Paysenger EGO Preisvorhersage bis zu $0.000986 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.00033 | $0.000986 |
| 2027 | $0.000318 | $0.000835 |
| 2028 | $0.000573 | $0.0014057 |
| 2029 | $0.00126 | $0.004147 |
| 2030 | $0.001072 | $0.00310024 |
| 2031 | $0.001267 | $0.00283 |
| 2032 | $0.001935 | $0.005249 |
| 2033 | $0.004496 | $0.013983 |
| 2034 | $0.003615 | $0.008098 |
| 2035 | $0.004274 | $0.009542 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Paysenger EGO eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.18 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Paysenger EGO Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Paysenger EGO'
'name_with_ticker' => 'Paysenger EGO <small>EGO</small>'
'name_lang' => 'Paysenger EGO'
'name_lang_with_ticker' => 'Paysenger EGO <small>EGO</small>'
'name_with_lang' => 'Paysenger EGO'
'name_with_lang_with_ticker' => 'Paysenger EGO <small>EGO</small>'
'image' => '/uploads/coins/paysenger-ego.jpg?1717227008'
'price_for_sd' => 0.0009561
'ticker' => 'EGO'
'marketcap' => '$191.85K'
'low24h' => '$0.0009195'
'high24h' => '$0.0009567'
'volume24h' => '$74.48K'
'current_supply' => '200.64M'
'max_supply' => '323M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0009561'
'change_24h_pct' => '3.7835%'
'ath_price' => '$0.1311'
'ath_days' => 657
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20.03.2024'
'ath_pct' => '-99.27%'
'fdv' => '$308.85K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.047146'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000964'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000845'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00033'
'current_year_max_price_prediction' => '$0.000986'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001072'
'grand_prediction_max_price' => '$0.00310024'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00097430929754406
107 => 0.00097794701478681
108 => 0.00098614297748119
109 => 0.00091610937361745
110 => 0.00094755240567369
111 => 0.00096602224119304
112 => 0.00088257485237822
113 => 0.00096437275461999
114 => 0.00091489024438489
115 => 0.00089809513720873
116 => 0.00092070753643431
117 => 0.00091189546246482
118 => 0.00090431935872821
119 => 0.00090009176266919
120 => 0.00091669581302102
121 => 0.00091592121422597
122 => 0.00088875376514308
123 => 0.00085331493530133
124 => 0.00086520936983616
125 => 0.00086088801025874
126 => 0.00084522684568369
127 => 0.00085578057967105
128 => 0.00080930727631325
129 => 0.00072935237335826
130 => 0.00078217303133523
131 => 0.00078013949346094
201 => 0.00077911409145112
202 => 0.00081880735606506
203 => 0.00081499176455185
204 => 0.000808066428593
205 => 0.00084509965645789
206 => 0.00083158203012
207 => 0.00087324016934005
208 => 0.00090067891410989
209 => 0.00089371956088585
210 => 0.00091952583296485
211 => 0.00086548339358446
212 => 0.00088343412414029
213 => 0.00088713374482921
214 => 0.00084464267217455
215 => 0.00081561604251163
216 => 0.00081368029724092
217 => 0.00076335212152137
218 => 0.00079023702675591
219 => 0.00081389463078934
220 => 0.00080256447436156
221 => 0.00079897768531532
222 => 0.00081730181267293
223 => 0.00081872575430415
224 => 0.00078625973420969
225 => 0.00079301044785247
226 => 0.00082116204595564
227 => 0.00079230109980983
228 => 0.00073622899585732
301 => 0.0007223223388196
302 => 0.00072046693442023
303 => 0.00068275097758307
304 => 0.00072325164814013
305 => 0.00070557202009148
306 => 0.00076142175326269
307 => 0.00072952068520342
308 => 0.00072814549391925
309 => 0.00072606669059651
310 => 0.00069360300852021
311 => 0.0007007104917203
312 => 0.00072433684837763
313 => 0.00073276699860293
314 => 0.00073188766486824
315 => 0.0007242210663407
316 => 0.00072773079588727
317 => 0.00071642473414692
318 => 0.00071243232843108
319 => 0.00069983119779416
320 => 0.00068131101690909
321 => 0.00068388636165203
322 => 0.00064719303724977
323 => 0.0006272005666533
324 => 0.00062166691428872
325 => 0.00061426708307956
326 => 0.00062250274491399
327 => 0.00064708908967201
328 => 0.00061743274160982
329 => 0.00056658901300815
330 => 0.0005696448077306
331 => 0.00057651027119837
401 => 0.00056371652544577
402 => 0.00055160831878863
403 => 0.00056213542210716
404 => 0.00054059226403759
405 => 0.00057911365892743
406 => 0.00057807176315062
407 => 0.00059243015701847
408 => 0.00060140875536794
409 => 0.00058071599302814
410 => 0.00057551181925886
411 => 0.00057847635315436
412 => 0.00052947921144274
413 => 0.00058842604521807
414 => 0.00058893581988438
415 => 0.00058457081969826
416 => 0.00061595818890431
417 => 0.00068219532789503
418 => 0.00065727425182398
419 => 0.00064762405792575
420 => 0.00062927903227098
421 => 0.00065372268973613
422 => 0.00065184579822326
423 => 0.00064335778301211
424 => 0.00063822420492819
425 => 0.00064768297995191
426 => 0.00063705215802713
427 => 0.00063514257029398
428 => 0.00062357254628309
429 => 0.00061944257411375
430 => 0.0006163849071385
501 => 0.0006130187162389
502 => 0.0006204436945609
503 => 0.00060361771684599
504 => 0.00058332723719275
505 => 0.00058164030335561
506 => 0.00058629807599668
507 => 0.0005842373583334
508 => 0.00058163043743226
509 => 0.00057665311547931
510 => 0.00057517645037953
511 => 0.00057997489557776
512 => 0.00057455773071569
513 => 0.00058255105255791
514 => 0.0005803773113075
515 => 0.00056823496938528
516 => 0.00055310111567944
517 => 0.00055296639263712
518 => 0.00054970582868069
519 => 0.00054555301025311
520 => 0.00054439779117017
521 => 0.00056124885882815
522 => 0.00059613006457015
523 => 0.00058928204924649
524 => 0.00059423044213068
525 => 0.00061857163751644
526 => 0.00062630897156429
527 => 0.00062081719512592
528 => 0.00061329971281907
529 => 0.00061363044388871
530 => 0.00063931995662787
531 => 0.00064092218002601
601 => 0.00064497048165626
602 => 0.00065017369330104
603 => 0.00062170332456835
604 => 0.00061228949208169
605 => 0.00060782869598997
606 => 0.00059409117057282
607 => 0.0006089059139688
608 => 0.00060027399742253
609 => 0.00060143873787288
610 => 0.0006006801991266
611 => 0.00060109441257423
612 => 0.00057910289141249
613 => 0.0005871154458835
614 => 0.00057379302001494
615 => 0.00055595578728942
616 => 0.00055589599063078
617 => 0.00056026162807037
618 => 0.00055766477609389
619 => 0.00055067671419637
620 => 0.00055166933540619
621 => 0.00054297292912305
622 => 0.00055272523658249
623 => 0.00055300489786499
624 => 0.00054924972828133
625 => 0.00056427450348169
626 => 0.00057043016614033
627 => 0.00056795843307683
628 => 0.00057025674275946
629 => 0.00058956661520012
630 => 0.00059271496695675
701 => 0.0005941132568386
702 => 0.00059223973363483
703 => 0.00057060969178004
704 => 0.00057156907611434
705 => 0.00056452975043075
706 => 0.00055858226201399
707 => 0.00055882013036019
708 => 0.00056187791252578
709 => 0.00057523142657948
710 => 0.00060333310967282
711 => 0.00060439954800415
712 => 0.00060569210237192
713 => 0.00060043463417242
714 => 0.00059884893145625
715 => 0.00060094088264347
716 => 0.00061149439729703
717 => 0.00063864090223726
718 => 0.00062904551433728
719 => 0.00062124431461348
720 => 0.00062808806995959
721 => 0.00062703452746719
722 => 0.00061814156858359
723 => 0.00061789197284665
724 => 0.00060082354149808
725 => 0.00059451373105789
726 => 0.00058924078117294
727 => 0.00058348285755242
728 => 0.00058006936742283
729 => 0.0005853140396654
730 => 0.00058651355826042
731 => 0.00057504599074085
801 => 0.00057348300366205
802 => 0.00058284766684317
803 => 0.00057872662772699
804 => 0.00058296521865483
805 => 0.00058394860810805
806 => 0.0005837902597567
807 => 0.00057948742162108
808 => 0.00058222992233625
809 => 0.00057574309056608
810 => 0.00056868963530665
811 => 0.00056418997029692
812 => 0.00056026341578198
813 => 0.00056244209643956
814 => 0.00055467549770667
815 => 0.00055219080646127
816 => 0.00058130082480217
817 => 0.00060280470833602
818 => 0.00060249203335297
819 => 0.0006005887048071
820 => 0.00059776074466403
821 => 0.00061128751439829
822 => 0.00060657505829917
823 => 0.00061000376385016
824 => 0.00061087651331521
825 => 0.00061351806309058
826 => 0.0006144621900864
827 => 0.00061160838256667
828 => 0.00060203065596723
829 => 0.00057816387190434
830 => 0.00056705381949591
831 => 0.00056338731714857
901 => 0.00056352058754521
902 => 0.00055984439506045
903 => 0.00056092719850261
904 => 0.00055946784021218
905 => 0.00055670416866681
906 => 0.00056227144750945
907 => 0.00056291302453328
908 => 0.00056161355512738
909 => 0.00056191962721395
910 => 0.00055116057554373
911 => 0.00055197856287478
912 => 0.00054742390547067
913 => 0.00054656996211461
914 => 0.00053505618481639
915 => 0.00051465785938389
916 => 0.00052596051178685
917 => 0.0005123084970775
918 => 0.00050713827224529
919 => 0.00053161331246605
920 => 0.00052915669725983
921 => 0.00052495203989174
922 => 0.00051873247531697
923 => 0.00051642557831615
924 => 0.00050240960241401
925 => 0.00050158146378539
926 => 0.00050852815990567
927 => 0.00050532249866738
928 => 0.00050082053620997
929 => 0.00048451488454584
930 => 0.00046618193345963
1001 => 0.0004667352900161
1002 => 0.00047256666065994
1003 => 0.00048952215727439
1004 => 0.00048289735141405
1005 => 0.00047809097875149
1006 => 0.00047719088963083
1007 => 0.00048845738944017
1008 => 0.00050440184707508
1009 => 0.00051188262986025
1010 => 0.0005044694013149
1011 => 0.00049595348351857
1012 => 0.00049647180797587
1013 => 0.00049991998837683
1014 => 0.00050028234338233
1015 => 0.00049473935634742
1016 => 0.00049629967472951
1017 => 0.0004939294084286
1018 => 0.00047938308851511
1019 => 0.00047911999171475
1020 => 0.00047555009021688
1021 => 0.0004754419950183
1022 => 0.00046936870201676
1023 => 0.00046851900634315
1024 => 0.00045646011446607
1025 => 0.00046439731361726
1026 => 0.0004590734571483
1027 => 0.0004510491496788
1028 => 0.00044966575604652
1029 => 0.00044962416956343
1030 => 0.00045786333913229
1031 => 0.00046430103412376
1101 => 0.00045916606791092
1102 => 0.00045799693564139
1103 => 0.0004704802095805
1104 => 0.00046889159918418
1105 => 0.00046751587282641
1106 => 0.00050297419577422
1107 => 0.00047490616631358
1108 => 0.00046266690340163
1109 => 0.00044751849137511
1110 => 0.00045245089071587
1111 => 0.00045349021972899
1112 => 0.00041706101951169
1113 => 0.0004022816975205
1114 => 0.00039720999116013
1115 => 0.00039429115244633
1116 => 0.00039562130390068
1117 => 0.00038231818066704
1118 => 0.00039125809949339
1119 => 0.00037973871925808
1120 => 0.00037780745767432
1121 => 0.00039840553651245
1122 => 0.00040127163885054
1123 => 0.00038904395584803
1124 => 0.0003968961078177
1125 => 0.00039404880836042
1126 => 0.00037993618596959
1127 => 0.00037939718759968
1128 => 0.00037231596976662
1129 => 0.00036123523505185
1130 => 0.00035617104195139
1201 => 0.00035353356621534
1202 => 0.00035462184010741
1203 => 0.00035407157552585
1204 => 0.00035048072691784
1205 => 0.00035427739876476
1206 => 0.00034457847108899
1207 => 0.00034071627993893
1208 => 0.00033897181779861
1209 => 0.00033036346123692
1210 => 0.0003440631846801
1211 => 0.00034676220278298
1212 => 0.00034946653878529
1213 => 0.00037300593735678
1214 => 0.00037182997552579
1215 => 0.00038246009776123
1216 => 0.0003820470307587
1217 => 0.00037901514770059
1218 => 0.00036622413179898
1219 => 0.00037132240275943
1220 => 0.0003556307171904
1221 => 0.00036738799494962
1222 => 0.00036202246437597
1223 => 0.00036557390366543
1224 => 0.00035918809560261
1225 => 0.00036272226544813
1226 => 0.00034740224010214
1227 => 0.00033309661599264
1228 => 0.0003388536167415
1229 => 0.00034511213494841
1230 => 0.00035868219706178
1231 => 0.00035059998001764
]
'min_raw' => 0.00033036346123692
'max_raw' => 0.00098614297748119
'avg_raw' => 0.00065825321935905
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00033'
'max' => '$0.000986'
'avg' => '$0.000658'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00062582653876308
'max_diff' => 2.9952977481188E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00035350665088918
102 => 0.00034376979004036
103 => 0.00032367986491246
104 => 0.00032379357170692
105 => 0.0003207031744088
106 => 0.00031803261993784
107 => 0.00035152831986942
108 => 0.00034736260009428
109 => 0.0003407250708285
110 => 0.00034960966751567
111 => 0.00035195889589727
112 => 0.00035202577512666
113 => 0.00035850774752499
114 => 0.00036196717735593
115 => 0.00036257691685766
116 => 0.00037277644047871
117 => 0.00037619518626152
118 => 0.00039027651630188
119 => 0.00036167366890447
120 => 0.00036108461208495
121 => 0.00034973469201109
122 => 0.00034253639326511
123 => 0.00035022756568464
124 => 0.00035704089449861
125 => 0.00034994640112942
126 => 0.00035087279219051
127 => 0.00034134901448378
128 => 0.00034475331687854
129 => 0.00034768556070997
130 => 0.00034606654801558
131 => 0.00034364280765098
201 => 0.00035648227923404
202 => 0.00035575782592903
203 => 0.00036771423704535
204 => 0.00037703511452168
205 => 0.00039373979326541
206 => 0.00037630759016173
207 => 0.0003756722913939
208 => 0.00038188243875457
209 => 0.00037619423552031
210 => 0.00037978898361426
211 => 0.00039316062377289
212 => 0.00039344314545869
213 => 0.00038871054321295
214 => 0.0003884225639362
215 => 0.00038933151196649
216 => 0.00039465524897037
217 => 0.0003927949716793
218 => 0.00039494773165698
219 => 0.00039763979097331
220 => 0.00040877528971513
221 => 0.00041146002076273
222 => 0.00040493751619051
223 => 0.000405526425324
224 => 0.00040308682956724
225 => 0.00040073021063425
226 => 0.00040602754583905
227 => 0.0004157085300452
228 => 0.0004156483051449
301 => 0.00041789410530928
302 => 0.00041929322020648
303 => 0.000413287194853
304 => 0.00040937749319556
305 => 0.0004108767215918
306 => 0.00041327402044634
307 => 0.00041009930988326
308 => 0.00039050352561895
309 => 0.00039644763478119
310 => 0.00039545824436451
311 => 0.00039404923209716
312 => 0.00040002607982424
313 => 0.00039944959828035
314 => 0.00038218173791026
315 => 0.00038328717030572
316 => 0.00038224896291553
317 => 0.00038560362339046
318 => 0.00037601307284561
319 => 0.00037896306159986
320 => 0.0003808132668921
321 => 0.00038190305202318
322 => 0.00038584010318929
323 => 0.00038537813567622
324 => 0.00038581138664004
325 => 0.00039164899417641
326 => 0.00042117360987034
327 => 0.00042278056956017
328 => 0.00041486731232956
329 => 0.0004180285025111
330 => 0.00041195970863885
331 => 0.00041603373062267
401 => 0.00041882107299507
402 => 0.00040622560878934
403 => 0.00040547978714296
404 => 0.00039938594519962
405 => 0.00040266043068712
406 => 0.00039745048883267
407 => 0.00039872882632772
408 => 0.00039515448324809
409 => 0.00040158758914682
410 => 0.00040878080114518
411 => 0.00041059809056452
412 => 0.00040581758449453
413 => 0.00040235618304916
414 => 0.0003962791023676
415 => 0.00040638542297761
416 => 0.00040934081910851
417 => 0.00040636989953988
418 => 0.00040568147255995
419 => 0.00040437690467695
420 => 0.00040595824280342
421 => 0.00040932472338648
422 => 0.00040773715331265
423 => 0.0004087857713158
424 => 0.00040478952081797
425 => 0.0004132891830973
426 => 0.00042678869235201
427 => 0.00042683209548165
428 => 0.00042524451685023
429 => 0.0004245949138791
430 => 0.00042622386589728
501 => 0.00042710750554402
502 => 0.00043237523767208
503 => 0.00043802772412119
504 => 0.00046440541200615
505 => 0.00045699866280008
506 => 0.00048040251670728
507 => 0.0004989119265378
508 => 0.00050446208922757
509 => 0.00049935620070831
510 => 0.00048188923189861
511 => 0.00048103221907823
512 => 0.00050713524484394
513 => 0.00049975994447081
514 => 0.00049888267595944
515 => 0.00048955002116697
516 => 0.0004950667760211
517 => 0.00049386018080859
518 => 0.00049195551123698
519 => 0.00050248109519819
520 => 0.00052218404874821
521 => 0.00051911315866432
522 => 0.00051682088167118
523 => 0.00050677679115904
524 => 0.00051282557707618
525 => 0.00051067172026795
526 => 0.00051992605598741
527 => 0.00051444399251584
528 => 0.00049970406931667
529 => 0.00050205145066956
530 => 0.00050169664870035
531 => 0.00050899844808522
601 => 0.00050680662915169
602 => 0.00050126866087614
603 => 0.00052211670619497
604 => 0.00052076295009488
605 => 0.00052268226673307
606 => 0.00052352720927404
607 => 0.00053621704707584
608 => 0.00054141566759373
609 => 0.00054259584546595
610 => 0.00054753413288219
611 => 0.00054247297637635
612 => 0.00056272121094314
613 => 0.00057618510541282
614 => 0.00059182411168502
615 => 0.0006146769032173
616 => 0.00062326976423359
617 => 0.00062171754080271
618 => 0.00063904426652719
619 => 0.00067018000750259
620 => 0.00062801096425874
621 => 0.00067241506918895
622 => 0.00065835724223809
623 => 0.00062502638742711
624 => 0.00062288027332225
625 => 0.00064545231517943
626 => 0.00069551493154013
627 => 0.00068297481394727
628 => 0.00069553544268014
629 => 0.00068088280206617
630 => 0.00068015517495754
701 => 0.00069482379663083
702 => 0.00072909783071541
703 => 0.00071281552186478
704 => 0.00068947083954148
705 => 0.00070670818968552
706 => 0.0006917756017493
707 => 0.00065812830176081
708 => 0.00068296522475568
709 => 0.00066635748166385
710 => 0.00067120450401423
711 => 0.00070611150977791
712 => 0.00070191140649194
713 => 0.00070734672906307
714 => 0.00069775352699218
715 => 0.00068879196354885
716 => 0.00067206453988744
717 => 0.00066711237439332
718 => 0.00066848097477565
719 => 0.00066711169618294
720 => 0.00065775285637734
721 => 0.00065573181581238
722 => 0.00065236332632697
723 => 0.00065340736207079
724 => 0.00064707361635186
725 => 0.00065902670314212
726 => 0.00066124530138064
727 => 0.00066994376114188
728 => 0.00067084686409032
729 => 0.00069507195071056
730 => 0.00068172918008617
731 => 0.0006906806625804
801 => 0.0006898799577315
802 => 0.00062574876811886
803 => 0.0006345854802132
804 => 0.00064833263111899
805 => 0.00064213955826975
806 => 0.0006333840022168
807 => 0.00062631342126083
808 => 0.00061560076810851
809 => 0.00063067862170212
810 => 0.00065050439582675
811 => 0.00067134967843963
812 => 0.00069639391966199
813 => 0.00069080433656827
814 => 0.00067088149377039
815 => 0.00067177521794466
816 => 0.00067729986912248
817 => 0.00067014494387971
818 => 0.00066803481674489
819 => 0.00067700997005736
820 => 0.00067707177700556
821 => 0.00066883917081216
822 => 0.00065969013557923
823 => 0.00065965180078754
824 => 0.00065802381833704
825 => 0.00068117241652753
826 => 0.00069390180494505
827 => 0.00069536120881268
828 => 0.00069380357543683
829 => 0.00069440304670294
830 => 0.00068699609605572
831 => 0.00070392618877228
901 => 0.00071946291606162
902 => 0.00071529874125431
903 => 0.00070905605124582
904 => 0.00070408344796538
905 => 0.00071412735395304
906 => 0.00071368011462999
907 => 0.00071932721630269
908 => 0.00071907103115158
909 => 0.00071717212325729
910 => 0.00071529880907029
911 => 0.00072272628807189
912 => 0.00072058729340109
913 => 0.00071844497628076
914 => 0.00071414823132361
915 => 0.00071473223032466
916 => 0.00070849061820462
917 => 0.00070560296284115
918 => 0.00066217955462858
919 => 0.00065057540105339
920 => 0.00065422630399247
921 => 0.00065542827603567
922 => 0.00065037813352862
923 => 0.00065761874060856
924 => 0.00065649029966485
925 => 0.00066088040326095
926 => 0.00065813765713025
927 => 0.00065825022038816
928 => 0.00066631605194343
929 => 0.00066865759715842
930 => 0.00066746666836349
1001 => 0.00066830075406881
1002 => 0.00068752190710236
1003 => 0.00068478927379886
1004 => 0.00068333761681978
1005 => 0.00068373973572378
1006 => 0.00068865115243002
1007 => 0.00069002608095436
1008 => 0.00068420041218223
1009 => 0.00068694783125296
1010 => 0.00069864599295671
1011 => 0.00070273968749442
1012 => 0.00071580479537391
1013 => 0.00071025450533293
1014 => 0.00072044230291408
1015 => 0.00075175611940242
1016 => 0.00077677176276459
1017 => 0.00075376634331355
1018 => 0.0007997043866252
1019 => 0.00083547374276425
1020 => 0.00083410085529866
1021 => 0.0008278636406957
1022 => 0.00078714117970892
1023 => 0.00074966776397121
1024 => 0.00078101586744109
1025 => 0.00078109578020363
1026 => 0.00077840295031431
1027 => 0.00076167801514337
1028 => 0.00077782095882376
1029 => 0.00077910232707055
1030 => 0.00077838510159566
1031 => 0.00076556213301379
1101 => 0.00074598383007
1102 => 0.00074980938360138
1103 => 0.00075607571832497
1104 => 0.00074421223939886
1105 => 0.00074042113904843
1106 => 0.00074746951588623
1107 => 0.00077018085464524
1108 => 0.00076588740761068
1109 => 0.00076577528835742
1110 => 0.00078414447547618
1111 => 0.00077099610181784
1112 => 0.00074985763608253
1113 => 0.00074451989470226
1114 => 0.00072557450873572
1115 => 0.00073866015430396
1116 => 0.00073913108339204
1117 => 0.00073196420904637
1118 => 0.00075043918843679
1119 => 0.00075026893824925
1120 => 0.00076780818154266
1121 => 0.00080133662728071
1122 => 0.00079142061604136
1123 => 0.00077988937382894
1124 => 0.0007811431395841
1125 => 0.00079489385536057
1126 => 0.00078657985870381
1127 => 0.00078956962986882
1128 => 0.00079488932998384
1129 => 0.00079809883714395
1130 => 0.00078068134089527
1201 => 0.00077662048934455
1202 => 0.00076831341223699
1203 => 0.00076614625087857
1204 => 0.00077291219184982
1205 => 0.00077112960544812
1206 => 0.00073909150362571
1207 => 0.00073574334372695
1208 => 0.00073584602701098
1209 => 0.00072742691974923
1210 => 0.00071458576035779
1211 => 0.0007483315605327
1212 => 0.00074562130050648
1213 => 0.000742629383195
1214 => 0.00074299587599402
1215 => 0.00075764378409866
1216 => 0.00074914725766087
1217 => 0.00077173666574902
1218 => 0.00076709296254586
1219 => 0.00076233016587783
1220 => 0.00076167180229998
1221 => 0.0007598385319255
1222 => 0.00075355156568158
1223 => 0.00074595967615394
1224 => 0.00074094685308958
1225 => 0.00068348430567267
1226 => 0.00069414902022899
1227 => 0.00070641780220671
1228 => 0.00071065293658136
1229 => 0.00070340844617114
1230 => 0.00075383762231866
1231 => 0.00076305151874845
]
'min_raw' => 0.00031803261993784
'max_raw' => 0.00083547374276425
'avg_raw' => 0.00057675318135105
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000318'
'max' => '$0.000835'
'avg' => '$0.000576'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.2330841299078E-5
'max_diff' => -0.00015066923471693
'year' => 2027
]
2 => [
'items' => [
101 => 0.00073514202545504
102 => 0.00072992129879694
103 => 0.00075417989228921
104 => 0.00073954899492093
105 => 0.00074613728711
106 => 0.00073189700300038
107 => 0.00076083216091289
108 => 0.00076061172348925
109 => 0.0007493552935311
110 => 0.00075886915105102
111 => 0.0007572158841824
112 => 0.00074450740248301
113 => 0.00076123504245047
114 => 0.0007612433391512
115 => 0.00075040927005237
116 => 0.00073775744922763
117 => 0.00073549560248684
118 => 0.000733791604804
119 => 0.00074571820813698
120 => 0.00075641156339181
121 => 0.00077630924641347
122 => 0.0007813119966824
123 => 0.00080083806403398
124 => 0.00078921124163308
125 => 0.00079436526141084
126 => 0.00079996067896022
127 => 0.00080264332789805
128 => 0.00079827209541273
129 => 0.0008286041152597
130 => 0.00083116506708386
131 => 0.00083202373207835
201 => 0.00082179594564714
202 => 0.00083088061384128
203 => 0.00082663019844583
204 => 0.00083768859850538
205 => 0.00083942269683546
206 => 0.00083795397724222
207 => 0.00083850440742307
208 => 0.00081262137941865
209 => 0.00081127920787277
210 => 0.00079297860360855
211 => 0.00080043623511746
212 => 0.00078649455046514
213 => 0.00079091560228366
214 => 0.00079286435979993
215 => 0.00079184643946444
216 => 0.00080085787841363
217 => 0.00079319631439147
218 => 0.00077297618725925
219 => 0.00075275055116691
220 => 0.00075249663478122
221 => 0.00074717158181024
222 => 0.00074332254384432
223 => 0.00074406400510851
224 => 0.00074667701131384
225 => 0.00074317067117348
226 => 0.00074391892661838
227 => 0.00075634495260375
228 => 0.00075883690349675
229 => 0.00075036828069426
301 => 0.00071636553812583
302 => 0.00070802117981012
303 => 0.00071401893909164
304 => 0.00071115239646024
305 => 0.00057395548711227
306 => 0.00060618786589305
307 => 0.00058703648092967
308 => 0.00059586232023365
309 => 0.00057631371541313
310 => 0.00058564333426365
311 => 0.00058392049432509
312 => 0.00063574920557916
313 => 0.00063493997154099
314 => 0.00063532730905135
315 => 0.00061683868047935
316 => 0.00064629156781552
317 => 0.00066080111920889
318 => 0.00065811578740518
319 => 0.00065879162756697
320 => 0.00064717845442183
321 => 0.00063543974995253
322 => 0.00062241972012242
323 => 0.00064660932622245
324 => 0.00064391985495447
325 => 0.00065008853440199
326 => 0.00066577722306661
327 => 0.00066808744206801
328 => 0.00067119239983382
329 => 0.00067007949350072
330 => 0.00069659343744786
331 => 0.00069338242389122
401 => 0.00070112004269106
402 => 0.00068520317376524
403 => 0.00066719172573262
404 => 0.00067061511316502
405 => 0.00067028541342614
406 => 0.00066608795733841
407 => 0.00066229868166334
408 => 0.00065599060528617
409 => 0.0006759502923632
410 => 0.00067513996551854
411 => 0.00068825821523165
412 => 0.00068593943717098
413 => 0.00067045406978057
414 => 0.00067100713270637
415 => 0.00067472674667531
416 => 0.00068760037309164
417 => 0.00069142214191533
418 => 0.00068965174632504
419 => 0.00069384214136984
420 => 0.00069715405875708
421 => 0.0006942580672025
422 => 0.00073525920050967
423 => 0.00071823267137149
424 => 0.00072653128320361
425 => 0.00072851045322731
426 => 0.00072344085082906
427 => 0.00072454026606039
428 => 0.00072620558056314
429 => 0.00073631704412178
430 => 0.00076285245027524
501 => 0.00077460480102798
502 => 0.00080996232811839
503 => 0.00077362893189859
504 => 0.00077147305852944
505 => 0.00077784201685345
506 => 0.00079860062822986
507 => 0.00081542353299323
508 => 0.00082100466103989
509 => 0.00082174229924564
510 => 0.00083221286648757
511 => 0.00083821440036612
512 => 0.00083094146422114
513 => 0.00082477841234642
514 => 0.00080270312551736
515 => 0.00080525840007683
516 => 0.00082286170784776
517 => 0.00084772741690384
518 => 0.00086906478211005
519 => 0.00086159318049709
520 => 0.00091859622667525
521 => 0.00092424784586725
522 => 0.00092346697483364
523 => 0.00093634220442673
524 => 0.00091078749567937
525 => 0.00089986236259071
526 => 0.00082611093411535
527 => 0.00084683207723525
528 => 0.0008769514756701
529 => 0.0008729650603453
530 => 0.00085109154810808
531 => 0.00086904818908957
601 => 0.00086311116202501
602 => 0.00085842838245171
603 => 0.00087988110347848
604 => 0.00085629295548034
605 => 0.00087671616584982
606 => 0.00085052318729991
607 => 0.0008616273101439
608 => 0.00085532407297166
609 => 0.00085940303991779
610 => 0.00083555748249769
611 => 0.00084842396646339
612 => 0.00083502219446364
613 => 0.00083501584027875
614 => 0.00083471999541907
615 => 0.00085048712074422
616 => 0.00085100128613501
617 => 0.00083934935669692
618 => 0.00083767013162754
619 => 0.00084387910682651
620 => 0.0008366100230017
621 => 0.00084001118157226
622 => 0.00083671304062999
623 => 0.00083597055963441
624 => 0.00083005434473888
625 => 0.00082750547669217
626 => 0.00082850495352952
627 => 0.00082509322381801
628 => 0.00082303753325916
629 => 0.00083431106682593
630 => 0.00082828807261425
701 => 0.00083338795658109
702 => 0.00082757599514421
703 => 0.00080742920465292
704 => 0.00079584257239293
705 => 0.00075778715276334
706 => 0.00076857962256269
707 => 0.00077573504120528
708 => 0.00077337017538659
709 => 0.00077845082224672
710 => 0.00077876273270063
711 => 0.00077711096261533
712 => 0.00077519842446142
713 => 0.00077426750665808
714 => 0.00078120580527748
715 => 0.00078523372115843
716 => 0.00077645318319321
717 => 0.00077439602600074
718 => 0.00078327363467036
719 => 0.0007886889708304
720 => 0.0008286727704216
721 => 0.00082571064140191
722 => 0.00083314500395286
723 => 0.00083230800881922
724 => 0.00084010040515945
725 => 0.00085283767986332
726 => 0.00082693923899233
727 => 0.00083143431282683
728 => 0.00083033222452902
729 => 0.00084236453558138
730 => 0.00084240209914312
731 => 0.00083518812760872
801 => 0.00083909893861084
802 => 0.00083691603119694
803 => 0.00084086083993148
804 => 0.00082567108036293
805 => 0.00084417056788421
806 => 0.00085465858522813
807 => 0.00085480421135912
808 => 0.00085977544834209
809 => 0.00086482651303141
810 => 0.00087452159184755
811 => 0.00086455612254524
812 => 0.00084662921338928
813 => 0.00084792347832678
814 => 0.00083741293804784
815 => 0.00083758962212881
816 => 0.00083664646865759
817 => 0.00083947694322199
818 => 0.00082629221035842
819 => 0.00082938664080823
820 => 0.00082505442005754
821 => 0.00083142489542498
822 => 0.00082457131700691
823 => 0.00083033169306868
824 => 0.00083281768041744
825 => 0.00084199102725387
826 => 0.00082321640622055
827 => 0.00078493368300351
828 => 0.00079298117555689
829 => 0.00078107830195355
830 => 0.00078217995822297
831 => 0.00078440547921451
901 => 0.00077719183753579
902 => 0.00077856797304011
903 => 0.00077851880779618
904 => 0.0007780951282852
905 => 0.00077621858148051
906 => 0.00077349721735023
907 => 0.00078433829445354
908 => 0.00078618040470565
909 => 0.0007902751876069
910 => 0.00080245848400325
911 => 0.00080124108539134
912 => 0.00080322671303674
913 => 0.00079889209903565
914 => 0.00078238102853451
915 => 0.00078327765909988
916 => 0.00077209666158221
917 => 0.00078998926436206
918 => 0.00078575205985298
919 => 0.00078302030654132
920 => 0.00078227492234072
921 => 0.00079448841877232
922 => 0.00079814288832775
923 => 0.00079586566814313
924 => 0.00079119502310736
925 => 0.0008001640423283
926 => 0.00080256377349928
927 => 0.00080310098480978
928 => 0.00081899236723043
929 => 0.00080398913655586
930 => 0.00080760056329852
1001 => 0.0008357758838175
1002 => 0.00081022475603524
1003 => 0.00082375975827965
1004 => 0.00082309729035254
1005 => 0.00083002133950127
1006 => 0.00082252931622449
1007 => 0.00082262218883211
1008 => 0.00082877027540048
1009 => 0.00082013639662847
1010 => 0.00081799852682601
1011 => 0.00081504507500563
1012 => 0.00082149382900556
1013 => 0.00082535956537647
1014 => 0.00085651456145545
1015 => 0.00087664210976291
1016 => 0.00087576831980825
1017 => 0.00088375312432758
1018 => 0.00088015589675919
1019 => 0.0008685395000402
1020 => 0.00088836727277086
1021 => 0.00088209293584963
1022 => 0.0008826101845621
1023 => 0.00088259093253919
1024 => 0.00088676281807975
1025 => 0.00088380665482657
1026 => 0.00087797975361061
1027 => 0.00088184792256785
1028 => 0.00089333500147517
1029 => 0.00092899124687011
1030 => 0.00094894495417553
1031 => 0.00092779000863571
1101 => 0.00094238240679307
1102 => 0.00093363216770175
1103 => 0.0009320419889618
1104 => 0.00094120709337437
1105 => 0.00095038824008897
1106 => 0.00094980344073443
1107 => 0.00094313839967674
1108 => 0.00093937348710241
1109 => 0.00096788266645351
1110 => 0.00098888774415821
1111 => 0.00098745533867858
1112 => 0.00099377751062246
1113 => 0.0010123396029871
1114 => 0.0010140366880852
1115 => 0.0010138228943699
1116 => 0.0010096164918817
1117 => 0.001027893282407
1118 => 0.0010431401026127
1119 => 0.0010086428312404
1120 => 0.0010217789405765
1121 => 0.0010276761632765
1122 => 0.0010363350358273
1123 => 0.0010509440052159
1124 => 0.0010668132208098
1125 => 0.0010690573018918
1126 => 0.0010674650189749
1127 => 0.0010569988447034
1128 => 0.0010743631297653
1129 => 0.001084534720712
1130 => 0.001090591670348
1201 => 0.0011059510868446
1202 => 0.0010277125825163
1203 => 0.00097233148044674
1204 => 0.00096368292164577
1205 => 0.00098127010605531
1206 => 0.00098590770632894
1207 => 0.0009840382954737
1208 => 0.00092170183006491
1209 => 0.00096335473305622
1210 => 0.0010081697543993
1211 => 0.001009891281884
1212 => 0.0010323266186063
1213 => 0.0010396324838986
1214 => 0.0010576958706268
1215 => 0.0010565660008688
1216 => 0.0010609641480859
1217 => 0.001059953090206
1218 => 0.0010934117104252
1219 => 0.0011303215371801
1220 => 0.0011290434672457
1221 => 0.0011237372429524
1222 => 0.0011316178908736
1223 => 0.0011697127875821
1224 => 0.0011662056199515
1225 => 0.0011696125345648
1226 => 0.0012145285647185
1227 => 0.001272925793149
1228 => 0.0012457944175572
1229 => 0.0013046616957485
1230 => 0.0013417155269496
1231 => 0.0014057962965743
]
'min_raw' => 0.00057395548711227
'max_raw' => 0.0014057962965743
'avg_raw' => 0.00098987589184327
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000573'
'max' => '$0.0014057'
'avg' => '$0.000989'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00025592286717443
'max_diff' => 0.00057032255381002
'year' => 2028
]
3 => [
'items' => [
101 => 0.0013977730686128
102 => 0.0014227192419813
103 => 0.0013834098160636
104 => 0.0012931474284109
105 => 0.0012788630600543
106 => 0.001307460727242
107 => 0.0013777653015034
108 => 0.0013052465860058
109 => 0.0013199170277024
110 => 0.0013156919395068
111 => 0.0013154668025124
112 => 0.001324059365893
113 => 0.0013115954045514
114 => 0.0012608149838218
115 => 0.0012840873513913
116 => 0.0012751007726418
117 => 0.0012850720517582
118 => 0.0013388829326808
119 => 0.0013150918595337
120 => 0.0012900298966031
121 => 0.0013214631598129
122 => 0.0013614885055201
123 => 0.0013589837913182
124 => 0.0013541235988772
125 => 0.0013815202491956
126 => 0.0014267714890564
127 => 0.0014390027173565
128 => 0.0014480315600312
129 => 0.0014492764848925
130 => 0.0014620999846804
131 => 0.0013931447943831
201 => 0.0015025784522797
202 => 0.0015214746219547
203 => 0.0015179229252218
204 => 0.0015389252225431
205 => 0.0015327458138943
206 => 0.0015237928202817
207 => 0.0015570859288528
208 => 0.0015189180664914
209 => 0.0014647435910696
210 => 0.0014350224024036
211 => 0.0014741616611789
212 => 0.0014980626407411
213 => 0.0015138596678439
214 => 0.0015186398387004
215 => 0.0013984975895156
216 => 0.0013337475805997
217 => 0.0013752515939544
218 => 0.0014258893547012
219 => 0.0013928634990654
220 => 0.0013941580500801
221 => 0.0013470718589856
222 => 0.0014300554378079
223 => 0.0014179654283752
224 => 0.0014806884186987
225 => 0.0014657190736746
226 => 0.001516867237391
227 => 0.0015033982117228
228 => 0.0015593073842282
301 => 0.001581611066821
302 => 0.0016190624211854
303 => 0.0016466117899102
304 => 0.0016627893061609
305 => 0.0016618180687656
306 => 0.0017259214477574
307 => 0.0016881219247674
308 => 0.0016406368152284
309 => 0.0016397779594104
310 => 0.0016643711705099
311 => 0.0017159117941563
312 => 0.0017292755279823
313 => 0.0017367440320769
314 => 0.0017253057580755
315 => 0.0016842770849861
316 => 0.0016665611119662
317 => 0.0016816556342603
318 => 0.0016631963305817
319 => 0.0016950622674968
320 => 0.0017388210050782
321 => 0.0017297849988084
322 => 0.0017599910130144
323 => 0.0017912510599522
324 => 0.0018359543310499
325 => 0.0018476414214721
326 => 0.0018669597375199
327 => 0.0018868446304693
328 => 0.0018932311221717
329 => 0.0019054249164437
330 => 0.0019053606491288
331 => 0.0019421074689044
401 => 0.0019826403490712
402 => 0.0019979405729958
403 => 0.0020331225942512
404 => 0.0019728746157764
405 => 0.0020185733995284
406 => 0.0020597948463875
407 => 0.0020106489380813
408 => 0.0020783851231534
409 => 0.0020810151657262
410 => 0.0021207256860459
411 => 0.0020804714660867
412 => 0.002056568638771
413 => 0.0021255752056042
414 => 0.0021589653096084
415 => 0.0021489079385447
416 => 0.0020723708481561
417 => 0.0020278229787197
418 => 0.0019112326117624
419 => 0.0020493389377523
420 => 0.0021166065005253
421 => 0.0020721966414191
422 => 0.002094594391185
423 => 0.0022167892514131
424 => 0.0022633131426566
425 => 0.0022536364985045
426 => 0.0022552716920751
427 => 0.0022803751393218
428 => 0.0023916976491344
429 => 0.0023249906208191
430 => 0.0023759856445015
501 => 0.0024030332211864
502 => 0.0024281565177891
503 => 0.0023664616416322
504 => 0.0022861975142297
505 => 0.0022607744958225
506 => 0.0020677809561537
507 => 0.0020577348042855
508 => 0.0020520955948123
509 => 0.0020165411767658
510 => 0.001988605143356
511 => 0.0019663893723902
512 => 0.0019080885551849
513 => 0.0019277633695532
514 => 0.0018348440352543
515 => 0.0018942905324797
516 => 0.0017459890313229
517 => 0.0018694989282892
518 => 0.0018022781066763
519 => 0.0018474150804912
520 => 0.0018472576018417
521 => 0.001764146122358
522 => 0.0017162091554841
523 => 0.0017467564565108
524 => 0.0017795055880592
525 => 0.0017848190244716
526 => 0.0018272791283639
527 => 0.0018391288306834
528 => 0.0018032236794457
529 => 0.0017429158123429
530 => 0.0017569239543949
531 => 0.0017159252809325
601 => 0.0016440766826809
602 => 0.0016956796003014
603 => 0.0017132991051972
604 => 0.0017210808823202
605 => 0.001650426037807
606 => 0.0016282247516696
607 => 0.0016164049732169
608 => 0.0017337951591618
609 => 0.0017402260585413
610 => 0.0017073246680786
611 => 0.0018560420728077
612 => 0.001822382743878
613 => 0.0018599884610283
614 => 0.0017556528623301
615 => 0.0017596386227069
616 => 0.001710244478231
617 => 0.0017379018986196
618 => 0.0017183545253292
619 => 0.0017356674523681
620 => 0.0017460447494514
621 => 0.0017954307888342
622 => 0.0018700628375291
623 => 0.0017880541614297
624 => 0.0017523218068673
625 => 0.0017744899586714
626 => 0.0018335266682106
627 => 0.0019229703051961
628 => 0.0018700178718798
629 => 0.0018935172625949
630 => 0.0018986508340511
701 => 0.0018596056701292
702 => 0.0019244099560834
703 => 0.0019591390993953
704 => 0.0019947640142497
705 => 0.0020256961296303
706 => 0.0019805346398482
707 => 0.0020288639075603
708 => 0.0019899190490485
709 => 0.001954981484918
710 => 0.0019550344707812
711 => 0.0019331176264457
712 => 0.0018906509788456
713 => 0.0018828194774729
714 => 0.0019235599366234
715 => 0.0019562299267262
716 => 0.0019589207835898
717 => 0.0019770085687554
718 => 0.0019877127336974
719 => 0.0020926281017358
720 => 0.0021348259306663
721 => 0.0021864246371185
722 => 0.0022065252412253
723 => 0.0022670208531216
724 => 0.002218165733302
725 => 0.0022075956208159
726 => 0.0020608530543194
727 => 0.0020848821413625
728 => 0.0021233550281806
729 => 0.0020614874580526
730 => 0.0021007281913471
731 => 0.0021084751433319
801 => 0.0020593852216935
802 => 0.0020856062698909
803 => 0.0020159709398777
804 => 0.001871580697432
805 => 0.0019245707036994
806 => 0.0019635891845554
807 => 0.0019079050014298
808 => 0.0020077167444069
809 => 0.0019494087846923
810 => 0.0019309279607384
811 => 0.0018588276776049
812 => 0.0018928562358495
813 => 0.0019388803481174
814 => 0.0019104427976132
815 => 0.0019694549848291
816 => 0.0020530319799023
817 => 0.0021125939236876
818 => 0.0021171663501478
819 => 0.0020788720106342
820 => 0.002140238934096
821 => 0.0021406859251376
822 => 0.0020714637847815
823 => 0.0020290656092438
824 => 0.0020194326545552
825 => 0.0020434976640195
826 => 0.002072717028155
827 => 0.0021187878215009
828 => 0.0021466274370342
829 => 0.002219218389354
830 => 0.0022388594197061
831 => 0.0022604389572746
901 => 0.0022892758743492
902 => 0.0023239019869309
903 => 0.0022481420238677
904 => 0.0022511521084345
905 => 0.0021806054797982
906 => 0.0021052162896903
907 => 0.0021624272875869
908 => 0.0022372230568767
909 => 0.0022200648247596
910 => 0.0022181341731356
911 => 0.0022213809936491
912 => 0.0022084442469684
913 => 0.0021499318211894
914 => 0.0021205472472704
915 => 0.0021584608444302
916 => 0.0021786102339806
917 => 0.0022098601799619
918 => 0.0022060079645133
919 => 0.0022865044693618
920 => 0.002317782977058
921 => 0.0023097805963065
922 => 0.0023112532269528
923 => 0.0023678814710804
924 => 0.002430863725037
925 => 0.0024898549171078
926 => 0.0025498632914128
927 => 0.0024775208540214
928 => 0.0024407898257753
929 => 0.0024786868710447
930 => 0.0024585781653852
1001 => 0.0025741287527341
1002 => 0.0025821292246956
1003 => 0.0026976714564218
1004 => 0.002807334792843
1005 => 0.0027384572160595
1006 => 0.0028034056686521
1007 => 0.002873652715456
1008 => 0.0030091706659133
1009 => 0.0029635329877782
1010 => 0.0029285752415604
1011 => 0.0028955403402991
1012 => 0.0029642807256809
1013 => 0.0030527141333201
1014 => 0.003071761842321
1015 => 0.0031026264076872
1016 => 0.0030701760911441
1017 => 0.0031092589231351
1018 => 0.0032472384939301
1019 => 0.0032099551959219
1020 => 0.0031570069191611
1021 => 0.0032659285386049
1022 => 0.0033053468492595
1023 => 0.0035820051969632
1024 => 0.0039312977891254
1025 => 0.0037866883623914
1026 => 0.0036969246247006
1027 => 0.0037180212322823
1028 => 0.0038455710626395
1029 => 0.003886536019921
1030 => 0.0037751791445623
1031 => 0.0038145122754977
1101 => 0.0040312416940995
1102 => 0.0041475100736671
1103 => 0.0039896019972876
1104 => 0.0035539398772816
1105 => 0.0031522395061584
1106 => 0.0032587885333837
1107 => 0.0032467091802977
1108 => 0.0034795579030397
1109 => 0.0032090660015948
1110 => 0.0032136203915
1111 => 0.0034512841792373
1112 => 0.0033878795552578
1113 => 0.0032851721846617
1114 => 0.0031529893836266
1115 => 0.0029086372504838
1116 => 0.0026922077518959
1117 => 0.0031166758393635
1118 => 0.0030983720035868
1119 => 0.0030718653369056
1120 => 0.0031308530552837
1121 => 0.0034172806717718
1122 => 0.003410677588136
1123 => 0.0033686721389681
1124 => 0.0034005329019429
1125 => 0.0032795868388677
1126 => 0.0033107573932129
1127 => 0.0031521758747673
1128 => 0.0032238613440539
1129 => 0.0032849518207727
1130 => 0.0032972166384339
1201 => 0.0033248498988818
1202 => 0.0030887267138652
1203 => 0.0031947390917252
1204 => 0.0032570114317014
1205 => 0.0029756627342016
1206 => 0.0032514500725569
1207 => 0.0030846163345407
1208 => 0.0030279904580994
1209 => 0.0031042297408357
1210 => 0.0030745192182082
1211 => 0.0030489758555135
1212 => 0.0030347222202392
1213 => 0.0030907039352582
1214 => 0.0030880923213399
1215 => 0.0029964953699862
1216 => 0.0028770108809147
1217 => 0.0029171137973918
1218 => 0.0029025440318688
1219 => 0.0028497413220764
1220 => 0.002885323973053
1221 => 0.0027286359861197
1222 => 0.0024590624485339
1223 => 0.0026371509847239
1224 => 0.0026302947698036
1225 => 0.0026268375553362
1226 => 0.0027606661682774
1227 => 0.0027478016350945
1228 => 0.0027244523813977
1229 => 0.0028493124947216
1230 => 0.0028037368737529
1231 => 0.0029441901986117
]
'min_raw' => 0.0012608149838218
'max_raw' => 0.0041475100736671
'avg_raw' => 0.0027041625287445
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00126'
'max' => '$0.004147'
'avg' => '$0.0027041'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00068685949670952
'max_diff' => 0.0027417137770929
'year' => 2029
]
4 => [
'items' => [
101 => 0.0030367018423152
102 => 0.0030132378970338
103 => 0.0031002455450845
104 => 0.0029180376875909
105 => 0.0029785598289399
106 => 0.0029910333583918
107 => 0.0028477717403047
108 => 0.0027499064318216
109 => 0.002743379931492
110 => 0.0025736949732525
111 => 0.0026643393082949
112 => 0.0027441025720147
113 => 0.0027059021585722
114 => 0.0026938090488812
115 => 0.0027555901236171
116 => 0.0027603910422432
117 => 0.0026509295887896
118 => 0.002673690091156
119 => 0.0027686051696427
120 => 0.0026712984747052
121 => 0.0024822474614
122 => 0.0024353601962655
123 => 0.0024291045707928
124 => 0.0023019425890723
125 => 0.002438493427522
126 => 0.0023788853272038
127 => 0.0025671866018943
128 => 0.0024596299236711
129 => 0.0024549933702437
130 => 0.0024479845397037
131 => 0.0023385309690415
201 => 0.0023624943448792
202 => 0.002442152255889
203 => 0.0024705750959479
204 => 0.0024676103608683
205 => 0.0024417618886678
206 => 0.0024535951868756
207 => 0.002415476010354
208 => 0.0024020153357421
209 => 0.0023595297440169
210 => 0.0022970876611252
211 => 0.0023057706157308
212 => 0.0021820565106625
213 => 0.0021146505002168
214 => 0.0020959934049223
215 => 0.0020710443573609
216 => 0.0020988114662313
217 => 0.0021817060441467
218 => 0.0020817175961149
219 => 0.0019102944153386
220 => 0.0019205972405942
221 => 0.0019437446300071
222 => 0.0019006096229714
223 => 0.0018597859588588
224 => 0.0018952788226761
225 => 0.0018226445611493
226 => 0.0019525221334983
227 => 0.001949009309144
228 => 0.0019974196365405
301 => 0.0020276916077414
302 => 0.0019579245147903
303 => 0.0019403782795833
304 => 0.0019503734125891
305 => 0.0017851761284372
306 => 0.0019839194940473
307 => 0.0019856382349261
308 => 0.001970921332044
309 => 0.0020767460387183
310 => 0.0023000691773549
311 => 0.0022160460294474
312 => 0.0021835097269645
313 => 0.0021216581921606
314 => 0.002204071689906
315 => 0.00219774361913
316 => 0.0021691256832313
317 => 0.0021518174663064
318 => 0.0021837083866895
319 => 0.0021478658283498
320 => 0.0021414275199843
321 => 0.0021024183762383
322 => 0.0020884938867239
323 => 0.0020781847490374
324 => 0.0020668354013995
325 => 0.0020918692342075
326 => 0.0020351392755895
327 => 0.0019667285068025
328 => 0.0019610408915926
329 => 0.0019767448972473
330 => 0.0019697970437708
331 => 0.0019610076279432
401 => 0.0019442262394733
402 => 0.001939247559992
403 => 0.0019554258529945
404 => 0.0019371615034477
405 => 0.0019641115461147
406 => 0.0019567826257231
407 => 0.0019158438721811
408 => 0.0018648190277999
409 => 0.0018643647996567
410 => 0.0018533715806323
411 => 0.0018393700633632
412 => 0.0018354751615702
413 => 0.0018922897126831
414 => 0.0020098941331703
415 => 0.0019868055713934
416 => 0.0020034894234882
417 => 0.0020855574631793
418 => 0.002111644425125
419 => 0.0020931285174395
420 => 0.0020677828009881
421 => 0.0020688978838802
422 => 0.0021555118696648
423 => 0.0021609138777153
424 => 0.0021745630093051
425 => 0.0021921060006421
426 => 0.0020961161647222
427 => 0.0020643767712406
428 => 0.0020493368857746
429 => 0.0020030198597072
430 => 0.0020529688013991
501 => 0.0020238656921022
502 => 0.0020277926958501
503 => 0.0020252352295076
504 => 0.0020266317790657
505 => 0.0019524858300699
506 => 0.0019795007168877
507 => 0.0019345832279297
508 => 0.0018744437524398
509 => 0.0018742421438304
510 => 0.001888961195257
511 => 0.0018802057275119
512 => 0.0018566449889335
513 => 0.001859991680645
514 => 0.0018306711396977
515 => 0.0018635517251815
516 => 0.0018644946227208
517 => 0.0018518338062919
518 => 0.0019024908848763
519 => 0.0019232451313045
520 => 0.00191491151071
521 => 0.0019226604222679
522 => 0.0019877650053738
523 => 0.0019983798931322
524 => 0.0020030943250943
525 => 0.0019967776108076
526 => 0.0019238504145329
527 => 0.001927085045798
528 => 0.0019033514677858
529 => 0.0018832990953483
530 => 0.001884101085085
531 => 0.0018944106111438
601 => 0.0019394329160884
602 => 0.0020341797026345
603 => 0.0020377752739249
604 => 0.0020421332112191
605 => 0.0020244072901198
606 => 0.002019060982702
607 => 0.0020261141421851
608 => 0.0020616960536624
609 => 0.0021532223903768
610 => 0.0021208708701434
611 => 0.0020945685806123
612 => 0.0021176427795775
613 => 0.0021140906875083
614 => 0.0020841074557457
615 => 0.0020832659262924
616 => 0.0020257185183209
617 => 0.0020044445518849
618 => 0.0019866664332022
619 => 0.0019672531917102
620 => 0.001955744371416
621 => 0.0019734271500532
622 => 0.001977471410744
623 => 0.0019388077062117
624 => 0.0019335379861513
625 => 0.0019651116018863
626 => 0.0019512172307844
627 => 0.0019655079360266
628 => 0.0019688235022262
629 => 0.0019682896197041
630 => 0.0019537823005153
701 => 0.0019630288331517
702 => 0.0019411580269425
703 => 0.0019173768100788
704 => 0.0019022058753419
705 => 0.0018889672226515
706 => 0.0018963127965991
707 => 0.0018701271667246
708 => 0.0018617498567151
709 => 0.0019598963159481
710 => 0.0020323981606356
711 => 0.0020313439551
712 => 0.0020249267500215
713 => 0.0020153920849572
714 => 0.0020609985335252
715 => 0.0020451101587738
716 => 0.0020566702789236
717 => 0.0020596128146784
718 => 0.0020685189841732
719 => 0.0020717021742564
720 => 0.0020620803629572
721 => 0.0020297883890316
722 => 0.001949319860238
723 => 0.0019118615428638
724 => 0.0018994996742128
725 => 0.0018999490046597
726 => 0.0018875544650338
727 => 0.0018912052124379
728 => 0.0018862848840726
729 => 0.001876966972504
730 => 0.001895737441817
731 => 0.0018979005635463
801 => 0.0018935193117182
802 => 0.0018945512551274
803 => 0.0018582763612482
804 => 0.0018610342626449
805 => 0.0018456779172109
806 => 0.0018427987875655
807 => 0.0018039792835383
808 => 0.0017352049051771
809 => 0.0017733125868797
810 => 0.0017272838661338
811 => 0.0017098520921385
812 => 0.0017923713990355
813 => 0.0017840887493523
814 => 0.001769912453476
815 => 0.001748942757276
816 => 0.0017411648929754
817 => 0.0016939090516571
818 => 0.0016911169244519
819 => 0.0017145381954243
820 => 0.0017037300847473
821 => 0.0016885514040051
822 => 0.0016335757609953
823 => 0.0015717649364423
824 => 0.0015736306167066
825 => 0.0015932914899656
826 => 0.0016504581305962
827 => 0.0016281221351089
828 => 0.0016119171141069
829 => 0.0016088824007943
830 => 0.0016468681915034
831 => 0.001700626043626
901 => 0.0017258480250778
902 => 0.001700853807462
903 => 0.0016721417960493
904 => 0.0016738893631454
905 => 0.0016855151441115
906 => 0.0016867368493113
907 => 0.0016680482815241
908 => 0.0016733090038873
909 => 0.0016653174855671
910 => 0.0016162735523871
911 => 0.0016153865031559
912 => 0.0016033503310133
913 => 0.0016029858805043
914 => 0.0015825093491258
915 => 0.0015796445408384
916 => 0.0015389871449498
917 => 0.0015657479660456
918 => 0.0015477982122607
919 => 0.0015207436993881
920 => 0.0015160794911714
921 => 0.0015159392794402
922 => 0.001543718214882
923 => 0.0015654233530113
924 => 0.0015481104559128
925 => 0.0015441686448399
926 => 0.0015862568744799
927 => 0.0015809007636155
928 => 0.0015762624061501
929 => 0.0016958126175897
930 => 0.0016011792966159
1001 => 0.0015599137671903
1002 => 0.0015088398384145
1003 => 0.001525469767161
1004 => 0.0015289739374923
1005 => 0.0014061503455542
1006 => 0.0013563208296016
1007 => 0.0013392212175124
1008 => 0.001329380149002
1009 => 0.0013338648474985
1010 => 0.0012890124387219
1011 => 0.0013191539992102
1012 => 0.0012803156044893
1013 => 0.0012738042212233
1014 => 0.001343252082138
1015 => 0.0013529153462758
1016 => 0.0013116888593232
1017 => 0.0013381629379087
1018 => 0.0013285630689964
1019 => 0.0012809813772939
1020 => 0.0012791641066581
1021 => 0.0012552892863391
1022 => 0.001217929815616
1023 => 0.0012008555350072
1024 => 0.0011919631014204
1025 => 0.0011956322928284
1026 => 0.0011937770373734
1027 => 0.0011816702405864
1028 => 0.0011944709847935
1029 => 0.0011617703729771
1030 => 0.0011487487258651
1031 => 0.0011428671499646
1101 => 0.0011138434748006
1102 => 0.0011600330488734
1103 => 0.0011691329768467
1104 => 0.0011782508344892
1105 => 0.0012576155602413
1106 => 0.0012536507228251
1107 => 0.0012894909221133
1108 => 0.0012880982378748
1109 => 0.0012778760324651
1110 => 0.0012347502293126
1111 => 0.0012519394058057
1112 => 0.0011990337923512
1113 => 0.0012386742751833
1114 => 0.0012205840142449
1115 => 0.0012325579397629
1116 => 0.0012110277420362
1117 => 0.0012229434424182
1118 => 0.0011712909073542
1119 => 0.0011230584968822
1120 => 0.001142468626848
1121 => 0.0011635696579384
1122 => 0.0012093220697851
1123 => 0.0011820723107384
1124 => 0.0011918723545191
1125 => 0.0011590438483614
1126 => 0.0010913092631589
1127 => 0.0010916926335551
1128 => 0.0010812731432999
1129 => 0.0010722691824489
1130 => 0.0011852022733633
1201 => 0.0011711572583001
1202 => 0.0011487783649631
1203 => 0.0011787334029966
1204 => 0.001186653990503
1205 => 0.0011868794784943
1206 => 0.0012087339009921
1207 => 0.0012203976101968
1208 => 0.0012224533894976
1209 => 0.0012568417954939
1210 => 0.0012683683355899
1211 => 0.001315844522948
1212 => 0.0012194080259606
1213 => 0.001217421979767
1214 => 0.0011791549318118
1215 => 0.0011548853650206
1216 => 0.0011808166898136
1217 => 0.0012037883036013
1218 => 0.0011798687238853
1219 => 0.0011829921160264
1220 => 0.0011508820345592
1221 => 0.0011623598777639
1222 => 0.0011722461425643
1223 => 0.0011667875282293
1224 => 0.0011586157183699
1225 => 0.0012019048932355
1226 => 0.0011994623483379
1227 => 0.0012397742231866
1228 => 0.0012712002123609
1229 => 0.0013275212030288
1230 => 0.0012687473131872
1231 => 0.0012666053590363
]
'min_raw' => 0.0010722691824489
'max_raw' => 0.0031002455450845
'avg_raw' => 0.0020862573637667
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001072'
'max' => '$0.00310024'
'avg' => '$0.002086'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00018854580137292
'max_diff' => -0.0010472645285826
'year' => 2030
]
5 => [
'items' => [
101 => 0.0012875433044415
102 => 0.0012683651300995
103 => 0.0012804850742755
104 => 0.0013255684926485
105 => 0.0013265210342372
106 => 0.0013105647353459
107 => 0.0013095937931083
108 => 0.0013126583748531
109 => 0.0013306077258532
110 => 0.0013243356710859
111 => 0.0013315938516516
112 => 0.0013406703175902
113 => 0.0013782144290539
114 => 0.0013872661872228
115 => 0.0013652751076709
116 => 0.0013672606559307
117 => 0.0013590353885097
118 => 0.0013510898832432
119 => 0.0013689502187343
120 => 0.0014015903328901
121 => 0.001401387280434
122 => 0.001408959152485
123 => 0.0014136763660439
124 => 0.0013934266322374
125 => 0.0013802448001327
126 => 0.0013852995533434
127 => 0.0013933822138055
128 => 0.0013826784554909
129 => 0.0013166099007098
130 => 0.0013366508797548
131 => 0.0013333150808879
201 => 0.0013285644976544
202 => 0.0013487158570564
203 => 0.0013467722092825
204 => 0.0012885524124413
205 => 0.0012922794549414
206 => 0.0012887790662401
207 => 0.0013000895382462
208 => 0.0012677543274934
209 => 0.00127770042054
210 => 0.00128393851686
211 => 0.0012876128035158
212 => 0.0013008868463984
213 => 0.0012993292906746
214 => 0.0013007900265477
215 => 0.0013204719279253
216 => 0.0014200162310803
217 => 0.0014254342078689
218 => 0.0013987541086299
219 => 0.0014094122820342
220 => 0.0013889509197843
221 => 0.0014026867693418
222 => 0.0014120844887564
223 => 0.0013696180017996
224 => 0.0013671034120472
225 => 0.0013465575984768
226 => 0.0013575977549152
227 => 0.0013400320722063
228 => 0.0013443420763216
301 => 0.0013322909290759
302 => 0.0013539805947586
303 => 0.0013782330112251
304 => 0.0013843601293815
305 => 0.0013682423194023
306 => 0.0013565719627619
307 => 0.0013360826609558
308 => 0.0013701568264932
309 => 0.0013801211508877
310 => 0.0013701044881391
311 => 0.0013677834085118
312 => 0.0013633849668123
313 => 0.0013687165587111
314 => 0.0013800668830371
315 => 0.0013747142796926
316 => 0.0013782497685024
317 => 0.0013647761309396
318 => 0.0013934333357419
319 => 0.0014389478736997
320 => 0.0014390942103817
321 => 0.0014337415781846
322 => 0.0014315513964136
323 => 0.0014370435218727
324 => 0.0014400227746355
325 => 0.0014577833012865
326 => 0.0014768410539937
327 => 0.0015657752703292
328 => 0.0015408028982582
329 => 0.0016197106257112
330 => 0.0016821163932405
331 => 0.0017008291542491
401 => 0.0016836142946247
402 => 0.0016247231897779
403 => 0.0016218337112193
404 => 0.0017098418850435
405 => 0.0016849755449084
406 => 0.0016820177728734
407 => 0.0016505520756554
408 => 0.0016691521998137
409 => 0.0016650840798129
410 => 0.0016586623533724
411 => 0.0016941500945705
412 => 0.0017605799780806
413 => 0.0017502262577601
414 => 0.001742497685836
415 => 0.0017086333334184
416 => 0.0017290272374508
417 => 0.0017217653588443
418 => 0.0017529669978396
419 => 0.0017344838380997
420 => 0.0016847871579252
421 => 0.0016927015180454
422 => 0.0016915052784347
423 => 0.0017161238048561
424 => 0.0017087339342938
425 => 0.0016900622876042
426 => 0.0017603529279607
427 => 0.001755788644753
428 => 0.0017622597548011
429 => 0.0017651085375699
430 => 0.0018078932116949
501 => 0.001825420723727
502 => 0.0018293997758206
503 => 0.0018460495566247
504 => 0.0018289855141066
505 => 0.0018972538506351
506 => 0.0019426483108587
507 => 0.001995376312386
508 => 0.0020724260945681
509 => 0.0021013975254189
510 => 0.0020961640957489
511 => 0.0021545823612423
512 => 0.0022595586857689
513 => 0.0021173828123237
514 => 0.0022670943522915
515 => 0.0022196974072405
516 => 0.0021073201031593
517 => 0.0021000843296179
518 => 0.002176187544669
519 => 0.0023449771509894
520 => 0.002302697269002
521 => 0.00234504630573
522 => 0.0022956439048853
523 => 0.0022931906592872
524 => 0.0023426469413892
525 => 0.002458204240242
526 => 0.0024033072991576
527 => 0.0023245990728309
528 => 0.0023827160023149
529 => 0.0023323697395279
530 => 0.0022189255184373
531 => 0.0023026649383731
601 => 0.0022466707730234
602 => 0.002263012847286
603 => 0.0023807042543475
604 => 0.002366543312877
605 => 0.0023848688824077
606 => 0.0023525247318497
607 => 0.0023223101950242
608 => 0.0022659125182783
609 => 0.0022492159465657
610 => 0.0022538302783073
611 => 0.002249213659932
612 => 0.0022176596781141
613 => 0.0022108455987448
614 => 0.0021994885012643
615 => 0.0022030085406669
616 => 0.0021816538747675
617 => 0.0022219545414187
618 => 0.0022294347002775
619 => 0.0022587621646696
620 => 0.0022618070393129
621 => 0.0023434836101945
622 => 0.0022984975274719
623 => 0.0023286780756738
624 => 0.0023259784433723
625 => 0.0021097556600966
626 => 0.0021395492518822
627 => 0.0021858987309565
628 => 0.0021650183534587
629 => 0.0021354983849328
630 => 0.0021116594275876
701 => 0.0020755409695509
702 => 0.0021263770056439
703 => 0.0021932209872965
704 => 0.002263502312997
705 => 0.0023479407208112
706 => 0.0023290950511585
707 => 0.002261923795697
708 => 0.0022649370491484
709 => 0.0022835637963132
710 => 0.0022594404663163
711 => 0.0022523260253569
712 => 0.0022825863813751
713 => 0.0022827947678162
714 => 0.0022550379612529
715 => 0.0022241913501998
716 => 0.0022240621017732
717 => 0.0022185732452792
718 => 0.002296620360262
719 => 0.0023395383820491
720 => 0.0023444588640812
721 => 0.002339207194404
722 => 0.0023412283536315
723 => 0.0023162553023876
724 => 0.0023733362920028
725 => 0.0024257194527985
726 => 0.0024116796467022
727 => 0.0023906319814879
728 => 0.0023738665023518
729 => 0.0024077302326324
730 => 0.0024062223340294
731 => 0.002425261931587
801 => 0.0024243981854637
802 => 0.0024179958849206
803 => 0.0024116798753485
804 => 0.0024367221393724
805 => 0.0024295103695
806 => 0.002422287397757
807 => 0.0024078006221448
808 => 0.0024097696155504
809 => 0.0023887255845122
810 => 0.0023789896528446
811 => 0.0022325846003304
812 => 0.0021934603863755
813 => 0.0022057696605325
814 => 0.0022098221931952
815 => 0.002192795285143
816 => 0.002217207497436
817 => 0.0022134028800091
818 => 0.0022282044207906
819 => 0.0022189570607185
820 => 0.0022193365756015
821 => 0.0022465310898284
822 => 0.0022544257730022
823 => 0.0022504104734221
824 => 0.0022532226516116
825 => 0.0023180281110423
826 => 0.0023088148470732
827 => 0.0023039204842167
828 => 0.0023052762561766
829 => 0.0023218354405059
830 => 0.0023264711080201
831 => 0.0023068294590197
901 => 0.0023160925742353
902 => 0.0023555337431591
903 => 0.0023693359201056
904 => 0.002413385843498
905 => 0.002394672653116
906 => 0.0024290215239502
907 => 0.0025345982425014
908 => 0.0026189402306334
909 => 0.0025413758527672
910 => 0.0026962591730842
911 => 0.0028168580546437
912 => 0.0028122292687015
913 => 0.0027912000641992
914 => 0.0026539014438308
915 => 0.0025275572063608
916 => 0.0026332495258642
917 => 0.0026335189573224
918 => 0.0026244398933432
919 => 0.0025680506067167
920 => 0.0026224776683994
921 => 0.0026267978909058
922 => 0.0026243797151421
923 => 0.0025811461812973
924 => 0.0025151365660088
925 => 0.0025280346868315
926 => 0.0025491620718536
927 => 0.0025091635243725
928 => 0.0024963815648549
929 => 0.0025201456594655
930 => 0.0025967185237465
1001 => 0.0025822428673106
1002 => 0.0025818648494203
1003 => 0.0026437978462869
1004 => 0.0025994671865077
1005 => 0.0025281973734406
1006 => 0.0025102008057078
1007 => 0.002446325114197
1008 => 0.0024904442818409
1009 => 0.0024920320521406
1010 => 0.002467868434909
1011 => 0.0025301581178056
1012 => 0.0025295841074118
1013 => 0.0025887188907264
1014 => 0.0027017623864136
1015 => 0.0026683298622063
1016 => 0.0026294514740015
1017 => 0.0026336786327802
1018 => 0.0026800401310649
1019 => 0.0026520089108719
1020 => 0.0026620891330939
1021 => 0.0026800248734413
1022 => 0.0026908459509122
1023 => 0.002632121646259
1024 => 0.0026184302017362
1025 => 0.0025904223112865
1026 => 0.0025831155754602
1027 => 0.0026059274178277
1028 => 0.0025999173033181
1029 => 0.002491898606195
1030 => 0.0024806100513353
1031 => 0.0024809562551965
1101 => 0.0024525706472602
1102 => 0.0024092757818309
1103 => 0.0025230521031771
1104 => 0.0025139142722744
1105 => 0.0025038268141697
1106 => 0.0025050624702293
1107 => 0.0025544489150884
1108 => 0.0025258022829949
1109 => 0.0026019640495062
1110 => 0.0025863074799437
1111 => 0.0025702493784496
1112 => 0.0025680296596814
1113 => 0.002561848660619
1114 => 0.0025406517149857
1115 => 0.0025150551293944
1116 => 0.0024981540464488
1117 => 0.0023044150559258
1118 => 0.002340371885639
1119 => 0.0023817369406559
1120 => 0.0023960159918877
1121 => 0.0023715906866754
1122 => 0.0025416161749094
1123 => 0.0025726814700162
1124 => 0.0024785826647988
1125 => 0.0024609806203716
1126 => 0.0025427701620117
1127 => 0.0024934410700379
1128 => 0.0025156539571332
1129 => 0.0024676418450327
1130 => 0.002565198750123
1201 => 0.0025644555299587
1202 => 0.002526503690456
1203 => 0.0025585803253207
1204 => 0.0025530062206457
1205 => 0.0025101586873184
1206 => 0.0025665570933552
1207 => 0.002566585066261
1208 => 0.0025300572458837
1209 => 0.0024874007486512
1210 => 0.0024797747744475
1211 => 0.0024740296272905
1212 => 0.0025142410031165
1213 => 0.0025502943969444
1214 => 0.0026173808244638
1215 => 0.0026342479462763
1216 => 0.0027000814456187
1217 => 0.0026608808021352
1218 => 0.0026782579396581
1219 => 0.0026971232805854
1220 => 0.0027061680187759
1221 => 0.0026914301032619
1222 => 0.00279369662589
1223 => 0.0028023310537651
1224 => 0.0028052261027441
1225 => 0.00277074240671
1226 => 0.0028013719997978
1227 => 0.0027870414275375
1228 => 0.0028243255954112
1229 => 0.0028301722290019
1230 => 0.0028252203383506
1231 => 0.0028270761521351
]
'min_raw' => 0.0012677543274934
'max_raw' => 0.0028301722290019
'avg_raw' => 0.0020489632782476
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001267'
'max' => '$0.00283'
'avg' => '$0.002048'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00019548514504451
'max_diff' => -0.00027007331608261
'year' => 2031
]
6 => [
'items' => [
101 => 0.0027398097161229
102 => 0.0027352844910485
103 => 0.0026735827260644
104 => 0.0026987266513718
105 => 0.0026517212881892
106 => 0.0026666271730633
107 => 0.0026731975450873
108 => 0.0026697655556073
109 => 0.0027001482511831
110 => 0.002674316753169
111 => 0.0026061431828186
112 => 0.0025379510386244
113 => 0.0025370949418022
114 => 0.0025191411539272
115 => 0.0025061638536938
116 => 0.0025086637421132
117 => 0.0025174736749688
118 => 0.0025056518043807
119 => 0.0025081745998547
120 => 0.0025500698140218
121 => 0.00255847160044
122 => 0.0025299190474011
123 => 0.0024152764268359
124 => 0.00238714284019
125 => 0.0024073647043578
126 => 0.0023976999557405
127 => 0.0019351309970915
128 => 0.0020438047125437
129 => 0.0019792344810326
130 => 0.0020089914144464
131 => 0.0019430819284541
201 => 0.0019745373897818
202 => 0.0019687287146441
203 => 0.0021434728332022
204 => 0.0021407444441436
205 => 0.0021420503796028
206 => 0.0020797146775375
207 => 0.0021790171435263
208 => 0.0022279371090736
209 => 0.0022188833254135
210 => 0.0022211619677047
211 => 0.00218200734364
212 => 0.0021424294819516
213 => 0.0020985315423499
214 => 0.0021800884881805
215 => 0.0021710207480276
216 => 0.0021918188814684
217 => 0.0022447143906504
218 => 0.002252503455308
219 => 0.0022629720371966
220 => 0.0022592197957939
221 => 0.0023486134089562
222 => 0.0023377872525642
223 => 0.0023638751745711
224 => 0.0023102103397074
225 => 0.0022494834851463
226 => 0.0022610256748879
227 => 0.0022599140691993
228 => 0.0022457620529425
229 => 0.0022329862454453
301 => 0.0022117181255238
302 => 0.0022790136040449
303 => 0.0022762815305129
304 => 0.0023205106253076
305 => 0.0023126927031841
306 => 0.0022604827058735
307 => 0.0022623473961415
308 => 0.0022748883343329
309 => 0.0023182926646035
310 => 0.0023311780250199
311 => 0.0023252090126822
312 => 0.0023393372221398
313 => 0.0023505035828415
314 => 0.0023407395451236
315 => 0.0024789777286764
316 => 0.0024215715969328
317 => 0.0024495509461153
318 => 0.0024562238560315
319 => 0.0024391313375974
320 => 0.0024428380928086
321 => 0.0024484528169231
322 => 0.002482544322271
323 => 0.0025720102967602
324 => 0.002611634167846
325 => 0.002730844539015
326 => 0.0026083439569433
327 => 0.0026010752793609
328 => 0.0026225486670168
329 => 0.0026925377745923
330 => 0.0027492573725397
331 => 0.002768074535411
401 => 0.0027705615341219
402 => 0.0028058637826097
403 => 0.0028260983730949
404 => 0.002801577161102
405 => 0.0027807980014158
406 => 0.0027063696306243
407 => 0.0027149849172052
408 => 0.0027743356983785
409 => 0.0028581721725295
410 => 0.0029301125890495
411 => 0.0029049215625608
412 => 0.0030971113125761
413 => 0.0031161661412654
414 => 0.0031135333800569
415 => 0.0031569431155498
416 => 0.0030707836308353
417 => 0.0030339487818584
418 => 0.0027852906915935
419 => 0.0028551534723262
420 => 0.0029567031270185
421 => 0.0029432626494283
422 => 0.0028695145757607
423 => 0.0029300566445225
424 => 0.0029100395432643
425 => 0.0028942512249917
426 => 0.0029665805717146
427 => 0.002887051483867
428 => 0.0029559097635307
429 => 0.0028675983076143
430 => 0.0029050366330479
501 => 0.0028837848288437
502 => 0.002897537350687
503 => 0.0028171403890015
504 => 0.0028605206380011
505 => 0.0028153356280221
506 => 0.0028153142044441
507 => 0.0028143167428444
508 => 0.0028674767067037
509 => 0.0028692102512166
510 => 0.0028299249576044
511 => 0.0028242633330432
512 => 0.0028451973264233
513 => 0.0028206891027968
514 => 0.0028321563463787
515 => 0.002821036433923
516 => 0.002818533107408
517 => 0.0027985861758308
518 => 0.0027899924892551
519 => 0.0027933622951934
520 => 0.0027818594102717
521 => 0.0027749285060288
522 => 0.0028129380115422
523 => 0.0027926310660455
524 => 0.0028098256809022
525 => 0.0027902302471396
526 => 0.0027223039363942
527 => 0.0026832387967768
528 => 0.0025549322925511
529 => 0.0025913198579858
530 => 0.0026154448515146
531 => 0.0026074715412972
601 => 0.0026246012969056
602 => 0.0026256529247779
603 => 0.0026200838666124
604 => 0.0026136356106973
605 => 0.0026104969563288
606 => 0.0026338899145406
607 => 0.0026474703141533
608 => 0.002617866117366
609 => 0.0026109302682655
610 => 0.0026408617457099
611 => 0.0026591199296602
612 => 0.0027939281015617
613 => 0.0027839410767626
614 => 0.0028090065491537
615 => 0.0028061845616235
616 => 0.0028324571699323
617 => 0.0028754017808845
618 => 0.0027880833793166
619 => 0.0028032388345856
620 => 0.0027995230669442
621 => 0.0028400908437264
622 => 0.0028402174918974
623 => 0.0028158950832057
624 => 0.0028290806555435
625 => 0.0028217208307918
626 => 0.0028350210288581
627 => 0.0027838076939576
628 => 0.0028461800077285
629 => 0.0028815410904535
630 => 0.0028820320791215
701 => 0.0028987929516902
702 => 0.0029158229689444
703 => 0.0029485106040618
704 => 0.0029149113285422
705 => 0.002854469502706
706 => 0.0028588332073055
707 => 0.0028233961869326
708 => 0.0028239918896472
709 => 0.0028208119818702
710 => 0.0028303551244815
711 => 0.0027859018771033
712 => 0.002796334965411
713 => 0.0027817285806841
714 => 0.0028032070831578
715 => 0.0027800997650197
716 => 0.0027995212750886
717 => 0.002807902955001
718 => 0.0028388315343227
719 => 0.0027755315887067
720 => 0.002646458714566
721 => 0.0026735913975677
722 => 0.002633460028182
723 => 0.0026371743392095
724 => 0.0026446778386134
725 => 0.0026203565420532
726 => 0.0026249962789848
727 => 0.0026248305149322
728 => 0.0026234020498806
729 => 0.0026170751413123
730 => 0.0026078998721475
731 => 0.0026444513205011
801 => 0.0026506621238281
802 => 0.0026644679702683
803 => 0.0027055448046792
804 => 0.0027014402602631
805 => 0.0027081349425016
806 => 0.0026935204887639
807 => 0.0026378522618031
808 => 0.002640875314355
809 => 0.0026031778005919
810 => 0.0026635039600858
811 => 0.0026492179292512
812 => 0.0026400076322361
813 => 0.0026374945173627
814 => 0.0026786731733009
815 => 0.002690994472554
816 => 0.0026833166657111
817 => 0.0026675692598789
818 => 0.0026978089343793
819 => 0.0027058997955661
820 => 0.0027077110410064
821 => 0.0027612899463385
822 => 0.002710705506627
823 => 0.0027228816840317
824 => 0.0028178767442995
825 => 0.0027317293330588
826 => 0.0027773635381095
827 => 0.0027751299812412
828 => 0.0027984748963679
829 => 0.0027732150168138
830 => 0.0027735281432946
831 => 0.0027942568464055
901 => 0.0027651471213275
902 => 0.0027579391440273
903 => 0.0027479813750114
904 => 0.0027697237993598
905 => 0.0027827573994314
906 => 0.0028877986438841
907 => 0.0029556600782632
908 => 0.002952714034425
909 => 0.0029796353603432
910 => 0.002967507056446
911 => 0.002928341563877
912 => 0.0029951922839693
913 => 0.0029740379189791
914 => 0.0029757818591264
915 => 0.002975716949587
916 => 0.0029897827529587
917 => 0.0029798158421579
918 => 0.002960170037887
919 => 0.0029732118395933
920 => 0.0030119413281316
921 => 0.0031321588489202
922 => 0.0031994341662238
923 => 0.0031281087903451
924 => 0.0031773080795414
925 => 0.0031478060375228
926 => 0.0031424446388783
927 => 0.0031733454282925
928 => 0.0032043003054479
929 => 0.0032023286135947
930 => 0.0031798569623304
1001 => 0.0031671632967282
1002 => 0.0032632839853578
1003 => 0.0033341040713669
1004 => 0.003329274616285
1005 => 0.0033505902603937
1006 => 0.0034131736507651
1007 => 0.00341889549166
1008 => 0.0034181746712223
1009 => 0.0034039924915517
1010 => 0.0034656139668525
1011 => 0.0035170196856751
1012 => 0.0034007097267206
1013 => 0.0034449990364813
1014 => 0.0034648819345453
1015 => 0.0034940759278933
1016 => 0.0035433310881529
1017 => 0.0035968352564807
1018 => 0.0036044013325256
1019 => 0.0035990328395017
1020 => 0.0035637454022202
1021 => 0.003622290301642
1022 => 0.0036565845306765
1023 => 0.0036770059592571
1024 => 0.0037287913043356
1025 => 0.0034650047245548
1026 => 0.0032782834723423
1027 => 0.0032491242525217
1028 => 0.0033084206726565
1029 => 0.0033240566657659
1030 => 0.0033177538165494
1031 => 0.0031075820712306
1101 => 0.0032480177417786
1102 => 0.0033991147151217
1103 => 0.0034049189652296
1104 => 0.0034805612693739
1105 => 0.0035051935042861
1106 => 0.0035660954737857
1107 => 0.0035622860390117
1108 => 0.0035771146994229
1109 => 0.0035737058471909
1110 => 0.0036865139212662
1111 => 0.0038109579791324
1112 => 0.0038066488771164
1113 => 0.0037887585714428
1114 => 0.0038153287261185
1115 => 0.003943768330072
1116 => 0.0039319436695427
1117 => 0.0039434303200248
1118 => 0.0040948678516249
1119 => 0.0042917581844428
1120 => 0.0042002828573827
1121 => 0.0043987579957869
1122 => 0.0045236875746973
1123 => 0.0047397403634633
1124 => 0.0047126894902274
1125 => 0.0047967972554254
1126 => 0.0046642627814475
1127 => 0.0043599368395577
1128 => 0.0043117760943407
1129 => 0.0044081951258894
1130 => 0.0046452319065203
1201 => 0.0044007299941251
1202 => 0.0044501924125627
1203 => 0.0044359472327251
1204 => 0.0044351881676297
1205 => 0.0044641585949812
1206 => 0.0044221354791119
1207 => 0.0042509257452463
1208 => 0.0043293901573316
1209 => 0.0042990912796549
1210 => 0.0043327101433682
1211 => 0.0045141372853546
1212 => 0.0044339240211995
1213 => 0.0043494258634086
1214 => 0.0044554053049207
1215 => 0.0045903535524528
1216 => 0.0045819087336476
1217 => 0.004565522255505
1218 => 0.0046578919748267
1219 => 0.0048104596893578
1220 => 0.0048516981295289
1221 => 0.0048821395029803
1222 => 0.0048863368540681
1223 => 0.0049295721789109
1224 => 0.0046970849405261
1225 => 0.0050660481585385
1226 => 0.0051297579138861
1227 => 0.0051177831203796
1228 => 0.005188593832132
1229 => 0.0051677595244401
1230 => 0.0051375738813972
1231 => 0.0052498239213951
]
'min_raw' => 0.0019351309970915
'max_raw' => 0.0052498239213951
'avg_raw' => 0.0035924774592433
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001935'
'max' => '$0.005249'
'avg' => '$0.003592'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00066737666959808
'max_diff' => 0.0024196516923932
'year' => 2032
]
7 => [
'items' => [
101 => 0.0051211383086486
102 => 0.004938485282423
103 => 0.0048382782197684
104 => 0.0049702389633452
105 => 0.0050508227846522
106 => 0.0051040835644425
107 => 0.005120200244226
108 => 0.0047151322630356
109 => 0.0044968230872742
110 => 0.0046367567660175
111 => 0.0048074855117909
112 => 0.004696136533723
113 => 0.0047005012028518
114 => 0.0045417468221236
115 => 0.0048215317518516
116 => 0.0047807694409519
117 => 0.0049922443820069
118 => 0.0049417741901317
119 => 0.0051142237951522
120 => 0.0050688120347347
121 => 0.0052573137132904
122 => 0.0053325121363455
123 => 0.005458781992355
124 => 0.0055516666124463
125 => 0.0056062102379636
126 => 0.0056029356432755
127 => 0.0058190646611014
128 => 0.0056916209302622
129 => 0.0055315215681471
130 => 0.0055286258757935
131 => 0.0056115436040584
201 => 0.0057853164151339
202 => 0.0058303731767542
203 => 0.0058555537597434
204 => 0.005816988820353
205 => 0.0056786577845015
206 => 0.0056189271445751
207 => 0.0056698193803556
208 => 0.0056075825492157
209 => 0.0057150207803338
210 => 0.0058625564192268
211 => 0.0058320908932145
212 => 0.0059339325790266
213 => 0.0060393280097842
214 => 0.0061900482093727
215 => 0.0062294520506979
216 => 0.0062945851020147
217 => 0.0063616284069124
218 => 0.0063831609095778
219 => 0.0064242731383093
220 => 0.0064240564565703
221 => 0.0065479509250247
222 => 0.0066846103604223
223 => 0.0067361961336116
224 => 0.0068548147746044
225 => 0.0066516845087972
226 => 0.0068057611488043
227 => 0.0069447421348792
228 => 0.0067790432737672
301 => 0.0070074205509269
302 => 0.007016287923085
303 => 0.0071501747148428
304 => 0.0070144548017906
305 => 0.0069338647506535
306 => 0.0071665252086165
307 => 0.007279102275489
308 => 0.0072451931467645
309 => 0.0069871430028703
310 => 0.0068369467508326
311 => 0.0064438541885566
312 => 0.0069094893089075
313 => 0.0071362865932678
314 => 0.006986555652694
315 => 0.0070620712297907
316 => 0.0074740597324223
317 => 0.0076309182799443
318 => 0.0075982927985837
319 => 0.0076038059678725
320 => 0.0076884439929314
321 => 0.008063775607054
322 => 0.007838868203753
323 => 0.008010801486457
324 => 0.0081019942796516
325 => 0.0081866992282004
326 => 0.0079786906458386
327 => 0.0077080745364388
328 => 0.0076223590549004
329 => 0.0069716678615283
330 => 0.0069377965591046
331 => 0.0069187835706487
401 => 0.0067989093678749
402 => 0.0067047210808023
403 => 0.0066298190579352
404 => 0.0064332537822946
405 => 0.0064995887925892
406 => 0.0061863047695795
407 => 0.006386732785397
408 => 0.0058867239201664
409 => 0.0063031461609741
410 => 0.0060765064676984
411 => 0.006228688926278
412 => 0.0062281579760165
413 => 0.005947941820279
414 => 0.0057863189896115
415 => 0.0058893113477675
416 => 0.0059997273312543
417 => 0.006017641953091
418 => 0.0061607991578336
419 => 0.0062007512565235
420 => 0.0060796945323081
421 => 0.0058763623478103
422 => 0.0059235917767558
423 => 0.0057853618867414
424 => 0.0055431193214271
425 => 0.0057171021609853
426 => 0.0057765075518959
427 => 0.0058027443567725
428 => 0.0055645266155324
429 => 0.0054896734292761
430 => 0.0054498222209922
501 => 0.0058456114288265
502 => 0.0058672936550753
503 => 0.0057563643200287
504 => 0.0062577754331906
505 => 0.0061442906556848
506 => 0.0062710809566043
507 => 0.0059193062011145
508 => 0.0059327444705017
509 => 0.0057662086638123
510 => 0.0058594575876317
511 => 0.0057935522538292
512 => 0.0058519239960909
513 => 0.0058869117777269
514 => 0.0060534202575291
515 => 0.0063050474203472
516 => 0.0060285494432152
517 => 0.0059080753150548
518 => 0.0059828167865933
519 => 0.0061818631746162
520 => 0.0064834286414681
521 => 0.0063048958155212
522 => 0.0063841256519924
523 => 0.0064014338465713
524 => 0.0062697903503625
525 => 0.0064882825249477
526 => 0.0066053742563351
527 => 0.0067254861440188
528 => 0.0068297759306359
529 => 0.0066775108147609
530 => 0.0068404563150941
531 => 0.0067091510055784
601 => 0.0065913565688494
602 => 0.0065915352143865
603 => 0.0065176410435243
604 => 0.006374461776214
605 => 0.0063480573225579
606 => 0.0064854166249918
607 => 0.0065955657775694
608 => 0.0066046381893545
609 => 0.0066656224198893
610 => 0.0067017122593323
611 => 0.0070554417476307
612 => 0.0071977146740281
613 => 0.0073716833153383
614 => 0.0074394539054639
615 => 0.007643419084641
616 => 0.0074787006372136
617 => 0.0074430627649851
618 => 0.0069483099568032
619 => 0.0070293257014264
620 => 0.0071590397254248
621 => 0.0069504488932823
622 => 0.0070827517652855
623 => 0.0071088711547769
624 => 0.0069433610566244
625 => 0.0070317671513168
626 => 0.006796986774394
627 => 0.0063101649909834
628 => 0.006488824496758
629 => 0.0066203780291475
630 => 0.0064326349179941
701 => 0.0067691571780747
702 => 0.0065725678209651
703 => 0.0065102584327147
704 => 0.006267167294249
705 => 0.0063818969541688
706 => 0.0065370704619808
707 => 0.0064411912750096
708 => 0.0066401549843073
709 => 0.0069219406583561
710 => 0.0071227579103103
711 => 0.0071381741653576
712 => 0.007009062126062
713 => 0.0072159649930152
714 => 0.0072174720545199
715 => 0.0069840847753737
716 => 0.0068411363664025
717 => 0.0068086581871182
718 => 0.0068897950466925
719 => 0.0069883101729062
720 => 0.007143641069232
721 => 0.0072375042767026
722 => 0.0074822497405872
723 => 0.0075484708457121
724 => 0.0076212277632597
725 => 0.0077184534425057
726 => 0.007835197798593
727 => 0.0075797677937338
728 => 0.007589916504008
729 => 0.0073520636201523
730 => 0.0070978837021985
731 => 0.0072907745759513
801 => 0.0075429537341856
802 => 0.0074851035566534
803 => 0.0074785942299092
804 => 0.0074895411119563
805 => 0.0074459239673073
806 => 0.0072486452385864
807 => 0.0071495730960529
808 => 0.0072774014359202
809 => 0.0073453365095748
810 => 0.0074506978842521
811 => 0.0074377098709143
812 => 0.0077091094570975
813 => 0.0078145671295907
814 => 0.0077875865441787
815 => 0.0077925516212186
816 => 0.0079834776999527
817 => 0.0081958267664479
818 => 0.0083947196891479
819 => 0.0085970421127682
820 => 0.0083531345343153
821 => 0.0082292933081051
822 => 0.008357065842118
823 => 0.0082892679370421
824 => 0.0086788548097732
825 => 0.0087058289595665
826 => 0.0090953876607324
827 => 0.0094651252559261
828 => 0.009232899696922
829 => 0.009451877939394
830 => 0.0096887207621855
831 => 0.010145628993713
901 => 0.0099917583755602
902 => 0.0098738958935148
903 => 0.0097625164174893
904 => 0.0099942794261045
905 => 0.010292438834183
906 => 0.010356659514948
907 => 0.010460721551976
908 => 0.010351313044142
909 => 0.010483083540876
910 => 0.010948291297237
911 => 0.010822588054966
912 => 0.010644069243136
913 => 0.011011306087755
914 => 0.011144207674226
915 => 0.012076980609178
916 => 0.013254644970483
917 => 0.012767084191941
918 => 0.012464439483213
919 => 0.012535568168593
920 => 0.012965611326887
921 => 0.013103727540443
922 => 0.012728280060483
923 => 0.012860894457583
924 => 0.013591612823964
925 => 0.013983619783275
926 => 0.013451221678971
927 => 0.011982356424413
928 => 0.010627995577347
929 => 0.010987233061653
930 => 0.01094650667937
1001 => 0.011731572405073
1002 => 0.01081959007421
1003 => 0.010834945517753
1004 => 0.011636245571265
1005 => 0.011422472454749
1006 => 0.011076187383985
1007 => 0.010630523841586
1008 => 0.009806673564574
1009 => 0.0090769663994599
1010 => 0.010508090191772
1011 => 0.010446377531518
1012 => 0.010357008454166
1013 => 0.010555889665069
1014 => 0.011521600371796
1015 => 0.011499337614305
1016 => 0.011357713309709
1017 => 0.011465134096526
1018 => 0.011057356000684
1019 => 0.011162449700917
1020 => 0.01062778103967
1021 => 0.010869473604289
1022 => 0.011075444411747
1023 => 0.011116796100794
1024 => 0.011209963567687
1025 => 0.010413857763809
1026 => 0.010771285897312
1027 => 0.010981241439258
1028 => 0.010032654662498
1029 => 0.01096249092862
1030 => 0.010399999332939
1031 => 0.010209081237025
1101 => 0.010466127301627
1102 => 0.010365956200266
1103 => 0.01027983496956
1104 => 0.010231777843076
1105 => 0.010420524103781
1106 => 0.010411718865118
1107 => 0.010102893348534
1108 => 0.0097000430514892
1109 => 0.0098352528342878
1110 => 0.0097861298525986
1111 => 0.0096081018299661
1112 => 0.009728071222035
1113 => 0.0091997867344836
1114 => 0.0082909007314897
1115 => 0.0088913386649986
1116 => 0.0088682224577093
1117 => 0.0088565662177575
1118 => 0.0093077787299039
1119 => 0.0092644050581049
1120 => 0.0091856814190733
1121 => 0.0096066560085995
1122 => 0.0094529946205152
1123 => 0.0099265428114146
1124 => 0.010238452277118
1125 => 0.010159341947401
1126 => 0.010452694307484
1127 => 0.0098383677945981
1128 => 0.010042422419677
1129 => 0.010084477795098
1130 => 0.0096014612475109
1201 => 0.0092715015272225
1202 => 0.0092494969756954
1203 => 0.0086773922919656
1204 => 0.0089830059961464
1205 => 0.0092519334086712
1206 => 0.0091231380476821
1207 => 0.0090823652840449
1208 => 0.0092906644909337
1209 => 0.0093068511232711
1210 => 0.0089377941905976
1211 => 0.0090145328134135
1212 => 0.0093345456272904
1213 => 0.0090064693115721
1214 => 0.0083690706210934
1215 => 0.0082109869331283
1216 => 0.0081898956550934
1217 => 0.0077611601555567
1218 => 0.0082215508410647
1219 => 0.0080205779691372
1220 => 0.0086554488635316
1221 => 0.0082928140135344
1222 => 0.0082771815499401
1223 => 0.0082535507884335
1224 => 0.0078845204331418
1225 => 0.0079653146278482
1226 => 0.0082338868363553
1227 => 0.0083297164260331
1228 => 0.008319720614721
1229 => 0.0082325706860146
1230 => 0.0082724674770965
1231 => 0.008143946012058
]
'min_raw' => 0.0044968230872742
'max_raw' => 0.013983619783275
'avg_raw' => 0.0092402214352746
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.004496'
'max' => '$0.013983'
'avg' => '$0.00924'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0025616920901827
'max_diff' => 0.0087337958618798
'year' => 2033
]
8 => [
'items' => [
101 => 0.0080985624078099
102 => 0.0079553192690591
103 => 0.0077447914270226
104 => 0.0077740666147
105 => 0.0073569558720192
106 => 0.007129691801664
107 => 0.007066788102282
108 => 0.0069826706465418
109 => 0.0070762893927359
110 => 0.0073557742496924
111 => 0.0070186562161828
112 => 0.0064406909938111
113 => 0.0064754276884804
114 => 0.0065534707279853
115 => 0.0064080380401744
116 => 0.0062703982064017
117 => 0.0063900648747943
118 => 0.0061451733908946
119 => 0.0065830646938317
120 => 0.0065712209612634
121 => 0.0067344397599818
122 => 0.0068365038244074
123 => 0.0066012791995397
124 => 0.0065421208425005
125 => 0.0065758201312675
126 => 0.0060188459540432
127 => 0.0066889230870161
128 => 0.0066947179418876
129 => 0.0066450988763194
130 => 0.007001894263317
131 => 0.0077548438171538
201 => 0.0074715539076748
202 => 0.0073618554922416
203 => 0.0071533187243142
204 => 0.0074311815858895
205 => 0.0074098460534564
206 => 0.0073133586845335
207 => 0.00725500282275
208 => 0.0073625252873745
209 => 0.0072416795994846
210 => 0.0072199723933222
211 => 0.007088450341651
212 => 0.0070415029530765
213 => 0.0070067449756053
214 => 0.0069684798576578
215 => 0.0070528831727766
216 => 0.0068616141565366
217 => 0.006630962473284
218 => 0.0066117862815073
219 => 0.0066647334329907
220 => 0.0066413082599112
221 => 0.006611674130791
222 => 0.0065550945079256
223 => 0.0065383085424538
224 => 0.0065928547868444
225 => 0.0065312752571711
226 => 0.0066221392076146
227 => 0.0065974292408257
228 => 0.0064594013750063
301 => 0.0062873675497343
302 => 0.0062858360878362
303 => 0.0062487716823734
304 => 0.0062015645893458
305 => 0.0061884326560175
306 => 0.0063799868817598
307 => 0.0067764983963108
308 => 0.006698653698288
309 => 0.006754904470455
310 => 0.007031602596081
311 => 0.0071195566096146
312 => 0.0070571289341135
313 => 0.0069716740815162
314 => 0.0069754336613397
315 => 0.0072674587616078
316 => 0.0072856720089063
317 => 0.0073316910090132
318 => 0.0073908384291184
319 => 0.0070672019955181
320 => 0.0069601904144213
321 => 0.0069094823905212
322 => 0.0067533213033837
323 => 0.0069217276476217
324 => 0.0068236044827129
325 => 0.0068368446500237
326 => 0.0068282219736932
327 => 0.0068329305380324
328 => 0.0065829422942882
329 => 0.0066740248713133
330 => 0.0065225824212528
331 => 0.0063198179808344
401 => 0.0063191382433318
402 => 0.006368764552868
403 => 0.0063392448820782
404 => 0.0062598082070029
405 => 0.0062710918117668
406 => 0.0061722355608681
407 => 0.0062830947504761
408 => 0.0062862737953608
409 => 0.0062435869688209
410 => 0.0064143808460322
411 => 0.0064843552368802
412 => 0.0064562578532112
413 => 0.0064823838495401
414 => 0.0067018884969386
415 => 0.0067376773321238
416 => 0.0067535723686353
417 => 0.0067322751253987
418 => 0.0064863959915442
419 => 0.0064973017766895
420 => 0.0064172823613957
421 => 0.0063496743877107
422 => 0.006352378352101
423 => 0.0063871376389965
424 => 0.0065389334834741
425 => 0.0068583788893236
426 => 0.006870501608964
427 => 0.0068851946988129
428 => 0.0068254305182422
429 => 0.0068074050695159
430 => 0.006831185289149
501 => 0.0069511521879445
502 => 0.007259739622342
503 => 0.0071506642131642
504 => 0.0070619842076427
505 => 0.0071397804804429
506 => 0.0071278043540326
507 => 0.0070267137947826
508 => 0.007023876519477
509 => 0.0068298514156693
510 => 0.0067581247525294
511 => 0.0066981845841621
512 => 0.0066327314850826
513 => 0.0065939286939406
514 => 0.006653547416688
515 => 0.0066671829239683
516 => 0.0065368255447243
517 => 0.0065190583156204
518 => 0.0066255109654705
519 => 0.0065786651232263
520 => 0.0066268472336954
521 => 0.0066380258966228
522 => 0.006636225874425
523 => 0.0065873134349113
524 => 0.0066184887652674
525 => 0.006544749815162
526 => 0.0064645697821545
527 => 0.0064134199164883
528 => 0.0063687848746495
529 => 0.0063935509900655
530 => 0.0063052643107213
531 => 0.0062770196251392
601 => 0.0066079272648099
602 => 0.0068523722960913
603 => 0.0068488179685256
604 => 0.0068271819135683
605 => 0.0067950351246153
606 => 0.0069488004501026
607 => 0.0068952316853376
608 => 0.0069342074375242
609 => 0.0069441284022629
610 => 0.0069741561745235
611 => 0.0069848885221324
612 => 0.0069524479135636
613 => 0.00684357326892
614 => 0.0065722680059588
615 => 0.0064459746736758
616 => 0.0064042957704406
617 => 0.0064058107194137
618 => 0.0063640216637057
619 => 0.0063763304134658
620 => 0.0063597411828558
621 => 0.0063283251934464
622 => 0.0063916111412474
623 => 0.0063989042571821
624 => 0.0063841325607546
625 => 0.0063876118300065
626 => 0.0062653084926608
627 => 0.0062746069497703
628 => 0.0062228319589937
629 => 0.00621312477238
630 => 0.006082242104261
701 => 0.0058503644859422
702 => 0.0059788471953959
703 => 0.0058236581497787
704 => 0.0057648857067057
705 => 0.006043105311223
706 => 0.0060151797795401
707 => 0.0059673834082358
708 => 0.0058966826134401
709 => 0.0058704590009172
710 => 0.0057111326326153
711 => 0.0057017187808029
712 => 0.0057806852311071
713 => 0.0057442449313614
714 => 0.0056930689494976
715 => 0.0055077147308131
716 => 0.0052993152203389
717 => 0.0053056054916075
718 => 0.0053718934984786
719 => 0.005564634818612
720 => 0.0054893274503772
721 => 0.0054346910906703
722 => 0.0054244593428602
723 => 0.0055525310883192
724 => 0.0057337794400038
725 => 0.0058188171114109
726 => 0.0057345473616789
727 => 0.0056377428105924
728 => 0.0056436348550679
729 => 0.0056828319872813
730 => 0.0056869510516593
731 => 0.0056239412405706
801 => 0.00564167813331
802 => 0.0056147341713434
803 => 0.005449379126489
804 => 0.0054463883780741
805 => 0.0054058075833565
806 => 0.0054045788130203
807 => 0.0053355407578521
808 => 0.0053258818566965
809 => 0.0051888026078496
810 => 0.0052790285845548
811 => 0.0052185097364574
812 => 0.0051272935574214
813 => 0.0051115678537741
814 => 0.0051110951201331
815 => 0.0052047537404387
816 => 0.0052779341290459
817 => 0.0052195624877304
818 => 0.0052062723964896
819 => 0.0053481758012274
820 => 0.0053301172994963
821 => 0.0053144787534619
822 => 0.0057175506380598
823 => 0.0053984877893092
824 => 0.0052593581757832
825 => 0.0050871588590478
826 => 0.0051432278248812
827 => 0.0051550423798068
828 => 0.004740934064318
829 => 0.0045729303722981
830 => 0.0045152778362824
831 => 0.0044820979867182
901 => 0.004497218460811
902 => 0.0043459954331254
903 => 0.0044476198087281
904 => 0.0043166734493168
905 => 0.0042947198660251
906 => 0.0045288681777938
907 => 0.0045614485475018
908 => 0.0044224505684
909 => 0.0045117097727121
910 => 0.0044793431444328
911 => 0.00431891814881
912 => 0.0043127910939836
913 => 0.0042322954703914
914 => 0.0041063354064937
915 => 0.0040487682773327
916 => 0.004018786816645
917 => 0.0040311577516518
918 => 0.0040249026283555
919 => 0.0039840837177187
920 => 0.0040272423205323
921 => 0.0039169899247096
922 => 0.0038730865323291
923 => 0.0038532563885418
924 => 0.0037554010413581
925 => 0.0039111324151978
926 => 0.0039418134576964
927 => 0.0039725549513265
928 => 0.0042401386652679
929 => 0.0042267709391032
930 => 0.0043476086732861
1001 => 0.0043429131411421
1002 => 0.0043084482619116
1003 => 0.0041630466056356
1004 => 0.0042210011142919
1005 => 0.0040426261447781
1006 => 0.0041762768002568
1007 => 0.0041152842224811
1008 => 0.0041556551483578
1009 => 0.0040830645835319
1010 => 0.0041232391992975
1011 => 0.0039490890710644
1012 => 0.0037864701316788
1013 => 0.0038519127400304
1014 => 0.0039230563395786
1015 => 0.0040773137904511
1016 => 0.0039854393253078
1017 => 0.0040184808571315
1018 => 0.0039077972566077
1019 => 0.0036794253735197
1020 => 0.0036807179335769
1021 => 0.0036455878947157
1022 => 0.00361523041207
1023 => 0.0039959922128246
1024 => 0.0039486384639475
1025 => 0.0038731864626172
1026 => 0.0039741819647411
1027 => 0.0040008867785169
1028 => 0.0040016470270225
1029 => 0.004075330738301
1030 => 0.0041146557482188
1031 => 0.0041215869516612
1101 => 0.0042375298633997
1102 => 0.0042763923980905
1103 => 0.0044364616784501
1104 => 0.0041113192958758
1105 => 0.0041046232024726
1106 => 0.0039756031785719
1107 => 0.0038937766396883
1108 => 0.003981205911695
1109 => 0.0040586563114071
1110 => 0.0039780097783831
1111 => 0.0039885405130548
1112 => 0.003880279131534
1113 => 0.0039189774812563
1114 => 0.0039523097132677
1115 => 0.003933905613929
1116 => 0.0039063537864505
1117 => 0.0040523062618634
1118 => 0.0040440710512083
1119 => 0.0041799853517457
1120 => 0.0042859402683394
1121 => 0.0044758304205824
1122 => 0.0042776701475194
1123 => 0.0042704483995532
1124 => 0.0043410421443273
1125 => 0.004276381590556
1126 => 0.004317244828533
1127 => 0.0044692467212011
1128 => 0.0044724582816717
1129 => 0.0044186605059267
1130 => 0.0044153869063834
1201 => 0.0044257193576985
1202 => 0.0044862368477787
1203 => 0.00446509017723
1204 => 0.0044895616397572
1205 => 0.0045201635783677
1206 => 0.0046467461714138
1207 => 0.0046772648060539
1208 => 0.0046031203459764
1209 => 0.0046098147605611
1210 => 0.0045820826971811
1211 => 0.0045552938714379
1212 => 0.0046155112395149
1213 => 0.0047255596632511
1214 => 0.0047248750577186
1215 => 0.0047504041529897
1216 => 0.0047663085678491
1217 => 0.0046980351765291
1218 => 0.0046535917092619
1219 => 0.0046706341626235
1220 => 0.0046978854166849
1221 => 0.0046617969482146
1222 => 0.0044390422030108
1223 => 0.0045066117630774
1224 => 0.0044953648842997
1225 => 0.0044793479612529
1226 => 0.0045472896763999
1227 => 0.004540736532229
1228 => 0.0043444444224023
1229 => 0.0043570104064052
1230 => 0.0043452086015094
1231 => 0.00438334264755
]
'min_raw' => 0.00361523041207
'max_raw' => 0.0080985624078099
'avg_raw' => 0.0058568964099399
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003615'
'max' => '$0.008098'
'avg' => '$0.005856'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00088159267520419
'max_diff' => -0.0058850573754651
'year' => 2034
]
9 => [
'items' => [
101 => 0.0042743222269245
102 => 0.0043078561740452
103 => 0.004328888351318
104 => 0.0043412764653085
105 => 0.0043860308276515
106 => 0.0043807794197835
107 => 0.0043857043927651
108 => 0.0044520632974062
109 => 0.0047876838654544
110 => 0.0048059509524682
111 => 0.004715997135139
112 => 0.0047519319109014
113 => 0.0046829449995091
114 => 0.0047292563752989
115 => 0.0047609414424329
116 => 0.0046177627167425
117 => 0.0046092846018293
118 => 0.0045400129569137
119 => 0.0045772356151448
120 => 0.0045180116894952
121 => 0.0045325431692847
122 => 0.0044919118849618
123 => 0.004565040107135
124 => 0.0046468088225015
125 => 0.0046674668291475
126 => 0.0046131245074929
127 => 0.0045737770852815
128 => 0.0045046959737249
129 => 0.0046195794018165
130 => 0.0046531748171995
131 => 0.0046194029394015
201 => 0.0046115772573856
202 => 0.0045967476041061
203 => 0.0046147234384331
204 => 0.0046529918493524
205 => 0.0046349451734694
206 => 0.0046468653208316
207 => 0.0046014380110896
208 => 0.0046980577778625
209 => 0.004851513220311
210 => 0.004852006604651
211 => 0.0048339598314897
212 => 0.0048265754807353
213 => 0.0048450925651685
214 => 0.0048551373238629
215 => 0.0049150181794674
216 => 0.0049792727232894
217 => 0.0052791206428532
218 => 0.0051949245469005
219 => 0.00546096745917
220 => 0.0056713728614267
221 => 0.0057344642416503
222 => 0.0056764231405234
223 => 0.005477867668887
224 => 0.0054681255901896
225 => 0.0057648512927722
226 => 0.0056810126908945
227 => 0.0056710403559734
228 => 0.0055649515609382
301 => 0.0056276631781568
302 => 0.0056139472275472
303 => 0.0055922959285026
304 => 0.0057119453256267
305 => 0.0059359183158677
306 => 0.0059010100249332
307 => 0.0058749526050997
308 => 0.0057607765765899
309 => 0.005829536047892
310 => 0.0058050521171622
311 => 0.0059102506214636
312 => 0.0058479333579477
313 => 0.0056803775310277
314 => 0.005707061348736
315 => 0.0057030281433697
316 => 0.0057860312240103
317 => 0.0057611157594651
318 => 0.0056981629990384
319 => 0.005935152800536
320 => 0.0059197640010333
321 => 0.0059415818003588
322 => 0.0059511866703597
323 => 0.0060954381863026
324 => 0.0061545334168508
325 => 0.0061679490687928
326 => 0.0062240849672244
327 => 0.0061665523565012
328 => 0.0063967238194502
329 => 0.006549774411434
330 => 0.0067275505499347
331 => 0.0069873292700056
401 => 0.0070850084718397
402 => 0.007067363598321
403 => 0.0072643248590651
404 => 0.0076182598664195
405 => 0.0071389039826965
406 => 0.0076436668922238
407 => 0.0074838647828355
408 => 0.0071049768561929
409 => 0.0070805809405124
410 => 0.007337168243414
411 => 0.0079062541856371
412 => 0.0077637046116296
413 => 0.0079064873456732
414 => 0.0077399237020598
415 => 0.0077316524132458
416 => 0.0078983977212799
417 => 0.0082880072223152
418 => 0.0081029183526671
419 => 0.0078375480723738
420 => 0.0080334933577235
421 => 0.0078637474176735
422 => 0.0074812623058437
423 => 0.0077635956066568
424 => 0.0075748073687926
425 => 0.0076299058131361
426 => 0.0080267106089957
427 => 0.0079789660061426
428 => 0.0080407519432657
429 => 0.007931701381463
430 => 0.007829830961044
501 => 0.0076396822563353
502 => 0.0075833885990888
503 => 0.0075989461407181
504 => 0.0075833808895438
505 => 0.0074769944368161
506 => 0.0074540202924787
507 => 0.007415729045396
508 => 0.0074275971040029
509 => 0.007355598356988
510 => 0.0074914748683054
511 => 0.0075166947461456
512 => 0.0076155743399217
513 => 0.007625840347368
514 => 0.0079012186085716
515 => 0.0077495448898444
516 => 0.0078513007152454
517 => 0.0078421987164586
518 => 0.007113188506452
519 => 0.0072136396812793
520 => 0.0073699101859955
521 => 0.0072995105354406
522 => 0.007199981900537
523 => 0.0071196071914646
524 => 0.0069978312884839
525 => 0.0071692285334301
526 => 0.0073945976844694
527 => 0.0076315560809541
528 => 0.0079162460682013
529 => 0.0078527065772045
530 => 0.0076262339996688
531 => 0.0076363933940587
601 => 0.0076991947726029
602 => 0.0076178612812812
603 => 0.0075938744468721
604 => 0.007695899349898
605 => 0.0076966019393332
606 => 0.0076030179280869
607 => 0.0074990164252798
608 => 0.0074985806551856
609 => 0.0074800745922964
610 => 0.0077432158895364
611 => 0.0078879169964324
612 => 0.0079045067451405
613 => 0.0078868003741641
614 => 0.0078936148536122
615 => 0.0078094164677807
616 => 0.0080018690095358
617 => 0.008178482493434
618 => 0.0081311463069525
619 => 0.0080601826341814
620 => 0.0080036566507456
621 => 0.0081178305816766
622 => 0.0081127465962587
623 => 0.0081769399287263
624 => 0.008174027748367
625 => 0.0081524419450914
626 => 0.0081311470778495
627 => 0.0082155788194011
628 => 0.0081912638337665
629 => 0.0081669110802433
630 => 0.0081180679048324
701 => 0.00812470650357
702 => 0.0080537550836775
703 => 0.0080209297103191
704 => 0.007527314854093
705 => 0.0073954048351787
706 => 0.0074369064124052
707 => 0.0074505698092161
708 => 0.0073931623999373
709 => 0.0074754698780897
710 => 0.0074626423448048
711 => 0.0075125467729602
712 => 0.0074813686528471
713 => 0.0074826482137719
714 => 0.0075743364171484
715 => 0.0076009538926581
716 => 0.0075874160297845
717 => 0.0075968974848904
718 => 0.0078153936159335
719 => 0.0077843304532122
720 => 0.0077678287671282
721 => 0.007772399846948
722 => 0.0078282302930394
723 => 0.0078438597697157
724 => 0.0077776365787745
725 => 0.0078088678184541
726 => 0.0079418464731751
727 => 0.0079883814763874
728 => 0.0081368988685724
729 => 0.0080738060406861
730 => 0.0081896156568651
731 => 0.0085455749345918
801 => 0.0088299398361484
802 => 0.0085684261208004
803 => 0.0090906260488572
804 => 0.0094972335979801
805 => 0.0094816273230045
806 => 0.0094107258918128
807 => 0.0089478140073574
808 => 0.0085218355896541
809 => 0.0088781846240619
810 => 0.0088790930310345
811 => 0.0088484823329485
812 => 0.008658361916113
813 => 0.0088418665545526
814 => 0.0088564324863609
815 => 0.0088482794379421
816 => 0.0087025145601153
817 => 0.0084799585335261
818 => 0.0085234454483978
819 => 0.0085946779020666
820 => 0.008459820006625
821 => 0.0084167247377033
822 => 0.008496847041839
823 => 0.0087550177999092
824 => 0.0087062121135774
825 => 0.008704937599868
826 => 0.0089137490228275
827 => 0.008764285108314
828 => 0.0085239939576587
829 => 0.0084633172730673
830 => 0.0082479559194804
831 => 0.0083967067734937
901 => 0.0084020600519136
902 => 0.0083205907293674
903 => 0.0085306047441802
904 => 0.0085286694280615
905 => 0.0087280464786654
906 => 0.0091091805168195
907 => 0.0089964604272704
908 => 0.0088653792270356
909 => 0.0088796313879886
910 => 0.0090359424163119
911 => 0.0089414332003539
912 => 0.008975419373354
913 => 0.0090358909741686
914 => 0.0090723749923654
915 => 0.0088743818992272
916 => 0.0088282202381123
917 => 0.0087337896800126
918 => 0.0087091545100342
919 => 0.0087860662292482
920 => 0.0087658027085664
921 => 0.0084016101295913
922 => 0.0083635499787401
923 => 0.0083647172292293
924 => 0.0082690131702522
925 => 0.0081230415087062
926 => 0.0085066463197341
927 => 0.0084758374848627
928 => 0.008441826915579
929 => 0.0084459930162547
930 => 0.0086125028631485
1001 => 0.0085159187430013
1002 => 0.0087727034562388
1003 => 0.0087199162388522
1004 => 0.008665775228524
1005 => 0.0086582912917211
1006 => 0.0086374516218387
1007 => 0.0085659846397124
1008 => 0.008479683964295
1009 => 0.0084227007831479
1010 => 0.0077694962501751
1011 => 0.0078907272119789
1012 => 0.0080301923829843
1013 => 0.0080783352011437
1014 => 0.0079959835793004
1015 => 0.0085692363836818
1016 => 0.0086739751950438
1017 => 0.0083567145034848
1018 => 0.0082973679817627
1019 => 0.0085731271317658
1020 => 0.0084068106541289
1021 => 0.0084817029538251
1022 => 0.0083198267657796
1023 => 0.0086487466824971
1024 => 0.0086462408638233
1025 => 0.0085182835872269
1026 => 0.0086264322011925
1027 => 0.0086076387181093
1028 => 0.0084631752679769
1029 => 0.0086533264315411
1030 => 0.0086534207441458
1031 => 0.008530264647453
1101 => 0.0083864452888519
1102 => 0.0083607337843957
1103 => 0.0083413636196425
1104 => 0.0084769390807085
1105 => 0.0085984956151668
1106 => 0.0088246821893731
1107 => 0.0088815508681891
1108 => 0.0091035131075699
1109 => 0.0089713454011639
1110 => 0.0090299336335554
1111 => 0.0090935394476278
1112 => 0.0091240344139204
1113 => 0.0090743445027967
1114 => 0.0094191432238578
1115 => 0.0094482548002752
1116 => 0.0094580156600338
1117 => 0.0093417514712801
1118 => 0.0094450212828656
1119 => 0.0093967047579614
1120 => 0.0095224109330448
1121 => 0.0095421232663949
1122 => 0.009525427621334
1123 => 0.0095316846270773
1124 => 0.0092374597453141
1125 => 0.0092222026330348
1126 => 0.009014170824511
1127 => 0.0090989453241779
1128 => 0.0089404634603981
1129 => 0.0089907196919468
1130 => 0.0090128721599545
1201 => 0.0090013009678087
1202 => 0.0091037383471945
1203 => 0.0090166456481426
1204 => 0.0087867936959792
1205 => 0.0085568791208052
1206 => 0.0085539927305983
1207 => 0.0084934602812843
1208 => 0.0084497064075014
1209 => 0.008458134955844
1210 => 0.0084878382595564
1211 => 0.008447979997492
1212 => 0.0084564857785686
1213 => 0.0085977384181634
1214 => 0.0086260656276664
1215 => 0.00852979870162
1216 => 0.0081432731022925
1217 => 0.0080484187506914
1218 => 0.0081165981775787
1219 => 0.008084012802844
1220 => 0.0065244292632256
1221 => 0.0068908302822293
1222 => 0.0066731272385402
1223 => 0.0067734548171076
1224 => 0.0065512363834309
1225 => 0.0066572906674474
1226 => 0.0066377063136719
1227 => 0.0072268683096355
1228 => 0.0072176693554344
1229 => 0.0072220724080126
1230 => 0.0070119032363596
1231 => 0.0073467084335177
]
'min_raw' => 0.0042743222269245
'max_raw' => 0.0095421232663949
'avg_raw' => 0.0069082227466597
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.004274'
'max' => '$0.009542'
'avg' => '$0.0069082'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00065909181485455
'max_diff' => 0.001443560858585
'year' => 2035
]
10 => [
'items' => [
101 => 0.0075116455128433
102 => 0.0074811200491183
103 => 0.0074888026506926
104 => 0.0073567901019699
105 => 0.0072233505780494
106 => 0.007075345609826
107 => 0.0073503205468181
108 => 0.0073197480278033
109 => 0.0073898703867781
110 => 0.0075682112890319
111 => 0.0075944726643399
112 => 0.0076297682190706
113 => 0.0076171172752083
114 => 0.0079185140832475
115 => 0.0078820129411138
116 => 0.0079699701915607
117 => 0.0077890354540587
118 => 0.0075842906240922
119 => 0.007623205922656
120 => 0.0076194580664673
121 => 0.0075717435555952
122 => 0.0075286690286398
123 => 0.0074569620774318
124 => 0.0076838534816859
125 => 0.0076746421050255
126 => 0.0078237635861027
127 => 0.0077974049158335
128 => 0.0076213752647153
129 => 0.0076276621981421
130 => 0.0076699448468349
131 => 0.0078162855767356
201 => 0.0078597294690068
202 => 0.007839604527167
203 => 0.0078872387717534
204 => 0.0079248869364698
205 => 0.0078919668016004
206 => 0.0083580464889305
207 => 0.0081644977077886
208 => 0.0082588320370134
209 => 0.0082813302186834
210 => 0.0082237015994216
211 => 0.0082361991834133
212 => 0.008255129617773
213 => 0.0083700715082461
214 => 0.0086717122875515
215 => 0.0088053069353676
216 => 0.0092072330247663
217 => 0.0087942137595938
218 => 0.0087697069056421
219 => 0.0088421059313479
220 => 0.0090780790940223
221 => 0.0092693131785377
222 => 0.0093327565569305
223 => 0.0093411416467211
224 => 0.009460165642222
225 => 0.0095283879767771
226 => 0.0094457129985264
227 => 0.00937565461089
228 => 0.0091247141623435
229 => 0.0091537612025509
301 => 0.0093538665050161
302 => 0.0096365270308918
303 => 0.0098790791679085
304 => 0.0097941458633206
305 => 0.010442127023757
306 => 0.010506371709049
307 => 0.010497495170821
308 => 0.010643854124806
309 => 0.010353361406628
310 => 0.010229170141575
311 => 0.0093908020294934
312 => 0.0096263492723975
313 => 0.0099687310231632
314 => 0.0099234155145837
315 => 0.0096747687352872
316 => 0.0098788905470297
317 => 0.0098114014925884
318 => 0.0097581700752271
319 => 0.010002033517577
320 => 0.0097338956453552
321 => 0.009966056142773
322 => 0.0096683079034419
323 => 0.0097945338315018
324 => 0.0097228818898738
325 => 0.0097692494774388
326 => 0.0094981855079794
327 => 0.0096444450461938
328 => 0.0094921006303329
329 => 0.009492028399244
330 => 0.0094886653878202
331 => 0.0096678979174819
401 => 0.0096737426838395
402 => 0.0095412895736142
403 => 0.0095222010111242
404 => 0.0095927814313701
405 => 0.0095101502443036
406 => 0.0095488128566575
407 => 0.0095113212954455
408 => 0.0095028811553236
409 => 0.0094356286828608
410 => 0.0094066544685785
411 => 0.0094180160045721
412 => 0.0093792332249527
413 => 0.0093558651973976
414 => 0.0094840168989748
415 => 0.009415550614447
416 => 0.0094735234589261
417 => 0.0094074560858859
418 => 0.0091784377867442
419 => 0.0090467269410833
420 => 0.0086141326040122
421 => 0.008736815821374
422 => 0.0088181549214098
423 => 0.0087912723493332
424 => 0.0088490265163281
425 => 0.0088525721531217
426 => 0.0088337956846976
427 => 0.008812054939677
428 => 0.0088014727473397
429 => 0.008880343739195
430 => 0.0089261310046425
501 => 0.0088263183882751
502 => 0.0088029336887872
503 => 0.0089038497547402
504 => 0.0089654084966742
505 => 0.009419923660246
506 => 0.009386251708864
507 => 0.0094707616990461
508 => 0.0094612471710631
509 => 0.0095498271042712
510 => 0.0096946178583936
511 => 0.0094002177711313
512 => 0.0094513154466909
513 => 0.0094387874766613
514 => 0.0095755645684341
515 => 0.0095759915715849
516 => 0.0094939868725447
517 => 0.0095384429502687
518 => 0.0095136287872719
519 => 0.0095584713336424
520 => 0.0093858019994244
521 => 0.0095960946099991
522 => 0.0097153169692385
523 => 0.0097169723718122
524 => 0.0097734828238845
525 => 0.0098309007160546
526 => 0.0099411093600307
527 => 0.00982782705679
528 => 0.0096240432210698
529 => 0.0096387557557911
530 => 0.0095192773674699
531 => 0.0095212858207631
601 => 0.0095105645396787
602 => 0.0095427399112736
603 => 0.0093928626841114
604 => 0.009428038569756
605 => 0.0093787921238638
606 => 0.0094512083945352
607 => 0.0093733004581312
608 => 0.0094387814352949
609 => 0.0094670408543099
610 => 0.0095713187188573
611 => 0.0093578985327518
612 => 0.0089227203260064
613 => 0.00901420006109
614 => 0.0088788943473232
615 => 0.0088914174062775
616 => 0.0089167159783952
617 => 0.0088347150289839
618 => 0.0088503582259847
619 => 0.0088497993409084
620 => 0.0088449831712545
621 => 0.0088236515572857
622 => 0.0087927164966997
623 => 0.0089159522567647
624 => 0.0089368924138062
625 => 0.0089834397889726
626 => 0.0091219332040819
627 => 0.0091080944460128
628 => 0.009130666034588
629 => 0.0090813923834625
630 => 0.008893703069633
701 => 0.0089038955023745
702 => 0.0087767957027656
703 => 0.0089801895613373
704 => 0.0089320232109598
705 => 0.0089009700515307
706 => 0.008892496909275
707 => 0.0090313336227727
708 => 0.00907287574345
709 => 0.0090469894816319
710 => 0.0089938960034201
711 => 0.0090958511772646
712 => 0.0091231300806419
713 => 0.0091292368211009
714 => 0.0093098818411878
715 => 0.0091393328710079
716 => 0.0091803857032412
717 => 0.0095006681812774
718 => 0.0092102161696593
719 => 0.0093640750780662
720 => 0.0093565444851428
721 => 0.0094352534963822
722 => 0.0093500880488773
723 => 0.009351143776669
724 => 0.0094210320464393
725 => 0.0093228865759628
726 => 0.0092985843772499
727 => 0.0092650110637838
728 => 0.009338317165482
729 => 0.0093822608581003
730 => 0.009736414747518
731 => 0.0099652143114613
801 => 0.0099552815189746
802 => 0.010046048648895
803 => 0.010005157225534
804 => 0.0098731080328902
805 => 0.01009849990305
806 => 0.010027176484535
807 => 0.010033056300499
808 => 0.010032837453455
809 => 0.010080261291566
810 => 0.010046657155934
811 => 0.0099804199552083
812 => 0.010024391300211
813 => 0.010154970474824
814 => 0.010560292239482
815 => 0.010787115668784
816 => 0.01054663718423
817 => 0.01071251602274
818 => 0.010613047828307
819 => 0.010594971498457
820 => 0.010699155667391
821 => 0.010803522196921
822 => 0.010796874500179
823 => 0.01072110975902
824 => 0.010678312179199
825 => 0.011002389791846
826 => 0.011241164656326
827 => 0.011224881811336
828 => 0.011296748993659
829 => 0.011507753263729
830 => 0.011527044849792
831 => 0.01152461455336
901 => 0.011476798344433
902 => 0.011684559450684
903 => 0.011857877420727
904 => 0.011465730273609
905 => 0.011615054773649
906 => 0.011682091352651
907 => 0.011780520939483
908 => 0.011946588151184
909 => 0.012126981190243
910 => 0.012152490743875
911 => 0.012134390494829
912 => 0.012015416436344
913 => 0.012212804652219
914 => 0.012328430039755
915 => 0.012397282311993
916 => 0.012571880218463
917 => 0.011682505347741
918 => 0.011052961609445
919 => 0.010954649263988
920 => 0.011154571284416
921 => 0.011207289126855
922 => 0.011186038630671
923 => 0.010477429917606
924 => 0.010950918585764
925 => 0.011460352580644
926 => 0.011479922015122
927 => 0.011734955324722
928 => 0.011818004624496
929 => 0.012023339866704
930 => 0.012010496091397
1001 => 0.012060491955277
1002 => 0.012048998771979
1003 => 0.012429339069732
1004 => 0.012848910899234
1005 => 0.012834382460935
1006 => 0.012774064046296
1007 => 0.012863647177854
1008 => 0.01329669026995
1009 => 0.013256822601404
1010 => 0.013295550645476
1011 => 0.013806132856297
1012 => 0.014469962359837
1013 => 0.01416154690805
1014 => 0.014830719694271
1015 => 0.015251928491873
1016 => 0.015980365553521
1017 => 0.015889161645775
1018 => 0.016172736848356
1019 => 0.015725887616078
1020 => 0.014699831455638
1021 => 0.014537454140663
1022 => 0.014862537637292
1023 => 0.015661723692568
1024 => 0.014837368424349
1025 => 0.015004134421467
1026 => 0.014956105803078
1027 => 0.014953546562113
1028 => 0.015051222380579
1029 => 0.014909538511466
1030 => 0.014332292940256
1031 => 0.014596841183812
1101 => 0.014494686402325
1102 => 0.014608034748528
1103 => 0.015219729024574
1104 => 0.014949284404164
1105 => 0.014664392965698
1106 => 0.015021710052005
1107 => 0.015476697490345
1108 => 0.015448225194145
1109 => 0.01539297703902
1110 => 0.015704407996761
1111 => 0.01621880069824
1112 => 0.016357838978453
1113 => 0.016460474194393
1114 => 0.016474625856635
1115 => 0.016620396772937
1116 => 0.015836549816982
1117 => 0.0170805350667
1118 => 0.017295336954927
1119 => 0.017254963102567
1120 => 0.017493706361086
1121 => 0.017423462038098
1122 => 0.017321689035084
1123 => 0.017700147881985
1124 => 0.017266275354068
1125 => 0.016650447923721
1126 => 0.016312592815747
1127 => 0.016757507675921
1128 => 0.01702920165564
1129 => 0.017208774093252
1130 => 0.017263112604373
1201 => 0.015897397624846
1202 => 0.015161352996907
1203 => 0.015633149164647
1204 => 0.016208773050923
1205 => 0.01583335219723
1206 => 0.015848067983929
1207 => 0.015312816505427
1208 => 0.016256130929965
1209 => 0.016118697952833
1210 => 0.016831700481309
1211 => 0.016661536705685
1212 => 0.017242962589058
1213 => 0.017089853668263
1214 => 0.01772540023828
1215 => 0.017978936971797
1216 => 0.018404664607213
1217 => 0.018717831588848
1218 => 0.018901729230394
1219 => 0.018890688705778
1220 => 0.019619382779024
1221 => 0.019189697342663
1222 => 0.018649911165511
1223 => 0.01864014813657
1224 => 0.018919711046546
1225 => 0.019505598211517
1226 => 0.019657510229083
1227 => 0.019742408322683
1228 => 0.01961238393701
1229 => 0.019145991191672
1230 => 0.018944605168901
1231 => 0.019116191895017
]
'min_raw' => 0.007075345609826
'max_raw' => 0.019742408322683
'avg_raw' => 0.013408876966255
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.007075'
'max' => '$0.019742'
'avg' => '$0.0134088'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0028010233829015
'max_diff' => 0.010200285056288
'year' => 2036
]
11 => [
'items' => [
101 => 0.018906356073592
102 => 0.019268591570904
103 => 0.019766018278041
104 => 0.019663301630056
105 => 0.020006667984131
106 => 0.020362016037404
107 => 0.020870179713265
108 => 0.021003032515381
109 => 0.02122263314534
110 => 0.021448674328617
111 => 0.021521272664705
112 => 0.021659885414237
113 => 0.021659154856626
114 => 0.022076873707055
115 => 0.022537630534755
116 => 0.022711555570667
117 => 0.023111486600463
118 => 0.022426618727192
119 => 0.022946098876263
120 => 0.023414682974157
121 => 0.022856017695193
122 => 0.02362600762993
123 => 0.023655904594261
124 => 0.024107313260349
125 => 0.023649724097832
126 => 0.023378009113806
127 => 0.024162440091662
128 => 0.024542001532503
129 => 0.024427674537548
130 => 0.023557640460923
131 => 0.023051243310811
201 => 0.021725904292251
202 => 0.02329582561012
203 => 0.024060488488821
204 => 0.023555660168797
205 => 0.023810266209307
206 => 0.025199314210048
207 => 0.025728173754533
208 => 0.025618174666287
209 => 0.025636762701462
210 => 0.025922125712186
211 => 0.027187582454017
212 => 0.026429291441254
213 => 0.027008976507889
214 => 0.027316439377022
215 => 0.027602028024965
216 => 0.026900712566837
217 => 0.025988311460182
218 => 0.025699315729712
219 => 0.023505464941449
220 => 0.023391265480509
221 => 0.023327161862485
222 => 0.022922997618484
223 => 0.022605435232602
224 => 0.022352897833014
225 => 0.021690164282442
226 => 0.021913817401013
227 => 0.020857558444644
228 => 0.02153331549341
301 => 0.01984750069478
302 => 0.021251497353336
303 => 0.020487365803979
304 => 0.02100045958812
305 => 0.020998669452243
306 => 0.020053901119107
307 => 0.019508978461366
308 => 0.019856224387586
309 => 0.020228499584909
310 => 0.020288899983191
311 => 0.020771564493897
312 => 0.020906265783997
313 => 0.020498114586394
314 => 0.01981256593016
315 => 0.019971803247303
316 => 0.019505751522217
317 => 0.018689013800424
318 => 0.019275609091088
319 => 0.019475898514095
320 => 0.019564357733532
321 => 0.018761189987109
322 => 0.018508817243563
323 => 0.018374456112512
324 => 0.019708887059845
325 => 0.019781990199448
326 => 0.019407984201499
327 => 0.021098526776931
328 => 0.020715904926316
329 => 0.021143387278082
330 => 0.019957354129819
331 => 0.020002662193288
401 => 0.019441175093876
402 => 0.019755570350965
403 => 0.019533365916687
404 => 0.019730170321107
405 => 0.019848134069661
406 => 0.020409529034565
407 => 0.021257907582054
408 => 0.020325675347681
409 => 0.019919488413353
410 => 0.020171484502928
411 => 0.020842583297123
412 => 0.021859332323242
413 => 0.021257396435798
414 => 0.021524525361112
415 => 0.021582881147554
416 => 0.021139035909031
417 => 0.021875697530281
418 => 0.022270480477737
419 => 0.022675446093007
420 => 0.023027066389867
421 => 0.022513693920884
422 => 0.023063076051749
423 => 0.022620371033272
424 => 0.022223218865696
425 => 0.022223821181597
426 => 0.021974681825408
427 => 0.021491942929215
428 => 0.021402918470213
429 => 0.021866034948489
430 => 0.022237410506773
501 => 0.022267998776522
502 => 0.022473611367553
503 => 0.022595290780947
504 => 0.023787914447349
505 => 0.024267597551877
506 => 0.024854144972156
507 => 0.025082638248357
508 => 0.025770321090346
509 => 0.02521496134457
510 => 0.025094805770195
511 => 0.023426712134872
512 => 0.023699862374207
513 => 0.024137202262462
514 => 0.023433923708547
515 => 0.023879992078597
516 => 0.023968055423865
517 => 0.023410026572397
518 => 0.023708093892969
519 => 0.022916515460332
520 => 0.021275161828751
521 => 0.021877524826079
522 => 0.022321066745304
523 => 0.021688077738245
524 => 0.022822686033341
525 => 0.022159871290415
526 => 0.021949790837626
527 => 0.021130192092208
528 => 0.021517011150797
529 => 0.022040189466253
530 => 0.021716926093309
531 => 0.022387746130409
601 => 0.023337806204112
602 => 0.024014875589688
603 => 0.024066852569908
604 => 0.023631542315109
605 => 0.024329129776538
606 => 0.024334210939621
607 => 0.0235473294334
608 => 0.023065368892214
609 => 0.022955866443203
610 => 0.023229425030053
611 => 0.023561575656189
612 => 0.024085284618008
613 => 0.024401750975315
614 => 0.025226927394385
615 => 0.025450196473723
616 => 0.02569550150096
617 => 0.026023304666619
618 => 0.026416916413998
619 => 0.025555716319061
620 => 0.025589933404311
621 => 0.024787995800033
622 => 0.023931010460377
623 => 0.024581355508446
624 => 0.025431595147019
625 => 0.025236549234499
626 => 0.025214602584914
627 => 0.025251510762023
628 => 0.025104452513587
629 => 0.024439313506143
630 => 0.024105284860596
701 => 0.024536267033148
702 => 0.02476531487705
703 => 0.025120548107871
704 => 0.025076758114108
705 => 0.025991800767438
706 => 0.026347358673069
707 => 0.026256391745628
708 => 0.026273131849519
709 => 0.026916852454004
710 => 0.027632802157431
711 => 0.028303383532574
712 => 0.028985527709511
713 => 0.028163176279674
714 => 0.027745636939187
715 => 0.028176430958405
716 => 0.027947845587944
717 => 0.029261364929443
718 => 0.029352310158746
719 => 0.030665734517847
720 => 0.031912330634297
721 => 0.031129365948644
722 => 0.031867666381711
723 => 0.03266619849459
724 => 0.034206696497501
725 => 0.033687910965494
726 => 0.033290529378382
727 => 0.032915005698695
728 => 0.033696410863418
729 => 0.034701676124581
730 => 0.034918200633525
731 => 0.035269053056742
801 => 0.034900174633922
802 => 0.035344448063583
803 => 0.036912928493923
804 => 0.036489111236285
805 => 0.035887222598416
806 => 0.037125387259708
807 => 0.037573474237386
808 => 0.040718383311703
809 => 0.044688960927743
810 => 0.043045115722484
811 => 0.042024727957027
812 => 0.04226454328583
813 => 0.043714463818674
814 => 0.044180132275645
815 => 0.042914284884053
816 => 0.043361403582717
817 => 0.045825071572097
818 => 0.047146750404467
819 => 0.04535173302496
820 => 0.040399351266319
821 => 0.035833029111982
822 => 0.037044223371479
823 => 0.036906911530186
824 => 0.039553815435934
825 => 0.036479003334856
826 => 0.036530775284843
827 => 0.039232414360243
828 => 0.038511663372745
829 => 0.037344139079812
830 => 0.03584155333138
831 => 0.033063884603045
901 => 0.030603625949336
902 => 0.035428759732989
903 => 0.035220691190302
904 => 0.03491937710646
905 => 0.035589918994461
906 => 0.03884588006596
907 => 0.038770819624744
908 => 0.038293323393905
909 => 0.038655500076538
910 => 0.037280647756248
911 => 0.037634978503992
912 => 0.035832305783223
913 => 0.036647189139273
914 => 0.037341634097041
915 => 0.037481054203746
916 => 0.03779517482312
917 => 0.035111048523013
918 => 0.036316142429953
919 => 0.037024022198252
920 => 0.033825795652193
921 => 0.036960803542518
922 => 0.03506432385577
923 => 0.034420630165919
924 => 0.035287278919109
925 => 0.034949545057147
926 => 0.03465918131503
927 => 0.034497153357847
928 => 0.035133524553657
929 => 0.035103837076744
930 => 0.034062610286073
1001 => 0.032704372383475
1002 => 0.033160241606226
1003 => 0.032994620043804
1004 => 0.032394386135979
1005 => 0.032798871317334
1006 => 0.03101772328391
1007 => 0.027953350668422
1008 => 0.029977769082485
1009 => 0.029899831175687
1010 => 0.029860531348877
1011 => 0.03138182583623
1012 => 0.031235588473506
1013 => 0.030970166228202
1014 => 0.032389511448297
1015 => 0.031871431350075
1016 => 0.033468032137772
1017 => 0.034519656678213
1018 => 0.034252930678267
1019 => 0.035241988641495
1020 => 0.033170743912392
1021 => 0.033858728327485
1022 => 0.03400052096193
1023 => 0.0323719969486
1024 => 0.031259514714596
1025 => 0.031185324832814
1026 => 0.029256433948545
1027 => 0.030286831889458
1028 => 0.031193539436698
1029 => 0.030759296884918
1030 => 0.030621828665652
1031 => 0.031324123984664
1101 => 0.031378698345704
1102 => 0.030134397130463
1103 => 0.030393126755006
1104 => 0.031472072299573
1105 => 0.030365940095572
1106 => 0.028216905908868
1107 => 0.027683915717843
1108 => 0.027612805001402
1109 => 0.026167293331357
1110 => 0.027719532670999
1111 => 0.027041938601817
1112 => 0.029182450147539
1113 => 0.027959801432416
1114 => 0.027907095489984
1115 => 0.027827422727718
1116 => 0.026583211119975
1117 => 0.026855614388298
1118 => 0.027761124340393
1119 => 0.0280842204926
1120 => 0.028050518916876
1121 => 0.027756686847628
1122 => 0.027891201664266
1123 => 0.027457882571807
1124 => 0.027304868581502
1125 => 0.026821914338287
1126 => 0.026112105020277
1127 => 0.026210808359459
1128 => 0.024804490368769
1129 => 0.024038253688496
1130 => 0.023826169474233
1201 => 0.023542561599312
1202 => 0.023858203738357
1203 => 0.024800506446596
1204 => 0.023663889459789
1205 => 0.021715239360319
1206 => 0.021832356551636
1207 => 0.022095484108117
1208 => 0.021605147647377
1209 => 0.021141085338106
1210 => 0.021544549865452
1211 => 0.020718881129706
1212 => 0.022195262230153
1213 => 0.022155330258896
1214 => 0.022705633834348
1215 => 0.023049749953444
1216 => 0.022256673707844
1217 => 0.022057217176782
1218 => 0.022170836681669
1219 => 0.020292959356462
1220 => 0.022552171193571
1221 => 0.022571708951355
1222 => 0.022404414807499
1223 => 0.023607375365419
1224 => 0.02614599735544
1225 => 0.025190865646961
1226 => 0.024821009780429
1227 => 0.02411791350779
1228 => 0.025054747545356
1229 => 0.024982813308159
1230 => 0.024657499407302
1231 => 0.024460748545023
]
'min_raw' => 0.018374456112512
'max_raw' => 0.047146750404467
'avg_raw' => 0.03276060325849
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.018374'
'max' => '$0.047146'
'avg' => '$0.03276'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.011299110502686
'max_diff' => 0.027404342081784
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00057675318135105
]
1 => [
'year' => 2028
'avg' => 0.00098987589184327
]
2 => [
'year' => 2029
'avg' => 0.0027041625287445
]
3 => [
'year' => 2030
'avg' => 0.0020862573637667
]
4 => [
'year' => 2031
'avg' => 0.0020489632782476
]
5 => [
'year' => 2032
'avg' => 0.0035924774592433
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00057675318135105
'min' => '$0.000576'
'max_raw' => 0.0035924774592433
'max' => '$0.003592'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0035924774592433
]
1 => [
'year' => 2033
'avg' => 0.0092402214352746
]
2 => [
'year' => 2034
'avg' => 0.0058568964099399
]
3 => [
'year' => 2035
'avg' => 0.0069082227466597
]
4 => [
'year' => 2036
'avg' => 0.013408876966255
]
5 => [
'year' => 2037
'avg' => 0.03276060325849
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0035924774592433
'min' => '$0.003592'
'max_raw' => 0.03276060325849
'max' => '$0.03276'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.03276060325849
]
]
]
]
'prediction_2025_max_price' => '$0.000986'
'last_price' => 0.00095619
'sma_50day_nextmonth' => '$0.00091'
'sma_200day_nextmonth' => '$0.001634'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.000929'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000931'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000942'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000961'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.001094'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001371'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002116'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000938'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000936'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000942'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000972'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0011032'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001431'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002654'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001478'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.004032'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.016842'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000958'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000996'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001154'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001789'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005239'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.014746'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.013424'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '40.19'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 80.57
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000942'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000922'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 69.26
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -7.84
'cci_20_action' => 'NEUTRAL'
'adx_14' => 40.68
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000066'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -30.74
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 47.32
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000243'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 14
'sell_pct' => 56.25
'buy_pct' => 43.75
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767701126
'last_updated_date' => '6. Januar 2026'
]
Paysenger EGO Preisprognose für 2026
Die Preisprognose für Paysenger EGO im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.00033 am unteren Ende und $0.000986 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Paysenger EGO im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn EGO das prognostizierte Preisziel erreicht.
Paysenger EGO Preisprognose 2027-2032
Die Preisprognose für EGO für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.000576 am unteren Ende und $0.003592 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Paysenger EGO, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Paysenger EGO Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.000318 | $0.000576 | $0.000835 |
| 2028 | $0.000573 | $0.000989 | $0.0014057 |
| 2029 | $0.00126 | $0.0027041 | $0.004147 |
| 2030 | $0.001072 | $0.002086 | $0.00310024 |
| 2031 | $0.001267 | $0.002048 | $0.00283 |
| 2032 | $0.001935 | $0.003592 | $0.005249 |
Paysenger EGO Preisprognose 2032-2037
Die Preisprognose für Paysenger EGO für die Jahre 2032-2037 wird derzeit zwischen $0.003592 am unteren Ende und $0.03276 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Paysenger EGO bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Paysenger EGO Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.001935 | $0.003592 | $0.005249 |
| 2033 | $0.004496 | $0.00924 | $0.013983 |
| 2034 | $0.003615 | $0.005856 | $0.008098 |
| 2035 | $0.004274 | $0.0069082 | $0.009542 |
| 2036 | $0.007075 | $0.0134088 | $0.019742 |
| 2037 | $0.018374 | $0.03276 | $0.047146 |
Paysenger EGO Potenzielles Preishistogramm
Paysenger EGO Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Paysenger EGO Bärisch, mit 14 technischen Indikatoren, die bullische Signale zeigen, und 18 anzeigen bärische Signale. Die Preisprognose für EGO wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Paysenger EGO
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Paysenger EGO im nächsten Monat steigen, und bis zum 04.02.2026 $0.001634 erreichen. Der kurzfristige 50-Tage-SMA für Paysenger EGO wird voraussichtlich bis zum 04.02.2026 $0.00091 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 40.19, was darauf hindeutet, dass sich der EGO-Markt in einem NEUTRAL Zustand befindet.
Beliebte EGO Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.000929 | BUY |
| SMA 5 | $0.000931 | BUY |
| SMA 10 | $0.000942 | BUY |
| SMA 21 | $0.000961 | SELL |
| SMA 50 | $0.001094 | SELL |
| SMA 100 | $0.001371 | SELL |
| SMA 200 | $0.002116 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.000938 | BUY |
| EMA 5 | $0.000936 | BUY |
| EMA 10 | $0.000942 | BUY |
| EMA 21 | $0.000972 | SELL |
| EMA 50 | $0.0011032 | SELL |
| EMA 100 | $0.001431 | SELL |
| EMA 200 | $0.002654 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.001478 | SELL |
| SMA 50 | $0.004032 | SELL |
| SMA 100 | $0.016842 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.001789 | SELL |
| EMA 50 | $0.005239 | SELL |
| EMA 100 | $0.014746 | SELL |
| EMA 200 | $0.013424 | SELL |
Paysenger EGO Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 40.19 | NEUTRAL |
| Stoch RSI (14) | 80.57 | NEUTRAL |
| Stochastic Fast (14) | 69.26 | NEUTRAL |
| Commodity Channel Index (20) | -7.84 | NEUTRAL |
| Average Directional Index (14) | 40.68 | SELL |
| Awesome Oscillator (5, 34) | -0.000066 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -30.74 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 47.32 | NEUTRAL |
| VWMA (10) | 0.000942 | BUY |
| Hull Moving Average (9) | 0.000922 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000243 | SELL |
Auf weltweiten Geldflüssen basierende Paysenger EGO-Preisprognose
Definition weltweiter Geldflüsse, die für Paysenger EGO-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Paysenger EGO-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.001343 | $0.001887 | $0.002652 | $0.003727 | $0.005238 | $0.00736 |
| Amazon.com aktie | $0.001995 | $0.004162 | $0.008686 | $0.018124 | $0.037817 | $0.0789094 |
| Apple aktie | $0.001356 | $0.001923 | $0.002728 | $0.00387 | $0.00549 | $0.007787 |
| Netflix aktie | $0.0015087 | $0.00238 | $0.003756 | $0.005926 | $0.009351 | $0.014754 |
| Google aktie | $0.001238 | $0.0016035 | $0.002076 | $0.002689 | $0.003482 | $0.0045097 |
| Tesla aktie | $0.002167 | $0.004913 | $0.011139 | $0.025251 | $0.057243 | $0.129767 |
| Kodak aktie | $0.000717 | $0.000537 | $0.0004032 | $0.0003023 | $0.000226 | $0.00017 |
| Nokia aktie | $0.000633 | $0.000419 | $0.000277 | $0.000184 | $0.000121 | $0.00008 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Paysenger EGO Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Paysenger EGO investieren?", "Sollte ich heute EGO kaufen?", "Wird Paysenger EGO auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Paysenger EGO-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Paysenger EGO.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Paysenger EGO zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Paysenger EGO-Preis entspricht heute $0.0009561 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Paysenger EGO-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Paysenger EGO-Prognose
basierend auf dem Preisverlauf des letzten Monats
Paysenger EGO-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Paysenger EGO 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000981 | $0.0010065 | $0.001032 | $0.001059 |
| Wenn die Wachstumsrate von Paysenger EGO 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0010058 | $0.001058 | $0.001113 | $0.001171 |
| Wenn die Wachstumsrate von Paysenger EGO 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00108 | $0.00122 | $0.001379 | $0.001558 |
| Wenn die Wachstumsrate von Paysenger EGO 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0012047 | $0.001517 | $0.001912 | $0.0024095 |
| Wenn die Wachstumsrate von Paysenger EGO 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001453 | $0.0022087 | $0.003357 | $0.0051022 |
| Wenn die Wachstumsrate von Paysenger EGO 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002198 | $0.005056 | $0.011628 | $0.026742 |
| Wenn die Wachstumsrate von Paysenger EGO 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003441 | $0.012387 | $0.044586 | $0.160482 |
Fragefeld
Ist EGO eine gute Investition?
Die Entscheidung, Paysenger EGO zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Paysenger EGO in den letzten 2026 Stunden um 3.7835% gestiegen, und Paysenger EGO hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Paysenger EGO investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Paysenger EGO steigen?
Es scheint, dass der Durchschnittswert von Paysenger EGO bis zum Ende dieses Jahres potenziell auf $0.000986 steigen könnte. Betrachtet man die Aussichten von Paysenger EGO in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.00310024 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Paysenger EGO nächste Woche kosten?
Basierend auf unserer neuen experimentellen Paysenger EGO-Prognose wird der Preis von Paysenger EGO in der nächsten Woche um 0.86% steigen und $0.000964 erreichen bis zum 13. Januar 2026.
Wie viel wird Paysenger EGO nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Paysenger EGO-Prognose wird der Preis von Paysenger EGO im nächsten Monat um -11.62% fallen und $0.000845 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Paysenger EGO in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Paysenger EGO im Jahr 2026 wird erwartet, dass EGO innerhalb der Spanne von $0.00033 bis $0.000986 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Paysenger EGO-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Paysenger EGO in 5 Jahren sein?
Die Zukunft von Paysenger EGO scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.00310024 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Paysenger EGO-Prognose für 2030 könnte der Wert von Paysenger EGO seinen höchsten Gipfel von ungefähr $0.00310024 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.001072 liegen wird.
Wie viel wird Paysenger EGO im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Paysenger EGO-Preisprognosesimulation wird der Wert von EGO im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.000986 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.000986 und $0.00033 während des Jahres 2026 liegen.
Wie viel wird Paysenger EGO im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Paysenger EGO könnte der Wert von EGO um -12.62% fallen und bis zu $0.000835 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.000835 und $0.000318 im Laufe des Jahres schwanken.
Wie viel wird Paysenger EGO im Jahr 2028 kosten?
Unser neues experimentelles Paysenger EGO-Preisprognosemodell deutet darauf hin, dass der Wert von EGO im Jahr 2028 um 47.02% steigen, und im besten Fall $0.0014057 erreichen wird. Der Preis wird voraussichtlich zwischen $0.0014057 und $0.000573 im Laufe des Jahres liegen.
Wie viel wird Paysenger EGO im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Paysenger EGO im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.004147 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.004147 und $0.00126.
Wie viel wird Paysenger EGO im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Paysenger EGO-Preisprognosen wird der Wert von EGO im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.00310024 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.00310024 und $0.001072 während des Jahres 2030 liegen.
Wie viel wird Paysenger EGO im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Paysenger EGO im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.00283 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.00283 und $0.001267 während des Jahres schwanken.
Wie viel wird Paysenger EGO im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Paysenger EGO-Preisprognose könnte EGO eine 449.04% Steigerung im Wert erfahren und $0.005249 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.005249 und $0.001935 liegen.
Wie viel wird Paysenger EGO im Jahr 2033 kosten?
Laut unserer experimentellen Paysenger EGO-Preisprognose wird der Wert von EGO voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.013983 beträgt. Im Laufe des Jahres könnte der Preis von EGO zwischen $0.013983 und $0.004496 liegen.
Wie viel wird Paysenger EGO im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Paysenger EGO-Preisprognosesimulation deuten darauf hin, dass EGO im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.008098 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.008098 und $0.003615.
Wie viel wird Paysenger EGO im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Paysenger EGO könnte EGO um 897.93% steigen, wobei der Wert im Jahr 2035 $0.009542 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.009542 und $0.004274.
Wie viel wird Paysenger EGO im Jahr 2036 kosten?
Unsere jüngste Paysenger EGO-Preisprognosesimulation deutet darauf hin, dass der Wert von EGO im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.019742 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.019742 und $0.007075.
Wie viel wird Paysenger EGO im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Paysenger EGO um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.047146 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.047146 und $0.018374 liegen.
Verwandte Prognosen
Mendi Finance-Preisprognose
Wombat Exchange-Preisprognose
Big Data Protocol-Preisprognose
Juicebox-Preisprognose
Tamadoge-Preisprognose
Bytecoin-Preisprognose
Afreum-Preisprognose
MESSIER-Preisprognose
KiboShib-Preisprognose
TokenSight-Preisprognose
Honk-Preisprognose
NavCoin-Preisprognose
Kira the Injective Cat-Preisprognose
ZoidPay-Preisprognose
Chain Games-Preisprognose
Everton Fan Token-Preisprognose
Oracle AI-Preisprognose
Defit-Preisprognose
Pocketcoin-Preisprognose
Metavault Trade-Preisprognose
Baanx-Preisprognose
Calaxy-Preisprognose
Polkadex-Preisprognose
Mobius-Preisprognose
BitKan-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Paysenger EGO?
Paysenger EGO-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Paysenger EGO Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Paysenger EGO. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von EGO über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von EGO über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von EGO einzuschätzen.
Wie liest man Paysenger EGO-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Paysenger EGO in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von EGO innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Paysenger EGO?
Die Preisentwicklung von Paysenger EGO wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von EGO. Die Marktkapitalisierung von Paysenger EGO kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von EGO-„Walen“, großen Inhabern von Paysenger EGO, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Paysenger EGO-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


