SigmaDotMoney Preisvorhersage bis zu $0.017073 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.005719 | $0.017073 |
| 2027 | $0.0055062 | $0.014465 |
| 2028 | $0.009937 | $0.024339 |
| 2029 | $0.021829 | $0.071808 |
| 2030 | $0.018564 | $0.053676 |
| 2031 | $0.021949 | $0.04900028 |
| 2032 | $0.0335039 | $0.090893 |
| 2033 | $0.077855 | $0.2421059 |
| 2034 | $0.062592 | $0.140214 |
| 2035 | $0.0740036 | $0.1652078 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in SigmaDotMoney eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.43 Gewinn erzielen könnten, was einer Rendite von 39.54% in den nächsten 90 Tagen entspricht.
Langfristige SigmaDotMoney Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'SigmaDotMoney'
'name_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_lang' => 'SigmaDotMoney'
'name_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'name_with_lang' => 'SigmaDotMoney'
'name_with_lang_with_ticker' => 'SigmaDotMoney <small>SIGMA</small>'
'image' => '/uploads/coins/sigmadotmoney.png?1762828399'
'price_for_sd' => 0.01655
'ticker' => 'SIGMA'
'marketcap' => '$2.4M'
'low24h' => '$0.01631'
'high24h' => '$0.01659'
'volume24h' => '$268.55K'
'current_supply' => '145M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01655'
'change_24h_pct' => '0.8193%'
'ath_price' => '$0.04297'
'ath_days' => 77
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21.10.2025'
'ath_pct' => '-61.49%'
'fdv' => '$16.54M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.816276'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016696'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014631'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005719'
'current_year_max_price_prediction' => '$0.017073'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.018564'
'grand_prediction_max_price' => '$0.053676'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.016868739110554
107 => 0.016931720859041
108 => 0.017073621954309
109 => 0.015861092631713
110 => 0.016405482699568
111 => 0.016725260861981
112 => 0.015280491490569
113 => 0.016696702416796
114 => 0.015839985193841
115 => 0.01554920250091
116 => 0.015940703089236
117 => 0.015788134929218
118 => 0.015656965784338
119 => 0.015583771147723
120 => 0.015871245971446
121 => 0.015857834927313
122 => 0.015387470319243
123 => 0.014773898862529
124 => 0.014979833583199
125 => 0.014905015568531
126 => 0.01463386543166
127 => 0.014816587885119
128 => 0.014011970673803
129 => 0.012627668582099
130 => 0.013542180946199
131 => 0.013506973214979
201 => 0.013489219880354
202 => 0.01417645064671
203 => 0.014110389265636
204 => 0.013990487212113
205 => 0.014631663336419
206 => 0.014397625426011
207 => 0.01511887511962
208 => 0.015593936815337
209 => 0.015473445802667
210 => 0.015920243623661
211 => 0.014984577903233
212 => 0.015295368523166
213 => 0.015359422039197
214 => 0.014623751322572
215 => 0.014121197724575
216 => 0.014087683129119
217 => 0.013216324446344
218 => 0.013681797221321
219 => 0.014091394000728
220 => 0.013895228929386
221 => 0.013833128928064
222 => 0.014150384366972
223 => 0.014175037831684
224 => 0.013612936223589
225 => 0.013729814947355
226 => 0.014217218654929
227 => 0.013717533624473
228 => 0.012746727233382
301 => 0.012505953825943
302 => 0.012473830215057
303 => 0.011820833638102
304 => 0.012522043456331
305 => 0.012215946579419
306 => 0.01318290294598
307 => 0.012630582655292
308 => 0.012606773231469
309 => 0.012570781795277
310 => 0.012008720666544
311 => 0.012131776332888
312 => 0.012540832109724
313 => 0.012686787819242
314 => 0.01267156344296
315 => 0.012538827513258
316 => 0.012599593342158
317 => 0.012403845435054
318 => 0.012334722774915
319 => 0.012116552645832
320 => 0.011795902827117
321 => 0.011840491151069
322 => 0.011205199957604
323 => 0.010859059597948
324 => 0.010763252508452
325 => 0.010635135264325
326 => 0.010777723692084
327 => 0.011203400257473
328 => 0.010689944007292
329 => 0.0098096592811264
330 => 0.0098625658931012
331 => 0.0099814313420944
401 => 0.0097599263642691
402 => 0.0095502904922612
403 => 0.0097325518746762
404 => 0.0093595636316112
405 => 0.010026505189296
406 => 0.010008466289243
407 => 0.010257060858559
408 => 0.010412512144426
409 => 0.010054247258454
410 => 0.0099641446084827
411 => 0.010015471172843
412 => 0.0091671573952989
413 => 0.010187735524704
414 => 0.010196561526747
415 => 0.010120987938829
416 => 0.010664414285923
417 => 0.011811213377218
418 => 0.011379741429186
419 => 0.0112126624496
420 => 0.010895045187271
421 => 0.011318251331077
422 => 0.011285755702277
423 => 0.011138798145242
424 => 0.011049917756212
425 => 0.011213682598221
426 => 0.011029625479982
427 => 0.010996563763995
428 => 0.010796245736614
429 => 0.010724741314729
430 => 0.010671802287438
501 => 0.010613521620072
502 => 0.010742074249643
503 => 0.010450757078527
504 => 0.010099457128335
505 => 0.010070250338595
506 => 0.010150892852955
507 => 0.01011521454348
508 => 0.010070079524576
509 => 0.0099839044816966
510 => 0.0099583381873128
511 => 0.010041416241057
512 => 0.0099476259621312
513 => 0.010086018627708
514 => 0.010048383480286
515 => 0.0098381566061373
516 => 0.00957613608499
517 => 0.0095738035527451
518 => 0.0095173516612637
519 => 0.0094454516898634
520 => 0.0094254507626684
521 => 0.0097172023294176
522 => 0.010321119341199
523 => 0.010202555981277
524 => 0.010288230159682
525 => 0.010709662322586
526 => 0.010843622934266
527 => 0.010748540865127
528 => 0.010618386664482
529 => 0.010624112788767
530 => 0.011068889092725
531 => 0.011096629245229
601 => 0.011166719661295
602 => 0.011256805653489
603 => 0.01076388289914
604 => 0.010600896171365
605 => 0.010523664017585
606 => 0.01028581887655
607 => 0.010542314469855
608 => 0.010392865471873
609 => 0.010413031247605
610 => 0.010399898259704
611 => 0.010407069759147
612 => 0.010026318765539
613 => 0.010165044415926
614 => 0.0099343861158744
615 => 0.0096255605447139
616 => 0.0096245252531112
617 => 0.0097001098741398
618 => 0.0096551491839254
619 => 0.0095341611226036
620 => 0.0095513469056669
621 => 0.0094007813623024
622 => 0.0095696282887085
623 => 0.0095744702143945
624 => 0.0095094549505739
625 => 0.0097695869370883
626 => 0.0098761632242108
627 => 0.0098333687848022
628 => 0.0098731606522606
629 => 0.010207482824163
630 => 0.010261991925682
701 => 0.010286201267908
702 => 0.010253763956449
703 => 0.0098792714478392
704 => 0.0098958817830611
705 => 0.0097740061643331
706 => 0.0096710341094442
707 => 0.0096751524516225
708 => 0.0097280934732655
709 => 0.0099592900197304
710 => 0.010445829521985
711 => 0.01046429334044
712 => 0.010486672027035
713 => 0.010395646662027
714 => 0.010368192540945
715 => 0.010404411613162
716 => 0.010587130269177
717 => 0.011057132260079
718 => 0.010891002166117
719 => 0.010755935813756
720 => 0.010874425418403
721 => 0.01085618487252
722 => 0.010702216308629
723 => 0.010697894923849
724 => 0.010402380023015
725 => 0.010293134892726
726 => 0.010201841484999
727 => 0.010102151467037
728 => 0.010043051882749
729 => 0.010133855704496
730 => 0.010154623612889
731 => 0.0099560794696603
801 => 0.0099290186365841
802 => 0.010091154069817
803 => 0.01001980431067
804 => 0.010093189307342
805 => 0.010110215256055
806 => 0.010107473686171
807 => 0.010032976343153
808 => 0.01008045872805
809 => 0.0099681487325888
810 => 0.0098460284809406
811 => 0.0097681233687496
812 => 0.0097001408257493
813 => 0.0097378614917744
814 => 0.0096033942049163
815 => 0.0095603754135586
816 => 0.010064372764435
817 => 0.010436681026411
818 => 0.010431267516832
819 => 0.010398314169509
820 => 0.010349352179729
821 => 0.010583548394659
822 => 0.010501959116279
823 => 0.010561322133313
824 => 0.010576432512606
825 => 0.010622167079771
826 => 0.010638513256514
827 => 0.010589103757248
828 => 0.010423279442848
829 => 0.010010061017468
830 => 0.0098177067249912
831 => 0.0097542266045598
901 => 0.0097565339863716
902 => 0.009692886095397
903 => 0.0097116332517874
904 => 0.0096863665994707
905 => 0.0096385176726426
906 => 0.0097349069553775
907 => 0.0097460149222844
908 => 0.0097235165119279
909 => 0.0097288157020212
910 => 0.0095425384734662
911 => 0.0095567007265804
912 => 0.0094778435015886
913 => 0.0094630587225407
914 => 0.0092637145246456
915 => 0.0089105473826709
916 => 0.0091062362620888
917 => 0.0088698716137724
918 => 0.008780356739946
919 => 0.0092041062302208
920 => 0.0091615735343785
921 => 0.009088776047615
922 => 0.0089810933923662
923 => 0.0089411528480649
924 => 0.0086984867445298
925 => 0.0086841487365597
926 => 0.0088044206100076
927 => 0.0087489192787138
928 => 0.0086709743895796
929 => 0.0083886659022819
930 => 0.0080712576934313
1001 => 0.0080808382520997
1002 => 0.0081817998977454
1003 => 0.0084753594989931
1004 => 0.008360660684153
1005 => 0.0082774453779692
1006 => 0.0082618616525639
1007 => 0.0084569246027502
1008 => 0.0087329795442155
1009 => 0.0088624983463698
1010 => 0.0087341491469794
1011 => 0.0085867084975313
1012 => 0.0085956825266891
1013 => 0.0086553827222394
1014 => 0.0086616563686765
1015 => 0.0085656876630295
1016 => 0.0085927022915292
1017 => 0.0085516646005687
1018 => 0.0082998163668939
1019 => 0.0082952612309661
1020 => 0.0082334536128209
1021 => 0.0082315821027074
1022 => 0.0081264319256095
1023 => 0.0081117206889647
1024 => 0.0079029386301773
1025 => 0.0080403596135215
1026 => 0.0079481848328197
1027 => 0.0078092556964694
1028 => 0.007785304260997
1029 => 0.0077845842519245
1030 => 0.0079272334109698
1031 => 0.0080386926750436
1101 => 0.0079497882525934
1102 => 0.0079295464389413
1103 => 0.0081456760518427
1104 => 0.0081181715885359
1105 => 0.0080943529006969
1106 => 0.0087082618520044
1107 => 0.0082223050131316
1108 => 0.0080104000939365
1109 => 0.0077481275167797
1110 => 0.0078335247903951
1111 => 0.0078515192506928
1112 => 0.0072208009808162
1113 => 0.0069649186572782
1114 => 0.006877109486562
1115 => 0.0068265740673753
1116 => 0.0068496036924825
1117 => 0.0066192795892953
1118 => 0.0067740611958462
1119 => 0.0065746199912978
1120 => 0.0065411830243175
1121 => 0.0068978086040741
1122 => 0.0069474309701209
1123 => 0.0067357265401048
1124 => 0.0068716750560091
1125 => 0.0068223782343165
1126 => 0.0065780388383188
1127 => 0.0065687068706307
1128 => 0.0064461059506641
1129 => 0.0062542592511326
1130 => 0.0061665801615124
1201 => 0.0061209161303735
1202 => 0.0061397579995957
1203 => 0.0061302309739462
1204 => 0.0060680606872553
1205 => 0.0061337945020054
1206 => 0.0059658717684063
1207 => 0.0058990035828418
1208 => 0.0058688007747524
1209 => 0.0057197596834112
1210 => 0.0059569503386091
1211 => 0.0060036798857322
1212 => 0.0060505015044987
1213 => 0.0064580517293838
1214 => 0.0064376916718736
1215 => 0.0066217366760164
1216 => 0.0066145850255924
1217 => 0.0065620924090795
1218 => 0.0063406346946278
1219 => 0.006428903792504
1220 => 0.0061572252293044
1221 => 0.0063607852812002
1222 => 0.0062678889743859
1223 => 0.006329376946421
1224 => 0.006218816028555
1225 => 0.0062800050054505
1226 => 0.0060147611949071
1227 => 0.0057670802567027
1228 => 0.0058667542964935
1229 => 0.0059751113768551
1230 => 0.0062100571359497
1231 => 0.0060701253800934
]
'min_raw' => 0.0057197596834112
'max_raw' => 0.017073621954309
'avg_raw' => 0.01139669081886
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005719'
'max' => '$0.017073'
'avg' => '$0.011396'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010835270316589
'max_diff' => 0.00051859195430865
'year' => 2026
]
1 => [
'items' => [
101 => 0.0061204501309048
102 => 0.005951870639948
103 => 0.0056040429977533
104 => 0.0056060116644341
105 => 0.0055525059595195
106 => 0.0055062692185125
107 => 0.0060861982255492
108 => 0.0060140748862033
109 => 0.0058991557842249
110 => 0.0060529795689266
111 => 0.0060936530191135
112 => 0.0060948109350602
113 => 0.006207036797612
114 => 0.0062669317605735
115 => 0.0062774885073951
116 => 0.0064540783269207
117 => 0.0065132689051496
118 => 0.0067570665199104
119 => 0.0062618500914291
120 => 0.0062516514349707
121 => 0.0060551441850306
122 => 0.0059305161804618
123 => 0.0060636775711273
124 => 0.0061816403849144
125 => 0.006058809618475
126 => 0.006074848723473
127 => 0.0059099584551704
128 => 0.0059688989672803
129 => 0.0060196664764538
130 => 0.0059916356418645
131 => 0.0059496721257765
201 => 0.006171968779414
202 => 0.0061594259310282
203 => 0.0063664336854734
204 => 0.00652781103333
205 => 0.0068170280903406
206 => 0.0065152150141239
207 => 0.0065042157460283
208 => 0.0066117353560014
209 => 0.0065132524444575
210 => 0.0065754902450387
211 => 0.0068070006184743
212 => 0.0068118920678557
213 => 0.0067299539884403
214 => 0.0067249680488613
215 => 0.0067407051533174
216 => 0.0068328778656563
217 => 0.0068006698877837
218 => 0.0068379417751841
219 => 0.0068845508411057
220 => 0.0070773456995918
221 => 0.0071238278872688
222 => 0.0070109002694647
223 => 0.0070210963689555
224 => 0.0069788583399643
225 => 0.0069380569331998
226 => 0.0070297725370395
227 => 0.0071973846057312
228 => 0.007196341899751
301 => 0.0072352246417744
302 => 0.007259448267933
303 => 0.0071554627316823
304 => 0.0070877719712372
305 => 0.0071137289160669
306 => 0.0071552346361182
307 => 0.0071002691704543
308 => 0.0067609968538966
309 => 0.0068639104019407
310 => 0.0068467805553308
311 => 0.0068223855706977
312 => 0.006925865939063
313 => 0.0069158850050922
314 => 0.0066169172827121
315 => 0.0066360562263005
316 => 0.0066180811852619
317 => 0.006676162220205
318 => 0.0065101158779649
319 => 0.0065611906144988
320 => 0.0065932242104569
321 => 0.0066120922445699
322 => 0.0066802565217182
323 => 0.006672258230544
324 => 0.0066797593367087
325 => 0.0067808289650177
326 => 0.0072920044620963
327 => 0.0073198266165571
328 => 0.0071828201525171
329 => 0.0072375515325681
330 => 0.0071324792513072
331 => 0.0072030149776407
401 => 0.0072512737301849
402 => 0.0070332017070622
403 => 0.0070202888971286
404 => 0.0069147829451867
405 => 0.0069714758675977
406 => 0.0068812733516764
407 => 0.0069034058939334
408 => 0.0068415213763025
409 => 0.0069529011869537
410 => 0.0070774411219345
411 => 0.0071089048277417
412 => 0.00702613736374
413 => 0.006966208265161
414 => 0.0068609925099286
415 => 0.0070359686557661
416 => 0.0070871370131104
417 => 0.007035699890168
418 => 0.0070237807848589
419 => 0.0070011941018355
420 => 0.0070285726564364
421 => 0.0070868583392473
422 => 0.0070593718876013
423 => 0.0070775271731624
424 => 0.0070083379462524
425 => 0.0071554971552216
426 => 0.0073892213948569
427 => 0.0073899728565051
428 => 0.0073624862566969
429 => 0.0073512393322624
430 => 0.007379442251692
501 => 0.0073947411785383
502 => 0.0074859442484427
503 => 0.0075838087761408
504 => 0.0080404998252692
505 => 0.0079122628061527
506 => 0.0083174662736115
507 => 0.0086379296072862
508 => 0.0087340225488921
509 => 0.008645621564137
510 => 0.0083432065706172
511 => 0.0083283686482882
512 => 0.0087803043249237
513 => 0.0086526117963089
514 => 0.0086374231763444
515 => 0.0084758419215007
516 => 0.0085713564553411
517 => 0.0085504660256765
518 => 0.0085174894604562
519 => 0.0086997245374235
520 => 0.0090408523332687
521 => 0.00898768436721
522 => 0.0089479969469381
523 => 0.0087740982241413
524 => 0.0088788240969509
525 => 0.0088415332195354
526 => 0.0090017584942881
527 => 0.008906844590949
528 => 0.0086516443998155
529 => 0.0086922858714044
530 => 0.008686142994733
531 => 0.0088125629613407
601 => 0.0087746148253015
602 => 0.0086787330121255
603 => 0.0090396863955478
604 => 0.0090162480905566
605 => 0.0090494782482917
606 => 0.0090641071914034
607 => 0.0092838131551805
608 => 0.0093738196587333
609 => 0.0093942527108254
610 => 0.0094797519278477
611 => 0.0093921254124179
612 => 0.0097426939507839
613 => 0.0099758015725561
614 => 0.010246568070853
615 => 0.010642230700038
616 => 0.010791003508696
617 => 0.010764129032426
618 => 0.011064115922239
619 => 0.011603185694899
620 => 0.010873090446075
621 => 0.011641882515897
622 => 0.011398491822722
623 => 0.010821416867618
624 => 0.010784260043776
625 => 0.011175061903351
626 => 0.012041822814603
627 => 0.011824709037055
628 => 0.012042177934964
629 => 0.011788488914012
630 => 0.011775891115863
701 => 0.012029856825461
702 => 0.012623261548885
703 => 0.01234135720823
704 => 0.01193717821012
705 => 0.012235617692602
706 => 0.011977081793606
707 => 0.011394528053524
708 => 0.011824543014241
709 => 0.011537004256131
710 => 0.011620923352148
711 => 0.012225287053534
712 => 0.012152568414035
713 => 0.012246673067111
714 => 0.01208058081758
715 => 0.011925424466173
716 => 0.011635813614211
717 => 0.011550074118588
718 => 0.011573769430594
719 => 0.011550062376368
720 => 0.011388027766357
721 => 0.011353036407752
722 => 0.011294715943738
723 => 0.011312791894187
724 => 0.011203132359587
725 => 0.011410082558193
726 => 0.011448494338694
727 => 0.011599095435025
728 => 0.011614731340446
729 => 0.012034153250057
730 => 0.011803142710342
731 => 0.011958124524873
801 => 0.011944261492636
802 => 0.010833923831739
803 => 0.010986918564819
804 => 0.011224930357098
805 => 0.011117706367294
806 => 0.01096611673226
807 => 0.010843699974247
808 => 0.010658226068103
809 => 0.01091927702929
810 => 0.011262531283577
811 => 0.011623436834791
812 => 0.012057041207105
813 => 0.011960265758916
814 => 0.011615330902659
815 => 0.011630804428336
816 => 0.011726455675461
817 => 0.011602578619602
818 => 0.011566044857462
819 => 0.011721436497557
820 => 0.01172250659438
821 => 0.011579971070572
822 => 0.011421568919585
823 => 0.011420905208789
824 => 0.011392719076004
825 => 0.011793503164419
826 => 0.012013893889205
827 => 0.012039161330625
828 => 0.012012193189078
829 => 0.012022572156432
830 => 0.011894331649657
831 => 0.012187451419604
901 => 0.012456447107047
902 => 0.012384350516558
903 => 0.01227626747828
904 => 0.012190174132307
905 => 0.012364069660332
906 => 0.012356326366206
907 => 0.012454097664384
908 => 0.012449662193545
909 => 0.012416785383332
910 => 0.012384351690692
911 => 0.01251294761587
912 => 0.012475914054606
913 => 0.012438822969993
914 => 0.01236443112144
915 => 0.012374542209176
916 => 0.012266477832958
917 => 0.01221648230783
918 => 0.011464669565947
919 => 0.011263760635126
920 => 0.01132697067464
921 => 0.011347781060897
922 => 0.011260345236731
923 => 0.011385705748164
924 => 0.011366168445247
925 => 0.011442176661958
926 => 0.01139469002805
927 => 0.011396638896069
928 => 0.011536286961174
929 => 0.011576827388579
930 => 0.0115562082
1001 => 0.011570649172896
1002 => 0.011903435298149
1003 => 0.011856123753039
1004 => 0.011830990437654
1005 => 0.011837952537779
1006 => 0.011922986527796
1007 => 0.011946791402317
1008 => 0.011845928476233
1009 => 0.011893496015256
1010 => 0.012096032559197
1011 => 0.012166908887
1012 => 0.012393112102782
1013 => 0.012297016956276
1014 => 0.012473403756588
1015 => 0.013015556646054
1016 => 0.013448665888286
1017 => 0.013050360730133
1018 => 0.013845710697363
1019 => 0.014465004733028
1020 => 0.014441235196451
1021 => 0.014333246956804
1022 => 0.013628197161983
1023 => 0.012979399829089
1024 => 0.013522146347445
1025 => 0.013523529919937
1026 => 0.013476907512672
1027 => 0.01318733974528
1028 => 0.013466831182041
1029 => 0.013489016197328
1030 => 0.013476598488239
1031 => 0.013254587559907
1101 => 0.012915617906822
1102 => 0.012981851765656
1103 => 0.01309034417756
1104 => 0.012884945407937
1105 => 0.012819308055492
1106 => 0.012941340381704
1107 => 0.013334553963206
1108 => 0.013260219213354
1109 => 0.013258278032625
1110 => 0.01357631361533
1111 => 0.013348668774488
1112 => 0.012982687186726
1113 => 0.012890272009112
1114 => 0.012562260386906
1115 => 0.012788819182701
1116 => 0.012796972630427
1117 => 0.012672888693344
1118 => 0.012992755914355
1119 => 0.012989808281601
1120 => 0.013293474601998
1121 => 0.013873970554734
1122 => 0.013702289337039
1123 => 0.013502642759723
1124 => 0.013524349878276
1125 => 0.013762423391073
1126 => 0.013618478710546
1127 => 0.013670242221282
1128 => 0.0137623450408
1129 => 0.013817912958599
1130 => 0.013516354510047
1201 => 0.013446046810481
1202 => 0.013302221931819
1203 => 0.013264700705594
1204 => 0.01338184306826
1205 => 0.013350980194398
1206 => 0.012796287364717
1207 => 0.012738318877734
1208 => 0.012740096688469
1209 => 0.012594332171698
1210 => 0.012372006296129
1211 => 0.012956265422736
1212 => 0.012909341238168
1213 => 0.012857540570049
1214 => 0.012863885856323
1215 => 0.013117492940803
1216 => 0.01297038802434
1217 => 0.01336149055478
1218 => 0.01328109163214
1219 => 0.013198630780507
1220 => 0.013187232178992
1221 => 0.013155491786342
1222 => 0.013046642169867
1223 => 0.012915199717126
1224 => 0.012828410024476
1225 => 0.011833530140391
1226 => 0.012018174059927
1227 => 0.01223059005853
1228 => 0.012303915210045
1229 => 0.012178487464434
1230 => 0.013051594821755
1231 => 0.01321111994941
]
'min_raw' => 0.0055062692185125
'max_raw' => 0.014465004733028
'avg_raw' => 0.0099856369757705
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0055062'
'max' => '$0.014465'
'avg' => '$0.009985'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0002134904648987
'max_diff' => -0.0026086172212802
'year' => 2027
]
2 => [
'items' => [
101 => 0.012727907932178
102 => 0.01263751869317
103 => 0.013057520725216
104 => 0.012804208156732
105 => 0.01291827479081
106 => 0.012671725119047
107 => 0.013172695017599
108 => 0.013168878466326
109 => 0.012973989860871
110 => 0.013138708375662
111 => 0.013110084480193
112 => 0.012890055724624
113 => 0.013179670321609
114 => 0.013179813966835
115 => 0.012992237921329
116 => 0.012773190165853
117 => 0.012734029600851
118 => 0.012704527375604
119 => 0.012911019051919
120 => 0.01309615884322
121 => 0.013440658094785
122 => 0.013527273391729
123 => 0.013865338662007
124 => 0.013664037253656
125 => 0.013753271560688
126 => 0.013850148023935
127 => 0.01389659416293
128 => 0.013820912671875
129 => 0.014346067189834
130 => 0.014390406321469
131 => 0.014405272848774
201 => 0.014228193700067
202 => 0.01438548143001
203 => 0.014311891709991
204 => 0.014503351717666
205 => 0.014533375091553
206 => 0.014507946361983
207 => 0.014517476254741
208 => 0.014069349517269
209 => 0.014046111781874
210 => 0.013729263610891
211 => 0.01385838158259
212 => 0.013617001723284
213 => 0.013693545763158
214 => 0.013727285646596
215 => 0.01370966184621
216 => 0.013865681718983
217 => 0.013733032954371
218 => 0.013382951055086
219 => 0.013032773776221
220 => 0.013028377585733
221 => 0.01293618208935
222 => 0.012869541631913
223 => 0.012882378948213
224 => 0.01292761932525
225 => 0.012866912178957
226 => 0.012879867126549
227 => 0.013095005574942
228 => 0.01313815005647
229 => 0.012991528250601
301 => 0.012402820542611
302 => 0.012258350194409
303 => 0.012362192615725
304 => 0.012312562626644
305 => 0.0099371989958149
306 => 0.010495255446612
307 => 0.010163677253355
308 => 0.010316483739987
309 => 0.0099780282664281
310 => 0.010139556958381
311 => 0.010109728507061
312 => 0.011007066765851
313 => 0.010993056063189
314 => 0.010999762245123
315 => 0.010679658708516
316 => 0.011189592334089
317 => 0.011440803974667
318 => 0.011394311385777
319 => 0.011406012568757
320 => 0.011204947477287
321 => 0.011001708994715
322 => 0.010776286239365
323 => 0.011195093855711
324 => 0.011148529598058
325 => 0.011255331251823
326 => 0.011526957928011
327 => 0.011566955987889
328 => 0.011620713785985
329 => 0.011601445442108
330 => 0.012060495565476
331 => 0.012004901566626
401 => 0.012138867108369
402 => 0.011863289825013
403 => 0.011551447970859
404 => 0.011610718912455
405 => 0.011605010644152
406 => 0.011532337837016
407 => 0.011466732076153
408 => 0.011357516968626
409 => 0.011703089729637
410 => 0.01168906010663
411 => 0.011916183395462
412 => 0.011876037148003
413 => 0.011607930682019
414 => 0.011617506156902
415 => 0.011681905827306
416 => 0.01190479382188
417 => 0.011970962154041
418 => 0.011940310346232
419 => 0.012012860901747
420 => 0.012070201902703
421 => 0.01202006204863
422 => 0.012729936646706
423 => 0.0124351472213
424 => 0.012578825536111
425 => 0.012613091967592
426 => 0.0125253192239
427 => 0.0125443539891
428 => 0.012573186471716
429 => 0.01274825166018
430 => 0.01320767337023
501 => 0.013411148118222
502 => 0.014023311936822
503 => 0.013394252372906
504 => 0.013356926581691
505 => 0.013467195770997
506 => 0.013826600736636
507 => 0.014117864704095
508 => 0.014214493765523
509 => 0.014227264891162
510 => 0.014408547434179
511 => 0.014512455207117
512 => 0.014386534965253
513 => 0.014279830744671
514 => 0.013897629471165
515 => 0.013941870309273
516 => 0.014246645812308
517 => 0.014677159161532
518 => 0.015046584402447
519 => 0.014917224558848
520 => 0.015904148851688
521 => 0.016001998364099
522 => 0.015988478725337
523 => 0.016211394476569
524 => 0.015768952106377
525 => 0.015579799421203
526 => 0.014302901408305
527 => 0.014661657665937
528 => 0.01518313095542
529 => 0.015114112010132
530 => 0.014735404168288
531 => 0.015046297118589
601 => 0.014943506186698
602 => 0.014862430713916
603 => 0.015233853171984
604 => 0.014825458922145
605 => 0.015179056910372
606 => 0.014725563832968
607 => 0.014917815463717
608 => 0.014808684139939
609 => 0.014879305481055
610 => 0.014466454563919
611 => 0.014689218897416
612 => 0.014457186835264
613 => 0.014457076821855
614 => 0.014451954701223
615 => 0.014724939393357
616 => 0.014733841414367
617 => 0.014532105314423
618 => 0.014503031990711
619 => 0.01461053130642
620 => 0.01448467776184
621 => 0.014543563843236
622 => 0.014486461361257
623 => 0.014473606389802
624 => 0.014371175790149
625 => 0.014327045871431
626 => 0.014344350349648
627 => 0.014285281244422
628 => 0.0142496899719
629 => 0.014444874701299
630 => 0.014340595374111
701 => 0.014428892398832
702 => 0.01432826679519
703 => 0.013979454612478
704 => 0.013778849037578
705 => 0.013119975159342
706 => 0.01330683097388
707 => 0.013430716572234
708 => 0.013389772382717
709 => 0.013477736345098
710 => 0.013483136617974
711 => 0.013454538637118
712 => 0.013421425838914
713 => 0.013405308360001
714 => 0.013525434843015
715 => 0.013595172309676
716 => 0.013443150149405
717 => 0.013407533484269
718 => 0.013561236281677
719 => 0.013654994899305
720 => 0.014347255853452
721 => 0.014295970925996
722 => 0.014424686029753
723 => 0.014410194684364
724 => 0.014545108619026
725 => 0.014765635883316
726 => 0.014317242294623
727 => 0.014395067917336
728 => 0.014375986871903
729 => 0.014584308722624
730 => 0.014584959080703
731 => 0.014460059724747
801 => 0.014527769691871
802 => 0.014489975845749
803 => 0.014558274433837
804 => 0.014295285984523
805 => 0.014615577527939
806 => 0.014797162193925
807 => 0.014799683497188
808 => 0.014885753187721
809 => 0.014973204978122
810 => 0.015141061074351
811 => 0.014968523562702
812 => 0.014658145375434
813 => 0.014680553678039
814 => 0.014498579060406
815 => 0.014501638086605
816 => 0.014485308765016
817 => 0.01453431428832
818 => 0.014306039941068
819 => 0.0143596154741
820 => 0.014284609414118
821 => 0.01439490486881
822 => 0.014276245192053
823 => 0.014375977670445
824 => 0.014419018901935
825 => 0.014577841972745
826 => 0.014252786895359
827 => 0.013589977588276
828 => 0.013729308140411
829 => 0.013523227309625
830 => 0.013542300875119
831 => 0.013580832512953
901 => 0.013455938867966
902 => 0.013479764639578
903 => 0.013478913415357
904 => 0.013471578024886
905 => 0.013439088364203
906 => 0.01339197192833
907 => 0.013579669307175
908 => 0.013611562749364
909 => 0.013682457920589
910 => 0.013893393861501
911 => 0.013872316386791
912 => 0.013906694622538
913 => 0.013831647126929
914 => 0.013545782113199
915 => 0.013561305958783
916 => 0.013367723355602
917 => 0.013677507578192
918 => 0.013604146585331
919 => 0.013556850275992
920 => 0.013543945039792
921 => 0.013755403850101
922 => 0.013818675640357
923 => 0.013779248906681
924 => 0.013698383525652
925 => 0.013853668962932
926 => 0.013895216794982
927 => 0.013904517822353
928 => 0.014179653844185
929 => 0.013919894869593
930 => 0.01398242143656
1001 => 0.014470235863035
1002 => 0.014027855492011
1003 => 0.014262194240802
1004 => 0.014250724578489
1005 => 0.014370604352779
1006 => 0.014240890937968
1007 => 0.014242498891205
1008 => 0.014348944009416
1009 => 0.014199461038367
1010 => 0.014162446952552
1011 => 0.014111312258098
1012 => 0.014222962992713
1013 => 0.014289892558586
1014 => 0.014829295705176
1015 => 0.015177774737644
1016 => 0.015162646343797
1017 => 0.015300891544397
1018 => 0.015238610815346
1019 => 0.015037489912413
1020 => 0.015380778769638
1021 => 0.015272147811396
1022 => 0.015281103215607
1023 => 0.015280769895015
1024 => 0.015352999985562
1025 => 0.015301818346619
1026 => 0.015200934082574
1027 => 0.015267905765118
1028 => 0.015466787719461
1029 => 0.016084123408185
1030 => 0.016429592638204
1031 => 0.016063325726753
1101 => 0.016315971737763
1102 => 0.016164474158135
1103 => 0.016136942541255
1104 => 0.016295622906562
1105 => 0.016454581020843
1106 => 0.016444456076158
1107 => 0.01632906064778
1108 => 0.016263876698339
1109 => 0.016757471401728
1110 => 0.017121143571018
1111 => 0.017096343567161
1112 => 0.01720580271879
1113 => 0.017527178173417
1114 => 0.01755656071738
1115 => 0.017552859192191
1116 => 0.017480031491228
1117 => 0.017796467362184
1118 => 0.018060443732895
1119 => 0.017463173982649
1120 => 0.017690606484708
1121 => 0.017792708262299
1122 => 0.017942623964036
1123 => 0.018195556881655
1124 => 0.018470309117333
1125 => 0.018509162095963
1126 => 0.018481594048339
1127 => 0.018300387563173
1128 => 0.018601024737927
1129 => 0.018777130944089
1130 => 0.018881998159739
1201 => 0.019147923970388
1202 => 0.017793338808118
1203 => 0.016834496103013
1204 => 0.016684758968754
1205 => 0.016989255319391
1206 => 0.017069548578742
1207 => 0.017037182466577
1208 => 0.015957917827816
1209 => 0.01667907686379
1210 => 0.017454983349725
1211 => 0.017484789077828
1212 => 0.017873224088126
1213 => 0.017999714449968
1214 => 0.018312455546599
1215 => 0.018292893505855
1216 => 0.018369040986087
1217 => 0.018351535999072
1218 => 0.018930823025173
1219 => 0.019569862639918
1220 => 0.019547734730081
1221 => 0.019455865224688
1222 => 0.019592307106275
1223 => 0.020251864472339
1224 => 0.020191142999263
1225 => 0.020250128738114
1226 => 0.021027784043727
1227 => 0.022038846561203
1228 => 0.021569106512818
1229 => 0.022588307253754
1230 => 0.023229840094664
1231 => 0.024339304807283
]
'min_raw' => 0.0099371989958149
'max_raw' => 0.024339304807283
'avg_raw' => 0.017138251901549
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009937'
'max' => '$0.024339'
'avg' => '$0.017138'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0044309297773024
'max_diff' => 0.0098743000742547
'year' => 2028
]
3 => [
'items' => [
101 => 0.024200394361034
102 => 0.024632300832029
103 => 0.023951715670764
104 => 0.022388954571545
105 => 0.022141641645584
106 => 0.022636768386318
107 => 0.023853989164651
108 => 0.022598433772288
109 => 0.022852430992924
110 => 0.022779279776293
111 => 0.022775381858832
112 => 0.022924149514365
113 => 0.022708354270815
114 => 0.021829165627772
115 => 0.022232092601787
116 => 0.022076503146978
117 => 0.022249141247051
118 => 0.023180797871782
119 => 0.022768890270068
120 => 0.02233497907232
121 => 0.0228792000069
122 => 0.023572180271222
123 => 0.023528814811686
124 => 0.02344466769483
125 => 0.023919000586747
126 => 0.024702459557695
127 => 0.02491422536935
128 => 0.025070546562152
129 => 0.025092100613571
130 => 0.025314120738957
131 => 0.024120262568481
201 => 0.026014946145478
202 => 0.026342105659648
203 => 0.026280613230356
204 => 0.026644237261379
205 => 0.026537249847201
206 => 0.026382241869868
207 => 0.026958663304088
208 => 0.026297842644565
209 => 0.025359890913381
210 => 0.024845312043071
211 => 0.025522951009388
212 => 0.025936761479777
213 => 0.026210263877415
214 => 0.026293025537686
215 => 0.024212938379777
216 => 0.023091886768587
217 => 0.023810467998477
218 => 0.02468718669277
219 => 0.024115392351868
220 => 0.024137805607481
221 => 0.023322577142264
222 => 0.024759316322669
223 => 0.024549995508963
224 => 0.025635952260754
225 => 0.025376779966592
226 => 0.026262335541079
227 => 0.026029139080117
228 => 0.026997124551731
301 => 0.027383280163518
302 => 0.02803169553603
303 => 0.028508672523576
304 => 0.028788762533778
305 => 0.028771946980157
306 => 0.029881803140868
307 => 0.029227359738317
308 => 0.028405224584247
309 => 0.028390354753113
310 => 0.028816150199151
311 => 0.029708500642772
312 => 0.029939874129632
313 => 0.030069180344235
314 => 0.029871143375389
315 => 0.029160791966301
316 => 0.028854065829421
317 => 0.029115405384754
318 => 0.028795809565745
319 => 0.029347521612104
320 => 0.03010514009109
321 => 0.029948694871127
322 => 0.030471667785883
323 => 0.031012889734301
324 => 0.031786861428336
325 => 0.031989206289246
326 => 0.032323674649844
327 => 0.032667952460032
328 => 0.032778525214117
329 => 0.032989642910376
330 => 0.032988530215906
331 => 0.033624747603444
401 => 0.03432651508391
402 => 0.034591416061832
403 => 0.035200541253837
404 => 0.03415743570882
405 => 0.034948643247048
406 => 0.035662332251739
407 => 0.034811442798403
408 => 0.035984195678011
409 => 0.036029731014811
410 => 0.03671726053845
411 => 0.036020317651523
412 => 0.035606475189986
413 => 0.036801222869968
414 => 0.037379323638112
415 => 0.037205194982007
416 => 0.035880067311255
417 => 0.035108786169478
418 => 0.033090194652427
419 => 0.035481303501039
420 => 0.036645942871596
421 => 0.035877051176642
422 => 0.036264835423818
423 => 0.038380460536945
424 => 0.039185953603442
425 => 0.039018416676432
426 => 0.039046727659204
427 => 0.039481357097153
428 => 0.041408743379819
429 => 0.040253808842781
430 => 0.041136713021775
501 => 0.041605002214766
502 => 0.042039975315256
503 => 0.040971818855113
504 => 0.039582162994801
505 => 0.039142000650056
506 => 0.035800600050778
507 => 0.035626665638618
508 => 0.035529030982321
509 => 0.034913458285062
510 => 0.034429786764569
511 => 0.034045153213901
512 => 0.033035759915647
513 => 0.033376400522757
514 => 0.031767638282095
515 => 0.032796867352637
516 => 0.030229243971617
517 => 0.032367637020672
518 => 0.031203806904873
519 => 0.031985287526521
520 => 0.031982561014252
521 => 0.03054360742114
522 => 0.029713649018829
523 => 0.030242530815246
524 => 0.030809534083695
525 => 0.030901528456372
526 => 0.031636662994215
527 => 0.031841823242063
528 => 0.031220178113068
529 => 0.030176035684134
530 => 0.030418566156022
531 => 0.029708734146557
601 => 0.028464780853264
602 => 0.029358209825848
603 => 0.029663265758387
604 => 0.02979799583685
605 => 0.028574710641897
606 => 0.028190327874829
607 => 0.027985685714926
608 => 0.030018124926823
609 => 0.030129466534823
610 => 0.029559827126179
611 => 0.032134651268675
612 => 0.031551889265086
613 => 0.032202977203252
614 => 0.030396559057782
615 => 0.030465566663604
616 => 0.029610379364403
617 => 0.03008922710832
618 => 0.029750792956903
619 => 0.030050540942677
620 => 0.030230208649442
621 => 0.031085255620822
622 => 0.032377400283604
623 => 0.030957540116602
624 => 0.030338886709067
625 => 0.030722695803663
626 => 0.031744830000342
627 => 0.033293415630399
628 => 0.032376621769215
629 => 0.032783479316639
630 => 0.032872359590919
701 => 0.032196349739236
702 => 0.033318341077881
703 => 0.033919625351302
704 => 0.034536418597584
705 => 0.035071962891176
706 => 0.034290057811445
707 => 0.035126808328448
708 => 0.034452535118093
709 => 0.033847642343322
710 => 0.033848559715973
711 => 0.033469101642286
712 => 0.032733853809723
713 => 0.032598262828672
714 => 0.033303624235349
715 => 0.033869257285529
716 => 0.033915845532742
717 => 0.034229009052597
718 => 0.034414335997807
719 => 0.036230792000627
720 => 0.036961385631473
721 => 0.037854741693842
722 => 0.038202754226924
723 => 0.039250147182102
724 => 0.038404292305699
725 => 0.038221286282513
726 => 0.035680653572877
727 => 0.036096682036751
728 => 0.036762783748189
729 => 0.035691637344758
730 => 0.036371033193819
731 => 0.036505160325995
801 => 0.035655240199848
802 => 0.036109219262104
803 => 0.034903585468164
804 => 0.032403679805695
805 => 0.033321124187519
806 => 0.033996672060982
807 => 0.033032581951099
808 => 0.034760676157625
809 => 0.033751159197277
810 => 0.033431190786207
811 => 0.032182879937648
812 => 0.032772034606277
813 => 0.03356887473148
814 => 0.033076520176712
815 => 0.034098229805264
816 => 0.035545243119299
817 => 0.036576470978012
818 => 0.036655635848197
819 => 0.035992625421945
820 => 0.03705510386129
821 => 0.037062842856787
822 => 0.035864362836853
823 => 0.035130300497809
824 => 0.034963519989898
825 => 0.035380170397905
826 => 0.035886060911134
827 => 0.036683709250862
828 => 0.037165711436979
829 => 0.038422517504165
830 => 0.038762573190492
831 => 0.039136191291323
901 => 0.039635460293589
902 => 0.040234960740753
903 => 0.038923287891937
904 => 0.038975403099485
905 => 0.037753991504014
906 => 0.036448738046112
907 => 0.037439262718519
908 => 0.038734241963716
909 => 0.038437172294043
910 => 0.038403745887622
911 => 0.03845995983151
912 => 0.038235979001965
913 => 0.037222922011049
914 => 0.036714171132284
915 => 0.037370589562083
916 => 0.037719446743698
917 => 0.038260493808839
918 => 0.038193798337942
919 => 0.039587477473534
920 => 0.040129019042956
921 => 0.039990469535628
922 => 0.040015965979356
923 => 0.040996401123397
924 => 0.042086846645436
925 => 0.043108192773787
926 => 0.044147149923381
927 => 0.042894646528357
928 => 0.042258702548034
929 => 0.042914834406081
930 => 0.042566681606477
1001 => 0.044567270861832
1002 => 0.044705787321256
1003 => 0.046706231911237
1004 => 0.04860489203564
1005 => 0.047412377629532
1006 => 0.048536865002464
1007 => 0.04975308977709
1008 => 0.052099384692702
1009 => 0.051309235108774
1010 => 0.050703992910708
1011 => 0.050132041958044
1012 => 0.05132218109588
1013 => 0.052853276083769
1014 => 0.053183059279514
1015 => 0.053717434043499
1016 => 0.053155604319407
1017 => 0.053832266338562
1018 => 0.05622118060654
1019 => 0.055575674883803
1020 => 0.054658952987293
1021 => 0.056544771368096
1022 => 0.057227241709175
1023 => 0.062017175975362
1024 => 0.068064665848738
1025 => 0.065560965331201
1026 => 0.064006837626055
1027 => 0.064372094501166
1028 => 0.066580433082472
1029 => 0.067289681345624
1030 => 0.065361700073838
1031 => 0.06604269565278
1101 => 0.069795048246758
1102 => 0.071808065023543
1103 => 0.069074117856447
1104 => 0.061531266052346
1105 => 0.054576412210584
1106 => 0.056421152630569
1107 => 0.056212016315903
1108 => 0.060243451062613
1109 => 0.055560279785798
1110 => 0.055639132379438
1111 => 0.059753932927346
1112 => 0.058656174686705
1113 => 0.056877946927118
1114 => 0.054589395241133
1115 => 0.050358795784182
1116 => 0.046611635866167
1117 => 0.053960679384786
1118 => 0.053643775264894
1119 => 0.053184851136733
1120 => 0.05420613712318
1121 => 0.059165211976283
1122 => 0.05905088924996
1123 => 0.058323626393061
1124 => 0.058875248860218
1125 => 0.05678124484157
1126 => 0.057320917356761
1127 => 0.054575310526202
1128 => 0.055816439480284
1129 => 0.056874131648988
1130 => 0.057086479011256
1201 => 0.05756490846117
1202 => 0.053476781193946
1203 => 0.055312230315819
1204 => 0.056390384716594
1205 => 0.0515192439103
1206 => 0.056294097924765
1207 => 0.053405615993486
1208 => 0.052425221842467
1209 => 0.053745193409707
1210 => 0.053230799206239
1211 => 0.052788553276339
1212 => 0.052541772448705
1213 => 0.053511013887739
1214 => 0.053465797616114
1215 => 0.051879930500197
1216 => 0.049811231495696
1217 => 0.050505554784336
1218 => 0.050253300624258
1219 => 0.049339099006698
1220 => 0.049955160515809
1221 => 0.04724233741128
1222 => 0.042575066260213
1223 => 0.04565840854499
1224 => 0.045539703221057
1225 => 0.045479846613872
1226 => 0.04779689312356
1227 => 0.047574162565012
1228 => 0.047169904420262
1229 => 0.049331674488847
1230 => 0.048542599333903
1231 => 0.050974343031952
]
'min_raw' => 0.021829165627772
'max_raw' => 0.071808065023543
'avg_raw' => 0.046818615325657
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.021829'
'max' => '$0.071808'
'avg' => '$0.046818'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.011891966631957
'max_diff' => 0.04746876021626
'year' => 2029
]
4 => [
'items' => [
101 => 0.052576046706808
102 => 0.052169802845179
103 => 0.053676212893087
104 => 0.050521550590571
105 => 0.051569402864383
106 => 0.051785363765755
107 => 0.049304998581764
108 => 0.047610604038946
109 => 0.047497607240452
110 => 0.044559760605156
111 => 0.046129134564261
112 => 0.047510118703167
113 => 0.04684873446933
114 => 0.046639359979189
115 => 0.047709008841533
116 => 0.04779212971906
117 => 0.045896964902686
118 => 0.046291029680075
119 => 0.047934345309603
120 => 0.046249622342524
121 => 0.042976480815424
122 => 0.042164696461981
123 => 0.042056389465078
124 => 0.039854765915111
125 => 0.042218943774176
126 => 0.041186916782667
127 => 0.044447077683263
128 => 0.042584891261436
129 => 0.042504616126696
130 => 0.042383268486734
131 => 0.040488240149355
201 => 0.040903130919907
202 => 0.042282291030872
203 => 0.042774390895815
204 => 0.042723060848247
205 => 0.042275532393931
206 => 0.0424804086286
207 => 0.041820430893118
208 => 0.04158737901847
209 => 0.040851803196115
210 => 0.039770709945259
211 => 0.039921042592521
212 => 0.037779113979139
213 => 0.036612077589813
214 => 0.03628905729854
215 => 0.035857101065103
216 => 0.036337847904499
217 => 0.037773046164497
218 => 0.036041892568643
219 => 0.033073951154857
220 => 0.033252329490952
221 => 0.033653092651153
222 => 0.032906273153432
223 => 0.032199471174648
224 => 0.032813978150543
225 => 0.031556422247842
226 => 0.03380506227395
227 => 0.033744242862985
228 => 0.034582396809752
301 => 0.035106511673315
302 => 0.033898596597003
303 => 0.03359480922186
304 => 0.033767860317108
305 => 0.030907711188741
306 => 0.034348661606519
307 => 0.03437841908862
308 => 0.034123617460576
309 => 0.035955817330617
310 => 0.039822330533875
311 => 0.038367592736676
312 => 0.037804274291918
313 => 0.03673340551665
314 => 0.038160274577798
315 => 0.038050713296527
316 => 0.037555235632736
317 => 0.03725556919569
318 => 0.037807713794221
319 => 0.037187152369618
320 => 0.037075682485872
321 => 0.0364002962708
322 => 0.036159214120135
323 => 0.035980726493538
324 => 0.035784229154488
325 => 0.036217653320347
326 => 0.035235457138813
327 => 0.034051024829762
328 => 0.033952552099
329 => 0.034224443966446
330 => 0.03410415205507
331 => 0.033951976187608
401 => 0.033661431013991
402 => 0.033575232467495
403 => 0.033855335926019
404 => 0.033539115452391
405 => 0.03400571598665
406 => 0.033878826459517
407 => 0.033170031875751
408 => 0.032286611395015
409 => 0.032278747099699
410 => 0.032088415606224
411 => 0.031845999832752
412 => 0.031778565310294
413 => 0.032762226087033
414 => 0.034798374456392
415 => 0.034398629810586
416 => 0.03468748628466
417 => 0.036108374245345
418 => 0.036560031800455
419 => 0.036239455965933
420 => 0.035800631991384
421 => 0.035819938019195
422 => 0.037319532381281
423 => 0.037413060242205
424 => 0.037649374973527
425 => 0.037953106185811
426 => 0.036291182704756
427 => 0.035741661572691
428 => 0.035481267974047
429 => 0.034679356475229
430 => 0.035544149276009
501 => 0.035040271545114
502 => 0.035108261865926
503 => 0.035063983080303
504 => 0.035088162291372
505 => 0.033804433733236
506 => 0.034272156949034
507 => 0.03349447638636
508 => 0.032453249411679
509 => 0.032449758853759
510 => 0.032704597680707
511 => 0.032553009574594
512 => 0.032145089878731
513 => 0.032203032946202
514 => 0.031695390704598
515 => 0.032264669905492
516 => 0.032280994795994
517 => 0.032061791294803
518 => 0.032938844449171
519 => 0.033298173842124
520 => 0.033153889401845
521 => 0.033288050461161
522 => 0.034415241005358
523 => 0.034599022246834
524 => 0.03468064573439
525 => 0.034571281074105
526 => 0.033308653435096
527 => 0.033364656339993
528 => 0.032953744182368
529 => 0.032606566710031
530 => 0.032620451988218
531 => 0.032798946338912
601 => 0.033578441636946
602 => 0.0352188435379
603 => 0.035281095590923
604 => 0.035356546895208
605 => 0.035049648521896
606 => 0.034957085035883
607 => 0.035079200166597
608 => 0.035695248872361
609 => 0.037279893399178
610 => 0.036719774188551
611 => 0.036264388551537
612 => 0.036663884526285
613 => 0.036602385252325
614 => 0.036083269489426
615 => 0.03606869963893
616 => 0.035072350518576
617 => 0.034704022934553
618 => 0.034396220836502
619 => 0.034060108980807
620 => 0.03386085060618
621 => 0.034167002030919
622 => 0.034237022484034
623 => 0.033567617043231
624 => 0.033476379555187
625 => 0.034023030488267
626 => 0.03378246979382
627 => 0.034029892433677
628 => 0.034087296608476
629 => 0.034078053214204
630 => 0.03382688022098
701 => 0.033986970396774
702 => 0.033608309405843
703 => 0.033196572451248
704 => 0.032933909926334
705 => 0.032704702036219
706 => 0.032831879895296
707 => 0.032378514049447
708 => 0.032233473190909
709 => 0.033932735447358
710 => 0.035187998746345
711 => 0.035169746720839
712 => 0.035058642209611
713 => 0.034893563442652
714 => 0.035683172332346
715 => 0.035408088383904
716 => 0.035608234940428
717 => 0.035659180639188
718 => 0.035813377925471
719 => 0.035868490201613
720 => 0.035701902625176
721 => 0.035142814371695
722 => 0.033749619600535
723 => 0.033101083673702
724 => 0.032887056015627
725 => 0.032894835514502
726 => 0.032680242206327
727 => 0.032743449552982
728 => 0.032658261270635
729 => 0.032496935273129
730 => 0.032821918469554
731 => 0.032859369755515
801 => 0.032783514794209
802 => 0.032801381383586
803 => 0.032173334702052
804 => 0.032221083727203
805 => 0.031955211087508
806 => 0.031905363172708
807 => 0.031233260291737
808 => 0.030042532615227
809 => 0.030702311334745
810 => 0.029905391420494
811 => 0.029603585773659
812 => 0.031032286765365
813 => 0.030888884811795
814 => 0.030643443002614
815 => 0.030280383412279
816 => 0.030145721078608
817 => 0.029327555368133
818 => 0.029279213773214
819 => 0.029684718791658
820 => 0.029497592178222
821 => 0.029234795542567
822 => 0.028282972767494
823 => 0.027212808830621
824 => 0.027245110353064
825 => 0.027585509590276
826 => 0.028575266281559
827 => 0.02818855121931
828 => 0.027907985004604
829 => 0.027855443386379
830 => 0.028513111741793
831 => 0.029443850250484
901 => 0.029880531934661
902 => 0.029447793647861
903 => 0.02895068720427
904 => 0.028980943770122
905 => 0.029182227147554
906 => 0.029203379184529
907 => 0.028879813993119
908 => 0.028970895699207
909 => 0.028832534258973
910 => 0.027983410355657
911 => 0.027968052396847
912 => 0.027759663697
913 => 0.027753353769988
914 => 0.027398832606551
915 => 0.027349232645097
916 => 0.026645309357198
917 => 0.027108633796969
918 => 0.026797860088396
919 => 0.026329450805468
920 => 0.026248696868537
921 => 0.02624626930768
922 => 0.026727220906847
923 => 0.027103013597509
924 => 0.02680326613011
925 => 0.026735019442144
926 => 0.027463715521728
927 => 0.027370982303389
928 => 0.027290675934372
929 => 0.02936051282546
930 => 0.027722075414777
1001 => 0.027007623184982
1002 => 0.026123352879811
1003 => 0.026411275750053
1004 => 0.02647194532928
1005 => 0.024345434647047
1006 => 0.023482709528106
1007 => 0.023186654778395
1008 => 0.023016271084337
1009 => 0.023093917073263
1010 => 0.022317363278652
1011 => 0.022839220271645
1012 => 0.02216679032597
1013 => 0.022054055257301
1014 => 0.023256443298254
1015 => 0.023423748569903
1016 => 0.022709972303373
1017 => 0.023168332216366
1018 => 0.023002124540235
1019 => 0.022178317207398
1020 => 0.0221468538268
1021 => 0.02173349626541
1022 => 0.02108667172363
1023 => 0.020791055551417
1024 => 0.020637096082272
1025 => 0.020700622759851
1026 => 0.020668501727719
1027 => 0.020458890265549
1028 => 0.020680516411368
1029 => 0.020114353191048
1030 => 0.019888902434829
1031 => 0.019787071558663
1101 => 0.01928456911349
1102 => 0.020084273967612
1103 => 0.02024182589829
1104 => 0.020399688254942
1105 => 0.021773772292391
1106 => 0.021705126937001
1107 => 0.02232564751808
1108 => 0.022301535229364
1109 => 0.022124552707873
1110 => 0.021377892561915
1111 => 0.021675497988157
1112 => 0.020759514744337
1113 => 0.021445831671413
1114 => 0.021132625287176
1115 => 0.021339936277845
1116 => 0.020967172424143
1117 => 0.021173475331824
1118 => 0.020279187305846
1119 => 0.019444113730159
1120 => 0.019780171714332
1121 => 0.020145505176021
1122 => 0.020937641206198
1123 => 0.020465851521605
1124 => 0.020635524932528
1125 => 0.020067147408923
1126 => 0.018894422228713
1127 => 0.018901059725875
1128 => 0.018720661506107
1129 => 0.018564771105655
1130 => 0.02052004224223
1201 => 0.020276873368134
1202 => 0.019889415592418
1203 => 0.020408043222174
1204 => 0.020545176599209
1205 => 0.020549080593666
1206 => 0.020927457924619
1207 => 0.021129397973977
1208 => 0.021164990782934
1209 => 0.021760375688572
1210 => 0.021959940855625
1211 => 0.022781921535197
1212 => 0.021112264771665
1213 => 0.021077879289369
1214 => 0.020415341376497
1215 => 0.019995149357844
1216 => 0.020444112283504
1217 => 0.020841832146088
1218 => 0.020427699641268
1219 => 0.020481776603583
1220 => 0.01992583755173
1221 => 0.020124559603404
1222 => 0.020295725805056
1223 => 0.020201217889188
1224 => 0.020059734964898
1225 => 0.020809223652894
1226 => 0.020766934563847
1227 => 0.021464875660779
1228 => 0.022008970656084
1229 => 0.022984086156286
1230 => 0.021966502297905
1231 => 0.021929417497576
]
'min_raw' => 0.018564771105655
'max_raw' => 0.053676212893087
'avg_raw' => 0.036120491999371
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.018564'
'max' => '$0.053676'
'avg' => '$0.03612'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032643945221166
'max_diff' => -0.018131852130456
'year' => 2030
]
5 => [
'items' => [
101 => 0.02229192736938
102 => 0.021959885357253
103 => 0.022169724447217
104 => 0.022950277834793
105 => 0.022966769697892
106 => 0.022690509742409
107 => 0.022673699299011
108 => 0.022726758045415
109 => 0.023037524780359
110 => 0.022928933334272
111 => 0.023054598104882
112 => 0.023211743824778
113 => 0.023861765150671
114 => 0.024018483091707
115 => 0.023637739743926
116 => 0.023672116605228
117 => 0.023529708141519
118 => 0.023392143349949
119 => 0.023701368911674
120 => 0.024266484703569
121 => 0.024262969147557
122 => 0.024394065026996
123 => 0.024475736673829
124 => 0.024125142178321
125 => 0.023896918053463
126 => 0.023984433705212
127 => 0.024124373138202
128 => 0.02393905323315
129 => 0.022795172930639
130 => 0.023142153143064
131 => 0.023084398669251
201 => 0.023002149275357
202 => 0.023351040562069
203 => 0.02331738914634
204 => 0.022309398597076
205 => 0.022373926881622
206 => 0.022313322775783
207 => 0.022509147040182
208 => 0.021949310204335
209 => 0.022121512244483
210 => 0.02222951574977
211 => 0.022293130644106
212 => 0.022522951263589
213 => 0.022495984466473
214 => 0.022521274969617
215 => 0.022862038277917
216 => 0.024585502155451
217 => 0.024679306491697
218 => 0.0242173796327
219 => 0.024401910301765
220 => 0.024047651769581
221 => 0.024285467895562
222 => 0.024448175649083
223 => 0.023712930597822
224 => 0.023669394157588
225 => 0.023313673474425
226 => 0.023504817620507
227 => 0.02320069354034
228 => 0.023275314951805
301 => 0.023066666979973
302 => 0.023442191787873
303 => 0.023862086873762
304 => 0.023968168954617
305 => 0.023689112671095
306 => 0.02348705753112
307 => 0.023132315266425
308 => 0.02372225955856
309 => 0.023894777247807
310 => 0.023721353396581
311 => 0.023681167300866
312 => 0.023605014722101
313 => 0.023697323430448
314 => 0.023893837679421
315 => 0.023801165188654
316 => 0.023862377001485
317 => 0.02362910069232
318 => 0.024125258239687
319 => 0.024913275831723
320 => 0.024915809437136
321 => 0.024823136446829
322 => 0.024785216655863
323 => 0.024880304767785
324 => 0.024931886167784
325 => 0.025239383685562
326 => 0.025569340773379
327 => 0.027109106530666
328 => 0.026676746467492
329 => 0.028042918248432
330 => 0.029123382751952
331 => 0.029447366813571
401 => 0.02914931672151
402 => 0.028129703456917
403 => 0.028079676365834
404 => 0.029603409052752
405 => 0.02917288477732
406 => 0.029121675284674
407 => 0.028576892802725
408 => 0.02889892672218
409 => 0.028828493180043
410 => 0.028717310388052
411 => 0.029331728673294
412 => 0.030481864853768
413 => 0.030302605344132
414 => 0.030168796435799
415 => 0.029582484750668
416 => 0.029935575342573
417 => 0.0298098465458
418 => 0.0303500572462
419 => 0.030030048394415
420 => 0.029169623132501
421 => 0.029306648691459
422 => 0.02928593755388
423 => 0.029712171297658
424 => 0.029584226507548
425 => 0.02926095428017
426 => 0.030477933813339
427 => 0.030398909931651
428 => 0.03051094772851
429 => 0.030560270231572
430 => 0.031301024227827
501 => 0.031604487438608
502 => 0.031673378900327
503 => 0.031961645479883
504 => 0.031666206565223
505 => 0.032848172868238
506 => 0.033634111490097
507 => 0.034547019643418
508 => 0.035881023821999
509 => 0.036382621733374
510 => 0.036292012560313
511 => 0.037303439303734
512 => 0.039120950678908
513 => 0.036659383573875
514 => 0.039251419712627
515 => 0.038430810997594
516 => 0.036485162496372
517 => 0.036359885670583
518 => 0.037677501425054
519 => 0.040599846352654
520 => 0.039867832093252
521 => 0.040601043665745
522 => 0.039745713419606
523 => 0.039703239063596
524 => 0.040559502184823
525 => 0.042560207640044
526 => 0.041609747473591
527 => 0.040247029762587
528 => 0.041253239314156
529 => 0.040381567480289
530 => 0.038417446873001
531 => 0.039867272335743
601 => 0.038897815337459
602 => 0.039180754428727
603 => 0.041218408843275
604 => 0.040973232873151
605 => 0.041290513281174
606 => 0.040730521665688
607 => 0.040207401194251
608 => 0.039230957986878
609 => 0.038941881291243
610 => 0.039021771690026
611 => 0.038941841701529
612 => 0.03839553070098
613 => 0.038277554892426
614 => 0.038080923376197
615 => 0.038141867705159
616 => 0.037772142928071
617 => 0.038469889971474
618 => 0.038599397971255
619 => 0.03910716008217
620 => 0.039159877628961
621 => 0.040573987880315
622 => 0.039795119717027
623 => 0.040317651725203
624 => 0.040270911544129
625 => 0.036527330599116
626 => 0.037043163023444
627 => 0.037845636398568
628 => 0.037484123230802
629 => 0.036973028192634
630 => 0.036560291546131
701 => 0.03593495332219
702 => 0.03681510486383
703 => 0.037972410547404
704 => 0.039189228810941
705 => 0.04065115622549
706 => 0.040324871045274
707 => 0.039161899094822
708 => 0.039214069166968
709 => 0.039536564024806
710 => 0.039118903882158
711 => 0.038995727752396
712 => 0.039519641516075
713 => 0.039523249422227
714 => 0.039042680952196
715 => 0.038508617040859
716 => 0.03850637929357
717 => 0.038411347778993
718 => 0.039762619314935
719 => 0.040505682030742
720 => 0.040590872973604
721 => 0.040499948001521
722 => 0.040534941414593
723 => 0.040102569592535
724 => 0.041090843361879
725 => 0.041997781102775
726 => 0.041754702414316
727 => 0.041390292904644
728 => 0.041100023177851
729 => 0.041686324091588
730 => 0.041660217034823
731 => 0.041989859792803
801 => 0.041974905293193
802 => 0.041864058832175
803 => 0.041754706372992
804 => 0.04218827651301
805 => 0.042063415275608
806 => 0.041938360094217
807 => 0.041687542782947
808 => 0.041721633021183
809 => 0.041357286431951
810 => 0.041188723028407
811 => 0.038653933879258
812 => 0.037976555391981
813 => 0.038189672453389
814 => 0.038259836123586
815 => 0.037965040137839
816 => 0.038387701854525
817 => 0.038321830473689
818 => 0.038578097483053
819 => 0.038417992981423
820 => 0.038424563726016
821 => 0.038895396927433
822 => 0.039032081808872
823 => 0.03896256277499
824 => 0.039011251523348
825 => 0.040133263179021
826 => 0.039973749001497
827 => 0.039889010273923
828 => 0.039912483480576
829 => 0.040199181514802
830 => 0.040279441311253
831 => 0.039939374913935
901 => 0.04009975219281
902 => 0.040782618291356
903 => 0.041021582778973
904 => 0.041784242713985
905 => 0.041460251218392
906 => 0.042054951630576
907 => 0.043882857949318
908 => 0.045343115998226
909 => 0.044000202348734
910 => 0.046681780292812
911 => 0.048769773371785
912 => 0.04868963271968
913 => 0.048325542830211
914 => 0.045948418221967
915 => 0.04376095271653
916 => 0.04559086049652
917 => 0.045595525307775
918 => 0.045438334606609
919 => 0.04446203666187
920 => 0.04540436155438
921 => 0.045479159882327
922 => 0.045437292709157
923 => 0.044688767363977
924 => 0.043545907512495
925 => 0.043769219591855
926 => 0.044135009333289
927 => 0.04344249304102
928 => 0.043221192124599
929 => 0.043632632632449
930 => 0.044958379675775
1001 => 0.044707754876764
1002 => 0.044701210050408
1003 => 0.045773489222033
1004 => 0.045005968747478
1005 => 0.04377203627232
1006 => 0.043460452048773
1007 => 0.042354537963464
1008 => 0.043118396761318
1009 => 0.043145886679581
1010 => 0.042727529022444
1011 => 0.043805983690496
1012 => 0.043796045540872
1013 => 0.044819877741393
1014 => 0.046777060374977
1015 => 0.046198225163118
1016 => 0.045525102788818
1017 => 0.045598289854563
1018 => 0.046400971324719
1019 => 0.045915651784427
1020 => 0.046090176074884
1021 => 0.046400707161303
1022 => 0.046588058275793
1023 => 0.045571332912358
1024 => 0.045334285594546
1025 => 0.044849369974604
1026 => 0.04472286454074
1027 => 0.045117818195086
1028 => 0.045013761861085
1029 => 0.043143576258397
1030 => 0.042948131457302
1031 => 0.042954125470321
1101 => 0.042462670225073
1102 => 0.041713083013296
1103 => 0.043682953450318
1104 => 0.043524745285906
1105 => 0.043350095716735
1106 => 0.043371489292422
1107 => 0.04422654328403
1108 => 0.043730568787635
1109 => 0.045049198274921
1110 => 0.044778127693965
1111 => 0.044500105175452
1112 => 0.04446167399462
1113 => 0.044354659044759
1114 => 0.043987664963176
1115 => 0.043544497556739
1116 => 0.043251880048507
1117 => 0.039897573059018
1118 => 0.040520112925161
1119 => 0.041236288294864
1120 => 0.041483509162593
1121 => 0.04106062076118
1122 => 0.044004363174799
1123 => 0.044542213280375
1124 => 0.042913030227491
1125 => 0.042608276597402
1126 => 0.044024342772052
1127 => 0.043170281761689
1128 => 0.04355486538236
1129 => 0.042723605950462
1130 => 0.044412660940031
1201 => 0.044399793170952
1202 => 0.043742712630972
1203 => 0.04429807260387
1204 => 0.044201565141841
1205 => 0.043459722830522
1206 => 0.0444361786645
1207 => 0.044436662974412
1208 => 0.043804237240844
1209 => 0.043065702439832
1210 => 0.042933669860825
1211 => 0.042834201048624
1212 => 0.043530402152108
1213 => 0.044154613884528
1214 => 0.045316117163349
1215 => 0.045608146684282
1216 => 0.046747957345989
1217 => 0.046069255593316
1218 => 0.046370115289617
1219 => 0.046696741049154
1220 => 0.04685333744954
1221 => 0.046598172018536
1222 => 0.048368767140953
1223 => 0.048518259618918
1224 => 0.048568383153674
1225 => 0.047971348440537
1226 => 0.048501655003517
1227 => 0.048253542124606
1228 => 0.04889906290779
1229 => 0.049000288809017
1230 => 0.048914554071894
1231 => 0.048946684770685
]
'min_raw' => 0.021949310204335
'max_raw' => 0.049000288809017
'avg_raw' => 0.035474799506676
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.021949'
'max' => '$0.04900028'
'avg' => '$0.035474'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0033845390986794
'max_diff' => -0.0046759240840702
'year' => 2031
]
6 => [
'items' => [
101 => 0.047435794188086
102 => 0.047357446540796
103 => 0.046289170810694
104 => 0.046724501067006
105 => 0.045910672018753
106 => 0.046168745593322
107 => 0.046282501965977
108 => 0.046223082092519
109 => 0.046749113986533
110 => 0.046301879415405
111 => 0.045121553850027
112 => 0.043940906705737
113 => 0.043926084642575
114 => 0.043615241089636
115 => 0.043390558134698
116 => 0.043433840042876
117 => 0.04358637113264
118 => 0.043381692750475
119 => 0.043425371260767
120 => 0.04415072556001
121 => 0.044296190191732
122 => 0.043801844536438
123 => 0.041816975396691
124 => 0.04132988353113
125 => 0.041679995504644
126 => 0.041512664531403
127 => 0.033503960207468
128 => 0.035385486493586
129 => 0.03426754746497
130 => 0.034782745203258
131 => 0.033641618943949
201 => 0.034186224206443
202 => 0.03408565550026
203 => 0.037111094089928
204 => 0.037063856027705
205 => 0.037086466388308
206 => 0.036007214965722
207 => 0.037726491786771
208 => 0.038573469372015
209 => 0.038416716362565
210 => 0.038456167717932
211 => 0.037778262724124
212 => 0.037093029990475
213 => 0.036333001432297
214 => 0.037745040551023
215 => 0.037588045905332
216 => 0.037948135137656
217 => 0.03886394344079
218 => 0.038998799692244
219 => 0.039180047861776
220 => 0.039115083295122
221 => 0.040662802835913
222 => 0.040475363787341
223 => 0.040927037964505
224 => 0.039997909913476
225 => 0.038946513330092
226 => 0.03914634944785
227 => 0.039127103622729
228 => 0.038882082179614
229 => 0.038660887776419
301 => 0.038292661416236
302 => 0.039457784107103
303 => 0.039410482253618
304 => 0.040176244279156
305 => 0.040040888402926
306 => 0.039136948734266
307 => 0.039169233116372
308 => 0.039386361101383
309 => 0.04013784353663
310 => 0.040360934688237
311 => 0.040257589978167
312 => 0.040502199241407
313 => 0.040695528429548
314 => 0.040526478410889
315 => 0.042919870180163
316 => 0.041925967050868
317 => 0.042410388520553
318 => 0.042525920186696
319 => 0.04222998825324
320 => 0.042294165293079
321 => 0.042391376021237
322 => 0.042981620526805
323 => 0.044530592898037
324 => 0.045216622217045
325 => 0.047280575271369
326 => 0.04515965703209
327 => 0.045033810521004
328 => 0.045405590791498
329 => 0.046617349726006
330 => 0.047599366527694
331 => 0.047925158154723
401 => 0.047968216896468
402 => 0.048579423646992
403 => 0.048929755958061
404 => 0.048505207071145
405 => 0.048145446341605
406 => 0.046856828063538
407 => 0.047005989138015
408 => 0.048033561025244
409 => 0.049485066839636
410 => 0.050730609831824
411 => 0.050294464087516
412 => 0.05362194824568
413 => 0.053951854708408
414 => 0.053906272302412
415 => 0.054657848321171
416 => 0.053166122979729
417 => 0.052528381495445
418 => 0.048223230694789
419 => 0.049432802464954
420 => 0.051190986068549
421 => 0.050958283875763
422 => 0.04968144394645
423 => 0.050729641234241
424 => 0.050383074430738
425 => 0.050109722813745
426 => 0.051361999563008
427 => 0.049985069836499
428 => 0.051177250141231
429 => 0.049648266568887
430 => 0.050296456364538
501 => 0.049928512487113
502 => 0.050166617269312
503 => 0.048774661577857
504 => 0.049525727081152
505 => 0.048743414783646
506 => 0.048743043865756
507 => 0.048725774278429
508 => 0.049646161227142
509 => 0.049676175012496
510 => 0.04899600766677
511 => 0.04889798492604
512 => 0.049260426374317
513 => 0.048836102361951
514 => 0.049034640896674
515 => 0.048842115891913
516 => 0.048798774458145
517 => 0.048453422539939
518 => 0.048304635437928
519 => 0.048362978694398
520 => 0.048163823082055
521 => 0.048043824621846
522 => 0.048701903564376
523 => 0.048350318532211
524 => 0.048648018115758
525 => 0.048308751867624
526 => 0.047132707240322
527 => 0.046456351538715
528 => 0.044234912257137
529 => 0.044864909681706
530 => 0.045282598625974
531 => 0.045144552432385
601 => 0.045441129073
602 => 0.045459336470038
603 => 0.045362916380933
604 => 0.045251274269928
605 => 0.045196933064487
606 => 0.045601947888931
607 => 0.045837072626693
608 => 0.045324519299489
609 => 0.045204435226308
610 => 0.045722654938956
611 => 0.046038768664306
612 => 0.048372774803331
613 => 0.048199864089811
614 => 0.048633836048731
615 => 0.048584977465999
616 => 0.049039849216102
617 => 0.049783372284375
618 => 0.048271581994256
619 => 0.048533976514846
620 => 0.048469643437972
621 => 0.049172015102245
622 => 0.049174207829915
623 => 0.048753100931116
624 => 0.048981389812634
625 => 0.048853965221749
626 => 0.049084238679945
627 => 0.048197554761813
628 => 0.049277440062483
629 => 0.049889665441692
630 => 0.049898166191676
701 => 0.0501883561625
702 => 0.050483205979526
703 => 0.051049144527302
704 => 0.050467422260592
705 => 0.049420960532304
706 => 0.049496511689035
707 => 0.048882971560625
708 => 0.048893285281029
709 => 0.048838229833213
710 => 0.049003455376488
711 => 0.048233812477124
712 => 0.048414446127264
713 => 0.048161557959278
714 => 0.048533426785357
715 => 0.048133357400616
716 => 0.048469612414614
717 => 0.048614728931625
718 => 0.049150212003533
719 => 0.048054266115507
720 => 0.045819558260808
721 => 0.04628932094508
722 => 0.04559450503598
723 => 0.045658812893718
724 => 0.045788725000868
725 => 0.045367637356997
726 => 0.045447967609451
727 => 0.045445097647558
728 => 0.045420365866444
729 => 0.045310824707097
730 => 0.045151968353985
731 => 0.045784803171374
801 => 0.045892334138443
802 => 0.046131362157972
803 => 0.046842547409833
804 => 0.046771483232269
805 => 0.0468873918543
806 => 0.046634363983205
807 => 0.045670550130956
808 => 0.045722889860182
809 => 0.045070212598053
810 => 0.04611467173296
811 => 0.045867330023627
812 => 0.045707867214567
813 => 0.045664356309703
814 => 0.046377304452245
815 => 0.046590629710586
816 => 0.046457699725313
817 => 0.046185056447331
818 => 0.046708612140806
819 => 0.046848693557338
820 => 0.046880052620496
821 => 0.047807692927485
822 => 0.046931897408858
823 => 0.047142710094851
824 => 0.048787410491828
825 => 0.04729589418491
826 => 0.048085983637467
827 => 0.048047312870191
828 => 0.04845149589895
829 => 0.048014158064615
830 => 0.048019579391216
831 => 0.048378466539024
901 => 0.047874474265566
902 => 0.047749678690998
903 => 0.047577274498536
904 => 0.047953712745496
905 => 0.048179370449711
906 => 0.049998005818363
907 => 0.051172927206361
908 => 0.051121920770273
909 => 0.051588024116067
910 => 0.05137804028977
911 => 0.05069994712372
912 => 0.051857369473515
913 => 0.051491112613432
914 => 0.051521306383975
915 => 0.051520182570327
916 => 0.051763711363552
917 => 0.051591148894466
918 => 0.051251010554724
919 => 0.051476810258236
920 => 0.052147354652798
921 => 0.05422874502833
922 => 0.055393518657233
923 => 0.054158624193337
924 => 0.055010437858637
925 => 0.0544996531917
926 => 0.05440682842319
927 => 0.054941830353533
928 => 0.055477768733933
929 => 0.055443631776027
930 => 0.055054568032597
1001 => 0.054834795796061
1002 => 0.056498984800216
1003 => 0.057725130909758
1004 => 0.057641515965275
1005 => 0.058010565137186
1006 => 0.059094104920178
1007 => 0.059193170218572
1008 => 0.059180690267964
1009 => 0.0589351465895
1010 => 0.060002032221276
1011 => 0.060892046985371
1012 => 0.058878310322374
1013 => 0.059645114881895
1014 => 0.059989358153563
1015 => 0.060494809408749
1016 => 0.061347590399715
1017 => 0.06227393674489
1018 => 0.062404932274968
1019 => 0.062311984677664
1020 => 0.061701034361495
1021 => 0.062714653585996
1022 => 0.063308407955412
1023 => 0.063661975094573
1024 => 0.064558562531522
1025 => 0.059991484082815
1026 => 0.056758678958293
1027 => 0.056253829755827
1028 => 0.057280460461256
1029 => 0.057551174791051
1030 => 0.057442050184158
1031 => 0.053803234102726
1101 => 0.056234672142229
1102 => 0.058850695031617
1103 => 0.058951187124887
1104 => 0.060260822881774
1105 => 0.060687293968
1106 => 0.061741722410177
1107 => 0.061675767624029
1108 => 0.061932504170078
1109 => 0.061873484884198
1110 => 0.063826591537226
1111 => 0.065981158214661
1112 => 0.065906552421724
1113 => 0.065596807970167
1114 => 0.066056831300006
1115 => 0.068280575008516
1116 => 0.068075848322603
1117 => 0.06827472285939
1118 => 0.070896642016426
1119 => 0.074305509884224
1120 => 0.072721748514894
1121 => 0.076158054971284
1122 => 0.078321027734803
1123 => 0.082061665473751
1124 => 0.081593319205805
1125 => 0.08304952202751
1126 => 0.080754881639367
1127 => 0.075485923484855
1128 => 0.074652090688142
1129 => 0.076321445063171
1130 => 0.080425389900962
1201 => 0.076192197235529
1202 => 0.077048566598424
1203 => 0.076801932164299
1204 => 0.076788790063434
1205 => 0.077290370600688
1206 => 0.076562801870719
1207 => 0.073598555977708
1208 => 0.074957052402064
1209 => 0.074432471692264
1210 => 0.07501453309987
1211 => 0.078155678456336
1212 => 0.076766903218689
1213 => 0.075303941320768
1214 => 0.077138820197996
1215 => 0.079475251541496
1216 => 0.079329041866991
1217 => 0.079045333987547
1218 => 0.080644580449509
1219 => 0.083286067069421
1220 => 0.08400005028843
1221 => 0.084527098103959
1222 => 0.084599769093174
1223 => 0.085348325446863
1224 => 0.08132314927259
1225 => 0.087711207235017
1226 => 0.088814248378588
1227 => 0.088606922359968
1228 => 0.08983290616798
1229 => 0.089472190631455
1230 => 0.088949570413565
1231 => 0.090893015523499
]
'min_raw' => 0.033503960207468
'max_raw' => 0.090893015523499
'avg_raw' => 0.062198487865484
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0335039'
'max' => '$0.090893'
'avg' => '$0.062198'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011554650003134
'max_diff' => 0.041892726714482
'year' => 2032
]
7 => [
'items' => [
101 => 0.088665012532893
102 => 0.085502642785505
103 => 0.083767704197506
104 => 0.086052411283687
105 => 0.087447602175928
106 => 0.088369734604892
107 => 0.088648771320729
108 => 0.081635612240792
109 => 0.07785590846434
110 => 0.080278655250654
111 => 0.083234573539008
112 => 0.08130672899725
113 => 0.081382296853395
114 => 0.078633697165482
115 => 0.083477763622143
116 => 0.082772023884419
117 => 0.086433402892162
118 => 0.085559585407562
119 => 0.088545297854462
120 => 0.087759059705073
121 => 0.091022690305205
122 => 0.092324640910869
123 => 0.09451081861021
124 => 0.096118979825189
125 => 0.097063322849847
126 => 0.097006628036788
127 => 0.10074858557031
128 => 0.09854208394683
129 => 0.095770197875237
130 => 0.09572006320139
131 => 0.097155662275798
201 => 0.10016428409838
202 => 0.10094437596331
203 => 0.10138034089372
204 => 0.10071264542675
205 => 0.098317646055864
206 => 0.097283497470436
207 => 0.098164622027389
208 => 0.097087082410131
209 => 0.098947218093737
210 => 0.10150158169087
211 => 0.10097411570911
212 => 0.10273735540401
213 => 0.10456212299001
214 => 0.10717162259343
215 => 0.10785384241925
216 => 0.10898152584884
217 => 0.1101422825226
218 => 0.11051508628294
219 => 0.11122688433565
220 => 0.11122313280856
221 => 0.11336818414992
222 => 0.11573424220615
223 => 0.11662737434801
224 => 0.11868108246062
225 => 0.11516417928829
226 => 0.11783179074377
227 => 0.12023804305126
228 => 0.11736920985214
301 => 0.12132322806473
302 => 0.12147675363193
303 => 0.12379480742265
304 => 0.12144501582038
305 => 0.12004971706775
306 => 0.12407789228543
307 => 0.12602699938693
308 => 0.1254399124656
309 => 0.1209721520062
310 => 0.11837172378757
311 => 0.11156590155427
312 => 0.11962769197925
313 => 0.12355435492961
314 => 0.12096198289777
315 => 0.12226942456136
316 => 0.12940240233849
317 => 0.13211817844992
318 => 0.13155331600345
319 => 0.13164876845848
320 => 0.13311415195338
321 => 0.1396124693712
322 => 0.13571852694462
323 => 0.1386953000265
324 => 0.14027416973558
325 => 0.14174071191273
326 => 0.13813934783106
327 => 0.13345402607534
328 => 0.13196998799888
329 => 0.12070422258927
330 => 0.12011779057496
331 => 0.11978860851462
401 => 0.1177131621879
402 => 0.11608242988769
403 => 0.11478561101736
404 => 0.11138237103871
405 => 0.11253086462835
406 => 0.10710681041376
407 => 0.11057692808357
408 => 0.10192000658872
409 => 0.10912974805145
410 => 0.10520581356001
411 => 0.10784063003713
412 => 0.10783143741065
413 => 0.10297990490695
414 => 0.10018164220771
415 => 0.10196480410968
416 => 0.10387649521615
417 => 0.10418666066648
418 => 0.10666521808627
419 => 0.10735693018572
420 => 0.10526101023144
421 => 0.10174061113259
422 => 0.1025583195515
423 => 0.1001650713727
424 => 0.095970995994317
425 => 0.098983254152602
426 => 0.10001177152748
427 => 0.10046602339357
428 => 0.096341631951744
429 => 0.095045658615828
430 => 0.094355693286055
501 => 0.10120820398934
502 => 0.10158359999433
503 => 0.099663020957137
504 => 0.10834422032204
505 => 0.1063793975398
506 => 0.10857458598083
507 => 0.1024841210833
508 => 0.10271678504428
509 => 0.099833461357755
510 => 0.10144792995845
511 => 0.10030687558823
512 => 0.10131749685
513 => 0.10192325906736
514 => 0.10480610962884
515 => 0.10916266557407
516 => 0.10437550788955
517 => 0.10228967473305
518 => 0.10358371389217
519 => 0.10702991069941
520 => 0.11225107526994
521 => 0.10916004075846
522 => 0.11053178938548
523 => 0.11083145543564
524 => 0.10855224102319
525 => 0.11233511315636
526 => 0.11436238506453
527 => 0.1164419465575
528 => 0.11824757153385
529 => 0.11561132396667
530 => 0.1184324867548
531 => 0.11615912754984
601 => 0.11411968932743
602 => 0.11412278231337
603 => 0.11284341292502
604 => 0.11036447352417
605 => 0.1099073190649
606 => 0.11228549429427
607 => 0.11419256561419
608 => 0.11434964114236
609 => 0.11540549381393
610 => 0.11603033654882
611 => 0.12215464478323
612 => 0.12461789221805
613 => 0.12762990455446
614 => 0.1288032531072
615 => 0.13233461158222
616 => 0.12948275281073
617 => 0.12886573522648
618 => 0.12029981466463
619 => 0.12170248367676
620 => 0.12394829210262
621 => 0.12033684721839
622 => 0.12262747775741
623 => 0.123079696748
624 => 0.12021413170316
625 => 0.12174475380737
626 => 0.11767987529643
627 => 0.10925126881758
628 => 0.11234449660482
629 => 0.11462215342545
630 => 0.11137165630935
701 => 0.11719804657834
702 => 0.11379438966431
703 => 0.1127155938269
704 => 0.1085068266467
705 => 0.11049320274545
706 => 0.11317980486118
707 => 0.11151979710468
708 => 0.11496456245083
709 => 0.11984326886634
710 => 0.12332012559002
711 => 0.12358703547697
712 => 0.12135164953495
713 => 0.12493386977307
714 => 0.12495996233671
715 => 0.1209192032743
716 => 0.11844426084762
717 => 0.11788194872095
718 => 0.11928671466115
719 => 0.12099235984665
720 => 0.12368168691407
721 => 0.12530679093688
722 => 0.1295442003398
723 => 0.13069072182818
724 => 0.13195040134032
725 => 0.1336337216393
726 => 0.1356549792527
727 => 0.13123258266484
728 => 0.13140829272566
729 => 0.12729021825529
730 => 0.12288946509209
731 => 0.12622908818134
801 => 0.13059520111908
802 => 0.12959360998704
803 => 0.12948091052403
804 => 0.12967043976058
805 => 0.12891527275593
806 => 0.12549968038168
807 => 0.12378439127407
808 => 0.1259975518398
809 => 0.12717374818405
810 => 0.12899792613888
811 => 0.12877305770222
812 => 0.13347194421144
813 => 0.13529778942197
814 => 0.13483066008479
815 => 0.13491662312493
816 => 0.13822222866486
817 => 0.14189874187489
818 => 0.14534228165473
819 => 0.14884519822226
820 => 0.14462229557894
821 => 0.14247816604909
822 => 0.14469036041816
823 => 0.14351653894704
824 => 0.15026166529815
825 => 0.15072868321201
826 => 0.15747332181371
827 => 0.16387478698336
828 => 0.15985414140447
829 => 0.1636454290915
830 => 0.16774601583326
831 => 0.17565671295432
901 => 0.17299266846563
902 => 0.17095205213819
903 => 0.16902367956894
904 => 0.17303631676502
905 => 0.17819851041432
906 => 0.17931039748351
907 => 0.18111207930914
908 => 0.17921783116866
909 => 0.18149924440928
910 => 0.18955363565243
911 => 0.18737726804045
912 => 0.18428647616289
913 => 0.1906446444974
914 => 0.19294564090091
915 => 0.20909523870189
916 => 0.22948477303224
917 => 0.22104337193457
918 => 0.21580352187094
919 => 0.2170350109268
920 => 0.22448057863495
921 => 0.2268718586723
922 => 0.22037153520712
923 => 0.22266755934711
924 => 0.2353188780986
925 => 0.24210590470588
926 => 0.23288821095392
927 => 0.20745695947129
928 => 0.1840081841714
929 => 0.19022785529305
930 => 0.18952273760672
1001 => 0.20311500132104
1002 => 0.18732536239268
1003 => 0.18759121941745
1004 => 0.20146455675092
1005 => 0.19776338819956
1006 => 0.19176796915622
1007 => 0.18405195736535
1008 => 0.16978819592521
1009 => 0.15715438464327
1010 => 0.18193219796013
1011 => 0.18086373359438
1012 => 0.17931643885522
1013 => 0.18275977586244
1014 => 0.19947964296123
1015 => 0.19909419590767
1016 => 0.19664217840976
1017 => 0.19850201207084
1018 => 0.19144193132327
1019 => 0.19326147488697
1020 => 0.18400446976559
1021 => 0.18818902268714
1022 => 0.19175510567963
1023 => 0.19247104963714
1024 => 0.1940841079304
1025 => 0.18030070142502
1026 => 0.18648904628638
1027 => 0.19012411912293
1028 => 0.17370072780232
1029 => 0.18979948148175
1030 => 0.18006076298308
1031 => 0.17675529565398
1101 => 0.1812056719504
1102 => 0.17947135597955
1103 => 0.17798029295027
1104 => 0.17714825416022
1105 => 0.1804161193422
1106 => 0.18026366952551
1107 => 0.17491680782249
1108 => 0.16794204469686
1109 => 0.17028300414062
1110 => 0.16943251162809
1111 => 0.16635021704697
1112 => 0.16842731143698
1113 => 0.1592808389368
1114 => 0.14354480839251
1115 => 0.15394051217772
1116 => 0.15354028889034
1117 => 0.15333847816016
1118 => 0.1611505622386
1119 => 0.1603996106099
1120 => 0.15903662605047
1121 => 0.16632518476667
1122 => 0.16366476279031
1123 => 0.17186355644721
1124 => 0.17726381221436
1125 => 0.17589413267184
1126 => 0.18097309932255
1127 => 0.17033693511813
1128 => 0.173869842218
1129 => 0.17459796947488
1130 => 0.16623524508349
1201 => 0.16052247558353
1202 => 0.16014149898822
1203 => 0.15023634394342
1204 => 0.15552759781674
1205 => 0.16018368225829
1206 => 0.15795377913753
1207 => 0.15724785842596
1208 => 0.16085425424585
1209 => 0.16113450208775
1210 => 0.15474482159317
1211 => 0.15607343850286
1212 => 0.16161399188044
1213 => 0.15593383077334
1214 => 0.14489820559127
1215 => 0.14216121796667
1216 => 0.14179605336485
1217 => 0.1343731258537
1218 => 0.14234411656716
1219 => 0.13886456551146
1220 => 0.14985642560499
1221 => 0.14357793407009
1222 => 0.14330728084869
1223 => 0.14289814880833
1224 => 0.13650892846221
1225 => 0.13790776166187
1226 => 0.14255769626588
1227 => 0.14421684531785
1228 => 0.14404378247872
1229 => 0.14253490904955
1230 => 0.14322566357874
1231 => 0.14100050256539
]
'min_raw' => 0.07785590846434
'max_raw' => 0.24210590470588
'avg_raw' => 0.15998090658511
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.077855'
'max' => '$0.2421059'
'avg' => '$0.15998'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.044351948256871
'max_diff' => 0.15121288918238
'year' => 2033
]
8 => [
'items' => [
101 => 0.14021475189885
102 => 0.13773470665752
103 => 0.13408972528274
104 => 0.13459658229887
105 => 0.12737492043418
106 => 0.12344017576768
107 => 0.1223510903031
108 => 0.12089471970385
109 => 0.12251559123754
110 => 0.12735446237347
111 => 0.12151775715976
112 => 0.11151113546813
113 => 0.11211255048225
114 => 0.11346375145726
115 => 0.11094579737942
116 => 0.10856276516061
117 => 0.11063461833335
118 => 0.10639468080764
119 => 0.1139761276507
120 => 0.11377107076036
121 => 0.11659696530992
122 => 0.11836405516496
123 => 0.11429148515123
124 => 0.11326724480618
125 => 0.11385069865585
126 => 0.10420750618032
127 => 0.11580891075335
128 => 0.11590924018186
129 => 0.11505015870322
130 => 0.12122754848518
131 => 0.13426376770129
201 => 0.12935901765149
202 => 0.12745975018535
203 => 0.12384924134386
204 => 0.12866003000434
205 => 0.12829063649521
206 => 0.12662009895859
207 => 0.12560975264405
208 => 0.1274713467075
209 => 0.12537908053824
210 => 0.12500325204261
211 => 0.12272614026453
212 => 0.12191331496174
213 => 0.12131153146707
214 => 0.12064902696945
215 => 0.12211034680536
216 => 0.11879880380457
217 => 0.11480540758018
218 => 0.11447339989327
219 => 0.11539010230725
220 => 0.11498452972953
221 => 0.1144714581678
222 => 0.11349186482973
223 => 0.11320124041203
224 => 0.11414562877865
225 => 0.113079469374
226 => 0.11465264565226
227 => 0.11422482875239
228 => 0.11183507832677
301 => 0.10885656449751
302 => 0.10883004947679
303 => 0.10818833355802
304 => 0.10737101185283
305 => 0.10714365165223
306 => 0.11046013263801
307 => 0.11732514902465
308 => 0.11597738204203
309 => 0.11695128181169
310 => 0.12174190477436
311 => 0.12326469975514
312 => 0.12218385594716
313 => 0.12070433027926
314 => 0.12076942189993
315 => 0.12582540899003
316 => 0.12614074470304
317 => 0.12693749631866
318 => 0.12796154730672
319 => 0.12235825625855
320 => 0.12050550739545
321 => 0.11962757219752
322 => 0.11692387159158
323 => 0.11983958089732
324 => 0.11814072194799
325 => 0.11836995606154
326 => 0.11822066704436
327 => 0.11830218894262
328 => 0.1139740084818
329 => 0.11555096995925
330 => 0.11292896564628
331 => 0.10941839620499
401 => 0.10940662754526
402 => 0.1102658344426
403 => 0.10975474455929
404 => 0.10837941482465
405 => 0.10857477392208
406 => 0.10686322266206
407 => 0.10878258723368
408 => 0.10883762774178
409 => 0.10809856783321
410 => 0.11105561377706
411 => 0.11226711791298
412 => 0.11178065284896
413 => 0.11223298622727
414 => 0.11603338784496
415 => 0.11665301913179
416 => 0.11692821841886
417 => 0.11655948783111
418 => 0.11230245059234
419 => 0.1124912682962
420 => 0.1111058492678
421 => 0.10993531618066
422 => 0.10998213136551
423 => 0.11058393753095
424 => 0.11321206035089
425 => 0.11874278988916
426 => 0.11895267703223
427 => 0.11920706637247
428 => 0.11817233707989
429 => 0.11786025282422
430 => 0.11827197251322
501 => 0.12034902373586
502 => 0.12569176339437
503 => 0.12380328236947
504 => 0.12226791790026
505 => 0.12361484647104
506 => 0.12340749737515
507 => 0.12165726233702
508 => 0.12160813906884
509 => 0.1182488784467
510 => 0.11700703628135
511 => 0.11596926001772
512 => 0.11483603542966
513 => 0.11416422190783
514 => 0.11519643281115
515 => 0.1154325116575
516 => 0.11317556447743
517 => 0.1128679509165
518 => 0.11471102270333
519 => 0.11389995552658
520 => 0.11473415823136
521 => 0.11492770041453
522 => 0.11489653566538
523 => 0.11404968838239
524 => 0.11458944358722
525 => 0.11331276161903
526 => 0.11192456173006
527 => 0.1110389766888
528 => 0.11026618628449
529 => 0.11069497531564
530 => 0.10916642071337
531 => 0.10867740533238
601 => 0.1144065866687
602 => 0.11863879452092
603 => 0.11857725654261
604 => 0.11820265992594
605 => 0.1176460853377
606 => 0.12030830683804
607 => 0.11938084210012
608 => 0.12005565018923
609 => 0.12022741716951
610 => 0.12074730408593
611 => 0.12093311897275
612 => 0.12037145732802
613 => 0.11848645224711
614 => 0.1137891988064
615 => 0.11160261464975
616 => 0.11088100545762
617 => 0.11090723458122
618 => 0.11018371826028
619 => 0.11039682624252
620 => 0.11010960800093
621 => 0.10956568613692
622 => 0.11066138967327
623 => 0.11078765929865
624 => 0.11053190900059
625 => 0.11059214745408
626 => 0.10847464421847
627 => 0.10863563339049
628 => 0.10773922522313
629 => 0.10757115949811
630 => 0.10530511771019
701 => 0.10129049621488
702 => 0.10351498623202
703 => 0.10082811510195
704 => 0.099810556292248
705 => 0.1046275214345
706 => 0.10414403173604
707 => 0.10331650754018
708 => 0.10209242678336
709 => 0.10163840332356
710 => 0.098879900508189
711 => 0.098716913445817
712 => 0.10008410192696
713 => 0.099453191484993
714 => 0.098567154280009
715 => 0.095358017339705
716 => 0.091749884910078
717 => 0.091858791748216
718 => 0.09300647154239
719 => 0.096343505329659
720 => 0.095039668497702
721 => 0.094093719916314
722 => 0.09391657218213
723 => 0.096133946959345
724 => 0.099271996823483
725 => 0.10074429960983
726 => 0.099285292263061
727 => 0.097609263181629
728 => 0.097711275305845
729 => 0.098389916266015
730 => 0.098461231835463
731 => 0.097370309202024
801 => 0.097677397533221
802 => 0.097210902277387
803 => 0.094348021753416
804 => 0.09429624132303
805 => 0.093593644272263
806 => 0.093572369912795
807 => 0.092377077058393
808 => 0.092209847325392
809 => 0.089836520813885
810 => 0.091398651510854
811 => 0.09035085625487
812 => 0.088771581654188
813 => 0.088499314117766
814 => 0.088491129426848
815 => 0.090112691322409
816 => 0.091379702615985
817 => 0.090369083101948
818 => 0.090138984628638
819 => 0.092595834336893
820 => 0.092283177816835
821 => 0.092012419286884
822 => 0.098991018876582
823 => 0.093466912754419
824 => 0.091058087180202
825 => 0.088076708108538
826 => 0.08904746016769
827 => 0.089252011889868
828 => 0.082082332656487
829 => 0.079173594684431
830 => 0.0781754254259
831 => 0.077600964905573
901 => 0.077862753778307
902 => 0.075244548442521
903 => 0.077004025729289
904 => 0.074736881219886
905 => 0.074356787064958
906 => 0.078410722293082
907 => 0.078974803697329
908 => 0.076568257180454
909 => 0.078113649628779
910 => 0.077553268844454
911 => 0.0747757449054
912 => 0.074669663921012
913 => 0.073276000043082
914 => 0.071095185940625
915 => 0.070098495376747
916 => 0.069579410277416
917 => 0.069793594906167
918 => 0.069685296603713
919 => 0.068978576924403
920 => 0.069725804948474
921 => 0.067816946122911
922 => 0.06705682315785
923 => 0.066713493249252
924 => 0.065019271171749
925 => 0.067715531921033
926 => 0.06824672925524
927 => 0.06877897321229
928 => 0.073411793480031
929 => 0.073180350871669
930 => 0.075272479334141
1001 => 0.075191183069267
1002 => 0.074594474141536
1003 => 0.072077057329292
1004 => 0.073080454802013
1005 => 0.069992153343568
1006 => 0.072306118780321
1007 => 0.071250121588494
1008 => 0.071949085067527
1009 => 0.07069228570923
1010 => 0.071387850366085
1011 => 0.068372695849302
1012 => 0.065557186985899
1013 => 0.06669022994236
1014 => 0.067921977215212
1015 => 0.070592719146123
1016 => 0.069002047285215
1017 => 0.06957411303636
1018 => 0.067657788532675
1019 => 0.063703863710539
1020 => 0.063726242495637
1021 => 0.063118017302686
1022 => 0.062592421933644
1023 => 0.069184755083277
1024 => 0.068364894246755
1025 => 0.067058553304491
1026 => 0.068807142567637
1027 => 0.069269497322656
1028 => 0.069282659912537
1029 => 0.070558385501307
1030 => 0.07123924047672
1031 => 0.071359244117131
1101 => 0.073366625894936
1102 => 0.07403947378885
1103 => 0.076810839038885
1104 => 0.071181474688925
1105 => 0.071065541634644
1106 => 0.068831748804478
1107 => 0.06741504207672
1108 => 0.068928751926173
1109 => 0.070269692210789
1110 => 0.068873415556978
1111 => 0.069055739810956
1112 => 0.067181352483209
1113 => 0.067851357754758
1114 => 0.068428456554072
1115 => 0.06810981651739
1116 => 0.067632796960125
1117 => 0.070159750399332
1118 => 0.070017169783081
1119 => 0.072370326920079
1120 => 0.07420478118425
1121 => 0.077492451173568
1122 => 0.074061596149602
1123 => 0.073936562156115
1124 => 0.075158789498533
1125 => 0.074039286672212
1126 => 0.074746773814523
1127 => 0.077378464057233
1128 => 0.077434067525098
1129 => 0.076502637797333
1130 => 0.07644596021375
1201 => 0.076624851481692
1202 => 0.077672623225596
1203 => 0.077306499583502
1204 => 0.077730187131249
1205 => 0.078260014897441
1206 => 0.080451607180729
1207 => 0.080979992660629
1208 => 0.079696289880933
1209 => 0.079812193868929
1210 => 0.079332053790894
1211 => 0.078868244491649
1212 => 0.079910820062443
1213 => 0.081816147409942
1214 => 0.0818042944674
1215 => 0.082246293377748
1216 => 0.082521655037179
1217 => 0.081339601217849
1218 => 0.080570127646788
1219 => 0.080865192776808
1220 => 0.081337008345393
1221 => 0.080712189346888
1222 => 0.0768555170438
1223 => 0.078025385055376
1224 => 0.077830661814627
1225 => 0.077553352240644
1226 => 0.078729663572606
1227 => 0.078616205475008
1228 => 0.075217694962511
1229 => 0.07543525657908
1230 => 0.075230925605001
1231 => 0.075891160784436
]
'min_raw' => 0.062592421933644
'max_raw' => 0.14021475189885
'avg_raw' => 0.10140358691625
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.062592'
'max' => '$0.140214'
'avg' => '$0.1014035'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.015263486530696
'max_diff' => -0.10189115280702
'year' => 2034
]
9 => [
'items' => [
101 => 0.074003631805815
102 => 0.074584223006937
103 => 0.074948364365577
104 => 0.075162846423281
105 => 0.075937702687432
106 => 0.075846782248192
107 => 0.075932050945271
108 => 0.077080958230538
109 => 0.08289173702205
110 => 0.083208004890911
111 => 0.0816505862351
112 => 0.082272744269372
113 => 0.081078336894575
114 => 0.08188015056711
115 => 0.082428731117999
116 => 0.079949801094503
117 => 0.079803014946635
118 => 0.078603677827728
119 => 0.079248133661502
120 => 0.078222758091953
121 => 0.078474349390605
122 => 0.077770878186238
123 => 0.07903698629438
124 => 0.080452691892592
125 => 0.080810355034608
126 => 0.079869497291627
127 => 0.079188254280162
128 => 0.077992215967427
129 => 0.079981254336957
130 => 0.080562909771053
131 => 0.07997819914858
201 => 0.079842708921173
202 => 0.079585955185063
203 => 0.079897180440042
204 => 0.080559741950642
205 => 0.080247290177833
206 => 0.080453670078465
207 => 0.079667162715285
208 => 0.081339992526848
209 => 0.083996848856028
210 => 0.084005391083566
211 => 0.083692937626526
212 => 0.083565088403808
213 => 0.083885684611993
214 => 0.084059594903388
215 => 0.085096344253368
216 => 0.086208817611812
217 => 0.091400245365517
218 => 0.089942513226111
219 => 0.094548656768617
220 => 0.098191518277858
221 => 0.099283853161451
222 => 0.098278956466873
223 => 0.094841259158174
224 => 0.094672589327808
225 => 0.099809960465372
226 => 0.098358417812505
227 => 0.098185761432717
228 => 0.09634898925933
301 => 0.097434749102461
302 => 0.097197277497632
303 => 0.096822416951902
304 => 0.09889397109791
305 => 0.10277173553032
306 => 0.10216734957809
307 => 0.1017162035014
308 => 0.099739412720007
309 => 0.10092988230261
310 => 0.10050597888619
311 => 0.10232733697889
312 => 0.1012484047928
313 => 0.098347420949278
314 => 0.098809412188126
315 => 0.098739583141772
316 => 0.10017665996761
317 => 0.099745285174932
318 => 0.098655350290184
319 => 0.10275848175306
320 => 0.10249204721868
321 => 0.10286979047302
322 => 0.10303608473568
323 => 0.10553358855184
324 => 0.10655673595412
325 => 0.10678900832715
326 => 0.10776091922625
327 => 0.10676482629859
328 => 0.11074990821146
329 => 0.11339975514754
330 => 0.11647768872367
331 => 0.12097537694895
401 => 0.1226665493276
402 => 0.1223610541745
403 => 0.1257711500555
404 => 0.13189901655149
405 => 0.12359967119575
406 => 0.13233890200773
407 => 0.12957216243193
408 => 0.12301227266922
409 => 0.12258989310452
410 => 0.12703232661371
411 => 0.13688521656872
412 => 0.13441717938555
413 => 0.13688925339341
414 => 0.1340054477513
415 => 0.13386224249454
416 => 0.13674919339014
417 => 0.14349471151721
418 => 0.14029016870701
419 => 0.13569567080245
420 => 0.13908817655687
421 => 0.1361492741108
422 => 0.12952710435281
423 => 0.13441529212403
424 => 0.13114670016899
425 => 0.13210064906937
426 => 0.13897074319251
427 => 0.1381441152916
428 => 0.13921384833906
429 => 0.13732579751008
430 => 0.13556206031752
501 => 0.13226991387078
502 => 0.13129527160875
503 => 0.13156462766602
504 => 0.13129513812927
505 => 0.1294532124487
506 => 0.12905544877335
507 => 0.12839249188802
508 => 0.12859796994811
509 => 0.12735141704879
510 => 0.12970391992077
511 => 0.13014056518399
512 => 0.13185252059176
513 => 0.13203026148139
514 => 0.13679803292386
515 => 0.13417202453249
516 => 0.13593377768007
517 => 0.13577618989629
518 => 0.1231544453717
519 => 0.1248936104046
520 => 0.12759920541572
521 => 0.12638033853056
522 => 0.12465714592586
523 => 0.12326557550582
524 => 0.12115720402409
525 => 0.12412469639694
526 => 0.12802663330962
527 => 0.13212922104067
528 => 0.13705821138733
529 => 0.13595811812173
530 => 0.13203707699467
531 => 0.13221297203531
601 => 0.13330028596438
602 => 0.13189211563335
603 => 0.13147681871197
604 => 0.13324323054471
605 => 0.13325539485219
606 => 0.13163512470327
607 => 0.12983449093904
608 => 0.12982694621782
609 => 0.12950654083154
610 => 0.13406244715773
611 => 0.13656773498306
612 => 0.13685496219476
613 => 0.1365484023032
614 => 0.13666638503853
615 => 0.13520861325323
616 => 0.13854064726564
617 => 0.14159845117945
618 => 0.14077889441009
619 => 0.13955026230598
620 => 0.13857159765611
621 => 0.140548352121
622 => 0.14046033035637
623 => 0.14157174392983
624 => 0.1415213237903
625 => 0.14114759720793
626 => 0.14077890775705
627 => 0.14224071975502
628 => 0.14181974137558
629 => 0.14139810910045
630 => 0.140552461024
701 => 0.14066739864232
702 => 0.13943897867885
703 => 0.13887065539508
704 => 0.1303244368054
705 => 0.12804060794249
706 => 0.12875914699438
707 => 0.12899570870713
708 => 0.12800178345918
709 => 0.12942681694629
710 => 0.12920472698681
711 => 0.13006874910087
712 => 0.12952894559548
713 => 0.12955109931963
714 => 0.13113854633073
715 => 0.13159938895154
716 => 0.13136500067514
717 => 0.13152915818957
718 => 0.13531209882303
719 => 0.13477428563658
720 => 0.13448858310029
721 => 0.13456772465537
722 => 0.13553434709438
723 => 0.13580494860168
724 => 0.13465839100044
725 => 0.13519911419335
726 => 0.13750144492079
727 => 0.13830713037476
728 => 0.14087849159287
729 => 0.13978613164511
730 => 0.14179120560545
731 => 0.14795411937943
801 => 0.15287748134328
802 => 0.14834975421478
803 => 0.15739088147503
804 => 0.16443069591982
805 => 0.164160496116
806 => 0.16293294163371
807 => 0.15491830005148
808 => 0.14754310737593
809 => 0.15371276921625
810 => 0.15372849695308
811 => 0.1531985175294
812 => 0.14990686084576
813 => 0.15308397501189
814 => 0.15333616279681
815 => 0.1531950046994
816 => 0.15067129923775
817 => 0.14681806745655
818 => 0.14757097972327
819 => 0.14880426537513
820 => 0.14646939834581
821 => 0.14572326685535
822 => 0.14711046725343
823 => 0.15158031597071
824 => 0.15073531696278
825 => 0.15071325062377
826 => 0.15432851471505
827 => 0.15174076584852
828 => 0.14758047635811
829 => 0.1465299483943
830 => 0.14280128184323
831 => 0.14537668511111
901 => 0.14546936928982
902 => 0.14405884723998
903 => 0.14769493244862
904 => 0.1476614252833
905 => 0.15111334702904
906 => 0.1577121249243
907 => 0.15576054159453
908 => 0.15349106251368
909 => 0.15373781781559
910 => 0.15644411443365
911 => 0.15480782571963
912 => 0.1553962465498
913 => 0.15644322378825
914 => 0.15707489115119
915 => 0.15364693060288
916 => 0.15284770902076
917 => 0.1512127821524
918 => 0.1507862602498
919 => 0.15211787407021
920 => 0.15176704087514
921 => 0.14546157954349
922 => 0.14480262375108
923 => 0.14482283298446
924 => 0.14316585731279
925 => 0.14063857169378
926 => 0.14728012740416
927 => 0.14674671753211
928 => 0.146157874316
929 => 0.14623000425008
930 => 0.14911287848075
1001 => 0.14744066583833
1002 => 0.15188651721848
1003 => 0.15097258382924
1004 => 0.15003521149716
1005 => 0.14990563808781
1006 => 0.14954482971281
1007 => 0.14830748354404
1008 => 0.14681331369228
1009 => 0.14582673333337
1010 => 0.13451745312808
1011 => 0.13661638975112
1012 => 0.13903102501185
1013 => 0.1398645474278
1014 => 0.13843874965731
1015 => 0.14836378273036
1016 => 0.15017718191281
1017 => 0.14468427750408
1018 => 0.14365677936302
1019 => 0.14843114533743
1020 => 0.14555161901235
1021 => 0.14684826954022
1022 => 0.14404562032889
1023 => 0.14974038715228
1024 => 0.14969700257043
1025 => 0.14748160965399
1026 => 0.14935404457661
1027 => 0.14902866293044
1028 => 0.14652748978406
1029 => 0.14981967880228
1030 => 0.14982131168696
1031 => 0.14768904417169
1101 => 0.14519902252722
1102 => 0.14475386546888
1103 => 0.14441849942385
1104 => 0.14676579005146
1105 => 0.14887036348838
1106 => 0.1527864528865
1107 => 0.15377105080517
1108 => 0.15761400203016
1109 => 0.15532571168558
1110 => 0.15634008115701
1111 => 0.15744132270957
1112 => 0.15796929840668
1113 => 0.15710899034097
1114 => 0.1630786754152
1115 => 0.16358269974189
1116 => 0.16375169473884
1117 => 0.16173875051986
1118 => 0.16352671612177
1119 => 0.16269018622784
1120 => 0.16486660461716
1121 => 0.16520789481052
1122 => 0.1649188341585
1123 => 0.16502716505277
1124 => 0.15993309196652
1125 => 0.15966893740362
1126 => 0.15606717119496
1127 => 0.1575349175479
1128 => 0.15479103609198
1129 => 0.15566114916677
1130 => 0.15604468671939
1201 => 0.15584434846746
1202 => 0.15761790172451
1203 => 0.15611001914303
1204 => 0.15213046909165
1205 => 0.14814983481453
1206 => 0.14809986119373
1207 => 0.1470518304526
1208 => 0.14629429618316
1209 => 0.14644022415843
1210 => 0.14695449337695
1211 => 0.14626440592129
1212 => 0.14641167106828
1213 => 0.14885725373079
1214 => 0.14934769789266
1215 => 0.14768097700173
1216 => 0.14098885211793
1217 => 0.13934658788552
1218 => 0.14052701484826
1219 => 0.13996284678931
1220 => 0.11296094101128
1221 => 0.1193046382489
1222 => 0.11553542876191
1223 => 0.1172724539065
1224 => 0.11342506705235
1225 => 0.11526124171798
1226 => 0.1149221673036
1227 => 0.12512264473804
1228 => 0.1249633783132
1229 => 0.12503961072258
1230 => 0.1214008392004
1231 => 0.12719750103864
]
'min_raw' => 0.074003631805815
'max_raw' => 0.16520789481052
'avg_raw' => 0.11960576330817
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0740036'
'max' => '$0.1652078'
'avg' => '$0.1196057'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.011411209872171
'max_diff' => 0.024993142911661
'year' => 2035
]
10 => [
'items' => [
101 => 0.13005314510138
102 => 0.12952464138587
103 => 0.1296576543849
104 => 0.12737205036846
105 => 0.12506174036554
106 => 0.12249925101814
107 => 0.12726003949235
108 => 0.12673072108339
109 => 0.12794478707079
110 => 0.13103249870451
111 => 0.13148717597165
112 => 0.13209826682956
113 => 0.13187923425741
114 => 0.13709747874751
115 => 0.13646551490868
116 => 0.13798836593187
117 => 0.13485574583818
118 => 0.13131088885113
119 => 0.13198465027426
120 => 0.13191976163117
121 => 0.13109365472886
122 => 0.13034788235518
123 => 0.12910638147308
124 => 0.13303467397161
125 => 0.13287519247008
126 => 0.13545701260297
127 => 0.13500065081602
128 => 0.13195295511208
129 => 0.13206180416037
130 => 0.13279386632123
131 => 0.13532754181849
201 => 0.13607970921186
202 => 0.13573127530657
203 => 0.13655599251565
204 => 0.13720781537128
205 => 0.13663785143068
206 => 0.14470733888206
207 => 0.14135632508955
208 => 0.14298958589581
209 => 0.14337910897438
210 => 0.14238135379943
211 => 0.14259773116994
212 => 0.14292548392696
213 => 0.14491553448704
214 => 0.15013800298244
215 => 0.15245099872852
216 => 0.15940976055177
217 => 0.15225893663026
218 => 0.15183463633181
219 => 0.15308811947065
220 => 0.15717364932065
221 => 0.16048458752977
222 => 0.16158301674634
223 => 0.1617281923004
224 => 0.16378891853288
225 => 0.16497008837907
226 => 0.16353869216578
227 => 0.16232573374844
228 => 0.15798106725548
229 => 0.15848397423218
301 => 0.16194850459275
302 => 0.16684235778687
303 => 0.17104179294607
304 => 0.16957129711841
305 => 0.18079014227518
306 => 0.1819024449476
307 => 0.18174876068333
308 => 0.18428275170393
309 => 0.17925329556633
310 => 0.17710310562637
311 => 0.16258798912593
312 => 0.16666614479865
313 => 0.17259398357063
314 => 0.1718094118809
315 => 0.16750445691311
316 => 0.17103852725169
317 => 0.16987005307716
318 => 0.16894842901566
319 => 0.17317056750698
320 => 0.16852815279989
321 => 0.17254767193266
322 => 0.16739259706828
323 => 0.16957801421948
324 => 0.16833746574773
325 => 0.16914025264485
326 => 0.16444717684787
327 => 0.16697944662995
328 => 0.1643418260996
329 => 0.16434057552404
330 => 0.16428234990465
331 => 0.1673854987616
401 => 0.16748669233441
402 => 0.16519346064053
403 => 0.16486297012643
404 => 0.16608496677415
405 => 0.1646543287411
406 => 0.16532371527244
407 => 0.16467460377722
408 => 0.16452847510727
409 => 0.16336409700334
410 => 0.16286245090092
411 => 0.16305915926351
412 => 0.16238769221189
413 => 0.16198310902527
414 => 0.16420186812562
415 => 0.16301647464279
416 => 0.16402018957344
417 => 0.16287632973104
418 => 0.15891121316128
419 => 0.15663083269166
420 => 0.14914109505789
421 => 0.15126517535984
422 => 0.15267344279755
423 => 0.15220801041778
424 => 0.15320793926794
425 => 0.15326932677825
426 => 0.152944239716
427 => 0.15256783054414
428 => 0.15238461537601
429 => 0.15375015113386
430 => 0.15454289060311
501 => 0.15281478127511
502 => 0.15240990943838
503 => 0.15415712338052
504 => 0.15522292287589
505 => 0.16309218752872
506 => 0.16250920698584
507 => 0.1639723737443
508 => 0.16380764362142
509 => 0.16534127548502
510 => 0.16784811542083
511 => 0.16275100890786
512 => 0.16363569035383
513 => 0.16341878689356
514 => 0.16578688199768
515 => 0.16579427493211
516 => 0.16437448362207
517 => 0.16514417552473
518 => 0.16471455462005
519 => 0.16549093766154
520 => 0.16250142092527
521 => 0.16614232961166
522 => 0.16820649022187
523 => 0.16823515109395
524 => 0.169213546841
525 => 0.17020765358486
526 => 0.17211575491125
527 => 0.17015443767449
528 => 0.16662621889594
529 => 0.16688094489567
530 => 0.16481235151673
531 => 0.16484712494516
601 => 0.164661501659
602 => 0.16521857111383
603 => 0.16262366634387
604 => 0.16323268530676
605 => 0.1623800551923
606 => 0.16363383690248
607 => 0.16228497503987
608 => 0.16341868229614
609 => 0.16390795276496
610 => 0.16571337132813
611 => 0.16201831325015
612 => 0.15448383969571
613 => 0.15606767738352
614 => 0.15372505703549
615 => 0.15394187546769
616 => 0.15437988320712
617 => 0.15296015681641
618 => 0.15323099587103
619 => 0.15322131959414
620 => 0.15313793466739
621 => 0.15276860900073
622 => 0.15223301371522
623 => 0.15436666048516
624 => 0.15472920864821
625 => 0.15553510830445
626 => 0.15793291903447
627 => 0.15769332119827
628 => 0.15808411520993
629 => 0.15723101407669
630 => 0.1539814483825
701 => 0.15415791543383
702 => 0.15195736847609
703 => 0.15547883537124
704 => 0.15464490552938
705 => 0.15410726553529
706 => 0.15396056548171
707 => 0.15636431992074
708 => 0.15708356092313
709 => 0.15663537819691
710 => 0.15571614234985
711 => 0.15748134692389
712 => 0.1579536411999
713 => 0.15805937047075
714 => 0.16118697453155
715 => 0.1582341687944
716 => 0.1589449384837
717 => 0.16449016070142
718 => 0.15946140933831
719 => 0.16212525108989
720 => 0.16199486989811
721 => 0.16335760119873
722 => 0.16188308615631
723 => 0.16190136453745
724 => 0.16311137761299
725 => 0.16141213247541
726 => 0.16099137548281
727 => 0.16041010271104
728 => 0.16167929054275
729 => 0.16244011124743
730 => 0.1685717673659
731 => 0.17253309685593
801 => 0.1723611250955
802 => 0.17393262506815
803 => 0.17322464993718
804 => 0.17093841148489
805 => 0.17484074174587
806 => 0.17360588117086
807 => 0.17370768157631
808 => 0.17370389256014
809 => 0.17452496688913
810 => 0.17394316047668
811 => 0.17279636031654
812 => 0.17355765978177
813 => 0.17581844702394
814 => 0.18283599999309
815 => 0.18676311560483
816 => 0.18259958270223
817 => 0.18547153194652
818 => 0.18374938578009
819 => 0.18343642059224
820 => 0.18524021695304
821 => 0.18704717062058
822 => 0.18693207548363
823 => 0.18562031990909
824 => 0.1848793424696
825 => 0.19049027188708
826 => 0.19462430910219
827 => 0.19434239547905
828 => 0.19558667052834
829 => 0.19923990055703
830 => 0.19957390612709
831 => 0.19953182910229
901 => 0.19870396144703
902 => 0.20230104084214
903 => 0.20530178775814
904 => 0.19851233400424
905 => 0.20109766911325
906 => 0.20225830933798
907 => 0.20396247353431
908 => 0.20683768418462
909 => 0.20996092556282
910 => 0.21040258613829
911 => 0.21008920682459
912 => 0.20802934517843
913 => 0.21144683316247
914 => 0.21344871747357
915 => 0.21464079376852
916 => 0.21766370090992
917 => 0.20226547705687
918 => 0.1913658488723
919 => 0.18966371453874
920 => 0.19312507163916
921 => 0.19403780390274
922 => 0.19366988267176
923 => 0.18140136019919
924 => 0.18959912330695
925 => 0.19841922712341
926 => 0.19875804323201
927 => 0.2031735716222
928 => 0.20461144866467
929 => 0.20816652777531
930 => 0.207944156609
1001 => 0.20880976179878
1002 => 0.20861077415584
1003 => 0.21519580959807
1004 => 0.22246008157809
1005 => 0.22220854293839
1006 => 0.2211642178943
1007 => 0.22271521866865
1008 => 0.23021272583872
1009 => 0.22952247552361
1010 => 0.23019299490936
1011 => 0.23903297840386
1012 => 0.25052621441969
1013 => 0.24518645238831
1014 => 0.25677219952128
1015 => 0.26406481320742
1016 => 0.27667663450727
1017 => 0.275097572366
1018 => 0.28000726184821
1019 => 0.27227072157291
1020 => 0.25450606128806
1021 => 0.2516947357976
1022 => 0.25732308062361
1023 => 0.2711598171725
1024 => 0.25688731254892
1025 => 0.25977462164572
1026 => 0.2589430764316
1027 => 0.25889876692098
1028 => 0.26058988072157
1029 => 0.25813683195125
1030 => 0.24814266996593
1031 => 0.25272293550784
1101 => 0.25095427501969
1102 => 0.25291673569366
1103 => 0.26350732657075
1104 => 0.25882497389584
1105 => 0.25389249571626
1106 => 0.26007891795798
1107 => 0.26795635935702
1108 => 0.26746340323139
1109 => 0.266506862308
1110 => 0.27189883341032
1111 => 0.28080478997206
1112 => 0.28321203424367
1113 => 0.28498901275103
1114 => 0.28523402806489
1115 => 0.28775783807389
1116 => 0.2741866755735
1117 => 0.29572445899379
1118 => 0.29944343922121
1119 => 0.2987444250744
1120 => 0.30287791507857
1121 => 0.30166173746282
1122 => 0.29989968691002
1123 => 0.30645214778517
1124 => 0.29894028014814
1125 => 0.28827812975521
1126 => 0.28242866317623
1127 => 0.29013171263045
1128 => 0.29483569613275
1129 => 0.29794472999824
1130 => 0.2988855217674
1201 => 0.27524016628626
1202 => 0.26249663111347
1203 => 0.2706650910543
1204 => 0.28063117593911
1205 => 0.27413131346877
1206 => 0.27438609577174
1207 => 0.26511900002284
1208 => 0.28145110828339
1209 => 0.27907165748448
1210 => 0.29141625243841
1211 => 0.28847011578109
1212 => 0.2985366537516
1213 => 0.29588579693754
1214 => 0.30688935536529
1215 => 0.31127897273158
1216 => 0.31864982347896
1217 => 0.32407185129349
1218 => 0.32725576973305
1219 => 0.32706461921252
1220 => 0.33968089029192
1221 => 0.33224151601533
1222 => 0.32289590859805
1223 => 0.32272687604489
1224 => 0.32756709855458
1225 => 0.33771087708469
1226 => 0.34034101127158
1227 => 0.34181089747254
1228 => 0.33955971558866
1229 => 0.33148480799619
1230 => 0.32799810383847
1231 => 0.33096887680039
]
'min_raw' => 0.12249925101814
'max_raw' => 0.34181089747254
'avg_raw' => 0.23215507424534
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.122499'
'max' => '$0.34181'
'avg' => '$0.232155'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.048495619212328
'max_diff' => 0.17660300266203
'year' => 2036
]
11 => [
'items' => [
101 => 0.32733587674939
102 => 0.33360745407719
103 => 0.34221966928489
104 => 0.34044128090089
105 => 0.34638616663772
106 => 0.35253849795512
107 => 0.36133660805749
108 => 0.36363675983132
109 => 0.36743882324653
110 => 0.37135239541355
111 => 0.37260932931987
112 => 0.37500920615072
113 => 0.37499655761521
114 => 0.38222874797531
115 => 0.3902060779048
116 => 0.39321733527757
117 => 0.40014155556455
118 => 0.38828407097671
119 => 0.39727810924555
120 => 0.40539095689943
121 => 0.39571848547303
122 => 0.40904973393752
123 => 0.40956735610613
124 => 0.41738283630291
125 => 0.40946034985864
126 => 0.4047560026975
127 => 0.41833727668212
128 => 0.42490882735715
129 => 0.42292942281278
130 => 0.40786605649484
131 => 0.39909853119963
201 => 0.37615222637273
202 => 0.40333311564679
203 => 0.41657213393478
204 => 0.40783177063579
205 => 0.41223990148723
206 => 0.43628923407145
207 => 0.44544566284055
208 => 0.44354118966485
209 => 0.44386301428124
210 => 0.44880365704411
211 => 0.47071318791634
212 => 0.45758448915875
213 => 0.46762088743597
214 => 0.47294415689328
215 => 0.47788870623426
216 => 0.46574645579368
217 => 0.44994956637557
218 => 0.44494602838855
219 => 0.40696271375944
220 => 0.40498551727982
221 => 0.40387565698062
222 => 0.39687814478705
223 => 0.3913800169828
224 => 0.38700770162047
225 => 0.37553344042581
226 => 0.37940566674854
227 => 0.36111808926869
228 => 0.37281783326835
301 => 0.34363041804151
302 => 0.36793856475115
303 => 0.3547087456529
304 => 0.36359221336253
305 => 0.36356121978056
306 => 0.34720393922113
307 => 0.33776940116219
308 => 0.34378145601106
309 => 0.35022685604656
310 => 0.35127260051739
311 => 0.35962922990557
312 => 0.36196138554266
313 => 0.35489484508434
314 => 0.34302557373616
315 => 0.34578253476108
316 => 0.33771353143501
317 => 0.32357291347581
318 => 0.33372895216561
319 => 0.33719667030381
320 => 0.33872821218518
321 => 0.32482253848325
322 => 0.32045307389924
323 => 0.31812680761807
324 => 0.34123052588121
325 => 0.34249619972136
326 => 0.33602083340691
327 => 0.36529010316767
328 => 0.35866556597779
329 => 0.3660667970699
330 => 0.34553236944517
331 => 0.34631681223371
401 => 0.33659548511736
402 => 0.3420387787232
403 => 0.33819163424813
404 => 0.34159901439153
405 => 0.34364138400032
406 => 0.35336111594255
407 => 0.3680495484769
408 => 0.35190931211487
409 => 0.34487677999949
410 => 0.34923972337141
411 => 0.36085881651279
412 => 0.37846233739241
413 => 0.3680406987278
414 => 0.37266564499625
415 => 0.37367599000637
416 => 0.36599145948512
417 => 0.37874567699383
418 => 0.38558076577182
419 => 0.39259215253571
420 => 0.39867994320819
421 => 0.38979165047851
422 => 0.39930339778598
423 => 0.39163860850559
424 => 0.38476250014972
425 => 0.38477292836776
426 => 0.38045944515221
427 => 0.37210152788822
428 => 0.37056019971128
429 => 0.378578383536
430 => 0.38500820763858
501 => 0.38553779874845
502 => 0.38909767974793
503 => 0.39120438065374
504 => 0.41185291345162
505 => 0.42015792415654
506 => 0.43031313404072
507 => 0.43426916060688
508 => 0.44617538225699
509 => 0.43656014129848
510 => 0.43447982343441
511 => 0.40559922420666
512 => 0.41032842071228
513 => 0.41790032061737
514 => 0.40572408204719
515 => 0.41344710283619
516 => 0.41497179073588
517 => 0.40531033811987
518 => 0.41047093740881
519 => 0.39676591570844
520 => 0.36834828049847
521 => 0.37877731394543
522 => 0.38645659293709
523 => 0.37549731496772
524 => 0.39514139654518
525 => 0.38366572962378
526 => 0.38002849413885
527 => 0.36583834174408
528 => 0.37253554744536
529 => 0.38159361405109
530 => 0.37599678200201
531 => 0.3876110488724
601 => 0.4040599481727
602 => 0.41578241336298
603 => 0.41668231868186
604 => 0.40914555890868
605 => 0.42122326454416
606 => 0.42131123744418
607 => 0.40768753614849
608 => 0.39934309496196
609 => 0.39744722036753
610 => 0.40218348681253
611 => 0.40793418863978
612 => 0.41700144261042
613 => 0.42248059428447
614 => 0.43676731593288
615 => 0.44063289317853
616 => 0.44487999060171
617 => 0.45055542251541
618 => 0.45737023367869
619 => 0.44245981482085
620 => 0.44305223355857
621 => 0.42916785796696
622 => 0.41433041142645
623 => 0.42559018383688
624 => 0.44031083843875
625 => 0.43693390400821
626 => 0.43655392990026
627 => 0.4371929409538
628 => 0.43464684267353
629 => 0.4231309345147
630 => 0.41734771753073
701 => 0.42480954289605
702 => 0.42877517099008
703 => 0.43492551432481
704 => 0.43416735469081
705 => 0.45000997862242
706 => 0.45616594322616
707 => 0.45459098405194
708 => 0.45488081444351
709 => 0.46602589431139
710 => 0.47842151528497
711 => 0.49003165007297
712 => 0.50184197784622
713 => 0.48760416675063
714 => 0.4803750843424
715 => 0.48783365210819
716 => 0.48387603106472
717 => 0.50661769548718
718 => 0.5081922789899
719 => 0.53093229893117
720 => 0.55251528568664
721 => 0.5389593984049
722 => 0.55174198954101
723 => 0.56556740403466
724 => 0.59223887168556
725 => 0.58325685969428
726 => 0.57637677927504
727 => 0.56987513652315
728 => 0.5834040229831
729 => 0.60080871928458
730 => 0.60455752416781
731 => 0.61063202023233
801 => 0.60424543037453
802 => 0.61193737439846
803 => 0.63909331681439
804 => 0.63175554146147
805 => 0.62133472085407
806 => 0.64277172930702
807 => 0.65052969933188
808 => 0.70497919584679
809 => 0.77372393439338
810 => 0.7452631612328
811 => 0.72759664090862
812 => 0.73174869224027
813 => 0.75685194360123
814 => 0.764914311201
815 => 0.74299801680005
816 => 0.75073922249134
817 => 0.79339402694885
818 => 0.81627696101034
819 => 0.78519886296677
820 => 0.69945562303983
821 => 0.62039643997505
822 => 0.64136649540524
823 => 0.63898914189604
824 => 0.68481640799041
825 => 0.63158053794607
826 => 0.63247689346661
827 => 0.6792518188919
828 => 0.66677307071367
829 => 0.64655909682224
830 => 0.62054402435458
831 => 0.57245275679514
901 => 0.52985697999355
902 => 0.61339710752302
903 => 0.60979470531608
904 => 0.60457789307434
905 => 0.61618734420029
906 => 0.67255954346769
907 => 0.67125998181557
908 => 0.66299283362699
909 => 0.66926339266473
910 => 0.64545983750522
911 => 0.6515945556667
912 => 0.62038391659652
913 => 0.63449242892767
914 => 0.64651572671283
915 => 0.64892958175117
916 => 0.65436812040703
917 => 0.60789640304745
918 => 0.62876083980396
919 => 0.64101674166507
920 => 0.58564413118306
921 => 0.63992220319236
922 => 0.60708743383846
923 => 0.59594281995806
924 => 0.61094757435679
925 => 0.605100206975
926 => 0.60007298386907
927 => 0.59726770699731
928 => 0.60828554261342
929 => 0.60777154741277
930 => 0.58974422987507
1001 => 0.5662283290346
1002 => 0.57412103723979
1003 => 0.57125354235432
1004 => 0.56086137097513
1005 => 0.56786443972914
1006 => 0.53702646910847
1007 => 0.48397134347383
1008 => 0.51902118459052
1009 => 0.51767180383442
1010 => 0.51699138486765
1011 => 0.54333037176038
1012 => 0.54079848591446
1013 => 0.53620308831182
1014 => 0.56077697289441
1015 => 0.55180717445637
1016 => 0.57944997969209
1017 => 0.59765731904488
1018 => 0.59303934883928
1019 => 0.61016343950429
1020 => 0.57430286929581
1021 => 0.58621431224271
1022 => 0.58866924412552
1023 => 0.56047373497316
1024 => 0.54121273375122
1025 => 0.5399282445612
1026 => 0.50653232277182
1027 => 0.52437215462924
1028 => 0.54007046840138
1029 => 0.53255219434289
1030 => 0.53017213337802
1031 => 0.54233134867529
1101 => 0.54327622384053
1102 => 0.52173296993979
1103 => 0.52621249461188
1104 => 0.5448928571535
1105 => 0.5257417974047
1106 => 0.48853441662064
1107 => 0.4793064717539
1108 => 0.47807529380391
1109 => 0.45304837544779
1110 => 0.47992312715503
1111 => 0.46819157783625
1112 => 0.50525140156873
1113 => 0.48408302900856
1114 => 0.48317050277618
1115 => 0.48179108553745
1116 => 0.46024938305936
1117 => 0.46496564685545
1118 => 0.48064322602091
1119 => 0.48623716288772
1120 => 0.48565366944274
1121 => 0.48056639733013
1122 => 0.48289532445223
1123 => 0.47539303873993
1124 => 0.47274382550835
1125 => 0.46438217982595
1126 => 0.45209287063641
1127 => 0.45380177445393
1128 => 0.42945343727678
1129 => 0.4161871709186
1130 => 0.41251524323724
1201 => 0.4076049880813
1202 => 0.41306986962279
1203 => 0.42938446149676
1204 => 0.40970560236301
1205 => 0.37596757868966
1206 => 0.37799529139923
1207 => 0.38255095982431
1208 => 0.37406150185293
1209 => 0.36602694234922
1210 => 0.37301233997328
1211 => 0.35871709458237
1212 => 0.38427847193346
1213 => 0.38358710831104
1214 => 0.39311480908255
1215 => 0.39907267590308
1216 => 0.38534172176405
1217 => 0.38188842393053
1218 => 0.38385557932014
1219 => 0.35134288262271
1220 => 0.39045782812486
1221 => 0.39079609579785
1222 => 0.38789964261348
1223 => 0.40872714355492
1224 => 0.45267966680181
1225 => 0.43614295957018
1226 => 0.42973944670547
1227 => 0.41756636406872
1228 => 0.43378627391606
1229 => 0.4325408379098
1230 => 0.42690850397188
1231 => 0.42350205083228
]
'min_raw' => 0.31812680761807
'max_raw' => 0.81627696101034
'avg_raw' => 0.5672018843142
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.318126'
'max' => '$0.816276'
'avg' => '$0.5672018'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19562755659992
'max_diff' => 0.47446606353779
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0099856369757705
]
1 => [
'year' => 2028
'avg' => 0.017138251901549
]
2 => [
'year' => 2029
'avg' => 0.046818615325657
]
3 => [
'year' => 2030
'avg' => 0.036120491999371
]
4 => [
'year' => 2031
'avg' => 0.035474799506676
]
5 => [
'year' => 2032
'avg' => 0.062198487865484
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0099856369757705
'min' => '$0.009985'
'max_raw' => 0.062198487865484
'max' => '$0.062198'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.062198487865484
]
1 => [
'year' => 2033
'avg' => 0.15998090658511
]
2 => [
'year' => 2034
'avg' => 0.10140358691625
]
3 => [
'year' => 2035
'avg' => 0.11960576330817
]
4 => [
'year' => 2036
'avg' => 0.23215507424534
]
5 => [
'year' => 2037
'avg' => 0.5672018843142
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.062198487865484
'min' => '$0.062198'
'max_raw' => 0.5672018843142
'max' => '$0.5672018'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.5672018843142
]
]
]
]
'prediction_2025_max_price' => '$0.017073'
'last_price' => 0.01655503
'sma_50day_nextmonth' => '$0.015222'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'sinken'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.016336'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.016057'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015736'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015141'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014676'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.016327'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.016138'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.015799'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015371'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.015975'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.012831'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006415'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.016131'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.01596'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.016541'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.010331'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.004339'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.002169'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001084'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '66.04'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 114.75
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.015739'
'vwma_10_action' => 'BUY'
'hma_9' => '0.016494'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 167.43
'cci_20_action' => 'SELL'
'adx_14' => 19.65
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001353'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.03
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 1
'buy_signals' => 28
'sell_pct' => 3.45
'buy_pct' => 96.55
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767705882
'last_updated_date' => '6. Januar 2026'
]
SigmaDotMoney Preisprognose für 2026
Die Preisprognose für SigmaDotMoney im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.005719 am unteren Ende und $0.017073 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte SigmaDotMoney im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SIGMA das prognostizierte Preisziel erreicht.
SigmaDotMoney Preisprognose 2027-2032
Die Preisprognose für SIGMA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.009985 am unteren Ende und $0.062198 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte SigmaDotMoney, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.0055062 | $0.009985 | $0.014465 |
| 2028 | $0.009937 | $0.017138 | $0.024339 |
| 2029 | $0.021829 | $0.046818 | $0.071808 |
| 2030 | $0.018564 | $0.03612 | $0.053676 |
| 2031 | $0.021949 | $0.035474 | $0.04900028 |
| 2032 | $0.0335039 | $0.062198 | $0.090893 |
SigmaDotMoney Preisprognose 2032-2037
Die Preisprognose für SigmaDotMoney für die Jahre 2032-2037 wird derzeit zwischen $0.062198 am unteren Ende und $0.5672018 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte SigmaDotMoney bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| SigmaDotMoney Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.0335039 | $0.062198 | $0.090893 |
| 2033 | $0.077855 | $0.15998 | $0.2421059 |
| 2034 | $0.062592 | $0.1014035 | $0.140214 |
| 2035 | $0.0740036 | $0.1196057 | $0.1652078 |
| 2036 | $0.122499 | $0.232155 | $0.34181 |
| 2037 | $0.318126 | $0.5672018 | $0.816276 |
SigmaDotMoney Potenzielles Preishistogramm
SigmaDotMoney Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für SigmaDotMoney Bullisch, mit 28 technischen Indikatoren, die bullische Signale zeigen, und 1 anzeigen bärische Signale. Die Preisprognose für SIGMA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von SigmaDotMoney
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von SigmaDotMoney im nächsten Monat sinken, und bis zum 04.02.2026 — erreichen. Der kurzfristige 50-Tage-SMA für SigmaDotMoney wird voraussichtlich bis zum 04.02.2026 $0.015222 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 66.04, was darauf hindeutet, dass sich der SIGMA-Markt in einem NEUTRAL Zustand befindet.
Beliebte SIGMA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.016336 | BUY |
| SMA 5 | $0.016057 | BUY |
| SMA 10 | $0.015736 | BUY |
| SMA 21 | $0.015141 | BUY |
| SMA 50 | $0.014676 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.016327 | BUY |
| EMA 5 | $0.016138 | BUY |
| EMA 10 | $0.015799 | BUY |
| EMA 21 | $0.015371 | BUY |
| EMA 50 | $0.015975 | BUY |
| EMA 100 | $0.012831 | BUY |
| EMA 200 | $0.006415 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.010331 | BUY |
| EMA 50 | $0.004339 | BUY |
| EMA 100 | $0.002169 | BUY |
| EMA 200 | $0.001084 | BUY |
SigmaDotMoney Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 66.04 | NEUTRAL |
| Stoch RSI (14) | 114.75 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 167.43 | SELL |
| Average Directional Index (14) | 19.65 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.001353 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 83.03 | SELL |
| VWMA (10) | 0.015739 | BUY |
| Hull Moving Average (9) | 0.016494 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | — | — |
Auf weltweiten Geldflüssen basierende SigmaDotMoney-Preisprognose
Definition weltweiter Geldflüsse, die für SigmaDotMoney-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
SigmaDotMoney-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.023262 | $0.032687 | $0.045931 | $0.064541 | $0.090692 | $0.127437 |
| Amazon.com aktie | $0.034543 | $0.072076 | $0.150391 | $0.313800057 | $0.654762 | $1.36 |
| Apple aktie | $0.023482 | $0.0333074 | $0.047244 | $0.067012 | $0.095051 | $0.134823 |
| Netflix aktie | $0.026121 | $0.041215 | $0.065031 | $0.1026089 | $0.1619009 | $0.255454 |
| Google aktie | $0.021438 | $0.027763 | $0.035952 | $0.046558 | $0.060293 | $0.078079 |
| Tesla aktie | $0.037529 | $0.085075 | $0.192859 | $0.437197 | $0.991094 | $2.24 |
| Kodak aktie | $0.012414 | $0.0093095 | $0.006981 | $0.005235 | $0.003925 | $0.002943 |
| Nokia aktie | $0.010967 | $0.007265 | $0.004812 | $0.003188 | $0.002112 | $0.001399 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
SigmaDotMoney Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in SigmaDotMoney investieren?", "Sollte ich heute SIGMA kaufen?", "Wird SigmaDotMoney auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere SigmaDotMoney-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie SigmaDotMoney.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich SigmaDotMoney zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der SigmaDotMoney-Preis entspricht heute $0.01655 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
SigmaDotMoney-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von SigmaDotMoney 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.016985 | $0.017426 | $0.017879 | $0.018344 |
| Wenn die Wachstumsrate von SigmaDotMoney 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017415 | $0.018321 | $0.019273 | $0.020275 |
| Wenn die Wachstumsrate von SigmaDotMoney 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0187066 | $0.021137 | $0.023885 | $0.026989 |
| Wenn die Wachstumsrate von SigmaDotMoney 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020858 | $0.026279 | $0.03311 | $0.041717 |
| Wenn die Wachstumsrate von SigmaDotMoney 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.025161 | $0.038241 | $0.058122 | $0.088338 |
| Wenn die Wachstumsrate von SigmaDotMoney 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.03807 | $0.08755 | $0.201335 | $0.4630042 |
| Wenn die Wachstumsrate von SigmaDotMoney 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.059586 | $0.214472 | $0.771954 | $2.77 |
Fragefeld
Ist SIGMA eine gute Investition?
Die Entscheidung, SigmaDotMoney zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von SigmaDotMoney in den letzten 2026 Stunden um 0.8193% gestiegen, und SigmaDotMoney hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in SigmaDotMoney investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann SigmaDotMoney steigen?
Es scheint, dass der Durchschnittswert von SigmaDotMoney bis zum Ende dieses Jahres potenziell auf $0.017073 steigen könnte. Betrachtet man die Aussichten von SigmaDotMoney in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.053676 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird SigmaDotMoney nächste Woche kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney in der nächsten Woche um 0.86% steigen und $0.016696 erreichen bis zum 13. Januar 2026.
Wie viel wird SigmaDotMoney nächsten Monat kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Prognose wird der Preis von SigmaDotMoney im nächsten Monat um -11.62% fallen und $0.014631 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von SigmaDotMoney in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von SigmaDotMoney im Jahr 2026 wird erwartet, dass SIGMA innerhalb der Spanne von $0.005719 bis $0.017073 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte SigmaDotMoney-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird SigmaDotMoney in 5 Jahren sein?
Die Zukunft von SigmaDotMoney scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.053676 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der SigmaDotMoney-Prognose für 2030 könnte der Wert von SigmaDotMoney seinen höchsten Gipfel von ungefähr $0.053676 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.018564 liegen wird.
Wie viel wird SigmaDotMoney im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen SigmaDotMoney-Preisprognosesimulation wird der Wert von SIGMA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.017073 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.017073 und $0.005719 während des Jahres 2026 liegen.
Wie viel wird SigmaDotMoney im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von SigmaDotMoney könnte der Wert von SIGMA um -12.62% fallen und bis zu $0.014465 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.014465 und $0.0055062 im Laufe des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2028 kosten?
Unser neues experimentelles SigmaDotMoney-Preisprognosemodell deutet darauf hin, dass der Wert von SIGMA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.024339 erreichen wird. Der Preis wird voraussichtlich zwischen $0.024339 und $0.009937 im Laufe des Jahres liegen.
Wie viel wird SigmaDotMoney im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von SigmaDotMoney im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.071808 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.071808 und $0.021829.
Wie viel wird SigmaDotMoney im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für SigmaDotMoney-Preisprognosen wird der Wert von SIGMA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.053676 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.053676 und $0.018564 während des Jahres 2030 liegen.
Wie viel wird SigmaDotMoney im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von SigmaDotMoney im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.04900028 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.04900028 und $0.021949 während des Jahres schwanken.
Wie viel wird SigmaDotMoney im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen SigmaDotMoney-Preisprognose könnte SIGMA eine 449.04% Steigerung im Wert erfahren und $0.090893 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.090893 und $0.0335039 liegen.
Wie viel wird SigmaDotMoney im Jahr 2033 kosten?
Laut unserer experimentellen SigmaDotMoney-Preisprognose wird der Wert von SIGMA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.2421059 beträgt. Im Laufe des Jahres könnte der Preis von SIGMA zwischen $0.2421059 und $0.077855 liegen.
Wie viel wird SigmaDotMoney im Jahr 2034 kosten?
Die Ergebnisse unserer neuen SigmaDotMoney-Preisprognosesimulation deuten darauf hin, dass SIGMA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.140214 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.140214 und $0.062592.
Wie viel wird SigmaDotMoney im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von SigmaDotMoney könnte SIGMA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.1652078 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.1652078 und $0.0740036.
Wie viel wird SigmaDotMoney im Jahr 2036 kosten?
Unsere jüngste SigmaDotMoney-Preisprognosesimulation deutet darauf hin, dass der Wert von SIGMA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.34181 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.34181 und $0.122499.
Wie viel wird SigmaDotMoney im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von SigmaDotMoney um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.816276 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.816276 und $0.318126 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von SigmaDotMoney?
SigmaDotMoney-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
SigmaDotMoney Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von SigmaDotMoney. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SIGMA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SIGMA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SIGMA einzuschätzen.
Wie liest man SigmaDotMoney-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von SigmaDotMoney in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SIGMA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von SigmaDotMoney?
Die Preisentwicklung von SigmaDotMoney wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SIGMA. Die Marktkapitalisierung von SigmaDotMoney kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SIGMA-„Walen“, großen Inhabern von SigmaDotMoney, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen SigmaDotMoney-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


