Idle Mystic Preisvorhersage bis zu $0.0005021 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.000168 | $0.0005021 |
| 2027 | $0.000161 | $0.000425 |
| 2028 | $0.000292 | $0.000715 |
| 2029 | $0.000642 | $0.002112 |
| 2030 | $0.000546 | $0.001578 |
| 2031 | $0.000645 | $0.001441 |
| 2032 | $0.000985 | $0.002673 |
| 2033 | $0.002289 | $0.00712 |
| 2034 | $0.00184 | $0.004124 |
| 2035 | $0.002176 | $0.004859 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Idle Mystic eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,962.05 Gewinn erzielen könnten, was einer Rendite von 39.62% in den nächsten 90 Tagen entspricht.
Langfristige Idle Mystic Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Idle Mystic'
'name_with_ticker' => 'Idle Mystic <small>MST</small>'
'name_lang' => 'Idle Mystic'
'name_lang_with_ticker' => 'Idle Mystic <small>MST</small>'
'name_with_lang' => 'Idle Mystic'
'name_with_lang_with_ticker' => 'Idle Mystic <small>MST</small>'
'image' => '/uploads/coins/idle-mystic.jpg?1666208719'
'price_for_sd' => 0.0004869
'ticker' => 'MST'
'marketcap' => '$76.95K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$1.28'
'current_supply' => '158.04M'
'max_supply' => '441M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0004869'
'change_24h_pct' => '-2.5907%'
'ath_price' => '$0.2461'
'ath_days' => 1530
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29.10.2021'
'ath_pct' => '0.98%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.0240085'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000491'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00043'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000168'
'current_year_max_price_prediction' => '$0.0005021'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000546'
'grand_prediction_max_price' => '$0.001578'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00049614687788008
107 => 0.00049799931022077
108 => 0.00050217293487188
109 => 0.00046650976919002
110 => 0.00048252148356564
111 => 0.00049192686566657
112 => 0.00044943300716385
113 => 0.00049108689871214
114 => 0.00046588895281889
115 => 0.00045733639152227
116 => 0.00046885128859389
117 => 0.00046436392200648
118 => 0.00046050594772162
119 => 0.00045835313178226
120 => 0.00046680840133885
121 => 0.0004664139529078
122 => 0.00045257949081612
123 => 0.00043453299898234
124 => 0.00044058999399766
125 => 0.00043838943092396
126 => 0.0004304143064666
127 => 0.00043578857743066
128 => 0.00041212300796123
129 => 0.00037140762571832
130 => 0.00039830545437387
131 => 0.00039726991722984
201 => 0.00039674775244395
202 => 0.00041696072727721
203 => 0.00041501771613967
204 => 0.000411491131899
205 => 0.00043034953798144
206 => 0.00042346596607999
207 => 0.00044467951270674
208 => 0.00045865212652129
209 => 0.00045510821969121
210 => 0.0004682495305193
211 => 0.0004407295349294
212 => 0.00044987057355378
213 => 0.00045175452894533
214 => 0.0004301168281777
215 => 0.00041533561679139
216 => 0.00041434987851007
217 => 0.00038872129494262
218 => 0.00040241187741766
219 => 0.00041445902344089
220 => 0.00040868937539206
221 => 0.00040686287718313
222 => 0.00041619406041341
223 => 0.00041691917326659
224 => 0.00040038652337023
225 => 0.00040382418480462
226 => 0.00041815980444966
227 => 0.00040346296397097
228 => 0.00037490940363614
301 => 0.00036782772588925
302 => 0.0003668828995366
303 => 0.00034767682783207
304 => 0.00036830095745866
305 => 0.00035929797218434
306 => 0.00038773829479358
307 => 0.00037149333504769
308 => 0.00037079304730144
309 => 0.00036973445966309
310 => 0.00035320300035418
311 => 0.00035682233931378
312 => 0.0003688535732564
313 => 0.00037314645306868
314 => 0.00037269867053373
315 => 0.00036879461364646
316 => 0.00037058187089745
317 => 0.00036482449257032
318 => 0.00036279144245355
319 => 0.00035637457705052
320 => 0.00034694355761237
321 => 0.00034825499870905
322 => 0.00032956968144162
323 => 0.00031938892888947
324 => 0.0003165710307632
325 => 0.00031280281962068
326 => 0.00031699666023857
327 => 0.00032951674828548
328 => 0.00031441486581606
329 => 0.00028852374759611
330 => 0.00029007984791745
331 => 0.00029357594332916
401 => 0.00028706099265842
402 => 0.00028089513860693
403 => 0.00028625584845315
404 => 0.00027528544034678
405 => 0.00029490166473707
406 => 0.00029437110084115
407 => 0.00030168281623467
408 => 0.00030625498192175
409 => 0.00029571762026926
410 => 0.00029306750230971
411 => 0.00029457712994062
412 => 0.0002696263479389
413 => 0.00029964380503622
414 => 0.0002999033972517
415 => 0.00029768061109976
416 => 0.00031366398031906
417 => 0.00034739387470968
418 => 0.00033470333165807
419 => 0.00032978916981479
420 => 0.00032044734455849
421 => 0.00033289477204982
422 => 0.0003319390038286
423 => 0.00032761665746793
424 => 0.00032500248890245
425 => 0.00032981917463913
426 => 0.00032440564823578
427 => 0.00032343323013998
428 => 0.00031754143448076
429 => 0.00031543833149004
430 => 0.00031388127776266
501 => 0.00031216711460175
502 => 0.00031594813139187
503 => 0.00030737984991126
504 => 0.00029704734240464
505 => 0.00029618830620475
506 => 0.00029856018067989
507 => 0.00029751080278993
508 => 0.00029618328218713
509 => 0.00029364868382768
510 => 0.00029289672263755
511 => 0.00029534023170575
512 => 0.00029258165243318
513 => 0.00029665208641745
514 => 0.00029554515360111
515 => 0.00028936191687121
516 => 0.00028165531457831
517 => 0.00028158670965275
518 => 0.00027992633483011
519 => 0.00027781159785445
520 => 0.00027722332640644
521 => 0.00028580438442214
522 => 0.00030356691770516
523 => 0.00030007970740031
524 => 0.00030259957422925
525 => 0.0003149948250238
526 => 0.00031893490251319
527 => 0.00031613832883707
528 => 0.00031231020630404
529 => 0.00031247862426745
530 => 0.00032556047781428
531 => 0.00032637637697347
601 => 0.0003284378909297
602 => 0.00033108751894722
603 => 0.00031658957194577
604 => 0.00031179577226746
605 => 0.00030952420402999
606 => 0.00030252865306615
607 => 0.00031007275502744
608 => 0.00030567712988525
609 => 0.00030627024989287
610 => 0.00030588397970981
611 => 0.00030609490934924
612 => 0.00029489618160258
613 => 0.00029897640940566
614 => 0.00029219223930984
615 => 0.00028310899711037
616 => 0.00028307854689752
617 => 0.00028530165755762
618 => 0.00028397926434667
619 => 0.00028042073821782
620 => 0.00028092621005865
621 => 0.00027649774485049
622 => 0.00028146390591487
623 => 0.00028160631764442
624 => 0.00027969407512601
625 => 0.00028734513144386
626 => 0.00029047977545995
627 => 0.00028922109647013
628 => 0.00029039146318664
629 => 0.00030022461673228
630 => 0.00030182784981079
701 => 0.00030253990004063
702 => 0.00030158584706122
703 => 0.00029057119518248
704 => 0.00029105974183122
705 => 0.00028747511067857
706 => 0.00028444647509371
707 => 0.000284567604634
708 => 0.00028612471701969
709 => 0.00029292471813142
710 => 0.00030723491958909
711 => 0.00030777798127379
712 => 0.00030843618787787
713 => 0.00030575893083094
714 => 0.00030495144448768
715 => 0.00030601672740434
716 => 0.0003113908866772
717 => 0.00032521468339699
718 => 0.00032032843037587
719 => 0.00031635583061065
720 => 0.00031984087160996
721 => 0.00031930437686477
722 => 0.00031477582130614
723 => 0.00031464871983444
724 => 0.00030595697385064
725 => 0.00030274383326191
726 => 0.00030005869248656
727 => 0.00029712658885726
728 => 0.00029538833954081
729 => 0.00029805908051107
730 => 0.00029866991057024
731 => 0.00029283028876221
801 => 0.00029203436988791
802 => 0.00029680313111335
803 => 0.00029470457709537
804 => 0.0002968629919445
805 => 0.00029736376270403
806 => 0.00029728312707802
807 => 0.00029509199566586
808 => 0.00029648855748749
809 => 0.00029318527244421
810 => 0.00028959344609702
811 => 0.0002873020846662
812 => 0.00028530256791282
813 => 0.00028641201602019
814 => 0.00028245703609464
815 => 0.00028119175841843
816 => 0.00029601543376596
817 => 0.00030696584212654
818 => 0.00030680661885214
819 => 0.00030583738811813
820 => 0.00030439730784866
821 => 0.00031128553583578
822 => 0.00030888581493953
823 => 0.00031063181239494
824 => 0.00031107624202663
825 => 0.00031242139666809
826 => 0.00031290217383247
827 => 0.00031144893132051
828 => 0.00030657167195177
829 => 0.00029441800532076
830 => 0.00028876044069583
831 => 0.00028689335013541
901 => 0.00028696121533117
902 => 0.0002850891902685
903 => 0.00028564058554774
904 => 0.00028489743749267
905 => 0.0002834900948632
906 => 0.00028632511657861
907 => 0.00028665182642126
908 => 0.00028599009847689
909 => 0.00028614595936269
910 => 0.00028066713461106
911 => 0.00028108367775755
912 => 0.00027876431258618
913 => 0.00027832945957691
914 => 0.00027246630639391
915 => 0.00026207888065259
916 => 0.0002678345228451
917 => 0.00026088251644232
918 => 0.0002582496862775
919 => 0.00027071309478866
920 => 0.00026946211425528
921 => 0.0002673209793703
922 => 0.00026415379462381
923 => 0.00026297905499294
924 => 0.00025584170887316
925 => 0.00025541999638814
926 => 0.00025895745784966
927 => 0.00025732504110179
928 => 0.00025503250974321
929 => 0.0002467291935526
930 => 0.00023739351702084
1001 => 0.00023767530241337
1002 => 0.00024064480742168
1003 => 0.00024927904372567
1004 => 0.0002459054982279
1005 => 0.00024345795226229
1006 => 0.00024299960047589
1007 => 0.00024873683270711
1008 => 0.00025685621830159
1009 => 0.00026066565236151
1010 => 0.00025689061890236
1011 => 0.00025255406372673
1012 => 0.00025281800974661
1013 => 0.00025457392436696
1014 => 0.00025475844616627
1015 => 0.00025193579455201
1016 => 0.00025273035444764
1017 => 0.00025152334531009
1018 => 0.00024411593246089
1019 => 0.0002439819558516
1020 => 0.00024216405727774
1021 => 0.0002421090120314
1022 => 0.00023901631306121
1023 => 0.00023858362309646
1024 => 0.00023244288157774
1025 => 0.00023648473624124
1026 => 0.00023377367233986
1027 => 0.00022968745956515
1028 => 0.0002289829949426
1029 => 0.00022896181788539
1030 => 0.00023315744474455
1031 => 0.00023643570789858
1101 => 0.00023382083245713
1102 => 0.00023322547600634
1103 => 0.00023958232532126
1104 => 0.00023877335830197
1105 => 0.00023807279808054
1106 => 0.00025612921637581
1107 => 0.00024183615233521
1108 => 0.00023560356059394
1109 => 0.00022788954477705
1110 => 0.00023040126722447
1111 => 0.00023093052404903
1112 => 0.00021237970656526
1113 => 0.00020485364222245
1114 => 0.00020227098055375
1115 => 0.00020078462224994
1116 => 0.0002014619743935
1117 => 0.00019468763376567
1118 => 0.00019924010270482
1119 => 0.00019337409634188
1120 => 0.0001923906412855
1121 => 0.00020287978732118
1122 => 0.00020433929071534
1123 => 0.00019811259580368
1124 => 0.00020211114194731
1125 => 0.00020066121353168
1126 => 0.00019347465218451
1127 => 0.00019320017840182
1128 => 0.00018959421453766
1129 => 0.00018395157934244
1130 => 0.00018137274364611
1201 => 0.00018002966362498
1202 => 0.00018058384461781
1203 => 0.00018030363374962
1204 => 0.00017847506829274
1205 => 0.00018040844498116
1206 => 0.00017546946646864
1207 => 0.00017350272542891
1208 => 0.0001726143941293
1209 => 0.00016823076642245
1210 => 0.00017520706751214
1211 => 0.00017658148671194
1212 => 0.00017795861394214
1213 => 0.00018994556627633
1214 => 0.00018934673201249
1215 => 0.00019475990211349
1216 => 0.00019454955627755
1217 => 0.0001930056324772
1218 => 0.00018649207192667
1219 => 0.00018908826106906
1220 => 0.00018109759442616
1221 => 0.00018708474518753
1222 => 0.00018435245960944
1223 => 0.00018616095668515
1224 => 0.00018290911587741
1225 => 0.00018470881884563
1226 => 0.0001769074124918
1227 => 0.00016962256900735
1228 => 0.00017255420268333
1229 => 0.0001757412237621
1230 => 0.00018265149749874
1231 => 0.00017853579546972
]
'min_raw' => 0.00016823076642245
'max_raw' => 0.00050217293487188
'avg_raw' => 0.00033520185064716
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000168'
'max' => '$0.0005021'
'avg' => '$0.000335'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00031868923357755
'max_diff' => 1.5252934871877E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00018001595755128
102 => 0.00017505766235419
103 => 0.00016482728309559
104 => 0.00016488518593118
105 => 0.00016331146496317
106 => 0.00016195154027979
107 => 0.0001790085333572
108 => 0.00017688722663687
109 => 0.00017350720200777
110 => 0.00017803149929065
111 => 0.0001792277953025
112 => 0.00017926185216816
113 => 0.00018256266267674
114 => 0.00018432430583686
115 => 0.00018463480307924
116 => 0.00018982869973321
117 => 0.00019156962538246
118 => 0.00019874025174674
119 => 0.00018417484272264
120 => 0.00018387487770883
121 => 0.0001780951654316
122 => 0.00017442958053175
123 => 0.00017834615116574
124 => 0.00018181569808225
125 => 0.00017820297392562
126 => 0.0001786747194317
127 => 0.00017382493242184
128 => 0.00017555850307418
129 => 0.00017705168765716
130 => 0.00017622723889577
131 => 0.0001749929991962
201 => 0.00018153123480128
202 => 0.00018116232192489
203 => 0.00018725087723373
204 => 0.00019199734149374
205 => 0.00020050385397964
206 => 0.00019162686474607
207 => 0.00019130335197557
208 => 0.00019446574120036
209 => 0.00019156914123715
210 => 0.00019339969242667
211 => 0.0002002089238828
212 => 0.00020035279221362
213 => 0.00019794281230849
214 => 0.00019779616481224
215 => 0.00019825902781531
216 => 0.00020097003088157
217 => 0.00020002272310951
218 => 0.00020111897164624
219 => 0.00020248984722777
220 => 0.00020816036987219
221 => 0.0002095275136843
222 => 0.00020620606300368
223 => 0.00020650595281143
224 => 0.00020526363908102
225 => 0.00020406357958359
226 => 0.0002067611380792
227 => 0.00021169097925058
228 => 0.00021166031096451
301 => 0.00021280393829385
302 => 0.00021351640864571
303 => 0.00021045796433536
304 => 0.00020846702955143
305 => 0.00020923048063406
306 => 0.00021045125554098
307 => 0.00020883459978494
308 => 0.00019885585155082
309 => 0.00020188276632014
310 => 0.00020137893969396
311 => 0.00020066142931086
312 => 0.00020370501551786
313 => 0.00020341145420331
314 => 0.00019461815311106
315 => 0.00019518107171719
316 => 0.00019465238605594
317 => 0.00019636067758634
318 => 0.00019147688788837
319 => 0.00019297910870664
320 => 0.00019392128752142
321 => 0.00019447623808148
322 => 0.00019648110003757
323 => 0.00019624585262706
324 => 0.00019646647672823
325 => 0.00019943915774519
326 => 0.00021447395822804
327 => 0.0002152922692459
328 => 0.00021126260651075
329 => 0.00021287237729186
330 => 0.00020978196941029
331 => 0.00021185658092512
401 => 0.00021327597743415
402 => 0.00020686199754411
403 => 0.00020648220328141
404 => 0.0002033790401872
405 => 0.00020504650426189
406 => 0.00020239344902415
407 => 0.00020304441597956
408 => 0.00020122425562196
409 => 0.00020450018187533
410 => 0.00020816317645407
411 => 0.00020908859354069
412 => 0.00020665421960288
413 => 0.00020489157243884
414 => 0.00020179694467086
415 => 0.00020694337961729
416 => 0.00020844835403039
417 => 0.00020693547462738
418 => 0.00020658490741264
419 => 0.00020592058317416
420 => 0.0002067258469403
421 => 0.00020844015761652
422 => 0.00020763172035996
423 => 0.00020816570741075
424 => 0.0002061306994182
425 => 0.00021045897680768
426 => 0.00021733332295887
427 => 0.00021735542510581
428 => 0.00021654698349147
429 => 0.000216216186601
430 => 0.00021704569675765
501 => 0.00021749567198935
502 => 0.00022017815572981
503 => 0.0002230565676582
504 => 0.00023648886017845
505 => 0.00023271712618895
506 => 0.00024463505520358
507 => 0.00025406058970475
508 => 0.00025688689537298
509 => 0.00025428682714617
510 => 0.00024539213419516
511 => 0.00024495571812461
512 => 0.00025824814463591
513 => 0.00025449242531477
514 => 0.00025404569445212
515 => 0.00024929323283722
516 => 0.00025210252625544
517 => 0.00025148809257503
518 => 0.00025051817895137
519 => 0.00025587811509627
520 => 0.00026591143707472
521 => 0.00026434764975249
522 => 0.00026318035505844
523 => 0.00025806560950351
524 => 0.00026114582874736
525 => 0.00026004902167234
526 => 0.00026476160091759
527 => 0.00026196997336911
528 => 0.00025446397204706
529 => 0.0002556593274977
530 => 0.00025547865192605
531 => 0.00025919694238766
601 => 0.00025808080388473
602 => 0.00025526070796997
603 => 0.00026587714427096
604 => 0.0002651877719493
605 => 0.00026616514428897
606 => 0.00026659541381913
607 => 0.00027305745151295
608 => 0.00027570474159397
609 => 0.0002763057227897
610 => 0.0002788204436179
611 => 0.00027624315424463
612 => 0.00028655414931388
613 => 0.00029341035937168
614 => 0.00030137420017117
615 => 0.00031301151205782
616 => 0.00031738724897836
617 => 0.00031659681126937
618 => 0.00032542008832702
619 => 0.00034127532106921
620 => 0.00031980160712501
621 => 0.0003424134800505
622 => 0.00033525482214892
623 => 0.00031828177304302
624 => 0.00031718890877971
625 => 0.00032868325469537
626 => 0.00035417660764652
627 => 0.00034779081187547
628 => 0.00035418705252075
629 => 0.0003467254980517
630 => 0.0003463549689814
701 => 0.00035382466147469
702 => 0.000371278005137
703 => 0.00036298657579184
704 => 0.00035109877868367
705 => 0.00035987654307373
706 => 0.00035227243121531
707 => 0.0003351382389414
708 => 0.00034778592877779
709 => 0.00033932877876966
710 => 0.00034179702474886
711 => 0.00035957269615982
712 => 0.00035743388034706
713 => 0.00036020170605778
714 => 0.00035531656612497
715 => 0.00035075307511186
716 => 0.0003422349802466
717 => 0.00033971319229399
718 => 0.00034041012375967
719 => 0.00033971284692937
720 => 0.00033494705113759
721 => 0.00033391787799011
722 => 0.00033220254432187
723 => 0.00033273419795178
724 => 0.00032950886881691
725 => 0.0003355957312814
726 => 0.00033672550659206
727 => 0.00034115501749151
728 => 0.00034161490400743
729 => 0.00035395102881225
730 => 0.00034715649856991
731 => 0.00035171485606799
801 => 0.00035130711366843
802 => 0.00031864963048394
803 => 0.00032314954352735
804 => 0.00033014999607239
805 => 0.00032699630168974
806 => 0.0003225377156835
807 => 0.00031893716842921
808 => 0.00031348197116409
809 => 0.00032116005655696
810 => 0.00033125592237522
811 => 0.00034187095182529
812 => 0.00035462421418527
813 => 0.00035177783449087
814 => 0.00034163253845646
815 => 0.00034208764902542
816 => 0.00034490096348332
817 => 0.00034125746564376
818 => 0.00034018292700135
819 => 0.00034475333837452
820 => 0.00034478481228579
821 => 0.00034059252768996
822 => 0.00033593357054167
823 => 0.0003359140493411
824 => 0.00033508503291675
825 => 0.00034687297823193
826 => 0.00035335515625957
827 => 0.00035409832752389
828 => 0.00035330513491221
829 => 0.00035361040326775
830 => 0.00034983856669851
831 => 0.00035845986659241
901 => 0.00036637162393324
902 => 0.00036425110395586
903 => 0.00036107214306008
904 => 0.00035853994758709
905 => 0.00036365459917675
906 => 0.00036342685179267
907 => 0.00036630252163493
908 => 0.00036617206464022
909 => 0.00036520508503168
910 => 0.00036425113848974
911 => 0.00036803342869928
912 => 0.00036694418986065
913 => 0.00036585325913326
914 => 0.00036366523054633
915 => 0.0003639626199706
916 => 0.00036078420796724
917 => 0.00035931372914025
918 => 0.00033720125575435
919 => 0.00033129208031972
920 => 0.00033315122720381
921 => 0.00033376330663078
922 => 0.00033119162590882
923 => 0.00033487875545354
924 => 0.00033430412021963
925 => 0.0003365396897644
926 => 0.00033514300296998
927 => 0.0003352003234832
928 => 0.00033930768154059
929 => 0.00034050006505859
930 => 0.00033989360917762
1001 => 0.00034031835008856
1002 => 0.00035010632510932
1003 => 0.00034871478806319
1004 => 0.00034797556174179
1005 => 0.00034818033248478
1006 => 0.00035068136995914
1007 => 0.00035138152390037
1008 => 0.00034841492245241
1009 => 0.00034981398884499
1010 => 0.00035577103597662
1011 => 0.00035785566533302
1012 => 0.0003645088015598
1013 => 0.0003616824310406
1014 => 0.00036687035645105
1015 => 0.00038281627046866
1016 => 0.00039555496995925
1017 => 0.00038383993545868
1018 => 0.00040723293480955
1019 => 0.00042544774033066
1020 => 0.00042474862575641
1021 => 0.00042157245309776
1022 => 0.00040083538127764
1023 => 0.00038175281861645
1024 => 0.00039771619257095
1025 => 0.00039775688649405
1026 => 0.00039638561851415
1027 => 0.00038786879086124
1028 => 0.00039608925137312
1029 => 0.00039674176167623
1030 => 0.00039637652942298
1031 => 0.00038984669763026
1101 => 0.00037987685139741
1102 => 0.00038182493548687
1103 => 0.00038501593696524
1104 => 0.00037897470545403
1105 => 0.00037704416593508
1106 => 0.00038063340620099
1107 => 0.00039219868618565
1108 => 0.00039001233699766
1109 => 0.00038995524258463
1110 => 0.00039930937156722
1111 => 0.00039261383396307
1112 => 0.00038184950706586
1113 => 0.00037913137256029
1114 => 0.00036948382622031
1115 => 0.00037614742084072
1116 => 0.00037638723174814
1117 => 0.00037273764907483
1118 => 0.0003821456505858
1119 => 0.00038205895419563
1120 => 0.00039099045143408
1121 => 0.00040806411963681
1122 => 0.00040301459580508
1123 => 0.0003971425489754
1124 => 0.00039778100327998
1125 => 0.00040478327116177
1126 => 0.00040054954015421
1127 => 0.00040207201934315
1128 => 0.00040478096670717
1129 => 0.00040641534191126
1130 => 0.00039754584183972
1201 => 0.00039547793709581
1202 => 0.00039124772972572
1203 => 0.00039014414758342
1204 => 0.00039358956322019
1205 => 0.00039268181792823
1206 => 0.00037636707656996
1207 => 0.00037466209532366
1208 => 0.00037471438466433
1209 => 0.00037042712825306
1210 => 0.00036388803316644
1211 => 0.000381072384625
1212 => 0.00037969224070803
1213 => 0.00037816866863836
1214 => 0.00037835529752351
1215 => 0.00038581444205996
1216 => 0.00038148776153299
1217 => 0.00039299095084294
1218 => 0.00039062624093834
1219 => 0.00038820088514755
1220 => 0.00038786562709912
1221 => 0.0003869320720413
1222 => 0.00038373056438749
1223 => 0.00037986455151474
1224 => 0.00037731187494784
1225 => 0.00034805026000914
1226 => 0.00035348104553478
1227 => 0.00035972866925035
1228 => 0.00036188532392118
1229 => 0.00035819621687076
1230 => 0.00038387623281921
1231 => 0.00038856821919179
]
'min_raw' => 0.00016195154027979
'max_raw' => 0.00042544774033066
'avg_raw' => 0.00029369964030522
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000161'
'max' => '$0.000425'
'avg' => '$0.000293'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.2792261426572E-6
'max_diff' => -7.6725194541221E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00037435588641856
102 => 0.00037169733924242
103 => 0.00038405052672948
104 => 0.00037660004455903
105 => 0.00037995499622418
106 => 0.00037270342578457
107 => 0.00038743805707203
108 => 0.00038732580386888
109 => 0.00038159369950131
110 => 0.00038643843486102
111 => 0.00038559654286919
112 => 0.00037912501115576
113 => 0.00038764321617041
114 => 0.00038764744109382
115 => 0.00038213041526674
116 => 0.00037568773693295
117 => 0.00037453593821614
118 => 0.00037366821260541
119 => 0.00037974158891649
120 => 0.00038518695912605
121 => 0.00039531944306429
122 => 0.00039786699026825
123 => 0.0004078102366051
124 => 0.00040188951753938
125 => 0.00040451409561506
126 => 0.00040736344638546
127 => 0.00040872952992619
128 => 0.00040650357010465
129 => 0.00042194952446925
130 => 0.00042325363626944
131 => 0.00042369089367552
201 => 0.00041848260476945
202 => 0.00042310878433323
203 => 0.00042094434811831
204 => 0.00042657560985185
205 => 0.00042745866359523
206 => 0.00042671074849014
207 => 0.00042699104368634
208 => 0.00041381064648922
209 => 0.00041312717336241
210 => 0.00040380796878139
211 => 0.00040760561353224
212 => 0.00040050609869638
213 => 0.00040275742798393
214 => 0.00040374979248244
215 => 0.00040323143758461
216 => 0.00040782032666851
217 => 0.00040391883349909
218 => 0.00039362215156012
219 => 0.00038332266429705
220 => 0.00038319336262424
221 => 0.00038048168942892
222 => 0.00037852164637643
223 => 0.0003788992202046
224 => 0.00038022983962281
225 => 0.0003784443083569
226 => 0.00037882534198122
227 => 0.00038515303895859
228 => 0.00038642201346033
229 => 0.00038210954228307
301 => 0.00036479434821974
302 => 0.00036054515616472
303 => 0.00036359939114872
304 => 0.0003621396635443
305 => 0.00029227497232214
306 => 0.00030868864520717
307 => 0.00029893619813455
308 => 0.00030343057443413
309 => 0.00029347585135691
310 => 0.0002982267669811
311 => 0.00029734944634097
312 => 0.00032374214662421
313 => 0.00032333006091126
314 => 0.00032352730453496
315 => 0.00031411235246029
316 => 0.00032911062675904
317 => 0.00033649931599911
318 => 0.00033513186626437
319 => 0.00033547602390206
320 => 0.00032956225543781
321 => 0.00032358456274055
322 => 0.00031695438157898
323 => 0.00032927243866202
324 => 0.00032790288099063
325 => 0.00033104415353749
326 => 0.00033903329406875
327 => 0.00034020972535977
328 => 0.00034179086094509
329 => 0.00034122413639064
330 => 0.00035472581449514
331 => 0.00035309067218975
401 => 0.0003570308946832
402 => 0.00034892555806877
403 => 0.00033975360032392
404 => 0.00034149688963732
405 => 0.00034132899685779
406 => 0.00033919152907604
407 => 0.00033726191873531
408 => 0.00033404966118234
409 => 0.0003442137194046
410 => 0.00034380107720253
411 => 0.00035048127481002
412 => 0.00034930048499492
413 => 0.00034141488162139
414 => 0.00034169651748856
415 => 0.00034359065404485
416 => 0.00035014628229304
417 => 0.00035209243909831
418 => 0.00035119090172517
419 => 0.00035332477381671
420 => 0.0003550112993129
421 => 0.00035353657545283
422 => 0.00037441555539398
423 => 0.00036574514724501
424 => 0.0003699710438485
425 => 0.00037097889528801
426 => 0.00036839730501855
427 => 0.00036895715950818
428 => 0.00036980518650875
429 => 0.00037495424039551
430 => 0.0003884668476851
501 => 0.00039445148947023
502 => 0.00041245657955783
503 => 0.00039395454828022
504 => 0.00039285671431322
505 => 0.00039609997473962
506 => 0.00040667086865339
507 => 0.00041523758529692
508 => 0.00041807965943332
509 => 0.00041845528644797
510 => 0.00042378720646537
511 => 0.00042684336358492
512 => 0.00042313977113184
513 => 0.00042000136431015
514 => 0.00040875998062823
515 => 0.00041006120139869
516 => 0.00041902532214856
517 => 0.00043168767069183
518 => 0.00044255328303478
519 => 0.0004387485242971
520 => 0.00046777614772452
521 => 0.00047065411802015
522 => 0.00047025647558121
523 => 0.00047681292021404
524 => 0.00046379971281461
525 => 0.00045823631453233
526 => 0.00042067992348743
527 => 0.00043123173746576
528 => 0.00044656941876958
529 => 0.00044453941913566
530 => 0.00043340078499544
531 => 0.00044254483338196
601 => 0.00043952152502454
602 => 0.00043713691628587
603 => 0.00044806127119688
604 => 0.00043604949422446
605 => 0.00044644959210575
606 => 0.00043311135899776
607 => 0.00043876590411452
608 => 0.00043555611082668
609 => 0.00043763324046138
610 => 0.00042549038305962
611 => 0.00043204237416241
612 => 0.00042521779868879
613 => 0.00042521456295143
614 => 0.0004250639100696
615 => 0.00043309299284951
616 => 0.00043335482095071
617 => 0.00042742131664508
618 => 0.00042656620597589
619 => 0.00042972799830156
620 => 0.00042602636756292
621 => 0.00042775833728774
622 => 0.0004260788271615
623 => 0.00042570073405619
624 => 0.00042268802386582
625 => 0.00042139006547961
626 => 0.00042189902840711
627 => 0.00042016167554719
628 => 0.00041911485760628
629 => 0.00042485567163313
630 => 0.00042178858628236
701 => 0.00042438559681493
702 => 0.00042142597554421
703 => 0.0004111666387743
704 => 0.00040526638570741
705 => 0.00038588744959007
706 => 0.00039138329183345
707 => 0.00039502704092667
708 => 0.0003938227818731
709 => 0.00039640999630656
710 => 0.00039656883026029
711 => 0.00039572770047444
712 => 0.00039475377993783
713 => 0.00039427972928179
714 => 0.00039781291448949
715 => 0.00039986404742411
716 => 0.00039539273989525
717 => 0.00039434517510148
718 => 0.00039886591388081
719 => 0.00040162356192466
720 => 0.00042198448569184
721 => 0.00042047608269425
722 => 0.00042426187820907
723 => 0.00042383565573187
724 => 0.00042780377255591
725 => 0.00043428996651193
726 => 0.00042110172063099
727 => 0.00042339074410069
728 => 0.00042282952840719
729 => 0.00042895673419016
730 => 0.00042897586265781
731 => 0.00042530229671429
801 => 0.00042729379640907
802 => 0.00042618219591338
803 => 0.00042819100825091
804 => 0.00042045593705259
805 => 0.00042987641882281
806 => 0.00043521722494408
807 => 0.00043529138204226
808 => 0.00043782288175648
809 => 0.00044039503208071
810 => 0.00044533205064099
811 => 0.00044025734131264
812 => 0.00043112843324392
813 => 0.00043178751092029
814 => 0.00042643523545974
815 => 0.0004265252081772
816 => 0.00042604492676012
817 => 0.00042748628744669
818 => 0.00042077223466855
819 => 0.00042234800943572
820 => 0.00042014191553396
821 => 0.00042338594848339
822 => 0.00041989590528766
823 => 0.00042282925777199
824 => 0.00042409519546205
825 => 0.00042876653279207
826 => 0.00041920594496587
827 => 0.00039971125919333
828 => 0.00040380927849294
829 => 0.00039774798605635
830 => 0.00039830898174832
831 => 0.00039944228232791
901 => 0.00039576888435659
902 => 0.00039646965292744
903 => 0.00039644461654286
904 => 0.00039622886650627
905 => 0.00039527327382057
906 => 0.00039388747536805
907 => 0.00039940806987661
908 => 0.00040034612645946
909 => 0.00040243131004251
910 => 0.00040863540199214
911 => 0.00040801546690381
912 => 0.00040902660675373
913 => 0.00040681929413865
914 => 0.00039841137264981
915 => 0.00039886796323839
916 => 0.00039317427128249
917 => 0.00040228570953804
918 => 0.00040012800069402
919 => 0.00039873691176555
920 => 0.00039835734026307
921 => 0.00040457681095663
922 => 0.0004064377740664
923 => 0.00040527814674098
924 => 0.00040289971726481
925 => 0.00040746700497861
926 => 0.00040868901849242
927 => 0.00040896258225204
928 => 0.00041705494039034
929 => 0.00040941485517709
930 => 0.00041125389962383
1001 => 0.00042560159941896
1002 => 0.00041259021555201
1003 => 0.00041948263577482
1004 => 0.00041914528767134
1005 => 0.00042267121663054
1006 => 0.00041885605858253
1007 => 0.00041890335203896
1008 => 0.00042203413808762
1009 => 0.00041763751372252
1010 => 0.00041654884769985
1011 => 0.00041504486338671
1012 => 0.00041832875811229
1013 => 0.00042029730448249
1014 => 0.0004361623424883
1015 => 0.00044641188057369
1016 => 0.00044596692109417
1017 => 0.00045003301780774
1018 => 0.0004482012039971
1019 => 0.00044228579399447
1020 => 0.00045238267756156
1021 => 0.00044918760112938
1022 => 0.00044945099934843
1023 => 0.00044944119565356
1024 => 0.00045156564216253
1025 => 0.00045006027710826
1026 => 0.00044709304806375
1027 => 0.00044906283317828
1028 => 0.00045491239075737
1029 => 0.00047306959696921
1030 => 0.00048323061011635
1031 => 0.00047245789121921
1101 => 0.000479888768462
1102 => 0.00047543289000861
1103 => 0.00047462312434273
1104 => 0.00047929026438872
1105 => 0.00048396557364553
1106 => 0.00048366777665779
1107 => 0.00048027374221713
1108 => 0.00047835653828204
1109 => 0.00049287424878899
1110 => 0.00050357065058777
1111 => 0.00050284122769468
1112 => 0.00050606066312374
1113 => 0.00051551302511685
1114 => 0.00051637723063665
1115 => 0.00051626836060469
1116 => 0.00051412633705336
1117 => 0.0005234334149799
1118 => 0.00053119754312867
1119 => 0.00051363052049024
1120 => 0.00052031981274174
1121 => 0.00052332285154897
1122 => 0.00052773220347946
1123 => 0.00053517151927938
1124 => 0.00054325258941915
1125 => 0.00054439534134134
1126 => 0.00054358450416683
1127 => 0.00053825482117883
1128 => 0.00054709722455298
1129 => 0.00055227689706969
1130 => 0.00055536127351869
1201 => 0.00056318273900205
1202 => 0.00052334139729429
1203 => 0.00049513971539038
1204 => 0.00049073561552386
1205 => 0.0004996915257851
1206 => 0.00050205312789894
1207 => 0.00050110116904805
1208 => 0.00046935761208045
1209 => 0.0004905684922659
1210 => 0.00051338961588399
1211 => 0.00051426626818411
1212 => 0.00052569099983452
1213 => 0.00052941136077546
1214 => 0.00053860976722785
1215 => 0.0005380344043998
1216 => 0.00054027406999234
1217 => 0.00053975920965821
1218 => 0.00055679732065826
1219 => 0.00057559288727528
1220 => 0.00057494205656957
1221 => 0.00057223997148933
1222 => 0.00057625302860746
1223 => 0.00059565206761155
1224 => 0.00059386611496332
1225 => 0.000595601015834
1226 => 0.00061847357610175
1227 => 0.00064821115803358
1228 => 0.00063439506562183
1229 => 0.00066437201068184
1230 => 0.00068324090858753
1231 => 0.00071587271643496
]
'min_raw' => 0.00029227497232214
'max_raw' => 0.00071587271643496
'avg_raw' => 0.00050407384437855
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000292'
'max' => '$0.000715'
'avg' => '$0.000504'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00013032343204235
'max_diff' => 0.00029042497610431
'year' => 2028
]
3 => [
'items' => [
101 => 0.00071178705337742
102 => 0.00072449037670916
103 => 0.00070447286380081
104 => 0.00065850860795642
105 => 0.00065123458852494
106 => 0.00066579735963427
107 => 0.00070159851139213
108 => 0.00066466985395993
109 => 0.00067214047326248
110 => 0.00066998893440077
111 => 0.00066987428803828
112 => 0.00067424987339403
113 => 0.00066790285862033
114 => 0.00064204397862611
115 => 0.00065389495094013
116 => 0.00064931872139925
117 => 0.00065439638925536
118 => 0.00068179846848528
119 => 0.00066968335607375
120 => 0.00065692106930002
121 => 0.00067292780909243
122 => 0.00069330988936072
123 => 0.00069203441540765
124 => 0.00068955946283195
125 => 0.00070351064091691
126 => 0.00072655389980163
127 => 0.00073278240008286
128 => 0.00073738015165438
129 => 0.00073801410391644
130 => 0.00074454420621483
131 => 0.00070943020035874
201 => 0.00076515702944399
202 => 0.00077477951340442
203 => 0.00077297088523096
204 => 0.00078366587117696
205 => 0.00078051913500604
206 => 0.00077596000800215
207 => 0.00079291383561531
208 => 0.00077347764036017
209 => 0.00074589040814443
210 => 0.00073075550693729
211 => 0.0007506863657445
212 => 0.00076285744572695
213 => 0.00077090175536928
214 => 0.00077333595860654
215 => 0.00071215600067659
216 => 0.00067918339654837
217 => 0.00070031845776289
218 => 0.0007261046911086
219 => 0.00070928695653052
220 => 0.0007099461798858
221 => 0.00068596851000037
222 => 0.000728226182848
223 => 0.00072206959535707
224 => 0.00075400998215082
225 => 0.00074638715250487
226 => 0.00077243329801651
227 => 0.0007655744750019
228 => 0.00079404506586389
301 => 0.00080540275536922
302 => 0.00082447408373188
303 => 0.00083850303050972
304 => 0.00084674109638866
305 => 0.0008462465138135
306 => 0.00087888983501398
307 => 0.00085964120897283
308 => 0.00083546039811232
309 => 0.00083502304353333
310 => 0.00084754662812273
311 => 0.00087379262574447
312 => 0.00088059783106406
313 => 0.00088440101245452
314 => 0.00087857630776533
315 => 0.00085768330375912
316 => 0.00084866181055917
317 => 0.00085634838414335
318 => 0.0008469483651647
319 => 0.00086317543510134
320 => 0.00088545866803947
321 => 0.0008808572685552
322 => 0.00089623905715074
323 => 0.00091215759013579
324 => 0.00093492180725045
325 => 0.00094087321656074
326 => 0.00095071066983882
327 => 0.00096083664069703
328 => 0.00096408882963412
329 => 0.00097029826740999
330 => 0.00097026554060784
331 => 0.00098897809928879
401 => 0.0010096186309936
402 => 0.0010174099538827
403 => 0.0010353256712503
404 => 0.0010046456331
405 => 0.0010279167944638
406 => 0.001048907964529
407 => 0.001023881426213
408 => 0.0010583746788461
409 => 0.0010597139736824
410 => 0.0010799357356273
411 => 0.0010594371058753
412 => 0.0010472650849626
413 => 0.0010824052532581
414 => 0.0010994084737913
415 => 0.0010942869653899
416 => 0.0010553120335751
417 => 0.0010326269515454
418 => 0.00097325571624816
419 => 0.0010435835091042
420 => 0.0010778381255146
421 => 0.0010552233223939
422 => 0.0010666289136634
423 => 0.0011288541213546
424 => 0.0011525454516596
425 => 0.001147617820571
426 => 0.0011484505091093
427 => 0.0011612339209138
428 => 0.0012179226088084
429 => 0.0011839534329885
430 => 0.0012099215951021
501 => 0.001223695014652
502 => 0.0012364885343309
503 => 0.0012050716934328
504 => 0.0011641988450295
505 => 0.0011512526982147
506 => 0.0010529747259126
507 => 0.0010478589306547
508 => 0.0010449872797519
509 => 0.0010268819270133
510 => 0.0010126560792342
511 => 0.0010013431569084
512 => 0.0009716546704009
513 => 0.00098167366308251
514 => 0.0009343564120583
515 => 0.00096462831244318
516 => 0.00088910883729355
517 => 0.00095200370027148
518 => 0.00091777288583111
519 => 0.00094075795709301
520 => 0.00094067776434471
521 => 0.00089835496072805
522 => 0.00087394405085634
523 => 0.00088949963271342
524 => 0.00090617645126783
525 => 0.00090888220897073
526 => 0.00093050413953603
527 => 0.00093653835559496
528 => 0.00091825439922579
529 => 0.00088754386402915
530 => 0.00089467722092259
531 => 0.00087379949360658
601 => 0.00083721207953544
602 => 0.00086348979907629
603 => 0.00087246216787731
604 => 0.00087642487708441
605 => 0.00084044535743835
606 => 0.00082913981121218
607 => 0.00082312083326409
608 => 0.0008828993598543
609 => 0.0008861741624833
610 => 0.00086941980922288
611 => 0.00094515107467296
612 => 0.00092801075690928
613 => 0.00094716069133112
614 => 0.00089402994355282
615 => 0.00089605960966799
616 => 0.00087090666221175
617 => 0.00088499063206669
618 => 0.00087503653612075
619 => 0.00088385278648291
620 => 0.00088913721059923
621 => 0.0009142860307043
622 => 0.00095229085939997
623 => 0.00091052963561985
624 => 0.00089233367238711
625 => 0.00090362234563872
626 => 0.00093368557011172
627 => 0.00097923289409647
628 => 0.00095226796157218
629 => 0.00096423454073221
630 => 0.00096684870592263
701 => 0.00094696576297527
702 => 0.00097996600656367
703 => 0.0009976511051962
704 => 0.0010157923569776
705 => 0.0010315438975931
706 => 0.0010085463420815
707 => 0.001033157023049
708 => 0.0010133251585592
709 => 0.00099553392593131
710 => 0.0009955609078873
711 => 0.0009844002077714
712 => 0.00096277494495812
713 => 0.0009587869147043
714 => 0.00097953315171739
715 => 0.00099616966912594
716 => 0.00099753993238325
717 => 0.0010067507632357
718 => 0.0010122016380552
719 => 0.0010656276213903
720 => 0.0010871159938506
721 => 0.001113391568941
722 => 0.001123627386249
723 => 0.0011544335266024
724 => 0.0011295550663146
725 => 0.0011241724549385
726 => 0.0010494468350529
727 => 0.0010616831511229
728 => 0.00108127467378
729 => 0.0010497698920455
730 => 0.0010697524246549
731 => 0.0010736973998799
801 => 0.0010486993716176
802 => 0.0010620518986135
803 => 0.0010265915456606
804 => 0.00095306379819238
805 => 0.00098004786396563
806 => 0.00099991721911306
807 => 0.00097156119944385
808 => 0.0010223882671714
809 => 0.00099269614348861
810 => 0.00098328516575446
811 => 0.00094656958635771
812 => 0.00096389792652073
813 => 0.00098733475470913
814 => 0.00097285351971242
815 => 0.001002904256699
816 => 0.0010454641145107
817 => 0.0010757948036708
818 => 0.0010781232173668
819 => 0.0010586226162353
820 => 0.0010898724539997
821 => 0.0010901000749516
822 => 0.001054850130294
823 => 0.0010332597354637
824 => 0.0010283543523316
825 => 0.0010406089611525
826 => 0.0010554883185865
827 => 0.0010789489181493
828 => 0.0010931256671171
829 => 0.0011300911096584
830 => 0.0011400928985278
831 => 0.0011510818321423
901 => 0.001165766436313
902 => 0.0011833990686751
903 => 0.0011448198728931
904 => 0.0011463526962622
905 => 0.0011104282833154
906 => 0.0010720378959998
907 => 0.001101171414543
908 => 0.0011392596145686
909 => 0.001130522139399
910 => 0.001129538994952
911 => 0.0011311923712104
912 => 0.0011246046002717
913 => 0.0010948083564705
914 => 0.0010798448693679
915 => 0.001099151585323
916 => 0.00110941224561
917 => 0.0011253256348916
918 => 0.0011233639737718
919 => 0.001164355155588
920 => 0.0011802830893327
921 => 0.0011762080422861
922 => 0.0011769579490142
923 => 0.0012057947122418
924 => 0.0012378671236836
925 => 0.0012679071693263
926 => 0.001298465194004
927 => 0.001261626302555
928 => 0.0012429217853842
929 => 0.001262220072631
930 => 0.0012519801297748
1001 => 0.0013108218787911
1002 => 0.0013148959538259
1003 => 0.001373733447914
1004 => 0.0014295772360421
1005 => 0.0013945027532642
1006 => 0.0014275764107344
1007 => 0.0014633482678232
1008 => 0.0015323579839221
1009 => 0.0015091179393311
1010 => 0.0014913164293923
1011 => 0.0014744940885164
1012 => 0.0015094987094077
1013 => 0.001554531594972
1014 => 0.0015642312472029
1015 => 0.0015799483893693
1016 => 0.001563423736182
1017 => 0.0015833258608153
1018 => 0.0016535891062074
1019 => 0.0016346033570716
1020 => 0.0016076405411873
1021 => 0.0016631066252706
1022 => 0.0016831795854814
1023 => 0.0018240621325315
1024 => 0.0020019321677501
1025 => 0.001928292805212
1026 => 0.0018825824765572
1027 => 0.0018933254880545
1028 => 0.0019582776036357
1029 => 0.0019791381616833
1030 => 0.0019224319738444
1031 => 0.0019424615580432
1101 => 0.0020528265362438
1102 => 0.0021120338061159
1103 => 0.0020316223810323
1104 => 0.0018097704483899
1105 => 0.0016052128346235
1106 => 0.0016594707251438
1107 => 0.0016533195641771
1108 => 0.0017718929649422
1109 => 0.0016341505532337
1110 => 0.0016364697821868
1111 => 0.0017574951553083
1112 => 0.0017252076606596
1113 => 0.0016729060543987
1114 => 0.0016055946942296
1115 => 0.0014811634194099
1116 => 0.0013709511692793
1117 => 0.0015871027721508
1118 => 0.0015777819219888
1119 => 0.0015642839496816
1120 => 0.0015943222264181
1121 => 0.0017401795717369
1122 => 0.0017368170878331
1123 => 0.0017154266807918
1124 => 0.0017316511160063
1125 => 0.0016700618324616
1126 => 0.001685934793193
1127 => 0.0016051804316524
1128 => 0.0016416847756688
1129 => 0.0016727938386415
1130 => 0.0016790394436108
1201 => 0.0016931111105152
1202 => 0.0015728702574961
1203 => 0.0016268548704157
1204 => 0.0016585657728318
1205 => 0.0015152947620634
1206 => 0.0016557337656003
1207 => 0.0015707771317568
1208 => 0.0015419415742245
1209 => 0.0015807648536459
1210 => 0.0015656353838985
1211 => 0.001552627954242
1212 => 0.0015453695849976
1213 => 0.0015738771166357
1214 => 0.0015725472062109
1215 => 0.0015259033513775
1216 => 0.0014650583441941
1217 => 0.0014854799257742
1218 => 0.0014780605737328
1219 => 0.0014511718848194
1220 => 0.0014692916145943
1221 => 0.0013895014948508
1222 => 0.0012522267409617
1223 => 0.0013429146482203
1224 => 0.0013394232624403
1225 => 0.0013376627474083
1226 => 0.0014058122032835
1227 => 0.0013992612055765
1228 => 0.0013873710805909
1229 => 0.0014509535133497
1230 => 0.0014277450700883
1231 => 0.0014992680236229
]
'min_raw' => 0.00064204397862611
'max_raw' => 0.0021120338061159
'avg_raw' => 0.001377038892371
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000642'
'max' => '$0.002112'
'avg' => '$0.001377'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00034976900630397
'max_diff' => 0.001396161089681
'year' => 2029
]
4 => [
'items' => [
101 => 0.0015463776666354
102 => 0.0015344291373301
103 => 0.001578735984284
104 => 0.001485950397768
105 => 0.001516770047697
106 => 0.0015231219348332
107 => 0.0014501689159991
108 => 0.0014003330298189
109 => 0.0013970095443814
110 => 0.0013106009855532
111 => 0.0013567597402137
112 => 0.0013973775341359
113 => 0.0013779247629153
114 => 0.0013717665966819
115 => 0.0014032273324252
116 => 0.0014056721010354
117 => 0.0013499311176371
118 => 0.001361521433173
119 => 0.0014098549756873
120 => 0.0013603035519127
121 => 0.0012640332296979
122 => 0.0012401568587473
123 => 0.0012369713107337
124 => 0.0011722166990568
125 => 0.0012417523920236
126 => 0.0012113981986028
127 => 0.0013072867319198
128 => 0.0012525157159497
129 => 0.0012501546469206
130 => 0.0012465855447897
131 => 0.0011908485755401
201 => 0.0012030514295366
202 => 0.0012436155747681
203 => 0.0012580893187744
204 => 0.0012565795886947
205 => 0.0012434167883267
206 => 0.0012494426509307
207 => 0.0012300312479335
208 => 0.0012231766775218
209 => 0.0012015417678042
210 => 0.0011697444273158
211 => 0.0011741660425351
212 => 0.0011111671908008
213 => 0.0010768420727738
214 => 0.0010673413325017
215 => 0.0010546365455466
216 => 0.0010687763719944
217 => 0.0011109887229692
218 => 0.0010600716718438
219 => 0.00097277795910507
220 => 0.00097802445998191
221 => 0.00098981178975209
222 => 0.00096784617870635
223 => 0.00094705757128556
224 => 0.00096513157880491
225 => 0.00092814408194484
226 => 0.00099428155203777
227 => 0.00099249271881988
228 => 0.0010171446777568
301 => 0.0010325600535892
302 => 0.00099703260308274
303 => 0.0009880975453568
304 => 0.00099318736031323
305 => 0.00090906405678647
306 => 0.001010270009142
307 => 0.0010111452424206
308 => 0.0010036509637194
309 => 0.0010575400089655
310 => 0.0011712627028495
311 => 0.0011284756509256
312 => 0.0011119072111751
313 => 0.0010804105950981
314 => 0.0011223779659367
315 => 0.0011191555266493
316 => 0.0011045824341177
317 => 0.0010957685822838
318 => 0.0011120083745352
319 => 0.001093756292306
320 => 0.001090477716804
321 => 0.0010706131163869
322 => 0.0010635223578197
323 => 0.0010582726424678
324 => 0.0010524932216917
325 => 0.0010652411837818
326 => 0.0010363526245516
327 => 0.0010015158541004
328 => 0.00099861955357647
329 => 0.0010066164939684
330 => 0.0010030784431472
331 => 0.00099860261475032
401 => 0.00099005703942141
402 => 0.00098752174976865
403 => 0.00099576021119244
404 => 0.00098645946857712
405 => 0.0010001832209437
406 => 0.00099645111966984
407 => 0.00097560390533517
408 => 0.00094962055764686
409 => 0.00094938925135052
410 => 0.0009437911817123
411 => 0.00093666119835263
412 => 0.00093467780009389
413 => 0.00096360943630413
414 => 0.0010234970574083
415 => 0.0010117396843963
416 => 0.0010202355913415
417 => 0.0010620270448041
418 => 0.001075311291147
419 => 0.0010658824477474
420 => 0.0010529756653564
421 => 0.0010535434982785
422 => 0.0010976498808576
423 => 0.001100400741837
424 => 0.0011073512800707
425 => 0.0011162846859229
426 => 0.0010674038453932
427 => 0.0010512412150854
428 => 0.0010435824641769
429 => 0.0010199964756886
430 => 0.0010454319421634
501 => 0.0010306117851038
502 => 0.0010326115306198
503 => 0.0010313091937291
504 => 0.0010320203577351
505 => 0.000994263065267
506 => 0.0010080198381775
507 => 0.00098514653504381
508 => 0.00095452174979658
509 => 0.000954419084778
510 => 0.00096191445758115
511 => 0.00095745591654387
512 => 0.00094545809725211
513 => 0.0009471623308544
514 => 0.00093223145121952
515 => 0.00094897520997437
516 => 0.00094945536106341
517 => 0.00094300810190409
518 => 0.0009688041724594
519 => 0.0009793728436135
520 => 0.00097512911952116
521 => 0.00097907509261828
522 => 0.0010122282563263
523 => 0.0010176336685846
524 => 0.0010200343956483
525 => 0.0010168177394184
526 => 0.00097968107159074
527 => 0.0009813282407262
528 => 0.00096924240652409
529 => 0.00095903115019713
530 => 0.00095943954689923
531 => 0.00096468946002169
601 => 0.00098761613853079
602 => 0.0010358639818517
603 => 0.001037694952237
604 => 0.0010399141417572
605 => 0.0010308875827033
606 => 0.0010281650861202
607 => 0.0010317567618494
608 => 0.0010498761150496
609 => 0.0010964840108371
610 => 0.0010800096676291
611 => 0.0010666157701626
612 => 0.0010783658292095
613 => 0.0010765569997193
614 => 0.0010612886584797
615 => 0.0010608601269939
616 => 0.0010315552985712
617 => 0.001020721970742
618 => 0.0010116688311474
619 => 0.0010017830390482
620 => 0.00099592241011711
621 => 0.0010049269997635
622 => 0.0010069864559548
623 => 0.00098729776331966
624 => 0.0009846142672657
625 => 0.0010006924786815
626 => 0.00099361705729356
627 => 0.0010008943036531
628 => 0.0010025826872316
629 => 0.0010023108185887
630 => 0.00099492326605266
701 => 0.00099963187173912
702 => 0.00098849461558772
703 => 0.00097638452228485
704 => 0.0009686590372431
705 => 0.00096191752690728
706 => 0.00096565810866047
707 => 0.00095232361771358
708 => 0.00094805764568939
709 => 0.00099803670207953
710 => 0.0010349567684003
711 => 0.0010344199360141
712 => 0.0010311521069248
713 => 0.0010262967757531
714 => 0.0010495209173324
715 => 0.0010414300907876
716 => 0.0010473168431101
717 => 0.0010488152686424
718 => 0.0010533505514318
719 => 0.0010549715252083
720 => 0.0010500718166171
721 => 0.001033627796136
722 => 0.00099265086054766
723 => 0.00097357598641616
724 => 0.0009672809602356
725 => 0.00096750977248131
726 => 0.00096119810928189
727 => 0.00096305717696302
728 => 0.00096055160141043
729 => 0.00095580664747764
730 => 0.00096536512112605
731 => 0.00096646664617069
801 => 0.00096423558420589
802 => 0.00096476108006422
803 => 0.00094628883989477
804 => 0.00094769324419526
805 => 0.00093987334258708
806 => 0.00093840720530587
807 => 0.00091863917499711
808 => 0.00088361724388335
809 => 0.00090302279338148
810 => 0.00087958361842091
811 => 0.00087070684770189
812 => 0.00091272809966467
813 => 0.00090851033145571
814 => 0.00090129134570174
815 => 0.00089061296120315
816 => 0.00088665224451998
817 => 0.00086258818376356
818 => 0.0008611663506773
819 => 0.00087309314897248
820 => 0.00086758934193533
821 => 0.00085985991240044
822 => 0.00083186470214479
823 => 0.00080038881692185
824 => 0.00080133887604637
825 => 0.00081135076950612
826 => 0.00084046170002814
827 => 0.00082908755584898
828 => 0.00082083548374373
829 => 0.00081929011869479
830 => 0.0008386335977231
831 => 0.0008660086731323
901 => 0.00087885244603151
902 => 0.00086612465715958
903 => 0.00085150365861632
904 => 0.00085239357105047
905 => 0.00085831375978703
906 => 0.00085893588791628
907 => 0.00084941912092756
908 => 0.0008520980350901
909 => 0.00084802851951215
910 => 0.00082305390992201
911 => 0.00082260219842987
912 => 0.00081647302646647
913 => 0.0008162874375753
914 => 0.00080586018707196
915 => 0.00080440134264636
916 => 0.0007836974038831
917 => 0.00079732479907438
918 => 0.00078818425785043
919 => 0.00077440730619023
920 => 0.00077203215453117
921 => 0.00077196075460422
922 => 0.00078610660348921
923 => 0.00079715949659404
924 => 0.00078834326147842
925 => 0.00078633597563813
926 => 0.00080776853692442
927 => 0.00080504104813861
928 => 0.00080267906044051
929 => 0.00086355753538186
930 => 0.00081536747205914
1001 => 0.00079435385385779
1002 => 0.00076834551095574
1003 => 0.0007768139585501
1004 => 0.00077859838488561
1005 => 0.00071605300856236
1006 => 0.00069067835717756
1007 => 0.00068197073304585
1008 => 0.00067695937225033
1009 => 0.00067924311229356
1010 => 0.00065640294989747
1011 => 0.00067175191676906
1012 => 0.00065197426676492
1013 => 0.00064865847937969
1014 => 0.00068402336756778
1015 => 0.00068894418516047
1016 => 0.00066795044853185
1017 => 0.00068143182602466
1018 => 0.0006765432911406
1019 => 0.00065231329780894
1020 => 0.00065138789028744
1021 => 0.00063923013135906
1022 => 0.00062020559284217
1023 => 0.00061151086824343
1024 => 0.00060698258018135
1025 => 0.00060885104009034
1026 => 0.00060790628958454
1027 => 0.00060174115348032
1028 => 0.00060825966796939
1029 => 0.00059160755708596
1030 => 0.00058497655235701
1031 => 0.00058198148135908
1101 => 0.00056720177449031
1102 => 0.00059072286068401
1103 => 0.000595356810975
1104 => 0.00059999989157957
1105 => 0.00064041473827658
1106 => 0.00063839572674677
1107 => 0.00065664660767777
1108 => 0.000655937412006
1109 => 0.00065073196511981
1110 => 0.00062877104096143
1111 => 0.00063752427391513
1112 => 0.00061058318343807
1113 => 0.00063076928023956
1114 => 0.00062155718865092
1115 => 0.00062765466280691
1116 => 0.00061669085448736
1117 => 0.00062275867869595
1118 => 0.00059645569249722
1119 => 0.00057189433407785
1120 => 0.00058177854169656
1121 => 0.00059252380577434
1122 => 0.00061582227613733
1123 => 0.00060194589939734
1124 => 0.00060693636919694
1125 => 0.00059021913076284
1126 => 0.0005557266928302
1127 => 0.00055592191628303
1128 => 0.0005506160061657
1129 => 0.00054603092514877
1130 => 0.00060353976819049
1201 => 0.00059638763447798
1202 => 0.00058499164545521
1203 => 0.00060024562962079
1204 => 0.00060427902514744
1205 => 0.0006043938502478
1206 => 0.00061552276333269
1207 => 0.00062146226624106
1208 => 0.00062250912937194
1209 => 0.00064002071456709
1210 => 0.00064589036694111
1211 => 0.0006700666343654
1212 => 0.00062095834091628
1213 => 0.00061994698792931
1214 => 0.00060046028446001
1215 => 0.00058810150904719
1216 => 0.00060130650038592
1217 => 0.00061300432005096
1218 => 0.00060082376832455
1219 => 0.00060241429123454
1220 => 0.00058606289572947
1221 => 0.00059190775021786
1222 => 0.00059694212629019
1223 => 0.00059416243973
1224 => 0.00059000111441104
1225 => 0.0006120452322386
1226 => 0.00061080141671918
1227 => 0.00063132940603228
1228 => 0.00064733244167245
1229 => 0.00067601274242442
1230 => 0.00064608335345184
1231 => 0.00064499260755914
]
'min_raw' => 0.00054603092514877
'max_raw' => 0.001578735984284
'avg_raw' => 0.0010623834547164
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000546'
'max' => '$0.001578'
'avg' => '$0.001062'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -9.6013053477344E-5
'max_diff' => -0.0005332978218319
'year' => 2030
]
5 => [
'items' => [
101 => 0.00065565482362149
102 => 0.00064588873461138
103 => 0.00065206056575184
104 => 0.00067501836501155
105 => 0.00067550342713348
106 => 0.00066737801162389
107 => 0.00066688357935169
108 => 0.00066844415428261
109 => 0.00067758449039671
110 => 0.00067439057610428
111 => 0.00067808665458349
112 => 0.0006827086573181
113 => 0.00070182722031701
114 => 0.00070643664113046
115 => 0.00069523813826446
116 => 0.00069624923768894
117 => 0.00069206069021129
118 => 0.00068801460583021
119 => 0.00069710961263569
120 => 0.00071373091633551
121 => 0.00071362751606784
122 => 0.00071748333545422
123 => 0.00071988547898861
124 => 0.00070957372046249
125 => 0.00070286114483586
126 => 0.0007054351734634
127 => 0.00070955110129387
128 => 0.00070410043354106
129 => 0.00067045638717578
130 => 0.000680661841653
131 => 0.00067896315500676
201 => 0.00067654401865517
202 => 0.00068680568204846
203 => 0.00068581591958068
204 => 0.00065616869101947
205 => 0.00065806661040176
206 => 0.00065628410978321
207 => 0.00066204373394706
208 => 0.00064557769600506
209 => 0.00065064253837556
210 => 0.00065381916003039
211 => 0.00065569021458904
212 => 0.00066244974664902
213 => 0.00066165659358
214 => 0.00066240044314061
215 => 0.00067242304473525
216 => 0.00072311392425941
217 => 0.00072587291698879
218 => 0.00071228662773515
219 => 0.00071771408231427
220 => 0.00070729455637619
221 => 0.00071428925394318
222 => 0.00071907484837246
223 => 0.00069744966736343
224 => 0.00069616916449034
225 => 0.00068570663346229
226 => 0.00069132860500872
227 => 0.00068238364404428
228 => 0.0006845784245835
301 => 0.00067844162685832
302 => 0.00068948664093941
303 => 0.00070183668290375
304 => 0.00070495679122188
305 => 0.00069674912952797
306 => 0.00069080624155032
307 => 0.00068037248797057
308 => 0.00069772405270506
309 => 0.00070279817901278
310 => 0.00069769740047969
311 => 0.00069651543863936
312 => 0.00069427562308769
313 => 0.00069699062609694
314 => 0.00070277054423119
315 => 0.0007000448415774
316 => 0.00070184521620093
317 => 0.0006949840446743
318 => 0.00070957713408363
319 => 0.00073275447208387
320 => 0.00073282899101542
321 => 0.00073010327366908
322 => 0.00072898796885736
323 => 0.00073178472026506
324 => 0.00073330184317499
325 => 0.000742346024391
326 => 0.00075205079117185
327 => 0.0007973387032166
328 => 0.00078462203873694
329 => 0.00082480416849299
330 => 0.00085658301613349
331 => 0.00086611210302029
401 => 0.00085734579146262
402 => 0.00082735671317067
403 => 0.00082588530591922
404 => 0.00087070164994966
405 => 0.00085803898004246
406 => 0.00085653279574928
407 => 0.00084050953960838
408 => 0.00084998126850653
409 => 0.00084790966245463
410 => 0.00084463953095526
411 => 0.00086271092988658
412 => 0.0008965389754411
413 => 0.00089126655730403
414 => 0.00088733094174514
415 => 0.00087008622000656
416 => 0.00088047139424123
417 => 0.00087677343261118
418 => 0.00089266222255833
419 => 0.00088325005537343
420 => 0.00085794304786383
421 => 0.00086197327222273
422 => 0.00086136411191856
423 => 0.00087390058781262
424 => 0.00087013744892368
425 => 0.00086062929865428
426 => 0.00089642335485898
427 => 0.00089409908794605
428 => 0.00089739436702719
429 => 0.00089884505078861
430 => 0.00092063226203839
501 => 0.00092955778537442
502 => 0.00093158403543498
503 => 0.00094006259227947
504 => 0.0009313730812169
505 => 0.00096613732098355
506 => 0.00098925351187874
507 => 0.0010161041571518
508 => 0.0010553401666688
509 => 0.0010700932692006
510 => 0.0010674282532782
511 => 0.0010971765478996
512 => 0.0011506335720668
513 => 0.0010782334462572
514 => 0.001154470954536
515 => 0.0011303350396193
516 => 0.0010731092195383
517 => 0.0010694245513732
518 => 0.0011081785411375
519 => 0.0011941311605013
520 => 0.0011726010042172
521 => 0.001194166376124
522 => 0.0011690092242826
523 => 0.0011677599596525
524 => 0.0011929445494109
525 => 0.0012517897161219
526 => 0.0012238345831956
527 => 0.0011837540452659
528 => 0.001213348890751
529 => 0.0011877110967182
530 => 0.0011299419711956
531 => 0.0011725845405125
601 => 0.0011440706688007
602 => 0.001152392532447
603 => 0.0012123244496668
604 => 0.0012051132828267
605 => 0.0012144452004538
606 => 0.0011979746101008
607 => 0.0011825884815373
608 => 0.0011538691299847
609 => 0.0011453667458369
610 => 0.0011477164989316
611 => 0.0011453655814159
612 => 0.0011292973681667
613 => 0.0011258274390454
614 => 0.0011200440718222
615 => 0.0011218365791543
616 => 0.0011109621567908
617 => 0.001131484438561
618 => 0.0011352935548992
619 => 0.0011502279601553
620 => 0.001151778499652
621 => 0.0011933706057122
622 => 0.0011704623726212
623 => 0.0011858311931803
624 => 0.0011844564612125
625 => 0.0010743494765833
626 => 0.0010895212475831
627 => 0.0011131237620947
628 => 0.0011024908612997
629 => 0.0010874584272911
630 => 0.0010753189308411
701 => 0.001056926352392
702 => 0.0010828135533609
703 => 0.001116852469838
704 => 0.0011526417827466
705 => 0.0011956402971976
706 => 0.00118604352933
707 => 0.0011518379554281
708 => 0.0011533723924861
709 => 0.0011628576786003
710 => 0.0011505733712533
711 => 0.0011469504891986
712 => 0.0011623599502391
713 => 0.0011624660667284
714 => 0.0011483314865176
715 => 0.0011326234872141
716 => 0.0011325576701235
717 => 0.0011297625833687
718 => 0.0011695064640069
719 => 0.0011913615797983
720 => 0.0011938672336025
721 => 0.0011911929293333
722 => 0.0011922221629072
723 => 0.0011795051525728
724 => 0.001208572467085
725 => 0.0012352475093409
726 => 0.0012280980281871
727 => 0.0012173799395791
728 => 0.0012088424657496
729 => 0.0012260868706777
730 => 0.0012253190044715
731 => 0.0012350145261175
801 => 0.0012345746812516
802 => 0.0012313144419891
803 => 0.0012280981446205
804 => 0.0012408504001331
805 => 0.0012371779553404
806 => 0.0012334998062266
807 => 0.0012261227150825
808 => 0.0012271253842895
809 => 0.0012164091463106
810 => 0.0012114513242798
811 => 0.0011368975764156
812 => 0.0011169743788724
813 => 0.0011232426223936
814 => 0.0011253062909156
815 => 0.0011166356898125
816 => 0.0011290671044997
817 => 0.0011271296816888
818 => 0.0011346670604915
819 => 0.0011299580334505
820 => 0.0011301512935629
821 => 0.0011439995380199
822 => 0.0011480197423004
823 => 0.0011459750339563
824 => 0.001147407077592
825 => 0.0011804079187491
826 => 0.0011757162544441
827 => 0.0011732239012903
828 => 0.001173914300147
829 => 0.0011823467226086
830 => 0.0011847073405047
831 => 0.0011747052366014
901 => 0.0011794222866236
902 => 0.0011995068869357
903 => 0.001206535360355
904 => 0.0012289668736507
905 => 0.0012194375681143
906 => 0.001236929020845
907 => 0.0012906917832636
908 => 0.0013336411979837
909 => 0.0012941431412474
910 => 0.001373014271806
911 => 0.0014344267603375
912 => 0.0014320696467398
913 => 0.0014213609588679
914 => 0.0013514444734102
915 => 0.001287106281096
916 => 0.0013409279109108
917 => 0.0013410651133137
918 => 0.0013364417875806
919 => 0.0013077267085229
920 => 0.0013354425650729
921 => 0.0013376425491166
922 => 0.0013364111430751
923 => 0.0013143953592877
924 => 0.0012807813266412
925 => 0.0012873494281597
926 => 0.0012981081124326
927 => 0.0012777396786073
928 => 0.0012712307298331
929 => 0.0012833321039824
930 => 0.0013223252529128
1001 => 0.0013149538239794
1002 => 0.0013147613261797
1003 => 0.0013462994251289
1004 => 0.001323724952629
1005 => 0.0012874322729538
1006 => 0.0012782678926942
1007 => 0.0012457405166387
1008 => 0.0012682072911388
1009 => 0.0012690158303562
1010 => 0.0012567110075674
1011 => 0.0012884307415073
1012 => 0.0012881384385749
1013 => 0.0013182516050916
1014 => 0.0013758166694825
1015 => 0.0013587918473374
1016 => 0.0013389938314779
1017 => 0.0013411464247412
1018 => 0.0013647550597874
1019 => 0.0013504807401058
1020 => 0.0013556138849874
1021 => 0.0013647472901578
1022 => 0.0013702577002669
1023 => 0.0013403535615269
1024 => 0.0013333814763064
1025 => 0.0013191190368144
1026 => 0.001315398232572
1027 => 0.0013270146919427
1028 => 0.0013239541653141
1029 => 0.0012689478757658
1030 => 0.0012631994124559
1031 => 0.0012633757096187
1101 => 0.0012489209253014
1102 => 0.0012268739096718
1103 => 0.0012848121503875
1104 => 0.0012801588988128
1105 => 0.0012750220692075
1106 => 0.0012756513015238
1107 => 0.0013008003281093
1108 => 0.0012862126226334
1109 => 0.001324996428519
1110 => 0.0013170236439768
1111 => 0.0013088463875952
1112 => 0.001307716041678
1113 => 0.0013045684956218
1114 => 0.0012937743890449
1115 => 0.001280739856728
1116 => 0.0012721333294605
1117 => 0.001173475751714
1118 => 0.001191786024279
1119 => 0.0012128503238312
1120 => 0.0012201216356267
1121 => 0.001207683553641
1122 => 0.0012942655203327
1123 => 0.0013100848799718
1124 => 0.0012621670077535
1125 => 0.0012532035303353
1126 => 0.00129485316442
1127 => 0.0012697333436062
1128 => 0.0012810447973805
1129 => 0.0012565956213549
1130 => 0.0013062744594797
1201 => 0.001305895989968
1202 => 0.00128656979989
1203 => 0.0013029041634039
1204 => 0.0013000656657744
1205 => 0.0012782464447746
1206 => 0.0013069661677036
1207 => 0.0013069804123279
1208 => 0.0012883793745654
1209 => 0.0012666574347496
1210 => 0.0012627740649599
1211 => 0.0012598484674806
1212 => 0.001280325279743
1213 => 0.0012986847255882
1214 => 0.0013328471026134
1215 => 0.0013414363358756
1216 => 0.0013749606851156
1217 => 0.0013549985674141
1218 => 0.0013638475156385
1219 => 0.0013734543006961
1220 => 0.0013780601467306
1221 => 0.0013705551677808
1222 => 0.0014226322813231
1223 => 0.0014270291853076
1224 => 0.0014285034291806
1225 => 0.0014109433195027
1226 => 0.0014265408068915
1227 => 0.0014192432590767
1228 => 0.0014382294511735
1229 => 0.0014412067285222
1230 => 0.0014386850805276
1231 => 0.0014396301153512
]
'min_raw' => 0.00064557769600506
'max_raw' => 0.0014412067285222
'avg_raw' => 0.0010433922122636
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000645'
'max' => '$0.001441'
'avg' => '$0.001043'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 9.9546770856287E-5
'max_diff' => -0.00013752925576187
'year' => 2031
]
6 => [
'items' => [
101 => 0.0013951914859751
102 => 0.0013928871086095
103 => 0.0013614667597185
104 => 0.0013742707841391
105 => 0.0013503342741977
106 => 0.0013579247880735
107 => 0.0013612706142649
108 => 0.0013595229445365
109 => 0.0013749947044688
110 => 0.0013618405478546
111 => 0.001327124565806
112 => 0.0012923991254113
113 => 0.0012919631757938
114 => 0.0012828205802929
115 => 0.0012762121582955
116 => 0.0012774851748186
117 => 0.001281971451088
118 => 0.0012759514077632
119 => 0.0012772360892304
120 => 0.0012985703613754
121 => 0.0013028487975049
122 => 0.0012883089998437
123 => 0.0012299296141509
124 => 0.0012156031664683
125 => 0.0012259007329567
126 => 0.0012209791594235
127 => 0.00098542547517101
128 => 0.0010407653192689
129 => 0.0010078842630695
130 => 0.0010230373665509
131 => 0.00098947432267943
201 => 0.0010054923664047
202 => 0.001002534418614
203 => 0.0010915192502984
204 => 0.0010901298745463
205 => 0.0010907948951947
206 => 0.001059051726944
207 => 0.0011096194558883
208 => 0.001134530937523
209 => 0.00112992048527
210 => 0.0011310808367738
211 => 0.0011111421535105
212 => 0.0010909879452325
213 => 0.0010686338265418
214 => 0.0011101650160165
215 => 0.001105547456708
216 => 0.0011161384764164
217 => 0.0011430744215015
218 => 0.001147040841735
219 => 0.0011523717507522
220 => 0.0011504609993495
221 => 0.0011959828497359
222 => 0.0011904698532912
223 => 0.0012037545885255
224 => 0.0011764268802334
225 => 0.001145502984331
226 => 0.0011513806059637
227 => 0.0011508145437356
228 => 0.0011436079218762
229 => 0.0011371021058913
301 => 0.0011262717552788
302 => 0.0011605405872071
303 => 0.001159149335213
304 => 0.0011816720878432
305 => 0.0011776909725415
306 => 0.0011511041102123
307 => 0.0011520536652017
308 => 0.0011584398788456
309 => 0.0011805426371837
310 => 0.001187104240729
311 => 0.0011840646445322
312 => 0.001191259143271
313 => 0.0011969453817308
314 => 0.0011919732472747
315 => 0.0012623681858701
316 => 0.0012331352994473
317 => 0.0012473832048886
318 => 0.0012507812463829
319 => 0.0012420772345485
320 => 0.0012439648230481
321 => 0.0012468240052879
322 => 0.0012641843999625
323 => 0.0013097430988595
324 => 0.0013299207364724
325 => 0.001390626154778
326 => 0.001328245264555
327 => 0.0013245438406869
328 => 0.0013354787196518
329 => 0.0013711192265183
330 => 0.001400002509791
331 => 0.0014095847611691
401 => 0.0014108512138745
402 => 0.0014288281544759
403 => 0.0014391322015785
404 => 0.0014266452810464
405 => 0.0014160639233305
406 => 0.0013781628133986
407 => 0.0013825499700745
408 => 0.0014127731290376
409 => 0.0014554651212082
410 => 0.0014920992918353
411 => 0.0014792712821114
412 => 0.0015771399411409
413 => 0.0015868432189261
414 => 0.0015855025396807
415 => 0.0016076080505166
416 => 0.0015637331132163
417 => 0.0015449757274836
418 => 0.0014183517329722
419 => 0.0014539279105043
420 => 0.0015056399738628
421 => 0.001498795688367
422 => 0.0014612410056886
423 => 0.0014920708032409
424 => 0.0014818775080332
425 => 0.0014738376331827
426 => 0.0015106698584792
427 => 0.0014701713137813
428 => 0.0015052359698997
429 => 0.0014602651857304
430 => 0.0014793298793793
501 => 0.0014685078372087
502 => 0.0014755110247927
503 => 0.0014345705332754
504 => 0.0014566610287239
505 => 0.0014336514960379
506 => 0.0014336405865235
507 => 0.0014331326498142
508 => 0.0014602032629793
509 => 0.0014610860347027
510 => 0.0014410808106723
511 => 0.0014381977453492
512 => 0.0014488579489244
513 => 0.0014363776424495
514 => 0.001442217099299
515 => 0.0014365545136487
516 => 0.0014352797463466
517 => 0.001425122183599
518 => 0.0014207460262794
519 => 0.0014224620303241
520 => 0.0014166044238588
521 => 0.0014130750040845
522 => 0.0014324305593869
523 => 0.0014220896669897
524 => 0.0014308456693177
525 => 0.0014208670995693
526 => 0.0013862770293656
527 => 0.001366383914208
528 => 0.0013010464780943
529 => 0.0013195760939253
530 => 0.0013318612483915
531 => 0.0013278010049137
601 => 0.0013365239790097
602 => 0.0013370594987741
603 => 0.0013342235709753
604 => 0.0013309399298892
605 => 0.0013293416350052
606 => 0.0013412540156121
607 => 0.0013481695535067
608 => 0.0013330942279964
609 => 0.0013295622901555
610 => 0.001344804276578
611 => 0.0013541018794906
612 => 0.001422750155526
613 => 0.0014176644695063
614 => 0.0014304285434003
615 => 0.0014289915045605
616 => 0.0014423702874778
617 => 0.0014642389432522
618 => 0.0014197738514906
619 => 0.0014274914539333
620 => 0.0014255992760398
621 => 0.0014462575781249
622 => 0.0014463220710891
623 => 0.0014339363870303
624 => 0.0014406508672934
625 => 0.0014369030286127
626 => 0.0014436758796595
627 => 0.0014175965470689
628 => 0.0014493583590742
629 => 0.0014673652597953
630 => 0.0014676152856293
701 => 0.0014761504136594
702 => 0.0014848225980594
703 => 0.001501468100827
704 => 0.0014843583640215
705 => 0.0014535796131079
706 => 0.0014558017395091
707 => 0.0014377561691099
708 => 0.0014380595184085
709 => 0.0014364402160786
710 => 0.001441299864266
711 => 0.0014186629665643
712 => 0.0014239758012089
713 => 0.0014165378015946
714 => 0.0014274752851747
715 => 0.0014157083608733
716 => 0.0014255983635743
717 => 0.0014298665608813
718 => 0.0014456163008318
719 => 0.0014133821114768
720 => 0.0013476544173193
721 => 0.0013614711755024
722 => 0.0013410351048666
723 => 0.0013429265410095
724 => 0.0013467475430381
725 => 0.0013343624253094
726 => 0.0013367251154721
727 => 0.0013366407035535
728 => 0.0013359132872419
729 => 0.0013326914397847
730 => 0.0013280191235487
731 => 0.0013466321933699
801 => 0.001349794916632
802 => 0.0013568252586652
803 => 0.0013777427878292
804 => 0.0013756526333964
805 => 0.0013790617619959
806 => 0.0013716196534046
807 => 0.0013432717590826
808 => 0.0013448111861301
809 => 0.0013256145061799
810 => 0.0013563343563988
811 => 0.0013490594903848
812 => 0.0013443693369397
813 => 0.0013430895851183
814 => 0.0013640589647912
815 => 0.0013703333318441
816 => 0.0013664235673538
817 => 0.0013584045263183
818 => 0.0013738034557232
819 => 0.0013779235596033
820 => 0.0013788458989184
821 => 0.0014061298493721
822 => 0.0013803707686619
823 => 0.0013865712354121
824 => 0.0014349455069958
825 => 0.0013910767178626
826 => 0.0014143149938572
827 => 0.0014131776011734
828 => 0.0014250655168319
829 => 0.0014122024451071
830 => 0.0014123618982974
831 => 0.001422917562045
901 => 0.0014080940360355
902 => 0.0014044235225319
903 => 0.0013993527344153
904 => 0.0014104246147568
905 => 0.0014170617062834
906 => 0.0014705517895816
907 => 0.0015051088228364
908 => 0.0015036086108851
909 => 0.0015173177398407
910 => 0.001511141651685
911 => 0.0014911974338604
912 => 0.0015252397817487
913 => 0.0015144673584845
914 => 0.0015153554239699
915 => 0.0015153223701282
916 => 0.0015224850898573
917 => 0.0015174096464756
918 => 0.0015074054265867
919 => 0.0015140466946264
920 => 0.0015337688864073
921 => 0.0015949871748462
922 => 0.0016292457400911
923 => 0.0015929247662022
924 => 0.0016179784876335
925 => 0.0016029551823284
926 => 0.0016002250008499
927 => 0.0016159605893642
928 => 0.0016317237209432
929 => 0.0016307196776075
930 => 0.0016192764535269
1001 => 0.0016128124666049
1002 => 0.0016617599411732
1003 => 0.0016978236066367
1004 => 0.001695364306426
1005 => 0.0017062188577489
1006 => 0.0017380881561515
1007 => 0.0017410018853984
1008 => 0.0017406348224846
1009 => 0.00173341284053
1010 => 0.0017647923035587
1011 => 0.0017909696036864
1012 => 0.0017317411603706
1013 => 0.001754294576228
1014 => 0.0017644195312321
1015 => 0.0017792859691168
1016 => 0.0018043681417327
1017 => 0.0018316140339112
1018 => 0.0018354669018013
1019 => 0.0018327331076566
1020 => 0.001814763709356
1021 => 0.0018445764896888
1022 => 0.0018620401172121
1023 => 0.0018724393077542
1024 => 0.0018988099247086
1025 => 0.0017644820595072
1026 => 0.0016693981199896
1027 => 0.0016545493898052
1028 => 0.0016847448665327
1029 => 0.0016927071729413
1030 => 0.0016894975772119
1031 => 0.0015824719586312
1101 => 0.0016539859220729
1102 => 0.0017309289336712
1103 => 0.001733884628107
1104 => 0.0017724039085156
1105 => 0.0017849473651753
1106 => 0.0018159604347418
1107 => 0.0018140205587964
1108 => 0.0018215717477102
1109 => 0.0018198358601473
1110 => 0.0018772810409468
1111 => 0.0019406516060607
1112 => 0.0019384572848968
1113 => 0.0019293470163952
1114 => 0.0019428773186517
1115 => 0.0020082825330517
1116 => 0.0020022610690069
1117 => 0.0020081104084193
1118 => 0.0020852268422732
1119 => 0.0021854891759681
1120 => 0.0021389072557931
1121 => 0.0022399766189863
1122 => 0.0023035944256598
1123 => 0.0024136148440975
1124 => 0.0023998397458471
1125 => 0.0024426698873777
1126 => 0.0023751794450291
1127 => 0.0022202077473279
1128 => 0.0021956828829588
1129 => 0.0022447822824941
1130 => 0.0023654883652024
1201 => 0.0022409808183932
1202 => 0.0022661685329537
1203 => 0.0022589144694658
1204 => 0.0022585279312503
1205 => 0.0022732805227709
1206 => 0.0022518811193269
1207 => 0.0021646961000171
1208 => 0.0022046524805822
1209 => 0.002189223403183
1210 => 0.0022063431148713
1211 => 0.0022987311381471
1212 => 0.0022578841908015
1213 => 0.0022148552499094
1214 => 0.0022688230906744
1215 => 0.0023375426973304
1216 => 0.0023332423478469
1217 => 0.0023248978724422
1218 => 0.0023719352433958
1219 => 0.0024496271995546
1220 => 0.0024706270231128
1221 => 0.0024861286635409
1222 => 0.0024882660778536
1223 => 0.0025102827736698
1224 => 0.0023918934513444
1225 => 0.0025797803463282
1226 => 0.0026122232228212
1227 => 0.00260612530666
1228 => 0.002642184198477
1229 => 0.0026315747577786
1230 => 0.002616203342777
1231 => 0.0026733643562532
]
'min_raw' => 0.00098542547517101
'max_raw' => 0.0026733643562532
'avg_raw' => 0.0018293949157121
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.000985'
'max' => '$0.002673'
'avg' => '$0.001829'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00033984777916596
'max_diff' => 0.001232157627731
'year' => 2032
]
7 => [
'items' => [
101 => 0.0026078338669586
102 => 0.0025148215874642
103 => 0.0024637932113593
104 => 0.002530991493356
105 => 0.0025720271392744
106 => 0.0025991490908693
107 => 0.0026073561770344
108 => 0.0024010836774253
109 => 0.0022899142405333
110 => 0.0023611725750209
111 => 0.0024481126610833
112 => 0.0023914104947766
113 => 0.0023936331123444
114 => 0.0023127907242582
115 => 0.0024552654186005
116 => 0.0024345080540356
117 => 0.0025421972981173
118 => 0.0025164963957571
119 => 0.0026043127938333
120 => 0.0025811877931719
121 => 0.0026771783780162
122 => 0.002715471621152
123 => 0.0027797719362443
124 => 0.0028270715097756
125 => 0.0028548467240499
126 => 0.0028531792043671
127 => 0.0029632384408784
128 => 0.0028983403542845
129 => 0.002816813062218
130 => 0.0028153384907198
131 => 0.0028575626305317
201 => 0.0029460528439505
202 => 0.0029689970688097
203 => 0.0029818197603973
204 => 0.0029621813618698
205 => 0.0028917391401599
206 => 0.0028613225459757
207 => 0.0028872383654742
208 => 0.0028555455451993
209 => 0.0029102562444286
210 => 0.0029853857200451
211 => 0.0029698717804244
212 => 0.0030217325545965
213 => 0.003075402999952
214 => 0.003152154147301
215 => 0.0031722197393048
216 => 0.0032053873998609
217 => 0.003239527817582
218 => 0.003250492799644
219 => 0.0032714283526345
220 => 0.0032713180119361
221 => 0.0033344087099981
222 => 0.0034039997037166
223 => 0.0034302686928102
224 => 0.0034906727847503
225 => 0.0033872328941147
226 => 0.0034656932393936
227 => 0.003536466434825
228 => 0.0034520877135953
301 => 0.0035683841230899
302 => 0.0035728996491373
303 => 0.0036410787313727
304 => 0.0035719661699954
305 => 0.0035309273516646
306 => 0.003649404882481
307 => 0.0037067324276358
308 => 0.0036894649044882
309 => 0.0035580582007317
310 => 0.0034815738628467
311 => 0.0032813995978749
312 => 0.0035185146616188
313 => 0.0036340064924272
314 => 0.0035577591047907
315 => 0.0035962138520688
316 => 0.003806010484225
317 => 0.003885887458424
318 => 0.0038692736061728
319 => 0.003872081073716
320 => 0.0039151812391242
321 => 0.0041063111082387
322 => 0.0039917816603096
323 => 0.0040793351319148
324 => 0.0041257731775567
325 => 0.0041689074223693
326 => 0.0040629833498277
327 => 0.0039251776877846
328 => 0.0038815288499274
329 => 0.003550177804762
330 => 0.0035329295438765
331 => 0.0035232475723656
401 => 0.0034622041115319
402 => 0.0034142406725277
403 => 0.0033760983650632
404 => 0.0032760015600194
405 => 0.0033097812933491
406 => 0.003150247877936
407 => 0.0032523117036002
408 => 0.0029976925205319
409 => 0.0032097469422411
410 => 0.0030943353614362
411 => 0.0031718311339622
412 => 0.0031715607585124
413 => 0.003028866471235
414 => 0.0029465633842873
415 => 0.0029990101145745
416 => 0.003055237172669
417 => 0.0030643598236743
418 => 0.0031372596721701
419 => 0.0031576044529083
420 => 0.0030959588174646
421 => 0.002992416103908
422 => 0.0030164667147094
423 => 0.002946075999427
424 => 0.0028227189784345
425 => 0.0029113161445183
426 => 0.0029415671123617
427 => 0.002954927663121
428 => 0.0028336202006244
429 => 0.0027955027621949
430 => 0.0027752093578112
501 => 0.0029767568338136
502 => 0.0029877980595167
503 => 0.0029313095877476
504 => 0.0031866428366006
505 => 0.0031288530585616
506 => 0.0031934183994706
507 => 0.0030142843738657
508 => 0.0030211275348798
509 => 0.0029363226164083
510 => 0.0029838077040856
511 => 0.0029502467746311
512 => 0.0029799713782581
513 => 0.002997788183113
514 => 0.0030825791859318
515 => 0.0032107151192916
516 => 0.0030699142376414
517 => 0.0030085652772006
518 => 0.0030466258272184
519 => 0.0031479860874765
520 => 0.0033015520703037
521 => 0.0032106379176665
522 => 0.0032509840747845
523 => 0.0032597979152391
524 => 0.0031927611849094
525 => 0.0033040238101711
526 => 0.0033636503549448
527 => 0.0034248148519077
528 => 0.0034779222708303
529 => 0.0034003844067846
530 => 0.0034833610359297
531 => 0.0034164965201856
601 => 0.0033565121372365
602 => 0.003356603108785
603 => 0.003318974029129
604 => 0.0032460629457264
605 => 0.0032326170232903
606 => 0.0033025644098359
607 => 0.0033586555898034
608 => 0.0033632755280441
609 => 0.003394330487343
610 => 0.0034127084923646
611 => 0.0035928379252621
612 => 0.0036652874732823
613 => 0.0037538774092016
614 => 0.0037883881818974
615 => 0.003892253234915
616 => 0.0038083737690961
617 => 0.0037902259190397
618 => 0.0035382832744189
619 => 0.0035795388683615
620 => 0.0036455930548362
621 => 0.0035393724836246
622 => 0.0036067449874531
623 => 0.0036200457468536
624 => 0.0035357631492607
625 => 0.0035807821262711
626 => 0.0034612250705277
627 => 0.0032133211363951
628 => 0.0033042997981169
629 => 0.0033712907162305
630 => 0.0032756864161617
701 => 0.0034470534236377
702 => 0.0033469443556033
703 => 0.0033152145871191
704 => 0.0031914254477831
705 => 0.0032498491564688
706 => 0.0033288680590131
707 => 0.0032800435641741
708 => 0.0033813617219997
709 => 0.0035248552540465
710 => 0.0036271172901707
711 => 0.0036349676995115
712 => 0.003569220061308
713 => 0.0036745810711249
714 => 0.0036753485110562
715 => 0.0035565008615704
716 => 0.0034837073380068
717 => 0.0034671684962942
718 => 0.0035084857655231
719 => 0.0035586525579555
720 => 0.0036377516073484
721 => 0.0036855495062822
722 => 0.003810181076655
723 => 0.0038439028061307
724 => 0.003880952763035
725 => 0.0039304629312426
726 => 0.0039899125823225
727 => 0.0038598401302303
728 => 0.0038650081512373
729 => 0.0037438864848247
730 => 0.0036144506136589
731 => 0.0037126763054646
801 => 0.0038410933310844
802 => 0.0038116343235191
803 => 0.003808319583375
804 => 0.003813894056865
805 => 0.003791682927202
806 => 0.0036912228109188
807 => 0.003640772369435
808 => 0.0037058663102294
809 => 0.0037404608427637
810 => 0.003794113945764
811 => 0.0037875000683396
812 => 0.0039257046997458
813 => 0.0039794068404191
814 => 0.0039656675347907
815 => 0.0039681958976812
816 => 0.0040654210582217
817 => 0.004173555432622
818 => 0.0042748375438353
819 => 0.0043778660575295
820 => 0.0042536611629999
821 => 0.0041905975774506
822 => 0.0042556631002668
823 => 0.004221138417997
824 => 0.0044195274830053
825 => 0.0044332635114278
826 => 0.0046316382306486
827 => 0.0048199194612112
828 => 0.0047016633937034
829 => 0.004813173538993
830 => 0.0049337808526792
831 => 0.0051664519286114
901 => 0.0050880964957046
902 => 0.0050280774620841
903 => 0.0049713597653227
904 => 0.0050893802886025
905 => 0.005241211806378
906 => 0.0052739148610827
907 => 0.0053269063032326
908 => 0.0052711922812972
909 => 0.0053382936840202
910 => 0.0055751911214828
911 => 0.0055111793427289
912 => 0.0054202723264914
913 => 0.0056072801014964
914 => 0.0056749574882963
915 => 0.0061499528317812
916 => 0.0067496540740099
917 => 0.0065013738218766
918 => 0.0063472582574237
919 => 0.0063834790707402
920 => 0.0066024696632339
921 => 0.0066728024911289
922 => 0.0064816136197307
923 => 0.0065491447612778
924 => 0.0069212479907177
925 => 0.0071208694348113
926 => 0.0068497567009954
927 => 0.0061017674208843
928 => 0.0054120871443144
929 => 0.0055950214103683
930 => 0.005574282341709
1001 => 0.005974060840919
1002 => 0.0055096526829757
1003 => 0.0055174721253143
1004 => 0.0059255176205152
1005 => 0.0058166580780664
1006 => 0.0056403195609761
1007 => 0.0054133746106371
1008 => 0.0049938458800682
1009 => 0.0046222575839792
1010 => 0.0053510278042835
1011 => 0.0053196019072013
1012 => 0.0052740925511693
1013 => 0.0053753686983919
1014 => 0.0058671369215688
1015 => 0.0058558000723262
1016 => 0.0057836808215559
1017 => 0.0058383826376353
1018 => 0.005630730068138
1019 => 0.0056842468634586
1020 => 0.0054119778954349
1021 => 0.0055350548399381
1022 => 0.0056399412177161
1023 => 0.0056609987109244
1024 => 0.0057084423183449
1025 => 0.0053030418874428
1026 => 0.0054850547789865
1027 => 0.0055919703004669
1028 => 0.0051089220847987
1029 => 0.0055824219903615
1030 => 0.0052959847678754
1031 => 0.0051987636724208
1101 => 0.005329659069545
1102 => 0.0052786490059858
1103 => 0.005234793548749
1104 => 0.0052103214500784
1105 => 0.0053064365833286
1106 => 0.0053019526974801
1107 => 0.0051446896843393
1108 => 0.0049395464945577
1109 => 0.0050083992826441
1110 => 0.0049833844192339
1111 => 0.0048927273272541
1112 => 0.0049538192612695
1113 => 0.004684801301786
1114 => 0.0042219698848314
1115 => 0.0045277304957813
1116 => 0.0045159590448633
1117 => 0.0045100233455176
1118 => 0.0047397939940439
1119 => 0.0047177068478989
1120 => 0.0046776184613677
1121 => 0.0048919910725978
1122 => 0.0048137421857803
1123 => 0.0050548868171954
1124 => 0.0052137202677022
1125 => 0.0051734349669298
1126 => 0.0053228185948402
1127 => 0.0050099855118185
1128 => 0.0051138961133135
1129 => 0.0051353119442677
1130 => 0.0048893457478514
1201 => 0.0047213205781646
1202 => 0.0047101152149736
1203 => 0.0044187827260313
1204 => 0.0045744101900706
1205 => 0.0047113559181231
1206 => 0.0046457695418038
1207 => 0.0046250068543983
1208 => 0.0047310789214753
1209 => 0.004739321629533
1210 => 0.0045513870122944
1211 => 0.0045904645703336
1212 => 0.0047534244834607
1213 => 0.0045863583986349
1214 => 0.0042617762859085
1215 => 0.0041812754342535
1216 => 0.0041705351367177
1217 => 0.0039522104424264
1218 => 0.0041866548860909
1219 => 0.0040843136037109
1220 => 0.0044076084885126
1221 => 0.0042229441841791
1222 => 0.0042149836751031
1223 => 0.004202950198082
1224 => 0.004015029114826
1225 => 0.0040561718890512
1226 => 0.0041929367367972
1227 => 0.0042417359752393
1228 => 0.0042366458148694
1229 => 0.0041922665144315
1230 => 0.0042125831309132
1231 => 0.0041471362304472
]
'min_raw' => 0.0022899142405333
'max_raw' => 0.0071208694348113
'avg_raw' => 0.0047053918376723
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.002289'
'max' => '$0.00712'
'avg' => '$0.0047053'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0013044887653623
'max_diff' => 0.0044475050785582
'year' => 2033
]
8 => [
'items' => [
101 => 0.0041240255677332
102 => 0.0040510819591193
103 => 0.0039438750056431
104 => 0.0039587827900624
105 => 0.0037463777630006
106 => 0.0036306482310694
107 => 0.0035986158219215
108 => 0.0035557807456825
109 => 0.0036034541577625
110 => 0.0037457760462463
111 => 0.0035741056534619
112 => 0.003279788806311
113 => 0.0032974777503163
114 => 0.0033372195556015
115 => 0.0032631609643708
116 => 0.0031930707230374
117 => 0.0032540085012758
118 => 0.0031293025732275
119 => 0.0033522896712165
120 => 0.00334625849513
121 => 0.0034293742958307
122 => 0.0034813483117168
123 => 0.0033615650318869
124 => 0.0033314398609381
125 => 0.0033486005274232
126 => 0.0030649729362812
127 => 0.0034061958706218
128 => 0.0034091467807276
129 => 0.0033838792968525
130 => 0.0035655699753128
131 => 0.0039489939776075
201 => 0.0038047344447495
202 => 0.0037488727933594
203 => 0.0036426797532322
204 => 0.0037841756740829
205 => 0.0037733109950418
206 => 0.0037241767961107
207 => 0.0036944602792891
208 => 0.003749213872691
209 => 0.0036876757031354
210 => 0.0036766217569274
211 => 0.0036096468697191
212 => 0.003585739882149
213 => 0.0035680401003166
214 => 0.0035485543796638
215 => 0.0035915350238848
216 => 0.0034941352295054
217 => 0.0033766806257035
218 => 0.0033669155462738
219 => 0.0033938777891338
220 => 0.0033819490037712
221 => 0.0033668584358388
222 => 0.0033380464319844
223 => 0.0033294985259118
224 => 0.0033572750737932
225 => 0.0033259169707085
226 => 0.0033721875599742
227 => 0.0033596045199624
228 => 0.003289316681327
301 => 0.0032017120104965
302 => 0.0032009321451691
303 => 0.0031820578625391
304 => 0.0031580186258424
305 => 0.0031513314601366
306 => 0.0032488764915618
307 => 0.0034507917873348
308 => 0.003411150983351
309 => 0.0034397955267823
310 => 0.0035806983299175
311 => 0.003625487093939
312 => 0.0035936970901165
313 => 0.0035501809721623
314 => 0.0035520954605042
315 => 0.0037008032087787
316 => 0.0037100779286299
317 => 0.003733512153556
318 => 0.0037636317550971
319 => 0.0035988265884998
320 => 0.0035443331519782
321 => 0.0035185111385735
322 => 0.0034389893316638
323 => 0.0035247467827314
324 => 0.0034747795884945
325 => 0.0034815218701195
326 => 0.0034771309503662
327 => 0.0034795286894642
328 => 0.0033522273417781
329 => 0.0033986092621131
330 => 0.0033214903236348
331 => 0.0032182367220196
401 => 0.0032178905797416
402 => 0.0032431617524576
403 => 0.0032281294700651
404 => 0.0031876779846619
405 => 0.0031934239272378
406 => 0.0031430834241081
407 => 0.003199536175762
408 => 0.0032011550386817
409 => 0.0031794176542928
410 => 0.0032663909071942
411 => 0.0033020239198713
412 => 0.0032877159078066
413 => 0.0033010200316026
414 => 0.003412798237724
415 => 0.0034310229625469
416 => 0.0034391171814555
417 => 0.0034282720003965
418 => 0.0033030631320163
419 => 0.0033086166777582
420 => 0.0032678684439398
421 => 0.0032334404803063
422 => 0.0032348174183008
423 => 0.0032525178669304
424 => 0.0033298167642134
425 => 0.0034924877365267
426 => 0.003498660981015
427 => 0.0035061431334212
428 => 0.0034757094593569
429 => 0.0034665303720481
430 => 0.0034786399575319
501 => 0.0035397306218994
502 => 0.0036968723966061
503 => 0.0036413279982785
504 => 0.0035961695378381
505 => 0.0036357856822778
506 => 0.0036296870873629
507 => 0.0035782088088722
508 => 0.0035767639850487
509 => 0.0034779607100238
510 => 0.0034414353888889
511 => 0.0034109120966756
512 => 0.0033775814584094
513 => 0.0033578219387921
514 => 0.0033881815414653
515 => 0.0033951251418009
516 => 0.0033287433399608
517 => 0.0033196957456592
518 => 0.0033739045579926
519 => 0.0033500492807929
520 => 0.0033745850249752
521 => 0.0033802775280892
522 => 0.0033793609039783
523 => 0.0033544532548207
524 => 0.003370328647637
525 => 0.0033327786109442
526 => 0.0032919485858738
527 => 0.0032659015736794
528 => 0.003243172100905
529 => 0.0032557837334449
530 => 0.0032108255662331
531 => 0.0031964425437129
601 => 0.0033649504217585
602 => 0.0034894290030358
603 => 0.0034876190351651
604 => 0.0034766013212381
605 => 0.0034602312332043
606 => 0.0035385330479967
607 => 0.0035112542614173
608 => 0.0035311018578727
609 => 0.0035361539041716
610 => 0.0035514449267394
611 => 0.0035569101529996
612 => 0.0035403904433976
613 => 0.0034849482802607
614 => 0.0033467916810063
615 => 0.0032824794111068
616 => 0.0032612552908344
617 => 0.0032620267472959
618 => 0.0032407465341528
619 => 0.0032470145106357
620 => 0.0032385667877265
621 => 0.00322256884426
622 => 0.0032547959055169
623 => 0.0032585097741109
624 => 0.0032509875929288
625 => 0.0032527593389042
626 => 0.0031904788914822
627 => 0.0031952139386337
628 => 0.0031688485943936
629 => 0.0031639054101876
630 => 0.0030972561158418
701 => 0.0029791772299386
702 => 0.0030446043949238
703 => 0.0029655775800733
704 => 0.0029356489278377
705 => 0.0030773265126604
706 => 0.0030631060126687
707 => 0.0030387666981857
708 => 0.0030027637793077
709 => 0.002989409946482
710 => 0.0029082762855427
711 => 0.0029034824760231
712 => 0.0029436945091778
713 => 0.0029251380394885
714 => 0.0028990777281601
715 => 0.00280468992222
716 => 0.0026985667776147
717 => 0.002701769968284
718 => 0.0027355257660917
719 => 0.0028336753008069
720 => 0.0027953265795895
721 => 0.0027675041423454
722 => 0.0027622938361889
723 => 0.0028275117262514
724 => 0.0029198087042603
725 => 0.0029631123813136
726 => 0.002920199752506
727 => 0.0028709040351119
728 => 0.0028739044370153
729 => 0.002893864766675
730 => 0.0028959623150984
731 => 0.0028638758707565
801 => 0.0028729080168913
802 => 0.0028591873609957
803 => 0.002774983721091
804 => 0.0027734607442578
805 => 0.002752795813058
806 => 0.0027521700871541
807 => 0.0027170138840747
808 => 0.0027120952882405
809 => 0.0026422905131973
810 => 0.0026882362275191
811 => 0.0026574182546103
812 => 0.0026109683002119
813 => 0.0026029603105656
814 => 0.0026027195807269
815 => 0.0026504132978743
816 => 0.0026876788986656
817 => 0.0026579543464434
818 => 0.0026511866420886
819 => 0.002723448018839
820 => 0.0027142520999704
821 => 0.0027062884935376
822 => 0.0029115445222017
823 => 0.0027490683591864
824 => 0.0026782194782966
825 => 0.0025905305343578
826 => 0.0026190824966703
827 => 0.0026250988146451
828 => 0.0024142227115926
829 => 0.0023286703028471
830 => 0.0022993119401402
831 => 0.002282415787336
901 => 0.0022901155763374
902 => 0.0022131083741698
903 => 0.002264858487608
904 => 0.0021981767597876
905 => 0.0021869973511174
906 => 0.0023062325407412
907 => 0.0023228234208155
908 => 0.0022520415720362
909 => 0.0022974949774929
910 => 0.0022810129408247
911 => 0.0021993198266229
912 => 0.0021961997505543
913 => 0.0021552090174997
914 => 0.0020910664576391
915 => 0.0020617515866082
916 => 0.0020464841472519
917 => 0.0020527837902867
918 => 0.0020495984979961
919 => 0.0020288123111846
920 => 0.0020507899378927
921 => 0.0019946461834359
922 => 0.0019722892880303
923 => 0.0019621911970516
924 => 0.0019123603834574
925 => 0.0019916633677492
926 => 0.0020072870546874
927 => 0.0020229415251152
928 => 0.0021592030024287
929 => 0.002152395764093
930 => 0.0022139298833877
1001 => 0.0022115387806659
1002 => 0.0021939882530564
1003 => 0.0021199454639937
1004 => 0.0021494576000283
1005 => 0.002058623832518
1006 => 0.0021266826672325
1007 => 0.0020956234572737
1008 => 0.0021161815171027
1009 => 0.0020792162718846
1010 => 0.0020996743648459
1011 => 0.002010992010461
1012 => 0.0019281816757308
1013 => 0.0019615069718106
1014 => 0.0019977353798592
1015 => 0.0020762877993353
1016 => 0.0020295026263388
1017 => 0.0020463283436916
1018 => 0.0019899650071507
1019 => 0.0018736713444757
1020 => 0.001874329553977
1021 => 0.0018564403075696
1022 => 0.0018409813868009
1023 => 0.0020348764662552
1024 => 0.0020107625480975
1025 => 0.0019723401754647
1026 => 0.0020237700480781
1027 => 0.0020373689226989
1028 => 0.0020377560635416
1029 => 0.0020752779710032
1030 => 0.0020953034197416
1031 => 0.002098832991877
1101 => 0.0021578745239823
1102 => 0.0021776644667673
1103 => 0.0022591764403214
1104 => 0.0020936044003261
1105 => 0.0020901945531201
1106 => 0.0020244937718552
1107 => 0.0019828252976888
1108 => 0.0020273468479303
1109 => 0.0020667868636467
1110 => 0.0020257192830822
1111 => 0.0020310818421199
1112 => 0.0019759519705566
1113 => 0.001995658305539
1114 => 0.0020126320559557
1115 => 0.0020032601486465
1116 => 0.0019892299497992
1117 => 0.002063553232126
1118 => 0.0020593596212618
1119 => 0.0021285711704494
1120 => 0.0021825265224065
1121 => 0.0022792241587864
1122 => 0.0021783151342622
1123 => 0.0021746376083314
1124 => 0.0022105860141978
1125 => 0.0021776589632537
1126 => 0.0021984677228472
1127 => 0.0022758715459137
1128 => 0.0022775069667238
1129 => 0.0022501115610348
1130 => 0.0022484445481089
1201 => 0.0022537061354444
1202 => 0.0022845234168109
1203 => 0.002273754911782
1204 => 0.0022862164984266
1205 => 0.0023017999033443
1206 => 0.0023662594733106
1207 => 0.0023818004574026
1208 => 0.0023440439231354
1209 => 0.0023474529154377
1210 => 0.0023333309351818
1211 => 0.0023196892792024
1212 => 0.0023503537296401
1213 => 0.0024063936155264
1214 => 0.0024060449943048
1215 => 0.0024190451585707
1216 => 0.0024271441532092
1217 => 0.0023923773393944
1218 => 0.0023697454220122
1219 => 0.0023784239392428
1220 => 0.0023923010772882
1221 => 0.0023739237704061
1222 => 0.0022604905191333
1223 => 0.0022948989214253
1224 => 0.002289171680799
1225 => 0.0022810153936909
1226 => 0.0023156133082678
1227 => 0.0023122762550047
1228 => 0.0022123185540072
1229 => 0.0022187175217131
1230 => 0.0022127076964274
1231 => 0.00223212667142
]
'min_raw' => 0.0018409813868009
'max_raw' => 0.0041240255677332
'avg_raw' => 0.002982503477267
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.00184'
'max' => '$0.004124'
'avg' => '$0.002982'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00044893285373244
'max_diff' => -0.0029968438670781
'year' => 2034
]
9 => [
'items' => [
101 => 0.0021766102748764
102 => 0.0021936867445446
103 => 0.0022043969462385
104 => 0.0022107053373158
105 => 0.0022334955715915
106 => 0.0022308214006432
107 => 0.0022333293413707
108 => 0.0022671212424027
109 => 0.0024380290818426
110 => 0.0024473312184564
111 => 0.0024015240956733
112 => 0.0024198231377196
113 => 0.0023846929785513
114 => 0.0024082760897526
115 => 0.0024244110554905
116 => 0.0023515002478966
117 => 0.0023471829430581
118 => 0.0023119077892264
119 => 0.0023308626588087
120 => 0.0023007040983999
121 => 0.0023081039542226
122 => 0.0022874133122346
123 => 0.0023246523483473
124 => 0.0023662913770824
125 => 0.002376811040116
126 => 0.0023491383356743
127 => 0.0023291014739385
128 => 0.002293923345283
129 => 0.0023524253572329
130 => 0.0023695331283435
131 => 0.0023523354973942
201 => 0.0023483504305276
202 => 0.0023407987360162
203 => 0.0023499525582174
204 => 0.002369439955748
205 => 0.0023602500589483
206 => 0.0023663201476896
207 => 0.0023431872288559
208 => 0.0023923888486564
209 => 0.0024705328619143
210 => 0.0024707841076948
211 => 0.0024615941613581
212 => 0.0024578338333173
213 => 0.0024672632759513
214 => 0.0024723783617642
215 => 0.0025028714501786
216 => 0.0025355917489454
217 => 0.0026882831063053
218 => 0.002645407984163
219 => 0.0027808848400622
220 => 0.0028880294436105
221 => 0.0029201574253489
222 => 0.0028906011938879
223 => 0.002789490922656
224 => 0.0027845299703774
225 => 0.0029356314032532
226 => 0.0028929383275817
227 => 0.0028878601220788
228 => 0.0028338365952918
301 => 0.0028657711905669
302 => 0.002858786626128
303 => 0.0028477611494645
304 => 0.0029086901326663
305 => 0.0030227437500521
306 => 0.0030049674241944
307 => 0.0029916982215618
308 => 0.0029335564382321
309 => 0.002968570778234
310 => 0.0029561028424148
311 => 0.0030096730070416
312 => 0.0029779392282411
313 => 0.0028926148855437
314 => 0.002906203068351
315 => 0.0029041492418553
316 => 0.0029464168456009
317 => 0.0029337291601029
318 => 0.0029016717676317
319 => 0.0030223539271871
320 => 0.003014517499015
321 => 0.0030256277625061
322 => 0.0030305188440912
323 => 0.0031039759479544
324 => 0.0031340689730419
325 => 0.0031409006165894
326 => 0.0031694866629445
327 => 0.0031401893697148
328 => 0.0032573994312497
329 => 0.0033353372827738
330 => 0.0034258661079641
331 => 0.0035581530534215
401 => 0.0036078941686361
402 => 0.0035989088813881
403 => 0.0036992073336638
404 => 0.003879441422894
405 => 0.0036353393439113
406 => 0.0038923794258062
407 => 0.0038110035035487
408 => 0.0036180626557666
409 => 0.0036056395397926
410 => 0.003736301322
411 => 0.0040260965792054
412 => 0.0039535061541061
413 => 0.0040262153111361
414 => 0.0039413962172863
415 => 0.0039371842343652
416 => 0.0040220958370676
417 => 0.0042204964250721
418 => 0.004126243742646
419 => 0.0039911094106822
420 => 0.0040908904984812
421 => 0.004004450885926
422 => 0.003809678245915
423 => 0.003953450645576
424 => 0.0038573141363249
425 => 0.0038853718806223
426 => 0.0040874365238417
427 => 0.0040631235713728
428 => 0.0040945867831864
429 => 0.0040390550378711
430 => 0.0039871796311942
501 => 0.0038903503323134
502 => 0.0038616839505416
503 => 0.0038696063071549
504 => 0.0038616800246151
505 => 0.0038075049217985
506 => 0.0037958058135033
507 => 0.0037763067871283
508 => 0.0037823503507474
509 => 0.003745686476521
510 => 0.0038148787823291
511 => 0.0038277214840076
512 => 0.0038780738740153
513 => 0.0038833016261836
514 => 0.0040235323156336
515 => 0.0039462956083655
516 => 0.0039981126598974
517 => 0.0039934776550874
518 => 0.0036222442689859
519 => 0.0036733969541708
520 => 0.0037529744797216
521 => 0.0037171249123257
522 => 0.0036664420115348
523 => 0.003625512851701
524 => 0.0035635009893312
525 => 0.0036507814947843
526 => 0.0037655460782082
527 => 0.0038862122454096
528 => 0.0040311847389416
529 => 0.0039988285660511
530 => 0.0038835020854838
531 => 0.003888675547156
601 => 0.0039206558515314
602 => 0.0038792384516482
603 => 0.0038670236518589
604 => 0.0039189777256114
605 => 0.0039193355047639
606 => 0.0038716797807382
607 => 0.0038187191643891
608 => 0.0038184972574729
609 => 0.0038090734273324
610 => 0.0039430726957331
611 => 0.0040167587444994
612 => 0.0040252067312394
613 => 0.0040161901276817
614 => 0.0040196602605349
615 => 0.0039767839723191
616 => 0.0040747864526121
617 => 0.0041647232199697
618 => 0.0041406182450991
619 => 0.0041044814610439
620 => 0.0040756967719607
621 => 0.0041338374871417
622 => 0.0041312485726166
623 => 0.004163937700766
624 => 0.0041624547330916
625 => 0.0041514626087953
626 => 0.0041406186376625
627 => 0.004183613757457
628 => 0.0041712318534367
629 => 0.0041588307168994
630 => 0.004133958339055
701 => 0.0041373389082905
702 => 0.0041012083637606
703 => 0.0040844927206398
704 => 0.0038331295545394
705 => 0.0037659571030289
706 => 0.0037870909236954
707 => 0.0037940487261983
708 => 0.0037648151892171
709 => 0.0038067285717686
710 => 0.0038001964154952
711 => 0.0038256092143714
712 => 0.003809732400929
713 => 0.0038103839908908
714 => 0.0038570743139312
715 => 0.0038706287133447
716 => 0.0038637348364056
717 => 0.0038685630715055
718 => 0.0039798277115117
719 => 0.0039640094377457
720 => 0.0039556062950774
721 => 0.0039579340230246
722 => 0.003986364524087
723 => 0.0039943235121367
724 => 0.0039606007205021
725 => 0.0039765045839861
726 => 0.0040442212162002
727 => 0.0040679182050456
728 => 0.0041435476182404
729 => 0.0041114188993096
730 => 0.0041703925534055
731 => 0.0043516574604958
801 => 0.004496464410857
802 => 0.0043632939549045
803 => 0.004629213478189
804 => 0.0048362699709561
805 => 0.004828322797893
806 => 0.0047922177090761
807 => 0.0045564893969425
808 => 0.004339568689606
809 => 0.0045210320722328
810 => 0.0045214946597134
811 => 0.0045059067942138
812 => 0.004409091900348
813 => 0.0045025378457657
814 => 0.0045099552455672
815 => 0.0045058034741242
816 => 0.0044315757219918
817 => 0.0043182436640673
818 => 0.0043403884769072
819 => 0.0043766621320807
820 => 0.00430798853536
821 => 0.0042860431601277
822 => 0.0043268437879629
823 => 0.0044583119119964
824 => 0.0044334586246908
825 => 0.0044328096049193
826 => 0.0045391425074464
827 => 0.0044630310973136
828 => 0.0043406677939146
829 => 0.0043097694460326
830 => 0.0042001011266729
831 => 0.0042758494254798
901 => 0.0042785754719018
902 => 0.0042370889027741
903 => 0.0043440342003538
904 => 0.0043430486806092
905 => 0.0044445773239542
906 => 0.0046386619576128
907 => 0.0045812615811152
908 => 0.0045145111883916
909 => 0.0045217688068683
910 => 0.0046013669682287
911 => 0.0045532401028209
912 => 0.004570546859174
913 => 0.0046013407723802
914 => 0.0046199195047873
915 => 0.0045190956131854
916 => 0.0044955887410887
917 => 0.00444750193057
918 => 0.0044349569792885
919 => 0.0044741226830918
920 => 0.0044638039038844
921 => 0.0042783463582558
922 => 0.0042589650128616
923 => 0.0042595594110546
924 => 0.0042108240965281
925 => 0.0041364910440595
926 => 0.0043318338677511
927 => 0.0043161451051876
928 => 0.0042988259255313
929 => 0.0043009474262173
930 => 0.0043857391251993
1001 => 0.0043365556577063
1002 => 0.0044673179670482
1003 => 0.0044404371673223
1004 => 0.004412866976514
1005 => 0.0044090559363357
1006 => 0.0043984437650527
1007 => 0.0043620506811081
1008 => 0.0043181038453597
1009 => 0.0042890863377889
1010 => 0.0039564554263643
1011 => 0.0040181897886997
1012 => 0.0040892095453024
1013 => 0.0041137252806879
1014 => 0.0040717894188738
1015 => 0.0043637065645346
1016 => 0.0044170426400305
1017 => 0.0042554841883274
1018 => 0.0042252631984019
1019 => 0.0043656878476029
1020 => 0.0042809946179195
1021 => 0.0043191319740601
1022 => 0.0042366998701026
1023 => 0.0044041955413061
1024 => 0.0044029195049235
1025 => 0.0043377599057641
1026 => 0.00439283235278
1027 => 0.0043832621598446
1028 => 0.0043096971328746
1029 => 0.0044065276838766
1030 => 0.0044065757106218
1031 => 0.0043438610131227
1101 => 0.0042706239764563
1102 => 0.004257530924082
1103 => 0.004247667067922
1104 => 0.0043167060701101
1105 => 0.0043786062235926
1106 => 0.0044937870628741
1107 => 0.0045227462624987
1108 => 0.0046357759465566
1109 => 0.0045684722730156
1110 => 0.0045983071197678
1111 => 0.0046306970663142
1112 => 0.0046462259977893
1113 => 0.0046209224372789
1114 => 0.0047965040614949
1115 => 0.0048113285302607
1116 => 0.0048162990464067
1117 => 0.00475709391062
1118 => 0.0048096819283332
1119 => 0.0047850777363773
1120 => 0.0048490910086052
1121 => 0.004859129107053
1122 => 0.0048506271947834
1123 => 0.0048538134456714
1124 => 0.004703985504124
1125 => 0.0046962161349495
1126 => 0.0045902802349647
1127 => 0.0046334498972471
1128 => 0.0045527462827859
1129 => 0.0045783382302709
1130 => 0.0045896189168733
1201 => 0.0045837265263655
1202 => 0.0046358906451813
1203 => 0.0045915404877625
1204 => 0.0044744931304931
1205 => 0.0043574138837496
1206 => 0.0043559440491774
1207 => 0.0043251191501302
1208 => 0.0043028383939809
1209 => 0.0043071304580675
1210 => 0.0043222562517316
1211 => 0.0043019592553559
1212 => 0.0043062906486165
1213 => 0.0043782206366644
1214 => 0.0043926456827862
1215 => 0.004343623739835
1216 => 0.0041467935650532
1217 => 0.0040984909464507
1218 => 0.0041332099108196
1219 => 0.004116616482039
1220 => 0.0033224307897487
1221 => 0.0035090129378294
1222 => 0.0033981521611709
1223 => 0.0034492419075142
1224 => 0.0033360817618048
1225 => 0.0033900877145687
1226 => 0.0033801147870749
1227 => 0.0036801333598215
1228 => 0.0036754489824701
1229 => 0.0036776911460165
1230 => 0.003570666838022
1231 => 0.0037411594666839
]
'min_raw' => 0.0021766102748764
'max_raw' => 0.004859129107053
'avg_raw' => 0.0035178696909647
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.002176'
'max' => '$0.004859'
'avg' => '$0.003517'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00033562888807557
'max_diff' => 0.00073510353931983
'year' => 2035
]
10 => [
'items' => [
101 => 0.0038251502662794
102 => 0.003809605804617
103 => 0.0038135180107251
104 => 0.0037462933480283
105 => 0.0036783420276972
106 => 0.0036029735558168
107 => 0.003742998860746
108 => 0.0037274304371495
109 => 0.0037631387995378
110 => 0.0038539552189998
111 => 0.0038673282817436
112 => 0.0038853018136875
113 => 0.0038788595819287
114 => 0.0040323396787405
115 => 0.0040137522263223
116 => 0.0040585426386751
117 => 0.0039664053622086
118 => 0.0038621432881362
119 => 0.0038819600998334
120 => 0.0038800515815102
121 => 0.0038557539527609
122 => 0.0038338191399464
123 => 0.0037973038567054
124 => 0.0039128436161249
125 => 0.0039081529128929
126 => 0.0039840899458739
127 => 0.0039706673376815
128 => 0.0038810278751034
129 => 0.0038842293660458
130 => 0.0039057609312175
131 => 0.0039802819241198
201 => 0.0040024048285893
202 => 0.0039921566177937
203 => 0.0040164133725956
204 => 0.0040355849225634
205 => 0.0040188210241012
206 => 0.0042561624743932
207 => 0.0041576017568438
208 => 0.0042056395647963
209 => 0.0042170962989378
210 => 0.0041877501153436
211 => 0.0041941142517571
212 => 0.0042037541843003
213 => 0.0042622859670099
214 => 0.0044158903011479
215 => 0.0044839206151175
216 => 0.0046885931712518
217 => 0.00447827164457
218 => 0.0044657920355737
219 => 0.0045026597434526
220 => 0.0046228242006937
221 => 0.0047202062068141
222 => 0.004752513436347
223 => 0.004756783370064
224 => 0.0048173938804116
225 => 0.0048521346946238
226 => 0.0048100341702407
227 => 0.0047743583839347
228 => 0.0046465721456283
229 => 0.0046613637506626
301 => 0.0047632632412203
302 => 0.0049072022734832
303 => 0.0050307169374685
304 => 0.0049874664070615
305 => 0.005317437423951
306 => 0.0053501527024649
307 => 0.0053456325087859
308 => 0.0054201627819267
309 => 0.0052722353675684
310 => 0.0052089935319715
311 => 0.0047820718938715
312 => 0.0049020194602703
313 => 0.0050763702923045
314 => 0.0050532943059027
315 => 0.0049266760712683
316 => 0.0050306208861834
317 => 0.0049962534797176
318 => 0.004969146480333
319 => 0.0050933288994642
320 => 0.0049567852284968
321 => 0.0050750081647361
322 => 0.0049233860261495
323 => 0.0049876639718412
324 => 0.0049511767010922
325 => 0.0049747884369785
326 => 0.0048367547114541
327 => 0.0049112343591678
328 => 0.0048336561132429
329 => 0.0048336193310533
330 => 0.0048319067869748
331 => 0.0049231772492709
401 => 0.0049261535757696
402 => 0.0048587045662308
403 => 0.0048489841102047
404 => 0.0048849257308304
405 => 0.0048428475062031
406 => 0.004862535642669
407 => 0.0048434438398
408 => 0.0048391458728393
409 => 0.0048048989408576
410 => 0.0047901444209208
411 => 0.0047959300483652
412 => 0.0047761807192023
413 => 0.0047642810340172
414 => 0.0048295396400807
415 => 0.0047946745993856
416 => 0.0048241960725591
417 => 0.004790552627971
418 => 0.0046739297912774
419 => 0.0046068587646307
420 => 0.0043865690370592
421 => 0.0044490429305299
422 => 0.004490463186535
423 => 0.0044767737921724
424 => 0.0045061839083555
425 => 0.0045079894506301
426 => 0.0044984279220583
427 => 0.0044873568968799
428 => 0.0044819681340891
429 => 0.0045221315570011
430 => 0.0045454477758401
501 => 0.0044946202633566
502 => 0.0044827120883342
503 => 0.0045341015097189
504 => 0.0045654490270769
505 => 0.0047969014825997
506 => 0.004779754737113
507 => 0.0048227897034058
508 => 0.0048179446266266
509 => 0.0048630521273092
510 => 0.0049367838270731
511 => 0.0047868666657455
512 => 0.0048128871012066
513 => 0.0048065074913312
514 => 0.0048761583991277
515 => 0.0048763758416592
516 => 0.0048346166431143
517 => 0.0048572549821111
518 => 0.0048446188823334
519 => 0.004867454022503
520 => 0.0047795257318731
521 => 0.0048866128985879
522 => 0.0049473244215706
523 => 0.0049481674011261
524 => 0.0049769441811835
525 => 0.0050061830563605
526 => 0.0050623045310934
527 => 0.0050046178588902
528 => 0.0049008451512809
529 => 0.0049083372055865
530 => 0.0048474953050842
531 => 0.0048485180684236
601 => 0.0048430584775623
602 => 0.0048594431207159
603 => 0.0047831212396569
604 => 0.0048010338325914
605 => 0.0047759560975871
606 => 0.0048128325871083
607 => 0.0047731595802856
608 => 0.0048065044148901
609 => 0.0048208949401067
610 => 0.0048739962879616
611 => 0.004765316468032
612 => 0.0045437109582186
613 => 0.0045902951230885
614 => 0.0045213934841387
615 => 0.0045277705931506
616 => 0.0045406533682639
617 => 0.00449889607914
618 => 0.0045068620539814
619 => 0.0045065774533044
620 => 0.0045041249184234
621 => 0.0044932622347792
622 => 0.0044775091943788
623 => 0.0045402644588041
624 => 0.0045509278010965
625 => 0.004574631090104
626 => 0.0046451560000958
627 => 0.0046381088984957
628 => 0.0046496030135868
629 => 0.0046245114248795
630 => 0.0045289345199863
701 => 0.0045341248057564
702 => 0.004469401859035
703 => 0.0045729759788393
704 => 0.0045484482601581
705 => 0.004532635080362
706 => 0.0045283203077466
707 => 0.0045990200353491
708 => 0.0046201745019303
709 => 0.0046069924579803
710 => 0.0045799557012574
711 => 0.004631874266865
712 => 0.0046457654847532
713 => 0.00464887521615
714 => 0.0047408649600092
715 => 0.0046540164209531
716 => 0.0046749217275042
717 => 0.0048380189615323
718 => 0.0046901122761486
719 => 0.0047684617461091
720 => 0.0047646269472655
721 => 0.0048047078848957
722 => 0.0047613391405049
723 => 0.0047618767480686
724 => 0.0047974659053663
725 => 0.00474748735248
726 => 0.0047351119599353
727 => 0.0047180154437691
728 => 0.0047553450613545
729 => 0.0047777224788235
730 => 0.0049580680292217
731 => 0.0050745794795352
801 => 0.0050695214102
802 => 0.0051157426956147
803 => 0.0050949195831969
804 => 0.0050276762603404
805 => 0.0051424524130068
806 => 0.005106132435865
807 => 0.0051091266106518
808 => 0.0051090151673167
809 => 0.0051331647769685
810 => 0.0051160525652509
811 => 0.0050823226394232
812 => 0.0051047141382974
813 => 0.0051712088848464
814 => 0.0053776106184425
815 => 0.0054931157630221
816 => 0.0053706570637062
817 => 0.005455127434707
818 => 0.0054044753119772
819 => 0.0053952703145071
820 => 0.0054483239498069
821 => 0.0055014704484723
822 => 0.0054980852462659
823 => 0.0054595036173378
824 => 0.0054377098341289
825 => 0.0056027396620397
826 => 0.0057243308280346
827 => 0.0057160391256712
828 => 0.0057526360032969
829 => 0.0058600855679047
830 => 0.0058699094094907
831 => 0.0058686718312493
901 => 0.0058443224148666
902 => 0.0059501204653122
903 => 0.0060383790603334
904 => 0.0058386862284963
905 => 0.0059147266446888
906 => 0.0059488636373868
907 => 0.0059989868706567
908 => 0.0060835531668125
909 => 0.0061754145945399
910 => 0.0061884048076299
911 => 0.0061791876298036
912 => 0.0061186025488497
913 => 0.0062191184192038
914 => 0.00627799825867
915 => 0.0063130598556309
916 => 0.0064019702318305
917 => 0.005949074455832
918 => 0.0056284923151998
919 => 0.0055784287846778
920 => 0.0056802349426453
921 => 0.0057070804146125
922 => 0.0056962590385239
923 => 0.0053354146931892
924 => 0.0055765290138781
925 => 0.0058359477494715
926 => 0.0058459130796217
927 => 0.0059757835228496
928 => 0.006018074662734
929 => 0.0061226373920407
930 => 0.0061160969648532
1001 => 0.0061415563254829
1002 => 0.0061357036593688
1003 => 0.006329384097129
1004 => 0.0065430423818019
1005 => 0.0065356440747954
1006 => 0.0065049281684836
1007 => 0.0065505465271969
1008 => 0.0067710647739926
1009 => 0.0067507629875606
1010 => 0.0067704844437772
1011 => 0.0070304878846131
1012 => 0.0073685293427579
1013 => 0.0072114751466421
1014 => 0.0075522375610858
1015 => 0.0077667294379387
1016 => 0.0081376709600817
1017 => 0.0080912272545839
1018 => 0.0082356320670595
1019 => 0.008008083328649
1020 => 0.0074855854300708
1021 => 0.0074028981375792
1022 => 0.0075684401911231
1023 => 0.0079754091764035
1024 => 0.007555623289497
1025 => 0.0076405454276879
1026 => 0.0076160878461759
1027 => 0.0076147846055951
1028 => 0.0076645239978996
1029 => 0.0075923744151297
1030 => 0.0072984240354629
1031 => 0.0074331397622037
1101 => 0.0073811195505285
1102 => 0.0074388398537458
1103 => 0.0077503325245458
1104 => 0.0076126141897273
1105 => 0.0074675391113251
1106 => 0.0076494954543786
1107 => 0.0078811884060688
1108 => 0.0078666894775443
1109 => 0.0078385554961248
1110 => 0.0079971452763393
1111 => 0.0082590891308078
1112 => 0.008329891502095
1113 => 0.0083821563650885
1114 => 0.0083893628066732
1115 => 0.0084635936337741
1116 => 0.0080644357678754
1117 => 0.0086979095521576
1118 => 0.008807292975343
1119 => 0.0087867334252626
1120 => 0.0089083084965751
1121 => 0.0088725380265331
1122 => 0.008820712227657
1123 => 0.0090134345754465
1124 => 0.0087924939555973
1125 => 0.0084788965613719
1126 => 0.0083068508286467
1127 => 0.0085334145280327
1128 => 0.0086717690732642
1129 => 0.0087632126266604
1130 => 0.0087908833906664
1201 => 0.0080954212567484
1202 => 0.0077206057386648
1203 => 0.0079608581884878
1204 => 0.0082539827586101
1205 => 0.0080628074460882
1206 => 0.0080703011563963
1207 => 0.0077977354007284
1208 => 0.0082780987799689
1209 => 0.0082081138761055
1210 => 0.00857119568115
1211 => 0.0084845432944626
1212 => 0.0087806224117219
1213 => 0.0087026548574558
1214 => 0.0090262938161072
1215 => 0.0091554021588883
1216 => 0.0093721951605267
1217 => 0.0095316689750382
1218 => 0.0096253150491674
1219 => 0.0096196928901342
1220 => 0.0099907652901227
1221 => 0.0097719568601317
1222 => 0.0094970819028756
1223 => 0.0094921102821183
1224 => 0.0096344719174894
1225 => 0.0099328228502201
1226 => 0.010010180906248
1227 => 0.010053413506187
1228 => 0.0099872012744423
1229 => 0.0097497004058285
1230 => 0.0096471487349178
1231 => 0.0097345257297417
]
'min_raw' => 0.0036029735558168
'max_raw' => 0.010053413506187
'avg_raw' => 0.0068281935310019
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0036029'
'max' => '$0.010053'
'avg' => '$0.006828'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0014263632809404
'max_diff' => 0.005194284399134
'year' => 2036
]
11 => [
'items' => [
101 => 0.0096276711734629
102 => 0.0098121321156933
103 => 0.010065436388107
104 => 0.010013130057527
105 => 0.010187982278452
106 => 0.010368935932119
107 => 0.010627707784
108 => 0.010695360328376
109 => 0.010807187411633
110 => 0.010922294213587
111 => 0.01095926341616
112 => 0.011029849094741
113 => 0.011029477073373
114 => 0.01124219176674
115 => 0.011476822660751
116 => 0.011565390391522
117 => 0.011769047004777
118 => 0.011420292191556
119 => 0.011684826723591
120 => 0.011923443493214
121 => 0.011638954743454
122 => 0.012031056207621
123 => 0.012046280618954
124 => 0.012276151154822
125 => 0.012043133328854
126 => 0.011904768087613
127 => 0.012304223354597
128 => 0.012497507175568
129 => 0.012439288515696
130 => 0.011996241639458
131 => 0.011738369354312
201 => 0.011063467844239
202 => 0.011862917836497
203 => 0.012252306607449
204 => 0.01199523321661
205 => 0.012124886081883
206 => 0.012832230074731
207 => 0.013101540870075
208 => 0.013045526107268
209 => 0.013054991680101
210 => 0.013200306896932
211 => 0.013844714594913
212 => 0.013458570565029
213 => 0.013753763207335
214 => 0.013910332320417
215 => 0.01405576243834
216 => 0.013698632032383
217 => 0.013234010621521
218 => 0.013086845517221
219 => 0.011969672334254
220 => 0.011911518618443
221 => 0.011878875175521
222 => 0.011673062885402
223 => 0.011511350802099
224 => 0.011382751349471
225 => 0.01104526798273
226 => 0.011159158712077
227 => 0.010621280663745
228 => 0.01096539597784
301 => 0.010106929625182
302 => 0.010821885913141
303 => 0.010432767710678
304 => 0.010694050118332
305 => 0.010693138528625
306 => 0.010212034776473
307 => 0.0099345441726105
308 => 0.010111371985488
309 => 0.010300945437501
310 => 0.010331703092288
311 => 0.010577490021197
312 => 0.010646083869883
313 => 0.010438241306024
314 => 0.010089139818147
315 => 0.010170228131623
316 => 0.0099329009205261
317 => 0.0095169941117376
318 => 0.0098157056428457
319 => 0.0099176988929849
320 => 0.0099627449226737
321 => 0.0095537483434499
322 => 0.0094252327385101
323 => 0.0093568121087905
324 => 0.010036343495728
325 => 0.01007356975906
326 => 0.0098831149325909
327 => 0.010743988807897
328 => 0.010549146536485
329 => 0.010766833091168
330 => 0.010162870217103
331 => 0.010185942412236
401 => 0.009900016708719
402 => 0.010060115997126
403 => 0.0099469629803209
404 => 0.010047181556755
405 => 0.010107252158253
406 => 0.010393130944175
407 => 0.010825150189663
408 => 0.010350430186776
409 => 0.010143587883402
410 => 0.01027191168509
411 => 0.010613654879297
412 => 0.011131413312033
413 => 0.010824889898994
414 => 0.010960919784596
415 => 0.010990636263051
416 => 0.01076461724639
417 => 0.011139746955568
418 => 0.011340782014265
419 => 0.011547002386144
420 => 0.011726057756883
421 => 0.011464633434732
422 => 0.011744394933138
423 => 0.011518956549975
424 => 0.011316715014887
425 => 0.011317021731814
426 => 0.011190152662575
427 => 0.010944327854394
428 => 0.010898993988136
429 => 0.011134826485446
430 => 0.011323941814867
501 => 0.0113395182592
502 => 0.011444222222664
503 => 0.011506184949705
504 => 0.012113503908955
505 => 0.012357772618371
506 => 0.012656459772475
507 => 0.012772815252084
508 => 0.013123003529959
509 => 0.012840198054673
510 => 0.012779011311165
511 => 0.011929569094753
512 => 0.012068665210104
513 => 0.012291371511559
514 => 0.011933241439636
515 => 0.012160392540092
516 => 0.01220523697904
517 => 0.011921072316832
518 => 0.012072856940948
519 => 0.011669761980302
520 => 0.010833936558274
521 => 0.011140677468196
522 => 0.011366542025773
523 => 0.011044205453212
524 => 0.011621981283379
525 => 0.011284456571109
526 => 0.011177477441363
527 => 0.01076011371541
528 => 0.010957093328257
529 => 0.011223511075109
530 => 0.011058895881942
531 => 0.011400497124859
601 => 0.011884295586553
602 => 0.012229079181053
603 => 0.012255547384243
604 => 0.012033874631687
605 => 0.012389106632355
606 => 0.012391694109665
607 => 0.011990990961745
608 => 0.011745562514769
609 => 0.01168980065523
610 => 0.011829104713115
611 => 0.011998245556334
612 => 0.012264933523882
613 => 0.01242608747728
614 => 0.01284629151829
615 => 0.012959986683593
616 => 0.013084903200042
617 => 0.013251830188843
618 => 0.013452268838101
619 => 0.013013720484504
620 => 0.013031144828148
621 => 0.012622774673394
622 => 0.012186372596834
623 => 0.012517547374656
624 => 0.012950514342324
625 => 0.012851191241555
626 => 0.012840015363731
627 => 0.0128588100903
628 => 0.01278392371591
629 => 0.01244521541996
630 => 0.01227511823416
701 => 0.012494587000262
702 => 0.012611224882014
703 => 0.01279212006472
704 => 0.012769820915217
705 => 0.013235787479142
706 => 0.013416847995786
707 => 0.013370524967612
708 => 0.013379049519622
709 => 0.013706850936429
710 => 0.01407143352942
711 => 0.014412913238667
712 => 0.014760281065808
713 => 0.014341515592193
714 => 0.014128892310555
715 => 0.014348265263459
716 => 0.01423186288675
717 => 0.014900745470508
718 => 0.014947057449353
719 => 0.015615891665286
720 => 0.016250694979504
721 => 0.015851986391527
722 => 0.01622795063176
723 => 0.016634586610387
724 => 0.017419053387468
725 => 0.017154872574821
726 => 0.016952514212575
727 => 0.01676128653804
728 => 0.017159200972208
729 => 0.017671111534926
730 => 0.017781372167117
731 => 0.01796003651407
801 => 0.017772192799286
802 => 0.017998429863437
803 => 0.018797146113493
804 => 0.018581325932265
805 => 0.018274826580095
806 => 0.01890533634999
807 => 0.01913351538467
808 => 0.020734995348345
809 => 0.022756929956323
810 => 0.021919835751882
811 => 0.021400224366324
812 => 0.021522345367277
813 => 0.022260687439305
814 => 0.022497819479034
815 => 0.021853212850734
816 => 0.022080898809334
817 => 0.023335470826808
818 => 0.024008508462694
819 => 0.023094432952147
820 => 0.020572534871308
821 => 0.018247229666914
822 => 0.018864005316977
823 => 0.018794082099037
824 => 0.020141963220767
825 => 0.018576178692319
826 => 0.0186025424881
827 => 0.019978296363996
828 => 0.019611268816299
829 => 0.019016731194367
830 => 0.018251570449509
831 => 0.016837100043835
901 => 0.015584264160105
902 => 0.018041363838973
903 => 0.017935409232874
904 => 0.01778197126165
905 => 0.018123430862886
906 => 0.019781461761488
907 => 0.019743238782753
908 => 0.019500083693576
909 => 0.019684514685646
910 => 0.018984399549747
911 => 0.019164835161593
912 => 0.018246861326689
913 => 0.01866182383804
914 => 0.019015455583651
915 => 0.01908645239219
916 => 0.019246411827015
917 => 0.017879575970075
918 => 0.018493245141649
919 => 0.018853718286923
920 => 0.017225087502448
921 => 0.018821525492761
922 => 0.017855782398741
923 => 0.017527994687656
924 => 0.017969317657884
925 => 0.017797333667186
926 => 0.017649471931221
927 => 0.017566962541966
928 => 0.017891021424264
929 => 0.01787590369007
930 => 0.017345680461513
1001 => 0.016654025874525
1002 => 0.016886167856706
1003 => 0.016801828498237
1004 => 0.016496171783151
1005 => 0.016702147503986
1006 => 0.015795134671353
1007 => 0.014234666235233
1008 => 0.015265559482575
1009 => 0.015225871213949
1010 => 0.015205858589187
1011 => 0.015980546372768
1012 => 0.015906078017465
1013 => 0.015770917223393
1014 => 0.016493689449173
1015 => 0.016229867864105
1016 => 0.017042903825102
1017 => 0.017578421892883
1018 => 0.017442597188699
1019 => 0.01794625451983
1020 => 0.016891515939114
1021 => 0.017241857786861
1022 => 0.017314062756129
1023 => 0.0164847705521
1024 => 0.015918261961358
1025 => 0.015880482297026
1026 => 0.014898234470373
1027 => 0.015422943330944
1028 => 0.015884665414318
1029 => 0.015663536367463
1030 => 0.015593533517271
1031 => 0.015951162897136
1101 => 0.01597895376284
1102 => 0.015345319079644
1103 => 0.015477071794881
1104 => 0.016026502519487
1105 => 0.015463227550315
1106 => 0.014368876295659
1107 => 0.014097462053914
1108 => 0.014061250390908
1109 => 0.013325153441162
1110 => 0.014115599251365
1111 => 0.013770548472581
1112 => 0.014860559748418
1113 => 0.014237951153507
1114 => 0.014211111741373
1115 => 0.014170540033446
1116 => 0.013536950981017
1117 => 0.013675666716814
1118 => 0.014136778949606
1119 => 0.014301308989068
1120 => 0.014284147157997
1121 => 0.014134519248107
1122 => 0.014203018139036
1123 => 0.013982359344758
1124 => 0.013904440131883
1125 => 0.013658505662681
1126 => 0.013297049934085
1127 => 0.013347312570083
1128 => 0.012631174191699
1129 => 0.012240983994815
1130 => 0.012132984490942
1201 => 0.011988563040752
1202 => 0.012149297278032
1203 => 0.012629145461651
1204 => 0.012050346746735
1205 => 0.011058036948019
1206 => 0.011117676457736
1207 => 0.011251668728939
1208 => 0.011001975017999
1209 => 0.010765660875799
1210 => 0.01097111684967
1211 => 0.010550662106565
1212 => 0.011302478675897
1213 => 0.011282144144638
1214 => 0.011562374869661
1215 => 0.01173760889293
1216 => 0.011333751201982
1217 => 0.011232182084856
1218 => 0.01129004047003
1219 => 0.010333770244249
1220 => 0.011484227190803
1221 => 0.011494176390251
1222 => 0.011408985304246
1223 => 0.012021568111913
1224 => 0.013314308905459
1225 => 0.012827927818549
1226 => 0.012639586360751
1227 => 0.012281549111801
1228 => 0.012758612487879
1229 => 0.012721981463944
1230 => 0.012556322081808
1231 => 0.012456130770603
]
'min_raw' => 0.0093568121087905
'max_raw' => 0.024008508462694
'avg_raw' => 0.016682660285742
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.009356'
'max' => '$0.0240085'
'avg' => '$0.016682'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0057538385529736
'max_diff' => 0.013955094956507
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00029369964030522
]
1 => [
'year' => 2028
'avg' => 0.00050407384437855
]
2 => [
'year' => 2029
'avg' => 0.001377038892371
]
3 => [
'year' => 2030
'avg' => 0.0010623834547164
]
4 => [
'year' => 2031
'avg' => 0.0010433922122636
]
5 => [
'year' => 2032
'avg' => 0.0018293949157121
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00029369964030522
'min' => '$0.000293'
'max_raw' => 0.0018293949157121
'max' => '$0.001829'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0018293949157121
]
1 => [
'year' => 2033
'avg' => 0.0047053918376723
]
2 => [
'year' => 2034
'avg' => 0.002982503477267
]
3 => [
'year' => 2035
'avg' => 0.0035178696909647
]
4 => [
'year' => 2036
'avg' => 0.0068281935310019
]
5 => [
'year' => 2037
'avg' => 0.016682660285742
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0018293949157121
'min' => '$0.001829'
'max_raw' => 0.016682660285742
'max' => '$0.016682'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.016682660285742
]
]
]
]
'prediction_2025_max_price' => '$0.0005021'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'sinken'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767689860
'last_updated_date' => '6. Januar 2026'
]
Idle Mystic Preisprognose für 2026
Die Preisprognose für Idle Mystic im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.000168 am unteren Ende und $0.0005021 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Idle Mystic im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn MST das prognostizierte Preisziel erreicht.
Idle Mystic Preisprognose 2027-2032
Die Preisprognose für MST für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.000293 am unteren Ende und $0.001829 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Idle Mystic, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Idle Mystic Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.000161 | $0.000293 | $0.000425 |
| 2028 | $0.000292 | $0.000504 | $0.000715 |
| 2029 | $0.000642 | $0.001377 | $0.002112 |
| 2030 | $0.000546 | $0.001062 | $0.001578 |
| 2031 | $0.000645 | $0.001043 | $0.001441 |
| 2032 | $0.000985 | $0.001829 | $0.002673 |
Idle Mystic Preisprognose 2032-2037
Die Preisprognose für Idle Mystic für die Jahre 2032-2037 wird derzeit zwischen $0.001829 am unteren Ende und $0.016682 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Idle Mystic bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Idle Mystic Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.000985 | $0.001829 | $0.002673 |
| 2033 | $0.002289 | $0.0047053 | $0.00712 |
| 2034 | $0.00184 | $0.002982 | $0.004124 |
| 2035 | $0.002176 | $0.003517 | $0.004859 |
| 2036 | $0.0036029 | $0.006828 | $0.010053 |
| 2037 | $0.009356 | $0.016682 | $0.0240085 |
Idle Mystic Potenzielles Preishistogramm
Idle Mystic Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Idle Mystic Neutral, mit 0 technischen Indikatoren, die bullische Signale zeigen, und 0 anzeigen bärische Signale. Die Preisprognose für MST wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Idle Mystic
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Idle Mystic im nächsten Monat sinken, und bis zum 04.02.2026 — erreichen. Der kurzfristige 50-Tage-SMA für Idle Mystic wird voraussichtlich bis zum 04.02.2026 — erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei —, was darauf hindeutet, dass sich der MST-Markt in einem — Zustand befindet.
Beliebte MST Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Idle Mystic Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Stochastic Fast (14) | — | — |
| Commodity Channel Index (20) | — | — |
| Average Directional Index (14) | — | — |
| Awesome Oscillator (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Williams Prozentbereich (14) | — | — |
| Ultimate Oscillator (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Hull Moving Average (9) | — | — |
| Ichimoku Wolke B/L (9, 26, 52, 26) | — | — |
Auf weltweiten Geldflüssen basierende Idle Mystic-Preisprognose
Definition weltweiter Geldflüsse, die für Idle Mystic-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Idle Mystic-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.000684 | $0.000961 | $0.00135 | $0.001898 | $0.002667 | $0.003748 |
| Amazon.com aktie | $0.001015 | $0.002119 | $0.004423 | $0.009229 | $0.019258 | $0.040182 |
| Apple aktie | $0.00069 | $0.000979 | $0.001389 | $0.00197 | $0.002795 | $0.003965 |
| Netflix aktie | $0.000768 | $0.001212 | $0.001912 | $0.003017 | $0.004761 | $0.007513 |
| Google aktie | $0.00063 | $0.000816 | $0.001057 | $0.001369 | $0.001773 | $0.002296 |
| Tesla aktie | $0.0011038 | $0.0025022 | $0.005672 | $0.012858 | $0.02915 | $0.066081 |
| Kodak aktie | $0.000365 | $0.000273 | $0.0002053 | $0.000153 | $0.000115 | $0.000086 |
| Nokia aktie | $0.000322 | $0.000213 | $0.000141 | $0.000093 | $0.000062 | $0.000041 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Idle Mystic Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Idle Mystic investieren?", "Sollte ich heute MST kaufen?", "Wird Idle Mystic auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Idle Mystic-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Idle Mystic.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Idle Mystic zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Idle Mystic-Preis entspricht heute $0.0004869 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Idle Mystic-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Idle Mystic 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000499 | $0.000512 | $0.000525 | $0.000539 |
| Wenn die Wachstumsrate von Idle Mystic 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000512 | $0.000538 | $0.000566 | $0.000596 |
| Wenn die Wachstumsrate von Idle Mystic 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00055 | $0.000621 | $0.0007025 | $0.000793 |
| Wenn die Wachstumsrate von Idle Mystic 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.000613 | $0.000772 | $0.000973 | $0.001227 |
| Wenn die Wachstumsrate von Idle Mystic 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00074 | $0.001124 | $0.0017095 | $0.002598 |
| Wenn die Wachstumsrate von Idle Mystic 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001119 | $0.002575 | $0.005921 | $0.013617 |
| Wenn die Wachstumsrate von Idle Mystic 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.001752 | $0.0063081 | $0.0227048 | $0.081722 |
Fragefeld
Ist MST eine gute Investition?
Die Entscheidung, Idle Mystic zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Idle Mystic in den letzten 2026 Stunden um -2.5907% gefallen, und Idle Mystic hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Idle Mystic investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Idle Mystic steigen?
Es scheint, dass der Durchschnittswert von Idle Mystic bis zum Ende dieses Jahres potenziell auf $0.0005021 steigen könnte. Betrachtet man die Aussichten von Idle Mystic in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.001578 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Idle Mystic nächste Woche kosten?
Basierend auf unserer neuen experimentellen Idle Mystic-Prognose wird der Preis von Idle Mystic in der nächsten Woche um 0.86% steigen und $0.000491 erreichen bis zum 13. Januar 2026.
Wie viel wird Idle Mystic nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Idle Mystic-Prognose wird der Preis von Idle Mystic im nächsten Monat um -11.62% fallen und $0.00043 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Idle Mystic in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Idle Mystic im Jahr 2026 wird erwartet, dass MST innerhalb der Spanne von $0.000168 bis $0.0005021 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Idle Mystic-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Idle Mystic in 5 Jahren sein?
Die Zukunft von Idle Mystic scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.001578 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Idle Mystic-Prognose für 2030 könnte der Wert von Idle Mystic seinen höchsten Gipfel von ungefähr $0.001578 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.000546 liegen wird.
Wie viel wird Idle Mystic im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Idle Mystic-Preisprognosesimulation wird der Wert von MST im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.0005021 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.0005021 und $0.000168 während des Jahres 2026 liegen.
Wie viel wird Idle Mystic im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Idle Mystic könnte der Wert von MST um -12.62% fallen und bis zu $0.000425 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.000425 und $0.000161 im Laufe des Jahres schwanken.
Wie viel wird Idle Mystic im Jahr 2028 kosten?
Unser neues experimentelles Idle Mystic-Preisprognosemodell deutet darauf hin, dass der Wert von MST im Jahr 2028 um 47.02% steigen, und im besten Fall $0.000715 erreichen wird. Der Preis wird voraussichtlich zwischen $0.000715 und $0.000292 im Laufe des Jahres liegen.
Wie viel wird Idle Mystic im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Idle Mystic im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.002112 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.002112 und $0.000642.
Wie viel wird Idle Mystic im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Idle Mystic-Preisprognosen wird der Wert von MST im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.001578 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.001578 und $0.000546 während des Jahres 2030 liegen.
Wie viel wird Idle Mystic im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Idle Mystic im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.001441 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.001441 und $0.000645 während des Jahres schwanken.
Wie viel wird Idle Mystic im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Idle Mystic-Preisprognose könnte MST eine 449.04% Steigerung im Wert erfahren und $0.002673 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.002673 und $0.000985 liegen.
Wie viel wird Idle Mystic im Jahr 2033 kosten?
Laut unserer experimentellen Idle Mystic-Preisprognose wird der Wert von MST voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.00712 beträgt. Im Laufe des Jahres könnte der Preis von MST zwischen $0.00712 und $0.002289 liegen.
Wie viel wird Idle Mystic im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Idle Mystic-Preisprognosesimulation deuten darauf hin, dass MST im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.004124 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.004124 und $0.00184.
Wie viel wird Idle Mystic im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Idle Mystic könnte MST um 897.93% steigen, wobei der Wert im Jahr 2035 $0.004859 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.004859 und $0.002176.
Wie viel wird Idle Mystic im Jahr 2036 kosten?
Unsere jüngste Idle Mystic-Preisprognosesimulation deutet darauf hin, dass der Wert von MST im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.010053 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.010053 und $0.0036029.
Wie viel wird Idle Mystic im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Idle Mystic um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.0240085 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.0240085 und $0.009356 liegen.
Verwandte Prognosen
Babylons-Preisprognose
BlazeX-Preisprognose
Autonio-Preisprognose
VERA-Preisprognose
Alliance Fan Token-Preisprognose
Zero-Preisprognose
Stablecomp-Preisprognose
Atlas DEX-Preisprognose
Knit Finance-Preisprognose
Grumpy Cat-Preisprognose
Atlas USV-Preisprognose
Moonscape-Preisprognose
UTU-Preisprognose
HashCoin-Preisprognose
Club Atletico Independiente Fan Token-Preisprognose
BitX-PreisprognoseInfinity Rocket-Preisprognose
Vether-Preisprognose
Chain of Legends-Preisprognose
MoonLana-Preisprognose
Santa Coin-Preisprognose
April-Preisprognose
Dogey-Inu-Preisprognose
RainbowToken-Preisprognose
Capricoin-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Idle Mystic?
Idle Mystic-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Idle Mystic Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Idle Mystic. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von MST über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von MST über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von MST einzuschätzen.
Wie liest man Idle Mystic-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Idle Mystic in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von MST innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Idle Mystic?
Die Preisentwicklung von Idle Mystic wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von MST. Die Marktkapitalisierung von Idle Mystic kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von MST-„Walen“, großen Inhabern von Idle Mystic, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Idle Mystic-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


