PREME Token Preisvorhersage bis zu $0.004039 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001353 | $0.004039 |
| 2027 | $0.0013028 | $0.003422 |
| 2028 | $0.002351 | $0.005758 |
| 2029 | $0.005164 | $0.01699 |
| 2030 | $0.004392 | $0.01270014 |
| 2031 | $0.005193 | $0.011593 |
| 2032 | $0.007927 | $0.0215058 |
| 2033 | $0.018421 | $0.057283 |
| 2034 | $0.0148097 | $0.033175 |
| 2035 | $0.0175097 | $0.039089 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in PREME Token eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.60 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige PREME Token Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'PREME Token'
'name_with_ticker' => 'PREME Token <small>PREME</small>'
'name_lang' => 'PREME Token'
'name_lang_with_ticker' => 'PREME Token <small>PREME</small>'
'name_with_lang' => 'PREME Token'
'name_with_lang_with_ticker' => 'PREME Token <small>PREME</small>'
'image' => '/uploads/coins/preme-token.png?1717500880'
'price_for_sd' => 0.003917
'ticker' => 'PREME'
'marketcap' => '$642.42K'
'low24h' => '$0.00378'
'high24h' => '$0.00394'
'volume24h' => '$29.68K'
'current_supply' => '163.93M'
'max_supply' => '233.96M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003917'
'change_24h_pct' => '2.0714%'
'ath_price' => '$0.03344'
'ath_days' => 595
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '21.05.2024'
'ath_pct' => '-88.29%'
'fdv' => '$916.85K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.193136'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00395'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003461'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001353'
'current_year_max_price_prediction' => '$0.004039'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004392'
'grand_prediction_max_price' => '$0.01270014'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0039912556581422
107 => 0.0040061575579439
108 => 0.004039732299107
109 => 0.0037528398119001
110 => 0.0038816461159351
111 => 0.0039573077520371
112 => 0.0036154657275343
113 => 0.0039505506343186
114 => 0.003747845651976
115 => 0.0036790445364423
116 => 0.0037716761746507
117 => 0.0037355775351537
118 => 0.0037045420446973
119 => 0.0036872237077653
120 => 0.0037552421594847
121 => 0.0037520690174124
122 => 0.0036407776285868
123 => 0.0034956025486811
124 => 0.003544328070707
125 => 0.0035266256317508
126 => 0.0034624697093134
127 => 0.0035057030548206
128 => 0.0033153252811024
129 => 0.0029877902163958
130 => 0.0032041699128113
131 => 0.0031958395298751
201 => 0.0031916389730459
202 => 0.0033542423346066
203 => 0.0033386117732904
204 => 0.0033102421514465
205 => 0.0034619486789605
206 => 0.0034065737556772
207 => 0.0035772262212636
208 => 0.0036896289722083
209 => 0.0036611199987207
210 => 0.0037668353292738
211 => 0.0035454506083227
212 => 0.0036189857322093
213 => 0.0036341412193271
214 => 0.0034600766439598
215 => 0.0033411691264282
216 => 0.0033332393506537
217 => 0.0031270701017192
218 => 0.00323720405036
219 => 0.0033341173675114
220 => 0.0032877034093731
221 => 0.0032730101368041
222 => 0.0033480748797773
223 => 0.0033539080531923
224 => 0.0032209110811569
225 => 0.0032485653631094
226 => 0.0033638883159933
227 => 0.0032456595205849
228 => 0.0030159602836706
301 => 0.0029589916970754
302 => 0.0029513910374843
303 => 0.0027968877124026
304 => 0.0029627986104376
305 => 0.0028903740573097
306 => 0.0031191623528614
307 => 0.0029884797054585
308 => 0.0029828462377211
309 => 0.0029743304249859
310 => 0.0028413430306361
311 => 0.0028704588182089
312 => 0.0029672441305605
313 => 0.0030017782203721
314 => 0.0029981760318753
315 => 0.0029667698297289
316 => 0.0029811474282458
317 => 0.0029348321739356
318 => 0.0029184772936701
319 => 0.0028668567927877
320 => 0.002790988917018
321 => 0.0028015388104685
322 => 0.0026512246966591
323 => 0.0025693255896819
324 => 0.0025466569962835
325 => 0.0025163436058054
326 => 0.0025500809743989
327 => 0.0026507988756607
328 => 0.0025293117182442
329 => 0.002321030508187
330 => 0.0023335485638053
331 => 0.0023616729181357
401 => 0.0023092633699023
402 => 0.0022596621308993
403 => 0.0023027863839367
404 => 0.0022145348895127
405 => 0.0023723376896103
406 => 0.0023680695661049
407 => 0.0024268886915216
408 => 0.0024636694977346
409 => 0.002378901647341
410 => 0.0023575827622037
411 => 0.0023697269680672
412 => 0.0021690102966958
413 => 0.0024104858573092
414 => 0.0024125741479849
415 => 0.0023946929353817
416 => 0.0025232712166869
417 => 0.0027946114948124
418 => 0.0026925223675442
419 => 0.0026529903718057
420 => 0.0025778400190092
421 => 0.0026779734021242
422 => 0.002670284720625
423 => 0.0026355135870402
424 => 0.0026144838969555
425 => 0.002653231745742
426 => 0.0026096826096874
427 => 0.0026018599882018
428 => 0.0025544634130949
429 => 0.0025375449921885
430 => 0.0025250192668912
501 => 0.0025112296740912
502 => 0.0025416460796556
503 => 0.0024727185030352
504 => 0.0023895986026847
505 => 0.0023826880823404
506 => 0.0024017686365903
507 => 0.0023933269117149
508 => 0.0023826476666094
509 => 0.0023622580793837
510 => 0.0023562089244085
511 => 0.0023758657434453
512 => 0.0023536743408165
513 => 0.0023864189642236
514 => 0.0023775142384995
515 => 0.0023277731644665
516 => 0.0022657773697171
517 => 0.0022652254771033
518 => 0.002251868584818
519 => 0.0022348565742705
520 => 0.0022301242221183
521 => 0.0022991545796292
522 => 0.002442045353772
523 => 0.0024139924757213
524 => 0.0024342635550875
525 => 0.0025339772025445
526 => 0.0025656731725771
527 => 0.0025431761238081
528 => 0.0025123807758957
529 => 0.0025137356149148
530 => 0.0026189726411174
531 => 0.0026255361453553
601 => 0.0026421200030977
602 => 0.0026634349468944
603 => 0.0025468061509051
604 => 0.0025082424091119
605 => 0.0024899687688154
606 => 0.0024336930294908
607 => 0.0024943815896351
608 => 0.0024590209645823
609 => 0.0024637923209929
610 => 0.0024606849688711
611 => 0.0024623817932478
612 => 0.0023722935805117
613 => 0.0024051169903357
614 => 0.0023505417052982
615 => 0.0022774715249964
616 => 0.0022772265681303
617 => 0.0022951103912407
618 => 0.0022844723934606
619 => 0.0022558458149621
620 => 0.0022599120853242
621 => 0.0022242872782217
622 => 0.0022642375819144
623 => 0.0022653832136752
624 => 0.0022500001706458
625 => 0.0023115491255638
626 => 0.0023367657826129
627 => 0.0023266403341542
628 => 0.0023360553541567
629 => 0.0024151581994555
630 => 0.0024280554147383
701 => 0.0024337835058247
702 => 0.0024261086225955
703 => 0.0023375012089576
704 => 0.0023414313245403
705 => 0.0023125947440674
706 => 0.0022882308722918
707 => 0.0022892052993911
708 => 0.0023017314965654
709 => 0.0023564341342773
710 => 0.0024715526104453
711 => 0.0024759212724654
712 => 0.0024812162182766
713 => 0.002459679012636
714 => 0.0024531831853315
715 => 0.0024617528582614
716 => 0.0025049853052682
717 => 0.0026161908964645
718 => 0.002576883413364
719 => 0.0025449258177459
720 => 0.0025729612448089
721 => 0.0025686454105615
722 => 0.0025322154262113
723 => 0.0025311929578844
724 => 0.0024612721705458
725 => 0.002435424047486
726 => 0.0024138234211588
727 => 0.0023902361011081
728 => 0.0023762527471279
729 => 0.0023977375341622
730 => 0.0024026513591575
731 => 0.0023556744968172
801 => 0.0023492717240657
802 => 0.0023876340439188
803 => 0.0023707522172429
804 => 0.0023881155946282
805 => 0.0023921440471219
806 => 0.0023914953734873
807 => 0.0023738688075722
808 => 0.0023851034550547
809 => 0.0023585301645489
810 => 0.0023296357023031
811 => 0.0023112028355789
812 => 0.002295117714597
813 => 0.0023040426745904
814 => 0.0022722268218471
815 => 0.0022620482902279
816 => 0.0023812974092752
817 => 0.0024693880156595
818 => 0.002468107143355
819 => 0.0024603101626147
820 => 0.0024487254307945
821 => 0.0025041378099787
822 => 0.0024848332450764
823 => 0.0024988789289932
824 => 0.0025024541450455
825 => 0.0025132752472497
826 => 0.0025171428611825
827 => 0.0025054522456469
828 => 0.0024662171120209
829 => 0.0023684468893896
830 => 0.002322934586829
831 => 0.0023079147689167
901 => 0.0023084607107711
902 => 0.0022934011972345
903 => 0.0022978368988911
904 => 0.0022918586412181
905 => 0.0022805372674813
906 => 0.002303343611665
907 => 0.0023059718303764
908 => 0.0023006485571284
909 => 0.0023019023806836
910 => 0.00225782795179
911 => 0.0022611788348941
912 => 0.0022425206919606
913 => 0.0022390225150878
914 => 0.0021918563545021
915 => 0.0021082946641802
916 => 0.0021545959521481
917 => 0.0020986705072292
918 => 0.0020774906938297
919 => 0.0021777526363263
920 => 0.0021676891181331
921 => 0.0021504647494924
922 => 0.0021249863183999
923 => 0.0021155361204695
924 => 0.0020581197094131
925 => 0.0020547272415433
926 => 0.0020831843652363
927 => 0.0020700523818018
928 => 0.0020516101035887
929 => 0.0019848140413648
930 => 0.0019097131520089
1001 => 0.0019119799757912
1002 => 0.0019358681713936
1003 => 0.0020053263218696
1004 => 0.0019781878208404
1005 => 0.0019584985269653
1006 => 0.0019548113140805
1007 => 0.0020009645030369
1008 => 0.0020662809348022
1009 => 0.0020969259432137
1010 => 0.0020665576705806
1011 => 0.0020316722341237
1012 => 0.0020337955489973
1013 => 0.0020479210115894
1014 => 0.0020494053979846
1015 => 0.0020266985651319
1016 => 0.0020330904055739
1017 => 0.0020233806154604
1018 => 0.0019637916514566
1019 => 0.0019627138760565
1020 => 0.0019480897832881
1021 => 0.001947646971571
1022 => 0.0019227677416211
1023 => 0.0019192869653691
1024 => 0.0018698877442423
1025 => 0.0019024024611826
1026 => 0.0018805932961583
1027 => 0.0018477217402047
1028 => 0.0018420546715683
1029 => 0.0018418843126419
1030 => 0.0018756360506608
1031 => 0.0019020080524726
1101 => 0.0018809726759212
1102 => 0.0018761833284341
1103 => 0.0019273210296417
1104 => 0.0019208132910325
1105 => 0.0019151776313674
1106 => 0.0020604325647345
1107 => 0.0019454519505907
1108 => 0.0018953138399599
1109 => 0.0018332584070854
1110 => 0.00185346396894
1111 => 0.0018577215777043
1112 => 0.0017084894479736
1113 => 0.0016479459915276
1114 => 0.0016271697588073
1115 => 0.001615212743144
1116 => 0.0016206617053285
1117 => 0.0015661654934879
1118 => 0.0016027878491289
1119 => 0.0015555987361251
1120 => 0.0015476873277634
1121 => 0.0016320673074236
1122 => 0.0016438082886526
1123 => 0.0015937176150926
1124 => 0.0016258839364616
1125 => 0.0016142199811879
1126 => 0.0015564076580266
1127 => 0.0015541996525205
1128 => 0.0015251914609596
1129 => 0.0014797992582595
1130 => 0.0014590538035902
1201 => 0.0014482493906781
1202 => 0.0014527075020194
1203 => 0.0014504533445048
1204 => 0.0014357434419508
1205 => 0.0014512964989004
1206 => 0.0014115648653612
1207 => 0.0013957434087464
1208 => 0.0013885972238485
1209 => 0.001353333112215
1210 => 0.0014094539958455
1211 => 0.001420510516913
1212 => 0.0014315888227425
1213 => 0.0015280179115078
1214 => 0.0015232005867388
1215 => 0.0015667468565177
1216 => 0.0015650547285505
1217 => 0.0015526346270068
1218 => 0.0015002362616013
1219 => 0.0015211213161409
1220 => 0.0014568403645262
1221 => 0.0015050040241558
1222 => 0.0014830241412633
1223 => 0.0014975726036401
1224 => 0.0014714131565048
1225 => 0.0014858908746465
1226 => 0.001423132428228
1227 => 0.0013645294739975
1228 => 0.0013881130135067
1229 => 0.0014137510180581
1230 => 0.0014693407443677
1231 => 0.001436231961983
]
'min_raw' => 0.001353333112215
'max_raw' => 0.004039732299107
'avg_raw' => 0.002696532705661
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001353'
'max' => '$0.004039'
'avg' => '$0.002696'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.002563696887785
'max_diff' => 0.00012270229910702
'year' => 2026
]
1 => [
'items' => [
101 => 0.0014481391321102
102 => 0.0014082521054203
103 => 0.0013259537761931
104 => 0.0013264195757989
105 => 0.0013137597708139
106 => 0.001302819850945
107 => 0.0014400349039188
108 => 0.0014229700430325
109 => 0.001395779420604
110 => 0.001432175149237
111 => 0.0014417987575654
112 => 0.0014420727281653
113 => 0.0014686261122662
114 => 0.0014827976581208
115 => 0.0014852954545006
116 => 0.0015270777781072
117 => 0.001541082661858
118 => 0.0015987667959819
119 => 0.0014815953014661
120 => 0.0014791822316434
121 => 0.0014326873117772
122 => 0.0014031994985424
123 => 0.0014347063675773
124 => 0.0014626171524256
125 => 0.0014335545776634
126 => 0.0014373495363829
127 => 0.0013983354042642
128 => 0.0014122811207111
129 => 0.0014242930504061
130 => 0.0014176607688571
131 => 0.0014077319223723
201 => 0.0014603287863585
202 => 0.0014573610651636
203 => 0.0015063404741042
204 => 0.0015445234259246
205 => 0.0016129541016058
206 => 0.0015415431241607
207 => 0.0015389406243097
208 => 0.0015643804778075
209 => 0.0015410787671489
210 => 0.0015558046439375
211 => 0.001610581535194
212 => 0.0016117388845899
213 => 0.0015923517910472
214 => 0.0015911720846432
215 => 0.0015948955880297
216 => 0.0016167042636656
217 => 0.0016090836422855
218 => 0.0016179024182771
219 => 0.0016289304326924
220 => 0.0016745469760956
221 => 0.001685544970276
222 => 0.0016588255462238
223 => 0.001661238011051
224 => 0.0016512442129909
225 => 0.0016415903292867
226 => 0.0016632908500172
227 => 0.0017029489781769
228 => 0.0017027022670198
301 => 0.001711902181909
302 => 0.0017176336526688
303 => 0.0016930299844749
304 => 0.0016770139011826
305 => 0.0016831554866467
306 => 0.0016929760155502
307 => 0.0016799708214811
308 => 0.0015996967390949
309 => 0.0016240467677627
310 => 0.0016199937323368
311 => 0.0016142217170244
312 => 0.001638705859143
313 => 0.0016363443039062
314 => 0.001565606556068
315 => 0.0015701349571765
316 => 0.0015658819431379
317 => 0.0015796243015814
318 => 0.0015403366346944
319 => 0.0015524212564224
320 => 0.0015600006178839
321 => 0.0015644649200121
322 => 0.0015805930404998
323 => 0.0015787005917107
324 => 0.001580475403226
325 => 0.0016043891482434
326 => 0.0017253366643349
327 => 0.0017319195707802
328 => 0.001699502931859
329 => 0.0017124527397181
330 => 0.0016875919404403
331 => 0.0017042811615484
401 => 0.0017156995027702
402 => 0.0016641022144094
403 => 0.0016610469578563
404 => 0.0016360835492164
405 => 0.0016494974710198
406 => 0.0016281549569356
407 => 0.0016333916633624
408 => 0.0016187493756652
409 => 0.0016451025782698
410 => 0.0016745695536554
411 => 0.0016820140753239
412 => 0.0016624307438821
413 => 0.0016482511213138
414 => 0.0016233563751419
415 => 0.0016647568928414
416 => 0.0016768636658746
417 => 0.0016646933011166
418 => 0.0016618731616745
419 => 0.0016565290025275
420 => 0.001663006950301
421 => 0.0016767977297886
422 => 0.0016702942528579
423 => 0.0016745899139471
424 => 0.0016582192835416
425 => 0.0016930381293128
426 => 0.0017483388360091
427 => 0.0017485166368237
428 => 0.0017420131248369
429 => 0.0017393520278521
430 => 0.0017460250258166
501 => 0.0017496448534717
502 => 0.0017712241052706
503 => 0.0017943795022061
504 => 0.0019024356362129
505 => 0.0018720939061774
506 => 0.0019679677365565
507 => 0.0020437914887275
508 => 0.0020665277166328
509 => 0.0020456114567821
510 => 0.0019740580617072
511 => 0.0019705473107813
512 => 0.0020774782920874
513 => 0.0020472653921192
514 => 0.0020436716638047
515 => 0.0020054404662375
516 => 0.0020280398390256
517 => 0.0020230970246841
518 => 0.0020152945504352
519 => 0.002058412579429
520 => 0.0021391256805323
521 => 0.0021265457868027
522 => 0.002117155479698
523 => 0.0020760098874426
524 => 0.0021007887241811
525 => 0.0020919654550258
526 => 0.0021298758187017
527 => 0.0021074185590775
528 => 0.0020470364996868
529 => 0.0020566525416666
530 => 0.0020551990962661
531 => 0.0020851108996154
601 => 0.0020761321187066
602 => 0.0020534458451894
603 => 0.0021388498119274
604 => 0.0021333041533693
605 => 0.0021411666292907
606 => 0.0021446279343464
607 => 0.0021966118239131
608 => 0.0022179079601697
609 => 0.0022227425559413
610 => 0.0022429722382827
611 => 0.0022222392230158
612 => 0.0023051860664728
613 => 0.0023603408772892
614 => 0.0024244060282931
615 => 0.002518022432999
616 => 0.0025532230671685
617 => 0.0025468643876745
618 => 0.0026178432772932
619 => 0.002745390764166
620 => 0.0025726453814937
621 => 0.0027545466889062
622 => 0.002696958835131
623 => 0.0025604190697912
624 => 0.0025516275186014
625 => 0.0026440938329488
626 => 0.0028491752186183
627 => 0.0027978046575219
628 => 0.0028492592424533
629 => 0.0027892347359596
630 => 0.002786254013286
701 => 0.0028463439861501
702 => 0.002986747483081
703 => 0.0029200470446355
704 => 0.0028244156105054
705 => 0.0028950283732771
706 => 0.0028338570632616
707 => 0.0026960209810249
708 => 0.002797765375422
709 => 0.0027297317964021
710 => 0.0027495876116241
711 => 0.0028925840754927
712 => 0.0028753783626383
713 => 0.002897644148278
714 => 0.002858345619421
715 => 0.0028216345966594
716 => 0.0027531107464785
717 => 0.002732824212625
718 => 0.0027384306807491
719 => 0.0027328214343378
720 => 0.0026944829699283
721 => 0.0026862037821893
722 => 0.0026724047732381
723 => 0.0026766816631131
724 => 0.0026507354892424
725 => 0.0026997012800895
726 => 0.0027087897623558
727 => 0.0027444229815262
728 => 0.0027481225405492
729 => 0.0028473605487317
730 => 0.0027927019214517
731 => 0.00282937164763
801 => 0.0028260915621717
802 => 0.0025633783005309
803 => 0.0025995778700462
804 => 0.0026558930401615
805 => 0.002630523132358
806 => 0.002594656018368
807 => 0.0025656914007481
808 => 0.0025218070432697
809 => 0.0025835734336961
810 => 0.0026647896689834
811 => 0.0027501823183033
812 => 0.002852775991313
813 => 0.0028298782778193
814 => 0.002748264400949
815 => 0.0027519255398464
816 => 0.0027745572599053
817 => 0.0027452471261205
818 => 0.0027366029954656
819 => 0.0027733696890929
820 => 0.0027736228811053
821 => 0.0027398980299379
822 => 0.002702419029448
823 => 0.0027022619910675
824 => 0.0026955929649345
825 => 0.0027904211408934
826 => 0.0028425670494608
827 => 0.0028485454938407
828 => 0.0028421646525202
829 => 0.0028446203850979
830 => 0.0028142778298593
831 => 0.0028836319133296
901 => 0.00294727807873
902 => 0.0029302195468007
903 => 0.0029046463824255
904 => 0.0028842761252301
905 => 0.0029254209615816
906 => 0.0029235888467868
907 => 0.0029467221849989
908 => 0.002945672723153
909 => 0.0029378938516011
910 => 0.0029302198246087
911 => 0.002960646474201
912 => 0.0029518840877554
913 => 0.0029431080909035
914 => 0.0029255064856791
915 => 0.0029278988361608
916 => 0.002902330087353
917 => 0.0028905008142081
918 => 0.0027126169285046
919 => 0.0026650805417209
920 => 0.0026800364566954
921 => 0.0026849603322352
922 => 0.0026642724357874
923 => 0.002693933565009
924 => 0.0026893109094387
925 => 0.0027072949580996
926 => 0.0026960593052729
927 => 0.0026965204203841
928 => 0.0027295620796536
929 => 0.0027391542139088
930 => 0.0027342755770086
1001 => 0.0027376924070636
1002 => 0.0028164318135278
1003 => 0.0028052375878731
1004 => 0.0027992908786032
1005 => 0.0028009381577115
1006 => 0.002821057764255
1007 => 0.0028266901555974
1008 => 0.0028028253176985
1009 => 0.0028140801132126
1010 => 0.0028620016040653
1011 => 0.0028787714137423
1012 => 0.0029322925962659
1013 => 0.0029095558466667
1014 => 0.0029512901345795
1015 => 0.0030795671073561
1016 => 0.0031820436293015
1017 => 0.0030878019846992
1018 => 0.0032759870669454
1019 => 0.0034225161470208
1020 => 0.0034168921168706
1021 => 0.0033913413824808
1022 => 0.003224521920492
1023 => 0.0030710121644319
1024 => 0.0031994295937447
1025 => 0.0031997569561813
1026 => 0.0031887257851156
1027 => 0.0031202121290298
1028 => 0.0031863416583957
1029 => 0.0031915907802896
1030 => 0.0031886526678832
1031 => 0.0031361234084011
1101 => 0.0030559209382017
1102 => 0.0030715923089011
1103 => 0.0030972623337939
1104 => 0.0030486636213436
1105 => 0.0030331333880159
1106 => 0.0030620070465199
1107 => 0.0031550439902855
1108 => 0.0031374558949929
1109 => 0.0031369965987457
1110 => 0.0032122459289205
1111 => 0.0031583836483372
1112 => 0.0030717899750723
1113 => 0.0030499239305427
1114 => 0.0029723142031951
1115 => 0.0030259195183104
1116 => 0.0030278486781697
1117 => 0.0029984895949141
1118 => 0.0030741723028713
1119 => 0.0030734748733938
1120 => 0.0031453243407147
1121 => 0.0032826735368048
1122 => 0.0032420526209775
1123 => 0.0031948149154134
1124 => 0.0031999509637677
1125 => 0.0032562807373671
1126 => 0.0032222224703653
1127 => 0.0032344700606418
1128 => 0.0032562621991723
1129 => 0.0032694099374161
1130 => 0.0031980592065667
1201 => 0.0031814239381057
1202 => 0.0031473940170203
1203 => 0.0031385162458077
1204 => 0.0031662329064741
1205 => 0.0031589305456326
1206 => 0.0030276865397536
1207 => 0.0030139708109045
1208 => 0.0030143914527268
1209 => 0.0029799026003883
1210 => 0.0029272988222992
1211 => 0.003065538410309
1212 => 0.00305443583673
1213 => 0.0030421794547698
1214 => 0.003043680791626
1215 => 0.0031036859114067
1216 => 0.0030688799116027
1217 => 0.0031614173666728
1218 => 0.0031423944478409
1219 => 0.003122883662921
1220 => 0.003120186678132
1221 => 0.0031126766905198
1222 => 0.0030869221486542
1223 => 0.0030558219917435
1224 => 0.0030352869743016
1225 => 0.0027998917891308
1226 => 0.0028435797662677
1227 => 0.0028938388016793
1228 => 0.002911188019303
1229 => 0.0028815109820284
1230 => 0.0030880939789695
1231 => 0.0031258386831939
]
'min_raw' => 0.001302819850945
'max_raw' => 0.0034225161470208
'avg_raw' => 0.0023626679989829
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0013028'
'max' => '$0.003422'
'avg' => '$0.002362'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.0513261269967E-5
'max_diff' => -0.00061721615208618
'year' => 2027
]
2 => [
'items' => [
101 => 0.003011507512072
102 => 0.0029901208180661
103 => 0.0030894960870681
104 => 0.0030295606517273
105 => 0.0030565495745913
106 => 0.0029982142855108
107 => 0.0031167470892402
108 => 0.0031158440678726
109 => 0.003069732130037
110 => 0.0031087056241347
111 => 0.0031019330204447
112 => 0.003049872756197
113 => 0.0031183974924751
114 => 0.0031184314798894
115 => 0.0030740497422826
116 => 0.0030222215891696
117 => 0.0030129559395194
118 => 0.0030059755171728
119 => 0.0030548328186017
120 => 0.0030986381222902
121 => 0.0031801489321986
122 => 0.0032006426864586
123 => 0.003280631173682
124 => 0.0032330019241092
125 => 0.0032541153535428
126 => 0.0032770369678699
127 => 0.0032880264326928
128 => 0.0032701196894911
129 => 0.003394374734724
130 => 0.0034048656676178
131 => 0.0034083831866709
201 => 0.0033664850845315
202 => 0.0034037004056042
203 => 0.0033862885893162
204 => 0.0034315892981557
205 => 0.0034386930277303
206 => 0.0034326764215032
207 => 0.0034349312573949
208 => 0.0033289014963807
209 => 0.0033234032939205
210 => 0.0032484349132419
211 => 0.0032789850825068
212 => 0.0032218730053739
213 => 0.0032399838333523
214 => 0.0032479669137589
215 => 0.0032437970055903
216 => 0.0032807123432399
217 => 0.0032493267649325
218 => 0.0031664950635126
219 => 0.003083640794651
220 => 0.0030826006267971
221 => 0.0030607865603051
222 => 0.003045018985677
223 => 0.0030480563799351
224 => 0.0030587605534744
225 => 0.0030443968396518
226 => 0.0030474620662546
227 => 0.0030983652513595
228 => 0.0031085735221074
229 => 0.0030738818294772
301 => 0.0029345896775798
302 => 0.0029004070341163
303 => 0.0029249768403666
304 => 0.0029132340554771
305 => 0.0023512072513657
306 => 0.0024832471123303
307 => 0.0024047935105951
308 => 0.0024409485397513
309 => 0.0023608677278414
310 => 0.0023990864886798
311 => 0.0023920288790786
312 => 0.0026043450681661
313 => 0.0026010300429049
314 => 0.0026026167700702
315 => 0.0025268781482739
316 => 0.002647531829323
317 => 0.0027069701711739
318 => 0.0026959697159976
319 => 0.0026987382935699
320 => 0.00265116495814
321 => 0.0026030773839473
322 => 0.0025497408635429
323 => 0.0026488335258611
324 => 0.0026378161133795
325 => 0.0026630860936724
326 => 0.0027273547684755
327 => 0.0027368185749732
328 => 0.0027495380268786
329 => 0.0027449790088028
330 => 0.0028535933154356
331 => 0.0028404394062421
401 => 0.0028721365427605
402 => 0.0028069331280746
403 => 0.0027331492751926
404 => 0.0027471731734496
405 => 0.0027458225592744
406 => 0.0027286276906611
407 => 0.0027131049321116
408 => 0.0026872639126367
409 => 0.0027690287220065
410 => 0.0027657092200662
411 => 0.0028194480979814
412 => 0.0028099492293183
413 => 0.0027465134596185
414 => 0.0027487790805434
415 => 0.002764016470084
416 => 0.0028167532492613
417 => 0.0028324091159148
418 => 0.0028251566947025
419 => 0.0028423226377706
420 => 0.0028558898992598
421 => 0.0028440264769284
422 => 0.0030119875193972
423 => 0.0029422383843611
424 => 0.0029762336274663
425 => 0.0029843412926353
426 => 0.0029635736787908
427 => 0.0029680774306012
428 => 0.002974899387395
429 => 0.003016320973171
430 => 0.0031250231996796
501 => 0.0031731666758391
502 => 0.0033180086992225
503 => 0.0031691690303336
504 => 0.0031603375003415
505 => 0.0031864279225629
506 => 0.0032714655233742
507 => 0.0033403805116561
508 => 0.0033632435890703
509 => 0.0033662653221788
510 => 0.0034091579753164
511 => 0.0034337432441942
512 => 0.0034039496790367
513 => 0.003378702752082
514 => 0.0032882713934942
515 => 0.0032987390694872
516 => 0.0033708509767838
517 => 0.0034727132932104
518 => 0.0035601217576722
519 => 0.0035295143599102
520 => 0.0037630271993785
521 => 0.0037861790435974
522 => 0.0037829802073151
523 => 0.0038357235539021
524 => 0.0037310387519227
525 => 0.003686283970904
526 => 0.0033841614242544
527 => 0.0034690455364444
528 => 0.0035924295785817
529 => 0.0035760992379384
530 => 0.0034864944484734
531 => 0.0035600537844043
601 => 0.0035357327675324
602 => 0.0035165497724457
603 => 0.0036044307917446
604 => 0.0035078020010721
605 => 0.0035914656324776
606 => 0.0034841661598106
607 => 0.003529654171925
608 => 0.0035038329762413
609 => 0.0035205424543754
610 => 0.0034228591866344
611 => 0.0034755667067801
612 => 0.0034206663805101
613 => 0.0034206403506072
614 => 0.0034194284228619
615 => 0.0034840184132533
616 => 0.0034861246905211
617 => 0.0034383925900318
618 => 0.0034315136486358
619 => 0.0034569487003761
620 => 0.0034271709162388
621 => 0.0034411037540175
622 => 0.0034275929277015
623 => 0.0034245513561162
624 => 0.003400315596244
625 => 0.0033898741645149
626 => 0.0033939685189384
627 => 0.0033799923765066
628 => 0.0033715712451523
629 => 0.0034177532478787
630 => 0.0033930800667987
701 => 0.003413971729015
702 => 0.0033901630431815
703 => 0.003307631765132
704 => 0.0032601671543734
705 => 0.0031042732207914
706 => 0.0031484845469695
707 => 0.0031777967019654
708 => 0.0031681090349141
709 => 0.0031889218923698
710 => 0.0031901996327825
711 => 0.0031834331606617
712 => 0.0031755984527846
713 => 0.0031717849502765
714 => 0.0032002076736276
715 => 0.0032167080211979
716 => 0.0031807385688653
717 => 0.0031723114294499
718 => 0.003208678531686
719 => 0.0032308624430414
720 => 0.003394655980427
721 => 0.0033825216261313
722 => 0.0034129764741667
723 => 0.0034095477256457
724 => 0.0034414692582245
725 => 0.0034936474729447
726 => 0.0033875545731603
727 => 0.0034059686321464
728 => 0.0034014539301257
729 => 0.003450744262969
730 => 0.0034508981420079
731 => 0.0034213461252336
801 => 0.0034373667529537
802 => 0.0034284244780633
803 => 0.0034445843774112
804 => 0.0033823595644317
805 => 0.0034581426698872
806 => 0.003501106807325
807 => 0.003501703364415
808 => 0.0035220680245761
809 => 0.0035427596987413
810 => 0.0035824755654364
811 => 0.003541652044775
812 => 0.0034682145051948
813 => 0.0034735164583507
814 => 0.0034304600557646
815 => 0.0034311838416708
816 => 0.0034273202157791
817 => 0.0034389152479202
818 => 0.0033849040219415
819 => 0.0033975803487226
820 => 0.0033798334169966
821 => 0.0034059300537827
822 => 0.0033778543865294
823 => 0.0034014517529997
824 => 0.0034116355941032
825 => 0.0034492141870175
826 => 0.0033723039978018
827 => 0.0032154789156289
828 => 0.003248445449222
829 => 0.0031996853565725
830 => 0.00320419828879
831 => 0.0032133151300971
901 => 0.0031837644645759
902 => 0.0031894018003088
903 => 0.0031892003950071
904 => 0.003187464792925
905 => 0.0031797775235221
906 => 0.0031686294620079
907 => 0.0032130399078879
908 => 0.0032205861080373
909 => 0.0032373603761929
910 => 0.0032872692201291
911 => 0.0032822821496883
912 => 0.0032904162684888
913 => 0.0032726595328184
914 => 0.0032050219728302
915 => 0.0032086950177517
916 => 0.0031628920887244
917 => 0.0032361890923186
918 => 0.0032188313943943
919 => 0.003207640773624
920 => 0.0032045873090665
921 => 0.0032546198673733
922 => 0.003269590392983
923 => 0.0032602617660577
924 => 0.0032411284800743
925 => 0.0032778700454106
926 => 0.0032877005382925
927 => 0.0032899012231141
928 => 0.0033550002323938
929 => 0.003293539534573
930 => 0.0033083337354053
1001 => 0.0034237538671076
1002 => 0.003319083734543
1003 => 0.003374529838185
1004 => 0.0033718160399393
1005 => 0.0034001803903687
1006 => 0.0033694893353108
1007 => 0.0033698697877211
1008 => 0.0033950554093349
1009 => 0.0033596867460291
1010 => 0.003350928967604
1011 => 0.0033388301594341
1012 => 0.0033652474644471
1013 => 0.0033810834440504
1014 => 0.003508709809408
1015 => 0.0035911622618984
1016 => 0.0035875827834829
1017 => 0.0036202925156976
1018 => 0.003605556481748
1019 => 0.0035579699409557
1020 => 0.0036391943635278
1021 => 0.0036134915576518
1022 => 0.0036156104657393
1023 => 0.0036155315998745
1024 => 0.0036326217188037
1025 => 0.0036205118032559
1026 => 0.003596641916654
1027 => 0.0036124878613413
1028 => 0.0036595446520339
1029 => 0.0038056103742223
1030 => 0.0038873506874723
1031 => 0.0038006895047285
1101 => 0.0038604672281457
1102 => 0.0038246218950761
1103 => 0.003818107731751
1104 => 0.0038556525595961
1105 => 0.0038932631046922
1106 => 0.0038908674755645
1107 => 0.0038635641511476
1108 => 0.0038481411959806
1109 => 0.0039649289795735
1110 => 0.0040509762290968
1111 => 0.0040451083835473
1112 => 0.0040710071454768
1113 => 0.0041470467115203
1114 => 0.0041539988164804
1115 => 0.0041531230110478
1116 => 0.0041358914935269
1117 => 0.0042107623212821
1118 => 0.0042732208830224
1119 => 0.0041319028950872
1120 => 0.0041857149349047
1121 => 0.0042098728932943
1122 => 0.0042453439435536
1123 => 0.0043051895509794
1124 => 0.0043701977539072
1125 => 0.0043793906265798
1126 => 0.0043728678434991
1127 => 0.004329993186154
1128 => 0.0044011259375067
1129 => 0.0044427938349809
1130 => 0.0044676061143738
1201 => 0.0045305259265448
1202 => 0.004210022084621
1203 => 0.0039831535352328
1204 => 0.0039477247352243
1205 => 0.0040197705932104
1206 => 0.0040387685114064
1207 => 0.0040311104744029
1208 => 0.0037757492960804
1209 => 0.0039463803114686
1210 => 0.0041299649369631
1211 => 0.0041370171701002
1212 => 0.0042289234721962
1213 => 0.0042588519315253
1214 => 0.004332848551147
1215 => 0.0043282200424426
1216 => 0.004346237041777
1217 => 0.004342095245641
1218 => 0.0044791584016636
1219 => 0.0046303594168321
1220 => 0.0046251238064666
1221 => 0.0046033868716069
1222 => 0.0046356699265717
1223 => 0.0047917255779111
1224 => 0.0047773584742766
1225 => 0.0047913148916706
1226 => 0.0049753132995109
1227 => 0.0052145374031715
1228 => 0.0051033937893138
1229 => 0.0053445434506717
1230 => 0.0054963343797022
1231 => 0.0057588410959855
]
'min_raw' => 0.0023512072513657
'max_raw' => 0.0057588410959855
'avg_raw' => 0.0040550241736756
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002351'
'max' => '$0.005758'
'avg' => '$0.004055'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0010483874004207
'max_diff' => 0.0023363249489646
'year' => 2028
]
3 => [
'items' => [
101 => 0.005725973962234
102 => 0.0058281659005198
103 => 0.005667134933241
104 => 0.0052973752826409
105 => 0.0052388594025504
106 => 0.0053560096763497
107 => 0.0056440121931289
108 => 0.0053469394521824
109 => 0.0054070368807675
110 => 0.005389728817292
111 => 0.005388806544144
112 => 0.00542400595905
113 => 0.0053729473718508
114 => 0.0051649255023368
115 => 0.0052602606992545
116 => 0.0052234472013524
117 => 0.0052642945219028
118 => 0.0054847306641972
119 => 0.0053872705911476
120 => 0.0052846043212032
121 => 0.0054133706071826
122 => 0.0055773343381308
123 => 0.0055670737825192
124 => 0.0055471640160532
125 => 0.0056593943271806
126 => 0.0058447659207673
127 => 0.0058948711176303
128 => 0.005931857749599
129 => 0.0059369575812532
130 => 0.0059894890168193
131 => 0.0057070142481541
201 => 0.0061553089604924
202 => 0.0062327170734217
203 => 0.0062181675564286
204 => 0.0063042034161182
205 => 0.0062788894836784
206 => 0.0062422135672075
207 => 0.0063785987051677
208 => 0.0062222441502094
209 => 0.0060003185439373
210 => 0.0058785657671457
211 => 0.0060388996451413
212 => 0.006136809949552
213 => 0.0062015224325025
214 => 0.006221104390743
215 => 0.005728941960343
216 => 0.0054636937069372
217 => 0.0056337147962929
218 => 0.0058411522595357
219 => 0.005705861922572
220 => 0.0057111650476425
221 => 0.0055182765808074
222 => 0.0058582186088086
223 => 0.0058086919146913
224 => 0.006065636491383
225 => 0.0060043146060465
226 => 0.0062138429338076
227 => 0.0061586671030492
228 => 0.0063876988916883
301 => 0.0064790658729645
302 => 0.0066324852546625
303 => 0.0067453411763688
304 => 0.0068116123321845
305 => 0.0068076336605662
306 => 0.0070702329960667
307 => 0.006915387342444
308 => 0.0067208647071755
309 => 0.0067173464064145
310 => 0.0068180924356272
311 => 0.0070292284745335
312 => 0.0070839729775175
313 => 0.0071145676863031
314 => 0.0070677108247885
315 => 0.0068996369656691
316 => 0.0068270635254551
317 => 0.0068888981991724
318 => 0.0068132797067302
319 => 0.006943818439487
320 => 0.0071230760011308
321 => 0.0070860600235126
322 => 0.0072097988869448
323 => 0.0073378555928891
324 => 0.007520982433776
325 => 0.0075688585711511
326 => 0.0076479960056657
327 => 0.0077294544210743
328 => 0.0077556166687376
329 => 0.0078055685171957
330 => 0.0078053052462974
331 => 0.007955838503773
401 => 0.0081218813483955
402 => 0.0081845586783398
403 => 0.0083286817424986
404 => 0.0080818760458012
405 => 0.0082690810018457
406 => 0.0084379445582418
407 => 0.0082366184648791
408 => 0.008514099581616
409 => 0.0085248735445931
410 => 0.0086875475941103
411 => 0.0085226462803477
412 => 0.0084247284066191
413 => 0.0087074136391387
414 => 0.0088441961186535
415 => 0.0088029961226509
416 => 0.0084894621187763
417 => 0.0083069718804153
418 => 0.0078293597268864
419 => 0.008395111954051
420 => 0.0086706733606841
421 => 0.0084887484813039
422 => 0.008580500808525
423 => 0.0090810717550514
424 => 0.0092716567619201
425 => 0.0092320164127811
426 => 0.0092387149792499
427 => 0.0093415511895937
428 => 0.0097975835791933
429 => 0.0095243184005972
430 => 0.009733219390583
501 => 0.009844019722423
502 => 0.0099469372456055
503 => 0.0096942043360865
504 => 0.009365402534186
505 => 0.0092612572013635
506 => 0.008470659637397
507 => 0.0084295056008014
508 => 0.0084064045929653
509 => 0.0082607560062613
510 => 0.0081463161136175
511 => 0.0080553092621063
512 => 0.0078164801067946
513 => 0.0078970779358089
514 => 0.0075164341097607
515 => 0.0077599565404775
516 => 0.007152439803138
517 => 0.0076583977944516
518 => 0.0073830278628666
519 => 0.0075679313658754
520 => 0.0075672862549723
521 => 0.0072268202822242
522 => 0.0070304466144866
523 => 0.0071555835585465
524 => 0.0072897402959616
525 => 0.0073115067752498
526 => 0.0074854444871577
527 => 0.0075339867637725
528 => 0.0073869013994073
529 => 0.0071398503690916
530 => 0.0071972346887998
531 => 0.0070292837230793
601 => 0.0067349561157945
602 => 0.0069463473418134
603 => 0.0070185256005924
604 => 0.0070504036315739
605 => 0.0067609662335635
606 => 0.0066700187191169
607 => 0.0066215990255492
608 => 0.0071024876356076
609 => 0.0071288317992113
610 => 0.0069940513335256
611 => 0.0076032718188331
612 => 0.0074653864600681
613 => 0.0076194381885417
614 => 0.0071920276632603
615 => 0.0072083553209107
616 => 0.0070060123286849
617 => 0.0071193108837677
618 => 0.0070392351168181
619 => 0.0071101574801552
620 => 0.0071526680523155
621 => 0.0073549778420473
622 => 0.0076607078472757
623 => 0.0073247595058983
624 => 0.0071783820026913
625 => 0.0072691937824226
626 => 0.0075110375188834
627 => 0.0078774431593746
628 => 0.0076605236456031
629 => 0.0077567888422827
630 => 0.0077778185052167
701 => 0.0076178700865584
702 => 0.0078833406857186
703 => 0.0080256085364878
704 => 0.0081715459131934
705 => 0.0082982592483144
706 => 0.0081132553157055
707 => 0.0083112360428691
708 => 0.0081516985250782
709 => 0.0080085768789343
710 => 0.0080087939353935
711 => 0.0079190116360938
712 => 0.007745047117903
713 => 0.007712965391654
714 => 0.0078798585830764
715 => 0.0080136911177532
716 => 0.0080247142063237
717 => 0.0080988107740847
718 => 0.0081426603596303
719 => 0.0085724459085979
720 => 0.0087453092117652
721 => 0.0089566831867433
722 => 0.0090390252623818
723 => 0.0092868453887856
724 => 0.0090867105097479
725 => 0.0090434100697607
726 => 0.0084422795044506
727 => 0.0085407146008442
728 => 0.0086983186877443
729 => 0.0084448783377944
730 => 0.0086056279059104
731 => 0.0086373632757979
801 => 0.0084362665316832
802 => 0.0085436809915923
803 => 0.0082584200322417
804 => 0.0076669257566613
805 => 0.0078839991879349
806 => 0.0080438382994792
807 => 0.0078157281792852
808 => 0.0082246067406522
809 => 0.0079857483260683
810 => 0.0079100416758712
811 => 0.0076146830420824
812 => 0.0077540809478343
813 => 0.0079426186113495
814 => 0.007826124255153
815 => 0.0080678675359763
816 => 0.0084102404922
817 => 0.0086542358494671
818 => 0.0086729667832957
819 => 0.0085160941149923
820 => 0.0087674835670964
821 => 0.0087693146648069
822 => 0.0084857463358773
823 => 0.008312062313323
824 => 0.0082726009379644
825 => 0.0083711831904686
826 => 0.0084908802442966
827 => 0.008679609136734
828 => 0.0087936540537824
829 => 0.0090910227126946
830 => 0.0091714821455687
831 => 0.0092598826685214
901 => 0.0093780130288979
902 => 0.0095198588145326
903 => 0.0092095083108489
904 => 0.009221839114926
905 => 0.008932845022991
906 => 0.0086240133898133
907 => 0.0088583781029886
908 => 0.009164778789234
909 => 0.0090944901332667
910 => 0.0090865812236034
911 => 0.0090998818159084
912 => 0.0090468864647219
913 => 0.0088071904554047
914 => 0.0086868166201021
915 => 0.0088421295782831
916 => 0.0089246715033718
917 => 0.0090526868307721
918 => 0.0090369062395943
919 => 0.0093666599751349
920 => 0.0094947923055306
921 => 0.0094620105723239
922 => 0.0094680432001704
923 => 0.009700020663954
924 => 0.0099580273134856
925 => 0.010199684587748
926 => 0.010445508746549
927 => 0.010149158128434
928 => 0.0099986895609204
929 => 0.010153934714323
930 => 0.010071559450694
1001 => 0.010544912149596
1002 => 0.010577686063449
1003 => 0.011051004533563
1004 => 0.011500240123416
1005 => 0.011218083298321
1006 => 0.011484144475764
1007 => 0.011771911331454
1008 => 0.012327060284569
1009 => 0.012140105647536
1010 => 0.01199690132552
1011 => 0.011861573933174
1012 => 0.012143168754028
1013 => 0.012505435992469
1014 => 0.012583464885877
1015 => 0.012709901502529
1016 => 0.012576968860053
1017 => 0.012737071585865
1018 => 0.013302304560682
1019 => 0.013149573621437
1020 => 0.012932671134985
1021 => 0.013378868283052
1022 => 0.01354034529639
1023 => 0.014673675542163
1024 => 0.016104551792989
1025 => 0.015512159629507
1026 => 0.015144442697258
1027 => 0.015230864898699
1028 => 0.015753372467282
1029 => 0.01592118531475
1030 => 0.015465012146775
1031 => 0.015626140221601
1101 => 0.016513971755654
1102 => 0.016990264888627
1103 => 0.016343394839347
1104 => 0.014558706028622
1105 => 0.012913141439262
1106 => 0.013349619269099
1107 => 0.01330013622868
1108 => 0.01425400045278
1109 => 0.013145931039048
1110 => 0.013164588086172
1111 => 0.014138177212267
1112 => 0.013878440324968
1113 => 0.013457699832131
1114 => 0.012916213310479
1115 => 0.011915225393763
1116 => 0.011028622481315
1117 => 0.012767454965082
1118 => 0.012692473346521
1119 => 0.01258388885119
1120 => 0.012825531895479
1121 => 0.013998881926971
1122 => 0.013971832410981
1123 => 0.013799757191042
1124 => 0.013930274728765
1125 => 0.013434819476725
1126 => 0.013562509576482
1127 => 0.012912880773423
1128 => 0.013206540123301
1129 => 0.013456797111998
1130 => 0.013507039907597
1201 => 0.013620239491542
1202 => 0.01265296144073
1203 => 0.013087240887753
1204 => 0.013342339376397
1205 => 0.012189795124138
1206 => 0.013319557282243
1207 => 0.012636123281864
1208 => 0.012404155517302
1209 => 0.012716469552856
1210 => 0.012594760469465
1211 => 0.012490122146563
1212 => 0.012431732164469
1213 => 0.012661061123338
1214 => 0.012650362653299
1215 => 0.012275135965757
1216 => 0.011785668048055
1217 => 0.011949949547472
1218 => 0.011890264538587
1219 => 0.011673958366865
1220 => 0.011819722609699
1221 => 0.011177850653856
1222 => 0.01007354331543
1223 => 0.010803082569043
1224 => 0.010774996101365
1225 => 0.010760833630741
1226 => 0.011309062216848
1227 => 0.011256362688079
1228 => 0.011160712527329
1229 => 0.011672201676653
1230 => 0.01148550125665
1231 => 0.012060867958949
]
'min_raw' => 0.0051649255023368
'max_raw' => 0.016990264888627
'avg_raw' => 0.011077595195482
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005164'
'max' => '$0.01699'
'avg' => '$0.011077'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0028137182509711
'max_diff' => 0.011231423792642
'year' => 2029
]
4 => [
'items' => [
101 => 0.012439841681469
102 => 0.012343721686922
103 => 0.012700148304691
104 => 0.011953734261417
105 => 0.012201663065659
106 => 0.012252760848599
107 => 0.011665889979947
108 => 0.011264984982732
109 => 0.011238249190069
110 => 0.010543135173009
111 => 0.010914459470158
112 => 0.011241209485206
113 => 0.011084721584823
114 => 0.011035182190505
115 => 0.011288268212292
116 => 0.011307935163721
117 => 0.010859526586951
118 => 0.010952764929314
119 => 0.011341584316554
120 => 0.010942967678363
121 => 0.010168520664018
122 => 0.0099764470968928
123 => 0.0099508209424201
124 => 0.0094299021948295
125 => 0.0099892823710836
126 => 0.009745097933692
127 => 0.010516473645633
128 => 0.010075867975943
129 => 0.01005687434615
130 => 0.010028162688959
131 => 0.009579786404025
201 => 0.0096779523146261
202 => 0.010004270752554
203 => 0.010120704847447
204 => 0.010108559817434
205 => 0.010002671614186
206 => 0.010051146691397
207 => 0.009894991577863
208 => 0.0098398499571863
209 => 0.0096658078344332
210 => 0.0094100139943496
211 => 0.009445583696688
212 => 0.0089387891673834
213 => 0.0086626606101968
214 => 0.0085862318648834
215 => 0.0084840281524733
216 => 0.0085977760461539
217 => 0.0089373534821573
218 => 0.0085277510489653
219 => 0.0078255164075276
220 => 0.0078677219060276
221 => 0.0079625451302321
222 => 0.0077858426792453
223 => 0.0076186086388989
224 => 0.0077640050688536
225 => 0.0074664589938807
226 => 0.0079985021518494
227 => 0.0079841118754601
228 => 0.0081824246634226
301 => 0.0083064337195237
302 => 0.0080206329936194
303 => 0.0079487548839418
304 => 0.0079896999218921
305 => 0.0073129696507728
306 => 0.0081271213626663
307 => 0.0081341621804792
308 => 0.0080738744237612
309 => 0.0085073850762304
310 => 0.0094222277683038
311 => 0.0090780271480838
312 => 0.0089447422644158
313 => 0.0086913676031322
314 => 0.0090289742953938
315 => 0.0090030513689129
316 => 0.0088858180643885
317 => 0.008814914996022
318 => 0.0089455560734941
319 => 0.0087987271207824
320 => 0.0087723526062856
321 => 0.0086125517441897
322 => 0.0085555101068974
323 => 0.0085132787495392
324 => 0.0084667861746553
325 => 0.0085693372096214
326 => 0.0083369430726761
327 => 0.0080566985253982
328 => 0.0080333992235801
329 => 0.0080977306443955
330 => 0.0080692687795957
331 => 0.0080332629591215
401 => 0.0079645180422345
402 => 0.0079441228938969
403 => 0.0080103972316749
404 => 0.0079355773683575
405 => 0.0080459781523311
406 => 0.0080159552478443
407 => 0.0078482497439312
408 => 0.0076392265935256
409 => 0.0076373658490461
410 => 0.0075923321541578
411 => 0.0075349749728563
412 => 0.0075190195171728
413 => 0.0077517601870664
414 => 0.0082335264084041
415 => 0.0081389441714669
416 => 0.0082072895308316
417 => 0.0085434810550173
418 => 0.0086503462309241
419 => 0.0085744958603059
420 => 0.0084706671947565
421 => 0.0084752351291013
422 => 0.0088300491103579
423 => 0.0088521784231452
424 => 0.0089080920573718
425 => 0.0089799568785442
426 => 0.0085867347501038
427 => 0.0084567144022137
428 => 0.008395103548129
429 => 0.0082053659639496
430 => 0.008409981681616
501 => 0.0082907608654505
502 => 0.0083068478267142
503 => 0.0082963711720872
504 => 0.0083020921339418
505 => 0.0079983534349437
506 => 0.0081090198528226
507 => 0.0079250154689942
508 => 0.0076786542545094
509 => 0.007677828365333
510 => 0.0077381249235585
511 => 0.0077022581713214
512 => 0.00760574166327
513 => 0.0076194513776936
514 => 0.0074993398533032
515 => 0.007634035091444
516 => 0.0076378976689111
517 => 0.0075860326653277
518 => 0.0077935492640447
519 => 0.0078785689838564
520 => 0.0078444303274418
521 => 0.0078761737247157
522 => 0.0081428744904249
523 => 0.0081863583522057
524 => 0.008205671011226
525 => 0.0081797946065758
526 => 0.0078810485251234
527 => 0.0078942991842022
528 => 0.0077970746398321
529 => 0.0077149301451094
530 => 0.0077182154941072
531 => 0.0077604484424315
601 => 0.0079448822046933
602 => 0.0083330121844092
603 => 0.0083477414334201
604 => 0.0083655937129039
605 => 0.0082929795204068
606 => 0.0082710783851255
607 => 0.0082999716357242
608 => 0.0084457328492007
609 => 0.0088206702640456
610 => 0.0086881423404114
611 => 0.0085803950755768
612 => 0.0086749184752908
613 => 0.0086603673388037
614 => 0.0085375411031067
615 => 0.0085340937797562
616 => 0.0082983509635306
617 => 0.0082112022119763
618 => 0.0081383741922064
619 => 0.0080588478958414
620 => 0.0080117020416106
621 => 0.0080841395011166
622 => 0.0081007068051605
623 => 0.0079423210339604
624 => 0.0079207336386014
625 => 0.0080500748783577
626 => 0.0079931566210684
627 => 0.0080516984601953
628 => 0.0080652806690353
629 => 0.0080630936205873
630 => 0.008003664422957
701 => 0.0080415428213224
702 => 0.0079519491170943
703 => 0.0078545294202855
704 => 0.0077923817231831
705 => 0.0077381496147655
706 => 0.0077682407405042
707 => 0.0076609713716681
708 => 0.0076266537416716
709 => 0.0080287104722471
710 => 0.0083257141019616
711 => 0.0083213955515592
712 => 0.0082951074866256
713 => 0.0082560487544735
714 => 0.0084428754596619
715 => 0.0083777887712922
716 => 0.008425144775256
717 => 0.00843719886579
718 => 0.0084736829673766
719 => 0.0084867228977794
720 => 0.0084473071712883
721 => 0.0083150231789588
722 => 0.0079853840472583
723 => 0.0078319361416078
724 => 0.0077812957768662
725 => 0.0077831364579448
726 => 0.0077323622566344
727 => 0.0077473175344604
728 => 0.0077271614213273
729 => 0.0076889906193407
730 => 0.0077658838010441
731 => 0.0077747450239258
801 => 0.0077567972365112
802 => 0.0077610245901667
803 => 0.0076124245759735
804 => 0.0076237223123103
805 => 0.0075608150807399
806 => 0.0075490207331784
807 => 0.0073899967297276
808 => 0.0071082626567165
809 => 0.0072643706817528
810 => 0.007075814139619
811 => 0.007004404920015
812 => 0.0073424450592079
813 => 0.0073085152050069
814 => 0.0072504420435679
815 => 0.0071645397342923
816 => 0.007132677732178
817 => 0.0069390942936158
818 => 0.006927656351338
819 => 0.007023601530682
820 => 0.0069793261316868
821 => 0.0069171467030927
822 => 0.0066919391157525
823 => 0.0064387312239124
824 => 0.0064463739785589
825 => 0.006526914697853
826 => 0.0067610977015962
827 => 0.0066695983506266
828 => 0.0066032145216641
829 => 0.00659078282599
830 => 0.0067463915248692
831 => 0.0069666104348136
901 => 0.0070699322202391
902 => 0.0069675434688117
903 => 0.0068499247841738
904 => 0.0068570836885152
905 => 0.0069047086718529
906 => 0.0069097133842207
907 => 0.0068331557119175
908 => 0.0068547062482317
909 => 0.0068219690129481
910 => 0.0066210606604408
911 => 0.0066174268654312
912 => 0.0065681207156411
913 => 0.0065666277450209
914 => 0.0064827456842325
915 => 0.0064710100040788
916 => 0.0063044570811062
917 => 0.0064140827193755
918 => 0.0063405515968288
919 => 0.0062297228509125
920 => 0.0062106159333427
921 => 0.0062100415563283
922 => 0.0063238378975301
923 => 0.0064127529428731
924 => 0.0063418307021869
925 => 0.0063256830827525
926 => 0.0064980974126942
927 => 0.0064761561176176
928 => 0.0064571550975875
929 => 0.0069468922468102
930 => 0.0065592270785341
1001 => 0.0063901829380115
1002 => 0.0061809587135032
1003 => 0.0062490831760032
1004 => 0.0062634380012086
1005 => 0.0057602914567671
1006 => 0.0055561649663501
1007 => 0.0054861164471835
1008 => 0.0054458025340625
1009 => 0.005464174090502
1010 => 0.0052804363074774
1011 => 0.0054039111364124
1012 => 0.0052448097472813
1013 => 0.0052181358816327
1014 => 0.0055026288742792
1015 => 0.005542214412222
1016 => 0.0053733302090954
1017 => 0.0054817812073716
1018 => 0.005442455367815
1019 => 0.0052475370839492
1020 => 0.0052400926392274
1021 => 0.0051422894960926
1022 => 0.0049892465155068
1023 => 0.0049193017666877
1024 => 0.0048828739342146
1025 => 0.0048979047678573
1026 => 0.0048903047184164
1027 => 0.0048407092549433
1028 => 0.0048931474723284
1029 => 0.004759189495877
1030 => 0.0047058463502813
1031 => 0.0046817524889673
1101 => 0.0045628570745333
1102 => 0.0047520725519286
1103 => 0.0047893503846493
1104 => 0.0048267016662161
1105 => 0.0051518190714522
1106 => 0.0051355771246589
1107 => 0.0052823964135218
1108 => 0.0052766912859399
1109 => 0.0052348160464414
1110 => 0.0050581512991398
1111 => 0.0051285667186679
1112 => 0.0049118390023462
1113 => 0.0050742261434666
1114 => 0.0050001194337084
1115 => 0.0050491705903527
1116 => 0.0049609721879418
1117 => 0.0050097848254588
1118 => 0.0047981903417037
1119 => 0.004600606389988
1120 => 0.0046801199399935
1121 => 0.004766560262327
1122 => 0.0049539849057303
1123 => 0.004842356334339
1124 => 0.004882502189755
1125 => 0.0047480202944466
1126 => 0.0044705457315713
1127 => 0.0044721162074635
1128 => 0.0044294327910771
1129 => 0.0043925480874384
1130 => 0.0048551782185886
1201 => 0.00479764284868
1202 => 0.0047059677667736
1203 => 0.0048286785069282
1204 => 0.0048611251743064
1205 => 0.0048620488853121
1206 => 0.0049515754737062
1207 => 0.0049993558299807
1208 => 0.005007777324866
1209 => 0.0051486493460542
1210 => 0.0051958677894096
1211 => 0.0053903538749862
1212 => 0.0049953020005736
1213 => 0.0049871661671912
1214 => 0.0048304052986905
1215 => 0.0047309850775961
1216 => 0.0048372126862866
1217 => 0.0049313158460717
1218 => 0.0048333293461766
1219 => 0.004846124314455
1220 => 0.004714585444137
1221 => 0.0047616044007966
1222 => 0.0048021034604093
1223 => 0.0047797422601158
1224 => 0.0047462664609823
1225 => 0.0049236004601076
1226 => 0.0049135945808994
1227 => 0.0050787320777759
1228 => 0.0052074685656868
1229 => 0.0054381873664231
1230 => 0.0051974202702117
1231 => 0.0051886457602632
]
'min_raw' => 0.0043925480874384
'max_raw' => 0.012700148304691
'avg_raw' => 0.0085463481960646
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004392'
'max' => '$0.01270014'
'avg' => '$0.008546'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00077237741489845
'max_diff' => -0.0042901165839362
'year' => 2030
]
5 => [
'items' => [
101 => 0.0052744180024852
102 => 0.0051958546581262
103 => 0.0052455039798466
104 => 0.0054301880931184
105 => 0.0054340901774104
106 => 0.0053687252379675
107 => 0.005364747775462
108 => 0.0053773018270961
109 => 0.0054508312996357
110 => 0.0054251378425979
111 => 0.0054548709615608
112 => 0.0054920526821135
113 => 0.0056458520430427
114 => 0.0056829325482774
115 => 0.0055928461445947
116 => 0.0056009799381926
117 => 0.0055672851502882
118 => 0.005534736407367
119 => 0.0056079012280916
120 => 0.0057416113760241
121 => 0.0057407795721334
122 => 0.0057717977274999
123 => 0.0057911217813249
124 => 0.0057081687962359
125 => 0.0056541694532088
126 => 0.0056748762373928
127 => 0.0057079868362383
128 => 0.0056641389164408
129 => 0.0053934892431183
130 => 0.0054755870648362
131 => 0.005461921972924
201 => 0.005442461220309
202 => 0.0055250112148901
203 => 0.0055170490665307
204 => 0.0052785518109422
205 => 0.0052938196314426
206 => 0.0052794802976755
207 => 0.0053258136186286
208 => 0.0051933525067417
209 => 0.0052340966526189
210 => 0.0052596509989605
211 => 0.0052747027052734
212 => 0.0053290797895272
213 => 0.005322699266308
214 => 0.0053286831672453
215 => 0.0054093100281757
216 => 0.0058170930229644
217 => 0.0058392877516483
218 => 0.0057299927902682
219 => 0.0057736539715918
220 => 0.0056898340511013
221 => 0.0057461029252712
222 => 0.0057846006599038
223 => 0.0056106367997876
224 => 0.0056003357890077
225 => 0.0055161699138889
226 => 0.0055613958877789
227 => 0.0054894381114573
228 => 0.0055070940327905
301 => 0.0054577265375274
302 => 0.0055465782000306
303 => 0.0056459281648617
304 => 0.0056710278894271
305 => 0.0056050013202065
306 => 0.0055571937327279
307 => 0.0054732593579137
308 => 0.0056128440938292
309 => 0.0056536629243786
310 => 0.0056126296898894
311 => 0.0056031213928644
312 => 0.0055851031871831
313 => 0.0056069440403772
314 => 0.0056534406162612
315 => 0.0056315136897312
316 => 0.005645996811007
317 => 0.0055908020876337
318 => 0.0057081962571257
319 => 0.0058946464507243
320 => 0.0058952459185844
321 => 0.0058733188738602
322 => 0.0058643467995838
323 => 0.0058868452781152
324 => 0.0058990497797826
325 => 0.0059718057338377
326 => 0.006049875771264
327 => 0.0064141945713064
328 => 0.0063118953100997
329 => 0.0066351406229198
330 => 0.0068907856972097
331 => 0.0069674424769851
401 => 0.006896921846572
402 => 0.0066556745793784
403 => 0.006643837837519
404 => 0.0070043631066752
405 => 0.0069024982050352
406 => 0.0068903816991165
407 => 0.0067614825473019
408 => 0.0068376779104948
409 => 0.006821012866846
410 => 0.0067947062801645
411 => 0.0069400817253217
412 => 0.0072122115809005
413 => 0.0071697975908909
414 => 0.0071381375148771
415 => 0.0069994122778943
416 => 0.0070829558559614
417 => 0.0070532075879836
418 => 0.0071810250259337
419 => 0.007105308807195
420 => 0.0069017264782183
421 => 0.006934147635124
422 => 0.00692924724248
423 => 0.0070300969758475
424 => 0.0069998243891348
425 => 0.0069233360340667
426 => 0.0072112814706384
427 => 0.0071925838956241
428 => 0.0072190927821337
429 => 0.0072307628137897
430 => 0.0074060301268632
501 => 0.0074778315371009
502 => 0.0074941317142855
503 => 0.007562337500691
504 => 0.0074924346921857
505 => 0.0077720957660646
506 => 0.0079580540615181
507 => 0.0081740541910137
508 => 0.0084896884355682
509 => 0.0086083698313007
510 => 0.0085869310994376
511 => 0.008826241381375
512 => 0.0092562766384478
513 => 0.0086738535200706
514 => 0.0092871464779556
515 => 0.0090929850082969
516 => 0.0086326316565518
517 => 0.0086029903279089
518 => 0.008914746962523
519 => 0.009606193172633
520 => 0.0094329937393184
521 => 0.0096064764648589
522 => 0.0094040996504384
523 => 0.0093940499358367
524 => 0.009596647474696
525 => 0.010070027667258
526 => 0.0098451424821628
527 => 0.0095227144252196
528 => 0.0097607902849302
529 => 0.0095545469423682
530 => 0.0090898229676992
531 => 0.0094328612969759
601 => 0.0092034813353577
602 => 0.0092704266026674
603 => 0.0097525491642945
604 => 0.0096945389021415
605 => 0.0097696095529732
606 => 0.0096371118191962
607 => 0.0095133380428737
608 => 0.0092823050978065
609 => 0.0092139076325586
610 => 0.0092328102312701
611 => 0.0092138982653694
612 => 0.0090846374559066
613 => 0.0090567235964102
614 => 0.0090101992743152
615 => 0.0090246191071318
616 => 0.0089371397704227
617 => 0.009102231352946
618 => 0.0091328738054444
619 => 0.0092530136917094
620 => 0.0092654870132502
621 => 0.0096000748864141
622 => 0.0094157895083962
623 => 0.0095394240504046
624 => 0.009528365013274
625 => 0.0086426089095975
626 => 0.0087646582855919
627 => 0.008954528813435
628 => 0.0088689923980051
629 => 0.0087480639190259
630 => 0.0086504076884754
701 => 0.0085024485133291
702 => 0.0087106982110432
703 => 0.0089845244186509
704 => 0.0092724316977572
705 => 0.0096183334291712
706 => 0.0095411321894596
707 => 0.0092659653054926
708 => 0.0092783090908979
709 => 0.0093546135151724
710 => 0.0092557923527489
711 => 0.0092266480627319
712 => 0.0093506095372651
713 => 0.0093514631918122
714 => 0.0092377575015075
715 => 0.0091113944346554
716 => 0.0091108649687914
717 => 0.0090883798815675
718 => 0.0094080996975047
719 => 0.0095839132689507
720 => 0.0096040700115792
721 => 0.0095825565595713
722 => 0.0095908362334108
723 => 0.009488534189974
724 => 0.0097223663245418
725 => 0.0099369538148226
726 => 0.0098794397834343
727 => 0.0097932180742819
728 => 0.0097245383299418
729 => 0.0098632610183414
730 => 0.0098570839153967
731 => 0.009935079580297
801 => 0.0099315412464123
802 => 0.0099053142378717
803 => 0.0098794407200833
804 => 0.0099820262935044
805 => 0.0099524832958331
806 => 0.0099228944097263
807 => 0.0098635493688074
808 => 0.009871615345485
809 => 0.0097854085237264
810 => 0.009745525303425
811 => 0.0091457773633192
812 => 0.0089855051163936
813 => 0.0090359300279188
814 => 0.0090525312180752
815 => 0.0089827805308187
816 => 0.0090827850988631
817 => 0.0090671994928644
818 => 0.0091278339685306
819 => 0.0090899521805773
820 => 0.0090915068623686
821 => 0.0092029091234907
822 => 0.0092352496738336
823 => 0.009218801008909
824 => 0.0092303210899949
825 => 0.0094957964962988
826 => 0.0094580543829479
827 => 0.0094380046374585
828 => 0.0094435585539815
829 => 0.009511393212149
830 => 0.0095303832128009
831 => 0.0094499212456352
901 => 0.0094878675744957
902 => 0.0096494382266773
903 => 0.0097059788108339
904 => 0.0098864292144418
905 => 0.009809770675739
906 => 0.0099504807412318
907 => 0.010382975510961
908 => 0.010728482259382
909 => 0.010410739974863
910 => 0.011045219118319
911 => 0.011539252142127
912 => 0.011520290331819
913 => 0.011434144246928
914 => 0.01087170078387
915 => 0.010354131923604
916 => 0.010787100252351
917 => 0.010788203977662
918 => 0.010751011614242
919 => 0.010520013039278
920 => 0.010742973364552
921 => 0.010760671145499
922 => 0.010750765094388
923 => 0.010573659028568
924 => 0.010303250800734
925 => 0.010356087921187
926 => 0.010442636202337
927 => 0.010278782250257
928 => 0.010226420984306
929 => 0.010323770539847
930 => 0.010637451091384
1001 => 0.010578151600144
1002 => 0.01057660305078
1003 => 0.010830311421204
1004 => 0.010648710981673
1005 => 0.010356754366484
1006 => 0.010283031470713
1007 => 0.010021364856423
1008 => 0.010202098918938
1009 => 0.010208603216093
1010 => 0.010109617017111
1011 => 0.010364786550987
1012 => 0.01036243511881
1013 => 0.010604680614253
1014 => 0.011067763018285
1015 => 0.010930806764511
1016 => 0.010771541542171
1017 => 0.010788858087785
1018 => 0.010978777852294
1019 => 0.010863948027225
1020 => 0.010905241632942
1021 => 0.010978715349476
1022 => 0.011023043866911
1023 => 0.010782479896303
1024 => 0.010726392927249
1025 => 0.010611658672417
1026 => 0.010581726646947
1027 => 0.0106751753035
1028 => 0.010650554884088
1029 => 0.010208056555103
1030 => 0.010161813017687
1031 => 0.010163231240959
1101 => 0.010046949667365
1102 => 0.0098695923568589
1103 => 0.010335676779414
1104 => 0.010298243677435
1105 => 0.010256920429943
1106 => 0.010261982291974
1107 => 0.010464293742738
1108 => 0.010346942884322
1109 => 0.010658939374849
1110 => 0.01059480227587
1111 => 0.010529020302313
1112 => 0.010519927229799
1113 => 0.010494606782234
1114 => 0.01040777354621
1115 => 0.010302917195842
1116 => 0.010233681950827
1117 => 0.0094400306492568
1118 => 0.009587327714371
1119 => 0.009756779561235
1120 => 0.0098152736597368
1121 => 0.0097152154565811
1122 => 0.010411724453932
1123 => 0.010538983359476
1124 => 0.010153507833691
1125 => 0.010081401101679
1126 => 0.010416451759279
1127 => 0.010214375254469
1128 => 0.010305370292211
1129 => 0.010108688792236
1130 => 0.010508330415706
1201 => 0.010505285816118
1202 => 0.010349816198273
1203 => 0.010481218054666
1204 => 0.010458383748477
1205 => 0.010282858932834
1206 => 0.01051389486544
1207 => 0.01051400945638
1208 => 0.010364373329405
1209 => 0.010189631092659
1210 => 0.010158391307956
1211 => 0.010134856326657
1212 => 0.010299582129532
1213 => 0.010447274769306
1214 => 0.010722094155816
1215 => 0.010791190279132
1216 => 0.011060877048423
1217 => 0.01090029170812
1218 => 0.010971477109548
1219 => 0.011048758932588
1220 => 0.011085810680498
1221 => 0.011025436845585
1222 => 0.011444371405798
1223 => 0.011479742318503
1224 => 0.011491601879576
1225 => 0.011350339502981
1226 => 0.011475813556268
1227 => 0.011417108401999
1228 => 0.011569842904646
1229 => 0.011593793624873
1230 => 0.011573508216912
1231 => 0.011581110553549
]
'min_raw' => 0.0051933525067417
'max_raw' => 0.011593793624873
'avg_raw' => 0.0083935730658074
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005193'
'max' => '$0.011593'
'avg' => '$0.008393'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00080080441930338
'max_diff' => -0.0011063546798179
'year' => 2031
]
6 => [
'items' => [
101 => 0.011223623811528
102 => 0.011205086238061
103 => 0.010952325108478
104 => 0.011055327137099
105 => 0.010862769781608
106 => 0.010923831702595
107 => 0.010950747215546
108 => 0.010936688079022
109 => 0.011061150717255
110 => 0.01095533204872
111 => 0.010676059184258
112 => 0.010396710232091
113 => 0.010393203233549
114 => 0.010319655585362
115 => 0.010266494106647
116 => 0.010276734893452
117 => 0.010312824761881
118 => 0.010264396497886
119 => 0.010274731123384
120 => 0.010446354765912
121 => 0.010480772663458
122 => 0.010363807199658
123 => 0.0098941739844687
124 => 0.0097789248154754
125 => 0.0098617636326575
126 => 0.0098221720135476
127 => 0.0079272594040276
128 => 0.0083724410139983
129 => 0.0081079292182927
130 => 0.0082298284233564
131 => 0.0079598303749384
201 => 0.0080886875954536
202 => 0.0080648923719367
203 => 0.0087807312268881
204 => 0.0087695543877722
205 => 0.0087749041491918
206 => 0.0085195460979039
207 => 0.0089263384073321
208 => 0.0091267389267348
209 => 0.0090896501240805
210 => 0.0090989845766617
211 => 0.0089385877547956
212 => 0.0087764571410375
213 => 0.0085966293386573
214 => 0.0089307271680917
215 => 0.0088935811926987
216 => 0.0089787806955501
217 => 0.0091954670197444
218 => 0.0092273749040933
219 => 0.009270259424236
220 => 0.0092548883764928
221 => 0.0096210890945142
222 => 0.0095767397712917
223 => 0.0096836088800868
224 => 0.0094637710151164
225 => 0.0092150036037006
226 => 0.0092622861557913
227 => 0.0092577324658027
228 => 0.0091997587657657
229 => 0.0091474227015515
301 => 0.0090602979002295
302 => 0.0093359736636567
303 => 0.0093247817311046
304 => 0.0095059661099244
305 => 0.0094739400110368
306 => 0.0092600618845499
307 => 0.009267700583679
308 => 0.0093190745063555
309 => 0.0094968802393161
310 => 0.0095496650867963
311 => 0.009525213042331
312 => 0.0095830892178731
313 => 0.0096288321872199
314 => 0.009588833830552
315 => 0.010155126211901
316 => 0.0099199621333977
317 => 0.010034579468999
318 => 0.010061915028175
319 => 0.00999189556815
320 => 0.010007080281821
321 => 0.010030080985445
322 => 0.010169736753851
323 => 0.010536233899872
324 => 0.010698552991014
325 => 0.011186897985398
326 => 0.010685074650086
327 => 0.01065529853012
328 => 0.010743264210214
329 => 0.011029974418485
330 => 0.011262326112968
331 => 0.011339410574719
401 => 0.011349598558865
402 => 0.011494214133588
403 => 0.011577105084098
404 => 0.01147665399905
405 => 0.011391532222138
406 => 0.011086636582943
407 => 0.011121929083383
408 => 0.011365059413526
409 => 0.011708495325158
410 => 0.012003199065755
411 => 0.011900004087261
412 => 0.012687308928874
413 => 0.012765366988068
414 => 0.012754581888207
415 => 0.012932409763647
416 => 0.012579457644914
417 => 0.012428563776031
418 => 0.011409936516479
419 => 0.011696129227147
420 => 0.012112127139612
421 => 0.012057068255985
422 => 0.011754959452297
423 => 0.012002969889137
424 => 0.011920969882714
425 => 0.011856293075465
426 => 0.012152590067689
427 => 0.01182679935353
428 => 0.012108877128021
429 => 0.011747109464515
430 => 0.01190047547323
501 => 0.011813417509204
502 => 0.011869754681351
503 => 0.011540408724135
504 => 0.011718115808228
505 => 0.01153301552519
506 => 0.011532927763555
507 => 0.011528841664548
508 => 0.011746611326681
509 => 0.011753712787545
510 => 0.011592780678197
511 => 0.011569587847008
512 => 0.011655343899769
513 => 0.011554946021531
514 => 0.011601921556862
515 => 0.011556368862642
516 => 0.011546113991686
517 => 0.01146440143519
518 => 0.011429197419118
519 => 0.011443001820916
520 => 0.011395880280924
521 => 0.011367487848618
522 => 0.011523193695135
523 => 0.011440006342497
524 => 0.011510444040268
525 => 0.011430171393712
526 => 0.011151911427618
527 => 0.010991881178572
528 => 0.010466273897333
529 => 0.010615335470279
530 => 0.010714163447357
531 => 0.010681500801522
601 => 0.010751672803541
602 => 0.010755980794552
603 => 0.010733167161377
604 => 0.010706751896767
605 => 0.010693894406811
606 => 0.010789723603
607 => 0.010845355676851
608 => 0.010724082157005
609 => 0.010695669468101
610 => 0.010818283692361
611 => 0.010893078298327
612 => 0.011445319645322
613 => 0.01140440782262
614 => 0.011507088469061
615 => 0.011495528204035
616 => 0.011603153879815
617 => 0.01177907637371
618 => 0.011421376754917
619 => 0.011483461040418
620 => 0.011468239407349
621 => 0.011634425205871
622 => 0.011634944019794
623 => 0.011535307331984
624 => 0.011589321996866
625 => 0.011559172492744
626 => 0.011613656721643
627 => 0.011403861420285
628 => 0.011659369451336
629 => 0.011804226040368
630 => 0.011806237374247
701 => 0.011874898247795
702 => 0.01194466167189
703 => 0.012078566489325
704 => 0.011940927139208
705 => 0.011693327347268
706 => 0.011711203252504
707 => 0.011566035585083
708 => 0.011568475879799
709 => 0.011555449395355
710 => 0.011594542855758
711 => 0.011412440236428
712 => 0.011455179357203
713 => 0.011395344337838
714 => 0.011483330970771
715 => 0.011388671898446
716 => 0.011468232067016
717 => 0.01150256759831
718 => 0.011629266447974
719 => 0.011369958375335
720 => 0.010841211661612
721 => 0.010952360631271
722 => 0.010787962574582
723 => 0.010803178240636
724 => 0.010833916307621
725 => 0.010734284175654
726 => 0.010753290846664
727 => 0.010752611794628
728 => 0.010746760091032
729 => 0.010720841925532
730 => 0.010683255457804
731 => 0.010832988376727
801 => 0.010858430917389
802 => 0.010914986533618
803 => 0.011083257685473
804 => 0.011066443429296
805 => 0.011093868178738
806 => 0.011034000104689
807 => 0.010805955348885
808 => 0.010818339276282
809 => 0.010663911503208
810 => 0.010911037468259
811 => 0.010852514777832
812 => 0.010814784818601
813 => 0.010804489849659
814 => 0.010973178113152
815 => 0.011023652285454
816 => 0.010992200168471
817 => 0.010927690958935
818 => 0.01105156771168
819 => 0.011084711904775
820 => 0.011092131667298
821 => 0.011311617522152
822 => 0.0111043984884
823 => 0.011154278169404
824 => 0.011543425201815
825 => 0.011190522542038
826 => 0.01137746295159
827 => 0.011368313191334
828 => 0.011463945579142
829 => 0.011360468544233
830 => 0.011361751266097
831 => 0.011446666347772
901 => 0.011327418430075
902 => 0.011297890968666
903 => 0.01125709899221
904 => 0.011346166780458
905 => 0.011399558891324
906 => 0.011829860092715
907 => 0.012107854292933
908 => 0.012095785831544
909 => 0.012206068977426
910 => 0.012156385410128
911 => 0.011995944065461
912 => 0.012269797877071
913 => 0.012183139072547
914 => 0.012190283119102
915 => 0.012190017217332
916 => 0.012247637746496
917 => 0.012206808320739
918 => 0.012126329331519
919 => 0.01217975504036
920 => 0.012338410295581
921 => 0.012830881075922
922 => 0.013106474248971
923 => 0.012814290020859
924 => 0.013015834788908
925 => 0.012894979745822
926 => 0.012873016789368
927 => 0.012999601797744
928 => 0.01312640837642
929 => 0.013118331345558
930 => 0.013026276281029
1001 => 0.012974276710887
1002 => 0.013368034877133
1003 => 0.013658149186528
1004 => 0.013638365335578
1005 => 0.013725684819617
1006 => 0.013982057525446
1007 => 0.0140054970327
1008 => 0.014002544193537
1009 => 0.013944446929149
1010 => 0.01419687915224
1011 => 0.014407462553865
1012 => 0.013930999091034
1013 => 0.014112430140316
1014 => 0.014193880383681
1015 => 0.01431347350614
1016 => 0.014515247149863
1017 => 0.014734426844762
1018 => 0.014765421256803
1019 => 0.014743429238241
1020 => 0.014598874337588
1021 => 0.014838703375104
1022 => 0.014979189600598
1023 => 0.015062845932909
1024 => 0.015274984472565
1025 => 0.014194383392655
1026 => 0.013429480238937
1027 => 0.013310029566148
1028 => 0.013552937206429
1029 => 0.013616990014019
1030 => 0.013591170407595
1031 => 0.012730202366133
1101 => 0.013305496747591
1102 => 0.013924465129915
1103 => 0.013948242226308
1104 => 0.014258110740518
1105 => 0.014359016630684
1106 => 0.014608501400018
1107 => 0.014592896059768
1108 => 0.014653641630931
1109 => 0.014639677276088
1110 => 0.015101795276062
1111 => 0.01561158005522
1112 => 0.015593927829334
1113 => 0.015520640235831
1114 => 0.015629484809575
1115 => 0.016155637333524
1116 => 0.016107197640541
1117 => 0.016154252676191
1118 => 0.016774616154583
1119 => 0.017581176922168
1120 => 0.017206448468248
1121 => 0.018019501388047
1122 => 0.018531275102978
1123 => 0.019416334824561
1124 => 0.019305520988407
1125 => 0.019650068243151
1126 => 0.019107141094148
1127 => 0.017860470616355
1128 => 0.017663180241182
1129 => 0.018058160568467
1130 => 0.019029181161482
1201 => 0.018027579674424
1202 => 0.018230202350767
1203 => 0.018171847006349
1204 => 0.01816873749804
1205 => 0.01828741478294
1206 => 0.018115267191401
1207 => 0.017413906934712
1208 => 0.017735336207211
1209 => 0.017611216928797
1210 => 0.017748936521902
1211 => 0.018492152366007
1212 => 0.018163558925275
1213 => 0.017817412428228
1214 => 0.018251556951582
1215 => 0.018804372118056
1216 => 0.018769777938443
1217 => 0.018702650770747
1218 => 0.019081043100383
1219 => 0.019706036370392
1220 => 0.019874969539849
1221 => 0.019999672551856
1222 => 0.020016866990337
1223 => 0.020193980392976
1224 => 0.019241596988662
1225 => 0.020753053910248
1226 => 0.021014040767451
1227 => 0.020964986055094
1228 => 0.021255061962869
1229 => 0.021169714272286
1230 => 0.021046058859274
1231 => 0.021505890874013
]
'min_raw' => 0.0079272594040276
'max_raw' => 0.021505890874013
'avg_raw' => 0.01471657513902
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007927'
'max' => '$0.0215058'
'avg' => '$0.014716'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0027339068972859
'max_diff' => 0.0099120972491399
'year' => 2032
]
7 => [
'items' => [
101 => 0.020978730575645
102 => 0.020230492899747
103 => 0.019819994912287
104 => 0.020360571776103
105 => 0.020690683203303
106 => 0.020908865857652
107 => 0.020974887797028
108 => 0.019315527801251
109 => 0.018421224795852
110 => 0.018994462769108
111 => 0.019693852659252
112 => 0.019237711842509
113 => 0.019255591698937
114 => 0.01860525476596
115 => 0.01975139304736
116 => 0.0195844103403
117 => 0.020450716919914
118 => 0.020243965902145
119 => 0.020950405287992
120 => 0.020764376122336
121 => 0.021536572788222
122 => 0.021844622944634
123 => 0.022361887101428
124 => 0.022742388720809
125 => 0.022965826549546
126 => 0.022952412180403
127 => 0.023837784174143
128 => 0.023315711241976
129 => 0.022659864596031
130 => 0.022648002399376
131 => 0.02298767467073
201 => 0.02369953456695
202 => 0.0238841094809
203 => 0.023987261677625
204 => 0.023829280497586
205 => 0.023262607747023
206 => 0.023017921326426
207 => 0.023226401246023
208 => 0.022971448219239
209 => 0.023411568670652
210 => 0.024015948055098
211 => 0.023891146102185
212 => 0.024308340319418
213 => 0.024740092444143
214 => 0.025357517373701
215 => 0.025518935113466
216 => 0.025785752499131
217 => 0.026060395233926
218 => 0.026148603078513
219 => 0.026317019223116
220 => 0.026316131586902
221 => 0.026823664974377
222 => 0.027383490017763
223 => 0.027594811011662
224 => 0.028080731984824
225 => 0.027248609346985
226 => 0.027879783926522
227 => 0.028449119196588
228 => 0.027770334216677
301 => 0.028705881174868
302 => 0.02874220634326
303 => 0.029290673258746
304 => 0.028734696966354
305 => 0.02840456001867
306 => 0.029357653016563
307 => 0.029818824696095
308 => 0.02967991603308
309 => 0.028622814248772
310 => 0.028007535669076
311 => 0.026397232947638
312 => 0.028304706081082
313 => 0.029233780602629
314 => 0.028620408170209
315 => 0.028929757547378
316 => 0.030617467442339
317 => 0.031260038099217
318 => 0.031126387894494
319 => 0.031148972579023
320 => 0.031495692041992
321 => 0.033033237082692
322 => 0.032111904454289
323 => 0.032816228727028
324 => 0.033189799781658
325 => 0.03353679339654
326 => 0.032684686746849
327 => 0.031576108515532
328 => 0.031224975254726
329 => 0.028559420370054
330 => 0.028420666662389
331 => 0.028342780001609
401 => 0.027851715622677
402 => 0.02746587353469
403 => 0.027159037580924
404 => 0.026353808409272
405 => 0.026625549616954
406 => 0.02534218238173
407 => 0.026163235259084
408 => 0.02411495016368
409 => 0.025820822856253
410 => 0.024892393906199
411 => 0.025515808976144
412 => 0.025513633939694
413 => 0.024365729141998
414 => 0.023703641610849
415 => 0.02412554955453
416 => 0.024577868361249
417 => 0.024651255565856
418 => 0.025237698705497
419 => 0.025401362380218
420 => 0.024905453805088
421 => 0.024072504007826
422 => 0.024265979248168
423 => 0.023699720841279
424 => 0.022707374764021
425 => 0.023420095041408
426 => 0.023663449080207
427 => 0.023770928087314
428 => 0.022795069692048
429 => 0.022488433797339
430 => 0.02232518341992
501 => 0.023946532943303
502 => 0.024035354130183
503 => 0.023580932380052
504 => 0.025634961780682
505 => 0.025170071666758
506 => 0.025689467824855
507 => 0.024248423398019
508 => 0.024303473235747
509 => 0.023621259710322
510 => 0.024003253699036
511 => 0.023733272660054
512 => 0.023972392359686
513 => 0.024115719721718
514 => 0.024797821302617
515 => 0.025828611360632
516 => 0.024695938072514
517 => 0.024202416100701
518 => 0.024508594356341
519 => 0.025323987398809
520 => 0.02655934959735
521 => 0.025827990311832
522 => 0.026152555143459
523 => 0.026223458120285
524 => 0.025684180859537
525 => 0.026579233519171
526 => 0.027058899510863
527 => 0.027550937565448
528 => 0.027978160421651
529 => 0.027354406746298
530 => 0.028021912590503
531 => 0.027484020710717
601 => 0.027001476088309
602 => 0.027002207909316
603 => 0.026699500618827
604 => 0.026112967099932
605 => 0.026004801320009
606 => 0.026567493367
607 => 0.027018719101552
608 => 0.027055884214275
609 => 0.027305705965738
610 => 0.027453547904885
611 => 0.028902599889898
612 => 0.029485420585457
613 => 0.030198082699756
614 => 0.030475704756711
615 => 0.03131124761513
616 => 0.030636478897484
617 => 0.030490488440926
618 => 0.028463734770388
619 => 0.028795615570398
620 => 0.029326988752947
621 => 0.028472496918451
622 => 0.029014475310531
623 => 0.029121473325799
624 => 0.02844346161289
625 => 0.028805616963912
626 => 0.027843839723177
627 => 0.025849575476246
628 => 0.026581453705368
629 => 0.02712036242955
630 => 0.026351273233176
701 => 0.027729835849814
702 => 0.026924508028483
703 => 0.026669257771674
704 => 0.025673435516573
705 => 0.026143425288267
706 => 0.026779093184088
707 => 0.026386324328795
708 => 0.027201378678068
709 => 0.028355713003692
710 => 0.02917836038593
711 => 0.029241513037085
712 => 0.0287126058834
713 => 0.029560182972621
714 => 0.029566356646395
715 => 0.0286102862273
716 => 0.028024698419027
717 => 0.0278916516369
718 => 0.028224028584011
719 => 0.028627595557974
720 => 0.029263908195457
721 => 0.029648418595648
722 => 0.030651017790787
723 => 0.03092229238622
724 => 0.031220340921282
725 => 0.03161862567889
726 => 0.032096868648514
727 => 0.031050500257364
728 => 0.03109207442422
729 => 0.030117710666337
730 => 0.029076463253143
731 => 0.029866640246435
801 => 0.030899691552324
802 => 0.030662708441333
803 => 0.030636043000221
804 => 0.030680886875795
805 => 0.030502209349252
806 => 0.029694057518799
807 => 0.029288208728843
808 => 0.029811857210955
809 => 0.030090153074284
810 => 0.030521765688359
811 => 0.030468560323437
812 => 0.031580348065483
813 => 0.032012355163326
814 => 0.031901829261072
815 => 0.031922168687041
816 => 0.032704296902337
817 => 0.033574184334682
818 => 0.034388948706829
819 => 0.035217762021122
820 => 0.034218595221608
821 => 0.033711279940856
822 => 0.034234699814422
823 => 0.033956965861839
824 => 0.035552907534618
825 => 0.035663407073376
826 => 0.037259233341406
827 => 0.038773862497224
828 => 0.037822551061854
829 => 0.0387195948974
830 => 0.039689820942599
831 => 0.04156154439729
901 => 0.040931213785775
902 => 0.040448390415895
903 => 0.039992124664343
904 => 0.040941541263174
905 => 0.042162950550269
906 => 0.042426030412196
907 => 0.042852320292761
908 => 0.042404128607594
909 => 0.042943926125683
910 => 0.044849648563587
911 => 0.044334705538588
912 => 0.043603403661868
913 => 0.045107788499064
914 => 0.045652219523497
915 => 0.049473321573712
916 => 0.054297620753961
917 => 0.052300329215282
918 => 0.051060545905029
919 => 0.051351924390991
920 => 0.053113595138785
921 => 0.053679387870342
922 => 0.05214136818552
923 => 0.052684622739398
924 => 0.055678008742876
925 => 0.05728386429442
926 => 0.055102896760248
927 => 0.049085693831895
928 => 0.043537557929216
929 => 0.045009173406422
930 => 0.044842337880852
1001 => 0.048058357709079
1002 => 0.044322424317745
1003 => 0.04438532785472
1004 => 0.047667851567171
1005 => 0.046792130517392
1006 => 0.045373574570628
1007 => 0.043547914957495
1008 => 0.040173014309545
1009 => 0.037183770689587
1010 => 0.043046365810015
1011 => 0.042793560047985
1012 => 0.04242745984085
1013 => 0.043242176235649
1014 => 0.047198207787507
1015 => 0.047107008455812
1016 => 0.046526844837877
1017 => 0.046966893828753
1018 => 0.045296431854922
1019 => 0.04572694794129
1020 => 0.043536679076143
1021 => 0.044526772076897
1022 => 0.045370530986672
1023 => 0.045539928079874
1024 => 0.045921588380487
1025 => 0.042660342898977
1026 => 0.044124546375038
1027 => 0.044984628739912
1028 => 0.04109874532535
1029 => 0.044907817318873
1030 => 0.042603571870761
1031 => 0.041821476357066
1101 => 0.042874464933007
1102 => 0.042464114260898
1103 => 0.042111318849618
1104 => 0.04191445294833
1105 => 0.042687651544393
1106 => 0.042651580905714
1107 => 0.041386477931175
1108 => 0.039736202673082
1109 => 0.040290089218137
1110 => 0.040088857043605
1111 => 0.039359565683632
1112 => 0.039851020005279
1113 => 0.037686903892087
1114 => 0.033963654600307
1115 => 0.036423347128667
1116 => 0.036328651641955
1117 => 0.036280901883457
1118 => 0.038129292837612
1119 => 0.037951612697004
1120 => 0.037629121501954
1121 => 0.039353642879934
1122 => 0.038724169378886
1123 => 0.040664058386508
1124 => 0.041941794751083
1125 => 0.041617719478586
1126 => 0.042819436705304
1127 => 0.040302849645441
1128 => 0.04113875891878
1129 => 0.041311038661495
1130 => 0.039332362553821
1201 => 0.037980683365415
1202 => 0.037890541773819
1203 => 0.03554691633399
1204 => 0.036798862126863
1205 => 0.037900522615555
1206 => 0.037372912733779
1207 => 0.037205887207106
1208 => 0.038059184399463
1209 => 0.038125492899305
1210 => 0.036613652075839
1211 => 0.03692801165681
1212 => 0.038238943367391
1213 => 0.036894979541208
1214 => 0.034283877362179
1215 => 0.033636287920467
1216 => 0.033549887551502
1217 => 0.031793573624615
1218 => 0.033679562943532
1219 => 0.032856278064453
1220 => 0.035457025132996
1221 => 0.033971492355531
1222 => 0.033907454006591
1223 => 0.033810650649785
1224 => 0.032298918700499
1225 => 0.032629891921815
1226 => 0.033730097318115
1227 => 0.034122662998216
1228 => 0.034081715181586
1229 => 0.033724705711459
1230 => 0.033888142818699
1231 => 0.033361654951016
]
'min_raw' => 0.018421224795852
'max_raw' => 0.05728386429442
'avg_raw' => 0.037852544545136
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.018421'
'max' => '$0.057283'
'avg' => '$0.037852'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.010493965391824
'max_diff' => 0.035777973420407
'year' => 2033
]
8 => [
'items' => [
101 => 0.033175741127039
102 => 0.032588945958944
103 => 0.031726519168147
104 => 0.031846444902978
105 => 0.030137751764163
106 => 0.029206765054928
107 => 0.02894908020402
108 => 0.028604493251994
109 => 0.028988002217162
110 => 0.030132911251187
111 => 0.028751908050152
112 => 0.026384274928087
113 => 0.026526573712974
114 => 0.026846276833726
115 => 0.026250512183253
116 => 0.025686670940317
117 => 0.026176885155163
118 => 0.025173687789389
119 => 0.026967508442547
120 => 0.026918990621004
121 => 0.027587616031376
122 => 0.028005721222057
123 => 0.027042124120701
124 => 0.026799782055554
125 => 0.026937831109694
126 => 0.024656187752817
127 => 0.027401157091723
128 => 0.027424895700553
129 => 0.027221631319622
130 => 0.028683242751169
131 => 0.031767698759772
201 => 0.03060720233738
202 => 0.03015782304644
203 => 0.029303552685868
204 => 0.030441817219775
205 => 0.030354416263264
206 => 0.029959155992092
207 => 0.0297201013468
208 => 0.030160566860566
209 => 0.029665522795228
210 => 0.029576599278192
211 => 0.029037819514696
212 => 0.028845499652045
213 => 0.028703113682213
214 => 0.028546360719984
215 => 0.028892118694257
216 => 0.028108585636305
217 => 0.027163721579108
218 => 0.027085166356323
219 => 0.027302064233079
220 => 0.027206103068762
221 => 0.027084706931187
222 => 0.026852928644286
223 => 0.026784164977722
224 => 0.027007613534667
225 => 0.026755353141736
226 => 0.02712757709284
227 => 0.027026352774231
228 => 0.026460921958963
301 => 0.02575618581384
302 => 0.025749912183914
303 => 0.025598077937447
304 => 0.025404694196138
305 => 0.025350899263327
306 => 0.026135600681308
307 => 0.027759909132391
308 => 0.027441018517037
309 => 0.027671449667855
310 => 0.02880494286379
311 => 0.029165246265448
312 => 0.028909511445205
313 => 0.028559445850219
314 => 0.028574846959786
315 => 0.029771127069914
316 => 0.029845737592995
317 => 0.030034254314556
318 => 0.03027655157658
319 => 0.028950775716651
320 => 0.028512403036008
321 => 0.028304677739929
322 => 0.027664964227814
323 => 0.028354840405739
324 => 0.027952879100305
325 => 0.028007117413362
326 => 0.02797179464083
327 => 0.027991083263148
328 => 0.026967007033117
329 => 0.027340126587478
330 => 0.026719742960625
331 => 0.025889118925598
401 => 0.025886334382579
402 => 0.026089628438407
403 => 0.025968701179103
404 => 0.02564328903364
405 => 0.025689512293001
406 => 0.0252845479026
407 => 0.025738682302113
408 => 0.02575170525172
409 => 0.02557683877104
410 => 0.02627649547196
411 => 0.026563145393193
412 => 0.026448044529606
413 => 0.026555069609768
414 => 0.027454269861809
415 => 0.02760087873775
416 => 0.027665992716004
417 => 0.027578748611092
418 => 0.02657150533969
419 => 0.026616180861906
420 => 0.026288381522561
421 => 0.026011425623458
422 => 0.02602250240698
423 => 0.026164893740866
424 => 0.026786725047086
425 => 0.028095332372068
426 => 0.028144993063471
427 => 0.028205183270157
428 => 0.027960359450392
429 => 0.027886518243703
430 => 0.027983933855359
501 => 0.028475377963317
502 => 0.029739505634761
503 => 0.029292678487425
504 => 0.028929401061361
505 => 0.02924809330291
506 => 0.029199033130316
507 => 0.028784915901209
508 => 0.028773293009848
509 => 0.027978469645906
510 => 0.027684641545509
511 => 0.027439096792165
512 => 0.027170968331622
513 => 0.027012012792464
514 => 0.027256240744611
515 => 0.027312098566887
516 => 0.026778089881144
517 => 0.026705306470507
518 => 0.027141389490663
519 => 0.026949485612306
520 => 0.027146863510183
521 => 0.027192656875567
522 => 0.02718528308903
523 => 0.026984913400005
524 => 0.027112623064679
525 => 0.026810551635642
526 => 0.026482094326225
527 => 0.02627255902643
528 => 0.026089711686535
529 => 0.026191166017859
530 => 0.02582949985152
531 => 0.025713795566006
601 => 0.027069357903846
602 => 0.028070726377559
603 => 0.028056166083366
604 => 0.027967534037069
605 => 0.027835844794624
606 => 0.028465744074991
607 => 0.028246299760945
608 => 0.028405963834599
609 => 0.028446605042425
610 => 0.028569613738163
611 => 0.028613578773934
612 => 0.028480685900152
613 => 0.028034681184239
614 => 0.026923279837042
615 => 0.02640591950975
616 => 0.026235181984427
617 => 0.026241387969195
618 => 0.026070199204536
619 => 0.02612062196787
620 => 0.026052664225187
621 => 0.025923968701289
622 => 0.026183219431913
623 => 0.026213095663529
624 => 0.026152583445186
625 => 0.02616683626318
626 => 0.025665820940406
627 => 0.025703912047249
628 => 0.025491815923966
629 => 0.025452050457708
630 => 0.024915889927372
701 => 0.02396600383017
702 => 0.024492332935694
703 => 0.023856601389293
704 => 0.023615840219766
705 => 0.024755566150263
706 => 0.024641169277918
707 => 0.024445371559587
708 => 0.024155745926357
709 => 0.024048320961695
710 => 0.023395640883018
711 => 0.023357077062057
712 => 0.023680562932894
713 => 0.023531285333972
714 => 0.023321643049238
715 => 0.022562339945028
716 => 0.021708631859279
717 => 0.02173439994017
718 => 0.022005948598443
719 => 0.022795512945699
720 => 0.022487016495624
721 => 0.022263198781506
722 => 0.022221284451588
723 => 0.022745930044111
724 => 0.023488413474182
725 => 0.023836770087441
726 => 0.023491559263449
727 => 0.023094999656318
728 => 0.023119136402124
729 => 0.023279707358517
730 => 0.023296581095683
731 => 0.023038461558427
801 => 0.023111120696221
802 => 0.023000744821821
803 => 0.022323368284369
804 => 0.022311116690791
805 => 0.022144877564328
806 => 0.022139843909647
807 => 0.02185702968524
808 => 0.021817462020243
809 => 0.021255917212087
810 => 0.021625527705329
811 => 0.021377612391884
812 => 0.021003945537212
813 => 0.020939525230622
814 => 0.020937588678417
815 => 0.021321260987785
816 => 0.021621044271009
817 => 0.021381924984903
818 => 0.021327482158589
819 => 0.021908789109572
820 => 0.021834812501329
821 => 0.021770749235689
822 => 0.023421932226649
823 => 0.022114892045888
824 => 0.021544947923831
825 => 0.020839533843333
826 => 0.02106922022495
827 => 0.021117618520351
828 => 0.019421224817197
829 => 0.0187329981031
830 => 0.018496824630098
831 => 0.018360903457383
901 => 0.01842284444258
902 => 0.01780335967895
903 => 0.018219663685442
904 => 0.017683242243882
905 => 0.017593309443538
906 => 0.018552497430912
907 => 0.01868596283586
908 => 0.0181165579539
909 => 0.018482208066395
910 => 0.018349618252688
911 => 0.017692437649874
912 => 0.01766733818474
913 => 0.017337588059264
914 => 0.016821592965099
915 => 0.016585769361069
916 => 0.016462950380576
917 => 0.016513627885622
918 => 0.016488003788313
919 => 0.016320789220569
920 => 0.016497588331602
921 => 0.016045939661349
922 => 0.015866089521674
923 => 0.015784855386074
924 => 0.015383991195297
925 => 0.016021944387938
926 => 0.016147629203611
927 => 0.016273561657196
928 => 0.017369717687922
929 => 0.017314956830332
930 => 0.017809968313329
1001 => 0.017790733077367
1002 => 0.017649547783762
1003 => 0.017053910253896
1004 => 0.017291320757083
1005 => 0.016560608130058
1006 => 0.017108107713854
1007 => 0.016858251767939
1008 => 0.017023631167207
1009 => 0.016726264095663
1010 => 0.016890839311041
1011 => 0.016177433736006
1012 => 0.015511265647925
1013 => 0.015779351133228
1014 => 0.016070790715046
1015 => 0.016702705985851
1016 => 0.016326342463747
1017 => 0.016461697018176
1018 => 0.016008281918918
1019 => 0.015072757057528
1020 => 0.015078052026646
1021 => 0.014934141908238
1022 => 0.014809782554712
1023 => 0.01636957234169
1024 => 0.016175587825052
1025 => 0.015866498885855
1026 => 0.016280226713676
1027 => 0.016389622918096
1028 => 0.016392737274243
1029 => 0.01669458241756
1030 => 0.016855677224658
1031 => 0.016884070882633
1101 => 0.01735903073744
1102 => 0.017518231015899
1103 => 0.018173954432006
1104 => 0.016842009455782
1105 => 0.016814578925508
1106 => 0.016286048712663
1107 => 0.015950846495946
1108 => 0.01630900029522
1109 => 0.016626275668508
1110 => 0.016295907342913
1111 => 0.01633904647178
1112 => 0.015895553986752
1113 => 0.016054081681889
1114 => 0.016190627088927
1115 => 0.016115234740928
1116 => 0.016002368746944
1117 => 0.016600262706059
1118 => 0.016566527185721
1119 => 0.017123299785972
1120 => 0.017557343843058
1121 => 0.018335228388013
1122 => 0.017523465313314
1123 => 0.017493881440406
1124 => 0.017783068543484
1125 => 0.01751818674286
1126 => 0.017685582897446
1127 => 0.018308258279574
1128 => 0.0183214144292
1129 => 0.018101031972234
1130 => 0.018087621679699
1201 => 0.018129948541279
1202 => 0.01837785829161
1203 => 0.018291231007347
1204 => 0.018391478293831
1205 => 0.018516839060619
1206 => 0.01903538434392
1207 => 0.019160403856197
1208 => 0.018856671256549
1209 => 0.018884094909548
1210 => 0.018770490579633
1211 => 0.018660750220394
1212 => 0.018907430521672
1213 => 0.01935824362077
1214 => 0.019355439135878
1215 => 0.019460019012315
1216 => 0.019525171408948
1217 => 0.019245489628128
1218 => 0.019063427072998
1219 => 0.019133241441576
1220 => 0.019244876137292
1221 => 0.019097039814331
1222 => 0.018184525544567
1223 => 0.018461324082376
1224 => 0.018415251270928
1225 => 0.01834963798478
1226 => 0.018627961054967
1227 => 0.018601116115874
1228 => 0.01779700596731
1229 => 0.017848482490092
1230 => 0.017800136425156
1231 => 0.017956352451639
]
'min_raw' => 0.014809782554712
'max_raw' => 0.033175741127039
'avg_raw' => 0.023992761840876
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0148097'
'max' => '$0.033175'
'avg' => '$0.023992'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0036114422411394
'max_diff' => -0.024108123167381
'year' => 2034
]
9 => [
'items' => [
101 => 0.017509750564773
102 => 0.017647122297263
103 => 0.017733280560101
104 => 0.017784028438812
105 => 0.017967364574861
106 => 0.017945852195353
107 => 0.017966027335146
108 => 0.01823786642596
109 => 0.01961273526339
110 => 0.019687566340734
111 => 0.019319070747711
112 => 0.019466277468869
113 => 0.019183672754816
114 => 0.019373387192647
115 => 0.019503184992787
116 => 0.018916653692636
117 => 0.018881923115598
118 => 0.018598151991361
119 => 0.018750634519908
120 => 0.018508023853108
121 => 0.01856755202458
122 => 0.018401106067572
123 => 0.018700675651127
124 => 0.019035640993948
125 => 0.019120266467727
126 => 0.018897653279772
127 => 0.018736466660768
128 => 0.018453476055972
129 => 0.018924095738606
130 => 0.019061719275683
131 => 0.018923372860754
201 => 0.018891314973486
202 => 0.01883056533504
203 => 0.018904203296464
204 => 0.019060969748344
205 => 0.018987041584659
206 => 0.019035872439219
207 => 0.018849779575794
208 => 0.019245582214435
209 => 0.01987421205969
210 => 0.019876233207434
211 => 0.019802304645249
212 => 0.019772054670416
213 => 0.019847909861578
214 => 0.01988905819104
215 => 0.020134359969796
216 => 0.020397578551654
217 => 0.021625904821924
218 => 0.021280995720459
219 => 0.022370839860899
220 => 0.023232765077437
221 => 0.023491218762455
222 => 0.023253453533424
223 => 0.022440071528734
224 => 0.02240016312714
225 => 0.023615699243171
226 => 0.023272254615311
227 => 0.023231402969659
228 => 0.022796810479865
301 => 0.02305370846666
302 => 0.022997521108482
303 => 0.022908826614818
304 => 0.023398970077955
305 => 0.024316474885539
306 => 0.024173473156971
307 => 0.024066729000255
308 => 0.02359900717828
309 => 0.02388068018456
310 => 0.023780381822115
311 => 0.024211327238092
312 => 0.023956044720277
313 => 0.023269652684468
314 => 0.023378962878548
315 => 0.023362440862615
316 => 0.023702462779767
317 => 0.023600396640101
318 => 0.023342510810742
319 => 0.024313338953852
320 => 0.024250298774268
321 => 0.024339675335926
322 => 0.02437902166243
323 => 0.024969947645231
324 => 0.025212031112861
325 => 0.025266988298281
326 => 0.025496948869123
327 => 0.025261266669789
328 => 0.026204163505685
329 => 0.026831134882
330 => 0.027559394399242
331 => 0.028623577291637
401 => 0.029023719903419
402 => 0.028951437722138
403 => 0.029758289045801
404 => 0.031208182939124
405 => 0.029244502732032
406 => 0.031312262758288
407 => 0.030657633807413
408 => 0.02910552034116
409 => 0.029005582532149
410 => 0.030056691791903
411 => 0.032387950964522
412 => 0.031803996982704
413 => 0.03238890610404
414 => 0.031706578544724
415 => 0.031672695230296
416 => 0.032355766977468
417 => 0.033951801347039
418 => 0.03319358524451
419 => 0.032106496539318
420 => 0.032909185922258
421 => 0.03221382209336
422 => 0.030646972766771
423 => 0.031803550444099
424 => 0.031030179888706
425 => 0.03125589053141
426 => 0.032881400408658
427 => 0.032685814759662
428 => 0.032938920700206
429 => 0.032492195340081
430 => 0.032074883411601
501 => 0.031295939707101
502 => 0.031065332877659
503 => 0.031129064308952
504 => 0.031065301295527
505 => 0.030629489451722
506 => 0.030535375925546
507 => 0.030378515925378
508 => 0.03042713339848
509 => 0.030132190707153
510 => 0.030688808503957
511 => 0.030792121671943
512 => 0.031197181686384
513 => 0.031239236360819
514 => 0.03236732273537
515 => 0.031745991716988
516 => 0.032162834207258
517 => 0.032125547891454
518 => 0.029139159346393
519 => 0.029550657338773
520 => 0.030190819079733
521 => 0.02990242708315
522 => 0.029494708273314
523 => 0.029165453473873
524 => 0.028666598784687
525 => 0.02936872718006
526 => 0.030291951356945
527 => 0.031262650849496
528 => 0.032428882687046
529 => 0.03216859331734
530 => 0.031240848956507
531 => 0.031282466890816
601 => 0.031539732584663
602 => 0.031206550136079
603 => 0.031108288127497
604 => 0.0315262328936
605 => 0.031529111049505
606 => 0.031145744375965
607 => 0.030719702473686
608 => 0.030717917342559
609 => 0.030642107301125
610 => 0.031720064982682
611 => 0.032312832713724
612 => 0.032380792578795
613 => 0.032308258473329
614 => 0.032336173971747
615 => 0.031991255489799
616 => 0.032779636857133
617 => 0.033503133562635
618 => 0.033309220990308
619 => 0.033018518478093
620 => 0.032786959924984
621 => 0.033254673154232
622 => 0.033233846620382
623 => 0.033496814450077
624 => 0.033484884710346
625 => 0.03339645851994
626 => 0.033309224148285
627 => 0.033655098571371
628 => 0.033555492292095
629 => 0.033455731296756
630 => 0.03325564534796
701 => 0.033282840351477
702 => 0.03299218803315
703 => 0.032857718971346
704 => 0.030835626918215
705 => 0.030295257847855
706 => 0.030465268957617
707 => 0.030521241029287
708 => 0.030286071717364
709 => 0.030623244100622
710 => 0.030570696141845
711 => 0.030775129509918
712 => 0.030647408417011
713 => 0.030652650135215
714 => 0.031028250636446
715 => 0.031137289059872
716 => 0.031081831237669
717 => 0.031120671995357
718 => 0.032015740862611
719 => 0.031888490692379
720 => 0.031820891575633
721 => 0.031839616992952
722 => 0.032068326279028
723 => 0.032132352392066
724 => 0.031861069252092
725 => 0.031989007949173
726 => 0.032533754683505
727 => 0.032724385210527
728 => 0.033332786344936
729 => 0.033074326729571
730 => 0.033548740539443
731 => 0.035006926851404
801 => 0.036171826976217
802 => 0.035100536679906
803 => 0.037239727409987
804 => 0.03890539424204
805 => 0.038841463174712
806 => 0.038551015634976
807 => 0.036654698230727
808 => 0.034909678682838
809 => 0.036369461632091
810 => 0.036373182919036
811 => 0.036247786269078
812 => 0.035468958445782
813 => 0.036220684749034
814 => 0.036280354053118
815 => 0.03624695511018
816 => 0.035649829644117
817 => 0.034738129424673
818 => 0.03491627346525
819 => 0.035208077037756
820 => 0.0346556319984
821 => 0.034479092334501
822 => 0.034807313157735
823 => 0.035864909037721
824 => 0.035664976662846
825 => 0.035659755620547
826 => 0.036515151104787
827 => 0.035902872543971
828 => 0.034918520432098
829 => 0.034669958541841
830 => 0.033787731282781
831 => 0.034397088792999
901 => 0.034419018484974
902 => 0.03408527960411
903 => 0.03494560150294
904 => 0.034937673485186
905 => 0.035754421086109
906 => 0.037315735742685
907 => 0.036853978171107
908 => 0.036317004354444
909 => 0.036375388296984
910 => 0.037015716042801
911 => 0.036628559270419
912 => 0.036767783545121
913 => 0.037015505310187
914 => 0.037164962001637
915 => 0.036353883779092
916 => 0.036164782647061
917 => 0.035777948096403
918 => 0.035677030182746
919 => 0.035992098852688
920 => 0.035909089389699
921 => 0.03441717537928
922 => 0.034261262064259
923 => 0.034266043703038
924 => 0.033873992259146
925 => 0.033276019704084
926 => 0.034847455875703
927 => 0.034721247558887
928 => 0.034581923344869
929 => 0.034598989766114
930 => 0.0352810969473
1001 => 0.034885440334974
1002 => 0.035937358285687
1003 => 0.035721115578568
1004 => 0.03549932706197
1005 => 0.035468669133133
1006 => 0.03538329947635
1007 => 0.035090535158591
1008 => 0.034737004652488
1009 => 0.034503573190071
1010 => 0.031827722415862
1011 => 0.032324344754848
1012 => 0.0328956634873
1013 => 0.033092880424326
1014 => 0.032755527206546
1015 => 0.035103855919821
1016 => 0.035532918204794
1017 => 0.034233260556568
1018 => 0.033990147675257
1019 => 0.035119794359846
1020 => 0.034438479315348
1021 => 0.034745275438168
1022 => 0.034082150029139
1023 => 0.035429569664755
1024 => 0.035419304584676
1025 => 0.034895127913569
1026 => 0.035338158446582
1027 => 0.035261170989025
1028 => 0.034669376818335
1029 => 0.03544833059553
1030 => 0.035448716946885
1031 => 0.034944208297528
1101 => 0.034355052646223
1102 => 0.034249725531005
1103 => 0.034170375698395
1104 => 0.034725760243579
1105 => 0.035223716290148
1106 => 0.036150289039041
1107 => 0.036383251442938
1108 => 0.037292519214534
1109 => 0.036751094527993
1110 => 0.036991101078913
1111 => 0.037251662140936
1112 => 0.037376584695886
1113 => 0.037173030096309
1114 => 0.038585497215143
1115 => 0.038704752716847
1116 => 0.038744738055012
1117 => 0.038268462089698
1118 => 0.038691506620675
1119 => 0.038493578094393
1120 => 0.03900853313365
1121 => 0.039089284659081
1122 => 0.03902089098986
1123 => 0.039046522798608
1124 => 0.037841231288957
1125 => 0.037778730565763
1126 => 0.036926528770155
1127 => 0.037273807301023
1128 => 0.036624586733058
1129 => 0.036830461262873
1130 => 0.03692120879397
1201 => 0.036873807433602
1202 => 0.037293441908105
1203 => 0.036936666879118
1204 => 0.035995078918376
1205 => 0.035053234422623
1206 => 0.035041410332189
1207 => 0.034793439301393
1208 => 0.034614201664288
1209 => 0.034648729191991
1210 => 0.034770408703114
1211 => 0.0346071294299
1212 => 0.03464197334131
1213 => 0.035220614434473
1214 => 0.035336656779027
1215 => 0.03494229955156
1216 => 0.033358898377804
1217 => 0.032970327758104
1218 => 0.033249624613854
1219 => 0.033116138705827
1220 => 0.026727308544256
1221 => 0.02822826942386
1222 => 0.027336449437015
1223 => 0.027747441117618
1224 => 0.026837123846715
1225 => 0.027271574962206
1226 => 0.027191347704789
1227 => 0.02960484838253
1228 => 0.029567164889109
1229 => 0.029585201983244
1230 => 0.028724244484797
1231 => 0.030095773157366
]
'min_raw' => 0.017509750564773
'max_raw' => 0.039089284659081
'avg_raw' => 0.028299517611927
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0175097'
'max' => '$0.039089'
'avg' => '$0.028299'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0026999680100605
'max_diff' => 0.0059135435320422
'year' => 2035
]
10 => [
'items' => [
101 => 0.03077143750005
102 => 0.030646390012443
103 => 0.030677861771032
104 => 0.030137072687561
105 => 0.029590438003678
106 => 0.028984136012777
107 => 0.03011057017068
108 => 0.029985329921194
109 => 0.030272585993497
110 => 0.031003159064074
111 => 0.031110738723893
112 => 0.031255326877656
113 => 0.031203502317018
114 => 0.032438173605144
115 => 0.032288646765529
116 => 0.032648963427195
117 => 0.031907764716857
118 => 0.031069028020883
119 => 0.031228444446419
120 => 0.031213091362694
121 => 0.031017628985425
122 => 0.030841174290939
123 => 0.030547426940423
124 => 0.031476887023885
125 => 0.03143915264189
126 => 0.03205002842497
127 => 0.03194205019658
128 => 0.031220945160635
129 => 0.031246699568066
130 => 0.031419910335182
131 => 0.032019394777859
201 => 0.032197362576459
202 => 0.032114920801357
203 => 0.032310054367983
204 => 0.032464279982807
205 => 0.032329422730705
206 => 0.034238717031694
207 => 0.033445844922389
208 => 0.033832285271696
209 => 0.033924449017967
210 => 0.033688373519889
211 => 0.033739569842192
212 => 0.033817118320319
213 => 0.034287977493956
214 => 0.035523648209778
215 => 0.036070918358321
216 => 0.037717407602046
217 => 0.036025475190853
218 => 0.035925082923485
219 => 0.036221665355492
220 => 0.037188328840145
221 => 0.037971718800372
222 => 0.03823161444503
223 => 0.038265963944881
224 => 0.038753545451796
225 => 0.039033018078703
226 => 0.03869434023219
227 => 0.038407346218319
228 => 0.037379369283641
229 => 0.037498360412918
301 => 0.038318091295813
302 => 0.039476009449811
303 => 0.040469623686791
304 => 0.040121694611953
305 => 0.042776147853321
306 => 0.043039326049733
307 => 0.043002963332559
308 => 0.043602522430153
309 => 0.042412519719515
310 => 0.041903770505501
311 => 0.038469397581638
312 => 0.039434316286993
313 => 0.040836882292914
314 => 0.040651247422677
315 => 0.039632666498481
316 => 0.040468851001822
317 => 0.04019238225511
318 => 0.03997431988388
319 => 0.040973305879956
320 => 0.039874879741187
321 => 0.040825924651927
322 => 0.039606199716604
323 => 0.040123283922659
324 => 0.039829761918753
325 => 0.040019706627984
326 => 0.038909293739028
327 => 0.039508445580159
328 => 0.038884367052608
329 => 0.038884071158128
330 => 0.038870294590043
331 => 0.03960452021012
401 => 0.039628463281231
402 => 0.039085869438641
403 => 0.039007673189015
404 => 0.039296805708196
405 => 0.038958307252162
406 => 0.039116688549256
407 => 0.038963104460305
408 => 0.038928529446906
409 => 0.038653029857692
410 => 0.038534337059639
411 => 0.038580879564092
412 => 0.038422006002088
413 => 0.038326278934273
414 => 0.03885125206684
415 => 0.038570780099465
416 => 0.038808265715305
417 => 0.038537620882981
418 => 0.037599447979806
419 => 0.037059894822192
420 => 0.035287773176768
421 => 0.0357903446771
422 => 0.036123550101768
423 => 0.036013425710903
424 => 0.036250015514963
425 => 0.03626454020743
426 => 0.036187622450382
427 => 0.036098561541496
428 => 0.036055211616428
429 => 0.036378306441961
430 => 0.036565873863056
501 => 0.036156991723847
502 => 0.0360611963595
503 => 0.036474598777241
504 => 0.036726774013248
505 => 0.038588694270902
506 => 0.038450757204292
507 => 0.038796952172701
508 => 0.038757975932053
509 => 0.039120843412129
510 => 0.039713978382815
511 => 0.038507969144265
512 => 0.038717290647415
513 => 0.038665969848782
514 => 0.039226276871222
515 => 0.039228026088586
516 => 0.038892094039222
517 => 0.039074208253058
518 => 0.038972557094937
519 => 0.039156254476639
520 => 0.038448914970671
521 => 0.039310378136359
522 => 0.039798772239844
523 => 0.039805553592445
524 => 0.040037048521361
525 => 0.040272260776423
526 => 0.040723730217343
527 => 0.040259669538751
528 => 0.03942486955336
529 => 0.039485139415918
530 => 0.038995696489925
531 => 0.039003924113936
601 => 0.038960004412154
602 => 0.039091810743321
603 => 0.038477839048249
604 => 0.038621936977893
605 => 0.038420199032555
606 => 0.038716852108521
607 => 0.038397702437292
608 => 0.038665945100339
609 => 0.038781709741325
610 => 0.039208883758799
611 => 0.038334608487586
612 => 0.036551902026351
613 => 0.03692664853773
614 => 0.036372369011698
615 => 0.036423669692123
616 => 0.036527305231025
617 => 0.036191388542006
618 => 0.03625547086032
619 => 0.036253181388969
620 => 0.036233451961743
621 => 0.036146067057211
622 => 0.036019341657064
623 => 0.036524176647231
624 => 0.036609957949415
625 => 0.036800639158117
626 => 0.037367977094913
627 => 0.037311286656277
628 => 0.037403751113756
629 => 0.037201901722246
630 => 0.036433032906477
701 => 0.036474786182313
702 => 0.035954122163591
703 => 0.036787324608546
704 => 0.036590011271846
705 => 0.036462802080076
706 => 0.036428091873517
707 => 0.036996836131323
708 => 0.037167013327232
709 => 0.037060970318908
710 => 0.036843473015067
711 => 0.037261132135748
712 => 0.037372880096819
713 => 0.037397896344196
714 => 0.03813790822785
715 => 0.037439254787986
716 => 0.037607427614979
717 => 0.03891946400413
718 => 0.037729628047816
719 => 0.038359910690384
720 => 0.038329061634863
721 => 0.038651492907199
722 => 0.038302612859467
723 => 0.038306937645788
724 => 0.038593234772236
725 => 0.038191182092099
726 => 0.038091628194417
727 => 0.037954095197788
728 => 0.038254393464383
729 => 0.038434408693884
730 => 0.039885199237046
731 => 0.040822476092015
801 => 0.040781786431849
802 => 0.041153613757914
803 => 0.040986102141974
804 => 0.04044516294677
805 => 0.041368480192475
806 => 0.0410763039827
807 => 0.04110039063444
808 => 0.041099494128059
809 => 0.041293765765072
810 => 0.041156106505514
811 => 0.040884765974492
812 => 0.041064894481917
813 => 0.041599811751848
814 => 0.04326021137098
815 => 0.044189392995216
816 => 0.043204273470487
817 => 0.043883795727369
818 => 0.043476324511776
819 => 0.043402274870685
820 => 0.043829065064307
821 => 0.044256602297666
822 => 0.044229370024195
823 => 0.043918999947057
824 => 0.04374367976583
825 => 0.045071262914646
826 => 0.046049403563904
827 => 0.045982700929163
828 => 0.046277104666052
829 => 0.047141483143124
830 => 0.047220511078324
831 => 0.047210555374925
901 => 0.04701467639182
902 => 0.047865769256227
903 => 0.048575765897268
904 => 0.04696933606672
905 => 0.047581043516482
906 => 0.047855658698663
907 => 0.048258875260759
908 => 0.048939169187956
909 => 0.049678148831945
910 => 0.049782648656105
911 => 0.049708501030087
912 => 0.049221124090037
913 => 0.05002972443435
914 => 0.050503383552037
915 => 0.050785436717124
916 => 0.051500676614612
917 => 0.047857354628538
918 => 0.045278430241943
919 => 0.044875693958857
920 => 0.045694674027335
921 => 0.045910632540149
922 => 0.045823579934423
923 => 0.042920766071763
924 => 0.044860411244621
925 => 0.046947306360618
926 => 0.047027472501172
927 => 0.048072215831159
928 => 0.048412427084879
929 => 0.049253582403157
930 => 0.049200967908977
1001 => 0.049405775843273
1002 => 0.049358694045957
1003 => 0.050916757146918
1004 => 0.052635532121888
1005 => 0.052576016409874
1006 => 0.0523289221716
1007 => 0.052695899251266
1008 => 0.054469859220554
1009 => 0.054306541413712
1010 => 0.054465190751682
1011 => 0.056556789531476
1012 => 0.059276165471665
1013 => 0.058012742326567
1014 => 0.060754007011214
1015 => 0.062479487822002
1016 => 0.065463528466214
1017 => 0.065089911880849
1018 => 0.066251577005739
1019 => 0.06442106021691
1020 => 0.06021782366128
1021 => 0.059552645387008
1022 => 0.060884349137096
1023 => 0.064158212860938
1024 => 0.060781243517741
1025 => 0.061464400017695
1026 => 0.06126765089975
1027 => 0.061257166975385
1028 => 0.06165729572721
1029 => 0.061076888103375
1030 => 0.058712203030537
1031 => 0.059795924264242
1101 => 0.059377447451341
1102 => 0.059841778674768
1103 => 0.062347582782842
1104 => 0.061239707055754
1105 => 0.060072649973782
1106 => 0.061536398545274
1107 => 0.063400253475363
1108 => 0.063283616783508
1109 => 0.063057292850952
1110 => 0.06433306900883
1111 => 0.066440277454301
1112 => 0.067009847429663
1113 => 0.067430292341129
1114 => 0.067488264590945
1115 => 0.068085414793605
1116 => 0.064874387652676
1117 => 0.069970370190356
1118 => 0.070850305600937
1119 => 0.070684914213334
1120 => 0.071662925388851
1121 => 0.071375169691265
1122 => 0.070958256832949
1123 => 0.072508612575087
1124 => 0.070731254823982
1125 => 0.068208519259408
1126 => 0.06682449663463
1127 => 0.068647089272858
1128 => 0.069760082997306
1129 => 0.07049570104947
1130 => 0.070718298627582
1201 => 0.065123650549005
1202 => 0.062108445528059
1203 => 0.064041157377089
1204 => 0.066399199221553
1205 => 0.06486128861117
1206 => 0.064921571795447
1207 => 0.06272891542084
1208 => 0.066593200657401
1209 => 0.066030206802189
1210 => 0.06895101991895
1211 => 0.068253944427645
1212 => 0.070635754139052
1213 => 0.070008543818903
1214 => 0.072612058790985
1215 => 0.073650671400703
1216 => 0.075394663619564
1217 => 0.076677551395084
1218 => 0.077430887634602
1219 => 0.077385660152474
1220 => 0.080370753644068
1221 => 0.078610548303298
1222 => 0.076399315546745
1223 => 0.076359321322529
1224 => 0.077504550100558
1225 => 0.079904635441136
1226 => 0.080526942650126
1227 => 0.080874727483241
1228 => 0.080342082904849
1229 => 0.078431506162496
1230 => 0.077606528811992
1231 => 0.078309433416516
]
'min_raw' => 0.028984136012777
'max_raw' => 0.080874727483241
'avg_raw' => 0.054929431748009
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.028984'
'max' => '$0.080874'
'avg' => '$0.054929'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.011474385448004
'max_diff' => 0.041785442824159
'year' => 2036
]
11 => [
'items' => [
101 => 0.077449841486465
102 => 0.078933738316631
103 => 0.08097144560771
104 => 0.080550667110071
105 => 0.081957266541043
106 => 0.083412948973523
107 => 0.08549464023076
108 => 0.086038871410205
109 => 0.086938464854571
110 => 0.087864442009875
111 => 0.088161840916375
112 => 0.088729667706344
113 => 0.088726674978873
114 => 0.090437859229596
115 => 0.092325348449108
116 => 0.093037831933998
117 => 0.094676148420934
118 => 0.091870588850513
119 => 0.093998638012623
120 => 0.095918191625371
121 => 0.093629620674346
122 => 0.096783882561691
123 => 0.096906355403066
124 => 0.098755549901366
125 => 0.096881037014539
126 => 0.095767957245998
127 => 0.09898137683122
128 => 0.10053624934674
129 => 0.10006790909109
130 => 0.096503816620809
131 => 0.094429361931986
201 => 0.089000113878911
202 => 0.095431292723841
203 => 0.098563732339147
204 => 0.096495704358947
205 => 0.097538697382156
206 => 0.10322892912516
207 => 0.10539540095767
208 => 0.10494478996129
209 => 0.10502093580199
210 => 0.10618992467857
211 => 0.11137386513126
212 => 0.10826752784921
213 => 0.1106422063091
214 => 0.11190172720168
215 => 0.11307164040058
216 => 0.11019870333896
217 => 0.10646105443361
218 => 0.10527718412946
219 => 0.096290079732693
220 => 0.095822261919825
221 => 0.095559661605132
222 => 0.093904003766542
223 => 0.09260311022826
224 => 0.091568591387538
225 => 0.088853705016006
226 => 0.089769899470073
227 => 0.085442937234674
228 => 0.088211174334756
301 => 0.081305238128903
302 => 0.08705670701214
303 => 0.083926443986195
304 => 0.086028331419963
305 => 0.086020998132716
306 => 0.082150756963131
307 => 0.079918482626388
308 => 0.081340974715178
309 => 0.082865999151923
310 => 0.083113429235987
311 => 0.085090663225438
312 => 0.085642466731391
313 => 0.08397047634711
314 => 0.081162127950946
315 => 0.081814443231768
316 => 0.079905263478042
317 => 0.076559499395177
318 => 0.078962485570927
319 => 0.079782970703172
320 => 0.080145343679579
321 => 0.076855168967682
322 => 0.075821324640036
323 => 0.075270914594791
324 => 0.080737407711885
325 => 0.081036874544749
326 => 0.07950475988747
327 => 0.086430063419448
328 => 0.08486265394276
329 => 0.086613834352865
330 => 0.081755252457278
331 => 0.081940856828638
401 => 0.079640726297038
402 => 0.080928645699956
403 => 0.080018385777554
404 => 0.080824594539668
405 => 0.081307832747556
406 => 0.083607585850369
407 => 0.087082966498429
408 => 0.083264079426816
409 => 0.081600135642244
410 => 0.082632437007818
411 => 0.085381591579423
412 => 0.089546701482038
413 => 0.087080872589041
414 => 0.088175165579263
415 => 0.08841421991592
416 => 0.086596008980172
417 => 0.089613741512708
418 => 0.09123096889291
419 => 0.092889909546944
420 => 0.094330321234379
421 => 0.092227292168836
422 => 0.094477834726342
423 => 0.092664294699233
424 => 0.091037361814594
425 => 0.091039829200211
426 => 0.09001923043598
427 => 0.088041691726562
428 => 0.087677003247659
429 => 0.089574158769994
430 => 0.09109549783761
501 => 0.091220802609941
502 => 0.092063094086997
503 => 0.092561553506826
504 => 0.097447133443877
505 => 0.099412154110196
506 => 0.10181494418503
507 => 0.10275096633301
508 => 0.10556805741591
509 => 0.10329302757352
510 => 0.10280081055651
511 => 0.095967469052862
512 => 0.097086428341273
513 => 0.098877990125531
514 => 0.095997011246812
515 => 0.097824329235431
516 => 0.098185080514272
517 => 0.095899116686933
518 => 0.097120148737781
519 => 0.093877449621501
520 => 0.08715364847789
521 => 0.089621227025482
522 => 0.091438195414467
523 => 0.088845157492798
524 => 0.093493077602964
525 => 0.090777858627151
526 => 0.089917264565315
527 => 0.086559780306155
528 => 0.088144383635058
529 => 0.090287582326733
530 => 0.088963334708868
531 => 0.091711347352717
601 => 0.095603266124611
602 => 0.098376879209231
603 => 0.098589802781778
604 => 0.096806555386011
605 => 0.09966422071826
606 => 0.099685035690421
607 => 0.096461577521739
608 => 0.094487227341711
609 => 0.094038650826741
610 => 0.095159282909743
611 => 0.096519937138604
612 => 0.098665309621808
613 => 0.09996171328171
614 => 0.10334204646736
615 => 0.10425666770565
616 => 0.1052615591507
617 => 0.10660440401833
618 => 0.10821683358027
619 => 0.1046889294944
620 => 0.10482909970057
621 => 0.10154396426297
622 => 0.098033325911808
623 => 0.10069746281309
624 => 0.10418046741623
625 => 0.10338146231189
626 => 0.10329155791546
627 => 0.10344275217286
628 => 0.10284032841725
629 => 0.10011558809752
630 => 0.098747240566728
701 => 0.10051275798414
702 => 0.10145105191735
703 => 0.10290626397993
704 => 0.10272687837742
705 => 0.10647534837227
706 => 0.10793189046442
707 => 0.1075592446683
708 => 0.10762782046301
709 => 0.11026482034732
710 => 0.11319770655907
711 => 0.1159447415248
712 => 0.11873914347984
713 => 0.11537038285568
714 => 0.113659933967
715 => 0.11542468061474
716 => 0.11448828120284
717 => 0.1198691099777
718 => 0.12024166688745
719 => 0.12562210656715
720 => 0.13072878451402
721 => 0.12752137159123
722 => 0.13054581751237
723 => 0.13381700236278
724 => 0.14012764866983
725 => 0.13800244500483
726 => 0.13637457230363
727 => 0.13483624046681
728 => 0.13803726481592
729 => 0.14215533150343
730 => 0.14304232362557
731 => 0.14447958972051
801 => 0.14296848016222
802 => 0.14478844518192
803 => 0.1512137214346
804 => 0.14947755507364
805 => 0.14701191973841
806 => 0.15208405824982
807 => 0.15391964545965
808 => 0.16680275780278
809 => 0.1830682193108
810 => 0.1763342114417
811 => 0.17215419545228
812 => 0.1731365983611
813 => 0.17907619428321
814 => 0.18098380398004
815 => 0.17579826323156
816 => 0.17762988388878
817 => 0.18772229379104
818 => 0.19313654790033
819 => 0.18578326358857
820 => 0.16549584380794
821 => 0.14678991625358
822 => 0.15175157057989
823 => 0.15118907295735
824 => 0.16203210834355
825 => 0.14943614808012
826 => 0.14964823174682
827 => 0.16071548962183
828 => 0.15776293496161
829 => 0.15298017454669
830 => 0.14682483569753
831 => 0.13544612253492
901 => 0.12536767896791
902 => 0.14513382772975
903 => 0.14428147545273
904 => 0.14304714304408
905 => 0.14579401625082
906 => 0.15913205282922
907 => 0.15882456791507
908 => 0.15686850577148
909 => 0.15835216166745
910 => 0.15272008249475
911 => 0.15417159753762
912 => 0.14678695313908
913 => 0.15012512081721
914 => 0.15296991289088
915 => 0.15354104701754
916 => 0.15482784136773
917 => 0.14383232453393
918 => 0.14876898878089
919 => 0.1516688165231
920 => 0.13856728928718
921 => 0.15140984145426
922 => 0.14364091704867
923 => 0.14100402742008
924 => 0.14455425192118
925 => 0.1431707259804
926 => 0.14198125161988
927 => 0.14131750448895
928 => 0.14392439753858
929 => 0.1438027828619
930 => 0.13953739985657
1001 => 0.13397338160537
1002 => 0.13584084876315
1003 => 0.13516238043713
1004 => 0.13270352369949
1005 => 0.13436049625717
1006 => 0.12706402768778
1007 => 0.11451083275157
1008 => 0.12280385784119
1009 => 0.12248458539631
1010 => 0.12232359375176
1011 => 0.12855557290422
1012 => 0.12795651190493
1013 => 0.1268692103252
1014 => 0.1326835545533
1015 => 0.13056124069608
1016 => 0.13710171192401
1017 => 0.14140968928588
1018 => 0.14031704687844
1019 => 0.14436872040954
1020 => 0.13588387143471
1021 => 0.13870219791109
1022 => 0.13928305109184
1023 => 0.13261180644807
1024 => 0.12805452569313
1025 => 0.12775060702358
1026 => 0.11984891022649
1027 => 0.12406993287523
1028 => 0.12778425812833
1029 => 0.12600538457538
1030 => 0.12544224635085
1031 => 0.12831919741019
1101 => 0.12854276114692
1102 => 0.12344548425725
1103 => 0.12450536953238
1104 => 0.12892526732093
1105 => 0.12439399944839
1106 => 0.11559048615047
1107 => 0.11340709313448
1108 => 0.11311578825824
1109 => 0.10719425323181
1110 => 0.11355299789611
1111 => 0.11077723544638
1112 => 0.11954583576634
1113 => 0.11453725829053
1114 => 0.11432134852606
1115 => 0.11399496925
1116 => 0.10889805943722
1117 => 0.1100139587607
1118 => 0.11372337806822
1119 => 0.11504694066674
1120 => 0.11490888224408
1121 => 0.11370519988994
1122 => 0.11425623950782
1123 => 0.11248114890372
1124 => 0.11185432746609
1125 => 0.10987590658813
1126 => 0.10696817445024
1127 => 0.10737251243817
1128 => 0.10161153422351
1129 => 0.09847264753391
1130 => 0.09760384506809
1201 => 0.09644204610104
1202 => 0.097735073352847
1203 => 0.10159521409606
1204 => 0.096939065385202
1205 => 0.088956425011297
1206 => 0.089436195299526
1207 => 0.0905140966921
1208 => 0.08850543457807
1209 => 0.086604404461374
1210 => 0.088257195912393
1211 => 0.08487484595268
1212 => 0.090922837525363
1213 => 0.090759256302622
1214 => 0.093013573555629
1215 => 0.09442324439718
1216 => 0.091174409493758
1217 => 0.090357336301331
1218 => 0.090822778325644
1219 => 0.083130058448679
1220 => 0.092384914222441
1221 => 0.092464950599489
1222 => 0.091779630547712
1223 => 0.096707555535625
1224 => 0.10710701431847
1225 => 0.1031943196071
1226 => 0.10167920595304
1227 => 0.09879897378912
1228 => 0.10263671213628
1229 => 0.10234203370926
1230 => 0.10100938610881
1231 => 0.10020339668195
]
'min_raw' => 0.075270914594791
'max_raw' => 0.19313654790033
'avg_raw' => 0.13420373124756
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.07527'
'max' => '$0.193136'
'avg' => '$0.1342037'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.046286778582014
'max_diff' => 0.11226182041708
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0023626679989829
]
1 => [
'year' => 2028
'avg' => 0.0040550241736756
]
2 => [
'year' => 2029
'avg' => 0.011077595195482
]
3 => [
'year' => 2030
'avg' => 0.0085463481960646
]
4 => [
'year' => 2031
'avg' => 0.0083935730658074
]
5 => [
'year' => 2032
'avg' => 0.01471657513902
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0023626679989829
'min' => '$0.002362'
'max_raw' => 0.01471657513902
'max' => '$0.014716'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.01471657513902
]
1 => [
'year' => 2033
'avg' => 0.037852544545136
]
2 => [
'year' => 2034
'avg' => 0.023992761840876
]
3 => [
'year' => 2035
'avg' => 0.028299517611927
]
4 => [
'year' => 2036
'avg' => 0.054929431748009
]
5 => [
'year' => 2037
'avg' => 0.13420373124756
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.01471657513902
'min' => '$0.014716'
'max_raw' => 0.13420373124756
'max' => '$0.1342037'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.13420373124756
]
]
]
]
'prediction_2025_max_price' => '$0.004039'
'last_price' => 0.00391703
'sma_50day_nextmonth' => '$0.003527'
'sma_200day_nextmonth' => '$0.002324'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.00377'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003547'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003463'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003415'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003081'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.002293'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.002097'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.003749'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003646'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003528'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003418'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003058'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.002655'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.002725'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.002171'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.003392'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003719'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003534'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.003094'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.002738'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.003477'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.005045'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.002522'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '56.63'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 66.56
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003552'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003667'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 124.05
'cci_20_action' => 'SELL'
'adx_14' => 18.94
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000110'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 55.88
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.0004072'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 1
'buy_signals' => 30
'sell_pct' => 3.23
'buy_pct' => 96.77
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767689790
'last_updated_date' => '6. Januar 2026'
]
PREME Token Preisprognose für 2026
Die Preisprognose für PREME Token im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001353 am unteren Ende und $0.004039 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte PREME Token im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn PREME das prognostizierte Preisziel erreicht.
PREME Token Preisprognose 2027-2032
Die Preisprognose für PREME für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.002362 am unteren Ende und $0.014716 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte PREME Token, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| PREME Token Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.0013028 | $0.002362 | $0.003422 |
| 2028 | $0.002351 | $0.004055 | $0.005758 |
| 2029 | $0.005164 | $0.011077 | $0.01699 |
| 2030 | $0.004392 | $0.008546 | $0.01270014 |
| 2031 | $0.005193 | $0.008393 | $0.011593 |
| 2032 | $0.007927 | $0.014716 | $0.0215058 |
PREME Token Preisprognose 2032-2037
Die Preisprognose für PREME Token für die Jahre 2032-2037 wird derzeit zwischen $0.014716 am unteren Ende und $0.1342037 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte PREME Token bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| PREME Token Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.007927 | $0.014716 | $0.0215058 |
| 2033 | $0.018421 | $0.037852 | $0.057283 |
| 2034 | $0.0148097 | $0.023992 | $0.033175 |
| 2035 | $0.0175097 | $0.028299 | $0.039089 |
| 2036 | $0.028984 | $0.054929 | $0.080874 |
| 2037 | $0.07527 | $0.1342037 | $0.193136 |
PREME Token Potenzielles Preishistogramm
PREME Token Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für PREME Token Bullisch, mit 30 technischen Indikatoren, die bullische Signale zeigen, und 1 anzeigen bärische Signale. Die Preisprognose für PREME wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von PREME Token
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von PREME Token im nächsten Monat steigen, und bis zum 04.02.2026 $0.002324 erreichen. Der kurzfristige 50-Tage-SMA für PREME Token wird voraussichtlich bis zum 04.02.2026 $0.003527 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 56.63, was darauf hindeutet, dass sich der PREME-Markt in einem NEUTRAL Zustand befindet.
Beliebte PREME Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.00377 | BUY |
| SMA 5 | $0.003547 | BUY |
| SMA 10 | $0.003463 | BUY |
| SMA 21 | $0.003415 | BUY |
| SMA 50 | $0.003081 | BUY |
| SMA 100 | $0.002293 | BUY |
| SMA 200 | $0.002097 | BUY |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.003749 | BUY |
| EMA 5 | $0.003646 | BUY |
| EMA 10 | $0.003528 | BUY |
| EMA 21 | $0.003418 | BUY |
| EMA 50 | $0.003058 | BUY |
| EMA 100 | $0.002655 | BUY |
| EMA 200 | $0.002725 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.002171 | BUY |
| SMA 50 | $0.003392 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.002738 | BUY |
| EMA 50 | $0.003477 | BUY |
| EMA 100 | $0.005045 | SELL |
| EMA 200 | $0.002522 | BUY |
PREME Token Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 56.63 | NEUTRAL |
| Stoch RSI (14) | 66.56 | NEUTRAL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 124.05 | SELL |
| Average Directional Index (14) | 18.94 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000110 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 55.88 | NEUTRAL |
| VWMA (10) | 0.003552 | BUY |
| Hull Moving Average (9) | 0.003667 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | 0.0004072 | BUY |
Auf weltweiten Geldflüssen basierende PREME Token-Preisprognose
Definition weltweiter Geldflüsse, die für PREME Token-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
PREME Token-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.005504 | $0.007734 | $0.010867 | $0.015271 | $0.021458 | $0.030152 |
| Amazon.com aktie | $0.008173 | $0.017053 | $0.035583 | $0.074247 | $0.154921 | $0.323252 |
| Apple aktie | $0.005556 | $0.00788 | $0.011178 | $0.015855 | $0.022489 | $0.03190015 |
| Netflix aktie | $0.00618 | $0.009751 | $0.015386 | $0.024277 | $0.0383068 | $0.060442 |
| Google aktie | $0.005072 | $0.006568 | $0.0085067 | $0.011016 | $0.014265 | $0.018474 |
| Tesla aktie | $0.008879 | $0.020129 | $0.045631 | $0.103443 | $0.234499 | $0.531592 |
| Kodak aktie | $0.002937 | $0.0022027 | $0.001651 | $0.001238 | $0.000928 | $0.000696 |
| Nokia aktie | $0.002594 | $0.001718 | $0.001138 | $0.000754 | $0.000499 | $0.000331 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
PREME Token Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in PREME Token investieren?", "Sollte ich heute PREME kaufen?", "Wird PREME Token auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere PREME Token-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie PREME Token.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich PREME Token zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der PREME Token-Preis entspricht heute $0.003917 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
PREME Token-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von PREME Token 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004018 | $0.004123 | $0.00423 | $0.00434 |
| Wenn die Wachstumsrate von PREME Token 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00412 | $0.004334 | $0.00456 | $0.004797 |
| Wenn die Wachstumsrate von PREME Token 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004426 | $0.0050013 | $0.005651 | $0.006385 |
| Wenn die Wachstumsrate von PREME Token 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004935 | $0.006218 | $0.007834 | $0.00987 |
| Wenn die Wachstumsrate von PREME Token 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005953 | $0.009048 | $0.013752 | $0.0209014 |
| Wenn die Wachstumsrate von PREME Token 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0090078 | $0.020714 | $0.047637 | $0.109549 |
| Wenn die Wachstumsrate von PREME Token 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.014098 | $0.050745 | $0.182649 | $0.657414 |
Fragefeld
Ist PREME eine gute Investition?
Die Entscheidung, PREME Token zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von PREME Token in den letzten 2026 Stunden um 2.0714% gestiegen, und PREME Token hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in PREME Token investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann PREME Token steigen?
Es scheint, dass der Durchschnittswert von PREME Token bis zum Ende dieses Jahres potenziell auf $0.004039 steigen könnte. Betrachtet man die Aussichten von PREME Token in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.01270014 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird PREME Token nächste Woche kosten?
Basierend auf unserer neuen experimentellen PREME Token-Prognose wird der Preis von PREME Token in der nächsten Woche um 0.86% steigen und $0.00395 erreichen bis zum 13. Januar 2026.
Wie viel wird PREME Token nächsten Monat kosten?
Basierend auf unserer neuen experimentellen PREME Token-Prognose wird der Preis von PREME Token im nächsten Monat um -11.62% fallen und $0.003461 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von PREME Token in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von PREME Token im Jahr 2026 wird erwartet, dass PREME innerhalb der Spanne von $0.001353 bis $0.004039 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte PREME Token-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird PREME Token in 5 Jahren sein?
Die Zukunft von PREME Token scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.01270014 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der PREME Token-Prognose für 2030 könnte der Wert von PREME Token seinen höchsten Gipfel von ungefähr $0.01270014 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.004392 liegen wird.
Wie viel wird PREME Token im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen PREME Token-Preisprognosesimulation wird der Wert von PREME im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.004039 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.004039 und $0.001353 während des Jahres 2026 liegen.
Wie viel wird PREME Token im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von PREME Token könnte der Wert von PREME um -12.62% fallen und bis zu $0.003422 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.003422 und $0.0013028 im Laufe des Jahres schwanken.
Wie viel wird PREME Token im Jahr 2028 kosten?
Unser neues experimentelles PREME Token-Preisprognosemodell deutet darauf hin, dass der Wert von PREME im Jahr 2028 um 47.02% steigen, und im besten Fall $0.005758 erreichen wird. Der Preis wird voraussichtlich zwischen $0.005758 und $0.002351 im Laufe des Jahres liegen.
Wie viel wird PREME Token im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von PREME Token im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.01699 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.01699 und $0.005164.
Wie viel wird PREME Token im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für PREME Token-Preisprognosen wird der Wert von PREME im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.01270014 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.01270014 und $0.004392 während des Jahres 2030 liegen.
Wie viel wird PREME Token im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von PREME Token im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.011593 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.011593 und $0.005193 während des Jahres schwanken.
Wie viel wird PREME Token im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen PREME Token-Preisprognose könnte PREME eine 449.04% Steigerung im Wert erfahren und $0.0215058 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.0215058 und $0.007927 liegen.
Wie viel wird PREME Token im Jahr 2033 kosten?
Laut unserer experimentellen PREME Token-Preisprognose wird der Wert von PREME voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.057283 beträgt. Im Laufe des Jahres könnte der Preis von PREME zwischen $0.057283 und $0.018421 liegen.
Wie viel wird PREME Token im Jahr 2034 kosten?
Die Ergebnisse unserer neuen PREME Token-Preisprognosesimulation deuten darauf hin, dass PREME im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.033175 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.033175 und $0.0148097.
Wie viel wird PREME Token im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von PREME Token könnte PREME um 897.93% steigen, wobei der Wert im Jahr 2035 $0.039089 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.039089 und $0.0175097.
Wie viel wird PREME Token im Jahr 2036 kosten?
Unsere jüngste PREME Token-Preisprognosesimulation deutet darauf hin, dass der Wert von PREME im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.080874 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.080874 und $0.028984.
Wie viel wird PREME Token im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von PREME Token um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.193136 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.193136 und $0.07527 liegen.
Verwandte Prognosen
SolPod-Preisprognose
zuzalu-Preisprognose
SOFT COQ INU-Preisprognose
All Street Bets-Preisprognose
MagicRing-Preisprognose
AI INU-Preisprognose
Wall Street Baby On Solana-Preisprognose
Meta Masters Guild Games-Preisprognose
Morfey-Preisprognose
PANTIES-PreisprognoseCeler Bridged BUSD (zkSync)-Preisprognose
Bridged BUSD-Preisprognose
Multichain Bridged BUSD (Moonriver)-Preisprognose
tooker kurlson-Preisprognose
dogwifsaudihat-PreisprognoseHarmony Horizen Bridged BUSD (Harmony)-Preisprognose
IoTeX Bridged BUSD (IoTeX)-Preisprognose
MIMANY-Preisprognose
The Open League MEME-Preisprognose
Sandwich Cat-Preisprognose
Hege-Preisprognose
DexNet-Preisprognose
SolDocs-Preisprognose
Secret Society-Preisprognose
duk-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von PREME Token?
PREME Token-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
PREME Token Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von PREME Token. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von PREME über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von PREME über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von PREME einzuschätzen.
Wie liest man PREME Token-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von PREME Token in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von PREME innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von PREME Token?
Die Preisentwicklung von PREME Token wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von PREME. Die Marktkapitalisierung von PREME Token kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von PREME-„Walen“, großen Inhabern von PREME Token, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen PREME Token-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


