Penguin Finance Preisvorhersage bis zu $0.003342 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001119 | $0.003342 |
| 2027 | $0.001078 | $0.002832 |
| 2028 | $0.001945 | $0.004765 |
| 2029 | $0.004273 | $0.014059 |
| 2030 | $0.003634 | $0.010509 |
| 2031 | $0.004297 | $0.009593 |
| 2032 | $0.006559 | $0.017795 |
| 2033 | $0.015243 | $0.0474009 |
| 2034 | $0.012254 | $0.027452 |
| 2035 | $0.014488 | $0.032345 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Penguin Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,956.02 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Penguin Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Penguin Finance'
'name_with_ticker' => 'Penguin Finance <small>PEFI</small>'
'name_lang' => 'Penguin Finance'
'name_lang_with_ticker' => 'Penguin Finance <small>PEFI</small>'
'name_with_lang' => 'Penguin Finance'
'name_with_lang_with_ticker' => 'Penguin Finance <small>PEFI</small>'
'image' => '/uploads/coins/penguin-finance.png?1717316634'
'price_for_sd' => 0.003241
'ticker' => 'PEFI'
'marketcap' => '$62.1K'
'low24h' => '$0.003173'
'high24h' => '$0.003321'
'volume24h' => '$245.78'
'current_supply' => '19.16M'
'max_supply' => '19.16M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003241'
'change_24h_pct' => '0.6293%'
'ath_price' => '$6.89'
'ath_days' => 1737
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '05.04.2021'
'ath_pct' => '-99.95%'
'fdv' => '$62.1K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.159815'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003268'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002864'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001119'
'current_year_max_price_prediction' => '$0.003342'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003634'
'grand_prediction_max_price' => '$0.010509'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0033026597931078
107 => 0.0033149907259097
108 => 0.0033427729471456
109 => 0.0031053769085055
110 => 0.0032119607602734
111 => 0.0032745687876306
112 => 0.0029917034423309
113 => 0.0032689774492355
114 => 0.0031012443716312
115 => 0.0030443132458261
116 => 0.0031209635066172
117 => 0.0030910928254421
118 => 0.003065411767833
119 => 0.0030510812964305
120 => 0.0031073647883749
121 => 0.0031047390962024
122 => 0.0030126483792263
123 => 0.0028925197930287
124 => 0.002932838889643
125 => 0.0029181905838495
126 => 0.0028651032339847
127 => 0.0029008776980025
128 => 0.0027433450635099
129 => 0.0024723183536993
130 => 0.0026513668999728
131 => 0.0026444737257086
201 => 0.0026409978746641
202 => 0.0027755479086503
203 => 0.0027626140274799
204 => 0.0027391389065068
205 => 0.0028646720949786
206 => 0.0028188507925267
207 => 0.0029600612498267
208 => 0.0030530715899241
209 => 0.0030294811591061
210 => 0.0031169578335258
211 => 0.0029337677601959
212 => 0.002994616154246
213 => 0.0030071569239275
214 => 0.0028631230349188
215 => 0.0027647301703954
216 => 0.0027581684880925
217 => 0.0025875688203808
218 => 0.00267870178584
219 => 0.0027588950241057
220 => 0.0027204886862231
221 => 0.0027083303870062
222 => 0.0027704445008921
223 => 0.0027752712995124
224 => 0.0026652197794474
225 => 0.0026881029753473
226 => 0.0027835297062647
227 => 0.002685698466568
228 => 0.0024956283484794
301 => 0.0024484883312685
302 => 0.0024421989840097
303 => 0.0023143515186117
304 => 0.0024516384526273
305 => 0.0023917090268684
306 => 0.002581025364776
307 => 0.0024728888878871
308 => 0.002468227340498
309 => 0.0024611807279192
310 => 0.0023511371331389
311 => 0.0023752296867605
312 => 0.0024553170043982
313 => 0.0024838930615795
314 => 0.0024809123446988
315 => 0.0024549245328503
316 => 0.0024668216200354
317 => 0.0024284969569922
318 => 0.0024149637208127
319 => 0.0023722491048205
320 => 0.0023094704195259
321 => 0.0023182001807601
322 => 0.0021938191782548
323 => 0.0021260498066904
324 => 0.0021072921378274
325 => 0.0020822085990868
326 => 0.0021101253902729
327 => 0.0021934668225023
328 => 0.0020929393733624
329 => 0.0019205921129927
330 => 0.0019309504770064
331 => 0.0019542226455192
401 => 0.0019108551134564
402 => 0.00186981138392
403 => 0.0019054955767688
404 => 0.0018324697705364
405 => 0.0019630474653175
406 => 0.0019595157046134
407 => 0.0020081869943573
408 => 0.0020386221506696
409 => 0.0019684789688687
410 => 0.0019508381483331
411 => 0.0019608871614407
412 => 0.0017947993592243
413 => 0.0019946140775396
414 => 0.0019963420835211
415 => 0.0019815458472048
416 => 0.0020879410161204
417 => 0.0023124680080177
418 => 0.0022279919220887
419 => 0.0021952802283137
420 => 0.0021330952745354
421 => 0.0022159530332678
422 => 0.0022095908501795
423 => 0.0021808186454681
424 => 0.002163417126284
425 => 0.0021954799589405
426 => 0.0021594441864941
427 => 0.002152971171566
428 => 0.0021137517438109
429 => 0.0020997521924727
430 => 0.002089387482
501 => 0.002077976954185
502 => 0.0021031457352185
503 => 0.0020461099661677
504 => 0.0019773304199779
505 => 0.0019716121449172
506 => 0.0019874008051156
507 => 0.0019804154983053
508 => 0.0019715787019556
509 => 0.0019547068511657
510 => 0.0019497013334464
511 => 0.0019659668377022
512 => 0.0019476040317353
513 => 0.0019746993522133
514 => 0.0019673309242957
515 => 0.0019261714849249
516 => 0.0018748715842927
517 => 0.0018744149075719
518 => 0.0018633624281294
519 => 0.0018492854338079
520 => 0.0018453695360257
521 => 0.0019024903535784
522 => 0.0020207287364304
523 => 0.0019975157126718
524 => 0.0020142895013037
525 => 0.002096799939744
526 => 0.0021230275269486
527 => 0.0021044118067852
528 => 0.0020789294608579
529 => 0.0020800505547536
530 => 0.002167131444818
531 => 0.0021725625731157
601 => 0.0021862852821756
602 => 0.0022039228413548
603 => 0.0021074155593804
604 => 0.0020755050704513
605 => 0.0020603841104702
606 => 0.0020138174062764
607 => 0.002064035604422
608 => 0.0020347756109202
609 => 0.0020387237837073
610 => 0.0020361525310002
611 => 0.0020375566088456
612 => 0.0019630109661906
613 => 0.0019901714803705
614 => 0.0019450118576781
615 => 0.0018845481922986
616 => 0.0018843454968909
617 => 0.0018991438933337
618 => 0.0018903412280682
619 => 0.001866653482176
620 => 0.001870018214677
621 => 0.0018405396174304
622 => 0.0018735974501099
623 => 0.0018745454304646
624 => 0.0018618163642106
625 => 0.0019127465165553
626 => 0.0019336126415259
627 => 0.0019252340974346
628 => 0.001933024780537
629 => 0.0019984803186095
630 => 0.0020091524273407
701 => 0.0020138922730791
702 => 0.0020075415076988
703 => 0.0019342211876145
704 => 0.0019374732555923
705 => 0.0019136117385522
706 => 0.0018934512711179
707 => 0.0018942575840875
708 => 0.0019046226850261
709 => 0.0019498876887297
710 => 0.0020451452205063
711 => 0.0020487601742049
712 => 0.0020531416035432
713 => 0.0020353201284943
714 => 0.0020299450010911
715 => 0.0020370361815741
716 => 0.0020728099021063
717 => 0.0021648296237855
718 => 0.0021323037083535
719 => 0.0021058596328113
720 => 0.0021290582163334
721 => 0.0021254869762367
722 => 0.0020953421158513
723 => 0.0020944960500209
724 => 0.0020366384250465
725 => 0.0020152497784479
726 => 0.0019973758244376
727 => 0.0019778579332698
728 => 0.0019662870731398
729 => 0.0019840651731613
730 => 0.0019881312349805
731 => 0.0019492591085756
801 => 0.001943960981384
802 => 0.0019757047989194
803 => 0.0019617355283509
804 => 0.0019761032695518
805 => 0.0019794367087547
806 => 0.0019788999482674
807 => 0.0019643144254334
808 => 0.0019736108027412
809 => 0.0019516220990247
810 => 0.0019277126863294
811 => 0.0019124599706389
812 => 0.0018991499532198
813 => 0.0019065351244666
814 => 0.0018802083374505
815 => 0.0018717858684305
816 => 0.0019704613992844
817 => 0.002043354074867
818 => 0.0020422941864953
819 => 0.0020358423886141
820 => 0.0020262563256621
821 => 0.0020721086218935
822 => 0.0020561345987321
823 => 0.0020677570352563
824 => 0.0020707154331438
825 => 0.002079669612537
826 => 0.0020828699620323
827 => 0.0020731962830718
828 => 0.0020407302349399
829 => 0.0019598279297746
830 => 0.0019221676883286
831 => 0.0019097391813705
901 => 0.0019101909339933
902 => 0.0018977295799431
903 => 0.0019014000071896
904 => 0.0018964531551358
905 => 0.0018870850141181
906 => 0.0019059566681575
907 => 0.0019081314504839
908 => 0.0019037265809317
909 => 0.0019047640871698
910 => 0.0018682936486215
911 => 0.0018710664168547
912 => 0.0018556272909858
913 => 0.0018527326410069
914 => 0.0018137038752489
915 => 0.0017445587593987
916 => 0.0017828718656585
917 => 0.0017365950209346
918 => 0.0017190692786291
919 => 0.0018020334168915
920 => 0.0017937061184769
921 => 0.0017794534033808
922 => 0.0017583706672276
923 => 0.0017505508753087
924 => 0.0017030402950547
925 => 0.0017002331165142
926 => 0.0017237806429817
927 => 0.0017129142697379
928 => 0.0016976537662862
929 => 0.0016423817697166
930 => 0.0015802377456433
1001 => 0.0015821134831067
1002 => 0.0016018803409337
1003 => 0.0016593551459899
1004 => 0.0016368987453302
1005 => 0.0016206063689941
1006 => 0.0016175552966534
1007 => 0.0016557458548501
1008 => 0.0017097934958676
1009 => 0.0017351514397852
1010 => 0.0017100224874951
1011 => 0.001681155700143
1012 => 0.0016829126877333
1013 => 0.0016946011390273
1014 => 0.0016958294299925
1015 => 0.00167704011898
1016 => 0.001682329199971
1017 => 0.001674294602302
1018 => 0.0016249862912378
1019 => 0.001624094460249
1020 => 0.00161199340551
1021 => 0.0016116269903817
1022 => 0.001591040077521
1023 => 0.0015881598261012
1024 => 0.0015472832610799
1025 => 0.0015741883399626
1026 => 0.0015561418256281
1027 => 0.0015289414717838
1028 => 0.0015242521205286
1029 => 0.0015241111529673
1030 => 0.0015520398344776
1031 => 0.0015738619770582
1101 => 0.0015564557524714
1102 => 0.0015524926925384
1103 => 0.001594807804412
1104 => 0.0015894228207153
1105 => 0.0015847594595633
1106 => 0.0017049541224142
1107 => 0.0016098106678612
1108 => 0.0015683226910776
1109 => 0.0015169734414548
1110 => 0.0015336930160574
1111 => 0.0015372160760878
1112 => 0.0014137303871428
1113 => 0.001363632258517
1114 => 0.0013464404686808
1115 => 0.0013365463505738
1116 => 0.0013410552244376
1117 => 0.00129596103275
1118 => 0.0013262650753532
1119 => 0.0012872173170688
1120 => 0.0012806708333201
1121 => 0.0013504930622215
1122 => 0.0013602084174776
1123 => 0.0013187596936308
1124 => 0.0013453764842793
1125 => 0.0013357248659891
1126 => 0.0012878866788108
1127 => 0.0012860596119344
1128 => 0.0012620560912019
1129 => 0.001224495229253
1130 => 0.0012073289074499
1201 => 0.00119838853801
1202 => 0.0012020775086852
1203 => 0.0012002122522275
1204 => 0.0011880401921325
1205 => 0.001200909940464
1206 => 0.0011680330516241
1207 => 0.001154941209581
1208 => 0.0011490279282586
1209 => 0.0011198477970901
1210 => 0.0011662863622424
1211 => 0.001175435344595
1212 => 0.0011846023532691
1213 => 0.0012643949051949
1214 => 0.0012604086947921
1215 => 0.0012964420954702
1216 => 0.001295041903781
1217 => 0.0012847645942052
1218 => 0.0012414063156403
1219 => 0.0012586881526893
1220 => 0.0012054973444464
1221 => 0.0012453515146054
1222 => 0.0012271637356947
1223 => 0.0012392022082604
1224 => 0.001217555949122
1225 => 0.0012295358826814
1226 => 0.0011776049077157
1227 => 0.0011291124939813
1228 => 0.0011486272568498
1229 => 0.0011698420358717
1230 => 0.0012158410822164
1231 => 0.0011884444296974
]
'min_raw' => 0.0011198477970901
'max_raw' => 0.0033427729471456
'avg_raw' => 0.0022313103721178
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001119'
'max' => '$0.003342'
'avg' => '$0.002231'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0021213922029099
'max_diff' => 0.00010153294714557
'year' => 2026
]
1 => [
'items' => [
101 => 0.0011982973019254
102 => 0.0011652918293126
103 => 0.0010971921117653
104 => 0.001097577548771
105 => 0.0010871018908593
106 => 0.0010780493929526
107 => 0.0011915912648047
108 => 0.0011774705382085
109 => 0.0011549710084525
110 => 0.0011850875231267
111 => 0.0011930508076199
112 => 0.0011932775111343
113 => 0.0012152497428209
114 => 0.0012269763268107
115 => 0.0012290431880649
116 => 0.0012636169693651
117 => 0.0012752056448177
118 => 0.0013229377589164
119 => 0.0012259814080883
120 => 0.0012239846558469
121 => 0.0011855113242494
122 => 0.001161110929111
123 => 0.00118718204018
124 => 0.0012102774855255
125 => 0.0011862289641146
126 => 0.0011893691933189
127 => 0.001157086018161
128 => 0.0011686257342154
129 => 0.001178565292249
130 => 0.0011730772525231
131 => 0.0011648613914292
201 => 0.0012083839223842
202 => 0.0012059282106215
203 => 0.0012464573920255
204 => 0.0012780527871995
205 => 0.0013346773837036
206 => 0.0012755866653445
207 => 0.0012734331647032
208 => 0.0012944839789047
209 => 0.0012752024220478
210 => 0.0012873877004046
211 => 0.0013327141469767
212 => 0.0013336718233683
213 => 0.0013176295099128
214 => 0.0013166533336811
215 => 0.0013197344354639
216 => 0.0013377805448423
217 => 0.0013314746797245
218 => 0.0013387719864837
219 => 0.0013478973803264
220 => 0.0013856438783466
221 => 0.0013947444312291
222 => 0.0013726348058203
223 => 0.0013746310574438
224 => 0.0013663614506181
225 => 0.0013583731140424
226 => 0.0013763297280617
227 => 0.0014091457931203
228 => 0.0014089416460827
301 => 0.0014165543353232
302 => 0.001421296977653
303 => 0.0014009380849469
304 => 0.0013876851944124
305 => 0.0013927671959466
306 => 0.0014008934270715
307 => 0.0013901319687155
308 => 0.0013237072625494
309 => 0.0013438562751736
310 => 0.0013405024942365
311 => 0.0013357263023485
312 => 0.0013559862903497
313 => 0.0013540321650824
314 => 0.0012954985266362
315 => 0.0012992456602576
316 => 0.0012957264022426
317 => 0.0013070978448615
318 => 0.0012745883268285
319 => 0.0012845880356205
320 => 0.0012908597592334
321 => 0.001294553852623
322 => 0.00130789945101
323 => 0.0013063334990736
324 => 0.0013078021092389
325 => 0.0013275901085395
326 => 0.0014276710185802
327 => 0.0014331182016976
328 => 0.0014062942798137
329 => 0.0014170099075279
330 => 0.0013964382455669
331 => 0.0014102481400594
401 => 0.001419696519138
402 => 0.0013770011109009
403 => 0.001374472965916
404 => 0.0013538163973884
405 => 0.0013649160672673
406 => 0.0013472556943955
407 => 0.0013515889321646
408 => 0.0013394728215972
409 => 0.0013612794083249
410 => 0.0013856625606875
411 => 0.0013918227078942
412 => 0.0013756180127036
413 => 0.0013638847454442
414 => 0.0013432849933151
415 => 0.0013775428402012
416 => 0.0013875608786196
417 => 0.0013774902197101
418 => 0.0013751566279926
419 => 0.0013707344759045
420 => 0.0013760948084629
421 => 0.0013875063182309
422 => 0.0013821248609618
423 => 0.0013856794082971
424 => 0.0013721331392883
425 => 0.0014009448245875
426 => 0.0014467047147523
427 => 0.0014468518402817
428 => 0.0014414703540046
429 => 0.0014392683657657
430 => 0.0014447900972619
501 => 0.0014477854100854
502 => 0.0014656416772318
503 => 0.001484802163305
504 => 0.0015742157914335
505 => 0.0015491088024494
506 => 0.0016284418925656
507 => 0.001691184066735
508 => 0.0017099977013857
509 => 0.001692690042757
510 => 0.0016334814775296
511 => 0.0016305764228502
512 => 0.0017190590165113
513 => 0.0016940586310425
514 => 0.0016910849147416
515 => 0.0016594495974725
516 => 0.0016781499880888
517 => 0.0016740599383428
518 => 0.0016676035947267
519 => 0.0017032826373422
520 => 0.0017700706200281
521 => 0.0017596610865928
522 => 0.0017518908527676
523 => 0.001717843950027
524 => 0.0017383477901279
525 => 0.0017310467653932
526 => 0.0017624166009984
527 => 0.0017438338053128
528 => 0.0016938692285341
529 => 0.0017018262520715
530 => 0.0017006235639711
531 => 0.0017253747998533
601 => 0.0017179450932049
602 => 0.0016991727945055
603 => 0.0017698423459641
604 => 0.001765253458377
605 => 0.0017717594518097
606 => 0.0017746235913233
607 => 0.0018176389019589
608 => 0.00183526089839
609 => 0.0018392614000963
610 => 0.0018560009337716
611 => 0.0018388449052491
612 => 0.0019074812513803
613 => 0.0019531204165158
614 => 0.0020061326553906
615 => 0.0020835977847332
616 => 0.0021127253899586
617 => 0.0021074637487857
618 => 0.0021661969257559
619 => 0.0022717391392063
620 => 0.0021287968476914
621 => 0.0022793154277476
622 => 0.0022316629831224
623 => 0.0021186798941468
624 => 0.0021114051151999
625 => 0.0021879185748148
626 => 0.0023576180640931
627 => 0.0023151102667445
628 => 0.0023576875916215
629 => 0.0023080188805247
630 => 0.002305552410378
701 => 0.0023552752931862
702 => 0.0024714555191207
703 => 0.0024162626487299
704 => 0.0023371301351775
705 => 0.0023955603517463
706 => 0.0023449426906932
707 => 0.0022308869333492
708 => 0.002315077761833
709 => 0.0022587817524427
710 => 0.0022752119208432
711 => 0.0023935377591823
712 => 0.002379300481262
713 => 0.0023977248372273
714 => 0.0023652063311979
715 => 0.0023348289188687
716 => 0.0022781272229
717 => 0.0022613406460835
718 => 0.0022659798519978
719 => 0.0022613383471235
720 => 0.0022296142693445
721 => 0.0022227634577686
722 => 0.0022113451383345
723 => 0.0022148841529804
724 => 0.0021934143718971
725 => 0.0022339322846844
726 => 0.0022414527663404
727 => 0.0022709383243534
728 => 0.0022739996128009
729 => 0.0023561164721667
730 => 0.0023108878859458
731 => 0.002341231126431
801 => 0.0023385169414004
802 => 0.0021211285802796
803 => 0.0021510827784083
804 => 0.0021976821105514
805 => 0.0021766891745848
806 => 0.0021470100747186
807 => 0.002123042610284
808 => 0.0020867294508665
809 => 0.0021378395254142
810 => 0.0022050438384939
811 => 0.0022757040250846
812 => 0.0023605976094346
813 => 0.0023416503496779
814 => 0.002274116998576
815 => 0.0022771464953732
816 => 0.002295873652511
817 => 0.002271620282476
818 => 0.0022644674901706
819 => 0.0022948909686869
820 => 0.002295100478463
821 => 0.0022671940451199
822 => 0.0022361811512825
823 => 0.002236051206125
824 => 0.0022305327612156
825 => 0.0023090005996148
826 => 0.0023521499767411
827 => 0.0023570969832899
828 => 0.0023518170037847
829 => 0.0023538490583414
830 => 0.0023287413865232
831 => 0.0023861300788507
901 => 0.0024387956180838
902 => 0.0024246801285342
903 => 0.0024035190030643
904 => 0.0023866631473696
905 => 0.0024207094246193
906 => 0.0024191933974872
907 => 0.002438335630543
908 => 0.0024374672282807
909 => 0.0024310304152799
910 => 0.0024246803584131
911 => 0.002449857616112
912 => 0.0024426069702291
913 => 0.0024353450620905
914 => 0.0024207801935759
915 => 0.0024227598011039
916 => 0.0024016023294006
917 => 0.0023918139148906
918 => 0.002244619646351
919 => 0.0022052845280857
920 => 0.0022176601570321
921 => 0.0022217345354144
922 => 0.002204615841536
923 => 0.0022291596511259
924 => 0.0022253345243997
925 => 0.0022402158548673
926 => 0.0022309186456634
927 => 0.0022313002063721
928 => 0.0022586413162668
929 => 0.0022665785567866
930 => 0.0022625416121968
1001 => 0.0022653689498091
1002 => 0.0023305237517402
1003 => 0.0023212608224389
1004 => 0.0023163400758646
1005 => 0.0023177031562946
1006 => 0.0023343516051227
1007 => 0.002339012261823
1008 => 0.0023192647318854
1009 => 0.0023285777811631
1010 => 0.0023682315629854
1011 => 0.0023821081424135
1012 => 0.0024263955228121
1013 => 0.0024075814564734
1014 => 0.0024421154894919
1015 => 0.0025482613334713
1016 => 0.0026330579783757
1017 => 0.002555075479352
1018 => 0.0027107937189315
1019 => 0.0028320427048988
1020 => 0.0028273889668666
1021 => 0.0028062464016237
1022 => 0.0026682076546709
1023 => 0.0025411823416832
1024 => 0.0026474444097771
1025 => 0.0026477152936416
1026 => 0.0026385872877532
1027 => 0.002581894027132
1028 => 0.0026366144851734
1029 => 0.0026409579964172
1030 => 0.0026385267851535
1031 => 0.0025950601951596
1101 => 0.0025286947462074
1102 => 0.0025416623960763
1103 => 0.0025629036710943
1104 => 0.002522689506091
1105 => 0.0025098386437103
1106 => 0.0025337308418527
1107 => 0.0026107164824045
1108 => 0.0025961627930056
1109 => 0.0025957827373593
1110 => 0.0026580495923325
1111 => 0.0026134799622
1112 => 0.0025418259596693
1113 => 0.0025237323790301
1114 => 0.0024595123570573
1115 => 0.0025038693549777
1116 => 0.0025054656843657
1117 => 0.0024811718099221
1118 => 0.0025437972736892
1119 => 0.0025432201690156
1120 => 0.0026026737262922
1121 => 0.0027163265980687
1122 => 0.0026827138513662
1123 => 0.0026436258840077
1124 => 0.0026478758298513
1125 => 0.002694487245996
1126 => 0.0026663049197598
1127 => 0.0026764394807685
1128 => 0.0026944719061241
1129 => 0.0027053513160611
1130 => 0.002646310450186
1201 => 0.0026325452000995
1202 => 0.0026043863293687
1203 => 0.0025970402056052
1204 => 0.0026199750182614
1205 => 0.0026139325054254
1206 => 0.0025053315190619
1207 => 0.0024939821117367
1208 => 0.0024943301818562
1209 => 0.0024657915575022
1210 => 0.0024222633053076
1211 => 0.002536652953138
1212 => 0.0025274658635351
1213 => 0.0025173240276378
1214 => 0.0025185663446667
1215 => 0.002568219013765
1216 => 0.0025394179581681
1217 => 0.0026159902848726
1218 => 0.002600249316477
1219 => 0.0025841046516381
1220 => 0.0025818729671789
1221 => 0.002575658648614
1222 => 0.0025543474380089
1223 => 0.0025286128705981
1224 => 0.0025116206801034
1225 => 0.0023168373136286
1226 => 0.0023529879734436
1227 => 0.0023945760123244
1228 => 0.0024089320366925
1229 => 0.0023843750636043
1230 => 0.002555317096983
1231 => 0.0025865498537197
]
'min_raw' => 0.0010780493929526
'max_raw' => 0.0028320427048988
'avg_raw' => 0.0019550460489257
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001078'
'max' => '$0.002832'
'avg' => '$0.001955'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.1798404137489E-5
'max_diff' => -0.00051073024224674
'year' => 2027
]
2 => [
'items' => [
101 => 0.0024919437963019
102 => 0.0024742468656989
103 => 0.0025564773048071
104 => 0.0025068822977625
105 => 0.0025292149263979
106 => 0.0024809439985829
107 => 0.0025790267972237
108 => 0.0025782795706317
109 => 0.0025401231466599
110 => 0.0025723726949169
111 => 0.0025667685422849
112 => 0.0025236900335959
113 => 0.0025803924627869
114 => 0.0025804205864843
115 => 0.0025436958580037
116 => 0.0025008094152151
117 => 0.0024931423321771
118 => 0.0024873662150356
119 => 0.0025277943556635
120 => 0.002564042100135
121 => 0.0026314901660185
122 => 0.0026484482123081
123 => 0.0027146365959375
124 => 0.0026752246361401
125 => 0.002692695447448
126 => 0.0027116624845198
127 => 0.0027207559795818
128 => 0.0027059386173622
129 => 0.0028087564213643
130 => 0.0028174373942782
131 => 0.0028203480494061
201 => 0.0027856784643945
202 => 0.0028164731704022
203 => 0.0028020653472747
204 => 0.0028395505004441
205 => 0.0028454286510955
206 => 0.002840450066615
207 => 0.0028423158844121
208 => 0.0027545790269998
209 => 0.0027500294080941
210 => 0.0026879950314898
211 => 0.002713274498491
212 => 0.0026660157466086
213 => 0.0026810019836496
214 => 0.0026876077741431
215 => 0.0026841572840646
216 => 0.0027147037616263
217 => 0.0026887330154658
218 => 0.0026201919463623
219 => 0.0025516322032904
220 => 0.0025507714915637
221 => 0.0025327209213928
222 => 0.0025196736652861
223 => 0.0025221870296886
224 => 0.002531044453666
225 => 0.0025191588557027
226 => 0.0025216952506432
227 => 0.0025638163065681
228 => 0.0025722633839402
229 => 0.0025435569145436
301 => 0.0024282962975925
302 => 0.0024000110530833
303 => 0.0024203419259157
304 => 0.0024106250781778
305 => 0.0019455625796628
306 => 0.0020548221153193
307 => 0.0019899038093355
308 => 0.0020198211514805
309 => 0.0019535563715848
310 => 0.0019851813977857
311 => 0.0019793414102074
312 => 0.0021550275103184
313 => 0.0021522844135135
314 => 0.0021535973887926
315 => 0.0020909256577844
316 => 0.0021907634270034
317 => 0.0022399471021707
318 => 0.0022308445128784
319 => 0.0022331354384957
320 => 0.0021937697461908
321 => 0.0021539785347432
322 => 0.0021098439574243
323 => 0.0021918405468842
324 => 0.0021827239258648
325 => 0.0022036341744267
326 => 0.0022568148239287
327 => 0.0022646458765816
328 => 0.0022751708907616
329 => 0.0022713984223996
330 => 0.0023612739237949
331 => 0.0023503894075583
401 => 0.0023766179599996
402 => 0.0023226638376629
403 => 0.0022616096268666
404 => 0.0022732140363265
405 => 0.0022720964383787
406 => 0.0022578681337846
407 => 0.0022450234565876
408 => 0.0022236406880199
409 => 0.0022912989318224
410 => 0.0022885521306825
411 => 0.0023330196483308
412 => 0.0023251595826521
413 => 0.002272668140365
414 => 0.0022745428824953
415 => 0.0022871514242921
416 => 0.0023307897314127
417 => 0.0023437445520886
418 => 0.0023377433629912
419 => 0.0023519477324523
420 => 0.0023631742869156
421 => 0.0023533576148458
422 => 0.0024923409898242
423 => 0.0024346254026461
424 => 0.0024627555782542
425 => 0.0024694644593841
426 => 0.0024522798014424
427 => 0.0024560065384135
428 => 0.0024616515294497
429 => 0.0024959268096187
430 => 0.0025858750624145
501 => 0.0026257125312793
502 => 0.0027455655219051
503 => 0.0026224045840544
504 => 0.002615096723693
505 => 0.0026366858665182
506 => 0.0027070522597431
507 => 0.0027640776122726
508 => 0.0027829962115782
509 => 0.0027854966167885
510 => 0.0028209891667704
511 => 0.0028413328345231
512 => 0.0028166794376558
513 => 0.002795788265129
514 => 0.0027209586782458
515 => 0.0027296204066818
516 => 0.0027892911261825
517 => 0.0028735795320652
518 => 0.0029459077530265
519 => 0.0029205809309388
520 => 0.0031138067055176
521 => 0.0031329642518106
522 => 0.0031303172983505
523 => 0.0031739610398311
524 => 0.0030873371008856
525 => 0.0030503036887266
526 => 0.0028003051737542
527 => 0.0028705445591545
528 => 0.0029726416308484
529 => 0.0029591287005654
530 => 0.0028849830780387
531 => 0.002945851506923
601 => 0.0029257265008021
602 => 0.0029098530734873
603 => 0.0029825723212318
604 => 0.0029026145211947
605 => 0.0029718439906285
606 => 0.0028830564799924
607 => 0.0029206966217288
608 => 0.0028993302568304
609 => 0.0029131569134828
610 => 0.0028323265612178
611 => 0.0028759406572541
612 => 0.0028305120714328
613 => 0.0028304905323682
614 => 0.0028294876938183
615 => 0.0028829342235758
616 => 0.0028846771129924
617 => 0.0028451800467484
618 => 0.0028394879024425
619 => 0.002860534743315
620 => 0.0028358944048296
621 => 0.0028474234641225
622 => 0.0028362436082908
623 => 0.0028337267872593
624 => 0.0028136723290784
625 => 0.0028050323170852
626 => 0.0028084202884134
627 => 0.0027968553956514
628 => 0.0027898871294418
629 => 0.0028281015302805
630 => 0.0028076851174769
701 => 0.0028249724222057
702 => 0.0028052713566354
703 => 0.002736978880023
704 => 0.0026977031545434
705 => 0.0025687049969385
706 => 0.0026052887144136
707 => 0.0026295437569481
708 => 0.0026215274655351
709 => 0.0026387495613831
710 => 0.0026398068581962
711 => 0.0026342077792775
712 => 0.0026277247631761
713 => 0.0026245691894712
714 => 0.0026480882505544
715 => 0.0026617418571283
716 => 0.002631978074957
717 => 0.0026250048372339
718 => 0.0026550976643125
719 => 0.0026734542714464
720 => 0.0028089891448366
721 => 0.002798948283644
722 => 0.002824148874818
723 => 0.0028213116749864
724 => 0.0028477259093057
725 => 0.0028909020189295
726 => 0.0028031129158342
727 => 0.0028183500686128
728 => 0.0028146142706287
729 => 0.0028554007334398
730 => 0.0028555280643247
731 => 0.0028310745424345
801 => 0.0028443311933643
802 => 0.0028369316944925
803 => 0.0028503035890561
804 => 0.0027988141818211
805 => 0.0028615227218952
806 => 0.0028970744232682
807 => 0.0028975680586763
808 => 0.0029144192829713
809 => 0.0029315411028121
810 => 0.0029644049450004
811 => 0.0029306245480904
812 => 0.0028698569025046
813 => 0.0028742441302376
814 => 0.0028386160818647
815 => 0.0028392149957945
816 => 0.0028360179462991
817 => 0.0028456125324976
818 => 0.0028009196539413
819 => 0.0028114089832076
820 => 0.0027967238608094
821 => 0.0028183181460246
822 => 0.0027950862647962
823 => 0.0028146124691138
824 => 0.0028230393315933
825 => 0.0028541346355602
826 => 0.0027904934631175
827 => 0.0026607248043781
828 => 0.002688003749738
829 => 0.0026476560468358
830 => 0.0026513903803539
831 => 0.0026589343283754
901 => 0.0026344819246118
902 => 0.002639146672666
903 => 0.0026389800150402
904 => 0.0026375438496566
905 => 0.002631182835041
906 => 0.0026219581053601
907 => 0.0026587065891869
908 => 0.0026649508726803
909 => 0.002678831141383
910 => 0.0027201294059661
911 => 0.0027160027354541
912 => 0.002722733506273
913 => 0.0027080402713669
914 => 0.00265207195738
915 => 0.0026551113061012
916 => 0.002617210578846
917 => 0.0026778619345746
918 => 0.0026634988929793
919 => 0.0026542389466257
920 => 0.0026517122844703
921 => 0.0026931129194633
922 => 0.0027055006383286
923 => 0.0026977814432406
924 => 0.0026819491489103
925 => 0.0027123518344222
926 => 0.0027204863104789
927 => 0.00272230731968
928 => 0.0027761750492705
929 => 0.0027253179273683
930 => 0.0027375597420865
1001 => 0.0028330668859376
1002 => 0.0027464550855496
1003 => 0.0027923352878887
1004 => 0.0027900896907333
1005 => 0.0028135604497486
1006 => 0.0027881644034339
1007 => 0.0027884792178649
1008 => 0.0028093196618235
1009 => 0.0027800530168775
1010 => 0.0027728061840111
1011 => 0.0027627947363089
1012 => 0.0027846543661051
1013 => 0.0027977582255418
1014 => 0.0029033657088778
1015 => 0.0029715929593992
1016 => 0.0029686310345175
1017 => 0.0029956974834453
1018 => 0.0029835038003031
1019 => 0.0029441271809058
1020 => 0.0030113382687498
1021 => 0.0029900698683246
1022 => 0.0029918232094145
1023 => 0.0029917579499716
1024 => 0.0030058995769385
1025 => 0.0029958789381714
1026 => 0.0029761272305638
1027 => 0.0029892393358473
1028 => 0.0030281776008758
1029 => 0.0031490431702959
1030 => 0.0032166811441993
1031 => 0.0031449712793382
1101 => 0.003194435783886
1102 => 0.0031647747071624
1103 => 0.0031593844071811
1104 => 0.0031904517714353
1105 => 0.003221573514998
1106 => 0.0032195911944761
1107 => 0.0031969984067688
1108 => 0.0031842363142637
1109 => 0.0032808751543269
1110 => 0.0033520770054857
1111 => 0.0033472215165799
1112 => 0.0033686520655204
1113 => 0.0034315728200315
1114 => 0.0034373255052755
1115 => 0.0034366007991587
1116 => 0.003422342168551
1117 => 0.0034842958226597
1118 => 0.0035359786508879
1119 => 0.0034190417075367
1120 => 0.0034635697647479
1121 => 0.0034835598442344
1122 => 0.0035129112117099
1123 => 0.0035624318885014
1124 => 0.0036162244782078
1125 => 0.003623831340198
1126 => 0.0036184339075941
1127 => 0.0035829562486603
1128 => 0.0036418167421961
1129 => 0.0036762958388609
1130 => 0.0036968273518847
1201 => 0.0037488918527951
1202 => 0.0034836832961598
1203 => 0.0032959554980529
1204 => 0.0032666390915562
1205 => 0.0033262551569779
1206 => 0.0033419754380004
1207 => 0.0033356386124318
1208 => 0.0031243339081977
1209 => 0.0032655266160189
1210 => 0.0034174380978145
1211 => 0.0034232736365092
1212 => 0.0034993237006154
1213 => 0.0035240887188858
1214 => 0.003585318988601
1215 => 0.0035814890185591
1216 => 0.0035963976148484
1217 => 0.0035929703867424
1218 => 0.0037063865678353
1219 => 0.0038315014580468
1220 => 0.0038271691272397
1221 => 0.0038091823814796
1222 => 0.0038358957661293
1223 => 0.0039650277409539
1224 => 0.0039531393380098
1225 => 0.0039646879088183
1226 => 0.0041169417846957
1227 => 0.0043148934811977
1228 => 0.0042229250441471
1229 => 0.004422470089342
1230 => 0.0045480731178638
1231 => 0.0047652905680967
]
'min_raw' => 0.0019455625796628
'max_raw' => 0.0047652905680967
'avg_raw' => 0.0033554265738798
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001945'
'max' => '$0.004765'
'avg' => '$0.003355'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00086751318671023
'max_diff' => 0.0019332478631979
'year' => 2028
]
3 => [
'items' => [
101 => 0.0047380938735091
102 => 0.0048226550328695
103 => 0.0046894061140757
104 => 0.0043834396624757
105 => 0.0043350193003174
106 => 0.0044319580915571
107 => 0.0046702726506708
108 => 0.0044244527180011
109 => 0.0044741817702236
110 => 0.0044598597998381
111 => 0.0044590966429007
112 => 0.0044882232392173
113 => 0.004445973592119
114 => 0.004273840929274
115 => 0.0043527283142717
116 => 0.0043222661064407
117 => 0.0043560661971372
118 => 0.0045384713464085
119 => 0.00445782568192
120 => 0.0043728720255032
121 => 0.0044794227633754
122 => 0.0046150984674927
123 => 0.0046066081257617
124 => 0.0045901333141161
125 => 0.0046830009647694
126 => 0.0048363911159802
127 => 0.0048778518574809
128 => 0.0049084573292291
129 => 0.0049126773066995
130 => 0.0049561456973461
131 => 0.0047224052053947
201 => 0.0050933573690032
202 => 0.0051574105603117
203 => 0.0051453712150784
204 => 0.0052165636414475
205 => 0.0051956170236322
206 => 0.0051652686608414
207 => 0.0052781237996997
208 => 0.0051487444899388
209 => 0.0049651068481353
210 => 0.0048643596059012
211 => 0.0049970317015233
212 => 0.0050780499207016
213 => 0.005131597809852
214 => 0.0051478013687543
215 => 0.004740549814411
216 => 0.0045210638138266
217 => 0.0046617518237891
218 => 0.0048334009057111
219 => 0.0047214516860778
220 => 0.0047258398835395
221 => 0.0045662297160798
222 => 0.0048475228639083
223 => 0.0048065408183175
224 => 0.0050191557433388
225 => 0.0049684134851411
226 => 0.0051417927028321
227 => 0.0050961361442438
228 => 0.0052856539663203
301 => 0.0053612577565369
302 => 0.0054882082871008
303 => 0.0055815936141653
304 => 0.0056364312643941
305 => 0.0056331390175653
306 => 0.005850433107781
307 => 0.0057223023744581
308 => 0.0055613399753092
309 => 0.0055584286733385
310 => 0.0056417933807125
311 => 0.0058165029373779
312 => 0.0058618025835005
313 => 0.0058871189057917
314 => 0.0058483460769352
315 => 0.0057092693491256
316 => 0.0056492167231923
317 => 0.0057003833003795
318 => 0.0056378109732737
319 => 0.0057458283645525
320 => 0.005894159314048
321 => 0.0058635295595413
322 => 0.0059659202365877
323 => 0.0060718838155174
324 => 0.0062234164925089
325 => 0.0062630327455133
326 => 0.0063285169052583
327 => 0.0063959216160619
328 => 0.0064175701925641
329 => 0.0064589040422656
330 => 0.0064586861924747
331 => 0.0065832485306391
401 => 0.006720644647009
402 => 0.0067725085002112
403 => 0.0068917665708601
404 => 0.006687541304175
405 => 0.0068424485149264
406 => 0.0069821786966032
407 => 0.006815586613609
408 => 0.0070451949890394
409 => 0.0070541101619536
410 => 0.0071887186883772
411 => 0.0070522671589736
412 => 0.0069712426763824
413 => 0.0072051573216753
414 => 0.0073183412502903
415 => 0.0072842493298701
416 => 0.0070248081321467
417 => 0.0068738022271153
418 => 0.0064785906467843
419 => 0.0069467358355561
420 => 0.0071747557010245
421 => 0.0070242176157807
422 => 0.0071001402697002
423 => 0.0075143496514816
424 => 0.0076720537659926
425 => 0.0076392524126093
426 => 0.0076447953013748
427 => 0.0077298895790328
428 => 0.0081072444684429
429 => 0.0078811246716905
430 => 0.0080539847837605
501 => 0.008145669163909
502 => 0.0082308307258169
503 => 0.0080217008453591
504 => 0.0077496259436117
505 => 0.0076634484013008
506 => 0.0070092495699846
507 => 0.0069751956797731
508 => 0.0069560801992589
509 => 0.0068355597985552
510 => 0.0067408637769181
511 => 0.0066655579846745
512 => 0.006467933097614
513 => 0.0065346256956575
514 => 0.0062196528732027
515 => 0.0064211613230578
516 => 0.0059184570931351
517 => 0.0063371241137516
518 => 0.0061092626888836
519 => 0.0062622655073691
520 => 0.0062617316949491
521 => 0.0059800049965296
522 => 0.0058175109163674
523 => 0.005921058468611
524 => 0.006032069664231
525 => 0.0060500808572338
526 => 0.0061940097700439
527 => 0.0062341772358675
528 => 0.0061124679391822
529 => 0.0059080396653369
530 => 0.0059555236908387
531 => 0.0058165486541062
601 => 0.0055730002478301
602 => 0.0057479209651648
603 => 0.0058076465887839
604 => 0.0058340248266678
605 => 0.0055945229408188
606 => 0.0055192662484461
607 => 0.0054792002168917
608 => 0.0058771229794097
609 => 0.0058989220866002
610 => 0.0057873947721301
611 => 0.0062915088089891
612 => 0.0061774122766053
613 => 0.0063048860576072
614 => 0.0059512150132284
615 => 0.0059647257234049
616 => 0.005797292183166
617 => 0.0058910437777866
618 => 0.0058247831724637
619 => 0.0058834695754125
620 => 0.005918645963367
621 => 0.0060860520294094
622 => 0.0063390356221178
623 => 0.006061047145643
624 => 0.0059399235855746
625 => 0.0060150679610163
626 => 0.0062151873352274
627 => 0.0065183784310795
628 => 0.0063388832000456
629 => 0.0064185401355518
630 => 0.0064359416322695
701 => 0.0063035884941797
702 => 0.0065232584800675
703 => 0.0066409814101005
704 => 0.0067617407769864
705 => 0.0068665927516528
706 => 0.0067135068302968
707 => 0.0068773307101526
708 => 0.0067453175817965
709 => 0.0066268881583948
710 => 0.0066270677669445
711 => 0.0065527752596668
712 => 0.0064088241653579
713 => 0.0063822773749613
714 => 0.0065203771310944
715 => 0.0066311200574176
716 => 0.0066402413752524
717 => 0.0067015543494419
718 => 0.0067378387359934
719 => 0.0070934750504295
720 => 0.0072365149180736
721 => 0.0074114213606227
722 => 0.0074795572771825
723 => 0.0076846219579496
724 => 0.0075190155736911
725 => 0.0074831855907438
726 => 0.0069857657513487
727 => 0.0070672182221837
728 => 0.0071976314869849
729 => 0.0069879162180511
730 => 0.0071209322863887
731 => 0.0071471924759441
801 => 0.0069807901734613
802 => 0.0070696728330364
803 => 0.0068336268410768
804 => 0.0063441807797032
805 => 0.0065238033734493
806 => 0.0066560660627578
807 => 0.0064673108972426
808 => 0.0068056472255948
809 => 0.006607998127251
810 => 0.0065453528519058
811 => 0.0063009512981313
812 => 0.0064162994236344
813 => 0.0065723094150033
814 => 0.0064759133784455
815 => 0.0066759496282407
816 => 0.00695925430567
817 => 0.0071611540898913
818 => 0.0071766534483242
819 => 0.0070468454133049
820 => 0.0072548636178471
821 => 0.0072563788033686
822 => 0.0070217334188656
823 => 0.0068780144273685
824 => 0.006845361170113
825 => 0.0069269354087854
826 => 0.0070259815939689
827 => 0.0071821498222755
828 => 0.0072765190119253
829 => 0.0075225838089814
830 => 0.0075891618878342
831 => 0.0076623110112811
901 => 0.0077600607985604
902 => 0.0078774344807203
903 => 0.007620627546242
904 => 0.0076308309644968
905 => 0.0073916959028446
906 => 0.0071361457940324
907 => 0.0073300764718501
908 => 0.0075836150355798
909 => 0.007525453008925
910 => 0.0075189085927839
911 => 0.0075299144854635
912 => 0.00748606221676
913 => 0.0072877200306549
914 => 0.0071881138264807
915 => 0.0073166312421182
916 => 0.0073849325288775
917 => 0.0074908618681429
918 => 0.0074778038411814
919 => 0.0077506664431486
920 => 0.0078566925993363
921 => 0.0078295665714685
922 => 0.0078345584134205
923 => 0.008026513704729
924 => 0.0082400074672806
925 => 0.0084399725488935
926 => 0.0086433856186102
927 => 0.0083981632237195
928 => 0.0082736544148086
929 => 0.0084021157237629
930 => 0.0083339523450079
1001 => 0.0087256393379054
1002 => 0.0087527588954625
1003 => 0.0091444175649322
1004 => 0.0095161482801057
1005 => 0.0092826708781527
1006 => 0.0095028295521413
1007 => 0.0097409491078599
1008 => 0.010200320364347
1009 => 0.010045620286038
1010 => 0.0099271224505122
1011 => 0.009815142568518
1012 => 0.010048154926642
1013 => 0.010347921602906
1014 => 0.010412488473844
1015 => 0.010517111471206
1016 => 0.010407113182171
1017 => 0.010539594005399
1018 => 0.011007309526418
1019 => 0.010880928664
1020 => 0.010701447522628
1021 => 0.011070664006597
1022 => 0.011204282016852
1023 => 0.01214208318912
1024 => 0.013326095907743
1025 => 0.012835906867587
1026 => 0.01253163071206
1027 => 0.012603142826136
1028 => 0.013035504189617
1029 => 0.013174364937103
1030 => 0.012796893557265
1031 => 0.012930222830017
1101 => 0.013664880231526
1102 => 0.014059000356804
1103 => 0.013523732289282
1104 => 0.012046948920026
1105 => 0.010685287209593
1106 => 0.011046461211626
1107 => 0.01100551528833
1108 => 0.011794813015874
1109 => 0.010877914522228
1110 => 0.010893352741344
1111 => 0.011698972310013
1112 => 0.011484046820908
1113 => 0.011135895054135
1114 => 0.010687829102779
1115 => 0.0098595377506125
1116 => 0.0091258970013859
1117 => 0.010564735457993
1118 => 0.010502690127386
1119 => 0.010412839294065
1120 => 0.010612792600746
1121 => 0.011583709100256
1122 => 0.011561326332392
1123 => 0.011418938583032
1124 => 0.011526938435973
1125 => 0.011116962157742
1126 => 0.011222622379629
1127 => 0.010685071515421
1128 => 0.01092806695615
1129 => 0.011135148076806
1130 => 0.011176722677666
1201 => 0.011270392376256
1202 => 0.010469995057518
1203 => 0.010829349955201
1204 => 0.011040437290589
1205 => 0.010086737029883
1206 => 0.011021585702815
1207 => 0.010456061920922
1208 => 0.010264114655466
1209 => 0.010522546361274
1210 => 0.010421835274187
1211 => 0.010335249795464
1212 => 0.010286933610609
1213 => 0.010476697333288
1214 => 0.010467844628808
1215 => 0.010157354346954
1216 => 0.0097523324314791
1217 => 0.0098882710807037
1218 => 0.0098388832950088
1219 => 0.0096598955884992
1220 => 0.0097805116916286
1221 => 0.0092493794158596
1222 => 0.0083355939412524
1223 => 0.008939268615784
1224 => 0.0089160277974862
1225 => 0.0089043087230133
1226 => 0.0093579535565812
1227 => 0.0093143460732006
1228 => 0.0092351980638592
1229 => 0.009658441973239
1230 => 0.0095039522528815
1231 => 0.0099800531686674
]
'min_raw' => 0.004273840929274
'max_raw' => 0.014059000356804
'avg_raw' => 0.0091664206430393
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004273'
'max' => '$0.014059'
'avg' => '$0.009166'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0023282783496112
'max_diff' => 0.0092937097887078
'year' => 2029
]
4 => [
'items' => [
101 => 0.010293644024081
102 => 0.010214107239546
103 => 0.010509040954779
104 => 0.0098914028326244
105 => 0.010096557441464
106 => 0.010138839522013
107 => 0.0096532192090957
108 => 0.0093214807967845
109 => 0.0092993576267782
110 => 0.0087241689361998
111 => 0.0090314300919459
112 => 0.0093018071936719
113 => 0.0091723175440558
114 => 0.0091313249893806
115 => 0.0093407470610158
116 => 0.0093570209495606
117 => 0.0089859745661097
118 => 0.0090631268587399
119 => 0.0093848647445096
120 => 0.0090550198895129
121 => 0.0084141852161056
122 => 0.0082552493568681
123 => 0.0082340443834767
124 => 0.0078029977278625
125 => 0.0082658702109637
126 => 0.0080638139678787
127 => 0.0087021072187787
128 => 0.0083375175371
129 => 0.008321800804619
130 => 0.0082980426583306
131 => 0.0079270229955303
201 => 0.0080082527221539
202 => 0.0082782727050875
203 => 0.008374618876991
204 => 0.0083645691819206
205 => 0.0082769494598623
206 => 0.008317061319935
207 => 0.0081878470427422
208 => 0.0081422187921029
209 => 0.0079982034820459
210 => 0.007786540761507
211 => 0.0078159737610009
212 => 0.0073966145270498
213 => 0.0071681253593142
214 => 0.0071048825691238
215 => 0.007020311666983
216 => 0.0071144350775552
217 => 0.0073954265350297
218 => 0.0070564912216522
219 => 0.0064754104004143
220 => 0.0065103343478842
221 => 0.0065887980888361
222 => 0.0064425814266618
223 => 0.0063041996269482
224 => 0.0064245113745289
225 => 0.0061782997703173
226 => 0.0066185515849152
227 => 0.0066066440071218
228 => 0.0067707426586143
301 => 0.0068733569130359
302 => 0.0066368642783535
303 => 0.006577387020275
304 => 0.0066112679695672
305 => 0.0060512913485143
306 => 0.0067249806219326
307 => 0.0067308067147447
308 => 0.0066809201709641
309 => 0.0070396389112366
310 => 0.0077966473403924
311 => 0.0075118303187505
312 => 0.0074015405593307
313 => 0.0071918796460523
314 => 0.0074712403645625
315 => 0.007449789820087
316 => 0.0073527823230914
317 => 0.0072941118862266
318 => 0.0074022139650838
319 => 0.0072807168423435
320 => 0.0072588926205817
321 => 0.0071266615816926
322 => 0.0070794611169382
323 => 0.0070445157719386
324 => 0.0070060443807527
325 => 0.0070909026832353
326 => 0.0068986026057704
327 => 0.0066667075637567
328 => 0.0066474280001524
329 => 0.0067006605703405
330 => 0.006677109120731
331 => 0.0066473152448725
401 => 0.0065904306219795
402 => 0.0065735541695148
403 => 0.0066283944527343
404 => 0.0065664829703666
405 => 0.0066578367350931
406 => 0.0066329935659219
407 => 0.0064942216424229
408 => 0.0063212604457967
409 => 0.0063197207283483
410 => 0.0062824565222484
411 => 0.0062349949530693
412 => 0.0062217922302972
413 => 0.0064143790547244
414 => 0.0068130280176501
415 => 0.0067347636873666
416 => 0.0067913176868476
417 => 0.0070695073907436
418 => 0.0071579355321559
419 => 0.0070951713319168
420 => 0.0070092558235022
421 => 0.0070130356698438
422 => 0.0073066349704895
423 => 0.0073249463987346
424 => 0.0073712134704192
425 => 0.0074306797326067
426 => 0.0071052986935067
427 => 0.0069977102521633
428 => 0.0069467288798753
429 => 0.0067897259855023
430 => 0.0069590401466727
501 => 0.006860388035714
502 => 0.0068736995759183
503 => 0.0068650304178972
504 => 0.0068697643643826
505 => 0.0066184285255607
506 => 0.0067100020954046
507 => 0.0065577432745531
508 => 0.0063538858052877
509 => 0.0063532024035691
510 => 0.0064030962303671
511 => 0.006373417429842
512 => 0.0062935525407406
513 => 0.0063048969712858
514 => 0.0062055078225391
515 => 0.0063169646134423
516 => 0.0063201607953939
517 => 0.0062772438598037
518 => 0.0064489584242633
519 => 0.0065193100214282
520 => 0.0064910611750529
521 => 0.0065173280070608
522 => 0.0067380159236321
523 => 0.0067739976833221
524 => 0.0067899784041548
525 => 0.0067685663552788
526 => 0.0065213617770533
527 => 0.0065323263512926
528 => 0.0064518755806337
529 => 0.0063839031571202
530 => 0.0063866216975923
531 => 0.0064215683590748
601 => 0.0065741824793633
602 => 0.0068953498984166
603 => 0.0069075379671993
604 => 0.0069223102621151
605 => 0.0068622239147322
606 => 0.0068441012974126
607 => 0.0068680097075015
608 => 0.0069886233039173
609 => 0.0072988742201707
610 => 0.0071892108254047
611 => 0.0071000527784476
612 => 0.0071782684224659
613 => 0.0071662277371438
614 => 0.0070645922357076
615 => 0.0070617396656898
616 => 0.0068666686435984
617 => 0.0067945553282834
618 => 0.0067342920444182
619 => 0.0066684861116501
620 => 0.0066294741488704
621 => 0.0066894142543201
622 => 0.0067031232656269
623 => 0.0065720631774875
624 => 0.0065542001717578
625 => 0.0066612266688609
626 => 0.0066141282978358
627 => 0.0066625701404185
628 => 0.0066738090634241
629 => 0.0066719993379659
630 => 0.0066228232294022
701 => 0.006654166614548
702 => 0.0065800301647654
703 => 0.0064994179105614
704 => 0.0064479923147002
705 => 0.0064031166616959
706 => 0.0064280162821709
707 => 0.0063392536816684
708 => 0.0063108567393294
709 => 0.0066435481809091
710 => 0.0068893109258397
711 => 0.0068857374381957
712 => 0.0068639847511891
713 => 0.0068316646706688
714 => 0.0069862588887179
715 => 0.0069324013543586
716 => 0.0069715872105526
717 => 0.0069815616555791
718 => 0.0070117512965639
719 => 0.0070225414983287
720 => 0.0069899260143187
721 => 0.0068804644663351
722 => 0.0066076966960517
723 => 0.0064807225626623
724 => 0.0064388189837223
725 => 0.0064403420992305
726 => 0.0063983277740262
727 => 0.0064107028757488
728 => 0.0063940242186715
729 => 0.0063624388771676
730 => 0.0064260659763382
731 => 0.0064333984067902
801 => 0.0064185470815566
802 => 0.0064220451062749
803 => 0.0062990824764243
804 => 0.0063084310581111
805 => 0.006256376967319
806 => 0.0062466174528169
807 => 0.0061150292441626
808 => 0.0058819016585157
809 => 0.0060110769712064
810 => 0.0058550513582736
811 => 0.0057959620944822
812 => 0.006075681479005
813 => 0.006047605411007
814 => 0.0059995513869677
815 => 0.0059284694700775
816 => 0.0059021044956624
817 => 0.0057419192572534
818 => 0.0057324546588132
819 => 0.005811846788334
820 => 0.0057752100522765
821 => 0.0057237581994348
822 => 0.005537404804033
823 => 0.0053278818881126
824 => 0.0053342060679302
825 => 0.005400851409172
826 => 0.0055946317271815
827 => 0.0055189184045016
828 => 0.0054639875201871
829 => 0.0054537006167713
830 => 0.005582462750111
831 => 0.0057646881452874
901 => 0.0058501842236408
902 => 0.0057654602065471
903 => 0.0056681338175749
904 => 0.0056740576239046
905 => 0.0057134660535039
906 => 0.0057176073222496
907 => 0.0056542578483432
908 => 0.0056720903541762
909 => 0.0056450011471773
910 => 0.0054787547338282
911 => 0.0054757478633838
912 => 0.0054349483124624
913 => 0.0054337129182752
914 => 0.005364302704233
915 => 0.0053545917354783
916 => 0.0052167735425985
917 => 0.0053074858945039
918 => 0.005246640811458
919 => 0.0051549329194037
920 => 0.0051391224442467
921 => 0.0051386471622718
922 => 0.0052328106619021
923 => 0.0053063855391861
924 => 0.0052476992377276
925 => 0.0052343375044717
926 => 0.0053770058585002
927 => 0.0053588500099992
928 => 0.0053431271622899
929 => 0.005748371859815
930 => 0.0054275890600858
1001 => 0.0052877094497618
1002 => 0.0051145818695683
1003 => 0.0051709530826643
1004 => 0.0051828313255291
1005 => 0.0047664907037556
1006 => 0.004597581365354
1007 => 0.0045396180456287
1008 => 0.0045062593356458
1009 => 0.0045214613186773
1010 => 0.0043694231030266
1011 => 0.0044715952984239
1012 => 0.0043399430551407
1013 => 0.0043178711281209
1014 => 0.0045532816476945
1015 => 0.0045860376462448
1016 => 0.0044462903799379
1017 => 0.0045360307479343
1018 => 0.0045034896430144
1019 => 0.004342199854987
1020 => 0.0043360397714517
1021 => 0.0042551102254297
1022 => 0.0041284711569534
1023 => 0.0040705937044799
1024 => 0.0040404506247166
1025 => 0.0040528882469039
1026 => 0.0040465994045285
1027 => 0.0040055604540921
1028 => 0.004048951709129
1029 => 0.0039381049830143
1030 => 0.0038939649235226
1031 => 0.0038740278826919
1101 => 0.0037756450331656
1102 => 0.0039322158978137
1103 => 0.0039630623305771
1104 => 0.0039939695403421
1105 => 0.0042629957000977
1106 => 0.0042495559134164
1107 => 0.0043710450395742
1108 => 0.0043663241955359
1109 => 0.0043316735287623
1110 => 0.0041854880654026
1111 => 0.0042437549855924
1112 => 0.0040644184619379
1113 => 0.0041987895791581
1114 => 0.0041374682127308
1115 => 0.0041780567634853
1116 => 0.0041050748895067
1117 => 0.0041454660719142
1118 => 0.0039703771641126
1119 => 0.0038068816055748
1120 => 0.0038726769910633
1121 => 0.0039442040997043
1122 => 0.0040992930960063
1123 => 0.0040069233692653
1124 => 0.0040401430158874
1125 => 0.0039288627606049
1126 => 0.0036992598083237
1127 => 0.0037005593360988
1128 => 0.0036652399240625
1129 => 0.0036347187953446
1130 => 0.0040175331435343
1201 => 0.0039699241279377
1202 => 0.0038940653924983
1203 => 0.0039956053243902
1204 => 0.0040224540940378
1205 => 0.0040232184407648
1206 => 0.0040972993539482
1207 => 0.0041368363505939
1208 => 0.0041438049176158
1209 => 0.004260372835134
1210 => 0.004299444863518
1211 => 0.0044603770187516
1212 => 0.0041334819126581
1213 => 0.0041267497230674
1214 => 0.0039970341994643
1215 => 0.003914766563674
1216 => 0.0040026671348699
1217 => 0.004080535041325
1218 => 0.0039994537723738
1219 => 0.0040100412743799
1220 => 0.0039011962953959
1221 => 0.0039401032537504
1222 => 0.0039736151676186
1223 => 0.0039551118585198
1224 => 0.0039274115092287
1225 => 0.0040741507609896
1226 => 0.0040658711573295
1227 => 0.00420251812209
1228 => 0.0043090442028391
1229 => 0.004499957983356
1230 => 0.0043007295008261
1231 => 0.0042934688230612
]
'min_raw' => 0.0036347187953446
'max_raw' => 0.010509040954779
'avg_raw' => 0.0070718798750616
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003634'
'max' => '$0.010509'
'avg' => '$0.007071'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00063912213392941
'max_diff' => -0.0035499594020259
'year' => 2030
]
5 => [
'items' => [
101 => 0.0043644431128624
102 => 0.004299433997724
103 => 0.0043405175144531
104 => 0.0044933387936623
105 => 0.0044965676664794
106 => 0.0044424798866258
107 => 0.0044391886403062
108 => 0.0044495767900825
109 => 0.0045104205077907
110 => 0.0044891598432848
111 => 0.0045137632225051
112 => 0.0045445301249604
113 => 0.0046717950784119
114 => 0.0047024782278355
115 => 0.004627934082125
116 => 0.0046346645838473
117 => 0.004606783027069
118 => 0.004579849792576
119 => 0.0046403917704332
120 => 0.0047510334249226
121 => 0.0047503451289323
122 => 0.0047760118422074
123 => 0.0047920019919433
124 => 0.004723360563772
125 => 0.0046786775180477
126 => 0.0046958118410345
127 => 0.0047232099966273
128 => 0.0046869269884388
129 => 0.0044629714539752
130 => 0.0045309052567966
131 => 0.0045195977502139
201 => 0.0045034944858003
202 => 0.0045718024498537
203 => 0.0045652139800824
204 => 0.0043678637313726
205 => 0.0043804974539937
206 => 0.0043686320298894
207 => 0.0044069716426078
208 => 0.0042973635328174
209 => 0.004331078249167
210 => 0.0043522238032057
211 => 0.0043646786969822
212 => 0.0044096743137038
213 => 0.004404394597419
214 => 0.0044093461191265
215 => 0.0044760627403222
216 => 0.0048134925159504
217 => 0.004831858074141
218 => 0.0047414193487231
219 => 0.0047775478357026
220 => 0.0047081890411336
221 => 0.0047547500645913
222 => 0.0047866059343193
223 => 0.00464265538455
224 => 0.0046341315672239
225 => 0.0045644865042375
226 => 0.0046019098161884
227 => 0.0045423666360431
228 => 0.0045569764497187
301 => 0.004516126137021
302 => 0.0045896485666608
303 => 0.0046718580672286
304 => 0.0046926274336236
305 => 0.0046379921724128
306 => 0.0045984326426571
307 => 0.0045289791401251
308 => 0.004644481862708
309 => 0.0046782583786729
310 => 0.0046443044490487
311 => 0.0046364365816468
312 => 0.004621526987137
313 => 0.0046395997226042
314 => 0.0046780744245131
315 => 0.004659930465609
316 => 0.0046719148701206
317 => 0.0046262426783869
318 => 0.0047233832869409
319 => 0.0048776659514851
320 => 0.0048781619954794
321 => 0.0048600179387727
322 => 0.0048525937816874
323 => 0.004871210684942
324 => 0.0048813095912522
325 => 0.0049415132426211
326 => 0.0050061141591593
327 => 0.0053075784490548
328 => 0.005222928482781
329 => 0.0054904055349672
330 => 0.0057019451556981
331 => 0.0057653766384488
401 => 0.0057070226590001
402 => 0.0055073968475259
403 => 0.0054976022528498
404 => 0.0057959274950358
405 => 0.0057116369499565
406 => 0.0057016108578297
407 => 0.0055949501769496
408 => 0.005657999849532
409 => 0.0056442099612553
410 => 0.0056224419479862
411 => 0.0057427363311952
412 => 0.0059679166778089
413 => 0.0059328202090613
414 => 0.0059066223232195
415 => 0.0057918308135506
416 => 0.0058609609419832
417 => 0.0058363450273487
418 => 0.0059421106182637
419 => 0.0058794574252004
420 => 0.0057109983661755
421 => 0.0057378260265736
422 => 0.0057337710796741
423 => 0.0058172215995272
424 => 0.0057921718248365
425 => 0.0057288797091313
426 => 0.0059671470358644
427 => 0.0059516752809789
428 => 0.005973610692071
429 => 0.0059832673384089
430 => 0.0061282964614501
501 => 0.0061877102527458
502 => 0.0062011982235548
503 => 0.0062576367300581
504 => 0.0061997939820987
505 => 0.0064312062151169
506 => 0.0065850818467959
507 => 0.0067638163113587
508 => 0.0070249954033799
509 => 0.0071232011580215
510 => 0.0071054611674511
511 => 0.0073034841742259
512 => 0.0076593271155959
513 => 0.0071773871998411
514 => 0.0076848711013724
515 => 0.007524207557331
516 => 0.0071432771846225
517 => 0.0071187497594942
518 => 0.0073767202305849
519 => 0.0079488739067265
520 => 0.0078055559001663
521 => 0.007949108323643
522 => 0.0077816467964216
523 => 0.0077733309201184
524 => 0.007940975091047
525 => 0.0083326848342295
526 => 0.0081465982182637
527 => 0.0078797974239664
528 => 0.0080767989785954
529 => 0.0079061380003425
530 => 0.0075215910513388
531 => 0.0078054463075877
601 => 0.0076156403814663
602 => 0.0076710358413466
603 => 0.008069979666553
604 => 0.0080219776900297
605 => 0.0080840966925142
606 => 0.0079744582790665
607 => 0.0078720387125154
608 => 0.0076808649857709
609 => 0.0076242678700327
610 => 0.0076399092766719
611 => 0.0076242601189284
612 => 0.0075173001757921
613 => 0.0074942021862556
614 => 0.0074557045250819
615 => 0.0074676365600468
616 => 0.0073952496941522
617 => 0.0075318586659849
618 => 0.0075572144949512
619 => 0.0076566271124082
620 => 0.0076669484601413
621 => 0.007943811184709
622 => 0.0077913198485062
623 => 0.0078936242022996
624 => 0.0078844731379704
625 => 0.007151533100881
626 => 0.0072525257712072
627 => 0.007409638672989
628 => 0.0073388595236978
629 => 0.0072387943663703
630 => 0.0071579863866741
701 => 0.0070355540343941
702 => 0.0072078752191231
703 => 0.0074344592527267
704 => 0.0076726950051541
705 => 0.0079589196518706
706 => 0.0078950376427457
707 => 0.0076673442344774
708 => 0.0076775583944422
709 => 0.0077406983122206
710 => 0.0076589263818311
711 => 0.0076348102431815
712 => 0.0077373851250987
713 => 0.0077380915019363
714 => 0.0076440030135552
715 => 0.0075394408767313
716 => 0.0075390027575601
717 => 0.0075203969352627
718 => 0.0077849567308752
719 => 0.0079304378684498
720 => 0.0079471170464181
721 => 0.0079293152268798
722 => 0.0079361664406911
723 => 0.0078515141721946
724 => 0.0080450041551272
725 => 0.0082225696976422
726 => 0.0081749783391137
727 => 0.0081036321271692
728 => 0.0080468014328562
729 => 0.008161590833639
730 => 0.0081564794423174
731 => 0.0082210188175332
801 => 0.0082180909386759
802 => 0.0081963887742395
803 => 0.0081749791141663
804 => 0.0082598659963182
805 => 0.0082354199375001
806 => 0.0082109359072004
807 => 0.008161829436117
808 => 0.0081685038211094
809 => 0.0080971699280942
810 => 0.0080641676051686
811 => 0.0075678918520115
812 => 0.0074352707544899
813 => 0.0074769960515216
814 => 0.0074907331027013
815 => 0.0074330162311013
816 => 0.0075157673987278
817 => 0.0075028707169084
818 => 0.0075530441615613
819 => 0.0075216979716199
820 => 0.0075229844301891
821 => 0.0076151668910943
822 => 0.0076419278516673
823 => 0.0076283170111324
824 => 0.0076378495772907
825 => 0.0078575235409643
826 => 0.0078262929281078
827 => 0.007809702287477
828 => 0.0078142980083142
829 => 0.0078704294158957
830 => 0.0078861431453573
831 => 0.0078195629694444
901 => 0.0078509625653003
902 => 0.0079846580592529
903 => 0.0080314439156267
904 => 0.0081807619106868
905 => 0.0081173289724695
906 => 0.0082337628758805
907 => 0.0085916409997232
908 => 0.0088775388083313
909 => 0.0086146153683087
910 => 0.009139630284951
911 => 0.0095484297064738
912 => 0.0095327393037847
913 => 0.0094614556689413
914 => 0.0089960483960324
915 => 0.0085677736846702
916 => 0.0089260436662295
917 => 0.0089269569700914
918 => 0.0088961812609415
919 => 0.0087050359745599
920 => 0.0088895298193069
921 => 0.0089041742707196
922 => 0.0088959772722024
923 => 0.0087494266292975
924 => 0.0085256708846677
925 => 0.0085693922215728
926 => 0.0086410086633144
927 => 0.0085054237983427
928 => 0.0084620962186075
929 => 0.0085426504327445
930 => 0.0088022128948308
1001 => 0.0087531441149163
1002 => 0.0087518627307703
1003 => 0.0089617997796453
1004 => 0.0088115301599015
1005 => 0.0085699436876463
1006 => 0.0085089399172677
1007 => 0.0082924176294877
1008 => 0.0084419703448833
1009 => 0.0084473524808668
1010 => 0.0083654439870364
1011 => 0.0085765901104971
1012 => 0.0085746443617979
1013 => 0.0087750961810709
1014 => 0.0091582847732556
1015 => 0.0090449570509811
1016 => 0.008913169239997
1017 => 0.0089274982291306
1018 => 0.0090846518729675
1019 => 0.008989633192435
1020 => 0.0090238025724482
1021 => 0.0090846001535184
1022 => 0.0091212808436971
1023 => 0.0089222204422977
1024 => 0.0088758099405719
1025 => 0.0087808703419134
1026 => 0.0087561023727549
1027 => 0.0088334286948825
1028 => 0.0088130559409812
1029 => 0.0084469001331781
1030 => 0.008408634813991
1031 => 0.0084098083567001
1101 => 0.0083135883921874
1102 => 0.008166829850868
1103 => 0.0085525025349582
1104 => 0.00852152762094
1105 => 0.0084873337131319
1106 => 0.0084915222717306
1107 => 0.0086589297122342
1108 => 0.0085618249424637
1109 => 0.0088199938880572
1110 => 0.008766922114112
1111 => 0.0087124892494233
1112 => 0.0087049649694578
1113 => 0.0086840129605464
1114 => 0.0086121607260902
1115 => 0.0085253948353344
1116 => 0.0084681044787247
1117 => 0.0078113787593144
1118 => 0.0079332632328392
1119 => 0.0080734802095101
1120 => 0.0081218825479726
1121 => 0.0080390869986926
1122 => 0.0086154299990206
1123 => 0.0087207334189598
1124 => 0.0084017624911917
1125 => 0.0083420960541034
1126 => 0.0086193417207027
1127 => 0.008452128691839
1128 => 0.0085274247084977
1129 => 0.0083646759052007
1130 => 0.0086953689087405
1201 => 0.0086928495821159
1202 => 0.0085642025346986
1203 => 0.0086729341382387
1204 => 0.0086540393463703
1205 => 0.0085087971466799
1206 => 0.0086999733455345
1207 => 0.008700068166544
1208 => 0.0085762481804329
1209 => 0.0084316535443355
1210 => 0.0084058034385742
1211 => 0.0083863288563561
1212 => 0.0085226351550857
1213 => 0.0086448469563079
1214 => 0.0088722528195076
1215 => 0.008929428056546
1216 => 0.0091525868130781
1217 => 0.0090197066389659
1218 => 0.0090786106990635
1219 => 0.0091425593887875
1220 => 0.0091732187422763
1221 => 0.0091232609710378
1222 => 0.0094699183757409
1223 => 0.0094991868820063
1224 => 0.0095090003589854
1225 => 0.0093921094325655
1226 => 0.0094959359338884
1227 => 0.0094473589522917
1228 => 0.0095737427633321
1229 => 0.0095935613586527
1230 => 0.0095767757134831
1231 => 0.0095830664484532
]
'min_raw' => 0.0042973635328174
'max_raw' => 0.0095935613586527
'avg_raw' => 0.0069454624457351
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004297'
'max' => '$0.009593'
'avg' => '$0.006945'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00066264473747275
'max_diff' => -0.0009154795961259
'year' => 2031
]
6 => [
'items' => [
101 => 0.0092872555080958
102 => 0.0092719161503113
103 => 0.0090627629184878
104 => 0.0091479944064385
105 => 0.0089886582249662
106 => 0.0090391853694556
107 => 0.0090614572533062
108 => 0.0090498236851009
109 => 0.0091528132668869
110 => 0.0090652510829873
111 => 0.0088341600831203
112 => 0.008603006122665
113 => 0.0086001041729854
114 => 0.0085392454154038
115 => 0.0084952556805098
116 => 0.00850372966407
117 => 0.0085335930874155
118 => 0.0084935199640562
119 => 0.0085020715966838
120 => 0.0086440856775327
121 => 0.0086725655886489
122 => 0.0085757797228566
123 => 0.0081871705055666
124 => 0.0080918048288912
125 => 0.0081603517861019
126 => 0.0081275907555446
127 => 0.0065596000721747
128 => 0.0069279762248979
129 => 0.0067090996238219
130 => 0.0068099680316259
131 => 0.0065865516997484
201 => 0.0066931776835736
202 => 0.0066734877577185
203 => 0.0072658257102546
204 => 0.00725657716786
205 => 0.0072610039556823
206 => 0.0070497018389877
207 => 0.0073863118483599
208 => 0.0075521380430811
209 => 0.0075214480277595
210 => 0.0075291720434255
211 => 0.0073964478633949
212 => 0.0072622890158657
213 => 0.0071134862070573
214 => 0.0073899434332404
215 => 0.007359206108971
216 => 0.0074297064719047
217 => 0.0076090087446551
218 => 0.0076354116854207
219 => 0.0076708975055618
220 => 0.0076581783650939
221 => 0.0079611998929554
222 => 0.007924501986531
223 => 0.0080129333823056
224 => 0.007831023291891
225 => 0.0076251747575225
226 => 0.0076642998342104
227 => 0.0076605317747014
228 => 0.007612560052374
229 => 0.0075692533264174
301 => 0.0074971598292941
302 => 0.0077252743220222
303 => 0.0077160132902034
304 => 0.0078659386305776
305 => 0.0078394378703694
306 => 0.007662459307863
307 => 0.0076687801318457
308 => 0.007711290710814
309 => 0.0078584203100004
310 => 0.007902098392386
311 => 0.0078818649643544
312 => 0.0079297559877099
313 => 0.0079676070998958
314 => 0.0079345095046344
315 => 0.0084031016568832
316 => 0.0082085095251387
317 => 0.0083033523761876
318 => 0.0083259718373163
319 => 0.0082680325632713
320 => 0.0082805975171618
321 => 0.0082996299985609
322 => 0.0084151914986744
323 => 0.0087184583129619
324 => 0.0088527731206028
325 => 0.0092568658463664
326 => 0.0088416201455806
327 => 0.0088169811841536
328 => 0.0088897704864948
329 => 0.0091270156940771
330 => 0.0093192806515134
331 => 0.0093830660299265
401 => 0.0093914963206656
402 => 0.0095111619309404
403 => 0.0095797520271183
404 => 0.009496631378335
405 => 0.0094261953315858
406 => 0.0091739021549742
407 => 0.0092031057771385
408 => 0.0094042897740119
409 => 0.0096884740192739
410 => 0.00993233366604
411 => 0.0098469425171092
412 => 0.010498416706694
413 => 0.010563007711558
414 => 0.010554083323163
415 => 0.010701231244674
416 => 0.010409172586629
417 => 0.010284311851945
418 => 0.0094414244043761
419 => 0.0096782413962106
420 => 0.010022468801616
421 => 0.0099769090137244
422 => 0.0097269218706938
423 => 0.0099321440283751
424 => 0.0098642911651555
425 => 0.0098107727967162
426 => 0.010055950817583
427 => 0.0097863675122821
428 => 0.010019779501926
429 => 0.0097204262108699
430 => 0.0098473325766848
501 => 0.009775294385678
502 => 0.009821911923928
503 => 0.0095493867478714
504 => 0.0096964347176968
505 => 0.0095432690688778
506 => 0.0095431964484175
507 => 0.0095398153082306
508 => 0.0097200140148258
509 => 0.0097258902881785
510 => 0.0095927231717395
511 => 0.0095735317097993
512 => 0.0096444926032446
513 => 0.0095614159817076
514 => 0.0096002870100467
515 => 0.0095625933455575
516 => 0.0095541077077309
517 => 0.0094864927018165
518 => 0.0094573622981552
519 => 0.0094687850800288
520 => 0.0094297932366465
521 => 0.0094062992406121
522 => 0.009535141761084
523 => 0.0094663063998883
524 => 0.0095245917547427
525 => 0.0094581682366879
526 => 0.0092279153837608
527 => 0.0090954945331626
528 => 0.008660568238434
529 => 0.0087839127960947
530 => 0.0088656903654329
531 => 0.0088386628792544
601 => 0.0088967283778144
602 => 0.0089002931278375
603 => 0.008881415442348
604 => 0.0088595575009324
605 => 0.0088489182638713
606 => 0.0089282144203616
607 => 0.0089742485081901
608 => 0.0088738978385587
609 => 0.0088503870807191
610 => 0.0089518471482288
611 => 0.0090137377307982
612 => 0.0094707030191759
613 => 0.0094368495546344
614 => 0.0095218151072266
615 => 0.0095122492899074
616 => 0.0096013067250979
617 => 0.0097468779931543
618 => 0.0094508909028291
619 => 0.009502264027246
620 => 0.0094896685235177
621 => 0.0096271829305052
622 => 0.0096276122354737
623 => 0.0095451654791305
624 => 0.00958986120329
625 => 0.0095649132762272
626 => 0.0096099975523442
627 => 0.009436397420976
628 => 0.0096478236420063
629 => 0.0097676886853258
630 => 0.0097693530115686
701 => 0.0098261680907942
702 => 0.0098838955017949
703 => 0.0099946982402129
704 => 0.0098808052735587
705 => 0.0096759229138047
706 => 0.0096907147584129
707 => 0.0095705923058527
708 => 0.0095726115859821
709 => 0.0095618325103974
710 => 0.0095941813276381
711 => 0.0094434961672285
712 => 0.0094788616731914
713 => 0.0094293497577432
714 => 0.0095021563980113
715 => 0.0094238284884516
716 => 0.0094896624495844
717 => 0.0095180742047789
718 => 0.0096229141931081
719 => 0.0094083435369326
720 => 0.0089708194438344
721 => 0.0090627923126705
722 => 0.008926757215349
723 => 0.0089393477815282
724 => 0.008964782728984
725 => 0.0088823397424827
726 => 0.0088980672662301
727 => 0.008897505368409
728 => 0.0088926632365482
729 => 0.00887121663166
730 => 0.0088401148114906
731 => 0.0089640148904099
801 => 0.0089850679281698
802 => 0.0090318662231904
803 => 0.009171106205585
804 => 0.0091571928478389
805 => 0.0091798861115825
806 => 0.0091303468442474
807 => 0.0089416457660578
808 => 0.0089518931424718
809 => 0.0088241081943865
810 => 0.0090285984747681
811 => 0.0089801724772339
812 => 0.0089489519215939
813 => 0.0089404331037311
814 => 0.00908001823511
815 => 0.0091217842941474
816 => 0.0090957584889713
817 => 0.0090423788032609
818 => 0.0091448835801122
819 => 0.0091723095340683
820 => 0.0091784491937288
821 => 0.0093600680049678
822 => 0.0091885996677437
823 => 0.0092298738007623
824 => 0.009551882804352
825 => 0.0092598650723011
826 => 0.009414553377741
827 => 0.0094069821901488
828 => 0.009486115492845
829 => 0.0094004909495997
830 => 0.0094015523684333
831 => 0.0094718173802733
901 => 0.0093731428435057
902 => 0.0093487096405389
903 => 0.0093149553456342
904 => 0.0093886566136825
905 => 0.0094328371906557
906 => 0.0097889001940021
907 => 0.01001893313261
908 => 0.010008946796076
909 => 0.010100203218355
910 => 0.010059091364305
911 => 0.0099263303428195
912 => 0.010152937218014
913 => 0.010081229321068
914 => 0.010087140832967
915 => 0.010086920806199
916 => 0.010134600288855
917 => 0.010100815005633
918 => 0.010034220744414
919 => 0.010078429122835
920 => 0.010209712201961
921 => 0.010617218907826
922 => 0.010845265059174
923 => 0.010603490243172
924 => 0.010770263273756
925 => 0.010670258882712
926 => 0.010652085109986
927 => 0.010756830897624
928 => 0.010861760028896
929 => 0.010855076496855
930 => 0.010778903335722
1001 => 0.01073587504982
1002 => 0.011061699646201
1003 => 0.011301761658538
1004 => 0.011285391038693
1005 => 0.011357645630679
1006 => 0.0115697873475
1007 => 0.011589182927439
1008 => 0.011586739530169
1009 => 0.011538665561569
1010 => 0.011747546631863
1011 => 0.011921798895614
1012 => 0.011527537826829
1013 => 0.011677667280566
1014 => 0.011745065229218
1015 => 0.011844025413908
1016 => 0.012010987833134
1017 => 0.012192353305008
1018 => 0.012218000371302
1019 => 0.012199802550441
1020 => 0.012080187146375
1021 => 0.012278639409839
1022 => 0.012394888091499
1023 => 0.012464111521123
1024 => 0.01263965062097
1025 => 0.011745481456004
1026 => 0.01111254407795
1027 => 0.01101370176664
1028 => 0.01121470149347
1029 => 0.011267703518492
1030 => 0.011246338468665
1031 => 0.010533909905516
1101 => 0.011009950977695
1102 => 0.01152213114469
1103 => 0.011541806070824
1104 => 0.011798214171604
1105 => 0.011881711159741
1106 => 0.012088153289046
1107 => 0.01207524027765
1108 => 0.012125505650924
1109 => 0.012113950512084
1110 => 0.012496341085103
1111 => 0.012918174672694
1112 => 0.012903567916904
1113 => 0.01284292434778
1114 => 0.012932990389195
1115 => 0.013368367858023
1116 => 0.013328285277475
1117 => 0.013367222090251
1118 => 0.013880556662798
1119 => 0.014547964628101
1120 => 0.014237886621553
1121 => 0.014910666673218
1122 => 0.015334146053203
1123 => 0.016066509852301
1124 => 0.015974814297686
1125 => 0.016259918150341
1126 => 0.015810660117486
1127 => 0.014779072864021
1128 => 0.014615820232403
1129 => 0.014942656135117
1130 => 0.01574615030976
1201 => 0.014917351244165
1202 => 0.015085016215705
1203 => 0.015036728692622
1204 => 0.015034155655725
1205 => 0.015132358008761
1206 => 0.014989910373793
1207 => 0.014409553083092
1208 => 0.014675527409353
1209 => 0.014572821948848
1210 => 0.014686781314478
1211 => 0.015301773010367
1212 => 0.015029870522043
1213 => 0.014743443338159
1214 => 0.01510268659003
1215 => 0.015560126699037
1216 => 0.015531500919114
1217 => 0.015475954941416
1218 => 0.015789064709407
1219 => 0.016306230313572
1220 => 0.016446018098238
1221 => 0.016549206583043
1222 => 0.016563434531714
1223 => 0.016709991245645
1224 => 0.015921918857791
1225 => 0.01717260997645
1226 => 0.017388569782997
1227 => 0.017347978289983
1228 => 0.017588008525983
1229 => 0.017517385541572
1230 => 0.017415063917568
1231 => 0.017795562897523
]
'min_raw' => 0.0065596000721747
'max_raw' => 0.017795562897523
'avg_raw' => 0.012177581484849
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.006559'
'max' => '$0.017795'
'avg' => '$0.012177'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0022622365393573
'max_diff' => 0.0082020015388706
'year' => 2032
]
7 => [
'items' => [
101 => 0.017359351521689
102 => 0.016740204391178
103 => 0.016400528030038
104 => 0.016847841263298
105 => 0.017120999845769
106 => 0.017301540292634
107 => 0.017356171722769
108 => 0.015983094673905
109 => 0.015243082298912
110 => 0.015717421747024
111 => 0.01629614861088
112 => 0.015918704000841
113 => 0.015933499114958
114 => 0.015395362291741
115 => 0.016343761778905
116 => 0.016205587950921
117 => 0.01692243401493
118 => 0.016751352948705
119 => 0.017335913086101
120 => 0.017181978811181
121 => 0.017820951380024
122 => 0.018075854837227
123 => 0.018503877414427
124 => 0.01881873256458
125 => 0.019003621530969
126 => 0.018992521490928
127 => 0.019725143687079
128 => 0.019293141973879
129 => 0.018750446007113
130 => 0.018740630349258
131 => 0.019021700280507
201 => 0.019610745748636
202 => 0.019763476668259
203 => 0.019848832416393
204 => 0.019718107116871
205 => 0.019249200219034
206 => 0.019046728597959
207 => 0.019219240285282
208 => 0.019008273315785
209 => 0.019372461492014
210 => 0.019872569644375
211 => 0.019769299288554
212 => 0.020114516604905
213 => 0.020471780209407
214 => 0.020982683209558
215 => 0.02111625217248
216 => 0.021337036589019
217 => 0.02156429627754
218 => 0.021637285964672
219 => 0.021776645924778
220 => 0.021775911428998
221 => 0.022195882048784
222 => 0.022659122647816
223 => 0.022833985249906
224 => 0.023236072161431
225 => 0.02254751241625
226 => 0.023069792892574
227 => 0.023540902955747
228 => 0.022979226116844
301 => 0.023753366785353
302 => 0.02378342491327
303 => 0.024237266958175
304 => 0.023777211100049
305 => 0.023504031400044
306 => 0.024292690958048
307 => 0.024674298475623
308 => 0.024559355185705
309 => 0.023684631073974
310 => 0.023175504122265
311 => 0.021843020686388
312 => 0.023421404875185
313 => 0.02419018977145
314 => 0.023682640106818
315 => 0.023938618635258
316 => 0.025335154485109
317 => 0.025866864917733
318 => 0.025756272864683
319 => 0.025774961101149
320 => 0.026061862399365
321 => 0.027334140755088
322 => 0.026571762073158
323 => 0.027154572009709
324 => 0.027463692298579
325 => 0.027750820450342
326 => 0.027045724457396
327 => 0.026128404930492
328 => 0.025837851329867
329 => 0.023632174295381
330 => 0.023517359226966
331 => 0.023452910049812
401 => 0.023046567104374
402 => 0.022727292855959
403 => 0.022473394119727
404 => 0.021807088015274
405 => 0.022031946765906
406 => 0.020969993904299
407 => 0.021649393711857
408 => 0.019954491302984
409 => 0.02136605639339
410 => 0.020597805690671
411 => 0.021113665375511
412 => 0.021111865589667
413 => 0.020162004356416
414 => 0.019614144220174
415 => 0.019963262022023
416 => 0.02033754401861
417 => 0.02039827001332
418 => 0.020883536391655
419 => 0.021018963807082
420 => 0.020608612415836
421 => 0.01991936821784
422 => 0.020079463925048
423 => 0.019610899885778
424 => 0.018789759430011
425 => 0.01937951684108
426 => 0.019580885951021
427 => 0.019669822021717
428 => 0.018862324692089
429 => 0.0186085914995
430 => 0.018473506076793
501 => 0.019815130452703
502 => 0.019888627664561
503 => 0.019512605537236
504 => 0.021212261208625
505 => 0.020827576783727
506 => 0.02125736353631
507 => 0.020064936917663
508 => 0.020110489220311
509 => 0.019545975349559
510 => 0.01986206539635
511 => 0.019638663139336
512 => 0.019836528444232
513 => 0.019955128092157
514 => 0.020519549331737
515 => 0.021372501177304
516 => 0.020435243620334
517 => 0.020026867080986
518 => 0.0202802215892
519 => 0.020954938031242
520 => 0.021977167979034
521 => 0.021371987275646
522 => 0.021640556195175
523 => 0.021699226556292
524 => 0.021252988710621
525 => 0.02199362140491
526 => 0.022390532482669
527 => 0.022797681119275
528 => 0.023151196872394
529 => 0.022635057000424
530 => 0.023187400649176
531 => 0.022742309170061
601 => 0.022343016100584
602 => 0.02234362166335
603 => 0.022093139288126
604 => 0.021607798123319
605 => 0.021518293766059
606 => 0.021983906735678
607 => 0.022357284243601
608 => 0.022388037403511
609 => 0.022594758376726
610 => 0.02271709371928
611 => 0.023916146383136
612 => 0.024398415283623
613 => 0.024988124566255
614 => 0.025217849566034
615 => 0.025909239454399
616 => 0.025350885967603
617 => 0.025230082678526
618 => 0.023552996961262
619 => 0.023827619653512
620 => 0.024267317080952
621 => 0.02356024740989
622 => 0.024008720371175
623 => 0.024097258433689
624 => 0.02353622145303
625 => 0.023835895545377
626 => 0.02304005000328
627 => 0.021389848435327
628 => 0.021995458550991
629 => 0.02244139144228
630 => 0.021804990223281
701 => 0.022945714776209
702 => 0.022279327041723
703 => 0.022068114122143
704 => 0.021244097220021
705 => 0.021633001478503
706 => 0.022159000056674
707 => 0.021833994089263
708 => 0.022508430271532
709 => 0.023463611771186
710 => 0.024144330989881
711 => 0.024196588158968
712 => 0.023758931305993
713 => 0.024460279205974
714 => 0.024465387759747
715 => 0.023674264463477
716 => 0.023189705849505
717 => 0.023079613112891
718 => 0.023354646353906
719 => 0.023688587482436
720 => 0.024215119567489
721 => 0.02453329187904
722 => 0.02536291652201
723 => 0.025587389163195
724 => 0.025834016540005
725 => 0.02616358677249
726 => 0.026559320336661
727 => 0.025693477827379
728 => 0.025727879364405
729 => 0.024921618808168
730 => 0.024060013774369
731 => 0.024713864594439
801 => 0.025568687563551
802 => 0.025372590229941
803 => 0.025350525274005
804 => 0.025387632409581
805 => 0.02523978142398
806 => 0.024571056895717
807 => 0.024235227624061
808 => 0.024668533063682
809 => 0.024898815620634
810 => 0.025255963783718
811 => 0.025211937734135
812 => 0.026131913047326
813 => 0.026489387635423
814 => 0.026397930338587
815 => 0.026414760682248
816 => 0.027061951348785
817 => 0.027781760474886
818 => 0.02845595670866
819 => 0.029141778075057
820 => 0.028314993649802
821 => 0.027895203507632
822 => 0.028328319779653
823 => 0.028098502189166
824 => 0.029419102232432
825 => 0.029510537714163
826 => 0.030831042263015
827 => 0.032084358322633
828 => 0.031297172961076
829 => 0.032039453301416
830 => 0.032842290008498
831 => 0.034391092272021
901 => 0.033869510157187
902 => 0.033469986431458
903 => 0.033092438441129
904 => 0.033878055874948
905 => 0.034888740153012
906 => 0.035106431866293
907 => 0.035459175606444
908 => 0.035088308695128
909 => 0.035534977040158
910 => 0.037111912574129
911 => 0.036685810672855
912 => 0.036080677473747
913 => 0.037325516627319
914 => 0.037776019077807
915 => 0.040937881205296
916 => 0.04492986275126
917 => 0.043277156178467
918 => 0.042251267876226
919 => 0.042492375961649
920 => 0.043950112485132
921 => 0.04441829119023
922 => 0.043145620078895
923 => 0.043595149030732
924 => 0.046072097752062
925 => 0.047400901271026
926 => 0.04559620761015
927 => 0.040617129374983
928 => 0.036026191850073
929 => 0.03724391521429
930 => 0.037105863175144
1001 => 0.039767035570567
1002 => 0.036675648283431
1003 => 0.036727699317042
1004 => 0.039443901939371
1005 => 0.038719265647236
1006 => 0.03754544765838
1007 => 0.036034762020417
1008 => 0.033242119897133
1009 => 0.030768598889954
1010 => 0.035619743202899
1011 => 0.035410553038892
1012 => 0.035107614681163
1013 => 0.035781771214934
1014 => 0.039055283980255
1015 => 0.038979818915688
1016 => 0.038499748677524
1017 => 0.038863877722026
1018 => 0.03748161407634
1019 => 0.037837854891392
1020 => 0.036025464622113
1021 => 0.036844740715931
1022 => 0.037542929172164
1023 => 0.03768310084161
1024 => 0.037998914770213
1025 => 0.035300319328134
1026 => 0.036511909455028
1027 => 0.037223605143936
1028 => 0.03400813812974
1029 => 0.03716004569958
1030 => 0.035253342785321
1031 => 0.034606179178504
1101 => 0.035477499717761
1102 => 0.035137945256225
1103 => 0.034846016269504
1104 => 0.034683114878937
1105 => 0.035322916518829
1106 => 0.035293069007599
1107 => 0.03424622934459
1108 => 0.032880669678839
1109 => 0.033338996325633
1110 => 0.033172481958017
1111 => 0.032569012408998
1112 => 0.032975678021846
1113 => 0.031184928471619
1114 => 0.028104036945517
1115 => 0.03013936825792
1116 => 0.030061010216407
1117 => 0.030021498538622
1118 => 0.031550993767467
1119 => 0.031403968092672
1120 => 0.03113711505324
1121 => 0.03256411144366
1122 => 0.032043238565346
1123 => 0.033648446043223
1124 => 0.034705739506463
1125 => 0.034437575684325
1126 => 0.035431965296845
1127 => 0.033349555245885
1128 => 0.034041248333024
1129 => 0.034183805319638
1130 => 0.032546502529709
1201 => 0.031428023311366
1202 => 0.031353433499099
1203 => 0.029414144670422
1204 => 0.030450097109308
1205 => 0.031361692384904
1206 => 0.030925108990545
1207 => 0.030786899730449
1208 => 0.031492980866349
1209 => 0.031547849417784
1210 => 0.030296840630348
1211 => 0.030556964971552
1212 => 0.031641726716446
1213 => 0.030529631758793
1214 => 0.028369012915752
1215 => 0.027833149569785
1216 => 0.027761655521512
1217 => 0.026308351627393
1218 => 0.027868958520893
1219 => 0.027187711790216
1220 => 0.029339762049837
1221 => 0.028110522483218
1222 => 0.028057532422351
1223 => 0.027977430173399
1224 => 0.026726511476502
1225 => 0.027000383171092
1226 => 0.027910774395746
1227 => 0.028235612240994
1228 => 0.028201728992416
1229 => 0.027906312982083
1230 => 0.028041552918839
1231 => 0.027605897961831
]
'min_raw' => 0.015243082298912
'max_raw' => 0.047400901271026
'avg_raw' => 0.031321991784969
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.015243'
'max' => '$0.0474009'
'avg' => '$0.031321'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0086834822267372
'max_diff' => 0.029605338373503
'year' => 2033
]
8 => [
'items' => [
101 => 0.027452059129137
102 => 0.026966501456452
103 => 0.026252865816336
104 => 0.026352101229076
105 => 0.024938202293084
106 => 0.024167835111459
107 => 0.023954607628861
108 => 0.023669470927742
109 => 0.023986814577972
110 => 0.024934196895045
111 => 0.023791452822285
112 => 0.021832298263714
113 => 0.021950046790921
114 => 0.022214592771703
115 => 0.021721613086661
116 => 0.021255049187418
117 => 0.021660688644285
118 => 0.02083056903074
119 => 0.022314908761057
120 => 0.022274761531166
121 => 0.022828031591675
122 => 0.023174002714756
123 => 0.022376651285535
124 => 0.022176119557354
125 => 0.022290351543385
126 => 0.020402351269186
127 => 0.022673741689999
128 => 0.02269338476868
129 => 0.022525188803356
130 => 0.023734634081128
131 => 0.026286940852667
201 => 0.025326660378912
202 => 0.024954810754843
203 => 0.024247924347667
204 => 0.025189808514467
205 => 0.025117486506139
206 => 0.024790418957171
207 => 0.024592607483042
208 => 0.024957081189355
209 => 0.024547445157378
210 => 0.02447386326999
211 => 0.024028037090299
212 => 0.023868897427948
213 => 0.023751076757476
214 => 0.023621367776106
215 => 0.023907473467544
216 => 0.023259120330408
217 => 0.022477270005864
218 => 0.022412267611116
219 => 0.022591744938084
220 => 0.022512339581416
221 => 0.022411887448818
222 => 0.022220096971176
223 => 0.022163196833415
224 => 0.022348094677116
225 => 0.022139355791792
226 => 0.022447361387683
227 => 0.022363600908328
228 => 0.021895721679505
301 => 0.021312570929314
302 => 0.021307379664437
303 => 0.021181740791868
304 => 0.021021720797719
305 => 0.020977206896109
306 => 0.021626526820648
307 => 0.022970599631933
308 => 0.022706725978141
309 => 0.022897401735866
310 => 0.023835337745136
311 => 0.024133479397763
312 => 0.023921865514601
313 => 0.023632195379552
314 => 0.023644939395393
315 => 0.024634829935969
316 => 0.02469656819476
317 => 0.024852560857208
318 => 0.025053055511975
319 => 0.023956010621271
320 => 0.023593268679696
321 => 0.023421381423622
322 => 0.022892035203651
323 => 0.023462889719174
324 => 0.023130277239407
325 => 0.023175158026588
326 => 0.023145929355058
327 => 0.023161890186147
328 => 0.022314493857851
329 => 0.022623240542043
330 => 0.02210988929717
331 => 0.021422569606668
401 => 0.02142026547006
402 => 0.021588485990585
403 => 0.021488421842507
404 => 0.021219151792914
405 => 0.02125740033254
406 => 0.020922302878411
407 => 0.021298087230606
408 => 0.021308863381206
409 => 0.021164165936499
410 => 0.021743113579303
411 => 0.021980308900936
412 => 0.02188506594311
413 => 0.021973626401116
414 => 0.022717691119775
415 => 0.022839006134736
416 => 0.022892886250761
417 => 0.022820694033034
418 => 0.021987226538275
419 => 0.022024194365845
420 => 0.021752948975675
421 => 0.021523775204116
422 => 0.02153294095312
423 => 0.021650766062206
424 => 0.022165315223936
425 => 0.023248153600468
426 => 0.023289246525313
427 => 0.02333905234899
428 => 0.023136467033694
429 => 0.02307536536412
430 => 0.023155974237967
501 => 0.023562631399255
502 => 0.02460866402443
503 => 0.024238926232523
504 => 0.023938323652391
505 => 0.024202033157041
506 => 0.024161437145823
507 => 0.023818765956767
508 => 0.023809148317792
509 => 0.023151452747387
510 => 0.022908317670012
511 => 0.022705135801012
512 => 0.022483266504261
513 => 0.022351734948021
514 => 0.022553827198429
515 => 0.022600048087182
516 => 0.022158169849697
517 => 0.022097943478724
518 => 0.022458790786059
519 => 0.022299995339845
520 => 0.022463320394214
521 => 0.022501213207804
522 => 0.02249511159207
523 => 0.022329310908681
524 => 0.022434987320026
525 => 0.022185031103542
526 => 0.021913241260325
527 => 0.021739856273459
528 => 0.021588554876237
529 => 0.021672505685104
530 => 0.021373236380303
531 => 0.021277494106596
601 => 0.022399186529657
602 => 0.023227792782797
603 => 0.023215744519713
604 => 0.023142403816746
605 => 0.023033434408756
606 => 0.023554659608332
607 => 0.023373075171026
608 => 0.023505193021053
609 => 0.023538822558854
610 => 0.023640609041208
611 => 0.023676988959805
612 => 0.023567023578325
613 => 0.023197966326937
614 => 0.022278310745389
615 => 0.021850208589616
616 => 0.021708927747605
617 => 0.021714063037882
618 => 0.021572408807109
619 => 0.021614132326569
620 => 0.021557899069766
621 => 0.021451406885668
622 => 0.021665930092824
623 => 0.021690651894026
624 => 0.021640579614115
625 => 0.021652373448677
626 => 0.021237796357159
627 => 0.021269315753013
628 => 0.021093811751607
629 => 0.021060906867075
630 => 0.020617248034402
701 => 0.019831242102945
702 => 0.020266765688414
703 => 0.019740714441051
704 => 0.019541490862698
705 => 0.020484584297
706 => 0.020389923873536
707 => 0.020227906376463
708 => 0.019988248730887
709 => 0.019899357378903
710 => 0.01935928166383
711 => 0.019327371109392
712 => 0.019595047217053
713 => 0.01947152390354
714 => 0.019298050389431
715 => 0.018669746906055
716 => 0.017963325766606
717 => 0.017984648180401
718 => 0.018209347601427
719 => 0.018862691472906
720 => 0.018607418719356
721 => 0.018422215407737
722 => 0.018387532394662
723 => 0.018821662917102
724 => 0.01943604855951
725 => 0.019724304556824
726 => 0.019438651617951
727 => 0.019110508902419
728 => 0.019130481429047
729 => 0.01926334970085
730 => 0.01927731227756
731 => 0.019063725103365
801 => 0.019123848641807
802 => 0.019032515489103
803 => 0.018472004099542
804 => 0.018461866225906
805 => 0.018324307691441
806 => 0.018320142473686
807 => 0.018086121090976
808 => 0.018053379881822
809 => 0.017588716222368
810 => 0.017894559250152
811 => 0.017689415804594
812 => 0.017380216243693
813 => 0.017326910122849
814 => 0.017325307676487
815 => 0.017642786489777
816 => 0.017890849325373
817 => 0.017692984362659
818 => 0.017647934346101
819 => 0.018128950662494
820 => 0.018067736951672
821 => 0.018014726272886
822 => 0.019381037063873
823 => 0.018299495458246
824 => 0.017827881585956
825 => 0.017244169861952
826 => 0.017434229342618
827 => 0.017474277667749
828 => 0.016070556193466
829 => 0.015501066566171
830 => 0.015305639186848
831 => 0.01519316796711
901 => 0.015244422514269
902 => 0.014731815055233
903 => 0.01507629574545
904 => 0.014632421015555
905 => 0.014558003972595
906 => 0.015351706975175
907 => 0.015462146111238
908 => 0.014990978446042
909 => 0.015293544362214
910 => 0.015183829755029
911 => 0.014640029973801
912 => 0.014619260822079
913 => 0.014346401207345
914 => 0.01391942874632
915 => 0.013724290874431
916 => 0.013622661376486
917 => 0.013664595688058
918 => 0.013643392416916
919 => 0.013505026730272
920 => 0.013651323376109
921 => 0.013277595899942
922 => 0.013128774607606
923 => 0.013061555482485
924 => 0.012729850836436
925 => 0.013257740438026
926 => 0.013361741339717
927 => 0.013465947155312
928 => 0.014372987635735
929 => 0.014327674456602
930 => 0.014737283527544
1001 => 0.01472136687227
1002 => 0.01460453973001
1003 => 0.01411166523395
1004 => 0.014308116223436
1005 => 0.013703470613059
1006 => 0.014156512216259
1007 => 0.013949762948028
1008 => 0.014086610080699
1009 => 0.013840546597148
1010 => 0.013976728288657
1011 => 0.013386403811687
1012 => 0.012835167121182
1013 => 0.013057000857043
1014 => 0.013298159497689
1015 => 0.013821052876689
1016 => 0.013509621893934
1017 => 0.013621624251842
1018 => 0.013246435101818
1019 => 0.012472312717835
1020 => 0.012476694166459
1021 => 0.012357612302856
1022 => 0.012254708186467
1023 => 0.013545393488633
1024 => 0.013384876368593
1025 => 0.013129113345772
1026 => 0.013471462315437
1027 => 0.013561984816825
1028 => 0.01356456186518
1029 => 0.013814330836142
1030 => 0.013947632580718
1031 => 0.013971127590962
1101 => 0.014364144463387
1102 => 0.014495878535006
1103 => 0.0150384725323
1104 => 0.013936322859018
1105 => 0.013913624811787
1106 => 0.01347627986751
1107 => 0.0131989087897
1108 => 0.013495271702509
1109 => 0.013757808785686
1110 => 0.013484437626504
1111 => 0.013520134128713
1112 => 0.013153155682755
1113 => 0.013284333209244
1114 => 0.013397320966578
1115 => 0.013334935768091
1116 => 0.01324154210648
1117 => 0.013736283738799
1118 => 0.013708368476995
1119 => 0.014169083259072
1120 => 0.014528243377731
1121 => 0.015171922517918
1122 => 0.01450020977938
1123 => 0.014475729897372
1124 => 0.014715024670703
1125 => 0.014495841900222
1126 => 0.014634357845234
1127 => 0.015149605457729
1128 => 0.015160491827864
1129 => 0.0149781311018
1130 => 0.014967034435046
1201 => 0.015002058807294
1202 => 0.01520719764952
1203 => 0.015135515834766
1204 => 0.015218467845561
1205 => 0.015322200605265
1206 => 0.015751283281182
1207 => 0.015854733661693
1208 => 0.015603402869924
1209 => 0.015626095226389
1210 => 0.015532090611083
1211 => 0.015441283330572
1212 => 0.015645404835823
1213 => 0.016018440898688
1214 => 0.016016120260701
1215 => 0.016102657376501
1216 => 0.016156569282732
1217 => 0.015925139915261
1218 => 0.015774487906931
1219 => 0.015832257473161
1220 => 0.01592463226762
1221 => 0.015802301572314
1222 => 0.015047219851794
1223 => 0.015276263410993
1224 => 0.015238139363084
1225 => 0.01518384608282
1226 => 0.015414151152736
1227 => 0.015391937666909
1228 => 0.01472655752483
1229 => 0.014769153002705
1230 => 0.01472914789692
1231 => 0.014858412577987
]
'min_raw' => 0.012254708186467
'max_raw' => 0.027452059129137
'avg_raw' => 0.019853383657802
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.012254'
'max' => '$0.027452'
'avg' => '$0.019853'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0029883741124451
'max_diff' => -0.019948842141889
'year' => 2034
]
9 => [
'items' => [
101 => 0.014488861183234
102 => 0.014602532703294
103 => 0.01467382641507
104 => 0.014715818959011
105 => 0.014867524822281
106 => 0.014849723890209
107 => 0.01486641829135
108 => 0.015091358037717
109 => 0.016229026084842
110 => 0.016290946846524
111 => 0.015986026369548
112 => 0.016107836085809
113 => 0.015873988067444
114 => 0.016030971808818
115 => 0.016138376097712
116 => 0.015653036768858
117 => 0.015624298123629
118 => 0.015389484931308
119 => 0.015515660240362
120 => 0.01531490625133
121 => 0.015364164258162
122 => 0.015226434576824
123 => 0.015474320581527
124 => 0.015751495652375
125 => 0.015821521021247
126 => 0.015637314423563
127 => 0.015503936707033
128 => 0.015269769374158
129 => 0.015659194867488
130 => 0.015773074749265
131 => 0.01565859670495
201 => 0.015632069640687
202 => 0.015581800901843
203 => 0.015642734391268
204 => 0.015772454534972
205 => 0.015711280910756
206 => 0.015751687167291
207 => 0.015597700184131
208 => 0.015925216528011
209 => 0.016445391303194
210 => 0.016447063750153
211 => 0.016385889796189
212 => 0.016360858732238
213 => 0.016423626921351
214 => 0.016457676089059
215 => 0.016660656902934
216 => 0.016878463403335
217 => 0.017894871304282
218 => 0.017609468032918
219 => 0.018511285589015
220 => 0.019224506189534
221 => 0.019438369862273
222 => 0.019241625346417
223 => 0.018568572985602
224 => 0.018535549825815
225 => 0.019541374208249
226 => 0.019257182750536
227 => 0.019223379080931
228 => 0.018863765148533
301 => 0.019076341521632
302 => 0.019029847950528
303 => 0.018956455573997
304 => 0.019362036485672
305 => 0.020121247745869
306 => 0.02000291755113
307 => 0.019914589549936
308 => 0.0195275619606
309 => 0.019760639015122
310 => 0.019677644740304
311 => 0.020034240814391
312 => 0.019823001199672
313 => 0.019255029720734
314 => 0.019345481050813
315 => 0.019331809514234
316 => 0.019613168768248
317 => 0.019528711703959
318 => 0.019315317916945
319 => 0.020118652844319
320 => 0.020066488742519
321 => 0.020140445512497
322 => 0.020173003569831
323 => 0.020661979383775
324 => 0.020862297129267
325 => 0.020907772764549
326 => 0.021098059129636
327 => 0.020903038266439
328 => 0.021683260766746
329 => 0.022202063202205
330 => 0.02280467892832
331 => 0.023685262472012
401 => 0.024016370030293
402 => 0.023956558413518
403 => 0.024624206806384
404 => 0.025823956127374
405 => 0.024199062053436
406 => 0.025910079458844
407 => 0.025368391102937
408 => 0.024084057755641
409 => 0.024001361829371
410 => 0.024871127283577
411 => 0.026800183349182
412 => 0.026316976683921
413 => 0.026800973702182
414 => 0.026236365471365
415 => 0.026208327913813
416 => 0.026773551940641
417 => 0.028094228688082
418 => 0.0274668246702
419 => 0.02656728716479
420 => 0.027231491660431
421 => 0.026656096257083
422 => 0.025359569370306
423 => 0.02631660718489
424 => 0.025676663253146
425 => 0.025863432913719
426 => 0.027208499873771
427 => 0.027046657858532
428 => 0.027256096412419
429 => 0.02688644284677
430 => 0.026541128127437
501 => 0.025896572560395
502 => 0.025705751433199
503 => 0.025758487527731
504 => 0.02570572529981
505 => 0.025345102383821
506 => 0.025267225899448
507 => 0.025137428346981
508 => 0.025177658035933
509 => 0.02493360066368
510 => 0.025394187349947
511 => 0.025479676297595
512 => 0.025814852878118
513 => 0.025849652022614
514 => 0.026783114028432
515 => 0.026268978841819
516 => 0.026613905113296
517 => 0.026583051661003
518 => 0.024111893153717
519 => 0.024452396992805
520 => 0.024982114110434
521 => 0.024743477266957
522 => 0.024406100602701
523 => 0.024133650857322
524 => 0.023720861633656
525 => 0.024301854539051
526 => 0.025065798427938
527 => 0.025869026900335
528 => 0.026834053280307
529 => 0.026618670626443
530 => 0.02585098640342
531 => 0.025885424156871
601 => 0.02609830479795
602 => 0.025822605025507
603 => 0.025741295780315
604 => 0.026087134156249
605 => 0.026089515755074
606 => 0.025772289847449
607 => 0.025419751302852
608 => 0.025418274153478
609 => 0.025355543324585
610 => 0.026247525146468
611 => 0.026738024958969
612 => 0.026794259971992
613 => 0.026734239894535
614 => 0.026757339240237
615 => 0.026471928206768
616 => 0.027124293193265
617 => 0.027722967817084
618 => 0.027562510229083
619 => 0.027321961494278
620 => 0.02713035284061
621 => 0.027517373319689
622 => 0.027500139906982
623 => 0.027717738916518
624 => 0.027707867368532
625 => 0.027634697005938
626 => 0.027562512842227
627 => 0.027848714892015
628 => 0.02776629329794
629 => 0.027683743680365
630 => 0.027518177784602
701 => 0.027540680939595
702 => 0.027300173738921
703 => 0.027188904103028
704 => 0.025515675752393
705 => 0.025068534462789
706 => 0.025209214214899
707 => 0.025255529642042
708 => 0.025060933179779
709 => 0.025339934518934
710 => 0.025296452455762
711 => 0.025465615727407
712 => 0.025359929859499
713 => 0.025364267244382
714 => 0.025675066847298
715 => 0.025765293294261
716 => 0.025719403395119
717 => 0.025751543107464
718 => 0.026492189213136
719 => 0.026386893021439
720 => 0.02633095651823
721 => 0.026346451311896
722 => 0.026535702271527
723 => 0.026588682207504
724 => 0.026364202495934
725 => 0.026470068425612
726 => 0.026920832117795
727 => 0.027078573899043
728 => 0.027582009944438
729 => 0.027368141364492
730 => 0.027760706398998
731 => 0.028967317479786
801 => 0.029931241902255
802 => 0.029044777167491
803 => 0.030814901614321
804 => 0.03219319740545
805 => 0.032140296117315
806 => 0.031899958365575
807 => 0.030330805251265
808 => 0.028886847160722
809 => 0.03009477941716
810 => 0.030097858684896
811 => 0.029994096232805
812 => 0.029349636554432
813 => 0.029971670432945
814 => 0.030021045223326
815 => 0.02999340847053
816 => 0.029499302746136
817 => 0.02874489463099
818 => 0.028892304170892
819 => 0.029133764004324
820 => 0.028676630165839
821 => 0.028530548205727
822 => 0.028802142362805
823 => 0.029677275325801
824 => 0.029511836508447
825 => 0.029507516232335
826 => 0.030215333649954
827 => 0.029708689135498
828 => 0.02889416347726
829 => 0.028688485006282
830 => 0.027958464995928
831 => 0.028462692417322
901 => 0.028480838664559
902 => 0.028204678458941
903 => 0.028916572355941
904 => 0.028910012128353
905 => 0.029585849432131
906 => 0.030877796524055
907 => 0.030495704196118
908 => 0.030051372390254
909 => 0.030099683577536
910 => 0.030629538059849
911 => 0.030309175944441
912 => 0.030424380394786
913 => 0.030629363684115
914 => 0.030753035192017
915 => 0.030081889150745
916 => 0.029925412903899
917 => 0.029605317418551
918 => 0.029521810481289
919 => 0.029782521575093
920 => 0.029713833412935
921 => 0.028479313542744
922 => 0.028350299347506
923 => 0.028354256028684
924 => 0.028029843700466
925 => 0.027535037032053
926 => 0.02883535941327
927 => 0.028730925328059
928 => 0.028615638180541
929 => 0.028629760198293
930 => 0.029194186071964
1001 => 0.028866790561045
1002 => 0.029737225185893
1003 => 0.029558289994684
1004 => 0.029374765791005
1005 => 0.029349397155773
1006 => 0.029278755994905
1007 => 0.029036501169874
1008 => 0.028743963911389
1009 => 0.028550805474195
1010 => 0.026336608860078
1011 => 0.026747550872269
1012 => 0.027220302198751
1013 => 0.027383494062221
1014 => 0.027104343087223
1015 => 0.029047523751812
1016 => 0.029402561584187
1017 => 0.028327128831378
1018 => 0.028125959272957
1019 => 0.029060712394571
1020 => 0.028496941993316
1021 => 0.028750807770481
1022 => 0.028202088817406
1023 => 0.029317043367089
1024 => 0.02930854928148
1025 => 0.028874806779263
1026 => 0.029241402971997
1027 => 0.02917769786202
1028 => 0.028688003645277
1029 => 0.029332567547212
1030 => 0.029332887242865
1031 => 0.028915419514856
1101 => 0.028427908603979
1102 => 0.028340753167608
1103 => 0.028275093253987
1104 => 0.028734659456756
1105 => 0.029146705077132
1106 => 0.02991341982188
1107 => 0.030106190125403
1108 => 0.030858585453498
1109 => 0.030410570669081
1110 => 0.03060916982025
1111 => 0.03082477729241
1112 => 0.030928147443265
1113 => 0.030759711329594
1114 => 0.031928490972398
1115 => 0.032027171784733
1116 => 0.032060258607524
1117 => 0.031666152688035
1118 => 0.03201621098618
1119 => 0.03185243030119
1120 => 0.032278542143949
1121 => 0.032345361921762
1122 => 0.032288767947137
1123 => 0.032309977599293
1124 => 0.031312630361018
1125 => 0.031260912645288
1126 => 0.030555737921583
1127 => 0.030843101833881
1128 => 0.03030588877355
1129 => 0.030476244568889
1130 => 0.030551335780264
1201 => 0.03051211239283
1202 => 0.030859348958325
1203 => 0.030564126941911
1204 => 0.029784987501601
1205 => 0.029005635785272
1206 => 0.028995851659319
1207 => 0.02879066210911
1208 => 0.02864234764665
1209 => 0.028670918273858
1210 => 0.028771604890665
1211 => 0.028636495557443
1212 => 0.028665327983903
1213 => 0.029144138372591
1214 => 0.029240160381323
1215 => 0.028913840077431
1216 => 0.027603616969509
1217 => 0.027282084932379
1218 => 0.02751319578441
1219 => 0.027402739682584
1220 => 0.022116149619989
1221 => 0.023358155538097
1222 => 0.022620197796093
1223 => 0.022960282675412
1224 => 0.022207018914056
1225 => 0.022566515862911
1226 => 0.022500129903184
1227 => 0.024497238665875
1228 => 0.024466056559479
1229 => 0.02448098178369
1230 => 0.023768561944612
1231 => 0.024903466092571
]
'min_raw' => 0.014488861183234
'max_raw' => 0.032345361921762
'avg_raw' => 0.023417111552498
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.014488'
'max' => '$0.032345'
'avg' => '$0.023417'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0022341529967676
'max_diff' => 0.0048933027926251
'year' => 2035
]
10 => [
'items' => [
101 => 0.025462560685688
102 => 0.025359087156323
103 => 0.025385129214415
104 => 0.024937640374935
105 => 0.024485314453819
106 => 0.023983615394841
107 => 0.024915710234544
108 => 0.024812077199759
109 => 0.025049774095568
110 => 0.02565430422663
111 => 0.025743323584816
112 => 0.025862966504963
113 => 0.025820083034853
114 => 0.026841741272326
115 => 0.02671801171865
116 => 0.027016164343587
117 => 0.026402841773197
118 => 0.025708809067688
119 => 0.025840721995367
120 => 0.025828017719655
121 => 0.025666277708549
122 => 0.025520266058407
123 => 0.025277197799449
124 => 0.026046301738127
125 => 0.026015077522765
126 => 0.02652056127529
127 => 0.026431212112024
128 => 0.025834516532285
129 => 0.025855827631649
130 => 0.025999155016634
131 => 0.026495212732552
201 => 0.026642476436821
202 => 0.026574258021559
203 => 0.026735725950447
204 => 0.026863343617862
205 => 0.026751752764638
206 => 0.028331643922004
207 => 0.027675562963839
208 => 0.027995332257867
209 => 0.028071595350302
210 => 0.027876249042669
211 => 0.027918612661967
212 => 0.02798278200181
213 => 0.028372405667689
214 => 0.029394890905472
215 => 0.029847742656994
216 => 0.031210169494759
217 => 0.029810139623031
218 => 0.029727067644342
219 => 0.029972481859172
220 => 0.030772370640468
221 => 0.031420605367975
222 => 0.031635662224647
223 => 0.031664085538458
224 => 0.032067546498286
225 => 0.032298802796357
226 => 0.032018555725686
227 => 0.031781075676383
228 => 0.03093045161689
229 => 0.031028913667949
301 => 0.031707219559626
302 => 0.032665366583637
303 => 0.033487556408446
304 => 0.033199654188006
305 => 0.035396144902668
306 => 0.035613917985167
307 => 0.035583828786612
308 => 0.036079948277524
309 => 0.035095252121041
310 => 0.034674275436555
311 => 0.031832421558556
312 => 0.03263086658056
313 => 0.033791453311076
314 => 0.033637845305315
315 => 0.032794996199042
316 => 0.033486917031818
317 => 0.033258146366138
318 => 0.033077705450412
319 => 0.033904340265545
320 => 0.032995421330019
321 => 0.033782386149407
322 => 0.032773095628434
323 => 0.033200969301098
324 => 0.032958087510573
325 => 0.033115261795515
326 => 0.03219642413734
327 => 0.032692206634168
328 => 0.03217579795549
329 => 0.032175553110538
330 => 0.032164153360335
331 => 0.032771705880692
401 => 0.032791518146569
402 => 0.032342535916064
403 => 0.032277830562228
404 => 0.03251708016881
405 => 0.032236981539073
406 => 0.032368037925007
407 => 0.032240951103494
408 => 0.032212341183113
409 => 0.031984372469944
410 => 0.03188615728018
411 => 0.03192466998678
412 => 0.031793206264493
413 => 0.031713994616565
414 => 0.032148396169833
415 => 0.031916312943631
416 => 0.032112826086876
417 => 0.031888874558212
418 => 0.031112560988827
419 => 0.030666094845707
420 => 0.029199710477446
421 => 0.02961557526524
422 => 0.029891294049792
423 => 0.029800168993142
424 => 0.029995940875541
425 => 0.030007959679127
426 => 0.029944312244501
427 => 0.029870616668945
428 => 0.029834745738386
429 => 0.030102098266274
430 => 0.030257305407385
501 => 0.029918966118463
502 => 0.029839697956938
503 => 0.030181777658263
504 => 0.030390446078458
505 => 0.031931136452521
506 => 0.031816997133246
507 => 0.032103464425916
508 => 0.03207121260496
509 => 0.032371475965497
510 => 0.03286227965921
511 => 0.03186433851902
512 => 0.032037546594748
513 => 0.031995079974538
514 => 0.032458719398646
515 => 0.03246016683032
516 => 0.032182191835061
517 => 0.03233288658962
518 => 0.03224877291172
519 => 0.032400777696332
520 => 0.031815472733049
521 => 0.032528310998561
522 => 0.032932444360822
523 => 0.032938055752949
524 => 0.033129611759261
525 => 0.033324243755849
526 => 0.033697822924425
527 => 0.033313824835598
528 => 0.032623049655257
529 => 0.032672921392088
530 => 0.032267920156599
531 => 0.032274728300537
601 => 0.032238385894632
602 => 0.032347452190481
603 => 0.031839406651658
604 => 0.031958643924153
605 => 0.031791711044408
606 => 0.032037183715269
607 => 0.031773095699509
608 => 0.031995059495848
609 => 0.032090851712132
610 => 0.032444327052478
611 => 0.031720887104338
612 => 0.0302457440775
613 => 0.030555837026122
614 => 0.030097185197835
615 => 0.030139635170754
616 => 0.030225390871912
617 => 0.029947428586938
618 => 0.030000455031313
619 => 0.029998560553578
620 => 0.029982234967943
621 => 0.029909926242208
622 => 0.029805064284047
623 => 0.030222802050551
624 => 0.030293783837234
625 => 0.030451567556249
626 => 0.030921024878318
627 => 0.030874115021277
628 => 0.030950626944381
629 => 0.03078360184584
630 => 0.030147382986035
701 => 0.030181932731064
702 => 0.029751096856934
703 => 0.030440550114296
704 => 0.030277278482615
705 => 0.030172016199525
706 => 0.030143294410335
707 => 0.030613915426302
708 => 0.03075473261036
709 => 0.030666984791145
710 => 0.030487011453922
711 => 0.030832613465731
712 => 0.030925081984313
713 => 0.030945782275515
714 => 0.031558122777828
715 => 0.03098000530734
716 => 0.03111916392848
717 => 0.032204839766034
718 => 0.031220281594397
719 => 0.03174182401618
720 => 0.03171629722861
721 => 0.031983100683561
722 => 0.031694411557895
723 => 0.031697990205598
724 => 0.031934893598763
725 => 0.031602205508815
726 => 0.031519827259141
727 => 0.03140602229722
728 => 0.031654511268103
729 => 0.031803469167957
730 => 0.033003960443265
731 => 0.033779532556167
801 => 0.03374586292532
802 => 0.034053540324353
803 => 0.033914928838087
804 => 0.033467315785069
805 => 0.034231336685973
806 => 0.033989568504935
807 => 0.034009499580031
808 => 0.034008757744421
809 => 0.03416951244907
810 => 0.034055603007874
811 => 0.033831075806712
812 => 0.033980127441089
813 => 0.034422757508255
814 => 0.035796694818287
815 => 0.03656556833923
816 => 0.035750407666901
817 => 0.036312694583237
818 => 0.035975522796749
819 => 0.035914248653152
820 => 0.036267406389288
821 => 0.036621182281291
822 => 0.036598648286386
823 => 0.036341825155385
824 => 0.036196752285328
825 => 0.037295292660374
826 => 0.038104678495562
827 => 0.038049483807793
828 => 0.038293095209328
829 => 0.039008345818852
830 => 0.039073739370775
831 => 0.039065501286286
901 => 0.038903416544735
902 => 0.03960767365684
903 => 0.040195177329983
904 => 0.038865898610144
905 => 0.039372070545123
906 => 0.039599307434575
907 => 0.039932958606439
908 => 0.040495884059803
909 => 0.041107370410759
910 => 0.04119384128539
911 => 0.041132486061827
912 => 0.040729194375736
913 => 0.041398290037501
914 => 0.041790230583939
915 => 0.042023622209942
916 => 0.042615464540824
917 => 0.039600710772244
918 => 0.037466718211859
919 => 0.037133464458328
920 => 0.037811149070689
921 => 0.037989849098535
922 => 0.037917815341381
923 => 0.035515812700552
924 => 0.03712081841153
925 => 0.03884766960383
926 => 0.038914004990949
927 => 0.03977850280457
928 => 0.040060018729648
929 => 0.040756052781931
930 => 0.040712515662451
1001 => 0.040881988877861
1002 => 0.040843029920506
1003 => 0.042132286435099
1004 => 0.043554527827141
1005 => 0.043505280130185
1006 => 0.043300816102883
1007 => 0.043604480049724
1008 => 0.045072385582962
1009 => 0.044937244364168
1010 => 0.045068522546925
1011 => 0.046799265898142
1012 => 0.049049478450096
1013 => 0.048004028802067
1014 => 0.050272353718257
1015 => 0.051700144014262
1016 => 0.05416935969493
1017 => 0.053860201730567
1018 => 0.054821449275109
1019 => 0.053306744451142
1020 => 0.049828676002963
1021 => 0.049278258357527
1022 => 0.050380208422484
1023 => 0.053089245130465
1024 => 0.050294891215906
1025 => 0.050860185373447
1026 => 0.050697380618046
1027 => 0.050688705444507
1028 => 0.051019801534035
1029 => 0.050539529387363
1030 => 0.048582814262515
1031 => 0.049479565273238
1101 => 0.049133286642478
1102 => 0.049517508600089
1103 => 0.051590996040127
1104 => 0.050674257817119
1105 => 0.049708548568946
1106 => 0.050919762274193
1107 => 0.052462053539157
1108 => 0.05236553972356
1109 => 0.052178262581655
1110 => 0.053233934025059
1111 => 0.054977593966852
1112 => 0.055448898242525
1113 => 0.055796805423436
1114 => 0.055844775945743
1115 => 0.056338902139025
1116 => 0.053681861061917
1117 => 0.057898653488942
1118 => 0.058626777054549
1119 => 0.058489920001844
1120 => 0.059299198700893
1121 => 0.059061088378214
1122 => 0.058716103879017
1123 => 0.059998982755525
1124 => 0.058528265646595
1125 => 0.056440767868605
1126 => 0.055295525301575
1127 => 0.056803673097923
1128 => 0.057724646330048
1129 => 0.058333351051583
1130 => 0.05851754473253
1201 => 0.053888119597107
1202 => 0.051393116208802
1203 => 0.052992384775434
1204 => 0.054943602802344
1205 => 0.053671021947258
1206 => 0.053720904707463
1207 => 0.051906538836476
1208 => 0.055104133922588
1209 => 0.054638271214549
1210 => 0.057055167767951
1211 => 0.056478356008675
1212 => 0.05844924132459
1213 => 0.05793024116935
1214 => 0.060084581796844
1215 => 0.060944006599596
1216 => 0.062387114602205
1217 => 0.063448670723431
1218 => 0.064072036782147
1219 => 0.064034612222169
1220 => 0.066504699106542
1221 => 0.06504817516909
1222 => 0.063218437827316
1223 => 0.06318534365155
1224 => 0.064132990548434
1225 => 0.066118998470072
1226 => 0.066633941428913
1227 => 0.066921724293094
1228 => 0.066480974818807
1229 => 0.064900022474714
1230 => 0.064217375268145
1231 => 0.064799010466335
]
'min_raw' => 0.023983615394841
'max_raw' => 0.066921724293094
'avg_raw' => 0.045452669843967
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.023983'
'max' => '$0.066921'
'avg' => '$0.045452'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0094947542116062
'max_diff' => 0.034576362371332
'year' => 2036
]
11 => [
'items' => [
101 => 0.064087720599431
102 => 0.065315606462396
103 => 0.067001756014515
104 => 0.06665357279976
105 => 0.06781749708414
106 => 0.069022036270068
107 => 0.070744581405184
108 => 0.071194918489165
109 => 0.0719393085642
110 => 0.072705530470812
111 => 0.072951620296957
112 => 0.073421482132255
113 => 0.073419005728453
114 => 0.074834965994474
115 => 0.076396814016535
116 => 0.076986375487998
117 => 0.078342039583017
118 => 0.076020512328432
119 => 0.077781417418818
120 => 0.07936979788866
121 => 0.077476065211274
122 => 0.080086134523926
123 => 0.080187477600792
124 => 0.081717637741427
125 => 0.080166527295681
126 => 0.079245482864317
127 => 0.08190450362658
128 => 0.08319112001507
129 => 0.082803580688026
130 => 0.079854387274039
131 => 0.078137830210244
201 => 0.07364526927516
202 => 0.078966901766956
203 => 0.081558913719562
204 => 0.079847674589266
205 => 0.080710724069752
206 => 0.085419242190546
207 => 0.087211941036972
208 => 0.086839072208826
209 => 0.08690208090284
210 => 0.087869388660586
211 => 0.092158963964544
212 => 0.089588551010835
213 => 0.09155353540241
214 => 0.092595756038423
215 => 0.093563828648739
216 => 0.091186548280294
217 => 0.088093741450131
218 => 0.08711411969982
219 => 0.079677525582596
220 => 0.079290418563303
221 => 0.079073123662831
222 => 0.077703110052327
223 => 0.076626654632782
224 => 0.075770617316932
225 => 0.073524119765761
226 => 0.074282246742654
227 => 0.070701798526566
228 => 0.072992442411925
301 => 0.067277960606103
302 => 0.072037150860736
303 => 0.069446939978967
304 => 0.071186196922576
305 => 0.071180128818948
306 => 0.067977605353847
307 => 0.066130456654136
308 => 0.067307531697695
309 => 0.068569449580723
310 => 0.068774191511643
311 => 0.070410300986415
312 => 0.070866903972769
313 => 0.069483375607362
314 => 0.067159540672326
315 => 0.067699314526704
316 => 0.066119518154206
317 => 0.063350985777393
318 => 0.065339394064358
319 => 0.066018324077669
320 => 0.066318178249336
321 => 0.063595644624833
322 => 0.062740165450933
323 => 0.062284715516915
324 => 0.066808095769516
325 => 0.067055896750707
326 => 0.065788111895406
327 => 0.071518619657661
328 => 0.07022162926131
329 => 0.071670685304397
330 => 0.067650335707061
331 => 0.067803918475798
401 => 0.065900620547458
402 => 0.066966340208915
403 => 0.066213123901946
404 => 0.066880240591916
405 => 0.067280107585259
406 => 0.069183093201137
407 => 0.072058879899661
408 => 0.068898850609103
409 => 0.067521980594753
410 => 0.068376183007845
411 => 0.070651036599385
412 => 0.074097556238181
413 => 0.072057147244342
414 => 0.072962646107416
415 => 0.073160457326157
416 => 0.071655935274147
417 => 0.074153030112266
418 => 0.075491243522377
419 => 0.076863973576903
420 => 0.078055876620225
421 => 0.076315675006144
422 => 0.078177940181313
423 => 0.076677283184183
424 => 0.075331038722689
425 => 0.075333080419831
426 => 0.074488561603642
427 => 0.072852199981058
428 => 0.072550429791562
429 => 0.074120276426694
430 => 0.075379144763041
501 => 0.075482831188795
502 => 0.076179805382787
503 => 0.076592267531386
504 => 0.08063495730276
505 => 0.082260960571691
506 => 0.084249206590272
507 => 0.085023740465915
508 => 0.087354809745839
509 => 0.08547228198211
510 => 0.085064985258773
511 => 0.079410573672629
512 => 0.080336483253094
513 => 0.081818953828404
514 => 0.079435019066388
515 => 0.080947076966745
516 => 0.081245589226041
517 => 0.079354013875399
518 => 0.080364386000323
519 => 0.077681137190982
520 => 0.072117367391232
521 => 0.074159224178541
522 => 0.075662718055564
523 => 0.073517046913594
524 => 0.077363079386634
525 => 0.07511630661411
526 => 0.074404187509332
527 => 0.071625956992803
528 => 0.072937174852706
529 => 0.074710615783055
530 => 0.073614835472736
531 => 0.075888744148889
601 => 0.079109205263614
602 => 0.081404297635741
603 => 0.081580486329798
604 => 0.080104895693767
605 => 0.082469539105101
606 => 0.082486762950812
607 => 0.079819435522975
608 => 0.078185712325167
609 => 0.077814526977241
610 => 0.078741820751533
611 => 0.079867726581396
612 => 0.081642966267449
613 => 0.082715706429925
614 => 0.085512843836241
615 => 0.086269669018176
616 => 0.087101190438065
617 => 0.088212359486745
618 => 0.089546602827582
619 => 0.086627354356346
620 => 0.086743341540269
621 => 0.0840249777836
622 => 0.081120016256804
623 => 0.083324519947076
624 => 0.08620661526927
625 => 0.085545459417927
626 => 0.085471065878462
627 => 0.085596175176794
628 => 0.085097685256213
629 => 0.08284303382032
630 => 0.08171076198408
701 => 0.083171681526183
702 => 0.083948095244762
703 => 0.085152245211887
704 => 0.085003808311917
705 => 0.088105569310966
706 => 0.089310819842812
707 => 0.089002465181188
708 => 0.089059209859896
709 => 0.091241258377535
710 => 0.093668145101655
711 => 0.095941244774701
712 => 0.098253539394027
713 => 0.095465977980035
714 => 0.094050626206896
715 => 0.095510907957229
716 => 0.094736061905548
717 => 0.099188557152772
718 => 0.099496838263248
719 => 0.10394901154439
720 => 0.10817465414312
721 => 0.10552060373711
722 => 0.10802325372892
723 => 0.11073007373912
724 => 0.1159519687045
725 => 0.11419341818864
726 => 0.11284639605349
727 => 0.11157346664454
728 => 0.11422223067272
729 => 0.11762982327993
730 => 0.11836378609001
731 => 0.11955308623771
801 => 0.11830268255311
802 => 0.11980865606376
803 => 0.12512540431467
804 => 0.12368877200504
805 => 0.1216485231752
806 => 0.12584558529336
807 => 0.12736448575825
808 => 0.13802492467525
809 => 0.15148416916872
810 => 0.14591195357026
811 => 0.14245309953402
812 => 0.14326601227765
813 => 0.14818087274249
814 => 0.14975936993392
815 => 0.14546847042699
816 => 0.14698408867322
817 => 0.15533529422222
818 => 0.15981544806051
819 => 0.15373079738318
820 => 0.13694348748517
821 => 0.12146482109091
822 => 0.1255704604321
823 => 0.12510500834363
824 => 0.13407733687193
825 => 0.12365450879958
826 => 0.12383000249349
827 => 0.13298786927388
828 => 0.13054470742246
829 => 0.12658709811967
830 => 0.12149371601858
831 => 0.11207812812388
901 => 0.10373847935246
902 => 0.12009445109963
903 => 0.11938915185649
904 => 0.11836777403292
905 => 0.12064073985464
906 => 0.13167761669228
907 => 0.13142318095829
908 => 0.12980459063289
909 => 0.1310322771291
910 => 0.12637187874111
911 => 0.12757296952099
912 => 0.12146236919107
913 => 0.12422461574141
914 => 0.12657860686756
915 => 0.12705120543757
916 => 0.12811599414728
917 => 0.1190174912044
918 => 0.12310245190774
919 => 0.1255019836119
920 => 0.1146608120768
921 => 0.12528768850767
922 => 0.1188591065105
923 => 0.1166771492266
924 => 0.11961486725836
925 => 0.11847003568436
926 => 0.1174857767238
927 => 0.11693654331209
928 => 0.11909367921051
929 => 0.11899304624251
930 => 0.11546355323067
1001 => 0.11085947347725
1002 => 0.11240475376626
1003 => 0.11184333895019
1004 => 0.10980869923277
1005 => 0.11117980073897
1006 => 0.10514216360424
1007 => 0.09475472272301
1008 => 0.10161698434507
1009 => 0.10135279473733
1010 => 0.10121957835706
1011 => 0.10637637830705
1012 => 0.10588067097948
1013 => 0.10498095732595
1014 => 0.10979217528596
1015 => 0.10803601601054
1016 => 0.11344808509421
1017 => 0.11701282382339
1018 => 0.11610869077446
1019 => 0.11946134477913
1020 => 0.1124403539031
1021 => 0.11477244543885
1022 => 0.11525308627223
1023 => 0.10973280560316
1024 => 0.10596177482879
1025 => 0.10571029006903
1026 => 0.099171842386327
1027 => 0.10266462836192
1028 => 0.10573813547914
1029 => 0.10426616408378
1030 => 0.10380018191391
1031 => 0.1061807837606
1101 => 0.10636577691257
1102 => 0.10214791344308
1103 => 0.10302494082075
1104 => 0.10668229077931
1105 => 0.10293278498559
1106 => 0.095648107706689
1107 => 0.093841407022978
1108 => 0.093600359847671
1109 => 0.088700444302209
1110 => 0.093962139401739
1111 => 0.091665268486132
1112 => 0.098921056187796
1113 => 0.094776589166176
1114 => 0.094597929476315
1115 => 0.094327859151412
1116 => 0.09011029942847
1117 => 0.091033676967891
1118 => 0.094103124543297
1119 => 0.095198338018003
1120 => 0.095084098279772
1121 => 0.094088082575646
1122 => 0.094544053464569
1123 => 0.093075212360559
1124 => 0.092556533995449
1125 => 0.090919442401438
1126 => 0.088513370016337
1127 => 0.088847949138785
1128 => 0.084080890160814
1129 => 0.081483543422646
1130 => 0.080764632078001
1201 => 0.079803273782569
1202 => 0.080873220055547
1203 => 0.084067385681679
1204 => 0.080214544256524
1205 => 0.073609117878499
1206 => 0.074006115258917
1207 => 0.074898050503136
1208 => 0.073235935076275
1209 => 0.071662882315525
1210 => 0.073030524065193
1211 => 0.070231717831026
1212 => 0.075236272865081
1213 => 0.075100913676513
1214 => 0.076966302313601
1215 => 0.078132768110001
1216 => 0.075444442097086
1217 => 0.074768335374844
1218 => 0.07515347649117
1219 => 0.068787951750739
1220 => 0.076446103137924
1221 => 0.076512331149132
1222 => 0.075945246708977
1223 => 0.080022975903756
1224 => 0.088628256380369
1225 => 0.085390603718462
1226 => 0.084136886749202
1227 => 0.081753569874177
1228 => 0.084929198102794
1229 => 0.084685359402354
1230 => 0.083582628325882
1231 => 0.082915693130101
]
'min_raw' => 0.062284715516915
'max_raw' => 0.15981544806051
'avg_raw' => 0.11105008178871
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.062284'
'max' => '$0.159815'
'avg' => '$0.11105'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.038301100122074
'max_diff' => 0.092893723767413
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0019550460489257
]
1 => [
'year' => 2028
'avg' => 0.0033554265738798
]
2 => [
'year' => 2029
'avg' => 0.0091664206430393
]
3 => [
'year' => 2030
'avg' => 0.0070718798750616
]
4 => [
'year' => 2031
'avg' => 0.0069454624457351
]
5 => [
'year' => 2032
'avg' => 0.012177581484849
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0019550460489257
'min' => '$0.001955'
'max_raw' => 0.012177581484849
'max' => '$0.012177'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.012177581484849
]
1 => [
'year' => 2033
'avg' => 0.031321991784969
]
2 => [
'year' => 2034
'avg' => 0.019853383657802
]
3 => [
'year' => 2035
'avg' => 0.023417111552498
]
4 => [
'year' => 2036
'avg' => 0.045452669843967
]
5 => [
'year' => 2037
'avg' => 0.11105008178871
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.012177581484849
'min' => '$0.012177'
'max_raw' => 0.11105008178871
'max' => '$0.11105'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.11105008178871
]
]
]
]
'prediction_2025_max_price' => '$0.003342'
'last_price' => 0.00324124
'sma_50day_nextmonth' => '$0.002963'
'sma_200day_nextmonth' => '$0.004618'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.003223'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003189'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003048'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002933'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0031011'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.004014'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004925'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003211'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003168'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003086'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003038'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003268'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003891'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004923'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004598'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006367'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.009191'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.018526'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.003169'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003178'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.003467'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.004272'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006382'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.03769'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.192414'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.33'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 105.27
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003087'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003297'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 159.69
'cci_20_action' => 'SELL'
'adx_14' => 18.53
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000167'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.1
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000589'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 19
'sell_pct' => 45.71
'buy_pct' => 54.29
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767689407
'last_updated_date' => '6. Januar 2026'
]
Penguin Finance Preisprognose für 2026
Die Preisprognose für Penguin Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001119 am unteren Ende und $0.003342 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Penguin Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn PEFI das prognostizierte Preisziel erreicht.
Penguin Finance Preisprognose 2027-2032
Die Preisprognose für PEFI für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.001955 am unteren Ende und $0.012177 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Penguin Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Penguin Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001078 | $0.001955 | $0.002832 |
| 2028 | $0.001945 | $0.003355 | $0.004765 |
| 2029 | $0.004273 | $0.009166 | $0.014059 |
| 2030 | $0.003634 | $0.007071 | $0.010509 |
| 2031 | $0.004297 | $0.006945 | $0.009593 |
| 2032 | $0.006559 | $0.012177 | $0.017795 |
Penguin Finance Preisprognose 2032-2037
Die Preisprognose für Penguin Finance für die Jahre 2032-2037 wird derzeit zwischen $0.012177 am unteren Ende und $0.11105 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Penguin Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Penguin Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.006559 | $0.012177 | $0.017795 |
| 2033 | $0.015243 | $0.031321 | $0.0474009 |
| 2034 | $0.012254 | $0.019853 | $0.027452 |
| 2035 | $0.014488 | $0.023417 | $0.032345 |
| 2036 | $0.023983 | $0.045452 | $0.066921 |
| 2037 | $0.062284 | $0.11105 | $0.159815 |
Penguin Finance Potenzielles Preishistogramm
Penguin Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Penguin Finance Bullisch, mit 19 technischen Indikatoren, die bullische Signale zeigen, und 16 anzeigen bärische Signale. Die Preisprognose für PEFI wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Penguin Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Penguin Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.004618 erreichen. Der kurzfristige 50-Tage-SMA für Penguin Finance wird voraussichtlich bis zum 04.02.2026 $0.002963 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 60.33, was darauf hindeutet, dass sich der PEFI-Markt in einem NEUTRAL Zustand befindet.
Beliebte PEFI Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.003223 | BUY |
| SMA 5 | $0.003189 | BUY |
| SMA 10 | $0.003048 | BUY |
| SMA 21 | $0.002933 | BUY |
| SMA 50 | $0.0031011 | BUY |
| SMA 100 | $0.004014 | SELL |
| SMA 200 | $0.004925 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.003211 | BUY |
| EMA 5 | $0.003168 | BUY |
| EMA 10 | $0.003086 | BUY |
| EMA 21 | $0.003038 | BUY |
| EMA 50 | $0.003268 | SELL |
| EMA 100 | $0.003891 | SELL |
| EMA 200 | $0.004923 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.004598 | SELL |
| SMA 50 | $0.006367 | SELL |
| SMA 100 | $0.009191 | SELL |
| SMA 200 | $0.018526 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.004272 | SELL |
| EMA 50 | $0.006382 | SELL |
| EMA 100 | $0.03769 | SELL |
| EMA 200 | $0.192414 | SELL |
Penguin Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 60.33 | NEUTRAL |
| Stoch RSI (14) | 105.27 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 159.69 | SELL |
| Average Directional Index (14) | 18.53 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000167 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 78.1 | SELL |
| VWMA (10) | 0.003087 | BUY |
| Hull Moving Average (9) | 0.003297 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000589 | SELL |
Auf weltweiten Geldflüssen basierende Penguin Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Penguin Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Penguin Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.004554 | $0.006399 | $0.008992 | $0.012636 | $0.017756 | $0.02495 |
| Amazon.com aktie | $0.006763 | $0.014111 | $0.029444 | $0.061437 | $0.128193 | $0.267482 |
| Apple aktie | $0.004597 | $0.006521 | $0.009249 | $0.01312 | $0.0186097 | $0.026396 |
| Netflix aktie | $0.005114 | $0.008069 | $0.012732 | $0.020089 | $0.031697 | $0.050014 |
| Google aktie | $0.004197 | $0.005435 | $0.007039 | $0.009115 | $0.0118046 | $0.015286 |
| Tesla aktie | $0.007347 | $0.016656 | $0.037759 | $0.085597 | $0.194042 | $0.439879 |
| Kodak aktie | $0.00243 | $0.001822 | $0.001366 | $0.001024 | $0.000768 | $0.000576 |
| Nokia aktie | $0.002147 | $0.001422 | $0.000942 | $0.000624 | $0.000413 | $0.000273 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Penguin Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Penguin Finance investieren?", "Sollte ich heute PEFI kaufen?", "Wird Penguin Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Penguin Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Penguin Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Penguin Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Penguin Finance-Preis entspricht heute $0.003241 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Penguin Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Penguin Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003325 | $0.003411 | $0.00350061 | $0.003591 |
| Wenn die Wachstumsrate von Penguin Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0034097 | $0.003587 | $0.003773 | $0.003969 |
| Wenn die Wachstumsrate von Penguin Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003662 | $0.004138 | $0.004676 | $0.005284 |
| Wenn die Wachstumsrate von Penguin Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004083 | $0.005145 | $0.006482 | $0.008167 |
| Wenn die Wachstumsrate von Penguin Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004926 | $0.007487 | $0.011379 | $0.017295 |
| Wenn die Wachstumsrate von Penguin Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.007453 | $0.017141 | $0.039418 | $0.090649 |
| Wenn die Wachstumsrate von Penguin Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.011666 | $0.04199 | $0.151137 | $0.543993 |
Fragefeld
Ist PEFI eine gute Investition?
Die Entscheidung, Penguin Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Penguin Finance in den letzten 2026 Stunden um 0.6293% gestiegen, und Penguin Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Penguin Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Penguin Finance steigen?
Es scheint, dass der Durchschnittswert von Penguin Finance bis zum Ende dieses Jahres potenziell auf $0.003342 steigen könnte. Betrachtet man die Aussichten von Penguin Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.010509 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Penguin Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Penguin Finance-Prognose wird der Preis von Penguin Finance in der nächsten Woche um 0.86% steigen und $0.003268 erreichen bis zum 13. Januar 2026.
Wie viel wird Penguin Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Penguin Finance-Prognose wird der Preis von Penguin Finance im nächsten Monat um -11.62% fallen und $0.002864 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Penguin Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Penguin Finance im Jahr 2026 wird erwartet, dass PEFI innerhalb der Spanne von $0.001119 bis $0.003342 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Penguin Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Penguin Finance in 5 Jahren sein?
Die Zukunft von Penguin Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.010509 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Penguin Finance-Prognose für 2030 könnte der Wert von Penguin Finance seinen höchsten Gipfel von ungefähr $0.010509 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.003634 liegen wird.
Wie viel wird Penguin Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Penguin Finance-Preisprognosesimulation wird der Wert von PEFI im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.003342 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.003342 und $0.001119 während des Jahres 2026 liegen.
Wie viel wird Penguin Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Penguin Finance könnte der Wert von PEFI um -12.62% fallen und bis zu $0.002832 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.002832 und $0.001078 im Laufe des Jahres schwanken.
Wie viel wird Penguin Finance im Jahr 2028 kosten?
Unser neues experimentelles Penguin Finance-Preisprognosemodell deutet darauf hin, dass der Wert von PEFI im Jahr 2028 um 47.02% steigen, und im besten Fall $0.004765 erreichen wird. Der Preis wird voraussichtlich zwischen $0.004765 und $0.001945 im Laufe des Jahres liegen.
Wie viel wird Penguin Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Penguin Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.014059 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.014059 und $0.004273.
Wie viel wird Penguin Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Penguin Finance-Preisprognosen wird der Wert von PEFI im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.010509 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.010509 und $0.003634 während des Jahres 2030 liegen.
Wie viel wird Penguin Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Penguin Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.009593 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.009593 und $0.004297 während des Jahres schwanken.
Wie viel wird Penguin Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Penguin Finance-Preisprognose könnte PEFI eine 449.04% Steigerung im Wert erfahren und $0.017795 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.017795 und $0.006559 liegen.
Wie viel wird Penguin Finance im Jahr 2033 kosten?
Laut unserer experimentellen Penguin Finance-Preisprognose wird der Wert von PEFI voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.0474009 beträgt. Im Laufe des Jahres könnte der Preis von PEFI zwischen $0.0474009 und $0.015243 liegen.
Wie viel wird Penguin Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Penguin Finance-Preisprognosesimulation deuten darauf hin, dass PEFI im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.027452 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.027452 und $0.012254.
Wie viel wird Penguin Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Penguin Finance könnte PEFI um 897.93% steigen, wobei der Wert im Jahr 2035 $0.032345 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.032345 und $0.014488.
Wie viel wird Penguin Finance im Jahr 2036 kosten?
Unsere jüngste Penguin Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von PEFI im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.066921 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.066921 und $0.023983.
Wie viel wird Penguin Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Penguin Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.159815 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.159815 und $0.062284 liegen.
Verwandte Prognosen
Larissa Blockchain-Preisprognose
Centric Cash-Preisprognose
Crypto Raiders-Preisprognose
Wizarre Scroll-Preisprognose
Potcoin-Preisprognose
Grape-Preisprognose
Solaris-Preisprognose
SmartCash-Preisprognose
XTblock Token-Preisprognose
Lunar-Preisprognose
Channels-Preisprognose
Minds-Preisprognose
Joe Hat-Preisprognose
Pepemon Pepeballs-Preisprognose
Blur Network-Preisprognose
Hush-Preisprognose
VNST Stablecoin-Preisprognose
Kangal-Preisprognose
KingdomX-Preisprognose
Signata-Preisprognose
Crabada-Preisprognose
Blocknet-Preisprognose
Ston-Preisprognose
Ubcoin Market-Preisprognose
Power Index Pool Token-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Penguin Finance?
Penguin Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Penguin Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Penguin Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von PEFI über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von PEFI über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von PEFI einzuschätzen.
Wie liest man Penguin Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Penguin Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von PEFI innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Penguin Finance?
Die Preisentwicklung von Penguin Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von PEFI. Die Marktkapitalisierung von Penguin Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von PEFI-„Walen“, großen Inhabern von Penguin Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Penguin Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


