
'avg_raw' => 0.010016676537691
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005523'
'max' => '$0.0145099'
'avg' => '$0.010016'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00021415408310559
'max_diff' => -0.0026167259013736
'year' => 2027
]
2 => [
'items' => [
101 => 0.012767471626245
102 => 0.012676801419444
103 => 0.013098108994553
104 => 0.012844009024006
105 => 0.012958430225185
106 => 0.012711114173287
107 => 0.013213641297105
108 => 0.013209812882384
109 => 0.01301431848113
110 => 0.013179549010382
111 => 0.013150836139801
112 => 0.012930123442266
113 => 0.013220638283295
114 => 0.013220782375031
115 => 0.013032623264238
116 => 0.012812894616158
117 => 0.01277361232364
118 => 0.012744018393062
119 => 0.012951151932403
120 => 0.013136867216087
121 => 0.0134824373163
122 => 0.013569321850036
123 => 0.013908437969441
124 => 0.0137065108316
125 => 0.013796022516411
126 => 0.013893200112474
127 => 0.013939790625614
128 => 0.013863873884636
129 => 0.014390660803835
130 => 0.01443513776015
131 => 0.014450050498878
201 => 0.014272420913657
202 => 0.014430197560055
203 => 0.014356379092219
204 => 0.014548434238168
205 => 0.014578550937336
206 => 0.014553043164573
207 => 0.014562602680249
208 => 0.014113082976293
209 => 0.014089773008238
210 => 0.013771939939802
211 => 0.013901459264493
212 => 0.013659329095006
213 => 0.013736111065968
214 => 0.013769955827162
215 => 0.013752277244587
216 => 0.013908782092782
217 => 0.013775720999988
218 => 0.013424550898837
219 => 0.013073285121626
220 => 0.013068875265928
221 => 0.012976393187145
222 => 0.012909545583122
223 => 0.012922422803203
224 => 0.01296780380637
225 => 0.01290690795672
226 => 0.01291990317374
227 => 0.013135710362966
228 => 0.013178988955699
229 => 0.013031911387555
301 => 0.012441373728267
302 => 0.012296454305426
303 => 0.012400619512687
304 => 0.012350835252714
305 => 0.0099680879921094
306 => 0.010527879117199
307 => 0.010195270239381
308 => 0.010348551712878
309 => 0.010009044177278
310 => 0.010171074968381
311 => 0.010141153797681
312 => 0.011041281361401
313 => 0.011027227107579
314 => 0.011033954135149
315 => 0.010712855582043
316 => 0.011224374295917
317 => 0.011476366807989
318 => 0.011429729700568
319 => 0.011441467255749
320 => 0.011239777169361
321 => 0.011035906936058
322 => 0.010809783471921
323 => 0.011229892918583
324 => 0.011183183919621
325 => 0.011290317557872
326 => 0.011562788564076
327 => 0.011602910954756
328 => 0.011656835854711
329 => 0.011637507616713
330 => 0.012097984661044
331 => 0.01204221785265
401 => 0.012176599815673
402 => 0.01190016592215
403 => 0.011587354732283
404 => 0.011646809912908
405 => 0.011641083900906
406 => 0.011568185196102
407 => 0.011502375504926
408 => 0.011392820910885
409 => 0.011739467857462
410 => 0.011725394624483
411 => 0.011953223908075
412 => 0.011912952869185
413 => 0.011644013015479
414 => 0.011653618254967
415 => 0.011718218106648
416 => 0.011941798930906
417 => 0.012008172942088
418 => 0.011977425855561
419 => 0.012050201928735
420 => 0.012107721169651
421 => 0.012057425459812
422 => 0.012769506646871
423 => 0.012473800891877
424 => 0.012617925819354
425 => 0.012652298765324
426 => 0.012564253187007
427 => 0.012583347120268
428 => 0.012612269226373
429 => 0.012787878591115
430 => 0.013248728377175
501 => 0.013452835610311
502 => 0.014066902291673
503 => 0.013435887345909
504 => 0.013398445530427
505 => 0.013509057482777
506 => 0.013869579630296
507 => 0.014161748968737
508 => 0.014258678393951
509 => 0.014271489217624
510 => 0.014453335263072
511 => 0.014557566025095
512 => 0.014431254370129
513 => 0.014324218467927
514 => 0.013940829152023
515 => 0.013985207509273
516 => 0.014290930382828
517 => 0.014722781948713
518 => 0.015093355518739
519 => 0.014963593570308
520 => 0.015953585639173
521 => 0.016051739309045
522 => 0.016038177645557
523 => 0.016261786312752
524 => 0.015817968645483
525 => 0.015628227994163
526 => 0.014347360844892
527 => 0.014707232267945
528 => 0.015230326515861
529 => 0.015161093030646
530 => 0.014781208005461
531 => 0.015093067341882
601 => 0.014989956892518
602 => 0.014908629403048
603 => 0.015281206398419
604 => 0.014871542687389
605 => 0.015226239806967
606 => 0.014771337082237
607 => 0.014964186311959
608 => 0.014854715762101
609 => 0.014925556624065
610 => 0.01451142239254
611 => 0.014734879171331
612 => 0.014502125855885
613 => 0.014502015500508
614 => 0.014496877458169
615 => 0.014770710701605
616 => 0.014779640393842
617 => 0.014577277213204
618 => 0.014548113517367
619 => 0.014655946986188
620 => 0.014529702235829
621 => 0.014588771359947
622 => 0.014531491379424
623 => 0.014518596449307
624 => 0.014415847452246
625 => 0.014371580359169
626 => 0.014388938626987
627 => 0.014329685910124
628 => 0.01429398400495
629 => 0.014489775450626
630 => 0.014385171979406
701 => 0.014473743468437
702 => 0.014372805078073
703 => 0.014022908640309
704 => 0.013821679498863
705 => 0.013160757563343
706 => 0.013348194204385
707 => 0.013472464891314
708 => 0.013431393430025
709 => 0.013519630821418
710 => 0.013525047880615
711 => 0.0134963610052
712 => 0.013463145278485
713 => 0.013446977699665
714 => 0.01356747758634
715 => 0.013637431826395
716 => 0.013484937117274
717 => 0.013449209740555
718 => 0.013603390310939
719 => 0.013697440369807
720 => 0.01439185316232
721 => 0.014340408819727
722 => 0.014469524024193
723 => 0.014454987633605
724 => 0.01459032093755
725 => 0.01481153369338
726 => 0.014361746308719
727 => 0.014439813846218
728 => 0.014420673488866
729 => 0.014629642891566
730 => 0.014630295271232
731 => 0.014505007675517
801 => 0.014572928113713
802 => 0.014535016788412
803 => 0.014603527677254
804 => 0.014339721749167
805 => 0.014661008893487
806 => 0.01484315800103
807 => 0.014845687141565
808 => 0.014932024372916
809 => 0.015019748000284
810 => 0.015188125863898
811 => 0.015015052033055
812 => 0.014703709059765
813 => 0.014726187016805
814 => 0.014543646745482
815 => 0.014546715280421
816 => 0.014530335200428
817 => 0.014579493053521
818 => 0.014350509133535
819 => 0.014404251201869
820 => 0.014329011991488
821 => 0.014439650290869
822 => 0.014320621769902
823 => 0.014420664258806
824 => 0.014463839280557
825 => 0.014623156040307
826 => 0.01429709055495
827 => 0.013632220957614
828 => 0.013771984607739
829 => 0.013565263191007
830 => 0.013584396045169
831 => 0.013623047455549
901 => 0.013497765588554
902 => 0.013521665420691
903 => 0.013520811550507
904 => 0.013513453358555
905 => 0.013480862706335
906 => 0.013433599812751
907 => 0.013621880634037
908 => 0.013653873214466
909 => 0.013724988757718
910 => 0.013936580376301
911 => 0.01391543738393
912 => 0.013949922481701
913 => 0.013874641706893
914 => 0.013587888104402
915 => 0.01360346020463
916 => 0.013409275865255
917 => 0.013720023027574
918 => 0.013646433997875
919 => 0.013598990671703
920 => 0.013586045320597
921 => 0.013798161433876
922 => 0.013861629899482
923 => 0.013822080610927
924 => 0.013740963866263
925 => 0.013896731996031
926 => 0.013938408976227
927 => 0.013947738915105
928 => 0.014223730175476
929 => 0.013963163760679
930 => 0.014025884686528
1001 => 0.014515215445525
1002 => 0.014071459970144
1003 => 0.014306527142381
1004 => 0.014295021827531
1005 => 0.014415274238608
1006 => 0.014285157619917
1007 => 0.014286770571349
1008 => 0.014393546565782
1009 => 0.014243598938754
1010 => 0.014206469797583
1011 => 0.01415517615498
1012 => 0.014267173947063
1013 => 0.014334311558193
1014 => 0.014875391396756
1015 => 0.015224953648707
1016 => 0.015209778229445
1017 => 0.015348453154305
1018 => 0.015285978830539
1019 => 0.015084232759203
1020 => 0.01542858870266
1021 => 0.015319620073686
1022 => 0.015328603315062
1023 => 0.015328268958369
1024 => 0.015400723570434
1025 => 0.015349382837418
1026 => 0.015248184982626
1027 => 0.015315364841343
1028 => 0.015514865004494
1029 => 0.016134119632328
1030 => 0.016480662726097
1031 => 0.016113257302951
1101 => 0.016366688644082
1102 => 0.016214720146224
1103 => 0.016187102949491
1104 => 0.016346276560151
1105 => 0.016505728783145
1106 => 0.016495572365871
1107 => 0.01637981823994
1108 => 0.016314431671353
1109 => 0.016809560674796
1110 => 0.017174363290231
1111 => 0.017149486197526
1112 => 0.017259285594261
1113 => 0.017581660019044
1114 => 0.017611133896318
1115 => 0.017607420865231
1116 => 0.017534366785126
1117 => 0.017851786271933
1118 => 0.018116583192292
1119 => 0.017517456876316
1120 => 0.017745596334301
1121 => 0.017848015487184
1122 => 0.01799839719001
1123 => 0.018252116329577
1124 => 0.018527722610826
1125 => 0.018566696360863
1126 => 0.018539042620146
1127 => 0.018357272868968
1128 => 0.018658844550577
1129 => 0.018835498168937
1130 => 0.018940691356024
1201 => 0.019207443776001
1202 => 0.017848647993004
1203 => 0.016886824801267
1204 => 0.016736622220982
1205 => 0.017042065074417
1206 => 0.017122607919006
1207 => 0.017090141199344
1208 => 0.016007521751906
1209 => 0.016730922453645
1210 => 0.017509240783458
1211 => 0.017539139160307
1212 => 0.01792878159008
1213 => 0.018055665137197
1214 => 0.018369378364766
1215 => 0.018349755516966
1216 => 0.018426139695611
1217 => 0.01840858029573
1218 => 0.018989667989687
1219 => 0.019630694008478
1220 => 0.019608497315785
1221 => 0.019516342241308
1222 => 0.019653208241682
1223 => 0.020314815789597
1224 => 0.02025390556863
1225 => 0.020313074659979
1226 => 0.021093147245539
1227 => 0.022107352570798
1228 => 0.021636152372666
1229 => 0.022658521218409
1230 => 0.023302048213361
1231 => 0.024414961609197
]
'min_raw' => 0.0099680879921094
'max_raw' => 0.024414961609197
'avg_raw' => 0.017191524800653
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009968'
'max' => '$0.024414'
'avg' => '$0.017191'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0044447029716934
'max_diff' => 0.0099049935542316
'year' => 2028
]
3 => [
'items' => [
101 => 0.024275619370824
102 => 0.024708868388887
103 => 0.024026167682534
104 => 0.022458548864171
105 => 0.022210467185561
106 => 0.022707132988567
107 => 0.023928137401315
108 => 0.022668679214423
109 => 0.02292346596531
110 => 0.022850087363914
111 => 0.022846177330085
112 => 0.022995407418096
113 => 0.022778941392118
114 => 0.021897019860788
115 => 0.0223011993014
116 => 0.022145126209089
117 => 0.022318300941028
118 => 0.023252853546612
119 => 0.022839665562732
120 => 0.02240440558638
121 => 0.022950318188646
122 => 0.023645452527253
123 => 0.023601952269619
124 => 0.023517543588113
125 => 0.023993350906269
126 => 0.024779245197398
127 => 0.024991669266311
128 => 0.025148476371164
129 => 0.025170097421645
130 => 0.025392807679012
131 => 0.024195238494938
201 => 0.026095811545821
202 => 0.026423988009438
203 => 0.026362304435799
204 => 0.026727058763332
205 => 0.026619738787247
206 => 0.026464248979889
207 => 0.0270424621745
208 => 0.026379587406278
209 => 0.025438720126399
210 => 0.024922541728413
211 => 0.025602287081805
212 => 0.026017383849278
213 => 0.026291736407464
214 => 0.026374755325803
215 => 0.024288202381656
216 => 0.023163666070292
217 => 0.023884480953041
218 => 0.024763924857981
219 => 0.024190353139642
220 => 0.024212836065086
221 => 0.023395073526731
222 => 0.024836278697124
223 => 0.024626307226241
224 => 0.025715639588614
225 => 0.025455661677895
226 => 0.026343969931772
227 => 0.026110048598074
228 => 0.027081042975885
301 => 0.027468398921818
302 => 0.028118829842177
303 => 0.028597289474923
304 => 0.028878250122746
305 => 0.028861382299307
306 => 0.029974688360021
307 => 0.029318210671969
308 => 0.028493519975865
309 => 0.028478603923038
310 => 0.028905722920508
311 => 0.029800847164831
312 => 0.030032939857856
313 => 0.030162648010589
314 => 0.029963995459504
315 => 0.029251435979304
316 => 0.028943756408512
317 => 0.029205908317162
318 => 0.028885319059854
319 => 0.029438746059427
320 => 0.030198719535469
321 => 0.030041788017927
322 => 0.030566386552582
323 => 0.031109290846575
324 => 0.031885668370341
325 => 0.03208864220423
326 => 0.032424150233245
327 => 0.032769498203748
328 => 0.032880414664484
329 => 0.033092188603387
330 => 0.033091072450195
331 => 0.033729267469108
401 => 0.034433216338225
402 => 0.034698940739863
403 => 0.035309959349299
404 => 0.034263611393285
405 => 0.035057278337501
406 => 0.035773185787956
407 => 0.034919651412124
408 => 0.036096049701205
409 => 0.036141726580994
410 => 0.036831393235721
411 => 0.036132283957011
412 => 0.035717155098949
413 => 0.036915616557499
414 => 0.037495514306109
415 => 0.037320844384864
416 => 0.035991597659665
417 => 0.035217919051526
418 => 0.033193052902567
419 => 0.035591594323717
420 => 0.036759853883546
421 => 0.035988572149636
422 => 0.036377561793441
423 => 0.038499763159727
424 => 0.039307760037646
425 => 0.039139702335363
426 => 0.039168101320583
427 => 0.039604081769728
428 => 0.041537459180052
429 => 0.040378934620448
430 => 0.041264583237178
501 => 0.041734328070048
502 => 0.042170653249982
503 => 0.041099176510054
504 => 0.039705201014528
505 => 0.039263670459984
506 => 0.0359118833815
507 => 0.035737408307992
508 => 0.035639470162096
509 => 0.035021984005846
510 => 0.034536809030727
511 => 0.03415097987712
512 => 0.033138448959718
513 => 0.033480148421184
514 => 0.031866385470472
515 => 0.03289881381809
516 => 0.030323209183084
517 => 0.032468249257622
518 => 0.031300801468055
519 => 0.032084711260342
520 => 0.032081976272925
521 => 0.0306385498065
522 => 0.029806011544207
523 => 0.030336537327814
524 => 0.030905303081029
525 => 0.030997583410931
526 => 0.03173500305628
527 => 0.031940801028514
528 => 0.031317223564855
529 => 0.030269835501851
530 => 0.030513119860509
531 => 0.029801081394444
601 => 0.02855326137083
602 => 0.029449467496637
603 => 0.029755471671389
604 => 0.029890620547633
605 => 0.028663532867507
606 => 0.028277955277041
607 => 0.028072677003187
608 => 0.030111433891454
609 => 0.030223121596027
610 => 0.029651711508383
611 => 0.032234539287862
612 => 0.031649965814726
613 => 0.032303077608197
614 => 0.030491044354947
615 => 0.030560266465447
616 => 0.029702420884237
617 => 0.030182757088452
618 => 0.029843270941272
619 => 0.030143950669927
620 => 0.030324176859533
621 => 0.031181881676725
622 => 0.032478042868884
623 => 0.031053769178971
624 => 0.030433192736301
625 => 0.030818194871079
626 => 0.031843506290981
627 => 0.033396905576859
628 => 0.032477261934545
629 => 0.032885384166442
630 => 0.032974540718018
701 => 0.032296429543234
702 => 0.033421908503121
703 => 0.034025061821099
704 => 0.034643772320352
705 => 0.035180981310978
706 => 0.034396645741215
707 => 0.035235997230949
708 => 0.034559628095707
709 => 0.033952855059638
710 => 0.033953775283869
711 => 0.033573137694803
712 => 0.032835604402567
713 => 0.032699591947687
714 => 0.033407145914449
715 => 0.033974537190182
716 => 0.034021270253272
717 => 0.034335407217134
718 => 0.03452131023648
719 => 0.036343412548965
720 => 0.037076277172268
721 => 0.037972410161225
722 => 0.038321504463711
723 => 0.039372153156962
724 => 0.038523669007647
725 => 0.038340094124727
726 => 0.03579156405947
727 => 0.036208885714884
728 => 0.036877057950754
729 => 0.035802581973536
730 => 0.036484089670802
731 => 0.03661863372655
801 => 0.035766071690983
802 => 0.03622146191121
803 => 0.035012080500078
804 => 0.032504404078789
805 => 0.033424700263835
806 => 0.034102348024376
807 => 0.033135261116718
808 => 0.034868726967262
809 => 0.033856072003373
810 => 0.033535108995831
811 => 0.032282917871834
812 => 0.032873903881104
813 => 0.033673220920746
814 => 0.033179335920827
815 => 0.034204221452865
816 => 0.035655732693218
817 => 0.036690166042082
818 => 0.036769576989998
819 => 0.03610450564833
820 => 0.037170286717782
821 => 0.037178049769333
822 => 0.035975844369148
823 => 0.035239500255443
824 => 0.035072201323528
825 => 0.035490146856339
826 => 0.035997609890174
827 => 0.036797737656613
828 => 0.037281238108362
829 => 0.0385419508577
830 => 0.038883063580204
831 => 0.03925784304332
901 => 0.039758663983749
902 => 0.040360027930587
903 => 0.039044277850573
904 => 0.039096555054117
905 => 0.037871346797408
906 => 0.036562036062476
907 => 0.037555639702402
908 => 0.038854644288052
909 => 0.038556651200831
910 => 0.038523120891073
911 => 0.038579509571554
912 => 0.038354832515334
913 => 0.037338626516972
914 => 0.036828294226381
915 => 0.037486753080896
916 => 0.037836694657439
917 => 0.038379423524545
918 => 0.038312520736058
919 => 0.039710532012897
920 => 0.04025375692141
921 => 0.040114776743908
922 => 0.040140352441314
923 => 0.041123835190373
924 => 0.042217670275981
925 => 0.043242191177905
926 => 0.044284377843539
927 => 0.04302798114088
928 => 0.042390060379045
929 => 0.043048231771023
930 => 0.042698996766006
1001 => 0.044705804694664
1002 => 0.044844751721535
1003 => 0.046851414535138
1004 => 0.04875597649421
1005 => 0.047559755251489
1006 => 0.048687738004387
1007 => 0.049907743317429
1008 => 0.052261331505017
1009 => 0.051468725803668
1010 => 0.05086160225815
1011 => 0.050287873441235
1012 => 0.051481712032351
1013 => 0.053017566307784
1014 => 0.053348374608483
1015 => 0.053884410434112
1016 => 0.053320834306805
1017 => 0.053999599676272
1018 => 0.056395939695108
1019 => 0.05574842746894
1020 => 0.054828856014997
1021 => 0.056720536312926
1022 => 0.057405128059025
1023 => 0.062209951456632
1024 => 0.068276239473466
1025 => 0.065764756401102
1026 => 0.064205797813033
1027 => 0.064572190060222
1028 => 0.066787393087161
1029 => 0.067498845992384
1030 => 0.065564871743464
1031 => 0.066247984143245
1101 => 0.070012000628166
1102 => 0.07203127470822
1103 => 0.069288829282817
1104 => 0.061722531121093
1105 => 0.054746058666819
1106 => 0.056596533316341
1107 => 0.056386746917999
1108 => 0.060430713060428
1109 => 0.055732984516492
1110 => 0.055812082217176
1111 => 0.059939673296796
1112 => 0.058838502761579
1113 => 0.057054747521793
1114 => 0.054759082054091
1115 => 0.050515332113688
1116 => 0.046756524445751
1117 => 0.054128411884283
1118 => 0.053810522693026
1119 => 0.053350172035547
1120 => 0.054374632608622
1121 => 0.059349122353268
1122 => 0.059234444263802
1123 => 0.058504920767894
1124 => 0.059058257909815
1125 => 0.056957744845469
1126 => 0.057499094889944
1127 => 0.054744953557938
1128 => 0.055989940463107
1129 => 0.057050920384174
1130 => 0.057263927811404
1201 => 0.057743844421383
1202 => 0.05364300953423
1203 => 0.055484164004375
1204 => 0.056565669762741
1205 => 0.051679387400926
1206 => 0.056469083671044
1207 => 0.053571623122379
1208 => 0.052588181493765
1209 => 0.053912256088111
1210 => 0.053396262930989
1211 => 0.052952642314631
1212 => 0.052705094388334
1213 => 0.053677348637641
1214 => 0.053631991814816
1215 => 0.052041195156531
1216 => 0.049966065764965
1217 => 0.050662547302574
1218 => 0.050409509030412
1219 => 0.049492465689507
1220 => 0.050110442177041
1221 => 0.047389186476681
1222 => 0.042707407482775
1223 => 0.045800334092918
1224 => 0.045681259782885
1225 => 0.045621217116176
1226 => 0.047945465981486
1227 => 0.047722043082631
1228 => 0.047316528333446
1229 => 0.049485018093129
1230 => 0.048693490160542
1231 => 0.051132792741341
]
'min_raw' => 0.021897019860788
'max_raw' => 0.07203127470822
'avg_raw' => 0.046964147284504
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.021897'
'max' => '$0.072031'
'avg' => '$0.046964'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.011928931868678
'max_diff' => 0.047616313099023
'year' => 2029
]
4 => [
'items' => [
101 => 0.052739475185255
102 => 0.052331968546746
103 => 0.053843061151017
104 => 0.050678592830506
105 => 0.051729702270147
106 => 0.051946334468882
107 => 0.049458259266101
108 => 0.047758597832001
109 => 0.047645249791906
110 => 0.04469827109295
111 => 0.046272523326751
112 => 0.047657800145512
113 => 0.046994360051149
114 => 0.046784334736983
115 => 0.047857308518126
116 => 0.047940687770319
117 => 0.046039631984165
118 => 0.046434921680714
119 => 0.048083345426766
120 => 0.046393385631733
121 => 0.043110069803349
122 => 0.042295762082517
123 => 0.042187118421889
124 => 0.039978651299432
125 => 0.042350178018187
126 => 0.041314943052486
127 => 0.044585237905116
128 => 0.042717263024237
129 => 0.042636738360596
130 => 0.042515013521103
131 => 0.040614094638177
201 => 0.041030275063841
202 => 0.042413722184815
203 => 0.042907351703226
204 => 0.042855862100268
205 => 0.042406942539185
206 => 0.042612455615409
207 => 0.04195042639139
208 => 0.041716650093442
209 => 0.040978787791882
210 => 0.039894334048253
211 => 0.040045133992646
212 => 0.037896547363758
213 => 0.036725883334217
214 => 0.036401858959944
215 => 0.035968560024755
216 => 0.036450801227638
217 => 0.037890460687794
218 => 0.036153925938053
219 => 0.033176758913371
220 => 0.033355691724401
221 => 0.033757700625155
222 => 0.033008559698154
223 => 0.032299560681381
224 => 0.032915977803557
225 => 0.0316545128879
226 => 0.033910142633492
227 => 0.033849134170203
228 => 0.034689893452152
301 => 0.035215637485272
302 => 0.034003967700582
303 => 0.033699236026436
304 => 0.033872825037312
305 => 0.031003785361834
306 => 0.034455431701546
307 => 0.034485281682424
308 => 0.034229688023693
309 => 0.036067583141965
310 => 0.039946115095381
311 => 0.03848685536092
312 => 0.037921785885377
313 => 0.036847588399307
314 => 0.03827889276996
315 => 0.03816899092612
316 => 0.037671973109241
317 => 0.037371375182802
318 => 0.037925236079101
319 => 0.037302745688443
320 => 0.037190929309389
321 => 0.036513443709742
322 => 0.036271612174298
323 => 0.036092569733047
324 => 0.035895461597576
325 => 0.036330233028138
326 => 0.03534498376754
327 => 0.034156869744434
328 => 0.034058090918985
329 => 0.034330827940774
330 => 0.034210162111515
331 => 0.034057513217418
401 => 0.033766064907133
402 => 0.03367959841928
403 => 0.033960572557228
404 => 0.033643369137294
405 => 0.03411142006237
406 => 0.033984136109189
407 => 0.033273138293579
408 => 0.032386971770223
409 => 0.032379083029368
410 => 0.032188159905515
411 => 0.031944990601805
412 => 0.031877346464473
413 => 0.032864064872854
414 => 0.034906542448207
415 => 0.034505555227819
416 => 0.034795309589373
417 => 0.036220614267783
418 => 0.036673675764643
419 => 0.036352103445522
420 => 0.035911915421392
421 => 0.035931281460461
422 => 0.037435537192891
423 => 0.037529355777765
424 => 0.037766405074719
425 => 0.038071080411428
426 => 0.036403990972817
427 => 0.035852761697822
428 => 0.035591558686293
429 => 0.034787154509072
430 => 0.035654635449803
501 => 0.035149191454877
502 => 0.035217393118218
503 => 0.035172976695495
504 => 0.035197231065727
505 => 0.033909512139008
506 => 0.03437868923539
507 => 0.033598591314261
508 => 0.032554127767969
509 => 0.032550626359926
510 => 0.03280625733319
511 => 0.032654198027452
512 => 0.032245010345511
513 => 0.032303133524419
514 => 0.0317939133171
515 => 0.032364962077317
516 => 0.03238133771245
517 => 0.03216145283453
518 => 0.033041232239188
519 => 0.033401678579108
520 => 0.033256945642071
521 => 0.033391523730417
522 => 0.034522218057175
523 => 0.034706570568089
524 => 0.034788447775793
525 => 0.034678743164121
526 => 0.033412190747065
527 => 0.033468367732558
528 => 0.033056178287025
529 => 0.032707921641003
530 => 0.032721850080479
531 => 0.032900899266729
601 => 0.03368281756418
602 => 0.035328318524563
603 => 0.035390764083165
604 => 0.035466449921854
605 => 0.035158597579248
606 => 0.035065746366968
607 => 0.035188241082897
608 => 0.035806204727286
609 => 0.03739577499615
610 => 0.036833914699305
611 => 0.036377113532094
612 => 0.036777851308449
613 => 0.036716160868865
614 => 0.036195431475718
615 => 0.036180816335995
616 => 0.035181370143288
617 => 0.034811897642133
618 => 0.03450313876563
619 => 0.034165982132843
620 => 0.033966104379335
621 => 0.034273207451538
622 => 0.034343445557688
623 => 0.033671959323072
624 => 0.033580438230521
625 => 0.034128788384745
626 => 0.033887479926425
627 => 0.034135671659969
628 => 0.034193254271101
629 => 0.034183982144468
630 => 0.033932028399883
701 => 0.034092616203313
702 => 0.033712778174672
703 => 0.033299761368353
704 => 0.033036282377777
705 => 0.032806362013083
706 => 0.032933935194465
707 => 0.032479160096781
708 => 0.032333668390217
709 => 0.034038212668851
710 => 0.035297377854416
711 => 0.035279069093934
712 => 0.035167619223129
713 => 0.035002027321894
714 => 0.035794090648303
715 => 0.035518151623188
716 => 0.035718920319436
717 => 0.035770024378867
718 => 0.035924700975206
719 => 0.035979984563494
720 => 0.035812879162766
721 => 0.035252053027714
722 => 0.033854527620915
723 => 0.033203975771503
724 => 0.032989282825399
725 => 0.032997086506229
726 => 0.032781826151747
727 => 0.032845229973434
728 => 0.032759776890056
729 => 0.03259794942346
730 => 0.032923942804421
731 => 0.032961510504738
801 => 0.032885419754291
802 => 0.032903341880547
803 => 0.032273342965629
804 => 0.032321240414845
805 => 0.0320545413311
806 => 0.032004538468003
807 => 0.031330346408441
808 => 0.030135917449225
809 => 0.030797747038655
810 => 0.029998349961946
811 => 0.029695606176154
812 => 0.031128748171774
813 => 0.030984900464586
814 => 0.030738695718973
815 => 0.030374507586648
816 => 0.030239426665774
817 => 0.029418717751967
818 => 0.029370225891028
819 => 0.029776991389715
820 => 0.029589283108017
821 => 0.029325669589828
822 => 0.028370888149019
823 => 0.027297397692279
824 => 0.027329799621448
825 => 0.027671256962737
826 => 0.028664090234331
827 => 0.028276173098929
828 => 0.027994734766359
829 => 0.027942029826674
830 => 0.028601742492099
831 => 0.029535374127752
901 => 0.02997341320237
902 => 0.029539329782868
903 => 0.029040678123255
904 => 0.029071028739247
905 => 0.029272937790121
906 => 0.029294155576528
907 => 0.028969584608339
908 => 0.029060949434699
909 => 0.028922157908883
910 => 0.028070394571143
911 => 0.028054988873334
912 => 0.027845952413713
913 => 0.027839622872792
914 => 0.027483999708389
915 => 0.027434245569382
916 => 0.026728134191676
917 => 0.027192898838784
918 => 0.026881159114743
919 => 0.026411293818646
920 => 0.026330288864496
921 => 0.026327853757758
922 => 0.026810300356892
923 => 0.027187261169379
924 => 0.02688658196071
925 => 0.026818123133318
926 => 0.027549084306971
927 => 0.027456062834764
928 => 0.027375506839758
929 => 0.029451777654941
930 => 0.027808247291291
1001 => 0.027091574243307
1002 => 0.026204555253905
1003 => 0.026493373109592
1004 => 0.026554231275403
1005 => 0.024421110503082
1006 => 0.023555703671415
1007 => 0.023258728658956
1008 => 0.023087815340675
1009 => 0.02316570268601
1010 => 0.022386735035412
1011 => 0.02291021417955
1012 => 0.022235694038629
1013 => 0.022122608541925
1014 => 0.023328734110903
1015 => 0.023496559437743
1016 => 0.022780564454201
1017 => 0.023240349142693
1018 => 0.023073624823161
1019 => 0.022247256750454
1020 => 0.022215695568429
1021 => 0.021801053117787
1022 => 0.021152217973132
1023 => 0.020855682901454
1024 => 0.020701244861488
1025 => 0.020764969006716
1026 => 0.020732748128898
1027 => 0.020522485106094
1028 => 0.02074480015924
1029 => 0.020176877065375
1030 => 0.019950725513331
1031 => 0.019848578103949
1101 => 0.019344513669711
1102 => 0.020146704343055
1103 => 0.020304746011436
1104 => 0.020463099070725
1105 => 0.02184145433961
1106 => 0.021772595605568
1107 => 0.022395045025743
1108 => 0.022370857785886
1109 => 0.02219332512824
1110 => 0.021444344048336
1111 => 0.021742874557481
1112 => 0.020824044052272
1113 => 0.021512494341176
1114 => 0.021198314379692
1115 => 0.021406269780162
1116 => 0.021032347219535
1117 => 0.02123929140347
1118 => 0.020342223553968
1119 => 0.019504554218189
1120 => 0.019841656811999
1121 => 0.020208125883828
1122 => 0.021002724206136
1123 => 0.020529468000663
1124 => 0.02069966882795
1125 => 0.020129524547814
1126 => 0.018953154044233
1127 => 0.01895981217353
1128 => 0.018778853200178
1129 => 0.01862247822676
1130 => 0.020583827168853
1201 => 0.020339902423565
1202 => 0.01995124026603
1203 => 0.020471480008711
1204 => 0.02060903965399
1205 => 0.020612955783705
1206 => 0.020992509270633
1207 => 0.021195077034645
1208 => 0.021230780481031
1209 => 0.021828016093509
1210 => 0.022028201593083
1211 => 0.022852737334516
1212 => 0.021177890575131
1213 => 0.021143398208285
1214 => 0.020478800848769
1215 => 0.020057302696495
1216 => 0.020507661187862
1217 => 0.020906617331149
1218 => 0.020491197528226
1219 => 0.020545442584497
1220 => 0.019987775440119
1221 => 0.020187115203556
1222 => 0.020358813461794
1223 => 0.020264011775552
1224 => 0.020122089062794
1225 => 0.020873907477035
1226 => 0.020831486935704
1227 => 0.021531597527276
1228 => 0.022077383798795
1229 => 0.023055530368323
1230 => 0.022034783431086
1231 => 0.021997583355592
]
'min_raw' => 0.01862247822676
'max_raw' => 0.053843061151017
'avg_raw' => 0.036232769688888
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.018622'
'max' => '$0.053843'
'avg' => '$0.036232'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032745416340281
'max_diff' => -0.018188213557203
'year' => 2030
]
5 => [
'items' => [
101 => 0.02236122006063
102 => 0.022028145922198
103 => 0.022238637280359
104 => 0.023021616956339
105 => 0.02303816008309
106 => 0.022761041395408
107 => 0.022744178698078
108 => 0.022797402373393
109 => 0.023109135102128
110 => 0.023000206108129
111 => 0.023126261497729
112 => 0.023283895692653
113 => 0.023935937558372
114 => 0.024093142644719
115 => 0.023711215786387
116 => 0.023745699505441
117 => 0.023602848376298
118 => 0.023464855975465
119 => 0.023775042740365
120 => 0.024341915149956
121 => 0.024338388666117
122 => 0.024469892046717
123 => 0.024551817563398
124 => 0.024200133272659
125 => 0.023971199731178
126 => 0.024058987418402
127 => 0.024199361842039
128 => 0.024013465884735
129 => 0.022866029920872
130 => 0.023214088693815
131 => 0.023156154694792
201 => 0.02307364963517
202 => 0.023423625422823
203 => 0.023389869404332
204 => 0.022378745596254
205 => 0.022443474461864
206 => 0.02238268197296
207 => 0.022579114941581
208 => 0.022017537897254
209 => 0.02219027521381
210 => 0.022298614439442
211 => 0.02236242707564
212 => 0.022592962074323
213 => 0.022565911453053
214 => 0.022591280569724
215 => 0.022933103113788
216 => 0.024661924242329
217 => 0.024756020161926
218 => 0.024292657439862
219 => 0.024477761707901
220 => 0.024122401991119
221 => 0.024360957349698
222 => 0.024524170867389
223 => 0.0237866403651
224 => 0.023742968595287
225 => 0.023386142182546
226 => 0.023577880485072
227 => 0.023272811059281
228 => 0.023347664425495
301 => 0.023138367887962
302 => 0.023515059984996
303 => 0.023936260281513
304 => 0.024042672110117
305 => 0.023762748402233
306 => 0.023560065189853
307 => 0.023204220236915
308 => 0.023795998324173
309 => 0.023969052270997
310 => 0.023795089345461
311 => 0.02375477833445
312 => 0.023678389041423
313 => 0.023770984684081
314 => 0.023968109782038
315 => 0.02387514922617
316 => 0.023936551311075
317 => 0.023702549880973
318 => 0.024200249694793
319 => 0.024990716777122
320 => 0.024993258258046
321 => 0.024900297201086
322 => 0.024862259539452
323 => 0.024957643225242
324 => 0.025009384961939
325 => 0.025317838311404
326 => 0.025648821044704
327 => 0.027193373041936
328 => 0.026759669021738
329 => 0.028130087439492
330 => 0.029213910481374
331 => 0.029538901621797
401 => 0.029239925064623
402 => 0.028217142412926
403 => 0.028166959816591
404 => 0.029695428905924
405 => 0.029263566379868
406 => 0.029212197706569
407 => 0.028665721811409
408 => 0.028988756747805
409 => 0.028918104268579
410 => 0.028806575873682
411 => 0.029422904029517
412 => 0.030576615317245
413 => 0.030396798593617
414 => 0.030262573750886
415 => 0.029674439562304
416 => 0.030028627708357
417 => 0.029902508093574
418 => 0.030444397996165
419 => 0.030123394422201
420 => 0.029260294596485
421 => 0.029397746088544
422 => 0.029376970572034
423 => 0.029804529229657
424 => 0.029676186733297
425 => 0.029351909639796
426 => 0.030572672057488
427 => 0.030493402536321
428 => 0.030605788593801
429 => 0.030655264411958
430 => 0.031398320983361
501 => 0.031702727485506
502 => 0.031771833090879
503 => 0.032060995724273
504 => 0.031764638461139
505 => 0.032950278812824
506 => 0.033738660462662
507 => 0.034654406318697
508 => 0.035992557143647
509 => 0.036495714232415
510 => 0.036404823407914
511 => 0.037419394091286
512 => 0.039242555056667
513 => 0.036773336365184
514 => 0.039373429643047
515 => 0.038550270130796
516 => 0.036598573735256
517 => 0.036472907496373
518 => 0.037794618955093
519 => 0.040726047760522
520 => 0.039991758092753
521 => 0.040727248795367
522 => 0.039869259822879
523 => 0.039826653438696
524 => 0.04068557818604
525 => 0.042692502675761
526 => 0.041739088079134
527 => 0.04037213446802
528 => 0.041381471742313
529 => 0.040507090385565
530 => 0.03853686446488
531 => 0.039991196595282
601 => 0.039018726116677
602 => 0.039302544701708
603 => 0.04134653300367
604 => 0.041100594923456
605 => 0.041418861572506
606 => 0.040857129267421
607 => 0.040332382717417
608 => 0.039352904313644
609 => 0.039062929045989
610 => 0.039143067777751
611 => 0.039062889333213
612 => 0.038514880168173
613 => 0.038396537641159
614 => 0.038199294911431
615 => 0.038260428681015
616 => 0.03788955464373
617 => 0.038589470578572
618 => 0.038719381143717
619 => 0.039228721592951
620 => 0.039281603008062
621 => 0.04070010890917
622 => 0.039918819695863
623 => 0.040442975953415
624 => 0.04039609048419
625 => 0.036640872914209
626 => 0.037158308762787
627 => 0.03796327656286
628 => 0.037600639660035
629 => 0.037087955923408
630 => 0.036673936317718
701 => 0.03604665427942
702 => 0.03692954170244
703 => 0.038090444779101
704 => 0.039311045425868
705 => 0.040777517126036
706 => 0.040450217714171
707 => 0.03928363075749
708 => 0.039335962996175
709 => 0.039659460303745
710 => 0.039240501897612
711 => 0.039116942884603
712 => 0.039642485192735
713 => 0.039646104313778
714 => 0.039164042034707
715 => 0.038628318027986
716 => 0.038626073324837
717 => 0.038530746412321
718 => 0.039886218268845
719 => 0.040631590736272
720 => 0.040717046488434
721 => 0.040625838883275
722 => 0.040660941070601
723 => 0.040227225254967
724 => 0.041218570995076
725 => 0.042128327880132
726 => 0.041884493600816
727 => 0.041518951353036
728 => 0.041227779345779
729 => 0.041815902729486
730 => 0.041789714521001
731 => 0.042120381947396
801 => 0.042105380962907
802 => 0.041994189944441
803 => 0.041884497571797
804 => 0.042319415430267
805 => 0.042194166071595
806 => 0.042068722166074
807 => 0.041817125209051
808 => 0.041851321414093
809 => 0.041485842282336
810 => 0.041316754912798
811 => 0.038774086572272
812 => 0.038094602507599
813 => 0.038308382026519
814 => 0.03837876379493
815 => 0.038083051459201
816 => 0.03850702698637
817 => 0.038440950849562
818 => 0.038698014444634
819 => 0.038537412270837
820 => 0.03854400344007
821 => 0.039016300189214
822 => 0.039153409944785
823 => 0.03908367481649
824 => 0.039132514909968
825 => 0.040258014250037
826 => 0.040098004235322
827 => 0.040013002104122
828 => 0.040036548275379
829 => 0.040324137487745
830 => 0.040404646765419
831 => 0.040063523298629
901 => 0.040224399097578
902 => 0.040909387831325
903 => 0.041149095121132
904 => 0.041914125724168
905 => 0.041589127126663
906 => 0.042185676117992
907 => 0.044019264338801
908 => 0.045484061484236
909 => 0.044136973493991
910 => 0.046826886910792
911 => 0.048921370350934
912 => 0.048840980587957
913 => 0.048475758953893
914 => 0.046091245242015
915 => 0.043896980173248
916 => 0.045732576076688
917 => 0.04573725538814
918 => 0.045579576072125
919 => 0.044600243382523
920 => 0.045545497417353
921 => 0.04562052824998
922 => 0.045578530936018
923 => 0.044827678859067
924 => 0.043681266518223
925 => 0.043905272745501
926 => 0.044272199515385
927 => 0.043577530591052
928 => 0.043355541778253
929 => 0.043768261216345
930 => 0.04509812923939
1001 => 0.044846725393034
1002 => 0.044840160222603
1003 => 0.045915772489135
1004 => 0.045145866237953
1005 => 0.043908098181394
1006 => 0.043595545422958
1007 => 0.042486193691276
1008 => 0.043252426883724
1009 => 0.043280002252222
1010 => 0.042860344163431
1011 => 0.043942151122432
1012 => 0.043932182080856
1013 => 0.04495919678271
1014 => 0.046922463163549
1015 => 0.046341828688264
1016 => 0.045666613966358
1017 => 0.045740028528303
1018 => 0.046545205070256
1019 => 0.046058376952598
1020 => 0.046233443737994
1021 => 0.046544940085709
1022 => 0.046732873566304
1023 => 0.045712987792577
1024 => 0.045475203631946
1025 => 0.044988780690193
1026 => 0.044861882024204
1027 => 0.045258063360714
1028 => 0.045153683575837
1029 => 0.043277684649277
1030 => 0.043081632323491
1031 => 0.043087644968425
1101 => 0.042594662073459
1102 => 0.041842744829183
1103 => 0.043818738452493
1104 => 0.043660038510528
1105 => 0.043484846056999
1106 => 0.043506306132922
1107 => 0.044364017992163
1108 => 0.043866501798316
1109 => 0.045189230140959
1110 => 0.044917316958566
1111 => 0.044638430229066
1112 => 0.044599879587951
1113 => 0.044492531990591
1114 => 0.044124397136963
1115 => 0.043679852179731
1116 => 0.043386325093143
1117 => 0.040021591505957
1118 => 0.040646066487984
1119 => 0.04136446803212
1120 => 0.041612457366342
1121 => 0.041188254449815
1122 => 0.044141147253655
1123 => 0.044680669223699
1124 => 0.043046421984287
1125 => 0.042740721051668
1126 => 0.044161188955904
1127 => 0.043304473164511
1128 => 0.043690252232917
1129 => 0.04285640889689
1130 => 0.044550714180163
1201 => 0.044537806412642
1202 => 0.043878683389829
1203 => 0.044435769655231
1204 => 0.044338962207397
1205 => 0.04359481393799
1206 => 0.044574305007616
1207 => 0.044574790822967
1208 => 0.043940399244079
1209 => 0.043199568766112
1210 => 0.043067125774286
1211 => 0.042967347771158
1212 => 0.043665712960651
1213 => 0.044291865005818
1214 => 0.045456978725619
1215 => 0.045749915997196
1216 => 0.0468932696701
1217 => 0.046212458226765
1218 => 0.046514253121611
1219 => 0.046841894171461
1220 => 0.046998977339359
1221 => 0.046743018746816
1222 => 0.048519117623983
1223 => 0.048669074787479
1224 => 0.048719354127275
1225 => 0.048120463579002
1226 => 0.048652418557947
1227 => 0.048403534439796
1228 => 0.049051061773225
1229 => 0.049152602327151
1230 => 0.049066601090386
1231 => 0.04909883166491
]
'min_raw' => 0.022017537897254
'max_raw' => 0.049152602327151
'avg_raw' => 0.035585070112203
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.022017'
'max' => '$0.049152'
'avg' => '$0.035585'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0033950596704946
'max_diff' => -0.0046904588238663
'year' => 2031
]
6 => [
'items' => [
101 => 0.047583244598561
102 => 0.047504653413812
103 => 0.046433057033184
104 => 0.046869740479131
105 => 0.046053381707716
106 => 0.046312257483559
107 => 0.046426367458892
108 => 0.046366762883462
109 => 0.04689442990597
110 => 0.046445805141587
111 => 0.045261810627642
112 => 0.044077493535183
113 => 0.044062625398811
114 => 0.043750815613299
115 => 0.043525434249185
116 => 0.043568850695747
117 => 0.043721855916327
118 => 0.043516541307617
119 => 0.0435603555891
120 => 0.044287964594751
121 => 0.044433881391765
122 => 0.04393799910214
123 => 0.041946960153826
124 => 0.041458354201767
125 => 0.04180955447063
126 => 0.041641703362307
127 => 0.033608104615076
128 => 0.035495479476683
129 => 0.03437406542311
130 => 0.034890864612777
131 => 0.03374619125284
201 => 0.034292489377673
202 => 0.034191608061629
203 => 0.037226450987612
204 => 0.037179066089613
205 => 0.037201746732732
206 => 0.036119140542549
207 => 0.037843761599472
208 => 0.038693371947479
209 => 0.03853613168371
210 => 0.038575705670492
211 => 0.037895693462684
212 => 0.037208330737337
213 => 0.036445939690561
214 => 0.037862368021088
215 => 0.037704885369972
216 => 0.038066093911164
217 => 0.038984748931899
218 => 0.039120024373333
219 => 0.039301835938449
220 => 0.039236669434583
221 => 0.040789199939025
222 => 0.040601178251011
223 => 0.041054256421593
224 => 0.040122240249582
225 => 0.039067575483164
226 => 0.039268032775671
227 => 0.039248727126427
228 => 0.039002944053556
229 => 0.038781062085072
301 => 0.038411691122402
302 => 0.039580435504905
303 => 0.039532986617353
304 => 0.040301128953518
305 => 0.040165352334264
306 => 0.039258602840714
307 => 0.039290987576266
308 => 0.039508790486427
309 => 0.040262608845325
310 => 0.040486393458113
311 => 0.040382727509194
312 => 0.040628097120961
313 => 0.040822027257577
314 => 0.040652451760319
315 => 0.04305328319841
316 => 0.042056290599931
317 => 0.0425422178554
318 => 0.04265810864258
319 => 0.04236125682814
320 => 0.042425633357225
321 => 0.042523146257236
322 => 0.043115225491115
323 => 0.044669012720323
324 => 0.045357174507152
325 => 0.04742754319613
326 => 0.04530003225043
327 => 0.045173794555428
328 => 0.045546730475458
329 => 0.046762256066671
330 => 0.047747325389836
331 => 0.048074129714342
401 => 0.048117322300777
402 => 0.048730428939092
403 => 0.049081850230412
404 => 0.048655981666895
405 => 0.048295102649612
406 => 0.047002478803655
407 => 0.047152103533522
408 => 0.048182869546603
409 => 0.049638887251895
410 => 0.050888301915859
411 => 0.050450800447036
412 => 0.05378862782625
413 => 0.054119559777097
414 => 0.054073835681801
415 => 0.054827747915108
416 => 0.05333138566355
417 => 0.052691661810356
418 => 0.048373128789299
419 => 0.049586460417543
420 => 0.051350109195664
421 => 0.051116683666537
422 => 0.049835874781398
423 => 0.050887330307466
424 => 0.050539686228494
425 => 0.050265484919642
426 => 0.051521654272031
427 => 0.050140444468487
428 => 0.051336330571304
429 => 0.049802594274583
430 => 0.050452798916893
501 => 0.050083711315058
502 => 0.05032255622712
503 => 0.048926273751607
504 => 0.049679673882553
505 => 0.04889492982921
506 => 0.048894557758352
507 => 0.04887723448988
508 => 0.04980048238855
509 => 0.04983058946938
510 => 0.049148307877313
511 => 0.049049980440654
512 => 0.049413548509476
513 => 0.048987905519514
514 => 0.049187061195552
515 => 0.048993937742058
516 => 0.048950461584874
517 => 0.048604036167574
518 => 0.048454786572637
519 => 0.0485133111845
520 => 0.048313536512705
521 => 0.048193165046783
522 => 0.048853289575602
523 => 0.048500611669201
524 => 0.048799236628333
525 => 0.048458915797928
526 => 0.047279215529017
527 => 0.046600757429262
528 => 0.044372412979561
529 => 0.045004368701244
530 => 0.045423355998525
531 => 0.045284880699273
601 => 0.045582379224893
602 => 0.045600643218183
603 => 0.045503923414865
604 => 0.045391934273198
605 => 0.045337424152422
606 => 0.045743697933381
607 => 0.045979553537774
608 => 0.045465406979134
609 => 0.045344949634119
610 => 0.045864780191714
611 => 0.046181876531551
612 => 0.048523137743862
613 => 0.04834968955108
614 => 0.048785010477474
615 => 0.048736000021706
616 => 0.049192285704629
617 => 0.049938119955491
618 => 0.048421630384952
619 => 0.048684840538134
620 => 0.048620307486984
621 => 0.049324862417966
622 => 0.049327061961555
623 => 0.048904646085303
624 => 0.049133644584734
625 => 0.049005823904597
626 => 0.049236813149606
627 => 0.048347373044719
628 => 0.049430615083345
629 => 0.050044743516672
630 => 0.050053270690564
701 => 0.050344362693936
702 => 0.050640129028274
703 => 0.051207826751217
704 => 0.0506242962469
705 => 0.049574581675183
706 => 0.049650367676703
707 => 0.049034920407381
708 => 0.049045266187168
709 => 0.048990039603852
710 => 0.049155778737647
711 => 0.048383743464267
712 => 0.048564938599807
713 => 0.048311264348973
714 => 0.048684289099854
715 => 0.048282976131107
716 => 0.048620276367193
717 => 0.048765843967408
718 => 0.049302991546047
719 => 0.048203638997
720 => 0.04596198472987
721 => 0.046433207634251
722 => 0.04573623194491
723 => 0.045800739698532
724 => 0.045931055627182
725 => 0.04550865906571
726 => 0.045589239018394
727 => 0.045586360135451
728 => 0.045561551477553
729 => 0.045451669818186
730 => 0.045292319672678
731 => 0.045927121606991
801 => 0.046034986825558
802 => 0.04627475784476
803 => 0.046988153759668
804 => 0.046916868684734
805 => 0.04703313759954
806 => 0.046779323211341
807 => 0.045812513420044
808 => 0.045865015843173
809 => 0.045210309785452
810 => 0.046258015538884
811 => 0.046009904987431
812 => 0.045849946500855
813 => 0.045806300345787
814 => 0.046521464631182
815 => 0.046735452994199
816 => 0.046602109806592
817 => 0.046328619038567
818 => 0.046853802163462
819 => 0.046994319011986
820 => 0.047025775552309
821 => 0.047956299355746
822 => 0.047077781496091
823 => 0.047289249476627
824 => 0.048939062294568
825 => 0.047442909727302
826 => 0.048235455110366
827 => 0.048196664138072
828 => 0.048602103537775
829 => 0.048163406273407
830 => 0.048168844451773
831 => 0.048528847171865
901 => 0.048023288278329
902 => 0.047898104786598
903 => 0.047725164689354
904 => 0.0481027730648
905 => 0.048329132208122
906 => 0.050153420660826
907 => 0.051331994198933
908 => 0.051280829213377
909 => 0.051748381404518
910 => 0.051537744860122
911 => 0.050857543895154
912 => 0.052018564000683
913 => 0.051651168660149
914 => 0.051681456285637
915 => 0.051680328978704
916 => 0.051924614761901
917 => 0.051751515896043
918 => 0.051410320263202
919 => 0.051636821847215
920 => 0.052309450575936
921 => 0.054397310788656
922 => 0.055565705024162
923 => 0.054326971988599
924 => 0.055181433449234
925 => 0.054669061048602
926 => 0.054575947741648
927 => 0.055112612683133
928 => 0.055650216985555
929 => 0.055615973915618
930 => 0.055225700798346
1001 => 0.055005245417213
1002 => 0.056674607421125
1003 => 0.057904564908767
1004 => 0.05782069005385
1005 => 0.058190886385892
1006 => 0.05927779426651
1007 => 0.05937716750154
1008 => 0.059364648757994
1009 => 0.059118341826446
1010 => 0.060188543787737
1011 => 0.061081325092259
1012 => 0.059061328888284
1013 => 0.059830516999066
1014 => 0.060175830323689
1015 => 0.060682852734082
1016 => 0.061538284527238
1017 => 0.062467510346683
1018 => 0.062598913065995
1019 => 0.062505676548444
1020 => 0.06189282714159
1021 => 0.062909597121196
1022 => 0.063505197129059
1023 => 0.063859863303677
1024 => 0.064759237711686
1025 => 0.060177962861223
1026 => 0.056935108817931
1027 => 0.056428690331691
1028 => 0.057458512237383
1029 => 0.057730068061239
1030 => 0.057620604249145
1031 => 0.053970477196029
1101 => 0.056409473168167
1102 => 0.059033627757582
1103 => 0.059134432222568
1104 => 0.060448138878514
1105 => 0.060875935616345
1106 => 0.061933641665849
1107 => 0.06186748186447
1108 => 0.062125016455745
1109 => 0.062065813713088
1110 => 0.064024991443509
1111 => 0.066186255420871
1112 => 0.066111417721734
1113 => 0.065800710454073
1114 => 0.066262163730011
1115 => 0.068492819769772
1116 => 0.068287456707166
1117 => 0.068486949429704
1118 => 0.071117018614848
1119 => 0.074536482678514
1120 => 0.072947798312362
1121 => 0.0763947862553
1122 => 0.0785644824484
1123 => 0.082316747663592
1124 => 0.081846945578354
1125 => 0.083307674891234
1126 => 0.081005901795124
1127 => 0.075720565501362
1128 => 0.074884140801419
1129 => 0.076558684232351
1130 => 0.080675385857738
1201 => 0.07642903464807
1202 => 0.077288065967327
1203 => 0.077040664889591
1204 => 0.077027481937545
1205 => 0.077530621598187
1206 => 0.076800791278426
1207 => 0.073827331261752
1208 => 0.075190050464684
1209 => 0.074663839137281
1210 => 0.075247709836688
1211 => 0.078398619194792
1212 => 0.077005527059277
1213 => 0.075538017660126
1214 => 0.077378600113067
1215 => 0.07972229406841
1216 => 0.079575629912708
1217 => 0.079291040149784
1218 => 0.080895257742751
1219 => 0.083544955214679
1220 => 0.084261157793995
1221 => 0.084789843895929
1222 => 0.08486274077716
1223 => 0.085613623959007
1224 => 0.081575935843292
1225 => 0.087983850578117
1226 => 0.089090320437748
1227 => 0.088882349962615
1228 => 0.090112144644226
1229 => 0.089750307852016
1230 => 0.089226063110557
1231 => 0.091175549265742
]
'min_raw' => 0.033608104615076
'max_raw' => 0.091175549265742
'avg_raw' => 0.062391826940409
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0336081'
'max' => '$0.091175'
'avg' => '$0.062391'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011590566717822
'max_diff' => 0.042022946938591
'year' => 2032
]
7 => [
'items' => [
101 => 0.088940620704243
102 => 0.085768420980878
103 => 0.084028089473643
104 => 0.086319898390908
105 => 0.087719426123572
106 => 0.088644424928182
107 => 0.088924329007557
108 => 0.081889370077891
109 => 0.07809791739151
110 => 0.080528195094387
111 => 0.083493301620704
112 => 0.081559464526827
113 => 0.081635267279669
114 => 0.078878123787248
115 => 0.083737247640958
116 => 0.083029314167136
117 => 0.086702074281633
118 => 0.085825540604567
119 => 0.088820533902213
120 => 0.088031851793787
121 => 0.09130562713124
122 => 0.092611624747279
123 => 0.094804598006906
124 => 0.096417758063695
125 => 0.097365036503876
126 => 0.097308165459479
127 => 0.10106175457172
128 => 0.098848394212647
129 => 0.096067891952666
130 => 0.096017601439155
131 => 0.097457662959621
201 => 0.10047563684493
202 => 0.10125815356366
203 => 0.10169547365654
204 => 0.10102570271108
205 => 0.098623258674267
206 => 0.09758589551984
207 => 0.098469758982715
208 => 0.097388869918872
209 => 0.099254787686973
210 => 0.1018170913211
211 => 0.1012879857531
212 => 0.10305670633899
213 => 0.10488714607055
214 => 0.10750475709688
215 => 0.10818909754902
216 => 0.10932028629326
217 => 0.11048465108724
218 => 0.11085861367855
219 => 0.11157262429915
220 => 0.11156886111073
221 => 0.11372058017435
222 => 0.11609399293472
223 => 0.11698990130713
224 => 0.1190499932088
225 => 0.11552215802141
226 => 0.1181980615359
227 => 0.12061179348817
228 => 0.11773404274818
301 => 0.12170035171332
302 => 0.12185435450259
303 => 0.12417961377999
304 => 0.12182251803657
305 => 0.12042288210824
306 => 0.12446357858965
307 => 0.12641874433626
308 => 0.12582983250171
309 => 0.12134818436267
310 => 0.11873967291881
311 => 0.11191269532595
312 => 0.11999954518817
313 => 0.12393841385942
314 => 0.12133798364437
315 => 0.12264948938685
316 => 0.12980463946065
317 => 0.13252885734709
318 => 0.13196223907043
319 => 0.13205798823185
320 => 0.13352792675533
321 => 0.14004644367834
322 => 0.13614039724003
323 => 0.13912642338535
324 => 0.1407102008859
325 => 0.1421813016933
326 => 0.13856874305652
327 => 0.13386885734909
328 => 0.13238020625777
329 => 0.12107942210836
330 => 0.12049116721656
331 => 0.12016096191985
401 => 0.11807906423255
402 => 0.1164432629301
403 => 0.11514241300098
404 => 0.11172859432031
405 => 0.11288065791134
406 => 0.10743974345368
407 => 0.11092064770952
408 => 0.10223681685962
409 => 0.10946896923285
410 => 0.10553283750172
411 => 0.10817584409725
412 => 0.10816662289622
413 => 0.10330000978785
414 => 0.10049304891057
415 => 0.10228175363012
416 => 0.10419938707705
417 => 0.10451051665212
418 => 0.10699677847141
419 => 0.10769064070315
420 => 0.10558820574763
421 => 0.10205686376692
422 => 0.1028771139677
423 => 0.10047642656643
424 => 0.096269314236801
425 => 0.099290935761073
426 => 0.10032265020078
427 => 0.10077831407283
428 => 0.096641102286757
429 => 0.095341100520335
430 => 0.094648990487963
501 => 0.10152280167822
502 => 0.10189936457197
503 => 0.0999728155669
504 => 0.10868099975269
505 => 0.1067100694744
506 => 0.10891208148489
507 => 0.10280268485944
508 => 0.10303607203792
509 => 0.10014378576801
510 => 0.10176327281652
511 => 0.10061867156914
512 => 0.10163243426709
513 => 0.10224007944834
514 => 0.10513189112253
515 => 0.10950198907698
516 => 0.10469995089183
517 => 0.1026076340881
518 => 0.1039056956655
519 => 0.10736260470266
520 => 0.11259999884987
521 => 0.10949935610234
522 => 0.11087536870136
523 => 0.11117596623971
524 => 0.10888966706972
525 => 0.11268429796141
526 => 0.11471787148379
527 => 0.11680389712901
528 => 0.11861513474764
529 => 0.11597069261362
530 => 0.11880062476291
531 => 0.11652019900086
601 => 0.11447442134621
602 => 0.11447752394645
603 => 0.11319417773965
604 => 0.11070753275194
605 => 0.11024895726423
606 => 0.11263452486301
607 => 0.11454752416314
608 => 0.11470508794814
609 => 0.11576422265415
610 => 0.1163910076632
611 => 0.12253435282487
612 => 0.12500525706931
613 => 0.12802663200758
614 => 0.1292036278214
615 => 0.13274596324465
616 => 0.12988523969596
617 => 0.12926630416141
618 => 0.12067375711371
619 => 0.1220807862114
620 => 0.12433357555493
621 => 0.12071090478023
622 => 0.12300865556291
623 => 0.12346228024043
624 => 0.12058780781353
625 => 0.12212318773536
626 => 0.11804567387141
627 => 0.10959086773666
628 => 0.11269371057757
629 => 0.11497844731409
630 => 0.11171784628507
701 => 0.1175623474269
702 => 0.11414811051483
703 => 0.11306596132598
704 => 0.10884411152624
705 => 0.11083666211782
706 => 0.1135316153235
707 => 0.11186644756433
708 => 0.11532192069082
709 => 0.12021579217894
710 => 0.12370345643647
711 => 0.12397119599166
712 => 0.12172886152943
713 => 0.12532221681555
714 => 0.12534839048585
715 => 0.12129507104383
716 => 0.11881243545456
717 => 0.11824837542517
718 => 0.11965750796907
719 => 0.12136845501759
720 => 0.12406614164527
721 => 0.12569629717527
722 => 0.12994687822981
723 => 0.13109696358946
724 => 0.13236055871563
725 => 0.13404911148248
726 => 0.13607665201514
727 => 0.13164050875764
728 => 0.13181676499926
729 => 0.12768588982046
730 => 0.12327145726448
731 => 0.12662146130768
801 => 0.1310011459618
802 => 0.12999644146303
803 => 0.12988339168266
804 => 0.13007351005584
805 => 0.12931599567434
806 => 0.12588978620163
807 => 0.12416916525363
808 => 0.12638920525376
809 => 0.12756905771122
810 => 0.12939890597879
811 => 0.1291733385564
812 => 0.13388683118229
813 => 0.1357183518881
814 => 0.13524977051636
815 => 0.1353360007658
816 => 0.13865188151883
817 => 0.14233982287908
818 => 0.14579406662969
819 => 0.14930787173602
820 => 0.14507184253419
821 => 0.14292104814745
822 => 0.14514011894757
823 => 0.14396264874535
824 => 0.15072874178767
825 => 0.15119721138974
826 => 0.15796281516652
827 => 0.1643841787838
828 => 0.16035103534647
829 => 0.16415410795111
830 => 0.16826744104208
831 => 0.17620272793881
901 => 0.17353040247875
902 => 0.17148344305702
903 => 0.16954907629433
904 => 0.17357418645542
905 => 0.17875242637497
906 => 0.17986776965707
907 => 0.18167505186801
908 => 0.17977491560716
909 => 0.18206342044021
910 => 0.19014284812083
911 => 0.18795971544244
912 => 0.18485931608305
913 => 0.19123724828041
914 => 0.19354539714906
915 => 0.20974519469615
916 => 0.2301981082796
917 => 0.22173046775498
918 => 0.2164743300323
919 => 0.21770964707438
920 => 0.22517835874024
921 => 0.22757707188226
922 => 0.22105654267625
923 => 0.2233597038255
924 => 0.23605034819965
925 => 0.24285847174177
926 => 0.23361212551859
927 => 0.20810182300427
928 => 0.18458015904294
929 => 0.19081916351981
930 => 0.19011185403099
1001 => 0.20374636822089
1002 => 0.18790764845007
1003 => 0.18817433187035
1004 => 0.2020907933745
1005 => 0.19837812003374
1006 => 0.19236406470499
1007 => 0.18462406830239
1008 => 0.17031596908916
1009 => 0.15764288660514
1010 => 0.18249771979289
1011 => 0.18142593419026
1012 => 0.17987382980791
1013 => 0.18332787015559
1014 => 0.20009970963744
1015 => 0.19971306445224
1016 => 0.19725342505208
1017 => 0.19911903985884
1018 => 0.19203701340925
1019 => 0.19386221288006
1020 => 0.18457643309119
1021 => 0.18877399336418
1022 => 0.19235116124331
1023 => 0.19306933065592
1024 => 0.19468740301317
1025 => 0.18086115187998
1026 => 0.18706873272138
1027 => 0.19071510489403
1028 => 0.17424066276183
1029 => 0.19038945814245
1030 => 0.18062046760839
1031 => 0.17730472549581
1101 => 0.18176893543459
1102 => 0.18002922847986
1103 => 0.1785335305992
1104 => 0.17769890548245
1105 => 0.18097692856461
1106 => 0.18082400486974
1107 => 0.17546052287046
1108 => 0.16846407924589
1109 => 0.17081231537673
1110 => 0.16995917917556
1111 => 0.16686730352578
1112 => 0.16895085439924
1113 => 0.15977595081347
1114 => 0.14399100606415
1115 => 0.15441902407149
1116 => 0.1540175567217
1117 => 0.15381511867885
1118 => 0.16165148600212
1119 => 0.16089820009974
1120 => 0.15953097881073
1121 => 0.16684219343462
1122 => 0.16417350174718
1123 => 0.17239778070502
1124 => 0.17781482273966
1125 => 0.17644088565672
1126 => 0.18153563987314
1127 => 0.17086641399441
1128 => 0.17441030285628
1129 => 0.17514069343909
1130 => 0.16675197418105
1201 => 0.16102144698941
1202 => 0.16063928615852
1203 => 0.15070334172351
1204 => 0.15601104304055
1205 => 0.16068160055195
1206 => 0.15844476595389
1207 => 0.15773665094368
1208 => 0.16135425695944
1209 => 0.16163537592957
1210 => 0.15522583361907
1211 => 0.15655858042923
1212 => 0.16211635617831
1213 => 0.15641853874014
1214 => 0.14534861019095
1215 => 0.14260311485701
1216 => 0.14223681516995
1217 => 0.13479081407634
1218 => 0.14278658198332
1219 => 0.13929621501867
1220 => 0.150322242439
1221 => 0.14402423471028
1222 => 0.14375274018476
1223 => 0.14334233638985
1224 => 0.13693325565815
1225 => 0.13833643702006
1226 => 0.14300082557762
1227 => 0.14466513196306
1228 => 0.1444915311718
1229 => 0.14297796752904
1230 => 0.14367086921399
1231 => 0.14143879146381
]
'min_raw' => 0.07809791739151
'max_raw' => 0.24285847174177
'avg_raw' => 0.16047819456664
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.078097'
'max' => '$0.242858'
'avg' => '$0.160478'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.044489812776434
'max_diff' => 0.15168292247602
'year' => 2033
]
8 => [
'items' => [
101 => 0.14065059835354
102 => 0.13816284408793
103 => 0.13450653257714
104 => 0.13501496511818
105 => 0.12777085528936
106 => 0.1238238797806
107 => 0.12273140898008
108 => 0.12127051136813
109 => 0.12289642125265
110 => 0.12775033363638
111 => 0.12189548548665
112 => 0.11185775900377
113 => 0.11246104346884
114 => 0.1138164445451
115 => 0.11129066360637
116 => 0.10890022392059
117 => 0.11097851728487
118 => 0.10672540024907
119 => 0.11433041341937
120 => 0.11412471912592
121 => 0.11695939774495
122 => 0.11873198045889
123 => 0.11464675118372
124 => 0.11361932706866
125 => 0.11420459453842
126 => 0.10453142696259
127 => 0.11616889358318
128 => 0.11626953487777
129 => 0.11540778301238
130 => 0.12160437472137
131 => 0.13468111599277
201 => 0.12976111991577
202 => 0.12785594872709
203 => 0.12423421690473
204 => 0.12905995952087
205 => 0.12868941778126
206 => 0.12701368751098
207 => 0.12600020061491
208 => 0.12786758129611
209 => 0.12576881148312
210 => 0.12539181475437
211 => 0.12310762475463
212 => 0.12229227284874
213 => 0.12168861875772
214 => 0.12102405491733
215 => 0.12248991715024
216 => 0.11916808048022
217 => 0.11516227109985
218 => 0.11482923139333
219 => 0.11574878330418
220 => 0.11534195003622
221 => 0.11482728363216
222 => 0.11384464530577
223 => 0.11355311750507
224 => 0.11450044142815
225 => 0.11343096795141
226 => 0.11500903432358
227 => 0.11457988758874
228 => 0.11218270881313
301 => 0.10919493650947
302 => 0.1091683390689
303 => 0.108524628427
304 => 0.10770476614201
305 => 0.10747669921023
306 => 0.11080348921457
307 => 0.1176898449611
308 => 0.11633788855153
309 => 0.11731481561151
310 => 0.12212032984636
311 => 0.12364785831477
312 => 0.12256365478939
313 => 0.12107953013309
314 => 0.12114482408591
315 => 0.12621652731157
316 => 0.12653284322068
317 => 0.12733207147561
318 => 0.12835930564508
319 => 0.12273859721034
320 => 0.12088008922409
321 => 0.11999942503411
322 => 0.1172873201889
323 => 0.12021209274616
324 => 0.1185079530283
325 => 0.11873789969794
326 => 0.11858814662767
327 => 0.1186699219303
328 => 0.1143282876632
329 => 0.11591015100055
330 => 0.11327999639477
331 => 0.10975851462633
401 => 0.10974670938465
402 => 0.11060858705859
403 => 0.11009590849285
404 => 0.10871630365462
405 => 0.10891227001034
406 => 0.10719539852875
407 => 0.10912072929317
408 => 0.10917594089033
409 => 0.10843458367255
410 => 0.11140082135959
411 => 0.11261609136019
412 => 0.11212811415804
413 => 0.11258185357884
414 => 0.11639406844406
415 => 0.11701562580569
416 => 0.11729168052795
417 => 0.11692180377036
418 => 0.11265153386839
419 => 0.11284093849714
420 => 0.11145121300337
421 => 0.11027704140681
422 => 0.11032400211295
423 => 0.11092767894521
424 => 0.11356397107686
425 => 0.11911189245
426 => 0.11932243201063
427 => 0.11957761209999
428 => 0.11853966643333
429 => 0.11822661208846
430 => 0.11863961157552
501 => 0.12072311914743
502 => 0.12608246628916
503 => 0.12418811507051
504 => 0.12264797804242
505 => 0.12399909343401
506 => 0.12379109980987
507 => 0.12203542430471
508 => 0.12198614834074
509 => 0.11861644572292
510 => 0.11737074338953
511 => 0.11632974128054
512 => 0.11519299415358
513 => 0.11451909235261
514 => 0.11555451180179
515 => 0.11579132448054
516 => 0.11352736175886
517 => 0.11321879200553
518 => 0.11506759283508
519 => 0.11425400452024
520 => 0.11509080027807
521 => 0.11528494407179
522 => 0.11525368244949
523 => 0.11440420280877
524 => 0.11494563579992
525 => 0.11366498536691
526 => 0.1122724703685
527 => 0.11138413255625
528 => 0.11060893999416
529 => 0.11103906188207
530 => 0.10950575588884
531 => 0.10901522044225
601 => 0.11476221048515
602 => 0.11900757382039
603 => 0.11894584455615
604 => 0.11857008353555
605 => 0.11801177887927
606 => 0.12068227568436
607 => 0.11975192799574
608 => 0.12042883367236
609 => 0.1206011345767
610 => 0.12112263752043
611 => 0.12130902999812
612 => 0.12074562247264
613 => 0.11885475800269
614 => 0.11414290352155
615 => 0.11194952254118
616 => 0.11122567028401
617 => 0.11125198093876
618 => 0.11052621562463
619 => 0.11073998603616
620 => 0.11045187499941
621 => 0.10990626239734
622 => 0.11100537184139
623 => 0.1111320339659
624 => 0.11087548868828
625 => 0.11093591438823
626 => 0.10881182906147
627 => 0.10897331865559
628 => 0.10807412407441
629 => 0.10790553593039
630 => 0.10563245033099
701 => 0.10160534970263
702 => 0.10383675437086
703 => 0.10114153131461
704 => 0.10012080950392
705 => 0.10495274780093
706 => 0.10446775521302
707 => 0.10363765872372
708 => 0.10240977300878
709 => 0.10195433825301
710 => 0.09918726085004
711 => 0.099023767155289
712 => 0.10039520543357
713 => 0.099762333856455
714 => 0.098873542474971
715 => 0.095654430186574
716 => 0.092035082162966
717 => 0.092144327529388
718 => 0.093295574795334
719 => 0.096642981487918
720 => 0.095335091782402
721 => 0.094386202794744
722 => 0.094208504410854
723 => 0.096432771722003
724 => 0.099580575965686
725 => 0.10105745528867
726 => 0.099593912733085
727 => 0.097912673847954
728 => 0.098015003068781
729 => 0.098695753530645
730 => 0.098767290778893
731 => 0.097672977098823
801 => 0.097981019989784
802 => 0.097513074670382
803 => 0.094641295108973
804 => 0.094589353723218
805 => 0.093884572705147
806 => 0.093863232216018
807 => 0.092664223888415
808 => 0.09249647433503
809 => 0.090115770525972
810 => 0.091682756982529
811 => 0.090631704737952
812 => 0.089047521087214
813 => 0.088774407228712
814 => 0.088766197096331
815 => 0.090392799488656
816 => 0.091663749186521
817 => 0.090649988241741
818 => 0.090419174525545
819 => 0.092883661156596
820 => 0.0925700327685
821 => 0.092298432607096
822 => 0.099298724621084
823 => 0.093757447252414
824 => 0.09134113403462
825 => 0.088350487582165
826 => 0.089324257147232
827 => 0.089529444702244
828 => 0.082337479088629
829 => 0.079419699534888
830 => 0.078418427546247
831 => 0.077842181360877
901 => 0.078104783983594
902 => 0.07547844016382
903 => 0.077243386646426
904 => 0.074969194897818
905 => 0.074587919250304
906 => 0.078654455815111
907 => 0.079220290621742
908 => 0.07680626354556
909 => 0.078356459723952
910 => 0.077794337040329
911 => 0.075008179388022
912 => 0.074901768659292
913 => 0.073503772687542
914 => 0.071316179697115
915 => 0.070316390999533
916 => 0.069795692365269
917 => 0.070010542769981
918 => 0.069901907830828
919 => 0.069192991369351
920 => 0.069942542092572
921 => 0.068027749730484
922 => 0.06726526398337
923 => 0.066920866860934
924 => 0.065221378428245
925 => 0.06792602029059
926 => 0.068458868809652
927 => 0.068992767204902
928 => 0.073639988227639
929 => 0.073407826198253
930 => 0.075506457876405
1001 => 0.075424908908528
1002 => 0.07482634515834
1003 => 0.072301103155254
1004 => 0.073307619609574
1005 => 0.070209718410564
1006 => 0.072530876625667
1007 => 0.071471596950179
1008 => 0.072172733101845
1009 => 0.070912027082251
1010 => 0.07160975384677
1011 => 0.068585226960898
1012 => 0.065760966311113
1013 => 0.066897531241895
1014 => 0.06813310730362
1015 => 0.070812151024366
1016 => 0.069216534685921
1017 => 0.069790378658159
1018 => 0.06786809741148
1019 => 0.063901882127089
1020 => 0.063924330474869
1021 => 0.063314214662063
1022 => 0.06278698552143
1023 => 0.069399810416707
1024 => 0.068577401107687
1025 => 0.067266999508035
1026 => 0.069021024122459
1027 => 0.069484816070627
1028 => 0.069498019575377
1029 => 0.070777710656133
1030 => 0.07146068201533
1031 => 0.071581058677556
1101 => 0.073594680242681
1102 => 0.074269619631001
1103 => 0.077049599450491
1104 => 0.071402736667157
1105 => 0.071286443244156
1106 => 0.06904570684584
1107 => 0.067624596397387
1108 => 0.069143011494058
1109 => 0.070488119985379
1110 => 0.069087503116141
1111 => 0.069270394110627
1112 => 0.067390180398277
1113 => 0.068062268328164
1114 => 0.068641160993404
1115 => 0.068321530489397
1116 => 0.067843028154607
1117 => 0.070377836428506
1118 => 0.070234812611698
1119 => 0.072595284351344
1120 => 0.074435440871351
1121 => 0.077733330322527
1122 => 0.074291810757359
1123 => 0.074166388105603
1124 => 0.075392414644945
1125 => 0.074269431932725
1126 => 0.074979118242802
1127 => 0.077618988886266
1128 => 0.077674765193109
1129 => 0.076740440189781
1130 => 0.076683586428417
1201 => 0.076863033765702
1202 => 0.077914062425114
1203 => 0.077546800716666
1204 => 0.07797180526361
1205 => 0.078503279957464
1206 => 0.080701684631844
1207 => 0.081231712556173
1208 => 0.079944019488024
1209 => 0.08006028375439
1210 => 0.079578651198938
1211 => 0.079113400185209
1212 => 0.080159216519617
1213 => 0.08207046642632
1214 => 0.082058576639845
1215 => 0.082501949468811
1216 => 0.082778167068158
1217 => 0.08159243892812
1218 => 0.080820573509388
1219 => 0.081116555826003
1220 => 0.081589837995926
1221 => 0.080963076797034
1222 => 0.077094416333446
1223 => 0.078267920787112
1224 => 0.078072592264586
1225 => 0.077794420695749
1226 => 0.078974388498351
1227 => 0.078860577725239
1228 => 0.075451503211893
1229 => 0.075669741101522
1230 => 0.075464774980788
1231 => 0.076127062449004
]
'min_raw' => 0.06278698552143
'max_raw' => 0.14065059835354
'avg_raw' => 0.10171879193749
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.062786'
'max' => '$0.14065'
'avg' => '$0.101718'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01531093187008
'max_diff' => -0.10220787338823
'year' => 2034
]
9 => [
'items' => [
101 => 0.074233666236
102 => 0.074816062158902
103 => 0.075181335422123
104 => 0.075396484180322
105 => 0.076173749023821
106 => 0.076082545965593
107 => 0.076168079713666
108 => 0.077320558286264
109 => 0.083149399423577
110 => 0.083466650386068
111 => 0.081904390617675
112 => 0.082528482580937
113 => 0.081330362485383
114 => 0.082134668532235
115 => 0.082684954302333
116 => 0.08019831872113
117 => 0.080051076300142
118 => 0.07884801113676
119 => 0.079494470210468
120 => 0.078465907342146
121 => 0.07871828069243
122 => 0.078012622803522
123 => 0.079282666508473
124 => 0.080702772715447
125 => 0.081061547625022
126 => 0.08011776530024
127 => 0.079434404698812
128 => 0.078234648595679
129 => 0.080229869733497
130 => 0.080813333197457
131 => 0.080226805048309
201 => 0.080090893660258
202 => 0.079833341825488
203 => 0.08014553449953
204 => 0.080810155530127
205 => 0.080496732525721
206 => 0.080703753941934
207 => 0.079914801782888
208 => 0.081592831453473
209 => 0.084257946410194
210 => 0.08426651519057
211 => 0.083953090496697
212 => 0.083824843864793
213 => 0.084146436620908
214 => 0.084320887498674
215 => 0.085360859501923
216 => 0.086476790895721
217 => 0.091684355791564
218 => 0.090222092407219
219 => 0.094842553782233
220 => 0.098496738838049
221 => 0.099592469158142
222 => 0.098584448821752
223 => 0.09513606570315
224 => 0.094966871575971
225 => 0.10012021182496
226 => 0.098664157166686
227 => 0.098490964098211
228 => 0.096648482463951
301 => 0.097737617305588
302 => 0.097499407539078
303 => 0.097123381769021
304 => 0.099201375177075
305 => 0.1030911933332
306 => 0.10248492869509
307 => 0.10203238026654
308 => 0.10004944478752
309 => 0.10124361485056
310 => 0.10081839376393
311 => 0.10264541340406
312 => 0.10156312744269
313 => 0.09865312612058
314 => 0.099116553422616
315 => 0.099046507318199
316 => 0.10048805118357
317 => 0.1000553354965
318 => 0.098962012635461
319 => 0.10307789835762
320 => 0.10281063563258
321 => 0.10318955307192
322 => 0.10335636424713
323 => 0.10586163135617
324 => 0.10688795913113
325 => 0.10712095350445
326 => 0.10809588551163
327 => 0.10709669630797
328 => 0.11109416553244
329 => 0.11375224930792
330 => 0.11683975039687
331 => 0.1213514193299
401 => 0.12304784858399
402 => 0.12274140382338
403 => 0.12616209971744
404 => 0.13230901420125
405 => 0.12398387098758
406 => 0.13275026700661
407 => 0.12997492723989
408 => 0.12339464657924
409 => 0.1229709540811
410 => 0.12742719654313
411 => 0.13731071342645
412 => 0.1348350045451
413 => 0.13731476279929
414 => 0.13442199307567
415 => 0.13427834267671
416 => 0.13717426743059
417 => 0.14394075346668
418 => 0.14072624958887
419 => 0.13611747005134
420 => 0.1395205211413
421 => 0.13657248334967
422 => 0.1299297291013
423 => 0.13483311141718
424 => 0.13155435930284
425 => 0.13251127347785
426 => 0.13940272274462
427 => 0.13857352533633
428 => 0.13964658356427
429 => 0.13775266387878
430 => 0.13598344424881
501 => 0.13268106442549
502 => 0.13170339256516
503 => 0.13197358589441
504 => 0.13170325867077
505 => 0.12985560751006
506 => 0.12945660741782
507 => 0.12879158978349
508 => 0.12899770655587
509 => 0.12774727884556
510 => 0.13010709428646
511 => 0.13054509682691
512 => 0.13226237371251
513 => 0.13244066709562
514 => 0.13722325877813
515 => 0.13458908764759
516 => 0.13635631706535
517 => 0.13619823943242
518 => 0.12353726121431
519 => 0.12528183230401
520 => 0.12799583744301
521 => 0.12677318180664
522 => 0.12504463279416
523 => 0.12364873678765
524 => 0.1215338116001
525 => 0.12451052818804
526 => 0.12842459396267
527 => 0.13253993426286
528 => 0.13748424598576
529 => 0.13638073316734
530 => 0.13244750379439
531 => 0.13262394559084
601 => 0.13371463934917
602 => 0.13230209183215
603 => 0.13188550399318
604 => 0.13365740657724
605 => 0.13366960869651
606 => 0.13204430206611
607 => 0.1302380711744
608 => 0.13023050300101
609 => 0.12990910165995
610 => 0.13447916966024
611 => 0.13699224497441
612 => 0.13728036500916
613 => 0.13697285220046
614 => 0.13709120167578
615 => 0.1356288985223
616 => 0.13897128989863
617 => 0.14203859875379
618 => 0.14121649445711
619 => 0.13998404324738
620 => 0.13900233649593
621 => 0.14098523554556
622 => 0.14089694017225
623 => 0.1420118084868
624 => 0.14196123162026
625 => 0.1415863433384
626 => 0.14121650784555
627 => 0.14268286377038
628 => 0.14226057681298
629 => 0.14183763392731
630 => 0.14098935722076
701 => 0.14110465211357
702 => 0.13987241370391
703 => 0.13930232383221
704 => 0.13072953999869
705 => 0.12843861203458
706 => 0.12915938460823
707 => 0.12939668165433
708 => 0.12839966686844
709 => 0.12982912995932
710 => 0.12960634965078
711 => 0.13047305750917
712 => 0.12993157606733
713 => 0.12995379865458
714 => 0.13154618011903
715 => 0.13200845523263
716 => 0.13177333837883
717 => 0.1319380061639
718 => 0.1357327057688
719 => 0.13519322083264
720 => 0.13490663021264
721 => 0.13498601777298
722 => 0.13595564488131
723 => 0.13622708753196
724 => 0.1350769659472
725 => 0.13561936993535
726 => 0.13792885727556
727 => 0.13873704713897
728 => 0.14131640122984
729 => 0.14022064576768
730 => 0.14223195234166
731 => 0.14841402304516
801 => 0.15335268888987
802 => 0.14881088768008
803 => 0.15788011856858
804 => 0.16494181571918
805 => 0.16467077602067
806 => 0.16343940578246
807 => 0.15539985132143
808 => 0.14800173344339
809 => 0.15419057318905
810 => 0.15420634981431
811 => 0.15367472299155
812 => 0.15037283445373
813 => 0.15355982442769
814 => 0.15381279611837
815 => 0.15367119924219
816 => 0.15113964904194
817 => 0.14727443979483
818 => 0.14802969242971
819 => 0.14926681165238
820 => 0.14692468687376
821 => 0.14617623609264
822 => 0.14756774849332
823 => 0.15205149138144
824 => 0.15120386576099
825 => 0.15118173083052
826 => 0.15480823268398
827 => 0.15221244000498
828 => 0.14803921858409
829 => 0.14698542513729
830 => 0.14324516832146
831 => 0.14582857702649
901 => 0.14592154930663
902 => 0.14450664276068
903 => 0.1481540304523
904 => 0.14812041913261
905 => 0.15158307090379
906 => 0.15820236057767
907 => 0.15624471090564
908 => 0.15396817732875
909 => 0.15421569964999
910 => 0.15693040857681
911 => 0.15528903358887
912 => 0.15587928347861
913 => 0.15692951516291
914 => 0.15756314601383
915 => 0.15412452992156
916 => 0.15332282402243
917 => 0.15168281511335
918 => 0.15125496740119
919 => 0.15259072043773
920 => 0.15223879670545
921 => 0.14591373534649
922 => 0.14525273124217
923 => 0.14527300329435
924 => 0.143610877045
925 => 0.14107573555874
926 => 0.1477379360192
927 => 0.14720286808479
928 => 0.14661219449617
929 => 0.14668454864044
930 => 0.1495763840574
1001 => 0.14789897347438
1002 => 0.15235864443154
1003 => 0.15144187015273
1004 => 0.15050158407297
1005 => 0.15037160789493
1006 => 0.15000967797566
1007 => 0.1487684856143
1008 => 0.14726967125386
1009 => 0.14628002418802
1010 => 0.13493558998062
1011 => 0.13704105098198
1012 => 0.13946319194523
1013 => 0.14029930529962
1014 => 0.13886907554965
1015 => 0.14882495980218
1016 => 0.15064399579241
1017 => 0.14513401712523
1018 => 0.14410332508755
1019 => 0.14889253180058
1020 => 0.14600405469591
1021 => 0.14730473575928
1022 => 0.14449337473478
1023 => 0.15020584328995
1024 => 0.15016232385057
1025 => 0.14794004456065
1026 => 0.14981829979898
1027 => 0.14949190672973
1028 => 0.14698295888464
1029 => 0.15028538141177
1030 => 0.15028701937215
1031 => 0.14814812387212
1101 => 0.14565036219252
1102 => 0.14520382139871
1103 => 0.14486741289488
1104 => 0.14722199988956
1105 => 0.14933311522638
1106 => 0.15326137747833
1107 => 0.15424903594168
1108 => 0.15810393267628
1109 => 0.15580852936234
1110 => 0.15682605192096
1111 => 0.15793071659569
1112 => 0.15846033346346
1113 => 0.15759735119824
1114 => 0.16358559256587
1115 => 0.16409118361228
1116 => 0.16426070391679
1117 => 0.16224150262009
1118 => 0.16403502597151
1119 => 0.16319589579063
1120 => 0.1653790794042
1121 => 0.16572143047109
1122 => 0.16543147129693
1123 => 0.1655401389292
1124 => 0.1604302313201
1125 => 0.16016525565365
1126 => 0.1565522936399
1127 => 0.15802460236617
1128 => 0.155272191772
1129 => 0.15614500952438
1130 => 0.15652973927312
1201 => 0.1563287782856
1202 => 0.15810784449252
1203 => 0.15659527477742
1204 => 0.1526033546098
1205 => 0.14861034684619
1206 => 0.14856021788636
1207 => 0.14750892942464
1208 => 0.1467490404199
1209 => 0.14689542200073
1210 => 0.1474112897844
1211 => 0.14671905724652
1212 => 0.14686678015556
1213 => 0.14931996471815
1214 => 0.14981193338687
1215 => 0.148140031626
1216 => 0.14142710480186
1217 => 0.13977973572111
1218 => 0.1409638319476
1219 => 0.14039791021691
1220 => 0.11331207115266
1221 => 0.11967548727088
1222 => 0.11589456149463
1223 => 0.11763698604435
1224 => 0.11377763989278
1225 => 0.11561952216198
1226 => 0.11527939376163
1227 => 0.12551157857254
1228 => 0.12535181708063
1229 => 0.12542828645242
1230 => 0.12177820409707
1231 => 0.12759288439968
]
'min_raw' => 0.074233666236
'max_raw' => 0.16572143047109
'avg_raw' => 0.11997754835355
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.074233'
'max' => '$0.165721'
'avg' => '$0.119977'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.011446680714569
'max_diff' => 0.025070832117554
'year' => 2035
]
10 => [
'items' => [
101 => 0.13045740500589
102 => 0.12992725847842
103 => 0.13006068493783
104 => 0.12776797630227
105 => 0.12545048488362
106 => 0.12288003024098
107 => 0.12765561724922
108 => 0.12712465349589
109 => 0.1283424933113
110 => 0.13143980285215
111 => 0.13189589344757
112 => 0.13250888383304
113 => 0.13228917041548
114 => 0.13752363540542
115 => 0.13688970715703
116 => 0.13841729184205
117 => 0.13527493424683
118 => 0.13171905835251
119 => 0.13239491410967
120 => 0.13232982376537
121 => 0.13150114897516
122 => 0.13075305842711
123 => 0.12950769843781
124 => 0.13344820172255
125 => 0.13328822448539
126 => 0.13587807000176
127 => 0.13542028965032
128 => 0.13236312042559
129 => 0.13247230782253
130 => 0.13320664554065
131 => 0.13574819676759
201 => 0.13650270221375
202 => 0.13615318522925
203 => 0.13698046600648
204 => 0.13763431500185
205 => 0.13706257937346
206 => 0.14515715018768
207 => 0.14179572003411
208 => 0.14343405770228
209 => 0.14382479158249
210 => 0.14282393496458
211 => 0.14304098492702
212 => 0.14336975647753
213 => 0.14536599295221
214 => 0.15060469507745
215 => 0.15292488058766
216 => 0.15990527317108
217 => 0.15273222147958
218 => 0.15230660227724
219 => 0.15356398176918
220 => 0.15766221116524
221 => 0.16098344116363
222 => 0.16208528476046
223 => 0.16223091158123
224 => 0.16429804341805
225 => 0.16548288483719
226 => 0.1640470392421
227 => 0.16283031043956
228 => 0.1584721388948
229 => 0.15897660911801
301 => 0.1624519086969
302 => 0.1673609740462
303 => 0.1715734628171
304 => 0.17009839606959
305 => 0.18135211411827
306 => 0.18246787429548
307 => 0.18231371231584
308 => 0.1848555800469
309 => 0.1798104902431
310 => 0.17765361660796
311 => 0.16309338101712
312 => 0.16718421331386
313 => 0.17313047830332
314 => 0.17234346783461
315 => 0.16802513125515
316 => 0.17157018697157
317 => 0.17039808068758
318 => 0.16947359183066
319 => 0.17370885450518
320 => 0.16905200921954
321 => 0.17308402270929
322 => 0.16791292370285
323 => 0.17010513405024
324 => 0.16886072943178
325 => 0.16966601172842
326 => 0.16495834787689
327 => 0.16749848901909
328 => 0.16485266965417
329 => 0.16485141519129
330 => 0.16479300858217
331 => 0.16790580333164
401 => 0.16800731145667
402 => 0.16570695143364
403 => 0.16537543361594
404 => 0.16660122874349
405 => 0.16516614368538
406 => 0.16583761095175
407 => 0.16518648174485
408 => 0.16503989884549
409 => 0.16387190136442
410 => 0.16336869593481
411 => 0.16356601574977
412 => 0.16289246149599
413 => 0.16248662069456
414 => 0.1647122766319
415 => 0.16352319844728
416 => 0.16453003334633
417 => 0.16338261790617
418 => 0.1594051760855
419 => 0.15711770723374
420 => 0.14960468834353
421 => 0.15173537118093
422 => 0.15314801610647
423 => 0.152681136967
424 => 0.15368417401682
425 => 0.15374575234534
426 => 0.1534196547757
427 => 0.15304207556573
428 => 0.15285829088776
429 => 0.1542280713054
430 => 0.15502327494252
501 => 0.1532897939235
502 => 0.15288366357472
503 => 0.15463630859306
504 => 0.15570542104178
505 => 0.16359914668072
506 => 0.16301435398899
507 => 0.16448206888547
508 => 0.16431682671204
509 => 0.16585522574887
510 => 0.16836985799814
511 => 0.16325690753314
512 => 0.16414433894134
513 => 0.16392676125383
514 => 0.16630221739409
515 => 0.16630963330887
516 => 0.16488542868995
517 => 0.16565751311895
518 => 0.16522655677171
519 => 0.16600535313842
520 => 0.16300654372606
521 => 0.16665876988884
522 => 0.16872934677887
523 => 0.168758096741
524 => 0.16973953375376
525 => 0.17073673059973
526 => 0.17265076310802
527 => 0.17068334927192
528 => 0.16714416330464
529 => 0.16739968109998
530 => 0.1653246576623
531 => 0.16535953918117
601 => 0.16517333889973
602 => 0.16573213996085
603 => 0.16312916913487
604 => 0.16374008118498
605 => 0.16288480073733
606 => 0.16414247972868
607 => 0.16278942503577
608 => 0.16392665633128
609 => 0.16441744765861
610 => 0.16622847822244
611 => 0.16252193434899
612 => 0.15496404048005
613 => 0.15655280140191
614 => 0.15420289920401
615 => 0.15442039159913
616 => 0.15485976085094
617 => 0.15343562135315
618 => 0.15370730228954
619 => 0.1536975959347
620 => 0.15361395181251
621 => 0.15324347812626
622 => 0.15270621798521
623 => 0.1548464970272
624 => 0.15521017214251
625 => 0.15601857687403
626 => 0.15842384100885
627 => 0.15818349840175
628 => 0.15857550716565
629 => 0.15771975423509
630 => 0.15446008752322
701 => 0.15463710310841
702 => 0.15242971592468
703 => 0.15596212902086
704 => 0.15512560697411
705 => 0.15458629576867
706 => 0.15443913970959
707 => 0.15685036602897
708 => 0.15757184273507
709 => 0.15712226686833
710 => 0.15620017364942
711 => 0.15797086522212
712 => 0.15844462758749
713 => 0.15855068550941
714 => 0.1616880114798
715 => 0.15872602717981
716 => 0.15943900624041
717 => 0.16500146534235
718 => 0.15995708250378
719 => 0.16262920459653
720 => 0.16249841812514
721 => 0.16386538536811
722 => 0.16238628691244
723 => 0.16240462211048
724 => 0.16361839641585
725 => 0.1619138693093
726 => 0.1614918044269
727 => 0.16090872481475
728 => 0.16218185781634
729 => 0.16294504347194
730 => 0.16909575935799
731 => 0.17306940232709
801 => 0.17289689600606
802 => 0.17447328086195
803 => 0.17376310504634
804 => 0.17146976000284
805 => 0.17538422034846
806 => 0.17414552130713
807 => 0.17424763815108
808 => 0.17424383735705
809 => 0.17506746393058
810 => 0.17448384901897
811 => 0.17333348412132
812 => 0.17409715002566
813 => 0.17636496474598
814 => 0.18340433122291
815 => 0.1873436539626
816 => 0.18316717904762
817 => 0.18604805551875
818 => 0.18432055619732
819 => 0.18400661818196
820 => 0.18581602150092
821 => 0.18762859194087
822 => 0.18751313903981
823 => 0.18619730597693
824 => 0.18545402526773
825 => 0.19108239581505
826 => 0.19522928335753
827 => 0.19494649342822
828 => 0.19619463620798
829 => 0.19985922201297
830 => 0.20019426581289
831 => 0.200152057995
901 => 0.19932161697868
902 => 0.20292987761029
903 => 0.20593995211048
904 => 0.19912939387715
905 => 0.20172276529565
906 => 0.20288701327862
907 => 0.20459647473444
908 => 0.20748062274941
909 => 0.21061357247614
910 => 0.21105660591855
911 => 0.21074225249006
912 => 0.20867598792707
913 => 0.21210409890192
914 => 0.2141122059119
915 => 0.21530798768163
916 => 0.21834029129054
917 => 0.20289420327781
918 => 0.19196069446201
919 => 0.19025326917864
920 => 0.19372538563356
921 => 0.19464095505311
922 => 0.19427189016811
923 => 0.1819652319648
924 => 0.19018847717012
925 => 0.19903599758096
926 => 0.1993758668726
927 => 0.20380512058319
928 => 0.20524746715261
929 => 0.20881359694519
930 => 0.20859053455571
1001 => 0.20945883041068
1002 => 0.20925922423041
1003 => 0.21586472873395
1004 => 0.22315158112826
1005 => 0.22289926060061
1006 => 0.22185168935481
1007 => 0.22340751129227
1008 => 0.23092832386976
1009 => 0.23023592796619
1010 => 0.23090853160836
1011 => 0.23977599349164
1012 => 0.25130495532165
1013 => 0.24594859506277
1014 => 0.25757035557339
1015 => 0.26488563777178
1016 => 0.27753666191959
1017 => 0.27595269138868
1018 => 0.28087764225192
1019 => 0.27311705355372
1020 => 0.2552971732289
1021 => 0.25247710895574
1022 => 0.25812294904601
1023 => 0.27200269599494
1024 => 0.25768582642077
1025 => 0.26058211048929
1026 => 0.25974798048271
1027 => 0.25970353323948
1028 => 0.26139990373343
1029 => 0.25893922985523
1030 => 0.24891400180866
1031 => 0.25350850474337
1101 => 0.25173434651412
1102 => 0.25370290734172
1103 => 0.26432641823204
1104 => 0.25962951083456
1105 => 0.25468170043709
1106 => 0.26088735268254
1107 => 0.26878928048447
1108 => 0.26829479204376
1109 => 0.26733527778864
1110 => 0.27274400940622
1111 => 0.2816776494288
1112 => 0.28409237642863
1113 => 0.28587487853298
1114 => 0.28612065545755
1115 => 0.28865231053014
1116 => 0.27503896314562
1117 => 0.2966436950604
1118 => 0.30037423544341
1119 => 0.29967304846646
1120 => 0.30381938709704
1121 => 0.30259942908946
1122 => 0.30083190134204
1123 => 0.30740473002302
1124 => 0.2998695123402
1125 => 0.28917421949696
1126 => 0.28330657031425
1127 => 0.2910335640878
1128 => 0.29575216955038
1129 => 0.29887086760148
1130 => 0.29981458374737
1201 => 0.27609572855085
1202 => 0.26331258110795
1203 => 0.27150643205977
1204 => 0.28150349573037
1205 => 0.27498342895217
1206 => 0.27523900322575
1207 => 0.26594310144345
1208 => 0.28232597676942
1209 => 0.2799391296361
1210 => 0.29232209678605
1211 => 0.28936680229619
1212 => 0.29946463130296
1213 => 0.29680553451037
1214 => 0.30784329662829
1215 => 0.31224655877261
1216 => 0.31964032122594
1217 => 0.32507920298465
1218 => 0.32827301838259
1219 => 0.32808127368579
1220 => 0.34073676144494
1221 => 0.33327426246244
1222 => 0.32389960496444
1223 => 0.32373004698697
1224 => 0.3285853149451
1225 => 0.33876062460764
1226 => 0.3413989343584
1227 => 0.34287338958424
1228 => 0.34061521007971
1229 => 0.33251520227633
1230 => 0.32901765997479
1231 => 0.33199766734925
]
'min_raw' => 0.12288003024098
'max_raw' => 0.34287338958424
'avg_raw' => 0.23287670991261
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.12288'
'max' => '$0.342873'
'avg' => '$0.232876'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.048646364004979
'max_diff' => 0.17715195911315
'year' => 2036
]
11 => [
'items' => [
101 => 0.32835337440524
102 => 0.33464444643461
103 => 0.34328343203141
104 => 0.34149951566792
105 => 0.34746288061137
106 => 0.35363433596356
107 => 0.36245979429458
108 => 0.36476709590809
109 => 0.36858097773639
110 => 0.37250671493263
111 => 0.37376755591848
112 => 0.37617489257645
113 => 0.37616220472397
114 => 0.38341687577519
115 => 0.39141900260316
116 => 0.39443962023105
117 => 0.40138536390856
118 => 0.38949102126871
119 => 0.3985130167934
120 => 0.40665108259187
121 => 0.39694854505386
122 => 0.41032123264869
123 => 0.41084046380484
124 => 0.41868023780301
125 => 0.4107331249369
126 => 0.40601415468508
127 => 0.41963764498457
128 => 0.42622962280457
129 => 0.42424406543789
130 => 0.40913387583841
131 => 0.40033909738499
201 => 0.37732146578632
202 => 0.40458684470263
203 => 0.41786701543075
204 => 0.40909948340447
205 => 0.41352131658165
206 => 0.43764540461209
207 => 0.44683029541505
208 => 0.44491990233527
209 => 0.445242727318
210 => 0.45019872767772
211 => 0.47217636259196
212 => 0.45900685431376
213 => 0.46907444994039
214 => 0.47441426635933
215 => 0.47937418544045
216 => 0.46719419177575
217 => 0.45134819897761
218 => 0.44632910788891
219 => 0.40822772513363
220 => 0.4062443826953
221 => 0.40513107248324
222 => 0.39811180907704
223 => 0.39259659077784
224 => 0.38821068441938
225 => 0.37670075639228
226 => 0.38058501922395
227 => 0.36224059625743
228 => 0.37397670798498
301 => 0.34469856598883
302 => 0.36908227264791
303 => 0.35581132970447
304 => 0.36472241097012
305 => 0.36469132104706
306 => 0.34828319517611
307 => 0.3388193306026
308 => 0.34485007344796
309 => 0.35131550849915
310 => 0.35236450358387
311 => 0.36074710889286
312 => 0.3630865138511
313 => 0.35599800761126
314 => 0.34409184157285
315 => 0.34685737239284
316 => 0.3387632872088
317 => 0.32457871425826
318 => 0.33476632219022
319 => 0.33824481945569
320 => 0.33978112201374
321 => 0.3258322236261
322 => 0.32144917690738
323 => 0.31911567961166
324 => 0.34229121395377
325 => 0.34356082204084
326 => 0.33706532756289
327 => 0.36642557853129
328 => 0.35978044949207
329 => 0.36720468672502
330 => 0.34660642945785
331 => 0.34739331062469
401 => 0.33764176553269
402 => 0.34310197918573
403 => 0.33924287616666
404 => 0.34266084788145
405 => 0.34470956603446
406 => 0.35445951099386
407 => 0.36919360135779
408 => 0.35300319434894
409 => 0.34594880216429
410 => 0.35032530740024
411 => 0.3619805175727
412 => 0.3796387576032
413 => 0.36918472409994
414 => 0.37382404664769
415 => 0.37483753223527
416 => 0.36712911495933
417 => 0.37992297794334
418 => 0.38677931305362
419 => 0.39381249415813
420 => 0.39991920824592
421 => 0.39100328696202
422 => 0.40054460078291
423 => 0.39285598611189
424 => 0.38595850391762
425 => 0.38596896455095
426 => 0.38164207321435
427 => 0.37325817602629
428 => 0.37171205675275
429 => 0.37975516446704
430 => 0.38620497516876
501 => 0.38673621247067
502 => 0.39030715907838
503 => 0.39242040849715
504 => 0.41313312562437
505 => 0.42146395179752
506 => 0.43165072834758
507 => 0.43561905190909
508 => 0.44756228310652
509 => 0.43791715393279
510 => 0.43583036956534
511 => 0.40685999728153
512 => 0.41160389412005
513 => 0.41919933067649
514 => 0.40698524323277
515 => 0.41473227042042
516 => 0.41626169769174
517 => 0.40657021321521
518 => 0.41174685381845
519 => 0.39799923114323
520 => 0.36949326196419
521 => 0.3799547132359
522 => 0.38765786265829
523 => 0.37666451864106
524 => 0.39636966229078
525 => 0.38485832416734
526 => 0.38120978262389
527 => 0.36697552126391
528 => 0.37369354469885
529 => 0.38277976758745
530 => 0.37716553822909
531 => 0.38881590712847
601 => 0.40531593652989
602 => 0.41707484007509
603 => 0.4179775426784
604 => 0.41041735548419
605 => 0.42253260371138
606 => 0.4226208500682
607 => 0.40895480057569
608 => 0.40058442135441
609 => 0.39868265358391
610 => 0.40343364233816
611 => 0.40920221976673
612 => 0.41829765857843
613 => 0.42379384176164
614 => 0.43812497255313
615 => 0.44200256563959
616 => 0.44626286482884
617 => 0.45195593837329
618 => 0.4587919328375
619 => 0.44383516612319
620 => 0.44442942634765
621 => 0.43050189227382
622 => 0.4156183247055
623 => 0.42691309722696
624 => 0.44167950981815
625 => 0.4382920784543
626 => 0.43791092322692
627 => 0.43855192059573
628 => 0.43599790797055
629 => 0.42444620352298
630 => 0.4186450098669
701 => 0.42613002972558
702 => 0.43010798466056
703 => 0.43627744585059
704 => 0.43551692953739
705 => 0.45140879901114
706 => 0.45758389894345
707 => 0.45600404413334
708 => 0.45629477543973
709 => 0.46747449890596
710 => 0.47990865068591
711 => 0.49155487465866
712 => 0.50340191390071
713 => 0.48911984569661
714 => 0.48186829225808
715 => 0.48935004439124
716 => 0.4853801213961
717 => 0.50819247648182
718 => 0.5097719544527
719 => 0.5325826599455
720 => 0.55423273570646
721 => 0.5406347110224
722 => 0.55345703583098
723 => 0.56732542553095
724 => 0.59407979932731
725 => 0.58506986746292
726 => 0.57816840085842
727 => 0.57164654826481
728 => 0.58521748819716
729 => 0.60267628561907
730 => 0.60643674336547
731 => 0.61253012152005
801 => 0.60612367945334
802 => 0.61383953327625
803 => 0.64107988778909
804 => 0.63371930354246
805 => 0.62326609063928
806 => 0.64476973433571
807 => 0.65255181939615
808 => 0.70717056785991
809 => 0.77612899398337
810 => 0.74757975276282
811 => 0.72985831745897
812 => 0.73402327511344
813 => 0.75920455794368
814 => 0.76729198677479
815 => 0.74530756730794
816 => 0.7530728359242
817 => 0.79586022946415
818 => 0.8188142933144
819 => 0.78763959146369
820 => 0.70162982546422
821 => 0.62232489318843
822 => 0.64336013237561
823 => 0.64097538905126
824 => 0.68694510557388
825 => 0.63354375604249
826 => 0.6344428978132
827 => 0.68136321939074
828 => 0.66884568201181
829 => 0.64856887458299
830 => 0.62247293632232
831 => 0.57423218086534
901 => 0.5315039984641
902 => 0.61530380386565
903 => 0.61169020387668
904 => 0.60645717558713
905 => 0.61810271377272
906 => 0.67465014155824
907 => 0.67334654032162
908 => 0.66505369435745
909 => 0.67134374493148
910 => 0.64746619830542
911 => 0.65361998575258
912 => 0.62231233088198
913 => 0.63646469840665
914 => 0.64852536966103
915 => 0.65094672797663
916 => 0.65640217189931
917 => 0.60978600088574
918 => 0.63071529309196
919 => 0.64300929145363
920 => 0.5874645595961
921 => 0.64191135069474
922 => 0.60897451706002
923 => 0.59779526102975
924 => 0.61284665651952
925 => 0.60698111305919
926 => 0.60193826322828
927 => 0.59912426637547
928 => 0.61017635006125
929 => 0.60966075714721
930 => 0.59157740312027
1001 => 0.56798840496392
1002 => 0.57590564702766
1003 => 0.57302923876137
1004 => 0.56260476414026
1005 => 0.56962960137902
1006 => 0.53869577336828
1007 => 0.48547573007628
1008 => 0.52063452084899
1009 => 0.51928094564965
1010 => 0.51859841165439
1011 => 0.54501927120248
1012 => 0.54247951518987
1013 => 0.53786983315762
1014 => 0.56252010371478
1015 => 0.55352242336849
1016 => 0.58125115407564
1017 => 0.59951508950123
1018 => 0.59488276470089
1019 => 0.61206008424592
1020 => 0.57608804429423
1021 => 0.58803651301843
1022 => 0.59049907586263
1023 => 0.56221592320247
1024 => 0.54289505068323
1025 => 0.54160656876026
1026 => 0.50810683839214
1027 => 0.52600212395442
1028 => 0.54174923469199
1029 => 0.53420759067385
1030 => 0.53182013147791
1031 => 0.54401714273323
1101 => 0.5449649549681
1102 => 0.52335473556831
1103 => 0.52784818448818
1104 => 0.54658661345773
1105 => 0.527376024156
1106 => 0.49005298717468
1107 => 0.48079635797196
1108 => 0.47956135300279
1109 => 0.45445664045248
1110 => 0.48141493019758
1111 => 0.4696469142866
1112 => 0.50682193554691
1113 => 0.48558776277666
1114 => 0.48467240002874
1115 => 0.48328869498073
1116 => 0.46168003182606
1117 => 0.46641095575475
1118 => 0.48213726743377
1119 => 0.48774859261042
1120 => 0.48716328542227
1121 => 0.48206019992708
1122 => 0.48439636633475
1123 => 0.47687076036131
1124 => 0.47421331226015
1125 => 0.46582567506419
1126 => 0.45349816553005
1127 => 0.45521238133978
1128 => 0.43078835928431
1129 => 0.41748085578752
1130 => 0.41379751420969
1201 => 0.40887199591437
1202 => 0.41435386460745
1203 => 0.43071916909854
1204 => 0.41097913978926
1205 => 0.37713624414055
1206 => 0.37917025983453
1207 => 0.38374008919421
1208 => 0.37522424241489
1209 => 0.3671647081191
1210 => 0.3741718192986
1211 => 0.35983213826923
1212 => 0.38547297113797
1213 => 0.38477945846648
1214 => 0.39433677534147
1215 => 0.4003131617193
1216 => 0.38653952599648
1217 => 0.38307549386007
1218 => 0.38504876399645
1219 => 0.35243500415555
1220 => 0.39167153536885
1221 => 0.39201085452011
1222 => 0.38910539794035
1223 => 0.40999763951943
1224 => 0.45408678570487
1225 => 0.43749867542811
1226 => 0.43107525775067
1227 => 0.41886433605035
1228 => 0.43513466420323
1229 => 0.43388535685775
1230 => 0.42823551525573
1231 => 0.42481847342625
]
'min_raw' => 0.31911567961166
'max_raw' => 0.8188142933144
'avg_raw' => 0.56896498646303
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.319115'
'max' => '$0.818814'
'avg' => '$0.568964'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19623564937068
'max_diff' => 0.47594090373015
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.010016676537691
]
1 => [
'year' => 2028
'avg' => 0.017191524800653
]
2 => [
'year' => 2029
'avg' => 0.046964147284504
]
3 => [
'year' => 2030
'avg' => 0.036232769688888
]
4 => [
'year' => 2031
'avg' => 0.035585070112203
]
5 => [
'year' => 2032
'avg' => 0.062391826940409
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.010016676537691
'min' => '$0.010016'
'max_raw' => 0.062391826940409
'max' => '$0.062391'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.062391826940409
]
1 => [
'year' => 2033
'avg' => 0.16047819456664
]
2 => [
'year' => 2034
'avg' => 0.10171879193749
]
3 => [
'year' => 2035
'avg' => 0.11997754835355
]
4 => [
'year' => 2036
'avg' => 0.23287670991261
]
5 => [
'year' => 2037
'avg' => 0.56896498646303
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.062391826940409
'min' => '$0.062391'
'max_raw' => 0.56896498646303
'max' => '$0.568964'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.56896498646303
]
]
]
]
'prediction_2025_max_price' => '$0.017126'
'last_price' => 0.01660649
'sma_50day_nextmonth' => '$0.015252'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'sinken'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.016353'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.016067'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015741'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015144'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014677'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.016353'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.016156'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0158084'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015376'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.015977'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.012831'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006415'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.016157'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.015977'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.01655'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.010333'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.00434'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.00217'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001085'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '66.48'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 115.81
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.015747'
'vwma_10_action' => 'BUY'
'hma_9' => '0.016510'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 172.62
'cci_20_action' => 'SELL'
'adx_14' => 19.71
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001362'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.31
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 1
'buy_signals' => 28
'sell_pct' => 3.45
'buy_pct' => 96.55
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767710863
'last_updated_date' => '6. Januar 2026'
]
SigmaDotMoney Preisprognose für 2026
Die Preisprognose für SigmaDotMoney im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.005737 am unteren Ende und $0.017126 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte SigmaDotMoney im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SIGMA das prognostizierte Preisziel erreicht.
SigmaDotMoney Preisprognose 2027-2032
Die Preisprognose für SIGMA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.010016 am unteren Ende und $0.062391 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte SigmaDotMoney, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.005523 | $0.010016 | $0.0145099 |
| 2028 | $0.009968 | $0.017191 | $0.024414 |
| 2029 | $0.021897 | $0.046964 | $0.072031 |
| 2030 | $0.018622 | $0.036232 | $0.053843 |
| 2031 | $0.022017 | $0.035585 | $0.049152 |
| 2032 | $0.0336081 | $0.062391 | $0.091175 |
SigmaDotMoney Preisprognose 2032-2037
Die Preisprognose für SigmaDotMoney für die Jahre 2032-2037 wird derzeit zwischen $0.062391 am unteren Ende und $0.568964 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte SigmaDotMoney bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.0336081 | $0.062391 | $0.091175 |
| 2033 | $0.078097 | $0.160478 | $0.242858 |
| 2034 | $0.062786 | $0.101718 | $0.14065 |
| 2035 | $0.074233 | $0.119977 | $0.165721 |
| 2036 | $0.12288 | $0.232876 | $0.342873 |
| 2037 | $0.319115 | $0.568964 | $0.818814 |
SigmaDotMoney Potenzielles Preishistogramm
SigmaDotMoney Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für SigmaDotMoney Bullisch, mit 28 technischen Indikatoren, die bullische Signale zeigen, und 1 anzeigen bärische Signale. Die Preisprognose für SIGMA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von SigmaDotMoney
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von SigmaDotMoney im nächsten Monat sinken, und bis zum 04.02.2026 — erreichen. Der kurzfristige 50-Tage-SMA für SigmaDotMoney wird voraussichtlich bis zum 04.02.2026 $0.015252 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 66.48, was darauf hindeutet, dass sich der SIGMA-Markt in einem NEUTRAL Zustand befindet.
Beliebte SIGMA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.016353 | BUY |
| SMA 5 | $0.016067 | BUY |
| SMA 10 | $0.015741 | BUY |
| SMA 21 | $0.015144 | BUY |
| SMA 50 | $0.014677 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.016353 | BUY |
| EMA 5 | $0.016156 | BUY |
| EMA 10 | $0.0158084 | BUY |
| EMA 21 | $0.015376 | BUY |
| EMA 50 | $0.015977 | BUY |
| EMA 100 | $0.012831 | BUY |
| EMA 200 | $0.006415 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.010333 | BUY |
| EMA 50 | $0.00434 | BUY |
| EMA 100 | $0.00217 | BUY |
| EMA 200 | $0.001085 | BUY |
SigmaDotMoney Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 66.48 | NEUTRAL |
| Stoch RSI (14) | 115.81 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 172.62 | SELL |
| Average Directional Index (14) | 19.71 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.001362 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 83.31 | SELL |
| VWMA (10) | 0.015747 | BUY |
| Hull Moving Average (9) | 0.016510 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | — | — |
Auf weltweiten Geldflüssen basierende SigmaDotMoney-Preisprognose
Definition weltweiter Geldflüsse, die für SigmaDotMoney-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
SigmaDotMoney-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.023334 | $0.032789 | $0.046074 | $0.064742 | $0.090974 | $0.127833 |
| Amazon.com aktie | $0.03465 | $0.07230017 | $0.150858 | $0.314775 | $0.656797 | $1.37 |
| Apple aktie | $0.023555 | $0.033411 | $0.04739 | $0.06722 | $0.095347 | $0.135242 |
| Netflix aktie | $0.0262024 | $0.041343 | $0.065233 | $0.102927 | $0.1624041 | $0.256248 |
| Google aktie | $0.0215053 | $0.027849 | $0.036064 | $0.0467036 | $0.060481 | $0.078322 |
| Tesla aktie | $0.037645 | $0.085339 | $0.193459 | $0.438556 | $0.994175 | $2.25 |
| Kodak aktie | $0.012453 | $0.009338 | $0.0070028 | $0.005251 | $0.003938 | $0.002953 |
| Nokia aktie | $0.0110011 | $0.007287 | $0.004827 | $0.003198 | $0.002118 | $0.0014035 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
SigmaDotMoney Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in SigmaDotMoney investieren?", "Sollte ich heute SIGMA kaufen?", "Wird SigmaDotMoney auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere SigmaDotMoney-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie SigmaDotMoney.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich SigmaDotMoney zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der SigmaDotMoney-Preis entspricht heute $0.0166 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
SigmaDotMoney-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von SigmaDotMoney 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017038 | $0.017481 | $0.017935 | $0.0184016 |
| Wenn die Wachstumsrate von SigmaDotMoney 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017469 | $0.018377 | $0.019333 | $0.020338 |
| Wenn die Wachstumsrate von SigmaDotMoney 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018764 | $0.0212035 | $0.023959 | $0.027073 |
| Wenn die Wachstumsrate von SigmaDotMoney 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020923 | $0.026361 | $0.033213 | $0.041847 |
| Wenn die Wachstumsrate von SigmaDotMoney 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.025239 | $0.03836 | $0.0583031 | $0.088612 |
| Wenn die Wachstumsrate von SigmaDotMoney 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.038189 | $0.087822 | $0.201961 | $0.464443 |
| Wenn die Wachstumsrate von SigmaDotMoney 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.059772 | $0.215138 | $0.774354 | $2.78 |
Fragefeld
Ist SIGMA eine gute Investition?
Die Entscheidung, SigmaDotMoney zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von SigmaDotMoney in den letzten 2026 Stunden um 1.1013% gestiegen, und SigmaDotMoney hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in SigmaDotMoney investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann SigmaDotMoney steigen?
Es scheint, dass der Durchschnittswert von SigmaDotMoney bis zum Ende dieses Jahres potenziell auf $0.017126 steigen könnte. Betrachtet man die Aussichten von SigmaDotMoney in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.053843 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird SigmaDotMoney nächste Woche kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney in der nächsten Woche um 0.86% steigen und $0.016748 erreichen bis zum 13. Januar 2026.
Wie viel wird SigmaDotMoney nächsten Monat kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney im nächsten Monat um -11.62% fallen und $0.014677 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von SigmaDotMoney in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von SigmaDotMoney im Jahr 2026 wird erwartet, dass SIGMA innerhalb der Spanne von $0.005737 bis $0.017126 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte SigmaDotMoney-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird SigmaDotMoney in 5 Jahren sein?
Die Zukunft von SigmaDotMoney scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.053843 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der SigmaDotMoney-Prognose für 2030 könnte der Wert von SigmaDotMoney seinen höchsten Gipfel von ungefähr $0.053843 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.018622 liegen wird.
Wie viel wird SigmaDotMoney im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Preisprognosesimulation wird der Wert von SIGMA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.017126 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.017126 und $0.005737 während des Jahres 2026 liegen.
Wie viel wird SigmaDotMoney im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von SigmaDotMoney könnte der Wert von SIGMA um -12.62% fallen und bis zu $0.0145099 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.0145099 und $0.005523 im Laufe des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2028 kosten?
Unser neues experimentelles SigmaDotMoney-Preisprognosemodell deutet darauf hin, dass der Wert von SIGMA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.024414 erreichen wird. Der Preis wird voraussichtlich zwischen $0.024414 und $0.009968 im Laufe des Jahres liegen.
Wie viel wird SigmaDotMoney im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von SigmaDotMoney im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.072031 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.072031 und $0.021897.
Wie viel wird SigmaDotMoney im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für SigmaDotMoney-Preisprognosen wird der Wert von SIGMA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.053843 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.053843 und $0.018622 während des Jahres 2030 liegen.
Wie viel wird SigmaDotMoney im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von SigmaDotMoney im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.049152 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.049152 und $0.022017 während des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen SigmaDotMoney-Preisprognose könnte SIGMA eine 449.04% Steigerung im Wert erfahren und $0.091175 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.091175 und $0.0336081 liegen.
Wie viel wird SigmaDotMoney im Jahr 2033 kosten?
Laut unserer experimentellen SigmaDotMoney-Preisprognose wird der Wert von SIGMA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.242858 beträgt. Im Laufe des Jahres könnte der Preis von SIGMA zwischen $0.242858 und $0.078097 liegen.
Wie viel wird SigmaDotMoney im Jahr 2034 kosten?
Die Ergebnisse unserer neuen SigmaDotMoney-Preisprognosesimulation deuten darauf hin, dass SIGMA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.14065 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.14065 und $0.062786.
Wie viel wird SigmaDotMoney im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von SigmaDotMoney könnte SIGMA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.165721 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.165721 und $0.074233.
Wie viel wird SigmaDotMoney im Jahr 2036 kosten?
Unsere jüngste SigmaDotMoney-Preisprognosesimulation deutet darauf hin, dass der Wert von SIGMA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.342873 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.342873 und $0.12288.
Wie viel wird SigmaDotMoney im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von SigmaDotMoney um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.818814 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.818814 und $0.319115 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von SigmaDotMoney?
SigmaDotMoney-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
SigmaDotMoney Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von SigmaDotMoney. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SIGMA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SIGMA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SIGMA einzuschätzen.
Wie liest man SigmaDotMoney-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von SigmaDotMoney in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SIGMA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von SigmaDotMoney?
Die Preisentwicklung von SigmaDotMoney wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SIGMA. Die Marktkapitalisierung von SigmaDotMoney kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SIGMA-„Walen“, großen Inhabern von SigmaDotMoney, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen SigmaDotMoney-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


