Not in Employment, Education, or Training Preisvorhersage bis zu $0.014676 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.004916 | $0.014676 |
| 2027 | $0.004733 | $0.012434 |
| 2028 | $0.008542 | $0.020922 |
| 2029 | $0.018764 | $0.061727 |
| 2030 | $0.015958 | $0.046141 |
| 2031 | $0.018868 | $0.042121 |
| 2032 | $0.02880082 | $0.078133 |
| 2033 | $0.066926 | $0.20812 |
| 2034 | $0.0538059 | $0.120532 |
| 2035 | $0.063615 | $0.142016 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Not in Employment, Education, or Training eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.79 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Not in Employment, Education, or Training Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Not in Employment, Education, or Training'
'name_with_ticker' => 'Not in Employment, Education, or Training <small>NEET</small>'
'name_lang' => 'Not in Employment, Education, or Training'
'name_lang_with_ticker' => 'Not in Employment, Education, or Training <small>NEET</small>'
'name_with_lang' => 'Not in Employment, Education, or Training'
'name_with_lang_with_ticker' => 'Not in Employment, Education, or Training <small>NEET</small>'
'image' => '/uploads/coins/neet.jpg?1745853720'
'price_for_sd' => 0.01423
'ticker' => 'NEET'
'marketcap' => '$14.23M'
'low24h' => '$0.01078'
'high24h' => '$0.01501'
'volume24h' => '$2.61M'
'current_supply' => '999.78M'
'max_supply' => '999.78M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01423'
'change_24h_pct' => '31.8205%'
'ath_price' => '$0.0427'
'ath_days' => 78
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20.10.2025'
'ath_pct' => '-66.67%'
'fdv' => '$14.23M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.701691'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014352'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012577'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004916'
'current_year_max_price_prediction' => '$0.014676'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015958'
'grand_prediction_max_price' => '$0.046141'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014500782048936
107 => 0.014554922705323
108 => 0.014676904368653
109 => 0.013634584411028
110 => 0.014102555471096
111 => 0.014377444625927
112 => 0.013135485423847
113 => 0.014352895085705
114 => 0.013616439939519
115 => 0.013366476001718
116 => 0.013703019513722
117 => 0.013571868179795
118 => 0.013459111964349
119 => 0.013396192058732
120 => 0.013643312470996
121 => 0.013631784008391
122 => 0.013227447049922
123 => 0.012700005970483
124 => 0.012877032509406
125 => 0.012812717108183
126 => 0.012579629797297
127 => 0.012736702501765
128 => 0.012045033803966
129 => 0.010855053759214
130 => 0.011641191026852
131 => 0.0116109255972
201 => 0.011595664395142
202 => 0.012186424824534
203 => 0.01212963684041
204 => 0.012026566093155
205 => 0.012577736822195
206 => 0.012376552091803
207 => 0.012996556025787
208 => 0.013404930716049
209 => 0.013301353685061
210 => 0.013685432055098
211 => 0.01288111084332
212 => 0.013148274086106
213 => 0.013203336060173
214 => 0.012570935460954
215 => 0.012138928056921
216 => 0.012110118088317
217 => 0.011361076784012
218 => 0.011761208602722
219 => 0.012113308044607
220 => 0.011944679735964
221 => 0.011891297051075
222 => 0.01216401761088
223 => 0.012185210334071
224 => 0.011702013999424
225 => 0.011802485818235
226 => 0.012221470004727
227 => 0.011791928491738
228 => 0.010957399497208
301 => 0.010750424768298
302 => 0.010722810524161
303 => 0.010161478643985
304 => 0.010764255809372
305 => 0.010501127423257
306 => 0.011332346842232
307 => 0.010857558768033
308 => 0.010837091603101
309 => 0.010806152481426
310 => 0.010322990943831
311 => 0.010428772614047
312 => 0.010780406996847
313 => 0.010905874106075
314 => 0.010892786858661
315 => 0.010778683796538
316 => 0.010830919594076
317 => 0.010662649890049
318 => 0.010603230355326
319 => 0.010415685959109
320 => 0.010140047507133
321 => 0.010178376724469
322 => 0.0096322648263793
323 => 0.0093347140799479
324 => 0.0092523559549915
325 => 0.0091422232283169
326 => 0.0092647957395214
327 => 0.0096307177599873
328 => 0.0091893381686182
329 => 0.0084326238183942
330 => 0.0084781036402212
331 => 0.0085802832967861
401 => 0.0083898721827634
402 => 0.0082096640433345
403 => 0.0083663403998195
404 => 0.0080457105540406
405 => 0.0086190298818213
406 => 0.0086035232007137
407 => 0.0088172211922809
408 => 0.0089508509319321
409 => 0.008642877645178
410 => 0.0085654231964076
411 => 0.0086095447705357
412 => 0.0078803134322204
413 => 0.0087576274342581
414 => 0.008765214482179
415 => 0.0087002495716501
416 => 0.0091673921937042
417 => 0.010153208831676
418 => 0.0097823049580886
419 => 0.0096386797676066
420 => 0.0093656481755111
421 => 0.0097294465609666
422 => 0.0097015125211025
423 => 0.009575184199167
424 => 0.0094987804358921
425 => 0.0096395567123934
426 => 0.0094813366973315
427 => 0.0094529160350311
428 => 0.0092807177434764
429 => 0.0092192507879144
430 => 0.0091737431010863
501 => 0.0091236436093816
502 => 0.0092341506040668
503 => 0.0089837272157042
504 => 0.0086817411586464
505 => 0.0086566342855365
506 => 0.0087259565696119
507 => 0.0086952866193456
508 => 0.0086564874496142
509 => 0.0085824092682718
510 => 0.0085604318542974
511 => 0.0086318477877886
512 => 0.0085512233626846
513 => 0.0086701890937653
514 => 0.0086378369975855
515 => 0.0084571208182146
516 => 0.0082318815490193
517 => 0.0082298764470681
518 => 0.0081813490159865
519 => 0.0081195420363559
520 => 0.0081023487485748
521 => 0.0083531455540822
522 => 0.0088722874357659
523 => 0.008770367462379
524 => 0.00884401508833
525 => 0.0092062885162745
526 => 0.009321444345076
527 => 0.009239709465408
528 => 0.0091278257209306
529 => 0.009132748037868
530 => 0.00951508866226
531 => 0.0095389347780148
601 => 0.0095991862194786
602 => 0.0096766263488149
603 => 0.0092528978542946
604 => 0.0091127904638814
605 => 0.0090463998094415
606 => 0.0088419422901835
607 => 0.0090624321958403
608 => 0.0089339621701332
609 => 0.0089512971657621
610 => 0.0089400077271176
611 => 0.008946172524006
612 => 0.0086188696273849
613 => 0.0087381216003798
614 => 0.0085398420659752
615 => 0.0082743680273297
616 => 0.0082734780652649
617 => 0.0083384524601266
618 => 0.0082998031476146
619 => 0.0081957988414093
620 => 0.0082105721622193
621 => 0.0080811423267052
622 => 0.0082262872876535
623 => 0.0082304495257799
624 => 0.0081745608097153
625 => 0.008398176648201
626 => 0.0084897922396818
627 => 0.0084530050895158
628 => 0.0084872111551591
629 => 0.0087746026974143
630 => 0.008821460058574
701 => 0.0088422710031776
702 => 0.0088143870943306
703 => 0.0084924641449794
704 => 0.0085067427967052
705 => 0.0084019755243755
706 => 0.0083134582193601
707 => 0.0083169984473486
708 => 0.0083625078485707
709 => 0.0085612500727988
710 => 0.0089794913671927
711 => 0.0089953633185845
712 => 0.009014600586689
713 => 0.0089363529494321
714 => 0.0089127527133063
715 => 0.008943887516494
716 => 0.0091009569565858
717 => 0.0095049822004389
718 => 0.0093621726953225
719 => 0.0092460663447004
720 => 0.0093479229162433
721 => 0.0093322428954325
722 => 0.0091998877399739
723 => 0.0091961729715827
724 => 0.0089421411117547
725 => 0.0088482313172019
726 => 0.0087697532638472
727 => 0.0086840572783054
728 => 0.0086332538255208
729 => 0.0087113110187543
730 => 0.0087291636223924
731 => 0.008558490205181
801 => 0.008535228049075
802 => 0.0086746036458115
803 => 0.0086132696421337
804 => 0.0086763531859264
805 => 0.0086909891092069
806 => 0.0086886323884648
807 => 0.0086245926444598
808 => 0.008665409667596
809 => 0.0085688652397388
810 => 0.0084638876749483
811 => 0.0083969185289453
812 => 0.0083384790668896
813 => 0.0083709046769596
814 => 0.0082553132977425
815 => 0.0082183332891362
816 => 0.0086515817785695
817 => 0.0089716270959201
818 => 0.008966973510254
819 => 0.0089386460043165
820 => 0.008896557076518
821 => 0.0090978778893616
822 => 0.0090277417437036
823 => 0.0090787716497408
824 => 0.0090917609025457
825 => 0.0091310754586735
826 => 0.0091451270332889
827 => 0.0091026534153551
828 => 0.0089601067658539
829 => 0.0086048940682255
830 => 0.0084395415986011
831 => 0.0083849725294619
901 => 0.0083869560114837
902 => 0.0083322427226689
903 => 0.0083483582383025
904 => 0.0083266384040013
905 => 0.0082855062924272
906 => 0.0083683648849771
907 => 0.0083779135658873
908 => 0.0083585733802997
909 => 0.0083631286941305
910 => 0.0082030002177665
911 => 0.0082151744380437
912 => 0.0081473868325152
913 => 0.0081346774736703
914 => 0.0079633163098363
915 => 0.0076597251689065
916 => 0.0078279441312867
917 => 0.0076247592798969
918 => 0.0075478100979227
919 => 0.0079120755573356
920 => 0.0078755134083617
921 => 0.0078129349025024
922 => 0.0077203682498332
923 => 0.0076860343779277
924 => 0.0074774326410128
925 => 0.0074651073375489
926 => 0.0075684959910846
927 => 0.0075207856848642
928 => 0.0074537823456248
929 => 0.0072111030429195
930 => 0.0069382511583228
1001 => 0.0069464868416329
1002 => 0.0070332759495334
1003 => 0.0072856269858597
1004 => 0.0071870290702497
1005 => 0.007115495151194
1006 => 0.0071020989984566
1007 => 0.0072697798967109
1008 => 0.007507083497975
1009 => 0.0076184210383193
1010 => 0.0075080889172094
1011 => 0.0073813453171818
1012 => 0.0073890596128422
1013 => 0.0074403793658054
1014 => 0.0074457723462196
1015 => 0.0073632752920542
1016 => 0.0073864977295725
1017 => 0.007351220723478
1018 => 0.0071347258021923
1019 => 0.007130810095579
1020 => 0.0070776787504433
1021 => 0.0070760699544283
1022 => 0.0069856802821173
1023 => 0.0069730341421267
1024 => 0.0067935599614922
1025 => 0.0069116904106837
1026 => 0.006832454707493
1027 => 0.0067130278129718
1028 => 0.0066924385713416
1029 => 0.006691819633876
1030 => 0.0068144443511843
1031 => 0.0069102574694664
1101 => 0.0068338330464738
1102 => 0.0068164326867836
1103 => 0.0070022230052219
1104 => 0.0069785794936843
1105 => 0.006958104365177
1106 => 0.0074858355632505
1107 => 0.0070680951405964
1108 => 0.0068859364725295
1109 => 0.0066604805298039
1110 => 0.0067338901216029
1111 => 0.0067493586012062
1112 => 0.0062071777004393
1113 => 0.0059872149765225
1114 => 0.0059117320587946
1115 => 0.0058682905724704
1116 => 0.0058880874032922
1117 => 0.0056900951527129
1118 => 0.0058231492195918
1119 => 0.0056517046664584
1120 => 0.0056229614291967
1121 => 0.0059295255281039
1122 => 0.0059721821315453
1123 => 0.0057901958088962
1124 => 0.0059070604889463
1125 => 0.0058646837314196
1126 => 0.0056546435912461
1127 => 0.0056466216028422
1128 => 0.0055412308437711
1129 => 0.0053763147134971
1130 => 0.0053009436166713
1201 => 0.0052616896950425
1202 => 0.0052778866281502
1203 => 0.0052696969631367
1204 => 0.0052162538592202
1205 => 0.0052727602592949
1206 => 0.0051284097571605
1207 => 0.0050709282240996
1208 => 0.0050449651491774
1209 => 0.0049168457700282
1210 => 0.005120740677201
1211 => 0.0051609105425145
1212 => 0.0052011595548716
1213 => 0.005551499728273
1214 => 0.0055339977232609
1215 => 0.005692207324748
1216 => 0.005686059590563
1217 => 0.0056409356493933
1218 => 0.0054505651641262
1219 => 0.0055264434465261
1220 => 0.0052929018874026
1221 => 0.0054678871027803
1222 => 0.0053880311580392
1223 => 0.0054408877275355
1224 => 0.0053458468496964
1225 => 0.0053984463956342
1226 => 0.005170436307784
1227 => 0.004957523695938
1228 => 0.0050432059462515
1229 => 0.005136352351296
1230 => 0.0053383174906953
1231 => 0.0052180287198453
]
'min_raw' => 0.0049168457700282
'max_raw' => 0.014676904368653
'avg_raw' => 0.0097968750693406
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004916'
'max' => '$0.014676'
'avg' => '$0.009796'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0093142642299718
'max_diff' => 0.00044579436865299
'year' => 2026
]
1 => [
'items' => [
101 => 0.005261289110465
102 => 0.005116374043591
103 => 0.0048173728676877
104 => 0.0048190651818719
105 => 0.0047730703650539
106 => 0.0047333241279699
107 => 0.0052318453321798
108 => 0.0051698463399823
109 => 0.0050710590601431
110 => 0.0052032897598583
111 => 0.0052382536556464
112 => 0.0052392490286061
113 => 0.0053357211337499
114 => 0.0053872083135588
115 => 0.0053962831521583
116 => 0.00554808409402
117 => 0.0055989657674292
118 => 0.0058085401791578
119 => 0.0053828399860729
120 => 0.0053740729707361
121 => 0.0052051505169746
122 => 0.0050980172262407
123 => 0.0052124860250477
124 => 0.0053138897542414
125 => 0.0052083014135025
126 => 0.0052220890217114
127 => 0.0050803453011538
128 => 0.0051310120115912
129 => 0.0051746530081629
130 => 0.0051505570149552
131 => 0.0051144841468641
201 => 0.0053055758048404
202 => 0.0052947936646031
203 => 0.0054727426096889
204 => 0.0056114665376344
205 => 0.005860084616381
206 => 0.0056006386904553
207 => 0.0055911834497105
208 => 0.0056836099446601
209 => 0.0055989516174144
210 => 0.0056524527579275
211 => 0.00585146475552
212 => 0.0058556695654301
213 => 0.0057852335818439
214 => 0.0057809475458414
215 => 0.0057944755469744
216 => 0.0058737094721496
217 => 0.0058460227040808
218 => 0.0058780625330332
219 => 0.0059181288297495
220 => 0.0060838600207259
221 => 0.00612381724979
222 => 0.0060267418986122
223 => 0.0060355067159169
224 => 0.0059991978697985
225 => 0.0059641239793966
226 => 0.0060429649628897
227 => 0.0061870484098469
228 => 0.0061861520742014
301 => 0.0062195766333134
302 => 0.0062403998567363
303 => 0.0061510113382743
304 => 0.0060928226996625
305 => 0.0061151359263455
306 => 0.0061508152617306
307 => 0.0061035655987542
308 => 0.0058119187906912
309 => 0.0059003858017873
310 => 0.0058856605653251
311 => 0.005864690037953
312 => 0.0059536443017052
313 => 0.005945064445961
314 => 0.0056880644560099
315 => 0.0057045167615321
316 => 0.0056890649752004
317 => 0.0057389928579762
318 => 0.0055962553478952
319 => 0.0056401604446443
320 => 0.0056676973097406
321 => 0.0056839167348305
322 => 0.0057425124200191
323 => 0.0057356368926711
324 => 0.0057420850275855
325 => 0.0058289669600329
326 => 0.0062683859600728
327 => 0.0062923025667216
328 => 0.006174528448495
329 => 0.0062215768857347
330 => 0.0061312541745965
331 => 0.0061918884156932
401 => 0.0062333728235087
402 => 0.006045912761583
403 => 0.0060348125933215
404 => 0.0059441170882249
405 => 0.0059928517154079
406 => 0.0059153114194161
407 => 0.0059343370958081
408 => 0.0058811396459875
409 => 0.0059768844641579
410 => 0.0060839420481131
411 => 0.0061109890216523
412 => 0.0060398400787249
413 => 0.0059883235551017
414 => 0.0058978775102172
415 => 0.0060482912985817
416 => 0.0060922768740767
417 => 0.0060480602610789
418 => 0.0060378143056952
419 => 0.0060183982387572
420 => 0.0060419335160818
421 => 0.0060920373191861
422 => 0.0060684092909141
423 => 0.00608401601986
424 => 0.006024539262707
425 => 0.0061510409295934
426 => 0.0063519560208929
427 => 0.0063526019957644
428 => 0.0063289738401284
429 => 0.0063193057079179
430 => 0.0063435496294768
501 => 0.0063567009623847
502 => 0.0064351013591311
503 => 0.0065192281084496
504 => 0.0069118109401425
505 => 0.0068015752519487
506 => 0.0071498980950838
507 => 0.0074253762399432
508 => 0.0075079800903873
509 => 0.0074319884347903
510 => 0.0071720250859815
511 => 0.0071592700438683
512 => 0.0075477650406834
513 => 0.0074379974098851
514 => 0.0074249408994793
515 => 0.0072860416880844
516 => 0.0073681483250208
517 => 0.0073501903990911
518 => 0.0073218429344793
519 => 0.007478496678156
520 => 0.0077717385017426
521 => 0.0077260340135322
522 => 0.0076919177332533
523 => 0.0075424301241713
524 => 0.007632455054105
525 => 0.0076003989008695
526 => 0.0077381324785064
527 => 0.0076565421582866
528 => 0.0074371658121223
529 => 0.0074721022183229
530 => 0.0074668216508079
531 => 0.00757549535608
601 => 0.0075428742072045
602 => 0.0074604518479393
603 => 0.007770736233069
604 => 0.0077505880909911
605 => 0.007779153549951
606 => 0.0077917289484014
607 => 0.0079805935858057
608 => 0.0080579653847559
609 => 0.0080755301377016
610 => 0.0081490273625546
611 => 0.0080737014597928
612 => 0.0083750587772986
613 => 0.0085754438087529
614 => 0.0088082013345065
615 => 0.0091483226389576
616 => 0.0092762113957291
617 => 0.0092531094365062
618 => 0.0095109855277902
619 => 0.0099743831315641
620 => 0.0093467753412735
621 => 0.0100076478684
622 => 0.0097984232564522
623 => 0.0093023554653132
624 => 0.009270414547819
625 => 0.0096063574154437
626 => 0.010351446362533
627 => 0.010164810032016
628 => 0.010351751632709
629 => 0.010133674325513
630 => 0.01012284494911
701 => 0.010341160104656
702 => 0.010851265365327
703 => 0.010608933476992
704 => 0.010261491292847
705 => 0.010518037194821
706 => 0.010295793392328
707 => 0.0097950159031901
708 => 0.010164667314731
709 => 0.0099174919428998
710 => 0.0099896308569657
711 => 0.010509156723994
712 => 0.010446645997178
713 => 0.010527540666015
714 => 0.0103847636929
715 => 0.010251387486148
716 => 0.010002430891599
717 => 0.0099287271173643
718 => 0.0099490961889786
719 => 0.009928717023464
720 => 0.0097894280968428
721 => 0.0097593486664008
722 => 0.0097092149645207
723 => 0.0097247534950577
724 => 0.0096304874683913
725 => 0.0098083869370658
726 => 0.0098414066460965
727 => 0.0099708670438133
728 => 0.0099843080517726
729 => 0.01034485341666
730 => 0.010146271088399
731 => 0.01027949725897
801 => 0.010267580256301
802 => 0.0093131067585563
803 => 0.0094446247851545
804 => 0.0096492255619111
805 => 0.0095570531893121
806 => 0.0094267430194706
807 => 0.0093215105705343
808 => 0.0091620726498255
809 => 0.0093864784614891
810 => 0.0096815482409291
811 => 0.0099917915083185
812 => 0.010364528466143
813 => 0.010281337916293
814 => 0.0099848234501624
815 => 0.0099981248725091
816 => 0.010080349031539
817 => 0.0099738612747425
818 => 0.0099424559563752
819 => 0.010076034423057
820 => 0.010076954304544
821 => 0.0099544272708737
822 => 0.0098182608951599
823 => 0.0098176903530738
824 => 0.0097934608617267
825 => 0.010137984698197
826 => 0.010327437972967
827 => 0.0103491584856
828 => 0.010325976009407
829 => 0.010334898024414
830 => 0.010224659338144
831 => 0.010476632284691
901 => 0.010707867577985
902 => 0.010645891579761
903 => 0.010552980748016
904 => 0.010478972795338
905 => 0.010628457658117
906 => 0.010621801332488
907 => 0.010705847939424
908 => 0.010702035099856
909 => 0.010673773387097
910 => 0.010645892589076
911 => 0.010756436801726
912 => 0.010724601843769
913 => 0.010692717437328
914 => 0.010628768378954
915 => 0.010637460118068
916 => 0.010544565328688
917 => 0.010501587948544
918 => 0.0098553112683362
919 => 0.0096826050216849
920 => 0.0097369419226412
921 => 0.009754831041293
922 => 0.0096796690614213
923 => 0.0097874320330289
924 => 0.0097706372880531
925 => 0.0098359758161568
926 => 0.0097951551404667
927 => 0.0097968304352359
928 => 0.0099168753385547
929 => 0.0099517248846957
930 => 0.0099340001242581
1001 => 0.0099464139388993
1002 => 0.010232485057764
1003 => 0.010191814892701
1004 => 0.010170209678098
1005 => 0.010176194470195
1006 => 0.010249291774499
1007 => 0.010269755028739
1008 => 0.010183050782596
1009 => 0.010223941006309
1010 => 0.010398046389134
1011 => 0.010458973419612
1012 => 0.010653423254263
1013 => 0.010570817508433
1014 => 0.010722443929997
1015 => 0.011188491856628
1016 => 0.011560803188484
1017 => 0.011218410301293
1018 => 0.011902112648685
1019 => 0.012434472997406
1020 => 0.01241404012053
1021 => 0.012321210780013
1022 => 0.011715132676526
1023 => 0.011157410569582
1024 => 0.011623968794172
1025 => 0.011625158147035
1026 => 0.011585080381773
1027 => 0.011336160823777
1028 => 0.011576418520719
1029 => 0.011595489304215
1030 => 0.011584814736788
1031 => 0.011393968695295
1101 => 0.011102582064179
1102 => 0.011159518314418
1103 => 0.011252781053778
1104 => 0.011076215231525
1105 => 0.011019791752814
1106 => 0.011124693734743
1107 => 0.011462709777712
1108 => 0.011398809802782
1109 => 0.011397141116197
1110 => 0.011670532306753
1111 => 0.011474843215826
1112 => 0.011160236462869
1113 => 0.011080794108594
1114 => 0.0107988272697
1115 => 0.010993582769655
1116 => 0.011000591673382
1117 => 0.010893926076409
1118 => 0.011168891788195
1119 => 0.011166357930755
1120 => 0.01142739695085
1121 => 0.011926405515495
1122 => 0.011778824128209
1123 => 0.011607203031605
1124 => 0.011625863003343
1125 => 0.011830516836571
1126 => 0.011706778457209
1127 => 0.011751275641162
1128 => 0.011830449484753
1129 => 0.011878217030368
1130 => 0.01161898998863
1201 => 0.011558551764938
1202 => 0.011434916370198
1203 => 0.011402662203475
1204 => 0.011503360652753
1205 => 0.011476830169097
1206 => 0.011000002602164
1207 => 0.010950171468376
1208 => 0.010951699718106
1209 => 0.010826396962855
1210 => 0.01063528018499
1211 => 0.01113752366623
1212 => 0.011097186485793
1213 => 0.011052657360441
1214 => 0.011058111924217
1215 => 0.011276118796813
1216 => 0.011149663801096
1217 => 0.011485865132774
1218 => 0.011416752246118
1219 => 0.011345866874707
1220 => 0.011336068357156
1221 => 0.011308783536818
1222 => 0.011215213735645
1223 => 0.011102222578056
1224 => 0.011027616028688
1225 => 0.010172392868887
1226 => 0.010331117312742
1227 => 0.010513715317209
1228 => 0.010576747416635
1229 => 0.010468926648878
1230 => 0.011219471156732
1231 => 0.011356602870743
]
'min_raw' => 0.0047333241279699
'max_raw' => 0.012434472997406
'avg_raw' => 0.008583898562688
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004733'
'max' => '$0.012434'
'avg' => '$0.008583'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001835216420583
'max_diff' => -0.0022424313712468
'year' => 2027
]
2 => [
'items' => [
101 => 0.010941221964122
102 => 0.010863521156383
103 => 0.011224565208751
104 => 0.011006811509333
105 => 0.011104865986848
106 => 0.010892925839392
107 => 0.011323571856523
108 => 0.011320291055402
109 => 0.011152760028157
110 => 0.011294356105182
111 => 0.01126975030229
112 => 0.011080608185141
113 => 0.011329567999004
114 => 0.011329691479965
115 => 0.01116844650868
116 => 0.010980147683282
117 => 0.010946484300721
118 => 0.010921123464
119 => 0.011098628775662
120 => 0.011257779483053
121 => 0.011553919492702
122 => 0.011628376127241
123 => 0.011918985328705
124 => 0.011745941698739
125 => 0.011822649698613
126 => 0.011905927083485
127 => 0.011945853324217
128 => 0.011880795657504
129 => 0.012332231366897
130 => 0.012370346372403
131 => 0.012383126004055
201 => 0.012230904422822
202 => 0.012366112814862
203 => 0.012302853285858
204 => 0.012467437006323
205 => 0.012493245835202
206 => 0.012471386675317
207 => 0.012479578804968
208 => 0.012094358065718
209 => 0.012074382338186
210 => 0.011802011875882
211 => 0.011913004852532
212 => 0.011705508802717
213 => 0.011771307937559
214 => 0.011800311569241
215 => 0.011785161717992
216 => 0.011919280228899
217 => 0.011805252096027
218 => 0.011504313105415
219 => 0.011203292124177
220 => 0.011199513050964
221 => 0.011120259540066
222 => 0.011062973767691
223 => 0.011074009039772
224 => 0.01111289877794
225 => 0.011060713425411
226 => 0.011071849816237
227 => 0.011256788105344
228 => 0.011293876160305
229 => 0.011167836458309
301 => 0.010661768867357
302 => 0.010537578611163
303 => 0.010626844104515
304 => 0.010584180948127
305 => 0.0085422600865919
306 => 0.0090219791047692
307 => 0.0087369463538868
308 => 0.0088683025592197
309 => 0.0085773579294418
310 => 0.0087162119564864
311 => 0.0086905706878284
312 => 0.0094619446731399
313 => 0.0094499007293495
314 => 0.0094556655278906
315 => 0.0091804966734189
316 => 0.0096188481302409
317 => 0.00983479582048
318 => 0.0097948296502784
319 => 0.0098048882742808
320 => 0.0096320477881038
321 => 0.0094573390016074
322 => 0.0092635600698934
323 => 0.0096235773732182
324 => 0.0095835495947888
325 => 0.0096753589169658
326 => 0.0099088558727403
327 => 0.0099432391864467
328 => 0.0099894507087494
329 => 0.009972887167564
330 => 0.010367497917358
331 => 0.010319707951832
401 => 0.010434868018638
402 => 0.010197975024004
403 => 0.0099299081144864
404 => 0.0099808588702181
405 => 0.009975951902721
406 => 0.0099134805745283
407 => 0.0098570842527176
408 => 0.009763200266468
409 => 0.010060263091177
410 => 0.010048202882995
411 => 0.010243443635015
412 => 0.010208932935628
413 => 0.0099784620389201
414 => 0.0099866933520837
415 => 0.010042052888943
416 => 0.010233652878098
417 => 0.010290532800001
418 => 0.010264183753902
419 => 0.010326549991602
420 => 0.010375841723003
421 => 0.010332740274157
422 => 0.010942965896909
423 => 0.01068955767356
424 => 0.010813067078417
425 => 0.010842523343716
426 => 0.010767071739552
427 => 0.010783434490776
428 => 0.010808219600297
429 => 0.010958709931888
430 => 0.011353640106711
501 => 0.01152855199276
502 => 0.012054783031938
503 => 0.011514027995515
504 => 0.01148194182952
505 => 0.011576731930331
506 => 0.011885685257541
507 => 0.012136062910735
508 => 0.012219127622932
509 => 0.012230105995898
510 => 0.012385940918018
511 => 0.012475262589228
512 => 0.012367018459608
513 => 0.012275292893387
514 => 0.01194674330058
515 => 0.011984773810558
516 => 0.012246766311266
517 => 0.012616846149797
518 => 0.012934413151501
519 => 0.012823212255832
520 => 0.013671596594192
521 => 0.013755710436001
522 => 0.013744088622789
523 => 0.013935712472248
524 => 0.01355537815459
525 => 0.013392777865161
526 => 0.012295125001933
527 => 0.012603520683822
528 => 0.01305179191889
529 => 0.012992461539998
530 => 0.012666914986767
531 => 0.012934166195248
601 => 0.012845804588006
602 => 0.012776110122248
603 => 0.013095393980824
604 => 0.012744328262862
605 => 0.013048289769802
606 => 0.012658455993072
607 => 0.012823720212157
608 => 0.012729908248473
609 => 0.012790616086138
610 => 0.012435719307614
611 => 0.012627212994674
612 => 0.01242775254066
613 => 0.012427657970434
614 => 0.012423254869857
615 => 0.012657919209461
616 => 0.01266557160515
617 => 0.012492154303625
618 => 0.012467162161188
619 => 0.01255957121069
620 => 0.012451384415691
621 => 0.012502004336152
622 => 0.012452917641515
623 => 0.012441867192628
624 => 0.012353815335819
625 => 0.01231588017487
626 => 0.012330755528947
627 => 0.012279978276711
628 => 0.012249383145546
629 => 0.0124171687282
630 => 0.012327527659839
701 => 0.012403429948839
702 => 0.012316929710891
703 => 0.012017082199801
704 => 0.011844636725344
705 => 0.011278252572775
706 => 0.011438878415846
707 => 0.011545373515982
708 => 0.011510176886022
709 => 0.011585792866463
710 => 0.011590435073535
711 => 0.01156585154748
712 => 0.011537386973653
713 => 0.011523531993304
714 => 0.011626795665655
715 => 0.01168674370315
716 => 0.011556061724001
717 => 0.011525444764722
718 => 0.011657571460791
719 => 0.011738168669066
720 => 0.01233325317131
721 => 0.012289167389286
722 => 0.012399814050768
723 => 0.012387356934696
724 => 0.012503332263325
725 => 0.012692902910802
726 => 0.012307452779695
727 => 0.012374353594592
728 => 0.012357951059745
729 => 0.012537029634233
730 => 0.012537588697996
731 => 0.012430222146952
801 => 0.012488427296096
802 => 0.012455938778618
803 => 0.012514649920787
804 => 0.012288578596789
805 => 0.012563909066527
806 => 0.012720003700965
807 => 0.012722171075116
808 => 0.012796158692996
809 => 0.012871334397836
810 => 0.013015627616852
811 => 0.012867310138273
812 => 0.012600501432724
813 => 0.012619764159478
814 => 0.012463334313036
815 => 0.012465963927016
816 => 0.012451926841504
817 => 0.012494053191788
818 => 0.012297822961706
819 => 0.012343877804487
820 => 0.012279400754897
821 => 0.012374213434078
822 => 0.012272210664377
823 => 0.012357943149946
824 => 0.01239494244864
825 => 0.012531470657362
826 => 0.012252045336941
827 => 0.011682278193171
828 => 0.01180205015455
829 => 0.011624898015786
830 => 0.011641294120694
831 => 0.01167441686203
901 => 0.011567055220274
902 => 0.011587536438167
903 => 0.01158680470494
904 => 0.011580499023302
905 => 0.011552570113778
906 => 0.011512067669402
907 => 0.011673416941801
908 => 0.011700833327279
909 => 0.011761776556024
910 => 0.011943102266582
911 => 0.011924983552143
912 => 0.011954535927132
913 => 0.01189002325846
914 => 0.011644286678367
915 => 0.01165763135694
916 => 0.011491223001296
917 => 0.011757521120233
918 => 0.011694458210705
919 => 0.011653801142684
920 => 0.01164270748499
921 => 0.011824482666912
922 => 0.011878872650321
923 => 0.011844980462637
924 => 0.011775466596904
925 => 0.01190895376904
926 => 0.011944669304932
927 => 0.01195266469628
928 => 0.01218917837168
929 => 0.011965883183396
930 => 0.012019632554579
1001 => 0.012438969805116
1002 => 0.012058688783464
1003 => 0.012260132121912
1004 => 0.012250272518756
1005 => 0.012353324114235
1006 => 0.012241819280076
1007 => 0.012243201516132
1008 => 0.012334704351598
1009 => 0.01220620512181
1010 => 0.012174386905426
1011 => 0.012130430267377
1012 => 0.012226407978435
1013 => 0.012283942275515
1014 => 0.012747626455698
1015 => 0.013047187582665
1016 => 0.013034182844107
1017 => 0.013153021810675
1018 => 0.013099483767796
1019 => 0.012926595304717
1020 => 0.013221694829691
1021 => 0.013128312992501
1022 => 0.0131360112777
1023 => 0.01313572474714
1024 => 0.01319781550529
1025 => 0.013153818512606
1026 => 0.013067095923828
1027 => 0.013124666425433
1028 => 0.013295630233367
1029 => 0.013826307139005
1030 => 0.014123280965935
1031 => 0.013808428941733
1101 => 0.014025609651991
1102 => 0.013895378615236
1103 => 0.013871711761819
1104 => 0.01400811729739
1105 => 0.014144761592793
1106 => 0.014136057941905
1107 => 0.014036861200205
1108 => 0.013980827477842
1109 => 0.014405133596245
1110 => 0.014717755116418
1111 => 0.014696436424583
1112 => 0.014790530197131
1113 => 0.015066792423541
1114 => 0.015092050379293
1115 => 0.015088868457416
1116 => 0.015026263978689
1117 => 0.015298280017774
1118 => 0.015525200583245
1119 => 0.015011772850682
1120 => 0.015207279409979
1121 => 0.015295048603276
1122 => 0.015423919818982
1123 => 0.015641347161201
1124 => 0.015877530924605
1125 => 0.015910929898374
1126 => 0.015887231728197
1127 => 0.015731462187271
1128 => 0.015989897279447
1129 => 0.016141282495394
1130 => 0.016231428927102
1201 => 0.016460025278977
1202 => 0.015295590635934
1203 => 0.014471345919431
1204 => 0.014342628204711
1205 => 0.014604380739168
1206 => 0.014673402795067
1207 => 0.01464558009088
1208 => 0.013717817725405
1209 => 0.014337743727861
1210 => 0.015004731981645
1211 => 0.015030353716868
1212 => 0.01536426198278
1213 => 0.015472996201522
1214 => 0.015741836121938
1215 => 0.015725020111719
1216 => 0.015790478354162
1217 => 0.015775430637803
1218 => 0.016273399979448
1219 => 0.016822734112446
1220 => 0.016803712418196
1221 => 0.016724739137151
1222 => 0.016842027926448
1223 => 0.017408999621925
1224 => 0.017356801953741
1225 => 0.017407507542195
1226 => 0.018075999124286
1227 => 0.018945133272824
1228 => 0.018541333201186
1229 => 0.019417463166299
1230 => 0.019968940537684
1231 => 0.020922663627669
]
'min_raw' => 0.0085422600865919
'max_raw' => 0.020922663627669
'avg_raw' => 0.014732461857131
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008542'
'max' => '$0.020922'
'avg' => '$0.014732'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.003808935958622
'max_diff' => 0.0084881906302632
'year' => 2028
]
3 => [
'items' => [
101 => 0.020803252799618
102 => 0.021174530199806
103 => 0.020589482495614
104 => 0.01924609470914
105 => 0.019033498449649
106 => 0.019459121544945
107 => 0.020505474393037
108 => 0.019426168170105
109 => 0.019644510413313
110 => 0.019581627832581
111 => 0.019578277087087
112 => 0.019706161414106
113 => 0.019520658527767
114 => 0.01876488639749
115 => 0.019111252311003
116 => 0.018977503797938
117 => 0.019125907744796
118 => 0.019926782639541
119 => 0.019572696758101
120 => 0.019199696045606
121 => 0.01966752171456
122 => 0.02026322455348
123 => 0.020225946540401
124 => 0.020153611614028
125 => 0.02056135980666
126 => 0.021234840361879
127 => 0.02141687944969
128 => 0.021551256982688
129 => 0.021569785374161
130 => 0.021760639321667
131 => 0.02073436954454
201 => 0.022363086037317
202 => 0.022644320383235
203 => 0.022591459982172
204 => 0.022904040121509
205 => 0.022812071115123
206 => 0.022678822454365
207 => 0.023174328462917
208 => 0.022606270809385
209 => 0.021799984486668
210 => 0.02135763986349
211 => 0.021940154946213
212 => 0.022295876580258
213 => 0.022530985952217
214 => 0.022602129906114
215 => 0.020814035945923
216 => 0.019850352473617
217 => 0.020468062530711
218 => 0.021221711432438
219 => 0.020730182986838
220 => 0.020749449971319
221 => 0.020048659579297
222 => 0.021283715832149
223 => 0.021103778524567
224 => 0.022037293594608
225 => 0.021814502731216
226 => 0.022575748031988
227 => 0.022375286632187
228 => 0.023207390695117
301 => 0.023539339534138
302 => 0.024096733298566
303 => 0.024506754420679
304 => 0.024747526666039
305 => 0.024733071603542
306 => 0.025687131191912
307 => 0.025124555584953
308 => 0.024417828033723
309 => 0.024405045562018
310 => 0.024771069775207
311 => 0.025538156112212
312 => 0.025737050438746
313 => 0.025848205233615
314 => 0.025677967795947
315 => 0.02506733229475
316 => 0.024803662981325
317 => 0.025028316875598
318 => 0.024753584467631
319 => 0.025227849680081
320 => 0.025879117114358
321 => 0.02574463296457
322 => 0.02619419331432
323 => 0.026659440981182
324 => 0.027324766040376
325 => 0.027498706647765
326 => 0.02778622385741
327 => 0.028082173510618
328 => 0.028177224563161
329 => 0.028358706515076
330 => 0.028357750015608
331 => 0.028904658092848
401 => 0.029507914638378
402 => 0.029735630018894
403 => 0.030259248980092
404 => 0.029362569858837
405 => 0.030042711272616
406 => 0.030656215852889
407 => 0.029924770400463
408 => 0.030932897551699
409 => 0.030972040844516
410 => 0.031563058092999
411 => 0.030963948886457
412 => 0.030608199752037
413 => 0.031635234173362
414 => 0.03213218377856
415 => 0.031982498513164
416 => 0.03084338625263
417 => 0.030180374058176
418 => 0.028445143259789
419 => 0.030500599096871
420 => 0.031501751676644
421 => 0.030840793509309
422 => 0.031174142363272
423 => 0.032992785621767
424 => 0.033685207226171
425 => 0.033541188372847
426 => 0.033565525188307
427 => 0.033939143317702
428 => 0.035595971858703
429 => 0.03460316179195
430 => 0.035362127888099
501 => 0.03576468076884
502 => 0.036138594318989
503 => 0.035220380816415
504 => 0.034025798540803
505 => 0.033647424188964
506 => 0.030775074245629
507 => 0.030625555957095
508 => 0.030541626810873
509 => 0.030012465415957
510 => 0.029596689509057
511 => 0.029266049071121
512 => 0.028398349824384
513 => 0.028691172848579
514 => 0.027308241352187
515 => 0.028192991915496
516 => 0.025985799855206
517 => 0.027824014990081
518 => 0.026823558065555
519 => 0.027495337983172
520 => 0.027492994206325
521 => 0.026256034389975
522 => 0.025542581782597
523 => 0.025997221552009
524 => 0.026484631474169
525 => 0.026563712094195
526 => 0.027195651780976
527 => 0.027372012564058
528 => 0.026837631157821
529 => 0.025940060705709
530 => 0.026148545850332
531 => 0.025538356837796
601 => 0.024469024063907
602 => 0.025237037530873
603 => 0.025499271095664
604 => 0.025615088376992
605 => 0.024563522407571
606 => 0.024233097549371
607 => 0.024057182127398
608 => 0.025804316744057
609 => 0.025900028722291
610 => 0.025410352709336
611 => 0.027623734720876
612 => 0.027122778203317
613 => 0.027682469370757
614 => 0.026129628008696
615 => 0.026188948639904
616 => 0.025453808653718
617 => 0.025865437923911
618 => 0.025574511623169
619 => 0.025832182346679
620 => 0.025986629115934
621 => 0.026721648472883
622 => 0.02783240773046
623 => 0.026611861091691
624 => 0.026080051442629
625 => 0.026409983157896
626 => 0.027288634793544
627 => 0.028619836998902
628 => 0.027831738500389
629 => 0.028181483231249
630 => 0.028257886895881
701 => 0.02767677224007
702 => 0.028641263525155
703 => 0.029158142240345
704 => 0.02968835284915
705 => 0.030148719864612
706 => 0.029476575072412
707 => 0.030195866348237
708 => 0.029616244551925
709 => 0.029096263880433
710 => 0.029097052476473
711 => 0.02877086100554
712 => 0.028138823927838
713 => 0.028022266593522
714 => 0.028628612566206
715 => 0.029114844615121
716 => 0.029154893015564
717 => 0.029424096061349
718 => 0.029583407650832
719 => 0.031144877801372
720 => 0.031772914013077
721 => 0.032540864804634
722 => 0.03284002491728
723 => 0.033740389601509
724 => 0.03301327199495
725 => 0.032855955526987
726 => 0.03067196531009
727 => 0.031029593585757
728 => 0.031602190961097
729 => 0.030681407229909
730 => 0.031265432572148
731 => 0.031380731546054
801 => 0.030650119351065
802 => 0.031040370892298
803 => 0.030003978500301
804 => 0.027854998252472
805 => 0.028643655954489
806 => 0.029224373482486
807 => 0.02839561796808
808 => 0.029881130150385
809 => 0.029013324600678
810 => 0.028738271903434
811 => 0.027665193268116
812 => 0.028171645077402
813 => 0.028856628401151
814 => 0.028433388344933
815 => 0.029311675011401
816 => 0.030555563161618
817 => 0.031442031932283
818 => 0.031510083997168
819 => 0.030940143966426
820 => 0.031853476502999
821 => 0.03186012913342
822 => 0.030829886301092
823 => 0.030198868302708
824 => 0.030055499685801
825 => 0.030413662599906
826 => 0.030848538498151
827 => 0.031534216582938
828 => 0.031948557489048
829 => 0.033028938822745
830 => 0.033321259034683
831 => 0.033642430321652
901 => 0.0340716142066
902 => 0.03458695950097
903 => 0.033459413335513
904 => 0.033504212846676
905 => 0.032454257469342
906 => 0.031332229569829
907 => 0.032183708882807
908 => 0.03329690481698
909 => 0.033041536439709
910 => 0.033012802280563
911 => 0.033061125166055
912 => 0.032868585749144
913 => 0.031997737102298
914 => 0.031560402363653
915 => 0.032124675752496
916 => 0.032424561945747
917 => 0.032889659278655
918 => 0.03283232621536
919 => 0.034030366997123
920 => 0.034495889418044
921 => 0.034376788861945
922 => 0.034398706230582
923 => 0.03524151233741
924 => 0.036178886064497
925 => 0.037056860257273
926 => 0.037949973316033
927 => 0.036873290664902
928 => 0.036326617615211
929 => 0.036890644659945
930 => 0.036591363970754
1001 => 0.038311119583264
1002 => 0.038430191730574
1003 => 0.040149822985179
1004 => 0.04178195781568
1005 => 0.040756843171375
1006 => 0.041723480108777
1007 => 0.042768976767643
1008 => 0.044785909448316
1009 => 0.044106677478013
1010 => 0.043586396433682
1011 => 0.04309473336077
1012 => 0.044117806166186
1013 => 0.045433972986366
1014 => 0.045717462713344
1015 => 0.046176824372459
1016 => 0.045693861755971
1017 => 0.046275537030943
1018 => 0.048329106352663
1019 => 0.047774213794577
1020 => 0.046986177158664
1021 => 0.048607272911268
1022 => 0.049193941162285
1023 => 0.053311486188471
1024 => 0.058510056871333
1025 => 0.056357814472973
1026 => 0.055021848163883
1027 => 0.055335831936063
1028 => 0.057234173966721
1029 => 0.057843861176604
1030 => 0.056186521168358
1031 => 0.056771921677656
1101 => 0.059997536039193
1102 => 0.061727974654059
1103 => 0.059377806586159
1104 => 0.052893786095839
1105 => 0.046915223081695
1106 => 0.048501007211248
1107 => 0.048321228503567
1108 => 0.051786748731453
1109 => 0.047760979790582
1110 => 0.047828763414886
1111 => 0.051365946931035
1112 => 0.050422287011604
1113 => 0.048893678796956
1114 => 0.046926383613322
1115 => 0.043289656513593
1116 => 0.040068505903726
1117 => 0.046385924036357
1118 => 0.046113505478999
1119 => 0.045719003037776
1120 => 0.046596925531096
1121 => 0.050859867956011
1122 => 0.050761593335318
1123 => 0.050136420338626
1124 => 0.050610608546595
1125 => 0.048810551311433
1126 => 0.049274467047476
1127 => 0.046914276046769
1128 => 0.047981180949371
1129 => 0.048890399090261
1130 => 0.049072938093249
1201 => 0.049484207787654
1202 => 0.045969953278066
1203 => 0.047547750379779
1204 => 0.04847455835744
1205 => 0.044287206196806
1206 => 0.048391787868588
1207 => 0.045908777925565
1208 => 0.045066007057345
1209 => 0.046200687004784
1210 => 0.045758501125754
1211 => 0.045378335672991
1212 => 0.045166196818277
1213 => 0.045999380541621
1214 => 0.045960511525057
1215 => 0.044597261239675
1216 => 0.042818956815585
1217 => 0.043415814151162
1218 => 0.04319897028558
1219 => 0.042413100143293
1220 => 0.042942681732871
1221 => 0.040610672427476
1222 => 0.03659857162484
1223 => 0.039249088309033
1224 => 0.039147046299899
1225 => 0.039095592091657
1226 => 0.041087382124927
1227 => 0.040895917471642
1228 => 0.040548407251104
1229 => 0.042406717845572
1230 => 0.041728409480786
1231 => 0.043818796031505
]
'min_raw' => 0.01876488639749
'max_raw' => 0.061727974654059
'avg_raw' => 0.040246430525775
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.018764'
'max' => '$0.061727'
'avg' => '$0.040246'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.010222626310898
'max_diff' => 0.04080531102639
'year' => 2029
]
4 => [
'items' => [
101 => 0.045195659811533
102 => 0.044846442620041
103 => 0.046141389660118
104 => 0.043429564538692
105 => 0.04433032406449
106 => 0.044515969354358
107 => 0.042383786581294
108 => 0.040927243456803
109 => 0.040830108636207
110 => 0.038304663582346
111 => 0.039653735945438
112 => 0.040840863796552
113 => 0.040272321680711
114 => 0.040092338231548
115 => 0.041011834639673
116 => 0.041083287385538
117 => 0.039454157207584
118 => 0.039792904959424
119 => 0.041205539396724
120 => 0.03975731019605
121 => 0.036943637426038
122 => 0.036245807677006
123 => 0.036152704324931
124 => 0.034260134699979
125 => 0.036292439997639
126 => 0.035405284272815
127 => 0.038207798577777
128 => 0.036607017436968
129 => 0.036538010961429
130 => 0.036433697552602
131 => 0.034804684695339
201 => 0.035161334981912
202 => 0.036346894853852
203 => 0.036769915972448
204 => 0.036725791404068
205 => 0.036341084963699
206 => 0.036517201602084
207 => 0.035949868546741
208 => 0.035749531436883
209 => 0.035117212411108
210 => 0.034187878125807
211 => 0.034317107758116
212 => 0.032475853365392
213 => 0.031472640249469
214 => 0.031194964081118
215 => 0.030823643903913
216 => 0.031236905683179
217 => 0.032470637323039
218 => 0.030982495214599
219 => 0.02843117995071
220 => 0.028584518345299
221 => 0.028929024191364
222 => 0.028287039826357
223 => 0.027679455502542
224 => 0.028207700777225
225 => 0.02712667486652
226 => 0.02905966100801
227 => 0.029007379150014
228 => 0.0297278768485
301 => 0.030178418845465
302 => 0.029140065407165
303 => 0.028878922325439
304 => 0.029027681293081
305 => 0.026569026922645
306 => 0.029526952332623
307 => 0.029552532594399
308 => 0.029333498862846
309 => 0.030908502827957
310 => 0.034232252450399
311 => 0.032981724144918
312 => 0.032497481787617
313 => 0.03157693671241
314 => 0.032803508368565
315 => 0.032709326802871
316 => 0.032283402045504
317 => 0.032025801423282
318 => 0.032500438468192
319 => 0.031966988640842
320 => 0.031871166393629
321 => 0.031290587831152
322 => 0.031083347698989
323 => 0.030929915355602
324 => 0.030761001421485
325 => 0.031133583469418
326 => 0.030289263531551
327 => 0.029271096456188
328 => 0.029186446880592
329 => 0.029420171801279
330 => 0.029316765922649
331 => 0.029185951813028
401 => 0.028936192052658
402 => 0.02886209366703
403 => 0.029102877472897
404 => 0.028831046594641
405 => 0.029232147862902
406 => 0.02912307051188
407 => 0.02851377329593
408 => 0.027754363374135
409 => 0.027747603032915
410 => 0.027583989410946
411 => 0.027375602863896
412 => 0.027317634493745
413 => 0.028163213433587
414 => 0.029913536533012
415 => 0.029569906226913
416 => 0.02981821433972
417 => 0.031039644495158
418 => 0.031427900411885
419 => 0.031152325558537
420 => 0.030775101702558
421 => 0.030791697637778
422 => 0.032080785747086
423 => 0.032161184591235
424 => 0.032364326532752
425 => 0.032625421335506
426 => 0.031196791132452
427 => 0.030724409283689
428 => 0.030500568556997
429 => 0.029811225756051
430 => 0.030554622867086
501 => 0.030121477205924
502 => 0.030179923353978
503 => 0.030141860223384
504 => 0.030162645266506
505 => 0.029059120698989
506 => 0.029461187051849
507 => 0.028792673758168
508 => 0.027897609502069
509 => 0.027894608932833
510 => 0.028113674641477
511 => 0.027983365785933
512 => 0.027632708006214
513 => 0.027682517288765
514 => 0.027246135561827
515 => 0.027735501931361
516 => 0.027749535207802
517 => 0.027561102499565
518 => 0.028315038911379
519 => 0.028623927274453
520 => 0.028499896829271
521 => 0.028615224967779
522 => 0.029584185617529
523 => 0.029742168482156
524 => 0.02981233403486
525 => 0.02971832148939
526 => 0.02863293578971
527 => 0.028681077260907
528 => 0.02832784708763
529 => 0.02802940481369
530 => 0.028041340939524
531 => 0.028194779063109
601 => 0.028864852347833
602 => 0.030274982072557
603 => 0.030328495464819
604 => 0.030393355257336
605 => 0.030129537885249
606 => 0.030049968041435
607 => 0.030154941204145
608 => 0.030684511787652
609 => 0.032046711105445
610 => 0.031565218888304
611 => 0.031173758220895
612 => 0.031517174763251
613 => 0.031464308478343
614 => 0.031018063830972
615 => 0.031005539229984
616 => 0.030149053078636
617 => 0.029832429649729
618 => 0.029567835413681
619 => 0.029278905415324
620 => 0.029107618027277
621 => 0.029370793304043
622 => 0.029430984603638
623 => 0.028855547261472
624 => 0.028777117278049
625 => 0.029247031833339
626 => 0.029040239957736
627 => 0.029252930529986
628 => 0.029302276567174
629 => 0.029294330718651
630 => 0.029078416250626
701 => 0.029216033693883
702 => 0.028890527414845
703 => 0.028536588225855
704 => 0.028310797074469
705 => 0.028113764348035
706 => 0.02822308955627
707 => 0.027833365150908
708 => 0.027708684470029
709 => 0.029169412000598
710 => 0.030248467132896
711 => 0.030232777243919
712 => 0.030137269079888
713 => 0.02999536332126
714 => 0.030674130497532
715 => 0.030437661585697
716 => 0.030609712476696
717 => 0.030653506649408
718 => 0.030786058420248
719 => 0.030833434285113
720 => 0.030690231516836
721 => 0.030209625535754
722 => 0.029012001125541
723 => 0.028454503729662
724 => 0.028270520303168
725 => 0.028277207751287
726 => 0.028092738078088
727 => 0.028147072664196
728 => 0.028073842726419
729 => 0.027935162940494
730 => 0.028214526470279
731 => 0.028246720514635
801 => 0.028181513728638
802 => 0.02819687228726
803 => 0.027656987949386
804 => 0.027698034183027
805 => 0.027469483538208
806 => 0.027426633047524
807 => 0.026848876919603
808 => 0.025825298191902
809 => 0.026392460168239
810 => 0.025707408255866
811 => 0.025447968716419
812 => 0.026676115145032
813 => 0.026552843307079
814 => 0.026341855505482
815 => 0.026029760573211
816 => 0.025914001526967
817 => 0.02521068620685
818 => 0.025169130585696
819 => 0.025517712649457
820 => 0.025356854021008
821 => 0.025130947584739
822 => 0.02431273737234
823 => 0.023392798193512
824 => 0.023420565374789
825 => 0.023713180911497
826 => 0.024564000049058
827 => 0.024231570292693
828 => 0.023990388690258
829 => 0.023945222626014
830 => 0.024510570481585
831 => 0.025310656141255
901 => 0.025686038431865
902 => 0.0253140459824
903 => 0.024886721085951
904 => 0.024912730372365
905 => 0.025085758502511
906 => 0.025103941312504
907 => 0.024825796734625
908 => 0.024904092804056
909 => 0.024785153915047
910 => 0.024055226172739
911 => 0.024042024094507
912 => 0.02386288805487
913 => 0.023857463886783
914 => 0.023552708795781
915 => 0.023510071451877
916 => 0.022904961721381
917 => 0.023303246778435
918 => 0.023036098073067
919 => 0.022633441960069
920 => 0.022564023894418
921 => 0.02256193710354
922 => 0.022975374899329
923 => 0.023298415517076
924 => 0.023040745239173
925 => 0.022982078711623
926 => 0.023608483741704
927 => 0.023528767991818
928 => 0.023459734666528
929 => 0.025239017245848
930 => 0.023830576245165
1001 => 0.023216415577865
1002 => 0.022456275126134
1003 => 0.022703780690179
1004 => 0.022755933749136
1005 => 0.020927932988339
1006 => 0.020186313307346
1007 => 0.019931817380178
1008 => 0.019785351376048
1009 => 0.019852097773334
1010 => 0.019184553077129
1011 => 0.019633154153149
1012 => 0.019055116872383
1013 => 0.018958207041167
1014 => 0.019991809304254
1015 => 0.020135629020946
1016 => 0.019522049428255
1017 => 0.019916066856276
1018 => 0.019773190659624
1019 => 0.019065025662495
1020 => 0.019037978968513
1021 => 0.018682646666157
1022 => 0.018126620418862
1023 => 0.017872501503672
1024 => 0.017740154166279
1025 => 0.017794763257086
1026 => 0.017767151229708
1027 => 0.017586964073575
1028 => 0.017777479346578
1029 => 0.017290791550402
1030 => 0.017096988548454
1031 => 0.01700945222867
1101 => 0.016577488796859
1102 => 0.01726493471188
1103 => 0.017400370217355
1104 => 0.017536072572614
1105 => 0.018717268927206
1106 => 0.018658259695357
1107 => 0.019191674412612
1108 => 0.019170946897586
1109 => 0.01901880837948
1110 => 0.018376960997159
1111 => 0.018632789923922
1112 => 0.017845388251987
1113 => 0.01843536312271
1114 => 0.018166123229652
1115 => 0.018344332844036
1116 => 0.01802389588886
1117 => 0.018201238930372
1118 => 0.017432487000029
1119 => 0.016714637264106
1120 => 0.017003520953182
1121 => 0.017317570561064
1122 => 0.017998510129304
1123 => 0.01759294814009
1124 => 0.017738803567408
1125 => 0.017250212301796
1126 => 0.016242108961642
1127 => 0.016247814717068
1128 => 0.01609273998091
1129 => 0.015958732767588
1130 => 0.01763953181322
1201 => 0.017430497882395
1202 => 0.01709742967131
1203 => 0.017543254707452
1204 => 0.017661137923203
1205 => 0.017664493892631
1206 => 0.017989756330591
1207 => 0.018163348952037
1208 => 0.01819394540396
1209 => 0.01870575287785
1210 => 0.018877303992194
1211 => 0.019583898753355
1212 => 0.018148620830931
1213 => 0.01811906222663
1214 => 0.017549528379984
1215 => 0.017188321010467
1216 => 0.017574260557601
1217 => 0.01791615031036
1218 => 0.017560151847616
1219 => 0.017606637731313
1220 => 0.017128738881222
1221 => 0.017299565232899
1222 => 0.017446703899757
1223 => 0.017365462576329
1224 => 0.017243840383032
1225 => 0.017888119249493
1226 => 0.017851766510898
1227 => 0.018451733803253
1228 => 0.018919451211717
1229 => 0.019757684422171
1230 => 0.018882944368977
1231 => 0.018851065364661
]
'min_raw' => 0.015958732767588
'max_raw' => 0.046141389660118
'avg_raw' => 0.031050061213853
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015958'
'max' => '$0.046141'
'avg' => '$0.03105'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0028061536299022
'max_diff' => -0.015586584993942
'year' => 2030
]
5 => [
'items' => [
101 => 0.019162687745396
102 => 0.018877256284431
103 => 0.019057639115002
104 => 0.019728621959459
105 => 0.019742798769641
106 => 0.019505318933297
107 => 0.019490868263673
108 => 0.019536478863988
109 => 0.019803621574652
110 => 0.019710273703079
111 => 0.019818298223342
112 => 0.01995338454006
113 => 0.02051215882142
114 => 0.020646877408934
115 => 0.020319581084853
116 => 0.020349132278336
117 => 0.020226714468645
118 => 0.020108460398374
119 => 0.020374278278723
120 => 0.020860065679724
121 => 0.020857043621515
122 => 0.02096973685619
123 => 0.021039943807791
124 => 0.020738564176889
125 => 0.020542377119209
126 => 0.02061760772083
127 => 0.020737903091133
128 => 0.020578597553542
129 => 0.019595289978027
130 => 0.019893562682507
131 => 0.019843915519692
201 => 0.019773211922541
202 => 0.02007312743337
203 => 0.020044199850702
204 => 0.019177706441416
205 => 0.019233176538147
206 => 0.019181079761721
207 => 0.019349415104353
208 => 0.0188681656235
209 => 0.019016194722545
210 => 0.01910903718578
211 => 0.019163722109875
212 => 0.019361281553508
213 => 0.019338100233021
214 => 0.019359840570079
215 => 0.019652769071228
216 => 0.021134300909117
217 => 0.021214937418238
218 => 0.020817853755911
219 => 0.020976480846881
220 => 0.020671951520149
221 => 0.020876384097354
222 => 0.021016251674653
223 => 0.020384216987826
224 => 0.020346791995544
225 => 0.020041005767953
226 => 0.020205317966043
227 => 0.019943885444416
228 => 0.020008031840702
301 => 0.019828672924504
302 => 0.020151483263656
303 => 0.020512435382483
304 => 0.020603626142129
305 => 0.020363742513589
306 => 0.020190050957425
307 => 0.019885105802355
308 => 0.020392236391382
309 => 0.020540536830138
310 => 0.02039145743231
311 => 0.020356912478385
312 => 0.020291449853117
313 => 0.020370800683797
314 => 0.020539729154099
315 => 0.020460065607124
316 => 0.020512684783392
317 => 0.020312154744116
318 => 0.020738663946088
319 => 0.021416063203848
320 => 0.021418241153227
321 => 0.021338577176836
322 => 0.021305980394081
323 => 0.021387720468273
324 => 0.021432061105369
325 => 0.02169639351674
326 => 0.021980032725609
327 => 0.02330365315192
328 => 0.022931985832764
329 => 0.024106380617519
330 => 0.025035174416182
331 => 0.025313679065171
401 => 0.025057467892758
402 => 0.024180983312188
403 => 0.024137978797174
404 => 0.025447816802791
405 => 0.025077727571823
406 => 0.025033706635414
407 => 0.024565398246563
408 => 0.024842226505496
409 => 0.024781680104442
410 => 0.024686104648346
411 => 0.025214273682367
412 => 0.02620295896408
413 => 0.026048863091093
414 => 0.02593383767021
415 => 0.025429829759298
416 => 0.02573335509591
417 => 0.025625275537187
418 => 0.026089653910441
419 => 0.025814566449366
420 => 0.025074923781906
421 => 0.025192714314593
422 => 0.025174910512539
423 => 0.025541311497219
424 => 0.02543132701625
425 => 0.025153434277442
426 => 0.026199579745271
427 => 0.026131648877557
428 => 0.026227959316817
429 => 0.026270358150678
430 => 0.026907128461795
501 => 0.027167992883882
502 => 0.02722721367477
503 => 0.027475014699775
504 => 0.027221048159527
505 => 0.028237095395593
506 => 0.028912707519578
507 => 0.029697465768267
508 => 0.030844208492735
509 => 0.031275394365099
510 => 0.031197504496651
511 => 0.032066951742749
512 => 0.03362932911726
513 => 0.031513305634119
514 => 0.033741483499973
515 => 0.033036068113194
516 => 0.031363540921022
517 => 0.031255849887646
518 => 0.032388504720625
519 => 0.034900624126185
520 => 0.034271366707315
521 => 0.034901653365897
522 => 0.034166390499014
523 => 0.034129878500391
524 => 0.03486594328959
525 => 0.036585798790356
526 => 0.035768759909761
527 => 0.034597334328276
528 => 0.035462296748244
529 => 0.034712986251575
530 => 0.033024579983777
531 => 0.034270885526025
601 => 0.033437516502662
602 => 0.033680737888014
603 => 0.035432355620836
604 => 0.035221596341017
605 => 0.035494338364887
606 => 0.035012955831659
607 => 0.034563268638566
608 => 0.033723894098448
609 => 0.033475396677784
610 => 0.033544072424855
611 => 0.033475362645495
612 => 0.033005740304549
613 => 0.032904325404735
614 => 0.032735296128623
615 => 0.032787685369194
616 => 0.032469860878845
617 => 0.033069661358025
618 => 0.033180989612384
619 => 0.033617474381923
620 => 0.033662791678679
621 => 0.034878395548872
622 => 0.034208861364563
623 => 0.034658042700197
624 => 0.03461786369368
625 => 0.031399789656822
626 => 0.031843211865794
627 => 0.032533037669398
628 => 0.032222272079911
629 => 0.031782922244325
630 => 0.031428123695642
701 => 0.030890567614372
702 => 0.031647167475909
703 => 0.032642015838405
704 => 0.033688022674902
705 => 0.034944731351869
706 => 0.034664248604872
707 => 0.033664529380334
708 => 0.033709376054451
709 => 0.033986600547329
710 => 0.033627569640551
711 => 0.033521684417026
712 => 0.033972053543595
713 => 0.033975154988252
714 => 0.033562046539669
715 => 0.033102952097117
716 => 0.03310102847464
717 => 0.033019337052914
718 => 0.03418092322146
719 => 0.034819678164552
720 => 0.034892910389373
721 => 0.034814749052338
722 => 0.03484483024885
723 => 0.03447315282147
724 => 0.035322697202945
725 => 0.036102323138618
726 => 0.035893366733579
727 => 0.035580111377522
728 => 0.035330588398
729 => 0.035834587049558
730 => 0.035812144782971
731 => 0.0360955137862
801 => 0.036082658531395
802 => 0.035987372193657
803 => 0.035893370136554
804 => 0.036266077667456
805 => 0.036158743884056
806 => 0.036051243381644
807 => 0.035835634666553
808 => 0.035864939471816
809 => 0.035551738203712
810 => 0.035406836965973
811 => 0.033227870017055
812 => 0.032645578848505
813 => 0.032828779503761
814 => 0.032889093916274
815 => 0.032635680053494
816 => 0.03299901043604
817 => 0.032942385780782
818 => 0.033162679190074
819 => 0.033025049431977
820 => 0.033030697805256
821 => 0.033435437578063
822 => 0.033552935255995
823 => 0.033493174988676
824 => 0.033535029031444
825 => 0.034499537781544
826 => 0.034362415480534
827 => 0.03428957199107
828 => 0.034309750135473
829 => 0.034556202800424
830 => 0.034625196090794
831 => 0.034332866671425
901 => 0.034470730915536
902 => 0.035057739369382
903 => 0.035263159106427
904 => 0.035918760300007
905 => 0.035640249260592
906 => 0.036151468327113
907 => 0.037722781450177
908 => 0.038978055099478
909 => 0.037823653575203
910 => 0.040128803774009
911 => 0.041923693857936
912 => 0.041854802986969
913 => 0.041541822384281
914 => 0.039498387743352
915 => 0.037617988720874
916 => 0.039191022349136
917 => 0.039195032335352
918 => 0.03905990735163
919 => 0.038220657682837
920 => 0.039030703282335
921 => 0.03909500176037
922 => 0.039059011711016
923 => 0.038415560957677
924 => 0.037433130586906
925 => 0.037625095129749
926 => 0.037939536966896
927 => 0.037344232969738
928 => 0.037153997271905
929 => 0.037507681627999
930 => 0.038647326316396
1001 => 0.038431883089567
1002 => 0.03842625699624
1003 => 0.039348014482762
1004 => 0.038688235050128
1005 => 0.03762751641739
1006 => 0.037359670973463
1007 => 0.036409000089836
1008 => 0.037065631855331
1009 => 0.037089262863592
1010 => 0.036729632356244
1011 => 0.037656698451024
1012 => 0.037648155373754
1013 => 0.038528266655169
1014 => 0.040210708870533
1015 => 0.039713127919496
1016 => 0.039134495410094
1017 => 0.039197408807606
1018 => 0.039887413494806
1019 => 0.03947022090965
1020 => 0.039620246272042
1021 => 0.039887186413452
1022 => 0.040048238028516
1023 => 0.039174235958641
1024 => 0.038970464267802
1025 => 0.03855361890249
1026 => 0.038444871727467
1027 => 0.03878438357975
1028 => 0.038694934201804
1029 => 0.037087276768851
1030 => 0.036919267622186
1031 => 0.036924420222853
1101 => 0.036501953235164
1102 => 0.035857589675243
1103 => 0.037550938637765
1104 => 0.037414939017671
1105 => 0.037264805962622
1106 => 0.037283196405218
1107 => 0.038018221796927
1108 => 0.037591869950064
1109 => 0.038725396212644
1110 => 0.038492377289976
1111 => 0.038253382311202
1112 => 0.038220345925171
1113 => 0.038128353248436
1114 => 0.037812876130946
1115 => 0.037431918554342
1116 => 0.037180377364288
1117 => 0.034296932771244
1118 => 0.034832083315487
1119 => 0.035447725236132
1120 => 0.035660242360109
1121 => 0.03529671711381
1122 => 0.037827230323383
1123 => 0.038289579471404
1124 => 0.036889093743759
1125 => 0.036627120045573
1126 => 0.037844405275422
1127 => 0.037110233474756
1128 => 0.037440830991642
1129 => 0.036726259987307
1130 => 0.038178213100809
1201 => 0.038167151650771
1202 => 0.03760230909577
1203 => 0.038079710155382
1204 => 0.037996749973011
1205 => 0.037359044119562
1206 => 0.038198429513819
1207 => 0.038198845838502
1208 => 0.03765519716005
1209 => 0.037020334523617
1210 => 0.036906836079009
1211 => 0.036821330247367
1212 => 0.037419801798661
1213 => 0.037956389520178
1214 => 0.038954846238545
1215 => 0.039205881980289
1216 => 0.040185691192711
1217 => 0.039602262512759
1218 => 0.039860888889915
1219 => 0.040141664407254
1220 => 0.040276278515443
1221 => 0.04005693204994
1222 => 0.041578979062393
1223 => 0.041707486464559
1224 => 0.041750573884921
1225 => 0.041237348196023
1226 => 0.041693212729733
1227 => 0.041479928811056
1228 => 0.042034834315473
1229 => 0.042121850583954
1230 => 0.042048150900244
1231 => 0.042075771237318
]
'min_raw' => 0.0188681656235
'max_raw' => 0.042121850583954
'avg_raw' => 0.030495008103727
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.018868'
'max' => '$0.042121'
'avg' => '$0.030495'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0029094328559119
'max_diff' => -0.0040195390761632
'year' => 2031
]
6 => [
'items' => [
101 => 0.040776972619682
102 => 0.040709623059649
103 => 0.039791307029692
104 => 0.040165527599749
105 => 0.039465940180887
106 => 0.039687786557957
107 => 0.03978557432714
108 => 0.039734495545926
109 => 0.040186685469304
110 => 0.039802231658134
111 => 0.038787594840399
112 => 0.037772681585541
113 => 0.037759940176357
114 => 0.03749273143106
115 => 0.037299588449932
116 => 0.037336794640213
117 => 0.037467914107641
118 => 0.037291967548123
119 => 0.037329514667313
120 => 0.037953047021014
121 => 0.03807809198772
122 => 0.037653140332632
123 => 0.035946898117225
124 => 0.035528181997779
125 => 0.035829146840935
126 => 0.035685305030525
127 => 0.028800826283498
128 => 0.030418232446196
129 => 0.029457224626244
130 => 0.029900101243522
131 => 0.02891916111112
201 => 0.029387317157779
202 => 0.029300865830283
203 => 0.031901607077372
204 => 0.031861000080002
205 => 0.031880436500768
206 => 0.030952685496241
207 => 0.032430618037638
208 => 0.033158700752265
209 => 0.033023952019082
210 => 0.033057865372177
211 => 0.032475121605693
212 => 0.031886078734243
213 => 0.031232739536756
214 => 0.032446563010521
215 => 0.032311606560896
216 => 0.032621148100538
217 => 0.033408399389168
218 => 0.033524325131896
219 => 0.033680130505725
220 => 0.033624285370189
221 => 0.034954743063962
222 => 0.034793615858604
223 => 0.035181886064057
224 => 0.034383184793308
225 => 0.033479378492036
226 => 0.033651162522254
227 => 0.033634618338744
228 => 0.033423991894133
229 => 0.033233847757683
301 => 0.032917311343272
302 => 0.033918879397043
303 => 0.033878217563138
304 => 0.03453648538985
305 => 0.034420130157407
306 => 0.033643081438191
307 => 0.033670833885214
308 => 0.033857482428815
309 => 0.034503475169333
310 => 0.034695249797259
311 => 0.034606412148706
312 => 0.034816684273382
313 => 0.034982874787241
314 => 0.034837555243209
315 => 0.036894973534909
316 => 0.036040590017492
317 => 0.036457010599119
318 => 0.036556324454144
319 => 0.036301934102842
320 => 0.036357102261004
321 => 0.036440666988196
322 => 0.036948055648055
323 => 0.038279590305616
324 => 0.038869317941387
325 => 0.040643542630254
326 => 0.038820349270642
327 => 0.038712168521806
328 => 0.039031759964724
329 => 0.040073417677845
330 => 0.040917583416396
331 => 0.041197641892963
401 => 0.041234656243903
402 => 0.041760064563878
403 => 0.042061218814603
404 => 0.041696266174223
405 => 0.041387007023634
406 => 0.040279279132886
407 => 0.040407501652483
408 => 0.041290827660352
409 => 0.042538577674109
410 => 0.043609276992175
411 => 0.043234355408627
412 => 0.046094742437711
413 => 0.046378338128011
414 => 0.046339154373358
415 => 0.04698522756056
416 => 0.045702903854481
417 => 0.045154685626281
418 => 0.041453872362232
419 => 0.042493649935218
420 => 0.04400502770155
421 => 0.0438049911868
422 => 0.042707388253647
423 => 0.043608444361926
424 => 0.043310527033899
425 => 0.043075547276683
426 => 0.044152035097557
427 => 0.042968392518824
428 => 0.043993219961387
429 => 0.042678868165817
430 => 0.04323606801884
501 => 0.04291977443354
502 => 0.043124455146713
503 => 0.041927895879817
504 => 0.0425735302154
505 => 0.041901035368809
506 => 0.04190071651869
507 => 0.041885871157678
508 => 0.042677058362394
509 => 0.042702858948736
510 => 0.042118170409033
511 => 0.04203390765591
512 => 0.042345471218102
513 => 0.041980711885402
514 => 0.042151380481404
515 => 0.041985881263312
516 => 0.041948623903372
517 => 0.041651750920557
518 => 0.041523849876868
519 => 0.041574003171703
520 => 0.041402804120637
521 => 0.04129965049983
522 => 0.041865351306161
523 => 0.041563120185643
524 => 0.041819030052337
525 => 0.04152738846084
526 => 0.040516431642517
527 => 0.039935019685625
528 => 0.038025415971561
529 => 0.038566977216013
530 => 0.038926032881371
531 => 0.038807364986112
601 => 0.039062309543508
602 => 0.039077961068758
603 => 0.038995075994296
604 => 0.038899105696306
605 => 0.038852392662734
606 => 0.039200553343705
607 => 0.039402672337559
608 => 0.038962068920935
609 => 0.038858841705117
610 => 0.039304316085705
611 => 0.039576055200522
612 => 0.041582424147309
613 => 0.041433785855245
614 => 0.041806838799534
615 => 0.041764838762971
616 => 0.042155857680582
617 => 0.04279500835395
618 => 0.041495436325653
619 => 0.041720997093946
620 => 0.041665694802519
621 => 0.042269470719275
622 => 0.042271355641783
623 => 0.041909361818844
624 => 0.042105604542938
625 => 0.041996067237986
626 => 0.042194015952889
627 => 0.041431800700234
628 => 0.042360096601915
629 => 0.042886380560102
630 => 0.042893688013372
701 => 0.043143142432705
702 => 0.043396602570173
703 => 0.043883097232317
704 => 0.043383034498091
705 => 0.042483470319345
706 => 0.042548415947476
707 => 0.042021001798615
708 => 0.042029867725743
709 => 0.041982540711901
710 => 0.042124572643051
711 => 0.041462968721973
712 => 0.041618245839855
713 => 0.041400856965518
714 => 0.041720524532988
715 => 0.041376615073333
716 => 0.04166566813408
717 => 0.041790413852838
718 => 0.042250728240637
719 => 0.041308626263984
720 => 0.039387616558893
721 => 0.039791436088895
722 => 0.039194155284683
723 => 0.039249435897121
724 => 0.03936111153209
725 => 0.03899913426116
726 => 0.039068188117239
727 => 0.039065721027575
728 => 0.039044460981684
729 => 0.03895029671329
730 => 0.038813739894285
731 => 0.039357740231227
801 => 0.039450176489015
802 => 0.03965565083965
803 => 0.040267003132555
804 => 0.040205914621814
805 => 0.040305552517371
806 => 0.040088043550813
807 => 0.039259525514249
808 => 0.039304518029755
809 => 0.038743460640439
810 => 0.039641303340776
811 => 0.039428682338392
812 => 0.039291604194973
813 => 0.039254201153521
814 => 0.039867068870511
815 => 0.040050448496959
816 => 0.039936178619906
817 => 0.039701807768284
818 => 0.04015186908892
819 => 0.040272286511759
820 => 0.040299243531909
821 => 0.041096665901376
822 => 0.040343810584105
823 => 0.04052503034171
824 => 0.041938855159088
825 => 0.040656711144215
826 => 0.041335891424117
827 => 0.041302649083699
828 => 0.041650094732689
829 => 0.041274148399303
830 => 0.041278808704673
831 => 0.041587316902969
901 => 0.041154072778209
902 => 0.041046795440193
903 => 0.040898592566058
904 => 0.041222188119838
905 => 0.041416169019361
906 => 0.042979512606245
907 => 0.043989503860501
908 => 0.043945657476491
909 => 0.044346331349349
910 => 0.044165824099874
911 => 0.043582918575916
912 => 0.044577867227557
913 => 0.044263023843758
914 => 0.044288979149784
915 => 0.044288013091997
916 => 0.044497356418137
917 => 0.044349017485533
918 => 0.044056626222691
919 => 0.044250729188294
920 => 0.044827145603057
921 => 0.046616359841095
922 => 0.047617627832637
923 => 0.046556082250775
924 => 0.047288322178481
925 => 0.046849239145621
926 => 0.046769444696962
927 => 0.047229345483667
928 => 0.047690051265819
929 => 0.047660706299181
930 => 0.047326257558843
1001 => 0.047137335951748
1002 => 0.04856791365405
1003 => 0.04962193893585
1004 => 0.049550061477906
1005 => 0.049867305201468
1006 => 0.050798742585824
1007 => 0.050883901547096
1008 => 0.050873173475332
1009 => 0.050662098104401
1010 => 0.051579219171728
1011 => 0.052344297701302
1012 => 0.050613240254584
1013 => 0.051272404269088
1014 => 0.051568324232137
1015 => 0.05200282253339
1016 => 0.052735893997974
1017 => 0.053532204046116
1018 => 0.053644811018018
1019 => 0.053564910982714
1020 => 0.053039723100001
1021 => 0.053911055056632
1022 => 0.054421460881578
1023 => 0.054725395869903
1024 => 0.055496124430337
1025 => 0.051570151733086
1026 => 0.048791153124468
1027 => 0.048357172362505
1028 => 0.049239689307406
1029 => 0.049472401987836
1030 => 0.049378595798151
1031 => 0.046250580208652
1101 => 0.048340704007785
1102 => 0.050589501473051
1103 => 0.050675886942207
1104 => 0.051801681973457
1105 => 0.05216828698353
1106 => 0.053074699545014
1107 => 0.053018003192503
1108 => 0.053238700227051
1109 => 0.053187965800748
1110 => 0.054866904203214
1111 => 0.056719022585899
1112 => 0.056654889615683
1113 => 0.056388625684902
1114 => 0.056784073026858
1115 => 0.058695657682858
1116 => 0.058519669600253
1117 => 0.058690627031874
1118 => 0.060944493073488
1119 => 0.063874839536291
1120 => 0.062513399402344
1121 => 0.065467332749163
1122 => 0.067326677209708
1123 => 0.070542221194413
1124 => 0.07013961925064
1125 => 0.071391406927134
1126 => 0.069418877745725
1127 => 0.064889552031289
1128 => 0.064172768899417
1129 => 0.065607786881264
1130 => 0.069135638562629
1201 => 0.06549668227726
1202 => 0.066232838394403
1203 => 0.066020825383142
1204 => 0.066009528110769
1205 => 0.066440699047912
1206 => 0.065815263115223
1207 => 0.063267124611669
1208 => 0.064434921471573
1209 => 0.063983979021753
1210 => 0.064484333289815
1211 => 0.06718453891275
1212 => 0.065990713641988
1213 => 0.06473311569773
1214 => 0.066310422603154
1215 => 0.068318876315217
1216 => 0.068193190891454
1217 => 0.067949308636923
1218 => 0.069324060136455
1219 => 0.071594746849284
1220 => 0.072208504343404
1221 => 0.072661567577844
1222 => 0.072724037343307
1223 => 0.07336751475232
1224 => 0.069907374546869
1225 => 0.075398705915623
1226 => 0.076346907148039
1227 => 0.076168684615259
1228 => 0.077222570378683
1229 => 0.076912490452582
1230 => 0.076463233289712
1231 => 0.078133866392669
]
'min_raw' => 0.028800826283498
'max_raw' => 0.078133866392669
'avg_raw' => 0.053467346338083
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.02880082'
'max' => '$0.078133'
'avg' => '$0.053467'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0099326606599984
'max_diff' => 0.036012015808714
'year' => 2032
]
7 => [
'items' => [
101 => 0.076218620353269
102 => 0.073500169723113
103 => 0.072008773942552
104 => 0.07397276421386
105 => 0.075172104538733
106 => 0.075964792201103
107 => 0.076204659008781
108 => 0.070175975381262
109 => 0.066926849272152
110 => 0.069009501856785
111 => 0.07155048174704
112 => 0.069893259275281
113 => 0.069958219258637
114 => 0.067595455524312
115 => 0.071759533909676
116 => 0.071152862714341
117 => 0.074300273948925
118 => 0.073549118998238
119 => 0.076115710678242
120 => 0.075439841073043
121 => 0.078245338016863
122 => 0.07936452670355
123 => 0.081243818696308
124 => 0.082626233536275
125 => 0.083438013971686
126 => 0.083389277719256
127 => 0.086605956231761
128 => 0.084709193295124
129 => 0.082326412014008
130 => 0.082283315018211
131 => 0.083517391207973
201 => 0.086103676349445
202 => 0.08677426245771
203 => 0.087149028609191
204 => 0.086575061202495
205 => 0.084516260977
206 => 0.083627281477985
207 => 0.084384717767361
208 => 0.083458438272697
209 => 0.085057456548611
210 => 0.087253250173315
211 => 0.086799827472923
212 => 0.088315551579405
213 => 0.089884166570787
214 => 0.092127356459371
215 => 0.092713809361327
216 => 0.093683193707456
217 => 0.094681008625791
218 => 0.095001479885694
219 => 0.095613358957241
220 => 0.095610134052502
221 => 0.097454072818821
222 => 0.099487994380101
223 => 0.10025575268409
224 => 0.10202117056968
225 => 0.098997954308232
226 => 0.10129109857074
227 => 0.10335957209665
228 => 0.10089345268591
301 => 0.10429242376149
302 => 0.10442439810612
303 => 0.10641705402289
304 => 0.10439711550457
305 => 0.10319768246026
306 => 0.10666040071701
307 => 0.10833590100684
308 => 0.10783122668387
309 => 0.1039906301672
310 => 0.10175523826357
311 => 0.095904786476861
312 => 0.10283489933893
313 => 0.10621035515987
314 => 0.10398188855208
315 => 0.10510579748689
316 => 0.11123748020652
317 => 0.1135720279891
318 => 0.11308645837004
319 => 0.11316851164251
320 => 0.11442819125095
321 => 0.12001430435301
322 => 0.11666697589717
323 => 0.11922588307965
324 => 0.12058311822242
325 => 0.12184379386255
326 => 0.11874797293101
327 => 0.11472035538571
328 => 0.11344463984123
329 => 0.10376031146621
330 => 0.10325620011738
331 => 0.10297322714115
401 => 0.10118912255332
402 => 0.099787305054661
403 => 0.098672527733581
404 => 0.095747019142379
405 => 0.096734292412704
406 => 0.092071642319425
407 => 0.095054640614932
408 => 0.087612938482434
409 => 0.093810609149751
410 => 0.090437498779037
411 => 0.092702451673459
412 => 0.092694549466182
413 => 0.088524053083582
414 => 0.086118597806138
415 => 0.087651447530645
416 => 0.08929478411308
417 => 0.089561409944732
418 => 0.091692038719332
419 => 0.092286651412611
420 => 0.090484947192164
421 => 0.087458725746502
422 => 0.088161647967567
423 => 0.086104353109763
424 => 0.082499023004167
425 => 0.085088434029031
426 => 0.085972572801285
427 => 0.086363058851388
428 => 0.082817630767494
429 => 0.081703580288546
430 => 0.081110469161343
501 => 0.08700105550245
502 => 0.087323755119463
503 => 0.085672778253698
504 => 0.093135350239004
505 => 0.091446340364387
506 => 0.0933333782118
507 => 0.088097865143687
508 => 0.088297868793442
509 => 0.085819293004179
510 => 0.087207129827672
511 => 0.086226251492896
512 => 0.087095006327205
513 => 0.087615734392879
514 => 0.090093903472245
515 => 0.0938389058599
516 => 0.089723747651444
517 => 0.087930714289868
518 => 0.089043102102987
519 => 0.092005537438075
520 => 0.096493778615007
521 => 0.093836649503991
522 => 0.095015838282482
523 => 0.095273438572124
524 => 0.093314169937928
525 => 0.096566019644221
526 => 0.098308712319804
527 => 0.10009635440551
528 => 0.10164851393994
529 => 0.099382330845389
530 => 0.10180747160115
531 => 0.099853236246978
601 => 0.098100085109151
602 => 0.098102743915758
603 => 0.097002966597548
604 => 0.094872009462656
605 => 0.094479028272234
606 => 0.096523366052863
607 => 0.098162731353419
608 => 0.098297757331603
609 => 0.099205394195621
610 => 0.099742524342344
611 => 0.10500712997325
612 => 0.10712459790911
613 => 0.10971379761945
614 => 0.11072243682593
615 => 0.11375807922027
616 => 0.11130655144402
617 => 0.1107761479888
618 => 0.1034126724912
619 => 0.10461844119142
620 => 0.10654899321985
621 => 0.10344450658308
622 => 0.10541358879979
623 => 0.10580232734023
624 => 0.10333901731511
625 => 0.10465477763287
626 => 0.10116050832465
627 => 0.093915071382083
628 => 0.096574085886756
629 => 0.098532015576801
630 => 0.095737808498118
701 => 0.10074631653591
702 => 0.097820449536824
703 => 0.096893090164498
704 => 0.093275130625567
705 => 0.094982668259908
706 => 0.09729213735994
707 => 0.095865153960721
708 => 0.098826358776735
709 => 0.10302021452069
710 => 0.10600900587226
711 => 0.10623844816026
712 => 0.10431685555467
713 => 0.10739621996857
714 => 0.10741864977651
715 => 0.10394511413806
716 => 0.10181759290023
717 => 0.10133421559866
718 => 0.1025417868697
719 => 0.10400800132269
720 => 0.10631981285807
721 => 0.10771679215138
722 => 0.11135937324775
723 => 0.11234495125145
724 => 0.11342780266893
725 => 0.11487482610169
726 => 0.11661234874192
727 => 0.11281074812232
728 => 0.11296179280201
729 => 0.10942179494179
730 => 0.10563879954109
731 => 0.10850962149318
801 => 0.11226283930611
802 => 0.11140184699288
803 => 0.11130496776917
804 => 0.1114678917514
805 => 0.11081873166461
806 => 0.10788260465106
807 => 0.10640810004598
808 => 0.10831058717278
809 => 0.10932167441071
810 => 0.11088978254067
811 => 0.1106964801149
812 => 0.11473575825515
813 => 0.11630529959902
814 => 0.1159037437588
815 => 0.11597763969738
816 => 0.11881921932939
817 => 0.12197964029562
818 => 0.12493979158476
819 => 0.12795098461753
820 => 0.12432087388766
821 => 0.12247772753313
822 => 0.12437938409356
823 => 0.12337033835485
824 => 0.12916861447193
825 => 0.12957007452993
826 => 0.13536793136566
827 => 0.14087078789871
828 => 0.13741454230421
829 => 0.1406736262271
830 => 0.14419859120671
831 => 0.15099882055734
901 => 0.148708742547
902 => 0.14695457868118
903 => 0.14529690230404
904 => 0.14874626369616
905 => 0.15318381202223
906 => 0.15413961742936
907 => 0.15568838733467
908 => 0.15406004515381
909 => 0.15602120395465
910 => 0.16294495629846
911 => 0.16107409729751
912 => 0.15841717676057
913 => 0.16388281427176
914 => 0.16586080723993
915 => 0.17974339777354
916 => 0.19727074178342
917 => 0.19001430627258
918 => 0.18551000258729
919 => 0.18656862079685
920 => 0.19296901349122
921 => 0.19502461648634
922 => 0.18943677893676
923 => 0.19141049762521
924 => 0.20228588165034
925 => 0.20812017625573
926 => 0.20019642053131
927 => 0.17833509274834
928 => 0.15817795013621
929 => 0.16352453204491
930 => 0.16291839558022
1001 => 0.17460263898343
1002 => 0.16102947792907
1003 => 0.16125801515091
1004 => 0.17318387633387
1005 => 0.17000226103128
1006 => 0.16484845171158
1007 => 0.15821557864779
1008 => 0.14595409932288
1009 => 0.13509376514816
1010 => 0.15639338145038
1011 => 0.15547490326459
1012 => 0.15414481074072
1013 => 0.15710478772154
1014 => 0.17147759573628
1015 => 0.1711462559913
1016 => 0.16903844158476
1017 => 0.1706372002347
1018 => 0.16456818159036
1019 => 0.16613230588399
1020 => 0.15817475714184
1021 => 0.16177190150988
1022 => 0.16483739395147
1023 => 0.16545283694452
1024 => 0.16683946143313
1025 => 0.15499090699665
1026 => 0.16031056008335
1027 => 0.1634353578877
1028 => 0.14931740772653
1029 => 0.16315629140568
1030 => 0.15478465002456
1031 => 0.15194318920197
1101 => 0.15576884186559
1102 => 0.15427798130201
1103 => 0.15299622693571
1104 => 0.15228098597598
1105 => 0.15509012307027
1106 => 0.15495907346717
1107 => 0.15036277995091
1108 => 0.14436710242784
1109 => 0.14637944860599
1110 => 0.14564834437362
1111 => 0.1429987283212
1112 => 0.14478424962467
1113 => 0.13692171743584
1114 => 0.12339463946382
1115 => 0.13233104151774
1116 => 0.1319869997596
1117 => 0.13181351830409
1118 => 0.1385289774636
1119 => 0.13788344101742
1120 => 0.13671178604649
1121 => 0.14297720995884
1122 => 0.14069024594899
1123 => 0.14773813015086
1124 => 0.15238032251479
1125 => 0.1512029123721
1126 => 0.15556891672804
1127 => 0.14642580899757
1128 => 0.14946278262782
1129 => 0.15008869868395
1130 => 0.14289989560032
1201 => 0.1379890587635
1202 => 0.13766156193412
1203 => 0.12914684761409
1204 => 0.13369533927548
1205 => 0.13769782370813
1206 => 0.13578094427023
1207 => 0.13517411750533
1208 => 0.13827426384251
1209 => 0.13851517176387
1210 => 0.13302244562666
1211 => 0.1341645573226
1212 => 0.13892735295495
1213 => 0.13404454709274
1214 => 0.12455805290429
1215 => 0.12220527118451
1216 => 0.12189136673272
1217 => 0.1155104361072
1218 => 0.12236249530928
1219 => 0.11937138784381
1220 => 0.12882026048829
1221 => 0.12342311510908
1222 => 0.12319045495892
1223 => 0.12283875501813
1224 => 0.11734642443582
1225 => 0.11854889577753
1226 => 0.12254609365892
1227 => 0.12397233889466
1228 => 0.12382356983169
1229 => 0.12252650520864
1230 => 0.12312029475103
1231 => 0.12120749174501
]
'min_raw' => 0.066926849272152
'max_raw' => 0.20812017625573
'avg_raw' => 0.13752351276394
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.066926'
'max' => '$0.20812'
'avg' => '$0.137523'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.038126022988653
'max_diff' => 0.12998630986306
'year' => 2033
]
8 => [
'items' => [
101 => 0.12053204119203
102 => 0.11840013344952
103 => 0.11526681802258
104 => 0.11570252475044
105 => 0.1094946070131
106 => 0.10611220395066
107 => 0.10517599936233
108 => 0.10392406746014
109 => 0.10531740840195
110 => 0.10947702076213
111 => 0.10445964574476
112 => 0.095857708205414
113 => 0.096374699308517
114 => 0.097536224821153
115 => 0.095371729712616
116 => 0.09332321674469
117 => 0.095104232569191
118 => 0.091459478236432
119 => 0.097976675969248
120 => 0.097800404034811
121 => 0.1002296123288
122 => 0.1017486461274
123 => 0.098247765014654
124 => 0.097367302882187
125 => 0.097868854127613
126 => 0.089579329259922
127 => 0.099552181295419
128 => 0.099638426933953
129 => 0.098899939415574
130 => 0.10421017524721
131 => 0.11541642915606
201 => 0.11120018566504
202 => 0.10956752874867
203 => 0.10646384675721
204 => 0.11059931873244
205 => 0.11028177900815
206 => 0.10884574395157
207 => 0.10797722546865
208 => 0.10957749740366
209 => 0.10777893406647
210 => 0.1074558626699
211 => 0.10549840151181
212 => 0.10479967693717
213 => 0.10428236907914
214 => 0.10371286395707
215 => 0.10496905034453
216 => 0.10212236672547
217 => 0.09868954534473
218 => 0.098404143390563
219 => 0.099192163278814
220 => 0.098843523139444
221 => 0.098402474235707
222 => 0.097560391765952
223 => 0.097310563885421
224 => 0.09812238329789
225 => 0.097205886513225
226 => 0.098558227443162
227 => 0.098190465538656
228 => 0.096136177435307
301 => 0.093575773863667
302 => 0.093552980901251
303 => 0.093001346151645
304 => 0.092298756359181
305 => 0.092103311951995
306 => 0.094954240384109
307 => 0.10085557691748
308 => 0.099697003348962
309 => 0.10053419148761
310 => 0.1046523285342
311 => 0.10596136046461
312 => 0.10503224060652
313 => 0.10376040403916
314 => 0.10381635839345
315 => 0.10816260895523
316 => 0.10843367927155
317 => 0.10911858651029
318 => 0.10999888586684
319 => 0.10518215939347
320 => 0.10358949100971
321 => 0.10283479637161
322 => 0.10051062898984
323 => 0.10301704425203
324 => 0.10155666341415
325 => 0.1017537186829
326 => 0.10162538618062
327 => 0.10169546440467
328 => 0.09797485427966
329 => 0.099330449059702
330 => 0.097076509815951
331 => 0.094058738185123
401 => 0.09404862155645
402 => 0.094787216887821
403 => 0.094347871483483
404 => 0.093165604297013
405 => 0.093333539770708
406 => 0.091862248311136
407 => 0.093512181192491
408 => 0.093559495363785
409 => 0.092924181332012
410 => 0.095466130582601
411 => 0.096507569264601
412 => 0.096089391959143
413 => 0.096478228830075
414 => 0.09974514731138
415 => 0.10027779756948
416 => 0.10051436562923
417 => 0.10019739576843
418 => 0.096537942102746
419 => 0.096700254434018
420 => 0.095509314243071
421 => 0.094503095279907
422 => 0.09454333876151
423 => 0.095060666107886
424 => 0.097319864970355
425 => 0.10207421578937
426 => 0.10225463992757
427 => 0.10247331924641
428 => 0.10158384055728
429 => 0.10131556527347
430 => 0.10166948962054
501 => 0.10345497381627
502 => 0.10804772392193
503 => 0.10642433929512
504 => 0.10510450232404
505 => 0.10626235517317
506 => 0.1060841128026
507 => 0.10457956781818
508 => 0.10453734025151
509 => 0.10164963739429
510 => 0.10058211939779
511 => 0.099690021457571
512 => 0.098715873795663
513 => 0.098138366407958
514 => 0.099025680227886
515 => 0.099228619396892
516 => 0.097288492222028
517 => 0.097024060057111
518 => 0.098608409788658
519 => 0.097911196542316
520 => 0.098628297656236
521 => 0.098794671265844
522 => 0.098767881282788
523 => 0.098039910579175
524 => 0.098503897397259
525 => 0.097406430251363
526 => 0.096213099564435
527 => 0.095451828933305
528 => 0.094787519339747
529 => 0.095156116912153
530 => 0.093842133869784
531 => 0.093421764249276
601 => 0.098346709103326
602 => 0.10198481881909
603 => 0.10193191926298
604 => 0.10160990681978
605 => 0.10113146164702
606 => 0.10341997257183
607 => 0.10262270112585
608 => 0.10320278271706
609 => 0.10335043782797
610 => 0.10379734537783
611 => 0.1039570764139
612 => 0.10347425828255
613 => 0.10185386166249
614 => 0.097815987347996
615 => 0.095936345954564
616 => 0.095316032986828
617 => 0.095338580185063
618 => 0.094716627802612
619 => 0.094899820653194
620 => 0.094652920805229
621 => 0.094185352224671
622 => 0.095127245869878
623 => 0.095235790338141
624 => 0.095015941106559
625 => 0.095067723559255
626 => 0.09324746582059
627 => 0.093385856063069
628 => 0.092615281607165
629 => 0.092470808186097
630 => 0.090522863063168
701 => 0.087071795918737
702 => 0.088984022119945
703 => 0.086674321768579
704 => 0.085799603247845
705 => 0.089940384678358
706 => 0.089524765070134
707 => 0.088813404966354
708 => 0.087761155112429
709 => 0.087370865405979
710 => 0.084999588700298
711 => 0.084859481022257
712 => 0.08603474978745
713 => 0.085492403690842
714 => 0.084730744368677
715 => 0.08197209151196
716 => 0.078870452342439
717 => 0.078964071332758
718 => 0.079950645044535
719 => 0.082819241169116
720 => 0.081698431036026
721 => 0.080885270424654
722 => 0.080732989885662
723 => 0.082639099652046
724 => 0.085336644313821
725 => 0.086602271914966
726 => 0.085348073399913
727 => 0.083907317676664
728 => 0.083995009801719
729 => 0.084578386222946
730 => 0.084639690836318
731 => 0.083701906972564
801 => 0.083965887637111
802 => 0.083564876868767
803 => 0.08110387452365
804 => 0.081059362795149
805 => 0.080455393130634
806 => 0.080437105169225
807 => 0.079409602102591
808 => 0.079265847320776
809 => 0.077225677616995
810 => 0.078568523494227
811 => 0.077667812982353
812 => 0.076310229784828
813 => 0.076076181929871
814 => 0.07606914616873
815 => 0.077463080562539
816 => 0.078552234559247
817 => 0.077683481227334
818 => 0.077485682933734
819 => 0.079597651226854
820 => 0.079328884010536
821 => 0.079096133334567
822 => 0.085095108776288
823 => 0.080346451608275
824 => 0.078275766039146
825 => 0.075712899434824
826 => 0.076547381724286
827 => 0.076723219403772
828 => 0.070559987211806
829 => 0.068059564679107
830 => 0.06720151389232
831 => 0.066707693533467
901 => 0.066932733672002
902 => 0.064682060122262
903 => 0.066194549970392
904 => 0.064245656921016
905 => 0.063918918659042
906 => 0.067403780852846
907 => 0.067888679068845
908 => 0.065819952633329
909 => 0.067148409901318
910 => 0.066666692829008
911 => 0.064279065098686
912 => 0.064187875281588
913 => 0.062989847615685
914 => 0.061115166302416
915 => 0.060258386637837
916 => 0.059812168349621
917 => 0.05999628671196
918 => 0.059903190833847
919 => 0.05929567725668
920 => 0.05993801280096
921 => 0.058297110916695
922 => 0.057643690564736
923 => 0.057348555750993
924 => 0.055892160881919
925 => 0.058209932780353
926 => 0.058666563042866
927 => 0.059124093008056
928 => 0.063106578986061
929 => 0.062907625240988
930 => 0.064706070202041
1001 => 0.064636185937982
1002 => 0.064123240302213
1003 => 0.061959207040366
1004 => 0.062821752128354
1005 => 0.060166972416794
1006 => 0.062156113884168
1007 => 0.061248352786992
1008 => 0.061849198944087
1009 => 0.060768823377516
1010 => 0.06136674782367
1011 => 0.058774847017974
1012 => 0.056354566514642
1013 => 0.057328558041575
1014 => 0.058387398220793
1015 => 0.060683233516798
1016 => 0.059315852954727
1017 => 0.059807614711231
1018 => 0.058160295146867
1019 => 0.054761404352012
1020 => 0.054780641704792
1021 => 0.054257796404865
1022 => 0.053805981729064
1023 => 0.059472913061056
1024 => 0.058768140568995
1025 => 0.057645177841241
1026 => 0.059148308077105
1027 => 0.059545759569353
1028 => 0.059557074454586
1029 => 0.060653719473266
1030 => 0.06123899911632
1031 => 0.061342157190155
1101 => 0.063067751821632
1102 => 0.06364614838096
1103 => 0.066028481951085
1104 => 0.061189342227728
1105 => 0.06108968332961
1106 => 0.059169460202059
1107 => 0.05795162433704
1108 => 0.059252846465641
1109 => 0.060405551637048
1110 => 0.059205277964888
1111 => 0.059362008367312
1112 => 0.057750739028399
1113 => 0.058326691999792
1114 => 0.058822780287999
1115 => 0.058548869493972
1116 => 0.058138811777883
1117 => 0.060311042958269
1118 => 0.060188477162029
1119 => 0.062211308776583
1120 => 0.063788250674205
1121 => 0.066614412466826
1122 => 0.06366516530508
1123 => 0.06355768301631
1124 => 0.064608339629736
1125 => 0.063645987530907
1126 => 0.064254160838101
1127 => 0.066516426344714
1128 => 0.066564224450037
1129 => 0.06576354460149
1130 => 0.06571482315994
1201 => 0.065868602483331
1202 => 0.066769292783644
1203 => 0.066454563917297
1204 => 0.066818776129394
1205 => 0.067274229077635
1206 => 0.069158175579612
1207 => 0.069612388703168
1208 => 0.068508886295431
1209 => 0.068608520207457
1210 => 0.068195780015145
1211 => 0.067797078160991
1212 => 0.068693301703399
1213 => 0.070331167842468
1214 => 0.070320978762222
1215 => 0.070700931870918
1216 => 0.070937639509934
1217 => 0.069921517042696
1218 => 0.069260058680382
1219 => 0.069513703906182
1220 => 0.069919288145911
1221 => 0.069382178403566
1222 => 0.066066888260377
1223 => 0.067072535508266
1224 => 0.066905146632579
1225 => 0.066666764518419
1226 => 0.067677950602611
1227 => 0.067580419237986
1228 => 0.064658976211939
1229 => 0.064845997515868
1230 => 0.064670349596865
1231 => 0.065237903957347
]
'min_raw' => 0.053805981729064
'max_raw' => 0.12053204119203
'avg_raw' => 0.087169011460547
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0538059'
'max' => '$0.120532'
'avg' => '$0.087169'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013120867543088
'max_diff' => -0.087588135063695
'year' => 2034
]
9 => [
'items' => [
101 => 0.063615337732886
102 => 0.06411442817538
103 => 0.06442745302223
104 => 0.064611827061794
105 => 0.065277912519165
106 => 0.065199755078672
107 => 0.065273054142926
108 => 0.066260683036164
109 => 0.071255771064858
110 => 0.07152764268522
111 => 0.070188847394187
112 => 0.070723669706385
113 => 0.069696927819747
114 => 0.07038618652682
115 => 0.070857759828926
116 => 0.068726810755039
117 => 0.068600629780629
118 => 0.067569650164992
119 => 0.068123640212765
120 => 0.067242202213465
121 => 0.067458476267101
122 => 0.066853755158701
123 => 0.067942132755049
124 => 0.069159108024545
125 => 0.069466564037429
126 => 0.068657779635666
127 => 0.0680721664273
128 => 0.067044022546393
129 => 0.068753848734023
130 => 0.069253854017294
131 => 0.068751222419128
201 => 0.068634751695116
202 => 0.06841403988357
203 => 0.068681576749307
204 => 0.06925113088114
205 => 0.068982539670581
206 => 0.069159948897123
207 => 0.068483847869144
208 => 0.069921853421513
209 => 0.072205752313557
210 => 0.07221309542195
211 => 0.071944502763585
212 => 0.071834600434691
213 => 0.07211019280174
214 => 0.072259690355473
215 => 0.073150905535511
216 => 0.074107214931271
217 => 0.078569893610804
218 => 0.077316791295288
219 => 0.081276345305713
220 => 0.084407838444219
221 => 0.085346836312859
222 => 0.084483002456974
223 => 0.081527873499382
224 => 0.081382880774536
225 => 0.085799091060442
226 => 0.084551309379429
227 => 0.08440288971888
228 => 0.082823955289622
301 => 0.083757301092147
302 => 0.083553164673778
303 => 0.083230925350687
304 => 0.085011684124473
305 => 0.088345105579568
306 => 0.087825560585164
307 => 0.087437744347839
308 => 0.085738446487491
309 => 0.086761803351338
310 => 0.086397405573232
311 => 0.087963089680521
312 => 0.087035613099512
313 => 0.084541856205968
314 => 0.084938995210795
315 => 0.084878968449148
316 => 0.086114314950298
317 => 0.085743494593838
318 => 0.084806559823095
319 => 0.088333712307424
320 => 0.088104678644145
321 => 0.08842939601429
322 => 0.088572346642847
323 => 0.090719262204659
324 => 0.091598784816699
325 => 0.091798451847842
326 => 0.09263393030456
327 => 0.091777664382736
328 => 0.095203338577287
329 => 0.097481212023032
330 => 0.10012707924856
331 => 0.10399340240713
401 => 0.10544717568023
402 => 0.10518456455067
403 => 0.10811596664375
404 => 0.11338363104362
405 => 0.10624931013417
406 => 0.11376176737531
407 => 0.11138341014825
408 => 0.10574436794773
409 => 0.10538128010995
410 => 0.10920010495878
411 => 0.1176698909252
412 => 0.11554830560412
413 => 0.11767336107874
414 => 0.11519437098863
415 => 0.11507126823609
416 => 0.11755296206328
417 => 0.12335157496059
418 => 0.12059687133083
419 => 0.11664732819653
420 => 0.1195636093852
421 => 0.11703725673049
422 => 0.11134467711785
423 => 0.11554668326781
424 => 0.11273692142158
425 => 0.11355695930346
426 => 0.11946266078372
427 => 0.11875207115707
428 => 0.11967163993278
429 => 0.11804862511295
430 => 0.11653247334528
501 => 0.11370246348002
502 => 0.11286463707671
503 => 0.11309618215275
504 => 0.11286452233447
505 => 0.11128115782399
506 => 0.1109392304087
507 => 0.11036933640304
508 => 0.11054597038533
509 => 0.10947440292632
510 => 0.11149667211861
511 => 0.11187202310087
512 => 0.11334366197576
513 => 0.11349645240573
514 => 0.11759494572483
515 => 0.11533756447705
516 => 0.11685201071098
517 => 0.1167165443853
518 => 0.10586658309128
519 => 0.10736161202758
520 => 0.10968740788653
521 => 0.10863964000462
522 => 0.10715834135951
523 => 0.10596211328138
524 => 0.10414970542241
525 => 0.1067006346797
526 => 0.11005483539195
527 => 0.11358152047106
528 => 0.11781860151606
529 => 0.11687293435188
530 => 0.11350231118818
531 => 0.11365351488106
601 => 0.114588196614
602 => 0.11337769884506
603 => 0.11302069942127
604 => 0.11453915037527
605 => 0.11454960711246
606 => 0.11315678313575
607 => 0.11160891416974
608 => 0.11160242854225
609 => 0.11132700021039
610 => 0.115243369077
611 => 0.11739697596409
612 => 0.11764388352298
613 => 0.11738035711812
614 => 0.11748177797236
615 => 0.11622864157626
616 => 0.11909293977169
617 => 0.12172150304556
618 => 0.1210169919371
619 => 0.11996082963336
620 => 0.11911954548677
621 => 0.12081881212856
622 => 0.12074314645989
623 => 0.12169854483847
624 => 0.12165520244937
625 => 0.121333937909
626 => 0.12101700341047
627 => 0.12227361287251
628 => 0.12191172952797
629 => 0.12154928407865
630 => 0.1208223442424
701 => 0.12092114743934
702 => 0.11986516749691
703 => 0.11937662285719
704 => 0.1120300836583
705 => 0.11006684832927
706 => 0.11068452212912
707 => 0.11088787638193
708 => 0.11003347385077
709 => 0.11125846760244
710 => 0.11106755362384
711 => 0.11181028823366
712 => 0.11134625989523
713 => 0.1113653037801
714 => 0.11272991218215
715 => 0.11312606380672
716 => 0.11292457789312
717 => 0.11306569172047
718 => 0.11631760031129
719 => 0.11585528289986
720 => 0.11560968598936
721 => 0.11567771801201
722 => 0.11650865037867
723 => 0.11674126607411
724 => 0.11575565702691
725 => 0.11622047595131
726 => 0.11819961593707
727 => 0.11889220292247
728 => 0.12110260811923
729 => 0.12016358870483
730 => 0.12188719947978
731 => 0.12718499137977
801 => 0.13141723412879
802 => 0.12752508879196
803 => 0.13529706362768
804 => 0.14134866086087
805 => 0.14111639047959
806 => 0.14006115452602
807 => 0.13317157196608
808 => 0.12683167537653
809 => 0.13213526807992
810 => 0.13214878802841
811 => 0.13169320471167
812 => 0.12886361585879
813 => 0.13159474115308
814 => 0.13181152796095
815 => 0.1316901849968
816 => 0.12952074585762
817 => 0.12620841327147
818 => 0.1268556351302
819 => 0.12791579773777
820 => 0.12590868874856
821 => 0.12526729581148
822 => 0.1264597673115
823 => 0.13030215894589
824 => 0.12957577706487
825 => 0.12955680829841
826 => 0.13266457801928
827 => 0.13044008559782
828 => 0.12686379867053
829 => 0.12596073905596
830 => 0.12275548579809
831 => 0.12496936564002
901 => 0.12504903923424
902 => 0.12383651987012
903 => 0.12696218793436
904 => 0.12693338435288
905 => 0.12990074098558
906 => 0.13557321237904
907 => 0.13389558346263
908 => 0.13194468355835
909 => 0.13215680047053
910 => 0.13448319944802
911 => 0.13307660551971
912 => 0.13358242650345
913 => 0.13448243382738
914 => 0.13502543059183
915 => 0.13207867159237
916 => 0.13139164110982
917 => 0.12998621785746
918 => 0.12961956916439
919 => 0.13076425707832
920 => 0.13046267225542
921 => 0.12504234297716
922 => 0.12447588840915
923 => 0.12449326076204
924 => 0.12306888381735
925 => 0.12089636708705
926 => 0.12660561134004
927 => 0.1261470791257
928 => 0.12564089504865
929 => 0.12570289970984
930 => 0.12818108913582
1001 => 0.12674361411719
1002 => 0.13056537705175
1003 => 0.12977973748511
1004 => 0.12897394922808
1005 => 0.12886256474605
1006 => 0.12855240501372
1007 => 0.12748875188619
1008 => 0.12620432681906
1009 => 0.12535623813475
1010 => 0.11563450337363
1011 => 0.11743880079656
1012 => 0.11951448051476
1013 => 0.12023099683572
1014 => 0.1190053460873
1015 => 0.12753714804817
1016 => 0.12909599048091
1017 => 0.12437415507136
1018 => 0.12349089245751
1019 => 0.12759505459809
1020 => 0.1251197431139
1021 => 0.12623437572366
1022 => 0.1238251496928
1023 => 0.1287205109871
1024 => 0.12868321653601
1025 => 0.12677881042577
1026 => 0.12838840142933
1027 => 0.12810869538238
1028 => 0.12595862557427
1029 => 0.12878867203502
1030 => 0.12879007570276
1031 => 0.12695712622702
1101 => 0.12481664252359
1102 => 0.12443397459339
1103 => 0.12414568571218
1104 => 0.12616347433132
1105 => 0.12797261729777
1106 => 0.13133898383377
1107 => 0.13218536836381
1108 => 0.13548886353159
1109 => 0.13352179300344
1110 => 0.13439376989074
1111 => 0.13534042415057
1112 => 0.13579428501479
1113 => 0.13505474309206
1114 => 0.14018643086047
1115 => 0.14061970253898
1116 => 0.14076497478499
1117 => 0.1390345985426
1118 => 0.14057157764545
1119 => 0.13985247602262
1120 => 0.14172337867303
1121 => 0.1420167600975
1122 => 0.14176827646832
1123 => 0.14186140036316
1124 => 0.13748241014457
1125 => 0.13725533640072
1126 => 0.13415916979095
1127 => 0.13542088057014
1128 => 0.13306217274381
1129 => 0.13381014329292
1130 => 0.13413984158405
1201 => 0.13396762590698
1202 => 0.13549221580454
1203 => 0.13419600293847
1204 => 0.1307750840678
1205 => 0.12735323317006
1206 => 0.12731027461942
1207 => 0.12640936167873
1208 => 0.12575816663305
1209 => 0.12588360990124
1210 => 0.12632568834014
1211 => 0.12573247223053
1212 => 0.12585906496433
1213 => 0.12796134782847
1214 => 0.12838294566408
1215 => 0.12695019148978
1216 => 0.1211974767345
1217 => 0.11978574610397
1218 => 0.12080047008536
1219 => 0.12031549737885
1220 => 0.097103996624292
1221 => 0.10255719442552
1222 => 0.099317089465129
1223 => 0.10081027890094
1224 => 0.097502970757493
1225 => 0.099081391554416
1226 => 0.098789914867923
1227 => 0.10755849556044
1228 => 0.10742158623371
1229 => 0.10748711748334
1230 => 0.10435914019807
1231 => 0.10934209294734
]
'min_raw' => 0.063615337732886
'max_raw' => 0.1420167600975
'avg_raw' => 0.10281604891519
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.063615'
'max' => '$0.142016'
'avg' => '$0.102816'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0098093560038222
'max_diff' => 0.021484718905466
'year' => 2035
]
10 => [
'items' => [
101 => 0.11179687465282
102 => 0.11134255989104
103 => 0.11145690112875
104 => 0.10949213983418
105 => 0.10750614066742
106 => 0.10530336194841
107 => 0.10939585253666
108 => 0.10894083744439
109 => 0.10998447835679
110 => 0.11263875104054
111 => 0.11302960277582
112 => 0.11355491147167
113 => 0.11336662569823
114 => 0.11785235670238
115 => 0.11730910507997
116 => 0.11861818518581
117 => 0.11592530808794
118 => 0.11287806204146
119 => 0.11345724389292
120 => 0.11340146402314
121 => 0.11269132225966
122 => 0.11205023802818
123 => 0.11098301340713
124 => 0.11435987002767
125 => 0.11422277581574
126 => 0.11644217175229
127 => 0.11604987196244
128 => 0.1134299979538
129 => 0.11352356726655
130 => 0.11415286586269
131 => 0.11633087548912
201 => 0.11697745703644
202 => 0.1166779347019
203 => 0.11738688185098
204 => 0.1179472047715
205 => 0.11745724978291
206 => 0.12439397919774
207 => 0.12151336551761
208 => 0.12291735658213
209 => 0.12325220017822
210 => 0.12239450534783
211 => 0.12258050864479
212 => 0.12286225295682
213 => 0.12457294924828
214 => 0.12906231131103
215 => 0.1310506192085
216 => 0.13703254161943
217 => 0.1308855179162
218 => 0.13052077896857
219 => 0.13159830383152
220 => 0.13511032553753
221 => 0.13795648926282
222 => 0.13890072596963
223 => 0.13902552243808
224 => 0.14079697327172
225 => 0.14181233585395
226 => 0.14058187254673
227 => 0.13953918372874
228 => 0.13580440180599
229 => 0.13623671298302
301 => 0.1392149082904
302 => 0.14342178457691
303 => 0.14703172208161
304 => 0.14576764778649
305 => 0.15541164236089
306 => 0.15636780503076
307 => 0.15623569426622
308 => 0.15841397512426
309 => 0.15409053122023
310 => 0.15224217518848
311 => 0.13976462488621
312 => 0.14327030756848
313 => 0.1483660232287
314 => 0.14769158615312
315 => 0.1439909412318
316 => 0.14702891481059
317 => 0.14602446573923
318 => 0.14523221508201
319 => 0.14886166892807
320 => 0.14487093533458
321 => 0.14832621260835
322 => 0.14389478376447
323 => 0.14577342197139
324 => 0.14470701606564
325 => 0.14539711138045
326 => 0.14136282827101
327 => 0.14353962951018
328 => 0.14127226618281
329 => 0.14127119115737
330 => 0.14122113898625
331 => 0.14388868188588
401 => 0.14397567036407
402 => 0.14200435213081
403 => 0.14172025437562
404 => 0.14277071267822
405 => 0.14154090112134
406 => 0.14211632220846
407 => 0.14155833003988
408 => 0.14143271424961
409 => 0.14043178626104
410 => 0.14000055896248
411 => 0.1401696542976
412 => 0.1395924447442
413 => 0.13924465510969
414 => 0.14115195487421
415 => 0.14013296155028
416 => 0.14099577953289
417 => 0.1400124895454
418 => 0.13660397804967
419 => 0.13464370704412
420 => 0.12820534479788
421 => 0.13003125634415
422 => 0.13124183758837
423 => 0.13084174049438
424 => 0.1317013038693
425 => 0.13175407407943
426 => 0.13147462126403
427 => 0.13115105070393
428 => 0.13099355444984
429 => 0.13216740249354
430 => 0.13284886079281
501 => 0.13136333561172
502 => 0.13101529784649
503 => 0.13251724582267
504 => 0.1334334332205
505 => 0.1401980462048
506 => 0.13969690182551
507 => 0.1409546758729
508 => 0.14081306981728
509 => 0.14213141739808
510 => 0.14428635851741
511 => 0.13990476069079
512 => 0.14066525456924
513 => 0.14047879903261
514 => 0.14251447169024
515 => 0.14252082683807
516 => 0.14130033939043
517 => 0.14196198543595
518 => 0.14159267276465
519 => 0.14226007067728
520 => 0.13969020873679
521 => 0.14282002318086
522 => 0.14459442628986
523 => 0.14461906387875
524 => 0.14546011686988
525 => 0.14631467541938
526 => 0.14795492613877
527 => 0.14626892971706
528 => 0.14323598628285
529 => 0.14345495500245
530 => 0.14167674137669
531 => 0.141706633469
601 => 0.14154706713756
602 => 0.14202593770979
603 => 0.13979529389816
604 => 0.14031882154221
605 => 0.13958587977477
606 => 0.14066366129697
607 => 0.13950414654275
608 => 0.1404787091181
609 => 0.14089929801836
610 => 0.14245128011495
611 => 0.13927491752521
612 => 0.13279809918388
613 => 0.13415960492306
614 => 0.13214583099084
615 => 0.13233221343525
616 => 0.13270873563549
617 => 0.13148830399411
618 => 0.13172112389106
619 => 0.13171280592601
620 => 0.13164112619696
621 => 0.13132364479173
622 => 0.13086323394236
623 => 0.13269736905925
624 => 0.13300902435608
625 => 0.13370179547501
626 => 0.13576301241379
627 => 0.13555704823476
628 => 0.13589298435613
629 => 0.13515963768939
630 => 0.13236623128383
701 => 0.13251792669114
702 => 0.13062628253128
703 => 0.13365342188084
704 => 0.13293655532658
705 => 0.13247438679555
706 => 0.1323482798299
707 => 0.13441460612679
708 => 0.13503288334052
709 => 0.13464761447196
710 => 0.13385741678247
711 => 0.13537482994727
712 => 0.13578082569565
713 => 0.13587171317117
714 => 0.13856027836408
715 => 0.13602197409922
716 => 0.13663296916434
717 => 0.14139977824623
718 => 0.13707694018365
719 => 0.13936684391619
720 => 0.13925476504456
721 => 0.14042620230801
722 => 0.13915867299727
723 => 0.1391743855422
724 => 0.14021454247211
725 => 0.13875382965734
726 => 0.13839213662235
727 => 0.13789246028501
728 => 0.1389834852873
729 => 0.13963750543336
730 => 0.1449084274857
731 => 0.14831368351476
801 => 0.14816585236982
802 => 0.14951675230631
803 => 0.1489081595121
804 => 0.1469428528409
805 => 0.15029739168501
806 => 0.14923587523487
807 => 0.14932338536128
808 => 0.14932012823
809 => 0.15002594386997
810 => 0.149525808802
811 => 0.14853999124522
812 => 0.14919442294559
813 => 0.15113785113207
814 => 0.15717031185456
815 => 0.16054615679434
816 => 0.15696708175035
817 => 0.15943587978997
818 => 0.15795548068889
819 => 0.15768644813416
820 => 0.15923703574578
821 => 0.16079033745576
822 => 0.16069139885194
823 => 0.15956378157343
824 => 0.15892681918502
825 => 0.16375011178808
826 => 0.16730383161536
827 => 0.16706149174758
828 => 0.16813110111082
829 => 0.17127150728305
830 => 0.17155862666659
831 => 0.17152245622363
901 => 0.17081080087372
902 => 0.17390293858356
903 => 0.1764824542621
904 => 0.17064607322192
905 => 0.17286849071818
906 => 0.17386620553407
907 => 0.17533114689245
908 => 0.17780274851671
909 => 0.18048756344061
910 => 0.18086722570835
911 => 0.18059783716088
912 => 0.17882712954687
913 => 0.1817648860731
914 => 0.1834857549473
915 => 0.18451049298051
916 => 0.18710905813256
917 => 0.17387236708111
918 => 0.16450277924867
919 => 0.16303958281015
920 => 0.16601505030524
921 => 0.16679965735479
922 => 0.16648338323693
923 => 0.15593706028586
924 => 0.16298405860242
925 => 0.17056603626259
926 => 0.17085729090309
927 => 0.17465298745145
928 => 0.17588902183846
929 => 0.1789450550732
930 => 0.1787538993623
1001 => 0.17949799482285
1002 => 0.17932694016241
1003 => 0.18498759820606
1004 => 0.19123214464406
1005 => 0.19101591585735
1006 => 0.19011818842477
1007 => 0.19145146674743
1008 => 0.19789650787771
1009 => 0.19730315177011
1010 => 0.19787954668669
1011 => 0.20547861340589
1012 => 0.21535848109549
1013 => 0.21076829063117
1014 => 0.22072768314701
1015 => 0.22699659281102
1016 => 0.23783802385757
1017 => 0.23648062329537
1018 => 0.24070111284369
1019 => 0.23405059299098
1020 => 0.21877965511734
1021 => 0.21636297074403
1022 => 0.22120123405959
1023 => 0.23309563231005
1024 => 0.22082663713011
1025 => 0.22330863887584
1026 => 0.2225938222061
1027 => 0.22255573266354
1028 => 0.22400945558151
1029 => 0.22190075466791
1030 => 0.21330952779782
1031 => 0.21724683644396
1101 => 0.2157264524906
1102 => 0.21741343183899
1103 => 0.22651736361905
1104 => 0.22249229836846
1105 => 0.21825221909671
1106 => 0.2235702194524
1107 => 0.23034186136838
1108 => 0.22991810418709
1109 => 0.22909583813862
1110 => 0.23373090880137
1111 => 0.24138668758796
1112 => 0.24345601383057
1113 => 0.24498354815735
1114 => 0.2451941693331
1115 => 0.24736369834375
1116 => 0.2356975940618
1117 => 0.25421200116406
1118 => 0.25740892782045
1119 => 0.25680803810808
1120 => 0.26036128753942
1121 => 0.25931583141948
1122 => 0.25780112952873
1123 => 0.26343378567523
1124 => 0.25697639993519
1125 => 0.24781095383945
1126 => 0.24278260883936
1127 => 0.2494043391605
1128 => 0.25344799880108
1129 => 0.25612060059844
1130 => 0.2569293282875
1201 => 0.23660320052806
1202 => 0.22564854500446
1203 => 0.23267035359971
1204 => 0.24123744470526
1205 => 0.23565000343814
1206 => 0.23586902055739
1207 => 0.22790279766422
1208 => 0.24194227866714
1209 => 0.23989684437563
1210 => 0.25050856109827
1211 => 0.24797598973807
1212 => 0.25662943278091
1213 => 0.25435069121927
1214 => 0.2638096200389
1215 => 0.26758304283533
1216 => 0.27391920699689
1217 => 0.27858011514696
1218 => 0.28131708956165
1219 => 0.28115277188392
1220 => 0.29199802807015
1221 => 0.28560295940152
1222 => 0.27756924595176
1223 => 0.2774239414215
1224 => 0.28158471545573
1225 => 0.29030455637886
1226 => 0.29256548426171
1227 => 0.29382903450676
1228 => 0.29189386332196
1229 => 0.28495247462086
1230 => 0.28195521817337
1231 => 0.28450896750551
]
'min_raw' => 0.10530336194841
'max_raw' => 0.29382903450676
'avg_raw' => 0.19956619822759
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.1053033'
'max' => '$0.293829'
'avg' => '$0.199566'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.041688024215526
'max_diff' => 0.15181227440926
'year' => 2036
]
11 => [
'items' => [
101 => 0.28138595151848
102 => 0.28677715327562
103 => 0.29418042478672
104 => 0.29265167849539
105 => 0.29776204814487
106 => 0.30305074310552
107 => 0.31061381442939
108 => 0.31259108133317
109 => 0.3158594283364
110 => 0.31922363099878
111 => 0.32030412222613
112 => 0.32236711523589
113 => 0.3223562422444
114 => 0.32857321053474
115 => 0.33543071908246
116 => 0.33801926980754
117 => 0.34397149946634
118 => 0.33377851476665
119 => 0.34151001074993
120 => 0.34848401365875
121 => 0.34016931988647
122 => 0.35162918817638
123 => 0.35207414889345
124 => 0.35879252743962
125 => 0.35198216369749
126 => 0.34793819144686
127 => 0.35961298780876
128 => 0.36526205401564
129 => 0.36356050930051
130 => 0.35061167000267
131 => 0.34307489012949
201 => 0.3233496834651
202 => 0.34671504282458
203 => 0.35809562779171
204 => 0.35058219703695
205 => 0.35437153447948
206 => 0.37504493086914
207 => 0.38291602171103
208 => 0.381278889839
209 => 0.38155553817589
210 => 0.38580263592377
211 => 0.40463660625732
212 => 0.39335085466544
213 => 0.40197838888839
214 => 0.40655440193135
215 => 0.41080485786963
216 => 0.40036708145561
217 => 0.38678768770235
218 => 0.38248652367652
219 => 0.34983513442193
220 => 0.34813548781343
221 => 0.34718142466752
222 => 0.34116619148745
223 => 0.33643986591895
224 => 0.33268131634966
225 => 0.32281775988193
226 => 0.32614642064205
227 => 0.31042597031673
228 => 0.32048335733632
301 => 0.29539313903355
302 => 0.31628901839596
303 => 0.30491634127805
304 => 0.31255278809556
305 => 0.31252614525201
306 => 0.29846502552331
307 => 0.29035486511189
308 => 0.29552297497821
309 => 0.30106359899999
310 => 0.30196254660662
311 => 0.30914611027594
312 => 0.31115088848586
313 => 0.30507631691565
314 => 0.29487320002757
315 => 0.29724315137235
316 => 0.29030683812353
317 => 0.2781512159564
318 => 0.28688159601363
319 => 0.28986253161289
320 => 0.29117908259367
321 => 0.27922542427494
322 => 0.27546932530465
323 => 0.27346960972958
324 => 0.29333013284623
325 => 0.29441813713516
326 => 0.28885175336471
327 => 0.31401233583331
328 => 0.30831772111813
329 => 0.31468000096946
330 => 0.29702810312847
331 => 0.29770242939742
401 => 0.28934573807529
402 => 0.29402492682137
403 => 0.29071782703293
404 => 0.29364689461133
405 => 0.29540256564082
406 => 0.30375788571214
407 => 0.31638442272984
408 => 0.30250987951886
409 => 0.29646454235472
410 => 0.30021503553108
411 => 0.31020309309396
412 => 0.32533551158098
413 => 0.31637681526836
414 => 0.32035253256337
415 => 0.32122104992498
416 => 0.31461523893302
417 => 0.32557907725468
418 => 0.33145468728133
419 => 0.33748184738248
420 => 0.34271506162112
421 => 0.33507446709799
422 => 0.34325099847394
423 => 0.33666215753701
424 => 0.33075128607473
425 => 0.33076025042683
426 => 0.32705227441449
427 => 0.31986760365552
428 => 0.31854264013495
429 => 0.32543526769344
430 => 0.3309625022611
501 => 0.33141775177376
502 => 0.33447791282998
503 => 0.33628888462088
504 => 0.35403887006852
505 => 0.36117806105114
506 => 0.36990772864672
507 => 0.3733084261523
508 => 0.38354330642658
509 => 0.37527780936877
510 => 0.3734895170879
511 => 0.34866304534632
512 => 0.35272837870319
513 => 0.35923736965388
514 => 0.34877037620968
515 => 0.35540927438024
516 => 0.3567199335102
517 => 0.34841471177769
518 => 0.35285088955247
519 => 0.3410697166177
520 => 0.31664122010559
521 => 0.32560627315456
522 => 0.33220756980283
523 => 0.32278670555174
524 => 0.33967324008402
525 => 0.32980847521909
526 => 0.32668181834913
527 => 0.31448361516576
528 => 0.32024069751641
529 => 0.32802723382915
530 => 0.32321605966988
531 => 0.33319996845179
601 => 0.34733984589819
602 => 0.35741676461076
603 => 0.35819034530391
604 => 0.35171156167285
605 => 0.36209385378867
606 => 0.36216947745213
607 => 0.35045820953258
608 => 0.34328512314047
609 => 0.34165538281987
610 => 0.34572679367012
611 => 0.35067023806623
612 => 0.35846467206327
613 => 0.36317468528463
614 => 0.37545590176796
615 => 0.37877884681827
616 => 0.38242975597458
617 => 0.38730849650609
618 => 0.39316667539757
619 => 0.38034931348933
620 => 0.38085857117249
621 => 0.36892322123199
622 => 0.35616858811824
623 => 0.36584776476411
624 => 0.37850200066168
625 => 0.37559910496509
626 => 0.37527246989845
627 => 0.37582177947953
628 => 0.37363309092401
629 => 0.36373373370398
630 => 0.35876233848134
701 => 0.36517670665673
702 => 0.36858565787127
703 => 0.37387264391324
704 => 0.37322091128883
705 => 0.38683961955208
706 => 0.39213143777482
707 => 0.39077756422377
708 => 0.39102670953995
709 => 0.40060729366203
710 => 0.41126287360319
711 => 0.4212432303457
712 => 0.43139567789048
713 => 0.41915650611848
714 => 0.41294220949983
715 => 0.41935377736274
716 => 0.41595170920533
717 => 0.43550100195678
718 => 0.43685455257139
719 => 0.45640243168647
720 => 0.47495569668482
721 => 0.46330272335562
722 => 0.47429095234361
723 => 0.48617561787757
724 => 0.50910306591007
725 => 0.50138190801007
726 => 0.49546762206464
727 => 0.48987865042383
728 => 0.50150841318409
729 => 0.51646991718517
730 => 0.5196924818475
731 => 0.52491426771492
801 => 0.51942419836493
802 => 0.52603638218569
803 => 0.5493802966138
804 => 0.5430725648729
805 => 0.53411457178233
806 => 0.55254235024995
807 => 0.5592112916412
808 => 0.60601741487676
809 => 0.66511207892616
810 => 0.64064649997323
811 => 0.62545992561784
812 => 0.62902913082172
813 => 0.65060850165194
814 => 0.65753911066761
815 => 0.63869932623882
816 => 0.64535385659758
817 => 0.68202097313336
818 => 0.70169170473287
819 => 0.67497620908903
820 => 0.60126921615958
821 => 0.53330800251605
822 => 0.55133437670765
823 => 0.54929074529784
824 => 0.58868498769959
825 => 0.54292212755698
826 => 0.54369265675639
827 => 0.58390153037178
828 => 0.5731744922458
829 => 0.55579806429695
830 => 0.53343486966998
831 => 0.49209443605689
901 => 0.4554780611425
902 => 0.52729120459715
903 => 0.52419449126765
904 => 0.51970999145935
905 => 0.52968976050917
906 => 0.57814868620827
907 => 0.57703155112467
908 => 0.56992490769014
909 => 0.57531523410015
910 => 0.55485311401543
911 => 0.56012666827508
912 => 0.53329723711258
913 => 0.54542526049405
914 => 0.55576078228673
915 => 0.55783579130662
916 => 0.56251089258103
917 => 0.52256266405875
918 => 0.54049824584689
919 => 0.55103371981067
920 => 0.50343406515848
921 => 0.55009282768275
922 => 0.52186725427697
923 => 0.51228707072916
924 => 0.52518552578308
925 => 0.52015898530441
926 => 0.51583746096921
927 => 0.51342597613695
928 => 0.52289717797801
929 => 0.52245533509159
930 => 0.50695861059855
1001 => 0.48674376522469
1002 => 0.49352853086184
1003 => 0.49106356189834
1004 => 0.48213019638732
1005 => 0.48815020612308
1006 => 0.46164112990398
1007 => 0.41603364209088
1008 => 0.44616334553534
1009 => 0.44500338472754
1010 => 0.44441847988822
1011 => 0.46706011930289
1012 => 0.46488364810467
1013 => 0.46093333156782
1014 => 0.48205764572624
1015 => 0.4743469868963
1016 => 0.49810942055048
1017 => 0.51376089621298
1018 => 0.50979117571277
1019 => 0.5245114642235
1020 => 0.49368483815882
1021 => 0.50392420678793
1022 => 0.50603452647124
1023 => 0.48179697496857
1024 => 0.46523974570957
1025 => 0.46413556728423
1026 => 0.43542761347586
1027 => 0.45076317067778
1028 => 0.464257826387
1029 => 0.45779493352987
1030 => 0.45574897472474
1031 => 0.46620133454584
1101 => 0.46701357242235
1102 => 0.44849446276086
1103 => 0.45234517208341
1104 => 0.46840327008563
1105 => 0.45194054921459
1106 => 0.41995617173234
1107 => 0.41202360389813
1108 => 0.41096525312281
1109 => 0.38945150001654
1110 => 0.41255369601186
1111 => 0.40246896835954
1112 => 0.43432650217963
1113 => 0.41612964971698
1114 => 0.4153452197769
1115 => 0.41415943887162
1116 => 0.3956416628511
1117 => 0.39969587893354
1118 => 0.41317271066609
1119 => 0.41798139605564
1120 => 0.41747981077311
1121 => 0.41310666683834
1122 => 0.41510866973756
1123 => 0.40865952085513
1124 => 0.40638219215731
1125 => 0.39919431635841
1126 => 0.38863012463538
1127 => 0.39009914028842
1128 => 0.36916871221399
1129 => 0.35776470413714
1130 => 0.35460822500388
1201 => 0.35038724918854
1202 => 0.35508499545381
1203 => 0.36910941894102
1204 => 0.35219298876802
1205 => 0.32319095578602
1206 => 0.3249340273853
1207 => 0.32885019174627
1208 => 0.32155244536762
1209 => 0.31464574087365
1210 => 0.32065056007251
1211 => 0.30836201637099
1212 => 0.33033520354339
1213 => 0.32974089040952
1214 => 0.33793113577461
1215 => 0.34305266428216
1216 => 0.33124919918681
1217 => 0.32828065963529
1218 => 0.32997167467644
1219 => 0.30202296282887
1220 => 0.33564712974884
1221 => 0.33593791294064
1222 => 0.33344805071287
1223 => 0.35135188156807
1224 => 0.38913454901743
1225 => 0.3749191897187
1226 => 0.36941457293673
1227 => 0.35895029241034
1228 => 0.37289332490425
1229 => 0.37182271755391
1230 => 0.36698102509988
1231 => 0.36405275439669
]
'min_raw' => 0.27346960972958
'max_raw' => 0.70169170473287
'avg_raw' => 0.48758065723123
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.273469'
'max' => '$0.701691'
'avg' => '$0.48758'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.16816624778117
'max_diff' => 0.40786267022611
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.008583898562688
]
1 => [
'year' => 2028
'avg' => 0.014732461857131
]
2 => [
'year' => 2029
'avg' => 0.040246430525775
]
3 => [
'year' => 2030
'avg' => 0.031050061213853
]
4 => [
'year' => 2031
'avg' => 0.030495008103727
]
5 => [
'year' => 2032
'avg' => 0.053467346338083
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.008583898562688
'min' => '$0.008583'
'max_raw' => 0.053467346338083
'max' => '$0.053467'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.053467346338083
]
1 => [
'year' => 2033
'avg' => 0.13752351276394
]
2 => [
'year' => 2034
'avg' => 0.087169011460547
]
3 => [
'year' => 2035
'avg' => 0.10281604891519
]
4 => [
'year' => 2036
'avg' => 0.19956619822759
]
5 => [
'year' => 2037
'avg' => 0.48758065723123
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.053467346338083
'min' => '$0.053467'
'max_raw' => 0.48758065723123
'max' => '$0.48758'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.48758065723123
]
]
]
]
'prediction_2025_max_price' => '$0.014676'
'last_price' => 0.01423111
'sma_50day_nextmonth' => '$0.010959'
'sma_200day_nextmonth' => '$0.015954'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.0121096'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.011488'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.009216'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.007687'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.009037'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016081'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014767'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.012612'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0116099'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.010096'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009065'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.010435'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.012934'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.012171'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.016153'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.011492'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.010652'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.011358'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.012473'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.009945'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.004972'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.002486'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '67.28'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 93.88
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.009896'
'vwma_10_action' => 'BUY'
'hma_9' => '0.013252'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 219.27
'cci_20_action' => 'SELL'
'adx_14' => 19.15
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002950'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.47
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.011184'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 4
'buy_signals' => 28
'sell_pct' => 12.5
'buy_pct' => 87.5
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767711185
'last_updated_date' => '6. Januar 2026'
]
Not in Employment, Education, or Training Preisprognose für 2026
Die Preisprognose für Not in Employment, Education, or Training im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.004916 am unteren Ende und $0.014676 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Not in Employment, Education, or Training im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn NEET das prognostizierte Preisziel erreicht.
Not in Employment, Education, or Training Preisprognose 2027-2032
Die Preisprognose für NEET für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.008583 am unteren Ende und $0.053467 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Not in Employment, Education, or Training, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Not in Employment, Education, or Training Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.004733 | $0.008583 | $0.012434 |
| 2028 | $0.008542 | $0.014732 | $0.020922 |
| 2029 | $0.018764 | $0.040246 | $0.061727 |
| 2030 | $0.015958 | $0.03105 | $0.046141 |
| 2031 | $0.018868 | $0.030495 | $0.042121 |
| 2032 | $0.02880082 | $0.053467 | $0.078133 |
Not in Employment, Education, or Training Preisprognose 2032-2037
Die Preisprognose für Not in Employment, Education, or Training für die Jahre 2032-2037 wird derzeit zwischen $0.053467 am unteren Ende und $0.48758 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Not in Employment, Education, or Training bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Not in Employment, Education, or Training Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.02880082 | $0.053467 | $0.078133 |
| 2033 | $0.066926 | $0.137523 | $0.20812 |
| 2034 | $0.0538059 | $0.087169 | $0.120532 |
| 2035 | $0.063615 | $0.102816 | $0.142016 |
| 2036 | $0.1053033 | $0.199566 | $0.293829 |
| 2037 | $0.273469 | $0.48758 | $0.701691 |
Not in Employment, Education, or Training Potenzielles Preishistogramm
Not in Employment, Education, or Training Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Not in Employment, Education, or Training Bullisch, mit 28 technischen Indikatoren, die bullische Signale zeigen, und 4 anzeigen bärische Signale. Die Preisprognose für NEET wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Not in Employment, Education, or Training
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Not in Employment, Education, or Training im nächsten Monat steigen, und bis zum 04.02.2026 $0.015954 erreichen. Der kurzfristige 50-Tage-SMA für Not in Employment, Education, or Training wird voraussichtlich bis zum 04.02.2026 $0.010959 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 67.28, was darauf hindeutet, dass sich der NEET-Markt in einem NEUTRAL Zustand befindet.
Beliebte NEET Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.0121096 | BUY |
| SMA 5 | $0.011488 | BUY |
| SMA 10 | $0.009216 | BUY |
| SMA 21 | $0.007687 | BUY |
| SMA 50 | $0.009037 | BUY |
| SMA 100 | $0.016081 | SELL |
| SMA 200 | $0.014767 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.012612 | BUY |
| EMA 5 | $0.0116099 | BUY |
| EMA 10 | $0.010096 | BUY |
| EMA 21 | $0.009065 | BUY |
| EMA 50 | $0.010435 | BUY |
| EMA 100 | $0.012934 | BUY |
| EMA 200 | $0.012171 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.016153 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.012473 | BUY |
| EMA 50 | $0.009945 | BUY |
| EMA 100 | $0.004972 | BUY |
| EMA 200 | $0.002486 | BUY |
Not in Employment, Education, or Training Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 67.28 | NEUTRAL |
| Stoch RSI (14) | 93.88 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 219.27 | SELL |
| Average Directional Index (14) | 19.15 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.002950 | BUY |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 78.47 | SELL |
| VWMA (10) | 0.009896 | BUY |
| Hull Moving Average (9) | 0.013252 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.011184 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Not in Employment, Education, or Training-Preisprognose
Definition weltweiter Geldflüsse, die für Not in Employment, Education, or Training-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Not in Employment, Education, or Training-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.019997 | $0.028099 | $0.039484 | $0.055481 | $0.077961 | $0.109548 |
| Amazon.com aktie | $0.029694 | $0.061958 | $0.129279 | $0.26975 | $0.562849 | $1.17 |
| Apple aktie | $0.020185 | $0.028631 | $0.040612 | $0.0576053 | $0.0817087 | $0.115897 |
| Netflix aktie | $0.022454 | $0.035429 | $0.0559023 | $0.0882052 | $0.139173 | $0.219594 |
| Google aktie | $0.018429 | $0.023865 | $0.030906 | $0.040023 | $0.051829 | $0.067119 |
| Tesla aktie | $0.03226 | $0.073132 | $0.165786 | $0.375826 | $0.851969 | $1.93 |
| Kodak aktie | $0.010671 | $0.0080027 | $0.0060011 | $0.00450025 | $0.003374 | $0.00253 |
| Nokia aktie | $0.009427 | $0.006245 | $0.004137 | $0.00274 | $0.001815 | $0.0012027 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Not in Employment, Education, or Training Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Not in Employment, Education, or Training investieren?", "Sollte ich heute NEET kaufen?", "Wird Not in Employment, Education, or Training auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Not in Employment, Education, or Training-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Not in Employment, Education, or Training.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Not in Employment, Education, or Training zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Not in Employment, Education, or Training-Preis entspricht heute $0.01423 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Not in Employment, Education, or Training-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Not in Employment, Education, or Training 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.014601 | $0.01498 | $0.015369 | $0.015769 |
| Wenn die Wachstumsrate von Not in Employment, Education, or Training 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01497 | $0.015749 | $0.016567 | $0.017429 |
| Wenn die Wachstumsrate von Not in Employment, Education, or Training 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01608 | $0.01817 | $0.020532 | $0.02320066 |
| Wenn die Wachstumsrate von Not in Employment, Education, or Training 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01793 | $0.02259 | $0.028462 | $0.035861 |
| Wenn die Wachstumsrate von Not in Employment, Education, or Training 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.021629 | $0.032873 | $0.049963 | $0.075937 |
| Wenn die Wachstumsrate von Not in Employment, Education, or Training 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.032726 | $0.07526 | $0.173073 | $0.3980098 |
| Wenn die Wachstumsrate von Not in Employment, Education, or Training 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.051222 | $0.184365 | $0.663591 | $2.38 |
Fragefeld
Ist NEET eine gute Investition?
Die Entscheidung, Not in Employment, Education, or Training zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Not in Employment, Education, or Training in den letzten 2026 Stunden um 31.8205% gestiegen, und Not in Employment, Education, or Training hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Not in Employment, Education, or Training investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Not in Employment, Education, or Training steigen?
Es scheint, dass der Durchschnittswert von Not in Employment, Education, or Training bis zum Ende dieses Jahres potenziell auf $0.014676 steigen könnte. Betrachtet man die Aussichten von Not in Employment, Education, or Training in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.046141 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Not in Employment, Education, or Training nächste Woche kosten?
Basierend auf unserer neuen experimentellen Not in Employment, Education, or Training-Prognose wird der Preis von Not in Employment, Education, or Training in der nächsten Woche um 0.86% steigen und $0.014352 erreichen bis zum 13. Januar 2026.
Wie viel wird Not in Employment, Education, or Training nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Not in Employment, Education, or Training-Prognose wird der Preis von Not in Employment, Education, or Training im nächsten Monat um -11.62% fallen und $0.012577 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Not in Employment, Education, or Training in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Not in Employment, Education, or Training im Jahr 2026 wird erwartet, dass NEET innerhalb der Spanne von $0.004916 bis $0.014676 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Not in Employment, Education, or Training-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Not in Employment, Education, or Training in 5 Jahren sein?
Die Zukunft von Not in Employment, Education, or Training scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.046141 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Not in Employment, Education, or Training-Prognose für 2030 könnte der Wert von Not in Employment, Education, or Training seinen höchsten Gipfel von ungefähr $0.046141 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.015958 liegen wird.
Wie viel wird Not in Employment, Education, or Training im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Not in Employment, Education, or Training-Preisprognosesimulation wird der Wert von NEET im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.014676 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.014676 und $0.004916 während des Jahres 2026 liegen.
Wie viel wird Not in Employment, Education, or Training im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Not in Employment, Education, or Training könnte der Wert von NEET um -12.62% fallen und bis zu $0.012434 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.012434 und $0.004733 im Laufe des Jahres schwanken.
Wie viel wird Not in Employment, Education, or Training im Jahr 2028 kosten?
Unser neues experimentelles Not in Employment, Education, or Training-Preisprognosemodell deutet darauf hin, dass der Wert von NEET im Jahr 2028 um 47.02% steigen, und im besten Fall $0.020922 erreichen wird. Der Preis wird voraussichtlich zwischen $0.020922 und $0.008542 im Laufe des Jahres liegen.
Wie viel wird Not in Employment, Education, or Training im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Not in Employment, Education, or Training im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.061727 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.061727 und $0.018764.
Wie viel wird Not in Employment, Education, or Training im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Not in Employment, Education, or Training-Preisprognosen wird der Wert von NEET im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.046141 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.046141 und $0.015958 während des Jahres 2030 liegen.
Wie viel wird Not in Employment, Education, or Training im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Not in Employment, Education, or Training im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.042121 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.042121 und $0.018868 während des Jahres schwanken.
Wie viel wird Not in Employment, Education, or Training im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Not in Employment, Education, or Training-Preisprognose könnte NEET eine 449.04% Steigerung im Wert erfahren und $0.078133 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.078133 und $0.02880082 liegen.
Wie viel wird Not in Employment, Education, or Training im Jahr 2033 kosten?
Laut unserer experimentellen Not in Employment, Education, or Training-Preisprognose wird der Wert von NEET voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.20812 beträgt. Im Laufe des Jahres könnte der Preis von NEET zwischen $0.20812 und $0.066926 liegen.
Wie viel wird Not in Employment, Education, or Training im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Not in Employment, Education, or Training-Preisprognosesimulation deuten darauf hin, dass NEET im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.120532 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.120532 und $0.0538059.
Wie viel wird Not in Employment, Education, or Training im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Not in Employment, Education, or Training könnte NEET um 897.93% steigen, wobei der Wert im Jahr 2035 $0.142016 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.142016 und $0.063615.
Wie viel wird Not in Employment, Education, or Training im Jahr 2036 kosten?
Unsere jüngste Not in Employment, Education, or Training-Preisprognosesimulation deutet darauf hin, dass der Wert von NEET im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.293829 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.293829 und $0.1053033.
Wie viel wird Not in Employment, Education, or Training im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Not in Employment, Education, or Training um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.701691 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.701691 und $0.273469 liegen.
Verwandte Prognosen
Wie liest und prognostiziert man die Kursbewegungen von Not in Employment, Education, or Training?
Not in Employment, Education, or Training-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Not in Employment, Education, or Training Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Not in Employment, Education, or Training. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von NEET über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von NEET über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von NEET einzuschätzen.
Wie liest man Not in Employment, Education, or Training-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Not in Employment, Education, or Training in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von NEET innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Not in Employment, Education, or Training?
Die Preisentwicklung von Not in Employment, Education, or Training wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von NEET. Die Marktkapitalisierung von Not in Employment, Education, or Training kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von NEET-„Walen“, großen Inhabern von Not in Employment, Education, or Training, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Not in Employment, Education, or Training-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


