ScPrime Preisvorhersage bis zu $0.016922 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.005669 | $0.016922 |
| 2027 | $0.005457 | $0.014337 |
| 2028 | $0.009849 | $0.024124 |
| 2029 | $0.021636 | $0.071174 |
| 2030 | $0.01840095 | $0.0532025 |
| 2031 | $0.021755 | $0.048567 |
| 2032 | $0.0332083 | $0.09009 |
| 2033 | $0.077168 | $0.239969 |
| 2034 | $0.06204 | $0.138977 |
| 2035 | $0.07335 | $0.16375 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in ScPrime eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.52 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige ScPrime Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'ScPrime'
'name_with_ticker' => 'ScPrime <small>SCP</small>'
'name_lang' => 'ScPrime'
'name_lang_with_ticker' => 'ScPrime <small>SCP</small>'
'name_with_lang' => 'ScPrime'
'name_with_lang_with_ticker' => 'ScPrime <small>SCP</small>'
'image' => '/uploads/coins/siaprime-coin.png?1717202822'
'price_for_sd' => 0.0164
'ticker' => 'SCP'
'marketcap' => '$924.83K'
'low24h' => '$0.01607'
'high24h' => '$0.01653'
'volume24h' => '$2.99K'
'current_supply' => '56.36M'
'max_supply' => '56.36M'
'algo' => 'Blake2b'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0164'
'change_24h_pct' => '1.7116%'
'ath_price' => '$3.47'
'ath_days' => 1458
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '09.01.2022'
'ath_pct' => '-99.53%'
'fdv' => '$924.83K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.809074'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016549'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014502'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005669'
'current_year_max_price_prediction' => '$0.016922'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.01840095'
'grand_prediction_max_price' => '$0.0532025'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.016719890971392
107 => 0.016782316974959
108 => 0.016922965948546
109 => 0.015721135868625
110 => 0.016260722290632
111 => 0.016577678761151
112 => 0.015145657896372
113 => 0.016549372312952
114 => 0.015700214680764
115 => 0.015411997826479
116 => 0.01580004385109
117 => 0.015648821937912
118 => 0.01551881021701
119 => 0.015446261442862
120 => 0.01573119961626
121 => 0.015717906909896
122 => 0.015251692754102
123 => 0.014643535393188
124 => 0.014847652965596
125 => 0.014773495137928
126 => 0.014504737603909
127 => 0.014685847731929
128 => 0.013888330385865
129 => 0.012516243243306
130 => 0.013422686037846
131 => 0.013387788976277
201 => 0.013370192295377
202 => 0.014051359003236
203 => 0.013985880541465
204 => 0.013867036492184
205 => 0.014502554939745
206 => 0.014270582157456
207 => 0.01498546761281
208 => 0.015456337409598
209 => 0.01533690959809
210 => 0.015779764917881
211 => 0.014852355422204
212 => 0.015160403655457
213 => 0.015223891969394
214 => 0.014494712740751
215 => 0.013996593627596
216 => 0.013963374761722
217 => 0.013099704864554
218 => 0.013561070352322
219 => 0.013967052888956
220 => 0.013772618759426
221 => 0.013711066722571
222 => 0.014025522729854
223 => 0.014049958654754
224 => 0.013492816977442
225 => 0.013608664374537
226 => 0.014091767278453
227 => 0.013596491420873
228 => 0.012634251332447
301 => 0.012395602486508
302 => 0.012363762331289
303 => 0.011716527733622
304 => 0.012411550143537
305 => 0.012108154236167
306 => 0.01306657827231
307 => 0.012519131602996
308 => 0.01249553227125
309 => 0.012459858420046
310 => 0.011902756864909
311 => 0.012024726699833
312 => 0.012430173007651
313 => 0.01257484081796
314 => 0.012559750780117
315 => 0.012428186099553
316 => 0.012488415736595
317 => 0.012294395090285
318 => 0.012225882361883
319 => 0.012009637345135
320 => 0.011691816909726
321 => 0.011736011790575
322 => 0.011106326345789
323 => 0.010763240295533
324 => 0.010668278598624
325 => 0.010541291848794
326 => 0.010682622089916
327 => 0.011104542526039
328 => 0.01059561696466
329 => 0.0097230997866533
330 => 0.0097755395557484
331 => 0.0098933561473981
401 => 0.0096738057082937
402 => 0.0094660196431531
403 => 0.0096466727685766
404 => 0.0092769757380643
405 => 0.009938032267287
406 => 0.0099201525407611
407 => 0.010166553535394
408 => 0.010320633133995
409 => 0.0099655295430815
410 => 0.009876221950269
411 => 0.0099270956139388
412 => 0.0090862672759632
413 => 0.010097839921648
414 => 0.010106588043895
415 => 0.010031681310082
416 => 0.010570312515108
417 => 0.011706992360999
418 => 0.011279327680134
419 => 0.011113722989469
420 => 0.01079890835146
421 => 0.011218380164764
422 => 0.011186171274282
423 => 0.011040510456663
424 => 0.010952414339678
425 => 0.011114734136398
426 => 0.010932301120551
427 => 0.01089953113798
428 => 0.010700980697698
429 => 0.010630107223987
430 => 0.010577635325605
501 => 0.010519868921269
502 => 0.010647287214743
503 => 0.010358540598459
504 => 0.010010340485399
505 => 0.0099813914135759
506 => 0.010061322346109
507 => 0.010025958858621
508 => 0.0099812221068031
509 => 0.0098958074642532
510 => 0.0098704667644037
511 => 0.0099528117453547
512 => 0.0098598490628717
513 => 0.0099970205648147
514 => 0.0099597175063316
515 => 0.0097513456539962
516 => 0.0094916371768457
517 => 0.0094893252266421
518 => 0.0094333714612473
519 => 0.0093621059283121
520 => 0.009342281487384
521 => 0.0096314586662359
522 => 0.010230046772115
523 => 0.010112529603931
524 => 0.010197447801588
525 => 0.010615161287428
526 => 0.010747939843493
527 => 0.01065369676943
528 => 0.010524691036993
529 => 0.010530366634505
530 => 0.010971218274934
531 => 0.010998713650988
601 => 0.011068185595931
602 => 0.011157476677953
603 => 0.010668903426804
604 => 0.010507354878313
605 => 0.010430804213665
606 => 0.010195057795387
607 => 0.01044929009613
608 => 0.010301159821799
609 => 0.010321147656657
610 => 0.010308130552985
611 => 0.010315238771803
612 => 0.0099378474885147
613 => 0.010075349037043
614 => 0.0098467260437509
615 => 0.0095406255198682
616 => 0.0095395993635794
617 => 0.0096145170331474
618 => 0.0095699530717597
619 => 0.0094500325975095
620 => 0.009467066734868
621 => 0.0093178297674454
622 => 0.0094851868047357
623 => 0.0094899860057329
624 => 0.0094255444303767
625 => 0.0096833810371431
626 => 0.00978901690531
627 => 0.0097466000799382
628 => 0.0097860408277673
629 => 0.010117412972828
630 => 0.010171441091253
701 => 0.01019543681256
702 => 0.010163285724832
703 => 0.0097920977022706
704 => 0.0098085614694845
705 => 0.0096877612695497
706 => 0.0095856978302162
707 => 0.0095897798325373
708 => 0.0096422537076731
709 => 0.0098714101979432
710 => 0.010353656522204
711 => 0.010371957417692
712 => 0.010394138636898
713 => 0.010303916470998
714 => 0.010276704602452
715 => 0.010312604081043
716 => 0.010493710445128
717 => 0.010959565183453
718 => 0.010794901005537
719 => 0.010661026465741
720 => 0.010778470529459
721 => 0.010760390936407
722 => 0.010607780976385
723 => 0.010603497723091
724 => 0.010310590417454
725 => 0.010202309255736
726 => 0.010111821412301
727 => 0.010013011049514
728 => 0.0099544329543008
729 => 0.010044435531816
730 => 0.010065020186174
731 => 0.0098682279774596
801 => 0.009841405926584
802 => 0.010002110692275
803 => 0.0099313905165718
804 => 0.010004127971058
805 => 0.010021003684429
806 => 0.010018286305896
807 => 0.0099444463203017
808 => 0.0099915097251794
809 => 0.0098801907423673
810 => 0.0097591480681298
811 => 0.0096819303831913
812 => 0.0096145477116428
813 => 0.0096519355341218
814 => 0.0095186547737311
815 => 0.0094760155760703
816 => 0.009975565702567
817 => 0.010344588752079
818 => 0.01033922301079
819 => 0.010306560440649
820 => 0.010258030486781
821 => 0.010490160176728
822 => 0.01040929083433
823 => 0.010468130037784
824 => 0.010483107084537
825 => 0.01052843809426
826 => 0.010544640033904
827 => 0.010495666519329
828 => 0.010331305422807
829 => 0.0099217331972565
830 => 0.0097310762206438
831 => 0.0096681562427185
901 => 0.009670443264414
902 => 0.0096073569963367
903 => 0.0096259387296137
904 => 0.0096008950278184
905 => 0.0095534683153403
906 => 0.0096490070682712
907 => 0.0096600170195414
908 => 0.0096377171330043
909 => 0.0096429695635514
910 => 0.00945833602743
911 => 0.0094723733141783
912 => 0.0093942119177913
913 => 0.0093795575982184
914 => 0.0091819723944435
915 => 0.0088319215655228
916 => 0.009025883705001
917 => 0.0087916047157154
918 => 0.008702879712567
919 => 0.0091228900779027
920 => 0.0090807326864971
921 => 0.0090085775577883
922 => 0.0089018450839815
923 => 0.0088622569712199
924 => 0.0086217321301533
925 => 0.008607520639393
926 => 0.0087267312453426
927 => 0.0086717196524833
928 => 0.0085944625415895
929 => 0.00831464511736
930 => 0.0080000376881606
1001 => 0.0080095337088964
1002 => 0.0081096044786454
1003 => 0.0084005737380725
1004 => 0.0082868870145951
1005 => 0.0082044059923073
1006 => 0.0081889597762032
1007 => 0.0083823015095894
1008 => 0.0086559205686764
1009 => 0.0087842965093186
1010 => 0.0086570798509774
1011 => 0.0085109402037065
1012 => 0.0085198350468899
1013 => 0.0085790084536296
1014 => 0.008585226742011
1015 => 0.008490104855036
1016 => 0.0085168811090398
1017 => 0.0084762055307361
1018 => 0.0082265795817672
1019 => 0.0082220646399228
1020 => 0.0081608024062836
1021 => 0.0081589474101962
1022 => 0.0080547250681956
1023 => 0.0080401436420947
1024 => 0.0078332038562085
1025 => 0.0079694122499502
1026 => 0.0078780508106899
1027 => 0.0077403475717399
1028 => 0.0077166074814414
1029 => 0.00771589382566
1030 => 0.0078572842621809
1031 => 0.0079677600203779
1101 => 0.0078796400820411
1102 => 0.007859576880215
1103 => 0.008073799386101
1104 => 0.0080465376195456
1105 => 0.008022929105528
1106 => 0.0086314209830153
1107 => 0.0081497521807708
1108 => 0.0079397170902982
1109 => 0.0076797587812564
1110 => 0.0077644025175039
1111 => 0.0077822381964065
1112 => 0.0071570853241682
1113 => 0.0069034608817589
1114 => 0.0068164265307596
1115 => 0.0067663370312743
1116 => 0.0067891634451741
1117 => 0.0065608716998258
1118 => 0.0067142875282968
1119 => 0.006516606173846
1120 => 0.0064834642514616
1121 => 0.0068369430012402
1122 => 0.006886127504279
1123 => 0.0066762911338882
1124 => 0.0068110400531017
1125 => 0.0067621782218448
1126 => 0.0065199948532882
1127 => 0.0065107452299896
1128 => 0.006389226128805
1129 => 0.0061990722661856
1130 => 0.0061121668484593
1201 => 0.00606690575236
1202 => 0.0060855813627318
1203 => 0.0060761384026447
1204 => 0.0060145167006123
1205 => 0.0060796704864734
1206 => 0.0059132294870013
1207 => 0.0058469513399052
1208 => 0.0058170150385033
1209 => 0.0056692890714852
1210 => 0.0059043867790466
1211 => 0.0059507039891191
1212 => 0.0059971124584035
1213 => 0.0064010664991168
1214 => 0.006380886096805
1215 => 0.0065633071054488
1216 => 0.0065562185605036
1217 => 0.006504189133814
1218 => 0.0062846855410357
1219 => 0.0063721757608418
1220 => 0.0061028944632776
1221 => 0.0063046583207611
1222 => 0.0062125817220657
1223 => 0.0062735271301214
1224 => 0.0061639417912114
1225 => 0.006224590842432
1226 => 0.0059616875178825
1227 => 0.0057161920925678
1228 => 0.0058149866181726
1229 => 0.0059223875660295
1230 => 0.0061552601862359
1231 => 0.0060165631747984
]
'min_raw' => 0.0056692890714852
'max_raw' => 0.016922965948546
'avg_raw' => 0.011296127510015
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005669'
'max' => '$0.016922'
'avg' => '$0.011296'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010739660928515
'max_diff' => 0.00051401594854572
'year' => 2026
]
1 => [
'items' => [
101 => 0.006066443864826
102 => 0.0058993519031602
103 => 0.0055545934587846
104 => 0.0055565447541391
105 => 0.0055035111784429
106 => 0.0054576824260126
107 => 0.0060324941950045
108 => 0.005961007265101
109 => 0.0058471021982779
110 => 0.0059995686566281
111 => 0.006039883208184
112 => 0.0060410309067912
113 => 0.0061522664990746
114 => 0.0062116329546164
115 => 0.0062220965497146
116 => 0.0063971281575766
117 => 0.0064557964438092
118 => 0.0066974428117547
119 => 0.006206596125634
120 => 0.006196487461144
121 => 0.0060017141723668
122 => 0.0058781858733804
123 => 0.0060101722606814
124 => 0.0061270941818916
125 => 0.0060053472623774
126 => 0.0060212448398482
127 => 0.0058578095474891
128 => 0.0059162299741622
129 => 0.0059665495156944
130 => 0.0059387660225063
131 => 0.0058971727884673
201 => 0.0061175079177124
202 => 0.00610507574622
203 => 0.0063102568840557
204 => 0.0064702102536426
205 => 0.0067568752870272
206 => 0.0064577253805042
207 => 0.0064468231688973
208 => 0.0065533940361243
209 => 0.0064557801283647
210 => 0.0065174687485512
211 => 0.0067469362966128
212 => 0.0067517845843131
213 => 0.006670569518667
214 => 0.0066656275745416
215 => 0.0066812258162944
216 => 0.0067725852054428
217 => 0.0067406614276838
218 => 0.0067776044315176
219 => 0.0068238022235031
220 => 0.0070148958786131
221 => 0.0070609679119156
222 => 0.006949036756601
223 => 0.0069591428866859
224 => 0.0069172775620194
225 => 0.0068768361829625
226 => 0.0069677424970933
227 => 0.0071338755729355
228 => 0.007132842067693
301 => 0.0071713817121228
302 => 0.007195391591323
303 => 0.0070923236134902
304 => 0.0070252301498356
305 => 0.0070509580530688
306 => 0.0070920975306195
307 => 0.0070376170749631
308 => 0.0067013384648501
309 => 0.0068033439135976
310 => 0.0067863652191144
311 => 0.0067621854934905
312 => 0.0068647527609909
313 => 0.006854859897826
314 => 0.0065585302380097
315 => 0.0065775003013919
316 => 0.0065596838703948
317 => 0.0066172524038454
318 => 0.0064526712386346
319 => 0.0065032952965823
320 => 0.0065350462311561
321 => 0.0065537477755422
322 => 0.006621310577634
323 => 0.0066133828626155
324 => 0.0066208177797374
325 => 0.006720995579321
326 => 0.0072276605127454
327 => 0.0072552371671785
328 => 0.0071194396350623
329 => 0.0071736880706548
330 => 0.0070695429371459
331 => 0.0071394562629822
401 => 0.0071872891849134
402 => 0.0069711414084479
403 => 0.0069583425399131
404 => 0.0068537675623917
405 => 0.0069099602318822
406 => 0.0068205536543269
407 => 0.0068424909011496
408 => 0.0067811524465784
409 => 0.0068915494524422
410 => 0.0070149904589582
411 => 0.0070461765320373
412 => 0.006964139400215
413 => 0.0069047391102652
414 => 0.0068004517687853
415 => 0.0069738839418613
416 => 0.0070246007945185
417 => 0.0069736175478251
418 => 0.0069618036155604
419 => 0.0069394162352659
420 => 0.0069665532041218
421 => 0.0070243245796469
422 => 0.0069970806658191
423 => 0.0070150757508783
424 => 0.0069464970430835
425 => 0.0070923577332795
426 => 0.0073240196125974
427 => 0.0073247644434199
428 => 0.0072975203827372
429 => 0.0072863727000873
430 => 0.0073143267596556
501 => 0.0073294906902359
502 => 0.0074198889929818
503 => 0.0075168899734555
504 => 0.0079695512244829
505 => 0.0078424457565476
506 => 0.0082440737473974
507 => 0.008561709343292
508 => 0.0086569543699796
509 => 0.0085693334270518
510 => 0.0082695869144863
511 => 0.0082548799205636
512 => 0.0087028277600498
513 => 0.0085762619780841
514 => 0.0085612073810483
515 => 0.0084010519037301
516 => 0.0084957236264669
517 => 0.008475017531954
518 => 0.0084423319487885
519 => 0.008622959000881
520 => 0.0089610767177099
521 => 0.0089083779006942
522 => 0.0088690406784198
523 => 0.0086966764213066
524 => 0.0088004782030393
525 => 0.0087635163767565
526 => 0.0089223278390222
527 => 0.0088282514468806
528 => 0.0085753031178049
529 => 0.0086155859729388
530 => 0.0086094973004231
531 => 0.0087348017493469
601 => 0.0086971884640276
602 => 0.0086021527027929
603 => 0.0089599210681119
604 => 0.0089366895804803
605 => 0.0089696265184844
606 => 0.0089841263772025
607 => 0.0092018936765864
608 => 0.0092911059713677
609 => 0.0093113587241641
610 => 0.0093961035042798
611 => 0.0093092501968341
612 => 0.0096567253519756
613 => 0.0098877760544072
614 => 0.010156153335042
615 => 0.010548324675062
616 => 0.010695784726697
617 => 0.010669147388233
618 => 0.010966487222447
619 => 0.011500800295035
620 => 0.010777147336799
621 => 0.011539155658988
622 => 0.011297912621992
623 => 0.010725929721051
624 => 0.010689100765466
625 => 0.011076454226841
626 => 0.011935566922783
627 => 0.011720368936425
628 => 0.011935918909596
629 => 0.011684468416281
630 => 0.011671981779897
701 => 0.011923706520383
702 => 0.012511875097332
703 => 0.012232458253593
704 => 0.011831845692273
705 => 0.01212765177333
706 => 0.011871397170358
707 => 0.011293983828714
708 => 0.01172020437858
709 => 0.011435202834947
710 => 0.011518381436895
711 => 0.012117412290832
712 => 0.012045335313647
713 => 0.012138609596272
714 => 0.011973982928851
715 => 0.011820195662238
716 => 0.011533140308711
717 => 0.011448157370189
718 => 0.011471643597031
719 => 0.011448145731582
720 => 0.011287540899458
721 => 0.011252858301252
722 => 0.01119505245143
723 => 0.011212968901423
724 => 0.011104276992059
725 => 0.011309401081923
726 => 0.011347473920549
727 => 0.011496746127223
728 => 0.011512244062911
729 => 0.01192796503374
730 => 0.011698992908915
731 => 0.01185260717875
801 => 0.011838866472582
802 => 0.010738326324919
803 => 0.010889971047119
804 => 0.011125882646127
805 => 0.011019604790544
806 => 0.010869352767939
807 => 0.010748016203681
808 => 0.01056417890153
809 => 0.010822926374025
810 => 0.01116315178563
811 => 0.011520872740807
812 => 0.011950651029646
813 => 0.011854729518748
814 => 0.011512838334644
815 => 0.011528175323412
816 => 0.011622982553088
817 => 0.011500198576512
818 => 0.011463987184792
819 => 0.011618007663929
820 => 0.011619068318321
821 => 0.011477790514331
822 => 0.011320786088761
823 => 0.011320128234486
824 => 0.011292190813438
825 => 0.011689438421422
826 => 0.01190788443955
827 => 0.011932928923485
828 => 0.011906198746237
829 => 0.011916486130577
830 => 0.011789377205758
831 => 0.012079910514913
901 => 0.01234653261016
902 => 0.012275072193084
903 => 0.012167942869189
904 => 0.01208260920266
905 => 0.012254970293193
906 => 0.012247295325153
907 => 0.012344203898755
908 => 0.012339807566085
909 => 0.012307220857698
910 => 0.012275073356858
911 => 0.012402534563902
912 => 0.012365827783237
913 => 0.012329063986804
914 => 0.012255328564802
915 => 0.012265350433267
916 => 0.012158239606761
917 => 0.012108685237361
918 => 0.011363506419145
919 => 0.011164370289498
920 => 0.011227022569675
921 => 0.011247649327075
922 => 0.011160985028252
923 => 0.011285239370532
924 => 0.011265874462905
925 => 0.011341211990388
926 => 0.011294144373992
927 => 0.011296076045387
928 => 0.011434491869333
929 => 0.011474674571887
930 => 0.011454237325054
1001 => 0.011468550872188
1002 => 0.011798400524527
1003 => 0.011751506451962
1004 => 0.011726594910546
1005 => 0.011733495577767
1006 => 0.011817779235996
1007 => 0.011841374058583
1008 => 0.011741401137303
1009 => 0.011788548944915
1010 => 0.011989298325779
1011 => 0.012059549247651
1012 => 0.01228375646791
1013 => 0.012188509255778
1014 => 0.012363339635849
1015 => 0.012900708620116
1016 => 0.013329996147853
1017 => 0.012935205596288
1018 => 0.013723537471542
1019 => 0.014337366915918
1020 => 0.014313807119456
1021 => 0.014206771757698
1022 => 0.013507943254777
1023 => 0.012864870847442
1024 => 0.013402828222474
1025 => 0.013404199586455
1026 => 0.013357988570849
1027 => 0.013070975921717
1028 => 0.013348001152795
1029 => 0.01336999040963
1030 => 0.013357682273218
1031 => 0.013137630348065
1101 => 0.012801651730751
1102 => 0.012867301148355
1103 => 0.012974836233603
1104 => 0.012771249883061
1105 => 0.012706191708331
1106 => 0.012827147232978
1107 => 0.013216891135476
1108 => 0.013143212308342
1109 => 0.013141288256406
1110 => 0.013456517523573
1111 => 0.013230881399015
1112 => 0.01286812919775
1113 => 0.012776529482817
1114 => 0.012451412203766
1115 => 0.012675971866434
1116 => 0.012684053368918
1117 => 0.012561064336619
1118 => 0.01287810907989
1119 => 0.012875187456766
1120 => 0.013176174254619
1121 => 0.013751547966636
1122 => 0.013581381647572
1123 => 0.013383496732543
1124 => 0.01340501230956
1125 => 0.013640985084469
1126 => 0.013498310558025
1127 => 0.013549617312496
1128 => 0.013640907425552
1129 => 0.013695985017364
1130 => 0.013397087491695
1201 => 0.01332740018054
1202 => 0.013184844398839
1203 => 0.013147654256323
1204 => 0.013263762965994
1205 => 0.013233172423177
1206 => 0.012683374149927
1207 => 0.012625917171324
1208 => 0.012627679294828
1209 => 0.0124832009902
1210 => 0.012262836896875
1211 => 0.012841940576876
1212 => 0.012795430446821
1213 => 0.012744086862839
1214 => 0.012750376158914
1215 => 0.013001745438758
1216 => 0.012855938561995
1217 => 0.013243590041145
1218 => 0.013163900550902
1219 => 0.01308216732593
1220 => 0.013070869304584
1221 => 0.013039408986121
1222 => 0.012931519848242
1223 => 0.012801237231122
1224 => 0.012715213362411
1225 => 0.011729112203189
1226 => 0.011912126842454
1227 => 0.01212266850262
1228 => 0.012195346640016
1229 => 0.012071025656826
1230 => 0.012936428798404
1231 => 0.013094546291602
]
'min_raw' => 0.0054576824260126
'max_raw' => 0.014337366915918
'avg_raw' => 0.0098975246709652
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005457'
'max' => '$0.014337'
'avg' => '$0.009897'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00021160664547267
'max_diff' => -0.0025855990326279
'year' => 2027
]
2 => [
'items' => [
101 => 0.012615598090955
102 => 0.01252600643794
103 => 0.01294230241226
104 => 0.012691225049632
105 => 0.01280428517065
106 => 0.012559911029589
107 => 0.013056460417712
108 => 0.013052677543322
109 => 0.012859508616266
110 => 0.01302277367065
111 => 0.012994402349695
112 => 0.012776315106803
113 => 0.013063374172306
114 => 0.013063516550022
115 => 0.012877595657585
116 => 0.012660480758535
117 => 0.01262166574261
118 => 0.012592423842174
119 => 0.012797093455704
120 => 0.012980599591209
121 => 0.013322059014355
122 => 0.01340791002621
123 => 0.013742992240904
124 => 0.013543467096911
125 => 0.01363191400896
126 => 0.013727935643569
127 => 0.013773971946279
128 => 0.013698958261457
129 => 0.01421947886622
130 => 0.014263426753601
131 => 0.014278162100092
201 => 0.014102645480842
202 => 0.014258545318912
203 => 0.014185604947539
204 => 0.014375375530433
205 => 0.014405133980943
206 => 0.014379929632049
207 => 0.014389375433946
208 => 0.013945202923908
209 => 0.013922170236066
210 => 0.013608117903014
211 => 0.01373609655009
212 => 0.013496846603557
213 => 0.01357271522615
214 => 0.013606157392086
215 => 0.013588689102427
216 => 0.013743332270778
217 => 0.013611853986168
218 => 0.01326486117605
219 => 0.012917773827974
220 => 0.01291341642905
221 => 0.012822034456902
222 => 0.012755982028482
223 => 0.012768706069531
224 => 0.012813547249813
225 => 0.012753375777567
226 => 0.012766216411942
227 => 0.01297945649926
228 => 0.013022220278013
229 => 0.012876892248923
301 => 0.012293379241395
302 => 0.012150183685716
303 => 0.012253109811447
304 => 0.012203917752639
305 => 0.009849514103108
306 => 0.010402646317202
307 => 0.010073993938183
308 => 0.010225452075004
309 => 0.0098899831001457
310 => 0.010050086478383
311 => 0.010020521230462
312 => 0.010909941462354
313 => 0.01089605438879
314 => 0.010902701396018
315 => 0.010585422422376
316 => 0.01109085644245
317 => 0.011339851415558
318 => 0.011293769072823
319 => 0.011305367005684
320 => 0.011106076093334
321 => 0.010904630967678
322 => 0.010681197321142
323 => 0.011096309419172
324 => 0.011050156040071
325 => 0.011156015286267
326 => 0.011425245154665
327 => 0.011464890275491
328 => 0.011518173719923
329 => 0.011499075398068
330 => 0.01195407490709
331 => 0.011898971464364
401 => 0.012031754906991
402 => 0.011758609291203
403 => 0.011449519099719
404 => 0.0115082670402
405 => 0.011502609141111
406 => 0.011430577591868
407 => 0.011365550729959
408 => 0.011257299326086
409 => 0.011599822786134
410 => 0.011585916959177
411 => 0.011811036133849
412 => 0.011771244133035
413 => 0.011505503412843
414 => 0.011514994394652
415 => 0.01157882580853
416 => 0.011799747060775
417 => 0.011865331529907
418 => 0.011834950190715
419 => 0.011906860567074
420 => 0.011963695596526
421 => 0.011913998171726
422 => 0.012617608904301
423 => 0.012325420672566
424 => 0.012467831183681
425 => 0.01250179525145
426 => 0.012414797006046
427 => 0.012433663810301
428 => 0.01246224187785
429 => 0.012635762307849
430 => 0.013091130124707
501 => 0.013292809431
502 => 0.013899571574664
503 => 0.013276062772124
504 => 0.013239066340117
505 => 0.013348362524652
506 => 0.013704596135279
507 => 0.01399329001737
508 => 0.014089066433209
509 => 0.014101724867659
510 => 0.014281407790869
511 => 0.014384398691565
512 => 0.014259589557861
513 => 0.014153826885108
514 => 0.013774998119054
515 => 0.013818848580241
516 => 0.014120934773412
517 => 0.014547649314053
518 => 0.014913814782004
519 => 0.014785596397283
520 => 0.015763812164636
521 => 0.015860798262316
522 => 0.015847397919552
523 => 0.016068346683534
524 => 0.015629808382464
525 => 0.015442324762477
526 => 0.014176693975415
527 => 0.01453228460217
528 => 0.015049156461265
529 => 0.014980746532544
530 => 0.014605380372445
531 => 0.014913530033112
601 => 0.014811646118565
602 => 0.014731286047994
603 => 0.015099431109846
604 => 0.014694640491774
605 => 0.015045118365201
606 => 0.014595626867301
607 => 0.014786182088064
608 => 0.01467801372864
609 => 0.014748011913803
610 => 0.014338803953639
611 => 0.014559602635982
612 => 0.014329618002535
613 => 0.014329508959874
614 => 0.014324432036344
615 => 0.014595007937686
616 => 0.014603831408115
617 => 0.014403875408205
618 => 0.014375058624719
619 => 0.014481609376757
620 => 0.014356866351806
621 => 0.014415232828057
622 => 0.014358634212913
623 => 0.014345892672495
624 => 0.014244365910649
625 => 0.014200625390109
626 => 0.014217777175267
627 => 0.014159229290171
628 => 0.014123952071631
629 => 0.014317414509662
630 => 0.014214055333274
701 => 0.014301573233501
702 => 0.014201835540553
703 => 0.013856101243152
704 => 0.013657265792643
705 => 0.013004205754438
706 => 0.013189412771154
707 => 0.013312205214848
708 => 0.01327162231294
709 => 0.013358810089737
710 => 0.013364162711122
711 => 0.013335817076111
712 => 0.013302996462069
713 => 0.013287021202248
714 => 0.013406087700674
715 => 0.013475209810605
716 => 0.013324529079323
717 => 0.013289226692232
718 => 0.013441573230869
719 => 0.013534504531429
720 => 0.014220657041184
721 => 0.014169824647018
722 => 0.014297403981021
723 => 0.014283040505877
724 => 0.014416763972894
725 => 0.014635345325713
726 => 0.014190908319124
727 => 0.014268047215992
728 => 0.014249134539878
729 => 0.01445561817853
730 => 0.014456262797911
731 => 0.014332465541916
801 => 0.014399578042772
802 => 0.01436211768593
803 => 0.014429813613815
804 => 0.014169145749403
805 => 0.0144866110709
806 => 0.014666593451175
807 => 0.0146690925067
808 => 0.014754402726522
809 => 0.014841082850696
810 => 0.0150074578008
811 => 0.014836442743638
812 => 0.014528803303783
813 => 0.014551013877671
814 => 0.014370644986645
815 => 0.014373677020289
816 => 0.014357491787071
817 => 0.014406064890328
818 => 0.014179804814065
819 => 0.014232907601722
820 => 0.014158563388033
821 => 0.014267885606191
822 => 0.014150272971063
823 => 0.014249125419612
824 => 0.014291786859396
825 => 0.014449208490632
826 => 0.014127021668134
827 => 0.013470060926929
828 => 0.013608162039609
829 => 0.013403899646347
830 => 0.013422804908525
831 => 0.013460996546875
901 => 0.013337204951456
902 => 0.013360820486741
903 => 0.01335997677364
904 => 0.013352706109952
905 => 0.013320503134926
906 => 0.013273802449972
907 => 0.013459843605114
908 => 0.013491455622622
909 => 0.013561725221642
910 => 0.013770799884003
911 => 0.013749908394913
912 => 0.013783983280399
913 => 0.013709597996707
914 => 0.013426255428494
915 => 0.01344164229315
916 => 0.013249767844329
917 => 0.013556818560593
918 => 0.013484104898111
919 => 0.013437225926878
920 => 0.013424434565246
921 => 0.013634027483255
922 => 0.01369674096929
923 => 0.013657662133339
924 => 0.013577510300691
925 => 0.013731425514137
926 => 0.013772606732094
927 => 0.01378182568809
928 => 0.014054533936002
929 => 0.013797067049737
930 => 0.013859041888262
1001 => 0.014342551886934
1002 => 0.013904075037957
1003 => 0.014136346004061
1004 => 0.01412497754895
1005 => 0.014243799515587
1006 => 0.014115230679532
1007 => 0.014116824444343
1008 => 0.01422233030102
1009 => 0.014074166353399
1010 => 0.014037478876334
1011 => 0.013986795389529
1012 => 0.014097460928749
1013 => 0.01416379991454
1014 => 0.014698443419398
1015 => 0.015043847506243
1016 => 0.015028852603894
1017 => 0.015165877942077
1018 => 0.015104146772218
1019 => 0.014904800540881
1020 => 0.01524506025009
1021 => 0.015137387841025
1022 => 0.015146264223606
1023 => 0.015145933844203
1024 => 0.015217526583346
1025 => 0.015166796566285
1026 => 0.015066802495329
1027 => 0.015133183226158
1028 => 0.015330310265173
1029 => 0.015942198642874
1030 => 0.016284619485477
1031 => 0.015921584478192
1101 => 0.016172001164985
1102 => 0.016021840385498
1103 => 0.015994551704969
1104 => 0.016151831889923
1105 => 0.01630938737302
1106 => 0.016299351769878
1107 => 0.016184974579713
1108 => 0.016120365807203
1109 => 0.016609605078177
1110 => 0.016970068239058
1111 => 0.016945487068062
1112 => 0.017053980362615
1113 => 0.017372520030993
1114 => 0.017401643306201
1115 => 0.017397974442915
1116 => 0.017325789366614
1117 => 0.017639433037736
1118 => 0.017901080106221
1119 => 0.017309080607078
1120 => 0.017534506266509
1121 => 0.017635707107789
1122 => 0.017784299967724
1123 => 0.01803500102949
1124 => 0.01830732887774
1125 => 0.018345839021406
1126 => 0.018318514231595
1127 => 0.018138906695109
1128 => 0.018436891076211
1129 => 0.018611443338067
1130 => 0.018715385215445
1201 => 0.018978964522196
1202 => 0.017636332089732
1203 => 0.016685950120872
1204 => 0.016537534252752
1205 => 0.016839343756739
1206 => 0.016918928516055
1207 => 0.016886847999365
1208 => 0.015817106688465
1209 => 0.016531902286139
1210 => 0.017300962247514
1211 => 0.017330504972726
1212 => 0.017715512469676
1213 => 0.017840886692673
1214 => 0.018150868191804
1215 => 0.018131478764635
1216 => 0.01820695432679
1217 => 0.018189603802105
1218 => 0.01876377925494
1219 => 0.019397180045296
1220 => 0.019375247390017
1221 => 0.019284188532346
1222 => 0.019419426463831
1223 => 0.020073163958832
1224 => 0.020012978286222
1225 => 0.02007144354056
1226 => 0.020842236890197
1227 => 0.021844377888801
1228 => 0.021378782781638
1229 => 0.022388990192799
1230 => 0.023024862209331
1231 => 0.024124537111529
]
'min_raw' => 0.009849514103108
'max_raw' => 0.024124537111529
'avg_raw' => 0.016987025607318
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009849'
'max' => '$0.024124'
'avg' => '$0.016987'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0043918316770955
'max_diff' => 0.0097871701956107
'year' => 2028
]
3 => [
'items' => [
101 => 0.02398685239776
102 => 0.024414947767399
103 => 0.023740368024448
104 => 0.022191396579575
105 => 0.021946265919199
106 => 0.022437023708968
107 => 0.023643503847671
108 => 0.022399027355902
109 => 0.022650783329377
110 => 0.02257827759208
111 => 0.022574414069469
112 => 0.02272186901345
113 => 0.022507977926473
114 => 0.021636547159856
115 => 0.022035918744823
116 => 0.021881702196468
117 => 0.022052816954473
118 => 0.022976252730328
119 => 0.022567979761863
120 => 0.022137897354988
121 => 0.022677316136136
122 => 0.023364181608941
123 => 0.023321198802069
124 => 0.023237794191317
125 => 0.023707941615201
126 => 0.024484487419186
127 => 0.024694384629589
128 => 0.02484932645915
129 => 0.024870690319682
130 => 0.025090751360735
131 => 0.023907427680474
201 => 0.025785392750955
202 => 0.026109665440889
203 => 0.026048715614907
204 => 0.026409131062288
205 => 0.026303087694811
206 => 0.026149447493032
207 => 0.026720782639694
208 => 0.026065792998414
209 => 0.025136117663521
210 => 0.024626079387905
211 => 0.02529773893285
212 => 0.02570789797926
213 => 0.025978987017922
214 => 0.026061018397225
215 => 0.023999285729282
216 => 0.022888126170197
217 => 0.023600366708101
218 => 0.024469349320559
219 => 0.023902600438186
220 => 0.023924815921378
221 => 0.0231167809541
222 => 0.024540842485508
223 => 0.024333368698625
224 => 0.025409743071991
225 => 0.025152857689343
226 => 0.02603059920621
227 => 0.025799460448498
228 => 0.026758904508969
301 => 0.027141652720602
302 => 0.027784346537937
303 => 0.028257114726203
304 => 0.028534733248966
305 => 0.028518066074181
306 => 0.02961812897037
307 => 0.028969460313757
308 => 0.028154579601588
309 => 0.02813984098042
310 => 0.028561879248202
311 => 0.029446355676928
312 => 0.029675687546288
313 => 0.029803852775231
314 => 0.029607563265641
315 => 0.028903479929389
316 => 0.028599460314579
317 => 0.028858493834693
318 => 0.028541718098598
319 => 0.029088561890672
320 => 0.029839495216722
321 => 0.029684430454405
322 => 0.030202788706222
323 => 0.030739234963975
324 => 0.03150637720587
325 => 0.031706936595096
326 => 0.032038453638897
327 => 0.032379693574644
328 => 0.032489290645331
329 => 0.032698545459248
330 => 0.032697442583088
331 => 0.033328046049299
401 => 0.034023621200694
402 => 0.034286184717744
403 => 0.034889935047363
404 => 0.033856033765825
405 => 0.034640259764473
406 => 0.035347651245704
407 => 0.034504269959453
408 => 0.035666674579913
409 => 0.03571180811726
410 => 0.036393270946195
411 => 0.035702477816588
412 => 0.035292287061317
413 => 0.036476492402137
414 => 0.037049492064442
415 => 0.03687689990293
416 => 0.035563465031898
417 => 0.034798989601086
418 => 0.032798209942353
419 => 0.035168219875371
420 => 0.036322582579607
421 => 0.035560475511368
422 => 0.035944837987467
423 => 0.038041795027113
424 => 0.038840180499896
425 => 0.038674121902693
426 => 0.038702183072063
427 => 0.039132977381456
428 => 0.041043356592062
429 => 0.039898613086823
430 => 0.040773726603857
501 => 0.041237883657836
502 => 0.041669018597325
503 => 0.040610287447537
504 => 0.039232893777513
505 => 0.038796615383164
506 => 0.03548469898292
507 => 0.035312299351363
508 => 0.035215526213927
509 => 0.034605385271224
510 => 0.034125981621929
511 => 0.033744742040893
512 => 0.032744255532479
513 => 0.033081890359479
514 => 0.031487323682831
515 => 0.032507470934577
516 => 0.029962504016487
517 => 0.032082028089973
518 => 0.030928467499709
519 => 0.031703052411159
520 => 0.031700349957373
521 => 0.030274093553024
522 => 0.029451458624208
523 => 0.02997567361828
524 => 0.030537673704164
525 => 0.030628856327303
526 => 0.031357504108354
527 => 0.031560854041814
528 => 0.03094469424993
529 => 0.029909765233839
530 => 0.03015015564006
531 => 0.029446587120298
601 => 0.028213610351789
602 => 0.029099155792641
603 => 0.029401519940833
604 => 0.02953506117398
605 => 0.028322570130489
606 => 0.027941579120164
607 => 0.02773874270309
608 => 0.029753247865935
609 => 0.029863607006244
610 => 0.029298994041214
611 => 0.031851098181949
612 => 0.031273478414496
613 => 0.03191882121502
614 => 0.030128342730348
615 => 0.030196741419662
616 => 0.029349100211327
617 => 0.029823722648588
618 => 0.029488274807727
619 => 0.029785377845968
620 => 0.029963460182088
621 => 0.030810962300841
622 => 0.032091705202808
623 => 0.030684373746004
624 => 0.030071179276917
625 => 0.030451601676802
626 => 0.031464716659173
627 => 0.032999637717868
628 => 0.032090933557956
629 => 0.032494201033327
630 => 0.032582297036575
701 => 0.031912252231112
702 => 0.033024343225587
703 => 0.033620321824138
704 => 0.034231672545856
705 => 0.034762491247866
706 => 0.033987485623711
707 => 0.034816852734249
708 => 0.034148529246159
709 => 0.03354897398733
710 => 0.033549883265172
711 => 0.033173773493203
712 => 0.032445013417133
713 => 0.032310618877921
714 => 0.033009756243065
715 => 0.033570398201356
716 => 0.033616575358334
717 => 0.033926975553268
718 => 0.034110667191253
719 => 0.035911094960183
720 => 0.036635241902767
721 => 0.037520715076758
722 => 0.037865656780561
723 => 0.038903807640563
724 => 0.038065416506621
725 => 0.037884025311065
726 => 0.035365810901258
727 => 0.035778168369791
728 => 0.03643839246349
729 => 0.035376697753387
730 => 0.036050098678511
731 => 0.036183042285713
801 => 0.035340621773401
802 => 0.035790594967868
803 => 0.034595599571117
804 => 0.032117752836911
805 => 0.033027101777333
806 => 0.033696688681026
807 => 0.032741105609986
808 => 0.034453951278654
809 => 0.033453342199329
810 => 0.03313619715889
811 => 0.031898901285764
812 => 0.032482857309994
813 => 0.033272666194209
814 => 0.032784656128902
815 => 0.033797350289494
816 => 0.03523159529656
817 => 0.036253723699362
818 => 0.036332190026311
819 => 0.035675029940593
820 => 0.036728133171895
821 => 0.036735803879236
822 => 0.035547899132275
823 => 0.034820314089043
824 => 0.034655005236368
825 => 0.035067979161058
826 => 0.035569405744825
827 => 0.036360015711958
828 => 0.036837764756924
829 => 0.03808348088768
830 => 0.038420535955183
831 => 0.038790857285656
901 => 0.039285720786038
902 => 0.039879931298644
903 => 0.038579832525486
904 => 0.038631487873431
905 => 0.03742085389696
906 => 0.036127117870626
907 => 0.037108902248141
908 => 0.038392454720439
909 => 0.038098006365094
910 => 0.038064874910084
911 => 0.038120592827512
912 => 0.037898588383367
913 => 0.036894470510365
914 => 0.036390208800654
915 => 0.037040835057063
916 => 0.037386613956302
917 => 0.037922886873932
918 => 0.037856779917486
919 => 0.039238161361795
920 => 0.039774924420246
921 => 0.039637597460508
922 => 0.039662868926058
923 => 0.040634652804239
924 => 0.041715476339374
925 => 0.042727810207256
926 => 0.043757599698416
927 => 0.042516148273454
928 => 0.041885815801938
929 => 0.042536158015278
930 => 0.04219107728265
1001 => 0.044174013529922
1002 => 0.044311307733367
1003 => 0.046294100591778
1004 => 0.048176007120991
1005 => 0.04699401534785
1006 => 0.048108580351843
1007 => 0.04931407327548
1008 => 0.051639664709354
1009 => 0.050856487329719
1010 => 0.050256585730872
1011 => 0.049689681618665
1012 => 0.050869319082674
1013 => 0.052386903834953
1014 => 0.052713777055347
1015 => 0.053243436547568
1016 => 0.052686564355179
1017 => 0.053357255573451
1018 => 0.055725090290605
1019 => 0.055085280448575
1020 => 0.054176647618327
1021 => 0.056045825718257
1022 => 0.056722274006376
1023 => 0.061469942351111
1024 => 0.067464069752736
1025 => 0.064982461648901
1026 => 0.063442047417857
1027 => 0.063804081301266
1028 => 0.065992933714322
1029 => 0.066695923638693
1030 => 0.064784954689095
1031 => 0.065459941228236
1101 => 0.069179183422117
1102 => 0.071174437531558
1103 => 0.068464614452559
1104 => 0.060988320050742
1105 => 0.054094835173531
1106 => 0.055923297780637
1107 => 0.055716006864792
1108 => 0.059711868617204
1109 => 0.055070021195442
1110 => 0.055148178001343
1111 => 0.059226669943103
1112 => 0.058138598216095
1113 => 0.056376061368039
1114 => 0.054107703643062
1115 => 0.049914434590747
1116 => 0.046200339253153
1117 => 0.053484535515247
1118 => 0.053170427726974
1119 => 0.052715553101389
1120 => 0.053727827358054
1121 => 0.058643143809357
1122 => 0.058529829855828
1123 => 0.057808984296762
1124 => 0.058355739300072
1125 => 0.056280212572437
1126 => 0.056815123069014
1127 => 0.054093743210306
1128 => 0.055323920561304
1129 => 0.056372279755559
1130 => 0.056582753385028
1201 => 0.057056961219274
1202 => 0.053004907195723
1203 => 0.054824160490241
1204 => 0.055892801359789
1205 => 0.051064643033683
1206 => 0.055797364193395
1207 => 0.052934369950179
1208 => 0.051962626703301
1209 => 0.053270950967785
1210 => 0.052761095729528
1211 => 0.05232275213538
1212 => 0.052078148878146
1213 => 0.053038837823503
1214 => 0.05299402053593
1215 => 0.051422146959637
1216 => 0.049371701957127
1217 => 0.050059898603532
1218 => 0.049809870310015
1219 => 0.048903735520018
1220 => 0.049514360961344
1221 => 0.046825475548206
1222 => 0.042199387951004
1223 => 0.045255523118611
1224 => 0.045137865239094
1225 => 0.045078536800881
1226 => 0.047375137913966
1227 => 0.047154372708545
1228 => 0.046753681698968
1229 => 0.048896376515401
1230 => 0.048114264084091
1231 => 0.050524550308525
]
'min_raw' => 0.021636547159856
'max_raw' => 0.071174437531558
'avg_raw' => 0.046405492345707
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.021636'
'max' => '$0.071174'
'avg' => '$0.0464054'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.011787033056748
'max_diff' => 0.047049900420029
'year' => 2029
]
4 => [
'items' => [
101 => 0.052112120703477
102 => 0.051709461498795
103 => 0.05320257912864
104 => 0.050075753264304
105 => 0.051114359389957
106 => 0.051328414673008
107 => 0.048869935993968
108 => 0.047190492626401
109 => 0.047078492900841
110 => 0.044166569543032
111 => 0.045722095496549
112 => 0.047090893963607
113 => 0.046435345720938
114 => 0.046227818731256
115 => 0.04728802911443
116 => 0.047370416541291
117 => 0.045491974477843
118 => 0.045882562065358
119 => 0.047511377235077
120 => 0.04584152010219
121 => 0.042597260462606
122 => 0.04179263921659
123 => 0.04168528791026
124 => 0.039503091275749
125 => 0.041846407855695
126 => 0.040823487371569
127 => 0.044054880924454
128 => 0.042209126257357
129 => 0.042129559462722
130 => 0.042009282582719
131 => 0.040130975793988
201 => 0.040542205608097
202 => 0.041909196142262
203 => 0.042396953765103
204 => 0.04234607664896
205 => 0.041902497142886
206 => 0.042105565569272
207 => 0.041451411414152
208 => 0.041220415966937
209 => 0.040491330795226
210 => 0.039419777007729
211 => 0.039568783134101
212 => 0.03744575469377
213 => 0.036289016121829
214 => 0.035968846130686
215 => 0.035540701437703
216 => 0.036017206213007
217 => 0.037439740420943
218 => 0.035723862358705
219 => 0.03278210977585
220 => 0.032958914118583
221 => 0.033356140983021
222 => 0.032615911349059
223 => 0.031915346123277
224 => 0.032524430748441
225 => 0.031277971398646
226 => 0.033506769640414
227 => 0.033446486894109
228 => 0.034277245050681
301 => 0.034796735174859
302 => 0.033599478625553
303 => 0.033298371841129
304 => 0.033469895950077
305 => 0.030634984503833
306 => 0.034045572304507
307 => 0.034075067209435
308 => 0.033822513926566
309 => 0.03563854664034
310 => 0.039470942101212
311 => 0.038029040771082
312 => 0.037470692994357
313 => 0.036409273462653
314 => 0.037823551967793
315 => 0.037714957444779
316 => 0.037223851828464
317 => 0.036926829619374
318 => 0.037474102146821
319 => 0.036859016496826
320 => 0.036748530212664
321 => 0.036079103540903
322 => 0.035840148676057
323 => 0.035663236007192
324 => 0.035468472541852
325 => 0.035898072214361
326 => 0.034924542837913
327 => 0.033750561846178
328 => 0.033652958029365
329 => 0.033922450749
330 => 0.033803220281935
331 => 0.03365238719976
401 => 0.033364405768943
402 => 0.03327896783017
403 => 0.033556599682589
404 => 0.03324316950815
405 => 0.03370565280396
406 => 0.033579882937867
407 => 0.03287734268966
408 => 0.032001717426681
409 => 0.031993922525154
410 => 0.031805270498558
411 => 0.031564993778667
412 => 0.03149815429198
413 => 0.032473135340185
414 => 0.034491316931242
415 => 0.034095099593925
416 => 0.034381407226123
417 => 0.035789757407456
418 => 0.036237429579534
419 => 0.035919682475489
420 => 0.035484730641685
421 => 0.035503866314955
422 => 0.036990228399938
423 => 0.037082930979969
424 => 0.037317160492723
425 => 0.037618211609864
426 => 0.03597095278252
427 => 0.035426280572322
428 => 0.035168184661867
429 => 0.034373349153351
430 => 0.035230511105239
501 => 0.034731079543208
502 => 0.034798469923938
503 => 0.03475458185008
504 => 0.034778547706105
505 => 0.033506146645882
506 => 0.033969742716796
507 => 0.033198924332965
508 => 0.032166885045438
509 => 0.032163425287866
510 => 0.0324160154414
511 => 0.032265764934224
512 => 0.03186144468271
513 => 0.0319188764661
514 => 0.031415713611042
515 => 0.031979969546761
516 => 0.031996150387993
517 => 0.031778881117512
518 => 0.032648195238802
519 => 0.033004353943588
520 => 0.032861342655399
521 => 0.032994319890369
522 => 0.034111564213105
523 => 0.034293723786498
524 => 0.034374627036213
525 => 0.034266227399221
526 => 0.033014741065635
527 => 0.03307024980626
528 => 0.032662963498179
529 => 0.032318849486625
530 => 0.032332612242447
531 => 0.032509531576076
601 => 0.033282148682217
602 => 0.034908075833824
603 => 0.03496977858069
604 => 0.035044564109888
605 => 0.034740373778444
606 => 0.034648627063771
607 => 0.034769664662261
608 => 0.035380277413216
609 => 0.036950939188418
610 => 0.036395762416089
611 => 0.035944395058344
612 => 0.036340365918852
613 => 0.036279409308599
614 => 0.035764874173499
615 => 0.03575043288597
616 => 0.034762875454879
617 => 0.0343977979582
618 => 0.034092711876398
619 => 0.033759565839543
620 => 0.03356206570174
621 => 0.033865515675613
622 => 0.033934918274953
623 => 0.03327141960368
624 => 0.033180987186498
625 => 0.033722814524072
626 => 0.033484376514165
627 => 0.033729615920333
628 => 0.033786513566189
629 => 0.033777351734742
630 => 0.033528395067967
701 => 0.033687072623375
702 => 0.033311752900781
703 => 0.032903649073659
704 => 0.032643304257722
705 => 0.032416118876089
706 => 0.032542174529911
707 => 0.032092809140888
708 => 0.031949048109001
709 => 0.033633316237961
710 => 0.034877503213757
711 => 0.034859412242377
712 => 0.03474928810672
713 => 0.034585665978999
714 => 0.035368307435434
715 => 0.035095650801422
716 => 0.03529403128389
717 => 0.035344527442681
718 => 0.03549736410687
719 => 0.035551990077563
720 => 0.035386872453954
721 => 0.034832717541703
722 => 0.033451816187841
723 => 0.032809002879946
724 => 0.032596863781438
725 => 0.03260457463476
726 => 0.032391874877395
727 => 0.032454524488473
728 => 0.032370087899375
729 => 0.032210185427028
730 => 0.032532301002837
731 => 0.032569421822235
801 => 0.032494236197846
802 => 0.032511945134149
803 => 0.031889440276414
804 => 0.031936767968738
805 => 0.031673241363765
806 => 0.031623833302193
807 => 0.030957660992707
808 => 0.029777440183233
809 => 0.030431397078487
810 => 0.029641509109274
811 => 0.029342366566577
812 => 0.030758460837494
813 => 0.030616324249035
814 => 0.030373048194883
815 => 0.03001319220762
816 => 0.029879718121491
817 => 0.029068771826927
818 => 0.029020856793614
819 => 0.029422783674591
820 => 0.02923730824848
821 => 0.028976830505182
822 => 0.028033406523163
823 => 0.026972685610428
824 => 0.02700470210733
825 => 0.027342097694257
826 => 0.02832312086724
827 => 0.027939818141682
828 => 0.027661727616398
829 => 0.027609649620383
830 => 0.028261514773183
831 => 0.029184040534368
901 => 0.029616868981165
902 => 0.029187949135584
903 => 0.028695229111666
904 => 0.028725218696477
905 => 0.028924725968655
906 => 0.02894569136208
907 => 0.028624981278946
908 => 0.028715259288778
909 => 0.028578118736649
910 => 0.027736487421373
911 => 0.027721264979721
912 => 0.027514715081814
913 => 0.027508460832994
914 => 0.027157067930367
915 => 0.027107905634225
916 => 0.026410193698036
917 => 0.026869429807302
918 => 0.026561398336184
919 => 0.026097122251931
920 => 0.026017080880009
921 => 0.026014674739717
922 => 0.026491382468012
923 => 0.026863859199944
924 => 0.026566756675504
925 => 0.026499112189779
926 => 0.027221378324912
927 => 0.027129463375614
928 => 0.02704986562231
929 => 0.029101438470805
930 => 0.027477458474996
1001 => 0.026769310503285
1002 => 0.025892842914641
1003 => 0.026178225181037
1004 => 0.026238359417704
1005 => 0.024130612862173
1006 => 0.023275500347097
1007 => 0.022982057956159
1008 => 0.022813177711507
1009 => 0.022890138559659
1010 => 0.022120437001397
1011 => 0.022637689178238
1012 => 0.021971192690036
1013 => 0.021859452384821
1014 => 0.023051230668798
1015 => 0.023217059654746
1016 => 0.022509581681666
1017 => 0.022963897070663
1018 => 0.022799155995156
1019 => 0.021982617859365
1020 => 0.021951432108626
1021 => 0.021541721974789
1022 => 0.020900604950849
1023 => 0.020607597267442
1024 => 0.020454996321915
1025 => 0.020517962446173
1026 => 0.020486124846953
1027 => 0.020278362976261
1028 => 0.020498033514184
1029 => 0.019936866063924
1030 => 0.019713404663597
1031 => 0.019612472333334
1101 => 0.019114403921635
1102 => 0.019907052256676
1103 => 0.0200632139642
1104 => 0.020219683358528
1105 => 0.021581642609964
1106 => 0.021513602974619
1107 => 0.022128648141489
1108 => 0.0221047486173
1109 => 0.021929327772638
1110 => 0.021189256084334
1111 => 0.021484235468783
1112 => 0.020576334773425
1113 => 0.021256595705633
1114 => 0.020946153024549
1115 => 0.021151634722881
1116 => 0.020782160101742
1117 => 0.020986642612314
1118 => 0.020100245698271
1119 => 0.019272540731879
1120 => 0.01960563337257
1121 => 0.019967743166764
1122 => 0.020752889464437
1123 => 0.020285262806859
1124 => 0.020453439035846
1125 => 0.019890076821102
1126 => 0.018727699655623
1127 => 0.018734278584146
1128 => 0.018555472181
1129 => 0.01840095734252
1130 => 0.020338975353753
1201 => 0.020097952178525
1202 => 0.019713913293133
1203 => 0.020227964602329
1204 => 0.020363887927572
1205 => 0.020367757473556
1206 => 0.02074279603916
1207 => 0.020942954188853
1208 => 0.020978232930271
1209 => 0.021568364216495
1210 => 0.021766168439617
1211 => 0.022580896040356
1212 => 0.020925972168279
1213 => 0.020891890100186
1214 => 0.020235198358437
1215 => 0.019818714073934
1216 => 0.020263715393715
1217 => 0.020657925814303
1218 => 0.020247447575062
1219 => 0.020301047367438
1220 => 0.019750013868562
1221 => 0.019946982415874
1222 => 0.020116638263348
1223 => 0.020022964276283
1224 => 0.019882729783774
1225 => 0.020625605055331
1226 => 0.020583689121158
1227 => 0.02127547165266
1228 => 0.02181476560581
1229 => 0.02278127678018
1230 => 0.021772671984358
1231 => 0.021735914416757
]
'min_raw' => 0.01840095734252
'max_raw' => 0.05320257912864
'avg_raw' => 0.03580176823558
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.01840095'
'max' => '$0.0532025'
'avg' => '$0.0358017'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032355898173356
'max_diff' => -0.017971858402917
'year' => 2030
]
5 => [
'items' => [
101 => 0.022095225536154
102 => 0.021766113430957
103 => 0.021974100920877
104 => 0.022747766780079
105 => 0.022764113120558
106 => 0.022490290856477
107 => 0.022473628746823
108 => 0.022526219307927
109 => 0.022834243866949
110 => 0.022726610621388
111 => 0.022851166538092
112 => 0.023006925619198
113 => 0.023651211219134
114 => 0.02380654629606
115 => 0.023429162591133
116 => 0.023463236114302
117 => 0.023322084249245
118 => 0.023185733316228
119 => 0.023492230301196
120 => 0.024052359565439
121 => 0.024048875030357
122 => 0.024178814132304
123 => 0.024259765116344
124 => 0.023912264233104
125 => 0.023686053936077
126 => 0.023772797358092
127 => 0.023911501978921
128 => 0.023727817318971
129 => 0.022594030506753
130 => 0.022937948998998
131 => 0.022880704145133
201 => 0.022799180512018
202 => 0.023144993215413
203 => 0.023111638736555
204 => 0.022112542599408
205 => 0.022176501492549
206 => 0.022116432151539
207 => 0.022310528481374
208 => 0.021755631592176
209 => 0.021926314138005
210 => 0.0220333646307
211 => 0.022096418193298
212 => 0.022324210897635
213 => 0.022297482052955
214 => 0.022322549395121
215 => 0.022660305840607
216 => 0.024368562037863
217 => 0.024461538653625
218 => 0.024003687793015
219 => 0.02418659018112
220 => 0.023835457592313
221 => 0.024071175251563
222 => 0.024232447287442
223 => 0.023503689968133
224 => 0.023460537689279
225 => 0.023107955851374
226 => 0.023297413359808
227 => 0.022995972841412
228 => 0.023069935800685
301 => 0.022863128918584
302 => 0.023235340131526
303 => 0.023651530103371
304 => 0.023756676126099
305 => 0.023480082208511
306 => 0.023279809983749
307 => 0.02292819793084
308 => 0.023512936611014
309 => 0.023683932020685
310 => 0.023512038444922
311 => 0.023472206947468
312 => 0.023396726331769
313 => 0.023488220516909
314 => 0.023683000742961
315 => 0.023591145985381
316 => 0.023651817671035
317 => 0.023420599769692
318 => 0.023912379270356
319 => 0.024693443470592
320 => 0.024695954719713
321 => 0.024604099467001
322 => 0.024566514276641
323 => 0.024660763340166
324 => 0.024711889590829
325 => 0.025016673779945
326 => 0.025343719358004
327 => 0.026869898369642
328 => 0.026441353410278
329 => 0.027795470222199
330 => 0.028866400810367
331 => 0.029187526067639
401 => 0.028892105941059
402 => 0.027881489646311
403 => 0.027831903989491
404 => 0.029342191405039
405 => 0.028915466034601
406 => 0.028864708409616
407 => 0.028324733036139
408 => 0.028643925359115
409 => 0.028574113315811
410 => 0.028463911590135
411 => 0.029072908307242
412 => 0.030212895796156
413 => 0.030035218055274
414 => 0.029902589863939
415 => 0.029321451736993
416 => 0.029671426691314
417 => 0.029546807313409
418 => 0.0300822512463
419 => 0.029765066121991
420 => 0.028912233170224
421 => 0.029048049628767
422 => 0.029027521244283
423 => 0.029449993942306
424 => 0.029323178124777
425 => 0.029002758420589
426 => 0.030208999442851
427 => 0.030130672860331
428 => 0.030241722046395
429 => 0.030290609332411
430 => 0.031024826986311
501 => 0.03132561246677
502 => 0.031393896036825
503 => 0.031679618979677
504 => 0.031386786989719
505 => 0.032558323735219
506 => 0.033337327309913
507 => 0.034242180049076
508 => 0.035564413102482
509 => 0.036061584961903
510 => 0.035971775315511
511 => 0.036974277326166
512 => 0.038775751154946
513 => 0.036335904682415
514 => 0.0389050689424
515 => 0.038091701200117
516 => 0.036163220915024
517 => 0.036039049519953
518 => 0.037345038759134
519 => 0.040241597194833
520 => 0.039516042159184
521 => 0.040242783942948
522 => 0.039395001049025
523 => 0.039352901482666
524 => 0.040201609020077
525 => 0.042184660441877
526 => 0.041242587044951
527 => 0.039891893824583
528 => 0.040889224679389
529 => 0.040025244394343
530 => 0.03807845499928
531 => 0.039515487340922
601 => 0.038554584738391
602 => 0.038835027202201
603 => 0.040854701549248
604 => 0.040611688988416
605 => 0.04092616974449
606 => 0.040371119441414
607 => 0.039852614934941
608 => 0.038884787768961
609 => 0.038598261858416
610 => 0.038677447311968
611 => 0.038598222618038
612 => 0.038056732213463
613 => 0.03793979741215
614 => 0.037744900953599
615 => 0.037805307515636
616 => 0.037438845154588
617 => 0.038130435344872
618 => 0.03825880057846
619 => 0.038762082245113
620 => 0.038814334617318
621 => 0.040215966895179
622 => 0.039443971390007
623 => 0.039961892625762
624 => 0.039915564875572
625 => 0.036205016930465
626 => 0.036716297698859
627 => 0.037511690125737
628 => 0.037153366915557
629 => 0.036646781731082
630 => 0.036237687033239
701 => 0.035617866733926
702 => 0.036490251902614
703 => 0.037637345631619
704 => 0.038843426807278
705 => 0.040292454314263
706 => 0.039969048243244
707 => 0.038816338245958
708 => 0.038868047974381
709 => 0.039187697168464
710 => 0.038773722418934
711 => 0.038651633183551
712 => 0.03917092398233
713 => 0.039174500052664
714 => 0.038698172072811
715 => 0.038168820690303
716 => 0.038166602688683
717 => 0.038072409723093
718 => 0.039411757768352
719 => 0.040148263769884
720 => 0.040232702996021
721 => 0.040142580337188
722 => 0.040177264971733
723 => 0.039748708357244
724 => 0.040728261693449
725 => 0.041627196702536
726 => 0.041386262917155
727 => 0.041025068922114
728 => 0.040737360507604
729 => 0.041318487958201
730 => 0.041292611267606
731 => 0.041619345289445
801 => 0.041604522746907
802 => 0.041494654384451
803 => 0.0413862668409
804 => 0.041816011199506
805 => 0.041692251725711
806 => 0.041568300019269
807 => 0.041319695895945
808 => 0.041353485325182
809 => 0.040992353695376
810 => 0.040825277679169
811 => 0.038312855266831
812 => 0.037641453902484
813 => 0.037852690439343
814 => 0.037922234992031
815 => 0.037630040257843
816 => 0.038048972448
817 => 0.037983682309923
818 => 0.038237688043727
819 => 0.038078996288893
820 => 0.038085509053866
821 => 0.038552187668183
822 => 0.038687666455312
823 => 0.03861876085073
824 => 0.038667019974234
825 => 0.039779131106461
826 => 0.03962102446677
827 => 0.039537033465617
828 => 0.039560299546941
829 => 0.039844467785157
830 => 0.039924019376847
831 => 0.039586953692866
901 => 0.039745915817985
902 => 0.040422756371444
903 => 0.040659612259297
904 => 0.041415542556048
905 => 0.041094409930398
906 => 0.041683862763072
907 => 0.043495639811433
908 => 0.044943012683099
909 => 0.043611948775101
910 => 0.046269864732092
911 => 0.048339433560009
912 => 0.048260000061346
913 => 0.04789912286621
914 => 0.04554297377796
915 => 0.043374810258749
916 => 0.045188571107655
917 => 0.045193194757062
918 => 0.045037391091596
919 => 0.044069707906466
920 => 0.045003717814329
921 => 0.045077856128989
922 => 0.045036358387748
923 => 0.044294437958562
924 => 0.04316166259301
925 => 0.043383004187958
926 => 0.043745566235729
927 => 0.043059160640932
928 => 0.042839812462613
929 => 0.043247622458807
930 => 0.044561671237129
1001 => 0.044313257927354
1002 => 0.044306770851919
1003 => 0.045369588334776
1004 => 0.044608840387418
1005 => 0.043385796014304
1006 => 0.043076961180119
1007 => 0.041980805574836
1008 => 0.042737924155778
1009 => 0.042765171505634
1010 => 0.042350505396416
1011 => 0.043419443883712
1012 => 0.043409593427368
1013 => 0.044424391430558
1014 => 0.046364304071933
1015 => 0.045790576446575
1016 => 0.045123393639672
1017 => 0.045195934909755
1018 => 0.045991533595454
1019 => 0.045510496468329
1020 => 0.045683480773153
1021 => 0.045991271762991
1022 => 0.04617696970918
1023 => 0.045169215833027
1024 => 0.044934260198056
1025 => 0.044453623427126
1026 => 0.044328234265101
1027 => 0.044719702886208
1028 => 0.044616564735337
1029 => 0.042762881471385
1030 => 0.042569161256506
1031 => 0.042575102378927
1101 => 0.042087983687719
1102 => 0.041345010761746
1103 => 0.043297499250596
1104 => 0.043140687099883
1105 => 0.042967578621791
1106 => 0.042988783422614
1107 => 0.04383629249965
1108 => 0.043344694434735
1109 => 0.044651688461649
1110 => 0.044383009781552
1111 => 0.044107440507128
1112 => 0.044069348439358
1113 => 0.04396327777917
1114 => 0.043599522018233
1115 => 0.043160265078569
1116 => 0.042870229599218
1117 => 0.039545520693516
1118 => 0.040162567327472
1119 => 0.040872423234269
1120 => 0.041117462648726
1121 => 0.040698305774086
1122 => 0.043616072886435
1123 => 0.044149177054165
1124 => 0.042534369756587
1125 => 0.042232305243358
1126 => 0.043635876185634
1127 => 0.042789351327872
1128 => 0.043170541419489
1129 => 0.042346616941245
1130 => 0.044020767871271
1201 => 0.044008013646154
1202 => 0.04335673112196
1203 => 0.043907190651618
1204 => 0.043811534762197
1205 => 0.04307623839642
1206 => 0.04404407807759
1207 => 0.044044558113997
1208 => 0.043417712844564
1209 => 0.042685694803941
1210 => 0.042554827267771
1211 => 0.042456236158848
1212 => 0.043146294050438
1213 => 0.043764997798283
1214 => 0.044916252083357
1215 => 0.045205704763751
1216 => 0.046335457845287
1217 => 0.045662744891911
1218 => 0.045960949831052
1219 => 0.046284693476152
1220 => 0.046439908084892
1221 => 0.046186994209226
1222 => 0.047941965769771
1223 => 0.04809013914042
1224 => 0.048139820389905
1225 => 0.047548053853925
1226 => 0.048073681042557
1227 => 0.047827757487939
1228 => 0.048467582257524
1229 => 0.048567914951088
1230 => 0.048482936729079
1231 => 0.04851478390966
]
'min_raw' => 0.021755631592176
'max_raw' => 0.048567914951088
'avg_raw' => 0.035161773271632
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.021755'
'max' => '$0.048567'
'avg' => '$0.035161'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0033546742496555
'max_diff' => -0.0046346641775524
'year' => 2031
]
6 => [
'items' => [
101 => 0.047017225280932
102 => 0.046939568965782
103 => 0.045880719598462
104 => 0.046312208542264
105 => 0.04550556064363
106 => 0.045761357001681
107 => 0.045874109598993
108 => 0.04581521404081
109 => 0.046336604279746
110 => 0.045893316063662
111 => 0.044723405578087
112 => 0.043553176351181
113 => 0.043538485076486
114 => 0.043230384377303
115 => 0.043007684003252
116 => 0.043050583996014
117 => 0.043201769166043
118 => 0.04299889684633
119 => 0.043042189941629
120 => 0.043761143783969
121 => 0.043905324849706
122 => 0.043415341253152
123 => 0.041447986408694
124 => 0.040965192595128
125 => 0.041312215214102
126 => 0.041146360753352
127 => 0.033208324469743
128 => 0.035073248348021
129 => 0.033965173906379
130 => 0.034475825589141
131 => 0.033344768518711
201 => 0.0338845682365
202 => 0.033784886938954
203 => 0.036783629348115
204 => 0.036736808110031
205 => 0.036759218958977
206 => 0.035689490747633
207 => 0.03739359683459
208 => 0.038233100770698
209 => 0.038077730934798
210 => 0.038116834175182
211 => 0.037444910950147
212 => 0.036765724644546
213 => 0.036012402505613
214 => 0.037411981926321
215 => 0.037256372586356
216 => 0.037613284425763
217 => 0.038521011724096
218 => 0.038654678016896
219 => 0.038834326869929
220 => 0.038769935544393
221 => 0.04030399815611
222 => 0.04011821305176
223 => 0.040565901699221
224 => 0.039644972185174
225 => 0.038602853024598
226 => 0.038800925807582
227 => 0.03878184980578
228 => 0.038538990408424
229 => 0.038319747803469
301 => 0.03795477063744
302 => 0.039109612397214
303 => 0.039062727930756
304 => 0.039821732945483
305 => 0.039687571436548
306 => 0.038791608044995
307 => 0.038823607552804
308 => 0.03903881962126
309 => 0.039783671047433
310 => 0.040004793664074
311 => 0.039902360857833
312 => 0.040144811712348
313 => 0.04033643498224
314 => 0.040168876644763
315 => 0.042541149354171
316 => 0.041556016330949
317 => 0.042036163311956
318 => 0.042150675537736
319 => 0.041857354879333
320 => 0.041920965627115
321 => 0.042017318577114
322 => 0.042602354821665
323 => 0.044137659208968
324 => 0.044817635070935
325 => 0.046863376001078
326 => 0.044761172541319
327 => 0.0446364364878
328 => 0.045004936204776
329 => 0.04620600269444
330 => 0.047179354273874
331 => 0.047502271146772
401 => 0.047544949942302
402 => 0.048150763462966
403 => 0.048498004475257
404 => 0.04807720176708
405 => 0.04772061553178
406 => 0.046443367898046
407 => 0.046591212789481
408 => 0.04760971748074
409 => 0.04904841534677
410 => 0.050282967786825
411 => 0.049850670550814
412 => 0.053148793307288
413 => 0.053475788706969
414 => 0.05343060851576
415 => 0.054175552699673
416 => 0.05269699019985
417 => 0.052064876085376
418 => 0.047797713523277
419 => 0.048996612147928
420 => 0.050739281707705
421 => 0.050508632856793
422 => 0.049243059640792
423 => 0.050282007736053
424 => 0.049938499004849
425 => 0.049667559416358
426 => 0.050908786195459
427 => 0.049544006365052
428 => 0.050725666984895
429 => 0.049210175017232
430 => 0.049852645248174
501 => 0.049487948072303
502 => 0.049723951840696
503 => 0.048344278633018
504 => 0.049088716806207
505 => 0.048313307557528
506 => 0.048312939912583
507 => 0.048295822710441
508 => 0.049208088252821
509 => 0.049237837199407
510 => 0.048563671585231
511 => 0.048466513787782
512 => 0.048825757087414
513 => 0.048405177269514
514 => 0.048601963919212
515 => 0.048411137736664
516 => 0.048368178743558
517 => 0.048025874177621
518 => 0.047878399958755
519 => 0.047936228399915
520 => 0.047738830117631
521 => 0.047619890512348
522 => 0.048272162629284
523 => 0.047923679949787
524 => 0.048218752660706
525 => 0.047882480065469
526 => 0.046716812743383
527 => 0.046046425139743
528 => 0.04384458762574
529 => 0.04446902601334
530 => 0.044883029310347
531 => 0.044746201223156
601 => 0.045040160899883
602 => 0.045058207636593
603 => 0.044962638349125
604 => 0.04485198135742
605 => 0.044798119653574
606 => 0.045199560665977
607 => 0.04543261068556
608 => 0.044924580079851
609 => 0.044805555617037
610 => 0.045319202608548
611 => 0.045632526976645
612 => 0.04794593806892
613 => 0.047774553102985
614 => 0.048204695734881
615 => 0.048156268275606
616 => 0.048607126280928
617 => 0.04934408857282
618 => 0.047845638175506
619 => 0.048105717351964
620 => 0.048041951944001
621 => 0.048738125947944
622 => 0.048740299327194
623 => 0.04832290823536
624 => 0.048549182717641
625 => 0.048422882509147
626 => 0.048651124056391
627 => 0.047772264152276
628 => 0.048842620648424
629 => 0.049449443809492
630 => 0.049457869549672
701 => 0.049745498911971
702 => 0.050037747002436
703 => 0.05059869176264
704 => 0.050022102557528
705 => 0.048984874707357
706 => 0.049059759207914
707 => 0.048451632898866
708 => 0.048461855611988
709 => 0.048407285968174
710 => 0.048571053577072
711 => 0.047808201932977
712 => 0.04798724168908
713 => 0.047736584982081
714 => 0.048105172473235
715 => 0.047708633262448
716 => 0.048041921194391
717 => 0.048185757217147
718 => 0.048716515237687
719 => 0.047630239871268
720 => 0.045415250864764
721 => 0.045880868408077
722 => 0.045192183488048
723 => 0.045255923899405
724 => 0.045384689674557
725 => 0.044967317667748
726 => 0.045046939093744
727 => 0.04504409445612
728 => 0.045019580905875
729 => 0.044911006327232
730 => 0.044753551707374
731 => 0.045380802450911
801 => 0.045487384575021
802 => 0.045724303434186
803 => 0.046429213255462
804 => 0.046358776141398
805 => 0.046473661996844
806 => 0.046222866819462
807 => 0.045267557568386
808 => 0.045319435456851
809 => 0.044672517356406
810 => 0.045707760283887
811 => 0.045462601094121
812 => 0.045304545369623
813 => 0.045261418400818
814 => 0.045968075557197
815 => 0.046179518453879
816 => 0.046047761430071
817 => 0.045777523930276
818 => 0.046296459818428
819 => 0.04643530516995
820 => 0.046466387523736
821 => 0.047385842421455
822 => 0.046517774838649
823 => 0.04672672733368
824 => 0.048356915051792
825 => 0.046878559741992
826 => 0.047661677520851
827 => 0.047623347980724
828 => 0.048023964537127
829 => 0.047590485729978
830 => 0.047595859219312
831 => 0.047951579581282
901 => 0.047452034487401
902 => 0.047328340097037
903 => 0.047157457182666
904 => 0.047530573774569
905 => 0.047754240296803
906 => 0.04955682820105
907 => 0.050721382195189
908 => 0.05067082583501
909 => 0.051132816329499
910 => 0.050924685380384
911 => 0.050252575643521
912 => 0.051399785009295
913 => 0.051036759964685
914 => 0.051066687308288
915 => 0.051065573411064
916 => 0.051306953329529
917 => 0.051135913535152
918 => 0.05079877654356
919 => 0.051022583812103
920 => 0.051687211387114
921 => 0.053750235773213
922 => 0.054904731551112
923 => 0.053680733677756
924 => 0.054525031020812
925 => 0.054018753468882
926 => 0.053926747777243
927 => 0.054457028901766
928 => 0.0549882382132
929 => 0.054954402476543
930 => 0.054568771794342
1001 => 0.054350938806983
1002 => 0.056000443166669
1003 => 0.057215769880313
1004 => 0.057132892746096
1005 => 0.057498685463441
1006 => 0.058572664195109
1007 => 0.058670855350793
1008 => 0.058658485522075
1009 => 0.058415108497524
1010 => 0.059472580032613
1011 => 0.060354741391625
1012 => 0.058358773748179
1013 => 0.059118812097668
1014 => 0.05946001779966
1015 => 0.059961009001355
1016 => 0.060806265134488
1017 => 0.061724437488187
1018 => 0.061854277126247
1019 => 0.061762149689644
1020 => 0.061156590340582
1021 => 0.062161265486074
1022 => 0.062749780623772
1023 => 0.063100227920341
1024 => 0.063988903955572
1025 => 0.059462124969916
1026 => 0.056257845808354
1027 => 0.055757451346925
1028 => 0.056775023161283
1029 => 0.057043348733746
1030 => 0.056935187031937
1031 => 0.053328479515284
1101 => 0.055738462778275
1102 => 0.058331402132105
1103 => 0.058431007492763
1104 => 0.059729087149095
1105 => 0.06015179509528
1106 => 0.061196919361817
1107 => 0.061131546554389
1108 => 0.061386017681731
1109 => 0.061327519176381
1110 => 0.063263391803263
1111 => 0.06539894679058
1112 => 0.065324999312018
1113 => 0.065017988015852
1114 => 0.065473952143864
1115 => 0.067678073750756
1116 => 0.067475153553523
1117 => 0.067672273240434
1118 => 0.07027105683381
1119 => 0.073649845177855
1120 => 0.072080058767243
1121 => 0.0754860435844
1122 => 0.077629930483303
1123 => 0.081337561192913
1124 => 0.080873347567603
1125 => 0.082316700995003
1126 => 0.080042308293992
1127 => 0.074819842921868
1128 => 0.073993367785934
1129 => 0.075647991937756
1130 => 0.079715723959147
1201 => 0.075519884580573
1202 => 0.076368697422186
1203 => 0.076124239266699
1204 => 0.076111213130473
1205 => 0.076608367769081
1206 => 0.075887219035938
1207 => 0.072949129364936
1208 => 0.074295638546885
1209 => 0.073775686687053
1210 => 0.074352612040516
1211 => 0.077466040231041
1212 => 0.076089519413152
1213 => 0.074639466550976
1214 => 0.076458154632634
1215 => 0.078773969529613
1216 => 0.07862904999528
1217 => 0.078347845527007
1218 => 0.079932980391275
1219 => 0.082551158786107
1220 => 0.083258841885538
1221 => 0.083781239081594
1222 => 0.083853268828957
1223 => 0.084595219993035
1224 => 0.080605561588017
1225 => 0.086937251938476
1226 => 0.088030559952584
1227 => 0.087825063358906
1228 => 0.089040229203153
1229 => 0.088682696585993
1230 => 0.088164687918878
1231 => 0.090090984255197
]
'min_raw' => 0.033208324469743
'max_raw' => 0.090090984255197
'avg_raw' => 0.06164965436247
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0332083'
'max' => '$0.09009'
'avg' => '$0.061649'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011452692877568
'max_diff' => 0.041523069304109
'year' => 2032
]
7 => [
'items' => [
101 => 0.087882640949706
102 => 0.084748175650253
103 => 0.083028545994279
104 => 0.085293093043833
105 => 0.086675972905195
106 => 0.087589968525877
107 => 0.087866543048444
108 => 0.080915267412897
109 => 0.077168915380759
110 => 0.079570284081346
111 => 0.082500119629677
112 => 0.080589286203615
113 => 0.08066418725623
114 => 0.077939840948855
115 => 0.082741163826798
116 => 0.082041651468963
117 => 0.085670722818825
118 => 0.084804615816064
119 => 0.087763982622138
120 => 0.086984682162917
121 => 0.090219514799042
122 => 0.09150997711719
123 => 0.093676864193783
124 => 0.095270835148141
125 => 0.096206845380346
126 => 0.096150650836891
127 => 0.099859589695333
128 => 0.097672558030963
129 => 0.094925130816729
130 => 0.094875438526445
131 => 0.096298370012042
201 => 0.099280444043664
202 => 0.10005365245265
203 => 0.10048577047024
204 => 0.099823966684164
205 => 0.097450100558462
206 => 0.096425077201159
207 => 0.097298426799367
208 => 0.096230395288545
209 => 0.098074117312938
210 => 0.1006059414502
211 => 0.10008312977778
212 => 0.1018308108144
213 => 0.10363947682589
214 => 0.1062259504546
215 => 0.10690215043799
216 => 0.10801988329694
217 => 0.10917039756492
218 => 0.10953991174057
219 => 0.1102454289554
220 => 0.11024171053142
221 => 0.11236783414508
222 => 0.11471301433151
223 => 0.11559826556085
224 => 0.11763385194966
225 => 0.11414798159427
226 => 0.11679205430163
227 => 0.11917707406909
228 => 0.1163335551795
301 => 0.12025268351388
302 => 0.12040485438616
303 => 0.12270245389213
304 => 0.12037339662603
305 => 0.11899040985603
306 => 0.12298304084118
307 => 0.1249149492082
308 => 0.12433304268566
309 => 0.11990470531688
310 => 0.11732722302793
311 => 0.11058145471853
312 => 0.11857210867652
313 => 0.12246412312888
314 => 0.11989462593969
315 => 0.12119053086319
316 => 0.12826056792722
317 => 0.13095238029021
318 => 0.13039250213589
319 => 0.13048711232759
320 => 0.13193956541881
321 => 0.13838054230579
322 => 0.13452095965443
323 => 0.13747146597559
324 => 0.13903640388949
325 => 0.14049000543885
326 => 0.1369204194491
327 => 0.13227644052406
328 => 0.13080549745752
329 => 0.11963914008348
330 => 0.11905788268913
331 => 0.11873160529978
401 => 0.11667447251278
402 => 0.11505812963828
403 => 0.11377275377352
404 => 0.11039954365867
405 => 0.11153790305081
406 => 0.1061617101714
407 => 0.10960120785507
408 => 0.10102067420681
409 => 0.10816679760102
410 => 0.10427748753191
411 => 0.10688905464066
412 => 0.10687994312904
413 => 0.10207122008374
414 => 0.099297648986693
415 => 0.10106507643873
416 => 0.10295989896588
417 => 0.10326732754596
418 => 0.10572401441234
419 => 0.10640962291044
420 => 0.1043321971532
421 => 0.10084286171901
422 => 0.10165335475711
423 => 0.099281224371145
424 => 0.095124157112427
425 => 0.098109835393069
426 => 0.099129277229088
427 => 0.099579520820194
428 => 0.095491522613645
429 => 0.094206984822388
430 => 0.093523107680639
501 => 0.10031515248543
502 => 0.10068723603201
503 => 0.098783604000392
504 => 0.1073882012931
505 => 0.10544071591901
506 => 0.10761653422737
507 => 0.10157981100909
508 => 0.10181042196555
509 => 0.098952540451231
510 => 0.10055276313554
511 => 0.099421777319854
512 => 0.10042348095635
513 => 0.10102389798589
514 => 0.10388131054998
515 => 0.10819942466257
516 => 0.10345450839922
517 => 0.10138708043482
518 => 0.10266970111627
519 => 0.10608548901277
520 => 0.11126058252692
521 => 0.10819682300808
522 => 0.10955646745653
523 => 0.10985348928215
524 => 0.1075943864395
525 => 0.11134387887108
526 => 0.11335326232599
527 => 0.11541447396741
528 => 0.11720416628181
529 => 0.11459118071081
530 => 0.11738744982855
531 => 0.1151341505276
601 => 0.11311270811285
602 => 0.11311577380657
603 => 0.11184769345124
604 => 0.10939062797436
605 => 0.10893750740228
606 => 0.11129469784108
607 => 0.11318494134623
608 => 0.11334063085497
609 => 0.11438716678363
610 => 0.11500649596604
611 => 0.12107676389084
612 => 0.12351827586609
613 => 0.12650371049396
614 => 0.12766670553139
615 => 0.13116690363727
616 => 0.12834020939458
617 => 0.12772863631444
618 => 0.11923830061566
619 => 0.1206285926107
620 => 0.12285458423798
621 => 0.11927500639771
622 => 0.12154542463211
623 => 0.12199365328562
624 => 0.11915337371244
625 => 0.12067048975371
626 => 0.11664147934165
627 => 0.10828724607954
628 => 0.11135317952089
629 => 0.11361073851575
630 => 0.11038892347506
701 => 0.11616390223404
702 => 0.11279027886281
703 => 0.1117210022166
704 => 0.10754937279512
705 => 0.10951822130132
706 => 0.11218111709715
707 => 0.11053575709019
708 => 0.11395012615667
709 => 0.11878578333379
710 => 0.12223196060656
711 => 0.12249651530621
712 => 0.12028085419576
713 => 0.12383146526541
714 => 0.12385732759077
715 => 0.11985222379953
716 => 0.1173991200279
717 => 0.11684176968962
718 => 0.11823414010963
719 => 0.11992473484528
720 => 0.1225903315481
721 => 0.12420109580857
722 => 0.12840111471654
723 => 0.12953751940906
724 => 0.13078608362976
725 => 0.13245455047156
726 => 0.13445797270127
727 => 0.13007459891757
728 => 0.13024875852962
729 => 0.12616702155419
730 => 0.12180510021564
731 => 0.12511525479043
801 => 0.12944284156555
802 => 0.12845008837778
803 => 0.12833838336405
804 => 0.12852624021276
805 => 0.12777773672946
806 => 0.12439228321537
807 => 0.12269212965465
808 => 0.12488576150341
809 => 0.1260515792037
810 => 0.12785966078687
811 => 0.12763677656777
812 => 0.13229420055223
813 => 0.1341039346794
814 => 0.13364092724678
815 => 0.13372613175728
816 => 0.13700256895035
817 => 0.14064664095975
818 => 0.14405979527421
819 => 0.14753180244126
820 => 0.14334616228663
821 => 0.14122095235051
822 => 0.14341362652822
823 => 0.1422501627454
824 => 0.14893577074727
825 => 0.14939866773976
826 => 0.15608379229607
827 => 0.16242877154983
828 => 0.15844360376265
829 => 0.16220143749006
830 => 0.16626584104693
831 => 0.17410673493384
901 => 0.1714661977187
902 => 0.1694435875944
903 => 0.16753223080011
904 => 0.17150946086968
905 => 0.17662610381637
906 => 0.17772817970049
907 => 0.17951396365815
908 => 0.17763643018194
909 => 0.17989771245051
910 => 0.18788103251634
911 => 0.18572386896384
912 => 0.18266034993794
913 => 0.1889624144037
914 => 0.1912431070352
915 => 0.20725020233109
916 => 0.22745982136229
917 => 0.21909290637986
918 => 0.21389929225161
919 => 0.21511991476592
920 => 0.22249978349734
921 => 0.22486996310854
922 => 0.21842699787538
923 => 0.22070276211815
924 => 0.23324244684401
925 => 0.23996958537819
926 => 0.23083322767354
927 => 0.20562637911961
928 => 0.18238451356834
929 => 0.18854930290738
930 => 0.18785040711202
1001 => 0.20132273399244
1002 => 0.18567242132653
1003 => 0.18593593245436
1004 => 0.19968685278722
1005 => 0.19601834299287
1006 => 0.19007582695326
1007 => 0.18242790051181
1008 => 0.16829000113724
1009 => 0.15576766939669
1010 => 0.18032684566068
1011 => 0.17926780932221
1012 => 0.17773416776372
1013 => 0.18114712109479
1014 => 0.1977194536868
1015 => 0.19733740778115
1016 => 0.19490702665093
1017 => 0.1967504493178
1018 => 0.18975266604693
1019 => 0.1915561541324
1020 => 0.18238083193809
1021 => 0.18652846076522
1022 => 0.19006307698275
1023 => 0.19077270351931
1024 => 0.1923715283406
1025 => 0.17870974529482
1026 => 0.1848434847935
1027 => 0.1884464820953
1028 => 0.17216800920759
1029 => 0.1881247090256
1030 => 0.17847192404672
1031 => 0.17519562384492
1101 => 0.17960673044691
1102 => 0.17788771791417
1103 => 0.17640981188233
1104 => 0.17558511492291
1105 => 0.17882414477534
1106 => 0.17867304016125
1107 => 0.17337335865407
1108 => 0.16646014017061
1109 => 0.16878044321232
1110 => 0.16793745536431
1111 => 0.16488235865552
1112 => 0.16694112496346
1113 => 0.15787536006108
1114 => 0.14227818274399
1115 => 0.15258215583412
1116 => 0.15218546407872
1117 => 0.15198543410711
1118 => 0.15972858510344
1119 => 0.15898425980003
1120 => 0.15763330208589
1121 => 0.16485754725767
1122 => 0.16222060059016
1123 => 0.17034704887665
1124 => 0.17569965330385
1125 => 0.1743420596825
1126 => 0.17937621001767
1127 => 0.16883389830805
1128 => 0.17233563137385
1129 => 0.17305733370552
1130 => 0.16476840119364
1201 => 0.15910604062489
1202 => 0.1587284257306
1203 => 0.14891067282574
1204 => 0.15415523718138
1205 => 0.15877023677953
1206 => 0.15656001011045
1207 => 0.15586031837567
1208 => 0.15943489170406
1209 => 0.15971266666583
1210 => 0.15337936810028
1211 => 0.15469626142154
1212 => 0.16018792548649
1213 => 0.15455788557726
1214 => 0.14361963769543
1215 => 0.14090680098762
1216 => 0.1405448585633
1217 => 0.13318743025395
1218 => 0.14108808570837
1219 => 0.13763923787811
1220 => 0.14853410685036
1221 => 0.14231101612377
1222 => 0.14204275112048
1223 => 0.14163722922209
1224 => 0.13530438674469
1225 => 0.1366908767741
1226 => 0.14129978080027
1227 => 0.14294428967983
1228 => 0.14277275393063
1229 => 0.14127719465617
1230 => 0.14196185403351
1231 => 0.13975632762794
]
'min_raw' => 0.077168915380759
'max_raw' => 0.23996958537819
'avg_raw' => 0.15856925037947
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.077168'
'max' => '$0.239969'
'avg' => '$0.158569'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.043960590911015
'max_diff' => 0.14987860112299
'year' => 2033
]
8 => [
'items' => [
101 => 0.13897751035007
102 => 0.13651934879054
103 => 0.1329065303825
104 => 0.13340891494084
105 => 0.12625097632915
106 => 0.12235095147294
107 => 0.12127147599425
108 => 0.11982795626975
109 => 0.12143452538819
110 => 0.12623069878841
111 => 0.1204454961028
112 => 0.11052717188309
113 => 0.1111232800687
114 => 0.11246255817565
115 => 0.10996682228356
116 => 0.10760481771294
117 => 0.10965838905161
118 => 0.10545586432876
119 => 0.11297041321061
120 => 0.11276716572263
121 => 0.1155681248492
122 => 0.11731962207251
123 => 0.11328298802674
124 => 0.11226778548045
125 => 0.1128460909892
126 => 0.10328798912099
127 => 0.1147870240106
128 => 0.11488646814183
129 => 0.11403496711593
130 => 0.12015784820177
131 => 0.13307903706741
201 => 0.12821756606254
202 => 0.12633505755072
203 => 0.12275640749363
204 => 0.12752474621548
205 => 0.12715861219931
206 => 0.12550281532601
207 => 0.12450138421063
208 => 0.12634655174627
209 => 0.1242727475334
210 => 0.12390023531244
211 => 0.12164321655072
212 => 0.1208375635406
213 => 0.12024109012587
214 => 0.11958443150453
215 => 0.12103285679408
216 => 0.11775053453174
217 => 0.11379237565337
218 => 0.1134632975705
219 => 0.11437191109013
220 => 0.11396991724602
221 => 0.11346137297864
222 => 0.11249042347842
223 => 0.11220236350275
224 => 0.11313841867682
225 => 0.11208166696071
226 => 0.11364096168208
227 => 0.11321691979758
228 => 0.11084825630095
301 => 0.10789602459262
302 => 0.1078697435379
303 => 0.10723369005896
304 => 0.10642358032226
305 => 0.10619822632631
306 => 0.10948544300134
307 => 0.11628988314053
308 => 0.11495400872475
309 => 0.11591931489607
310 => 0.1206676658603
311 => 0.12217702384394
312 => 0.12110571729826
313 => 0.11963924682322
314 => 0.11970376408166
315 => 0.12471513762567
316 => 0.12502769084653
317 => 0.12581741200216
318 => 0.12683242686232
319 => 0.12127857871799
320 => 0.11944217833351
321 => 0.11857198995173
322 => 0.11589214654112
323 => 0.11878212790705
324 => 0.11709825952647
325 => 0.11732547090014
326 => 0.11717749919496
327 => 0.11725830175179
328 => 0.11296831274105
329 => 0.11453135926138
330 => 0.11193249126347
331 => 0.10845289875089
401 => 0.10844123393669
402 => 0.1092928592746
403 => 0.10878627919951
404 => 0.10742308524279
405 => 0.10761672051024
406 => 0.10592027181471
407 => 0.10782270009708
408 => 0.107877254933
409 => 0.10714471641832
410 => 0.11007566967182
411 => 0.11127648361121
412 => 0.11079431106835
413 => 0.11124265310023
414 => 0.11500952033784
415 => 0.11562368405751
416 => 0.11589645501241
417 => 0.11553097806807
418 => 0.1113115045184
419 => 0.11149865611292
420 => 0.1101254618894
421 => 0.10896525747417
422 => 0.10901165956631
423 => 0.10960815545175
424 => 0.11221308796751
425 => 0.11769501487776
426 => 0.11790304999677
427 => 0.11815519462982
428 => 0.11712959568947
429 => 0.1168202652354
430 => 0.11722835194928
501 => 0.11928707547075
502 => 0.12458267130594
503 => 0.12271085405683
504 => 0.12118903749673
505 => 0.12252408089874
506 => 0.12231856143141
507 => 0.12058377029973
508 => 0.12053508049056
509 => 0.11720546166258
510 => 0.11597457739363
511 => 0.11494595836841
512 => 0.11382273324564
513 => 0.11315684774201
514 => 0.11417995051513
515 => 0.11441394622434
516 => 0.11217691413015
517 => 0.11187201492182
518 => 0.11369882361963
519 => 0.11289491322202
520 => 0.11372175500198
521 => 0.11391358938745
522 => 0.11388269963307
523 => 0.11304332484944
524 => 0.11357831730601
525 => 0.1123129006573
526 => 0.11093695011126
527 => 0.11005917938763
528 => 0.10929320801188
529 => 0.10971821344967
530 => 0.10820314666689
531 => 0.1077184463108
601 => 0.11339707389944
602 => 0.11759193715469
603 => 0.11753094218161
604 => 0.11715965096963
605 => 0.11660798754228
606 => 0.11924671785494
607 => 0.11832743697709
608 => 0.11899629062421
609 => 0.1191665419491
610 => 0.11968184143313
611 => 0.11986601670719
612 => 0.11930931111104
613 => 0.11744093913453
614 => 0.11278513380853
615 => 0.11061784386117
616 => 0.10990260207947
617 => 0.1099285997598
618 => 0.10921146767762
619 => 0.10942269521543
620 => 0.10913801136011
621 => 0.10859888901056
622 => 0.10968492416379
623 => 0.10981007959808
624 => 0.10955658601616
625 => 0.10961629293131
626 => 0.10751747434155
627 => 0.10767704296053
628 => 0.10678854461303
629 => 0.10662196188388
630 => 0.10437591543178
701 => 0.10039671857225
702 => 0.10260157990242
703 => 0.099938417465997
704 => 0.098929837497829
705 => 0.10370429820077
706 => 0.10322507476912
707 => 0.10240485256756
708 => 0.10119157298216
709 => 0.10074155578191
710 => 0.098007393731322
711 => 0.097845844851186
712 => 0.099200969392041
713 => 0.098575626043425
714 => 0.097697407145921
715 => 0.094516587322787
716 => 0.090940292708332
717 => 0.091048238562956
718 => 0.092185791340487
719 => 0.095493379461052
720 => 0.094201047560492
721 => 0.093263445938835
722 => 0.0930878613393
723 => 0.095285670213739
724 => 0.098396030226263
725 => 0.099855341553757
726 => 0.098409208348155
727 => 0.0967479683869
728 => 0.096849080365897
729 => 0.097521733063198
730 => 0.097592419350887
731 => 0.096511122914338
801 => 0.096815501527496
802 => 0.096353122581145
803 => 0.09351550384087
804 => 0.093464180316045
805 => 0.092767782914398
806 => 0.092746696277842
807 => 0.091561950573168
808 => 0.091396196459323
809 => 0.089043811953769
810 => 0.090592158559001
811 => 0.089553608948056
812 => 0.087988269715276
813 => 0.087718404641532
814 => 0.087710292171544
815 => 0.089317545560162
816 => 0.090573376867366
817 => 0.08957167496318
818 => 0.089343606856773
819 => 0.091778777558383
820 => 0.09146887988953
821 => 0.091200510506928
822 => 0.098117531601869
823 => 0.092642169663336
824 => 0.090254599335403
825 => 0.087299527667277
826 => 0.088261713903183
827 => 0.088464460680545
828 => 0.081358046010407
829 => 0.078474974463779
830 => 0.077485612955236
831 => 0.07691622141955
901 => 0.077175700292331
902 => 0.074580597749802
903 => 0.076324549577416
904 => 0.074077410134143
905 => 0.073700669893654
906 => 0.077718833585385
907 => 0.078277937589318
908 => 0.075892626208543
909 => 0.077424382261835
910 => 0.07686894622391
911 => 0.074115930890217
912 => 0.07401078595428
913 => 0.072629419633001
914 => 0.070467848825427
915 => 0.069479952963678
916 => 0.068965448221574
917 => 0.069177742905663
918 => 0.069070400217063
919 => 0.068369916564554
920 => 0.069110551120068
921 => 0.067218535882057
922 => 0.066465120169278
923 => 0.066124819770928
924 => 0.064445547346859
925 => 0.067118016549389
926 => 0.067644526649167
927 => 0.068172074136489
928 => 0.072764014841662
929 => 0.072534614460721
930 => 0.074608282181908
1001 => 0.074527703267493
1002 => 0.073936259642221
1003 => 0.07144105627495
1004 => 0.072435599864421
1005 => 0.06937454928242
1006 => 0.071668096509662
1007 => 0.070621417335971
1008 => 0.071314213228173
1009 => 0.070068503747107
1010 => 0.070757930808012
1011 => 0.067769381726062
1012 => 0.064978716643356
1013 => 0.066101761737229
1014 => 0.067322640190054
1015 => 0.069969815749822
1016 => 0.068393179825148
1017 => 0.068960197722866
1018 => 0.067060782683162
1019 => 0.06314174691517
1020 => 0.06316392823201
1021 => 0.06256106995994
1022 => 0.062040112394122
1023 => 0.06857427542709
1024 => 0.067761648964109
1025 => 0.06646683504927
1026 => 0.068199994928141
1027 => 0.06865826990906
1028 => 0.068671316353508
1029 => 0.069935785061801
1030 => 0.070610632238085
1031 => 0.07072957697786
1101 => 0.072719245811014
1102 => 0.07338615655952
1103 => 0.076133067547876
1104 => 0.070553376170072
1105 => 0.070438466097964
1106 => 0.068224384041904
1107 => 0.066820178198698
1108 => 0.068320531217339
1109 => 0.069649639173243
1110 => 0.068265683130968
1111 => 0.068446398573182
1112 => 0.066588550659791
1113 => 0.067252643868959
1114 => 0.067824650403711
1115 => 0.067508822016211
1116 => 0.067036011633857
1117 => 0.069540667477807
1118 => 0.069399344979265
1119 => 0.071731738082941
1120 => 0.073550005298286
1121 => 0.076808665202329
1122 => 0.073408083714678
1123 => 0.073284153009181
1124 => 0.074495595534526
1125 => 0.073385971093981
1126 => 0.074087215437472
1127 => 0.076695683897397
1128 => 0.076750796725585
1129 => 0.075827585844576
1130 => 0.075771408378566
1201 => 0.075948721127084
1202 => 0.076987247433417
1203 => 0.076624354431294
1204 => 0.077044303400677
1205 => 0.077569456017377
1206 => 0.079741709900146
1207 => 0.080265432957151
1208 => 0.078993057447902
1209 => 0.079107938710203
1210 => 0.078632035342255
1211 => 0.078172318651869
1212 => 0.079205694635625
1213 => 0.081094209556996
1214 => 0.081082461203685
1215 => 0.081520559957958
1216 => 0.081793491852465
1217 => 0.080621868362885
1218 => 0.079859184552959
1219 => 0.080151646056516
1220 => 0.080619298369688
1221 => 0.079999992714215
1222 => 0.076177351318352
1223 => 0.077336896526579
1224 => 0.077143891505066
1225 => 0.076869028884219
1226 => 0.078034960557589
1227 => 0.077922503603384
1228 => 0.074553981222329
1229 => 0.07476962309602
1230 => 0.074567095118896
1231 => 0.075221504446308
]
'min_raw' => 0.062040112394122
'max_raw' => 0.13897751035007
'avg_raw' => 0.1005088113721
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.06204'
'max' => '$0.138977'
'avg' => '$0.1005088'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.015128802986636
'max_diff' => -0.10099207502812
'year' => 2034
]
9 => [
'items' => [
101 => 0.073350630842713
102 => 0.073926098962653
103 => 0.0742870271728
104 => 0.074499616661359
105 => 0.075267635668008
106 => 0.07517751750202
107 => 0.075262033796278
108 => 0.076400803233639
109 => 0.082160308269327
110 => 0.082473785420788
111 => 0.080930109278113
112 => 0.081546777449446
113 => 0.08036290941099
114 => 0.081157647956432
115 => 0.081701387885053
116 => 0.079244331702791
117 => 0.07909884078184
118 => 0.077910086498864
119 => 0.078548855716051
120 => 0.077532527962374
121 => 0.077781899243491
122 => 0.077084635401692
123 => 0.078339571493085
124 => 0.079742785040615
125 => 0.080097292197304
126 => 0.079164736492984
127 => 0.07848950470464
128 => 0.077304020119487
129 => 0.079275507404843
130 => 0.079852030367068
131 => 0.079272479175156
201 => 0.079138184500546
202 => 0.078883696334826
203 => 0.079192175367947
204 => 0.079848890499201
205 => 0.079539195770926
206 => 0.07974375459507
207 => 0.078964187297575
208 => 0.080622256219011
209 => 0.083255668702269
210 => 0.083264135554009
211 => 0.082954439156364
212 => 0.082827718062949
213 => 0.083145485360882
214 => 0.083317861084513
215 => 0.084345462257471
216 => 0.085448119257491
217 => 0.090593738349644
218 => 0.089148869099095
219 => 0.093714368471902
220 => 0.097325085719896
221 => 0.09840778194504
222 => 0.097411752362701
223 => 0.094004388965983
224 => 0.093837207462054
225 => 0.098929246928472
226 => 0.097490512549026
227 => 0.097319379672606
228 => 0.095498815001053
301 => 0.096574994203262
302 => 0.096339618025142
303 => 0.095968065212984
304 => 0.098021340163506
305 => 0.10186488757376
306 => 0.10126583466532
307 => 0.10081866945842
308 => 0.098859321689659
309 => 0.10003928668262
310 => 0.099619123749369
311 => 0.10142441035261
312 => 0.10035499856085
313 => 0.097479612721067
314 => 0.097937527393448
315 => 0.097868314511914
316 => 0.099292710709403
317 => 0.098865142326604
318 => 0.097784824922945
319 => 0.10185175074656
320 => 0.10158766720501
321 => 0.10196207728903
322 => 0.10212690418703
323 => 0.1046023702686
324 => 0.10561648951614
325 => 0.10584671233998
326 => 0.10681004719035
327 => 0.10582274369133
328 => 0.10977266162286
329 => 0.11239912656324
330 => 0.11544990074813
331 => 0.11990790180305
401 => 0.12158415143852
402 => 0.1212813519454
403 => 0.12466135746678
404 => 0.13073515225539
405 => 0.12250903952862
406 => 0.13117115620447
407 => 0.12842883007384
408 => 0.12192682415046
409 => 0.12150817162261
410 => 0.12591140552376
411 => 0.13567735452097
412 => 0.13323109506165
413 => 0.1356813557251
414 => 0.13282299650793
415 => 0.13268105488065
416 => 0.1355425315979
417 => 0.14222852791873
418 => 0.13905226168753
419 => 0.13449830519267
420 => 0.13786087580106
421 => 0.13494790594885
422 => 0.1283841695829
423 => 0.13322922445314
424 => 0.12998947424063
425 => 0.13093500558724
426 => 0.13774447865746
427 => 0.13692514484202
428 => 0.13798543866747
429 => 0.13611404781828
430 => 0.13436587367388
501 => 0.13110277681224
502 => 0.13013673470024
503 => 0.13040371398544
504 => 0.13013660239856
505 => 0.12831092969388
506 => 0.12791667584713
507 => 0.12725956882989
508 => 0.12746323377125
509 => 0.12622768033539
510 => 0.12855942494722
511 => 0.12899221729444
512 => 0.13068906657156
513 => 0.13086523909259
514 => 0.13559094017624
515 => 0.13298810343155
516 => 0.134734311038
517 => 0.13457811379374
518 => 0.12206774233462
519 => 0.12379156114175
520 => 0.12647328224149
521 => 0.12526517052104
522 => 0.12355718320294
523 => 0.12217789186708
524 => 0.12008812445348
525 => 0.1230294319577
526 => 0.12689693855256
527 => 0.13096332544219
528 => 0.13584882284986
529 => 0.13475843670193
530 => 0.13087199446644
531 => 0.13104633742608
601 => 0.13212405700112
602 => 0.13072831223029
603 => 0.1303166798492
604 => 0.132067505033
605 => 0.13207956200381
606 => 0.13047358896358
607 => 0.12868884381932
608 => 0.128681365672
609 => 0.12836378751217
610 => 0.13287949295706
611 => 0.13536267436243
612 => 0.13564736710871
613 => 0.13534351227229
614 => 0.13546045393926
615 => 0.13401554539264
616 => 0.13731817785589
617 => 0.14034900000066
618 => 0.13953667492179
619 => 0.13831888414975
620 => 0.13734885514307
621 => 0.13930816691578
622 => 0.13922092184679
623 => 0.14032252841326
624 => 0.14027255317622
625 => 0.13990212432143
626 => 0.13953668815097
627 => 0.1409856012598
628 => 0.14056833755329
629 => 0.140150425721
630 => 0.13931223956222
701 => 0.139426162982
702 => 0.1382085824787
703 => 0.13764527402518
704 => 0.12917446645026
705 => 0.12691078987461
706 => 0.1276229886067
707 => 0.12785746292153
708 => 0.12687230797483
709 => 0.12828476710286
710 => 0.12806463684392
711 => 0.12892103490955
712 => 0.12838599457863
713 => 0.12840795282044
714 => 0.12998139235107
715 => 0.1304381685407
716 => 0.13020584848402
717 => 0.13036855748825
718 => 0.13411811781568
719 => 0.13358505024131
720 => 0.13330186871685
721 => 0.13338031193442
722 => 0.13433840498956
723 => 0.13460661873506
724 => 0.13347017824834
725 => 0.13400613015156
726 => 0.13628814533305
727 => 0.13708672149569
728 => 0.13963539326856
729 => 0.13855267220042
730 => 0.14054005358006
731 => 0.14664858639284
801 => 0.15152850508201
802 => 0.14704073018428
803 => 0.15600207940304
804 => 0.16297977519905
805 => 0.16271195961244
806 => 0.16149523695339
807 => 0.15355131580128
808 => 0.14624120111992
809 => 0.15235642245474
810 => 0.15237201141153
811 => 0.15184670847555
812 => 0.1485840970554
813 => 0.15173317667025
814 => 0.1519831391743
815 => 0.15184322664243
816 => 0.14934179011619
817 => 0.14552255888338
818 => 0.14626882752433
819 => 0.14749123078166
820 => 0.1451769663955
821 => 0.14443741869789
822 => 0.14581237857244
823 => 0.15024278577251
824 => 0.14940524295494
825 => 0.1493833713272
826 => 0.1529667346742
827 => 0.15040181985596
828 => 0.14627824036177
829 => 0.14523698215616
830 => 0.14154121700181
831 => 0.14409389515778
901 => 0.14418576150017
902 => 0.14278768576188
903 => 0.1463916865027
904 => 0.1463584750014
905 => 0.14977993732009
906 => 0.15632048823086
907 => 0.15438612548558
908 => 0.15213667207089
909 => 0.15238125002765
910 => 0.15506366654341
911 => 0.15344181628437
912 => 0.15402504494546
913 => 0.15506278375698
914 => 0.15568887734757
915 => 0.15229116479499
916 => 0.15149899546761
917 => 0.14987849503743
918 => 0.14945573672327
919 => 0.1507756005108
920 => 0.15042786303426
921 => 0.14417804048982
922 => 0.14352489926024
923 => 0.14354493016928
924 => 0.14190257549233
925 => 0.1393975903997
926 => 0.14598054165825
927 => 0.14545183854384
928 => 0.14486819122391
929 => 0.14493968469036
930 => 0.14779712071478
1001 => 0.14613966351663
1002 => 0.15054628512979
1003 => 0.14964041620129
1004 => 0.14871131515294
1005 => 0.14858288508695
1006 => 0.14822526045051
1007 => 0.14699883250589
1008 => 0.14551784706587
1009 => 0.14453997219761
1010 => 0.13333048399828
1011 => 0.13541089980548
1012 => 0.1378042285558
1013 => 0.13863039604975
1014 => 0.1372171793823
1015 => 0.14705463491358
1016 => 0.14885203283522
1017 => 0.1434075972892
1018 => 0.14238916569337
1019 => 0.14712140311945
1020 => 0.14426728545903
1021 => 0.14555249446676
1022 => 0.14277457556379
1023 => 0.14841909230986
1024 => 0.1483760905494
1025 => 0.14618024604799
1026 => 0.14803615878409
1027 => 0.14771364827442
1028 => 0.14523454524045
1029 => 0.14849768429793
1030 => 0.14849930277419
1031 => 0.14638585018336
1101 => 0.14391780025153
1102 => 0.14347657121645
1103 => 0.14314416440931
1104 => 0.14547074276911
1105 => 0.14755674565148
1106 => 0.15143827985161
1107 => 0.1524141897725
1108 => 0.15622323116374
1109 => 0.15395513247412
1110 => 0.15496055124644
1111 => 0.15605207554895
1112 => 0.15657539243906
1113 => 0.15572267564936
1114 => 0.16163968479394
1115 => 0.16213926165822
1116 => 0.16230676545949
1117 => 0.16031158326762
1118 => 0.16208377203221
1119 => 0.16125462359798
1120 => 0.16341183747978
1121 => 0.16375011616113
1122 => 0.16346360615264
1123 => 0.16357098114546
1124 => 0.1585218576725
1125 => 0.15826003398418
1126 => 0.15469004941576
1127 => 0.15614484451539
1128 => 0.15342517480678
1129 => 0.15428761008709
1130 => 0.15466776334106
1201 => 0.15446919285469
1202 => 0.15622709644756
1203 => 0.15473251927764
1204 => 0.15078808439498
1205 => 0.14684257485368
1206 => 0.14679304219533
1207 => 0.14575425917713
1208 => 0.14500340931757
1209 => 0.14514804963835
1210 => 0.14565778099452
1211 => 0.14497378280451
1212 => 0.14511974849794
1213 => 0.14754375157314
1214 => 0.14802986810267
1215 => 0.14637785419733
1216 => 0.13974477998291
1217 => 0.13811700693289
1218 => 0.1392870179211
1219 => 0.1387278280271
1220 => 0.11196418448091
1221 => 0.11825190554135
1222 => 0.11451595519807
1223 => 0.11623765299907
1224 => 0.11242421511823
1225 => 0.11424418755437
1226 => 0.11390810510016
1227 => 0.12401857449816
1228 => 0.123860713425
1229 => 0.1239362731669
1230 => 0.12032960981632
1231 => 0.12607512246538
]
'min_raw' => 0.073350630842713
'max_raw' => 0.16375011616113
'avg_raw' => 0.11855037350192
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.07335'
'max' => '$0.16375'
'avg' => '$0.11855'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01131051844859
'max_diff' => 0.024772605811061
'year' => 2035
]
10 => [
'items' => [
101 => 0.12890556859826
102 => 0.12838172834895
103 => 0.128513567654
104 => 0.12624813158862
105 => 0.12395820754001
106 => 0.12141832935332
107 => 0.12613710908576
108 => 0.12561246133177
109 => 0.12681581451712
110 => 0.12987628047894
111 => 0.1303269457174
112 => 0.13093264436808
113 => 0.13071554451838
114 => 0.13588774371862
115 => 0.1352613562682
116 => 0.13677076979974
117 => 0.13366579164588
118 => 0.13015221413756
119 => 0.13082003035439
120 => 0.13075571428247
121 => 0.12993689686839
122 => 0.12919770511875
123 => 0.12796715912159
124 => 0.13186078874315
125 => 0.13170271449111
126 => 0.1342617528903
127 => 0.13380941799607
128 => 0.13078861486729
129 => 0.130896503442
130 => 0.13162210595642
131 => 0.13413342454363
201 => 0.13487895488392
202 => 0.13453359552605
203 => 0.13535103550943
204 => 0.13599710674258
205 => 0.13543217210923
206 => 0.14343045517579
207 => 0.1401090104082
208 => 0.14172785947746
209 => 0.14211394544166
210 => 0.14112499436287
211 => 0.14133946244017
212 => 0.14166432313824
213 => 0.14363681368267
214 => 0.148813199616
215 => 0.15110578570901
216 => 0.15800314408406
217 => 0.15091541834833
218 => 0.15049486203509
219 => 0.15173728455871
220 => 0.15578676408439
221 => 0.15906848689169
222 => 0.160157223674
223 => 0.16030111821287
224 => 0.16234366079434
225 => 0.16351440811087
226 => 0.16209564240075
227 => 0.16089338701238
228 => 0.15658705744066
229 => 0.15708552681433
301 => 0.16051948649064
302 => 0.16537015679264
303 => 0.16953253653798
304 => 0.16807501622474
305 => 0.17919486736577
306 => 0.18029735518589
307 => 0.18014502701684
308 => 0.18265665834325
309 => 0.17767158164516
310 => 0.17554036477541
311 => 0.16115332827352
312 => 0.16519549869096
313 => 0.17107103078105
314 => 0.17029338207681
315 => 0.16602641361956
316 => 0.16952929965978
317 => 0.16837113598951
318 => 0.16745764425051
319 => 0.17164252699594
320 => 0.16704107651184
321 => 0.17102512779255
322 => 0.1659155408153
323 => 0.16808167405476
324 => 0.16685207206397
325 => 0.16764777524636
326 => 0.16299611070097
327 => 0.16550603597689
328 => 0.16289168955762
329 => 0.16289045001702
330 => 0.16283273817492
331 => 0.1659085051434
401 => 0.16600880579382
402 => 0.16373580935688
403 => 0.16340823505944
404 => 0.16461944892572
405 => 0.16320143470572
406 => 0.16386491463438
407 => 0.16322153083686
408 => 0.16307669159231
409 => 0.16192258784931
410 => 0.16142536822408
411 => 0.1616203408509
412 => 0.16095479876028
413 => 0.16055378557696
414 => 0.1627529665594
415 => 0.16157803287519
416 => 0.16257289112137
417 => 0.16143912458873
418 => 0.15750899582802
419 => 0.15524873721738
420 => 0.14782508831153
421 => 0.14993042593223
422 => 0.15132626695287
423 => 0.15086494150388
424 => 0.15185604707757
425 => 0.15191689291037
426 => 0.15159467438524
427 => 0.15122158661188
428 => 0.15103998811686
429 => 0.15239347451789
430 => 0.15317921892995
501 => 0.15146635827324
502 => 0.15106505898684
503 => 0.1527968556804
504 => 0.15385325066305
505 => 0.16165307767786
506 => 0.16107524129949
507 => 0.16252549721453
508 => 0.16236222065449
509 => 0.16388231989733
510 => 0.16636703971751
511 => 0.1613149095845
512 => 0.16219178468608
513 => 0.16197679516117
514 => 0.16432399442078
515 => 0.16433132212067
516 => 0.16292405891323
517 => 0.16368695912822
518 => 0.16326112915729
519 => 0.16403066146914
520 => 0.16106752394237
521 => 0.16467630559904
522 => 0.16672225225362
523 => 0.1667506602249
524 => 0.16772042270153
525 => 0.16870575754265
526 => 0.17059702196559
527 => 0.16865301120438
528 => 0.16515592509059
529 => 0.16540840341249
530 => 0.16335806310351
531 => 0.16339252969453
601 => 0.16320854433048
602 => 0.16376069825777
603 => 0.1611886906791
604 => 0.16179233571696
605 => 0.16094722912902
606 => 0.1621899475894
607 => 0.16085298795475
608 => 0.16197669148671
609 => 0.16246164467975
610 => 0.16425113240234
611 => 0.16058867916314
612 => 0.15312068908211
613 => 0.15469055113777
614 => 0.15236860184745
615 => 0.15258350709455
616 => 0.15301764989562
617 => 0.15161045103468
618 => 0.15187890023141
619 => 0.15186930933705
620 => 0.15178666019092
621 => 0.15142059341859
622 => 0.15088972417461
623 => 0.1530045438497
624 => 0.15336389292246
625 => 0.15416268139728
626 => 0.15653933407494
627 => 0.15630185042711
628 => 0.15668919610982
629 => 0.15584362265932
630 => 0.15262273082176
701 => 0.15279764074471
702 => 0.15061651120269
703 => 0.15410690501104
704 => 0.15328033368627
705 => 0.15274743777603
706 => 0.15260203218968
707 => 0.15498457612964
708 => 0.15569747061827
709 => 0.15525324261352
710 => 0.15434211801558
711 => 0.15609174659343
712 => 0.15655987338996
713 => 0.15666466971585
714 => 0.1597646760978
715 => 0.15683792563583
716 => 0.15754242356143
717 => 0.16303871526911
718 => 0.15805433712665
719 => 0.16069467339361
720 => 0.16056544267299
721 => 0.16191614936306
722 => 0.16045464530023
723 => 0.16047276239468
724 => 0.16167209843067
725 => 0.15998784726952
726 => 0.15957080299635
727 => 0.15899465931988
728 => 0.16025264795965
729 => 0.16100675525526
730 => 0.16708430622709
731 => 0.1710106813249
801 => 0.17084022702682
802 => 0.17239786023414
803 => 0.17169613220796
804 => 0.16943006730492
805 => 0.17329796377723
806 => 0.17207399949373
807 => 0.17217490162214
808 => 0.17217114603988
809 => 0.1729849752876
810 => 0.17240830267924
811 => 0.17127162177393
812 => 0.17202620360555
813 => 0.17426704187752
814 => 0.18122267263101
815 => 0.18511513575052
816 => 0.1809883414637
817 => 0.18383494890277
818 => 0.18212799878926
819 => 0.18181779517627
820 => 0.18360567501065
821 => 0.185396684292
822 => 0.18528260474352
823 => 0.18398242397461
824 => 0.18324798484911
825 => 0.18880940396251
826 => 0.19290696282896
827 => 0.19262753678465
828 => 0.19386083247001
829 => 0.19748182674663
830 => 0.19781288508351
831 => 0.19777117934235
901 => 0.19695061671204
902 => 0.2005159558229
903 => 0.20349022443535
904 => 0.19676068017145
905 => 0.19932320253094
906 => 0.20047360137743
907 => 0.20216272819203
908 => 0.20501256825879
909 => 0.20810825045403
910 => 0.20854601385886
911 => 0.20823539977423
912 => 0.20619371415006
913 => 0.20958104654726
914 => 0.21156526642283
915 => 0.21274682395066
916 => 0.21574305724882
917 => 0.20048070584906
918 => 0.18967725494023
919 => 0.1879901400771
920 => 0.1914209544938
921 => 0.19232563289525
922 => 0.191960958166
923 => 0.17980069196132
924 => 0.18792611879215
925 => 0.19666839485683
926 => 0.19700422128452
927 => 0.20138078747487
928 => 0.20280597682796
929 => 0.20632968626084
930 => 0.20610927727641
1001 => 0.20696724444885
1002 => 0.20677001265382
1003 => 0.21329694237367
1004 => 0.22049711511309
1005 => 0.22024779602628
1006 => 0.21921268600641
1007 => 0.2207500008984
1008 => 0.22818135078289
1009 => 0.22749719117048
1010 => 0.22816179395736
1011 => 0.23692377428371
1012 => 0.24831559508512
1013 => 0.24302295060276
1014 => 0.25450646621207
1015 => 0.26173473057312
1016 => 0.27423526636908
1017 => 0.27267013772099
1018 => 0.27753650457319
1019 => 0.2698682307887
1020 => 0.25226032416569
1021 => 0.24947380554224
1022 => 0.25505248639228
1023 => 0.26876712890238
1024 => 0.25462056349337
1025 => 0.25748239525109
1026 => 0.25665818751234
1027 => 0.2566142689846
1028 => 0.25829046055889
1029 => 0.2558590572561
1030 => 0.24595308279945
1031 => 0.25049293251666
1101 => 0.24873987851936
1102 => 0.2506850226282
1103 => 0.26118216314517
1104 => 0.25654112710204
1105 => 0.25165217263776
1106 => 0.25778400648182
1107 => 0.26559193809201
1108 => 0.26510333176405
1109 => 0.2641552312662
1110 => 0.26949962413166
1111 => 0.27832699538522
1112 => 0.2807129983638
1113 => 0.28247429698291
1114 => 0.2827171503051
1115 => 0.28521869045617
1116 => 0.27176727859459
1117 => 0.29311501467567
1118 => 0.29680117897756
1119 => 0.29610833286466
1120 => 0.30020534934871
1121 => 0.29899990316783
1122 => 0.29725340078044
1123 => 0.30374804336805
1124 => 0.29630245973199
1125 => 0.2857343911335
1126 => 0.27993653968768
1127 => 0.28757161817087
1128 => 0.29223409417304
1129 => 0.29531569422131
1130 => 0.29624818453396
1201 => 0.27281147340615
1202 => 0.26018038596785
1203 => 0.26827676820009
1204 => 0.27815491330587
1205 => 0.27171240499977
1206 => 0.27196493912809
1207 => 0.26277961534499
1208 => 0.27896761064563
1209 => 0.2766091558928
1210 => 0.28884482332253
1211 => 0.28592468309306
1212 => 0.29590239489613
1213 => 0.29327492898885
1214 => 0.30418139307034
1215 => 0.30853227687318
1216 => 0.31583808793914
1217 => 0.32121227229926
1218 => 0.32436809614728
1219 => 0.32417863232064
1220 => 0.33668357863172
1221 => 0.32930984868163
1222 => 0.32004670600959
1223 => 0.3198791649835
1224 => 0.32467667783309
1225 => 0.33473094863246
1226 => 0.33733787476705
1227 => 0.33879479083288
1228 => 0.33656347316245
1229 => 0.32855981778161
1230 => 0.32510387996761
1231 => 0.32804843911329
]
'min_raw' => 0.12141832935332
'max_raw' => 0.33879479083288
'avg_raw' => 0.2301065600931
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.121418'
'max' => '$0.338794'
'avg' => '$0.2301065'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.048067698510612
'max_diff' => 0.17504467467175
'year' => 2036
]
11 => [
'items' => [
101 => 0.32444749630698
102 => 0.33066373383678
103 => 0.33919995568189
104 => 0.33743725962676
105 => 0.34332968826091
106 => 0.34942773199569
107 => 0.35814820841671
108 => 0.36042806387147
109 => 0.36419657824306
110 => 0.3680756174239
111 => 0.36932146026575
112 => 0.37170016081317
113 => 0.37168762388712
114 => 0.37885599809179
115 => 0.3867629368256
116 => 0.38974762315156
117 => 0.39661074478155
118 => 0.38485788950267
119 => 0.39377256523877
120 => 0.40181382590154
121 => 0.39222670343712
122 => 0.40544031824128
123 => 0.40595337296144
124 => 0.41369989010909
125 => 0.40584731092683
126 => 0.40118447447472
127 => 0.41464590859775
128 => 0.42115947253868
129 => 0.41919753407053
130 => 0.40426708545506
131 => 0.39557692396378
201 => 0.37283309513416
202 => 0.39977414284314
203 => 0.41289634130105
204 => 0.40423310213114
205 => 0.40860233605791
206 => 0.43243945963352
207 => 0.44151509295166
208 => 0.43962742466495
209 => 0.43994640953174
210 => 0.44484345653581
211 => 0.46655965980489
212 => 0.45354680742841
213 => 0.46349464548795
214 => 0.46877094292514
215 => 0.47367186203605
216 => 0.46163675365105
217 => 0.44597925447302
218 => 0.44101986722623
219 => 0.40337171372948
220 => 0.40141196384233
221 => 0.40031189684417
222 => 0.39337613002836
223 => 0.38792651717756
224 => 0.38359278270744
225 => 0.3722197692952
226 => 0.37605782746352
227 => 0.35793161781679
228 => 0.36952812439534
301 => 0.34059825612652
302 => 0.36469191007647
303 => 0.35157882963553
304 => 0.36038391047646
305 => 0.36035319037889
306 => 0.34414024489733
307 => 0.3347889562991
308 => 0.34074796135149
309 => 0.34713648779405
310 => 0.34817300471578
311 => 0.35645589600617
312 => 0.35876747292516
313 => 0.3517632869434
314 => 0.33999874890942
315 => 0.34273138277417
316 => 0.33473357956105
317 => 0.32071773706111
318 => 0.3307841598377
319 => 0.33422127916299
320 => 0.33573930686541
321 => 0.32195633549711
322 => 0.31762542665032
323 => 0.31531968712014
324 => 0.33821954038492
325 => 0.33947404604026
326 => 0.33305581773831
327 => 0.36206681826449
328 => 0.35550073535665
329 => 0.36283665869407
330 => 0.34248342489306
331 => 0.34326094583352
401 => 0.33362539877708
402 => 0.3390206612812
403 => 0.33520746364071
404 => 0.33858477738789
405 => 0.34060912532276
406 => 0.35024309128074
407 => 0.36480191449246
408 => 0.34880409803107
409 => 0.34183362030589
410 => 0.34615806548314
411 => 0.35767463285887
412 => 0.37512282195533
413 => 0.36479314283269
414 => 0.36937727901799
415 => 0.37037870884046
416 => 0.36276198588093
417 => 0.37540366139523
418 => 0.38217843800413
419 => 0.38912795696237
420 => 0.39516202955271
421 => 0.38635216626725
422 => 0.39577998282699
423 => 0.3881828269135
424 => 0.38136739267955
425 => 0.38137772887999
426 => 0.37710230742743
427 => 0.36881813962532
428 => 0.36729041198068
429 => 0.37523784411886
430 => 0.38161093206905
501 => 0.38213585011766
502 => 0.38566431906797
503 => 0.38775243064665
504 => 0.40821876276768
505 => 0.41645049085314
506 => 0.42651609213741
507 => 0.43043721110383
508 => 0.44223837339382
509 => 0.43270797640111
510 => 0.43064601506273
511 => 0.40202025547799
512 => 0.40670772200635
513 => 0.41421280819149
514 => 0.40214401158489
515 => 0.40979888517773
516 => 0.41131011937735
517 => 0.40173391849438
518 => 0.40684898114919
519 => 0.3932648912484
520 => 0.36509801053126
521 => 0.3754350191854
522 => 0.38304653695433
523 => 0.37218396260469
524 => 0.39165470668674
525 => 0.38028029995175
526 => 0.37667515908457
527 => 0.36261021923617
528 => 0.36924832943543
529 => 0.37822646852851
530 => 0.37267902238969
531 => 0.38419080608098
601 => 0.40049456186841
602 => 0.41211358914798
603 => 0.41300555378847
604 => 0.40553529766208
605 => 0.41750643077916
606 => 0.41759362741473
607 => 0.40409014035515
608 => 0.39581932971889
609 => 0.39394018414039
610 => 0.39863465822366
611 => 0.40433461640847
612 => 0.41332186179803
613 => 0.4187526659622
614 => 0.43291332294637
615 => 0.43674479070843
616 => 0.4409544121505
617 => 0.44657976459627
618 => 0.45333444251819
619 => 0.43855559176907
620 => 0.43914278306055
621 => 0.42538092187009
622 => 0.41067439953755
623 => 0.42183481679406
624 => 0.43642557774885
625 => 0.43307844106446
626 => 0.43270181981167
627 => 0.43333519229284
628 => 0.43081156054008
629 => 0.41939726765248
630 => 0.41366508122159
701 => 0.42106106415417
702 => 0.4249916999255
703 => 0.43108777321938
704 => 0.43033630351342
705 => 0.44603913364798
706 => 0.45214077860933
707 => 0.45057971672411
708 => 0.45086698968004
709 => 0.46191372643003
710 => 0.4741999696307
711 => 0.48570765770071
712 => 0.49741377227222
713 => 0.48330159425883
714 => 0.47613630058177
715 => 0.48352905465956
716 => 0.47960635528534
717 => 0.50214734943786
718 => 0.50370803896648
719 => 0.52624740314857
720 => 0.54763994369493
721 => 0.53420367226493
722 => 0.54687347104046
723 => 0.56057689140004
724 => 0.58701301257351
725 => 0.57811025699624
726 => 0.57129088574802
727 => 0.56484661286942
728 => 0.57825612173029
729 => 0.59550724065766
730 => 0.59922296644545
731 => 0.60524386173817
801 => 0.59891362653793
802 => 0.60653769758409
803 => 0.63345401856363
804 => 0.62618099103802
805 => 0.61585212275414
806 => 0.63709997309654
807 => 0.64478948753653
808 => 0.69875852690634
809 => 0.76689666846054
810 => 0.73868703043794
811 => 0.72117639779798
812 => 0.72529181182613
813 => 0.75017355450007
814 => 0.75816478053991
815 => 0.73644187342283
816 => 0.74411477145612
817 => 0.7863931940022
818 => 0.80907421124399
819 => 0.77827034336263
820 => 0.69328369357709
821 => 0.61492212117577
822 => 0.63570713884419
823 => 0.63335076287479
824 => 0.67877365355993
825 => 0.62600753173689
826 => 0.62689597790212
827 => 0.67325816586296
828 => 0.66088952896413
829 => 0.64085392124335
830 => 0.61506840328486
831 => 0.56740148846687
901 => 0.52518157272231
902 => 0.60798455016329
903 => 0.60441393520859
904 => 0.5992431556187
905 => 0.61075016605922
906 => 0.66662494243648
907 => 0.66533684799198
908 => 0.65714264832765
909 => 0.66335787655268
910 => 0.63976436168532
911 => 0.64584494768098
912 => 0.61490970830234
913 => 0.6288937284712
914 => 0.64081093382763
915 => 0.64320348924018
916 => 0.64859403875154
917 => 0.60253238337746
918 => 0.62321271434127
919 => 0.63536047129755
920 => 0.58047646342992
921 => 0.63427559092754
922 => 0.60173055243534
923 => 0.59068427756101
924 => 0.60555663144324
925 => 0.59976086067149
926 => 0.59477799730103
927 => 0.59199747392385
928 => 0.60291808921316
929 => 0.60240862945695
930 => 0.58454038324355
1001 => 0.56123198446106
1002 => 0.56905504816457
1003 => 0.56621285577947
1004 => 0.55591238392576
1005 => 0.56285365827145
1006 => 0.53228779895158
1007 => 0.47970082666687
1008 => 0.51444139134067
1009 => 0.5131039173912
1010 => 0.51242950237625
1011 => 0.53853607656993
1012 => 0.53602653184235
1013 => 0.53147168358827
1014 => 0.55582873056561
1015 => 0.54693808077037
1016 => 0.57433696853877
1017 => 0.592383648072
1018 => 0.58780642639345
1019 => 0.60477941572162
1020 => 0.56923527575193
1021 => 0.58104161326649
1022 => 0.58347488306536
1023 => 0.55552816838676
1024 => 0.53643712439585
1025 => 0.53516396941549
1026 => 0.50206273004317
1027 => 0.519745144932
1028 => 0.53530493828612
1029 => 0.52785300475823
1030 => 0.52549394522349
1031 => 0.53754586876892
1101 => 0.53848240644614
1102 => 0.51712924815561
1103 => 0.52156924593079
1104 => 0.54008477474151
1105 => 0.52110270211071
1106 => 0.48422363569303
1107 => 0.47507711732846
1108 => 0.47385680317485
1109 => 0.44905071995061
1110 => 0.47568833142136
1111 => 0.46406030017078
1112 => 0.50079311156617
1113 => 0.47981152669914
1114 => 0.47890705251088
1115 => 0.47753980711782
1116 => 0.45618818656033
1117 => 0.46086283449614
1118 => 0.47640207620378
1119 => 0.48194665270715
1120 => 0.48136830795247
1121 => 0.47632592544201
1122 => 0.47863430233412
1123 => 0.4711982160728
1124 => 0.46857237924517
1125 => 0.46028451592387
1126 => 0.44810364642223
1127 => 0.44979747103604
1128 => 0.42566398125541
1129 => 0.41251477516168
1130 => 0.40887524821868
1201 => 0.40400832068421
1202 => 0.4094249806341
1203 => 0.42559561411108
1204 => 0.40609039934657
1205 => 0.37265007676457
1206 => 0.37465989713128
1207 => 0.37917536677427
1208 => 0.37076081896739
1209 => 0.36279715564763
1210 => 0.36972091479173
1211 => 0.35555180927775
1212 => 0.38088763548193
1213 => 0.38020237238594
1214 => 0.38964600163788
1215 => 0.3955512968119
1216 => 0.3819415032978
1217 => 0.3785186770338
1218 => 0.38046847443256
1219 => 0.34824266665853
1220 => 0.38701246562582
1221 => 0.38734774845724
1222 => 0.38447685329851
1223 => 0.40512057436535
1224 => 0.44868526475443
1225 => 0.43229447584445
1226 => 0.42594746696428
1227 => 0.41388179844346
1228 => 0.42995858535895
1229 => 0.42872413896079
1230 => 0.42314150419839
1231 => 0.41976510927521
]
'min_raw' => 0.31531968712014
'max_raw' => 0.80907421124399
'avg_raw' => 0.56219694918206
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.315319'
'max' => '$0.809074'
'avg' => '$0.562196'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19390135776681
'max_diff' => 0.47027942041111
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0098975246709652
]
1 => [
'year' => 2028
'avg' => 0.016987025607318
]
2 => [
'year' => 2029
'avg' => 0.046405492345707
]
3 => [
'year' => 2030
'avg' => 0.03580176823558
]
4 => [
'year' => 2031
'avg' => 0.035161773271632
]
5 => [
'year' => 2032
'avg' => 0.06164965436247
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0098975246709652
'min' => '$0.009897'
'max_raw' => 0.06164965436247
'max' => '$0.061649'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.06164965436247
]
1 => [
'year' => 2033
'avg' => 0.15856925037947
]
2 => [
'year' => 2034
'avg' => 0.1005088113721
]
3 => [
'year' => 2035
'avg' => 0.11855037350192
]
4 => [
'year' => 2036
'avg' => 0.2301065600931
]
5 => [
'year' => 2037
'avg' => 0.56219694918206
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.06164965436247
'min' => '$0.061649'
'max_raw' => 0.56219694918206
'max' => '$0.562196'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.56219694918206
]
]
]
]
'prediction_2025_max_price' => '$0.016922'
'last_price' => 0.01640895
'sma_50day_nextmonth' => '$0.015843'
'sma_200day_nextmonth' => '$0.031413'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.0159091'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.016264'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.016026'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.016969'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.017348'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.024877'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0371022'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.01615'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.016157'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.016357'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.016811'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.01904'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.024689'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.035567'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029226'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.043696'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.101687'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.1517071'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.016328'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.016939'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.02006'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.028359'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.050293'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.084919'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.113514'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '46.19'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 26.18
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.016036'
'vwma_10_action' => 'BUY'
'hma_9' => '0.015961'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 24.35
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -38.12
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.05
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000932'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -75.65
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.91
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.005363'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 14
'sell_pct' => 57.58
'buy_pct' => 42.42
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767676436
'last_updated_date' => '6. Januar 2026'
]
ScPrime Preisprognose für 2026
Die Preisprognose für ScPrime im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.005669 am unteren Ende und $0.016922 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte ScPrime im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SCP das prognostizierte Preisziel erreicht.
ScPrime Preisprognose 2027-2032
Die Preisprognose für SCP für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.009897 am unteren Ende und $0.061649 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte ScPrime, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| ScPrime Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.005457 | $0.009897 | $0.014337 |
| 2028 | $0.009849 | $0.016987 | $0.024124 |
| 2029 | $0.021636 | $0.0464054 | $0.071174 |
| 2030 | $0.01840095 | $0.0358017 | $0.0532025 |
| 2031 | $0.021755 | $0.035161 | $0.048567 |
| 2032 | $0.0332083 | $0.061649 | $0.09009 |
ScPrime Preisprognose 2032-2037
Die Preisprognose für ScPrime für die Jahre 2032-2037 wird derzeit zwischen $0.061649 am unteren Ende und $0.562196 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte ScPrime bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| ScPrime Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.0332083 | $0.061649 | $0.09009 |
| 2033 | $0.077168 | $0.158569 | $0.239969 |
| 2034 | $0.06204 | $0.1005088 | $0.138977 |
| 2035 | $0.07335 | $0.11855 | $0.16375 |
| 2036 | $0.121418 | $0.2301065 | $0.338794 |
| 2037 | $0.315319 | $0.562196 | $0.809074 |
ScPrime Potenzielles Preishistogramm
ScPrime Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für ScPrime Bärisch, mit 14 technischen Indikatoren, die bullische Signale zeigen, und 19 anzeigen bärische Signale. Die Preisprognose für SCP wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von ScPrime
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von ScPrime im nächsten Monat steigen, und bis zum 04.02.2026 $0.031413 erreichen. Der kurzfristige 50-Tage-SMA für ScPrime wird voraussichtlich bis zum 04.02.2026 $0.015843 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 46.19, was darauf hindeutet, dass sich der SCP-Markt in einem NEUTRAL Zustand befindet.
Beliebte SCP Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.0159091 | BUY |
| SMA 5 | $0.016264 | BUY |
| SMA 10 | $0.016026 | BUY |
| SMA 21 | $0.016969 | SELL |
| SMA 50 | $0.017348 | SELL |
| SMA 100 | $0.024877 | SELL |
| SMA 200 | $0.0371022 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.01615 | BUY |
| EMA 5 | $0.016157 | BUY |
| EMA 10 | $0.016357 | BUY |
| EMA 21 | $0.016811 | SELL |
| EMA 50 | $0.01904 | SELL |
| EMA 100 | $0.024689 | SELL |
| EMA 200 | $0.035567 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.029226 | SELL |
| SMA 50 | $0.043696 | SELL |
| SMA 100 | $0.101687 | SELL |
| SMA 200 | $0.1517071 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.028359 | SELL |
| EMA 50 | $0.050293 | SELL |
| EMA 100 | $0.084919 | SELL |
| EMA 200 | $0.113514 | SELL |
ScPrime Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 46.19 | NEUTRAL |
| Stoch RSI (14) | 26.18 | NEUTRAL |
| Stochastic Fast (14) | 24.35 | NEUTRAL |
| Commodity Channel Index (20) | -38.12 | NEUTRAL |
| Average Directional Index (14) | 15.05 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.000932 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -75.65 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 50.91 | NEUTRAL |
| VWMA (10) | 0.016036 | BUY |
| Hull Moving Average (9) | 0.015961 | SELL |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.005363 | SELL |
Auf weltweiten Geldflüssen basierende ScPrime-Preisprognose
Definition weltweiter Geldflüsse, die für ScPrime-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
ScPrime-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.023057 | $0.032399 | $0.045526 | $0.063972 | $0.089891 | $0.126313 |
| Amazon.com aktie | $0.034238 | $0.07144 | $0.149064 | $0.311031 | $0.648984 | $1.35 |
| Apple aktie | $0.023274 | $0.033013 | $0.046827 | $0.06642 | $0.094212 | $0.133633 |
| Netflix aktie | $0.02589 | $0.040851 | $0.064457 | $0.1017035 | $0.160472 | $0.25320014 |
| Google aktie | $0.021249 | $0.027518 | $0.035635 | $0.046148 | $0.059761 | $0.07739 |
| Tesla aktie | $0.037197 | $0.084324 | $0.191157 | $0.43334 | $0.982349 | $2.22 |
| Kodak aktie | $0.0123049 | $0.009227 | $0.006919 | $0.005188 | $0.003891 | $0.002917 |
| Nokia aktie | $0.01087 | $0.007201 | $0.00477 | $0.00316 | $0.002093 | $0.001386 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
ScPrime Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in ScPrime investieren?", "Sollte ich heute SCP kaufen?", "Wird ScPrime auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere ScPrime-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie ScPrime.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich ScPrime zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der ScPrime-Preis entspricht heute $0.0164 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
ScPrime-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von ScPrime 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.016835 | $0.017273 | $0.017722 | $0.018182 |
| Wenn die Wachstumsrate von ScPrime 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.017261 | $0.018159 | $0.0191034 | $0.020096 |
| Wenn die Wachstumsrate von ScPrime 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.018541 | $0.020951 | $0.023674 | $0.026751 |
| Wenn die Wachstumsrate von ScPrime 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020674 | $0.026048 | $0.032818 | $0.041349 |
| Wenn die Wachstumsrate von ScPrime 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.024939 | $0.0379044 | $0.0576096 | $0.087558 |
| Wenn die Wachstumsrate von ScPrime 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.037735 | $0.086777 | $0.199559 | $0.458918 |
| Wenn die Wachstumsrate von ScPrime 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.059061 | $0.212579 | $0.765143 | $2.75 |
Fragefeld
Ist SCP eine gute Investition?
Die Entscheidung, ScPrime zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von ScPrime in den letzten 2026 Stunden um 1.7116% gestiegen, und ScPrime hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in ScPrime investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann ScPrime steigen?
Es scheint, dass der Durchschnittswert von ScPrime bis zum Ende dieses Jahres potenziell auf $0.016922 steigen könnte. Betrachtet man die Aussichten von ScPrime in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.0532025 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird ScPrime nächste Woche kosten?
Basierend auf unserer neuen experimentellen ScPrime-Prognose wird der Preis von ScPrime in der nächsten Woche um 0.86% steigen und $0.016549 erreichen bis zum 13. Januar 2026.
Wie viel wird ScPrime nächsten Monat kosten?
Basierend auf unserer neuen experimentellen ScPrime-Prognose wird der Preis von ScPrime im nächsten Monat um -11.62% fallen und $0.014502 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von ScPrime in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von ScPrime im Jahr 2026 wird erwartet, dass SCP innerhalb der Spanne von $0.005669 bis $0.016922 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte ScPrime-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird ScPrime in 5 Jahren sein?
Die Zukunft von ScPrime scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.0532025 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der ScPrime-Prognose für 2030 könnte der Wert von ScPrime seinen höchsten Gipfel von ungefähr $0.0532025 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.01840095 liegen wird.
Wie viel wird ScPrime im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen ScPrime-Preisprognosesimulation wird der Wert von SCP im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.016922 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.016922 und $0.005669 während des Jahres 2026 liegen.
Wie viel wird ScPrime im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von ScPrime könnte der Wert von SCP um -12.62% fallen und bis zu $0.014337 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.014337 und $0.005457 im Laufe des Jahres schwanken.
Wie viel wird ScPrime im Jahr 2028 kosten?
Unser neues experimentelles ScPrime-Preisprognosemodell deutet darauf hin, dass der Wert von SCP im Jahr 2028 um 47.02% steigen, und im besten Fall $0.024124 erreichen wird. Der Preis wird voraussichtlich zwischen $0.024124 und $0.009849 im Laufe des Jahres liegen.
Wie viel wird ScPrime im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von ScPrime im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.071174 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.071174 und $0.021636.
Wie viel wird ScPrime im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für ScPrime-Preisprognosen wird der Wert von SCP im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.0532025 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.0532025 und $0.01840095 während des Jahres 2030 liegen.
Wie viel wird ScPrime im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von ScPrime im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.048567 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.048567 und $0.021755 während des Jahres schwanken.
Wie viel wird ScPrime im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen ScPrime-Preisprognose könnte SCP eine 449.04% Steigerung im Wert erfahren und $0.09009 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.09009 und $0.0332083 liegen.
Wie viel wird ScPrime im Jahr 2033 kosten?
Laut unserer experimentellen ScPrime-Preisprognose wird der Wert von SCP voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.239969 beträgt. Im Laufe des Jahres könnte der Preis von SCP zwischen $0.239969 und $0.077168 liegen.
Wie viel wird ScPrime im Jahr 2034 kosten?
Die Ergebnisse unserer neuen ScPrime-Preisprognosesimulation deuten darauf hin, dass SCP im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.138977 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.138977 und $0.06204.
Wie viel wird ScPrime im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von ScPrime könnte SCP um 897.93% steigen, wobei der Wert im Jahr 2035 $0.16375 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.16375 und $0.07335.
Wie viel wird ScPrime im Jahr 2036 kosten?
Unsere jüngste ScPrime-Preisprognosesimulation deutet darauf hin, dass der Wert von SCP im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.338794 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.338794 und $0.121418.
Wie viel wird ScPrime im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von ScPrime um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.809074 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.809074 und $0.315319 liegen.
Verwandte Prognosen
analoS-PreisprognoseCypherium-Preisprognose
Fuel Token-Preisprognose
Etherisc-Preisprognose
SolarX-Preisprognose
Augur-Preisprognose
GensoKishi Metaverse-Preisprognose
Moonsama-Preisprognose
MagicCraft-Preisprognose
ValleyDAO-Preisprognose
PolyDoge-Preisprognose
GameZone-Preisprognose
Divi-Preisprognose
Noxbox-Preisprognose
Hourglass-Preisprognose
KLEVA-Preisprognose
Acquire.Fi-Preisprognose
Striker League-Preisprognose
Aladdin DAO-Preisprognose
Ēnosys-Preisprognose
Skeb-Preisprognose
Pundi X PURSE-Preisprognose
Roco Finance-Preisprognose
Darwinia Network Native Token-Preisprognose
dHedge DAO-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von ScPrime?
ScPrime-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
ScPrime Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von ScPrime. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SCP über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SCP über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SCP einzuschätzen.
Wie liest man ScPrime-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von ScPrime in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SCP innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von ScPrime?
Die Preisentwicklung von ScPrime wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SCP. Die Marktkapitalisierung von ScPrime kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SCP-„Walen“, großen Inhabern von ScPrime, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen ScPrime-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


