Penguin Finance Preisvorhersage bis zu $0.003358 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001124 | $0.003358 |
| 2027 | $0.001082 | $0.002844 |
| 2028 | $0.001954 | $0.004787 |
| 2029 | $0.004293 | $0.014123 |
| 2030 | $0.003651 | $0.010556 |
| 2031 | $0.004316 | $0.009637 |
| 2032 | $0.006589 | $0.017876 |
| 2033 | $0.015312 | $0.047616 |
| 2034 | $0.01231 | $0.027577 |
| 2035 | $0.014554 | $0.032492 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Penguin Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.79 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Penguin Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Penguin Finance'
'name_with_ticker' => 'Penguin Finance <small>PEFI</small>'
'name_lang' => 'Penguin Finance'
'name_lang_with_ticker' => 'Penguin Finance <small>PEFI</small>'
'name_with_lang' => 'Penguin Finance'
'name_with_lang_with_ticker' => 'Penguin Finance <small>PEFI</small>'
'image' => '/uploads/coins/penguin-finance.png?1717316634'
'price_for_sd' => 0.003256
'ticker' => 'PEFI'
'marketcap' => '$62.38K'
'low24h' => '$0.003173'
'high24h' => '$0.003321'
'volume24h' => '$242.76'
'current_supply' => '19.16M'
'max_supply' => '19.16M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003256'
'change_24h_pct' => '1.0208%'
'ath_price' => '$6.89'
'ath_days' => 1737
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '05.04.2021'
'ath_pct' => '-99.95%'
'fdv' => '$62.38K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.160543'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003283'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002877'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001124'
'current_year_max_price_prediction' => '$0.003358'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003651'
'grand_prediction_max_price' => '$0.010556'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0033177096768387
107 => 0.0033300968004434
108 => 0.0033580056224271
109 => 0.0031195277942586
110 => 0.0032265973377651
111 => 0.0032894906635156
112 => 0.003005336329696
113 => 0.0032838738459618
114 => 0.0031153764258355
115 => 0.0030581858706983
116 => 0.0031351854189078
117 => 0.0031051786200861
118 => 0.0030793805365175
119 => 0.0030649847626188
120 => 0.0031215247326939
121 => 0.00311888707551
122 => 0.0030263767105319
123 => 0.0029057007106229
124 => 0.002946203537247
125 => 0.0029314884806184
126 => 0.0028781592171164
127 => 0.0029140967017169
128 => 0.0027558462070809
129 => 0.0024835844562045
130 => 0.0026634489084364
131 => 0.0026565243226804
201 => 0.0026530326325372
202 => 0.0027881957973012
203 => 0.0027752029777539
204 => 0.0027516208830495
205 => 0.0028777261134539
206 => 0.0028316960080016
207 => 0.0029735499469487
208 => 0.0030669841256769
209 => 0.0030432861956724
210 => 0.0031311614923727
211 => 0.0029471366405682
212 => 0.0030082623145421
213 => 0.0030208602312316
214 => 0.0028761699944855
215 => 0.0027773287637167
216 => 0.002770737180497
217 => 0.0025993601075046
218 => 0.0026909083565897
219 => 0.0027714670272607
220 => 0.0027328856756147
221 => 0.0027206719722686
222 => 0.0027830691338345
223 => 0.0027879179276837
224 => 0.0026773649140695
225 => 0.0027003523863585
226 => 0.002796213967153
227 => 0.002697936920478
228 => 0.0025070006722528
301 => 0.0024596458427928
302 => 0.0024533278356201
303 => 0.0023248977823657
304 => 0.0024628103189332
305 => 0.0024026078008953
306 => 0.0025927868340402
307 => 0.0024841575902584
308 => 0.0024794748006735
309 => 0.0024723960774
310 => 0.0023618510251853
311 => 0.0023860533661157
312 => 0.0024665056334892
313 => 0.0024952119088477
314 => 0.0024922176091443
315 => 0.0024661113734885
316 => 0.0024780626744862
317 => 0.0024395633698634
318 => 0.0024259684641074
319 => 0.002383059201968
320 => 0.0023199944406093
321 => 0.0023287639824749
322 => 0.0022038161884308
323 => 0.0021357379987542
324 => 0.0021168948531079
325 => 0.0020916970112403
326 => 0.0021197410163957
327 => 0.0022034622270291
328 => 0.0021024766845596
329 => 0.0019293440553077
330 => 0.0019397496213294
331 => 0.0019631278387398
401 => 0.0019195626852578
402 => 0.0018783319236333
403 => 0.0019141787257084
404 => 0.0018408201483273
405 => 0.0019719928723416
406 => 0.0019684450177643
407 => 0.00201733809761
408 => 0.0020479119438245
409 => 0.0019774491267003
410 => 0.0019597279187453
411 => 0.0019698227241805
412 => 0.001802978076794
413 => 0.0020037033303951
414 => 0.0020054392107235
415 => 0.0019905755494679
416 => 0.0020974555503136
417 => 0.0023230056888061
418 => 0.0022381446539719
419 => 0.0022052838963457
420 => 0.0021428155720774
421 => 0.0022260509051629
422 => 0.0022196597302554
423 => 0.0021907564135426
424 => 0.0021732755974108
425 => 0.0022054845371247
426 => 0.0021692845533397
427 => 0.0021627820415429
428 => 0.0021233838948569
429 => 0.0021093205489914
430 => 0.0020989086075906
501 => 0.0020874460831644
502 => 0.0021127295557653
503 => 0.0020554338805339
504 => 0.0019863409129691
505 => 0.0019805965803124
506 => 0.0019964571878246
507 => 0.0019894400496838
508 => 0.0019805629849547
509 => 0.0019636142508621
510 => 0.0019585859235092
511 => 0.0019749255480084
512 => 0.0019564790646081
513 => 0.0019836978556972
514 => 0.0019762958506054
515 => 0.0019349488518685
516 => 0.0018834151828229
517 => 0.0018829564250728
518 => 0.0018718535806091
519 => 0.0018577124388607
520 => 0.0018537786967318
521 => 0.0019111598080225
522 => 0.0020299369911221
523 => 0.0020066181879826
524 => 0.002023468413058
525 => 0.0021063548431482
526 => 0.002132701946792
527 => 0.002114001396691
528 => 0.002088402930313
529 => 0.0020895291329193
530 => 0.0021770068417154
531 => 0.0021824627191107
601 => 0.0021962479611558
602 => 0.0022139658928927
603 => 0.0021170188370803
604 => 0.0020849629353088
605 => 0.0020697730706557
606 => 0.0020229941667418
607 => 0.0020734412040929
608 => 0.0020440478757859
609 => 0.0020480140399936
610 => 0.0020454310703502
611 => 0.0020468415464351
612 => 0.0019719562068919
613 => 0.0019992404887639
614 => 0.0019538750782782
615 => 0.0018931358861442
616 => 0.0018929322670743
617 => 0.0019077980982999
618 => 0.0018989553201869
619 => 0.0018751596316533
620 => 0.001878539696897
621 => 0.0018489267686902
622 => 0.0018821352425406
623 => 0.001883087542745
624 => 0.0018703004714348
625 => 0.0019214627072877
626 => 0.001942423917061
627 => 0.001934007192799
628 => 0.0019418333772495
629 => 0.0020075871895311
630 => 0.002018307929973
701 => 0.0020230693747049
702 => 0.0020166896695347
703 => 0.0019430352362321
704 => 0.0019463021235519
705 => 0.0019223318720129
706 => 0.0019020795353854
707 => 0.001902889522641
708 => 0.001913301856287
709 => 0.0019587731279945
710 => 0.002054464738625
711 => 0.0020580961652987
712 => 0.0020624975603635
713 => 0.0020445948746711
714 => 0.0020391952533606
715 => 0.0020463187476296
716 => 0.0020822554853566
717 => 0.0021746945315194
718 => 0.0021420203988092
719 => 0.0021154558203125
720 => 0.002138760117413
721 => 0.0021351726035395
722 => 0.0021048903761008
723 => 0.0021040404548347
724 => 0.0020459191785661
725 => 0.0020244330660871
726 => 0.0020064776622919
727 => 0.0019868708300853
728 => 0.0019752472427262
729 => 0.0019931063557357
730 => 0.0019971909461838
731 => 0.0019581416834647
801 => 0.0019528194132481
802 => 0.0019847078841214
803 => 0.0019706749570121
804 => 0.0019851081705438
805 => 0.001988456799889
806 => 0.001987917593439
807 => 0.0019732656058654
808 => 0.0019826043458162
809 => 0.0019605154418202
810 => 0.0019364970763706
811 => 0.0019211748556108
812 => 0.0019078041858002
813 => 0.001915223010519
814 => 0.0018887762550203
815 => 0.0018803154056683
816 => 0.0019794405908492
817 => 0.0020526654309177
818 => 0.0020516007127429
819 => 0.002045119514677
820 => 0.002035489769014
821 => 0.0020815510094813
822 => 0.0020655041943261
823 => 0.0020771795931078
824 => 0.0020801514721127
825 => 0.0020891464547878
826 => 0.0020923613879493
827 => 0.0020826436270207
828 => 0.0020500296344198
829 => 0.0019687586657037
830 => 0.0019309268103796
831 => 0.0019184416679833
901 => 0.0019188954791967
902 => 0.0019063773400274
903 => 0.0019100644930364
904 => 0.0019050950986826
905 => 0.001895684268002
906 => 0.0019146419182435
907 => 0.0019168266108311
908 => 0.0019124016687377
909 => 0.0019134439027859
910 => 0.0018768072721699
911 => 0.0018795926756251
912 => 0.0018640831952348
913 => 0.0018611753546312
914 => 0.0018219687387695
915 => 0.0017525085356807
916 => 0.001790996230857
917 => 0.001744508507273
918 => 0.0017269029019477
919 => 0.001810245099324
920 => 0.0018018798542601
921 => 0.0017875621909954
922 => 0.0017663833829645
923 => 0.0017585279570516
924 => 0.0017108008759306
925 => 0.0017079809053638
926 => 0.001731635735507
927 => 0.001720719845309
928 => 0.0017053898013
929 => 0.0016498659358811
930 => 0.0015874387278301
1001 => 0.0015893230128377
1002 => 0.0016091799462192
1003 => 0.0016669166580983
1004 => 0.0016443579259119
1005 => 0.001627991306879
1006 => 0.0016249263311129
1007 => 0.001663290919787
1008 => 0.0017175848503906
1009 => 0.0017430583478715
1010 => 0.0017178148855095
1011 => 0.0016888165551525
1012 => 0.001690581549156
1013 => 0.0017023232635301
1014 => 0.0017035571516919
1015 => 0.0016846822197061
1016 => 0.0016899954024995
1017 => 0.0016819241919886
1018 => 0.0016323911879815
1019 => 0.0016314952930099
1020 => 0.001619339094999
1021 => 0.0016189710101544
1022 => 0.0015982902848321
1023 => 0.0015953969084004
1024 => 0.0015543340730427
1025 => 0.0015813617556248
1026 => 0.0015632330051658
1027 => 0.001535908702084
1028 => 0.0015311979819335
1029 => 0.0015310563719974
1030 => 0.0015591123216601
1031 => 0.0015810339055181
1101 => 0.0015635483625416
1102 => 0.0015595672433488
1103 => 0.0016020751808701
1104 => 0.0015966656583521
1105 => 0.0015919810467392
1106 => 0.001712723424406
1107 => 0.0016171464108375
1108 => 0.0015754693775764
1109 => 0.0015238861346618
1110 => 0.0015406818986601
1111 => 0.0015442210129156
1112 => 0.0014201726122845
1113 => 0.0013698461915976
1114 => 0.0013525760605291
1115 => 0.0013426368559353
1116 => 0.0013471662762774
1117 => 0.0013018665949588
1118 => 0.0013323087299925
1119 => 0.0012930830350574
1120 => 0.00128650671965
1121 => 0.0013566471213251
1122 => 0.001366406748464
1123 => 0.0013247691470113
1124 => 0.0013515072276593
1125 => 0.0013418116279292
1126 => 0.0012937554470125
1127 => 0.0012919200543788
1128 => 0.0012678071520512
1129 => 0.0012300751290865
1130 => 0.0012128305821062
1201 => 0.0012038494723149
1202 => 0.0012075552532532
1203 => 0.001205681497012
1204 => 0.001193453970081
1205 => 0.0012063823645427
1206 => 0.0011733556590745
1207 => 0.0011602041588429
1208 => 0.0011542639313007
1209 => 0.0011249508292515
1210 => 0.0011716010102075
1211 => 0.0011807916835393
1212 => 0.0011900004653367
1213 => 0.0012701566237809
1214 => 0.001266152248624
1215 => 0.0013023498498327
1216 => 0.0013009432776129
1217 => 0.0012906191353859
1218 => 0.0012470632775691
1219 => 0.0012644238661864
1220 => 0.001210990672857
1221 => 0.0012510264544033
1222 => 0.0012327557956398
1223 => 0.0012448491262967
1224 => 0.0012231042273639
1225 => 0.0012351387522582
1226 => 0.0011829711331377
1227 => 0.0011342577444213
1228 => 0.0011538614340733
1229 => 0.0011751728866788
1230 => 0.0012213815459847
1231 => 0.0011938600497153
]
'min_raw' => 0.0011249508292515
'max_raw' => 0.0033580056224271
'avg_raw' => 0.0022414782258393
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001124'
'max' => '$0.003358'
'avg' => '$0.002241'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0021310591707485
'max_diff' => 0.00010199562242705
'year' => 2026
]
1 => [
'items' => [
101 => 0.0012037578204768
102 => 0.0011706019452926
103 => 0.0011021919042801
104 => 0.0011025790976829
105 => 0.0010920557032669
106 => 0.0010829619540508
107 => 0.001197021224629
108 => 0.0011828361513224
109 => 0.0011602340935048
110 => 0.0011904878460637
111 => 0.001198487418432
112 => 0.0011987151550112
113 => 0.0012207875119159
114 => 0.0012325675327526
115 => 0.0012346438124826
116 => 0.0012693751429769
117 => 0.0012810166268413
118 => 0.0013289662513142
119 => 0.001231568080287
120 => 0.0012295622290494
121 => 0.001190913578405
122 => 0.0011664019931553
123 => 0.0011925919076176
124 => 0.0012157925965513
125 => 0.0011916344884818
126 => 0.0011947890273902
127 => 0.0011623587410968
128 => 0.0011739510424599
129 => 0.0011839358940454
130 => 0.0011784228458823
131 => 0.0011701695459476
201 => 0.0012138904046359
202 => 0.0012114235024453
203 => 0.001252137371194
204 => 0.0012838767433604
205 => 0.0013407593723738
206 => 0.0012813993836398
207 => 0.0012792360697157
208 => 0.0013003828103298
209 => 0.0012810133893855
210 => 0.0012932541948126
211 => 0.0013387871893774
212 => 0.0013397492298026
213 => 0.0013236338131614
214 => 0.0013226531885942
215 => 0.0013257483306435
216 => 0.0013438766743011
217 => 0.0013375420739994
218 => 0.001344872633841
219 => 0.0013540396111725
220 => 0.0013919581161331
221 => 0.0014011001393067
222 => 0.0013788897625906
223 => 0.001380895110929
224 => 0.0013725878203487
225 => 0.0013645630817382
226 => 0.0013826015222157
227 => 0.0014155671267347
228 => 0.0014153620494199
301 => 0.0014230094289086
302 => 0.0014277736829757
303 => 0.0014073220168725
304 => 0.001394008734268
305 => 0.0013991138939647
306 => 0.0014072771554958
307 => 0.0013964666582719
308 => 0.0013297392614967
309 => 0.0013499800911157
310 => 0.0013466110273411
311 => 0.0013418130708339
312 => 0.0013621653815335
313 => 0.0013602023515167
314 => 0.0013014019812518
315 => 0.0013051661901788
316 => 0.0013016308952641
317 => 0.0013130541563869
318 => 0.0012803964957969
319 => 0.0012904417722417
320 => 0.0012967420754592
321 => 0.0013004530024556
322 => 0.0013138594153728
323 => 0.0013122863275532
324 => 0.0013137616300253
325 => 0.0013336398012198
326 => 0.001434176769757
327 => 0.0014396487751322
328 => 0.0014127026193729
329 => 0.0014234670771093
330 => 0.0014028016721836
331 => 0.0014166744969564
401 => 0.0014261659313344
402 => 0.001383275964478
403 => 0.0013807362989943
404 => 0.0013599856005913
405 => 0.0013711358505335
406 => 0.0013533950011442
407 => 0.0013577479850357
408 => 0.0013455766625886
409 => 0.0013674826197073
410 => 0.0013919768836076
411 => 0.0013981651019766
412 => 0.0013818865636433
413 => 0.001370099829082
414 => 0.0013494062059841
415 => 0.0013838201623833
416 => 0.0013938838519808
417 => 0.0013837673021061
418 => 0.0013814230764492
419 => 0.0013769807730652
420 => 0.0013823655321122
421 => 0.001393829042966
422 => 0.0013884230629451
423 => 0.00139199380799
424 => 0.0013783858100153
425 => 0.001407328787225
426 => 0.0014532972005408
427 => 0.0014534449965062
428 => 0.0014480389873451
429 => 0.0014458269648705
430 => 0.0014513738583338
501 => 0.0014543828204922
502 => 0.0014723204568262
503 => 0.0014915682552797
504 => 0.0015813893321894
505 => 0.001556167933218
506 => 0.001635862536132
507 => 0.001698890619988
508 => 0.0017177899864523
509 => 0.0017004034585891
510 => 0.0016409250859706
511 => 0.0016380067932533
512 => 0.0017268925930666
513 => 0.0017017782833918
514 => 0.0016987910161691
515 => 0.0016670115399867
516 => 0.0016857971463752
517 => 0.0016816884586898
518 => 0.0016752026941745
519 => 0.0017110443225471
520 => 0.0017781366512562
521 => 0.001767679682639
522 => 0.0017598740406511
523 => 0.0017256719896482
524 => 0.0017462692636566
525 => 0.001738934968897
526 => 0.0017704477536427
527 => 0.001751780278053
528 => 0.0017015880177954
529 => 0.0017095813006773
530 => 0.0017083731320499
531 => 0.0017332371567889
601 => 0.0017257735937253
602 => 0.0017069157515759
603 => 0.0017779073369706
604 => 0.001773297538291
605 => 0.0017798331788719
606 => 0.0017827103699771
607 => 0.0018259216969948
608 => 0.0018436239950657
609 => 0.0018476427266501
610 => 0.0018644585406726
611 => 0.0018472243338784
612 => 0.0019161734488365
613 => 0.0019620205869913
614 => 0.0020152743972302
615 => 0.002093092527264
616 => 0.0021223528640147
617 => 0.0021170672460798
618 => 0.0021760680641454
619 => 0.0022820912226948
620 => 0.0021384975577407
621 => 0.00228970203561
622 => 0.0022418324436562
623 => 0.002128334502271
624 => 0.0021210265728987
625 => 0.0021978886965429
626 => 0.0023683614890806
627 => 0.0023256599880363
628 => 0.0023684313334389
629 => 0.002318536287093
630 => 0.0023160585774935
701 => 0.0023660080424057
702 => 0.0024827176897768
703 => 0.0024272733111065
704 => 0.0023477801987633
705 => 0.0024064766758677
706 => 0.0023556283552973
707 => 0.0022410528575035
708 => 0.0023256273350032
709 => 0.0022690747904416
710 => 0.0022855798294433
711 => 0.0024044448665558
712 => 0.0023901427108125
713 => 0.0024086510246883
714 => 0.0023759843351445
715 => 0.0023454684960465
716 => 0.0022885084162341
717 => 0.0022716453446997
718 => 0.0022763056910021
719 => 0.0022716430352635
720 => 0.0022397743940986
721 => 0.0022328923640733
722 => 0.0022214220125225
723 => 0.0022249771540971
724 => 0.0022034095374118
725 => 0.0022441120861939
726 => 0.0022516668379175
727 => 0.0022812867586103
728 => 0.0022843619970369
729 => 0.002366853054553
730 => 0.0023214183662791
731 => 0.0023518998778155
801 => 0.0023491733245206
802 => 0.0021307943468167
803 => 0.0021608850431703
804 => 0.0022076967237157
805 => 0.0021866081250817
806 => 0.0021567937805854
807 => 0.0021327170988606
808 => 0.0020962384640803
809 => 0.0021475814420234
810 => 0.0022150919983014
811 => 0.0022860741761535
812 => 0.0023713546119063
813 => 0.00235232101142
814 => 0.002284479917727
815 => 0.0022875232196321
816 => 0.0023063357145144
817 => 0.0022819718243464
818 => 0.0022747864374962
819 => 0.0023053485527003
820 => 0.002305559017191
821 => 0.0022775254170783
822 => 0.0022463712006477
823 => 0.0022462406633433
824 => 0.0022406970714435
825 => 0.0023195224797768
826 => 0.0023628684842125
827 => 0.0023678380337654
828 => 0.0023625339939323
829 => 0.0023645753083542
830 => 0.0023393532234372
831 => 0.0023970034301806
901 => 0.002449908960903
902 => 0.0024357291485076
903 => 0.0024144715939478
904 => 0.0023975389278383
905 => 0.0024317403505001
906 => 0.002430217414987
907 => 0.0024494468772459
908 => 0.0024485745177631
909 => 0.002442108372862
910 => 0.002435729379434
911 => 0.0024610213673276
912 => 0.0024537376809911
913 => 0.002446442681078
914 => 0.0024318114419435
915 => 0.0024338000703411
916 => 0.0024125461861978
917 => 0.0024027131668815
918 => 0.0022548481490773
919 => 0.0022153337846912
920 => 0.0022277658081161
921 => 0.0022318587530249
922 => 0.002214662051005
923 => 0.0022393177042313
924 => 0.0022354751467927
925 => 0.0022504242899651
926 => 0.0022410847143273
927 => 0.0022414680137693
928 => 0.0022689337143123
929 => 0.0022769071240274
930 => 0.002272851783493
1001 => 0.0022756920049944
1002 => 0.0023411437107106
1003 => 0.0023318385711855
1004 => 0.002326895401271
1005 => 0.0023282646931196
1006 => 0.0023449890072304
1007 => 0.0023496709020678
1008 => 0.002329833384651
1009 => 0.0023391888725441
1010 => 0.0023790233526046
1011 => 0.0023929631661895
1012 => 0.0024374523596622
1013 => 0.0024185525595426
1014 => 0.0024532439606263
1015 => 0.0025598735003874
1016 => 0.0026450565549516
1017 => 0.0025667186976358
1018 => 0.0027231465293462
1019 => 0.0028449480345725
1020 => 0.0028402730899309
1021 => 0.0028190341801751
1022 => 0.0026803664047355
1023 => 0.002552762250356
1024 => 0.0026595085438531
1025 => 0.0026597806621078
1026 => 0.0026506110608278
1027 => 0.0025936594548018
1028 => 0.0026486292683878
1029 => 0.0026529925725692
1030 => 0.0026505502825239
1031 => 0.0026068856197139
1101 => 0.0025402177501817
1102 => 0.002553244492308
1103 => 0.0025745825616491
1104 => 0.0025341851447987
1105 => 0.0025212757223492
1106 => 0.002545276794801
1107 => 0.0026226132510625
1108 => 0.0026079932419858
1109 => 0.0026076114544648
1110 => 0.0026701620531434
1111 => 0.0026253893237536
1112 => 0.0025534088012436
1113 => 0.0025352327700034
1114 => 0.0024707201039423
1115 => 0.0025152792321769
1116 => 0.002516882835875
1117 => 0.0024924782567242
1118 => 0.0025553890983404
1119 => 0.0025548093638596
1120 => 0.0026145338449311
1121 => 0.0027287046212492
1122 => 0.0026949387046893
1123 => 0.0026556726174513
1124 => 0.0026599419298646
1125 => 0.0027067657494772
1126 => 0.0026784549992556
1127 => 0.0026886357424248
1128 => 0.0027067503397031
1129 => 0.0027176793260012
1130 => 0.0026583694169238
1201 => 0.002644541439997
1202 => 0.0026162542521651
1203 => 0.0026088746528652
1204 => 0.0026319139771227
1205 => 0.0026258439291722
1206 => 0.0025167480591936
1207 => 0.0025053469337772
1208 => 0.0025056965900166
1209 => 0.002477027918063
1210 => 0.0024333013120641
1211 => 0.0025482122218493
1212 => 0.0025389832676164
1213 => 0.0025287952164076
1214 => 0.0025300431945484
1215 => 0.0025799221257941
1216 => 0.0025509898267252
1217 => 0.0026279110857104
1218 => 0.0026120983873278
1219 => 0.0025958801528984
1220 => 0.0025936382988807
1221 => 0.0025873956623001
1222 => 0.0025659873386826
1223 => 0.0025401355014735
1224 => 0.0025230658793004
1225 => 0.0023273949048968
1226 => 0.0023637102995804
1227 => 0.0024054878509115
1228 => 0.002419909294218
1229 => 0.0023952404175088
1230 => 0.0025669614162936
1231 => 0.0025983364975163
]
'min_raw' => 0.0010829619540508
'max_raw' => 0.0028449480345725
'avg_raw' => 0.0019639549943116
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001082'
'max' => '$0.002844'
'avg' => '$0.001963'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.1988875200758E-5
'max_diff' => -0.00051305758785459
'year' => 2027
]
2 => [
'items' => [
101 => 0.0025032993299468
102 => 0.0024855217562366
103 => 0.0025681269110664
104 => 0.0025183059046345
105 => 0.0025407403007802
106 => 0.0024922494072718
107 => 0.0025907791592194
108 => 0.002590028527592
109 => 0.0025516982286891
110 => 0.0025840947348473
111 => 0.0025784650446634
112 => 0.0025351902316053
113 => 0.0025921510479812
114 => 0.0025921792998355
115 => 0.0025552872205139
116 => 0.002512205348581
117 => 0.0025045033274278
118 => 0.0024987008891098
119 => 0.0025393132566499
120 => 0.0025757261783949
121 => 0.0026434815982333
122 => 0.0026605169206098
123 => 0.0027270069179507
124 => 0.0026874153618734
125 => 0.002704965785886
126 => 0.0027240192538107
127 => 0.0027331541870019
128 => 0.0027182693035744
129 => 0.0028215556378196
130 => 0.0028302761690414
131 => 0.0028332000877278
201 => 0.0027983725169543
202 => 0.0028293075512956
203 => 0.002814834073188
204 => 0.002852490042376
205 => 0.0028583949791602
206 => 0.0028533937077782
207 => 0.0028552680279166
208 => 0.0027671313625963
209 => 0.0027625610115414
210 => 0.0027002439506118
211 => 0.0027256386135651
212 => 0.0026781645083718
213 => 0.002693219036166
214 => 0.002699854928573
215 => 0.0026963887149632
216 => 0.0027270743897066
217 => 0.0027009852975055
218 => 0.0026321318937429
219 => 0.0025632597309164
220 => 0.0025623950970142
221 => 0.0025442622722366
222 => 0.002531155561115
223 => 0.0025336803786626
224 => 0.0025425781650174
225 => 0.0025306384055967
226 => 0.0025331863586303
227 => 0.0025754993559097
228 => 0.0025839849257516
229 => 0.0025551476439027
301 => 0.0024393617960793
302 => 0.0024109476585967
303 => 0.0024313711771424
304 => 0.0024216100507206
305 => 0.0019544283098468
306 => 0.0020641857300604
307 => 0.0019989715979793
308 => 0.0020290252704002
309 => 0.001962458528663
310 => 0.0019942276668819
311 => 0.001988361067076
312 => 0.0021648477508213
313 => 0.0021620921540041
314 => 0.0021634111123775
315 => 0.0021004537926851
316 => 0.0022007465124327
317 => 0.0022501543125899
318 => 0.0022410102437268
319 => 0.0022433116088584
320 => 0.0022037665311099
321 => 0.0021637939951714
322 => 0.0021194583010864
323 => 0.0022018285406389
324 => 0.0021926703761076
325 => 0.0022136759105389
326 => 0.0022670988988351
327 => 0.0022749656367959
328 => 0.0022855386123918
329 => 0.0022817489532763
330 => 0.0023720340081622
331 => 0.0023610998922955
401 => 0.0023874479655743
402 => 0.0023332479798067
403 => 0.0022719155512008
404 => 0.0022835728407706
405 => 0.002282450150043
406 => 0.0022681570085165
407 => 0.002255253799436
408 => 0.0022337735917734
409 => 0.0023017401472903
410 => 0.0022989808292578
411 => 0.0023436509808473
412 => 0.0023357550976512
413 => 0.0022830244572169
414 => 0.0022849077423559
415 => 0.0022975737399913
416 => 0.0023414109024254
417 => 0.0023544247568974
418 => 0.0023483962209935
419 => 0.0023626653183171
420 => 0.0023739430310437
421 => 0.0023640816254008
422 => 0.0025036983334395
423 => 0.0024457197422189
424 => 0.0024739781041674
425 => 0.0024807175569841
426 => 0.0024634545903094
427 => 0.0024671983096407
428 => 0.0024728690243251
429 => 0.002507300493449
430 => 0.002597658631256
501 => 0.0026376776354021
502 => 0.0027580767838785
503 => 0.0026343546141992
504 => 0.0026270134526637
505 => 0.0026487009750102
506 => 0.00271938802071
507 => 0.0027766732319531
508 => 0.0027956780413856
509 => 0.0027981898406873
510 => 0.0028338441265985
511 => 0.0028542804983697
512 => 0.002829514758488
513 => 0.0028085283870194
514 => 0.0027333578093431
515 => 0.0027420590083918
516 => 0.0028020016412736
517 => 0.0028866741408225
518 => 0.0029593319541076
519 => 0.0029338897202756
520 => 0.0031279960049958
521 => 0.0031472408502727
522 => 0.0031445818349158
523 => 0.0031884244564736
524 => 0.0031014057810759
525 => 0.003064203611436
526 => 0.0028130658787364
527 => 0.00288362533785
528 => 0.0029861876554833
529 => 0.0029726131481556
530 => 0.0028981296515916
531 => 0.0029592754516964
601 => 0.0029390587379758
602 => 0.0029231129770721
603 => 0.0029961635990096
604 => 0.0029158414394352
605 => 0.0029853863804983
606 => 0.0028961942742346
607 => 0.0029340059382567
608 => 0.0029125422090133
609 => 0.0029264318723295
610 => 0.0028452331843957
611 => 0.002889046025418
612 => 0.0028434104261659
613 => 0.0028433887889499
614 => 0.0028423813805671
615 => 0.002896071460708
616 => 0.0028978222922938
617 => 0.0028581452419485
618 => 0.0028524271591217
619 => 0.0028735699083009
620 => 0.0028488172863069
621 => 0.0028603988823467
622 => 0.0028491680810526
623 => 0.0028466397911244
624 => 0.0028264939468236
625 => 0.0028178145631773
626 => 0.0028212179731451
627 => 0.0028096003803467
628 => 0.0028026003604589
629 => 0.0028409889004235
630 => 0.0028204794521097
701 => 0.0028378455333225
702 => 0.0028180546920063
703 => 0.0027494510135454
704 => 0.0027099963125917
705 => 0.0025804103235434
706 => 0.0026171607492866
707 => 0.0026415263195754
708 => 0.0026334734987403
709 => 0.0026507740739221
710 => 0.0026518361887288
711 => 0.0026462115953787
712 => 0.0026396990368343
713 => 0.002636529083502
714 => 0.0026601553185471
715 => 0.0026738711432132
716 => 0.0026439717305232
717 => 0.0026369667164671
718 => 0.0026671966734886
719 => 0.0026856369298084
720 => 0.002821789421789
721 => 0.0028117028054163
722 => 0.0028370182331133
723 => 0.0028341681044515
724 => 0.0028607027057418
725 => 0.0029040755644922
726 => 0.0028158864154106
727 => 0.0028311930023398
728 => 0.0028274401807055
729 => 0.0028684125032664
730 => 0.0028685404143852
731 => 0.0028439754602906
801 => 0.0028572925204261
802 => 0.0028498593027929
803 => 0.0028632921317158
804 => 0.0028115680925052
805 => 0.0028745623889987
806 => 0.0029102760958477
807 => 0.002910771980702
808 => 0.0029276999943069
809 => 0.002944899836534
810 => 0.0029779134358982
811 => 0.0029439791051659
812 => 0.0028829345476188
813 => 0.002887341767501
814 => 0.0028515513657465
815 => 0.002852153008866
816 => 0.0028489413907422
817 => 0.0028585796984911
818 => 0.002813683159047
819 => 0.0028242202871166
820 => 0.0028094682461138
821 => 0.0028311609342837
822 => 0.0028078231877427
823 => 0.0028274383709812
824 => 0.0028359036338134
825 => 0.002867140635908
826 => 0.0028032094571353
827 => 0.0026728494558574
828 => 0.0027002527085882
829 => 0.0026597211453203
830 => 0.0026634724958152
831 => 0.0026710508208381
901 => 0.0026464869899653
902 => 0.0026511729948006
903 => 0.0026510055777329
904 => 0.0026495628678902
905 => 0.00264317286678
906 => 0.002633906100947
907 => 0.0026708220438654
908 => 0.0026770947819216
909 => 0.0026910383015927
910 => 0.0027325247581541
911 => 0.0027283792828256
912 => 0.0027351407250805
913 => 0.002720380534602
914 => 0.0026641571787183
915 => 0.0026672103774415
916 => 0.0026291369404389
917 => 0.0026900646782078
918 => 0.0026756361856973
919 => 0.0026663340427129
920 => 0.0026637958668158
921 => 0.0027053851602787
922 => 0.002717829328715
923 => 0.0027100749580426
924 => 0.0026941705175622
925 => 0.0027247117450103
926 => 0.0027328832890444
927 => 0.0027347125963987
928 => 0.0027888257957372
929 => 0.0027377369231191
930 => 0.002750034522538
1001 => 0.0028459768826997
1002 => 0.0027589704011737
1003 => 0.0028050596749141
1004 => 0.0028028038448015
1005 => 0.0028263815576711
1006 => 0.0028008697841643
1007 => 0.0028011860331725
1008 => 0.0028221214449081
1009 => 0.0027927214348469
1010 => 0.0027854415789025
1011 => 0.0027753845100546
1012 => 0.0027973437519535
1013 => 0.0028105073243408
1014 => 0.002916596050204
1015 => 0.0029851342053453
1016 => 0.0029821587832741
1017 => 0.0030093485712482
1018 => 0.002997099322736
1019 => 0.0029575432681014
1020 => 0.0030250606300156
1021 => 0.0030036953116596
1022 => 0.003005456642546
1023 => 0.0030053910857224
1024 => 0.0030195971546407
1025 => 0.003009530852845
1026 => 0.002989689138721
1027 => 0.0030028609945305
1028 => 0.0030419766972601
1029 => 0.0031633930387491
1030 => 0.0032313392319989
1031 => 0.0031593025925997
1101 => 0.0032089925018483
1102 => 0.0031791962626241
1103 => 0.0031737813995958
1104 => 0.0032049903346593
1105 => 0.0032362538968323
1106 => 0.003234262543078
1107 => 0.0032115668023421
1108 => 0.0031987465542835
1109 => 0.0032958257676814
1110 => 0.0033673520784118
1111 => 0.0033624744635385
1112 => 0.003384002669304
1113 => 0.0034472101472741
1114 => 0.0034529890469178
1115 => 0.0034522610383892
1116 => 0.0034379374326565
1117 => 0.0035001734032463
1118 => 0.00355209174485
1119 => 0.0034346219317782
1120 => 0.0034793528988032
1121 => 0.0034994340710424
1122 => 0.003528919189705
1123 => 0.0035786655271684
1124 => 0.003632703244218
1125 => 0.0036403447699023
1126 => 0.0036349227417486
1127 => 0.0035992834147426
1128 => 0.0036584121295423
1129 => 0.003693048343933
1130 => 0.003713673416967
1201 => 0.0037659751704963
1202 => 0.0034995580855257
1203 => 0.0033109748309953
1204 => 0.0032815248326251
1205 => 0.0033414125623748
1206 => 0.0033572044791141
1207 => 0.0033508387772779
1208 => 0.0031385711790645
1209 => 0.0032804072876503
1210 => 0.00343301101457
1211 => 0.0034388731452192
1212 => 0.0035152697617087
1213 => 0.0035401476316408
1214 => 0.0036016569214482
1215 => 0.0035978094986236
1216 => 0.0036127860318651
1217 => 0.0036093431862303
1218 => 0.0037232761932895
1219 => 0.003848961219291
1220 => 0.0038446091464945
1221 => 0.003826540436969
1222 => 0.0038533755517871
1223 => 0.0039830959678467
1224 => 0.0039711533906632
1225 => 0.0039827545871306
1226 => 0.0041357022683871
1227 => 0.0043345560105745
1228 => 0.0042421684827392
1229 => 0.0044426228343468
1230 => 0.0045687982230553
1231 => 0.0047870055110478
]
'min_raw' => 0.0019544283098468
'max_raw' => 0.0047870055110478
'avg_raw' => 0.0033707169104473
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001954'
'max' => '$0.004787'
'avg' => '$0.00337'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00087146635579605
'max_diff' => 0.0019420574764754
'year' => 2028
]
3 => [
'items' => [
101 => 0.0047596848838976
102 => 0.0048446313798341
103 => 0.0047107752593118
104 => 0.0044034145498073
105 => 0.0043547735409987
106 => 0.00445215407242
107 => 0.0046915546066662
108 => 0.0044446144976425
109 => 0.0044945701600825
110 => 0.0044801829259391
111 => 0.0044794162913734
112 => 0.0045086756146178
113 => 0.0044662334401881
114 => 0.00429331638636
115 => 0.0043725632531228
116 => 0.0043419622321186
117 => 0.00437591634638
118 => 0.0045591526973071
119 => 0.0044781395387532
120 => 0.0043927987571913
121 => 0.0044998350359054
122 => 0.0046361290003644
123 => 0.0046275999690123
124 => 0.0046110500833308
125 => 0.0047043409223936
126 => 0.0048584300568741
127 => 0.0049000797307439
128 => 0.0049308246685045
129 => 0.0049350638759817
130 => 0.0049787303476496
131 => 0.0047439247241232
201 => 0.0051165672788957
202 => 0.0051809123540621
203 => 0.005168818146761
204 => 0.0052403349897537
205 => 0.0052192929203381
206 => 0.0051888062631543
207 => 0.0053021756713666
208 => 0.0051722067932907
209 => 0.0049877323334887
210 => 0.0048865259963503
211 => 0.0050198026651765
212 => 0.005101190076114
213 => 0.0051549819775321
214 => 0.0051712593743992
215 => 0.0047621520162717
216 => 0.0045416658403752
217 => 0.0046829949512457
218 => 0.0048554262205219
219 => 0.0047429668597161
220 => 0.0047473750537459
221 => 0.004587037559037
222 => 0.0048696125310419
223 => 0.0048284437344504
224 => 0.0050420275239935
225 => 0.004991054038502
226 => 0.0051652233275995
227 => 0.0051193587167316
228 => 0.0053097401521882
301 => 0.0053856884611635
302 => 0.0055132174923434
303 => 0.0056070283668158
304 => 0.0056621159066221
305 => 0.0056588086573603
306 => 0.0058770929345763
307 => 0.0057483783225738
308 => 0.0055866824341939
309 => 0.0055837578657171
310 => 0.0056675024575575
311 => 0.0058430081478483
312 => 0.0058885142198367
313 => 0.0059139459060257
314 => 0.0058749963933439
315 => 0.0057352859070745
316 => 0.0056749596274517
317 => 0.0057263593655109
318 => 0.0056635019026943
319 => 0.0057720115182049
320 => 0.0059210183967042
321 => 0.0058902490655311
322 => 0.0059931063264466
323 => 0.0060995527705948
324 => 0.0062517759665356
325 => 0.0062915727467632
326 => 0.0063573553111433
327 => 0.0064250671783372
328 => 0.0064468144051939
329 => 0.0064883366090315
330 => 0.0064881177665213
331 => 0.0066132477225526
401 => 0.0067512699390072
402 => 0.0068033701304971
403 => 0.006923171648007
404 => 0.0067180157476173
405 => 0.006873628854724
406 => 0.007013995772583
407 => 0.0068466445464627
408 => 0.0070772992238348
409 => 0.0070862550222824
410 => 0.0072214769460277
411 => 0.0070844036209258
412 => 0.0070030099180338
413 => 0.0072379904885007
414 => 0.0073516901847311
415 => 0.0073174429109077
416 => 0.0070568194661151
417 => 0.0069051254425805
418 => 0.0065081129233985
419 => 0.0069783914020341
420 => 0.0072074503307662
421 => 0.0070562262588263
422 => 0.0071324948845339
423 => 0.0075485917762093
424 => 0.0077070145322807
425 => 0.0076740637064765
426 => 0.0076796318536206
427 => 0.0077651138972203
428 => 0.0081441883543627
429 => 0.0079170381527659
430 => 0.008090685970731
501 => 0.0081827881472459
502 => 0.008268337781703
503 => 0.008058254917716
504 => 0.0077849401983991
505 => 0.00769836995382
506 => 0.0070411900051726
507 => 0.0070069809348576
508 => 0.0069877783470489
509 => 0.006866708747175
510 => 0.0067715812054285
511 => 0.0066959322523725
512 => 0.006497406808864
513 => 0.0065644033182726
514 => 0.0062479951968002
515 => 0.0064504219001029
516 => 0.0059454268982917
517 => 0.0063660017418076
518 => 0.0061371019756735
519 => 0.0062908020123931
520 => 0.0062902657674444
521 => 0.0060072552692026
522 => 0.0058440207200952
523 => 0.0059480401279702
524 => 0.006059557190283
525 => 0.0060776504584548
526 => 0.0062222352406365
527 => 0.0062625857455039
528 => 0.0061403218319707
529 => 0.0059349619993378
530 => 0.0059826624046993
531 => 0.005843054072903
601 => 0.005598395841387
602 => 0.0057741136545847
603 => 0.0058341114417773
604 => 0.0058606098826001
605 => 0.0056200166110918
606 => 0.0055444169816499
607 => 0.0055041683732773
608 => 0.005903904429227
609 => 0.005925802872725
610 => 0.0058137673396611
611 => 0.0063201785727551
612 => 0.0062055621141136
613 => 0.0063336167801303
614 => 0.0059783340928847
615 => 0.0059919063699891
616 => 0.0058237098521894
617 => 0.0059178886632619
618 => 0.0058513261151206
619 => 0.0059102799460203
620 => 0.0059456166291859
621 => 0.006113785547592
622 => 0.0063679219607223
623 => 0.0060886667191214
624 => 0.0059669912113471
625 => 0.0060424780120412
626 => 0.0062435093098239
627 => 0.0065480820165675
628 => 0.0063677688440783
629 => 0.0064477887681128
630 => 0.0064652695616757
701 => 0.0063323133038387
702 => 0.0065529843034408
703 => 0.0066712436848556
704 => 0.0067925533398562
705 => 0.0068978831142739
706 => 0.0067440995959925
707 => 0.006908670004555
708 => 0.0067760553058414
709 => 0.0066570862116397
710 => 0.0066572666386473
711 => 0.0065826355879934
712 => 0.006438028523234
713 => 0.006411360761822
714 => 0.0065500898244544
715 => 0.0066613373949946
716 => 0.0066705002777442
717 => 0.0067320926489017
718 => 0.0067685423797009
719 => 0.007125799292539
720 => 0.0072694909782666
721 => 0.00744519445163
722 => 0.0075136408566102
723 => 0.0077196399962063
724 => 0.0075532789605503
725 => 0.0075172857040262
726 => 0.0070175991731711
727 => 0.0070994228146056
728 => 0.0072304303593494
729 => 0.0070197594393308
730 => 0.0071533816483212
731 => 0.0071797615028812
801 => 0.0070126009220828
802 => 0.0071018886108696
803 => 0.0068647669814066
804 => 0.006373090564266
805 => 0.0065535316798462
806 => 0.0066863970767361
807 => 0.006496781773189
808 => 0.0068366598656715
809 => 0.0066381101005511
810 => 0.0065751793570775
811 => 0.0063296640903569
812 => 0.0064455378454998
813 => 0.0066022587584829
814 => 0.006505423455021
815 => 0.0067063712495983
816 => 0.0069909669175391
817 => 0.0071937867384788
818 => 0.0072093567259068
819 => 0.0070789571689152
820 => 0.007287923291193
821 => 0.0072894453812603
822 => 0.0070537307416793
823 => 0.0069093568374005
824 => 0.0068765547825831
825 => 0.0069585007467387
826 => 0.0070579982752831
827 => 0.0072148781462734
828 => 0.0073096773666927
829 => 0.0075568634559247
830 => 0.0076237449242904
831 => 0.00769722738083
901 => 0.0077954226039173
902 => 0.007913331145972
903 => 0.0076553539684933
904 => 0.0076656038826842
905 => 0.0074253791069532
906 => 0.0071686644823671
907 => 0.0073634788824982
908 => 0.0076181727955961
909 => 0.0075597457305197
910 => 0.007553171492142
911 => 0.0075642275375517
912 => 0.0075201754385336
913 => 0.0073209294273218
914 => 0.0072208693278373
915 => 0.0073499723842262
916 => 0.0074185849129809
917 => 0.0075249969614382
918 => 0.00751187943038
919 => 0.0077859854393862
920 => 0.0078924947459506
921 => 0.0078652451075413
922 => 0.0078702596968078
923 => 0.0080630897087949
924 => 0.0082775563406413
925 => 0.0084784326427301
926 => 0.0086827726450528
927 => 0.0084364327967268
928 => 0.0083113566138765
929 => 0.0084404033079097
930 => 0.0083719293155919
1001 => 0.0087654011861551
1002 => 0.0087926443247691
1003 => 0.0091860877428376
1004 => 0.0095595123969552
1005 => 0.0093249710623015
1006 => 0.0095461329769062
1007 => 0.0097853376191467
1008 => 0.010246802183583
1009 => 0.0100913971528
1010 => 0.0099723593347275
1011 => 0.0098598691718355
1012 => 0.010093943343503
1013 => 0.010395076025928
1014 => 0.010459937121509
1015 => 0.010565036875196
1016 => 0.01045453733518
1017 => 0.010587621860004
1018 => 0.011057468712935
1019 => 0.01093051194582
1020 => 0.010750212927198
1021 => 0.011121111893016
1022 => 0.011255338786912
1023 => 0.012197413423445
1024 => 0.013386821567231
1025 => 0.012894398785628
1026 => 0.012588736074704
1027 => 0.012660574062188
1028 => 0.013094905652292
1029 => 0.013234399174037
1030 => 0.012855207695632
1031 => 0.012989144536277
1101 => 0.013727149696614
1102 => 0.014123065787094
1103 => 0.013585358557597
1104 => 0.012101845637193
1105 => 0.010733978973266
1106 => 0.011096798808378
1107 => 0.011055666298686
1108 => 0.011848560775449
1109 => 0.010927484068912
1110 => 0.010942992638417
1111 => 0.011752283333269
1112 => 0.011536378450637
1113 => 0.011186640191783
1114 => 0.010736532449599
1115 => 0.0099044666582455
1116 => 0.0091674827829727
1117 => 0.010612877879633
1118 => 0.010550549814784
1119 => 0.010460289540382
1120 => 0.010661154013882
1121 => 0.011636494880825
1122 => 0.011614010116971
1123 => 0.011470973521164
1124 => 0.011579465518417
1125 => 0.011167621020113
1126 => 0.011273762724851
1127 => 0.010733762296198
1128 => 0.010977865042359
1129 => 0.011185889810554
1130 => 0.011227653862629
1201 => 0.011321750404479
1202 => 0.010517705756818
1203 => 0.010878698198107
1204 => 0.011090747436947
1205 => 0.010132701261452
1206 => 0.011071809944411
1207 => 0.010503709128341
1208 => 0.010310887178778
1209 => 0.010570496531504
1210 => 0.010469326514268
1211 => 0.010382346474352
1212 => 0.010333810117572
1213 => 0.010524438574175
1214 => 0.010515545528824
1215 => 0.010203640374433
1216 => 0.0097967728154102
1217 => 0.0099333309231906
1218 => 0.0098837180823949
1219 => 0.0097039147471675
1220 => 0.0098250804855733
1221 => 0.0092915278942112
1222 => 0.0083735783924231
1223 => 0.0089800039508579
1224 => 0.0089566572265223
1225 => 0.0089448847494226
1226 => 0.009400596796215
1227 => 0.0093567905979817
1228 => 0.0092772819192366
1229 => 0.0097024545079309
1230 => 0.0095472607936791
1231 => 0.010025531252765
]
'min_raw' => 0.00429331638636
'max_raw' => 0.014123065787094
'avg_raw' => 0.0092081910867268
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004293'
'max' => '$0.014123'
'avg' => '$0.0092081'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0023388880765132
'max_diff' => 0.0093360602760457
'year' => 2029
]
4 => [
'items' => [
101 => 0.010340551109713
102 => 0.010260651884166
103 => 0.010556929582249
104 => 0.0099364769461852
105 => 0.010142566423646
106 => 0.010185041179324
107 => 0.0096972079441842
108 => 0.009363957833773
109 => 0.009341733850738
110 => 0.008763924083979
111 => 0.0090725853974642
112 => 0.0093441945800581
113 => 0.0092141148593196
114 => 0.009172935505755
115 => 0.0093833118924048
116 => 0.0093996599393994
117 => 0.0090269227354342
118 => 0.0091044266031907
119 => 0.0094276306156812
120 => 0.009096282691332
121 => 0.0084525277996977
122 => 0.0082928676859646
123 => 0.0082715660836729
124 => 0.0078385551924256
125 => 0.0083035369382088
126 => 0.0081005599454384
127 => 0.0087417618335624
128 => 0.0083755107539007
129 => 0.0083597224018732
130 => 0.008335855992136
131 => 0.0079631456305848
201 => 0.0080447455127854
202 => 0.008315995949233
203 => 0.0084127811608124
204 => 0.0084026856703068
205 => 0.0083146666741143
206 => 0.008354961319841
207 => 0.0082251582263699
208 => 0.0081793220524475
209 => 0.0080346504793154
210 => 0.0078220232333534
211 => 0.0078515903560231
212 => 0.0074303201448271
213 => 0.0072007897752652
214 => 0.0071372587941321
215 => 0.0070523025110185
216 => 0.0071468548323698
217 => 0.0074291267392486
218 => 0.0070886469322271
219 => 0.0065049181849702
220 => 0.0065400012773057
221 => 0.0066188225695201
222 => 0.0064719396129337
223 => 0.0063329272214768
224 => 0.0064537872174168
225 => 0.0062064536520439
226 => 0.0066487116492453
227 => 0.0066367498098347
228 => 0.0068015962421403
301 => 0.0069046780992503
302 => 0.0066671077917593
303 => 0.0066073595018837
304 => 0.0066413948432052
305 => 0.0060788664658205
306 => 0.0067556256725262
307 => 0.0067614783142488
308 => 0.0067113644425778
309 => 0.0070717178275523
310 => 0.0078321758668877
311 => 0.0075460609631359
312 => 0.0074352686245345
313 => 0.0072246523078645
314 => 0.0075052860446678
315 => 0.0074837377522496
316 => 0.0073862882019872
317 => 0.0073273504099273
318 => 0.0074359450989289
319 => 0.0073138943261958
320 => 0.007291970653682
321 => 0.0071591370514393
322 => 0.0071117214989824
323 => 0.0070766169116109
324 => 0.0070379702102204
325 => 0.0071232152033299
326 => 0.0069300388340309
327 => 0.0066970870699694
328 => 0.0066777196513606
329 => 0.0067311947969401
330 => 0.0067075360257776
331 => 0.0066776063822665
401 => 0.0066204625419504
402 => 0.0066035091852136
403 => 0.0066585993700089
404 => 0.0065964057633324
405 => 0.0066881758178446
406 => 0.006663219440886
407 => 0.0065238151478895
408 => 0.0063500657847362
409 => 0.0063485190509525
410 => 0.0063110850356672
411 => 0.0062634071889595
412 => 0.0062501443027268
413 => 0.0064436087256646
414 => 0.0068440742912431
415 => 0.0067654533183913
416 => 0.0068222650286781
417 => 0.0071017224146731
418 => 0.0071905535141041
419 => 0.0071275033038079
420 => 0.0070411962871868
421 => 0.0070449933579026
422 => 0.0073399305606076
423 => 0.0073583254321629
424 => 0.0074048033381729
425 => 0.0074645405820503
426 => 0.0071376768147514
427 => 0.0070295981038572
428 => 0.006978384414657
429 => 0.0068206660741122
430 => 0.0069907517826411
501 => 0.0068916501240775
502 => 0.0069050223236125
503 => 0.0068963136611228
504 => 0.0069010691797193
505 => 0.0066485880291218
506 => 0.006740578890381
507 => 0.0065876262416167
508 => 0.0063828398146619
509 => 0.0063821532987514
510 => 0.0064322744866278
511 => 0.0064024604428366
512 => 0.0063222316175837
513 => 0.0063336277435415
514 => 0.0062337856885839
515 => 0.0063457503767121
516 => 0.0063489611233387
517 => 0.0063058486196516
518 => 0.0064783456698627
519 => 0.0065490178520784
520 => 0.0065206402785921
521 => 0.0065470268058737
522 => 0.0067687203747657
523 => 0.0068048660996636
524 => 0.0068209196430107
525 => 0.0067994100216125
526 => 0.0065510789573445
527 => 0.00656209349603
528 => 0.006481276119417
529 => 0.0064129939525043
530 => 0.006415724881088
531 => 0.0064508307909415
601 => 0.006604140358206
602 => 0.0069267713044216
603 => 0.0069390149129903
604 => 0.0069538545237469
605 => 0.0068934943690091
606 => 0.0068752891687714
607 => 0.0068993065270459
608 => 0.0070204697473152
609 => 0.0073321344453413
610 => 0.0072219713256735
611 => 0.0071324069945926
612 => 0.0072109790593209
613 => 0.0071988835058241
614 => 0.007096784861777
615 => 0.0070939192928887
616 => 0.0068979593520513
617 => 0.0068255174237157
618 => 0.006764979526214
619 => 0.0066988737225241
620 => 0.0066596839862101
621 => 0.006719897232605
622 => 0.0067336687144777
623 => 0.0066020113988878
624 => 0.0065840669932634
625 => 0.0066915811991947
626 => 0.0066442682056979
627 => 0.0066929307928151
628 => 0.0067042209304462
629 => 0.0067024029582537
630 => 0.0066530027591804
701 => 0.0066844889729346
702 => 0.0066100146909139
703 => 0.0065290350948918
704 => 0.0064773751578368
705 => 0.0064322950110601
706 => 0.0064573080965653
707 => 0.0063681410139481
708 => 0.00633961466964
709 => 0.0066738221521769
710 => 0.0069207048128628
711 => 0.0069171150412002
712 => 0.0068952632294182
713 => 0.0068627958695883
714 => 0.0070180945577169
715 => 0.0069639916000682
716 => 0.007003356022211
717 => 0.007013375919766
718 => 0.0070437031318647
719 => 0.0070545425034781
720 => 0.0070217783940349
721 => 0.0069118180409447
722 => 0.0066378072957607
723 => 0.0065102545541996
724 => 0.0064681600249255
725 => 0.0064696900811157
726 => 0.0064274843009178
727 => 0.0064399157947165
728 => 0.0064231611347005
729 => 0.0063914318620178
730 => 0.0064553489033879
731 => 0.0064627147469774
801 => 0.0064477957457698
802 => 0.0064513097106299
803 => 0.0063277867526201
804 => 0.0063371779348398
805 => 0.0062848866388667
806 => 0.0062750826512527
807 => 0.0061428948085566
808 => 0.0059087048842862
809 => 0.006038468835698
810 => 0.0058817322299653
811 => 0.0058223737024272
812 => 0.0061033677396475
813 => 0.006075163731872
814 => 0.0060268907305478
815 => 0.0059554849006143
816 => 0.0059289997837006
817 => 0.0057680845975027
818 => 0.005758576869853
819 => 0.0058383307812082
820 => 0.0058015270952823
821 => 0.0057498407815965
822 => 0.0055626381927841
823 => 0.0053521605023119
824 => 0.0053585135007717
825 => 0.0054254625380343
826 => 0.0056201258931829
827 => 0.0055440675526161
828 => 0.005488886353866
829 => 0.0054785525740808
830 => 0.0056079014633254
831 => 0.0057909572410365
901 => 0.0058768429162964
902 => 0.0057917328205006
903 => 0.0056939629251034
904 => 0.0056999137256141
905 => 0.0057395017354066
906 => 0.0057436618754915
907 => 0.0056800237244955
908 => 0.0056979374912383
909 => 0.0056707248414868
910 => 0.005503720860193
911 => 0.0055007002877468
912 => 0.0054597148174343
913 => 0.0054584737936819
914 => 0.0053887472843756
915 => 0.0053789920637271
916 => 0.0052405458474029
917 => 0.0053316715662412
918 => 0.0052705492183594
919 => 0.0051784234227973
920 => 0.0051625409009181
921 => 0.0051620634531317
922 => 0.005256656046223
923 => 0.0053305661967164
924 => 0.0052716124677696
925 => 0.0052581898464584
926 => 0.0054015083256208
927 => 0.0053832697427705
928 => 0.0053674752476483
929 => 0.0057745666039159
930 => 0.0054523220296954
1001 => 0.0053118050022581
1002 => 0.0051378884973446
1003 => 0.0051945165883075
1004 => 0.0052064489591132
1005 => 0.0047882111156025
1006 => 0.0046185320745784
1007 => 0.0045603046219187
1008 => 0.0045267938996977
1009 => 0.0045420651566149
1010 => 0.0043893341183268
1011 => 0.0044919719019946
1012 => 0.0043597197328704
1013 => 0.0043375472263309
1014 => 0.004574030487625
1015 => 0.0046069357519189
1016 => 0.0044665516715768
1017 => 0.0045567009772746
1018 => 0.0045240115858595
1019 => 0.0043619868167233
1020 => 0.0043557986623158
1021 => 0.0042745003286093
1022 => 0.004147284178818
1023 => 0.0040891429846983
1024 => 0.0040588625459958
1025 => 0.0040713568451585
1026 => 0.00406503934517
1027 => 0.0040238133844234
1028 => 0.0040674023689826
1029 => 0.0039560505256458
1030 => 0.0039117093244064
1031 => 0.0038916814325146
1101 => 0.0037928502623803
1102 => 0.0039501346044848
1103 => 0.0039811216012953
1104 => 0.004012169652062
1105 => 0.0042824217365808
1106 => 0.0042689207061627
1107 => 0.0043909634458738
1108 => 0.0043862210894309
1109 => 0.0043514125231039
1110 => 0.0042045609075019
1111 => 0.0042630933441025
1112 => 0.0040829396022061
1113 => 0.0042179230348986
1114 => 0.0041563222332607
1115 => 0.0041970957419
1116 => 0.0041237812969674
1117 => 0.0041643565378723
1118 => 0.0039884697677809
1119 => 0.0038242291766632
1120 => 0.0038903243850107
1121 => 0.0039621774353884
1122 => 0.0041179731564239
1123 => 0.0040251825102619
1124 => 0.0040585535354246
1125 => 0.0039467661873719
1126 => 0.0037161169578618
1127 => 0.0037174224074524
1128 => 0.0036819420484589
1129 => 0.0036512818380712
1130 => 0.0040358406321899
1201 => 0.0039880146671664
1202 => 0.0039118102512089
1203 => 0.0040138128902111
1204 => 0.0040407840069628
1205 => 0.0040415518367398
1206 => 0.0041159703290866
1207 => 0.0041556874917924
1208 => 0.0041626878138633
1209 => 0.004279786919489
1210 => 0.0043190369951202
1211 => 0.0044807025017664
1212 => 0.0041523177680252
1213 => 0.0041455549005334
1214 => 0.0040152482765231
1215 => 0.0039326057555096
1216 => 0.0040209068806407
1217 => 0.0040991296232012
1218 => 0.0040176788751795
1219 => 0.004028314623352
1220 => 0.0039189736489036
1221 => 0.0039580579022979
1222 => 0.0039917225265385
1223 => 0.003973134899748
1224 => 0.0039453083227912
1225 => 0.0040927162503516
1226 => 0.0040843989173824
1227 => 0.0042216685684202
1228 => 0.0043286800776512
1229 => 0.0045204638327884
1230 => 0.0043203274863894
1231 => 0.0043130337224567
]
'min_raw' => 0.0036512818380712
'max_raw' => 0.010556929582249
'avg_raw' => 0.0071041057101601
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003651'
'max' => '$0.010556'
'avg' => '$0.0071041'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00064203454828876
'max_diff' => -0.0035661362048445
'year' => 2030
]
5 => [
'items' => [
101 => 0.0043843314348555
102 => 0.0043190260798119
103 => 0.0043602968099352
104 => 0.0045138144801225
105 => 0.0045170580665836
106 => 0.0044627238142354
107 => 0.0044594175700421
108 => 0.0044698530575572
109 => 0.0045309740338795
110 => 0.0045096164866946
111 => 0.0045343319810039
112 => 0.0045652390850947
113 => 0.0046930839719551
114 => 0.0047239069413604
115 => 0.004649023105583
116 => 0.004655784277515
117 => 0.004627775667327
118 => 0.0046007197008323
119 => 0.0046615375623058
120 => 0.0047726833995268
121 => 0.0047719919670419
122 => 0.0047977756409108
123 => 0.0048138386561277
124 => 0.0047448844359712
125 => 0.0046999977741662
126 => 0.0047172101765147
127 => 0.0047447331827074
128 => 0.0047082848365523
129 => 0.0044833087595667
130 => 0.0045515521297967
131 => 0.0045401930960601
201 => 0.0045240164507135
202 => 0.0045926356871901
203 => 0.0045860171944342
204 => 0.0043877676407753
205 => 0.0044004589339815
206 => 0.0043885394403501
207 => 0.0044270537627721
208 => 0.0043169461800079
209 => 0.0043508145308802
210 => 0.0043720564430513
211 => 0.0043845680925082
212 => 0.0044297687496646
213 => 0.0044244649742513
214 => 0.004429439059538
215 => 0.0044964597015699
216 => 0.0048354271102602
217 => 0.0048538763584258
218 => 0.004763025512963
219 => 0.0047993186337717
220 => 0.004729643778252
221 => 0.0047764169755433
222 => 0.0048084180092196
223 => 0.0046638114914812
224 => 0.0046552488319893
225 => 0.0045852864035561
226 => 0.0046228802497216
227 => 0.0045630657373791
228 => 0.0045777421264851
301 => 0.0045367056630801
302 => 0.0046105631269308
303 => 0.0046931472478055
304 => 0.0047140112580842
305 => 0.0046591270295621
306 => 0.0046193872310652
307 => 0.0045496172360081
308 => 0.0046656462927138
309 => 0.004699576724816
310 => 0.0046654680705986
311 => 0.0046575643501276
312 => 0.0046425868141168
313 => 0.0046607419051957
314 => 0.0046993919323959
315 => 0.0046811652933222
316 => 0.0046932043095424
317 => 0.0046473239942906
318 => 0.0047449072626872
319 => 0.0048998929775935
320 => 0.0049003912820096
321 => 0.0048821645446876
322 => 0.0048747065564759
323 => 0.0048934082950593
324 => 0.0049035532210552
325 => 0.0049640312143213
326 => 0.0050289265106454
327 => 0.0053317645425538
328 => 0.0052467288350199
329 => 0.0055154247528441
330 => 0.0057279283380449
331 => 0.005791648871591
401 => 0.0057330289790114
402 => 0.0055324934930807
403 => 0.0055226542654359
404 => 0.0058223389453146
405 => 0.005737664296821
406 => 0.0057275925168152
407 => 0.0056204457940941
408 => 0.005683782777602
409 => 0.0056699300502113
410 => 0.0056480628423266
411 => 0.0057689053947671
412 => 0.0059951118652469
413 => 0.0059598554654718
414 => 0.005933538198537
415 => 0.0058182235956699
416 => 0.0058876687430449
417 => 0.0058629406561988
418 => 0.0059691882101211
419 => 0.005906249512849
420 => 0.0057370228030788
421 => 0.0057639727143883
422 => 0.0057598992895095
423 => 0.0058437300848677
424 => 0.0058185661609094
425 => 0.0057549856294901
426 => 0.0059943387161225
427 => 0.0059787964580285
428 => 0.006000831826551
429 => 0.0060105324772411
430 => 0.0061562224831997
501 => 0.0062159070170808
502 => 0.0062294564511966
503 => 0.0062861521422161
504 => 0.0062280458107555
505 => 0.0064605125657103
506 => 0.0066150893929441
507 => 0.0067946383322268
508 => 0.0070570075907242
509 => 0.0071556608589706
510 => 0.007137840029073
511 => 0.0073367654064868
512 => 0.0076942298878366
513 => 0.0072100938210545
514 => 0.0077198902749502
515 => 0.0075584946035299
516 => 0.0071758283699765
517 => 0.0071511891758742
518 => 0.0074103351920829
519 => 0.0079850961141541
520 => 0.0078411250220597
521 => 0.0079853315992845
522 => 0.0078171069669684
523 => 0.0078087531960654
524 => 0.0079771613043773
525 => 0.0083706560288963
526 => 0.0081837214352065
527 => 0.0079157048569093
528 => 0.0081136041275241
529 => 0.0079421654646047
530 => 0.0075558661743869
531 => 0.0078410149300788
601 => 0.0076503440777166
602 => 0.0077059919690559
603 => 0.0081067537405725
604 => 0.0080585330239395
605 => 0.0081209350963808
606 => 0.0080107970718686
607 => 0.0079079107898018
608 => 0.0077158659038886
609 => 0.0076590108808682
610 => 0.0076747235638016
611 => 0.0076590030944429
612 => 0.0075515557457581
613 => 0.0075283525010397
614 => 0.0074896794099517
615 => 0.0075016658179826
616 => 0.0074289490925252
617 => 0.0075661805775054
618 => 0.0075916519503974
619 => 0.0076915175810098
620 => 0.0077018859620715
621 => 0.0079800103218288
622 => 0.0078268240981645
623 => 0.0079295946424608
624 => 0.007920401877665
625 => 0.0071841219076032
626 => 0.0072855747912245
627 => 0.0074434036404706
628 => 0.0073723019578172
629 => 0.0072717808137767
630 => 0.0071906046003612
701 => 0.0070676143363428
702 => 0.0072407207711299
703 => 0.007468337325058
704 => 0.0077076586935036
705 => 0.0079951876367339
706 => 0.0079310145238108
707 => 0.0077022835399109
708 => 0.0077125442447606
709 => 0.0077759718847026
710 => 0.0076938273279689
711 => 0.0076696012945359
712 => 0.007772643599725
713 => 0.0077733531954498
714 => 0.0076788359554263
715 => 0.0075737973396126
716 => 0.007573357223977
717 => 0.0075546666168456
718 => 0.0078204319844556
719 => 0.0079665760647318
720 => 0.0079833312480125
721 => 0.0079654483073986
722 => 0.0079723307414924
723 => 0.0078872927212448
724 => 0.0080816644182893
725 => 0.0082600391088658
726 => 0.0082122308813718
727 => 0.0081405595520184
728 => 0.0080834698860295
729 => 0.0081987823704005
730 => 0.0081936476869902
731 => 0.0082584811615543
801 => 0.0082555399406518
802 => 0.0082337388816662
803 => 0.0082122316599563
804 => 0.0082975053629698
805 => 0.0082729479059557
806 => 0.0082483523044279
807 => 0.0081990220601657
808 => 0.0082057268596495
809 => 0.0081340679053616
810 => 0.0081009151942173
811 => 0.0076023779630845
812 => 0.0074691525247519
813 => 0.0075110679597052
814 => 0.0075248676092256
815 => 0.0074668877277302
816 => 0.0075500159839851
817 => 0.0075370605333024
818 => 0.0075874626132237
819 => 0.0075559735818928
820 => 0.0075572659027224
821 => 0.0076498684296973
822 => 0.0076767513372374
823 => 0.0076630784734908
824 => 0.0076726544785806
825 => 0.0078933294740949
826 => 0.0078619565465218
827 => 0.0078452903040343
828 => 0.0078499069671025
829 => 0.0079062941597817
830 => 0.0079220794951052
831 => 0.0078551959201234
901 => 0.0078867386007342
902 => 0.0080210433314127
903 => 0.0080680423861608
904 => 0.0082180408080905
905 => 0.0081543188124454
906 => 0.0082712832932754
907 => 0.0086307922312167
908 => 0.0089179928469705
909 => 0.0086538712916559
910 => 0.00918127864771
911 => 0.0095919409264899
912 => 0.0095761790242365
913 => 0.0095045705571416
914 => 0.0090370424707722
915 => 0.008606816155244
916 => 0.0089667187365576
917 => 0.008967636202252
918 => 0.0089367202513354
919 => 0.0087447039353848
920 => 0.0089300384997598
921 => 0.0089447496844436
922 => 0.0089365153330404
923 => 0.0087892968738072
924 => 0.0085645214970773
925 => 0.0086084420676541
926 => 0.0086803848582143
927 => 0.0085441821468456
928 => 0.00850065712775
929 => 0.0085815784192224
930 => 0.0088423236809672
1001 => 0.0087930312996288
1002 => 0.0087917440763459
1003 => 0.0090026377869343
1004 => 0.0088516834038643
1005 => 0.0086089960467023
1006 => 0.0085477142883659
1007 => 0.0083302053306106
1008 => 0.0084804395424725
1009 => 0.0084858462043006
1010 => 0.0084035644618203
1011 => 0.008615672756624
1012 => 0.0086137181413464
1013 => 0.0088150833991092
1014 => 0.0092000181426145
1015 => 0.0090861739974717
1016 => 0.0089537856428783
1017 => 0.0089681799277535
1018 => 0.009126049704712
1019 => 0.0090305980337464
1020 => 0.0090649231201384
1021 => 0.0091259977495827
1022 => 0.0091628455899243
1023 => 0.0089628780905844
1024 => 0.0089162561009371
1025 => 0.0088208838722135
1026 => 0.0087960030379465
1027 => 0.008873681728235
1028 => 0.0088532161377726
1029 => 0.0084853917953096
1030 => 0.0084469521049669
1031 => 0.0084481309953904
1101 => 0.008351472566316
1102 => 0.0082040452612965
1103 => 0.0085914754164608
1104 => 0.0085603593529196
1105 => 0.0085260096269621
1106 => 0.0085302172723951
1107 => 0.0086983875715256
1108 => 0.0086008403052262
1109 => 0.0088601857003656
1110 => 0.0088068720837612
1111 => 0.0087521911740614
1112 => 0.0087446326067197
1113 => 0.0087235851216413
1114 => 0.0086514054638832
1115 => 0.0085642441898154
1116 => 0.0085066927668955
1117 => 0.0078469744153828
1118 => 0.0079694143040184
1119 => 0.0081102702351467
1120 => 0.0081588931381275
1121 => 0.0080757202979764
1122 => 0.0086546896345568
1123 => 0.0087604729114374
1124 => 0.0084400484656937
1125 => 0.008380110134739
1126 => 0.0086586191815556
1127 => 0.0084906441799789
1128 => 0.0085662833129036
1129 => 0.008402792879914
1130 => 0.0087349928177328
1201 => 0.0087324620107937
1202 => 0.0086032287319064
1203 => 0.0087124558142707
1204 => 0.0086934749207634
1205 => 0.008547570867187
1206 => 0.0087396182364755
1207 => 0.0087397134895747
1208 => 0.0086153292684193
1209 => 0.0084700757293172
1210 => 0.0084441078272612
1211 => 0.0084245445013587
1212 => 0.0085614719339853
1213 => 0.0086842406419173
1214 => 0.008912682770435
1215 => 0.0089701185491955
1216 => 0.0091942942174138
1217 => 0.009060808521905
1218 => 0.0091199810017949
1219 => 0.0091842210991737
1220 => 0.0092150201642085
1221 => 0.0091648347405033
1222 => 0.0095130718276327
1223 => 0.0095424737074951
1224 => 0.0095523319034876
1225 => 0.0094349083170415
1226 => 0.0095392079451383
1227 => 0.0094904096031924
1228 => 0.0096173693323657
1229 => 0.0096372782390033
1230 => 0.0096204161033612
1231 => 0.0096267355045686
]
'min_raw' => 0.0043169461800079
'max_raw' => 0.0096372782390033
'avg_raw' => 0.0069771122095056
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004316'
'max' => '$0.009637'
'avg' => '$0.006977'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00066566434193663
'max_diff' => -0.00091965134324575
'year' => 2031
]
6 => [
'items' => [
101 => 0.0093295765839355
102 => 0.0093141673262625
103 => 0.0091040610045
104 => 0.0091896808836457
105 => 0.0090296186234503
106 => 0.0090803760149823
107 => 0.0091027493895354
108 => 0.0090910628083466
109 => 0.0091945217031496
110 => 0.0091065605073113
111 => 0.0088744164493344
112 => 0.0086422091438642
113 => 0.008639293970296
114 => 0.0085781578855651
115 => 0.0085339676939371
116 => 0.0085424802925759
117 => 0.0085724798004948
118 => 0.0085322240680007
119 => 0.0085408146695458
120 => 0.0086834758940725
121 => 0.008712085585238
122 => 0.0086148586761296
123 => 0.0082244786062834
124 => 0.0081286783579488
125 => 0.0081975376766502
126 => 0.0081646273574191
127 => 0.0065894915004756
128 => 0.0069595463057441
129 => 0.0067396723063273
130 => 0.0068410003611749
131 => 0.0066165659438665
201 => 0.0067236778114217
202 => 0.0067038981605834
203 => 0.0072989353367373
204 => 0.0072896446496785
205 => 0.0072940916099213
206 => 0.0070818266110385
207 => 0.0074199705178816
208 => 0.0075865523656541
209 => 0.0075557224990637
210 => 0.0075634817122811
211 => 0.007430152721703
212 => 0.0072953825259928
213 => 0.0071459016379659
214 => 0.0074236186515238
215 => 0.0073927412604037
216 => 0.0074635628862986
217 => 0.007643682221213
218 => 0.007670205477486
219 => 0.0077058530028891
220 => 0.0076930759025957
221 => 0.0079974782686447
222 => 0.0079606131336047
223 => 0.0080494475022279
224 => 0.0078667084660902
225 => 0.0076599219009518
226 => 0.0076992252666225
227 => 0.0076954400364507
228 => 0.0076472497118789
229 => 0.0076037456415904
301 => 0.0075313236217559
302 => 0.0077604776089545
303 => 0.0077511743755585
304 => 0.007901782910413
305 => 0.0078751613889442
306 => 0.0076973763531843
307 => 0.0077037259805171
308 => 0.0077464302758566
309 => 0.007894230329616
310 => 0.0079381074485668
311 => 0.0079177818188679
312 => 0.0079658910767309
313 => 0.0080039146725734
314 => 0.0079706662549471
315 => 0.0084413937338267
316 => 0.0082459148655906
317 => 0.0083411899058356
318 => 0.008363912441541
319 => 0.0083057091441352
320 => 0.0083183313552387
321 => 0.0083374505657138
322 => 0.0084535386677935
323 => 0.0087581874380136
324 => 0.0088931143045298
325 => 0.009299048439618
326 => 0.0088819105065383
327 => 0.0088571592678777
328 => 0.0089302802636436
329 => 0.0091686065734325
330 => 0.0093617476626644
331 => 0.0094258237045393
401 => 0.0094342924112533
402 => 0.0095545033255054
403 => 0.0096234059797539
404 => 0.0095399065586543
405 => 0.0094691495420261
406 => 0.0092157066911483
407 => 0.0092450433912394
408 => 0.0094471441630612
409 => 0.0097326234069357
410 => 0.0099775942972329
411 => 0.0098918140295482
412 => 0.01054625692055
413 => 0.010611142260034
414 => 0.010602177204111
415 => 0.010749995663687
416 => 0.010456606124134
417 => 0.010331176411821
418 => 0.0094844480121474
419 => 0.009722344154853
420 => 0.010068140169426
421 => 0.010022372770229
422 => 0.0097712464612919
423 => 0.0099774037954085
424 => 0.0099092417336137
425 => 0.0098554794874296
426 => 0.010101774759523
427 => 0.0098309629906041
428 => 0.010065438614871
429 => 0.0097647212014089
430 => 0.0098922058665854
501 => 0.0098198394048918
502 => 0.0098666693745076
503 => 0.0095929023290274
504 => 0.0097406203814491
505 => 0.0095867567723948
506 => 0.0095866838210104
507 => 0.0095832872733127
508 => 0.0097643071270294
509 => 0.0097702101779603
510 => 0.0096364362325578
511 => 0.0096171573170835
512 => 0.0096884415720806
513 => 0.009604986378855
514 => 0.0096440345385045
515 => 0.0096061691078318
516 => 0.0095976448018194
517 => 0.0095297216812213
518 => 0.0095004585332825
519 => 0.0095119333676077
520 => 0.0094727638423732
521 => 0.0094491627865957
522 => 0.0095785924292886
523 => 0.0095094433923747
524 => 0.0095679943476447
525 => 0.0095012681443949
526 => 0.0092699660527079
527 => 0.0091369417738035
528 => 0.0087000335643222
529 => 0.0088239401905482
530 => 0.0089060904119267
531 => 0.0088789397642511
601 => 0.008937269861364
602 => 0.0089408508555894
603 => 0.008921887146413
604 => 0.0088999296005884
605 => 0.0088892418816094
606 => 0.0089688993825948
607 => 0.0090151432430651
608 => 0.0089143352856702
609 => 0.0088907173917057
610 => 0.0089926398023918
611 => 0.0090548124140317
612 => 0.0095138600466077
613 => 0.0094798523152822
614 => 0.0095652050472291
615 => 0.0095555956394563
616 => 0.0096450589002932
617 => 0.0097912935217665
618 => 0.0094939576484681
619 => 0.0095455648749717
620 => 0.0095329119748179
621 => 0.0096710530209285
622 => 0.0096714842821959
623 => 0.0095886618243956
624 => 0.00963356122241
625 => 0.0096084996101889
626 => 0.0096537893307525
627 => 0.0094793981212968
628 => 0.0096917877900461
629 => 0.009812199046139
630 => 0.0098138709565467
701 => 0.0098709449362919
702 => 0.0099289354052151
703 => 0.010040243060408
704 => 0.0099258310951241
705 => 0.0097200151073593
706 => 0.0097348743568943
707 => 0.009614204518573
708 => 0.0096162330003559
709 => 0.0096054048056235
710 => 0.0096379010331241
711 => 0.0094865292158118
712 => 0.0095220558787773
713 => 0.0094723183425817
714 => 0.0095454567552816
715 => 0.0094667719134293
716 => 0.0095329058732064
717 => 0.0095614470978707
718 => 0.0096667648313306
719 => 0.009451216398566
720 => 0.0090116985528129
721 => 0.009104090532629
722 => 0.0089674355372476
723 => 0.0089800834773524
724 => 0.0090056343292689
725 => 0.0089228156584891
726 => 0.0089386148509577
727 => 0.0089380503926255
728 => 0.0089331861956638
729 => 0.0089116418607852
730 => 0.0088803983127944
731 => 0.0090048629917327
801 => 0.0090260119660377
802 => 0.0090730235161143
803 => 0.009212898000903
804 => 0.0091989212414051
805 => 0.0092217179160364
806 => 0.0091719529033142
807 => 0.0089823919335631
808 => 0.0089926860062259
809 => 0.0088643187551692
810 => 0.0090697408768958
811 => 0.0090210942070314
812 => 0.0089897313825045
813 => 0.0089811737452579
814 => 0.0091213949518396
815 => 0.009163351334547
816 => 0.0091372069324319
817 => 0.0090835840009397
818 => 0.0091865558816013
819 => 0.0092141068128314
820 => 0.0092202744502946
821 => 0.0094027208799272
822 => 0.0092304711789841
823 => 0.0092719333940159
824 => 0.0095954097597827
825 => 0.0093020613327194
826 => 0.0094574545369854
827 => 0.0094498488482638
828 => 0.009529342753347
829 => 0.0094433280277937
830 => 0.0094443942834047
831 => 0.009514979485735
901 => 0.0094158552991704
902 => 0.0093913107565904
903 => 0.0093574026468076
904 => 0.0094314397640151
905 => 0.0094758216673702
906 => 0.0098335072134964
907 => 0.010064588388736
908 => 0.010054556545486
909 => 0.010146228813971
910 => 0.010104929617397
911 => 0.0099715636174809
912 => 0.010199203117086
913 => 0.01012716845457
914 => 0.010133106904626
915 => 0.010132885875218
916 => 0.010180782628412
917 => 0.010146843389101
918 => 0.010079945664628
919 => 0.010124355496119
920 => 0.010256236818843
921 => 0.010665600491192
922 => 0.010894685825585
923 => 0.010651809266413
924 => 0.010819342264683
925 => 0.010718882163832
926 => 0.010700625575078
927 => 0.010805848678583
928 => 0.010911255961202
929 => 0.010904541972987
930 => 0.01082802169853
1001 => 0.010784797337119
1002 => 0.011112106682945
1003 => 0.01135326263338
1004 => 0.01133681741429
1005 => 0.01140940126308
1006 => 0.011622509688062
1007 => 0.01164199365168
1008 => 0.011639539120098
1009 => 0.011591246083328
1010 => 0.011801079003348
1011 => 0.011976125316888
1012 => 0.011580067640636
1013 => 0.011730881218977
1014 => 0.011798586293204
1015 => 0.01189799742936
1016 => 0.012065720679297
1017 => 0.012247912615122
1018 => 0.012273676552481
1019 => 0.012255395806007
1020 => 0.012135235326748
1021 => 0.01233459191693
1022 => 0.012451370331972
1023 => 0.012520909205702
1024 => 0.012697248219318
1025 => 0.011799004416693
1026 => 0.011163182807581
1027 => 0.011063890081943
1028 => 0.011265805744022
1029 => 0.011319049293865
1030 => 0.011297586885685
1031 => 0.010581911858258
1101 => 0.011060122201036
1102 => 0.011574636320798
1103 => 0.011594400903563
1104 => 0.011851977429898
1105 => 0.011935854905292
1106 => 0.012143237770319
1107 => 0.012130265915647
1108 => 0.012180760343099
1109 => 0.012169152548669
1110 => 0.012553285636518
1111 => 0.012977041476731
1112 => 0.012962368159445
1113 => 0.012901448243763
1114 => 0.01299192470694
1115 => 0.013429286146475
1116 => 0.013389020913697
1117 => 0.013428135157556
1118 => 0.013943808943379
1119 => 0.014614258218688
1120 => 0.0143027672183
1121 => 0.014978613060022
1122 => 0.015404022192336
1123 => 0.01613972329855
1124 => 0.016047609896647
1125 => 0.016334012938472
1126 => 0.015882707682595
1127 => 0.014846419591262
1128 => 0.014682423034057
1129 => 0.015010748294635
1130 => 0.015817903910258
1201 => 0.014985328091876
1202 => 0.015153757095586
1203 => 0.015105249531187
1204 => 0.015102664769224
1205 => 0.015201314620363
1206 => 0.015058217866055
1207 => 0.014475215946391
1208 => 0.014742402290521
1209 => 0.01463922881171
1210 => 0.014753707478543
1211 => 0.015371501628847
1212 => 0.015098360108625
1213 => 0.014810627705286
1214 => 0.015171507992005
1215 => 0.015631032608919
1216 => 0.015602276384237
1217 => 0.015546477289186
1218 => 0.015861013866445
1219 => 0.016380536141505
1220 => 0.016520960924845
1221 => 0.016624619629048
1222 => 0.016638912413029
1223 => 0.016786136970953
1224 => 0.015994473417629
1225 => 0.017250863808117
1226 => 0.01746780772147
1227 => 0.017427031257163
1228 => 0.01766815528646
1229 => 0.017597210480315
1230 => 0.017494422587109
1231 => 0.017876655462096
]
'min_raw' => 0.0065894915004756
'max_raw' => 0.017876655462096
'avg_raw' => 0.012233073481286
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.006589'
'max' => '$0.017876'
'avg' => '$0.012233'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0022725453204677
'max_diff' => 0.0082393772230931
'year' => 2032
]
7 => [
'items' => [
101 => 0.017438456315526
102 => 0.016816487794708
103 => 0.016475263563045
104 => 0.016924615157073
105 => 0.017199018495336
106 => 0.017380381646598
107 => 0.017435262026587
108 => 0.016055928005696
109 => 0.015312543469808
110 => 0.015789044434391
111 => 0.016370408497523
112 => 0.015991243910904
113 => 0.016006106444846
114 => 0.015465517387029
115 => 0.016418238633898
116 => 0.016279435161876
117 => 0.016999547820264
118 => 0.016827687155075
119 => 0.017414911073378
120 => 0.017260275335672
121 => 0.017902159637322
122 => 0.018158224663573
123 => 0.018588197695989
124 => 0.018904487608939
125 => 0.019090219095485
126 => 0.019079068473694
127 => 0.019815029154449
128 => 0.019381058853516
129 => 0.018835889876596
130 => 0.01882602948979
131 => 0.019108380228041
201 => 0.019700109916272
202 => 0.019853536815114
203 => 0.019939281520683
204 => 0.019807960519308
205 => 0.019336916860577
206 => 0.019133522596982
207 => 0.019306820402464
208 => 0.01909489207801
209 => 0.019460739822603
210 => 0.019963126916791
211 => 0.019859385968495
212 => 0.020206176404937
213 => 0.020565068023236
214 => 0.021078299156234
215 => 0.021212476779294
216 => 0.021434267287893
217 => 0.021662562575629
218 => 0.021735884869319
219 => 0.021875879878545
220 => 0.021875142035743
221 => 0.022297026418797
222 => 0.022762377957978
223 => 0.022938037391105
224 => 0.023341956571664
225 => 0.022650259129973
226 => 0.023174919585144
227 => 0.02364817644881
228 => 0.023083940105856
301 => 0.023861608454412
302 => 0.023891803554152
303 => 0.024347713710952
304 => 0.023885561425217
305 => 0.02361113687319
306 => 0.024403390272339
307 => 0.024786736736439
308 => 0.024671269661675
309 => 0.023792559521409
310 => 0.023281112530123
311 => 0.021942557103172
312 => 0.023528133827687
313 => 0.024300421998291
314 => 0.023790559481618
315 => 0.024047704478096
316 => 0.025450604199337
317 => 0.025984737582156
318 => 0.025873641572404
319 => 0.025892414969256
320 => 0.026180623647418
321 => 0.027458699645807
322 => 0.026692846882003
323 => 0.027278312623975
324 => 0.027588841542464
325 => 0.027877278107921
326 => 0.027168969064471
327 => 0.02624746940607
328 => 0.02595559178233
329 => 0.023739863702627
330 => 0.023624525433659
331 => 0.02355978256818
401 => 0.023151587959396
402 => 0.022830858810804
403 => 0.022575803083935
404 => 0.021906460690542
405 => 0.02213234409956
406 => 0.021065552027106
407 => 0.021748047790272
408 => 0.020045421884041
409 => 0.021463419332553
410 => 0.02069166778976
411 => 0.021209878194554
412 => 0.02120807020727
413 => 0.020253880553286
414 => 0.019703523874298
415 => 0.020054232570352
416 => 0.020430220131812
417 => 0.020491222848685
418 => 0.020978700536398
419 => 0.02111474508074
420 => 0.020702523760069
421 => 0.020010138746582
422 => 0.020170963993594
423 => 0.019700264755801
424 => 0.018875382446752
425 => 0.019467827322174
426 => 0.019670114050606
427 => 0.019759455393902
428 => 0.018948278381326
429 => 0.018693388952465
430 => 0.018557687959269
501 => 0.019905425980583
502 => 0.019979258111737
503 => 0.019601522489941
504 => 0.021308923318821
505 => 0.020922485926245
506 => 0.021354231173212
507 => 0.020156370788118
508 => 0.020202130667962
509 => 0.019635044365094
510 => 0.01995257480198
511 => 0.019728154523673
512 => 0.019926921480576
513 => 0.020046061574997
514 => 0.020613054824583
515 => 0.021469893484689
516 => 0.020528364940653
517 => 0.02011812747108
518 => 0.02037263648994
519 => 0.021050427545971
520 => 0.022077315691344
521 => 0.021469377241234
522 => 0.021739170001928
523 => 0.021798107717896
524 => 0.021349836411889
525 => 0.022093844093804
526 => 0.022492563854851
527 => 0.022901567826255
528 => 0.023256694514594
529 => 0.022738202645886
530 => 0.023293063268294
531 => 0.022845943552718
601 => 0.02244483094546
602 => 0.022445439267713
603 => 0.02219381546986
604 => 0.021706262654881
605 => 0.021616350435397
606 => 0.022084085155816
607 => 0.022459164106949
608 => 0.022490057405872
609 => 0.022697720385471
610 => 0.0228206131977
611 => 0.024025129822214
612 => 0.024509596372878
613 => 0.025101992900548
614 => 0.025332764733714
615 => 0.026027305215263
616 => 0.025466407368592
617 => 0.025345053591252
618 => 0.023660325565474
619 => 0.023936199685315
620 => 0.024377900769074
621 => 0.023667609053657
622 => 0.024118125660473
623 => 0.024207067181905
624 => 0.023643473612964
625 => 0.023944513289576
626 => 0.023145041160538
627 => 0.021487319792397
628 => 0.022095689611572
629 => 0.022543654573552
630 => 0.021904353339125
701 => 0.023050276057461
702 => 0.022380851662055
703 => 0.02216867626675
704 => 0.021340904403673
705 => 0.021731580859184
706 => 0.022259976359211
707 => 0.021933489372765
708 => 0.022610998891909
709 => 0.023570533056207
710 => 0.024254354242932
711 => 0.024306849542608
712 => 0.023867198332004
713 => 0.024571742202813
714 => 0.024576874035743
715 => 0.023782145671325
716 => 0.023295378973186
717 => 0.023184784555202
718 => 0.023461071094637
719 => 0.02379653395882
720 => 0.024325465396867
721 => 0.024645087587181
722 => 0.025478492745008
723 => 0.025703988285118
724 => 0.025951739517723
725 => 0.026282811568133
726 => 0.026680348449782
727 => 0.025810560384521
728 => 0.025845118685842
729 => 0.025035184082507
730 => 0.024169652802472
731 => 0.024826483154021
801 => 0.025685201464192
802 => 0.025488210535039
803 => 0.02546604503135
804 => 0.025503321260357
805 => 0.025354796532899
806 => 0.024683024695186
807 => 0.024345665083801
808 => 0.024780945052103
809 => 0.025012276983174
810 => 0.025371052633999
811 => 0.0253268259622
812 => 0.026250993509035
813 => 0.026610097072359
814 => 0.026518223013953
815 => 0.026535130051772
816 => 0.027185269900149
817 => 0.027908359123001
818 => 0.028585627600229
819 => 0.029274574184623
820 => 0.028444022187093
821 => 0.028022319104073
822 => 0.028457409042758
823 => 0.028226544196957
824 => 0.02955316207989
825 => 0.029645014223782
826 => 0.030971536177142
827 => 0.032230563470177
828 => 0.031439790985239
829 => 0.03218545382136
830 => 0.032991948973409
831 => 0.034547808970833
901 => 0.034023850059515
902 => 0.033622505744929
903 => 0.033243237306926
904 => 0.034032434719241
905 => 0.035047724582447
906 => 0.035266408294656
907 => 0.035620759452042
908 => 0.035248202538048
909 => 0.035696906305156
910 => 0.037281027773472
911 => 0.036852984169306
912 => 0.036245093439948
913 => 0.03749560519854
914 => 0.037948160542733
915 => 0.041124430953356
916 => 0.045134603551953
917 => 0.043474365763921
918 => 0.042443802593351
919 => 0.04268600938372
920 => 0.044150388663818
921 => 0.044620700811511
922 => 0.043342230267763
923 => 0.043793807677171
924 => 0.046282043601119
925 => 0.047616902342151
926 => 0.045803984876382
927 => 0.040802217489677
928 => 0.036190359530845
929 => 0.037413631936198
930 => 0.037274950807993
1001 => 0.039948249894522
1002 => 0.036842775470911
1003 => 0.036895063695771
1004 => 0.039623643776336
1005 => 0.038895705390547
1006 => 0.037716538432872
1007 => 0.036198968754581
1008 => 0.033393600846054
1009 => 0.030908808256001
1010 => 0.035782058738653
1011 => 0.03557191531641
1012 => 0.035267596499492
1013 => 0.035944825095808
1014 => 0.039233254924828
1015 => 0.039157445973661
1016 => 0.0386751881044
1017 => 0.039040976447808
1018 => 0.037652413967711
1019 => 0.038010278135812
1020 => 0.036189628988982
1021 => 0.037012638440374
1022 => 0.037714008470171
1023 => 0.037854818887614
1024 => 0.03817207194807
1025 => 0.035461179281879
1026 => 0.036678290501372
1027 => 0.037393229314925
1028 => 0.034163109745596
1029 => 0.037329380236665
1030 => 0.035413988671753
1031 => 0.034763876006406
1101 => 0.035639167064465
1102 => 0.035298065287891
1103 => 0.035004806010561
1104 => 0.034841162294977
1105 => 0.035483879445666
1106 => 0.035453895922374
1107 => 0.034402285917822
1108 => 0.033030503535991
1109 => 0.033490918730555
1110 => 0.033323645573955
1111 => 0.032717426075768
1112 => 0.033125944822324
1113 => 0.031327035009095
1114 => 0.028232104174628
1115 => 0.030276710284172
1116 => 0.030197995173058
1117 => 0.030158303444588
1118 => 0.031694768427148
1119 => 0.031547072771353
1120 => 0.031279003709845
1121 => 0.032712502777231
1122 => 0.032189256334352
1123 => 0.033801778578938
1124 => 0.034863890020622
1125 => 0.034594504203305
1126 => 0.035593425147839
1127 => 0.03350152576673
1128 => 0.034196370828698
1129 => 0.034339577432956
1130 => 0.032694813621255
1201 => 0.031571237607224
1202 => 0.031496307896793
1203 => 0.029548181926775
1204 => 0.030588855095235
1205 => 0.031504604417498
1206 => 0.031066031557152
1207 => 0.030927192491558
1208 => 0.031636491167159
1209 => 0.031691609748985
1210 => 0.030434900242136
1211 => 0.030696209943424
1212 => 0.031785914836919
1213 => 0.030668752176003
1214 => 0.028498287613326
1215 => 0.027959982392762
1216 => 0.027888162553405
1217 => 0.02642823610171
1218 => 0.027995954521607
1219 => 0.02731160341908
1220 => 0.029473460352177
1221 => 0.028238619266263
1222 => 0.028185387735095
1223 => 0.028104920468367
1224 => 0.02684830146259
1225 => 0.027123421162551
1226 => 0.028037960947135
1227 => 0.028364279045303
1228 => 0.028330241394219
1229 => 0.028033479203265
1230 => 0.028169335414616
1231 => 0.027731695222415
]
'min_raw' => 0.015312543469808
'max_raw' => 0.047616902342151
'avg_raw' => 0.031464722905979
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.015312'
'max' => '$0.047616'
'avg' => '$0.031464'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0087230519693323
'max_diff' => 0.029740246880055
'year' => 2033
]
8 => [
'items' => [
101 => 0.027577155361856
102 => 0.027089385052395
103 => 0.026372497447474
104 => 0.026472185065865
105 => 0.025051843136671
106 => 0.024277965470394
107 => 0.024063766331912
108 => 0.023777330291937
109 => 0.024096120044805
110 => 0.025047819486442
111 => 0.023899868045528
112 => 0.021931785819512
113 => 0.022050070914744
114 => 0.022315822404572
115 => 0.0218205962614
116 => 0.021351906278068
117 => 0.021759394192555
118 => 0.020925491808622
119 => 0.022416595523654
120 => 0.022376265346932
121 => 0.022932056602661
122 => 0.023279604280853
123 => 0.022478619402518
124 => 0.02227717387171
125 => 0.022391926401247
126 => 0.020495322702417
127 => 0.022777063617644
128 => 0.022796796207831
129 => 0.022627833790653
130 => 0.023842790387164
131 => 0.026406727760269
201 => 0.025442071386365
202 => 0.025068527281496
203 => 0.024358419665082
204 => 0.025304595901936
205 => 0.025231944329594
206 => 0.024903386367174
207 => 0.024704673486339
208 => 0.025070808062147
209 => 0.024659305360564
210 => 0.024585388168022
211 => 0.024137530403915
212 => 0.023977665558358
213 => 0.023859307991111
214 => 0.023729007939147
215 => 0.024016417385031
216 => 0.023365109768796
217 => 0.022579696632089
218 => 0.02251439802806
219 => 0.022694693214897
220 => 0.02261492601612
221 => 0.022514016133401
222 => 0.02232135168612
223 => 0.022264192260236
224 => 0.022449932664547
225 => 0.022240242577418
226 => 0.022549651723387
227 => 0.022465509556072
228 => 0.021995498249338
301 => 0.021409690140673
302 => 0.021404475219732
303 => 0.021278263823638
304 => 0.021117514634702
305 => 0.021072797887784
306 => 0.021725076696973
307 => 0.023075274310934
308 => 0.022810198211823
309 => 0.023001742859522
310 => 0.023943952947496
311 => 0.024243453201217
312 => 0.024030875015178
313 => 0.023739884882876
314 => 0.023752686971898
315 => 0.024747088342675
316 => 0.024809107936413
317 => 0.02496581144151
318 => 0.025167219729964
319 => 0.024065175717616
320 => 0.023700780798021
321 => 0.023528110269257
322 => 0.022996351872568
323 => 0.023569807713878
324 => 0.023235679552974
325 => 0.023280764857323
326 => 0.02325140299372
327 => 0.023267436556688
328 => 0.022416178729777
329 => 0.022726332341109
330 => 0.022210641806987
331 => 0.021520190070778
401 => 0.021517875434454
402 => 0.021686862518729
403 => 0.021586342388537
404 => 0.021315845302799
405 => 0.021354268137118
406 => 0.021017643678079
407 => 0.021395140441228
408 => 0.021405965697647
409 => 0.021260608881447
410 => 0.021842194729593
411 => 0.022080470926107
412 => 0.02198479395584
413 => 0.022073757974818
414 => 0.022821213320488
415 => 0.022943081155595
416 => 0.022997206797812
417 => 0.022924685607515
418 => 0.022087420086414
419 => 0.022124556372602
420 => 0.021852074944863
421 => 0.021621856851808
422 => 0.021631064368195
423 => 0.021749426394283
424 => 0.022266320304047
425 => 0.023354093064586
426 => 0.023395373245697
427 => 0.023445406029431
428 => 0.023241897553522
429 => 0.023180517449874
430 => 0.023261493650134
501 => 0.023670003906618
502 => 0.024720803195748
503 => 0.024349380546445
504 => 0.024047408151023
505 => 0.024312319352981
506 => 0.024271538349882
507 => 0.023927305643178
508 => 0.023917644177603
509 => 0.023256951555584
510 => 0.023012708536466
511 => 0.022808600788418
512 => 0.022585720455918
513 => 0.022453589523795
514 => 0.02265660268797
515 => 0.022703034200598
516 => 0.022259142369067
517 => 0.022198641552665
518 => 0.022561133204365
519 => 0.022401614143503
520 => 0.022565683453482
521 => 0.022603748940757
522 => 0.022597619520584
523 => 0.022431063300396
524 => 0.022537221268366
525 => 0.022286126026904
526 => 0.022013097665101
527 => 0.021838922580539
528 => 0.021686931718286
529 => 0.021771265082424
530 => 0.021470632037933
531 => 0.021374453476453
601 => 0.022501257337447
602 => 0.023333639464747
603 => 0.023321536298956
604 => 0.023247861389889
605 => 0.023138395419424
606 => 0.023661995789057
607 => 0.023479583889997
608 => 0.023612303787588
609 => 0.023646086571761
610 => 0.02374833688473
611 => 0.023784882582905
612 => 0.023674416100401
613 => 0.023303677092771
614 => 0.022379830734563
615 => 0.021949777760942
616 => 0.021807853116548
617 => 0.021813011807819
618 => 0.021670712073168
619 => 0.021712625722449
620 => 0.021656136216432
621 => 0.021549158758315
622 => 0.02176465952584
623 => 0.021789493981769
624 => 0.021739193527586
625 => 0.021751041105449
626 => 0.021334574828422
627 => 0.021366237854947
628 => 0.021189934099712
629 => 0.021156879270979
630 => 0.020711198730268
701 => 0.019921611049972
702 => 0.020359119271987
703 => 0.019830670862759
704 => 0.019630539442884
705 => 0.020577930457749
706 => 0.020482838676393
707 => 0.020320082882115
708 => 0.020079333141099
709 => 0.019990036720293
710 => 0.019447499935287
711 => 0.019415443967707
712 => 0.019684339848082
713 => 0.019560253651431
714 => 0.019385989636216
715 => 0.018754823037968
716 => 0.018045182809458
717 => 0.018066602387317
718 => 0.018292325740681
719 => 0.018948646833526
720 => 0.018692210828081
721 => 0.018506163563867
722 => 0.018471322503839
723 => 0.018907431314779
724 => 0.019524616649878
725 => 0.019814186200363
726 => 0.01952723157019
727 => 0.019197593541782
728 => 0.019217657081176
729 => 0.019351130820138
730 => 0.019365157022886
731 => 0.019150596553729
801 => 0.019210994069002
802 => 0.019119244720438
803 => 0.01855617913766
804 => 0.018545995066768
805 => 0.018407809692095
806 => 0.018403625493869
807 => 0.018168537699593
808 => 0.018135647292089
809 => 0.017668866207746
810 => 0.017976102931004
811 => 0.017770024667694
812 => 0.017459416115939
813 => 0.017405867084541
814 => 0.017404257335995
815 => 0.017723182867846
816 => 0.017972376100477
817 => 0.017773609487314
818 => 0.017728354182426
819 => 0.018211562441099
820 => 0.018150069785642
821 => 0.018096817542601
822 => 0.019469354472468
823 => 0.018382884392086
824 => 0.017909121423495
825 => 0.017322749784717
826 => 0.017513675347046
827 => 0.017553906168308
828 => 0.016143788078478
829 => 0.015571703345053
830 => 0.0153753854231
831 => 0.015262401683488
901 => 0.01531388979239
902 => 0.014798946433461
903 => 0.015144996887038
904 => 0.014699099465284
905 => 0.014624343311451
906 => 0.015421663137638
907 => 0.015532605533577
908 => 0.015059290805401
909 => 0.015363235483584
910 => 0.015253020918128
911 => 0.014706743096777
912 => 0.014685879302149
913 => 0.014411776293989
914 => 0.01398285816302
915 => 0.013786831067757
916 => 0.013684738454558
917 => 0.013726863856509
918 => 0.013705563964224
919 => 0.013566567759263
920 => 0.01371353106399
921 => 0.013338100549842
922 => 0.01318860109406
923 => 0.013121075658244
924 => 0.012787859467964
925 => 0.013318154608612
926 => 0.013422629431801
927 => 0.013527310102667
928 => 0.01443848387402
929 => 0.014392964207353
930 => 0.014804439825042
1001 => 0.014788450639193
1002 => 0.014671091127566
1003 => 0.014175970652711
1004 => 0.014373316849314
1005 => 0.013765915930578
1006 => 0.014221021998143
1007 => 0.01401333059459
1008 => 0.014150801325683
1009 => 0.013903616555942
1010 => 0.014040418813525
1011 => 0.01344740428814
1012 => 0.012893655668275
1013 => 0.013116500277838
1014 => 0.013358757853807
1015 => 0.013884034004588
1016 => 0.013571183862617
1017 => 0.013683696603843
1018 => 0.01330679775514
1019 => 0.012529147774432
1020 => 0.01253354918887
1021 => 0.012413924681364
1022 => 0.012310551641414
1023 => 0.013607118464823
1024 => 0.013445869884644
1025 => 0.013188941375821
1026 => 0.013532850394814
1027 => 0.013623785398005
1028 => 0.013626374189707
1029 => 0.013877281332387
1030 => 0.014011190519413
1031 => 0.014034792594022
1101 => 0.014429600404238
1102 => 0.014561934774581
1103 => 0.015107001317364
1104 => 0.013999829260466
1105 => 0.013977027780549
1106 => 0.01353768989998
1107 => 0.013259054870467
1108 => 0.013556768278834
1109 => 0.013820501716714
1110 => 0.013545884833049
1111 => 0.013581744000577
1112 => 0.013213093271281
1113 => 0.013344868560375
1114 => 0.013458371191392
1115 => 0.013395701709921
1116 => 0.013301882462921
1117 => 0.013798878582384
1118 => 0.013770836113581
1119 => 0.014233650325916
1120 => 0.014594447100593
1121 => 0.015241059420952
1122 => 0.014566285755995
1123 => 0.014541694321661
1124 => 0.014782079536861
1125 => 0.014561897972857
1126 => 0.014701045120898
1127 => 0.015218640664196
1128 => 0.01522957664241
1129 => 0.015046384917121
1130 => 0.015035237683989
1201 => 0.015070421658729
1202 => 0.01527649529773
1203 => 0.015204486836259
1204 => 0.015287816850904
1205 => 0.015392022310211
1206 => 0.015823060272106
1207 => 0.015926982065447
1208 => 0.015674505984901
1209 => 0.01569730174812
1210 => 0.015602868763372
1211 => 0.015511647683348
1212 => 0.015716699349473
1213 => 0.016091435299619
1214 => 0.016089104086722
1215 => 0.016176035543329
1216 => 0.016230193120617
1217 => 0.015997709153129
1218 => 0.015846370638967
1219 => 0.015904403455217
1220 => 0.01599719919219
1221 => 0.015874311048386
1222 => 0.015115788497501
1223 => 0.015345875784831
1224 => 0.015307578009526
1225 => 0.015253037320323
1226 => 0.015484391866946
1227 => 0.015462077156531
1228 => 0.014793664945028
1229 => 0.01483645452615
1230 => 0.014796267121179
1231 => 0.014926120848209
]
'min_raw' => 0.012310551641414
'max_raw' => 0.027577155361856
'avg_raw' => 0.019943853501635
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01231'
'max' => '$0.027577'
'avg' => '$0.019943'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0030019918283936
'max_diff' => -0.020039746980295
'year' => 2034
]
9 => [
'items' => [
101 => 0.014554885445454
102 => 0.014669074955033
103 => 0.014740693544981
104 => 0.01478287744466
105 => 0.014935274616072
106 => 0.014917392566968
107 => 0.014934163042792
108 => 0.015160127816634
109 => 0.016302980100982
110 => 0.016365183029258
111 => 0.016058873060777
112 => 0.016181237851488
113 => 0.01594632421156
114 => 0.016104023311828
115 => 0.016211917031109
116 => 0.015724366060449
117 => 0.015695496456146
118 => 0.015459613244063
119 => 0.015586363521128
120 => 0.01538469471665
121 => 0.015434177187194
122 => 0.015295819885749
123 => 0.015544835481685
124 => 0.015823273611053
125 => 0.015893618078387
126 => 0.01570857207003
127 => 0.015574586564854
128 => 0.015339352155333
129 => 0.015730552220907
130 => 0.015844951041686
131 => 0.015729951332602
201 => 0.015703303387214
202 => 0.015652805578855
203 => 0.015714016735976
204 => 0.01584432800114
205 => 0.01578287561496
206 => 0.015823465998683
207 => 0.015668777312551
208 => 0.015997786114996
209 => 0.01652033127356
210 => 0.016522011341689
211 => 0.016460558624258
212 => 0.016435413496302
213 => 0.016498467713649
214 => 0.016532672039941
215 => 0.016736577816676
216 => 0.016955376839078
217 => 0.017976416407133
218 => 0.017689712582179
219 => 0.018595639628873
220 => 0.019312110302904
221 => 0.019526948530581
222 => 0.019329307470038
223 => 0.018653188078282
224 => 0.018620014435325
225 => 0.019630422256852
226 => 0.019344935767661
227 => 0.019310978058182
228 => 0.018949725401783
301 => 0.019163270463726
302 => 0.019116565026162
303 => 0.019042838208059
304 => 0.01945026731057
305 => 0.020212938219024
306 => 0.020094068805659
307 => 0.020005338302775
308 => 0.0196165470682
309 => 0.01985068623108
310 => 0.019767313759819
311 => 0.020125534805835
312 => 0.019913332593743
313 => 0.019342772926721
314 => 0.019433636434284
315 => 0.019419902597908
316 => 0.019702543977337
317 => 0.019617702050823
318 => 0.019403335850092
319 => 0.020210331492772
320 => 0.020157929684482
321 => 0.020232223467916
322 => 0.020264929888995
323 => 0.020756133915836
324 => 0.020957364488857
325 => 0.02100304735197
326 => 0.021194200832609
327 => 0.020998291279235
328 => 0.021782069173876
329 => 0.022303235739104
330 => 0.022908597523602
331 => 0.023793193796663
401 => 0.024125810178306
402 => 0.024065726006096
403 => 0.024736416804573
404 => 0.025941633260817
405 => 0.02430933471036
406 => 0.026028149047522
407 => 0.025483992273042
408 => 0.024193806349714
409 => 0.024110733586544
410 => 0.024984462473189
411 => 0.026922309050478
412 => 0.026436900461741
413 => 0.026923103005036
414 => 0.026355921912114
415 => 0.026327756590272
416 => 0.026895556285325
417 => 0.028222251221965
418 => 0.027591988187983
419 => 0.026688351581934
420 => 0.027355582789698
421 => 0.0267775653682
422 => 0.025475130340675
423 => 0.026436529278941
424 => 0.025793669187988
425 => 0.02598128993885
426 => 0.027332486231812
427 => 0.027169906719021
428 => 0.02738029966303
429 => 0.027008961623796
430 => 0.026662073340517
501 => 0.026014580599515
502 => 0.025822889919911
503 => 0.025875866327445
504 => 0.025822863667434
505 => 0.025460597429609
506 => 0.025382366070042
507 => 0.02525197704337
508 => 0.02529239005491
509 => 0.025047220538111
510 => 0.025509906070918
511 => 0.025595784582978
512 => 0.025932488528983
513 => 0.02596744624963
514 => 0.026905161946575
515 => 0.02638868389837
516 => 0.026735181963675
517 => 0.026704187915348
518 => 0.024221768590858
519 => 0.024563824071202
520 => 0.025095955055693
521 => 0.024856230768466
522 => 0.024517316713172
523 => 0.024243625442099
524 => 0.023828955180055
525 => 0.024412595610845
526 => 0.025180020714094
527 => 0.025986909416693
528 => 0.026956333323423
529 => 0.026739969192779
530 => 0.025968786711074
531 => 0.026003381393854
601 => 0.026217232110295
602 => 0.025940276002117
603 => 0.02585859623899
604 => 0.026206010565119
605 => 0.026208403016648
606 => 0.025889731542926
607 => 0.025535586516148
608 => 0.025534102635555
609 => 0.025471085948675
610 => 0.026367132440717
611 => 0.026859867410822
612 => 0.026916358681062
613 => 0.026856065098236
614 => 0.026879269705299
615 => 0.026592558082869
616 => 0.027247895830053
617 => 0.027849298553055
618 => 0.027688109776196
619 => 0.027446464885348
620 => 0.027253983090593
621 => 0.027642767182511
622 => 0.027625455238901
623 => 0.027844045824922
624 => 0.0278341292933
625 => 0.027760625500829
626 => 0.027688112401248
627 => 0.027975618644577
628 => 0.027892821463707
629 => 0.027809895675946
630 => 0.027643575313289
701 => 0.027666181012862
702 => 0.027424577845412
703 => 0.027312801165141
704 => 0.025631948083619
705 => 0.025182769216777
706 => 0.025324090032165
707 => 0.025370616513984
708 => 0.025175133295496
709 => 0.025455406015289
710 => 0.025411725808791
711 => 0.025581659940207
712 => 0.025475492472581
713 => 0.025479849622485
714 => 0.025792065507482
715 => 0.025882703107158
716 => 0.025836604092428
717 => 0.025868890262163
718 => 0.026612911416576
719 => 0.026507135400876
720 => 0.026450944000729
721 => 0.026466509402589
722 => 0.026656622759535
723 => 0.026709844119675
724 => 0.026484341476961
725 => 0.02659068982688
726 => 0.02704350760322
727 => 0.027201968197672
728 => 0.027707698349764
729 => 0.027492855192519
730 => 0.027887209105836
731 => 0.029099318590218
801 => 0.030067635517939
802 => 0.029177131253817
803 => 0.030955321977159
804 => 0.03233989852159
805 => 0.032286756167682
806 => 0.032045323221328
807 => 0.030469019636365
808 => 0.02901848157612
809 => 0.030231918256614
810 => 0.030235011556258
811 => 0.03013077626926
812 => 0.029483379853882
813 => 0.030108248277318
814 => 0.030157848063582
815 => 0.030130085372922
816 => 0.029633728059152
817 => 0.028875882183192
818 => 0.029023963453328
819 => 0.029266523594587
820 => 0.028807306643838
821 => 0.028660559003137
822 => 0.02893339078708
823 => 0.029812511641706
824 => 0.029646318936539
825 => 0.02964197897337
826 => 0.030353021842747
827 => 0.029844068600928
828 => 0.029025831232366
829 => 0.028819215505579
830 => 0.028085868868517
831 => 0.028592394002827
901 => 0.028610622940662
902 => 0.028333204301161
903 => 0.02904834222602
904 => 0.029041752104145
905 => 0.029720669129566
906 => 0.03101850349258
907 => 0.030634670008886
908 => 0.030188313428315
909 => 0.030236844764748
910 => 0.03076911373988
911 => 0.030447291766997
912 => 0.030563021192268
913 => 0.030768938569534
914 => 0.03089317363588
915 => 0.03021896925057
916 => 0.030061779957431
917 => 0.029740225829613
918 => 0.029656338359758
919 => 0.029918237487418
920 => 0.029849236320312
921 => 0.028609090869023
922 => 0.028479488769259
923 => 0.028483463480629
924 => 0.028157572838529
925 => 0.02766051138661
926 => 0.028966759204256
927 => 0.028861849223573
928 => 0.028746036724286
929 => 0.028760223094631
930 => 0.029327220999425
1001 => 0.028998333580564
1002 => 0.029872734687194
1003 => 0.029692984106574
1004 => 0.029508623601822
1005 => 0.029483139364307
1006 => 0.029412176298877
1007 => 0.029168817543323
1008 => 0.028874947222397
1009 => 0.028680908581911
1010 => 0.026456622099721
1011 => 0.026869436732737
1012 => 0.027344342338783
1013 => 0.027508277850925
1014 => 0.027227854813413
1015 => 0.029179890354042
1016 => 0.029536546057598
1017 => 0.028456212667453
1018 => 0.028254126399878
1019 => 0.029193139096101
1020 => 0.028626799650645
1021 => 0.028881822268256
1022 => 0.028330602858894
1023 => 0.02945063814271
1024 => 0.029442105350419
1025 => 0.029006386327871
1026 => 0.029374653062054
1027 => 0.02931065765439
1028 => 0.028818731951062
1029 => 0.029466233064937
1030 => 0.029466554217411
1031 => 0.029047184131557
1101 => 0.028557451683196
1102 => 0.028469899088393
1103 => 0.028403939969245
1104 => 0.028865600368314
1105 => 0.029279523638544
1106 => 0.030049732224161
1107 => 0.03024338096229
1108 => 0.030999204879134
1109 => 0.030549148537052
1110 => 0.030748652684292
1111 => 0.030965242657705
1112 => 0.031069083855791
1113 => 0.030899880195935
1114 => 0.032073985848329
1115 => 0.032173116339058
1116 => 0.032206353935125
1117 => 0.031810452115168
1118 => 0.032162105593264
1119 => 0.031997578576402
1120 => 0.032425632167355
1121 => 0.032492756436079
1122 => 0.032435904568485
1123 => 0.032457210870863
1124 => 0.031455318822975
1125 => 0.03140336543489
1126 => 0.030694977301913
1127 => 0.030983650702242
1128 => 0.030443989616803
1129 => 0.030615121706121
1130 => 0.030690555100486
1201 => 0.030651152976077
1202 => 0.030999971863174
1203 => 0.030703404550151
1204 => 0.029920714650901
1205 => 0.029137811508312
1206 => 0.029127982797096
1207 => 0.028921858219041
1208 => 0.028772867902706
1209 => 0.028801568723348
1210 => 0.028902714158795
1211 => 0.028766989146126
1212 => 0.028795952959012
1213 => 0.029276945237792
1214 => 0.029373404809021
1215 => 0.029045597496796
1216 => 0.027729403835844
1217 => 0.027406406610024
1218 => 0.02763857061063
1219 => 0.027527611171617
1220 => 0.022216930657458
1221 => 0.023464596269822
1222 => 0.022723275729677
1223 => 0.023064910341094
1224 => 0.022308214033628
1225 => 0.022669349173402
1226 => 0.02260266069963
1227 => 0.024608870083201
1228 => 0.024577545883128
1229 => 0.024592539120063
1230 => 0.023876872856461
1231 => 0.025016948646836
]
'min_raw' => 0.014554885445454
'max_raw' => 0.032492756436079
'avg_raw' => 0.023523820940767
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.014554'
'max' => '$0.032492'
'avg' => '$0.023523'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0022443338040395
'max_diff' => 0.0049156010742232
'year' => 2035
]
10 => [
'items' => [
101 => 0.025578590976974
102 => 0.025474645929292
103 => 0.025500806658386
104 => 0.025051278657919
105 => 0.024596891533727
106 => 0.024092906283322
107 => 0.025029248584115
108 => 0.024925143304163
109 => 0.025163923360476
110 => 0.02577120827367
111 => 0.025860633283989
112 => 0.025980821404717
113 => 0.025937742519009
114 => 0.026964056348837
115 => 0.026839762972208
116 => 0.027139274248239
117 => 0.026523156829469
118 => 0.025825961487728
119 => 0.02595847552916
120 => 0.025945713361359
121 => 0.025783236317524
122 => 0.02563655930719
123 => 0.025392383410974
124 => 0.026164992077834
125 => 0.026133625576909
126 => 0.026641412767323
127 => 0.026551656449035
128 => 0.025952241788416
129 => 0.025973650000285
130 => 0.026117630513541
131 => 0.026615948713861
201 => 0.026763883483807
202 => 0.026695354204187
203 => 0.026857557925953
204 => 0.026985757134058
205 => 0.026873657772701
206 => 0.028460748332887
207 => 0.02780167768073
208 => 0.028122904130807
209 => 0.028199514746374
210 => 0.028003278265546
211 => 0.028045834931536
212 => 0.028110296684514
213 => 0.028501695825688
214 => 0.029528840424383
215 => 0.029983755775135
216 => 0.031352391053001
217 => 0.029945981387983
218 => 0.029862530858762
219 => 0.030109063401132
220 => 0.030912597193996
221 => 0.031563785861022
222 => 0.03177982270985
223 => 0.031808375545802
224 => 0.032213675036061
225 => 0.03244598514549
226 => 0.032164461017509
227 => 0.03192589879585
228 => 0.031071398529301
229 => 0.031170309261881
301 => 0.031851706124303
302 => 0.03281421932655
303 => 0.033640155786509
304 => 0.033350941625023
305 => 0.03555744152378
306 => 0.035776206975998
307 => 0.035745980664035
308 => 0.036244360920852
309 => 0.035255177604445
310 => 0.034832282572157
311 => 0.031977478655969
312 => 0.032779562110479
313 => 0.03394543751632
314 => 0.033791129534548
315 => 0.032944439650888
316 => 0.033639513496307
317 => 0.033409700346043
318 => 0.033228437179473
319 => 0.034058838885124
320 => 0.033145778098739
321 => 0.03393632903652
322 => 0.032922439281613
323 => 0.033352262730951
324 => 0.033108274152886
325 => 0.03326616466501
326 => 0.032343139957368
327 => 0.032841181684453
328 => 0.032322419784112
329 => 0.032322173823427
330 => 0.032310722125724
331 => 0.032921043200933
401 => 0.032940945749285
402 => 0.032489917552561
403 => 0.032424917343029
404 => 0.032665257185659
405 => 0.032383882175044
406 => 0.032515535771557
407 => 0.032387869828364
408 => 0.032359129535495
409 => 0.032130121992158
410 => 0.032031459245795
411 => 0.03207014745087
412 => 0.031938084661812
413 => 0.031858512054486
414 => 0.032294893131314
415 => 0.032061752325527
416 => 0.032259160959117
417 => 0.032034188906185
418 => 0.031254337755067
419 => 0.030805837111282
420 => 0.029332770579058
421 => 0.029750530420264
422 => 0.030027505627187
423 => 0.029935965322951
424 => 0.030132629317844
425 => 0.030144702889892
426 => 0.0300807654204
427 => 0.030006734021625
428 => 0.029970699630895
429 => 0.030239270456977
430 => 0.030395184861195
501 => 0.030055303794651
502 => 0.029975674416202
503 => 0.030319312939825
504 => 0.030528932240722
505 => 0.032076643383635
506 => 0.031961983943127
507 => 0.032249756638023
508 => 0.03221735784881
509 => 0.032518989478847
510 => 0.033012029714919
511 => 0.032009541058766
512 => 0.032183538426024
513 => 0.032140878289758
514 => 0.03260663047142
515 => 0.032608084498893
516 => 0.03232884279994
517 => 0.032480224255121
518 => 0.032395727279772
519 => 0.03254842473468
520 => 0.031960452596394
521 => 0.032676539193156
522 => 0.033082514149918
523 => 0.033088151112587
524 => 0.033280580020076
525 => 0.033476098934815
526 => 0.033851380465549
527 => 0.033465632536608
528 => 0.032771709564245
529 => 0.032821808561492
530 => 0.032414961776693
531 => 0.032421800944648
601 => 0.032385292930107
602 => 0.03249485622994
603 => 0.031984495579428
604 => 0.032104276204009
605 => 0.031936582628162
606 => 0.03218317389294
607 => 0.031917882455035
608 => 0.032140857717749
609 => 0.032237086449389
610 => 0.032592172540799
611 => 0.031865435950622
612 => 0.03038357084751
613 => 0.030695076858062
614 => 0.030234335000186
615 => 0.0302769784133
616 => 0.03036312489444
617 => 0.030083895963691
618 => 0.030137164044163
619 => 0.030135260933487
620 => 0.030118860953823
621 => 0.030046222724603
622 => 0.029940882921197
623 => 0.030360524276084
624 => 0.030431829519528
625 => 0.030590332242852
626 => 0.031061928834042
627 => 0.031014805213569
628 => 0.031091665793701
629 => 0.030923879578826
630 => 0.030284761534586
701 => 0.030319468719278
702 => 0.029886669570025
703 => 0.030579264595541
704 => 0.030415248951691
705 => 0.030309506999116
706 => 0.030280654327664
707 => 0.030753419915586
708 => 0.030894878789185
709 => 0.03080673111211
710 => 0.030625937654751
711 => 0.030973114539668
712 => 0.031066004427855
713 => 0.031086799048173
714 => 0.031701929923683
715 => 0.031121178030863
716 => 0.031260970783642
717 => 0.032351593935223
718 => 0.031362549232446
719 => 0.031886468269836
720 => 0.031860825159299
721 => 0.032128844410374
722 => 0.031838839757815
723 => 0.031842434713051
724 => 0.032080417650809
725 => 0.031746213535177
726 => 0.031663459896223
727 => 0.031549136336702
728 => 0.031798757646473
729 => 0.031948394332281
730 => 0.033154356123852
731 => 0.033933462439747
801 => 0.033899639379827
802 => 0.034208718833378
803 => 0.03406947570871
804 => 0.033619822928676
805 => 0.034387325394879
806 => 0.034144455500905
807 => 0.034164477399877
808 => 0.034163732183798
809 => 0.034325219431235
810 => 0.034210790916337
811 => 0.033985240567626
812 => 0.034134971415094
813 => 0.034579618502318
814 => 0.0359598167045
815 => 0.036732193903634
816 => 0.035913318627286
817 => 0.036478167827734
818 => 0.036139459583815
819 => 0.036077906220197
820 => 0.036432673260106
821 => 0.036788061272756
822 => 0.036765424592735
823 => 0.036507431144927
824 => 0.036361697192603
825 => 0.037465243504062
826 => 0.038278317627924
827 => 0.038222871423595
828 => 0.038467592937433
829 => 0.039186102871013
830 => 0.03925179441468
831 => 0.039243518790081
901 => 0.039080695444898
902 => 0.039788161784813
903 => 0.040378342652256
904 => 0.039043006544908
905 => 0.039551485053752
906 => 0.039779757438527
907 => 0.040114929024741
908 => 0.040680419671965
909 => 0.041294692503836
910 => 0.041381557417422
911 => 0.041319922604364
912 => 0.040914793159205
913 => 0.041586937821637
914 => 0.041980664401158
915 => 0.042215119568991
916 => 0.042809658864993
917 => 0.039781167171062
918 => 0.037637450224295
919 => 0.037302677867409
920 => 0.037983450619409
921 => 0.03816296496505
922 => 0.038090602957414
923 => 0.035677654635609
924 => 0.037289974193866
925 => 0.039024694470871
926 => 0.039091332141582
927 => 0.039959769383541
928 => 0.040242568147968
929 => 0.040941773956417
930 => 0.040898038442725
1001 => 0.041068283930288
1002 => 0.041029147440938
1003 => 0.042324278965935
1004 => 0.0437530013669
1005 => 0.043703529253213
1006 => 0.043498133504198
1007 => 0.043803181216665
1008 => 0.045277775845658
1009 => 0.045142018802118
1010 => 0.045273895206159
1011 => 0.047012525378253
1012 => 0.049272991919234
1013 => 0.048222778263818
1014 => 0.050501439705231
1015 => 0.051935736295948
1016 => 0.054416203940556
1017 => 0.054105637174891
1018 => 0.055071265026424
1019 => 0.053549657847109
1020 => 0.050055740195853
1021 => 0.049502814353362
1022 => 0.050609785892341
1023 => 0.053331167404218
1024 => 0.050524079903958
1025 => 0.051091950049302
1026 => 0.05092840340924
1027 => 0.050919688703819
1028 => 0.051252293564448
1029 => 0.050769832866603
1030 => 0.04880420119056
1031 => 0.049705038604151
1101 => 0.049357182016998
1102 => 0.04974315483487
1103 => 0.05182609094563
1104 => 0.050905175240068
1105 => 0.049935065353375
1106 => 0.051151798435906
1107 => 0.052701117764816
1108 => 0.052604164145607
1109 => 0.052416033600873
1110 => 0.053476515631343
1111 => 0.055228121253597
1112 => 0.055701573214771
1113 => 0.056051065773211
1114 => 0.056099254892294
1115 => 0.056595632768226
1116 => 0.053926483826009
1117 => 0.058162491745915
1118 => 0.058893933296325
1119 => 0.058756452599994
1120 => 0.05956941909951
1121 => 0.059330223732383
1122 => 0.058983667174019
1123 => 0.060272391998685
1124 => 0.058794972981936
1125 => 0.056697962689544
1126 => 0.055547501368977
1127 => 0.057062521640967
1128 => 0.05798769165415
1129 => 0.058599170181
1130 => 0.05878420321376
1201 => 0.0541336822603
1202 => 0.051627309396102
1203 => 0.05323386566643
1204 => 0.055193975194821
1205 => 0.05391559531861
1206 => 0.053965705389464
1207 => 0.05214307163831
1208 => 0.055355237839002
1209 => 0.054887252242131
1210 => 0.057315162346548
1211 => 0.056735722114933
1212 => 0.058715588554158
1213 => 0.05819422336816
1214 => 0.060358381106102
1215 => 0.061221722219999
1216 => 0.062671406318547
1217 => 0.063737799842714
1218 => 0.064364006516963
1219 => 0.064326411417083
1220 => 0.066807754235383
1221 => 0.065344593066946
1222 => 0.06350651779878
1223 => 0.063473272816232
1224 => 0.064425238043343
1225 => 0.066420296000463
1226 => 0.066937585501831
1227 => 0.067226679763164
1228 => 0.066783921838489
1229 => 0.065195765255857
1230 => 0.064510007295613
1231 => 0.065094292946061
]
'min_raw' => 0.024092906283322
'max_raw' => 0.067226679763164
'avg_raw' => 0.045659793023243
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.024092'
'max' => '$0.067226'
'avg' => '$0.045659'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0095380208378682
'max_diff' => 0.034733923327085
'year' => 2036
]
11 => [
'items' => [
101 => 0.064379761803801
102 => 0.065613243017372
103 => 0.067307076180974
104 => 0.066957306330832
105 => 0.06812653449943
106 => 0.069336562647537
107 => 0.071066957245095
108 => 0.071519346469223
109 => 0.072267128653886
110 => 0.073036842155555
111 => 0.07328405338793
112 => 0.073756056335676
113 => 0.073753568647154
114 => 0.075175981299647
115 => 0.0767449465038
116 => 0.07733719454674
117 => 0.078699036264732
118 => 0.076366930047296
119 => 0.078135859402527
120 => 0.079731477960119
121 => 0.077829115736126
122 => 0.08045107886835
123 => 0.080552883755278
124 => 0.082090016679562
125 => 0.080531837981764
126 => 0.079606596444893
127 => 0.082277734093489
128 => 0.083570213461598
129 => 0.083180908157378
130 => 0.080218275569889
131 => 0.078493896330681
201 => 0.073980863253759
202 => 0.079326745881893
203 => 0.081930569368523
204 => 0.080211532296096
205 => 0.081078514605013
206 => 0.085808488962508
207 => 0.087609356954682
208 => 0.087234789001327
209 => 0.087298084819531
210 => 0.088269800500041
211 => 0.092578922961026
212 => 0.089996796897727
213 => 0.091970735522702
214 => 0.093017705451823
215 => 0.093990189470258
216 => 0.091602076077711
217 => 0.088495175642359
218 => 0.087511089855675
219 => 0.080040607937761
220 => 0.079651736911275
221 => 0.07943345182011
222 => 0.078057195197356
223 => 0.076975834480287
224 => 0.076115896289724
225 => 0.073859161678406
226 => 0.074620743362586
227 => 0.071023979409264
228 => 0.073325061525112
301 => 0.067584539408707
302 => 0.072365416807785
303 => 0.069763402599288
304 => 0.071510585159346
305 => 0.071504489403988
306 => 0.068287372366187
307 => 0.066431806398303
308 => 0.067614245252746
309 => 0.068881913566823
310 => 0.069087588485834
311 => 0.070731153544563
312 => 0.071189837224141
313 => 0.069800004261125
314 => 0.067465579847374
315 => 0.068007813396136
316 => 0.066420818052744
317 => 0.063639669756343
318 => 0.065637139017009
319 => 0.066319162845124
320 => 0.06662038342166
321 => 0.06388544348919
322 => 0.063026065983973
323 => 0.062568540611072
324 => 0.067112533445997
325 => 0.067361463630978
326 => 0.066087901609434
327 => 0.07184452271092
328 => 0.070541622061655
329 => 0.071997281305293
330 => 0.067958611385009
331 => 0.068112894014754
401 => 0.066200922951935
402 => 0.067271498989161
403 => 0.066514850352326
404 => 0.067185007024992
405 => 0.067586696171428
406 => 0.06949835349861
407 => 0.072387244863724
408 => 0.069212815642083
409 => 0.06782967137155
410 => 0.06868776629789
411 => 0.07097298616516
412 => 0.074435211242327
413 => 0.072385504312871
414 => 0.073295129441882
415 => 0.073493842066166
416 => 0.07198246406066
417 => 0.074490937905197
418 => 0.075835249417289
419 => 0.077214234862624
420 => 0.078411569286513
421 => 0.076663437751217
422 => 0.078534189078796
423 => 0.077026693740831
424 => 0.075674314580673
425 => 0.075676365581621
426 => 0.074827998379347
427 => 0.073184180023795
428 => 0.072881034698332
429 => 0.074458034964421
430 => 0.075722639835343
501 => 0.075826798749561
502 => 0.076526948983848
503 => 0.076941290680378
504 => 0.081002402576594
505 => 0.082635815376532
506 => 0.084633121629374
507 => 0.085411184976869
508 => 0.087752876701678
509 => 0.085861770450991
510 => 0.085452617718039
511 => 0.079772439555176
512 => 0.080702568411135
513 => 0.082191794453611
514 => 0.0797969963441
515 => 0.081315944538044
516 => 0.081615817087251
517 => 0.07971562202072
518 => 0.080730598308336
519 => 0.078035122207924
520 => 0.072445998876826
521 => 0.0744971601972
522 => 0.07600750534243
523 => 0.073852056595973
524 => 0.077715615046611
525 => 0.075458603959783
526 => 0.074743239800898
527 => 0.071952349171347
528 => 0.073269542117263
529 => 0.075051064437001
530 => 0.073950290767602
531 => 0.076234561413602
601 => 0.079469697841067
602 => 0.081775248714983
603 => 0.081952240282943
604 => 0.080469925530927
605 => 0.082845344381039
606 => 0.082862646714058
607 => 0.080183164547261
608 => 0.078541996639516
609 => 0.07816911983783
610 => 0.079100639195246
611 => 0.080231675663108
612 => 0.082015004935296
613 => 0.083092633465248
614 => 0.085902517141353
615 => 0.086662791098429
616 => 0.087498101676594
617 => 0.088614334209265
618 => 0.089954657560883
619 => 0.087022106372193
620 => 0.087138622097879
621 => 0.084407871034907
622 => 0.081489671894804
623 => 0.083704221283484
624 => 0.086599450020022
625 => 0.085935281348917
626 => 0.085860548805683
627 => 0.085986228214324
628 => 0.085485466726031
629 => 0.083220541073571
630 => 0.08208310959009
701 => 0.083550686393499
702 => 0.084330638150183
703 => 0.085540275305858
704 => 0.085391161994078
705 => 0.08850705740155
706 => 0.089717800137107
707 => 0.089408040334749
708 => 0.089465043593168
709 => 0.091657035483284
710 => 0.094094981282607
711 => 0.096378439238957
712 => 0.098701270748956
713 => 0.095901006701995
714 => 0.094479205315224
715 => 0.095946141420511
716 => 0.095167764474425
717 => 0.099640549288235
718 => 0.099950235204279
719 => 0.10442269658484
720 => 0.10866759500578
721 => 0.10600145036284
722 => 0.10851550467534
723 => 0.11123465938817
724 => 0.11648034999616
725 => 0.11471378594501
726 => 0.11336062556741
727 => 0.11208189554901
728 => 0.11474272972463
729 => 0.11816585038371
730 => 0.11890315778743
731 => 0.12009787745457
801 => 0.11884177580794
802 => 0.12035461188624
803 => 0.1256955880165
804 => 0.12425240912001
805 => 0.1222028630844
806 => 0.12641905078643
807 => 0.12794487272579
808 => 0.13865389017532
809 => 0.1521744670728
810 => 0.14657685945635
811 => 0.14310224377515
812 => 0.14391886087922
813 => 0.14885611786176
814 => 0.15044180810385
815 => 0.14613135540565
816 => 0.14765388016959
817 => 0.15604314131027
818 => 0.16054371075252
819 => 0.15443133294282
820 => 0.1375675249863
821 => 0.12201832388846
822 => 0.12614267220926
823 => 0.12567509910311
824 => 0.13468831361712
825 => 0.12421798978061
826 => 0.12439428318138
827 => 0.13359388142638
828 => 0.13113958633566
829 => 0.12716394261105
830 => 0.12204735048736
831 => 0.11258885671923
901 => 0.10421120501919
902 => 0.12064170926093
903 => 0.1199331960411
904 => 0.11890716390299
905 => 0.12119048739806
906 => 0.13227765815744
907 => 0.13202206298577
908 => 0.13039609690939
909 => 0.13162937784772
910 => 0.12694774249973
911 => 0.12815430652776
912 => 0.12201586081556
913 => 0.12479069464161
914 => 0.12715541266517
915 => 0.12763016481865
916 => 0.12869980566187
917 => 0.11955984176933
918 => 0.12366341722184
919 => 0.12607388334717
920 => 0.11518330969943
921 => 0.12585861172202
922 => 0.11940073533255
923 => 0.11720883509191
924 => 0.12015994000503
925 => 0.11900989155034
926 => 0.11802114742212
927 => 0.11746941120978
928 => 0.11963637695641
929 => 0.11953528541425
930 => 0.11598970886284
1001 => 0.11136464878771
1002 => 0.11291697076134
1003 => 0.11235299763522
1004 => 0.11030908627219
1005 => 0.11168643574808
1006 => 0.1056212857169
1007 => 0.095186510327328
1008 => 0.10208004257549
1009 => 0.10181464908266
1010 => 0.10168082564894
1011 => 0.1068611246102
1012 => 0.1063631583949
1013 => 0.10545934483804
1014 => 0.11029248702744
1015 => 0.10852832511338
1016 => 0.11396505644371
1017 => 0.1175460393236
1018 => 0.11663778623259
1019 => 0.12000571793952
1020 => 0.11295273312437
1021 => 0.11529545176332
1022 => 0.11577828282795
1023 => 0.11023284680305
1024 => 0.10644463182618
1025 => 0.10619200107603
1026 => 0.099623758354304
1027 => 0.10313246059925
1028 => 0.10621997337483
1029 => 0.104741294356
1030 => 0.10427318875291
1031 => 0.10666463875935
1101 => 0.10685047490624
1102 => 0.10261339106324
1103 => 0.10349441496519
1104 => 0.10716843109438
1105 => 0.10340183918529
1106 => 0.096083966375232
1107 => 0.09426903274083
1108 => 0.094026887138137
1109 => 0.089104643177437
1110 => 0.094390315284724
1111 => 0.092082977762687
1112 => 0.099371829348652
1113 => 0.095208476413644
1114 => 0.095029002589804
1115 => 0.094757701581984
1116 => 0.090520922869672
1117 => 0.091448508146334
1118 => 0.094531942881188
1119 => 0.095632147131962
1120 => 0.095517386814898
1121 => 0.094516832368825
1122 => 0.09497488107057
1123 => 0.093499346607503
1124 => 0.092978304678
1125 => 0.091333753024616
1126 => 0.08891671641313
1127 => 0.089252820178504
1128 => 0.084464038199119
1129 => 0.081854855616854
1130 => 0.081132668266556
1201 => 0.080166929159452
1202 => 0.081241751068438
1203 => 0.08445047218145
1204 => 0.080580073750998
1205 => 0.073944547118871
1206 => 0.074343353575849
1207 => 0.075239353277979
1208 => 0.073569663760691
1209 => 0.071989442758998
1210 => 0.073363316712588
1211 => 0.070551756603954
1212 => 0.07557911688472
1213 => 0.07544314087814
1214 => 0.077317029900935
1215 => 0.078488811162963
1216 => 0.075788234722678
1217 => 0.075109047051081
1218 => 0.075495943216181
1219 => 0.069101411428935
1220 => 0.076794460230687
1221 => 0.076860990036186
1222 => 0.076291321450092
1223 => 0.080387632440791
1224 => 0.089032126302602
1225 => 0.085779719987829
1226 => 0.084520289958247
1227 => 0.082126112551375
1228 => 0.085316211793844
1229 => 0.085071261945323
1230 => 0.083963505835839
1231 => 0.083293531484414
]
'min_raw' => 0.062568540611072
'max_raw' => 0.16054371075252
'avg_raw' => 0.11155612568179
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.062568'
'max' => '$0.160543'
'avg' => '$0.111556'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.038475634327749
'max_diff' => 0.093317030989354
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0019639549943116
]
1 => [
'year' => 2028
'avg' => 0.0033707169104473
]
2 => [
'year' => 2029
'avg' => 0.0092081910867268
]
3 => [
'year' => 2030
'avg' => 0.0071041057101601
]
4 => [
'year' => 2031
'avg' => 0.0069771122095056
]
5 => [
'year' => 2032
'avg' => 0.012233073481286
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0019639549943116
'min' => '$0.001963'
'max_raw' => 0.012233073481286
'max' => '$0.012233'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.012233073481286
]
1 => [
'year' => 2033
'avg' => 0.031464722905979
]
2 => [
'year' => 2034
'avg' => 0.019943853501635
]
3 => [
'year' => 2035
'avg' => 0.023523820940767
]
4 => [
'year' => 2036
'avg' => 0.045659793023243
]
5 => [
'year' => 2037
'avg' => 0.11155612568179
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.012233073481286
'min' => '$0.012233'
'max_raw' => 0.11155612568179
'max' => '$0.111556'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.11155612568179
]
]
]
]
'prediction_2025_max_price' => '$0.003358'
'last_price' => 0.00325601
'sma_50day_nextmonth' => '$0.002971'
'sma_200day_nextmonth' => '$0.00462'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.003228'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003192'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003049'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002934'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0031014'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.004014'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004925'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003219'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003173'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003088'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003039'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003269'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003891'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004924'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004598'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006367'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.009191'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.018526'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.003176'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003183'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00347'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.004274'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006383'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.03769'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.192414'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.93'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 106.22
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003088'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0033019'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 165.7
'cci_20_action' => 'SELL'
'adx_14' => 18.61
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000169'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.51
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000589'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 19
'sell_pct' => 45.71
'buy_pct' => 54.29
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767693002
'last_updated_date' => '6. Januar 2026'
]
Penguin Finance Preisprognose für 2026
Die Preisprognose für Penguin Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001124 am unteren Ende und $0.003358 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Penguin Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn PEFI das prognostizierte Preisziel erreicht.
Penguin Finance Preisprognose 2027-2032
Die Preisprognose für PEFI für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.001963 am unteren Ende und $0.012233 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Penguin Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Penguin Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001082 | $0.001963 | $0.002844 |
| 2028 | $0.001954 | $0.00337 | $0.004787 |
| 2029 | $0.004293 | $0.0092081 | $0.014123 |
| 2030 | $0.003651 | $0.0071041 | $0.010556 |
| 2031 | $0.004316 | $0.006977 | $0.009637 |
| 2032 | $0.006589 | $0.012233 | $0.017876 |
Penguin Finance Preisprognose 2032-2037
Die Preisprognose für Penguin Finance für die Jahre 2032-2037 wird derzeit zwischen $0.012233 am unteren Ende und $0.111556 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Penguin Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Penguin Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.006589 | $0.012233 | $0.017876 |
| 2033 | $0.015312 | $0.031464 | $0.047616 |
| 2034 | $0.01231 | $0.019943 | $0.027577 |
| 2035 | $0.014554 | $0.023523 | $0.032492 |
| 2036 | $0.024092 | $0.045659 | $0.067226 |
| 2037 | $0.062568 | $0.111556 | $0.160543 |
Penguin Finance Potenzielles Preishistogramm
Penguin Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Penguin Finance Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 16 anzeigen bärische Signale. Die Preisprognose für PEFI wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Penguin Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Penguin Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.00462 erreichen. Der kurzfristige 50-Tage-SMA für Penguin Finance wird voraussichtlich bis zum 04.02.2026 $0.002971 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 60.93, was darauf hindeutet, dass sich der PEFI-Markt in einem NEUTRAL Zustand befindet.
Beliebte PEFI Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.003228 | BUY |
| SMA 5 | $0.003192 | BUY |
| SMA 10 | $0.003049 | BUY |
| SMA 21 | $0.002934 | BUY |
| SMA 50 | $0.0031014 | BUY |
| SMA 100 | $0.004014 | SELL |
| SMA 200 | $0.004925 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.003219 | BUY |
| EMA 5 | $0.003173 | BUY |
| EMA 10 | $0.003088 | BUY |
| EMA 21 | $0.003039 | BUY |
| EMA 50 | $0.003269 | SELL |
| EMA 100 | $0.003891 | SELL |
| EMA 200 | $0.004924 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.004598 | SELL |
| SMA 50 | $0.006367 | SELL |
| SMA 100 | $0.009191 | SELL |
| SMA 200 | $0.018526 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.004274 | SELL |
| EMA 50 | $0.006383 | SELL |
| EMA 100 | $0.03769 | SELL |
| EMA 200 | $0.192414 | SELL |
Penguin Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 60.93 | NEUTRAL |
| Stoch RSI (14) | 106.22 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 165.7 | SELL |
| Average Directional Index (14) | 18.61 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000169 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 78.51 | SELL |
| VWMA (10) | 0.003088 | BUY |
| Hull Moving Average (9) | 0.0033019 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000589 | SELL |
Auf weltweiten Geldflüssen basierende Penguin Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Penguin Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Penguin Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.004575 | $0.006428 | $0.009033 | $0.012693 | $0.017837 | $0.025064 |
| Amazon.com aktie | $0.006793 | $0.014175 | $0.029578 | $0.061717 | $0.128777 | $0.2687016 |
| Apple aktie | $0.004618 | $0.00655 | $0.009291 | $0.013179 | $0.018694 | $0.026516 |
| Netflix aktie | $0.005137 | $0.0081061 | $0.01279 | $0.02018 | $0.031842 | $0.050242 |
| Google aktie | $0.004216 | $0.00546 | $0.007071 | $0.009157 | $0.011858 | $0.015356 |
| Tesla aktie | $0.007381 | $0.016732 | $0.037931 | $0.085987 | $0.194926 | $0.441883 |
| Kodak aktie | $0.002441 | $0.00183 | $0.001373 | $0.001029 | $0.000772 | $0.000579 |
| Nokia aktie | $0.002156 | $0.001428 | $0.000946 | $0.000627 | $0.000415 | $0.000275 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Penguin Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Penguin Finance investieren?", "Sollte ich heute PEFI kaufen?", "Wird Penguin Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Penguin Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Penguin Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Penguin Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Penguin Finance-Preis entspricht heute $0.003256 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Penguin Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Penguin Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00334 | $0.003427 | $0.003516 | $0.0036079 |
| Wenn die Wachstumsrate von Penguin Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003425 | $0.0036033 | $0.00379 | $0.003987 |
| Wenn die Wachstumsrate von Penguin Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003679 | $0.004157 | $0.004697 | $0.0053082 |
| Wenn die Wachstumsrate von Penguin Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0041023 | $0.005168 | $0.006512 | $0.0082049 |
| Wenn die Wachstumsrate von Penguin Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004948 | $0.007521 | $0.011431 | $0.017374 |
| Wenn die Wachstumsrate von Penguin Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.007487 | $0.017219 | $0.039598 | $0.091062 |
| Wenn die Wachstumsrate von Penguin Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.011719 | $0.042181 | $0.151826 | $0.546472 |
Fragefeld
Ist PEFI eine gute Investition?
Die Entscheidung, Penguin Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Penguin Finance in den letzten 2026 Stunden um 1.0208% gestiegen, und Penguin Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Penguin Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Penguin Finance steigen?
Es scheint, dass der Durchschnittswert von Penguin Finance bis zum Ende dieses Jahres potenziell auf $0.003358 steigen könnte. Betrachtet man die Aussichten von Penguin Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.010556 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Penguin Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Penguin Finance-Prognose wird der Preis von Penguin Finance in der nächsten Woche um 0.86% steigen und $0.003283 erreichen bis zum 13. Januar 2026.
Wie viel wird Penguin Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Penguin Finance-Prognose wird der Preis von Penguin Finance im nächsten Monat um -11.62% fallen und $0.002877 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Penguin Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Penguin Finance im Jahr 2026 wird erwartet, dass PEFI innerhalb der Spanne von $0.001124 bis $0.003358 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Penguin Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Penguin Finance in 5 Jahren sein?
Die Zukunft von Penguin Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.010556 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Penguin Finance-Prognose für 2030 könnte der Wert von Penguin Finance seinen höchsten Gipfel von ungefähr $0.010556 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.003651 liegen wird.
Wie viel wird Penguin Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Penguin Finance-Preisprognosesimulation wird der Wert von PEFI im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.003358 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.003358 und $0.001124 während des Jahres 2026 liegen.
Wie viel wird Penguin Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Penguin Finance könnte der Wert von PEFI um -12.62% fallen und bis zu $0.002844 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.002844 und $0.001082 im Laufe des Jahres schwanken.
Wie viel wird Penguin Finance im Jahr 2028 kosten?
Unser neues experimentelles Penguin Finance-Preisprognosemodell deutet darauf hin, dass der Wert von PEFI im Jahr 2028 um 47.02% steigen, und im besten Fall $0.004787 erreichen wird. Der Preis wird voraussichtlich zwischen $0.004787 und $0.001954 im Laufe des Jahres liegen.
Wie viel wird Penguin Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Penguin Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.014123 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.014123 und $0.004293.
Wie viel wird Penguin Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Penguin Finance-Preisprognosen wird der Wert von PEFI im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.010556 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.010556 und $0.003651 während des Jahres 2030 liegen.
Wie viel wird Penguin Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Penguin Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.009637 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.009637 und $0.004316 während des Jahres schwanken.
Wie viel wird Penguin Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Penguin Finance-Preisprognose könnte PEFI eine 449.04% Steigerung im Wert erfahren und $0.017876 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.017876 und $0.006589 liegen.
Wie viel wird Penguin Finance im Jahr 2033 kosten?
Laut unserer experimentellen Penguin Finance-Preisprognose wird der Wert von PEFI voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.047616 beträgt. Im Laufe des Jahres könnte der Preis von PEFI zwischen $0.047616 und $0.015312 liegen.
Wie viel wird Penguin Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Penguin Finance-Preisprognosesimulation deuten darauf hin, dass PEFI im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.027577 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.027577 und $0.01231.
Wie viel wird Penguin Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Penguin Finance könnte PEFI um 897.93% steigen, wobei der Wert im Jahr 2035 $0.032492 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.032492 und $0.014554.
Wie viel wird Penguin Finance im Jahr 2036 kosten?
Unsere jüngste Penguin Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von PEFI im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.067226 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.067226 und $0.024092.
Wie viel wird Penguin Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Penguin Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.160543 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.160543 und $0.062568 liegen.
Verwandte Prognosen
Larissa Blockchain-Preisprognose
Centric Cash-Preisprognose
Crypto Raiders-Preisprognose
Wizarre Scroll-Preisprognose
Potcoin-Preisprognose
Grape-Preisprognose
Solaris-Preisprognose
SmartCash-Preisprognose
XTblock Token-Preisprognose
Lunar-Preisprognose
Channels-Preisprognose
Minds-Preisprognose
Joe Hat-Preisprognose
Pepemon Pepeballs-Preisprognose
Blur Network-Preisprognose
Hush-Preisprognose
VNST Stablecoin-Preisprognose
Kangal-Preisprognose
KingdomX-Preisprognose
Signata-Preisprognose
Crabada-Preisprognose
Blocknet-Preisprognose
Ston-Preisprognose
Ubcoin Market-Preisprognose
Power Index Pool Token-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Penguin Finance?
Penguin Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Penguin Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Penguin Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von PEFI über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von PEFI über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von PEFI einzuschätzen.
Wie liest man Penguin Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Penguin Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von PEFI innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Penguin Finance?
Die Preisentwicklung von Penguin Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von PEFI. Die Marktkapitalisierung von Penguin Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von PEFI-„Walen“, großen Inhabern von Penguin Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Penguin Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


