SigmaDotMoney Preisvorhersage bis zu $0.01709 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.005725 | $0.01709 |
| 2027 | $0.005511 | $0.014479 |
| 2028 | $0.009946 | $0.024362 |
| 2029 | $0.02185 | $0.071877 |
| 2030 | $0.018582 | $0.053728 |
| 2031 | $0.02197 | $0.049047 |
| 2032 | $0.033536 | $0.090981 |
| 2033 | $0.077931 | $0.242341 |
| 2034 | $0.062653 | $0.140351 |
| 2035 | $0.074075 | $0.165368 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in SigmaDotMoney eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.48 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige SigmaDotMoney Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'SigmaDotMoney'
'name_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_lang' => 'SigmaDotMoney'
'name_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_with_lang' => 'SigmaDotMoney'
'name_with_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'image' => '/uploads/coins/sigmadotmoney.png?1762828399'
'price_for_sd' => 0.01657
'ticker' => 'SIGMA'
'marketcap' => '$2.4M'
'low24h' => '$0.01631'
'high24h' => '$0.01659'
'volume24h' => '$270.84K'
'current_supply' => '145M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01657'
'change_24h_pct' => '0.7922%'
'ath_price' => '$0.04297'
'ath_days' => 77
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21.10.2025'
'ath_pct' => '-61.47%'
'fdv' => '$16.56M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.81707'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016712'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014645'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005725'
'current_year_max_price_prediction' => '$0.01709'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.018582'
'grand_prediction_max_price' => '$0.053728'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.016885134007591
107 => 0.016948176968672
108 => 0.01709021597904
109 => 0.015876508187013
110 => 0.016421427353044
111 => 0.016741516311067
112 => 0.015295342753785
113 => 0.016712930109642
114 => 0.01585538023461
115 => 0.015564314927057
116 => 0.015956196018738
117 => 0.015803479576193
118 => 0.015672182946703
119 => 0.015598917171485
120 => 0.015886671394878
121 => 0.015873247316417
122 => 0.015402425556257
123 => 0.01478825776328
124 => 0.014994392633974
125 => 0.014919501902926
126 => 0.014648088232512
127 => 0.01483098827576
128 => 0.014025589048892
129 => 0.012639941540075
130 => 0.013555342727931
131 => 0.013520100777963
201 => 0.013502330188694
202 => 0.014190228881537
203 => 0.014124103294743
204 => 0.014004084707209
205 => 0.014645883997032
206 => 0.014411618622828
207 => 0.015133569306262
208 => 0.015609092719213
209 => 0.015488484600118
210 => 0.015935716668403
211 => 0.014999141565061
212 => 0.01531023424552
213 => 0.015374350015807
214 => 0.01463796429342
215 => 0.014134922258532
216 => 0.014101375089904
217 => 0.01322916952487
218 => 0.013695094697514
219 => 0.014105089568146
220 => 0.013908733842
221 => 0.013846573485063
222 => 0.014164137267719
223 => 0.014188814693382
224 => 0.013626166773086
225 => 0.013743159092458
226 => 0.014231036512593
227 => 0.013730865833235
228 => 0.012759115905658
301 => 0.012518108488125
302 => 0.012485953655978
303 => 0.01183232242509
304 => 0.012534213756186
305 => 0.012227819380644
306 => 0.013195715541813
307 => 0.012642858445485
308 => 0.012619025881044
309 => 0.012582999464414
310 => 0.012020392062822
311 => 0.012143567328205
312 => 0.01255302067046
313 => 0.012699118235799
314 => 0.012683879062792
315 => 0.012551014125707
316 => 0.012611839013526
317 => 0.012415900857065
318 => 0.012346711015918
319 => 0.012128328845094
320 => 0.011807367383598
321 => 0.01185199904339
322 => 0.011216090404031
323 => 0.010869613627082
324 => 0.010773713421713
325 => 0.010645471659149
326 => 0.010788198670033
327 => 0.011214288954753
328 => 0.010700333671284
329 => 0.009819193387548
330 => 0.0098721514199906
331 => 0.009991132395508
401 => 0.0097694121347692
402 => 0.0095595725155508
403 => 0.0097420110396348
404 => 0.0093686602855485
405 => 0.010036250050435
406 => 0.010018193618194
407 => 0.010267029799069
408 => 0.010422632169603
409 => 0.010064019082388
410 => 0.0099738288607462
411 => 0.01002520530991
412 => 0.0091760670476819
413 => 0.010197637087225
414 => 0.010206471667349
415 => 0.010130824628702
416 => 0.010674779137322
417 => 0.011822692814177
418 => 0.011390801514223
419 => 0.011223560148898
420 => 0.010905634191161
421 => 0.01132925165327
422 => 0.011296724441642
423 => 0.011149624055081
424 => 0.011060657282308
425 => 0.011224581289012
426 => 0.01104034528381
427 => 0.011007251434809
428 => 0.010806738716325
429 => 0.010735164798573
430 => 0.01068217431931
501 => 0.010623837008378
502 => 0.010752514579542
503 => 0.01046091427434
504 => 0.010109272892197
505 => 0.010080037716084
506 => 0.010160758607714
507 => 0.010125045622131
508 => 0.010079866736049
509 => 0.0099936079387795
510 => 0.0099680167962573
511 => 0.010051175594397
512 => 0.0099572941597564
513 => 0.010095821330555
514 => 0.010058149605156
515 => 0.0098477184093954
516 => 0.0095854432278709
517 => 0.0095831084286145
518 => 0.0095266016709725
519 => 0.0094546318192676
520 => 0.0094346114529704
521 => 0.0097266465759988
522 => 0.010331150540792
523 => 0.010212471947949
524 => 0.010298229393949
525 => 0.010720071151007
526 => 0.010854161960351
527 => 0.010758987479994
528 => 0.010628706781174
529 => 0.010634438470736
530 => 0.011079647057253
531 => 0.011107414170691
601 => 0.011177572708336
602 => 0.01126774625601
603 => 0.010774344425084
604 => 0.01061119928887
605 => 0.010533892072385
606 => 0.010295815767267
607 => 0.010552560651216
608 => 0.010402966402251
609 => 0.010423151777304
610 => 0.01041000602532
611 => 0.010417184494815
612 => 0.01003606344549
613 => 0.010174923924732
614 => 0.00994404144556
615 => 0.0096349157237238
616 => 0.0096338794259108
617 => 0.0097095375083921
618 => 0.0096645331204311
619 => 0.0095434274695969
620 => 0.0095606299556953
621 => 0.0094099180761663
622 => 0.0095789291065968
623 => 0.009583775738199
624 => 0.0095186972853902
625 => 0.0097790820967961
626 => 0.0098857619664829
627 => 0.0098429259347287
628 => 0.0098827564763029
629 => 0.010217403579283
630 => 0.010271965658746
701 => 0.010296198530275
702 => 0.010263729692667
703 => 0.0098888732110251
704 => 0.0099054996899987
705 => 0.0097835056191323
706 => 0.0096804334846686
707 => 0.009684555829505
708 => 0.0097375483050589
709 => 0.0099689695537704
710 => 0.010455981928656
711 => 0.010474463692281
712 => 0.010496864128947
713 => 0.010405750295472
714 => 0.010378269491454
715 => 0.010414523765351
716 => 0.010597420007464
717 => 0.011067878798023
718 => 0.010901587240553
719 => 0.010766389615848
720 => 0.010884994381733
721 => 0.01086673610768
722 => 0.010712617900194
723 => 0.010708292315417
724 => 0.010412490200681
725 => 0.010303138893952
726 => 0.010211756757245
727 => 0.010111969849553
728 => 0.010052812825785
729 => 0.010143704900679
730 => 0.01016449299361
731 => 0.0099657558833344
801 => 0.0099386687495626
802 => 0.010100961763853
803 => 0.010029542659157
804 => 0.010102998979445
805 => 0.010120041475848
806 => 0.010117297241405
807 => 0.010042727493671
808 => 0.010090256027175
809 => 0.0099778368765008
810 => 0.009855597934953
811 => 0.0097776171060006
812 => 0.0097095684900837
813 => 0.0097473258172032
814 => 0.0096127278402378
815 => 0.0095696672384845
816 => 0.01007415442945
817 => 0.010446824541567
818 => 0.010441405770544
819 => 0.010408420395531
820 => 0.010359410819102
821 => 0.010593834651686
822 => 0.010512166075866
823 => 0.010571586788413
824 => 0.010586711853636
825 => 0.010632490870686
826 => 0.010648852934442
827 => 0.010599395413587
828 => 0.010433409932871
829 => 0.010019789896351
830 => 0.0098272486528044
831 => 0.0097637068354061
901 => 0.0097660164597854
902 => 0.0097023067087861
903 => 0.0097210720857262
904 => 0.0096957808764962
905 => 0.0096478854448153
906 => 0.0097443684092627
907 => 0.0097554871721142
908 => 0.0097329668953266
909 => 0.009738271235756
910 => 0.0095518129624909
911 => 0.0095659889800412
912 => 0.0094870551129201
913 => 0.0094722559643969
914 => 0.0092727180218728
915 => 0.0089192076332042
916 => 0.0091150867046104
917 => 0.0088784923311172
918 => 0.0087888904568856
919 => 0.0092130517935477
920 => 0.009170477759751
921 => 0.0090976095203786
922 => 0.0089898222072752
923 => 0.0089498428443576
924 => 0.0087069408911982
925 => 0.008692588947974
926 => 0.0088129777148642
927 => 0.0087574224412689
928 => 0.0086794017967137
929 => 0.0083968189309606
930 => 0.0080791022298826
1001 => 0.0080886920999922
1002 => 0.0081897518712758
1003 => 0.0084835967860496
1004 => 0.0083687864942788
1005 => 0.0082854903103028
1006 => 0.0082698914389182
1007 => 0.0084651439727459
1008 => 0.0087414672147825
1009 => 0.008871111897562
1010 => 0.008742637954295
1011 => 0.0085950540057983
1012 => 0.0086040367569052
1013 => 0.0086637949756755
1014 => 0.0086700747195325
1015 => 0.0085740127409362
1016 => 0.0086010536252248
1017 => 0.0085599760493201
1018 => 0.0083078830418164
1019 => 0.0083033234787063
1020 => 0.008241455789116
1021 => 0.008239582460063
1022 => 0.0081343300864514
1023 => 0.0081196045518079
1024 => 0.0079106195756398
1025 => 0.0080481741198184
1026 => 0.0079559097535211
1027 => 0.0078168455905473
1028 => 0.0077928708764341
1029 => 0.0077921501675776
1030 => 0.0079349379687738
1031 => 0.0080465055612263
1101 => 0.0079575147316746
1102 => 0.0079372532448005
1103 => 0.0081535929162443
1104 => 0.0081260617210732
1105 => 0.0081022198836122
1106 => 0.0087167254991979
1107 => 0.0082302963539906
1108 => 0.0080181854822753
1109 => 0.0077556579997656
1110 => 0.0078411382718492
1111 => 0.0078591502211437
1112 => 0.0072278189498432
1113 => 0.0069716879317039
1114 => 0.0068837934183723
1115 => 0.006833208883304
1116 => 0.0068562608911352
1117 => 0.0066257129336379
1118 => 0.0067806449739874
1119 => 0.0065810099305284
1120 => 0.0065475404658238
1121 => 0.0069045126535648
1122 => 0.0069541832480877
1123 => 0.0067422730604089
1124 => 0.0068783537060418
1125 => 0.0068290089722728
1126 => 0.0065844321003612
1127 => 0.0065750910628398
1128 => 0.0064523709858073
1129 => 0.0062603378285408
1130 => 0.0061725735227325
1201 => 0.0061268651102629
1202 => 0.006145725292087
1203 => 0.0061361890070257
1204 => 0.0060739582964084
1205 => 0.0061397559985136
1206 => 0.0059716700591224
1207 => 0.0059047368836964
1208 => 0.0058745047211944
1209 => 0.005725318775319
1210 => 0.0059627399584979
1211 => 0.0060095149225375
1212 => 0.0060563820477056
1213 => 0.0064643283747494
1214 => 0.0064439485290946
1215 => 0.0066281724084262
1216 => 0.0066210138072414
1217 => 0.006568470172627
1218 => 0.0063467972211974
1219 => 0.0064351521086968
1220 => 0.0061632094983718
1221 => 0.0063669673923274
1222 => 0.0062739807986591
1223 => 0.0063355285314721
1224 => 0.0062248601583391
1225 => 0.006286108605416
1226 => 0.006020607001748
1227 => 0.0057726853399512
1228 => 0.0058724562539427
1229 => 0.0059809186476395
1230 => 0.006216092752878
1231 => 0.0060760249959422
]
'min_raw' => 0.005725318775319
'max_raw' => 0.01709021597904
'avg_raw' => 0.011407767377179
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005725'
'max' => '$0.01709'
'avg' => '$0.0114077'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010845801224681
'max_diff' => 0.00051909597903979
'year' => 2026
]
1 => [
'items' => [
101 => 0.0061263986578846
102 => 0.0059576553228267
103 => 0.0056094896234515
104 => 0.0056114602034993
105 => 0.0055579024958525
106 => 0.0055116208168923
107 => 0.0060921134627581
108 => 0.0060199200260139
109 => 0.0059048892330056
110 => 0.0060588625205893
111 => 0.0060995755017111
112 => 0.0061007345430479
113 => 0.0062130694790432
114 => 0.006273022654521
115 => 0.0062835896615509
116 => 0.0064603511104965
117 => 0.0065195992166431
118 => 0.0067636337807553
119 => 0.0062679360464513
120 => 0.0062577274778162
121 => 0.0060610292405054
122 => 0.0059362801087267
123 => 0.0060695709202858
124 => 0.0061876483833169
125 => 0.0060646982364214
126 => 0.0060807529299867
127 => 0.0059157024031756
128 => 0.0059747002001614
129 => 0.0060255170507872
130 => 0.0059974589727481
131 => 0.0059554546718972
201 => 0.006177967377886
202 => 0.0061654123389797
203 => 0.0063726212863415
204 => 0.006534155478464
205 => 0.0068236536284383
206 => 0.0065215472170602
207 => 0.0065105372586654
208 => 0.0066181613680279
209 => 0.0065195827399527
210 => 0.0065818810300776
211 => 0.0068136164107713
212 => 0.0068185126142015
213 => 0.0067364948983434
214 => 0.0067315041128797
215 => 0.0067472565123857
216 => 0.0068395188083099
217 => 0.00680727952718
218 => 0.0068445876395023
219 => 0.0068912420052433
220 => 0.0070842242429895
221 => 0.0071307516071718
222 => 0.0070177142338813
223 => 0.0070279202430636
224 => 0.0069856411625077
225 => 0.006944800100446
226 => 0.0070366048436026
227 => 0.007204379816148
228 => 0.0072033360967514
301 => 0.0072422566293025
302 => 0.0072665037986467
303 => 0.0071624171978085
304 => 0.0070946606480332
305 => 0.0071206428206783
306 => 0.007162188880556
307 => 0.0071071699934038
308 => 0.0067675679346726
309 => 0.0068705815054282
310 => 0.0068534350101482
311 => 0.0068290163157844
312 => 0.0069325972577595
313 => 0.0069226066232186
314 => 0.0066233483311052
315 => 0.0066425058760251
316 => 0.0066245133648635
317 => 0.0066826508493481
318 => 0.0065164431249996
319 => 0.0065675675015831
320 => 0.006599632231315
321 => 0.0066185186034599
322 => 0.0066867491301541
323 => 0.0066787430653603
324 => 0.0066862514619255
325 => 0.0067874193208217
326 => 0.0072990916345022
327 => 0.0073269408295945
328 => 0.0071898012075954
329 => 0.0072445857816246
330 => 0.0071394113795579
331 => 0.0072100156602726
401 => 0.0072583213159832
402 => 0.0070400373464701
403 => 0.0070271119864467
404 => 0.0069215034922101
405 => 0.006978251515042
406 => 0.0068879613303891
407 => 0.0069101153834864
408 => 0.0068481707196709
409 => 0.0069596587814792
410 => 0.0070843197580742
411 => 0.0071158140437733
412 => 0.0070329661372416
413 => 0.0069729787929695
414 => 0.0068676607774875
415 => 0.0070428069843992
416 => 0.0070940250727841
417 => 0.0070425379575851
418 => 0.0070306072679778
419 => 0.0070079986327303
420 => 0.0070354037968235
421 => 0.0070937461280751
422 => 0.0070662329620706
423 => 0.0070844058929362
424 => 0.0070151494203214
425 => 0.0071624516548044
426 => 0.0073964030533766
427 => 0.0073971552453779
428 => 0.0073696419310672
429 => 0.0073583840756338
430 => 0.0073866144057642
501 => 0.0074019282017912
502 => 0.0074932199128757
503 => 0.0075911795560916
504 => 0.0080483144678393
505 => 0.0079199528138755
506 => 0.0083255501026557
507 => 0.0086463248978645
508 => 0.0087425112331658
509 => 0.0086540243306054
510 => 0.0083513154169147
511 => 0.0083364630734599
512 => 0.0087888379909206
513 => 0.0086610213566541
514 => 0.0086458179747173
515 => 0.0084840796774285
516 => 0.008579687042804
517 => 0.0085587763095209
518 => 0.0085257676940456
519 => 0.0087081798871152
520 => 0.0090496392284928
521 => 0.0089964195879537
522 => 0.0089566935950793
523 => 0.0087826258583664
524 => 0.0088874535153041
525 => 0.0088501263945101
526 => 0.0090105073938173
527 => 0.0089155012427018
528 => 0.0086600530199384
529 => 0.0087007339913819
530 => 0.0086945851443869
531 => 0.0088211279798304
601 => 0.0087831429616165
602 => 0.0086871679599429
603 => 0.0090484721575853
604 => 0.00902501107267
605 => 0.0090582735271293
606 => 0.0090729166882578
607 => 0.0092928361864687
608 => 0.0093829301682466
609 => 0.0094033830794274
610 => 0.0094889653939978
611 => 0.0094012537134772
612 => 0.0097521629729281
613 => 0.0099854971543401
614 => 0.010256526813317
615 => 0.010652573990988
616 => 0.010801491393433
617 => 0.010774590797589
618 => 0.011074869247675
619 => 0.011614462947664
620 => 0.010883658111931
621 => 0.01165319737849
622 => 0.011409570131456
623 => 0.010831934311404
624 => 0.010794741374471
625 => 0.0111859230583
626 => 0.012053526383191
627 => 0.011836201590581
628 => 0.012053881848697
629 => 0.011799946264837
630 => 0.011787336222761
701 => 0.012041548764184
702 => 0.012635530223622
703 => 0.012353351897305
704 => 0.011948780073565
705 => 0.01224750961238
706 => 0.011988722439745
707 => 0.01140560250983
708 => 0.011836035406408
709 => 0.01154821718649
710 => 0.01163221784432
711 => 0.012237168932859
712 => 0.012164379617384
713 => 0.012258575731718
714 => 0.01209232205546
715 => 0.011937014906037
716 => 0.011647122578378
717 => 0.011561299751678
718 => 0.011585018093396
719 => 0.011561287998045
720 => 0.011399095904968
721 => 0.011364070537911
722 => 0.011305693391652
723 => 0.011323786910299
724 => 0.011214020796495
725 => 0.011421172132079
726 => 0.011459621245375
727 => 0.011610368712425
728 => 0.011626019814539
729 => 0.012045849364518
730 => 0.011814614303339
731 => 0.011969746746253
801 => 0.011955870240395
802 => 0.010844453431169
803 => 0.010997596861367
804 => 0.011235839979699
805 => 0.011128511777821
806 => 0.010976774811298
807 => 0.010854239075209
808 => 0.010668584905111
809 => 0.010929889584351
810 => 0.011273477450896
811 => 0.011634733769841
812 => 0.012068759566602
813 => 0.011971890061382
814 => 0.011626619959473
815 => 0.011642108524025
816 => 0.011737852735558
817 => 0.011613855282343
818 => 0.011577286012673
819 => 0.011732828679464
820 => 0.011733899816326
821 => 0.01159122576081
822 => 0.011432669657181
823 => 0.011432005301317
824 => 0.011403791774147
825 => 0.011804965388644
826 => 0.012025570313391
827 => 0.01205086231249
828 => 0.012023867960335
829 => 0.012034257015112
830 => 0.0119058918701
831 => 0.012199296526096
901 => 0.012468553653152
902 => 0.012396386991261
903 => 0.012288198905992
904 => 0.012202021885031
905 => 0.012376086423868
906 => 0.012368335603957
907 => 0.012466201927042
908 => 0.012461762145323
909 => 0.012428853381808
910 => 0.012396388166537
911 => 0.012525109075386
912 => 0.012488039520832
913 => 0.012450912387021
914 => 0.012376448236283
915 => 0.012386569151087
916 => 0.012278399746016
917 => 0.012228355629735
918 => 0.011475812193494
919 => 0.011274707997264
920 => 0.011337979471251
921 => 0.011358810083331
922 => 0.01127128927941
923 => 0.011396771629983
924 => 0.011377215338565
925 => 0.011453297428425
926 => 0.011405764641781
927 => 0.011407715403925
928 => 0.011547499194387
929 => 0.011588079023441
930 => 0.011567439794865
1001 => 0.011581894803088
1002 => 0.011915004366519
1003 => 0.011867646838843
1004 => 0.011842489096136
1005 => 0.011849457962797
1006 => 0.011934574598203
1007 => 0.011958402608921
1008 => 0.011857441653146
1009 => 0.011905055423538
1010 => 0.01210778881478
1011 => 0.012178734027999
1012 => 0.012405157092959
1013 => 0.012308968550615
1014 => 0.01248552678303
1015 => 0.013028206596337
1016 => 0.013461736781794
1017 => 0.013063044506855
1018 => 0.01385916748271
1019 => 0.014479063416471
1020 => 0.014455270778043
1021 => 0.01434717758354
1022 => 0.013641442543739
1023 => 0.012992014638198
1024 => 0.013535288657349
1025 => 0.013536673574549
1026 => 0.013490005854498
1027 => 0.013200156653283
1028 => 0.01347991973058
1029 => 0.013502126307706
1030 => 0.013489696529721
1031 => 0.013267469826737
1101 => 0.01292817072564
1102 => 0.012994468957827
1103 => 0.013103066814597
1104 => 0.012897468415845
1105 => 0.012831767269798
1106 => 0.012953918200455
1107 => 0.013347513950187
1108 => 0.013273106953645
1109 => 0.013271163886263
1110 => 0.013589508570946
1111 => 0.013361642479796
1112 => 0.012995305190851
1113 => 0.012902800193998
1114 => 0.012574469774
1115 => 0.012801248764565
1116 => 0.012809410136709
1117 => 0.012685205601201
1118 => 0.013005383704377
1119 => 0.01300243320679
1120 => 0.013306394663535
1121 => 0.01388745480612
1122 => 0.013715606729724
1123 => 0.013515766113894
1124 => 0.013537494329814
1125 => 0.01377579922865
1126 => 0.013631714646842
1127 => 0.013683528467053
1128 => 0.013775720802227
1129 => 0.013831342727045
1130 => 0.013529491190806
1201 => 0.01345911515848
1202 => 0.013315150494973
1203 => 0.013277592801492
1204 => 0.013394849015997
1205 => 0.013363956146198
1206 => 0.012808724204982
1207 => 0.012750699377844
1208 => 0.012752478916452
1209 => 0.012606572729682
1210 => 0.012384030773361
1211 => 0.012968857747283
1212 => 0.012921887956629
1213 => 0.01287003694292
1214 => 0.012876388396241
1215 => 0.013130241963996
1216 => 0.012982994074786
1217 => 0.013374476721705
1218 => 0.013293999658544
1219 => 0.01321145866238
1220 => 0.01320004898245
1221 => 0.013168277740994
1222 => 0.013059322332483
1223 => 0.012927752129501
1224 => 0.012840878085077
1225 => 0.011845031267236
1226 => 0.012029854644053
1227 => 0.0122424770919
1228 => 0.012315873508866
1229 => 0.012190323858768
1230 => 0.013064279797903
1231 => 0.013223959969632
]
'min_raw' => 0.0055116208168923
'max_raw' => 0.014479063416471
'avg_raw' => 0.0099953421166818
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005511'
'max' => '$0.014479'
'avg' => '$0.009995'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00021369795842666
'max_diff' => -0.0026111525625686
'year' => 2027
]
2 => [
'items' => [
101 => 0.012740278313785
102 => 0.012649801224568
103 => 0.01307021146081
104 => 0.012816652695295
105 => 0.012930830191881
106 => 0.012684040896014
107 => 0.013185497692244
108 => 0.013181677431627
109 => 0.012986599411978
110 => 0.013151478018348
111 => 0.013122826303028
112 => 0.012902583699301
113 => 0.013192479775622
114 => 0.013192623560459
115 => 0.013004865207909
116 => 0.012785604557719
117 => 0.01274640593217
118 => 0.012716875033414
119 => 0.012923567401064
120 => 0.013108887131588
121 => 0.013453721205437
122 => 0.013540420684659
123 => 0.01387881452397
124 => 0.013677317468757
125 => 0.013766638503509
126 => 0.013863609121964
127 => 0.013910100402428
128 => 0.013834345355772
129 => 0.014360010276684
130 => 0.014404392501966
131 => 0.014419273478198
201 => 0.014242022224487
202 => 0.014399462823955
203 => 0.014325801581349
204 => 0.014517447670928
205 => 0.014547500224834
206 => 0.014522046780826
207 => 0.014531585935783
208 => 0.014083023659432
209 => 0.014059763339048
210 => 0.013742607220144
211 => 0.013871850682897
212 => 0.013630236224081
213 => 0.013706854657876
214 => 0.013740627333446
215 => 0.013722986404311
216 => 0.013879157914366
217 => 0.013746380227088
218 => 0.013395958079687
219 => 0.013045440460006
220 => 0.013041039996816
221 => 0.012948754894704
222 => 0.012882049668737
223 => 0.012894899461753
224 => 0.012940183808368
225 => 0.012879417660189
226 => 0.012892385198825
227 => 0.013107732742437
228 => 0.01315091915652
229 => 0.013004154847445
301 => 0.012414874968519
302 => 0.012270264208133
303 => 0.012374207554942
304 => 0.012324529329976
305 => 0.0099468570593667
306 => 0.010505455890835
307 => 0.010173555433401
308 => 0.010326510434192
309 => 0.0099877260123583
310 => 0.01014941169567
311 => 0.010119554253778
312 => 0.011017764644639
313 => 0.011003740324833
314 => 0.011010453024574
315 => 0.010690038376123
316 => 0.011200467611311
317 => 0.011451923407006
318 => 0.011405385631502
319 => 0.011417098186979
320 => 0.011215837678326
321 => 0.011012401666231
322 => 0.01078675982024
323 => 0.011205974479916
324 => 0.011159364965993
325 => 0.011266270421359
326 => 0.011538161094242
327 => 0.011578198028637
328 => 0.011632008074477
329 => 0.011612721003503
330 => 0.012072217282298
331 => 0.012016569251082
401 => 0.012150664995282
402 => 0.011874819875595
403 => 0.011562674939209
404 => 0.011622003486829
405 => 0.011616289670603
406 => 0.011543546232035
407 => 0.011477876708275
408 => 0.011368555453487
409 => 0.011714464080136
410 => 0.011700420821598
411 => 0.011927764853836
412 => 0.011887579587836
413 => 0.011619212546484
414 => 0.011628797327867
415 => 0.011693259588958
416 => 0.011916364210613
417 => 0.011982596852441
418 => 0.011951915253832
419 => 0.012024536321962
420 => 0.012081933053212
421 => 0.012031744467711
422 => 0.012742309000042
423 => 0.012447233065832
424 => 0.01259105102304
425 => 0.01262535075841
426 => 0.012537492707506
427 => 0.012556545972786
428 => 0.012585406477982
429 => 0.012760641814061
430 => 0.013220510040687
501 => 0.013424182547831
502 => 0.014036941334598
503 => 0.013407270381371
504 => 0.013369908312844
505 => 0.013480284673883
506 => 0.01384003894882
507 => 0.014131585998656
508 => 0.014228308974839
509 => 0.014241092512864
510 => 0.014422551246206
511 => 0.014526560008152
512 => 0.01440051738314
513 => 0.014293709455654
514 => 0.01391113671689
515 => 0.013955420553113
516 => 0.014260492270522
517 => 0.014691424039996
518 => 0.015061208329014
519 => 0.014931722759283
520 => 0.01591960625376
521 => 0.016017550867095
522 => 0.016004018088461
523 => 0.016227150493751
524 => 0.015784278109374
525 => 0.015594941584804
526 => 0.014316802541898
527 => 0.014675907478341
528 => 0.015197887592954
529 => 0.01512880156746
530 => 0.014749725655659
531 => 0.015060920765942
601 => 0.014958029930512
602 => 0.014876875659663
603 => 0.01524865910695
604 => 0.014839867934636
605 => 0.015193809588301
606 => 0.014739875756418
607 => 0.014932314238459
608 => 0.01482307684885
609 => 0.014893766827558
610 => 0.014480514656467
611 => 0.014703495496858
612 => 0.014471237920414
613 => 0.014471127800082
614 => 0.014466000701209
615 => 0.014739250709908
616 => 0.014748161382882
617 => 0.014546229213595
618 => 0.014517127633228
619 => 0.014624731428602
620 => 0.014498755565697
621 => 0.014557698879068
622 => 0.014500540898613
623 => 0.014487673433281
624 => 0.014385143280299
625 => 0.014340970471269
626 => 0.014358291767883
627 => 0.0142991652528
628 => 0.014263539388763
629 => 0.014458913820162
630 => 0.014354533142848
701 => 0.014442915984334
702 => 0.014342192581657
703 => 0.01399304138488
704 => 0.013792240839406
705 => 0.013132726595028
706 => 0.013319764016609
707 => 0.013443770020621
708 => 0.013402786037035
709 => 0.013490835492474
710 => 0.01349624101393
711 => 0.013467615238409
712 => 0.013434470257544
713 => 0.013418337113891
714 => 0.013538580349041
715 => 0.013608385594247
716 => 0.01345621568211
717 => 0.01342056440078
718 => 0.013574416583481
719 => 0.013668266326051
720 => 0.014361200095576
721 => 0.014309865323783
722 => 0.014438705527043
723 => 0.01442420009737
724 => 0.014559245156241
725 => 0.014779986753194
726 => 0.014331157366267
727 => 0.014409058628485
728 => 0.014389959037992
729 => 0.014598483358813
730 => 0.014599134348981
731 => 0.014474113602087
801 => 0.014541889377208
802 => 0.014504058798867
803 => 0.014572423767039
804 => 0.014309179716608
805 => 0.014629782554594
806 => 0.014811543704542
807 => 0.014814067458285
808 => 0.014900220800814
809 => 0.014987757586489
810 => 0.015155776823745
811 => 0.014983071621155
812 => 0.014672391774207
813 => 0.014694821855667
814 => 0.014512670375075
815 => 0.014515732374372
816 => 0.014499387182151
817 => 0.014548440334416
818 => 0.014319944125032
819 => 0.014373571728663
820 => 0.014298492769537
821 => 0.01440889542149
822 => 0.014290120418201
823 => 0.014389949827591
824 => 0.014433032891286
825 => 0.014592010323834
826 => 0.014266639322153
827 => 0.013603185824045
828 => 0.013742651792943
829 => 0.013536370670127
830 => 0.013555462773411
831 => 0.013594031860531
901 => 0.013469016830155
902 => 0.013492865758275
903 => 0.01349201370674
904 => 0.013484671186929
905 => 0.013452149949218
906 => 0.013404987720408
907 => 0.013592867524221
908 => 0.013624791963967
909 => 0.013695756038922
910 => 0.013906896990594
911 => 0.013885799030475
912 => 0.013920210678775
913 => 0.01384509024375
914 => 0.013558947394941
915 => 0.013574486328306
916 => 0.013380715580249
917 => 0.013690800885238
918 => 0.01361736859209
919 => 0.013570026314993
920 => 0.013557108536064
921 => 0.013768772865316
922 => 0.01383210615006
923 => 0.013792641097146
924 => 0.01371169712224
925 => 0.013867133482997
926 => 0.013908721695802
927 => 0.013918031762935
928 => 0.014193435192231
929 => 0.013933423755282
930 => 0.013996011092447
1001 => 0.014484299630665
1002 => 0.014041489305714
1003 => 0.014276055810689
1004 => 0.014264575000896
1005 => 0.014384571287544
1006 => 0.014254731802962
1007 => 0.014256341318984
1008 => 0.014362889892275
1009 => 0.014213261637225
1010 => 0.014176211577047
1011 => 0.01412502718427
1012 => 0.014236786433356
1013 => 0.014303781048747
1014 => 0.014843708446674
1015 => 0.015192526169416
1016 => 0.015177383072131
1017 => 0.01531576263463
1018 => 0.015253421374313
1019 => 0.015052104999954
1020 => 0.015395727503068
1021 => 0.015286990965307
1022 => 0.015295955073365
1023 => 0.015295621428815
1024 => 0.015367921720513
1025 => 0.015316690337621
1026 => 0.015215708023146
1027 => 0.015282744796142
1028 => 0.015481820045854
1029 => 0.016099755729336
1030 => 0.016445560724372
1031 => 0.01607893783443
1101 => 0.016331829394636
1102 => 0.016180184572988
1103 => 0.016152626197853
1104 => 0.016311460786201
1105 => 0.016470573393471
1106 => 0.016460438608251
1107 => 0.016344931025896
1108 => 0.01627968372352
1109 => 0.01677375815656
1110 => 0.017137783782486
1111 => 0.017112959675256
1112 => 0.017222525211335
1113 => 0.017544213013995
1114 => 0.017573624115147
1115 => 0.017569918992409
1116 => 0.017497020509471
1117 => 0.01781376392763
1118 => 0.018077996859628
1119 => 0.017480146616911
1120 => 0.017707800162903
1121 => 0.017810001174239
1122 => 0.017960062580552
1123 => 0.018213241326216
1124 => 0.018488260596351
1125 => 0.018527151336582
1126 => 0.018499556495295
1127 => 0.018318173893726
1128 => 0.018619103260771
1129 => 0.018795380626324
1130 => 0.018900349763474
1201 => 0.01916653403009
1202 => 0.017810632332891
1203 => 0.016850857718927
1204 => 0.016700975053643
1205 => 0.017005767347342
1206 => 0.017086138644518
1207 => 0.017053741075404
1208 => 0.015973427488496
1209 => 0.016695287426184
1210 => 0.017471948023428
1211 => 0.017501782720018
1212 => 0.017890595254206
1213 => 0.018017208553301
1214 => 0.018330253606146
1215 => 0.018310672552858
1216 => 0.018386894041591
1217 => 0.018369372041303
1218 => 0.018949222082286
1219 => 0.019588882786053
1220 => 0.019566733369878
1221 => 0.01947477457559
1222 => 0.019611349066413
1223 => 0.020271547462908
1224 => 0.020210766974022
1225 => 0.020269810041705
1226 => 0.021048221158324
1227 => 0.022060266337619
1228 => 0.021590069744162
1229 => 0.022610261056539
1230 => 0.023252417409663
1231 => 0.024362960422184
]
'min_raw' => 0.0099468570593667
'max_raw' => 0.024362960422184
'avg_raw' => 0.017154908740775
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009946'
'max' => '$0.024362'
'avg' => '$0.017154'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0044352362424744
'max_diff' => 0.0098838970057126
'year' => 2028
]
3 => [
'items' => [
101 => 0.024223914967477
102 => 0.02465624121271
103 => 0.023974994583888
104 => 0.022410714621455
105 => 0.022163161329576
106 => 0.022658769288964
107 => 0.023877173096403
108 => 0.022620397417137
109 => 0.022874641500225
110 => 0.022801419187191
111 => 0.022797517481305
112 => 0.022946429725617
113 => 0.022730424748502
114 => 0.021850381613182
115 => 0.022253700195973
116 => 0.022097959522208
117 => 0.022270765410986
118 => 0.023203327522151
119 => 0.022791019583301
120 => 0.022356686662899
121 => 0.022901436531274
122 => 0.023595090310078
123 => 0.023551682703216
124 => 0.023467453802932
125 => 0.023942247703752
126 => 0.024726468126347
127 => 0.024938439755321
128 => 0.025094912878261
129 => 0.02511648787828
130 => 0.025338723787256
131 => 0.024143705294029
201 => 0.026040230333032
202 => 0.026367707816821
203 => 0.026306155622419
204 => 0.026670133063291
205 => 0.02656304166697
206 => 0.026407883035827
207 => 0.026984864699831
208 => 0.026323401782069
209 => 0.025384538446172
210 => 0.024869459451488
211 => 0.025547757021926
212 => 0.025961969678869
213 => 0.026235737896235
214 => 0.026318579993395
215 => 0.024236471177877
216 => 0.023114330005362
217 => 0.023833609631569
218 => 0.024711180417571
219 => 0.024138830344003
220 => 0.024161265383285
221 => 0.023345244589332
222 => 0.024783380150982
223 => 0.024573855896273
224 => 0.025660868100343
225 => 0.025401443914024
226 => 0.026287860168872
227 => 0.026054437061927
228 => 0.027023363328347
301 => 0.027409894248653
302 => 0.028058939822581
303 => 0.028536380388853
304 => 0.028816742621351
305 => 0.028799910724524
306 => 0.02991084556559
307 => 0.02925576610292
308 => 0.028432831907432
309 => 0.02841794762416
310 => 0.028844156905071
311 => 0.029737374633054
312 => 0.029968972994131
313 => 0.030098404882743
314 => 0.029900175439777
315 => 0.029189133633017
316 => 0.028882109385922
317 => 0.029143702939796
318 => 0.028823796502399
319 => 0.029376044763239
320 => 0.030134399579237
321 => 0.029977802308594
322 => 0.03050128350598
323 => 0.031043031473447
324 => 0.031817755398349
325 => 0.032020296920262
326 => 0.03235509035402
327 => 0.032699702771271
328 => 0.032810382992127
329 => 0.033021705875797
330 => 0.033020592099888
331 => 0.033657427833497
401 => 0.034359877368829
402 => 0.034625035806673
403 => 0.035234753013572
404 => 0.034190633663796
405 => 0.03498261018458
406 => 0.035696992830785
407 => 0.03484527638944
408 => 0.036019169079356
409 => 0.036064748672407
410 => 0.036752946412898
411 => 0.036055326160176
412 => 0.035641081480993
413 => 0.036836990348249
414 => 0.037415652978339
415 => 0.037241355084843
416 => 0.035914939509194
417 => 0.035142908751526
418 => 0.033122355345096
419 => 0.035515788136423
420 => 0.036681559431687
421 => 0.035911920443169
422 => 0.036300081581751
423 => 0.038417762892183
424 => 0.039224038825485
425 => 0.039056339067652
426 => 0.039084677566153
427 => 0.039519729424819
428 => 0.04144898895358
429 => 0.040292931924061
430 => 0.041176694206498
501 => 0.041645438534461
502 => 0.042080834389677
503 => 0.041011639777538
504 => 0.039620633296733
505 => 0.039180043153782
506 => 0.035835395013687
507 => 0.035661291552925
508 => 0.035563562004524
509 => 0.034947391025976
510 => 0.034463249420272
511 => 0.034078242040392
512 => 0.033067867702649
513 => 0.033408839381787
514 => 0.031798513568938
515 => 0.032828742957556
516 => 0.030258624077573
517 => 0.032399095452318
518 => 0.031234134198336
519 => 0.032016374348852
520 => 0.032013645186659
521 => 0.030573293060092
522 => 0.02974252801287
523 => 0.030271923834819
524 => 0.030839478179441
525 => 0.030931561962374
526 => 0.031667410984861
527 => 0.031872770630015
528 => 0.031250521317872
529 => 0.03020536407642
530 => 0.030448130266111
531 => 0.029737608363784
601 => 0.028492446059787
602 => 0.029386743364966
603 => 0.029692095784431
604 => 0.02982695680841
605 => 0.028602482690285
606 => 0.028217726337744
607 => 0.02801288528407
608 => 0.030047299844058
609 => 0.030158749666085
610 => 0.029588556619177
611 => 0.032165883259128
612 => 0.031582554863293
613 => 0.032234275600367
614 => 0.030426101778951
615 => 0.030495176453959
616 => 0.029639157989629
617 => 0.030118471130479
618 => 0.02977970805151
619 => 0.030079747365363
620 => 0.030259589692978
621 => 0.031115467693101
622 => 0.032408868204264
623 => 0.030987628060899
624 => 0.030368373377901
625 => 0.030752555500412
626 => 0.031775683119588
627 => 0.033325773835579
628 => 0.032408088933229
629 => 0.032815341909592
630 => 0.032904308567503
701 => 0.032227641695052
702 => 0.033350723508353
703 => 0.033952592176002
704 => 0.034569984889837
705 => 0.035106049684309
706 => 0.034323384663174
707 => 0.035160948426412
708 => 0.03448601988315
709 => 0.033880539207013
710 => 0.033881457471267
711 => 0.033501630598465
712 => 0.032765668171146
713 => 0.032629945407859
714 => 0.033335992362374
715 => 0.033902175157
716 => 0.033948808683798
717 => 0.034262276570425
718 => 0.034447783636755
719 => 0.036266005071415
720 => 0.036997308773552
721 => 0.037891533097655
722 => 0.038239883867614
723 => 0.039288294794529
724 => 0.038441617823273
725 => 0.038258433934694
726 => 0.035715331958599
727 => 0.036131764764717
728 => 0.036798513867102
729 => 0.035726326405718
730 => 0.036406382566432
731 => 0.036540640058116
801 => 0.035689893886058
802 => 0.036144314175126
803 => 0.034937508613587
804 => 0.032435173267686
805 => 0.033353509322924
806 => 0.034029713768152
807 => 0.033064686649404
808 => 0.034794460408053
809 => 0.033783962288029
810 => 0.033463682896445
811 => 0.032214158802029
812 => 0.032803886076
813 => 0.033601500658128
814 => 0.033108667579021
815 => 0.034131370217427
816 => 0.035579789898241
817 => 0.036612020017672
818 => 0.036691261828989
819 => 0.036027607016242
820 => 0.037091118089058
821 => 0.037098864606162
822 => 0.035899219771455
823 => 0.035164443989848
824 => 0.034997501386285
825 => 0.03541455674101
826 => 0.035920938934312
827 => 0.036719362516477
828 => 0.037201833165361
829 => 0.038459860734993
830 => 0.038800246924858
831 => 0.039174228148875
901 => 0.039673982395701
902 => 0.040274065503373
903 => 0.038961117826536
904 => 0.039013283685377
905 => 0.037790684987704
906 => 0.036484162940852
907 => 0.03747565031414
908 => 0.038771888162677
909 => 0.038474529768007
910 => 0.038441070874126
911 => 0.038497339452911
912 => 0.038273140934147
913 => 0.037259099342963
914 => 0.036749854004107
915 => 0.037406910413573
916 => 0.037756106652988
917 => 0.038297679567209
918 => 0.038230919274314
919 => 0.039625952940661
920 => 0.040168020839775
921 => 0.040029336674789
922 => 0.040054857898767
923 => 0.041036245937576
924 => 0.042127751274575
925 => 0.043150090059489
926 => 0.044190056981977
927 => 0.042936336266318
928 => 0.042299774205651
929 => 0.042956543764843
930 => 0.042608052592035
1001 => 0.044610586240189
1002 => 0.044749237325152
1003 => 0.046751626167331
1004 => 0.048652131618586
1005 => 0.047458458195744
1006 => 0.048584038469252
1007 => 0.049801445304957
1008 => 0.052150020608173
1009 => 0.051359103069925
1010 => 0.050753272630885
1011 => 0.050180765793344
1012 => 0.051372061639366
1013 => 0.052904644713858
1014 => 0.053234748429205
1015 => 0.053769642557393
1016 => 0.053207266785346
1017 => 0.053884586459117
1018 => 0.056275822536875
1019 => 0.05562968944064
1020 => 0.054712076572908
1021 => 0.056599727799544
1022 => 0.057282861440405
1023 => 0.062077451091833
1024 => 0.068130818581382
1025 => 0.065624684692155
1026 => 0.064069046514676
1027 => 0.064434658386615
1028 => 0.066645143274377
1029 => 0.067355080863042
1030 => 0.065425225766887
1031 => 0.066106883212274
1101 => 0.069862882755442
1102 => 0.071877856003458
1103 => 0.06914125168564
1104 => 0.061591068908081
1105 => 0.054629455573989
1106 => 0.056475988915724
1107 => 0.056266649339372
1108 => 0.06030200227802
1109 => 0.055614279379985
1110 => 0.055693208611253
1111 => 0.059812008375159
1112 => 0.058713183212253
1113 => 0.056933227175239
1114 => 0.054642451222876
1115 => 0.050407740003804
1116 => 0.046656938183413
1117 => 0.05401312431127
1118 => 0.053695912189081
1119 => 0.053236542027947
1120 => 0.054258820612507
1121 => 0.059222715240287
1122 => 0.059108281402558
1123 => 0.058380311711582
1124 => 0.058932470306157
1125 => 0.056836431103962
1126 => 0.057376628132293
1127 => 0.054628352818869
1128 => 0.055870688038652
1129 => 0.056929408189003
1130 => 0.057141961933805
1201 => 0.057620856374109
1202 => 0.053528755814917
1203 => 0.055365988828234
1204 => 0.056445191098104
1205 => 0.051569315981115
1206 => 0.056348810724175
1207 => 0.053457521448284
1208 => 0.052476174442338
1209 => 0.053797428903207
1210 => 0.053282534754844
1211 => 0.052839859001681
1212 => 0.052592838325281
1213 => 0.053563021779809
1214 => 0.053517761562036
1215 => 0.051930353125933
1216 => 0.049859643532084
1217 => 0.050554641640505
1218 => 0.050302142312074
1219 => 0.049387052172776
1220 => 0.050003712438258
1221 => 0.047288252713696
1222 => 0.0426164453949
1223 => 0.045702784411025
1224 => 0.045583963716195
1225 => 0.045524048933772
1226 => 0.047843347404244
1227 => 0.047620400371628
1228 => 0.047215749324326
1229 => 0.049379620438962
1230 => 0.048589778373946
1231 => 0.051023885508129
]
'min_raw' => 0.021850381613182
'max_raw' => 0.071877856003458
'avg_raw' => 0.04686411880832
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.02185'
'max' => '$0.071877'
'avg' => '$0.046864'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.011903524553816
'max_diff' => 0.047514895581275
'year' => 2029
]
4 => [
'items' => [
101 => 0.05262714589488
102 => 0.05222050720076
103 => 0.05372838134373
104 => 0.050570652993224
105 => 0.05161952368519
106 => 0.051835694481132
107 => 0.049352918605296
108 => 0.047656877263397
109 => 0.047543770642179
110 => 0.044603068684219
111 => 0.046173967933645
112 => 0.047556294264911
113 => 0.046894267225091
114 => 0.046684689241779
115 => 0.0477553777066
116 => 0.047838579370143
117 => 0.045941572624042
118 => 0.046336020396948
119 => 0.047980933181448
120 => 0.04629457281519
121 => 0.043018250088951
122 => 0.042205676754138
123 => 0.042097264492576
124 => 0.03989350116256
125 => 0.042259976789841
126 => 0.041226946760929
127 => 0.044490276244662
128 => 0.042626279945141
129 => 0.042545926790191
130 => 0.042424461211238
131 => 0.040527591076777
201 => 0.040942885083838
202 => 0.042323385614373
203 => 0.042815963756119
204 => 0.042764583820361
205 => 0.042316620408644
206 => 0.042521695764584
207 => 0.041861076590109
208 => 0.041627798210003
209 => 0.040891507474115
210 => 0.039809363497866
211 => 0.039959842254938
212 => 0.037815831879616
213 => 0.036647661235897
214 => 0.036324326997957
215 => 0.035891950941916
216 => 0.036373165023996
217 => 0.037809758167603
218 => 0.036076922046175
219 => 0.033106096060308
220 => 0.0332846477641
221 => 0.033685800430043
222 => 0.032938255090948
223 => 0.032230766164219
224 => 0.032845870385619
225 => 0.0315870922517
226 => 0.033837917753644
227 => 0.033777039231682
228 => 0.034616007788691
301 => 0.035140632044757
302 => 0.033931542983645
303 => 0.0336274603545
304 => 0.033800679639846
305 => 0.030937750703802
306 => 0.034382045415865
307 => 0.034411831819563
308 => 0.034156782547256
309 => 0.035990763150761
310 => 0.039861034257051
311 => 0.03840488258557
312 => 0.037841016645955
313 => 0.036769107082564
314 => 0.03819736293209
315 => 0.038087695167109
316 => 0.037591735943598
317 => 0.037291778257731
318 => 0.037844459491145
319 => 0.037223294936659
320 => 0.037111716714212
321 => 0.036435674084492
322 => 0.036194357623661
323 => 0.036015696523148
324 => 0.035819008206359
325 => 0.03625285362152
326 => 0.035269702833648
327 => 0.034084119362935
328 => 0.033985550925536
329 => 0.03425770704742
330 => 0.034137298223127
331 => 0.03398497445441
401 => 0.03369414689702
402 => 0.03360786457329
403 => 0.03388824026718
404 => 0.033571712455696
405 => 0.034038766483703
406 => 0.033911753631363
407 => 0.03320227016302
408 => 0.032317991077041
409 => 0.032310119138338
410 => 0.032119602659772
411 => 0.031876951279975
412 => 0.031809451217226
413 => 0.032794068023758
414 => 0.034832195346177
415 => 0.034432062184532
416 => 0.034721199401116
417 => 0.036143468337087
418 => 0.036595564862713
419 => 0.036274677457316
420 => 0.035835426985337
421 => 0.03585475177687
422 => 0.037355803609785
423 => 0.037449422371376
424 => 0.03768596677936
425 => 0.037989993191061
426 => 0.036326454469877
427 => 0.035776399252702
428 => 0.035515752574903
429 => 0.034713061690241
430 => 0.035578694991833
501 => 0.035074327537109
502 => 0.035142383938397
503 => 0.035098062117778
504 => 0.035122264828864
505 => 0.033837288602044
506 => 0.034305466402735
507 => 0.033527030004508
508 => 0.032484791050869
509 => 0.03248129710044
510 => 0.032736383607805
511 => 0.032584648171688
512 => 0.032176332014574
513 => 0.032234331397494
514 => 0.031726195773295
515 => 0.032296028262364
516 => 0.032312369019192
517 => 0.032092952471915
518 => 0.032970858043057
519 => 0.033330536671857
520 => 0.033186112000081
521 => 0.033320403451878
522 => 0.034448689523892
523 => 0.034632649384202
524 => 0.034714352202446
525 => 0.034604881249549
526 => 0.033341026450051
527 => 0.033397083784734
528 => 0.032985772257454
529 => 0.032638257359843
530 => 0.032652156133272
531 => 0.032830823964418
601 => 0.033611076861765
602 => 0.035253073085809
603 => 0.035315385642228
604 => 0.035390910278393
605 => 0.035083713627469
606 => 0.034991060178074
607 => 0.03511329399371
608 => 0.035729941443401
609 => 0.037316126102157
610 => 0.036755462506041
611 => 0.036299634275151
612 => 0.03669951852405
613 => 0.036637959478328
614 => 0.036118339181603
615 => 0.036103755170523
616 => 0.035106437688448
617 => 0.034737752123145
618 => 0.034429650869142
619 => 0.034093212342958
620 => 0.033893760307114
621 => 0.034200209283499
622 => 0.034270297790196
623 => 0.033600241747518
624 => 0.033508915584844
625 => 0.034056097813458
626 => 0.033815303315655
627 => 0.034062966428062
628 => 0.034120426394555
629 => 0.034111174016535
630 => 0.033859756905756
701 => 0.0340200026748
702 => 0.033640973659447
703 => 0.033228836533568
704 => 0.032965918724308
705 => 0.032736488064741
706 => 0.032863789529257
707 => 0.032409983052587
708 => 0.032264801227381
709 => 0.033965715013892
710 => 0.035222198315892
711 => 0.035203928551059
712 => 0.035092716056239
713 => 0.034927476847569
714 => 0.035717853166076
715 => 0.035442501860781
716 => 0.035642842941754
717 => 0.035693838155151
718 => 0.035848185307326
719 => 0.035903351147642
720 => 0.035736601663066
721 => 0.035176970026093
722 => 0.033782421194937
723 => 0.03313325494952
724 => 0.032919019275814
725 => 0.032926806335662
726 => 0.032712004462095
727 => 0.032775273240605
728 => 0.03269000216291
729 => 0.032528519371046
730 => 0.032853818421906
731 => 0.032891306107147
801 => 0.032815377421642
802 => 0.032833261375737
803 => 0.032204604289323
804 => 0.032252399722231
805 => 0.031986268678246
806 => 0.031936372315756
807 => 0.031263616211242
808 => 0.030071731254539
809 => 0.030732151219625
810 => 0.029934456770901
811 => 0.029632357796126
812 => 0.031062447356681
813 => 0.030918906029311
814 => 0.03067322567277
815 => 0.030309813221172
816 => 0.030175020007825
817 => 0.029356059113875
818 => 0.029307670535274
819 => 0.02971356966812
820 => 0.029526261184448
821 => 0.029263209134103
822 => 0.02831046127291
823 => 0.027239257232954
824 => 0.027271590149572
825 => 0.027612320224222
826 => 0.028603038869979
827 => 0.028215947955475
828 => 0.027935109055646
829 => 0.027882516371695
830 => 0.028540823921591
831 => 0.02947246702439
901 => 0.029909573123884
902 => 0.029476414254395
903 => 0.028978824668057
904 => 0.029009110640569
905 => 0.029210589647339
906 => 0.02923176224219
907 => 0.02890788257452
908 => 0.028999052803833
909 => 0.028860556888726
910 => 0.028010607713355
911 => 0.027995234827991
912 => 0.027786643593073
913 => 0.027780327533379
914 => 0.027425461807262
915 => 0.027375813639107
916 => 0.026671206201091
917 => 0.027134980950541
918 => 0.026823905197877
919 => 0.026355040663261
920 => 0.026274208240768
921 => 0.026271778320539
922 => 0.026753197361399
923 => 0.027129355288753
924 => 0.026829316493778
925 => 0.02676100347617
926 => 0.027490407782796
927 => 0.02739758443611
928 => 0.027317200016526
929 => 0.029389048602886
930 => 0.027749018778421
1001 => 0.027033872165325
1002 => 0.026148742428959
1003 => 0.026436945134331
1004 => 0.026497673678932
1005 => 0.024369096219601
1006 => 0.023505532609447
1007 => 0.023209190121151
1008 => 0.023038640829469
1009 => 0.023116362283311
1010 => 0.022339053748265
1011 => 0.022861417939313
1012 => 0.022188334452217
1013 => 0.022075489815202
1014 => 0.023279046469173
1015 => 0.023446514346497
1016 => 0.022732044353642
1017 => 0.02319084975124
1018 => 0.023024480536199
1019 => 0.022199872536737
1020 => 0.022168378576563
1021 => 0.021754619268806
1022 => 0.021107166071755
1023 => 0.020811262587214
1024 => 0.020657153483313
1025 => 0.020720741903109
1026 => 0.020688589652223
1027 => 0.020478774466567
1028 => 0.020700616013063
1029 => 0.020133902533021
1030 => 0.019908232658947
1031 => 0.019806302812329
1101 => 0.01930331197998
1102 => 0.020103794075285
1103 => 0.020261499132268
1104 => 0.020419514916931
1105 => 0.021794934440462
1106 => 0.021726222367962
1107 => 0.022347346039229
1108 => 0.022323210315536
1109 => 0.022146055782955
1110 => 0.021398669950499
1111 => 0.021696564622444
1112 => 0.020779691125307
1113 => 0.0214666750907
1114 => 0.02115316429803
1115 => 0.021360676776335
1116 => 0.020987550629698
1117 => 0.021194054045248
1118 => 0.020298896851751
1119 => 0.019463011659665
1120 => 0.01979939626197
1121 => 0.020165084794922
1122 => 0.020957990710065
1123 => 0.020485742488337
1124 => 0.020655580806553
1125 => 0.020086650871122
1126 => 0.018912785907526
1127 => 0.018919429855738
1128 => 0.018738856305127
1129 => 0.018582814393229
1130 => 0.020539985877468
1201 => 0.0202965806651
1202 => 0.019908746315279
1203 => 0.020427878004439
1204 => 0.020565144662781
1205 => 0.02056905245157
1206 => 0.020947797531253
1207 => 0.021149933848173
1208 => 0.021185561250139
1209 => 0.02178152481635
1210 => 0.021981283942794
1211 => 0.022804063513647
1212 => 0.02113278399393
1213 => 0.021098365092038
1214 => 0.020435183251912
1215 => 0.020014582844414
1216 => 0.020463982121653
1217 => 0.020862088532167
1218 => 0.020447553527804
1219 => 0.020501683048062
1220 => 0.019945203673459
1221 => 0.020144118865091
1222 => 0.020315451424895
1223 => 0.020220851655834
1224 => 0.020079231222868
1225 => 0.020829448346451
1226 => 0.020787118156214
1227 => 0.021485737589111
1228 => 0.022030361395809
1229 => 0.023006424620562
1230 => 0.021987851762205
1231 => 0.021950730918786
]
'min_raw' => 0.018582814393229
'max_raw' => 0.05372838134373
'avg_raw' => 0.03615559786848
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.018582'
'max' => '$0.053728'
'avg' => '$0.036155'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032675672199529
'max_diff' => -0.018149474659729
'year' => 2030
]
5 => [
'items' => [
101 => 0.022313593117577
102 => 0.021981228390482
103 => 0.022191271425166
104 => 0.022972583440422
105 => 0.022989091332129
106 => 0.022712562876819
107 => 0.022695736095183
108 => 0.022748846409915
109 => 0.023059915182171
110 => 0.022951218194967
111 => 0.02307700510043
112 => 0.02323430355183
113 => 0.023884956639981
114 => 0.024041826896759
115 => 0.023660713500692
116 => 0.023695123773211
117 => 0.023552576901286
118 => 0.023414878409113
119 => 0.023724404510268
120 => 0.024290069543879
121 => 0.024286550571063
122 => 0.024417773863904
123 => 0.024499524888231
124 => 0.024148589646411
125 => 0.023920143708232
126 => 0.024007744417323
127 => 0.024147819858854
128 => 0.023962319839524
129 => 0.022817327788253
130 => 0.023164645234233
131 => 0.023106834628267
201 => 0.023024505295361
202 => 0.02337373567302
203 => 0.023340051551142
204 => 0.022331081325734
205 => 0.022395672325969
206 => 0.022335009318391
207 => 0.02253102390636
208 => 0.021970642959466
209 => 0.022143012364508
210 => 0.022251120839487
211 => 0.022314797561778
212 => 0.02254484154623
213 => 0.022517848539813
214 => 0.022543163623052
215 => 0.022884258122635
216 => 0.024609397052028
217 => 0.024703292557651
218 => 0.024240916747298
219 => 0.024425626763575
220 => 0.024071023923964
221 => 0.024309071185827
222 => 0.024471937076649
223 => 0.023735977433335
224 => 0.023692398679597
225 => 0.023336332267928
226 => 0.023527662188926
227 => 0.02322324252751
228 => 0.023297936464274
301 => 0.023089085705382
302 => 0.023464975489616
303 => 0.023885278675758
304 => 0.023991463858853
305 => 0.023712136357725
306 => 0.02350988483833
307 => 0.023154797796063
308 => 0.023745315460983
309 => 0.023918000821906
310 => 0.023744408418297
311 => 0.023704183265312
312 => 0.02362795667309
313 => 0.023720355097198
314 => 0.023917060340344
315 => 0.023824297780252
316 => 0.023885569085459
317 => 0.023652066052705
318 => 0.024148705820578
319 => 0.02493748929483
320 => 0.024940025362679
321 => 0.024847262302562
322 => 0.02480930565697
323 => 0.024904486185983
324 => 0.024956117718463
325 => 0.025263914096168
326 => 0.025594191872594
327 => 0.027135454143692
328 => 0.026702673865429
329 => 0.02807017344245
330 => 0.029151688060277
331 => 0.029475987005261
401 => 0.02917764723532
402 => 0.028157042998351
403 => 0.028106967285435
404 => 0.029632180903462
405 => 0.02920123819716
406 => 0.029149978933494
407 => 0.028604666971978
408 => 0.028927013879434
409 => 0.02885651188223
410 => 0.028745221030566
411 => 0.029360236475113
412 => 0.030511490484498
413 => 0.030332056750743
414 => 0.030198117792187
415 => 0.029611236264839
416 => 0.029964670029037
417 => 0.029838819035184
418 => 0.030379554771792
419 => 0.030059234900188
420 => 0.029197973382316
421 => 0.029335132117792
422 => 0.02931440085085
423 => 0.029741048855486
424 => 0.029612979714549
425 => 0.029289393295646
426 => 0.030507555623451
427 => 0.030428454937658
428 => 0.030540601625178
429 => 0.030589972065276
430 => 0.031331446007783
501 => 0.031635204157508
502 => 0.031704162575531
503 => 0.031992709324271
504 => 0.031696983269562
505 => 0.032880098337503
506 => 0.033666800821006
507 => 0.034580596238934
508 => 0.03591589694958
509 => 0.036417982369005
510 => 0.036327285131978
511 => 0.037339694891214
512 => 0.039158972723956
513 => 0.036695013197119
514 => 0.039289568561839
515 => 0.038468162288951
516 => 0.036520622792401
517 => 0.036395224208806
518 => 0.037714120567268
519 => 0.040639305751266
520 => 0.03990658003985
521 => 0.040640504228038
522 => 0.039784342677838
523 => 0.039741827040575
524 => 0.040598922372533
525 => 0.042601572333489
526 => 0.04165018840525
527 => 0.04028614625521
528 => 0.041293333751953
529 => 0.040420814731472
530 => 0.038454785175631
531 => 0.039906019738308
601 => 0.038935620515026
602 => 0.03921883459764
603 => 0.041258469428987
604 => 0.041013055169875
605 => 0.041330643945915
606 => 0.04077010806895
607 => 0.040246479171471
608 => 0.039269086949133
609 => 0.038979729296953
610 => 0.039059697342018
611 => 0.038979689668762
612 => 0.038432847703062
613 => 0.038314757232634
614 => 0.038117934608259
615 => 0.038178938169627
616 => 0.037808854053313
617 => 0.038507279244078
618 => 0.038636913113986
619 => 0.039145168723998
620 => 0.039197937507502
621 => 0.040613422146819
622 => 0.039833796993736
623 => 0.040356836856021
624 => 0.040310051247697
625 => 0.036562831878748
626 => 0.037079165645792
627 => 0.037882418952852
628 => 0.037520554426806
629 => 0.037008962650235
630 => 0.036595824860838
701 => 0.035969878864394
702 => 0.036850885834161
703 => 0.038009316314758
704 => 0.039227317216192
705 => 0.040690665492684
706 => 0.040364063192623
707 => 0.039199960938046
708 => 0.039252181714809
709 => 0.03957499000864
710 => 0.039156923937903
711 => 0.039033628092023
712 => 0.039558051052753
713 => 0.039561662465466
714 => 0.03908062692611
715 => 0.038546043952691
716 => 0.038543804030513
717 => 0.038448680153852
718 => 0.039801265004178
719 => 0.040545049910104
720 => 0.040630323650899
721 => 0.040539310307923
722 => 0.040574337731444
723 => 0.040141545682868
724 => 0.041130779965418
725 => 0.042038599168218
726 => 0.041795284229139
727 => 0.041430520546203
728 => 0.041139968703346
729 => 0.041726839448832
730 => 0.041700707018356
731 => 0.042030670159445
801 => 0.042015701125406
802 => 0.041904746931599
803 => 0.041795288191663
804 => 0.042229279722856
805 => 0.042104297131563
806 => 0.041979120407785
807 => 0.04172805932465
808 => 0.041762182695531
809 => 0.041397481994188
810 => 0.041228754762178
811 => 0.038691502025986
812 => 0.03801346518775
813 => 0.038226789379772
814 => 0.038297021242745
815 => 0.038001938741817
816 => 0.038425011247673
817 => 0.03835907584578
818 => 0.038615591923625
819 => 0.038455331814821
820 => 0.038461908945587
821 => 0.038933199754523
822 => 0.039070017481372
823 => 0.039000430881242
824 => 0.039049166950684
825 => 0.040172269100759
826 => 0.040012599889803
827 => 0.039927778803809
828 => 0.039951274824307
829 => 0.040238251503233
830 => 0.040318589304986
831 => 0.03997819239372
901 => 0.040138725544884
902 => 0.040822255327852
903 => 0.041061452067456
904 => 0.041824853239322
905 => 0.041500546853139
906 => 0.042095825260629
907 => 0.043925508139889
908 => 0.045387185428267
909 => 0.044042966587506
910 => 0.046727150784131
911 => 0.048817173204558
912 => 0.048736954662948
913 => 0.048372510910857
914 => 0.045993075951321
915 => 0.04380348442618
916 => 0.045635170711928
917 => 0.04563984005696
918 => 0.045482496580572
919 => 0.044505249762051
920 => 0.045448490509593
921 => 0.045523361534785
922 => 0.04548145367049
923 => 0.044732200826006
924 => 0.043588230217551
925 => 0.043811759336164
926 => 0.044177904592324
927 => 0.043484715236512
928 => 0.043263199235506
929 => 0.04367503962652
930 => 0.045002075176719
1001 => 0.044751206792947
1002 => 0.044744655605608
1003 => 0.045817976936134
1004 => 0.045049710500718
1005 => 0.043814578754189
1006 => 0.043502691698805
1007 => 0.042395702764484
1008 => 0.043160303964379
1009 => 0.04318782060037
1010 => 0.042769056337222
1011 => 0.043848559166202
1012 => 0.043838611357591
1013 => 0.044863438630915
1014 => 0.046822523469965
1015 => 0.046243125682348
1016 => 0.045569349093649
1017 => 0.045642607290639
1018 => 0.046446068894981
1019 => 0.045960277667752
1020 => 0.04613497158012
1021 => 0.046445804474822
1022 => 0.046633337677742
1023 => 0.045615624148711
1024 => 0.045378346442229
1025 => 0.044892959527924
1026 => 0.044766331142157
1027 => 0.045161668655929
1028 => 0.04505751118853
1029 => 0.043185507933664
1030 => 0.042989873177803
1031 => 0.042995873016463
1101 => 0.042503940120924
1102 => 0.041753624377805
1103 => 0.043725409351698
1104 => 0.043567047423181
1105 => 0.043392228110339
1106 => 0.043413642478657
1107 => 0.04426952750583
1108 => 0.04377307096684
1109 => 0.045092982043373
1110 => 0.044821648006197
1111 => 0.044543355274804
1112 => 0.044504886742321
1113 => 0.044397767783555
1114 => 0.044030417016737
1115 => 0.043586818891445
1116 => 0.043293916985316
1117 => 0.039936349911161
1118 => 0.040559494830055
1119 => 0.041276366257796
1120 => 0.04152382740197
1121 => 0.04110052799107
1122 => 0.044047131457519
1123 => 0.044585504305017
1124 => 0.042954737832754
1125 => 0.04264968800955
1126 => 0.044067130473143
1127 => 0.043212239392303
1128 => 0.043597196793659
1129 => 0.042765129452367
1130 => 0.044455826051452
1201 => 0.044442945776058
1202 => 0.0437852266129
1203 => 0.044341126345735
1204 => 0.044244525087134
1205 => 0.043501961771819
1206 => 0.044479366633034
1207 => 0.044479851413651
1208 => 0.043846811019158
1209 => 0.043107558428752
1210 => 0.042975397525955
1211 => 0.042875832039016
1212 => 0.043572709787348
1213 => 0.044197528197422
1214 => 0.045360160352951
1215 => 0.045652473700309
1216 => 0.046793392155451
1217 => 0.046114030765726
1218 => 0.046415182870588
1219 => 0.046742126080983
1220 => 0.046898874678984
1221 => 0.046643461250134
1222 => 0.048415777231741
1223 => 0.048565415002947
1224 => 0.048615587253271
1225 => 0.048017972276096
1226 => 0.048548794249354
1227 => 0.048300440227043
1228 => 0.048946588398362
1229 => 0.049047912682059
1230 => 0.048962094618484
1231 => 0.048994256545424
]
'min_raw' => 0.021970642959466
'max_raw' => 0.049047912682059
'avg_raw' => 0.035509277820763
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.02197'
'max' => '$0.049047'
'avg' => '$0.0355092'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0033878285662369
'max_diff' => -0.0046804686616706
'year' => 2031
]
6 => [
'items' => [
101 => 0.047481897513087
102 => 0.047403473718931
103 => 0.046334159720913
104 => 0.046769913079075
105 => 0.045955293062193
106 => 0.046213617461062
107 => 0.046327484394678
108 => 0.046268006770449
109 => 0.046794549920146
110 => 0.046346880677245
111 => 0.045165407941589
112 => 0.043983613314477
113 => 0.043968776845603
114 => 0.043657631180692
115 => 0.043432729854133
116 => 0.043476053828431
117 => 0.043628733164694
118 => 0.043423855853553
119 => 0.043467576815429
120 => 0.044193636093803
121 => 0.044339242104063
122 => 0.043844415989258
123 => 0.041857617735251
124 => 0.041370052460211
125 => 0.04172050471107
126 => 0.041553011107175
127 => 0.033536523043038
128 => 0.035419878003459
129 => 0.034300852438668
130 => 0.034816550902814
131 => 0.033674315571428
201 => 0.034219450141248
202 => 0.03411878369133
203 => 0.037147162735162
204 => 0.037099878761791
205 => 0.037122511097631
206 => 0.036042210739744
207 => 0.03776315854321
208 => 0.038610959314479
209 => 0.038454053955204
210 => 0.03849354365374
211 => 0.037814979797257
212 => 0.037129081079029
213 => 0.036368313841459
214 => 0.037781725335192
215 => 0.037624578104828
216 => 0.037985017311495
217 => 0.038901715697921
218 => 0.03903670301752
219 => 0.039218127343969
220 => 0.0391530996376
221 => 0.040702323422564
222 => 0.040514702200097
223 => 0.040966815363933
224 => 0.040036784284015
225 => 0.038984365837728
226 => 0.039184396178216
227 => 0.039165131647885
228 => 0.038919872065967
229 => 0.038698462681709
301 => 0.038329878438626
302 => 0.039496133523944
303 => 0.039448785697312
304 => 0.040215291974657
305 => 0.040079804544691
306 => 0.039174986327984
307 => 0.039207302087606
308 => 0.039424641101487
309 => 0.040176853910064
310 => 0.040400161886203
311 => 0.040296716734371
312 => 0.040541563735811
313 => 0.040735080822532
314 => 0.040565866502461
315 => 0.042961584433245
316 => 0.041966715319512
317 => 0.042451607603291
318 => 0.042567251555821
319 => 0.042271032003146
320 => 0.042335271417294
321 => 0.042432576625536
322 => 0.043023394795669
323 => 0.044573872628713
324 => 0.045260568706509
325 => 0.047326527737545
326 => 0.045203548156519
327 => 0.045077579333943
328 => 0.045449720941419
329 => 0.04666265759661
330 => 0.047645628830295
331 => 0.04797173709748
401 => 0.048014837688449
402 => 0.048626638476955
403 => 0.048977311279517
404 => 0.048552349769272
405 => 0.048192239384664
406 => 0.046902368685545
407 => 0.047051674731169
408 => 0.04808024532584
409 => 0.049533161873317
410 => 0.050779915421255
411 => 0.050343345782515
412 => 0.053674063955967
413 => 0.054004291058101
414 => 0.053958664350107
415 => 0.05471097083315
416 => 0.05321779566886
417 => 0.05257943435722
418 => 0.048270099337243
419 => 0.049480846702365
420 => 0.05124073910227
421 => 0.051007810743885
422 => 0.049729729841015
423 => 0.050778945882282
424 => 0.05043204224702
425 => 0.050158424956844
426 => 0.051411918806462
427 => 0.050033650828118
428 => 0.051226989824866
429 => 0.049696520218025
430 => 0.050345339995851
501 => 0.049977038510075
502 => 0.050215374708705
503 => 0.048822066161526
504 => 0.049573861632931
505 => 0.048790788998242
506 => 0.048790417719854
507 => 0.048773131348041
508 => 0.049694412830077
509 => 0.049724455786131
510 => 0.049043627378928
511 => 0.048945509368911
512 => 0.049308303077673
513 => 0.048883566660536
514 => 0.049082298156855
515 => 0.048889586035108
516 => 0.048846202477365
517 => 0.04850051490816
518 => 0.048351583198469
519 => 0.048409983159336
520 => 0.048210633985653
521 => 0.048090518897734
522 => 0.048749237433802
523 => 0.048397310692611
524 => 0.048695299613374
525 => 0.048355703628964
526 => 0.047178515992073
527 => 0.046501502933563
528 => 0.044277904612827
529 => 0.044908514338223
530 => 0.045326609238573
531 => 0.045188428876501
601 => 0.045485293762933
602 => 0.045503518855923
603 => 0.045407005055165
604 => 0.04529525443807
605 => 0.045240860417866
606 => 0.045646268880287
607 => 0.045881622138144
608 => 0.045368570655211
609 => 0.045248369871113
610 => 0.045767093246707
611 => 0.046083514206163
612 => 0.048419788789206
613 => 0.048246710022027
614 => 0.048681103762654
615 => 0.048632197693775
616 => 0.049087511538302
617 => 0.049831757244116
618 => 0.048318497629824
619 => 0.048581147174284
620 => 0.048516751571446
621 => 0.049219805877798
622 => 0.049222000736601
623 => 0.048800484559776
624 => 0.049028995317552
625 => 0.048901446881426
626 => 0.049131944144711
627 => 0.04824439844957
628 => 0.049325333301614
629 => 0.04993815370882
630 => 0.049946662720769
701 => 0.050237134730141
702 => 0.050532271114667
703 => 0.051098759703804
704 => 0.050516472055378
705 => 0.049468993260421
706 => 0.049544617846081
707 => 0.048930481411855
708 => 0.048940805156267
709 => 0.048885696199509
710 => 0.04905108232715
711 => 0.048280691404118
712 => 0.048461500613918
713 => 0.048208366661381
714 => 0.048580596910508
715 => 0.048180138694312
716 => 0.048516720517937
717 => 0.048661978075149
718 => 0.049197981588435
719 => 0.048100970539588
720 => 0.045864090749871
721 => 0.046334310001216
722 => 0.045638818793552
723 => 0.045703189152743
724 => 0.045833227522776
725 => 0.045411730619593
726 => 0.045492138945827
727 => 0.045489266194589
728 => 0.045464510376408
729 => 0.045354862752907
730 => 0.04519585200571
731 => 0.045829301881616
801 => 0.045936937359113
802 => 0.046176197692375
803 => 0.046888074152329
804 => 0.046816940906776
805 => 0.046932962181562
806 => 0.046679688390136
807 => 0.045714937797521
808 => 0.045767328396255
809 => 0.045114016790538
810 => 0.046159491045772
811 => 0.045911908942547
812 => 0.045752291149981
813 => 0.04570873795643
814 => 0.046422379020435
815 => 0.046635911611739
816 => 0.046502852430478
817 => 0.046229944167755
818 => 0.046754008710268
819 => 0.046894226273337
820 => 0.046925615814683
821 => 0.047854157704608
822 => 0.046977510991516
823 => 0.047188528568476
824 => 0.048834827466295
825 => 0.047341861539692
826 => 0.048132718888127
827 => 0.048094010536344
828 => 0.048498586394649
829 => 0.048060823507278
830 => 0.048066250102921
831 => 0.048425486056754
901 => 0.047921003948142
902 => 0.047796087083501
903 => 0.047623515329672
904 => 0.048000319440747
905 => 0.048226196463952
906 => 0.050046599382592
907 => 0.051222662688492
908 => 0.051171606678737
909 => 0.051638163035056
910 => 0.051427975123368
911 => 0.050749222911757
912 => 0.051907770171963
913 => 0.051541157343157
914 => 0.051571380459329
915 => 0.051570255553436
916 => 0.051814021034742
917 => 0.051641290850458
918 => 0.051300821926846
919 => 0.051526841087359
920 => 0.052198037190755
921 => 0.054281450490507
922 => 0.055447356174603
923 => 0.05421126150437
924 => 0.05506390305593
925 => 0.054552621952243
926 => 0.054459706966408
927 => 0.054995228870503
928 => 0.0555316881348
929 => 0.055497517998841
930 => 0.05510807612045
1001 => 0.054888090285068
1002 => 0.056553896731239
1003 => 0.057781234544505
1004 => 0.057697538333817
1005 => 0.058066946188326
1006 => 0.059151539074521
1007 => 0.059250700655474
1008 => 0.059238208575476
1009 => 0.058992426250643
1010 => 0.060060348799286
1011 => 0.060951228577672
1012 => 0.058935534743779
1013 => 0.059703084568355
1014 => 0.060047662413519
1015 => 0.060553604921859
1016 => 0.061407214739238
1017 => 0.062334461409733
1018 => 0.062465584255684
1019 => 0.062372546321676
1020 => 0.061761002216756
1021 => 0.062775606587965
1022 => 0.06336993803322
1023 => 0.063723848807835
1024 => 0.064621307647123
1025 => 0.060049790408982
1026 => 0.056813843288677
1027 => 0.056308503418199
1028 => 0.057336131916326
1029 => 0.057607109356098
1030 => 0.057497878689903
1031 => 0.053855526006559
1101 => 0.056289327185123
1102 => 0.058907892613443
1103 => 0.059008482375989
1104 => 0.060319390981027
1105 => 0.060746276558786
1106 => 0.061801729810561
1107 => 0.061735710922293
1108 => 0.061992696993171
1109 => 0.061933620345855
1110 => 0.063888625242863
1111 => 0.066045285965301
1112 => 0.065970607662244
1113 => 0.065660562166942
1114 => 0.066121032598078
1115 => 0.068346937585442
1116 => 0.068142011923606
1117 => 0.068341079748553
1118 => 0.070965547175163
1119 => 0.074377728155894
1120 => 0.072792427512975
1121 => 0.076232073750137
1122 => 0.078397148728619
1123 => 0.082141422030971
1124 => 0.081672620572582
1125 => 0.083130238692441
1126 => 0.080833368120248
1127 => 0.075559289012363
1128 => 0.074724645805177
1129 => 0.076395622642497
1130 => 0.080503556145512
1201 => 0.076266249197592
1202 => 0.077123450874476
1203 => 0.076876576733867
1204 => 0.076863421860061
1205 => 0.07736548988848
1206 => 0.076637214027151
1207 => 0.073670087153772
1208 => 0.075029903914453
1209 => 0.07450481335939
1210 => 0.075087440478327
1211 => 0.078231638745527
1212 => 0.076841513743272
1213 => 0.075377129977983
1214 => 0.077213792192428
1215 => 0.079552494337028
1216 => 0.07940614255987
1217 => 0.079122158941888
1218 => 0.080722959727555
1219 => 0.083367013634854
1220 => 0.084081690781328
1221 => 0.084609250839924
1222 => 0.084681992458805
1223 => 0.085431276341934
1224 => 0.081402188058493
1225 => 0.08779645463864
1226 => 0.088900567838982
1227 => 0.088693040318121
1228 => 0.089920215672115
1229 => 0.089559149552536
1230 => 0.089036021394805
1231 => 0.090981355358569
]
'min_raw' => 0.033536523043038
'max_raw' => 0.090981355358569
'avg_raw' => 0.062258939200803
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.033536'
'max' => '$0.090981'
'avg' => '$0.062258'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011565880083571
'max_diff' => 0.041933442676509
'year' => 2032
]
7 => [
'items' => [
101 => 0.088751186949469
102 => 0.085585743663148
103 => 0.083849118870904
104 => 0.086136046486858
105 => 0.087532593379146
106 => 0.088455622037883
107 => 0.088734929952308
108 => 0.081714954712594
109 => 0.077931577404063
110 => 0.080356678882322
111 => 0.083315470057361
112 => 0.081385751824123
113 => 0.081461393125426
114 => 0.078710122045859
115 => 0.083558896499382
116 => 0.082852470846116
117 => 0.086517408384906
118 => 0.085642741628312
119 => 0.08863135591914
120 => 0.087844353616993
121 => 0.091111156172498
122 => 0.092414372157037
123 => 0.09460267462445
124 => 0.096212398827473
125 => 0.097157659668605
126 => 0.097100909753288
127 => 0.10084650413294
128 => 0.098637857988357
129 => 0.095863277892839
130 => 0.0958130944926
131 => 0.097250088840172
201 => 0.10026163477254
202 => 0.10104248481659
203 => 0.10147887346569
204 => 0.10081052905879
205 => 0.098413201963949
206 => 0.09737804827912
207 => 0.098260029209884
208 => 0.097181442321045
209 => 0.099043385889212
210 => 0.10160023209799
211 => 0.10107225346674
212 => 0.10283720687202
213 => 0.10466374796797
214 => 0.10727578377028
215 => 0.1079586666524
216 => 0.10908744608885
217 => 0.11024933091368
218 => 0.11062249700574
219 => 0.11133498686213
220 => 0.11133123168889
221 => 0.11347836782721
222 => 0.11584672547904
223 => 0.116740725665
224 => 0.11879642979716
225 => 0.1152761085113
226 => 0.11794631264516
227 => 0.12035490361344
228 => 0.1174832821665
301 => 0.12144114332913
302 => 0.12159481810936
303 => 0.12391512483986
304 => 0.12156304945152
305 => 0.12016639459401
306 => 0.12419848483566
307 => 0.12614948629394
308 => 0.12556182877693
309 => 0.12108972605625
310 => 0.1184867704553
311 => 0.11167433357499
312 => 0.11974395933509
313 => 0.12367443864863
314 => 0.12107954706436
315 => 0.12238825944364
316 => 0.12952816983355
317 => 0.13224658543506
318 => 0.13168117399311
319 => 0.13177671921933
320 => 0.13324352693518
321 => 0.13974816013299
322 => 0.13585043314464
323 => 0.13883009938219
324 => 0.1404105036106
325 => 0.14187847113483
326 => 0.13827360685122
327 => 0.13358373138421
328 => 0.13209825095623
329 => 0.12082153623603
330 => 0.12023453426255
331 => 0.11990503226686
401 => 0.117827568793
402 => 0.11619525156768
403 => 0.11489717230606
404 => 0.11149062468428
405 => 0.11264023450637
406 => 0.107210908599
407 => 0.11068439891104
408 => 0.10201906366721
409 => 0.1092358123501
410 => 0.1053080641473
411 => 0.10794544142903
412 => 0.10793623986815
413 => 0.10307999211126
414 => 0.10027900975238
415 => 0.10206390472732
416 => 0.10397745382559
417 => 0.10428792072884
418 => 0.10676888708349
419 => 0.10746127146488
420 => 0.10536331446493
421 => 0.10183949385483
422 => 0.10265799701276
423 => 0.10026242281201
424 => 0.096064271169629
425 => 0.099079456971884
426 => 0.10010897397314
427 => 0.10056366733118
428 => 0.096435267351868
429 => 0.095138034446444
430 => 0.094447398532435
501 => 0.10130656925972
502 => 0.10168233011587
503 => 0.099759884448608
504 => 0.1084495211584
505 => 0.10648278874516
506 => 0.10868011071189
507 => 0.10258372643032
508 => 0.10281661651975
509 => 0.099930490501964
510 => 0.10154652822091
511 => 0.10040436484849
512 => 0.10141596834322
513 => 0.10202231930696
514 => 0.10490797173987
515 => 0.1092687618656
516 => 0.10447695149442
517 => 0.10238909109571
518 => 0.1036843879445
519 => 0.10713393414504
520 => 0.11236017321788
521 => 0.1092661344989
522 => 0.1106392163422
523 => 0.1109391736408
524 => 0.10865774403696
525 => 0.11244429278157
526 => 0.11447353501568
527 => 0.11655511765535
528 => 0.11836249753677
529 => 0.11572368777408
530 => 0.11854759247867
531 => 0.11627202377306
601 => 0.11423060340015
602 => 0.1142336993922
603 => 0.11295308657188
604 => 0.11047173786492
605 => 0.11001413909263
606 => 0.11239462569441
607 => 0.11430355051611
608 => 0.11446077870756
609 => 0.11551765757295
610 => 0.11614310759877
611 => 0.12227336810989
612 => 0.12473900959964
613 => 0.1277539493411
614 => 0.12892843828309
615 => 0.1324632289209
616 => 0.12960859839921
617 => 0.12899098112938
618 => 0.12041673526326
619 => 0.1218207675435
620 => 0.12406875869313
621 => 0.12045380380934
622 => 0.12274666063519
623 => 0.12319931914196
624 => 0.12033096902566
625 => 0.12186307875687
626 => 0.11779424954967
627 => 0.10935745122349
628 => 0.1124536853499
629 => 0.11473355584807
630 => 0.11147989954117
701 => 0.1173119525374
702 => 0.11390498757501
703 => 0.1128251432451
704 => 0.10861228552179
705 => 0.11060059219942
706 => 0.11328980545074
707 => 0.11162818431602
708 => 0.11507629766423
709 => 0.11995974574352
710 => 0.12343998165919
711 => 0.12370715095853
712 => 0.12146959242246
713 => 0.12505529425643
714 => 0.12508141217969
715 => 0.12103672586295
716 => 0.11855937801485
717 => 0.11799651937138
718 => 0.11940265061771
719 => 0.1211099535369
720 => 0.12380189438832
721 => 0.12542857786606
722 => 0.12967010564976
723 => 0.13081774145389
724 => 0.1320786452612
725 => 0.1337636015961
726 => 0.13578682369008
727 => 0.13136012893055
728 => 0.13153600976573
729 => 0.12741393289741
730 => 0.12300890259799
731 => 0.12635177150047
801 => 0.13072212790725
802 => 0.12971956331872
803 => 0.12960675432198
804 => 0.1297964677639
805 => 0.12904056680485
806 => 0.12562165478205
807 => 0.12390469856772
808 => 0.12612001012645
809 => 0.12729734962774
810 => 0.12912330051945
811 => 0.12889821353089
812 => 0.13360166693513
813 => 0.13542928670296
814 => 0.13496170335809
815 => 0.13504774994657
816 => 0.13835656823774
817 => 0.1420366546879
818 => 0.14548354127865
819 => 0.14898986236599
820 => 0.14476285544116
821 => 0.14261664201028
822 => 0.14483098643328
823 => 0.14365602411328
824 => 0.15040770612047
825 => 0.15087517793373
826 => 0.15762637171746
827 => 0.16403405853542
828 => 0.16000950525069
829 => 0.16380447772833
830 => 0.16790904987154
831 => 0.17582743547862
901 => 0.17316080177832
902 => 0.17111820215537
903 => 0.16918795538145
904 => 0.17320449249993
905 => 0.17837170333711
906 => 0.17948467106051
907 => 0.18128810395881
908 => 0.17939201477953
909 => 0.1816756453486
910 => 0.18973786473553
911 => 0.18755938189001
912 => 0.18446558604076
913 => 0.19082993394296
914 => 0.193133166708
915 => 0.20929846046535
916 => 0.22970781158898
917 => 0.22125820620877
918 => 0.21601326348221
919 => 0.21724594943466
920 => 0.22469875356488
921 => 0.22709235771132
922 => 0.22058571651645
923 => 0.22288397218538
924 => 0.23554758688068
925 => 0.24234120986731
926 => 0.23311455734617
927 => 0.20765858897471
928 => 0.18418702357449
929 => 0.19041273965699
930 => 0.1897069366597
1001 => 0.2033124108317
1002 => 0.18750742579461
1003 => 0.18777354120849
1004 => 0.20166036217792
1005 => 0.19795559642366
1006 => 0.1919543503723
1007 => 0.18423083931204
1008 => 0.16995321477885
1009 => 0.15730712456878
1010 => 0.18210901969136
1011 => 0.18103951687436
1012 => 0.1794907183039
1013 => 0.18293740192495
1014 => 0.19967351923057
1015 => 0.19928769755715
1016 => 0.1968332969188
1017 => 0.19869493817089
1018 => 0.19162799565991
1019 => 0.19344930765628
1020 => 0.18418330555861
1021 => 0.18837192548919
1022 => 0.19194147439357
1023 => 0.19265811418421
1024 => 0.19427274022503
1025 => 0.18047593748838
1026 => 0.18667029686429
1027 => 0.19030890266465
1028 => 0.173869549285
1029 => 0.18998394950489
1030 => 0.18023576584785
1031 => 0.17692708590185
1101 => 0.1813817875637
1102 => 0.17964578599374
1103 => 0.17815327378531
1104 => 0.1773204263284
1105 => 0.18059146758139
1106 => 0.18043886959719
1107 => 0.17508681122556
1108 => 0.16810526925757
1109 => 0.17044850390333
1110 => 0.16959718478858
1111 => 0.16651189449439
1112 => 0.1685910076333
1113 => 0.1594356455846
1114 => 0.14368432103411
1115 => 0.15409012850828
1116 => 0.15368951623987
1117 => 0.15348750936781
1118 => 0.16130718608926
1119 => 0.16055550460313
1120 => 0.15919119534531
1121 => 0.16648683788496
1122 => 0.16382383021775
1123 => 0.17203059236458
1124 => 0.17743609669458
1125 => 0.17606508594675
1126 => 0.18114898889618
1127 => 0.1705024872969
1128 => 0.17403882806467
1129 => 0.17476766299576
1130 => 0.1663968107885
1201 => 0.16067848899046
1202 => 0.16029714212017
1203 => 0.15038236015566
1204 => 0.15567875665178
1205 => 0.16033936638858
1206 => 0.15810729600258
1207 => 0.15740068919958
1208 => 0.1610105901118
1209 => 0.16129111032939
1210 => 0.15489521964013
1211 => 0.15622512784594
1212 => 0.16177106614303
1213 => 0.15608538443027
1214 => 0.14503903361321
1215 => 0.14229938588283
1216 => 0.14193386637387
1217 => 0.13450372444488
1218 => 0.14248246224431
1219 => 0.13899952937798
1220 => 0.15000207257077
1221 => 0.14371747890687
1222 => 0.14344656263488
1223 => 0.14303703295498
1224 => 0.1366416028614
1225 => 0.13804179560111
1226 => 0.14269624952328
1227 => 0.14435701111888
1228 => 0.14418378007824
1229 => 0.14267344015983
1230 => 0.14336486604029
1231 => 0.14113754237059
]
'min_raw' => 0.077931577404063
'max_raw' => 0.24234120986731
'avg_raw' => 0.16013639363569
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.077931'
'max' => '$0.242341'
'avg' => '$0.160136'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.044395054361025
'max_diff' => 0.15135985450874
'year' => 2033
]
8 => [
'items' => [
101 => 0.14035102802509
102 => 0.13786857240286
103 => 0.13422004843406
104 => 0.13472739806962
105 => 0.12749871739919
106 => 0.12356014851483
107 => 0.12247000455714
108 => 0.12101221849666
109 => 0.12263466537169
110 => 0.12747823945509
111 => 0.12163586148894
112 => 0.11161951426114
113 => 0.11222151379656
114 => 0.11357402801737
115 => 0.11105362671466
116 => 0.1086682784029
117 => 0.11074214523055
118 => 0.10649808686696
119 => 0.11408690219438
120 => 0.11388164600719
121 => 0.11671028707206
122 => 0.11847909437948
123 => 0.11440256619404
124 => 0.1133773303795
125 => 0.11396135129383
126 => 0.10430878650265
127 => 0.11592146659734
128 => 0.11602189353703
129 => 0.11516197710848
130 => 0.12134537075763
131 => 0.13439426000619
201 => 0.12948474298052
202 => 0.12758362959725
203 => 0.12396961166594
204 => 0.12878507598026
205 => 0.12841532345387
206 => 0.12674316230503
207 => 0.12573183402475
208 => 0.12759523739018
209 => 0.12550093772641
210 => 0.12512474395929
211 => 0.12284541903339
212 => 0.12203180373753
213 => 0.12142943536342
214 => 0.12076628697103
215 => 0.12222902707837
216 => 0.11891426555566
217 => 0.11491698810936
218 => 0.11458465774084
219 => 0.1155022511071
220 => 0.11509628434932
221 => 0.11458271412819
222 => 0.11360216871352
223 => 0.11331126183502
224 => 0.11425656806218
225 => 0.11318937244649
226 => 0.11476407771059
227 => 0.11433584501117
228 => 0.1119437719631
301 => 0.10896236328633
302 => 0.10893582249539
303 => 0.10829348288647
304 => 0.1074753668181
305 => 0.10724778564384
306 => 0.11056748995081
307 => 0.11743917851585
308 => 0.11609010162496
309 => 0.11706494793759
310 => 0.12186022695486
311 => 0.12338450195538
312 => 0.12230260766445
313 => 0.12082164403068
314 => 0.12088679891455
315 => 0.12594769996931
316 => 0.12626334216027
317 => 0.12706086814679
318 => 0.12808591442029
319 => 0.12247717747725
320 => 0.12062262790891
321 => 0.11974383943695
322 => 0.11703751107722
323 => 0.11995605419013
324 => 0.11825554410271
325 => 0.1184850010112
326 => 0.11833556689853
327 => 0.11841716802874
328 => 0.11408478096584
329 => 0.115663275108
330 => 0.11303872244268
331 => 0.10952474104369
401 => 0.10951296094588
402 => 0.11037300291503
403 => 0.10986141629833
404 => 0.1084847498669
405 => 0.1086802988358
406 => 0.10696708410192
407 => 0.10888831412325
408 => 0.10894340812577
409 => 0.10820362991745
410 => 0.11116354984397
411 => 0.11237623145292
412 => 0.11188929358862
413 => 0.11234206659429
414 => 0.1161461618605
415 => 0.1167663953732
416 => 0.11704186212922
417 => 0.11667277316851
418 => 0.11241159847248
419 => 0.11260059969016
420 => 0.11121383415908
421 => 0.11004216341907
422 => 0.11008902410407
423 => 0.11069141517097
424 => 0.11332209228989
425 => 0.11885819719977
426 => 0.11906828833426
427 => 0.11932292491805
428 => 0.11828718996168
429 => 0.11797480238818
430 => 0.11838692223169
501 => 0.12046599216128
502 => 0.12581392448215
503 => 0.12392360802356
504 => 0.1223867513182
505 => 0.1237349889824
506 => 0.12352743836183
507 => 0.12177550225269
508 => 0.12172633124111
509 => 0.11836380571981
510 => 0.11712075659559
511 => 0.11608197170677
512 => 0.11494764572635
513 => 0.11427517926221
514 => 0.11530839338168
515 => 0.11554470167543
516 => 0.11328556094572
517 => 0.11297764841208
518 => 0.11482251149889
519 => 0.11401065603781
520 => 0.11484566951258
521 => 0.11503939980134
522 => 0.11500820476286
523 => 0.11416053442049
524 => 0.11470081421883
525 => 0.1134228914306
526 => 0.11203334233621
527 => 0.11114689658595
528 => 0.11037335509888
529 => 0.1108025608744
530 => 0.10927252065456
531 => 0.1087830299946
601 => 0.11451777957983
602 => 0.11875410075739
603 => 0.1186925029697
604 => 0.1183175422788
605 => 0.11776042675014
606 => 0.1204252356903
607 => 0.11949686954008
608 => 0.12017233348195
609 => 0.12034426740429
610 => 0.12086465960402
611 => 0.1210506550862
612 => 0.12048844755688
613 => 0.11860161042059
614 => 0.11389979167206
615 => 0.1117110823523
616 => 0.11098877182094
617 => 0.11101502643689
618 => 0.11029080692317
619 => 0.1105041220272
620 => 0.11021662463532
621 => 0.10967217412818
622 => 0.11076894258981
623 => 0.11089533493791
624 => 0.11063933607355
625 => 0.1106996330734
626 => 0.10858007181512
627 => 0.10874121745414
628 => 0.10784393805867
629 => 0.10767570898888
630 => 0.10540746481218
701 => 0.10138894146591
702 => 0.10361559348724
703 => 0.10092611096012
704 => 0.099907563174794
705 => 0.10472920997387
706 => 0.10424525036691
707 => 0.10341692189197
708 => 0.10219165143876
709 => 0.101737186709
710 => 0.098976002877026
711 => 0.09881285740589
712 => 0.10018137467125
713 => 0.099549851041091
714 => 0.098662952687644
715 => 0.095450696754904
716 => 0.091839057545114
717 => 0.091948070230902
718 => 0.0930968654666
719 => 0.096437142550537
720 => 0.095132038506462
721 => 0.094185170548143
722 => 0.094007850642296
723 => 0.096227380508338
724 => 0.099368480274669
725 => 0.10084221400689
726 => 0.099381788636218
727 => 0.097704130605281
728 => 0.097806241876106
729 => 0.098485542414245
730 => 0.098556927296011
731 => 0.097464944383903
801 => 0.097772331177335
802 => 0.097305382530074
803 => 0.094439719543756
804 => 0.094387888787449
805 => 0.093684608875549
806 => 0.093663313839318
807 => 0.09246685926778
808 => 0.092299467002521
809 => 0.089923833831131
810 => 0.09148748277862
811 => 0.090438669159899
812 => 0.088857859646364
813 => 0.088585327490387
814 => 0.088577134844686
815 => 0.090200272752547
816 => 0.091468515467129
817 => 0.090456913721832
818 => 0.090226591613504
819 => 0.092685829158677
820 => 0.092372868764606
821 => 0.092101847081718
822 => 0.099087229242478
823 => 0.093557754186069
824 => 0.091146587450073
825 => 0.088162310746133
826 => 0.089134006288965
827 => 0.089338756817018
828 => 0.08216210930035
829 => 0.079250544296632
830 => 0.078251404907368
831 => 0.07767638606309
901 => 0.07793842937106
902 => 0.075317679375201
903 => 0.077078866715622
904 => 0.074809518745691
905 => 0.074429055173435
906 => 0.07848693046194
907 => 0.079051560102572
908 => 0.076642674638957
909 => 0.07818956906973
910 => 0.07762864364569
911 => 0.074848420203212
912 => 0.074742236117648
913 => 0.073347217723792
914 => 0.071164284066196
915 => 0.070166624808745
916 => 0.06964703520539
917 => 0.069861428002334
918 => 0.069753024443671
919 => 0.069045617896405
920 => 0.0697935721589
921 => 0.067882858094264
922 => 0.067121996358057
923 => 0.06677833276367
924 => 0.065082464054707
925 => 0.067781345326905
926 => 0.068313058937138
927 => 0.068845820187438
928 => 0.073483143139747
929 => 0.073251475589989
930 => 0.075345637413135
1001 => 0.075264262135604
1002 => 0.07466697326047
1003 => 0.072147109745532
1004 => 0.073151482430338
1005 => 0.070060179420676
1006 => 0.072376393823687
1007 => 0.071319370297579
1008 => 0.07201901310624
1009 => 0.070760992252019
1010 => 0.071457232935153
1011 => 0.068439147959399
1012 => 0.065620902674641
1013 => 0.066755046846936
1014 => 0.067987991267339
1015 => 0.070661328919169
1016 => 0.069069111068296
1017 => 0.069641732815893
1018 => 0.067723545817167
1019 => 0.063765778135768
1020 => 0.063788178671032
1021 => 0.063179362337905
1022 => 0.062653256137443
1023 => 0.069251996441902
1024 => 0.068431338774396
1025 => 0.067123728186244
1026 => 0.068874016920864
1027 => 0.069336821043115
1028 => 0.06934999642585
1029 => 0.070626961905138
1030 => 0.071308478610343
1031 => 0.071428598883497
1101 => 0.073437931655822
1102 => 0.074111433497365
1103 => 0.076885492265133
1104 => 0.071250656679398
1105 => 0.071134610948616
1106 => 0.068898647072755
1107 => 0.067480563433493
1108 => 0.068995744472758
1109 => 0.07033798803071
1110 => 0.06894035432159
1111 => 0.069122855778343
1112 => 0.067246646714718
1113 => 0.067917303171122
1114 => 0.068494962858558
1115 => 0.068176013132423
1116 => 0.067698529955057
1117 => 0.070227939365702
1118 => 0.070085220173918
1119 => 0.072440664367981
1120 => 0.074276901556683
1121 => 0.077567766865498
1122 => 0.074133577359062
1123 => 0.07400842184378
1124 => 0.075231837081233
1125 => 0.074111246198867
1126 => 0.07481942095504
1127 => 0.07745366896394
1128 => 0.077509326473374
1129 => 0.076576991479697
1130 => 0.076520258810601
1201 => 0.076699323944764
1202 => 0.077748114028554
1203 => 0.077381634547214
1204 => 0.077805733881146
1205 => 0.078336076592267
1206 => 0.080529798906116
1207 => 0.081058697929173
1208 => 0.079773747505848
1209 => 0.079889764142094
1210 => 0.079409157411092
1211 => 0.078944897330929
1212 => 0.079988486191396
1213 => 0.081895665345688
1214 => 0.081883800883152
1215 => 0.082326229376683
1216 => 0.082601858662877
1217 => 0.081418655993563
1218 => 0.080648434563407
1219 => 0.080943786470192
1220 => 0.081416060601068
1221 => 0.080790634334701
1222 => 0.07693021369305
1223 => 0.078101218711101
1224 => 0.077906306216878
1225 => 0.077628727122934
1226 => 0.078806181723699
1227 => 0.078692613355035
1228 => 0.075290799796023
1229 => 0.075508572862914
1230 => 0.075304043297508
1231 => 0.075964920166148
]
'min_raw' => 0.062653256137443
'max_raw' => 0.14035102802509
'avg_raw' => 0.10150214208126
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.062653'
'max' => '$0.140351'
'avg' => '$0.1015021'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01527832126662
'max_diff' => -0.10199018184222
'year' => 2034
]
9 => [
'items' => [
101 => 0.074075556679147
102 => 0.074656712162691
103 => 0.075021207433976
104 => 0.075235897948947
105 => 0.076011507303687
106 => 0.075920498497958
107 => 0.076005850068541
108 => 0.077155873988343
109 => 0.082972300334148
110 => 0.083288875586929
111 => 0.081729943260277
112 => 0.082352705976194
113 => 0.081157137744868
114 => 0.081959730708168
115 => 0.082508844430007
116 => 0.080027505109513
117 => 0.079880576298713
118 => 0.078680073532009
119 => 0.079325155718883
120 => 0.078298783576516
121 => 0.078550619399279
122 => 0.07784646448418
123 => 0.079113803135514
124 => 0.080530884672221
125 => 0.080888895430639
126 => 0.079947123258564
127 => 0.079265218140171
128 => 0.078068017385783
129 => 0.080058988921689
130 => 0.080641209672546
131 => 0.080055930763944
201 => 0.079920308852224
202 => 0.079663305574578
203 => 0.079974833312509
204 => 0.080638038773299
205 => 0.080325283325472
206 => 0.080531863808803
207 => 0.079744592031214
208 => 0.08141904768288
209 => 0.084078486237422
210 => 0.084087036767237
211 => 0.083774279633542
212 => 0.08364630615288
213 => 0.083967213951741
214 => 0.084141293268296
215 => 0.085179050245386
216 => 0.086292604827865
217 => 0.091489078182367
218 => 0.090029929258447
219 => 0.094640549558144
220 => 0.098286951601089
221 => 0.099380348135931
222 => 0.098374474772159
223 => 0.094933436330903
224 => 0.094764602568635
225 => 0.099906966768827
226 => 0.098454013347071
227 => 0.098281189160813
228 => 0.096442631810094
301 => 0.097529446914127
302 => 0.097291744508259
303 => 0.096916519631798
304 => 0.098990087142095
305 => 0.10287162041272
306 => 0.10226664705171
307 => 0.10181506250161
308 => 0.099836350457399
309 => 0.10102797706935
310 => 0.10060366165694
311 => 0.10242678994588
312 => 0.10134680913475
313 => 0.098443005795882
314 => 0.098905446048657
315 => 0.098835549134751
316 => 0.10027402266999
317 => 0.099842228619822
318 => 0.098751234416408
319 => 0.10285835375398
320 => 0.1025916602692
321 => 0.102969770656
322 => 0.10313622654172
323 => 0.10563615770694
324 => 0.10666029951646
325 => 0.10689279763735
326 => 0.10786565314642
327 => 0.10686859210603
328 => 0.11085754716005
329 => 0.11350996950899
330 => 0.1165908945597
331 => 0.12109295413336
401 => 0.12278577017943
402 => 0.12247997811252
403 => 0.12589338829997
404 => 0.13202721053098
405 => 0.1237197989581
406 => 0.13246752351632
407 => 0.12969809491852
408 => 0.12313182953304
409 => 0.1227090394534
410 => 0.12715579060835
411 => 0.13701825668611
412 => 0.1345478207928
413 => 0.13702229743423
414 => 0.13413568899244
415 => 0.13399234455306
416 => 0.13688210130524
417 => 0.14363417546916
418 => 0.14042651813159
419 => 0.13582755478835
420 => 0.13922335775321
421 => 0.13628159895832
422 => 0.129652993047
423 => 0.13454593169703
424 => 0.13127416296463
425 => 0.13222903901753
426 => 0.13910581025418
427 => 0.1382783789453
428 => 0.13934915167706
429 => 0.13745926583251
430 => 0.13569381444606
501 => 0.1323984683291
502 => 0.13142287880247
503 => 0.1316924966496
504 => 0.13142274519325
505 => 0.12957902932661
506 => 0.12918087906075
507 => 0.12851727784095
508 => 0.12872295560724
509 => 0.12747519117064
510 => 0.12982998046379
511 => 0.13026705010693
512 => 0.13198066938136
513 => 0.13215858301915
514 => 0.13693098830658
515 => 0.13430242767128
516 => 0.13606589308445
517 => 0.13590815213951
518 => 0.1232741404146
519 => 0.12501499575946
520 => 0.12772322036557
521 => 0.12650316885143
522 => 0.12477830145852
523 => 0.12338537855721
524 => 0.12127495792805
525 => 0.12424533443656
526 => 0.12815106368093
527 => 0.13225763875822
528 => 0.13719141964013
529 => 0.13609025718283
530 => 0.1321654051565
531 => 0.13234147115129
601 => 0.1334298418517
602 => 0.13202030290577
603 => 0.13160460235314
604 => 0.13337273097928
605 => 0.13338490710939
606 => 0.13176306220362
607 => 0.12996067838534
608 => 0.12995312633134
609 => 0.12963240953984
610 => 0.13419274379717
611 => 0.1367004665369
612 => 0.13698797290762
613 => 0.13668111506742
614 => 0.13679921247136
615 => 0.13534002386301
616 => 0.13867529631276
617 => 0.14173607213691
618 => 0.1409157188321
619 => 0.1396858926081
620 => 0.13870627678422
621 => 0.14068495247663
622 => 0.14059684516278
623 => 0.14170933893025
624 => 0.14165886978688
625 => 0.14128477997589
626 => 0.14091573219203
627 => 0.14237896493977
628 => 0.14195757740722
629 => 0.14153553534344
630 => 0.14068906537312
701 => 0.14080411470047
702 => 0.1395745008233
703 => 0.13900562518042
704 => 0.13045110043502
705 => 0.12816505189589
706 => 0.12888428930311
707 => 0.12912108093255
708 => 0.12812618967867
709 => 0.12955260817014
710 => 0.1293303023592
711 => 0.13019516422504
712 => 0.1296548360792
713 => 0.12967701133478
714 => 0.13126600120158
715 => 0.13172729171996
716 => 0.13149267563924
717 => 0.1316569927
718 => 0.13544361001147
719 => 0.13490527411899
720 => 0.13461929390554
721 => 0.13469851237908
722 => 0.13566607428816
723 => 0.13593693879577
724 => 0.13478926684368
725 => 0.1353305155709
726 => 0.1376350839567
727 => 0.13844155246446
728 => 0.14101541281438
729 => 0.13992199119101
730 => 0.14192901390288
731 => 0.14809791747468
801 => 0.15302606450349
802 => 0.14849393683151
803 => 0.15754385125419
804 => 0.16459050776536
805 => 0.16432004535164
806 => 0.16309129779682
807 => 0.1550688667039
808 => 0.14768650600449
809 => 0.15386216420114
810 => 0.15387790722392
811 => 0.1533474127079
812 => 0.15005255683006
813 => 0.15323275886537
814 => 0.15348519175413
815 => 0.15334389646375
816 => 0.15081773818741
817 => 0.14696076141152
818 => 0.14771440544123
819 => 0.14894888973582
820 => 0.14661175342577
821 => 0.14586489676262
822 => 0.1472534453947
823 => 0.15172763840286
824 => 0.1508818181319
825 => 0.1508597303464
826 => 0.15447850814917
827 => 0.15188824422352
828 => 0.14772391130595
829 => 0.14667236232346
830 => 0.1429400718439
831 => 0.1455179781721
901 => 0.14561075243149
902 => 0.1441988594811
903 => 0.14783847863749
904 => 0.14780493890622
905 => 0.15126021560939
906 => 0.15786540692318
907 => 0.15591192682997
908 => 0.15364024201959
909 => 0.15388723714547
910 => 0.1565961640404
911 => 0.15495828500094
912 => 0.15554727772323
913 => 0.15659527252938
914 => 0.15722755381617
915 => 0.15379626159855
916 => 0.15299626324495
917 => 0.15135974737474
918 => 0.15093281093121
919 => 0.15226571896048
920 => 0.1519145447871
921 => 0.14560295511423
922 => 0.14494335887606
923 => 0.144963587751
924 => 0.14330500164803
925 => 0.14077525973473
926 => 0.14742327043984
927 => 0.14688934214137
928 => 0.14629992662263
929 => 0.14637212666052
930 => 0.14925780278562
1001 => 0.14758396490292
1002 => 0.1520341372507
1003 => 0.15111931560042
1004 => 0.15018103222675
1005 => 0.1500513328837
1006 => 0.14969017383541
1007 => 0.14845162507747
1008 => 0.14695600302702
1009 => 0.14596846380075
1010 => 0.13464819199239
1011 => 0.13674916859303
1012 => 0.13916615066202
1013 => 0.14000048318679
1014 => 0.13857329966912
1015 => 0.14850797898154
1016 => 0.15032314062487
1017 => 0.14482489760716
1018 => 0.14379640083033
1019 => 0.148575407059
1020 => 0.14569308209336
1021 => 0.1469909928489
1022 => 0.14418561971465
1023 => 0.14988592133913
1024 => 0.14984249459137
1025 => 0.14762494851229
1026 => 0.14949920327323
1027 => 0.14917350538537
1028 => 0.14666990132367
1029 => 0.14996529005348
1030 => 0.14996692452518
1031 => 0.14783258463768
1101 => 0.14534014291616
1102 => 0.1448945532052
1103 => 0.14455886121454
1104 => 0.14690843319749
1105 => 0.14901505209049
1106 => 0.15293494757524
1107 => 0.15392050243452
1108 => 0.15776718866242
1109 => 0.15547667430546
1110 => 0.15649202965277
1111 => 0.15759434151306
1112 => 0.15812283035506
1113 => 0.1572616861473
1114 => 0.16323717321843
1115 => 0.16374168741143
1116 => 0.16391084665631
1117 => 0.16189594603662
1118 => 0.16368564938027
1119 => 0.16284830645452
1120 => 0.16502684012675
1121 => 0.16536846202347
1122 => 0.1650791204305
1123 => 0.16518755661265
1124 => 0.16008853254559
1125 => 0.15982412124822
1126 => 0.15621885444678
1127 => 0.15768802731716
1128 => 0.15494147905528
1129 => 0.15581243780171
1130 => 0.15619634811833
1201 => 0.15599581515564
1202 => 0.15777109214692
1203 => 0.15626174403921
1204 => 0.15227832622315
1205 => 0.14829382312758
1206 => 0.14824380093692
1207 => 0.14719475160418
1208 => 0.14643648107957
1209 => 0.1465825508837
1210 => 0.14709731992564
1211 => 0.14640656176705
1212 => 0.14655397004252
1213 => 0.1490019295914
1214 => 0.14949285042087
1215 => 0.14782450962715
1216 => 0.14112588059994
1217 => 0.13948202023443
1218 => 0.14066359446599
1219 => 0.14009887808643
1220 => 0.11307072888487
1221 => 0.11942059162557
1222 => 0.11564771880601
1223 => 0.1173864321828
1224 => 0.1135353060147
1225 => 0.11537326527693
1226 => 0.11503386131273
1227 => 0.12524425269368
1228 => 0.1250848314762
1229 => 0.12516113797662
1230 => 0.12151882989584
1231 => 0.12732112556797
]
'min_raw' => 0.074075556679147
'max_raw' => 0.16536846202347
'avg_raw' => 0.11972200935131
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.074075'
'max' => '$0.165368'
'avg' => '$0.119722'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.011422300541705
'max_diff' => 0.025017433998385
'year' => 2035
]
10 => [
'items' => [
101 => 0.13017954505986
102 => 0.12965052768628
103 => 0.12978366996198
104 => 0.12749584454403
105 => 0.12518328912761
106 => 0.12261830927107
107 => 0.12738372480343
108 => 0.12685389194458
109 => 0.12806913789492
110 => 0.1311598505066
111 => 0.13161496967914
112 => 0.1322266544624
113 => 0.13200740901029
114 => 0.13723072516465
115 => 0.13659814711381
116 => 0.13812247821121
117 => 0.13498681349257
118 => 0.1314385112234
119 => 0.13211292748203
120 => 0.13204797577301
121 => 0.1312210659691
122 => 0.13047456877177
123 => 0.12923186126248
124 => 0.13316397170796
125 => 0.13300433520475
126 => 0.13558866463458
127 => 0.13513185930502
128 => 0.132081201515
129 => 0.13219015635478
130 => 0.13292293001421
131 => 0.13545906801614
201 => 0.13621196644856
202 => 0.13586319389685
203 => 0.13668871265688
204 => 0.13734116902569
205 => 0.1367706511314
206 => 0.14484798139873
207 => 0.14149371072223
208 => 0.14312855891109
209 => 0.14351846057105
210 => 0.14251973566781
211 => 0.14273632333767
212 => 0.14306439464089
213 => 0.1450563793511
214 => 0.15028392361611
215 => 0.15259916738599
216 => 0.15956469249978
217 => 0.15240691862065
218 => 0.15198220594048
219 => 0.15323690735218
220 => 0.15732640796969
221 => 0.16064056411292
222 => 0.16174006090388
223 => 0.16188537755552
224 => 0.16394810662854
225 => 0.16513042446557
226 => 0.16369763706391
227 => 0.1624834997601
228 => 0.15813461064213
229 => 0.15863800639916
301 => 0.1621059039716
302 => 0.16700451355081
303 => 0.17120803018324
304 => 0.16973610516591
305 => 0.18096585403102
306 => 0.18207923776158
307 => 0.18192540413003
308 => 0.18446185796197
309 => 0.1794275136454
310 => 0.17727523391424
311 => 0.16274601002623
312 => 0.16682812929942
313 => 0.17276172939746
314 => 0.17197639517463
315 => 0.16766725617784
316 => 0.1712047613149
317 => 0.17003515148858
318 => 0.1691126316914
319 => 0.17333887372153
320 => 0.16869194700495
321 => 0.17271537274875
322 => 0.16755528761531
323 => 0.1697428287954
324 => 0.16850107462212
325 => 0.1693046417559
326 => 0.16460700471139
327 => 0.16714173563192
328 => 0.16450155157168
329 => 0.16450029978067
330 => 0.16444201757121
331 => 0.16754818240971
401 => 0.16764947433358
402 => 0.16535401382477
403 => 0.16502320210362
404 => 0.16624638642216
405 => 0.16481435793763
406 => 0.16548439505246
407 => 0.16483465267926
408 => 0.16468838198539
409 => 0.16352287221068
410 => 0.16302073855338
411 => 0.16321763809879
412 => 0.16254551844161
413 => 0.16214054203652
414 => 0.16436145757113
415 => 0.16317491199247
416 => 0.16417960244374
417 => 0.16303463087247
418 => 0.15906566056607
419 => 0.15678306377177
420 => 0.14928604678673
421 => 0.15141219150366
422 => 0.15282182765065
423 => 0.15235594291248
424 => 0.15335684360353
425 => 0.15341829077698
426 => 0.15309288775934
427 => 0.15271611275163
428 => 0.15253271951484
429 => 0.15389958245061
430 => 0.15469309239132
501 => 0.1529633034965
502 => 0.15255803816076
503 => 0.15430695023768
504 => 0.15537378559429
505 => 0.16325069846451
506 => 0.16266715131699
507 => 0.16413174014192
508 => 0.16396684991618
509 => 0.165501972332
510 => 0.16801124869073
511 => 0.16290918824873
512 => 0.16379472952548
513 => 0.16357761525455
514 => 0.1659480119341
515 => 0.1659554120538
516 => 0.16453424083431
517 => 0.16530468080827
518 => 0.16487464235072
519 => 0.16565177996669
520 => 0.16265935768906
521 => 0.16630380501119
522 => 0.16836997179984
523 => 0.1683986605277
524 => 0.16937800718741
525 => 0.1703730801136
526 => 0.17228303594285
527 => 0.17031981248216
528 => 0.16678816459233
529 => 0.16704313816282
530 => 0.16497253429719
531 => 0.16500734152225
601 => 0.16482153782696
602 => 0.16537914870319
603 => 0.16278172191921
604 => 0.16339133279375
605 => 0.16253787399952
606 => 0.16379287427274
607 => 0.16244270143773
608 => 0.16357751055548
609 => 0.16406725655118
610 => 0.16587442981879
611 => 0.16217578047674
612 => 0.15463398409175
613 => 0.15621936112732
614 => 0.15387446396304
615 => 0.15409149312324
616 => 0.1545299265668
617 => 0.15310882032974
618 => 0.15337992261557
619 => 0.1533702369342
620 => 0.15328677096481
621 => 0.15291708634682
622 => 0.15238097051087
623 => 0.15451669099355
624 => 0.1548795915208
625 => 0.15568627443901
626 => 0.15808641562537
627 => 0.15784658492163
628 => 0.15823775874992
629 => 0.15738382847911
630 => 0.15413110449937
701 => 0.1543077430608
702 => 0.15210505736937
703 => 0.15562994681357
704 => 0.15479520646692
705 => 0.15425704393512
706 => 0.15411020130228
707 => 0.1565162919744
708 => 0.15723623201435
709 => 0.15678761369483
710 => 0.15586748443321
711 => 0.15763440462732
712 => 0.15810715793088
713 => 0.15821298996108
714 => 0.16134363377168
715 => 0.15838795817297
716 => 0.15909941866647
717 => 0.16465003034139
718 => 0.15961639148429
719 => 0.16228282225044
720 => 0.16215231433987
721 => 0.16351637009273
722 => 0.16204042195433
723 => 0.16205871810041
724 => 0.16326990719982
725 => 0.16156901054881
726 => 0.16114784461826
727 => 0.16056600690165
728 => 0.16183642826976
729 => 0.16259798842373
730 => 0.1687356039604
731 => 0.17270078350636
801 => 0.17252864460485
802 => 0.1741016719341
803 => 0.173393008715
804 => 0.17110454824458
805 => 0.17501067121955
806 => 0.17377461047115
807 => 0.17387650981743
808 => 0.17387271711867
809 => 0.17469458945806
810 => 0.17411221758211
811 => 0.17296430283537
812 => 0.17372634221519
813 => 0.17598932673921
814 => 0.18301370013859
815 => 0.18694463255346
816 => 0.1827770530714
817 => 0.18565179359201
818 => 0.18392797365442
819 => 0.18361470429256
820 => 0.18542025378117
821 => 0.18722896364513
822 => 0.18711375664606
823 => 0.1858007261631
824 => 0.1850590285602
825 => 0.19067541129635
826 => 0.19481346642377
827 => 0.19453127880595
828 => 0.19577676317866
829 => 0.19943354381832
830 => 0.19976787401175
831 => 0.19972575609187
901 => 0.19889708382372
902 => 0.20249765925644
903 => 0.20550132262851
904 => 0.19870527013629
905 => 0.20129311795846
906 => 0.20245488622109
907 => 0.20416070671173
908 => 0.20703871180816
909 => 0.21016498869603
910 => 0.21060707852586
911 => 0.21029339463565
912 => 0.20823153098927
913 => 0.21165234046422
914 => 0.21365617042679
915 => 0.21484940531266
916 => 0.2178752504479
917 => 0.20246206090637
918 => 0.19155183926364
919 => 0.18984805060862
920 => 0.19331277183679
921 => 0.19422639119402
922 => 0.1938581123767
923 => 0.18157766600386
924 => 0.18978339659997
925 => 0.19861207276395
926 => 0.19895121817132
927 => 0.20337103805792
928 => 0.20481031258754
929 => 0.20836884691529
930 => 0.2081462596242
1001 => 0.20901270610436
1002 => 0.20881352506334
1003 => 0.21540496056768
1004 => 0.22267629276663
1005 => 0.222424509654
1006 => 0.2213791696199
1007 => 0.22293167782749
1008 => 0.23043647190012
1009 => 0.22974555072378
1010 => 0.23041672179406
1011 => 0.23926529695734
1012 => 0.25076970336475
1013 => 0.24542475156499
1014 => 0.25702175900201
1015 => 0.26432146045267
1016 => 0.27694553930837
1017 => 0.27536494246073
1018 => 0.28027940371949
1019 => 0.27253534422296
1020 => 0.25475341828628
1021 => 0.25193936044032
1022 => 0.25757317551122
1023 => 0.2714233601234
1024 => 0.25713698390916
1025 => 0.26002709921069
1026 => 0.25919474580942
1027 => 0.25915039323394
1028 => 0.26084315064502
1029 => 0.25838771773196
1030 => 0.24838384232018
1031 => 0.25296855946819
1101 => 0.25119818000114
1102 => 0.25316254801036
1103 => 0.26376343198914
1104 => 0.25907652848861
1105 => 0.25413925638393
1106 => 0.26033169127159
1107 => 0.26821678883508
1108 => 0.26772335360044
1109 => 0.26676588300531
1110 => 0.27216309461852
1111 => 0.28107770696893
1112 => 0.28348729086543
1113 => 0.28526599643606
1114 => 0.28551124988277
1115 => 0.28803751280807
1116 => 0.27445316035849
1117 => 0.29601187656689
1118 => 0.29973447130857
1119 => 0.29903477778287
1120 => 0.30317228516751
1121 => 0.30195492553652
1122 => 0.30019116242909
1123 => 0.3067499917068
1124 => 0.29923082321013
1125 => 0.28855831016611
1126 => 0.28270315843178
1127 => 0.29041369455716
1128 => 0.2951222499083
1129 => 0.29823430547504
1130 => 0.29917601160918
1201 => 0.27550767496946
1202 => 0.26275175422678
1203 => 0.27092815317591
1204 => 0.28090392419876
1205 => 0.27439774444677
1206 => 0.27465277437522
1207 => 0.26537667184285
1208 => 0.28172465344352
1209 => 0.27934289003247
1210 => 0.29169948282227
1211 => 0.28875048278513
1212 => 0.29882680452504
1213 => 0.29617337131661
1214 => 0.30718762421336
1215 => 0.31158150789287
1216 => 0.31895952244415
1217 => 0.324386819982
1218 => 0.32757383290388
1219 => 0.32738249660224
1220 => 0.34001102956227
1221 => 0.33256442488307
1222 => 0.32320973437604
1223 => 0.32304053753844
1224 => 0.32788546430902
1225 => 0.33803910167941
1226 => 0.34067179212014
1227 => 0.34214310691827
1228 => 0.3398897370881
1229 => 0.3318069814118
1230 => 0.32831688849127
1231 => 0.33129054877729
]
'min_raw' => 0.12261830927107
'max_raw' => 0.34214310691827
'avg_raw' => 0.23238070809467
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.122618'
'max' => '$0.342143'
'avg' => '$0.23238'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.048542752591919
'max_diff' => 0.1767746448948
'year' => 2036
]
11 => [
'items' => [
101 => 0.32765401777703
102 => 0.33393169051386
103 => 0.34255227602006
104 => 0.34077215920252
105 => 0.34672282283352
106 => 0.35288113366355
107 => 0.36168779473753
108 => 0.36399018205198
109 => 0.36779594073083
110 => 0.37171331653796
111 => 0.37297147207097
112 => 0.37537368136622
113 => 0.37536102053747
114 => 0.38260023993606
115 => 0.39058532311266
116 => 0.39359950715673
117 => 0.40053045716298
118 => 0.38866144816673
119 => 0.39766422783173
120 => 0.40578496044376
121 => 0.39610308824519
122 => 0.40944729348401
123 => 0.40996541873482
124 => 0.41778849487533
125 => 0.40985830848688
126 => 0.40514938912347
127 => 0.41874386288473
128 => 0.42532180051589
129 => 0.42334047216835
130 => 0.40826246561334
131 => 0.3994864190722
201 => 0.37651781250108
202 => 0.40372511915453
203 => 0.41697700457742
204 => 0.40822814643151
205 => 0.41264056158962
206 => 0.43671326796183
207 => 0.44587859595605
208 => 0.44397227180373
209 => 0.44429440920471
210 => 0.44923985382792
211 => 0.47117067879334
212 => 0.45802922012152
213 => 0.46807537287507
214 => 0.47340381607145
215 => 0.47835317106962
216 => 0.46619911945383
217 => 0.45038687688017
218 => 0.44537847590431
219 => 0.40735824491005
220 => 0.40537912677331
221 => 0.40426818778974
222 => 0.39726387464375
223 => 0.39176040315385
224 => 0.38738383829428
225 => 0.37589842514988
226 => 0.37977441492828
227 => 0.36146906356812
228 => 0.37318017866653
301 => 0.34396439589756
302 => 0.36829616793923
303 => 0.35505349064687
304 => 0.36394559228803
305 => 0.36391456858309
306 => 0.34754139021832
307 => 0.33809768263704
308 => 0.34411558066243
309 => 0.35056724504699
310 => 0.35161400588738
311 => 0.35997875716763
312 => 0.36231317945022
313 => 0.35523977095021
314 => 0.34335896373795
315 => 0.346118604281
316 => 0.33804175860952
317 => 0.32388739724163
318 => 0.33405330668749
319 => 0.33752439513579
320 => 0.33905742553811
321 => 0.32513823677218
322 => 0.32076452546163
323 => 0.31843599825889
324 => 0.34156217125796
325 => 0.34282907521923
326 => 0.33634741543119
327 => 0.36564513228933
328 => 0.3590141566452
329 => 0.36642258106817
330 => 0.3458681958269
331 => 0.34665340102327
401 => 0.33692262565142
402 => 0.34237120964901
403 => 0.33852032609557
404 => 0.34193101790596
405 => 0.3439753725143
406 => 0.35370455116166
407 => 0.36840725953119
408 => 0.35225133631126
409 => 0.34521196920726
410 => 0.34957915296768
411 => 0.36120953882242
412 => 0.37883016874086
413 => 0.36839840118092
414 => 0.37302784248112
415 => 0.37403916945571
416 => 0.36634717026203
417 => 0.37911378372289
418 => 0.38595551559234
419 => 0.39297371679348
420 => 0.39906742425089
421 => 0.39017049290019
422 => 0.39969148477045
423 => 0.39201924600433
424 => 0.38513645468966
425 => 0.38514689304299
426 => 0.38082921750976
427 => 0.37246317710201
428 => 0.37092035089273
429 => 0.37894632767087
430 => 0.3853824009841
501 => 0.38591250680889
502 => 0.38947584769249
503 => 0.39158459612207
504 => 0.41225319743645
505 => 0.42056627986473
506 => 0.43073135969943
507 => 0.43469123116756
508 => 0.44660902459412
509 => 0.43698443848632
510 => 0.43490209874041
511 => 0.40599343016808
512 => 0.4107272230273
513 => 0.41830648213799
514 => 0.4061184093592
515 => 0.4138489362297
516 => 0.41537510598889
517 => 0.40570426331
518 => 0.41086987823724
519 => 0.39715153648857
520 => 0.36870628189341
521 => 0.37914545142276
522 => 0.38683219398283
523 => 0.37586226458109
524 => 0.39552543843882
525 => 0.38403861820143
526 => 0.38039784765079
527 => 0.36619390370432
528 => 0.37289761848711
529 => 0.38196448871879
530 => 0.37636221705241
531 => 0.38798777194547
601 => 0.40445265809627
602 => 0.41618651646826
603 => 0.41708729641416
604 => 0.40954321158843
605 => 0.42163265566737
606 => 0.42172071406914
607 => 0.40808377176127
608 => 0.39973122052851
609 => 0.3978335033145
610 => 0.40257437298446
611 => 0.4083306639766
612 => 0.41740673050248
613 => 0.42289120741909
614 => 0.43719181447582
615 => 0.44106114871484
616 => 0.44531237393467
617 => 0.45099332185768
618 => 0.4578147564044
619 => 0.44288984596066
620 => 0.44348284047611
621 => 0.42958497052035
622 => 0.41473310331646
623 => 0.42600381921283
624 => 0.44073878096682
625 => 0.43735856445977
626 => 0.43697822105117
627 => 0.43761785316597
628 => 0.43506928030721
629 => 0.42354217972152
630 => 0.41775334197086
701 => 0.42522241955923
702 => 0.42919190188705
703 => 0.43534822280226
704 => 0.43458932630529
705 => 0.45044734784229
706 => 0.45660929548988
707 => 0.45503280559702
708 => 0.45532291767766
709 => 0.46647882956064
710 => 0.47888649796279
711 => 0.49050791675746
712 => 0.50232972310694
713 => 0.48807807413968
714 => 0.48084196571362
715 => 0.48830778253637
716 => 0.48434631504124
717 => 0.50711008231585
718 => 0.50868619617211
719 => 0.53144831736725
720 => 0.55305228084441
721 => 0.53948321845961
722 => 0.55227823312448
723 => 0.56611708467739
724 => 0.5928144745957
725 => 0.58382373289672
726 => 0.57693696565818
727 => 0.57042900389438
728 => 0.58397103921501
729 => 0.60139265131571
730 => 0.60514509970008
731 => 0.61122549962836
801 => 0.6048327025797
802 => 0.61253212248131
803 => 0.63971445803053
804 => 0.63236955102002
805 => 0.62193860231237
806 => 0.64339644560923
807 => 0.6511619556831
808 => 0.70566437221078
809 => 0.77447592445951
810 => 0.74598748998752
811 => 0.72830379939473
812 => 0.73245988614678
813 => 0.75758753560997
814 => 0.76565773910582
815 => 0.74372014403814
816 => 0.75146887348501
817 => 0.79416513457557
818 => 0.8170703087906
819 => 0.78596200563128
820 => 0.70013543098791
821 => 0.62099940950873
822 => 0.6419898459465
823 => 0.63961018186353
824 => 0.68548198793829
825 => 0.63219437741694
826 => 0.63309160411443
827 => 0.67991199055972
828 => 0.66742111416075
829 => 0.64718749410499
830 => 0.621147137327
831 => 0.57300912938141
901 => 0.53037195331634
902 => 0.61399327433516
903 => 0.61038737091732
904 => 0.60516548840335
905 => 0.6167862228715
906 => 0.67321321084579
907 => 0.67191238613664
908 => 0.66363720302367
909 => 0.66991385648074
910 => 0.6460871664068
911 => 0.6522278469625
912 => 0.62098687395861
913 => 0.63510909849465
914 => 0.64714408184374
915 => 0.64956028293204
916 => 0.65500410735827
917 => 0.60848722366964
918 => 0.62937193878188
919 => 0.64163975227715
920 => 0.58621332459864
921 => 0.6405441500115
922 => 0.60767746821535
923 => 0.59652202277274
924 => 0.61154136044303
925 => 0.60568830994613
926 => 0.60065620083156
927 => 0.59784819748302
928 => 0.60887674144427
929 => 0.60836224668652
930 => 0.59031740821776
1001 => 0.56677865203699
1002 => 0.57467903124459
1003 => 0.57180874941202
1004 => 0.56140647777705
1005 => 0.56841635288395
1006 => 0.53754841052977
1007 => 0.48444172008544
1008 => 0.51952562649489
1009 => 0.51817493426207
1010 => 0.51749385398927
1011 => 0.54385844000802
1012 => 0.5413240933968
1013 => 0.53672422948106
1014 => 0.56132199766898
1015 => 0.55234348139372
1016 => 0.58001315294959
1017 => 0.59823818819845
1018 => 0.59361572974121
1019 => 0.61075646348199
1020 => 0.57486104002501
1021 => 0.58678405982299
1022 => 0.58924137767877
1023 => 0.56101846502776
1024 => 0.54173874384519
1025 => 0.54045300624723
1026 => 0.50702462662589
1027 => 0.52488179719516
1028 => 0.54059536831618
1029 => 0.53306978717159
1030 => 0.53068741300155
1031 => 0.54285844596235
1101 => 0.54380423946126
1102 => 0.52224004745559
1103 => 0.52672392582271
1104 => 0.54542244399639
1105 => 0.52625277114019
1106 => 0.48900922812889
1107 => 0.47977231452981
1108 => 0.4785399399856
1109 => 0.45348869771606
1110 => 0.48038956926453
1111 => 0.46864661793509
1112 => 0.50574246048263
1113 => 0.48455351416847
1114 => 0.48364010104267
1115 => 0.48225934313446
1116 => 0.46069670405928
1117 => 0.46541755163955
1118 => 0.48111036800173
1119 => 0.48670974167198
1120 => 0.48612568112386
1121 => 0.48103346464037
1122 => 0.48336465527014
1123 => 0.47585507801098
1124 => 0.47320328998243
1125 => 0.46483351753258
1126 => 0.45253226423996
1127 => 0.45424282895827
1128 => 0.42987082738756
1129 => 0.41659166741182
1130 => 0.41291617094705
1201 => 0.40800114346479
1202 => 0.41347133637956
1203 => 0.42980178456929
1204 => 0.41010379935462
1205 => 0.37633298535707
1206 => 0.37836266882099
1207 => 0.38292276494599
1208 => 0.37442505598511
1209 => 0.36638268761229
1210 => 0.37337487441448
1211 => 0.35906573533095
1212 => 0.38465195604151
1213 => 0.38395992047585
1214 => 0.39349688131547
1215 => 0.39946053864663
1216 => 0.3857162392553
1217 => 0.38225958512692
1218 => 0.38422865241462
1219 => 0.35168435630058
1220 => 0.39083731801129
1221 => 0.39117591445003
1222 => 0.38827664617371
1223 => 0.40912438957259
1224 => 0.45311963071845
1225 => 0.4365668512949
1226 => 0.4301571147917
1227 => 0.41797220101361
1228 => 0.43420787515432
1229 => 0.43296122869628
1230 => 0.42732342063642
1231 => 0.42391365673078
]
'min_raw' => 0.31843599825889
'max_raw' => 0.8170703087906
'avg_raw' => 0.56775315352474
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.318435'
'max' => '$0.81707'
'avg' => '$0.567753'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19581768898783
'max_diff' => 0.47492720187232
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0099953421166818
]
1 => [
'year' => 2028
'avg' => 0.017154908740775
]
2 => [
'year' => 2029
'avg' => 0.04686411880832
]
3 => [
'year' => 2030
'avg' => 0.03615559786848
]
4 => [
'year' => 2031
'avg' => 0.035509277820763
]
5 => [
'year' => 2032
'avg' => 0.062258939200803
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0099953421166818
'min' => '$0.009995'
'max_raw' => 0.062258939200803
'max' => '$0.062258'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.062258939200803
]
1 => [
'year' => 2033
'avg' => 0.16013639363569
]
2 => [
'year' => 2034
'avg' => 0.10150214208126
]
3 => [
'year' => 2035
'avg' => 0.11972200935131
]
4 => [
'year' => 2036
'avg' => 0.23238070809467
]
5 => [
'year' => 2037
'avg' => 0.56775315352474
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.062258939200803
'min' => '$0.062258'
'max_raw' => 0.56775315352474
'max' => '$0.567753'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.56775315352474
]
]
]
]
'prediction_2025_max_price' => '$0.01709'
'last_price' => 0.01657112
'sma_50day_nextmonth' => '$0.015232'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'sinken'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.016341'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.01606'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015738'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015142'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014676'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.016335'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.016144'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.015802'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015373'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.015976'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.012831'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006415'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.016139'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.015965'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.016543'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.010331'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.004339'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.002169'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001084'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '66.18'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 115.09
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.015742'
'vwma_10_action' => 'BUY'
'hma_9' => '0.016499'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 169.06
'cci_20_action' => 'SELL'
'adx_14' => 19.67
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001356'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.12
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 1
'buy_signals' => 28
'sell_pct' => 3.45
'buy_pct' => 96.55
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767708714
'last_updated_date' => '6. Januar 2026'
]
SigmaDotMoney Preisprognose für 2026
Die Preisprognose für SigmaDotMoney im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.005725 am unteren Ende und $0.01709 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte SigmaDotMoney im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SIGMA das prognostizierte Preisziel erreicht.
SigmaDotMoney Preisprognose 2027-2032
Die Preisprognose für SIGMA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.009995 am unteren Ende und $0.062258 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte SigmaDotMoney, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.005511 | $0.009995 | $0.014479 |
| 2028 | $0.009946 | $0.017154 | $0.024362 |
| 2029 | $0.02185 | $0.046864 | $0.071877 |
| 2030 | $0.018582 | $0.036155 | $0.053728 |
| 2031 | $0.02197 | $0.0355092 | $0.049047 |
| 2032 | $0.033536 | $0.062258 | $0.090981 |
SigmaDotMoney Preisprognose 2032-2037
Die Preisprognose für SigmaDotMoney für die Jahre 2032-2037 wird derzeit zwischen $0.062258 am unteren Ende und $0.567753 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte SigmaDotMoney bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.033536 | $0.062258 | $0.090981 |
| 2033 | $0.077931 | $0.160136 | $0.242341 |
| 2034 | $0.062653 | $0.1015021 | $0.140351 |
| 2035 | $0.074075 | $0.119722 | $0.165368 |
| 2036 | $0.122618 | $0.23238 | $0.342143 |
| 2037 | $0.318435 | $0.567753 | $0.81707 |
SigmaDotMoney Potenzielles Preishistogramm
SigmaDotMoney Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für SigmaDotMoney Bullisch, mit 28 technischen Indikatoren, die bullische Signale zeigen, und 1 anzeigen bärische Signale. Die Preisprognose für SIGMA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von SigmaDotMoney
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von SigmaDotMoney im nächsten Monat sinken, und bis zum 04.02.2026 — erreichen. Der kurzfristige 50-Tage-SMA für SigmaDotMoney wird voraussichtlich bis zum 04.02.2026 $0.015232 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 66.18, was darauf hindeutet, dass sich der SIGMA-Markt in einem NEUTRAL Zustand befindet.
Beliebte SIGMA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.016341 | BUY |
| SMA 5 | $0.01606 | BUY |
| SMA 10 | $0.015738 | BUY |
| SMA 21 | $0.015142 | BUY |
| SMA 50 | $0.014676 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.016335 | BUY |
| EMA 5 | $0.016144 | BUY |
| EMA 10 | $0.015802 | BUY |
| EMA 21 | $0.015373 | BUY |
| EMA 50 | $0.015976 | BUY |
| EMA 100 | $0.012831 | BUY |
| EMA 200 | $0.006415 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.010331 | BUY |
| EMA 50 | $0.004339 | BUY |
| EMA 100 | $0.002169 | BUY |
| EMA 200 | $0.001084 | BUY |
SigmaDotMoney Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 66.18 | NEUTRAL |
| Stoch RSI (14) | 115.09 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 169.06 | SELL |
| Average Directional Index (14) | 19.67 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.001356 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 83.12 | SELL |
| VWMA (10) | 0.015742 | BUY |
| Hull Moving Average (9) | 0.016499 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | — | — |
Auf weltweiten Geldflüssen basierende SigmaDotMoney-Preisprognose
Definition weltweiter Geldflüsse, die für SigmaDotMoney-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
SigmaDotMoney-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.023285 | $0.032719 | $0.045976 | $0.0646046 | $0.09078 | $0.127561 |
| Amazon.com aktie | $0.034576 | $0.072146 | $0.150537 | $0.314105 | $0.655398 | $1.36 |
| Apple aktie | $0.0235048 | $0.033339 | $0.04729 | $0.067077 | $0.095144 | $0.134954 |
| Netflix aktie | $0.026146 | $0.041255 | $0.065094 | $0.1027087 | $0.162058 | $0.2557025 |
| Google aktie | $0.021459 | $0.027789 | $0.035987 | $0.0466041 | $0.060352 | $0.078155 |
| Tesla aktie | $0.037565 | $0.085158 | $0.193046 | $0.437622 | $0.992057 | $2.24 |
| Kodak aktie | $0.012426 | $0.009318 | $0.006987 | $0.00524 | $0.003929 | $0.002946 |
| Nokia aktie | $0.010977 | $0.007272 | $0.004817 | $0.003191 | $0.002114 | $0.00140056 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
SigmaDotMoney Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in SigmaDotMoney investieren?", "Sollte ich heute SIGMA kaufen?", "Wird SigmaDotMoney auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere SigmaDotMoney-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie SigmaDotMoney.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich SigmaDotMoney zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der SigmaDotMoney-Preis entspricht heute $0.01657 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
SigmaDotMoney-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von SigmaDotMoney 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0170018 | $0.017443 | $0.017897 | $0.018362 |
| Wenn die Wachstumsrate von SigmaDotMoney 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017432 | $0.018338 | $0.019292 | $0.020295 |
| Wenn die Wachstumsrate von SigmaDotMoney 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018724 | $0.021158 | $0.0239082 | $0.027015 |
| Wenn die Wachstumsrate von SigmaDotMoney 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020878 | $0.0263054 | $0.033143 | $0.041758 |
| Wenn die Wachstumsrate von SigmaDotMoney 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.025185 | $0.038279 | $0.058179 | $0.088424 |
| Wenn die Wachstumsrate von SigmaDotMoney 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0381079 | $0.087635 | $0.201531 | $0.463454 |
| Wenn die Wachstumsrate von SigmaDotMoney 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.059644 | $0.21468 | $0.7727049 | $2.78 |
Fragefeld
Ist SIGMA eine gute Investition?
Die Entscheidung, SigmaDotMoney zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von SigmaDotMoney in den letzten 2026 Stunden um 0.7922% gestiegen, und SigmaDotMoney hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in SigmaDotMoney investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann SigmaDotMoney steigen?
Es scheint, dass der Durchschnittswert von SigmaDotMoney bis zum Ende dieses Jahres potenziell auf $0.01709 steigen könnte. Betrachtet man die Aussichten von SigmaDotMoney in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.053728 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird SigmaDotMoney nächste Woche kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney in der nächsten Woche um 0.86% steigen und $0.016712 erreichen bis zum 13. Januar 2026.
Wie viel wird SigmaDotMoney nächsten Monat kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney im nächsten Monat um -11.62% fallen und $0.014645 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von SigmaDotMoney in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von SigmaDotMoney im Jahr 2026 wird erwartet, dass SIGMA innerhalb der Spanne von $0.005725 bis $0.01709 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte SigmaDotMoney-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird SigmaDotMoney in 5 Jahren sein?
Die Zukunft von SigmaDotMoney scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.053728 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der SigmaDotMoney-Prognose für 2030 könnte der Wert von SigmaDotMoney seinen höchsten Gipfel von ungefähr $0.053728 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.018582 liegen wird.
Wie viel wird SigmaDotMoney im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Preisprognosesimulation wird der Wert von SIGMA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.01709 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.01709 und $0.005725 während des Jahres 2026 liegen.
Wie viel wird SigmaDotMoney im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von SigmaDotMoney könnte der Wert von SIGMA um -12.62% fallen und bis zu $0.014479 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.014479 und $0.005511 im Laufe des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2028 kosten?
Unser neues experimentelles SigmaDotMoney-Preisprognosemodell deutet darauf hin, dass der Wert von SIGMA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.024362 erreichen wird. Der Preis wird voraussichtlich zwischen $0.024362 und $0.009946 im Laufe des Jahres liegen.
Wie viel wird SigmaDotMoney im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von SigmaDotMoney im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.071877 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.071877 und $0.02185.
Wie viel wird SigmaDotMoney im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für SigmaDotMoney-Preisprognosen wird der Wert von SIGMA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.053728 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.053728 und $0.018582 während des Jahres 2030 liegen.
Wie viel wird SigmaDotMoney im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von SigmaDotMoney im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.049047 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.049047 und $0.02197 während des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen SigmaDotMoney-Preisprognose könnte SIGMA eine 449.04% Steigerung im Wert erfahren und $0.090981 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.090981 und $0.033536 liegen.
Wie viel wird SigmaDotMoney im Jahr 2033 kosten?
Laut unserer experimentellen SigmaDotMoney-Preisprognose wird der Wert von SIGMA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.242341 beträgt. Im Laufe des Jahres könnte der Preis von SIGMA zwischen $0.242341 und $0.077931 liegen.
Wie viel wird SigmaDotMoney im Jahr 2034 kosten?
Die Ergebnisse unserer neuen SigmaDotMoney-Preisprognosesimulation deuten darauf hin, dass SIGMA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.140351 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.140351 und $0.062653.
Wie viel wird SigmaDotMoney im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von SigmaDotMoney könnte SIGMA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.165368 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.165368 und $0.074075.
Wie viel wird SigmaDotMoney im Jahr 2036 kosten?
Unsere jüngste SigmaDotMoney-Preisprognosesimulation deutet darauf hin, dass der Wert von SIGMA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.342143 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.342143 und $0.122618.
Wie viel wird SigmaDotMoney im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von SigmaDotMoney um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.81707 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.81707 und $0.318435 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von SigmaDotMoney?
SigmaDotMoney-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
SigmaDotMoney Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von SigmaDotMoney. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SIGMA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SIGMA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SIGMA einzuschätzen.
Wie liest man SigmaDotMoney-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von SigmaDotMoney in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SIGMA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von SigmaDotMoney?
Die Preisentwicklung von SigmaDotMoney wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SIGMA. Die Marktkapitalisierung von SigmaDotMoney kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SIGMA-„Walen“, großen Inhabern von SigmaDotMoney, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen SigmaDotMoney-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


