Paysenger EGO Preisvorhersage bis zu $0.000985 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.00033 | $0.000985 |
| 2027 | $0.000317 | $0.000835 |
| 2028 | $0.000573 | $0.0014051 |
| 2029 | $0.00126 | $0.004145 |
| 2030 | $0.001071 | $0.003098 |
| 2031 | $0.001267 | $0.002828 |
| 2032 | $0.001934 | $0.005247 |
| 2033 | $0.004494 | $0.013977 |
| 2034 | $0.003613 | $0.008095 |
| 2035 | $0.004272 | $0.009538 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Paysenger EGO eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,963.05 Gewinn erzielen könnten, was einer Rendite von 39.63% in den nächsten 90 Tagen entspricht.
Langfristige Paysenger EGO Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Paysenger EGO'
'name_with_ticker' => 'Paysenger EGO <small>EGO</small>'
'name_lang' => 'Paysenger EGO'
'name_lang_with_ticker' => 'Paysenger EGO <small>EGO</small>'
'name_with_lang' => 'Paysenger EGO'
'name_with_lang_with_ticker' => 'Paysenger EGO <small>EGO</small>'
'image' => '/uploads/coins/paysenger-ego.jpg?1717227008'
'price_for_sd' => 0.0009557
'ticker' => 'EGO'
'marketcap' => '$191.73K'
'low24h' => '$0.0009253'
'high24h' => '$0.0009567'
'volume24h' => '$74.17K'
'current_supply' => '200.64M'
'max_supply' => '323M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0009557'
'change_24h_pct' => '3.2248%'
'ath_price' => '$0.1311'
'ath_days' => 657
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20.03.2024'
'ath_pct' => '-99.27%'
'fdv' => '$308.65K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.047126'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000963'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000844'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00033'
'current_year_max_price_prediction' => '$0.000985'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001071'
'grand_prediction_max_price' => '$0.003098'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00097389152825972
107 => 0.00097752768570362
108 => 0.00098572013409152
109 => 0.0009157165595918
110 => 0.00094714610934521
111 => 0.00096560802527477
112 => 0.00088219641745474
113 => 0.00096395924597694
114 => 0.00091449795310366
115 => 0.00089771004741878
116 => 0.00092031275078508
117 => 0.00091150445530138
118 => 0.00090393160008497
119 => 0.00089970581675604
120 => 0.00091630274753891
121 => 0.00091552848088026
122 => 0.00088837268079404
123 => 0.00085294904659357
124 => 0.0008648383809724
125 => 0.00086051887432947
126 => 0.00084486442502803
127 => 0.00085541363373178
128 => 0.00080896025743281
129 => 0.00072903963794681
130 => 0.00078183764721404
131 => 0.00077980498129043
201 => 0.00077878001895769
202 => 0.00081845626369222
203 => 0.0008146423082477
204 => 0.00080771994176954
205 => 0.00084473729033907
206 => 0.0008312254601576
207 => 0.00087286573698934
208 => 0.00090029271643497
209 => 0.00089333634727772
210 => 0.00091913155401243
211 => 0.00086511228722341
212 => 0.00088305532077391
213 => 0.0008867533551207
214 => 0.00084428050200378
215 => 0.00081526631852641
216 => 0.00081333140327438
217 => 0.00076302480752538
218 => 0.00078989818491384
219 => 0.00081354564491977
220 => 0.00080222034669396
221 => 0.00079863509560933
222 => 0.00081695136585462
223 => 0.00081837469692093
224 => 0.0007859225977713
225 => 0.00079267041680883
226 => 0.00082080994392692
227 => 0.00079196137292405
228 => 0.00073591331185278
301 => 0.00072201261778203
302 => 0.00072015800895237
303 => 0.00068245822415456
304 => 0.00072294152862859
305 => 0.00070526948134057
306 => 0.0007610952669798
307 => 0.00072920787762237
308 => 0.00072783327599968
309 => 0.00072575536403678
310 => 0.00069330560190281
311 => 0.00070041003752018
312 => 0.00072402626354843
313 => 0.00073245279905114
314 => 0.00073157384236163
315 => 0.0007239105311571
316 => 0.00072741875578403
317 => 0.0007161175419142
318 => 0.00071212684808234
319 => 0.00069953112062216
320 => 0.00068101888091423
321 => 0.00068359312138778
322 => 0.00064691553053534
323 => 0.00062693163241185
324 => 0.00062140035279481
325 => 0.00061400369452282
326 => 0.00062223582502839
327 => 0.00064681162752875
328 => 0.00061716799566596
329 => 0.00056634606809622
330 => 0.00056940055253951
331 => 0.00057626307219902
401 => 0.00056347481221364
402 => 0.00055137179737478
403 => 0.00056189438682854
404 => 0.0005403604661436
405 => 0.00057886534363427
406 => 0.00057782389460682
407 => 0.00059217613180969
408 => 0.0006011508802702
409 => 0.00058046699067804
410 => 0.0005752650483808
411 => 0.00057822831112841
412 => 0.00052925217865983
413 => 0.00058817373691267
414 => 0.00058868329299521
415 => 0.00058432016445602
416 => 0.00061569407522664
417 => 0.00068190281272081
418 => 0.00065699242243521
419 => 0.00064734636639609
420 => 0.0006290092068145
421 => 0.00065344238320417
422 => 0.00065156629647437
423 => 0.00064308192079745
424 => 0.00063795054391519
425 => 0.00064740526315736
426 => 0.00063677899957034
427 => 0.00063487023063992
428 => 0.00062330516768262
429 => 0.00061917696638371
430 => 0.00061612061049042
501 => 0.00061275586296323
502 => 0.00062017765756536
503 => 0.00060335889457855
504 => 0.00058307711518013
505 => 0.00058139090467504
506 => 0.00058604668013272
507 => 0.00058398684607442
508 => 0.00058138104298205
509 => 0.00057640585523046
510 => 0.00057492982330263
511 => 0.00057972621099919
512 => 0.00057431136893655
513 => 0.00058230126336168
514 => 0.00058012845417907
515 => 0.00056799131871183
516 => 0.00055286395417657
517 => 0.00055272928890148
518 => 0.00054947012302621
519 => 0.00054531908526518
520 => 0.00054416436152294
521 => 0.00056100820369463
522 => 0.00059587445289625
523 => 0.00058902937389934
524 => 0.00059397564498652
525 => 0.00061830640323101
526 => 0.00062604041962551
527 => 0.00062055099797891
528 => 0.00061303673905627
529 => 0.00061336732831335
530 => 0.00063904582577289
531 => 0.00064064736216156
601 => 0.00064469392794049
602 => 0.00064989490852578
603 => 0.00062143674746226
604 => 0.00061202695148646
605 => 0.00060756806811752
606 => 0.00059383643314623
607 => 0.00060864482420136
608 => 0.00060001660889206
609 => 0.00060118084991909
610 => 0.00060042263642291
611 => 0.000600836672262
612 => 0.00057885458073628
613 => 0.00058686369954354
614 => 0.00057354698613234
615 => 0.00055571740174597
616 => 0.00055565763072725
617 => 0.00056002139624666
618 => 0.00055742565776155
619 => 0.00055044059224067
620 => 0.00055143278782934
621 => 0.0005427401104354
622 => 0.00055248823625096
623 => 0.00055276777761888
624 => 0.00054901421819589
625 => 0.0005640325509969
626 => 0.00057018557419927
627 => 0.00056771490097802
628 => 0.00057001222517976
629 => 0.00058931381783534
630 => 0.00059246081962572
701 => 0.00059385850994175
702 => 0.00059198579007676
703 => 0.00057036502286107
704 => 0.00057132399582569
705 => 0.00056428768849989
706 => 0.00055834275027738
707 => 0.00055858051662919
708 => 0.00056163698766343
709 => 0.00057498477592961
710 => 0.00060307440944069
711 => 0.00060414039049918
712 => 0.00060543239063893
713 => 0.00060017717676331
714 => 0.0005985921539728
715 => 0.00060068320816258
716 => 0.00061123219762657
717 => 0.00063836706255067
718 => 0.0006287757890098
719 => 0.00062097793432401
720 => 0.00062781875516998
721 => 0.00062676566442087
722 => 0.0006178765187053
723 => 0.00061762702999128
724 => 0.00060056591733132
725 => 0.00059425881244367
726 => 0.00058898812352093
727 => 0.00058323266881211
728 => 0.00057982064233614
729 => 0.00058506306574153
730 => 0.00058626207000088
731 => 0.0005747994196031
801 => 0.00057323710270983
802 => 0.00058259775046315
803 => 0.00057847847838704
804 => 0.00058271525187035
805 => 0.00058369821966085
806 => 0.00058353993920691
807 => 0.00057923894606407
808 => 0.00058198027083585
809 => 0.00057549622052233
810 => 0.00056844578967923
811 => 0.0005639480540587
812 => 0.00056002318319173
813 => 0.00056220092966356
814 => 0.00055443766113229
815 => 0.00055195403528541
816 => 0.00058105157168493
817 => 0.00060254623467449
818 => 0.0006022336937618
819 => 0.00060033118133481
820 => 0.00059750443377884
821 => 0.00061102540343613
822 => 0.00060631496796785
823 => 0.00060974220334108
824 => 0.00061061457858418
825 => 0.00061325499570244
826 => 0.00061419871787069
827 => 0.00061134613402103
828 => 0.0006017725142078
829 => 0.00057791596386568
830 => 0.0005668106752819
831 => 0.00056314574507604
901 => 0.00056327895832833
902 => 0.00055960434214004
903 => 0.00056068668129223
904 => 0.00055922794875286
905 => 0.0005564654622286
906 => 0.00056203035390517
907 => 0.00056267165583034
908 => 0.00056137274361753
909 => 0.00056167868446495
910 => 0.0005509242461155
911 => 0.0005517418827058
912 => 0.0005471891782708
913 => 0.0005463356010729
914 => 0.00053482676071054
915 => 0.00051443718177552
916 => 0.00052573498776984
917 => 0.00051208882684062
918 => 0.00050692081892365
919 => 0.00053138536461247
920 => 0.00052892980276619
921 => 0.00052472694829242
922 => 0.0005185100505741
923 => 0.00051620414273628
924 => 0.00050219417667541
925 => 0.00050136639314027
926 => 0.00050831011062094
927 => 0.00050510582392234
928 => 0.00050060579183924
929 => 0.00048430713179517
930 => 0.00046598204160475
1001 => 0.00046653516089018
1002 => 0.00047236403112933
1003 => 0.00048931225747991
1004 => 0.00048269029223745
1005 => 0.00047788598047574
1006 => 0.00047698627729986
1007 => 0.00048824794620225
1008 => 0.00050418556709171
1009 => 0.00051166314222888
1010 => 0.00050425309236528
1011 => 0.00049574082606739
1012 => 0.0004962589282749
1013 => 0.00049970563014758
1014 => 0.00050006782978065
1015 => 0.00049452721949585
1016 => 0.00049608686883671
1017 => 0.00049371761887061
1018 => 0.00047917753620198
1019 => 0.0004789145522136
1020 => 0.00047534618143621
1021 => 0.00047523813258723
1022 => 0.00046916744372309
1023 => 0.0004683181123863
1024 => 0.00045626439118207
1025 => 0.00046419818698073
1026 => 0.00045887661330196
1027 => 0.00045085574653574
1028 => 0.00044947294608199
1029 => 0.00044943137743057
1030 => 0.00045766701416649
1031 => 0.00046410194877044
1101 => 0.00045896918435447
1102 => 0.00045780055339141
1103 => 0.00047027847468897
1104 => 0.00046869054546508
1105 => 0.00046731540899823
1106 => 0.00050275852794641
1107 => 0.00047470253363787
1108 => 0.00046246851873917
1109 => 0.00044732660212562
1110 => 0.00045225688652716
1111 => 0.00045329576989152
1112 => 0.00041688218997154
1113 => 0.00040210920513303
1114 => 0.00039703967344464
1115 => 0.00039412208628531
1116 => 0.00039545166739057
1117 => 0.00038215424833761
1118 => 0.00039109033386021
1119 => 0.0003795758929632
1120 => 0.00037764545947559
1121 => 0.00039823470616495
1122 => 0.00040109957956114
1123 => 0.0003888771396066
1124 => 0.0003967259246907
1125 => 0.00039387984611293
1126 => 0.00037977327500393
1127 => 0.00037923450774848
1128 => 0.00037215632623594
1129 => 0.00036108034277482
1130 => 0.00035601832112478
1201 => 0.00035338197629895
1202 => 0.00035446978355542
1203 => 0.0003539197549191
1204 => 0.00035033044601338
1205 => 0.00035412548990408
1206 => 0.00034443072098374
1207 => 0.00034057018588359
1208 => 0.00033882647174259
1209 => 0.00033022180631571
1210 => 0.00034391565552197
1211 => 0.00034661351632617
1212 => 0.00034931669274956
1213 => 0.00037284599797829
1214 => 0.00037167054038219
1215 => 0.00038229610457987
1216 => 0.00038188321469431
1217 => 0.0003788526316624
1218 => 0.00036606710035749
1219 => 0.00037116318525545
1220 => 0.00035547822804698
1221 => 0.00036723046446098
1222 => 0.00036186723454676
1223 => 0.00036541715103206
1224 => 0.00035903408110842
1225 => 0.00036256673555466
1226 => 0.00034725327920688
1227 => 0.00033295378913547
1228 => 0.00033870832136834
1229 => 0.00034496415601606
1230 => 0.00035852839948934
1231 => 0.00035044964797923
]
'min_raw' => 0.00033022180631571
'max_raw' => 0.00098572013409152
'avg_raw' => 0.00065797097020361
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00033'
'max' => '$0.000985'
'avg' => '$0.000657'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00062555819368429
'max_diff' => 2.9940134091519E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00035335507251368
102 => 0.00034362238668547
103 => 0.0003235410758176
104 => 0.00032365473385629
105 => 0.0003205656616744
106 => 0.00031789625229733
107 => 0.00035137758977274
108 => 0.00034721365619606
109 => 0.00034057897300376
110 => 0.00034945976010848
111 => 0.00035180798117601
112 => 0.00035187483172859
113 => 0.0003583540247539
114 => 0.00036181197123297
115 => 0.0003624214492875
116 => 0.00037261659950506
117 => 0.0003760338793807
118 => 0.00039010917155692
119 => 0.00036151858863355
120 => 0.0003609297843928
121 => 0.00034958473099526
122 => 0.00034238951877235
123 => 0.00035007739333194
124 => 0.0003568878006922
125 => 0.00034979634933588
126 => 0.00035072234317431
127 => 0.00034120264912131
128 => 0.00034460549180202
129 => 0.00034753647833106
130 => 0.00034591815984515
131 => 0.00034349545874424
201 => 0.00035632942495352
202 => 0.00035560528228328
203 => 0.00036755656666897
204 => 0.00037687344749216
205 => 0.00039357096351898
206 => 0.0003761462350838
207 => 0.0003755112087226
208 => 0.00038171869326477
209 => 0.00037603292904716
210 => 0.00037962613576678
211 => 0.00039299204236569
212 => 0.00039327444291041
213 => 0.00038854386993388
214 => 0.00038825601413834
215 => 0.00038916457242528
216 => 0.0003944860266902
217 => 0.00039262654705826
218 => 0.0003947783839646
219 => 0.00039746928896607
220 => 0.00040860001297224
221 => 0.00041128359284724
222 => 0.00040476388502763
223 => 0.00040535254164567
224 => 0.00040291399195115
225 => 0.00040055838350119
226 => 0.00040585344728772
227 => 0.00041553028043234
228 => 0.00041547008135558
301 => 0.00041771491855437
302 => 0.00041911343353198
303 => 0.00041310998347253
304 => 0.00040920195823681
305 => 0.00041070054378629
306 => 0.00041309681471486
307 => 0.00040992346542029
308 => 0.00039033608353578
309 => 0.00039627764395274
310 => 0.0003952886777719
311 => 0.00039388026966798
312 => 0.00039985455461196
313 => 0.00039927832025475
314 => 0.00038201786408545
315 => 0.000383122822488
316 => 0.00038208506026565
317 => 0.00038543828231223
318 => 0.00037585184405231
319 => 0.00037880056789542
320 => 0.00038064997984724
321 => 0.00038173929769472
322 => 0.00038567466071205
323 => 0.00038521289128376
324 => 0.00038564595647603
325 => 0.00039148106093342
326 => 0.00042099301691283
327 => 0.00042259928756233
328 => 0.00041468942341831
329 => 0.00041784925812867
330 => 0.00041178306646466
331 => 0.00041585534156866
401 => 0.00041864148877025
402 => 0.00040605142531158
403 => 0.00040530592346239
404 => 0.00039921469446752
405 => 0.00040248777590452
406 => 0.00039728006799536
407 => 0.00039855785735838
408 => 0.00039498504690371
409 => 0.00040141539438265
410 => 0.00040860552203908
411 => 0.00041042203223184
412 => 0.0004056435759715
413 => 0.0004021836587234
414 => 0.00039610918380333
415 => 0.0004062111709739
416 => 0.00040916529987506
417 => 0.0004061956541924
418 => 0.00040550752239968
419 => 0.00040420351389592
420 => 0.0004057841739682
421 => 0.00040914921105463
422 => 0.00040756232170715
423 => 0.00040861049007856
424 => 0.00040461595311329
425 => 0.00041311197086431
426 => 0.00042660569173093
427 => 0.00042664907624997
428 => 0.00042506217834856
429 => 0.00042441285391749
430 => 0.00042604110746536
501 => 0.00042692436822061
502 => 0.00043218984162376
503 => 0.00043783990437105
504 => 0.00046420628189715
505 => 0.00045680270859459
506 => 0.00048019652727856
507 => 0.00049869800055041
508 => 0.00050424578341326
509 => 0.00049914208422279
510 => 0.0004816826049886
511 => 0.00048082595964253
512 => 0.00050691779282041
513 => 0.00049954565486599
514 => 0.00049866876251426
515 => 0.00048934010942487
516 => 0.00049485449877686
517 => 0.00049364842093437
518 => 0.00049174456805665
519 => 0.00050226563880456
520 => 0.00052196014402218
521 => 0.00051889057069011
522 => 0.00051659927659114
523 => 0.00050655949283509
524 => 0.00051260568512312
525 => 0.00051045275185654
526 => 0.00051970311945497
527 => 0.00051422340661039
528 => 0.00049948980367029
529 => 0.00050183617850109
530 => 0.00050148152866566
531 => 0.00050878019714795
601 => 0.00050658931803365
602 => 0.00050105372435624
603 => 0.00052189283034441
604 => 0.00052053965471474
605 => 0.0005224581483786
606 => 0.00052330272862082
607 => 0.00053598712520958
608 => 0.00054118351663658
609 => 0.00054236318846614
610 => 0.00054729935841846
611 => 0.00054224037206098
612 => 0.00056247992448702
613 => 0.0005759380458397
614 => 0.00059157034633944
615 => 0.00061441333893581
616 => 0.00062300251546155
617 => 0.00062145095760091
618 => 0.00063877025388401
619 => 0.00066989264431842
620 => 0.0006277416825309
621 => 0.00067212674764369
622 => 0.0006580749484792
623 => 0.00062475838544127
624 => 0.0006226131915581
625 => 0.00064517555486064
626 => 0.00069521670511868
627 => 0.00068268196454107
628 => 0.00069523720746381
629 => 0.00068059084968344
630 => 0.00067986353457045
701 => 0.00069452586655771
702 => 0.00072878520444805
703 => 0.00071250987720842
704 => 0.00068917520473646
705 => 0.00070640516376204
706 => 0.00069147897869665
707 => 0.00065784610616818
708 => 0.00068267237946118
709 => 0.00066607175752171
710 => 0.00067091670154125
711 => 0.00070580873970187
712 => 0.0007016104373575
713 => 0.00070704342934344
714 => 0.00069745434069441
715 => 0.00068849661983573
716 => 0.00067177636864391
717 => 0.00066682632656444
718 => 0.00066819434011135
719 => 0.00066682564864486
720 => 0.00065747082177008
721 => 0.00065545064779715
722 => 0.00065208360266975
723 => 0.00065312719074663
724 => 0.00064679616084332
725 => 0.00065874412232839
726 => 0.00066096176926509
727 => 0.00066965649925662
728 => 0.000670559214968
729 => 0.00069477391423267
730 => 0.00068143686478918
731 => 0.00069038450902132
801 => 0.0006895841475027
802 => 0.00062548045638695
803 => 0.00063431337943105
804 => 0.00064805463576371
805 => 0.00064186421841168
806 => 0.00063311241661048
807 => 0.00062604486741409
808 => 0.00061533680768754
809 => 0.00063040819612258
810 => 0.00065022546925118
811 => 0.00067106181371802
812 => 0.00069609531634355
813 => 0.00069050812997963
814 => 0.00067059382979938
815 => 0.00067148717075806
816 => 0.00067700945304791
817 => 0.0006698575957303
818 => 0.00066774837338649
819 => 0.00067671967828718
820 => 0.00067678145873349
821 => 0.00066855238255875
822 => 0.00065940727029557
823 => 0.00065936895194127
824 => 0.00065774166754534
825 => 0.00068088033996244
826 => 0.0006936042702082
827 => 0.00069506304830524
828 => 0.00069350608281933
829 => 0.00069410529704111
830 => 0.00068670152238377
831 => 0.00070362435572927
901 => 0.00071915442110185
902 => 0.00071499203183054
903 => 0.00070875201859435
904 => 0.00070378154749197
905 => 0.00071382114680267
906 => 0.00071337409924916
907 => 0.00071901877952895
908 => 0.00071876270422621
909 => 0.00071686461055528
910 => 0.00071499209961745
911 => 0.0007224163938269
912 => 0.0007202783163251
913 => 0.00071813691779838
914 => 0.00071384201522133
915 => 0.00071442576381233
916 => 0.0007081868280024
917 => 0.00070530041082245
918 => 0.00066189562191919
919 => 0.00065029644403184
920 => 0.00065394578151824
921 => 0.00065514723817377
922 => 0.00065009926109244
923 => 0.00065733676350814
924 => 0.00065620880642307
925 => 0.00066059702760827
926 => 0.00065785545752617
927 => 0.00065796797251864
928 => 0.00066603034556572
929 => 0.00066837088676108
930 => 0.00066718046861864
1001 => 0.00066801419668046
1002 => 0.00068722710797048
1003 => 0.00068449564637935
1004 => 0.00068304461184912
1005 => 0.00068344655833054
1006 => 0.0006883558690946
1007 => 0.00068973020807011
1008 => 0.0006839070372578
1009 => 0.00068665327827623
1010 => 0.00069834642398286
1011 => 0.00070243836320545
1012 => 0.00071549786896169
1013 => 0.00070994995880223
1014 => 0.00072013338800785
1015 => 0.00075143377759906
1016 => 0.00077643869462674
1017 => 0.00075344313955619
1018 => 0.00079936148532053
1019 => 0.00083511550409356
1020 => 0.00083374320530162
1021 => 0.00082750866512318
1022 => 0.00078680366531986
1023 => 0.00074934631762348
1024 => 0.0007806809794945
1025 => 0.00078076085799164
1026 => 0.00077806918274758
1027 => 0.00076135141897921
1028 => 0.0007774874408063
1029 => 0.00077876825962151
1030 => 0.0007780513416822
1031 => 0.00076523387139786
1101 => 0.00074566396333815
1102 => 0.00074948787652928
1103 => 0.00075575152434206
1104 => 0.00074389313229865
1105 => 0.00074010365751547
1106 => 0.00074714901211448
1107 => 0.00076985061259042
1108 => 0.00076555900652186
1109 => 0.00076544693534367
1110 => 0.00078380824602916
1111 => 0.0007706655101972
1112 => 0.00074953610832049
1113 => 0.00074420065568404
1114 => 0.00072526339321624
1115 => 0.00073834342785497
1116 => 0.00073881415501568
1117 => 0.00073165035371876
1118 => 0.00075011741131377
1119 => 0.00074994723412697
1120 => 0.00076747895685464
1121 => 0.00080099302609561
1122 => 0.00079108126669387
1123 => 0.000779554968906
1124 => 0.00078080819706511
1125 => 0.0007945530167399
1126 => 0.00078624258500081
1127 => 0.00078923107419658
1128 => 0.00079454849330358
1129 => 0.00079775662427493
1130 => 0.00078034659638867
1201 => 0.00077628748607048
1202 => 0.0007679839709136
1203 => 0.00076581773880162
1204 => 0.00077258077863837
1205 => 0.00077079895658311
1206 => 0.00073877459222057
1207 => 0.0007354278679628
1208 => 0.00073553050721776
1209 => 0.00072711500994354
1210 => 0.00071427935664959
1211 => 0.00074801068712907
1212 => 0.0007453015892219
1213 => 0.0007423109547999
1214 => 0.00074267729045228
1215 => 0.00075731891775255
1216 => 0.00074882603449849
1217 => 0.00077140575658561
1218 => 0.00076676404453307
1219 => 0.00076200329008117
1220 => 0.00076134520879979
1221 => 0.00075951272450429
1222 => 0.00075322845401765
1223 => 0.00074563981977893
1224 => 0.00074062914613828
1225 => 0.00068319123780402
1226 => 0.00069385137948992
1227 => 0.00070611490079705
1228 => 0.0007103482192093
1229 => 0.00070310683512843
1230 => 0.00075351438799792
1231 => 0.00076272433364644
]
'min_raw' => 0.00031789625229733
'max_raw' => 0.00083511550409356
'avg_raw' => 0.00057650587819545
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000317'
'max' => '$0.000835'
'avg' => '$0.000576'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.2325554018378E-5
'max_diff' => -0.00015060462999796
'year' => 2027
]
2 => [
'items' => [
101 => 0.00073482680752718
102 => 0.00072960831943875
103 => 0.00075385651120822
104 => 0.00073923188735034
105 => 0.00074581735457807
106 => 0.00073158317648972
107 => 0.0007605059274384
108 => 0.00076028558453504
109 => 0.00074903398116604
110 => 0.00075854375928586
111 => 0.00075689120131339
112 => 0.00074418816882127
113 => 0.00076090863622639
114 => 0.00076091692936962
115 => 0.00075008750575791
116 => 0.0007374411098451
117 => 0.00073518023295043
118 => 0.00073347696591637
119 => 0.00074539845529985
120 => 0.00075608722540356
121 => 0.00077597637659573
122 => 0.00078097698176001
123 => 0.00080049467662536
124 => 0.00078887283963236
125 => 0.00079402464944337
126 => 0.00079961766776122
127 => 0.00080229916641923
128 => 0.00079792980825315
129 => 0.00082824882218275
130 => 0.00083080867590899
131 => 0.00083166697272075
201 => 0.0008214435718117
202 => 0.00083052434463571
203 => 0.00082627575175494
204 => 0.00083732941013761
205 => 0.0008390627649122
206 => 0.00083759467508401
207 => 0.00083814486924861
208 => 0.00081227293950026
209 => 0.00081093134345751
210 => 0.00079263858621925
211 => 0.00080009302000708
212 => 0.00078615731334105
213 => 0.00079057646947853
214 => 0.00079252439139667
215 => 0.00079150690753023
216 => 0.0008005144825089
217 => 0.00079285620365103
218 => 0.00077264474660752
219 => 0.00075242778296606
220 => 0.00075217397545592
221 => 0.00074685120578817
222 => 0.00074300381823228
223 => 0.00074374496156895
224 => 0.00074635684735622
225 => 0.00074285201068217
226 => 0.00074359994528631
227 => 0.0007560206431772
228 => 0.00075851152555886
229 => 0.00075004653397543
301 => 0.00071605837127549
302 => 0.00070771759089607
303 => 0.00071371277842793
304 => 0.00071084746492723
305 => 0.0005737093835662
306 => 0.00060592794158406
307 => 0.0005867847684487
308 => 0.00059560682336452
309 => 0.00057606660069397
310 => 0.00058539221914317
311 => 0.00058367011793266
312 => 0.00063547660580894
313 => 0.00063466771875825
314 => 0.00063505489018406
315 => 0.00061657418926003
316 => 0.00064601444763772
317 => 0.00066051777755202
318 => 0.00065783359717851
319 => 0.00065850914755013
320 => 0.0006469009539603
321 => 0.00063516728287227
322 => 0.00062215283583661
323 => 0.00064633206979459
324 => 0.00064364375173175
325 => 0.0006498097861416
326 => 0.00066549174773069
327 => 0.00066780097614466
328 => 0.00067090460255093
329 => 0.00066979217341545
330 => 0.00069629474857917
331 => 0.00069308511185722
401 => 0.00070081941288161
402 => 0.00068490936887161
403 => 0.00066690564387906
404 => 0.00067032756341403
405 => 0.00066999800504548
406 => 0.00066580234876427
407 => 0.00066201469787405
408 => 0.00065570932630587
409 => 0.000675660454967
410 => 0.0006748504755784
411 => 0.00068796310038184
412 => 0.00068564531657859
413 => 0.00067016658908258
414 => 0.00067071941486325
415 => 0.00067443743391725
416 => 0.00068730554031471
417 => 0.00069112567042098
418 => 0.00068935603394989
419 => 0.00069354463221584
420 => 0.00069685512950234
421 => 0.00069396037970572
422 => 0.0007349439323389
423 => 0.00071792470392228
424 => 0.00072621975743351
425 => 0.00072819807881865
426 => 0.00072313065019024
427 => 0.00072422959400873
428 => 0.00072589419444947
429 => 0.00073600132236346
430 => 0.00076252535053082
501 => 0.00077427266205098
502 => 0.00080961502836151
503 => 0.0007732972113597
504 => 0.00077114226239688
505 => 0.00077750848980662
506 => 0.00079825820020032
507 => 0.00081507389155321
508 => 0.00082065262649548
509 => 0.00082138994841297
510 => 0.00083185602603195
511 => 0.00083785498654235
512 => 0.00083058516892383
513 => 0.00082442475967378
514 => 0.00080235893839821
515 => 0.00080491311729409
516 => 0.00082250887702939
517 => 0.00084736392404058
518 => 0.00086869214010306
519 => 0.00086122374220135
520 => 0.00091820234632413
521 => 0.00092385154218618
522 => 0.00092307100597842
523 => 0.00093594071486522
524 => 0.00091039696359555
525 => 0.00089947651504089
526 => 0.00082575671007725
527 => 0.00084646896828027
528 => 0.00087657545196662
529 => 0.00087259074595721
530 => 0.00085072661275557
531 => 0.00086867555419742
601 => 0.00086274107284145
602 => 0.00085806030117414
603 => 0.00087950382359433
604 => 0.00085592578984198
605 => 0.00087634024304369
606 => 0.00085015849565202
607 => 0.00086125785721388
608 => 0.00085495732277566
609 => 0.00085903454072164
610 => 0.00083519920792065
611 => 0.00084806017493007
612 => 0.00083466414941012
613 => 0.00083465779794981
614 => 0.00083436207994398
615 => 0.00085012244456113
616 => 0.00085063638948548
617 => 0.00083898945622082
618 => 0.00083731095117809
619 => 0.00084351726406117
620 => 0.000836251297111
621 => 0.00083965099731553
622 => 0.00083635427056687
623 => 0.00083561210793605
624 => 0.00082969842982517
625 => 0.00082715065469503
626 => 0.00082814970297163
627 => 0.0008247394361589
628 => 0.00082268462704948
629 => 0.00083395332669332
630 => 0.00082793291505167
701 => 0.00083303061226438
702 => 0.00082722114290981
703 => 0.00080708299106157
704 => 0.00079550132697656
705 => 0.00075746222494289
706 => 0.00076825006709228
707 => 0.00077540241759816
708 => 0.00077303856579863
709 => 0.00077811703415322
710 => 0.00077842881086458
711 => 0.00077677774903365
712 => 0.00077486603094755
713 => 0.00077393551230787
714 => 0.00078087083588838
715 => 0.00078489702465912
716 => 0.00077612025165753
717 => 0.00077406397654336
718 => 0.00078293777862688
719 => 0.00078835079277161
720 => 0.00082831744790633
721 => 0.00082535658900336
722 => 0.00083278776381061
723 => 0.00083195112756799
724 => 0.00083974018264497
725 => 0.00085247199579557
726 => 0.00082658465978947
727 => 0.0008310778062034
728 => 0.00082997619046461
729 => 0.00084200334224158
730 => 0.00084204088969662
731 => 0.00083483001140554
801 => 0.00083873914551027
802 => 0.00083655717409449
803 => 0.00084050029135393
804 => 0.00082531704492756
805 => 0.00084380860014471
806 => 0.00085429212038334
807 => 0.00085443768407202
808 => 0.00085940678946277
809 => 0.00086445568833095
810 => 0.00087414661004199
811 => 0.00086418541378418
812 => 0.00084626619141929
813 => 0.0008475599013953
814 => 0.00083705386787915
815 => 0.00083723047620062
816 => 0.00083628772713954
817 => 0.00083911698803869
818 => 0.00082593790859178
819 => 0.000829031012196
820 => 0.0008247006490369
821 => 0.00083106839283959
822 => 0.00082421775313365
823 => 0.00082997565923214
824 => 0.00083246058062664
825 => 0.00084162999406886
826 => 0.00082286342331281
827 => 0.00078459711515609
828 => 0.00079264115706477
829 => 0.00078074338723597
830 => 0.00078184457113163
831 => 0.00078406913785298
901 => 0.00077685858927615
902 => 0.00077823413471411
903 => 0.0007781849905515
904 => 0.00077776149270796
905 => 0.00077588575053853
906 => 0.00077316555328858
907 => 0.00078400198189984
908 => 0.00078584330228257
909 => 0.00078993632940203
910 => 0.00080211440178272
911 => 0.00080089752517317
912 => 0.00080288230141108
913 => 0.00079854954602777
914 => 0.00078204555522722
915 => 0.00078294180133079
916 => 0.00077176559805796
917 => 0.00078965052875681
918 => 0.00078541514109777
919 => 0.00078268455912116
920 => 0.00078193949453018
921 => 0.00079414775399681
922 => 0.00079780065657024
923 => 0.00079552441282365
924 => 0.00079085577049075
925 => 0.00079982094393012
926 => 0.00080221964613219
927 => 0.0008027566270945
928 => 0.00081864119552757
929 => 0.00080364439801437
930 => 0.00080725427623114
1001 => 0.00083541751559323
1002 => 0.00080987734375319
1003 => 0.00082340654239066
1004 => 0.00082274435851991
1005 => 0.00082966543873972
1006 => 0.00082217662793069
1007 => 0.00082226946071592
1008 => 0.00082841491107653
1009 => 0.00081978473438287
1010 => 0.00081764778126707
1011 => 0.00081469559584275
1012 => 0.00082114158471322
1013 => 0.00082500566351407
1014 => 0.00085614730079576
1015 => 0.00087626621871092
1016 => 0.00087539280342435
1017 => 0.00088337418417868
1018 => 0.00087977849904779
1019 => 0.00086816708326632
1020 => 0.00088798635414398
1021 => 0.00088171470756477
1022 => 0.00088223173448871
1023 => 0.00088221249072078
1024 => 0.0008863825874191
1025 => 0.00088342769172459
1026 => 0.0008776032889969
1027 => 0.00088146979934103
1028 => 0.00089295195276037
1029 => 0.00092859290928948
1030 => 0.00094853806074304
1031 => 0.00092739218612811
1101 => 0.00094197832728295
1102 => 0.00093323184016355
1103 => 0.0009316423432685
1104 => 0.0009408035178211
1105 => 0.00094998072779702
1106 => 0.00094939617919572
1107 => 0.00094273399600815
1108 => 0.00093897069777214
1109 => 0.00096746765281266
1110 => 0.00098846372385356
1111 => 0.00098703193256802
1112 => 0.00099335139365893
1113 => 0.0010119055268754
1114 => 0.0010136018842888
1115 => 0.001013388182245
1116 => 0.0010091835833995
1117 => 0.0010274525371098
1118 => 0.0010426928197066
1119 => 0.0010082103402492
1120 => 0.0010213408170178
1121 => 0.0010272355110767
1122 => 0.0010358906708322
1123 => 0.0010504933761128
1124 => 0.0010663557872238
1125 => 0.0010685989060774
1126 => 0.0010670073059077
1127 => 0.0010565456193755
1128 => 0.0010739024588911
1129 => 0.0010840696884114
1130 => 0.0010901240409178
1201 => 0.0011054768715259
1202 => 0.0010272719147004
1203 => 0.00097191455922085
1204 => 0.0009632697087928
1205 => 0.00098084935208018
1206 => 0.00098548496382003
1207 => 0.00098361635454026
1208 => 0.00092130661807741
1209 => 0.00096294166092562
1210 => 0.0010077374662565
1211 => 0.0010094582555759
1212 => 0.0010318839723606
1213 => 0.0010391867050069
1214 => 0.0010572423464245
1215 => 0.0010561129611378
1216 => 0.001060509222495
1217 => 0.0010594985981416
1218 => 0.0010929428718039
1219 => 0.0011298368721761
1220 => 0.0011285593502589
1221 => 0.0011232554011954
1222 => 0.0011311326700124
1223 => 0.0011692112321978
1224 => 0.0011657055683883
1225 => 0.0011691110221675
1226 => 0.0012140077929979
1227 => 0.0012723799815685
1228 => 0.0012452602395055
1229 => 0.0013041022762866
1230 => 0.001341140219358
1231 => 0.0014051935121051
]
'min_raw' => 0.0005737093835662
'max_raw' => 0.0014051935121051
'avg_raw' => 0.00098945144783564
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000573'
'max' => '$0.0014051'
'avg' => '$0.000989'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00025581313126887
'max_diff' => 0.00057007800801153
'year' => 2028
]
3 => [
'items' => [
101 => 0.001397173724384
102 => 0.0014221092012057
103 => 0.0013828166305831
104 => 0.001292592946095
105 => 0.0012783147026624
106 => 0.0013069001075972
107 => 0.0013771745363065
108 => 0.0013046869157517
109 => 0.0013193510669819
110 => 0.0013151277904411
111 => 0.001314902749982
112 => 0.0013234916289997
113 => 0.0013110330120187
114 => 0.0012602743651755
115 => 0.0012835367539012
116 => 0.0012745540284625
117 => 0.0012845210320432
118 => 0.0013383088396633
119 => 0.0013145279677733
120 => 0.0012894767510383
121 => 0.001320896536134
122 => 0.0013609047195703
123 => 0.0013584010793525
124 => 0.0013535429708895
125 => 0.0013809278739332
126 => 0.0014261597107377
127 => 0.0014383856944697
128 => 0.0014474106657115
129 => 0.0014486550567676
130 => 0.0014614730580301
131 => 0.0013925474346892
201 => 0.0015019341690667
202 => 0.0015208222363462
203 => 0.0015172720625278
204 => 0.0015382653543775
205 => 0.0015320885953669
206 => 0.0015231394406644
207 => 0.0015564182736474
208 => 0.0015182667770957
209 => 0.0014641155308804
210 => 0.0014344070862165
211 => 0.0014735295626618
212 => 0.0014974202938407
213 => 0.001513210547414
214 => 0.0015179886686046
215 => 0.0013978979346231
216 => 0.0013331756895445
217 => 0.0013746619065978
218 => 0.0014252779546286
219 => 0.0013922662599867
220 => 0.0013935602559173
221 => 0.0013464942546787
222 => 0.0014294422513811
223 => 0.001417357425964
224 => 0.0014800535216054
225 => 0.001465090595213
226 => 0.0015162168273602
227 => 0.0015027535770092
228 => 0.0015586387764959
301 => 0.0015809328956025
302 => 0.0016183681913851
303 => 0.0016459057473519
304 => 0.0016620763269251
305 => 0.0016611055059818
306 => 0.0017251813984015
307 => 0.0016873980832828
308 => 0.00163993333465
309 => 0.0016390748470966
310 => 0.0016636575129942
311 => 0.0017151760367906
312 => 0.0017285340404469
313 => 0.0017359993421584
314 => 0.0017245659727182
315 => 0.0016835548921114
316 => 0.0016658465154363
317 => 0.0016809345654246
318 => 0.0016624831768198
319 => 0.0016943354500969
320 => 0.0017380754245847
321 => 0.0017290432928195
322 => 0.0017592363551375
323 => 0.0017904829982338
324 => 0.001835167101236
325 => 0.0018468491804083
326 => 0.0018661592130505
327 => 0.0018860355796546
328 => 0.0018924193329247
329 => 0.0019046078986797
330 => 0.0019045436589217
331 => 0.0019412747222095
401 => 0.0019817902224822
402 => 0.0019970838858992
403 => 0.002032250821629
404 => 0.0019720286765881
405 => 0.0020177078653837
406 => 0.0020589116371017
407 => 0.0020097868018274
408 => 0.0020774939426343
409 => 0.0020801228574842
410 => 0.0021198163505255
411 => 0.002079579390975
412 => 0.0020556868128348
413 => 0.0021246637906822
414 => 0.0021580395775081
415 => 0.002147986518895
416 => 0.0020714822464684
417 => 0.0020269534784935
418 => 0.0019104131037453
419 => 0.0020484602118041
420 => 0.0021156989312501
421 => 0.0020713081144287
422 => 0.0020936962603738
423 => 0.0022158387252697
424 => 0.0022623426677631
425 => 0.0022526701728115
426 => 0.0022543046652355
427 => 0.0022793973484987
428 => 0.0023906721248807
429 => 0.0023239936995435
430 => 0.0023749668573208
501 => 0.0024020028364086
502 => 0.0024271153605167
503 => 0.0023654469382018
504 => 0.0022852172268592
505 => 0.0022598051094628
506 => 0.0020668943225432
507 => 0.0020568524783149
508 => 0.0020512156868506
509 => 0.0020156765140079
510 => 0.0019877524591523
511 => 0.0019655462139774
512 => 0.0019072703952924
513 => 0.001926936773394
514 => 0.0018340572815187
515 => 0.0018934782889734
516 => 0.0017452403772867
517 => 0.0018686973150527
518 => 0.0018015053167248
519 => 0.001846622936479
520 => 0.001846465525354
521 => 0.0017633896828322
522 => 0.0017154732706142
523 => 0.0017460074734142
524 => 0.0017787425626238
525 => 0.001784053720714
526 => 0.0018264956183475
527 => 0.0018383402396914
528 => 0.0018024504840467
529 => 0.0017421684760572
530 => 0.001756170611627
531 => 0.0017151895177838
601 => 0.0016433717271387
602 => 0.0016949525181983
603 => 0.0017125644681134
604 => 0.0017203429085265
605 => 0.0016497183597561
606 => 0.0016275265931988
607 => 0.0016157118828907
608 => 0.001733051733676
609 => 0.0017394798755818
610 => 0.0017065925927443
611 => 0.00185524622967
612 => 0.0018216013333582
613 => 0.0018591909257382
614 => 0.0017549000645874
615 => 0.0017588841159297
616 => 0.0017095111509257
617 => 0.0017371567122252
618 => 0.0017176177205568
619 => 0.001734923224071
620 => 0.0017452960715241
621 => 0.0017946609349104
622 => 0.0018692609824967
623 => 0.0017872874704936
624 => 0.0017515704374315
625 => 0.001773729083863
626 => 0.0018327404793424
627 => 0.0019221457642313
628 => 0.001869216036128
629 => 0.0018927053506552
630 => 0.0018978367209125
701 => 0.0018588082989742
702 => 0.0019235847978178
703 => 0.0019582990497914
704 => 0.001993908689214
705 => 0.0020248275413653
706 => 0.0019796854161559
707 => 0.0020279939609994
708 => 0.0019890658014616
709 => 0.0019541432180371
710 => 0.0019541961811807
711 => 0.001932288734461
712 => 0.0018898402959256
713 => 0.0018820121525837
714 => 0.0019227351428334
715 => 0.0019553911245321
716 => 0.0019580808275965
717 => 0.0019761608569898
718 => 0.0019868604321456
719 => 0.0020917308140402
720 => 0.0021339105491714
721 => 0.0021854871308684
722 => 0.0022055791161363
723 => 0.0022660487884171
724 => 0.0022172146169437
725 => 0.0022066490367641
726 => 0.0020599693912898
727 => 0.002083988175019
728 => 0.0021224445652375
729 => 0.0020606035230001
730 => 0.002099827430454
731 => 0.0021075710606613
801 => 0.0020585021880487
802 => 0.0020847119930519
803 => 0.0020151065216289
804 => 0.0018707781915639
805 => 0.0019237454765076
806 => 0.0019627472268214
807 => 0.0019070869202424
808 => 0.0020068558654339
809 => 0.0019485729073021
810 => 0.0019301000076497
811 => 0.0018580306400414
812 => 0.0018920446073482
813 => 0.0019380489851637
814 => 0.0019096236282567
815 => 0.0019686105119275
816 => 0.0020521516704327
817 => 0.0021116880749455
818 => 0.0021162585408175
819 => 0.0020779806213451
820 => 0.002139321231586
821 => 0.0021397680309646
822 => 0.002070575572029
823 => 0.0020281955761962
824 => 0.0020185667519747
825 => 0.0020426214427222
826 => 0.0020718282780305
827 => 0.0021178793169079
828 => 0.0021457069952296
829 => 0.0022182668216325
830 => 0.0022378994302039
831 => 0.0022594697147889
901 => 0.0022882942670238
902 => 0.0023229055324453
903 => 0.0022471780541235
904 => 0.0022501868480109
905 => 0.0021796704687159
906 => 0.0021043136043675
907 => 0.0021615000710422
908 => 0.0022362637690225
909 => 0.0022191128940993
910 => 0.0022171830703098
911 => 0.0022204284986352
912 => 0.0022074972990383
913 => 0.0021490099625141
914 => 0.0021196379882618
915 => 0.0021575353286371
916 => 0.00217767607843
917 => 0.0022089126249008
918 => 0.0022050620612248
919 => 0.0022855240503735
920 => 0.0023167891463124
921 => 0.0023087901968623
922 => 0.0023102621960666
923 => 0.0023668661588484
924 => 0.0024298214069546
925 => 0.0024887873044827
926 => 0.0025487699480925
927 => 0.0024764585300584
928 => 0.002439743251529
929 => 0.002477624047111
930 => 0.0024575239637644
1001 => 0.0025730250047461
1002 => 0.0025810220462246
1003 => 0.0026965147351664
1004 => 0.0028061310495858
1005 => 0.0027372830064793
1006 => 0.0028022036101447
1007 => 0.0028724205360635
1008 => 0.0030078803784463
1009 => 0.0029622622690665
1010 => 0.0029273195122085
1011 => 0.0028942987758198
1012 => 0.0029630096863503
1013 => 0.0030514051750643
1014 => 0.0030704447166918
1015 => 0.0031012960477931
1016 => 0.0030688596454614
1017 => 0.0031079257193174
1018 => 0.0032458461265318
1019 => 0.0032085788150454
1020 => 0.0031556532417154
1021 => 0.0032645281571944
1022 => 0.0033039295658658
1023 => 0.0035804692865994
1024 => 0.0039296121073116
1025 => 0.0037850646869414
1026 => 0.0036953394386015
1027 => 0.0037164270002727
1028 => 0.0038439221391664
1029 => 0.0038848695312857
1030 => 0.0037735604040931
1031 => 0.003812876669569
1101 => 0.004029513157831
1102 => 0.0041457316832529
1103 => 0.0039878913154996
1104 => 0.0035524160009079
1105 => 0.0031508878729082
1106 => 0.003257391213501
1107 => 0.0032453170398612
1108 => 0.0034780659205465
1109 => 0.0032076900019916
1110 => 0.0032122424390423
1111 => 0.0034498043200948
1112 => 0.0033864268830717
1113 => 0.0032837635518631
1114 => 0.0031516374288401
1115 => 0.0029073900702448
1116 => 0.0026910533733956
1117 => 0.0031153394552828
1118 => 0.0030970434679177
1119 => 0.0030705481668995
1120 => 0.0031295105922244
1121 => 0.0034158153928257
1122 => 0.0034092151404936
1123 => 0.0033672277026354
1124 => 0.0033990748041906
1125 => 0.003278180600982
1126 => 0.0033093377898587
1127 => 0.0031508242688013
1128 => 0.0032224790004286
1129 => 0.0032835432824628
1130 => 0.0032958028411533
1201 => 0.0033234242528716
1202 => 0.0030874023139523
1203 => 0.003193369235287
1204 => 0.0032556148738133
1205 => 0.0029743868144356
1206 => 0.0032500558992966
1207 => 0.0030832936970971
1208 => 0.0030266921009864
1209 => 0.0031028986934563
1210 => 0.0030732009102574
1211 => 0.0030476685001754
1212 => 0.0030334209766472
1213 => 0.0030893786875423
1214 => 0.0030867681934451
1215 => 0.002995210517497
1216 => 0.002875777261591
1217 => 0.002915862982536
1218 => 0.002901299464311
1219 => 0.0028485193955325
1220 => 0.0028840867891994
1221 => 0.0027274659877363
1222 => 0.0024580080392597
1223 => 0.0026360202137435
1224 => 0.0026291669386659
1225 => 0.0026257112066004
1226 => 0.0027594824358299
1227 => 0.0027466234187668
1228 => 0.0027232841768815
1229 => 0.0028480907520524
1230 => 0.0028025346732297
1231 => 0.0029429277737992
]
'min_raw' => 0.0012602743651755
'max_raw' => 0.0041457316832529
'avg_raw' => 0.0027030030242142
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00126'
'max' => '$0.004145'
'avg' => '$0.002703'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00068656498160933
'max_diff' => 0.0027405381711478
'year' => 2029
]
4 => [
'items' => [
101 => 0.0030353997498907
102 => 0.0030119458655988
103 => 0.0030989162060688
104 => 0.0029167864765848
105 => 0.0029772826669429
106 => 0.0029897508479316
107 => 0.002846550658288
108 => 0.0027487273129885
109 => 0.0027422036111248
110 => 0.0025725914112627
111 => 0.0026631968793672
112 => 0.0027429259417901
113 => 0.0027047419081147
114 => 0.0026926539837686
115 => 0.0027544085677018
116 => 0.0027592074277656
117 => 0.0026497929097494
118 => 0.0026725436527522
119 => 0.0027674180330699
120 => 0.0026701530617908
121 => 0.0024811831107383
122 => 0.0024343159501633
123 => 0.0024280630070095
124 => 0.0023009555504487
125 => 0.002437447837937
126 => 0.0023778652966825
127 => 0.002566085830597
128 => 0.002458575271072
129 => 0.0024539407057295
130 => 0.0024469348804714
131 => 0.0023375282418667
201 => 0.0023614813425665
202 => 0.002441105097453
203 => 0.0024695157502223
204 => 0.0024665522863768
205 => 0.0024407148976155
206 => 0.0024525431218816
207 => 0.0024144402902939
208 => 0.0024009853874184
209 => 0.0023585180128808
210 => 0.0022961027042222
211 => 0.0023047819357065
212 => 0.0021811208773999
213 => 0.0021137437696453
214 => 0.0020950946742349
215 => 0.0020701563244527
216 => 0.0020979115272012
217 => 0.0021807705611589
218 => 0.0020808249866812
219 => 0.0019094753096062
220 => 0.001919773717164
221 => 0.0019429111813219
222 => 0.0018997946699334
223 => 0.0018589885103987
224 => 0.0018944661554057
225 => 0.0018218630383661
226 => 0.0019516849211506
227 => 0.0019481736030429
228 => 0.0019965631728136
301 => 0.0020268221638452
302 => 0.0019570849859821
303 => 0.001939546274339
304 => 0.0019495371215809
305 => 0.0017844106715587
306 => 0.00198306881898
307 => 0.0019847868228884
308 => 0.0019700762303946
309 => 0.0020758555610142
310 => 0.0022990829420223
311 => 0.0022150958219864
312 => 0.0021825734705844
313 => 0.0021207484567955
314 => 0.0022031266168632
315 => 0.0021968012594695
316 => 0.0021681955945145
317 => 0.0021508947990947
318 => 0.0021827720451271
319 => 0.0021469448555414
320 => 0.0021405093078265
321 => 0.0021015168906191
322 => 0.002087598371718
323 => 0.0020772936544358
324 => 0.0020659491732287
325 => 0.0020909722719029
326 => 0.0020342666382444
327 => 0.001965885202974
328 => 0.0019602000265286
329 => 0.0019758972985401
330 => 0.0019689524241995
331 => 0.0019601667771422
401 => 0.0019433925842812
402 => 0.0019384160395833
403 => 0.0019545873955753
404 => 0.0019363308775089
405 => 0.0019632693643998
406 => 0.00195594358654
407 => 0.0019150223869244
408 => 0.0018640194212349
409 => 0.001863565387858
410 => 0.0018525768825618
411 => 0.0018385813689343
412 => 0.0018346881372171
413 => 0.0018914783270984
414 => 0.0020090323205655
415 => 0.0019859536588192
416 => 0.0020026303571273
417 => 0.0020846632072679
418 => 0.0021107389835137
419 => 0.002092231015173
420 => 0.0020668961665865
421 => 0.0020680107713478
422 => 0.0021545876183481
423 => 0.0021599873100982
424 => 0.002173630589144
425 => 0.0021911660583082
426 => 0.0020952173813972
427 => 0.0020634915972938
428 => 0.0020484581607061
429 => 0.0020021609946883
430 => 0.0020520885190195
501 => 0.0020229978887014
502 => 0.0020269232086088
503 => 0.0020243668388696
504 => 0.0020257627896082
505 => 0.0019516486332886
506 => 0.0019786519365261
507 => 0.001933753707517
508 => 0.0018736400189365
509 => 0.0018734384967738
510 => 0.0018881512368909
511 => 0.0018793995233597
512 => 0.0018558488872743
513 => 0.0018591941439744
514 => 0.0018298861752374
515 => 0.001862752662017
516 => 0.0018636951552559
517 => 0.0018510397675961
518 => 0.0019016751251812
519 => 0.0019224204724984
520 => 0.001914090425236
521 => 0.0019218360141762
522 => 0.0019869126814087
523 => 0.0019975230176616
524 => 0.0020022354281457
525 => 0.0019959214223718
526 => 0.0019230254961903
527 => 0.0019262587404939
528 => 0.0019025353390857
529 => 0.0018824915648062
530 => 0.0018832932106616
531 => 0.0018935983161495
601 => 0.0019386013162018
602 => 0.0020333074767399
603 => 0.0020369015063031
604 => 0.0020412575749788
605 => 0.0020235392544899
606 => 0.0020181952394889
607 => 0.0020252453746825
608 => 0.0020608120291673
609 => 0.0021522991207546
610 => 0.0021199614723702
611 => 0.0020936704608683
612 => 0.0021167347659613
613 => 0.0021131841969762
614 => 0.0020832138215759
615 => 0.0020823726529578
616 => 0.0020248499204559
617 => 0.0020035850759792
618 => 0.0019858145802884
619 => 0.0019664096629046
620 => 0.0019549057774208
621 => 0.0019725809739464
622 => 0.0019766235005186
623 => 0.0019379763744058
624 => 0.0019327089139226
625 => 0.0019642689913625
626 => 0.0019503805779595
627 => 0.0019646651555606
628 => 0.0019679793000949
629 => 0.0019674456464936
630 => 0.0019529445478268
701 => 0.001962187115688
702 => 0.001940325687354
703 => 0.0019165546675212
704 => 0.0019013902378547
705 => 0.001888157261701
706 => 0.0018954996859761
707 => 0.0018693252841089
708 => 0.0018609515661649
709 => 0.001959055941661
710 => 0.0020315266986397
711 => 0.0020304729451317
712 => 0.0020240584916549
713 => 0.0020145279149128
714 => 0.0020601148081163
715 => 0.0020442332460629
716 => 0.0020557884094056
717 => 0.002058729683445
718 => 0.0020676320341073
719 => 0.0020708138592861
720 => 0.002061196173676
721 => 0.0020289180460669
722 => 0.0019484840209772
723 => 0.0019110417651705
724 => 0.0018986851971042
725 => 0.001899134334885
726 => 0.0018867451098526
727 => 0.0018903942918708
728 => 0.0018854760732688
729 => 0.0018761621570816
730 => 0.0018949245778975
731 => 0.0018970867721125
801 => 0.0018927073988998
802 => 0.001893738899827
803 => 0.001857479560081
804 => 0.0018602362789307
805 => 0.0018448865180684
806 => 0.0018420086229509
807 => 0.0018032057641476
808 => 0.0017344608752132
809 => 0.0017725522169107
810 => 0.0017265432325933
811 => 0.0017091189330825
812 => 0.0017916028569323
813 => 0.0017833237587257
814 => 0.0017691535414335
815 => 0.0017481928367263
816 => 0.0017404183074577
817 => 0.0016931827287389
818 => 0.0016903917987562
819 => 0.0017138030270371
820 => 0.0017029995507166
821 => 0.0016878273783662
822 => 0.0016328753080916
823 => 0.0015710909870976
824 => 0.001572955867386
825 => 0.001592608310356
826 => 0.0016497504387844
827 => 0.0016274240206386
828 => 0.0016112259481077
829 => 0.0016081925360349
830 => 0.0016461620390039
831 => 0.0016998968405619
901 => 0.0017251080072045
902 => 0.0017001245067362
903 => 0.0016714248066054
904 => 0.0016731716243708
905 => 0.0016847924203755
906 => 0.0016860136017264
907 => 0.0016673330473181
908 => 0.0016725915139621
909 => 0.0016646034222856
910 => 0.0016155805184122
911 => 0.0016146938495344
912 => 0.0016026628383228
913 => 0.0016022985440847
914 => 0.0015818307927373
915 => 0.0015789672128369
916 => 0.0015383272502329
917 => 0.001565076596688
918 => 0.0015471345394896
919 => 0.0015200916271882
920 => 0.0015154294189144
921 => 0.0015152892673039
922 => 0.0015430562915529
923 => 0.0015647521228429
924 => 0.0015474466492562
925 => 0.0015435065283731
926 => 0.0015855767112085
927 => 0.0015802228969644
928 => 0.0015755865283575
929 => 0.0016950854784508
930 => 0.0016004927348326
1001 => 0.00155924489945
1002 => 0.0015081928704126
1003 => 0.0015248156684938
1004 => 0.0015283183362893
1005 => 0.0014055474092741
1006 => 0.0013557392594742
1007 => 0.0013386469794434
1008 => 0.0013288101306363
1009 => 0.001333292906161
1010 => 0.0012884597294278
1011 => 0.0013185883656649
1012 => 0.001279766624268
1013 => 0.0012732580329859
1014 => 0.0013426761156944
1015 => 0.0013523352363688
1016 => 0.0013111264267185
1017 => 0.0013375891536142
1018 => 0.0013279934009824
1019 => 0.0012804321115991
1020 => 0.0012786156201818
1021 => 0.0012547510370294
1022 => 0.0012174075854898
1023 => 0.0012003406260776
1024 => 0.0011914520054336
1025 => 0.0011951196235471
1026 => 0.0011932651635979
1027 => 0.0011811635580248
1028 => 0.0011939588134638
1029 => 0.0011612722231817
1030 => 0.0011482561595576
1031 => 0.001142377105589
1101 => 0.0011133658753437
1102 => 0.0011595356440166
1103 => 0.0011686316700766
1104 => 0.0011777456181178
1105 => 0.0012570763134601
1106 => 0.001253113176107
1107 => 0.0012889380076527
1108 => 0.0012875459205765
1109 => 0.0012773280982959
1110 => 0.0012342207868441
1111 => 0.0012514025928748
1112 => 0.0011985196645577
1113 => 0.0012381431501425
1114 => 0.0012200606460379
1115 => 0.0012320294373153
1116 => 0.0012105084714161
1117 => 0.0012224190625236
1118 => 0.0011707886752957
1119 => 0.0011225769461614
1120 => 0.0011419787533532
1121 => 0.0011630707366364
1122 => 0.0012088035305318
1123 => 0.0011815654557751
1124 => 0.0011913612974432
1125 => 0.001158546867659
1126 => 0.0010908413260356
1127 => 0.0010912245320484
1128 => 0.001080809509515
1129 => 0.001071809409428
1130 => 0.0011846940763187
1201 => 0.0011706550835483
1202 => 0.0011482857859467
1203 => 0.001178227979707
1204 => 0.0011861451709838
1205 => 0.0011863705622892
1206 => 0.0012082156139368
1207 => 0.0012198743219171
1208 => 0.0012219292197304
1209 => 0.0012563028804915
1210 => 0.0012678244781791
1211 => 0.0013152803084567
1212 => 0.0012188851619998
1213 => 0.0012168999673931
1214 => 0.001178649327777
1215 => 0.0011543901674138
1216 => 0.0011803103732417
1217 => 0.0012032721371443
1218 => 0.0011793628137871
1219 => 0.0011824848666642
1220 => 0.0011503885535207
1221 => 0.0011618614751976
1222 => 0.0011717435009152
1223 => 0.0011662872271526
1224 => 0.0011581189212433
1225 => 0.0012013895343568
1226 => 0.001198948036786
1227 => 0.0012392426265044
1228 => 0.0012706551406837
1229 => 0.0013269519817514
1230 => 0.0012682032932765
1231 => 0.0012660622575636
]
'min_raw' => 0.001071809409428
'max_raw' => 0.0030989162060688
'avg_raw' => 0.0020853628077484
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001071'
'max' => '$0.003098'
'avg' => '$0.002085'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00018846495574751
'max_diff' => -0.0010468154771841
'year' => 2030
]
5 => [
'items' => [
101 => 0.0012869912250903
102 => 0.0012678212740632
103 => 0.0012799360213881
104 => 0.0013250001086641
105 => 0.0013259522418172
106 => 0.0013100027847488
107 => 0.0013090322588367
108 => 0.0013120955265346
109 => 0.0013300371811208
110 => 0.0013237678157171
111 => 0.0013310228840832
112 => 0.0013400954581687
113 => 0.0013776234712778
114 => 0.0013866713481879
115 => 0.0013646896980827
116 => 0.0013666743949691
117 => 0.0013584526544199
118 => 0.0013505105560675
119 => 0.0013683632333134
120 => 0.0014009893518754
121 => 0.0014007863864851
122 => 0.0014083550118304
123 => 0.0014130702027186
124 => 0.0013928291516956
125 => 0.0013796529717638
126 => 0.0013847055575718
127 => 0.0013927847523097
128 => 0.0013820855836069
129 => 0.001316045358036
130 => 0.0013360777438082
131 => 0.0013327433752821
201 => 0.0013279948290278
202 => 0.0013481375478277
203 => 0.001346194733461
204 => 0.0012879999003996
205 => 0.0012917253447995
206 => 0.0012882264570126
207 => 0.0012995320792572
208 => 0.0012672107333601
209 => 0.0012771525616705
210 => 0.0012833879831879
211 => 0.0012870606943644
212 => 0.0013003290455356
213 => 0.0012987721576684
214 => 0.0013002322671998
215 => 0.0013199057292719
216 => 0.0014194073493154
217 => 0.0014248230029564
218 => 0.0013981543437458
219 => 0.0014088079470844
220 => 0.0013883553583612
221 => 0.0014020853181915
222 => 0.0014114790080043
223 => 0.0013690307300432
224 => 0.0013665172185094
225 => 0.0013459802146771
226 => 0.0013570156372612
227 => 0.001339457486455
228 => 0.0013437656425048
301 => 0.0013317196626112
302 => 0.001353400028089
303 => 0.0013776420454813
304 => 0.0013837665364209
305 => 0.001367655637518
306 => 0.0013559902849523
307 => 0.001335509768653
308 => 0.0013695693236968
309 => 0.0013795293755377
310 => 0.0013695170077846
311 => 0.0013671969234016
312 => 0.0013628003676882
313 => 0.0013681296734801
314 => 0.0013794751309564
315 => 0.0013741248227283
316 => 0.0013776587955732
317 => 0.0013641909353052
318 => 0.0013928358523258
319 => 0.0014383308743291
320 => 0.001438477148264
321 => 0.0014331268111958
322 => 0.001430937568542
323 => 0.0014364273390597
324 => 0.0014394053143633
325 => 0.0014571582255657
326 => 0.0014762078065929
327 => 0.0015651038892639
328 => 0.0015401422249733
329 => 0.0016190161179706
330 => 0.0016813951268382
331 => 0.0017000998640942
401 => 0.0016828923859446
402 => 0.0016240265327246
403 => 0.0016211382931313
404 => 0.0017091087303641
405 => 0.0016842530525445
406 => 0.001681296548758
407 => 0.0016498443435614
408 => 0.001668436492264
409 => 0.0016643701166124
410 => 0.0016579511437124
411 => 0.0016934236682966
412 => 0.0017598250676643
413 => 0.0017494757868645
414 => 0.0017417505288367
415 => 0.0017079006969479
416 => 0.0017282858563786
417 => 0.0017210270915574
418 => 0.0017522153517555
419 => 0.0017337401173187
420 => 0.0016840647463388
421 => 0.0016919757128995
422 => 0.0016907799862185
423 => 0.0017153879565833
424 => 0.0017080012546872
425 => 0.001689337614121
426 => 0.0017595981149
427 => 0.0017550357887889
428 => 0.0017615041241215
429 => 0.0017643516853749
430 => 0.0018071180140702
501 => 0.0018246380105668
502 => 0.0018286153565022
503 => 0.0018452579981288
504 => 0.0018282012724174
505 => 0.0018964403365022
506 => 0.0019418153322588
507 => 0.0019945207248061
508 => 0.0020715374691915
509 => 0.0021004964775252
510 => 0.0020952652918718
511 => 0.0021536585084849
512 => 0.0022585898207304
513 => 0.0021164749101776
514 => 0.0022661222560717
515 => 0.0022187456341233
516 => 0.0021064165157528
517 => 0.002099183844803
518 => 0.0021752544279314
519 => 0.0023439716597879
520 => 0.0023017099067829
521 => 0.002344040784876
522 => 0.0022946595670434
523 => 0.0022922073733604
524 => 0.0023416424493468
525 => 0.0024571501989547
526 => 0.0024022767968592
527 => 0.0023236023194452
528 => 0.0023816943292573
529 => 0.0023313696541963
530 => 0.0022179740762944
531 => 0.0023016775900168
601 => 0.0022457074341295
602 => 0.0022620425011546
603 => 0.0023796834438974
604 => 0.0023655285744273
605 => 0.0023838462862272
606 => 0.0023515160043583
607 => 0.0023213144230751
608 => 0.0022649409288112
609 => 0.0022482515163394
610 => 0.0022528638695244
611 => 0.0022482492306862
612 => 0.0022167087787447
613 => 0.002209897621151
614 => 0.0021985453934243
615 => 0.0022020639234865
616 => 0.0021807184141491
617 => 0.0022210018004761
618 => 0.0022284787519543
619 => 0.0022577936411674
620 => 0.0022608372102139
621 => 0.0023424787594011
622 => 0.0022975119660393
623 => 0.0023276795732725
624 => 0.0023249810985331
625 => 0.0021088510283595
626 => 0.0021386318450977
627 => 0.0021849614502071
628 => 0.0021640900259036
629 => 0.0021345827150996
630 => 0.0021107539795434
701 => 0.0020746510085625
702 => 0.002125465246922
703 => 0.0021922805668729
704 => 0.00226253175699
705 => 0.0023469339588753
706 => 0.0023280963699644
707 => 0.0022609539165347
708 => 0.0022639658779479
709 => 0.0022825846382416
710 => 0.0022584716519685
711 => 0.0022513602615752
712 => 0.0022816076424044
713 => 0.0022818159394925
714 => 0.0022540710346336
715 => 0.0022232376501469
716 => 0.0022231084571401
717 => 0.0022176219541859
718 => 0.0022956356037306
719 => 0.0023385352229106
720 => 0.0023434535951134
721 => 0.0023382041772739
722 => 0.0023402244698584
723 => 0.0023152621266861
724 => 0.002372318640825
725 => 0.0024246793405032
726 => 0.0024106455544662
727 => 0.0023896069141766
728 => 0.0023728486238277
729 => 0.0024066978338461
730 => 0.0024051905818076
731 => 0.00242422201547
801 => 0.0024233586397081
802 => 0.0024169590843759
803 => 0.0024106457830145
804 => 0.0024356773092894
805 => 0.0024284686317162
806 => 0.0024212487570757
807 => 0.0024067681931767
808 => 0.0024087363423072
809 => 0.0023877013346355
810 => 0.0023779695775901
811 => 0.0022316273013771
812 => 0.0021925198633012
813 => 0.0022048238594252
814 => 0.0022088746544223
815 => 0.0021918550472541
816 => 0.002216256791955
817 => 0.0022124538058912
818 => 0.0022272489999929
819 => 0.0022180056050508
820 => 0.0022183849572035
821 => 0.0022455678108286
822 => 0.0022534591088801
823 => 0.0022494455310005
824 => 0.00225225650337
825 => 0.0023170341751869
826 => 0.0023078248617279
827 => 0.0023029325975012
828 => 0.0023042877881263
829 => 0.0023208398721245
830 => 0.0023254735519337
831 => 0.0023058403249792
901 => 0.0023150994683093
902 => 0.0023545237254485
903 => 0.0023683199842275
904 => 0.0024123510196703
905 => 0.002393645853225
906 => 0.002427979995776
907 => 0.0025335114446062
908 => 0.0026178172681526
909 => 0.0025402861487338
910 => 0.0026951030573948
911 => 0.002815650227954
912 => 0.0028110234267661
913 => 0.0027900032392728
914 => 0.0026527634905036
915 => 0.0025264734275568
916 => 0.0026321204277711
917 => 0.0026323897437012
918 => 0.0026233145726891
919 => 0.002566949464947
920 => 0.0026213531891181
921 => 0.0026256715591775
922 => 0.0026232544202915
923 => 0.0025800394243407
924 => 0.00251405811299
925 => 0.002526950703291
926 => 0.0025480690292057
927 => 0.0025080876325048
928 => 0.0024953111537007
929 => 0.0025190650586222
930 => 0.0025956050896019
1001 => 0.0025811356401114
1002 => 0.0025807577843096
1003 => 0.0026426642252315
1004 => 0.0025983525737775
1005 => 0.0025271133201425
1006 => 0.0025091244690693
1007 => 0.0024452761665016
1008 => 0.002489376416505
1009 => 0.0024909635059924
1010 => 0.0024668102497592
1011 => 0.0025290732237696
1012 => 0.0025284994595029
1013 => 0.0025876088867051
1014 => 0.0027006039110286
1015 => 0.0026671857221886
1016 => 0.0026283240044564
1017 => 0.0026325493506925
1018 => 0.0026788909698587
1019 => 0.0026508717690345
1020 => 0.0026609476690077
1021 => 0.0026788757187773
1022 => 0.0026896921563318
1023 => 0.0026309930317839
1024 => 0.0026173074579481
1025 => 0.0025893115768638
1026 => 0.0025820079740567
1027 => 0.0026048100350467
1028 => 0.0025988024975846
1029 => 0.0024908301172665
1030 => 0.0024795464027706
1031 => 0.0024798924581848
1101 => 0.0024515190215735
1102 => 0.0024082427203362
1103 => 0.0025219702560941
1104 => 0.0025128363433569
1105 => 0.0025027532106037
1106 => 0.0025039883368324
1107 => 0.0025533536055211
1108 => 0.0025247192566758
1109 => 0.0026008483661584
1110 => 0.0025851985098993
1111 => 0.0025691472938795
1112 => 0.0025669285268935
1113 => 0.0025607501781513
1114 => 0.0025395623214518
1115 => 0.0025139767112944
1116 => 0.0024970828752809
1117 => 0.0023034269571453
1118 => 0.0023393683691066
1119 => 0.0023807156874053
1120 => 0.002394988615993
1121 => 0.0023705737839871
1122 => 0.0025405263678296
1123 => 0.0025715783426014
1124 => 0.0024775198855473
1125 => 0.0024599253886139
1126 => 0.0025416798601193
1127 => 0.0024923719197239
1128 => 0.0025145752822648
1129 => 0.0024665837570413
1130 => 0.0025640988311868
1201 => 0.0025633559297043
1202 => 0.0025254203633838
1203 => 0.0025574832442663
1204 => 0.0025519115296842
1205 => 0.0025090823687397
1206 => 0.0025654565919818
1207 => 0.0025654845528932
1208 => 0.0025289723951001
1209 => 0.0024863341883369
1210 => 0.0024787114840371
1211 => 0.0024729688003135
1212 => 0.0025131629341017
1213 => 0.0025492008687724
1214 => 0.002616258530633
1215 => 0.0026331184200755
1216 => 0.002698923690996
1217 => 0.0026597398561633
1218 => 0.002677109542629
1219 => 0.0026959667943797
1220 => 0.0027050076543215
1221 => 0.0026902760582057
1222 => 0.0027924987304753
1223 => 0.0028011294560366
1224 => 0.0028040232636618
1225 => 0.0027695543537219
1226 => 0.0028001708132973
1227 => 0.0027858463857725
1228 => 0.0028231145667515
1229 => 0.002828958693393
1230 => 0.0028240089260385
1231 => 0.0028258639440777
]
'min_raw' => 0.0012672107333601
'max_raw' => 0.002828958693393
'avg_raw' => 0.0020480847133766
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001267'
'max' => '$0.002828'
'avg' => '$0.002048'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00019540132393211
'max_diff' => -0.00026995751267577
'year' => 2031
]
6 => [
'items' => [
101 => 0.0027386349266108
102 => 0.0027341116418854
103 => 0.0026724363336971
104 => 0.0026975694776647
105 => 0.0026505842696802
106 => 0.0026654837631333
107 => 0.0026720513178799
108 => 0.0026686207999857
109 => 0.0026989904679151
110 => 0.0026731700460619
111 => 0.0026050257075208
112 => 0.0025368628031003
113 => 0.0025360070733596
114 => 0.0025180609838008
115 => 0.0025050892480401
116 => 0.0025075880645447
117 => 0.0025163942198325
118 => 0.0025045774182861
119 => 0.0025070991320231
120 => 0.0025489763821476
121 => 0.0025573745660052
122 => 0.0025288342558749
123 => 0.0024142407923543
124 => 0.0023861192689704
125 => 0.0024063324623047
126 => 0.0023966718577873
127 => 0.0019343012418035
128 => 0.0020429283595886
129 => 0.001978385814829
130 => 0.0020081299889139
131 => 0.0019422487639254
201 => 0.0019736907376208
202 => 0.0019678845531563
203 => 0.0021425537440446
204 => 0.0021398265248785
205 => 0.0021411319003721
206 => 0.0020788229269254
207 => 0.002178082813499
208 => 0.0022269818028952
209 => 0.0022179319013624
210 => 0.0022202095666058
211 => 0.0021810717314594
212 => 0.0021415108401674
213 => 0.002097631723347
214 => 0.0021791536987765
215 => 0.0021700898467353
216 => 0.0021908790622469
217 => 0.0022437518906241
218 => 0.002251537615447
219 => 0.002262001708564
220 => 0.0022582510760664
221 => 0.0023476063585816
222 => 0.0023367848442838
223 => 0.0023628615801792
224 => 0.0023092197559957
225 => 0.0022485189402034
226 => 0.0022600561808263
227 => 0.0022589450517777
228 => 0.0022447991036943
229 => 0.0022320287742726
301 => 0.0022107697738035
302 => 0.0022780363970278
303 => 0.0022753054949682
304 => 0.0023195156249872
305 => 0.002311701055072
306 => 0.002259513444629
307 => 0.0022613773353456
308 => 0.0022739128961699
309 => 0.0023172986153115
310 => 0.0023301784506777
311 => 0.0023242119977634
312 => 0.0023383341492556
313 => 0.0023494957219886
314 => 0.0023397358709443
315 => 0.0024779147800273
316 => 0.0024205332631761
317 => 0.0024485006152314
318 => 0.0024551706639034
319 => 0.0024380854744861
320 => 0.002441790640296
321 => 0.0024474029569006
322 => 0.0024814798443198
323 => 0.0025709074571345
324 => 0.0026105143380958
325 => 0.002729673593637
326 => 0.0026072255379864
327 => 0.0025999599771045
328 => 0.0026214241572923
329 => 0.0026913832545831
330 => 0.0027480785320135
331 => 0.0027668876263662
401 => 0.0027693735586892
402 => 0.0028046606700998
403 => 0.0028248865842946
404 => 0.0028003758866314
405 => 0.0027796056367387
406 => 0.0027052091797217
407 => 0.0027138207721963
408 => 0.0027731461046405
409 => 0.0028569466309627
410 => 0.0029288562005059
411 => 0.0029036759755534
412 => 0.0030957833174724
413 => 0.0031148299757356
414 => 0.0031121983434158
415 => 0.0031555894654621
416 => 0.0030694669246486
417 => 0.0030326478699052
418 => 0.0027840964005179
419 => 0.002853929225133
420 => 0.0029554353368491
421 => 0.0029420006223351
422 => 0.0028682841707407
423 => 0.002928800279967
424 => 0.0029087917617431
425 => 0.0028930102132657
426 => 0.0029653085462443
427 => 0.0028858135592825
428 => 0.0029546423135437
429 => 0.0028663687242615
430 => 0.0029037909967
501 => 0.0028825483049522
502 => 0.0028962949299194
503 => 0.002815932441251
504 => 0.0028592940894473
505 => 0.0028141284541262
506 => 0.0028141070397343
507 => 0.0028131100058313
508 => 0.0028662471754915
509 => 0.0028679799766865
510 => 0.0028287115280217
511 => 0.0028230523310807
512 => 0.0028439773482769
513 => 0.0028194796334108
514 => 0.0028309419600099
515 => 0.0028198268156067
516 => 0.0028173245624807
517 => 0.0027973861838501
518 => 0.0027887961821188
519 => 0.0027921645431347
520 => 0.0027806665904783
521 => 0.0027737386581038
522 => 0.0028117318657085
523 => 0.0027914336275269
524 => 0.0028086208695894
525 => 0.0027890338380563
526 => 0.0027211366530991
527 => 0.0026820882640305
528 => 0.0025538367757187
529 => 0.0025902087387084
530 => 0.0026143233878002
531 => 0.0026063534964192
601 => 0.002623475907044
602 => 0.002624527083994
603 => 0.0026189604137575
604 => 0.0026125149227583
605 => 0.0026093776141979
606 => 0.0026327605418584
607 => 0.0026463351183985
608 => 0.0026167436154489
609 => 0.0026098107403369
610 => 0.0026397293836106
611 => 0.0026579797387241
612 => 0.0027927301068936
613 => 0.0027827473643817
614 => 0.0028078020890724
615 => 0.0028049813115683
616 => 0.0028312426545748
617 => 0.0028741688515189
618 => 0.0027868878907782
619 => 0.0028020368476142
620 => 0.0027983226732385
621 => 0.0028388730551635
622 => 0.0028389996490297
623 => 0.0028146876694238
624 => 0.002827867587985
625 => 0.0028205109190163
626 => 0.0028338054141562
627 => 0.0027826140387692
628 => 0.002844959608223
629 => 0.0028803055286436
630 => 0.0028807963067829
701 => 0.0028975499925397
702 => 0.0029145727075766
703 => 0.0029472463267239
704 => 0.0029136614580722
705 => 0.0028532455487888
706 => 0.0028576073822969
707 => 0.0028221855567893
708 => 0.0028227810040756
709 => 0.0028196024597955
710 => 0.0028291415104497
711 => 0.0027847073239605
712 => 0.0027951359387157
713 => 0.0027805358169885
714 => 0.002802005109801
715 => 0.002778907699736
716 => 0.0027983208821512
717 => 0.0028066989681244
718 => 0.0028376142857329
719 => 0.0027743414821887
720 => 0.00264532395257
721 => 0.0026724450014822
722 => 0.0026323308398287
723 => 0.0026360435582151
724 => 0.0026435438402304
725 => 0.0026192329722792
726 => 0.0026238707197608
727 => 0.0026237050267854
728 => 0.0026222771742383
729 => 0.0026159529785539
730 => 0.0026067816436075
731 => 0.0026433174192457
801 => 0.0026495255594729
802 => 0.0026633254861722
803 => 0.0027043847074496
804 => 0.0027002819230009
805 => 0.0027069737346597
806 => 0.0026923655473815
807 => 0.0026367211901256
808 => 0.0026397429464377
809 => 0.0026020615968058
810 => 0.0026623618893429
811 => 0.0026480819841452
812 => 0.0026388756363679
813 => 0.0026363635990806
814 => 0.0026775245982258
815 => 0.0026898406142897
816 => 0.0026821660995758
817 => 0.0026664254459962
818 => 0.0026966521541755
819 => 0.0027047395461218
820 => 0.002706550014927
821 => 0.0027601059464242
822 => 0.0027095431965655
823 => 0.002721714153007
824 => 0.0028166684808109
825 => 0.0027305580082943
826 => 0.0027761726460791
827 => 0.0027739400469266
828 => 0.0027972749521021
829 => 0.0027720259036074
830 => 0.0027723388958242
831 => 0.0027930587107766
901 => 0.0027639614675142
902 => 0.002756756580887
903 => 0.0027468030816139
904 => 0.0027685361831353
905 => 0.0027815641945937
906 => 0.0028865603989286
907 => 0.0029543927353376
908 => 0.002951447954719
909 => 0.0029783577371744
910 => 0.0029662346337129
911 => 0.0029270859347225
912 => 0.0029939079902239
913 => 0.0029727626959097
914 => 0.0029745058882814
915 => 0.0029744410065743
916 => 0.0029885007787395
917 => 0.0029785381416012
918 => 0.002958900761158
919 => 0.0029719369707344
920 => 0.003010649852646
921 => 0.0031308158259561
922 => 0.0031980622966077
923 => 0.0031267675039857
924 => 0.0031759456972611
925 => 0.0031464563052778
926 => 0.003141097205521
927 => 0.0031719847451379
928 => 0.003202926349304
929 => 0.0032009555028829
930 => 0.0031784934871272
1001 => 0.0031658052643794
1002 => 0.0032618847378924
1003 => 0.0033326744573056
1004 => 0.0033278470730219
1005 => 0.0033491535773007
1006 => 0.0034117101328483
1007 => 0.0034174295203033
1008 => 0.0034167090089426
1009 => 0.003402532910379
1010 => 0.0034641279633109
1011 => 0.0035155116401286
1012 => 0.0033992515531484
1013 => 0.0034435218723142
1014 => 0.0034633962448883
1015 => 0.0034925777202877
1016 => 0.0035418117606697
1017 => 0.0035952929872088
1018 => 0.0036028558190332
1019 => 0.0035974896279389
1020 => 0.0035622173213839
1021 => 0.0036207371176267
1022 => 0.0036550166418076
1023 => 0.0036754293139844
1024 => 0.0037271924542799
1025 => 0.0034635189822472
1026 => 0.0032768777933207
1027 => 0.0032477310765383
1028 => 0.0033070020712532
1029 => 0.0033226313598822
1030 => 0.0033163312132333
1031 => 0.0031062495864219
1101 => 0.0032466250402506
1102 => 0.0033976572254668
1103 => 0.0034034589867989
1104 => 0.0034790688566521
1105 => 0.0035036905296297
1106 => 0.0035645663852738
1107 => 0.0035607585839285
1108 => 0.0035755808860314
1109 => 0.0035721734954644
1110 => 0.0036849331991214
1111 => 0.0038093238972329
1112 => 0.0038050166428955
1113 => 0.0037871340083181
1114 => 0.0038136927701079
1115 => 0.0039420773010764
1116 => 0.003930257710785
1117 => 0.0039417394359628
1118 => 0.0040931120334098
1119 => 0.0042899179425917
1120 => 0.0041984818387865
1121 => 0.0043968718740137
1122 => 0.0045217478849854
1123 => 0.0047377080335404
1124 => 0.0047106687593151
1125 => 0.0047947404603588
1126 => 0.0046622628151851
1127 => 0.0043580673637169
1128 => 0.0043099272691087
1129 => 0.0044063049576157
1130 => 0.0046432401004131
1201 => 0.0043988430267885
1202 => 0.0044482842364793
1203 => 0.0044340451647622
1204 => 0.0044332864251426
1205 => 0.0044622444304073
1206 => 0.0044202393334229
1207 => 0.0042491030117356
1208 => 0.0043275337794522
1209 => 0.004297247893482
1210 => 0.0043308523419283
1211 => 0.0045122016906642
1212 => 0.0044320228207595
1213 => 0.0043475608945175
1214 => 0.0044534948936269
1215 => 0.0045883852773647
1216 => 0.0045799440795717
1217 => 0.0045635646277064
1218 => 0.0046558947402712
1219 => 0.0048083970360435
1220 => 0.0048496177937869
1221 => 0.0048800461144318
1222 => 0.004884241665758
1223 => 0.0049274584519389
1224 => 0.0046950709006118
1225 => 0.0050638759127035
1226 => 0.0051275583502589
1227 => 0.0051155886913651
1228 => 0.0051863690405413
1229 => 0.0051655436662895
1230 => 0.0051353709663998
1231 => 0.005247572875256
]
'min_raw' => 0.0019343012418035
'max_raw' => 0.005247572875256
'avg_raw' => 0.0035909370585298
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001934'
'max' => '$0.005247'
'avg' => '$0.00359'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00066709050844335
'max_diff' => 0.002418614181863
'year' => 2032
]
7 => [
'items' => [
101 => 0.0051189424409795
102 => 0.0049363677336453
103 => 0.0048362036382835
104 => 0.004968107799063
105 => 0.0050486570672302
106 => 0.0051018950095931
107 => 0.0051180047787849
108 => 0.0047131104846988
109 => 0.0044948949166535
110 => 0.004634768593924
111 => 0.0048054241337595
112 => 0.0046941229004714
113 => 0.0046984856980952
114 => 0.004539799388876
115 => 0.0048194643510022
116 => 0.0047787195183729
117 => 0.0049901037821297
118 => 0.0049396552311194
119 => 0.0051120308923232
120 => 0.0050666386037908
121 => 0.0052550594556403
122 => 0.005330225634734
123 => 0.0054564413481139
124 => 0.0055492861406665
125 => 0.0056038063786913
126 => 0.0056005331881006
127 => 0.0058165695330295
128 => 0.0056891804481599
129 => 0.0055291497342617
130 => 0.0055262552835377
131 => 0.0056091374579183
201 => 0.0057828357578061
202 => 0.0058278731997596
203 => 0.0058530429856907
204 => 0.0058144945823706
205 => 0.0056762228608026
206 => 0.0056165178324831
207 => 0.0056673882464325
208 => 0.0056051781015169
209 => 0.0057125702647251
210 => 0.0058600426425382
211 => 0.0058295901796888
212 => 0.005931388197306
213 => 0.0060367384360761
214 => 0.0061873940090926
215 => 0.0062267809546388
216 => 0.0062918860778753
217 => 0.0063589006356046
218 => 0.0063804239054542
219 => 0.0064215185058756
220 => 0.0064213019170466
221 => 0.0065451432614022
222 => 0.0066817440992736
223 => 0.0067333077532534
224 => 0.0068518755323434
225 => 0.0066488323657622
226 => 0.0068028429400058
227 => 0.0069417643331083
228 => 0.0067761365211948
301 => 0.0070044158735868
302 => 0.0070132794435481
303 => 0.0071471088266479
304 => 0.0070114471082687
305 => 0.0069308916129426
306 => 0.0071634523095739
307 => 0.0072759811050805
308 => 0.0072420865160842
309 => 0.0069841470202401
310 => 0.0068340151701135
311 => 0.0064410911600609
312 => 0.0069065266230222
313 => 0.0071332266600921
314 => 0.0069835599219108
315 => 0.0070590431190552
316 => 0.0074708549671662
317 => 0.0076276462560842
318 => 0.0075950347640431
319 => 0.0076005455693672
320 => 0.0076851473029042
321 => 0.0080603179804329
322 => 0.0078355070140695
323 => 0.0080073665743481
324 => 0.0080985202654341
325 => 0.0081831888937652
326 => 0.0079752695023788
327 => 0.0077047694291276
328 => 0.0076190907011083
329 => 0.0069686785144077
330 => 0.006934821735493
331 => 0.0069158168995228
401 => 0.0067959940970178
402 => 0.0067018461964769
403 => 0.0066269762904792
404 => 0.0064304952990949
405 => 0.0064968018659271
406 => 0.0061836521744305
407 => 0.0063839942497064
408 => 0.0058841997808141
409 => 0.0063004434659804
410 => 0.0060739009524224
411 => 0.0062260181574353
412 => 0.0062254874348373
413 => 0.0059453914316049
414 => 0.0057838379023948
415 => 0.0058867860989649
416 => 0.005997154737726
417 => 0.0060150616780403
418 => 0.0061581574991103
419 => 0.0061980924669365
420 => 0.0060770876500376
421 => 0.0058738426513456
422 => 0.0059210518290169
423 => 0.0057828812099161
424 => 0.0055407425145981
425 => 0.0057146507529115
426 => 0.0057740306716772
427 => 0.0058002562266035
428 => 0.0055621406295753
429 => 0.0054873195392479
430 => 0.0054474854185674
501 => 0.0058431049178969
502 => 0.0058647778471307
503 => 0.0057538960769272
504 => 0.0062550921924878
505 => 0.0061416560755608
506 => 0.0062683920106917
507 => 0.0059167680909664
508 => 0.0059302005982243
509 => 0.0057637361996031
510 => 0.0058569451396759
511 => 0.0057910680650968
512 => 0.0058494147784267
513 => 0.0058843875578241
514 => 0.0060508246412755
515 => 0.0063023439101219
516 => 0.0060259644911955
517 => 0.005905542020543
518 => 0.0059802514440541
519 => 0.0061792124839568
520 => 0.0064806486440377
521 => 0.0063021923703017
522 => 0.0063813882342017
523 => 0.0063986890072851
524 => 0.0062671019578426
525 => 0.0064855004462444
526 => 0.0066025419704452
527 => 0.0067226023559442
528 => 0.0068268474246574
529 => 0.0066746475977914
530 => 0.0068375232295262
531 => 0.0067062742217674
601 => 0.0065885302935347
602 => 0.0065887088624712
603 => 0.0065148463763265
604 => 0.006371728502149
605 => 0.0063453353703285
606 => 0.0064826357751437
607 => 0.0065927376974088
608 => 0.0066018062190792
609 => 0.0066627643004861
610 => 0.0066988386651446
611 => 0.0070524164795182
612 => 0.0071946284014083
613 => 0.0073685224475617
614 => 0.0074362639786699
615 => 0.0076401417006224
616 => 0.0074754938820067
617 => 0.0074398712907659
618 => 0.0069453306252036
619 => 0.0070263116314847
620 => 0.0071559700360457
621 => 0.0069474686445386
622 => 0.007079714787045
623 => 0.0071058229769321
624 => 0.0069403838470392
625 => 0.0070287520345178
626 => 0.0067940723279163
627 => 0.0063074592864202
628 => 0.0064860421856653
629 => 0.0066175393098637
630 => 0.0064298767001542
701 => 0.0067662546645126
702 => 0.006569749601985
703 => 0.0065074669310703
704 => 0.0062644800264564
705 => 0.0063791604920105
706 => 0.0065342674637384
707 => 0.0064384293883314
708 => 0.0066373077849604
709 => 0.006918972633518
710 => 0.0071197037780319
711 => 0.0071351134228192
712 => 0.0070060567448389
713 => 0.007212870894931
714 => 0.0072143773102302
715 => 0.0069810901040658
716 => 0.0068382029892387
717 => 0.0068057387361129
718 => 0.0068868408054129
719 => 0.0069853136898109
720 => 0.0071405779825668
721 => 0.007234400942895
722 => 0.0074790414635778
723 => 0.0075452341740812
724 => 0.0076179598945485
725 => 0.0077151438848744
726 => 0.0078318381827244
727 => 0.0075765177024388
728 => 0.0075866620610974
729 => 0.0073489111650082
730 => 0.0070948402356093
731 => 0.0072876484006346
801 => 0.0075397194282098
802 => 0.0074818940559703
803 => 0.0074753875203282
804 => 0.0074863297085157
805 => 0.0074427312662472
806 => 0.0072455371277007
807 => 0.0071465074658232
808 => 0.0072742809948063
809 => 0.0073421869389153
810 => 0.0074475031362078
811 => 0.0074345206919363
812 => 0.0077058039060277
813 => 0.0078112163598451
814 => 0.0077842473433054
815 => 0.0077892102913943
816 => 0.0079800545038756
817 => 0.0081923125182606
818 => 0.008391120158644
819 => 0.0085933558294289
820 => 0.0083495528349051
821 => 0.0082257647099642
822 => 0.0083534824570217
823 => 0.0082857136226756
824 => 0.0086751334463706
825 => 0.008702096030051
826 => 0.0090914876942604
827 => 0.0094610667514919
828 => 0.0092289407673414
829 => 0.0094478251152114
830 => 0.0096845663833356
831 => 0.010141278699434
901 => 0.0099874740587048
902 => 0.0098696621143325
903 => 0.0097583303961639
904 => 0.0099899940282602
905 => 0.010288025590035
906 => 0.010352218733931
907 => 0.01045623615071
908 => 0.010346874555611
909 => 0.010478588551123
910 => 0.010943596833342
911 => 0.010817947490745
912 => 0.010639505225117
913 => 0.011006584604059
914 => 0.011139429204313
915 => 0.012071802180153
916 => 0.013248961576557
917 => 0.0127616098568
918 => 0.012459094917605
919 => 0.012530193104067
920 => 0.012960051866273
921 => 0.013098108857659
922 => 0.012722822363974
923 => 0.012855379898
924 => 0.013585784943252
925 => 0.01397762381583
926 => 0.013445453995887
927 => 0.011977218568826
928 => 0.010623438451476
929 => 0.010982521900111
930 => 0.010941812980692
1001 => 0.01172654208193
1002 => 0.010814950795479
1003 => 0.010830299654836
1004 => 0.011631256122846
1005 => 0.011417574669051
1006 => 0.011071438080156
1007 => 0.010625965631633
1008 => 0.009802468609323
1009 => 0.0090730743317498
1010 => 0.010503584479541
1011 => 0.010441898280754
1012 => 0.010352567523529
1013 => 0.010551363457137
1014 => 0.011516660081527
1015 => 0.011494406869974
1016 => 0.011352843291766
1017 => 0.011460218018153
1018 => 0.011052614771472
1019 => 0.011157663409095
1020 => 0.010623224005789
1021 => 0.010864812936244
1022 => 0.011070695426494
1023 => 0.011112029384555
1024 => 0.011205156902628
1025 => 0.010409392457036
1026 => 0.01076666733069
1027 => 0.010976532846834
1028 => 0.010028352809926
1029 => 0.010957790376135
1030 => 0.010395539968455
1031 => 0.01020470373537
1101 => 0.010461639582456
1102 => 0.010361511432969
1103 => 0.010275427129761
1104 => 0.010227390609455
1105 => 0.010416055938581
1106 => 0.010407254475473
1107 => 0.010098561378661
1108 => 0.0096958838178106
1109 => 0.0098310356246725
1110 => 0.0097819337061846
1111 => 0.0096039820193111
1112 => 0.0097238999702952
1113 => 0.009195842003247
1114 => 0.0082873457170053
1115 => 0.0088875261916904
1116 => 0.0088644198962857
1117 => 0.0088527686543556
1118 => 0.0093037876933116
1119 => 0.0092604326194956
1120 => 0.0091817427359855
1121 => 0.009602536817891
1122 => 0.0094489413175164
1123 => 0.0099222864580198
1124 => 0.010234062181599
1125 => 0.010154985773212
1126 => 0.010448212348181
1127 => 0.0098341492493343
1128 => 0.010038116378836
1129 => 0.01008015372154
1130 => 0.0095973442842385
1201 => 0.0092675260457532
1202 => 0.0092455309294494
1203 => 0.0086736715556687
1204 => 0.0089791542172548
1205 => 0.009247966317719
1206 => 0.0091192261822583
1207 => 0.0090784709013736
1208 => 0.0092866807926716
1209 => 0.0093028604844226
1210 => 0.0089339617978534
1211 => 0.0090106675162932
1212 => 0.009330543113452
1213 => 0.009002607471961
1214 => 0.0083654820885271
1215 => 0.0082074661844878
1216 => 0.0081863839500781
1217 => 0.0077578322859243
1218 => 0.0082180255627782
1219 => 0.0080171388650184
1220 => 0.0086517375362494
1221 => 0.0082892581786632
1222 => 0.0082736324180359
1223 => 0.0082500117890472
1224 => 0.0078811396684637
1225 => 0.0079618992198253
1226 => 0.0082303562685781
1227 => 0.0083261447679582
1228 => 0.0083161532427008
1229 => 0.008229040682583
1230 => 0.0082689203665164
1231 => 0.0081404540095638
]
'min_raw' => 0.0044948949166535
'max_raw' => 0.01397762381583
'avg_raw' => 0.0092362593662418
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.004494'
'max' => '$0.013977'
'avg' => '$0.009236'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.00256059367485
'max_diff' => 0.0087300509405741
'year' => 2033
]
8 => [
'items' => [
101 => 0.0080950898651278
102 => 0.0079519081468969
103 => 0.0077414705760567
104 => 0.0077707332109706
105 => 0.0073538013191505
106 => 0.0071266346962366
107 => 0.007063757969022
108 => 0.0069796765815913
109 => 0.0070732551854643
110 => 0.0073526202034857
111 => 0.0070156467211571
112 => 0.0064379293216461
113 => 0.0064726511217392
114 => 0.0065506606975536
115 => 0.0064052903691085
116 => 0.0062677095532421
117 => 0.0063873249103536
118 => 0.0061425384322668
119 => 0.0065802419739492
120 => 0.0065684033197966
121 => 0.0067315521327304
122 => 0.0068335724336085
123 => 0.006598448669549
124 => 0.0065393156787304
125 => 0.0065730005177453
126 => 0.0060162651627349
127 => 0.0066860549766347
128 => 0.0066918473467589
129 => 0.0066422495571053
130 => 0.0069988919555665
131 => 0.0077515186558731
201 => 0.0074683502168789
202 => 0.0073586988384889
203 => 0.007150251488015
204 => 0.0074279952061425
205 => 0.0074066688220673
206 => 0.0073102228254881
207 => 0.0072518919858271
208 => 0.0073593683464236
209 => 0.007238574475361
210 => 0.0072168765769246
211 => 0.0070854109199461
212 => 0.007038483661711
213 => 0.0070037405879418
214 => 0.0069654918775058
215 => 0.0070498590017428
216 => 0.0068586719988021
217 => 0.0066281192155486
218 => 0.0066089512462367
219 => 0.0066618756947718
220 => 0.0066384605660569
221 => 0.0066088391436089
222 => 0.0065522837812414
223 => 0.006535505013341
224 => 0.0065900278691161
225 => 0.006528474743826
226 => 0.0066192997331638
227 => 0.0065946003616398
228 => 0.0064566316801091
301 => 0.0062846716203736
302 => 0.0062831408151436
303 => 0.0062460923023446
304 => 0.0061989054510139
305 => 0.0061857791484626
306 => 0.006377251238612
307 => 0.0067735927349438
308 => 0.0066957814155657
309 => 0.0067520080682411
310 => 0.0070285875498409
311 => 0.0071165038500063
312 => 0.0070541029425606
313 => 0.0069686847317286
314 => 0.0069724426995004
315 => 0.0072643425837643
316 => 0.0072825480214941
317 => 0.0073285472893406
318 => 0.0073876693479149
319 => 0.0070641716847868
320 => 0.0069572059886587
321 => 0.0069065197076024
322 => 0.0067504255800082
323 => 0.0069187597141194
324 => 0.0068206786229591
325 => 0.0068339131130838
326 => 0.0068252941340282
327 => 0.0068300006794054
328 => 0.0065801196268888
329 => 0.0066711631490644
330 => 0.006519785635266
331 => 0.0063171081372133
401 => 0.0063164286911719
402 => 0.0063660337216873
403 => 0.0063365267084917
404 => 0.006257124094677
405 => 0.0062684028611996
406 => 0.0061695889983858
407 => 0.006280400653228
408 => 0.0062835783349857
409 => 0.0062409098119198
410 => 0.0064116304552659
411 => 0.0064815748421395
412 => 0.0064534895062092
413 => 0.0064796043001009
414 => 0.0066990148271829
415 => 0.0067347883166497
416 => 0.0067506765376068
417 => 0.0067293884263102
418 => 0.0064836147217584
419 => 0.0064945158306657
420 => 0.0064145307265029
421 => 0.0063469517421079
422 => 0.0063496545470786
423 => 0.0063843989297107
424 => 0.0065361296863959
425 => 0.0068554381188234
426 => 0.0068675556404226
427 => 0.0068822424300939
428 => 0.0068225038755117
429 => 0.0068044861558288
430 => 0.0068282561788586
501 => 0.0069481716376386
502 => 0.0072566267543501
503 => 0.0071475981150797
504 => 0.007058956134221
505 => 0.0071367190491405
506 => 0.0071247480579145
507 => 0.0070237008447874
508 => 0.0070208647860631
509 => 0.006826922877324
510 => 0.0067552269695067
511 => 0.0066953125025889
512 => 0.0066298874688214
513 => 0.006591101315737
514 => 0.0066506944748659
515 => 0.0066643241354442
516 => 0.0065340226514987
517 => 0.0065162630407175
518 => 0.0066226700452603
519 => 0.006575844289814
520 => 0.0066240057405133
521 => 0.0066351796101969
522 => 0.0066333803598218
523 => 0.0065844888932321
524 => 0.0066156508560718
525 => 0.0065419435241276
526 => 0.0064617978711215
527 => 0.0064106699377543
528 => 0.0063660540347551
529 => 0.0063908095308305
530 => 0.0063025607074966
531 => 0.0062743281328142
601 => 0.0066050938842281
602 => 0.0068494341011286
603 => 0.0068458812976055
604 => 0.0068242545198657
605 => 0.0067921215149759
606 => 0.0069458209081868
607 => 0.0068922751129085
608 => 0.0069312341528743
609 => 0.0069411508636514
610 => 0.0069711657604514
611 => 0.0069818935061899
612 => 0.0069494668076698
613 => 0.0068406388468488
614 => 0.0065694499155349
615 => 0.0064432107359477
616 => 0.0064015497040041
617 => 0.0064030640033897
618 => 0.0063612928662051
619 => 0.006373596338157
620 => 0.0063570142207615
621 => 0.0063256117020595
622 => 0.0063888705137907
623 => 0.0063961605025461
624 => 0.0063813951400015
625 => 0.0063848729173947
626 => 0.0062626220218945
627 => 0.0062719164919644
628 => 0.0062201637015311
629 => 0.0062104606772141
630 => 0.0060796341296297
701 => 0.0058478559369726
702 => 0.0059762835549582
703 => 0.0058211610520875
704 => 0.0057624138097608
705 => 0.0060405141178644
706 => 0.0060126005602327
707 => 0.0059648246832989
708 => 0.0058941542039488
709 => 0.0058679418357196
710 => 0.0057086837841862
711 => 0.005699273968893
712 => 0.005778206559562
713 => 0.0057417818848729
714 => 0.0056906278465063
715 => 0.0055053531049441
716 => 0.0052970429530695
717 => 0.0053033305271636
718 => 0.0053695901107268
719 => 0.005562248786259
720 => 0.0054869737086996
721 => 0.0054323607762483
722 => 0.0054221334156589
723 => 0.005550150245865
724 => 0.0057313208809618
725 => 0.0058163220894847
726 => 0.0057320884733636
727 => 0.0056353254306236
728 => 0.0056412149486784
729 => 0.0056803952737465
730 => 0.0056845125719312
731 => 0.005621529778509
801 => 0.0056392590659336
802 => 0.0056123266571357
803 => 0.0054470425140565
804 => 0.0054440530480298
805 => 0.0054034896537514
806 => 0.0054022614102935
807 => 0.0053332529576129
808 => 0.00532359819805
809 => 0.0051865777267389
810 => 0.0052767650158921
811 => 0.0052162721173734
812 => 0.0051250950504735
813 => 0.0051093760897732
814 => 0.0051089035588333
815 => 0.0052025220197204
816 => 0.0052756710296693
817 => 0.0052173244172423
818 => 0.0052040400245943
819 => 0.0053458825832702
820 => 0.0053278318247551
821 => 0.0053121999842959
822 => 0.0057150990376858
823 => 0.0053961729983225
824 => 0.0052571030414982
825 => 0.0050849775612595
826 => 0.0051410224855572
827 => 0.005152831974578
828 => 0.0047389012225539
829 => 0.0045709695680096
830 => 0.0045133417525408
831 => 0.0044801761300009
901 => 0.00449529012066
902 => 0.0043441319351516
903 => 0.0044457127357389
904 => 0.004314822524172
905 => 0.0042928783542492
906 => 0.0045269262667166
907 => 0.0045594926664484
908 => 0.0044205542876053
909 => 0.0045097752189029
910 => 0.0044774224689507
911 => 0.0043170662611716
912 => 0.0043109418335349
913 => 0.0042304807252646
914 => 0.0041045746711622
915 => 0.004047032225927
916 => 0.004017063620842
917 => 0.0040294292513765
918 => 0.0040231768101838
919 => 0.0039823754020866
920 => 0.0040255154991355
921 => 0.0039153103778945
922 => 0.0038714258106334
923 => 0.0038516041697158
924 => 0.0037537907814443
925 => 0.0039094553799954
926 => 0.0039401232669209
927 => 0.0039708515790574
928 => 0.0042383205570962
929 => 0.0042249585628129
930 => 0.004345744483579
1001 => 0.0043410509648091
1002 => 0.0043066008636044
1003 => 0.0041612615533884
1004 => 0.0042191912120164
1005 => 0.0040408927270271
1006 => 0.0041744860750996
1007 => 0.0041135196500309
1008 => 0.0041538732654571
1009 => 0.0040813138263819
1010 => 0.004121471215872
1011 => 0.0039473957606145
1012 => 0.0037848465498028
1013 => 0.0038502610973407
1014 => 0.0039213741915753
1015 => 0.0040755654991554
1016 => 0.0039837304284114
1017 => 0.0040167577925194
1018 => 0.0039061216514715
1019 => 0.0036778476908383
1020 => 0.003679139696665
1021 => 0.0036440247210401
1022 => 0.0036136802552299
1023 => 0.0039942787910076
1024 => 0.0039469453467111
1025 => 0.0038715256980728
1026 => 0.0039724778948329
1027 => 0.0039991712579831
1028 => 0.0039999311805055
1029 => 0.0040735832973084
1030 => 0.0041128914452489
1031 => 0.0041198196766947
1101 => 0.0042357128738433
1102 => 0.0042745587448592
1103 => 0.0044345593899006
1104 => 0.0041095564235269
1105 => 0.0041028632013086
1106 => 0.0039738984992684
1107 => 0.0038921070463833
1108 => 0.0039794988300231
1109 => 0.0040569160201599
1110 => 0.0039763040671656
1111 => 0.0039868302864154
1112 => 0.0038786153257591
1113 => 0.0039172970822066
1114 => 0.0039506150218545
1115 => 0.0039322188139189
1116 => 0.0039046788002528
1117 => 0.0040505686934227
1118 => 0.0040423370139029
1119 => 0.0041781930364169
1120 => 0.0042841025211239
1121 => 0.0044739112513038
1122 => 0.0042758359464082
1123 => 0.0042686172950198
1124 => 0.0043391807702498
1125 => 0.0042745479419588
1126 => 0.0043153936583893
1127 => 0.0044673303749146
1128 => 0.004470540558316
1129 => 0.0044167658502543
1130 => 0.0044134936543816
1201 => 0.0044238216752958
1202 => 0.0044843132163795
1203 => 0.0044631756132076
1204 => 0.0044876365827368
1205 => 0.0045182253996928
1206 => 0.0046447537160124
1207 => 0.0046752592647175
1208 => 0.0046011465966778
1209 => 0.0046078381407974
1210 => 0.0045801179685123
1211 => 0.0045533406294177
1212 => 0.0046135321771861
1213 => 0.0047235334138008
1214 => 0.0047228491018169
1215 => 0.004748367250593
1216 => 0.0047642648458767
1217 => 0.0046960207291678
1218 => 0.0046515963185961
1219 => 0.004668631464408
1220 => 0.0046958710335384
1221 => 0.0046597980392647
1222 => 0.0044371388079709
1223 => 0.0045046793952187
1224 => 0.0044934373389347
1225 => 0.0044774272837055
1226 => 0.004545339866459
1227 => 0.0045387895321786
1228 => 0.0043425815894788
1229 => 0.0043551421853753
1230 => 0.0043433454409172
1231 => 0.0043814631356481
]
'min_raw' => 0.0036136802552299
'max_raw' => 0.0080950898651278
'avg_raw' => 0.0058543850601788
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003613'
'max' => '$0.008095'
'avg' => '$0.005854'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00088121466142363
'max_diff' => -0.0058825339507023
'year' => 2034
]
9 => [
'items' => [
101 => 0.0042724894613518
102 => 0.0043060090296164
103 => 0.0043270321886056
104 => 0.0043394149907577
105 => 0.0043841501630981
106 => 0.0043789010069554
107 => 0.0043838238681821
108 => 0.0044501543191153
109 => 0.0047856309780734
110 => 0.004803890232433
111 => 0.004713974985958
112 => 0.0047498943534249
113 => 0.0046809370225905
114 => 0.0047272285407536
115 => 0.0047589000218037
116 => 0.0046157826890138
117 => 0.0046073082093898
118 => 0.0045380662671216
119 => 0.0045752729648324
120 => 0.0045160744335182
121 => 0.004530599682426
122 => 0.0044899858201914
123 => 0.0045630826860744
124 => 0.0046448163402362
125 => 0.0046654654890373
126 => 0.0046111464685592
127 => 0.0045718159179351
128 => 0.004502764427328
129 => 0.0046175985951204
130 => 0.0046511796052908
131 => 0.0046174222083699
201 => 0.0046095998818896
202 => 0.0045947765873441
203 => 0.0046127447139017
204 => 0.0046509967158975
205 => 0.0046329577781598
206 => 0.0046448728143407
207 => 0.004599464983151
208 => 0.0046960433208101
209 => 0.0048494329638554
210 => 0.0048499261366395
211 => 0.0048318871016652
212 => 0.0048245059172102
213 => 0.004843015061794
214 => 0.0048530555134458
215 => 0.0049129106930331
216 => 0.0049771376854658
217 => 0.0052768570347172
218 => 0.0051926970407938
219 => 0.0054586258778334
220 => 0.0056689410613941
221 => 0.0057320053889756
222 => 0.0056739891750065
223 => 0.0054755188409927
224 => 0.0054657809395533
225 => 0.0057623794105835
226 => 0.0056785767574469
227 => 0.0056686086985141
228 => 0.0055625653927708
301 => 0.005625250120184
302 => 0.0056115400507693
303 => 0.0055898980354786
304 => 0.005709496128727
305 => 0.0059333730826928
306 => 0.0058984797599124
307 => 0.0058724335131116
308 => 0.0057583064415787
309 => 0.0058270364298458
310 => 0.0058025629974601
311 => 0.005907716394213
312 => 0.0058454258514095
313 => 0.0056779418699272
314 => 0.0057046142460127
315 => 0.0057005827700247
316 => 0.0057835502601832
317 => 0.0057586454790173
318 => 0.0056957197117946
319 => 0.0059326078956027
320 => 0.0059172256945875
321 => 0.0059390341387663
322 => 0.0059486348903424
323 => 0.0060928245533883
324 => 0.0061518944447836
325 => 0.0061653043442943
326 => 0.0062214161724905
327 => 0.0061639082308921
328 => 0.0063939809997533
329 => 0.0065469659659277
330 => 0.0067246658766737
331 => 0.0069843332075068
401 => 0.0070819705259572
402 => 0.0070643332182968
403 => 0.0072612100249922
404 => 0.0076149932702982
405 => 0.0071358429272233
406 => 0.0076403894019491
407 => 0.0074806558133201
408 => 0.0071019303481652
409 => 0.0070775448930892
410 => 0.0073340221751851
411 => 0.0079028641018503
412 => 0.0077603756509724
413 => 0.0079030971619109
414 => 0.0077366049383018
415 => 0.0077283371960929
416 => 0.0078950110062278
417 => 0.0082844534485243
418 => 0.0080994439422209
419 => 0.0078341874487428
420 => 0.0080300487156789
421 => 0.0078603755601543
422 => 0.0074780544522316
423 => 0.0077602666927394
424 => 0.0075715594044537
425 => 0.0076266342234067
426 => 0.0080232688752925
427 => 0.0079755447446125
428 => 0.008037304188848
429 => 0.0079283003862984
430 => 0.0078264736463952
501 => 0.0076364064746129
502 => 0.0075801369552465
503 => 0.0075956878260342
504 => 0.0075801292490072
505 => 0.0074737884132025
506 => 0.0074508241198353
507 => 0.0074125492914678
508 => 0.0074244122612284
509 => 0.0073524443862015
510 => 0.0074882626356989
511 => 0.007513471699632
512 => 0.0076123088953141
513 => 0.0076225705008497
514 => 0.0078978306839651
515 => 0.0077462220006646
516 => 0.0078479341946865
517 => 0.0078388360987009
518 => 0.0071101384773912
519 => 0.0072105465802541
520 => 0.0073667500785104
521 => 0.0072963806142748
522 => 0.0071968946557643
523 => 0.0071165544101675
524 => 0.0069948307228764
525 => 0.0071661544752422
526 => 0.0073914269913534
527 => 0.0076282837836145
528 => 0.0079128517000444
529 => 0.007849339453833
530 => 0.0076229639843582
531 => 0.0076331190225514
601 => 0.0076958934728019
602 => 0.0076145948560673
603 => 0.0075906183068547
604 => 0.007692599463125
605 => 0.0076933017513004
606 => 0.0075997578674812
607 => 0.0074958009589662
608 => 0.0074953653757238
609 => 0.0074768672479581
610 => 0.0077398957141374
611 => 0.0078845347753586
612 => 0.0079011174106301
613 => 0.0078834186318813
614 => 0.0078902301893823
615 => 0.007806067906562
616 => 0.0079984379275396
617 => 0.008174975682212
618 => 0.0081276597927808
619 => 0.0080567265481734
620 => 0.0080002248022356
621 => 0.0081143497770892
622 => 0.0081092679716083
623 => 0.0081734337789331
624 => 0.0081705228472732
625 => 0.008148946299668
626 => 0.0081276605633473
627 => 0.0082120561018283
628 => 0.0081877515420967
629 => 0.0081634092306706
630 => 0.0081145869984843
701 => 0.0081212227506898
702 => 0.0080503017537072
703 => 0.008017490455379
704 => 0.0075240872538356
705 => 0.0073922337959685
706 => 0.0074337175779381
707 => 0.0074473751160884
708 => 0.0073899923222499
709 => 0.0074722645081841
710 => 0.0074594424751541
711 => 0.0075093255050355
712 => 0.007478160753635
713 => 0.0074794397659032
714 => 0.0075710886547466
715 => 0.0075976947170801
716 => 0.00758416265904
717 => 0.0075936400486395
718 => 0.0078120424918029
719 => 0.007780992648502
720 => 0.0077644980380948
721 => 0.0077690671579037
722 => 0.0078248736647332
723 => 0.0078404964397231
724 => 0.0077743016442979
725 => 0.007805519492488
726 => 0.0079384411279466
727 => 0.0079849561776442
728 => 0.0081334098877882
729 => 0.0080703441131647
730 => 0.0081861040719089
731 => 0.0085419107196103
801 => 0.0088261536897415
802 => 0.0085647521075713
803 => 0.0090867281240933
804 => 0.0094931613259681
805 => 0.0094775617427303
806 => 0.0094066907130141
807 => 0.0089439773182653
808 => 0.0085181815537494
809 => 0.0088743777910101
810 => 0.0088752858084713
811 => 0.0088446882357958
812 => 0.0086546493397573
813 => 0.0088380752941468
814 => 0.0088526349803011
815 => 0.0088444854277877
816 => 0.0086987830517648
817 => 0.008476322453878
818 => 0.0085197907222097
819 => 0.0085909926324656
820 => 0.0084561925620766
821 => 0.0084131157717631
822 => 0.0084932037206506
823 => 0.0087512637789532
824 => 0.0087024790197712
825 => 0.0087012050525543
826 => 0.0089099269402923
827 => 0.0087605271136745
828 => 0.008520338996278
829 => 0.0084596883289433
830 => 0.0082444193190903
831 => 0.0083931063909577
901 => 0.0083984573739717
902 => 0.008317022984255
903 => 0.008526946948193
904 => 0.0085250124619089
905 => 0.0087243040226094
906 => 0.0091052746361767
907 => 0.0089926028793195
908 => 0.0088615778847469
909 => 0.0088758239345859
910 => 0.0090320679390734
911 => 0.0089375992472566
912 => 0.008971570847493
913 => 0.0090320165189878
914 => 0.0090684848933821
915 => 0.008870576696727
916 => 0.0088244348290434
917 => 0.0087300447613575
918 => 0.0087054201545723
919 => 0.0087822988951891
920 => 0.0087620440632026
921 => 0.0083980076445694
922 => 0.0083599638133427
923 => 0.0083611305633324
924 => 0.0082654675408273
925 => 0.008119558469751
926 => 0.0085029987967616
927 => 0.0084722031722587
928 => 0.0084382071861996
929 => 0.0084423715005134
930 => 0.0086088099504702
1001 => 0.0085122672441521
1002 => 0.0087689418519373
1003 => 0.0087161772689216
1004 => 0.0086620594734506
1005 => 0.0086545787456481
1006 => 0.0086337480115051
1007 => 0.0085623116733539
1008 => 0.008476048002378
1009 => 0.0084190892547685
1010 => 0.0077661648061498
1011 => 0.0078873437859266
1012 => 0.0080267491563483
1013 => 0.008074871331586
1014 => 0.0079925550208889
1015 => 0.0085655620230241
1016 => 0.0086702559239471
1017 => 0.0083531312690372
1018 => 0.0082938101942179
1019 => 0.0085694511028134
1020 => 0.0084032059391997
1021 => 0.0084780661261956
1022 => 0.0083162593482434
1023 => 0.00864503822901
1024 => 0.0086425334847938
1025 => 0.0085146310743678
1026 => 0.008622733315822
1027 => 0.0086039478911038
1028 => 0.0084595463847426
1029 => 0.008649616014326
1030 => 0.0086497102864909
1031 => 0.0085266069972941
1101 => 0.0083828493062874
1102 => 0.0083571488265405
1103 => 0.0083377869674248
1104 => 0.0084733042957567
1105 => 0.0085948087085873
1106 => 0.0088208982973667
1107 => 0.008877742591742
1108 => 0.0090996096570276
1109 => 0.0089674986221614
1110 => 0.0090260617327932
1111 => 0.0090896402736419
1112 => 0.0091201221641482
1113 => 0.0090704535593167
1114 => 0.0094151044358327
1115 => 0.0094442035296406
1116 => 0.0094539602040882
1117 => 0.0093377458676833
1118 => 0.009440971398715
1119 => 0.0093926755912155
1120 => 0.0095183278653674
1121 => 0.0095380317463631
1122 => 0.0095213432601456
1123 => 0.0095275975829783
1124 => 0.0092334988604528
1125 => 0.0092182482901955
1126 => 0.0090103056826061
1127 => 0.0090950438322329
1128 => 0.0089366299231108
1129 => 0.0089868646055375
1130 => 0.0090090075748975
1201 => 0.0089974413443063
1202 => 0.0090998348000727
1203 => 0.0090127794450702
1204 => 0.0087830260499933
1205 => 0.0085532100587574
1206 => 0.0085503249061915
1207 => 0.0084898184122883
1208 => 0.0084460832995134
1209 => 0.0084545082338203
1210 => 0.0084841988011994
1211 => 0.0084443576297628
1212 => 0.0084528597636875
1213 => 0.0085940518362587
1214 => 0.0086223668994771
1215 => 0.0085261412512517
1216 => 0.0081397813883319
1217 => 0.0080449677088611
1218 => 0.0081131179014277
1219 => 0.0080805464988154
1220 => 0.0065216316853405
1221 => 0.0068878755970562
1222 => 0.0066702659011828
1223 => 0.0067705504607819
1224 => 0.0065484273110528
1225 => 0.0066544361205753
1226 => 0.0066348601642784
1227 => 0.0072237695363719
1228 => 0.007214574526545
1229 => 0.00721897569116
1230 => 0.0070088966369109
1231 => 0.0073435582745977
]
'min_raw' => 0.0042724894613518
'max_raw' => 0.0095380317463631
'avg_raw' => 0.0069052606038575
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.004272'
'max' => '$0.009538'
'avg' => '$0.0069052'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00065880920612189
'max_diff' => 0.0014429418812353
'year' => 2035
]
10 => [
'items' => [
101 => 0.0075084246313655
102 => 0.0074779122565038
103 => 0.0074855915638932
104 => 0.0073536356201809
105 => 0.0072202533131366
106 => 0.0070723118072345
107 => 0.0073471688390778
108 => 0.0073166094291028
109 => 0.0073867017206568
110 => 0.0075649661529935
111 => 0.0075912162678159
112 => 0.0076264966883394
113 => 0.0076138511690131
114 => 0.0079151187425996
115 => 0.0078786332516108
116 => 0.0079665527873016
117 => 0.0077856956319144
118 => 0.007581038593475
119 => 0.0076199372057397
120 => 0.0076161909565757
121 => 0.0075684969049737
122 => 0.0075254408477326
123 => 0.007453764643395
124 => 0.0076805587600014
125 => 0.0076713513330419
126 => 0.0078204088730537
127 => 0.0077940615049889
128 => 0.0076181073327577
129 => 0.0076243915704413
130 => 0.0076666560889655
131 => 0.0078129340701455
201 => 0.0078563593343241
202 => 0.007836243021759
203 => 0.0078838568414922
204 => 0.0079214888632376
205 => 0.0078885828440306
206 => 0.0083544626833475
207 => 0.0081609968930341
208 => 0.0082552907731065
209 => 0.008277779307892
210 => 0.0082201753989219
211 => 0.0082326676241362
212 => 0.0082515899414082
213 => 0.0083664825465143
214 => 0.0086679939867558
215 => 0.0088015313511809
216 => 0.0092032851006716
217 => 0.0087904429319953
218 => 0.0087659465862168
219 => 0.008838314568301
220 => 0.0090741865492053
221 => 0.0092653386353997
222 => 0.0093287548102187
223 => 0.009337136304608
224 => 0.0094561092643962
225 => 0.0095243023462324
226 => 0.0094416628177784
227 => 0.0093716344701329
228 => 0.0091208016211053
229 => 0.0091498362063754
301 => 0.0093498557066737
302 => 0.0096323950319349
303 => 0.0098748431662155
304 => 0.009789946279761
305 => 0.010437649595547
306 => 0.010501866733677
307 => 0.010492994001576
308 => 0.010639290199026
309 => 0.01034892203979
310 => 0.010224784026098
311 => 0.0093867753937494
312 => 0.0096222216375115
313 => 0.0099644565800928
314 => 0.009919160502127
315 => 0.0096706203388582
316 => 0.0098746546262145
317 => 0.0098071945100724
318 => 0.0097539859175484
319 => 0.0099977447948942
320 => 0.0097297218961897
321 => 0.0099617828466514
322 => 0.0096641622773211
323 => 0.0097903340815871
324 => 0.0097187128632423
325 => 0.0097650605690777
326 => 0.0094941128278026
327 => 0.0096403096521101
328 => 0.0094880305592609
329 => 0.0094879583591435
330 => 0.0094845967897288
331 => 0.009663752467157
401 => 0.009669594727366
402 => 0.0095371984110574
403 => 0.0095181180334582
404 => 0.0095886681898733
405 => 0.0095060724338264
406 => 0.0095447184682293
407 => 0.0095072429828391
408 => 0.0094988064617233
409 => 0.0094315828261169
410 => 0.0094026210355453
411 => 0.0094139776998818
412 => 0.0093752115497394
413 => 0.0093518535420457
414 => 0.009479950294086
415 => 0.0094115133668791
416 => 0.0094694613534678
417 => 0.0094034223091311
418 => 0.0091745022096178
419 => 0.0090428478396015
420 => 0.0086104389925254
421 => 0.0087330696051547
422 => 0.0088143738281984
423 => 0.0087875027829675
424 => 0.0088452321858376
425 => 0.0088487763023151
426 => 0.0088300078849604
427 => 0.0088082764620468
428 => 0.0087976988071956
429 => 0.0088765359803468
430 => 0.0089223036128983
501 => 0.008822533794691
502 => 0.0087991591222132
503 => 0.0089000319168634
504 => 0.0089615642633277
505 => 0.0094158845375814
506 => 0.0093822270242295
507 => 0.0094667007777893
508 => 0.0094571903294938
509 => 0.0095457322809487
510 => 0.0096904609509569
511 => 0.0093961870980578
512 => 0.0094472628636968
513 => 0.0094347402654738
514 => 0.0095714587092712
515 => 0.0095718855293294
516 => 0.0094899159926801
517 => 0.0095343530083015
518 => 0.0095095494852474
519 => 0.0095543728038034
520 => 0.0093817775076187
521 => 0.0095919799478608
522 => 0.009711151186332
523 => 0.0097128058790938
524 => 0.0097692921003277
525 => 0.0098266853725627
526 => 0.0099368467607172
527 => 0.0098236130312372
528 => 0.0096199165749842
529 => 0.0096346228011901
530 => 0.0095151956434186
531 => 0.009517203235517
601 => 0.0095064865515578
602 => 0.0095386481268336
603 => 0.0093888351647894
604 => 0.0094239959675393
605 => 0.0093747706377881
606 => 0.0094471558574435
607 => 0.0093692813267998
608 => 0.0094347342266978
609 => 0.0094629815284957
610 => 0.0095672146802512
611 => 0.0093538860055361
612 => 0.0089188943967103
613 => 0.0090103349066489
614 => 0.0088750872099526
615 => 0.0088876048992061
616 => 0.0089128926236738
617 => 0.0088309268350456
618 => 0.008846563324477
619 => 0.0088460046790422
620 => 0.0088411905744901
621 => 0.0088198681071989
622 => 0.0087889463111052
623 => 0.0089121292295157
624 => 0.0089330604077303
625 => 0.0089795878240771
626 => 0.0091180218552771
627 => 0.0091041890310609
628 => 0.0091267509412758
629 => 0.0090774984179565
630 => 0.0088898895825033
701 => 0.0089000776448817
702 => 0.0087730323437699
703 => 0.0089763389900909
704 => 0.0089281932927255
705 => 0.0088971534484277
706 => 0.0088886839393289
707 => 0.0090274611217161
708 => 0.0090689854297521
709 => 0.0090431102675767
710 => 0.0089900395550559
711 => 0.0090919510120436
712 => 0.0091192182186343
713 => 0.0091253223406141
714 => 0.0093058899028127
715 => 0.0091354140614856
716 => 0.0091764492908772
717 => 0.0094965944365674
718 => 0.0092062669664366
719 => 0.0093600599024401
720 => 0.0093525325385225
721 => 0.0094312078005127
722 => 0.0093460788706805
723 => 0.0093471341457918
724 => 0.0094169924485152
725 => 0.0093188890613515
726 => 0.0092945972830587
727 => 0.0092610383653283
728 => 0.0093343130344643
729 => 0.0093782378846831
730 => 0.0097322399181991
731 => 0.0099609413763044
801 => 0.0099510128428509
802 => 0.01004174105318
803 => 0.010000867163452
804 => 0.0098688745915308
805 => 0.010094169817021
806 => 0.010022876980923
807 => 0.01002875427571
808 => 0.010028535522505
809 => 0.010075939025982
810 => 0.010042349299301
811 => 0.0099761405000983
812 => 0.010020092990844
813 => 0.010150616175056
814 => 0.010555764143791
815 => 0.010782490314592
816 => 0.010542114943624
817 => 0.010707922655763
818 => 0.010608497111808
819 => 0.010590428532818
820 => 0.010694568029135
821 => 0.010798889807855
822 => 0.010792244961546
823 => 0.010716512707178
824 => 0.01067373347832
825 => 0.010997672131324
826 => 0.011236344612706
827 => 0.011220068749557
828 => 0.011291905116305
829 => 0.011502818910893
830 => 0.011522102225012
831 => 0.011519672970655
901 => 0.011471877264605
902 => 0.011679549285994
903 => 0.011852792939878
904 => 0.011460813939604
905 => 0.011610074411527
906 => 0.011677082246245
907 => 0.01177546962794
908 => 0.011941465632498
909 => 0.012121781321715
910 => 0.012147279937231
911 => 0.012129187449301
912 => 0.012010264405117
913 => 0.012207567983871
914 => 0.012323143792967
915 => 0.012391966542378
916 => 0.012566489583872
917 => 0.01167749606382
918 => 0.011048222264482
919 => 0.010949952073892
920 => 0.011149788370742
921 => 0.011202483608556
922 => 0.011181242224268
923 => 0.010472937352042
924 => 0.010946222995327
925 => 0.011455438552513
926 => 0.011474999595911
927 => 0.011729923551033
928 => 0.011812937240508
929 => 0.012018184438028
930 => 0.01200534616994
1001 => 0.01205532059634
1002 => 0.012043832341147
1003 => 0.012424009554658
1004 => 0.012843401478022
1005 => 0.012828879269301
1006 => 0.012768586718297
1007 => 0.012858131437945
1008 => 0.013290988847627
1009 => 0.013251138273742
1010 => 0.013289849711808
1011 => 0.013800212992597
1012 => 0.014463757855954
1013 => 0.01415547464811
1014 => 0.014824360503028
1015 => 0.015245388692584
1016 => 0.015973513411293
1017 => 0.015882348610421
1018 => 0.016165802220188
1019 => 0.015719144590192
1020 => 0.014693528387318
1021 => 0.014531220697313
1022 => 0.014856164802989
1023 => 0.015655008179214
1024 => 0.01483100638223
1025 => 0.014997700872578
1026 => 0.014949692848143
1027 => 0.014947134704542
1028 => 0.015044768641076
1029 => 0.01490314552389
1030 => 0.014326147466965
1031 => 0.014590582276183
1101 => 0.014488471297142
1102 => 0.014601771041266
1103 => 0.015213203031936
1104 => 0.014942874374143
1105 => 0.014658105092874
1106 => 0.015015268966947
1107 => 0.015470061313465
1108 => 0.01544160122576
1109 => 0.01538637676022
1110 => 0.015697674181014
1111 => 0.016211846318581
1112 => 0.016350824981254
1113 => 0.016453416188746
1114 => 0.016467561782967
1115 => 0.016613270194875
1116 => 0.015829759340795
1117 => 0.017073211188206
1118 => 0.01728792097259
1119 => 0.017247564431934
1120 => 0.017486205320908
1121 => 0.017415991117637
1122 => 0.017314261753368
1123 => 0.017692558322764
1124 => 0.017258871832911
1125 => 0.016643308460174
1126 => 0.016305598219428
1127 => 0.016750322306751
1128 => 0.017021899788147
1129 => 0.017201395227778
1130 => 0.017255710439356
1201 => 0.015890581058028
1202 => 0.015154852035039
1203 => 0.015626445903624
1204 => 0.016201822970969
1205 => 0.015826563092135
1206 => 0.015841272568924
1207 => 0.015306250598267
1208 => 0.01624916054366
1209 => 0.016111786495737
1210 => 0.016824483299371
1211 => 0.016654392487434
1212 => 0.017235569064067
1213 => 0.017082525794092
1214 => 0.017717799851226
1215 => 0.017971227871975
1216 => 0.018396772961735
1217 => 0.018709805662043
1218 => 0.018893624451025
1219 => 0.018882588660422
1220 => 0.019610970280526
1221 => 0.019181469086866
1222 => 0.01864191436197
1223 => 0.01863215551927
1224 => 0.018911598556843
1225 => 0.019497234502143
1226 => 0.019649081382103
1227 => 0.019733943072668
1228 => 0.019603974439511
1229 => 0.019137781676421
1230 => 0.01893648200497
1231 => 0.019107995157259
]
'min_raw' => 0.0070723118072345
'max_raw' => 0.019733943072668
'avg_raw' => 0.013403127439951
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.007072'
'max' => '$0.019733'
'avg' => '$0.0134031'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0027998223458827
'max_diff' => 0.010195911326305
'year' => 2036
]
11 => [
'items' => [
101 => 0.018898249310302
102 => 0.01926032948644
103 => 0.019757542904429
104 => 0.01965487029981
105 => 0.019998089423517
106 => 0.020353285108849
107 => 0.02086123089171
108 => 0.020994026728528
109 => 0.021213533197014
110 => 0.021439477457206
111 => 0.02151204466421
112 => 0.021650597978665
113 => 0.021649867734306
114 => 0.022067407473127
115 => 0.022527966735176
116 => 0.022701817194629
117 => 0.023101576739969
118 => 0.022417002527819
119 => 0.022936259931556
120 => 0.023404643107583
121 => 0.022846217375952
122 => 0.023615877150497
123 => 0.023645761295456
124 => 0.024096976404247
125 => 0.023639583449132
126 => 0.023367984972436
127 => 0.024152079597997
128 => 0.024531478288557
129 => 0.024417200315312
130 => 0.023547539296313
131 => 0.02304135928174
201 => 0.021716588548769
202 => 0.02328583670781
203 => 0.024050171710482
204 => 0.023545559853306
205 => 0.023800056722547
206 => 0.025188509120238
207 => 0.025717141897643
208 => 0.025607189975365
209 => 0.025625770040267
210 => 0.025911010691592
211 => 0.02717592482446
212 => 0.026417958955565
213 => 0.026997395461896
214 => 0.02730472649554
215 => 0.027590192687333
216 => 0.026889177942805
217 => 0.025977168060127
218 => 0.025688296246712
219 => 0.023495386148922
220 => 0.023381235655007
221 => 0.023317159523658
222 => 0.022913168579251
223 => 0.022595742359381
224 => 0.02234331324406
225 => 0.021680863863743
226 => 0.021904421083195
227 => 0.0208486150349
228 => 0.02152408232913
301 => 0.019838990382724
302 => 0.021242385028469
303 => 0.020478581127315
304 => 0.020991454904499
305 => 0.020989665536206
306 => 0.02004530230563
307 => 0.019500613302591
308 => 0.019847710334941
309 => 0.020219825906216
310 => 0.020280200405708
311 => 0.020762657957077
312 => 0.020897301489273
313 => 0.020489325300812
314 => 0.01980407059761
315 => 0.019963239636168
316 => 0.019497387747105
317 => 0.018681000230257
318 => 0.019267343997616
319 => 0.019467547539508
320 => 0.019555968828951
321 => 0.018753145468871
322 => 0.01850088093899
323 => 0.018366577419986
324 => 0.019700436183247
325 => 0.019773507977315
326 => 0.019399662347556
327 => 0.021089480043563
328 => 0.020707022255487
329 => 0.021134321309201
330 => 0.01994879671425
331 => 0.019994085350297
401 => 0.019432839008173
402 => 0.019747099457268
403 => 0.019524990300935
404 => 0.019721710318564
405 => 0.019839623486024
406 => 0.020400777733146
407 => 0.021248792508576
408 => 0.020316960001471
409 => 0.019910947234038
410 => 0.020162835271451
411 => 0.020833646308499
412 => 0.021849959367812
413 => 0.021248281581493
414 => 0.02151529596591
415 => 0.021573626730262
416 => 0.021129971805952
417 => 0.021866317557695
418 => 0.022260931228115
419 => 0.022665723200174
420 => 0.023017192727499
421 => 0.022504040384968
422 => 0.023053186948975
423 => 0.022610671755803
424 => 0.022213689881148
425 => 0.022214291938785
426 => 0.021965259409834
427 => 0.021482727504873
428 => 0.021393741218231
429 => 0.021856659119073
430 => 0.022227875437061
501 => 0.022258450591016
502 => 0.022463975018437
503 => 0.022585602257515
504 => 0.02377771454469
505 => 0.024257191968262
506 => 0.024843487885763
507 => 0.025071883187457
508 => 0.025759271161308
509 => 0.025204149545501
510 => 0.025084045492043
511 => 0.023416667110373
512 => 0.023689700226963
513 => 0.024126852590401
514 => 0.023423875591833
515 => 0.023869752694424
516 => 0.023957778279444
517 => 0.023399988702419
518 => 0.023697928216173
519 => 0.022906689200552
520 => 0.02126603935691
521 => 0.021868144069975
522 => 0.022311495805046
523 => 0.021678778214225
524 => 0.022812900006219
525 => 0.022150369468362
526 => 0.021940379094936
527 => 0.021121131781226
528 => 0.021507784977576
529 => 0.02203073896198
530 => 0.021707614199544
531 => 0.022378146599025
601 => 0.023327799301149
602 => 0.024004578369479
603 => 0.024056533062746
604 => 0.023621409462486
605 => 0.024318697808824
606 => 0.02432377679318
607 => 0.023537232690004
608 => 0.023055478806305
609 => 0.02294602331031
610 => 0.02321946459932
611 => 0.023551472804225
612 => 0.024074957207458
613 => 0.024391287868715
614 => 0.025216110464453
615 => 0.025439283809342
616 => 0.025684483653445
617 => 0.026012146261999
618 => 0.026405589234536
619 => 0.025544758409346
620 => 0.02557896082282
621 => 0.024777367077418
622 => 0.023920749200284
623 => 0.024570815390103
624 => 0.025420690458609
625 => 0.025225728178865
626 => 0.025203790939676
627 => 0.02524068329111
628 => 0.025093688099056
629 => 0.024428834293291
630 => 0.024094948874241
701 => 0.02452574624807
702 => 0.024754695879675
703 => 0.025109776791789
704 => 0.025066005574522
705 => 0.025980655871221
706 => 0.026336061318928
707 => 0.026245133396748
708 => 0.026261866322732
709 => 0.02690531090943
710 => 0.02762095362431
711 => 0.028291247464169
712 => 0.028973099147864
713 => 0.028151100330046
714 => 0.027733740024197
715 => 0.028164349325369
716 => 0.027935861968902
717 => 0.029248818092914
718 => 0.02933972432626
719 => 0.0306525855086
720 => 0.031898647103242
721 => 0.031116018141159
722 => 0.03185400200202
723 => 0.032652191716248
724 => 0.034192029176608
725 => 0.033673466092094
726 => 0.033276254896276
727 => 0.032900892235538
728 => 0.033681962345389
729 => 0.034686796563813
730 => 0.034903228230279
731 => 0.035253930213214
801 => 0.034885209959956
802 => 0.035329292891801
803 => 0.036897100781144
804 => 0.03647346525002
805 => 0.035871834693015
806 => 0.037109468447781
807 => 0.037557363292451
808 => 0.040700923876698
809 => 0.04466979896832
810 => 0.043026658619349
811 => 0.042006708380936
812 => 0.042246420880506
813 => 0.043695719709066
814 => 0.044161188494354
815 => 0.042895883879229
816 => 0.043342810860069
817 => 0.045805422465388
818 => 0.047126534581602
819 => 0.045332286878754
820 => 0.040382028627493
821 => 0.035817664443939
822 => 0.037028339361416
823 => 0.036891086397391
824 => 0.039536855350252
825 => 0.036463361682709
826 => 0.036515111433656
827 => 0.039215592086544
828 => 0.038495150146313
829 => 0.03732812647037
830 => 0.035826185008279
831 => 0.033049707302836
901 => 0.030590503571315
902 => 0.035413568409622
903 => 0.03520558908362
904 => 0.03490440419876
905 => 0.035574658568408
906 => 0.038829223532398
907 => 0.038754195275979
908 => 0.038276903788396
909 => 0.038638925175073
910 => 0.037264662370937
911 => 0.037618841186946
912 => 0.035816941425333
913 => 0.036631475371563
914 => 0.037325622561698
915 => 0.037464982887142
916 => 0.037778968816283
917 => 0.035095993429471
918 => 0.036300570610131
919 => 0.03700814685015
920 => 0.033811291655898
921 => 0.036944955301633
922 => 0.035049288797068
923 => 0.034405871113463
924 => 0.035272148260603
925 => 0.03493455921388
926 => 0.034644319975402
927 => 0.034482361493388
928 => 0.035118459822728
929 => 0.035088785075362
930 => 0.034048004747197
1001 => 0.032690349236739
1002 => 0.033146022989572
1003 => 0.032980472443203
1004 => 0.032380495906719
1005 => 0.032784807650866
1006 => 0.031004423347133
1007 => 0.027941364688884
1008 => 0.029964915062548
1009 => 0.029887010574361
1010 => 0.02984772759873
1011 => 0.031368369777713
1012 => 0.031222195119388
1013 => 0.030956886683182
1014 => 0.032375623309231
1015 => 0.031857765356022
1016 => 0.033453681545132
1017 => 0.034504855164667
1018 => 0.034238243532848
1019 => 0.035226877402784
1020 => 0.033156520792505
1021 => 0.03384421021015
1022 => 0.03398594204603
1023 => 0.03235811631949
1024 => 0.031246111101263
1025 => 0.031171953030995
1026 => 0.029243889226347
1027 => 0.030273845348002
1028 => 0.031180164112579
1029 => 0.030746107757524
1030 => 0.030608698482578
1031 => 0.03131069266784
1101 => 0.031365243628209
1102 => 0.030121475950757
1103 => 0.030380094635899
1104 => 0.031458577544721
1105 => 0.030352919633698
1106 => 0.028204806920777
1107 => 0.027672045267991
1108 => 0.027600965042764
1109 => 0.026156073186547
1110 => 0.027707646949129
1111 => 0.02703034342217
1112 => 0.02916993714849
1113 => 0.027947812686888
1114 => 0.027895129343977
1115 => 0.027815490744202
1116 => 0.026571812635826
1117 => 0.026844099101693
1118 => 0.027749220784636
1119 => 0.028072178398035
1120 => 0.028038491273044
1121 => 0.027744785194602
1122 => 0.027879242333294
1123 => 0.027446109041594
1124 => 0.027293160661404
1125 => 0.02681041350176
1126 => 0.026100908539391
1127 => 0.026199569556055
1128 => 0.024793854573528
1129 => 0.024027946444107
1130 => 0.02381595316839
1201 => 0.023532466900292
1202 => 0.0238479736967
1203 => 0.024789872359602
1204 => 0.023653742737193
1205 => 0.021705928189801
1206 => 0.021822995163014
1207 => 0.022086009894327
1208 => 0.021595883682542
1209 => 0.021132020356263
1210 => 0.021535311884041
1211 => 0.020709997182726
1212 => 0.022185745232993
1213 => 0.02214583038397
1214 => 0.022695897997462
1215 => 0.023039866564702
1216 => 0.022247130378359
1217 => 0.02204775937128
1218 => 0.022161330157819
1219 => 0.020284258038381
1220 => 0.022542501159175
1221 => 0.022562030539459
1222 => 0.022394808128835
1223 => 0.023597252875224
1224 => 0.026134786342026
1225 => 0.025180064179768
1226 => 0.024810366901912
1227 => 0.024107572106459
1228 => 0.025044004443574
1229 => 0.024972101050703
1230 => 0.024646926639592
1231 => 0.024450260141146
]
'min_raw' => 0.018366577419986
'max_raw' => 0.047126534581602
'avg_raw' => 0.032746556000794
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.018366'
'max' => '$0.047126'
'avg' => '$0.032746'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.011294265612752
'max_diff' => 0.027392591508934
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00057650587819545
]
1 => [
'year' => 2028
'avg' => 0.00098945144783564
]
2 => [
'year' => 2029
'avg' => 0.0027030030242142
]
3 => [
'year' => 2030
'avg' => 0.0020853628077484
]
4 => [
'year' => 2031
'avg' => 0.0020480847133766
]
5 => [
'year' => 2032
'avg' => 0.0035909370585298
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00057650587819545
'min' => '$0.000576'
'max_raw' => 0.0035909370585298
'max' => '$0.00359'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0035909370585298
]
1 => [
'year' => 2033
'avg' => 0.0092362593662418
]
2 => [
'year' => 2034
'avg' => 0.0058543850601788
]
3 => [
'year' => 2035
'avg' => 0.0069052606038575
]
4 => [
'year' => 2036
'avg' => 0.013403127439951
]
5 => [
'year' => 2037
'avg' => 0.032746556000794
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0035909370585298
'min' => '$0.00359'
'max_raw' => 0.032746556000794
'max' => '$0.032746'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.032746556000794
]
]
]
]
'prediction_2025_max_price' => '$0.000985'
'last_price' => 0.00095578
'sma_50day_nextmonth' => '$0.00091'
'sma_200day_nextmonth' => '$0.001634'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.000929'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000931'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000942'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000961'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.001094'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001371'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002116'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000938'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000936'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000942'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000972'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0011032'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001431'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002654'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001478'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.004032'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.016842'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000958'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000996'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001154'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001789'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005239'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.014746'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.013424'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '40.07'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 80.18
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000942'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000922'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 68.54
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -9.09
'cci_20_action' => 'NEUTRAL'
'adx_14' => 40.69
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000066'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -31.46
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 47.15
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000243'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 14
'sell_pct' => 56.25
'buy_pct' => 43.75
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767705518
'last_updated_date' => '6. Januar 2026'
]
Paysenger EGO Preisprognose für 2026
Die Preisprognose für Paysenger EGO im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.00033 am unteren Ende und $0.000985 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Paysenger EGO im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn EGO das prognostizierte Preisziel erreicht.
Paysenger EGO Preisprognose 2027-2032
Die Preisprognose für EGO für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.000576 am unteren Ende und $0.00359 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Paysenger EGO, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Paysenger EGO Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.000317 | $0.000576 | $0.000835 |
| 2028 | $0.000573 | $0.000989 | $0.0014051 |
| 2029 | $0.00126 | $0.002703 | $0.004145 |
| 2030 | $0.001071 | $0.002085 | $0.003098 |
| 2031 | $0.001267 | $0.002048 | $0.002828 |
| 2032 | $0.001934 | $0.00359 | $0.005247 |
Paysenger EGO Preisprognose 2032-2037
Die Preisprognose für Paysenger EGO für die Jahre 2032-2037 wird derzeit zwischen $0.00359 am unteren Ende und $0.032746 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Paysenger EGO bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Paysenger EGO Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.001934 | $0.00359 | $0.005247 |
| 2033 | $0.004494 | $0.009236 | $0.013977 |
| 2034 | $0.003613 | $0.005854 | $0.008095 |
| 2035 | $0.004272 | $0.0069052 | $0.009538 |
| 2036 | $0.007072 | $0.0134031 | $0.019733 |
| 2037 | $0.018366 | $0.032746 | $0.047126 |
Paysenger EGO Potenzielles Preishistogramm
Paysenger EGO Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Paysenger EGO Bärisch, mit 14 technischen Indikatoren, die bullische Signale zeigen, und 18 anzeigen bärische Signale. Die Preisprognose für EGO wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Paysenger EGO
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Paysenger EGO im nächsten Monat steigen, und bis zum 04.02.2026 $0.001634 erreichen. Der kurzfristige 50-Tage-SMA für Paysenger EGO wird voraussichtlich bis zum 04.02.2026 $0.00091 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 40.07, was darauf hindeutet, dass sich der EGO-Markt in einem NEUTRAL Zustand befindet.
Beliebte EGO Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.000929 | BUY |
| SMA 5 | $0.000931 | BUY |
| SMA 10 | $0.000942 | BUY |
| SMA 21 | $0.000961 | SELL |
| SMA 50 | $0.001094 | SELL |
| SMA 100 | $0.001371 | SELL |
| SMA 200 | $0.002116 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.000938 | BUY |
| EMA 5 | $0.000936 | BUY |
| EMA 10 | $0.000942 | BUY |
| EMA 21 | $0.000972 | SELL |
| EMA 50 | $0.0011032 | SELL |
| EMA 100 | $0.001431 | SELL |
| EMA 200 | $0.002654 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.001478 | SELL |
| SMA 50 | $0.004032 | SELL |
| SMA 100 | $0.016842 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.001789 | SELL |
| EMA 50 | $0.005239 | SELL |
| EMA 100 | $0.014746 | SELL |
| EMA 200 | $0.013424 | SELL |
Paysenger EGO Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 40.07 | NEUTRAL |
| Stoch RSI (14) | 80.18 | NEUTRAL |
| Stochastic Fast (14) | 68.54 | NEUTRAL |
| Commodity Channel Index (20) | -9.09 | NEUTRAL |
| Average Directional Index (14) | 40.69 | SELL |
| Awesome Oscillator (5, 34) | -0.000066 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -31.46 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 47.15 | NEUTRAL |
| VWMA (10) | 0.000942 | BUY |
| Hull Moving Average (9) | 0.000922 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000243 | SELL |
Auf weltweiten Geldflüssen basierende Paysenger EGO-Preisprognose
Definition weltweiter Geldflüsse, die für Paysenger EGO-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Paysenger EGO-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.001343 | $0.001887 | $0.002651 | $0.003726 | $0.005235 | $0.007357 |
| Amazon.com aktie | $0.001994 | $0.004161 | $0.008682 | $0.018116 | $0.0378017 | $0.078875 |
| Apple aktie | $0.001355 | $0.001922 | $0.002727 | $0.003868 | $0.005487 | $0.007783 |
| Netflix aktie | $0.001508 | $0.002379 | $0.003754 | $0.005923 | $0.009347 | $0.014748 |
| Google aktie | $0.001237 | $0.0016028 | $0.002075 | $0.002688 | $0.00348 | $0.0045078 |
| Tesla aktie | $0.002166 | $0.004911 | $0.011134 | $0.02524 | $0.057219 | $0.129712 |
| Kodak aktie | $0.000716 | $0.000537 | $0.000403 | $0.0003022 | $0.000226 | $0.000169 |
| Nokia aktie | $0.000633 | $0.000419 | $0.000277 | $0.000184 | $0.000121 | $0.00008 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Paysenger EGO Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Paysenger EGO investieren?", "Sollte ich heute EGO kaufen?", "Wird Paysenger EGO auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Paysenger EGO-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Paysenger EGO.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Paysenger EGO zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Paysenger EGO-Preis entspricht heute $0.0009557 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Paysenger EGO-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Paysenger EGO-Prognose
basierend auf dem Preisverlauf des letzten Monats
Paysenger EGO-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Paysenger EGO 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00098 | $0.0010061 | $0.001032 | $0.001059 |
| Wenn die Wachstumsrate von Paysenger EGO 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0010054 | $0.001057 | $0.001112 | $0.00117 |
| Wenn die Wachstumsrate von Paysenger EGO 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001079 | $0.00122 | $0.001378 | $0.001558 |
| Wenn die Wachstumsrate von Paysenger EGO 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0012042 | $0.001517 | $0.001911 | $0.0024084 |
| Wenn die Wachstumsrate von Paysenger EGO 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001452 | $0.0022078 | $0.003355 | $0.005100081 |
| Wenn die Wachstumsrate von Paysenger EGO 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.002197 | $0.005054 | $0.011623 | $0.02673 |
| Wenn die Wachstumsrate von Paysenger EGO 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00344 | $0.012382 | $0.044567 | $0.160413 |
Fragefeld
Ist EGO eine gute Investition?
Die Entscheidung, Paysenger EGO zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Paysenger EGO in den letzten 2026 Stunden um 3.2248% gestiegen, und Paysenger EGO hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Paysenger EGO investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Paysenger EGO steigen?
Es scheint, dass der Durchschnittswert von Paysenger EGO bis zum Ende dieses Jahres potenziell auf $0.000985 steigen könnte. Betrachtet man die Aussichten von Paysenger EGO in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.003098 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Paysenger EGO nächste Woche kosten?
Basierend auf unserer neuen experimentellen Paysenger EGO-Prognose wird der Preis von Paysenger EGO in der nächsten Woche um 0.86% steigen und $0.000963 erreichen bis zum 13. Januar 2026.
Wie viel wird Paysenger EGO nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Paysenger EGO-Prognose wird der Preis von Paysenger EGO im nächsten Monat um -11.62% fallen und $0.000844 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Paysenger EGO in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Paysenger EGO im Jahr 2026 wird erwartet, dass EGO innerhalb der Spanne von $0.00033 bis $0.000985 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Paysenger EGO-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Paysenger EGO in 5 Jahren sein?
Die Zukunft von Paysenger EGO scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.003098 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Paysenger EGO-Prognose für 2030 könnte der Wert von Paysenger EGO seinen höchsten Gipfel von ungefähr $0.003098 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.001071 liegen wird.
Wie viel wird Paysenger EGO im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Paysenger EGO-Preisprognosesimulation wird der Wert von EGO im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.000985 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.000985 und $0.00033 während des Jahres 2026 liegen.
Wie viel wird Paysenger EGO im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Paysenger EGO könnte der Wert von EGO um -12.62% fallen und bis zu $0.000835 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.000835 und $0.000317 im Laufe des Jahres schwanken.
Wie viel wird Paysenger EGO im Jahr 2028 kosten?
Unser neues experimentelles Paysenger EGO-Preisprognosemodell deutet darauf hin, dass der Wert von EGO im Jahr 2028 um 47.02% steigen, und im besten Fall $0.0014051 erreichen wird. Der Preis wird voraussichtlich zwischen $0.0014051 und $0.000573 im Laufe des Jahres liegen.
Wie viel wird Paysenger EGO im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Paysenger EGO im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.004145 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.004145 und $0.00126.
Wie viel wird Paysenger EGO im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Paysenger EGO-Preisprognosen wird der Wert von EGO im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.003098 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.003098 und $0.001071 während des Jahres 2030 liegen.
Wie viel wird Paysenger EGO im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Paysenger EGO im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.002828 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.002828 und $0.001267 während des Jahres schwanken.
Wie viel wird Paysenger EGO im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Paysenger EGO-Preisprognose könnte EGO eine 449.04% Steigerung im Wert erfahren und $0.005247 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.005247 und $0.001934 liegen.
Wie viel wird Paysenger EGO im Jahr 2033 kosten?
Laut unserer experimentellen Paysenger EGO-Preisprognose wird der Wert von EGO voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.013977 beträgt. Im Laufe des Jahres könnte der Preis von EGO zwischen $0.013977 und $0.004494 liegen.
Wie viel wird Paysenger EGO im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Paysenger EGO-Preisprognosesimulation deuten darauf hin, dass EGO im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.008095 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.008095 und $0.003613.
Wie viel wird Paysenger EGO im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Paysenger EGO könnte EGO um 897.93% steigen, wobei der Wert im Jahr 2035 $0.009538 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.009538 und $0.004272.
Wie viel wird Paysenger EGO im Jahr 2036 kosten?
Unsere jüngste Paysenger EGO-Preisprognosesimulation deutet darauf hin, dass der Wert von EGO im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.019733 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.019733 und $0.007072.
Wie viel wird Paysenger EGO im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Paysenger EGO um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.047126 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.047126 und $0.018366 liegen.
Verwandte Prognosen
Mendi Finance-Preisprognose
Wombat Exchange-Preisprognose
Big Data Protocol-Preisprognose
Juicebox-Preisprognose
Tamadoge-Preisprognose
Bytecoin-Preisprognose
Afreum-Preisprognose
MESSIER-Preisprognose
KiboShib-Preisprognose
TokenSight-Preisprognose
Honk-Preisprognose
NavCoin-Preisprognose
Kira the Injective Cat-Preisprognose
ZoidPay-Preisprognose
Chain Games-Preisprognose
Everton Fan Token-Preisprognose
Oracle AI-Preisprognose
Defit-Preisprognose
Pocketcoin-Preisprognose
Metavault Trade-Preisprognose
Baanx-Preisprognose
Calaxy-Preisprognose
Polkadex-Preisprognose
Mobius-Preisprognose
BitKan-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Paysenger EGO?
Paysenger EGO-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Paysenger EGO Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Paysenger EGO. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von EGO über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von EGO über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von EGO einzuschätzen.
Wie liest man Paysenger EGO-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Paysenger EGO in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von EGO innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Paysenger EGO?
Die Preisentwicklung von Paysenger EGO wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von EGO. Die Marktkapitalisierung von Paysenger EGO kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von EGO-„Walen“, großen Inhabern von Paysenger EGO, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Paysenger EGO-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


