Saitama Preisvorhersage bis zu $0.00215 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.00072 | $0.00215 |
| 2027 | $0.000693 | $0.001821 |
| 2028 | $0.001251 | $0.003065 |
| 2029 | $0.002749 | $0.009044 |
| 2030 | $0.002338 | $0.00676 |
| 2031 | $0.002764 | $0.006171 |
| 2032 | $0.00422 | $0.011448 |
| 2033 | $0.0098063 | $0.030494 |
| 2034 | $0.007883 | $0.01766 |
| 2035 | $0.009321 | $0.0208088 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Saitama eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,957.41 Gewinn erzielen könnten, was einer Rendite von 39.57% in den nächsten 90 Tagen entspricht.
Langfristige Saitama Inu Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Saitama'
'name_with_ticker' => 'Saitama <small>SAITAMA</small>'
'name_lang' => 'Saitama Inu'
'name_lang_with_ticker' => 'Saitama Inu <small>SAITAMA</small>'
'name_with_lang' => 'Saitama Inu/Saitama'
'name_with_lang_with_ticker' => 'Saitama Inu/Saitama <small>SAITAMA</small>'
'image' => '/uploads/coins/saitama-inu.jpeg?1696585938'
'price_for_sd' => 0.002085
'ticker' => 'SAITAMA'
'marketcap' => '$92.31M'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$55.13'
'current_supply' => '44.27B'
'max_supply' => '44.29B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002085'
'change_24h_pct' => '0%'
'ath_price' => '$0.004337'
'ath_days' => 1257
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29.07.2022'
'ath_pct' => '-51.93%'
'fdv' => '$92.35M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.102814'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002103'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001842'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00072'
'current_year_max_price_prediction' => '$0.00215'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002338'
'grand_prediction_max_price' => '$0.00676'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0021247134431848
107 => 0.0021326463519107
108 => 0.0021505196003344
109 => 0.0019977946494599
110 => 0.0020663636686336
111 => 0.0021066415433499
112 => 0.0019246646400601
113 => 0.0021030444450722
114 => 0.0019951360478476
115 => 0.0019585103170998
116 => 0.0020078220384786
117 => 0.0019886052127
118 => 0.0019720837143455
119 => 0.0019628644343883
120 => 0.0019990735202328
121 => 0.001997384323099
122 => 0.0019381392307767
123 => 0.0018608564229811
124 => 0.001886795069999
125 => 0.0018773713163613
126 => 0.0018432184174899
127 => 0.0018662333476925
128 => 0.0017648872426697
129 => 0.0015905265364903
130 => 0.0017057145598053
131 => 0.0017012799462081
201 => 0.0016990438129387
202 => 0.0017856044288968
203 => 0.0017772836229656
204 => 0.001762181278723
205 => 0.0018429410510944
206 => 0.0018134626478066
207 => 0.0019043081407543
208 => 0.0019641448579278
209 => 0.0019489683309376
210 => 0.0020052450526551
211 => 0.0018873926440376
212 => 0.0019265384867624
213 => 0.0019346063906942
214 => 0.0018419444880394
215 => 0.0017786450097211
216 => 0.0017744236561842
217 => 0.0016646710839858
218 => 0.0017233000221624
219 => 0.0017748910615274
220 => 0.001750182957298
221 => 0.0017423611096325
222 => 0.0017823212330035
223 => 0.0017854264768247
224 => 0.0017146265886216
225 => 0.0017293481273199
226 => 0.001790739390944
227 => 0.0017278012249903
228 => 0.0016055226494334
301 => 0.0015751958720617
302 => 0.0015711497209269
303 => 0.0014889010954478
304 => 0.0015772224523388
305 => 0.0015386678131906
306 => 0.001660461456304
307 => 0.0015908935805501
308 => 0.0015878946484699
309 => 0.001583361322783
310 => 0.0015125665331852
311 => 0.0015280660928635
312 => 0.0015795889898838
313 => 0.0015979729399877
314 => 0.0015960553433766
315 => 0.0015793364995802
316 => 0.0015869903006559
317 => 0.0015623347406302
318 => 0.001553628349224
319 => 0.0015261485830644
320 => 0.0014857609182891
321 => 0.001491377070788
322 => 0.0014113585388607
323 => 0.0013677601957618
324 => 0.0013556927490089
325 => 0.0013395556548777
326 => 0.0013575154767302
327 => 0.0014111318564136
328 => 0.0013464591271659
329 => 0.0012355822691354
330 => 0.001242246157228
331 => 0.001257217935246
401 => 0.0012293181259577
402 => 0.0012029132979199
403 => 0.0012258701536074
404 => 0.0011788901671961
405 => 0.0012628952421542
406 => 0.0012606231402981
407 => 0.0012919350374036
408 => 0.0013115150092484
409 => 0.0012663895132372
410 => 0.0012550405730227
411 => 0.0012615054451495
412 => 0.0011546555095749
413 => 0.0012832031180923
414 => 0.0012843148031489
415 => 0.0012747958807714
416 => 0.0013432435138448
417 => 0.0014876893689818
418 => 0.0014333430279582
419 => 0.001412298482087
420 => 0.0013722927850024
421 => 0.0014255980010644
422 => 0.0014215049921617
423 => 0.0014029948536764
424 => 0.0013917998641654
425 => 0.0014124269755966
426 => 0.0013892439367889
427 => 0.0013850796259917
428 => 0.0013598484333757
429 => 0.0013508420455579
430 => 0.0013441740745722
501 => 0.0013368332936983
502 => 0.0013530252270975
503 => 0.0013163321757886
504 => 0.0012720839529741
505 => 0.0012684051920195
506 => 0.0012785625744552
507 => 0.0012740686888556
508 => 0.0012683836770242
509 => 0.0012575294412172
510 => 0.0012543092213173
511 => 0.0012647733737633
512 => 0.0012529599557498
513 => 0.0012703912975389
514 => 0.0012656509370924
515 => 0.0012391716689802
516 => 0.0012061686970317
517 => 0.0012058749013553
518 => 0.0011987644651847
519 => 0.0011897082556603
520 => 0.0011871890253486
521 => 0.0012239367912533
522 => 0.0013000035669079
523 => 0.0012850698387232
524 => 0.0012958609878067
525 => 0.0013489427609045
526 => 0.0013658158603477
527 => 0.0013538397340242
528 => 0.0013374460736573
529 => 0.0013381673115142
530 => 0.0013941894116864
531 => 0.001397683441356
601 => 0.0014065117271145
602 => 0.0014178585691874
603 => 0.0013557721502943
604 => 0.0013352430467676
605 => 0.0013255152186054
606 => 0.001295557273009
607 => 0.0013278643489346
608 => 0.0013090403993196
609 => 0.0013115803932404
610 => 0.0013099262188674
611 => 0.0013108295099298
612 => 0.0012628717610238
613 => 0.0012803450441401
614 => 0.0012512923219602
615 => 0.0012123939882826
616 => 0.0012122635874286
617 => 0.0012217838994889
618 => 0.0012161208453456
619 => 0.0012008817122562
620 => 0.0012030463591849
621 => 0.0011840817743413
622 => 0.0012053490031498
623 => 0.0012059588711742
624 => 0.0011977698296492
625 => 0.0012305349299407
626 => 0.001243958818264
627 => 0.0012385686157059
628 => 0.0012435806272833
629 => 0.0012856904025511
630 => 0.001292556133298
701 => 0.0012956054373711
702 => 0.0012915197738685
703 => 0.0012443503166732
704 => 0.0012464424826798
705 => 0.0012310915566971
706 => 0.0012181216418824
707 => 0.0012186403704568
708 => 0.0012253085926424
709 => 0.0012544291100132
710 => 0.0013157115220717
711 => 0.0013180371448125
712 => 0.0013208558674175
713 => 0.0013093907060065
714 => 0.0013059327036181
715 => 0.0013104947013545
716 => 0.0013335091532475
717 => 0.0013927085718792
718 => 0.0013717835435385
719 => 0.0013547711697801
720 => 0.0013696956080693
721 => 0.0013673981077763
722 => 0.0013480048931807
723 => 0.0013474605902382
724 => 0.0013102388110436
725 => 0.0012964787667743
726 => 0.0012849798438614
727 => 0.0012724233202275
728 => 0.0012649793921188
729 => 0.0012764166488985
730 => 0.0012790324848457
731 => 0.0012540247230078
801 => 0.0012506162574761
802 => 0.001271038135623
803 => 0.0012620512284549
804 => 0.0012712944853419
805 => 0.0012734390002268
806 => 0.001273093683938
807 => 0.0012637103207148
808 => 0.0012696909966173
809 => 0.0012555449151825
810 => 0.0012401631762949
811 => 0.0012303505852008
812 => 0.0012217877980198
813 => 0.0012265389300199
814 => 0.001209602011962
815 => 0.0012041835510025
816 => 0.001267664878191
817 => 0.0013145592171245
818 => 0.0013138773548642
819 => 0.0013097266937154
820 => 0.0013035596531792
821 => 0.0013330579958202
822 => 0.0013227813630821
823 => 0.0013302584720404
824 => 0.0013321617100836
825 => 0.0013379222384217
826 => 0.0013399811321685
827 => 0.0013337577252722
828 => 0.0013128712116032
829 => 0.0012608240053702
830 => 0.00123659589037
831 => 0.0012286002088687
901 => 0.0012288908367053
902 => 0.0012208740235519
903 => 0.0012232353343139
904 => 0.0012200528560333
905 => 0.0012140260120939
906 => 0.0012261667893899
907 => 0.0012275659008741
908 => 0.0012247320983817
909 => 0.0012253995614538
910 => 0.0012019368871498
911 => 0.0012037207033189
912 => 0.001193788188213
913 => 0.001191925961369
914 => 0.0011668174281044
915 => 0.0011223340218861
916 => 0.0011469821470398
917 => 0.001117210677905
918 => 0.0011059357714323
919 => 0.0011593094250664
920 => 0.0011539521905962
921 => 0.0011447829339172
922 => 0.0011312196922483
923 => 0.0011261889539786
924 => 0.0010956237807901
925 => 0.0010938178272993
926 => 0.0011089667524606
927 => 0.0011019760447413
928 => 0.0010921584435154
929 => 0.0010566000870695
930 => 0.001016620721457
1001 => 0.0010178274472036
1002 => 0.0010305441395623
1003 => 0.0010675196376751
1004 => 0.0010530726708798
1005 => 0.00104259123071
1006 => 0.0010406283720371
1007 => 0.0010651976578511
1008 => 0.0010999683447024
1009 => 0.0011162819730227
1010 => 0.0011001156628095
1011 => 0.0010815446760925
1012 => 0.0010826750060043
1013 => 0.0010901945845108
1014 => 0.0010909847858907
1015 => 0.0010788969826662
1016 => 0.0010822996284692
1017 => 0.00107713069835
1018 => 0.0010454089837498
1019 => 0.0010448352385233
1020 => 0.0010370502181787
1021 => 0.0010368144908566
1022 => 0.001023570229186
1023 => 0.001021717265425
1024 => 0.00099541998000884
1025 => 0.0010127289329053
1026 => 0.0010011189960632
1027 => 0.00098362008273485
1028 => 0.00098060326348131
1029 => 0.00098051257425163
1030 => 0.00099848004555439
1031 => 0.0010125189725419
1101 => 0.0010013209558852
1102 => 0.00099877138455687
1103 => 0.0010259941361207
1104 => 0.0010225297928433
1105 => 0.0010195296939077
1106 => 0.0010968550110631
1107 => 0.0010356459887649
1108 => 0.001008955361354
1109 => 0.00097592064152038
1110 => 0.00098667691287372
1111 => 0.00098894341729038
1112 => 0.00090950087104632
1113 => 0.00087727103992905
1114 => 0.00086621097644516
1115 => 0.00085984575354384
1116 => 0.00086274646554941
1117 => 0.00083373583736173
1118 => 0.00085323145929536
1119 => 0.00082811070749218
1120 => 0.00082389913170238
1121 => 0.00086881814779045
1122 => 0.00087506836646602
1123 => 0.00084840299180531
1124 => 0.00086552647906951
1125 => 0.00085931726455323
1126 => 0.00082854133068091
1127 => 0.00082736591637944
1128 => 0.00081192363458869
1129 => 0.00078775945380115
1130 => 0.00077671577476971
1201 => 0.00077096413084452
1202 => 0.00077333737122536
1203 => 0.00077213738826645
1204 => 0.00076430668775984
1205 => 0.0007725862348532
1206 => 0.00075143541337472
1207 => 0.00074301298583824
1208 => 0.00073920877071885
1209 => 0.00072043619926083
1210 => 0.00075031170865095
1211 => 0.00075619756036255
1212 => 0.00076209500902026
1213 => 0.0008134282732264
1214 => 0.00081086380841296
1215 => 0.00083404532138143
1216 => 0.00083314453041555
1217 => 0.00082653278740132
1218 => 0.00079863893120326
1219 => 0.00080975692512363
1220 => 0.0007755374679566
1221 => 0.00080117701196304
1222 => 0.00078947619481146
1223 => 0.00079722095391413
1224 => 0.00078329517873075
1225 => 0.0007910022776984
1226 => 0.00075759331415408
1227 => 0.00072639649407319
1228 => 0.00073895100516569
1229 => 0.00075259919450573
1230 => 0.00078219194648891
1231 => 0.00076456674754263
]
'min_raw' => 0.00072043619926083
'max_raw' => 0.0021505196003344
'avg_raw' => 0.0014354778997976
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00072'
'max' => '$0.00215'
'avg' => '$0.001435'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0013647638007392
'max_diff' => 6.5319600334424E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00077090543556627
102 => 0.00074967189177064
103 => 0.00070586102585831
104 => 0.00070610899060153
105 => 0.00069936964335251
106 => 0.00069354586336855
107 => 0.00076659121366227
108 => 0.00075750686967714
109 => 0.00074303215646638
110 => 0.00076240713530122
111 => 0.00076753018722741
112 => 0.00076767603331359
113 => 0.0007818115177309
114 => 0.00078935562829834
115 => 0.0007906853104839
116 => 0.0008129278006319
117 => 0.00082038318994396
118 => 0.00085109088339418
119 => 0.00078871556322446
120 => 0.00078743098455279
121 => 0.00076267978098655
122 => 0.00074698217638379
123 => 0.00076375460940358
124 => 0.0007786126953937
125 => 0.00076314146313501
126 => 0.00076516167945246
127 => 0.0007443928141913
128 => 0.00075181670625622
129 => 0.0007582111622088
130 => 0.00075468051948053
131 => 0.00074939497643128
201 => 0.00077739450178189
202 => 0.00077581465883058
203 => 0.00080188846054336
204 => 0.00082221485353393
205 => 0.00085864338355039
206 => 0.00082062831341599
207 => 0.00081924289316408
208 => 0.00083278559835495
209 => 0.00082038111662636
210 => 0.00082822032089067
211 => 0.00085738036654978
212 => 0.00085799647236476
213 => 0.00084767590615636
214 => 0.00084704789876464
215 => 0.00084903007639959
216 => 0.00086063975271966
217 => 0.00085658297508411
218 => 0.00086127758086901
219 => 0.00086714825728939
220 => 0.0008914318640793
221 => 0.00089728655946458
222 => 0.00088306268498987
223 => 0.00088434694159697
224 => 0.00087902682208934
225 => 0.00087388765330587
226 => 0.00088543975421578
227 => 0.00090655144568574
228 => 0.0009064201109488
301 => 0.0009113176130172
302 => 0.00091436871623271
303 => 0.00090127114768768
304 => 0.00089274511217581
305 => 0.00089601453671679
306 => 0.00090124241775663
307 => 0.00089431920535519
308 => 0.00085158593126955
309 => 0.00086454847681501
310 => 0.00086239087540015
311 => 0.0008593181886121
312 => 0.00087235212839446
313 => 0.00087109497310595
314 => 0.00083343829143839
315 => 0.00083584895002194
316 => 0.0008335848915712
317 => 0.00084090052760831
318 => 0.00081998604827249
319 => 0.00082641920125502
320 => 0.0008304540144986
321 => 0.00083283055049596
322 => 0.00084141622812443
323 => 0.00084040879795025
324 => 0.00084135360485031
325 => 0.00085408389823847
326 => 0.00091846935368666
327 => 0.0009219737119682
328 => 0.00090471697013105
329 => 0.00091161069812081
330 => 0.00089837624787305
331 => 0.00090726062298748
401 => 0.00091333908680211
402 => 0.00088587167764517
403 => 0.0008842452359369
404 => 0.00087095616240522
405 => 0.00087809695778955
406 => 0.00086673543889173
407 => 0.00086952315822019
408 => 0.0008617284519488
409 => 0.00087575737132677
410 => 0.00089144388306502
411 => 0.00089540691540922
412 => 0.00088498188350432
413 => 0.0008774334733621
414 => 0.00086418095175323
415 => 0.00088622019054048
416 => 0.00089266513559551
417 => 0.00088618633798781
418 => 0.00088468505901758
419 => 0.00088184013808175
420 => 0.00088528862244292
421 => 0.00089263003504062
422 => 0.00088916796043415
423 => 0.00089145472170563
424 => 0.00088273994583674
425 => 0.00090127548352785
426 => 0.00093071437820141
427 => 0.00093080902906153
428 => 0.00092734693579319
429 => 0.00092593032181962
430 => 0.00092948263961033
501 => 0.00093140962628808
502 => 0.00094289717063955
503 => 0.00095522376341262
504 => 0.0010127465933708
505 => 0.00099659441289986
506 => 0.0010476320896872
507 => 0.0010879962656131
508 => 0.0011000997170618
509 => 0.0010889651112404
510 => 0.001050874226205
511 => 0.001049005305663
512 => 0.0011059291694628
513 => 0.0010898455706612
514 => 0.0010879324777613
515 => 0.0010675804015283
516 => 0.0010796109992357
517 => 0.0010769797310389
518 => 0.0010728261454641
519 => 0.0010957796878312
520 => 0.0011387466700653
521 => 0.0011320498629423
522 => 0.001127051007081
523 => 0.0011051474758414
524 => 0.0011183382939784
525 => 0.0011136412962933
526 => 0.0011338225791369
527 => 0.0011218676342505
528 => 0.0010897237215816
529 => 0.0010948427456219
530 => 0.0010940690154362
531 => 0.0011099923278295
601 => 0.00110521254469
602 => 0.0010931356860655
603 => 0.0011385998135912
604 => 0.0011356476260344
605 => 0.0011398331530259
606 => 0.0011416757514492
607 => 0.0011693489647063
608 => 0.0011806857947337
609 => 0.0011832594536291
610 => 0.0011940285653332
611 => 0.0011829915083194
612 => 0.0012271476056627
613 => 0.0012565088338163
614 => 0.0012906134112317
615 => 0.0013404493652817
616 => 0.0013591881450129
617 => 0.0013558031521788
618 => 0.0013935882037696
619 => 0.0014614871015639
620 => 0.0013695274607268
621 => 0.0014663611858237
622 => 0.0014357047464572
623 => 0.0013630188802048
624 => 0.0013583387673282
625 => 0.0014075624798546
626 => 0.0015167359366313
627 => 0.0014893892239438
628 => 0.0015167806660566
629 => 0.0014848270938499
630 => 0.001483240329664
701 => 0.0015152287523762
702 => 0.0015899714456413
703 => 0.001554463993759
704 => 0.0015035553547014
705 => 0.0015411455015554
706 => 0.0015085814375466
707 => 0.0014352054872271
708 => 0.001489368312428
709 => 0.0014531511736846
710 => 0.0014637212601789
711 => 0.0015398442989248
712 => 0.0015306849735063
713 => 0.0015425379887285
714 => 0.0015216177271087
715 => 0.0015020749039334
716 => 0.0014655967732075
717 => 0.0014547973970497
718 => 0.0014577819560989
719 => 0.0014547959180505
720 => 0.0014343867391607
721 => 0.0014299793789226
722 => 0.0014226335854349
723 => 0.0014249103539987
724 => 0.0014110981131542
725 => 0.0014371646653824
726 => 0.0014420028471736
727 => 0.0014609719101152
728 => 0.0014629413411572
729 => 0.0015157699114419
730 => 0.0014866728226772
731 => 0.0015061936619423
801 => 0.0015044475343412
802 => 0.0013645942033293
803 => 0.0013838647584064
804 => 0.0014138436946729
805 => 0.0014003382245203
806 => 0.0013812446495179
807 => 0.0013658255639706
808 => 0.0013424640726842
809 => 0.0013753449230522
810 => 0.0014185797447975
811 => 0.001464037847585
812 => 0.0015186527795513
813 => 0.0015064633625243
814 => 0.0014630168594213
815 => 0.0014649658378128
816 => 0.0014770136553344
817 => 0.0014614106369843
818 => 0.0014568090022657
819 => 0.001476381461387
820 => 0.0014765162461561
821 => 0.0014585630878565
822 => 0.0014386114377998
823 => 0.0014385278396576
824 => 0.0014349776362401
825 => 0.0014854586671511
826 => 0.0015132181299443
827 => 0.0015164007076169
828 => 0.0015130039171094
829 => 0.001514311206962
830 => 0.0014981585872006
831 => 0.0015350786860644
901 => 0.0015689602198012
902 => 0.0015598792449863
903 => 0.0015462655728023
904 => 0.0015354216271843
905 => 0.0015573247560243
906 => 0.0015563494441758
907 => 0.0015686642941616
908 => 0.0015681056214322
909 => 0.0015639646005669
910 => 0.0015598793928752
911 => 0.0015760767796019
912 => 0.0015714121923467
913 => 0.0015667403596991
914 => 0.0015573702841025
915 => 0.0015586438329966
916 => 0.0015450325114049
917 => 0.0015387352912249
918 => 0.0014440402088618
919 => 0.0014187345886032
920 => 0.00142669625188
921 => 0.0014293174381552
922 => 0.0014183043997886
923 => 0.0014340942677888
924 => 0.0014316334335866
925 => 0.0014412070999276
926 => 0.001435225888838
927 => 0.0014354713598274
928 => 0.0014530608263132
929 => 0.001458167123265
930 => 0.0014555700194224
1001 => 0.0014573889419302
1002 => 0.0014993052434033
1003 => 0.0014933460857417
1004 => 0.0014901804020044
1005 => 0.0014910573180343
1006 => 0.0015017678317563
1007 => 0.0015047661908261
1008 => 0.0014920619327565
1009 => 0.0014980533343046
1010 => 0.0015235639616743
1011 => 0.0015324912374772
1012 => 0.0015609828165048
1013 => 0.0015488790873364
1014 => 0.001571096006062
1015 => 0.0016393832399188
1016 => 0.0016939358074407
1017 => 0.0016437670118673
1018 => 0.0017439458548938
1019 => 0.0018219494539914
1020 => 0.0018189555459362
1021 => 0.0018053538141778
1022 => 0.0017165487904381
1023 => 0.0016348290835846
1024 => 0.0017031910883696
1025 => 0.0017033653571786
1026 => 0.0016974930003403
1027 => 0.0016610202963605
1028 => 0.001696223829301
1029 => 0.0016990181579053
1030 => 0.0016974540769588
1031 => 0.0016694905403323
1101 => 0.001626795388429
1102 => 0.0016351379189132
1103 => 0.0016488031540292
1104 => 0.0016229320130879
1105 => 0.0016146646159694
1106 => 0.0016300352801493
1107 => 0.001679562762742
1108 => 0.001670199879051
1109 => 0.0016699553763195
1110 => 0.00171001376323
1111 => 0.001681340603343
1112 => 0.0016352431449391
1113 => 0.0016236029287413
1114 => 0.0015822880030284
1115 => 0.001610824369377
1116 => 0.0016118513423996
1117 => 0.0015962222661851
1118 => 0.0016365113583371
1119 => 0.0016361400872602
1120 => 0.0016743885840186
1121 => 0.0017475053443413
1122 => 0.0017258811204566
1123 => 0.0017007345007876
1124 => 0.0017034686355858
1125 => 0.0017334553459018
1126 => 0.0017153246963147
1127 => 0.0017218446043176
1128 => 0.0017334454772402
1129 => 0.0017404445719078
1130 => 0.001702461573573
1201 => 0.0016936059197244
1202 => 0.0016754903598621
1203 => 0.001670764348437
1204 => 0.0016855190939513
1205 => 0.0016816317398011
1206 => 0.0016117650292937
1207 => 0.001604463569311
1208 => 0.0016046874946645
1209 => 0.0015863276263725
1210 => 0.0015583244203538
1211 => 0.0016319151737864
1212 => 0.0016260048063838
1213 => 0.0016194802181975
1214 => 0.0016202794430215
1215 => 0.0016522226948645
1216 => 0.0016336939956227
1217 => 0.0016829555793512
1218 => 0.0016728288786754
1219 => 0.0016624424663388
1220 => 0.001661006747776
1221 => 0.0016570088651534
1222 => 0.0016432986380941
1223 => 0.0016267427150631
1224 => 0.0016158110606285
1225 => 0.0014905002919803
1226 => 0.0015137572417422
1227 => 0.0015405122425056
1228 => 0.0015497479615552
1229 => 0.0015339496250286
1230 => 0.0016439224527122
1231 => 0.0016640155480545
]
'min_raw' => 0.00069354586336855
'max_raw' => 0.0018219494539914
'avg_raw' => 0.00125774765868
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000693'
'max' => '$0.001821'
'avg' => '$0.001257'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.6890335892279E-5
'max_diff' => -0.00032857014634304
'year' => 2027
]
2 => [
'items' => [
101 => 0.0016031522516224
102 => 0.001591767213892
103 => 0.0016446688538904
104 => 0.0016127626980089
105 => 0.0016271300380487
106 => 0.0015960757073975
107 => 0.0016591757097811
108 => 0.0016586949934843
109 => 0.0016341476673789
110 => 0.0016548948993104
111 => 0.001651289557198
112 => 0.0016235756864824
113 => 0.0016600542889151
114 => 0.0016600723818468
115 => 0.0016364461141752
116 => 0.0016088558059899
117 => 0.0016039233105403
118 => 0.0016002073378066
119 => 0.0016262161365495
120 => 0.0016495355441749
121 => 0.0016929271803944
122 => 0.0017038368686999
123 => 0.0017464181084551
124 => 0.0017210630534238
125 => 0.0017323026209162
126 => 0.0017445047613632
127 => 0.0017503549162123
128 => 0.0017408224028223
129 => 0.0018069685952996
130 => 0.0018125533606117
131 => 0.0018144258841128
201 => 0.0017921217601768
202 => 0.0018119330425771
203 => 0.0018026639996227
204 => 0.0018267794743758
205 => 0.001830561088739
206 => 0.0018273581959082
207 => 0.0018285585399958
208 => 0.0017721144337044
209 => 0.0017691875090268
210 => 0.0017292786833627
211 => 0.0017455418248119
212 => 0.0017151386613852
213 => 0.0017247798176951
214 => 0.0017290295475322
215 => 0.0017268097298353
216 => 0.0017464613184285
217 => 0.00172975345357
218 => 0.0016856586511812
219 => 0.0016415518351931
220 => 0.001640998110047
221 => 0.0016293855639472
222 => 0.001620991820061
223 => 0.0016226087529176
224 => 0.0016283070352039
225 => 0.0016206606255357
226 => 0.0016222923747212
227 => 0.001649390283489
228 => 0.0016548245758389
229 => 0.0016363567271187
301 => 0.0015622056496094
302 => 0.0015440087891947
303 => 0.0015570883316013
304 => 0.0015508371527614
305 => 0.0012516466201555
306 => 0.0013219369978354
307 => 0.0012801728422537
308 => 0.0012994196866221
309 => 0.0012567892985489
310 => 0.0012771347541875
311 => 0.0012733776914281
312 => 0.0013864025386938
313 => 0.0013846378111644
314 => 0.0013854824928454
315 => 0.0013451636354025
316 => 0.0014093926700854
317 => 0.0014410342021715
318 => 0.0014351781966945
319 => 0.0014366520271104
320 => 0.0014113267375317
321 => 0.0013857276970069
322 => 0.0013573344214008
323 => 0.001410085617962
324 => 0.0014042205853973
325 => 0.0014176728599285
326 => 0.0014518857816318
327 => 0.0014569237643148
328 => 0.0014636948641311
329 => 0.0014612679068467
330 => 0.0015190878755961
331 => 0.0015120854958721
401 => 0.0015289592162848
402 => 0.0014942486931837
403 => 0.0014549704415416
404 => 0.001462435953076
405 => 0.0014617169642813
406 => 0.001452563411709
407 => 0.0014442999937297
408 => 0.0014305437309977
409 => 0.0014740705818255
410 => 0.0014723034711713
411 => 0.0015009109386221
412 => 0.001495854290872
413 => 0.0014620847596257
414 => 0.0014632908450405
415 => 0.0014714023490806
416 => 0.0014994763571787
417 => 0.0015078106342064
418 => 0.0015039498650237
419 => 0.0015130880193104
420 => 0.001520310443866
421 => 0.0015139950446362
422 => 0.0016034077797329
423 => 0.0015662773782866
424 => 0.0015843744775998
425 => 0.0015886905291517
426 => 0.0015776350538583
427 => 0.0015800325905826
428 => 0.0015836642054301
429 => 0.0016057146596416
430 => 0.001663581431843
501 => 0.0016892102313385
502 => 0.0017663157391235
503 => 0.0016870821163105
504 => 0.0016823807210341
505 => 0.0016962697513494
506 => 0.0017415388468661
507 => 0.0017782251968725
508 => 0.0017903961756559
509 => 0.0017920047714231
510 => 0.0018148383367321
511 => 0.0018279261105465
512 => 0.0018120657413212
513 => 0.0017986257390527
514 => 0.0017504853191612
515 => 0.0017560577038457
516 => 0.0017944459084535
517 => 0.001848671508516
518 => 0.0018952027145817
519 => 0.0018789091079937
520 => 0.0020032178247662
521 => 0.0020155425262787
522 => 0.002013839651035
523 => 0.0020419171552418
524 => 0.0019861890272756
525 => 0.0019623641728884
526 => 0.0018015316200936
527 => 0.0018467190071544
528 => 0.0019124015280094
529 => 0.0019037082000774
530 => 0.0018560077977337
531 => 0.0018951665295491
601 => 0.0018822194282042
602 => 0.0018720075121977
603 => 0.0019187902791007
604 => 0.0018673507051607
605 => 0.0019118883789101
606 => 0.0018547683516433
607 => 0.0018789835358162
608 => 0.001865237826123
609 => 0.0018741329849053
610 => 0.0018221320684217
611 => 0.0018501905007054
612 => 0.0018209647453912
613 => 0.0018209508885779
614 => 0.0018203057284095
615 => 0.0018546896999298
616 => 0.0018558109600066
617 => 0.0018304011531018
618 => 0.001826739202951
619 => 0.0018402793519642
620 => 0.0018244273836404
621 => 0.001831844419848
622 => 0.0018246520381113
623 => 0.0018230328814876
624 => 0.0018101311660334
625 => 0.0018045727522757
626 => 0.0018067523495328
627 => 0.001799312260435
628 => 0.0017948293376337
629 => 0.0018194139622308
630 => 0.0018062793890495
701 => 0.0018174009005144
702 => 0.0018047265345535
703 => 0.0017607916601745
704 => 0.0017355242493163
705 => 0.0016525353443794
706 => 0.0016760708948721
707 => 0.001691674989198
708 => 0.0016865178361164
709 => 0.001697597396489
710 => 0.0016982775915115
711 => 0.0016946755134916
712 => 0.0016905047685993
713 => 0.0016884746806424
714 => 0.0017036052930533
715 => 0.0017123891228308
716 => 0.0016932410688195
717 => 0.0016887549476744
718 => 0.0017081146874728
719 => 0.0017199241175661
720 => 0.0018071183142295
721 => 0.0018006586865071
722 => 0.0018168710844524
723 => 0.0018150458172433
724 => 0.0018320389931274
725 => 0.001859815653846
726 => 0.0018033379361286
727 => 0.0018131405150718
728 => 0.0018107371490895
729 => 0.0018369764686875
730 => 0.0018370583849792
731 => 0.001821326602129
801 => 0.0018298550568311
802 => 0.0018250947073823
803 => 0.0018336973022361
804 => 0.0018005724142407
805 => 0.0018409149522084
806 => 0.0018637865716204
807 => 0.0018641041440781
808 => 0.001874945110159
809 => 0.0018859601595636
810 => 0.0019071025876871
811 => 0.0018853705087183
812 => 0.0018462766142287
813 => 0.0018490990671383
814 => 0.001826178331103
815 => 0.0018265636328167
816 => 0.0018245068620722
817 => 0.0018306793859029
818 => 0.0018019269361104
819 => 0.0018086750786071
820 => 0.0017992276395946
821 => 0.0018131199781844
822 => 0.0017981741183476
823 => 0.0018107359901137
824 => 0.0018161572775353
825 => 0.0018361619448329
826 => 0.0017952194127225
827 => 0.0017117348181835
828 => 0.0017292842921085
829 => 0.0017033272416921
830 => 0.0017057296655336
831 => 0.0017105829440363
901 => 0.001694851880515
902 => 0.0016978528716921
903 => 0.0016977456551696
904 => 0.0016968217211018
905 => 0.0016927294639174
906 => 0.0016867948813716
907 => 0.0017104364316658
908 => 0.0017144535917466
909 => 0.0017233832409855
910 => 0.0017499518200813
911 => 0.0017472969924994
912 => 0.0017516271264333
913 => 0.0017421744683683
914 => 0.0017061681472303
915 => 0.0017081234636998
916 => 0.0016837406359941
917 => 0.001722759717261
918 => 0.0017135194837903
919 => 0.0017075622451604
920 => 0.0017059367574069
921 => 0.0017325711948713
922 => 0.0017405406360044
923 => 0.0017355746150996
924 => 0.0017253891613418
925 => 0.0017449482436158
926 => 0.0017501814289008
927 => 0.0017513529460937
928 => 0.0017860078898011
929 => 0.0017532897724786
930 => 0.0017611653485082
1001 => 0.0018226083445092
1002 => 0.0017668880256902
1003 => 0.00179640432128
1004 => 0.0017949596522063
1005 => 0.001810059190253
1006 => 0.0017937210493639
1007 => 0.0017939235802013
1008 => 0.0018073309470556
1009 => 0.0017885027183402
1010 => 0.0017838405841283
1011 => 0.0017773998791053
1012 => 0.0017914629228944
1013 => 0.0017998930816292
1014 => 0.0018678339697622
1015 => 0.001911726881977
1016 => 0.0019098213748985
1017 => 0.0019272341426368
1018 => 0.001919389531288
1019 => 0.0018940572119389
1020 => 0.0019372963921206
1021 => 0.001923613706307
1022 => 0.001924741690301
1023 => 0.0019246997066804
1024 => 0.0019337974965853
1025 => 0.0019273508786375
1026 => 0.0019146439329305
1027 => 0.0019230793964991
1028 => 0.0019481297075644
1029 => 0.0020258866417486
1030 => 0.0020694004522603
1031 => 0.0020232670557182
1101 => 0.0020550892549022
1102 => 0.0020360072748007
1103 => 0.0020325395113765
1104 => 0.0020525262041061
1105 => 0.0020725478808955
1106 => 0.0020712725866402
1107 => 0.0020567378774155
1108 => 0.0020485275889791
1109 => 0.002110698643668
1110 => 0.0021565052177064
1111 => 0.0021533815164482
1112 => 0.00216716851792
1113 => 0.0022076475806573
1114 => 0.0022113484788539
1115 => 0.0022108822507453
1116 => 0.0022017091884163
1117 => 0.0022415660825517
1118 => 0.0022748154048548
1119 => 0.0021995858895224
1120 => 0.0022282323041343
1121 => 0.0022410926025834
1122 => 0.0022599753361854
1123 => 0.0022918336728854
1124 => 0.0023264402765481
1125 => 0.0023313340297481
1126 => 0.0023278616776651
1127 => 0.0023050376922741
1128 => 0.0023429046509445
1129 => 0.0023650862272441
1130 => 0.0023782948483142
1201 => 0.0024117897136431
1202 => 0.0022411720234085
1203 => 0.002120400342011
1204 => 0.0021015400999966
1205 => 0.0021398931437753
1206 => 0.00215000653556
1207 => 0.0021459298400127
1208 => 0.002009990332519
1209 => 0.002100824406623
1210 => 0.002198554232813
1211 => 0.0022023084334542
1212 => 0.0022512340278792
1213 => 0.0022671662069519
1214 => 0.0023065577232882
1215 => 0.0023040937732163
1216 => 0.0023136849805882
1217 => 0.00231148012811
1218 => 0.0023844446172608
1219 => 0.0024649352841256
1220 => 0.0024621481482767
1221 => 0.0024505766625925
1222 => 0.002467762292065
1223 => 0.0025508372861735
1224 => 0.0025431890719657
1225 => 0.0025506186605953
1226 => 0.0026485687605507
1227 => 0.0027759178237321
1228 => 0.0027167513982475
1229 => 0.0028451255168688
1230 => 0.0029259302197213
1231 => 0.0030656735979426
]
'min_raw' => 0.0012516466201555
'max_raw' => 0.0030656735979426
'avg_raw' => 0.002158660109049
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001251'
'max' => '$0.003065'
'avg' => '$0.002158'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00055810075678696
'max_diff' => 0.0012437241439512
'year' => 2028
]
3 => [
'items' => [
101 => 0.0030481770387386
102 => 0.0031025781103959
103 => 0.0030168545461215
104 => 0.0028200159149567
105 => 0.0027888654481069
106 => 0.0028512294715957
107 => 0.0030045453379505
108 => 0.0028464010093593
109 => 0.0028783934010657
110 => 0.002869179590102
111 => 0.002868688625272
112 => 0.0028874267559378
113 => 0.0028602461200918
114 => 0.0027495073199523
115 => 0.0028002582594684
116 => 0.0027806608844609
117 => 0.0028024056331128
118 => 0.0029197530733704
119 => 0.0028678709728189
120 => 0.0028132173944476
121 => 0.0028817651103252
122 => 0.0029690499081882
123 => 0.0029635877824038
124 => 0.0029529889753906
125 => 0.0030127338955885
126 => 0.0031114150001363
127 => 0.0031380881061628
128 => 0.0031577776477239
129 => 0.0031604925028476
130 => 0.0031884571978953
131 => 0.0030380839846136
201 => 0.0032767301359496
202 => 0.0033179377338185
203 => 0.0033101924132991
204 => 0.0033559929240495
205 => 0.0033425172519399
206 => 0.0033229931173213
207 => 0.0033955966689088
208 => 0.0033123625558182
209 => 0.0031942222111697
210 => 0.0031294080815445
211 => 0.0032147605558417
212 => 0.0032668823335042
213 => 0.0033013315129714
214 => 0.0033117558138634
215 => 0.003049757029103
216 => 0.0029085542152359
217 => 0.0029990636000312
218 => 0.0031094912961054
219 => 0.0030374705531863
220 => 0.0030402936299554
221 => 0.0029376109772709
222 => 0.0031185764324214
223 => 0.0030922112877651
224 => 0.0032289937048815
225 => 0.0031963494832892
226 => 0.0033078902345848
227 => 0.003278517816631
228 => 0.0034004410813674
301 => 0.0034490795726113
302 => 0.0035307511693866
303 => 0.0035908291284377
304 => 0.0036261080551007
305 => 0.0036239900406718
306 => 0.0037637827240022
307 => 0.0036813518626266
308 => 0.0035777992732765
309 => 0.0035759263336394
310 => 0.0036295576870154
311 => 0.0037419542906481
312 => 0.003771097094666
313 => 0.0037873839463776
314 => 0.0037624400660319
315 => 0.0036729672738818
316 => 0.0036343333758687
317 => 0.0036672505763076
318 => 0.0036269956687781
319 => 0.0036964869327062
320 => 0.0037919132806126
321 => 0.0037722081171266
322 => 0.0038380795242971
323 => 0.0039062495008444
324 => 0.0040037356290122
325 => 0.0040292221128162
326 => 0.0040713503013799
327 => 0.0041147140458011
328 => 0.0041286413118234
329 => 0.004155232784037
330 => 0.0041550926338525
331 => 0.0042352278251807
401 => 0.0043236194227959
402 => 0.0043569852046255
403 => 0.0044337079801426
404 => 0.0043023229157563
405 => 0.0044019799963362
406 => 0.0044918731775978
407 => 0.0043846988210368
408 => 0.0045324137031337
409 => 0.0045381491372764
410 => 0.0046247473834101
411 => 0.004536963470737
412 => 0.0044848376636079
413 => 0.0046353229156611
414 => 0.0047081379888886
415 => 0.0046862054962438
416 => 0.0045192981442758
417 => 0.0044221509064373
418 => 0.0041678978467113
419 => 0.0044690715788715
420 => 0.0046157645184486
421 => 0.0045189182450007
422 => 0.0045677618721165
423 => 0.0048342368640611
424 => 0.0049356932880156
425 => 0.004914591061067
426 => 0.0049181569900491
427 => 0.0049729010348506
428 => 0.0052156662775965
429 => 0.0050701957168889
430 => 0.005181402509872
501 => 0.0052403861918843
502 => 0.0052951735229336
503 => 0.0051606331535902
504 => 0.0049855981098651
505 => 0.004930157164046
506 => 0.0045092887917377
507 => 0.0044873807652204
508 => 0.004475083126055
509 => 0.0043975482506532
510 => 0.0043366270771772
511 => 0.0042881802981708
512 => 0.0041610414826254
513 => 0.0042039471006729
514 => 0.0040013143646266
515 => 0.0041309516082858
516 => 0.0038075448688173
517 => 0.0040768876115298
518 => 0.0039302966021832
519 => 0.0040287285224069
520 => 0.0040283851027101
521 => 0.0038471407297095
522 => 0.0037426027578363
523 => 0.0038092184221926
524 => 0.0038806357023406
525 => 0.003892222915768
526 => 0.0039848172836617
527 => 0.0040106583814315
528 => 0.0039323586487834
529 => 0.003800842982982
530 => 0.0038313910725947
531 => 0.0037419837017753
601 => 0.0035853007234192
602 => 0.0036978331738969
603 => 0.0037362567001926
604 => 0.0037532267183447
605 => 0.0035991470042932
606 => 0.0035507318129049
607 => 0.0035249559712525
608 => 0.0037809532267481
609 => 0.0037949773342853
610 => 0.0037232280173161
611 => 0.0040475417335662
612 => 0.0039741395512759
613 => 0.0040561477728655
614 => 0.0038286191536522
615 => 0.0038373110533141
616 => 0.0037295953586707
617 => 0.0037899089501057
618 => 0.0037472812476772
619 => 0.0037850362079483
620 => 0.0038076663754652
621 => 0.003915364395023
622 => 0.0040781173499154
623 => 0.0038992779023135
624 => 0.0038213549939653
625 => 0.0038696979280495
626 => 0.003998441532073
627 => 0.0041934946824324
628 => 0.0040780192916091
629 => 0.0041292653091572
630 => 0.0041404602842148
701 => 0.0040553130061531
702 => 0.0041966341840273
703 => 0.0042723693513413
704 => 0.0043500579618208
705 => 0.0044175128055147
706 => 0.0043190274223861
707 => 0.0044244208996588
708 => 0.0043394923614302
709 => 0.0042633026828883
710 => 0.0042634182311809
711 => 0.0042156233328779
712 => 0.0041230146948712
713 => 0.0041059362411513
714 => 0.004194780514173
715 => 0.0042660252075524
716 => 0.0042718932617382
717 => 0.0043113379846775
718 => 0.0043346809654001
719 => 0.0045634739097246
720 => 0.0046554963246064
721 => 0.0047680195916287
722 => 0.0048118537455977
723 => 0.0049437788336305
724 => 0.0048372386106122
725 => 0.0048141879631928
726 => 0.0044941808519926
727 => 0.0045465819985245
728 => 0.0046304812900806
729 => 0.0044955643204083
730 => 0.0045811380840597
731 => 0.0045980321577047
801 => 0.0044909798934054
802 => 0.0045481611332229
803 => 0.0043963047133237
804 => 0.0040814274048935
805 => 0.004196984732484
806 => 0.0042820738217665
807 => 0.0041606411999514
808 => 0.0043783044744636
809 => 0.0042511500829756
810 => 0.0042108482453611
811 => 0.0040536164081843
812 => 0.0041278237829233
813 => 0.0042281903198051
814 => 0.0041661754688744
815 => 0.0042948655961322
816 => 0.0044771251367326
817 => 0.0046070141391077
818 => 0.0046169854038719
819 => 0.004533475477232
820 => 0.0046673006676256
821 => 0.0046682754380373
822 => 0.0045173200765814
823 => 0.0044248607582125
824 => 0.0044038538065431
825 => 0.0044563332904689
826 => 0.004520053072202
827 => 0.0046205214082909
828 => 0.0046812323196267
829 => 0.004839534177811
830 => 0.0048823661217657
831 => 0.0049294254423379
901 => 0.0049923112071794
902 => 0.0050678216914508
903 => 0.0049026090506793
904 => 0.004909173256892
905 => 0.0047553295333303
906 => 0.0045909254512829
907 => 0.0047156876562988
908 => 0.0048787976429363
909 => 0.0048413800317811
910 => 0.0048371697861538
911 => 0.0048442502514743
912 => 0.0048160385946082
913 => 0.0046884383161758
914 => 0.004624358255167
915 => 0.0047070378824354
916 => 0.0047509784246817
917 => 0.0048191263736877
918 => 0.004810725700544
919 => 0.0049862674986281
920 => 0.0050544777332552
921 => 0.0050370266363571
922 => 0.0050402380581704
923 => 0.0051637294298172
924 => 0.0053010772330261
925 => 0.0054297215753701
926 => 0.0055605841258055
927 => 0.0054028242136034
928 => 0.0053227234594658
929 => 0.0054053669913954
930 => 0.0053615151700616
1001 => 0.0056135007427406
1002 => 0.0056309476770675
1003 => 0.0058829150283214
1004 => 0.0061220620483755
1005 => 0.0059718580898434
1006 => 0.0061134936574043
1007 => 0.0062666840714386
1008 => 0.0065622132343597
1009 => 0.0064626894091291
1010 => 0.0063864557187397
1011 => 0.0063144152496803
1012 => 0.0064643200296906
1013 => 0.0066571701343866
1014 => 0.0066987081998428
1015 => 0.0067660157346441
1016 => 0.0066952500917743
1017 => 0.0067804795140311
1018 => 0.0070813768263033
1019 => 0.0070000717164333
1020 => 0.0068846053899693
1021 => 0.0071221349195232
1022 => 0.0072080959328961
1023 => 0.0078114153428791
1024 => 0.0085731310198645
1025 => 0.0082577757278978
1026 => 0.0080620245217224
1027 => 0.0081080306984543
1028 => 0.0083861834779864
1029 => 0.0084755173226442
1030 => 0.0082326771376414
1031 => 0.0083184523963519
1101 => 0.008791082505084
1102 => 0.0090446333946294
1103 => 0.0087002772301991
1104 => 0.0077502122298994
1105 => 0.0068742089106157
1106 => 0.0071065644378333
1107 => 0.0070802225318783
1108 => 0.0075880046219041
1109 => 0.0069981326164523
1110 => 0.0070080645482131
1111 => 0.00752634703411
1112 => 0.007388078152484
1113 => 0.0071641002723901
1114 => 0.0068758441970091
1115 => 0.0063429761812076
1116 => 0.0058710001194882
1117 => 0.0067966538661153
1118 => 0.0067567379933687
1119 => 0.0066989338944306
1120 => 0.0068275706615605
1121 => 0.0074521942885603
1122 => 0.0074377946922486
1123 => 0.007346191807252
1124 => 0.0074156717881711
1125 => 0.0071519200958042
1126 => 0.0072198949124416
1127 => 0.0068740701472142
1128 => 0.0070303973840149
1129 => 0.007163619716453
1130 => 0.0071903660720803
1201 => 0.0072506269770113
1202 => 0.0067357041422225
1203 => 0.0069668893777025
1204 => 0.0071026890444199
1205 => 0.0064891412097566
1206 => 0.0070905611764353
1207 => 0.0067267404812687
1208 => 0.0066032542729257
1209 => 0.0067695121843887
1210 => 0.0067047213146004
1211 => 0.006649017929404
1212 => 0.0066179344833588
1213 => 0.0067400159443211
1214 => 0.0067343206982483
1215 => 0.0065345717331235
1216 => 0.0062740073509275
1217 => 0.0063614613103267
1218 => 0.0063296884669918
1219 => 0.0062145395839674
1220 => 0.0062921360279967
1221 => 0.0059504405591534
1222 => 0.0053625712647936
1223 => 0.0057509357275712
1224 => 0.0057359841182135
1225 => 0.0057284448387738
1226 => 0.0060202899989458
1227 => 0.0059922358208087
1228 => 0.0059413172127825
1229 => 0.0062136044238001
1230 => 0.0061142159289989
1231 => 0.0064205078511018
]
'min_raw' => 0.0027495073199523
'max_raw' => 0.0090446333946294
'avg_raw' => 0.0058970703572909
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002749'
'max' => '$0.009044'
'avg' => '$0.005897'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0014978606997968
'max_diff' => 0.0059789597966869
'year' => 2029
]
4 => [
'items' => [
101 => 0.0066222515207183
102 => 0.0065710828003795
103 => 0.0067608236967656
104 => 0.0063634760729191
105 => 0.0064954590147413
106 => 0.0065226605161303
107 => 0.0062102444418822
108 => 0.0059968258313038
109 => 0.0059825932431285
110 => 0.0056125547832817
111 => 0.0058102263416858
112 => 0.0059841691328765
113 => 0.005900864034402
114 => 0.005874492128894
115 => 0.0060092204747659
116 => 0.0060196900211104
117 => 0.0057809832549432
118 => 0.0058306179504895
119 => 0.0060376028819993
120 => 0.0058254024612841
121 => 0.0054131317065763
122 => 0.0053108828593197
123 => 0.0052972409782755
124 => 0.0050199339950571
125 => 0.0053177156162153
126 => 0.0051877259585284
127 => 0.0055983617296459
128 => 0.0053638087794674
129 => 0.0053536976705803
130 => 0.0053384132465201
131 => 0.0050997236706569
201 => 0.005151981518257
202 => 0.0053256945627749
203 => 0.0053876773340764
204 => 0.0053812120232198
205 => 0.0053248432740879
206 => 0.0053506485987858
207 => 0.0052675206567629
208 => 0.0052381664502761
209 => 0.0051455165000932
210 => 0.0050093466685264
211 => 0.0050282819187839
212 => 0.0047584938516754
213 => 0.0046114989939782
214 => 0.0045708127547287
215 => 0.0045164054152093
216 => 0.0045769582084998
217 => 0.0047577295759783
218 => 0.0045396809540143
219 => 0.0041658518859893
220 => 0.0041883196499513
221 => 0.004238798044835
222 => 0.0041447318899172
223 => 0.0040557061686615
224 => 0.0041331068104083
225 => 0.0039747105061846
226 => 0.0042579394814532
227 => 0.0042502789314122
228 => 0.00435584917863
301 => 0.0044218644207348
302 => 0.0042697206603716
303 => 0.0042314569160807
304 => 0.004253253683819
305 => 0.003893001666005
306 => 0.0043264089030291
307 => 0.0043301570268125
308 => 0.004298063315427
309 => 0.0045288392891951
310 => 0.005015848574677
311 => 0.0048326160915756
312 => 0.0047616629358876
313 => 0.0046267809350583
314 => 0.0048065031926626
315 => 0.0047927033273826
316 => 0.0047302951031427
317 => 0.0046925504143969
318 => 0.0047620961607264
319 => 0.004683932926798
320 => 0.0046698926622024
321 => 0.0045848239347119
322 => 0.0045544582693782
323 => 0.0045319767396572
324 => 0.0045072267844238
325 => 0.0045618190183641
326 => 0.0044381058340488
327 => 0.0042889198615177
328 => 0.0042765166621163
329 => 0.0043107629861639
330 => 0.0042956115371118
331 => 0.0042764441228074
401 => 0.0042398483089656
402 => 0.0042289911127446
403 => 0.0042642717333001
404 => 0.0042244419696809
405 => 0.0042832129555405
406 => 0.0042672304993337
407 => 0.0041779537981699
408 => 0.0040666819740517
409 => 0.0040656914214165
410 => 0.0040417180894326
411 => 0.0040111844467365
412 => 0.0040026906858535
413 => 0.0041265883442483
414 => 0.0043830527891807
415 => 0.0043327026819664
416 => 0.0043690857945153
417 => 0.0045480546985655
418 => 0.0046049435313804
419 => 0.0045645651853343
420 => 0.0045092928148384
421 => 0.0045117245186282
422 => 0.004700606940697
423 => 0.0047123873056736
424 => 0.0047421524874795
425 => 0.0047804091577395
426 => 0.0045710804617061
427 => 0.0045018651558696
428 => 0.0044690671040453
429 => 0.00436806179887
430 => 0.0044769873609612
501 => 0.0044135211005883
502 => 0.0044220848674288
503 => 0.0044165077030394
504 => 0.0044195532119222
505 => 0.0042578603131823
506 => 0.0043167727071546
507 => 0.004218819425929
508 => 0.0040876709781398
509 => 0.0040872313225563
510 => 0.0041193297193548
511 => 0.0041002363369286
512 => 0.0040488565357556
513 => 0.0040561547940064
514 => 0.0039922143721411
515 => 0.0040639183188995
516 => 0.0040659745315235
517 => 0.0040383646062811
518 => 0.0041488344295004
519 => 0.0041940940062081
520 => 0.0041759205619517
521 => 0.0041928189089124
522 => 0.0043347949562383
523 => 0.0043579432468016
524 => 0.0043682241883796
525 => 0.0043544490886288
526 => 0.0041954139704284
527 => 0.0042024678541902
528 => 0.004150711135472
529 => 0.0041069821621438
530 => 0.0041087310917487
531 => 0.004131213468408
601 => 0.0042293953258532
602 => 0.0044360132567099
603 => 0.0044438542561501
604 => 0.0044533577762098
605 => 0.0044147021840405
606 => 0.0044030432875581
607 => 0.004418424381435
608 => 0.00449601921281
609 => 0.004695614185898
610 => 0.0046250639919087
611 => 0.0045677055860162
612 => 0.0046180243716991
613 => 0.0046102781890549
614 => 0.0045448926120551
615 => 0.0045430574566821
616 => 0.0044175616293861
617 => 0.0043711686794365
618 => 0.0043323992580064
619 => 0.0042900640619062
620 => 0.0042649663385694
621 => 0.004303527848326
622 => 0.0043123473218537
623 => 0.004228031906831
624 => 0.0042165400273196
625 => 0.0042853938153018
626 => 0.0042550938303388
627 => 0.0042862581162767
628 => 0.0042934884979366
629 => 0.0042923242399595
630 => 0.004260687575727
701 => 0.0042808518420899
702 => 0.0042331573408846
703 => 0.0041812967343062
704 => 0.0041482128983392
705 => 0.0041193428635239
706 => 0.0041353616367757
707 => 0.0040782576350455
708 => 0.0040599889156155
709 => 0.0042740206423565
710 => 0.0044321281801289
711 => 0.0044298292339122
712 => 0.0044158349900592
713 => 0.0043950423823224
714 => 0.0044944981040449
715 => 0.0044598497192767
716 => 0.004485059314165
717 => 0.0044914762141075
718 => 0.0045108982375866
719 => 0.0045178399416011
720 => 0.0044968572907459
721 => 0.0044264369516611
722 => 0.0042509561620266
723 => 0.0041692693807504
724 => 0.0041423113823283
725 => 0.0041432912543704
726 => 0.0041162620091074
727 => 0.0041242233332032
728 => 0.0041134933854864
729 => 0.0040931734603639
730 => 0.0041341069386594
731 => 0.0041388241407113
801 => 0.0041292697777584
802 => 0.0041315201761068
803 => 0.0040524141315793
804 => 0.0040584283923354
805 => 0.00402494022419
806 => 0.0040186615963686
807 => 0.0039340064234453
808 => 0.0037840275136481
809 => 0.0038671303884808
810 => 0.0037667538017155
811 => 0.0037287396673539
812 => 0.0039086926670105
813 => 0.0038906303769643
814 => 0.0038597155878938
815 => 0.0038139861716521
816 => 0.0037970246863408
817 => 0.0036939720709435
818 => 0.0036878831726615
819 => 0.0037389588315071
820 => 0.0037153891723559
821 => 0.0036822884443798
822 => 0.0035624009630172
823 => 0.0034276077405846
824 => 0.0034316763006898
825 => 0.0034745515168286
826 => 0.0035992169902626
827 => 0.0035505080330574
828 => 0.0035151691257341
829 => 0.003508551210676
830 => 0.0035913882731706
831 => 0.0037086200715014
901 => 0.0037636226083646
902 => 0.0037091167647851
903 => 0.0036465033864839
904 => 0.0036503143726987
905 => 0.0036756671566334
906 => 0.0036783313757559
907 => 0.0036375765032411
908 => 0.003649048761131
909 => 0.003631621352351
910 => 0.0035246693768368
911 => 0.0035227349547482
912 => 0.0034964872151234
913 => 0.0034956924439991
914 => 0.0034510384910919
915 => 0.0034447910944019
916 => 0.0033561279606035
917 => 0.0034144863037663
918 => 0.0033753425911232
919 => 0.0033163437831017
920 => 0.0033061723663608
921 => 0.0033058666012912
922 => 0.0033664451852372
923 => 0.0034137784077423
924 => 0.0033760235127635
925 => 0.0033674274550247
926 => 0.003459210862554
927 => 0.0034475305873216
928 => 0.0034374155443
929 => 0.0036981232497705
930 => 0.0034917527576147
1001 => 0.0034017634438188
1002 => 0.0032903845794893
1003 => 0.003326650099336
1004 => 0.003334291777219
1005 => 0.0030664456860557
1006 => 0.0029577805602289
1007 => 0.002920490784004
1008 => 0.0028990299905865
1009 => 0.0029088099436345
1010 => 0.0028109985852424
1011 => 0.0028767294357325
1012 => 0.0027920330671532
1013 => 0.002777833445335
1014 => 0.0029292810442215
1015 => 0.0029503540928625
1016 => 0.0028604499204769
1017 => 0.0029181829533119
1018 => 0.0028972481530567
1019 => 0.0027934849432991
1020 => 0.0027895219519169
1021 => 0.0027374572207137
1022 => 0.0026559859980993
1023 => 0.0026187514631997
1024 => 0.002599359394139
1025 => 0.0026073609397773
1026 => 0.0026033151134513
1027 => 0.0025769133599712
1028 => 0.002604828431056
1029 => 0.0025335169597381
1030 => 0.0025051201572637
1031 => 0.0024922939803869
1101 => 0.0024290009450571
1102 => 0.0025297283108073
1103 => 0.00254957287079
1104 => 0.0025694565306862
1105 => 0.0027425302149313
1106 => 0.0027338839427675
1107 => 0.0028120420322223
1108 => 0.0028090049525896
1109 => 0.0027867129994
1110 => 0.0026926669157413
1111 => 0.0027301520084774
1112 => 0.0026147787195126
1113 => 0.0027012242322261
1114 => 0.0026617741102746
1115 => 0.002687886106311
1116 => 0.0026409343830137
1117 => 0.0026669194052756
1118 => 0.0025542787521466
1119 => 0.0024490964951514
1120 => 0.0024914249058278
1121 => 0.0025374407290739
1122 => 0.0026372147584851
1123 => 0.0025777901696856
1124 => 0.0025991614989104
1125 => 0.0025275711235247
1126 => 0.0023798597303244
1127 => 0.0023806957607685
1128 => 0.0023579735809922
1129 => 0.002338338300173
1130 => 0.0025846157985517
1201 => 0.0025539872985572
1202 => 0.0025051847923749
1203 => 0.0025705088862344
1204 => 0.0025877816134836
1205 => 0.0025882733437458
1206 => 0.0026359321163668
1207 => 0.0026613676118579
1208 => 0.002665850728182
1209 => 0.002740842836637
1210 => 0.0027659792022213
1211 => 0.0028695123346314
1212 => 0.0026592095877734
1213 => 0.0026548785410954
1214 => 0.002571428130198
1215 => 0.0025185025603081
1216 => 0.0025750519892482
1217 => 0.0026251470635223
1218 => 0.0025729847237952
1219 => 0.0025797960241565
1220 => 0.0025097723448926
1221 => 0.0025348025153091
1222 => 0.0025563618699998
1223 => 0.0025444580615399
1224 => 0.0025266374841245
1225 => 0.0026210398387085
1226 => 0.0026157132878971
1227 => 0.0027036229307864
1228 => 0.0027721547838975
1229 => 0.0028949761162068
1230 => 0.0027668056531212
1231 => 0.0027621346120149
]
'min_raw' => 0.002338338300173
'max_raw' => 0.0067608236967656
'avg_raw' => 0.0045495809984693
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002338'
'max' => '$0.00676'
'avg' => '$0.004549'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00041116901977934
'max_diff' => -0.0022838096978639
'year' => 2030
]
5 => [
'items' => [
101 => 0.0028077947880875
102 => 0.0027659722118862
103 => 0.0027924026363791
104 => 0.0028907177662082
105 => 0.0028927950099785
106 => 0.002857998500448
107 => 0.0028558811296807
108 => 0.0028625641799682
109 => 0.002901707014243
110 => 0.0028880293052096
111 => 0.0029038574963803
112 => 0.0029236508918092
113 => 0.0030055247675286
114 => 0.0030252642817819
115 => 0.0029773074959112
116 => 0.0029816374567259
117 => 0.0029637003023671
118 => 0.0029463732360083
119 => 0.002985321950768
120 => 0.0030565014925302
121 => 0.0030560586882951
122 => 0.0030725709584514
123 => 0.0030828579659637
124 => 0.0030386985991711
125 => 0.003009952475174
126 => 0.0030209755682779
127 => 0.0030386017342027
128 => 0.003015259640228
129 => 0.0028711814231063
130 => 0.0029148855504289
131 => 0.0029076110466198
201 => 0.0028972512685857
202 => 0.0029411961065626
203 => 0.0029369575197356
204 => 0.0028099953883878
205 => 0.0028181230921091
206 => 0.0028104896609709
207 => 0.0028351548386314
208 => 0.0027646402113484
209 => 0.0027863300357774
210 => 0.0027999336903298
211 => 0.0028079463473693
212 => 0.0028368935589266
213 => 0.0028334969377578
214 => 0.0028366824201857
215 => 0.0028796034931446
216 => 0.0030966835514371
217 => 0.0031084987400498
218 => 0.0030503164301186
219 => 0.0030735591153408
220 => 0.0030289382423306
221 => 0.0030588925333162
222 => 0.003079386498452
223 => 0.0029867782107661
224 => 0.0029812945489922
225 => 0.0029364895097666
226 => 0.0029605651999593
227 => 0.0029222590457594
228 => 0.0029316580361076
301 => 0.0029053776397046
302 => 0.0029526771208553
303 => 0.0030055652903781
304 => 0.0030189269306167
305 => 0.0029837782076968
306 => 0.0029583282158891
307 => 0.0029136464140233
308 => 0.0029879532463251
309 => 0.0030096828285498
310 => 0.0029878391100802
311 => 0.0029827774432161
312 => 0.0029731855936549
313 => 0.0029848123994441
314 => 0.0030095644845783
315 => 0.0029978918583283
316 => 0.0030056018336116
317 => 0.0029762193583235
318 => 0.003038713217759
319 => 0.0031379685065089
320 => 0.0031382876284921
321 => 0.0031266149393222
322 => 0.0031218387264055
323 => 0.0031338156138518
324 => 0.0031403125839737
325 => 0.0031790436417894
326 => 0.0032206036099391
327 => 0.0034145458472588
328 => 0.0033600876430918
329 => 0.0035321647337172
330 => 0.0036682553709882
331 => 0.0037090630025834
401 => 0.0036715219016632
402 => 0.0035430958233457
403 => 0.0035367946272545
404 => 0.0037287174083526
405 => 0.0036744904320721
406 => 0.0036680403057924
407 => 0.0035994218598361
408 => 0.0036399838599561
409 => 0.0036311123555212
410 => 0.0036171082517619
411 => 0.0036944977224174
412 => 0.0038393639028789
413 => 0.0038167851501076
414 => 0.0037999311585619
415 => 0.0037260818737322
416 => 0.0037705556380346
417 => 0.0037547193824054
418 => 0.0038227619865248
419 => 0.0037824550551727
420 => 0.0036740796093931
421 => 0.0036913387563436
422 => 0.0036887300710026
423 => 0.0037424166304668
424 => 0.003726301257898
425 => 0.0036855832858661
426 => 0.0038388687660231
427 => 0.0038289152595603
428 => 0.0038430270560361
429 => 0.0038492395052666
430 => 0.003942541675845
501 => 0.0039807645897945
502 => 0.0039894418604474
503 => 0.0040257506724332
504 => 0.0039885384641286
505 => 0.0041374138292017
506 => 0.004236407259857
507 => 0.0043513932237184
508 => 0.0045194186222334
509 => 0.0045825977263969
510 => 0.004571184986724
511 => 0.0046985799262306
512 => 0.0049275058006937
513 => 0.0046174574511942
514 => 0.0049439391160734
515 => 0.0048405787903847
516 => 0.0045955133175497
517 => 0.0045797339902313
518 => 0.0047456951737038
519 => 0.0051137811054739
520 => 0.0050215797543616
521 => 0.0051139319138541
522 => 0.0050061982142323
523 => 0.0050008483279951
524 => 0.0051086995285296
525 => 0.0053606997372411
526 => 0.0052409838841688
527 => 0.0050693418532582
528 => 0.0051960796578368
529 => 0.0050862876424807
530 => 0.0048388955030333
531 => 0.005021509249726
601 => 0.0048994006378527
602 => 0.0049350384224482
603 => 0.0051916925623207
604 => 0.0051608112571886
605 => 0.0052007745255614
606 => 0.0051302404029043
607 => 0.0050643504101323
608 => 0.0049413618455682
609 => 0.0049049509948638
610 => 0.0049150136440733
611 => 0.0049049460083146
612 => 0.0048361350367642
613 => 0.0048212753140095
614 => 0.0047965084583989
615 => 0.0048041847425706
616 => 0.0047576158082234
617 => 0.0048455010089693
618 => 0.0048618132766695
619 => 0.0049257687967548
620 => 0.0049324088710144
621 => 0.0051105240841022
622 => 0.005012421217838
623 => 0.005078237090322
624 => 0.005072349899204
625 => 0.0046008246294496
626 => 0.004665796651319
627 => 0.0047668727280043
628 => 0.004721338092463
629 => 0.0046569627712713
630 => 0.0046049762478227
701 => 0.0045262113489031
702 => 0.0046370714315865
703 => 0.0047828406516598
704 => 0.0049361058189913
705 => 0.0051202438752085
706 => 0.0050791464046641
707 => 0.0049326634861141
708 => 0.0049392346028344
709 => 0.0049798546607602
710 => 0.0049272479950248
711 => 0.0049117332622953
712 => 0.0049777231747281
713 => 0.0049781776109876
714 => 0.0049176472843311
715 => 0.0048503789031852
716 => 0.004850097046212
717 => 0.0048381272875226
718 => 0.0050083276077122
719 => 0.0051019205746231
720 => 0.0051126508574469
721 => 0.0051011983410947
722 => 0.0051056059601045
723 => 0.0050511462748393
724 => 0.0051756249658376
725 => 0.0052898589223642
726 => 0.0052592417817625
727 => 0.0052133423355176
728 => 0.0051767812157667
729 => 0.0052506291438783
730 => 0.0052473408118869
731 => 0.0052888611884094
801 => 0.005286977584297
802 => 0.0052730158433329
803 => 0.0052592422803803
804 => 0.0053138529005945
805 => 0.0052981259189925
806 => 0.0052823745090442
807 => 0.0052507826449727
808 => 0.0052550765039853
809 => 0.0052091849829269
810 => 0.0051879534654322
811 => 0.0048686823838452
812 => 0.0047833627183616
813 => 0.0048102060219647
814 => 0.0048190435344969
815 => 0.0047819123067383
816 => 0.0048351489491143
817 => 0.0048268520747916
818 => 0.0048591303592722
819 => 0.0048389642884889
820 => 0.0048397919110681
821 => 0.0048990960253822
822 => 0.0049163122620654
823 => 0.0049075559451362
824 => 0.0049136885693644
825 => 0.0050550123062836
826 => 0.0050349205901724
827 => 0.0050242472664311
828 => 0.0050272038500503
829 => 0.0050633150948482
830 => 0.0050734242717908
831 => 0.0050305909787259
901 => 0.0050507914073516
902 => 0.0051368022686238
903 => 0.0051669012022759
904 => 0.0052629625501858
905 => 0.0052221539822394
906 => 0.0052970598748584
907 => 0.0055272950514688
908 => 0.0057112228416077
909 => 0.0055420752446586
910 => 0.0058798352081857
911 => 0.0061428297885807
912 => 0.0061327356185447
913 => 0.0060868764302786
914 => 0.0057874640925716
915 => 0.0055119403954272
916 => 0.0057424276674426
917 => 0.0057430152268991
918 => 0.005723216165824
919 => 0.0056002458979132
920 => 0.0057189370670542
921 => 0.0057283583410376
922 => 0.0057230849329258
923 => 0.0056288039168377
924 => 0.0054848542313155
925 => 0.0055129816552997
926 => 0.0055590549495697
927 => 0.0054718285916205
928 => 0.0054439544850244
929 => 0.0054957777524524
930 => 0.005662763117912
1001 => 0.0056311955018522
1002 => 0.0056303711438222
1003 => 0.0057654307920785
1004 => 0.0056687572316233
1005 => 0.0055133364321926
1006 => 0.0054740906305879
1007 => 0.0053347944740309
1008 => 0.0054310068255207
1009 => 0.0054344693367673
1010 => 0.0053817748151227
1011 => 0.005517612302208
1012 => 0.0055163605358508
1013 => 0.0056453180130965
1014 => 0.0058918362753738
1015 => 0.0058189286947914
1016 => 0.0057341451108964
1017 => 0.0057433634372596
1018 => 0.0058444657246954
1019 => 0.005783336973771
1020 => 0.0058053192988082
1021 => 0.0058444324518137
1022 => 0.0058680303881469
1023 => 0.0057399680573729
1024 => 0.0057101106021401
1025 => 0.0056490327272765
1026 => 0.0056330986497972
1027 => 0.0056828453044418
1028 => 0.0056697388185182
1029 => 0.0054341783261045
1030 => 0.0054095609440011
1031 => 0.0054103159239646
1101 => 0.0053484143461728
1102 => 0.0052539995819594
1103 => 0.0055021159450997
1104 => 0.0054821887287533
1105 => 0.0054601906241508
1106 => 0.0054628852664452
1107 => 0.0055705841702406
1108 => 0.0055081133671142
1109 => 0.005674202235989
1110 => 0.0056400593576367
1111 => 0.0056050408432876
1112 => 0.0056002002179145
1113 => 0.0055867210775294
1114 => 0.0055404960897814
1115 => 0.0054846766393847
1116 => 0.0054478198032348
1117 => 0.0050253257978189
1118 => 0.0051037382276895
1119 => 0.0051939445807378
1120 => 0.0052250834523308
1121 => 0.0051718182577266
1122 => 0.0055425993243196
1123 => 0.0056103445981214
1124 => 0.0054051397448609
1125 => 0.0053667542952748
1126 => 0.005545115868004
1127 => 0.0054375420358328
1128 => 0.0054859825258727
1129 => 0.0053812806819379
1130 => 0.0055940267454757
1201 => 0.0055924059769187
1202 => 0.0055096429531147
1203 => 0.0055795936940971
1204 => 0.0055674380314482
1205 => 0.0054739987814099
1206 => 0.0055969889363665
1207 => 0.0055970499379489
1208 => 0.0055173923269609
1209 => 0.0054243696766202
1210 => 0.0054077394238362
1211 => 0.0053952107623236
1212 => 0.0054829012431615
1213 => 0.0055615242540797
1214 => 0.0057078221851011
1215 => 0.005744604960913
1216 => 0.0058881705836749
1217 => 0.0058026842454035
1218 => 0.0058405792319258
1219 => 0.0058817196003689
1220 => 0.0059014438058874
1221 => 0.0058693042714542
1222 => 0.0060923207775712
1223 => 0.0061111502037367
1224 => 0.0061174635474561
1225 => 0.0060422636363816
1226 => 0.0061090587581741
1227 => 0.0060778075327093
1228 => 0.0061591145395281
1229 => 0.0061718645163773
1230 => 0.0061610657395796
1231 => 0.0061651127834762
]
'min_raw' => 0.0027646402113484
'max_raw' => 0.0061718645163773
'avg_raw' => 0.0044682523638628
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002764'
'max' => '$0.006171'
'avg' => '$0.004468'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00042630191117541
'max_diff' => -0.00058895918038828
'year' => 2031
]
6 => [
'items' => [
101 => 0.005974807538313
102 => 0.0059649392074111
103 => 0.0058303838153394
104 => 0.0058852161321919
105 => 0.0057827097440176
106 => 0.0058152155756404
107 => 0.0058295438364929
108 => 0.0058220595661452
109 => 0.005888316269117
110 => 0.0058319845362408
111 => 0.0056833158313863
112 => 0.0055346066218426
113 => 0.0055327396988527
114 => 0.0054935871889154
115 => 0.0054652870953706
116 => 0.0054707386973871
117 => 0.0054899508539568
118 => 0.005464170449905
119 => 0.0054696720062091
120 => 0.0055610344975353
121 => 0.0055793565936033
122 => 0.0055170909522592
123 => 0.0052670854173734
124 => 0.0052057334320211
125 => 0.0052498320224296
126 => 0.0052287557365273
127 => 0.0042200139670307
128 => 0.0044570028828958
129 => 0.0043161921164719
130 => 0.0043810841960319
131 => 0.0042373528662843
201 => 0.0043059489904443
202 => 0.0042932817910413
203 => 0.0046743529547405
204 => 0.0046684030526656
205 => 0.004671250955927
206 => 0.0045353131130855
207 => 0.0047518657878467
208 => 0.0048585474224163
209 => 0.0048388034910973
210 => 0.004843772613244
211 => 0.0047583866312742
212 => 0.004672077678877
213 => 0.004576347767816
214 => 0.0047542021099927
215 => 0.0047344277432175
216 => 0.0047797830260072
217 => 0.0048951342801998
218 => 0.0049121201905564
219 => 0.0049349494263299
220 => 0.0049267667704008
221 => 0.005121710831901
222 => 0.005098101819771
223 => 0.0051549927462279
224 => 0.005037963794181
225 => 0.0049055344264498
226 => 0.0049307049198133
227 => 0.004928280798894
228 => 0.0048974189573158
229 => 0.0048695582666651
301 => 0.0048231780664326
302 => 0.0049699318829462
303 => 0.0049639739459997
304 => 0.0050604260198197
305 => 0.0050433771788866
306 => 0.004929520846576
307 => 0.0049335872477585
308 => 0.0049609357499566
309 => 0.005055589228324
310 => 0.0050836888252037
311 => 0.0050706719723537
312 => 0.0051014818975369
313 => 0.0051258328061799
314 => 0.0051045399967493
315 => 0.0054060012757256
316 => 0.0052808135348876
317 => 0.0053418291687214
318 => 0.0053563810378657
319 => 0.0053191067310453
320 => 0.0053271901935018
321 => 0.0053394344365117
322 => 0.0054137790823993
323 => 0.0056088809450051
324 => 0.0056952902318499
325 => 0.0059552568346815
326 => 0.0056881151434528
327 => 0.0056722640610375
328 => 0.0057190918964467
329 => 0.0058717198125686
330 => 0.0059954104029741
331 => 0.006036445707693
401 => 0.0060418692006306
402 => 0.0061188541602587
403 => 0.006162980503433
404 => 0.0061095061612544
405 => 0.006064192255255
406 => 0.0059018834685343
407 => 0.0059206711525494
408 => 0.0060500996645635
409 => 0.0062329250610847
410 => 0.0063898082710403
411 => 0.0063348732388457
412 => 0.0067539887564016
413 => 0.0067955423480339
414 => 0.0067898009852588
415 => 0.0068844662510008
416 => 0.0066965749767491
417 => 0.0066162478167846
418 => 0.0060739896360668
419 => 0.0062263420664247
420 => 0.0064477952712945
421 => 0.0064184851092231
422 => 0.0062576598723855
423 => 0.0063896862706766
424 => 0.0063460342145544
425 => 0.0063116040267653
426 => 0.0064693353916474
427 => 0.0062959032767122
428 => 0.0064460651532794
429 => 0.0062534809933562
430 => 0.0063351241774454
501 => 0.0062887795575199
502 => 0.0063187702063947
503 => 0.0061434454858824
504 => 0.0062380464493038
505 => 0.0061395097747849
506 => 0.0061394630555714
507 => 0.00613728785302
508 => 0.0062532158136129
509 => 0.0062569962202459
510 => 0.0061713252822103
511 => 0.0061589787616078
512 => 0.0062046303193486
513 => 0.006151184301396
514 => 0.0061761913568108
515 => 0.0061519417396294
516 => 0.0061464826400268
517 => 0.006102983605604
518 => 0.0060842430255437
519 => 0.0060915916898706
520 => 0.0060665069100268
521 => 0.0060513924228149
522 => 0.0061342812010874
523 => 0.0060899970705801
524 => 0.0061274940229633
525 => 0.00608476151323
526 => 0.0059366320168263
527 => 0.0058514411770035
528 => 0.0055716382899084
529 => 0.0056509900415942
530 => 0.0057036003350572
531 => 0.0056862126333815
601 => 0.0057235681447281
602 => 0.0057258614697359
603 => 0.0057137168122028
604 => 0.0056996548546063
605 => 0.0056928102713234
606 => 0.0057438241874523
607 => 0.0057734394828146
608 => 0.0057088804818411
609 => 0.0056937552111894
610 => 0.0057590279255738
611 => 0.0057988442436414
612 => 0.0060928255653964
613 => 0.0060710464795337
614 => 0.0061257077111195
615 => 0.0061195536952879
616 => 0.0061768473742069
617 => 0.0062704983251241
618 => 0.0060800797566916
619 => 0.0061131298359928
620 => 0.006105026719786
621 => 0.0061934944177813
622 => 0.0061937706042779
623 => 0.0061407298000404
624 => 0.0061694840805063
625 => 0.0061534342299827
626 => 0.0061824384791463
627 => 0.0060707556065639
628 => 0.0062067732899482
629 => 0.0062838865516411
630 => 0.0062849572693546
701 => 0.0063215083433883
702 => 0.0063586463515021
703 => 0.0064299295240377
704 => 0.0063566583025091
705 => 0.0062248505077889
706 => 0.0062343666048311
707 => 0.0061570877430132
708 => 0.0061583868146419
709 => 0.0061514522684777
710 => 0.0061722633635248
711 => 0.0060753224716173
712 => 0.0060980743051853
713 => 0.0060662216049556
714 => 0.0061130605944433
715 => 0.0060626695845168
716 => 0.006105022812218
717 => 0.0061233010612621
718 => 0.0061907481937373
719 => 0.0060527075882107
720 => 0.0057712334490144
721 => 0.0058304027256175
722 => 0.0057428867178752
723 => 0.0057509866575887
724 => 0.0057673498249058
725 => 0.0057143114459358
726 => 0.0057244294972119
727 => 0.0057240680092207
728 => 0.005720952901004
729 => 0.0057071555701946
730 => 0.0056871467108021
731 => 0.0057668558482194
801 => 0.0057803999839011
802 => 0.0058105069197581
803 => 0.0059000847391387
804 => 0.0058911338025921
805 => 0.0059057331514704
806 => 0.005873862854841
807 => 0.0057524650292431
808 => 0.0057590575152356
809 => 0.0056768491092714
810 => 0.0058084046659879
811 => 0.0057772505737089
812 => 0.0057571653277473
813 => 0.0057516848822982
814 => 0.0058414847477667
815 => 0.0058683542749553
816 => 0.0058516109887583
817 => 0.0058172700202884
818 => 0.0058832148317465
819 => 0.0059008588813044
820 => 0.005904808733313
821 => 0.0060216502955532
822 => 0.0059113388786943
823 => 0.0059378919331335
824 => 0.0061450512839638
825 => 0.005957186338797
826 => 0.0060567025901401
827 => 0.0060518317874944
828 => 0.0061027409342352
829 => 0.006047655751535
830 => 0.0060483385983936
831 => 0.0060935424718151
901 => 0.0060300617841561
902 => 0.0060143430731608
903 => 0.0059926277865004
904 => 0.0060400423204856
905 => 0.0060684651892348
906 => 0.0062975326370566
907 => 0.0064455206550942
908 => 0.0064390961049405
909 => 0.0064978044670909
910 => 0.0064713558122352
911 => 0.0063859461289035
912 => 0.0065317300437494
913 => 0.0064855979132341
914 => 0.0064894009900232
915 => 0.0064892594393152
916 => 0.006519933273167
917 => 0.0064981980506674
918 => 0.0064553556960459
919 => 0.0064837964504126
920 => 0.0065682553231262
921 => 0.0068304182555437
922 => 0.0069771281057215
923 => 0.0068215861383487
924 => 0.0069288769046525
925 => 0.0068645406764792
926 => 0.0068528488699831
927 => 0.0069202353999472
928 => 0.0069877398811115
929 => 0.0069834401374913
930 => 0.0069344353505594
1001 => 0.0069067537898721
1002 => 0.0071163678413999
1003 => 0.0072708079038835
1004 => 0.0072602761270014
1005 => 0.0073067599650415
1006 => 0.0074432379512182
1007 => 0.0074557157878764
1008 => 0.0074541438672572
1009 => 0.0074232162471723
1010 => 0.0075575965484693
1011 => 0.0076696989600077
1012 => 0.0074160573967075
1013 => 0.0075126407836003
1014 => 0.0075560001776989
1015 => 0.0076196646323881
1016 => 0.0077270772388504
1017 => 0.0078437558192552
1018 => 0.0078602554498399
1019 => 0.00784854817236
1020 => 0.0077715955120945
1021 => 0.0078992666070384
1022 => 0.0079740533402009
1023 => 0.0080185871283352
1024 => 0.0081315174053281
1025 => 0.0075562679505556
1026 => 0.0071490777947145
1027 => 0.0070854891719828
1028 => 0.0072147991368068
1029 => 0.0072488971433033
1030 => 0.0072351522796398
1031 => 0.0067768227391315
1101 => 0.0070830761618055
1102 => 0.0074125790940837
1103 => 0.0074252366436554
1104 => 0.0075901927011353
1105 => 0.007643909155228
1106 => 0.007776720402784
1107 => 0.0077684130230887
1108 => 0.0078007504483801
1109 => 0.0077933166343117
1110 => 0.0080393215037015
1111 => 0.0083107014067151
1112 => 0.008301304383609
1113 => 0.0082622903117295
1114 => 0.0083202328613583
1115 => 0.0086003260041061
1116 => 0.0085745395159231
1117 => 0.0085995888927051
1118 => 0.0089298344933625
1119 => 0.0093592007511062
1120 => 0.0091597170167168
1121 => 0.0095925393204434
1122 => 0.0098649780177149
1123 => 0.010336132573959
1124 => 0.010277141703032
1125 => 0.010460558714286
1126 => 0.010171535732307
1127 => 0.0095078805445003
1128 => 0.00940285457066
1129 => 0.0096131192299696
1130 => 0.010130034377557
1201 => 0.0095968397324273
1202 => 0.0097047043147028
1203 => 0.009673639307751
1204 => 0.0096719839855483
1205 => 0.0097351609013427
1206 => 0.0096435194898966
1207 => 0.0092701558936901
1208 => 0.0094412662295861
1209 => 0.0093751923115034
1210 => 0.009448506249753
1211 => 0.0098441513375181
1212 => 0.0096692272132163
1213 => 0.0094849588579462
1214 => 0.0097160722678764
1215 => 0.010010359057901
1216 => 0.0099919431194658
1217 => 0.0099562085016357
1218 => 0.01015764267134
1219 => 0.010490352905018
1220 => 0.010580283144243
1221 => 0.010646667808296
1222 => 0.010655821131891
1223 => 0.010750106053677
1224 => 0.010243112266375
1225 => 0.011047724427347
1226 => 0.011186658720584
1227 => 0.011160544831692
1228 => 0.011314964451377
1229 => 0.011269530282018
1230 => 0.011203703299019
1231 => 0.011448491242215
]
'min_raw' => 0.0042200139670307
'max_raw' => 0.011448491242215
'avg_raw' => 0.0078342526046227
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00422'
'max' => '$0.011448'
'avg' => '$0.007834'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0014553737556824
'max_diff' => 0.0052766267258373
'year' => 2032
]
7 => [
'items' => [
101 => 0.01116786161871
102 => 0.010769543198432
103 => 0.010551017835222
104 => 0.010838789661435
105 => 0.01101452187385
106 => 0.011130669687589
107 => 0.011165815945848
108 => 0.010282468750857
109 => 0.0098063936054384
110 => 0.010111552315439
111 => 0.010483867002569
112 => 0.010241044039489
113 => 0.010250562239917
114 => 0.0099043605073179
115 => 0.010514498173962
116 => 0.010425606247998
117 => 0.010886777717149
118 => 0.010776715444904
119 => 0.011152782875424
120 => 0.011053751717576
121 => 0.011464824517045
122 => 0.011628812586105
123 => 0.011904174076762
124 => 0.012106731110211
125 => 0.012225676474552
126 => 0.01221853544103
127 => 0.012689856232892
128 => 0.012411934828625
129 => 0.01206280004382
130 => 0.012056485297069
131 => 0.012237307149398
201 => 0.012616260145826
202 => 0.012714517144258
203 => 0.012769429401915
204 => 0.012685329367804
205 => 0.012383665602278
206 => 0.012253408717795
207 => 0.01236439135728
208 => 0.012228669126036
209 => 0.012462963774095
210 => 0.012784700368516
211 => 0.012718263034053
212 => 0.012940353082323
213 => 0.013170192917728
214 => 0.01349887420511
215 => 0.013584803664664
216 => 0.013726841793703
217 => 0.013873045685579
218 => 0.013920002435344
219 => 0.014009657440469
220 => 0.014009184914338
221 => 0.014279366306761
222 => 0.014577384749425
223 => 0.014689879812388
224 => 0.014948556006657
225 => 0.014505582089066
226 => 0.014841582894076
227 => 0.015144664030841
228 => 0.014783318205021
301 => 0.015281349243135
302 => 0.015300686659782
303 => 0.015592658692718
304 => 0.015296689102264
305 => 0.015120943304221
306 => 0.015628314838063
307 => 0.015873815941235
308 => 0.015799869011005
309 => 0.015237129220746
310 => 0.01490959052577
311 => 0.014052358583522
312 => 0.015067786848779
313 => 0.015562372336337
314 => 0.015235848363816
315 => 0.015400528062791
316 => 0.016298967102822
317 => 0.016641034519646
318 => 0.016569886888178
319 => 0.016581909666706
320 => 0.016766483035862
321 => 0.017584983001108
322 => 0.017094518849252
323 => 0.017469460316004
324 => 0.017668327918018
325 => 0.01785304722978
326 => 0.01739943498123
327 => 0.016809292110754
328 => 0.016622369091162
329 => 0.015203381989833
330 => 0.015129517548861
331 => 0.015088055199821
401 => 0.014826640954092
402 => 0.014621240964337
403 => 0.014457899266471
404 => 0.014029241873311
405 => 0.014173901160132
406 => 0.013490710743186
407 => 0.013927791761167
408 => 0.012837403359511
409 => 0.013745511221476
410 => 0.013251269398806
411 => 0.013583139490138
412 => 0.013581981626653
413 => 0.012970903569004
414 => 0.012618446498225
415 => 0.01284304586156
416 => 0.013083834207774
417 => 0.013122901306838
418 => 0.013435089682924
419 => 0.013522214748222
420 => 0.013258221732887
421 => 0.012814807483507
422 => 0.012917802500435
423 => 0.012616359307495
424 => 0.012088091706711
425 => 0.012467502720261
426 => 0.012597050321812
427 => 0.012654265922821
428 => 0.012134775409394
429 => 0.011971540211387
430 => 0.011884635161645
501 => 0.012747747781706
502 => 0.012795031039399
503 => 0.01255312320786
504 => 0.013646569545058
505 => 0.013399088962689
506 => 0.01367558540741
507 => 0.012908456782192
508 => 0.012937762128751
509 => 0.012574591143791
510 => 0.012777942628274
511 => 0.012634220353366
512 => 0.012761513837887
513 => 0.012837813027658
514 => 0.013200924419833
515 => 0.013749657370301
516 => 0.01314668768654
517 => 0.01288396516064
518 => 0.0130469567381
519 => 0.013481024787657
520 => 0.01413866010227
521 => 0.013749326759875
522 => 0.013922106285921
523 => 0.013959850925936
524 => 0.013672770933158
525 => 0.01414924515109
526 => 0.01440459155535
527 => 0.014666524129627
528 => 0.014893952844688
529 => 0.01456190249944
530 => 0.014917243966402
531 => 0.014630901470244
601 => 0.014374022649646
602 => 0.014374412228782
603 => 0.01421326839222
604 => 0.013901031903452
605 => 0.013843450704356
606 => 0.014142995373757
607 => 0.014383201831632
608 => 0.014402986386013
609 => 0.014535977023346
610 => 0.014614679512607
611 => 0.01538607089821
612 => 0.015696330894784
613 => 0.016075710945673
614 => 0.016223500856183
615 => 0.016668295501201
616 => 0.016309087700894
617 => 0.016231370833775
618 => 0.01515244451618
619 => 0.015329118640244
620 => 0.015611990959387
621 => 0.015157108976534
622 => 0.015445626895255
623 => 0.015502586444055
624 => 0.01514165226082
625 => 0.015334442803131
626 => 0.014822448281164
627 => 0.01376081745176
628 => 0.014150427049687
629 => 0.014437310854933
630 => 0.014027892292328
701 => 0.014761759219111
702 => 0.014333049310573
703 => 0.014197168851271
704 => 0.013667050734653
705 => 0.013917246079579
706 => 0.014255638866044
707 => 0.014046551466393
708 => 0.0144804392153
709 => 0.015094939981389
710 => 0.015532869821457
711 => 0.015566488636781
712 => 0.015284929088638
713 => 0.015736130061426
714 => 0.015739416567926
715 => 0.01523046002741
716 => 0.014918726980226
717 => 0.014847900576014
718 => 0.01502483882007
719 => 0.015239674512957
720 => 0.015578410522556
721 => 0.015783101598825
722 => 0.016316827365976
723 => 0.01646123825545
724 => 0.016619902040336
725 => 0.016831925787043
726 => 0.017086514656738
727 => 0.016529488703598
728 => 0.016551620383143
729 => 0.016032925528129
730 => 0.01547862568718
731 => 0.01589927017201
801 => 0.016449206879934
802 => 0.01632305079151
803 => 0.016308855654427
804 => 0.016332727937598
805 => 0.016237610366799
806 => 0.015807397119297
807 => 0.015591346719679
808 => 0.015870106855521
809 => 0.016018255461535
810 => 0.016248021029547
811 => 0.016219697573527
812 => 0.016811549001704
813 => 0.017041524570036
814 => 0.016982686978447
815 => 0.016993514511305
816 => 0.017409874292705
817 => 0.017872952000541
818 => 0.018306685382415
819 => 0.018747897607739
820 => 0.018215999049304
821 => 0.017945933764274
822 => 0.018224572202161
823 => 0.018076722724898
824 => 0.018926309676256
825 => 0.018985133233445
826 => 0.019834658749997
827 => 0.020640959624821
828 => 0.020134536491724
829 => 0.020612070696435
830 => 0.021128562872765
831 => 0.022124960078741
901 => 0.021789408553445
902 => 0.02153238134383
903 => 0.021289491872691
904 => 0.021794906304514
905 => 0.022445113896861
906 => 0.022585162384641
907 => 0.022812094437486
908 => 0.022573503131851
909 => 0.022860860079518
910 => 0.023875356375823
911 => 0.023601230521355
912 => 0.02321192774008
913 => 0.024012775132753
914 => 0.024302598690946
915 => 0.02633673220412
916 => 0.028904909790367
917 => 0.027841667406098
918 => 0.027181678547564
919 => 0.027336791584465
920 => 0.028274603100664
921 => 0.028575798395018
922 => 0.027757045756721
923 => 0.0280462430301
924 => 0.029639748439671
925 => 0.030494612966131
926 => 0.029333592115575
927 => 0.026130381635644
928 => 0.02317687528408
929 => 0.023960278166639
930 => 0.023871464591579
1001 => 0.025583487360314
1002 => 0.023594692710386
1003 => 0.023628178911742
1004 => 0.025375604498271
1005 => 0.024909421310244
1006 => 0.024154264249871
1007 => 0.023182388766328
1008 => 0.021385787047396
1009 => 0.019794486802993
1010 => 0.022915393036827
1011 => 0.022780813885025
1012 => 0.022585923329702
1013 => 0.023019631171213
1014 => 0.025125593339471
1015 => 0.025077044095159
1016 => 0.024768198572883
1017 => 0.02500245517949
1018 => 0.024113197934119
1019 => 0.024342379774262
1020 => 0.023176407433584
1021 => 0.023703475626877
1022 => 0.024152644021978
1023 => 0.024242821227346
1024 => 0.024445995075604
1025 => 0.022709896787349
1026 => 0.023489353949607
1027 => 0.023947212007175
1028 => 0.021878592646066
1029 => 0.023906322053524
1030 => 0.02267967517862
1031 => 0.02226333280566
1101 => 0.022823882961914
1102 => 0.022605436020869
1103 => 0.022417628168593
1104 => 0.022312828160075
1105 => 0.022724434329165
1106 => 0.022705232409401
1107 => 0.022031764827455
1108 => 0.021153253820857
1109 => 0.021448110950812
1110 => 0.021340986591199
1111 => 0.020952754092644
1112 => 0.0212143759213
1113 => 0.020062325791679
1114 => 0.018080283422021
1115 => 0.019389681323017
1116 => 0.019339270928179
1117 => 0.019313851721173
1118 => 0.020297828054671
1119 => 0.020203241434402
1120 => 0.020031565792418
1121 => 0.020949601134849
1122 => 0.020614505885544
1123 => 0.021647190485533
1124 => 0.022327383352938
1125 => 0.02215486443983
1126 => 0.022794589119282
1127 => 0.021454903863559
1128 => 0.021899893566667
1129 => 0.021991605327748
1130 => 0.020938272721227
1201 => 0.02021871697525
1202 => 0.020170730810529
1203 => 0.018923120307896
1204 => 0.019589583768043
1205 => 0.02017604403284
1206 => 0.019895175077157
1207 => 0.019806260356509
1208 => 0.020260506381049
1209 => 0.02029580518751
1210 => 0.019490988659403
1211 => 0.019658335500821
1212 => 0.020356199648633
1213 => 0.019640751114831
1214 => 0.018250751481509
1215 => 0.017906012354197
1216 => 0.01786001779981
1217 => 0.016925057944934
1218 => 0.017929049471118
1219 => 0.017490780264639
1220 => 0.018875267436635
1221 => 0.018084455789144
1222 => 0.018050365479596
1223 => 0.017998832976753
1224 => 0.017194074406956
1225 => 0.017370265388667
1226 => 0.017955951046516
1227 => 0.018164930287458
1228 => 0.018143132040511
1229 => 0.017953080867273
1230 => 0.018040085321162
1231 => 0.017759813660824
]
'min_raw' => 0.0098063936054384
'max_raw' => 0.030494612966131
'avg_raw' => 0.020150503285785
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0098063'
'max' => '$0.030494'
'avg' => '$0.02015'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0055863796384077
'max_diff' => 0.019046121723917
'year' => 2033
]
8 => [
'items' => [
101 => 0.017660843904209
102 => 0.017348468128554
103 => 0.016889362034352
104 => 0.016953203552613
105 => 0.016043594248355
106 => 0.015547990822776
107 => 0.015410814326524
108 => 0.015227376182735
109 => 0.015431534152975
110 => 0.016041017439482
111 => 0.015305851286862
112 => 0.014045460484103
113 => 0.014121212118951
114 => 0.01429140355159
115 => 0.013974252942796
116 => 0.013674096508004
117 => 0.013935058175594
118 => 0.013401013977027
119 => 0.014355940241561
120 => 0.014330112162255
121 => 0.014686049621429
122 => 0.014908624619222
123 => 0.01439566130882
124 => 0.014266652423454
125 => 0.014340141747685
126 => 0.013125526917632
127 => 0.014586789676786
128 => 0.014599426737808
129 => 0.01449122054916
130 => 0.015269297856983
131 => 0.016911283664888
201 => 0.016293502555228
202 => 0.016054279037035
203 => 0.015599514954078
204 => 0.016205461093399
205 => 0.016158933884131
206 => 0.015948520198903
207 => 0.015821261345547
208 => 0.016055739684825
209 => 0.015792206884453
210 => 0.015744869152109
211 => 0.015458053998066
212 => 0.015355674037331
213 => 0.015279875990266
214 => 0.01519642978821
215 => 0.015380491316447
216 => 0.01496338367815
217 => 0.014460392755929
218 => 0.014418574503184
219 => 0.014534038375712
220 => 0.014482954207393
221 => 0.014418329931839
222 => 0.014294944590433
223 => 0.014258338795349
224 => 0.014377289870766
225 => 0.014243001041899
226 => 0.014441151523984
227 => 0.014387265557023
228 => 0.014086262925949
301 => 0.013711102202184
302 => 0.013707762484816
303 => 0.013626934722268
304 => 0.013523988414127
305 => 0.013495351106295
306 => 0.013913080711831
307 => 0.014777768493696
308 => 0.014608009591891
309 => 0.014730677796037
310 => 0.015334083951253
311 => 0.015525888622939
312 => 0.015389750210119
313 => 0.015203395553998
314 => 0.015211594213102
315 => 0.015848424486456
316 => 0.015888142809454
317 => 0.015988498198051
318 => 0.016117483232828
319 => 0.015411716919288
320 => 0.015178352683202
321 => 0.01506777176159
322 => 0.014727225323226
323 => 0.015094475460757
324 => 0.014880494532836
325 => 0.014909367870642
326 => 0.014890564071518
327 => 0.014900832217347
328 => 0.014355673320208
329 => 0.014554300569618
330 => 0.014224044243086
331 => 0.013781868094872
401 => 0.013780385765377
402 => 0.013888607751221
403 => 0.013824233079314
404 => 0.013651002492436
405 => 0.013675609079677
406 => 0.01346002948318
407 => 0.013701784345886
408 => 0.013708717010308
409 => 0.01361562821969
410 => 0.01398808494143
411 => 0.014140680764223
412 => 0.014079407728083
413 => 0.014136381684666
414 => 0.014615063840676
415 => 0.014693109918473
416 => 0.014727772830795
417 => 0.014681329120239
418 => 0.014145131115749
419 => 0.014168913777338
420 => 0.013994412386641
421 => 0.013846977100006
422 => 0.013852873738275
423 => 0.013928674640851
424 => 0.014259701628066
425 => 0.014956328407553
426 => 0.014982764884606
427 => 0.015014806666002
428 => 0.014884476638156
429 => 0.014845167854668
430 => 0.014897026286547
501 => 0.015158642678026
502 => 0.015831591065068
503 => 0.015593726160376
504 => 0.015400338290274
505 => 0.015569991589349
506 => 0.015543874793743
507 => 0.015323422755813
508 => 0.015317235401346
509 => 0.014894117457779
510 => 0.014737700387971
511 => 0.014606986576826
512 => 0.014464250507425
513 => 0.014379631780927
514 => 0.014509644603351
515 => 0.014539380074105
516 => 0.014255104765642
517 => 0.014216359091532
518 => 0.014448504444932
519 => 0.014346345930151
520 => 0.014451418496012
521 => 0.014475796232588
522 => 0.014471870855532
523 => 0.014365205633271
524 => 0.014433190865137
525 => 0.0142723855244
526 => 0.014097533868529
527 => 0.013985989405726
528 => 0.013888652067705
529 => 0.013942660480119
530 => 0.013750130351411
531 => 0.013688536088372
601 => 0.014410158998297
602 => 0.014943229600612
603 => 0.014935478542936
604 => 0.014888295972738
605 => 0.01481819224406
606 => 0.015153514153624
607 => 0.015036694705305
608 => 0.015121690614549
609 => 0.015143325640719
610 => 0.015208808348881
611 => 0.01523221278862
612 => 0.0151614683163
613 => 0.014924041226484
614 => 0.014332395492554
615 => 0.014056982806292
616 => 0.013966092032465
617 => 0.013969395739467
618 => 0.013878264751942
619 => 0.013905106911972
620 => 0.013868930144104
621 => 0.013800420097862
622 => 0.01393843017782
623 => 0.013954334553882
624 => 0.013922121352122
625 => 0.013929708727271
626 => 0.013662997175139
627 => 0.013683274675181
628 => 0.013570366978209
629 => 0.01354919814615
630 => 0.013263777320203
701 => 0.012758112954629
702 => 0.013038300099185
703 => 0.012699873428836
704 => 0.012571706120774
705 => 0.013178430223033
706 => 0.013117531951074
707 => 0.013013300581321
708 => 0.012859120661736
709 => 0.012801933829796
710 => 0.01245448474208
711 => 0.012433955596409
712 => 0.012606160746195
713 => 0.012526693994786
714 => 0.012415092579396
715 => 0.012010883565705
716 => 0.011556418805311
717 => 0.011570136239764
718 => 0.011714693024428
719 => 0.012135011371976
720 => 0.011970785722008
721 => 0.011851638128683
722 => 0.011829325366017
723 => 0.012108616305717
724 => 0.012503871498652
725 => 0.012689316391841
726 => 0.012505546134736
727 => 0.012294440758267
728 => 0.012307289764364
729 => 0.012392768445475
730 => 0.012401751046256
731 => 0.012264343148159
801 => 0.012303022666602
802 => 0.012244264941157
803 => 0.011883668888563
804 => 0.011877146849434
805 => 0.01178865076273
806 => 0.011785971136395
807 => 0.011635417216529
808 => 0.01161435368241
809 => 0.011315419736546
810 => 0.011512178964969
811 => 0.011380203204866
812 => 0.011181284604456
813 => 0.011146990962769
814 => 0.011145960054489
815 => 0.011350204979724
816 => 0.011509792244101
817 => 0.011382498979717
818 => 0.011353516770893
819 => 0.011662970937491
820 => 0.011623590074054
821 => 0.011589486500297
822 => 0.012468480731321
823 => 0.01177268820869
824 => 0.011469282954374
825 => 0.011093761337063
826 => 0.011216033069204
827 => 0.011241797519712
828 => 0.010338735722938
829 => 0.0099723636644558
830 => 0.0098466385804246
831 => 0.0097742820170728
901 => 0.0098072558115887
902 => 0.0094774779877986
903 => 0.0096990941394074
904 => 0.0094135344194306
905 => 0.0093656594030848
906 => 0.0098762755564643
907 => 0.0099473248112308
908 => 0.0096442066171238
909 => 0.0098388575681186
910 => 0.0097682744274373
911 => 0.0094184295212235
912 => 0.0094050680190911
913 => 0.0092295281427961
914 => 0.0089548422276124
915 => 0.0088293033935664
916 => 0.0087639216788171
917 => 0.0087908994485869
918 => 0.0087772586626579
919 => 0.0086882433074882
920 => 0.0087823609186186
921 => 0.0085419293142624
922 => 0.0084461875121187
923 => 0.0084029431612833
924 => 0.0081895462736903
925 => 0.0085291556198773
926 => 0.008596062939362
927 => 0.0086631020869348
928 => 0.0092466320969857
929 => 0.0092174805867222
930 => 0.0094809960421426
1001 => 0.0094707563161188
1002 => 0.0093955974395655
1003 => 0.0090785145024226
1004 => 0.0092048981097079
1005 => 0.0088159090108571
1006 => 0.0091073660924037
1007 => 0.0089743572519245
1008 => 0.0090623956696428
1009 => 0.0089040946564812
1010 => 0.0089917049732535
1011 => 0.0086119291469097
1012 => 0.00825729982386
1013 => 0.0084000130157305
1014 => 0.0085551585765269
1015 => 0.0088915536826872
1016 => 0.0086911995326575
1017 => 0.0087632544612373
1018 => 0.0085218825123442
1019 => 0.0080238632372889
1020 => 0.008026681972301
1021 => 0.0079500725567734
1022 => 0.0078838708365998
1023 => 0.0087142126169296
1024 => 0.0086109464907846
1025 => 0.0084464054339089
1026 => 0.0086666501771387
1027 => 0.0087248863830027
1028 => 0.0087265442859132
1029 => 0.0088872291652341
1030 => 0.008972986714132
1031 => 0.0089881018538197
1101 => 0.0092409429832577
1102 => 0.0093256919947901
1103 => 0.0096747611791633
1104 => 0.0089657107852626
1105 => 0.0089511083590038
1106 => 0.0086697494723415
1107 => 0.0084913072183123
1108 => 0.0086819675661389
1109 => 0.0088508666065804
1110 => 0.0086749976363323
1111 => 0.0086979624110501
1112 => 0.0084618726875148
1113 => 0.0085462636546247
1114 => 0.0086189525241906
1115 => 0.0085788180028706
1116 => 0.0085187346819217
1117 => 0.0088370188113635
1118 => 0.0088190599734148
1119 => 0.0091154534720715
1120 => 0.0093465133995769
1121 => 0.009760614096569
1122 => 0.0093284784317002
1123 => 0.0093127296904887
1124 => 0.0094666761620088
1125 => 0.0093256684263874
1126 => 0.0094147804478786
1127 => 0.0097462567722403
1128 => 0.0097532603446406
1129 => 0.0096359414833436
1130 => 0.0096288026199717
1201 => 0.0096513349906115
1202 => 0.0097833077892346
1203 => 0.0097371924382812
1204 => 0.0097905582899023
1205 => 0.0098572931045214
1206 => 0.010133336592761
1207 => 0.010199889743235
1208 => 0.010038200091436
1209 => 0.010052798856631
1210 => 0.009992322488378
1211 => 0.0099339030744122
1212 => 0.010065221385537
1213 => 0.010305208180185
1214 => 0.010303715234791
1215 => 0.010359387506473
1216 => 0.010394070870516
1217 => 0.010245184482267
1218 => 0.01014826491822
1219 => 0.010185430046228
1220 => 0.010244857895263
1221 => 0.010166158395734
1222 => 0.0096803886274885
1223 => 0.0098277401440813
1224 => 0.0098032136465992
1225 => 0.0097682849316607
1226 => 0.0099164480210304
1227 => 0.0099021573296144
1228 => 0.0094740956395626
1229 => 0.0095014987601169
1230 => 0.0094757621140854
1231 => 0.0095589224826355
]
'min_raw' => 0.0078838708365998
'max_raw' => 0.017660843904209
'avg_raw' => 0.012772357370404
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.007883'
'max' => '$0.01766'
'avg' => '$0.012772'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0019225227688386
'max_diff' => -0.012833769061923
'year' => 2034
]
9 => [
'items' => [
101 => 0.0093211774935767
102 => 0.0093943062509742
103 => 0.0094401719220745
104 => 0.0094671871547092
105 => 0.0095647846995043
106 => 0.0095533327540892
107 => 0.009564072830498
108 => 0.0097087842246325
109 => 0.010440684797211
110 => 0.010480520530529
111 => 0.010284354810437
112 => 0.010362719146416
113 => 0.010212276757733
114 => 0.010313269741132
115 => 0.010382366575431
116 => 0.010070131267793
117 => 0.010051642719266
118 => 0.0099005794013287
119 => 0.0099817522717243
120 => 0.0098526003983889
121 => 0.0098842897505647
122 => 0.0097956835592532
123 => 0.0099551570622971
124 => 0.010133473218377
125 => 0.010178522921322
126 => 0.010060016547992
127 => 0.0099742101237505
128 => 0.0098235623091761
129 => 0.010074092982219
130 => 0.0101473557858
131 => 0.010073708163901
201 => 0.010056642400674
202 => 0.010024302810197
203 => 0.010063503397673
204 => 0.010146956780838
205 => 0.010107601706479
206 => 0.010133596426441
207 => 0.010034531359588
208 => 0.010245233769856
209 => 0.010579879905659
210 => 0.010580955847706
211 => 0.010541600561209
212 => 0.010525497225896
213 => 0.01056587813812
214 => 0.010587783126491
215 => 0.010718367592032
216 => 0.010858489926273
217 => 0.011512379720011
218 => 0.011328770082512
219 => 0.011908940007594
220 => 0.012367779092698
221 => 0.012505364871719
222 => 0.012378792428931
223 => 0.011945794939461
224 => 0.011924550016904
225 => 0.012571631072997
226 => 0.012388801036461
227 => 0.012367053985375
228 => 0.012135702104047
301 => 0.0122724597194
302 => 0.012242548822809
303 => 0.012195333009249
304 => 0.012456257012724
305 => 0.012944683454384
306 => 0.012868557613017
307 => 0.012811733203813
308 => 0.012562745184017
309 => 0.012712691585422
310 => 0.012659298543916
311 => 0.012888708934287
312 => 0.012752811301093
313 => 0.012387415919116
314 => 0.012445606338054
315 => 0.012436810973295
316 => 0.012617818956804
317 => 0.012563484853049
318 => 0.012426201367505
319 => 0.012943014065905
320 => 0.012909455123934
321 => 0.012957034031007
322 => 0.012977979737326
323 => 0.013292554519581
324 => 0.013421425742601
325 => 0.013450681766434
326 => 0.013573099461045
327 => 0.013447635902672
328 => 0.013949579590163
329 => 0.014283342853117
330 => 0.01467102605834
331 => 0.015237535420592
401 => 0.015450548181303
402 => 0.015412069332684
403 => 0.015841590265661
404 => 0.016613429834508
405 => 0.015568080177286
406 => 0.016668835904648
407 => 0.016320349350201
408 => 0.015494093998613
409 => 0.015440892894881
410 => 0.016000442611999
411 => 0.017241470029901
412 => 0.016930606737333
413 => 0.017241978490883
414 => 0.016878746800882
415 => 0.016860709285916
416 => 0.017224337138448
417 => 0.018073973436212
418 => 0.017670343079285
419 => 0.017091639988406
420 => 0.017518945345094
421 => 0.017148773899887
422 => 0.016314674029372
423 => 0.016930369026031
424 => 0.016518671315749
425 => 0.016638826594664
426 => 0.017504153946264
427 => 0.017400035469947
428 => 0.017534774419412
429 => 0.017296963700339
430 => 0.017074810989415
501 => 0.0166601464572
502 => 0.016537384731926
503 => 0.016571311656288
504 => 0.016537367919427
505 => 0.016305366924616
506 => 0.016255266331876
507 => 0.016171763149018
508 => 0.016197644277044
509 => 0.016040633863554
510 => 0.016336944953817
511 => 0.016391942903255
512 => 0.016607573404454
513 => 0.016629960878415
514 => 0.017230488754948
515 => 0.016899728092015
516 => 0.017121630901212
517 => 0.017101781825327
518 => 0.015512001457507
519 => 0.015731059165442
520 => 0.016071844214892
521 => 0.015918321012038
522 => 0.015701275122099
523 => 0.015525998928709
524 => 0.015260437572812
525 => 0.015634210081583
526 => 0.016125681184342
527 => 0.016642425396632
528 => 0.017263259709277
529 => 0.017124696718003
530 => 0.016630819331001
531 => 0.016652974309804
601 => 0.016789927671103
602 => 0.016612560624696
603 => 0.016560251620094
604 => 0.01678274121713
605 => 0.016784273380707
606 => 0.016580191158292
607 => 0.01635339111473
608 => 0.016352440814266
609 => 0.016312083937143
610 => 0.016885926199669
611 => 0.017201481422061
612 => 0.017237659319766
613 => 0.017199046361295
614 => 0.017213906956517
615 => 0.017030292325392
616 => 0.017449980922917
617 => 0.017835128682907
618 => 0.017731900855748
619 => 0.017577147668136
620 => 0.01745387930028
621 => 0.017702862745806
622 => 0.017691775904913
623 => 0.017831764753219
624 => 0.017825414050445
625 => 0.017778341066007
626 => 0.017731902536872
627 => 0.017916026055716
628 => 0.017863001439222
629 => 0.017809894460853
630 => 0.017703380285463
701 => 0.017717857330911
702 => 0.01756313086362
703 => 0.017491547320049
704 => 0.016415102577683
705 => 0.016127441368676
706 => 0.016217945440914
707 => 0.016247741731432
708 => 0.016122551204624
709 => 0.016302042261258
710 => 0.01627406877021
711 => 0.016382897259934
712 => 0.016314905944338
713 => 0.016317696331647
714 => 0.016517644293538
715 => 0.016575690037514
716 => 0.016546167503641
717 => 0.016566844074393
718 => 0.017043326920324
719 => 0.016975586296696
720 => 0.016939600440515
721 => 0.016949568768609
722 => 0.017071320351652
723 => 0.017105404147514
724 => 0.016960988709421
725 => 0.017029095864881
726 => 0.017319087488747
727 => 0.017420568144995
728 => 0.017744445686262
729 => 0.017606856750268
730 => 0.017859407196996
731 => 0.018635661169444
801 => 0.019255786555326
802 => 0.018685493622704
803 => 0.019824274921383
804 => 0.02071097951088
805 => 0.020676946311851
806 => 0.020522328856826
807 => 0.019512839255945
808 => 0.018583891874572
809 => 0.01936099580428
810 => 0.019362976802009
811 => 0.019296222885268
812 => 0.018881620041497
813 => 0.019281795605009
814 => 0.019313560088016
815 => 0.01929578042439
816 => 0.018977905396158
817 => 0.018492568981174
818 => 0.018587402554931
819 => 0.018742741883297
820 => 0.018448652127521
821 => 0.018354672631024
822 => 0.018529398395343
823 => 0.019092401213536
824 => 0.01898596879201
825 => 0.018983189411356
826 => 0.019438552445016
827 => 0.019112610786409
828 => 0.018588598709995
829 => 0.01845627874983
830 => 0.017986632032651
831 => 0.018311018693031
901 => 0.018322692791444
902 => 0.018145029532705
903 => 0.018603015104283
904 => 0.018598794686615
905 => 0.019033583824672
906 => 0.019864737357295
907 => 0.019618924359117
908 => 0.019333070586614
909 => 0.019364150817551
910 => 0.019705024238377
911 => 0.019498924386762
912 => 0.019573039330382
913 => 0.019704912056533
914 => 0.019784474146436
915 => 0.019352703057205
916 => 0.019252036562306
917 => 0.019046108242883
918 => 0.01899238538818
919 => 0.019160109707515
920 => 0.019115920275157
921 => 0.018321711628676
922 => 0.018238712406184
923 => 0.018241257873842
924 => 0.018032552382487
925 => 0.017714226413113
926 => 0.018550768054372
927 => 0.018483582053186
928 => 0.01840941390766
929 => 0.018418499082289
930 => 0.018781613455733
1001 => 0.01857098878142
1002 => 0.019130968998786
1003 => 0.019015853900642
1004 => 0.018897786534599
1005 => 0.018881466028192
1006 => 0.0188360201653
1007 => 0.018680169391782
1008 => 0.01849197021758
1009 => 0.018367704821239
1010 => 0.016943236784389
1011 => 0.017207609766279
1012 => 0.017511746783588
1013 => 0.01761673366321
1014 => 0.017437146340745
1015 => 0.018687260593871
1016 => 0.018915668514318
1017 => 0.018223806024604
1018 => 0.018094386801338
1019 => 0.018695745296602
1020 => 0.018333052610872
1021 => 0.018496373105048
1022 => 0.018143363528173
1023 => 0.018860651734847
1024 => 0.018855187200498
1025 => 0.018576145887413
1026 => 0.01881198969444
1027 => 0.018771006029138
1028 => 0.018455969073914
1029 => 0.018870638968248
1030 => 0.018870844639343
1031 => 0.01860227344238
1101 => 0.018288641082122
1102 => 0.018232571023774
1103 => 0.018190329766761
1104 => 0.018485984345259
1105 => 0.018751067315853
1106 => 0.019244321004488
1107 => 0.019368336701229
1108 => 0.019852378221802
1109 => 0.019564155063855
1110 => 0.019691920656658
1111 => 0.019830628281193
1112 => 0.019897129817198
1113 => 0.019788769132946
1114 => 0.020540684853835
1115 => 0.02060416957878
1116 => 0.020625455457914
1117 => 0.020371913707436
1118 => 0.020597118124046
1119 => 0.020491752435501
1120 => 0.020765884685664
1121 => 0.020808872122786
1122 => 0.020772463292866
1123 => 0.020786108183919
1124 => 0.020144480763163
1125 => 0.020111208996543
1126 => 0.019657546097816
1127 => 0.019842417082354
1128 => 0.019496809637857
1129 => 0.019606405318658
1130 => 0.019654714050489
1201 => 0.019629480310477
1202 => 0.019852869410441
1203 => 0.019662943040093
1204 => 0.019161696121959
1205 => 0.018660312639437
1206 => 0.018654018178232
1207 => 0.018522012757437
1208 => 0.018426597016202
1209 => 0.018444977473019
1210 => 0.018509752600244
1211 => 0.018422832168053
1212 => 0.018441381049238
1213 => 0.01874941606747
1214 => 0.018811190293571
1215 => 0.018601257336532
1216 => 0.017758346220835
1217 => 0.017551493718761
1218 => 0.017700175195188
1219 => 0.017629115025769
1220 => 0.014228071721811
1221 => 0.015027096397687
1222 => 0.014552343067595
1223 => 0.014771131244452
1224 => 0.014286531031207
1225 => 0.014517807653041
1226 => 0.014475099305858
1227 => 0.015759907339809
1228 => 0.015739846829555
1229 => 0.015749448734235
1230 => 0.015291124806218
1231 => 0.0160212472684
]
'min_raw' => 0.0093211774935767
'max_raw' => 0.020808872122786
'avg_raw' => 0.015065024808181
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.009321'
'max' => '$0.0208088'
'avg' => '$0.015065'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0014373066569769
'max_diff' => 0.0031480282185774
'year' => 2035
]
10 => [
'items' => [
101 => 0.016380931847625
102 => 0.016314363804706
103 => 0.016331117546957
104 => 0.016043232747286
105 => 0.015752236088381
106 => 0.015429476009589
107 => 0.016029124341632
108 => 0.015962453683447
109 => 0.016115372185977
110 => 0.016504286993055
111 => 0.016561556175741
112 => 0.016638526538037
113 => 0.016610938142278
114 => 0.017268205656185
115 => 0.01718860622346
116 => 0.017380417954008
117 => 0.016985846671481
118 => 0.016539351812252
119 => 0.016624215887975
120 => 0.016616042795049
121 => 0.016511989941463
122 => 0.016418055677763
123 => 0.016261681594517
124 => 0.016756472332917
125 => 0.016736384732532
126 => 0.017061579633484
127 => 0.017004098275966
128 => 0.016620223702386
129 => 0.01663393385788
130 => 0.016726141242452
131 => 0.017045272053263
201 => 0.017140011805994
202 => 0.017096124577802
203 => 0.017200002391638
204 => 0.017282103180254
205 => 0.017210312986642
206 => 0.018226710736065
207 => 0.017804631527501
208 => 0.018010349996947
209 => 0.018059412639746
210 => 0.017933739711892
211 => 0.017960993669933
212 => 0.018002275990107
213 => 0.018252934154295
214 => 0.018910733705647
215 => 0.019202068649148
216 => 0.020078564200883
217 => 0.019177877337668
218 => 0.019124434306618
219 => 0.019282317623115
220 => 0.019796913298461
221 => 0.020213944759814
222 => 0.020352298154668
223 => 0.020370583839763
224 => 0.020630144006067
225 => 0.020778919052882
226 => 0.020598626574768
227 => 0.020445847576975
228 => 0.019898612170509
229 => 0.01996195615888
301 => 0.020398333423545
302 => 0.021014742012378
303 => 0.021543684707979
304 => 0.021358467411494
305 => 0.022771544640645
306 => 0.022911645476012
307 => 0.022892288070567
308 => 0.023211458623334
309 => 0.022577970074044
310 => 0.02230714144596
311 => 0.020478880130413
312 => 0.020992546986272
313 => 0.02173919192786
314 => 0.021640370670066
315 => 0.021098137155608
316 => 0.021543273375235
317 => 0.02139609742033
318 => 0.02128001363836
319 => 0.021811815947512
320 => 0.021227077463365
321 => 0.021733358714179
322 => 0.021084047773201
323 => 0.021359313468503
324 => 0.021203059346746
325 => 0.021304174913307
326 => 0.020713055377319
327 => 0.021032009130323
328 => 0.020699785852572
329 => 0.020699628335481
330 => 0.020692294488211
331 => 0.021083153701182
401 => 0.021095899606085
402 => 0.020807054057144
403 => 0.020765426900926
404 => 0.020919344315139
405 => 0.02073914733413
406 => 0.020823460367398
407 => 0.020741701090017
408 => 0.020723295354564
409 => 0.020576635323002
410 => 0.020513450148904
411 => 0.020538226683749
412 => 0.020453651597142
413 => 0.020402692048247
414 => 0.020682157351303
415 => 0.020532850313478
416 => 0.020659273906392
417 => 0.020515198266338
418 => 0.020015769327141
419 => 0.019728542462844
420 => 0.018785167493789
421 => 0.01905270746476
422 => 0.019230086742304
423 => 0.019171462892134
424 => 0.019297409606718
425 => 0.019305141712096
426 => 0.01926419515131
427 => 0.0192167842795
428 => 0.019193707289088
429 => 0.019365704268994
430 => 0.019465554304982
501 => 0.019247889125834
502 => 0.019196893219819
503 => 0.019416964733562
504 => 0.019551208229813
505 => 0.020542386781231
506 => 0.020468957072677
507 => 0.020653251231294
508 => 0.020632502537258
509 => 0.020825672175851
510 => 0.021141422895369
511 => 0.020499413397299
512 => 0.020610844047145
513 => 0.020583523825113
514 => 0.020881798845521
515 => 0.020882730027577
516 => 0.0207038992529
517 => 0.02080084631705
518 => 0.020746733125445
519 => 0.020844522976512
520 => 0.020467976374152
521 => 0.020926569490133
522 => 0.021186562235807
523 => 0.021190172235333
524 => 0.021313406733352
525 => 0.021438620120601
526 => 0.021678956313637
527 => 0.02143191727462
528 => 0.020987518092194
529 => 0.021019602277764
530 => 0.020759051199708
531 => 0.020763431110402
601 => 0.020740050803855
602 => 0.02081021686379
603 => 0.020483373878528
604 => 0.020560083273884
605 => 0.020452689671175
606 => 0.020610610594427
607 => 0.020440713786272
608 => 0.020583510650474
609 => 0.020645137043273
610 => 0.020872539759422
611 => 0.020407126220201
612 => 0.019458116508004
613 => 0.019657609855139
614 => 0.019362543524863
615 => 0.019389853037126
616 => 0.019445022598176
617 => 0.019266200000457
618 => 0.019300313716754
619 => 0.019299094934754
620 => 0.019288592129911
621 => 0.019242073465788
622 => 0.019174612199373
623 => 0.01944335712129
624 => 0.019489022120362
625 => 0.019590529756603
626 => 0.019892547628768
627 => 0.019862368921267
628 => 0.019911591645304
629 => 0.019804138715105
630 => 0.019394837470376
701 => 0.019417064497172
702 => 0.019139893116856
703 => 0.019583441861242
704 => 0.019478403664014
705 => 0.019410684854947
706 => 0.019392207150483
707 => 0.019694973666537
708 => 0.019785566153424
709 => 0.019729114995031
710 => 0.019613332022225
711 => 0.019835669558176
712 => 0.019895157703129
713 => 0.019908474904945
714 => 0.020302414389656
715 => 0.019930491746019
716 => 0.020020017222935
717 => 0.020718469437664
718 => 0.020085069658722
719 => 0.020420595648128
720 => 0.02040417339694
721 => 0.02057581713954
722 => 0.020390093600141
723 => 0.020392395866
724 => 0.020544803881274
725 => 0.020330774310752
726 => 0.020277777579186
727 => 0.020204562974097
728 => 0.020364424385805
729 => 0.020460254072215
730 => 0.021232570965524
731 => 0.021731522900532
801 => 0.021709862081141
802 => 0.021907801423018
803 => 0.021818627936586
804 => 0.021530663226119
805 => 0.02202218387333
806 => 0.021866646174455
807 => 0.021879468513372
808 => 0.021878991265277
809 => 0.021982410237687
810 => 0.021909128417525
811 => 0.021764682427761
812 => 0.021860572416778
813 => 0.022145331402862
814 => 0.02302923203314
815 => 0.023523874535968
816 => 0.022999453933378
817 => 0.023361192242773
818 => 0.023144278157675
819 => 0.023104858415777
820 => 0.023332056806329
821 => 0.023559652877586
822 => 0.023545155991772
823 => 0.023379932931227
824 => 0.023286602616704
825 => 0.023993331026216
826 => 0.02451403647954
827 => 0.024478527858477
828 => 0.024635251363827
829 => 0.025095396422811
830 => 0.025137466320279
831 => 0.025132166480163
901 => 0.025027891849749
902 => 0.025480964417705
903 => 0.025858925524947
904 => 0.025003755285592
905 => 0.025329392917738
906 => 0.025475582142198
907 => 0.025690231296093
908 => 0.026052380398089
909 => 0.026445770378162
910 => 0.026501400034646
911 => 0.026461928131246
912 => 0.026202476864498
913 => 0.026632928874813
914 => 0.026885077567113
915 => 0.027035226343058
916 => 0.027415978656479
917 => 0.025476484957079
918 => 0.024103614917552
919 => 0.023889221436397
920 => 0.024325199010934
921 => 0.024440162820484
922 => 0.024393821053007
923 => 0.022848531007636
924 => 0.023881085804113
925 => 0.024992027945449
926 => 0.025034703757552
927 => 0.025590864622209
928 => 0.025771973397546
929 => 0.026219755791266
930 => 0.026191746880621
1001 => 0.026300774767718
1002 => 0.026275711144574
1003 => 0.027105133737233
1004 => 0.028020110027383
1005 => 0.027988427307902
1006 => 0.027856888640684
1007 => 0.028052245992178
1008 => 0.028996599578431
1009 => 0.028909658633166
1010 => 0.028994114355878
1011 => 0.030107560455507
1012 => 0.031555198770884
1013 => 0.030882625432881
1014 => 0.032341916048583
1015 => 0.033260462137497
1016 => 0.034848992618834
1017 => 0.034650100778893
1018 => 0.035268504038102
1019 => 0.034294042875419
1020 => 0.032056483074804
1021 => 0.031702380671322
1022 => 0.032411302650394
1023 => 0.034154118160348
1024 => 0.032356415187832
1025 => 0.032720088157839
1026 => 0.032615350318011
1027 => 0.032609769283634
1028 => 0.032822774666106
1029 => 0.032513799249217
1030 => 0.031254977817192
1031 => 0.031831888261208
1101 => 0.031609115433258
1102 => 0.031856298494683
1103 => 0.033190243531141
1104 => 0.032600474633245
1105 => 0.031979201008246
1106 => 0.032758416005648
1107 => 0.033750624464665
1108 => 0.03368853384247
1109 => 0.033568052083544
1110 => 0.034247201450388
1111 => 0.035368957232319
1112 => 0.035672163312595
1113 => 0.035895983842279
1114 => 0.035926844911844
1115 => 0.036244733108408
1116 => 0.034535368157344
1117 => 0.037248174234287
1118 => 0.03771660090402
1119 => 0.037628556104406
1120 => 0.038149192633407
1121 => 0.037996008159301
1122 => 0.037774067890229
1123 => 0.03859938753126
1124 => 0.037653225162679
1125 => 0.036310266799008
1126 => 0.035573493279993
1127 => 0.036543736083656
1128 => 0.037136229507045
1129 => 0.037527829970246
1130 => 0.0376463280338
1201 => 0.034668061292557
1202 => 0.033062940701273
1203 => 0.034091804597541
1204 => 0.035347089559381
1205 => 0.034528394986
1206 => 0.034560486263283
1207 => 0.033393242950791
1208 => 0.035450364692334
1209 => 0.035150659357708
1210 => 0.036705531163916
1211 => 0.036334448528739
1212 => 0.037602386126925
1213 => 0.037268495664107
1214 => 0.038654456307703
1215 => 0.03920735353182
1216 => 0.040135754022695
1217 => 0.040818689203051
1218 => 0.041219721803425
1219 => 0.041195645310334
1220 => 0.042784736266664
1221 => 0.041847704848326
1222 => 0.040670572545544
1223 => 0.040649281935992
1224 => 0.041258935435696
1225 => 0.042536601920806
1226 => 0.042867882251104
1227 => 0.043053022761647
1228 => 0.042769473624963
1229 => 0.041752393178004
1230 => 0.041313222997722
1231 => 0.041687408715307
]
'min_raw' => 0.015429476009589
'max_raw' => 0.043053022761647
'avg_raw' => 0.029241249385618
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.015429'
'max' => '$0.043053'
'avg' => '$0.029241'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0061082985160128
'max_diff' => 0.022244150638861
'year' => 2036
]
11 => [
'items' => [
101 => 0.041229811736846
102 => 0.042019752500706
103 => 0.043104509891729
104 => 0.042880511780078
105 => 0.043629303883652
106 => 0.044404224935625
107 => 0.045512396843828
108 => 0.045802114016119
109 => 0.04628100548496
110 => 0.046773942114049
111 => 0.046932260074297
112 => 0.04723453818359
113 => 0.047232945028746
114 => 0.048143880456763
115 => 0.049148670443188
116 => 0.049527955402122
117 => 0.050400100251295
118 => 0.048906582760686
119 => 0.050039432933606
120 => 0.051061292146658
121 => 0.049842989466547
122 => 0.051522135882962
123 => 0.051587333333284
124 => 0.052571737427165
125 => 0.051573855289011
126 => 0.050981316060728
127 => 0.052691954610626
128 => 0.053519678720312
129 => 0.053270361482233
130 => 0.051373044990136
131 => 0.050268725412003
201 => 0.047378508068691
202 => 0.050802095359942
203 => 0.052469624862099
204 => 0.051368726491571
205 => 0.051923955594231
206 => 0.054953105544707
207 => 0.056106409722913
208 => 0.055866530516051
209 => 0.055907066153263
210 => 0.056529368153871
211 => 0.059288997932541
212 => 0.057635363801445
213 => 0.058899505134179
214 => 0.059570001138861
215 => 0.060192795195157
216 => 0.058663409828976
217 => 0.056673701938706
218 => 0.056043477927603
219 => 0.051259263844957
220 => 0.051010224725167
221 => 0.050870431520571
222 => 0.049989055139734
223 => 0.049296534733706
224 => 0.048745816795198
225 => 0.047300568466255
226 => 0.047788297351564
227 => 0.045484873161998
228 => 0.046958522330141
301 => 0.043282201705473
302 => 0.046343950764154
303 => 0.044677579952161
304 => 0.045796503135515
305 => 0.045792599317937
306 => 0.043732306982464
307 => 0.042543973360568
308 => 0.043301225795077
309 => 0.044113060515643
310 => 0.044244777967715
311 => 0.045297342873985
312 => 0.045591091114517
313 => 0.044701020231909
314 => 0.04320601813193
315 => 0.043553273022387
316 => 0.042536936251296
317 => 0.040755845152788
318 => 0.042035055874603
319 => 0.042471834657956
320 => 0.042664741051424
321 => 0.040913242515735
322 => 0.040362883648939
323 => 0.040069877206215
324 => 0.042979921665349
325 => 0.043139340469874
326 => 0.042323731326375
327 => 0.046010361994223
328 => 0.045175963932225
329 => 0.046108190999966
330 => 0.043521763280832
331 => 0.04362056830279
401 => 0.042396111971209
402 => 0.043081725698692
403 => 0.042597156014469
404 => 0.043026334884879
405 => 0.043283582930231
406 => 0.044507838340577
407 => 0.046357929794392
408 => 0.044324975407591
409 => 0.043439188068819
410 => 0.043988725551936
411 => 0.04545221628668
412 => 0.047669479664528
413 => 0.046356815118258
414 => 0.046939353353403
415 => 0.04706661204246
416 => 0.046098701803523
417 => 0.04770516789565
418 => 0.048566086125329
419 => 0.049449210087053
420 => 0.050216001878446
421 => 0.049096470956428
422 => 0.050294529521441
423 => 0.049329105803846
424 => 0.048463020925495
425 => 0.048464334418751
426 => 0.04792102672308
427 => 0.046868299601542
428 => 0.046674160568599
429 => 0.047684096335027
430 => 0.04849396917843
501 => 0.048560674184841
502 => 0.049009061403718
503 => 0.049274412341094
504 => 0.051875212254482
505 => 0.052921275494592
506 => 0.054200381823634
507 => 0.054698665825279
508 => 0.056198322025528
509 => 0.054987227847705
510 => 0.054725200004194
511 => 0.051087524596194
512 => 0.051683193740467
513 => 0.052636917513973
514 => 0.051103251149941
515 => 0.052076009456584
516 => 0.052268052552153
517 => 0.051051137753755
518 => 0.051701144527364
519 => 0.049974919250237
520 => 0.046395556788204
521 => 0.047709152749286
522 => 0.048676401528262
523 => 0.047296018259749
524 => 0.049770301840348
525 => 0.048324876452143
526 => 0.047866745996736
527 => 0.046079415754894
528 => 0.046922966828394
529 => 0.048063881733789
530 => 0.047358928967849
531 => 0.048821811806365
601 => 0.050893644042307
602 => 0.052370155073382
603 => 0.052483503256438
604 => 0.051534205582013
605 => 0.053055461163615
606 => 0.053066541849735
607 => 0.051350559339175
608 => 0.050299529606088
609 => 0.050060733439346
610 => 0.050657293082615
611 => 0.05138162662053
612 => 0.052523698726687
613 => 0.053213828981402
614 => 0.055013322668895
615 => 0.055500214065204
616 => 0.056035160093499
617 => 0.056750012958547
618 => 0.05760837710755
619 => 0.05573032521623
620 => 0.055804943718999
621 => 0.054056127801201
622 => 0.052187267187462
623 => 0.053605499436525
624 => 0.055459649442646
625 => 0.055034305382589
626 => 0.054986445486841
627 => 0.05506693255626
628 => 0.054746237025415
629 => 0.053295743024932
630 => 0.052567314018463
701 => 0.053507173278868
702 => 0.054006666647449
703 => 0.05478133730172
704 => 0.054685842792268
705 => 0.056681311204115
706 => 0.057456689889127
707 => 0.057258314841176
708 => 0.057294820624161
709 => 0.058698606696461
710 => 0.060259905519484
711 => 0.06172226789877
712 => 0.063209845720905
713 => 0.06141651259517
714 => 0.060505968631333
715 => 0.061445417578585
716 => 0.060946932743472
717 => 0.063811374466242
718 => 0.064009702196235
719 => 0.066873936787265
720 => 0.069592436480864
721 => 0.067884995530295
722 => 0.069495035441852
723 => 0.07123642487468
724 => 0.074595847620859
725 => 0.073464512225863
726 => 0.072597927043582
727 => 0.071779008233636
728 => 0.073483048277434
729 => 0.075675268571076
730 => 0.076147451825501
731 => 0.076912569085557
801 => 0.076108141840696
802 => 0.077076985852376
803 => 0.080497430945239
804 => 0.079573196488044
805 => 0.078260634980723
806 => 0.0809607478785
807 => 0.081937908239782
808 => 0.088796131398115
809 => 0.097454921434578
810 => 0.093870125502802
811 => 0.091644926987306
812 => 0.092167901420862
813 => 0.095329798423638
814 => 0.096345299387335
815 => 0.093584817703832
816 => 0.094559866502141
817 => 0.099932481245503
818 => 0.1028147166812
819 => 0.098900253823661
820 => 0.088100406049561
821 => 0.078142453178035
822 => 0.080783750692026
823 => 0.080484309522944
824 => 0.086256513817348
825 => 0.079551153801904
826 => 0.07966405486771
827 => 0.085555622234052
828 => 0.083983853067747
829 => 0.081437788315318
830 => 0.078161042268372
831 => 0.072103674138267
901 => 0.066738494263227
902 => 0.077260847525314
903 => 0.076807104518995
904 => 0.076150017404899
905 => 0.077612293673068
906 => 0.084712692156935
907 => 0.084549004990135
908 => 0.083507710748879
909 => 0.084297523253326
910 => 0.081299330364601
911 => 0.082072032939609
912 => 0.078140875787424
913 => 0.079917922999836
914 => 0.081432325603855
915 => 0.081736364347726
916 => 0.08242137916227
917 => 0.076568002572907
918 => 0.079195996815423
919 => 0.08073969722314
920 => 0.07376520262077
921 => 0.080601833889561
922 => 0.076466108309073
923 => 0.075062380930542
924 => 0.076952314918715
925 => 0.076215805805503
926 => 0.075582598519229
927 => 0.075229257973606
928 => 0.076617016910118
929 => 0.076552276296999
930 => 0.074281633324464
1001 => 0.071319672130039
1002 => 0.07231380352995
1003 => 0.071952626272331
1004 => 0.070643673297925
1005 => 0.07152574955909
1006 => 0.067641532113502
1007 => 0.060958937882422
1008 => 0.06537366432487
1009 => 0.065203702159134
1010 => 0.065117999528
1011 => 0.068435544435423
1012 => 0.068116639041357
1013 => 0.067537822628398
1014 => 0.070633042880588
1015 => 0.069503245851951
1016 => 0.072985014080551
1017 => 0.075278331822557
1018 => 0.074696672262127
1019 => 0.07685354868305
1020 => 0.07233670630954
1021 => 0.073837020161758
1022 => 0.074146232767355
1023 => 0.070594848343134
1024 => 0.068168815907796
1025 => 0.068007027203154
1026 => 0.06380062128814
1027 => 0.066047649375018
1028 => 0.06802494110313
1029 => 0.067077971809401
1030 => 0.066778189620909
1031 => 0.06830971180709
1101 => 0.068428724197557
1102 => 0.065715229082548
1103 => 0.066279450642173
1104 => 0.068632348339839
1105 => 0.066220163657106
1106 => 0.061533682846685
1107 => 0.060371370810034
1108 => 0.060216296958684
1109 => 0.057064014531157
1110 => 0.060449042058134
1111 => 0.058971386829511
1112 => 0.063639281991705
1113 => 0.060973005309483
1114 => 0.060858067450733
1115 => 0.060684322019513
1116 => 0.057971022314993
1117 => 0.058565062511091
1118 => 0.060539742597797
1119 => 0.061244330699097
1120 => 0.061170836387611
1121 => 0.060530065588089
1122 => 0.060823407178833
1123 => 0.059878451708062
1124 => 0.059544768263785
1125 => 0.058491571526786
1126 => 0.056943663276421
1127 => 0.057158909412507
1128 => 0.054092098136309
1129 => 0.052421136585042
1130 => 0.051958636450571
1201 => 0.051340161941545
1202 => 0.052028494792063
1203 => 0.054083410245288
1204 => 0.051604746234066
1205 => 0.047355250644891
1206 => 0.047610652570588
1207 => 0.048184464868119
1208 => 0.047115169447819
1209 => 0.046103171071668
1210 => 0.046983021553708
1211 => 0.045182454252464
1212 => 0.048402054824162
1213 => 0.048314973651524
1214 => 0.049515041645889
1215 => 0.05026546879064
1216 => 0.048535977175662
1217 => 0.048101014711538
1218 => 0.048348789099045
1219 => 0.044253630397823
1220 => 0.049180379812417
1221 => 0.049222986545943
1222 => 0.048858161826202
1223 => 0.051481503793151
1224 => 0.057017573584291
1225 => 0.054934681440973
1226 => 0.054128122647331
1227 => 0.052594853791029
1228 => 0.054637843505556
1229 => 0.054480973771084
1230 => 0.053771549340725
1231 => 0.053342487231704
]
'min_raw' => 0.040069877206215
'max_raw' => 0.1028147166812
'avg_raw' => 0.071442296943707
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.040069'
'max' => '$0.102814'
'avg' => '$0.071442'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.024640401196625
'max_diff' => 0.059761693919553
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00125774765868
]
1 => [
'year' => 2028
'avg' => 0.002158660109049
]
2 => [
'year' => 2029
'avg' => 0.0058970703572909
]
3 => [
'year' => 2030
'avg' => 0.0045495809984693
]
4 => [
'year' => 2031
'avg' => 0.0044682523638628
]
5 => [
'year' => 2032
'avg' => 0.0078342526046227
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00125774765868
'min' => '$0.001257'
'max_raw' => 0.0078342526046227
'max' => '$0.007834'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0078342526046227
]
1 => [
'year' => 2033
'avg' => 0.020150503285785
]
2 => [
'year' => 2034
'avg' => 0.012772357370404
]
3 => [
'year' => 2035
'avg' => 0.015065024808181
]
4 => [
'year' => 2036
'avg' => 0.029241249385618
]
5 => [
'year' => 2037
'avg' => 0.071442296943707
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0078342526046227
'min' => '$0.007834'
'max_raw' => 0.071442296943707
'max' => '$0.071442'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.071442296943707
]
]
]
]
'prediction_2025_max_price' => '$0.00215'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'sinken'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767676352
'last_updated_date' => '6. Januar 2026'
]
Saitama Inu Preisprognose für 2026
Die Preisprognose für Saitama Inu im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.00072 am unteren Ende und $0.00215 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Saitama Inu im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn SAITAMA das prognostizierte Preisziel erreicht.
Saitama Inu Preisprognose 2027-2032
Die Preisprognose für SAITAMA für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.001257 am unteren Ende und $0.007834 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Saitama Inu, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Saitama Inu Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.000693 | $0.001257 | $0.001821 |
| 2028 | $0.001251 | $0.002158 | $0.003065 |
| 2029 | $0.002749 | $0.005897 | $0.009044 |
| 2030 | $0.002338 | $0.004549 | $0.00676 |
| 2031 | $0.002764 | $0.004468 | $0.006171 |
| 2032 | $0.00422 | $0.007834 | $0.011448 |
Saitama Inu Preisprognose 2032-2037
Die Preisprognose für Saitama Inu für die Jahre 2032-2037 wird derzeit zwischen $0.007834 am unteren Ende und $0.071442 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Saitama Inu bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Saitama Inu Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.00422 | $0.007834 | $0.011448 |
| 2033 | $0.0098063 | $0.02015 | $0.030494 |
| 2034 | $0.007883 | $0.012772 | $0.01766 |
| 2035 | $0.009321 | $0.015065 | $0.0208088 |
| 2036 | $0.015429 | $0.029241 | $0.043053 |
| 2037 | $0.040069 | $0.071442 | $0.102814 |
Saitama Inu Potenzielles Preishistogramm
Saitama Inu Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Saitama Inu Neutral, mit 0 technischen Indikatoren, die bullische Signale zeigen, und 0 anzeigen bärische Signale. Die Preisprognose für SAITAMA wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Saitama Inu
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Saitama Inu im nächsten Monat sinken, und bis zum 04.02.2026 — erreichen. Der kurzfristige 50-Tage-SMA für Saitama Inu wird voraussichtlich bis zum 04.02.2026 — erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei —, was darauf hindeutet, dass sich der SAITAMA-Markt in einem — Zustand befindet.
Beliebte SAITAMA Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Saitama Inu Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Stochastic Fast (14) | — | — |
| Commodity Channel Index (20) | — | — |
| Average Directional Index (14) | — | — |
| Awesome Oscillator (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Williams Prozentbereich (14) | — | — |
| Ultimate Oscillator (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Hull Moving Average (9) | — | — |
| Ichimoku Wolke B/L (9, 26, 52, 26) | — | — |
Auf weltweiten Geldflüssen basierende Saitama Inu-Preisprognose
Definition weltweiter Geldflüsse, die für Saitama Inu-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Saitama Inu-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.00293 | $0.004117 | $0.005785 | $0.008129 | $0.011423 | $0.016051 |
| Amazon.com aktie | $0.00435 | $0.009078 | $0.018942 | $0.039524 | $0.082471 | $0.17208 |
| Apple aktie | $0.002957 | $0.004195 | $0.00595 | $0.00844 | $0.011972 | $0.016981 |
| Netflix aktie | $0.00329 | $0.005191 | $0.008191 | $0.012924 | $0.020392 | $0.032175 |
| Google aktie | $0.00270032 | $0.003496 | $0.004528 | $0.005864 | $0.007594 | $0.009834 |
| Tesla aktie | $0.004726 | $0.010715 | $0.024291 | $0.055067 | $0.124834 | $0.282989 |
| Kodak aktie | $0.001563 | $0.001172 | $0.000879 | $0.000659 | $0.000494 | $0.00037 |
| Nokia aktie | $0.001381 | $0.000915 | $0.0006062 | $0.0004015 | $0.000266 | $0.000176 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Saitama Inu Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Saitama Inu investieren?", "Sollte ich heute SAITAMA kaufen?", "Wird Saitama Inu auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Saitama Inu/Saitama-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Saitama Inu.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Saitama Inu zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Saitama Inu-Preis entspricht heute $0.002085 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Saitama Inu-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Saitama Inu 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002139 | $0.002195 | $0.002252 | $0.00231 |
| Wenn die Wachstumsrate von Saitama Inu 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002193 | $0.0023076 | $0.002427 | $0.002553 |
| Wenn die Wachstumsrate von Saitama Inu 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002356 | $0.002662 | $0.0030084 | $0.003399 |
| Wenn die Wachstumsrate von Saitama Inu 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002627 | $0.00331 | $0.00417 | $0.005254 |
| Wenn die Wachstumsrate von Saitama Inu 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003169 | $0.004816 | $0.00732 | $0.011126 |
| Wenn die Wachstumsrate von Saitama Inu 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004795 | $0.011027 | $0.025359 | $0.058318 |
| Wenn die Wachstumsrate von Saitama Inu 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0075053 | $0.027014 | $0.097232 | $0.349969 |
Fragefeld
Ist SAITAMA eine gute Investition?
Die Entscheidung, Saitama Inu zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Saitama Inu in den letzten 2026 Stunden um 0% gefallen, und Saitama Inu hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Saitama Inu investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Saitama Inu steigen?
Es scheint, dass der Durchschnittswert von Saitama Inu bis zum Ende dieses Jahres potenziell auf $0.00215 steigen könnte. Betrachtet man die Aussichten von Saitama Inu in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.00676 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Saitama Inu nächste Woche kosten?
Basierend auf unserer neuen experimentellen Saitama Inu-Prognose wird der Preis von Saitama Inu in der nächsten Woche um 0.86% steigen und $0.002103 erreichen bis zum 13. Januar 2026.
Wie viel wird Saitama Inu nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Saitama Inu-Prognose wird der Preis von Saitama Inu im nächsten Monat um -11.62% fallen und $0.001842 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Saitama Inu in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Saitama Inu im Jahr 2026 wird erwartet, dass SAITAMA innerhalb der Spanne von $0.00072 bis $0.00215 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Saitama Inu-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Saitama Inu in 5 Jahren sein?
Die Zukunft von Saitama Inu scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.00676 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Saitama Inu-Prognose für 2030 könnte der Wert von Saitama Inu seinen höchsten Gipfel von ungefähr $0.00676 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.002338 liegen wird.
Wie viel wird Saitama Inu im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Saitama Inu-Preisprognosesimulation wird der Wert von SAITAMA im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.00215 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.00215 und $0.00072 während des Jahres 2026 liegen.
Wie viel wird Saitama Inu im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Saitama Inu könnte der Wert von SAITAMA um -12.62% fallen und bis zu $0.001821 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.001821 und $0.000693 im Laufe des Jahres schwanken.
Wie viel wird Saitama Inu im Jahr 2028 kosten?
Unser neues experimentelles Saitama Inu-Preisprognosemodell deutet darauf hin, dass der Wert von SAITAMA im Jahr 2028 um 47.02% steigen, und im besten Fall $0.003065 erreichen wird. Der Preis wird voraussichtlich zwischen $0.003065 und $0.001251 im Laufe des Jahres liegen.
Wie viel wird Saitama Inu im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Saitama Inu im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.009044 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.009044 und $0.002749.
Wie viel wird Saitama Inu im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Saitama Inu-Preisprognosen wird der Wert von SAITAMA im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.00676 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.00676 und $0.002338 während des Jahres 2030 liegen.
Wie viel wird Saitama Inu im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Saitama Inu im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.006171 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.006171 und $0.002764 während des Jahres schwanken.
Wie viel wird Saitama Inu im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Saitama Inu-Preisprognose könnte SAITAMA eine 449.04% Steigerung im Wert erfahren und $0.011448 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.011448 und $0.00422 liegen.
Wie viel wird Saitama Inu im Jahr 2033 kosten?
Laut unserer experimentellen Saitama Inu-Preisprognose wird der Wert von SAITAMA voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.030494 beträgt. Im Laufe des Jahres könnte der Preis von SAITAMA zwischen $0.030494 und $0.0098063 liegen.
Wie viel wird Saitama Inu im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Saitama Inu-Preisprognosesimulation deuten darauf hin, dass SAITAMA im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.01766 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.01766 und $0.007883.
Wie viel wird Saitama Inu im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Saitama Inu könnte SAITAMA um 897.93% steigen, wobei der Wert im Jahr 2035 $0.0208088 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.0208088 und $0.009321.
Wie viel wird Saitama Inu im Jahr 2036 kosten?
Unsere jüngste Saitama Inu-Preisprognosesimulation deutet darauf hin, dass der Wert von SAITAMA im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.043053 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.043053 und $0.015429.
Wie viel wird Saitama Inu im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Saitama Inu um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.102814 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.102814 und $0.040069 liegen.
Verwandte Prognosen
Nuls-Preisprognose
Across Protocol-Preisprognose
Alien Worlds-Preisprognose
MovieBloc-Preisprognose
REN-Preisprognose
Moonwell-Preisprognose
Pandora-Preisprognose
TomoChain-Preisprognose
NORMIE-Preisprognose
QuarkChain-Preisprognose
PepeFork-Preisprognose
Star Atlas DAO-Preisprognose
Uquid Coin-Preisprognose
Artrade-Preisprognose
Vaiot-Preisprognose
HarryPotterObamaSonic10Inu (ETH)-Preisprognose
Elastos-Preisprognose
SWEAT-Preisprognose
Magic Internet Money-Preisprognose
Polymath-Preisprognose
Neon-Preisprognose
Rally-Preisprognose
Cortex-Preisprognose
Celsius Network-Preisprognose
Loom Network-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Saitama Inu?
Saitama Inu-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Saitama Inu Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Saitama Inu. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von SAITAMA über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von SAITAMA über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von SAITAMA einzuschätzen.
Wie liest man Saitama Inu-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Saitama Inu in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von SAITAMA innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Saitama Inu?
Die Preisentwicklung von Saitama Inu wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von SAITAMA. Die Marktkapitalisierung von Saitama Inu kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von SAITAMA-„Walen“, großen Inhabern von Saitama Inu, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Saitama Inu-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


