Naka Bodhi Preisvorhersage bis zu $0.0092005 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.003082 | $0.0092005 |
| 2027 | $0.002967 | $0.007794 |
| 2028 | $0.005354 | $0.013115 |
| 2029 | $0.011763 | $0.038695 |
| 2030 | $0.010004 | $0.028924 |
| 2031 | $0.011827 | $0.0264049 |
| 2032 | $0.018054 | $0.048979 |
| 2033 | $0.041954 | $0.130464 |
| 2034 | $0.033729 | $0.075557 |
| 2035 | $0.039878 | $0.089025 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Naka Bodhi eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.75 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Naka Bodhi Token Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Naka Bodhi'
'name_with_ticker' => 'Naka Bodhi <small>NBOT</small>'
'name_lang' => 'Naka Bodhi Token'
'name_lang_with_ticker' => 'Naka Bodhi Token <small>NBOT</small>'
'name_with_lang' => 'Naka Bodhi Token/Naka Bodhi'
'name_with_lang_with_ticker' => 'Naka Bodhi Token/Naka Bodhi <small>NBOT</small>'
'image' => '/uploads/coins/naka-bodhi-token.jpg?1717127061'
'price_for_sd' => 0.008921
'ticker' => 'NBOT'
'marketcap' => '$0'
'low24h' => '$0.008621'
'high24h' => '$0.008925'
'volume24h' => '$11.8K'
'current_supply' => '0'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.008921'
'change_24h_pct' => '3.4668%'
'ath_price' => '$0.07638'
'ath_days' => 2388
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24.06.2019'
'ath_pct' => '-88.35%'
'fdv' => '$890.31K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.439869'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.008997'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.007884'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003082'
'current_year_max_price_prediction' => '$0.0092005'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010004'
'grand_prediction_max_price' => '$0.028924'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0090900992050277
107 => 0.0091240383357533
108 => 0.0092005049302529
109 => 0.0085471062524289
110 => 0.0088404630759946
111 => 0.0090127827260222
112 => 0.0082342362781546
113 => 0.0089973933659656
114 => 0.0085357320351288
115 => 0.0083790372455223
116 => 0.0085900061367587
117 => 0.0085077913546699
118 => 0.0084371079128439
119 => 0.0083976653378094
120 => 0.0085525776077465
121 => 0.0085453507651938
122 => 0.0082918842244006
123 => 0.007961247454554
124 => 0.0080722200072965
125 => 0.0080319026385119
126 => 0.0078857872929924
127 => 0.0079842513938385
128 => 0.0075506653252536
129 => 0.0068047030300962
130 => 0.0072975085717203
131 => 0.007278536094437
201 => 0.0072689693110574
202 => 0.0076392990554432
203 => 0.0076037003954813
204 => 0.0075390884790676
205 => 0.0078846006444782
206 => 0.0077584840563089
207 => 0.0081471456642415
208 => 0.0084031433362826
209 => 0.0083382140459958
210 => 0.0085789810938946
211 => 0.0080747765907786
212 => 0.0082422531015402
213 => 0.0082767697782958
214 => 0.0078803370779895
215 => 0.0076095247765072
216 => 0.0075914646834846
217 => 0.0071219134729481
218 => 0.0073727439395317
219 => 0.0075934643700553
220 => 0.0074877564124319
221 => 0.0074542924309837
222 => 0.0076252526547504
223 => 0.0076385377283124
224 => 0.0073356366432104
225 => 0.007398619370433
226 => 0.0076612678129583
227 => 0.0073920013035678
228 => 0.0068688604602568
301 => 0.0067391142981276
302 => 0.0067218037684033
303 => 0.0063699218864111
304 => 0.0067477845570865
305 => 0.0065828373752467
306 => 0.0071039035463079
307 => 0.0068062733439317
308 => 0.0067934431007732
309 => 0.0067740483064516
310 => 0.0064711690345635
311 => 0.0065374803461251
312 => 0.0067579092452538
313 => 0.0068365607597723
314 => 0.0068283567624351
315 => 0.0067568290233935
316 => 0.0067895740560455
317 => 0.0066840908967479
318 => 0.0066468425977578
319 => 0.0065292767201933
320 => 0.0063564873585761
321 => 0.0063805147790877
322 => 0.0060381738409281
323 => 0.00585164832841
324 => 0.0058000205249118
325 => 0.0057309816683994
326 => 0.0058078186474602
327 => 0.0060372040320632
328 => 0.0057605165914079
329 => 0.0052861553817717
330 => 0.005314665298743
331 => 0.0053787186175072
401 => 0.0052593556817453
402 => 0.0051463886804184
403 => 0.0052446043227696
404 => 0.0050436112248534
405 => 0.0054030076731345
406 => 0.0053932870064054
407 => 0.0055272477773974
408 => 0.0056110161966504
409 => 0.00541795711062
410 => 0.0053694032725706
411 => 0.0053970617453724
412 => 0.0049399287999678
413 => 0.0054898902631199
414 => 0.0054946463526909
415 => 0.0054539218262784
416 => 0.0057467593272517
417 => 0.0063647377926123
418 => 0.0061322294358175
419 => 0.0060421951724642
420 => 0.005871039972015
421 => 0.0060990941144233
422 => 0.0060815831144852
423 => 0.0060023917319154
424 => 0.0059544965366451
425 => 0.0060427449024776
426 => 0.005943561587517
427 => 0.0059257455387749
428 => 0.0058177996674497
429 => 0.0057792679026108
430 => 0.0057507405179179
501 => 0.0057193346704138
502 => 0.0057886081441581
503 => 0.0056316253389692
504 => 0.0054423194651255
505 => 0.0054265807300334
506 => 0.0054700367613866
507 => 0.0054508107024338
508 => 0.0054264886830599
509 => 0.0053800513243672
510 => 0.0053662743520203
511 => 0.005411042828511
512 => 0.0053605018287173
513 => 0.0054350778270237
514 => 0.0054147972819626
515 => 0.0053015118058488
516 => 0.0051603161589559
517 => 0.0051590592215307
518 => 0.0051286388510149
519 => 0.0050898939354297
520 => 0.0050791159862774
521 => 0.0052363328753165
522 => 0.0055617671305217
523 => 0.0054978765992432
524 => 0.0055440440558569
525 => 0.0057711422487853
526 => 0.0058433299352363
527 => 0.0057920928252524
528 => 0.0057219563089392
529 => 0.0057250419597081
530 => 0.0059647196677177
531 => 0.0059796680723716
601 => 0.0060174378683939
602 => 0.0060659827300256
603 => 0.0058003602251022
604 => 0.0057125311636133
605 => 0.005670912881709
606 => 0.0055427446817459
607 => 0.0056809630970951
608 => 0.0056004291455738
609 => 0.0056112959270656
610 => 0.0056042189213633
611 => 0.0056080834450218
612 => 0.0054029072145027
613 => 0.0054776626491587
614 => 0.0053533672399882
615 => 0.0051869496399233
616 => 0.0051863917497744
617 => 0.0052271222216266
618 => 0.0052028941431854
619 => 0.0051376970070609
620 => 0.0051469579525256
621 => 0.0050658223254302
622 => 0.0051568092866629
623 => 0.005159418467144
624 => 0.0051243835309762
625 => 0.0052645614985362
626 => 0.0053219925262199
627 => 0.0052989317807131
628 => 0.0053203745228399
629 => 0.0055005315392663
630 => 0.0055299049937455
701 => 0.0055429507419237
702 => 0.0055254711675953
703 => 0.0053236674623813
704 => 0.0053326183148431
705 => 0.0052669428984619
706 => 0.0052114540923246
707 => 0.0052136733535697
708 => 0.0052422018129641
709 => 0.0053667872683116
710 => 0.0056289700143766
711 => 0.0056389196579366
712 => 0.005650978916183
713 => 0.0056019278523974
714 => 0.0055871335822042
715 => 0.0056066510433141
716 => 0.0057051130978223
717 => 0.0059583842342042
718 => 0.0058688612991964
719 => 0.0057960777595275
720 => 0.0058599285461185
721 => 0.0058500992180018
722 => 0.0057671297968109
723 => 0.0057648011214963
724 => 0.0056055562753024
725 => 0.0055466870814942
726 => 0.0054974915768653
727 => 0.0054437713700917
728 => 0.0054119242307987
729 => 0.0054608559110188
730 => 0.0054720471652277
731 => 0.0053650571912472
801 => 0.0053504748531352
802 => 0.0054378451754267
803 => 0.0053993967540801
804 => 0.00543894190891
805 => 0.0054481167240426
806 => 0.0054466393674923
807 => 0.0054064947998335
808 => 0.005432081750131
809 => 0.0053715609848404
810 => 0.0053057537425118
811 => 0.0052637728218423
812 => 0.005227138900597
813 => 0.0052474655292799
814 => 0.0051750048095212
815 => 0.0051518231669243
816 => 0.0054234134670948
817 => 0.0056240401419185
818 => 0.0056211229506097
819 => 0.0056033652987579
820 => 0.0055769810301144
821 => 0.0057031829242335
822 => 0.0056592167078089
823 => 0.0056912058037581
824 => 0.0056993483712553
825 => 0.0057239934706849
826 => 0.0057328019754131
827 => 0.0057061765562246
828 => 0.0056168183974068
829 => 0.0053941463615518
830 => 0.0052904919277695
831 => 0.0052562842381203
901 => 0.0052575276226694
902 => 0.0052232295260922
903 => 0.005233331852667
904 => 0.0052197163491826
905 => 0.0051939318795271
906 => 0.0052458734109374
907 => 0.0052518591885636
908 => 0.0052397354144773
909 => 0.0052425910021617
910 => 0.0051422113308593
911 => 0.0051498429792553
912 => 0.0051073489912037
913 => 0.0050993818807167
914 => 0.0049919607792973
915 => 0.0048016487271951
916 => 0.0049071000780976
917 => 0.0047797296749111
918 => 0.0047314925732479
919 => 0.0049598395101133
920 => 0.0049369198110101
921 => 0.0048976912490993
922 => 0.0048396640300844
923 => 0.0048181411700993
924 => 0.0046873750861392
925 => 0.004679648728289
926 => 0.0047444599304808
927 => 0.0047145517906866
928 => 0.0046725494353172
929 => 0.0045204211618796
930 => 0.0043493786145954
1001 => 0.0043545413139628
1002 => 0.0044089467658942
1003 => 0.0045671379549595
1004 => 0.0045053299206563
1005 => 0.0044604874826039
1006 => 0.0044520898419154
1007 => 0.0045572038967833
1008 => 0.0047059623064968
1009 => 0.0047757564240525
1010 => 0.0047065925732337
1011 => 0.0046271408654591
1012 => 0.0046319767227676
1013 => 0.0046641475149386
1014 => 0.0046675282103253
1015 => 0.0046158133163316
1016 => 0.0046303707560691
1017 => 0.0046082566739476
1018 => 0.0044725425927877
1019 => 0.0044700879554135
1020 => 0.0044367815312117
1021 => 0.0044357730259237
1022 => 0.0043791104896795
1023 => 0.0043711830091693
1024 => 0.0042586761042863
1025 => 0.0043327284897826
1026 => 0.0042830580375164
1027 => 0.0042081929498761
1028 => 0.0041952861805486
1029 => 0.0041948981874772
1030 => 0.0042717678929565
1031 => 0.0043318302225183
1101 => 0.0042839220762994
1102 => 0.0042730143200657
1103 => 0.0043894806196238
1104 => 0.0043746592213912
1105 => 0.0043618239861095
1106 => 0.0046926426225035
1107 => 0.0044307738576975
1108 => 0.0043165841292956
1109 => 0.0041752526563569
1110 => 0.0042212708966009
1111 => 0.0042309676159689
1112 => 0.0038910909004641
1113 => 0.0037532029593128
1114 => 0.0037058850141071
1115 => 0.0036786528676637
1116 => 0.0036910628987577
1117 => 0.0035669475790791
1118 => 0.0036503551265811
1119 => 0.0035428817509462
1120 => 0.0035248634897724
1121 => 0.003717039198804
1122 => 0.0037437793260415
1123 => 0.0036296976357398
1124 => 0.0037029565490615
1125 => 0.003676391848716
1126 => 0.0035447240735042
1127 => 0.0035396953329737
1128 => 0.0034736290717185
1129 => 0.0033702481658031
1130 => 0.0033230003177198
1201 => 0.0032983932282133
1202 => 0.0033085465929263
1203 => 0.0033034127410293
1204 => 0.0032699108847304
1205 => 0.0033053330282165
1206 => 0.0032148440890497
1207 => 0.0031788106643546
1208 => 0.0031625352023889
1209 => 0.0030822210605294
1210 => 0.0032100365760889
1211 => 0.0032352178428315
1212 => 0.0032604487244486
1213 => 0.0034800663230704
1214 => 0.0034690948484761
1215 => 0.0035682716354833
1216 => 0.0035644178079146
1217 => 0.0035361309817028
1218 => 0.0034167935148719
1219 => 0.0034643593021648
1220 => 0.0033179592022416
1221 => 0.0034276521113432
1222 => 0.0033775928485147
1223 => 0.0034107270242258
1224 => 0.003351148788709
1225 => 0.003384121844169
1226 => 0.0032411892553396
1227 => 0.0031077208150065
1228 => 0.0031614324115832
1229 => 0.0032198230597282
1230 => 0.0033464288625671
1231 => 0.0032710234908715
]
'min_raw' => 0.0030822210605294
'max_raw' => 0.0092005049302529
'avg_raw' => 0.0061413629953912
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003082'
'max' => '$0.0092005'
'avg' => '$0.006141'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0058388289394706
'max_diff' => 0.00027945493025293
'year' => 2026
]
1 => [
'items' => [
101 => 0.003298142113926
102 => 0.003207299266296
103 => 0.0030198645236588
104 => 0.0030209253839467
105 => 0.0029920926322798
106 => 0.002967176925189
107 => 0.0032796847048925
108 => 0.0032408194224694
109 => 0.0031788926814907
110 => 0.0032617840851616
111 => 0.0032837018879556
112 => 0.0032843258569884
113 => 0.0033448012853699
114 => 0.0033770770323379
115 => 0.0033827657726321
116 => 0.0034779251658484
117 => 0.0035098213392718
118 => 0.0036411971634873
119 => 0.0033743386607057
120 => 0.0033688428854521
121 => 0.0032629505372003
122 => 0.0031957919358472
123 => 0.0032675489440916
124 => 0.0033311158575877
125 => 0.0032649257383947
126 => 0.0032735687706116
127 => 0.0031847139435264
128 => 0.0032164753632012
129 => 0.0032438325765503
130 => 0.0032287275313216
131 => 0.0032061145475217
201 => 0.0033259040955886
202 => 0.0033191450998276
203 => 0.0034306958809373
204 => 0.0035176576918851
205 => 0.0036735088033868
206 => 0.0035108700438326
207 => 0.0035049428410039
208 => 0.0035628821994075
209 => 0.0035098124690579
210 => 0.003543350706734
211 => 0.003668105274798
212 => 0.0036707411422356
213 => 0.0036265869665337
214 => 0.0036239001809296
215 => 0.0036323804733668
216 => 0.0036820498110492
217 => 0.0036646938182784
218 => 0.0036847786125127
219 => 0.003709894955252
220 => 0.0038137867979305
221 => 0.0038388347694761
222 => 0.0037779811845045
223 => 0.0037834755818788
224 => 0.0037607146706311
225 => 0.0037387279155593
226 => 0.0037881509300531
227 => 0.0038784724604521
228 => 0.0038779105748992
301 => 0.0038988634143521
302 => 0.0039119168597486
303 => 0.0038558819164009
304 => 0.0038194052287435
305 => 0.0038333927118633
306 => 0.0038557590019796
307 => 0.0038261396254239
308 => 0.0036433151122924
309 => 0.0036987723907014
310 => 0.0036895415878518
311 => 0.0036763958020899
312 => 0.0037321585243686
313 => 0.0037267800737708
314 => 0.0035656745970825
315 => 0.0035759880469946
316 => 0.0035663017921309
317 => 0.003597600063217
318 => 0.0035081222597071
319 => 0.0035356450294245
320 => 0.0035529070525814
321 => 0.0035630745168339
322 => 0.0035998063696094
323 => 0.0035954963106436
324 => 0.0035995384502925
325 => 0.0036540020911089
326 => 0.003929460496694
327 => 0.0039444530899453
328 => 0.0038706240774926
329 => 0.0039001173117546
330 => 0.0038434967514329
331 => 0.0038815065129016
401 => 0.0039075118263553
402 => 0.0037899988153925
403 => 0.0037830404575364
404 => 0.0037261862040212
405 => 0.0037567364594708
406 => 0.0037081288064095
407 => 0.0037200554242472
408 => 0.0036867075610291
409 => 0.0037467270753283
410 => 0.0038138382184045
411 => 0.0038307931434449
412 => 0.0037861920352178
413 => 0.0037538978935051
414 => 0.0036972000190093
415 => 0.0037914898478905
416 => 0.0038190630672858
417 => 0.0037913450175072
418 => 0.0037849221397222
419 => 0.0037727507979255
420 => 0.003787504347422
421 => 0.0038189128976113
422 => 0.0038041012053669
423 => 0.0038138845890428
424 => 0.0037766004190518
425 => 0.0038559004662987
426 => 0.0039818480259225
427 => 0.0039822529679212
428 => 0.0039674411958363
429 => 0.0039613805378232
430 => 0.0039765783148359
501 => 0.0039848224854198
502 => 0.004033969309483
503 => 0.0040867058097987
504 => 0.0043328040460342
505 => 0.0042637006460773
506 => 0.004482053641715
507 => 0.0046547425116766
508 => 0.004706524353009
509 => 0.0046588874955071
510 => 0.0044959243792856
511 => 0.0044879286313472
512 => 0.004731464328235
513 => 0.0046626543392227
514 => 0.0046544696099812
515 => 0.0045673979191704
516 => 0.0046188680724783
517 => 0.0046076107949283
518 => 0.0045898406315907
519 => 0.0046880420986601
520 => 0.0048718664785087
521 => 0.0048432157250152
522 => 0.0048218292666025
523 => 0.0047281200313425
524 => 0.0047845539216845
525 => 0.0047644588942536
526 => 0.0048507998847159
527 => 0.0047996533946532
528 => 0.0046621330358794
529 => 0.0046840336062871
530 => 0.0046807233791278
531 => 0.004748847619501
601 => 0.0047283984134886
602 => 0.0046767303434559
603 => 0.0048712381867627
604 => 0.0048586079293278
605 => 0.0048765147466916
606 => 0.0048843978814819
607 => 0.0050027913780901
608 => 0.0050512934054811
609 => 0.0050623042148464
610 => 0.0051083773895865
611 => 0.0050611578722872
612 => 0.0052500696084296
613 => 0.005375684889659
614 => 0.0055215935029101
615 => 0.005734805203408
616 => 0.0058149747751138
617 => 0.0058004928595551
618 => 0.0059621475375212
619 => 0.0062526374004445
620 => 0.005859209166275
621 => 0.0062734900521739
622 => 0.0061423335068011
623 => 0.0058313636971278
624 => 0.0058113409074781
625 => 0.0060219332730226
626 => 0.0064890068710362
627 => 0.0063720102322387
628 => 0.0064891982356244
629 => 0.0063524922048677
630 => 0.0063457035981917
701 => 0.0064825587288441
702 => 0.0068023282011982
703 => 0.0066504177112622
704 => 0.0064326167739586
705 => 0.0065934375967057
706 => 0.0064541197167776
707 => 0.0061401975406805
708 => 0.0063719207671139
709 => 0.0062169740446954
710 => 0.006262195735718
711 => 0.0065878706996561
712 => 0.006548684626366
713 => 0.0065993950337361
714 => 0.0065098924920503
715 => 0.0064262830048604
716 => 0.0062702196880985
717 => 0.0062240170338338
718 => 0.0062367857852752
719 => 0.0062240107062747
720 => 0.0061366947148423
721 => 0.0061178388348059
722 => 0.0060864115419835
723 => 0.0060961521741512
724 => 0.0060370596692663
725 => 0.0061485794351186
726 => 0.0061692784863696
727 => 0.0062504332719802
728 => 0.006258859031043
729 => 0.0064848739538025
730 => 0.006360388732373
731 => 0.0064439041664448
801 => 0.0064364337599437
802 => 0.0058381033558464
803 => 0.0059205480064171
804 => 0.0060488060101486
805 => 0.0059910259533172
806 => 0.0059093384714086
807 => 0.0058433714499617
808 => 0.0057434246669955
809 => 0.0058840978447125
810 => 0.0060690681144858
811 => 0.0062635501823318
812 => 0.006497207643879
813 => 0.0064450580185343
814 => 0.006259182118617
815 => 0.0062675203757048
816 => 0.0063190642000388
817 => 0.006252310264276
818 => 0.006232623225428
819 => 0.0063163595032161
820 => 0.0063169361489406
821 => 0.0062401276783629
822 => 0.0061547691191176
823 => 0.0061544114636377
824 => 0.0061392227324858
825 => 0.0063551942463976
826 => 0.0064739567418661
827 => 0.0064875726705763
828 => 0.0064730402813779
829 => 0.0064786332212105
830 => 0.0064095279418503
831 => 0.0065674821179336
901 => 0.0067124364899565
902 => 0.0066735856217559
903 => 0.0066153426473468
904 => 0.0065689493128683
905 => 0.0066626568265541
906 => 0.006658484178479
907 => 0.0067111704399723
908 => 0.0067087802868204
909 => 0.0066910638787107
910 => 0.0066735862544646
911 => 0.0067428830590193
912 => 0.0067229266921802
913 => 0.0067029393275913
914 => 0.0066628516079958
915 => 0.0066683001948753
916 => 0.006610067276937
917 => 0.0065831260645416
918 => 0.0061779948711232
919 => 0.0060697305781982
920 => 0.0061037927286753
921 => 0.0061150068730357
922 => 0.0060678901140103
923 => 0.0061354434431504
924 => 0.0061249153283606
925 => 0.0061658740642666
926 => 0.0061402848242941
927 => 0.0061413350156285
928 => 0.0062165875141864
929 => 0.0062384336346648
930 => 0.0062273225214697
1001 => 0.0062351043642848
1002 => 0.0064144336474503
1003 => 0.0063889387580118
1004 => 0.0063753951061296
1005 => 0.0063791467902599
1006 => 0.0064249692669719
1007 => 0.0064377970586368
1008 => 0.0063834448039598
1009 => 0.0064090776414721
1010 => 0.0065182190103081
1011 => 0.0065564123125342
1012 => 0.0066783069994148
1013 => 0.0066265239699226
1014 => 0.0067215739616726
1015 => 0.0070137252313818
1016 => 0.0072471158809557
1017 => 0.007032480194331
1018 => 0.0074610724001535
1019 => 0.0077947929102867
1020 => 0.0077819841612672
1021 => 0.007723792271231
1022 => 0.0073438603428631
1023 => 0.0069942413179131
1024 => 0.0072867124778917
1025 => 0.0072874580470258
1026 => 0.0072623345150038
1027 => 0.0071062944153304
1028 => 0.0072569046577717
1029 => 0.0072688595518806
1030 => 0.0072621679902425
1031 => 0.0071425324116783
1101 => 0.0069598709955615
1102 => 0.0069955625990411
1103 => 0.0070540261736296
1104 => 0.0069433424301543
1105 => 0.0069079722675494
1106 => 0.0069737321292806
1107 => 0.0071856241053901
1108 => 0.0071455671547132
1109 => 0.0071445211058482
1110 => 0.0073159017276344
1111 => 0.0071932301886885
1112 => 0.0069960127844613
1113 => 0.006946212788916
1114 => 0.0067694563540267
1115 => 0.0068915426531896
1116 => 0.0068959363217504
1117 => 0.0068290709033907
1118 => 0.0070014385446449
1119 => 0.006999850146486
1120 => 0.0071634875683192
1121 => 0.0074763008594553
1122 => 0.0073837865766592
1123 => 0.0072762025312926
1124 => 0.007287899900006
1125 => 0.0074161911632253
1126 => 0.0073386233368782
1127 => 0.0073665172680547
1128 => 0.0074161489424197
1129 => 0.0074460929638492
1130 => 0.0072835914161346
1201 => 0.0072457045320147
1202 => 0.0071682012635949
1203 => 0.0071479821075312
1204 => 0.0072111069025004
1205 => 0.0071944757492579
1206 => 0.006895567050921
1207 => 0.0068643294288325
1208 => 0.0068652874421049
1209 => 0.0067867389560954
1210 => 0.0066669336611341
1211 => 0.0069817748230898
1212 => 0.0069564886715855
1213 => 0.0069285747173175
1214 => 0.0069319940174405
1215 => 0.0070686558948884
1216 => 0.0069893851043784
1217 => 0.0072001394931763
1218 => 0.0071568147266963
1219 => 0.0071123788434353
1220 => 0.0071062364508186
1221 => 0.0070891324268545
1222 => 0.0070304763645548
1223 => 0.006959645644645
1224 => 0.0069128770681086
1225 => 0.006376763682031
1226 => 0.0064762632080589
1227 => 0.0065907283430868
1228 => 0.0066302412490082
1229 => 0.0065626516892198
1230 => 0.0070331452123384
1231 => 0.0071191089128006
]
'min_raw' => 0.002967176925189
'max_raw' => 0.0077947929102867
'avg_raw' => 0.0053809849177378
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002967'
'max' => '$0.007794'
'avg' => '$0.00538'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00011504413534041
'max_diff' => -0.0014057120199662
'year' => 2027
]
2 => [
'items' => [
101 => 0.0068587192568273
102 => 0.0068100109838342
103 => 0.0070363385186068
104 => 0.0068998353477231
105 => 0.0069613027172138
106 => 0.0068284438852284
107 => 0.0070984027746703
108 => 0.0070963461402376
109 => 0.0069913260349466
110 => 0.0070800883087919
111 => 0.007064663679379
112 => 0.0069460962391586
113 => 0.0071021615740102
114 => 0.0071022389804692
115 => 0.0070011594124606
116 => 0.0068831206061893
117 => 0.0068620180555802
118 => 0.006846120118425
119 => 0.0069573927992349
120 => 0.0070571595369085
121 => 0.0072428007014473
122 => 0.0072894753009376
123 => 0.0074716493700524
124 => 0.007363173581789
125 => 0.0074112594937295
126 => 0.0074634635533085
127 => 0.0074884920992114
128 => 0.0074477094267684
129 => 0.007730700741942
130 => 0.0077545938795725
131 => 0.0077626050419452
201 => 0.0076671819627014
202 => 0.0077519399911197
203 => 0.0077122845165136
204 => 0.0078154570448305
205 => 0.0078316358146435
206 => 0.0078179329721883
207 => 0.0078230683690915
208 => 0.0075815852046797
209 => 0.0075690630286798
210 => 0.0073983222703878
211 => 0.0074679003914437
212 => 0.0073378274290957
213 => 0.0073790749053563
214 => 0.0073972563998715
215 => 0.0073877594189275
216 => 0.0074718342340141
217 => 0.0074003534658405
218 => 0.0072117039661041
219 => 0.0070230030689377
220 => 0.0070206340828862
221 => 0.0069709524675098
222 => 0.0069350417592344
223 => 0.0069419594356491
224 => 0.006966338229621
225 => 0.0069336248194105
226 => 0.0069406058840909
227 => 0.0070565380723765
228 => 0.0070797874459466
229 => 0.0070007769904386
301 => 0.0066835386104199
302 => 0.0066056875162311
303 => 0.0066616453388798
304 => 0.0066349011037991
305 => 0.0053548830235653
306 => 0.0056556042847397
307 => 0.005476925922879
308 => 0.0055592691326205
309 => 0.0053768847936982
310 => 0.0054639281598142
311 => 0.0054478544284073
312 => 0.0059314053173867
313 => 0.0059238553353578
314 => 0.0059274691122188
315 => 0.0057549741269939
316 => 0.0060297633222065
317 => 0.0061651343608681
318 => 0.0061400807843953
319 => 0.0061463862298354
320 => 0.0060380377862348
321 => 0.0059285181619908
322 => 0.005807044043755
323 => 0.0060327279407824
324 => 0.0060076357439856
325 => 0.0060651882155501
326 => 0.0062115603549905
327 => 0.0062331142085368
328 => 0.0062620828062806
329 => 0.0062516996261147
330 => 0.0064990691025259
331 => 0.0064691110267361
401 => 0.0065413013698628
402 => 0.0063928003569567
403 => 0.006224757365008
404 => 0.0062566968440381
405 => 0.0062536208153664
406 => 0.0062144594398747
407 => 0.0061791063011041
408 => 0.0061202532857362
409 => 0.0063064729349676
410 => 0.0062989127572859
411 => 0.0064213032462087
412 => 0.0063996695384538
413 => 0.0062551943434003
414 => 0.0062603543032558
415 => 0.0062950575130756
416 => 0.0064151657184965
417 => 0.0064508220114556
418 => 0.0064343045958993
419 => 0.0064734000933574
420 => 0.0065042995804964
421 => 0.0064772805932052
422 => 0.0068598124752474
423 => 0.0067009585677937
424 => 0.0067783828569882
425 => 0.0067968480937507
426 => 0.0067495497780657
427 => 0.0067598070891121
428 => 0.0067753441203974
429 => 0.0068696819318991
430 => 0.0071172516461455
501 => 0.0072268985873212
502 => 0.007556776819733
503 => 0.0072177939352157
504 => 0.007197680093699
505 => 0.0072571011247247
506 => 0.0074507745683076
507 => 0.00760772870351
508 => 0.0076597994450579
509 => 0.0076666814531477
510 => 0.0077643696258891
511 => 0.0078203626647279
512 => 0.0077525077122643
513 => 0.007695007744761
514 => 0.0074890499983231
515 => 0.0075128901682777
516 => 0.0076771252981052
517 => 0.0079091170923875
518 => 0.0081081901865141
519 => 0.0080384817273487
520 => 0.0085703080642772
521 => 0.0086230364732679
522 => 0.008615751112059
523 => 0.0087358742747791
524 => 0.0084974542594363
525 => 0.0083955250837071
526 => 0.0077074398903876
527 => 0.0079007637630801
528 => 0.0081817713655515
529 => 0.00814457895564
530 => 0.0079405037233705
531 => 0.0081080353771505
601 => 0.0080526441732116
602 => 0.0080089548324819
603 => 0.0082091041719603
604 => 0.0079890317515221
605 => 0.008179575974811
606 => 0.0079352010375154
607 => 0.0080388001497184
608 => 0.0079799922831067
609 => 0.0080180481800255
610 => 0.0077955741842479
611 => 0.0079156157521186
612 => 0.0077905800603644
613 => 0.0077905207771664
614 => 0.0077877606073409
615 => 0.0079348645441964
616 => 0.0079396615982961
617 => 0.0078309515666981
618 => 0.007815284752775
619 => 0.0078732131751583
620 => 0.0078053941640253
621 => 0.0078371262524867
622 => 0.0078063552966588
623 => 0.0077994281063664
624 => 0.0077442310755527
625 => 0.0077204506770042
626 => 0.0077297755840205
627 => 0.0076979448690549
628 => 0.0076787657119209
629 => 0.0077839453902545
630 => 0.007727752131057
701 => 0.0077753329673577
702 => 0.0077211085992128
703 => 0.0075331433147898
704 => 0.0074250424920214
705 => 0.0070699934941375
706 => 0.0071706849495005
707 => 0.007237443488579
708 => 0.0072153797918118
709 => 0.0072627811499849
710 => 0.0072656912083989
711 => 0.0072502805436571
712 => 0.0072324369681146
713 => 0.0072237517023521
714 => 0.0072884845576409
715 => 0.0073260641589437
716 => 0.0072441436010895
717 => 0.0072249507605747
718 => 0.0073077769675232
719 => 0.0073583009059147
720 => 0.0077313412800485
721 => 0.0077037052442282
722 => 0.0077730662708391
723 => 0.0077652572836745
724 => 0.0078379586896408
725 => 0.0079567947624893
726 => 0.0077151677992999
727 => 0.0077571058852778
728 => 0.0077468236350878
729 => 0.007859082546511
730 => 0.0078594330065789
731 => 0.0077921281814323
801 => 0.0078286152190404
802 => 0.007808249155617
803 => 0.0078450533848615
804 => 0.0077033361481209
805 => 0.0078759324450406
806 => 0.0079737834235344
807 => 0.0079751420844658
808 => 0.0080215226716784
809 => 0.008068648034469
810 => 0.0081591010645913
811 => 0.0080661253485523
812 => 0.0078988710864017
813 => 0.007910946303901
814 => 0.007812885191198
815 => 0.0078145336162188
816 => 0.0078057341942687
817 => 0.0078321419219303
818 => 0.0077091311593072
819 => 0.0077380015394245
820 => 0.0076975828381956
821 => 0.0077570180229149
822 => 0.007693075589145
823 => 0.0077468186766755
824 => 0.0077700124116421
825 => 0.0078555977929942
826 => 0.0076804345587319
827 => 0.0073232648665626
828 => 0.0073983462661205
829 => 0.0072872949786577
830 => 0.0072975731981144
831 => 0.0073183368371836
901 => 0.0072510350895206
902 => 0.0072638741420528
903 => 0.0072634154407494
904 => 0.0072594626007265
905 => 0.0072419548168425
906 => 0.0072165650664013
907 => 0.0073177100176061
908 => 0.0073348965157545
909 => 0.0073730999721818
910 => 0.0074867675448573
911 => 0.0074754094738811
912 => 0.0074939349588852
913 => 0.0074534939291374
914 => 0.0072994491414968
915 => 0.0073078145145975
916 => 0.0072034981779855
917 => 0.0073704323689195
918 => 0.0073309001490827
919 => 0.0073054134697816
920 => 0.0072984591932018
921 => 0.0074124085258043
922 => 0.0074465039520558
923 => 0.0074252579704748
924 => 0.0073816818424078
925 => 0.0074653608904223
926 => 0.0074877498735353
927 => 0.0074927619411804
928 => 0.0076410251703961
929 => 0.0075010482086945
930 => 0.0075347420546275
1001 => 0.0077976118222635
1002 => 0.0075592252165659
1003 => 0.0076855039182596
1004 => 0.0076793232329344
1005 => 0.0077439231436826
1006 => 0.0076740241547229
1007 => 0.0076748906364642
1008 => 0.0077322509808316
1009 => 0.0076516987221602
1010 => 0.0076317528501042
1011 => 0.0076041977707139
1012 => 0.0076643632784803
1013 => 0.0077004297793344
1014 => 0.0079910992882922
1015 => 0.0081788850472191
1016 => 0.0081707327721744
1017 => 0.0082452293056637
1018 => 0.0082116679350167
1019 => 0.0081032894161554
1020 => 0.0082882783324993
1021 => 0.008229740099103
1022 => 0.0082345659199403
1023 => 0.0082343863026477
1024 => 0.008273309110355
1025 => 0.0082457287338714
1026 => 0.0081913649807548
1027 => 0.0082274541771237
1028 => 0.0083346261882158
1029 => 0.0086672913990844
1030 => 0.0088534552583144
1031 => 0.0086560841010046
1101 => 0.0087922280824118
1102 => 0.0087105902066281
1103 => 0.0086957541760818
1104 => 0.0087812626573667
1105 => 0.0088669208099286
1106 => 0.0088614647559208
1107 => 0.0087992813357556
1108 => 0.0087641554995502
1109 => 0.0090301400993162
1110 => 0.0092261130214943
1111 => 0.0092127489820208
1112 => 0.009271733506038
1113 => 0.009444913892875
1114 => 0.0094607473370801
1115 => 0.0094587526870378
1116 => 0.0094195078435264
1117 => 0.0095900264246825
1118 => 0.0097322760250718
1119 => 0.0094104237961461
1120 => 0.009532980911566
1121 => 0.0095880007492216
1122 => 0.0096687861945503
1123 => 0.0098050847820325
1124 => 0.0099531411994531
1125 => 0.0099740780002324
1126 => 0.0099592223381613
1127 => 0.0098615751509023
1128 => 0.010023580249524
1129 => 0.01011847903681
1130 => 0.010174989092919
1201 => 0.010318289192833
1202 => 0.009588340533008
1203 => 0.0090716465907815
1204 => 0.0089909573705518
1205 => 0.0091550420728357
1206 => 0.009198309900277
1207 => 0.0091808686932886
1208 => 0.0085992826855547
1209 => 0.0089878954405831
1210 => 0.0094060100895052
1211 => 0.0094220715759958
1212 => 0.0096313885116112
1213 => 0.0096995506860387
1214 => 0.009868078255007
1215 => 0.0098575368096829
1216 => 0.0098985705908674
1217 => 0.0098891376351791
1218 => 0.010201299469026
1219 => 0.010545660328241
1220 => 0.010533736206687
1221 => 0.010484230258882
1222 => 0.010557755033391
1223 => 0.010913172344053
1224 => 0.010880451213533
1225 => 0.010912237004653
1226 => 0.011331294044366
1227 => 0.01187612780616
1228 => 0.011622997823391
1229 => 0.012172217049809
1230 => 0.012517921439979
1231 => 0.013115781436277
]
'min_raw' => 0.0053548830235653
'max_raw' => 0.013115781436277
'avg_raw' => 0.0092353322299213
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005354'
'max' => '$0.013115'
'avg' => '$0.009235'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0023877060983763
'max_diff' => 0.0053209885259906
'year' => 2028
]
3 => [
'items' => [
101 => 0.013040926420218
102 => 0.013273668929478
103 => 0.012906920318759
104 => 0.012064791376426
105 => 0.011931521247762
106 => 0.012198331420285
107 => 0.012854258194477
108 => 0.012177673951921
109 => 0.012314546063005
110 => 0.012275126885805
111 => 0.012273026405372
112 => 0.012353193200201
113 => 0.012236907083083
114 => 0.011763136522473
115 => 0.011980262778453
116 => 0.01189641990376
117 => 0.011989449824132
118 => 0.012491493935925
119 => 0.012269528266865
120 => 0.012035705465536
121 => 0.012328971147835
122 => 0.012702399138424
123 => 0.012679030685888
124 => 0.012633686120712
125 => 0.012889291060445
126 => 0.013311475535664
127 => 0.013425590302841
128 => 0.013509827490997
129 => 0.013521442376045
130 => 0.013641082910648
131 => 0.01299774560279
201 => 0.014018738432435
202 => 0.014195035689757
203 => 0.014161899112153
204 => 0.014357846093944
205 => 0.014300193521206
206 => 0.01421666398872
207 => 0.014527281633977
208 => 0.014171183569241
209 => 0.013665747197849
210 => 0.013388454808106
211 => 0.013753615795459
212 => 0.013976606868074
213 => 0.014123989782176
214 => 0.014168587762932
215 => 0.013047686046652
216 => 0.012443582189637
217 => 0.012830805835919
218 => 0.013303245409132
219 => 0.012995121177106
220 => 0.013007199063645
221 => 0.012567894882401
222 => 0.013342114081361
223 => 0.013229316856281
224 => 0.01381450905953
225 => 0.013674848243764
226 => 0.014152049768484
227 => 0.014026386614261
228 => 0.014548007341709
301 => 0.014756095972206
302 => 0.015105509169219
303 => 0.01536253893931
304 => 0.015513471736503
305 => 0.015504410297494
306 => 0.016102481234395
307 => 0.015749819697912
308 => 0.015306793692146
309 => 0.015298780749431
310 => 0.015528230195544
311 => 0.016009093288215
312 => 0.016133774091871
313 => 0.016203453651847
314 => 0.016096736980181
315 => 0.015713948157809
316 => 0.015548661885092
317 => 0.015689490578251
318 => 0.015517269188065
319 => 0.015814571624314
320 => 0.016222831369657
321 => 0.016138527346678
322 => 0.016420343055933
323 => 0.016711992667134
324 => 0.017129064709956
325 => 0.017238102786082
326 => 0.017418338579573
327 => 0.017603860415449
328 => 0.017663445029178
329 => 0.017777210544808
330 => 0.017776610944384
331 => 0.018119450983037
401 => 0.018497614162542
402 => 0.018640362008308
403 => 0.018968602808484
404 => 0.018406501941112
405 => 0.018832861905963
406 => 0.019217449266741
407 => 0.018758928360546
408 => 0.019390892608067
409 => 0.019415430347736
410 => 0.019785921084198
411 => 0.019410357745357
412 => 0.019187349433594
413 => 0.019831166073642
414 => 0.020142688665727
415 => 0.020048855525736
416 => 0.019334780697291
417 => 0.018919158519026
418 => 0.017831395110974
419 => 0.019119897855693
420 => 0.019747489956506
421 => 0.019333155385365
422 => 0.019542121642646
423 => 0.020682173784832
424 => 0.021116231827667
425 => 0.021025950789052
426 => 0.021041206798426
427 => 0.021275416639629
428 => 0.022314032057238
429 => 0.02169166962409
430 => 0.022167442384756
501 => 0.022419790541487
502 => 0.022654185572975
503 => 0.022078585456952
504 => 0.021329738163251
505 => 0.021092546790865
506 => 0.019291957977907
507 => 0.019198229510632
508 => 0.019145616881687
509 => 0.018813901698393
510 => 0.01855326442876
511 => 0.018345995995107
512 => 0.017802061729606
513 => 0.017985623576855
514 => 0.017118705885551
515 => 0.017673329102771
516 => 0.016289707534991
517 => 0.017442028691175
518 => 0.016814872675478
519 => 0.017235991072711
520 => 0.017234521830295
521 => 0.016459109345278
522 => 0.016011867606366
523 => 0.01629686744931
524 => 0.016602409904261
525 => 0.016651983139609
526 => 0.017048126907927
527 => 0.017158682118583
528 => 0.016823694668967
529 => 0.016261035053391
530 => 0.01639172804919
531 => 0.016009219116978
601 => 0.01533888692627
602 => 0.015820331208514
603 => 0.015984717454083
604 => 0.016057319785004
605 => 0.015398125063615
606 => 0.015190991770341
607 => 0.015080715743018
608 => 0.016175941292673
609 => 0.016235940220615
610 => 0.01592897722227
611 => 0.017316479082213
612 => 0.017002444678644
613 => 0.017353298047727
614 => 0.01637986902968
615 => 0.016417055329066
616 => 0.01595621843203
617 => 0.016214256301237
618 => 0.01603188345223
619 => 0.016193409391385
620 => 0.016290227373318
621 => 0.016750988651554
622 => 0.017447289844841
623 => 0.01668216628162
624 => 0.016348790988353
625 => 0.016555615145322
626 => 0.017106415130299
627 => 0.017940905302471
628 => 0.017446870324865
629 => 0.017666114658669
630 => 0.017714009792104
701 => 0.017349726689786
702 => 0.017954336940062
703 => 0.018278352485029
704 => 0.018610725388597
705 => 0.018899315467886
706 => 0.018477968341875
707 => 0.018928870164445
708 => 0.01856552289034
709 => 0.018239562823317
710 => 0.018240057170188
711 => 0.018035577658628
712 => 0.017639372838903
713 => 0.017566306591273
714 => 0.017946406438693
715 => 0.018251210520734
716 => 0.018276315644844
717 => 0.018445070846062
718 => 0.018544938435825
719 => 0.019523776578912
720 => 0.019917473377436
721 => 0.020398878370372
722 => 0.020586412745619
723 => 0.021150823980318
724 => 0.020695016069059
725 => 0.020596399160292
726 => 0.019227322122419
727 => 0.019451508410674
728 => 0.019810452288929
729 => 0.019233240974764
730 => 0.019599348697871
731 => 0.019671626117634
801 => 0.019213627555182
802 => 0.019458264376337
803 => 0.01880858150911
804 => 0.017461451155968
805 => 0.017955836681242
806 => 0.018319870836212
807 => 0.017800349211983
808 => 0.018731571615151
809 => 0.018187570711552
810 => 0.01801514854176
811 => 0.017342468184458
812 => 0.017659947419263
813 => 0.018089342630202
814 => 0.017824026312393
815 => 0.018374597509292
816 => 0.019154353156075
817 => 0.019710053465225
818 => 0.019752713234803
819 => 0.019395435165049
820 => 0.019967975551948
821 => 0.01997214588361
822 => 0.019326317988292
823 => 0.018930751998394
824 => 0.018840878573212
825 => 0.019065400010041
826 => 0.019338010483295
827 => 0.019767841218796
828 => 0.020027578930081
829 => 0.020704837126875
830 => 0.020888083776414
831 => 0.021089416287343
901 => 0.021358458610593
902 => 0.021681512900689
903 => 0.020974688505449
904 => 0.021002771956357
905 => 0.02034458686616
906 => 0.019641221703994
907 => 0.020174988186373
908 => 0.020872816858103
909 => 0.020712734189776
910 => 0.020694721619397
911 => 0.020725013766504
912 => 0.020604316662397
913 => 0.020058408133762
914 => 0.019784256288249
915 => 0.020137982112555
916 => 0.020325971645649
917 => 0.020617527017066
918 => 0.020581586663552
919 => 0.021332601989563
920 => 0.021624423835726
921 => 0.021549763319717
922 => 0.021563502651468
923 => 0.022091832164718
924 => 0.022679443242705
925 => 0.02322981855935
926 => 0.023789683970611
927 => 0.023114744365416
928 => 0.022772051658386
929 => 0.023125623057063
930 => 0.022938013096047
1001 => 0.024016075580772
1002 => 0.024090718288175
1003 => 0.025168702816711
1004 => 0.026191838498302
1005 => 0.025549225308075
1006 => 0.026155180602525
1007 => 0.026810570657734
1008 => 0.028074924407435
1009 => 0.027649134545037
1010 => 0.027322986183418
1011 => 0.027014777557625
1012 => 0.027656110781158
1013 => 0.028481175727685
1014 => 0.028658886814794
1015 => 0.028946846666769
1016 => 0.028644092092472
1017 => 0.02900872662989
1018 => 0.03029604677551
1019 => 0.029948201508674
1020 => 0.029454205310851
1021 => 0.030470420930276
1022 => 0.030838185412508
1023 => 0.033419349148567
1024 => 0.036678174987897
1025 => 0.03532899969181
1026 => 0.034491523047914
1027 => 0.034688349924441
1028 => 0.035878362802748
1029 => 0.03626055717014
1030 => 0.035221621129271
1031 => 0.035588590902779
1101 => 0.037610630434481
1102 => 0.038695389768444
1103 => 0.037222140890307
1104 => 0.033157505665425
1105 => 0.029409726358166
1106 => 0.030403806195153
1107 => 0.030291108391527
1108 => 0.032463537613772
1109 => 0.0299399055141
1110 => 0.029982397006443
1111 => 0.032199749764362
1112 => 0.031608198063599
1113 => 0.030649960068581
1114 => 0.029416722555979
1115 => 0.027136968953271
1116 => 0.025117727611721
1117 => 0.02907792488601
1118 => 0.028907153978391
1119 => 0.028659852397329
1120 => 0.029210195305158
1121 => 0.031882504248015
1122 => 0.031820898877462
1123 => 0.031428996941342
1124 => 0.031726251105824
1125 => 0.030597849976345
1126 => 0.030888664640628
1127 => 0.029409132690776
1128 => 0.030077942922821
1129 => 0.03064790412021
1130 => 0.030762332269006
1201 => 0.031020144731089
1202 => 0.028817165469966
1203 => 0.029806238482137
1204 => 0.030387226213179
1205 => 0.027762302507817
1206 => 0.030335339911298
1207 => 0.028778816502217
1208 => 0.028250509078977
1209 => 0.028961805425159
1210 => 0.028684612547293
1211 => 0.028446298388217
1212 => 0.028313314992695
1213 => 0.028835612526417
1214 => 0.028811246722189
1215 => 0.027956666583436
1216 => 0.026841901629576
1217 => 0.027216053339004
1218 => 0.027080120515278
1219 => 0.026587482426411
1220 => 0.026919461016957
1221 => 0.025457595314711
1222 => 0.022942531355163
1223 => 0.024604059645333
1224 => 0.024540092613557
1225 => 0.024507837535461
1226 => 0.025756430124254
1227 => 0.025636406756774
1228 => 0.025418563169525
1229 => 0.026583481558096
1230 => 0.026158270675904
1231 => 0.027468670422536
]
'min_raw' => 0.011763136522473
'max_raw' => 0.038695389768444
'avg_raw' => 0.025229263145458
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.011763'
'max' => '$0.038695'
'avg' => '$0.025229'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0064082534989076
'max_diff' => 0.025579608332166
'year' => 2029
]
4 => [
'items' => [
101 => 0.028331784447009
102 => 0.028112870811589
103 => 0.028924633723398
104 => 0.027224673038709
105 => 0.027789331787578
106 => 0.027905707173137
107 => 0.026569106646007
108 => 0.025656044064048
109 => 0.025595153199507
110 => 0.024012028510164
111 => 0.024857720940675
112 => 0.025601895282394
113 => 0.025245493522972
114 => 0.025132667373139
115 => 0.02570907170363
116 => 0.025753863256679
117 => 0.024732611100379
118 => 0.024944961762524
119 => 0.025830499324026
120 => 0.024922648488029
121 => 0.023158842610278
122 => 0.022721394366072
123 => 0.022663030706524
124 => 0.021476636373779
125 => 0.02275062674949
126 => 0.022194495809673
127 => 0.023951306785084
128 => 0.022947825777895
129 => 0.022904567717308
130 => 0.022839176814151
131 => 0.021817998202625
201 => 0.022041571419263
202 => 0.02278476284253
203 => 0.023049941915002
204 => 0.023022281565195
205 => 0.022781120799109
206 => 0.02289152296288
207 => 0.022535879126709
208 => 0.022410293886071
209 => 0.022013912321675
210 => 0.021431340925214
211 => 0.02151235105101
212 => 0.020358124676524
213 => 0.019729240888274
214 => 0.019555174144242
215 => 0.019322404819371
216 => 0.019581466058861
217 => 0.020354854898226
218 => 0.019421983874357
219 => 0.017822641937226
220 => 0.017918765112794
221 => 0.018134725349067
222 => 0.017732284877492
223 => 0.017351408745414
224 => 0.017682549640798
225 => 0.017004887378284
226 => 0.018216617595922
227 => 0.01818384368937
228 => 0.018635501781612
301 => 0.018917932855648
302 => 0.018267020668141
303 => 0.018103318013237
304 => 0.018196570485341
305 => 0.016655314843906
306 => 0.018509548314007
307 => 0.018525583802055
308 => 0.01838827821796
309 => 0.019375600297752
310 => 0.021459157839595
311 => 0.020675239681446
312 => 0.020371682876559
313 => 0.01979462116857
314 => 0.020563521631931
315 => 0.020504482073061
316 => 0.020237482797761
317 => 0.020076000802971
318 => 0.02037353632968
319 => 0.020039132858532
320 => 0.019979064806321
321 => 0.019615117764608
322 => 0.019485205229252
323 => 0.019389023160041
324 => 0.019283136152495
325 => 0.019516696505744
326 => 0.01898741801786
327 => 0.018349160047282
328 => 0.018296095803075
329 => 0.018442610846786
330 => 0.018377788846706
331 => 0.018295785460278
401 => 0.018139218663292
402 => 0.018092768639147
403 => 0.018243708683271
404 => 0.018073306173807
405 => 0.018324744358826
406 => 0.01825636708521
407 => 0.017874417193153
408 => 0.017398366211689
409 => 0.017394128359403
410 => 0.017291563956327
411 => 0.017160932768347
412 => 0.017124594160288
413 => 0.017654661878216
414 => 0.018751886190735
415 => 0.018536474803835
416 => 0.018692131607117
417 => 0.019457809020064
418 => 0.019701194844917
419 => 0.019528445351346
420 => 0.019291975189821
421 => 0.019302378676821
422 => 0.020110468803139
423 => 0.020160868393094
424 => 0.020288211897386
425 => 0.020451884287671
426 => 0.019556319467151
427 => 0.019260197654312
428 => 0.019119878711176
429 => 0.018687750676582
430 => 0.019153763714034
501 => 0.018882237873779
502 => 0.018918875986272
503 => 0.018895015367446
504 => 0.018908044878773
505 => 0.018216278892632
506 => 0.018468322059832
507 => 0.018049251409785
508 => 0.017488162852261
509 => 0.017486281886673
510 => 0.017623607516233
511 => 0.017541920858218
512 => 0.017322104161856
513 => 0.017353328086069
514 => 0.017079773654608
515 => 0.017386542546911
516 => 0.01739533958107
517 => 0.017277216847719
518 => 0.017749836652261
519 => 0.017943469371803
520 => 0.017865718458277
521 => 0.017938014160442
522 => 0.018545426119485
523 => 0.01864446077205
524 => 0.018688445422858
525 => 0.018629511817625
526 => 0.017949116536011
527 => 0.017979294960015
528 => 0.017757865708374
529 => 0.017570781324378
530 => 0.01757826371861
531 => 0.017674449411251
601 => 0.018094497972234
602 => 0.018978465405607
603 => 0.019012011323532
604 => 0.01905266995466
605 => 0.018887290868471
606 => 0.018837410953611
607 => 0.018903215436409
608 => 0.019235187127584
609 => 0.020089108446722
610 => 0.019787275621051
611 => 0.019541880835473
612 => 0.019757158220385
613 => 0.019724017954377
614 => 0.019444280758092
615 => 0.019436429466686
616 => 0.018899524349623
617 => 0.018701042752583
618 => 0.018535176674006
619 => 0.018354055246244
620 => 0.018246680392621
621 => 0.018411656968784
622 => 0.018449389063698
623 => 0.018088664896621
624 => 0.01803949952557
625 => 0.018334074667177
626 => 0.018204443130224
627 => 0.018337772380688
628 => 0.018368705910472
629 => 0.018363724899717
630 => 0.018228374687051
701 => 0.018314642876403
702 => 0.018110592890801
703 => 0.017888719178775
704 => 0.017747177573724
705 => 0.017623663750547
706 => 0.017692196398311
707 => 0.017447890022599
708 => 0.017369731496092
709 => 0.018285417154947
710 => 0.018961843996422
711 => 0.018952008482252
712 => 0.018892137319235
713 => 0.018803180915412
714 => 0.019228679412569
715 => 0.019080444244271
716 => 0.019188297714671
717 => 0.019215750949484
718 => 0.019298843622876
719 => 0.019328542111558
720 => 0.019238772651836
721 => 0.018937495380595
722 => 0.018186741065244
723 => 0.017837262904826
724 => 0.017721929290869
725 => 0.017726121448686
726 => 0.01761048302146
727 => 0.017644543720829
728 => 0.017598638100227
729 => 0.017511703960569
730 => 0.017686828460161
731 => 0.017707009927341
801 => 0.017666133776555
802 => 0.017675761589803
803 => 0.017337324519722
804 => 0.017363055155114
805 => 0.017219783707563
806 => 0.01719292203831
807 => 0.016830744294972
808 => 0.016189093924147
809 => 0.016544630516093
810 => 0.016115192309032
811 => 0.015952557552967
812 => 0.016722445193283
813 => 0.016645169827555
814 => 0.016512907992221
815 => 0.016317265171982
816 => 0.016244699346864
817 => 0.015803812364996
818 => 0.015777762410067
819 => 0.01599627790323
820 => 0.015895440521794
821 => 0.015753826648156
822 => 0.015240915553004
823 => 0.014664233663026
824 => 0.014681640064391
825 => 0.014865071844045
826 => 0.015398424482535
827 => 0.015190034379583
828 => 0.01503884496889
829 => 0.015010531737004
830 => 0.015364931111821
831 => 0.01586648047615
901 => 0.016101796216359
902 => 0.015868605464457
903 => 0.015600728484554
904 => 0.015617032915098
905 => 0.015725498986996
906 => 0.015736897237525
907 => 0.015562536861806
908 => 0.015611618286249
909 => 0.015537059114421
910 => 0.015079489614536
911 => 0.015071213633251
912 => 0.014958918698675
913 => 0.014955518452685
914 => 0.014764476755685
915 => 0.014737748701666
916 => 0.014358423816872
917 => 0.014608096604745
918 => 0.014440629207049
919 => 0.014188216337157
920 => 0.014144700263247
921 => 0.014143392117518
922 => 0.014402563696413
923 => 0.014605068033949
924 => 0.014443542374131
925 => 0.014406766112434
926 => 0.014799440372812
927 => 0.014749468993874
928 => 0.014706194101994
929 => 0.015821572231616
930 => 0.014938663407979
1001 => 0.0145536647662
1002 => 0.014077155837739
1003 => 0.014232309547612
1004 => 0.014265002713965
1005 => 0.013119084638206
1006 => 0.012654185817586
1007 => 0.012494650061691
1008 => 0.01240283497867
1009 => 0.012444676264944
1010 => 0.012026212799193
1011 => 0.012307427168924
1012 => 0.01194507317942
1013 => 0.011884323353878
1014 => 0.012532257174157
1015 => 0.012622413380074
1016 => 0.012237778996293
1017 => 0.012484776537331
1018 => 0.012395211795428
1019 => 0.011951284698551
1020 => 0.011934329948757
1021 => 0.011711582936336
1022 => 0.011363026994218
1023 => 0.011203727575666
1024 => 0.011120763055382
1025 => 0.011154995833398
1026 => 0.011137686693293
1027 => 0.011024732845756
1028 => 0.011144161075615
1029 => 0.010839071299478
1030 => 0.010717582092345
1031 => 0.010662708236011
1101 => 0.010391923499377
1102 => 0.01082286243388
1103 => 0.010907762832803
1104 => 0.010992830511739
1105 => 0.011733286578703
1106 => 0.011696295486105
1107 => 0.012030676947802
1108 => 0.012017683499088
1109 => 0.011922312489592
1110 => 0.011519957888296
1111 => 0.011680329261091
1112 => 0.011186731102871
1113 => 0.011556568404422
1114 => 0.011387790104769
1115 => 0.011499504291534
1116 => 0.011298632110869
1117 => 0.011409803069458
1118 => 0.010927895866985
1119 => 0.010477897701933
1120 => 0.010658990099815
1121 => 0.010855858246741
1122 => 0.011282718550347
1123 => 0.01102848407504
1124 => 0.01111991640603
1125 => 0.010813633402801
1126 => 0.010181684081724
1127 => 0.010185260846251
1128 => 0.010088049210968
1129 => 0.010004044164952
1130 => 0.011057685962819
1201 => 0.010926648949642
1202 => 0.010717858618845
1203 => 0.010997332773615
1204 => 0.011071230175987
1205 => 0.011073333931145
1206 => 0.011277231060193
1207 => 0.011386050994516
1208 => 0.011405230979593
1209 => 0.011726067517639
1210 => 0.011833607693255
1211 => 0.012276550456965
1212 => 0.011376818383371
1213 => 0.011358288993401
1214 => 0.011001265548102
1215 => 0.010774835634777
1216 => 0.011016769397987
1217 => 0.011231089684939
1218 => 0.011007925076833
1219 => 0.01103706566339
1220 => 0.010737485410226
1221 => 0.010844571254171
1222 => 0.010936808008998
1223 => 0.010885880294408
1224 => 0.010809639040739
1225 => 0.011213517865485
1226 => 0.011190729439379
1227 => 0.011566830686117
1228 => 0.011860028503208
1229 => 0.012385491406813
1230 => 0.0118371434739
1231 => 0.011817159495739
]
'min_raw' => 0.010004044164952
'max_raw' => 0.028924633723398
'avg_raw' => 0.019464338944175
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010004'
'max' => '$0.028924'
'avg' => '$0.019464'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0017590923575209
'max_diff' => -0.0097707560450453
'year' => 2030
]
5 => [
'items' => [
101 => 0.012012506087794
102 => 0.01183357778671
103 => 0.0119466542966
104 => 0.012367273032914
105 => 0.01237616004401
106 => 0.012227291157885
107 => 0.012218232472635
108 => 0.012246824370662
109 => 0.012414288010461
110 => 0.012355771069077
111 => 0.012423488355114
112 => 0.012508169858227
113 => 0.012858448459314
114 => 0.012942899444173
115 => 0.01273772733378
116 => 0.012756252078134
117 => 0.012679512076746
118 => 0.012605382196956
119 => 0.012772015340926
120 => 0.013076540686714
121 => 0.013074646250343
122 => 0.013145290211439
123 => 0.013189300813956
124 => 0.013000375090224
125 => 0.012877391391066
126 => 0.012924551166979
127 => 0.012999960675671
128 => 0.012900096879655
129 => 0.012283691269232
130 => 0.012470669355291
131 => 0.01243954705901
201 => 0.012395225124504
202 => 0.012583233035896
203 => 0.012565099214194
204 => 0.012021920851514
205 => 0.012056693367955
206 => 0.012024035483409
207 => 0.012129559789551
208 => 0.011827879127877
209 => 0.011920674067558
210 => 0.011978874183827
211 => 0.012013154499424
212 => 0.012136998505593
213 => 0.012122466840871
214 => 0.01213609519691
215 => 0.012319723164453
216 => 0.013248450410775
217 => 0.013298998985671
218 => 0.01305007931561
219 => 0.013149517814076
220 => 0.01295861764183
221 => 0.013086770206379
222 => 0.01317444893632
223 => 0.012778245615363
224 => 0.012754785026034
225 => 0.012563096940871
226 => 0.012666099260069
227 => 0.012502215164095
228 => 0.012542426588825
301 => 0.012429991939712
302 => 0.0126323519226
303 => 0.012858621827032
304 => 0.012915786540561
305 => 0.012765410790223
306 => 0.012656528836734
307 => 0.012465367994352
308 => 0.01278327273553
309 => 0.012876237769823
310 => 0.012782784429782
311 => 0.012761129248899
312 => 0.012720092720255
313 => 0.012769835342442
314 => 0.012875731462281
315 => 0.012825792807759
316 => 0.012858778168876
317 => 0.012733071986654
318 => 0.0130004376325
319 => 0.013425078623149
320 => 0.01342644391337
321 => 0.013376504989661
322 => 0.013356071058028
323 => 0.013407311424301
324 => 0.013435107221014
325 => 0.013600809169665
326 => 0.013778613962424
327 => 0.014608351347923
328 => 0.014375364410322
329 => 0.015111556780034
330 => 0.015693789361862
331 => 0.015868375455207
401 => 0.01570776446424
402 => 0.015158322940178
403 => 0.015131364717758
404 => 0.015952462322935
405 => 0.015720464640819
406 => 0.015692869254742
407 => 0.015399300970023
408 => 0.015572836185431
409 => 0.015534881488213
410 => 0.015474968141848
411 => 0.01580606124428
412 => 0.016425837975148
413 => 0.016329239959412
414 => 0.016257134021719
415 => 0.01594118679247
416 => 0.016131457593846
417 => 0.016063705805873
418 => 0.016354810483352
419 => 0.016182366521172
420 => 0.015718707030201
421 => 0.01579254633238
422 => 0.0157813856704
423 => 0.016011071303101
424 => 0.015942125377312
425 => 0.015767922871847
426 => 0.01642371964566
427 => 0.016381135850902
428 => 0.016441509935858
429 => 0.016468088475186
430 => 0.016867260414971
501 => 0.017030788386623
502 => 0.017067912099148
503 => 0.017223251024511
504 => 0.017064047125175
505 => 0.017700976232975
506 => 0.018124496923819
507 => 0.018616438000409
508 => 0.019335296134603
509 => 0.01960559344287
510 => 0.019556766653469
511 => 0.020101796686601
512 => 0.021081203540801
513 => 0.019754732781017
514 => 0.021151509711992
515 => 0.020709306262211
516 => 0.019660849837678
517 => 0.019593341604428
518 => 0.02030336846795
519 => 0.021878139713691
520 => 0.02148367737754
521 => 0.02187878491276
522 => 0.021417870985554
523 => 0.02139498272418
524 => 0.021856399352095
525 => 0.022934524453729
526 => 0.022422347630858
527 => 0.021688016564363
528 => 0.022230235196406
529 => 0.021760515237365
530 => 0.020702104703307
531 => 0.021483375739626
601 => 0.020960962046957
602 => 0.021113430135517
603 => 0.022211466014335
604 => 0.022079347432353
605 => 0.022250321111289
606 => 0.021948557043127
607 => 0.021666661819639
608 => 0.021140483451183
609 => 0.020984707976563
610 => 0.021027758713533
611 => 0.020984686642756
612 => 0.020690294681434
613 => 0.020626720765415
614 => 0.020520761453481
615 => 0.020553602674904
616 => 0.020354368168977
617 => 0.02073036484561
618 => 0.020800153142064
619 => 0.021073772167797
620 => 0.021102180202744
621 => 0.021864205294686
622 => 0.021444494679356
623 => 0.021726072796191
624 => 0.021700885799105
625 => 0.019683573067596
626 => 0.019961540963097
627 => 0.020393971777366
628 => 0.020199162281684
629 => 0.019923747233191
630 => 0.019701334814712
701 => 0.01936435725788
702 => 0.019838646698041
703 => 0.020462286876793
704 => 0.021117996746841
705 => 0.02190578919189
706 => 0.02172996308907
707 => 0.021103269515057
708 => 0.021131382530988
709 => 0.021305166133404
710 => 0.021080100578369
711 => 0.021013724352388
712 => 0.021296047059231
713 => 0.021297991260551
714 => 0.021039026139402
715 => 0.020751233797363
716 => 0.020750027936941
717 => 0.020698818069419
718 => 0.021426981107223
719 => 0.021827397152427
720 => 0.021873304206707
721 => 0.021824307241906
722 => 0.021843164229038
723 => 0.021610170954899
724 => 0.022142724487572
725 => 0.022631448273238
726 => 0.022500459858619
727 => 0.022304089604004
728 => 0.022147671237731
729 => 0.022463612662572
730 => 0.022449544288262
731 => 0.022627179697324
801 => 0.022619121129097
802 => 0.022559389022235
803 => 0.022500461991841
804 => 0.022734101006545
805 => 0.022666816722438
806 => 0.022599427927253
807 => 0.022464269381802
808 => 0.022482639672874
809 => 0.022286303324353
810 => 0.022195469145786
811 => 0.02082954104182
812 => 0.020464520419451
813 => 0.020579363337928
814 => 0.020617172608586
815 => 0.020458315165945
816 => 0.020686075931564
817 => 0.0206505796575
818 => 0.020788674895255
819 => 0.020702398986104
820 => 0.02070593977951
821 => 0.020959658832359
822 => 0.0210333145528
823 => 0.020995852658909
824 => 0.021022089685272
825 => 0.021626710883834
826 => 0.021540753084096
827 => 0.021495089716188
828 => 0.021507738781168
829 => 0.021662232460625
830 => 0.021705482255831
831 => 0.021522229834434
901 => 0.021608652735735
902 => 0.021976630480772
903 => 0.022105401865799
904 => 0.022516378313032
905 => 0.022341788213723
906 => 0.022662255897087
907 => 0.023647264300262
908 => 0.024434157170115
909 => 0.023710497967275
910 => 0.025155526512558
911 => 0.026280688512094
912 => 0.026237502920496
913 => 0.026041304900411
914 => 0.024760337877919
915 => 0.023581572925679
916 => 0.024567659861231
917 => 0.02457017359962
918 => 0.024485467857339
919 => 0.023959367766919
920 => 0.024467160714581
921 => 0.024507467474733
922 => 0.02448490640748
923 => 0.024081546701662
924 => 0.023465690984211
925 => 0.023586027717251
926 => 0.023783141740772
927 => 0.023409963771953
928 => 0.023290710799265
929 => 0.023512424764299
930 => 0.024226833355577
1001 => 0.024091778549683
1002 => 0.024088251722902
1003 => 0.024666073454667
1004 => 0.024252477796457
1005 => 0.023587545548826
1006 => 0.02341964138692
1007 => 0.022823694725951
1008 => 0.023235317207372
1009 => 0.023250130767681
1010 => 0.023024689341286
1011 => 0.023605838878099
1012 => 0.023600483482808
1013 => 0.024152198475319
1014 => 0.025206870326311
1015 => 0.024894951962723
1016 => 0.024532224842491
1017 => 0.024571663337792
1018 => 0.025004206288746
1019 => 0.024742680946604
1020 => 0.024836727283058
1021 => 0.025004063938352
1022 => 0.025105022297227
1023 => 0.024557136983611
1024 => 0.024429398708623
1025 => 0.024168091028041
1026 => 0.024099920731715
1027 => 0.024312750385186
1028 => 0.024256677290879
1029 => 0.023248885745298
1030 => 0.023143565921485
1031 => 0.023146795930119
1101 => 0.022881964225458
1102 => 0.022478032308958
1103 => 0.023539541267999
1104 => 0.02345428724278
1105 => 0.023360173397075
1106 => 0.023371701806168
1107 => 0.023832466867411
1108 => 0.023565199862696
1109 => 0.02427577299893
1110 => 0.024129700523904
1111 => 0.023979881841076
1112 => 0.02395917233552
1113 => 0.02390150492456
1114 => 0.023703741915281
1115 => 0.023464931197862
1116 => 0.023307247676792
1117 => 0.02149970396539
1118 => 0.021835173564228
1119 => 0.022221100758676
1120 => 0.022354321279693
1121 => 0.022126438359914
1122 => 0.023712740121917
1123 => 0.024002572739819
1124 => 0.02312465083488
1125 => 0.022960427491781
1126 => 0.02372350657695
1127 => 0.023263276605969
1128 => 0.023470518133722
1129 => 0.023022575305775
1130 => 0.023932760549456
1201 => 0.023925826462877
1202 => 0.023571743845619
1203 => 0.023871012049072
1204 => 0.023819006834093
1205 => 0.023419248431276
1206 => 0.023945433603862
1207 => 0.023945694585143
1208 => 0.023604897764452
1209 => 0.023206921687902
1210 => 0.02313577296519
1211 => 0.023082171960113
1212 => 0.023457335572274
1213 => 0.023793706093832
1214 => 0.024419608241126
1215 => 0.024576974912024
1216 => 0.025191187505032
1217 => 0.024825453811364
1218 => 0.024987578820723
1219 => 0.025163588452365
1220 => 0.025247973942313
1221 => 0.025110472314817
1222 => 0.026064597291747
1223 => 0.026145154673434
1224 => 0.026172164866695
1225 => 0.025850439292798
1226 => 0.026136206903227
1227 => 0.026002505701936
1228 => 0.026350359084432
1229 => 0.026404906936422
1230 => 0.026358706846382
1231 => 0.026376021195583
]
'min_raw' => 0.011827879127877
'max_raw' => 0.026404906936422
'avg_raw' => 0.01911639303215
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.011827'
'max' => '$0.0264049'
'avg' => '$0.019116'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0018238349629251
'max_diff' => -0.0025197267869762
'year' => 2031
]
6 => [
'items' => [
101 => 0.025561843846953
102 => 0.025519624456299
103 => 0.024943960068978
104 => 0.025178547561908
105 => 0.024739997487947
106 => 0.024879066233966
107 => 0.024940366412116
108 => 0.024908346677805
109 => 0.025191810786786
110 => 0.024950808386261
111 => 0.024314763426812
112 => 0.02367854517734
113 => 0.02367055797547
114 => 0.023503052940568
115 => 0.023381977480412
116 => 0.023405300909421
117 => 0.023487495715371
118 => 0.023377200168868
119 => 0.023400737315841
120 => 0.023791610782772
121 => 0.023869997668984
122 => 0.023603608401905
123 => 0.022534017054795
124 => 0.022271536655348
125 => 0.022460202361258
126 => 0.022370032305461
127 => 0.018054361979944
128 => 0.019068264707681
129 => 0.018465838135743
130 => 0.018743464016406
131 => 0.018128542484062
201 => 0.018422015270095
202 => 0.018367821562425
203 => 0.019998147145064
204 => 0.019972691853531
205 => 0.019984875954524
206 => 0.019403297068622
207 => 0.020329768025451
208 => 0.020786180933602
209 => 0.020701711051339
210 => 0.020722970300873
211 => 0.020357665958627
212 => 0.019988412899072
213 => 0.019578854428388
214 => 0.020339763443962
215 => 0.020255163350581
216 => 0.020449205526646
217 => 0.020942709414146
218 => 0.021015379736219
219 => 0.021113049386035
220 => 0.021078041769175
221 => 0.021912065229681
222 => 0.021811059485549
223 => 0.02205445426757
224 => 0.021553772734547
225 => 0.020987204054805
226 => 0.021094890238298
227 => 0.02108451919287
228 => 0.02095248388124
229 => 0.020833288305598
301 => 0.020634861255299
302 => 0.021262713804123
303 => 0.021237224137234
304 => 0.021649872215669
305 => 0.021576932659556
306 => 0.021089824452497
307 => 0.021107221617406
308 => 0.021224225912215
309 => 0.021629179112478
310 => 0.021749396793633
311 => 0.021693707173876
312 => 0.021825520373116
313 => 0.021929700151339
314 => 0.021838603749281
315 => 0.023128336697109
316 => 0.022592749657303
317 => 0.022853791053914
318 => 0.022916047888861
319 => 0.022756578315265
320 => 0.022791161555601
321 => 0.02284354574134
322 => 0.023161612259274
323 => 0.023996310835621
324 => 0.0243659931531
325 => 0.025478200645039
326 => 0.02433529618286
327 => 0.024267480961883
328 => 0.02446782311663
329 => 0.025120806653517
330 => 0.02564998847854
331 => 0.025825548619132
401 => 0.025848751789893
402 => 0.026178114284661
403 => 0.026366898724415
404 => 0.026138121014703
405 => 0.025944255859746
406 => 0.02524985493812
407 => 0.025330233735589
408 => 0.025883963942333
409 => 0.026666140473906
410 => 0.027337329309593
411 => 0.027102302372628
412 => 0.028895391998512
413 => 0.029073169510804
414 => 0.02904860640684
415 => 0.029453610036682
416 => 0.028649760309
417 => 0.028306098976561
418 => 0.025986171706711
419 => 0.026637976640935
420 => 0.027585413391992
421 => 0.027460016585284
422 => 0.02677196269161
423 => 0.027336807359016
424 => 0.027150052047645
425 => 0.027002750385083
426 => 0.027677567857115
427 => 0.026935578326642
428 => 0.027578011478833
429 => 0.026754084316028
430 => 0.027103375955879
501 => 0.026905101127764
502 => 0.027033409241203
503 => 0.026283322631801
504 => 0.026688051158911
505 => 0.026266484594449
506 => 0.026266284717008
507 => 0.026256978611732
508 => 0.026752949805309
509 => 0.026769123408126
510 => 0.026402599946701
511 => 0.026349778189738
512 => 0.026545087910236
513 => 0.026316431379229
514 => 0.02642341833094
515 => 0.026319671905007
516 => 0.026296316399295
517 => 0.026110215756173
518 => 0.026030038482173
519 => 0.026061478057222
520 => 0.025954158579366
521 => 0.025889494712043
522 => 0.026244115340955
523 => 0.026054655844283
524 => 0.026215077955859
525 => 0.026032256712834
526 => 0.025398518633085
527 => 0.025034049161762
528 => 0.023836976676668
529 => 0.024176464948477
530 => 0.024401546023912
531 => 0.024327156729823
601 => 0.024486973718361
602 => 0.024496785183478
603 => 0.024444827051363
604 => 0.024384666190622
605 => 0.024355383210718
606 => 0.024573634551828
607 => 0.024700336801344
608 => 0.024424135921028
609 => 0.024359425919231
610 => 0.024638680258699
611 => 0.024809025244455
612 => 0.026066756910694
613 => 0.025973580086439
614 => 0.026207435630291
615 => 0.026181107084859
616 => 0.026426224950925
617 => 0.026826889067403
618 => 0.026012226891154
619 => 0.026153624076052
620 => 0.026118956751653
621 => 0.026497445509183
622 => 0.02649862710977
623 => 0.026271704192715
624 => 0.026394722787455
625 => 0.02632605718271
626 => 0.026450145211197
627 => 0.025972335653144
628 => 0.026554256118498
629 => 0.026884167524227
630 => 0.026888748344416
701 => 0.027045123732392
702 => 0.027204010183228
703 => 0.027508978889515
704 => 0.027195504771532
705 => 0.026631595349372
706 => 0.026672307788235
707 => 0.026341687900349
708 => 0.026347245680396
709 => 0.026317577814935
710 => 0.026406613312475
711 => 0.025991873937954
712 => 0.026089212440185
713 => 0.025952937967048
714 => 0.026153327841961
715 => 0.025937741462188
716 => 0.026118940034019
717 => 0.026197139330794
718 => 0.026485696419403
719 => 0.025895121345581
720 => 0.024690898791641
721 => 0.024944040972267
722 => 0.024569623803232
723 => 0.024604277537733
724 => 0.024674283596526
725 => 0.024447371055422
726 => 0.024490658817429
727 => 0.024489112273958
728 => 0.024475784997843
729 => 0.024416756282124
730 => 0.024331152965855
731 => 0.024672170230557
801 => 0.024730115708988
802 => 0.024858921329612
803 => 0.025242159486904
804 => 0.025203864957613
805 => 0.025266324923712
806 => 0.025129975168415
807 => 0.024610602411821
808 => 0.024638806851282
809 => 0.02428709703926
810 => 0.024849927318967
811 => 0.024716641679736
812 => 0.024630711561049
813 => 0.024607264732029
814 => 0.024991452862586
815 => 0.02510640797266
816 => 0.025034775662412
817 => 0.024887855704246
818 => 0.025169985456912
819 => 0.025245471476626
820 => 0.025262370012623
821 => 0.025762249841332
822 => 0.025290307742076
823 => 0.025403908896068
824 => 0.026290192670634
825 => 0.025486455585903
826 => 0.025912213045161
827 => 0.025891374433065
828 => 0.026109177542374
829 => 0.025873508220905
830 => 0.025876429624592
831 => 0.026069824030398
901 => 0.025798236466308
902 => 0.025730987566095
903 => 0.025638083692096
904 => 0.025840935902152
905 => 0.025962536627864
906 => 0.026942549171213
907 => 0.027575681968218
908 => 0.027548196003731
909 => 0.027799366267572
910 => 0.027686211763256
911 => 0.027320806020168
912 => 0.027944509067135
913 => 0.027747143326231
914 => 0.027763413918112
915 => 0.027762808325869
916 => 0.027894039289558
917 => 0.027801050124643
918 => 0.027617758935454
919 => 0.02773943618068
920 => 0.028100774098587
921 => 0.029222378082974
922 => 0.029850042531914
923 => 0.02918459189503
924 => 0.029643610833613
925 => 0.029368363035634
926 => 0.029318342322829
927 => 0.029606640137492
928 => 0.029895442579316
929 => 0.029877047112299
930 => 0.029667391369704
1001 => 0.02954896216053
1002 => 0.030445747809093
1003 => 0.031106484198609
1004 => 0.031061426406477
1005 => 0.031260296847369
1006 => 0.031844186612658
1007 => 0.031897570175251
1008 => 0.031890845073372
1009 => 0.031758528343486
1010 => 0.03233344364508
1011 => 0.032813048104343
1012 => 0.031727900843515
1013 => 0.032141110714818
1014 => 0.032326613938836
1015 => 0.032598987708021
1016 => 0.033058527911781
1017 => 0.033557710460084
1018 => 0.033628300345672
1019 => 0.03357821344381
1020 => 0.033248989134457
1021 => 0.033795200635296
1022 => 0.034115158522252
1023 => 0.034305686121828
1024 => 0.034788832413583
1025 => 0.032327759543595
1026 => 0.030585689842959
1027 => 0.030313640503413
1028 => 0.030866863533191
1029 => 0.031012744034273
1030 => 0.030953939787205
1031 => 0.028993081957092
1101 => 0.030303316992747
1102 => 0.03171301972342
1103 => 0.0317671721465
1104 => 0.032472898808969
1105 => 0.032702712338982
1106 => 0.033270914803978
1107 => 0.033235373585088
1108 => 0.033373721843238
1109 => 0.033341917974548
1110 => 0.034394393391807
1111 => 0.035555430071157
1112 => 0.035515227062821
1113 => 0.035348314303402
1114 => 0.035596208213994
1115 => 0.036794522491335
1116 => 0.036684200915272
1117 => 0.036791368929247
1118 => 0.038204248996265
1119 => 0.040041194063234
1120 => 0.039187748653357
1121 => 0.041039479620488
1122 => 0.042205046108256
1123 => 0.044220772827026
1124 => 0.043968393914173
1125 => 0.044753101533704
1126 => 0.043516582987097
1127 => 0.040677286462457
1128 => 0.040227956919042
1129 => 0.041127526043794
1130 => 0.043339028958327
1201 => 0.041057877946945
1202 => 0.04151935182557
1203 => 0.041386447317481
1204 => 0.041379365401053
1205 => 0.041649653346884
1206 => 0.041257586584185
1207 => 0.039660236061483
1208 => 0.040392292392791
1209 => 0.040109610287041
1210 => 0.040423267158718
1211 => 0.042115943933227
1212 => 0.041367571182842
1213 => 0.040579221283177
1214 => 0.041567987006205
1215 => 0.042827025548384
1216 => 0.042748237179124
1217 => 0.042595354811777
1218 => 0.043457144711854
1219 => 0.044880569146033
1220 => 0.045265315050809
1221 => 0.045549326611931
1222 => 0.045588487007795
1223 => 0.045991863423246
1224 => 0.043822806773424
1225 => 0.047265155382016
1226 => 0.047859553893759
1227 => 0.047747831608846
1228 => 0.048408480538535
1229 => 0.048214100864374
1230 => 0.047932475213753
1231 => 0.048979744291367
]
'min_raw' => 0.018054361979944
'max_raw' => 0.048979744291367
'avg_raw' => 0.033517053135655
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.018054'
'max' => '$0.048979'
'avg' => '$0.033517'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.006226482852067
'max_diff' => 0.022574837354945
'year' => 2032
]
7 => [
'items' => [
101 => 0.047779134804139
102 => 0.04607502078955
103 => 0.045140110137593
104 => 0.046371275901181
105 => 0.04712310587124
106 => 0.047620017656082
107 => 0.047770382861933
108 => 0.043991184466637
109 => 0.041954406135525
110 => 0.043259957694057
111 => 0.044852820699821
112 => 0.043813958339001
113 => 0.043854679776719
114 => 0.042373535058415
115 => 0.044983869141966
116 => 0.044603565422358
117 => 0.046576581792429
118 => 0.046105705601266
119 => 0.047714623859005
120 => 0.04729094176102
121 => 0.04904962246201
122 => 0.049751207808014
123 => 0.050929278796994
124 => 0.0517958726121
125 => 0.052304753075629
126 => 0.052274201801361
127 => 0.0542906397211
128 => 0.053101616728805
129 => 0.051607923619279
130 => 0.051580907423469
131 => 0.052354512250688
201 => 0.053975775740418
202 => 0.05439614577488
203 => 0.05463107527621
204 => 0.054271272566969
205 => 0.052980673326878
206 => 0.052423399118493
207 => 0.052898212889825
208 => 0.052317556448699
209 => 0.053319932369505
210 => 0.054696408604716
211 => 0.054412171705322
212 => 0.055362333044818
213 => 0.05634565007131
214 => 0.057751837582723
215 => 0.058119467069179
216 => 0.058727144630594
217 => 0.05935264445297
218 => 0.059553538138225
219 => 0.059937106517025
220 => 0.059935084922334
221 => 0.061090994048977
222 => 0.062365997611191
223 => 0.062847281939527
224 => 0.063953968714361
225 => 0.062058806395387
226 => 0.063496308784384
227 => 0.064792971922279
228 => 0.063247036674135
301 => 0.065377748256985
302 => 0.065460478959451
303 => 0.066709614344271
304 => 0.065443376326372
305 => 0.064691488233319
306 => 0.066862160985085
307 => 0.067912481154113
308 => 0.067596116171413
309 => 0.065188563032197
310 => 0.063787263840361
311 => 0.060119793564901
312 => 0.06446407052911
313 => 0.066580041114079
314 => 0.065183083179563
315 => 0.065887627505542
316 => 0.069731392898823
317 => 0.071194849895206
318 => 0.070890461070295
319 => 0.070941897771038
320 => 0.071731552602663
321 => 0.075233316996945
322 => 0.073134978601628
323 => 0.074739079681608
324 => 0.075589889110413
325 => 0.076380168324012
326 => 0.074439492345724
327 => 0.071914701412164
328 => 0.071114994139993
329 => 0.065044183244007
330 => 0.064728171172675
331 => 0.064550784020891
401 => 0.063432383120803
402 => 0.062553626369122
403 => 0.06185480637404
404 => 0.060020894021627
405 => 0.060639785605505
406 => 0.057716912083014
407 => 0.059586862982426
408 => 0.054921886265282
409 => 0.058807017495851
410 => 0.056692517202293
411 => 0.058112347280114
412 => 0.058107393626729
413 => 0.055493036295924
414 => 0.053985129547761
415 => 0.054946026416299
416 => 0.05597618413546
417 => 0.056143323759527
418 => 0.057478950132287
419 => 0.057851694743732
420 => 0.056722261169273
421 => 0.054825214991721
422 => 0.055265855551749
423 => 0.053976199980877
424 => 0.051716128198807
425 => 0.053339351209757
426 => 0.053893590913773
427 => 0.054138374741406
428 => 0.051915853714738
429 => 0.05121748935488
430 => 0.050845686029537
501 => 0.054538315436402
502 => 0.054740606010949
503 => 0.053705658830559
504 => 0.058383718223643
505 => 0.057324929306829
506 => 0.058507855936493
507 => 0.055225872039503
508 => 0.055351248244145
509 => 0.053797504471185
510 => 0.054667497162846
511 => 0.054052614369553
512 => 0.054597210350795
513 => 0.054923638936498
514 => 0.056477127755394
515 => 0.05882475584276
516 => 0.056245088330138
517 => 0.055121090253369
518 => 0.055818412338591
519 => 0.057675472943568
520 => 0.06048901482129
521 => 0.058823341401871
522 => 0.05956253898044
523 => 0.059724020766746
524 => 0.058495814853848
525 => 0.060534300525193
526 => 0.061626741557094
527 => 0.062747360007006
528 => 0.063720361608048
529 => 0.062299760355183
530 => 0.063820007330939
531 => 0.062594956628197
601 => 0.061495959504423
602 => 0.061497626229414
603 => 0.060808209279884
604 => 0.059472377068045
605 => 0.059226029112839
606 => 0.060507562286139
607 => 0.061535230529482
608 => 0.061619874208203
609 => 0.062188844151218
610 => 0.062525554702639
611 => 0.065825775842354
612 => 0.067153152085609
613 => 0.068776242629915
614 => 0.069408527869293
615 => 0.071311479753016
616 => 0.069774691556714
617 => 0.069442197763593
618 => 0.064826258944498
619 => 0.065582118667535
620 => 0.066792323013733
621 => 0.064846214768421
622 => 0.066080572517701
623 => 0.066324260884681
624 => 0.064780086754932
625 => 0.065604896877456
626 => 0.063414445731191
627 => 0.058872501691936
628 => 0.060539357007292
629 => 0.061766723576827
630 => 0.060015120148894
701 => 0.063154801497049
702 => 0.061320664469636
703 => 0.060739331086049
704 => 0.058471342296364
705 => 0.059541745702201
706 => 0.060989481635297
707 => 0.060094949146011
708 => 0.061951238376008
709 => 0.064580238979939
710 => 0.066453821369993
711 => 0.066597651761536
712 => 0.065393063805003
713 => 0.067323423692925
714 => 0.067337484257287
715 => 0.065160030417959
716 => 0.063826352065484
717 => 0.063523337537718
718 => 0.064280327237574
719 => 0.065199452481207
720 => 0.066648656815771
721 => 0.067524380643677
722 => 0.069807803938826
723 => 0.070425632811617
724 => 0.071104439428804
725 => 0.072011534405573
726 => 0.073100734499564
727 => 0.070717626702109
728 => 0.07081231201757
729 => 0.068593195032953
730 => 0.066221750281323
731 => 0.068021381243049
801 => 0.070374159330631
802 => 0.069834429437751
803 => 0.069773698799121
804 => 0.069875830888022
805 => 0.069468892174721
806 => 0.067628323456312
807 => 0.066704001368497
808 => 0.067896612681492
809 => 0.068530432517327
810 => 0.069513431807808
811 => 0.069392256396658
812 => 0.07192435700252
813 => 0.07290825473121
814 => 0.072656531588853
815 => 0.072702854705103
816 => 0.074484154545815
817 => 0.07646532632094
818 => 0.078320955126986
819 => 0.080208580449608
820 => 0.077932974447917
821 => 0.076777562060125
822 => 0.07796965271633
823 => 0.077337112634257
824 => 0.080971875569424
825 => 0.081223538668822
826 => 0.084858038769258
827 => 0.088307612152794
828 => 0.086140996916122
829 => 0.08818401749781
830 => 0.090393710826818
831 => 0.094656567768296
901 => 0.093220987519521
902 => 0.092121355547371
903 => 0.091082208647071
904 => 0.093244508386669
905 => 0.09602627245808
906 => 0.096625437795657
907 => 0.097596314541307
908 => 0.096575556356417
909 => 0.097804947157291
910 => 0.10214523690607
911 => 0.10097245230315
912 => 0.099306909632477
913 => 0.10273315154328
914 => 0.10397309517162
915 => 0.11267566891884
916 => 0.1236630277601
917 => 0.11911418905293
918 => 0.11629057807728
919 => 0.11695419363351
920 => 0.12096640513676
921 => 0.12225500013038
922 => 0.1187521547324
923 => 0.11998941894479
924 => 0.12680686640021
925 => 0.13046420823015
926 => 0.12549704677856
927 => 0.1117928453341
928 => 0.09915694573808
929 => 0.10250855531292
930 => 0.10212858679969
1001 => 0.10945308359665
1002 => 0.10094448177824
1003 => 0.10108774481134
1004 => 0.10856370444528
1005 => 0.10656924658534
1006 => 0.1033384802831
1007 => 0.099180533907467
1008 => 0.091494185468623
1009 => 0.084686172306657
1010 => 0.098038253909067
1011 => 0.097462487871187
1012 => 0.096628693324589
1013 => 0.098484212862049
1014 => 0.10749408903755
1015 => 0.10728638222958
1016 => 0.10596505749023
1017 => 0.1069672706594
1018 => 0.10316278746891
1019 => 0.10414328941357
1020 => 0.099154944147025
1021 => 0.10140988453921
1022 => 0.10333154850962
1023 => 0.10371735100241
1024 => 0.10458658371821
1025 => 0.097159085332235
1026 => 0.10049381404764
1027 => 0.10245265474612
1028 => 0.093602541207167
1029 => 0.10227771645674
1030 => 0.097029789110027
1031 => 0.09524856374733
1101 => 0.097646749039605
1102 => 0.096712173898893
1103 => 0.095908681073004
1104 => 0.095460318270398
1105 => 0.097221280870992
1106 => 0.097139129860869
1107 => 0.094257853258184
1108 => 0.090499345385841
1109 => 0.091760823996615
1110 => 0.091302516990896
1111 => 0.089641553279389
1112 => 0.090760842275421
1113 => 0.085832059996094
1114 => 0.077352346260321
1115 => 0.082954304894829
1116 => 0.082738635581159
1117 => 0.082629885333381
1118 => 0.08683960242045
1119 => 0.086434935257226
1120 => 0.085700460393462
1121 => 0.089628064072534
1122 => 0.088194435895948
1123 => 0.092612540130906
1124 => 0.095522589325114
1125 => 0.094784506719233
1126 => 0.097521422051875
1127 => 0.091789885915978
1128 => 0.093693672311006
1129 => 0.094086040048487
1130 => 0.0895795980528
1201 => 0.086501143809732
1202 => 0.086295846008667
1203 => 0.080958230588314
1204 => 0.08380954166214
1205 => 0.086318577411838
1206 => 0.085116943996773
1207 => 0.08473654275534
1208 => 0.086679930198856
1209 => 0.086830948047206
1210 => 0.083387725100692
1211 => 0.084103680183962
1212 => 0.087089331898827
1213 => 0.084028449421141
1214 => 0.078081654759311
1215 => 0.076606767462308
1216 => 0.076409990309322
1217 => 0.072409978985064
1218 => 0.076705326483942
1219 => 0.074830292192526
1220 => 0.08075350305275
1221 => 0.077370196776207
1222 => 0.077224349204754
1223 => 0.077003879209315
1224 => 0.07356090422414
1225 => 0.074314696933418
1226 => 0.07682041870493
1227 => 0.077714488461982
1228 => 0.077621229661424
1229 => 0.076808139301258
1230 => 0.077180367904446
1231 => 0.075981289880536
]
'min_raw' => 0.041954406135525
'max_raw' => 0.13046420823015
'avg_raw' => 0.086209307182836
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.041954'
'max' => '$0.130464'
'avg' => '$0.0862093'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.023900044155581
'max_diff' => 0.081484463938781
'year' => 2033
]
8 => [
'items' => [
101 => 0.075557870473643
102 => 0.074221442354804
103 => 0.072257262217802
104 => 0.072530393512869
105 => 0.068638838705777
106 => 0.066518513106427
107 => 0.06593163492597
108 => 0.065146836895734
109 => 0.066020279951753
110 => 0.068627814419957
111 => 0.065482574632005
112 => 0.060090281628482
113 => 0.060414367626014
114 => 0.061142492640472
115 => 0.059785636493059
116 => 0.058501486021836
117 => 0.059617950670143
118 => 0.057333165039208
119 => 0.061418598068278
120 => 0.061308098554136
121 => 0.062830895345889
122 => 0.063783131430709
123 => 0.061588535545293
124 => 0.061036600614929
125 => 0.061351007835309
126 => 0.056154556833179
127 => 0.062406234436069
128 => 0.062460299203586
129 => 0.061997363840438
130 => 0.065326189165086
131 => 0.072351048886749
201 => 0.069708014085132
202 => 0.068684551123796
203 => 0.066738947286149
204 => 0.069331348881288
205 => 0.069132292886546
206 => 0.068232086188579
207 => 0.067687638368833
208 => 0.068690800170397
209 => 0.067563335520119
210 => 0.067360811888272
211 => 0.066133739027166
212 => 0.065695729844009
213 => 0.065371445282448
214 => 0.065014439843711
215 => 0.065801904881351
216 => 0.064017405506407
217 => 0.061865474196854
218 => 0.061686564392685
219 => 0.062180550091908
220 => 0.061961998192912
221 => 0.061685518050275
222 => 0.061157642163095
223 => 0.061001032663653
224 => 0.061509937560713
225 => 0.06093541360293
226 => 0.061783154998578
227 => 0.061552616246633
228 => 0.060264845518673
301 => 0.058659806397847
302 => 0.058645518182988
303 => 0.058299715137198
304 => 0.057859282966548
305 => 0.057736764812396
306 => 0.059523925131536
307 => 0.063223293506948
308 => 0.062497018976472
309 => 0.063021826756348
310 => 0.06560336161199
311 => 0.066423953913137
312 => 0.065841516934577
313 => 0.065044241275175
314 => 0.065079317357946
315 => 0.067803849637877
316 => 0.067973775374197
317 => 0.068403122889757
318 => 0.068954955780845
319 => 0.065935496462122
320 => 0.06493710109557
321 => 0.064464005982032
322 => 0.063007056143184
323 => 0.064578251634942
324 => 0.063662783307194
325 => 0.063786311261458
326 => 0.063705863519191
327 => 0.063749793426321
328 => 0.061417456106485
329 => 0.062267237241793
330 => 0.060854311286582
331 => 0.058962562040936
401 => 0.058956220234132
402 => 0.059419223181965
403 => 0.059143810911287
404 => 0.05840268357239
405 => 0.058507957212858
406 => 0.057585649348228
407 => 0.058619942086546
408 => 0.058649601901404
409 => 0.058251342858845
410 => 0.059844813527119
411 => 0.060497659760058
412 => 0.060235517126711
413 => 0.060479267134084
414 => 0.062527198962146
415 => 0.06286110120765
416 => 0.063009398528759
417 => 0.062810699764103
418 => 0.06051669956846
419 => 0.060618448231978
420 => 0.059871884050376
421 => 0.059241115987917
422 => 0.059266343402473
423 => 0.059590640180685
424 => 0.061006863230892
425 => 0.063987221149144
426 => 0.064100323553529
427 => 0.064237406967073
428 => 0.063679819831586
429 => 0.063511646216134
430 => 0.063733510624209
501 => 0.06485277635853
502 => 0.067731831704885
503 => 0.066714181259842
504 => 0.065886815607349
505 => 0.066612638340764
506 => 0.066500903620141
507 => 0.065557750132238
508 => 0.065531278955103
509 => 0.063721065867407
510 => 0.063051871305444
511 => 0.062492642241123
512 => 0.061881978701928
513 => 0.061519956886266
514 => 0.062076186931095
515 => 0.062203403323468
516 => 0.060987196609212
517 => 0.060821432128097
518 => 0.061814612784604
519 => 0.061377551007182
520 => 0.061827079883871
521 => 0.06193137443925
522 => 0.061914580613727
523 => 0.061458237921873
524 => 0.061749097145326
525 => 0.061061128372553
526 => 0.06031306566173
527 => 0.059835848258179
528 => 0.059419412779878
529 => 0.059650475386612
530 => 0.058826779383972
531 => 0.058563262455002
601 => 0.06165056058496
602 => 0.063931180907608
603 => 0.063898019784891
604 => 0.063696159978706
605 => 0.06339623725248
606 => 0.064830835143003
607 => 0.064331049923635
608 => 0.064694685429178
609 => 0.064787245927072
610 => 0.065067398676761
611 => 0.065167529204833
612 => 0.064864865203878
613 => 0.06384908784938
614 => 0.061317867259183
615 => 0.060139577241547
616 => 0.059750721909755
617 => 0.059764856062524
618 => 0.059374973031512
619 => 0.059489811057477
620 => 0.05933503705259
621 => 0.059041932531187
622 => 0.059632377008362
623 => 0.059700420233985
624 => 0.059562603437727
625 => 0.059595064282286
626 => 0.058454000071588
627 => 0.058540752705266
628 => 0.058057703016954
629 => 0.057967137023646
630 => 0.056746029475541
701 => 0.054582660451704
702 => 0.055781376894222
703 => 0.054333495996699
704 => 0.053785161561831
705 => 0.056380891492994
706 => 0.056120352202247
707 => 0.055674422190194
708 => 0.055014798762411
709 => 0.054770138016642
710 => 0.053283656775528
711 => 0.053195827533734
712 => 0.0539325677752
713 => 0.053592587503447
714 => 0.053115126441309
715 => 0.051385810873697
716 => 0.049441487618992
717 => 0.049500174516472
718 => 0.050118627568373
719 => 0.051916863226533
720 => 0.051214261445097
721 => 0.050704515791239
722 => 0.050609055753169
723 => 0.051803937988736
724 => 0.053494946687631
725 => 0.054288330134965
726 => 0.053502111234071
727 => 0.052598945293755
728 => 0.052653916819674
729 => 0.053019617753935
730 => 0.053058047751394
731 => 0.052470179571207
801 => 0.052635661020472
802 => 0.052384279567097
803 => 0.050841552051752
804 => 0.050813649003041
805 => 0.050435038790934
806 => 0.05042357462418
807 => 0.049779464204642
808 => 0.049689348704423
809 => 0.048410428371722
810 => 0.049252217607633
811 => 0.048687589584102
812 => 0.047836561970355
813 => 0.047689844488973
814 => 0.047685433984317
815 => 0.048559249057343
816 => 0.049242006569745
817 => 0.04869741153031
818 => 0.048573417796362
819 => 0.049897346480866
820 => 0.049728864487885
821 => 0.049582960168556
822 => 0.053343535405791
823 => 0.050366746664174
824 => 0.049068696863668
825 => 0.047462113742571
826 => 0.047985225307895
827 => 0.048095452600817
828 => 0.044231909802951
829 => 0.042664470971031
830 => 0.042126585031602
831 => 0.04181702406887
901 => 0.041958094886809
902 => 0.040547216095842
903 => 0.041495349977153
904 => 0.040273648202792
905 => 0.040068825924559
906 => 0.042253380036925
907 => 0.042557347979681
908 => 0.041260526300447
909 => 0.042093295754874
910 => 0.041791321974338
911 => 0.040294590773216
912 => 0.040237426650543
913 => 0.039486419546466
914 => 0.038311238852216
915 => 0.037774149740637
916 => 0.037494429068104
917 => 0.037609847269238
918 => 0.03755148829489
919 => 0.037170656511734
920 => 0.037573317126915
921 => 0.036544685645981
922 => 0.036135076302027
923 => 0.035950065264227
924 => 0.03503709561908
925 => 0.036490036323953
926 => 0.036776283946478
927 => 0.037063095565245
928 => 0.039559594892007
929 => 0.039434876840676
930 => 0.040562267284556
1001 => 0.040518458965045
1002 => 0.040196908947936
1003 => 0.038840342318164
1004 => 0.039381045598316
1005 => 0.037716844945955
1006 => 0.038963777229349
1007 => 0.038394729408345
1008 => 0.038771381588657
1009 => 0.038094127007098
1010 => 0.038468947655689
1011 => 0.036844163876865
1012 => 0.035326963645524
1013 => 0.035937529308451
1014 => 0.036601284010706
1015 => 0.038040473326749
1016 => 0.037183304043168
1017 => 0.037491574530703
1018 => 0.036458920001318
1019 => 0.034328258744013
1020 => 0.03434031805534
1021 => 0.034012562239883
1022 => 0.033729333362195
1023 => 0.037281760246624
1024 => 0.036839959807987
1025 => 0.03613600863043
1026 => 0.037078275255497
1027 => 0.037327425506947
1028 => 0.037334518464342
1029 => 0.038021971870569
1030 => 0.038388865876706
1031 => 0.038453532535497
1101 => 0.039535255323609
1102 => 0.039897834533916
1103 => 0.041391246987039
1104 => 0.038357737483631
1105 => 0.038295264351664
1106 => 0.03709153487926
1107 => 0.03632811061765
1108 => 0.03714380719159
1109 => 0.037866403002414
1110 => 0.03711398794533
1111 => 0.037212237467436
1112 => 0.036202181727869
1113 => 0.036563229127225
1114 => 0.036874211785887
1115 => 0.036702505440489
1116 => 0.036445452730749
1117 => 0.037807158386301
1118 => 0.037730325616647
1119 => 0.038998377228574
1120 => 0.039986914139313
1121 => 0.041758549005466
1122 => 0.039909755665221
1123 => 0.039842378287614
1124 => 0.040501002961389
1125 => 0.03989773370191
1126 => 0.040278979049754
1127 => 0.041697124485898
1128 => 0.041727087664279
1129 => 0.041225165821016
1130 => 0.041194623831239
1201 => 0.041291023411661
1202 => 0.041855638765179
1203 => 0.041658344811782
1204 => 0.041886658369525
1205 => 0.042172167969543
1206 => 0.043353156728779
1207 => 0.043637889120412
1208 => 0.042946137025563
1209 => 0.043008594494508
1210 => 0.042749860222014
1211 => 0.042499926156716
1212 => 0.043061741435567
1213 => 0.044088469900173
1214 => 0.044082082675682
1215 => 0.044320263722721
1216 => 0.044468648541828
1217 => 0.043831672273894
1218 => 0.043417024145736
1219 => 0.043576026622818
1220 => 0.043830275046295
1221 => 0.043493577285759
1222 => 0.041415322734153
1223 => 0.042045732405695
1224 => 0.041940801410893
1225 => 0.041791366914249
1226 => 0.042425248713798
1227 => 0.042364109267867
1228 => 0.04053274549459
1229 => 0.04064998346151
1230 => 0.040539875123663
1231 => 0.040895657689294
]
'min_raw' => 0.033729333362195
'max_raw' => 0.075557870473643
'avg_raw' => 0.054643601917919
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.033729'
'max' => '$0.075557'
'avg' => '$0.054643'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0082250727733299
'max_diff' => -0.054906337756505
'year' => 2034
]
9 => [
'items' => [
101 => 0.039878520275787
102 => 0.040191384893657
103 => 0.040387610649061
104 => 0.040503189126471
105 => 0.040920737839781
106 => 0.040871743317604
107 => 0.040917692271491
108 => 0.041536806784557
109 => 0.044668075537196
110 => 0.044838503586648
111 => 0.04399925354002
112 => 0.044334517380172
113 => 0.043690884121221
114 => 0.044122959439923
115 => 0.044418574399456
116 => 0.043082747240815
117 => 0.043003648225927
118 => 0.042357358463564
119 => 0.042704637974135
120 => 0.042152091302536
121 => 0.042287666928484
122 => 0.041908585659062
123 => 0.042590856469694
124 => 0.043353741250146
125 => 0.043546476072921
126 => 0.043039473731758
127 => 0.042672370623673
128 => 0.042027858497159
129 => 0.043099696527442
130 => 0.043413134631169
131 => 0.043098050170518
201 => 0.043025038216254
202 => 0.042886680694853
203 => 0.043054391418477
204 => 0.043411427579942
205 => 0.043243055919618
206 => 0.043354268367589
207 => 0.042930441197702
208 => 0.043831883139543
209 => 0.045263589887005
210 => 0.045268193058306
211 => 0.045099820490396
212 => 0.045030926063244
213 => 0.045203686535622
214 => 0.045297402004881
215 => 0.045856077693698
216 => 0.04645555896642
217 => 0.049253076492042
218 => 0.048467544765294
219 => 0.050949668739088
220 => 0.0529127065389
221 => 0.053501335741824
222 => 0.052959824572278
223 => 0.05110734411312
224 => 0.051016452584069
225 => 0.053784840487127
226 => 0.053002644104314
227 => 0.052909604333507
228 => 0.051919818365291
301 => 0.052504904459884
302 => 0.052376937548301
303 => 0.052174935518012
304 => 0.053291239029045
305 => 0.055380859548595
306 => 0.055055172594286
307 => 0.054812062391077
308 => 0.053746824248933
309 => 0.054388335540057
310 => 0.054159905656627
311 => 0.055141385401027
312 => 0.054559978542883
313 => 0.052996718197403
314 => 0.053245672559994
315 => 0.053208043608915
316 => 0.053982444755705
317 => 0.053749988753256
318 => 0.053162652843652
319 => 0.05537371745283
320 => 0.055230143215698
321 => 0.055433698658311
322 => 0.055523310059311
323 => 0.056869146123589
324 => 0.057420492097174
325 => 0.057545657285847
326 => 0.058069393318124
327 => 0.057532626256251
328 => 0.059680077212171
329 => 0.061108006790621
330 => 0.062766620476574
331 => 0.065190300865082
401 => 0.066101627111459
402 => 0.065937004182016
403 => 0.067774610991501
404 => 0.071076749580441
405 => 0.066604460802596
406 => 0.071313791745232
407 => 0.069822871940634
408 => 0.066287927904433
409 => 0.066060319182754
410 => 0.068454224325614
411 => 0.073763675527644
412 => 0.072433718220832
413 => 0.073765850861354
414 => 0.072211847375794
415 => 0.072134678004567
416 => 0.073690376380661
417 => 0.077325350433109
418 => 0.075598510515756
419 => 0.073122662055711
420 => 0.07495079003014
421 => 0.073367096393432
422 => 0.069798591381992
423 => 0.072432701227545
424 => 0.070671346988953
425 => 0.071185403794515
426 => 0.074887508422365
427 => 0.074442061398988
428 => 0.075018511094522
429 => 0.074001092470221
430 => 0.073050663042933
501 => 0.071276615937083
502 => 0.070751408048507
503 => 0.070896556613909
504 => 0.070751336120086
505 => 0.069758773068698
506 => 0.069544429172253
507 => 0.069187179954224
508 => 0.069297906425151
509 => 0.068626173378311
510 => 0.069893872424827
511 => 0.070129168538787
512 => 0.071051694187514
513 => 0.071147473860726
514 => 0.0737166946611
515 => 0.072301611018256
516 => 0.07325097129832
517 => 0.073166051579145
518 => 0.066364540860585
519 => 0.067301729027366
520 => 0.068759699709028
521 => 0.068102885893172
522 => 0.067174304828314
523 => 0.066424425831075
524 => 0.065288282471193
525 => 0.066887382432526
526 => 0.068990028836357
527 => 0.071200800443422
528 => 0.073856897673817
529 => 0.073264087692373
530 => 0.071151146553242
531 => 0.071245931549239
601 => 0.071831855097971
602 => 0.071073030865596
603 => 0.070849238785459
604 => 0.071801109502722
605 => 0.071807664513213
606 => 0.070934545526892
607 => 0.069964233552685
608 => 0.069960167910084
609 => 0.069787510266376
610 => 0.072242562787049
611 => 0.073592593439612
612 => 0.073747372278246
613 => 0.073582175590559
614 => 0.073645753239228
615 => 0.072860200148396
616 => 0.074655741565504
617 => 0.076303507930483
618 => 0.075861871345275
619 => 0.075199795321708
620 => 0.074672419879035
621 => 0.075737638451214
622 => 0.075690205945004
623 => 0.076289116128765
624 => 0.076261946103357
625 => 0.07606055513471
626 => 0.075861878537581
627 => 0.076649608787812
628 => 0.076422755126306
629 => 0.076195549098405
630 => 0.075739852625948
701 => 0.075801789344872
702 => 0.075139827638064
703 => 0.074833573863189
704 => 0.07022825189461
705 => 0.068997559381369
706 => 0.06938476029909
707 => 0.069512236894872
708 => 0.068976637935934
709 => 0.069744549258967
710 => 0.069624871092692
711 => 0.070090468828284
712 => 0.06979958357699
713 => 0.069811521609167
714 => 0.070666953109949
715 => 0.070915288513891
716 => 0.070788983123134
717 => 0.070877443089325
718 => 0.072915965673584
719 => 0.072626152950385
720 => 0.072472195717367
721 => 0.072514842923075
722 => 0.073035729149771
723 => 0.073181548853912
724 => 0.072563700520897
725 => 0.072855081366485
726 => 0.074095744025265
727 => 0.074529905740413
728 => 0.07591554152572
729 => 0.075326898816409
730 => 0.076407377985208
731 => 0.079728402587603
801 => 0.082381466837419
802 => 0.079941599310771
803 => 0.084813613939863
804 => 0.088607176177601
805 => 0.088461572940408
806 => 0.087800077617583
807 => 0.083481207866988
808 => 0.079506919531771
809 => 0.082831580481377
810 => 0.08284005572586
811 => 0.082554464401793
812 => 0.080780681215805
813 => 0.082492740591819
814 => 0.0826286376478
815 => 0.082552571434394
816 => 0.081192616024552
817 => 0.079116215475494
818 => 0.07952193917258
819 => 0.080186522864944
820 => 0.078928327288616
821 => 0.078526257565221
822 => 0.079273781677907
823 => 0.081682460121817
824 => 0.08122711341452
825 => 0.081215222471792
826 => 0.083163388782663
827 => 0.081768922144683
828 => 0.079527056647707
829 => 0.078960956043148
830 => 0.076951680268022
831 => 0.078339494202696
901 => 0.078389439155528
902 => 0.077629347646621
903 => 0.079588733884551
904 => 0.079570677795426
905 => 0.081430823412186
906 => 0.084986723192643
907 => 0.08393506865236
908 => 0.082712108841701
909 => 0.082845078482117
910 => 0.084303427240443
911 => 0.083421676290295
912 => 0.083738760079754
913 => 0.084302947296151
914 => 0.084643335451784
915 => 0.082796101864798
916 => 0.082365423352275
917 => 0.08148440626327
918 => 0.081254565349711
919 => 0.081972135385681
920 => 0.081783081033327
921 => 0.078385241475638
922 => 0.078030148336459
923 => 0.078041038536082
924 => 0.077148139953857
925 => 0.07578625529575
926 => 0.079365206863347
927 => 0.079077766965074
928 => 0.078760455563462
929 => 0.078799324399605
930 => 0.080352825973176
1001 => 0.079451716606795
1002 => 0.081847463546239
1003 => 0.081354969998235
1004 => 0.080849845849072
1005 => 0.0807800223052
1006 => 0.080585592602939
1007 => 0.079918820809783
1008 => 0.079113653802773
1009 => 0.078582012802374
1010 => 0.072487752980709
1011 => 0.073618812154932
1012 => 0.074919992635587
1013 => 0.075369154923355
1014 => 0.074600831749043
1015 => 0.079949158891689
1016 => 0.080926349798414
1017 => 0.07796637480136
1018 => 0.077412684334394
1019 => 0.079985458746524
1020 => 0.078433761267129
1021 => 0.079132490547089
1022 => 0.077622220028298
1023 => 0.080690973124474
1024 => 0.080667594367448
1025 => 0.079473780102104
1026 => 0.080482783744286
1027 => 0.080307444531097
1028 => 0.078959631165757
1029 => 0.080733701212206
1030 => 0.080734581128816
1031 => 0.079585560854182
1101 => 0.078243756726291
1102 => 0.078003873840223
1103 => 0.077823154309303
1104 => 0.079088044620791
1105 => 0.080222141318863
1106 => 0.082332414107559
1107 => 0.082862986825482
1108 => 0.084933847465762
1109 => 0.08370075078285
1110 => 0.084247366571109
1111 => 0.084840795332789
1112 => 0.085125306903759
1113 => 0.084661710566597
1114 => 0.087878609541196
1115 => 0.08815021437789
1116 => 0.088241281130261
1117 => 0.087156560895704
1118 => 0.088120046345923
1119 => 0.08766926341105
1120 => 0.088842075376483
1121 => 0.089025987267878
1122 => 0.088870220438722
1123 => 0.088928596975902
1124 => 0.086183541200948
1125 => 0.086041195577694
1126 => 0.084100302904238
1127 => 0.084891231015026
1128 => 0.083412628822079
1129 => 0.083881508808753
1130 => 0.084088186639226
1201 => 0.083980229869451
1202 => 0.084935948903711
1203 => 0.08412339248409
1204 => 0.081978922496068
1205 => 0.079833868248632
1206 => 0.079806938839879
1207 => 0.079242183919881
1208 => 0.078833969552746
1209 => 0.078912606122039
1210 => 0.079189731648956
1211 => 0.078817862513335
1212 => 0.078897219647664
1213 => 0.080215076831337
1214 => 0.080479363690996
1215 => 0.079581213678335
1216 => 0.075975011775072
1217 => 0.075090040782539
1218 => 0.075726140382234
1219 => 0.075422125743641
1220 => 0.060871541930682
1221 => 0.064289985765676
1222 => 0.062258862518306
1223 => 0.063194897558181
1224 => 0.061121646679432
1225 => 0.06211111066716
1226 => 0.061928392798066
1227 => 0.06742514932563
1228 => 0.067339325032993
1229 => 0.067380404580158
1230 => 0.065419570761801
1231 => 0.068543232276883
]
'min_raw' => 0.039878520275787
'max_raw' => 0.089025987267878
'avg_raw' => 0.064452253771833
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.039878'
'max' => '$0.089025'
'avg' => '$0.064452'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0061491869135927
'max_diff' => 0.013468116794235
'year' => 2035
]
10 => [
'items' => [
101 => 0.070082060262448
102 => 0.069797264156901
103 => 0.069868941200976
104 => 0.068637292106358
105 => 0.067392329635645
106 => 0.066011474657274
107 => 0.068576932528254
108 => 0.068291697406827
109 => 0.068945924151023
110 => 0.07060980696307
111 => 0.07085482002762
112 => 0.071184120071052
113 => 0.071066089446655
114 => 0.073878057773408
115 => 0.073537509855074
116 => 0.074358132355936
117 => 0.072670049610883
118 => 0.07075982375057
119 => 0.071122895236627
120 => 0.071087928532883
121 => 0.070642762261311
122 => 0.070240886056063
123 => 0.069571875402246
124 => 0.071688724105872
125 => 0.071602783914325
126 => 0.072994055720935
127 => 0.072748134915023
128 => 0.071105815586116
129 => 0.071164471342239
130 => 0.071558959491165
131 => 0.072924287478783
201 => 0.073329609784126
202 => 0.07314184834299
203 => 0.073586265747132
204 => 0.073937515143009
205 => 0.073630377263324
206 => 0.077978801943205
207 => 0.076173032845007
208 => 0.077053152139009
209 => 0.077263055404664
210 => 0.076725392603478
211 => 0.076841992412794
212 => 0.077018609352361
213 => 0.07809099282427
214 => 0.080905237351218
215 => 0.082151647094993
216 => 0.085901532305913
217 => 0.082048150116634
218 => 0.081819506364403
219 => 0.082494973926574
220 => 0.084696553511046
221 => 0.086480726980405
222 => 0.087072640251629
223 => 0.087150871361844
224 => 0.088261340008309
225 => 0.088897839927448
226 => 0.088126499906403
227 => 0.087472870001234
228 => 0.085131648812447
229 => 0.085402651539983
301 => 0.08726959159223
302 => 0.089906754378249
303 => 0.092169714398676
304 => 0.091377304671641
305 => 0.097422831534828
306 => 0.09802222082955
307 => 0.097939404609595
308 => 0.099304902624059
309 => 0.096594667144183
310 => 0.095435988968197
311 => 0.087614192205746
312 => 0.089811798049051
313 => 0.09300614720316
314 => 0.092583363114419
315 => 0.090263541373507
316 => 0.092167954605862
317 => 0.091538296034737
318 => 0.091041658195134
319 => 0.093316852416341
320 => 0.090815182910296
321 => 0.09298119113616
322 => 0.090203263182004
323 => 0.091380924332527
324 => 0.090712426906429
325 => 0.091145026669077
326 => 0.088616057296102
327 => 0.089980627782498
328 => 0.088559286677576
329 => 0.088558612776828
330 => 0.088527236593159
331 => 0.090199438099909
401 => 0.09025396853101
402 => 0.089018209090966
403 => 0.088840116849465
404 => 0.089498617208216
405 => 0.088727685749636
406 => 0.089088399726921
407 => 0.088738611408543
408 => 0.088659866690406
409 => 0.088032415378989
410 => 0.087762092101897
411 => 0.087868092824217
412 => 0.087506257711819
413 => 0.087288238968452
414 => 0.088483867177652
415 => 0.08784509125698
416 => 0.088385965606472
417 => 0.087769571021442
418 => 0.085632878839388
419 => 0.084404044570379
420 => 0.08036803110995
421 => 0.081512639520669
422 => 0.082271516081158
423 => 0.082020707382443
424 => 0.082559541517364
425 => 0.082592621557019
426 => 0.082417441086993
427 => 0.08221460454471
428 => 0.082115874933491
429 => 0.082851724567864
430 => 0.083278910048177
501 => 0.082347679496462
502 => 0.082129505207495
503 => 0.083071030709927
504 => 0.083645360722509
505 => 0.087885890847256
506 => 0.087571738678883
507 => 0.08836019897225
508 => 0.088271430443126
509 => 0.089097862442149
510 => 0.090448729484331
511 => 0.087702039079211
512 => 0.088178769560131
513 => 0.088061886255524
514 => 0.089337987526777
515 => 0.089341971375655
516 => 0.088576884917553
517 => 0.0889916506986
518 => 0.088760139818123
519 => 0.089178511269717
520 => 0.087567542985144
521 => 0.089529528462474
522 => 0.090641847800568
523 => 0.090657292355656
524 => 0.091184522894001
525 => 0.091720219656092
526 => 0.092748442941572
527 => 0.091691543066729
528 => 0.089790283079017
529 => 0.089927547909097
530 => 0.088812839873945
531 => 0.088831578317404
601 => 0.08873155103766
602 => 0.089031740433875
603 => 0.087633417676499
604 => 0.087961601232728
605 => 0.087502142332168
606 => 0.088177770786212
607 => 0.087450906255045
608 => 0.088061829890855
609 => 0.088325484279632
610 => 0.089298374650291
611 => 0.087307209556265
612 => 0.083247089139522
613 => 0.084100575675323
614 => 0.082838202048952
615 => 0.082955039534268
616 => 0.083191069849154
617 => 0.082426018374295
618 => 0.082571966086155
619 => 0.082566751806869
620 => 0.082521817964965
621 => 0.082322798528664
622 => 0.082034180971233
623 => 0.083183944488241
624 => 0.083379311714393
625 => 0.08381358885725
626 => 0.085105703061394
627 => 0.084976590382249
628 => 0.085187178518768
629 => 0.084727465799149
630 => 0.082976364288843
701 => 0.083071457525657
702 => 0.081885643338831
703 => 0.083783264922419
704 => 0.083333883084045
705 => 0.083044163689443
706 => 0.082965111068394
707 => 0.084260428173727
708 => 0.084648007353251
709 => 0.084406494018043
710 => 0.083911143121462
711 => 0.084862363280244
712 => 0.085116869665977
713 => 0.085173844259908
714 => 0.086859224002895
715 => 0.085268038265308
716 => 0.085651052487371
717 => 0.088639220111677
718 => 0.085929364415377
719 => 0.087364835414701
720 => 0.087294576579114
721 => 0.088028914968678
722 => 0.087234339397439
723 => 0.087244189113934
724 => 0.087896231855476
725 => 0.086980555421509
726 => 0.086753821059272
727 => 0.086440589161744
728 => 0.087124519550637
729 => 0.087534504887267
730 => 0.090838685599458
731 => 0.092973337028479
801 => 0.092880666180203
802 => 0.093727504260891
803 => 0.093345995949393
804 => 0.092114004974759
805 => 0.094216863343165
806 => 0.093551430968071
807 => 0.093606288404573
808 => 0.093604246608047
809 => 0.094046700964377
810 => 0.093733181502571
811 => 0.093115202461238
812 => 0.093525445788749
813 => 0.094743721806783
814 => 0.098525287948033
815 => 0.10064150245976
816 => 0.098397889177229
817 => 0.099945503576343
818 => 0.099017486408269
819 => 0.09884883808271
820 => 0.099820854293159
821 => 0.10079457188931
822 => 0.10073255028793
823 => 0.10002568131408
824 => 0.099626388966885
825 => 0.10264996439259
826 => 0.10487768326098
827 => 0.10472576776897
828 => 0.10539627334513
829 => 0.10736489845469
830 => 0.10754488486309
831 => 0.10752221071257
901 => 0.1070760956197
902 => 0.10901446269833
903 => 0.11063148261765
904 => 0.10697283286521
905 => 0.1083659987957
906 => 0.1089914358669
907 => 0.10990976304623
908 => 0.11145913492728
909 => 0.1131421637407
910 => 0.11338016246839
911 => 0.1132112909818
912 => 0.11210128823711
913 => 0.11394287844746
914 => 0.11502163880208
915 => 0.11566401590626
916 => 0.11729297736111
917 => 0.10899529835332
918 => 0.10312178873021
919 => 0.10220455538805
920 => 0.10406978545775
921 => 0.10456163175219
922 => 0.10436336912763
923 => 0.097752200050676
924 => 0.10216974895107
925 => 0.10692266012984
926 => 0.10710523880506
927 => 0.10948464551983
928 => 0.11025947788134
929 => 0.1121752121627
930 => 0.11205538246181
1001 => 0.11252183327333
1002 => 0.11241460430956
1003 => 0.11596309866034
1004 => 0.11987761488576
1005 => 0.11974206763627
1006 => 0.11917930961441
1007 => 0.12001510124137
1008 => 0.12405530149106
1009 => 0.12368334459496
1010 => 0.12404466903631
1011 => 0.12880829282639
1012 => 0.13500168137109
1013 => 0.13212423058603
1014 => 0.13836747082544
1015 => 0.14229725961621
1016 => 0.14909342298208
1017 => 0.14824250985687
1018 => 0.15088820638265
1019 => 0.1467191977718
1020 => 0.13714631130562
1021 => 0.13563136537881
1022 => 0.13866432548882
1023 => 0.14612056196737
1024 => 0.13842950206762
1025 => 0.13998539346848
1026 => 0.13953729664037
1027 => 0.13951341946468
1028 => 0.14042471414496
1029 => 0.13910283368129
1030 => 0.13371725487055
1031 => 0.13618543390209
1101 => 0.13523235144632
1102 => 0.136289867488
1103 => 0.14199684541218
1104 => 0.13947365443454
1105 => 0.13681567770699
1106 => 0.14014937037559
1107 => 0.14439430672381
1108 => 0.14412866623603
1109 => 0.14361321266061
1110 => 0.14651879747697
1111 => 0.15131797233712
1112 => 0.15261517001718
1113 => 0.15357273482455
1114 => 0.1537047668333
1115 => 0.15506477858083
1116 => 0.14775165264726
1117 => 0.15935777131824
1118 => 0.16136182740016
1119 => 0.16098514791637
1120 => 0.16321257190785
1121 => 0.16255720726526
1122 => 0.16160768672172
1123 => 0.16513862753489
1124 => 0.16109068882482
1125 => 0.15534514944719
1126 => 0.15219303291074
1127 => 0.15634399423993
1128 => 0.15887884147507
1129 => 0.16055421425094
1130 => 0.16106118104063
1201 => 0.14831934979569
1202 => 0.14145220944902
1203 => 0.14585396767931
1204 => 0.15122441651339
1205 => 0.14772181953283
1206 => 0.14785911470317
1207 => 0.14286533187519
1208 => 0.15166625548559
1209 => 0.15038403494297
1210 => 0.15703619738627
1211 => 0.15544860543224
1212 => 0.16087318566929
1213 => 0.15944471189539
1214 => 0.16537422666595
1215 => 0.16773967064312
1216 => 0.17171161923276
1217 => 0.17463340078404
1218 => 0.17634912679572
1219 => 0.17624612104151
1220 => 0.18304468227111
1221 => 0.17903580823765
1222 => 0.17399971763256
1223 => 0.17390863064218
1224 => 0.17651689332851
1225 => 0.18198309637714
1226 => 0.18340040329763
1227 => 0.18419248451361
1228 => 0.18297938455878
1229 => 0.17862803911406
1230 => 0.17674915021284
1231 => 0.17835001799333
]
'min_raw' => 0.066011474657274
'max_raw' => 0.18419248451361
'avg_raw' => 0.12510197958544
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.066011'
'max' => '$0.184192'
'avg' => '$0.1251019'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.026132954381486
'max_diff' => 0.095166497245736
'year' => 2036
]
11 => [
'items' => [
101 => 0.17639229426193
102 => 0.17977187466258
103 => 0.1844127603921
104 => 0.183454435841
105 => 0.18665797113526
106 => 0.18997329314308
107 => 0.19471435251469
108 => 0.19595384099535
109 => 0.19800266832035
110 => 0.20011158464249
111 => 0.20078891172828
112 => 0.20208213929729
113 => 0.20207532334965
114 => 0.20597255167313
115 => 0.21027131520104
116 => 0.21189399891622
117 => 0.21562527064397
118 => 0.20923559856955
119 => 0.21408223823726
120 => 0.2184540285368
121 => 0.21324179991393
122 => 0.22042564277705
123 => 0.22070457511648
124 => 0.22491612227825
125 => 0.22064691239499
126 => 0.21811186919411
127 => 0.22543044392822
128 => 0.22897167170911
129 => 0.22790502508204
130 => 0.21978779158318
131 => 0.21506321352232
201 => 0.20269808143401
202 => 0.21734511452657
203 => 0.22447925708614
204 => 0.21976931587743
205 => 0.22214473626219
206 => 0.23510425964876
207 => 0.24003840708737
208 => 0.23901213891244
209 => 0.23918556134019
210 => 0.24184793773695
211 => 0.25365438087766
212 => 0.24657968647654
213 => 0.25198802526245
214 => 0.25485658865328
215 => 0.25752107019746
216 => 0.250977945643
217 => 0.24246543673523
218 => 0.23976916783332
219 => 0.21930100504702
220 => 0.21823554828527
221 => 0.21763747511825
222 => 0.21386670839935
223 => 0.21090391865822
224 => 0.20854779825475
225 => 0.20236463471892
226 => 0.20445127090359
227 => 0.194596598754
228 => 0.20090126876717
301 => 0.18517297406705
302 => 0.19827196526211
303 => 0.19114277989268
304 => 0.19592983612943
305 => 0.19591313454119
306 => 0.18709864627178
307 => 0.18201463339166
308 => 0.18525436427161
309 => 0.18872761294508
310 => 0.18929113585694
311 => 0.19379429342315
312 => 0.19505102790483
313 => 0.19124306375401
314 => 0.18484704011886
315 => 0.18633269053154
316 => 0.18198452673346
317 => 0.17436453692704
318 => 0.17983734663827
319 => 0.18170600449614
320 => 0.18253131026127
321 => 0.1750379254484
322 => 0.17268334125089
323 => 0.17142978038102
324 => 0.18387973823742
325 => 0.18456177503298
326 => 0.18107237835659
327 => 0.19684478221205
328 => 0.19327500145673
329 => 0.19726332117794
330 => 0.18619788332844
331 => 0.18662059795588
401 => 0.18138204234642
402 => 0.1843152834473
403 => 0.18224216317997
404 => 0.1840783065532
405 => 0.18517888332042
406 => 0.19041657933445
407 => 0.19833177133716
408 => 0.18963424221172
409 => 0.18584460422086
410 => 0.18819567431666
411 => 0.19445688380217
412 => 0.20394293667813
413 => 0.19832700245095
414 => 0.20081925869623
415 => 0.20136370581306
416 => 0.19722272382712
417 => 0.20409562059059
418 => 0.20777886180144
419 => 0.2115571051444
420 => 0.21483764797511
421 => 0.21004799166787
422 => 0.21517361048688
423 => 0.21104326651228
424 => 0.20733792097995
425 => 0.20734354045962
426 => 0.20501912308073
427 => 0.20051527151368
428 => 0.19968469218324
429 => 0.20400547075081
430 => 0.20747032598275
501 => 0.20775570805519
502 => 0.20967402994228
503 => 0.21080927307477
504 => 0.2219361990614
505 => 0.22641154073999
506 => 0.23188390383068
507 => 0.23401569765999
508 => 0.24043163279582
509 => 0.23525024409686
510 => 0.23412921805938
511 => 0.21856625805624
512 => 0.2211146918849
513 => 0.22519498033187
514 => 0.21863354050987
515 => 0.22279526384167
516 => 0.22361687618472
517 => 0.21841058529548
518 => 0.22119149020997
519 => 0.21380623123792
520 => 0.19849274980117
521 => 0.20411266887302
522 => 0.2082508209542
523 => 0.20234516770388
524 => 0.21293082257473
525 => 0.20674690153145
526 => 0.20478689544129
527 => 0.19714021289094
528 => 0.2007491527069
529 => 0.20563029548303
530 => 0.20261431674114
531 => 0.20887292548205
601 => 0.21773678456916
602 => 0.22405369840658
603 => 0.22453863261358
604 => 0.22047728021648
605 => 0.22698562335204
606 => 0.22703302952646
607 => 0.21969159188219
608 => 0.21519500220237
609 => 0.21417336756621
610 => 0.21672561119061
611 => 0.21982450612079
612 => 0.22471059971499
613 => 0.22766316374186
614 => 0.23536188480498
615 => 0.23744493798503
616 => 0.23973358188764
617 => 0.24279191593317
618 => 0.24646423009558
619 => 0.23842941577319
620 => 0.23874865392498
621 => 0.23126674607755
622 => 0.22327125452844
623 => 0.22933883596212
624 => 0.23727139155012
625 => 0.23545165453354
626 => 0.23524689694532
627 => 0.23559124241369
628 => 0.23421922013024
629 => 0.22801361419172
630 => 0.22489719773854
701 => 0.22891817004577
702 => 0.23105513787417
703 => 0.23436938861285
704 => 0.23396083725396
705 => 0.24249799123224
706 => 0.24581527111807
707 => 0.24496656896886
708 => 0.24512275058947
709 => 0.25112852736882
710 => 0.25780818632965
711 => 0.2640645684051
712 => 0.27042882897011
713 => 0.26275646445767
714 => 0.25886091092391
715 => 0.26288012780042
716 => 0.26074747475117
717 => 0.27300233175813
718 => 0.27385083146831
719 => 0.28610480230962
720 => 0.29773527981374
721 => 0.29043038527505
722 => 0.29731857180535
723 => 0.30476870713997
724 => 0.31914122694133
725 => 0.31430106790357
726 => 0.31059358193561
727 => 0.30709002561033
728 => 0.31438037014934
729 => 0.32375928193266
730 => 0.32577940970069
731 => 0.3290527884331
801 => 0.32561123094568
802 => 0.32975620786416
803 => 0.34438979778152
804 => 0.34043567261158
805 => 0.33482017921292
806 => 0.34637199302776
807 => 0.35055254954081
808 => 0.37989388452386
809 => 0.41693853197004
810 => 0.40160180467905
811 => 0.39208180313644
812 => 0.39431922931641
813 => 0.4078466805233
814 => 0.41219126851112
815 => 0.40038118069095
816 => 0.40455270336606
817 => 0.42753820344101
818 => 0.43986918676808
819 => 0.42312205513791
820 => 0.37691738317113
821 => 0.33431456547281
822 => 0.34561475115629
823 => 0.34433366078537
824 => 0.36902871311637
825 => 0.34034136803399
826 => 0.34082438935238
827 => 0.36603010921306
828 => 0.35930565528967
829 => 0.34841290113676
830 => 0.33439409463277
831 => 0.3084790342275
901 => 0.28552534253163
902 => 0.33054281786673
903 => 0.32860158247131
904 => 0.32579038594378
905 => 0.33204639961256
906 => 0.36242382618771
907 => 0.36172352818302
908 => 0.35726858957236
909 => 0.36064762124452
910 => 0.34782054054725
911 => 0.35112637131013
912 => 0.33430781696882
913 => 0.34191050593597
914 => 0.34838953017853
915 => 0.34969029021882
916 => 0.35262096900804
917 => 0.32757863962834
918 => 0.33882191031566
919 => 0.34542627849247
920 => 0.3155875028007
921 => 0.34483646183602
922 => 0.327142708388
923 => 0.32113718271648
924 => 0.32922283186533
925 => 0.32607184652847
926 => 0.32336281436791
927 => 0.32185112787523
928 => 0.32778833622962
929 => 0.32751135836339
930 => 0.31779693313313
1001 => 0.30512486143088
1002 => 0.30937802464073
1003 => 0.30783281057298
1004 => 0.30223275545485
1005 => 0.30600651645123
1006 => 0.28938878287989
1007 => 0.26079883598503
1008 => 0.27968623063753
1009 => 0.27895908648894
1010 => 0.27859242743586
1011 => 0.29278578250797
1012 => 0.2914214189142
1013 => 0.28894508563163
1014 => 0.30218727565215
1015 => 0.29735369816207
1016 => 0.31224964505241
1017 => 0.32206107908384
1018 => 0.31957258204683
1019 => 0.32880028317615
1020 => 0.3094760089309
1021 => 0.31589475767986
1022 => 0.31721765290102
1023 => 0.30202386908283
1024 => 0.29164464567151
1025 => 0.29095246980179
1026 => 0.27295632675166
1027 => 0.28256972110925
1028 => 0.29102911031463
1029 => 0.28697771936037
1030 => 0.28569517001612
1031 => 0.29224743646491
1101 => 0.29275660368435
1102 => 0.28114753712203
1103 => 0.28356142967166
1104 => 0.29362776287988
1105 => 0.28330778390237
1106 => 0.26325775050806
1107 => 0.25828506501288
1108 => 0.25762161710304
1109 => 0.24413529965143
1110 => 0.25861736363549
1111 => 0.25229555461126
1112 => 0.27226607357188
1113 => 0.26085902024562
1114 => 0.26036728497571
1115 => 0.25962395499337
1116 => 0.24801572445001
1117 => 0.25055718919747
1118 => 0.25900540509403
1119 => 0.26201982370189
1120 => 0.26170539514468
1121 => 0.25896400422723
1122 => 0.26021899895105
1123 => 0.25617622367648
1124 => 0.25474863558394
1125 => 0.25024277487484
1126 => 0.24362040440826
1127 => 0.244541285639
1128 => 0.23142063690721
1129 => 0.2242718111126
1130 => 0.22229311035266
1201 => 0.21964710900087
1202 => 0.22259198324608
1203 => 0.23138346775788
1204 => 0.22077907221917
1205 => 0.20259857987992
1206 => 0.20369125844756
1207 => 0.20614618276987
1208 => 0.20157144753619
1209 => 0.19724184456594
1210 => 0.20100608307678
1211 => 0.19330276880344
1212 => 0.20707709149678
1213 => 0.20670453467002
1214 => 0.21183875037169
1215 => 0.21504928081466
1216 => 0.20765004756519
1217 => 0.2057891604126
1218 => 0.20684920630732
1219 => 0.18932900894902
1220 => 0.21040697646536
1221 => 0.21058925960372
1222 => 0.20902844070575
1223 => 0.22025180769897
1224 => 0.2439366127106
1225 => 0.23502543634615
1226 => 0.2315747595161
1227 => 0.22501502033975
1228 => 0.23375548331346
1229 => 0.23308435212955
1230 => 0.23004924239692
1231 => 0.22821359856052
]
'min_raw' => 0.17142978038102
'max_raw' => 0.43986918676808
'avg_raw' => 0.30564948357455
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.171429'
'max' => '$0.439869'
'avg' => '$0.305649'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.10541830572374
'max_diff' => 0.25567670225447
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0053809849177378
]
1 => [
'year' => 2028
'avg' => 0.0092353322299213
]
2 => [
'year' => 2029
'avg' => 0.025229263145458
]
3 => [
'year' => 2030
'avg' => 0.019464338944175
]
4 => [
'year' => 2031
'avg' => 0.01911639303215
]
5 => [
'year' => 2032
'avg' => 0.033517053135655
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0053809849177378
'min' => '$0.00538'
'max_raw' => 0.033517053135655
'max' => '$0.033517'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.033517053135655
]
1 => [
'year' => 2033
'avg' => 0.086209307182836
]
2 => [
'year' => 2034
'avg' => 0.054643601917919
]
3 => [
'year' => 2035
'avg' => 0.064452253771833
]
4 => [
'year' => 2036
'avg' => 0.12510197958544
]
5 => [
'year' => 2037
'avg' => 0.30564948357455
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.033517053135655
'min' => '$0.033517'
'max_raw' => 0.30564948357455
'max' => '$0.305649'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.30564948357455
]
]
]
]
'prediction_2025_max_price' => '$0.0092005'
'last_price' => 0.00892105
'sma_50day_nextmonth' => '$0.008346'
'sma_200day_nextmonth' => '$0.006339'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.008746'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.008562'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.008577'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.008496'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007428'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.00702'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.005783'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.008759'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.008694'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.008598'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0083033'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007726'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.007055'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006164'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.006453'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.004947'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.004896'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.0056082'
'weekly_sma200_action' => 'BUY'
'weekly_ema3' => '$0.008534'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.008215'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.007685'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.0068098'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.00571'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.005529'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.008133'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '57.99'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 36.51
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.008582'
'vwma_10_action' => 'BUY'
'hma_9' => '0.008672'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 99.04
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 85.51
'cci_20_action' => 'NEUTRAL'
'adx_14' => 16.75
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000966'
'ao_5_34_action' => 'BUY'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -0.96
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 54.86
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001188'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 1
'buy_signals' => 32
'sell_pct' => 3.03
'buy_pct' => 96.97
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767707919
'last_updated_date' => '6. Januar 2026'
]
Naka Bodhi Token Preisprognose für 2026
Die Preisprognose für Naka Bodhi Token im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.003082 am unteren Ende und $0.0092005 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Naka Bodhi Token im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn NBOT das prognostizierte Preisziel erreicht.
Naka Bodhi Token Preisprognose 2027-2032
Die Preisprognose für NBOT für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.00538 am unteren Ende und $0.033517 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Naka Bodhi Token, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Naka Bodhi Token Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.002967 | $0.00538 | $0.007794 |
| 2028 | $0.005354 | $0.009235 | $0.013115 |
| 2029 | $0.011763 | $0.025229 | $0.038695 |
| 2030 | $0.010004 | $0.019464 | $0.028924 |
| 2031 | $0.011827 | $0.019116 | $0.0264049 |
| 2032 | $0.018054 | $0.033517 | $0.048979 |
Naka Bodhi Token Preisprognose 2032-2037
Die Preisprognose für Naka Bodhi Token für die Jahre 2032-2037 wird derzeit zwischen $0.033517 am unteren Ende und $0.305649 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Naka Bodhi Token bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Naka Bodhi Token Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.018054 | $0.033517 | $0.048979 |
| 2033 | $0.041954 | $0.0862093 | $0.130464 |
| 2034 | $0.033729 | $0.054643 | $0.075557 |
| 2035 | $0.039878 | $0.064452 | $0.089025 |
| 2036 | $0.066011 | $0.1251019 | $0.184192 |
| 2037 | $0.171429 | $0.305649 | $0.439869 |
Naka Bodhi Token Potenzielles Preishistogramm
Naka Bodhi Token Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Naka Bodhi Token Bullisch, mit 32 technischen Indikatoren, die bullische Signale zeigen, und 1 anzeigen bärische Signale. Die Preisprognose für NBOT wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Naka Bodhi Token
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Naka Bodhi Token im nächsten Monat steigen, und bis zum 04.02.2026 $0.006339 erreichen. Der kurzfristige 50-Tage-SMA für Naka Bodhi Token wird voraussichtlich bis zum 04.02.2026 $0.008346 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 57.99, was darauf hindeutet, dass sich der NBOT-Markt in einem NEUTRAL Zustand befindet.
Beliebte NBOT Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.008746 | BUY |
| SMA 5 | $0.008562 | BUY |
| SMA 10 | $0.008577 | BUY |
| SMA 21 | $0.008496 | BUY |
| SMA 50 | $0.007428 | BUY |
| SMA 100 | $0.00702 | BUY |
| SMA 200 | $0.005783 | BUY |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.008759 | BUY |
| EMA 5 | $0.008694 | BUY |
| EMA 10 | $0.008598 | BUY |
| EMA 21 | $0.0083033 | BUY |
| EMA 50 | $0.007726 | BUY |
| EMA 100 | $0.007055 | BUY |
| EMA 200 | $0.006164 | BUY |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.006453 | BUY |
| SMA 50 | $0.004947 | BUY |
| SMA 100 | $0.004896 | BUY |
| SMA 200 | $0.0056082 | BUY |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.0068098 | BUY |
| EMA 50 | $0.00571 | BUY |
| EMA 100 | $0.005529 | BUY |
| EMA 200 | $0.008133 | BUY |
Naka Bodhi Token Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 57.99 | NEUTRAL |
| Stoch RSI (14) | 36.51 | NEUTRAL |
| Stochastic Fast (14) | 99.04 | SELL |
| Commodity Channel Index (20) | 85.51 | NEUTRAL |
| Average Directional Index (14) | 16.75 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000966 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Prozentbereich (14) | -0.96 | SELL |
| Ultimate Oscillator (7, 14, 28) | 54.86 | NEUTRAL |
| VWMA (10) | 0.008582 | BUY |
| Hull Moving Average (9) | 0.008672 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.001188 | NEUTRAL |
Auf weltweiten Geldflüssen basierende Naka Bodhi Token-Preisprognose
Definition weltweiter Geldflüsse, die für Naka Bodhi Token-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Naka Bodhi Token-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.012535 | $0.017614 | $0.024751 | $0.034779 | $0.048871 | $0.068672 |
| Amazon.com aktie | $0.018614 | $0.038839 | $0.081041 | $0.169098 | $0.352833 | $0.736208 |
| Apple aktie | $0.012653 | $0.017948 | $0.025458 | $0.036111 | $0.05122 | $0.072652 |
| Netflix aktie | $0.014076 | $0.0222097 | $0.035043 | $0.055293 | $0.087243 | $0.137657 |
| Google aktie | $0.011552 | $0.01496 | $0.019374 | $0.025089 | $0.03249 | $0.042075 |
| Tesla aktie | $0.020223 | $0.045844 | $0.103926 | $0.235593 | $0.534073 | $1.21 |
| Kodak aktie | $0.006689 | $0.005016 | $0.003761 | $0.002821 | $0.002115 | $0.001586 |
| Nokia aktie | $0.0059098 | $0.003915 | $0.002593 | $0.001718 | $0.001138 | $0.000753 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Naka Bodhi Token Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Naka Bodhi Token investieren?", "Sollte ich heute NBOT kaufen?", "Wird Naka Bodhi Token auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Naka Bodhi Token/Naka Bodhi-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Naka Bodhi Token.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Naka Bodhi Token zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Naka Bodhi Token-Preis entspricht heute $0.008921 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Naka Bodhi Token-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Naka Bodhi Token 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009152 | $0.00939 | $0.009634 | $0.009885 |
| Wenn die Wachstumsrate von Naka Bodhi Token 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009384 | $0.009872 | $0.010385 | $0.010925 |
| Wenn die Wachstumsrate von Naka Bodhi Token 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.01008 | $0.01139 | $0.01287 | $0.014543 |
| Wenn die Wachstumsrate von Naka Bodhi Token 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.011239 | $0.014161 | $0.017842 | $0.02248 |
| Wenn die Wachstumsrate von Naka Bodhi Token 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.013558 | $0.0206075 | $0.03132 | $0.047603 |
| Wenn die Wachstumsrate von Naka Bodhi Token 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.020515 | $0.047178 | $0.108494 | $0.24950024 |
| Wenn die Wachstumsrate von Naka Bodhi Token 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0321097 | $0.115573 | $0.415985 | $1.49 |
Fragefeld
Ist NBOT eine gute Investition?
Die Entscheidung, Naka Bodhi Token zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Naka Bodhi Token in den letzten 2026 Stunden um 3.4668% gestiegen, und Naka Bodhi Token hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Naka Bodhi Token investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Naka Bodhi Token steigen?
Es scheint, dass der Durchschnittswert von Naka Bodhi Token bis zum Ende dieses Jahres potenziell auf $0.0092005 steigen könnte. Betrachtet man die Aussichten von Naka Bodhi Token in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.028924 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Naka Bodhi Token nächste Woche kosten?
Basierend auf unserer neuen experimentellen Naka Bodhi Token-Prognose wird der Preis von Naka Bodhi Token in der nächsten Woche um 0.86% steigen und $0.008997 erreichen bis zum 13. Januar 2026.
Wie viel wird Naka Bodhi Token nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Naka Bodhi Token-Prognose wird der Preis von Naka Bodhi Token im nächsten Monat um -11.62% fallen und $0.007884 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Naka Bodhi Token in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Naka Bodhi Token im Jahr 2026 wird erwartet, dass NBOT innerhalb der Spanne von $0.003082 bis $0.0092005 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Naka Bodhi Token-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Naka Bodhi Token in 5 Jahren sein?
Die Zukunft von Naka Bodhi Token scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.028924 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Naka Bodhi Token-Prognose für 2030 könnte der Wert von Naka Bodhi Token seinen höchsten Gipfel von ungefähr $0.028924 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.010004 liegen wird.
Wie viel wird Naka Bodhi Token im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Naka Bodhi Token-Preisprognosesimulation wird der Wert von NBOT im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.0092005 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.0092005 und $0.003082 während des Jahres 2026 liegen.
Wie viel wird Naka Bodhi Token im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Naka Bodhi Token könnte der Wert von NBOT um -12.62% fallen und bis zu $0.007794 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.007794 und $0.002967 im Laufe des Jahres schwanken.
Wie viel wird Naka Bodhi Token im Jahr 2028 kosten?
Unser neues experimentelles Naka Bodhi Token-Preisprognosemodell deutet darauf hin, dass der Wert von NBOT im Jahr 2028 um 47.02% steigen, und im besten Fall $0.013115 erreichen wird. Der Preis wird voraussichtlich zwischen $0.013115 und $0.005354 im Laufe des Jahres liegen.
Wie viel wird Naka Bodhi Token im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Naka Bodhi Token im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.038695 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.038695 und $0.011763.
Wie viel wird Naka Bodhi Token im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Naka Bodhi Token-Preisprognosen wird der Wert von NBOT im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.028924 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.028924 und $0.010004 während des Jahres 2030 liegen.
Wie viel wird Naka Bodhi Token im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Naka Bodhi Token im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.0264049 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.0264049 und $0.011827 während des Jahres schwanken.
Wie viel wird Naka Bodhi Token im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Naka Bodhi Token-Preisprognose könnte NBOT eine 449.04% Steigerung im Wert erfahren und $0.048979 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.048979 und $0.018054 liegen.
Wie viel wird Naka Bodhi Token im Jahr 2033 kosten?
Laut unserer experimentellen Naka Bodhi Token-Preisprognose wird der Wert von NBOT voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.130464 beträgt. Im Laufe des Jahres könnte der Preis von NBOT zwischen $0.130464 und $0.041954 liegen.
Wie viel wird Naka Bodhi Token im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Naka Bodhi Token-Preisprognosesimulation deuten darauf hin, dass NBOT im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.075557 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.075557 und $0.033729.
Wie viel wird Naka Bodhi Token im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Naka Bodhi Token könnte NBOT um 897.93% steigen, wobei der Wert im Jahr 2035 $0.089025 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.089025 und $0.039878.
Wie viel wird Naka Bodhi Token im Jahr 2036 kosten?
Unsere jüngste Naka Bodhi Token-Preisprognosesimulation deutet darauf hin, dass der Wert von NBOT im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.184192 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.184192 und $0.066011.
Wie viel wird Naka Bodhi Token im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Naka Bodhi Token um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.439869 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.439869 und $0.171429 liegen.
Verwandte Prognosen
SolPod-Preisprognose
zuzalu-Preisprognose
SOFT COQ INU-Preisprognose
All Street Bets-Preisprognose
MagicRing-Preisprognose
AI INU-Preisprognose
Wall Street Baby On Solana-Preisprognose
Meta Masters Guild Games-Preisprognose
Morfey-Preisprognose
PANTIES-PreisprognoseCeler Bridged BUSD (zkSync)-Preisprognose
Bridged BUSD-Preisprognose
Multichain Bridged BUSD (Moonriver)-Preisprognose
tooker kurlson-Preisprognose
dogwifsaudihat-PreisprognoseHarmony Horizen Bridged BUSD (Harmony)-Preisprognose
IoTeX Bridged BUSD (IoTeX)-Preisprognose
MIMANY-Preisprognose
The Open League MEME-Preisprognose
Sandwich Cat-Preisprognose
Hege-Preisprognose
DexNet-Preisprognose
SolDocs-Preisprognose
Secret Society-Preisprognose
duk-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Naka Bodhi Token?
Naka Bodhi Token-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Naka Bodhi Token Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Naka Bodhi Token. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von NBOT über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von NBOT über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von NBOT einzuschätzen.
Wie liest man Naka Bodhi Token-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Naka Bodhi Token in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von NBOT innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Naka Bodhi Token?
Die Preisentwicklung von Naka Bodhi Token wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von NBOT. Die Marktkapitalisierung von Naka Bodhi Token kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von NBOT-„Walen“, großen Inhabern von Naka Bodhi Token, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Naka Bodhi Token-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


