Flourishing AI Preisvorhersage bis zu $0.004322 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.001448 | $0.004322 |
| 2027 | $0.001394 | $0.003662 |
| 2028 | $0.002515 | $0.006162 |
| 2029 | $0.005526 | $0.018181 |
| 2030 | $0.0047004 | $0.01359 |
| 2031 | $0.005557 | $0.0124063 |
| 2032 | $0.008482 | $0.023013 |
| 2033 | $0.019712 | $0.061298 |
| 2034 | $0.015847 | $0.0355009 |
| 2035 | $0.018736 | $0.041828 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Flourishing AI eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,954.52 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Flourishing AI Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Flourishing AI'
'name_with_ticker' => 'Flourishing AI <small>AI</small>'
'name_lang' => 'Flourishing AI'
'name_lang_with_ticker' => 'Flourishing AI <small>AI</small>'
'name_with_lang' => 'Flourishing AI'
'name_with_lang_with_ticker' => 'Flourishing AI <small>AI</small>'
'image' => '/uploads/coins/flourishing-ai-token.png?1717500127'
'price_for_sd' => 0.004191
'ticker' => 'AI'
'marketcap' => '$99.34K'
'low24h' => '$0.004171'
'high24h' => '$0.004252'
'volume24h' => '$4.82'
'current_supply' => '23.7M'
'max_supply' => '55M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004191'
'change_24h_pct' => '-0.1179%'
'ath_price' => '$12.89'
'ath_days' => 1557
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '02.10.2021'
'ath_pct' => '-99.97%'
'fdv' => '$230.54K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.206672'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004227'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003704'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001448'
'current_year_max_price_prediction' => '$0.004322'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0047004'
'grand_prediction_max_price' => '$0.01359'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0042709878572394
107 => 0.0042869341755298
108 => 0.0043228620448771
109 => 0.0040158623349752
110 => 0.0041536961916832
111 => 0.0042346606692133
112 => 0.0038688602142194
113 => 0.0042274299703563
114 => 0.0040105181530385
115 => 0.0039368950243347
116 => 0.0040360188680248
117 => 0.0039973902097377
118 => 0.0039641795576933
119 => 0.0039456474432212
120 => 0.0040184330541277
121 => 0.0040150375183813
122 => 0.0038959461318599
123 => 0.0037405962729287
124 => 0.0037927367847713
125 => 0.0037737936479989
126 => 0.0037051412766228
127 => 0.0037514046858114
128 => 0.0035476840451203
129 => 0.0031971932712887
130 => 0.0034287382123046
131 => 0.0034198239839479
201 => 0.0034153290257824
202 => 0.0035893286495237
203 => 0.0035726026005553
204 => 0.0035422446578957
205 => 0.0037045837291988
206 => 0.0036453277844045
207 => 0.003827940643804
208 => 0.0039482212836638
209 => 0.0039177142227243
210 => 0.0040308387458791
211 => 0.0037939379968551
212 => 0.0038726269228725
213 => 0.0038888446014666
214 => 0.0037025804902582
215 => 0.0035753391890211
216 => 0.0035668536448856
217 => 0.0033462347634718
218 => 0.0034640875891497
219 => 0.0035677931986649
220 => 0.0035181262595875
221 => 0.0035024031904332
222 => 0.0035827289408249
223 => 0.0035889709395738
224 => 0.0034466527066001
225 => 0.0034762451738677
226 => 0.0035996506817116
227 => 0.0034731356716959
228 => 0.0032273376733449
301 => 0.0031663763713307
302 => 0.0031582430099023
303 => 0.0029929111239378
304 => 0.0031704500970291
305 => 0.0030929495775261
306 => 0.0033377727900373
307 => 0.0031979310840641
308 => 0.0031919027876177
309 => 0.0031827901333801
310 => 0.0030404821493563
311 => 0.0030716385537133
312 => 0.0031752071870504
313 => 0.0032121616422093
314 => 0.0032083069897773
315 => 0.0031746996442454
316 => 0.0031900849149324
317 => 0.0031405235974658
318 => 0.0031230224647388
319 => 0.0030677840757863
320 => 0.0029865989040206
321 => 0.0029978882000922
322 => 0.0028370391315687
323 => 0.0027494000221308
324 => 0.0027251426717033
325 => 0.0026927047289272
326 => 0.002728806623654
327 => 0.0028365834663672
328 => 0.0027065817279224
329 => 0.0024837028659204
330 => 0.0024970982652938
331 => 0.0025271937505561
401 => 0.0024711110128714
402 => 0.0024180334083202
403 => 0.0024641800791553
404 => 0.0023697433671649
405 => 0.0025386059760234
406 => 0.0025340387156858
407 => 0.0025969802538746
408 => 0.0026363388893944
409 => 0.0025456299770308
410 => 0.0025228169308743
411 => 0.0025358122787602
412 => 0.0023210281257019
413 => 0.0025794278062877
414 => 0.0025816624574557
415 => 0.0025625280174593
416 => 0.0027001178701762
417 => 0.0029904753747599
418 => 0.002881231201932
419 => 0.0028389285562904
420 => 0.0027585111960026
421 => 0.0028656625538756
422 => 0.0028574350014126
423 => 0.0028202268889679
424 => 0.002797723306465
425 => 0.0028391868472241
426 => 0.0027925855149083
427 => 0.0027842146351054
428 => 0.0027334962111069
429 => 0.0027153920412807
430 => 0.0027019884346892
501 => 0.002687232380843
502 => 0.0027197805586481
503 => 0.0026460221056725
504 => 0.0025570766420143
505 => 0.0025496817891144
506 => 0.0025700996281332
507 => 0.0025610662542967
508 => 0.0025496385407958
509 => 0.0025278199235701
510 => 0.0025213468059202
511 => 0.0025423812979721
512 => 0.0025186345828326
513 => 0.0025536741545714
514 => 0.0025441453298864
515 => 0.0024909180897903
516 => 0.0024245772413823
517 => 0.0024239866686768
518 => 0.0024096936417081
519 => 0.0023914893228924
520 => 0.0023864252978563
521 => 0.0024602937352511
522 => 0.0026131991899619
523 => 0.0025831801904847
524 => 0.0026048719940778
525 => 0.0027115741985886
526 => 0.0027454916207553
527 => 0.0027214178378795
528 => 0.0026884641590729
529 => 0.0026899139536976
530 => 0.0028025266499368
531 => 0.0028095501656677
601 => 0.0028272963240476
602 => 0.0028501051526296
603 => 0.0027253022800152
604 => 0.0026840357496208
605 => 0.00266448137814
606 => 0.0026042614824734
607 => 0.0026692034770862
608 => 0.0026313645579188
609 => 0.002636470320876
610 => 0.002633145186052
611 => 0.0026349609345106
612 => 0.0025385587754828
613 => 0.0025736826554842
614 => 0.0025152823925933
615 => 0.0024370909963196
616 => 0.0024368288713419
617 => 0.0024559661048062
618 => 0.0024445825295016
619 => 0.0024139496210554
620 => 0.0024183008811169
621 => 0.0023801792643669
622 => 0.0024229295356045
623 => 0.0024241554604158
624 => 0.0024076942773663
625 => 0.0024735569686084
626 => 0.0025005409669492
627 => 0.0024897058636333
628 => 0.0024997807472164
629 => 0.0025844276154407
630 => 0.002598228748363
701 => 0.0026043582999555
702 => 0.0025961455128316
703 => 0.0025013279365791
704 => 0.0025055334992813
705 => 0.0024746758706068
706 => 0.0024486044260736
707 => 0.0024496471471283
708 => 0.0024630512586689
709 => 0.0025215877999074
710 => 0.0026447745000264
711 => 0.0026494493452476
712 => 0.0026551153940305
713 => 0.0026320687261023
714 => 0.0026251176305282
715 => 0.0026342879198204
716 => 0.0026805503675361
717 => 0.0027995499431929
718 => 0.0027574875454413
719 => 0.0027232901613291
720 => 0.0027532904867441
721 => 0.0027486721717968
722 => 0.0027096889459336
723 => 0.0027085948166213
724 => 0.0026337735424985
725 => 0.0026061138210534
726 => 0.0025829992875195
727 => 0.0025577588203207
728 => 0.0025427954252971
729 => 0.0025657860007947
730 => 0.0025710442174275
731 => 0.0025207749222955
801 => 0.0025139234031204
802 => 0.0025549743946633
803 => 0.0025369093838205
804 => 0.0025554896954631
805 => 0.0025598004871431
806 => 0.0025591063503967
807 => 0.0025402444043235
808 => 0.0025522664462792
809 => 0.0025238307331107
810 => 0.002492911165946
811 => 0.002473186408452
812 => 0.0024559739414291
813 => 0.0024655244185279
814 => 0.002431478711519
815 => 0.0024205868046422
816 => 0.0025481936489691
817 => 0.0026424581968782
818 => 0.0026410875530187
819 => 0.0026327441110253
820 => 0.0026203474486284
821 => 0.0026796434744677
822 => 0.0026589859247268
823 => 0.0026740160181593
824 => 0.002677841807749
825 => 0.0026894213205827
826 => 0.002693560001128
827 => 0.0026810500340216
828 => 0.002639065056449
829 => 0.0025344424841499
830 => 0.0024857403943215
831 => 0.0024696678934806
901 => 0.0024702520983602
902 => 0.002454137119777
903 => 0.0024588837031924
904 => 0.0024524864517719
905 => 0.0024403716052427
906 => 0.0024647763608935
907 => 0.0024675887816362
908 => 0.0024618924200522
909 => 0.0024632341194165
910 => 0.0024160706784489
911 => 0.0024196564124321
912 => 0.0023996905899608
913 => 0.002395947238939
914 => 0.0023454753783547
915 => 0.0022560571613164
916 => 0.002305603533592
917 => 0.0022457584831573
918 => 0.0022230942557572
919 => 0.0023303831832588
920 => 0.0023196143506692
921 => 0.002301182790375
922 => 0.002273918671226
923 => 0.0022638061442253
924 => 0.0022023656314064
925 => 0.0021987353981366
926 => 0.0022291869753231
927 => 0.0022151346202263
928 => 0.0021953997916274
929 => 0.0021239222429297
930 => 0.0020435578127904
1001 => 0.0020459835097835
1002 => 0.0020715459397774
1003 => 0.0021458721525482
1004 => 0.0021168316153621
1005 => 0.0020957623724318
1006 => 0.0020918167365701
1007 => 0.0021412046301278
1008 => 0.0022110988465954
1009 => 0.002243891649167
1010 => 0.0022113949777507
1011 => 0.0021740645513728
1012 => 0.0021763366814538
1013 => 0.0021914521449511
1014 => 0.0021930405664435
1015 => 0.0021687422965013
1016 => 0.0021755821171621
1017 => 0.002165191804132
1018 => 0.0021014264722455
1019 => 0.0021002731595937
1020 => 0.0020846241187938
1021 => 0.0020841502720577
1022 => 0.002057527349821
1023 => 0.0020538026189645
1024 => 0.0020009411909677
1025 => 0.0020357347429544
1026 => 0.0020123970550252
1027 => 0.0019772216545118
1028 => 0.0019711574022049
1029 => 0.0019709751034578
1030 => 0.0020070923747094
1031 => 0.0020353126916113
1101 => 0.0020128030240984
1102 => 0.0020076780091373
1103 => 0.0020623997607894
1104 => 0.0020554359190919
1105 => 0.0020494052770937
1106 => 0.0022048405861172
1107 => 0.0020818014102567
1108 => 0.0020281493067509
1109 => 0.0019617446404044
1110 => 0.0019833663346082
1111 => 0.0019879223432657
1112 => 0.001828231091043
1113 => 0.0017634443699046
1114 => 0.0017412120086459
1115 => 0.0017284169704221
1116 => 0.0017342478300107
1117 => 0.0016759321822616
1118 => 0.0017151212620008
1119 => 0.0016646248403491
1120 => 0.0016561589509296
1121 => 0.0017464528081491
1122 => 0.0017590166708922
1123 => 0.0017054153291442
1124 => 0.0017398360678154
1125 => 0.0017273546294891
1126 => 0.0016654904565648
1127 => 0.0016631277002011
1128 => 0.0016320864328585
1129 => 0.0015835128602411
1130 => 0.001561313434152
1201 => 0.0015497517803005
1202 => 0.0015545223440118
1203 => 0.0015521102010177
1204 => 0.001536369336345
1205 => 0.0015530124489551
1206 => 0.0015104961736452
1207 => 0.0014935658502398
1208 => 0.0014859188159382
1209 => 0.0014481831744551
1210 => 0.0015082373611706
1211 => 0.0015200687924963
1212 => 0.0015319235353966
1213 => 0.0016351109787669
1214 => 0.0016299560257008
1215 => 0.0016765542908544
1216 => 0.0016747435679592
1217 => 0.0016614529878956
1218 => 0.0016053822168014
1219 => 0.0016277310267942
1220 => 0.0015589448634127
1221 => 0.0016104841340225
1222 => 0.0015869637632476
1223 => 0.0016025318730042
1224 => 0.001574539007942
1225 => 0.0015900314152645
1226 => 0.0015228744637808
1227 => 0.0014601642474091
1228 => 0.0014854006691024
1229 => 0.0015128355456179
1230 => 0.00157232134818
1231 => 0.0015368920949212
]
'min_raw' => 0.0014481831744551
'max_raw' => 0.0043228620448771
'avg_raw' => 0.0028855226096661
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001448'
'max' => '$0.004322'
'avg' => '$0.002885'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0027433768255449
'max_diff' => 0.00013130204487711
'year' => 2026
]
1 => [
'items' => [
101 => 0.0015496337941215
102 => 0.0015069512347353
103 => 0.0014188849230513
104 => 0.0014193833688115
105 => 0.0014058362853878
106 => 0.0013941296274032
107 => 0.0015409615708509
108 => 0.0015227006976136
109 => 0.0014936043860341
110 => 0.0015325509553248
111 => 0.0015428490464104
112 => 0.0015431422185862
113 => 0.0015715566301842
114 => 0.0015867214067477
115 => 0.0015893942643449
116 => 0.0016341049549284
117 => 0.0016490913886637
118 => 0.00171081838826
119 => 0.0015854347814066
120 => 0.0015828525885345
121 => 0.0015330990134241
122 => 0.0015015445095162
123 => 0.0015352595773027
124 => 0.0015651265247959
125 => 0.0015340270627365
126 => 0.001538087995936
127 => 0.0014963395090407
128 => 0.0015112626286569
129 => 0.0015241164296316
130 => 0.0015170193162449
131 => 0.0015063945940007
201 => 0.0015626777756996
202 => 0.0015595020580126
203 => 0.0016119142507554
204 => 0.0016527733030302
205 => 0.001726000029136
206 => 0.0016495841230491
207 => 0.0016467992237056
208 => 0.0016740220615004
209 => 0.0016490872209891
210 => 0.0016648451794708
211 => 0.0017234611784075
212 => 0.0017246996420992
213 => 0.0017039537795937
214 => 0.0017026913919748
215 => 0.0017066758618039
216 => 0.0017300130260453
217 => 0.0017218583037807
218 => 0.0017312951548376
219 => 0.0017430960815864
220 => 0.0017919097181087
221 => 0.0018036785206164
222 => 0.0017750864319471
223 => 0.0017776679774219
224 => 0.0017669737513892
225 => 0.0017566432630399
226 => 0.0017798646922025
227 => 0.0018223023104156
228 => 0.0018220383081952
301 => 0.0018318830107512
302 => 0.0018380161788856
303 => 0.001811688131499
304 => 0.0017945495407595
305 => 0.0018011215670059
306 => 0.001811630380094
307 => 0.0017977137005556
308 => 0.0017118135076118
309 => 0.0017378701388254
310 => 0.0017335330412873
311 => 0.0017273564869839
312 => 0.0017535566311592
313 => 0.0017510295633378
314 => 0.0016753340710059
315 => 0.0016801798508316
316 => 0.0016756287589268
317 => 0.0016903342679368
318 => 0.0016482930752432
319 => 0.001661224662964
320 => 0.0016693352335564
321 => 0.0016741124219436
322 => 0.0016913709021472
323 => 0.0016893458186919
324 => 0.0016912450201162
325 => 0.0017168347901882
326 => 0.0018462590658636
327 => 0.0018533033436301
328 => 0.0018186147435845
329 => 0.0018324721551004
330 => 0.0018058689552728
331 => 0.001823727861543
401 => 0.001835946471646
402 => 0.001780732922094
403 => 0.0017774635340225
404 => 0.0017507505333259
405 => 0.0017651045867986
406 => 0.0017422662556306
407 => 0.0017478699832483
408 => 0.0017322014723051
409 => 0.0017604016724335
410 => 0.0017919338780453
411 => 0.0017999001584273
412 => 0.0017789443044415
413 => 0.0017637708850977
414 => 0.0017371313591649
415 => 0.0017814334844916
416 => 0.0017943887760199
417 => 0.0017813654358604
418 => 0.0017783476433799
419 => 0.0017726289320823
420 => 0.0017795608950158
421 => 0.00179431821872
422 => 0.001787358937386
423 => 0.0017919556653138
424 => 0.0017744376785783
425 => 0.0018116968471782
426 => 0.0018708733738221
427 => 0.0018710636360316
428 => 0.0018641043171846
429 => 0.001861256713853
430 => 0.0018683973973168
501 => 0.0018722709251698
502 => 0.0018953625861145
503 => 0.0019201408583205
504 => 0.0020357702430986
505 => 0.0020033019745514
506 => 0.0021058952435495
507 => 0.0021870331992583
508 => 0.0022113629244426
509 => 0.002188980722075
510 => 0.0021124124168386
511 => 0.0021086556104953
512 => 0.0022230809848232
513 => 0.0021907505755614
514 => 0.0021869049762542
515 => 0.0021459942968684
516 => 0.0021701775752716
517 => 0.0021648883375376
518 => 0.002156539017016
519 => 0.0022026790275876
520 => 0.0022890490084304
521 => 0.0022755874369435
522 => 0.0022655389982928
523 => 0.0022215096651822
524 => 0.0022480251580224
525 => 0.0022385834988928
526 => 0.0022791508583384
527 => 0.0022551196532799
528 => 0.0021905056409134
529 => 0.0022007956353533
530 => 0.0021992403233943
531 => 0.0022312485333
601 => 0.0022216404631789
602 => 0.0021973641934992
603 => 0.0022887538052255
604 => 0.0022828194721757
605 => 0.0022912329996629
606 => 0.0022949368946597
607 => 0.002350564140852
608 => 0.0023733528437436
609 => 0.0023785262782724
610 => 0.0024001737834779
611 => 0.0023779876686224
612 => 0.002466747946476
613 => 0.0025257683519428
614 => 0.0025943235900548
615 => 0.0026945012188472
616 => 0.0027321689339681
617 => 0.0027253645983821
618 => 0.0028013181332211
619 => 0.0029378049469745
620 => 0.0027529524857491
621 => 0.0029476025762763
622 => 0.0028859786049588
623 => 0.0027398692775327
624 => 0.0027304615593623
625 => 0.0028294084922594
626 => 0.0030488632661358
627 => 0.0029938923343152
628 => 0.0030489531788874
629 => 0.0029847217789649
630 => 0.002981532148574
701 => 0.0030458336031604
702 => 0.0031960774566911
703 => 0.0031247022336853
704 => 0.0030223683495837
705 => 0.0030979300971127
706 => 0.0030324715184935
707 => 0.0028849750201618
708 => 0.0029938502990796
709 => 0.0029210485006567
710 => 0.002942295935793
711 => 0.0030953144876277
712 => 0.003076902890634
713 => 0.0031007292020118
714 => 0.0030586763860732
715 => 0.0030193924248662
716 => 0.0029460659940081
717 => 0.0029243576527804
718 => 0.0029303570573114
719 => 0.0029243546797734
720 => 0.002883329215613
721 => 0.0028744697705336
722 => 0.0028597036405935
723 => 0.0028642802817028
724 => 0.0028365156374317
725 => 0.0028889132576396
726 => 0.0028986387176764
727 => 0.0029367693360649
728 => 0.0029407281833594
729 => 0.0030469214128158
730 => 0.0029884319665359
731 => 0.0030276717368363
801 => 0.0030241617624416
802 => 0.0027430359097002
803 => 0.0027817725718136
804 => 0.0028420346618278
805 => 0.0028148866719597
806 => 0.0027765057659376
807 => 0.0027455111264707
808 => 0.0026985510783138
809 => 0.0027646464443068
810 => 0.002851554822129
811 => 0.0029429323232416
812 => 0.0030527164035374
813 => 0.003028213874843
814 => 0.0029408799862247
815 => 0.0029447977206707
816 => 0.002969015613444
817 => 0.002937651241875
818 => 0.002928401276394
819 => 0.0029677448102298
820 => 0.0029680157475245
821 => 0.0029319272475234
822 => 0.002891821483898
823 => 0.0028916534392841
824 => 0.0028845170060227
825 => 0.0029859913345885
826 => 0.0030417919550879
827 => 0.0030481894063009
828 => 0.003041361355649
829 => 0.0030439892013493
830 => 0.0030115200497635
831 => 0.0030857349018608
901 => 0.0031538417892336
902 => 0.0031355876885263
903 => 0.0031082221965927
904 => 0.0030864242641669
905 => 0.003130452788395
906 => 0.0031284922675185
907 => 0.0031532469349875
908 => 0.0031521239202812
909 => 0.0031437998566815
910 => 0.0031355879858048
911 => 0.0031681471256033
912 => 0.0031587706162251
913 => 0.003149379542538
914 => 0.0031305443065571
915 => 0.003133104327947
916 => 0.0031057435610514
917 => 0.003093085218342
918 => 0.0029027341156036
919 => 0.0028518660810501
920 => 0.002867870200235
921 => 0.0028731391718174
922 => 0.0028510013379906
923 => 0.0028827413049553
924 => 0.0028777946647248
925 => 0.002897039148174
926 => 0.0028850160304133
927 => 0.00288550946336
928 => 0.0029208668890953
929 => 0.0029311313002074
930 => 0.0029259107378718
1001 => 0.0029295670407813
1002 => 0.0030138249981007
1003 => 0.0030018462109877
1004 => 0.00299548271908
1005 => 0.0029972454498273
1006 => 0.0030187751644334
1007 => 0.0030248023090443
1008 => 0.0029992648738081
1009 => 0.0030113084758956
1010 => 0.0030625886050237
1011 => 0.0030805337480146
1012 => 0.0031378060302842
1013 => 0.0031134757468425
1014 => 0.0031581350350898
1015 => 0.003295402461689
1016 => 0.0034050611802398
1017 => 0.0033042144908223
1018 => 0.0035055887624873
1019 => 0.0036623875184021
1020 => 0.0036563693209881
1021 => 0.0036290278310738
1022 => 0.0034505166161754
1023 => 0.0032862479347736
1024 => 0.0034236656619828
1025 => 0.0034240159680297
1026 => 0.0034122116633927
1027 => 0.0033388961410958
1028 => 0.0034096604421373
1029 => 0.0034152774553758
1030 => 0.0034121334216467
1031 => 0.003355922582599
1101 => 0.0032700990208727
1102 => 0.0032868687394014
1103 => 0.0033143378804445
1104 => 0.0032623330657868
1105 => 0.0032457143764209
1106 => 0.0032766116817872
1107 => 0.0033761692373867
1108 => 0.0033573484581983
1109 => 0.0033568569715929
1110 => 0.0034373802462136
1111 => 0.0033797429595955
1112 => 0.0032870802592561
1113 => 0.0032636817053496
1114 => 0.0031806326021359
1115 => 0.0032379949135363
1116 => 0.0032400592810035
1117 => 0.0032086425292781
1118 => 0.003289629555511
1119 => 0.0032888832458068
1120 => 0.0033657683738869
1121 => 0.0035127438620407
1122 => 0.0034692759779691
1123 => 0.0034187275580862
1124 => 0.0034242235728831
1125 => 0.003484501289885
1126 => 0.0034480560061792
1127 => 0.0034611619843054
1128 => 0.0034844814524175
1129 => 0.0034985506665193
1130 => 0.0034221992294868
1201 => 0.0034043980572031
1202 => 0.0033679831060732
1203 => 0.0033584831250406
1204 => 0.0033881423429131
1205 => 0.0033803281868793
1206 => 0.0032398857789115
1207 => 0.0032252087658647
1208 => 0.0032256588889009
1209 => 0.0031887528417407
1210 => 0.0031324622613553
1211 => 0.0032803905456723
1212 => 0.0032685098341867
1213 => 0.0032553944482005
1214 => 0.0032570010081485
1215 => 0.0033212116626158
1216 => 0.003283966240309
1217 => 0.0033829892999163
1218 => 0.0033626331357666
1219 => 0.0033417549128174
1220 => 0.0033388689064396
1221 => 0.0033308325718504
1222 => 0.0033032729903558
1223 => 0.0032699931396268
1224 => 0.0032480188995243
1225 => 0.0029961257451818
1226 => 0.0030428756494327
1227 => 0.0030966571528855
1228 => 0.0031152223123615
1229 => 0.0030834653224078
1230 => 0.0033045269498803
1231 => 0.0033449170394223
]
'min_raw' => 0.0013941296274032
'max_raw' => 0.0036623875184021
'avg_raw' => 0.0025282585729027
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001394'
'max' => '$0.003662'
'avg' => '$0.002528'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.405354705191E-5
'max_diff' => -0.00066047452647498
'year' => 2027
]
2 => [
'items' => [
101 => 0.0032225728236191
102 => 0.0031996872161237
103 => 0.0033060273264976
104 => 0.0032418912403924
105 => 0.0032707717160385
106 => 0.0032083479244672
107 => 0.0033351882496115
108 => 0.0033342219388496
109 => 0.0032848781875498
110 => 0.003326583188257
111 => 0.0033193359180744
112 => 0.0032636269443852
113 => 0.0033369543234438
114 => 0.003336990692909
115 => 0.0032894984051085
116 => 0.0032340378103563
117 => 0.0032241227659354
118 => 0.003216653111863
119 => 0.0032689346390348
120 => 0.0033158100928169
121 => 0.0034030336908949
122 => 0.0034249637758333
123 => 0.0035105583573163
124 => 0.0034595909515677
125 => 0.0034821841423977
126 => 0.0035067122470456
127 => 0.0035184719224049
128 => 0.0034993101624658
129 => 0.0036322737796442
130 => 0.003643499982834
131 => 0.0036472640316573
201 => 0.0036024294480561
202 => 0.0036422530519589
203 => 0.0036236209065119
204 => 0.0036720965728059
205 => 0.0036796981762491
206 => 0.0036732598885676
207 => 0.0036756727574836
208 => 0.0035622117666113
209 => 0.0035563282156801
210 => 0.0034761055812563
211 => 0.0035087968977598
212 => 0.0034476820484921
213 => 0.0034670621967476
214 => 0.0034756047814378
215 => 0.003471142619983
216 => 0.0035106452157452
217 => 0.0034770599395002
218 => 0.003388422873559
219 => 0.0032997616585084
220 => 0.0032986485891753
221 => 0.003275305656253
222 => 0.0032584329912215
223 => 0.0032616832650965
224 => 0.0032731376541719
225 => 0.0032577672413055
226 => 0.0032610472981903
227 => 0.0033155180973821
228 => 0.003326441827692
229 => 0.0032893187239219
301 => 0.0031402641054463
302 => 0.0031036857281972
303 => 0.0031299775403831
304 => 0.0031174117475678
305 => 0.0025159945842984
306 => 0.0026572886258617
307 => 0.0025733365042571
308 => 0.0026120255043439
309 => 0.0025263321274821
310 => 0.0025672294984952
311 => 0.0025596772474019
312 => 0.002786873885041
313 => 0.0027833265220431
314 => 0.0027850244569879
315 => 0.0027039775981238
316 => 0.0028330874449563
317 => 0.002896691598146
318 => 0.0028849201621603
319 => 0.0028878827789923
320 => 0.0028369752062
321 => 0.002785517353571
322 => 0.0027284426756987
323 => 0.002834480372542
324 => 0.0028226907907769
325 => 0.0028497318495885
326 => 0.0029185048757225
327 => 0.002928631965064
328 => 0.0029422428758379
329 => 0.0029373643332161
330 => 0.0030535910108545
331 => 0.0030395151933042
401 => 0.0030734338637113
402 => 0.003003660585268
403 => 0.0029247054977691
404 => 0.0029397122786663
405 => 0.002938267004989
406 => 0.0029198670122689
407 => 0.0029032563215604
408 => 0.0028756042015638
409 => 0.0029630996009767
410 => 0.0029595474475459
411 => 0.0030170526826639
412 => 0.0030068880737807
413 => 0.0029390063279573
414 => 0.0029414307377892
415 => 0.002957736059041
416 => 0.003014168962064
417 => 0.0030309220899263
418 => 0.0030231613736038
419 => 0.0030415304134954
420 => 0.0030560485536597
421 => 0.0030433536683748
422 => 0.0032230864728645
423 => 0.003148448881513
424 => 0.0031848267242127
425 => 0.0031935026253459
426 => 0.0031712794870278
427 => 0.003176098889978
428 => 0.003183398972239
429 => 0.003227723642225
430 => 0.0033440444017148
501 => 0.0033955620742706
502 => 0.0035505555339921
503 => 0.0033912842487255
504 => 0.0033818337497879
505 => 0.0034097527522378
506 => 0.0035007503208182
507 => 0.0035744953031857
508 => 0.003598960768287
509 => 0.003602194283381
510 => 0.0036480931223445
511 => 0.0036744014808758
512 => 0.0036425197960351
513 => 0.0036155034062841
514 => 0.0035187340515939
515 => 0.0035299353678935
516 => 0.0036071013293868
517 => 0.0037161027950486
518 => 0.003809637392256
519 => 0.0037768848363237
520 => 0.0040267637183854
521 => 0.0040515381888781
522 => 0.0040481151581105
523 => 0.0041045550888285
524 => 0.0039925333201454
525 => 0.0039446418437138
526 => 0.0036213446563973
527 => 0.0037121779789123
528 => 0.0038442095476419
529 => 0.0038267346744276
530 => 0.0037308498200022
531 => 0.0038095646549957
601 => 0.0037835390689064
602 => 0.0037630116093552
603 => 0.003857051881003
604 => 0.0037536507393648
605 => 0.0038431780421563
606 => 0.0037283583502848
607 => 0.0037770344472404
608 => 0.0037494035404105
609 => 0.003767284123446
610 => 0.0036627546003807
611 => 0.003719156193716
612 => 0.0036604081086667
613 => 0.0036603802544252
614 => 0.0036590833871916
615 => 0.0037282002487232
616 => 0.0037304541470964
617 => 0.0036793766819947
618 => 0.0036720156212936
619 => 0.0036992333207937
620 => 0.0036673685230059
621 => 0.0036822778613362
622 => 0.0036678201116755
623 => 0.0036645653677001
624 => 0.0036386310139551
625 => 0.0036274577812818
626 => 0.0036318390937117
627 => 0.003616883415667
628 => 0.0036078720786745
629 => 0.0036572908054517
630 => 0.0036308883732804
701 => 0.0036532442540573
702 => 0.003627766906375
703 => 0.003539451319356
704 => 0.003488660091341
705 => 0.0033218401343213
706 => 0.0033691500671926
707 => 0.0034005166016319
708 => 0.0033901499621868
709 => 0.0034124215150717
710 => 0.0034137888075368
711 => 0.0034065480986623
712 => 0.0033981642853779
713 => 0.003394083508725
714 => 0.0034244982745781
715 => 0.0034421550698698
716 => 0.003403664652993
717 => 0.0033946468868569
718 => 0.0034335628234335
719 => 0.0034573015222643
720 => 0.0036325747368079
721 => 0.0036195899309495
722 => 0.0036521792455147
723 => 0.0036485101888184
724 => 0.0036826689823677
725 => 0.0037385041732374
726 => 0.0036249756184343
727 => 0.0036446802500261
728 => 0.0036398491294062
729 => 0.0036925940375464
730 => 0.0036927587013923
731 => 0.0036611354941587
801 => 0.003678278947828
802 => 0.0036687099422958
803 => 0.0036860024286211
804 => 0.0036194165109508
805 => 0.0037005109711676
806 => 0.0037464863044989
807 => 0.0037471246720468
808 => 0.0037689166151631
809 => 0.0037910584914734
810 => 0.0038335578949001
811 => 0.0037898732061784
812 => 0.0037112887037869
813 => 0.0037169622510332
814 => 0.0036708881860339
815 => 0.0036716626993905
816 => 0.0036675282863933
817 => 0.0036799359710221
818 => 0.0036221392999822
819 => 0.0036357040631529
820 => 0.0036167133152787
821 => 0.003644638967849
822 => 0.0036145955819591
823 => 0.0036398467996935
824 => 0.0036507443881766
825 => 0.0036909567242873
826 => 0.0036086561872199
827 => 0.0034408398208831
828 => 0.0034761168556639
829 => 0.0034239393502718
830 => 0.0034287685770496
831 => 0.0034385243837065
901 => 0.0034069026224302
902 => 0.0034129350579655
903 => 0.0034127195369186
904 => 0.0034108622929701
905 => 0.0034026362515718
906 => 0.0033907068640715
907 => 0.0034382298722008
908 => 0.0034463049573286
909 => 0.0034642548712762
910 => 0.0035176616396413
911 => 0.0035123250440633
912 => 0.0035210292528643
913 => 0.0035020280139239
914 => 0.0034296499900272
915 => 0.003433580464946
916 => 0.0033845673797274
917 => 0.0034630014964907
918 => 0.0034444272623614
919 => 0.0034324523327857
920 => 0.003429184862304
921 => 0.0034827240157179
922 => 0.0034987437695427
923 => 0.0034887613340048
924 => 0.0034682870674823
925 => 0.003507603711879
926 => 0.0035181231872835
927 => 0.0035204781098833
928 => 0.0035901396655355
929 => 0.0035243714170009
930 => 0.0035402024881033
1001 => 0.0036637119856661
1002 => 0.0035517059145223
1003 => 0.0036110380284406
1004 => 0.0036081340302138
1005 => 0.0036384863320051
1006 => 0.0036056442555496
1007 => 0.0036060513724481
1008 => 0.0036330021601958
1009 => 0.0035951546394043
1010 => 0.0035857830610055
1011 => 0.003572836292568
1012 => 0.0036011050878032
1013 => 0.0036180509520591
1014 => 0.0037546221725956
1015 => 0.0038428534094666
1016 => 0.0038390230587807
1017 => 0.0038740252939337
1018 => 0.0038582564664135
1019 => 0.0038073347627443
1020 => 0.0038942519016675
1021 => 0.0038667476821446
1022 => 0.0038690150965845
1023 => 0.0038689307033058
1024 => 0.0038872186048279
1025 => 0.0038742599505379
1026 => 0.0038487171127538
1027 => 0.0038656736405092
1028 => 0.0039160284658732
1029 => 0.0040723313888776
1030 => 0.0041598005753292
1031 => 0.0040670656340237
1101 => 0.0041310329547659
1102 => 0.0040926753562074
1103 => 0.0040857046395096
1104 => 0.0041258808440836
1105 => 0.0041661273717852
1106 => 0.0041635638419611
1107 => 0.0041343469295318
1108 => 0.0041178430370522
1109 => 0.0042428160401174
1110 => 0.0043348940199163
1111 => 0.0043286149189926
1112 => 0.0043563288283967
1113 => 0.0044376977235661
1114 => 0.0044451370755922
1115 => 0.0044441998882284
1116 => 0.0044257606780157
1117 => 0.0045058789223962
1118 => 0.0045727149714047
1119 => 0.0044214925336114
1120 => 0.004479076058276
1121 => 0.0045049271577233
1122 => 0.0045428842413874
1123 => 0.0046069242038747
1124 => 0.004676488588897
1125 => 0.0046863257556738
1126 => 0.0046793458150939
1127 => 0.0046334662331807
1128 => 0.0047095844133478
1129 => 0.0047541726580987
1130 => 0.0047807239374641
1201 => 0.0048480535642229
1202 => 0.0045050868053127
1203 => 0.0042623178868021
1204 => 0.004224406014551
1205 => 0.0043015012975844
1206 => 0.0043218307088969
1207 => 0.0043136359486878
1208 => 0.0040403774593197
1209 => 0.0042229673651566
1210 => 0.0044194187512419
1211 => 0.0044269652490549
1212 => 0.0045253129205339
1213 => 0.0045573389537748
1214 => 0.0046365217200394
1215 => 0.0046315688164504
1216 => 0.0046508485599628
1217 => 0.0046464164808079
1218 => 0.0047930858814145
1219 => 0.0049548840109003
1220 => 0.0049492814561627
1221 => 0.0049260210607406
1222 => 0.0049605667144293
1223 => 0.0051275597233999
1224 => 0.0051121856831423
1225 => 0.005127120253695
1226 => 0.0053240144225849
1227 => 0.0055800048500108
1228 => 0.0054610715954528
1229 => 0.0057191225357216
1230 => 0.0058815519239282
1231 => 0.0061624567553194
]
'min_raw' => 0.0025159945842984
'max_raw' => 0.0061624567553194
'avg_raw' => 0.0043392256698089
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002515'
'max' => '$0.006162'
'avg' => '$0.004339'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011218649568952
'max_diff' => 0.0025000692369173
'year' => 2028
]
3 => [
'items' => [
101 => 0.0061272860869438
102 => 0.0062366402764295
103 => 0.0060643232502114
104 => 0.0056686485269979
105 => 0.0056060314874673
106 => 0.0057313923863234
107 => 0.0060395799236236
108 => 0.0057216864640275
109 => 0.0057859958968785
110 => 0.0057674747758911
111 => 0.0057664878640634
112 => 0.005804154274467
113 => 0.0057495171816287
114 => 0.0055269158363798
115 => 0.0056289327211094
116 => 0.0055895391026622
117 => 0.0056332492593182
118 => 0.005869134947351
119 => 0.0057648442618592
120 => 0.005654982496581
121 => 0.0057927735305173
122 => 0.0059682288668546
123 => 0.0059572491872302
124 => 0.0059359440196087
125 => 0.0060560401339885
126 => 0.0062544037300841
127 => 0.0063080206130192
128 => 0.006347599499853
129 => 0.0063530567596567
130 => 0.0064092699273019
131 => 0.0061069975573311
201 => 0.0065867115713798
202 => 0.0066695449297738
203 => 0.0066539756914866
204 => 0.006746041483181
205 => 0.0067189533917808
206 => 0.0066797069973333
207 => 0.0068256508601243
208 => 0.0066583379984968
209 => 0.0064208584555201
210 => 0.0062905724814304
211 => 0.0064621435619815
212 => 0.0065669160338685
213 => 0.0066361639730051
214 => 0.0066571183575471
215 => 0.0061304621009529
216 => 0.0058466235883437
217 => 0.006028560820711
218 => 0.0062505368008362
219 => 0.0061057644695537
220 => 0.0061114392708497
221 => 0.0059050319719402
222 => 0.0062687992667756
223 => 0.0062158014316826
224 => 0.0064907542938965
225 => 0.0064251345866946
226 => 0.0066493479722215
227 => 0.0065903050736034
228 => 0.0068353888447229
301 => 0.0069331593964007
302 => 0.0070973313694389
303 => 0.007218096941106
304 => 0.0072890127946662
305 => 0.0072847552728171
306 => 0.0075657592147606
307 => 0.0074000610077265
308 => 0.0071919050076227
309 => 0.0071881401223046
310 => 0.0072959470643517
311 => 0.0075218808394921
312 => 0.0075804621801833
313 => 0.0076132011578162
314 => 0.0075630602739194
315 => 0.0073832067458814
316 => 0.0073055469043527
317 => 0.0073717153393574
318 => 0.0072907970292651
319 => 0.0074304847341522
320 => 0.007622305788646
321 => 0.0075826954994357
322 => 0.0077151067575593
323 => 0.0078521384796467
324 => 0.0080480999967113
325 => 0.008099331593706
326 => 0.008184015475375
327 => 0.0082711830068185
328 => 0.0082991788686872
329 => 0.0083526316556005
330 => 0.0083523499330285
331 => 0.0085134335041792
401 => 0.0086911136715013
402 => 0.0087581838213601
403 => 0.0089124079326907
404 => 0.0086483045466944
405 => 0.0088486299987736
406 => 0.0090293285710204
407 => 0.0088138922838601
408 => 0.0091108210154935
409 => 0.0091223500852878
410 => 0.0092964253512403
411 => 0.0091199667204117
412 => 0.0090151861487015
413 => 0.0093176837331519
414 => 0.0094640527856829
415 => 0.0094199652358697
416 => 0.0090844568049206
417 => 0.0088891765074747
418 => 0.0083780903023026
419 => 0.00898349398961
420 => 0.0092783684658298
421 => 0.0090836931512637
422 => 0.009181876056344
423 => 0.0097175301505486
424 => 0.0099214725485875
425 => 0.0098790539554604
426 => 0.0098862219994294
427 => 0.0099962656155948
428 => 0.010484259611799
429 => 0.010191842297661
430 => 0.010415384377652
501 => 0.010533950290838
502 => 0.010644080918755
503 => 0.010373634903732
504 => 0.010021788611829
505 => 0.0099103441216807
506 => 0.0090643365278612
507 => 0.0090202981585781
508 => 0.0089955780874004
509 => 0.0088397215353481
510 => 0.0087172609781377
511 => 0.0086198757963749
512 => 0.0083643079977524
513 => 0.0084505546275161
514 => 0.0080432328976569
515 => 0.008303822905825
516 => 0.0076537275898426
517 => 0.0081951462866794
518 => 0.0079004767052785
519 => 0.0080983394040762
520 => 0.0080976490797599
521 => 0.0077333211188476
522 => 0.0075231843543239
523 => 0.0076570916793236
524 => 0.0078006509613
525 => 0.0078239429718093
526 => 0.0080100713281723
527 => 0.0080620157516176
528 => 0.0079046217235251
529 => 0.0076402558093938
530 => 0.007701661981702
531 => 0.007521939960202
601 => 0.0072069840304312
602 => 0.0074331908777956
603 => 0.0075104278410988
604 => 0.0075445400841862
605 => 0.0072348171001895
606 => 0.0071374954142046
607 => 0.0070856821651943
608 => 0.0076002744614945
609 => 0.0076284649891122
610 => 0.0074842382640809
611 => 0.0081361567373618
612 => 0.007988607508894
613 => 0.0081534561475311
614 => 0.007696090015194
615 => 0.0077135620173745
616 => 0.0074970375607087
617 => 0.0076182767882721
618 => 0.007532588809953
619 => 0.0076084818567944
620 => 0.0076539718361523
621 => 0.0078704607632854
622 => 0.0081976182424763
623 => 0.0078381245368412
624 => 0.0076814879812513
625 => 0.0077786644193819
626 => 0.0080374580798848
627 => 0.0084295437229504
628 => 0.0081974211307966
629 => 0.0083004331954972
630 => 0.0083229367489465
701 => 0.0081517781431378
702 => 0.0084358545848847
703 => 0.0085880934578497
704 => 0.0087442590401159
705 => 0.0088798532395373
706 => 0.008681883072404
707 => 0.0088937395291454
708 => 0.0087230206227108
709 => 0.0085698681150428
710 => 0.0085701003841783
711 => 0.008474025578917
712 => 0.0082878685375189
713 => 0.0082535383229236
714 => 0.0084321284346763
715 => 0.0085753407917554
716 => 0.0085871364474253
717 => 0.0086664261668209
718 => 0.0087133490060102
719 => 0.0091732566185714
720 => 0.0093582352648988
721 => 0.0095844236521614
722 => 0.0096725367762792
723 => 0.0099377256895705
724 => 0.0097235641044973
725 => 0.0096772288984272
726 => 0.0090339673374151
727 => 0.0091393013819946
728 => 0.00930795135059
729 => 0.0090367483132796
730 => 0.0092087642181188
731 => 0.0092427238015291
801 => 0.0090275329378489
802 => 0.0091424756759889
803 => 0.0088372218416359
804 => 0.0082042719419027
805 => 0.0084365592390614
806 => 0.0086076008768289
807 => 0.0083635033704528
808 => 0.008801038702754
809 => 0.0085454395941862
810 => 0.0084644269476911
811 => 0.0081483677306201
812 => 0.0082975355148427
813 => 0.0084992870788807
814 => 0.008374628068442
815 => 0.0086333142327469
816 => 0.0089996828304828
817 => 0.0092607789108565
818 => 0.0092808226258647
819 => 0.0091129553382632
820 => 0.0093819637379593
821 => 0.009383923170468
822 => 0.0090804805966791
823 => 0.0088946237098088
824 => 0.0088523966340656
825 => 0.0089578881483779
826 => 0.0090859743215609
827 => 0.0092879305170419
828 => 0.0094099684162931
829 => 0.0097281785336396
830 => 0.0098142770675946
831 => 0.0099088732529666
901 => 0.010035282929007
902 => 0.010187070155869
903 => 0.0098549683447464
904 => 0.0098681633688176
905 => 0.009558914760563
906 => 0.0092284382719065
907 => 0.0094792287323209
908 => 0.0098071038980559
909 => 0.0097318889727664
910 => 0.0097234257571699
911 => 0.009737658538303
912 => 0.0096809489409246
913 => 0.0094244535337377
914 => 0.0092956431459946
915 => 0.0094618414092178
916 => 0.0095501683894873
917 => 0.009687155832963
918 => 0.0096702692391005
919 => 0.010023134182117
920 => 0.010160246828891
921 => 0.010125167546465
922 => 0.010131622978661
923 => 0.010379858876292
924 => 0.010655948248064
925 => 0.010914542377929
926 => 0.011177595433705
927 => 0.010860474707832
928 => 0.010699460360521
929 => 0.010865586066782
930 => 0.010777437428651
1001 => 0.011283965649934
1002 => 0.011319036564977
1003 => 0.011825528158503
1004 => 0.012306248992657
1005 => 0.012004316849733
1006 => 0.012289025261188
1007 => 0.012596960620794
1008 => 0.013191017890184
1009 => 0.01299096030104
1010 => 0.012837719323058
1011 => 0.01269290733932
1012 => 0.012994238089224
1013 => 0.0133818952851
1014 => 0.013465392932157
1015 => 0.013600691018945
1016 => 0.01345844162415
1017 => 0.013629765351924
1018 => 0.014234613394427
1019 => 0.014071178114202
1020 => 0.013839073742749
1021 => 0.014316543182082
1022 => 0.014489337516061
1023 => 0.015702098645021
1024 => 0.017233259666998
1025 => 0.016599348949754
1026 => 0.01620586011139
1027 => 0.016298339322086
1028 => 0.01685746749424
1029 => 0.017037041717295
1030 => 0.016548897076085
1031 => 0.016721318015755
1101 => 0.017671374345391
1102 => 0.018181049084785
1103 => 0.017488842330239
1104 => 0.015579071347764
1105 => 0.013818175283608
1106 => 0.014285244214006
1107 => 0.014232293092135
1108 => 0.015253010096388
1109 => 0.01406728023682
1110 => 0.014087244886681
1111 => 0.015129069237624
1112 => 0.014851128362184
1113 => 0.014400899739948
1114 => 0.013821462450804
1115 => 0.012750319030358
1116 => 0.011801577431825
1117 => 0.013662278188689
1118 => 0.013582041388588
1119 => 0.013465846611615
1120 => 0.013724425514181
1121 => 0.014980011266141
1122 => 0.014951065950624
1123 => 0.014766930621334
1124 => 0.014906595645706
1125 => 0.014376415785905
1126 => 0.014513055207747
1127 => 0.013817896348675
1128 => 0.014132137185374
1129 => 0.014399933751533
1130 => 0.014453697876985
1201 => 0.014574831196893
1202 => 0.013539760240924
1203 => 0.014004476712067
1204 => 0.014277454100819
1205 => 0.013044132327435
1206 => 0.014253075294791
1207 => 0.013521741958405
1208 => 0.013273516439778
1209 => 0.013607719399384
1210 => 0.013477480181003
1211 => 0.013365508148941
1212 => 0.013303025831128
1213 => 0.013548427600028
1214 => 0.01353697931419
1215 => 0.013135454389838
1216 => 0.012611681494271
1217 => 0.012787476870283
1218 => 0.012723608762087
1219 => 0.012492142498837
1220 => 0.012648122812924
1221 => 0.011961264449513
1222 => 0.010779560335056
1223 => 0.011560230269642
1224 => 0.011530175326366
1225 => 0.011515020261083
1226 => 0.012101672140793
1227 => 0.01204527909892
1228 => 0.01194292517572
1229 => 0.01249026268877
1230 => 0.012290477133778
1231 => 0.012906169138866
]
'min_raw' => 0.0055269158363798
'max_raw' => 0.018181049084785
'avg_raw' => 0.011853982460582
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005526'
'max' => '$0.018181'
'avg' => '$0.011853'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0030109212520814
'max_diff' => 0.012018592329465
'year' => 2029
]
4 => [
'items' => [
101 => 0.01331170371388
102 => 0.013208847027987
103 => 0.013590254255906
104 => 0.012791526840689
105 => 0.013056832048642
106 => 0.013111511084304
107 => 0.01248350862882
108 => 0.012054505697995
109 => 0.012025896093501
110 => 0.011282064131696
111 => 0.01167941316169
112 => 0.012029063864665
113 => 0.011861608311931
114 => 0.011808596886527
115 => 0.012079420762138
116 => 0.012100466096722
117 => 0.01162063023791
118 => 0.011720403307382
119 => 0.012136473592976
120 => 0.011709919403712
121 => 0.010881194291203
122 => 0.01067565900528
123 => 0.010648236809371
124 => 0.010090808812738
125 => 0.010689393855891
126 => 0.010428095443473
127 => 0.011253533997465
128 => 0.010782047922341
129 => 0.010761723099989
130 => 0.010730999150002
131 => 0.010251197846239
201 => 0.0103562438388
202 => 0.010705432717027
203 => 0.010830027242673
204 => 0.010817031012875
205 => 0.010703721501024
206 => 0.010755594015311
207 => 0.010588494573212
208 => 0.010529488282332
209 => 0.010343248197358
210 => 0.010069526722582
211 => 0.010107589372481
212 => 0.0095652755078306
213 => 0.0092697941315937
214 => 0.0091880087810333
215 => 0.0090786419922188
216 => 0.0092003620508438
217 => 0.0095637392007902
218 => 0.009125429263192
219 => 0.0083739776190472
220 => 0.0084191411432716
221 => 0.0085206101730331
222 => 0.0083315233073573
223 => 0.0081525684578528
224 => 0.0083081551804311
225 => 0.0079897552125949
226 => 0.0085590872879723
227 => 0.008543688450868
228 => 0.0087559002413093
301 => 0.0088886006288966
302 => 0.0085827691977686
303 => 0.008505853419896
304 => 0.0085496681425994
305 => 0.0078255083748129
306 => 0.0086967209387974
307 => 0.0087042552212287
308 => 0.008639742120857
309 => 0.0091036359155085
310 => 0.010082596514326
311 => 0.0097142721584522
312 => 0.0095716458351952
313 => 0.0093005130904243
314 => 0.0096617813745621
315 => 0.0096340416070035
316 => 0.009508591858109
317 => 0.0094327194585505
318 => 0.0095725166811117
319 => 0.0094153970356078
320 => 0.0093871740299162
321 => 0.009216173322358
322 => 0.0091551338497962
323 => 0.0091099426543628
324 => 0.0090601915885858
325 => 0.0091699300424967
326 => 0.0089212482686388
327 => 0.0086213624279412
328 => 0.0085964301650969
329 => 0.0086652703348769
330 => 0.0086348136842971
331 => 0.0085962843503715
401 => 0.0085227213590676
402 => 0.0085008967909724
403 => 0.0085718160495067
404 => 0.0084917523414711
405 => 0.0086098907039735
406 => 0.0085777636062666
407 => 0.0083983042500753
408 => 0.0081746314478976
409 => 0.0081726402907886
410 => 0.0081244503524563
411 => 0.0080630732205844
412 => 0.0080459995066162
413 => 0.0082950521006222
414 => 0.0088105835166977
415 => 0.0087093723641009
416 => 0.0087825077943882
417 => 0.0091422617266063
418 => 0.0092566166834802
419 => 0.0091754502437367
420 => 0.0090643446148878
421 => 0.0090692326986865
422 => 0.0094489142664243
423 => 0.0094725945400772
424 => 0.0095324269520523
425 => 0.009609328510078
426 => 0.0091885469116002
427 => 0.0090494139232385
428 => 0.0089834849945484
429 => 0.0087804494118893
430 => 0.0089994058808318
501 => 0.0088718293230298
502 => 0.0088890437593131
503 => 0.0088778328351006
504 => 0.0088839547578
505 => 0.0085589281480542
506 => 0.0086773507617499
507 => 0.0084804501980371
508 => 0.0082168224463513
509 => 0.0082159386736878
510 => 0.0082804611924318
511 => 0.0082420806735165
512 => 0.0081387996839688
513 => 0.0081534702610615
514 => 0.0080249405686225
515 => 0.0081690760928288
516 => 0.0081732093839213
517 => 0.0081177093559868
518 => 0.008339770017896
519 => 0.0084307484522644
520 => 0.0083942171449522
521 => 0.0084281853183584
522 => 0.0087135781444322
523 => 0.0087601096276442
524 => 0.0087807758387898
525 => 0.0087530858536031
526 => 0.008433401775316
527 => 0.0084475811235897
528 => 0.0083435424741028
529 => 0.008255640778609
530 => 0.0082591563854451
531 => 0.0083043492833494
601 => 0.008501709319026
602 => 0.0089170418790978
603 => 0.0089328034461484
604 => 0.008951906925211
605 => 0.0088742034752239
606 => 0.008850767371186
607 => 0.0088816856417838
608 => 0.0090376627141982
609 => 0.0094388780918101
610 => 0.009297061781088
611 => 0.0091817629129685
612 => 0.0092829111046609
613 => 0.0092673401333756
614 => 0.0091359054656559
615 => 0.0091322165322897
616 => 0.0088799513827304
617 => 0.0087866947007379
618 => 0.0087087624371233
619 => 0.0086236624397293
620 => 0.0085732123086965
621 => 0.0086507266391374
622 => 0.0086684550836319
623 => 0.0084989686454041
624 => 0.0084758682701475
625 => 0.0086142745542232
626 => 0.0085533671089079
627 => 0.0086160119268467
628 => 0.0086305460619658
629 => 0.0086282057314621
630 => 0.0085646113633773
701 => 0.0086051445171832
702 => 0.0085092715249176
703 => 0.0084050240454865
704 => 0.008338520648457
705 => 0.0082804876141532
706 => 0.0083126877144847
707 => 0.0081979002363089
708 => 0.008161177411825
709 => 0.0085914127966986
710 => 0.0089092323013146
711 => 0.0089046110798471
712 => 0.0088764805826456
713 => 0.0088346843698673
714 => 0.0090346050609009
715 => 0.0089649566896852
716 => 0.0090156316990608
717 => 0.0090285306157703
718 => 0.0090675717517449
719 => 0.0090815256021568
720 => 0.0090393473746398
721 => 0.0088977920914562
722 => 0.0085450497844351
723 => 0.0083808472883071
724 => 0.008326657729576
725 => 0.0083286274171153
726 => 0.0082742946417103
727 => 0.0082902980790913
728 => 0.0082687292992851
729 => 0.0082278832483804
730 => 0.0083101655859425
731 => 0.0083196478588335
801 => 0.0083004421780458
802 => 0.0083049658111271
803 => 0.0081459509770585
804 => 0.0081580405295307
805 => 0.0080907243650996
806 => 0.0080781033957773
807 => 0.0079079339939844
808 => 0.0076064542322593
809 => 0.0077735032856036
810 => 0.0075717315198151
811 => 0.0074953174947699
812 => 0.007857049604515
813 => 0.0078207417335836
814 => 0.007758598441201
815 => 0.0076666755599702
816 => 0.0076325804691534
817 => 0.0074254294905447
818 => 0.007413189905621
819 => 0.0075158595241664
820 => 0.0074684810278536
821 => 0.0074019436753906
822 => 0.0071609521295531
823 => 0.006889997842473
824 => 0.0068981762492421
825 => 0.0069843617666785
826 => 0.0072349577823255
827 => 0.0071370455836571
828 => 0.0070660091601102
829 => 0.0070527061733269
830 => 0.0072192209046091
831 => 0.007454874135288
901 => 0.0075654373586787
902 => 0.0074558725621535
903 => 0.007330010423293
904 => 0.0073376710684965
905 => 0.0073886339090055
906 => 0.0073939893829672
907 => 0.0073120660694059
908 => 0.0073351270023049
909 => 0.0073000953364955
910 => 0.0070851060680866
911 => 0.0070812175939594
912 => 0.0070284557603216
913 => 0.0070268581529679
914 => 0.0069370971118938
915 => 0.0069245389217588
916 => 0.0067463129266004
917 => 0.0068636218163317
918 => 0.006784937172093
919 => 0.0066663408533943
920 => 0.0066458948033489
921 => 0.0066452801703953
922 => 0.0067670520720473
923 => 0.0068621988407618
924 => 0.0067863059251674
925 => 0.0067690265794089
926 => 0.0069535247856546
927 => 0.0069300457071714
928 => 0.0069097129766287
929 => 0.007433773973148
930 => 0.0070189388014134
1001 => 0.0068380469885734
1002 => 0.0066141590197602
1003 => 0.0066870580713469
1004 => 0.0067024189726261
1005 => 0.0061640087664702
1006 => 0.0059455758128875
1007 => 0.0058706178546901
1008 => 0.0058274784899975
1009 => 0.0058471376401979
1010 => 0.0056505223623434
1011 => 0.0057826510807782
1012 => 0.0056123988696319
1013 => 0.0055838555323846
1014 => 0.005888287576116
1015 => 0.005930647516535
1016 => 0.0057499268505056
1017 => 0.0058659787741147
1018 => 0.0058238967333716
1019 => 0.0056153173551385
1020 => 0.0056073511570961
1021 => 0.0055026933570184
1022 => 0.0053389241656402
1023 => 0.0052640772506663
1024 => 0.0052250963274972
1025 => 0.0052411806161199
1026 => 0.0052330479076049
1027 => 0.0051799764833688
1028 => 0.0052360898995189
1029 => 0.0050927433089198
1030 => 0.0050356615415213
1031 => 0.0050098790314744
1101 => 0.0048826506815957
1102 => 0.0050851275649566
1103 => 0.0051250180617153
1104 => 0.0051649871550753
1105 => 0.0055128908247157
1106 => 0.0054955105405461
1107 => 0.0056526198448982
1108 => 0.0056465148662365
1109 => 0.0056017047476333
1110 => 0.0054126582281531
1111 => 0.0054880088013877
1112 => 0.0052560914490505
1113 => 0.0054298596982686
1114 => 0.005350559126061
1115 => 0.005403048095036
1116 => 0.0053086681960795
1117 => 0.0053609019290126
1118 => 0.0051344775783366
1119 => 0.004923045705552
1120 => 0.0050081320632416
1121 => 0.0051006306648556
1122 => 0.00530119120136
1123 => 0.0051817390004065
1124 => 0.0052246985288572
1125 => 0.0050807912998856
1126 => 0.0047838695814494
1127 => 0.0047855501261302
1128 => 0.0047398751885401
1129 => 0.0047004053738121
1130 => 0.0051954595226249
1201 => 0.0051338917135721
1202 => 0.005035791467642
1203 => 0.0051671025451682
1204 => 0.0052018232782532
1205 => 0.0052028117287125
1206 => 0.0052986129012461
1207 => 0.0053497420042006
1208 => 0.0053587537302026
1209 => 0.0055094989451056
1210 => 0.0055600267527636
1211 => 0.0057681436415441
1212 => 0.0053454040570341
1213 => 0.0053366980134826
1214 => 0.0051689503613144
1215 => 0.0050625621483238
1216 => 0.005176234853277
1217 => 0.0052769333519938
1218 => 0.0051720793443655
1219 => 0.0051857710641729
1220 => 0.0050450131258191
1221 => 0.005095327465504
1222 => 0.0051386649529141
1223 => 0.005114736539626
1224 => 0.0050789145467854
1225 => 0.0052686772234495
1226 => 0.0052579700695462
1227 => 0.0054346814366809
1228 => 0.0055724405841135
1229 => 0.005819329603706
1230 => 0.0055616880411456
1231 => 0.0055522985585735
]
'min_raw' => 0.0047004053738121
'max_raw' => 0.013590254255906
'avg_raw' => 0.0091453298148589
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0047004'
'max' => '$0.01359'
'avg' => '$0.009145'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00082651046256775
'max_diff' => -0.0045907948288789
'year' => 2030
]
5 => [
'items' => [
101 => 0.0056440822568367
102 => 0.0055600127011576
103 => 0.0056131417583644
104 => 0.0058107696912179
105 => 0.0058149452580211
106 => 0.0057449991341539
107 => 0.0057407429061599
108 => 0.0057541768243753
109 => 0.005832859702964
110 => 0.0058053654875045
111 => 0.0058371824897026
112 => 0.0058769701381506
113 => 0.0060415487217448
114 => 0.0060812280610712
115 => 0.0059848278378867
116 => 0.0059935316986928
117 => 0.0059574753689765
118 => 0.005922645406255
119 => 0.0060009380759453
120 => 0.0061440194686504
121 => 0.0061431293667324
122 => 0.0061763214687351
123 => 0.0061969998733046
124 => 0.006108233023375
125 => 0.0060504490681184
126 => 0.0060726071134524
127 => 0.0061080383104809
128 => 0.0060611172537858
129 => 0.0057714987559158
130 => 0.0058593505072683
131 => 0.0058447276801121
201 => 0.0058239029960451
202 => 0.0059122386113675
203 => 0.0059037184257735
204 => 0.005648505788486
205 => 0.0056648436734897
206 => 0.0056494993493858
207 => 0.0056990799997189
208 => 0.0055573351833298
209 => 0.0056009349341852
210 => 0.0056282802891994
211 => 0.0056443869133797
212 => 0.0057025750843345
213 => 0.0056957473740783
214 => 0.0057021506642784
215 => 0.0057884283606968
216 => 0.0062247913422509
217 => 0.0062485416165562
218 => 0.006131586579622
219 => 0.0061783078100411
220 => 0.0060886132644463
221 => 0.0061488258138053
222 => 0.0061900217108438
223 => 0.0060038653736423
224 => 0.0059928424034978
225 => 0.0059027776566072
226 => 0.0059511733500582
227 => 0.0058741723220042
228 => 0.005893065680907
301 => 0.0058402382023213
302 => 0.0059353171459296
303 => 0.0060416301786578
304 => 0.0060684890491538
305 => 0.0059978349243495
306 => 0.0059466766816575
307 => 0.0058568596600631
308 => 0.0060062273686775
309 => 0.0060499070385748
310 => 0.0060059979379665
311 => 0.0059958232399228
312 => 0.0059765422055152
313 => 0.0059999138025197
314 => 0.0060496691497118
315 => 0.006026205446813
316 => 0.0060417036359549
317 => 0.0059826405206092
318 => 0.0061082624088959
319 => 0.0063077802000491
320 => 0.0063084216823721
321 => 0.0062849578529951
322 => 0.0062753569595494
323 => 0.0062994322723943
324 => 0.0063124921419917
325 => 0.0063903472890749
326 => 0.0064738889637811
327 => 0.0068637415075466
328 => 0.0067542724732774
329 => 0.0071001728425377
330 => 0.0073737351250811
331 => 0.0074557644921871
401 => 0.0073803013342296
402 => 0.0071221459472966
403 => 0.0071094796124184
404 => 0.0074952727508892
405 => 0.0073862685188261
406 => 0.0073733028122708
407 => 0.0072353696004291
408 => 0.0073169052119881
409 => 0.0072990721776849
410 => 0.0072709218606154
411 => 0.0074264861276501
412 => 0.0077176885482213
413 => 0.0076723019200963
414 => 0.0076384229076261
415 => 0.0074899749370137
416 => 0.007579373772377
417 => 0.007547540559426
418 => 0.0076843162441194
419 => 0.0076032933584594
420 => 0.0073854427045596
421 => 0.0074201361392383
422 => 0.0074148922963801
423 => 0.0075228102108188
424 => 0.0074904159315916
425 => 0.0074085667934514
426 => 0.0077166932500056
427 => 0.0076966852318063
428 => 0.0077250520271431
429 => 0.0077375399677226
430 => 0.00792509111203
501 => 0.0080019248148855
502 => 0.0080193674105969
503 => 0.0080923534857778
504 => 0.0080175514505577
505 => 0.0083168129243856
506 => 0.00851580434209
507 => 0.0087469431137585
508 => 0.009084698983411
509 => 0.0092116983148168
510 => 0.0091887570223253
511 => 0.0094448396679413
512 => 0.009905014489716
513 => 0.0092817715107076
514 => 0.0099380478809556
515 => 0.0097302783592102
516 => 0.0092376605607657
517 => 0.0092059417821283
518 => 0.0095395482746451
519 => 0.010279455366612
520 => 0.010094117032031
521 => 0.010279758513732
522 => 0.0100631978644
523 => 0.010052443802844
524 => 0.010269240646366
525 => 0.010775798288236
526 => 0.010535151740613
527 => 0.010190125905641
528 => 0.010444887612988
529 => 0.010224189445001
530 => 0.0097268947029994
531 => 0.0100939753073
601 => 0.0098485189610578
602 => 0.0099201561720683
603 => 0.010436068902993
604 => 0.010373992918272
605 => 0.010454324990582
606 => 0.010312540985612
607 => 0.010180092367684
608 => 0.0099328671865576
609 => 0.0098596759984803
610 => 0.0098799034097218
611 => 0.0098596659747799
612 => 0.0097213457580565
613 => 0.0096914755204247
614 => 0.0096416904823932
615 => 0.0096571209474243
616 => 0.0095635105107985
617 => 0.0097401727456145
618 => 0.0097729628131387
619 => 0.00990152285523
620 => 0.0099148703852815
621 => 0.010272908272568
622 => 0.010075707020833
623 => 0.010208006646034
624 => 0.010196172522304
625 => 0.0092483370822058
626 => 0.0093789404430284
627 => 0.0095821182868759
628 => 0.0094905869436237
629 => 0.0093611830393008
630 => 0.0092566824483616
701 => 0.0090983533673548
702 => 0.0093211985084312
703 => 0.009614216172008
704 => 0.0099223017967826
705 => 0.010292446488379
706 => 0.010209834502174
707 => 0.0099153821992405
708 => 0.0099285911144525
709 => 0.010010243430777
710 => 0.0099044962622416
711 => 0.0098733093578106
712 => 0.010005958829016
713 => 0.010006872313021
714 => 0.0098851974156488
715 => 0.0097499780334908
716 => 0.0097494114593423
717 => 0.0097253504763515
718 => 0.010067478259823
719 => 0.010255613947711
720 => 0.010277183401132
721 => 0.01025416215164
722 => 0.010263022116888
723 => 0.010153550105393
724 => 0.010403770660755
725 => 0.010633397786603
726 => 0.010571852811608
727 => 0.010479588144956
728 => 0.010406094893899
729 => 0.010554540137308
730 => 0.010547930104293
731 => 0.010631392193981
801 => 0.010627605871492
802 => 0.010599540709898
803 => 0.010571853813903
804 => 0.01068162922694
805 => 0.010650015670925
806 => 0.010618353010325
807 => 0.010554848697181
808 => 0.010563479988032
809 => 0.010471231252176
810 => 0.010428552765954
811 => 0.0097867707331816
812 => 0.0096152656031919
813 => 0.0096692246083955
814 => 0.0096869893139535
815 => 0.0096123500615922
816 => 0.0097193635762275
817 => 0.009702685633327
818 => 0.0097675697528828
819 => 0.0097270329719253
820 => 0.0097286966155556
821 => 0.0098479066449986
822 => 0.0098825138237016
823 => 0.0098649123332991
824 => 0.0098772398138332
825 => 0.010161321399639
826 => 0.010120934082555
827 => 0.010099479125303
828 => 0.010105422295088
829 => 0.010178011231039
830 => 0.010198332169896
831 => 0.01011223092403
901 => 0.010152836769326
902 => 0.010325731304946
903 => 0.010386234607429
904 => 0.010579332105724
905 => 0.010497300856414
906 => 0.010647872764752
907 => 0.011110679477237
908 => 0.011480401502958
909 => 0.011140389848696
910 => 0.011819337265117
911 => 0.012347995218024
912 => 0.012327704445265
913 => 0.012235520703097
914 => 0.011633657678812
915 => 0.011079814350593
916 => 0.011543127812078
917 => 0.011544308893373
918 => 0.011504509856139
919 => 0.011257321453989
920 => 0.011495908235556
921 => 0.011514846387857
922 => 0.01150424605863
923 => 0.011314727290265
924 => 0.011025367159895
925 => 0.011081907436739
926 => 0.0111745215636
927 => 0.010999183700121
928 => 0.010943152628644
929 => 0.011047325050868
930 => 0.011382990300458
1001 => 0.011319534729399
1002 => 0.011317877647995
1003 => 0.011589367490334
1004 => 0.011395039354394
1005 => 0.011082620590697
1006 => 0.011003730732566
1007 => 0.010723724882778
1008 => 0.010917125920573
1009 => 0.010924086079618
1010 => 0.010818162307729
1011 => 0.011091215721007
1012 => 0.011088699485733
1013 => 0.011347923063003
1014 => 0.011843461182815
1015 => 0.011696906176837
1016 => 0.011526478650023
1017 => 0.011545008847631
1018 => 0.011748239378959
1019 => 0.011625361560416
1020 => 0.011669549280698
1021 => 0.011748172495552
1022 => 0.011795607833177
1023 => 0.011538183632535
1024 => 0.011478165737342
1025 => 0.011355390187197
1026 => 0.011323360337878
1027 => 0.011423358461676
1028 => 0.011397012489041
1029 => 0.010923501105202
1030 => 0.010874016530998
1031 => 0.010875534152241
1101 => 0.010751102837543
1102 => 0.01056131521569
1103 => 0.011060065754288
1104 => 0.01102000910603
1105 => 0.01097578966649
1106 => 0.010981206295521
1107 => 0.011197697000102
1108 => 0.011072121458403
1109 => 0.011405984617438
1110 => 0.011337352388786
1111 => 0.011266960002441
1112 => 0.011257229630444
1113 => 0.011230134567298
1114 => 0.01113721551414
1115 => 0.011025010173882
1116 => 0.010950922489184
1117 => 0.0101016471327
1118 => 0.010259267698856
1119 => 0.010440595792652
1120 => 0.010503189524003
1121 => 0.010396118615172
1122 => 0.011141443326225
1123 => 0.011277621333062
1124 => 0.010865129267681
1125 => 0.010787968844189
1126 => 0.011146501950744
1127 => 0.010930262658601
1128 => 0.011027635198612
1129 => 0.01081716902704
1130 => 0.011244820038973
1201 => 0.011241562054773
1202 => 0.011075196152195
1203 => 0.01121580747383
1204 => 0.011191372796421
1205 => 0.011003546102152
1206 => 0.011250774480202
1207 => 0.011250897102393
1208 => 0.011090773538268
1209 => 0.010903784270926
1210 => 0.010870355006414
1211 => 0.010845170546195
1212 => 0.011021441365234
1213 => 0.0111794852304
1214 => 0.011473565681077
1215 => 0.011547504493557
1216 => 0.011836092601049
1217 => 0.011664252434138
1218 => 0.011740426954427
1219 => 0.011823125171745
1220 => 0.011862773738253
1221 => 0.011798168526787
1222 => 0.012246464645327
1223 => 0.01228431457317
1224 => 0.012297005326575
1225 => 0.012145842397713
1226 => 0.012280110458667
1227 => 0.012217290879437
1228 => 0.012380729972811
1229 => 0.012406359309547
1230 => 0.012384652173121
1231 => 0.012392787329133
]
'min_raw' => 0.0055573351833298
'max_raw' => 0.012406359309547
'avg_raw' => 0.0089818472464382
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005557'
'max' => '$0.0124063'
'avg' => '$0.008981'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00085692980951775
'max_diff' => -0.0011838949463592
'year' => 2031
]
6 => [
'items' => [
101 => 0.012010245676813
102 => 0.011990408874073
103 => 0.011719932661147
104 => 0.011830153717173
105 => 0.011624100735965
106 => 0.011689442258887
107 => 0.011718244179594
108 => 0.011703199690711
109 => 0.011836385450307
110 => 0.011723150346598
111 => 0.011424304290335
112 => 0.011125376813663
113 => 0.011121624022695
114 => 0.011042921694595
115 => 0.01098603432643
116 => 0.010996992851726
117 => 0.011035612124214
118 => 0.010983789704107
119 => 0.0109948486449
120 => 0.011178500747405
121 => 0.011215330866816
122 => 0.011090167730602
123 => 0.010587619677751
124 => 0.010464293125035
125 => 0.010552937805455
126 => 0.010510571357663
127 => 0.0084828514020944
128 => 0.00895923412806
129 => 0.00867618368872
130 => 0.0088066263536924
131 => 0.0085177051506823
201 => 0.0086555934924164
202 => 0.0086301305505741
203 => 0.009396139876737
204 => 0.0093841796947203
205 => 0.0093899044009329
206 => 0.0091166492577617
207 => 0.0095519521205192
208 => 0.0097663979636982
209 => 0.0097267097454171
210 => 0.0097366984149093
211 => 0.0095650599789869
212 => 0.0093915662361757
213 => 0.0091991349749025
214 => 0.0095566484731254
215 => 0.009516899075082
216 => 0.0096080698928116
217 => 0.0098399429520018
218 => 0.0098740871407677
219 => 0.0099199772767252
220 => 0.0099035289296667
221 => 0.010295395288012
222 => 0.010247937686399
223 => 0.010362296851803
224 => 0.010127051372116
225 => 0.0098608487821455
226 => 0.0099114451916806
227 => 0.0099065723505718
228 => 0.0098445354904693
229 => 0.0097885313870242
301 => 0.0096953003338464
302 => 0.0099902971817006
303 => 0.0099783208484052
304 => 0.010172203763493
305 => 0.010137933074973
306 => 0.0099090650295771
307 => 0.0099172390965925
308 => 0.0099722136255938
309 => 0.010162481098155
310 => 0.010218965438409
311 => 0.010192799641492
312 => 0.010254732141972
313 => 0.01030368106516
314 => 0.010260879373094
315 => 0.010866861071974
316 => 0.010615215221702
317 => 0.010737865658184
318 => 0.010767117064587
319 => 0.010692190202177
320 => 0.010708439155704
321 => 0.010733051892723
322 => 0.01088249561223
323 => 0.011274679174106
324 => 0.011448374603977
325 => 0.011970945874726
326 => 0.011433951616483
327 => 0.011402088599502
328 => 0.011496219465505
329 => 0.011803024121221
330 => 0.012051660477983
331 => 0.012134147501696
401 => 0.012145049523593
402 => 0.012299800663713
403 => 0.012388501131292
404 => 0.012281009804943
405 => 0.012189922160674
406 => 0.011863657525115
407 => 0.01190142354507
408 => 0.0121615939718
409 => 0.012529100023518
410 => 0.01284445844838
411 => 0.012734030919344
412 => 0.013576515016201
413 => 0.013660043873166
414 => 0.013648502885945
415 => 0.01383879405287
416 => 0.013461104838645
417 => 0.01329963538218
418 => 0.012209616343253
419 => 0.012515867231893
420 => 0.012961020884015
421 => 0.012902103128916
422 => 0.012578820647754
423 => 0.012844213209628
424 => 0.01275646612908
425 => 0.012687256366022
426 => 0.013004319707564
427 => 0.012655695539294
428 => 0.012957543091252
429 => 0.012570420483653
430 => 0.012734535342995
501 => 0.01264137581149
502 => 0.012701661445576
503 => 0.012349232860543
504 => 0.012539394770307
505 => 0.012341321499903
506 => 0.012341227587383
507 => 0.01233685510896
508 => 0.012569887433199
509 => 0.012577486608927
510 => 0.012405275369222
511 => 0.012380457039135
512 => 0.012472223413279
513 => 0.012364789022808
514 => 0.012415056897925
515 => 0.012366311585537
516 => 0.012355337988985
517 => 0.012267898504654
518 => 0.012230227170606
519 => 0.012244999071357
520 => 0.012194574958657
521 => 0.012164192606836
522 => 0.01233081129447
523 => 0.012241793651046
524 => 0.012317168063923
525 => 0.01223126940744
526 => 0.011933507239808
527 => 0.011762261068425
528 => 0.011199815936336
529 => 0.011359324678086
530 => 0.011465079138889
531 => 0.011430127290225
601 => 0.011505217385726
602 => 0.011509827307734
603 => 0.011485414752233
604 => 0.011457148140406
605 => 0.01144338951701
606 => 0.011545935023575
607 => 0.011605466141659
608 => 0.011475693013843
609 => 0.011445288985715
610 => 0.011576496782907
611 => 0.011656533463398
612 => 0.012247479343417
613 => 0.012203700163895
614 => 0.012313577313265
615 => 0.012301206832448
616 => 0.01241637558979
617 => 0.012604627834096
618 => 0.012221858385267
619 => 0.012288293926412
620 => 0.012272005465944
621 => 0.012449838606271
622 => 0.012450393781924
623 => 0.012343773930873
624 => 0.012401574281837
625 => 0.012369311711599
626 => 0.012427614536567
627 => 0.012203115466262
628 => 0.012476531100717
629 => 0.012631540146939
630 => 0.012633692447696
701 => 0.012707165505377
702 => 0.012781818387254
703 => 0.012925108093121
704 => 0.012777822115128
705 => 0.01251286897872
706 => 0.012531997739375
707 => 0.012376655812442
708 => 0.012379267138299
709 => 0.012365327676223
710 => 0.012407161051226
711 => 0.01221229553958
712 => 0.012258030085672
713 => 0.012194001453322
714 => 0.01228815474067
715 => 0.01218686136758
716 => 0.012271997611155
717 => 0.012308739591571
718 => 0.012444318290304
719 => 0.012166836283541
720 => 0.011601031687872
721 => 0.011719970673599
722 => 0.011544050571253
723 => 0.0115603326465
724 => 0.011593225029773
725 => 0.011486610053869
726 => 0.011506948831447
727 => 0.01150622218719
728 => 0.011499960359549
729 => 0.011472225686651
730 => 0.011432004923811
731 => 0.011592232063669
801 => 0.011619457776962
802 => 0.011679977165059
803 => 0.011860041813344
804 => 0.011842049108763
805 => 0.011871395956444
806 => 0.011807331952732
807 => 0.011563304391892
808 => 0.011576556262498
809 => 0.011411305223699
810 => 0.011675751324462
811 => 0.011613126997283
812 => 0.011572752686156
813 => 0.011561736181299
814 => 0.011742247175019
815 => 0.011796258893503
816 => 0.011762602415135
817 => 0.011693571996087
818 => 0.011826130807671
819 => 0.011861597953444
820 => 0.011869537739404
821 => 0.0121044065379
822 => 0.011882664296173
823 => 0.011936039857685
824 => 0.012352460751876
825 => 0.011974824463
826 => 0.012174866827512
827 => 0.012165075794739
828 => 0.012267410699359
829 => 0.012156681345628
830 => 0.012158053968676
831 => 0.012248920431211
901 => 0.012121314872433
902 => 0.012089717941559
903 => 0.012046067007857
904 => 0.012141377224657
905 => 0.012198511389118
906 => 0.012658970794255
907 => 0.012956448569474
908 => 0.01294353427471
909 => 0.013061546754306
910 => 0.013008381051378
911 => 0.012836694972217
912 => 0.013129742174457
913 => 0.013037009778053
914 => 0.013044654524142
915 => 0.013044369986311
916 => 0.013106028923113
917 => 0.01306233791543
918 => 0.012976218454497
919 => 0.013033388571692
920 => 0.013203163381068
921 => 0.013730149598699
922 => 0.014025058067724
923 => 0.013712395738566
924 => 0.013928066026504
925 => 0.013798740704922
926 => 0.013775238446895
927 => 0.01391069532563
928 => 0.014046389303698
929 => 0.014037746183917
930 => 0.013939239323801
1001 => 0.013883595298041
1002 => 0.014304950503212
1003 => 0.014615397840783
1004 => 0.014594227413626
1005 => 0.014687666794106
1006 => 0.014962007705164
1007 => 0.014987089999919
1008 => 0.01498393020729
1009 => 0.014921761122673
1010 => 0.015191885377279
1011 => 0.015417227782855
1012 => 0.014907370775822
1013 => 0.015101517649582
1014 => 0.015188676436234
1015 => 0.015316651393887
1016 => 0.01553256659854
1017 => 0.015767107779473
1018 => 0.01580027447407
1019 => 0.015776741117081
1020 => 0.01562205490345
1021 => 0.015878692662286
1022 => 0.016029025042515
1023 => 0.016118544534646
1024 => 0.016345551072068
1025 => 0.015189214699228
1026 => 0.014370702340885
1027 => 0.014242879816668
1028 => 0.014502811946036
1029 => 0.01457135397563
1030 => 0.014543724769445
1031 => 0.013622414694242
1101 => 0.014238029309792
1102 => 0.014900378873776
1103 => 0.014925822418032
1104 => 0.015257408458839
1105 => 0.015365386465897
1106 => 0.015632356690722
1107 => 0.015615657630471
1108 => 0.015680660631792
1109 => 0.015665717567483
1110 => 0.016160223691759
1111 => 0.016705737381705
1112 => 0.016686847977249
1113 => 0.016608423930094
1114 => 0.016724897013406
1115 => 0.017287925602231
1116 => 0.017236090952121
1117 => 0.017286443899437
1118 => 0.017950286336562
1119 => 0.018813375935309
1120 => 0.018412384163912
1121 => 0.01928242092557
1122 => 0.019830062948366
1123 => 0.020777153199551
1124 => 0.020658572835584
1125 => 0.021027268120301
1126 => 0.020446289235616
1127 => 0.019112244281175
1128 => 0.018901126560616
1129 => 0.019323789583527
1130 => 0.020362865382502
1201 => 0.019291065388861
1202 => 0.019507889131659
1203 => 0.019445443879147
1204 => 0.019442116437016
1205 => 0.019569111369476
1206 => 0.019384898596332
1207 => 0.018634382619296
1208 => 0.018978339668753
1209 => 0.018845521333783
1210 => 0.018992893178695
1211 => 0.01978819824491
1212 => 0.019436574917432
1213 => 0.019066168305493
1214 => 0.019530740396672
1215 => 0.020122300313033
1216 => 0.020085281556603
1217 => 0.020013449696488
1218 => 0.020418362130962
1219 => 0.021087158844502
1220 => 0.021267931908729
1221 => 0.021401374888999
1222 => 0.021419774421441
1223 => 0.021609301040835
1224 => 0.020590168641496
1225 => 0.022207557932423
1226 => 0.022486836383489
1227 => 0.022434343609595
1228 => 0.02274474985412
1229 => 0.022653420462735
1230 => 0.022521098503759
1231 => 0.023013158426634
]
'min_raw' => 0.0084828514020944
'max_raw' => 0.023013158426634
'avg_raw' => 0.015748004914364
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008482'
'max' => '$0.023013'
'avg' => '$0.015748'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0029255162187646
'max_diff' => 0.010606799117087
'year' => 2032
]
7 => [
'items' => [
101 => 0.022449051432246
102 => 0.021648372572808
103 => 0.021209104314888
104 => 0.021787568191676
105 => 0.022140815895624
106 => 0.02237429015716
107 => 0.022444939327631
108 => 0.020669280988558
109 => 0.019712299626324
110 => 0.020325713707703
111 => 0.021074121222563
112 => 0.020586011199962
113 => 0.020605144188734
114 => 0.019909227569563
115 => 0.021135694401522
116 => 0.020957008500315
117 => 0.021884031271865
118 => 0.021662789847612
119 => 0.022418740930995
120 => 0.022219673676061
121 => 0.023045990721592
122 => 0.023375630962696
123 => 0.023929148231916
124 => 0.024336317788374
125 => 0.024575415539839
126 => 0.024561061007674
127 => 0.025508485417005
128 => 0.024949822343311
129 => 0.024248009855973
130 => 0.024235316282267
131 => 0.024598794914219
201 => 0.025360546411298
202 => 0.025558057491456
203 => 0.025668439240308
204 => 0.025499385749525
205 => 0.024892997022773
206 => 0.024631161445022
207 => 0.024854252943373
208 => 0.024581431211361
209 => 0.025052398061072
210 => 0.025699136138816
211 => 0.025565587283241
212 => 0.026012021084664
213 => 0.026474033102931
214 => 0.02713473103931
215 => 0.027307461945454
216 => 0.027592979564941
217 => 0.027886870983045
218 => 0.027981260985944
219 => 0.028161480788977
220 => 0.028160530941656
221 => 0.028703635448286
222 => 0.029302696537646
223 => 0.029528828230583
224 => 0.030048805589518
225 => 0.029158362584522
226 => 0.029833773832483
227 => 0.030443011684785
228 => 0.029716653201343
301 => 0.030717769150946
302 => 0.030756640214692
303 => 0.031343547127398
304 => 0.030748604533611
305 => 0.030395329520544
306 => 0.031415221246226
307 => 0.031908714725995
308 => 0.031760070473705
309 => 0.03062888037431
310 => 0.029970479217436
311 => 0.028247316393799
312 => 0.030288477193491
313 => 0.031282667077545
314 => 0.030626305662689
315 => 0.030957336182079
316 => 0.032763331358864
317 => 0.033450937392656
318 => 0.033307920144356
319 => 0.033332087705054
320 => 0.033703107439956
321 => 0.03534841326881
322 => 0.03436250787827
323 => 0.035116195608168
324 => 0.035515948862482
325 => 0.03588726196358
326 => 0.034975434341994
327 => 0.033789160003718
328 => 0.033413417124378
329 => 0.030561043455451
330 => 0.030412565018752
331 => 0.030329219572876
401 => 0.029803738326075
402 => 0.029390854007517
403 => 0.029062513067988
404 => 0.028200848391758
405 => 0.028491634925554
406 => 0.027118321275038
407 => 0.027996918681391
408 => 0.02580507693535
409 => 0.027630507872382
410 => 0.026637008805516
411 => 0.027304116708845
412 => 0.027301789232215
413 => 0.026073432075433
414 => 0.025364941302561
415 => 0.025816419197909
416 => 0.026300439340081
417 => 0.026378969979709
418 => 0.027006514728254
419 => 0.027181648978544
420 => 0.02665098402393
421 => 0.025759655886997
422 => 0.025966691084176
423 => 0.025360745740899
424 => 0.024298849834155
425 => 0.025061522013302
426 => 0.025321931827592
427 => 0.025436943636802
428 => 0.024392690972088
429 => 0.024064564113007
430 => 0.023889872126483
501 => 0.025624855981146
502 => 0.025719902313209
503 => 0.025233631840178
504 => 0.027431620488339
505 => 0.026934147963001
506 => 0.027489946657531
507 => 0.025947904810073
508 => 0.02600681288528
509 => 0.025276785562377
510 => 0.025685552082759
511 => 0.025396649081313
512 => 0.025652527787422
513 => 0.025805900428836
514 => 0.02653580796144
515 => 0.027638842243937
516 => 0.02642678411634
517 => 0.025898673033153
518 => 0.026226310178953
519 => 0.027098851073735
520 => 0.028420795193876
521 => 0.027638177668148
522 => 0.027985490036358
523 => 0.028061362337961
524 => 0.027484289148564
525 => 0.028442072705498
526 => 0.028955356694678
527 => 0.029481879858421
528 => 0.029939045168655
529 => 0.029271574928329
530 => 0.029985863763578
531 => 0.029410273051321
601 => 0.028893908678952
602 => 0.028894691790558
603 => 0.028570768876891
604 => 0.027943127414748
605 => 0.027827380699381
606 => 0.028429509729918
607 => 0.028912360190578
608 => 0.028952130067216
609 => 0.029219460891989
610 => 0.029377664520364
611 => 0.030928275145838
612 => 0.031551943566728
613 => 0.032314553506353
614 => 0.032611633056178
615 => 0.033505735992238
616 => 0.032783675255879
617 => 0.032627452873593
618 => 0.030458651609553
619 => 0.030813792695041
620 => 0.031382407838925
621 => 0.030468027863841
622 => 0.031047991496774
623 => 0.031162488603224
624 => 0.03043695758218
625 => 0.030824495048864
626 => 0.029795310434201
627 => 0.0276612756561
628 => 0.028444448496252
629 => 0.029021127319731
630 => 0.02819813553464
701 => 0.029673316455235
702 => 0.028811546215339
703 => 0.028538406421558
704 => 0.027472790704653
705 => 0.027975720303722
706 => 0.028655939787721
707 => 0.028235643230612
708 => 0.029107821694458
709 => 0.030343059000763
710 => 0.031223362664889
711 => 0.031290941449447
712 => 0.030724965169178
713 => 0.03163194577032
714 => 0.031638552133827
715 => 0.030615474310614
716 => 0.029988844840417
717 => 0.029846473306348
718 => 0.030202145312035
719 => 0.030633996787612
720 => 0.031314906200808
721 => 0.031726365498547
722 => 0.032799233125902
723 => 0.033089520344338
724 => 0.033408457987815
725 => 0.033834657036226
726 => 0.034346418269037
727 => 0.03322671382623
728 => 0.033271201771133
729 => 0.032228548497355
730 => 0.031114323942718
731 => 0.031959881489636
801 => 0.033065335502424
802 => 0.032811743130472
803 => 0.032783208808206
804 => 0.032831195623497
805 => 0.032639995256598
806 => 0.03177520308333
807 => 0.0313409098678
808 => 0.031901258915849
809 => 0.032199059496621
810 => 0.032660922226457
811 => 0.032603987896265
812 => 0.033793696687888
813 => 0.034255981549386
814 => 0.03413770929953
815 => 0.034159474239884
816 => 0.034996418900024
817 => 0.035927273492896
818 => 0.036799141656203
819 => 0.037686043399528
820 => 0.036616848731586
821 => 0.036073977617964
822 => 0.036634082035148
823 => 0.03633688274735
824 => 0.038044678010075
825 => 0.038162922048715
826 => 0.039870593818404
827 => 0.041491377673611
828 => 0.040473392373514
829 => 0.04143330666044
830 => 0.042471532224711
831 => 0.044474437784216
901 => 0.043799929654842
902 => 0.043283266998631
903 => 0.042795023285008
904 => 0.043810980946551
905 => 0.045117994247806
906 => 0.045399512394479
907 => 0.045855679340298
908 => 0.04537607557421
909 => 0.045953705483841
910 => 0.047992992888282
911 => 0.047441959430314
912 => 0.046659403336951
913 => 0.048269224887514
914 => 0.048851813048639
915 => 0.052940721867208
916 => 0.05810313815505
917 => 0.05596586391363
918 => 0.054639188822573
919 => 0.054950988938125
920 => 0.056836128607625
921 => 0.057441575638126
922 => 0.055795761899117
923 => 0.056377091135261
924 => 0.059580272381444
925 => 0.061298676349663
926 => 0.058964852948378
927 => 0.052525926745013
928 => 0.046588942722875
929 => 0.048163698231421
930 => 0.047985169827105
1001 => 0.05142658847113
1002 => 0.047428817464581
1003 => 0.047496129675476
1004 => 0.051008713212533
1005 => 0.050071616145773
1006 => 0.048553638911947
1007 => 0.046600025636577
1008 => 0.042988590809699
1009 => 0.039789842271223
1010 => 0.046063324782967
1011 => 0.045792800809473
1012 => 0.045401042006447
1013 => 0.046272858829852
1014 => 0.050506153854783
1015 => 0.05040856270262
1016 => 0.049787737583999
1017 => 0.050258627964771
1018 => 0.048471089551476
1019 => 0.048931778902075
1020 => 0.046588002274273
1021 => 0.047647487194798
1022 => 0.048550382014561
1023 => 0.048731651517215
1024 => 0.049140060962544
1025 => 0.045650246968146
1026 => 0.047217070996075
1027 => 0.048137433320925
1028 => 0.043979202854184
1029 => 0.048055238474328
1030 => 0.045589497070639
1031 => 0.044752587404034
1101 => 0.045879376015654
1102 => 0.045440265397868
1103 => 0.045062743874136
1104 => 0.044852080377251
1105 => 0.045679469574503
1106 => 0.045640870879507
1107 => 0.044287101563479
1108 => 0.042521164677418
1109 => 0.043113871061282
1110 => 0.042898535275372
1111 => 0.042118130608365
1112 => 0.042644029127509
1113 => 0.04032823820035
1114 => 0.036344040274509
1115 => 0.038976123463602
1116 => 0.038874791123978
1117 => 0.038823694763283
1118 => 0.040801632534451
1119 => 0.040611499456541
1120 => 0.040266406058347
1121 => 0.042111792697482
1122 => 0.041438201750245
1123 => 0.043514050331643
1124 => 0.044881338464819
1125 => 0.044534549967108
1126 => 0.045820491065038
1127 => 0.043127525819268
1128 => 0.0440220208509
1129 => 0.044206375037203
1130 => 0.042089020912807
1201 => 0.040642607579503
1202 => 0.040546148300491
1203 => 0.038038266908576
1204 => 0.039377956905225
1205 => 0.040556828662138
1206 => 0.039992240574721
1207 => 0.039813508852834
1208 => 0.040726610457773
1209 => 0.040797566272664
1210 => 0.039179766173607
1211 => 0.039516158043267
1212 => 0.040918968060245
1213 => 0.039480810830079
1214 => 0.036686706253517
1215 => 0.035993729687011
1216 => 0.035901273838947
1217 => 0.03402186642992
1218 => 0.036040037694782
1219 => 0.035159051854042
1220 => 0.037942075569107
1221 => 0.036352427348718
1222 => 0.036283900791126
1223 => 0.036180312848667
1224 => 0.034562629254374
1225 => 0.034916799152369
1226 => 0.0360941138349
1227 => 0.036514192977027
1228 => 0.036470375280896
1229 => 0.036088344350674
1230 => 0.036263236154215
1231 => 0.035699848718667
]
'min_raw' => 0.019712299626324
'max_raw' => 0.061298676349663
'avg_raw' => 0.040505487987994
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.019712'
'max' => '$0.061298'
'avg' => '$0.0405054'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.01122944822423
'max_diff' => 0.038285517923029
'year' => 2033
]
8 => [
'items' => [
101 => 0.035500904889279
102 => 0.03487298343992
103 => 0.033950112377091
104 => 0.034078443258675
105 => 0.032249994200861
106 => 0.031253758111027
107 => 0.030978013091542
108 => 0.030609275327308
109 => 0.031019663003186
110 => 0.032244814434412
111 => 0.030767021877977
112 => 0.028233450195065
113 => 0.028385722170204
114 => 0.028727832088386
115 => 0.028090312519137
116 => 0.027486953749804
117 => 0.028011525247695
118 => 0.026938017526159
119 => 0.02885756036779
120 => 0.02880564211338
121 => 0.029521128981007
122 => 0.029968537602603
123 => 0.028937405580086
124 => 0.028678078664901
125 => 0.028825803061542
126 => 0.026384247845229
127 => 0.029321601830822
128 => 0.029347004190065
129 => 0.029129493768001
130 => 0.0306935440847
131 => 0.03399417809246
201 => 0.032752346811045
202 => 0.032271472204332
203 => 0.031357329225454
204 => 0.03257537046837
205 => 0.032481843905318
206 => 0.032058881318298
207 => 0.031803072225945
208 => 0.03227440832214
209 => 0.031744668467581
210 => 0.031649512633424
211 => 0.031072971809003
212 => 0.030867172965621
213 => 0.030714807695069
214 => 0.030547068503294
215 => 0.030917059362348
216 => 0.030078611399379
217 => 0.029067525350107
218 => 0.028983464485212
219 => 0.029215563923892
220 => 0.029112877200047
221 => 0.028982972860685
222 => 0.0287349500995
223 => 0.028661367044424
224 => 0.028900476275997
225 => 0.028630535894485
226 => 0.029028847631819
227 => 0.028920528878858
228 => 0.028315469130007
301 => 0.027561340661128
302 => 0.027554627335917
303 => 0.027392151594316
304 => 0.027185214308995
305 => 0.027127649090303
306 => 0.027967347299291
307 => 0.029705497461844
308 => 0.029364256994526
309 => 0.029610838203893
310 => 0.030823773703584
311 => 0.031209329424692
312 => 0.030935671106237
313 => 0.030561070721426
314 => 0.030577551237228
315 => 0.031857674151377
316 => 0.031937513847301
317 => 0.032139243001641
318 => 0.03239852197362
319 => 0.030979827436319
320 => 0.030510730852102
321 => 0.030288446866013
322 => 0.029603898223586
323 => 0.030342125245678
324 => 0.029911991973938
325 => 0.029970031647741
326 => 0.029932233234036
327 => 0.029952873723837
328 => 0.028857023816445
329 => 0.029256293926523
330 => 0.028592429928807
331 => 0.027703590558097
401 => 0.027700610856859
402 => 0.027918153033622
403 => 0.027788750434457
404 => 0.027440531367349
405 => 0.027489994242284
406 => 0.027056647410569
407 => 0.027542610393652
408 => 0.027556546073147
409 => 0.027369423854078
410 => 0.028118116879485
411 => 0.02842485702287
412 => 0.028301689169732
413 => 0.028416215237953
414 => 0.029378437076552
415 => 0.029535321220926
416 => 0.029604998794671
417 => 0.029511640076361
418 => 0.028433802886787
419 => 0.028481609549462
420 => 0.028130835978971
421 => 0.027834469275513
422 => 0.027846322389413
423 => 0.027998693399965
424 => 0.028664106539486
425 => 0.030064429263361
426 => 0.03011757048711
427 => 0.030181979200532
428 => 0.029919996593819
429 => 0.029840980132798
430 => 0.029945223240763
501 => 0.03047111083038
502 => 0.031823836487962
503 => 0.031345692895063
504 => 0.030956954711289
505 => 0.031297982901521
506 => 0.031245484284702
507 => 0.030802343126009
508 => 0.030789905629612
509 => 0.029939376065283
510 => 0.029624954650971
511 => 0.029362200583138
512 => 0.029075280000432
513 => 0.028905183861339
514 => 0.029166528838299
515 => 0.029226301526672
516 => 0.028654866167022
517 => 0.028576981639028
518 => 0.029043628089007
519 => 0.028838274384704
520 => 0.029049485762106
521 => 0.029098488613401
522 => 0.029090598025712
523 => 0.028876185173697
524 => 0.029012845531688
525 => 0.028689603044626
526 => 0.028338125389397
527 => 0.028113904543193
528 => 0.027918242116301
529 => 0.028026807002708
530 => 0.027639793005832
531 => 0.027515979439179
601 => 0.028966548077356
602 => 0.030038098726618
603 => 0.030022517955797
604 => 0.029927674020473
605 => 0.029786755170973
606 => 0.03046080173881
607 => 0.030225977392562
608 => 0.030396831724688
609 => 0.030440321322947
610 => 0.030571951238651
611 => 0.030618997619541
612 => 0.030476790780678
613 => 0.02999952726035
614 => 0.028810231944547
615 => 0.0282566117646
616 => 0.028073907883943
617 => 0.028080548823001
618 => 0.02789736207733
619 => 0.027951318783784
620 => 0.027878598136784
621 => 0.027740882824378
622 => 0.028018303470238
623 => 0.028050273615322
624 => 0.027985520321648
625 => 0.028000772066412
626 => 0.027464642451288
627 => 0.027505403221514
628 => 0.02727844207327
629 => 0.027235889594032
630 => 0.026662151575039
701 => 0.025645691509738
702 => 0.02620890905608
703 => 0.02552862146047
704 => 0.025270986239973
705 => 0.026490591303308
706 => 0.026368176781528
707 => 0.026158656332554
708 => 0.025848731920634
709 => 0.025733777941502
710 => 0.025035353954303
711 => 0.024994087339192
712 => 0.025340245126282
713 => 0.025180505218102
714 => 0.024956169888784
715 => 0.0241436500665
716 => 0.023230108770186
717 => 0.023257682839605
718 => 0.023548263328923
719 => 0.024393165291732
720 => 0.02406304747791
721 => 0.023823543216317
722 => 0.023778691267592
723 => 0.024340107309797
724 => 0.025134628629815
725 => 0.025507400256754
726 => 0.0251379948957
727 => 0.024713641907117
728 => 0.02473947030727
729 => 0.024911295082158
730 => 0.024929351436527
731 => 0.024653141265152
801 => 0.024730892810484
802 => 0.024612781103375
803 => 0.023887929774863
804 => 0.023874819512859
805 => 0.023696929307035
806 => 0.023691542862301
807 => 0.023388907245404
808 => 0.023346566430579
809 => 0.02274566504456
810 => 0.023141180156535
811 => 0.022875889384898
812 => 0.022476033616274
813 => 0.022407098331049
814 => 0.022405026053133
815 => 0.022815588521396
816 => 0.023136382495052
817 => 0.022880504231451
818 => 0.022822245710821
819 => 0.023444294294432
820 => 0.023365132942069
821 => 0.023296579721458
822 => 0.025063487959993
823 => 0.023664842215623
824 => 0.02305495283917
825 => 0.022300098920958
826 => 0.022545883163032
827 => 0.022597673514158
828 => 0.020782385913503
829 => 0.020045923959997
830 => 0.019793197970537
831 => 0.019647750590582
901 => 0.019714032788041
902 => 0.019051130651514
903 => 0.019496611850649
904 => 0.01892259463414
905 => 0.018826358779778
906 => 0.019852772669985
907 => 0.019995592166585
908 => 0.019386279823552
909 => 0.019777556986487
910 => 0.019635674448048
911 => 0.018932434511788
912 => 0.018905575918905
913 => 0.018552714838969
914 => 0.018000555576238
915 => 0.017748203976759
916 => 0.017616777072733
917 => 0.017671006374793
918 => 0.017643586380227
919 => 0.017464652368087
920 => 0.017653842668351
921 => 0.017170539630007
922 => 0.016978084465901
923 => 0.0168911569332
924 => 0.016462197668784
925 => 0.01714486261752
926 => 0.017279356212408
927 => 0.017414114801224
928 => 0.018587096313275
929 => 0.018528497471744
930 => 0.019058202460389
1001 => 0.019037619098595
1002 => 0.018886538655182
1003 => 0.018249155115948
1004 => 0.018503204834417
1005 => 0.01772127928906
1006 => 0.018307151073411
1007 => 0.018039783657624
1008 => 0.018216753881186
1009 => 0.017898545462459
1010 => 0.018074655139886
1011 => 0.017311249633139
1012 => 0.016598392312343
1013 => 0.016885266907834
1014 => 0.017197132401221
1015 => 0.017873336252736
1016 => 0.017470594817334
1017 => 0.017615435866844
1018 => 0.017130242597085
1019 => 0.016129150292965
1020 => 0.016134816366688
1021 => 0.015980820125681
1022 => 0.015847744889631
1023 => 0.01751685451593
1024 => 0.017309274349181
1025 => 0.016978522520888
1026 => 0.017421246986614
1027 => 0.017538310362334
1028 => 0.017541642992069
1029 => 0.017864643333891
1030 => 0.018037028674222
1031 => 0.018067412337616
1101 => 0.018575660354356
1102 => 0.018746018385614
1103 => 0.019447699006394
1104 => 0.018022402982484
1105 => 0.017993049948814
1106 => 0.017427477027761
1107 => 0.017068781739876
1108 => 0.017452037201
1109 => 0.017791549219968
1110 => 0.017438026612577
1111 => 0.017484189201832
1112 => 0.017009613985267
1113 => 0.01717925229435
1114 => 0.01732536765888
1115 => 0.017244691342851
1116 => 0.017123914992977
1117 => 0.017763713106157
1118 => 0.017727613189222
1119 => 0.018323407901111
1120 => 0.018787872484716
1121 => 0.019620276051513
1122 => 0.018751619535381
1123 => 0.018719962239337
1124 => 0.019029417386164
1125 => 0.018745971009643
1126 => 0.018925099335368
1127 => 0.019591415708926
1128 => 0.019605493923931
1129 => 0.019369665683831
1130 => 0.019355315513988
1201 => 0.019400608907178
1202 => 0.019665893725803
1203 => 0.019573195058796
1204 => 0.019680468303099
1205 => 0.019814615137727
1206 => 0.020369503322824
1207 => 0.020503284985686
1208 => 0.020178264902771
1209 => 0.020207610577163
1210 => 0.020086044144152
1211 => 0.019968612493086
1212 => 0.020232581695166
1213 => 0.020714990600296
1214 => 0.020711989559534
1215 => 0.020823899048835
1216 => 0.020893617733561
1217 => 0.02059433410152
1218 => 0.020399511462025
1219 => 0.020474218858894
1220 => 0.020593677613403
1221 => 0.020435479994832
1222 => 0.019459011008745
1223 => 0.019755209322044
1224 => 0.019705907439353
1225 => 0.019635695563088
1226 => 0.019933525257544
1227 => 0.019904798856953
1228 => 0.019044331631961
1229 => 0.019099415951926
1230 => 0.019047681491903
1231 => 0.019214846116112
]
'min_raw' => 0.015847744889631
'max_raw' => 0.035500904889279
'avg_raw' => 0.025674324889455
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.015847'
'max' => '$0.0355009'
'avg' => '$0.025674'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0038645547366935
'max_diff' => -0.025797771460384
'year' => 2034
]
9 => [
'items' => [
101 => 0.018736943571349
102 => 0.018883943175395
103 => 0.018976139949017
104 => 0.01903044455697
105 => 0.019226630037912
106 => 0.019203609936088
107 => 0.019225199076061
108 => 0.019516090353252
109 => 0.020987318611452
110 => 0.021067394319463
111 => 0.0206730722469
112 => 0.02083059613723
113 => 0.020528184714484
114 => 0.020731195528554
115 => 0.020870090371625
116 => 0.020242451283729
117 => 0.020205286570288
118 => 0.019901626988027
119 => 0.020064796447376
120 => 0.019805182105252
121 => 0.019868882383885
122 => 0.019690770851536
123 => 0.020011336148112
124 => 0.020369777960494
125 => 0.020460334517598
126 => 0.020222119202906
127 => 0.020049635615916
128 => 0.019746811256786
129 => 0.0202504149149
130 => 0.020397683971576
131 => 0.020249641373239
201 => 0.02021533666841
202 => 0.020150329314746
203 => 0.0202291282858
204 => 0.020396881912665
205 => 0.020317772400159
206 => 0.0203700256269
207 => 0.020170890209856
208 => 0.020594433176855
209 => 0.021267121339615
210 => 0.021269284142054
211 => 0.021190174203118
212 => 0.021157804120552
213 => 0.021238975718694
214 => 0.021283007980852
215 => 0.021545502044916
216 => 0.021827168633881
217 => 0.023141583703822
218 => 0.0227725012119
219 => 0.023938728456854
220 => 0.024861062791957
221 => 0.025137630530263
222 => 0.024883201224539
223 => 0.024012812313661
224 => 0.023970106881284
225 => 0.025270835382855
226 => 0.024903320004022
227 => 0.024859605219134
228 => 0.02439455376522
301 => 0.024669456772226
302 => 0.02460933145201
303 => 0.024514420692618
304 => 0.025038916480076
305 => 0.026020725772136
306 => 0.025867701586619
307 => 0.025753476130718
308 => 0.025252973433493
309 => 0.025554387848547
310 => 0.025447059948559
311 => 0.025908208718876
312 => 0.025635034403036
313 => 0.024900535713566
314 => 0.025017507050803
315 => 0.024999827068494
316 => 0.025363679851612
317 => 0.025254460277501
318 => 0.024978500193737
319 => 0.026017370054712
320 => 0.025949911624438
321 => 0.026045552255422
322 => 0.026087656218966
323 => 0.026719997996401
324 => 0.026979048189936
325 => 0.027037857119181
326 => 0.027283934767378
327 => 0.027031734483122
328 => 0.028040715435902
329 => 0.028711628893829
330 => 0.029490929400103
331 => 0.030629696895998
401 => 0.031057884008643
402 => 0.030980535839298
403 => 0.031843936358112
404 => 0.033395447898105
405 => 0.031294140680943
406 => 0.033506822282988
407 => 0.032806312834418
408 => 0.031145417533486
409 => 0.031038475456775
410 => 0.032163253037957
411 => 0.034657901457189
412 => 0.034033020322239
413 => 0.034658923538868
414 => 0.033928774189864
415 => 0.033892516120504
416 => 0.034623461814711
417 => 0.036331356271
418 => 0.035519999634283
419 => 0.034356720942741
420 => 0.035215667825955
421 => 0.034471568543933
422 => 0.032794904601264
423 => 0.034032542487412
424 => 0.033204969278842
425 => 0.033446499137315
426 => 0.035185934929504
427 => 0.034976641413011
428 => 0.03524748660341
429 => 0.034769451931609
430 => 0.034322892168998
501 => 0.03348935521012
502 => 0.033242586009472
503 => 0.033310784138705
504 => 0.033242552213866
505 => 0.032776195945974
506 => 0.032675486354325
507 => 0.032507632622722
508 => 0.032559657512895
509 => 0.032244043390139
510 => 0.032839672448984
511 => 0.032950226450971
512 => 0.033383675608658
513 => 0.033428677738121
514 => 0.034635827472515
515 => 0.033970949684138
516 => 0.034417007107368
517 => 0.034377107532979
518 => 0.031181414170932
519 => 0.031621752520381
520 => 0.032306780806337
521 => 0.031998176492048
522 => 0.031561882193931
523 => 0.031209551155581
524 => 0.030675733604783
525 => 0.031427071556474
526 => 0.032415001067063
527 => 0.033453733260842
528 => 0.034701701931238
529 => 0.034423169851962
530 => 0.033430403354617
531 => 0.033474938134472
601 => 0.033750234619742
602 => 0.033393700657994
603 => 0.033288551832305
604 => 0.033735788785763
605 => 0.033738868660864
606 => 0.033328633249304
607 => 0.032872731661642
608 => 0.032870821417344
609 => 0.032789698133306
610 => 0.033943205841878
611 => 0.034577518448809
612 => 0.034650241366947
613 => 0.034572623616992
614 => 0.034602495608411
615 => 0.034233403078563
616 => 0.035077039150807
617 => 0.035851243037658
618 => 0.035643739857528
619 => 0.035332663092199
620 => 0.035084875465127
621 => 0.035585368967394
622 => 0.035563082779588
623 => 0.035844481042107
624 => 0.035831715191484
625 => 0.035737091539723
626 => 0.035643743236837
627 => 0.036013858706166
628 => 0.035907271394872
629 => 0.035800518524043
630 => 0.035586409298549
701 => 0.035615510298271
702 => 0.035304487244731
703 => 0.035160593748717
704 => 0.032996780817434
705 => 0.032418539297568
706 => 0.03260046585091
707 => 0.03266036079599
708 => 0.032408709345508
709 => 0.032769512881546
710 => 0.03271328203264
711 => 0.032932043371787
712 => 0.032795370784601
713 => 0.032800979875253
714 => 0.033202904812498
715 => 0.033319585331692
716 => 0.033260240677903
717 => 0.033301803639201
718 => 0.034259604539686
719 => 0.034123435880386
720 => 0.034051098994074
721 => 0.034071136805942
722 => 0.034315875471499
723 => 0.034384388935619
724 => 0.034094092573786
725 => 0.03423099801621
726 => 0.034813924014162
727 => 0.035017915122692
728 => 0.03566895681983
729 => 0.035392382735542
730 => 0.035900046437099
731 => 0.037460431580374
801 => 0.038706975203261
802 => 0.03756060217206
803 => 0.039849720789119
804 => 0.041632127987063
805 => 0.041563716230051
806 => 0.041252912307269
807 => 0.039223689100157
808 => 0.037356367650959
809 => 0.03891846133387
810 => 0.038922443431915
811 => 0.038788258199201
812 => 0.037954845243208
813 => 0.03875925723486
814 => 0.038823108537562
815 => 0.03878736878748
816 => 0.038148393028161
817 => 0.037172795146139
818 => 0.037363424637035
819 => 0.037675679631858
820 => 0.037084515783442
821 => 0.036895603113992
822 => 0.037246827708605
823 => 0.038378546532998
824 => 0.038164601644848
825 => 0.038159014679199
826 => 0.03907436163746
827 => 0.038419170759582
828 => 0.037365829085395
829 => 0.037099846420793
830 => 0.036155787148848
831 => 0.036807852250604
901 => 0.036831318912767
902 => 0.036474189520479
903 => 0.037394808167327
904 => 0.037386324504424
905 => 0.038260314893604
906 => 0.039931056261915
907 => 0.039436935827116
908 => 0.038862327521594
909 => 0.038924803376565
910 => 0.039610009302039
911 => 0.039195718157767
912 => 0.039344700141788
913 => 0.039609783799963
914 => 0.039769715352597
915 => 0.038901791687348
916 => 0.03869943716339
917 => 0.03828549082416
918 => 0.038177499950929
919 => 0.038514650606958
920 => 0.038425823320803
921 => 0.03682934663068
922 => 0.03666250593385
923 => 0.036667622699828
924 => 0.036248093834805
925 => 0.035608211617181
926 => 0.037289783879715
927 => 0.037154730093445
928 => 0.037005641165735
929 => 0.03702390370869
930 => 0.037753817234084
1001 => 0.037330430527839
1002 => 0.038456073478108
1003 => 0.038224675127457
1004 => 0.037987342282258
1005 => 0.037954535653716
1006 => 0.037863182756601
1007 => 0.037549899681478
1008 => 0.037171591542874
1009 => 0.036921799741277
1010 => 0.034058408582378
1011 => 0.034589837325889
1012 => 0.035201197654045
1013 => 0.035412236789452
1014 => 0.035051239744875
1015 => 0.037564154045101
1016 => 0.038023287702797
1017 => 0.036632541905089
1018 => 0.036372390150114
1019 => 0.037581209550847
1020 => 0.036852143680043
1021 => 0.037180441997025
1022 => 0.036470840605289
1023 => 0.037912695849661
1024 => 0.037901711328467
1025 => 0.037340797072629
1026 => 0.037814877960688
1027 => 0.03773249473983
1028 => 0.03709922392646
1029 => 0.03793277166399
1030 => 0.037933185093268
1031 => 0.037393317317351
1101 => 0.036762869947333
1102 => 0.036650160848076
1103 => 0.036565249682123
1104 => 0.037159559055349
1105 => 0.037692414981027
1106 => 0.038683927752527
1107 => 0.038933217621045
1108 => 0.039906212574034
1109 => 0.039326841453793
1110 => 0.039583669167284
1111 => 0.039862491980777
1112 => 0.039996169890934
1113 => 0.039778348909885
1114 => 0.041289810572578
1115 => 0.041417424246898
1116 => 0.041460212008044
1117 => 0.040950555639527
1118 => 0.041403249781328
1119 => 0.041191449184033
1120 => 0.041742495498294
1121 => 0.041828906596482
1122 => 0.041755719470481
1123 => 0.041783147716952
1124 => 0.040493381827952
1125 => 0.04042650066255
1126 => 0.039514571226626
1127 => 0.039886189212407
1128 => 0.039191467200103
1129 => 0.039411770706634
1130 => 0.039508878393184
1201 => 0.039458154848543
1202 => 0.039907199935752
1203 => 0.039525419877774
1204 => 0.038517839534317
1205 => 0.03750998467627
1206 => 0.037497331879508
1207 => 0.0372319814855
1208 => 0.037040181751981
1209 => 0.037077129185118
1210 => 0.037207336758621
1211 => 0.037032613851104
1212 => 0.0370698998421
1213 => 0.037689095727875
1214 => 0.037813271046865
1215 => 0.03739127479451
1216 => 0.035696898947537
1217 => 0.035281094864669
1218 => 0.035579966593681
1219 => 0.035437125157018
1220 => 0.028600525755933
1221 => 0.030206683376506
1222 => 0.029252359058321
1223 => 0.029692155610491
1224 => 0.028718037602708
1225 => 0.029182937773921
1226 => 0.029097087687734
1227 => 0.031679741611956
1228 => 0.031639417023253
1229 => 0.031658718269935
1230 => 0.030737419476669
1231 => 0.032205073470331
]
'min_raw' => 0.018736943571349
'max_raw' => 0.041828906596482
'avg_raw' => 0.030282925083915
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.018736'
'max' => '$0.041828'
'avg' => '$0.030282'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0028891986817178
'max_diff' => 0.0063280017072033
'year' => 2035
]
10 => [
'items' => [
101 => 0.03292809260274
102 => 0.032794281003862
103 => 0.032827958500442
104 => 0.032249267530316
105 => 0.031664321263482
106 => 0.031015525830978
107 => 0.032220907551032
108 => 0.032086889680314
109 => 0.032394278457633
110 => 0.033176054665552
111 => 0.033291174181848
112 => 0.033445895979175
113 => 0.033390439228681
114 => 0.034711644015078
115 => 0.034551637397855
116 => 0.034937207308316
117 => 0.034144060749239
118 => 0.03324654013148
119 => 0.033417129458756
120 => 0.033400700334747
121 => 0.033191538729636
122 => 0.033002716984789
123 => 0.032688381979816
124 => 0.033682984448379
125 => 0.033642605404513
126 => 0.034296295189204
127 => 0.034180749170156
128 => 0.033409104576047
129 => 0.033436664013684
130 => 0.033622014476411
131 => 0.034263514544204
201 => 0.03445395544098
202 => 0.034365735629835
203 => 0.034574545379193
204 => 0.034739580091226
205 => 0.034595271198105
206 => 0.036638380804173
207 => 0.035789939250629
208 => 0.036203463760408
209 => 0.036302086919362
210 => 0.036049465771522
211 => 0.036104250252803
212 => 0.036187233814067
213 => 0.036691093748213
214 => 0.03801336800846
215 => 0.038598994277298
216 => 0.040360879801388
217 => 0.038550366167982
218 => 0.038442937781626
219 => 0.03876030656836
220 => 0.039794719885525
221 => 0.040633014721584
222 => 0.040911125481094
223 => 0.040947882409072
224 => 0.041469636682367
225 => 0.041768696501678
226 => 0.041406281990089
227 => 0.041099173637898
228 => 0.039999149640043
229 => 0.04012648041306
301 => 0.0410036631713
302 => 0.042242735483121
303 => 0.043305988430164
304 => 0.042933674306216
305 => 0.045774168259131
306 => 0.046055791632186
307 => 0.046016880388003
308 => 0.046658460342998
309 => 0.045385054787819
310 => 0.044840649241909
311 => 0.04116557394947
312 => 0.042198120202272
313 => 0.043698986820036
314 => 0.043500341495214
315 => 0.042410372039114
316 => 0.043305161590592
317 => 0.043009316182217
318 => 0.042775970633994
319 => 0.043844971826662
320 => 0.042669561103175
321 => 0.043687261198927
322 => 0.042382050299366
323 => 0.042935375005773
324 => 0.042621281141112
325 => 0.042824538365443
326 => 0.041636300785227
327 => 0.042277444940675
328 => 0.041609627080474
329 => 0.041609310447856
330 => 0.041594568331578
331 => 0.042380253082547
401 => 0.042405874234069
402 => 0.041825252015999
403 => 0.041741575283352
404 => 0.042050972020701
405 => 0.041688749472399
406 => 0.041858231122948
407 => 0.04169388289894
408 => 0.041656884652013
409 => 0.041362076325764
410 => 0.041235064792892
411 => 0.041284869287615
412 => 0.041114860871148
413 => 0.041012424650754
414 => 0.041574191189059
415 => 0.04127406198924
416 => 0.041528192084728
417 => 0.041238578767145
418 => 0.040234652829883
419 => 0.039657284407039
420 => 0.037760961375536
421 => 0.038298756234889
422 => 0.038655314783029
423 => 0.038537472184996
424 => 0.038790643684603
425 => 0.038806186358505
426 => 0.038723877723205
427 => 0.038628574867916
428 => 0.03858218670854
429 => 0.038927926043423
430 => 0.039128639364373
501 => 0.038691100203473
502 => 0.038588590899897
503 => 0.039030967148766
504 => 0.039300816405024
505 => 0.041293231698032
506 => 0.041145627137709
507 => 0.041516085618187
508 => 0.041474377678434
509 => 0.041862677184638
510 => 0.042497382769668
511 => 0.04120684884883
512 => 0.041430840914182
513 => 0.04137592323249
514 => 0.041975500081015
515 => 0.04197737189449
516 => 0.041617895622715
517 => 0.041812773541481
518 => 0.041703998033421
519 => 0.041900570078376
520 => 0.041143655788816
521 => 0.042065495689652
522 => 0.042588119511375
523 => 0.042595376143646
524 => 0.042843095687344
525 => 0.043094793090689
526 => 0.043577904338186
527 => 0.043081319380205
528 => 0.042188011382369
529 => 0.042252505334446
530 => 0.041728759182163
531 => 0.041737563449605
601 => 0.041690565579995
602 => 0.04183160972453
603 => 0.041174607046941
604 => 0.041328804262172
605 => 0.04111292725787
606 => 0.041430371639735
607 => 0.041088853960285
608 => 0.041375896749521
609 => 0.041499774901736
610 => 0.041956887950317
611 => 0.041021337991342
612 => 0.039113688293828
613 => 0.039514699388262
614 => 0.038921572480852
615 => 0.038976468634326
616 => 0.039087367601002
617 => 0.038727907766122
618 => 0.038796481374736
619 => 0.038794031442891
620 => 0.038772919253813
621 => 0.038679409867763
622 => 0.038543802757723
623 => 0.039084019746457
624 => 0.039175813139662
625 => 0.039379858481961
626 => 0.039986959015365
627 => 0.039926295355661
628 => 0.040025240301549
629 => 0.039809244040229
630 => 0.038986488081397
701 => 0.03903116768836
702 => 0.03847401227359
703 => 0.039365610765349
704 => 0.039154468473976
705 => 0.039018343665165
706 => 0.038981200749894
707 => 0.039589806168093
708 => 0.03977191044794
709 => 0.039658435281303
710 => 0.039425694403932
711 => 0.039872625692148
712 => 0.039992205650358
713 => 0.040018975193062
714 => 0.040810851745207
715 => 0.040063232295675
716 => 0.040243191727876
717 => 0.041647183846218
718 => 0.04037395673255
719 => 0.041048413531013
720 => 0.041015402380432
721 => 0.041360431656152
722 => 0.040987099909173
723 => 0.040991727803611
724 => 0.041298090426143
725 => 0.040867859375587
726 => 0.040761328117117
727 => 0.040614155946531
728 => 0.040935500996819
729 => 0.041128132821279
730 => 0.042680603853948
731 => 0.043683570942332
801 => 0.043640029495888
802 => 0.044037916810217
803 => 0.043858664930881
804 => 0.043279813328252
805 => 0.044267842430508
806 => 0.043955188681661
807 => 0.043980963476841
808 => 0.043980004137677
809 => 0.044187891547995
810 => 0.044040584265184
811 => 0.043750226489979
812 => 0.04394297953159
813 => 0.0445153871547
814 => 0.046292157980446
815 => 0.047286462473616
816 => 0.046232299601472
817 => 0.046959447034873
818 => 0.046523417683955
819 => 0.046444178180143
820 => 0.046900880504093
821 => 0.047358382225003
822 => 0.047329241343215
823 => 0.046997118586808
824 => 0.046809510869016
825 => 0.048230139361331
826 => 0.049276834234693
827 => 0.049205456661461
828 => 0.049520494056476
829 => 0.05044545359198
830 => 0.050530020299936
831 => 0.050519366838477
901 => 0.050309759429184
902 => 0.051220502213062
903 => 0.051980259866367
904 => 0.050261241370073
905 => 0.050915821109857
906 => 0.051209683044288
907 => 0.05164115954894
908 => 0.052369132736147
909 => 0.053159904702805
910 => 0.053271728529264
911 => 0.053192384173128
912 => 0.052670848804026
913 => 0.053536120925815
914 => 0.05404297704163
915 => 0.054344798259403
916 => 0.055110166649411
917 => 0.051211497835553
918 => 0.048451826272691
919 => 0.04802086370801
920 => 0.048897243030055
921 => 0.049128337268284
922 => 0.049035183470622
923 => 0.04592892222826
924 => 0.048004509885425
925 => 0.050237667684167
926 => 0.050323452370038
927 => 0.051441417857216
928 => 0.051805473246795
929 => 0.052705581999059
930 => 0.052649279951532
1001 => 0.05286844210885
1002 => 0.052818060524242
1003 => 0.054485322447552
1004 => 0.056324559939755
1005 => 0.056260872993817
1006 => 0.055996460843443
1007 => 0.05638915797572
1008 => 0.058287448172341
1009 => 0.058112684030517
1010 => 0.058282452507925
1011 => 0.060520643632689
1012 => 0.063430610473857
1013 => 0.06207863872024
1014 => 0.065012028406196
1015 => 0.066858441721199
1016 => 0.070051622626797
1017 => 0.069651820650669
1018 => 0.070894902544574
1019 => 0.068936091672209
1020 => 0.064438265968265
1021 => 0.06372646783363
1022 => 0.065151505724768
1023 => 0.068654822326965
1024 => 0.065041173817719
1025 => 0.065772210204714
1026 => 0.06556167167608
1027 => 0.06555045297262
1028 => 0.065978625253915
1029 => 0.065357539027933
1030 => 0.062827122012004
1031 => 0.063986797218563
1101 => 0.063538990929133
1102 => 0.064035865393426
1103 => 0.066717291950598
1104 => 0.065531769352447
1105 => 0.06428291759933
1106 => 0.065849254840128
1107 => 0.067843740399536
1108 => 0.067718929077663
1109 => 0.067476742946145
1110 => 0.068841933489059
1111 => 0.071096828302655
1112 => 0.071706317309869
1113 => 0.07215622963454
1114 => 0.072218264942781
1115 => 0.072857267172394
1116 => 0.06942119113447
1117 => 0.074874332051347
1118 => 0.075815938847714
1119 => 0.0756389557956
1120 => 0.076685512120891
1121 => 0.076377588701419
1122 => 0.075931455978308
1123 => 0.077590470362808
1124 => 0.075688544246536
1125 => 0.072988999570328
1126 => 0.071507975970021
1127 => 0.073458307317672
1128 => 0.074649306614498
1129 => 0.075436481387918
1130 => 0.075674679998731
1201 => 0.06968792393604
1202 => 0.066461394458962
1203 => 0.068529562861533
1204 => 0.071052871050028
1205 => 0.069407174030078
1206 => 0.069471682237543
1207 => 0.067125350768662
1208 => 0.071260469321791
1209 => 0.070658017330422
1210 => 0.073783539327366
1211 => 0.073037608418914
1212 => 0.075586350275357
1213 => 0.074915181126915
1214 => 0.077701166737539
1215 => 0.078812571825166
1216 => 0.080678793943682
1217 => 0.082051594530952
1218 => 0.082857729293288
1219 => 0.082809331985893
1220 => 0.086003639529013
1221 => 0.08412006797144
1222 => 0.081753858171399
1223 => 0.081711060901412
1224 => 0.082936554486306
1225 => 0.085504852842497
1226 => 0.086170775239036
1227 => 0.086542935011897
1228 => 0.085972959364786
1229 => 0.083928477435831
1230 => 0.083045680504666
1231 => 0.083797849067108
]
'min_raw' => 0.031015525830978
'max_raw' => 0.086542935011897
'avg_raw' => 0.058779230421438
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.031015'
'max' => '$0.086542'
'avg' => '$0.058779'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012278582259629
'max_diff' => 0.044714028415415
'year' => 2036
]
11 => [
'items' => [
101 => 0.082878011549823
102 => 0.08446590916548
103 => 0.086646431748405
104 => 0.086196162457752
105 => 0.087701345188261
106 => 0.089259050964496
107 => 0.091486640185457
108 => 0.092069014495207
109 => 0.093031657083511
110 => 0.094022532518493
111 => 0.094340775003367
112 => 0.094948398651836
113 => 0.094945196175277
114 => 0.096776310937727
115 => 0.098796087225613
116 => 0.099558506016361
117 => 0.10131164598567
118 => 0.098309455225581
119 => 0.10058665140379
120 => 0.10264073935845
121 => 0.1001917710188
122 => 0.10356710333857
123 => 0.10369815984388
124 => 0.1056769574766
125 => 0.10367106698408
126 => 0.10247997561265
127 => 0.10591861177236
128 => 0.10758245949401
129 => 0.10708129501941
130 => 0.10326740862212
131 => 0.10104756315362
201 => 0.095237799386343
202 => 0.1021197155318
203 => 0.10547169613801
204 => 0.10325872780213
205 => 0.10437482031007
206 => 0.11046385913916
207 => 0.11278217088921
208 => 0.11229997825142
209 => 0.11238146086964
210 => 0.11363237980963
211 => 0.1191796432832
212 => 0.11585559442527
213 => 0.11839670522742
214 => 0.11974450123422
215 => 0.12099640927883
216 => 0.11792211879088
217 => 0.11392251203635
218 => 0.11265566868513
219 => 0.10303869171397
220 => 0.10253808629821
221 => 0.10225708130844
222 => 0.10048538459692
223 => 0.099093316290242
224 => 0.097986291888586
225 => 0.095081129273171
226 => 0.096061536373931
227 => 0.091431313519521
228 => 0.09439356601675
301 => 0.087003618540471
302 => 0.093158186392191
303 => 0.089808534924362
304 => 0.092057735796422
305 => 0.092049888546467
306 => 0.087908396631219
307 => 0.085519670525235
308 => 0.087041859770579
309 => 0.08867376747312
310 => 0.08893853900746
311 => 0.091054349940954
312 => 0.091644827293289
313 => 0.089855653348964
314 => 0.086850478304753
315 => 0.087548511926778
316 => 0.085505524896164
317 => 0.081925268707375
318 => 0.084496671207439
319 => 0.085374661077548
320 => 0.085762431422168
321 => 0.082241660655695
322 => 0.081135358041217
323 => 0.080546371812047
324 => 0.086395991010747
325 => 0.086716446355221
326 => 0.085076951505074
327 => 0.092487623691016
328 => 0.090810360339419
329 => 0.092684274442651
330 => 0.087485172692021
331 => 0.087683785380414
401 => 0.085222447292365
402 => 0.086600632155002
403 => 0.085626575515062
404 => 0.086489288437589
405 => 0.087006395006254
406 => 0.089467329212942
407 => 0.093186286307778
408 => 0.089099747707387
409 => 0.087319184318885
410 => 0.088423835830843
411 => 0.09136566837646
412 => 0.095822695272707
413 => 0.093184045644103
414 => 0.094355033542101
415 => 0.094610842304188
416 => 0.092665199756174
417 => 0.095894433888688
418 => 0.097625006694553
419 => 0.099400216301787
420 => 0.1009415810635
421 => 0.098691158546962
422 => 0.10109943322506
423 => 0.09915878895222
424 => 0.097417830419368
425 => 0.097420470734826
426 => 0.096328342015822
427 => 0.094212205005678
428 => 0.09382195687364
429 => 0.095852076939404
430 => 0.097480040979061
501 => 0.097614127894789
502 => 0.098515452434955
503 => 0.099048847013445
504 => 0.10427683899741
505 => 0.10637958062158
506 => 0.10895077327675
507 => 0.10995239772041
508 => 0.11296692819361
509 => 0.11053245000831
510 => 0.11000573533933
511 => 0.10269347045675
512 => 0.10389085342163
513 => 0.10580797907868
514 => 0.10272508315272
515 => 0.10468047103292
516 => 0.10506650602125
517 => 0.10262032752884
518 => 0.10392693715477
519 => 0.10045696937105
520 => 0.093261922123135
521 => 0.095902444033088
522 => 0.097846756948878
523 => 0.095071982685992
524 => 0.10004565815362
525 => 0.097140139622934
526 => 0.096219229738192
527 => 0.092626431949734
528 => 0.094322094206417
529 => 0.096615501688126
530 => 0.095198442501666
531 => 0.098139053086077
601 => 0.1023037419058
602 => 0.10527174717024
603 => 0.10549959376058
604 => 0.10359136521645
605 => 0.10664931363656
606 => 0.10667158745237
607 => 0.10322220914239
608 => 0.10110948413375
609 => 0.10062946856658
610 => 0.10182864156597
611 => 0.10328465896679
612 => 0.10558039259296
613 => 0.10696765634245
614 => 0.11058490445331
615 => 0.11156362807747
616 => 0.11263894860997
617 => 0.11407590845795
618 => 0.1158013471844
619 => 0.11202618548021
620 => 0.1121761796925
621 => 0.10866080138423
622 => 0.1049041155056
623 => 0.10775497180998
624 => 0.11148208719443
625 => 0.11062708280714
626 => 0.11053087734741
627 => 0.1106926682455
628 => 0.11004802285932
629 => 0.10713231566928
630 => 0.10566806577174
701 => 0.10755732170956
702 => 0.1085613771594
703 => 0.11011857959927
704 => 0.10992662153
705 => 0.11393780778377
706 => 0.11549643347001
707 => 0.11509767032212
708 => 0.1151710523381
709 => 0.11799286969337
710 => 0.12113131094343
711 => 0.12407087532791
712 => 0.12706112647704
713 => 0.12345626200528
714 => 0.12162593414365
715 => 0.12351436529143
716 => 0.12251233714283
717 => 0.12827028810556
718 => 0.12866895613737
719 => 0.13442649073472
720 => 0.13989107666206
721 => 0.13645886814932
722 => 0.13969528618677
723 => 0.1431957361633
724 => 0.14994867209557
725 => 0.14767452084473
726 => 0.14593255662708
727 => 0.14428640885852
728 => 0.14771178104631
729 => 0.15211846764424
730 => 0.15306762573072
731 => 0.15460562443711
801 => 0.15298860685488
802 => 0.15493612642403
803 => 0.1618117262866
804 => 0.15995387851114
805 => 0.15731543600604
806 => 0.16274306175791
807 => 0.16470729841816
808 => 0.17849333997846
809 => 0.19589878692131
810 => 0.18869281759664
811 => 0.18421983990165
812 => 0.18527109576042
813 => 0.19162697577239
814 => 0.19366828270668
815 => 0.18811930677857
816 => 0.19007929888534
817 => 0.20087904809582
818 => 0.2066727670498
819 => 0.19880411851002
820 => 0.17709482926391
821 => 0.15707787312628
822 => 0.16238727126926
823 => 0.16178535028966
824 => 0.17338833352016
825 => 0.15990956945612
826 => 0.16013651727474
827 => 0.17197943791069
828 => 0.16881994972408
829 => 0.16370198349844
830 => 0.15711523994361
831 => 0.14493903528246
901 => 0.1341542312555
902 => 0.15530571554441
903 => 0.15439362508039
904 => 0.15307278292427
905 => 0.15601217421268
906 => 0.17028502394846
907 => 0.16995598856534
908 => 0.16786283333329
909 => 0.16945047312858
910 => 0.1634236625662
911 => 0.16497690887605
912 => 0.15707470233816
913 => 0.16064682971858
914 => 0.16369100264152
915 => 0.16430216542555
916 => 0.16567914638471
917 => 0.15391299485157
918 => 0.15919565145389
919 => 0.16229871728977
920 => 0.14827895295277
921 => 0.16202159162581
922 => 0.1537081723307
923 => 0.15088647295858
924 => 0.15468551943252
925 => 0.15320502732693
926 => 0.15193218715196
927 => 0.15122192046415
928 => 0.15401152090916
929 => 0.1538813827141
930 => 0.14931705494796
1001 => 0.14336307544283
1002 => 0.14536142639747
1003 => 0.14463540676101
1004 => 0.14200421794008
1005 => 0.14377732151443
1006 => 0.13596947072016
1007 => 0.12253646924537
1008 => 0.13141072148358
1009 => 0.13106907242573
1010 => 0.13089679747822
1011 => 0.13756555276891
1012 => 0.13692450582208
1013 => 0.13576099933641
1014 => 0.14198284923104
1015 => 0.13971179032381
1016 => 0.14671065874711
1017 => 0.15132056614912
1018 => 0.15015134451709
1019 => 0.1544869847103
1020 => 0.14540746436736
1021 => 0.14842331681816
1022 => 0.14904487982847
1023 => 0.14190607256913
1024 => 0.13702938903054
1025 => 0.13670416983678
1026 => 0.12824867262925
1027 => 0.13276553098712
1028 => 0.13674017942175
1029 => 0.13483663126674
1030 => 0.13423402478775
1031 => 0.13731261059952
1101 => 0.1375518430834
1102 => 0.13209731709824
1103 => 0.13323148577293
1104 => 0.13796115768623
1105 => 0.1331123101758
1106 => 0.12369179151777
1107 => 0.12135537264172
1108 => 0.12104365129491
1109 => 0.11470709799934
1110 => 0.12151150332304
1111 => 0.11854119805251
1112 => 0.12792435681237
1113 => 0.12256474685163
1114 => 0.12233370477834
1115 => 0.12198445079806
1116 => 0.11653031761684
1117 => 0.11772442615528
1118 => 0.12169382480492
1119 => 0.12311015096159
1120 => 0.12296241653983
1121 => 0.12167437258604
1122 => 0.12226403251223
1123 => 0.12036453243883
1124 => 0.11969377942823
1125 => 0.11757669842164
1126 => 0.11446517420052
1127 => 0.11489785072755
1128 => 0.10873310707089
1129 => 0.10537422753904
1130 => 0.10444453395394
1201 => 0.10320130883738
1202 => 0.10458495953895
1203 => 0.10871564312667
1204 => 0.10373316234647
1205 => 0.095191048529205
1206 => 0.095704444124676
1207 => 0.09685789159918
1208 => 0.094708449861261
1209 => 0.092674183645291
1210 => 0.094442813074842
1211 => 0.090823406841769
1212 => 0.097295279550529
1213 => 0.097120233530971
1214 => 0.099532547458873
1215 => 0.10104101686366
1216 => 0.097564483258401
1217 => 0.096690144458226
1218 => 0.097188207575289
1219 => 0.088956333699549
1220 => 0.098859827741481
1221 => 0.098945473569207
1222 => 0.098212121995126
1223 => 0.10348542683638
1224 => 0.11461374483645
1225 => 0.11042682396927
1226 => 0.10880552165914
1227 => 0.10572342478243
1228 => 0.10983013587385
1229 => 0.1095148045367
1230 => 0.10808875664426
1231 => 0.10722627842937
]
'min_raw' => 0.080546371812047
'max_raw' => 0.2066727670498
'avg_raw' => 0.14360956943092
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.080546'
'max' => '$0.206672'
'avg' => '$0.1436095'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.049530845981069
'max_diff' => 0.1201298320379
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0025282585729027
]
1 => [
'year' => 2028
'avg' => 0.0043392256698089
]
2 => [
'year' => 2029
'avg' => 0.011853982460582
]
3 => [
'year' => 2030
'avg' => 0.0091453298148589
]
4 => [
'year' => 2031
'avg' => 0.0089818472464382
]
5 => [
'year' => 2032
'avg' => 0.015748004914364
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0025282585729027
'min' => '$0.002528'
'max_raw' => 0.015748004914364
'max' => '$0.015748'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.015748004914364
]
1 => [
'year' => 2033
'avg' => 0.040505487987994
]
2 => [
'year' => 2034
'avg' => 0.025674324889455
]
3 => [
'year' => 2035
'avg' => 0.030282925083915
]
4 => [
'year' => 2036
'avg' => 0.058779230421438
]
5 => [
'year' => 2037
'avg' => 0.14360956943092
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.015748004914364
'min' => '$0.015748'
'max_raw' => 0.14360956943092
'max' => '$0.1436095'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14360956943092
]
]
]
]
'prediction_2025_max_price' => '$0.004322'
'last_price' => 0.00419156
'sma_50day_nextmonth' => '$0.003939'
'sma_200day_nextmonth' => '$0.007869'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.004146'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004131'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.004081'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004073'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004293'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006255'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010324'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004153'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004131'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00410063'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004133'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004719'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00636'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.010322'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00677'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.014963'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.029941'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.031283'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.004142'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004219'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.004894'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.00740055'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.014836'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0260051'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.045542'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '49.24'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 100.12
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004114'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004171'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 115.58
'cci_20_action' => 'SELL'
'adx_14' => 24
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000013'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 61.55
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001754'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 18
'sell_pct' => 48.57
'buy_pct' => 51.43
'overall_action' => 'bullish'
'overall_action_label' => 'Bullisch'
'overall_action_dir' => 1
'last_updated' => 1767700622
'last_updated_date' => '6. Januar 2026'
]
Flourishing AI Preisprognose für 2026
Die Preisprognose für Flourishing AI im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.001448 am unteren Ende und $0.004322 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Flourishing AI im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn AI das prognostizierte Preisziel erreicht.
Flourishing AI Preisprognose 2027-2032
Die Preisprognose für AI für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.002528 am unteren Ende und $0.015748 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Flourishing AI, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Flourishing AI Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.001394 | $0.002528 | $0.003662 |
| 2028 | $0.002515 | $0.004339 | $0.006162 |
| 2029 | $0.005526 | $0.011853 | $0.018181 |
| 2030 | $0.0047004 | $0.009145 | $0.01359 |
| 2031 | $0.005557 | $0.008981 | $0.0124063 |
| 2032 | $0.008482 | $0.015748 | $0.023013 |
Flourishing AI Preisprognose 2032-2037
Die Preisprognose für Flourishing AI für die Jahre 2032-2037 wird derzeit zwischen $0.015748 am unteren Ende und $0.1436095 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Flourishing AI bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Flourishing AI Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.008482 | $0.015748 | $0.023013 |
| 2033 | $0.019712 | $0.0405054 | $0.061298 |
| 2034 | $0.015847 | $0.025674 | $0.0355009 |
| 2035 | $0.018736 | $0.030282 | $0.041828 |
| 2036 | $0.031015 | $0.058779 | $0.086542 |
| 2037 | $0.080546 | $0.1436095 | $0.206672 |
Flourishing AI Potenzielles Preishistogramm
Flourishing AI Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Flourishing AI Bullisch, mit 18 technischen Indikatoren, die bullische Signale zeigen, und 17 anzeigen bärische Signale. Die Preisprognose für AI wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Flourishing AI
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Flourishing AI im nächsten Monat steigen, und bis zum 04.02.2026 $0.007869 erreichen. Der kurzfristige 50-Tage-SMA für Flourishing AI wird voraussichtlich bis zum 04.02.2026 $0.003939 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 49.24, was darauf hindeutet, dass sich der AI-Markt in einem NEUTRAL Zustand befindet.
Beliebte AI Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.004146 | BUY |
| SMA 5 | $0.004131 | BUY |
| SMA 10 | $0.004081 | BUY |
| SMA 21 | $0.004073 | BUY |
| SMA 50 | $0.004293 | SELL |
| SMA 100 | $0.006255 | SELL |
| SMA 200 | $0.010324 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.004153 | BUY |
| EMA 5 | $0.004131 | BUY |
| EMA 10 | $0.00410063 | BUY |
| EMA 21 | $0.004133 | BUY |
| EMA 50 | $0.004719 | SELL |
| EMA 100 | $0.00636 | SELL |
| EMA 200 | $0.010322 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.00677 | SELL |
| SMA 50 | $0.014963 | SELL |
| SMA 100 | $0.029941 | SELL |
| SMA 200 | $0.031283 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.00740055 | SELL |
| EMA 50 | $0.014836 | SELL |
| EMA 100 | $0.0260051 | SELL |
| EMA 200 | $0.045542 | SELL |
Flourishing AI Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 49.24 | NEUTRAL |
| Stoch RSI (14) | 100.12 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 115.58 | SELL |
| Average Directional Index (14) | 24 | NEUTRAL |
| Awesome Oscillator (5, 34) | 0.000013 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 61.55 | NEUTRAL |
| VWMA (10) | 0.004114 | BUY |
| Hull Moving Average (9) | 0.004171 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.001754 | SELL |
Auf weltweiten Geldflüssen basierende Flourishing AI-Preisprognose
Definition weltweiter Geldflüsse, die für Flourishing AI-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Flourishing AI-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.005889 | $0.008276 | $0.011629 | $0.016341 | $0.022962 | $0.032265 |
| Amazon.com aktie | $0.008745 | $0.018248 | $0.038077 | $0.07945 | $0.165778 | $0.3459077 |
| Apple aktie | $0.005945 | $0.008433 | $0.011961 | $0.016966 | $0.024066 | $0.034135 |
| Netflix aktie | $0.006613 | $0.010435 | $0.016465 | $0.025979 | $0.040991 | $0.064678 |
| Google aktie | $0.005428 | $0.007029 | $0.0091029 | $0.011788 | $0.015265 | $0.019769 |
| Tesla aktie | $0.0095019 | $0.02154 | $0.04883 | $0.110693 | $0.250934 | $0.56885 |
| Kodak aktie | $0.003143 | $0.002357 | $0.001767 | $0.001325 | $0.000993 | $0.000745 |
| Nokia aktie | $0.002776 | $0.001839 | $0.001218 | $0.0008072 | $0.000534 | $0.000354 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Flourishing AI Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Flourishing AI investieren?", "Sollte ich heute AI kaufen?", "Wird Flourishing AI auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Flourishing AI-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Flourishing AI.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Flourishing AI zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Flourishing AI-Preis entspricht heute $0.004191 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
Flourishing AI-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Flourishing AI 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00430051 | $0.004412 | $0.004526 | $0.004644 |
| Wenn die Wachstumsrate von Flourishing AI 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.0044094 | $0.004638 | $0.004879 | $0.005133 |
| Wenn die Wachstumsrate von Flourishing AI 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.004736 | $0.005351 | $0.006047 | $0.006833 |
| Wenn die Wachstumsrate von Flourishing AI 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.005281 | $0.006653 | $0.008383 | $0.010562 |
| Wenn die Wachstumsrate von Flourishing AI 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00637 | $0.009682 | $0.014716 | $0.022366 |
| Wenn die Wachstumsrate von Flourishing AI 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009639 | $0.022166 | $0.050976 | $0.117227 |
| Wenn die Wachstumsrate von Flourishing AI 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.015086 | $0.0543021 | $0.19545 | $0.70349 |
Fragefeld
Ist AI eine gute Investition?
Die Entscheidung, Flourishing AI zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Flourishing AI in den letzten 2026 Stunden um -0.1179% gefallen, und Flourishing AI hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Flourishing AI investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Flourishing AI steigen?
Es scheint, dass der Durchschnittswert von Flourishing AI bis zum Ende dieses Jahres potenziell auf $0.004322 steigen könnte. Betrachtet man die Aussichten von Flourishing AI in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.01359 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Flourishing AI nächste Woche kosten?
Basierend auf unserer neuen experimentellen Flourishing AI-Prognose wird der Preis von Flourishing AI in der nächsten Woche um 0.86% steigen und $0.004227 erreichen bis zum 13. Januar 2026.
Wie viel wird Flourishing AI nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Flourishing AI-Prognose wird der Preis von Flourishing AI im nächsten Monat um -11.62% fallen und $0.003704 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Flourishing AI in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Flourishing AI im Jahr 2026 wird erwartet, dass AI innerhalb der Spanne von $0.001448 bis $0.004322 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Flourishing AI-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Flourishing AI in 5 Jahren sein?
Die Zukunft von Flourishing AI scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.01359 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Flourishing AI-Prognose für 2030 könnte der Wert von Flourishing AI seinen höchsten Gipfel von ungefähr $0.01359 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.0047004 liegen wird.
Wie viel wird Flourishing AI im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Flourishing AI-Preisprognosesimulation wird der Wert von AI im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.004322 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.004322 und $0.001448 während des Jahres 2026 liegen.
Wie viel wird Flourishing AI im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Flourishing AI könnte der Wert von AI um -12.62% fallen und bis zu $0.003662 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.003662 und $0.001394 im Laufe des Jahres schwanken.
Wie viel wird Flourishing AI im Jahr 2028 kosten?
Unser neues experimentelles Flourishing AI-Preisprognosemodell deutet darauf hin, dass der Wert von AI im Jahr 2028 um 47.02% steigen, und im besten Fall $0.006162 erreichen wird. Der Preis wird voraussichtlich zwischen $0.006162 und $0.002515 im Laufe des Jahres liegen.
Wie viel wird Flourishing AI im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Flourishing AI im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.018181 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.018181 und $0.005526.
Wie viel wird Flourishing AI im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Flourishing AI-Preisprognosen wird der Wert von AI im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.01359 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.01359 und $0.0047004 während des Jahres 2030 liegen.
Wie viel wird Flourishing AI im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Flourishing AI im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.0124063 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.0124063 und $0.005557 während des Jahres schwanken.
Wie viel wird Flourishing AI im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Flourishing AI-Preisprognose könnte AI eine 449.04% Steigerung im Wert erfahren und $0.023013 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.023013 und $0.008482 liegen.
Wie viel wird Flourishing AI im Jahr 2033 kosten?
Laut unserer experimentellen Flourishing AI-Preisprognose wird der Wert von AI voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.061298 beträgt. Im Laufe des Jahres könnte der Preis von AI zwischen $0.061298 und $0.019712 liegen.
Wie viel wird Flourishing AI im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Flourishing AI-Preisprognosesimulation deuten darauf hin, dass AI im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.0355009 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.0355009 und $0.015847.
Wie viel wird Flourishing AI im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Flourishing AI könnte AI um 897.93% steigen, wobei der Wert im Jahr 2035 $0.041828 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.041828 und $0.018736.
Wie viel wird Flourishing AI im Jahr 2036 kosten?
Unsere jüngste Flourishing AI-Preisprognosesimulation deutet darauf hin, dass der Wert von AI im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.086542 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.086542 und $0.031015.
Wie viel wird Flourishing AI im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Flourishing AI um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.206672 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.206672 und $0.080546 liegen.
Verwandte Prognosen
ETHPad-Preisprognose
Leverj Gluon-Preisprognose
Black Phoenix-Preisprognose
VNX Gold-Preisprognose
Poison Finance-Preisprognose
Conceal-Preisprognose
NFT Protocol-Preisprognose
BattleFly-Preisprognose
Revolt 2 Earn-Preisprognose
Onix Coin-Preisprognose
Koyo-Preisprognose
Nelore Coin-Preisprognose
Kaicoin-Preisprognose
Garlicoin-Preisprognose
Tokoin-Preisprognose
Monsta Infinite-Preisprognose
Primecoin-Preisprognose
KleeKai-Preisprognose
Public Mint-Preisprognose
xWIN Finance-Preisprognose
Konomi Network-Preisprognose
Zasset zUSD-Preisprognose
Hive Game Token-Preisprognose
Zclassic-Preisprognose
BlockBank-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Flourishing AI?
Flourishing AI-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Flourishing AI Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Flourishing AI. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von AI über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von AI über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von AI einzuschätzen.
Wie liest man Flourishing AI-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Flourishing AI in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von AI innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Flourishing AI?
Die Preisentwicklung von Flourishing AI wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von AI. Die Marktkapitalisierung von Flourishing AI kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von AI-„Walen“, großen Inhabern von Flourishing AI, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Flourishing AI-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


