Lympo Market Preisvorhersage bis zu $0.000398 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.000133 | $0.000398 |
| 2027 | $0.000128 | $0.000337 |
| 2028 | $0.000232 | $0.000568 |
| 2029 | $0.0005099 | $0.001677 |
| 2030 | $0.000433 | $0.001253 |
| 2031 | $0.000512 | $0.001144 |
| 2032 | $0.000782 | $0.002123 |
| 2033 | $0.001818 | $0.005655 |
| 2034 | $0.001462 | $0.003275 |
| 2035 | $0.001728 | $0.003859 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Lympo Market eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,975.12 Gewinn erzielen könnten, was einer Rendite von 39.75% in den nächsten 90 Tagen entspricht.
Langfristige Lympo Market Token Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Lympo Market'
'name_with_ticker' => 'Lympo Market <small>LMT</small>'
'name_lang' => 'Lympo Market Token'
'name_lang_with_ticker' => 'Lympo Market Token <small>LMT</small>'
'name_with_lang' => 'Lympo Market Token/Lympo Market'
'name_with_lang_with_ticker' => 'Lympo Market Token/Lympo Market <small>LMT</small>'
'image' => '/uploads/coins/lympo-market-token.png?1717096009'
'price_for_sd' => 0.0003867
'ticker' => 'LMT'
'marketcap' => '$59.79K'
'low24h' => '$0.0002122'
'high24h' => '$0.0003869'
'volume24h' => '$14.73'
'current_supply' => '155.25M'
'max_supply' => '1.25B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0003867'
'change_24h_pct' => '81.9747%'
'ath_price' => '$1.76'
'ath_days' => 1710
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '02.05.2021'
'ath_pct' => '-99.98%'
'fdv' => '$481.4K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.019068'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00039'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000341'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000133'
'current_year_max_price_prediction' => '$0.000398'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000433'
'grand_prediction_max_price' => '$0.001253'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00039405833008002
107 => 0.00039552960084137
108 => 0.00039884444899162
109 => 0.00037051943448381
110 => 0.00038323653441908
111 => 0.00039070663919993
112 => 0.00035695643403531
113 => 0.00039003950615901
114 => 0.0003700263589987
115 => 0.00036323359626511
116 => 0.00037237915640745
117 => 0.00036881512272563
118 => 0.00036575097585308
119 => 0.00036404112924947
120 => 0.00037075661925937
121 => 0.00037044333362366
122 => 0.00035945548854703
123 => 0.00034512229256642
124 => 0.00034993298360863
125 => 0.00034818521445253
126 => 0.00034185107356409
127 => 0.00034611951973581
128 => 0.00032732344300675
129 => 0.00029498576992945
130 => 0.00031634902729403
131 => 0.00031552656512424
201 => 0.00031511184240255
202 => 0.00033116573987496
203 => 0.00032962252805942
204 => 0.00032682158350304
205 => 0.00034179963202079
206 => 0.00033633244282863
207 => 0.00035318103168709
208 => 0.00036427860200768
209 => 0.00036146389920558
210 => 0.00037190121773131
211 => 0.00035004381221401
212 => 0.00035730396555996
213 => 0.00035880027310242
214 => 0.00034161480522706
215 => 0.00032987501659767
216 => 0.00032909210653947
217 => 0.00030873693089863
218 => 0.00031961050142473
219 => 0.00032917879350878
220 => 0.00032459632412998
221 => 0.00032314565122203
222 => 0.00033055682449618
223 => 0.00033113273613199
224 => 0.00031800188980319
225 => 0.00032073220855477
226 => 0.00033211809162659
227 => 0.00032044531351453
228 => 0.00029776701238028
301 => 0.00029214248014694
302 => 0.00029139206386632
303 => 0.00027613788636223
304 => 0.00029251833828552
305 => 0.00028536783205219
306 => 0.00030795619556707
307 => 0.00029505384347119
308 => 0.00029449764885994
309 => 0.00029365687912903
310 => 0.00028052697840913
311 => 0.00028340159221806
312 => 0.00029295724633502
313 => 0.0002963668113761
314 => 0.00029601116580857
315 => 0.00029291041841678
316 => 0.00029432992469434
317 => 0.00028975720038553
318 => 0.00028814247625906
319 => 0.00028304596275106
320 => 0.0002755554958421
321 => 0.00027659709120749
322 => 0.00026175651627355
323 => 0.00025367058340061
324 => 0.00025143250375226
325 => 0.00024843965011071
326 => 0.00025177055453476
327 => 0.00026171447478938
328 => 0.00024971999724194
329 => 0.00022915630680162
330 => 0.00023039221963591
331 => 0.00023316894882873
401 => 0.0002279945323478
402 => 0.00022309738140445
403 => 0.00022735505683128
404 => 0.00021864195010538
405 => 0.0002342218861492
406 => 0.00023380049254148
407 => 0.00023960772924184
408 => 0.00024323911352706
409 => 0.00023486994842424
410 => 0.00023276512603351
411 => 0.00023396412852611
412 => 0.00021414728813442
413 => 0.00023798827060227
414 => 0.00023819444840867
415 => 0.00023642902885609
416 => 0.00024912361601247
417 => 0.00027591315445345
418 => 0.00026583385248527
419 => 0.00026193084211467
420 => 0.00025451121654709
421 => 0.00026439742708212
422 => 0.00026363832036194
423 => 0.0002602053518906
424 => 0.00025812908184762
425 => 0.00026195467306373
426 => 0.00025765504876001
427 => 0.00025688271808928
428 => 0.00025220323452876
429 => 0.00025053287180059
430 => 0.00024929620173571
501 => 0.00024793474950697
502 => 0.00025093777387082
503 => 0.00024413252558158
504 => 0.00023592606327148
505 => 0.00023524378472554
506 => 0.00023712761577741
507 => 0.00023629416077168
508 => 0.00023523979446363
509 => 0.00023322672204197
510 => 0.00023262948645695
511 => 0.00023457021237075
512 => 0.00023237924596542
513 => 0.0002356121362446
514 => 0.00023473296897264
515 => 0.00022982201205866
516 => 0.00022370114147472
517 => 0.00022364665288756
518 => 0.00022232792136049
519 => 0.00022064831848815
520 => 0.00022018109139317
521 => 0.00022699648728245
522 => 0.00024110415280563
523 => 0.00023833448049561
524 => 0.00024033585258703
525 => 0.00025018062244609
526 => 0.00025330997874173
527 => 0.00025108883576595
528 => 0.00024804839826658
529 => 0.00024818216208607
530 => 0.00025857225742446
531 => 0.00025922027492596
601 => 0.0002608576060939
602 => 0.00026296203935443
603 => 0.00025144722985005
604 => 0.00024763981559392
605 => 0.00024583565149207
606 => 0.00024027952435774
607 => 0.00024627133112577
608 => 0.00024278016191679
609 => 0.0002432512399184
610 => 0.00024294444975186
611 => 0.00024311197792785
612 => 0.00023421753123956
613 => 0.00023745820013442
614 => 0.00023206995955864
615 => 0.00022485571028607
616 => 0.00022483152559287
617 => 0.00022659720288191
618 => 0.00022554690893943
619 => 0.00022272059494574
620 => 0.00022312205950871
621 => 0.00021960480749616
622 => 0.00022354911758494
623 => 0.00022366222628487
624 => 0.00022214345205267
625 => 0.00022822020595433
626 => 0.00023070985698601
627 => 0.00022971016725107
628 => 0.00023063971608923
629 => 0.00023844957288441
630 => 0.00023972292030996
701 => 0.00024028845712379
702 => 0.00023953071271253
703 => 0.00023078246593469
704 => 0.00023117048787971
705 => 0.00022832344030379
706 => 0.00022591798511663
707 => 0.00022601419070917
708 => 0.00022725090736265
709 => 0.00023265172152091
710 => 0.00024401741652158
711 => 0.00024444873633864
712 => 0.0002449715085394
713 => 0.00024284513127464
714 => 0.0002422037955449
715 => 0.00024304988291523
716 => 0.00024731824037762
717 => 0.00025829761461866
718 => 0.00025441677047413
719 => 0.00025126158377569
720 => 0.00025402953314244
721 => 0.00025360342903334
722 => 0.00025000668153644
723 => 0.00024990573281354
724 => 0.00024300242441727
725 => 0.0002404504284839
726 => 0.00023831778966838
727 => 0.00023598900375579
728 => 0.00023460842140519
729 => 0.00023672962335917
730 => 0.00023721476734336
731 => 0.00023257672219874
801 => 0.00023194457378369
802 => 0.00023573210156795
803 => 0.00023406535180336
804 => 0.00023577964526965
805 => 0.00023617737605876
806 => 0.0002361133322412
807 => 0.00023437305406198
808 => 0.00023548225547757
809 => 0.00023285866346084
810 => 0.00023000590119342
811 => 0.00022818601660018
812 => 0.00022659792591992
813 => 0.0002274790909297
814 => 0.0002243378985642
815 => 0.00022333296790676
816 => 0.00023510648299579
817 => 0.00024380370517867
818 => 0.00024367724412365
819 => 0.00024290744497438
820 => 0.00024176367958661
821 => 0.00024723456681543
822 => 0.00024532861909876
823 => 0.0002467153553099
824 => 0.00024706833787677
825 => 0.00024813670979514
826 => 0.00024851856092629
827 => 0.0002473643415953
828 => 0.00024349064054446
829 => 0.00023383774582621
830 => 0.00022934429727737
831 => 0.00022786138441195
901 => 0.00022791528547816
902 => 0.00022642845344725
903 => 0.00022686639211549
904 => 0.0002262761562506
905 => 0.00022515839231587
906 => 0.00022741007215651
907 => 0.00022766955728229
908 => 0.00022714398830192
909 => 0.00022726777882267
910 => 0.00022291629213862
911 => 0.00022324712622027
912 => 0.00022140500001325
913 => 0.0002210596235566
914 => 0.00021640288891752
915 => 0.00020815280849991
916 => 0.00021272415390595
917 => 0.00020720261148389
918 => 0.00020511151970364
919 => 0.00021501042295987
920 => 0.00021401684762578
921 => 0.00021231627855064
922 => 0.00020980078245885
923 => 0.00020886776048924
924 => 0.00020319901436071
925 => 0.00020286407459785
926 => 0.00020567365824817
927 => 0.00020437713206542
928 => 0.00020255631827198
929 => 0.00019596151528505
930 => 0.00018854677326352
1001 => 0.00018877057771774
1002 => 0.00019112906919861
1003 => 0.00019798670126515
1004 => 0.00019530730577851
1005 => 0.00019336337361044
1006 => 0.00019299933354974
1007 => 0.00019755605707882
1008 => 0.00020400477553556
1009 => 0.00020703036995352
1010 => 0.00020403209777399
1011 => 0.00020058784413259
1012 => 0.0002007974798926
1013 => 0.00020219209268553
1014 => 0.0002023386467713
1015 => 0.00020009679172574
1016 => 0.00020072786078932
1017 => 0.00019976920917558
1018 => 0.00019388596599154
1019 => 0.0001937795567783
1020 => 0.00019233571402083
1021 => 0.00019229199503595
1022 => 0.00018983565832203
1023 => 0.0001894919998359
1024 => 0.00018461479420143
1025 => 0.00018782498571958
1026 => 0.00018567175779182
1027 => 0.00018242633540958
1028 => 0.0001818668233676
1029 => 0.00018185000375999
1030 => 0.00018518232688339
1031 => 0.00018778604558371
1101 => 0.0001857092141135
1102 => 0.00018523635984542
1103 => 0.00019028520634086
1104 => 0.00018964269460306
1105 => 0.00018908628358188
1106 => 0.00020342736352792
1107 => 0.0001920752797022
1108 => 0.0001871251231999
1109 => 0.00018099836451908
1110 => 0.00018299326803935
1111 => 0.0001834136235223
1112 => 0.00016867987332618
1113 => 0.00016270239270658
1114 => 0.00016065114661454
1115 => 0.00015947062548821
1116 => 0.00016000860378953
1117 => 0.00015462817014334
1118 => 0.00015824391053774
1119 => 0.00015358490979688
1120 => 0.00015280381316097
1121 => 0.00016113468362507
1122 => 0.00016229387558191
1123 => 0.00015734840256132
1124 => 0.0001605241968399
1125 => 0.00015937260968764
1126 => 0.00015366477499244
1127 => 0.00015344677769107
1128 => 0.00015058278688111
1129 => 0.00014610119584141
1130 => 0.00014405298847913
1201 => 0.00014298626430151
1202 => 0.00014342641548723
1203 => 0.00014320386157888
1204 => 0.00014175154678561
1205 => 0.00014328710656281
1206 => 0.00013936438586918
1207 => 0.00013780232688146
1208 => 0.0001370967810762
1209 => 0.00013361514067722
1210 => 0.00013915597884451
1211 => 0.00014024759376511
1212 => 0.00014134135950432
1213 => 0.00015086184351853
1214 => 0.00015038622704179
1215 => 0.00015468556835692
1216 => 0.00015451850385939
1217 => 0.00015329226207161
1218 => 0.00014811894967592
1219 => 0.00015018093979142
1220 => 0.00014383445472034
1221 => 0.00014858967285463
1222 => 0.0001464195898808
1223 => 0.00014785596561827
1224 => 0.00014527323252951
1225 => 0.00014670262365927
1226 => 0.00014050645615903
1227 => 0.00013472056212974
1228 => 0.0001370489747879
1229 => 0.00013958022563361
1230 => 0.00014506862241783
1231 => 0.00014179977857144
]
'min_raw' => 0.00013361514067722
'max_raw' => 0.00039884444899162
'avg_raw' => 0.00026622979483442
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000133'
'max' => '$0.000398'
'avg' => '$0.000266'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00025311485932278
'max_diff' => 1.2114448991623E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00014297537842727
102 => 0.00013903731570327
103 => 0.00013091196745165
104 => 0.00013095795604035
105 => 0.00012970804823217
106 => 0.00012862794539637
107 => 0.00014217524460944
108 => 0.00014049042380119
109 => 0.00013780588234713
110 => 0.00014139924776282
111 => 0.00014234939061311
112 => 0.00014237643984431
113 => 0.00014499806649342
114 => 0.00014639722910599
115 => 0.00014664383758078
116 => 0.00015076902375713
117 => 0.00015215173175092
118 => 0.0001578469102892
119 => 0.00014627851993372
120 => 0.00014604027654714
121 => 0.0001414498137833
122 => 0.00013853846972612
123 => 0.00014164915600165
124 => 0.00014440479939076
125 => 0.00014153543930472
126 => 0.00014191011715646
127 => 0.00013805823567629
128 => 0.00013943510205758
129 => 0.00014062104486908
130 => 0.00013996623695507
131 => 0.00013898595781473
201 => 0.00014417886805779
202 => 0.0001438858637107
203 => 0.00014872162111353
204 => 0.00015249143981737
205 => 0.00015924762887034
206 => 0.00015219719338546
207 => 0.00015194024749345
208 => 0.00015445193480329
209 => 0.00015215134722468
210 => 0.00015360523916078
211 => 0.00015901338440236
212 => 0.00015912764998927
213 => 0.00015721355418562
214 => 0.00015709708128201
215 => 0.00015746470431902
216 => 0.00015961788392925
217 => 0.00015886549681291
218 => 0.00015973617823205
219 => 0.00016082497867904
220 => 0.00016532871896959
221 => 0.0001664145555063
222 => 0.00016377653566379
223 => 0.00016401471931891
224 => 0.00016302802748255
225 => 0.00016207489553183
226 => 0.0001642173969633
227 => 0.00016813286044027
228 => 0.00016810850254519
301 => 0.00016901681396611
302 => 0.00016958268445649
303 => 0.00016715355406928
304 => 0.0001655722795088
305 => 0.0001661786407944
306 => 0.00016714822569491
307 => 0.00016586421747891
308 => 0.00015793872395927
309 => 0.00016034281241064
310 => 0.00015994265453841
311 => 0.0001593727810675
312 => 0.00016179011059562
313 => 0.00016155695326552
314 => 0.00015457298601955
315 => 0.00015502007694321
316 => 0.00015460017509943
317 => 0.00015595696386052
318 => 0.00015207807617898
319 => 0.00015327119590512
320 => 0.00015401950941255
321 => 0.00015446027181724
322 => 0.00015605260785659
323 => 0.00015586576560105
324 => 0.00015604099347965
325 => 0.00015840200746488
326 => 0.00017034320600002
327 => 0.00017099313908952
328 => 0.00016779263085497
329 => 0.00016907117076744
330 => 0.00016661665372144
331 => 0.00016826438745825
401 => 0.00016939172503308
402 => 0.00016429750330698
403 => 0.00016399585655759
404 => 0.00016153120884662
405 => 0.00016285557092171
406 => 0.00016074841563524
407 => 0.00016126543783738
408 => 0.00015981979868701
409 => 0.00016242166133378
410 => 0.00016533094806145
411 => 0.00016606594878007
412 => 0.00016413247832708
413 => 0.0001627325182972
414 => 0.00016027464966024
415 => 0.00016436213998068
416 => 0.00016555744671439
417 => 0.00016435586154327
418 => 0.00016407742800397
419 => 0.0001635497969501
420 => 0.00016418936742631
421 => 0.00016555093681722
422 => 0.00016490884583671
423 => 0.00016533295824152
424 => 0.00016371667909718
425 => 0.00016715435821251
426 => 0.00017261421997019
427 => 0.00017263177431851
428 => 0.00017198967987689
429 => 0.0001717269486655
430 => 0.00017238577652815
501 => 0.00017274316361711
502 => 0.00017487369211655
503 => 0.00017715983408045
504 => 0.00018782826110411
505 => 0.00018483260948627
506 => 0.00019429827260922
507 => 0.00020178438317694
508 => 0.00020402914040827
509 => 0.00020196406937944
510 => 0.00019489957294277
511 => 0.00019455295504463
512 => 0.00020511029527447
513 => 0.00020212736310273
514 => 0.00020177255281251
515 => 0.00019799797078604
516 => 0.00020022921625476
517 => 0.00019974121014035
518 => 0.00019897086861469
519 => 0.00020322792953911
520 => 0.00021119676755916
521 => 0.00020995474942245
522 => 0.00020902764049895
523 => 0.00020496531907355
524 => 0.00020741174392398
525 => 0.00020654061889292
526 => 0.00021028352485595
527 => 0.00020806631027897
528 => 0.00020210476445773
529 => 0.00020305416027928
530 => 0.00020291066101077
531 => 0.00020586386578818
601 => 0.00020497738701705
602 => 0.00020273756180323
603 => 0.00021116953093714
604 => 0.00021062200576266
605 => 0.00021139827127839
606 => 0.00021174000736522
607 => 0.00021687239838907
608 => 0.00021897497477334
609 => 0.00021945229642335
610 => 0.00022144958136932
611 => 0.00021940260215441
612 => 0.00022759197848549
613 => 0.0002330374358823
614 => 0.00023936261486937
615 => 0.00024860540141732
616 => 0.00025208077465991
617 => 0.00025145297959049
618 => 0.00025846075486468
619 => 0.0002710535712583
620 => 0.00025399834782604
621 => 0.00027195753951353
622 => 0.00026627186677411
623 => 0.00025279123898983
624 => 0.00025192324548669
625 => 0.00026105248313551
626 => 0.00028130025358403
627 => 0.00027622841673499
628 => 0.00028130854929218
629 => 0.00027538230481709
630 => 0.00027508801682859
701 => 0.00028102072482565
702 => 0.00029488282043587
703 => 0.00028829745842434
704 => 0.0002788557271838
705 => 0.0002858273546022
706 => 0.00027978788573872
707 => 0.0002661792720484
708 => 0.00027622453839693
709 => 0.00026950755486238
710 => 0.00027146792775225
711 => 0.00028558602806598
712 => 0.00028388730088437
713 => 0.00028608561115528
714 => 0.00028220565106693
715 => 0.00027858115653087
716 => 0.00027181576832081
717 => 0.00026981287040141
718 => 0.00027036639932962
719 => 0.00026981259609997
720 => 0.00026602742357357
721 => 0.00026521001592688
722 => 0.00026384763403762
723 => 0.00026426989315265
724 => 0.00026170821662196
725 => 0.00026654262950476
726 => 0.0002674399391365
727 => 0.00027095802167603
728 => 0.00027132328067607
729 => 0.00028112109047187
730 => 0.00027572462148185
731 => 0.00027934503878907
801 => 0.00027902119458842
802 => 0.00025308340507076
803 => 0.00025665740361524
804 => 0.00026221742376792
805 => 0.00025971264222556
806 => 0.00025617146715329
807 => 0.00025331177841663
808 => 0.00024897905756241
809 => 0.00025507727896219
810 => 0.00026309579162936
811 => 0.00027152664338987
812 => 0.00028165575936883
813 => 0.00027939505859824
814 => 0.00027133728661231
815 => 0.00027169875237739
816 => 0.0002739331915056
817 => 0.00027103938981437
818 => 0.00027018595120191
819 => 0.00027381594214568
820 => 0.00027384093989831
821 => 0.00027051127132493
822 => 0.00026681095402855
823 => 0.00026679544956396
824 => 0.0002661370138419
825 => 0.00027549943906932
826 => 0.00028064782629644
827 => 0.00028123808059499
828 => 0.00028060809747925
829 => 0.00028085055297737
830 => 0.00027785481988687
831 => 0.00028470217737469
901 => 0.00029098598973898
902 => 0.00028930179379128
903 => 0.00028677694464311
904 => 0.00028476578068339
905 => 0.00028882802747808
906 => 0.00028864714202288
907 => 0.00029093110611985
908 => 0.0002908274923156
909 => 0.00029005948109402
910 => 0.00028930182121938
911 => 0.00029230585698035
912 => 0.00029144074292453
913 => 0.00029057428510763
914 => 0.00028883647130777
915 => 0.0002890726690652
916 => 0.00028654825586784
917 => 0.00028538034681346
918 => 0.00026781779684112
919 => 0.00026312450961564
920 => 0.00026460111331745
921 => 0.00026508724959608
922 => 0.00026304472498094
923 => 0.00026597318059753
924 => 0.00026551678389168
925 => 0.00026729235649098
926 => 0.00026618305581734
927 => 0.00026622858190393
928 => 0.00026949079865726
929 => 0.00027043783405921
930 => 0.00026995616421026
1001 => 0.00027029350926179
1002 => 0.00027806748358976
1003 => 0.00027696227303803
1004 => 0.00027637515196008
1005 => 0.00027653778851113
1006 => 0.00027852420562782
1007 => 0.00027908029396614
1008 => 0.00027672410860105
1009 => 0.00027783529924017
1010 => 0.00028256660795046
1011 => 0.00028422229823018
1012 => 0.00028950646682663
1013 => 0.00028726165808825
1014 => 0.00029138210168059
1015 => 0.00030404694052071
1016 => 0.00031416449012639
1017 => 0.00030485997338359
1018 => 0.00032343956477224
1019 => 0.00033790644175239
1020 => 0.00033735117891805
1021 => 0.00033482854429167
1022 => 0.00031835838947158
1023 => 0.00030320230744997
1024 => 0.00031588101362228
1025 => 0.00031591333425172
1026 => 0.00031482422214733
1027 => 0.00030805984040452
1028 => 0.00031458883632532
1029 => 0.00031510708431169
1030 => 0.00031481700325259
1031 => 0.00030963076763031
1101 => 0.00030171234441165
1102 => 0.00030325958535455
1103 => 0.00030579399758188
1104 => 0.00030099582650176
1105 => 0.00029946252011023
1106 => 0.00030231322841557
1107 => 0.00031149880454403
1108 => 0.00030976232458536
1109 => 0.00030971697807598
1110 => 0.00031714637572125
1111 => 0.00031182853037159
1112 => 0.00030327910101779
1113 => 0.00030112025735283
1114 => 0.00029345781671359
1115 => 0.00029875029175579
1116 => 0.00029894075851055
1117 => 0.00029604212401772
1118 => 0.00030351430923159
1119 => 0.0003034454517294
1120 => 0.00031053917950197
1121 => 0.00032409972272066
1122 => 0.00032008920281709
1123 => 0.00031542540451256
1124 => 0.00031593248870136
1125 => 0.0003214939506621
1126 => 0.00031813136380481
1127 => 0.00031934057348348
1128 => 0.00032149212037843
1129 => 0.00032279020204005
1130 => 0.0003157457147266
1201 => 0.00031410330775705
1202 => 0.00031074351950388
1203 => 0.00030986701346204
1204 => 0.00031260349088997
1205 => 0.00031188252576889
1206 => 0.00029892475051734
1207 => 0.00029757059090717
1208 => 0.00029761212104912
1209 => 0.00029420702232257
1210 => 0.00028901342944725
1211 => 0.00030266188143027
1212 => 0.00030156571972607
1213 => 0.00030035564204081
1214 => 0.00030050386965265
1215 => 0.00030642820006952
1216 => 0.00030299178924188
1217 => 0.00031212805064382
1218 => 0.00031024990996074
1219 => 0.00030832360205601
1220 => 0.0003080573276268
1221 => 0.00030731586342835
1222 => 0.00030477310680517
1223 => 0.0003017025753867
1224 => 0.00029967514457935
1225 => 0.00027643448010625
1226 => 0.00028074781224773
1227 => 0.00028570990770391
1228 => 0.00028742280317103
1229 => 0.00028449277694576
1230 => 0.00030488880209927
1231 => 0.0003086153524358
]
'min_raw' => 0.00012862794539637
'max_raw' => 0.00033790644175239
'avg_raw' => 0.00023326719357438
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000128'
'max' => '$0.000337'
'avg' => '$0.000233'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.9871952808465E-6
'max_diff' => -6.093800723923E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00029732738838957
102 => 0.00029521587120106
103 => 0.00030502723281462
104 => 0.00029910978237146
105 => 0.00030177440994368
106 => 0.0002960149426059
107 => 0.00030771773558586
108 => 0.00030762857991089
109 => 0.00030307592912212
110 => 0.00030692379839358
111 => 0.00030625513641626
112 => 0.00030111520488842
113 => 0.00030788068058322
114 => 0.00030788403617476
115 => 0.00030350220877373
116 => 0.00029838519367469
117 => 0.00029747039223348
118 => 0.00029678121223382
119 => 0.00030160491391127
120 => 0.00030592982975195
121 => 0.00031397742589389
122 => 0.00031600078277014
123 => 0.00032389807936065
124 => 0.0003191956237534
125 => 0.0003212801614171
126 => 0.0003235432219269
127 => 0.0003246282163566
128 => 0.00032286027615742
129 => 0.00033512802841944
130 => 0.00033616380258457
131 => 0.00033651108870273
201 => 0.00033237447166371
202 => 0.00033604875578163
203 => 0.00033432967992235
204 => 0.00033880223773517
205 => 0.0003395035919087
206 => 0.00033890956987511
207 => 0.00033913219075992
208 => 0.00032866382838408
209 => 0.00032812098856988
210 => 0.00032071932918514
211 => 0.00032373556009472
212 => 0.00031809686098096
213 => 0.00031988495055497
214 => 0.00032067312340165
215 => 0.00032026142663496
216 => 0.00032390609326484
217 => 0.00032080738207324
218 => 0.00031262937376334
219 => 0.00030444913736055
220 => 0.00030434644115598
221 => 0.00030219272930429
222 => 0.00030063599010752
223 => 0.00030093587330511
224 => 0.00030199270080779
225 => 0.00030057456537186
226 => 0.00030087719646841
227 => 0.00030590288909155
228 => 0.00030691075590552
229 => 0.00030348563067266
301 => 0.00028973325861952
302 => 0.00028635839202247
303 => 0.00028878417920592
304 => 0.00028762480917293
305 => 0.00023213566919851
306 => 0.00024517201955346
307 => 0.00023742626284518
308 => 0.00024099586390148
309 => 0.00023308945205631
310 => 0.00023686280619937
311 => 0.00023616600546998
312 => 0.00025712807106708
313 => 0.00025680077724516
314 => 0.00025695743547771
315 => 0.00024947972986726
316 => 0.00026139191794653
317 => 0.00026726029014281
318 => 0.00026617421063095
319 => 0.00026644755344542
320 => 0.00026175061826473
321 => 0.00025700291207725
322 => 0.00025173697524858
323 => 0.00026152043498678
324 => 0.00026043268127312
325 => 0.00026292759693082
326 => 0.00026927286990718
327 => 0.0002702072354563
328 => 0.00027146303222972
329 => 0.00027101291848015
330 => 0.00028173645411917
331 => 0.00028043776319712
401 => 0.00028356723466039
402 => 0.00027712967442687
403 => 0.00026984496396383
404 => 0.00027122954926773
405 => 0.00027109620256883
406 => 0.00026939854604365
407 => 0.00026786597764008
408 => 0.00026531468304659
409 => 0.00027338735666094
410 => 0.00027305962085463
411 => 0.00027836528260757
412 => 0.00027742745535629
413 => 0.00027116441544697
414 => 0.00027138810114259
415 => 0.0002728924949453
416 => 0.00027809921907333
417 => 0.00027964492929534
418 => 0.00027892889473461
419 => 0.00028062369542869
420 => 0.0002819631967947
421 => 0.00028079191617694
422 => 0.0002973747797123
423 => 0.0002904884186192
424 => 0.00029384478310099
425 => 0.00029464525625304
426 => 0.00029259486110619
427 => 0.00029303951839439
428 => 0.00029371305302417
429 => 0.00029780262340457
430 => 0.00030853483940947
501 => 0.00031328806482138
502 => 0.0003275883779931
503 => 0.00031289337561901
504 => 0.0003120214349921
505 => 0.00031459735322241
506 => 0.00032299315089609
507 => 0.00032979715633344
508 => 0.0003320544374695
509 => 0.00033235277443528
510 => 0.00033658758390773
511 => 0.00033901489772283
512 => 0.00033607336665123
513 => 0.0003335807270592
514 => 0.00032465240143834
515 => 0.00032568587943998
516 => 0.00033280551802044
517 => 0.00034286242685996
518 => 0.00035149230088729
519 => 0.00034847041978439
520 => 0.00037152523948391
521 => 0.00037381103068662
522 => 0.00037349520825089
523 => 0.00037870258078201
524 => 0.00036836700677071
525 => 0.00036394834863856
526 => 0.00033411966403166
527 => 0.00034250030770996
528 => 0.00035468206547433
529 => 0.00035306976415497
530 => 0.00034422304604717
531 => 0.0003514855898583
601 => 0.0003490843657536
602 => 0.00034719042067534
603 => 0.00035586695023817
604 => 0.00034632674957165
605 => 0.0003545868946748
606 => 0.00034399317313975
607 => 0.00034848422348273
608 => 0.00034593488610039
609 => 0.0003475846198218
610 => 0.00033794031019602
611 => 0.00034314414556771
612 => 0.00033772381353593
613 => 0.0003377212435928
614 => 0.00033760158946278
615 => 0.00034397858606073
616 => 0.00034418653969085
617 => 0.00033947392956986
618 => 0.00033879476882661
619 => 0.00034130598205693
620 => 0.00033836600905202
621 => 0.00033974160391705
622 => 0.00033840767441914
623 => 0.0003381073787923
624 => 0.00033571457214661
625 => 0.00033468368525205
626 => 0.00033508792256609
627 => 0.00033370805221466
628 => 0.00033287663041583
629 => 0.00033743619874041
630 => 0.00033500020531705
701 => 0.00033706284781122
702 => 0.00033471220636288
703 => 0.00032656385897721
704 => 0.00032187765822851
705 => 0.00030648618536919
706 => 0.00031085118797903
707 => 0.00031374518922528
708 => 0.00031278872183066
709 => 0.00031484358389805
710 => 0.00031496973574009
711 => 0.00031430167913514
712 => 0.00031352815516996
713 => 0.00031315164648227
714 => 0.00031595783377253
715 => 0.00031758691994645
716 => 0.00031403564096708
717 => 0.00031320362598988
718 => 0.00031679416510952
719 => 0.00031898439189831
720 => 0.0003351557959246
721 => 0.00033395776608139
722 => 0.00033696458588637
723 => 0.00033662606411974
724 => 0.00033977769029933
725 => 0.00034492926712635
726 => 0.00033445467103348
727 => 0.00033627269873092
728 => 0.0003358269603239
729 => 0.00034069341537287
730 => 0.00034070860791435
731 => 0.00033779092501503
801 => 0.00033937264824875
802 => 0.00033848977373199
803 => 0.00034008524731142
804 => 0.00033394176566243
805 => 0.00034142386316303
806 => 0.00034566573031016
807 => 0.00034572462863962
808 => 0.00034773524000182
809 => 0.00034977813759257
810 => 0.00035369930161914
811 => 0.00034966877845608
812 => 0.00034241825964927
813 => 0.00034294172368809
814 => 0.00033869074716452
815 => 0.00033876220684788
816 => 0.00033838074945769
817 => 0.00033952553180042
818 => 0.00033419298100996
819 => 0.00033544452002193
820 => 0.00033369235807617
821 => 0.00033626888987304
822 => 0.00033349696757557
823 => 0.00033582674537534
824 => 0.00033683220024037
825 => 0.00034054235033821
826 => 0.00033294897538949
827 => 0.00031746556984276
828 => 0.00032072036940683
829 => 0.00031590626519258
830 => 0.0003163518288662
831 => 0.00031725193839783
901 => 0.00031433438890829
902 => 0.00031489096540834
903 => 0.00031487108057919
904 => 0.00031469972386423
905 => 0.00031394075656089
906 => 0.00031284010381394
907 => 0.00031722476559472
908 => 0.00031796980507202
909 => 0.00031962593553919
910 => 0.00032455345644545
911 => 0.00032406108090797
912 => 0.00032486416583807
913 => 0.0003231110359448
914 => 0.00031643315153385
915 => 0.00031679579278564
916 => 0.00031227365056494
917 => 0.00031951029419544
918 => 0.00031779656146471
919 => 0.00031669170682472
920 => 0.00031639023699979
921 => 0.00032132997227729
922 => 0.00032280801849318
923 => 0.00032188699927943
924 => 0.0003199979620016
925 => 0.00032362547201876
926 => 0.000324596040667
927 => 0.00032481331519414
928 => 0.00033124056743851
929 => 0.00032517252719674
930 => 0.00032663316479406
1001 => 0.00033802864237102
1002 => 0.00032769451667713
1003 => 0.00033316873353569
1004 => 0.00033290079910691
1005 => 0.00033570122321435
1006 => 0.00033267108259185
1007 => 0.00033270864481645
1008 => 0.0003351952317067
1009 => 0.00033170326887766
1010 => 0.0003308386097736
1011 => 0.00032964408941416
1012 => 0.00033225228091835
1013 => 0.00033381577376676
1014 => 0.00034641637786598
1015 => 0.00035455694277143
1016 => 0.00035420353937967
1017 => 0.00035743298483691
1018 => 0.00035597809008009
1019 => 0.00035127985112848
1020 => 0.00035929917212968
1021 => 0.00035676152342226
1022 => 0.00035697072409845
1023 => 0.00035696293763884
1024 => 0.00035865025218417
1025 => 0.00035745463518869
1026 => 0.00035509795136305
1027 => 0.00035666242806834
1028 => 0.00036130836457241
1029 => 0.00037572949403578
1030 => 0.00038379974913804
1031 => 0.00037524365454532
1101 => 0.00038114553402471
1102 => 0.00037760650939175
1103 => 0.00037696336333908
1104 => 0.00038067017979761
1105 => 0.00038438348454764
1106 => 0.00038414696308812
1107 => 0.0003814512945199
1108 => 0.00037992857974578
1109 => 0.00039145908616234
1110 => 0.00039995456687301
1111 => 0.00039937523204297
1112 => 0.000401932227573
1113 => 0.00040943964553405
1114 => 0.00041012602974639
1115 => 0.00041003956111199
1116 => 0.00040833828622494
1117 => 0.00041573031416901
1118 => 0.00042189687393032
1119 => 0.00040794449024314
1120 => 0.0004132573753011
1121 => 0.00041564250057409
1122 => 0.00041914457210961
1123 => 0.00042505315380538
1124 => 0.00043147144070087
1125 => 0.00043237905684083
1126 => 0.0004317350597561
1127 => 0.00042750202701571
1128 => 0.00043452499312284
1129 => 0.00043863888195958
1130 => 0.00044108860861719
1201 => 0.00044730070782523
1202 => 0.00041565723029578
1203 => 0.00039325840411756
1204 => 0.00038976050396686
1205 => 0.00039687362147144
1206 => 0.00039874929383134
1207 => 0.00039799321265496
1208 => 0.00037278129737918
1209 => 0.00038962776845065
1210 => 0.00040775315483204
1211 => 0.00040844942474091
1212 => 0.00041752337214738
1213 => 0.0004204782213766
1214 => 0.00042778393838829
1215 => 0.00042732696380008
1216 => 0.00042910578963307
1217 => 0.00042869686837904
1218 => 0.00044222917074297
1219 => 0.00045715730981674
1220 => 0.00045664039582919
1221 => 0.00045449429921561
1222 => 0.00045768161865063
1223 => 0.00047308905797136
1224 => 0.0004716705878579
1225 => 0.00047304851074813
1226 => 0.00049121475003251
1227 => 0.0005148334452196
1228 => 0.00050386019002697
1229 => 0.00052766899632586
1230 => 0.00054265537784041
1231 => 0.00056857277504907
]
'min_raw' => 0.00023213566919851
'max_raw' => 0.00056857277504907
'avg_raw' => 0.00040035422212379
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000232'
'max' => '$0.000568'
'avg' => '$0.00040035'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00010350772380214
'max_diff' => 0.00023066633329668
'year' => 2028
]
3 => [
'items' => [
101 => 0.00056532778927267
102 => 0.00057541724181536
103 => 0.00055951858748396
104 => 0.00052301206349089
105 => 0.00051723476632763
106 => 0.00052880106155295
107 => 0.0005572356697418
108 => 0.0005279055545509
109 => 0.0005338389986544
110 => 0.00053213016635342
111 => 0.00053203910994217
112 => 0.00053551436280636
113 => 0.00053047332726986
114 => 0.00050993524162917
115 => 0.0005193477252466
116 => 0.00051571311329732
117 => 0.00051974598623332
118 => 0.00054150973818556
119 => 0.00053188746466443
120 => 0.00052175118115994
121 => 0.00053446433009594
122 => 0.00055065253740342
123 => 0.00054963950848312
124 => 0.00054767380896451
125 => 0.00055875435423026
126 => 0.00057705616871413
127 => 0.00058200307562648
128 => 0.00058565478117411
129 => 0.00058615828967306
130 => 0.00059134474014101
131 => 0.00056345588882103
201 => 0.00060771621210234
202 => 0.00061535874726627
203 => 0.00061392226740608
204 => 0.00062241662359374
205 => 0.00061991736852231
206 => 0.00061629634004492
207 => 0.00062976170140374
208 => 0.00061432475120448
209 => 0.00059241394385463
210 => 0.00058039324159586
211 => 0.00059622307201259
212 => 0.00060588979706314
213 => 0.00061227888740237
214 => 0.00061421222227862
215 => 0.00056562082095962
216 => 0.00053943275065134
217 => 0.00055621900347211
218 => 0.00057669939043873
219 => 0.00056334211923735
220 => 0.00056386569897978
221 => 0.00054482174047573
222 => 0.00057838435819602
223 => 0.00057349456710022
224 => 0.00059886281195512
225 => 0.00059280847672761
226 => 0.00061349529561719
227 => 0.00060804776291277
228 => 0.00063066016660138
301 => 0.00063968086663916
302 => 0.00065482802596244
303 => 0.00066597033802067
304 => 0.00067251331677973
305 => 0.00067212050087714
306 => 0.00069804704241961
307 => 0.00068275906667638
308 => 0.00066355376604365
309 => 0.00066320640274716
310 => 0.00067315310008606
311 => 0.00069399864896525
312 => 0.00069940359649923
313 => 0.00070242422481421
314 => 0.00069779802740098
315 => 0.0006812040254308
316 => 0.00067403881951357
317 => 0.00068014378255105
318 => 0.00067267793736167
319 => 0.00068556608070472
320 => 0.0007032642542736
321 => 0.00069960965141779
322 => 0.00071182644083609
323 => 0.0007244695326403
324 => 0.0007425497217571
325 => 0.00074727655269969
326 => 0.00075508982450252
327 => 0.00076313224771372
328 => 0.00076571525729977
329 => 0.00077064702406035
330 => 0.00077062103121513
331 => 0.00078548324229432
401 => 0.00080187672135904
402 => 0.00080806488019606
403 => 0.00082229421022471
404 => 0.00079792698120584
405 => 0.0008164098043272
406 => 0.00083308177343774
407 => 0.00081320476455955
408 => 0.00084060059054905
409 => 0.00084166430839195
410 => 0.00085772518491568
411 => 0.00084144440966724
412 => 0.00083177693729479
413 => 0.00085968656779859
414 => 0.00087319115885426
415 => 0.00086912346612428
416 => 0.00083816812360242
417 => 0.0008201507865176
418 => 0.00077299594008185
419 => 0.00082885289262276
420 => 0.0008560591848358
421 => 0.00083809766587814
422 => 0.00084715641128122
423 => 0.00089657798889236
424 => 0.0009153945258365
425 => 0.00091148081768964
426 => 0.00091214216994134
427 => 0.0009222952317321
428 => 0.00096731949910556
429 => 0.00094033991444103
430 => 0.00096096479601131
501 => 0.00097190415882764
502 => 0.00098206524866877
503 => 0.00095711282346439
504 => 0.00092465008489743
505 => 0.00091436777290021
506 => 0.00083631174680065
507 => 0.00083224859166203
508 => 0.00082996781955652
509 => 0.0008155878740529
510 => 0.00080428917588563
511 => 0.00079530403160925
512 => 0.00077172432983681
513 => 0.0007796817869956
514 => 0.00074210066383657
515 => 0.00076614373464049
516 => 0.00070616335465074
517 => 0.00075611679743282
518 => 0.00072892940963087
519 => 0.00074718500933743
520 => 0.00074712131726983
521 => 0.0007135069702669
522 => 0.00069411891642913
523 => 0.0007064737389289
524 => 0.00071971908937569
525 => 0.00072186810292297
526 => 0.00073904104551624
527 => 0.00074383364466286
528 => 0.00072931184550355
529 => 0.00070492039459458
530 => 0.00071058597233097
531 => 0.00069400410367714
601 => 0.00066494501667366
602 => 0.00068581576028254
603 => 0.00069294194977243
604 => 0.00069608928102123
605 => 0.000667513006412
606 => 0.00065853372050868
607 => 0.00065375322403725
608 => 0.00070123155638802
609 => 0.00070383252661047
610 => 0.00069052559521228
611 => 0.00075067418694708
612 => 0.00073706070816464
613 => 0.00075227029934791
614 => 0.00071007188053517
615 => 0.00071168391696152
616 => 0.00069170650923591
617 => 0.00070289252267139
618 => 0.00069498660891723
619 => 0.00070198880332814
620 => 0.0007061858897869
621 => 0.00072616001941649
622 => 0.00075634486990831
623 => 0.00072317655052835
624 => 0.00070872463879542
625 => 0.00071769052355389
626 => 0.00074156785617618
627 => 0.00077774323735712
628 => 0.00075632668360061
629 => 0.00076583098648108
630 => 0.00076790725384346
701 => 0.00075211547998732
702 => 0.00077832550258435
703 => 0.00079237166662393
704 => 0.00080678012448444
705 => 0.0008192905847289
706 => 0.00080102506956618
707 => 0.00082057178904904
708 => 0.00080482058360633
709 => 0.00079069012399453
710 => 0.00079071155406896
711 => 0.0007818473103414
712 => 0.00076467172115267
713 => 0.00076150427898545
714 => 0.00077798171314316
715 => 0.00079119505491883
716 => 0.00079228336903511
717 => 0.00079959895396813
718 => 0.00080392824177497
719 => 0.00084636114766343
720 => 0.00086342801343517
721 => 0.00088429705384162
722 => 0.00089242672119461
723 => 0.00091689410528004
724 => 0.00089713470548727
725 => 0.00089285963504966
726 => 0.00083350976447875
727 => 0.00084322830245989
728 => 0.00085878861946714
729 => 0.00083376634837497
730 => 0.00084963722005008
731 => 0.00085277046630977
801 => 0.00083291610117815
802 => 0.00084352117545142
803 => 0.000815357242367
804 => 0.0007569587666864
805 => 0.00077839051678187
806 => 0.00079417149870121
807 => 0.00077165009172127
808 => 0.000812018842034
809 => 0.00078843625148146
810 => 0.00078096170244028
811 => 0.00075180082176152
812 => 0.00076556363493666
813 => 0.00078417803682055
814 => 0.0007726765006128
815 => 0.00079654391520823
816 => 0.00083034653948234
817 => 0.00085443630252115
818 => 0.00085628561540349
819 => 0.00084079751165831
820 => 0.00086561729675372
821 => 0.00086579808179176
822 => 0.00083780126281235
823 => 0.0008206533670744
824 => 0.00081675732908325
825 => 0.00082649039584837
826 => 0.00083830813572447
827 => 0.00085694141771933
828 => 0.0008682011197819
829 => 0.00089756045107656
830 => 0.0009055042443269
831 => 0.00091423206470139
901 => 0.00092589512428184
902 => 0.00093989961765527
903 => 0.00090925858343046
904 => 0.00091047600884225
905 => 0.0008819435020261
906 => 0.00085145242651767
907 => 0.00087459135206235
908 => 0.00090484241916975
909 => 0.00089790279095085
910 => 0.00089712194101249
911 => 0.00089843511401911
912 => 0.00089320286096913
913 => 0.00086953757434043
914 => 0.00085765301554803
915 => 0.00087298712846453
916 => 0.00088113652703681
917 => 0.00089377553352017
918 => 0.00089221750919403
919 => 0.00092477423256496
920 => 0.00093742479080269
921 => 0.00093418823665757
922 => 0.0009347838405123
923 => 0.00095768707193229
924 => 0.00098316017568012
925 => 0.0010070190988121
926 => 0.0010312894201864
927 => 0.0010020306004828
928 => 0.00098717477627048
929 => 0.001002502194793
930 => 0.00099436925077591
1001 => 0.0010411035594859
1002 => 0.001044339341623
1003 => 0.0010910702709106
1004 => 0.00113542348742
1005 => 0.0011075660268009
1006 => 0.0011338343574372
1007 => 0.0011622456987087
1008 => 0.0012170557855956
1009 => 0.0011985976765742
1010 => 0.0011844590543393
1011 => 0.0011710981246446
1012 => 0.0011989000983514
1013 => 0.0012346668933778
1014 => 0.0012423707184564
1015 => 0.0012548538581714
1016 => 0.0012417293631267
1017 => 0.0012575363717923
1018 => 0.0013133420583332
1019 => 0.0012982628692194
1020 => 0.0012768479965772
1021 => 0.0013209012264661
1022 => 0.0013368439191103
1023 => 0.0014487380853403
1024 => 0.0015900090923231
1025 => 0.0015315219677968
1026 => 0.0014952171222356
1027 => 0.0015037496221049
1028 => 0.0015553370115297
1029 => 0.001571905243711
1030 => 0.00152686707723
1031 => 0.0015427753190299
1101 => 0.0016304312954111
1102 => 0.0016774559143991
1103 => 0.0016135901655644
1104 => 0.0014373870974818
1105 => 0.001274919821601
1106 => 0.0013180134591614
1107 => 0.0013131279780133
1108 => 0.0014073033893291
1109 => 0.001297903235546
1110 => 0.0012997452535634
1111 => 0.0013958681126517
1112 => 0.00137022418181
1113 => 0.0013286842980728
1114 => 0.0012752231087231
1115 => 0.0011763951556486
1116 => 0.0010888604815891
1117 => 0.0012605361354512
1118 => 0.0012531331690847
1119 => 0.001242412576728
1120 => 0.0012662700949287
1121 => 0.0013821154312368
1122 => 0.0013794448212801
1123 => 0.001362455763293
1124 => 0.0013753418140415
1125 => 0.0013264253110734
1126 => 0.0013390322076964
1127 => 0.0012748940859544
1128 => 0.0013038871956264
1129 => 0.0013285951721388
1130 => 0.0013335556642315
1201 => 0.0013447319062054
1202 => 0.001249232142203
1203 => 0.0012921087325143
1204 => 0.001317294712329
1205 => 0.0012035035392524
1206 => 0.0013150454267038
1207 => 0.0012475697037795
1208 => 0.0012246674299677
1209 => 0.0012555023245102
1210 => 0.001243485936119
1211 => 0.0012331549510063
1212 => 0.0012273900838046
1213 => 0.0012500318272335
1214 => 0.0012489755628398
1215 => 0.0012119292760171
1216 => 0.0011636039050567
1217 => 0.0011798234857772
1218 => 0.0011739307600421
1219 => 0.0011525747618011
1220 => 0.0011669661260825
1221 => 0.0011035938410903
1222 => 0.0009945651185659
1223 => 0.0010665928323056
1224 => 0.0010638198436777
1225 => 0.0010624215770665
1226 => 0.001116548413242
1227 => 0.0011113453668623
1228 => 0.0011019017867348
1229 => 0.0011524013230463
1230 => 0.001133968312978
1231 => 0.0011907745066452
]
'min_raw' => 0.00050993524162917
'max_raw' => 0.0016774559143991
'avg_raw' => 0.0010936955780141
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0005099'
'max' => '$0.001677'
'avg' => '$0.001093'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00027779957243066
'max_diff' => 0.00110888313935
'year' => 2029
]
4 => [
'items' => [
101 => 0.0012281907397887
102 => 0.0012187007727752
103 => 0.0012538909208949
104 => 0.0011801971521581
105 => 0.0012046752660516
106 => 0.0012097201713999
107 => 0.0011517781666071
108 => 0.0011121966495972
109 => 0.001109557013675
110 => 0.0010409281178489
111 => 0.0010775891200461
112 => 0.0011098492848443
113 => 0.0010943991693959
114 => 0.001089508124404
115 => 0.0011144954125294
116 => 0.0011164371388183
117 => 0.0010721655736544
118 => 0.0010813710339501
119 => 0.0011197593336637
120 => 0.0010804037472916
121 => 0.001003942271669
122 => 0.00098497876855203
123 => 0.00098244868766952
124 => 0.00093101816320182
125 => 0.00098624600050783
126 => 0.00096213756950974
127 => 0.0010382958141694
128 => 0.00099479463326464
129 => 0.00099291938430055
130 => 0.0009900846704521
131 => 0.00094581629347455
201 => 0.00095550825463051
202 => 0.00098772580964029
203 => 0.00099922139622451
204 => 0.00099802231236321
205 => 0.00098756792604452
206 => 0.0009923538905661
207 => 0.00097693663130151
208 => 0.00097149247617268
209 => 0.00095430922505326
210 => 0.00092905459290198
211 => 0.00093256640439828
212 => 0.00088253036987263
213 => 0.00085526808264972
214 => 0.00084772224085758
215 => 0.00083763162585071
216 => 0.00084886200267271
217 => 0.00088238862407352
218 => 0.00084194840559463
219 => 0.00077261648756408
220 => 0.00077678345397356
221 => 0.00078614539031222
222 => 0.00076869948388053
223 => 0.00075218839756688
224 => 0.00076654344752982
225 => 0.00073716659987375
226 => 0.00078969544200191
227 => 0.00078827468403272
228 => 0.00080785418801629
301 => 0.00082009765366908
302 => 0.00079188042920847
303 => 0.00078478387356411
304 => 0.00078882639417961
305 => 0.0007220125332314
306 => 0.00080239407014599
307 => 0.00080308921301515
308 => 0.00079713697773598
309 => 0.00083993766464147
310 => 0.00093026046388109
311 => 0.00089627739358097
312 => 0.00088311812161702
313 => 0.00085810233599419
314 => 0.00089143438504624
315 => 0.00088887500374
316 => 0.00087730051085669
317 => 0.00087030022144625
318 => 0.00088319846932558
319 => 0.00086870198579541
320 => 0.00086609801901666
321 => 0.00085032081348126
322 => 0.00084468906892223
323 => 0.00084051954945694
324 => 0.00083592931821417
325 => 0.00084605422452136
326 => 0.00082310985478693
327 => 0.00079544119415151
328 => 0.00079314084439873
329 => 0.00079949231231497
330 => 0.00079668226057321
331 => 0.00079312739095209
401 => 0.00078634017673425
402 => 0.00078432655526171
403 => 0.00079086984817722
404 => 0.00078348285197328
405 => 0.0007943827672627
406 => 0.0007914185934238
407 => 0.00077486095931625
408 => 0.00075422401679695
409 => 0.00075404030472108
410 => 0.00074959410930666
411 => 0.00074393121095645
412 => 0.00074235592218498
413 => 0.00076533450526144
414 => 0.00081289948453858
415 => 0.00080356134097298
416 => 0.00081030910671057
417 => 0.00084350143563028
418 => 0.0008540522788657
419 => 0.00084656354024761
420 => 0.0008363124929419
421 => 0.00083676348699841
422 => 0.00087179441884508
423 => 0.00087397925509454
424 => 0.00087949963144204
425 => 0.00088659487510675
426 => 0.00084777189092441
427 => 0.00083493492793471
428 => 0.0008288520627026
429 => 0.00081011919215279
430 => 0.00083032098700581
501 => 0.00081855026627206
502 => 0.00082013853864412
503 => 0.00081910417417822
504 => 0.00081966900712002
505 => 0.00078968075911999
506 => 0.00080060690055529
507 => 0.00078244007125912
508 => 0.00075811672615385
509 => 0.00075803518577219
510 => 0.00076398829002785
511 => 0.00076044715067159
512 => 0.00075091803571492
513 => 0.00075227160151836
514 => 0.00074041294079135
515 => 0.00075371145763861
516 => 0.0007540928115174
517 => 0.0007489721581561
518 => 0.00076946035820098
519 => 0.00077785439047615
520 => 0.00077448386673872
521 => 0.00077761790554561
522 => 0.00080394938299733
523 => 0.00080824256274486
524 => 0.00081014930959718
525 => 0.00080759452141062
526 => 0.00077809919661605
527 => 0.0007794074396945
528 => 0.00076980842001779
529 => 0.00076169825991074
530 => 0.00076202262378284
531 => 0.00076619230032487
601 => 0.00078440152233224
602 => 0.00082272175655448
603 => 0.00082417598143149
604 => 0.00082593854440515
605 => 0.00081876931499808
606 => 0.00081660700680862
607 => 0.00081945964944962
608 => 0.00083385071464129
609 => 0.00087086844145037
610 => 0.0008577839044652
611 => 0.0008471459722233
612 => 0.00085647830676538
613 => 0.00085504166701189
614 => 0.00084291498170922
615 => 0.00084257462604195
616 => 0.00081929963981032
617 => 0.00081069540734628
618 => 0.00080350506668369
619 => 0.00079565340238873
620 => 0.00079099867260452
621 => 0.00079815045308993
622 => 0.00079978614990432
623 => 0.00078414865688124
624 => 0.00078201732436471
625 => 0.0007947872387261
626 => 0.00078916767552604
627 => 0.00079494753563576
628 => 0.00079628851275993
629 => 0.00079607258455762
630 => 0.00079020511517404
701 => 0.00079394486518868
702 => 0.00078509924153093
703 => 0.00077548095437284
704 => 0.00076934508640644
705 => 0.00076399072780098
706 => 0.00076696163715244
707 => 0.0007563708877811
708 => 0.00075298269390754
709 => 0.00079267792203076
710 => 0.000822001213841
711 => 0.00082157484156478
712 => 0.00081897940998734
713 => 0.00081512312512734
714 => 0.00083356860338447
715 => 0.00082714256758867
716 => 0.00083181804554337
717 => 0.00083300815091203
718 => 0.00083661024142618
719 => 0.00083789767917484
720 => 0.00083400614811537
721 => 0.00082094569456929
722 => 0.00078840028608313
723 => 0.00077325031057817
724 => 0.00076825056631873
725 => 0.00076843229752669
726 => 0.0007634193395272
727 => 0.00076489588032307
728 => 0.00076290585889562
729 => 0.00075913723974992
730 => 0.00076672893553988
731 => 0.00076760380775813
801 => 0.00076583181524675
802 => 0.00076624918363024
803 => 0.00075157784246387
804 => 0.00075269327266827
805 => 0.00074648241554814
806 => 0.00074531795471112
807 => 0.00072961744875264
808 => 0.00070180172662246
809 => 0.00071721433682006
810 => 0.00069859807104231
811 => 0.00069154780910982
812 => 0.00072492265255754
813 => 0.00072157274394945
814 => 0.00071583915658267
815 => 0.00070735798588289
816 => 0.00070421223717082
817 => 0.00068509966381928
818 => 0.00068397039102406
819 => 0.00069344309845997
820 => 0.00068907176991426
821 => 0.0006829327690845
822 => 0.00066069793037964
823 => 0.00063569860997328
824 => 0.00063645318231622
825 => 0.00064440500100859
826 => 0.00066752598630552
827 => 0.0006584922173529
828 => 0.00065193811432722
829 => 0.00065071072784613
830 => 0.00066607403936469
831 => 0.00068781634387673
901 => 0.00069801734669713
902 => 0.00068790846271117
903 => 0.00067629592108907
904 => 0.00067700272269027
905 => 0.00068170475709036
906 => 0.00068219887442263
907 => 0.00067464030361521
908 => 0.00067676799702291
909 => 0.00067353583617624
910 => 0.00065370007102633
911 => 0.00065334130493466
912 => 0.00064847328827195
913 => 0.00064832588666208
914 => 0.00064004417593514
915 => 0.00063888550735568
916 => 0.00062244166804344
917 => 0.00063326505287529
918 => 0.00062600529458329
919 => 0.0006150631264334
920 => 0.00061317669252
921 => 0.00061311998403863
922 => 0.00062435514410454
923 => 0.00063313376348849
924 => 0.00062613158118695
925 => 0.00062453732000849
926 => 0.00064155985846707
927 => 0.00063939358528433
928 => 0.00063751760667904
929 => 0.00068586955897936
930 => 0.00064759521578377
1001 => 0.00063090541752736
1002 => 0.00061024862287833
1003 => 0.00061697457937665
1004 => 0.00061839183723571
1005 => 0.00056871596977188
1006 => 0.00054856247652854
1007 => 0.0005416465571158
1008 => 0.00053766634771702
1009 => 0.00053948017912036
1010 => 0.00052133967143237
1011 => 0.00053353039261501
1012 => 0.00051782224633615
1013 => 0.00051518872449377
1014 => 0.00054327683590629
1015 => 0.00054718513252097
1016 => 0.00053051112495014
1017 => 0.00054121853708724
1018 => 0.00053733588060216
1019 => 0.00051809151741899
1020 => 0.00051735652429734
1021 => 0.0005077003793241
1022 => 0.00049259038223908
1023 => 0.00048568470811588
1024 => 0.0004820881730747
1025 => 0.00048357217352776
1026 => 0.00048282181748753
1027 => 0.00047792523676465
1028 => 0.00048310248376284
1029 => 0.00046987675706863
1030 => 0.00046461016613207
1031 => 0.00046223136919001
1101 => 0.00045049277550447
1102 => 0.00046917409823447
1103 => 0.00047285455415338
1104 => 0.0004765422617074
1105 => 0.00050864123826029
1106 => 0.00050703766410248
1107 => 0.00052153319351685
1108 => 0.00052096992389937
1109 => 0.00051683556409839
1110 => 0.0004993933801672
1111 => 0.00050634552380514
1112 => 0.00048494790629057
1113 => 0.00050098045622904
1114 => 0.00049366386997242
1115 => 0.00049850671105586
1116 => 0.00048979884612646
1117 => 0.00049461813811732
1118 => 0.00047372732678767
1119 => 0.00045421978110969
1120 => 0.00046207018695126
1121 => 0.00047060447590386
1122 => 0.00048910898884949
1123 => 0.00047808785359799
1124 => 0.00048205147058969
1125 => 0.00046877401716896
1126 => 0.00044137883824494
1127 => 0.00044153389198254
1128 => 0.00043731974054149
1129 => 0.00043367809842024
1130 => 0.00047935376355933
1201 => 0.00047367327257387
1202 => 0.00046462215363282
1203 => 0.00047673743601258
1204 => 0.00047994090896918
1205 => 0.0004800321073407
1206 => 0.00048887110462427
1207 => 0.00049358847905899
1208 => 0.00049441993674938
1209 => 0.00050832828995426
1210 => 0.00051299018649292
1211 => 0.00053219187855937
1212 => 0.00049318824279667
1213 => 0.00049238498858519
1214 => 0.00047690792288101
1215 => 0.00046709212312869
1216 => 0.00047758001908783
1217 => 0.00048687086316707
1218 => 0.00047719661530468
1219 => 0.00047845986784099
1220 => 0.00046547298050082
1221 => 0.00047011518163508
1222 => 0.00047411367062394
1223 => 0.00047190594002461
1224 => 0.00046860086046205
1225 => 0.00048610911990396
1226 => 0.00048512123529082
1227 => 0.00050142532899627
1228 => 0.0005141355359566
1229 => 0.00053691449905076
1230 => 0.0005131434635678
1231 => 0.00051227715255349
]
'min_raw' => 0.00043367809842024
'max_raw' => 0.0012538909208949
'avg_raw' => 0.00084378450965759
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000433'
'max' => '$0.001253'
'avg' => '$0.000843'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -7.6257143208931E-5
'max_diff' => -0.00042356499350417
'year' => 2030
]
5 => [
'items' => [
101 => 0.000520745481679
102 => 0.00051298889003586
103 => 0.00051789078820588
104 => 0.00053612472747252
105 => 0.00053650998187656
106 => 0.00053005647423664
107 => 0.00052966377771026
108 => 0.00053090324444614
109 => 0.00053816283983225
110 => 0.00053562611413951
111 => 0.00053856167733318
112 => 0.00054223264405781
113 => 0.00055741731888852
114 => 0.00056107829258273
115 => 0.00055218402450303
116 => 0.00055298707732573
117 => 0.00054966037691081
118 => 0.00054644682599343
119 => 0.00055367041915428
120 => 0.00056687167763582
121 => 0.00056678955329195
122 => 0.00056985198866387
123 => 0.00057175986052999
124 => 0.00056356987783303
125 => 0.00055823850025132
126 => 0.00056028288966052
127 => 0.00056355191284683
128 => 0.00055922278949999
129 => 0.00053250143475826
130 => 0.00054060698682015
131 => 0.0005392578266158
201 => 0.00053733645842133
202 => 0.00054548665369794
203 => 0.00054470054748098
204 => 0.00052115361430617
205 => 0.00052266101257018
206 => 0.00052124528418726
207 => 0.00052581979222325
208 => 0.00051274185158966
209 => 0.00051676453804728
210 => 0.00051928752928315
211 => 0.00052077359050362
212 => 0.00052614226263365
213 => 0.00052551231092417
214 => 0.00052610310395089
215 => 0.00053406342744283
216 => 0.00057432401201192
217 => 0.00057651530680004
218 => 0.00056572456983491
219 => 0.0005700352564146
220 => 0.00056175968082512
221 => 0.00056731513015988
222 => 0.00057111602750161
223 => 0.00055394050328486
224 => 0.00055292348020897
225 => 0.00054461374837524
226 => 0.00054907892757542
227 => 0.00054197450641018
228 => 0.00054371768286203
301 => 0.00053884360953528
302 => 0.00054761597110511
303 => 0.00055742483442736
304 => 0.00055990294066631
305 => 0.00055338411004344
306 => 0.00054866404706062
307 => 0.00054037717134819
308 => 0.00055415843034303
309 => 0.00055818849044939
310 => 0.00055413726215294
311 => 0.00055319850403557
312 => 0.00055141955909945
313 => 0.00055357591561339
314 => 0.00055816654187655
315 => 0.0005560016873064
316 => 0.00055743161188981
317 => 0.00055198221390967
318 => 0.00056357258905809
319 => 0.00058198089416947
320 => 0.00058204007988046
321 => 0.00057987521364094
322 => 0.00057898939701842
323 => 0.00058121068115524
324 => 0.00058241563667762
325 => 0.00058959886226224
326 => 0.00059730674950688
327 => 0.00063327609606292
328 => 0.00062317604748365
329 => 0.00065509019157417
330 => 0.00068033013601681
331 => 0.00068789849174616
401 => 0.00068093596059381
402 => 0.0006571175176302
403 => 0.00065594887118652
404 => 0.0006915436808614
405 => 0.00068148651678268
406 => 0.00068029024911715
407 => 0.000667563982282
408 => 0.00067508678216038
409 => 0.00067344143547416
410 => 0.00067084417523685
411 => 0.00068519715336203
412 => 0.00071206464711316
413 => 0.00070787709625028
414 => 0.00070475128378604
415 => 0.00069105488347806
416 => 0.00069930317566523
417 => 0.00069636611680301
418 => 0.00070898558557871
419 => 0.00070151009183144
420 => 0.00068141032387329
421 => 0.00068461127817033
422 => 0.00068412746036776
423 => 0.00069408439646097
424 => 0.00069109557139213
425 => 0.00068354384430414
426 => 0.00071197281694039
427 => 0.00071012679758764
428 => 0.00071274403097106
429 => 0.00071389621804707
430 => 0.00073120043271607
501 => 0.00073828941579284
502 => 0.00073989873906139
503 => 0.0007466327247027
504 => 0.00073973119136411
505 => 0.00076734224542835
506 => 0.00078570198523139
507 => 0.00080702776779619
508 => 0.00083819046795335
509 => 0.00084990793148353
510 => 0.00084779127657575
511 => 0.00087141848017992
512 => 0.00091387603985339
513 => 0.00085637316329385
514 => 0.00091692383193894
515 => 0.00089775418933699
516 => 0.00085230331157491
517 => 0.00084937681087768
518 => 0.0008801566729937
519 => 0.0009484234447151
520 => 0.0009313233926742
521 => 0.00094845141427431
522 => 0.00092847066726935
523 => 0.0009274784547696
524 => 0.00094748099399014
525 => 0.00099421801716059
526 => 0.00097201500936343
527 => 0.00094018155328532
528 => 0.00096368688186996
529 => 0.00094332439093448
530 => 0.00089744199975449
531 => 0.00093131031658668
601 => 0.00090866353763513
602 => 0.00091527307170217
603 => 0.0009628732326042
604 => 0.00095714585531007
605 => 0.00096455761186954
606 => 0.00095147605554151
607 => 0.00093925581915905
608 => 0.00091644584046451
609 => 0.00090969293029142
610 => 0.00091155919171901
611 => 0.00090969200546494
612 => 0.00089693003201987
613 => 0.00089417408506949
614 => 0.00088958071941137
615 => 0.00089100439549891
616 => 0.00088236752422514
617 => 0.00089866708478741
618 => 0.000901692426859
619 => 0.00091355388776568
620 => 0.0009147853839859
621 => 0.00094781938377366
622 => 0.00092962481180437
623 => 0.00094183130152514
624 => 0.00094073943819257
625 => 0.00085328836991513
626 => 0.00086533835553646
627 => 0.00088408435166944
628 => 0.00087563930582113
629 => 0.000863699986828
630 => 0.00085405834659528
701 => 0.00083945027573436
702 => 0.00086001085494795
703 => 0.00088704583023998
704 => 0.0009154710355738
705 => 0.00094962205728917
706 => 0.00094199994680402
707 => 0.00091483260597779
708 => 0.0009160513130415
709 => 0.0009235848805658
710 => 0.00091382822612505
711 => 0.00091095079825795
712 => 0.00092318956616277
713 => 0.00092327384783102
714 => 0.00091204763776586
715 => 0.00089957175965318
716 => 0.00089951948526836
717 => 0.0008972995232609
718 => 0.00092886559357881
719 => 0.00094622374056398
720 => 0.00094821382414177
721 => 0.00094608979208303
722 => 0.00094690724772263
723 => 0.00093680692445262
724 => 0.00095989326829002
725 => 0.00098107958039799
726 => 0.00097540119617352
727 => 0.00096688849099115
728 => 0.00096010771128595
729 => 0.00097380385997125
730 => 0.00097319399203003
731 => 0.00098089453644426
801 => 0.00098054519526913
802 => 0.00097795579181475
803 => 0.00097540128864927
804 => 0.00098552960495247
805 => 0.00098261281251293
806 => 0.00097969148948909
807 => 0.00097383232893261
808 => 0.00097462868616259
809 => 0.00096611745081879
810 => 0.00096217976390111
811 => 0.0009029664004913
812 => 0.00088714265493573
813 => 0.00089212112740956
814 => 0.00089376016981392
815 => 0.00088687365546946
816 => 0.00089674714803903
817 => 0.00089520837468068
818 => 0.00090119484166572
819 => 0.00089745475699565
820 => 0.0008976082513751
821 => 0.00090860704291966
822 => 0.00091180003889724
823 => 0.00091017605537241
824 => 0.0009113134377663
825 => 0.00093752393497462
826 => 0.00093379764043611
827 => 0.00093181812073034
828 => 0.00093236646121712
829 => 0.00093906380521324
830 => 0.00094093869587073
831 => 0.00093299465240872
901 => 0.00093674110922937
902 => 0.00095269304687554
903 => 0.00095827532225023
904 => 0.00097609126560202
905 => 0.00096852273621304
906 => 0.0009824150994648
907 => 0.0010251154878451
908 => 0.0010592275127254
909 => 0.0010278566849064
910 => 0.0010904990744589
911 => 0.0011392751602426
912 => 0.0011374030528294
913 => 0.0011288978140618
914 => 0.0010733675371764
915 => 0.0010222677484767
916 => 0.0010650148915356
917 => 0.0010651238627943
918 => 0.001061451845295
919 => 0.0010386452599751
920 => 0.001060658225562
921 => 0.0010624055348309
922 => 0.0010614275062874
923 => 0.0010439417507954
924 => 0.0010172442340671
925 => 0.001022460864931
926 => 0.0010310058127024
927 => 0.0010148284439082
928 => 0.0010096587943571
929 => 0.0010192701564387
930 => 0.0010502399676722
1001 => 0.0010443853042544
1002 => 0.001044232415332
1003 => 0.0010692811481971
1004 => 0.0010513516613206
1005 => 0.0010225266633521
1006 => 0.0010152479712101
1007 => 0.00098941351762035
1008 => 0.0010072574667339
1009 => 0.0010078996386956
1010 => 0.0009981266901268
1011 => 0.0010233196842667
1012 => 0.0010230875263906
1013 => 0.0010470045248441
1014 => 0.0010927248430728
1015 => 0.0010792030952123
1016 => 0.0010634787736126
1017 => 0.0010651884433586
1018 => 0.0010839393006481
1019 => 0.0010726021042905
1020 => 0.0010766790391464
1021 => 0.0010839331297189
1022 => 0.0010883097026703
1023 => 0.0010645587218626
1024 => 0.0010590212320955
1025 => 0.001047693471427
1026 => 0.0010447382701113
1027 => 0.0010539644948143
1028 => 0.0010515337105724
1029 => 0.0010078456666288
1030 => 0.0010032800229587
1031 => 0.0010034200447318
1101 => 0.00099193951663889
1102 => 0.00097442895565468
1103 => 0.0010204456644199
1104 => 0.0010167498787026
1105 => 0.0010126700173019
1106 => 0.0010131697770441
1107 => 0.0010331440706681
1108 => 0.0010215579716402
1109 => 0.0010523615148302
1110 => 0.0010460292323896
1111 => 0.0010395345507983
1112 => 0.0010386367879695
1113 => 0.0010361368896571
1114 => 0.0010275638081724
1115 => 0.0010172112971174
1116 => 0.0010103756725997
1117 => 0.00093201814971729
1118 => 0.00094656085017953
1119 => 0.00096329090145248
1120 => 0.00096906604811044
1121 => 0.00095918726012403
1122 => 0.0010279538829341
1123 => 0.0010405182075731
1124 => 0.0010024600486908
1125 => 0.0009953409210683
1126 => 0.0010284206117558
1127 => 0.0010084695144435
1128 => 0.0010174534923416
1129 => 0.00099803504609911
1130 => 0.001037491829694
1201 => 0.0010371912351112
1202 => 0.0010218416551209
1203 => 0.0010348150150193
1204 => 0.0010325605744782
1205 => 0.0010152309364735
1206 => 0.001038041210129
1207 => 0.0010380525237402
1208 => 0.0010232788867282
1209 => 0.0010060265130632
1210 => 0.0010029421961347
1211 => 0.0010006185776489
1212 => 0.0010168820246345
1213 => 0.0010314637803473
1214 => 0.0010585968126051
1215 => 0.0010654187015797
1216 => 0.0010920449884062
1217 => 0.0010761903310114
1218 => 0.0010832184952823
1219 => 0.001090848561793
1220 => 0.0010945066962646
1221 => 0.0010885459624494
1222 => 0.0011299075457079
1223 => 0.0011333997306211
1224 => 0.0011345706300152
1225 => 0.0011206237368587
1226 => 0.0011330118422927
1227 => 0.0011272158580111
1228 => 0.001142295398941
1229 => 0.001144660063504
1230 => 0.0011426572767445
1231 => 0.0011434078586005
]
'min_raw' => 0.00051274185158966
'max_raw' => 0.001144660063504
'avg_raw' => 0.00082870095754684
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000512'
'max' => '$0.001144'
'avg' => '$0.000828'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 7.9063753169416E-5
'max_diff' => -0.00010923085739092
'year' => 2031
]
6 => [
'items' => [
101 => 0.0011081130439727
102 => 0.0011062828216392
103 => 0.0010813276102562
104 => 0.0010914970433544
105 => 0.0010724857756109
106 => 0.0010785144444501
107 => 0.0010811718242312
108 => 0.0010797837598385
109 => 0.0010920720078437
110 => 0.0010816244867161
111 => 0.001054051760729
112 => 0.0010264715225711
113 => 0.0010261252751474
114 => 0.001018863885272
115 => 0.0010136152303821
116 => 0.0010146263075199
117 => 0.0010181894752305
118 => 0.0010134081325972
119 => 0.0010144284744683
120 => 0.0010313729480298
121 => 0.0010347710413602
122 => 0.001023222992503
123 => 0.00097685590996587
124 => 0.00096547731160824
125 => 0.00097365602246029
126 => 0.00096974712544945
127 => 0.00078266161589766
128 => 0.00082661458128826
129 => 0.00080049922175484
130 => 0.00081253438093776
131 => 0.0007858773613937
201 => 0.00079859948833422
202 => 0.000796250176026
203 => 0.00086692524371129
204 => 0.00086582174973976
205 => 0.00086634993390833
206 => 0.00084113832736599
207 => 0.00088130110115766
208 => 0.00090108672773407
209 => 0.00089742493483217
210 => 0.00089834652921535
211 => 0.00088251048432412
212 => 0.00086650326143876
213 => 0.00084874878776495
214 => 0.00088173440533162
215 => 0.00087806696774147
216 => 0.00088647875007087
217 => 0.00090787228092349
218 => 0.00091102255960766
219 => 0.00091525656610616
220 => 0.00091373897617355
221 => 0.00094989412527386
222 => 0.00094551549815846
223 => 0.00095606672968958
224 => 0.0009343620459062
225 => 0.0009098011359778
226 => 0.00091446936199855
227 => 0.00091401977429325
228 => 0.00090829600679203
229 => 0.00090312884541886
301 => 0.00089452697757122
302 => 0.00092174456027806
303 => 0.0009206395761253
304 => 0.00093852798515484
305 => 0.00093536603510013
306 => 0.00091424975877438
307 => 0.00091500393071439
308 => 0.00092007609945364
309 => 0.00093763093337318
310 => 0.00094284240330473
311 => 0.00094042824279127
312 => 0.00094614238165858
313 => 0.00095065860403509
314 => 0.00094670954965608
315 => 0.0010026198318441
316 => 0.00097940198462838
317 => 0.00099071820181259
318 => 0.000993417052932
319 => 0.00098650400254035
320 => 0.00098800319563253
321 => 0.00099027406466151
322 => 0.0010040623367237
323 => 0.0010402467522836
324 => 0.0010562725836195
325 => 0.0011044870878939
326 => 0.0010549418614174
327 => 0.0010520020527168
328 => 0.0010606869408751
329 => 0.0010889939589078
330 => 0.0011119341382803
331 => 0.0011195447192289
401 => 0.0011205505831382
402 => 0.0011348285389396
403 => 0.0011430123969368
404 => 0.0011330948195578
405 => 0.0011246907111427
406 => 0.0010945882379562
407 => 0.0010980726811939
408 => 0.0011220770397452
409 => 0.0011559846100486
410 => 0.0011850808328503
411 => 0.0011748923497309
412 => 0.0012526232839839
413 => 0.0012603299886127
414 => 0.0012592651712206
415 => 0.0012768221912764
416 => 0.0012419750818906
417 => 0.0012270772674972
418 => 0.0011265077747727
419 => 0.001154763700052
420 => 0.0011958353468577
421 => 0.0011903993603922
422 => 0.0011605720326336
423 => 0.0011850582061475
424 => 0.0011769623114304
425 => 0.001170576743368
426 => 0.001199830268565
427 => 0.0011676648159423
428 => 0.0011955144718625
429 => 0.001159797000077
430 => 0.0011749388898635
501 => 0.0011663436208899
502 => 0.0011719058133124
503 => 0.0011393893500649
504 => 0.0011569344443407
505 => 0.0011386594164601
506 => 0.0011386507517174
507 => 0.001138247329464
508 => 0.0011597478187217
509 => 0.0011604489489045
510 => 0.0011445600548577
511 => 0.0011422702169943
512 => 0.0011507369477277
513 => 0.0011408246234792
514 => 0.0011454625376076
515 => 0.0011409651011735
516 => 0.0011399526335016
517 => 0.0011318851188352
518 => 0.001128409411696
519 => 0.0011297723260232
520 => 0.0011251199967939
521 => 0.0011223168001512
522 => 0.0011376897030964
523 => 0.0011294765811939
524 => 0.001136430924372
525 => 0.0011285055726124
526 => 0.0011010328505022
527 => 0.0010852329974979
528 => 0.0010333395721544
529 => 0.0010480564832082
530 => 0.0010578138104626
531 => 0.0010545890138632
601 => 0.0010615171247893
602 => 0.0010619424545324
603 => 0.0010596900550466
604 => 0.0010570820649923
605 => 0.0010558126396647
606 => 0.0010652738960356
607 => 0.0010707664738101
608 => 0.0010587930887888
609 => 0.0010559878922038
610 => 0.001068093645529
611 => 0.0010754781480642
612 => 0.0011300011657902
613 => 0.00112596192453
614 => 0.001136099627432
615 => 0.001134958277661
616 => 0.001145584205365
617 => 0.0011629531063089
618 => 0.0011276372742688
619 => 0.0011337668815814
620 => 0.0011322640434217
621 => 0.0011486716363843
622 => 0.0011487228590986
623 => 0.0011388856874974
624 => 0.0011442185778123
625 => 0.0011412419047387
626 => 0.0011466211553042
627 => 0.0011259079780004
628 => 0.0011511343921071
629 => 0.0011654361433513
630 => 0.0011656347231812
701 => 0.0011724136397653
702 => 0.0011793014116231
703 => 0.0011925218899056
704 => 0.0011789326996592
705 => 0.001154487069287
706 => 0.0011562519648409
707 => 0.001141919500698
708 => 0.0011421604320096
709 => 0.0011408743217861
710 => 0.0011447340353807
711 => 0.0011267549680839
712 => 0.0011309746192424
713 => 0.0011250670829103
714 => 0.0011337540397511
715 => 0.0011244083101958
716 => 0.0011322633187076
717 => 0.0011356532799836
718 => 0.0011481623100729
719 => 0.0011225607162808
720 => 0.0010703573334631
721 => 0.0010813311174363
722 => 0.0010651000289679
723 => 0.0010666022780018
724 => 0.0010696370601313
725 => 0.0010598003383305
726 => 0.0010616768748594
727 => 0.0010616098317696
728 => 0.0010610320906413
729 => 0.0010584731793887
730 => 0.0010547622518073
731 => 0.0010695454451285
801 => 0.0010720573977432
802 => 0.0010776411572406
803 => 0.0010942546380046
804 => 0.0010925945595034
805 => 0.0010953022164148
806 => 0.00108939141658
807 => 0.0010668764630535
808 => 0.0010680991333527
809 => 0.0010528524151297
810 => 0.0010772512643763
811 => 0.0010714732948256
812 => 0.0010677482002684
813 => 0.0010667317737057
814 => 0.0010833864360751
815 => 0.0010883697720859
816 => 0.0010852644915032
817 => 0.0010788954704326
818 => 0.0010911258737202
819 => 0.0010943982136806
820 => 0.0010951307699185
821 => 0.0011168006995968
822 => 0.0010963418782647
823 => 0.0011012665199025
824 => 0.00113968716816
825 => 0.0011048449418775
826 => 0.0011233016462137
827 => 0.0011223982865805
828 => 0.0011318401119781
829 => 0.0011216237813117
830 => 0.0011217504249745
831 => 0.0011301341262829
901 => 0.0011183607298037
902 => 0.0011154454712658
903 => 0.0011114180624752
904 => 0.0011202117622297
905 => 0.0011254831875277
906 => 0.0011679670039943
907 => 0.0011954134869291
908 => 0.00119422196272
909 => 0.0012051102635517
910 => 0.0012002049843016
911 => 0.0011843645436557
912 => 0.0012114022443023
913 => 0.0012028463845123
914 => 0.001203551719198
915 => 0.0012035254666058
916 => 0.0012092143653999
917 => 0.0012051832592244
918 => 0.0011972375351678
919 => 0.0012025122776079
920 => 0.0012181763769003
921 => 0.0012667982217372
922 => 0.0012940076502617
923 => 0.0012651601799749
924 => 0.0012850587786957
925 => 0.0012731267100589
926 => 0.0012709582982393
927 => 0.0012834560887309
928 => 0.0012959757549503
929 => 0.0012951783063361
930 => 0.0012860896715528
1001 => 0.0012809557323793
1002 => 0.0013198316397969
1003 => 0.0013484747461485
1004 => 0.0013465214783211
1005 => 0.0013551425672744
1006 => 0.0013804543510812
1007 => 0.0013827685433749
1008 => 0.001382477008337
1009 => 0.0013767410412761
1010 => 0.0014016637795845
1011 => 0.0014224547663552
1012 => 0.0013754133306295
1013 => 0.0013933260935362
1014 => 0.0014013677099182
1015 => 0.0014131751886071
1016 => 0.0014330963843183
1017 => 0.001454736086697
1018 => 0.0014577961778806
1019 => 0.001455624896747
1020 => 0.0014413529313218
1021 => 0.0014650313518799
1022 => 0.0014789016153155
1023 => 0.0014871610397761
1024 => 0.0015081055659709
1025 => 0.0014014173722033
1026 => 0.0013258981659073
1027 => 0.0013141047513336
1028 => 0.0013380871236223
1029 => 0.001344411083939
1030 => 0.001341861903465
1031 => 0.001256858170873
1101 => 0.0013136572242735
1102 => 0.0013747682299324
1103 => 0.0013771157525421
1104 => 0.0014077091997459
1105 => 0.0014176716802232
1106 => 0.0014423034151969
1107 => 0.0014407626934678
1108 => 0.0014467601289574
1109 => 0.0014453814223995
1110 => 0.0014910065246147
1111 => 0.0015413377877513
1112 => 0.0015395949761525
1113 => 0.0015323592615841
1114 => 0.0015431055315908
1115 => 0.0015950527889737
1116 => 0.0015902703179517
1117 => 0.0015949160811797
1118 => 0.0016561648252533
1119 => 0.0017357969050812
1120 => 0.001698799809071
1121 => 0.0017790728617855
1122 => 0.0018296004933776
1123 => 0.0019169828075614
1124 => 0.0019060421114586
1125 => 0.0019400594051294
1126 => 0.0018864559820425
1127 => 0.0017633716875957
1128 => 0.0017438931268518
1129 => 0.0017828896987369
1130 => 0.0018787589654866
1201 => 0.0017798704343572
1202 => 0.001799875455412
1203 => 0.0017941140080024
1204 => 0.0017938070049545
1205 => 0.0018055240626205
1206 => 0.0017885278593553
1207 => 0.0017192822696944
1208 => 0.0017510171153692
1209 => 0.0017387627674217
1210 => 0.0017523598800916
1211 => 0.0018257378892952
1212 => 0.001793295722313
1213 => 0.0017591205347849
1214 => 0.0018019838040264
1215 => 0.0018565634751881
1216 => 0.0018531479774559
1217 => 0.0018465204842881
1218 => 0.0018838793162706
1219 => 0.0019455851615948
1220 => 0.0019622640036318
1221 => 0.0019745759838396
1222 => 0.0019762735978976
1223 => 0.0019937600777567
1224 => 0.001899730868394
1225 => 0.002048957638494
1226 => 0.002074724979384
1227 => 0.0020698817872435
1228 => 0.0020985211021872
1229 => 0.0020900946892215
1230 => 0.0020778861388979
1231 => 0.0021232855448406
]
'min_raw' => 0.00078266161589766
'max_raw' => 0.0021232855448406
'avg_raw' => 0.0014529735803691
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.000782'
'max' => '$0.002123'
'avg' => '$0.001452'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.000269919764308
'max_diff' => 0.0009786254813366
'year' => 2032
]
7 => [
'items' => [
101 => 0.0020712387894704
102 => 0.0019973649727266
103 => 0.0019568363358026
104 => 0.002010207714256
105 => 0.0020427997526731
106 => 0.0020643410168239
107 => 0.0020708593903403
108 => 0.00190703008825
109 => 0.001818735180813
110 => 0.0018753312041769
111 => 0.0019443822587299
112 => 0.0018993472862995
113 => 0.0019011125719563
114 => 0.0018369045362531
115 => 0.0019500632451642
116 => 0.0019335769730904
117 => 0.002019107781773
118 => 0.0019986951678533
119 => 0.0020684422220471
120 => 0.0020500754851995
121 => 0.0021263147829833
122 => 0.0021567287029658
123 => 0.0022077984081652
124 => 0.0022453654912009
125 => 0.0022674256009032
126 => 0.0022661011946621
127 => 0.0023535143396059
128 => 0.0023019698620152
129 => 0.0022372178500607
130 => 0.0022360466904544
131 => 0.0022695826749888
201 => 0.0023398648984247
202 => 0.0023580880563969
203 => 0.0023682723156544
204 => 0.0023526747680849
205 => 0.0022967269318862
206 => 0.0022725689398776
207 => 0.0022931522489933
208 => 0.0022679806306887
209 => 0.0023114339057912
210 => 0.0023711045336257
211 => 0.0023587827849411
212 => 0.0023999725434139
213 => 0.0024425996101443
214 => 0.0025035582300701
215 => 0.0025194950706098
216 => 0.0025458380619983
217 => 0.0025729536533589
218 => 0.0025816624505182
219 => 0.0025982902464765
220 => 0.0025982026097841
221 => 0.002648311592084
222 => 0.0027035833513069
223 => 0.0027244471608693
224 => 0.002772422340521
225 => 0.0026902665266183
226 => 0.0027525826552015
227 => 0.0028087933630574
228 => 0.0027417766398561
301 => 0.0028341435798952
302 => 0.0028377299788689
303 => 0.0028918803454033
304 => 0.0028369885749657
305 => 0.0028043940169006
306 => 0.0028984932847324
307 => 0.002944024956337
308 => 0.0029303104463007
309 => 0.0028259423477552
310 => 0.0027651956378434
311 => 0.002606209780839
312 => 0.0027945353961386
313 => 0.0028862633098176
314 => 0.0028257047946186
315 => 0.0028562469872065
316 => 0.0030228752866268
317 => 0.0030863165546626
318 => 0.0030731212143991
319 => 0.0030753510096899
320 => 0.0031095827663815
321 => 0.0032613852273251
322 => 0.0031704216739742
323 => 0.0032399599021717
324 => 0.0032768427276689
325 => 0.0033111015514928
326 => 0.0032269727077936
327 => 0.003117522318239
328 => 0.0030828547854523
329 => 0.00281968344376
330 => 0.0028059842325297
331 => 0.0027982944501375
401 => 0.0027498114598963
402 => 0.0027117171101755
403 => 0.0026814230689249
404 => 0.0026019224581169
405 => 0.0026287515804997
406 => 0.0025020441999388
407 => 0.0025831070917878
408 => 0.0023808790529559
409 => 0.0025493005729338
410 => 0.0024576363967967
411 => 0.0025191864257726
412 => 0.0025189716835199
413 => 0.0024056385657207
414 => 0.002340270388576
415 => 0.0023819255352201
416 => 0.0024265831590123
417 => 0.0024338287082263
418 => 0.0024917284831561
419 => 0.0025078870657875
420 => 0.0024589258060422
421 => 0.0023766883263459
422 => 0.0023957902172422
423 => 0.0023398832893667
424 => 0.0022419085486938
425 => 0.0023122757179199
426 => 0.0023363021633197
427 => 0.0023469136103647
428 => 0.0022505667053879
429 => 0.0022202924160511
430 => 0.0022041746384341
501 => 0.002364251150786
502 => 0.002373020503485
503 => 0.0023281552552157
504 => 0.0025309504316902
505 => 0.0024850516375124
506 => 0.0025363318360865
507 => 0.0023940569208599
508 => 0.0023994920142201
509 => 0.0023321367892951
510 => 0.0023698512145754
511 => 0.00234319587438
512 => 0.0023668042617139
513 => 0.0023809550317409
514 => 0.0024482992043362
515 => 0.0025500695352084
516 => 0.0024382402306807
517 => 0.0023895146012729
518 => 0.0024197437077142
519 => 0.0025002478017124
520 => 0.0026222156250483
521 => 0.0025500082188022
522 => 0.002582052639533
523 => 0.0025890529199056
524 => 0.0025358098518032
525 => 0.0026241787729144
526 => 0.0026715363956457
527 => 0.0027201155172888
528 => 0.0027622954074555
529 => 0.0027007119478268
530 => 0.0027666150772716
531 => 0.0027135087884075
601 => 0.0026658669572691
602 => 0.0026659392102613
603 => 0.0026360527936521
604 => 0.0025781440955409
605 => 0.0025674648431304
606 => 0.0026230196628108
607 => 0.0026675693671335
608 => 0.0026712386941603
609 => 0.0026959036995198
610 => 0.0027105001956218
611 => 0.0028535657003956
612 => 0.0029111078299155
613 => 0.0029814692566757
614 => 0.0030088789977516
615 => 0.0030913724914538
616 => 0.0030247522954953
617 => 0.003010338597039
618 => 0.0028102363647335
619 => 0.0028430030940636
620 => 0.0028954657892402
621 => 0.0028111014552537
622 => 0.0028646112071752
623 => 0.002875175165696
624 => 0.0028082347874673
625 => 0.0028439905358023
626 => 0.0027490338690651
627 => 0.0025521393310566
628 => 0.0026243979728205
629 => 0.0026776046551545
630 => 0.0026016721591272
701 => 0.0027377782192627
702 => 0.002658267868731
703 => 0.0026330669047823
704 => 0.0025347489596262
705 => 0.0025811512451351
706 => 0.0026439110007026
707 => 0.0026051327683666
708 => 0.0026856034230448
709 => 0.0027995713308088
710 => 0.0028807916487877
711 => 0.0028870267362854
712 => 0.0028348075131637
713 => 0.0029184891514749
714 => 0.0029190986808526
715 => 0.0028247054509881
716 => 0.0027668901232797
717 => 0.0027537543591799
718 => 0.0027865700733195
719 => 0.0028264144084
720 => 0.0028892378195799
721 => 0.0029272006912111
722 => 0.0030261877264741
723 => 0.0030529707800356
724 => 0.0030823972357852
725 => 0.0031217200554495
726 => 0.0031689371826205
727 => 0.0030656287964429
728 => 0.0030697334312166
729 => 0.00297353409241
730 => 0.0028707313025144
731 => 0.0029487458054965
801 => 0.0030507393903111
802 => 0.0030273419492617
803 => 0.0030247092591773
804 => 0.003029136713652
805 => 0.0030114958071897
806 => 0.0029317066410635
807 => 0.0028916370213415
808 => 0.0029433370536331
809 => 0.0029708133198924
810 => 0.0030134266126783
811 => 0.0030081736248849
812 => 0.0031179408907678
813 => 0.0031605931311001
814 => 0.0031496808628309
815 => 0.0031516889828108
816 => 0.0032289088265959
817 => 0.003314793174357
818 => 0.0033952351994731
819 => 0.0034770642824866
820 => 0.0033784161290704
821 => 0.0033283286805379
822 => 0.0033800061422127
823 => 0.0033525853536351
824 => 0.0035101533383361
825 => 0.0035210630037264
826 => 0.0036786195944687
827 => 0.003828159560573
828 => 0.0037342361871497
829 => 0.0038228016978862
830 => 0.0039185925185999
831 => 0.004103388553257
901 => 0.0040411557499873
902 => 0.0039934863979952
903 => 0.0039484390906992
904 => 0.0040421753861235
905 => 0.0041627656327129
906 => 0.0041887396168293
907 => 0.0042308273939233
908 => 0.0041865772425574
909 => 0.0042398716758834
910 => 0.0044280244442846
911 => 0.0043771839053921
912 => 0.0043049821671404
913 => 0.0044535107074092
914 => 0.0045072626087424
915 => 0.004884521602388
916 => 0.0053608266656573
917 => 0.0051636332418761
918 => 0.0050412289203431
919 => 0.0050699968393727
920 => 0.0052439273245348
921 => 0.0052997882760911
922 => 0.0051479389533362
923 => 0.0052015747012424
924 => 0.0054971129455563
925 => 0.0056556597316286
926 => 0.0054403319004682
927 => 0.0048462509543222
928 => 0.0042984811905872
929 => 0.0044437743983237
930 => 0.0044273026575395
1001 => 0.0047448216319079
1002 => 0.0043759713753536
1003 => 0.0043821818677048
1004 => 0.0047062667982047
1005 => 0.0046198064949696
1006 => 0.0044797518767278
1007 => 0.0042995037442941
1008 => 0.0039662984005561
1009 => 0.0036711691354889
1010 => 0.0042499855884962
1011 => 0.0042250259705331
1012 => 0.0041888807449144
1013 => 0.0042693180332069
1014 => 0.0046598986726327
1015 => 0.0046508945247078
1016 => 0.0045936147295661
1017 => 0.0046370609493401
1018 => 0.004472135544342
1019 => 0.0045146405764917
1020 => 0.004298394421058
1021 => 0.0043961467145512
1022 => 0.0044794513824188
1023 => 0.0044961760278399
1024 => 0.0045338575079552
1025 => 0.0042118733860403
1026 => 0.0043564348038229
1027 => 0.0044413510931971
1028 => 0.0040576962085234
1029 => 0.0044337674696717
1030 => 0.0042062683588278
1031 => 0.0041290517436854
1101 => 0.0042330137434592
1102 => 0.004192499651041
1103 => 0.0041576680134472
1104 => 0.0041382313611863
1105 => 0.0042145695799529
1106 => 0.0042110083108036
1107 => 0.0040861041682916
1108 => 0.0039231718061289
1109 => 0.0039778572549432
1110 => 0.0039579895187102
1111 => 0.0038859862796126
1112 => 0.0039345077690601
1113 => 0.0037208436856973
1114 => 0.0033532457355641
1115 => 0.0035960922012518
1116 => 0.0035867428764889
1117 => 0.0035820285229854
1118 => 0.0037645209301664
1119 => 0.0037469784960321
1120 => 0.0037151388063024
1121 => 0.0038854015187418
1122 => 0.0038232533383447
1123 => 0.0040147793863755
1124 => 0.0041409308287367
1125 => 0.0041089347423823
1126 => 0.0042275807836658
1127 => 0.0039791170972348
1128 => 0.0040616467672343
1129 => 0.00407865601784
1130 => 0.0038833005032995
1201 => 0.0037498486552074
1202 => 0.0037409489384021
1203 => 0.0035095618246079
1204 => 0.0036331669531053
1205 => 0.0037419343510551
1206 => 0.0036898432081282
1207 => 0.0036733527084562
1208 => 0.0037575990949276
1209 => 0.0037641457606779
1210 => 0.0036148810877857
1211 => 0.0036459179398775
1212 => 0.0037753467725473
1213 => 0.0036426566653743
1214 => 0.0033848614619432
1215 => 0.0033209246871947
1216 => 0.0033123943428547
1217 => 0.0031389927388473
1218 => 0.003325197248209
1219 => 0.003243913989902
1220 => 0.0035006868289708
1221 => 0.0033540195603951
1222 => 0.0033476970275869
1223 => 0.0033381395919335
1224 => 0.0031888856682343
1225 => 0.0032215627919427
1226 => 0.0033301865280161
1227 => 0.003368944700781
1228 => 0.0033649019058253
1229 => 0.0033296542124498
1230 => 0.0033457904259797
1231 => 0.0032938100599705
]
'min_raw' => 0.001818735180813
'max_raw' => 0.0056556597316286
'avg_raw' => 0.0037371974562208
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.001818'
'max' => '$0.005655'
'avg' => '$0.003737'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0010360735649153
'max_diff' => 0.003532374186788
'year' => 2033
]
8 => [
'items' => [
101 => 0.0032754547108549
102 => 0.0032175201800095
103 => 0.0031323724244893
104 => 0.0031442127421359
105 => 0.0029755127583284
106 => 0.0028835960535642
107 => 0.0028581547211282
108 => 0.0028241335081282
109 => 0.0028619975076635
110 => 0.0029750348524703
111 => 0.0028386878324228
112 => 0.0026049304301829
113 => 0.0026189796483607
114 => 0.002650544070356
115 => 0.0025917239787873
116 => 0.0025360556985136
117 => 0.0025844547517013
118 => 0.0024854086588028
119 => 0.0026625133174845
120 => 0.0026577231327973
121 => 0.0027237367974752
122 => 0.002765016496735
123 => 0.0026698801544024
124 => 0.0026459536215817
125 => 0.0026595832620767
126 => 0.002434315665095
127 => 0.0027053276288622
128 => 0.0027076713515789
129 => 0.0026876029747634
130 => 0.0028319084789138
131 => 0.0031364381026866
201 => 0.0030218618085475
202 => 0.0029774944043701
203 => 0.0028931519365963
204 => 0.0030055332671446
205 => 0.0029969041343804
206 => 0.002957879923519
207 => 0.0029342779590271
208 => 0.0029777653022792
209 => 0.002928889395945
210 => 0.0029201099401474
211 => 0.0028669159901554
212 => 0.0028479281701788
213 => 0.002833870344195
214 => 0.0028183940590803
215 => 0.0028525308875934
216 => 0.002775172343109
217 => 0.0026818855220125
218 => 0.0026741297322157
219 => 0.0026955441497406
220 => 0.0026860698641017
221 => 0.0026740843729811
222 => 0.0026512008063775
223 => 0.0026444117409962
224 => 0.002666472909899
225 => 0.0026415671364538
226 => 0.0026783169618599
227 => 0.00266832304281
228 => 0.0026124978233993
301 => 0.0025429189308702
302 => 0.00254229953278
303 => 0.0025273088745169
304 => 0.0025082160173582
305 => 0.002502904821282
306 => 0.0025803787184377
307 => 0.0027407473669514
308 => 0.0027092631639517
309 => 0.0027320137272499
310 => 0.0028439239816171
311 => 0.0028794968862216
312 => 0.0028542480811237
313 => 0.0028196859594273
314 => 0.0028212065173762
315 => 0.0029393157498788
316 => 0.0029466820778342
317 => 0.0029652944121102
318 => 0.0029892165214999
319 => 0.0028583221197949
320 => 0.002815041402827
321 => 0.0027945325980048
322 => 0.0027313734170589
323 => 0.0027994851788502
324 => 0.0027597993720908
325 => 0.0027651543432829
326 => 0.0027616669112691
327 => 0.0027635712849677
328 => 0.002662463813123
329 => 0.002699302061811
330 => 0.0026380513284714
331 => 0.0025560434722473
401 => 0.0025557685531575
402 => 0.0025758398597879
403 => 0.0025639006612139
404 => 0.0025317725848359
405 => 0.0025363362264451
406 => 0.0024963539238588
407 => 0.0025411908018821
408 => 0.0025424765631097
409 => 0.0025252119227895
410 => 0.0025942893196813
411 => 0.0026225903855496
412 => 0.0026112264294464
413 => 0.0026217930600954
414 => 0.0027105714747289
415 => 0.002725046229988
416 => 0.0027314749601254
417 => 0.0027228613133848
418 => 0.0026234157665421
419 => 0.0026278265994197
420 => 0.0025954628343975
421 => 0.0025681188633633
422 => 0.0025692124788045
423 => 0.0025832708343834
424 => 0.0026446644977086
425 => 0.0027738638428222
426 => 0.0027787668635257
427 => 0.0027847094676497
428 => 0.0027605379101641
429 => 0.0027532475371358
430 => 0.0027628654209651
501 => 0.0028113859020109
502 => 0.0029361937524429
503 => 0.0028920783224641
504 => 0.0028562117911939
505 => 0.0028876764086653
506 => 0.0028828326774334
507 => 0.0028419467112773
508 => 0.0028407991783823
509 => 0.0027623259372947
510 => 0.0027333161668138
511 => 0.0027090734312563
512 => 0.0026826009969002
513 => 0.0026669072504499
514 => 0.0026910199776778
515 => 0.0026965348436882
516 => 0.002643811944186
517 => 0.0026366260078017
518 => 0.002679680665638
519 => 0.0026607339159637
520 => 0.0026802211178605
521 => 0.0026847423158587
522 => 0.002684014298849
523 => 0.0026642317161686
524 => 0.002676840544444
525 => 0.0026470169067001
526 => 0.0026145881800193
527 => 0.0025939006727779
528 => 0.0025758480789103
529 => 0.002585864707211
530 => 0.002550157256283
531 => 0.0025387337240821
601 => 0.0026725689571319
602 => 0.002771434482757
603 => 0.0027699969388593
604 => 0.0027612462600888
605 => 0.0027482445264461
606 => 0.0028104347442121
607 => 0.0027887689158751
608 => 0.0028045326162308
609 => 0.0028085451395718
610 => 0.0028206898392301
611 => 0.0028250305254858
612 => 0.0028119099568208
613 => 0.0027678757258384
614 => 0.0026581466088795
615 => 0.002607067408727
616 => 0.0025902104218853
617 => 0.002590823141341
618 => 0.0025739216034522
619 => 0.0025788998638342
620 => 0.0025721903676527
621 => 0.0025594842050864
622 => 0.0025850801374775
623 => 0.002588029830243
624 => 0.0025820554337743
625 => 0.002583462620419
626 => 0.0025339971693562
627 => 0.0025377579201672
628 => 0.0025168175817585
629 => 0.0025128915207464
630 => 0.0024599561687331
701 => 0.0023661735195395
702 => 0.0024181382108947
703 => 0.0023553721710789
704 => 0.0023316017207399
705 => 0.0024441273355811
706 => 0.0024328328848258
707 => 0.0024135016947124
708 => 0.0023849068355616
709 => 0.0023743007241497
710 => 0.0023098613486978
711 => 0.0023060539266254
712 => 0.0023379918211089
713 => 0.0023232535817206
714 => 0.0023025555118117
715 => 0.0022275892007314
716 => 0.0021433022465845
717 => 0.0021458463399213
718 => 0.0021726564518209
719 => 0.0022506104680051
720 => 0.0022201524852638
721 => 0.0021980548693198
722 => 0.0021939166501054
723 => 0.0022457151275224
724 => 0.002319020825184
725 => 0.0023534142184043
726 => 0.0023193314102659
727 => 0.0022801789154252
728 => 0.0022825619463709
729 => 0.0022984151836364
730 => 0.0023000811347203
731 => 0.0022745968855205
801 => 0.0022817705523954
802 => 0.0022708730964386
803 => 0.0022039954293468
804 => 0.0022027858244205
805 => 0.0021863729663681
806 => 0.0021858759915491
807 => 0.0021579536256227
808 => 0.0021540470936114
809 => 0.0020986055412979
810 => 0.0021350973389231
811 => 0.0021106205569815
812 => 0.0020737282731064
813 => 0.0020673680294607
814 => 0.0020671768328565
815 => 0.0021050569594326
816 => 0.0021346546875892
817 => 0.0021110463410828
818 => 0.0021056711782119
819 => 0.0021630638551006
820 => 0.0021557601138207
821 => 0.0021494351209763
822 => 0.0023124571039823
823 => 0.0021834124836691
824 => 0.0021271416636031
825 => 0.0020574958382325
826 => 0.0020801728701579
827 => 0.0020849512539795
828 => 0.0019174655985669
829 => 0.001849516689025
830 => 0.0018261991838709
831 => 0.0018127796299936
901 => 0.0018188950892076
902 => 0.0017577331010077
903 => 0.001798834968604
904 => 0.0017458738567171
905 => 0.0017369947539588
906 => 0.0018316957826355
907 => 0.0018448728775404
908 => 0.0017886552968733
909 => 0.0018247560844612
910 => 0.0018116654370434
911 => 0.0017467817229727
912 => 0.0017443036423475
913 => 0.0017117472753997
914 => 0.0016608028652813
915 => 0.0016375199028361
916 => 0.0016253939338428
917 => 0.0016303973449799
918 => 0.001627867467202
919 => 0.0016113583034265
920 => 0.0016288137531447
921 => 0.0015842222922044
922 => 0.0015664656131602
923 => 0.0015584453331877
924 => 0.0015188678450145
925 => 0.001581853228887
926 => 0.0015942621429788
927 => 0.0016066955064647
928 => 0.0017149194469918
929 => 0.0017095128847607
930 => 0.0017583855742268
1001 => 0.0017564864713853
1002 => 0.0017425471886645
1003 => 0.0016837396477661
1004 => 0.0017071792854246
1005 => 0.0016350357240403
1006 => 0.0016890905855147
1007 => 0.0016644222041228
1008 => 0.0016807501809519
1009 => 0.0016513910063788
1010 => 0.0016676395857982
1011 => 0.0015972047568504
1012 => 0.0015314337046237
1013 => 0.0015579018960164
1014 => 0.0015866758470651
1015 => 0.0016490651044051
1016 => 0.0016119065774336
1017 => 0.0016252701888521
1018 => 0.0015805043276419
1019 => 0.0014881395692292
1020 => 0.001488662343731
1021 => 0.0014744540379249
1022 => 0.0014621759872618
1023 => 0.0016161746812513
1024 => 0.0015970225092946
1025 => 0.0015665060298559
1026 => 0.0016073535502613
1027 => 0.0016181542829938
1028 => 0.0016184617646706
1029 => 0.0016482630611313
1030 => 0.0016641680183945
1031 => 0.0016669713360482
1101 => 0.0017138643199287
1102 => 0.001729582229592
1103 => 0.0017943220750133
1104 => 0.0016628185938925
1105 => 0.0016601103662371
1106 => 0.0016079283586412
1107 => 0.001574833704459
1108 => 0.0016101943779268
1109 => 0.0016415191074059
1110 => 0.0016089017053035
1111 => 0.0016131608494271
1112 => 0.0015693746520442
1113 => 0.0015850261572765
1114 => 0.001598507342068
1115 => 0.0015910638242136
1116 => 0.0015799205177151
1117 => 0.0016389508368111
1118 => 0.0016356201148661
1119 => 0.0016905905051094
1120 => 0.0017334438552745
1121 => 0.0018102447197229
1122 => 0.0017300990139514
1123 => 0.0017271781858827
1124 => 0.0017557297487693
1125 => 0.0017295778584965
1126 => 0.0017461049504163
1127 => 0.0018075819497067
1128 => 0.0018088808618276
1129 => 0.0017871224102501
1130 => 0.0017857984064942
1201 => 0.001789977355131
1202 => 0.001814453587824
1203 => 0.0018059008400424
1204 => 0.0018157982963044
1205 => 0.0018281752169152
1206 => 0.0018793714082671
1207 => 0.0018917146366781
1208 => 0.0018617269908694
1209 => 0.0018644345395285
1210 => 0.0018532183368168
1211 => 0.0018423836255359
1212 => 0.0018667384742129
1213 => 0.0019112474388658
1214 => 0.0019109705509067
1215 => 0.0019212957655756
1216 => 0.0019277282887756
1217 => 0.0019001151903064
1218 => 0.0018821400785648
1219 => 0.0018890328801926
1220 => 0.0019000546201012
1221 => 0.0018854586784876
1222 => 0.0017953657653504
1223 => 0.0018226942000386
1224 => 0.0018181454122143
1225 => 0.001811667385201
1226 => 0.0018391463376046
1227 => 0.0018364959256099
1228 => 0.0017571057964167
1229 => 0.001762188094907
1230 => 0.001757414867821
1231 => 0.0017728381410462
]
'min_raw' => 0.0014621759872618
'max_raw' => 0.0032754547108549
'avg_raw' => 0.0023688153490583
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.001462'
'max' => '$0.003275'
'avg' => '$0.002368'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0003565591935512
'max_diff' => -0.0023802050207737
'year' => 2034
]
9 => [
'items' => [
101 => 0.0017287449511274
102 => 0.0017423077193743
103 => 0.0017508141604757
104 => 0.0017558245196339
105 => 0.0017739253725491
106 => 0.0017718014463787
107 => 0.0017737933463162
108 => 0.0018006321327413
109 => 0.0019363735045202
110 => 0.0019437616078897
111 => 0.0019073798848265
112 => 0.0019219136655925
113 => 0.0018940119847103
114 => 0.0019127425700116
115 => 0.0019255575607694
116 => 0.0018676490817158
117 => 0.0018642201174092
118 => 0.0018362032763648
119 => 0.001851257939787
120 => 0.0018273048878136
121 => 0.0018331821289257
122 => 0.0018167488504076
123 => 0.001846325479907
124 => 0.001879396747431
125 => 0.0018877518556314
126 => 0.0018657731630562
127 => 0.0018498591411654
128 => 0.0018219193611297
129 => 0.0018683838380076
130 => 0.001881971467026
131 => 0.0018683124679768
201 => 0.0018651473794421
202 => 0.001859149542388
203 => 0.0018664198489267
204 => 0.0018818974658803
205 => 0.0018745985075517
206 => 0.0018794195981188
207 => 0.0018610465723639
208 => 0.001900124331391
209 => 0.0019621892173008
210 => 0.0019623887660577
211 => 0.001955089768385
212 => 0.0019521031757964
213 => 0.0019595923903488
214 => 0.0019636549820198
215 => 0.0019878737285952
216 => 0.002013861408588
217 => 0.0021351345718012
218 => 0.0021010815528533
219 => 0.0022086823178289
220 => 0.0022937805527139
221 => 0.0023192977924611
222 => 0.0022958231325726
223 => 0.0022155175891702
224 => 0.0022115774160931
225 => 0.0023315878020622
226 => 0.002297679371202
227 => 0.0022936460712469
228 => 0.0022507385740926
301 => 0.0022761022191077
302 => 0.0022705548178807
303 => 0.0022617979736557
304 => 0.0023101900414976
305 => 0.0024007756725081
306 => 0.0023866570524084
307 => 0.002376118157448
308 => 0.0023299397875575
309 => 0.0023577494805439
310 => 0.002347846981531
311 => 0.0023903944015715
312 => 0.0023651902524803
313 => 0.0022974224814884
314 => 0.0023082147223843
315 => 0.0023065834968839
316 => 0.0023401540020932
317 => 0.0023300769697005
318 => 0.0023046157945786
319 => 0.0024004660606692
320 => 0.0023942420775365
321 => 0.0024030662626181
322 => 0.002406950941788
323 => 0.0024652933096862
324 => 0.0024891943110665
325 => 0.0024946202568258
326 => 0.0025173243595673
327 => 0.0024940553580666
328 => 0.0025871479545864
329 => 0.0026490490991685
330 => 0.0027209504640043
331 => 0.0028260176832944
401 => 0.0028655239296736
402 => 0.0028583874798719
403 => 0.002938048246422
404 => 0.0030811968731533
405 => 0.0028873219101101
406 => 0.0030914727169597
407 => 0.0030268409285456
408 => 0.0028736001208918
409 => 0.0028637332194693
410 => 0.0029675096735748
411 => 0.0031976758606673
412 => 0.0031400218413239
413 => 0.0031977701619889
414 => 0.0031304036784505
415 => 0.0031270583647335
416 => 0.0031944983222483
417 => 0.0033520754589422
418 => 0.0032772164679896
419 => 0.0031698877482813
420 => 0.0032491376046941
421 => 0.0031804840448414
422 => 0.0030257883595718
423 => 0.0031399777543819
424 => 0.0030636225579991
425 => 0.0030859070635691
426 => 0.0032463943293874
427 => 0.0032270840769675
428 => 0.0032520733316801
429 => 0.003207967951195
430 => 0.0031667665710419
501 => 0.0030898611353314
502 => 0.0030670932272097
503 => 0.003073385457911
504 => 0.0030670901090926
505 => 0.0030240622246101
506 => 0.0030147703570528
507 => 0.0029992835040379
508 => 0.0030040835273649
509 => 0.0029749637128583
510 => 0.003029918819293
511 => 0.00304011897131
512 => 0.0030801107148976
513 => 0.0030842627903844
514 => 0.003195639227029
515 => 0.0031342949573301
516 => 0.0031754499896536
517 => 0.0031717686961964
518 => 0.0028769213138604
519 => 0.0029175486816858
520 => 0.0029807521164518
521 => 0.00295227905476
522 => 0.002912024807198
523 => 0.0028795173439956
524 => 0.002830265213185
525 => 0.0028995866414974
526 => 0.0029907369482162
527 => 0.0030865745125837
528 => 0.0032017170666452
529 => 0.0031760185889858
530 => 0.003084422002627
531 => 0.0030885309585797
601 => 0.0031139309074648
602 => 0.0030810356658299
603 => 0.0030713342168804
604 => 0.003112598077355
605 => 0.0031128822388839
606 => 0.0030750322878602
607 => 0.0030329689937653
608 => 0.0030327927470272
609 => 0.0030253079901262
610 => 0.0031317352000757
611 => 0.0031902594045433
612 => 0.0031969691102691
613 => 0.0031898077878879
614 => 0.0031925638966497
615 => 0.0031585099515628
616 => 0.0032363471716477
617 => 0.0033077783021008
618 => 0.0032886332332358
619 => 0.0032599320533754
620 => 0.0032370701811804
621 => 0.0032832477027074
622 => 0.003281191490364
623 => 0.0033071544134914
624 => 0.0033059765853292
625 => 0.0032972462307964
626 => 0.0032886335450243
627 => 0.003322781870577
628 => 0.0033129477012231
629 => 0.003303098256688
630 => 0.0032833436877983
701 => 0.003286028661799
702 => 0.0032573324376019
703 => 0.0032440562512385
704 => 0.0030444142623573
705 => 0.002991063399438
706 => 0.0030078486669694
707 => 0.00301337481287
708 => 0.0029901564489566
709 => 0.0030234456185001
710 => 0.0030182575366887
711 => 0.0030384413280905
712 => 0.003025831371501
713 => 0.003026348888518
714 => 0.0030634320821216
715 => 0.0030741974909879
716 => 0.003068722117151
717 => 0.0030725568813015
718 => 0.0031609274025978
719 => 0.0031483639403997
720 => 0.003141689851506
721 => 0.0031435386197411
722 => 0.0031661191826176
723 => 0.00317244050737
724 => 0.0031456566102025
725 => 0.0031582880509425
726 => 0.0032120711224453
727 => 0.0032308921536131
728 => 0.0032909598504931
729 => 0.0032654420252403
730 => 0.0033122810978775
731 => 0.0034562484385475
801 => 0.0035712595120569
802 => 0.003465490575824
803 => 0.0036766937657522
804 => 0.0038411457444094
805 => 0.0038348338035595
806 => 0.0038061577972378
807 => 0.0036189335917185
808 => 0.0034466470864441
809 => 0.0035907720637776
810 => 0.0035911394679844
811 => 0.0035787590046133
812 => 0.0035018650099022
813 => 0.0035760832602748
814 => 0.0035819744354682
815 => 0.0035786769439498
816 => 0.0035197224984923
817 => 0.0034297099568815
818 => 0.0034472981920527
819 => 0.0034761080800534
820 => 0.0034215649516959
821 => 0.003404135117301
822 => 0.0034365404956028
823 => 0.0035409573764199
824 => 0.0035212179699472
825 => 0.003520702494271
826 => 0.0036051560459721
827 => 0.0035447055291713
828 => 0.0034475200360235
829 => 0.0034229794172846
830 => 0.0033358767533029
831 => 0.0033960388735641
901 => 0.0033982040011677
902 => 0.0033652538227426
903 => 0.0034501937614039
904 => 0.0034494110249158
905 => 0.0035300488550333
906 => 0.003684198100032
907 => 0.0036386085830622
908 => 0.0035855929349517
909 => 0.0035913572058658
910 => 0.0036545770303604
911 => 0.0036163528813028
912 => 0.0036300985518121
913 => 0.0036545562246418
914 => 0.0036693121459098
915 => 0.0035892340558761
916 => 0.0035705640225114
917 => 0.0035323716865385
918 => 0.0035224080189769
919 => 0.0035535148797176
920 => 0.003545319320934
921 => 0.0033980220305764
922 => 0.0033826286441797
923 => 0.0033831007373638
924 => 0.0033443933353535
925 => 0.0032853552564469
926 => 0.0034405038028329
927 => 0.0034280432032556
928 => 0.003414287665696
929 => 0.0034159726405591
930 => 0.0034833173660731
1001 => 0.0034442540242848
1002 => 0.0035481103207848
1003 => 0.0035267605884304
1004 => 0.0035048633160011
1005 => 0.0035018364459441
1006 => 0.0034934078642463
1007 => 0.0034645031214675
1008 => 0.0034295989076562
1009 => 0.0034065521223468
1010 => 0.0031423642632011
1011 => 0.0031913959931484
1012 => 0.0032478025290701
1013 => 0.0032672738392352
1014 => 0.0032339668158241
1015 => 0.0034658182857604
1016 => 0.0035081797834942
1017 => 0.0033798640436866
1018 => 0.0033558614078657
1019 => 0.0034673918945689
1020 => 0.0034001253770394
1021 => 0.0034304154857641
1022 => 0.0033649448385049
1023 => 0.0034979761391796
1024 => 0.0034969626635568
1025 => 0.0034452104829462
1026 => 0.0034889510716146
1027 => 0.0034813500679305
1028 => 0.003422921983481
1029 => 0.0034998284136729
1030 => 0.0034998665583028
1031 => 0.0034500562096545
1101 => 0.0033918886273206
1102 => 0.0033814896374563
1103 => 0.0033736553955013
1104 => 0.0034284887424909
1105 => 0.0034776521499424
1106 => 0.0035691330625674
1107 => 0.0035921335375341
1108 => 0.0036819059225578
1109 => 0.0036284508382143
1110 => 0.0036521467847445
1111 => 0.0036778720866994
1112 => 0.0036902057424732
1113 => 0.0036701087122502
1114 => 0.0038095621779798
1115 => 0.0038213363232312
1116 => 0.003825284092288
1117 => 0.0037782611682701
1118 => 0.0038200285306504
1119 => 0.0038004869649823
1120 => 0.0038513286900474
1121 => 0.0038593013217174
1122 => 0.0038525487863275
1123 => 0.003855079425459
1124 => 0.0037360804937359
1125 => 0.0037299097713567
1126 => 0.0036457715338616
1127 => 0.0036800584875593
1128 => 0.0036159606710379
1129 => 0.0036362867489375
1130 => 0.0036452462904017
1201 => 0.0036405663343903
1202 => 0.0036819970204777
1203 => 0.0036467724735734
1204 => 0.0035538091028415
1205 => 0.0034608204043015
1206 => 0.0034596530069382
1207 => 0.0034351707239995
1208 => 0.0034174745175886
1209 => 0.00342088343475
1210 => 0.0034328969034588
1211 => 0.0034167762729479
1212 => 0.0034202164268041
1213 => 0.0034773459024423
1214 => 0.0034888028113528
1215 => 0.0034498677583718
1216 => 0.0032935379023516
1217 => 0.0032551741635605
1218 => 0.0032827492582175
1219 => 0.003269570139035
1220 => 0.002638798281688
1221 => 0.0027869887732005
1222 => 0.0026989390152173
1223 => 0.0027395163946705
1224 => 0.0026496403921441
1225 => 0.0026925339313546
1226 => 0.0026846130608836
1227 => 0.0029228989859603
1228 => 0.0029191784789918
1229 => 0.0029209592887927
1230 => 0.0028359565971171
1231 => 0.002971368193031
]
'min_raw' => 0.0017287449511274
'max_raw' => 0.0038593013217174
'avg_raw' => 0.0027940231364224
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.001728'
'max' => '$0.003859'
'avg' => '$0.002794'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00026656896386566
'max_diff' => 0.00058384661086248
'year' => 2035
]
10 => [
'items' => [
101 => 0.0030380768144217
102 => 0.0030257308239948
103 => 0.0030288380438013
104 => 0.0029754457128132
105 => 0.0029214762432666
106 => 0.0028616157956975
107 => 0.0029728291083058
108 => 0.0029604640864184
109 => 0.0029888249978338
110 => 0.0030609547807521
111 => 0.0030715761652812
112 => 0.0030858514137997
113 => 0.0030807347533872
114 => 0.0032026343628508
115 => 0.0031878715158252
116 => 0.0032234457295959
117 => 0.0031502668728476
118 => 0.003067458050236
119 => 0.0030831973001901
120 => 0.0030816814838525
121 => 0.0030623834021014
122 => 0.0030449619567721
123 => 0.0030159601587605
124 => 0.0031077261391276
125 => 0.003104000607909
126 => 0.003164312627881
127 => 0.0031536518925112
128 => 0.0030824568925876
129 => 0.003084999635938
130 => 0.0031021008069698
131 => 0.0031612881551689
201 => 0.0031788589898964
202 => 0.0031707194791739
203 => 0.0031899850973135
204 => 0.0032052118563685
205 => 0.0031918973438155
206 => 0.0033804027637437
207 => 0.0033021221708375
208 => 0.0033402755871471
209 => 0.003349374952124
210 => 0.0033260671200748
211 => 0.0033311217542554
212 => 0.0033387781477336
213 => 0.0033852662696577
214 => 0.0035072645530332
215 => 0.0035612967622698
216 => 0.0037238553296603
217 => 0.0035568101394573
218 => 0.0035468983691724
219 => 0.0035761800759579
220 => 0.003671619163588
221 => 0.0037489635799746
222 => 0.0037746231849964
223 => 0.003778014525394
224 => 0.0038261536502333
225 => 0.0038537460988496
226 => 0.0038203082942931
227 => 0.0037919732560155
228 => 0.0036904806659797
229 => 0.0037022287096315
301 => 0.003783161080418
302 => 0.0038974828210469
303 => 0.0039955827676563
304 => 0.003961231585482
305 => 0.0042233068573166
306 => 0.0042492905500375
307 => 0.0042457004438568
308 => 0.004304895162767
309 => 0.0041874057005252
310 => 0.0041371766791657
311 => 0.0037980996129075
312 => 0.0038933664377522
313 => 0.0040318423624885
314 => 0.0040135145545916
315 => 0.003912949636576
316 => 0.0039955064801481
317 => 0.003968210605872
318 => 0.0039466812173235
319 => 0.0040453115199412
320 => 0.0039368634507036
321 => 0.0040307605100394
322 => 0.0039103365602005
323 => 0.0039613884987886
324 => 0.0039324089493416
325 => 0.0039511622694338
326 => 0.0038415307433678
327 => 0.0039006852536782
328 => 0.0038390697212569
329 => 0.003839040507472
330 => 0.0038376803411788
331 => 0.0039101707418272
401 => 0.0039125346511899
402 => 0.0038589641355837
403 => 0.0038512437873562
404 => 0.0038797899611518
405 => 0.0038463698678919
406 => 0.0038620069191846
407 => 0.0038468434982458
408 => 0.003843429892802
409 => 0.0038162297038484
410 => 0.0038045111145624
411 => 0.0038091062753723
412 => 0.0037934206225604
413 => 0.0037839694493663
414 => 0.0038358002649479
415 => 0.0038081091510318
416 => 0.0038315562045938
417 => 0.0038048353278058
418 => 0.003712209127127
419 => 0.0036589388196124
420 => 0.0034839765129835
421 => 0.0035335956061034
422 => 0.0035664931161765
423 => 0.0035556204892936
424 => 0.0035789790989862
425 => 0.0035804131279105
426 => 0.0035728190057866
427 => 0.0035640259852344
428 => 0.0035597460291142
429 => 0.0035916453155324
430 => 0.0036101639249787
501 => 0.0035697948214243
502 => 0.0035603369052852
503 => 0.0036011522978181
504 => 0.0036260496636849
505 => 0.0038098778246237
506 => 0.0037962592407042
507 => 0.00383043921383
508 => 0.0038265910733905
509 => 0.003862417130523
510 => 0.0039209775927134
511 => 0.0038019077993177
512 => 0.0038225741983275
513 => 0.0038175072745472
514 => 0.0038728266197623
515 => 0.0038729993207198
516 => 0.0038398326098571
517 => 0.0038578128218842
518 => 0.003847776760792
519 => 0.0038659132796406
520 => 0.0037960773562131
521 => 0.0038811299726257
522 => 0.0039293493254621
523 => 0.003930018851223
524 => 0.003952874441775
525 => 0.0039760970454824
526 => 0.0040206708110362
527 => 0.0039748539073536
528 => 0.0038924337578142
529 => 0.0038983842263955
530 => 0.0038500613228769
531 => 0.0038508736396153
601 => 0.0038465374292033
602 => 0.0038595507230643
603 => 0.0037989330424146
604 => 0.0038131598909022
605 => 0.0037932422197073
606 => 0.0038225309012002
607 => 0.0037910211215063
608 => 0.0038175048311231
609 => 0.0038289343222448
610 => 0.0038711093905434
611 => 0.0037847918296271
612 => 0.0036087844797336
613 => 0.0036457833585641
614 => 0.0035910591105746
615 => 0.0035961240480759
616 => 0.0036063560279074
617 => 0.003573190833578
618 => 0.0035795177075007
619 => 0.0035792916670426
620 => 0.0035773437724921
621 => 0.0035687162245465
622 => 0.003556204573117
623 => 0.003606047141529
624 => 0.0036145163651484
625 => 0.0036333424001395
626 => 0.0036893559104515
627 => 0.0036837588398818
628 => 0.0036928878942012
629 => 0.0036729592198794
630 => 0.0035970484821209
701 => 0.0036011708003988
702 => 0.0035497654254181
703 => 0.0036320278491262
704 => 0.0036125470213812
705 => 0.0035999876050037
706 => 0.0035965606518829
707 => 0.0036527130088527
708 => 0.0036695146741385
709 => 0.0036590450038502
710 => 0.0036375714046399
711 => 0.0036788070632234
712 => 0.0036898399858675
713 => 0.003692309850369
714 => 0.0037653715312256
715 => 0.0036963931867149
716 => 0.0037129969598244
717 => 0.0038425348578687
718 => 0.0037250618593505
719 => 0.0037872899266261
720 => 0.0037842441865522
721 => 0.0038160779600873
722 => 0.003781632887964
723 => 0.0037820598759151
724 => 0.0038103261102077
725 => 0.0037706312819859
726 => 0.0037608022842886
727 => 0.0037472235943663
728 => 0.0037768721670451
729 => 0.0037946451454765
730 => 0.0039378822988189
731 => 0.0040304200322859
801 => 0.0040264027252252
802 => 0.0040631133916764
803 => 0.0040465749002089
804 => 0.003993167748627
805 => 0.0040843272440691
806 => 0.0040554805654359
807 => 0.0040578586505737
808 => 0.0040577701381261
809 => 0.0040769506575968
810 => 0.004063359501683
811 => 0.0040365699382735
812 => 0.0040543541006813
813 => 0.0041071667050781
814 => 0.0042710986496144
815 => 0.0043628371375864
816 => 0.0042655758774483
817 => 0.0043326653923114
818 => 0.0042924355898319
819 => 0.0042851246379884
820 => 0.0043272618111987
821 => 0.0043694727399525
822 => 0.0043667840862738
823 => 0.0043361411195536
824 => 0.0043188316851899
825 => 0.0044499045212778
826 => 0.0045464767541399
827 => 0.0045398911752872
828 => 0.0045689577785982
829 => 0.0046542982249154
830 => 0.0046621006858054
831 => 0.0046611177550707
901 => 0.0046417785416524
902 => 0.004725807293909
903 => 0.0047959055573867
904 => 0.0046373020725096
905 => 0.0046976962032788
906 => 0.0047248090743584
907 => 0.0047646188131296
908 => 0.0048317845153237
909 => 0.004904744282729
910 => 0.0049150615938033
911 => 0.0049077409678673
912 => 0.0048596220399997
913 => 0.0049394554880857
914 => 0.0049862200496497
915 => 0.0050140672758731
916 => 0.0050846832082391
917 => 0.0047249765142199
918 => 0.0044703582376103
919 => 0.0044305959169853
920 => 0.0045114541595524
921 => 0.0045327758332849
922 => 0.0045241810933384
923 => 0.0042375850741335
924 => 0.0044290870482566
925 => 0.0046351270704697
926 => 0.0046430419068473
927 => 0.0047461898500609
928 => 0.0047797790485483
929 => 0.0048628266627452
930 => 0.0048576320118658
1001 => 0.0048778527843465
1002 => 0.0048732043789282
1003 => 0.0050270325964896
1004 => 0.0051967279641712
1005 => 0.0051908519531866
1006 => 0.0051664562363379
1007 => 0.0052026880359461
1008 => 0.0053778318410543
1009 => 0.0053617074061022
1010 => 0.0053773709211821
1011 => 0.0055838753380769
1012 => 0.0058523604549511
1013 => 0.005727622162698
1014 => 0.0059982683644104
1015 => 0.0061686258020497
1016 => 0.006463241375159
1017 => 0.0064263540543934
1018 => 0.0065410457350159
1019 => 0.0063603180516069
1020 => 0.0059453307594087
1021 => 0.0058796574319108
1022 => 0.0060111370966751
1023 => 0.0063343670229001
1024 => 0.0060009574360206
1025 => 0.0060684057612128
1026 => 0.00604898063902
1027 => 0.0060479455568097
1028 => 0.0060874504347895
1029 => 0.006030146548844
1030 => 0.0057966802087295
1031 => 0.0059036764565782
1101 => 0.005862360066902
1102 => 0.0059082036815886
1103 => 0.0061556027627076
1104 => 0.0060462217316874
1105 => 0.0059309977009011
1106 => 0.0060755142057665
1107 => 0.0062595333777191
1108 => 0.0062480177886526
1109 => 0.0062256727327207
1110 => 0.0063516306430598
1111 => 0.0065596762087351
1112 => 0.0066159100891424
1113 => 0.006657420790008
1114 => 0.0066631444143283
1115 => 0.0067221013020403
1116 => 0.006405075257764
1117 => 0.0069082037318367
1118 => 0.0069950801206654
1119 => 0.006978750960223
1120 => 0.0070753104100889
1121 => 0.0070469001704615
1122 => 0.0070057381906715
1123 => 0.0071588054574929
1124 => 0.0069833261879737
1125 => 0.0067342554571169
1126 => 0.0065976103281084
1127 => 0.006777555656835
1128 => 0.0068874419898617
1129 => 0.006960069865909
1130 => 0.0069820470173179
1201 => 0.0064296850871238
1202 => 0.0061319926421463
1203 => 0.0063228100863261
1204 => 0.0065556205377419
1205 => 0.0064037819839515
1206 => 0.0064097337677917
1207 => 0.0061932518925567
1208 => 0.0065747743801392
1209 => 0.0065191897628076
1210 => 0.0068075628558514
1211 => 0.0067387403028578
1212 => 0.006973897365656
1213 => 0.0069119726300498
1214 => 0.0071690187453856
1215 => 0.0072715614000388
1216 => 0.0074437464766913
1217 => 0.0075704065199962
1218 => 0.0076447837200454
1219 => 0.0076403183919363
1220 => 0.0079350379131052
1221 => 0.0077612521081877
1222 => 0.0075429361790419
1223 => 0.0075389875326616
1224 => 0.0076520564459268
1225 => 0.0078890178691893
1226 => 0.0079504585185927
1227 => 0.0079847954597217
1228 => 0.0079322072391051
1229 => 0.0077435752032081
1230 => 0.0076621248464938
1231 => 0.0077315229102584
]
'min_raw' => 0.0028616157956975
'max_raw' => 0.0079847954597217
'avg_raw' => 0.0054232056277096
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.002861'
'max' => '$0.007984'
'avg' => '$0.005423'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0011328708445701
'max_diff' => 0.0041254941380043
'year' => 2036
]
11 => [
'items' => [
101 => 0.0076466550417179
102 => 0.0077931607925369
103 => 0.0079943444803511
104 => 0.007952800844384
105 => 0.0080916749908521
106 => 0.0082353951224603
107 => 0.008440921365535
108 => 0.0084946535360895
109 => 0.0085834707707646
110 => 0.008674892880187
111 => 0.0087042551978385
112 => 0.0087603169728274
113 => 0.0087600214996004
114 => 0.0089289674319221
115 => 0.0091153200270929
116 => 0.0091856638176973
117 => 0.0093474154854131
118 => 0.0090704214229043
119 => 0.0092805246011957
120 => 0.0094700429272382
121 => 0.0092440913660069
122 => 0.0095555129532025
123 => 0.0095676047477368
124 => 0.0097501764891653
125 => 0.009565105052714
126 => 0.0094552102245182
127 => 0.009772472475814
128 => 0.0099259856855488
129 => 0.0098797462574447
130 => 0.0095278619264508
131 => 0.0093230501527834
201 => 0.008787018235855
202 => 0.0094219711963122
203 => 0.0097312382615191
204 => 0.0095270609994653
205 => 0.0096300361341632
206 => 0.010191835079275
207 => 0.010405731743786
208 => 0.010361242732818
209 => 0.01036876064332
210 => 0.010484175400991
211 => 0.010995987996572
212 => 0.010689298025577
213 => 0.010923751016948
214 => 0.011048104038189
215 => 0.011163610054586
216 => 0.010879963784366
217 => 0.0105109441544
218 => 0.0103940601472
219 => 0.0095067595946481
220 => 0.0094605717475368
221 => 0.0094346451093182
222 => 0.0092711813227458
223 => 0.0091427435629993
224 => 0.0090406050878606
225 => 0.0087725632279661
226 => 0.0088630194872291
227 => 0.0084358167072413
228 => 0.0087091259067406
301 => 0.0080272999547081
302 => 0.0085951448681283
303 => 0.0082860926984938
304 => 0.0084936129184719
305 => 0.008492888899974
306 => 0.0081107783806485
307 => 0.0078903850075447
308 => 0.0080308282427249
309 => 0.0081813945392359
310 => 0.008205823414279
311 => 0.008401036547888
312 => 0.008455516337386
313 => 0.0082904400317889
314 => 0.0080131706273552
315 => 0.0080775739861634
316 => 0.0078890798755341
317 => 0.0075587511969775
318 => 0.0077959990209022
319 => 0.0078770058590406
320 => 0.0079127830936203
321 => 0.007587942776765
322 => 0.0074858708965826
323 => 0.0074315286840396
324 => 0.0079712378216192
325 => 0.0080008043065003
326 => 0.0078495379895689
327 => 0.0085332760857596
328 => 0.0083785250966379
329 => 0.0085514198663997
330 => 0.0080717300563956
331 => 0.0080900548531257
401 => 0.0078629620096996
402 => 0.0079901188276689
403 => 0.0079002484871837
404 => 0.0079798458133652
405 => 0.0080275561224863
406 => 0.0082546117022114
407 => 0.0085977374781244
408 => 0.0082206971702368
409 => 0.0080564153087735
410 => 0.0081583348516691
411 => 0.0084297600252003
412 => 0.008840983057099
413 => 0.0085975307455802
414 => 0.0087055707473439
415 => 0.0087291726813641
416 => 0.0085496599599446
417 => 0.008847601947192
418 => 0.0090072714786343
419 => 0.00917105937894
420 => 0.0093132718235427
421 => 0.0091056388897848
422 => 0.0093278358919177
423 => 0.0091487843312495
424 => 0.0089881565713201
425 => 0.0089884001773276
426 => 0.0088876360371267
427 => 0.0086923928183888
428 => 0.0086563869732851
429 => 0.0088436939265514
430 => 0.0089938963650365
501 => 0.0090062677572912
502 => 0.0090894275449165
503 => 0.0091386406506192
504 => 0.0096209959884786
505 => 0.0098150032956184
506 => 0.010052231758418
507 => 0.010144645614143
508 => 0.010422778187671
509 => 0.010198163545724
510 => 0.010149566755046
511 => 0.0094749081081364
512 => 0.0095853834237727
513 => 0.009762265063389
514 => 0.0094778248212241
515 => 0.0096582366857589
516 => 0.0096938538094639
517 => 0.0094681596506377
518 => 0.0095887126525357
519 => 0.0092685596209687
520 => 0.0086047159393353
521 => 0.0088483409949795
522 => 0.0090277310392406
523 => 0.008771719327447
524 => 0.0092306104118156
525 => 0.0089625357137622
526 => 0.0088775689043342
527 => 0.0085460830879006
528 => 0.0087025316331981
529 => 0.0089141305308403
530 => 0.0087833870131096
531 => 0.0090546994436388
601 => 0.0094389502016504
602 => 0.0097127901743377
603 => 0.0097338122071562
604 => 0.0095577514505715
605 => 0.0098398899366032
606 => 0.0098419450074563
607 => 0.0095236916426431
608 => 0.0093287632287371
609 => 0.0092844750829647
610 => 0.0093951155543065
611 => 0.0095294535118731
612 => 0.0097412670288565
613 => 0.0098692615010443
614 => 0.010203003201488
615 => 0.010293304136503
616 => 0.010392517486552
617 => 0.010525097118482
618 => 0.010684292959334
619 => 0.010335981522575
620 => 0.010349820585291
621 => 0.010025477798081
622 => 0.0096788710144864
623 => 0.0099419023580891
624 => 0.010285780850256
625 => 0.010206894744201
626 => 0.010198018445773
627 => 0.010212945917649
628 => 0.010153468369863
629 => 0.0098844536255669
630 => 0.0097493561051027
701 => 0.0099236663735548
702 => 0.01001630452358
703 => 0.010159978215372
704 => 0.010142267400275
705 => 0.010512355400905
706 => 0.01065616040707
707 => 0.01061936893273
708 => 0.010626139449445
709 => 0.010886491544083
710 => 0.011176056618813
711 => 0.011447272522775
712 => 0.011723164989279
713 => 0.011390565852642
714 => 0.011221692522921
715 => 0.011395926692963
716 => 0.011303475589815
717 => 0.01183472705128
718 => 0.011871509749832
719 => 0.01240272279577
720 => 0.012906907232037
721 => 0.01259023802102
722 => 0.012888842823915
723 => 0.013211808263852
724 => 0.013834860996746
725 => 0.013625038755567
726 => 0.013464318207157
727 => 0.013312438065506
728 => 0.013628476529988
729 => 0.014035054965707
730 => 0.014122628066601
731 => 0.014264529945548
801 => 0.014115337470771
802 => 0.014295023373628
803 => 0.0149293935687
804 => 0.014757981142251
805 => 0.014514547940771
806 => 0.015015322284218
807 => 0.015196550572401
808 => 0.016468505608859
809 => 0.018074401384229
810 => 0.017409549988346
811 => 0.0169968552723
812 => 0.017093848319821
813 => 0.017680267093983
814 => 0.017868606192243
815 => 0.017356635598793
816 => 0.017537472267587
817 => 0.018533900092113
818 => 0.019068451650739
819 => 0.018342458834272
820 => 0.016339473446934
821 => 0.014492629444438
822 => 0.014982495638369
823 => 0.014926960014295
824 => 0.015997497404845
825 => 0.01475389301257
826 => 0.014774832121134
827 => 0.015867507091202
828 => 0.01557600014238
829 => 0.015103796218676
830 => 0.014496077055653
831 => 0.013372651975586
901 => 0.012377603053145
902 => 0.014329123136133
903 => 0.014244970041546
904 => 0.014123103889793
905 => 0.014394303823223
906 => 0.015711173718517
907 => 0.015680815605139
908 => 0.015487692776671
909 => 0.015634174739957
910 => 0.015078117222282
911 => 0.015221425905781
912 => 0.014492336894912
913 => 0.014821915577272
914 => 0.015102783081133
915 => 0.015159171390848
916 => 0.015286217131894
917 => 0.014200625184644
918 => 0.014688024097654
919 => 0.014974325295945
920 => 0.013680806066339
921 => 0.014948756579757
922 => 0.014181727444067
923 => 0.013921386235022
924 => 0.014271901375654
925 => 0.014135305284463
926 => 0.014017867986448
927 => 0.013952335956327
928 => 0.014209715590663
929 => 0.014197708523086
930 => 0.013776585486078
1001 => 0.013227247651472
1002 => 0.013411623460166
1003 => 0.013344638000335
1004 => 0.013101874052612
1005 => 0.013265467641946
1006 => 0.012545084267339
1007 => 0.011305702113595
1008 => 0.01212447592766
1009 => 0.012092954026473
1010 => 0.01207705925449
1011 => 0.012692345146514
1012 => 0.012633199605057
1013 => 0.012525849868157
1014 => 0.013099902490509
1015 => 0.012890365561253
1016 => 0.013536109004111
1017 => 0.013961437399644
1018 => 0.013853560360604
1019 => 0.014253583772394
1020 => 0.013415871106411
1021 => 0.013694125650852
1022 => 0.013751473526817
1023 => 0.013092818770257
1024 => 0.012642876547104
1025 => 0.012612870530537
1026 => 0.011832732721447
1027 => 0.012249476042011
1028 => 0.012616192918096
1029 => 0.01244056399283
1030 => 0.012384965121856
1031 => 0.012669007695739
1101 => 0.01269108023639
1102 => 0.012187823970408
1103 => 0.012292466884159
1104 => 0.012728845229938
1105 => 0.012281471269476
1106 => 0.011412296742422
1107 => 0.011196729442435
1108 => 0.011167968790923
1109 => 0.010583333176498
1110 => 0.011211134680195
1111 => 0.010937082499797
1112 => 0.011802810054024
1113 => 0.01130831111804
1114 => 0.011286994257252
1115 => 0.011254770695668
1116 => 0.010751550671339
1117 => 0.010861723875366
1118 => 0.011227956385405
1119 => 0.011358632270891
1120 => 0.011345001705439
1121 => 0.011226161646308
1122 => 0.011280566016819
1123 => 0.011105310583665
1124 => 0.011043424242592
1125 => 0.010848093926987
1126 => 0.010561012324425
1127 => 0.010600932782035
1128 => 0.010032149008371
1129 => 0.009722245420839
1130 => 0.0096364681922738
1201 => 0.0095217632973593
1202 => 0.0096494244153725
1203 => 0.010030537715404
1204 => 0.009570834217869
1205 => 0.0087827048157964
1206 => 0.0088300727357681
1207 => 0.0089364943882829
1208 => 0.0087381783428712
1209 => 0.0085504888492932
1210 => 0.0087136696362294
1211 => 0.0083797288188449
1212 => 0.0089768495406427
1213 => 0.0089606990985295
1214 => 0.009183268777918
1215 => 0.0093224461660292
1216 => 0.0090016873456473
1217 => 0.0089210173697454
1218 => 0.0089669706542651
1219 => 0.0082074652233599
1220 => 0.0091212009806523
1221 => 0.0091291030054251
1222 => 0.0090614410718623
1223 => 0.0095479771541939
1224 => 0.010574720042323
1225 => 0.010188418067172
1226 => 0.010038830266355
1227 => 0.0097544637476523
1228 => 0.01013336524981
1229 => 0.010104271526228
1230 => 0.0099726986747259
1231 => 0.0098931230036048
]
'min_raw' => 0.0074315286840396
'max_raw' => 0.019068451650739
'avg_raw' => 0.013249990167389
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.007431'
'max' => '$0.019068'
'avg' => '$0.013249'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.004569912888342
'max_diff' => 0.011083656191017
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00023326719357438
]
1 => [
'year' => 2028
'avg' => 0.00040035422212379
]
2 => [
'year' => 2029
'avg' => 0.0010936955780141
]
3 => [
'year' => 2030
'avg' => 0.00084378450965759
]
4 => [
'year' => 2031
'avg' => 0.00082870095754684
]
5 => [
'year' => 2032
'avg' => 0.0014529735803691
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00023326719357438
'min' => '$0.000233'
'max_raw' => 0.0014529735803691
'max' => '$0.001452'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0014529735803691
]
1 => [
'year' => 2033
'avg' => 0.0037371974562208
]
2 => [
'year' => 2034
'avg' => 0.0023688153490583
]
3 => [
'year' => 2035
'avg' => 0.0027940231364224
]
4 => [
'year' => 2036
'avg' => 0.0054232056277096
]
5 => [
'year' => 2037
'avg' => 0.013249990167389
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0014529735803691
'min' => '$0.001452'
'max_raw' => 0.013249990167389
'max' => '$0.013249'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.013249990167389
]
]
]
]
'prediction_2025_max_price' => '$0.000398'
'last_price' => 0.00038673
'sma_50day_nextmonth' => '$0.000351'
'sma_200day_nextmonth' => '$0.000417'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.000378'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000369'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000363'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000347'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000374'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000427'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000411'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000378'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000373'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000366'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000362'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000377'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000399'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0004035'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000415'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.000391'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.000377'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.00076'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000377'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000376'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000385'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.000399'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.000509'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.007943'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.044174'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.20'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 158.22
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000360'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000378'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 94.12
'cci_20_action' => 'NEUTRAL'
'adx_14' => 6.18
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000011'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.61
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000016'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 12
'buy_signals' => 23
'sell_pct' => 34.29
'buy_pct' => 65.71
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767709373
'last_updated_date' => '6. Januar 2026'
]
Lympo Market Token Preisprognose für 2026
Die Preisprognose für Lympo Market Token im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.000133 am unteren Ende und $0.000398 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Lympo Market Token im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn LMT das prognostizierte Preisziel erreicht.
Lympo Market Token Preisprognose 2027-2032
Die Preisprognose für LMT für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.000233 am unteren Ende und $0.001452 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Lympo Market Token, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Lympo Market Token Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.000128 | $0.000233 | $0.000337 |
| 2028 | $0.000232 | $0.00040035 | $0.000568 |
| 2029 | $0.0005099 | $0.001093 | $0.001677 |
| 2030 | $0.000433 | $0.000843 | $0.001253 |
| 2031 | $0.000512 | $0.000828 | $0.001144 |
| 2032 | $0.000782 | $0.001452 | $0.002123 |
Lympo Market Token Preisprognose 2032-2037
Die Preisprognose für Lympo Market Token für die Jahre 2032-2037 wird derzeit zwischen $0.001452 am unteren Ende und $0.013249 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Lympo Market Token bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Lympo Market Token Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.000782 | $0.001452 | $0.002123 |
| 2033 | $0.001818 | $0.003737 | $0.005655 |
| 2034 | $0.001462 | $0.002368 | $0.003275 |
| 2035 | $0.001728 | $0.002794 | $0.003859 |
| 2036 | $0.002861 | $0.005423 | $0.007984 |
| 2037 | $0.007431 | $0.013249 | $0.019068 |
Lympo Market Token Potenzielles Preishistogramm
Lympo Market Token Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Lympo Market Token Bullisch, mit 23 technischen Indikatoren, die bullische Signale zeigen, und 12 anzeigen bärische Signale. Die Preisprognose für LMT wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Lympo Market Token
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Lympo Market Token im nächsten Monat steigen, und bis zum 04.02.2026 $0.000417 erreichen. Der kurzfristige 50-Tage-SMA für Lympo Market Token wird voraussichtlich bis zum 04.02.2026 $0.000351 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 56.20, was darauf hindeutet, dass sich der LMT-Markt in einem NEUTRAL Zustand befindet.
Beliebte LMT Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.000378 | BUY |
| SMA 5 | $0.000369 | BUY |
| SMA 10 | $0.000363 | BUY |
| SMA 21 | $0.000347 | BUY |
| SMA 50 | $0.000374 | BUY |
| SMA 100 | $0.000427 | SELL |
| SMA 200 | $0.000411 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.000378 | BUY |
| EMA 5 | $0.000373 | BUY |
| EMA 10 | $0.000366 | BUY |
| EMA 21 | $0.000362 | BUY |
| EMA 50 | $0.000377 | BUY |
| EMA 100 | $0.000399 | SELL |
| EMA 200 | $0.0004035 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.000415 | SELL |
| SMA 50 | $0.000391 | SELL |
| SMA 100 | $0.000377 | BUY |
| SMA 200 | $0.00076 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.000399 | SELL |
| EMA 50 | $0.000509 | SELL |
| EMA 100 | $0.007943 | SELL |
| EMA 200 | $0.044174 | SELL |
Lympo Market Token Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 56.20 | NEUTRAL |
| Stoch RSI (14) | 158.22 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 94.12 | NEUTRAL |
| Average Directional Index (14) | 6.18 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000011 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 68.61 | NEUTRAL |
| VWMA (10) | 0.000360 | BUY |
| Hull Moving Average (9) | 0.000378 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000016 | SELL |
Auf weltweiten Geldflüssen basierende Lympo Market Token-Preisprognose
Definition weltweiter Geldflüsse, die für Lympo Market Token-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Lympo Market Token-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.000543 | $0.000763 | $0.001072 | $0.0015077 | $0.002118 | $0.002976 |
| Amazon.com aktie | $0.0008069 | $0.001683 | $0.003513 | $0.00733 | $0.015295 | $0.031914 |
| Apple aktie | $0.000548 | $0.000778 | $0.0011036 | $0.001565 | $0.00222 | $0.003149 |
| Netflix aktie | $0.00061 | $0.000962 | $0.001519 | $0.002396 | $0.003782 | $0.005967 |
| Google aktie | $0.00050081 | $0.000648 | $0.000839 | $0.001087 | $0.0014084 | $0.001823 |
| Tesla aktie | $0.000876 | $0.001987 | $0.0045052 | $0.010213 | $0.023152 | $0.052484 |
| Kodak aktie | $0.00029 | $0.000217 | $0.000163 | $0.000122 | $0.000091 | $0.000068 |
| Nokia aktie | $0.000256 | $0.000169 | $0.000112 | $0.000074 | $0.000049 | $0.000032 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Lympo Market Token Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Lympo Market Token investieren?", "Sollte ich heute LMT kaufen?", "Wird Lympo Market Token auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Lympo Market Token/Lympo Market-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Lympo Market Token.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Lympo Market Token zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Lympo Market Token-Preis entspricht heute $0.0003867 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Lympo Market Token-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Lympo Market Token 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000396 | $0.000407 | $0.000417 | $0.000428 |
| Wenn die Wachstumsrate von Lympo Market Token 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0004068 | $0.000427 | $0.00045 | $0.000473 |
| Wenn die Wachstumsrate von Lympo Market Token 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000436 | $0.000493 | $0.000557 | $0.00063 |
| Wenn die Wachstumsrate von Lympo Market Token 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000487 | $0.000613 | $0.000773 | $0.000974 |
| Wenn die Wachstumsrate von Lympo Market Token 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000587 | $0.000893 | $0.001357 | $0.002063 |
| Wenn die Wachstumsrate von Lympo Market Token 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000889 | $0.002045 | $0.0047032 | $0.010815 |
| Wenn die Wachstumsrate von Lympo Market Token 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001391 | $0.00501 | $0.018033 | $0.0649068 |
Fragefeld
Ist LMT eine gute Investition?
Die Entscheidung, Lympo Market Token zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Lympo Market Token in den letzten 2026 Stunden um 81.9747% gestiegen, und Lympo Market Token hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Lympo Market Token investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Lympo Market Token steigen?
Es scheint, dass der Durchschnittswert von Lympo Market Token bis zum Ende dieses Jahres potenziell auf $0.000398 steigen könnte. Betrachtet man die Aussichten von Lympo Market Token in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.001253 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Lympo Market Token nächste Woche kosten?
Basierend auf unserer neuen experimentellen Lympo Market Token-Prognose wird der Preis von Lympo Market Token in der nächsten Woche um 0.86% steigen und $0.00039 erreichen bis zum 13. Januar 2026.
Wie viel wird Lympo Market Token nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Lympo Market Token-Prognose wird der Preis von Lympo Market Token im nächsten Monat um -11.62% fallen und $0.000341 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Lympo Market Token in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Lympo Market Token im Jahr 2026 wird erwartet, dass LMT innerhalb der Spanne von $0.000133 bis $0.000398 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Lympo Market Token-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Lympo Market Token in 5 Jahren sein?
Die Zukunft von Lympo Market Token scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.001253 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Lympo Market Token-Prognose für 2030 könnte der Wert von Lympo Market Token seinen höchsten Gipfel von ungefähr $0.001253 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.000433 liegen wird.
Wie viel wird Lympo Market Token im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Lympo Market Token-Preisprognosesimulation wird der Wert von LMT im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.000398 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.000398 und $0.000133 während des Jahres 2026 liegen.
Wie viel wird Lympo Market Token im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Lympo Market Token könnte der Wert von LMT um -12.62% fallen und bis zu $0.000337 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.000337 und $0.000128 im Laufe des Jahres schwanken.
Wie viel wird Lympo Market Token im Jahr 2028 kosten?
Unser neues experimentelles Lympo Market Token-Preisprognosemodell deutet darauf hin, dass der Wert von LMT im Jahr 2028 um 47.02% steigen, und im besten Fall $0.000568 erreichen wird. Der Preis wird voraussichtlich zwischen $0.000568 und $0.000232 im Laufe des Jahres liegen.
Wie viel wird Lympo Market Token im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Lympo Market Token im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.001677 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.001677 und $0.0005099.
Wie viel wird Lympo Market Token im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Lympo Market Token-Preisprognosen wird der Wert von LMT im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.001253 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.001253 und $0.000433 während des Jahres 2030 liegen.
Wie viel wird Lympo Market Token im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Lympo Market Token im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.001144 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.001144 und $0.000512 während des Jahres schwanken.
Wie viel wird Lympo Market Token im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Lympo Market Token-Preisprognose könnte LMT eine 449.04% Steigerung im Wert erfahren und $0.002123 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.002123 und $0.000782 liegen.
Wie viel wird Lympo Market Token im Jahr 2033 kosten?
Laut unserer experimentellen Lympo Market Token-Preisprognose wird der Wert von LMT voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.005655 beträgt. Im Laufe des Jahres könnte der Preis von LMT zwischen $0.005655 und $0.001818 liegen.
Wie viel wird Lympo Market Token im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Lympo Market Token-Preisprognosesimulation deuten darauf hin, dass LMT im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.003275 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.003275 und $0.001462.
Wie viel wird Lympo Market Token im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Lympo Market Token könnte LMT um 897.93% steigen, wobei der Wert im Jahr 2035 $0.003859 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.003859 und $0.001728.
Wie viel wird Lympo Market Token im Jahr 2036 kosten?
Unsere jüngste Lympo Market Token-Preisprognosesimulation deutet darauf hin, dass der Wert von LMT im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.007984 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.007984 und $0.002861.
Wie viel wird Lympo Market Token im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Lympo Market Token um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.019068 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.019068 und $0.007431 liegen.
Verwandte Prognosen
Lightcoin-Preisprognose
ALL BEST ICO-PreisprognoseCryptoTycoon-Preisprognose
Yellow Token-Preisprognose
BSCstarter-Preisprognose
Minerva Wallet-Preisprognose
KingDeFi-Preisprognose
DaVinci Token-Preisprognose
veDAO-Preisprognose
Sapien-Preisprognose
NFTmall-Preisprognose
OptionRoom-Preisprognose
Lunch Money-Preisprognose
Flurry Finance-Preisprognose
BiShares-Preisprognose
Manga Token-Preisprognose
Umi Digital-Preisprognose
Parasol Finance-Preisprognose
Unique One-Preisprognose
APR Coin-Preisprognose
bePAY Finance-Preisprognose
ETF Rocks-Preisprognose
SOLA Token-Preisprognose
WavesGo-Preisprognose
YANG-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Lympo Market Token?
Lympo Market Token-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Lympo Market Token Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Lympo Market Token. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von LMT über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von LMT über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von LMT einzuschätzen.
Wie liest man Lympo Market Token-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Lympo Market Token in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von LMT innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Lympo Market Token?
Die Preisentwicklung von Lympo Market Token wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von LMT. Die Marktkapitalisierung von Lympo Market Token kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von LMT-„Walen“, großen Inhabern von Lympo Market Token, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Lympo Market Token-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


