Pudgy Penguins Preisvorhersage bis zu $0.013636 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.004568 | $0.013636 |
| 2027 | $0.004397 | $0.011552 |
| 2028 | $0.007936 | $0.019439 |
| 2029 | $0.017434 | $0.057351 |
| 2030 | $0.014827 | $0.04287 |
| 2031 | $0.01753 | $0.039135 |
| 2032 | $0.026758 | $0.072594 |
| 2033 | $0.062181 | $0.193364 |
| 2034 | $0.049991 | $0.111986 |
| 2035 | $0.0591051 | $0.131948 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Pudgy Penguins eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.84 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Pudgy Penguins Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Pudgy Penguins'
'name_with_ticker' => 'Pudgy Penguins <small>PENGU</small>'
'name_lang' => 'Pudgy Penguins'
'name_lang_with_ticker' => 'Pudgy Penguins <small>PENGU</small>'
'name_with_lang' => 'Pudgy Penguins'
'name_with_lang_with_ticker' => 'Pudgy Penguins <small>PENGU</small>'
'image' => '/uploads/coins/pudgy-penguins.png?1733904738'
'price_for_sd' => 0.01322
'ticker' => 'PENGU'
'marketcap' => '$833.24M'
'low24h' => '$0.01243'
'high24h' => '$0.01375'
'volume24h' => '$380.59M'
'current_supply' => '62.86B'
'max_supply' => '79.64B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01322'
'change_24h_pct' => '6.3381%'
'ath_price' => '$0.06844'
'ath_days' => 385
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17.12.2024'
'ath_pct' => '-80.62%'
'fdv' => '$1.06B'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.651943'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013335'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011685'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004568'
'current_year_max_price_prediction' => '$0.013636'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014827'
'grand_prediction_max_price' => '$0.04287'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013472702787649
107 => 0.013523004969267
108 => 0.013636338352945
109 => 0.012667916998061
110 => 0.013102709755047
111 => 0.013358109765204
112 => 0.012204203227782
113 => 0.013335300743052
114 => 0.012651058936816
115 => 0.012418816990812
116 => 0.012731500175556
117 => 0.012609647234367
118 => 0.012504885230977
119 => 0.012446426233046
120 => 0.012676026254338
121 => 0.012665315138914
122 => 0.012289644940636
123 => 0.011799598481258
124 => 0.011964074158252
125 => 0.011904318602833
126 => 0.011687756761372
127 => 0.01183369329474
128 => 0.011191062658577
129 => 0.010085450050093
130 => 0.010815851605088
131 => 0.010787731939745
201 => 0.010773552729353
202 => 0.011322429311116
203 => 0.011269667492516
204 => 0.011173904275114
205 => 0.011685997994786
206 => 0.011499076898473
207 => 0.012075123673161
208 => 0.012454545335339
209 => 0.012358311728806
210 => 0.012715159635989
211 => 0.011967863345656
212 => 0.012216085196981
213 => 0.012267243376519
214 => 0.011679678837776
215 => 0.011278299978556
216 => 0.0112515325847
217 => 0.010555596956226
218 => 0.010927360151561
219 => 0.011254496378849
220 => 0.011097823512774
221 => 0.011048225563844
222 => 0.011301610728447
223 => 0.011321300925833
224 => 0.010872362338741
225 => 0.010965710887034
226 => 0.011354989851319
227 => 0.01095590205592
228 => 0.010180539660083
301 => 0.0099882390656916
302 => 0.0099625826215966
303 => 0.0094410481580544
304 => 0.01000108951093
305 => 0.0097566164522246
306 => 0.010528903915438
307 => 0.010087777458311
308 => 0.010068761378413
309 => 0.010040015784594
310 => 0.0095911095275055
311 => 0.0096893914683269
312 => 0.010016095608379
313 => 0.010132667326136
314 => 0.01012050794093
315 => 0.01001449457986
316 => 0.010063026953682
317 => 0.0099066872678031
318 => 0.0098514804707903
319 => 0.0096772326335918
320 => 0.0094211364501036
321 => 0.0094567481951468
322 => 0.0089493546444452
323 => 0.008672899708609
324 => 0.0085963806259871
325 => 0.0084940561107524
326 => 0.008607938452258
327 => 0.0089479172622667
328 => 0.008537830686868
329 => 0.0078347660175756
330 => 0.007877021402164
331 => 0.0079719567055978
401 => 0.0077950453957088
402 => 0.0076276136879397
403 => 0.0077731819736811
404 => 0.0074752842049642
405 => 0.0080079562277238
406 => 0.0079935489423043
407 => 0.0081920961321722
408 => 0.0083162517645951
409 => 0.0080301132277236
410 => 0.0079581501595013
411 => 0.0079991435936999
412 => 0.0073216134404016
413 => 0.0081367274639769
414 => 0.0081437766039011
415 => 0.0080834175882129
416 => 0.0085174406419447
417 => 0.009433364660504
418 => 0.0090887572017637
419 => 0.0089553147779239
420 => 0.0087016406326585
421 => 0.0090396463695442
422 => 0.0090136928026623
423 => 0.0088963209306243
424 => 0.0088253340561931
425 => 0.0089561295489089
426 => 0.008809127047196
427 => 0.0087827213585298
428 => 0.008622731614885
429 => 0.0085656225554734
430 => 0.0085233412814621
501 => 0.0084767937532479
502 => 0.0085794660015671
503 => 0.0083467971792168
504 => 0.0080662213882681
505 => 0.0080428945471229
506 => 0.0081073020064418
507 => 0.0080788065002646
508 => 0.0080427581216023
509 => 0.0079739319495443
510 => 0.0079535126945332
511 => 0.0080198653673051
512 => 0.0079449570683468
513 => 0.008055488343926
514 => 0.0080254299529429
515 => 0.0078575262243462
516 => 0.0076482560125925
517 => 0.0076463930687488
518 => 0.0076013061448984
519 => 0.0075438811685106
520 => 0.007527906853785
521 => 0.0077609226186789
522 => 0.0082432582784345
523 => 0.0081485642471103
524 => 0.0082169903893767
525 => 0.008553579285485
526 => 0.0086605707739766
527 => 0.0085846307496776
528 => 0.0084806793606403
529 => 0.0084852526941958
530 => 0.0088404860587615
531 => 0.0088626415279713
601 => 0.0089186212510393
602 => 0.0089905710150496
603 => 0.0085968841056081
604 => 0.0084667100761647
605 => 0.0084050263992343
606 => 0.0082150645488757
607 => 0.0084199221183892
608 => 0.0083005603855094
609 => 0.0083166663612523
610 => 0.0083061773234208
611 => 0.0083119050473425
612 => 0.0080078073350376
613 => 0.0081186045584963
614 => 0.0079343826850213
615 => 0.0076877302763141
616 => 0.0076869034109527
617 => 0.0077472712385515
618 => 0.0077113620925024
619 => 0.0076147315037927
620 => 0.0076284574228354
621 => 0.0075082039289307
622 => 0.0076430583742552
623 => 0.0076469255172147
624 => 0.0075949992101935
625 => 0.0078027610895433
626 => 0.0078878813010305
627 => 0.0078537022933798
628 => 0.0078854832107395
629 => 0.0081524992116298
630 => 0.0081960344704998
701 => 0.0082153699567121
702 => 0.0081894629666486
703 => 0.0078903637730676
704 => 0.0079036300941708
705 => 0.0078062906322572
706 => 0.0077240490443199
707 => 0.0077273382765371
708 => 0.0077696211433949
709 => 0.0079542729028204
710 => 0.0083428616447155
711 => 0.0083576083034157
712 => 0.0083754816839508
713 => 0.0083027816628733
714 => 0.0082808546408708
715 => 0.0083097820427367
716 => 0.0084557155431671
717 => 0.0088310961268329
718 => 0.0086984115577392
719 => 0.0085905369377076
720 => 0.008685172062264
721 => 0.0086706037266132
722 => 0.0085476323126654
723 => 0.0085441809146449
724 => 0.0083081594549397
725 => 0.0082209076952353
726 => 0.0081479935941453
727 => 0.0080683732992258
728 => 0.0080211717195011
729 => 0.0080936947986926
730 => 0.0081102816849716
731 => 0.0079517087048329
801 => 0.0079300957935872
802 => 0.008059589912204
803 => 0.0080026043786281
804 => 0.0080612154130842
805 => 0.0080748136758341
806 => 0.0080726240423368
807 => 0.0080131246005367
808 => 0.0080510477704412
809 => 0.007961348168176
810 => 0.0078638133231573
811 => 0.0078015921686709
812 => 0.007747295958943
813 => 0.0077774226518143
814 => 0.0076700264926451
815 => 0.0076356682998692
816 => 0.0080382002537759
817 => 0.0083355549360746
818 => 0.0083312312812286
819 => 0.0083049121443073
820 => 0.0082658072454842
821 => 0.0084528547762488
822 => 0.0083876911566638
823 => 0.0084351031345145
824 => 0.0084471714727519
825 => 0.0084836986978457
826 => 0.0084967540411957
827 => 0.0084572917260732
828 => 0.0083248513766062
829 => 0.0079948226177851
830 => 0.0078411933396582
831 => 0.0077904931189784
901 => 0.0077923359757067
902 => 0.0077415017602658
903 => 0.0077564747149429
904 => 0.0077362947776713
905 => 0.0076980788585301
906 => 0.007775062926497
907 => 0.0077839346231739
908 => 0.0077659656218194
909 => 0.0077701979721257
910 => 0.0076214223155707
911 => 0.0076327334056148
912 => 0.0075697518189052
913 => 0.0075579435306515
914 => 0.0073987315638838
915 => 0.0071166644866111
916 => 0.0072729570283339
917 => 0.0070841776159898
918 => 0.0070126839920603
919 => 0.0073511236882031
920 => 0.0073171537295663
921 => 0.0072590119267662
922 => 0.0071730080826114
923 => 0.0071411084202228
924 => 0.0069472961697554
925 => 0.0069358447080496
926 => 0.0070319032927522
927 => 0.006987575561086
928 => 0.0069253226376019
929 => 0.0066998488592202
930 => 0.0064463416805166
1001 => 0.0064539934687524
1002 => 0.0065346293856293
1003 => 0.0067690891891837
1004 => 0.0066774816877392
1005 => 0.0066110193943662
1006 => 0.0065985730046667
1007 => 0.0067543656300384
1008 => 0.0069748448345034
1009 => 0.0070782887442942
1010 => 0.0069757789713298
1011 => 0.0068580212636663
1012 => 0.0068651886296951
1013 => 0.0069128699048482
1014 => 0.0069178805326898
1015 => 0.0068412323706889
1016 => 0.006862808379323
1017 => 0.0068300324492562
1018 => 0.0066288866269361
1019 => 0.0066252485368506
1020 => 0.0065758841081387
1021 => 0.006574389372856
1022 => 0.0064904081650832
1023 => 0.0064786586135811
1024 => 0.0063119088282534
1025 => 0.006421664041921
1026 => 0.0063480460070001
1027 => 0.0062370862636354
1028 => 0.0062179567620561
1029 => 0.0062173817061391
1030 => 0.00633131255243
1031 => 0.0064203326936483
1101 => 0.0063493266242361
1102 => 0.0063331599186258
1103 => 0.0065057780389931
1104 => 0.0064838108097273
1105 => 0.0064647873308565
1106 => 0.0069551033399806
1107 => 0.0065669799589236
1108 => 0.0063977360114746
1109 => 0.0061882644879526
1110 => 0.0062564694722584
1111 => 0.0062708412645914
1112 => 0.005767100010601
1113 => 0.005562732246594
1114 => 0.0054926009314236
1115 => 0.0054522393680317
1116 => 0.005470632639298
1117 => 0.0052866776817439
1118 => 0.0054102984555544
1119 => 0.0052510090116381
1120 => 0.0052243036179928
1121 => 0.0055091328758908
1122 => 0.0055487652031789
1123 => 0.0053796813821689
1124 => 0.0054882605674415
1125 => 0.005448888245498
1126 => 0.0052537395719656
1127 => 0.0052462863280531
1128 => 0.0051483675834821
1129 => 0.0049951437090336
1130 => 0.0049251162868652
1201 => 0.0048886453973939
1202 => 0.0049036939971932
1203 => 0.00489608496464
1204 => 0.0048464308802818
1205 => 0.0048989310786324
1206 => 0.0047648147664265
1207 => 0.0047114085702576
1208 => 0.0046872862304624
1209 => 0.0045682502839328
1210 => 0.0047576894103871
1211 => 0.0047950113047898
1212 => 0.0048324067348538
1213 => 0.0051579084226167
1214 => 0.0051416472781543
1215 => 0.005288640104596
1216 => 0.0052829282336629
1217 => 0.0052410034984358
1218 => 0.005064129936797
1219 => 0.0051346285859982
1220 => 0.0049176447016796
1221 => 0.005080223781281
1222 => 0.0050060294788156
1223 => 0.0050551386129847
1224 => 0.0049668359617566
1225 => 0.0050157062948733
1226 => 0.0048038617105037
1227 => 0.0046060442183531
1228 => 0.0046856517518471
1229 => 0.0047721942449808
1230 => 0.0049598404207118
1231 => 0.0048480799064938
]
'min_raw' => 0.0045682502839328
'max_raw' => 0.013636338352945
'avg_raw' => 0.0091022943184391
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004568'
'max' => '$0.013636'
'avg' => '$0.0091022'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0086538997160672
'max_diff' => 0.00041418835294543
'year' => 2026
]
1 => [
'items' => [
101 => 0.0048882732135395
102 => 0.0047536323632146
103 => 0.0044758298307368
104 => 0.0044774021629014
105 => 0.0044346682955368
106 => 0.0043977399948871
107 => 0.0048609169459642
108 => 0.0048033135703537
109 => 0.0047115301302618
110 => 0.0048343859121538
111 => 0.0048668709308694
112 => 0.0048677957336837
113 => 0.0049574281407853
114 => 0.005005264972523
115 => 0.0050136964214534
116 => 0.0051547349506642
117 => 0.0052020092053125
118 => 0.0053967251697057
119 => 0.0050012063515674
120 => 0.0049930609017862
121 => 0.0048361147449507
122 => 0.0047365770110651
123 => 0.0048429301787481
124 => 0.0049371445666601
125 => 0.0048390422486047
126 => 0.0048518523402898
127 => 0.0047201579935543
128 => 0.0047672325257173
129 => 0.0048077794544404
130 => 0.0047853918236378
131 => 0.0047518764567528
201 => 0.0049294200612581
202 => 0.0049194023552929
203 => 0.005084735041518
204 => 0.0052136236934844
205 => 0.0054446151994105
206 => 0.0052035635211171
207 => 0.0051947786398664
208 => 0.0052806522632308
209 => 0.0052019960585082
210 => 0.005251704064773
211 => 0.0054366064711184
212 => 0.0054405131675991
213 => 0.0053750709680536
214 => 0.0053710888042638
215 => 0.0053836576945458
216 => 0.0054572740775092
217 => 0.0054315502512988
218 => 0.0054613185142371
219 => 0.0054985441828692
220 => 0.0056525253316881
221 => 0.0056896496653677
222 => 0.0055994567812866
223 => 0.0056076001888722
224 => 0.0055738655743758
225 => 0.0055412783594659
226 => 0.005614529659603
227 => 0.0057483978503615
228 => 0.0057475650632945
301 => 0.0057786198815247
302 => 0.0057979667760101
303 => 0.0057149157420864
304 => 0.0056608525728733
305 => 0.0056815838320784
306 => 0.0057147335670156
307 => 0.0056708338198193
308 => 0.0053998642437827
309 => 0.0054820591035486
310 => 0.0054683778597603
311 => 0.0054488941049096
312 => 0.0055315416719983
313 => 0.0055235701125325
314 => 0.00528479095777
315 => 0.0053000768245409
316 => 0.0052857205419567
317 => 0.0053321086280051
318 => 0.0051994909496288
319 => 0.0052402832543037
320 => 0.0052658678053916
321 => 0.0052809373025322
322 => 0.005335378659455
323 => 0.0053289905945799
324 => 0.0053349815683731
325 => 0.0054157037287041
326 => 0.0058239687151583
327 => 0.005846189677585
328 => 0.0057367655316604
329 => 0.0057804783196615
330 => 0.0056965593256353
331 => 0.0057528947085335
401 => 0.0057914379467488
402 => 0.0056172684646921
403 => 0.0056069552783153
404 => 0.0055226899207492
405 => 0.0055679693508714
406 => 0.0054959265218407
407 => 0.0055136033121337
408 => 0.0054641774654397
409 => 0.0055531341489009
410 => 0.0056526015434817
411 => 0.0056777309354393
412 => 0.0056116263240824
413 => 0.0055637622289539
414 => 0.0054797286453213
415 => 0.0056194783677129
416 => 0.0056603454453358
417 => 0.0056192637103518
418 => 0.0056097441747023
419 => 0.0055917046718481
420 => 0.0056135713405111
421 => 0.0056601228744544
422 => 0.0056381700307186
423 => 0.0056526702707654
424 => 0.0055974103082895
425 => 0.0057149432354344
426 => 0.0059016138095798
427 => 0.0059022139859994
428 => 0.0058802610239296
429 => 0.0058712783448337
430 => 0.0058938034161345
501 => 0.0059060223432884
502 => 0.0059788642934834
503 => 0.006057026608194
504 => 0.0064217760260587
505 => 0.0063193558490907
506 => 0.0066429832316602
507 => 0.0068989304735165
508 => 0.0069756778601328
509 => 0.0069050738756894
510 => 0.0066635414588609
511 => 0.0066516907262
512 => 0.0070126421292979
513 => 0.0069106568253012
514 => 0.0068985259979053
515 => 0.0067694744897696
516 => 0.006845759914418
517 => 0.0068290751730078
518 => 0.0068027374924462
519 => 0.0069482847685866
520 => 0.0072207362764265
521 => 0.0071782721538956
522 => 0.0071465746562802
523 => 0.0070076854487325
524 => 0.0070913277737038
525 => 0.0070615443438447
526 => 0.0071895128595509
527 => 0.0071137071456963
528 => 0.0069098841863181
529 => 0.0069423436644083
530 => 0.0069374374795944
531 => 0.0070384064154091
601 => 0.0070080980470806
602 => 0.0069315192842463
603 => 0.0072198050667919
604 => 0.0072010853916032
605 => 0.0072276256111073
606 => 0.0072393094365166
607 => 0.0074147839121868
608 => 0.007486670190312
609 => 0.0075029896339928
610 => 0.0075712760383274
611 => 0.0075012906060455
612 => 0.0077812822339409
613 => 0.0079674603285269
614 => 0.0081837157660256
615 => 0.0084997230841932
616 => 0.0086185447590553
617 => 0.008597080687023
618 => 0.008836673829116
619 => 0.0092672173796007
620 => 0.0086841058482872
621 => 0.0092981237066658
622 => 0.0091037327418802
623 => 0.0086428352613177
624 => 0.0086131588971939
625 => 0.0089252840221605
626 => 0.0096175475084067
627 => 0.0094441433566895
628 => 0.0096178311354785
629 => 0.0094152151155515
630 => 0.0094051535223803
701 => 0.0096079905276381
702 => 0.010081930246493
703 => 0.0098567792514296
704 => 0.0095339700907177
705 => 0.0097723273515205
706 => 0.00956584023329
707 => 0.0091005669638113
708 => 0.0094440107578027
709 => 0.0092143596734768
710 => 0.0092813840688062
711 => 0.0097640764900385
712 => 0.0097059976608701
713 => 0.0097811570437688
714 => 0.0096485027002161
715 => 0.009524582625668
716 => 0.0092932766040983
717 => 0.0092247982943606
718 => 0.0092437232355806
719 => 0.0092247889160996
720 => 0.0090953753228434
721 => 0.0090674284697013
722 => 0.0090208491567514
723 => 0.0090352860335334
724 => 0.008947703297929
725 => 0.0091129900155311
726 => 0.0091436686868196
727 => 0.009263950576122
728 => 0.0092764386408892
729 => 0.009611421990491
730 => 0.0094269187906968
731 => 0.0095506994663586
801 => 0.0095396273576585
802 => 0.0086528243072849
803 => 0.0087750179432968
804 => 0.008965112894456
805 => 0.0088794753766264
806 => 0.0087584039625084
807 => 0.0086606323041695
808 => 0.0085124982441208
809 => 0.0087209940889767
810 => 0.0089951439539011
811 => 0.0092833915338799
812 => 0.0096297021144948
813 => 0.0095524096244011
814 => 0.0092769174984639
815 => 0.0092892758739863
816 => 0.0093656704886244
817 => 0.0092667325214854
818 => 0.0092375537834776
819 => 0.0093616617780921
820 => 0.0093625164416425
821 => 0.0092486763533964
822 => 0.009122163927827
823 => 0.0091216338361445
824 => 0.0090991221719795
825 => 0.0094192198905965
826 => 0.0095952412703062
827 => 0.0096154218378173
828 => 0.0095938829573224
829 => 0.0096021724175773
830 => 0.0094997494550907
831 => 0.0097338579747491
901 => 0.0099486991033207
902 => 0.0098911170914522
903 => 0.0098047934698961
904 => 0.0097360325474178
905 => 0.0098749192033699
906 => 0.0098687347992082
907 => 0.0099468226534859
908 => 0.0099432801373586
909 => 0.0099170221289977
910 => 0.0098911180292084
911 => 0.0099938248568064
912 => 0.0099642469398793
913 => 0.0099346230802777
914 => 0.0098752078946606
915 => 0.0098832834051677
916 => 0.0097969746886019
917 => 0.0097570443271004
918 => 0.0091565874964519
919 => 0.0089961258108096
920 => 0.0090466103236115
921 => 0.0090632311360556
922 => 0.0089933980048269
923 => 0.0090935207763494
924 => 0.0090779167484638
925 => 0.0091386228929154
926 => 0.0091006963294165
927 => 0.0091022528488118
928 => 0.0092137867852663
929 => 0.0092461655615183
930 => 0.0092296974545878
1001 => 0.0092412311521883
1002 => 0.009507020345322
1003 => 0.0094692336215183
1004 => 0.0094491601776149
1005 => 0.0094547206587605
1006 => 0.0095226354961907
1007 => 0.0095416479426586
1008 => 0.0094610908709935
1009 => 0.0094990820516856
1010 => 0.009660843677274
1011 => 0.0097174510913148
1012 => 0.0098981147838329
1013 => 0.0098213656362102
1014 => 0.0099622420182971
1015 => 0.010395247988534
1016 => 0.010741163119294
1017 => 0.0104230452695
1018 => 0.011058274355114
1019 => 0.011552891316465
1020 => 0.01153390709366
1021 => 0.011447659185752
1022 => 0.010884550925327
1023 => 0.010366370308612
1024 => 0.010799850397605
1025 => 0.010800955427498
1026 => 0.010763719103419
1027 => 0.010532447492578
1028 => 0.010755671352672
1029 => 0.010773390052056
1030 => 0.010763472292184
1031 => 0.010586156890397
1101 => 0.010315429045232
1102 => 0.010368328618146
1103 => 0.010454979197702
1104 => 0.010290931573398
1105 => 0.010238508417437
1106 => 0.010335973038282
1107 => 0.010650024354205
1108 => 0.010590654772105
1109 => 0.010589104392386
1110 => 0.01084311264123
1111 => 0.010661297553468
1112 => 0.010368995851168
1113 => 0.010295185816352
1114 => 0.01003320991715
1115 => 0.010214157603855
1116 => 0.010220669588965
1117 => 0.010121566390197
1118 => 0.010377037529559
1119 => 0.010374683318035
1120 => 0.010617215142999
1121 => 0.011080844901536
1122 => 0.010943726768102
1123 => 0.010784273297328
1124 => 0.010801610310767
1125 => 0.010991754556789
1126 => 0.010876789005073
1127 => 0.010918131419038
1128 => 0.010991691980094
1129 => 0.011036072892984
1130 => 0.010795224580385
1201 => 0.010739071317612
1202 => 0.010624201449094
1203 => 0.010594234044546
1204 => 0.010687793155615
1205 => 0.01066314363534
1206 => 0.010220122281832
1207 => 0.010173824085443
1208 => 0.010175243985027
1209 => 0.010058824968847
1210 => 0.0098812580254079
1211 => 0.010347893350796
1212 => 0.01031041600361
1213 => 0.010269043912833
1214 => 0.010274111757887
1215 => 0.0104766623369
1216 => 0.010359172772023
1217 => 0.010671538036408
1218 => 0.01060732512861
1219 => 0.010541465402024
1220 => 0.010532361581674
1221 => 0.010507011205826
1222 => 0.010420075334585
1223 => 0.010315095046025
1224 => 0.010245777966281
1225 => 0.0094511885841202
1226 => 0.0095986597515355
1227 => 0.0097683118872269
1228 => 0.0098268751246293
1229 => 0.0097266986545998
1230 => 0.010424030912204
1231 => 0.01055144023533
]
'min_raw' => 0.0043977399948871
'max_raw' => 0.011552891316465
'avg_raw' => 0.0079753156556759
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004397'
'max' => '$0.011552'
'avg' => '$0.007975'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001705102890457
'max_diff' => -0.0020834470364807
'year' => 2027
]
2 => [
'items' => [
101 => 0.010165509084879
102 => 0.010093317124095
103 => 0.010428763805135
104 => 0.010226448449779
105 => 0.010317551041908
106 => 0.010120637068178
107 => 0.010520751060369
108 => 0.010517702862123
109 => 0.010362049482176
110 => 0.010493606653039
111 => 0.010470745357139
112 => 0.010295013074536
113 => 0.010526322087176
114 => 0.01052643681356
115 => 0.010376623819558
116 => 0.010201675040845
117 => 0.010170398331316
118 => 0.010146835532122
119 => 0.010311756037731
120 => 0.010459623247368
121 => 0.010734767465112
122 => 0.010803945258719
123 => 0.01107395079259
124 => 0.010913175643501
125 => 0.010984445184705
126 => 0.011061818353375
127 => 0.01109891389574
128 => 0.011038468700113
129 => 0.011457898432928
130 => 0.011493311153372
131 => 0.011505184732218
201 => 0.011363755386208
202 => 0.011489377747416
203 => 0.011430603204782
204 => 0.011583518236677
205 => 0.011607497266195
206 => 0.011587187881272
207 => 0.011594799203724
208 => 0.011236889919242
209 => 0.01121833043472
210 => 0.010965270546338
211 => 0.011068394321378
212 => 0.010875609366792
213 => 0.010936743461796
214 => 0.010963690788367
215 => 0.010949615034214
216 => 0.011074224784893
217 => 0.010968281040725
218 => 0.010688678081103
219 => 0.010408998943841
220 => 0.010405487800095
221 => 0.01033185322
222 => 0.010278628905438
223 => 0.010288881796657
224 => 0.010325014322617
225 => 0.010276528817344
226 => 0.010286875658172
227 => 0.010458702156548
228 => 0.010493160735387
229 => 0.010376057020657
301 => 0.0099058687080292
302 => 0.0097904833167324
303 => 0.0098734200478048
304 => 0.0098337816321618
305 => 0.0079366292723428
306 => 0.0083823370784236
307 => 0.0081175126348573
308 => 0.0082395559224395
309 => 0.0079692387415155
310 => 0.0080982482687898
311 => 0.0080744249197758
312 => 0.0087911098825009
313 => 0.0087799198325758
314 => 0.0087852759173107
315 => 0.0085296160377122
316 => 0.0089368891678348
317 => 0.0091375265568012
318 => 0.0091003939158947
319 => 0.0091097394016196
320 => 0.0089491529937916
321 => 0.0087868307447629
322 => 0.0086067903893751
323 => 0.0089412831160252
324 => 0.008904093234803
325 => 0.0089893934418298
326 => 0.0092063358850963
327 => 0.0092382814839515
328 => 0.0092812166927731
329 => 0.0092658274767468
330 => 0.0096324610369813
331 => 0.0095880592937108
401 => 0.0096950547197394
402 => 0.0094749570106361
403 => 0.0092258955609194
404 => 0.0092732340000783
405 => 0.0092686749277156
406 => 0.0092106327038789
407 => 0.0091582347794423
408 => 0.0090710069982791
409 => 0.0093470086051622
410 => 0.0093358034439609
411 => 0.0095172019792355
412 => 0.0094851380261143
413 => 0.009271007099791
414 => 0.0092786548277157
415 => 0.0093300894733818
416 => 0.0095081053693028
417 => 0.0095609526074585
418 => 0.0095364716611465
419 => 0.0095944162452162
420 => 0.0096402132818739
421 => 0.0096001676479168
422 => 0.010167129375981
423 => 0.0099316873380548
424 => 0.010046440149145
425 => 0.010073808018427
426 => 0.010003705796745
427 => 0.010018908458455
428 => 0.010041936348469
429 => 0.010181757187311
430 => 0.010548687525917
501 => 0.010711198475107
502 => 0.011200120683892
503 => 0.010697704203038
504 => 0.01066789288827
505 => 0.010755962542109
506 => 0.011043011636337
507 => 0.011275637966059
508 => 0.011352813540163
509 => 0.011363013566311
510 => 0.011507800073865
511 => 0.011590788999886
512 => 0.011490219183584
513 => 0.011404996794368
514 => 0.011099740774385
515 => 0.011135074989883
516 => 0.011378492695405
517 => 0.011722334541686
518 => 0.012017386616443
519 => 0.011914069663466
520 => 0.012702305084276
521 => 0.012780455406597
522 => 0.012769657558954
523 => 0.012947695623528
524 => 0.012594326322171
525 => 0.012443254099634
526 => 0.011423422842231
527 => 0.011709953827185
528 => 0.01212644344119
529 => 0.01207131947902
530 => 0.011768853588531
531 => 0.012017157168942
601 => 0.011935060240087
602 => 0.011870306986095
603 => 0.01216695419567
604 => 0.011840778403146
605 => 0.012123189588148
606 => 0.011760994322214
607 => 0.011914541606605
608 => 0.011827380741738
609 => 0.01188378450334
610 => 0.01155404926553
611 => 0.011731966395982
612 => 0.011546647327966
613 => 0.011546559462598
614 => 0.0115424685339
615 => 0.011760495595591
616 => 0.011767605450245
617 => 0.011606483122235
618 => 0.011583262877565
619 => 0.011669120292333
620 => 0.011568603745732
621 => 0.011615634805243
622 => 0.011570028268614
623 => 0.011559761276598
624 => 0.01147795213743
625 => 0.011442706510887
626 => 0.011456527229223
627 => 0.011409349992476
628 => 0.01138092400086
629 => 0.011536813888696
630 => 0.011453528210206
701 => 0.011524049163983
702 => 0.0114436816367
703 => 0.011165092772672
704 => 0.011004873370946
705 => 0.010478644832
706 => 0.01062788259286
707 => 0.010726827382709
708 => 0.010694126130254
709 => 0.010764381074232
710 => 0.010768694157205
711 => 0.010745853558753
712 => 0.010719407071808
713 => 0.010706534384546
714 => 0.010802476849004
715 => 0.010858174678897
716 => 0.010736757816081
717 => 0.010708311543925
718 => 0.010831070695842
719 => 0.010905953707595
720 => 0.011458847793252
721 => 0.011417887613562
722 => 0.011520689626555
723 => 0.011509115697517
724 => 0.011616868584778
725 => 0.011792999015682
726 => 0.011434876602812
727 => 0.011497034270745
728 => 0.011481794645998
729 => 0.011648176872941
730 => 0.011648696300092
731 => 0.011548941843631
801 => 0.01160302035281
802 => 0.011572835212553
803 => 0.011627383840764
804 => 0.01141734056539
805 => 0.011673150602025
806 => 0.011818178408762
807 => 0.011820192119999
808 => 0.011888934149381
809 => 0.011958780032502
810 => 0.01209284312286
811 => 0.011955041085675
812 => 0.011707148635538
813 => 0.01172504566975
814 => 0.011579706416935
815 => 0.011582149596033
816 => 0.011569107714535
817 => 0.011608247382657
818 => 0.011425929521529
819 => 0.011468719159124
820 => 0.011408813415915
821 => 0.011496904047358
822 => 0.011402133089828
823 => 0.011481787296989
824 => 0.011516163412221
825 => 0.011643012017491
826 => 0.011383397447692
827 => 0.010854025765512
828 => 0.010965306111118
829 => 0.010800713739084
830 => 0.010815947389763
831 => 0.010846721788553
901 => 0.01074697189332
902 => 0.01076600102985
903 => 0.010765321175187
904 => 0.01075946255499
905 => 0.010733513754717
906 => 0.010695882860506
907 => 0.010845792760862
908 => 0.010871265374119
909 => 0.010927887837999
910 => 0.011096357883123
911 => 0.011079523752818
912 => 0.011106980917787
913 => 0.011047042080825
914 => 0.010818727780501
915 => 0.010831126345462
916 => 0.010676516041727
917 => 0.010923934104921
918 => 0.010865342241798
919 => 0.01082756768648
920 => 0.010817260549083
921 => 0.010986148198863
922 => 0.011036682030666
923 => 0.011005192737886
924 => 0.010940607279703
925 => 0.01106463045239
926 => 0.011097813821284
927 => 0.011105242353824
928 => 0.011324987636742
929 => 0.011117523674073
930 => 0.011167462311902
1001 => 0.011557069308629
1002 => 0.011203749524688
1003 => 0.011390910894213
1004 => 0.011381750319115
1005 => 0.011477495742569
1006 => 0.011373896399793
1007 => 0.011375180637809
1008 => 0.011460196087479
1009 => 0.011340807221035
1010 => 0.011311244858734
1011 => 0.011270404666944
1012 => 0.011359577731608
1013 => 0.011413032950922
1014 => 0.011843842760067
1015 => 0.012122165544088
1016 => 0.01211008281801
1017 => 0.012220496316452
1018 => 0.012170754024132
1019 => 0.012010123040877
1020 => 0.012284300542431
1021 => 0.012197539308866
1022 => 0.012204691799546
1023 => 0.012204425583486
1024 => 0.012262114219008
1025 => 0.012221236533654
1026 => 0.012140662419815
1027 => 0.012194151276818
1028 => 0.012352994059502
1029 => 0.012846046930844
1030 => 0.013121965849729
1031 => 0.012829436265473
1101 => 0.013031219255565
1102 => 0.012910221364141
1103 => 0.012888232447893
1104 => 0.013014967077317
1105 => 0.013141923538933
1106 => 0.013133836961176
1107 => 0.013041673089329
1108 => 0.012989612056695
1109 => 0.013383835637528
1110 => 0.013674292856463
1111 => 0.013654485621382
1112 => 0.013741908315373
1113 => 0.013998584048815
1114 => 0.014022051261115
1115 => 0.014019094931753
1116 => 0.013960928997515
1117 => 0.014213659590644
1118 => 0.014424491897804
1119 => 0.013947465264315
1120 => 0.01412911076161
1121 => 0.014210657277599
1122 => 0.014330391756831
1123 => 0.014532403893124
1124 => 0.014751842654211
1125 => 0.014782873701052
1126 => 0.014760855688346
1127 => 0.014616129926579
1128 => 0.014856242437409
1129 => 0.014996894714922
1130 => 0.015080649927411
1201 => 0.015293039210745
1202 => 0.01421116088112
1203 => 0.013445353626569
1204 => 0.01332576176538
1205 => 0.013568956517825
1206 => 0.013633085034603
1207 => 0.0136072349099
1208 => 0.012745249220754
1209 => 0.013321223589119
1210 => 0.013940923580178
1211 => 0.013964728780643
1212 => 0.014274963553483
1213 => 0.014375988712473
1214 => 0.014625768368011
1215 => 0.014610144582549
1216 => 0.01467096195381
1217 => 0.014656981093367
1218 => 0.015119645307939
1219 => 0.015630032642912
1220 => 0.015612359552434
1221 => 0.015538985334403
1222 => 0.015647958560343
1223 => 0.016174732986466
1224 => 0.016126236038697
1225 => 0.016173346692495
1226 => 0.0167944434286
1227 => 0.017601957535517
1228 => 0.017226786159763
1229 => 0.018040800092493
1230 => 0.018553178714123
1231 => 0.019439284559292
]
'min_raw' => 0.0079366292723428
'max_raw' => 0.019439284559292
'avg_raw' => 0.013687956915818
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007936'
'max' => '$0.019439'
'avg' => '$0.013687'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0035388892774558
'max_diff' => 0.0078863932428275
'year' => 2028
]
3 => [
'items' => [
101 => 0.019328339743314
102 => 0.019673294246293
103 => 0.01912972536783
104 => 0.017881581349484
105 => 0.017684057780878
106 => 0.018079504967322
107 => 0.019051673288022
108 => 0.018048887927249
109 => 0.018251750099703
110 => 0.018193325780389
111 => 0.0181902125967
112 => 0.018309030155871
113 => 0.018136679089187
114 => 0.017434489838149
115 => 0.017756299033872
116 => 0.017632033048856
117 => 0.017769915423874
118 => 0.018514009734828
119 => 0.018185027902963
120 => 0.017838472267406
121 => 0.018273129941246
122 => 0.018826598524626
123 => 0.018791963455357
124 => 0.018724756944639
125 => 0.019103596526739
126 => 0.019729328526785
127 => 0.019898461372003
128 => 0.020023311780574
129 => 0.020040526542551
130 => 0.020217849289829
131 => 0.019264340186629
201 => 0.020777583621258
202 => 0.021038878959912
203 => 0.020989766265827
204 => 0.021280185037752
205 => 0.021194736467839
206 => 0.021070934896504
207 => 0.02153131042385
208 => 0.021003527032137
209 => 0.020254404953682
210 => 0.019843421765487
211 => 0.02038463758077
212 => 0.020715139193335
213 => 0.02093357973539
214 => 0.02099967971143
215 => 0.019338358384018
216 => 0.018442998329648
217 => 0.019016913859175
218 => 0.019717130414733
219 => 0.019260450448308
220 => 0.019278351438382
221 => 0.018627245819645
222 => 0.019774738814474
223 => 0.019607558737063
224 => 0.02047488927441
225 => 0.020267893880909
226 => 0.020975168264538
227 => 0.020788919215983
228 => 0.021562028603492
301 => 0.02187044286927
302 => 0.02238831842236
303 => 0.022769269787345
304 => 0.022992971715303
305 => 0.022979541490633
306 => 0.02386595997706
307 => 0.023343269964717
308 => 0.022686648120637
309 => 0.022674771903093
310 => 0.023014845660546
311 => 0.023727546961487
312 => 0.023912340039439
313 => 0.024015614160079
314 => 0.023857446249321
315 => 0.023290103702453
316 => 0.023045128067208
317 => 0.023253854406065
318 => 0.022998600029702
319 => 0.023439240695033
320 => 0.024044334444299
321 => 0.023919384977875
322 => 0.024337072310658
323 => 0.0247693347581
324 => 0.025387489472062
325 => 0.025549098004495
326 => 0.025816230763184
327 => 0.026091198120415
328 => 0.026179510224979
329 => 0.026348125434229
330 => 0.026347236748846
331 => 0.026855370031034
401 => 0.027415856776866
402 => 0.02762742754812
403 => 0.028113922870537
404 => 0.027280816679727
405 => 0.02791273729549
406 => 0.028482745508908
407 => 0.027803158218191
408 => 0.028739810974913
409 => 0.028776179078956
410 => 0.029325294271799
411 => 0.02876866082611
412 => 0.028438133662897
413 => 0.029392353198402
414 => 0.029854069973999
415 => 0.029714997123614
416 => 0.028656645865306
417 => 0.02804064003815
418 => 0.026428433969832
419 => 0.028338161699874
420 => 0.029268334369655
421 => 0.028654236942804
422 => 0.028963951964994
423 => 0.030653656700626
424 => 0.031296986863675
425 => 0.031163178686978
426 => 0.03118579006617
427 => 0.031532919344883
428 => 0.033072281734281
429 => 0.032149860108413
430 => 0.03285501687891
501 => 0.03322902948735
502 => 0.033576433242018
503 => 0.032723319418638
504 => 0.03161343086915
505 => 0.031261882575576
506 => 0.028593177056241
507 => 0.028454259344359
508 => 0.028376280623043
509 => 0.027884635815449
510 => 0.027498337669527
511 => 0.027191139041559
512 => 0.026384958104496
513 => 0.026657020505065
514 => 0.025372136354425
515 => 0.026194159700506
516 => 0.024143453571472
517 => 0.025851342572793
518 => 0.024921816237558
519 => 0.025545968172138
520 => 0.025543790564837
521 => 0.024394528965724
522 => 0.023731658859834
523 => 0.024154065490598
524 => 0.024606918929457
525 => 0.02468039287633
526 => 0.025267529180494
527 => 0.025431386302534
528 => 0.024934891572996
529 => 0.024100957245077
530 => 0.024294661169436
531 => 0.023727733455989
601 => 0.022734214444733
602 => 0.023447777143795
603 => 0.023691418822392
604 => 0.02379902486762
605 => 0.02282201302648
606 => 0.022515014694034
607 => 0.022351571357806
608 => 0.023974837285175
609 => 0.024063763456992
610 => 0.023608804589083
611 => 0.025665261813002
612 => 0.025199822207895
613 => 0.025719832282272
614 => 0.024277084568609
615 => 0.024332199474188
616 => 0.023649179585482
617 => 0.024031625083752
618 => 0.023761324932369
619 => 0.024000727266892
620 => 0.024144224039112
621 => 0.024827131850975
622 => 0.025859140283035
623 => 0.024725128196852
624 => 0.024231022891549
625 => 0.024537563044005
626 => 0.025353919865384
627 => 0.026590742238309
628 => 0.025858518500168
629 => 0.02618346696119
630 => 0.026254453743972
701 => 0.025714539067862
702 => 0.026610649662544
703 => 0.027090882610223
704 => 0.027583502244336
705 => 0.028011230069747
706 => 0.027386739129533
707 => 0.028055033952822
708 => 0.027516506295168
709 => 0.027033391314287
710 => 0.027034124000292
711 => 0.026731058915601
712 => 0.026143832125355
713 => 0.026035538495559
714 => 0.026598895633739
715 => 0.02705065470844
716 => 0.027087863749612
717 => 0.027337980785586
718 => 0.027485997471065
719 => 0.028936762207685
720 => 0.029520271786109
721 => 0.030233776253334
722 => 0.030511726454227
723 => 0.031348256908252
724 => 0.030672690626945
725 => 0.030526527612473
726 => 0.028497378358034
727 => 0.028829651434774
728 => 0.029361652690217
729 => 0.028506150862788
730 => 0.029048769862915
731 => 0.029155894347782
801 => 0.028477081238054
802 => 0.028839664649743
803 => 0.027876750606787
804 => 0.025880129177831
805 => 0.026612872472959
806 => 0.027152418176899
807 => 0.026382419931871
808 => 0.027762611983037
809 => 0.026956332279693
810 => 0.026700780321984
811 => 0.02570378102411
812 => 0.026174326314684
813 => 0.026810745557745
814 => 0.026417512457212
815 => 0.027233530185066
816 => 0.028389228911686
817 => 0.029212848647325
818 => 0.0292760759437
819 => 0.028746543631921
820 => 0.029595122540977
821 => 0.029601303511915
822 => 0.028644103035953
823 => 0.028057823074141
824 => 0.027924619033274
825 => 0.028257388843551
826 => 0.028661432825923
827 => 0.029298497572719
828 => 0.029683462456815
829 => 0.030687246704941
830 => 0.030958841941734
831 => 0.031257242764439
901 => 0.031655998286978
902 => 0.032134806530604
903 => 0.031087201352119
904 => 0.031128824658841
905 => 0.030153309221717
906 => 0.029110831074084
907 => 0.029901942041402
908 => 0.030936214394087
909 => 0.030698951173612
910 => 0.03067225421446
911 => 0.030717151094634
912 => 0.030538262374688
913 => 0.029729155324297
914 => 0.029322826828868
915 => 0.029847094253426
916 => 0.030125719057119
917 => 0.030557841829012
918 => 0.030504573576371
919 => 0.031617675430168
920 => 0.032050193152101
921 => 0.031939536610353
922 => 0.031959900077133
923 => 0.032742952752953
924 => 0.03361386837553
925 => 0.034429595783512
926 => 0.035259388739219
927 => 0.034259040943744
928 => 0.033751126026077
929 => 0.034275164571877
930 => 0.033997102343099
1001 => 0.035594930388273
1002 => 0.035705560535363
1003 => 0.037303273039382
1004 => 0.038819692457763
1005 => 0.037867256590554
1006 => 0.038765360714678
1007 => 0.039736733548423
1008 => 0.041610669344278
1009 => 0.04097959369409
1010 => 0.040496199636262
1011 => 0.040039394587358
1012 => 0.040989933378368
1013 => 0.042212786347775
1014 => 0.042476177165045
1015 => 0.042902970912058
1016 => 0.04245424947293
1017 => 0.042994685021315
1018 => 0.044902659986527
1019 => 0.044387108308766
1020 => 0.043654942047277
1021 => 0.045161105038449
1022 => 0.045706179569893
1023 => 0.04953179808932
1024 => 0.054361799498514
1025 => 0.052362147199608
1026 => 0.051120898489301
1027 => 0.051412621379037
1028 => 0.053176374387808
1029 => 0.053742835875504
1030 => 0.052202998280964
1031 => 0.052746894951287
1101 => 0.055743819079511
1102 => 0.057351572721465
1103 => 0.055168027325569
1104 => 0.049143712178958
1105 => 0.043589018486235
1106 => 0.045062373384662
1107 => 0.044895340662706
1108 => 0.048115161764583
1109 => 0.044374812571756
1110 => 0.044437790459503
1111 => 0.047724194051917
1112 => 0.046847437916682
1113 => 0.045427205264043
1114 => 0.043599387756323
1115 => 0.040220498040645
1116 => 0.037227721192159
1117 => 0.043097245787386
1118 => 0.042844141213802
1119 => 0.042477608283256
1120 => 0.04329328765718
1121 => 0.047253995162329
1122 => 0.047162688034776
1123 => 0.046581838674591
1124 => 0.04702240779492
1125 => 0.045349971367129
1126 => 0.04578099631524
1127 => 0.043588138594374
1128 => 0.044579401866033
1129 => 0.045424158082629
1130 => 0.045593755399941
1201 => 0.045975866815696
1202 => 0.042710766604684
1203 => 0.044176700741123
1204 => 0.045037799706827
1205 => 0.041147323252726
1206 => 0.044960897496165
1207 => 0.042653928474202
1208 => 0.041870908538636
1209 => 0.042925141726844
1210 => 0.042514306028124
1211 => 0.042161093619446
1212 => 0.041963995026445
1213 => 0.042738107528393
1214 => 0.042701994254913
1215 => 0.041435395952963
1216 => 0.039783170101221
1217 => 0.04033771132953
1218 => 0.040136241302434
1219 => 0.039406087934085
1220 => 0.039898123145298
1221 => 0.037731449088438
1222 => 0.034003798987527
1223 => 0.036466398825199
1224 => 0.036371591410242
1225 => 0.036323785212446
1226 => 0.038174360929197
1227 => 0.037996470774077
1228 => 0.037673598400629
1229 => 0.039400158129747
1230 => 0.038769940603114
1231 => 0.040712122522274
]
'min_raw' => 0.017434489838149
'max_raw' => 0.057351572721465
'avg_raw' => 0.037393031279807
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.017434'
'max' => '$0.057351'
'avg' => '$0.037393'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0094978605658057
'max_diff' => 0.037912288162173
'year' => 2029
]
4 => [
'items' => [
101 => 0.041991369146684
102 => 0.04166691082344
103 => 0.042870048456833
104 => 0.040350486839415
105 => 0.041187384141454
106 => 0.041359867515515
107 => 0.039378852650697
108 => 0.038025575803459
109 => 0.037935327666234
110 => 0.035588932106161
111 => 0.036842357674909
112 => 0.037945320305133
113 => 0.037417086798613
114 => 0.037249863850976
115 => 0.038104169624221
116 => 0.038170556499436
117 => 0.036656928709163
118 => 0.036971659857119
119 => 0.038284141063796
120 => 0.036938588698191
121 => 0.034324400246551
122 => 0.033676045366561
123 => 0.033589542874019
124 => 0.031831153017813
125 => 0.033719371539872
126 => 0.032895113553883
127 => 0.035498934655494
128 => 0.034011646006827
129 => 0.033947531965789
130 => 0.033850614189275
131 => 0.032337095401868
201 => 0.032668459827173
202 => 0.033769965645115
203 => 0.034162995330308
204 => 0.034121999114145
205 => 0.033764567665683
206 => 0.033928197952444
207 => 0.033401087786216
208 => 0.033214954215671
209 => 0.032627465466961
210 => 0.031764019304266
211 => 0.031884086789012
212 => 0.030173374007735
213 => 0.029241286890096
214 => 0.028983297460645
215 => 0.028638303213461
216 => 0.029022265478859
217 => 0.030168527773366
218 => 0.028785892253079
219 => 0.026415460634152
220 => 0.026557927613468
221 => 0.026878008617166
222 => 0.026281539784322
223 => 0.02571703209187
224 => 0.026207825730501
225 => 0.025203442604713
226 => 0.026999383519421
227 => 0.026950808350744
228 => 0.027620224063506
301 => 0.028038823446489
302 => 0.027074087391872
303 => 0.02683145888306
304 => 0.02696967110853
305 => 0.02468533089304
306 => 0.027433544732968
307 => 0.027457311400378
308 => 0.027253806764853
309 => 0.028717145793032
310 => 0.031805247569377
311 => 0.03064337946251
312 => 0.030193469013882
313 => 0.029338188922156
314 => 0.030477798862873
315 => 0.030390294600111
316 => 0.029994567138892
317 => 0.029755229935602
318 => 0.030196216071143
319 => 0.029700586873231
320 => 0.029611558250307
321 => 0.029072141659481
322 => 0.028879594478448
323 => 0.028737040211135
324 => 0.028580101969916
325 => 0.028926268623471
326 => 0.028141809444499
327 => 0.027195828576139
328 => 0.02711718050259
329 => 0.027334334748469
330 => 0.0272382601599
331 => 0.027116720534422
401 => 0.026884668290039
402 => 0.026815823346142
403 => 0.027039536014988
404 => 0.02678697745512
405 => 0.027159641367783
406 => 0.027058297403973
407 => 0.026492198260345
408 => 0.025786629130638
409 => 0.025780348085403
410 => 0.025628334373773
411 => 0.025434722056597
412 => 0.025380863539209
413 => 0.02616649245919
414 => 0.027792720811656
415 => 0.027473453273721
416 => 0.027704156789732
417 => 0.028838989752848
418 => 0.029199719026204
419 => 0.028943681932317
420 => 0.028593202566524
421 => 0.028608621879906
422 => 0.029806315970141
423 => 0.029881014681427
424 => 0.03006975422613
425 => 0.030312337878863
426 => 0.028984994977339
427 => 0.02854610414861
428 => 0.028338133325222
429 => 0.027697663684025
430 => 0.028388355282339
501 => 0.027985918866365
502 => 0.028040221288065
503 => 0.028004856764695
504 => 0.028024168185794
505 => 0.026998881517333
506 => 0.02737244209184
507 => 0.026751325183458
508 => 0.025919719366781
509 => 0.025916931532485
510 => 0.026120465877981
511 => 0.02599939568498
512 => 0.025673598908613
513 => 0.025719876802979
514 => 0.025314433752448
515 => 0.025769104930097
516 => 0.02578214327258
517 => 0.025607070103079
518 => 0.026307553784778
519 => 0.02659454252071
520 => 0.026479305610114
521 => 0.026586457191865
522 => 0.027486720281328
523 => 0.027633502446143
524 => 0.027698693387868
525 => 0.027611346162101
526 => 0.026602912348504
527 => 0.026647640676329
528 => 0.026319453884462
529 => 0.026042170628808
530 => 0.026053260504875
531 => 0.026195820142581
601 => 0.026818386441458
602 => 0.028128540515157
603 => 0.028178259904544
604 => 0.028238521254898
605 => 0.027993408058081
606 => 0.027919479572504
607 => 0.028017010327542
608 => 0.028509035312994
609 => 0.029774657159059
610 => 0.029327301870619
611 => 0.028963595057617
612 => 0.029282663987272
613 => 0.029233545826497
614 => 0.028818939118782
615 => 0.028807302489387
616 => 0.028011539659499
617 => 0.027717364259932
618 => 0.027471529277407
619 => 0.027203083894175
620 => 0.027043940472624
621 => 0.027288457097518
622 => 0.027344380942667
623 => 0.026809741068917
624 => 0.026736871629687
625 => 0.027173470091594
626 => 0.02698133938654
627 => 0.0271789505813
628 => 0.027224798073562
629 => 0.027217415571351
630 => 0.027016809049203
701 => 0.027144669664248
702 => 0.026842241192584
703 => 0.026513395652938
704 => 0.026303612686445
705 => 0.026120549224507
706 => 0.026222123472901
707 => 0.025860029824102
708 => 0.025744188778345
709 => 0.027101353364826
710 => 0.028103905436836
711 => 0.028089327932655
712 => 0.028000591124982
713 => 0.027868746228383
714 => 0.028499390037597
715 => 0.028279686344588
716 => 0.02843953913811
717 => 0.028480228383062
718 => 0.028603382472715
719 => 0.028647399474314
720 => 0.028514349523708
721 => 0.02806781763879
722 => 0.026955102636553
723 => 0.026437130799294
724 => 0.026266191465496
725 => 0.026272404785619
726 => 0.026101013679129
727 => 0.026151496041201
728 => 0.026083457973772
729 => 0.025954610334237
730 => 0.026214167494243
731 => 0.026244079038992
801 => 0.026183495296369
802 => 0.02619776496092
803 => 0.02569615744766
804 => 0.025734293577459
805 => 0.025521946760634
806 => 0.025482134292358
807 => 0.024945340030576
808 => 0.023994331186257
809 => 0.024521282402672
810 => 0.023884799433796
811 => 0.023643753689192
812 => 0.024784826753843
813 => 0.024670294666592
814 => 0.024474265519121
815 => 0.024184297553956
816 => 0.02407674561505
817 => 0.023423294081059
818 => 0.023384684678403
819 => 0.023708552903324
820 => 0.023559098861148
821 => 0.023349208783261
822 => 0.022589008197371
823 => 0.021734291045065
824 => 0.021760089583333
825 => 0.022031959206903
826 => 0.022822456804048
827 => 0.022513595717096
828 => 0.02228951345474
829 => 0.022247549582889
830 => 0.022772815296423
831 => 0.023516176327644
901 => 0.023864944691727
902 => 0.023519325835173
903 => 0.023122297502205
904 => 0.023146462777181
905 => 0.02330722352536
906 => 0.023324117206959
907 => 0.023065692577369
908 => 0.023138437596867
909 => 0.023027931260305
910 => 0.0223497540768
911 => 0.022337488002073
912 => 0.022171052384157
913 => 0.022166012779792
914 => 0.021882864274405
915 => 0.021843249841189
916 => 0.021281041297858
917 => 0.021651088663602
918 => 0.02140288031902
919 => 0.021028771797304
920 => 0.02096427534715
921 => 0.020962336505977
922 => 0.021346462308644
923 => 0.021646599929949
924 => 0.021407198009441
925 => 0.021352690832752
926 => 0.021934684877383
927 => 0.02186062083021
928 => 0.02179648184302
929 => 0.023449616500553
930 => 0.02214103142341
1001 => 0.021570413638351
1002 => 0.020864165771961
1003 => 0.021094123638469
1004 => 0.021142579139726
1005 => 0.019444180331806
1006 => 0.018755140146955
1007 => 0.018518687521446
1008 => 0.018382605692516
1009 => 0.018444619890767
1010 => 0.017824402908048
1011 => 0.018241198977877
1012 => 0.017704143496479
1013 => 0.017614104397293
1014 => 0.01857442612644
1015 => 0.018708049284933
1016 => 0.018137971377342
1017 => 0.018504053681245
1018 => 0.018371307148925
1019 => 0.017713349771265
1020 => 0.017688220639046
1021 => 0.017358080755256
1022 => 0.016841475764804
1023 => 0.016605373421804
1024 => 0.016482409271636
1025 => 0.016533146676519
1026 => 0.01650749229202
1027 => 0.016340080079869
1028 => 0.016517088164054
1029 => 0.01606490565375
1030 => 0.015884842934665
1031 => 0.015803512781878
1101 => 0.015402174777329
1102 => 0.016040882018387
1103 => 0.016166715391097
1104 => 0.016292796694424
1105 => 0.017390248360519
1106 => 0.017335422776647
1107 => 0.017831019353706
1108 => 0.017811761382065
1109 => 0.017670409210156
1110 => 0.017074067648173
1111 => 0.017311758766013
1112 => 0.016580182450702
1113 => 0.017128329168487
1114 => 0.016878177897644
1115 => 0.017043752772185
1116 => 0.016746034218475
1117 => 0.016910803958596
1118 => 0.016196555151877
1119 => 0.015529599665915
1120 => 0.015798002023111
1121 => 0.016089786080915
1122 => 0.01672244826343
1123 => 0.016345639886874
1124 => 0.016481154427785
1125 => 0.016027203400591
1126 => 0.015090572766789
1127 => 0.015095873994458
1128 => 0.014951793777055
1129 => 0.014827287433163
1130 => 0.016388920861702
1201 => 0.016194707059092
1202 => 0.015885252782707
1203 => 0.016299469628872
1204 => 0.016408995137504
1205 => 0.01641211317476
1206 => 0.016714315093238
1207 => 0.016875600311302
1208 => 0.016904027530036
1209 => 0.017379548778266
1210 => 0.017538937228396
1211 => 0.018195435696982
1212 => 0.016861916387386
1213 => 0.016834453434752
1214 => 0.01630529850935
1215 => 0.015969700090052
1216 => 0.016328277220237
1217 => 0.016645927606921
1218 => 0.016315168792312
1219 => 0.0163583589108
1220 => 0.015914342226176
1221 => 0.016073057298002
1222 => 0.016209764099088
1223 => 0.016134282638783
1224 => 0.016021283239362
1225 => 0.01661988389765
1226 => 0.016586108502574
1227 => 0.017143539197342
1228 => 0.017578096286165
1229 => 0.018356900275707
1230 => 0.01754417771265
1231 => 0.017514558872172
]
'min_raw' => 0.014827287433163
'max_raw' => 0.042870048456833
'avg_raw' => 0.028848667944998
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014827'
'max' => '$0.04287'
'avg' => '$0.028848'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026072024049853
'max_diff' => -0.014481524264632
'year' => 2030
]
5 => [
'items' => [
101 => 0.01780408778885
102 => 0.017538892903027
103 => 0.017706486916651
104 => 0.018329898289118
105 => 0.01834306998906
106 => 0.018122427044264
107 => 0.018109000901021
108 => 0.018151377792138
109 => 0.018399580567031
110 => 0.018312850890983
111 => 0.018413216667833
112 => 0.018538725608639
113 => 0.019057883802503
114 => 0.019183051085441
115 => 0.018878959479696
116 => 0.018906415546925
117 => 0.018792676938875
118 => 0.01868280686864
119 => 0.018929778741294
120 => 0.019381124692815
121 => 0.019378316893076
122 => 0.019483020380917
123 => 0.019548249786431
124 => 0.01926823742712
125 => 0.019085959677548
126 => 0.019155856565368
127 => 0.019267623211149
128 => 0.019119612148495
129 => 0.018206019304395
130 => 0.018483145012758
131 => 0.018437017744132
201 => 0.01837132690434
202 => 0.018649978947049
203 => 0.018623102277754
204 => 0.017818041686444
205 => 0.017869579053487
206 => 0.017821175844431
207 => 0.017977576515255
208 => 0.017530446753539
209 => 0.017667980856778
210 => 0.017754240957027
211 => 0.017805048818756
212 => 0.017988601654595
213 => 0.017967063847868
214 => 0.017987262834288
215 => 0.018259423233686
216 => 0.019635917139667
217 => 0.019710836665907
218 => 0.019341905518172
219 => 0.019489286234847
220 => 0.019206347487451
221 => 0.019396286164103
222 => 0.019526237382749
223 => 0.01893901281387
224 => 0.018904241185957
225 => 0.018620134649703
226 => 0.018772797409669
227 => 0.018529899981722
228 => 0.018589498514349
301 => 0.018422855821418
302 => 0.018722779490465
303 => 0.019058140755886
304 => 0.019142866255349
305 => 0.018919989942882
306 => 0.018758612804392
307 => 0.018475287710137
308 => 0.018946463656195
309 => 0.019084249861649
310 => 0.018945739923915
311 => 0.01891364414484
312 => 0.018852822701489
313 => 0.018926547701568
314 => 0.019083499448382
315 => 0.019009483903029
316 => 0.019058372474721
317 => 0.018872059653106
318 => 0.019268330122862
319 => 0.019897702996516
320 => 0.019899726533218
321 => 0.019825710588893
322 => 0.019795424859171
323 => 0.019871369709711
324 => 0.019912566675709
325 => 0.020158158396454
326 => 0.020421688097619
327 => 0.021651466225941
328 => 0.021306149448545
329 => 0.022397281763821
330 => 0.023260225759405
331 => 0.023518984931713
401 => 0.023280938668749
402 => 0.022466595262157
403 => 0.0224266396896
404 => 0.023643612545966
405 => 0.023299761973155
406 => 0.023258862041642
407 => 0.022823755871874
408 => 0.023080957507155
409 => 0.023024703736598
410 => 0.022935904407747
411 => 0.023426627211041
412 => 0.02434521649168
413 => 0.024202045737816
414 => 0.024095175411557
415 => 0.023626900751376
416 => 0.023908906689737
417 => 0.023808489776554
418 => 0.024239944561734
419 => 0.023984360304887
420 => 0.023297156966879
421 => 0.023406596363509
422 => 0.02339005481887
423 => 0.023730478635395
424 => 0.023628291855513
425 => 0.023370101210059
426 => 0.024342076853382
427 => 0.024278962161517
428 => 0.024368444364554
429 => 0.02440783719766
430 => 0.024999461643619
501 => 0.025241831249257
502 => 0.025296853393015
503 => 0.025527085772833
504 => 0.025291125001668
505 => 0.026235136323508
506 => 0.026862848767945
507 => 0.027591969073944
508 => 0.028657409810072
509 => 0.029058025382735
510 => 0.028985657765304
511 => 0.02979346277173
512 => 0.03124507041178
513 => 0.029279069172409
514 => 0.03134927325129
515 => 0.030693870541572
516 => 0.029139922507021
517 => 0.02903986657344
518 => 0.030092218224145
519 => 0.032426232900317
520 => 0.031841588696111
521 => 0.032427189168792
522 => 0.03174405511141
523 => 0.031710131747555
524 => 0.032394010872409
525 => 0.033991931723941
526 => 0.033232819424546
527 => 0.03214444580139
528 => 0.032948083947759
529 => 0.032251898212175
530 => 0.030683196899785
531 => 0.031841141629707
601 => 0.031066856965175
602 => 0.031292834393522
603 => 0.032920265592216
604 => 0.03272444876474
605 => 0.032977853871644
606 => 0.032530600490725
607 => 0.032112795307563
608 => 0.03133293090657
609 => 0.031102051504286
610 => 0.031165858264907
611 => 0.031102019884825
612 => 0.030665692919793
613 => 0.030571468153237
614 => 0.030414422747563
615 => 0.030463097685584
616 => 0.030167806377662
617 => 0.030725082086008
618 => 0.030828517368174
619 => 0.03123405615577
620 => 0.031276160538022
621 => 0.032405580288995
622 => 0.031783514869287
623 => 0.032200850059371
624 => 0.032163519671859
625 => 0.029173601272912
626 => 0.029585585648014
627 => 0.030226504047853
628 => 0.02993777117747
629 => 0.029529570451834
630 => 0.029199926479546
701 => 0.028700482153702
702 => 0.029403440451348
703 => 0.030327755861473
704 => 0.031299602702175
705 => 0.032467213003351
706 => 0.032206615976611
707 => 0.031277775039767
708 => 0.031319442165675
709 => 0.031577011942629
710 => 0.031243435678792
711 => 0.031145057526404
712 => 0.031563496295191
713 => 0.031566377853021
714 => 0.031182558047438
715 => 0.030756012571816
716 => 0.030754225330698
717 => 0.030678325683252
718 => 0.031757557490078
719 => 0.03235102586119
720 => 0.032419066053516
721 => 0.03234644621413
722 => 0.032374394708132
723 => 0.032029068539165
724 => 0.032818381758128
725 => 0.033542733622836
726 => 0.033348591849574
727 => 0.033057545732575
728 => 0.032825713481704
729 => 0.033293979539004
730 => 0.033273128388591
731 => 0.033536407041208
801 => 0.033524463200754
802 => 0.03343593249229
803 => 0.033348595011284
804 => 0.033694878251292
805 => 0.033595154239309
806 => 0.03349527532839
807 => 0.033294952881846
808 => 0.033322180029335
809 => 0.033031184165551
810 => 0.0328965561639
811 => 0.030872074036811
812 => 0.030331066260591
813 => 0.030501278320219
814 => 0.030557316549802
815 => 0.030321869272271
816 => 0.030659440186808
817 => 0.030606830117353
818 => 0.03081150512174
819 => 0.030683633064955
820 => 0.030688880978769
821 => 0.031064925432576
822 => 0.031174092737324
823 => 0.031118569365041
824 => 0.031157456031758
825 => 0.032053582853217
826 => 0.031926182275728
827 => 0.031858503258125
828 => 0.031877250808528
829 => 0.032106230424586
830 => 0.032170332215259
831 => 0.031898728423825
901 => 0.032026818341988
902 => 0.032572208956495
903 => 0.032763064805137
904 => 0.033372185057999
905 => 0.033113419948334
906 => 0.033588394506215
907 => 0.035048304366381
908 => 0.036214581380761
909 => 0.035142024839902
910 => 0.037283744052327
911 => 0.038951379670575
912 => 0.038887373037954
913 => 0.038596582194806
914 => 0.036698023379818
915 => 0.034950941252348
916 => 0.036412449637002
917 => 0.036416175322436
918 => 0.036290630456047
919 => 0.035510882073227
920 => 0.036263496902527
921 => 0.036323236734582
922 => 0.036289798314735
923 => 0.035691967057844
924 => 0.034779189226256
925 => 0.034957543829667
926 => 0.035249692308389
927 => 0.03469659428961
928 => 0.03451984595922
929 => 0.034848454733162
930 => 0.035907300671159
1001 => 0.035707131980057
1002 => 0.035701904766587
1003 => 0.036558311311855
1004 => 0.035945309049543
1005 => 0.034959793452386
1006 => 0.03471093776675
1007 => 0.033827667732019
1008 => 0.034437745491108
1009 => 0.034459701103557
1010 => 0.034125567749748
1011 => 0.034986906532534
1012 => 0.034978969144015
1013 => 0.035796682124911
1014 => 0.037359842225414
1015 => 0.036897538865258
1016 => 0.03635993035586
1017 => 0.036418383307098
1018 => 0.03705946790801
1019 => 0.036671853523761
1020 => 0.03681124235888
1021 => 0.037059256926313
1022 => 0.037208890272701
1023 => 0.03639685337128
1024 => 0.036207528725343
1025 => 0.035820236943679
1026 => 0.035719199746986
1027 => 0.036034640822044
1028 => 0.035951533243464
1029 => 0.034457855819347
1030 => 0.034301758217784
1031 => 0.034306545508368
1101 => 0.033914030667202
1102 => 0.033315351320067
1103 => 0.03488864489905
1104 => 0.034762287406429
1105 => 0.034622798513867
1106 => 0.034639885107293
1107 => 0.035322798526063
1108 => 0.034926674255222
1109 => 0.035979835552744
1110 => 0.0357633372509
1111 => 0.035541286584536
1112 => 0.035510592418616
1113 => 0.035425121856539
1114 => 0.03513201149698
1115 => 0.034778063124612
1116 => 0.034544355750691
1117 => 0.031865342172276
1118 => 0.032362551509325
1119 => 0.032934545529542
1120 => 0.033131995573199
1121 => 0.032794243610397
1122 => 0.035145348003094
1123 => 0.035574917431446
1124 => 0.034273723612849
1125 => 0.034030323376783
1126 => 0.035161305282049
1127 => 0.034479184936259
1128 => 0.034786343686201
1129 => 0.034122434475679
1130 => 0.035471446735417
1201 => 0.035461169522212
1202 => 0.03493637328435
1203 => 0.035379927470941
1204 => 0.035302849015688
1205 => 0.034710355355658
1206 => 0.035490229841252
1207 => 0.035490616649267
1208 => 0.034985511680379
1209 => 0.034395659658413
1210 => 0.034290208048569
1211 => 0.034210764425982
1212 => 0.034766805425027
1213 => 0.035265350046077
1214 => 0.036193017986157
1215 => 0.03642625574714
1216 => 0.037336598255773
1217 => 0.036794533615654
1218 => 0.037034823849706
1219 => 0.037295692889899
1220 => 0.037420763100909
1221 => 0.037216967903706
1222 => 0.038631104531538
1223 => 0.038750500990954
1224 => 0.038790533591021
1225 => 0.038313694676666
1226 => 0.03873723923815
1227 => 0.038539076764153
1228 => 0.039054640470373
1229 => 0.039135487442556
1230 => 0.039067012933331
1231 => 0.039092675038385
]
'min_raw' => 0.017530446753539
'max_raw' => 0.039135487442556
'avg_raw' => 0.028332967098048
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01753'
'max' => '$0.039135'
'avg' => '$0.028332'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.002703159320376
'max_diff' => -0.0037345610142772
'year' => 2031
]
6 => [
'items' => [
101 => 0.037885958897326
102 => 0.037823384299477
103 => 0.03697017521772
104 => 0.037317864225139
105 => 0.036667876290937
106 => 0.03687399416049
107 => 0.036964848953426
108 => 0.03691739156556
109 => 0.03733752203995
110 => 0.036980325309733
111 => 0.036037624410111
112 => 0.03509466667226
113 => 0.035082828605978
114 => 0.034834564478188
115 => 0.034655114985639
116 => 0.034689683324217
117 => 0.034811506658184
118 => 0.034648034392006
119 => 0.034682919488249
120 => 0.035262244524068
121 => 0.035378424028444
122 => 0.034983600678311
123 => 0.033398327954788
124 => 0.03300929805208
125 => 0.033288925031348
126 => 0.033155281345542
127 => 0.026758899709464
128 => 0.028261634695991
129 => 0.027368760595055
130 => 0.027780238059929
131 => 0.026868844811501
201 => 0.027303809439863
202 => 0.02722348735537
203 => 0.029639840744543
204 => 0.029602112709957
205 => 0.02962017112359
206 => 0.028758195989921
207 => 0.030131345783031
208 => 0.030807808747987
209 => 0.030682613456652
210 => 0.030714122414255
211 => 0.030172694128478
212 => 0.0296254133329
213 => 0.029018394704694
214 => 0.030146160286131
215 => 0.030020772005076
216 => 0.030308367608537
217 => 0.031039804202448
218 => 0.031147511019358
219 => 0.031292270073541
220 => 0.031240384257268
221 => 0.032476514903136
222 => 0.032326811325669
223 => 0.032687553874706
224 => 0.031945479081733
225 => 0.031105751015098
226 => 0.031265355867787
227 => 0.031249984637012
228 => 0.031054291226968
229 => 0.030877627966423
301 => 0.030583533412182
302 => 0.031514092099606
303 => 0.031476313116296
304 => 0.032087910942815
305 => 0.031979805086234
306 => 0.031257847717991
307 => 0.031283632566636
308 => 0.031457048065552
309 => 0.032057241087322
310 => 0.032235419240441
311 => 0.032152880020744
312 => 0.032348244231497
313 => 0.032502652138036
314 => 0.032367635487253
315 => 0.034279186537423
316 => 0.033485377268518
317 => 0.033872274382893
318 => 0.033964547064942
319 => 0.03372819253016
320 => 0.033779449365533
321 => 0.033857089504471
322 => 0.034328505224605
323 => 0.035565636479474
324 => 0.036113553490818
325 => 0.037761988853196
326 => 0.036068056610399
327 => 0.0359675456813
328 => 0.036264478668043
329 => 0.037232284730363
330 => 0.038016600642473
331 => 0.03827680347879
401 => 0.03831119357909
402 => 0.038799351397978
403 => 0.039079154356161
404 => 0.03874007619894
405 => 0.038452742963658
406 => 0.037423550979993
407 => 0.037542682754499
408 => 0.038363382543549
409 => 0.039522669334558
410 => 0.040517458004477
411 => 0.040169117684157
412 => 0.042826708438258
413 => 0.043090197706243
414 => 0.043053792009035
415 => 0.043654059773964
416 => 0.042462650502985
417 => 0.041953299957173
418 => 0.038514867670497
419 => 0.039480926891223
420 => 0.040885150703216
421 => 0.04069929641613
422 => 0.03967951154885
423 => 0.040516684406209
424 => 0.04023988887875
425 => 0.040021568761987
426 => 0.041021735540317
427 => 0.039922011082956
428 => 0.040874180110509
429 => 0.039653013483745
430 => 0.040170708873398
501 => 0.039876839932122
502 => 0.040067009152351
503 => 0.038955283776693
504 => 0.03955514380379
505 => 0.038930327627409
506 => 0.038930031383188
507 => 0.038916238531464
508 => 0.039651331992117
509 => 0.039675303363478
510 => 0.039132068185391
511 => 0.0390537795093
512 => 0.039343253777564
513 => 0.039004355222858
514 => 0.039162923723603
515 => 0.039009158101209
516 => 0.038974542220809
517 => 0.038698716996373
518 => 0.038579883905713
519 => 0.038626481422512
520 => 0.03846742007501
521 => 0.03837157985964
522 => 0.038897173500363
523 => 0.038616370020512
524 => 0.038854136339787
525 => 0.038583171610471
526 => 0.037643889804949
527 => 0.037103698905868
528 => 0.035329482646706
529 => 0.035832648176896
530 => 0.036166247443975
531 => 0.036055992888195
601 => 0.036292862336858
602 => 0.036307404197232
603 => 0.036230395524874
604 => 0.036141229347704
605 => 0.036097828183857
606 => 0.036421304901267
607 => 0.03660909402345
608 => 0.036199728593408
609 => 0.036103820000781
610 => 0.036517711052237
611 => 0.036770184354529
612 => 0.038634305366155
613 => 0.038496205260582
614 => 0.038842809424793
615 => 0.038803787114977
616 => 0.039167083497443
617 => 0.039760919542269
618 => 0.038553484823969
619 => 0.038763053741115
620 => 0.038711672282284
621 => 0.039272641576859
622 => 0.039274392861765
623 => 0.038938063747173
624 => 0.03912039321651
625 => 0.039018621908673
626 => 0.039202536417151
627 => 0.038494360849477
628 => 0.039356842248076
629 => 0.039845813624008
630 => 0.039852602992037
701 => 0.040084371543512
702 => 0.04031986181494
703 => 0.040771864884066
704 => 0.040307255694668
705 => 0.039471468991732
706 => 0.03953181009211
707 => 0.039041788653981
708 => 0.039050026002886
709 => 0.039006054388861
710 => 0.039138016512579
711 => 0.038523319114759
712 => 0.038667587365387
713 => 0.038465610969673
714 => 0.038762614683876
715 => 0.038443087783867
716 => 0.038711647504589
717 => 0.038827548977156
718 => 0.039255227906111
719 => 0.038379919258325
720 => 0.036595105672303
721 => 0.036970295126858
722 => 0.036415360453075
723 => 0.036466721769919
724 => 0.036570479804037
725 => 0.036234166067946
726 => 0.036298324130328
727 => 0.036296031952866
728 => 0.036276279205836
729 => 0.036188791014026
730 => 0.036061915826891
731 => 0.036567347522317
801 => 0.036653230216352
802 => 0.036844136806579
803 => 0.037412145325917
804 => 0.037355387880272
805 => 0.037447961628963
806 => 0.03724587365535
807 => 0.036476096051413
808 => 0.036517898678819
809 => 0.03599661924523
810 => 0.036830806519466
811 => 0.036633259962193
812 => 0.036505900411603
813 => 0.036471149178246
814 => 0.037040565680838
815 => 0.037210944022924
816 => 0.037104775673801
817 => 0.036887021292325
818 => 0.037305174078063
819 => 0.037417054123077
820 => 0.037442099939178
821 => 0.038182986502661
822 => 0.037483507267854
823 => 0.037651878871897
824 => 0.038965466062853
825 => 0.037774223743298
826 => 0.03840525136784
827 => 0.038374365849328
828 => 0.038697178229233
829 => 0.038347885811989
830 => 0.038352215710123
831 => 0.038638851234275
901 => 0.038236323335593
902 => 0.038136651767117
903 => 0.037998956209129
904 => 0.038299609422505
905 => 0.038479837426549
906 => 0.03993234277626
907 => 0.040870727474464
908 => 0.040829989719902
909 => 0.041202256538723
910 => 0.041034546927271
911 => 0.040492968352331
912 => 0.041417376941282
913 => 0.04112485538484
914 => 0.041148970506539
915 => 0.041148072940505
916 => 0.041342574202861
917 => 0.041204752232703
918 => 0.040933090982387
919 => 0.041113432398246
920 => 0.041648981930114
921 => 0.043311344109696
922 => 0.044241624008759
923 => 0.043255340091678
924 => 0.043935665530813
925 => 0.043527712692072
926 => 0.043453575525727
927 => 0.043880870177159
928 => 0.044308912751313
929 => 0.044281648289819
930 => 0.043970911361212
1001 => 0.0437953839549
1002 => 0.045124536281491
1003 => 0.046103833074205
1004 => 0.046037051598231
1005 => 0.046331803314681
1006 => 0.047197203470506
1007 => 0.047276324815207
1008 => 0.047266357344358
1009 => 0.047070246836058
1010 => 0.047922345675879
1011 => 0.04863318151931
1012 => 0.047024852919565
1013 => 0.04763728339578
1014 => 0.047912223167831
1015 => 0.048315916324156
1016 => 0.048997014345706
1017 => 0.049736867449436
1018 => 0.04984149079038
1019 => 0.049767255523293
1020 => 0.049279302513064
1021 => 0.050088858607449
1022 => 0.050563077581113
1023 => 0.050845464127622
1024 => 0.051561549424928
1025 => 0.047913921102263
1026 => 0.04533194847659
1027 => 0.044928736166954
1028 => 0.045748684254139
1029 => 0.045964898025766
1030 => 0.045877742525532
1031 => 0.042971497592656
1101 => 0.044913435388844
1102 => 0.047002797174774
1103 => 0.047083058070165
1104 => 0.048129036266697
1105 => 0.048469649643582
1106 => 0.049311799191286
1107 => 0.049259122507785
1108 => 0.049464172521124
1109 => 0.049417035074029
1110 => 0.050976939775641
1111 => 0.05269774630961
1112 => 0.052638160251168
1113 => 0.052390773952251
1114 => 0.052758184791775
1115 => 0.054534241547665
1116 => 0.054370730702313
1117 => 0.054529567560752
1118 => 0.05662363857012
1119 => 0.059346228760425
1120 => 0.058081312273442
1121 => 0.060825817080281
1122 => 0.062553337376237
1123 => 0.065540905099161
1124 => 0.065166846906169
1125 => 0.066329885096919
1126 => 0.064497204672414
1127 => 0.060288999971928
1128 => 0.059623035469716
1129 => 0.060956313268052
1130 => 0.064234046635917
1201 => 0.060853085779835
1202 => 0.061537049757648
1203 => 0.061340068086025
1204 => 0.061329571769863
1205 => 0.061730173466185
1206 => 0.06114907981169
1207 => 0.058781599726527
1208 => 0.05986660189791
1209 => 0.059447630453455
1210 => 0.059912510507468
1211 => 0.062421276427855
1212 => 0.061312091212942
1213 => 0.060143654691921
1214 => 0.061609133386103
1215 => 0.063475191356911
1216 => 0.063358416802726
1217 => 0.063131825359631
1218 => 0.064409109460416
1219 => 0.066518808585786
1220 => 0.067089051781916
1221 => 0.06750999365119
1222 => 0.067568034423092
1223 => 0.068165890445818
1224 => 0.0649510679325
1225 => 0.070053073823634
1226 => 0.070934049300964
1227 => 0.070768462423919
1228 => 0.071747629589856
1229 => 0.071459533770564
1230 => 0.071042128129259
1231 => 0.072594316362098
]
'min_raw' => 0.026758899709464
'max_raw' => 0.072594316362098
'avg_raw' => 0.049676608035781
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.026758'
'max' => '$0.072594'
'avg' => '$0.049676'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0092284529559253
'max_diff' => 0.033458828919542
'year' => 2032
]
7 => [
'items' => [
101 => 0.070814857808279
102 => 0.068289140418734
103 => 0.066903481905805
104 => 0.068728228813514
105 => 0.069842538075161
106 => 0.07057902561373
107 => 0.070801886297903
108 => 0.065200625452783
109 => 0.062181856517431
110 => 0.064116852794735
111 => 0.066477681799356
112 => 0.064937953408178
113 => 0.064998307846021
114 => 0.062803059793704
115 => 0.066671912541174
116 => 0.066108253238041
117 => 0.069032518699791
118 => 0.068334619278648
119 => 0.070719244243374
120 => 0.070091292572676
121 => 0.072697884849436
122 => 0.073737725079305
123 => 0.075483778663462
124 => 0.076768182787686
125 => 0.077522409456165
126 => 0.077477128516023
127 => 0.080465750330773
128 => 0.078703464461108
129 => 0.07648961806992
130 => 0.076449576573299
131 => 0.077596158989741
201 => 0.079999081185081
202 => 0.080622123949236
203 => 0.080970319857342
204 => 0.080437045703291
205 => 0.078524210695936
206 => 0.077698258238053
207 => 0.078401993662315
208 => 0.077541385711117
209 => 0.079027036478828
210 => 0.081067152300776
211 => 0.080645876451036
212 => 0.082054138455512
213 => 0.083511541476661
214 => 0.085595693252969
215 => 0.086140567703213
216 => 0.087041224449747
217 => 0.087968296092258
218 => 0.088266046518552
219 => 0.088834544468877
220 => 0.088831548204061
221 => 0.090544755041692
222 => 0.092434475237199
223 => 0.09314780086388
224 => 0.094788053809427
225 => 0.091979178121495
226 => 0.09410974259683
227 => 0.09603156508507
228 => 0.093740289087149
301 => 0.096898279251445
302 => 0.097020896853365
303 => 0.098872277064034
304 => 0.096995548538989
305 => 0.095881153131546
306 => 0.099098370916981
307 => 0.10065508126194
308 => 0.10018618743711
309 => 0.096617882278001
310 => 0.094540975623591
311 => 0.089105310303625
312 => 0.095544090678392
313 => 0.098680232777142
314 => 0.096609760427602
315 => 0.097653986248526
316 => 0.10335094373613
317 => 0.10551997629673
318 => 0.1050688326868
319 => 0.10514506853042
320 => 0.1063154391294
321 => 0.1115055069001
322 => 0.10839549798707
323 => 0.11077298327127
324 => 0.11203399289335
325 => 0.11320528890717
326 => 0.11032895608914
327 => 0.1065868893546
328 => 0.1054016197385
329 => 0.09640389275699
330 => 0.095935521992455
331 => 0.095672611289235
401 => 0.094014996494888
402 => 0.092712565325437
403 => 0.091676823703321
404 => 0.088958728388257
405 => 0.089876005766566
406 => 0.085543929144935
407 => 0.088315438248086
408 => 0.081401339358316
409 => 0.087159606367274
410 => 0.084025643430572
411 => 0.086130015254905
412 => 0.086122673299853
413 => 0.082247857579562
414 => 0.080012944737439
415 => 0.081437118184549
416 => 0.08296394517088
417 => 0.083211667712549
418 => 0.085191238754589
419 => 0.085743694481685
420 => 0.084069727836892
421 => 0.081258060026878
422 => 0.081911146331829
423 => 0.079999709964314
424 => 0.076649991252583
425 => 0.079055817711826
426 => 0.079877272641734
427 => 0.080240073936037
428 => 0.076946010300842
429 => 0.075910943989063
430 => 0.07535988336972
501 => 0.080832837776654
502 => 0.081132658573562
503 => 0.079598732986193
504 => 0.086532222093895
505 => 0.084962959969319
506 => 0.086716210241025
507 => 0.081851885594982
508 => 0.082037709347142
509 => 0.079734860105445
510 => 0.081024301804354
511 => 0.080112965972211
512 => 0.080920127657593
513 => 0.081403937043759
514 => 0.083706408410555
515 => 0.087185896891772
516 => 0.08336249596901
517 => 0.081696585434852
518 => 0.082730106960807
519 => 0.085482510980299
520 => 0.089652543962798
521 => 0.087183800507423
522 => 0.088279386930936
523 => 0.088518723825226
524 => 0.086698363799083
525 => 0.089719663233496
526 => 0.091338802145391
527 => 0.092999703635406
528 => 0.094441817861782
529 => 0.092336303056287
530 => 0.094589505711859
531 => 0.092773822115279
601 => 0.091144966227228
602 => 0.091147436529247
603 => 0.090125631436885
604 => 0.088145755314706
605 => 0.087780635781026
606 => 0.08968003370474
607 => 0.091203170965906
608 => 0.091328623846071
609 => 0.09217191089547
610 => 0.092670959484757
611 => 0.09756231408343
612 => 0.099529657366424
613 => 0.10193528749297
614 => 0.10287241600114
615 => 0.10569283683158
616 => 0.10341511794762
617 => 0.10292231913955
618 => 0.096080900757533
619 => 0.097201182634325
620 => 0.098994862010192
621 => 0.096110477869788
622 => 0.097939955713164
623 => 0.098301133393085
624 => 0.09601246760042
625 => 0.097234942887694
626 => 0.093988410963358
627 => 0.087256662415975
628 => 0.089727157594002
629 => 0.091546273604715
630 => 0.088950170762041
701 => 0.093603584624479
702 => 0.090885156312003
703 => 0.090023545044519
704 => 0.08666209230347
705 => 0.088248568603064
706 => 0.090394300514417
707 => 0.08906848766131
708 => 0.091819748403309
709 => 0.095716267348418
710 => 0.098493158790417
711 => 0.098706334034536
712 => 0.096920978874607
713 => 0.099782021912377
714 => 0.099802861487435
715 => 0.096575593253127
716 => 0.094598909429118
717 => 0.094149802705325
718 => 0.09527175935392
719 => 0.096634021849938
720 => 0.0987819301222
721 => 0.10007986610632
722 => 0.10346419478085
723 => 0.10437989708388
724 => 0.10538597629131
725 => 0.10673040837577
726 => 0.10834474379848
727 => 0.10481266979776
728 => 0.10495300568242
729 => 0.10166398727784
730 => 0.098149199419597
731 => 0.10081648527951
801 => 0.10430360672718
802 => 0.10350365721416
803 => 0.10341364655246
804 => 0.10356501951856
805 => 0.10296188370965
806 => 0.10023392279921
807 => 0.098863957907922
808 => 0.100631562133
809 => 0.10157096511162
810 => 0.1030278972069
811 => 0.10284829957405
812 => 0.10660120018842
813 => 0.10805946388533
814 => 0.10768637762904
815 => 0.10775503447902
816 => 0.11039515124654
817 => 0.11333150407345
818 => 0.11608178598173
819 => 0.11887949086619
820 => 0.11550674843169
821 => 0.11379427782529
822 => 0.11556111036966
823 => 0.11462360415165
824 => 0.12001079296274
825 => 0.1203837902276
826 => 0.12577058948363
827 => 0.13088330342572
828 => 0.12767209940248
829 => 0.13070012016059
830 => 0.13397517148865
831 => 0.14029327685839
901 => 0.13816556124349
902 => 0.13653576442803
903 => 0.13499561431254
904 => 0.13820042221093
905 => 0.14232335637415
906 => 0.14321139690394
907 => 0.14465036181978
908 => 0.14313746615903
909 => 0.14495958234241
910 => 0.15139245314818
911 => 0.14965423467194
912 => 0.14718568500312
913 => 0.15226381868479
914 => 0.15410157552345
915 => 0.16699991545785
916 => 0.18328460242888
917 => 0.17654263509185
918 => 0.17235767840383
919 => 0.17334124249402
920 => 0.1792878589044
921 => 0.18119772335924
922 => 0.17600605340122
923 => 0.17783983899887
924 => 0.18794417793574
925 => 0.19336483158936
926 => 0.18600285583682
927 => 0.16569145671577
928 => 0.14696341911443
929 => 0.15193093802083
930 => 0.1513677755369
1001 => 0.16222362718261
1002 => 0.14961277873615
1003 => 0.14982511308167
1004 => 0.16090545224286
1005 => 0.15794940771976
1006 => 0.15316099417391
1007 => 0.14699837983249
1008 => 0.13560621724953
1009 => 0.12551586115586
1010 => 0.14530537312578
1011 => 0.14445201338475
1012 => 0.1432162220189
1013 => 0.145966341977
1014 => 0.15932014385838
1015 => 0.15901229550297
1016 => 0.1570539213315
1017 => 0.15853933088025
1018 => 0.15290059469817
1019 => 0.15435382540392
1020 => 0.14696045249759
1021 => 0.15030256582578
1022 => 0.15315072038903
1023 => 0.15372252958525
1024 => 0.15501084490164
1025 => 0.14400233157819
1026 => 0.14894483086745
1027 => 0.15184808615033
1028 => 0.13873107316093
1029 => 0.15158880497794
1030 => 0.14381069785296
1031 => 0.14117069147149
1101 => 0.14472511226974
1102 => 0.14333995102788
1103 => 0.14214907073152
1104 => 0.14148453906423
1105 => 0.14409451341136
1106 => 0.14397275498847
1107 => 0.13970233038238
1108 => 0.1341317355685
1109 => 0.13600141003658
1110 => 0.13532213977404
1111 => 0.13286037671497
1112 => 0.13451930778238
1113 => 0.12721421492732
1114 => 0.11464618235588
1115 => 0.12294900964182
1116 => 0.12262935982305
1117 => 0.12246817788946
1118 => 0.12870752312155
1119 => 0.12810775404367
1120 => 0.12701916729437
1121 => 0.13284038396564
1122 => 0.13071556157421
1123 => 0.13726376351347
1124 => 0.14157683282182
1125 => 0.14048289893204
1126 => 0.14453936146342
1127 => 0.13604448356011
1128 => 0.13886614124424
1129 => 0.1394476809823
1130 => 0.13276855105552
1201 => 0.12820588368229
1202 => 0.12790160578671
1203 => 0.11999056933581
1204 => 0.12421658115223
1205 => 0.12793529666642
1206 => 0.1261543205191
1207 => 0.12559051667601
1208 => 0.12847086823623
1209 => 0.128694696221
1210 => 0.12359139444798
1211 => 0.12465253248714
1212 => 0.12907765450996
1213 => 0.12454103076586
1214 => 0.11572711188434
1215 => 0.11354113813977
1216 => 0.11324948894675
1217 => 0.10732095477969
1218 => 0.11368721535802
1219 => 0.1109081720104
1220 => 0.11968713664747
1221 => 0.11467263912931
1222 => 0.11445647416365
1223 => 0.11412970911355
1224 => 0.1090267748513
1225 => 0.11014399314634
1226 => 0.11385779691621
1227 => 0.1151829239403
1228 => 0.11504470233524
1229 => 0.11383959725168
1230 => 0.1143912881878
1231 => 0.11261409946071
]
'min_raw' => 0.062181856517431
'max_raw' => 0.19336483158936
'avg_raw' => 0.1277733440534
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.062181'
'max' => '$0.193364'
'avg' => '$0.127773'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.035422956807967
'max_diff' => 0.12077051522726
'year' => 2033
]
8 => [
'items' => [
101 => 0.11198653713218
102 => 0.11000577779875
103 => 0.10709460877734
104 => 0.10749942468501
105 => 0.10173163710478
106 => 0.098589040311415
107 => 0.097719210937772
108 => 0.096556038746665
109 => 0.097850594331841
110 => 0.10171529768725
111 => 0.097053645498072
112 => 0.089061569796609
113 => 0.089541907164101
114 => 0.090621082615412
115 => 0.088610046301354
116 => 0.086706769203583
117 => 0.088361514222343
118 => 0.084975166389961
119 => 0.091030306572487
120 => 0.090866531999884
121 => 0.093123513812573
122 => 0.094534850857976
123 => 0.091282175894115
124 => 0.090464136936873
125 => 0.090930129104716
126 => 0.083228316580651
127 => 0.092494111416131
128 => 0.092574242394639
129 => 0.091888112307728
130 => 0.0968218620083
131 => 0.10723361275163
201 => 0.10331629331029
202 => 0.10179938882099
203 => 0.09891575227799
204 => 0.10275802675814
205 => 0.10246300002689
206 => 0.10112877726258
207 => 0.1003218351717
208 => 0.10180865071634
209 => 0.10013760227186
210 => 0.099837436053886
211 => 0.098018755357054
212 => 0.097369569092984
213 => 0.096888937427917
214 => 0.096359809190569
215 => 0.097526934231616
216 => 0.094882075340519
217 => 0.09169263479657
218 => 0.091427467325565
219 => 0.092159618026771
220 => 0.091835695843697
221 => 0.091425916510775
222 => 0.090643536167466
223 => 0.090411420632517
224 => 0.091165683514652
225 => 0.090314164696979
226 => 0.091570627097085
227 => 0.091228938847492
228 => 0.089320296060971
301 => 0.0869414204789
302 => 0.086920243496359
303 => 0.08640771865434
304 => 0.085754941209403
305 => 0.085573353457746
306 => 0.088222156212322
307 => 0.0937050986423
308 => 0.092628665847603
309 => 0.093406498859041
310 => 0.097232667425693
311 => 0.098448891356128
312 => 0.097585644418148
313 => 0.096403978766688
314 => 0.096455966058297
315 => 0.10049407530385
316 => 0.10074592722425
317 => 0.1013822757766
318 => 0.10220016349843
319 => 0.097724934233823
320 => 0.096245183162385
321 => 0.095543995011273
322 => 0.093384606899815
323 => 0.095713321846078
324 => 0.094356479372407
325 => 0.094539563778444
326 => 0.09442032981883
327 => 0.094485439623344
328 => 0.091028614037402
329 => 0.092288099595515
330 => 0.09019396057391
331 => 0.087390143502118
401 => 0.087380744124148
402 => 0.088066974380304
403 => 0.08765877777175
404 => 0.086560331193825
405 => 0.086716360345697
406 => 0.085349380793704
407 => 0.086882336413273
408 => 0.086926296095263
409 => 0.086336024681072
410 => 0.088697754320129
411 => 0.089665356880239
412 => 0.08927682759058
413 => 0.089638096629537
414 => 0.092673396490025
415 => 0.093168282806702
416 => 0.093388078618215
417 => 0.093093581348152
418 => 0.089693576339008
419 => 0.089844381019101
420 => 0.088737876337055
421 => 0.087802996481316
422 => 0.087840386772746
423 => 0.08832103654447
424 => 0.090420062287325
425 => 0.094837338218837
426 => 0.095004970611452
427 => 0.095208145961482
428 => 0.094381729705159
429 => 0.094132474654514
430 => 0.094461306404502
501 => 0.096120202995044
502 => 0.10038733541195
503 => 0.098879045823622
504 => 0.097652782910387
505 => 0.098728546083401
506 => 0.098562940775026
507 => 0.097165065313049
508 => 0.0971258316046
509 => 0.094442861665246
510 => 0.093451028766936
511 => 0.092622178959703
512 => 0.091717096607877
513 => 0.091180533451079
514 => 0.092004938323514
515 => 0.092193489471912
516 => 0.090390913810201
517 => 0.090145229408256
518 => 0.091617251604907
519 => 0.090969469518679
520 => 0.091635729458587
521 => 0.091790307479717
522 => 0.091765416858082
523 => 0.091089057962762
524 => 0.091520148953326
525 => 0.090500490246232
526 => 0.089391764550052
527 => 0.088684466631942
528 => 0.088067255388936
529 => 0.088409720059083
530 => 0.087188896041585
531 => 0.086798329868054
601 => 0.091374105025577
602 => 0.094754279332312
603 => 0.094705130259196
604 => 0.094405947916719
605 => 0.093961423642719
606 => 0.09608768327563
607 => 0.095346936935427
608 => 0.095885891789352
609 => 0.09602307841954
610 => 0.09643830103115
611 => 0.096586707425211
612 => 0.096138120227491
613 => 0.09463260680163
614 => 0.090881010484305
615 => 0.08913463227135
616 => 0.088558298372845
617 => 0.088579247015442
618 => 0.088001389933765
619 => 0.088171594742056
620 => 0.087942199647452
621 => 0.087507780834905
622 => 0.088382895921569
623 => 0.088483744783046
624 => 0.088279482464972
625 => 0.088327593635282
626 => 0.086636388883208
627 => 0.086764967507405
628 => 0.086049025388897
629 => 0.085914794872487
630 => 0.084104955541111
701 => 0.080898562825172
702 => 0.082675215641874
703 => 0.080529268874488
704 => 0.079716566317279
705 => 0.083563773821926
706 => 0.083177620893386
707 => 0.082516694936367
708 => 0.081539047696898
709 => 0.081176428825838
710 => 0.078973271356461
711 => 0.078843097059782
712 => 0.079935041391861
713 => 0.079431146654117
714 => 0.078723487602464
715 => 0.076160418251624
716 => 0.073278679698181
717 => 0.073365661271147
718 => 0.074282288688345
719 => 0.076947506527898
720 => 0.075906159809248
721 => 0.07515065081679
722 => 0.07500916669302
723 => 0.076780136719082
724 => 0.079286430335651
725 => 0.080462327225386
726 => 0.079297049120178
727 => 0.077958440375944
728 => 0.07803991528769
729 => 0.078581931374132
730 => 0.078638889601122
731 => 0.077767592919828
801 => 0.078012857831963
802 => 0.077640278002936
803 => 0.07535375627993
804 => 0.0753124003526
805 => 0.07475125104663
806 => 0.07473425966866
807 => 0.073779604713952
808 => 0.073646041886571
809 => 0.071750516530584
810 => 0.072998157060074
811 => 0.072161305296959
812 => 0.070899972296572
813 => 0.07068251801188
814 => 0.070675981073498
815 => 0.071971088035998
816 => 0.072983022981169
817 => 0.072175862691666
818 => 0.071992087939891
819 => 0.07395432149489
820 => 0.07370460938886
821 => 0.073488360315509
822 => 0.079062019231557
823 => 0.074650033281476
824 => 0.072726155579887
825 => 0.070344991589704
826 => 0.071120310591779
827 => 0.071283681697322
828 => 0.065557411538002
829 => 0.063234264447527
830 => 0.062437047912028
831 => 0.06197823852486
901 => 0.062187323723958
902 => 0.060096218864555
903 => 0.061501475913756
904 => 0.059690755862207
905 => 0.059387182752972
906 => 0.062624974510313
907 => 0.063075494318442
908 => 0.061153436851431
909 => 0.062387708898091
910 => 0.061940144696307
911 => 0.059721795460409
912 => 0.05963707083667
913 => 0.058523981168843
914 => 0.056782211375324
915 => 0.055986175841763
916 => 0.055571593624387
917 => 0.055742658327322
918 => 0.055656162778852
919 => 0.055091720817238
920 => 0.055688515931379
921 => 0.054163951027515
922 => 0.053556856998542
923 => 0.053282646710129
924 => 0.051929507607268
925 => 0.054082953663611
926 => 0.054507209665109
927 => 0.054932301581989
928 => 0.058632436495856
929 => 0.058447588212032
930 => 0.060118526673036
1001 => 0.0600535970771
1002 => 0.059577018360613
1003 => 0.057566411149149
1004 => 0.058367803348011
1005 => 0.055901242723913
1006 => 0.057749357653307
1007 => 0.056905955178656
1008 => 0.057464202428241
1009 => 0.056460423538362
1010 => 0.057015956221036
1011 => 0.054607816501924
1012 => 0.052359129515658
1013 => 0.053264066802197
1014 => 0.054247837124796
1015 => 0.056380901844208
1016 => 0.055110466094728
1017 => 0.055567362830735
1018 => 0.054036835248701
1019 => 0.050878919673374
1020 => 0.050896793132582
1021 => 0.050411016620248
1022 => 0.04999123478906
1023 => 0.055256390923142
1024 => 0.054601585528068
1025 => 0.053558238829828
1026 => 0.054954799846372
1027 => 0.055324072745549
1028 => 0.055334585425852
1029 => 0.056353480293065
1030 => 0.056897264666344
1031 => 0.05699310901903
1101 => 0.05859636210727
1102 => 0.059133751395029
1103 => 0.061347181817127
1104 => 0.056851128361481
1105 => 0.056758535099272
1106 => 0.054974452323863
1107 => 0.053842958822467
1108 => 0.055051926651939
1109 => 0.056122907108286
1110 => 0.055007730671989
1111 => 0.05515334917191
1112 => 0.053656315919443
1113 => 0.054191434865238
1114 => 0.054652351389664
1115 => 0.054397860376297
1116 => 0.054016875011783
1117 => 0.056035098924165
1118 => 0.055921222821545
1119 => 0.057800639327523
1120 => 0.059265778892296
1121 => 0.061891570917394
1122 => 0.05915142005357
1123 => 0.059051558064979
1124 => 0.060027725021823
1125 => 0.059133601948954
1126 => 0.059698656866927
1127 => 0.061800531834393
1128 => 0.061844941140365
1129 => 0.061101028047186
1130 => 0.061055760867859
1201 => 0.061198637514921
1202 => 0.062035470499438
1203 => 0.061743055341368
1204 => 0.062081445565333
1205 => 0.062504607722016
1206 => 0.064254985819094
1207 => 0.064676996052422
1208 => 0.063651729972654
1209 => 0.063744300020239
1210 => 0.063360822362223
1211 => 0.062990387749539
1212 => 0.06382307066122
1213 => 0.065344815048741
1214 => 0.065335348355885
1215 => 0.065688363475306
1216 => 0.06590828897017
1217 => 0.064964207750912
1218 => 0.064349645592003
1219 => 0.064585307829335
1220 => 0.064962136878884
1221 => 0.064463107247341
1222 => 0.061382865188446
1223 => 0.06231721386249
1224 => 0.062161692555813
1225 => 0.061940211303068
1226 => 0.062879706119924
1227 => 0.062789089552926
1228 => 0.060074771561789
1229 => 0.060248533392998
1230 => 0.060085338594262
1231 => 0.060612654375493
]
'min_raw' => 0.04999123478906
'max_raw' => 0.11198653713218
'avg_raw' => 0.080988885960622
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.049991'
'max' => '$0.111986'
'avg' => '$0.080988'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012190621728371
'max_diff' => -0.081378294457174
'year' => 2034
]
9 => [
'items' => [
101 => 0.059105125166264
102 => 0.059568830997659
103 => 0.059859662948138
104 => 0.060030965201246
105 => 0.060649826402527
106 => 0.060577210183426
107 => 0.06064531247639
108 => 0.061562920264591
109 => 0.066203865572342
110 => 0.066456461985774
111 => 0.065212584863236
112 => 0.065709489239299
113 => 0.0647555414983
114 => 0.065395933007727
115 => 0.065834072614296
116 => 0.063854203981611
117 => 0.063736969010424
118 => 0.06277908398776
119 => 0.063293797141559
120 => 0.06247485150468
121 => 0.062675792118467
122 => 0.062113944644629
123 => 0.063125158234822
124 => 0.064255852155365
125 => 0.06454151009215
126 => 0.063790067043943
127 => 0.063245972754531
128 => 0.062290722418124
129 => 0.06387932501671
130 => 0.064343880828324
131 => 0.063876884902799
201 => 0.063768671742793
202 => 0.063563608000117
203 => 0.0638121769852
204 => 0.064341350757605
205 => 0.064091802178844
206 => 0.064256633411596
207 => 0.063628466725575
208 => 0.064964520281078
209 => 0.067086494866015
210 => 0.067093317361284
211 => 0.066843767437363
212 => 0.066741656985122
213 => 0.066997710351021
214 => 0.067136608798162
215 => 0.067964638431321
216 => 0.068853147217856
217 => 0.07299943003786
218 => 0.071835170413622
219 => 0.075513999194998
220 => 0.078423475124936
221 => 0.079295899740362
222 => 0.07849331014492
223 => 0.075747694493954
224 => 0.075612981491467
225 => 0.079716090443038
226 => 0.078556774229924
227 => 0.078418877255287
228 => 0.076951886425772
301 => 0.077819059696364
302 => 0.077629396181422
303 => 0.077330003044427
304 => 0.078984509236904
305 => 0.082081597130434
306 => 0.081598886937921
307 => 0.081238566171492
308 => 0.079659745460796
309 => 0.080610548171007
310 => 0.080271985537327
311 => 0.081726665468772
312 => 0.08086494530249
313 => 0.07854799126939
314 => 0.078916973835942
315 => 0.078861202863297
316 => 0.080008965528345
317 => 0.079664435665518
318 => 0.078793927878074
319 => 0.08207101162071
320 => 0.081858216030561
321 => 0.082159911525548
322 => 0.082292727212685
323 => 0.084287430338135
324 => 0.085104596385251
325 => 0.085290107384452
326 => 0.086066351927322
327 => 0.085270793713083
328 => 0.088453593793434
329 => 0.090569970125334
330 => 0.093028250142566
331 => 0.096620457971119
401 => 0.097971161344435
402 => 0.097727168869723
403 => 0.10045073984803
404 => 0.10534493635447
405 => 0.098716425914107
406 => 0.10569626350309
407 => 0.10348652750852
408 => 0.098247283216841
409 => 0.09790993765109
410 => 0.10145801471429
411 => 0.1093273081507
412 => 0.10735613939767
413 => 0.10933053227663
414 => 0.10702729810727
415 => 0.10691292311758
416 => 0.10921866933394
417 => 0.11460617104815
418 => 0.11204677093121
419 => 0.10837724327292
420 => 0.11108676539163
421 => 0.10873952657797
422 => 0.10345054058002
423 => 0.10735463208207
424 => 0.10474407727678
425 => 0.10550597595369
426 => 0.1109929738637
427 => 0.11033276375837
428 => 0.11118713676848
429 => 0.10967919076848
430 => 0.10827053142322
501 => 0.10564116414688
502 => 0.10486273812259
503 => 0.10507786707087
504 => 0.10486263151537
505 => 0.10339152468939
506 => 0.10307383931039
507 => 0.10254434976059
508 => 0.10270846071251
509 => 0.10171286545127
510 => 0.1035917594097
511 => 0.10394049868515
512 => 0.10530780102134
513 => 0.10544975888574
514 => 0.10925767642971
515 => 0.10716033943594
516 => 0.10856741416673
517 => 0.1084415521589
518 => 0.09836083352742
519 => 0.099749867611905
520 => 0.10191076874446
521 => 0.10093728571327
522 => 0.09956100846713
523 => 0.098449590799552
524 => 0.09676567938488
525 => 0.099135752364377
526 => 0.10225214630325
527 => 0.10552879577886
528 => 0.10946547542922
529 => 0.10858685435926
530 => 0.10545520229109
531 => 0.1055956859152
601 => 0.10646410040115
602 => 0.10533942473807
603 => 0.10500773592875
604 => 0.10641853145217
605 => 0.10642824682558
606 => 0.10513417155362
607 => 0.1036960437021
608 => 0.10369001789389
609 => 0.10343411693338
610 => 0.10707282231966
611 => 0.1090737423675
612 => 0.10930314462634
613 => 0.1090583017677
614 => 0.10915253206652
615 => 0.10798824077795
616 => 0.11064946540377
617 => 0.11309166828827
618 => 0.11243710574517
619 => 0.11145582344151
620 => 0.11067418482169
621 => 0.11225297652717
622 => 0.11218267541777
623 => 0.1130703377766
624 => 0.11303006828462
625 => 0.11273158082002
626 => 0.1124371164051
627 => 0.11360463452551
628 => 0.1132684080566
629 => 0.11293165933511
630 => 0.11225625822052
701 => 0.11234805644922
702 => 0.11136694357779
703 => 0.1109130358708
704 => 0.10408735303449
705 => 0.102263307545
706 => 0.10283718938787
707 => 0.10302612619137
708 => 0.10223229925677
709 => 0.10337044316358
710 => 0.1031930646413
711 => 0.10388314070854
712 => 0.10345201114134
713 => 0.10346970484917
714 => 0.10473756497976
715 => 0.10510563016954
716 => 0.10491842924337
717 => 0.10504953835518
718 => 0.10807089249931
719 => 0.10764135255748
720 => 0.10741316802443
721 => 0.10747637669953
722 => 0.10824839746192
723 => 0.10846452112462
724 => 0.10754878997903
725 => 0.10798065408106
726 => 0.10981947661583
727 => 0.11046296043466
728 => 0.1125166518946
729 => 0.11164420726096
730 => 0.11324561714452
731 => 0.11816780516572
801 => 0.12209998954656
802 => 0.11848379028555
803 => 0.1257047461403
804 => 0.13132729605783
805 => 0.13111149322715
806 => 0.1301310715971
807 => 0.12372994799923
808 => 0.11783953862909
809 => 0.1227671161872
810 => 0.12277967759576
811 => 0.12235639431347
812 => 0.1197274182005
813 => 0.12226491164337
814 => 0.12246632865805
815 => 0.12235358869094
816 => 0.12033795886908
817 => 0.11726046468177
818 => 0.11786179967949
819 => 0.11884679867266
820 => 0.11698199008628
821 => 0.11638607075019
822 => 0.11749399817427
823 => 0.12106397118049
824 => 0.12038908846311
825 => 0.12037146454794
826 => 0.12325889900771
827 => 0.12119211908187
828 => 0.11786938443955
829 => 0.11703035012088
830 => 0.11405234353084
831 => 0.11610926328988
901 => 0.11618328817014
902 => 0.11505673423933
903 => 0.11796079808225
904 => 0.11793403662268
905 => 0.12069101302867
906 => 0.12596131644387
907 => 0.12440262838812
908 => 0.12259004376405
909 => 0.12278712197021
910 => 0.12494858346128
911 => 0.12364171450241
912 => 0.12411167369183
913 => 0.12494787212176
914 => 0.12545237139617
915 => 0.12271453228842
916 => 0.12207621102642
917 => 0.12077042974469
918 => 0.12042977578185
919 => 0.1214933073898
920 => 0.12121310438623
921 => 0.1161770666656
922 => 0.11565077270354
923 => 0.11566691338798
924 => 0.11434352219648
925 => 0.11232503297916
926 => 0.11762950212455
927 => 0.11720347901618
928 => 0.1167331824761
929 => 0.11679079111879
930 => 0.11909328138966
1001 => 0.11775772075401
1002 => 0.12130852759797
1003 => 0.12057858845788
1004 => 0.11982992913315
1005 => 0.11972644160975
1006 => 0.11943827164235
1007 => 0.11845002960078
1008 => 0.11725666795146
1009 => 0.11646870722335
1010 => 0.10743622590097
1011 => 0.10911260189488
1012 => 0.11104111966939
1013 => 0.1117068362771
1014 => 0.11056808195343
1015 => 0.11849499456227
1016 => 0.11994331788154
1017 => 0.11555625207569
1018 => 0.11473561118613
1019 => 0.11854879564237
1020 => 0.11624897927242
1021 => 0.11728458644299
1022 => 0.11504617018705
1023 => 0.11959445920578
1024 => 0.11955980886393
1025 => 0.11779042170787
1026 => 0.11928589561593
1027 => 0.1190260202226
1028 => 0.11702838648122
1029 => 0.1196577877585
1030 => 0.11965909190873
1031 => 0.11795609524082
1101 => 0.11596736796661
1102 => 0.11561183050162
1103 => 0.11534398078149
1104 => 0.11721871183132
1105 => 0.11889958982846
1106 => 0.12202728705615
1107 => 0.12281366445144
1108 => 0.12588294777738
1109 => 0.12405533899748
1110 => 0.12486549429811
1111 => 0.12574503248042
1112 => 0.12616671542896
1113 => 0.12547960569307
1114 => 0.13024746606567
1115 => 0.13065001956458
1116 => 0.1307849922707
1117 => 0.12917729657912
1118 => 0.1306053066391
1119 => 0.12993718802276
1120 => 0.13167544705379
1121 => 0.13194802826506
1122 => 0.13171716167647
1123 => 0.13180368325533
1124 => 0.12773515553552
1125 => 0.12752418091005
1126 => 0.12464752692175
1127 => 0.12581978468514
1128 => 0.12362830498426
1129 => 0.12432324577215
1130 => 0.12462956904981
1201 => 0.12446956315326
1202 => 0.12588606238024
1203 => 0.12468174866563
1204 => 0.12150336676528
1205 => 0.1183241189169
1206 => 0.11828420604993
1207 => 0.11744716620984
1208 => 0.11684213971694
1209 => 0.11695868928394
1210 => 0.11736942515985
1211 => 0.11681826700116
1212 => 0.11693588453874
1213 => 0.11888911934419
1214 => 0.11928082665459
1215 => 0.11794965216393
1216 => 0.11260479449636
1217 => 0.11129315301818
1218 => 0.11223593490172
1219 => 0.11178534588432
1220 => 0.090219498617177
1221 => 0.095286074541857
1222 => 0.092275687172073
1223 => 0.093663012173333
1224 => 0.090590186204814
1225 => 0.092056699817599
1226 => 0.09178588830182
1227 => 0.099932792457825
1228 => 0.099805589755129
1229 => 0.099866474957492
1230 => 0.096960265613145
1231 => 0.10158993601087
]
'min_raw' => 0.059105125166264
'max_raw' => 0.13194802826506
'avg_raw' => 0.09552657671566
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0591051'
'max' => '$0.131948'
'avg' => '$0.095526'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0091138903772044
'max_diff' => 0.019961491132871
'year' => 2035
]
10 => [
'items' => [
101 => 0.10387067812636
102 => 0.10344857346077
103 => 0.10355480811121
104 => 0.10172934484439
105 => 0.09988414943218
106 => 0.097837543746496
107 => 0.10163988414239
108 => 0.10121712879848
109 => 0.10218677745483
110 => 0.10465286699848
111 => 0.10501600805154
112 => 0.10550407330947
113 => 0.10532913665735
114 => 0.10949683743379
115 => 0.10899210137038
116 => 0.1102083700607
117 => 0.10770641308619
118 => 0.10487521128159
119 => 0.10541333018568
120 => 0.10536150500794
121 => 0.1047017110131
122 => 0.10410607849594
123 => 0.10311451817329
124 => 0.10625196175747
125 => 0.1061245872776
126 => 0.1081866320501
127 => 0.10782214560693
128 => 0.10538801593444
129 => 0.10547495135189
130 => 0.10605963381397
131 => 0.10808322649101
201 => 0.10868396657425
202 => 0.10840567983234
203 => 0.10906436390878
204 => 0.10958496094609
205 => 0.10912974288142
206 => 0.1155746707073
207 => 0.11289828733519
208 => 0.1142027379686
209 => 0.1145138417584
210 => 0.11371695594264
211 => 0.11388977194174
212 => 0.11415154109083
213 => 0.11574095210445
214 => 0.11991202650399
215 => 0.12175936696208
216 => 0.12731718187642
217 => 0.12160597105326
218 => 0.12126709143835
219 => 0.12226822173435
220 => 0.12553124744353
221 => 0.12817562330039
222 => 0.12905291532982
223 => 0.12916886395402
224 => 0.13081472212249
225 => 0.13175809733122
226 => 0.13061487165047
227 => 0.12964610758675
228 => 0.12617611495794
229 => 0.1265777760532
301 => 0.12934482269141
302 => 0.13325343904612
303 => 0.13660743850068
304 => 0.13543298479037
305 => 0.14439323756489
306 => 0.14528161002813
307 => 0.14515886567823
308 => 0.14718271035704
309 => 0.1431657908184
310 => 0.14144847989148
311 => 0.12985556537327
312 => 0.13311270148405
313 => 0.13784714010596
314 => 0.13722051940112
315 => 0.13378224352198
316 => 0.1366048302601
317 => 0.13567159481403
318 => 0.13493551329774
319 => 0.1383076454203
320 => 0.13459984763199
321 => 0.1378101519867
322 => 0.13369290344544
323 => 0.13543834959599
324 => 0.13444754994321
325 => 0.1350887187464
326 => 0.13134045902418
327 => 0.13336292898643
328 => 0.13125631762449
329 => 0.13125531881641
330 => 0.13120881525384
331 => 0.13368723417902
401 => 0.13376805533119
402 => 0.1319365000008
403 => 0.13167254426342
404 => 0.13264852696932
405 => 0.13150590683098
406 => 0.13204053160214
407 => 0.13152210007067
408 => 0.1314053902131
409 => 0.13047542621141
410 => 0.13007477214959
411 => 0.13023187893081
412 => 0.1296955924924
413 => 0.12937246051493
414 => 0.1311445361704
415 => 0.13019778763301
416 => 0.13099943337876
417 => 0.13008585687572
418 => 0.12691900268984
419 => 0.12509771135867
420 => 0.11911581736908
421 => 0.12081227508401
422 => 0.12193702830412
423 => 0.12156529737158
424 => 0.12236391925545
425 => 0.12241294815298
426 => 0.12215330803755
427 => 0.12185267804584
428 => 0.12170634799176
429 => 0.12279697232893
430 => 0.12343011646538
501 => 0.12204991233702
502 => 0.12172654982085
503 => 0.12312201239779
504 => 0.12397324376358
505 => 0.13025825790305
506 => 0.12979264375527
507 => 0.13096124389404
508 => 0.13082967745205
509 => 0.13205455657008
510 => 0.13405671625551
511 => 0.12998576580236
512 => 0.13069234203816
513 => 0.13051910586237
514 => 0.13241045300466
515 => 0.13241635758399
516 => 0.13128240049239
517 => 0.1318971370281
518 => 0.13155400795828
519 => 0.13217408856411
520 => 0.12978642519446
521 => 0.13269434144637
522 => 0.13434294257921
523 => 0.13436583340754
524 => 0.1351472572604
525 => 0.13594122915193
526 => 0.13746518905733
527 => 0.1358987267373
528 => 0.13308081351559
529 => 0.13328425774839
530 => 0.13163211625754
531 => 0.13165988905448
601 => 0.13151163568779
602 => 0.13195655520121
603 => 0.12988406000766
604 => 0.13037047048714
605 => 0.12968949296745
606 => 0.13069086172602
607 => 0.12961355447399
608 => 0.13051902232264
609 => 0.13090979222938
610 => 0.13235174159794
611 => 0.12940057737984
612 => 0.12338295376286
613 => 0.12464793120378
614 => 0.12277693020682
615 => 0.12295009847249
616 => 0.12329992592867
617 => 0.12216602068677
618 => 0.12238233407346
619 => 0.12237460583712
620 => 0.12230800807141
621 => 0.12201303552449
622 => 0.12158526697292
623 => 0.12328936522217
624 => 0.12357892472125
625 => 0.12422257961887
626 => 0.1261376599989
627 => 0.12594629830823
628 => 0.12625841716524
629 => 0.12557706345287
630 => 0.12298170451704
701 => 0.1231226449939
702 => 0.12136511498899
703 => 0.12417763562518
704 => 0.12351159361507
705 => 0.12308219199829
706 => 0.12296502578878
707 => 0.12488485328266
708 => 0.12545929575844
709 => 0.12510134175693
710 => 0.12436716765666
711 => 0.12577699896827
712 => 0.12615421035125
713 => 0.12623865406888
714 => 0.12873660484471
715 => 0.12637826176847
716 => 0.12694593838684
717 => 0.13137478931287
718 => 0.12735843266261
719 => 0.1294859863557
720 => 0.12938185367368
721 => 0.13047023815057
722 => 0.12929257437901
723 => 0.12930717293287
724 => 0.1302735846148
725 => 0.1289164337008
726 => 0.12858038404883
727 => 0.12811613386148
728 => 0.12912980716132
729 => 0.12973745846007
730 => 0.1346346816573
731 => 0.13779851118323
801 => 0.1376611609995
802 => 0.13891628456999
803 => 0.13835083990587
804 => 0.13652486992865
805 => 0.13964157802645
806 => 0.1386553211757
807 => 0.13873662699217
808 => 0.13873360078562
809 => 0.1393893753713
810 => 0.13892469897649
811 => 0.13800877410427
812 => 0.13861680777887
813 => 0.14042245041644
814 => 0.14602722056732
815 => 0.14916372419708
816 => 0.1458383991105
817 => 0.14813216382735
818 => 0.14675672234917
819 => 0.14650676371675
820 => 0.14794741746681
821 => 0.14939059289055
822 => 0.14929866885508
823 => 0.14825099760532
824 => 0.14765919470001
825 => 0.15214052456756
826 => 0.15544229207652
827 => 0.15521713366774
828 => 0.15621090965866
829 => 0.15912866670433
830 => 0.15939542984206
831 => 0.15936182381819
901 => 0.15870062354746
902 => 0.16157353427756
903 => 0.16397016695266
904 => 0.1585475747887
905 => 0.16061242689779
906 => 0.16153940553494
907 => 0.16290048519645
908 => 0.16519685472885
909 => 0.16769132112297
910 => 0.16804406602153
911 => 0.1677937766356
912 => 0.16614860899382
913 => 0.16887808388745
914 => 0.17047694626607
915 => 0.17142903222322
916 => 0.17384336379857
917 => 0.16154513023942
918 => 0.15283982926439
919 => 0.15148037081107
920 => 0.15424488303396
921 => 0.15497386286057
922 => 0.15468001200653
923 => 0.1448814043078
924 => 0.15142878316941
925 => 0.15847321230525
926 => 0.1587438175177
927 => 0.16227040603517
928 => 0.16341880781621
929 => 0.1662581738133
930 => 0.1660805706971
1001 => 0.16677191113321
1002 => 0.1666129839393
1003 => 0.17187231154985
1004 => 0.177674130922
1005 => 0.1774732323658
1006 => 0.17663915218704
1007 => 0.1778779034843
1008 => 0.18386600283711
1009 => 0.18331471460604
1010 => 0.18385024416391
1011 => 0.19091055077536
1012 => 0.20008995368715
1013 => 0.19582519943764
1014 => 0.2050784890091
1015 => 0.21090294429853
1016 => 0.22097573746169
1017 => 0.21971457414811
1018 => 0.22363583860895
1019 => 0.21745682860407
1020 => 0.20326857264892
1021 => 0.20102322683355
1022 => 0.20551846601712
1023 => 0.21656957291092
1024 => 0.20517042733349
1025 => 0.20747645963752
1026 => 0.20681232217883
1027 => 0.20677693311605
1028 => 0.20812758970432
1029 => 0.20616839187753
1030 => 0.19818626747822
1031 => 0.20184442805147
1101 => 0.20043183657484
1102 => 0.20199921213383
1103 => 0.21045769159086
1104 => 0.20671799619794
1105 => 0.20277853088969
1106 => 0.20771949462358
1107 => 0.21401103935616
1108 => 0.21361732579379
1109 => 0.21285335692329
1110 => 0.21715980944621
1111 => 0.22427280734189
1112 => 0.22619542209075
1113 => 0.22761465699223
1114 => 0.22781034550697
1115 => 0.22982605882857
1116 => 0.21898706027317
1117 => 0.23618882934581
1118 => 0.23915909967537
1119 => 0.23860081195851
1120 => 0.24190214242173
1121 => 0.24093080725278
1122 => 0.23952349499079
1123 => 0.24475680598813
1124 => 0.2387572372361
1125 => 0.23024160471729
1126 => 0.22556976029736
1127 => 0.23172202189647
1128 => 0.2354789933707
1129 => 0.2379621125269
1130 => 0.23871350288323
1201 => 0.21982846087636
1202 => 0.2096504706471
1203 => 0.21617444569316
1204 => 0.22413414551006
1205 => 0.2189428437388
1206 => 0.2191463329398
1207 => 0.21174490086409
1208 => 0.22478900801685
1209 => 0.2228885913229
1210 => 0.23274795649289
1211 => 0.23039493986872
1212 => 0.23843486942649
1213 => 0.23631768652655
1214 => 0.24510599437411
1215 => 0.24861188830844
1216 => 0.25449882987299
1217 => 0.25882928805205
1218 => 0.26137221592325
1219 => 0.26121954807214
1220 => 0.27129589517949
1221 => 0.26535422533104
1222 => 0.25789008765733
1223 => 0.25775508495587
1224 => 0.26162086762473
1225 => 0.26972248757299
1226 => 0.27182311975179
1227 => 0.27299708656623
1228 => 0.27119911552384
1229 => 0.26474985874666
1230 => 0.26196510236875
1231 => 0.26433779548489
]
'min_raw' => 0.097837543746496
'max_raw' => 0.27299708656623
'avg_raw' => 0.18541731515636
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.097837'
'max' => '$0.272997'
'avg' => '$0.185417'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.038732418580231
'max_diff' => 0.14104905830118
'year' => 2036
]
11 => [
'items' => [
101 => 0.2614361956917
102 => 0.26644517097986
103 => 0.2733235639099
104 => 0.27190320296996
105 => 0.27665125663976
106 => 0.2815649926782
107 => 0.28859185590285
108 => 0.29042893815377
109 => 0.29346556525655
110 => 0.29659125202535
111 => 0.29759513837587
112 => 0.29951186890665
113 => 0.29950176679063
114 => 0.30527796325599
115 => 0.31164928683119
116 => 0.31405431398435
117 => 0.31958454130907
118 => 0.31011422081777
119 => 0.31729756769762
120 => 0.32377712639408
121 => 0.31605192939531
122 => 0.32669931371806
123 => 0.32711272752382
124 => 0.33335478516334
125 => 0.32702726391214
126 => 0.32327000199135
127 => 0.33411707637392
128 => 0.339365633988
129 => 0.33778472572046
130 => 0.32575393574541
131 => 0.31875149995507
201 => 0.30042477482277
202 => 0.32213357239759
203 => 0.33270729444197
204 => 0.32572655235974
205 => 0.3292472326205
206 => 0.34845492253882
207 => 0.35576796725389
208 => 0.3542469050752
209 => 0.35450393954458
210 => 0.35844992573168
211 => 0.37594860157958
212 => 0.36546298939539
213 => 0.37347884702181
214 => 0.37773042900354
215 => 0.38167953529141
216 => 0.37198177837626
217 => 0.35936513911801
218 => 0.35536891985443
219 => 0.32503245513505
220 => 0.32345331040181
221 => 0.32256688861007
222 => 0.31697812459996
223 => 0.31258688697932
224 => 0.30909481178718
225 => 0.29993056366109
226 => 0.30302322838432
227 => 0.28841732959856
228 => 0.29776166604042
301 => 0.27445029890659
302 => 0.29386469815665
303 => 0.28329832330926
304 => 0.29039335983754
305 => 0.29036860592349
306 => 0.27730439419153
307 => 0.26976922950769
308 => 0.27457092971723
309 => 0.2797187335013
310 => 0.28055394734597
311 => 0.28722820932345
312 => 0.28909085237858
313 => 0.28344695696304
314 => 0.2739672226372
315 => 0.27616914871137
316 => 0.26972460754607
317 => 0.25843079703958
318 => 0.26654220891636
319 => 0.26931180156469
320 => 0.27053501145841
321 => 0.25942884592817
322 => 0.25593904759199
323 => 0.25408110824005
324 => 0.2725335561325
325 => 0.2735444228821
326 => 0.26837268566902
327 => 0.29174942827638
328 => 0.28645855146099
329 => 0.29236975716008
330 => 0.27596934699964
331 => 0.27659586475385
401 => 0.26883164775567
402 => 0.27317909046948
403 => 0.27010645808398
404 => 0.27282786006047
405 => 0.27445905718442
406 => 0.282222000151
407 => 0.29395333849555
408 => 0.28106247534312
409 => 0.27544574166705
410 => 0.27893033164998
411 => 0.28821025396841
412 => 0.30226981131131
413 => 0.29394627038935
414 => 0.29764011650762
415 => 0.29844705755669
416 => 0.29230958663507
417 => 0.30249610861858
418 => 0.30795514850471
419 => 0.31355499383873
420 => 0.31841718263816
421 => 0.31131829246908
422 => 0.31891512253593
423 => 0.31279341852308
424 => 0.30730161717343
425 => 0.30730994596916
426 => 0.3038648587601
427 => 0.29718956818364
428 => 0.29595854218401
429 => 0.30236249489554
430 => 0.30749785851361
501 => 0.30792083165792
502 => 0.31076403282139
503 => 0.31244660998264
504 => 0.32893815351553
505 => 0.33557118874967
506 => 0.34368193867704
507 => 0.34684153287057
508 => 0.35635077861588
509 => 0.34867129037336
510 => 0.34700978478585
511 => 0.3239434650583
512 => 0.32772057362148
513 => 0.33376808886791
514 => 0.32404318635727
515 => 0.33021139863628
516 => 0.33142913440075
517 => 0.32371273789124
518 => 0.32783439867278
519 => 0.31688848962426
520 => 0.29419192940109
521 => 0.30252137637827
522 => 0.30865465301501
523 => 0.29990171102682
524 => 0.31559102075502
525 => 0.3064256499049
526 => 0.3035206673608
527 => 0.29218729475522
528 => 0.29753621036353
529 => 0.30477069531288
530 => 0.30030062471333
531 => 0.30957669239187
601 => 0.32271407806157
602 => 0.33207656143464
603 => 0.33279529665361
604 => 0.32677584708239
605 => 0.33642205343588
606 => 0.33649231551816
607 => 0.32561135534552
608 => 0.31894682782522
609 => 0.31743263315032
610 => 0.32121538832357
611 => 0.32580835143902
612 => 0.33305017414112
613 => 0.33742625593058
614 => 0.34883675634305
615 => 0.35192411058998
616 => 0.35531617688004
617 => 0.35984902351806
618 => 0.36529186810502
619 => 0.35338323401006
620 => 0.35385638624312
621 => 0.34276723106016
622 => 0.33091687840144
623 => 0.3399098189021
624 => 0.35166689232596
625 => 0.34896980669211
626 => 0.34866632946184
627 => 0.34917669398559
628 => 0.34714317949625
629 => 0.33794566882654
630 => 0.33332673654768
701 => 0.33928633760271
702 => 0.34245360033214
703 => 0.34736574861114
704 => 0.34676022265288
705 => 0.35941338909337
706 => 0.36433002696025
707 => 0.36307214059911
708 => 0.36330362196228
709 => 0.37220495997104
710 => 0.38210507853656
711 => 0.39137784600888
712 => 0.40081050335635
713 => 0.38943906676109
714 => 0.38366535255072
715 => 0.38962235183037
716 => 0.38646148416176
717 => 0.40462476735988
718 => 0.4058823536802
719 => 0.42404432346621
720 => 0.44128219548026
721 => 0.43045539691679
722 => 0.44066458031243
723 => 0.45170664452175
724 => 0.47300857789187
725 => 0.46583483614387
726 => 0.46033986239176
727 => 0.45514713874754
728 => 0.4659523723295
729 => 0.47985313271487
730 => 0.48284722336205
731 => 0.48769879404114
801 => 0.48259796069392
802 => 0.48874135262229
803 => 0.51043022567264
804 => 0.50456970072146
805 => 0.49624681316438
806 => 0.51336809541612
807 => 0.51956422090573
808 => 0.5630518745279
809 => 0.61795683361126
810 => 0.59522582002535
811 => 0.58111594636735
812 => 0.58443210136766
813 => 0.60448153377475
814 => 0.61092077512673
815 => 0.59341669739244
816 => 0.59959943356574
817 => 0.6336669177538
818 => 0.65194303000495
819 => 0.62712161475854
820 => 0.55864031452532
821 => 0.49549742820255
822 => 0.51224576501658
823 => 0.51034702338327
824 => 0.54694828513814
825 => 0.50442992913958
826 => 0.50514582921019
827 => 0.54250396629674
828 => 0.53253745580266
829 => 0.51639298521647
830 => 0.49561530070437
831 => 0.45720582918055
901 => 0.42318548912455
902 => 0.48990721039077
903 => 0.48703004844419
904 => 0.48286349157404
905 => 0.49213571302002
906 => 0.53715898839575
907 => 0.53612105617222
908 => 0.52951826092379
909 => 0.53452642292536
910 => 0.51551503020349
911 => 0.52041469898928
912 => 0.49548742604675
913 => 0.50675559447165
914 => 0.51635834643344
915 => 0.51828624106095
916 => 0.52262988609745
917 => 0.48551391483759
918 => 0.5021778962656
919 => 0.51196642415065
920 => 0.46774149905631
921 => 0.51109223957551
922 => 0.48486780835354
923 => 0.47596684251907
924 => 0.48795082040211
925 => 0.48328065256629
926 => 0.47926551650251
927 => 0.47702500159012
928 => 0.48582471232405
929 => 0.48541419530039
930 => 0.47101616058942
1001 => 0.45223451124793
1002 => 0.45853824925356
1003 => 0.45624804213826
1004 => 0.4479480361098
1005 => 0.45354123802643
1006 => 0.42891160744031
1007 => 0.38653760815368
1008 => 0.41453117003313
1009 => 0.41345344835191
1010 => 0.41291001220945
1011 => 0.43394640027663
1012 => 0.43192423695601
1013 => 0.42825399072802
1014 => 0.44788062915958
1015 => 0.44071664211652
1016 => 0.4627943621356
1017 => 0.47733617643757
1018 => 0.47364790195218
1019 => 0.48732454858986
1020 => 0.45868347464545
1021 => 0.46819689052934
1022 => 0.47015759235799
1023 => 0.4476384394879
1024 => 0.43225508788378
1025 => 0.43122919371484
1026 => 0.40455658198973
1027 => 0.41880487587948
1028 => 0.431342784868
1029 => 0.42533809944354
1030 => 0.42343719542303
1031 => 0.43314850180803
1101 => 0.43390315348586
1102 => 0.41669701525696
1103 => 0.42027471624228
1104 => 0.43519432409438
1105 => 0.41989878040418
1106 => 0.390182037527
1107 => 0.38281187442734
1108 => 0.38182855881079
1109 => 0.36184009194952
1110 => 0.38330438396747
1111 => 0.37393464529437
1112 => 0.40353353749598
1113 => 0.38662680901246
1114 => 0.38589799373859
1115 => 0.38479628255817
1116 => 0.3675913834175
1117 => 0.37135816290093
1118 => 0.38387951160055
1119 => 0.38834726987966
1120 => 0.38788124608788
1121 => 0.38381815016092
1122 => 0.38567821466987
1123 => 0.37968629879712
1124 => 0.3775704285915
1125 => 0.37089216020664
1126 => 0.36107695059962
1127 => 0.36244181569565
1128 => 0.34299531717485
1129 => 0.33239983267692
1130 => 0.32946714221414
1201 => 0.32554542596173
1202 => 0.32991011050013
1203 => 0.34294022768786
1204 => 0.32722314186589
1205 => 0.3002773006495
1206 => 0.30189679162009
1207 => 0.3055353069998
1208 => 0.29875495766089
1209 => 0.29233792604319
1210 => 0.29791701440455
1211 => 0.28649970626041
1212 => 0.30691503414219
1213 => 0.30636285673628
1214 => 0.3139724284952
1215 => 0.31873084988018
1216 => 0.30776422914501
1217 => 0.30500615368701
1218 => 0.30657727881543
1219 => 0.28061008016717
1220 => 0.31185035437212
1221 => 0.31212052156073
1222 => 0.30980718606864
1223 => 0.32644166764752
1224 => 0.36154561220388
1225 => 0.34833809620888
1226 => 0.34322374681633
1227 => 0.33350136488253
1228 => 0.3464558615514
1229 => 0.34546115832886
1230 => 0.34096273312654
1231 => 0.33824207152823
]
'min_raw' => 0.25408110824005
'max_raw' => 0.65194303000495
'avg_raw' => 0.4530120691225
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.254081'
'max' => '$0.651943'
'avg' => '$0.453012'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15624356449355
'max_diff' => 0.37894594343872
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0079753156556759
]
1 => [
'year' => 2028
'avg' => 0.013687956915818
]
2 => [
'year' => 2029
'avg' => 0.037393031279807
]
3 => [
'year' => 2030
'avg' => 0.028848667944998
]
4 => [
'year' => 2031
'avg' => 0.028332967098048
]
5 => [
'year' => 2032
'avg' => 0.049676608035781
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0079753156556759
'min' => '$0.007975'
'max_raw' => 0.049676608035781
'max' => '$0.049676'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.049676608035781
]
1 => [
'year' => 2033
'avg' => 0.1277733440534
]
2 => [
'year' => 2034
'avg' => 0.080988885960622
]
3 => [
'year' => 2035
'avg' => 0.09552657671566
]
4 => [
'year' => 2036
'avg' => 0.18541731515636
]
5 => [
'year' => 2037
'avg' => 0.4530120691225
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.049676608035781
'min' => '$0.049676'
'max_raw' => 0.4530120691225
'max' => '$0.453012'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.4530120691225
]
]
]
]
'prediction_2025_max_price' => '$0.013636'
'last_price' => 0.01322215
'sma_50day_nextmonth' => '$0.011167'
'sma_200day_nextmonth' => '$0.0218053'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.012384'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.01148'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.010259'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.009694'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.010584'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016182'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.022683'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.012418'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.011747'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.010833'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01037'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0117034'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.015174'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.018187'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.020099'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.016883'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.011916'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.011673'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.01315'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.016567'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017154'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.010342'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.005171'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '69.20'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 117.21
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.011376'
'vwma_10_action' => 'BUY'
'hma_9' => '0.012939'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 255.67
'cci_20_action' => 'SELL'
'adx_14' => 22.83
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001187'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.88
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004541'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 9
'buy_signals' => 24
'sell_pct' => 27.27
'buy_pct' => 72.73
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767713786
'last_updated_date' => '6. Januar 2026'
]
Pudgy Penguins Preisprognose für 2026
Die Preisprognose für Pudgy Penguins im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.004568 am unteren Ende und $0.013636 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Pudgy Penguins im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn PENGU das prognostizierte Preisziel erreicht.
Pudgy Penguins Preisprognose 2027-2032
Die Preisprognose für PENGU für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.007975 am unteren Ende und $0.049676 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Pudgy Penguins, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Pudgy Penguins Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.004397 | $0.007975 | $0.011552 |
| 2028 | $0.007936 | $0.013687 | $0.019439 |
| 2029 | $0.017434 | $0.037393 | $0.057351 |
| 2030 | $0.014827 | $0.028848 | $0.04287 |
| 2031 | $0.01753 | $0.028332 | $0.039135 |
| 2032 | $0.026758 | $0.049676 | $0.072594 |
Pudgy Penguins Preisprognose 2032-2037
Die Preisprognose für Pudgy Penguins für die Jahre 2032-2037 wird derzeit zwischen $0.049676 am unteren Ende und $0.453012 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Pudgy Penguins bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Pudgy Penguins Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.026758 | $0.049676 | $0.072594 |
| 2033 | $0.062181 | $0.127773 | $0.193364 |
| 2034 | $0.049991 | $0.080988 | $0.111986 |
| 2035 | $0.0591051 | $0.095526 | $0.131948 |
| 2036 | $0.097837 | $0.185417 | $0.272997 |
| 2037 | $0.254081 | $0.453012 | $0.651943 |
Pudgy Penguins Potenzielles Preishistogramm
Pudgy Penguins Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Pudgy Penguins Bullisch, mit 24 technischen Indikatoren, die bullische Signale zeigen, und 9 anzeigen bärische Signale. Die Preisprognose für PENGU wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Pudgy Penguins
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Pudgy Penguins im nächsten Monat steigen, und bis zum 04.02.2026 $0.0218053 erreichen. Der kurzfristige 50-Tage-SMA für Pudgy Penguins wird voraussichtlich bis zum 04.02.2026 $0.011167 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 69.20, was darauf hindeutet, dass sich der PENGU-Markt in einem NEUTRAL Zustand befindet.
Beliebte PENGU Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.012384 | BUY |
| SMA 5 | $0.01148 | BUY |
| SMA 10 | $0.010259 | BUY |
| SMA 21 | $0.009694 | BUY |
| SMA 50 | $0.010584 | BUY |
| SMA 100 | $0.016182 | SELL |
| SMA 200 | $0.022683 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.012418 | BUY |
| EMA 5 | $0.011747 | BUY |
| EMA 10 | $0.010833 | BUY |
| EMA 21 | $0.01037 | BUY |
| EMA 50 | $0.0117034 | BUY |
| EMA 100 | $0.015174 | SELL |
| EMA 200 | $0.018187 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.020099 | SELL |
| SMA 50 | $0.016883 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.016567 | SELL |
| EMA 50 | $0.017154 | SELL |
| EMA 100 | $0.010342 | BUY |
| EMA 200 | $0.005171 | BUY |
Pudgy Penguins Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 69.20 | NEUTRAL |
| Stoch RSI (14) | 117.21 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 255.67 | SELL |
| Average Directional Index (14) | 22.83 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.001187 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 83.88 | SELL |
| VWMA (10) | 0.011376 | BUY |
| Hull Moving Average (9) | 0.012939 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.004541 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Pudgy Penguins-Preisprognose
Definition weltweiter Geldflüsse, die für Pudgy Penguins-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Pudgy Penguins-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.018579 | $0.026107 | $0.036684 | $0.051548 | $0.072433 | $0.101781 |
| Amazon.com aktie | $0.027588 | $0.057565 | $0.120114 | $0.250625 | $0.522944 | $1.09 |
| Apple aktie | $0.018754 | $0.0266019 | $0.037732 | $0.053521 | $0.075915 | $0.10768 |
| Netflix aktie | $0.020862 | $0.032917 | $0.051939 | $0.081951 | $0.1293068 | $0.204025 |
| Google aktie | $0.017122 | $0.022173 | $0.028714 | $0.037185 | $0.048155 | $0.06236 |
| Tesla aktie | $0.029973 | $0.067947 | $0.154032 | $0.34918 | $0.791566 | $1.79 |
| Kodak aktie | $0.009915 | $0.007435 | $0.005575 | $0.004181 | $0.003135 | $0.002351 |
| Nokia aktie | $0.008759 | $0.0058025 | $0.003843 | $0.002546 | $0.001686 | $0.001117 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Pudgy Penguins Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Pudgy Penguins investieren?", "Sollte ich heute PENGU kaufen?", "Wird Pudgy Penguins auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Pudgy Penguins-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Pudgy Penguins.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Pudgy Penguins zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Pudgy Penguins-Preis entspricht heute $0.01322 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Pudgy Penguins-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Pudgy Penguins-Prognose
basierend auf dem Preisverlauf des letzten Monats
Pudgy Penguins-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Pudgy Penguins 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.013565 | $0.013918 | $0.01428 | $0.014651 |
| Wenn die Wachstumsrate von Pudgy Penguins 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0139095 | $0.014632 | $0.015393 | $0.016193 |
| Wenn die Wachstumsrate von Pudgy Penguins 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01494 | $0.016882 | $0.019076 | $0.021555 |
| Wenn die Wachstumsrate von Pudgy Penguins 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.016659 | $0.020989 | $0.026444 | $0.033318 |
| Wenn die Wachstumsrate von Pudgy Penguins 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020095 | $0.030542 | $0.046421 | $0.070553 |
| Wenn die Wachstumsrate von Pudgy Penguins 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0304064 | $0.069924 | $0.1608026 | $0.369791 |
| Wenn die Wachstumsrate von Pudgy Penguins 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.04759 | $0.171294 | $0.616543 | $2.21 |
Fragefeld
Ist PENGU eine gute Investition?
Die Entscheidung, Pudgy Penguins zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Pudgy Penguins in den letzten 2026 Stunden um 6.3381% gestiegen, und Pudgy Penguins hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Pudgy Penguins investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Pudgy Penguins steigen?
Es scheint, dass der Durchschnittswert von Pudgy Penguins bis zum Ende dieses Jahres potenziell auf $0.013636 steigen könnte. Betrachtet man die Aussichten von Pudgy Penguins in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.04287 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Pudgy Penguins nächste Woche kosten?
Basierend auf unserer neuen experimentellen Pudgy Penguins-Prognose wird der Preis von Pudgy Penguins in der nächsten Woche um 0.86% steigen und $0.013335 erreichen bis zum 13. Januar 2026.
Wie viel wird Pudgy Penguins nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Pudgy Penguins-Prognose wird der Preis von Pudgy Penguins im nächsten Monat um -11.62% fallen und $0.011685 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Pudgy Penguins in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Pudgy Penguins im Jahr 2026 wird erwartet, dass PENGU innerhalb der Spanne von $0.004568 bis $0.013636 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Pudgy Penguins-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Pudgy Penguins in 5 Jahren sein?
Die Zukunft von Pudgy Penguins scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.04287 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Pudgy Penguins-Prognose für 2030 könnte der Wert von Pudgy Penguins seinen höchsten Gipfel von ungefähr $0.04287 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.014827 liegen wird.
Wie viel wird Pudgy Penguins im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Pudgy Penguins-Preisprognosesimulation wird der Wert von PENGU im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.013636 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.013636 und $0.004568 während des Jahres 2026 liegen.
Wie viel wird Pudgy Penguins im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Pudgy Penguins könnte der Wert von PENGU um -12.62% fallen und bis zu $0.011552 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.011552 und $0.004397 im Laufe des Jahres schwanken.
Wie viel wird Pudgy Penguins im Jahr 2028 kosten?
Unser neues experimentelles Pudgy Penguins-Preisprognosemodell deutet darauf hin, dass der Wert von PENGU im Jahr 2028 um 47.02% steigen, und im besten Fall $0.019439 erreichen wird. Der Preis wird voraussichtlich zwischen $0.019439 und $0.007936 im Laufe des Jahres liegen.
Wie viel wird Pudgy Penguins im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Pudgy Penguins im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.057351 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.057351 und $0.017434.
Wie viel wird Pudgy Penguins im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Pudgy Penguins-Preisprognosen wird der Wert von PENGU im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.04287 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.04287 und $0.014827 während des Jahres 2030 liegen.
Wie viel wird Pudgy Penguins im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Pudgy Penguins im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.039135 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.039135 und $0.01753 während des Jahres schwanken.
Wie viel wird Pudgy Penguins im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Pudgy Penguins-Preisprognose könnte PENGU eine 449.04% Steigerung im Wert erfahren und $0.072594 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.072594 und $0.026758 liegen.
Wie viel wird Pudgy Penguins im Jahr 2033 kosten?
Laut unserer experimentellen Pudgy Penguins-Preisprognose wird der Wert von PENGU voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.193364 beträgt. Im Laufe des Jahres könnte der Preis von PENGU zwischen $0.193364 und $0.062181 liegen.
Wie viel wird Pudgy Penguins im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Pudgy Penguins-Preisprognosesimulation deuten darauf hin, dass PENGU im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.111986 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.111986 und $0.049991.
Wie viel wird Pudgy Penguins im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Pudgy Penguins könnte PENGU um 897.93% steigen, wobei der Wert im Jahr 2035 $0.131948 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.131948 und $0.0591051.
Wie viel wird Pudgy Penguins im Jahr 2036 kosten?
Unsere jüngste Pudgy Penguins-Preisprognosesimulation deutet darauf hin, dass der Wert von PENGU im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.272997 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.272997 und $0.097837.
Wie viel wird Pudgy Penguins im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Pudgy Penguins um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.651943 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.651943 und $0.254081 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von Pudgy Penguins?
Pudgy Penguins-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Pudgy Penguins Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Pudgy Penguins. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von PENGU über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von PENGU über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von PENGU einzuschätzen.
Wie liest man Pudgy Penguins-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Pudgy Penguins in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von PENGU innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Pudgy Penguins?
Die Preisentwicklung von Pudgy Penguins wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von PENGU. Die Marktkapitalisierung von Pudgy Penguins kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von PENGU-„Walen“, großen Inhabern von Pudgy Penguins, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Pudgy Penguins-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


