Paysenger EGO Preisvorhersage bis zu $0.000981 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.000328 | $0.000981 |
| 2027 | $0.000316 | $0.000831 |
| 2028 | $0.000571 | $0.001399 |
| 2029 | $0.001254 | $0.004127 |
| 2030 | $0.001067 | $0.003085 |
| 2031 | $0.001261 | $0.002816 |
| 2032 | $0.001925 | $0.005225 |
| 2033 | $0.004475 | $0.013917 |
| 2034 | $0.003598 | $0.00806 |
| 2035 | $0.004254 | $0.009497 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Paysenger EGO eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,957.99 Gewinn erzielen könnten, was einer Rendite von 39.58% in den nächsten 90 Tagen entspricht.
Langfristige Paysenger EGO Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Paysenger EGO'
'name_with_ticker' => 'Paysenger EGO <small>EGO</small>'
'name_lang' => 'Paysenger EGO'
'name_lang_with_ticker' => 'Paysenger EGO <small>EGO</small>'
'name_with_lang' => 'Paysenger EGO'
'name_with_lang_with_ticker' => 'Paysenger EGO <small>EGO</small>'
'image' => '/uploads/coins/paysenger-ego.jpg?1717227008'
'price_for_sd' => 0.0009516
'ticker' => 'EGO'
'marketcap' => '$190.94K'
'low24h' => '$0.0009253'
'high24h' => '$0.0009567'
'volume24h' => '$74.19K'
'current_supply' => '200.64M'
'max_supply' => '323M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0009516'
'change_24h_pct' => '2.5977%'
'ath_price' => '$0.1311'
'ath_days' => 657
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20.03.2024'
'ath_pct' => '-99.27%'
'fdv' => '$307.39K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.046923'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000959'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000841'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000328'
'current_year_max_price_prediction' => '$0.000981'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001067'
'grand_prediction_max_price' => '$0.003085'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00096970364592158
107 => 0.00097332416733303
108 => 0.00098148138694143
109 => 0.00091177883850544
110 => 0.00094307323639389
111 => 0.00096145576326482
112 => 0.00087840283809994
113 => 0.00095981407396982
114 => 0.00091056547221135
115 => 0.00089384975708535
116 => 0.0009163552653745
117 => 0.00090758484690689
118 => 0.00090004455612469
119 => 0.00089583694430959
120 => 0.00091236250575483
121 => 0.00091159156856109
122 => 0.00088455254256342
123 => 0.00084928123540114
124 => 0.00086111944382599
125 => 0.00085681851172145
126 => 0.0008412313789433
127 => 0.00085173522443818
128 => 0.00080548160475327
129 => 0.00072590465613932
130 => 0.00077847562590155
131 => 0.00077645170075191
201 => 0.00077543114591377
202 => 0.00081493677673521
203 => 0.0008111392218817
204 => 0.00080424662263682
205 => 0.00084110479095293
206 => 0.00082765106370522
207 => 0.00086911228098584
208 => 0.00089642132023025
209 => 0.00088949486452299
210 => 0.00091517914792841
211 => 0.00086139217223828
212 => 0.00087925804800363
213 => 0.00088294018023783
214 => 0.00084064996687725
215 => 0.00081176054882089
216 => 0.000809833954
217 => 0.00075974368429731
218 => 0.00078650150205796
219 => 0.0008100472743736
220 => 0.00079877067666015
221 => 0.00079520084270285
222 => 0.00081343835018819
223 => 0.00081485556071349
224 => 0.00078254301054742
225 => 0.00078926181293233
226 => 0.00081728033578536
227 => 0.00078855581804456
228 => 0.0007327487721975
301 => 0.00071890785323466
302 => 0.00071706121950627
303 => 0.00067952354954191
304 => 0.00071983276962269
305 => 0.00070223671483749
306 => 0.00075782244107082
307 => 0.00072607217235857
308 => 0.00072470348173285
309 => 0.0007226345051088
310 => 0.00069032428190886
311 => 0.00069739816736784
312 => 0.00072091284001667
313 => 0.00072930314012952
314 => 0.00072842796308805
315 => 0.00072079760529231
316 => 0.00072429074401744
317 => 0.00071303812709357
318 => 0.00070906459385478
319 => 0.00069652302994674
320 => 0.00067809039569738
321 => 0.00068065356654367
322 => 0.00064413369493457
323 => 0.00062423573062565
324 => 0.0006187282363559
325 => 0.00061136338484435
326 => 0.00061956011593125
327 => 0.00064403023872678
328 => 0.00061451407900922
329 => 0.00056391069349132
330 => 0.00056695204318492
331 => 0.0005737850529616
401 => 0.00056105178444763
402 => 0.00054900081442137
403 => 0.0005594781551331
404 => 0.00053803683359652
405 => 0.00057637613423217
406 => 0.00057533916359463
407 => 0.00058962968398515
408 => 0.00059856583965635
409 => 0.000577970893949
410 => 0.00057279132079825
411 => 0.00057574184106339
412 => 0.00052697631344577
413 => 0.00058564449999757
414 => 0.00058615186491112
415 => 0.00058180749849114
416 => 0.00061304649665293
417 => 0.00067897052646217
418 => 0.00065416725465998
419 => 0.00064456267813531
420 => 0.00062630437114101
421 => 0.00065063248113992
422 => 0.00064876446186964
423 => 0.00064031657030416
424 => 0.00063520725912634
425 => 0.00064462132163151
426 => 0.00063404075260113
427 => 0.00063214019166868
428 => 0.00062062486024872
429 => 0.00061651441084599
430 => 0.00061347119774992
501 => 0.00061012091915108
502 => 0.0006175107989027
503 => 0.00060076435916588
504 => 0.00058056979451701
505 => 0.00057889083497468
506 => 0.0005835265898867
507 => 0.00058147561342949
508 => 0.00057888101568847
509 => 0.0005739272220042
510 => 0.00057245753723913
511 => 0.00057723329973592
512 => 0.0005718417423213
513 => 0.0005797972789799
514 => 0.00057763381320868
515 => 0.00056554886927796
516 => 0.00055048655472098
517 => 0.00055035246852714
518 => 0.00054710731756299
519 => 0.00054297412989842
520 => 0.00054182437164467
521 => 0.00055859578272204
522 => 0.0005933121017261
523 => 0.00058649645761449
524 => 0.00059142145898043
525 => 0.00061564759124783
526 => 0.00062334835019043
527 => 0.00061788253389545
528 => 0.00061040058743401
529 => 0.00061072975510679
530 => 0.00063629783110474
531 => 0.00063789248064229
601 => 0.00064192164557024
602 => 0.00064710026114454
603 => 0.00061876447452072
604 => 0.00060939514210501
605 => 0.00060495543261567
606 => 0.00059128284577232
607 => 0.00060602755848387
608 => 0.0005974364458184
609 => 0.00059859568043117
610 => 0.00059784072736884
611 => 0.00059825298279057
612 => 0.00057636541761629
613 => 0.00058434009598924
614 => 0.0005710806464799
615 => 0.00055332773202995
616 => 0.00055326821803574
617 => 0.00055761321869683
618 => 0.00055502864228372
619 => 0.00054807361361159
620 => 0.00054906154260765
621 => 0.00054040624505436
622 => 0.00055011245243984
623 => 0.00055039079173718
624 => 0.00054665337319308
625 => 0.00056160712486893
626 => 0.00056773368913162
627 => 0.00056527364018263
628 => 0.00056756108553937
629 => 0.00058677967839812
630 => 0.00058991314760009
701 => 0.00059130482763425
702 => 0.00058944016075075
703 => 0.00056791236613676
704 => 0.00056886721537114
705 => 0.00056186116524167
706 => 0.00055594179116165
707 => 0.00055617853508182
708 => 0.00055922186282372
709 => 0.00057251225356142
710 => 0.00060048109735757
711 => 0.00060154249453467
712 => 0.00060282893887647
713 => 0.00059759632322328
714 => 0.00059601811627289
715 => 0.00059810017861023
716 => 0.00060860380580812
717 => 0.00063562198666806
718 => 0.00062607195706853
719 => 0.00061830763434905
720 => 0.00062511903862041
721 => 0.00062407047632238
722 => 0.00061521955529125
723 => 0.00061497113941682
724 => 0.00059798339214746
725 => 0.00059170340877426
726 => 0.00058645538461901
727 => 0.00058072467924462
728 => 0.0005773273250037
729 => 0.00058254720518764
730 => 0.00058374105354552
731 => 0.00057232769429543
801 => 0.00057077209560345
802 => 0.00058009249114155
803 => 0.0005759909325646
804 => 0.00058020948727475
805 => 0.00058118822815359
806 => 0.00058103062832979
807 => 0.00057674813011445
808 => 0.00057947766677097
809 => 0.00057302149886426
810 => 0.00056600138595078
811 => 0.00056152299128047
812 => 0.00055761499795777
813 => 0.00055978337978711
814 => 0.0005520534944964
815 => 0.00054958054862004
816 => 0.00057855296116826
817 => 0.00059995519382355
818 => 0.00059964399688453
819 => 0.00059774966555159
820 => 0.00059493507344191
821 => 0.00060839790086428
822 => 0.00060370772098806
823 => 0.00060712021872565
824 => 0.00060798884262195
825 => 0.00061061790554326
826 => 0.00061155756956204
827 => 0.00060871725225868
828 => 0.00059918480047306
829 => 0.00057543083694161
830 => 0.00056437330279512
831 => 0.00056072413234899
901 => 0.00056085677276394
902 => 0.00055719795798657
903 => 0.00055827564291509
904 => 0.00055682318314846
905 => 0.00055407257573824
906 => 0.00055961353753054
907 => 0.00056025208175947
908 => 0.00055895875506758
909 => 0.00055926338032263
910 => 0.00054855518770088
911 => 0.00054936930832894
912 => 0.00054483618121845
913 => 0.0005439862745329
914 => 0.00053252692394212
915 => 0.00051222502331113
916 => 0.00052347424701387
917 => 0.00050988676666117
918 => 0.00050474098196768
919 => 0.00052910032637296
920 => 0.00052665532381772
921 => 0.00052247054226019
922 => 0.00051628037815172
923 => 0.00051398438606985
924 => 0.00050003466500313
925 => 0.00049921044106364
926 => 0.00050612429949846
927 => 0.00050293379172213
928 => 0.00049845311046438
929 => 0.0004822245371482
930 => 0.00046397824764484
1001 => 0.00046452898843286
1002 => 0.0004703327936396
1003 => 0.00048720814002794
1004 => 0.00048061465024756
1005 => 0.00047583099776031
1006 => 0.00047493516344552
1007 => 0.00048614840545135
1008 => 0.00050201749213644
1009 => 0.00050946291255828
1010 => 0.00050208472704102
1011 => 0.00049360906478851
1012 => 0.00049412493907738
1013 => 0.0004975568196055
1014 => 0.00049791746172483
1015 => 0.0004924006769106
1016 => 0.00049395361952105
1017 => 0.00049159455769172
1018 => 0.00047711699959963
1019 => 0.00047685514648258
1020 => 0.00047330212024462
1021 => 0.00047319453602219
1022 => 0.00046714995204749
1023 => 0.0004663042729652
1024 => 0.0004543023846034
1025 => 0.0004622020638682
1026 => 0.00045690337376915
1027 => 0.00044891699795524
1028 => 0.00044754014375468
1029 => 0.00044749875385481
1030 => 0.00045569897609474
1031 => 0.00046210623949692
1101 => 0.00045699554675199
1102 => 0.00045583194108058
1103 => 0.00046825620541051
1104 => 0.00046667510452484
1105 => 0.00046530588135486
1106 => 0.00050059658947746
1107 => 0.00047266124023013
1108 => 0.0004604798334643
1109 => 0.00044540302940519
1110 => 0.00045031211283068
1111 => 0.00045134652883787
1112 => 0.0004150895328739
1113 => 0.00040038007412684
1114 => 0.0003953323421991
1115 => 0.00039242730111024
1116 => 0.00039375116481364
1117 => 0.00038051092669386
1118 => 0.00038940858568368
1119 => 0.00037794365864142
1120 => 0.00037602152631268
1121 => 0.00039652223609617
1122 => 0.00039937479009914
1123 => 0.00038720490850343
1124 => 0.00039501994261274
1125 => 0.0003921861026076
1126 => 0.00037814019190922
1127 => 0.00037760374143527
1128 => 0.00037055599718445
1129 => 0.00035952764214413
1130 => 0.00035448738796043
1201 => 0.00035186237982007
1202 => 0.00035294550933917
1203 => 0.00035239784591
1204 => 0.00034882397158086
1205 => 0.00035260269620312
1206 => 0.00034294961627005
1207 => 0.00033910568206056
1208 => 0.00033736946615673
1209 => 0.00032880180210558
1210 => 0.00034243676566845
1211 => 0.00034512302525908
1212 => 0.00034781457761093
1213 => 0.00037124270323296
1214 => 0.00037007230028408
1215 => 0.00038065217293261
1216 => 0.00038024105853662
1217 => 0.00037722350747469
1218 => 0.00036449295590744
1219 => 0.00036956712686188
1220 => 0.00035394961736536
1221 => 0.00036565131736758
1222 => 0.00036031115016124
1223 => 0.00036384580146339
1224 => 0.00035749017971547
1225 => 0.00036100764320796
1226 => 0.00034576003706168
1227 => 0.00033152203698189
1228 => 0.00033725182384713
1229 => 0.00034348075745025
1230 => 0.00035698667260459
1231 => 0.00034894266096005
]
'min_raw' => 0.00032880180210558
'max_raw' => 0.00098148138694143
'avg_raw' => 0.0006551415945235
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000328'
'max' => '$0.000981'
'avg' => '$0.000655'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00062286819789442
'max_diff' => 2.9811386941426E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00035183559172518
102 => 0.00034214475793275
103 => 0.00032214979976912
104 => 0.00032226296906088
105 => 0.00031918718036125
106 => 0.00031652924985227
107 => 0.0003498666124621
108 => 0.00034572058443585
109 => 0.00033911443139476
110 => 0.00034795702975835
111 => 0.00035029515311659
112 => 0.00035036171620158
113 => 0.00035681304770716
114 => 0.00036025612448815
115 => 0.00036086298169395
116 => 0.00037101429120821
117 => 0.00037441687625838
118 => 0.00038843164252817
119 => 0.00035996400347872
120 => 0.00035937773118615
121 => 0.00034808146325123
122 => 0.00034091719153998
123 => 0.0003485720070646
124 => 0.0003553531286329
125 => 0.00034829217160066
126 => 0.00034921418352413
127 => 0.00033973542560974
128 => 0.00034312363554712
129 => 0.00034604201838636
130 => 0.00034443065891715
131 => 0.00034201837580106
201 => 0.00035479715399519
202 => 0.00035407612524904
203 => 0.00036597601728626
204 => 0.00037525283409871
205 => 0.00039187854825599
206 => 0.00037452874881479
207 => 0.00037389645316395
208 => 0.00038007724457436
209 => 0.00037441593001142
210 => 0.00037799368539326
211 => 0.00039130211655209
212 => 0.00039158330273133
213 => 0.00038687307194121
214 => 0.00038658645396957
215 => 0.00038749110531709
216 => 0.00039278967651579
217 => 0.00039093819293032
218 => 0.00039308077660925
219 => 0.00039576011030817
220 => 0.00040684297050084
221 => 0.00040951501057244
222 => 0.00040302333849238
223 => 0.00040360946379704
224 => 0.00040118140023871
225 => 0.00039883592126491
226 => 0.00040410821546831
227 => 0.00041374343675223
228 => 0.00041368349654069
301 => 0.00041591868059662
302 => 0.0004173111817462
303 => 0.00041133354743906
304 => 0.00040744232730882
305 => 0.00040893446871152
306 => 0.00041132043530906
307 => 0.0004081607319012
308 => 0.00038865757875086
309 => 0.00039457358955042
310 => 0.00039358887607523
311 => 0.0003921865243413
312 => 0.00039813511894742
313 => 0.00039756136248597
314 => 0.00038037512891481
315 => 0.00038147533582744
316 => 0.00038044203614117
317 => 0.00038378083882074
318 => 0.0003742356237097
319 => 0.00037717166758985
320 => 0.00037901312678778
321 => 0.00038009776040212
322 => 0.00038401620075733
323 => 0.00038355641700811
324 => 0.00038398761995391
325 => 0.00038979763257079
326 => 0.00041918268263139
327 => 0.00042078204607173
328 => 0.0004129061955518
329 => 0.00041605244249023
330 => 0.00041001233637701
331 => 0.00041406710007601
401 => 0.00041684126641903
402 => 0.00040430534215643
403 => 0.00040356304607907
404 => 0.00039749801029934
405 => 0.00040075701698618
406 => 0.00039557170301654
407 => 0.00039684399769011
408 => 0.00039328655086616
409 => 0.00039968924686867
410 => 0.00040684845587785
411 => 0.0004086571547993
412 => 0.00040389924663081
413 => 0.00040045420755539
414 => 0.00039440585380539
415 => 0.000404464400888
416 => 0.00040740582658363
417 => 0.00040444895083103
418 => 0.00040376377811014
419 => 0.00040246537704213
420 => 0.00040403924003465
421 => 0.00040738980694759
422 => 0.0004058097414667
423 => 0.000406853402554
424 => 0.00040287604270787
425 => 0.00041133552628475
426 => 0.00042477122209042
427 => 0.00042481442004939
428 => 0.00042323434605136
429 => 0.00042258781381454
430 => 0.00042420906562342
501 => 0.00042508852822251
502 => 0.0004303313592857
503 => 0.0004359571259001
504 => 0.00046221012397525
505 => 0.00045483838716881
506 => 0.00047813160885893
507 => 0.00049655352296952
508 => 0.00050207744951862
509 => 0.00049699569701428
510 => 0.00047961129620781
511 => 0.00047875833456758
512 => 0.00050473796887714
513 => 0.00049739753224206
514 => 0.00049652441066139
515 => 0.00048723587220528
516 => 0.00049272654884071
517 => 0.00049152565731718
518 => 0.00048962999129765
519 => 0.0005001058198342
520 => 0.00051971563567096
521 => 0.00051665926197311
522 => 0.00051437782078877
523 => 0.0005043812096365
524 => 0.0005104014023741
525 => 0.00050825772704944
526 => 0.00051746831665416
527 => 0.00051201216741186
528 => 0.00049734192121503
529 => 0.00049967820627564
530 => 0.00049932508148868
531 => 0.00050659236458158
601 => 0.00050441090658215
602 => 0.00049889911680314
603 => 0.00051964861145229
604 => 0.00051830125468453
605 => 0.00052021149853257
606 => 0.00052105244695074
607 => 0.00053368229869657
608 => 0.00053885634484665
609 => 0.00054003094390715
610 => 0.00054494588757464
611 => 0.00053990865563129
612 => 0.0005600611748902
613 => 0.00057346142426528
614 => 0.00058902650348496
615 => 0.00061177126772379
616 => 0.00062032350947843
617 => 0.0006187786235536
618 => 0.00063602344421708
619 => 0.00066701200361852
620 => 0.00062504229740545
621 => 0.00066923649995822
622 => 0.00065524512567662
623 => 0.00062207182894902
624 => 0.00061993585972724
625 => 0.00064240120142106
626 => 0.00069222716708897
627 => 0.00067974632781058
628 => 0.00069224758127089
629 => 0.00067766420506627
630 => 0.00067694001751936
701 => 0.00069153929923933
702 => 0.00072565131674347
703 => 0.00070944597589711
704 => 0.00068621164608126
705 => 0.00070336751365107
706 => 0.00068850551346151
707 => 0.00065501726742249
708 => 0.000679736783948
709 => 0.00066320754721869
710 => 0.00066803165723886
711 => 0.00070277365430546
712 => 0.00069859340530249
713 => 0.00070400303459297
714 => 0.00069445518048991
715 => 0.00068553597919926
716 => 0.00066888762764167
717 => 0.00066395887149927
718 => 0.00066532100237896
719 => 0.00066395819649486
720 => 0.00065464359680463
721 => 0.00065263210988838
722 => 0.00064927954356936
723 => 0.00065031864405809
724 => 0.00064401483855047
725 => 0.00065591142197604
726 => 0.00065811953269216
727 => 0.00066677687401656
728 => 0.00066767570791249
729 => 0.00069178628027141
730 => 0.00067850658217782
731 => 0.00068741575017297
801 => 0.00068661883033114
802 => 0.00062279079487934
803 => 0.00063158573500507
804 => 0.00064526790183646
805 => 0.00063910410422466
806 => 0.00063038993650808
807 => 0.00062335277885284
808 => 0.00061269076541882
809 => 0.00062769734458137
810 => 0.00064742940040833
811 => 0.00066817614541111
812 => 0.00069310200015136
813 => 0.00068753883954227
814 => 0.0006677101738948
815 => 0.0006685996733509
816 => 0.00067409820898335
817 => 0.00066697710574468
818 => 0.00066487695337915
819 => 0.00067380968029836
820 => 0.00067387119507931
821 => 0.00066567750518915
822 => 0.00065657171830566
823 => 0.00065653356472613
824 => 0.00065491327790168
825 => 0.00067795245049285
826 => 0.00069062166589491
827 => 0.00069207417102329
828 => 0.00069052390072681
829 => 0.0006911205382359
830 => 0.00068374860094055
831 => 0.00070059866351762
901 => 0.00071606194723681
902 => 0.00071191745687519
903 => 0.00070570427664911
904 => 0.00070075517933173
905 => 0.0007107516068318
906 => 0.00071030648165105
907 => 0.0007159268889434
908 => 0.00071567191480357
909 => 0.00071378198322537
910 => 0.0007119175243706
911 => 0.00071930989298086
912 => 0.00071718100953892
913 => 0.00071504881935297
914 => 0.00071077238551307
915 => 0.00071135362389596
916 => 0.00070514151646304
917 => 0.00070226751131788
918 => 0.00065904936963719
919 => 0.00064750006998659
920 => 0.00065113371476434
921 => 0.00065233000497272
922 => 0.00064730373496395
923 => 0.0006545101150137
924 => 0.00065338700831639
925 => 0.00065775635948018
926 => 0.00065502657856822
927 => 0.00065513860972903
928 => 0.00066316631334045
929 => 0.00066549678985113
930 => 0.00066431149068855
1001 => 0.00066514163359234
1002 => 0.00068427192642895
1003 => 0.00068155221053991
1004 => 0.00068010741567981
1005 => 0.00068050763372996
1006 => 0.00068539583370782
1007 => 0.0006867642628158
1008 => 0.0006809661325275
1009 => 0.00068370056429005
1010 => 0.00069534342768395
1011 => 0.00069941777094282
1012 => 0.00071242111882941
1013 => 0.00070689706553111
1014 => 0.00071703670443557
1015 => 0.00074820249757025
1016 => 0.00077309988963509
1017 => 0.00075020321896402
1018 => 0.00079592410882733
1019 => 0.00083152437985804
1020 => 0.00083015798216053
1021 => 0.00082395025145722
1022 => 0.00078342028937093
1023 => 0.00074612401399144
1024 => 0.00077732393202989
1025 => 0.00077740346703729
1026 => 0.00077472336640795
1027 => 0.0007580774915775
1028 => 0.00077414412604588
1029 => 0.00077541943714453
1030 => 0.00077470560206188
1031 => 0.00076194324885769
1101 => 0.00074245749439204
1102 => 0.00074626496417232
1103 => 0.0007525016773427
1104 => 0.0007406942781965
1105 => 0.00073692109873375
1106 => 0.00074393615723177
1107 => 0.00076654013735789
1108 => 0.00076226698585099
1109 => 0.00076215539659598
1110 => 0.00078043775084075
1111 => 0.00076735153078048
1112 => 0.00074631298855946
1113 => 0.00074100047918437
1114 => 0.00072214464983793
1115 => 0.00073516843832967
1116 => 0.00073563714129169
1117 => 0.00072850414543465
1118 => 0.00074689179186107
1119 => 0.00074672234646217
1120 => 0.00076417868010406
1121 => 0.00079754863372785
1122 => 0.00078767949640561
1123 => 0.00077620276345893
1124 => 0.00077745060254552
1125 => 0.00079113631739612
1126 => 0.00078286162178296
1127 => 0.00078583726001868
1128 => 0.00079113181341127
1129 => 0.00079432614892938
1130 => 0.00077699098682249
1201 => 0.00077294933129872
1202 => 0.00076468152252542
1203 => 0.00076252460554242
1204 => 0.00076925856327479
1205 => 0.00076748440332655
1206 => 0.00073559774862264
1207 => 0.00073226541579041
1208 => 0.0007323676136809
1209 => 0.00072398830433046
1210 => 0.00071120784630638
1211 => 0.00074479412691218
1212 => 0.00074209667853983
1213 => 0.00073911890430269
1214 => 0.0007394836646558
1215 => 0.00075406233072211
1216 => 0.00074560596816336
1217 => 0.00076808859399635
1218 => 0.00076346684201468
1219 => 0.00075872655953415
1220 => 0.00075807130810281
1221 => 0.0007562467037697
1222 => 0.0007499894566061
1223 => 0.0007424334546538
1224 => 0.00073744432767521
1225 => 0.00068025341112071
1226 => 0.00069086771256897
1227 => 0.00070307849886117
1228 => 0.00070729361335758
1229 => 0.00070008336833443
1230 => 0.00075027416102658
1231 => 0.00075944450250195
]
'min_raw' => 0.00031652924985227
'max_raw' => 0.00083152437985804
'avg_raw' => 0.00057402681485515
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000316'
'max' => '$0.000831'
'avg' => '$0.000574'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.2272552253312E-5
'max_diff' => -0.00014995700708339
'year' => 2027
]
2 => [
'items' => [
101 => 0.00073166694000648
102 => 0.00072647089221398
103 => 0.00075061481305481
104 => 0.00073605307731351
105 => 0.00074261022602619
106 => 0.00072843725707796
107 => 0.00075723563577947
108 => 0.00075701624038425
109 => 0.00074581302062848
110 => 0.00075528190524972
111 => 0.00075363645352897
112 => 0.00074098804601701
113 => 0.00075763661285816
114 => 0.0007576448703396
115 => 0.00074686201490367
116 => 0.00073427000042508
117 => 0.00073201884564642
118 => 0.00073032290292079
119 => 0.00074219312807886
120 => 0.00075283593483836
121 => 0.00077263955964223
122 => 0.00077761866144045
123 => 0.00079705242723645
124 => 0.00078548056591781
125 => 0.00079061022215968
126 => 0.00079617918964439
127 => 0.00079884915744856
128 => 0.00079449858819004
129 => 0.00082468722572836
130 => 0.00082723607169255
131 => 0.00082809067769691
201 => 0.00081791123897344
202 => 0.00082695296308718
203 => 0.00082272263980479
204 => 0.00083372876576791
205 => 0.0008354546668522
206 => 0.00083399289003452
207 => 0.00083454071828017
208 => 0.00080878004178181
209 => 0.00080744421480697
210 => 0.00078923011921915
211 => 0.00079665249780298
212 => 0.00078277671680436
213 => 0.00078717686989541
214 => 0.00078911641545174
215 => 0.00078810330692135
216 => 0.00079707214795167
217 => 0.00078944680086273
218 => 0.0007693222561719
219 => 0.00074919222856233
220 => 0.00074893951246326
221 => 0.00074363963151816
222 => 0.00073980878831647
223 => 0.00074054674462358
224 => 0.00074314739890299
225 => 0.00073965763356202
226 => 0.00074040235193311
227 => 0.00075276963892575
228 => 0.00075524981013266
229 => 0.00074682121930611
301 => 0.00071297921089764
302 => 0.00070467429714795
303 => 0.00071064370445763
304 => 0.00070779071224267
305 => 0.00057124234557999
306 => 0.00060332235887684
307 => 0.00058426150431017
308 => 0.00059304562304224
309 => 0.00057358942631403
310 => 0.00058287494317937
311 => 0.00058116024726713
312 => 0.00063274395933185
313 => 0.00063193855061903
314 => 0.00063232405714858
315 => 0.00061392282606154
316 => 0.00064323648683106
317 => 0.00065767745021128
318 => 0.00065500481222339
319 => 0.00065567745762522
320 => 0.00064411918104103
321 => 0.00063243596653105
322 => 0.00061947748360567
323 => 0.00064355274316414
324 => 0.00064087598527962
325 => 0.00064701550479961
326 => 0.00066263003155838
327 => 0.00066492932993742
328 => 0.00066801961027605
329 => 0.00066691196475578
330 => 0.0006933005747979
331 => 0.00069010474000414
401 => 0.00069780578235267
402 => 0.00068196415396226
403 => 0.00066403784773733
404 => 0.00066744505249559
405 => 0.00066711691127836
406 => 0.00066293929696006
407 => 0.00065916793354726
408 => 0.00065288967604
409 => 0.00067275501180026
410 => 0.00067194851544675
411 => 0.00068500475396052
412 => 0.00068269693698168
413 => 0.00066728477037835
414 => 0.00066783521892372
415 => 0.00067153724992783
416 => 0.00068435002150213
417 => 0.00068815372446539
418 => 0.00068639169770145
419 => 0.00069056228435503
420 => 0.00069385854599751
421 => 0.00069097624406719
422 => 0.00073178356116362
423 => 0.00071483751802896
424 => 0.00072309690154298
425 => 0.00072506671584396
426 => 0.00072002107793273
427 => 0.00072111529612493
428 => 0.0007227727385295
429 => 0.00073283640424955
430 => 0.00075924637504412
501 => 0.00077094317133028
502 => 0.00080613356006696
503 => 0.00076997191522598
504 => 0.00076782623287288
505 => 0.00077416508453229
506 => 0.00079482556800167
507 => 0.00081156894931307
508 => 0.00081712369484291
509 => 0.00081785784616353
510 => 0.00082827891804999
511 => 0.00083425208211383
512 => 0.00082701352582158
513 => 0.00082087960727232
514 => 0.0007989086723989
515 => 0.00080145186793537
516 => 0.00081897196321597
517 => 0.00084372012972828
518 => 0.00086495663120371
519 => 0.00085752034855381
520 => 0.00091425393597511
521 => 0.00091987883943201
522 => 0.00091910165964917
523 => 0.00093191602682185
524 => 0.00090648211758457
525 => 0.00089560862862685
526 => 0.00082220583008561
527 => 0.00084282902241445
528 => 0.00087280604362204
529 => 0.00086883847245716
530 => 0.00084706835836813
531 => 0.00086494011662
601 => 0.00085903115444038
602 => 0.00085437051080625
603 => 0.00087572182280443
604 => 0.00085224517819887
605 => 0.00087257184613341
606 => 0.00084650268425491
607 => 0.00085755431686657
608 => 0.00085128087568887
609 => 0.00085534056097488
610 => 0.00083160772374589
611 => 0.00084441338663259
612 => 0.00083107496606869
613 => 0.00083106864192063
614 => 0.0008307741955474
615 => 0.00084646678818922
616 => 0.00084697852307189
617 => 0.00083538167339939
618 => 0.00083371038618474
619 => 0.00083989001097438
620 => 0.00083265528879201
621 => 0.00083604036976634
622 => 0.00083275781944628
623 => 0.00083201884822815
624 => 0.00082613059983649
625 => 0.0008235937805286
626 => 0.000824588532745
627 => 0.00082119293060049
628 => 0.00081914695748413
629 => 0.00083036719999816
630 => 0.0008243726770462
701 => 0.00082944845338221
702 => 0.00082366396563329
703 => 0.00080361241091419
704 => 0.0007920805497539
705 => 0.00075420502166964
706 => 0.00076494647444989
707 => 0.00077206806875603
708 => 0.00076971438188033
709 => 0.00077477101204524
710 => 0.00077508144806911
711 => 0.00077343748605626
712 => 0.00077153398864995
713 => 0.00077060747138257
714 => 0.00077751297201227
715 => 0.00078152184755628
716 => 0.00077278281601929
717 => 0.00077073538320222
718 => 0.00077957102658127
719 => 0.00078496076393831
720 => 0.00082475555635086
721 => 0.00082180742959345
722 => 0.00082920664921388
723 => 0.0008283736106349
724 => 0.00083612917158524
725 => 0.00084880623599444
726 => 0.00082303021948758
727 => 0.00082750404468559
728 => 0.00082640716606275
729 => 0.00083838259924988
730 => 0.00083841998524512
731 => 0.00083124011483219
801 => 0.00083513243906313
802 => 0.00083295985045775
803 => 0.00083688601171064
804 => 0.00082176805556321
805 => 0.00084018009426826
806 => 0.00085061853376845
807 => 0.00085076347151104
808 => 0.00085571120898955
809 => 0.00086073839682135
810 => 0.00087038764608871
811 => 0.00086046928449642
812 => 0.00084262711752495
813 => 0.00084391526435044
814 => 0.00083345440838326
815 => 0.00083363025726197
816 => 0.00083269156216586
817 => 0.00083550865681096
818 => 0.00082238624941884
819 => 0.00082546605220508
820 => 0.00082115431026904
821 => 0.00082749467180068
822 => 0.00082067349089195
823 => 0.00082640663711466
824 => 0.00082888087296758
825 => 0.00083801085653133
826 => 0.00081932498489622
827 => 0.00078122322770993
828 => 0.00078923267900964
829 => 0.00077738607140854
830 => 0.00077848252004524
831 => 0.00078069752078987
901 => 0.00077351797867337
902 => 0.00077488760905582
903 => 0.00077483867622062
904 => 0.00077441699948251
905 => 0.00077254932329093
906 => 0.00076984082330467
907 => 0.00078063065361759
908 => 0.0007824640560414
909 => 0.00078653948251902
910 => 0.00079866518732822
911 => 0.00079745354347397
912 => 0.00079942978487087
913 => 0.00079511566099756
914 => 0.00077868263987852
915 => 0.00077957503198693
916 => 0.0007684468880954
917 => 0.00078625491086023
918 => 0.00078203773601511
919 => 0.00077931889595811
920 => 0.00077857703525868
921 => 0.00079073279734472
922 => 0.0007943699918791
923 => 0.00079210353632832
924 => 0.00078745496987061
925 => 0.00079638159169472
926 => 0.00079876997911091
927 => 0.00079930465097306
928 => 0.00081512091333541
929 => 0.00080018860434235
930 => 0.00080378295953137
1001 => 0.00083182509266213
1002 => 0.00080639474746239
1003 => 0.00081986576847906
1004 => 0.00081920643210011
1005 => 0.00082609775061774
1006 => 0.00081864114283915
1007 => 0.00081873357642923
1008 => 0.00082485260041453
1009 => 0.00081625953479896
1010 => 0.00081413177090799
1011 => 0.00081119228033195
1012 => 0.00081761055046562
1013 => 0.00082145801313737
1014 => 0.00085246573662171
1015 => 0.00087249814011658
1016 => 0.00087162848064916
1017 => 0.00087957554024705
1018 => 0.00087599531711148
1019 => 0.00086443383219157
1020 => 0.00088416787717697
1021 => 0.00087792319963608
1022 => 0.00087843800326527
1023 => 0.00087841884224848
1024 => 0.00088257100689398
1025 => 0.00087962881770234
1026 => 0.00087382946079608
1027 => 0.00087767934455511
1028 => 0.00088911212296079
1029 => 0.0009245998179325
1030 => 0.00094445920218809
1031 => 0.00092340425806413
1101 => 0.0009379276765839
1102 => 0.00092921880069519
1103 => 0.00092763613887959
1104 => 0.0009367579189822
1105 => 0.00094589566555336
1106 => 0.00094531363060034
1107 => 0.00093868009581816
1108 => 0.00093493298033942
1109 => 0.00096330739412022
1110 => 0.00098421317884839
1111 => 0.00098278754448409
1112 => 0.00098907983092699
1113 => 0.0010075541785364
1114 => 0.0010092432413538
1115 => 0.0010090304582615
1116 => 0.0010048439398332
1117 => 0.0010230343342519
1118 => 0.0010382090813055
1119 => 0.0010038748817772
1120 => 0.0010169488954899
1121 => 0.0010228182414639
1122 => 0.0010314361827103
1123 => 0.0010459760941276
1124 => 0.0010617702944478
1125 => 0.0010640037675477
1126 => 0.0010624190115018
1127 => 0.0010520023118197
1128 => 0.0010692845142741
1129 => 0.0010794080231543
1130 => 0.0010854363410201
1201 => 0.0011007231521114
1202 => 0.0010228544885465
1203 => 0.00096773517815157
1204 => 0.00095912750190091
1205 => 0.00097663155003677
1206 => 0.00098124722793803
1207 => 0.0009793866539636
1208 => 0.00091734485888565
1209 => 0.00095880086468967
1210 => 0.0010034040412148
1211 => 0.0010051174308773
1212 => 0.0010274467136542
1213 => 0.0010347180434346
1214 => 0.001052696042836
1215 => 0.0010515715140786
1216 => 0.0010559488708404
1217 => 0.0010549425923261
1218 => 0.0010882430505028
1219 => 0.0011249784010377
1220 => 0.0011237063726599
1221 => 0.0011184252313876
1222 => 0.0011262686267454
1223 => 0.0011641834452967
1224 => 0.0011606928563771
1225 => 0.0011640836661849
1226 => 0.0012087873740425
1227 => 0.0012669085532856
1228 => 0.0012399054302562
1229 => 0.0012984944372907
1230 => 0.0013353731115491
1231 => 0.001399150965353
]
'min_raw' => 0.00057124234557999
'max_raw' => 0.001399150965353
'avg_raw' => 0.00098519665546648
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000571'
'max' => '$0.001399'
'avg' => '$0.000985'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00025471309572773
'max_diff' => 0.00056762658549492
'year' => 2028
]
3 => [
'items' => [
101 => 0.0013911656639442
102 => 0.0014159939144065
103 => 0.0013768703078397
104 => 0.001287034598977
105 => 0.0012728177541722
106 => 0.0013012802374993
107 => 0.0013712524754304
108 => 0.0012990765627168
109 => 0.0013136776558566
110 => 0.0013094725400501
111 => 0.0013092484672993
112 => 0.0013178004128253
113 => 0.0013053953698004
114 => 0.0012548549928923
115 => 0.001278017349793
116 => 0.0012690732514459
117 => 0.0012789973953887
118 => 0.0013325539072196
119 => 0.0013088752967114
120 => 0.0012839318040351
121 => 0.0013152164792553
122 => 0.0013550526213914
123 => 0.001352559747209
124 => 0.0013477225293545
125 => 0.0013749896731319
126 => 0.0014200270061288
127 => 0.0014322004162632
128 => 0.00144118657875
129 => 0.0014424256187344
130 => 0.0014551885006335
131 => 0.0013865592680017
201 => 0.0014954756227121
202 => 0.001514282468417
203 => 0.0015107475608883
204 => 0.0015316505783763
205 => 0.001525500380373
206 => 0.0015165897084026
207 => 0.0015497254373204
208 => 0.0015117379980316
209 => 0.0014578196104469
210 => 0.0014282389166331
211 => 0.0014671931604536
212 => 0.001490981157839
213 => 0.00150670351091
214 => 0.0015114610854495
215 => 0.0013918867599686
216 => 0.0013274428304304
217 => 0.0013687506504132
218 => 0.0014191490417057
219 => 0.0013862793023934
220 => 0.0013875677339438
221 => 0.0013407041237001
222 => 0.0014232954313459
223 => 0.0014112625725242
224 => 0.0014736890653772
225 => 0.0014587904818539
226 => 0.0015096968633931
227 => 0.0014962915070752
228 => 0.0015519363916674
301 => 0.0015741346426563
302 => 0.0016114089609487
303 => 0.0016388281012183
304 => 0.0016549291448291
305 => 0.0016539624985642
306 => 0.0017177628548586
307 => 0.0016801420137665
308 => 0.0016328813708033
309 => 0.0016320265748775
310 => 0.0016565035315566
311 => 0.0017078005178309
312 => 0.0017211010800311
313 => 0.0017285342798049
314 => 0.0017171500755998
315 => 0.0016763153489042
316 => 0.0016586831209539
317 => 0.0016737062900224
318 => 0.0016553342452072
319 => 0.0016870495488435
320 => 0.0017306014347596
321 => 0.0017216081425407
322 => 0.0017516713700786
323 => 0.0017827836478365
324 => 0.0018272756023701
325 => 0.0018389074468175
326 => 0.0018581344433696
327 => 0.001877925338561
328 => 0.001884281640717
329 => 0.0018964177937773
330 => 0.0018963538302601
331 => 0.0019329269443649
401 => 0.0019732682217975
402 => 0.0019884961201256
403 => 0.0020235118326599
404 => 0.0019635486520419
405 => 0.002009031413348
406 => 0.0020500580025535
407 => 0.002001144411575
408 => 0.0020685604013338
409 => 0.0020711780114482
410 => 0.002110700816406
411 => 0.002070636881928
412 => 0.0020468470455236
413 => 0.0021155274118297
414 => 0.0021487596776739
415 => 0.0021387498487485
416 => 0.0020625745563797
417 => 0.0020182372689091
418 => 0.0019021980355744
419 => 0.0020396515199811
420 => 0.0021066011026626
421 => 0.0020624011731344
422 => 0.002084693046632
423 => 0.002206310280271
424 => 0.002252614248708
425 => 0.0022429833469622
426 => 0.0022446108108191
427 => 0.0022695955917112
428 => 0.002380391869557
429 => 0.0023140001716342
430 => 0.0023647541370467
501 => 0.0023916738572945
502 => 0.0024166783937129
503 => 0.0023552751550342
504 => 0.0022753904437058
505 => 0.002250087602296
506 => 0.0020580063612282
507 => 0.0020480076984641
508 => 0.0020423951460641
509 => 0.0020070087970934
510 => 0.0019792048199392
511 => 0.0019570940650107
512 => 0.0018990688412479
513 => 0.0019186506509195
514 => 0.0018261705550471
515 => 0.0018853360430929
516 => 0.0017377355770705
517 => 0.0018606616311455
518 => 0.0017937585686743
519 => 0.0018386821757716
520 => 0.0018385254415385
521 => 0.0017558068378298
522 => 0.0017080964735038
523 => 0.0017384993745675
524 => 0.001771093697893
525 => 0.0017763820171921
526 => 0.0018186414081826
527 => 0.0018304350958454
528 => 0.0017946996716323
529 => 0.0017346768854855
530 => 0.0017486188097334
531 => 0.0017078139408539
601 => 0.0016363049776791
602 => 0.0016876639634579
603 => 0.001705200179298
604 => 0.0017129451712292
605 => 0.0016426243188067
606 => 0.0016205279802356
607 => 0.0016087640749865
608 => 0.0017255993464892
609 => 0.0017319998464029
610 => 0.0016992539839052
611 => 0.0018472683874846
612 => 0.0018137681693663
613 => 0.0018511961207572
614 => 0.0017473537262403
615 => 0.0017513206455532
616 => 0.0017021599918407
617 => 0.0017296866730036
618 => 0.001710231701984
619 => 0.0017274627891896
620 => 0.0017377910318142
621 => 0.0017869436187472
622 => 0.0018612228747334
623 => 0.0017796018613537
624 => 0.0017440384169897
625 => 0.0017661017778567
626 => 0.0018248594153213
627 => 0.0019138802438281
628 => 0.0018611781216409
629 => 0.0018845664285275
630 => 0.0018896757331089
701 => 0.0018508151393467
702 => 0.0019153130893503
703 => 0.0019498780647377
704 => 0.0019853345772713
705 => 0.0020161204736352
706 => 0.0019711724664599
707 => 0.0020192732771812
708 => 0.001980512514676
709 => 0.0019457401036948
710 => 0.0019457928390888
711 => 0.0019239795977364
712 => 0.0018817136939709
713 => 0.0018739192128412
714 => 0.0019144670880122
715 => 0.0019469826440012
716 => 0.0019496607809315
717 => 0.0019676630634366
718 => 0.0019783166287849
719 => 0.0020827360520178
720 => 0.0021247344078449
721 => 0.002176089202362
722 => 0.0021960947890241
723 => 0.0022563044324771
724 => 0.0022076802554006
725 => 0.0021971601088297
726 => 0.002051111208237
727 => 0.0020750267075272
728 => 0.0021133177293934
729 => 0.0020517426130841
730 => 0.0020907978517443
731 => 0.0020985081831588
801 => 0.0020496503141939
802 => 0.002075747413032
803 => 0.0020064412557686
804 => 0.0018627335595698
805 => 0.0019154730770972
806 => 0.001954307113927
807 => 0.0018988861551687
808 => 0.0019982260786557
809 => 0.0019401937461468
810 => 0.0019218002827847
811 => 0.0018500408244661
812 => 0.0018839085265177
813 => 0.0019297150784811
814 => 0.001901411954951
815 => 0.0019601451860115
816 => 0.0020433271047738
817 => 0.0021026074936527
818 => 0.0021071583058233
819 => 0.0020690449872518
820 => 0.0021301218234986
821 => 0.0021305667015716
822 => 0.0020616717807789
823 => 0.0020194740254019
824 => 0.0020098866065955
825 => 0.0020338378584982
826 => 0.0020629190999532
827 => 0.0021087721123289
828 => 0.002136480127383
829 => 0.0022087279354486
830 => 0.0022282761208041
831 => 0.0022497536498704
901 => 0.0022784542521276
902 => 0.0023129166838207
903 => 0.0022375148452235
904 => 0.0022405107008375
905 => 0.0021702975527453
906 => 0.0020952647344247
907 => 0.0021522052905572
908 => 0.0022266474932156
909 => 0.0022095703696745
910 => 0.0022076488444221
911 => 0.0022108803169099
912 => 0.0021980047234466
913 => 0.0021397688914037
914 => 0.0021105232211274
915 => 0.0021482575971501
916 => 0.0021683117386423
917 => 0.0021994139631917
918 => 0.0021955799575277
919 => 0.0022756959478321
920 => 0.0023068265990826
921 => 0.002298862046337
922 => 0.0023003277157199
923 => 0.0023566882728152
924 => 0.0024193728037378
925 => 0.0024780851388991
926 => 0.0025378098479788
927 => 0.0024658093800882
928 => 0.0024292519828649
929 => 0.0024669698852394
930 => 0.0024469562353216
1001 => 0.0025619606041837
1002 => 0.0025699232571623
1003 => 0.0026849193098996
1004 => 0.0027940642574225
1005 => 0.0027255122714182
1006 => 0.002790153706571
1007 => 0.0028600686889823
1008 => 0.0029949460333508
1009 => 0.0029495240888097
1010 => 0.0029147315911438
1011 => 0.0028818528489657
1012 => 0.002950268292085
1013 => 0.0030382836666947
1014 => 0.0030572413353848
1015 => 0.0030879600010497
1016 => 0.0030556630802028
1017 => 0.0030945611639737
1018 => 0.0032318884923691
1019 => 0.0031947814360148
1020 => 0.0031420834507347
1021 => 0.0032504901874461
1022 => 0.0032897221640414
1023 => 0.0035650727217331
1024 => 0.003912714174983
1025 => 0.0037687883306007
1026 => 0.0036794489145346
1027 => 0.0037004457964694
1028 => 0.0038273926867904
1029 => 0.0038681639988686
1030 => 0.003757333517926
1031 => 0.0037964807174545
1101 => 0.0040121856357248
1102 => 0.0041279044037344
1103 => 0.0039707427736733
1104 => 0.0035371400694554
1105 => 0.0031373385737414
1106 => 0.0032433839337008
1107 => 0.003231361680852
1108 => 0.0034631097057968
1109 => 0.0031938964449929
1110 => 0.0031984293058689
1111 => 0.0034349696345442
1112 => 0.0033718647301815
1113 => 0.0032696428669794
1114 => 0.0031380849064683
1115 => 0.002894887848825
1116 => 0.0026794814328186
1117 => 0.003101943019742
1118 => 0.0030837257079173
1119 => 0.0030573443407408
1120 => 0.00311605321863
1121 => 0.0034011268648543
1122 => 0.0033945549946155
1123 => 0.0033527481091538
1124 => 0.0033844582633075
1125 => 0.0032640839236399
1126 => 0.003295107131845
1127 => 0.0031372752431419
1128 => 0.0032086218484776
1129 => 0.0032694235447712
1130 => 0.0032816303854866
1201 => 0.0033091330209152
1202 => 0.0030741260123868
1203 => 0.0031796372597728
1204 => 0.0032416152325451
1205 => 0.0029615964967817
1206 => 0.0032360801624679
1207 => 0.0030700350632117
1208 => 0.0030136768626104
1209 => 0.0030895557550917
1210 => 0.0030599856768971
1211 => 0.0030345630600786
1212 => 0.0030203768030779
1213 => 0.0030760938872684
1214 => 0.0030734946186946
1215 => 0.0029823306547389
1216 => 0.0028634109800773
1217 => 0.002903324326299
1218 => 0.002888823433427
1219 => 0.0028362703270066
1220 => 0.0028716847754477
1221 => 0.0027157374673554
1222 => 0.0024474382292184
1223 => 0.0026246849241596
1224 => 0.0026178611192117
1225 => 0.002614420247322
1226 => 0.0027476162398316
1227 => 0.0027348125185061
1228 => 0.0027115736389261
1229 => 0.002835843526759
1230 => 0.0027904833460341
1231 => 0.0029302727348255
]
'min_raw' => 0.0012548549928923
'max_raw' => 0.0041279044037344
'avg_raw' => 0.0026913796983134
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001254'
'max' => '$0.004127'
'avg' => '$0.002691'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0006836126473123
'max_diff' => 0.0027287534383815
'year' => 2029
]
4 => [
'items' => [
101 => 0.0030223470672943
102 => 0.0029989940382875
103 => 0.0030855903930083
104 => 0.0029042438491823
105 => 0.0029644798966808
106 => 0.0029768944625867
107 => 0.0028343100556331
108 => 0.0027369073656613
109 => 0.0027304117167121
110 => 0.0025615288752185
111 => 0.0026517447259697
112 => 0.0027311309412452
113 => 0.0026931111047474
114 => 0.0026810751603226
115 => 0.0027425641901115
116 => 0.002747342414344
117 => 0.0026383983954689
118 => 0.0026610513068014
119 => 0.0027555177127912
120 => 0.0026586709957463
121 => 0.0024705136443495
122 => 0.0024238480197241
123 => 0.002417621965181
124 => 0.0022910610900998
125 => 0.002426966439902
126 => 0.0023676401126764
127 => 0.0025550512695435
128 => 0.0024480030218472
129 => 0.0024433883858436
130 => 0.0024364126867043
131 => 0.002327476513358
201 => 0.0023513266120658
202 => 0.0024306079726434
203 => 0.0024588964552659
204 => 0.0024559457347677
205 => 0.0024302194507248
206 => 0.0024419968118197
207 => 0.0024040578282282
208 => 0.0023906607834904
209 => 0.0023483760251505
210 => 0.0022862291118533
211 => 0.0022948710213164
212 => 0.0021717417244504
213 => 0.0021046543485513
214 => 0.0020860854470999
215 => 0.0020612543360312
216 => 0.0020888901871682
217 => 0.0021713929146227
218 => 0.0020718771213825
219 => 0.0019012642740933
220 => 0.0019115183969256
221 => 0.0019345563664532
222 => 0.0018916252626499
223 => 0.0018509945758345
224 => 0.0018863196615487
225 => 0.0018140287490028
226 => 0.0019432923778604
227 => 0.0019397961589569
228 => 0.0019879776461859
301 => 0.0020181065189338
302 => 0.0019486692215883
303 => 0.0019312059290843
304 => 0.0019411538141569
305 => 0.0017767374330937
306 => 0.0019745413201351
307 => 0.0019762519363642
308 => 0.0019616046016652
309 => 0.0020669290650049
310 => 0.0022891965341756
311 => 0.0022055705715853
312 => 0.0021731880712623
313 => 0.0021116289144767
314 => 0.0021936528358725
315 => 0.0021873546784818
316 => 0.0021588720222558
317 => 0.0021416456228991
318 => 0.0021733857919041
319 => 0.0021377126647064
320 => 0.0021313047908298
321 => 0.0020924800469726
322 => 0.0020786213798289
323 => 0.0020683609744051
324 => 0.0020570652762002
325 => 0.0020819807717277
326 => 0.0020255189809559
327 => 0.0019574315963028
328 => 0.0019517708669846
329 => 0.0019674006383285
330 => 0.0019604856280084
331 => 0.0019517377605755
401 => 0.0019350356993062
402 => 0.0019300805545107
403 => 0.0019461823712017
404 => 0.0019280043589518
405 => 0.0019548270062341
406 => 0.001947532730338
407 => 0.0019067874981318
408 => 0.0018560038529857
409 => 0.0018555517720216
410 => 0.0018446105189767
411 => 0.0018306751881957
412 => 0.0018267986979696
413 => 0.0018833446813595
414 => 0.0020003931746977
415 => 0.0019774137547223
416 => 0.0019940187406802
417 => 0.0020756988370343
418 => 0.0021016624834591
419 => 0.0020832341022094
420 => 0.0020580081973419
421 => 0.0020591180091324
422 => 0.0021453225624655
423 => 0.0021506990347163
424 => 0.0021642836455782
425 => 0.0021817437095463
426 => 0.0020862076266026
427 => 0.0020546182682172
428 => 0.0020396494777033
429 => 0.0019935513965714
430 => 0.0020432642249213
501 => 0.0020142986887574
502 => 0.0020182071291895
503 => 0.0020156617522307
504 => 0.0020170517001679
505 => 0.0019432562460417
506 => 0.0019701434309504
507 => 0.0019254382711845
508 => 0.0018655830806476
509 => 0.001865382425061
510 => 0.0018800318981481
511 => 0.0018713178183219
512 => 0.0018478684535692
513 => 0.0018511993251545
514 => 0.0018220173851599
515 => 0.0018547425410259
516 => 0.0018556809813999
517 => 0.0018430800138402
518 => 0.0018934976316529
519 => 0.0019141537708077
520 => 0.001905859544021
521 => 0.0019135718257456
522 => 0.0019783686533682
523 => 0.0019889333635544
524 => 0.0019936255099536
525 => 0.001987338655369
526 => 0.0019147561928053
527 => 0.0019179755336645
528 => 0.0018943541465062
529 => 0.0018743965635178
530 => 0.0018751947621736
531 => 0.0018854555541338
601 => 0.0019302650344114
602 => 0.0020245639439925
603 => 0.0020281425186795
604 => 0.0020324798555945
605 => 0.0020148377265902
606 => 0.0020095166916701
607 => 0.0020165365102054
608 => 0.0020519502226429
609 => 0.0021430439057613
610 => 0.0021108453142047
611 => 0.0020846673580683
612 => 0.0021076324831262
613 => 0.0021040971821302
614 => 0.0020742556839222
615 => 0.0020734181324577
616 => 0.0020161427564924
617 => 0.0019949693540952
618 => 0.0019772752742504
619 => 0.0019579538009756
620 => 0.0019464993839566
621 => 0.0019640985744372
622 => 0.0019681237175276
623 => 0.0019296427799606
624 => 0.0019243979703622
625 => 0.0019558223346481
626 => 0.0019419936435443
627 => 0.0019562167952796
628 => 0.0019595166884861
629 => 0.0019589853296769
630 => 0.0019445465879494
701 => 0.001953749411357
702 => 0.0019319819905043
703 => 0.0019083131896879
704 => 0.0018932139693854
705 => 0.0018800378970505
706 => 0.0018873487477797
707 => 0.0018612868998388
708 => 0.0018529491901611
709 => 0.0019506317018566
710 => 0.0020227908235101
711 => 0.0020217416013031
712 => 0.0020153547309561
713 => 0.0020058651371498
714 => 0.0020512559997489
715 => 0.0020354427308383
716 => 0.0020469482052136
717 => 0.0020498768313254
718 => 0.0020587409005199
719 => 0.0020619090433644
720 => 0.0020523327152715
721 => 0.0020201933885418
722 => 0.0019401052420467
723 => 0.0019028239936595
724 => 0.0018905205607234
725 => 0.001890967767143
726 => 0.0018786318176709
727 => 0.0018822653076489
728 => 0.0018773682381382
729 => 0.0018680943732134
730 => 0.0018867761127537
731 => 0.0018889290092033
801 => 0.0018845684679644
802 => 0.0018855955332801
803 => 0.0018494921142337
804 => 0.0018522369787713
805 => 0.0018369532242254
806 => 0.0018340877044965
807 => 0.0017954517039134
808 => 0.0017270024285026
809 => 0.0017649299716121
810 => 0.0017191188329554
811 => 0.0017017694605941
812 => 0.0017838986909716
813 => 0.0017756551941519
814 => 0.0017615459109586
815 => 0.0017406753404835
816 => 0.0017329342428784
817 => 0.0016859017843635
818 => 0.001683122855806
819 => 0.0017064334122292
820 => 0.0016956763925072
821 => 0.0016805694628155
822 => 0.0016258536948372
823 => 0.0015643350558614
824 => 0.0015661919168797
825 => 0.0015857598513429
826 => 0.0016426562598903
827 => 0.001620425848753
828 => 0.0016042974304083
829 => 0.0016012770624708
830 => 0.001639083290777
831 => 0.00169258702448
901 => 0.0017176897792549
902 => 0.001692813711655
903 => 0.0016642374246188
904 => 0.001665976730801
905 => 0.0016775475556078
906 => 0.0016787634856923
907 => 0.0016601632605215
908 => 0.0016653991149556
909 => 0.0016574453732936
910 => 0.0016086332753953
911 => 0.0016077504193292
912 => 0.0015957711433035
913 => 0.0015954084155863
914 => 0.0015750286786962
915 => 0.0015721774126268
916 => 0.00153171220807
917 => 0.0015583465282492
918 => 0.0015404816246376
919 => 0.00151355500099
920 => 0.0015089128409239
921 => 0.0015087732919868
922 => 0.0015364209137899
923 => 0.0015580234496912
924 => 0.0015407923922845
925 => 0.001536869214523
926 => 0.0015787584891458
927 => 0.0015734276971208
928 => 0.0015688112656071
929 => 0.001687796351961
930 => 0.0015936103715898
1001 => 0.0015525399082002
1002 => 0.0015017074106861
1003 => 0.0015182587281964
1004 => 0.0015217463339852
1005 => 0.0013995033407101
1006 => 0.0013499093735627
1007 => 0.001332890592947
1008 => 0.0013230960440924
1009 => 0.0013275595429976
1010 => 0.0012829191557729
1011 => 0.0013129182342718
1012 => 0.0012742634322931
1013 => 0.0012677828289478
1014 => 0.0013369024032967
1015 => 0.0013465199882767
1016 => 0.0013054883828027
1017 => 0.0013318373159305
1018 => 0.0013222828265008
1019 => 0.0012749260579271
1020 => 0.0012731173777003
1021 => 0.0012493554159009
1022 => 0.0012121725469073
1023 => 0.0011951789780277
1024 => 0.0011863285798102
1025 => 0.0011899804266056
1026 => 0.0011881339411175
1027 => 0.0011760843742968
1028 => 0.0011888246081829
1029 => 0.0011562785752321
1030 => 0.0011433184826698
1031 => 0.0011374647095313
1101 => 0.0011085782320077
1102 => 0.0011545494636227
1103 => 0.0011636063753811
1104 => 0.0011726811320536
1105 => 0.0012516706932878
1106 => 0.0012477245980307
1107 => 0.0012833953773283
1108 => 0.0012820092764392
1109 => 0.0012718353923552
1110 => 0.0012289134489275
1111 => 0.0012460213705677
1112 => 0.0011933658469205
1113 => 0.0012328189454645
1114 => 0.0012148141988898
1115 => 0.0012267315225365
1116 => 0.001205303100078
1117 => 0.0012171624738244
1118 => 0.0011657541051483
1119 => 0.0011177496938139
1120 => 0.001137068070271
1121 => 0.0011580693548042
1122 => 0.0012036054906999
1123 => 0.0011764845438254
1124 => 0.001186238261878
1125 => 0.0011535649391544
1126 => 0.0010861505417024
1127 => 0.0010865320998708
1128 => 0.0010761618635253
1129 => 0.0010672004652434
1130 => 0.0011795997108228
1201 => 0.0011656210878659
1202 => 0.001143347981661
1203 => 0.0011731614194143
1204 => 0.0011810445655592
1205 => 0.0011812689876475
1206 => 0.0012030201022361
1207 => 0.0012146286759912
1208 => 0.00121667473743
1209 => 0.0012509005861991
1210 => 0.0012623726392566
1211 => 0.001309624402215
1212 => 0.0012136437696127
1213 => 0.001211667111646
1214 => 0.0011735809556232
1215 => 0.0011494261133553
1216 => 0.0011752348583387
1217 => 0.001198097883149
1218 => 0.0011742913735345
1219 => 0.0011774000011073
1220 => 0.0011454417070132
1221 => 0.0011568652933743
1222 => 0.0011667048248718
1223 => 0.0011612720139198
1224 => 0.0011531388329737
1225 => 0.001196223375841
1226 => 0.0011937923770828
1227 => 0.0012339136939102
1228 => 0.00126519112948
1229 => 0.0013212458855316
1230 => 0.0012627498253913
1231 => 0.001260617996459
]
'min_raw' => 0.0010672004652434
'max_raw' => 0.0030855903930083
'avg_raw' => 0.0020763954291259
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001067'
'max' => '$0.003085'
'avg' => '$0.002076'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00018765452764886
'max_diff' => -0.0010423140107261
'year' => 2030
]
5 => [
'items' => [
101 => 0.0012814569662283
102 => 0.0012623694489189
103 => 0.0012744321009797
104 => 0.0013193024057967
105 => 0.0013202504446318
106 => 0.0013043695726651
107 => 0.0013034032201627
108 => 0.0013064533153416
109 => 0.0013243178180724
110 => 0.0013180754118976
111 => 0.0013252992823615
112 => 0.0013343328429925
113 => 0.0013716994799127
114 => 0.00138070844957
115 => 0.001358821323918
116 => 0.0013607974863046
117 => 0.0013526111004957
118 => 0.0013447031543795
119 => 0.001362479062386
120 => 0.0013949648836544
121 => 0.0013947627910463
122 => 0.0014022988701465
123 => 0.0014069937849936
124 => 0.001386839773582
125 => 0.0013737202532366
126 => 0.0013787511121538
127 => 0.0013867955651202
128 => 0.0013761424044772
129 => 0.0013103861619641
130 => 0.0013303324054176
131 => 0.0013270123751854
201 => 0.0013222842484054
202 => 0.0013423403504376
203 => 0.0013404058904694
204 => 0.0012824613040797
205 => 0.0012861707284996
206 => 0.0012826868864647
207 => 0.0012939438928066
208 => 0.0012617615336341
209 => 0.0012716606105641
210 => 0.0012778692188165
211 => 0.0012815261367739
212 => 0.0012947374320083
213 => 0.0012931872389967
214 => 0.0012946410698341
215 => 0.001314229933014
216 => 0.0014133036808921
217 => 0.0014186960463951
218 => 0.0013921420664929
219 => 0.0014027498577097
220 => 0.0013823852182423
221 => 0.001396056137148
222 => 0.0014054094326596
223 => 0.001363143688778
224 => 0.0013606409857277
225 => 0.0013401922941491
226 => 0.0013511802627303
227 => 0.0013336976146546
228 => 0.0013379872449753
301 => 0.0013259930646354
302 => 0.0013475802012298
303 => 0.0013717179742443
304 => 0.0013778161289373
305 => 0.0013617745093607
306 => 0.0013501593195929
307 => 0.0013297668726422
308 => 0.0013636799663966
309 => 0.0013735971884932
310 => 0.0013636278754508
311 => 0.0013613177677851
312 => 0.0013569401179329
313 => 0.0013622465068957
314 => 0.0013735431771718
315 => 0.0013682158760864
316 => 0.0013717346523083
317 => 0.0013583247058967
318 => 0.0013868464453984
319 => 0.0014321458318575
320 => 0.0014322914767922
321 => 0.0014269641469906
322 => 0.0014247843184147
323 => 0.0014302504820805
324 => 0.0014332156516355
325 => 0.0014508922226078
326 => 0.0014698598875267
327 => 0.0015583737034629
328 => 0.0015335193781418
329 => 0.0016120541013508
330 => 0.0016741648709516
331 => 0.0016927891749801
401 => 0.0016756556916151
402 => 0.001617042970556
403 => 0.0016141671508341
404 => 0.0017017593017489
405 => 0.0016770105071408
406 => 0.0016740667167722
407 => 0.0016427497608624
408 => 0.0016612619604855
409 => 0.0016572130708704
410 => 0.0016508217005344
411 => 0.0016861416878443
412 => 0.0017522575510516
413 => 0.0017419527737401
414 => 0.0017342607355019
415 => 0.001700556463061
416 => 0.0017208539631922
417 => 0.0017136264121685
418 => 0.0017446805580837
419 => 0.0017262847699771
420 => 0.0016768230106806
421 => 0.0016846999588766
422 => 0.001683509374003
423 => 0.0017080115263362
424 => 0.0017006565883866
425 => 0.0016820732043258
426 => 0.0017520315742189
427 => 0.0017474888668069
428 => 0.0017539293873096
429 => 0.0017567647036145
430 => 0.0017993471305637
501 => 0.0018167917883991
502 => 0.0018207520311394
503 => 0.0018373231068648
504 => 0.0018203397276795
505 => 0.0018882853533649
506 => 0.0019334652297085
507 => 0.0019859439810167
508 => 0.0020626295416367
509 => 0.0020914640218109
510 => 0.0020862553310549
511 => 0.0021443974479167
512 => 0.0022488775394908
513 => 0.0021073737447621
514 => 0.0022563775842095
515 => 0.0022092046889725
516 => 0.0020973586029698
517 => 0.0020901570336099
518 => 0.0021659005016107
519 => 0.0023338922235979
520 => 0.0022918122025865
521 => 0.0023339610514375
522 => 0.0022847921803848
523 => 0.0022823505315093
524 => 0.0023315730291175
525 => 0.0024465840777577
526 => 0.0023919466396734
527 => 0.0023136104745301
528 => 0.0023714526798262
529 => 0.0023213444085554
530 => 0.0022084364489602
531 => 0.0022917800247874
601 => 0.0022360505491201
602 => 0.0022523153728617
603 => 0.0023694504415805
604 => 0.0023553564402113
605 => 0.0023735953830525
606 => 0.0023414041263341
607 => 0.0023113324164639
608 => 0.0022552013368367
609 => 0.0022385836913879
610 => 0.0022431762107497
611 => 0.0022385814155634
612 => 0.0022071765923832
613 => 0.0022003947238075
614 => 0.0021890913123942
615 => 0.0021925947122397
616 => 0.0021713409918531
617 => 0.0022114511534653
618 => 0.0022188959529101
619 => 0.0022480847836216
620 => 0.0022511152648563
621 => 0.0023324057429108
622 => 0.0022876323136293
623 => 0.0023176701955432
624 => 0.0023149833246573
625 => 0.0020997826468004
626 => 0.0021294354014775
627 => 0.0021755657822079
628 => 0.0021547841082171
629 => 0.0021254036833569
630 => 0.0021016774150036
701 => 0.0020657296923128
702 => 0.0021163254216852
703 => 0.002182853425554
704 => 0.0022528025248223
705 => 0.0023368417843467
706 => 0.0023180851999456
707 => 0.002251231469322
708 => 0.0022542304788411
709 => 0.0022727691756214
710 => 0.0022487598788727
711 => 0.0022416790685443
712 => 0.0022717963810155
713 => 0.0022720037823943
714 => 0.0022443781848645
715 => 0.002213677388641
716 => 0.0022135487511839
717 => 0.0022080858410304
718 => 0.0022857640199652
719 => 0.0023284791642296
720 => 0.0023333763866806
721 => 0.0023281495421396
722 => 0.0023301611471574
723 => 0.0023053061458739
724 => 0.0023621173082863
725 => 0.0024142528489576
726 => 0.0024002794103443
727 => 0.0023793312394217
728 => 0.0023626450122812
729 => 0.0023963486655259
730 => 0.0023948478949014
731 => 0.0024137974904919
801 => 0.0024129378273777
802 => 0.002406565791111
803 => 0.0024002796379098
804 => 0.002425203524798
805 => 0.0024180258456396
806 => 0.0024108370175629
807 => 0.0023964187223006
808 => 0.0023983784080892
809 => 0.0023774338541637
810 => 0.0023677439451601
811 => 0.0022220309630894
812 => 0.002183091692971
813 => 0.0021953427800322
814 => 0.0021993761559921
815 => 0.0021824297357345
816 => 0.0022067265492057
817 => 0.0022029399165629
818 => 0.0022176714890699
819 => 0.0022084678421381
820 => 0.0022088455630185
821 => 0.0022359115262207
822 => 0.0022437688904852
823 => 0.0022397725716036
824 => 0.0022425714563625
825 => 0.0023070705742955
826 => 0.0022979008622911
827 => 0.0022930296355479
828 => 0.0022943789986463
829 => 0.0023108599061549
830 => 0.0023154736604331
831 => 0.0022959248593536
901 => 0.002305144186953
902 => 0.0023443989137643
903 => 0.0023581358465231
904 => 0.0024019775417875
905 => 0.0023833528104152
906 => 0.0024175393109086
907 => 0.0025226169583883
908 => 0.0026065602540153
909 => 0.0025293625302533
910 => 0.0026835137025581
911 => 0.0028035425018697
912 => 0.0027989355966337
913 => 0.0027780057991575
914 => 0.002641356202272
915 => 0.0025156092058873
916 => 0.0026208019078626
917 => 0.002621070065693
918 => 0.0026120339193026
919 => 0.0025559111901338
920 => 0.0026100809699806
921 => 0.002614380770389
922 => 0.0026119740255695
923 => 0.0025689448607026
924 => 0.0025032472790697
925 => 0.0025160844292629
926 => 0.0025371119431503
927 => 0.0024973024725626
928 => 0.0024845809345689
929 => 0.0025082326940708
930 => 0.0025844435912255
1001 => 0.002570036362578
1002 => 0.0025696601316139
1003 => 0.0026313003653833
1004 => 0.0025871792607994
1005 => 0.0025162463468371
1006 => 0.0024983348505715
1007 => 0.002434761105458
1008 => 0.0024786717176498
1009 => 0.00248025198241
1010 => 0.0024562025888681
1011 => 0.0025181978225793
1012 => 0.0025176265255866
1013 => 0.0025764817732225
1014 => 0.0026889909016809
1015 => 0.0026557164161578
1016 => 0.0026170218097481
1017 => 0.0026212289863499
1018 => 0.0026673713294748
1019 => 0.0026394726154943
1020 => 0.0026495051875584
1021 => 0.0026673561439754
1022 => 0.0026781260691961
1023 => 0.0026196793598504
1024 => 0.0026060526360726
1025 => 0.0025781771415535
1026 => 0.0025709049453542
1027 => 0.0025936089539987
1028 => 0.0025876272498654
1029 => 0.002480119167276
1030 => 0.0024688839744761
1031 => 0.0024692285417991
1101 => 0.0024409771152994
1102 => 0.0023978869087681
1103 => 0.0025111253987498
1104 => 0.0025020307632326
1105 => 0.0024919909894905
1106 => 0.0024932208044878
1107 => 0.0025423737949803
1108 => 0.0025138625782091
1109 => 0.0025896643208918
1110 => 0.0025740817614052
1111 => 0.0025580995680662
1112 => 0.0025558903421172
1113 => 0.0025497385612183
1114 => 0.0025286418155392
1115 => 0.0025031662274138
1116 => 0.0024863450374758
1117 => 0.00229352186937
1118 => 0.0023293087277696
1119 => 0.0023704782462837
1120 => 0.0023846897990982
1121 => 0.0023603799545994
1122 => 0.0025296017163703
1123 => 0.0025605201629073
1124 => 0.0024668661715863
1125 => 0.0024493473336774
1126 => 0.002530750248467
1127 => 0.0024816543397473
1128 => 0.0025037622244376
1129 => 0.0024559770701035
1130 => 0.0025530728145343
1201 => 0.0025523331076416
1202 => 0.0025145606700512
1203 => 0.0025464856756481
1204 => 0.0025409379202898
1205 => 0.0024982929312797
1206 => 0.0025544247367504
1207 => 0.0025544525774256
1208 => 0.0025180974274884
1209 => 0.0024756425715275
1210 => 0.0024680526460206
1211 => 0.0024623346567142
1212 => 0.0025023559495873
1213 => 0.002538238915634
1214 => 0.0026050082193052
1215 => 0.0026217956086477
1216 => 0.0026873179068511
1217 => 0.0026483025684938
1218 => 0.0026655975626543
1219 => 0.002684373725342
1220 => 0.0026933757082049
1221 => 0.0026787074602028
1222 => 0.0027804905593666
1223 => 0.0027890841714896
1224 => 0.0027919655353
1225 => 0.0027576448469381
1226 => 0.0027881296510606
1227 => 0.0027738668207623
1228 => 0.0028109747428701
1229 => 0.0028167937388743
1230 => 0.0028118652562755
1231 => 0.0028137122974539
]
'min_raw' => 0.0012617615336341
'max_raw' => 0.0028167937388743
'avg_raw' => 0.0020392776362542
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001261'
'max' => '$0.002816'
'avg' => '$0.002039'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00019456106839071
'max_diff' => -0.00026879665413395
'year' => 2031
]
6 => [
'items' => [
101 => 0.0027268583780867
102 => 0.0027223545441765
103 => 0.0026609444492346
104 => 0.002685969516844
105 => 0.002639186352431
106 => 0.0026540217757864
107 => 0.0026605610890443
108 => 0.0026571453229011
109 => 0.0026873843966193
110 => 0.0026616750065242
111 => 0.0025938236990483
112 => 0.0025259539055289
113 => 0.0025251018555568
114 => 0.0025072329369246
115 => 0.0024943169816091
116 => 0.002496805052821
117 => 0.0025055733402959
118 => 0.0024938073528012
119 => 0.0024963182227839
120 => 0.002538015394336
121 => 0.0025463774647202
122 => 0.002517959882283
123 => 0.0024038591881603
124 => 0.0023758585916226
125 => 0.0023959848651379
126 => 0.0023863658026956
127 => 0.0019259834509899
128 => 0.0020341434555752
129 => 0.0019698784536173
130 => 0.0019994947232101
131 => 0.0019338967975527
201 => 0.0019652035659582
202 => 0.0019594223489739
203 => 0.0021333404356598
204 => 0.0021306249439527
205 => 0.0021319247061323
206 => 0.0020698836707894
207 => 0.0021687167246883
208 => 0.0022174054409606
209 => 0.0022083944553868
210 => 0.0022106623263217
211 => 0.002171692789845
212 => 0.0021323020164286
213 => 0.0020886115865133
214 => 0.0021697830049956
215 => 0.0021607581289027
216 => 0.0021814579476119
217 => 0.0022341034147505
218 => 0.0022418556597673
219 => 0.0022522747556855
220 => 0.0022485402514806
221 => 0.0023375112926315
222 => 0.0023267363124983
223 => 0.002352700914446
224 => 0.0022992897583005
225 => 0.0022388499652884
226 => 0.0022503375940143
227 => 0.0022492312429904
228 => 0.0022351461246445
229 => 0.0022224307095901
301 => 0.0022012631260704
302 => 0.0022682404925395
303 => 0.0022655213337759
304 => 0.0023095413534826
305 => 0.0023017603874117
306 => 0.0022497971916655
307 => 0.0022516530673673
308 => 0.0022641347233653
309 => 0.0023073338772871
310 => 0.0023201583273938
311 => 0.0023142175311384
312 => 0.002328278955222
313 => 0.0023393925314873
314 => 0.0023296746492933
315 => 0.0024672593679598
316 => 0.0024101246003964
317 => 0.0024379716885656
318 => 0.0024446130550094
319 => 0.0024276013345165
320 => 0.0024312905675474
321 => 0.0024368787503334
322 => 0.0024708091019312
323 => 0.0025598521623504
324 => 0.0025992887276734
325 => 0.0027179355802136
326 => 0.0025960140699068
327 => 0.0025887797520466
328 => 0.0026101516329808
329 => 0.0026798098954667
330 => 0.0027362613745436
331 => 0.0027549895869174
401 => 0.0027574648293517
402 => 0.0027926002007929
403 => 0.0028127391404671
404 => 0.0027883338425479
405 => 0.0027676529079026
406 => 0.0026935763670152
407 => 0.0027021509283266
408 => 0.0027612211527792
409 => 0.0028446613240372
410 => 0.0029162616714468
411 => 0.002891189725308
412 => 0.0030824709763115
413 => 0.0031014357310347
414 => 0.0030988154151359
415 => 0.0031420199487291
416 => 0.0030562677479968
417 => 0.0030196070208131
418 => 0.0027721243607115
419 => 0.0028416568935135
420 => 0.0029427265134437
421 => 0.0029293495702543
422 => 0.0028559501106623
423 => 0.0029162059913748
424 => 0.0028962835128357
425 => 0.0028805698274275
426 => 0.0029525572665303
427 => 0.0028734041201557
428 => 0.0029419369002596
429 => 0.0028540429008955
430 => 0.0028913042518461
501 => 0.0028701529069178
502 => 0.0028838404192977
503 => 0.0028038235016064
504 => 0.0028469986880918
505 => 0.0028020272719018
506 => 0.0028020059495951
507 => 0.0028010132030901
508 => 0.0028539218748039
509 => 0.002855647224689
510 => 0.0028165476363519
511 => 0.0028109127748222
512 => 0.0028317478112481
513 => 0.0028073554402981
514 => 0.0028187684771418
515 => 0.0028077011295574
516 => 0.0028052096365022
517 => 0.0027853569959453
518 => 0.0027768039325337
519 => 0.0027801578090827
520 => 0.0027687092993791
521 => 0.002761811158172
522 => 0.0027996409891803
523 => 0.0027794300365236
524 => 0.0027965433708198
525 => 0.0027770405665143
526 => 0.002709435349824
527 => 0.0026705548747933
528 => 0.0025428548874722
529 => 0.0025790704454651
530 => 0.0026030813978821
531 => 0.0025951457782516
601 => 0.0026121945598952
602 => 0.0026132412166236
603 => 0.0026076984839195
604 => 0.0026012807095162
605 => 0.0025981568918619
606 => 0.0026214392693616
607 => 0.002634955473149
608 => 0.0026054912181823
609 => 0.0025985881554923
610 => 0.0026283781440297
611 => 0.0026465500198284
612 => 0.002780720940831
613 => 0.0027707811256368
614 => 0.0027957281111841
615 => 0.0027929194634542
616 => 0.0028190678786742
617 => 0.0028618094864142
618 => 0.0027749038471373
619 => 0.0027899876611449
620 => 0.0027862894582864
621 => 0.0028266654673748
622 => 0.002826791516868
623 => 0.0028025840824882
624 => 0.0028157073253863
625 => 0.0028083822912179
626 => 0.0028216196179979
627 => 0.0027706483733448
628 => 0.0028327258473264
629 => 0.0028679197748899
630 => 0.0028684084426082
701 => 0.002885090084957
702 => 0.002902039599719
703 => 0.0029345727173129
704 => 0.0029011322687267
705 => 0.002840976157082
706 => 0.0028453192340397
707 => 0.0028100497277927
708 => 0.0028106426145647
709 => 0.0028074777385105
710 => 0.0028169757697898
711 => 0.00277273265709
712 => 0.0027831164272088
713 => 0.0027685790882352
714 => 0.002789956059809
715 => 0.0027669579721356
716 => 0.002786287674901
717 => 0.0027946297338247
718 => 0.002825412110845
719 => 0.0027624113900213
720 => 0.002633948655488
721 => 0.002660953079747
722 => 0.0026210114151162
723 => 0.0026247081682464
724 => 0.0026321761979034
725 => 0.0026079698703979
726 => 0.0026125876748569
727 => 0.0026124226943867
728 => 0.0026110009818236
729 => 0.0026047039811467
730 => 0.0025955720843416
731 => 0.0026319507505635
801 => 0.0026381321948394
802 => 0.0026518727797459
803 => 0.0026927554400998
804 => 0.0026886702982509
805 => 0.0026953333340974
806 => 0.002680787964256
807 => 0.0026253828862362
808 => 0.0026283916485346
809 => 0.0025908723344621
810 => 0.0026509133265302
811 => 0.0026366948271061
812 => 0.0026275280680305
813 => 0.0026250268328874
814 => 0.0026660108334487
815 => 0.0026782738887621
816 => 0.0026706323756338
817 => 0.0026549594092691
818 => 0.0026850561379859
819 => 0.0026931087529115
820 => 0.0026949114364243
821 => 0.0027482370692352
822 => 0.0026978917469245
823 => 0.0027100103663942
824 => 0.0028045563760838
825 => 0.0027188161917528
826 => 0.0027642346796272
827 => 0.0027620116809921
828 => 0.0027852462425108
829 => 0.0027601057687816
830 => 0.002760417415084
831 => 0.0027810481316671
901 => 0.0027520760109955
902 => 0.0027449021064814
903 => 0.0027349914087756
904 => 0.0027566310546406
905 => 0.0027696030436596
906 => 0.0028741477482772
907 => 0.0029416883952779
908 => 0.0029387562776658
909 => 0.0029655503439461
910 => 0.0029534793716813
911 => 0.0029144990180767
912 => 0.002981033728532
913 => 0.0029599793622135
914 => 0.0029617150585917
915 => 0.0029616504558858
916 => 0.002975649768883
917 => 0.0029657299726063
918 => 0.0029461770358987
919 => 0.0029591571877826
920 => 0.0029977035983884
921 => 0.0031173528396573
922 => 0.0031843101402129
923 => 0.0031133219260897
924 => 0.0031622886456218
925 => 0.0031329260625287
926 => 0.0031275900077195
927 => 0.0031583447261979
928 => 0.0031891532767396
929 => 0.0031871909052591
930 => 0.0031648254796024
1001 => 0.0031521918181506
1002 => 0.0032478581352509
1003 => 0.0033183434480572
1004 => 0.0033135368222633
1005 => 0.0033347517053189
1006 => 0.0033970392581219
1007 => 0.0034027340513372
1008 => 0.0034020166382854
1009 => 0.0033879014991111
1010 => 0.0034492316839065
1011 => 0.0035003944030647
1012 => 0.0033846342522178
1013 => 0.0034287142022487
1014 => 0.0034485031119848
1015 => 0.0034775591025824
1016 => 0.00352658142907
1017 => 0.0035798326781654
1018 => 0.0035873629886578
1019 => 0.0035820198730049
1020 => 0.0035468992427561
1021 => 0.0036051673949358
1022 => 0.0036392995119264
1023 => 0.0036596244064947
1024 => 0.0037111649573799
1025 => 0.0034486253215544
1026 => 0.0032627867182505
1027 => 0.0032337653368027
1028 => 0.0032927814571864
1029 => 0.0033083435374868
1030 => 0.0033020704824309
1031 => 0.0030928922387058
1101 => 0.0032326640566399
1102 => 0.0033830467803888
1103 => 0.0033888235932609
1104 => 0.003464108329124
1105 => 0.0034886241251467
1106 => 0.0035492382053124
1107 => 0.0035454467780946
1108 => 0.0035602053420343
1109 => 0.0035568126037673
1110 => 0.0036690874234739
1111 => 0.0037929432225823
1112 => 0.0037886544900965
1113 => 0.0037708487535793
1114 => 0.0037972933086365
1115 => 0.0039251257665105
1116 => 0.0039133570022629
1117 => 0.0039247893542685
1118 => 0.0040755110264235
1119 => 0.0042714706401329
1120 => 0.0041804277255414
1121 => 0.0043779646533121
1122 => 0.0045023036783612
1123 => 0.0047173351652884
1124 => 0.0046904121640727
1125 => 0.0047741223439596
1126 => 0.0046422143728967
1127 => 0.0043393270083372
1128 => 0.0042913939234894
1129 => 0.0043873571732137
1130 => 0.004623273458704
1201 => 0.0043799273298288
1202 => 0.0044291559347656
1203 => 0.004414978093232
1204 => 0.0044142226163086
1205 => 0.0044430560977272
1206 => 0.0044012316290763
1207 => 0.0042308312197142
1208 => 0.0043089247231489
1209 => 0.0042787690711147
1210 => 0.0043122290152995
1211 => 0.0044927985341338
1212 => 0.0044129644456175
1213 => 0.0043288657185602
1214 => 0.0044343441852915
1215 => 0.0045686545197741
1216 => 0.0045602496204211
1217 => 0.0045439406027008
1218 => 0.0046358736816777
1219 => 0.0047877201942827
1220 => 0.0048287636964712
1221 => 0.0048590611706892
1222 => 0.0048632386805038
1223 => 0.0049062696279026
1224 => 0.0046748813785445
1225 => 0.0050421004727475
1226 => 0.0051055090660936
1227 => 0.0050935908785614
1228 => 0.0051640668614241
1229 => 0.0051433310394628
1230 => 0.0051132880867916
1231 => 0.0052250075103004
]
'min_raw' => 0.0019259834509899
'max_raw' => 0.0052250075103004
'avg_raw' => 0.0035754954806452
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001925'
'max' => '$0.005225'
'avg' => '$0.003575'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00066422191735576
'max_diff' => 0.0024082137714261
'year' => 2032
]
7 => [
'items' => [
101 => 0.0050969302065402
102 => 0.0049151405983367
103 => 0.0048154072238855
104 => 0.0049467441766246
105 => 0.0050269470706344
106 => 0.0050799560817128
107 => 0.0050959965764362
108 => 0.0046928433896643
109 => 0.0044755661818951
110 => 0.0046148383809869
111 => 0.0047847600759327
112 => 0.0046739374549495
113 => 0.0046782814918771
114 => 0.0045202775580276
115 => 0.0047987399180965
116 => 0.0047581702944715
117 => 0.0049686455736042
118 => 0.0049184139590695
119 => 0.0050900483785989
120 => 0.005044851283841
121 => 0.0052324618972454
122 => 0.005307304850287
123 => 0.0054329778168193
124 => 0.0055254233625815
125 => 0.0055797091552546
126 => 0.0055764500398834
127 => 0.0057915573955285
128 => 0.0056647161031832
129 => 0.0055053735458001
130 => 0.0055024915416564
131 => 0.0055850173100265
201 => 0.0057579686806916
202 => 0.0058028124547649
203 => 0.0058278740067717
204 => 0.0057894913674744
205 => 0.0056518142354308
206 => 0.0055923659478533
207 => 0.005643017611252
208 => 0.0055810749794624
209 => 0.0056880053399641
210 => 0.0058348435640255
211 => 0.0058045220514181
212 => 0.0059058823220095
213 => 0.0060107795386601
214 => 0.0061607872696992
215 => 0.0062000048453631
216 => 0.0062648300066245
217 => 0.0063315563915188
218 => 0.0063529871080203
219 => 0.0063939049953825
220 => 0.0063936893379185
221 => 0.006516998145576
222 => 0.0066530115789781
223 => 0.0067043535013692
224 => 0.0068224114208973
225 => 0.0066202413709483
226 => 0.0067735896761968
227 => 0.006911913686088
228 => 0.0067469980990662
301 => 0.0069742958153721
302 => 0.0069831212706286
303 => 0.0071163751669381
304 => 0.0069812968146708
305 => 0.0069010877202799
306 => 0.0071326483703909
307 => 0.0072446932748875
308 => 0.0072109444378015
309 => 0.006954114121191
310 => 0.0068046278609533
311 => 0.0064133934841649
312 => 0.006876827503538
313 => 0.007102552695819
314 => 0.0069535295474742
315 => 0.0070286881553405
316 => 0.0074387291495983
317 => 0.0075948462120234
318 => 0.0075623749543796
319 => 0.007567862062399
320 => 0.0076520999955585
321 => 0.0080256573818646
322 => 0.0078018131369975
323 => 0.0079729336749146
324 => 0.0080636953912048
325 => 0.0081479999315005
326 => 0.0079409746252578
327 => 0.0076716377436417
328 => 0.0075863274472408
329 => 0.0069387121322966
330 => 0.006905000942703
331 => 0.0068860778304305
401 => 0.0067667702842799
402 => 0.0066730272340927
403 => 0.0065984792801276
404 => 0.0064028431870197
405 => 0.0064688646254859
406 => 0.0061570615254978
407 => 0.0063565420992468
408 => 0.0058588968229167
409 => 0.0062733505966537
410 => 0.0060477822505094
411 => 0.006199245328304
412 => 0.0061987168878943
413 => 0.0059198253402618
414 => 0.0057589665159055
415 => 0.0058614720195044
416 => 0.0059713660562595
417 => 0.0059891959939951
418 => 0.0061316764811759
419 => 0.0061714397225402
420 => 0.0060509552448381
421 => 0.0058485842306871
422 => 0.005895590401683
423 => 0.0057580139373505
424 => 0.0055169164754103
425 => 0.0056900768817336
426 => 0.005749201457778
427 => 0.005775314238812
428 => 0.0055382225752244
429 => 0.0054637232270147
430 => 0.0054240603991379
501 => 0.0058179786741875
502 => 0.005839558406515
503 => 0.0057291534448611
504 => 0.0062281943405647
505 => 0.0061152460162683
506 => 0.0062414369675187
507 => 0.0058913250843605
508 => 0.0059046998297853
509 => 0.0057389512535064
510 => 0.0058317593808987
511 => 0.0057661655878034
512 => 0.0058242614013532
513 => 0.0058590837924569
514 => 0.0060248051710254
515 => 0.006275242868595
516 => 0.0060000519233882
517 => 0.0058801472877547
518 => 0.0059545354493325
519 => 0.0061526409263714
520 => 0.006452780864918
521 => 0.0062750919804192
522 => 0.0063539472900069
523 => 0.0063711736671232
524 => 0.0062401524620938
525 => 0.0064576118036342
526 => 0.0065741500314022
527 => 0.0066936941389038
528 => 0.0067974909378976
529 => 0.0066459455935364
530 => 0.0068081208351747
531 => 0.0066774362181981
601 => 0.0065601986068428
602 => 0.0065603764079056
603 => 0.0064868315417342
604 => 0.0063443290962776
605 => 0.0063180494589556
606 => 0.0064547594510568
607 => 0.0065643879182375
608 => 0.0065734174438794
609 => 0.0066341133962247
610 => 0.0066700326356046
611 => 0.0070220900113657
612 => 0.0071636904002682
613 => 0.0073368366754599
614 => 0.0074042869076365
615 => 0.0076072879242413
616 => 0.0074433481163964
617 => 0.0074078787077394
618 => 0.0069154646425825
619 => 0.0069960974181664
620 => 0.0071251982717818
621 => 0.0069175934681078
622 => 0.0070492709320002
623 => 0.0070752668526826
624 => 0.0069105391363199
625 => 0.0069985273270937
626 => 0.006764856779079
627 => 0.0062803362479938
628 => 0.0064581512134928
629 => 0.0065890828799703
630 => 0.0064022272481489
701 => 0.0067371587358772
702 => 0.0065414986751356
703 => 0.0064794838292198
704 => 0.0062375418054132
705 => 0.0063517291274474
706 => 0.0065061691155036
707 => 0.0064107431584605
708 => 0.0066087663476044
709 => 0.0068892199942875
710 => 0.0070890879642174
711 => 0.0071044313451781
712 => 0.0069759296306272
713 => 0.007181854448282
714 => 0.0071833543857654
715 => 0.0069510703502232
716 => 0.0068087976718166
717 => 0.0067764730199383
718 => 0.0068572263379515
719 => 0.0069552757739044
720 => 0.0071098724064841
721 => 0.007203291913751
722 => 0.0074468804428248
723 => 0.0075127885145618
724 => 0.0075852015033219
725 => 0.0076819675876441
726 => 0.0077981600821877
727 => 0.0075439375189687
728 => 0.0075540382553356
729 => 0.0073173097244171
730 => 0.0070643313388252
731 => 0.0072563103992885
801 => 0.00750729748294
802 => 0.0074497207686343
803 => 0.0074432422120893
804 => 0.0074541373471962
805 => 0.0074107263848893
806 => 0.0072143802112609
807 => 0.0071157763920567
808 => 0.0072430004753472
809 => 0.0073106144135236
810 => 0.0074154777350801
811 => 0.0074025511173021
812 => 0.0076726677721331
813 => 0.0077776269362968
814 => 0.0077507738906479
815 => 0.0077557154973019
816 => 0.0079457390505172
817 => 0.0081570843230169
818 => 0.0083550370601778
819 => 0.0085564030866859
820 => 0.0083136484822807
821 => 0.0081903926651862
822 => 0.0083175612064219
823 => 0.0082500837884154
824 => 0.0086378290473828
825 => 0.0086646756878348
826 => 0.0090523929084066
827 => 0.009420382719237
828 => 0.0091892549122767
829 => 0.0094071980240152
830 => 0.0096429212685231
831 => 0.010097669651897
901 => 0.0099445263946176
902 => 0.0098272210596025
903 => 0.0097163680848284
904 => 0.009947035527919
905 => 0.010243785508453
906 => 0.010307702612024
907 => 0.010411272738021
908 => 0.010302381414487
909 => 0.010433529019698
910 => 0.010896537695271
911 => 0.010771428664041
912 => 0.010593753727413
913 => 0.010959254608952
914 => 0.011091527957133
915 => 0.012019891586752
916 => 0.013191989017935
917 => 0.012706732985019
918 => 0.012405518906273
919 => 0.012476311359672
920 => 0.012904321663538
921 => 0.013041784988772
922 => 0.012668112284336
923 => 0.012800099800717
924 => 0.013527363992702
925 => 0.013917517898273
926 => 0.013387636489847
927 => 0.011925714699402
928 => 0.010577756043354
929 => 0.010935295378307
930 => 0.010894761513461
1001 => 0.011676116159692
1002 => 0.010768444855022
1003 => 0.01078372771194
1004 => 0.011581239944787
1005 => 0.011368477353885
1006 => 0.011023829205196
1007 => 0.010580272356249
1008 => 0.0097603164969286
1009 => 0.0090340587261675
1010 => 0.010458417461806
1011 => 0.010396996523097
1012 => 0.010308049901773
1013 => 0.010505990982499
1014 => 0.011467136683951
1015 => 0.011444979164608
1016 => 0.01130402433141
1017 => 0.011410937330071
1018 => 0.011005086839614
1019 => 0.011109683752049
1020 => 0.010577542519815
1021 => 0.010818092580966
1022 => 0.011023089745059
1023 => 0.011064245960785
1024 => 0.011156973016305
1025 => 0.010364630479386
1026 => 0.010720369016508
1027 => 0.010929332078874
1028 => 0.0099852293609637
1029 => 0.010910670203663
1030 => 0.010350837558621
1031 => 0.01016082195049
1101 => 0.010416652934186
1102 => 0.010316955351036
1103 => 0.010231241223482
1104 => 0.010183411267551
1105 => 0.010371265306942
1106 => 0.010362501691471
1107 => 0.010055136022129
1108 => 0.0096541900363011
1109 => 0.0097887606697484
1110 => 0.0097398698970106
1111 => 0.0095626834295735
1112 => 0.0096820857150504
1113 => 0.0091562984779239
1114 => 0.0082517088644902
1115 => 0.0088493084714537
1116 => 0.0088263015366489
1117 => 0.0088147003968389
1118 => 0.009263779985032
1119 => 0.0092206113446561
1120 => 0.0091422598396653
1121 => 0.0095612444427404
1122 => 0.0094083094264798
1123 => 0.0098796191105732
1124 => 0.010190054150916
1125 => 0.010111317783164
1126 => 0.010403283439069
1127 => 0.0097918609053485
1128 => 0.0099949509450362
1129 => 0.010036807520745
1130 => 0.0095560742377757
1201 => 0.0092276742680972
1202 => 0.0092057737341534
1203 => 0.0086363734430343
1204 => 0.0089405424825115
1205 => 0.0092081986498814
1206 => 0.0090800121166689
1207 => 0.0090394320897176
1208 => 0.0092467466466779
1209 => 0.0092628567632829
1210 => 0.0088955443974169
1211 => 0.0089719202695503
1212 => 0.0092904203527787
1213 => 0.00896389488464
1214 => 0.0083295092376787
1215 => 0.0081721728261646
1216 => 0.0081511812485832
1217 => 0.0077244724220486
1218 => 0.0081826867975153
1219 => 0.0079826639432423
1220 => 0.0086145337432489
1221 => 0.0082536131022708
1222 => 0.0082380545348012
1223 => 0.0082145354781252
1224 => 0.0078472495640073
1225 => 0.0079276618369616
1226 => 0.0081949644793966
1227 => 0.0082903410735973
1228 => 0.0082803925134247
1229 => 0.0081936545506223
1230 => 0.008233362745823
1231 => 0.0081054488138291
]
'min_raw' => 0.0044755661818951
'max_raw' => 0.013917517898273
'avg_raw' => 0.0091965420400839
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.004475'
'max' => '$0.013917'
'avg' => '$0.009196'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0025495827309052
'max_diff' => 0.0086925103879723
'year' => 2033
]
8 => [
'items' => [
101 => 0.0080602797421438
102 => 0.007917713727173
103 => 0.0077081810700327
104 => 0.0077373178711466
105 => 0.0073221788501496
106 => 0.007095989078415
107 => 0.0070333827307321
108 => 0.0069496629061112
109 => 0.007042839107693
110 => 0.0073210028134626
111 => 0.0069854783685823
112 => 0.0064102452421383
113 => 0.0064448177331871
114 => 0.0065224918559092
115 => 0.0063777466420824
116 => 0.0062407574447404
117 => 0.0063598584375444
118 => 0.0061161245787058
119 => 0.0065519459282975
120 => 0.0065401581821663
121 => 0.0067026054302826
122 => 0.0068041870282829
123 => 0.0065700743323252
124 => 0.0065111956223998
125 => 0.0065447356114615
126 => 0.0059903943035216
127 => 0.006657303918908
128 => 0.0066630713809559
129 => 0.0066136868693742
130 => 0.0069687956510431
131 => 0.0077181859415711
201 => 0.0074362351701198
202 => 0.0073270553094068
203 => 0.0071195043143812
204 => 0.0073960536920941
205 => 0.0073748190147281
206 => 0.0072787877506667
207 => 0.0072207077425266
208 => 0.007327721938355
209 => 0.0072074474993898
210 => 0.0071858429052311
211 => 0.0070549425706597
212 => 0.0070082171068034
213 => 0.0069736234335585
214 => 0.00693553919842
215 => 0.0070195435311354
216 => 0.0068291786615121
217 => 0.0065996172904446
218 => 0.0065805317463288
219 => 0.0066332286116507
220 => 0.006609914171566
221 => 0.0065804201257594
222 => 0.0065241079600891
223 => 0.0065074013434538
224 => 0.0065616897426204
225 => 0.0065004013051716
226 => 0.0065908357331813
227 => 0.0065662425727278
228 => 0.0064288671776031
301 => 0.0062576465723922
302 => 0.0062561223498584
303 => 0.0062192331513238
304 => 0.0061722492106619
305 => 0.0061591793532166
306 => 0.0063498280841301
307 => 0.0067444652514846
308 => 0.0066669885326659
309 => 0.006722973402146
310 => 0.006998363549726
311 => 0.007085901796371
312 => 0.0070237692223594
313 => 0.006938718322882
314 => 0.0069424601308184
315 => 0.0072331048009908
316 => 0.0072512319525574
317 => 0.0072970334165256
318 => 0.0073559012412168
319 => 0.007033794667456
320 => 0.0069272889401608
321 => 0.0068768206178556
322 => 0.0067213977188542
323 => 0.0068890079904749
324 => 0.0067913486629889
325 => 0.0068045262427845
326 => 0.0067959443266554
327 => 0.0068006306331685
328 => 0.0065518241073482
329 => 0.0066424761284711
330 => 0.0064917495611057
331 => 0.0062899436072546
401 => 0.006289267082935
402 => 0.0063386588042417
403 => 0.0063092786757102
404 => 0.0062302175052641
405 => 0.0062414477713678
406 => 0.0061430588232583
407 => 0.0062533939710577
408 => 0.0062565579882984
409 => 0.0062140729463995
410 => 0.0063840594649008
411 => 0.0064537030802266
412 => 0.0064257385155309
413 => 0.0064517410118197
414 => 0.0066702080401192
415 => 0.0067058276981168
416 => 0.0067216475972967
417 => 0.0067004510281306
418 => 0.0064557341880514
419 => 0.0064665884205253
420 => 0.0063869472645285
421 => 0.0063196588800894
422 => 0.0063223500625859
423 => 0.0063569450390653
424 => 0.0065080233303192
425 => 0.0068259586877113
426 => 0.0068380241021166
427 => 0.0068526477363488
428 => 0.0067931660666767
429 => 0.0067752258259407
430 => 0.0067988936342405
501 => 0.0069182934382301
502 => 0.0072254221508218
503 => 0.0071168623513548
504 => 0.0070286015445543
505 => 0.007106030067061
506 => 0.0070941105529259
507 => 0.0069934978582507
508 => 0.0069906739950122
509 => 0.0067975660661061
510 => 0.0067261784616443
511 => 0.0066665216360865
512 => 0.0066013779399582
513 => 0.0065627585732569
514 => 0.0066220954726984
515 => 0.0066356665236542
516 => 0.0065059253559939
517 => 0.0064882421142518
518 => 0.0065941915524209
519 => 0.0065475671548759
520 => 0.0065955215039804
521 => 0.0066066473243174
522 => 0.0066048558109938
523 => 0.0065561745851788
524 => 0.0065872025468182
525 => 0.0065138121676605
526 => 0.006434011153205
527 => 0.0063831030777612
528 => 0.0063386790299602
529 => 0.006363328073621
530 => 0.0062754587337079
531 => 0.0062473475634092
601 => 0.006576690971566
602 => 0.0068199804882097
603 => 0.0068164429622845
604 => 0.0067949091829925
605 => 0.0067629143549322
606 => 0.006915952817274
607 => 0.0068626372770948
608 => 0.0069014287872376
609 => 0.0069113028546435
610 => 0.0069411886828023
611 => 0.0069518702975954
612 => 0.0069195830388323
613 => 0.0068112230548668
614 => 0.006541200277383
615 => 0.0064155039455517
616 => 0.0063740220624094
617 => 0.0063755298500763
618 => 0.0063339383351623
619 => 0.0063461889003054
620 => 0.0063296780885477
621 => 0.006298410605473
622 => 0.0063613973946506
623 => 0.0063686560353408
624 => 0.0063539541661107
625 => 0.0063574169885298
626 => 0.0062356917905547
627 => 0.0062449462929835
628 => 0.0061934160474546
629 => 0.0061837547476243
630 => 0.0060534907741789
701 => 0.0058227092631555
702 => 0.0059505846227658
703 => 0.0057961291703531
704 => 0.0057376345501424
705 => 0.00601453898444
706 => 0.00598674545937
707 => 0.0059391750260051
708 => 0.0058688084405114
709 => 0.0058427087894696
710 => 0.0056841355718853
711 => 0.0056747662202352
712 => 0.005753359388707
713 => 0.0057170913456831
714 => 0.0056661572774955
715 => 0.0054816792456237
716 => 0.0052742648592225
717 => 0.0052805253957876
718 => 0.0053465000530199
719 => 0.0055383302668178
720 => 0.0054633788835906
721 => 0.0054090007950912
722 => 0.0053988174137146
723 => 0.0055262837519957
724 => 0.0057066753256868
725 => 0.0057913110160287
726 => 0.005707439617324
727 => 0.0056110926704488
728 => 0.0056169568626764
729 => 0.0056559687063617
730 => 0.0056600682995353
731 => 0.0055973563417457
801 => 0.0056150093905261
802 => 0.0055881927952001
803 => 0.0054236193991841
804 => 0.005420642788318
805 => 0.0053802538228312
806 => 0.0053790308610078
807 => 0.0053103191552151
808 => 0.0053007059125931
809 => 0.0051642746502392
810 => 0.0052540741202725
811 => 0.005193841350458
812 => 0.0051030563588735
813 => 0.0050874049921054
814 => 0.0050869344931207
815 => 0.0051801503803254
816 => 0.0052529848383575
817 => 0.0051948891252768
818 => 0.0051816618575464
819 => 0.0053228944715528
820 => 0.0053049213340567
821 => 0.0052893567128993
822 => 0.0056905232388149
823 => 0.0053729686301383
824 => 0.0052344966953719
825 => 0.0050631113809913
826 => 0.0051189153035534
827 => 0.0051306740099674
828 => 0.004718523223407
829 => 0.0045513137006295
830 => 0.0044939336935702
831 => 0.0044609106882734
901 => 0.004475959686464
902 => 0.0043254515042434
903 => 0.0044265954918712
904 => 0.0042962681282081
905 => 0.0042744183215681
906 => 0.00450745979226
907 => 0.0045398861514982
908 => 0.0044015452289077
909 => 0.0044903824965718
910 => 0.0044581688683864
911 => 0.0042985022167959
912 => 0.0042924041251335
913 => 0.0042122890119196
914 => 0.0040869243730827
915 => 0.0040296293691518
916 => 0.0039997896336466
917 => 0.0040121020900809
918 => 0.0040058765353403
919 => 0.0039652505795306
920 => 0.0040082051675723
921 => 0.0038984739451871
922 => 0.0038547780882687
923 => 0.0038350416834349
924 => 0.0037376489076745
925 => 0.0038926441246733
926 => 0.0039231801350003
927 => 0.0039537763107008
928 => 0.0042200951312768
929 => 0.00420679059561
930 => 0.0043270571184663
1001 => 0.004322383782544
1002 => 0.0042880818220369
1003 => 0.0041433674930561
1004 => 0.0042010480453029
1005 => 0.0040235162710351
1006 => 0.0041565351473038
1007 => 0.0040958308871758
1008 => 0.0041360109758915
1009 => 0.0040637635534882
1010 => 0.0041037482600691
1011 => 0.0039304213558602
1012 => 0.0037685711314852
1013 => 0.0038337043864762
1014 => 0.0039045116835428
1015 => 0.0040580399449467
1016 => 0.0039665997790352
1017 => 0.0039994851204325
1018 => 0.0038893247316912
1019 => 0.0036620323839587
1020 => 0.003663318833963
1021 => 0.0036283548580973
1022 => 0.0035981408781253
1023 => 0.0039771027820609
1024 => 0.0039299728788054
1025 => 0.0038548775461769
1026 => 0.00395539563307
1027 => 0.0039819742106811
1028 => 0.0039827308654206
1029 => 0.0040560662668705
1030 => 0.0040952053837704
1031 => 0.0041021038227626
1101 => 0.0042174986614602
1102 => 0.0042561774892969
1103 => 0.0044154901071237
1104 => 0.0040918847031512
1105 => 0.0040852202628108
1106 => 0.0039568101286895
1107 => 0.0038753703915458
1108 => 0.0039623863771664
1109 => 0.0040394706615598
1110 => 0.0039592053522772
1111 => 0.0039696863071763
1112 => 0.0038619366873812
1113 => 0.0039004521063671
1114 => 0.003933626773785
1115 => 0.0039153096723537
1116 => 0.0038878880849532
1117 => 0.0040331506292971
1118 => 0.0040249543472567
1119 => 0.0041602261681212
1120 => 0.0042656802258658
1121 => 0.0044546727495117
1122 => 0.0042574491986841
1123 => 0.0042502615885994
1124 => 0.0043205216301069
1125 => 0.0042561667328506
1126 => 0.0042968368064611
1127 => 0.0044481201718962
1128 => 0.0044513165510187
1129 => 0.0043977730824159
1130 => 0.0043945149574854
1201 => 0.0044047985663319
1202 => 0.0044650299845487
1203 => 0.0044439832762992
1204 => 0.004468339059923
1205 => 0.0044987963402934
1206 => 0.0046247805655251
1207 => 0.0046551549357108
1208 => 0.0045813609634648
1209 => 0.0045880237329225
1210 => 0.0045604227616126
1211 => 0.0045337605691665
1212 => 0.004593693284085
1213 => 0.004703221498579
1214 => 0.0047025401292411
1215 => 0.0047279485460795
1216 => 0.0047437777792751
1217 => 0.0046758271226926
1218 => 0.0046315937438724
1219 => 0.0046485556359551
1220 => 0.0046756780707773
1221 => 0.0046397601958893
1222 => 0.0044180584333023
1223 => 0.0044853085857078
1224 => 0.0044741148719831
1225 => 0.004458173662437
1226 => 0.0045257942107107
1227 => 0.0045192720438683
1228 => 0.0043239078252937
1229 => 0.0043364144087092
1230 => 0.0043246683920543
1231 => 0.0043626221748752
]
'min_raw' => 0.0035981408781253
'max_raw' => 0.0080602797421438
'avg_raw' => 0.0058292103101346
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003598'
'max' => '$0.00806'
'avg' => '$0.005829'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00087742530376973
'max_diff' => -0.0058572381561289
'year' => 2034
]
9 => [
'items' => [
101 => 0.0042541171040246
102 => 0.0042874925330255
103 => 0.0043084252892196
104 => 0.0043207548434309
105 => 0.0043652976476967
106 => 0.0043600710637273
107 => 0.0043649727558987
108 => 0.0044310179757606
109 => 0.0047650520338395
110 => 0.0047832327706161
111 => 0.004693704173436
112 => 0.0047294690821359
113 => 0.0046608082783577
114 => 0.0047069007359214
115 => 0.0047384360247651
116 => 0.004595934118368
117 => 0.0045874960803009
118 => 0.0045185518889615
119 => 0.0045555985921887
120 => 0.004496654623602
121 => 0.0045111174117207
122 => 0.0044706781952976
123 => 0.0045434607334914
124 => 0.0046248429204552
125 => 0.0046454032747622
126 => 0.0045913178343695
127 => 0.0045521564111211
128 => 0.0044834018524715
129 => 0.004597742215801
130 => 0.0046311788224979
131 => 0.0045975665875404
201 => 0.0045897778982589
202 => 0.0045750183461443
203 => 0.0045929092070129
204 => 0.004630996719557
205 => 0.0046130353520071
206 => 0.0046248991517124
207 => 0.0045796865811331
208 => 0.0046758496171874
209 => 0.0048285796613366
210 => 0.0048290707134024
211 => 0.004811109249034
212 => 0.0048037598047997
213 => 0.0048221893572344
214 => 0.0048321866334104
215 => 0.0048917844265823
216 => 0.0049557352331366
217 => 0.0052541657434026
218 => 0.0051703676503089
219 => 0.0054351529527274
220 => 0.005644563748872
221 => 0.0057073568902115
222 => 0.0056495901548248
223 => 0.0054519732735646
224 => 0.0054422772465888
225 => 0.0057376002988868
226 => 0.0056541580099599
227 => 0.0056442328152033
228 => 0.0055386455118732
301 => 0.0056010606853832
302 => 0.0055874095713612
303 => 0.0055658606200422
304 => 0.0056849444232205
305 => 0.0059078586720859
306 => 0.0058731153959236
307 => 0.0058471811519627
308 => 0.0057335448442708
309 => 0.0058019792830895
310 => 0.0057776110902015
311 => 0.0058823123112857
312 => 0.0058202896273315
313 => 0.0056535258525536
314 => 0.0056800835333475
315 => 0.0056760693933222
316 => 0.0057586801105993
317 => 0.0057338824237967
318 => 0.0056712272469853
319 => 0.0059070967754171
320 => 0.005891780720216
321 => 0.0059134953847535
322 => 0.0059230548516313
323 => 0.0060666244771004
324 => 0.0061254403589395
325 => 0.006138792593834
326 => 0.0061946631325976
327 => 0.0061374024839326
328 => 0.006366485904743
329 => 0.0065188130121937
330 => 0.0066957487861789
331 => 0.006954299507824
401 => 0.0070515169708904
402 => 0.0070339555063473
403 => 0.0072299857126999
404 => 0.0075822476360091
405 => 0.0071051577126019
406 => 0.0076075345604145
407 => 0.0074484878506166
408 => 0.0070713909628141
409 => 0.0070471103689198
410 => 0.0073024847595246
411 => 0.0078688805790118
412 => 0.0077270048502385
413 => 0.0078691126368785
414 => 0.0077033363552634
415 => 0.007695104165609
416 => 0.0078610612529001
417 => 0.0082488290332055
418 => 0.0080646150960403
419 => 0.0078004992460034
420 => 0.0079955182795728
421 => 0.0078265747445355
422 => 0.0074458976757782
423 => 0.0077268963605425
424 => 0.0075390005424224
425 => 0.0075938385312409
426 => 0.0079887675935358
427 => 0.0079412486839078
428 => 0.008002742553099
429 => 0.0078942074835513
430 => 0.0077928186141842
501 => 0.0076035687602742
502 => 0.0075475412084365
503 => 0.0075630252081043
504 => 0.0075475335353353
505 => 0.0074416499813686
506 => 0.0074187844379707
507 => 0.0073806741972119
508 => 0.0073924861543904
509 => 0.0073208277522195
510 => 0.0074560619624972
511 => 0.0074811626236046
512 => 0.0075795748042474
513 => 0.0075897922833117
514 => 0.0078638688055924
515 => 0.007712912062789
516 => 0.0078141868788396
517 => 0.0078051279060565
518 => 0.0070795637958305
519 => 0.0071795401285133
520 => 0.0073350719278662
521 => 0.0072650050630761
522 => 0.0071659469093842
523 => 0.0070859521391158
524 => 0.006964751882274
525 => 0.0071353389163341
526 => 0.0073596427262145
527 => 0.0075954809980879
528 => 0.007878825229008
529 => 0.0078155860951571
530 => 0.007590184074781
531 => 0.0076002954447588
601 => 0.0076627999552841
602 => 0.0075818509350202
603 => 0.0075579774886318
604 => 0.007659520110352
605 => 0.0076602193785809
606 => 0.0075670777477515
607 => 0.007463567869823
608 => 0.007463134159655
609 => 0.0074447155766645
610 => 0.0077066129802603
611 => 0.0078506300714239
612 => 0.0078671413988307
613 => 0.0078495187275341
614 => 0.0078563009942974
615 => 0.0077725006221493
616 => 0.0079640434226513
617 => 0.0081398220380116
618 => 0.0080927096141327
619 => 0.0080220813933125
620 => 0.0079658226135132
621 => 0.0080794568335417
622 => 0.0080743968806007
623 => 0.0081382867651524
624 => 0.0081353883509433
625 => 0.0081139045857886
626 => 0.0080927103813856
627 => 0.0081767430061593
628 => 0.0081525429597472
629 => 0.0081283053239787
630 => 0.0080796930348486
701 => 0.008086300252306
702 => 0.0080156842264439
703 => 0.0079830140217106
704 => 0.0074917325293036
705 => 0.0073604460614465
706 => 0.0074017514568168
707 => 0.0074153502654669
708 => 0.0073582142264073
709 => 0.0074401326293745
710 => 0.0074273657330452
711 => 0.0074770342582782
712 => 0.0074460035200693
713 => 0.0074472770323893
714 => 0.0075385318170109
715 => 0.0075650234692122
716 => 0.0075515496010888
717 => 0.0075609862364652
718 => 0.007778449515761
719 => 0.0077475331915294
720 => 0.0077311095104665
721 => 0.0077356589823624
722 => 0.0077912255126877
723 => 0.0078067811073587
724 => 0.0077408709596654
725 => 0.0077719545663396
726 => 0.0079043046184614
727 => 0.0079506196463398
728 => 0.0080984349828532
729 => 0.0080356404006942
730 => 0.0081509025739329
731 => 0.008505179198698
801 => 0.0087881998806382
802 => 0.0085279223652017
803 => 0.0090476538051183
804 => 0.0094523392821404
805 => 0.0094368067794933
806 => 0.0093662405060308
807 => 0.0089055168495612
808 => 0.0084815520718751
809 => 0.0088362166109048
810 => 0.0088371207237522
811 => 0.0088066547253132
812 => 0.008617433025557
813 => 0.0088000702203235
814 => 0.0088145672976032
815 => 0.0088064527894105
816 => 0.0086613769558612
817 => 0.0084398729725273
818 => 0.0084831543206651
819 => 0.0085540500518305
820 => 0.0084198296423356
821 => 0.0083769380888006
822 => 0.0084566816472741
823 => 0.0087136320079061
824 => 0.0086650570306407
825 => 0.0086637885416774
826 => 0.0088716128934148
827 => 0.008722855508873
828 => 0.0084837002370712
829 => 0.0084233103768708
830 => 0.0082089670566435
831 => 0.0083570147513892
901 => 0.0083623427243589
902 => 0.0082812585149574
903 => 0.0084902797737835
904 => 0.008488353606086
905 => 0.0086867881826327
906 => 0.0090661205643666
907 => 0.0089539333132751
908 => 0.0088234717461938
909 => 0.0088376565358424
910 => 0.0089932286672436
911 => 0.0088991662052321
912 => 0.0089329917223982
913 => 0.0089931774682721
914 => 0.0090294890230859
915 => 0.0088324318619078
916 => 0.0087864884113036
917 => 0.0086925042353273
918 => 0.0086679855181128
919 => 0.0087445336684013
920 => 0.0087243659352864
921 => 0.0083618949288617
922 => 0.0083240146919207
923 => 0.0083251764247071
924 => 0.0082299247678118
925 => 0.0080846431280295
926 => 0.0084664346030615
927 => 0.0084357714044482
928 => 0.0084019216063221
929 => 0.0084060680134483
930 => 0.008571790752646
1001 => 0.0084756631947124
1002 => 0.0087312340624759
1003 => 0.0086786963752272
1004 => 0.0086248112945435
1005 => 0.0086173627350133
1006 => 0.0085966215762091
1007 => 0.0085254924252242
1008 => 0.0084395997012107
1009 => 0.0083828858849166
1010 => 0.0077327691111643
1011 => 0.0078534270028174
1012 => 0.0079922329088515
1013 => 0.0080401481513847
1014 => 0.0079581858133978
1015 => 0.0085287287978943
1016 => 0.0086329724990508
1017 => 0.0083172115285993
1018 => 0.0082581455434633
1019 => 0.0085326011540464
1020 => 0.008367070870031
1021 => 0.0084416091467875
1022 => 0.0082804981626973
1023 => 0.0086078632440541
1024 => 0.0086053692706206
1025 => 0.0084780168600972
1026 => 0.0085856542453999
1027 => 0.0085669496008776
1028 => 0.0084231690430518
1029 => 0.0086124213441939
1030 => 0.0086125152109741
1031 => 0.0084899412847255
1101 => 0.0083468017737498
1102 => 0.0083212118099916
1103 => 0.0083019332098278
1104 => 0.0084368677929469
1105 => 0.008557849718242
1106 => 0.0087829670872534
1107 => 0.0088395669424796
1108 => 0.0090604799454932
1109 => 0.0089289370082575
1110 => 0.0089872482885679
1111 => 0.009050553431979
1112 => 0.0090809042456998
1113 => 0.0090314492234562
1114 => 0.0093746180485561
1115 => 0.0094035920118156
1116 => 0.0094133067310727
1117 => 0.0092975921340667
1118 => 0.0094003737795467
1119 => 0.0093522856513969
1120 => 0.0094773976015759
1121 => 0.0094970167528735
1122 => 0.009480400029696
1123 => 0.0094866274579851
1124 => 0.0091937934048915
1125 => 0.0091786084144159
1126 => 0.0089715599918033
1127 => 0.0090559337544426
1128 => 0.0088982010493282
1129 => 0.0089482197149469
1130 => 0.0089702674661562
1201 => 0.0089587509721233
1202 => 0.0090607041203889
1203 => 0.008974023116711
1204 => 0.0087452576963288
1205 => 0.0085164299489608
1206 => 0.0085135572029916
1207 => 0.0084533108962548
1208 => 0.0084097638511456
1209 => 0.0084181525569481
1210 => 0.008447715450352
1211 => 0.0084080456020386
1212 => 0.0084165111754886
1213 => 0.00855709610058
1214 => 0.0085852894047013
1215 => 0.0084894775414622
1216 => 0.0081047790849713
1217 => 0.0080103731188054
1218 => 0.0080782302551338
1219 => 0.0080457989145281
1220 => 0.0064935876728829
1221 => 0.0068582566798327
1222 => 0.0066415827388925
1223 => 0.0067414360595664
1224 => 0.0065202680733115
1225 => 0.0066258210287597
1226 => 0.0066063292520651
1227 => 0.0071927062238999
1228 => 0.0071835507540199
1229 => 0.0071879329929548
1230 => 0.0069787573107295
1231 => 0.0073119798522531
]
'min_raw' => 0.0042541171040246
'max_raw' => 0.0094970167528735
'avg_raw' => 0.0068755669284491
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.004254'
'max' => '$0.009497'
'avg' => '$0.006875'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00065597622589928
'max_diff' => 0.0014367370107297
'year' => 2035
]
10 => [
'items' => [
101 => 0.0074761372585026
102 => 0.0074457560915137
103 => 0.0074534023767083
104 => 0.0073220138637109
105 => 0.0071892051209617
106 => 0.0070418997861337
107 => 0.0073155748907544
108 => 0.0072851468909104
109 => 0.0073549377749037
110 => 0.0075324356429507
111 => 0.0075585728782694
112 => 0.0075937015875955
113 => 0.0075811104459339
114 => 0.0078810825229339
115 => 0.0078447539251297
116 => 0.007932295393387
117 => 0.0077522159513947
118 => 0.0075484389694829
119 => 0.0075871703117729
120 => 0.0075834401720526
121 => 0.007535951212158
122 => 0.00749308030254
123 => 0.0074217123168299
124 => 0.0076475311840911
125 => 0.007638363350474
126 => 0.0077867799202945
127 => 0.0077605458499371
128 => 0.0075853483075243
129 => 0.0075916055220259
130 => 0.0076336882966643
131 => 0.0077793372601806
201 => 0.0078225757890898
202 => 0.0078025459797416
203 => 0.0078499550527767
204 => 0.0078874252510801
205 => 0.0078546607327823
206 => 0.0083185372176247
207 => 0.0081259033597625
208 => 0.0082197917617468
209 => 0.0082421835923974
210 => 0.0081848273890352
211 => 0.0081972658957728
212 => 0.0082161068441901
213 => 0.0083305053935438
214 => 0.0086307202885349
215 => 0.0087636834218946
216 => 0.0091637095688926
217 => 0.0087526426846052
218 => 0.0087282516768555
219 => 0.0088003084655622
220 => 0.009035166160918
221 => 0.0092254962639424
222 => 0.0092886397395226
223 => 0.0092969851922057
224 => 0.0094154465500931
225 => 0.0094833463912606
226 => 0.0094010622254025
227 => 0.0093313350103491
228 => 0.0090815807808882
229 => 0.0091104905130065
301 => 0.0093096498988996
302 => 0.0095909742619029
303 => 0.0098323798321709
304 => 0.0097478480152966
305 => 0.010392766107885
306 => 0.010456707102511
307 => 0.010447872524514
308 => 0.010593539625968
309 => 0.010304420094171
310 => 0.010180815892901
311 => 0.0093464108256812
312 => 0.0095808446146295
313 => 0.0099216078946797
314 => 0.0098765065967683
315 => 0.0096290351941673
316 => 0.0098321921029208
317 => 0.009765022075583
318 => 0.0097120422881347
319 => 0.0099547529650725
320 => 0.0096878826057743
321 => 0.0099189456587005
322 => 0.0096226049032814
323 => 0.0097482341495156
324 => 0.0096769209133501
325 => 0.0097230693169707
326 => 0.0094532866923716
327 => 0.0095988548480023
328 => 0.0094472305785137
329 => 0.0094471586888679
330 => 0.0094438115747152
331 => 0.0096221968553635
401 => 0.0096280139929612
402 => 0.0094961870010369
403 => 0.0094771886719759
404 => 0.0095474354519416
405 => 0.0094651948702626
406 => 0.0095036747208142
407 => 0.0094663603857358
408 => 0.0094579601429495
409 => 0.0093910255792449
410 => 0.0093621883287968
411 => 0.0093734961577419
412 => 0.0093348967079669
413 => 0.0093116391432743
414 => 0.0094391850597134
415 => 0.0093710424217476
416 => 0.0094287412231421
417 => 0.0093629861567838
418 => 0.009135050448667
419 => 0.0090039622125527
420 => 0.0085734127895715
421 => 0.0086955160718341
422 => 0.0087764706742991
423 => 0.0087497151786674
424 => 0.0088071963362867
425 => 0.008810725212522
426 => 0.0087920375022289
427 => 0.0087703995277534
428 => 0.0087598673584338
429 => 0.0088383655196977
430 => 0.0088839363444381
501 => 0.0087845955516894
502 => 0.0087613213938737
503 => 0.0088617604200982
504 => 0.0089230281680733
505 => 0.0093753947957481
506 => 0.009341882014845
507 => 0.0094259925183607
508 => 0.0094165229664457
509 => 0.0095046841739841
510 => 0.0096487904886032
511 => 0.0093557820582233
512 => 0.009406638190268
513 => 0.0093941694411303
514 => 0.0095302999747349
515 => 0.0095307249594017
516 => 0.0094491079042812
517 => 0.0094933538339475
518 => 0.0094686569698314
519 => 0.0095132875412706
520 => 0.0093414344312242
521 => 0.0095507329688639
522 => 0.0096693917528057
523 => 0.0096710393301358
524 => 0.0097272826519899
525 => 0.0097844291243872
526 => 0.0098941168017449
527 => 0.0097813699945987
528 => 0.0095785494642232
529 => 0.00959319245141
530 => 0.00947427884866
531 => 0.0094762778078057
601 => 0.0094656072072246
602 => 0.0094976304828139
603 => 0.0093484617393911
604 => 0.0093834713453182
605 => 0.0093344576920043
606 => 0.0094065316441579
607 => 0.0093289919858917
608 => 0.0093941634283219
609 => 0.0094222892624072
610 => 0.0095260741956881
611 => 0.0093136628668612
612 => 0.0088805417884004
613 => 0.0089715890901783
614 => 0.0088369229792375
615 => 0.0088493868405151
616 => 0.0088745658239047
617 => 0.0087929525006884
618 => 0.0088085217508267
619 => 0.0088079655076526
620 => 0.0088031721044853
621 => 0.0087819413270607
622 => 0.0087511524994136
623 => 0.0088738057124581
624 => 0.0088946468834091
625 => 0.0089409742247583
626 => 0.0090788129684777
627 => 0.0090650396275187
628 => 0.0090875045180732
629 => 0.0090384637881277
630 => 0.0088516616993251
701 => 0.0088618059514791
702 => 0.0087353069645688
703 => 0.0089377393612545
704 => 0.0088898006977423
705 => 0.0088588943295164
706 => 0.0088504612406005
707 => 0.0089886416599046
708 => 0.009029987407073
709 => 0.0090042235120475
710 => 0.0089513810116973
711 => 0.0090528542338525
712 => 0.0090800041872897
713 => 0.0090860820606126
714 => 0.0092658731547111
715 => 0.0090961303855428
716 => 0.0091369891571796
717 => 0.0094557576298396
718 => 0.0091666786121793
719 => 0.0093198102150654
720 => 0.0093123152199625
721 => 0.0093906521663081
722 => 0.009305889303878
723 => 0.0093069400411452
724 => 0.0093764979424957
725 => 0.0092788164148826
726 => 0.0092546290949471
727 => 0.0092212144856892
728 => 0.0092941740625549
729 => 0.009337910029208
730 => 0.0096903897999043
731 => 0.0099181078068046
801 => 0.0099082219675615
802 => 0.0099985600327274
803 => 0.0099578619069683
804 => 0.0098264369232691
805 => 0.010050763344874
806 => 0.0099797770788623
807 => 0.009985629100384
808 => 0.0099854112878507
809 => 0.010032610949022
810 => 0.0099991656632966
811 => 0.0099332415720445
812 => 0.0099770050603662
813 => 0.010106966974948
814 => 0.010510372745529
815 => 0.010736123959162
816 => 0.010496782239007
817 => 0.010661876952657
818 => 0.010562878953728
819 => 0.010544888072388
820 => 0.010648579752963
821 => 0.010752452932099
822 => 0.010745836659644
823 => 0.010670430065538
824 => 0.010627834793899
825 => 0.010950380461212
826 => 0.011188026614466
827 => 0.011171820740014
828 => 0.011243348199412
829 => 0.011453355032465
830 => 0.011472555425388
831 => 0.011470136617196
901 => 0.011422546439982
902 => 0.011629325439957
903 => 0.011801824119666
904 => 0.01141153068897
905 => 0.011560149318063
906 => 0.011626869008855
907 => 0.01172483330978
908 => 0.011890115506162
909 => 0.012069655810371
910 => 0.012095044777945
911 => 0.012077030090477
912 => 0.011958618433549
913 => 0.012155073576776
914 => 0.012270152392238
915 => 0.012338679193314
916 => 0.01251245175907
917 => 0.011627281046952
918 => 0.011000713221076
919 => 0.010902865607316
920 => 0.011101842577564
921 => 0.011154311217806
922 => 0.011133161174715
923 => 0.010427902121637
924 => 0.010899152564358
925 => 0.011406178416864
926 => 0.011425655344787
927 => 0.011679483087962
928 => 0.01176213980589
929 => 0.011966504409109
930 => 0.011953721347535
1001 => 0.012003480876268
1002 => 0.011992042022327
1003 => 0.012370584415746
1004 => 0.012788172889775
1005 => 0.01277371312877
1006 => 0.012713679844945
1007 => 0.012802839508621
1008 => 0.01323383556532
1009 => 0.01319415635499
1010 => 0.013232701327958
1011 => 0.01374086996868
1012 => 0.014401561487765
1013 => 0.014094603944806
1014 => 0.014760613488373
1015 => 0.015179831192399
1016 => 0.015904824863594
1017 => 0.015814052085291
1018 => 0.016096286801238
1019 => 0.015651549867279
1020 => 0.014630343970746
1021 => 0.0144687342286
1022 => 0.014792281024986
1023 => 0.015587689252666
1024 => 0.014767230789279
1025 => 0.014933208467855
1026 => 0.014885406885259
1027 => 0.014882859742066
1028 => 0.014980073837758
1029 => 0.01483905972161
1030 => 0.014264542844469
1031 => 0.014527840543614
1101 => 0.01442616865738
1102 => 0.014538981195298
1103 => 0.015147783935009
1104 => 0.014878617731738
1105 => 0.014595073001879
1106 => 0.014950701016735
1107 => 0.015403537686691
1108 => 0.015375199981711
1109 => 0.015320212989808
1110 => 0.015630171784141
1111 => 0.016142132902974
1112 => 0.016280513936168
1113 => 0.016382663985796
1114 => 0.016396748751801
1115 => 0.01654183059528
1116 => 0.015761688957558
1117 => 0.016999793772081
1118 => 0.017213580271594
1119 => 0.017173397270229
1120 => 0.017411011966926
1121 => 0.017341099695455
1122 => 0.017239807782992
1123 => 0.017616477619353
1124 => 0.017184656047653
1125 => 0.01657173969145
1126 => 0.016235481656326
1127 => 0.016678293362139
1128 => 0.016948703018881
1129 => 0.017127426600702
1130 => 0.017181508248574
1201 => 0.015822249132116
1202 => 0.015089683856312
1203 => 0.015559249799224
1204 => 0.016132152657288
1205 => 0.015758506453255
1206 => 0.015773152677047
1207 => 0.015240431382591
1208 => 0.016179286671184
1209 => 0.016042503352652
1210 => 0.016752135451163
1211 => 0.0165827760557
1212 => 0.017161453484275
1213 => 0.017009068323739
1214 => 0.017641610605387
1215 => 0.017893948846934
1216 => 0.018317664027804
1217 => 0.018629350639684
1218 => 0.018812378979794
1219 => 0.018801390644776
1220 => 0.019526640112649
1221 => 0.019098985839731
1222 => 0.018561751282571
1223 => 0.018552034404386
1224 => 0.018830275794211
1225 => 0.019413393415487
1226 => 0.019564587330668
1227 => 0.019649084103001
1228 => 0.019519674354819
1229 => 0.019055486291824
1230 => 0.018855052239709
1231 => 0.019025827859244
]
'min_raw' => 0.0070418997861337
'max_raw' => 0.019649084103001
'avg_raw' => 0.013345491944567
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.007041'
'max' => '$0.019649'
'avg' => '$0.013345'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0027877826821091
'max_diff' => 0.010152067350127
'year' => 2036
]
11 => [
'items' => [
101 => 0.018816983951469
102 => 0.01917750712754
103 => 0.019672582451881
104 => 0.019570351355144
105 => 0.019912094584191
106 => 0.020265762873819
107 => 0.020771524412222
108 => 0.020903749206657
109 => 0.021122311763798
110 => 0.021347284429156
111 => 0.021419539586086
112 => 0.021557497100123
113 => 0.021556769995927
114 => 0.02197251425009
115 => 0.02243109303696
116 => 0.02260419591288
117 => 0.02300223643111
118 => 0.022320605992645
119 => 0.022837630510227
120 => 0.023303999567049
121 => 0.022747975151366
122 => 0.023514325271311
123 => 0.023544080909882
124 => 0.023993355724779
125 => 0.023537929629241
126 => 0.023267499067482
127 => 0.02404822196638
128 => 0.024425989184615
129 => 0.024312202624111
130 => 0.023446281280339
131 => 0.02294227791715
201 => 0.021623203900696
202 => 0.023185704052943
203 => 0.023946752298347
204 => 0.023444310349239
205 => 0.023697712843067
206 => 0.025080194683355
207 => 0.025606554259066
208 => 0.025497075146849
209 => 0.025515575314634
210 => 0.025799589387586
211 => 0.027059064196461
212 => 0.026304357696586
213 => 0.026881302537428
214 => 0.027187312000681
215 => 0.027471550644243
216 => 0.0267735503702
217 => 0.025865462269331
218 => 0.02557783264884
219 => 0.023394352399449
220 => 0.023280692770094
221 => 0.023216892175898
222 => 0.022814638454264
223 => 0.022498577215627
224 => 0.022247233584062
225 => 0.021587632837273
226 => 0.021810228726531
227 => 0.020758962805524
228 => 0.021431525487208
301 => 0.019753679693577
302 => 0.02115103952797
303 => 0.020390520100265
304 => 0.020901188441864
305 => 0.020899406768128
306 => 0.019959104443699
307 => 0.019416757686577
308 => 0.019762362148667
309 => 0.020132877566144
310 => 0.020192992446066
311 => 0.020673375356266
312 => 0.020807439900706
313 => 0.020401218072176
314 => 0.019718910068873
315 => 0.019877394656251
316 => 0.019413546001473
317 => 0.018600669075654
318 => 0.019184491475246
319 => 0.019383834111326
320 => 0.019471875175719
321 => 0.018672504078721
322 => 0.018421324324854
323 => 0.018287598331497
324 => 0.019615721298323
325 => 0.019688478872514
326 => 0.019316240836069
327 => 0.020998792057857
328 => 0.020617978896691
329 => 0.021043440499203
330 => 0.019863013841104
331 => 0.019908107729098
401 => 0.019349274831978
402 => 0.019662183913138
403 => 0.019441029860104
404 => 0.019636903951608
405 => 0.019754310074436
406 => 0.020313051272577
407 => 0.021157419454934
408 => 0.020229593969951
409 => 0.019825327119439
410 => 0.020076131999814
411 => 0.020744058446933
412 => 0.021756001204844
413 => 0.021156910724915
414 => 0.021422776906691
415 => 0.021480856839847
416 => 0.021039109699482
417 => 0.021772289052011
418 => 0.02216520582337
419 => 0.022568257128115
420 => 0.022918215282784
421 => 0.022407269573712
422 => 0.022954054723609
423 => 0.022513442413364
424 => 0.022118167621411
425 => 0.022118767090108
426 => 0.021870805439072
427 => 0.021390348495012
428 => 0.021301744862996
429 => 0.021762672146152
430 => 0.022132292177267
501 => 0.02216273585339
502 => 0.022367376494378
503 => 0.022488480717748
504 => 0.023675466739988
505 => 0.024152882337396
506 => 0.024736657092892
507 => 0.0249640702599
508 => 0.025648502360462
509 => 0.025095767852401
510 => 0.024976180264719
511 => 0.02331597186479
512 => 0.023587830897272
513 => 0.02402310343877
514 => 0.023323149348678
515 => 0.023767109111619
516 => 0.023854756173176
517 => 0.023299365176538
518 => 0.023596023504871
519 => 0.022808186937883
520 => 0.021174592139186
521 => 0.02177410771001
522 => 0.022215552964896
523 => 0.021585556156366
524 => 0.022714801051412
525 => 0.022055119496073
526 => 0.021846032113329
527 => 0.021030307688212
528 => 0.021415298216755
529 => 0.021936003419142
530 => 0.021614268142544
531 => 0.02228191715028
601 => 0.023227486200721
602 => 0.023901355015675
603 => 0.023953086295825
604 => 0.023519833793513
605 => 0.024214123693448
606 => 0.024219180837396
607 => 0.023436018994012
608 => 0.022956336725602
609 => 0.02284735190496
610 => 0.023119617354658
611 => 0.023450197873566
612 => 0.023971431213901
613 => 0.024286401604993
614 => 0.025107677337573
615 => 0.025329891002989
616 => 0.025574036450307
617 => 0.025900290059592
618 => 0.026292041167246
619 => 0.025434912046101
620 => 0.025468967383973
621 => 0.024670820614123
622 => 0.023817886324713
623 => 0.024465157130615
624 => 0.025311377606505
625 => 0.025117253694345
626 => 0.025095410788635
627 => 0.025132144497322
628 => 0.024985781407048
629 => 0.024323786574208
630 => 0.023991336913462
701 => 0.024420281792778
702 => 0.024648246905994
703 => 0.025001800915945
704 => 0.024958217921599
705 => 0.025868935082304
706 => 0.026222812232297
707 => 0.026132275314072
708 => 0.026148936285918
709 => 0.026789613962604
710 => 0.027502179304492
711 => 0.028169590778449
712 => 0.028848510395748
713 => 0.028030046298411
714 => 0.02761448070563
715 => 0.02804323832103
716 => 0.027815733495099
717 => 0.029123043707217
718 => 0.029213559029873
719 => 0.030520774708583
720 => 0.031761478048026
721 => 0.030982214510031
722 => 0.03171702492756
723 => 0.032511782304089
724 => 0.034044998228152
725 => 0.033528665044114
726 => 0.033133161917114
727 => 0.032759413373156
728 => 0.033537124762222
729 => 0.034537638040013
730 => 0.034753139017253
731 => 0.035102332928089
801 => 0.034735198228244
802 => 0.035177371535647
803 => 0.036738437611575
804 => 0.036316623777948
805 => 0.03571758032424
806 => 0.036949892064805
807 => 0.037395860893225
808 => 0.040525903686766
809 => 0.04447771200923
810 => 0.042841637414757
811 => 0.041826073118171
812 => 0.042064754817376
813 => 0.043507821439586
814 => 0.043971288637994
815 => 0.042711425025996
816 => 0.043156430152548
817 => 0.045608452151788
818 => 0.046923883284096
819 => 0.045137351120451
820 => 0.040208379735846
821 => 0.03566364301551
822 => 0.036869111845905
823 => 0.036732449090591
824 => 0.039366840832801
825 => 0.036306563657519
826 => 0.036358090876632
827 => 0.039046959050202
828 => 0.038329615120364
829 => 0.037167609824496
830 => 0.035672126940122
831 => 0.032907588512932
901 => 0.030458959733112
902 => 0.035261284655868
903 => 0.035054199672737
904 => 0.03475430992889
905 => 0.035421682102364
906 => 0.038662251939858
907 => 0.038587546316402
908 => 0.038112307255125
909 => 0.038472771894539
910 => 0.037104418630386
911 => 0.037457074423383
912 => 0.035662923105994
913 => 0.036473954431831
914 => 0.037165116683014
915 => 0.037303877737771
916 => 0.037616513479454
917 => 0.034945075296642
918 => 0.03614447261142
919 => 0.036849006165522
920 => 0.033665897936941
921 => 0.036786086350316
922 => 0.034898571501293
923 => 0.034257920612013
924 => 0.035120472635092
925 => 0.034784335272839
926 => 0.034495344107421
927 => 0.03433408207162
928 => 0.034967445080977
929 => 0.034937897939558
930 => 0.033901593125788
1001 => 0.032549775741413
1002 => 0.033003490027502
1003 => 0.032838651373772
1004 => 0.032241254828044
1005 => 0.03264382796993
1006 => 0.030871099590666
1007 => 0.027821212552544
1008 => 0.029836061350494
1009 => 0.029758491863506
1010 => 0.029719377810671
1011 => 0.031233480996
1012 => 0.031087934911034
1013 => 0.03082376734163
1014 => 0.032236403183469
1015 => 0.031720772098565
1016 => 0.033309825604277
1017 => 0.034356479016676
1018 => 0.034091013855601
1019 => 0.035075396448877
1020 => 0.03301394268828
1021 => 0.03369867493638
1022 => 0.033839797303716
1023 => 0.032218971476458
1024 => 0.031111748050534
1025 => 0.031037908871295
1026 => 0.029118136035529
1027 => 0.03014366318853
1028 => 0.031046084643975
1029 => 0.030613894797551
1030 => 0.030477076403477
1031 => 0.031176051906509
1101 => 0.031230368289415
1102 => 0.029991949002968
1103 => 0.030249455588259
1104 => 0.031323300855829
1105 => 0.030222397442719
1106 => 0.028083521942598
1107 => 0.0275530512463
1108 => 0.027482276676899
1109 => 0.026043598076379
1110 => 0.027588499834771
1111 => 0.02691410881644
1112 => 0.029044501962903
1113 => 0.027827632823171
1114 => 0.027775176026683
1115 => 0.027695879885052
1116 => 0.026457549782519
1117 => 0.02672866537499
1118 => 0.027629894896435
1119 => 0.027951463742763
1120 => 0.027917921477555
1121 => 0.027625478380116
1122 => 0.027759357332572
1123 => 0.02732808658019
1124 => 0.027175795901399
1125 => 0.026695124628283
1126 => 0.025988670645632
1127 => 0.026086907404854
1128 => 0.024687237211482
1129 => 0.023924622604013
1130 => 0.023713540931764
1201 => 0.023431273697924
1202 => 0.023745423766911
1203 => 0.024683272121683
1204 => 0.0235520280302
1205 => 0.0216125893829
1206 => 0.021729152950246
1207 => 0.021991036678037
1208 => 0.021503018083832
1209 => 0.021041149440713
1210 => 0.021442706753317
1211 => 0.020620941031288
1212 => 0.022090343139512
1213 => 0.022050599930436
1214 => 0.022598302169165
1215 => 0.022940791619024
1216 => 0.022151464319376
1217 => 0.021952950638082
1218 => 0.022066033052891
1219 => 0.020197032630298
1220 => 0.022445564960715
1221 => 0.022465010361681
1222 => 0.022298507032967
1223 => 0.023495781083267
1224 => 0.026022402768541
1225 => 0.025071786057419
1226 => 0.024703678534331
1227 => 0.024003905863854
1228 => 0.024936311398874
1229 => 0.024864717201577
1230 => 0.024540941090105
1231 => 0.024345120287644
]
'min_raw' => 0.018287598331497
'max_raw' => 0.046923883284096
'avg_raw' => 0.032605740807797
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.018287'
'max' => '$0.046923'
'avg' => '$0.0326057'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.011245698545364
'max_diff' => 0.027274799181096
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00057402681485515
]
1 => [
'year' => 2028
'avg' => 0.00098519665546648
]
2 => [
'year' => 2029
'avg' => 0.0026913796983134
]
3 => [
'year' => 2030
'avg' => 0.0020763954291259
]
4 => [
'year' => 2031
'avg' => 0.0020392776362542
]
5 => [
'year' => 2032
'avg' => 0.0035754954806452
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00057402681485515
'min' => '$0.000574'
'max_raw' => 0.0035754954806452
'max' => '$0.003575'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0035754954806452
]
1 => [
'year' => 2033
'avg' => 0.0091965420400839
]
2 => [
'year' => 2034
'avg' => 0.0058292103101346
]
3 => [
'year' => 2035
'avg' => 0.0068755669284491
]
4 => [
'year' => 2036
'avg' => 0.013345491944567
]
5 => [
'year' => 2037
'avg' => 0.032605740807797
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0035754954806452
'min' => '$0.003575'
'max_raw' => 0.032605740807797
'max' => '$0.0326057'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.032605740807797
]
]
]
]
'prediction_2025_max_price' => '$0.000981'
'last_price' => 0.00095167
'sma_50day_nextmonth' => '$0.0009083'
'sma_200day_nextmonth' => '$0.001634'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.000928'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.00093'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000941'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000961'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.001094'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001371'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002116'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000936'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000935'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000941'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000971'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001103'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001431'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002654'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001478'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.004031'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.016842'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000956'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000995'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001153'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001789'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005239'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.014746'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.013424'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '38.90'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 76.24
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000941'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000921'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 61.34
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -21.46
'cci_20_action' => 'NEUTRAL'
'adx_14' => 40.86
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000066'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -38.66
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 45.36
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000243'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 14
'sell_pct' => 56.25
'buy_pct' => 43.75
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767711746
'last_updated_date' => '6. Januar 2026'
]
Paysenger EGO Preisprognose für 2026
Die Preisprognose für Paysenger EGO im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.000328 am unteren Ende und $0.000981 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Paysenger EGO im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn EGO das prognostizierte Preisziel erreicht.
Paysenger EGO Preisprognose 2027-2032
Die Preisprognose für EGO für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.000574 am unteren Ende und $0.003575 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Paysenger EGO, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Paysenger EGO Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.000316 | $0.000574 | $0.000831 |
| 2028 | $0.000571 | $0.000985 | $0.001399 |
| 2029 | $0.001254 | $0.002691 | $0.004127 |
| 2030 | $0.001067 | $0.002076 | $0.003085 |
| 2031 | $0.001261 | $0.002039 | $0.002816 |
| 2032 | $0.001925 | $0.003575 | $0.005225 |
Paysenger EGO Preisprognose 2032-2037
Die Preisprognose für Paysenger EGO für die Jahre 2032-2037 wird derzeit zwischen $0.003575 am unteren Ende und $0.0326057 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Paysenger EGO bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Paysenger EGO Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.001925 | $0.003575 | $0.005225 |
| 2033 | $0.004475 | $0.009196 | $0.013917 |
| 2034 | $0.003598 | $0.005829 | $0.00806 |
| 2035 | $0.004254 | $0.006875 | $0.009497 |
| 2036 | $0.007041 | $0.013345 | $0.019649 |
| 2037 | $0.018287 | $0.0326057 | $0.046923 |
Paysenger EGO Potenzielles Preishistogramm
Paysenger EGO Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Paysenger EGO Bärisch, mit 14 technischen Indikatoren, die bullische Signale zeigen, und 18 anzeigen bärische Signale. Die Preisprognose für EGO wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Paysenger EGO
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Paysenger EGO im nächsten Monat steigen, und bis zum 04.02.2026 $0.001634 erreichen. Der kurzfristige 50-Tage-SMA für Paysenger EGO wird voraussichtlich bis zum 04.02.2026 $0.0009083 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 38.90, was darauf hindeutet, dass sich der EGO-Markt in einem NEUTRAL Zustand befindet.
Beliebte EGO Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.000928 | BUY |
| SMA 5 | $0.00093 | BUY |
| SMA 10 | $0.000941 | BUY |
| SMA 21 | $0.000961 | SELL |
| SMA 50 | $0.001094 | SELL |
| SMA 100 | $0.001371 | SELL |
| SMA 200 | $0.002116 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.000936 | BUY |
| EMA 5 | $0.000935 | BUY |
| EMA 10 | $0.000941 | BUY |
| EMA 21 | $0.000971 | SELL |
| EMA 50 | $0.001103 | SELL |
| EMA 100 | $0.001431 | SELL |
| EMA 200 | $0.002654 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.001478 | SELL |
| SMA 50 | $0.004031 | SELL |
| SMA 100 | $0.016842 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.001789 | SELL |
| EMA 50 | $0.005239 | SELL |
| EMA 100 | $0.014746 | SELL |
| EMA 200 | $0.013424 | SELL |
Paysenger EGO Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 38.90 | NEUTRAL |
| Stoch RSI (14) | 76.24 | NEUTRAL |
| Stochastic Fast (14) | 61.34 | NEUTRAL |
| Commodity Channel Index (20) | -21.46 | NEUTRAL |
| Average Directional Index (14) | 40.86 | SELL |
| Awesome Oscillator (5, 34) | -0.000066 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -38.66 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 45.36 | NEUTRAL |
| VWMA (10) | 0.000941 | BUY |
| Hull Moving Average (9) | 0.000921 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000243 | SELL |
Auf weltweiten Geldflüssen basierende Paysenger EGO-Preisprognose
Definition weltweiter Geldflüsse, die für Paysenger EGO-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Paysenger EGO-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.001337 | $0.001879 | $0.00264 | $0.00371 | $0.005213 | $0.007325 |
| Amazon.com aktie | $0.001985 | $0.004143 | $0.008645 | $0.018038 | $0.037639 | $0.078536 |
| Apple aktie | $0.001349 | $0.001914 | $0.002715 | $0.003852 | $0.005464 | $0.00775 |
| Netflix aktie | $0.0015015 | $0.002369 | $0.003738 | $0.005898 | $0.0093069 | $0.014684 |
| Google aktie | $0.001232 | $0.001595 | $0.002066 | $0.002676 | $0.003465 | $0.004488 |
| Tesla aktie | $0.002157 | $0.00489 | $0.011086 | $0.025132 | $0.056973 | $0.129154 |
| Kodak aktie | $0.000713 | $0.000535 | $0.0004013 | $0.00030094 | $0.000225 | $0.000169 |
| Nokia aktie | $0.00063 | $0.000417 | $0.000276 | $0.000183 | $0.000121 | $0.00008 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Paysenger EGO Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Paysenger EGO investieren?", "Sollte ich heute EGO kaufen?", "Wird Paysenger EGO auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Paysenger EGO-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Paysenger EGO.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Paysenger EGO zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Paysenger EGO-Preis entspricht heute $0.0009516 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Paysenger EGO-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Paysenger EGO-Prognose
basierend auf dem Preisverlauf des letzten Monats
Paysenger EGO-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Paysenger EGO 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000976 | $0.0010017 | $0.001027 | $0.001054 |
| Wenn die Wachstumsrate von Paysenger EGO 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0010011 | $0.001053 | $0.0011079 | $0.001165 |
| Wenn die Wachstumsrate von Paysenger EGO 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001075 | $0.001215 | $0.001373 | $0.001551 |
| Wenn die Wachstumsrate von Paysenger EGO 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001199 | $0.00151 | $0.0019033 | $0.002398 |
| Wenn die Wachstumsrate von Paysenger EGO 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001446 | $0.002198 | $0.003341 | $0.005078 |
| Wenn die Wachstumsrate von Paysenger EGO 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002188 | $0.005032 | $0.011573 | $0.026615 |
| Wenn die Wachstumsrate von Paysenger EGO 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003425 | $0.012328 | $0.044376 | $0.159723 |
Fragefeld
Ist EGO eine gute Investition?
Die Entscheidung, Paysenger EGO zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Paysenger EGO in den letzten 2026 Stunden um 2.5977% gestiegen, und Paysenger EGO hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Paysenger EGO investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Paysenger EGO steigen?
Es scheint, dass der Durchschnittswert von Paysenger EGO bis zum Ende dieses Jahres potenziell auf $0.000981 steigen könnte. Betrachtet man die Aussichten von Paysenger EGO in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.003085 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Paysenger EGO nächste Woche kosten?
Basierend auf unserer neuen experimentellen Paysenger EGO-Prognose wird der Preis von Paysenger EGO in der nächsten Woche um 0.86% steigen und $0.000959 erreichen bis zum 13. Januar 2026.
Wie viel wird Paysenger EGO nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Paysenger EGO-Prognose wird der Preis von Paysenger EGO im nächsten Monat um -11.62% fallen und $0.000841 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Paysenger EGO in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Paysenger EGO im Jahr 2026 wird erwartet, dass EGO innerhalb der Spanne von $0.000328 bis $0.000981 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Paysenger EGO-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Paysenger EGO in 5 Jahren sein?
Die Zukunft von Paysenger EGO scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.003085 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Paysenger EGO-Prognose für 2030 könnte der Wert von Paysenger EGO seinen höchsten Gipfel von ungefähr $0.003085 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.001067 liegen wird.
Wie viel wird Paysenger EGO im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Paysenger EGO-Preisprognosesimulation wird der Wert von EGO im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.000981 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.000981 und $0.000328 während des Jahres 2026 liegen.
Wie viel wird Paysenger EGO im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Paysenger EGO könnte der Wert von EGO um -12.62% fallen und bis zu $0.000831 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.000831 und $0.000316 im Laufe des Jahres schwanken.
Wie viel wird Paysenger EGO im Jahr 2028 kosten?
Unser neues experimentelles Paysenger EGO-Preisprognosemodell deutet darauf hin, dass der Wert von EGO im Jahr 2028 um 47.02% steigen, und im besten Fall $0.001399 erreichen wird. Der Preis wird voraussichtlich zwischen $0.001399 und $0.000571 im Laufe des Jahres liegen.
Wie viel wird Paysenger EGO im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Paysenger EGO im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.004127 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.004127 und $0.001254.
Wie viel wird Paysenger EGO im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Paysenger EGO-Preisprognosen wird der Wert von EGO im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.003085 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.003085 und $0.001067 während des Jahres 2030 liegen.
Wie viel wird Paysenger EGO im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Paysenger EGO im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.002816 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.002816 und $0.001261 während des Jahres schwanken.
Wie viel wird Paysenger EGO im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Paysenger EGO-Preisprognose könnte EGO eine 449.04% Steigerung im Wert erfahren und $0.005225 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.005225 und $0.001925 liegen.
Wie viel wird Paysenger EGO im Jahr 2033 kosten?
Laut unserer experimentellen Paysenger EGO-Preisprognose wird der Wert von EGO voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.013917 beträgt. Im Laufe des Jahres könnte der Preis von EGO zwischen $0.013917 und $0.004475 liegen.
Wie viel wird Paysenger EGO im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Paysenger EGO-Preisprognosesimulation deuten darauf hin, dass EGO im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.00806 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.00806 und $0.003598.
Wie viel wird Paysenger EGO im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Paysenger EGO könnte EGO um 897.93% steigen, wobei der Wert im Jahr 2035 $0.009497 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.009497 und $0.004254.
Wie viel wird Paysenger EGO im Jahr 2036 kosten?
Unsere jüngste Paysenger EGO-Preisprognosesimulation deutet darauf hin, dass der Wert von EGO im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.019649 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.019649 und $0.007041.
Wie viel wird Paysenger EGO im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Paysenger EGO um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.046923 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.046923 und $0.018287 liegen.
Verwandte Prognosen
Mendi Finance-Preisprognose
Wombat Exchange-Preisprognose
Big Data Protocol-Preisprognose
Juicebox-Preisprognose
Tamadoge-Preisprognose
Bytecoin-Preisprognose
Afreum-Preisprognose
MESSIER-Preisprognose
KiboShib-Preisprognose
TokenSight-Preisprognose
Honk-Preisprognose
NavCoin-Preisprognose
Kira the Injective Cat-Preisprognose
ZoidPay-Preisprognose
Chain Games-Preisprognose
Everton Fan Token-Preisprognose
Oracle AI-Preisprognose
Defit-Preisprognose
Pocketcoin-Preisprognose
Metavault Trade-Preisprognose
Baanx-Preisprognose
Calaxy-Preisprognose
Polkadex-Preisprognose
Mobius-Preisprognose
BitKan-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Paysenger EGO?
Paysenger EGO-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Paysenger EGO Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Paysenger EGO. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von EGO über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von EGO über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von EGO einzuschätzen.
Wie liest man Paysenger EGO-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Paysenger EGO in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von EGO innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Paysenger EGO?
Die Preisentwicklung von Paysenger EGO wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von EGO. Die Marktkapitalisierung von Paysenger EGO kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von EGO-„Walen“, großen Inhabern von Paysenger EGO, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Paysenger EGO-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


