Flourishing AI Preisvorhersage bis zu $0.0043081 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001443 | $0.0043081 |
| 2027 | $0.001389 | $0.003649 |
| 2028 | $0.0025074 | $0.006141 |
| 2029 | $0.005508 | $0.018119 |
| 2030 | $0.004684 | $0.013543 |
| 2031 | $0.005538 | $0.012364 |
| 2032 | $0.008453 | $0.022934 |
| 2033 | $0.019645 | $0.061089 |
| 2034 | $0.015793 | $0.035379 |
| 2035 | $0.018673 | $0.041686 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Flourishing AI eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.40 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Flourishing AI Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Flourishing AI'
'name_with_ticker' => 'Flourishing AI <small>AI</small>'
'name_lang' => 'Flourishing AI'
'name_lang_with_ticker' => 'Flourishing AI <small>AI</small>'
'name_with_lang' => 'Flourishing AI'
'name_with_lang_with_ticker' => 'Flourishing AI <small>AI</small>'
'image' => '/uploads/coins/flourishing-ai-token.png?1717500127'
'price_for_sd' => 0.004177
'ticker' => 'AI'
'marketcap' => '$99.01K'
'low24h' => '$0.004174'
'high24h' => '$0.004252'
'volume24h' => '$63.14'
'current_supply' => '23.7M'
'max_supply' => '55M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004177'
'change_24h_pct' => '-0.4582%'
'ath_price' => '$12.89'
'ath_days' => 1557
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '02.10.2021'
'ath_pct' => '-99.97%'
'fdv' => '$229.77K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.205968'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004213'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003691'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001443'
'current_year_max_price_prediction' => '$0.0043081'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004684'
'grand_prediction_max_price' => '$0.013543'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0042564372587507
107 => 0.0042723292503882
108 => 0.0043081347190126
109 => 0.0040021809098868
110 => 0.0041395451878524
111 => 0.0042202338318649
112 => 0.0038556796027384
113 => 0.0042130277668863
114 => 0.0039968549347558
115 => 0.0039234826287237
116 => 0.0040222687727296
117 => 0.0039837717163378
118 => 0.0039506742078752
119 => 0.0039322052294656
120 => 0.0040047428709947
121 => 0.0040013589033162
122 => 0.003882673242825
123 => 0.0037278526369608
124 => 0.003779815514102
125 => 0.003760936913682
126 => 0.0036925184303722
127 => 0.0037386242272438
128 => 0.0035355976314308
129 => 0.0031863009257386
130 => 0.0034170570287663
131 => 0.0034081731698141
201 => 0.0034036935252794
202 => 0.0035771003590745
203 => 0.0035604312931814
204 => 0.0035301767753616
205 => 0.0036919627824265
206 => 0.0036329087135189
207 => 0.0038148994390036
208 => 0.0039347703012299
209 => 0.0039043671731531
210 => 0.0040171062984631
211 => 0.0037810126338411
212 => 0.0038594334787948
213 => 0.0038755959062531
214 => 0.0036899663682127
215 => 0.0035631585585114
216 => 0.0035547019233192
217 => 0.0033348346564896
218 => 0.0034522859757234
219 => 0.0035556382761833
220 => 0.0035061405447255
221 => 0.0034904710416486
222 => 0.0035705231345678
223 => 0.0035767438677874
224 => 0.0034349104911361
225 => 0.0034644021414208
226 => 0.0035873872256869
227 => 0.0034613032328445
228 => 0.0032163426304551
301 => 0.0031555890142172
302 => 0.0031474833618998
303 => 0.0029827147362326
304 => 0.0031596488613589
305 => 0.0030824123742015
306 => 0.0033264015116966
307 => 0.0031870362248994
308 => 0.0031810284659314
309 => 0.0031719468571047
310 => 0.0030301236944868
311 => 0.0030611739537679
312 => 0.0031643897447065
313 => 0.0032012183017225
314 => 0.0031973767814983
315 => 0.0031638839310217
316 => 0.0031792167864587
317 => 0.0031298243167752
318 => 0.0031123828077145
319 => 0.0030573326074542
320 => 0.0029764240210774
321 => 0.0029876748562543
322 => 0.0028273737757587
323 => 0.0027400332392824
324 => 0.0027158585299156
325 => 0.0026835310982196
326 => 0.0027195099993457
327 => 0.0028269196629384
328 => 0.0026973608204142
329 => 0.0024752412724026
330 => 0.0024885910357114
331 => 0.002518583990286
401 => 0.0024626923178595
402 => 0.0024097955405404
403 => 0.0024557849967682
404 => 0.0023616700161254
405 => 0.002529957336057
406 => 0.0025254056356726
407 => 0.0025881327417251
408 => 0.0026273572884295
409 => 0.0025369574073736
410 => 0.0025142220817554
411 => 0.0025271731564905
412 => 0.0023131207399947
413 => 0.0025706400926265
414 => 0.0025728671306818
415 => 0.0025537978787784
416 => 0.0026909189840368
417 => 0.0029802872852774
418 => 0.0028714152905377
419 => 0.0028292567635011
420 => 0.0027491133727867
421 => 0.0028558996824699
422 => 0.0028477001600122
423 => 0.0028106188098818
424 => 0.002788191893622
425 => 0.0028295141744774
426 => 0.0027830716057306
427 => 0.0027747292442272
428 => 0.0027241836100957
429 => 0.0027061411183906
430 => 0.0026927831758244
501 => 0.0026780773935833
502 => 0.0027105146847545
503 => 0.0026370075154796
504 => 0.0025483650753308
505 => 0.0025409954155569
506 => 0.0025613436941397
507 => 0.002552341095618
508 => 0.0025409523145787
509 => 0.0025192080300248
510 => 0.0025127569652908
511 => 0.0025337197960647
512 => 0.0025100539823299
513 => 0.0025449741796391
514 => 0.0025354778181937
515 => 0.0024824319151149
516 => 0.0024163170797701
517 => 0.002415728519055
518 => 0.00240148418623
519 => 0.0023833418867276
520 => 0.0023782951140457
521 => 0.0024519118930397
522 => 0.0026042964223926
523 => 0.0025743796930279
524 => 0.0025959975959837
525 => 0.002702336282501
526 => 0.002736138153229
527 => 0.0027121463860275
528 => 0.0026793049753342
529 => 0.0026807498307318
530 => 0.0027929788728416
531 => 0.0027999784605351
601 => 0.0028176641604839
602 => 0.0028403952828962
603 => 0.0027160175944665
604 => 0.0026748916527918
605 => 0.002655403900046
606 => 0.0025953891642983
607 => 0.0026601099115276
608 => 0.0026223999037358
609 => 0.0026274882721442
610 => 0.002624174465543
611 => 0.0026259840280259
612 => 0.0025299102963214
613 => 0.0025649145146678
614 => 0.0025067132124871
615 => 0.0024287882022698
616 => 0.0024285269703115
617 => 0.0024475990061659
618 => 0.0024362542129509
619 => 0.0024057256661105
620 => 0.0024100621020985
621 => 0.0023720703598313
622 => 0.0024146749874725
623 => 0.0024158967357465
624 => 0.0023994916334149
625 => 0.0024651299406018
626 => 0.002492022008612
627 => 0.002481223818826
628 => 0.0024912643788308
629 => 0.002575622868199
630 => 0.0025893769827849
701 => 0.0025954856519382
702 => 0.0025873008445164
703 => 0.0024928062971574
704 => 0.0024969975321546
705 => 0.0024662450306732
706 => 0.0024402624075401
707 => 0.0024413015762045
708 => 0.0024546600219995
709 => 0.0025129971382486
710 => 0.0026357641602339
711 => 0.0026404230789767
712 => 0.0026460698244033
713 => 0.0026231016729267
714 => 0.0026161742586657
715 => 0.0026253133061932
716 => 0.0026714181448676
717 => 0.0027900123072796
718 => 0.0027480932096454
719 => 0.0027140123307592
720 => 0.0027439104496814
721 => 0.0027393078686225
722 => 0.0027004574526118
723 => 0.0026993670508297
724 => 0.0026248006812758
725 => 0.0025972351922458
726 => 0.0025741994063712
727 => 0.0025490449295606
728 => 0.0025341325125216
729 => 0.0025570447626659
730 => 0.0025622850653637
731 => 0.0025121870299856
801 => 0.0025053588528822
802 => 0.0025462699900131
803 => 0.0025282665238827
804 => 0.0025467835352623
805 => 0.0025510796407383
806 => 0.002550387868809
807 => 0.0025315901824839
808 => 0.0025435712671925
809 => 0.0025152324301236
810 => 0.0024844182011669
811 => 0.0024647606428868
812 => 0.0024476068160907
813 => 0.0024571247561834
814 => 0.00242319503766
815 => 0.0024123402378341
816 => 0.0025395123452762
817 => 0.0026334557483742
818 => 0.0026320897740875
819 => 0.0026237747569171
820 => 0.0026114203280417
821 => 0.0026705143414444
822 => 0.002649927168797
823 => 0.0026649060570138
824 => 0.0026687188127269
825 => 0.002680258875942
826 => 0.0026843834566395
827 => 0.0026719161090663
828 => 0.0026300741678524
829 => 0.0025258080285598
830 => 0.002477271859258
831 => 0.0024612541149545
901 => 0.0024618363295379
902 => 0.0024457762522073
903 => 0.0024505066647434
904 => 0.0024441312077741
905 => 0.0024320576346631
906 => 0.0024563792470663
907 => 0.0024591820863242
908 => 0.0024535051313677
909 => 0.0024548422597687
910 => 0.0024078394973879
911 => 0.0024114130153271
912 => 0.002391515213341
913 => 0.0023877846153402
914 => 0.0023374847046192
915 => 0.0022483711216883
916 => 0.0022977486970968
917 => 0.0022381075295411
918 => 0.0022155205156766
919 => 0.0023224439263098
920 => 0.002311711781476
921 => 0.0022933430146717
922 => 0.0022661717801818
923 => 0.0022560937050047
924 => 0.0021948625105596
925 => 0.0021912446449361
926 => 0.0022215924782844
927 => 0.0022075879973993
928 => 0.002187920402325
929 => 0.0021166863666381
930 => 0.0020365957257472
1001 => 0.0020390131587639
1002 => 0.0020644885014919
1003 => 0.0021385614962917
1004 => 0.0021096198957476
1005 => 0.0020886224324863
1006 => 0.0020846902387988
1007 => 0.002133909875402
1008 => 0.0022035659730282
1009 => 0.002236247055567
1010 => 0.0022038610953102
1011 => 0.0021666578479512
1012 => 0.0021689222372347
1013 => 0.0021839862046735
1014 => 0.0021855692146583
1015 => 0.0021613537251832
1016 => 0.0021681702436274
1017 => 0.0021578153287952
1018 => 0.0020942672355833
1019 => 0.0020931178520903
1020 => 0.0020775221251646
1021 => 0.0020770498927515
1022 => 0.0020505176707146
1023 => 0.002046805629443
1024 => 0.001994124292198
1025 => 0.0020287993079065
1026 => 0.0020055411278893
1027 => 0.0019704855645533
1028 => 0.001964441972221
1029 => 0.0019642602945376
1030 => 0.0020002545198031
1031 => 0.0020283786944274
1101 => 0.0020059457138884
1102 => 0.0020008381590647
1103 => 0.0020553734821285
1104 => 0.0020484333651681
1105 => 0.0020424232686394
1106 => 0.0021973290334805
1107 => 0.0020747090331612
1108 => 0.002021239714117
1109 => 0.0019550612782516
1110 => 0.00197660931067
1111 => 0.001981149797707
1112 => 0.0018220025890103
1113 => 0.0017574365862626
1114 => 0.0017352799672381
1115 => 0.0017225285197409
1116 => 0.0017283395144879
1117 => 0.0016702225391782
1118 => 0.0017092781077524
1119 => 0.0016589537196398
1120 => 0.001650516672203
1121 => 0.0017405029121437
1122 => 0.0017530239717395
1123 => 0.0016996052415157
1124 => 0.0017339087140262
1125 => 0.00172146979804
1126 => 0.0016598163868342
1127 => 0.001657461680018
1128 => 0.0016265261654971
1129 => 0.001578118075568
1130 => 0.001555994279508
1201 => 0.0015444720144323
1202 => 0.001549226325567
1203 => 0.0015468224003729
1204 => 0.0015311351624043
1205 => 0.0015477215744905
1206 => 0.0015053501455889
1207 => 0.0014884775011905
1208 => 0.0014808565191581
1209 => 0.0014432494371995
1210 => 0.0015030990285409
1211 => 0.0015148901520004
1212 => 0.0015267045076156
1213 => 0.001629540407243
1214 => 0.0016244030163089
1215 => 0.0016708425283427
1216 => 0.0016690379743019
1217 => 0.0016557926731996
1218 => 0.0015999129265954
1219 => 0.0016221855976311
1220 => 0.0015536337781248
1221 => 0.0016049974623696
1222 => 0.001581557221879
1223 => 0.0015970722934809
1224 => 0.001569174795803
1225 => 0.0015846144228774
1226 => 0.0015176862647945
1227 => 0.0014551896924813
1228 => 0.0014803401375688
1229 => 0.0015076815476812
1230 => 0.0015669646912666
1231 => 0.0015316561400225
]
'min_raw' => 0.0014432494371995
'max_raw' => 0.0043081347190126
'avg_raw' => 0.002875692078106
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001443'
'max' => '$0.0043081'
'avg' => '$0.002875'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0027340305628006
'max_diff' => 0.00013085471901256
'year' => 2026
]
1 => [
'items' => [
101 => 0.001544354430214
102 => 0.0015018172837405
103 => 0.0014140510004304
104 => 0.0014145477480625
105 => 0.0014010468174677
106 => 0.0013893800422656
107 => 0.0015357117518737
108 => 0.001517513090622
109 => 0.0014885159056992
110 => 0.0015273297900207
111 => 0.0015375927970944
112 => 0.0015378849704777
113 => 0.0015662025785473
114 => 0.0015813156910503
115 => 0.0015839794426329
116 => 0.0016285378107729
117 => 0.0016434731880343
118 => 0.0017049898932404
119 => 0.0015800334490439
120 => 0.0015774600533055
121 => 0.0015278759809704
122 => 0.0014964289784023
123 => 0.0015300291841403
124 => 0.0015597943795387
125 => 0.0015288008685616
126 => 0.0015328479667865
127 => 0.0014912417105625
128 => 0.0015061139894063
129 => 0.0015189239994588
130 => 0.0015118510648454
131 => 0.0015012625393952
201 => 0.0015573539729539
202 => 0.0015541890744484
203 => 0.0016064227069147
204 => 0.0016471425586851
205 => 0.0017201198126018
206 => 0.0016439642437495
207 => 0.0016411888321295
208 => 0.0016683189259046
209 => 0.0016434690345583
210 => 0.0016591733081
211 => 0.0017175896113471
212 => 0.0017188238557835
213 => 0.0016981486712396
214 => 0.0016968905843811
215 => 0.0017008614797345
216 => 0.0017241191378481
217 => 0.0017159921974676
218 => 0.0017253968986248
219 => 0.0017371576214319
220 => 0.0017858049574051
221 => 0.0017975336654135
222 => 0.0017690389855911
223 => 0.0017716117361376
224 => 0.0017609539436876
225 => 0.0017506586497226
226 => 0.001773800967049
227 => 0.0018160940068263
228 => 0.0018158309040208
301 => 0.0018256420671899
302 => 0.0018317543405642
303 => 0.0018055159887842
304 => 0.0017884357865863
305 => 0.0017949854229505
306 => 0.0018054584341293
307 => 0.0017915891665769
308 => 0.0017059816223737
309 => 0.0017319494826539
310 => 0.0017276271609397
311 => 0.0017214716492066
312 => 0.0017475825335218
313 => 0.0017450640750317
314 => 0.0016696264655955
315 => 0.0016744557365949
316 => 0.00166992014956
317 => 0.0016845755591635
318 => 0.0016426775943448
319 => 0.0016555651261359
320 => 0.0016636480652622
321 => 0.0016684089785036
322 => 0.0016856086617205
323 => 0.001683590477413
324 => 0.0016854832085503
325 => 0.0017109857982129
326 => 0.0018399691452945
327 => 0.0018469894242905
328 => 0.0018124190029681
329 => 0.001826229204415
330 => 0.001799716637596
331 => 0.0018175147013203
401 => 0.0018296916844987
402 => 0.0017746662390148
403 => 0.0017714079892454
404 => 0.0017447859956321
405 => 0.0017590911470531
406 => 0.0017363306225655
407 => 0.0017419152591454
408 => 0.0017263001284081
409 => 0.0017544042547937
410 => 0.0017858290350325
411 => 0.001793768175523
412 => 0.0017728837149074
413 => 0.0017577619890687
414 => 0.001731213219902
415 => 0.0017753644147041
416 => 0.0017882755695475
417 => 0.0017752965979041
418 => 0.0017722890865782
419 => 0.0017665898580501
420 => 0.0017734982048525
421 => 0.0017882052526254
422 => 0.0017812696804922
423 => 0.0017858507480752
424 => 0.0017683924424251
425 => 0.0018055246747704
426 => 0.001864499596093
427 => 0.0018646892101085
428 => 0.00185775360059
429 => 0.0018549156986048
430 => 0.0018620320548587
501 => 0.0018658923861983
502 => 0.001888905377407
503 => 0.001913599233852
504 => 0.0020288346871072
505 => 0.0019964770329553
506 => 0.002098720782471
507 => 0.0021795823136488
508 => 0.0022038291512027
509 => 0.0021815232015549
510 => 0.0021052157527536
511 => 0.0021014717452714
512 => 0.0022155072899546
513 => 0.0021832870254228
514 => 0.0021794545274808
515 => 0.002138683224485
516 => 0.0021627841141796
517 => 0.0021575128960647
518 => 0.0021491920203935
519 => 0.0021951748390482
520 => 0.0022812505706554
521 => 0.0022678348606713
522 => 0.0022578206555051
523 => 0.0022139413235579
524 => 0.0022403664821937
525 => 0.0022309569893441
526 => 0.0022713861420378
527 => 0.0022474368075974
528 => 0.0021830429252295
529 => 0.0021932978632416
530 => 0.0021917478499911
531 => 0.0022236470128504
601 => 0.002214071675946
602 => 0.0021898781117818
603 => 0.0022809563731624
604 => 0.0022750422574722
605 => 0.0022834271213658
606 => 0.0022871183977622
607 => 0.0023425561304856
608 => 0.0023652671957727
609 => 0.0023704230052061
610 => 0.002391996760692
611 => 0.0023698862305163
612 => 0.00245834411576
613 => 0.0025171634477864
614 => 0.0025854851287501
615 => 0.0026853214677748
616 => 0.0027228608547858
617 => 0.0027160797005243
618 => 0.0027917744733564
619 => 0.0029277962975355
620 => 0.0027435736002037
621 => 0.0029375605478217
622 => 0.0028761465198929
623 => 0.0027305349644647
624 => 0.0027211592969426
625 => 0.0028197691328635
626 => 0.0030384762580909
627 => 0.0029836926037771
628 => 0.0030385658645237
629 => 0.002974553291098
630 => 0.0029713745272871
701 => 0.0030354569167111
702 => 0.0031851889125497
703 => 0.0031140568539467
704 => 0.003012071605643
705 => 0.0030873759259243
706 => 0.0030221403546108
707 => 0.0028751463541549
708 => 0.0029836507117491
709 => 0.0029110969378521
710 => 0.002932271986246
711 => 0.0030847692274182
712 => 0.0030664203559027
713 => 0.0030901654947036
714 => 0.0030482559462386
715 => 0.0030091058194432
716 => 0.0029360292004529
717 => 0.0029143948162036
718 => 0.0029203737816865
719 => 0.0029143918533252
720 => 0.002873506156609
721 => 0.0028646768942958
722 => 0.0028499610702885
723 => 0.0028545221194857
724 => 0.0028268520650857
725 => 0.0028790711746635
726 => 0.0028887635015544
727 => 0.0029267642147928
728 => 0.0029307095749038
729 => 0.0030365410203664
730 => 0.0029782508386308
731 => 0.0030173569250712
801 => 0.0030138589086192
802 => 0.0027336908084037
803 => 0.0027722955006693
804 => 0.0028323522870148
805 => 0.0028052967861712
806 => 0.0027670466379906
807 => 0.0027361575924915
808 => 0.0026893575299933
809 => 0.0027552277192439
810 => 0.0028418400135947
811 => 0.0029329062056205
812 => 0.0030423162684463
813 => 0.0030178972160971
814 => 0.0029308608606001
815 => 0.0029347652479276
816 => 0.0029589006340664
817 => 0.0029276431160856
818 => 0.0029184246638138
819 => 0.0029576341602832
820 => 0.0029579041745362
821 => 0.0029219386225021
822 => 0.0028819694930426
823 => 0.0028818020209308
824 => 0.0028746899003994
825 => 0.0029758185215408
826 => 0.0030314290379118
827 => 0.0030378046939929
828 => 0.0030309999054589
829 => 0.0030336187984932
830 => 0.0030012602643111
831 => 0.0030752222778262
901 => 0.0031430971355127
902 => 0.0031249052237179
903 => 0.0030976329618048
904 => 0.003075909291581
905 => 0.0031197878174013
906 => 0.0031178339757177
907 => 0.0031425043078435
908 => 0.0031413851190756
909 => 0.0031330894142798
910 => 0.0031249055199836
911 => 0.0031573537358024
912 => 0.003148009170749
913 => 0.003138650091005
914 => 0.0031198790237751
915 => 0.003122430323566
916 => 0.0030951627705935
917 => 0.0030825475529101
918 => 0.0028928449470909
919 => 0.0028421502121046
920 => 0.0028580998077178
921 => 0.0028633508287247
922 => 0.0028412884150916
923 => 0.0028729202488724
924 => 0.0028679904610841
925 => 0.0028871693815391
926 => 0.0028751872246908
927 => 0.0028756789765874
928 => 0.0029109159450133
929 => 0.0029211453868561
930 => 0.0029159426101731
1001 => 0.0029195864566211
1002 => 0.0030035573600441
1003 => 0.0029916193828156
1004 => 0.0029852775703458
1005 => 0.0029870342957406
1006 => 0.0030084906619217
1007 => 0.0030144972729782
1008 => 0.0029890468398546
1009 => 0.0030010494112429
1010 => 0.0030521548368611
1011 => 0.0030700388435109
1012 => 0.0031271160079268
1013 => 0.0031028686140172
1014 => 0.0031473757549409
1015 => 0.0032841755325378
1016 => 0.0033934606607068
1017 => 0.0032929575404437
1018 => 0.0034936457609489
1019 => 0.0036499103276276
1020 => 0.0036439126332862
1021 => 0.0036166642916213
1022 => 0.003438761236966
1023 => 0.0032750521936871
1024 => 0.003412001759843
1025 => 0.0034123508724511
1026 => 0.0034005867832637
1027 => 0.0033275210356708
1028 => 0.0033980442536267
1029 => 0.0034036421305653
1030 => 0.0034005088080753
1031 => 0.0033444894707076
1101 => 0.0032589582966511
1102 => 0.003275670883329
1103 => 0.003303046441235
1104 => 0.0032512187989794
1105 => 0.0032346567269311
1106 => 0.003265448769932
1107 => 0.0033646671482576
1108 => 0.0033459104885681
1109 => 0.003345420676382
1110 => 0.0034256696205954
1111 => 0.0033682286953447
1112 => 0.0032758816825682
1113 => 0.0032525628439346
1114 => 0.0031697966762375
1115 => 0.0032269635630689
1116 => 0.0032290208975537
1117 => 0.0031977111778676
1118 => 0.003278422293763
1119 => 0.0032776785266211
1120 => 0.0033543017188995
1121 => 0.0035007764841791
1122 => 0.0034574566885004
1123 => 0.0034070804793066
1124 => 0.0034125577700267
1125 => 0.0034726301301212
1126 => 0.0034363090098895
1127 => 0.0034493703379647
1128 => 0.0034726103602369
1129 => 0.003486631642691
1130 => 0.0034105403232569
1201 => 0.0033927997968282
1202 => 0.0033565089058339
1203 => 0.0033470412897751
1204 => 0.0033765994632557
1205 => 0.0033688119288492
1206 => 0.0032288479865567
1207 => 0.0032142209758351
1208 => 0.0032146695653713
1209 => 0.0031778892514354
1210 => 0.0031217904443964
1211 => 0.0032692147598093
1212 => 0.0032573745240796
1213 => 0.0032443038201956
1214 => 0.003245904906841
1215 => 0.0033098968054881
1216 => 0.0032727782726044
1217 => 0.0033714639758835
1218 => 0.0033511771620531
1219 => 0.0033303700679971
1220 => 0.003327493893799
1221 => 0.0033194849377653
1222 => 0.0032920192475244
1223 => 0.0032588527761264
1224 => 0.0032369533988789
1225 => 0.0029859184057565
1226 => 0.0030325090402767
1227 => 0.0030861073184221
1228 => 0.0031046092292563
1229 => 0.0030729604304812
1230 => 0.0032932689350017
1231 => 0.0033335214217232
]
'min_raw' => 0.0013893800422656
'max_raw' => 0.0036499103276276
'avg_raw' => 0.0025196451849466
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001389'
'max' => '$0.003649'
'avg' => '$0.002519'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.3869394933867E-5
'max_diff' => -0.00065822439138493
'year' => 2027
]
2 => [
'items' => [
101 => 0.0032115940138391
102 => 0.0031887863740873
103 => 0.0032947642000668
104 => 0.0032308466157388
105 => 0.003259628700048
106 => 0.00319741757673
107 => 0.0033238257764024
108 => 0.0033228627577126
109 => 0.0032736871129813
110 => 0.0033152500311679
111 => 0.0033080274513198
112 => 0.0032525082695325
113 => 0.0033255858334928
114 => 0.0033256220790528
115 => 0.0032782915901697
116 => 0.0032230199411305
117 => 0.0032131386757404
118 => 0.0032056944696302
119 => 0.003257797881683
120 => 0.0033045136380064
121 => 0.0033914400787062
122 => 0.0034132954512194
123 => 0.003498598425133
124 => 0.0034478046574938
125 => 0.0034703208767988
126 => 0.0034947654179681
127 => 0.0035064850299229
128 => 0.0034873885511516
129 => 0.0036198991817443
130 => 0.0036310871389871
131 => 0.0036348383642752
201 => 0.003590156525202
202 => 0.0036298444562136
203 => 0.0036112757876194
204 => 0.0036595863047769
205 => 0.0036671620107268
206 => 0.0036607456573007
207 => 0.0036631503059436
208 => 0.0035500758592099
209 => 0.0035442123526315
210 => 0.00346426302438
211 => 0.0034968429665981
212 => 0.0034359363262187
213 => 0.0034552504492909
214 => 0.0034637639307094
215 => 0.0034593169711522
216 => 0.0034986849876486
217 => 0.0034652141312722
218 => 0.0033768790381768
219 => 0.0032885198782444
220 => 0.0032874106009673
221 => 0.0032641471938258
222 => 0.003247332011368
223 => 0.00325057121206
224 => 0.0032619865777943
225 => 0.0032466685295595
226 => 0.0032499374117952
227 => 0.0033042226373551
228 => 0.0033151091521966
229 => 0.0032781125211292
301 => 0.003129565708805
302 => 0.0030931119484592
303 => 0.0031193141884863
304 => 0.0031067912053937
305 => 0.0025074229778646
306 => 0.002648235652368
307 => 0.0025645695427247
308 => 0.0026031267353409
309 => 0.0025177253026291
310 => 0.0025584833425918
311 => 0.002550956820856
312 => 0.0027773794345075
313 => 0.0027738441568294
314 => 0.0027755363071712
315 => 0.0026947655624852
316 => 0.0028234355519347
317 => 0.0028868230155606
318 => 0.0028750916830462
319 => 0.0028780442066984
320 => 0.0028273100681739
321 => 0.0027760275245314
322 => 0.002719147291305
323 => 0.0028248237340304
324 => 0.0028130743175564
325 => 0.0028400232516411
326 => 0.0029085619786566
327 => 0.002918654566563
328 => 0.002932219107058
329 => 0.0029273571848803
330 => 0.0030431878961108
331 => 0.0030291600327051
401 => 0.003062963147421
402 => 0.002993427575802
403 => 0.002914741476138
404 => 0.0029296971312417
405 => 0.0029282567813894
406 => 0.0029099194746134
407 => 0.0028933653739724
408 => 0.002865807460494
409 => 0.0029530047765433
410 => 0.0029494647247527
411 => 0.0030067740483825
412 => 0.0029966440687579
413 => 0.002928993585598
414 => 0.0029314097358387
415 => 0.0029476595073697
416 => 0.003003900152175
417 => 0.0030205962047083
418 => 0.0030128619279522
419 => 0.0030311683873513
420 => 0.0030456370664458
421 => 0.0030329854306818
422 => 0.0032121059131606
423 => 0.0031377226005989
424 => 0.0031739765095857
425 => 0.0031826228532586
426 => 0.0031604754257535
427 => 0.0031652784097394
428 => 0.0031725536217434
429 => 0.0032167272843986
430 => 0.0033326517569581
501 => 0.0033839939167301
502 => 0.0035384593375818
503 => 0.0033797306650784
504 => 0.0033703123625366
505 => 0.0033981362492408
506 => 0.0034888238031061
507 => 0.0035623175476652
508 => 0.0035866996626912
509 => 0.0035899221616968
510 => 0.003635664630378
511 => 0.0036618833603796
512 => 0.0036301102915338
513 => 0.0036031859424659
514 => 0.003506746266078
515 => 0.0035179094212164
516 => 0.0035948124901518
517 => 0.0037034426045912
518 => 0.0037966585438173
519 => 0.0037640175708038
520 => 0.004013045153961
521 => 0.0040377352216446
522 => 0.0040343238526162
523 => 0.0040905715011741
524 => 0.0039789313734211
525 => 0.0039312030558811
526 => 0.0036090072923387
527 => 0.0036995311596997
528 => 0.0038311129171892
529 => 0.0038136975781792
530 => 0.0037181393886999
531 => 0.0037965860543617
601 => 0.0037706491334398
602 => 0.003750191607785
603 => 0.0038439114986965
604 => 0.0037408626288383
605 => 0.0038300849258841
606 => 0.0037156564070364
607 => 0.0037641666720191
608 => 0.0037366298994374
609 => 0.0037544495660777
610 => 0.0036502761590144
611 => 0.0037064856007992
612 => 0.0036479376614366
613 => 0.0036479099020902
614 => 0.0036466174530838
615 => 0.0037154988441025
616 => 0.0037177450637907
617 => 0.0036668416117538
618 => 0.003659505629054
619 => 0.0036866306020396
620 => 0.0036548743627151
621 => 0.0036697329072237
622 => 0.0036553244128916
623 => 0.0036520807573282
624 => 0.003626234757936
625 => 0.0036150995907473
626 => 0.0036194659767199
627 => 0.0036045612503692
628 => 0.0035955806136153
629 => 0.0036448309783941
630 => 0.0036185184952468
701 => 0.0036407982129776
702 => 0.0036154076626989
703 => 0.0035273929532965
704 => 0.0034767747631805
705 => 0.0033105231360872
706 => 0.0033576718912964
707 => 0.0033889315647789
708 => 0.0033786002428794
709 => 0.0034007959200104
710 => 0.0034021585543204
711 => 0.003394942513427
712 => 0.0033865872625045
713 => 0.0033825203884298
714 => 0.0034128315358553
715 => 0.0034304281771621
716 => 0.0033920688912134
717 => 0.0033830818472191
718 => 0.0034218652031875
719 => 0.0034455230279238
720 => 0.0036201991135933
721 => 0.0036072585449705
722 => 0.0036397368327552
723 => 0.0036360802759706
724 => 0.003670122695766
725 => 0.0037257676647313
726 => 0.0036126258842467
727 => 0.0036322633851904
728 => 0.0036274487234552
729 => 0.0036800139378088
730 => 0.0036801780406703
731 => 0.0036486625688381
801 => 0.0036657476173985
802 => 0.0036562112119959
803 => 0.0036734447854809
804 => 0.0036070857157871
805 => 0.0036879038996552
806 => 0.0037337226020998
807 => 0.0037343587948276
808 => 0.0037560764961466
809 => 0.0037781429384912
810 => 0.0038204975529894
811 => 0.0037769616912808
812 => 0.0036986449141978
813 => 0.0037042991325415
814 => 0.0036583820347927
815 => 0.0036591539095015
816 => 0.0036550335818132
817 => 0.0036673989953695
818 => 0.0036097992286952
819 => 0.0036233177788049
820 => 0.0036043917294868
821 => 0.0036322222436554
822 => 0.0036022812109587
823 => 0.0036274464016795
824 => 0.0036383068637553
825 => 0.003678382202624
826 => 0.0035963620508236
827 => 0.0034291174090264
828 => 0.0034642742603774
829 => 0.0034122745157181
830 => 0.0034170872900633
831 => 0.003426809860188
901 => 0.003395295829387
902 => 0.0034013077133426
903 => 0.0034010929265427
904 => 0.0033992420099386
905 => 0.0033910439933976
906 => 0.0033791552474851
907 => 0.0034265163520377
908 => 0.0034345639265928
909 => 0.0034524526879454
910 => 0.003505677507668
911 => 0.00350035909305
912 => 0.0035090336479509
913 => 0.0034900971433079
914 => 0.0034179657002025
915 => 0.003421882784598
916 => 0.0033730366794195
917 => 0.003451203583215
918 => 0.0034326926286435
919 => 0.0034207584958104
920 => 0.0034175021570979
921 => 0.0034708589108537
922 => 0.0034868240878421
923 => 0.0034768756609261
924 => 0.0034564711470795
925 => 0.0034956538457181
926 => 0.0035061374828884
927 => 0.0035084843826292
928 => 0.0035779086120795
929 => 0.0035123644258485
930 => 0.0035281415629275
1001 => 0.0036512302826354
1002 => 0.0035396057989426
1003 => 0.0035987357774777
1004 => 0.003595841672726
1005 => 0.0036260905688952
1006 => 0.003593360380341
1007 => 0.0035937661102549
1008 => 0.0036206250808154
1009 => 0.003582906500704
1010 => 0.0035735668498308
1011 => 0.0035606641890414
1012 => 0.0035888366768407
1013 => 0.0036057248091444
1014 => 0.0037418307525457
1015 => 0.003829761399168
1016 => 0.0038259440978975
1017 => 0.0038608270858209
1018 => 0.0038451119802699
1019 => 0.0037943637590102
1020 => 0.0038809847846142
1021 => 0.0038535742677354
1022 => 0.0038558339574431
1023 => 0.0038557498516794
1024 => 0.0038739754491348
1025 => 0.0038610609429861
1026 => 0.0038356051257203
1027 => 0.0038525038851946
1028 => 0.0039026871594162
1029 => 0.004058457582411
1030 => 0.0041456287748025
1031 => 0.0040532097671736
1101 => 0.0041169591610962
1102 => 0.0040787322409743
1103 => 0.0040717852724357
1104 => 0.0041118246028623
1105 => 0.0041519340168364
1106 => 0.0041493792205641
1107 => 0.00412026184566
1108 => 0.0041038141794028
1109 => 0.0042283614186751
1110 => 0.0043201257029641
1111 => 0.0043138679939711
1112 => 0.00434148748635
1113 => 0.004422579170213
1114 => 0.0044299931775114
1115 => 0.0044290591830008
1116 => 0.0044106827923402
1117 => 0.0044905280861892
1118 => 0.0045571364350623
1119 => 0.0044064291888472
1120 => 0.0044638165353032
1121 => 0.0044895795640321
1122 => 0.0045274073337523
1123 => 0.0045912291219407
1124 => 0.0046605565118065
1125 => 0.0046703601648697
1126 => 0.0046634040038734
1127 => 0.0046176807266366
1128 => 0.0046935395838756
1129 => 0.004737975923337
1130 => 0.0047644367465788
1201 => 0.0048315369916588
1202 => 0.0044897386677267
1203 => 0.0042477968255687
1204 => 0.0042100141132332
1205 => 0.0042868467444993
1206 => 0.0043071068966354
1207 => 0.0042989400547134
1208 => 0.0040266125149746
1209 => 0.0042085803650959
1210 => 0.0044043624715351
1211 => 0.0044118832595912
1212 => 0.0045098958756854
1213 => 0.0045418128011586
1214 => 0.0046207258039217
1215 => 0.0046157897741132
1216 => 0.0046350038345059
1217 => 0.0046305868547627
1218 => 0.0047767565752882
1219 => 0.0049380034834414
1220 => 0.0049324200157458
1221 => 0.004909238864912
1222 => 0.0049436668268738
1223 => 0.0051100909163567
1224 => 0.0050947692530888
1225 => 0.0051096529438574
1226 => 0.0053058763246084
1227 => 0.0055609946320351
1228 => 0.0054424665647761
1229 => 0.0056996383651956
1230 => 0.0058615143814682
1231 => 0.0061414622133193
]
'min_raw' => 0.0025074229778646
'max_raw' => 0.0061414622133193
'avg_raw' => 0.004324442595592
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0025074'
'max' => '$0.006141'
'avg' => '$0.004324'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001118042935599
'max_diff' => 0.0024915518856917
'year' => 2028
]
3 => [
'items' => [
101 => 0.0061064113659994
102 => 0.006215393002587
103 => 0.0060436630339642
104 => 0.0056493363136535
105 => 0.0055869326007423
106 => 0.0057118664143043
107 => 0.0060190040040831
108 => 0.0057021935585923
109 => 0.0057662838991002
110 => 0.0057478258767224
111 => 0.0057468423271514
112 => 0.0057843804138902
113 => 0.0057299294612206
114 => 0.0055080864845053
115 => 0.005609755813405
116 => 0.0055704964029546
117 => 0.0056140576458323
118 => 0.0058491397076197
119 => 0.0057452043244471
120 => 0.0056357168412996
121 => 0.0057730384423841
122 => 0.0059478960293863
123 => 0.005936953755841
124 => 0.0059157211716476
125 => 0.0060354081370439
126 => 0.0062330959388881
127 => 0.0062865301573526
128 => 0.0063259742050087
129 => 0.0063314128727678
130 => 0.0063874345307999
131 => 0.0060861919562856
201 => 0.0065642716584979
202 => 0.0066468228163847
203 => 0.0066313066200969
204 => 0.0067230587578043
205 => 0.0066960629513637
206 => 0.0066569502633436
207 => 0.0068023969178492
208 => 0.0066356540653983
209 => 0.0063989835786855
210 => 0.0062691414688635
211 => 0.0064401280331414
212 => 0.0065445435613372
213 => 0.0066135555833997
214 => 0.0066344385795776
215 => 0.0061095765598175
216 => 0.0058267050413489
217 => 0.0060080224415587
218 => 0.0062292421836732
219 => 0.0060849630694485
220 => 0.0060906185375696
221 => 0.0058849144365693
222 => 0.006247442432201
223 => 0.0061946251525778
224 => 0.0064686412926949
225 => 0.006403245141739
226 => 0.0066266946667592
227 => 0.0065678529182123
228 => 0.0068121017266326
301 => 0.0069095391890839
302 => 0.0070731518534698
303 => 0.0071935059954154
304 => 0.0072641802495737
305 => 0.0072599372324465
306 => 0.0075399838371955
307 => 0.0073748501384582
308 => 0.0071674032938196
309 => 0.0071636512348865
310 => 0.0072710908952693
311 => 0.0074962549488004
312 => 0.0075546367118773
313 => 0.0075872641528506
314 => 0.0075372940912305
315 => 0.00735805329649
316 => 0.0072806580300925
317 => 0.0073466010394199
318 => 0.0072659584055598
319 => 0.007405170215929
320 => 0.007596337765604
321 => 0.0075568624225546
322 => 0.0076888225758948
323 => 0.0078253874519889
324 => 0.0080206813583158
325 => 0.0080717384171421
326 => 0.0081561337938559
327 => 0.0082430043589314
328 => 0.0082709048432063
329 => 0.0083241755246989
330 => 0.0083238947619123
331 => 0.0084844295461207
401 => 0.0086615043844509
402 => 0.0087283460366286
403 => 0.0088820447301411
404 => 0.0086188411037456
405 => 0.0088184840778319
406 => 0.0089985670378456
407 => 0.0087838647089683
408 => 0.0090797818500989
409 => 0.0090912716421263
410 => 0.0092647538604313
411 => 0.0090888963970077
412 => 0.0089844727965836
413 => 0.0092859398183066
414 => 0.0094318102139961
415 => 0.0093878728636818
416 => 0.0090535074583351
417 => 0.0088588924508164
418 => 0.0083495474377088
419 => 0.0089528886078019
420 => 0.0092467584920511
421 => 0.0090527464063286
422 => 0.0091505948173579
423 => 0.0096844240204802
424 => 0.0098876716181478
425 => 0.0098453975386409
426 => 0.009852541162187
427 => 0.0099622098766836
428 => 0.010448541352426
429 => 0.010157120259086
430 => 0.010379900765604
501 => 0.010498062742967
502 => 0.01060781817278
503 => 0.010338293525719
504 => 0.0099876459199967
505 => 0.0098765811040793
506 => 0.0090334557279638
507 => 0.0089895673906291
508 => 0.0089649315369304
509 => 0.0088096059641707
510 => 0.0086875626112366
511 => 0.0085905092058043
512 => 0.0083358120873496
513 => 0.0084217648881157
514 => 0.008015830840719
515 => 0.0082755330588241
516 => 0.0076276525175586
517 => 0.0081672266841988
518 => 0.0078735609967234
519 => 0.0080707496077498
520 => 0.0080700616352622
521 => 0.0077069748836566
522 => 0.0074975540227577
523 => 0.0076310051461043
524 => 0.0077740753436953
525 => 0.0077972880019085
526 => 0.0079827822475994
527 => 0.0080345497043862
528 => 0.0078776918935306
529 => 0.0076142266333929
530 => 0.0076754236043201
531 => 0.0074963138680951
601 => 0.0071824309447174
602 => 0.0074078671401574
603 => 0.0074848409690104
604 => 0.0075188369969342
605 => 0.0072101691914895
606 => 0.0071131790655147
607 => 0.0070615423362717
608 => 0.0075743814957943
609 => 0.0076024759826219
610 => 0.0074587406158518
611 => 0.0081084381031994
612 => 0.0079613915522509
613 => 0.0081256785769401
614 => 0.0076698706206448
615 => 0.0076872830984021
616 => 0.0074714963072453
617 => 0.0075923224914145
618 => 0.0075069264388534
619 => 0.0075825609297612
620 => 0.0076278959317587
621 => 0.0078436473144264
622 => 0.0081696902184226
623 => 0.0078114212525304
624 => 0.007655318333585
625 => 0.0077521637065426
626 => 0.0080100756968625
627 => 0.0084008255644691
628 => 0.0081694937782721
629 => 0.0082721548967179
630 => 0.008294581784023
701 => 0.0081240062892495
702 => 0.0084071149262678
703 => 0.0085588351448164
704 => 0.0087144686949716
705 => 0.0088496009458184
706 => 0.0086523052325845
707 => 0.0088634399269743
708 => 0.0086933026335869
709 => 0.0085406718929482
710 => 0.0085409033707785
711 => 0.0084451558775966
712 => 0.008259633044596
713 => 0.0082254197877598
714 => 0.0084034014704798
715 => 0.0085461259250933
716 => 0.0085578813947793
717 => 0.0086369009863005
718 => 0.0086836639665962
719 => 0.0091420047446836
720 => 0.0093263531972241
721 => 0.009551770995453
722 => 0.0096395839317141
723 => 0.0099038693871802
724 => 0.0096904374176761
725 => 0.0096442600685239
726 => 0.0090031900006769
727 => 0.0091081651883734
728 => 0.0092762405924746
729 => 0.0090059615021845
730 => 0.0091773913753026
731 => 0.0092112352636373
801 => 0.00899677752212
802 => 0.0091113286680364
803 => 0.0088071147865303
804 => 0.0081763212497188
805 => 0.0084078171797962
806 => 0.0085782761050206
807 => 0.0083350102012914
808 => 0.0087710549180353
809 => 0.0085163265963036
810 => 0.0084355899474304
811 => 0.0081206074954825
812 => 0.0082692670880155
813 => 0.0084703313155166
814 => 0.0083460969991463
815 => 0.0086039018594913
816 => 0.0089690222957847
817 => 0.0092292288619852
818 => 0.0092492042911403
819 => 0.0090819089015594
820 => 0.0093500008310278
821 => 0.0093519535880514
822 => 0.0090495447964233
823 => 0.0088643210953703
824 => 0.008822237880777
825 => 0.0089273700017312
826 => 0.0090550198050297
827 => 0.0092562879668259
828 => 0.0093779101017313
829 => 0.0096950361261683
830 => 0.0097808413356654
831 => 0.0098751152463885
901 => 0.010001094264112
902 => 0.010152364375246
903 => 0.0098213939838968
904 => 0.0098345440545511
905 => 0.0095263490087234
906 => 0.0091969984026162
907 => 0.0094469344585189
908 => 0.0097736926040116
909 => 0.0096987339243999
910 => 0.0096902995416768
911 => 0.0097044838339145
912 => 0.0096479674374089
913 => 0.0093923458706094
914 => 0.0092639743200384
915 => 0.0094296063713504
916 => 0.0095176324351882
917 => 0.0096541531835211
918 => 0.0096373241196857
919 => 0.0099889869061334
920 => 0.010125632431216
921 => 0.010090672658508
922 => 0.010097106098041
923 => 0.010344496294162
924 => 0.010619645071924
925 => 0.010877358211376
926 => 0.011139515085865
927 => 0.010823474741512
928 => 0.010663008945309
929 => 0.010828568686848
930 => 0.010740720357565
1001 => 0.011245522915133
1002 => 0.011280474348964
1003 => 0.011785240403562
1004 => 0.012264323495798
1005 => 0.011963419989229
1006 => 0.012247158442932
1007 => 0.012554044714147
1008 => 0.013146078121823
1009 => 0.012946702098104
1010 => 0.012793983188556
1011 => 0.012649664556965
1012 => 0.012949968719368
1013 => 0.013336305226823
1014 => 0.013419518410243
1015 => 0.013554355557267
1016 => 0.013412590784273
1017 => 0.013583330838467
1018 => 0.014186118256753
1019 => 0.01402323977538
1020 => 0.013791926147809
1021 => 0.014267768922226
1022 => 0.014439974572496
1023 => 0.015648604010887
1024 => 0.017174548602849
1025 => 0.016542797521884
1026 => 0.01615064923945
1027 => 0.016242813387703
1028 => 0.016800036696203
1029 => 0.01697899913751
1030 => 0.016492517529986
1031 => 0.016664351058044
1101 => 0.017611170691942
1102 => 0.018119109047918
1103 => 0.01742926053528
1104 => 0.015525995848702
1105 => 0.013771098886503
1106 => 0.014236576584919
1107 => 0.014183805859373
1108 => 0.015201045437842
1109 => 0.014019355177467
1110 => 0.014039251810838
1111 => 0.015077526826514
1112 => 0.014800532852872
1113 => 0.014351838090279
1114 => 0.013774374854826
1115 => 0.012706880655206
1116 => 0.011761371273324
1117 => 0.013615732909
1118 => 0.013535769463332
1119 => 0.013419970544085
1120 => 0.013677668508116
1121 => 0.014928976672606
1122 => 0.014900129969325
1123 => 0.01471662196077
1124 => 0.014855811167894
1125 => 0.0143274375493
1126 => 0.014463611461655
1127 => 0.013770820901858
1128 => 0.014083991168376
1129 => 0.014350875392838
1130 => 0.014404456352187
1201 => 0.014525176989512
1202 => 0.013493632361032
1203 => 0.01395676561466
1204 => 0.014228813011449
1205 => 0.012999692975586
1206 => 0.014204517260263
1207 => 0.013475675464029
1208 => 0.013228295611551
1209 => 0.013561359993096
1210 => 0.013431564479692
1211 => 0.013319973919116
1212 => 0.013257704468945
1213 => 0.013502270191777
1214 => 0.013490860908488
1215 => 0.013090703917774
1216 => 0.012568715435873
1217 => 0.012743911904087
1218 => 0.012680261384709
1219 => 0.012449583691404
1220 => 0.012605032604561
1221 => 0.011920514261913
1222 => 0.010742836031554
1223 => 0.011520846343789
1224 => 0.01149089379308
1225 => 0.011475790358773
1226 => 0.012060443605791
1227 => 0.012004242686336
1228 => 0.011902237467203
1229 => 0.012447710285561
1230 => 0.012248605369216
1231 => 0.012862199806374
]
'min_raw' => 0.0055080864845053
'max_raw' => 0.018119109047918
'avg_raw' => 0.011813597766211
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005508'
'max' => '$0.018119'
'avg' => '$0.011813'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0030006635066407
'max_diff' => 0.011977646834598
'year' => 2029
]
4 => [
'items' => [
101 => 0.013266352787486
102 => 0.013163846518497
103 => 0.013543954350674
104 => 0.012747948076867
105 => 0.013012349430797
106 => 0.013066842183398
107 => 0.012440979235654
108 => 0.012013437851807
109 => 0.011984925715833
110 => 0.011243627875075
111 => 0.011639623198061
112 => 0.011988082694889
113 => 0.011821197637458
114 => 0.011768366813824
115 => 0.01203826803416
116 => 0.012059241670528
117 => 0.011581040538658
118 => 0.011680473696634
119 => 0.012095126494781
120 => 0.01167002551001
121 => 0.010844123736451
122 => 0.010639288677623
123 => 0.010611959904916
124 => 0.010056430979701
125 => 0.010652976735711
126 => 0.01039256852678
127 => 0.011215194938622
128 => 0.010745315144012
129 => 0.010725059565203
130 => 0.010694440286986
131 => 0.010216273592443
201 => 0.010320961709469
202 => 0.010668960954915
203 => 0.010793131006182
204 => 0.01078017905254
205 => 0.010667255568762
206 => 0.010718951361373
207 => 0.010552421201363
208 => 0.010493615935838
209 => 0.010308010342178
210 => 0.010035221394352
211 => 0.010073154370659
212 => 0.0095326880859038
213 => 0.0092382133692525
214 => 0.0091567066487978
215 => 0.0090477124558055
216 => 0.0091690178329188
217 => 0.0095311570128251
218 => 0.0090943403297452
219 => 0.0083454487657324
220 => 0.0083904584247787
221 => 0.0084915817651681
222 => 0.0083031390893504
223 => 0.0081247939114839
224 => 0.0082798505740372
225 => 0.0079625353459019
226 => 0.0085299277944968
227 => 0.0085145814188612
228 => 0.0087260702363838
301 => 0.008858318534168
302 => 0.0085535290236701
303 => 0.0084768752860184
304 => 0.008520540738703
305 => 0.0077988480718249
306 => 0.0086670925486501
307 => 0.0086746011629403
308 => 0.0086103078487755
309 => 0.0090726212286441
310 => 0.010048246659326
311 => 0.0096811771278616
312 => 0.0095390367105432
313 => 0.0092688276733168
314 => 0.0096288651719958
315 => 0.0096012199095572
316 => 0.0094761975486553
317 => 0.0094005836346882
318 => 0.0095399045896216
319 => 0.0093833202265753
320 => 0.0093551933723216
321 => 0.0091847752378636
322 => 0.0091239437173932
323 => 0.0090789064814095
324 => 0.0090293249098588
325 => 0.0091386895017417
326 => 0.0088908549484249
327 => 0.0085919907726455
328 => 0.0085671434501847
329 => 0.008635749092098
330 => 0.0086053962026407
331 => 0.0085669981322276
401 => 0.0084936857587166
402 => 0.0084719355435669
403 => 0.0085426131910991
404 => 0.0084628222477981
405 => 0.0085805581310763
406 => 0.0085485404854482
407 => 0.0083696925196716
408 => 0.0081467817363162
409 => 0.0081447973627731
410 => 0.0080967716001462
411 => 0.008035603570719
412 => 0.0080185880242673
413 => 0.0082667921344051
414 => 0.0087805672142666
415 => 0.0086797008724941
416 => 0.0087525871416232
417 => 0.0091111154475465
418 => 0.0092250808146772
419 => 0.0091441908965055
420 => 0.0090334637874392
421 => 0.0090383352182885
422 => 0.0094167232693434
423 => 0.0094403228679475
424 => 0.0094999514401009
425 => 0.0095765910063505
426 => 0.0091572429460366
427 => 0.009018583962359
428 => 0.0089528796433851
429 => 0.0087505357717168
430 => 0.0089687462896586
501 => 0.0088416043655599
502 => 0.0088587601549074
503 => 0.0088475874245887
504 => 0.0088536884908394
505 => 0.0085297691967439
506 => 0.0086477883628154
507 => 0.0084515586090278
508 => 0.0081888289965298
509 => 0.0081879482347438
510 => 0.0082522509351939
511 => 0.0082140011728013
512 => 0.008111072045694
513 => 0.0081256926423878
514 => 0.0079976008308352
515 => 0.0081412453074874
516 => 0.0081453645170931
517 => 0.0080900535692145
518 => 0.0083113577046151
519 => 0.0084020261894558
520 => 0.0083656193386868
521 => 0.0083994717877526
522 => 0.008683892324379
523 => 0.0087302652819871
524 => 0.008750861086531
525 => 0.0087232654368634
526 => 0.008404670473044
527 => 0.0084188015144598
528 => 0.008315117308644
529 => 0.0082275150807022
530 => 0.0082310187104067
531 => 0.0082760576430613
601 => 0.0084727453034624
602 => 0.0088866628894058
603 => 0.0089023707592225
604 => 0.0089214091556713
605 => 0.0088439704293827
606 => 0.0088206141685453
607 => 0.0088514271053523
608 => 0.0090068727878799
609 => 0.0094067212864319
610 => 0.0092653881220603
611 => 0.0091504820594445
612 => 0.0092512856548106
613 => 0.0092357677314287
614 => 0.0091047808413991
615 => 0.0091011044756614
616 => 0.0088496987546527
617 => 0.0087567597838271
618 => 0.0086790930234438
619 => 0.0085942829486474
620 => 0.0085440046934487
621 => 0.0086212549444923
622 => 0.0086389229909041
623 => 0.0084700139668939
624 => 0.0084469922910616
625 => 0.0085849270462228
626 => 0.0085242271032023
627 => 0.0085866584998851
628 => 0.0086011431194421
629 => 0.0085988107620843
630 => 0.0085354330502269
701 => 0.0085758281138142
702 => 0.0084802817460821
703 => 0.0083763894217738
704 => 0.0083101125915856
705 => 0.0082522772669006
706 => 0.0082843676664446
707 => 0.0081699712515456
708 => 0.0081333735360745
709 => 0.0085621431751885
710 => 0.0088788799176525
711 => 0.0088742744399755
712 => 0.0088462397790498
713 => 0.0088045859595375
714 => 0.0090038255515369
715 => 0.0089344144616057
716 => 0.0089849168290213
717 => 0.0089977718011063
718 => 0.0090366799299375
719 => 0.009050586241728
720 => 0.0090085517089426
721 => 0.0088674786828289
722 => 0.0085159381145743
723 => 0.0083522950310862
724 => 0.008298290087844
725 => 0.0083002530649609
726 => 0.008246105392962
727 => 0.0082620543090941
728 => 0.0082405590108021
729 => 0.0081998521161082
730 => 0.0082818541304063
731 => 0.0082913040986526
801 => 0.0082721638486643
802 => 0.0082766720704237
803 => 0.0081181989754285
804 => 0.0081302473406555
805 => 0.0080631605120393
806 => 0.0080505825404175
807 => 0.0078809928795941
808 => 0.007580540213031
809 => 0.007747020155953
810 => 0.0075459357955256
811 => 0.0074697821013065
812 => 0.0078302818454104
813 => 0.0077940976698088
814 => 0.007732166090062
815 => 0.0076405563759442
816 => 0.0076065774418559
817 => 0.0074001321947586
818 => 0.0073879343082176
819 => 0.0074902541471695
820 => 0.0074430370621039
821 => 0.0073767263921632
822 => 0.0071365558674431
823 => 0.0068665246799296
824 => 0.0068746752241251
825 => 0.0069605671207643
826 => 0.0072103093943431
827 => 0.0071127307674707
828 => 0.007041936354089
829 => 0.0070286786885348
830 => 0.0071946261297477
831 => 0.0074294765261277
901 => 0.0075396630776278
902 => 0.0074304715515066
903 => 0.0073050382055878
904 => 0.0073126727521517
905 => 0.0073634619701043
906 => 0.0073687991987903
907 => 0.0072871549853534
908 => 0.0073101373532022
909 => 0.0072752250348882
910 => 0.0070609682018382
911 => 0.0070570929751441
912 => 0.0070045108929554
913 => 0.0070029187284042
914 => 0.0069134634893863
915 => 0.0069009480830728
916 => 0.0067233292764577
917 => 0.006840238512851
918 => 0.0067618219350888
919 => 0.0066436296558004
920 => 0.0066232532623017
921 => 0.006622640723308
922 => 0.0067439977668271
923 => 0.00683882038514
924 => 0.006763186025032
925 => 0.0067459655473459
926 => 0.0069298351965902
927 => 0.0069064361077148
928 => 0.0068861726476566
929 => 0.0074084482489936
930 => 0.006995026356862
1001 => 0.006814750814596
1002 => 0.0065916255976448
1003 => 0.0066642762933791
1004 => 0.0066795848624311
1005 => 0.0061430089370069
1006 => 0.0059253201508886
1007 => 0.0058506175629216
1008 => 0.0058076251674071
1009 => 0.0058272173419076
1010 => 0.0056312719020532
1011 => 0.0057629504782738
1012 => 0.0055932782902156
1013 => 0.0055648321957266
1014 => 0.0058682270863254
1015 => 0.005910442712945
1016 => 0.0057303377344187
1017 => 0.00584599428698
1018 => 0.0058040556132749
1019 => 0.0055961868328911
1020 => 0.0055882477744597
1021 => 0.0054839465274041
1022 => 0.0053207352724632
1023 => 0.0052461433494125
1024 => 0.005207295228251
1025 => 0.005223324720177
1026 => 0.0052152197185487
1027 => 0.0051623291004893
1028 => 0.0052182513468643
1029 => 0.0050753931160438
1030 => 0.0050185058174442
1031 => 0.004992811144442
1101 => 0.0048660162419759
1102 => 0.0050678033177485
1103 => 0.0051075579137223
1104 => 0.005147390838531
1105 => 0.005494109253898
1106 => 0.0054767881816823
1107 => 0.0056333622388076
1108 => 0.0056272780588689
1109 => 0.0055826206014452
1110 => 0.0053942181343699
1111 => 0.005469311999795
1112 => 0.0052381847541941
1113 => 0.0054113610017233
1114 => 0.005332330594364
1115 => 0.0053846407414977
1116 => 0.0052905823803355
1117 => 0.0053426381609772
1118 => 0.005116985203226
1119 => 0.0049062736463007
1120 => 0.0049910701278612
1121 => 0.0050832536009715
1122 => 0.0052831308585866
1123 => 0.0051640856129026
1124 => 0.0052068987848497
1125 => 0.0050634818256654
1126 => 0.0047675716738391
1127 => 0.0047692464931627
1128 => 0.0047237271630573
1129 => 0.0046843918159153
1130 => 0.0051777593914129
1201 => 0.0051164013344126
1202 => 0.0050186353009265
1203 => 0.0051494990218153
1204 => 0.0051841014667049
1205 => 0.0051850865496656
1206 => 0.0052805613423445
1207 => 0.005331516256312
1208 => 0.0053404972807501
1209 => 0.0054907289298998
1210 => 0.0055410845970914
1211 => 0.005748492463653
1212 => 0.0053271930878641
1213 => 0.0053185167044634
1214 => 0.0051513405427362
1215 => 0.0050453147780183
1216 => 0.0051586002175555
1217 => 0.0052589556519808
1218 => 0.0051544588658235
1219 => 0.0051681039400481
1220 => 0.0050278255423331
1221 => 0.0050779684688041
1222 => 0.0051211583120626
1223 => 0.0050973114191969
1224 => 0.0050616114663743
1225 => 0.0052507276507962
1226 => 0.0052400569745188
1227 => 0.0054161663132148
1228 => 0.0055534561364279
1229 => 0.0057995040431173
1230 => 0.0055427402257195
1231 => 0.0055333827316698
]
'min_raw' => 0.0046843918159153
'max_raw' => 0.013543954350674
'avg_raw' => 0.0091141730832945
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004684'
'max' => '$0.013543'
'avg' => '$0.009114'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00082369466858998
'max_diff' => -0.0045751546972438
'year' => 2030
]
5 => [
'items' => [
101 => 0.005624853736995
102 => 0.0055410705933571
103 => 0.0055940186480404
104 => 0.0057909732929341
105 => 0.0057951346342236
106 => 0.0057254268060385
107 => 0.0057211850783583
108 => 0.0057345732292814
109 => 0.0058129880474089
110 => 0.0057855875005112
111 => 0.0058172961070782
112 => 0.0058569482051298
113 => 0.006020966094812
114 => 0.0060605102527344
115 => 0.0059644384502781
116 => 0.0059731126583695
117 => 0.0059371791670209
118 => 0.0059024678646234
119 => 0.0059804938032343
120 => 0.0061230877396492
121 => 0.0061222006701714
122 => 0.0061552796917897
123 => 0.0061758876482164
124 => 0.0060874232132867
125 => 0.0060298361190749
126 => 0.0060519186753577
127 => 0.0060872291637495
128 => 0.0060404679598752
129 => 0.0057518361476663
130 => 0.0058393886016189
131 => 0.0058248155921849
201 => 0.0058040618546124
202 => 0.0058920965240849
203 => 0.0058836053654523
204 => 0.0056292621983526
205 => 0.0056455444226959
206 => 0.0056302523743433
207 => 0.0056796641110293
208 => 0.0055384021974206
209 => 0.0055818534106331
210 => 0.0056091056042302
211 => 0.0056251573556201
212 => 0.0056831472884294
213 => 0.0056763428391315
214 => 0.0056827243143071
215 => 0.0057687080758886
216 => 0.006203584435904
217 => 0.006227253796679
218 => 0.0061106972075608
219 => 0.0061572592659365
220 => 0.006067870295858
221 => 0.0061278777103257
222 => 0.0061689332592815
223 => 0.0059834111280784
224 => 0.0059724257114972
225 => 0.0058826678013418
226 => 0.0059308986181114
227 => 0.0058541599207125
228 => 0.0058729889128485
301 => 0.0058203414093542
302 => 0.0059150964336306
303 => 0.0060210472742138
304 => 0.0060478146406706
305 => 0.0059774012235986
306 => 0.0059264172691681
307 => 0.0058369062403469
308 => 0.00598576507616
309 => 0.0060292959361426
310 => 0.0059855364270842
311 => 0.0059753963926712
312 => 0.0059561810457812
313 => 0.0059794730193507
314 => 0.0060290588577304
315 => 0.0060056750920572
316 => 0.0060211204812532
317 => 0.005962258584854
318 => 0.0060874524986957
319 => 0.0062862905634325
320 => 0.0062869298603239
321 => 0.0062635459686035
322 => 0.0062539777839245
323 => 0.0062779710758828
324 => 0.0062909864525139
325 => 0.0063685763590899
326 => 0.0064518334201642
327 => 0.0068403577962964
328 => 0.0067312617061839
329 => 0.007075983646107
330 => 0.0073486139440445
331 => 0.0074303638497179
401 => 0.0073551577831286
402 => 0.0070978818918788
403 => 0.0070852587092546
404 => 0.0074697375098614
405 => 0.0073611046384453
406 => 0.0073481831040573
407 => 0.0072107198094457
408 => 0.0072919776417214
409 => 0.0072742053618223
410 => 0.0072461509485517
411 => 0.0074011852320641
412 => 0.0076913955707932
413 => 0.007646163567927
414 => 0.0076123999760395
415 => 0.0074644577448226
416 => 0.0075535520121088
417 => 0.0075218272500165
418 => 0.0076581369609966
419 => 0.0075773901078418
420 => 0.007360281637601
421 => 0.0073948568770857
422 => 0.0073896308991933
423 => 0.0074971811539019
424 => 0.0074648972369998
425 => 0.0073833269462798
426 => 0.0076904036634053
427 => 0.0076704638094457
428 => 0.0076987339634753
429 => 0.0077111793595626
430 => 0.0078980915459783
501 => 0.0079746634882299
502 => 0.0079920466597015
503 => 0.008064784082554
504 => 0.0079902368863587
505 => 0.0082884788223901
506 => 0.0084867923069516
507 => 0.0087171436243883
508 => 0.0090537488117606
509 => 0.0091803154759846
510 => 0.0091574523409468
511 => 0.0094126625523906
512 => 0.0098712696293507
513 => 0.0092501499432786
514 => 0.0099041904809089
515 => 0.0096971287979563
516 => 0.0092061892725562
517 => 0.0091745785549172
518 => 0.0095070485014432
519 => 0.010244434843791
520 => 0.0100597279284
521 => 0.010244736958136
522 => 0.010028914097616
523 => 0.010018196673493
524 => 0.010234254923526
525 => 0.01073908680145
526 => 0.010499260099588
527 => 0.010155409714549
528 => 0.010409303487957
529 => 0.010189357204672
530 => 0.0096937566693415
531 => 0.010059586686503
601 => 0.0098149665722661
602 => 0.0098863597263209
603 => 0.01040051482195
604 => 0.010338650320559
605 => 0.010418708713858
606 => 0.010277407745177
607 => 0.010145410359312
608 => 0.0098990274363396
609 => 0.0098260855993787
610 => 0.0098462440989424
611 => 0.0098260756098275
612 => 0.0096882266288004
613 => 0.0096584581544723
614 => 0.0096088427264054
615 => 0.0096242206222163
616 => 0.009530929101945
617 => 0.0097069894757085
618 => 0.0097396678325177
619 => 0.0098677898903261
620 => 0.0098810919473964
621 => 0.010237910054689
622 => 0.010041380637277
623 => 0.010173229538011
624 => 0.010161435731319
625 => 0.0092168294207305
626 => 0.0093469878359975
627 => 0.0095494734841924
628 => 0.0094582539741434
629 => 0.0093292909290122
630 => 0.0092251463555078
701 => 0.0090673566773191
702 => 0.0092894426192873
703 => 0.0095814620167684
704 => 0.0098884980412219
705 => 0.010257381706806
706 => 0.010175051166926
707 => 0.0098816020176839
708 => 0.0098947659321542
709 => 0.0099761400716001
710 => 0.0098707531673975
711 => 0.0098396725119514
712 => 0.0099718700668177
713 => 0.0099727804387236
714 => 0.0098515200690057
715 => 0.0097167613584776
716 => 0.0097161967145601
717 => 0.0096922177036363
718 => 0.010033179910389
719 => 0.010220674648936
720 => 0.010242170618548
721 => 0.01021922779891
722 => 0.010228057579621
723 => 0.010118958522425
724 => 0.010368326614854
725 => 0.010597171436415
726 => 0.01053583613568
727 => 0.010443885800552
728 => 0.010370642929694
729 => 0.010518582442998
730 => 0.010511994929349
731 => 0.010595172676539
801 => 0.010591399253468
802 => 0.010563429705562
803 => 0.010535837134561
804 => 0.010645238559656
805 => 0.010613732706162
806 => 0.010582177915375
807 => 0.010518889951655
808 => 0.010527491837027
809 => 0.01043555737842
810 => 0.010393024291234
811 => 0.0097534287111016
812 => 0.0095825078727017
813 => 0.0096362830478768
814 => 0.0096539872318163
815 => 0.0095796022639036
816 => 0.0096862511999599
817 => 0.0096696300762447
818 => 0.0097342931455884
819 => 0.0096938944672065
820 => 0.009695552443059
821 => 0.0098143563422735
822 => 0.0098488456196434
823 => 0.0098313040948105
824 => 0.0098435895775152
825 => 0.010126703341067
826 => 0.010086453617358
827 => 0.010065071753845
828 => 0.010070994676164
829 => 0.010143336312779
830 => 0.010163588021325
831 => 0.010077780109156
901 => 0.010118247616584
902 => 0.010290553127123
903 => 0.010350850304164
904 => 0.010543289948993
905 => 0.010461538167528
906 => 0.010611597100541
907 => 0.011072827101765
908 => 0.011441289541431
909 => 0.01110243625456
910 => 0.011779070601597
911 => 0.012305927498198
912 => 0.01228570585298
913 => 0.012193836166638
914 => 0.011594023597073
915 => 0.011042067127858
916 => 0.011503802151666
917 => 0.011504979209199
918 => 0.011465315761161
919 => 0.011218969491864
920 => 0.011456743444976
921 => 0.011475617077906
922 => 0.011465052862369
923 => 0.011276179755289
924 => 0.010987805430361
925 => 0.011044153083182
926 => 0.011136451687962
927 => 0.010961711173607
928 => 0.010905870991369
929 => 0.011009688514178
930 => 0.011344210203909
1001 => 0.011280970816218
1002 => 0.011279319380235
1003 => 0.011549884298453
1004 => 0.011356218208573
1005 => 0.011044863807534
1006 => 0.010966242715012
1007 => 0.010687190802072
1008 => 0.010879932952288
1009 => 0.010886869399142
1010 => 0.010781306493246
1011 => 0.011053429655557
1012 => 0.01105092199271
1013 => 0.011309262435137
1014 => 0.011803112332819
1015 => 0.011657056617197
1016 => 0.011487209710745
1017 => 0.01150567677882
1018 => 0.011708214934997
1019 => 0.011585755742276
1020 => 0.011629792921794
1021 => 0.011708148279452
1022 => 0.01175542201218
1023 => 0.011498874816182
1024 => 0.011439061392724
1025 => 0.011316704119987
1026 => 0.011284783391437
1027 => 0.011384440837013
1028 => 0.011358184621053
1029 => 0.010886286417643
1030 => 0.01083697042977
1031 => 0.010838482880711
1101 => 0.010714475484357
1102 => 0.010525334439731
1103 => 0.011022385811983
1104 => 0.010982465630561
1105 => 0.010938396839849
1106 => 0.010943795015258
1107 => 0.011159548169318
1108 => 0.011034400444168
1109 => 0.011367126182789
1110 => 0.01129872777358
1111 => 0.011228575203265
1112 => 0.011218877981148
1113 => 0.011191875226713
1114 => 0.011099272734473
1115 => 0.010987449660545
1116 => 0.01091361438119
1117 => 0.010067232375174
1118 => 0.010224315952313
1119 => 0.010405026289193
1120 => 0.010467406773332
1121 => 0.010360700638613
1122 => 0.011103486143053
1123 => 0.011239200212373
1124 => 0.010828113443992
1125 => 0.01075121589419
1126 => 0.011108527533616
1127 => 0.010893024935471
1128 => 0.01099006574222
1129 => 0.010780316596511
1130 => 0.011206510667246
1201 => 0.011203263782497
1202 => 0.011037464662952
1203 => 0.011177596943448
1204 => 0.011153245511226
1205 => 0.010966058713604
1206 => 0.011212444822609
1207 => 0.011212567027046
1208 => 0.011052988979267
1209 => 0.010866636755588
1210 => 0.010833321379437
1211 => 0.010808222718799
1212 => 0.010983893010279
1213 => 0.011141398444313
1214 => 0.011434477008143
1215 => 0.011508163922464
1216 => 0.011795768854678
1217 => 0.011624514120775
1218 => 0.011700429126194
1219 => 0.011782845603409
1220 => 0.011822359093352
1221 => 0.011757973981901
1222 => 0.012204742824541
1223 => 0.012242463803503
1224 => 0.012255111321464
1225 => 0.012104463381443
1226 => 0.012238274011771
1227 => 0.012175668449183
1228 => 0.012338550730712
1229 => 0.012364092752241
1230 => 0.012342459568689
1231 => 0.012350567009476
]
'min_raw' => 0.0055384021974206
'max_raw' => 0.012364092752241
'avg_raw' => 0.0089512474748307
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005538'
'max' => '$0.012364'
'avg' => '$0.008951'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00085401038150529
'max_diff' => -0.0011798615984329
'year' => 2031
]
6 => [
'items' => [
101 => 0.011969328617708
102 => 0.011949559395902
103 => 0.011680004653818
104 => 0.011789850203665
105 => 0.01158449921326
106 => 0.011649618127667
107 => 0.011678321924662
108 => 0.011663328690038
109 => 0.011796060706243
110 => 0.011683211377109
111 => 0.011385383443379
112 => 0.011087474366627
113 => 0.01108373436084
114 => 0.011005300159463
115 => 0.010948606597808
116 => 0.010959527789095
117 => 0.010998015491663
118 => 0.010946369622568
119 => 0.010957390887252
120 => 0.0111404173153
121 => 0.011177121960161
122 => 0.011052385235495
123 => 0.010551549286536
124 => 0.01042864288841
125 => 0.010516985570044
126 => 0.01047476345822
127 => 0.0084539516325524
128 => 0.0089287113958675
129 => 0.0086466252658238
130 => 0.0087766235327068
131 => 0.0084886866397814
201 => 0.0086261052171509
202 => 0.0086007290236337
203 => 0.0093641286738818
204 => 0.0093522092383651
205 => 0.0093579144413844
206 => 0.0090855902364425
207 => 0.0095194100893229
208 => 0.0097331253485092
209 => 0.0096935723418813
210 => 0.0097035269815135
211 => 0.0095324732913337
212 => 0.0093595706150102
213 => 0.0091677949374364
214 => 0.0095240904421784
215 => 0.0094844764642182
216 => 0.0095753366769996
217 => 0.0098064197803535
218 => 0.0098404476451217
219 => 0.0098861814404467
220 => 0.0098697891303759
221 => 0.010260320460332
222 => 0.010213024539465
223 => 0.010326994100788
224 => 0.010092550066256
225 => 0.0098272543875504
226 => 0.0098776784229031
227 => 0.0098728221828142
228 => 0.009810996672749
229 => 0.0097551833666674
301 => 0.0096622699373431
302 => 0.0099562617763254
303 => 0.0099443262445549
304 => 0.010137548630382
305 => 0.010103394696825
306 => 0.0098753063696456
307 => 0.0098834525888724
308 => 0.0099382398281119
309 => 0.010127859088669
310 => 0.010184150995467
311 => 0.010158074341394
312 => 0.010219795847373
313 => 0.010268578009112
314 => 0.010225922135824
315 => 0.010829839348294
316 => 0.010579050816716
317 => 0.010701283402032
318 => 0.010730435153393
319 => 0.010655763555276
320 => 0.010671957151118
321 => 0.010696486036328
322 => 0.010845420624077
323 => 0.011236268076899
324 => 0.011409371753166
325 => 0.011930162703999
326 => 0.011394997902572
327 => 0.011363243437987
328 => 0.011457053614612
329 => 0.011762813034072
330 => 0.012010602325022
331 => 0.012092808328137
401 => 0.012103673208522
402 => 0.012257897135318
403 => 0.012346295414052
404 => 0.012239170294113
405 => 0.012148392971433
406 => 0.011823239869288
407 => 0.011860877226224
408 => 0.01212016129234
409 => 0.012486415307485
410 => 0.012800699354715
411 => 0.01269064803528
412 => 0.013530261918445
413 => 0.013613506205446
414 => 0.013602004536592
415 => 0.013791647410791
416 => 0.013415244925606
417 => 0.013254325570736
418 => 0.012168020058963
419 => 0.012473227597945
420 => 0.012916864680066
421 => 0.012858147648693
422 => 0.012535966541204
423 => 0.012800454951454
424 => 0.012713006811708
425 => 0.012644032835664
426 => 0.012960015991186
427 => 0.012612579531817
428 => 0.012913398735608
429 => 0.012527594995169
430 => 0.012691150740437
501 => 0.012598308589122
502 => 0.012658388839329
503 => 0.01230716092426
504 => 0.012496674981655
505 => 0.012299276516408
506 => 0.012299182923833
507 => 0.012294825341772
508 => 0.012527063760737
509 => 0.012534637047242
510 => 0.012363012504734
511 => 0.012338278726879
512 => 0.012429732467106
513 => 0.012322664089073
514 => 0.012372760709274
515 => 0.012324181464665
516 => 0.012313245253468
517 => 0.012226103662007
518 => 0.012188560668398
519 => 0.012203282243556
520 => 0.01215302991805
521 => 0.012122751074226
522 => 0.012288802117628
523 => 0.012200087743618
524 => 0.012275205367468
525 => 0.012189599354491
526 => 0.011892851616751
527 => 0.011722188854725
528 => 0.011161659886662
529 => 0.011320625206671
530 => 0.011426019378298
531 => 0.011391186605204
601 => 0.011466020880304
602 => 0.011470615097016
603 => 0.011446285711336
604 => 0.011418115399506
605 => 0.011404403649623
606 => 0.011506599799425
607 => 0.011565928104149
608 => 0.011436597093413
609 => 0.011406296647131
610 => 0.011537057439546
611 => 0.011616821447381
612 => 0.01220575406571
613 => 0.012162124035117
614 => 0.012271626849945
615 => 0.012259298513453
616 => 0.012374074908559
617 => 0.012561685806433
618 => 0.012180220394223
619 => 0.012246429599701
620 => 0.012230196631511
621 => 0.012407423921691
622 => 0.012407977205946
623 => 0.012301720592323
624 => 0.012359324026385
625 => 0.012327171369759
626 => 0.012385275565974
627 => 0.012161541329459
628 => 0.012434025478916
629 => 0.012588506433167
630 => 0.012590651401367
701 => 0.012663874147645
702 => 0.012738272698639
703 => 0.012881074238525
704 => 0.012734290041198
705 => 0.012470239559359
706 => 0.01248930315127
707 => 0.012334490450381
708 => 0.012337092879852
709 => 0.012323200907379
710 => 0.012364891762509
711 => 0.01217069012768
712 => 0.01221626886321
713 => 0.012152458366559
714 => 0.012246290888143
715 => 0.01214534260599
716 => 0.012230188803483
717 => 0.012266805609624
718 => 0.012401922412591
719 => 0.012125385744332
720 => 0.011561508757864
721 => 0.011680042536768
722 => 0.011504721767143
723 => 0.011520948371865
724 => 0.011553728695848
725 => 0.011447476940763
726 => 0.011467746427256
727 => 0.011467022258564
728 => 0.011460781764006
729 => 0.011433141578871
730 => 0.011393057841981
731 => 0.011552739112627
801 => 0.011579872072104
802 => 0.011640185279957
803 => 0.01181963647569
804 => 0.011801705069486
805 => 0.011830951936972
806 => 0.011767106189464
807 => 0.011523909992977
808 => 0.011537116716499
809 => 0.011372428662563
810 => 0.011635973836149
811 => 0.011573562860418
812 => 0.011533326098356
813 => 0.011522347125037
814 => 0.011702243145574
815 => 0.011756070854443
816 => 0.011722529038519
817 => 0.011653733795487
818 => 0.011785840999596
819 => 0.01182118731426
820 => 0.011829100050592
821 => 0.012063168687228
822 => 0.011842181887201
823 => 0.011895375606388
824 => 0.012310377818663
825 => 0.01193402807852
826 => 0.012133388929475
827 => 0.012123631253244
828 => 0.012225617518589
829 => 0.01211526540273
830 => 0.012116633349462
831 => 0.01220719024394
901 => 0.012080019417667
902 => 0.012048530132675
903 => 0.012005027910988
904 => 0.012100013420544
905 => 0.012156952937697
906 => 0.012615843628488
907 => 0.012912307942697
908 => 0.012899437644948
909 => 0.013017048074184
910 => 0.012964063498625
911 => 0.012792962327521
912 => 0.013085011163032
913 => 0.012992594691634
914 => 0.01300021339325
915 => 0.012999929824795
916 => 0.013061378699087
917 => 0.013017836539944
918 => 0.012932010474764
919 => 0.012988985822166
920 => 0.013158182234888
921 => 0.013683373091559
922 => 0.013977276852805
923 => 0.013665679716095
924 => 0.013880615248545
925 => 0.013751730518436
926 => 0.013728308328987
927 => 0.013863303726977
928 => 0.01399853541654
929 => 0.013989921742538
930 => 0.013891750480139
1001 => 0.013836296025013
1002 => 0.01425621573783
1003 => 0.014565605429088
1004 => 0.014544507126319
1005 => 0.014637628173206
1006 => 0.014911034446991
1007 => 0.014936031290226
1008 => 0.014932882262525
1009 => 0.014870924978414
1010 => 0.015140128961246
1011 => 0.015364703659918
1012 => 0.01485658365726
1013 => 0.015050069102493
1014 => 0.01513693095257
1015 => 0.015264469919232
1016 => 0.015479649534004
1017 => 0.01571339166922
1018 => 0.015746445369992
1019 => 0.015722992187529
1020 => 0.015568832966028
1021 => 0.015824596399506
1022 => 0.015974416620446
1023 => 0.016063631133442
1024 => 0.016289864294518
1025 => 0.015137467381784
1026 => 0.014321743569109
1027 => 0.014194356516565
1028 => 0.014453403097161
1029 => 0.014521711614607
1030 => 0.014494176536876
1031 => 0.013576005223345
1101 => 0.014189522534619
1102 => 0.014849615575549
1103 => 0.014874972437564
1104 => 0.015205428815748
1105 => 0.01531303895835
1106 => 0.015579099656695
1107 => 0.015562457487573
1108 => 0.01562723903367
1109 => 0.015612346878083
1110 => 0.016105168296078
1111 => 0.016648823504816
1112 => 0.016629998453655
1113 => 0.016551841585163
1114 => 0.016667917862601
1115 => 0.017229028299651
1116 => 0.017177370242219
1117 => 0.017227551644791
1118 => 0.017889132472872
1119 => 0.018749281658153
1120 => 0.018349656004024
1121 => 0.0192167286843
1122 => 0.019762504974986
1123 => 0.020706368635405
1124 => 0.020588192256494
1125 => 0.020955631453104
1126 => 0.020376631874089
1127 => 0.019047131805549
1128 => 0.018836733330581
1129 => 0.019257956405605
1130 => 0.020293492233206
1201 => 0.019225343697235
1202 => 0.019441428754902
1203 => 0.019379196243757
1204 => 0.019375880137709
1205 => 0.019502442417975
1206 => 0.019318857229405
1207 => 0.018570898144827
1208 => 0.018913683385539
1209 => 0.018781317542201
1210 => 0.018928187313912
1211 => 0.019720782898133
1212 => 0.01937035749723
1213 => 0.019001212803626
1214 => 0.019464202169171
1215 => 0.020053746731915
1216 => 0.020016854092692
1217 => 0.019945266952673
1218 => 0.020348799912783
1219 => 0.021015318138823
1220 => 0.021195475337034
1221 => 0.021328463697602
1222 => 0.021346800545667
1223 => 0.02153568147703
1224 => 0.02052002110497
1225 => 0.022131900199437
1226 => 0.022410227191791
1227 => 0.0223579132527
1228 => 0.02266726199091
1229 => 0.022576243744709
1230 => 0.022444372586288
1231 => 0.022934756136715
]
'min_raw' => 0.0084539516325524
'max_raw' => 0.022934756136715
'avg_raw' => 0.015694353884634
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008453'
'max' => '$0.022934'
'avg' => '$0.015694'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0029155494351318
'max_diff' => 0.010570663384474
'year' => 2032
]
7 => [
'items' => [
101 => 0.022372570968063
102 => 0.021574619898305
103 => 0.021136848159753
104 => 0.021713341299117
105 => 0.022065385542488
106 => 0.022298064393138
107 => 0.022368472872756
108 => 0.020598863928438
109 => 0.019645142854463
110 => 0.020256467128447
111 => 0.021002324934055
112 => 0.0205158778272
113 => 0.020534945632823
114 => 0.019841399894499
115 => 0.021063688342667
116 => 0.020885611196833
117 => 0.021809475744434
118 => 0.021588988055673
119 => 0.022342363730026
120 => 0.0221439746666
121 => 0.022967476577096
122 => 0.023295993784617
123 => 0.023847625305666
124 => 0.024253407698093
125 => 0.024491690880307
126 => 0.024477385251825
127 => 0.025421581931965
128 => 0.024864822137406
129 => 0.024165400617231
130 => 0.024152750288577
131 => 0.024514990604756
201 => 0.025274146931688
202 => 0.025470985121986
203 => 0.025580990817203
204 => 0.025412513265652
205 => 0.024808190411992
206 => 0.024547246867768
207 => 0.024769578327709
208 => 0.024497686057361
209 => 0.024967048395479
210 => 0.0256115831361
211 => 0.025478489260929
212 => 0.025923402131079
213 => 0.026383840145485
214 => 0.027042287185652
215 => 0.027214429624175
216 => 0.027498974529062
217 => 0.027791864704323
218 => 0.027885933135006
219 => 0.028065538956898
220 => 0.028064592345561
221 => 0.0286058465787
222 => 0.029202866759101
223 => 0.029428228056153
224 => 0.029946433932231
225 => 0.029059024529548
226 => 0.029732134755307
227 => 0.030339297027984
228 => 0.029615413136137
301 => 0.030613118437733
302 => 0.030651857073746
303 => 0.031236764484902
304 => 0.030643848768994
305 => 0.030291777309541
306 => 0.031308194421035
307 => 0.031800006644448
308 => 0.031651868800256
309 => 0.030524532491482
310 => 0.029868374406047
311 => 0.028151082133021
312 => 0.030185289011926
313 => 0.031176091844012
314 => 0.030521966551507
315 => 0.030851869300851
316 => 0.032651711729942
317 => 0.033336975195773
318 => 0.033194445185233
319 => 0.033218530410771
320 => 0.033588286138521
321 => 0.035227986663566
322 => 0.034245440100998
323 => 0.034996560132764
324 => 0.035394951489247
325 => 0.035764999583741
326 => 0.034856278418566
327 => 0.033674045534439
328 => 0.033299582753276
329 => 0.030456926682568
330 => 0.030308954089058
331 => 0.030225892588293
401 => 0.029702201575248
402 => 0.029290723890036
403 => 0.028963501557569
404 => 0.028104772440314
405 => 0.02839456830913
406 => 0.027025933326922
407 => 0.027901537487093
408 => 0.025717163008641
409 => 0.027536374983334
410 => 0.026546260614927
411 => 0.027211095784272
412 => 0.027208776236997
413 => 0.025984603904052
414 => 0.025278526850233
415 => 0.025728466629856
416 => 0.026210837789876
417 => 0.026289100887698
418 => 0.02691450768784
419 => 0.027089045282685
420 => 0.026560188221923
421 => 0.025671896702811
422 => 0.025878226562928
423 => 0.025274345582204
424 => 0.02421606739143
425 => 0.024976141263808
426 => 0.025235663901927
427 => 0.025350283883599
428 => 0.024309588827044
429 => 0.023982579845686
430 => 0.023808483007882
501 => 0.025537556039499
502 => 0.025632278563333
503 => 0.025147664738984
504 => 0.027338165178007
505 => 0.026842387465022
506 => 0.027396292638915
507 => 0.02585950429077
508 => 0.025918211675229
509 => 0.025190671443092
510 => 0.025598045358833
511 => 0.025310126605461
512 => 0.025565133572188
513 => 0.025717983696612
514 => 0.026445404546556
515 => 0.027544680960968
516 => 0.026336752128922
517 => 0.02581044023894
518 => 0.026136961175394
519 => 0.027006529457598
520 => 0.028323969917518
521 => 0.027544018649286
522 => 0.027890147777696
523 => 0.02796576159404
524 => 0.027390654404211
525 => 0.028345174939932
526 => 0.028856710249536
527 => 0.029381439629872
528 => 0.029837047448234
529 => 0.029171851176319
530 => 0.029883706539408
531 => 0.029310076776146
601 => 0.028795471577744
602 => 0.028796252021411
603 => 0.028473432663271
604 => 0.027847929479019
605 => 0.027732577094903
606 => 0.028332654764478
607 => 0.02881386022791
608 => 0.028853494614697
609 => 0.029119914684483
610 => 0.029277579337437
611 => 0.030822907271089
612 => 0.031444450949628
613 => 0.032204462794524
614 => 0.032500530240032
615 => 0.033391587104957
616 => 0.03267198631843
617 => 0.032516296161764
618 => 0.030354883669935
619 => 0.030708814844387
620 => 0.031275492803964
621 => 0.030364227980768
622 => 0.030942215766837
623 => 0.031056322799262
624 => 0.030333263550775
625 => 0.030719480736938
626 => 0.029693802395905
627 => 0.027567037945947
628 => 0.028347542636733
629 => 0.028922256804189
630 => 0.028102068825483
701 => 0.029572224031655
702 => 0.028713389710373
703 => 0.028441180461844
704 => 0.027379195133729
705 => 0.027880411329036
706 => 0.028558313409912
707 => 0.028139448738506
708 => 0.02900865582452
709 => 0.030239684867378
710 => 0.031116989472365
711 => 0.031184338026402
712 => 0.030620289940238
713 => 0.031524180598022
714 => 0.031530764454664
715 => 0.030511172100182
716 => 0.029886677460176
717 => 0.029744790964019
718 => 0.030099251249906
719 => 0.030529631473952
720 => 0.031208221133542
721 => 0.031618278652762
722 => 0.032687491185183
723 => 0.032976789439731
724 => 0.033294640511728
725 => 0.033719387565557
726 => 0.034229405306588
727 => 0.033113515524539
728 => 0.033157851905858
729 => 0.032118750791359
730 => 0.031008322228344
731 => 0.031850999090798
801 => 0.032952686991852
802 => 0.032699958570093
803 => 0.032671521459872
804 => 0.032719344791467
805 => 0.0325287958148
806 => 0.031666949855408
807 => 0.031234136210042
808 => 0.031792576235101
809 => 0.032089362255113
810 => 0.032549651489692
811 => 0.032492911126003
812 => 0.033678566762824
813 => 0.034139276690926
814 => 0.034021407376428
815 => 0.03404309816698
816 => 0.034877191485435
817 => 0.035804874799933
818 => 0.036673772642554
819 => 0.0375576528481
820 => 0.036492100761883
821 => 0.035951079126619
822 => 0.036509275354232
823 => 0.036213088578679
824 => 0.037915065645708
825 => 0.038032906845102
826 => 0.039734760839817
827 => 0.041350022933805
828 => 0.040335505752997
829 => 0.041292149759642
830 => 0.042326838249158
831 => 0.044322920217592
901 => 0.043650710033634
902 => 0.043135807567598
903 => 0.042649227225185
904 => 0.043661723675292
905 => 0.044964284183329
906 => 0.045244843240991
907 => 0.045699456096212
908 => 0.045221486266362
909 => 0.045797148279767
910 => 0.047829488145789
911 => 0.04728033197403
912 => 0.046500441928871
913 => 0.048104779065101
914 => 0.048685382437999
915 => 0.052760360973349
916 => 0.057905189703196
917 => 0.055775196826272
918 => 0.054453041513126
919 => 0.054763779373658
920 => 0.056642496662355
921 => 0.057245881027978
922 => 0.055605674323151
923 => 0.056185023060031
924 => 0.059377291560555
925 => 0.06108984119085
926 => 0.058763968766808
927 => 0.052346978994314
928 => 0.046430221363267
929 => 0.047999611922089
930 => 0.047821691736577
1001 => 0.051251385996784
1002 => 0.047267234780951
1003 => 0.0473343176695
1004 => 0.050834934374899
1005 => 0.049901029853662
1006 => 0.048388224134713
1007 => 0.046441266519186
1008 => 0.042842135295102
1009 => 0.039654284400732
1010 => 0.045906394122807
1011 => 0.045636791782868
1012 => 0.045246367641807
1013 => 0.046115214319433
1014 => 0.050334087159556
1015 => 0.050236828485433
1016 => 0.04961811842247
1017 => 0.050087404552167
1018 => 0.048305956007212
1019 => 0.048765075860076
1020 => 0.046429284118628
1021 => 0.047485159537042
1022 => 0.048384978333076
1023 => 0.048565630278424
1024 => 0.048972648335611
1025 => 0.045494723600545
1026 => 0.047056209700084
1027 => 0.047973436492102
1028 => 0.043829372476769
1029 => 0.047891521670701
1030 => 0.045434180668591
1031 => 0.044600122224452
1101 => 0.045723072040641
1102 => 0.045285457405168
1103 => 0.044909222039181
1104 => 0.044699276240417
1105 => 0.045523846649977
1106 => 0.045485379454797
1107 => 0.044136222222535
1108 => 0.042376301611735
1109 => 0.042966988736144
1110 => 0.042752386566125
1111 => 0.041974640617744
1112 => 0.042498747481549
1113 => 0.040190846097767
1114 => 0.036220221721245
1115 => 0.038843337807889
1116 => 0.038742350691955
1117 => 0.038691428408699
1118 => 0.040662627650209
1119 => 0.040473142326442
1120 => 0.040129224608359
1121 => 0.041968324299148
1122 => 0.041297028172629
1123 => 0.043365804657303
1124 => 0.044728434650183
1125 => 0.044382827607526
1126 => 0.045664387701992
1127 => 0.04298059697447
1128 => 0.043872044599158
1129 => 0.044055770719113
1130 => 0.04194563009444
1201 => 0.040504144468815
1202 => 0.040408013811725
1203 => 0.037908676385846
1204 => 0.039243802264804
1205 => 0.040418657787023
1206 => 0.039855993164352
1207 => 0.039677870353941
1208 => 0.040587861162204
1209 => 0.04065857524155
1210 => 0.039046286738514
1211 => 0.039381532572832
1212 => 0.04077956343192
1213 => 0.039346305782161
1214 => 0.036561720289985
1215 => 0.03587110458802
1216 => 0.035778963722805
1217 => 0.033905959165651
1218 => 0.035917254831532
1219 => 0.035039270374003
1220 => 0.037812812755471
1221 => 0.036228580221982
1222 => 0.036160287123829
1223 => 0.036057052089551
1224 => 0.034444879694365
1225 => 0.03479784299001
1226 => 0.035971146742562
1227 => 0.036389794739685
1228 => 0.036346126323703
1229 => 0.035965396914081
1230 => 0.036139692888156
1231 => 0.035578224826917
]
'min_raw' => 0.019645142854463
'max_raw' => 0.06108984119085
'avg_raw' => 0.040367492022656
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.019645'
'max' => '$0.061089'
'avg' => '$0.040367'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.01119119122191
'max_diff' => 0.038155085054135
'year' => 2033
]
8 => [
'items' => [
101 => 0.035379958768546
102 => 0.034754176550953
103 => 0.03383444956784
104 => 0.033962343245855
105 => 0.032140123432653
106 => 0.031147281365895
107 => 0.030872475767265
108 => 0.030504994235859
109 => 0.030913983784068
110 => 0.032134961312872
111 => 0.030662203368301
112 => 0.028137263174293
113 => 0.028289016382242
114 => 0.02862996078457
115 => 0.027994613146404
116 => 0.027393309927564
117 => 0.027916094291073
118 => 0.026846243845173
119 => 0.028759247099686
120 => 0.028707505722782
121 => 0.029420555036736
122 => 0.029866439405997
123 => 0.02883882029163
124 => 0.028580376863344
125 => 0.028727597985694
126 => 0.026294360772342
127 => 0.029221707644852
128 => 0.029247023462166
129 => 0.029030254064643
130 => 0.03058897590256
131 => 0.033878365158097
201 => 0.032640764604788
202 => 0.032161528263872
203 => 0.03125049962947
204 => 0.032464391193282
205 => 0.03237118326084
206 => 0.031949661642276
207 => 0.031694724052142
208 => 0.032164454378778
209 => 0.031636519266396
210 => 0.031541687613526
211 => 0.030967110974986
212 => 0.030762013256599
213 => 0.030610167071081
214 => 0.030442999340923
215 => 0.030811729698048
216 => 0.029976138198284
217 => 0.028968496763614
218 => 0.028884722281152
219 => 0.029116030992756
220 => 0.02901369410678
221 => 0.028884232331514
222 => 0.028637054545715
223 => 0.028563722176787
224 => 0.028802016799997
225 => 0.028532996063832
226 => 0.028929950814362
227 => 0.028822001086726
228 => 0.028219002683344
301 => 0.027467443414127
302 => 0.027460752960182
303 => 0.027298830748434
304 => 0.027092598466605
305 => 0.027035229363755
306 => 0.027872066850142
307 => 0.029604295402526
308 => 0.029264217488977
309 => 0.029509958634102
310 => 0.03071876184917
311 => 0.031103004041259
312 => 0.030830278034589
313 => 0.030456953855652
314 => 0.030473378224873
315 => 0.031749139957215
316 => 0.03182870765158
317 => 0.032029749545729
318 => 0.032288145194143
319 => 0.030874283930848
320 => 0.030406785486518
321 => 0.030185258787768
322 => 0.029503042297241
323 => 0.030238754293453
324 => 0.029810086419589
325 => 0.029867928361153
326 => 0.029830258720829
327 => 0.029850828891656
328 => 0.02875871237629
329 => 0.029156622234535
330 => 0.028495019919316
331 => 0.027609208687583
401 => 0.027606239137729
402 => 0.027823040181768
403 => 0.027694078437348
404 => 0.027347045699023
405 => 0.027396340061554
406 => 0.02696446957582
407 => 0.02744877695779
408 => 0.027462665160569
409 => 0.02727618043811
410 => 0.028022322781574
411 => 0.028328017908486
412 => 0.028205269669273
413 => 0.028319405564801
414 => 0.029278349261644
415 => 0.029434698925877
416 => 0.02950413911885
417 => 0.029411098459329
418 => 0.028336933295222
419 => 0.028384577087953
420 => 0.028034998549045
421 => 0.027739641521347
422 => 0.027751454253511
423 => 0.027903306159474
424 => 0.02856645233881
425 => 0.029962004378621
426 => 0.030014964558397
427 => 0.030079153841242
428 => 0.029818063768961
429 => 0.029739316504866
430 => 0.029843204472601
501 => 0.030367300444114
502 => 0.031715417573513
503 => 0.031238902942267
504 => 0.030851489129673
505 => 0.031191355489332
506 => 0.031139035727223
507 => 0.030697404282276
508 => 0.030685009158515
509 => 0.029837377217548
510 => 0.029524026988618
511 => 0.029262168083465
512 => 0.028976224995039
513 => 0.028806708347321
514 => 0.029067162962154
515 => 0.029126732014175
516 => 0.028557243446873
517 => 0.028479624259483
518 => 0.028944680916806
519 => 0.028740026820978
520 => 0.028950518633714
521 => 0.028999354539835
522 => 0.028991490834163
523 => 0.028777808453745
524 => 0.028914003230923
525 => 0.02859186198128
526 => 0.028241581756344
527 => 0.028018124796064
528 => 0.027823128960955
529 => 0.027931323983498
530 => 0.027545628483763
531 => 0.027422236730882
601 => 0.028867863504895
602 => 0.029935763545965
603 => 0.029920235856433
604 => 0.029825715039805
605 => 0.029685276279142
606 => 0.030357026474032
607 => 0.030123002138202
608 => 0.030293274395906
609 => 0.030336615831796
610 => 0.030467797304629
611 => 0.030514683405739
612 => 0.030372961043695
613 => 0.029897323486749
614 => 0.0287120799171
615 => 0.028160345835924
616 => 0.027978264399278
617 => 0.027984882713679
618 => 0.027802320057065
619 => 0.027856092941322
620 => 0.027783620042377
621 => 0.027646373904852
622 => 0.027922849421255
623 => 0.027954710648973
624 => 0.027890177959808
625 => 0.027905377744224
626 => 0.02737107464021
627 => 0.027411696544763
628 => 0.02718550861823
629 => 0.027143101108741
630 => 0.026571317726903
701 => 0.02555832058465
702 => 0.02611961933547
703 => 0.025441649375028
704 => 0.025184891878087
705 => 0.026400341934622
706 => 0.026278344460282
707 => 0.026069537815241
708 => 0.025760669268107
709 => 0.025646106919495
710 => 0.02495006235536
711 => 0.024908936329257
712 => 0.025253914810027
713 => 0.025094719111136
714 => 0.024871148057768
715 => 0.024061396365504
716 => 0.023150967363827
717 => 0.023178447492634
718 => 0.023468038018934
719 => 0.024310061530754
720 => 0.023981068377531
721 => 0.023742380070107
722 => 0.02369768092507
723 => 0.0242571843092
724 => 0.025048998817326
725 => 0.025420500468688
726 => 0.025052353614861
727 => 0.02462944633162
728 => 0.024655186738387
729 => 0.024826426132704
730 => 0.024844420971852
731 => 0.024569151806033
801 => 0.024646638463813
802 => 0.024528929145117
803 => 0.023806547273554
804 => 0.023793481676196
805 => 0.023616197514933
806 => 0.023610829420987
807 => 0.023309224837073
808 => 0.023267028270889
809 => 0.022668174063437
810 => 0.02306234171628
811 => 0.022797954749484
812 => 0.022399461227941
813 => 0.022330760794626
814 => 0.022328695576643
815 => 0.022737859321745
816 => 0.023057560399691
817 => 0.022802553873965
818 => 0.022744493831151
819 => 0.023364423190947
820 => 0.023285531529131
821 => 0.023217211858795
822 => 0.024978100512821
823 => 0.023584219739305
824 => 0.022976408162118
825 => 0.022224125915062
826 => 0.02246907280804
827 => 0.022520686717409
828 => 0.020711583522307
829 => 0.019977630581363
830 => 0.019725765590464
831 => 0.019580813727354
901 => 0.019646870111564
902 => 0.018986226380621
903 => 0.019430189893854
904 => 0.018858128265682
905 => 0.018762220272069
906 => 0.019785137328078
907 => 0.019927470260626
908 => 0.019320233750997
909 => 0.01971017789284
910 => 0.019568778726379
911 => 0.01886793462038
912 => 0.018841167530591
913 => 0.018489508594063
914 => 0.017939230452983
915 => 0.017687738576576
916 => 0.017556759423791
917 => 0.017610803974963
918 => 0.0175834773961
919 => 0.017405152984608
920 => 0.017593698742628
921 => 0.017112042243373
922 => 0.0169202427444
923 => 0.016833611360428
924 => 0.016406113494227
925 => 0.017086452708518
926 => 0.017220488104421
927 => 0.017354787591459
928 => 0.018523772935976
929 => 0.018465373731682
930 => 0.018993274096931
1001 => 0.018972760859484
1002 => 0.018822195123896
1003 => 0.018186983052311
1004 => 0.018440167262479
1005 => 0.017660905617146
1006 => 0.01824478142647
1007 => 0.017978324890332
1008 => 0.018154692203571
1009 => 0.017837567871967
1010 => 0.018013077570819
1011 => 0.017252272869175
1012 => 0.01654184414359
1013 => 0.016827741401473
1014 => 0.017138544417108
1015 => 0.017812444546142
1016 => 0.017411075188845
1017 => 0.017555422787185
1018 => 0.017071882496243
1019 => 0.016074200759573
1020 => 0.016079847529855
1021 => 0.015926375930347
1022 => 0.015793754061151
1023 => 0.017457177287765
1024 => 0.017250304314706
1025 => 0.016920679307001
1026 => 0.017361895478591
1027 => 0.017478560037402
1028 => 0.01748188131338
1029 => 0.017803781242734
1030 => 0.017975579292734
1031 => 0.018005859443662
1101 => 0.018512375937609
1102 => 0.018682153585266
1103 => 0.019381443688133
1104 => 0.017961003428478
1105 => 0.017931750396077
1106 => 0.017368104294947
1107 => 0.017010631026718
1108 => 0.017392580795454
1109 => 0.017730936149212
1110 => 0.01737861793895
1111 => 0.017424623259367
1112 => 0.016951664847545
1113 => 0.01712072522501
1114 => 0.017266342796974
1115 => 0.017185941332741
1116 => 0.017065576449308
1117 => 0.017703194868757
1118 => 0.017667217938685
1119 => 0.01826098286966
1120 => 0.018723865093892
1121 => 0.019553432789812
1122 => 0.018687735652778
1123 => 0.01865618620827
1124 => 0.018964587089026
1125 => 0.018682106370698
1126 => 0.018860624433778
1127 => 0.019524670769971
1128 => 0.019538701022665
1129 => 0.019303676213093
1130 => 0.019289374932072
1201 => 0.019334514017639
1202 => 0.019598895051704
1203 => 0.019506512194793
1204 => 0.019613419975658
1205 => 0.01974710979266
1206 => 0.020300107559087
1207 => 0.020433433448408
1208 => 0.020109520658907
1209 => 0.020138766357101
1210 => 0.020017614082223
1211 => 0.019900582502724
1212 => 0.020163652402348
1213 => 0.020644417814562
1214 => 0.020641426997884
1215 => 0.020752955228773
1216 => 0.020822436392668
1217 => 0.020524172373913
1218 => 0.020330013465175
1219 => 0.020404466345437
1220 => 0.02052351812235
1221 => 0.020365859458724
1222 => 0.019392717152233
1223 => 0.019687906363451
1224 => 0.019638772444689
1225 => 0.019568799769484
1226 => 0.019865614803995
1227 => 0.019836986269831
1228 => 0.018979450524282
1229 => 0.019034347180444
1230 => 0.018982788971766
1231 => 0.01914938409182
]
'min_raw' => 0.015793754061151
'max_raw' => 0.035379958768546
'avg_raw' => 0.025586856414849
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.015793'
'max' => '$0.035379'
'avg' => '$0.025586'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.003851388793312
'max_diff' => -0.025709882422304
'year' => 2034
]
9 => [
'items' => [
101 => 0.018673109687497
102 => 0.01881960848651
103 => 0.018911491159909
104 => 0.018965610760418
105 => 0.019161127867612
106 => 0.019138186191733
107 => 0.019159701780828
108 => 0.019449602036195
109 => 0.020915818046084
110 => 0.020995620948479
111 => 0.020602642270546
112 => 0.020759629501219
113 => 0.02045824834766
114 => 0.020660567535122
115 => 0.020798989184834
116 => 0.020173488366741
117 => 0.02013645026776
118 => 0.019833825206974
119 => 0.019996438773081
120 => 0.019737708897076
121 => 0.01980119215866
122 => 0.019623687424898
123 => 0.019943160604831
124 => 0.020300381261108
125 => 0.020390629305955
126 => 0.020153225554189
127 => 0.019981329592241
128 => 0.019679536909109
129 => 0.020181424867045
130 => 0.020328192200704
131 => 0.020180653960722
201 => 0.020146466126744
202 => 0.020081680243132
203 => 0.020160210758215
204 => 0.020327392874285
205 => 0.020248552875716
206 => 0.020300628083753
207 => 0.020102171090436
208 => 0.020524271111714
209 => 0.021194667529404
210 => 0.021196822963508
211 => 0.021117982539961
212 => 0.021085722737287
213 => 0.021166617796282
214 => 0.021210500047298
215 => 0.021472099834474
216 => 0.021752806828708
217 => 0.023062743888744
218 => 0.022694918804084
219 => 0.023857172892251
220 => 0.024776364976187
221 => 0.025051990490761
222 => 0.024798427986536
223 => 0.023931004356758
224 => 0.023888444415218
225 => 0.025184741534916
226 => 0.024818478224432
227 => 0.02477491236909
228 => 0.024311445273927
301 => 0.024585411728685
302 => 0.024525491246184
303 => 0.024430903833146
304 => 0.024953612744155
305 => 0.02593207716302
306 => 0.025779574307358
307 => 0.025665738000011
308 => 0.025166940438467
309 => 0.025467327980985
310 => 0.025360365730639
311 => 0.025819943438048
312 => 0.025547699785072
313 => 0.024815703419625
314 => 0.024932276253514
315 => 0.024914656504184
316 => 0.025277269696853
317 => 0.025168422217027
318 => 0.024893402286808
319 => 0.025928732878009
320 => 0.025861504268227
321 => 0.025956819066297
322 => 0.025998779588116
323 => 0.026628967074408
324 => 0.026887134723792
325 => 0.026945743300063
326 => 0.027190982599575
327 => 0.026939641522883
328 => 0.0279451850328
329 => 0.028613812791804
330 => 0.029390458341158
331 => 0.030525346231407
401 => 0.030952074576441
402 => 0.030874989920407
403 => 0.031735448966498
404 => 0.033281674745393
405 => 0.031187526358609
406 => 0.033392669694882
407 => 0.032694546774222
408 => 0.031039309888032
409 => 0.030932732146523
410 => 0.032053677783546
411 => 0.034539827319443
412 => 0.033917075058375
413 => 0.034540845919047
414 => 0.033813184076534
415 => 0.033777049532837
416 => 0.034505505007528
417 => 0.036207580930184
418 => 0.035398988460692
419 => 0.034239672880668
420 => 0.03509569346401
421 => 0.034354129213754
422 => 0.032683177407163
423 => 0.033916598851458
424 => 0.033091845057478
425 => 0.033332552060885
426 => 0.035066061862962
427 => 0.034857481377278
428 => 0.035127403839786
429 => 0.03465099775856
430 => 0.034205959356352
501 => 0.033375262129644
502 => 0.033129333633694
503 => 0.033197299422394
504 => 0.033129299953225
505 => 0.032664532489383
506 => 0.032564165999818
507 => 0.032396884120051
508 => 0.032448731769428
509 => 0.032134192895428
510 => 0.032727792737714
511 => 0.032837970099226
512 => 0.033269942562324
513 => 0.033314791376456
514 => 0.034517828537439
515 => 0.033855215885388
516 => 0.034299753659608
517 => 0.03425999001693
518 => 0.031075183890473
519 => 0.031514022074917
520 => 0.032196716574902
521 => 0.031889163628029
522 => 0.031454355717457
523 => 0.031103225016745
524 => 0.030571226100208
525 => 0.031320004359099
526 => 0.03230456814585
527 => 0.033339761538866
528 => 0.034583478572016
529 => 0.034305895408679
530 => 0.033316511114043
531 => 0.033360894170754
601 => 0.033635252763257
602 => 0.033279933457859
603 => 0.033175142858041
604 => 0.033620856144011
605 => 0.033623925526452
606 => 0.033215087723819
607 => 0.032760739322721
608 => 0.032758835586331
609 => 0.032677988676841
610 => 0.033827566562129
611 => 0.034459718163605
612 => 0.034532193325951
613 => 0.034454840007727
614 => 0.034484610229868
615 => 0.034116775141479
616 => 0.034957537075428
617 => 0.035729103368757
618 => 0.035522307120035
619 => 0.035212290145383
620 => 0.034965346692631
621 => 0.035464135090543
622 => 0.03544192482835
623 => 0.035722364410285
624 => 0.035709642050951
625 => 0.035615340767412
626 => 0.035522310487831
627 => 0.035891165030703
628 => 0.035784940845979
629 => 0.035678551665756
630 => 0.035465171877449
701 => 0.035494173734543
702 => 0.035184210288692
703 => 0.035040807015679
704 => 0.032884365862126
705 => 0.032308094322149
706 => 0.032489401079714
707 => 0.032549091971933
708 => 0.032298297859223
709 => 0.032657872193127
710 => 0.032601832914072
711 => 0.032819848966995
712 => 0.032683642002285
713 => 0.032689231983628
714 => 0.033089787624453
715 => 0.03320607063107
716 => 0.033146928155386
717 => 0.03318834951807
718 => 0.034142887338256
719 => 0.034007182584627
720 => 0.033935092138957
721 => 0.033955061685083
722 => 0.034198966563662
723 => 0.034267246612951
724 => 0.033977939246158
725 => 0.034114378272804
726 => 0.034695318331571
727 => 0.03489861447378
728 => 0.035547438172027
729 => 0.03527180633309
730 => 0.035777740502525
731 => 0.0373328096537
801 => 0.03857510649426
802 => 0.037432638979593
803 => 0.039713958921732
804 => 0.041490293732596
805 => 0.041422115043914
806 => 0.041112369982276
807 => 0.039090060026411
808 => 0.037229100254082
809 => 0.038785872124161
810 => 0.038789840655811
811 => 0.038656112571539
812 => 0.037825538925256
813 => 0.038627210409021
814 => 0.038690844180159
815 => 0.038655226189907
816 => 0.038018427322685
817 => 0.037046153152541
818 => 0.037236133198092
819 => 0.037547324388192
820 => 0.036958174544049
821 => 0.036769905470998
822 => 0.037119933497457
823 => 0.038247796729944
824 => 0.038034580719109
825 => 0.038029012787393
826 => 0.038941241299404
827 => 0.038288282556038
828 => 0.037238529454866
829 => 0.036973452952278
830 => 0.036032609945018
831 => 0.036682453561301
901 => 0.036705840276156
902 => 0.036349927568759
903 => 0.037267409809525
904 => 0.037258955049156
905 => 0.038129967887553
906 => 0.039795017297085
907 => 0.039302580254581
908 => 0.038729929551147
909 => 0.038792192560492
910 => 0.039475064094805
911 => 0.039062184376719
912 => 0.039210658802042
913 => 0.03947483936098
914 => 0.039634226051421
915 => 0.03876925926856
916 => 0.038567594135331
917 => 0.038155058047588
918 => 0.038047435082647
919 => 0.038383437118265
920 => 0.038294912453007
921 => 0.03670387471333
922 => 0.036537602417084
923 => 0.036542701751028
924 => 0.036124602156299
925 => 0.035486899918937
926 => 0.037162743323502
927 => 0.037028149644702
928 => 0.03687956864003
929 => 0.036897768965311
930 => 0.037625195787629
1001 => 0.037203251494749
1002 => 0.03832505955268
1003 => 0.038094449540607
1004 => 0.037857925251894
1005 => 0.037825230390488
1006 => 0.037734188718638
1007 => 0.03742197295075
1008 => 0.037044953649766
1009 => 0.036796012850404
1010 => 0.033942376824618
1011 => 0.034471995072167
1012 => 0.03508127258975
1013 => 0.035291592747293
1014 => 0.034931825564103
1015 => 0.037436178751949
1016 => 0.037893748211917
1017 => 0.036507740471158
1018 => 0.036248475013186
1019 => 0.037453176152211
1020 => 0.036726594096654
1021 => 0.037053773951782
1022 => 0.036346590062808
1023 => 0.037783533128208
1024 => 0.037772586029588
1025 => 0.037213582722316
1026 => 0.037686048489733
1027 => 0.037603945935833
1028 => 0.036972832578687
1029 => 0.037803540547326
1030 => 0.037803952568115
1031 => 0.037265924038646
1101 => 0.036637624505815
1102 => 0.036525299389118
1103 => 0.036440677502443
1104 => 0.037032962155076
1105 => 0.037564002722601
1106 => 0.038552137562644
1107 => 0.038800578138936
1108 => 0.039770258247827
1109 => 0.03919286095585
1110 => 0.039448813696837
1111 => 0.039726686603904
1112 => 0.039859909093989
1113 => 0.039642830195508
1114 => 0.041149142540873
1115 => 0.041276321455039
1116 => 0.041318963444866
1117 => 0.04081104339718
1118 => 0.041262195279692
1119 => 0.041051116254444
1120 => 0.041600285238697
1121 => 0.041686401947569
1122 => 0.041613464158845
1123 => 0.041640798961501
1124 => 0.040355427106439
1125 => 0.040288773794877
1126 => 0.039379951162231
1127 => 0.039750303102712
1128 => 0.039057947901413
1129 => 0.039277500867794
1130 => 0.039374277723397
1201 => 0.039323726986068
1202 => 0.039771242245755
1203 => 0.039390762853693
1204 => 0.038386615181439
1205 => 0.037382193929823
1206 => 0.037369584239193
1207 => 0.03710513785315
1208 => 0.036913991551812
1209 => 0.036950813110729
1210 => 0.037080577087064
1211 => 0.03690644943361
1212 => 0.036943608396971
1213 => 0.037560694777634
1214 => 0.037684447050417
1215 => 0.037263888474365
1216 => 0.035575285105203
1217 => 0.03516089760287
1218 => 0.035458751121886
1219 => 0.03531639632402
1220 => 0.028503088165205
1221 => 0.03010377385389
1222 => 0.029152700771823
1223 => 0.029590999004808
1224 => 0.028620199667198
1225 => 0.029083515995058
1226 => 0.028997958386906
1227 => 0.031571813606579
1228 => 0.031531626397546
1229 => 0.03155086188785
1230 => 0.030632701817819
1231 => 0.032095355740141
]
'min_raw' => 0.018673109687497
'max_raw' => 0.041686401947569
'avg_raw' => 0.030179755817533
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.018673'
'max' => '$0.041686'
'avg' => '$0.030179'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0028793556263458
'max_diff' => 0.0063064431790231
'year' => 2035
]
10 => [
'items' => [
101 => 0.03281591165761
102 => 0.032682555934261
103 => 0.032716118696792
104 => 0.032139399237763
105 => 0.03155644579286
106 => 0.030909860706569
107 => 0.032111135876565
108 => 0.031977574584112
109 => 0.032283916135162
110 => 0.033063028951827
111 => 0.033177756273642
112 => 0.033331950957612
113 => 0.033276683139734
114 => 0.034593386784706
115 => 0.03443392528541
116 => 0.03481818161851
117 => 0.034027737187725
118 => 0.033133274284617
119 => 0.033303282440302
120 => 0.033286909287791
121 => 0.033078460264087
122 => 0.032890281805872
123 => 0.032577017691897
124 => 0.03356823170288
125 => 0.033527990224204
126 => 0.034179452988376
127 => 0.034064300616837
128 => 0.033295284897133
129 => 0.033322750444007
130 => 0.033507469446226
131 => 0.03414678402199
201 => 0.034336576115932
202 => 0.034248656856111
203 => 0.03445675522278
204 => 0.034621227686942
205 => 0.034477410432016
206 => 0.036513559478012
207 => 0.035668008434298
208 => 0.036080124129698
209 => 0.036178411294724
210 => 0.035926650788266
211 => 0.035981248627249
212 => 0.036063949476287
213 => 0.036566092837163
214 => 0.037883862312452
215 => 0.038467493442697
216 => 0.040223376493893
217 => 0.038419031001868
218 => 0.038311968607495
219 => 0.038628256167604
220 => 0.039659145397753
221 => 0.040494584292287
222 => 0.04077174757123
223 => 0.04080837927401
224 => 0.041328356010773
225 => 0.041626396979294
226 => 0.041265217158185
227 => 0.040959155076897
228 => 0.039862878691551
229 => 0.039989775668217
301 => 0.040863969999764
302 => 0.042098820982863
303 => 0.04315845159071
304 => 0.042787405883697
305 => 0.045618222710758
306 => 0.045898886636311
307 => 0.045860107956751
308 => 0.046499502147553
309 => 0.045230434889173
310 => 0.044687884049195
311 => 0.041025329172824
312 => 0.042054357699412
313 => 0.043550111095535
314 => 0.043352142524771
315 => 0.042265886426903
316 => 0.043157627568053
317 => 0.042862790059465
318 => 0.042630239483623
319 => 0.043695598753704
320 => 0.042524192473703
321 => 0.043538425421813
322 => 0.042237661174965
323 => 0.042789100789232
324 => 0.042476076994041
325 => 0.042678641752283
326 => 0.041494452314678
327 => 0.042133412190636
328 => 0.041467869483134
329 => 0.041467553929234
330 => 0.041452862037078
331 => 0.042235870080987
401 => 0.042261403945188
402 => 0.04168275981768
403 => 0.041599368158786
404 => 0.041907710829055
405 => 0.041546722317243
406 => 0.041715626569885
407 => 0.04155183825499
408 => 0.041514966055397
409 => 0.041221162095756
410 => 0.041094583271634
411 => 0.041144218090107
412 => 0.040974788866157
413 => 0.040872701630205
414 => 0.041432554316349
415 => 0.041133447610535
416 => 0.041386711923889
417 => 0.041098085274317
418 => 0.040097579558258
419 => 0.039522178140797
420 => 0.03763231559009
421 => 0.038168278265103
422 => 0.038523622073131
423 => 0.038406180946697
424 => 0.038658489929959
425 => 0.038673979652362
426 => 0.038591951429918
427 => 0.038496973256795
428 => 0.03845074313474
429 => 0.038795304588905
430 => 0.038995334110452
501 => 0.038559285578153
502 => 0.038457125508003
503 => 0.038897994649056
504 => 0.039166924570418
505 => 0.041152552011078
506 => 0.041005450316782
507 => 0.041374646702216
508 => 0.041333080854996
509 => 0.041720057484528
510 => 0.042352600725286
511 => 0.041066463454953
512 => 0.041289692413802
513 => 0.041234961828202
514 => 0.041832496010656
515 => 0.04183436144715
516 => 0.041476109855723
517 => 0.041670323855404
518 => 0.041561918928764
519 => 0.041757821283007
520 => 0.041003485683971
521 => 0.0419221850181
522 => 0.042443028340874
523 => 0.042450260250916
524 => 0.042697135852243
525 => 0.042947975761262
526 => 0.043429441123071
527 => 0.042934547953637
528 => 0.042044283318703
529 => 0.042108557549808
530 => 0.041586595720082
531 => 0.04159536999274
601 => 0.04154853223764
602 => 0.041689095866475
603 => 0.041034331495921
604 => 0.041188003384966
605 => 0.040972861840402
606 => 0.0412892247381
607 => 0.040948870556838
608 => 0.041234935435456
609 => 0.041358391553867
610 => 0.041813947288623
611 => 0.040881584604413
612 => 0.038980433975905
613 => 0.03938007888724
614 => 0.038788972671944
615 => 0.03884368180267
616 => 0.03895420295363
617 => 0.038595967743099
618 => 0.03866430773198
619 => 0.038661866146676
620 => 0.038640825883578
621 => 0.038547635069619
622 => 0.038412489952137
623 => 0.03895086650471
624 => 0.039042347171947
625 => 0.03924569736316
626 => 0.039850729598456
627 => 0.039790272610507
628 => 0.039888880466188
629 => 0.039673620070896
630 => 0.038853667115026
701 => 0.038898194505442
702 => 0.038342937233446
703 => 0.039231498186326
704 => 0.039021075224253
705 => 0.038885414171722
706 => 0.038848397796648
707 => 0.039454929789828
708 => 0.039636413668412
709 => 0.039523325094209
710 => 0.039291377129197
711 => 0.03973678579128
712 => 0.039855958358971
713 => 0.039882636701961
714 => 0.040671815452533
715 => 0.039926743027436
716 => 0.04010608936554
717 => 0.041505298298755
718 => 0.040236408873963
719 => 0.040908567901886
720 => 0.040875669215216
721 => 0.041219523029281
722 => 0.040847463166122
723 => 0.040852075294036
724 => 0.04115739418625
725 => 0.040728628866688
726 => 0.040622460543824
727 => 0.040475789766179
728 => 0.040796040043323
729 => 0.040988015600796
730 => 0.042535197603523
731 => 0.043534747737355
801 => 0.043491354629919
802 => 0.043887886403387
803 => 0.043709245207625
804 => 0.043132365663343
805 => 0.044117028702467
806 => 0.043805440116837
807 => 0.043831127101256
808 => 0.043830171030413
809 => 0.04403735020031
810 => 0.043890544770746
811 => 0.043601176199806
812 => 0.043793272561462
813 => 0.044363730079872
814 => 0.046134447720791
815 => 0.047125364771538
816 => 0.046074793270104
817 => 0.04679946342408
818 => 0.046364919558072
819 => 0.046285950011058
820 => 0.046741096420459
821 => 0.047197039503397
822 => 0.04716799790011
823 => 0.046837006634833
824 => 0.04665003806767
825 => 0.048065826697292
826 => 0.049108955642266
827 => 0.049037821241444
828 => 0.049351785352527
829 => 0.050273593693209
830 => 0.050357872295403
831 => 0.050347255128648
901 => 0.050138361819548
902 => 0.051046001842889
903 => 0.051803171118766
904 => 0.050090009053999
905 => 0.050742358741324
906 => 0.051035219533359
907 => 0.051465226063947
908 => 0.052190719158512
909 => 0.052978797086749
910 => 0.053090239946636
911 => 0.053011165904514
912 => 0.05249140732617
913 => 0.053353731598972
914 => 0.053858860933987
915 => 0.054159653893309
916 => 0.054922414790974
917 => 0.051037028141909
918 => 0.048286758355454
919 => 0.047857264013922
920 => 0.048730657646459
921 => 0.048960964582175
922 => 0.048868128145168
923 => 0.045772449456924
924 => 0.047840965906294
925 => 0.050066515680014
926 => 0.050152008110659
927 => 0.051266164861434
928 => 0.051628979970315
929 => 0.052526022190552
930 => 0.052469911955438
1001 => 0.052688327461007
1002 => 0.052638117518706
1003 => 0.054299699337171
1004 => 0.056132670830226
1005 => 0.056069200855914
1006 => 0.055805689517053
1007 => 0.056197048790621
1008 => 0.058088871804617
1009 => 0.057914703057334
1010 => 0.05808389315966
1011 => 0.060314459111634
1012 => 0.063214512143506
1013 => 0.061867146349637
1014 => 0.064790542428269
1015 => 0.0666306652972
1016 => 0.06981296752676
1017 => 0.069414527614451
1018 => 0.070653374519606
1019 => 0.068701237014497
1020 => 0.064218734710684
1021 => 0.063509361562776
1022 => 0.064929544569077
1023 => 0.068420925910636
1024 => 0.06481958854586
1025 => 0.065548134404362
1026 => 0.065338313148102
1027 => 0.065327132665038
1028 => 0.06575384622925
1029 => 0.065134875948478
1030 => 0.062613079673989
1031 => 0.063768804045549
1101 => 0.063322523363246
1102 => 0.063817705052689
1103 => 0.06648999640215
1104 => 0.065308512697084
1105 => 0.06406391558974
1106 => 0.065624916560558
1107 => 0.067612607214539
1108 => 0.067488221105636
1109 => 0.067246860065005
1110 => 0.06860739961379
1111 => 0.070854612347698
1112 => 0.071462024919641
1113 => 0.071910404462246
1114 => 0.071972228425737
1115 => 0.072609053673071
1116 => 0.069184683817528
1117 => 0.074619246722331
1118 => 0.075557645609219
1119 => 0.075381265511133
1120 => 0.076424256380048
1121 => 0.076117382008289
1122 => 0.075672769190723
1123 => 0.077326131568474
1124 => 0.075430685021847
1125 => 0.072740337278994
1126 => 0.071264359298221
1127 => 0.073208046167051
1128 => 0.074394987912522
1129 => 0.075179480902605
1130 => 0.0754168680074
1201 => 0.069450507901483
1202 => 0.066234970713895
1203 => 0.06829609318493
1204 => 0.070810804850667
1205 => 0.069170714467254
1206 => 0.069235002905182
1207 => 0.066896665026606
1208 => 0.07101769586706
1209 => 0.07041729633693
1210 => 0.073532170161329
1211 => 0.072788780524712
1212 => 0.075328839209804
1213 => 0.074659956631383
1214 => 0.077436450817688
1215 => 0.078544069519184
1216 => 0.080403933706082
1217 => 0.081772057372973
1218 => 0.082575445758207
1219 => 0.082527213332991
1220 => 0.085710638361793
1221 => 0.083833483842708
1222 => 0.081475335355386
1223 => 0.081432683889113
1224 => 0.08265400240592
1225 => 0.085213550964774
1226 => 0.085877204666168
1227 => 0.086248096547944
1228 => 0.085680062720164
1229 => 0.083642546026574
1230 => 0.082762756648726
1231 => 0.083512362688605
]
'min_raw' => 0.030909860706569
'max_raw' => 0.086248096547944
'avg_raw' => 0.058578978627257
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0309098'
'max' => '$0.086248'
'avg' => '$0.058578'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012236751019072
'max_diff' => 0.044561694600375
'year' => 2036
]
11 => [
'items' => [
101 => 0.082595658916214
102 => 0.084178146809011
103 => 0.086351240686994
104 => 0.085902505394535
105 => 0.087402560199071
106 => 0.088954959111398
107 => 0.091174959278624
108 => 0.091755349528705
109 => 0.092714712541824
110 => 0.093702212216657
111 => 0.09401937049835
112 => 0.094624924066539
113 => 0.094621732500325
114 => 0.096446608936518
115 => 0.098459504157357
116 => 0.099219325504592
117 => 0.10096649279577
118 => 0.097974530037675
119 => 0.10024396815888
120 => 0.10229105815192
121 => 0.0998504330706
122 => 0.10321426615249
123 => 0.10334487616845
124 => 0.1053169323421
125 => 0.10331787560986
126 => 0.10213084210347
127 => 0.10555776335885
128 => 0.10721594260732
129 => 0.10671648552297
130 => 0.10291559244983
131 => 0.1007033096533
201 => 0.094913338857272
202 => 0.10177180937329
203 => 0.10511237029731
204 => 0.10290694120406
205 => 0.10401923135655
206 => 0.11008752576721
207 => 0.11239793938583
208 => 0.11191738950417
209 => 0.11199859452364
210 => 0.11324525177528
211 => 0.1187736165757
212 => 0.11546089224079
213 => 0.11799334586941
214 => 0.11933655014259
215 => 0.12058419312911
216 => 0.11752037627584
217 => 0.11353439556614
218 => 0.11227186815529
219 => 0.10268765474499
220 => 0.10218875481486
221 => 0.10190870716586
222 => 0.10014304635244
223 => 0.098755720608294
224 => 0.097652467668446
225 => 0.094757202495069
226 => 0.095734269499684
227 => 0.091119821102125
228 => 0.094071981660873
301 => 0.086707210598617
302 => 0.092840810784618
303 => 0.089502571063957
304 => 0.091744109254711
305 => 0.091736288739129
306 => 0.08760890624962
307 => 0.085228318165946
308 => 0.086745321546738
309 => 0.088371669590824
310 => 0.088635539089285
311 => 0.090744141780471
312 => 0.091332607467317
313 => 0.089549528963336
314 => 0.08655459208812
315 => 0.087250247616995
316 => 0.085214220728857
317 => 0.081646161922039
318 => 0.084208804049426
319 => 0.085083802743137
320 => 0.085470252013855
321 => 0.081961475971672
322 => 0.080858942359984
323 => 0.080271962716275
324 => 0.086101653162396
325 => 0.086421016764817
326 => 0.08478710742137
327 => 0.092172532587392
328 => 0.090500983413967
329 => 0.092368513380173
330 => 0.087187124169266
331 => 0.087385060214788
401 => 0.0849321075269
402 => 0.08630559712576
403 => 0.085334858946922
404 => 0.08619463273926
405 => 0.086709977605408
406 => 0.089162527787898
407 => 0.092868814968116
408 => 0.088796198575975
409 => 0.087021701292978
410 => 0.088122589427198
411 => 0.091054399601967
412 => 0.095496242093343
413 => 0.092866581938037
414 => 0.094033580460437
415 => 0.094288517721431
416 => 0.092349503678218
417 => 0.095567736306897
418 => 0.097292413317482
419 => 0.09906157505872
420 => 0.10059768862785
421 => 0.098354932954569
422 => 0.10075500301138
423 => 0.098820970214987
424 => 0.09708594285999
425 => 0.097088574180299
426 => 0.096000166175804
427 => 0.093891238518861
428 => 0.093502319902166
429 => 0.095525523661223
430 => 0.097147941477877
501 => 0.097281571580114
502 => 0.098179825446252
503 => 0.098711402831481
504 => 0.10392158385114
505 => 0.10601716175813
506 => 0.10857959475553
507 => 0.10957780681883
508 => 0.11258206725053
509 => 0.11015588295783
510 => 0.10963096272469
511 => 0.10234360960349
512 => 0.10353691326884
513 => 0.10544750757374
514 => 0.10237511459986
515 => 0.10432384077441
516 => 0.10470856060093
517 => 0.10227071586227
518 => 0.10357287407024
519 => 0.10011472793287
520 => 0.092944193103888
521 => 0.095575719161968
522 => 0.097513408102809
523 => 0.094748087068906
524 => 0.099704817989474
525 => 0.096809198113373
526 => 0.095891425626916
527 => 0.092310867947729
528 => 0.094000753344001
529 => 0.096286347539287
530 => 0.094874116055445
531 => 0.097804708432042
601 => 0.10195520879774
602 => 0.10491310252491
603 => 0.10514017287697
604 => 0.10323844537389
605 => 0.10628597583424
606 => 0.10630817376657
607 => 0.10287054695777
608 => 0.10076501967817
609 => 0.10028663945018
610 => 0.10148172705167
611 => 0.10293278402523
612 => 0.10522069644016
613 => 0.10660323399551
614 => 0.1102081586986
615 => 0.11118354796197
616 => 0.11225520504286
617 => 0.11368726938974
618 => 0.11540682981192
619 => 0.11164452950281
620 => 0.11179401270789
621 => 0.10829061075264
622 => 0.10454672332478
623 => 0.10738786720037
624 => 0.11110228487616
625 => 0.11025019335727
626 => 0.11015431565474
627 => 0.11031555535614
628 => 0.1096731061776
629 => 0.10676733235334
630 => 0.10530807092991
701 => 0.10719089046343
702 => 0.10819152525084
703 => 0.10974342254159
704 => 0.10955211844393
705 => 0.1135496392033
706 => 0.11510295489164
707 => 0.11470555026844
708 => 0.11477868228318
709 => 0.11759088614089
710 => 0.1207186352045
711 => 0.12364818494541
712 => 0.12662824876895
713 => 0.1230356655158
714 => 0.12121157329958
715 => 0.123093570853
716 => 0.12209495646012
717 => 0.12783329096985
718 => 0.12823060080102
719 => 0.13396852036385
720 => 0.13941448928773
721 => 0.13599397378131
722 => 0.13921936584047
723 => 0.14270789032251
724 => 0.14943782004108
725 => 0.14717141647365
726 => 0.14543538686007
727 => 0.14379484726367
728 => 0.14720854973545
729 => 0.15160022343017
730 => 0.15254614788108
731 => 0.15407890686251
801 => 0.15246739821039
802 => 0.15440828288002
803 => 0.16126045863175
804 => 0.15940894025781
805 => 0.15677948652037
806 => 0.16218862118641
807 => 0.16414616599457
808 => 0.17788524063242
809 => 0.19523138989557
810 => 0.18804997019967
811 => 0.18359223125146
812 => 0.18463990564327
813 => 0.19097413214996
814 => 0.19300848466561
815 => 0.18747841324471
816 => 0.18943172795994
817 => 0.20019468408652
818 => 0.20596866473146
819 => 0.19812682346658
820 => 0.17649149442869
821 => 0.15654273298079
822 => 0.16183404282121
823 => 0.16123417249377
824 => 0.17279762614566
825 => 0.15936478215692
826 => 0.15959095679925
827 => 0.17139353042675
828 => 0.16824480613027
829 => 0.16314427602811
830 => 0.15657997249512
831 => 0.1444452502898
901 => 0.13369718843079
902 => 0.15477661286713
903 => 0.15386762975499
904 => 0.15255128750486
905 => 0.15548066473942
906 => 0.16970488907219
907 => 0.169376974662
908 => 0.16729095048776
909 => 0.16887318143854
910 => 0.16286690329246
911 => 0.16441485793112
912 => 0.15653957299506
913 => 0.16009953068711
914 => 0.16313333258127
915 => 0.16374241322773
916 => 0.16511470302463
917 => 0.1533886369594
918 => 0.15865329636348
919 => 0.1617457905315
920 => 0.14777378937449
921 => 0.16146960899203
922 => 0.15318451223735
923 => 0.15037242596084
924 => 0.15415852966797
925 => 0.15268308137119
926 => 0.15141457756686
927 => 0.15070673064837
928 => 0.15348682735387
929 => 0.15335713251963
930 => 0.14880835471591
1001 => 0.14287465950286
1002 => 0.14486620238327
1003 => 0.144142656184
1004 => 0.14152043141855
1005 => 0.14328749430184
1006 => 0.13550624365389
1007 => 0.1221190063483
1008 => 0.13096302537454
1009 => 0.13062254026247
1010 => 0.1304508522292
1011 => 0.13709688809668
1012 => 0.13645802509816
1013 => 0.13529848250007
1014 => 0.14149913550941
1015 => 0.13923581375045
1016 => 0.14621083810589
1017 => 0.15080504026267
1018 => 0.14963980198884
1019 => 0.15396067132301
1020 => 0.14491208350888
1021 => 0.1479176614144
1022 => 0.14853710685518
1023 => 0.14142262041378
1024 => 0.13656255098567
1025 => 0.13623843976366
1026 => 0.12781174913415
1027 => 0.13231321925056
1028 => 0.13627432666952
1029 => 0.13437726361019
1030 => 0.13377671011876
1031 => 0.13684480766234
1101 => 0.13708322511796
1102 => 0.13164728186358
1103 => 0.1327775866001
1104 => 0.13749114524892
1105 => 0.1326588170159
1106 => 0.12327039261548
1107 => 0.12094193355905
1108 => 0.12063127419891
1109 => 0.11431630856547
1110 => 0.12109753232716
1111 => 0.11813734642969
1112 => 0.12748853821135
1113 => 0.12214718761711
1114 => 0.12191693266862
1115 => 0.12156886854291
1116 => 0.11613331675426
1117 => 0.11732335714863
1118 => 0.12127923266781
1119 => 0.12269073361919
1120 => 0.12254350250587
1121 => 0.12125984671965
1122 => 0.1218474977652
1123 => 0.11995446899628
1124 => 0.11928600113799
1125 => 0.11717613270066
1126 => 0.11407520896381
1127 => 0.11450641142849
1128 => 0.10836267010495
1129 => 0.10501523375886
1130 => 0.10408870749676
1201 => 0.10284971785689
1202 => 0.10422865467341
1203 => 0.1083452656577
1204 => 0.1033797594229
1205 => 0.09486674727311
1206 => 0.09537839380878
1207 => 0.096527911665209
1208 => 0.094385792744574
1209 => 0.092358456960607
1210 => 0.094121060941815
1211 => 0.090513985468892
1212 => 0.096963809503105
1213 => 0.096789359838403
1214 => 0.099193455383915
1215 => 0.10069678566553
1216 => 0.097232096075365
1217 => 0.096360736012955
1218 => 0.09685710230561
1219 => 0.088653273157596
1220 => 0.098523027519094
1221 => 0.098608381564663
1222 => 0.09787752840656
1223 => 0.10313286790958
1224 => 0.11422327344245
1225 => 0.11005061677045
1226 => 0.10843483798784
1227 => 0.10536324134097
1228 => 0.10945596149956
1229 => 0.10914170444776
1230 => 0.10772051488108
1231 => 0.10686097499676
]
'min_raw' => 0.080271962716275
'max_raw' => 0.20596866473146
'avg_raw' => 0.14312031372387
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.080271'
'max' => '$0.205968'
'avg' => '$0.14312'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.049362102009706
'max_diff' => 0.11972056818352
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0025196451849466
]
1 => [
'year' => 2028
'avg' => 0.004324442595592
]
2 => [
'year' => 2029
'avg' => 0.011813597766211
]
3 => [
'year' => 2030
'avg' => 0.0091141730832945
]
4 => [
'year' => 2031
'avg' => 0.0089512474748307
]
5 => [
'year' => 2032
'avg' => 0.015694353884634
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0025196451849466
'min' => '$0.002519'
'max_raw' => 0.015694353884634
'max' => '$0.015694'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.015694353884634
]
1 => [
'year' => 2033
'avg' => 0.040367492022656
]
2 => [
'year' => 2034
'avg' => 0.025586856414849
]
3 => [
'year' => 2035
'avg' => 0.030179755817533
]
4 => [
'year' => 2036
'avg' => 0.058578978627257
]
5 => [
'year' => 2037
'avg' => 0.14312031372387
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.015694353884634
'min' => '$0.015694'
'max_raw' => 0.14312031372387
'max' => '$0.14312'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14312031372387
]
]
]
]
'prediction_2025_max_price' => '$0.0043081'
'last_price' => 0.00417728
'sma_50day_nextmonth' => '$0.003931'
'sma_200day_nextmonth' => '$0.007867'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.004141'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004128'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00408'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004073'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004293'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006255'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010324'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004146'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004126'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.004098'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004131'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004718'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00636'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.010322'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006769'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.014963'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.029941'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.031283'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.004135'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004214'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.004892'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007399'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.014836'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0260048'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.045542'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '48.49'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 98.5
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004128'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004167'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 104.05
'cci_20_action' => 'SELL'
'adx_14' => 24.11
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000011'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 60.65
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001754'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 18
'sell_pct' => 48.57
'buy_pct' => 51.43
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767681410
'last_updated_date' => '6. Januar 2026'
]
Flourishing AI Preisprognose für 2026
Die Preisprognose für Flourishing AI im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001443 am unteren Ende und $0.0043081 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Flourishing AI im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn AI das prognostizierte Preisziel erreicht.
Flourishing AI Preisprognose 2027-2032
Die Preisprognose für AI für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.002519 am unteren Ende und $0.015694 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Flourishing AI, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Flourishing AI Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001389 | $0.002519 | $0.003649 |
| 2028 | $0.0025074 | $0.004324 | $0.006141 |
| 2029 | $0.005508 | $0.011813 | $0.018119 |
| 2030 | $0.004684 | $0.009114 | $0.013543 |
| 2031 | $0.005538 | $0.008951 | $0.012364 |
| 2032 | $0.008453 | $0.015694 | $0.022934 |
Flourishing AI Preisprognose 2032-2037
Die Preisprognose für Flourishing AI für die Jahre 2032-2037 wird derzeit zwischen $0.015694 am unteren Ende und $0.14312 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Flourishing AI bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Flourishing AI Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.008453 | $0.015694 | $0.022934 |
| 2033 | $0.019645 | $0.040367 | $0.061089 |
| 2034 | $0.015793 | $0.025586 | $0.035379 |
| 2035 | $0.018673 | $0.030179 | $0.041686 |
| 2036 | $0.0309098 | $0.058578 | $0.086248 |
| 2037 | $0.080271 | $0.14312 | $0.205968 |
Flourishing AI Potenzielles Preishistogramm
Flourishing AI Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Flourishing AI Bullisch, mit 18 technischen Indikatoren, die bullische Signale zeigen, und 17 anzeigen bärische Signale. Die Preisprognose für AI wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Flourishing AI
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Flourishing AI im nächsten Monat steigen, und bis zum 04.02.2026 $0.007867 erreichen. Der kurzfristige 50-Tage-SMA für Flourishing AI wird voraussichtlich bis zum 04.02.2026 $0.003931 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 48.49, was darauf hindeutet, dass sich der AI-Markt in einem NEUTRAL Zustand befindet.
Beliebte AI Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.004141 | BUY |
| SMA 5 | $0.004128 | BUY |
| SMA 10 | $0.00408 | BUY |
| SMA 21 | $0.004073 | BUY |
| SMA 50 | $0.004293 | SELL |
| SMA 100 | $0.006255 | SELL |
| SMA 200 | $0.010324 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.004146 | BUY |
| EMA 5 | $0.004126 | BUY |
| EMA 10 | $0.004098 | BUY |
| EMA 21 | $0.004131 | BUY |
| EMA 50 | $0.004718 | SELL |
| EMA 100 | $0.00636 | SELL |
| EMA 200 | $0.010322 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.006769 | SELL |
| SMA 50 | $0.014963 | SELL |
| SMA 100 | $0.029941 | SELL |
| SMA 200 | $0.031283 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.007399 | SELL |
| EMA 50 | $0.014836 | SELL |
| EMA 100 | $0.0260048 | SELL |
| EMA 200 | $0.045542 | SELL |
Flourishing AI Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 48.49 | NEUTRAL |
| Stoch RSI (14) | 98.5 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 104.05 | SELL |
| Average Directional Index (14) | 24.11 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000011 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 60.65 | NEUTRAL |
| VWMA (10) | 0.004128 | BUY |
| Hull Moving Average (9) | 0.004167 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.001754 | SELL |
Auf weltweiten Geldflüssen basierende Flourishing AI-Preisprognose
Definition weltweiter Geldflüsse, die für Flourishing AI-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Flourishing AI-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.005869 | $0.008248 | $0.011589 | $0.016285 | $0.022884 | $0.032155 |
| Amazon.com aktie | $0.008716 | $0.018186 | $0.037947 | $0.07918 | $0.165214 | $0.344729 |
| Apple aktie | $0.005925 | $0.0084043 | $0.01192 | $0.0169089 | $0.023984 | $0.034019 |
| Netflix aktie | $0.006591 | $0.010399 | $0.0164091 | $0.025891 | $0.040851 | $0.064457 |
| Google aktie | $0.0054095 | $0.0070053 | $0.009071 | $0.011748 | $0.015213 | $0.0197016 |
| Tesla aktie | $0.009469 | $0.021466 | $0.048663 | $0.110316 | $0.250079 | $0.566912 |
| Kodak aktie | $0.003132 | $0.002349 | $0.001761 | $0.00132 | $0.00099 | $0.000742 |
| Nokia aktie | $0.002767 | $0.001833 | $0.001214 | $0.0008045 | $0.000532 | $0.000353 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Flourishing AI Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Flourishing AI investieren?", "Sollte ich heute AI kaufen?", "Wird Flourishing AI auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Flourishing AI-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Flourishing AI.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Flourishing AI zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Flourishing AI-Preis entspricht heute $0.004177 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Flourishing AI-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Flourishing AI 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004285 | $0.004397 | $0.004511 | $0.004628 |
| Wenn die Wachstumsrate von Flourishing AI 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004394 | $0.004622 | $0.004863 | $0.005116 |
| Wenn die Wachstumsrate von Flourishing AI 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00472 | $0.005333 | $0.006026 | $0.00681 |
| Wenn die Wachstumsrate von Flourishing AI 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005263 | $0.006631 | $0.008354 | $0.010526 |
| Wenn die Wachstumsrate von Flourishing AI 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006348 | $0.009649 | $0.014665 | $0.02229 |
| Wenn die Wachstumsrate von Flourishing AI 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0096063 | $0.022091 | $0.0508024 | $0.116828 |
| Wenn die Wachstumsrate von Flourishing AI 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.015035 | $0.054117 | $0.194784 | $0.701093 |
Fragefeld
Ist AI eine gute Investition?
Die Entscheidung, Flourishing AI zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Flourishing AI in den letzten 2026 Stunden um -0.4582% gefallen, und Flourishing AI hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Flourishing AI investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Flourishing AI steigen?
Es scheint, dass der Durchschnittswert von Flourishing AI bis zum Ende dieses Jahres potenziell auf $0.0043081 steigen könnte. Betrachtet man die Aussichten von Flourishing AI in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.013543 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Flourishing AI nächste Woche kosten?
Basierend auf unserer neuen experimentellen Flourishing AI-Prognose wird der Preis von Flourishing AI in der nächsten Woche um 0.86% steigen und $0.004213 erreichen bis zum 13. Januar 2026.
Wie viel wird Flourishing AI nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Flourishing AI-Prognose wird der Preis von Flourishing AI im nächsten Monat um -11.62% fallen und $0.003691 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Flourishing AI in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Flourishing AI im Jahr 2026 wird erwartet, dass AI innerhalb der Spanne von $0.001443 bis $0.0043081 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Flourishing AI-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Flourishing AI in 5 Jahren sein?
Die Zukunft von Flourishing AI scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.013543 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Flourishing AI-Prognose für 2030 könnte der Wert von Flourishing AI seinen höchsten Gipfel von ungefähr $0.013543 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.004684 liegen wird.
Wie viel wird Flourishing AI im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Flourishing AI-Preisprognosesimulation wird der Wert von AI im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.0043081 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.0043081 und $0.001443 während des Jahres 2026 liegen.
Wie viel wird Flourishing AI im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Flourishing AI könnte der Wert von AI um -12.62% fallen und bis zu $0.003649 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.003649 und $0.001389 im Laufe des Jahres schwanken.
Wie viel wird Flourishing AI im Jahr 2028 kosten?
Unser neues experimentelles Flourishing AI-Preisprognosemodell deutet darauf hin, dass der Wert von AI im Jahr 2028 um 47.02% steigen, und im besten Fall $0.006141 erreichen wird. Der Preis wird voraussichtlich zwischen $0.006141 und $0.0025074 im Laufe des Jahres liegen.
Wie viel wird Flourishing AI im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Flourishing AI im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.018119 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.018119 und $0.005508.
Wie viel wird Flourishing AI im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Flourishing AI-Preisprognosen wird der Wert von AI im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.013543 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.013543 und $0.004684 während des Jahres 2030 liegen.
Wie viel wird Flourishing AI im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Flourishing AI im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.012364 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.012364 und $0.005538 während des Jahres schwanken.
Wie viel wird Flourishing AI im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Flourishing AI-Preisprognose könnte AI eine 449.04% Steigerung im Wert erfahren und $0.022934 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.022934 und $0.008453 liegen.
Wie viel wird Flourishing AI im Jahr 2033 kosten?
Laut unserer experimentellen Flourishing AI-Preisprognose wird der Wert von AI voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.061089 beträgt. Im Laufe des Jahres könnte der Preis von AI zwischen $0.061089 und $0.019645 liegen.
Wie viel wird Flourishing AI im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Flourishing AI-Preisprognosesimulation deuten darauf hin, dass AI im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.035379 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.035379 und $0.015793.
Wie viel wird Flourishing AI im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Flourishing AI könnte AI um 897.93% steigen, wobei der Wert im Jahr 2035 $0.041686 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.041686 und $0.018673.
Wie viel wird Flourishing AI im Jahr 2036 kosten?
Unsere jüngste Flourishing AI-Preisprognosesimulation deutet darauf hin, dass der Wert von AI im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.086248 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.086248 und $0.0309098.
Wie viel wird Flourishing AI im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Flourishing AI um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.205968 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.205968 und $0.080271 liegen.
Verwandte Prognosen
ETHPad-Preisprognose
Leverj Gluon-Preisprognose
Black Phoenix-Preisprognose
VNX Gold-Preisprognose
Poison Finance-Preisprognose
Conceal-Preisprognose
NFT Protocol-Preisprognose
BattleFly-Preisprognose
Revolt 2 Earn-Preisprognose
Onix Coin-Preisprognose
Koyo-Preisprognose
Nelore Coin-Preisprognose
Kaicoin-Preisprognose
Garlicoin-Preisprognose
Tokoin-Preisprognose
Monsta Infinite-Preisprognose
Primecoin-Preisprognose
KleeKai-Preisprognose
Public Mint-Preisprognose
xWIN Finance-Preisprognose
Konomi Network-Preisprognose
Zasset zUSD-Preisprognose
Hive Game Token-Preisprognose
Zclassic-Preisprognose
BlockBank-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Flourishing AI?
Flourishing AI-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Flourishing AI Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Flourishing AI. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von AI über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von AI über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von AI einzuschätzen.
Wie liest man Flourishing AI-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Flourishing AI in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von AI innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Flourishing AI?
Die Preisentwicklung von Flourishing AI wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von AI. Die Marktkapitalisierung von Flourishing AI kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von AI-„Walen“, großen Inhabern von Flourishing AI, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Flourishing AI-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


