Glide Finance Preisvorhersage bis zu $0.00564 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001889 | $0.00564 |
| 2027 | $0.001819 | $0.004779 |
| 2028 | $0.003283 | $0.008041 |
| 2029 | $0.007212 | $0.023724 |
| 2030 | $0.006133 | $0.017734 |
| 2031 | $0.007251 | $0.016189 |
| 2032 | $0.011069 | $0.03003 |
| 2033 | $0.025722 | $0.079989 |
| 2034 | $0.020679 | $0.046325 |
| 2035 | $0.02445 | $0.054583 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Glide Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.72 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Glide Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Glide Finance'
'name_with_ticker' => 'Glide Finance <small>GLIDE</small>'
'name_lang' => 'Glide Finance'
'name_lang_with_ticker' => 'Glide Finance <small>GLIDE</small>'
'name_with_lang' => 'Glide Finance'
'name_with_lang_with_ticker' => 'Glide Finance <small>GLIDE</small>'
'image' => '/uploads/coins/glide-finance.png?1717125472'
'price_for_sd' => 0.005469
'ticker' => 'GLIDE'
'marketcap' => '$0'
'low24h' => '$0.00535'
'high24h' => '$0.005524'
'volume24h' => '$35.28'
'current_supply' => '0'
'max_supply' => '50M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005469'
'change_24h_pct' => '1.8629%'
'ath_price' => '$0.2599'
'ath_days' => 1362
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15.04.2022'
'ath_pct' => '-97.92%'
'fdv' => '$273.48K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.26969'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005516'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004834'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001889'
'current_year_max_price_prediction' => '$0.00564'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006133'
'grand_prediction_max_price' => '$0.017734'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0055732766114746
107 => 0.0055940852032425
108 => 0.0056409680230084
109 => 0.005240359461215
110 => 0.0054202209442108
111 => 0.005525872714729
112 => 0.0050485341718837
113 => 0.0055164372664974
114 => 0.0052333857574278
115 => 0.0051373138239586
116 => 0.0052666620258601
117 => 0.0052162549057839
118 => 0.0051729178239477
119 => 0.0051487349876575
120 => 0.0052437140314939
121 => 0.0052392831455744
122 => 0.0050838789952201
123 => 0.0048811606161665
124 => 0.0049491995581808
125 => 0.0049244803726785
126 => 0.0048348948555798
127 => 0.0048952646775078
128 => 0.0046294265342047
129 => 0.0041720658257162
130 => 0.0044742123190811
131 => 0.0044625800077587
201 => 0.0044567144689066
202 => 0.0046837692079546
203 => 0.0046619431338392
204 => 0.0046223285955983
205 => 0.0048341673035189
206 => 0.0047568433254952
207 => 0.0049951376059438
208 => 0.005152093630955
209 => 0.0051122845060167
210 => 0.005259902406174
211 => 0.0049507670379855
212 => 0.0050534494069395
213 => 0.0050746121008693
214 => 0.004831553246746
215 => 0.0046655141494921
216 => 0.0046544412346896
217 => 0.0043665523216484
218 => 0.0045203402552369
219 => 0.0046556672726177
220 => 0.004590856133093
221 => 0.0045703388624973
222 => 0.004675157148318
223 => 0.0046833024268342
224 => 0.0044975892134674
225 => 0.0045362048712989
226 => 0.0046972385837756
227 => 0.0045321472349145
228 => 0.0042114017115961
301 => 0.0041318523871593
302 => 0.0041212390408945
303 => 0.0039054949638855
304 => 0.0041371682533981
305 => 0.0040360366540677
306 => 0.0043555101646098
307 => 0.0041730286087589
308 => 0.0041651621936075
309 => 0.0041532709533538
310 => 0.0039675711139966
311 => 0.0040082275769754
312 => 0.004143375852071
313 => 0.0041915982791794
314 => 0.0041865682849573
315 => 0.0041427135517931
316 => 0.0041627900240631
317 => 0.0040981167117749
318 => 0.0040752792191473
319 => 0.0040031978104675
320 => 0.0038972580527055
321 => 0.0039119896257886
322 => 0.0037020952450166
323 => 0.0035877336464341
324 => 0.0035560798632082
325 => 0.0035137511013757
326 => 0.0035608610094897
327 => 0.0037015006406078
328 => 0.0035318594071171
329 => 0.0032410214112464
330 => 0.0032585012703621
331 => 0.0032977733239782
401 => 0.0032245901118752
402 => 0.0031553283434211
403 => 0.0032155458317071
404 => 0.0030923139388071
405 => 0.0033126653094879
406 => 0.0033067054224385
407 => 0.003388838786991
408 => 0.0034401984653919
409 => 0.0033218310345711
410 => 0.0032920619458192
411 => 0.0033090197717019
412 => 0.0030287446838845
413 => 0.0033659343328273
414 => 0.0033688503629134
415 => 0.0033438815429425
416 => 0.003523424621442
417 => 0.0039023165179666
418 => 0.0037597621456028
419 => 0.0037045607838949
420 => 0.0035996229549361
421 => 0.0037394463814319
422 => 0.0037287101238623
423 => 0.0036801566955276
424 => 0.0036507914305749
425 => 0.0037048978316385
426 => 0.0036440870487141
427 => 0.0036331637611323
428 => 0.0035669805230408
429 => 0.0035433561181876
430 => 0.0035258655493489
501 => 0.0035066101516453
502 => 0.0035490827608333
503 => 0.0034528342406764
504 => 0.003336767960726
505 => 0.0033271183054027
506 => 0.0033537618521567
507 => 0.0033419740660968
508 => 0.0033270618700181
509 => 0.0032985904266088
510 => 0.0032901435575454
511 => 0.0033175917841632
512 => 0.0032866043366428
513 => 0.0033323280034327
514 => 0.0033198936960717
515 => 0.0032504366659334
516 => 0.0031638674900948
517 => 0.0031630968428448
518 => 0.0031444456559123
519 => 0.003120690565129
520 => 0.0031140824423159
521 => 0.0032104744828038
522 => 0.0034100031218428
523 => 0.0033708308756838
524 => 0.0033991368380669
525 => 0.0035383741575513
526 => 0.0035826335144032
527 => 0.0035512192712501
528 => 0.003508217517676
529 => 0.0035101093765956
530 => 0.0036570593860744
531 => 0.003666224477913
601 => 0.0036893817082186
602 => 0.0037191452933937
603 => 0.0035562881385068
604 => 0.003502438819246
605 => 0.0034769220243337
606 => 0.0033983401722463
607 => 0.0034830839626237
608 => 0.0034337073850617
609 => 0.0034403699723189
610 => 0.0034360309536272
611 => 0.0034384003512361
612 => 0.003312603716789
613 => 0.003358437398705
614 => 0.0032822300129308
615 => 0.0031801968780596
616 => 0.0031798548272141
617 => 0.0032048272924236
618 => 0.0031899726929443
619 => 0.0031499993476923
620 => 0.0031556773727165
621 => 0.003105931898806
622 => 0.0031617173739201
623 => 0.0031633171017364
624 => 0.003141836655162
625 => 0.0032277818764875
626 => 0.0032629937037891
627 => 0.0032488548136982
628 => 0.0032620016815689
629 => 0.0033724586593638
630 => 0.0033904679663201
701 => 0.0033984665108421
702 => 0.0033877495207867
703 => 0.0032640206323543
704 => 0.0032695085346921
705 => 0.0032292419486175
706 => 0.0031952209265727
707 => 0.0031965815890378
708 => 0.0032140728167921
709 => 0.003290458034242
710 => 0.003451206221211
711 => 0.0034573064974011
712 => 0.0034647002101011
713 => 0.003434626264768
714 => 0.0034255556750866
715 => 0.0034375221241942
716 => 0.0034978906914816
717 => 0.0036531750364509
718 => 0.003598287177846
719 => 0.0035536624944199
720 => 0.0035928103725129
721 => 0.0035867838635317
722 => 0.003535914062866
723 => 0.0035344863169885
724 => 0.003436850905452
725 => 0.0034007573168577
726 => 0.00337059481267
727 => 0.0033376581455092
728 => 0.0033181321851692
729 => 0.0033481329346417
730 => 0.0033549944610045
731 => 0.0032893972979595
801 => 0.0032804566470263
802 => 0.003334024706382
803 => 0.0033104514006781
804 => 0.0033346971301844
805 => 0.0033403223474059
806 => 0.0033394165578735
807 => 0.0033148033193417
808 => 0.0033304910636045
809 => 0.0032933848716813
810 => 0.0032530374611346
811 => 0.0032272983269383
812 => 0.0032048375185513
813 => 0.0032173000804743
814 => 0.0031728733227929
815 => 0.0031586603088767
816 => 0.0033251764088337
817 => 0.0034481836422217
818 => 0.003446395068332
819 => 0.0034355075847625
820 => 0.0034193309926236
821 => 0.0034967072730088
822 => 0.0034697509241102
823 => 0.0034893639202123
824 => 0.0034943562508751
825 => 0.0035094665321977
826 => 0.003514867158998
827 => 0.0034985427138311
828 => 0.0034437558819879
829 => 0.0033072323060104
830 => 0.0032436802128546
831 => 0.0032227069635693
901 => 0.0032234693013469
902 => 0.0032024406222137
903 => 0.0032086345106577
904 => 0.0032002866405837
905 => 0.0031844777942303
906 => 0.0032163239287601
907 => 0.0032199938990974
908 => 0.0032125606307652
909 => 0.0032143114345457
910 => 0.0031527671475452
911 => 0.0031574462260187
912 => 0.0031313925224898
913 => 0.0031265077671602
914 => 0.0030606462733947
915 => 0.0029439630904129
916 => 0.0030086169004954
917 => 0.0029305241896172
918 => 0.0029009492967099
919 => 0.0030409522398934
920 => 0.003026899827475
921 => 0.0030028482058514
922 => 0.0029672708446731
923 => 0.0029540748553377
924 => 0.0028739002014785
925 => 0.0028691630552134
926 => 0.0029088997785637
927 => 0.0028905626479947
928 => 0.0028648103718614
929 => 0.0027715382381728
930 => 0.0026666694785647
1001 => 0.0026698348072357
1002 => 0.0027031916085145
1003 => 0.0028001810070098
1004 => 0.002762285571084
1005 => 0.0027347919975199
1006 => 0.0027296432776451
1007 => 0.0027940902864532
1008 => 0.0028852963059824
1009 => 0.0029280881297258
1010 => 0.0028856827320031
1011 => 0.002836969694368
1012 => 0.0028399346312543
1013 => 0.0028596590280442
1014 => 0.0028617317832589
1015 => 0.0028300246035396
1016 => 0.0028389499889047
1017 => 0.0028253915123807
1018 => 0.0027421831669803
1019 => 0.0027406781918685
1020 => 0.0027202575219914
1021 => 0.0027196391922232
1022 => 0.0026848985385875
1023 => 0.002680038080993
1024 => 0.0026110584045922
1025 => 0.0026564610364889
1026 => 0.0026260073347578
1027 => 0.002580106422947
1028 => 0.0025721930884497
1029 => 0.0025719552040591
1030 => 0.0026190851772327
1031 => 0.002655910295312
1101 => 0.0026265370899378
1102 => 0.0026198493804497
1103 => 0.0026912566213073
1104 => 0.0026821693990167
1105 => 0.0026742999231194
1106 => 0.0028771298072899
1107 => 0.0027165741269557
1108 => 0.0026465626861321
1109 => 0.0025599102333009
1110 => 0.0025881247088824
1111 => 0.0025940699134443
1112 => 0.0023856863846639
1113 => 0.0023011452129902
1114 => 0.0022721338687386
1115 => 0.0022554374299616
1116 => 0.002263046206773
1117 => 0.0021869492365763
1118 => 0.0022380876590762
1119 => 0.0021721941152026
1120 => 0.002161146848136
1121 => 0.0022789726672257
1122 => 0.0022953674416236
1123 => 0.0022254222405851
1124 => 0.0022703383827513
1125 => 0.0022540511652207
1126 => 0.0021733236708864
1127 => 0.002170240474394
1128 => 0.0021297342554457
1129 => 0.0020663498663411
1130 => 0.00203738149969
1201 => 0.0020222945228233
1202 => 0.0020285197035178
1203 => 0.002025372061665
1204 => 0.0020048315694283
1205 => 0.0020265494186362
1206 => 0.0019710692883449
1207 => 0.0019489766534291
1208 => 0.0019389979227829
1209 => 0.0018897561138323
1210 => 0.0019681217298046
1211 => 0.0019835607433751
1212 => 0.0019990301765718
1213 => 0.002133681031118
1214 => 0.0021269542549443
1215 => 0.0021877610354822
1216 => 0.002185398195807
1217 => 0.0021680551169931
1218 => 0.0020948875202749
1219 => 0.0021240508202398
1220 => 0.0020342907159311
1221 => 0.0021015450891729
1222 => 0.0020708530018351
1223 => 0.0020911680635706
1224 => 0.002054639750835
1225 => 0.0020748560273199
1226 => 0.0019872219062424
1227 => 0.0019053903970255
1228 => 0.001938321785145
1229 => 0.001974121970192
1230 => 0.0020517458930914
1231 => 0.002005513724996
]
'min_raw' => 0.0018897561138323
'max_raw' => 0.0056409680230084
'avg_raw' => 0.0037653620684203
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001889'
'max' => '$0.00564'
'avg' => '$0.003765'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0035798738861677
'max_diff' => 0.00017133802300843
'year' => 2026
]
1 => [
'items' => [
101 => 0.0020221405608749
102 => 0.0019664434439792
103 => 0.0018515243827285
104 => 0.001852174812135
105 => 0.0018344970182094
106 => 0.0018192208232575
107 => 0.0020108240456472
108 => 0.0019869951561443
109 => 0.0019490269393695
110 => 0.0019998489063196
111 => 0.0020132870410343
112 => 0.0020136696058378
113 => 0.0020507480010198
114 => 0.0020705367471751
115 => 0.0020740245994543
116 => 0.0021323682554049
117 => 0.0021519242793081
118 => 0.0022324727740933
119 => 0.0020688578103201
120 => 0.002065488267811
121 => 0.0020005640756174
122 => 0.0019593881265174
123 => 0.0020033834280799
124 => 0.0020423572593066
125 => 0.0020017751011928
126 => 0.0020070742743063
127 => 0.0019525960427226
128 => 0.0019720694470747
129 => 0.0019888425662536
130 => 0.0019795814357214
131 => 0.0019657170750709
201 => 0.0020391618495978
202 => 0.0020350178075866
203 => 0.002103411270114
204 => 0.0021567288650176
205 => 0.002252283526745
206 => 0.0021525672558553
207 => 0.0021489331986078
208 => 0.0021844566911232
209 => 0.0021519188408465
210 => 0.002172481639053
211 => 0.0022489705420543
212 => 0.0022505866320451
213 => 0.0022235150424851
214 => 0.0022218677338001
215 => 0.0022270671287059
216 => 0.0022575201470689
217 => 0.0022468789267261
218 => 0.0022591932163095
219 => 0.0022745924239966
220 => 0.0023382900761193
221 => 0.0023536473643987
222 => 0.0023163371157209
223 => 0.0023197058134313
224 => 0.0023057507562366
225 => 0.0022922703458428
226 => 0.0023225723397522
227 => 0.0023779498292088
228 => 0.0023776053287209
301 => 0.0023904518298903
302 => 0.0023984550936926
303 => 0.0023640992267058
304 => 0.0023417348205976
305 => 0.0023503107569836
306 => 0.0023640238660245
307 => 0.0023458637805424
308 => 0.0022337713203769
309 => 0.002267773012297
310 => 0.0022621134681637
311 => 0.0022540535890938
312 => 0.0022882425532468
313 => 0.0022849449442497
314 => 0.0021861687521581
315 => 0.0021924920834973
316 => 0.0021865532948804
317 => 0.0022057427358633
318 => 0.002150882548059
319 => 0.0021677571723386
320 => 0.002178340778497
321 => 0.0021845746038314
322 => 0.0022070954555133
323 => 0.0022044528935031
324 => 0.0022069311901484
325 => 0.0022403236679082
326 => 0.0024092113615026
327 => 0.0024184035460352
328 => 0.0023731378675129
329 => 0.0023912206132565
330 => 0.0023565056956905
331 => 0.0023798100524223
401 => 0.0023957543014317
402 => 0.002323705306061
403 => 0.0023194390321492
404 => 0.0022845808337696
405 => 0.0023033116551096
406 => 0.002273509571564
407 => 0.0022808219604335
408 => 0.0022603758836719
409 => 0.0022971747510695
410 => 0.0023383216027858
411 => 0.0023487169224677
412 => 0.002321371311851
413 => 0.002301571287601
414 => 0.0022668089675513
415 => 0.0023246194805227
416 => 0.002341525036259
417 => 0.0023245306828353
418 => 0.0023205927198131
419 => 0.0023131302870018
420 => 0.0023221759102112
421 => 0.0023414329649718
422 => 0.0023323516935687
423 => 0.0023383500333219
424 => 0.0023154905476439
425 => 0.0023641105999273
426 => 0.0024413309440062
427 => 0.0024415792200392
428 => 0.0024324978996847
429 => 0.0024287820190554
430 => 0.0024381000048398
501 => 0.002443154629884
502 => 0.0024732872872843
503 => 0.0025056208292128
504 => 0.0026565073611638
505 => 0.0026141390267742
506 => 0.002748014534201
507 => 0.0028538926790167
508 => 0.0028856409051567
509 => 0.0028564340309773
510 => 0.002756518892134
511 => 0.002751616578752
512 => 0.0029009319792675
513 => 0.0028587435395433
514 => 0.0028537253588806
515 => 0.0028003403949795
516 => 0.0028318975205015
517 => 0.0028249955142347
518 => 0.0028141003596849
519 => 0.0028743091568924
520 => 0.0029870146503882
521 => 0.0029694484422815
522 => 0.0029563360828027
523 => 0.0028988815405173
524 => 0.0029334820079097
525 => 0.0029211614441996
526 => 0.0029740984047213
527 => 0.0029427397220055
528 => 0.0028584239206189
529 => 0.0028718514898982
530 => 0.0028698219398142
531 => 0.0029115899367285
601 => 0.0028990522208002
602 => 0.002867373749556
603 => 0.0029866294352641
604 => 0.0029788856343692
605 => 0.0029898645735588
606 => 0.0029946978421251
607 => 0.0030672866764947
608 => 0.0030970239993523
609 => 0.0031037748922661
610 => 0.0031320230490137
611 => 0.0031030720523927
612 => 0.0032188966805875
613 => 0.0032959132997826
614 => 0.0033853720662167
615 => 0.0035160953682265
616 => 0.0035652485390403
617 => 0.0035563694586858
618 => 0.0036554823743452
619 => 0.0038335860806288
620 => 0.0035923693099055
621 => 0.0038463711551972
622 => 0.0037659571035702
623 => 0.0035752968337495
624 => 0.00356302056011
625 => 0.0036921379084438
626 => 0.0039785077599639
627 => 0.0039067753601381
628 => 0.0039786250884726
629 => 0.0038948085638473
630 => 0.0038906463669386
701 => 0.0039745543069535
702 => 0.0041706097823821
703 => 0.0040774711750356
704 => 0.0039439341428809
705 => 0.0040425358093576
706 => 0.003957117920702
707 => 0.0037646475105994
708 => 0.0039067205077238
709 => 0.0038117203405527
710 => 0.0038394464398199
711 => 0.0040391226610052
712 => 0.0040150970897944
713 => 0.0040461884036491
714 => 0.0039913130484969
715 => 0.0039400508137355
716 => 0.0038443660457697
717 => 0.0038160385031771
718 => 0.0038238672168315
719 => 0.0038160346236554
720 => 0.003762499875367
721 => 0.0037509390515712
722 => 0.0037316705054202
723 => 0.0037376426335804
724 => 0.0037014121296046
725 => 0.0037697865762111
726 => 0.0037824774760148
727 => 0.0038322346962993
728 => 0.0038374006559725
729 => 0.0039759738062153
730 => 0.0038996500436887
731 => 0.0039508546130682
801 => 0.0039462743944268
802 => 0.003579429019929
803 => 0.0036299770758307
804 => 0.0037086139879599
805 => 0.0036731881656355
806 => 0.0036231043412346
807 => 0.0035826589677061
808 => 0.0035213800910586
809 => 0.0036076289331833
810 => 0.0037210369890355
811 => 0.0038402768714207
812 => 0.0039835357772
813 => 0.0039515620571475
814 => 0.003837598745826
815 => 0.0038427110567216
816 => 0.0038743133510582
817 => 0.0038333855085211
818 => 0.0038213150887505
819 => 0.0038726550607357
820 => 0.0038730086109068
821 => 0.0038259161817728
822 => 0.003773581564614
823 => 0.0037733622806572
824 => 0.0037640498410262
825 => 0.00389646522617
826 => 0.0039692802992936
827 => 0.0039776284300799
828 => 0.0039687184035773
829 => 0.0039721475191518
830 => 0.0039297780324718
831 => 0.0040266221147413
901 => 0.0041154958215189
902 => 0.0040916757695927
903 => 0.0040559661255354
904 => 0.0040275216740343
905 => 0.0040849751607967
906 => 0.0040824168474713
907 => 0.0041147195872219
908 => 0.0041132541483572
909 => 0.0041023919519465
910 => 0.0040916761575159
911 => 0.0041341630711748
912 => 0.00412192752236
913 => 0.0041096729683583
914 => 0.0040850945842297
915 => 0.0040884351948365
916 => 0.0040527317165527
917 => 0.0040362136538187
918 => 0.0037878216226724
919 => 0.0037214431555064
920 => 0.0037423271725351
921 => 0.0037492027331942
922 => 0.0037203147392172
923 => 0.0037617327018635
924 => 0.0037552777562575
925 => 0.0037803901735933
926 => 0.0037647010254963
927 => 0.0037653449136068
928 => 0.003811483352881
929 => 0.0038248775380893
930 => 0.0038180651473881
1001 => 0.0038228363123201
1002 => 0.0039327857943968
1003 => 0.003917154494032
1004 => 0.0039088506772566
1005 => 0.0039111508912527
1006 => 0.0039392453412667
1007 => 0.0039471102533706
1008 => 0.003913786068129
1009 => 0.0039295019465338
1010 => 0.0039964181621391
1011 => 0.0040198350504712
1012 => 0.0040945705172832
1013 => 0.0040628215626645
1014 => 0.0041210981429297
1015 => 0.0043002204827148
1016 => 0.0044433158020582
1017 => 0.0043117194327258
1018 => 0.0045744957636211
1019 => 0.0047791048302489
1020 => 0.0047712515934774
1021 => 0.0047355732700179
1022 => 0.0045026312874756
1023 => 0.0042882746021709
1024 => 0.0044675930714939
1025 => 0.0044680501911494
1026 => 0.0044526465756049
1027 => 0.0043569760423856
1028 => 0.0044493174484268
1029 => 0.0044566471739036
1030 => 0.0044525444767679
1031 => 0.0043791941032601
1101 => 0.0042672016403286
1102 => 0.0042890846995133
1103 => 0.0043249295968602
1104 => 0.0042570677281536
1105 => 0.0042353817492062
1106 => 0.0042757001099957
1107 => 0.0044056142691236
1108 => 0.0043810547498819
1109 => 0.0043804134015817
1110 => 0.0044854894397544
1111 => 0.0044102776732511
1112 => 0.0042893607149689
1113 => 0.0042588275883039
1114 => 0.0041504555582219
1115 => 0.0042253085054075
1116 => 0.0042280023297186
1117 => 0.0041870061355236
1118 => 0.0042926873301849
1119 => 0.0042917134593713
1120 => 0.0043920420251322
1121 => 0.0045838325611786
1122 => 0.0045271106622306
1123 => 0.0044611492650791
1124 => 0.0044683210978606
1125 => 0.0045469784018823
1126 => 0.0044994204002992
1127 => 0.0045165225892547
1128 => 0.004546952515671
1129 => 0.0045653116458106
1130 => 0.0044656795015645
1201 => 0.0044424504827844
1202 => 0.004394932062638
1203 => 0.0043825353937951
1204 => 0.0044212381555
1205 => 0.0044110413451795
1206 => 0.0042277759242162
1207 => 0.0042086236680464
1208 => 0.0042092110404
1209 => 0.0041610517816208
1210 => 0.004087597352436
1211 => 0.0042806312065975
1212 => 0.0042651278866013
1213 => 0.0042480134211871
1214 => 0.0042501098455465
1215 => 0.0043338992991137
1216 => 0.0042852971845759
1217 => 0.0044145138718046
1218 => 0.0043879508055195
1219 => 0.0043607064968159
1220 => 0.0043569405034711
1221 => 0.0043464537689954
1222 => 0.0043104908545362
1223 => 0.0042670634742905
1224 => 0.0042383889562371
1225 => 0.0039096897717362
1226 => 0.0039706944284244
1227 => 0.0040408747251947
1228 => 0.0040651006824099
1229 => 0.0040236605062081
1230 => 0.0043121271652735
1231 => 0.0043648328036186
]
'min_raw' => 0.0018192208232575
'max_raw' => 0.0047791048302489
'avg_raw' => 0.0032991628267532
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001819'
'max' => '$0.004779'
'avg' => '$0.003299'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.0535290574759E-5
'max_diff' => -0.00086186319275957
'year' => 2027
]
2 => [
'items' => [
101 => 0.0042051839871675
102 => 0.0041753202120277
103 => 0.0043140850293999
104 => 0.0042303928812154
105 => 0.0042680794504183
106 => 0.0041866217012528
107 => 0.0043521375587425
108 => 0.0043508766052233
109 => 0.0042864871983147
110 => 0.0043409086841142
111 => 0.0043314516117096
112 => 0.0042587561298938
113 => 0.0043544421351807
114 => 0.0043544895942455
115 => 0.0042925161900423
116 => 0.0042201448216557
117 => 0.0042072065303236
118 => 0.0041974592658197
119 => 0.0042656822208685
120 => 0.0043268507090377
121 => 0.0044406701005663
122 => 0.0044692869998786
123 => 0.0045809806630295
124 => 0.0045144725248889
125 => 0.0045439547211021
126 => 0.0045759618156027
127 => 0.0045913071937283
128 => 0.0045663027235511
129 => 0.0047398089573703
130 => 0.0047544581995983
131 => 0.0047593699638019
201 => 0.0047008646379799
202 => 0.0047528310606518
203 => 0.0047285176924307
204 => 0.004791774322094
205 => 0.0048016937693263
206 => 0.0047932923504151
207 => 0.0047964409395345
208 => 0.0046483839775668
209 => 0.0046407064430261
210 => 0.0045360227147904
211 => 0.0045786821078295
212 => 0.0044989324172609
213 => 0.004524221865653
214 => 0.0045353692135376
215 => 0.0045295464716091
216 => 0.0045810940059063
217 => 0.0045372680712882
218 => 0.0044216042241801
219 => 0.0043059088645343
220 => 0.0043044564035374
221 => 0.0042739958575354
222 => 0.0042519784619032
223 => 0.004256219793411
224 => 0.0042711667988502
225 => 0.0042511097147749
226 => 0.0042553899105823
227 => 0.0043264696797813
228 => 0.0043407242205764
229 => 0.0042922817213459
301 => 0.0040977780967163
302 => 0.0040500464193568
303 => 0.0040843550024826
304 => 0.0040679577095042
305 => 0.0032831593626517
306 => 0.0034675360931662
307 => 0.0033579857007366
308 => 0.0034084715617394
309 => 0.0032966489790054
310 => 0.0033500165766097
311 => 0.0033401615300048
312 => 0.0036366338565682
313 => 0.0036320048489733
314 => 0.0036342205099473
315 => 0.0035284612387813
316 => 0.0036969386294259
317 => 0.0037799366503085
318 => 0.0037645759255639
319 => 0.0037684418890483
320 => 0.0037020118278368
321 => 0.0036348636981488
322 => 0.0035603860883017
323 => 0.0036987562816868
324 => 0.0036833718782403
325 => 0.0037186581646128
326 => 0.0038084011259288
327 => 0.0038216161178829
328 => 0.0038393772010825
329 => 0.0038330111170754
330 => 0.0039846770655078
331 => 0.0039663093184285
401 => 0.0040105703041282
402 => 0.0039195220984549
403 => 0.0038164924113606
404 => 0.003836074986583
405 => 0.003834189027116
406 => 0.003810178598497
407 => 0.0037885030571186
408 => 0.0037524193877696
409 => 0.0038665934569683
410 => 0.0038619581982652
411 => 0.0039369976487701
412 => 0.003923733696999
413 => 0.0038351537808322
414 => 0.0038383174298672
415 => 0.0038595944900257
416 => 0.0039332346381715
417 => 0.0039550960479448
418 => 0.0039449689719113
419 => 0.0039689390097164
420 => 0.0039878839502604
421 => 0.0039713182025673
422 => 0.0042058542558317
423 => 0.0041084585347197
424 => 0.0041559285315146
425 => 0.0041672498460408
426 => 0.0041382505369437
427 => 0.0041445394486994
428 => 0.0041540654363835
429 => 0.0042119053682216
430 => 0.004363694085484
501 => 0.0044309202750988
502 => 0.0046331735834365
503 => 0.004425338075885
504 => 0.0044130059769757
505 => 0.0044494379052721
506 => 0.0045681820079534
507 => 0.0046644129501101
508 => 0.0046963383053197
509 => 0.0047005577680408
510 => 0.0047604518567716
511 => 0.0047947820314734
512 => 0.0047531791390287
513 => 0.0047179250436863
514 => 0.004591649250069
515 => 0.0046062660170178
516 => 0.0047069610465445
517 => 0.0048491987066585
518 => 0.0049712534163426
519 => 0.0049285141110473
520 => 0.0052545848412029
521 => 0.0052869134222183
522 => 0.0052824466576301
523 => 0.0053560959763212
524 => 0.0052099170771424
525 => 0.0051474227656606
526 => 0.0047255473792503
527 => 0.0048440771547582
528 => 0.0050163671444686
529 => 0.0049935639182761
530 => 0.0048684423224238
531 => 0.0049711585003922
601 => 0.004937197319724
602 => 0.0049104107274803
603 => 0.0050331252993851
604 => 0.004898195586739
605 => 0.0050150211173691
606 => 0.0048651911659306
607 => 0.0049287093405938
608 => 0.0048926533526266
609 => 0.004915985995697
610 => 0.0047795838410712
611 => 0.0048531831327322
612 => 0.0047765218685661
613 => 0.0047764855211453
614 => 0.0047747932194898
615 => 0.0048649848568132
616 => 0.0048679260028683
617 => 0.0048012742466144
618 => 0.004791668687242
619 => 0.0048271854747189
620 => 0.0047856046184449
621 => 0.0048050600393887
622 => 0.0047861939033257
623 => 0.0047819467387163
624 => 0.0047481046085131
625 => 0.0047335244883128
626 => 0.0047392417291267
627 => 0.004719725838789
628 => 0.00470796680894
629 => 0.0047724540524824
630 => 0.0047380011196657
701 => 0.0047671736464036
702 => 0.0047339278703193
703 => 0.0046186835259161
704 => 0.004552405284763
705 => 0.0043347194013417
706 => 0.0043964548478415
707 => 0.0044373855127408
708 => 0.0044238579282357
709 => 0.0044529204142329
710 => 0.0044547046148374
711 => 0.0044452561043827
712 => 0.0044343159397054
713 => 0.0044289908725695
714 => 0.0044686795602546
715 => 0.0044917201793156
716 => 0.0044414934525451
717 => 0.0044297260332094
718 => 0.0044805080270679
719 => 0.0045114850139858
720 => 0.0047402016809223
721 => 0.0047232576114905
722 => 0.0047657839006586
723 => 0.0047609960931173
724 => 0.0048055704191346
725 => 0.004878430603657
726 => 0.0047302854764949
727 => 0.0047559983480971
728 => 0.0047496941457772
729 => 0.0048185217736559
730 => 0.0048187366459973
731 => 0.0047774710448891
801 => 0.0047998417967078
802 => 0.004787355056752
803 => 0.0048099202835362
804 => 0.004723031313113
805 => 0.0048288527000037
806 => 0.0048888466073911
807 => 0.0048896796228534
808 => 0.004918116258814
809 => 0.0049470095278888
810 => 0.0050024676418046
811 => 0.0049454628311917
812 => 0.0048429167262055
813 => 0.0048503202237636
814 => 0.0047901974799303
815 => 0.0047912081541162
816 => 0.004785813096104
817 => 0.0048020040713198
818 => 0.0047265843216753
819 => 0.00474428518617
820 => 0.0047195038722213
821 => 0.0047559444783603
822 => 0.0047167404100027
823 => 0.0047496911056999
824 => 0.00476391153363
825 => 0.0048163852188358
826 => 0.0047089900040328
827 => 0.0044900038910326
828 => 0.0045360374269353
829 => 0.0044679502114791
830 => 0.0044742519424959
831 => 0.0044869824420628
901 => 0.0044457187278061
902 => 0.0044535905441172
903 => 0.0044533093074454
904 => 0.0044508857617446
905 => 0.0044401514759862
906 => 0.0044245846379227
907 => 0.0044865981295474
908 => 0.0044971354301866
909 => 0.0045205585442123
910 => 0.0045902498435025
911 => 0.0045832860392694
912 => 0.0045946442928991
913 => 0.0045698492889994
914 => 0.004475402111613
915 => 0.0044805310477442
916 => 0.0044165731320029
917 => 0.0045189229965098
918 => 0.0044946851976424
919 => 0.0044790589310363
920 => 0.0044747951594165
921 => 0.0045446592099579
922 => 0.0045655636288647
923 => 0.0045525373978453
924 => 0.0045258202179888
925 => 0.0045771251015385
926 => 0.0045908521239972
927 => 0.0045939250980926
928 => 0.0046848275150071
929 => 0.0045990055333982
930 => 0.0046196637373686
1001 => 0.0047808331476011
1002 => 0.0046346747323785
1003 => 0.0047120981046436
1004 => 0.004708308633463
1005 => 0.0047479158108497
1006 => 0.0047050596888704
1007 => 0.0047055909418649
1008 => 0.0047407594321617
1009 => 0.0046913716302105
1010 => 0.0046791425159052
1011 => 0.0046622480820789
1012 => 0.004699136460268
1013 => 0.0047212493746746
1014 => 0.0048994632246453
1015 => 0.0050145974992653
1016 => 0.005009599216759
1017 => 0.0050552741624738
1018 => 0.0050346971810948
1019 => 0.0049682486802883
1020 => 0.0050816681686335
1021 => 0.0050457774968481
1022 => 0.005048736280223
1023 => 0.005048626154158
1024 => 0.0050724903132783
1025 => 0.0050555803694235
1026 => 0.0050222491343156
1027 => 0.0050443759636838
1028 => 0.0051100847364213
1029 => 0.0053140467831897
1030 => 0.005428186646699
1031 => 0.0053071754200882
1101 => 0.0053906473437994
1102 => 0.0053405939336602
1103 => 0.0053314977400779
1104 => 0.0053839242766953
1105 => 0.0054364425790249
1106 => 0.0054330973902094
1107 => 0.0053949717995627
1108 => 0.0053734356208075
1109 => 0.0055365147814913
1110 => 0.005656668729102
1111 => 0.0056484750353973
1112 => 0.0056846393346782
1113 => 0.0057908188358866
1114 => 0.0058005265587923
1115 => 0.0057993036088356
1116 => 0.0057752420047178
1117 => 0.005879789512808
1118 => 0.0059670048833953
1119 => 0.0057696724385711
1120 => 0.0058448140502888
1121 => 0.0058785475407004
1122 => 0.0059280783129002
1123 => 0.0060116450279226
1124 => 0.0061024206454133
1125 => 0.0061152573130305
1126 => 0.006106149083065
1127 => 0.0060462801231503
1128 => 0.0061456078869871
1129 => 0.0062037917615199
1130 => 0.00623843892729
1201 => 0.0063262983749441
1202 => 0.0058787558672529
1203 => 0.0055619630360032
1204 => 0.0055124912608596
1205 => 0.0056130940609956
1206 => 0.0056396222170991
1207 => 0.0056289287506372
1208 => 0.0052723496175215
1209 => 0.0055106139455195
1210 => 0.0057669663286116
1211 => 0.0057768138676741
1212 => 0.0059051492307255
1213 => 0.0059469404855794
1214 => 0.0060502672741363
1215 => 0.0060438041553792
1216 => 0.0060689625841046
1217 => 0.0060631790970239
1218 => 0.0062545702148033
1219 => 0.0064657030395701
1220 => 0.0064583921812097
1221 => 0.0064280393396393
1222 => 0.0064731184852999
1223 => 0.0066910301868278
1224 => 0.006670968369315
1225 => 0.0066904567161671
1226 => 0.0069473868932338
1227 => 0.007281432671312
1228 => 0.0071262348697469
1229 => 0.0074629694421788
1230 => 0.007674926005992
1231 => 0.0080414829663891
]
'min_raw' => 0.0032831593626517
'max_raw' => 0.0080414829663891
'avg_raw' => 0.0056623211645204
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003283'
'max' => '$0.008041'
'avg' => '$0.005662'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0014639385393942
'max_diff' => 0.0032623781361402
'year' => 2028
]
3 => [
'items' => [
101 => 0.0079955882296163
102 => 0.0081382861643797
103 => 0.0079134270722723
104 => 0.0073971051452737
105 => 0.0073153952239252
106 => 0.0074789805556896
107 => 0.0078811391314092
108 => 0.0074663151509793
109 => 0.0075502335019524
110 => 0.0075260650112267
111 => 0.0075247771750653
112 => 0.007573928643334
113 => 0.0075026318750421
114 => 0.0072121560149773
115 => 0.00734527938986
116 => 0.0072938740617083
117 => 0.0073509121058137
118 => 0.007658722905572
119 => 0.0075226324137059
120 => 0.0073792721356188
121 => 0.0075590777385325
122 => 0.0077880320589503
123 => 0.0077737045090491
124 => 0.0077459030737893
125 => 0.0079026183087127
126 => 0.0081614659635505
127 => 0.0082314314445191
128 => 0.0082830785321888
129 => 0.0082901997929937
130 => 0.0083635532051237
131 => 0.0079691134206608
201 => 0.0085950994885355
202 => 0.0087031899899413
203 => 0.0086828734555693
204 => 0.0088030114987382
205 => 0.0087676638388299
206 => 0.0087164506255008
207 => 0.0089068949780181
208 => 0.0086885658959237
209 => 0.0083786752507578
210 => 0.0082086631138779
211 => 0.0084325488102093
212 => 0.0085692679924249
213 => 0.0086596306748962
214 => 0.0086869743680134
215 => 0.0079997326583026
216 => 0.0076293474929411
217 => 0.0078667601374633
218 => 0.0081564199491258
219 => 0.0079675043457818
220 => 0.0079749094797683
221 => 0.0077055654755469
222 => 0.0081802509169697
223 => 0.0081110932408874
224 => 0.0084698833867403
225 => 0.0083842552389617
226 => 0.0086768346747516
227 => 0.0085997887039034
228 => 0.0089196022213118
301 => 0.0090471844920113
302 => 0.0092614149811107
303 => 0.0094190038009671
304 => 0.0095115429701806
305 => 0.0095059872655667
306 => 0.0098726735568215
307 => 0.0096564514619118
308 => 0.0093848255510701
309 => 0.0093799126953118
310 => 0.0095205916035056
311 => 0.0098154160017061
312 => 0.009891859678639
313 => 0.0099345812654063
314 => 0.0098691516681231
315 => 0.0096344580808757
316 => 0.0095331185798258
317 => 0.0096194627708083
318 => 0.0095138712448776
319 => 0.0096961518423835
320 => 0.0099464620357938
321 => 0.0098947739706883
322 => 0.010067559422828
323 => 0.010246374188233
324 => 0.010502087333836
325 => 0.010568940219127
326 => 0.010679445496325
327 => 0.010793191725655
328 => 0.010829723948968
329 => 0.010899475298558
330 => 0.010899107674515
331 => 0.01110930806131
401 => 0.011341165597308
402 => 0.011428686449633
403 => 0.011629935823627
404 => 0.011285303323282
405 => 0.011546711033647
406 => 0.011782507331855
407 => 0.011501381264391
408 => 0.011888848054417
409 => 0.011903892511855
410 => 0.012131045957568
411 => 0.011900782423004
412 => 0.011764052671207
413 => 0.012158786341448
414 => 0.012349785530484
415 => 0.012292255020343
416 => 0.011854444997542
417 => 0.011599620785717
418 => 0.01093269667145
419 => 0.011722697093777
420 => 0.012107483254864
421 => 0.011853448494343
422 => 0.01198156885123
423 => 0.012680551975242
424 => 0.01294667949306
425 => 0.012891326829726
426 => 0.012900680518647
427 => 0.013044278096705
428 => 0.013681068838447
429 => 0.013299489065302
430 => 0.01359119250435
501 => 0.013745910956607
502 => 0.013889622077615
503 => 0.013536712984784
504 => 0.013077583440275
505 => 0.012932157840582
506 => 0.011828189743887
507 => 0.011770723410163
508 => 0.011738465815636
509 => 0.01153508624507
510 => 0.011375285612958
511 => 0.011248206217286
512 => 0.010914711933921
513 => 0.011027256464729
514 => 0.010495736182713
515 => 0.010835784023225
516 => 0.0099874648191201
517 => 0.01069397026024
518 => 0.010309451469499
519 => 0.010567645495882
520 => 0.010566744681247
521 => 0.010091327618186
522 => 0.009817116977913
523 => 0.0099918546703325
524 => 0.010179187347302
525 => 0.010209581443877
526 => 0.010452463149451
527 => 0.010520246212751
528 => 0.010314860366461
529 => 0.0099698852891846
530 => 0.010050015131592
531 => 0.0098154931492141
601 => 0.0094045023958544
602 => 0.0096996831301275
603 => 0.009800470810989
604 => 0.009844984392605
605 => 0.0094408221892826
606 => 0.0093138256502104
607 => 0.0092462137584126
608 => 0.0099177130239872
609 => 0.0099544992695793
610 => 0.0097662956360793
611 => 0.0106169939057
612 => 0.010424454687246
613 => 0.010639568167513
614 => 0.010042744188275
615 => 0.010065543668012
616 => 0.0097829976317121
617 => 0.009941204532307
618 => 0.0098293889942129
619 => 0.00992842297817
620 => 0.0099877835398214
621 => 0.010270283213097
622 => 0.010697195952723
623 => 0.010228087182444
624 => 0.010023689773471
625 => 0.010150496776423
626 => 0.010488200535715
627 => 0.010999839017779
628 => 0.010696938738713
629 => 0.010831360738982
630 => 0.010860725966022
701 => 0.010637378514217
702 => 0.011008074156906
703 => 0.01120673296335
704 => 0.011410515792113
705 => 0.011587454712463
706 => 0.011329120449025
707 => 0.011605575141666
708 => 0.011382801460219
709 => 0.011182950438043
710 => 0.011183253529548
711 => 0.011057884063979
712 => 0.01081496492687
713 => 0.010770166910938
714 => 0.011003211847178
715 => 0.011190091816605
716 => 0.011205484145982
717 => 0.011308950499296
718 => 0.011370180821399
719 => 0.011970321216596
720 => 0.012211702648166
721 => 0.012506859293574
722 => 0.012621839441077
723 => 0.012967888462397
724 => 0.012688425772954
725 => 0.01262796226219
726 => 0.011788560528239
727 => 0.011926012515149
728 => 0.012146086408337
729 => 0.011792189465679
730 => 0.012016655619948
731 => 0.012060969993644
801 => 0.011780164182988
802 => 0.011930154699362
803 => 0.011531824356962
804 => 0.010705878465676
805 => 0.011008993670793
806 => 0.011232188489233
807 => 0.010913661963596
808 => 0.011484608432122
809 => 0.011151073291936
810 => 0.011045358665008
811 => 0.010632928215374
812 => 0.010827579511697
813 => 0.011090848177113
814 => 0.010928178750153
815 => 0.011265742236031
816 => 0.011743822156928
817 => 0.012084530378711
818 => 0.012110685725388
819 => 0.01189163316446
820 => 0.012242666291322
821 => 0.01224522318442
822 => 0.011849256383307
823 => 0.011606728922378
824 => 0.011551626172972
825 => 0.011689283644517
826 => 0.011856425227944
827 => 0.012119960920022
828 => 0.012279210019374
829 => 0.012694447211289
830 => 0.012806798489638
831 => 0.012930238481764
901 => 0.013095192378729
902 => 0.013293261825345
903 => 0.012859897152248
904 => 0.012877115538603
905 => 0.012473572355357
906 => 0.012042328590112
907 => 0.012369588852638
908 => 0.012797438112284
909 => 0.01269928901939
910 => 0.012688245241435
911 => 0.012706817812666
912 => 0.012632816601874
913 => 0.012298111868072
914 => 0.01213002524612
915 => 0.012346899871909
916 => 0.012462159083537
917 => 0.012640916069113
918 => 0.012618880497538
919 => 0.013079339295282
920 => 0.013258259660534
921 => 0.013212484174668
922 => 0.013220907965716
923 => 0.013544834740654
924 => 0.013905107935007
925 => 0.014242551323754
926 => 0.014585813232318
927 => 0.014171997603804
928 => 0.013961887548244
929 => 0.014178667493356
930 => 0.014063641003081
1001 => 0.014724617335275
1002 => 0.014770381902416
1003 => 0.015431310438499
1004 => 0.016058610321147
1005 => 0.0156646145041
1006 => 0.016036134813614
1007 => 0.016437964318848
1008 => 0.017213158628933
1009 => 0.016952100456961
1010 => 0.016752133988534
1011 => 0.016563166642101
1012 => 0.016956377692306
1013 => 0.017462237426695
1014 => 0.017571194768418
1015 => 0.017747747286918
1016 => 0.017562123901531
1017 => 0.017785686823485
1018 => 0.018574962176508
1019 => 0.018361693008994
1020 => 0.018058816506396
1021 => 0.018681873594797
1022 => 0.018907355533017
1023 => 0.020489905861247
1024 => 0.022487941022531
1025 => 0.021660741345953
1026 => 0.021147271813135
1027 => 0.021267949333007
1028 => 0.02199756413615
1029 => 0.022231893254103
1030 => 0.021594905933415
1031 => 0.021819900623757
1101 => 0.02305964348853
1102 => 0.023724725759767
1103 => 0.022821454702961
1104 => 0.020329365681481
1105 => 0.018031545791181
1106 => 0.018641031098267
1107 => 0.018571934378974
1108 => 0.019903883426101
1109 => 0.018356606609882
1110 => 0.018382658783255
1111 => 0.019742151126117
1112 => 0.019379461876641
1113 => 0.018791951742218
1114 => 0.01803583526534
1115 => 0.016638084025522
1116 => 0.015400056773238
1117 => 0.017828113315615
1118 => 0.017723411102373
1119 => 0.017571786781601
1120 => 0.017909210300015
1121 => 0.019547643126097
1122 => 0.019509871946367
1123 => 0.019269590971945
1124 => 0.019451841973304
1125 => 0.018760002260509
1126 => 0.018938305107394
1127 => 0.018031181804771
1128 => 0.018441239422372
1129 => 0.018790691209334
1130 => 0.018860848829289
1201 => 0.019018917529383
1202 => 0.0176682377937
1203 => 0.018274653341149
1204 => 0.018630865661821
1205 => 0.017021485437906
1206 => 0.018599053389347
1207 => 0.017644725464493
1208 => 0.017320812233274
1209 => 0.017756918726788
1210 => 0.017586967602138
1211 => 0.017440853605029
1212 => 0.017359319484085
1213 => 0.017679547961604
1214 => 0.017664608920372
1215 => 0.017140652977481
1216 => 0.016457173809157
1217 => 0.016686571852485
1218 => 0.016603229392726
1219 => 0.016301185567167
1220 => 0.016504726636683
1221 => 0.01560843477631
1222 => 0.014066411215736
1223 => 0.01508511921331
1224 => 0.015045900063545
1225 => 0.015026123989786
1226 => 0.015791654894942
1227 => 0.015718066762215
1228 => 0.015584503580737
1229 => 0.016298732574597
1230 => 0.016038029384102
1231 => 0.01684145518781
]
'min_raw' => 0.0072121560149773
'max_raw' => 0.023724725759767
'avg_raw' => 0.015468440887372
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.007212'
'max' => '$0.023724'
'avg' => '$0.015468'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0039289966523257
'max_diff' => 0.015683242793378
'year' => 2029
]
4 => [
'items' => [
101 => 0.017370643384455
102 => 0.017236424140341
103 => 0.017734128197075
104 => 0.016691856720085
105 => 0.017038057496067
106 => 0.017109408996184
107 => 0.01628991909968
108 => 0.015730106690809
109 => 0.015692773585466
110 => 0.014722136015385
111 => 0.015240642770609
112 => 0.015696907257939
113 => 0.015478391976063
114 => 0.015409216565779
115 => 0.015762618734603
116 => 0.015790081109805
117 => 0.015163936044856
118 => 0.015294131431295
119 => 0.015837067835924
120 => 0.015280450826929
121 => 0.014199034901324
122 => 0.013930828800029
123 => 0.013895045162097
124 => 0.013167648943691
125 => 0.013948751614195
126 => 0.01360777936627
127 => 0.014684906611991
128 => 0.014069657305984
129 => 0.014043135138086
130 => 0.01400304299135
131 => 0.013376943017809
201 => 0.013514019121285
202 => 0.013969680966521
203 => 0.0141322662463
204 => 0.014115307269597
205 => 0.013967447974894
206 => 0.014035137202847
207 => 0.013817086615121
208 => 0.013740088414264
209 => 0.013497060912337
210 => 0.013139877622565
211 => 0.01318954614974
212 => 0.01248187259061
213 => 0.012096294476517
214 => 0.011989571536374
215 => 0.011846857160556
216 => 0.012005691504871
217 => 0.012479867840331
218 => 0.011907910577645
219 => 0.010927329968906
220 => 0.01098626453432
221 => 0.011118673004974
222 => 0.010871930695879
223 => 0.010638409807834
224 => 0.010841437273841
225 => 0.010425952343153
226 => 0.011168882373845
227 => 0.011148788198552
228 => 0.011425706571509
301 => 0.011598869313056
302 => 0.011199785255893
303 => 0.011099416694755
304 => 0.011156591188676
305 => 0.010211624161918
306 => 0.011348482605158
307 => 0.011358314204184
308 => 0.011274130084385
309 => 0.011879472108843
310 => 0.013156932591363
311 => 0.01267630057211
312 => 0.012490185327076
313 => 0.012136380110216
314 => 0.012607804554807
315 => 0.012571606512829
316 => 0.012407905239307
317 => 0.012308898198301
318 => 0.012491321707075
319 => 0.012286293906773
320 => 0.012249465280051
321 => 0.012026323872059
322 => 0.011946672541693
323 => 0.011887701867701
324 => 0.011822780949975
325 => 0.011965980317195
326 => 0.011641471711629
327 => 0.011250146145287
328 => 0.011217611658647
329 => 0.011307442236722
330 => 0.011267698893024
331 => 0.011217421382808
401 => 0.011121427923541
402 => 0.011092948714752
403 => 0.011185492327168
404 => 0.011081015984378
405 => 0.011235176519285
406 => 0.011193253383882
407 => 0.010959074157435
408 => 0.010667200137029
409 => 0.010664601846021
410 => 0.010601718067093
411 => 0.01052162611999
412 => 0.010499346372561
413 => 0.010824338866944
414 => 0.011497063604108
415 => 0.011364991641264
416 => 0.011460427169698
417 => 0.011929875513579
418 => 0.012079099025295
419 => 0.011973183711231
420 => 0.01182820029677
421 => 0.011834578831203
422 => 0.012330031047883
423 => 0.012360931794903
424 => 0.012439008013664
425 => 0.012539358019109
426 => 0.011990273751084
427 => 0.011808717011557
428 => 0.011722685355985
429 => 0.011457741155263
430 => 0.011743460761142
501 => 0.01157698418253
502 => 0.011599447560634
503 => 0.011584818256175
504 => 0.011592806845639
505 => 0.01116867470976
506 => 0.011323206168345
507 => 0.011066267646578
508 => 0.010722255808634
509 => 0.010721102560327
510 => 0.010805298970302
511 => 0.010755215651043
512 => 0.010620442726676
513 => 0.010639586584472
514 => 0.010471866246065
515 => 0.010659950870229
516 => 0.010665344464251
517 => 0.010592921638909
518 => 0.010882691953112
519 => 0.01100141108727
520 => 0.010953740832183
521 => 0.010998066415094
522 => 0.011370479827589
523 => 0.011431199463363
524 => 0.011458167114659
525 => 0.011422034034451
526 => 0.011004873448626
527 => 0.011023376294511
528 => 0.010887614688237
529 => 0.010772910437141
530 => 0.01077749800564
531 => 0.010836470901213
601 => 0.011094008994891
602 => 0.011635982730337
603 => 0.011656550237419
604 => 0.011681478656
605 => 0.011580082249613
606 => 0.011549500123214
607 => 0.011589845841851
608 => 0.011793382681259
609 => 0.01231693469193
610 => 0.012131876444496
611 => 0.011981421208729
612 => 0.012113411012937
613 => 0.012093092217149
614 => 0.011921581132589
615 => 0.011916767387681
616 => 0.011587582780999
617 => 0.011465890727079
618 => 0.011364195738332
619 => 0.011253147465435
620 => 0.011187314326889
621 => 0.011288463948321
622 => 0.01131159806351
623 => 0.011090432648456
624 => 0.011060288619618
625 => 0.011240897071738
626 => 0.011161418025722
627 => 0.011243164195535
628 => 0.011262130008138
629 => 0.011259076075489
630 => 0.011176090823338
701 => 0.011228983148403
702 => 0.011103877031662
703 => 0.010967842920038
704 => 0.010881061632046
705 => 0.010805333448406
706 => 0.010847351846038
707 => 0.010697563930738
708 => 0.010649643761998
709 => 0.011211064418786
710 => 0.011625791894244
711 => 0.011619761592501
712 => 0.011583053681507
713 => 0.011528513171697
714 => 0.011789392703255
715 => 0.011698507490911
716 => 0.011764634076605
717 => 0.011781466067988
718 => 0.011832411436433
719 => 0.01185062002675
720 => 0.011795581020134
721 => 0.01161086339148
722 => 0.0111505646233
723 => 0.01093629430416
724 => 0.010865581529889
725 => 0.010868151804931
726 => 0.010797252145058
727 => 0.01081813527239
728 => 0.010789989845606
729 => 0.010736689216387
730 => 0.01084406068238
731 => 0.010856434243602
801 => 0.010831372460445
802 => 0.010837275417629
803 => 0.010629774557122
804 => 0.010645550396878
805 => 0.010557708516419
806 => 0.010541239222782
807 => 0.010319182598249
808 => 0.0099257771002663
809 => 0.010143761934944
810 => 0.0098804669079594
811 => 0.0097807530916695
812 => 0.010252782789306
813 => 0.010205404099729
814 => 0.010124312378195
815 => 0.01000436082105
816 => 0.0099598696216911
817 => 0.0096895551785893
818 => 0.0096735835592194
819 => 0.0098075586963246
820 => 0.0097457337803535
821 => 0.0096589081834035
822 => 0.0093444346726201
823 => 0.0089908623278984
824 => 0.009001534454509
825 => 0.0091139992389177
826 => 0.0094410057675284
827 => 0.0093132386595298
828 => 0.0092205421567182
829 => 0.0092031828881882
830 => 0.0094204704779311
831 => 0.0097279779405747
901 => 0.0098722535619554
902 => 0.0097292808028829
903 => 0.0095650413954604
904 => 0.0095750378871781
905 => 0.0096415400680686
906 => 0.00964852850699
907 => 0.0095416255368418
908 => 0.0095717180967508
909 => 0.0095260047465277
910 => 0.0092454620005889
911 => 0.0092403878719255
912 => 0.0091715381577093
913 => 0.0091694534157254
914 => 0.0090523228764774
915 => 0.0090359355043515
916 => 0.0088033657093591
917 => 0.0089564438527093
918 => 0.0088537670711132
919 => 0.0086990089422437
920 => 0.0086723285824947
921 => 0.0086715265386632
922 => 0.0088304285337278
923 => 0.0089545869903797
924 => 0.0088555531776888
925 => 0.0088330050982289
926 => 0.0090737595962745
927 => 0.0090431213918722
928 => 0.009016588904455
929 => 0.0097004440200664
930 => 0.0091591193341799
1001 => 0.0089230708734005
1002 => 0.0086309160787991
1003 => 0.0087260431530937
1004 => 0.008746087825355
1005 => 0.0080435082091986
1006 => 0.0077584717464246
1007 => 0.0076606579737731
1008 => 0.0076043647647284
1009 => 0.0076300182869757
1010 => 0.0073734520390367
1011 => 0.0075458688008658
1012 => 0.0073237041171556
1013 => 0.0072864574849452
1014 => 0.0076837154603421
1015 => 0.0077389915868711
1016 => 0.0075031664581518
1017 => 0.00765460436741
1018 => 0.0075996908763686
1019 => 0.0073275124930065
1020 => 0.0073171172807708
1021 => 0.0071805477355325
1022 => 0.0069668428423095
1023 => 0.0068691739716388
1024 => 0.0068183071757934
1025 => 0.0068392958071333
1026 => 0.0068286833128652
1027 => 0.0067594296091977
1028 => 0.0068326528540939
1029 => 0.0066455977213179
1030 => 0.0065711108602409
1031 => 0.0065374668731744
1101 => 0.006371444676344
1102 => 0.0066356598219072
1103 => 0.0066877135340779
1104 => 0.0067398698081418
1105 => 0.0071938545652668
1106 => 0.0071711747697485
1107 => 0.0073761890757261
1108 => 0.0073682225967929
1109 => 0.0073097491957165
1110 => 0.0070630595349829
1111 => 0.0071613856369309
1112 => 0.0068587531784038
1113 => 0.0070855059933392
1114 => 0.0069820254780266
1115 => 0.00705051912702
1116 => 0.0069273613703066
1117 => 0.0069955219579309
1118 => 0.006700057400299
1119 => 0.0064241567536808
1120 => 0.0065351872279219
1121 => 0.0066558900512969
1122 => 0.0069176045268813
1123 => 0.0067617295443208
1124 => 0.0068177880823352
1125 => 0.0066300013640728
1126 => 0.0062425437256733
1127 => 0.0062447366938289
1128 => 0.0061851347773846
1129 => 0.0061336300195545
1130 => 0.0067796336611512
1201 => 0.0066992928965123
1202 => 0.0065712804027996
1203 => 0.0067426302126484
1204 => 0.0067879378220595
1205 => 0.0067892276660045
1206 => 0.0069142400640914
1207 => 0.0069809592033601
1208 => 0.0069927187408335
1209 => 0.0071894284502949
1210 => 0.0072553629502425
1211 => 0.0075269378241272
1212 => 0.0069752985505338
1213 => 0.0069639379027105
1214 => 0.0067450414558675
1215 => 0.0066062138686638
1216 => 0.0067545470995356
1217 => 0.0068859500925827
1218 => 0.0067491245131459
1219 => 0.0067669910452747
1220 => 0.0065833138839415
1221 => 0.0066489698263044
1222 => 0.0067055215686779
1223 => 0.006674297020497
1224 => 0.0066275523605851
1225 => 0.0068751765456528
1226 => 0.0068612046186842
1227 => 0.0070917979526747
1228 => 0.0072715619464078
1229 => 0.007593731159835
1230 => 0.0072575307905628
1231 => 0.0072452783128311
]
'min_raw' => 0.0061336300195545
'max_raw' => 0.017734128197075
'avg_raw' => 0.011933879108315
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006133'
'max' => '$0.017734'
'avg' => '$0.011933'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010785259954228
'max_diff' => -0.0059905975626929
'year' => 2030
]
5 => [
'items' => [
101 => 0.0073650482480178
102 => 0.0072553446140895
103 => 0.0073246735238915
104 => 0.0075825612006452
105 => 0.0075880099608809
106 => 0.0074967362066014
107 => 0.0074911821903586
108 => 0.0075087123132934
109 => 0.0076113867908661
110 => 0.0075755091735342
111 => 0.0076170276606209
112 => 0.0076689471644764
113 => 0.0078837082458361
114 => 0.0079354864154818
115 => 0.0078096923071459
116 => 0.0078210501066717
117 => 0.0077739996570286
118 => 0.0077285495122138
119 => 0.0078307148002969
120 => 0.0080174238723326
121 => 0.0080162623648857
122 => 0.0080595752404922
123 => 0.0080865588031719
124 => 0.0079707255989757
125 => 0.007895322442349
126 => 0.0079242368106272
127 => 0.0079704715151771
128 => 0.0079092435190775
129 => 0.0075313159635839
130 => 0.0076459550418149
131 => 0.0076268734936328
201 => 0.0075996990486258
202 => 0.0077149695282649
203 => 0.0077038514092995
204 => 0.0073708205813293
205 => 0.00739214013442
206 => 0.0073721170939653
207 => 0.0074368156340032
208 => 0.0072518506806049
209 => 0.0073087446545123
210 => 0.0073444280215991
211 => 0.0073654457989458
212 => 0.0074413764227468
213 => 0.0074324668404317
214 => 0.0074408225906005
215 => 0.0075534076607559
216 => 0.0081228243110717
217 => 0.0081538164030013
218 => 0.0080012000075146
219 => 0.0080621672472863
220 => 0.0079451234789943
221 => 0.0080236957447738
222 => 0.0080774528935009
223 => 0.0078345346753082
224 => 0.007820150634953
225 => 0.0077026237853946
226 => 0.0077657760572863
227 => 0.0076652962518976
228 => 0.0076899504815056
301 => 0.0076210151062045
302 => 0.0077450850568501
303 => 0.0078838145401932
304 => 0.0079188630862789
305 => 0.0078266654508751
306 => 0.0077599082867225
307 => 0.0076427046976474
308 => 0.0078376168783316
309 => 0.0078946151398047
310 => 0.007837317490729
311 => 0.0078240403734597
312 => 0.0077988802602258
313 => 0.0078293782104218
314 => 0.0078943047150317
315 => 0.007863686574462
316 => 0.0078839103957305
317 => 0.0078068380437688
318 => 0.0079707639445861
319 => 0.0082311177260004
320 => 0.0082319548059798
321 => 0.0082013365003669
322 => 0.0081888081493907
323 => 0.0082202243890237
324 => 0.008237266410263
325 => 0.008338860768483
326 => 0.0084478755625509
327 => 0.0089566000395848
328 => 0.0088137522421275
329 => 0.0092651228623066
330 => 0.0096220984197286
331 => 0.0097291397807502
401 => 0.0096306667652955
402 => 0.0092937958988329
403 => 0.0092772674069969
404 => 0.0097806947047033
405 => 0.0096384534346703
406 => 0.0096215342882079
407 => 0.0094415431551964
408 => 0.0095479402071416
409 => 0.0095246696111306
410 => 0.0094879358368907
411 => 0.0096909340003195
412 => 0.010070928440487
413 => 0.010011702743422
414 => 0.0099674935079633
415 => 0.0097737815073
416 => 0.009890439398841
417 => 0.009848899758098
418 => 0.010027380416437
419 => 0.0099216524282678
420 => 0.0096373758171516
421 => 0.0096826478044599
422 => 0.0096758050346528
423 => 0.0098166287523978
424 => 0.0097743569677903
425 => 0.0096675507902703
426 => 0.010069629660801
427 => 0.010043520895429
428 => 0.010080537155432
429 => 0.010096832857851
430 => 0.010341571180919
501 => 0.010441832641127
502 => 0.010464593747918
503 => 0.010559834380616
504 => 0.010462224074214
505 => 0.01085273489479
506 => 0.011112401803535
507 => 0.011414018280379
508 => 0.011854761019915
509 => 0.012020484367078
510 => 0.011990547927746
511 => 0.012324714042734
512 => 0.012925203123273
513 => 0.012111923939562
514 => 0.012968308894806
515 => 0.012697187305415
516 => 0.01205436289424
517 => 0.012012972580562
518 => 0.012448300735155
519 => 0.01341381668326
520 => 0.013171965889051
521 => 0.013414212264518
522 => 0.013131618999862
523 => 0.013117585862388
524 => 0.013400487340414
525 => 0.014061502063978
526 => 0.013747478746579
527 => 0.013297249319411
528 => 0.013629691722086
529 => 0.013341699346797
530 => 0.012692771921281
531 => 0.013171780950306
601 => 0.012851481253989
602 => 0.012944961733443
603 => 0.013618184054118
604 => 0.013537180163369
605 => 0.013642006698756
606 => 0.013456990607585
607 => 0.013284156404072
608 => 0.012961548528379
609 => 0.012866040240762
610 => 0.012892435295431
611 => 0.012866027160684
612 => 0.012685531019152
613 => 0.012646552894574
614 => 0.012581587645939
615 => 0.012601723092992
616 => 0.012479569419304
617 => 0.012710098639789
618 => 0.012752886894528
619 => 0.012920646836656
620 => 0.012938064230369
621 => 0.013405273281281
622 => 0.013147942387168
623 => 0.01332058216782
624 => 0.01330513964089
625 => 0.012068294848444
626 => 0.012238721148069
627 => 0.012503850987567
628 => 0.012384410354248
629 => 0.01221554924354
630 => 0.012079184842882
701 => 0.011872578831911
702 => 0.012163372824836
703 => 0.01254573600304
704 => 0.012947761591564
705 => 0.013430768994416
706 => 0.013322967364926
707 => 0.012938732104141
708 => 0.012955968617255
709 => 0.013062517959013
710 => 0.012924526880408
711 => 0.012883830617422
712 => 0.013056926917412
713 => 0.013058118936498
714 => 0.012899343523785
715 => 0.012722893708147
716 => 0.012722154376977
717 => 0.012690756836588
718 => 0.013137204552547
719 => 0.013382705655369
720 => 0.013410851961163
721 => 0.013380811184731
722 => 0.013392372687304
723 => 0.013249521004819
724 => 0.013576037589629
725 => 0.013875681496993
726 => 0.013795370528861
727 => 0.013674972970755
728 => 0.01357907051659
729 => 0.013772778958484
730 => 0.013764153426492
731 => 0.013873064368866
801 => 0.01386812353942
802 => 0.013831500885847
803 => 0.013795371836772
804 => 0.013938619432514
805 => 0.013897366425426
806 => 0.013856049341024
807 => 0.013773181602926
808 => 0.013784444704821
809 => 0.01366406793505
810 => 0.013608376133288
811 => 0.012770905058101
812 => 0.012547105421654
813 => 0.012617517343142
814 => 0.01264069877594
815 => 0.012543300887351
816 => 0.012682944440123
817 => 0.012661181140343
818 => 0.012745849408683
819 => 0.012692952350493
820 => 0.012695123264212
821 => 0.012850682233508
822 => 0.01289584166409
823 => 0.012872873213215
824 => 0.012888959528895
825 => 0.013259661884145
826 => 0.013206959863622
827 => 0.01317896296561
828 => 0.013186718297693
829 => 0.013281440697408
830 => 0.013307957797676
831 => 0.013195602980514
901 => 0.013248590161803
902 => 0.013474202854658
903 => 0.013553154528585
904 => 0.013805130372805
905 => 0.013698086555667
906 => 0.013894570114772
907 => 0.014498493589279
908 => 0.014980949449042
909 => 0.014537263102073
910 => 0.015423231848144
911 => 0.016113085601628
912 => 0.016086607865558
913 => 0.015966315907033
914 => 0.015180935749402
915 => 0.014458217218991
916 => 0.015062801957929
917 => 0.015064343168763
918 => 0.015012408803508
919 => 0.014689848921256
920 => 0.015001184418795
921 => 0.015025897099985
922 => 0.015012064570151
923 => 0.01476475866471
924 => 0.014387168256872
925 => 0.01446094851874
926 => 0.014581802092756
927 => 0.014353001064447
928 => 0.014279885272359
929 => 0.014415821440699
930 => 0.014853836098516
1001 => 0.014771031964702
1002 => 0.01476886961413
1003 => 0.015123140813004
1004 => 0.01486955909112
1005 => 0.014461879124119
1006 => 0.014358934555814
1007 => 0.013993550690098
1008 => 0.014245922627601
1009 => 0.014255005044342
1010 => 0.014116783513351
1011 => 0.014473095039577
1012 => 0.014469811566135
1013 => 0.014808076330315
1014 => 0.015454711512983
1015 => 0.015263469670483
1016 => 0.01504107621471
1017 => 0.015065256549654
1018 => 0.01533045514184
1019 => 0.015170110019109
1020 => 0.015227771243209
1021 => 0.015330367864672
1022 => 0.015392266953731
1023 => 0.015056350223311
1024 => 0.014978031964696
1025 => 0.014817820293542
1026 => 0.01477602405903
1027 => 0.014906513122259
1028 => 0.014872133864345
1029 => 0.014254241702384
1030 => 0.014189668533539
1031 => 0.014191648900439
1101 => 0.014029276597093
1102 => 0.013781619860672
1103 => 0.01443244697717
1104 => 0.014380176451396
1105 => 0.014322473836358
1106 => 0.014329542077454
1107 => 0.014612044070148
1108 => 0.014448178647693
1109 => 0.014883841730305
1110 => 0.014794282497751
1111 => 0.01470242640882
1112 => 0.014689729099325
1113 => 0.014654372341879
1114 => 0.01453312086493
1115 => 0.014386702420429
1116 => 0.014290024280821
1117 => 0.013181792031232
1118 => 0.013387473490465
1119 => 0.013624091260858
1120 => 0.013705770767011
1121 => 0.013566052319686
1122 => 0.014538637800824
1123 => 0.014716338540295
1124 => 0.014178071409305
1125 => 0.014077383606399
1126 => 0.01454523887642
1127 => 0.014263064955617
1128 => 0.014390127854877
1129 => 0.014115487366367
1130 => 0.014673535635841
1201 => 0.014669284243015
1202 => 0.014452190862097
1203 => 0.014635676701057
1204 => 0.014603791521173
1205 => 0.014358693628795
1206 => 0.014681305676203
1207 => 0.014681465687754
1208 => 0.014472518028638
1209 => 0.014228512907314
1210 => 0.014184890554766
1211 => 0.014152026971959
1212 => 0.01438204542808
1213 => 0.01458827925659
1214 => 0.014972029281745
1215 => 0.015068513155745
1216 => 0.01544509613926
1217 => 0.015220859308069
1218 => 0.015320260590983
1219 => 0.015428174744756
1220 => 0.015479912758487
1221 => 0.015395608441528
1222 => 0.015980596822668
1223 => 0.016029987765617
1224 => 0.016046548121558
1225 => 0.015849293330837
1226 => 0.016024501753056
1227 => 0.015942527534593
1228 => 0.016155801677939
1229 => 0.016189245786837
1230 => 0.016160919816409
1231 => 0.016171535504453
]
'min_raw' => 0.0072518506806049
'max_raw' => 0.016189245786837
'avg_raw' => 0.011720548233721
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007251'
'max' => '$0.016189'
'avg' => '$0.01172'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0011182206610504
'max_diff' => -0.0015448824102375
'year' => 2031
]
6 => [
'items' => [
101 => 0.015672351120172
102 => 0.01564646577644
103 => 0.015293517277909
104 => 0.015437346399924
105 => 0.015168464750226
106 => 0.015253729891133
107 => 0.015291313952809
108 => 0.015271682171866
109 => 0.015445478282683
110 => 0.015297716084289
111 => 0.014907747348372
112 => 0.014517672365734
113 => 0.014512775292075
114 => 0.014410075434542
115 => 0.014335842247963
116 => 0.014350142193262
117 => 0.014400537065666
118 => 0.014332913206366
119 => 0.014347344185364
120 => 0.014586994589849
121 => 0.01463505476936
122 => 0.014471727501058
123 => 0.01381594495081
124 => 0.013655014268073
125 => 0.01377068805143
126 => 0.013715403433331
127 => 0.011069401014047
128 => 0.011691040033749
129 => 0.011321683237108
130 => 0.011491899842289
131 => 0.011114882197398
201 => 0.011294814778728
202 => 0.011261587801042
203 => 0.012261164949087
204 => 0.012245557926794
205 => 0.012253028182461
206 => 0.011896453415848
207 => 0.012464486701122
208 => 0.012744320323265
209 => 0.012692530567337
210 => 0.012705564933137
211 => 0.012481591343764
212 => 0.012255196736388
213 => 0.012004090274928
214 => 0.012470615042624
215 => 0.0124187454523
216 => 0.012537715630414
217 => 0.012840290290144
218 => 0.012884845558159
219 => 0.012944728290206
220 => 0.01292326459351
221 => 0.013434616927628
222 => 0.013372688785955
223 => 0.013521917789445
224 => 0.013214942407235
225 => 0.012867570623893
226 => 0.012933594643467
227 => 0.012927235999451
228 => 0.012846283163007
229 => 0.012773202561912
301 => 0.01265154395142
302 => 0.013036489797103
303 => 0.013020861698762
304 => 0.013273862445227
305 => 0.013229142105771
306 => 0.012930488733962
307 => 0.012941155197563
308 => 0.013012892291404
309 => 0.013261175192268
310 => 0.013334882461634
311 => 0.013300738317737
312 => 0.013381554973732
313 => 0.013445429163469
314 => 0.013389576588538
315 => 0.014180331266903
316 => 0.013851954793222
317 => 0.014012003201666
318 => 0.01405017380402
319 => 0.013952400608732
320 => 0.013973604113794
321 => 0.014005721646354
322 => 0.014200733014801
323 => 0.014712499272601
324 => 0.01493915706447
325 => 0.015621068214406
326 => 0.014920336290084
327 => 0.014878757757612
328 => 0.015001590547459
329 => 0.015401944580098
330 => 0.015726393920209
331 => 0.015834032484255
401 => 0.015848258697413
402 => 0.01605019579924
403 => 0.016165942380104
404 => 0.016025675323605
405 => 0.015906813679796
406 => 0.015481066025321
407 => 0.015530347475599
408 => 0.01586984779795
409 => 0.016349411999741
410 => 0.016760927975029
411 => 0.016616829423263
412 => 0.017716199655514
413 => 0.017825197723517
414 => 0.017810137714848
415 => 0.018058451534846
416 => 0.01756559917038
417 => 0.017354895236006
418 => 0.015932512916325
419 => 0.016332144329934
420 => 0.016913032059146
421 => 0.016836149389967
422 => 0.01641429319384
423 => 0.016760607959275
424 => 0.016646105467559
425 => 0.016555792601629
426 => 0.016969533348464
427 => 0.016514608401786
428 => 0.016908493834803
429 => 0.016403331692735
430 => 0.016617487653309
501 => 0.016495922372529
502 => 0.016574590007674
503 => 0.016114700620059
504 => 0.016362845770432
505 => 0.016104376965978
506 => 0.016104254418111
507 => 0.016098548704927
508 => 0.016402636107142
509 => 0.016412552386411
510 => 0.016187831336723
511 => 0.016155445522661
512 => 0.016275192851342
513 => 0.016135000091332
514 => 0.016200595401378
515 => 0.01613698690645
516 => 0.016122667294442
517 => 0.016008566189679
518 => 0.015959408296473
519 => 0.015978684373042
520 => 0.015912885186212
521 => 0.015873238796087
522 => 0.016090662040046
523 => 0.015974501571627
524 => 0.016072858782285
525 => 0.015960768327071
526 => 0.015572213973812
527 => 0.015348752256366
528 => 0.014614809102068
529 => 0.014822954470173
530 => 0.014960955064569
531 => 0.014915345868944
601 => 0.015013332069561
602 => 0.015019347626468
603 => 0.014987491313797
604 => 0.014950605784769
605 => 0.014932651949136
606 => 0.015066465130642
607 => 0.015144148186451
608 => 0.014974805270426
609 => 0.014935130594561
610 => 0.01510634563234
611 => 0.015210786706478
612 => 0.015981920917542
613 => 0.015924792804456
614 => 0.016068173157477
615 => 0.016052030730077
616 => 0.016202316182325
617 => 0.016447969381378
618 => 0.015948487741988
619 => 0.01603518048381
620 => 0.016013925425543
621 => 0.016245982578328
622 => 0.016246707035429
623 => 0.01610757718022
624 => 0.016183001731853
625 => 0.016140901816296
626 => 0.016216982053852
627 => 0.015924029823676
628 => 0.016280814017792
629 => 0.016483087665189
630 => 0.01648589623498
701 => 0.016581772338503
702 => 0.016679188012453
703 => 0.016866168915482
704 => 0.016673973216551
705 => 0.01632823186405
706 => 0.016353193272963
707 => 0.016150485244493
708 => 0.016153892803074
709 => 0.016135702988315
710 => 0.016190291991673
711 => 0.015936009040108
712 => 0.015995688740586
713 => 0.015912136810432
714 => 0.016034998858232
715 => 0.015902819604623
716 => 0.016013915175711
717 => 0.016061860341315
718 => 0.016238779034582
719 => 0.01587668856978
720 => 0.015138361600678
721 => 0.015293566880932
722 => 0.015064006080324
723 => 0.01508525280642
724 => 0.015128174574525
725 => 0.014989051080968
726 => 0.015015591459253
727 => 0.015014643250179
728 => 0.015006472096642
729 => 0.014970280702764
730 => 0.014917796021391
731 => 0.015126878838047
801 => 0.015162406082843
802 => 0.01524137874713
803 => 0.015476347828379
804 => 0.015452868876209
805 => 0.01549116402133
806 => 0.01540756593455
807 => 0.0150891306819
808 => 0.015106423248158
809 => 0.014890784669837
810 => 0.015235864383861
811 => 0.015154144952751
812 => 0.015101459903897
813 => 0.015087084300194
814 => 0.015322635824346
815 => 0.015393116532191
816 => 0.015349197684847
817 => 0.015259118847626
818 => 0.015432096844507
819 => 0.015478378459116
820 => 0.015488739205827
821 => 0.015795223051058
822 => 0.015505868248165
823 => 0.015575518825161
824 => 0.016118912744248
825 => 0.015626129442871
826 => 0.01588716774799
827 => 0.015874391281332
828 => 0.016007929645176
829 => 0.015863437237804
830 => 0.015865228394366
831 => 0.015983801414787
901 => 0.015817286992362
902 => 0.015776055679672
903 => 0.015719094916495
904 => 0.015843466659024
905 => 0.01591802189382
906 => 0.01651888233149
907 => 0.01690706557679
908 => 0.016890213518351
909 => 0.017044209786752
910 => 0.016974833057393
911 => 0.016750797297638
912 => 0.01713319902129
913 => 0.017012191115558
914 => 0.017022166860282
915 => 0.017021795562566
916 => 0.017102255241182
917 => 0.017045242184861
918 => 0.016932863598582
919 => 0.017007465748643
920 => 0.017229007463567
921 => 0.017916679744422
922 => 0.018301510263235
923 => 0.017893512463982
924 => 0.018174943882599
925 => 0.018006185315697
926 => 0.017975516863958
927 => 0.018152276592467
928 => 0.018329345715482
929 => 0.018318067177837
930 => 0.018189524087128
1001 => 0.018116913356847
1002 => 0.018666746132916
1003 => 0.019071853556166
1004 => 0.019044227945775
1005 => 0.019166158405712
1006 => 0.019524150007252
1007 => 0.0195568802728
1008 => 0.019552757011637
1009 => 0.019471631633427
1010 => 0.019824120856227
1011 => 0.020118173567344
1012 => 0.019452853452308
1013 => 0.019706198642434
1014 => 0.019819933460554
1015 => 0.019986929917154
1016 => 0.020268680931294
1017 => 0.020574737263415
1018 => 0.020618016984514
1019 => 0.020587307951269
1020 => 0.020385455572999
1021 => 0.020720346063618
1022 => 0.020916517058874
1023 => 0.021033332397255
1024 => 0.021329556659172
1025 => 0.019820635848071
1026 => 0.018752546699743
1027 => 0.018585749155838
1028 => 0.018924938520359
1029 => 0.019014380050799
1030 => 0.018978326282029
1031 => 0.017776094839169
1101 => 0.018579419656098
1102 => 0.019443729613645
1103 => 0.019476931279128
1104 => 0.019909622915745
1105 => 0.020050525049256
1106 => 0.020398898530922
1107 => 0.020377107674792
1108 => 0.020461931073745
1109 => 0.020442431643262
1110 => 0.021087720159357
1111 => 0.021799569218881
1112 => 0.021774920149491
1113 => 0.021672583424969
1114 => 0.021824570911889
1115 => 0.0225592754277
1116 => 0.022491635609284
1117 => 0.022557341931329
1118 => 0.023423599961601
1119 => 0.024549858624723
1120 => 0.024026598401182
1121 => 0.025161922522193
1122 => 0.025876548875424
1123 => 0.027112421259593
1124 => 0.026957683950295
1125 => 0.027438800000201
1126 => 0.026680671872001
1127 => 0.024939856446679
1128 => 0.024664365742048
1129 => 0.025215905109255
1130 => 0.026571810825109
1201 => 0.025173202813004
1202 => 0.025456139392302
1203 => 0.02537465363843
1204 => 0.025370311608898
1205 => 0.025536029215812
1206 => 0.025295647183735
1207 => 0.024316287541149
1208 => 0.024765122293943
1209 => 0.024591805641074
1210 => 0.024784113389045
1211 => 0.025821918991094
1212 => 0.025363080396232
1213 => 0.024879731209567
1214 => 0.025485958353417
1215 => 0.026257893829786
1216 => 0.026209587494976
1217 => 0.026115853014963
1218 => 0.026644229371016
1219 => 0.027516952311468
1220 => 0.027752845815387
1221 => 0.02792697757735
1222 => 0.027950987405344
1223 => 0.028198303555712
1224 => 0.026868422283489
1225 => 0.028978978016281
1226 => 0.029343412688408
1227 => 0.029274914074318
1228 => 0.029679967874632
1229 => 0.029560790771356
1230 => 0.029388121847025
1231 => 0.030030218277937
]
'min_raw' => 0.011069401014047
'max_raw' => 0.030030218277937
'avg_raw' => 0.020549809645992
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.011069'
'max' => '$0.03003'
'avg' => '$0.020549'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0038175503334418
'max_diff' => 0.0138409724911
'year' => 2032
]
7 => [
'items' => [
101 => 0.029294106534406
102 => 0.028249288588355
103 => 0.027676080798996
104 => 0.028430927055378
105 => 0.028891885323646
106 => 0.029196549416519
107 => 0.02928874058694
108 => 0.026971657180966
109 => 0.025722877736483
110 => 0.026523331043111
111 => 0.027499939321533
112 => 0.026862997175193
113 => 0.026887964101438
114 => 0.025979851986208
115 => 0.027580287093444
116 => 0.027347117160098
117 => 0.028556803186769
118 => 0.028268101908167
119 => 0.029254553903176
120 => 0.028994788033284
121 => 0.030073061635893
122 => 0.030503214169066
123 => 0.03122550722016
124 => 0.031756828928806
125 => 0.032068831198688
126 => 0.032050099752695
127 => 0.03328640818488
128 => 0.032557400295747
129 => 0.031641594573029
130 => 0.031625030536835
131 => 0.032099339297698
201 => 0.033093360340213
202 => 0.03335109553412
203 => 0.033495134346632
204 => 0.033274533891243
205 => 0.032483248076055
206 => 0.032141574872967
207 => 0.032432690341224
208 => 0.032076681139383
209 => 0.032691252900299
210 => 0.033535191193482
211 => 0.033360921273233
212 => 0.033943479488617
213 => 0.034546365954628
214 => 0.03540852067835
215 => 0.035633919848627
216 => 0.036006496105934
217 => 0.036389999459627
218 => 0.036513170401127
219 => 0.036748341946151
220 => 0.036747102476025
221 => 0.037455807755826
222 => 0.038237531626221
223 => 0.038532614290346
224 => 0.039211140605549
225 => 0.038049188069162
226 => 0.03893054241556
227 => 0.039725546097741
228 => 0.03877770993369
301 => 0.040084081268332
302 => 0.040134804706955
303 => 0.040900668408523
304 => 0.040124318825252
305 => 0.039663324920902
306 => 0.040994197049546
307 => 0.041638164150517
308 => 0.041444196018927
309 => 0.039968088960133
310 => 0.039108931338705
311 => 0.0368603501243
312 => 0.039523891704243
313 => 0.04082122511126
314 => 0.039964729180022
315 => 0.040396695908345
316 => 0.042753366312395
317 => 0.043650633819149
318 => 0.043464008450117
319 => 0.043495545065369
320 => 0.043979694325456
321 => 0.046126678770549
322 => 0.044840155924339
323 => 0.045823654435175
324 => 0.046345298499055
325 => 0.046829830577126
326 => 0.045639972931319
327 => 0.044091985616605
328 => 0.043601673053949
329 => 0.03987956753935
330 => 0.03968581578303
331 => 0.039577057050929
401 => 0.038891348629258
402 => 0.038352569641168
403 => 0.037924112586258
404 => 0.036799713326067
405 => 0.037179165069295
406 => 0.035387107328915
407 => 0.036533602364584
408 => 0.033673434940189
409 => 0.036055467361559
410 => 0.034759035412332
411 => 0.035629554598812
412 => 0.035626517439378
413 => 0.034023615618708
414 => 0.033099095300253
415 => 0.033688235630042
416 => 0.034319840829593
417 => 0.034422316648245
418 => 0.035241209276045
419 => 0.035469744606426
420 => 0.034777271886078
421 => 0.033614164327648
422 => 0.033884327685812
423 => 0.033093620448423
424 => 0.031707936429012
425 => 0.032703158883475
426 => 0.033042971586271
427 => 0.033193052234528
428 => 0.031830391148323
429 => 0.031402213450226
430 => 0.031174255236518
501 => 0.033438261892984
502 => 0.033562289288332
503 => 0.032927747598028
504 => 0.035795936207911
505 => 0.035146776790234
506 => 0.035872046907698
507 => 0.033859813192777
508 => 0.033936683230519
509 => 0.0329840595424
510 => 0.033517465153409
511 => 0.033140471260013
512 => 0.033474371251256
513 => 0.033674509529286
514 => 0.034626976901232
515 => 0.036066343008977
516 => 0.034484710037851
517 => 0.03379556990293
518 => 0.034223108566764
519 => 0.035361700368939
520 => 0.037086725232677
521 => 0.036065475793984
522 => 0.036518688952936
523 => 0.036617695866117
524 => 0.035864664338733
525 => 0.037114490579204
526 => 0.037784282615043
527 => 0.038471350649881
528 => 0.039067912573321
529 => 0.038196920567817
530 => 0.039129006865506
531 => 0.038377909844949
601 => 0.037704098170527
602 => 0.0377051200647
603 => 0.037282428158517
604 => 0.036463409327679
605 => 0.03631236968927
606 => 0.03709809696248
607 => 0.037728175826946
608 => 0.037780072140097
609 => 0.038128916174086
610 => 0.038335358480021
611 => 0.040358773722893
612 => 0.041172608072145
613 => 0.042167749309315
614 => 0.042555412904279
615 => 0.043722141340032
616 => 0.042779913371111
617 => 0.042576056423143
618 => 0.039745954871971
619 => 0.04020938384243
620 => 0.04095137833838
621 => 0.039758190087915
622 => 0.040514993398758
623 => 0.040664402403605
624 => 0.039717646007744
625 => 0.040223349505702
626 => 0.038880350945762
627 => 0.036095616707592
628 => 0.03711759078447
629 => 0.037870107697807
630 => 0.036796173277809
701 => 0.038721159158654
702 => 0.037596622146839
703 => 0.037240197901389
704 => 0.035849659845474
705 => 0.036505940281148
706 => 0.037393568967427
707 => 0.036845117637217
708 => 0.037983236497785
709 => 0.039595116329563
710 => 0.040743837886791
711 => 0.040832022464222
712 => 0.040093471461292
713 => 0.041277004156858
714 => 0.041285624900453
715 => 0.039950595184982
716 => 0.039132896917732
717 => 0.038947114150961
718 => 0.039411235927212
719 => 0.039974765445187
720 => 0.040863294430504
721 => 0.041400213887387
722 => 0.042800215070863
723 => 0.043179015249932
724 => 0.04359520180169
725 => 0.044151355382019
726 => 0.044819160350054
727 => 0.043358041098151
728 => 0.043416094089896
729 => 0.042055520073096
730 => 0.040601551610094
731 => 0.041704932433785
801 => 0.043147456084161
802 => 0.042816539564917
803 => 0.042779304696492
804 => 0.042841923417093
805 => 0.042592423168306
806 => 0.041463942789957
807 => 0.040897227008611
808 => 0.041628434951163
809 => 0.042017039430308
810 => 0.042619731087589
811 => 0.042545436619552
812 => 0.044097905604351
813 => 0.044701148107618
814 => 0.04454681286108
815 => 0.044575214260729
816 => 0.045667355998277
817 => 0.04688204222651
818 => 0.048019756171215
819 => 0.04917708766172
820 => 0.0477818793785
821 => 0.047073478656764
822 => 0.047804367376802
823 => 0.047416547533946
824 => 0.049645075385834
825 => 0.04979937381913
826 => 0.052027740523089
827 => 0.054142725874116
828 => 0.052814341469034
829 => 0.054066948131279
830 => 0.055421744363016
831 => 0.058035366101805
901 => 0.057155190248502
902 => 0.056480989338987
903 => 0.055843872737209
904 => 0.057169611246095
905 => 0.058875152658587
906 => 0.059242509943366
907 => 0.05983776908599
908 => 0.059211926882346
909 => 0.059965684882378
910 => 0.06262678184054
911 => 0.061907729952292
912 => 0.060886560677621
913 => 0.062987241151622
914 => 0.063747469248974
915 => 0.069083148170738
916 => 0.075819663215367
917 => 0.073030701752548
918 => 0.071299503373352
919 => 0.071706376057038
920 => 0.074166323305911
921 => 0.074956380287426
922 => 0.072808733062695
923 => 0.07356731836981
924 => 0.077747197994474
925 => 0.079989569306513
926 => 0.076944127874118
927 => 0.0685418757461
928 => 0.060794615557292
929 => 0.062849537823037
930 => 0.062616573409763
1001 => 0.067107332615863
1002 => 0.061890580802564
1003 => 0.061978417523994
1004 => 0.066562040874679
1005 => 0.065339208747914
1006 => 0.063358377311061
1007 => 0.0608090778189
1008 => 0.056096461925978
1009 => 0.051922366608601
1010 => 0.060108728762719
1011 => 0.0597557179407
1012 => 0.059244505957143
1013 => 0.060382152907634
1014 => 0.065906243572498
1015 => 0.065778895402936
1016 => 0.064968771321792
1017 => 0.065583243297234
1018 => 0.063250657402838
1019 => 0.063851817899817
1020 => 0.060793388351696
1021 => 0.062175926238747
1022 => 0.063354127336434
1023 => 0.06359066865036
1024 => 0.064123608308734
1025 => 0.059569697278432
1026 => 0.061614269635234
1027 => 0.062815264344333
1028 => 0.057389126556062
1029 => 0.062708007046622
1030 => 0.059490423818932
1031 => 0.058398327744975
1101 => 0.05986869123584
1102 => 0.059295689153475
1103 => 0.058803055610868
1104 => 0.058528157629575
1105 => 0.05960783029917
1106 => 0.059557462278645
1107 => 0.057790908235753
1108 => 0.055486510500755
1109 => 0.056259942019897
1110 => 0.055978947098034
1111 => 0.054960585252134
1112 => 0.055646838178792
1113 => 0.052624927594446
1114 => 0.047425887499324
1115 => 0.050860532637067
1116 => 0.050728302535439
1117 => 0.05066162612204
1118 => 0.053242667016435
1119 => 0.052994559489183
1120 => 0.052544241897747
1121 => 0.054952314816424
1122 => 0.054073335807955
1123 => 0.056782141998555
1124 => 0.058566336950283
1125 => 0.058113807397865
1126 => 0.059791851373728
1127 => 0.056277760319986
1128 => 0.057445000407177
1129 => 0.057685566971423
1130 => 0.054922599570403
1201 => 0.053035152949039
1202 => 0.052909281777861
1203 => 0.049636709442583
1204 => 0.051384891168808
1205 => 0.05292321874321
1206 => 0.052186479214114
1207 => 0.051953249488669
1208 => 0.05314476957461
1209 => 0.053237360889967
1210 => 0.051126269087439
1211 => 0.051565231922768
1212 => 0.053395779917586
1213 => 0.051519106810001
1214 => 0.047873037514774
1215 => 0.046968761918705
1216 => 0.046848114885084
1217 => 0.044395647749545
1218 => 0.047029189937997
1219 => 0.045879578198195
1220 => 0.049511187909765
1221 => 0.04743683191923
1222 => 0.047347410578441
1223 => 0.047212237106579
1224 => 0.045101297332879
1225 => 0.045563458986098
1226 => 0.047099754710606
1227 => 0.04764792233272
1228 => 0.047590743958729
1229 => 0.047092226023433
1230 => 0.047320444981386
1231 => 0.046585272201061
]
'min_raw' => 0.025722877736483
'max_raw' => 0.079989569306513
'avg_raw' => 0.052856223521498
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.025722'
'max' => '$0.079989'
'avg' => '$0.052856'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.014653476722436
'max_diff' => 0.049959351028576
'year' => 2033
]
8 => [
'items' => [
101 => 0.04632566739103
102 => 0.045506283200644
103 => 0.044302014801436
104 => 0.044469475708554
105 => 0.042083504895756
106 => 0.040783501363888
107 => 0.040423677520038
108 => 0.039942506037968
109 => 0.040478027119286
110 => 0.042076745740224
111 => 0.040148351896297
112 => 0.036842255911983
113 => 0.037040957913954
114 => 0.037487382317228
115 => 0.036655473395119
116 => 0.035868141417167
117 => 0.036552662693734
118 => 0.035151826241687
119 => 0.037656666709883
120 => 0.037588917794952
121 => 0.0385225674232
122 => 0.039106397696162
123 => 0.037760857934279
124 => 0.037422458322892
125 => 0.037615226120943
126 => 0.034429203814737
127 => 0.038262201429042
128 => 0.03829534935158
129 => 0.038011516714129
130 => 0.040052469613222
131 => 0.044359516819481
201 => 0.042739032409914
202 => 0.042111531867129
203 => 0.040918652876594
204 => 0.042508093305335
205 => 0.042386049079541
206 => 0.041834118806602
207 => 0.041500309655401
208 => 0.042115363251636
209 => 0.041424097708331
210 => 0.041299927422047
211 => 0.040547590585767
212 => 0.040279040564361
213 => 0.040080216819795
214 => 0.039861331413047
215 => 0.040344138077489
216 => 0.039250034657356
217 => 0.037930653188957
218 => 0.037820960895765
219 => 0.038123830961513
220 => 0.037989833503444
221 => 0.037820319367488
222 => 0.03749667071752
223 => 0.037400651076734
224 => 0.037712668327182
225 => 0.037360419043162
226 => 0.037880182049745
227 => 0.037738835271753
228 => 0.036949283659917
301 => 0.035965210022123
302 => 0.035956449702582
303 => 0.035744432651523
304 => 0.035474397060023
305 => 0.035399279336045
306 => 0.036495014221107
307 => 0.038763152640598
308 => 0.038317862796899
309 => 0.03863963034411
310 => 0.040222408211342
311 => 0.040725525699544
312 => 0.040368424823409
313 => 0.039879603119133
314 => 0.039901108793309
315 => 0.041571560533213
316 => 0.041675744559213
317 => 0.041938983981875
318 => 0.042277321031447
319 => 0.040426045085962
320 => 0.039813913862759
321 => 0.039523852129458
322 => 0.038630574258909
323 => 0.039593897858439
324 => 0.039032610450623
325 => 0.039108347298245
326 => 0.039059023576874
327 => 0.039085957663998
328 => 0.037655966555923
329 => 0.038176980157586
330 => 0.037310693992571
331 => 0.036150834062803
401 => 0.036146945805619
402 => 0.036430819880257
403 => 0.036261960472669
404 => 0.03580756414862
405 => 0.035872109001761
406 => 0.035306628170961
407 => 0.035940768612981
408 => 0.035958953491795
409 => 0.035714774879754
410 => 0.036691755725204
411 => 0.037092025574726
412 => 0.036931301981468
413 => 0.037080748778967
414 => 0.038336366600268
415 => 0.038541087091587
416 => 0.038632010410754
417 => 0.038510185208101
418 => 0.03710369916777
419 => 0.037166082804499
420 => 0.036708353070374
421 => 0.036321619679409
422 => 0.036337086986898
423 => 0.036535918221676
424 => 0.037404225885247
425 => 0.039231528173701
426 => 0.039300872959807
427 => 0.039384920863498
428 => 0.039043055800095
429 => 0.038939946025765
430 => 0.039075974432998
501 => 0.039762213097551
502 => 0.041527405254762
503 => 0.040903468453183
504 => 0.040396198121345
505 => 0.040841210961467
506 => 0.040772704722856
507 => 0.040194443126739
508 => 0.040178213249696
509 => 0.039068344365332
510 => 0.038658051109275
511 => 0.038315179354595
512 => 0.037940772349379
513 => 0.03771881132645
514 => 0.03805984433715
515 => 0.038137842621681
516 => 0.03739216798355
517 => 0.037290535285735
518 => 0.037899469291738
519 => 0.037631500139044
520 => 0.037907113057905
521 => 0.037971057619244
522 => 0.0379607610721
523 => 0.037680970500627
524 => 0.037859300667409
525 => 0.037437496660187
526 => 0.036978848155247
527 => 0.036686258983907
528 => 0.036430936125591
529 => 0.036572604086837
530 => 0.036067583672545
531 => 0.03590601747796
601 => 0.037798886419459
602 => 0.039197169058315
603 => 0.039176837474965
604 => 0.039053074190183
605 => 0.038869187053462
606 => 0.039748760608137
607 => 0.039442334769317
608 => 0.039665285169794
609 => 0.039722035403915
610 => 0.03989380127052
611 => 0.039955192804057
612 => 0.039769624950548
613 => 0.039146836568969
614 => 0.037594907135018
615 => 0.036872479794159
616 => 0.036634066738697
617 => 0.036642732600452
618 => 0.036403689447134
619 => 0.036474098368949
620 => 0.036379204097495
621 => 0.036199497304752
622 => 0.036561507698785
623 => 0.036603226024337
624 => 0.036518728472668
625 => 0.036538630704942
626 => 0.035839027066495
627 => 0.035892216411667
628 => 0.035596051378775
629 => 0.035540524005431
630 => 0.034791844592319
701 => 0.033465450489175
702 => 0.034200401578507
703 => 0.033312684012356
704 => 0.032976491918938
705 => 0.03456797300058
706 => 0.034408232440797
707 => 0.034134826040001
708 => 0.033730400990337
709 => 0.033580395805423
710 => 0.032669011787753
711 => 0.032615162357944
712 => 0.03306686888654
713 => 0.032858421865866
714 => 0.032565683303779
715 => 0.031505413906334
716 => 0.030313320060471
717 => 0.030349301880443
718 => 0.030728484753118
719 => 0.031831010095195
720 => 0.031400234370163
721 => 0.031087701639071
722 => 0.031029173653237
723 => 0.03176177393259
724 => 0.032798556812378
725 => 0.033284992142866
726 => 0.032802949503613
727 => 0.032249204874659
728 => 0.032282908744418
729 => 0.032507125490324
730 => 0.032530687500065
731 => 0.032170256672484
801 => 0.032271715839212
802 => 0.032117590087331
803 => 0.031171720632529
804 => 0.031154612853476
805 => 0.030922481235063
806 => 0.030915452381912
807 => 0.030520538591044
808 => 0.030465287421792
809 => 0.02968116212047
810 => 0.03019727576835
811 => 0.029851093830535
812 => 0.029329315994184
813 => 0.029239361298527
814 => 0.029236657151752
815 => 0.029772406322295
816 => 0.030191015227364
817 => 0.029857115813557
818 => 0.029781093389401
819 => 0.030592813988504
820 => 0.03048951514327
821 => 0.030400059009504
822 => 0.032705724277028
823 => 0.030880610304479
824 => 0.030084756438584
825 => 0.029099736150989
826 => 0.029420463723533
827 => 0.029488045735537
828 => 0.027119249507123
829 => 0.02615822917227
830 => 0.025828443208636
831 => 0.025638646724075
901 => 0.025725139365404
902 => 0.024860108347594
903 => 0.025441423497855
904 => 0.024692379755683
905 => 0.024566800134709
906 => 0.025906183134425
907 => 0.026092550454274
908 => 0.025297449568012
909 => 0.025808033052133
910 => 0.02562288838315
911 => 0.024705219960757
912 => 0.024670171776933
913 => 0.024209718020181
914 => 0.023489197052281
915 => 0.023159899635792
916 => 0.022988398682193
917 => 0.023059163318135
918 => 0.023023382552769
919 => 0.022789888855715
920 => 0.023036766138166
921 => 0.022406096698239
922 => 0.022154959045612
923 => 0.022041525994269
924 => 0.021481770566356
925 => 0.022372590376534
926 => 0.022548093101392
927 => 0.022723941620833
928 => 0.024254582925684
929 => 0.024178116411641
930 => 0.024869336457886
1001 => 0.024842476917961
1002 => 0.02464532976375
1003 => 0.023813598349264
1004 => 0.024145111666891
1005 => 0.023124765203843
1006 => 0.023889278150774
1007 => 0.023540386368619
1008 => 0.023771317488274
1009 => 0.023356082512915
1010 => 0.02358589069291
1011 => 0.022589711308178
1012 => 0.021659493015336
1013 => 0.02203384001114
1014 => 0.022440798007351
1015 => 0.023323186634105
1016 => 0.022797643247559
1017 => 0.022986648522356
1018 => 0.022353512490885
1019 => 0.021047172011592
1020 => 0.021054565756837
1021 => 0.020853613734272
1022 => 0.020679961847301
1023 => 0.022858008227478
1024 => 0.022587133730285
1025 => 0.022155530670186
1026 => 0.022733248517352
1027 => 0.022886006285758
1028 => 0.022890355084673
1029 => 0.02331184311291
1030 => 0.023536791349136
1031 => 0.023576439450752
1101 => 0.024239659970034
1102 => 0.024461962740008
1103 => 0.025377596388062
1104 => 0.023517706062918
1105 => 0.023479402845606
1106 => 0.022741378192213
1107 => 0.022273311289323
1108 => 0.022773427133503
1109 => 0.023216461498825
1110 => 0.022755144504897
1111 => 0.022815382765371
1112 => 0.022196102392006
1113 => 0.022417465985634
1114 => 0.022608134133363
1115 => 0.022502858389143
1116 => 0.022345255504642
1117 => 0.023180137733166
1118 => 0.023133030405903
1119 => 0.023910491930964
1120 => 0.024516578786557
1121 => 0.025602794782763
1122 => 0.024469271765001
1123 => 0.024427961680888
1124 => 0.02483177437944
1125 => 0.024461900918387
1126 => 0.024695648178175
1127 => 0.025565134485492
1128 => 0.025583505361048
1129 => 0.025275769525964
1130 => 0.025257043772432
1201 => 0.025316147805821
1202 => 0.025662321975461
1203 => 0.025541358083731
1204 => 0.025681340561672
1205 => 0.025856390793825
1206 => 0.026580472773769
1207 => 0.026755046487766
1208 => 0.026330922868847
1209 => 0.026369216482925
1210 => 0.026210582606995
1211 => 0.026057344270524
1212 => 0.026401801672249
1213 => 0.027031304344229
1214 => 0.027027388240778
1215 => 0.027173420624894
1216 => 0.0272643975904
1217 => 0.026873857855237
1218 => 0.02661963084819
1219 => 0.026717117659576
1220 => 0.02687300119397
1221 => 0.026666566730318
1222 => 0.025392357590912
1223 => 0.025778871247013
1224 => 0.025714536475086
1225 => 0.025622915936485
1226 => 0.026011558406516
1227 => 0.025974072892182
1228 => 0.024851236204211
1229 => 0.02492311656594
1230 => 0.024855607487083
1231 => 0.025073743131929
]
'min_raw' => 0.020679961847301
'max_raw' => 0.04632566739103
'avg_raw' => 0.033502814619166
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.020679'
'max' => '$0.046325'
'avg' => '$0.0335028'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0050429158891822
'max_diff' => -0.033663901915482
'year' => 2034
]
9 => [
'items' => [
101 => 0.024450120877706
102 => 0.024641942882945
103 => 0.024762251846411
104 => 0.02483311475015
105 => 0.025089120149602
106 => 0.025059080870779
107 => 0.025087252865853
108 => 0.025466841290321
109 => 0.027386669282261
110 => 0.027491161284001
111 => 0.026976604451281
112 => 0.027182159756768
113 => 0.026787538520237
114 => 0.027052450400052
115 => 0.02723369638019
116 => 0.026414680647545
117 => 0.026366183851226
118 => 0.025969933872477
119 => 0.026182856166311
120 => 0.025844081487167
121 => 0.025927204943593
122 => 0.025694784512852
123 => 0.026113095013741
124 => 0.026580831152615
125 => 0.026698999772754
126 => 0.026388149007957
127 => 0.02616307256818
128 => 0.02576791248472
129 => 0.026425072510231
130 => 0.026617246128279
131 => 0.026424063104026
201 => 0.026379298376174
202 => 0.026294469297783
203 => 0.026397295266168
204 => 0.026616199509484
205 => 0.026512968310863
206 => 0.026581154336252
207 => 0.026321299520593
208 => 0.026873987140139
209 => 0.027751788091498
210 => 0.027754610365092
211 => 0.027651378610016
212 => 0.027609138399998
213 => 0.027715060445333
214 => 0.027772518809777
215 => 0.028115051281607
216 => 0.028482602270977
217 => 0.030197802363306
218 => 0.029716181040864
219 => 0.031238008600488
220 => 0.032441576615574
221 => 0.032802474037647
222 => 0.032470465390875
223 => 0.031334681745024
224 => 0.031278954780816
225 => 0.032976295063205
226 => 0.03249671869032
227 => 0.032439674606765
228 => 0.031832821935237
301 => 0.032191547024276
302 => 0.032113088585123
303 => 0.031989238100603
304 => 0.032673660581482
305 => 0.033954838366872
306 => 0.03375515479421
307 => 0.033606100270272
308 => 0.032952986735496
309 => 0.03334630696162
310 => 0.03320625316265
311 => 0.033808013163363
312 => 0.033451543869557
313 => 0.032493085427619
314 => 0.032645723093618
315 => 0.032622652217467
316 => 0.033097449213842
317 => 0.032954926940716
318 => 0.032594822456238
319 => 0.033950459440483
320 => 0.033862431915176
321 => 0.033987234820168
322 => 0.034042176918604
323 => 0.034867329261911
324 => 0.035205367775034
325 => 0.03528210843571
326 => 0.03560321887834
327 => 0.035274118915372
328 => 0.036590753411539
329 => 0.037466238523737
330 => 0.038483159533607
331 => 0.039969154451626
401 => 0.040527902287023
402 => 0.040426969491717
403 => 0.041553633879133
404 => 0.043578224738979
405 => 0.040836197189759
406 => 0.043723558857251
407 => 0.042809453489516
408 => 0.040642126106672
409 => 0.040502575774328
410 => 0.041970315041179
411 => 0.045225619470384
412 => 0.044410202632225
413 => 0.045226953200216
414 => 0.044274170278394
415 => 0.044226856575641
416 => 0.045180678660355
417 => 0.047409335951424
418 => 0.046350584412406
419 => 0.044832604464696
420 => 0.045953457235701
421 => 0.04498247083543
422 => 0.042794566713637
423 => 0.044409579098337
424 => 0.043329666309592
425 => 0.043644842272669
426 => 0.045914658329706
427 => 0.045641548056535
428 => 0.045994978039348
429 => 0.045371183370555
430 => 0.044788460786512
501 => 0.043700765809849
502 => 0.043378752949973
503 => 0.043467745719633
504 => 0.043378708849576
505 => 0.042770153506565
506 => 0.042638736038183
507 => 0.042419701166682
508 => 0.042487589232232
509 => 0.042075739592897
510 => 0.042852984954799
511 => 0.042997248543031
512 => 0.043562862900539
513 => 0.043621586859489
514 => 0.045196814794132
515 => 0.044329205718361
516 => 0.044911272792152
517 => 0.044859207234444
518 => 0.04068909866297
519 => 0.041263702830939
520 => 0.042157606595579
521 => 0.041754904161267
522 => 0.041185577137007
523 => 0.040725815039533
524 => 0.040029228448771
525 => 0.041009660698507
526 => 0.042298824849564
527 => 0.043654282189805
528 => 0.04528277537102
529 => 0.044919314650723
530 => 0.043623838642538
531 => 0.043681952749919
601 => 0.044041191294693
602 => 0.043575944738948
603 => 0.043438734446967
604 => 0.044022340707582
605 => 0.044026359683154
606 => 0.043491037293845
607 => 0.042896124421091
608 => 0.042893631714432
609 => 0.042787772714902
610 => 0.044293002359243
611 => 0.045120726467749
612 => 0.045215623702845
613 => 0.045114339127725
614 => 0.045153319540848
615 => 0.044671685119765
616 => 0.04577255858211
617 => 0.046782828936259
618 => 0.046512054900069
619 => 0.046106126127023
620 => 0.045782784307113
621 => 0.046435885843249
622 => 0.046406804259922
623 => 0.046774005106056
624 => 0.04675734675462
625 => 0.046633870921188
626 => 0.04651205930978
627 => 0.046995028580053
628 => 0.046855941186464
629 => 0.046716637751735
630 => 0.046437243387097
701 => 0.0464752177215
702 => 0.04606935903778
703 => 0.045881590239861
704 => 0.043057998039504
705 => 0.042303441940031
706 => 0.042540840649331
707 => 0.042618998468487
708 => 0.042290614687007
709 => 0.042761432674778
710 => 0.042688056190103
711 => 0.042973521168164
712 => 0.04279517504332
713 => 0.042802494430493
714 => 0.043326972356255
715 => 0.043479230529392
716 => 0.043401790793661
717 => 0.043456026930088
718 => 0.044705875802423
719 => 0.044528187260694
720 => 0.044433793764364
721 => 0.044459941407944
722 => 0.044779304591888
723 => 0.044868708846809
724 => 0.044489896736384
725 => 0.044668546717547
726 => 0.045429215663281
727 => 0.045695406744154
728 => 0.046544960895335
729 => 0.046184055192292
730 => 0.046846513229859
731 => 0.048882683388753
801 => 0.050509317003935
802 => 0.049013397507936
803 => 0.052000502991676
804 => 0.0543263930856
805 => 0.054237121549823
806 => 0.05383154881314
807 => 0.051183584778195
808 => 0.048746888794319
809 => 0.050785288452408
810 => 0.050790484752337
811 => 0.05061538441394
812 => 0.049527851250515
813 => 0.050577540617218
814 => 0.050660861147235
815 => 0.050614223807143
816 => 0.0497804146806
817 => 0.048507342258056
818 => 0.048756097562116
819 => 0.049163563824638
820 => 0.048392145183317
821 => 0.048145630185512
822 => 0.04860394846783
823 => 0.050080745467865
824 => 0.049801565549511
825 => 0.049794275033588
826 => 0.050988725115017
827 => 0.050133756635175
828 => 0.048759235163125
829 => 0.048412150363722
830 => 0.047180233150177
831 => 0.048031122757511
901 => 0.04806174475967
902 => 0.047595721217614
903 => 0.048797050405161
904 => 0.048785979945208
905 => 0.049926463214531
906 => 0.052106638879524
907 => 0.051461853655457
908 => 0.050712038592299
909 => 0.050793564279781
910 => 0.051687699848913
911 => 0.051147085072686
912 => 0.051341493915517
913 => 0.051687405587845
914 => 0.051896102688265
915 => 0.050763535978697
916 => 0.050499480501769
917 => 0.049959315666852
918 => 0.049818396744077
919 => 0.050258349731207
920 => 0.050142437662867
921 => 0.048059171098962
922 => 0.047841458151849
923 => 0.047848135097114
924 => 0.04730068553991
925 => 0.046465693562226
926 => 0.0486600026248
927 => 0.04848376889774
928 => 0.048289220502472
929 => 0.048313051570815
930 => 0.049265526762843
1001 => 0.048713043050316
1002 => 0.050181911550369
1003 => 0.049879956344987
1004 => 0.049570257127968
1005 => 0.049527447262507
1006 => 0.049408239486251
1007 => 0.048999431666207
1008 => 0.048505771657962
1009 => 0.048179814560421
1010 => 0.044443332156627
1011 => 0.045136801556653
1012 => 0.045934574889658
1013 => 0.046209963047336
1014 => 0.045738892547348
1015 => 0.049018032400755
1016 => 0.04961716285055
1017 => 0.047802357637808
1018 => 0.047462881680512
1019 => 0.049040288387998
1020 => 0.048088919313257
1021 => 0.04851732074936
1022 => 0.047591351167562
1023 => 0.049472849869782
1024 => 0.049458516002043
1025 => 0.048726570511304
1026 => 0.04934520582793
1027 => 0.049237702717799
1028 => 0.048411338061457
1029 => 0.049499047103348
1030 => 0.049499586593462
1031 => 0.048795104972493
1101 => 0.047972424670059
1102 => 0.047825348862825
1103 => 0.047714546998929
1104 => 0.048490070283119
1105 => 0.049185402034726
1106 => 0.050479242037107
1107 => 0.050804544154585
1108 => 0.052074219975693
1109 => 0.051318189843617
1110 => 0.051653328208937
1111 => 0.052017168312708
1112 => 0.052191606638233
1113 => 0.051907368747667
1114 => 0.053879697917265
1115 => 0.054046222929783
1116 => 0.054102057326045
1117 => 0.053436999027241
1118 => 0.054027726455412
1119 => 0.053751344654607
1120 => 0.054470413319225
1121 => 0.054583172467367
1122 => 0.054487669480414
1123 => 0.054523461013816
1124 => 0.052840426010273
1125 => 0.052753151766622
1126 => 0.051563161261747
1127 => 0.052048091188449
1128 => 0.051141537933776
1129 => 0.051429015309366
1130 => 0.051555732597341
1201 => 0.051489542677246
1202 => 0.052075508398922
1203 => 0.051577317830609
1204 => 0.050262511010719
1205 => 0.048947345972589
1206 => 0.048930835146846
1207 => 0.048584575406897
1208 => 0.048334293035549
1209 => 0.048382506299515
1210 => 0.048552416130285
1211 => 0.048324417567306
1212 => 0.048373072620538
1213 => 0.049181070691117
1214 => 0.049343108941793
1215 => 0.048792439653564
1216 => 0.046581423000128
1217 => 0.046038833967459
1218 => 0.046428836204133
1219 => 0.046242440254364
1220 => 0.037321258359758
1221 => 0.039417157716134
1222 => 0.038171845488592
1223 => 0.038745742657104
1224 => 0.037474601344822
1225 => 0.038081256605267
1226 => 0.037969229530166
1227 => 0.041339373673048
1228 => 0.041286753507739
1229 => 0.041311939996275
1230 => 0.040109723275384
1231 => 0.042024887155504
]
'min_raw' => 0.024450120877706
'max_raw' => 0.054583172467367
'avg_raw' => 0.039516646672536
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.02445'
'max' => '$0.054583'
'avg' => '$0.039516'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0037701590304049
'max_diff' => 0.0082575050763367
'year' => 2035
]
10 => [
'items' => [
101 => 0.042968365749917
102 => 0.042793752971961
103 => 0.042837699246288
104 => 0.042082556652379
105 => 0.041319251427244
106 => 0.040472628460738
107 => 0.042045549286745
108 => 0.041870667341547
109 => 0.042271783603294
110 => 0.043291935193662
111 => 0.043442156390523
112 => 0.043644055202497
113 => 0.04357168885054
114 => 0.045295748946499
115 => 0.045086953893164
116 => 0.045590089897266
117 => 0.044555100963808
118 => 0.043383912743548
119 => 0.043606517335192
120 => 0.043585078722944
121 => 0.043312140582929
122 => 0.043065744234011
123 => 0.042655563734805
124 => 0.043953435529585
125 => 0.043900744304909
126 => 0.044753753985562
127 => 0.044602976238813
128 => 0.043596045544447
129 => 0.043632008271185
130 => 0.043873874891595
131 => 0.044710978026418
201 => 0.044959487231161
202 => 0.044844367866145
203 => 0.045116846864269
204 => 0.045332203154523
205 => 0.045143892298641
206 => 0.047809976905478
207 => 0.046702832697949
208 => 0.047242447081239
209 => 0.047371141932061
210 => 0.047041492777842
211 => 0.047112981875541
212 => 0.047221268378942
213 => 0.047878762822921
214 => 0.049604218491472
215 => 0.050368411061499
216 => 0.052667522113024
217 => 0.050304955506633
218 => 0.050164770581482
219 => 0.050578909908364
220 => 0.05192873148123
221 => 0.053022635083744
222 => 0.053385546017511
223 => 0.053433510688415
224 => 0.054114355726024
225 => 0.054504603404574
226 => 0.054031683230456
227 => 0.053630932899698
228 => 0.052195494957884
229 => 0.052361650808217
301 => 0.05350629984818
302 => 0.055123184036621
303 => 0.056510638878432
304 => 0.056024800550513
305 => 0.059731404044125
306 => 0.060098898640399
307 => 0.060048122769717
308 => 0.060885330150558
309 => 0.059223643993907
310 => 0.058513240968285
311 => 0.053717579669917
312 => 0.055064964882276
313 => 0.057023468417599
314 => 0.056764253130688
315 => 0.055341935512387
316 => 0.056509559922976
317 => 0.056123506777844
318 => 0.055819010644919
319 => 0.057213966459329
320 => 0.055680155239758
321 => 0.05700816747738
322 => 0.055304978046103
323 => 0.056027019819071
324 => 0.055617153987503
325 => 0.055882387411794
326 => 0.054331838232997
327 => 0.055168476932423
328 => 0.054297031312488
329 => 0.054296618133799
330 => 0.054277380923439
331 => 0.05530263283071
401 => 0.055336066258598
402 => 0.054578403550055
403 => 0.054469212516838
404 => 0.054872948995979
405 => 0.054400279317657
406 => 0.054621438485196
407 => 0.054406978003543
408 => 0.054358698431894
409 => 0.053973998590903
410 => 0.053808259321862
411 => 0.053873249959828
412 => 0.05365140340748
413 => 0.05351773283515
414 => 0.054250790482163
415 => 0.053859147352825
416 => 0.054190765555639
417 => 0.053812844759979
418 => 0.052502806629969
419 => 0.051749389847998
420 => 0.049274849261008
421 => 0.049976625901821
422 => 0.05044190454072
423 => 0.050288129953339
424 => 0.050618497269898
425 => 0.050638779140003
426 => 0.050531373357693
427 => 0.050407011221312
428 => 0.050346478610979
429 => 0.050797639094964
430 => 0.051059552941281
501 => 0.050488601476758
502 => 0.050354835537081
503 => 0.050932098990807
504 => 0.051284229364106
505 => 0.05388416219558
506 => 0.053691550773752
507 => 0.054174967644458
508 => 0.054120542323453
509 => 0.054627240218299
510 => 0.055455477129865
511 => 0.053771439909969
512 => 0.054063730541717
513 => 0.053992067628789
514 => 0.054774464521115
515 => 0.054776907078811
516 => 0.054307821058238
517 => 0.054562120200042
518 => 0.054420177395419
519 => 0.054676687228094
520 => 0.053688978330784
521 => 0.05489190115112
522 => 0.055573880875617
523 => 0.055583350164753
524 => 0.055906603141639
525 => 0.056235046887704
526 => 0.056865466056856
527 => 0.056217464839237
528 => 0.055051773730389
529 => 0.055135932863288
530 => 0.05445248859268
531 => 0.054463977414343
601 => 0.05440264918391
602 => 0.054586699820014
603 => 0.053729367095343
604 => 0.053930581372211
605 => 0.053648880206287
606 => 0.054063118178397
607 => 0.053617466596396
608 => 0.053992033070762
609 => 0.054153683544023
610 => 0.054750177270442
611 => 0.05352936398801
612 => 0.051040043063339
613 => 0.051563328501804
614 => 0.050789348235131
615 => 0.050860983055562
616 => 0.05100569679343
617 => 0.05053663222161
618 => 0.05062611495999
619 => 0.050622918006895
620 => 0.050595368392254
621 => 0.05047334658099
622 => 0.050296390813378
623 => 0.051001328127431
624 => 0.051121110713694
625 => 0.051387372565033
626 => 0.052179587227478
627 => 0.052100426300992
628 => 0.052229541056447
629 => 0.051947684270237
630 => 0.050874057583489
701 => 0.050932360677954
702 => 0.050205320155741
703 => 0.05136878050427
704 => 0.051093257736812
705 => 0.05091562641625
706 => 0.050867158064692
707 => 0.051661336474055
708 => 0.051898967101357
709 => 0.05175089164122
710 => 0.051447184552429
711 => 0.05203039194585
712 => 0.052186433640784
713 => 0.052221365621684
714 => 0.0532546973039
715 => 0.052279117383837
716 => 0.052513949167027
717 => 0.054346039703783
718 => 0.052684586398157
719 => 0.053564695268978
720 => 0.053521618519616
721 => 0.053971852436668
722 => 0.053484686197075
723 => 0.053490725206478
724 => 0.053890502423332
725 => 0.053329087422462
726 => 0.053190073173049
727 => 0.052998025983125
728 => 0.053417353996419
729 => 0.053668722175814
730 => 0.055694565092154
731 => 0.057003352005771
801 => 0.056946534114171
802 => 0.057465743284759
803 => 0.057231834797998
804 => 0.056476482592306
805 => 0.057765776702034
806 => 0.057357790099359
807 => 0.05739142401918
808 => 0.057390172163005
809 => 0.057661447586975
810 => 0.057469224087065
811 => 0.057090331837403
812 => 0.057341858194889
813 => 0.058088801554305
814 => 0.060407336660954
815 => 0.061704819623139
816 => 0.060329226557463
817 => 0.061278092234241
818 => 0.060709110943584
819 => 0.060605710117345
820 => 0.061201667882984
821 => 0.061798668793801
822 => 0.061760642416687
823 => 0.061327250411771
824 => 0.061082438265108
825 => 0.062936237857722
826 => 0.064302085818908
827 => 0.064208944144716
828 => 0.064620041203304
829 => 0.065827034882073
830 => 0.065937387257522
831 => 0.065923485394636
901 => 0.065649965518005
902 => 0.066838407542688
903 => 0.067829826788326
904 => 0.065586653569314
905 => 0.06644082456582
906 => 0.066824289445822
907 => 0.067387329658569
908 => 0.068337272873968
909 => 0.069369163165886
910 => 0.069515083767265
911 => 0.069411546117643
912 => 0.068730986731423
913 => 0.069860093401851
914 => 0.070521497608578
915 => 0.070915348677718
916 => 0.071914089458488
917 => 0.066826657594374
918 => 0.063225520459185
919 => 0.062663150894474
920 => 0.063806751518404
921 => 0.06410830988289
922 => 0.063986752084288
923 => 0.059933344837568
924 => 0.062641810544192
925 => 0.065555891910256
926 => 0.065667833643496
927 => 0.067126683705915
928 => 0.067601745086523
929 => 0.068776310602619
930 => 0.068702841209788
1001 => 0.068988829221538
1002 => 0.068923085530259
1003 => 0.071098720814877
1004 => 0.073498769618777
1005 => 0.073415663560386
1006 => 0.073070628148737
1007 => 0.073583064572316
1008 => 0.076060172142802
1009 => 0.075832119772552
1010 => 0.076053653224795
1011 => 0.078974302654063
1012 => 0.082771562369648
1013 => 0.081007353993117
1014 => 0.084835178532905
1015 => 0.087244591176441
1016 => 0.09141142120552
1017 => 0.090889713563809
1018 => 0.092511829916518
1019 => 0.089955748001475
1020 => 0.084086467255151
1021 => 0.083157631110341
1022 => 0.085017184594128
1023 => 0.089588715381442
1024 => 0.084873210820938
1025 => 0.085827151252042
1026 => 0.085552416343709
1027 => 0.085537776887992
1028 => 0.086096505369736
1029 => 0.085286040565649
1030 => 0.081984061153966
1031 => 0.083497338859653
1101 => 0.082912989663923
1102 => 0.083561368662704
1103 => 0.087060402707285
1104 => 0.085513396349623
1105 => 0.083883750820416
1106 => 0.085927687961334
1107 => 0.088530322314726
1108 => 0.088367454134274
1109 => 0.08805142179058
1110 => 0.089832879565069
1111 => 0.092775325890373
1112 => 0.093570657308396
1113 => 0.094157754701345
1114 => 0.094238705512741
1115 => 0.095072549180769
1116 => 0.090588761622124
1117 => 0.097704647629524
1118 => 0.098933364570619
1119 => 0.098702416710792
1120 => 0.10006808387851
1121 => 0.099666269954132
1122 => 0.099084104620388
1123 => 0.10124897756695
1124 => 0.098767125429955
1125 => 0.095244448777986
1126 => 0.093311838696071
1127 => 0.095856855551145
1128 => 0.09741100853569
1129 => 0.098438204795779
1130 => 0.098749033763433
1201 => 0.090936825286595
1202 => 0.086726478202525
1203 => 0.089425262411687
1204 => 0.092717965407
1205 => 0.090570470490732
1206 => 0.090654648225704
1207 => 0.087592884826842
1208 => 0.0929888635297
1209 => 0.092202714820018
1210 => 0.096281255716521
1211 => 0.095307879199235
1212 => 0.098633770972288
1213 => 0.097757952205672
1214 => 0.10139342693953
1215 => 0.10284371623741
1216 => 0.10527897768806
1217 => 0.10707036592446
1218 => 0.10812230336067
1219 => 0.10805914898272
1220 => 0.11222744917813
1221 => 0.10976954818221
1222 => 0.10668184524855
1223 => 0.10662599844406
1224 => 0.10822516354649
1225 => 0.11157657489167
1226 => 0.11244554709242
1227 => 0.11293118400527
1228 => 0.11218741416809
1229 => 0.10951953879638
1230 => 0.10836756373731
1231 => 0.10934907986356
]
'min_raw' => 0.040472628460738
'max_raw' => 0.11293118400527
'avg_raw' => 0.076701906233003
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.040472'
'max' => '$0.112931'
'avg' => '$0.0767019'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.016022507583032
'max_diff' => 0.058348011537902
'year' => 2036
]
11 => [
'items' => [
101 => 0.10814876998379
102 => 0.11022084158375
103 => 0.1130662384611
104 => 0.11247867525785
105 => 0.11444281095393
106 => 0.11647548476628
107 => 0.11938229961102
108 => 0.12014224865048
109 => 0.12139841551443
110 => 0.12269142384676
111 => 0.12310670327555
112 => 0.12389960055875
113 => 0.12389542159868
114 => 0.12628487092975
115 => 0.12892050753701
116 => 0.12991539934112
117 => 0.13220309818602
118 => 0.12828549408466
119 => 0.13125704179773
120 => 0.13393745221759
121 => 0.13074175641469
122 => 0.13514627857737
123 => 0.13531729619208
124 => 0.13789945913281
125 => 0.13528194230982
126 => 0.13372766917573
127 => 0.13821479747598
128 => 0.14038597751726
129 => 0.13973200041917
130 => 0.13475520241195
131 => 0.13185849250684
201 => 0.12427724395154
202 => 0.13325756035085
203 => 0.13763161050954
204 => 0.13474387467873
205 => 0.13620028066223
206 => 0.14414595946696
207 => 0.14717115951119
208 => 0.14654193904974
209 => 0.14664826694987
210 => 0.14828060998248
211 => 0.15551931793677
212 => 0.15118171633862
213 => 0.15449765023358
214 => 0.15625640961497
215 => 0.15789004334514
216 => 0.1538783552191
217 => 0.14865920791052
218 => 0.14700608487299
219 => 0.13445674626141
220 => 0.13380349868766
221 => 0.13343681102909
222 => 0.13112489721079
223 => 0.1293083662361
224 => 0.12786379336156
225 => 0.12407280275277
226 => 0.12535215079754
227 => 0.11931010300837
228 => 0.12317559106686
301 => 0.113532336905
302 => 0.12156352552184
303 => 0.11719251469103
304 => 0.12012753090596
305 => 0.12011729091088
306 => 0.11471299551146
307 => 0.11159591070984
308 => 0.11358223846419
309 => 0.11571173949174
310 => 0.11605724386896
311 => 0.11881819753685
312 => 0.11958872035905
313 => 0.1172540002355
314 => 0.11333250189667
315 => 0.11424337652093
316 => 0.11157745186465
317 => 0.10690552144784
318 => 0.11026098343728
319 => 0.11140668568972
320 => 0.11191269307361
321 => 0.10731838608351
322 => 0.10587475507997
323 => 0.10510617804691
324 => 0.11273943455709
325 => 0.11315760157982
326 => 0.11101819996868
327 => 0.12068849811743
328 => 0.11849981181787
329 => 0.12094511065564
330 => 0.11416072419611
331 => 0.11441989689526
401 => 0.1112080596207
402 => 0.11300647387941
403 => 0.11173541264695
404 => 0.11286117977958
405 => 0.11353595995717
406 => 0.11674727020083
407 => 0.12160019352642
408 => 0.11626760753818
409 => 0.11394412345907
410 => 0.11538559991398
411 => 0.11922444166896
412 => 0.12504048343444
413 => 0.12159726965053
414 => 0.12312530945826
415 => 0.1234591181785
416 => 0.12092021980894
417 => 0.12513409623877
418 => 0.12739234685099
419 => 0.1297088447
420 => 0.1317201948755
421 => 0.12878358451823
422 => 0.13192617854707
423 => 0.12939380250235
424 => 0.127121999398
425 => 0.12712544478555
426 => 0.12570030951245
427 => 0.12293893034221
428 => 0.12242968965606
429 => 0.12507882401542
430 => 0.12720317889767
501 => 0.12737815094074
502 => 0.12855430295685
503 => 0.12925033760465
504 => 0.13607242336633
505 => 0.13881632269494
506 => 0.1421715108546
507 => 0.14347854573083
508 => 0.14741225211034
509 => 0.14423546472887
510 => 0.14354814679596
511 => 0.1340062618248
512 => 0.13556874495428
513 => 0.13807043120178
514 => 0.1340475137096
515 => 0.13659912891042
516 => 0.13710287180167
517 => 0.1339108165126
518 => 0.13561583116306
519 => 0.13108781775306
520 => 0.12169889184513
521 => 0.12514454879727
522 => 0.12768171210964
523 => 0.12406086723291
524 => 0.1305510915284
525 => 0.1267596364804
526 => 0.12555792725212
527 => 0.12086963111234
528 => 0.12308232642125
529 => 0.1260750285093
530 => 0.12422588655784
531 => 0.12806313375717
601 => 0.13349769914786
602 => 0.13737069407924
603 => 0.1376680145389
604 => 0.13517793826853
605 => 0.13916830138325
606 => 0.13919736682216
607 => 0.13469622092765
608 => 0.13193929412975
609 => 0.13131291456064
610 => 0.13287773353322
611 => 0.13477771264744
612 => 0.13777345015655
613 => 0.13958371159196
614 => 0.144303913327
615 => 0.14558106457772
616 => 0.14698426659419
617 => 0.14885937721967
618 => 0.15111092829406
619 => 0.14618466272417
620 => 0.14638039243897
621 => 0.14179312214909
622 => 0.13689096596324
623 => 0.14061109144591
624 => 0.14547466064693
625 => 0.14435895249845
626 => 0.1442334125399
627 => 0.1444445359283
628 => 0.14360332841997
629 => 0.13979857803638
630 => 0.13788785621274
701 => 0.14035317484236
702 => 0.1416633819753
703 => 0.14369539897641
704 => 0.14344490999035
705 => 0.14867916756252
706 => 0.15071304177933
707 => 0.15019268972029
708 => 0.15028844702212
709 => 0.15397067914117
710 => 0.15806607856634
711 => 0.16190196056357
712 => 0.16580398448611
713 => 0.1610999423489
714 => 0.15871151985661
715 => 0.16117576220524
716 => 0.15986820052833
717 => 0.16738183777181
718 => 0.16790206571245
719 => 0.17541515963444
720 => 0.18254598040899
721 => 0.17806723964242
722 => 0.18229049045838
723 => 0.18685828054254
724 => 0.1956702887121
725 => 0.19270271437078
726 => 0.19042959893314
727 => 0.18828151582819
728 => 0.192751335771
729 => 0.19850168772032
730 => 0.19974025845402
731 => 0.20174721621304
801 => 0.19963714552855
802 => 0.20217849325136
803 => 0.21115056743766
804 => 0.20872623379383
805 => 0.20528329028851
806 => 0.21236588117144
807 => 0.21492904327909
808 => 0.23291865728902
809 => 0.25563128809045
810 => 0.24622810979949
811 => 0.24039125359562
812 => 0.24176305325561
813 => 0.25005693715321
814 => 0.25272066942641
815 => 0.24547972686429
816 => 0.24803735018996
817 => 0.26213010617439
818 => 0.2696904176103
819 => 0.25942249919505
820 => 0.23109371951892
821 => 0.20497329089592
822 => 0.21190160478497
823 => 0.21111614900057
824 => 0.22625705719872
825 => 0.20866841423821
826 => 0.20896456187707
827 => 0.22441856802227
828 => 0.22029570413147
829 => 0.21361719264489
830 => 0.20502205142066
831 => 0.18913313791334
901 => 0.17505988412477
902 => 0.20266077568093
903 => 0.20147057504807
904 => 0.19974698815383
905 => 0.20358264427538
906 => 0.22220750163166
907 => 0.22177813838682
908 => 0.21904674848618
909 => 0.22111848365245
910 => 0.21325400745355
911 => 0.2152808620408
912 => 0.20496915328657
913 => 0.20963047629848
914 => 0.21360286355871
915 => 0.2144003791134
916 => 0.21619722238026
917 => 0.20084339339768
918 => 0.20773681184613
919 => 0.21178604935863
920 => 0.19349144696463
921 => 0.21142442389093
922 => 0.20057611739428
923 => 0.19689403923322
924 => 0.20185147240018
925 => 0.19991955587375
926 => 0.19825860749028
927 => 0.19733176975359
928 => 0.20097196153946
929 => 0.20080214224168
930 => 0.19484608194921
1001 => 0.18707664409775
1002 => 0.1896843224638
1003 => 0.1887369284663
1004 => 0.18530345040309
1005 => 0.18761720005797
1006 => 0.17742861753979
1007 => 0.1598996908737
1008 => 0.17147983675486
1009 => 0.17103401373521
1010 => 0.17080920955224
1011 => 0.17951136913021
1012 => 0.17867485727977
1013 => 0.17715658008007
1014 => 0.18527556605167
1015 => 0.18231202695627
1016 => 0.19144495615068
1017 => 0.19746049399895
1018 => 0.19593475901837
1019 => 0.20159240144028
1020 => 0.18974439810659
1021 => 0.19367982955465
1022 => 0.19449091652182
1023 => 0.18517537902506
1024 => 0.17881172096382
1025 => 0.17838733752215
1026 => 0.16735363141006
1027 => 0.17324774815417
1028 => 0.17843432697387
1029 => 0.17595035821401
1030 => 0.17516400791109
1031 => 0.17918130107012
1101 => 0.17949347915437
1102 => 0.17237578575042
1103 => 0.17385577959714
1104 => 0.18002759996645
1105 => 0.17370026555909
1106 => 0.1614072883698
1107 => 0.15835846006315
1108 => 0.15795169016599
1109 => 0.14968302599273
1110 => 0.15856219734914
1111 => 0.15468620110507
1112 => 0.16693042679853
1113 => 0.15993659074953
1114 => 0.15963510045586
1115 => 0.15917935365796
1116 => 0.15206217282983
1117 => 0.15362038311075
1118 => 0.15880011140667
1119 => 0.16064829681647
1120 => 0.16045551593649
1121 => 0.15877472791223
1122 => 0.15954418406271
1123 => 0.15706549770572
1124 => 0.15619022196367
1125 => 0.15342761095821
1126 => 0.14936733597094
1127 => 0.14993194211104
1128 => 0.14188747493252
1129 => 0.13750442226148
1130 => 0.13629125104985
1201 => 0.13466894780373
1202 => 0.13647449451828
1203 => 0.14186468596774
1204 => 0.13536297148678
1205 => 0.12421623805142
1206 => 0.12488617572399
1207 => 0.12639132676799
1208 => 0.12358648775507
1209 => 0.12093194302164
1210 => 0.12323985429734
1211 => 0.11851683639598
1212 => 0.12696208091688
1213 => 0.12673366072012
1214 => 0.12988152562709
1215 => 0.13184995015411
1216 => 0.12731336890433
1217 => 0.12617243098824
1218 => 0.12682236107798
1219 => 0.11608046443164
1220 => 0.12900368349961
1221 => 0.12911544403476
1222 => 0.12815848248103
1223 => 0.13503969767511
1224 => 0.14956120803944
1225 => 0.14409763171398
1226 => 0.14198196982329
1227 => 0.13796009502255
1228 => 0.14331900439924
1229 => 0.14290752377112
1230 => 0.14104665232136
1231 => 0.13992119146228
]
'min_raw' => 0.10510617804691
'max_raw' => 0.2696904176103
'avg_raw' => 0.18739829782861
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.1051061'
'max' => '$0.26969'
'avg' => '$0.187398'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.064633549586177
'max_diff' => 0.15675923360503
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0032991628267532
]
1 => [
'year' => 2028
'avg' => 0.0056623211645204
]
2 => [
'year' => 2029
'avg' => 0.015468440887372
]
3 => [
'year' => 2030
'avg' => 0.011933879108315
]
4 => [
'year' => 2031
'avg' => 0.011720548233721
]
5 => [
'year' => 2032
'avg' => 0.020549809645992
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0032991628267532
'min' => '$0.003299'
'max_raw' => 0.020549809645992
'max' => '$0.020549'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.020549809645992
]
1 => [
'year' => 2033
'avg' => 0.052856223521498
]
2 => [
'year' => 2034
'avg' => 0.033502814619166
]
3 => [
'year' => 2035
'avg' => 0.039516646672536
]
4 => [
'year' => 2036
'avg' => 0.076701906233003
]
5 => [
'year' => 2037
'avg' => 0.18739829782861
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.020549809645992
'min' => '$0.020549'
'max_raw' => 0.18739829782861
'max' => '$0.187398'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.18739829782861
]
]
]
]
'prediction_2025_max_price' => '$0.00564'
'last_price' => 0.00546963
'sma_50day_nextmonth' => '$0.005289'
'sma_200day_nextmonth' => '$0.006776'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005497'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.005454'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00551'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.005689'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.005947'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006776'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.007244'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005467'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005475'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.005529'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.005658'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0060084'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.006557'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.007611'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0072072'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.008222'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.016491'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005579'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0057032'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.006079'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0068084'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.009555'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01592'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.028086'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '42.15'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 64.14
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005473'
'vwma_10_action' => 'SELL'
'hma_9' => '0.005459'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 27.3
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -77.03
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.67
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000331'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -72.7
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 41.09
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000659'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 25
'buy_signals' => 6
'sell_pct' => 80.65
'buy_pct' => 19.35
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767674690
'last_updated_date' => '6. Januar 2026'
]
Glide Finance Preisprognose für 2026
Die Preisprognose für Glide Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001889 am unteren Ende und $0.00564 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Glide Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn GLIDE das prognostizierte Preisziel erreicht.
Glide Finance Preisprognose 2027-2032
Die Preisprognose für GLIDE für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.003299 am unteren Ende und $0.020549 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Glide Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Glide Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001819 | $0.003299 | $0.004779 |
| 2028 | $0.003283 | $0.005662 | $0.008041 |
| 2029 | $0.007212 | $0.015468 | $0.023724 |
| 2030 | $0.006133 | $0.011933 | $0.017734 |
| 2031 | $0.007251 | $0.01172 | $0.016189 |
| 2032 | $0.011069 | $0.020549 | $0.03003 |
Glide Finance Preisprognose 2032-2037
Die Preisprognose für Glide Finance für die Jahre 2032-2037 wird derzeit zwischen $0.020549 am unteren Ende und $0.187398 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Glide Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Glide Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.011069 | $0.020549 | $0.03003 |
| 2033 | $0.025722 | $0.052856 | $0.079989 |
| 2034 | $0.020679 | $0.0335028 | $0.046325 |
| 2035 | $0.02445 | $0.039516 | $0.054583 |
| 2036 | $0.040472 | $0.0767019 | $0.112931 |
| 2037 | $0.1051061 | $0.187398 | $0.26969 |
Glide Finance Potenzielles Preishistogramm
Glide Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Glide Finance Bärisch, mit 6 technischen Indikatoren, die bullische Signale zeigen, und 25 anzeigen bärische Signale. Die Preisprognose für GLIDE wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Glide Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Glide Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.006776 erreichen. Der kurzfristige 50-Tage-SMA für Glide Finance wird voraussichtlich bis zum 04.02.2026 $0.005289 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 42.15, was darauf hindeutet, dass sich der GLIDE-Markt in einem NEUTRAL Zustand befindet.
Beliebte GLIDE Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005497 | SELL |
| SMA 5 | $0.005454 | BUY |
| SMA 10 | $0.00551 | SELL |
| SMA 21 | $0.005689 | SELL |
| SMA 50 | $0.005947 | SELL |
| SMA 100 | $0.006776 | SELL |
| SMA 200 | $0.007244 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.005467 | BUY |
| EMA 5 | $0.005475 | SELL |
| EMA 10 | $0.005529 | SELL |
| EMA 21 | $0.005658 | SELL |
| EMA 50 | $0.0060084 | SELL |
| EMA 100 | $0.006557 | SELL |
| EMA 200 | $0.007611 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.0072072 | SELL |
| SMA 50 | $0.008222 | SELL |
| SMA 100 | $0.016491 | SELL |
| SMA 200 | — | — |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.0068084 | SELL |
| EMA 50 | $0.009555 | SELL |
| EMA 100 | $0.01592 | SELL |
| EMA 200 | $0.028086 | SELL |
Glide Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 42.15 | NEUTRAL |
| Stoch RSI (14) | 64.14 | NEUTRAL |
| Stochastic Fast (14) | 27.3 | NEUTRAL |
| Commodity Channel Index (20) | -77.03 | NEUTRAL |
| Average Directional Index (14) | 15.67 | NEUTRAL |
| Awesome Oscillator (5, 34) | -0.000331 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Prozentbereich (14) | -72.7 | NEUTRAL |
| Ultimate Oscillator (7, 14, 28) | 41.09 | NEUTRAL |
| VWMA (10) | 0.005473 | SELL |
| Hull Moving Average (9) | 0.005459 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.000659 | SELL |
Auf weltweiten Geldflüssen basierende Glide Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Glide Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Glide Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.007685 | $0.010799 | $0.015175 | $0.021324 | $0.029963 | $0.0421042 |
| Amazon.com aktie | $0.011412 | $0.023813 | $0.049687 | $0.103676 | $0.216327 | $0.45138 |
| Apple aktie | $0.007758 | $0.0110044 | $0.015609 | $0.02214 | $0.0314042 | $0.044544 |
| Netflix aktie | $0.00863 | $0.013617 | $0.021485 | $0.033901 | $0.05349 | $0.084399 |
| Google aktie | $0.007083 | $0.009172 | $0.011878 | $0.015382 | $0.01992 | $0.025796 |
| Tesla aktie | $0.012399 | $0.0281081 | $0.063719 | $0.144446 | $0.327448 | $0.7423012 |
| Kodak aktie | $0.0041016 | $0.003075 | $0.0023065 | $0.001729 | $0.001297 | $0.000972 |
| Nokia aktie | $0.003623 | $0.00240035 | $0.00159 | $0.001053 | $0.000697 | $0.000462 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Glide Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Glide Finance investieren?", "Sollte ich heute GLIDE kaufen?", "Wird Glide Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Glide Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Glide Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Glide Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Glide Finance-Preis entspricht heute $0.005469 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Glide Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Glide Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005611 | $0.005757 | $0.0059073 | $0.00606 |
| Wenn die Wachstumsrate von Glide Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005753 | $0.006053 | $0.006367 | $0.006698 |
| Wenn die Wachstumsrate von Glide Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00618 | $0.006983 | $0.007891 | $0.008917 |
| Wenn die Wachstumsrate von Glide Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006891 | $0.008682 | $0.010939 | $0.013783 |
| Wenn die Wachstumsrate von Glide Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.008313 | $0.012634 | $0.0192031 | $0.029186 |
| Wenn die Wachstumsrate von Glide Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.012578 | $0.028925 | $0.066519 | $0.152972 |
| Wenn die Wachstumsrate von Glide Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.019686 | $0.070859 | $0.255046 | $0.917995 |
Fragefeld
Ist GLIDE eine gute Investition?
Die Entscheidung, Glide Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Glide Finance in den letzten 2026 Stunden um 1.8629% gestiegen, und Glide Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Glide Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Glide Finance steigen?
Es scheint, dass der Durchschnittswert von Glide Finance bis zum Ende dieses Jahres potenziell auf $0.00564 steigen könnte. Betrachtet man die Aussichten von Glide Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.017734 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Glide Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Glide Finance-Prognose wird der Preis von Glide Finance in der nächsten Woche um 0.86% steigen und $0.005516 erreichen bis zum 13. Januar 2026.
Wie viel wird Glide Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Glide Finance-Prognose wird der Preis von Glide Finance im nächsten Monat um -11.62% fallen und $0.004834 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Glide Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Glide Finance im Jahr 2026 wird erwartet, dass GLIDE innerhalb der Spanne von $0.001889 bis $0.00564 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Glide Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Glide Finance in 5 Jahren sein?
Die Zukunft von Glide Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.017734 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Glide Finance-Prognose für 2030 könnte der Wert von Glide Finance seinen höchsten Gipfel von ungefähr $0.017734 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.006133 liegen wird.
Wie viel wird Glide Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Glide Finance-Preisprognosesimulation wird der Wert von GLIDE im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.00564 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.00564 und $0.001889 während des Jahres 2026 liegen.
Wie viel wird Glide Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Glide Finance könnte der Wert von GLIDE um -12.62% fallen und bis zu $0.004779 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.004779 und $0.001819 im Laufe des Jahres schwanken.
Wie viel wird Glide Finance im Jahr 2028 kosten?
Unser neues experimentelles Glide Finance-Preisprognosemodell deutet darauf hin, dass der Wert von GLIDE im Jahr 2028 um 47.02% steigen, und im besten Fall $0.008041 erreichen wird. Der Preis wird voraussichtlich zwischen $0.008041 und $0.003283 im Laufe des Jahres liegen.
Wie viel wird Glide Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Glide Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.023724 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.023724 und $0.007212.
Wie viel wird Glide Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Glide Finance-Preisprognosen wird der Wert von GLIDE im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.017734 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.017734 und $0.006133 während des Jahres 2030 liegen.
Wie viel wird Glide Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Glide Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.016189 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.016189 und $0.007251 während des Jahres schwanken.
Wie viel wird Glide Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Glide Finance-Preisprognose könnte GLIDE eine 449.04% Steigerung im Wert erfahren und $0.03003 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.03003 und $0.011069 liegen.
Wie viel wird Glide Finance im Jahr 2033 kosten?
Laut unserer experimentellen Glide Finance-Preisprognose wird der Wert von GLIDE voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.079989 beträgt. Im Laufe des Jahres könnte der Preis von GLIDE zwischen $0.079989 und $0.025722 liegen.
Wie viel wird Glide Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Glide Finance-Preisprognosesimulation deuten darauf hin, dass GLIDE im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.046325 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.046325 und $0.020679.
Wie viel wird Glide Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Glide Finance könnte GLIDE um 897.93% steigen, wobei der Wert im Jahr 2035 $0.054583 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.054583 und $0.02445.
Wie viel wird Glide Finance im Jahr 2036 kosten?
Unsere jüngste Glide Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von GLIDE im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.112931 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.112931 und $0.040472.
Wie viel wird Glide Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Glide Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.26969 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.26969 und $0.1051061 liegen.
Verwandte Prognosen
FREEdom coin-Preisprognose
Mongol NFT-Preisprognose
Databot-Preisprognose
SERO-Preisprognose
TiFi-Preisprognose
Gleec Coin-Preisprognose
Desmos-Preisprognose
Tarot V1-Preisprognose
Drops Ownership Power-Preisprognose
Emanate-Preisprognose
Undead Blocks-Preisprognose
Yaku-Preisprognose
Hyve-Preisprognose
Utility Cjournal-Preisprognose
Shezmu-Preisprognose
Tulip Token-Preisprognose
Million-Preisprognose
The Three Kingdoms-Preisprognose
Hypersign Identity Token-Preisprognose
Populous-Preisprognose
YAM-Preisprognose
Polker-Preisprognose
LightChain-Preisprognose
Dacxi-Preisprognose
Goons of Balatroon-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Glide Finance?
Glide Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Glide Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Glide Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von GLIDE über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von GLIDE über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von GLIDE einzuschätzen.
Wie liest man Glide Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Glide Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von GLIDE innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Glide Finance?
Die Preisentwicklung von Glide Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von GLIDE. Die Marktkapitalisierung von Glide Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von GLIDE-„Walen“, großen Inhabern von Glide Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Glide Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


