JPG Preisvorhersage bis zu $0.000869 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.000291 | $0.000869 |
| 2027 | $0.00028 | $0.000736 |
| 2028 | $0.000506 | $0.001239 |
| 2029 | $0.001111 | $0.003656 |
| 2030 | $0.000945 | $0.002733 |
| 2031 | $0.001117 | $0.002495 |
| 2032 | $0.001706 | $0.004628 |
| 2033 | $0.003964 | $0.012328 |
| 2034 | $0.003187 | $0.007139 |
| 2035 | $0.003768 | $0.008412 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in JPG eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,961.90 Gewinn erzielen könnten, was einer Rendite von 39.62% in den nächsten 90 Tagen entspricht.
Langfristige JPG Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'JPG'
'name_with_ticker' => 'JPG <small>JPG</small>'
'name_lang' => 'JPG'
'name_lang_with_ticker' => 'JPG <small>JPG</small>'
'name_with_lang' => 'JPG'
'name_with_lang_with_ticker' => 'JPG <small>JPG</small>'
'image' => '/uploads/coins/jpg-store.png?1717086202'
'price_for_sd' => 0.0008429
'ticker' => 'JPG'
'marketcap' => '$0'
'low24h' => '$0.0007632'
'high24h' => '$0.0008522'
'volume24h' => '$253.13'
'current_supply' => '0'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0008429'
'change_24h_pct' => '10.1954%'
'ath_price' => '$0.3075'
'ath_days' => 410
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22.11.2024'
'ath_pct' => '-99.73%'
'fdv' => '$843.57K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.041564'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00085'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000745'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000291'
'current_year_max_price_prediction' => '$0.000869'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000945'
'grand_prediction_max_price' => '$0.002733'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00085895402759252
107 => 0.00086216105013124
108 => 0.0008693866356656
109 => 0.00080764479838948
110 => 0.00083536507068135
111 => 0.00085164813361457
112 => 0.00077808066289941
113 => 0.00085019394125598
114 => 0.00080657001036569
115 => 0.00079176339301208
116 => 0.00081169855265522
117 => 0.00080392980155471
118 => 0.00079725068555486
119 => 0.00079352362406517
120 => 0.00080816180514381
121 => 0.00080747891650008
122 => 0.0007835280111069
123 => 0.00075228503138531
124 => 0.00076277120089572
125 => 0.00075896147720423
126 => 0.0007451545470821
127 => 0.00075445875092931
128 => 0.000713487745936
129 => 0.00064299926133252
130 => 0.00068956611338225
131 => 0.00068777334023333
201 => 0.00068686934271585
202 => 0.00072186304501796
203 => 0.00071849920798369
204 => 0.00071239381082769
205 => 0.00074504241667542
206 => 0.00073312523635528
207 => 0.00076985117806113
208 => 0.00079404125855359
209 => 0.00078790587167358
210 => 0.00081065675929754
211 => 0.00076301278106216
212 => 0.00077883819948732
213 => 0.00078209979629167
214 => 0.00074463953794717
215 => 0.00071904957332377
216 => 0.00071734301443034
217 => 0.00067297354228771
218 => 0.00069667535616844
219 => 0.00071753197153578
220 => 0.00070754327131356
221 => 0.00070438114722713
222 => 0.00072053575340364
223 => 0.0007217911046584
224 => 0.00069316896301372
225 => 0.00069912041260699
226 => 0.00072393894675712
227 => 0.00069849504922421
228 => 0.00064906171255483
301 => 0.00063680156159147
302 => 0.00063516583145354
303 => 0.00060191532967609
304 => 0.00063762084350304
305 => 0.00062203442986929
306 => 0.00067127172378438
307 => 0.00064314764556499
308 => 0.00064193527276383
309 => 0.00064010259345846
310 => 0.00061148251301767
311 => 0.00061774849173321
312 => 0.00063857755931915
313 => 0.00064600960529005
314 => 0.00064523438200633
315 => 0.00063847548552472
316 => 0.00064156967372285
317 => 0.00063160221545004
318 => 0.0006280824984792
319 => 0.00061697330354482
320 => 0.00060064585598472
321 => 0.00060291628771001
322 => 0.00057056734178439
323 => 0.0005529419191556
324 => 0.00054806343447129
325 => 0.00054153972086552
326 => 0.000548800305282
327 => 0.00057047570128501
328 => 0.0005443305750136
329 => 0.00049950658988863
330 => 0.00050220058777099
331 => 0.00050825320115752
401 => 0.00049697419615377
402 => 0.00048629956449287
403 => 0.00049558029066178
404 => 0.00047658777726018
405 => 0.00051054835566429
406 => 0.00050962981719188
407 => 0.00052228822071286
408 => 0.00053020378021111
409 => 0.00051196097826045
410 => 0.00050737296290365
411 => 0.00050998650496456
412 => 0.0004667904764346
413 => 0.00051875818362242
414 => 0.00051920760251219
415 => 0.00051535940512789
416 => 0.00054303060488245
417 => 0.00060142546722822
418 => 0.00057945497108585
419 => 0.00057094733091776
420 => 0.00055477430073918
421 => 0.00057632390319263
422 => 0.00057466922995037
423 => 0.00056718617003268
424 => 0.0005626603920459
425 => 0.00057099927675448
426 => 0.00056162711194815
427 => 0.00055994361361907
428 => 0.00054974344540909
429 => 0.00054610244943621
430 => 0.00054340680097011
501 => 0.00054043915687789
502 => 0.0005469850402545
503 => 0.00053215120734042
504 => 0.00051426305902461
505 => 0.0005127758530446
506 => 0.0005168821595119
507 => 0.00051506542457868
508 => 0.00051276715521669
509 => 0.00050837913310822
510 => 0.0005070773006839
511 => 0.00051130762450365
512 => 0.00050653183555435
513 => 0.00051357877229972
514 => 0.00051166239542978
515 => 0.0005009576700158
516 => 0.00048761561875302
517 => 0.00048749684651088
518 => 0.00048462232345167
519 => 0.00048096118614832
520 => 0.00047994274150601
521 => 0.00049479869378989
522 => 0.00052555007041629
523 => 0.00051951283936645
524 => 0.00052387535752028
525 => 0.00054533462909422
526 => 0.00055215588622477
527 => 0.00054731431948384
528 => 0.00054068688431402
529 => 0.00054097845782669
530 => 0.00056362641006302
531 => 0.00056503893506345
601 => 0.00056860793004172
602 => 0.00057319509718665
603 => 0.00054809553388409
604 => 0.0005397962706523
605 => 0.00053586361930749
606 => 0.00052375257529307
607 => 0.00053681329794018
608 => 0.00052920337416961
609 => 0.00053023021287828
610 => 0.00052956148282218
611 => 0.00052992665465214
612 => 0.00051053886299051
613 => 0.00051760275527968
614 => 0.0005058576642845
615 => 0.00049013230589029
616 => 0.00049007958897493
617 => 0.00049392834816381
618 => 0.0004916389555963
619 => 0.0004854782590628
620 => 0.00048635335692772
621 => 0.0004786865788098
622 => 0.00048728424260273
623 => 0.00048753079283639
624 => 0.0004842202239582
625 => 0.00049746611128018
626 => 0.00050289296212361
627 => 0.00050071387476873
628 => 0.00050274007154579
629 => 0.00051976371357303
630 => 0.00052253931001705
701 => 0.00052377204661187
702 => 0.00052212034288111
703 => 0.00050305123247131
704 => 0.0005038970286061
705 => 0.00049769113776354
706 => 0.00049244781396224
707 => 0.00049265751941668
708 => 0.00049535326943493
709 => 0.00050712576786828
710 => 0.00053190029679456
711 => 0.00053284047205737
712 => 0.00053397999190274
713 => 0.00052934499201483
714 => 0.00052794703169767
715 => 0.00052979130220018
716 => 0.00053909531268205
717 => 0.00056302775365562
718 => 0.00055456843062157
719 => 0.00054769086931768
720 => 0.00055372434475841
721 => 0.00055279553850625
722 => 0.00054495547902048
723 => 0.00054473543466284
724 => 0.00052968785389101
725 => 0.00052412510589651
726 => 0.00051947645730782
727 => 0.00051440025440502
728 => 0.00051139091116838
729 => 0.0005160146301019
730 => 0.00051707212932824
731 => 0.00050696228707132
801 => 0.00050558435292885
802 => 0.00051384026835195
803 => 0.00051020714778579
804 => 0.00051394390238514
805 => 0.00051481086150548
806 => 0.00051467126111934
807 => 0.00051087786598703
808 => 0.0005132956629237
809 => 0.00050757685238853
810 => 0.00050135850486911
811 => 0.00049739158656846
812 => 0.00049392992421579
813 => 0.00049585065568205
814 => 0.00048900359871654
815 => 0.00048681308738925
816 => 0.00051247656772371
817 => 0.00053143445657568
818 => 0.00053115880136363
819 => 0.000529480821153
820 => 0.00052698768292587
821 => 0.00053891292409194
822 => 0.0005347584085224
823 => 0.00053778116572063
824 => 0.0005385505842923
825 => 0.00054087938257469
826 => 0.00054171172779367
827 => 0.00053919580244099
828 => 0.00053075204966299
829 => 0.00050971102054813
830 => 0.00049991636469599
831 => 0.00049668396512189
901 => 0.00049680145670721
902 => 0.00049356051427861
903 => 0.00049451511707268
904 => 0.00049322854238391
905 => 0.00049079208117921
906 => 0.00049570021106843
907 => 0.00049626582731577
908 => 0.00049512021115184
909 => 0.00049539004523035
910 => 0.00048590483269209
911 => 0.00048662597280058
912 => 0.00048261057303848
913 => 0.00048185773398945
914 => 0.00047170715305172
915 => 0.00045372392757029
916 => 0.00046368838016093
917 => 0.00045165272264549
918 => 0.00044709463677443
919 => 0.00046867190636027
920 => 0.00046650614695415
921 => 0.00046279930828386
922 => 0.00045731612131762
923 => 0.00045528235393483
924 => 0.0004429258271295
925 => 0.00044219573760634
926 => 0.00044831996594535
927 => 0.00044549384528872
928 => 0.00044152490155124
929 => 0.00042714978965943
930 => 0.00041098740445706
1001 => 0.00041147524527319
1002 => 0.0004166161992942
1003 => 0.00043156421646238
1004 => 0.00042572376755145
1005 => 0.00042148645485514
1006 => 0.00042069293356027
1007 => 0.00043062551391489
1008 => 0.00044468219605659
1009 => 0.00045127727681694
1010 => 0.00044474175207902
1011 => 0.00043723409315773
1012 => 0.00043769104956912
1013 => 0.00044073097585407
1014 => 0.00044105042912438
1015 => 0.00043616371496642
1016 => 0.0004375392963778
1017 => 0.00043544966242812
1018 => 0.00042262558273613
1019 => 0.0004223936358001
1020 => 0.00041924639982747
1021 => 0.00041915110277301
1022 => 0.00041379686926875
1023 => 0.00041304777498944
1024 => 0.000402416619388
1025 => 0.00040941407819897
1026 => 0.00040472055021165
1027 => 0.00039764629644342
1028 => 0.00039642669242733
1029 => 0.00039639002965789
1030 => 0.00040365370650366
1031 => 0.00040932919790591
1101 => 0.00040480219614046
1102 => 0.00040377148559071
1103 => 0.00041477677770335
1104 => 0.00041337625396656
1105 => 0.0004121634094429
1106 => 0.00044342357434584
1107 => 0.00041867871456407
1108 => 0.00040788854331201
1109 => 0.00039453365738963
1110 => 0.00039888207558713
1111 => 0.0003997983511929
1112 => 0.0003676822579487
1113 => 0.00035465276291933
1114 => 0.00035018153123141
1115 => 0.00034760827418108
1116 => 0.00034878093973185
1117 => 0.00033705286599808
1118 => 0.00034493432551161
1119 => 0.00033477880500756
1120 => 0.00033307619894613
1121 => 0.00035123552763495
1122 => 0.00035376229213674
1123 => 0.00034298232976791
1124 => 0.00034990481072608
1125 => 0.00034739462290096
1126 => 0.00033495289225849
1127 => 0.00033447770966312
1128 => 0.00032823488657471
1129 => 0.00031846607729009
1130 => 0.00031400146931487
1201 => 0.00031167626271787
1202 => 0.00031263568827717
1203 => 0.00031215057335548
1204 => 0.00030898487034711
1205 => 0.00031233202774628
1206 => 0.00030378142373231
1207 => 0.00030037650431705
1208 => 0.00029883858121071
1209 => 0.00029124942799391
1210 => 0.00030332714567359
1211 => 0.00030570660820757
1212 => 0.00030809075901779
1213 => 0.00032884316409188
1214 => 0.00032780643258007
1215 => 0.00033717798053814
1216 => 0.00033681381941766
1217 => 0.000334140902131
1218 => 0.00032286430377217
1219 => 0.00032735895489196
1220 => 0.0003135251173691
1221 => 0.00032389036905074
1222 => 0.0003191601010465
1223 => 0.00032229106068029
1224 => 0.00031666131295149
1225 => 0.00031977704779119
1226 => 0.00030627086704662
1227 => 0.00029365898550442
1228 => 0.00029873437480077
1229 => 0.00030425190340708
1230 => 0.00031621531126569
1231 => 0.00030909000424107
]
'min_raw' => 0.00029124942799391
'max_raw' => 0.0008693866356656
'avg_raw' => 0.00058031803182975
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000291'
'max' => '$0.000869'
'avg' => '$0.00058'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00055173057200609
'max_diff' => 2.6406635665602E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00031165253408481
102 => 0.0003030684880706
103 => 0.00028535714923175
104 => 0.00028545739348613
105 => 0.00028273288986826
106 => 0.00028037852095838
107 => 0.00030990843146606
108 => 0.00030623592029562
109 => 0.00030038425439192
110 => 0.00030821694173999
111 => 0.00031028802859628
112 => 0.00031034698952747
113 => 0.0003160615160257
114 => 0.00031911135984219
115 => 0.00031964890803363
116 => 0.00032864083894911
117 => 0.00033165481558554
118 => 0.00034406895879706
119 => 0.00031885260190244
120 => 0.00031833328762627
121 => 0.00030832716371381
122 => 0.00030198112173797
123 => 0.00030876168263717
124 => 0.00031476833395501
125 => 0.00030851380711373
126 => 0.00030933051627893
127 => 0.00030093432500814
128 => 0.00030393556830993
129 => 0.00030652064335257
130 => 0.00030509331685771
131 => 0.00030295654001153
201 => 0.00031427585704589
202 => 0.00031363717681805
203 => 0.00032417798507042
204 => 0.00033239529888358
205 => 0.00034712219425729
206 => 0.0003317539112044
207 => 0.00033119382988656
208 => 0.00033666871460831
209 => 0.00033165397740921
210 => 0.0003348231182162
211 => 0.00034661159667856
212 => 0.00034686066865243
213 => 0.00034268839217902
214 => 0.00034243450877643
215 => 0.00034323584011286
216 => 0.00034792926277941
217 => 0.0003462892366854
218 => 0.00034818711640177
219 => 0.00035056044404844
220 => 0.00036037753346517
221 => 0.00036274440048794
222 => 0.00035699414070245
223 => 0.00035751332477816
224 => 0.00035536256977022
225 => 0.00035328496738144
226 => 0.00035795511414196
227 => 0.00036648989913877
228 => 0.00036643680468426
301 => 0.00036841670891101
302 => 0.00036965017284186
303 => 0.00036435524269986
304 => 0.0003609084378774
305 => 0.00036223016217222
306 => 0.00036434362810305
307 => 0.00036154479365544
308 => 0.00034426909089852
309 => 0.00034950943553881
310 => 0.0003486371859509
311 => 0.00034739499646855
312 => 0.00035266420352674
313 => 0.00035215597565167
314 => 0.00033693257765046
315 => 0.0003379071301983
316 => 0.00033699184341871
317 => 0.00033994932225362
318 => 0.00033149426384651
319 => 0.00033409498286685
320 => 0.00033572612945618
321 => 0.00033668688732835
322 => 0.00034015780356049
323 => 0.00033975053160181
324 => 0.0003401324869637
325 => 0.00034527893944805
326 => 0.00037130793006463
327 => 0.00037272463059416
328 => 0.00036574827905288
329 => 0.00036853519389118
330 => 0.00036318492683293
331 => 0.0003667765969528
401 => 0.00036923392643029
402 => 0.00035812972703881
403 => 0.0003574722084165
404 => 0.00035209985890291
405 => 0.00035498665522609
406 => 0.00035039355470792
407 => 0.00035152054091524
408 => 0.00034836938923067
409 => 0.00035404083487485
410 => 0.0003603823923586
411 => 0.00036198452021469
412 => 0.00035777001158473
413 => 0.00035471842958698
414 => 0.00034936085685255
415 => 0.00035827061971121
416 => 0.00036087610589119
417 => 0.0003582569342015
418 => 0.00035765001489096
419 => 0.00035649990389418
420 => 0.00035789401637586
421 => 0.00036086191585389
422 => 0.00035946230926855
423 => 0.00036038677407606
424 => 0.00035686366753379
425 => 0.00036435699554206
426 => 0.00037625820378679
427 => 0.00037629646811735
428 => 0.0003748968539876
429 => 0.00037432416204081
430 => 0.00037576025107362
501 => 0.00037653927046246
502 => 0.00038118331906087
503 => 0.00038616656823402
504 => 0.00040942121776315
505 => 0.00040289140523035
506 => 0.00042352431371788
507 => 0.00043984226548367
508 => 0.00044473530572068
509 => 0.00044023393893797
510 => 0.00042483500633335
511 => 0.00042407946123528
512 => 0.00044709196780823
513 => 0.0004405898806618
514 => 0.0004398164780852
515 => 0.00043158878135447
516 => 0.00043645236914239
517 => 0.00043538863114865
518 => 0.00043370946868567
519 => 0.00044298885538457
520 => 0.00046035903890834
521 => 0.00045765173290962
522 => 0.00045563085456987
523 => 0.00044677595395397
524 => 0.0004521085819384
525 => 0.00045020973525291
526 => 0.00045836838565167
527 => 0.00045353538189168
528 => 0.00044054062095668
529 => 0.00044261007946687
530 => 0.00044229728497623
531 => 0.0004487345734288
601 => 0.00044680225921866
602 => 0.00044191996961416
603 => 0.00046029966950944
604 => 0.0004591061940315
605 => 0.00046079826939274
606 => 0.00046154317329593
607 => 0.00047273057273554
608 => 0.0004773136923291
609 => 0.00047835414071564
610 => 0.00048270774985832
611 => 0.00047824581895412
612 => 0.00049609672387376
613 => 0.00050796653401614
614 => 0.00052175392931137
615 => 0.00054190101954018
616 => 0.00054947651183722
617 => 0.00054810806695936
618 => 0.00056338336083528
619 => 0.00059083272437961
620 => 0.00055365636813901
621 => 0.0005928031615316
622 => 0.00058040973871497
623 => 0.00055102515616489
624 => 0.00054913313547014
625 => 0.00056903271593507
626 => 0.00061316807014265
627 => 0.0006021126644927
628 => 0.0006131861528258
629 => 0.00060026834048227
630 => 0.00059962686221954
701 => 0.00061255876351338
702 => 0.00064277485576766
703 => 0.00062842032297093
704 => 0.00060783958033097
705 => 0.0006230360804245
706 => 0.0006098714656738
707 => 0.00058020790409681
708 => 0.00060210421063235
709 => 0.00058746277402294
710 => 0.00059173592360715
711 => 0.00062251004561079
712 => 0.00061880722183308
713 => 0.00062359901867368
714 => 0.00061514162267318
715 => 0.00060724108119977
716 => 0.00059249413383775
717 => 0.00058812828973957
718 => 0.00058933485198169
719 => 0.00058812769182725
720 => 0.00057987691030963
721 => 0.00057809515482647
722 => 0.00057512548429403
723 => 0.00057604590936784
724 => 0.0005704620599591
725 => 0.00058099993747555
726 => 0.00058295586040206
727 => 0.00059062444887248
728 => 0.00059142062716705
729 => 0.00061277753690165
730 => 0.00060101450990812
731 => 0.00060890616398626
801 => 0.00060820026016639
802 => 0.0005516620091706
803 => 0.00055945248131661
804 => 0.00057157201119096
805 => 0.0005661121794102
806 => 0.00055839325467608
807 => 0.00055215980909072
808 => 0.00054271550162636
809 => 0.00055600818302058
810 => 0.00057348664553492
811 => 0.00059186390982027
812 => 0.00061394298873306
813 => 0.00060901519534854
814 => 0.00059145115679788
815 => 0.00059223906673672
816 => 0.00059710961594753
817 => 0.00059080181218348
818 => 0.0005889415177105
819 => 0.0005968540400537
820 => 0.00059690852924644
821 => 0.00058965063869235
822 => 0.00058158482152143
823 => 0.00058155102545298
824 => 0.00058011579119397
825 => 0.00060052366546856
826 => 0.00061174593285077
827 => 0.00061303254772055
828 => 0.00061165933341882
829 => 0.00061218782910263
830 => 0.00060565783897871
831 => 0.00062058345999357
901 => 0.00063428068582774
902 => 0.00063060953670563
903 => 0.000625105962287
904 => 0.0006207221001745
905 => 0.00062957683811307
906 => 0.00062918255057132
907 => 0.00063416105250928
908 => 0.00063393519890415
909 => 0.00063226111595334
910 => 0.00063060959649241
911 => 0.00063715768447572
912 => 0.0006352719402956
913 => 0.00063338326703392
914 => 0.00062959524366619
915 => 0.00063011009895427
916 => 0.00062460747480536
917 => 0.00062206170909112
918 => 0.00058377950089501
919 => 0.00057354924395777
920 => 0.00057676789104631
921 => 0.00057782755323999
922 => 0.00057337533231048
923 => 0.00057975867344169
924 => 0.00057876383648802
925 => 0.00058263416511459
926 => 0.00058021615181884
927 => 0.00058031538792794
928 => 0.00058742624945593
929 => 0.00058949056280928
930 => 0.00058844063637672
1001 => 0.00058917596886071
1002 => 0.00060612139558994
1003 => 0.00060371229779329
1004 => 0.00060243251260391
1005 => 0.00060278702184758
1006 => 0.00060711694169094
1007 => 0.00060832908284222
1008 => 0.00060319315560859
1009 => 0.00060561528858241
1010 => 0.00061592842337051
1011 => 0.00061953743687347
1012 => 0.00063105567555015
1013 => 0.00062616252303993
1014 => 0.00063514411624313
1015 => 0.00066275047169898
1016 => 0.00068480433865162
1017 => 0.00066452269118738
1018 => 0.00070502180930287
1019 => 0.00073655618200924
1020 => 0.00073534584026152
1021 => 0.00072984709297698
1022 => 0.00069394604803546
1023 => 0.00066090937122585
1024 => 0.00068854595418848
1025 => 0.00068861640552197
1026 => 0.00068624239853581
1027 => 0.00067149764503452
1028 => 0.00068572931307507
1029 => 0.0006868589712023
1030 => 0.00068622666305139
1031 => 0.00067492189511286
1101 => 0.00065766160394107
1102 => 0.00066103422352074
1103 => 0.00066655864319181
1104 => 0.0006560997642398
1105 => 0.00065275751868881
1106 => 0.00065897138905633
1107 => 0.00067899377409181
1108 => 0.00067520865818263
1109 => 0.00067510981350939
1110 => 0.0006913041445078
1111 => 0.0006797124984683
1112 => 0.00066107676305426
1113 => 0.00065637099408707
1114 => 0.00063966868443933
1115 => 0.00065120502920461
1116 => 0.00065162020171495
1117 => 0.00064530186358559
1118 => 0.00066158946137111
1119 => 0.00066143936829014
1120 => 0.00067690201829849
1121 => 0.00070646079760831
1122 => 0.00069771881206721
1123 => 0.00068755283400822
1124 => 0.00068865815769523
1125 => 0.00070078083037038
1126 => 0.00069345118573728
1127 => 0.00069608697705144
1128 => 0.00070077684078454
1129 => 0.00070360635201749
1130 => 0.00068825103457251
1201 => 0.00068467097554635
1202 => 0.0006773474312088
1203 => 0.00067543685519156
1204 => 0.00068140172924373
1205 => 0.00067983019567309
1206 => 0.00065158530807308
1207 => 0.00064863356016581
1208 => 0.00064872408606
1209 => 0.0006413017755992
1210 => 0.00062998097058786
1211 => 0.00065973137022752
1212 => 0.00065734199677988
1213 => 0.0006547043134165
1214 => 0.0006550274145781
1215 => 0.00066794105472708
1216 => 0.00066045049128621
1217 => 0.00068036538187296
1218 => 0.00067627147906473
1219 => 0.00067207258309718
1220 => 0.00067149216777297
1221 => 0.00066987595105843
1222 => 0.00066433334257653
1223 => 0.00065764030977551
1224 => 0.0006532209897797
1225 => 0.0006025618339409
1226 => 0.00061196387859383
1227 => 0.00062278007394369
1228 => 0.00062651378123528
1229 => 0.00062012701654833
1230 => 0.00066458553097416
1231 => 0.00067270852997267
]
'min_raw' => 0.00028037852095838
'max_raw' => 0.00073655618200924
'avg_raw' => 0.00050846735148381
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00028'
'max' => '$0.000736'
'avg' => '$0.0005084'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.0870907035524E-5
'max_diff' => -0.00013283045365637
'year' => 2027
]
2 => [
'items' => [
101 => 0.00064810343615609
102 => 0.00064350082772236
103 => 0.00066488727721683
104 => 0.00065198863378454
105 => 0.00065779689213231
106 => 0.0006452426145319
107 => 0.00067075193738311
108 => 0.00067055759908278
109 => 0.00066063389633948
110 => 0.00066902134194354
111 => 0.00066756381686493
112 => 0.00065635998090874
113 => 0.00067110711896684
114 => 0.00067111443336333
115 => 0.0006615630852328
116 => 0.0006504092016753
117 => 0.00064841515073819
118 => 0.00064691290122013
119 => 0.00065742743084043
120 => 0.00066685472521992
121 => 0.00068439658283566
122 => 0.00068880702262451
123 => 0.00070602126274001
124 => 0.00069577102089737
125 => 0.00070031482034336
126 => 0.00070524775740165
127 => 0.00070761278883015
128 => 0.00070375909703199
129 => 0.00073049989759527
130 => 0.00073275764047977
131 => 0.00073351464213955
201 => 0.00072449779464502
202 => 0.00073250686563959
203 => 0.00072875968655379
204 => 0.00073850880553872
205 => 0.00074003759187856
206 => 0.00073874276423687
207 => 0.00073922802515138
208 => 0.0007164094692711
209 => 0.00071522620677123
210 => 0.00069909233862511
211 => 0.00070566700915018
212 => 0.00069337597773571
213 => 0.00069727359040889
214 => 0.00069899162093741
215 => 0.00069809421928669
216 => 0.00070603873115712
217 => 0.0006992842731107
218 => 0.0006814581477905
219 => 0.00066362716575438
220 => 0.00066340331229972
221 => 0.00065870872947259
222 => 0.0006553154059443
223 => 0.00065596908044047
224 => 0.00065827271462507
225 => 0.00065518151453771
226 => 0.00065584117880417
227 => 0.00066679600094741
228 => 0.00066899291240202
229 => 0.00066152694889054
301 => 0.00063155002805856
302 => 0.00062419361649498
303 => 0.0006294812592429
304 => 0.0006269541065772
305 => 0.00050600089576957
306 => 0.00053441705852448
307 => 0.00051753313953722
308 => 0.00052531402619831
309 => 0.00050807991698194
310 => 0.00051630493721705
311 => 0.00051478607630927
312 => 0.00056047842512379
313 => 0.00055976500194483
314 => 0.00056010647986708
315 => 0.00054380684892174
316 => 0.00056977260360088
317 => 0.00058256426805416
318 => 0.00058019687140298
319 => 0.00058079269413653
320 => 0.0005705544855191
321 => 0.00056020560810611
322 => 0.00054872711037429
323 => 0.00057005274037482
324 => 0.0005676816943594
325 => 0.00057312002084334
326 => 0.00058695121628619
327 => 0.00058898791235475
328 => 0.00059172525252503
329 => 0.00059074411093113
330 => 0.00061411888421736
331 => 0.00061128804494067
401 => 0.00061810955310943
402 => 0.00060407719325723
403 => 0.00058819824612063
404 => 0.0005912163148494
405 => 0.00059092565056104
406 => 0.00058722516056132
407 => 0.00058388452364966
408 => 0.00057832330441035
409 => 0.0005959198249891
410 => 0.00059520543838862
411 => 0.00060677052706677
412 => 0.00060472628530563
413 => 0.00059107433851392
414 => 0.00059156192046436
415 => 0.00059484114340492
416 => 0.00060619057144374
417 => 0.00060955985441365
418 => 0.00060799906829927
419 => 0.00061169333326216
420 => 0.00061461312966152
421 => 0.00061206001473595
422 => 0.00064820673803913
423 => 0.00063319609838289
424 => 0.00064051217970799
425 => 0.00064225702199517
426 => 0.00063778764516664
427 => 0.00063875689296436
428 => 0.00064022503927369
429 => 0.00064913933617145
430 => 0.00067253303060377
501 => 0.00068289393862158
502 => 0.00071406524159135
503 => 0.0006820336094415
504 => 0.0006801329849498
505 => 0.00068574787789783
506 => 0.0007040487325586
507 => 0.00071887985634929
508 => 0.00072380019573872
509 => 0.00072445049981499
510 => 0.00073368138360753
511 => 0.00073897235405163
512 => 0.00073256051151877
513 => 0.00072712714632007
514 => 0.00070766550659244
515 => 0.0007099182443832
516 => 0.00072543737382895
517 => 0.00074735905824324
518 => 0.00076617014403323
519 => 0.0007595831574221
520 => 0.00080983721557714
521 => 0.00081481970017379
522 => 0.00081413128190555
523 => 0.00082548212330985
524 => 0.00080295301468097
525 => 0.0007933213842612
526 => 0.00072830190154735
527 => 0.0007465697240797
528 => 0.00077312307696209
529 => 0.00076960864113814
530 => 0.0007503248865018
531 => 0.00076615551557612
601 => 0.00076092141453461
602 => 0.00075679306188011
603 => 0.00077570584571088
604 => 0.00075491046299461
605 => 0.00077291562711185
606 => 0.00074982381789192
607 => 0.00075961324622209
608 => 0.00075405629324052
609 => 0.00075765232285414
610 => 0.00073663000721185
611 => 0.00074797313844457
612 => 0.00073615809565982
613 => 0.00073615249379117
614 => 0.00073589167606685
615 => 0.00074979202150719
616 => 0.00075024531127296
617 => 0.00073997293499029
618 => 0.00073849252508329
619 => 0.00074396637642374
620 => 0.00073755793010801
621 => 0.00074055640180486
622 => 0.00073764875076111
623 => 0.00073699417726666
624 => 0.0007317784242964
625 => 0.0007295313345067
626 => 0.00073041247631361
627 => 0.00072740468506688
628 => 0.00072559238204417
629 => 0.00073553116338063
630 => 0.00073022127344185
701 => 0.00073471734659297
702 => 0.0007295935037876
703 => 0.00071183203227216
704 => 0.00070161722217947
705 => 0.00066806744897608
706 => 0.0006775821230382
707 => 0.00068389036178503
708 => 0.00068180548891683
709 => 0.00068628460257641
710 => 0.00068655958377725
711 => 0.00068510337826737
712 => 0.00068341727883839
713 => 0.00068259657888352
714 => 0.00068871340396031
715 => 0.00069226442680025
716 => 0.00068452347793662
717 => 0.00068270988192525
718 => 0.00069053640861588
719 => 0.00069531058537593
720 => 0.00073056042419393
721 => 0.00072794900227882
722 => 0.00073450315882009
723 => 0.00073376526137527
724 => 0.00074063506158955
725 => 0.00075186428154569
726 => 0.00072903213763557
727 => 0.00073299500834223
728 => 0.00073202340396101
729 => 0.00074263112582687
730 => 0.00074266424197666
731 => 0.00073630438282307
801 => 0.00073975216564717
802 => 0.00073782770785973
803 => 0.00074130546318769
804 => 0.00072791412514703
805 => 0.00074422332937494
806 => 0.00075346959723027
807 => 0.00075359798166841
808 => 0.00075798063924891
809 => 0.00076243367317711
810 => 0.00077098088402477
811 => 0.00076219529610558
812 => 0.00074639087869868
813 => 0.00074753190658751
814 => 0.00073826578244446
815 => 0.00073842154766536
816 => 0.00073759006070862
817 => 0.00074008541565722
818 => 0.00072846171523227
819 => 0.00073118977448888
820 => 0.00072737047555413
821 => 0.00073298670593224
822 => 0.00072694457044153
823 => 0.00073202293542396
824 => 0.0007342145893999
825 => 0.00074230183975409
826 => 0.00072575007698867
827 => 0.00069199991225416
828 => 0.00069909460606255
829 => 0.00068860099664377
830 => 0.00068957222014746
831 => 0.000691534246194
901 => 0.00068517467784219
902 => 0.00068638788307068
903 => 0.00068634453884273
904 => 0.00068597102170265
905 => 0.00068431665235616
906 => 0.00068191748949675
907 => 0.00069147501590526
908 => 0.00069309902588269
909 => 0.00069670899889025
910 => 0.00070744982989265
911 => 0.00070637656758927
912 => 0.00070812710293531
913 => 0.00070430569410375
914 => 0.00068974948434309
915 => 0.00069053995656513
916 => 0.00068068275528981
917 => 0.00069645692809163
918 => 0.00069272139576325
919 => 0.00069031307377007
920 => 0.00068965594080128
921 => 0.00070042339624623
922 => 0.00070364518767455
923 => 0.0007016375834628
924 => 0.00069751992865334
925 => 0.00070542704316287
926 => 0.00070754265343124
927 => 0.00070801626054963
928 => 0.00072202615142169
929 => 0.0007087992578189
930 => 0.00071198310257311
1001 => 0.00073682255047687
1002 => 0.00071429659883767
1003 => 0.00072622909780962
1004 => 0.00072564506407867
1005 => 0.00073174932677897
1006 => 0.00072514433636717
1007 => 0.00072522621313933
1008 => 0.00073064638487863
1009 => 0.00072303473120391
1010 => 0.00072114997871112
1011 => 0.00071854620664119
1012 => 0.00072423144769879
1013 => 0.00072763949259149
1014 => 0.00075510583149345
1015 => 0.00077285033904134
1016 => 0.00077208000317088
1017 => 0.00077911943101859
1018 => 0.00077594810429942
1019 => 0.00076570705376953
1020 => 0.00078318727826099
1021 => 0.00077765580382824
1022 => 0.00077811181185973
1023 => 0.00077809483921802
1024 => 0.00078177278614592
1025 => 0.00077916662366862
1026 => 0.00077402960990877
1027 => 0.00077743979937695
1028 => 0.00078756684293241
1029 => 0.00081900149686418
1030 => 0.00083659274565817
1031 => 0.00081794248159856
1101 => 0.00083080718400989
1102 => 0.00082309294672526
1103 => 0.00082169104033196
1104 => 0.00082977102414032
1105 => 0.00083786515089072
1106 => 0.00083734959000859
1107 => 0.00083147366962581
1108 => 0.00082815451129753
1109 => 0.00085328829015884
1110 => 0.0008718064302811
1111 => 0.00087054361727195
1112 => 0.00087611726320555
1113 => 0.000892481660053
1114 => 0.00089397781541543
1115 => 0.0008937893342285
1116 => 0.00089008095705505
1117 => 0.00090619383093681
1118 => 0.00091963547380802
1119 => 0.00088922257488471
1120 => 0.00090080340866063
1121 => 0.0009060024180538
1122 => 0.00091363610631955
1123 => 0.00092651541797858
1124 => 0.00094050576650898
1125 => 0.00094248415518755
1126 => 0.00094108039374549
1127 => 0.00093185338280894
1128 => 0.00094716178911048
1129 => 0.00095612909449562
1130 => 0.00096146891963933
1201 => 0.00097500982774161
1202 => 0.00090603452536585
1203 => 0.00085721037804933
1204 => 0.00084958578241662
1205 => 0.00086509069745815
1206 => 0.00086917921990522
1207 => 0.00086753114163338
1208 => 0.00081257512493136
1209 => 0.00084929645036209
1210 => 0.00088880550890883
1211 => 0.00089032321275331
1212 => 0.00091010227355726
1213 => 0.00091654314652612
1214 => 0.00093246788297407
1215 => 0.00093147178637341
1216 => 0.00093534920628058
1217 => 0.00093445785459147
1218 => 0.0009639550755124
1219 => 0.00099649489056788
1220 => 0.00099536814024279
1221 => 0.00099069015683495
1222 => 0.00099763775991029
1223 => 0.0010312223362261
1224 => 0.0010281304066208
1225 => 0.0010311339528624
1226 => 0.0010707320610824
1227 => 0.0011222152345337
1228 => 0.0010982961316395
1229 => 0.0011501937023835
1230 => 0.0011828604721948
1231 => 0.0012393542727765
]
'min_raw' => 0.00050600089576957
'max_raw' => 0.0012393542727765
'avg_raw' => 0.00087267758427304
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000506'
'max' => '$0.001239'
'avg' => '$0.000872'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00022562237481118
'max_diff' => 0.00050279809076729
'year' => 2028
]
3 => [
'items' => [
101 => 0.0012322809707059
102 => 0.0012542735927017
103 => 0.0012196182837567
104 => 0.0011400426894256
105 => 0.0011274495470195
106 => 0.0011526613370256
107 => 0.0012146420626249
108 => 0.0011507093434058
109 => 0.0011636428492377
110 => 0.001159917998688
111 => 0.0011597195172318
112 => 0.0011672947471324
113 => 0.0011563064810642
114 => 0.0011115383083509
115 => 0.0011320552980849
116 => 0.0011241327030419
117 => 0.0011329234129107
118 => 0.0011803632485084
119 => 0.0011593889663662
120 => 0.0011372942639418
121 => 0.001165005923989
122 => 0.0012002923899887
123 => 0.0011980842263623
124 => 0.0011937994659863
125 => 0.001217952435883
126 => 0.001257846065996
127 => 0.00126862915391
128 => 0.0012765890089576
129 => 0.0012776865384858
130 => 0.0012889917747371
131 => 0.0012282006701274
201 => 0.0013246777143693
202 => 0.0013413366347853
203 => 0.0013382054481886
204 => 0.0013567211371165
205 => 0.0013512733517362
206 => 0.0013433803654515
207 => 0.0013727316708022
208 => 0.0013390827677459
209 => 0.0012913223861365
210 => 0.0012651200961924
211 => 0.0012996253852692
212 => 0.0013206965612398
213 => 0.0013346232681779
214 => 0.0013388374812826
215 => 0.0012329197105281
216 => 0.0011758359065603
217 => 0.0012124259704365
218 => 0.0012570683736768
219 => 0.0012279526793233
220 => 0.0012290939594187
221 => 0.0011875826307404
222 => 0.0012607412051614
223 => 0.0012500826162287
224 => 0.0013053793944662
225 => 0.0012921823745555
226 => 0.0013372747505996
227 => 0.0013254004167771
228 => 0.0013746901125892
301 => 0.0013943531067139
302 => 0.00142737033415
303 => 0.0014516579410562
304 => 0.0014659200883794
305 => 0.0014650638425501
306 => 0.0015215775756184
307 => 0.0014882534016675
308 => 0.0014463903852804
309 => 0.0014456332153901
310 => 0.0014673146647805
311 => 0.0015127530346876
312 => 0.0015245345429031
313 => 0.0015311187987327
314 => 0.0015210347817301
315 => 0.0014848637792715
316 => 0.001469245323801
317 => 0.001482552700372
318 => 0.0014662789223415
319 => 0.0014943720288379
320 => 0.0015329498644211
321 => 0.0015249836939264
322 => 0.001551613407535
323 => 0.0015791723595923
324 => 0.0016185828987842
325 => 0.001628886273097
326 => 0.0016459173590338
327 => 0.0016634479408831
328 => 0.0016690782913106
329 => 0.001679828377272
330 => 0.0016797717190126
331 => 0.0017121678266213
401 => 0.0017479017365377
402 => 0.0017613904602893
403 => 0.0017924070367833
404 => 0.0017392922364877
405 => 0.0017795804226508
406 => 0.0018159213750486
407 => 0.0017725941934383
408 => 0.0018323106193495
409 => 0.0018346292728473
410 => 0.0018696381878319
411 => 0.0018341499455984
412 => 0.0018130771406427
413 => 0.0018739135389622
414 => 0.0019033503557804
415 => 0.00189448374699
416 => 0.0018270084162966
417 => 0.0017877348796799
418 => 0.0016849484590546
419 => 0.0018067034143282
420 => 0.0018660067014012
421 => 0.0018268548351097
422 => 0.0018466007591391
423 => 0.0019543281180061
424 => 0.0019953437214327
425 => 0.0019868127626406
426 => 0.001988254354245
427 => 0.0020103856293681
428 => 0.0021085278911799
429 => 0.0020497187729824
430 => 0.0020946761403088
501 => 0.0021185213658328
502 => 0.0021406701402084
503 => 0.002086279750534
504 => 0.0020155186527211
505 => 0.0019931056426949
506 => 0.0018229619536059
507 => 0.0018141052356922
508 => 0.0018091336915413
509 => 0.0017777888089083
510 => 0.0017531603172448
511 => 0.0017335748262766
512 => 0.0016821766492536
513 => 0.0016995220251895
514 => 0.001617604058648
515 => 0.0016700122706468
516 => 0.0015392692180681
517 => 0.0016481559173064
518 => 0.0015888938373817
519 => 0.0016286867302026
520 => 0.0016285478965483
521 => 0.0015552765645168
522 => 0.0015130151893348
523 => 0.0015399457824381
524 => 0.001568817515998
525 => 0.0015735018576319
526 => 0.0016109348138217
527 => 0.0016213815472756
528 => 0.001589727457199
529 => 0.0015365598589076
530 => 0.0015489094793669
531 => 0.0015127649246703
601 => 0.0014494229828448
602 => 0.0014949162713081
603 => 0.0015104496801882
604 => 0.0015173101184684
605 => 0.0014550205935541
606 => 0.0014354478724547
607 => 0.0014250275199724
608 => 0.0015285190634395
609 => 0.0015341885638096
610 => 0.0015051825983297
611 => 0.0016362923127574
612 => 0.0016066181464294
613 => 0.001639771460565
614 => 0.0015477888807528
615 => 0.0015513027391726
616 => 0.0015077567118033
617 => 0.0015321395773835
618 => 0.0015149065538878
619 => 0.0015301696828008
620 => 0.001539318339339
621 => 0.0015828572212337
622 => 0.0016486530614002
623 => 0.0015763539641724
624 => 0.0015448522121681
625 => 0.001564395721939
626 => 0.0016164426638725
627 => 0.0016952964451356
628 => 0.0016486134195476
629 => 0.0016693305535744
630 => 0.0016738563257181
701 => 0.001639433990949
702 => 0.0016965656457181
703 => 0.0017271829636455
704 => 0.0017585899964779
705 => 0.0017858598430811
706 => 0.0017460453369092
707 => 0.0017886525656984
708 => 0.0017543186604827
709 => 0.0017235175981302
710 => 0.0017235643106277
711 => 0.0017042423542823
712 => 0.0016668036291399
713 => 0.0016598993538105
714 => 0.0016958162659877
715 => 0.0017246182282095
716 => 0.0017269904957702
717 => 0.0017429367419545
718 => 0.0017523735661869
719 => 0.0018448672724053
720 => 0.0018820690061944
721 => 0.001927558582079
722 => 0.001945279335538
723 => 0.0019986124502081
724 => 0.0019555416286082
725 => 0.0019462229854269
726 => 0.0018168542943663
727 => 0.0018380384102801
728 => 0.0018719562238213
729 => 0.0018174135866189
730 => 0.0018520083359393
731 => 0.0018588380722721
801 => 0.0018155602486778
802 => 0.0018386768041839
803 => 0.0017772860863407
804 => 0.0016499912112877
805 => 0.0016967073613032
806 => 0.0017311061722006
807 => 0.0016820148277072
808 => 0.0017700091626143
809 => 0.0017186046887333
810 => 0.001702311938363
811 => 0.0016387481103833
812 => 0.0016687477903936
813 => 0.0017093227871616
814 => 0.0016842521565086
815 => 0.0017362774794876
816 => 0.0018099592114727
817 => 0.0018624692015082
818 => 0.001866500266524
819 => 0.0018327398608273
820 => 0.0018868411264123
821 => 0.0018872351950684
822 => 0.0018262087464783
823 => 0.0017888303865135
824 => 0.0017803379444848
825 => 0.0018015537297139
826 => 0.0018273136096321
827 => 0.0018679297605798
828 => 0.0018924732499515
829 => 0.0019564696533719
830 => 0.0019737852452168
831 => 0.0019928098308949
901 => 0.0020182325443258
902 => 0.0020487590300495
903 => 0.0019819688171598
904 => 0.0019846225168304
905 => 0.001922428395361
906 => 0.0018559650570317
907 => 0.0019064024460516
908 => 0.0019723426227904
909 => 0.0019572158733891
910 => 0.00195551380507
911 => 0.0019583762118683
912 => 0.0019469711368132
913 => 0.0018953864050306
914 => 0.0018694808756669
915 => 0.0019029056177515
916 => 0.0019206693806053
917 => 0.0019482194276287
918 => 0.0019448233028221
919 => 0.0020157892652952
920 => 0.0020433644924129
921 => 0.0020363095693057
922 => 0.0020376078449437
923 => 0.0020875314764758
924 => 0.0021430568223174
925 => 0.0021950636359129
926 => 0.0022479672004467
927 => 0.0021841898885399
928 => 0.0021518077027913
929 => 0.0021852178526791
930 => 0.0021674899568667
1001 => 0.00226935970464
1002 => 0.0022764129449522
1003 => 0.0023782753263833
1004 => 0.0024749548559081
1005 => 0.0024142321756072
1006 => 0.0024714909281213
1007 => 0.00253342093734
1008 => 0.0026528939729045
1009 => 0.0026126596576384
1010 => 0.0025818408026967
1011 => 0.0025527171336924
1012 => 0.0026133188656381
1013 => 0.0026912820256499
1014 => 0.0027080745435946
1015 => 0.0027352848379006
1016 => 0.0027066765405543
1017 => 0.0027411320836073
1018 => 0.002862775291117
1019 => 0.0028299062226736
1020 => 0.0027832268615175
1021 => 0.0028792524911086
1022 => 0.0029140037931674
1023 => 0.0031579066304145
1024 => 0.0034658440375625
1025 => 0.0033383559289772
1026 => 0.0032592199459627
1027 => 0.0032778187791017
1028 => 0.0033902670958532
1029 => 0.0034263819262625
1030 => 0.0033282093676813
1031 => 0.0033628855750416
1101 => 0.0035539548868865
1102 => 0.0036564574424538
1103 => 0.0035172452040635
1104 => 0.0031331641595821
1105 => 0.0027790238957754
1106 => 0.0028729578408808
1107 => 0.0028623086466155
1108 => 0.0030675887858108
1109 => 0.0028291223062617
1110 => 0.002833137470196
1111 => 0.0030426625852743
1112 => 0.0029867648767413
1113 => 0.0028962177477553
1114 => 0.0027796849900224
1115 => 0.0025642634093777
1116 => 0.0023734585079254
1117 => 0.0027476708594178
1118 => 0.0027315341423604
1119 => 0.0027081657847339
1120 => 0.0027601695359113
1121 => 0.0030126849901067
1122 => 0.0030068636915748
1123 => 0.002969831560367
1124 => 0.0029979201055019
1125 => 0.0028912936899871
1126 => 0.0029187737451036
1127 => 0.0027789677981482
1128 => 0.0028421659249841
1129 => 0.0028960234742833
1130 => 0.0029068361746798
1201 => 0.0029311977407831
1202 => 0.0027230308257293
1203 => 0.0028164916591289
1204 => 0.0028713911426554
1205 => 0.0026233532788225
1206 => 0.00286648823159
1207 => 0.0027194071028678
1208 => 0.002669485558695
1209 => 0.0027366983412603
1210 => 0.002710505454528
1211 => 0.0026879863486136
1212 => 0.0026754203005859
1213 => 0.0027247739500977
1214 => 0.0027224715433576
1215 => 0.0026417193936257
1216 => 0.0025363815061792
1217 => 0.0025717363588045
1218 => 0.0025588916093922
1219 => 0.0025123405805164
1220 => 0.0025437103533861
1221 => 0.0024055737495469
1222 => 0.0021679169023574
1223 => 0.0023249202952369
1224 => 0.0023188758353978
1225 => 0.0023158279446526
1226 => 0.0024338116551464
1227 => 0.0024224702437298
1228 => 0.0024018854709531
1229 => 0.0025119625250216
1230 => 0.0024717829195413
1231 => 0.0025956069961259
]
'min_raw' => 0.0011115383083509
'max_raw' => 0.0036564574424538
'avg_raw' => 0.0023839978754024
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001111'
'max' => '$0.003656'
'avg' => '$0.002383'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00060553741258138
'max_diff' => 0.0024171031696773
'year' => 2029
]
4 => [
'items' => [
101 => 0.0026771655414037
102 => 0.0026564796561787
103 => 0.0027331858622192
104 => 0.0025725508632023
105 => 0.0026259073663181
106 => 0.0026369040676614
107 => 0.0025106041912612
108 => 0.0024243258388991
109 => 0.0024185720564418
110 => 0.0022689772833353
111 => 0.002348889603642
112 => 0.0024192091385153
113 => 0.0023855315383273
114 => 0.0023748702161975
115 => 0.0024293365988002
116 => 0.0024335691032014
117 => 0.0023370675543123
118 => 0.0023571332821329
119 => 0.0024408107027948
120 => 0.0023550248258264
121 => 0.0021883568799202
122 => 0.0021470209249709
123 => 0.0021415059466078
124 => 0.0020293995583892
125 => 0.0021497831911362
126 => 0.0020972325093614
127 => 0.0022632394834341
128 => 0.002168417190157
129 => 0.0021643295906128
130 => 0.0021581505843811
131 => 0.0020616559849848
201 => 0.0020827821697009
202 => 0.0021530088253059
203 => 0.0021780664871857
204 => 0.0021754527677603
205 => 0.0021526646763815
206 => 0.0021630969479208
207 => 0.0021294909664483
208 => 0.0021176239949423
209 => 0.0020801685686018
210 => 0.002025119439207
211 => 0.0020327743582853
212 => 0.0019237076285657
213 => 0.0018642822856051
214 => 0.001847834133887
215 => 0.001825838977994
216 => 0.001850318545272
217 => 0.001923398656224
218 => 0.0018352485376055
219 => 0.0016841213422459
220 => 0.0016932043441953
221 => 0.0017136111528079
222 => 0.0016755831999628
223 => 0.0016395929340391
224 => 0.0016708835502772
225 => 0.0016068489653287
226 => 0.0017213494264701
227 => 0.00171825250988
228 => 0.0017609312011325
301 => 0.0017876190626276
302 => 0.0017261121821792
303 => 0.0017106433680787
304 => 0.0017194551076087
305 => 0.0015738166815696
306 => 0.0017490294346228
307 => 0.0017505446817871
308 => 0.0017375702156333
309 => 0.0018308655975473
310 => 0.0020277479529452
311 => 0.0019536728912701
312 => 0.0019249887884589
313 => 0.0018704602880469
314 => 0.0019431162772639
315 => 0.001937537430902
316 => 0.001912307771939
317 => 0.0018970487954768
318 => 0.0019251639274741
319 => 0.001893565019486
320 => 0.0018878889873314
321 => 0.0018534984080584
322 => 0.0018412225359296
323 => 0.001832133968922
324 => 0.0018221283496708
325 => 0.001844198252494
326 => 0.0017941849491591
327 => 0.0017338738082017
328 => 0.0017288595894067
329 => 0.0017427042883543
330 => 0.0017365790396866
331 => 0.0017288302640726
401 => 0.001714035741172
402 => 0.0017096465222623
403 => 0.0017239093543724
404 => 0.0017078074484949
405 => 0.0017315666877333
406 => 0.0017251054893192
407 => 0.0016890137602059
408 => 0.0016440301028611
409 => 0.0016436296539544
410 => 0.0016339379987674
411 => 0.0016215942187368
412 => 0.0016181604615197
413 => 0.0016682483418542
414 => 0.0017719287551427
415 => 0.0017515738091521
416 => 0.0017662823436891
417 => 0.0018386337760391
418 => 0.0018616321206997
419 => 0.0018453084404053
420 => 0.0018229635800175
421 => 0.0018239466404725
422 => 0.0019003057926668
423 => 0.0019050682193251
424 => 0.0019171013350736
425 => 0.0019325672893685
426 => 0.0018479423592984
427 => 0.0018199608138763
428 => 0.0018067016052984
429 => 0.0017658683748376
430 => 0.0018099035131129
501 => 0.0017842461238125
502 => 0.0017877081822104
503 => 0.001785453512137
504 => 0.0017866847144572
505 => 0.0017213174212576
506 => 0.0017451338272958
507 => 0.0017055344329895
508 => 0.0016525152892539
509 => 0.0016523375504932
510 => 0.0016653139108103
511 => 0.0016575950639287
512 => 0.0016368238454399
513 => 0.0016397742989888
514 => 0.0016139252212869
515 => 0.0016429128450345
516 => 0.0016437441063609
517 => 0.0016325822922515
518 => 0.0016772417261559
519 => 0.0016955387326651
520 => 0.0016881917875091
521 => 0.0016950232514075
522 => 0.0017524196490551
523 => 0.0017617777662521
524 => 0.0017659340237484
525 => 0.0017603651893019
526 => 0.0016960723521925
527 => 0.0016989240129125
528 => 0.0016780004186554
529 => 0.0016603221863821
530 => 0.0016610292229629
531 => 0.0016701181323607
601 => 0.0017098099327583
602 => 0.0017933389867357
603 => 0.0017965088532752
604 => 0.0018003508239926
605 => 0.0017847235982651
606 => 0.0017800102774533
607 => 0.0017862283642154
608 => 0.0018175974851403
609 => 0.0018982873807924
610 => 0.001869766182572
611 => 0.0018465780044599
612 => 0.0018669202881521
613 => 0.0018637887530258
614 => 0.0018373554450941
615 => 0.0018366135501793
616 => 0.0017858795810185
617 => 0.0017671243877764
618 => 0.0017514511445014
619 => 0.0017343363720054
620 => 0.0017241901611774
621 => 0.0017397793523796
622 => 0.0017433447848534
623 => 0.0017092587458375
624 => 0.0017046129446719
625 => 0.0017324483399305
626 => 0.0017201990202853
627 => 0.0017327977493089
628 => 0.0017357207625123
629 => 0.0017352500900638
630 => 0.0017224603935289
701 => 0.001730612164706
702 => 0.0017113307957121
703 => 0.0016903652028992
704 => 0.0016769904608872
705 => 0.0016653192245796
706 => 0.0016717951048193
707 => 0.0016487097742138
708 => 0.0016413243123372
709 => 0.0017278505280518
710 => 0.0017917683739138
711 => 0.0017908389831207
712 => 0.0017851815556878
713 => 0.0017767757660896
714 => 0.0018169825492748
715 => 0.0018029753099731
716 => 0.0018131667469091
717 => 0.0018157608953426
718 => 0.0018236126013431
719 => 0.0018264189113614
720 => 0.0018179362933786
721 => 0.0017894675913635
722 => 0.001718526292665
723 => 0.0016855029266185
724 => 0.0016746046657755
725 => 0.0016750007968584
726 => 0.001664073733185
727 => 0.0016672922431535
728 => 0.0016629544667645
729 => 0.0016547397677046
730 => 0.0016712878703007
731 => 0.0016731948849687
801 => 0.0016693323600877
802 => 0.0016702421245226
803 => 0.0016382620682135
804 => 0.0016406934424376
805 => 0.0016271552417934
806 => 0.0016246169923781
807 => 0.0015903936000556
808 => 0.0015297618997962
809 => 0.0015633577474015
810 => 0.0015227786877854
811 => 0.0015074107830357
812 => 0.0015801600539212
813 => 0.001572858044875
814 => 0.0015603601794949
815 => 0.0015418732318143
816 => 0.0015350162430902
817 => 0.0014933553502608
818 => 0.0014908938024603
819 => 0.0015115420658852
820 => 0.001502013602778
821 => 0.0014886320318642
822 => 0.0014401653384827
823 => 0.0013856727283512
824 => 0.0013873175177228
825 => 0.0014046506031345
826 => 0.0014550488866543
827 => 0.001435357405384
828 => 0.0014210710097886
829 => 0.0014183955973411
830 => 0.0014518839854773
831 => 0.0014992770707243
901 => 0.0015215128459616
902 => 0.001499477868012
903 => 0.0014741652717908
904 => 0.0014757059322355
905 => 0.0014859552559461
906 => 0.0014870323149504
907 => 0.0014705564169874
908 => 0.0014751942857559
909 => 0.001468148939001
910 => 0.0014249116589708
911 => 0.0014241296336819
912 => 0.0014135185078672
913 => 0.0014131972071947
914 => 0.0013951450351144
915 => 0.0013926194114516
916 => 0.0013567757280978
917 => 0.001380368149026
918 => 0.001364543591725
919 => 0.0013406922512368
920 => 0.0013365802711466
921 => 0.0013364566600597
922 => 0.0013609466536789
923 => 0.0013800819691917
924 => 0.0013648188666744
925 => 0.001361343754094
926 => 0.0013984488648167
927 => 0.0013937269012566
928 => 0.001389637711267
929 => 0.0014950335397523
930 => 0.0014116045173672
1001 => 0.0013752247016451
1002 => 0.0013301977713494
1003 => 0.0013448587668992
1004 => 0.0013479480540764
1005 => 0.0012396664034295
1006 => 0.0011957365512477
1007 => 0.0011806614814405
1008 => 0.0011719855656362
1009 => 0.0011759392894135
1010 => 0.0011363972699921
1011 => 0.0011629701610079
1012 => 0.0011287301145927
1013 => 0.0011229896593845
1014 => 0.0011842151039027
1015 => 0.0011927342668335
1016 => 0.0011563888710741
1017 => 0.0011797284989367
1018 => 0.0011712652254286
1019 => 0.0011293170619136
1020 => 0.0011277149506172
1021 => 0.0011066668367146
1022 => 0.001073730614175
1023 => 0.0010586778766776
1024 => 0.0010508382802951
1025 => 0.0010540730505532
1026 => 0.0010524374517251
1027 => 0.00104176406301
1028 => 0.0010530492378724
1029 => 0.0010242202794552
1030 => 0.0010127403559228
1031 => 0.0010075551407954
1101 => 0.00098196778086717
1102 => 0.0010226886492635
1103 => 0.0010307111733256
1104 => 0.0010387495042384
1105 => 0.0011087176868323
1106 => 0.001105222274158
1107 => 0.0011368191023992
1108 => 0.0011355913077566
1109 => 0.0011265793805075
1110 => 0.0010885595418337
1111 => 0.0011037135718906
1112 => 0.0010570718228346
1113 => 0.001092018992558
1114 => 0.0010760705637249
1115 => 0.0010866268127269
1116 => 0.0010676457252028
1117 => 0.0010781506427485
1118 => 0.0010326136113968
1119 => 0.00099009177224379
1120 => 0.0010072038016088
1121 => 0.0010258065345265
1122 => 0.0010661419993803
1123 => 0.0010421185292737
1124 => 0.001050758277552
1125 => 0.0010218165670961
1126 => 0.00096210155163477
1127 => 0.00096243953213725
1128 => 0.00095325367797085
1129 => 0.00094531575881441
1130 => 0.0010448779138035
1201 => 0.0010324957859859
1202 => 0.0010127664858413
1203 => 0.0010391749380961
1204 => 0.0010461577520307
1205 => 0.0010463565429268
1206 => 0.001065623467991
1207 => 0.0010759062293516
1208 => 0.0010777186106095
1209 => 0.0011080355334876
1210 => 0.0011181973661464
1211 => 0.0011600525167119
1212 => 0.0010750338088918
1213 => 0.0010732829045524
1214 => 0.0010395465591763
1215 => 0.0010181504355882
1216 => 0.0010410115700635
1217 => 0.0010612634143526
1218 => 0.0010401758404301
1219 => 0.0010429294324014
1220 => 0.0010146210873286
1221 => 0.0010247399886607
1222 => 0.0010334557496511
1223 => 0.0010286434187209
1224 => 0.001021439126399
1225 => 0.0010596029940699
1226 => 0.0010574496390905
1227 => 0.0010929887100491
1228 => 0.0011206939572846
1229 => 0.0011703467132361
1230 => 0.001118531473944
1231 => 0.0011166431206773
]
'min_raw' => 0.00094531575881441
'max_raw' => 0.0027331858622192
'avg_raw' => 0.0018392508105168
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000945'
'max' => '$0.002733'
'avg' => '$0.001839'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00016622254953654
'max_diff' => -0.00092327158023465
'year' => 2030
]
5 => [
'items' => [
101 => 0.001135102076761
102 => 0.0011181945401764
103 => 0.0011288795196695
104 => 0.0011686251978507
105 => 0.0011694649614002
106 => 0.0011553978399711
107 => 0.0011545418543537
108 => 0.0011572435989016
109 => 0.0011730678011062
110 => 0.0011675383386273
111 => 0.0011739371725967
112 => 0.0011819390124579
113 => 0.0012150380148337
114 => 0.0012230180722504
115 => 0.0012036306699133
116 => 0.0012053811352728
117 => 0.0011981297146026
118 => 0.0011911249330953
119 => 0.0012068706589576
120 => 0.001235646282454
121 => 0.0012354672707937
122 => 0.0012421426561267
123 => 0.0012463013658872
124 => 0.0012284491392333
125 => 0.0012168279961261
126 => 0.001221284281866
127 => 0.0012284099798092
128 => 0.0012189735140607
129 => 0.0011607272760647
130 => 0.0011783954638886
131 => 0.0011754546135045
201 => 0.0011712664849378
202 => 0.0011890319844188
203 => 0.0011873184586547
204 => 0.0011359917094299
205 => 0.001139277481386
206 => 0.0011361915281053
207 => 0.0011461628744818
208 => 0.0011176560547489
209 => 0.0011264245605024
210 => 0.0011319240851113
211 => 0.0011351633473554
212 => 0.0011468657837636
213 => 0.0011454926379201
214 => 0.00114678042709
215 => 0.0011641320509548
216 => 0.0012518906101047
217 => 0.0012566671148509
218 => 0.0012331458585562
219 => 0.0012425421365097
220 => 0.0012245033375791
221 => 0.0012366129041506
222 => 0.0012448979620492
223 => 0.0012074593785304
224 => 0.0012052425085888
225 => 0.0011871292571183
226 => 0.0011968622924716
227 => 0.0011813763333945
228 => 0.0011851760460762
301 => 0.0011745517181653
302 => 0.0011936733931223
303 => 0.0012150543969322
304 => 0.001220456082856
305 => 0.0012062465727624
306 => 0.0011959579510024
307 => 0.0011778945204745
308 => 0.0012079344080122
309 => 0.0012167189865773
310 => 0.0012078882663607
311 => 0.0012058419955315
312 => 0.0012019643160077
313 => 0.0012066646635735
314 => 0.0012166711438758
315 => 0.0012119522725559
316 => 0.0012150691701985
317 => 0.0012031907705158
318 => 0.0012284550490631
319 => 0.0012685808035761
320 => 0.0012687098144381
321 => 0.0012639909176817
322 => 0.001262060046799
323 => 0.0012669019212377
324 => 0.0012695284394965
325 => 0.0012851861735832
326 => 0.0013019875460898
327 => 0.001380392220565
328 => 0.0013583765017138
329 => 0.0014279417932232
330 => 0.0014829589068845
331 => 0.0014994561336648
401 => 0.0014842794612814
402 => 0.0014323608848858
403 => 0.0014298135118372
404 => 0.0015074017844298
405 => 0.0014854795436544
406 => 0.0014828719628701
407 => 0.0014551317089031
408 => 0.0014715296346949
409 => 0.0014679431677812
410 => 0.0014622817543019
411 => 0.0014935678544233
412 => 0.0015521326409212
413 => 0.0015430047697284
414 => 0.0015361912373127
415 => 0.0015063363216568
416 => 0.0015243156492185
417 => 0.0015179135550451
418 => 0.0015454210144833
419 => 0.001529126204877
420 => 0.0014853134611194
421 => 0.0014922907849715
422 => 0.0014912361765077
423 => 0.0015129399439626
424 => 0.0015064250116933
425 => 0.0014899640314211
426 => 0.0015519324728477
427 => 0.0015479085869481
428 => 0.0015536135371654
429 => 0.0015561250326825
430 => 0.0015938441309725
501 => 0.0016092964386653
502 => 0.0016128043830424
503 => 0.0016274828802262
504 => 0.0016124391686606
505 => 0.0016726247409076
506 => 0.0017126446345263
507 => 0.0017591298003693
508 => 0.0018270571217007
509 => 0.0018525984228841
510 => 0.0018479846154367
511 => 0.0018994863352263
512 => 0.0019920337808694
513 => 0.0018666911002339
514 => 0.0019986772472989
515 => 0.0019568919569914
516 => 0.0018578197853578
517 => 0.0018514407054888
518 => 0.0019185335303706
519 => 0.0020673389585135
520 => 0.0020300648865009
521 => 0.0020673999255422
522 => 0.0020238466193332
523 => 0.0020216838305838
524 => 0.0020652846386725
525 => 0.002167160303328
526 => 0.0021187629938023
527 => 0.0020493735830902
528 => 0.0021006096441412
529 => 0.0020562242263852
530 => 0.0019562114574847
531 => 0.0020300363837205
601 => 0.0019806717579594
602 => 0.0019950789801244
603 => 0.0020988360810402
604 => 0.0020863517521508
605 => 0.0021025076297515
606 => 0.0020739929286592
607 => 0.0020473557014835
608 => 0.0019976353388534
609 => 0.0019829155906629
610 => 0.0019869835995017
611 => 0.0019829135747597
612 => 0.0019550954888219
613 => 0.0019490881758123
614 => 0.0019390757242764
615 => 0.0019421790016747
616 => 0.0019233526635412
617 => 0.0019588818533191
618 => 0.001965476384024
619 => 0.0019913315654558
620 => 0.0019940159361633
621 => 0.0020660222484253
622 => 0.0020263623816483
623 => 0.0020529696443505
624 => 0.0020505896403371
625 => 0.0018599669797302
626 => 0.0018862331004838
627 => 0.0019270949416138
628 => 0.0019086867375717
629 => 0.0018826618439125
630 => 0.0018616453469162
701 => 0.0018298032049196
702 => 0.0018746204083056
703 => 0.0019335502649799
704 => 0.0019955104945776
705 => 0.0020699516506442
706 => 0.0020533372512007
707 => 0.0019941188689451
708 => 0.0019967753623141
709 => 0.0020131967590292
710 => 0.0019919295582419
711 => 0.0019856574455446
712 => 0.0020123350670594
713 => 0.002012518781177
714 => 0.0019880482964442
715 => 0.0019608538307151
716 => 0.0019607398849107
717 => 0.0019559008924016
718 => 0.0020247074653507
719 => 0.0020625441233435
720 => 0.0020668820352055
721 => 0.0020622521473125
722 => 0.0020640340074088
723 => 0.0020420176897967
724 => 0.0020923404631219
725 => 0.0021385216163315
726 => 0.0021261440807549
727 => 0.0021075883953552
728 => 0.0020928078981714
729 => 0.0021226622653494
730 => 0.0021213328973741
731 => 0.0021381182642458
801 => 0.0021373567830475
802 => 0.0021317124954981
803 => 0.0021261442823302
804 => 0.0021482216181388
805 => 0.0021418636999771
806 => 0.0021354959062124
807 => 0.0021227243209568
808 => 0.0021244601915066
809 => 0.0021059077100075
810 => 0.0020973244831623
811 => 0.0019682533454507
812 => 0.0019337613199331
813 => 0.0019446132133109
814 => 0.0019481859383801
815 => 0.0019331749646721
816 => 0.0019546968449666
817 => 0.00195134268272
818 => 0.0019643917659022
819 => 0.0019562392652553
820 => 0.0019565738467256
821 => 0.0019805486128317
822 => 0.0019875085894283
823 => 0.0019839686891574
824 => 0.0019864479139664
825 => 0.0020435806032759
826 => 0.0020354581618567
827 => 0.002031143276739
828 => 0.002032338529405
829 => 0.0020469371564623
830 => 0.0020510239749828
831 => 0.0020337078377356
901 => 0.0020418742281648
902 => 0.0020766456821429
903 => 0.0020888137231414
904 => 0.0021276482690176
905 => 0.0021111506637004
906 => 0.0021414327322598
907 => 0.0022345094870934
908 => 0.002308865639276
909 => 0.0022404846488309
910 => 0.0023770302531155
911 => 0.0024833505923546
912 => 0.0024792698406488
913 => 0.0024607304302687
914 => 0.0023396875507174
915 => 0.0022283020883067
916 => 0.0023214807572898
917 => 0.0023217182888794
918 => 0.0023137141585777
919 => 0.0022640011927023
920 => 0.0023119842551244
921 => 0.0023157929763705
922 => 0.0023136611052934
923 => 0.0022755462909149
924 => 0.0022173520141542
925 => 0.0022287230365358
926 => 0.0022473490031595
927 => 0.0022120861625572
928 => 0.0022008175483339
929 => 0.0022217680461166
930 => 0.002289274915182
1001 => 0.0022765131326258
1002 => 0.0022761798709089
1003 => 0.0023307801885221
1004 => 0.0022916981445971
1005 => 0.0022288664615431
1006 => 0.0022130006329239
1007 => 0.0021566876298286
1008 => 0.0021955832216466
1009 => 0.0021969830047516
1010 => 0.0021756802866162
1011 => 0.0022305950597138
1012 => 0.0022300890104122
1013 => 0.0022822224144831
1014 => 0.0023818819026542
1015 => 0.0023524076880564
1016 => 0.0023181323832646
1017 => 0.0023218590592466
1018 => 0.0023627314965489
1019 => 0.002338019087929
1020 => 0.0023469058423697
1021 => 0.0023627180453817
1022 => 0.0023722579400537
1023 => 0.002320486415214
1024 => 0.0023084159962555
1025 => 0.0022837241552079
1026 => 0.0022772825147736
1027 => 0.0022973935040947
1028 => 0.0022920949689404
1029 => 0.0021968653584019
1030 => 0.002186913334248
1031 => 0.0021872185486206
1101 => 0.0021621937106929
1102 => 0.0021240248262038
1103 => 0.0022243303756954
1104 => 0.002216274436296
1105 => 0.0022073813026792
1106 => 0.0022084706608037
1107 => 0.0022520099001676
1108 => 0.0022267549425523
1109 => 0.0022938993865787
1110 => 0.0022800965074336
1111 => 0.0022659396365215
1112 => 0.0022639827257326
1113 => 0.0022585335382389
1114 => 0.0022398462467696
1115 => 0.0022172802193883
1116 => 0.0022023801734754
1117 => 0.0020315792926555
1118 => 0.0020632789426327
1119 => 0.0020997465004174
1120 => 0.0021123349552301
1121 => 0.0020908015321784
1122 => 0.0022406965175594
1123 => 0.0022680837758126
1124 => 0.0021851259841372
1125 => 0.002169607968459
1126 => 0.0022417138760838
1127 => 0.0021982251991974
1128 => 0.0022178081477365
1129 => 0.002175480524295
1130 => 0.0022614869872919
1201 => 0.0022608317621441
1202 => 0.0022273733054943
1203 => 0.0022556521639411
1204 => 0.0022507380163774
1205 => 0.0022129635012243
1206 => 0.0022626845067995
1207 => 0.0022627091677979
1208 => 0.002230506130722
1209 => 0.0021929000335686
1210 => 0.002186176951614
1211 => 0.0021811120124801
1212 => 0.002216562483196
1213 => 0.0022483472643891
1214 => 0.0023074908620739
1215 => 0.0023223609677491
1216 => 0.0023803999801584
1217 => 0.0023458405741369
1218 => 0.002361160311207
1219 => 0.0023777920529057
1220 => 0.0023857659214881
1221 => 0.0023727729305344
1222 => 0.0024629314066166
1223 => 0.0024705435443823
1224 => 0.0024730958283304
1225 => 0.0024426948974664
1226 => 0.0024696980395001
1227 => 0.0024570641635926
1228 => 0.002489933998912
1229 => 0.0024950884087933
1230 => 0.0024907228069973
1231 => 0.0024923588980504
]
'min_raw' => 0.0011176560547489
'max_raw' => 0.0024950884087933
'avg_raw' => 0.0018063722317711
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001117'
'max' => '$0.002495'
'avg' => '$0.0018063'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00017234029593451
'max_diff' => -0.00023809745342591
'year' => 2031
]
6 => [
'items' => [
101 => 0.0024154245437594
102 => 0.0024114350916283
103 => 0.002357038628743
104 => 0.0023792055894471
105 => 0.0023377655189008
106 => 0.002350906592151
107 => 0.002356699052027
108 => 0.002353673399707
109 => 0.0023804588761463
110 => 0.0023576857492616
111 => 0.0022975837231642
112 => 0.00223746532231
113 => 0.0022367105847587
114 => 0.0022208824709917
115 => 0.0022094416438018
116 => 0.0022116455530037
117 => 0.0022194124164917
118 => 0.0022089902195765
119 => 0.0022112143237071
120 => 0.0022481492714043
121 => 0.002255556311757
122 => 0.0022303842945211
123 => 0.0021293150130143
124 => 0.0021045123578194
125 => 0.0021223400145155
126 => 0.0021138195428629
127 => 0.0017060173479415
128 => 0.0018018244246228
129 => 0.0017448991129597
130 => 0.0017711329155817
131 => 0.0017130269131116
201 => 0.0017407581430869
202 => 0.0017356371974928
203 => 0.0018896921416589
204 => 0.0018872867856014
205 => 0.0018884381022575
206 => 0.0018334827585214
207 => 0.0019210281132932
208 => 0.0019641561030829
209 => 0.0019561742599871
210 => 0.0019581831179323
211 => 0.0019236642827698
212 => 0.0018887723200363
213 => 0.0018500717635304
214 => 0.0019219726139851
215 => 0.0019139784668029
216 => 0.0019323141642354
217 => 0.0019789470053342
218 => 0.0019858138683269
219 => 0.001995043001826
220 => 0.001991735014441
221 => 0.0020705446945501
222 => 0.0020610003222859
223 => 0.0020839995133393
224 => 0.0020366884323895
225 => 0.0019831514534858
226 => 0.0019933270829197
227 => 0.001992347087978
228 => 0.0019798706275839
229 => 0.0019686074370005
301 => 0.0019498573980632
302 => 0.0020091852957443
303 => 0.0020067766914439
304 => 0.002045769195371
305 => 0.0020388768915489
306 => 0.0019928483997922
307 => 0.0019944923163799
308 => 0.0020055484454721
309 => 0.0020438138344967
310 => 0.0020551736072656
311 => 0.0020499113079104
312 => 0.0020623667801581
313 => 0.0020722110775722
314 => 0.0020636030723478
315 => 0.0021854742736482
316 => 0.0021348648540378
317 => 0.0021595315330178
318 => 0.00216541439061
319 => 0.0021503455745907
320 => 0.0021536134612115
321 => 0.0021585634189961
322 => 0.0021886185933632
323 => 0.0022674920674374
324 => 0.0023024245921949
325 => 0.0024075208164684
326 => 0.002299523932298
327 => 0.0022931158441269
328 => 0.0023120468477204
329 => 0.0023737494569341
330 => 0.0024237536262704
331 => 0.002440342894049
401 => 0.0024425354396449
402 => 0.0024736580088312
403 => 0.0024914968850873
404 => 0.0024698789103272
405 => 0.0024515599402143
406 => 0.0023859436631043
407 => 0.002393538925847
408 => 0.0024458627542843
409 => 0.0025197732438102
410 => 0.0025831961328993
411 => 0.0025609876476511
412 => 0.0027304227133471
413 => 0.0027472215080307
414 => 0.0027449004577755
415 => 0.0027831706120605
416 => 0.0027072121493861
417 => 0.0026747384349669
418 => 0.0024555207094818
419 => 0.0025171119485683
420 => 0.0026066384317072
421 => 0.0025947892659567
422 => 0.0025297727408515
423 => 0.0025831468120348
424 => 0.0025654996749401
425 => 0.0025515806457331
426 => 0.0026153464168669
427 => 0.0025452333321517
428 => 0.0026059390000534
429 => 0.0025280833530498
430 => 0.002561089094141
501 => 0.0025423534391896
502 => 0.0025544777040987
503 => 0.0024835994991795
504 => 0.0025218436580827
505 => 0.002482008416434
506 => 0.0024819895293428
507 => 0.0024811101641755
508 => 0.0025279761493187
509 => 0.0025295044474117
510 => 0.0024948704135803
511 => 0.0024898791082199
512 => 0.0025083345801863
513 => 0.0024867280560094
514 => 0.0024968376126819
515 => 0.0024870342641822
516 => 0.0024848273239448
517 => 0.0024672420486534
518 => 0.0024596658285406
519 => 0.002462636659662
520 => 0.0024524956814763
521 => 0.0024463853753043
522 => 0.0024798946704837
523 => 0.0024619920058304
524 => 0.0024771508303652
525 => 0.0024598754366117
526 => 0.002399991395331
527 => 0.0023655514499283
528 => 0.0022524360472027
529 => 0.0022845154350964
530 => 0.0023057841024585
531 => 0.0022987548080222
601 => 0.0023138564524472
602 => 0.0023147835707644
603 => 0.0023098738722188
604 => 0.0023041890702743
605 => 0.002301422023077
606 => 0.0023220453258865
607 => 0.0023340178473159
608 => 0.0023079186977663
609 => 0.0023018040321928
610 => 0.0023281917133609
611 => 0.0023442881836298
612 => 0.0024631354762698
613 => 0.0024543308849594
614 => 0.0024764286813349
615 => 0.0024739408085813
616 => 0.0024971028196379
617 => 0.0025349629187191
618 => 0.0024579827514368
619 => 0.0024713438467031
620 => 0.0024680680146965
621 => 0.0025038326895748
622 => 0.0025039443429859
623 => 0.0024825016338184
624 => 0.0024941260743263
625 => 0.0024876376305346
626 => 0.002499363125432
627 => 0.0024542132942745
628 => 0.0025092009150012
629 => 0.0025403753526292
630 => 0.0025408082097259
701 => 0.002555584645746
702 => 0.0025705983605358
703 => 0.0025994158786559
704 => 0.0025697946555962
705 => 0.0025165089588796
706 => 0.0025203560140708
707 => 0.0024891146295824
708 => 0.0024896398028999
709 => 0.0024868363865727
710 => 0.002495249650002
711 => 0.0024560595324784
712 => 0.0024652573747291
713 => 0.0024523803417156
714 => 0.0024713158545481
715 => 0.0024509443728928
716 => 0.0024680664349911
717 => 0.0024754557493874
718 => 0.0025027224785904
719 => 0.0024469170548196
720 => 0.0023331260180559
721 => 0.0023570462735666
722 => 0.0023216663367708
723 => 0.0023249408846221
724 => 0.0023315559924223
725 => 0.0023101142637133
726 => 0.0023142046698445
727 => 0.0023140585317537
728 => 0.0023127991926378
729 => 0.0023072213708817
730 => 0.002299132425797
731 => 0.0023313562933685
801 => 0.0023368317563922
802 => 0.0023490030324274
803 => 0.0023852164940529
804 => 0.0023815979152643
805 => 0.0023874999674019
806 => 0.0023746158207241
807 => 0.0023255385432339
808 => 0.0023282036755195
809 => 0.002294969433212
810 => 0.0023481531581308
811 => 0.0023355585500792
812 => 0.0023274387243355
813 => 0.0023252231546517
814 => 0.0023615263824441
815 => 0.0023723888771829
816 => 0.0023656200994166
817 => 0.002351737138741
818 => 0.002378396527367
819 => 0.002385529455094
820 => 0.0023871262545598
821 => 0.0024343615797743
822 => 0.0023897661845203
823 => 0.0024005007393981
824 => 0.0024842486722405
825 => 0.0024083008535772
826 => 0.0024485321069616
827 => 0.0024465629964617
828 => 0.0024671439443418
829 => 0.0024448747580227
830 => 0.0024451508112765
831 => 0.0024634252987199
901 => 0.0024377620769269
902 => 0.0024314075023082
903 => 0.0024226287029849
904 => 0.0024417968901414
905 => 0.0024532873514393
906 => 0.0025458920306858
907 => 0.0026057188767654
908 => 0.002603121635595
909 => 0.0026268555580607
910 => 0.0026161632086121
911 => 0.0025816347917433
912 => 0.0026405705890465
913 => 0.0026219208368013
914 => 0.0026234582997169
915 => 0.0026234010752704
916 => 0.0026358015301239
917 => 0.0026270146713752
918 => 0.002609694870829
919 => 0.0026211925627128
920 => 0.0026553365971077
921 => 0.0027613207275361
922 => 0.0028206308510268
923 => 0.00275775018363
924 => 0.0028011244259946
925 => 0.0027751153363986
926 => 0.0027703887111156
927 => 0.002797630940652
928 => 0.0028249208541048
929 => 0.0028231826045954
930 => 0.0028033715287812
1001 => 0.0027921807547412
1002 => 0.0028769210449565
1003 => 0.002939356247274
1004 => 0.0029350985850468
1005 => 0.0029538905214515
1006 => 0.0030090642279483
1007 => 0.003014108620211
1008 => 0.0030134731427299
1009 => 0.003000970090179
1010 => 0.0030552957694363
1011 => 0.0031006152068421
1012 => 0.0029980759947614
1013 => 0.0030371215843849
1014 => 0.0030546504075372
1015 => 0.0030803879204923
1016 => 0.0031238114189555
1017 => 0.0031709808558007
1018 => 0.0031776511313572
1019 => 0.0031729182516478
1020 => 0.0031418087400659
1021 => 0.0031934221007103
1022 => 0.0032236559968936
1023 => 0.0032416595901803
1024 => 0.0032873137072432
1025 => 0.0030547586595815
1026 => 0.0028901446381107
1027 => 0.0028644377816028
1028 => 0.0029167136851839
1029 => 0.0029304984240657
1030 => 0.002924941813107
1031 => 0.0027396537658896
1101 => 0.0028634622783804
1102 => 0.0029966698277051
1103 => 0.0030017868721795
1104 => 0.0030684733566099
1105 => 0.0030901892095118
1106 => 0.0031438805702757
1107 => 0.0031405221610413
1108 => 0.0031535951529711
1109 => 0.0031505898985191
1110 => 0.0032500418382842
1111 => 0.0033597520966011
1112 => 0.0033559531792129
1113 => 0.003340181031547
1114 => 0.0033636053603817
1115 => 0.0034768381042305
1116 => 0.0034664134476946
1117 => 0.0034765401135491
1118 => 0.0036100479000646
1119 => 0.003783627013796
1120 => 0.0037029820884097
1121 => 0.0038779583715458
1122 => 0.0039880966666858
1123 => 0.0041785694596182
1124 => 0.0041547213278448
1125 => 0.0042288709883794
1126 => 0.0041120281947151
1127 => 0.0038437335226371
1128 => 0.00380127486379
1129 => 0.0038862781740264
1130 => 0.0040952505177407
1201 => 0.0038796968912534
1202 => 0.0039233031091541
1203 => 0.0039107445154652
1204 => 0.003910075321378
1205 => 0.0039356157378735
1206 => 0.0038985680316483
1207 => 0.0037476290117317
1208 => 0.0038168034750702
1209 => 0.0037900918927446
1210 => 0.0038197303848153
1211 => 0.0039796771026765
1212 => 0.0039089608460565
1213 => 0.0038344670142296
1214 => 0.0039278988108452
1215 => 0.0040468695945855
1216 => 0.0040394246167501
1217 => 0.00402497824799
1218 => 0.004106411672303
1219 => 0.0042409158315135
1220 => 0.0042772717652666
1221 => 0.0043041089722988
1222 => 0.0043078093697302
1223 => 0.0043459257630579
1224 => 0.0041409643095668
1225 => 0.0044662434000406
1226 => 0.0045224101133119
1227 => 0.0045118530990886
1228 => 0.0045742800370331
1229 => 0.0045559124482713
1230 => 0.0045293006939418
1231 => 0.0046282606691742
]
'min_raw' => 0.0017060173479415
'max_raw' => 0.0046282606691742
'avg_raw' => 0.0031671390085578
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001706'
'max' => '$0.004628'
'avg' => '$0.003167'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00058836129319255
'max_diff' => 0.0021331722603809
'year' => 2032
]
7 => [
'items' => [
101 => 0.0045148110432284
102 => 0.0043537835821092
103 => 0.0042654407321771
104 => 0.0043817777233821
105 => 0.0044528206643095
106 => 0.0044997755290828
107 => 0.0045139840427923
108 => 0.0041568748837509
109 => 0.0039644128532095
110 => 0.0040877788082049
111 => 0.0042382937875626
112 => 0.0041401281912568
113 => 0.0041439760967799
114 => 0.0040040177539127
115 => 0.0042506769953418
116 => 0.0042147408185964
117 => 0.0044011777671218
118 => 0.0043566830931062
119 => 0.0045087151871881
120 => 0.004468680041666
121 => 0.0046348636923933
122 => 0.0047011588499111
123 => 0.0048124787374009
124 => 0.0048943660997919
125 => 0.0049424519252435
126 => 0.0049395650326488
127 => 0.0051301050293512
128 => 0.0050177502502562
129 => 0.0048766061677247
130 => 0.0048740533165756
131 => 0.0049471538369457
201 => 0.0051003524734933
202 => 0.0051400746510006
203 => 0.005162273929228
204 => 0.0051282749618602
205 => 0.0050063219016922
206 => 0.0049536631886277
207 => 0.0049985299378285
208 => 0.0049436617589997
209 => 0.0050383796289501
210 => 0.0051684474950374
211 => 0.0051415889950345
212 => 0.0052313729336929
213 => 0.0053242898646586
214 => 0.0054571652491
215 => 0.0054919037949543
216 => 0.0055493252902627
217 => 0.0056084308709137
218 => 0.0056274139904788
219 => 0.0056636586558445
220 => 0.0056634676285672
221 => 0.0057726933671941
222 => 0.0058931727393392
223 => 0.0059386509132201
224 => 0.0060432254663781
225 => 0.0058641452088245
226 => 0.0059999796413046
227 => 0.0061225056995581
228 => 0.0059764250817518
301 => 0.0061777631809791
302 => 0.0061855806831302
303 => 0.006303615684245
304 => 0.006183964597845
305 => 0.0061129161646805
306 => 0.0063180303290764
307 => 0.0064172786121919
308 => 0.0063873842216082
309 => 0.006159886433198
310 => 0.0060274729625042
311 => 0.0056809213690474
312 => 0.0060914267014117
313 => 0.0062913718742016
314 => 0.0061593686235037
315 => 0.0062259433849852
316 => 0.0065891536966893
317 => 0.0067274406672601
318 => 0.0066986779440803
319 => 0.006703538370823
320 => 0.0067781555100569
321 => 0.0071090489978293
322 => 0.0069107699499051
323 => 0.007062346852669
324 => 0.0071427426953438
325 => 0.0072174188345291
326 => 0.0070340378383261
327 => 0.0067954618566678
328 => 0.0067198948285382
329 => 0.0061462435017215
330 => 0.0061163824589193
331 => 0.0060996205507122
401 => 0.0059939390904854
402 => 0.0059109024113353
403 => 0.0058448685611209
404 => 0.0056715760187816
405 => 0.0057300571647652
406 => 0.0054538650212407
407 => 0.0056305629670191
408 => 0.0051897536370615
409 => 0.0055568727457702
410 => 0.0053570665057577
411 => 0.0054912310221545
412 => 0.0054907629347958
413 => 0.0052437235232106
414 => 0.0051012363461893
415 => 0.0051920347210712
416 => 0.0052893777865285
417 => 0.0053051713713976
418 => 0.005431379196677
419 => 0.0054666010878844
420 => 0.0053598771131732
421 => 0.0051806188434905
422 => 0.005222256451092
423 => 0.0051003925614002
424 => 0.0048868307821423
425 => 0.0050402145804363
426 => 0.0050925865529834
427 => 0.0051157169996257
428 => 0.0049057035174615
429 => 0.0048397127217511
430 => 0.0048045797758312
501 => 0.0051535087401795
502 => 0.0051726238565091
503 => 0.0050748282187618
504 => 0.0055168737747425
505 => 0.0054168252511835
506 => 0.0055286039644823
507 => 0.0052184782746269
508 => 0.005230325493619
509 => 0.0050835070220568
510 => 0.0051657155557178
511 => 0.0051076132138309
512 => 0.0051590739185985
513 => 0.0051899192528558
514 => 0.0053367136329515
515 => 0.0055585489017918
516 => 0.0053147874477264
517 => 0.0052085770914618
518 => 0.0052744693991387
519 => 0.0054499492976689
520 => 0.0057158103265928
521 => 0.005558415246518
522 => 0.0056282645103134
523 => 0.0056435234670753
524 => 0.0055274661621107
525 => 0.0057200895249693
526 => 0.0058233179499946
527 => 0.0059292089539579
528 => 0.0060211511457006
529 => 0.0058869137583819
530 => 0.0060305670049865
531 => 0.0059148078464348
601 => 0.0058109599142521
602 => 0.0058111174086987
603 => 0.0057459720838642
604 => 0.0056197448081583
605 => 0.0055964665618443
606 => 0.0057175629388883
607 => 0.005814670765408
608 => 0.0058226690311153
609 => 0.0058764329134569
610 => 0.0059082498252146
611 => 0.0062200988134343
612 => 0.0063455270562464
613 => 0.0064988983373219
614 => 0.0065586450948326
615 => 0.0067384614145417
616 => 0.0065932451324092
617 => 0.0065618266763166
618 => 0.0061256511021722
619 => 0.0061970748280033
620 => 0.0063114311044234
621 => 0.0061275367950503
622 => 0.0062441754077123
623 => 0.0062672023405954
624 => 0.0061212881367858
625 => 0.0061992272176211
626 => 0.0059922441262496
627 => 0.0055630605675642
628 => 0.0057205673289587
629 => 0.0058365453215478
630 => 0.0056710304261399
701 => 0.0059677094698475
702 => 0.0057943956972121
703 => 0.0057394635518149
704 => 0.0055251536678966
705 => 0.0056262996835621
706 => 0.0057631011180211
707 => 0.0056785737363992
708 => 0.0058539807451149
709 => 0.0061024038487968
710 => 0.0062794449463322
711 => 0.0062930359634729
712 => 0.00617921039859
713 => 0.0063616165927399
714 => 0.0063629452227269
715 => 0.0061571902905746
716 => 0.0060311665402796
717 => 0.0060025336790564
718 => 0.0060740641801952
719 => 0.0061609154138367
720 => 0.0062978556024861
721 => 0.0063806056904744
722 => 0.0065963740326925
723 => 0.0066547547595335
724 => 0.0067188974784014
725 => 0.0068046119316908
726 => 0.0069075341095995
727 => 0.0066823462436982
728 => 0.0066912933774131
729 => 0.0064816015546241
730 => 0.0062575157691247
731 => 0.0064275689476312
801 => 0.0066498908573022
802 => 0.0065988899655798
803 => 0.0065931513234073
804 => 0.0066028021277748
805 => 0.0065643491209495
806 => 0.0063904275962137
807 => 0.0063030852952977
808 => 0.0064157791468767
809 => 0.0064756709135647
810 => 0.0065685578205868
811 => 0.0065571075486916
812 => 0.0067963742458549
813 => 0.0068893460493233
814 => 0.0068655598835083
815 => 0.0068699371104643
816 => 0.0070382581197316
817 => 0.0072254656998925
818 => 0.0074008103029293
819 => 0.0075791783643641
820 => 0.0073641487044805
821 => 0.0072549699043772
822 => 0.007367614557346
823 => 0.0073078437188925
824 => 0.0076513046858288
825 => 0.0076750851779828
826 => 0.008018521308782
827 => 0.0083444830925241
828 => 0.0081397523363676
829 => 0.0083328042181474
830 => 0.0085416055680431
831 => 0.00894441724879
901 => 0.0088087644458002
902 => 0.0087048565246605
903 => 0.0086066640412629
904 => 0.0088109870115956
905 => 0.0090738452487894
906 => 0.0091304623954561
907 => 0.0092222038024707
908 => 0.0091257489306003
909 => 0.0092419181996126
910 => 0.0096520467665891
911 => 0.009541226407487
912 => 0.0093838436823004
913 => 0.0097076007967621
914 => 0.0098247672379119
915 => 0.010647102682443
916 => 0.011685335150146
917 => 0.011255500091115
918 => 0.010988687599283
919 => 0.011051394863741
920 => 0.011430522214559
921 => 0.011552285886741
922 => 0.011221290251295
923 => 0.011338203505426
924 => 0.011982407030344
925 => 0.012328001552939
926 => 0.011858637771718
927 => 0.010563681714567
928 => 0.009369673089859
929 => 0.0096863779440407
930 => 0.0096504734420724
1001 => 0.010342589763571
1002 => 0.0095385833785732
1003 => 0.0095521207841072
1004 => 0.01025854933817
1005 => 0.010070086311198
1006 => 0.0097648003440229
1007 => 0.0093719020152691
1008 => 0.0086455931158709
1009 => 0.0080022810690519
1010 => 0.0092639641387803
1011 => 0.0092095580705918
1012 => 0.0091307700213273
1013 => 0.0093061042992081
1014 => 0.010157477783094
1015 => 0.010137850868663
1016 => 0.010012994452796
1017 => 0.010107696943797
1018 => 0.0097481985394705
1019 => 0.009840849463892
1020 => 0.0093694839527925
1021 => 0.0095825608497721
1022 => 0.0097641453374483
1023 => 0.0098006011117536
1024 => 0.0098827378327413
1025 => 0.0091808885448874
1026 => 0.0094959982699213
1027 => 0.0096810957115903
1028 => 0.008844818736227
1029 => 0.0096645652046229
1030 => 0.0091686709102595
1031 => 0.0090003569386703
1101 => 0.0092269695277357
1102 => 0.0091386583813889
1103 => 0.0090627336435645
1104 => 0.0090203663353059
1105 => 0.0091867656103967
1106 => 0.0091790028853236
1107 => 0.0089067413745674
1108 => 0.0085515873325849
1109 => 0.0086707886866083
1110 => 0.0086274817171729
1111 => 0.008470531673229
1112 => 0.0085762970526266
1113 => 0.0081105598483931
1114 => 0.0073092831954227
1115 => 0.0078386310961426
1116 => 0.0078182517777846
1117 => 0.00780797560134
1118 => 0.0082057659186296
1119 => 0.0081675275582063
1120 => 0.0080981245596069
1121 => 0.0084692570327333
1122 => 0.0083337886876059
1123 => 0.008751270206932
1124 => 0.0090262505365719
1125 => 0.0089565066302935
1126 => 0.0092151269594151
1127 => 0.0086735348450521
1128 => 0.0088534300205393
1129 => 0.0088905061668833
1130 => 0.0084646773156243
1201 => 0.0081737838268733
1202 => 0.0081543845476022
1203 => 0.0076500153257001
1204 => 0.0079194452929141
1205 => 0.0081565325142928
1206 => 0.008042986133964
1207 => 0.0080070407420535
1208 => 0.0081906779537198
1209 => 0.0082049481378127
1210 => 0.0078795864282099
1211 => 0.0079472394305016
1212 => 0.0082293636964341
1213 => 0.0079401306228564
1214 => 0.0073781980068494
1215 => 0.0072388309487534
1216 => 0.0072202368141589
1217 => 0.0068422622992618
1218 => 0.0072481441219849
1219 => 0.0070709658294097
1220 => 0.0076306699327329
1221 => 0.007310969950668
1222 => 0.0072971883234175
1223 => 0.0072763553725031
1224 => 0.0069510170936006
1225 => 0.007022245500354
1226 => 0.007259019572795
1227 => 0.0073435032292927
1228 => 0.0073346908917658
1229 => 0.0072578592506684
1230 => 0.0072930323825211
1231 => 0.0071797274696919
]
'min_raw' => 0.0039644128532095
'max_raw' => 0.012328001552939
'avg_raw' => 0.0081462072030745
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003964'
'max' => '$0.012328'
'avg' => '$0.008146'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.002258395505268
'max_diff' => 0.0076997408837652
'year' => 2033
]
8 => [
'items' => [
101 => 0.007139717146734
102 => 0.0070134335617728
103 => 0.0068278315786104
104 => 0.0068536406727323
105 => 0.006485914578687
106 => 0.0062855578859502
107 => 0.0062301017940595
108 => 0.0061559435903135
109 => 0.0062384781605
110 => 0.006484872856865
111 => 0.006187668577498
112 => 0.0056781326869794
113 => 0.0057087566622065
114 => 0.0057775596422019
115 => 0.0056493457441578
116 => 0.0055280020498358
117 => 0.0056335005471236
118 => 0.005417603473218
119 => 0.0058036497721229
120 => 0.0057932083016198
121 => 0.0059371024889086
122 => 0.0060270824772262
123 => 0.0058197077355212
124 => 0.0057675535487833
125 => 0.0057972629438248
126 => 0.0053062328222836
127 => 0.0058969748521663
128 => 0.0059020836137718
129 => 0.0058583392952862
130 => 0.0061728911890848
131 => 0.0068366937961957
201 => 0.0065869445540026
202 => 0.0064902340987146
203 => 0.0063063874525172
204 => 0.0065513521928415
205 => 0.0065325427228298
206 => 0.0064474791661574
207 => 0.0063960324616675
208 => 0.0064908245921323
209 => 0.0063842866676848
210 => 0.0063651495289877
211 => 0.0062491992898953
212 => 0.0062078103299391
213 => 0.0061771675917294
214 => 0.0061434329478539
215 => 0.0062178431660938
216 => 0.0060492198220827
217 => 0.0058458765995555
218 => 0.0058289708108065
219 => 0.0058756491799146
220 => 0.0058549974763801
221 => 0.0058288719383953
222 => 0.0057789911715152
223 => 0.0057641926135159
224 => 0.0058122807477741
225 => 0.005757992047909
226 => 0.0058380979818185
227 => 0.0058163136002586
228 => 0.0056946278157091
301 => 0.0055429622743127
302 => 0.005541612132865
303 => 0.0055089360407525
304 => 0.0054673181245639
305 => 0.0054557409723692
306 => 0.0056246157579413
307 => 0.0059741815100786
308 => 0.0059055533885346
309 => 0.0059551442396429
310 => 0.0061990821452268
311 => 0.0062766226699432
312 => 0.0062215862421475
313 => 0.0061462489852817
314 => 0.0061495634422408
315 => 0.0064070136550897
316 => 0.0064230705090702
317 => 0.0064636409989416
318 => 0.0065157855436453
319 => 0.0062304666835899
320 => 0.0061361249495904
321 => 0.0060914206021414
322 => 0.0059537485147579
323 => 0.0061022160578882
324 => 0.0060157103785203
325 => 0.0060273829501218
326 => 0.0060197811725534
327 => 0.0060239322571357
328 => 0.0058035418643147
329 => 0.0058838405400807
330 => 0.0057503284174355
331 => 0.0055715706726527
401 => 0.0055709714140117
402 => 0.0056147221188014
403 => 0.0055886974876272
404 => 0.005518665874292
405 => 0.0055286135344264
406 => 0.0054414615642295
407 => 0.0055391953615457
408 => 0.0055419980171444
409 => 0.0055043651815817
410 => 0.0056549375810124
411 => 0.0057166272159145
412 => 0.0056918564773737
413 => 0.0057148892348648
414 => 0.0059084051968221
415 => 0.0059399567423145
416 => 0.0059539698546441
417 => 0.0059351941405041
418 => 0.0057184263514071
419 => 0.0057280409246214
420 => 0.0056574955657446
421 => 0.0055978921713806
422 => 0.0056002759945765
423 => 0.0056309198871786
424 => 0.0057647435634121
425 => 0.0060463676007091
426 => 0.00605705502706
427 => 0.0060700084995716
428 => 0.0060173202169734
429 => 0.0060014289267829
430 => 0.0060223936404343
501 => 0.0061281568217546
502 => 0.0064002084385341
503 => 0.0063040472274476
504 => 0.006225866665996
505 => 0.0062944520957171
506 => 0.0062838939064019
507 => 0.0061947721631954
508 => 0.0061922708126928
509 => 0.0060212176935347
510 => 0.005957983250073
511 => 0.0059051398161003
512 => 0.005847436165715
513 => 0.0058132275075227
514 => 0.0058657875540631
515 => 0.0058778086585791
516 => 0.005762885198226
517 => 0.0057472215552366
518 => 0.0058410705337562
519 => 0.0057997710973523
520 => 0.0058422485918705
521 => 0.0058521037349639
522 => 0.0058505168299426
523 => 0.0058073954751269
524 => 0.0058348797407891
525 => 0.005769871259044
526 => 0.0056991842991044
527 => 0.0056540904226162
528 => 0.0056147400345455
529 => 0.0056365739169051
530 => 0.0055587401130025
531 => 0.005533839512649
601 => 0.0058255686899983
602 => 0.0060410721699234
603 => 0.0060379386639765
604 => 0.0060188642523974
605 => 0.0059905235458938
606 => 0.0061260835225505
607 => 0.0060788571372906
608 => 0.0061132182784637
609 => 0.0061219646310248
610 => 0.0061484372059944
611 => 0.0061578988761514
612 => 0.0061292991373846
613 => 0.0060333149209197
614 => 0.0057941313793944
615 => 0.0056827907951508
616 => 0.0056460465478263
617 => 0.0056473821314293
618 => 0.0056105407733512
619 => 0.005621392204419
620 => 0.0056067670884697
621 => 0.0055790706570572
622 => 0.0056348637403119
623 => 0.0056412933734084
624 => 0.0056282706010991
625 => 0.0056313379354092
626 => 0.0055235149427867
627 => 0.0055317124907365
628 => 0.0054860675020577
629 => 0.005477509616939
630 => 0.0053621230603227
701 => 0.0051576990497282
702 => 0.0052709697955164
703 => 0.0051341546628813
704 => 0.0050823406990649
705 => 0.0053276199450473
706 => 0.005303000711738
707 => 0.0052608632860358
708 => 0.0051985332512134
709 => 0.0051754144349901
710 => 0.0050349518261455
711 => 0.0050266525458761
712 => 0.0050962696076289
713 => 0.0050641437290068
714 => 0.0050190268283997
715 => 0.0048556179878275
716 => 0.0046718923482167
717 => 0.0046774378704183
718 => 0.0047358775780415
719 => 0.0049057989096242
720 => 0.0048394077057059
721 => 0.004791240125512
722 => 0.0047822197856538
723 => 0.0048951282243396
724 => 0.0050549173201293
725 => 0.0051298867887943
726 => 0.0050555943222039
727 => 0.0049702511367753
728 => 0.0049754455810301
729 => 0.0050100018915052
730 => 0.0050136332711362
731 => 0.0049580836308434
801 => 0.004973720529202
802 => 0.0049499666507274
803 => 0.0048041891423752
804 => 0.0048015524895145
805 => 0.004765776337985
806 => 0.0047646930503351
807 => 0.0047038288918041
808 => 0.0046953135752916
809 => 0.004574464094338
810 => 0.0046540075886676
811 => 0.0046006539888922
812 => 0.0045202375291889
813 => 0.0045063737012252
814 => 0.0045059569378155
815 => 0.0045885266611395
816 => 0.0046530427133761
817 => 0.004601582097603
818 => 0.0045898655129135
819 => 0.0047149679843114
820 => 0.0046990475544917
821 => 0.0046852605649435
822 => 0.0050406099591835
823 => 0.0047593231853835
824 => 0.004636666096719
825 => 0.0044848546575473
826 => 0.0045342852276413
827 => 0.0045447009750463
828 => 0.004179621829907
829 => 0.0040315092661917
830 => 0.0039806826158288
831 => 0.0039514311599617
901 => 0.003964761415717
902 => 0.0038314427365022
903 => 0.003921035093822
904 => 0.0038055923867694
905 => 0.003786238041249
906 => 0.0039926639020661
907 => 0.0040213868546765
908 => 0.0038988458153189
909 => 0.0039775370001787
910 => 0.0039490024826592
911 => 0.0038075713206412
912 => 0.0038021696905493
913 => 0.0037312045049944
914 => 0.0036201577311686
915 => 0.0035694063757475
916 => 0.0035429746292007
917 => 0.0035538808829704
918 => 0.0035483663473275
919 => 0.0035123802720825
920 => 0.0035504290270368
921 => 0.0034532301809596
922 => 0.0034145248172673
923 => 0.0033970425024451
924 => 0.0033107729319948
925 => 0.0034480661828334
926 => 0.0034751146828234
927 => 0.0035022164767141
928 => 0.0037381190893521
929 => 0.0037263340614786
930 => 0.0038328649739139
1001 => 0.0038287253785545
1002 => 0.0037983410366415
1003 => 0.0036701544960925
1004 => 0.00372124736645
1005 => 0.0035639914530847
1006 => 0.0036818182757407
1007 => 0.0036280470344463
1008 => 0.00366363816497
1009 => 0.0035996421031654
1010 => 0.0036350601661007
1011 => 0.0034815288856042
1012 => 0.00333816353612
1013 => 0.0033958579378479
1014 => 0.0034585783506813
1015 => 0.003594572186568
1016 => 0.0035135753798387
1017 => 0.0035427048943669
1018 => 0.0034451258969192
1019 => 0.0032437925531219
1020 => 0.0032449320779831
1021 => 0.0032139613293252
1022 => 0.0031871980806814
1023 => 0.0035228788374349
1024 => 0.0034811316290052
1025 => 0.0034146129161119
1026 => 0.0035036508566681
1027 => 0.0035271939013733
1028 => 0.0035278641387585
1029 => 0.0035928239217864
1030 => 0.0036274929696331
1031 => 0.0036336035395804
1101 => 0.0037358191617238
1102 => 0.0037700804900097
1103 => 0.0039111980523744
1104 => 0.0036245515431425
1105 => 0.0036186482469178
1106 => 0.0035049038030858
1107 => 0.003432765278579
1108 => 0.003509843189576
1109 => 0.0035781236965352
1110 => 0.0035070254687682
1111 => 0.003516309396349
1112 => 0.0034208658345105
1113 => 0.0034549824168308
1114 => 0.003484368213525
1115 => 0.0034681431038077
1116 => 0.0034438533292568
1117 => 0.0035725254736252
1118 => 0.0035652652869697
1119 => 0.0036850877459653
1120 => 0.0037784979213386
1121 => 0.0039459056546738
1122 => 0.0037712069577761
1123 => 0.0037648402428967
1124 => 0.0038270759020958
1125 => 0.0037700709620545
1126 => 0.003806096116417
1127 => 0.0039401014453593
1128 => 0.003942932766797
1129 => 0.0038955044847636
1130 => 0.0038926184694916
1201 => 0.0039017275898646
1202 => 0.0039550799924079
1203 => 0.0039364370236056
1204 => 0.0039580111390859
1205 => 0.0039849899008486
1206 => 0.0040965854982571
1207 => 0.0041234908189872
1208 => 0.0040581248384225
1209 => 0.0040640266545956
1210 => 0.0040395779835281
1211 => 0.0040159608736179
1212 => 0.0040690486876942
1213 => 0.0041660677113622
1214 => 0.0041654641610513
1215 => 0.0041879706887619
1216 => 0.0042019920690715
1217 => 0.004141802040505
1218 => 0.004102620545157
1219 => 0.0041176452236567
1220 => 0.0041416700117728
1221 => 0.0041098543086687
1222 => 0.0039134730506428
1223 => 0.0039730425794445
1224 => 0.0039631272970507
1225 => 0.0039490067291825
1226 => 0.0040089043510302
1227 => 0.0040031270792818
1228 => 0.0038300753607512
1229 => 0.0038411535703066
1230 => 0.0038307490633665
1231 => 0.003864368153852
]
'min_raw' => 0.0031871980806814
'max_raw' => 0.007139717146734
'avg_raw' => 0.0051634576137077
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003187'
'max' => '$0.007139'
'avg' => '$0.005163'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00077721477252808
'max_diff' => -0.0051882844062054
'year' => 2034
]
9 => [
'items' => [
101 => 0.0037682554208399
102 => 0.0037978190501852
103 => 0.0038163610813689
104 => 0.0038272824801826
105 => 0.0038667380615711
106 => 0.0038621084044898
107 => 0.0038664502755866
108 => 0.0039249524868985
109 => 0.0042208365961794
110 => 0.004236940915416
111 => 0.0041576373576167
112 => 0.004189317564764
113 => 0.0041284984947408
114 => 0.0041693267438997
115 => 0.0041972603950492
116 => 0.004071033596837
117 => 0.004063559265052
118 => 0.0040024891730923
119 => 0.0040353047813246
120 => 0.0039830927891012
121 => 0.0039959037856949
122 => 0.0039600831223764
123 => 0.0040245531845268
124 => 0.0040966407316457
125 => 0.0041148528928715
126 => 0.0040669445375149
127 => 0.0040322557309223
128 => 0.0039713536137489
129 => 0.0040726351919005
130 => 0.0041022530118521
131 => 0.0040724796221009
201 => 0.0040655804771342
202 => 0.0040525066098886
203 => 0.0040683541598745
204 => 0.0041020917068439
205 => 0.0040861817027278
206 => 0.0040966905407447
207 => 0.004056641686891
208 => 0.004141821965909
209 => 0.0042771087487401
210 => 0.0042775437178685
211 => 0.0042616336279915
212 => 0.0042551235620015
213 => 0.0042714482797203
214 => 0.0042803037694078
215 => 0.004333094913069
216 => 0.0043897419135094
217 => 0.0046540887475422
218 => 0.0045798612143467
219 => 0.0048144054515642
220 => 0.0049998994914457
221 => 0.0050555210433349
222 => 0.0050043518327931
223 => 0.0048293047276361
224 => 0.0048207160815508
225 => 0.0050823103596369
226 => 0.0050083979943006
227 => 0.004999606353631
228 => 0.0049060781506183
301 => 0.0049613649022921
302 => 0.0049492728786933
303 => 0.0049301850278806
304 => 0.0050356682987658
305 => 0.0052331235653062
306 => 0.0052023483102921
307 => 0.0051793760100471
308 => 0.0050787180775095
309 => 0.0051393366356603
310 => 0.0051177515281748
311 => 0.0052104948481802
312 => 0.0051555557599251
313 => 0.0050078380354383
314 => 0.0050313625699468
315 => 0.0050278068838807
316 => 0.0051009826511637
317 => 0.0050790171021595
318 => 0.0050235177579031
319 => 0.0052324486846713
320 => 0.0052188818724219
321 => 0.0052381165103865
322 => 0.0052465841928695
323 => 0.0053737567662174
324 => 0.0054258553004496
325 => 0.0054376825798335
326 => 0.0054871721579088
327 => 0.005436451234047
328 => 0.0056393710929001
329 => 0.0057743009583354
330 => 0.0059310289404658
331 => 0.0061600506468686
401 => 0.0062461649270453
402 => 0.0062306091531104
403 => 0.0064042507971164
404 => 0.0067162809715583
405 => 0.0062936793726492
406 => 0.0067386798824573
407 => 0.0065977978588301
408 => 0.0062637691151691
409 => 0.0062422616020175
410 => 0.0064684697453782
411 => 0.0069701776356251
412 => 0.0068445054994421
413 => 0.0069703831902191
414 => 0.0068235401775405
415 => 0.0068162481842709
416 => 0.0069632513528531
417 => 0.0073067322689709
418 => 0.0071435573609129
419 => 0.0069096061180829
420 => 0.0070823520751041
421 => 0.0069327035402487
422 => 0.006595503507232
423 => 0.006844409400328
424 => 0.0066779731180464
425 => 0.0067265480734556
426 => 0.0070763723832829
427 => 0.0070342805968041
428 => 0.0070887512661021
429 => 0.0069926119605368
430 => 0.0069028026893619
501 => 0.0067351670153898
502 => 0.0066855383566655
503 => 0.0066992539324848
504 => 0.0066855315599072
505 => 0.0065917409409712
506 => 0.0065714868657419
507 => 0.0065377291863416
508 => 0.0065481921027541
509 => 0.006484717789324
510 => 0.0066045069332289
511 => 0.0066267408539159
512 => 0.0067139134032643
513 => 0.0067229639465214
514 => 0.006965738255633
515 => 0.0068320222458309
516 => 0.006921730489691
517 => 0.0069137061399934
518 => 0.006271008530908
519 => 0.0063595665908709
520 => 0.0064973351411232
521 => 0.0064352705959754
522 => 0.0063475258500034
523 => 0.0062766672630553
524 => 0.0061693092581665
525 => 0.0063204135884196
526 => 0.0065190997145484
527 => 0.0067280029545621
528 => 0.006978986509556
529 => 0.006922969901852
530 => 0.006723310991582
531 => 0.0067322675444458
601 => 0.0067876334299761
602 => 0.0067159295776932
603 => 0.0066947827118295
604 => 0.0067847281753386
605 => 0.0067853475803127
606 => 0.0067028436325612
607 => 0.0066111555926985
608 => 0.0066107714164637
609 => 0.0065944564153715
610 => 0.0068264425799908
611 => 0.0069540115140847
612 => 0.0069686370867909
613 => 0.0069530270965111
614 => 0.0069590347622314
615 => 0.0068848052102718
616 => 0.0070544719539616
617 => 0.0072101749362731
618 => 0.0071684432109046
619 => 0.0071058814220628
620 => 0.0070560479438664
621 => 0.0071567040271722
622 => 0.00715222197023
623 => 0.0072088150065549
624 => 0.00720624761953
625 => 0.0071872175099857
626 => 0.0071684438905297
627 => 0.0072428791695989
628 => 0.007221443004621
629 => 0.007199973543358
630 => 0.0071569132519851
701 => 0.0071627658607384
702 => 0.0071002148740715
703 => 0.007071275925501
704 => 0.0066361035732473
705 => 0.0065198113010583
706 => 0.0065563992172365
707 => 0.0065684449092472
708 => 0.0065178343633579
709 => 0.0065903968853806
710 => 0.0065790880931861
711 => 0.0066230839881927
712 => 0.0065955972630723
713 => 0.006596725327859
714 => 0.0066775579256506
715 => 0.0067010239726759
716 => 0.0066890889517646
717 => 0.0066974478313023
718 => 0.0068900746821863
719 => 0.0068626893038505
720 => 0.0068481413674205
721 => 0.006852171245234
722 => 0.0069013915356011
723 => 0.0069151705295756
724 => 0.0068567879638727
725 => 0.0068843215193638
726 => 0.0070015559041165
727 => 0.0070425813038884
728 => 0.0071735146866514
729 => 0.0071178918584984
730 => 0.0072199899668729
731 => 0.0075338047442059
801 => 0.0077845017026704
802 => 0.0075539504191765
803 => 0.0080143234573314
804 => 0.008372789904125
805 => 0.00835903136484
806 => 0.0082965244483632
807 => 0.0078884199290122
808 => 0.0075128760658098
809 => 0.0078270344538133
810 => 0.0078278353081516
811 => 0.0078008488240088
812 => 0.0076332380887115
813 => 0.0077950163337378
814 => 0.0078078577033357
815 => 0.0078006699511567
816 => 0.0076721631933883
817 => 0.0074759571262948
818 => 0.007514295322154
819 => 0.0075770940690492
820 => 0.0074582029399855
821 => 0.0074202100203821
822 => 0.0074908460863735
823 => 0.0077184502086066
824 => 0.0076754229677193
825 => 0.007674299352573
826 => 0.0078583881354785
827 => 0.007726620295764
828 => 0.0075147788895796
829 => 0.0074612861406732
830 => 0.0072714229190889
831 => 0.0074025621225068
901 => 0.0074072815889752
902 => 0.0073354579874734
903 => 0.0075206069789991
904 => 0.0075189007984473
905 => 0.0076946722101103
906 => 0.0080306811324826
907 => 0.0079313067601423
908 => 0.0078157451770114
909 => 0.0078283099252728
910 => 0.0079661142012598
911 => 0.0078827945902325
912 => 0.0079127569032829
913 => 0.0079660688497105
914 => 0.0079982332706515
915 => 0.0078236819600818
916 => 0.0077829856998336
917 => 0.0076997354338124
918 => 0.0076780169933472
919 => 0.0077458225979478
920 => 0.0077279582167429
921 => 0.0074068849360932
922 => 0.0073733309918304
923 => 0.007374360043397
924 => 0.0072899870551452
925 => 0.0071612979962238
926 => 0.0074994851594448
927 => 0.0074723239973118
928 => 0.007442340176424
929 => 0.0074460130233974
930 => 0.0075928086087252
1001 => 0.0075076597558804
1002 => 0.007734041936791
1003 => 0.007687504566067
1004 => 0.0076397736873856
1005 => 0.0076331758260337
1006 => 0.0076148035099485
1007 => 0.0075517980020548
1008 => 0.0074757150652291
1009 => 0.0074254785201456
1010 => 0.0068496114255249
1011 => 0.0069564890086217
1012 => 0.0070794419257764
1013 => 0.0071218847800753
1014 => 0.0070492833408409
1015 => 0.0075546647493868
1016 => 0.0076470028027045
1017 => 0.0073673048161428
1018 => 0.0073149847428507
1019 => 0.0075580948446815
1020 => 0.0074114697342763
1021 => 0.0074774950125137
1022 => 0.0073347844748606
1023 => 0.0076247612696341
1024 => 0.0076225521323019
1025 => 0.0075097446097121
1026 => 0.0076050887553324
1027 => 0.0075885203637267
1028 => 0.0074611609485555
1029 => 0.0076287987902619
1030 => 0.0076288819365399
1031 => 0.0075203071486942
1101 => 0.0073935155665678
1102 => 0.0073708482263671
1103 => 0.0073537714304545
1104 => 0.0074732951675459
1105 => 0.007580459776481
1106 => 0.0077798665453496
1107 => 0.0078300021448311
1108 => 0.0080256847273234
1109 => 0.0079091652770613
1110 => 0.007960816840183
1111 => 0.0080168919185113
1112 => 0.0080437763731546
1113 => 0.0079999695970127
1114 => 0.0083039451937875
1115 => 0.008329610047727
1116 => 0.0083382152512527
1117 => 0.0082357163903196
1118 => 0.0083267593689853
1119 => 0.0082841633742942
1120 => 0.0083949863189724
1121 => 0.0084123647717563
1122 => 0.0083976458405047
1123 => 0.0084031620357185
1124 => 0.0081437724888411
1125 => 0.0081303217724466
1126 => 0.0079469202999888
1127 => 0.0080216577556506
1128 => 0.0078819396645504
1129 => 0.0079262457104941
1130 => 0.0079457753933825
1201 => 0.0079355741953413
1202 => 0.0080258832992586
1203 => 0.0079491021119979
1204 => 0.0077464639348211
1205 => 0.0075437705490085
1206 => 0.0075412258986601
1207 => 0.0074878603080111
1208 => 0.0074492867603673
1209 => 0.0074567173941136
1210 => 0.0074829039166284
1211 => 0.0074477647520742
1212 => 0.0074552634744327
1213 => 0.0075797922293095
1214 => 0.0076047655830016
1215 => 0.0075198963694367
1216 => 0.0071791342304046
1217 => 0.007095510346749
1218 => 0.0071556175359869
1219 => 0.00712689017093
1220 => 0.0057519565989123
1221 => 0.0060749768469799
1222 => 0.0058830491843092
1223 => 0.005971498281435
1224 => 0.0057755898372756
1225 => 0.0058690876152698
1226 => 0.0058518219896664
1227 => 0.0063712289896951
1228 => 0.0063631191638107
1229 => 0.0063670009082991
1230 => 0.0061817151300332
1231 => 0.0064768804058679
]
'min_raw' => 0.0037682554208399
'max_raw' => 0.0084123647717563
'avg_raw' => 0.0060903100962981
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003768'
'max' => '$0.008412'
'avg' => '$0.00609'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00058105734015843
'max_diff' => 0.0012726476250223
'year' => 2035
]
10 => [
'items' => [
101 => 0.006622289434544
102 => 0.0065953780932721
103 => 0.0066021510980881
104 => 0.0064857684353095
105 => 0.0063681277468747
106 => 0.0062376461186283
107 => 0.0064800648558934
108 => 0.0064531120305354
109 => 0.0065149321145863
110 => 0.0066721579941519
111 => 0.006695310102161
112 => 0.0067264267701107
113 => 0.006715273659686
114 => 0.0069809859984899
115 => 0.0069488064810342
116 => 0.0070263498594232
117 => 0.0068668372468468
118 => 0.0066863335846404
119 => 0.0067206414297165
120 => 0.0067173373083494
121 => 0.0066752720510523
122 => 0.0066372974176292
123 => 0.0065740803522663
124 => 0.0067741085014397
125 => 0.0067659877238775
126 => 0.0068974536732374
127 => 0.0068742157896959
128 => 0.0067190275161314
129 => 0.0067245700956817
130 => 0.0067618466068302
131 => 0.0068908610375309
201 => 0.0069291613045351
202 => 0.006911419094857
203 => 0.0069534135891535
204 => 0.006986604325192
205 => 0.0069575818345864
206 => 0.007368479098546
207 => 0.0071978459068927
208 => 0.0072810113372464
209 => 0.0073008458023466
210 => 0.0072500402370663
211 => 0.0072610581449647
212 => 0.0072777472732306
213 => 0.0073790803919946
214 => 0.0076450078166057
215 => 0.0077627852627368
216 => 0.0081171245204588
217 => 0.0077530054853768
218 => 0.0077314001687094
219 => 0.0077952273690456
220 => 0.0080032620239481
221 => 0.0081718545720451
222 => 0.0082277864465863
223 => 0.0082351787671415
224 => 0.0083401106820615
225 => 0.0084002556988293
226 => 0.0083273691876069
227 => 0.0082656055008817
228 => 0.0080443756414231
229 => 0.0080699836000443
301 => 0.008246397040754
302 => 0.0084955914164562
303 => 0.0087094261150645
304 => 0.0086345486565035
305 => 0.0092058108100761
306 => 0.0092624491192062
307 => 0.0092546235362202
308 => 0.009383654033329
309 => 0.0091275547731718
310 => 0.0090180673777651
311 => 0.0082789595109993
312 => 0.0084866186737424
313 => 0.0087884634621845
314 => 0.0087485131725743
315 => 0.0085293054188733
316 => 0.0087092598263265
317 => 0.0086497612715279
318 => 0.0086028322927609
319 => 0.0088178230421226
320 => 0.0085814318818662
321 => 0.0087861052795311
322 => 0.0085236095299506
323 => 0.008634890690427
324 => 0.0085717221216765
325 => 0.0086125999273067
326 => 0.0083736291108635
327 => 0.0085025719627276
328 => 0.0083682646643012
329 => 0.0083682009851544
330 => 0.0083652361440976
331 => 0.0085232480850866
401 => 0.0085284008488094
402 => 0.0084116297856758
403 => 0.0083948012511714
404 => 0.0084570251634261
405 => 0.0083841772586443
406 => 0.0084182623347924
407 => 0.0083852096608778
408 => 0.0083777688077838
409 => 0.0083184788243739
410 => 0.0082929350693088
411 => 0.0083029514338513
412 => 0.0082687604178779
413 => 0.0082481590940109
414 => 0.0083611380222527
415 => 0.0083007779384501
416 => 0.0083518869737245
417 => 0.0082936417775548
418 => 0.0080917385514068
419 => 0.0079756218709612
420 => 0.0075942453932067
421 => 0.0077024032892018
422 => 0.007774112086144
423 => 0.0077504123291824
424 => 0.0078013285777244
425 => 0.0078044544218603
426 => 0.0077879010304295
427 => 0.0077687343237735
428 => 0.0077594050309587
429 => 0.0078289379362539
430 => 0.0078693041281478
501 => 0.0077813090232571
502 => 0.0077606930013636
503 => 0.0078496609107509
504 => 0.0079039312840821
505 => 0.0083046332288711
506 => 0.0082749479345509
507 => 0.0083494521978498
508 => 0.0083410641611634
509 => 0.0084191564985606
510 => 0.0085468044659207
511 => 0.0082872604573445
512 => 0.0083323083228768
513 => 0.0083212636265554
514 => 0.0084418467249173
515 => 0.0084422231721883
516 => 0.0083699275811479
517 => 0.0084091201939129
518 => 0.0083872439526605
519 => 0.0084267772773549
520 => 0.0082745514693469
521 => 0.00845994607174
522 => 0.0085650528647327
523 => 0.0085665122726553
524 => 0.0086163320583547
525 => 0.0086669518459927
526 => 0.0087641121203095
527 => 0.0086642420986759
528 => 0.0084845856519076
529 => 0.0084975562670775
530 => 0.0083922237580709
531 => 0.0083939944165772
601 => 0.0083845425027017
602 => 0.0084129084077489
603 => 0.0082807761903516
604 => 0.0083117873576726
605 => 0.008268371541822
606 => 0.0083322139453721
607 => 0.0082635300726796
608 => 0.0083212583004684
609 => 0.008346171889861
610 => 0.008438103571071
611 => 0.0082499516886175
612 => 0.0078662972635323
613 => 0.0079469460750455
614 => 0.00782766014799
615 => 0.0078387005146925
616 => 0.007861003812493
617 => 0.0077887115271368
618 => 0.007802502616991
619 => 0.007802009902215
620 => 0.0077977639524615
621 => 0.0077789579369798
622 => 0.0077516854938746
623 => 0.0078603305131905
624 => 0.0078787914190594
625 => 0.0079198277259835
626 => 0.008041923940197
627 => 0.0080297236491701
628 => 0.0080496228300202
629 => 0.0080061830299535
630 => 0.0078407155624293
701 => 0.0078497012420039
702 => 0.0077376496737232
703 => 0.0079169623154563
704 => 0.0078744987150827
705 => 0.0078471221556798
706 => 0.0078396522078046
707 => 0.0079620510749171
708 => 0.0079986747343243
709 => 0.0079758533275041
710 => 0.007929045956309
711 => 0.0080189299463606
712 => 0.0080429791101973
713 => 0.0080483628310813
714 => 0.0082076200279072
715 => 0.0080572635392571
716 => 0.0080934558404902
717 => 0.0083758178431622
718 => 0.0081197544700316
719 => 0.0082553969496735
720 => 0.0082487579561444
721 => 0.008318148058838
722 => 0.0082430659423782
723 => 0.0082439966751969
724 => 0.0083056103854961
725 => 0.0082190850414721
726 => 0.008197660149483
727 => 0.0081680618146482
728 => 0.0082326886959266
729 => 0.0082714295884306
730 => 0.0085836527299624
731 => 0.0087853631184971
801 => 0.0087766063385575
802 => 0.0088566269152002
803 => 0.0088205769125182
804 => 0.0087041619443477
805 => 0.0089028680997217
806 => 0.0088399891579427
807 => 0.0088451728215051
808 => 0.0088449798852884
809 => 0.0088867888845989
810 => 0.0088571633768489
811 => 0.0087987684600776
812 => 0.008837533731007
813 => 0.0089526527268295
814 => 0.0093099856221446
815 => 0.0095099538443942
816 => 0.0092979472840777
817 => 0.009444186570503
818 => 0.0093564951090335
819 => 0.0093405589618894
820 => 0.0094324080407629
821 => 0.0095244178892902
822 => 0.0095185572597085
823 => 0.0094517628344357
824 => 0.0094140323584449
825 => 0.009699740163284
826 => 0.0099102448069839
827 => 0.0098958898015246
828 => 0.0099592481271241
829 => 0.010145270130683
830 => 0.010162277651385
831 => 0.01016013509469
901 => 0.010117980180079
902 => 0.010301143000593
903 => 0.010453940647909
904 => 0.01010822253532
905 => 0.010239867466811
906 => 0.010298967117893
907 => 0.010385742939757
908 => 0.010532148296557
909 => 0.010691183346146
910 => 0.010713672645888
911 => 0.010697715411509
912 => 0.010592827521214
913 => 0.010766845570156
914 => 0.010868781262001
915 => 0.010929481633738
916 => 0.011083407676884
917 => 0.010299332097218
918 => 0.0097443244308452
919 => 0.0096576519693332
920 => 0.009833903828044
921 => 0.0098803800376038
922 => 0.0098616455358065
923 => 0.0092369339482146
924 => 0.0096543629921116
925 => 0.010103481544914
926 => 0.01012073401762
927 => 0.010345572155779
928 => 0.01041878866999
929 => 0.010599812841416
930 => 0.010588489730206
1001 => 0.010632566235225
1002 => 0.01062243381002
1003 => 0.01095774296845
1004 => 0.011327638764091
1005 => 0.011314830448885
1006 => 0.011261653551853
1007 => 0.011340630311954
1008 => 0.011722402413498
1009 => 0.011687254956161
1010 => 0.01172139771711
1011 => 0.012171528540563
1012 => 0.012756762641416
1013 => 0.012484862645027
1014 => 0.013074807400074
1015 => 0.013446146351749
1016 => 0.014088338671506
1017 => 0.014007933030209
1018 => 0.014257933787665
1019 => 0.013863990151122
1020 => 0.012959415932476
1021 => 0.012816263599804
1022 => 0.013102858195007
1023 => 0.013807423041823
1024 => 0.013080668940648
1025 => 0.013227690348789
1026 => 0.013185348173354
1027 => 0.013183091938767
1028 => 0.013269203236157
1029 => 0.01314429430803
1030 => 0.012635392864155
1031 => 0.012868619396908
1101 => 0.012778559432154
1102 => 0.012878487677464
1103 => 0.013417759203856
1104 => 0.013179334407411
1105 => 0.012928173252413
1106 => 0.013243185077902
1107 => 0.013644303381557
1108 => 0.013619202118994
1109 => 0.013570495178106
1110 => 0.013845053653677
1111 => 0.014298543817236
1112 => 0.014421120386175
1113 => 0.014511603903398
1114 => 0.014524080051691
1115 => 0.014652592132997
1116 => 0.0139615502826
1117 => 0.015058251446393
1118 => 0.015247621441622
1119 => 0.015212027731101
1120 => 0.015422504510891
1121 => 0.015360576902996
1122 => 0.015270853515301
1123 => 0.015604503980962
1124 => 0.015222000646286
1125 => 0.014679085318544
1126 => 0.014381231232097
1127 => 0.014773469520334
1128 => 0.01501299575573
1129 => 0.015171307360598
1130 => 0.015219212356576
1201 => 0.014015193894303
1202 => 0.013366294721062
1203 => 0.013782231651465
1204 => 0.01428970341299
1205 => 0.013958731251342
1206 => 0.013971704733465
1207 => 0.013499825408909
1208 => 0.014331454262586
1209 => 0.014210292933705
1210 => 0.01483887812227
1211 => 0.014688861222308
1212 => 0.015201448042047
1213 => 0.015066466753754
1214 => 0.015626766534753
1215 => 0.015850285286905
1216 => 0.016225608059683
1217 => 0.016501697019177
1218 => 0.016663821736932
1219 => 0.016654088376993
1220 => 0.017296507278953
1221 => 0.016917695296874
1222 => 0.016441818168254
1223 => 0.01643321105237
1224 => 0.016679674560514
1225 => 0.017196194459621
1226 => 0.017330120554401
1227 => 0.017404966970848
1228 => 0.017290337078636
1229 => 0.016879163821789
1230 => 0.016701621294178
1231 => 0.016852892671604
]
'min_raw' => 0.0062376461186283
'max_raw' => 0.017404966970848
'avg_raw' => 0.011821306544738
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.006237'
'max' => '$0.0174049'
'avg' => '$0.011821'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0024693906977885
'max_diff' => 0.0089926021990922
'year' => 2036
]
11 => [
'items' => [
101 => 0.016667900775909
102 => 0.016987248687438
103 => 0.017425781578999
104 => 0.017335226271039
105 => 0.01763793908874
106 => 0.017951215008744
107 => 0.018399213644452
108 => 0.018516337077167
109 => 0.01870993765764
110 => 0.018909216249425
111 => 0.018973219162397
112 => 0.0190954205822
113 => 0.019094776520397
114 => 0.019463038724075
115 => 0.019869243338864
116 => 0.020022576177288
117 => 0.020375156584422
118 => 0.019771374993096
119 => 0.02022935026586
120 => 0.020642455425758
121 => 0.020149934423801
122 => 0.020828759882323
123 => 0.020855117136626
124 => 0.021253080383825
125 => 0.020849668392255
126 => 0.020610123639398
127 => 0.021301680365272
128 => 0.02163630288109
129 => 0.021535511856077
130 => 0.020768487179064
131 => 0.020322045917807
201 => 0.019153623025007
202 => 0.020537670413641
203 => 0.021211799523428
204 => 0.020766741347527
205 => 0.020991202803964
206 => 0.022215791728408
207 => 0.022682035904576
208 => 0.022585060375226
209 => 0.022601447643333
210 => 0.022853024537862
211 => 0.023968655034133
212 => 0.023300143380655
213 => 0.023811195491085
214 => 0.024082255687721
215 => 0.024334031504706
216 => 0.023715749672756
217 => 0.022911374093752
218 => 0.022656594582491
219 => 0.020722489083072
220 => 0.020621810492433
221 => 0.020565296548634
222 => 0.020208984127035
223 => 0.019929020165845
224 => 0.019706382429511
225 => 0.019122114524115
226 => 0.019319287790822
227 => 0.018388086695809
228 => 0.018983836156658
301 => 0.017497616724381
302 => 0.01873538443083
303 => 0.018061723742602
304 => 0.018514068776701
305 => 0.01851249058749
306 => 0.01767957996359
307 => 0.017199174498125
308 => 0.01750530755838
309 => 0.017833506499845
310 => 0.017886755673904
311 => 0.018312274168383
312 => 0.018431027233702
313 => 0.018071199901733
314 => 0.017466818130085
315 => 0.017607202231159
316 => 0.017196329618798
317 => 0.016476291169623
318 => 0.016993435354486
319 => 0.017170011116422
320 => 0.017247997032193
321 => 0.016539921914404
322 => 0.016317429339336
323 => 0.016198976159263
324 => 0.017375414524005
325 => 0.017439862473285
326 => 0.017110137652747
327 => 0.018600525107371
328 => 0.018263204525027
329 => 0.018640074261055
330 => 0.017594463845423
331 => 0.017634407571401
401 => 0.017139398843991
402 => 0.017416570654845
403 => 0.017220674552598
404 => 0.017394177911594
405 => 0.017498175109595
406 => 0.017993102610944
407 => 0.018741035707882
408 => 0.01791917694662
409 => 0.017561081315103
410 => 0.01778324183089
411 => 0.0183748845604
412 => 0.019271253581241
413 => 0.018740585079795
414 => 0.018976086749401
415 => 0.01902753338747
416 => 0.01863623808092
417 => 0.019285681197331
418 => 0.019633723039483
419 => 0.019990741952419
420 => 0.020300731471078
421 => 0.019848140747578
422 => 0.020332477698055
423 => 0.019942187612952
424 => 0.019592057059166
425 => 0.019592588062689
426 => 0.019372946051708
427 => 0.018947361978759
428 => 0.018868877746076
429 => 0.019277162635959
430 => 0.019604568452922
501 => 0.019631535164175
502 => 0.019812803847164
503 => 0.019920076786541
504 => 0.020971497422925
505 => 0.021394387500686
506 => 0.021911489482873
507 => 0.022112929847206
508 => 0.02271919312348
509 => 0.022229586289593
510 => 0.02212365677131
511 => 0.020653060370276
512 => 0.020893870448561
513 => 0.021279430618612
514 => 0.020659418115469
515 => 0.021052673341507
516 => 0.021130310253412
517 => 0.020638350327863
518 => 0.020901127380432
519 => 0.020203269436776
520 => 0.018756247104028
521 => 0.019287292146841
522 => 0.01967832004618
523 => 0.019120275020431
524 => 0.020120549129761
525 => 0.019536209644939
526 => 0.019351002081493
527 => 0.018628441345224
528 => 0.018969462198829
529 => 0.019430697786279
530 => 0.019145707817628
531 => 0.019737104794039
601 => 0.02057468063245
602 => 0.021171587053405
603 => 0.021217410116589
604 => 0.020833639277539
605 => 0.021448634496309
606 => 0.021453114065073
607 => 0.020759396945971
608 => 0.020334499073154
609 => 0.020237961382457
610 => 0.020479131461147
611 => 0.020771956459129
612 => 0.021233659866019
613 => 0.021512657565098
614 => 0.022240135595351
615 => 0.022436970291908
616 => 0.022653231946872
617 => 0.02294222421053
618 => 0.023289233519146
619 => 0.022529996907145
620 => 0.022560162793133
621 => 0.021853172172385
622 => 0.021097651301403
623 => 0.021670997465472
624 => 0.022420571305948
625 => 0.022248618238737
626 => 0.022229270005993
627 => 0.022261808366716
628 => 0.022132161369501
629 => 0.021545772806041
630 => 0.021251292140458
701 => 0.021631247329091
702 => 0.021833176601989
703 => 0.02214635129417
704 => 0.022107745903043
705 => 0.022914450277597
706 => 0.023227911204074
707 => 0.023147714485332
708 => 0.023162472611623
709 => 0.023729978646165
710 => 0.024361162073093
711 => 0.024952348644401
712 => 0.025553729016789
713 => 0.0248287415056
714 => 0.024460637558431
715 => 0.024840426870514
716 => 0.024638905315601
717 => 0.025796907945306
718 => 0.025877085534904
719 => 0.027035004427839
720 => 0.02813400733965
721 => 0.027443743301424
722 => 0.028094631199296
723 => 0.028798619528514
724 => 0.030156727233566
725 => 0.02969936433731
726 => 0.029349031526568
727 => 0.029017968713212
728 => 0.029706857873063
729 => 0.030593102771938
730 => 0.030783991434808
731 => 0.031093303993738
801 => 0.030768099658963
802 => 0.031159772460117
803 => 0.032542549557941
804 => 0.032168910979998
805 => 0.03163828413392
806 => 0.032729853849328
807 => 0.033124888685964
808 => 0.035897450050826
809 => 0.039397923302763
810 => 0.037948704391114
811 => 0.037049127446652
812 => 0.037260549366851
813 => 0.038538803699961
814 => 0.038949338421991
815 => 0.037833363527708
816 => 0.038227544726633
817 => 0.040399521887749
818 => 0.041564717949318
819 => 0.039982225190998
820 => 0.035616190433368
821 => 0.031590506992145
822 => 0.032658299519645
823 => 0.032537244984487
824 => 0.034870763484437
825 => 0.032159999823484
826 => 0.032205642131394
827 => 0.034587415322684
828 => 0.033951999069178
829 => 0.032922706116462
830 => 0.031598021969783
831 => 0.029149220806194
901 => 0.026980249325731
902 => 0.031234101883219
903 => 0.031050668025812
904 => 0.030785028616911
905 => 0.031376180376234
906 => 0.034246645518153
907 => 0.034180472005843
908 => 0.033759509882548
909 => 0.034078805942878
910 => 0.032866731973313
911 => 0.033179111033681
912 => 0.03158986930332
913 => 0.03230827293804
914 => 0.032920497716065
915 => 0.033043410904396
916 => 0.033320340593809
917 => 0.030954006718257
918 => 0.032016421156467
919 => 0.032640490104145
920 => 0.029820923894714
921 => 0.032584756345781
922 => 0.030912814110101
923 => 0.030345331803582
924 => 0.031109371969201
925 => 0.030811624773606
926 => 0.030555639219135
927 => 0.03041279488135
928 => 0.030973821654945
929 => 0.030947649085385
930 => 0.030029700393179
1001 => 0.028832273744571
1002 => 0.029234169432034
1003 => 0.029088156960987
1004 => 0.028558988929928
1005 => 0.02891558429087
1006 => 0.027345318790063
1007 => 0.024643758611224
1008 => 0.026428492016391
1009 => 0.026359781721709
1010 => 0.026325134875366
1011 => 0.027666312702941
1012 => 0.027537389401057
1013 => 0.027303392345716
1014 => 0.028554691390504
1015 => 0.028097950406809
1016 => 0.029505518496846
1017 => 0.03043263387674
1018 => 0.030197487427358
1019 => 0.031069443923287
1020 => 0.029243428296958
1021 => 0.029849957440993
1022 => 0.029974962256966
1023 => 0.028539250554525
1024 => 0.027558482847666
1025 => 0.027493076823189
1026 => 0.025792560777612
1027 => 0.026700962723073
1028 => 0.027500318842853
1029 => 0.027117489294019
1030 => 0.026996296895566
1031 => 0.02761544257584
1101 => 0.027663555497821
1102 => 0.026566575777866
1103 => 0.026794672598475
1104 => 0.027745874258353
1105 => 0.026770704757178
1106 => 0.024876109709428
1107 => 0.02440622394276
1108 => 0.024343532519773
1109 => 0.02306916505346
1110 => 0.024437623956535
1111 => 0.023840254972924
1112 => 0.025727336434571
1113 => 0.024649445624299
1114 => 0.024602979905821
1115 => 0.024532740157303
1116 => 0.02343583943559
1117 => 0.023675990981968
1118 => 0.02447429129824
1119 => 0.024759133844583
1120 => 0.024729422433353
1121 => 0.024470379191179
1122 => 0.024588967860931
1123 => 0.02420695243663
1124 => 0.024072054839347
1125 => 0.023646280915811
1126 => 0.023020510871263
1127 => 0.023107528034028
1128 => 0.021867713834139
1129 => 0.021192197256119
1130 => 0.021005223170488
1201 => 0.020755193608998
1202 => 0.021033464674762
1203 => 0.021864201596285
1204 => 0.020862156618259
1205 => 0.019144220788716
1206 => 0.019247471659292
1207 => 0.019479445710017
1208 => 0.019047163601152
1209 => 0.0186380448638
1210 => 0.018993740413075
1211 => 0.01826582835495
1212 => 0.0195674104046
1213 => 0.019532206257799
1214 => 0.020017355556614
1215 => 0.020320729369429
1216 => 0.019621550949329
1217 => 0.019445709467453
1218 => 0.019545876767079
1219 => 0.017890334429674
1220 => 0.019882062427715
1221 => 0.019899286974151
1222 => 0.019751799950246
1223 => 0.020812333621499
1224 => 0.023050390456592
1225 => 0.022208343449602
1226 => 0.021882277397491
1227 => 0.021262425594073
1228 => 0.022088341318969
1229 => 0.022024923877589
1230 => 0.02173812615732
1231 => 0.021564670001238
]
'min_raw' => 0.016198976159263
'max_raw' => 0.041564717949318
'avg_raw' => 0.02888184705429
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.016198'
'max' => '$0.041564'
'avg' => '$0.028881'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0099613300406345
'max_diff' => 0.024159750978469
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00050846735148381
]
1 => [
'year' => 2028
'avg' => 0.00087267758427304
]
2 => [
'year' => 2029
'avg' => 0.0023839978754024
]
3 => [
'year' => 2030
'avg' => 0.0018392508105168
]
4 => [
'year' => 2031
'avg' => 0.0018063722317711
]
5 => [
'year' => 2032
'avg' => 0.0031671390085578
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00050846735148381
'min' => '$0.0005084'
'max_raw' => 0.0031671390085578
'max' => '$0.003167'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0031671390085578
]
1 => [
'year' => 2033
'avg' => 0.0081462072030745
]
2 => [
'year' => 2034
'avg' => 0.0051634576137077
]
3 => [
'year' => 2035
'avg' => 0.0060903100962981
]
4 => [
'year' => 2036
'avg' => 0.011821306544738
]
5 => [
'year' => 2037
'avg' => 0.02888184705429
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0031671390085578
'min' => '$0.003167'
'max_raw' => 0.02888184705429
'max' => '$0.028881'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.02888184705429
]
]
]
]
'prediction_2025_max_price' => '$0.000869'
'last_price' => 0.00084298
'sma_50day_nextmonth' => '$0.000759'
'sma_200day_nextmonth' => '$0.002335'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.000794'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000774'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000741'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000747'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001091'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001934'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002692'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0008028'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000782'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000763'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000819'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001165'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001737'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002653'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002284'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002864'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.007473'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00082'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0009023'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001265'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001991'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004127'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.008643'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005862'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '46.91'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 103.93
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000771'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000813'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 131.77
'cci_20_action' => 'SELL'
'adx_14' => 37.81
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000138'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.01
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000648'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767675525
'last_updated_date' => '6. Januar 2026'
]
JPG Preisprognose für 2026
Die Preisprognose für JPG im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.000291 am unteren Ende und $0.000869 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte JPG im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn JPG das prognostizierte Preisziel erreicht.
JPG Preisprognose 2027-2032
Die Preisprognose für JPG für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.0005084 am unteren Ende und $0.003167 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte JPG, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| JPG Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.00028 | $0.0005084 | $0.000736 |
| 2028 | $0.000506 | $0.000872 | $0.001239 |
| 2029 | $0.001111 | $0.002383 | $0.003656 |
| 2030 | $0.000945 | $0.001839 | $0.002733 |
| 2031 | $0.001117 | $0.0018063 | $0.002495 |
| 2032 | $0.001706 | $0.003167 | $0.004628 |
JPG Preisprognose 2032-2037
Die Preisprognose für JPG für die Jahre 2032-2037 wird derzeit zwischen $0.003167 am unteren Ende und $0.028881 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte JPG bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| JPG Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.001706 | $0.003167 | $0.004628 |
| 2033 | $0.003964 | $0.008146 | $0.012328 |
| 2034 | $0.003187 | $0.005163 | $0.007139 |
| 2035 | $0.003768 | $0.00609 | $0.008412 |
| 2036 | $0.006237 | $0.011821 | $0.0174049 |
| 2037 | $0.016198 | $0.028881 | $0.041564 |
JPG Potenzielles Preishistogramm
JPG Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für JPG Bullisch, mit 17 technischen Indikatoren, die bullische Signale zeigen, und 16 anzeigen bärische Signale. Die Preisprognose für JPG wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von JPG
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von JPG im nächsten Monat steigen, und bis zum 04.02.2026 $0.002335 erreichen. Der kurzfristige 50-Tage-SMA für JPG wird voraussichtlich bis zum 04.02.2026 $0.000759 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 46.91, was darauf hindeutet, dass sich der JPG-Markt in einem NEUTRAL Zustand befindet.
Beliebte JPG Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.000794 | BUY |
| SMA 5 | $0.000774 | BUY |
| SMA 10 | $0.000741 | BUY |
| SMA 21 | $0.000747 | BUY |
| SMA 50 | $0.001091 | SELL |
| SMA 100 | $0.001934 | SELL |
| SMA 200 | $0.002692 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.0008028 | BUY |
| EMA 5 | $0.000782 | BUY |
| EMA 10 | $0.000763 | BUY |
| EMA 21 | $0.000819 | BUY |
| EMA 50 | $0.001165 | SELL |
| EMA 100 | $0.001737 | SELL |
| EMA 200 | $0.002653 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.002284 | SELL |
| SMA 50 | $0.002864 | SELL |
| SMA 100 | $0.007473 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.001991 | SELL |
| EMA 50 | $0.004127 | SELL |
| EMA 100 | $0.008643 | SELL |
| EMA 200 | $0.005862 | SELL |
JPG Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 46.91 | NEUTRAL |
| Stoch RSI (14) | 103.93 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 131.77 | SELL |
| Average Directional Index (14) | 37.81 | SELL |
| Awesome Oscillator (5, 34) | -0.000138 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 65.01 | NEUTRAL |
| VWMA (10) | 0.000771 | BUY |
| Hull Moving Average (9) | 0.000813 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000648 | SELL |
Auf weltweiten Geldflüssen basierende JPG-Preisprognose
Definition weltweiter Geldflüsse, die für JPG-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
JPG-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.001184 | $0.001664 | $0.002338 | $0.003286 | $0.004618 | $0.006489 |
| Amazon.com aktie | $0.001758 | $0.00367 | $0.007657 | $0.015978 | $0.03334 | $0.069566 |
| Apple aktie | $0.001195 | $0.001696 | $0.0024056 | $0.003412 | $0.00484 | $0.006865 |
| Netflix aktie | $0.00133 | $0.002098 | $0.003311 | $0.005224 | $0.008243 | $0.0130076 |
| Google aktie | $0.001091 | $0.001413 | $0.00183 | $0.00237 | $0.00307 | $0.003975 |
| Tesla aktie | $0.00191 | $0.004332 | $0.00982 | $0.022262 | $0.050466 | $0.1144035 |
| Kodak aktie | $0.000632 | $0.000474 | $0.000355 | $0.000266 | $0.000199 | $0.000149 |
| Nokia aktie | $0.000558 | $0.000369 | $0.000245 | $0.000162 | $0.0001075 | $0.000071 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
JPG Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in JPG investieren?", "Sollte ich heute JPG kaufen?", "Wird JPG auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere JPG-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie JPG.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich JPG zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der JPG-Preis entspricht heute $0.0008429 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
JPG-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von JPG 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000864 | $0.000887 | $0.00091 | $0.000934 |
| Wenn die Wachstumsrate von JPG 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000886 | $0.000932 | $0.000981 | $0.001032 |
| Wenn die Wachstumsrate von JPG 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000952 | $0.001076 | $0.001216 | $0.001374 |
| Wenn die Wachstumsrate von JPG 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001062 | $0.001338 | $0.001686 | $0.002124 |
| Wenn die Wachstumsrate von JPG 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001281 | $0.001947 | $0.002959 | $0.004498 |
| Wenn die Wachstumsrate von JPG 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001938 | $0.004458 | $0.010251 | $0.023576 |
| Wenn die Wachstumsrate von JPG 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.003034 | $0.01092 | $0.0393078 | $0.141481 |
Fragefeld
Ist JPG eine gute Investition?
Die Entscheidung, JPG zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von JPG in den letzten 2026 Stunden um 10.1954% gestiegen, und JPG hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in JPG investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann JPG steigen?
Es scheint, dass der Durchschnittswert von JPG bis zum Ende dieses Jahres potenziell auf $0.000869 steigen könnte. Betrachtet man die Aussichten von JPG in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.002733 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird JPG nächste Woche kosten?
Basierend auf unserer neuen experimentellen JPG-Prognose wird der Preis von JPG in der nächsten Woche um 0.86% steigen und $0.00085 erreichen bis zum 13. Januar 2026.
Wie viel wird JPG nächsten Monat kosten?
Basierend auf unserer neuen experimentellen JPG-Prognose wird der Preis von JPG im nächsten Monat um -11.62% fallen und $0.000745 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von JPG in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von JPG im Jahr 2026 wird erwartet, dass JPG innerhalb der Spanne von $0.000291 bis $0.000869 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte JPG-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird JPG in 5 Jahren sein?
Die Zukunft von JPG scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.002733 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der JPG-Prognose für 2030 könnte der Wert von JPG seinen höchsten Gipfel von ungefähr $0.002733 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.000945 liegen wird.
Wie viel wird JPG im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen JPG-Preisprognosesimulation wird der Wert von JPG im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.000869 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.000869 und $0.000291 während des Jahres 2026 liegen.
Wie viel wird JPG im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von JPG könnte der Wert von JPG um -12.62% fallen und bis zu $0.000736 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.000736 und $0.00028 im Laufe des Jahres schwanken.
Wie viel wird JPG im Jahr 2028 kosten?
Unser neues experimentelles JPG-Preisprognosemodell deutet darauf hin, dass der Wert von JPG im Jahr 2028 um 47.02% steigen, und im besten Fall $0.001239 erreichen wird. Der Preis wird voraussichtlich zwischen $0.001239 und $0.000506 im Laufe des Jahres liegen.
Wie viel wird JPG im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von JPG im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.003656 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.003656 und $0.001111.
Wie viel wird JPG im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für JPG-Preisprognosen wird der Wert von JPG im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.002733 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.002733 und $0.000945 während des Jahres 2030 liegen.
Wie viel wird JPG im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von JPG im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.002495 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.002495 und $0.001117 während des Jahres schwanken.
Wie viel wird JPG im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen JPG-Preisprognose könnte JPG eine 449.04% Steigerung im Wert erfahren und $0.004628 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.004628 und $0.001706 liegen.
Wie viel wird JPG im Jahr 2033 kosten?
Laut unserer experimentellen JPG-Preisprognose wird der Wert von JPG voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.012328 beträgt. Im Laufe des Jahres könnte der Preis von JPG zwischen $0.012328 und $0.003964 liegen.
Wie viel wird JPG im Jahr 2034 kosten?
Die Ergebnisse unserer neuen JPG-Preisprognosesimulation deuten darauf hin, dass JPG im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.007139 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.007139 und $0.003187.
Wie viel wird JPG im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von JPG könnte JPG um 897.93% steigen, wobei der Wert im Jahr 2035 $0.008412 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.008412 und $0.003768.
Wie viel wird JPG im Jahr 2036 kosten?
Unsere jüngste JPG-Preisprognosesimulation deutet darauf hin, dass der Wert von JPG im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.0174049 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.0174049 und $0.006237.
Wie viel wird JPG im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von JPG um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.041564 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.041564 und $0.016198 liegen.
Verwandte Prognosen
SolPod-Preisprognose
zuzalu-Preisprognose
SOFT COQ INU-Preisprognose
All Street Bets-Preisprognose
MagicRing-Preisprognose
AI INU-Preisprognose
Wall Street Baby On Solana-Preisprognose
Meta Masters Guild Games-Preisprognose
Morfey-Preisprognose
PANTIES-PreisprognoseCeler Bridged BUSD (zkSync)-Preisprognose
Bridged BUSD-Preisprognose
Multichain Bridged BUSD (Moonriver)-Preisprognose
tooker kurlson-Preisprognose
dogwifsaudihat-PreisprognoseHarmony Horizen Bridged BUSD (Harmony)-Preisprognose
IoTeX Bridged BUSD (IoTeX)-Preisprognose
MIMANY-Preisprognose
The Open League MEME-Preisprognose
Sandwich Cat-Preisprognose
Hege-Preisprognose
DexNet-Preisprognose
SolDocs-Preisprognose
Secret Society-Preisprognose
duk-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von JPG?
JPG-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
JPG Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von JPG. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von JPG über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von JPG über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von JPG einzuschätzen.
Wie liest man JPG-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von JPG in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von JPG innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von JPG?
Die Preisentwicklung von JPG wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von JPG. Die Marktkapitalisierung von JPG kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von JPG-„Walen“, großen Inhabern von JPG, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen JPG-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


