Flamingo Finance Preisvorhersage bis zu $0.006289 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.0021068 | $0.006289 |
| 2027 | $0.002028 | $0.005328 |
| 2028 | $0.00366 | $0.008965 |
| 2029 | $0.00804 | $0.02645 |
| 2030 | $0.006838 | $0.019771 |
| 2031 | $0.008085 | $0.018049 |
| 2032 | $0.012341 | $0.03348 |
| 2033 | $0.028678 | $0.08918 |
| 2034 | $0.023056 | $0.051648 |
| 2035 | $0.027259 | $0.060854 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Flamingo Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.47 Gewinn erzielen könnten, was einer Rendite von 39.55% in den nächsten 90 Tagen entspricht.
Langfristige Flamingo Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Flamingo Finance'
'name_with_ticker' => 'Flamingo Finance <small>FLM</small>'
'name_lang' => 'Flamingo Finance'
'name_lang_with_ticker' => 'Flamingo Finance <small>FLM</small>'
'name_with_lang' => 'Flamingo Finance'
'name_with_lang_with_ticker' => 'Flamingo Finance <small>FLM</small>'
'image' => '/uploads/coins/flamingo-finance.jpg?1717210501'
'price_for_sd' => 0.006098
'ticker' => 'FLM'
'marketcap' => '$3.43M'
'low24h' => '$0.005914'
'high24h' => '$0.006151'
'volume24h' => '$135.57K'
'current_supply' => '565.33M'
'max_supply' => '565.33M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006098'
'change_24h_pct' => '1.7158%'
'ath_price' => '$1.59'
'ath_days' => 1926
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28.09.2020'
'ath_pct' => '-99.62%'
'fdv' => '$3.43M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.300677'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00615'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005389'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0021068'
'current_year_max_price_prediction' => '$0.006289'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006838'
'grand_prediction_max_price' => '$0.019771'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062136354084099
107 => 0.0062368348674753
108 => 0.0062891044333432
109 => 0.0058424667158923
110 => 0.0060429939384334
111 => 0.0061607848948164
112 => 0.0056286010686062
113 => 0.0061502653316737
114 => 0.0058346917469108
115 => 0.0057275813324861
116 => 0.0058717913947849
117 => 0.0058155925932581
118 => 0.0057672761638098
119 => 0.005740314765996
120 => 0.0058462067198645
121 => 0.0058412667336482
122 => 0.0056680069443768
123 => 0.0054419966122448
124 => 0.0055178530982446
125 => 0.0054902937257225
126 => 0.0053904150044727
127 => 0.0054577212031923
128 => 0.005161338766919
129 => 0.0046514281899293
130 => 0.0049882907360721
131 => 0.0049753218944815
201 => 0.0049687824164614
202 => 0.0052219253096908
203 => 0.005197591461507
204 => 0.0051534252887757
205 => 0.005389603858075
206 => 0.0053033955032307
207 => 0.0055690693396178
208 => 0.0057440593109688
209 => 0.0056996761939016
210 => 0.0058642551077572
211 => 0.0055196006784734
212 => 0.0056340810547458
213 => 0.0056576753016326
214 => 0.0053866894511909
215 => 0.0052015727800116
216 => 0.0051892276085285
217 => 0.0048682608113524
218 => 0.0050397186836504
219 => 0.0051905945158638
220 => 0.0051183367006712
221 => 0.005095462035022
222 => 0.005212323740914
223 => 0.0052214048963146
224 => 0.0050143535908025
225 => 0.0050574061136805
226 => 0.0052369422909685
227 => 0.0050528822626553
228 => 0.0046952836936776
301 => 0.0046065943043841
302 => 0.0045947615049826
303 => 0.0043542288471745
304 => 0.0046125209534615
305 => 0.0044997695272691
306 => 0.0048559499316414
307 => 0.0046525015948978
308 => 0.0046437313437278
309 => 0.0046304738227682
310 => 0.0044234374279138
311 => 0.0044687652405377
312 => 0.00461944179332
313 => 0.0046732048848456
314 => 0.0046675969539315
315 => 0.0046187033960101
316 => 0.004641086616451
317 => 0.0045689824645799
318 => 0.0045435209878361
319 => 0.0044631575635016
320 => 0.0043450455306926
321 => 0.0043614697332779
322 => 0.0041274588905888
323 => 0.0039999573635963
324 => 0.0039646666213679
325 => 0.0039174743659584
326 => 0.0039699971121902
327 => 0.0041267959672734
328 => 0.0039376632813102
329 => 0.0036134085573419
330 => 0.0036328968187555
331 => 0.0036766811560353
401 => 0.0035950893331768
402 => 0.0035178695203239
403 => 0.0035850058825581
404 => 0.0034476148814382
405 => 0.0036932842021274
406 => 0.003686639535483
407 => 0.0037782098661471
408 => 0.0038354706731237
409 => 0.003703503051449
410 => 0.0036703135514763
411 => 0.0036892197990394
412 => 0.0033767416410073
413 => 0.003752673734115
414 => 0.0037559248104671
415 => 0.0037280871209546
416 => 0.0039282593549332
417 => 0.0043506852039136
418 => 0.0041917516074868
419 => 0.0041302077151569
420 => 0.0040132127308496
421 => 0.0041691016009643
422 => 0.0041571317679847
423 => 0.0041029996438266
424 => 0.0040702603662332
425 => 0.00413058348904
426 => 0.004062785663751
427 => 0.0040506073113694
428 => 0.0039768197461153
429 => 0.0039504809424398
430 => 0.0039309807407765
501 => 0.0039095129347955
502 => 0.0039568655653457
503 => 0.0038495582747615
504 => 0.0037201562017804
505 => 0.0037093978195618
506 => 0.0037391026587539
507 => 0.0037259604786766
508 => 0.0037093348998598
509 => 0.0036775921421915
510 => 0.003668174744068
511 => 0.0036987767192972
512 => 0.0036642288734694
513 => 0.0037152061019069
514 => 0.0037013431164706
515 => 0.0036239056067403
516 => 0.0035273897985782
517 => 0.0035265306054368
518 => 0.0035057364328859
519 => 0.0034792519277176
520 => 0.0034718845442631
521 => 0.0035793518453893
522 => 0.0038018059424947
523 => 0.0037581328803575
524 => 0.003789691143547
525 => 0.0039449265640785
526 => 0.0039942712361735
527 => 0.0039592475567131
528 => 0.0039113049841012
529 => 0.0039134142139835
530 => 0.004077248497802
531 => 0.0040874666411205
601 => 0.0041132845927885
602 => 0.0041464679568341
603 => 0.003964898827099
604 => 0.0039048623243012
605 => 0.0038764136985772
606 => 0.0037888029423511
607 => 0.0038832836317624
608 => 0.0038282337801089
609 => 0.0038356618858677
610 => 0.0038308243222476
611 => 0.0038334659590988
612 => 0.0036932155325455
613 => 0.0037443154166361
614 => 0.0036593519483499
615 => 0.0035455954019116
616 => 0.0035452140500798
617 => 0.0035730558036618
618 => 0.0035564944391833
619 => 0.0035119282332033
620 => 0.0035182586524162
621 => 0.003462797518931
622 => 0.0035249926381775
623 => 0.0035267761716526
624 => 0.0035028276629517
625 => 0.0035986478254234
626 => 0.0036379054241699
627 => 0.0036221420027162
628 => 0.0036367994204986
629 => 0.0037599476932613
630 => 0.0037800262350575
701 => 0.0037889437970093
702 => 0.0037769954453444
703 => 0.0036390503448583
704 => 0.0036451687966527
705 => 0.0036002756570418
706 => 0.0035623456847931
707 => 0.0035638626847665
708 => 0.0035833636210536
709 => 0.0036685253535341
710 => 0.003847743198981
711 => 0.0038545443852092
712 => 0.0038627876213223
713 => 0.0038292582373316
714 => 0.0038191454542871
715 => 0.0038324868254536
716 => 0.0038997916253768
717 => 0.0040729178438542
718 => 0.004011723475533
719 => 0.0039619715015407
720 => 0.0040056173957678
721 => 0.0039988984524594
722 => 0.0039421838092306
723 => 0.0039405920180892
724 => 0.0038317384849649
725 => 0.0037914978122439
726 => 0.0037578696941561
727 => 0.0037211486670884
728 => 0.0036993792113427
729 => 0.0037328269894088
730 => 0.003740476891995
731 => 0.0036673427406864
801 => 0.0036573748261031
802 => 0.0037170977527719
803 => 0.0036908159194401
804 => 0.00371784743678
805 => 0.0037241189806749
806 => 0.0037231091176619
807 => 0.0036956678652141
808 => 0.0037131581012144
809 => 0.0036717884789834
810 => 0.0036268052283236
811 => 0.0035981087169582
812 => 0.003573067204752
813 => 0.0035869616911452
814 => 0.0035374303841863
815 => 0.0035215843222219
816 => 0.0037072328028003
817 => 0.003844373331461
818 => 0.0038423792538607
819 => 0.0038302408193038
820 => 0.0038122055677437
821 => 0.0038984722343906
822 => 0.0038684186526872
823 => 0.0038902851444372
824 => 0.0038958510843213
825 => 0.0039126975079967
826 => 0.0039187186564617
827 => 0.0039005185638442
828 => 0.0038394368300658
829 => 0.0036872269569671
830 => 0.003616372850157
831 => 0.0035929898147411
901 => 0.0035938397436678
902 => 0.0035703949096207
903 => 0.0035773004639714
904 => 0.0035679934396314
905 => 0.0035503681871424
906 => 0.0035858733814707
907 => 0.0035899650243632
908 => 0.0035816776877515
909 => 0.0035836296555296
910 => 0.0035150140479525
911 => 0.0035202307435713
912 => 0.0034911835194601
913 => 0.0034857375151088
914 => 0.0034123086619868
915 => 0.0032822188049987
916 => 0.0033543012138981
917 => 0.0032672358002681
918 => 0.0032342628088702
919 => 0.0033903518217958
920 => 0.0033746848141334
921 => 0.0033478697072998
922 => 0.0033082045755351
923 => 0.0032934923923259
924 => 0.0032041058244583
925 => 0.0031988243891699
926 => 0.0032431267858455
927 => 0.0032226827541321
928 => 0.0031939715908462
929 => 0.0030899826678289
930 => 0.0029730646888082
1001 => 0.0029765937076746
1002 => 0.0030137831414647
1003 => 0.0031219164358881
1004 => 0.0030796668870319
1005 => 0.003049014354579
1006 => 0.0030432740566623
1007 => 0.0031151259032173
1008 => 0.0032168113195198
1009 => 0.003264519841766
1010 => 0.0032172421451494
1011 => 0.0031629320728882
1012 => 0.0031662376753381
1013 => 0.0031882283675012
1014 => 0.0031905392783159
1015 => 0.0031551890044395
1016 => 0.0031651398994703
1017 => 0.0031500235799896
1018 => 0.0030572547552392
1019 => 0.0030555768613726
1020 => 0.0030328098956795
1021 => 0.0030321205210065
1022 => 0.0029933882328767
1023 => 0.0029879693180237
1024 => 0.0029110640090602
1025 => 0.0029616833163107
1026 => 0.00292773054264
1027 => 0.0028765557040685
1028 => 0.0028677331426099
1029 => 0.0028674679257589
1030 => 0.0029200130424872
1031 => 0.0029610692960285
1101 => 0.0029283211656744
1102 => 0.0029208650511886
1103 => 0.0030004768471106
1104 => 0.0029903455204019
1105 => 0.0029815718568122
1106 => 0.0032077065057853
1107 => 0.0030287032856164
1108 => 0.0029506476644761
1109 => 0.0028540390109546
1110 => 0.0028854952756843
1111 => 0.0028921235728516
1112 => 0.002659797176151
1113 => 0.002565542385944
1114 => 0.0025331976938618
1115 => 0.0025145828662817
1116 => 0.0025230658769603
1117 => 0.0024382255107898
1118 => 0.0024952396399865
1119 => 0.0024217750542605
1120 => 0.002409458477389
1121 => 0.002540822257183
1122 => 0.0025591007597253
1123 => 0.0024811189891944
1124 => 0.0025311959099771
1125 => 0.00251303732238
1126 => 0.0024230343937266
1127 => 0.0024195969438687
1128 => 0.0023744366380264
1129 => 0.0023037695041414
1130 => 0.0022714727277037
1201 => 0.0022546522861214
1202 => 0.0022615927281421
1203 => 0.0022580834282754
1204 => 0.0022351828728633
1205 => 0.0022593960613052
1206 => 0.0021975413704163
1207 => 0.0021729103341073
1208 => 0.0021617850664422
1209 => 0.0021068854680551
1210 => 0.0021942551430511
1211 => 0.0022114680696795
1212 => 0.0022287149110907
1213 => 0.0023788368906563
1214 => 0.0023713372207975
1215 => 0.0024391305838335
1216 => 0.00243649625841
1217 => 0.0024171604930924
1218 => 0.0023355860797966
1219 => 0.0023681001870122
1220 => 0.0022680268188168
1221 => 0.0023430085905964
1222 => 0.0023087900412698
1223 => 0.0023314392646483
1224 => 0.0022907139188157
1225 => 0.0023132530067078
1226 => 0.0022155498931406
1227 => 0.0021243161004114
1228 => 0.0021610312418861
1229 => 0.0022009447995547
1230 => 0.0022874875623658
1231 => 0.0022359434067978
]
'min_raw' => 0.0021068854680551
'max_raw' => 0.0062891044333432
'avg_raw' => 0.0041979949506992
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0021068'
'max' => '$0.006289'
'avg' => '$0.004197'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0039911945319449
'max_diff' => 0.00019102443334325
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022544806342403
102 => 0.0021923840254022
103 => 0.0020642609843497
104 => 0.002064986146848
105 => 0.0020452772082942
106 => 0.0020282458078316
107 => 0.0022418638731103
108 => 0.002215297089891
109 => 0.0021729663978057
110 => 0.0022296277113167
111 => 0.002244609861945
112 => 0.002245036382711
113 => 0.0022863750144084
114 => 0.0023084374495557
115 => 0.0023123260493745
116 => 0.0023773732795307
117 => 0.0023991762530853
118 => 0.0024889796154846
119 => 0.0023065656060751
120 => 0.0023028089095922
121 => 0.0022304250521957
122 => 0.0021845180654913
123 => 0.0022335683428505
124 => 0.0022770201925601
125 => 0.0022317752222877
126 => 0.0022376832602318
127 => 0.002176945584291
128 => 0.0021986564454666
129 => 0.0022173567638798
130 => 0.002207031547206
131 => 0.002191574198099
201 => 0.0022734576364023
202 => 0.0022688374519094
203 => 0.0023450891921496
204 => 0.002404532876481
205 => 0.0025110665856325
206 => 0.002399893106405
207 => 0.0023958415029474
208 => 0.0024354465766432
209 => 0.0023991701897549
210 => 0.00242209561405
211 => 0.0025073729453529
212 => 0.0025091747209851
213 => 0.0024789926576894
214 => 0.0024771560763949
215 => 0.0024829528718064
216 => 0.0025169048835914
217 => 0.0025050410074338
218 => 0.0025187701852799
219 => 0.0025359387324052
220 => 0.0026069551226284
221 => 0.0026240769338863
222 => 0.0025824798091708
223 => 0.0025862355637894
224 => 0.0025706770972792
225 => 0.0025556478135773
226 => 0.0025894314484885
227 => 0.0026511717053075
228 => 0.0026507876223742
301 => 0.0026651101618971
302 => 0.0026740329853656
303 => 0.002635729695133
304 => 0.0026107956616425
305 => 0.0026203569566765
306 => 0.0026356456756538
307 => 0.0026153990311684
308 => 0.0024904273622464
309 => 0.0025283357833762
310 => 0.0025220259684731
311 => 0.0025130400247514
312 => 0.0025511572353346
313 => 0.0025474807373863
314 => 0.0024373553502084
315 => 0.0024444052201946
316 => 0.0024377840761522
317 => 0.0024591783471119
318 => 0.002398014828913
319 => 0.0024168283151684
320 => 0.0024286279573823
321 => 0.0024355780372954
322 => 0.002460686491656
323 => 0.0024577403043375
324 => 0.0024605033525156
325 => 0.0024977325619461
326 => 0.0026860251277237
327 => 0.0026962734766349
328 => 0.0026458068584389
329 => 0.0026659672769981
330 => 0.0026272636819632
331 => 0.0026532456646017
401 => 0.0026710218772522
402 => 0.0025906945904539
403 => 0.0025859381298495
404 => 0.0025470747913102
405 => 0.0025679577481092
406 => 0.0025347314623043
407 => 0.0025428840306347
408 => 0.0025200887388547
409 => 0.0025611157255613
410 => 0.0026069902716483
411 => 0.0026185799936307
412 => 0.0025880924247842
413 => 0.0025660174157107
414 => 0.0025272609717376
415 => 0.0025917138018085
416 => 0.0026105617734856
417 => 0.0025916148014371
418 => 0.002587224374014
419 => 0.0025789045219804
420 => 0.0025889894699534
421 => 0.0026104591233841
422 => 0.0026003344313084
423 => 0.0026070219687985
424 => 0.0025815359720449
425 => 0.0026357423751158
426 => 0.0027218351886737
427 => 0.0027221119911469
428 => 0.0027119872444954
429 => 0.0027078444163063
430 => 0.0027182330207917
501 => 0.0027238684125623
502 => 0.0027574632545241
503 => 0.0027935118584266
504 => 0.0029617349636018
505 => 0.0029144985888243
506 => 0.003063756135373
507 => 0.0031817994760263
508 => 0.0032171955124786
509 => 0.0031846328244547
510 => 0.003073237627727
511 => 0.0030677720479367
512 => 0.0032342435016869
513 => 0.0031872076911268
514 => 0.0031816129311274
515 => 0.0031220941372299
516 => 0.0031572771159694
517 => 0.0031495820824159
518 => 0.0031374350954978
519 => 0.0032045617680651
520 => 0.0033302169066718
521 => 0.0033106323749335
522 => 0.0032960134304912
523 => 0.0032319574714556
524 => 0.0032705334662114
525 => 0.0032567972933534
526 => 0.0033158166091422
527 => 0.0032808548739068
528 => 0.0031868513486008
529 => 0.0032018217198455
530 => 0.0031995589783481
531 => 0.0032461260380254
601 => 0.0032321477625758
602 => 0.0031968294957232
603 => 0.0033297874310685
604 => 0.0033211538822981
605 => 0.0033333942805505
606 => 0.0033387828824081
607 => 0.0034197120346712
608 => 0.0034528661189094
609 => 0.0034603926764754
610 => 0.0034918864922727
611 => 0.0034596090816481
612 => 0.0035887417375502
613 => 0.0036746074186258
614 => 0.0037743448258026
615 => 0.0039200879845756
616 => 0.0039748887604739
617 => 0.0039649894908106
618 => 0.0040754902904487
619 => 0.0042740577711035
620 => 0.0040051256559125
621 => 0.0042883118262268
622 => 0.0041986583542468
623 => 0.0039860915849795
624 => 0.0039724047910362
625 => 0.004116357475135
626 => 0.0044356306735338
627 => 0.0043556563585015
628 => 0.0044357614828631
629 => 0.0043423146002611
630 => 0.0043376741749078
701 => 0.0044312229763525
702 => 0.0046498048500079
703 => 0.0045459647952532
704 => 0.0043970846141364
705 => 0.0045070154230409
706 => 0.0044117831827517
707 => 0.0041971982915546
708 => 0.00435559520365
709 => 0.0042496796994161
710 => 0.0042805914743295
711 => 0.0045032101104869
712 => 0.0044764240472086
713 => 0.0045110876934134
714 => 0.0044499072651675
715 => 0.0043927550979178
716 => 0.0042860763335705
717 => 0.0042544940106468
718 => 0.00426322222849
719 => 0.0042544896853756
720 => 0.0041948038971517
721 => 0.0041819147568675
722 => 0.0041604322917077
723 => 0.004167090605943
724 => 0.0041266972865256
725 => 0.0042029278259519
726 => 0.0042170768858106
727 => 0.0042725511153056
728 => 0.0042783106338405
729 => 0.0044328055733578
730 => 0.0043477123568537
731 => 0.0044048002330795
801 => 0.0043996937560979
802 => 0.0039906985514283
803 => 0.0040470544820365
804 => 0.0041347266245977
805 => 0.0040952304432107
806 => 0.0040393920834125
807 => 0.0039942996140121
808 => 0.0039259799119287
809 => 0.0040221385806474
810 => 0.0041485770046781
811 => 0.0042815173209291
812 => 0.00444123640031
813 => 0.0044055889611272
814 => 0.0042785314838383
815 => 0.0042842311894539
816 => 0.0043194645268183
817 => 0.0042738341536452
818 => 0.0042603768657857
819 => 0.0043176157021171
820 => 0.004318009874525
821 => 0.0042655066155746
822 => 0.0042071588512461
823 => 0.0042069143719831
824 => 0.0041965319508934
825 => 0.0043441616099083
826 => 0.0044253429953244
827 => 0.0044346503103321
828 => 0.0044247165388676
829 => 0.004428539653247
830 => 0.0043813019937831
831 => 0.0044892732754248
901 => 0.0045883584007123
902 => 0.0045618014704903
903 => 0.0045219888567974
904 => 0.0044902761923558
905 => 0.0045543309745908
906 => 0.0045514787159695
907 => 0.0045874929785828
908 => 0.0045858591636022
909 => 0.0045737489216503
910 => 0.0045618019029852
911 => 0.0046091704815627
912 => 0.0045955290916484
913 => 0.0045818665128878
914 => 0.0045544641195472
915 => 0.0045581885599078
916 => 0.004518382820424
917 => 0.0044999668639521
918 => 0.0042230350646728
919 => 0.0041490298388977
920 => 0.0041723133894418
921 => 0.0041799789388381
922 => 0.0041477717697405
923 => 0.0041939485768835
924 => 0.0041867519704036
925 => 0.0042147497563429
926 => 0.0041972579552106
927 => 0.0041979758248305
928 => 0.0042494154823154
929 => 0.0042643486337232
930 => 0.0042567535123919
1001 => 0.0042620728750268
1002 => 0.0043846553417864
1003 => 0.0043672280349798
1004 => 0.0043579701255779
1005 => 0.0043605346297519
1006 => 0.0043918570782067
1007 => 0.0044006256536318
1008 => 0.0043634725833989
1009 => 0.0043809941861001
1010 => 0.0044555989465791
1011 => 0.004481706390483
1012 => 0.0045650288191403
1013 => 0.0045296319705086
1014 => 0.0045946044181118
1015 => 0.0047943075713043
1016 => 0.0049538442684817
1017 => 0.0048071277286245
1018 => 0.0051000965561148
1019 => 0.0053282148121982
1020 => 0.0053194592535789
1021 => 0.0052796815591604
1022 => 0.0050199749894471
1023 => 0.00478098913199
1024 => 0.0049809109496284
1025 => 0.0049814205914558
1026 => 0.0049642471300188
1027 => 0.004857584235963
1028 => 0.0049605354925109
1029 => 0.0049687073893916
1030 => 0.0049641333002212
1031 => 0.004882355109433
1101 => 0.0047574949272355
1102 => 0.0047818923079638
1103 => 0.00482185571529
1104 => 0.0047461966479815
1105 => 0.0047220189916319
1106 => 0.0047669698547731
1107 => 0.0049118109016985
1108 => 0.0048844295407843
1109 => 0.004883714502794
1110 => 0.005000863576289
1111 => 0.004917010122019
1112 => 0.004782200037066
1113 => 0.0047481587126888
1114 => 0.0046273349441336
1115 => 0.0047107883514342
1116 => 0.0047137916909937
1117 => 0.0046680851126884
1118 => 0.0047859088739922
1119 => 0.0047848231072893
1120 => 0.0048966792328948
1121 => 0.0051105061338102
1122 => 0.0050472669974267
1123 => 0.0049737267622113
1124 => 0.0049817226248287
1125 => 0.0050694175022717
1126 => 0.0050163951774903
1127 => 0.0050354623751665
1128 => 0.0050693886417844
1129 => 0.0050898572007768
1130 => 0.004978777514183
1201 => 0.0049528795256823
1202 => 0.0048999013301689
1203 => 0.0048860803078442
1204 => 0.0049292299426637
1205 => 0.0049178615383878
1206 => 0.0047135392719333
1207 => 0.0046921864582504
1208 => 0.0046928413185613
1209 => 0.0046391486532848
1210 => 0.0045572544510219
1211 => 0.00477246752492
1212 => 0.0047551829031809
1213 => 0.0047361020185045
1214 => 0.0047384393180033
1215 => 0.0048318560191346
1216 => 0.004777669614822
1217 => 0.0049217330516642
1218 => 0.0048921179399927
1219 => 0.0048617433124549
1220 => 0.0048575446136954
1221 => 0.0048458529735348
1222 => 0.0048057579891565
1223 => 0.0047573408861845
1224 => 0.0047253717209848
1225 => 0.0043589056304044
1226 => 0.004426919605181
1227 => 0.0045051634834925
1228 => 0.004532172956743
1229 => 0.0044859713837494
1230 => 0.0048075823088601
1231 => 0.0048663437239979
]
'min_raw' => 0.0020282458078316
'max_raw' => 0.0053282148121982
'avg_raw' => 0.0036782303100149
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002028'
'max' => '$0.005328'
'avg' => '$0.003678'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.8639660223475E-5
'max_diff' => -0.00096088962114501
'year' => 2027
]
2 => [
'items' => [
101 => 0.0046883515646334
102 => 0.0046550564989883
103 => 0.0048097651278208
104 => 0.0047164569122741
105 => 0.0047584735960215
106 => 0.004667656507657
107 => 0.0048521898198263
108 => 0.0048507839851654
109 => 0.0047789963588577
110 => 0.0048396707690325
111 => 0.0048291270971407
112 => 0.0047480790438444
113 => 0.0048547591876786
114 => 0.004854812099699
115 => 0.0047857180701753
116 => 0.0047050313703197
117 => 0.0046906064941203
118 => 0.0046797392876135
119 => 0.0047558009293927
120 => 0.0048239975595733
121 => 0.0049508945809609
122 => 0.0049827995071367
123 => 0.0051073265580317
124 => 0.0050331767623358
125 => 0.0050660464063672
126 => 0.0051017310546583
127 => 0.0051188395873085
128 => 0.0050909621514494
129 => 0.0052844039188685
130 => 0.0053007363309413
131 => 0.0053062124474345
201 => 0.0052409849718486
202 => 0.0052989222368496
203 => 0.0052718153092362
204 => 0.0053423400043649
205 => 0.0053533991770656
206 => 0.0053440324512296
207 => 0.005347542807202
208 => 0.005182474384176
209 => 0.0051739147156368
210 => 0.0050572030277385
211 => 0.0051047639032463
212 => 0.0050158511261365
213 => 0.0050440462836611
214 => 0.0050564744404446
215 => 0.0050499826766326
216 => 0.0051074529237877
217 => 0.0050585914733101
218 => 0.0049296380719333
219 => 0.0048006495372885
220 => 0.0047990301913078
221 => 0.0047650697869726
222 => 0.0047405226347966
223 => 0.0047452512871627
224 => 0.0047619156748687
225 => 0.0047395540702889
226 => 0.0047443260523881
227 => 0.0048235727507858
228 => 0.0048394651109878
229 => 0.0047854566614753
301 => 0.0045686049433004
302 => 0.0045153889877289
303 => 0.0045536395612754
304 => 0.0045353582507726
305 => 0.0036603880785718
306 => 0.0038659493419144
307 => 0.0037438118194371
308 => 0.0038000984090719
309 => 0.0036754276259807
310 => 0.0037349270582274
311 => 0.0037239396856628
312 => 0.0040544761141176
313 => 0.0040493152424253
314 => 0.0040517854785972
315 => 0.0039338746699479
316 => 0.0041217097897535
317 => 0.0042142441241022
318 => 0.0041971184815358
319 => 0.0042014286368123
320 => 0.0041273658889349
321 => 0.0040525025678898
322 => 0.0039694676234682
323 => 0.0041237362867741
324 => 0.0041065842448684
325 => 0.0041459248578903
326 => 0.0042459791133959
327 => 0.0042607124825883
328 => 0.0042805142801939
329 => 0.0042734167453402
330 => 0.0044425088204562
331 => 0.0044220306544542
401 => 0.0044713771425485
402 => 0.0043698676726115
403 => 0.0042550000720103
404 => 0.0042768326475798
405 => 0.004274729994986
406 => 0.0042479608141543
407 => 0.0042237947946303
408 => 0.0041835651808568
409 => 0.0043108576316989
410 => 0.004305689790658
411 => 0.0043893511301518
412 => 0.0043745631757534
413 => 0.0042758055970545
414 => 0.0042793327432979
415 => 0.0043030544968738
416 => 0.0043851557568503
417 => 0.0044095290006913
418 => 0.0043982383430383
419 => 0.0044249624922291
420 => 0.0044460841701183
421 => 0.004427615049777
422 => 0.0046890988458821
423 => 0.0045805125431526
424 => 0.0046334367515643
425 => 0.004646058863423
426 => 0.0046137275893114
427 => 0.0046207390849701
428 => 0.0046313595903748
429 => 0.0046958452194838
430 => 0.0048650741693329
501 => 0.0049400245192406
502 => 0.0051655163449232
503 => 0.00493380093604
504 => 0.0049200519026106
505 => 0.0049606697896168
506 => 0.0050930573620263
507 => 0.0052003450549319
508 => 0.0052359385722442
509 => 0.0052406428431419
510 => 0.005307418647832
511 => 0.0053456932937853
512 => 0.0052993103087646
513 => 0.0052600055854605
514 => 0.005119220945267
515 => 0.0051355171507133
516 => 0.0052477818460685
517 => 0.0054063623406154
518 => 0.0055424409024249
519 => 0.0054947909328959
520 => 0.0058583265647662
521 => 0.0058943696377563
522 => 0.0058893896504811
523 => 0.0059715011346809
524 => 0.0058085265602573
525 => 0.0057388517722076
526 => 0.0052685037127664
527 => 0.0054006523322213
528 => 0.0055927381114154
529 => 0.0055673148382544
530 => 0.005427817010936
531 => 0.0055423350808138
601 => 0.0055044718256011
602 => 0.0054746075052669
603 => 0.0056114217462011
604 => 0.0054609888682747
605 => 0.0055912374283829
606 => 0.0054241923027953
607 => 0.005495008593943
608 => 0.0054548098420889
609 => 0.0054808233611122
610 => 0.0053287488604456
611 => 0.0054108045696055
612 => 0.0053253350731704
613 => 0.0053252945495007
614 => 0.0053234078056297
615 => 0.0054239622891558
616 => 0.0054272413672536
617 => 0.0053529314519984
618 => 0.0053422222322711
619 => 0.0053818198305322
620 => 0.0053354614135958
621 => 0.005357152225104
622 => 0.0053361184061796
623 => 0.0053313832504998
624 => 0.0052936527244222
625 => 0.0052773973763655
626 => 0.0052837715171873
627 => 0.0052620132884679
628 => 0.0052489031686349
629 => 0.005320799872818
630 => 0.0052823883640778
701 => 0.005314912758205
702 => 0.0052778471061913
703 => 0.0051493614075757
704 => 0.0050754679235904
705 => 0.0048327703495362
706 => 0.0049015990804726
707 => 0.0049472326002919
708 => 0.0049321507222638
709 => 0.0049645524321801
710 => 0.0049665416340131
711 => 0.004956007507823
712 => 0.0049438103392
713 => 0.0049378734320601
714 => 0.0049821222738645
715 => 0.0050078102158794
716 => 0.0049518125345035
717 => 0.0049386930612479
718 => 0.0049953098088357
719 => 0.0050298459921579
720 => 0.0052848417656036
721 => 0.0052659508550813
722 => 0.0053133633333384
723 => 0.0053080254158905
724 => 0.0053577212465041
725 => 0.0054389529265323
726 => 0.0052737862083
727 => 0.0053024534395497
728 => 0.0052954248964703
729 => 0.0053721606868281
730 => 0.0053724002475896
731 => 0.0053263933080331
801 => 0.005351334416344
802 => 0.0053374129739084
803 => 0.0053625709019854
804 => 0.005265698555454
805 => 0.0053836786168056
806 => 0.0054505657091247
807 => 0.0054514944364664
808 => 0.0054831983873769
809 => 0.005515411437671
810 => 0.005577241582545
811 => 0.0055136870284888
812 => 0.0053993585726528
813 => 0.0054076127178855
814 => 0.00534058198606
815 => 0.0053417087847721
816 => 0.0053356938449382
817 => 0.0053537451321632
818 => 0.0052696597978879
819 => 0.005289394457775
820 => 0.0052617658183671
821 => 0.0053023933802834
822 => 0.0052586848396381
823 => 0.005295421507094
824 => 0.0053112758349282
825 => 0.0053697786459556
826 => 0.0052500439268821
827 => 0.0050058967293635
828 => 0.0050572194302805
829 => 0.004981309124313
830 => 0.0049883349121412
831 => 0.0050025281217001
901 => 0.0049565232857907
902 => 0.0049652995587032
903 => 0.0049649860084771
904 => 0.004962284002022
905 => 0.0049503163674109
906 => 0.0049329609295005
907 => 0.0050020996524135
908 => 0.0050138476686929
909 => 0.0050399620536106
910 => 0.0051176607495691
911 => 0.0051098968175814
912 => 0.0051225601127758
913 => 0.0050949162104679
914 => 0.0049896172334847
915 => 0.0049953354745435
916 => 0.0049240289169111
917 => 0.0050381385846129
918 => 0.0050111159091271
919 => 0.0049936942144485
920 => 0.0049889405436446
921 => 0.0050668318396418
922 => 0.0050901381362006
923 => 0.0050756152162125
924 => 0.0050458282836157
925 => 0.0051030279999177
926 => 0.0051183322309379
927 => 0.005121758283865
928 => 0.0052231052141944
929 => 0.0051274224514464
930 => 0.0051504542434447
1001 => 0.0053301417099006
1002 => 0.0051671899730005
1003 => 0.0052535091422939
1004 => 0.0052492842681402
1005 => 0.0052934422342693
1006 => 0.0052456620260432
1007 => 0.0052462543189882
1008 => 0.0052854636013911
1009 => 0.0052304012356876
1010 => 0.0052167670195956
1011 => 0.0051979314477147
1012 => 0.0052390582298311
1013 => 0.0052637118757056
1014 => 0.005462402155346
1015 => 0.0055907651373712
1016 => 0.0055851925617882
1017 => 0.0056361154711925
1018 => 0.0056131742341055
1019 => 0.005539090927959
1020 => 0.0056655420980543
1021 => 0.0056255276568945
1022 => 0.0056288263988061
1023 => 0.0056287036194674
1024 => 0.0056553097247155
1025 => 0.0056364568607335
1026 => 0.0055992959306181
1027 => 0.0056239650902567
1028 => 0.0056972236749973
1029 => 0.0059246205698801
1030 => 0.0060518748848646
1031 => 0.0059169597003328
1101 => 0.0060100223880366
1102 => 0.0059542179370404
1103 => 0.0059440766082558
1104 => 0.0060025268534124
1105 => 0.0060610794079856
1106 => 0.0060573498633889
1107 => 0.0060148437154757
1108 => 0.0059908330710732
1109 => 0.0061726497146455
1110 => 0.0063066091204638
1111 => 0.0062974739870622
1112 => 0.0063377934949922
1113 => 0.00645617281731
1114 => 0.0064669959389648
1115 => 0.0064656324744029
1116 => 0.0064388062381056
1117 => 0.006555366054425
1118 => 0.0066526023038734
1119 => 0.0064325967394872
1120 => 0.0065163719783212
1121 => 0.0065539813821034
1122 => 0.0066092031450629
1123 => 0.0067023715154177
1124 => 0.0068035770773128
1125 => 0.0068178886534272
1126 => 0.006807733905302
1127 => 0.0067409861166807
1128 => 0.0068517264501398
1129 => 0.0069165955402997
1130 => 0.0069552235989872
1201 => 0.0070531779287226
1202 => 0.0065542136449773
1203 => 0.0062010219248085
1204 => 0.0061458659375538
1205 => 0.0062580278065382
1206 => 0.0062876039969153
1207 => 0.0062756818716597
1208 => 0.0058781324798233
1209 => 0.0061437729222806
1210 => 0.0064295797026818
1211 => 0.0064405587051018
1212 => 0.0065836395553086
1213 => 0.0066302325452182
1214 => 0.0067454313836704
1215 => 0.00673822566496
1216 => 0.0067662747489092
1217 => 0.0067598267502517
1218 => 0.0069732083405071
1219 => 0.0072085999220316
1220 => 0.0072004490600628
1221 => 0.0071666087351919
1222 => 0.007216867388258
1223 => 0.0074598167264862
1224 => 0.007437449844606
1225 => 0.0074591773651462
1226 => 0.0077456283269419
1227 => 0.0081180553244505
1228 => 0.0079450255930485
1229 => 0.0083204503222268
1230 => 0.0085567602888348
1231 => 0.0089654339411766
]
'min_raw' => 0.0036603880785718
'max_raw' => 0.0089654339411766
'avg_raw' => 0.0063129110098742
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00366'
'max' => '$0.008965'
'avg' => '$0.006312'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016321422707402
'max_diff' => 0.0036372191289784
'year' => 2028
]
3 => [
'items' => [
101 => 0.0089142659871433
102 => 0.0090733596410141
103 => 0.0088226646703493
104 => 0.0082470183438899
105 => 0.008155920109242
106 => 0.0083383010819817
107 => 0.008786666906987
108 => 0.0083241804465538
109 => 0.0084177408551558
110 => 0.0083907954511843
111 => 0.0083893596451172
112 => 0.0084441585228511
113 => 0.0083646698925808
114 => 0.0080408189131281
115 => 0.0081892379085455
116 => 0.0081319262067493
117 => 0.0081955178127626
118 => 0.0085386954832431
119 => 0.0083869684547898
120 => 0.0082271363556171
121 => 0.0084276012775618
122 => 0.0086828620104182
123 => 0.0086668882525037
124 => 0.0086358924856367
125 => 0.0088106140005804
126 => 0.0090992027546668
127 => 0.0091772071352528
128 => 0.0092347883742721
129 => 0.0092427278542898
130 => 0.009324509432832
131 => 0.0088847492733994
201 => 0.0095826599402608
202 => 0.0097031698330347
203 => 0.0096805189678165
204 => 0.0098144606418031
205 => 0.0097750516035439
206 => 0.0097179540901951
207 => 0.009930280133675
208 => 0.0096868654586534
209 => 0.0093413689725158
210 => 0.009151822767075
211 => 0.0094014325006556
212 => 0.0095538604547741
213 => 0.0096546056362078
214 => 0.0096850910672377
215 => 0.0089188866027395
216 => 0.0085059448920227
217 => 0.0087706357942059
218 => 0.0090935769628595
219 => 0.0088829553189018
220 => 0.0088912112885854
221 => 0.0085909201746961
222 => 0.0091201460632172
223 => 0.00904304230275
224 => 0.009443056748448
225 => 0.0093475900906657
226 => 0.009673786342661
227 => 0.0095878879374838
228 => 0.0099444474148593
301 => 0.010086688643847
302 => 0.010325533805397
303 => 0.010501229278507
304 => 0.010604401020837
305 => 0.010598206976415
306 => 0.011007024819482
307 => 0.010765959220433
308 => 0.010463124013228
309 => 0.010457646679762
310 => 0.010614489324782
311 => 0.010943188481064
312 => 0.01102841538991
313 => 0.011076045605086
314 => 0.011003098272524
315 => 0.010741438842084
316 => 0.010628455626663
317 => 0.01072472059964
318 => 0.010606996809832
319 => 0.010810221098502
320 => 0.011089291453212
321 => 0.011031664528528
322 => 0.011224302697835
323 => 0.011423662936941
324 => 0.011708757032691
325 => 0.011783291186324
326 => 0.011906493307999
327 => 0.012033308760991
328 => 0.01207403846672
329 => 0.012151804112642
330 => 0.012151394249301
331 => 0.012385746257519
401 => 0.01264424377986
402 => 0.012741820610312
403 => 0.012966193151519
404 => 0.012581963037653
405 => 0.012873405992738
406 => 0.013136294833515
407 => 0.012822867919906
408 => 0.013254853901211
409 => 0.013271626937964
410 => 0.013524879879065
411 => 0.013268159505866
412 => 0.013115719767741
413 => 0.013555807579865
414 => 0.013768752209516
415 => 0.013704611554064
416 => 0.013216497999062
417 => 0.012932394973876
418 => 0.012188842557584
419 => 0.013069612513756
420 => 0.013498609866996
421 => 0.013215386999556
422 => 0.013358228139802
423 => 0.014137523084593
424 => 0.014434228143958
425 => 0.014372515565735
426 => 0.01438294397558
427 => 0.014543040640035
428 => 0.015252997417076
429 => 0.014827574859604
430 => 0.015152794464512
501 => 0.015325289770289
502 => 0.015485513023562
503 => 0.015092055352602
504 => 0.014580172703724
505 => 0.014418037981453
506 => 0.013187226067101
507 => 0.013123156961814
508 => 0.013087193031524
509 => 0.012860445538243
510 => 0.012682284119889
511 => 0.012540603545305
512 => 0.012168791408195
513 => 0.01229426708981
514 => 0.011701676146481
515 => 0.012080794831889
516 => 0.011135005377728
517 => 0.011922686939439
518 => 0.011493987676885
519 => 0.01178184770186
520 => 0.011780843385351
521 => 0.011250801813268
522 => 0.010945084896176
523 => 0.011139899614428
524 => 0.011348756456805
525 => 0.011382642776802
526 => 0.011653431124665
527 => 0.011729002331978
528 => 0.011500018045738
529 => 0.011115405993508
530 => 0.011204742601174
531 => 0.010943274492673
601 => 0.010485061689751
602 => 0.010814158124438
603 => 0.010926526116588
604 => 0.010976154223386
605 => 0.010525554557808
606 => 0.010383966359888
607 => 0.010308585991356
608 => 0.01105723923507
609 => 0.01109825214975
610 => 0.010888424279606
611 => 0.01183686614935
612 => 0.011622204543854
613 => 0.011862034150564
614 => 0.01119663624041
615 => 0.011222055336655
616 => 0.010907045302514
617 => 0.011083429872655
618 => 0.01095876694362
619 => 0.011069179742454
620 => 0.011135360718826
621 => 0.011450319062921
622 => 0.011926283257804
623 => 0.011403274789248
624 => 0.011175392509879
625 => 0.011316769394341
626 => 0.011693274668091
627 => 0.012263699430773
628 => 0.011925996490397
629 => 0.012075863320768
630 => 0.012108602556093
701 => 0.011859592910302
702 => 0.012272880771597
703 => 0.012494365094009
704 => 0.012721562179081
705 => 0.012918831042132
706 => 0.012630814667132
707 => 0.012939033473907
708 => 0.01269066352359
709 => 0.012467850002142
710 => 0.012468187918281
711 => 0.012328413741491
712 => 0.01205758366128
713 => 0.01200763843921
714 => 0.012267459791803
715 => 0.012475811911409
716 => 0.01249297278992
717 => 0.012608327228852
718 => 0.012676592797567
719 => 0.013345688173515
720 => 0.013614803868768
721 => 0.013943873446825
722 => 0.014072064592823
723 => 0.014457873983208
724 => 0.014146301566565
725 => 0.014078890914342
726 => 0.013143043530558
727 => 0.013296288487225
728 => 0.013541648448789
729 => 0.013147089425952
730 => 0.013397346310974
731 => 0.013446752321243
801 => 0.013133682461336
802 => 0.013300906600462
803 => 0.012856808865445
804 => 0.011935963374848
805 => 0.012273905935865
806 => 0.01252274541101
807 => 0.012167620798292
808 => 0.012804167921368
809 => 0.012432310233067
810 => 0.012314449198193
811 => 0.011854631280654
812 => 0.012071647637718
813 => 0.012365165368021
814 => 0.012183805535792
815 => 0.012560154418982
816 => 0.013093164806161
817 => 0.013473019749381
818 => 0.013502180295244
819 => 0.013257959015058
820 => 0.013649325175156
821 => 0.013652175850368
822 => 0.013210713223
823 => 0.012940319821811
824 => 0.012878885872149
825 => 0.013032359923241
826 => 0.01321870575414
827 => 0.013512521191958
828 => 0.013690067707495
829 => 0.014153014856621
830 => 0.014278275081439
831 => 0.014415898091987
901 => 0.014599804875444
902 => 0.014820632121716
903 => 0.014337474678576
904 => 0.01435667142451
905 => 0.013906761903228
906 => 0.013425969056186
907 => 0.013790830895416
908 => 0.014267839214673
909 => 0.014158412979189
910 => 0.014146100292321
911 => 0.014166806816377
912 => 0.014084303008349
913 => 0.013711141342368
914 => 0.013523741889828
915 => 0.013765534994303
916 => 0.013894037268359
917 => 0.014093333088844
918 => 0.014068765672345
919 => 0.014582130303105
920 => 0.014781608275278
921 => 0.014730573273852
922 => 0.01473996494234
923 => 0.015101110282649
924 => 0.015502778176277
925 => 0.015878993163405
926 => 0.016261695207123
927 => 0.015800332956307
928 => 0.01556608165821
929 => 0.01580776920338
930 => 0.015679526389914
1001 => 0.016416447635379
1002 => 0.016467470463539
1003 => 0.01720433842121
1004 => 0.017903713857643
1005 => 0.017464448676632
1006 => 0.017878655957387
1007 => 0.018326654902339
1008 => 0.019190917552361
1009 => 0.018899864296961
1010 => 0.01867692206471
1011 => 0.018466242732481
1012 => 0.018904632978446
1013 => 0.019468615026425
1014 => 0.019590091357806
1015 => 0.019786929422175
1016 => 0.019579978265705
1017 => 0.019829228138751
1018 => 0.020709189716547
1019 => 0.020471416330591
1020 => 0.020133739898554
1021 => 0.020828385051816
1022 => 0.021079774432416
1023 => 0.022844156759114
1024 => 0.025071762329568
1025 => 0.024149518996153
1026 => 0.023577052798496
1027 => 0.023711595934025
1028 => 0.024525042079148
1029 => 0.024786295163471
1030 => 0.024076119220942
1031 => 0.024326965369819
1101 => 0.025709152312777
1102 => 0.026450651261808
1103 => 0.025443596092429
1104 => 0.022665170820499
1105 => 0.020103335830447
1106 => 0.020782849830742
1107 => 0.020705814030883
1108 => 0.022190801469759
1109 => 0.020465745513973
1110 => 0.020494791032115
1111 => 0.022010486438598
1112 => 0.021606124889746
1113 => 0.02095111096732
1114 => 0.020108118156962
1115 => 0.018549767979617
1116 => 0.017169493769734
1117 => 0.019876529353482
1118 => 0.019759797056686
1119 => 0.019590751392168
1120 => 0.019966944225901
1121 => 0.02179362984231
1122 => 0.021751518826447
1123 => 0.021483630028759
1124 => 0.021686821320742
1125 => 0.02091549055142
1126 => 0.02111428005355
1127 => 0.020102930022695
1128 => 0.02056010247435
1129 => 0.020949705601625
1130 => 0.021027924197598
1201 => 0.021204154688266
1202 => 0.019698284440631
1203 => 0.020374375971792
1204 => 0.020771516405139
1205 => 0.018977221479183
1206 => 0.020736048963551
1207 => 0.019672070589879
1208 => 0.019310940349435
1209 => 0.019797154642901
1210 => 0.019607676459878
1211 => 0.019444774244648
1212 => 0.019353872009534
1213 => 0.019710894125142
1214 => 0.019694238616715
1215 => 0.019110081140574
1216 => 0.018348071526254
1217 => 0.018603826964932
1218 => 0.01851090861634
1219 => 0.018174160534337
1220 => 0.018401088082489
1221 => 0.017401814005833
1222 => 0.015682614894692
1223 => 0.016818370488005
1224 => 0.016774645133126
1225 => 0.01675259682641
1226 => 0.017606085764805
1227 => 0.017524042496718
1228 => 0.017375133161771
1229 => 0.018171425697625
1230 => 0.017880768210392
1231 => 0.018776506098526
]
'min_raw' => 0.0080408189131281
'max_raw' => 0.026450651261808
'avg_raw' => 0.017245735087468
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00804'
'max' => '$0.02645'
'avg' => '$0.017245'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0043804308345563
'max_diff' => 0.017485217320631
'year' => 2029
]
4 => [
'items' => [
101 => 0.019366497004346
102 => 0.019216856226423
103 => 0.01977174552502
104 => 0.018609719053686
105 => 0.018995697635053
106 => 0.01907524728573
107 => 0.018161599571338
108 => 0.017537465790024
109 => 0.017495843182456
110 => 0.01641368121659
111 => 0.01699176340385
112 => 0.017500451805971
113 => 0.01725682953717
114 => 0.017179706004875
115 => 0.017573713405314
116 => 0.017604331154773
117 => 0.016906243222378
118 => 0.017051397809093
119 => 0.017656716565635
120 => 0.017036145329516
121 => 0.015830476787473
122 => 0.015531454319375
123 => 0.015491559210053
124 => 0.014680586560799
125 => 0.015551436430525
126 => 0.015171287125064
127 => 0.016372174226126
128 => 0.015686233954486
129 => 0.015656664440347
130 => 0.015611965782822
131 => 0.01491392812275
201 => 0.015066754007698
202 => 0.015574770525305
203 => 0.015756036542003
204 => 0.015737129011393
205 => 0.015572280967221
206 => 0.015647747557684
207 => 0.0154046433755
208 => 0.015318798228995
209 => 0.015047847333056
210 => 0.014649624368122
211 => 0.014704999713839
212 => 0.013916015819597
213 => 0.01348613551947
214 => 0.013367150318126
215 => 0.013208038334155
216 => 0.013385122440096
217 => 0.013913780727356
218 => 0.013276106671809
219 => 0.012182859231207
220 => 0.01224856526519
221 => 0.012396187215254
222 => 0.012121094687927
223 => 0.011860742697579
224 => 0.012087097630162
225 => 0.011623874277553
226 => 0.012452165544341
227 => 0.012429762586834
228 => 0.012738498349904
301 => 0.012931557158447
302 => 0.012486619108286
303 => 0.012374718391911
304 => 0.012438462125562
305 => 0.011384920199229
306 => 0.012652401497882
307 => 0.012663362728786
308 => 0.012569506015029
309 => 0.013244400677467
310 => 0.014668638920135
311 => 0.014132783203393
312 => 0.013925283673546
313 => 0.013530826915624
314 => 0.01405641712503
315 => 0.014016059997432
316 => 0.013833549761448
317 => 0.013723167001259
318 => 0.013926550621428
319 => 0.013697965519973
320 => 0.013656905354653
321 => 0.013408125426716
322 => 0.013319322311208
323 => 0.013253576019839
324 => 0.01318119581314
325 => 0.013340848513095
326 => 0.012979054490934
327 => 0.012542766367314
328 => 0.012506493730538
329 => 0.0126066456698
330 => 0.012562335892111
331 => 0.01250628159237
401 => 0.012399258668683
402 => 0.012367507253408
403 => 0.012470683949455
404 => 0.012354203475193
405 => 0.012526076759986
406 => 0.012479336736705
407 => 0.012218250766135
408 => 0.011892840980398
409 => 0.011889944150734
410 => 0.011819835146176
411 => 0.011730540787912
412 => 0.011705701140221
413 => 0.012068034649095
414 => 0.012818054168735
415 => 0.012670807390584
416 => 0.012777208278255
417 => 0.013300595336768
418 => 0.013466964343871
419 => 0.013348879563295
420 => 0.013187237832491
421 => 0.0131943492483
422 => 0.013746727974739
423 => 0.013781179158345
424 => 0.013868226184946
425 => 0.013980106213614
426 => 0.01336793321596
427 => 0.013165515955163
428 => 0.013069599427315
429 => 0.012774213645911
430 => 0.013092761886692
501 => 0.012907157468385
502 => 0.012932201845564
503 => 0.012915891662071
504 => 0.012924798125148
505 => 0.012451934020051
506 => 0.012624220846943
507 => 0.012337760581656
508 => 0.011954222443111
509 => 0.011952936688785
510 => 0.012046807104835
511 => 0.011990969308219
512 => 0.011840711233244
513 => 0.011862054683596
514 => 0.011675063599878
515 => 0.011884758786742
516 => 0.011890772094376
517 => 0.011810028025259
518 => 0.012133092392983
519 => 0.012265452128035
520 => 0.012212304652036
521 => 0.012261723159438
522 => 0.012676926158995
523 => 0.0127446223645
524 => 0.012774688547225
525 => 0.01273440384538
526 => 0.012269312308071
527 => 0.012289941095473
528 => 0.012138580740936
529 => 0.012010697191313
530 => 0.012015811862637
531 => 0.012081560630841
601 => 0.012368689357701
602 => 0.012972934836216
603 => 0.012995865510428
604 => 0.013023658156508
605 => 0.012910611497436
606 => 0.012876515543349
607 => 0.012921496907702
608 => 0.013148419739714
609 => 0.013732126872598
610 => 0.013525805787348
611 => 0.013358063533461
612 => 0.013505218713107
613 => 0.013482565326641
614 => 0.013291347947305
615 => 0.013285981112337
616 => 0.012918973825497
617 => 0.012783299587904
618 => 0.012669920039931
619 => 0.012546112533392
620 => 0.012472715293451
621 => 0.01258548681245
622 => 0.012611278993118
623 => 0.012364702095918
624 => 0.012331094575962
625 => 0.012532454592948
626 => 0.012443843556931
627 => 0.012534982204923
628 => 0.012556127153029
629 => 0.012552722329375
630 => 0.01246020223086
701 => 0.012519171782664
702 => 0.012379691212978
703 => 0.012228027042748
704 => 0.012131274751153
705 => 0.012046845544407
706 => 0.012093691775364
707 => 0.011926693515787
708 => 0.011873267411537
709 => 0.01249919422537
710 => 0.012961573092596
711 => 0.012954849920744
712 => 0.012913924341157
713 => 0.012853117231341
714 => 0.013143971320887
715 => 0.0130426435719
716 => 0.013116367975505
717 => 0.013135133930426
718 => 0.013191932824027
719 => 0.01321223354646
720 => 0.01315087066351
721 => 0.012944929333486
722 => 0.01243174311938
723 => 0.012192853551394
724 => 0.012114016014938
725 => 0.012116881609654
726 => 0.012037835714798
727 => 0.012061118273422
728 => 0.012029738991064
729 => 0.011970314221742
730 => 0.012090022463313
731 => 0.012103817722995
801 => 0.012075876389005
802 => 0.012082457584651
803 => 0.011851115273116
804 => 0.011868703726613
805 => 0.011770768982509
806 => 0.011752407398611
807 => 0.011504836893671
808 => 0.011066229858252
809 => 0.011309260732489
810 => 0.011015713611723
811 => 0.010904542869124
812 => 0.01143080787399
813 => 0.01137798546382
814 => 0.01128757645896
815 => 0.011153842697884
816 => 0.011104239545023
817 => 0.010802866490686
818 => 0.010785059762873
819 => 0.010934428386359
820 => 0.010865499906081
821 => 0.010768698214513
822 => 0.010418092300286
823 => 0.010023895171065
824 => 0.010035793504561
825 => 0.010161180277068
826 => 0.010525759228842
827 => 0.010383311925104
828 => 0.010279964771847
829 => 0.010260610956647
830 => 0.010502864473842
831 => 0.010845703954355
901 => 0.011006556568011
902 => 0.010847156513045
903 => 0.010664046312608
904 => 0.010675191382057
905 => 0.010749334536027
906 => 0.010757125933181
907 => 0.01063794001673
908 => 0.010671490154075
909 => 0.010620524427558
910 => 0.010307747858
911 => 0.010302090721682
912 => 0.010225330307308
913 => 0.010223006032468
914 => 0.010092417418836
915 => 0.010074147169073
916 => 0.0098148555505452
917 => 0.0099855220790674
918 => 0.0098710479321296
919 => 0.0096985083909729
920 => 0.0096687625090434
921 => 0.0096678683119134
922 => 0.0098450278415459
923 => 0.0099834518668163
924 => 0.0098730392589262
925 => 0.0098479004483681
926 => 0.010116317176637
927 => 0.010082158701292
928 => 0.010052577681942
929 => 0.010815006439172
930 => 0.010211484584766
1001 => 0.0099483146084225
1002 => 0.009622591788074
1003 => 0.0097286487808165
1004 => 0.0097509965474888
1005 => 0.0089676918805019
1006 => 0.0086499052746597
1007 => 0.0085408528870703
1008 => 0.0084780916962381
1009 => 0.0085066927590058
1010 => 0.0082206475410967
1011 => 0.0084128746582828
1012 => 0.0081651836783739
1013 => 0.008123657479536
1014 => 0.0085665596346376
1015 => 0.0086281868821231
1016 => 0.0083652658982648
1017 => 0.0085341037329427
1018 => 0.008472880787067
1019 => 0.0081694296293082
1020 => 0.0081578400271175
1021 => 0.0080055789029781
1022 => 0.0077673197272632
1023 => 0.0076584288906143
1024 => 0.007601717597454
1025 => 0.007625117782293
1026 => 0.0076132859327809
1027 => 0.0075360751113432
1028 => 0.007617711566686
1029 => 0.0074091641577975
1030 => 0.0073261188991975
1031 => 0.0072886092825232
1101 => 0.0071035114535937
1102 => 0.0073980844127987
1103 => 0.0074561189966944
1104 => 0.0075142679266482
1105 => 0.0080204146619355
1106 => 0.0079951290013964
1107 => 0.008223699058054
1108 => 0.0082148172459656
1109 => 0.0081496253632175
1110 => 0.0078745915334471
1111 => 0.007984215115987
1112 => 0.0076468107682166
1113 => 0.0078996170468317
1114 => 0.0077842468187143
1115 => 0.0078606102566532
1116 => 0.0077233019098256
1117 => 0.0077992940182827
1118 => 0.0074698811494772
1119 => 0.0071622800475509
1120 => 0.007286067710402
1121 => 0.0074206390567575
1122 => 0.0077124240237977
1123 => 0.0075386393046023
1124 => 0.0076011388611527
1125 => 0.0073917758090081
1126 => 0.0069598000308346
1127 => 0.0069622449668267
1128 => 0.0068957949044586
1129 => 0.0068383723487045
1130 => 0.0075586005701287
1201 => 0.0074690288056713
1202 => 0.0073263079218712
1203 => 0.0075173454963401
1204 => 0.0075678588632037
1205 => 0.0075692969077449
1206 => 0.0077086729906839
1207 => 0.007783058031133
1208 => 0.0077961687169154
1209 => 0.0080154799948395
1210 => 0.008088990242414
1211 => 0.0083917685486136
1212 => 0.0077767469801503
1213 => 0.0077640810156739
1214 => 0.007520033786782
1215 => 0.0073652551759848
1216 => 0.0075306316106822
1217 => 0.0076771325556896
1218 => 0.0075245859795132
1219 => 0.0075445053419279
1220 => 0.0073397240269243
1221 => 0.0074129237111816
1222 => 0.0074759731403264
1223 => 0.0074411609514268
1224 => 0.0073890454197151
1225 => 0.0076651211488737
1226 => 0.0076495438742851
1227 => 0.0079066319402311
1228 => 0.0081070504721801
1229 => 0.0084662363105305
1230 => 0.0080914071634306
1231 => 0.0080777468994994
]
'min_raw' => 0.0068383723487045
'max_raw' => 0.01977174552502
'avg_raw' => 0.013305058936862
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006838'
'max' => '$0.019771'
'avg' => '$0.013305'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012024465644236
'max_diff' => -0.0066789057367877
'year' => 2030
]
5 => [
'items' => [
101 => 0.0082112781706025
102 => 0.0080889697994721
103 => 0.008166264468085
104 => 0.008453782944446
105 => 0.0084598577567858
106 => 0.0083580968231402
107 => 0.0083519046610798
108 => 0.0083714489615291
109 => 0.0084859205397157
110 => 0.008445920652941
111 => 0.0084922095345899
112 => 0.0085500944898924
113 => 0.0087895312077359
114 => 0.0088472585897988
115 => 0.0087070109796019
116 => 0.0087196737685168
117 => 0.0086672173124202
118 => 0.0086165450331083
119 => 0.0087304489169093
120 => 0.0089386105033419
121 => 0.0089373155409163
122 => 0.0089856049828857
123 => 0.0090156889051812
124 => 0.0088865466879116
125 => 0.00880247985316
126 => 0.0088347164269155
127 => 0.0088862634103716
128 => 0.0088180004349135
129 => 0.0083966497278996
130 => 0.0085244606164203
131 => 0.0085031866349373
201 => 0.008472889898301
202 => 0.0086014047350408
203 => 0.0085890091655233
204 => 0.008217713733944
205 => 0.0082414828628086
206 => 0.0082191592133961
207 => 0.008291291491637
208 => 0.0080850744197292
209 => 0.0081485054021548
210 => 0.0081882887197037
211 => 0.0082117213993698
212 => 0.0082963763062627
213 => 0.0082864430300221
214 => 0.0082957588398647
215 => 0.00842127971872
216 => 0.0090561212504063
217 => 0.0090906742742771
218 => 0.0089205225475626
219 => 0.0089884948062906
220 => 0.0088580029334316
221 => 0.0089456030019014
222 => 0.009005536743948
223 => 0.0087347076882355
224 => 0.0087186709492222
225 => 0.0085876404899854
226 => 0.0086580488368347
227 => 0.0085460240944582
228 => 0.0085735110477783
301 => 0.0084966551300259
302 => 0.0086349804801196
303 => 0.0087896497151107
304 => 0.0088287252719427
305 => 0.0087259343050028
306 => 0.0086515068706835
307 => 0.0085208368139398
308 => 0.0087381440304767
309 => 0.0088016912829095
310 => 0.0087378102438125
311 => 0.0087230076112255
312 => 0.0086949566492208
313 => 0.0087289587554202
314 => 0.0088013451909253
315 => 0.0087672090847087
316 => 0.0087897565842655
317 => 0.0087038287668354
318 => 0.0088865894393591
319 => 0.0091768573710779
320 => 0.0091777906299419
321 => 0.009143654339719
322 => 0.0091296865052364
323 => 0.0091647124105684
324 => 0.0091837125273732
325 => 0.0092969798825644
326 => 0.0094185202674551
327 => 0.0099856962115154
328 => 0.0098264354760145
329 => 0.010329667715033
330 => 0.010727659079568
331 => 0.010846999287739
401 => 0.010737211911613
402 => 0.010361635228481
403 => 0.010343207644623
404 => 0.010904477773608
405 => 0.010745893254369
406 => 0.010727030130417
407 => 0.010526358361322
408 => 0.01064498023054
409 => 0.010619035887664
410 => 0.010578081473194
411 => 0.01080440373639
412 => 0.011228058809164
413 => 0.01116202819306
414 => 0.01111273940121
415 => 0.010896770263077
416 => 0.011026831922687
417 => 0.010980519456867
418 => 0.011179507200646
419 => 0.011061631269349
420 => 0.010744691820664
421 => 0.010795165472513
422 => 0.010787536481575
423 => 0.010944540574485
424 => 0.010897411842875
425 => 0.010778333840339
426 => 0.011226610802182
427 => 0.011197502189727
428 => 0.011238771547033
429 => 0.011256939594416
430 => 0.011529797881564
501 => 0.011641579191317
502 => 0.011666955505638
503 => 0.011773139104427
504 => 0.011664313560969
505 => 0.012099693326097
506 => 0.012389195464794
507 => 0.012725467096534
508 => 0.0132168503318
509 => 0.013401614973809
510 => 0.013368238894994
511 => 0.013740800055893
512 => 0.01441028418046
513 => 0.013503560777853
514 => 0.014458342722494
515 => 0.014156069782308
516 => 0.013439386078786
517 => 0.013393240097425
518 => 0.013878586622319
519 => 0.014955038501663
520 => 0.014685399514904
521 => 0.01495547953445
522 => 0.014640416845504
523 => 0.014624771327441
524 => 0.014940177642881
525 => 0.015677141690809
526 => 0.015327037696323
527 => 0.014825077771205
528 => 0.015195717168551
529 => 0.014874635021513
530 => 0.014151147079003
531 => 0.014685193327052
601 => 0.014328091809743
602 => 0.014432313017055
603 => 0.015182887291596
604 => 0.01509257620911
605 => 0.015209447112428
606 => 0.015003173027116
607 => 0.014810480504997
608 => 0.014450805602927
609 => 0.014344323596182
610 => 0.014373751392025
611 => 0.014344309013228
612 => 0.014143074211103
613 => 0.014099617574743
614 => 0.014027187943599
615 => 0.014049636914912
616 => 0.013913448018325
617 => 0.014170464604247
618 => 0.014218169147416
619 => 0.014405204385246
620 => 0.014424623004103
621 => 0.014945513479178
622 => 0.014658615758715
623 => 0.014851091519159
624 => 0.014833874675493
625 => 0.013454918787816
626 => 0.013644926742507
627 => 0.013940519492225
628 => 0.013807355359144
629 => 0.013619092430575
630 => 0.013467060021735
701 => 0.013236715376232
702 => 0.013560921041401
703 => 0.013987217015669
704 => 0.014435434573506
705 => 0.014973938600869
706 => 0.014853750770839
707 => 0.01442536761529
708 => 0.014444584570714
709 => 0.014563376227551
710 => 0.014409530238587
711 => 0.014364158053011
712 => 0.01455714278599
713 => 0.014558471765783
714 => 0.014381453362571
715 => 0.014184729801427
716 => 0.014183905522523
717 => 0.014148900464941
718 => 0.014646644167484
719 => 0.014920352876318
720 => 0.014951733138682
721 => 0.014918240734636
722 => 0.014931130631687
723 => 0.014771865564777
724 => 0.015135898279146
725 => 0.015469970696955
726 => 0.015380432152566
727 => 0.015246201145873
728 => 0.0151392796836
729 => 0.015355244854067
730 => 0.015345628264987
731 => 0.015467052865824
801 => 0.015461544344547
802 => 0.015420713818296
803 => 0.015380433610753
804 => 0.015540140080595
805 => 0.015494147182088
806 => 0.015448082843906
807 => 0.015355693761584
808 => 0.015368250972292
809 => 0.015234043142474
810 => 0.015171952459468
811 => 0.014238257563437
812 => 0.013988743777857
813 => 0.014067245894122
814 => 0.014093090829103
815 => 0.013984502109857
816 => 0.014140190439102
817 => 0.014115926577904
818 => 0.014210323067941
819 => 0.014151348239185
820 => 0.014153768586728
821 => 0.014327200983341
822 => 0.014377549145912
823 => 0.014351941664069
824 => 0.014369876266579
825 => 0.014783171611693
826 => 0.014724414230059
827 => 0.014693200542144
828 => 0.014701846947014
829 => 0.014807452768843
830 => 0.014837016633091
831 => 0.014711752462857
901 => 0.014770827769683
902 => 0.015022362928376
903 => 0.015110385998261
904 => 0.015391313383866
905 => 0.015271970437375
906 => 0.0154910295807
907 => 0.016164342704518
908 => 0.016702231817548
909 => 0.016207566759998
910 => 0.017195331616312
911 => 0.017964448243405
912 => 0.017934928266226
913 => 0.017800814992305
914 => 0.016925196160382
915 => 0.016119438656506
916 => 0.016793489022769
917 => 0.016795207315773
918 => 0.016737305791525
919 => 0.01637768439725
920 => 0.016724791746529
921 => 0.016752343867406
922 => 0.016736922006415
923 => 0.016461201126602
924 => 0.016040226304863
925 => 0.01612248377736
926 => 0.016257223195316
927 => 0.016002133367538
928 => 0.015920616711125
929 => 0.016072171684575
930 => 0.016560513386762
1001 => 0.016468195216735
1002 => 0.016465784416228
1003 => 0.016860760696604
1004 => 0.016578042921071
1005 => 0.016123521307513
1006 => 0.016008748605686
1007 => 0.015601382834356
1008 => 0.0158827518236
1009 => 0.015892877792612
1010 => 0.015738774872724
1011 => 0.016136025910152
1012 => 0.016132365171907
1013 => 0.016509495908931
1014 => 0.017230428234285
1015 => 0.017017213070753
1016 => 0.016769267033309
1017 => 0.016796225642377
1018 => 0.017091895044337
1019 => 0.016913126574436
1020 => 0.01697741296263
1021 => 0.017091797739189
1022 => 0.017160808914901
1023 => 0.016786295996213
1024 => 0.016698979119844
1025 => 0.016520359434851
1026 => 0.01647376089313
1027 => 0.016619242899535
1028 => 0.016580913530803
1029 => 0.015892026744126
1030 => 0.015820034241988
1031 => 0.015822242149247
1101 => 0.015641213579565
1102 => 0.015365101558965
1103 => 0.01609070746331
1104 => 0.016032431154343
1105 => 0.015968098619471
1106 => 0.015975978987917
1107 => 0.016290939917927
1108 => 0.016108246672613
1109 => 0.016593966608114
1110 => 0.016494117191453
1111 => 0.01639170701402
1112 => 0.016377550808009
1113 => 0.016338131626923
1114 => 0.016202948587749
1115 => 0.016039706944705
1116 => 0.015931920672219
1117 => 0.014696354661981
1118 => 0.014925668526524
1119 => 0.015189473225065
1120 => 0.01528053754987
1121 => 0.015124765720831
1122 => 0.016209099409
1123 => 0.016407217622728
1124 => 0.015807104630415
1125 => 0.015694847992005
1126 => 0.016216458935526
1127 => 0.015901863772238
1128 => 0.016043525955004
1129 => 0.015737329800936
1130 => 0.016359496746619
1201 => 0.016354756876908
1202 => 0.016112719882759
1203 => 0.016317287892816
1204 => 0.016281739166897
1205 => 0.016008479996614
1206 => 0.016368159549721
1207 => 0.016368337946292
1208 => 0.016135382601762
1209 => 0.015863341759833
1210 => 0.015814707282614
1211 => 0.015778067737152
1212 => 0.016034514872865
1213 => 0.016264444572856
1214 => 0.016692286740131
1215 => 0.016799856426263
1216 => 0.017219708072557
1217 => 0.016969706859395
1218 => 0.017080529159132
1219 => 0.017200842442268
1220 => 0.017258525054578
1221 => 0.017164534333239
1222 => 0.017816736757765
1223 => 0.017871802625361
1224 => 0.017890265734448
1225 => 0.017670346746473
1226 => 0.017865686280475
1227 => 0.017774293381481
1228 => 0.018012072314985
1229 => 0.018049359087872
1230 => 0.018017778517752
1231 => 0.018029613927998
]
'min_raw' => 0.0080850744197292
'max_raw' => 0.018049359087872
'avg_raw' => 0.0130672167538
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008085'
'max' => '$0.018049'
'avg' => '$0.013067'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012467020710246
'max_diff' => -0.0017223864371485
'year' => 2031
]
6 => [
'items' => [
101 => 0.017473074215056
102 => 0.017444214694959
103 => 0.01705071309066
104 => 0.017211067903029
105 => 0.016911292267312
106 => 0.017006354209429
107 => 0.017048256607731
108 => 0.017026369172798
109 => 0.017220134123526
110 => 0.017055394331843
111 => 0.016620618935862
112 => 0.016185725085616
113 => 0.016180265347583
114 => 0.016065765473327
115 => 0.015983003035938
116 => 0.015998946017534
117 => 0.016055131164155
118 => 0.015979737453077
119 => 0.015995826523894
120 => 0.016263012300369
121 => 0.01631659450236
122 => 0.016134501244079
123 => 0.015403370536148
124 => 0.01522394922652
125 => 0.015352913705802
126 => 0.015291276991081
127 => 0.01234125396704
128 => 0.013034318118228
129 => 0.012622522933827
130 => 0.012812297100584
131 => 0.012391960851156
201 => 0.012592567341094
202 => 0.012555522647378
203 => 0.01366994929323
204 => 0.013652549053999
205 => 0.013660877627719
206 => 0.013263333104088
207 => 0.013896632324742
208 => 0.01420861829354
209 => 0.014150877993953
210 => 0.014165409983393
211 => 0.013915702258028
212 => 0.013663295344334
213 => 0.013383337231903
214 => 0.013903464800933
215 => 0.01384563549413
216 => 0.013978275117607
217 => 0.014315615025609
218 => 0.014365289608492
219 => 0.014432052751637
220 => 0.014408122917344
221 => 0.014978228654229
222 => 0.014909185087814
223 => 0.015075560217685
224 => 0.014733313952628
225 => 0.014346029817401
226 => 0.014419639870235
227 => 0.014412550630213
228 => 0.014322296468074
229 => 0.014240819046032
301 => 0.014105182094452
302 => 0.014534357479741
303 => 0.014516933742865
304 => 0.014799003790016
305 => 0.0147491451693
306 => 0.014416177097683
307 => 0.0144280691175
308 => 0.014508048665881
309 => 0.014784858796019
310 => 0.014867034889314
311 => 0.014828967648749
312 => 0.014919069983566
313 => 0.014990283195238
314 => 0.014928013266534
315 => 0.015809624141318
316 => 0.015443517840412
317 => 0.015621955504123
318 => 0.015664511835502
319 => 0.015555504687537
320 => 0.015579144434677
321 => 0.015614952210149
322 => 0.015832370010933
323 => 0.016402937230537
324 => 0.016655637568118
325 => 0.017415899001743
326 => 0.01663465432284
327 => 0.016588298496706
328 => 0.016725244538598
329 => 0.017171598481982
330 => 0.0175333264292
331 => 0.017653332457879
401 => 0.017669193235652
402 => 0.017894332523302
403 => 0.018023378164385
404 => 0.017866994692031
405 => 0.017734476073243
406 => 0.017259810829561
407 => 0.017314754623987
408 => 0.017693262882448
409 => 0.01822792809155
410 => 0.018686726463392
411 => 0.01852607126431
412 => 0.019751757028409
413 => 0.019873278765442
414 => 0.019856488390652
415 => 0.020133332992472
416 => 0.019583852836282
417 => 0.019348939423833
418 => 0.017763128102775
419 => 0.018208676399589
420 => 0.018856307015143
421 => 0.018770590674684
422 => 0.018300264010453
423 => 0.018686369678442
424 => 0.018558711069964
425 => 0.018458021428897
426 => 0.018919300194272
427 => 0.018412105243455
428 => 0.018851247357524
429 => 0.018288043053887
430 => 0.018526805123727
501 => 0.018391272225264
502 => 0.018478978620857
503 => 0.017966248824357
504 => 0.018242905376736
505 => 0.017954739002216
506 => 0.017954602373834
507 => 0.017948241085145
508 => 0.018287267546843
509 => 0.018298323187587
510 => 0.018047782120152
511 => 0.018011675238147
512 => 0.018145181305301
513 => 0.017988880665959
514 => 0.018062012751362
515 => 0.017991095762325
516 => 0.017975130854352
517 => 0.01784791975142
518 => 0.017793113710535
519 => 0.017814604571344
520 => 0.017741245184105
521 => 0.017697043499769
522 => 0.01793944825759
523 => 0.017809941174066
524 => 0.017919599439647
525 => 0.017794630006042
526 => 0.017361431502574
527 => 0.017112294462239
528 => 0.016294022646712
529 => 0.016526083518533
530 => 0.016679940116634
531 => 0.016629090511879
601 => 0.016738335139077
602 => 0.016745041871939
603 => 0.01670952533002
604 => 0.016668401724428
605 => 0.016648385027504
606 => 0.016797573087003
607 => 0.016884181776982
608 => 0.016695381684589
609 => 0.016651148464536
610 => 0.016842035781883
611 => 0.016958476935193
612 => 0.017818212988602
613 => 0.017754520964855
614 => 0.017914375445532
615 => 0.017896378284175
616 => 0.018063931246741
617 => 0.01833780952737
618 => 0.017780938405278
619 => 0.017877591976919
620 => 0.01785389475321
621 => 0.018112614827922
622 => 0.018113422523756
623 => 0.017958306914939
624 => 0.018042397602942
625 => 0.017995460487806
626 => 0.018080282198788
627 => 0.017753670319046
628 => 0.018151448332998
629 => 0.018376962834659
630 => 0.018380094103734
701 => 0.018486986187728
702 => 0.018595594735837
703 => 0.018804059386123
704 => 0.018589780769885
705 => 0.018204314398876
706 => 0.018232143825814
707 => 0.018006145033529
708 => 0.018009944114057
709 => 0.017989664324457
710 => 0.018050525499637
711 => 0.017767025924477
712 => 0.017833562708116
713 => 0.017740410821383
714 => 0.017877389482909
715 => 0.017730023086491
716 => 0.017853883325691
717 => 0.017907337298897
718 => 0.018104583610812
719 => 0.017700889645845
720 => 0.016877730323598
721 => 0.017050768392976
722 => 0.016794831496518
723 => 0.016818519430706
724 => 0.016866372827672
725 => 0.016711264311448
726 => 0.016740854128313
727 => 0.016739796971834
728 => 0.016730686968422
729 => 0.016690337252778
730 => 0.016631822182145
731 => 0.016864928213557
801 => 0.016904537470664
802 => 0.016992583942662
803 => 0.017254550520836
804 => 0.017228373882079
805 => 0.01727106906595
806 => 0.017177865719283
807 => 0.016822842866644
808 => 0.016842122315609
809 => 0.016601707278086
810 => 0.016986435989626
811 => 0.016895327152562
812 => 0.016836588692609
813 => 0.016820561359603
814 => 0.017083177302255
815 => 0.017161756108296
816 => 0.017112791069599
817 => 0.017012362346691
818 => 0.01720521518376
819 => 0.017256814467152
820 => 0.017268365643795
821 => 0.017610063895217
822 => 0.017287462780255
823 => 0.017365116075006
824 => 0.01797094491354
825 => 0.017421541755655
826 => 0.017712572861539
827 => 0.017698328403359
828 => 0.017847210069174
829 => 0.017686115761232
830 => 0.017688112718249
831 => 0.017820309551374
901 => 0.017634662941074
902 => 0.017588694229609
903 => 0.017525188783955
904 => 0.017663850601241
905 => 0.017746972089569
906 => 0.018416870239489
907 => 0.018849654995404
908 => 0.018830866667761
909 => 0.019002556812142
910 => 0.018925208829597
911 => 0.018675431790593
912 => 0.019101770739108
913 => 0.018966859257018
914 => 0.018977981195684
915 => 0.018977567236572
916 => 0.019067271577995
917 => 0.019003707830814
918 => 0.018878417160437
919 => 0.018961590954504
920 => 0.019208587387708
921 => 0.01997527189515
922 => 0.020404318702733
923 => 0.019949442738606
924 => 0.020263210087629
925 => 0.020075061484953
926 => 0.020040869286911
927 => 0.020237938369322
928 => 0.020435352395074
929 => 0.020422777975078
930 => 0.020279465529704
1001 => 0.020198511965731
1002 => 0.020811519473568
1003 => 0.021263172963032
1004 => 0.021232373222974
1005 => 0.021368313258978
1006 => 0.021767437409152
1007 => 0.021803928319458
1008 => 0.021799331303493
1009 => 0.021708884774869
1010 => 0.022101874333536
1011 => 0.02242971313737
1012 => 0.021687949016744
1013 => 0.021970403083473
1014 => 0.022097205814129
1015 => 0.022283389843408
1016 => 0.022597513508867
1017 => 0.022938735126743
1018 => 0.022986987604815
1019 => 0.022952750162529
1020 => 0.02272770533301
1021 => 0.023101074098911
1022 => 0.0233197847654
1023 => 0.02345002196219
1024 => 0.023780281823846
1025 => 0.022097988904625
1026 => 0.020907178361017
1027 => 0.02072121609912
1028 => 0.021099377671292
1029 => 0.021199095862092
1030 => 0.021158899584417
1031 => 0.019818534053828
1101 => 0.020714159351997
1102 => 0.021677776866512
1103 => 0.0217147933397
1104 => 0.022197200415758
1105 => 0.022354291934257
1106 => 0.022742692861025
1107 => 0.022718398277305
1108 => 0.022812967722165
1109 => 0.022791227844506
1110 => 0.023510658773879
1111 => 0.024304297925504
1112 => 0.024276816725301
1113 => 0.024162721707343
1114 => 0.024332172265103
1115 => 0.02515129292112
1116 => 0.025075881417255
1117 => 0.025149137269723
1118 => 0.026114926686785
1119 => 0.027370590310908
1120 => 0.026787208490936
1121 => 0.028052979176678
1122 => 0.028849714727732
1123 => 0.030227586479286
1124 => 0.03005507014983
1125 => 0.03059146551142
1126 => 0.029746229914859
1127 => 0.027805398134858
1128 => 0.027498254076468
1129 => 0.028113164259492
1130 => 0.0296248609424
1201 => 0.028065555551276
1202 => 0.028381001001056
1203 => 0.028290152690298
1204 => 0.028285311769899
1205 => 0.028470070012114
1206 => 0.028202068545439
1207 => 0.02711018235766
1208 => 0.027610587362994
1209 => 0.027417356959012
1210 => 0.02763176049851
1211 => 0.028788807974435
1212 => 0.028277249704762
1213 => 0.027738364623281
1214 => 0.028414246103631
1215 => 0.029274875486192
1216 => 0.029221018846131
1217 => 0.029116514454083
1218 => 0.029705600240383
1219 => 0.030678597373408
1220 => 0.030941594588646
1221 => 0.031135733756193
1222 => 0.03116250226739
1223 => 0.031438234569252
1224 => 0.029955552488651
1225 => 0.032308607028541
1226 => 0.03271491454576
1227 => 0.032638545572244
1228 => 0.033090139277599
1229 => 0.032957268953657
1230 => 0.032764760700981
1231 => 0.033480632780704
]
'min_raw' => 0.01234125396704
'max_raw' => 0.033480632780704
'avg_raw' => 0.022910943373872
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012341'
'max' => '$0.03348'
'avg' => '$0.02291'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042561795473103
'max_diff' => 0.015431273692832
'year' => 2032
]
7 => [
'items' => [
101 => 0.032659943209199
102 => 0.031495077684391
103 => 0.030856009419054
104 => 0.031697586063017
105 => 0.032211507552507
106 => 0.032551176965515
107 => 0.032653960724657
108 => 0.030070648877914
109 => 0.028678387069563
110 => 0.029570810926402
111 => 0.03065962962355
112 => 0.029949504045813
113 => 0.029977339624015
114 => 0.028964887167881
115 => 0.030749209200401
116 => 0.030489248488773
117 => 0.031837925120561
118 => 0.031516052618578
119 => 0.032615846056476
120 => 0.032326233586186
121 => 0.033528398758345
122 => 0.034007974992842
123 => 0.034813258130644
124 => 0.035405627684902
125 => 0.035753478417387
126 => 0.035732594764164
127 => 0.037110952664815
128 => 0.036298183166958
129 => 0.035277153122587
130 => 0.035258685910393
131 => 0.03578749183848
201 => 0.03689572399293
202 => 0.037183072466457
203 => 0.037343661062358
204 => 0.037097714037606
205 => 0.036215510999397
206 => 0.035834580200369
207 => 0.036159144277768
208 => 0.035762230301218
209 => 0.036447415179136
210 => 0.03738832036411
211 => 0.037194027164155
212 => 0.03784352020154
213 => 0.038515677166573
214 => 0.039476891815028
215 => 0.039728188917809
216 => 0.040143573472734
217 => 0.04057114062647
218 => 0.040708463672992
219 => 0.040970655977642
220 => 0.040969274094774
221 => 0.041759408252413
222 => 0.042630950696707
223 => 0.042959937793173
224 => 0.043716425481044
225 => 0.042420966826056
226 => 0.043403587097021
227 => 0.044289935178013
228 => 0.043233194456012
301 => 0.04468966535228
302 => 0.044746216816748
303 => 0.045600076789225
304 => 0.044734526127342
305 => 0.044220564907252
306 => 0.045704351691777
307 => 0.046422309377963
308 => 0.04620605467995
309 => 0.044560345750263
310 => 0.043602472565408
311 => 0.041095533680705
312 => 0.044065111081336
313 => 0.045511505609423
314 => 0.044556599937858
315 => 0.04503819881505
316 => 0.047665646130047
317 => 0.048666007952983
318 => 0.048457939686869
319 => 0.048493099798747
320 => 0.049032876880552
321 => 0.051426545721942
322 => 0.049992203867372
323 => 0.051088704471427
324 => 0.051670284438091
325 => 0.052210488322932
326 => 0.050883918314954
327 => 0.049158070225757
328 => 0.048611421689735
329 => 0.044461653387955
330 => 0.044245639926317
331 => 0.044124385024422
401 => 0.043359890019819
402 => 0.042759206359007
403 => 0.042281520409975
404 => 0.041027929830615
405 => 0.041450979851611
406 => 0.039453018112799
407 => 0.040731243229875
408 => 0.037542448052258
409 => 0.040198171431738
410 => 0.038752781937212
411 => 0.03972332210916
412 => 0.03971993598593
413 => 0.037932863819332
414 => 0.036902117888882
415 => 0.037558949312997
416 => 0.03826312473899
417 => 0.038377374832727
418 => 0.039290356653387
419 => 0.039545150255055
420 => 0.038773113746826
421 => 0.037476367359976
422 => 0.037777571970005
423 => 0.036896013987074
424 => 0.035351117530625
425 => 0.036460689136951
426 => 0.03683954566777
427 => 0.037006870294761
428 => 0.0354876420624
429 => 0.035010267567743
430 => 0.034756117392347
501 => 0.037280254072829
502 => 0.037418531978102
503 => 0.036711082664199
504 => 0.039908820646138
505 => 0.039185074056012
506 => 0.039993676319403
507 => 0.037750240808722
508 => 0.037835943066417
509 => 0.036773864743012
510 => 0.037368557636019
511 => 0.036948247867088
512 => 0.037320512327134
513 => 0.037543646109582
514 => 0.038605550156385
515 => 0.040210296670192
516 => 0.038446937103172
517 => 0.037678616088047
518 => 0.038155278124629
519 => 0.039424691941836
520 => 0.041347918855002
521 => 0.040209329813859
522 => 0.040714616295822
523 => 0.0408249989135
524 => 0.039985445507419
525 => 0.04137887438661
526 => 0.042125624243165
527 => 0.04289163507788
528 => 0.043556740822527
529 => 0.042585673505556
530 => 0.043624854731747
531 => 0.042787458103617
601 => 0.042036226759713
602 => 0.042037366067566
603 => 0.041566107671796
604 => 0.040652985147612
605 => 0.04048459134434
606 => 0.041360597174756
607 => 0.042063070892689
608 => 0.04212092999272
609 => 0.042509855537371
610 => 0.042740017668444
611 => 0.044995919443199
612 => 0.045903261798803
613 => 0.047012742856125
614 => 0.047444948254878
615 => 0.048745731550913
616 => 0.047695243394911
617 => 0.047467963674479
618 => 0.044312688881271
619 => 0.044829364951897
620 => 0.045656613192795
621 => 0.044326329900069
622 => 0.045170088460298
623 => 0.045336664273337
624 => 0.044281127382822
625 => 0.044844935243103
626 => 0.043347628723576
627 => 0.040242933860651
628 => 0.041382330799517
629 => 0.042221310463385
630 => 0.041023983037599
701 => 0.043170146105349
702 => 0.041916401946968
703 => 0.041519025239094
704 => 0.039968717026652
705 => 0.040700402826089
706 => 0.041690018346559
707 => 0.041078551010061
708 => 0.042347437545577
709 => 0.044144519279545
710 => 0.045425226741239
711 => 0.04552354355754
712 => 0.044700134460407
713 => 0.046019652793489
714 => 0.046029264043994
715 => 0.044540841973887
716 => 0.043629191743515
717 => 0.043422062893046
718 => 0.043939511371521
719 => 0.044567789350648
720 => 0.045558408612789
721 => 0.046157019085824
722 => 0.047717877721039
723 => 0.048140201314404
724 => 0.048604206902999
725 => 0.049224261463386
726 => 0.049968795941857
727 => 0.048339796889334
728 => 0.048404520058525
729 => 0.046887618695843
730 => 0.045266592044157
731 => 0.046496749208962
801 => 0.048105016060995
802 => 0.047736077868161
803 => 0.047694564784744
804 => 0.047764378276283
805 => 0.047486210927281
806 => 0.046228070317112
807 => 0.045596239979061
808 => 0.046411462312257
809 => 0.046844716700978
810 => 0.047516656474132
811 => 0.047433825714163
812 => 0.049164670408744
813 => 0.049837224319032
814 => 0.049665156248576
815 => 0.049696820914589
816 => 0.050914447643803
817 => 0.052268698990724
818 => 0.053537134086321
819 => 0.054827440746117
820 => 0.053271925706207
821 => 0.052482131099771
822 => 0.053296997532398
823 => 0.05286461793317
824 => 0.055349199362451
825 => 0.055521226389895
826 => 0.058005628155659
827 => 0.060363621268428
828 => 0.058882608042132
829 => 0.060279136808228
830 => 0.061789596529422
831 => 0.064703518394863
901 => 0.06372221202359
902 => 0.062970546722226
903 => 0.062260226644457
904 => 0.063738289966157
905 => 0.065639794816885
906 => 0.066049360749345
907 => 0.066713014026158
908 => 0.066015263753251
909 => 0.066855627102296
910 => 0.069822478998792
911 => 0.069020809427233
912 => 0.067882309760804
913 => 0.070224354393603
914 => 0.071071931241744
915 => 0.077020669441445
916 => 0.084531197148686
917 => 0.081421789361105
918 => 0.079491679607391
919 => 0.079945301182329
920 => 0.082687891653606
921 => 0.083568724667509
922 => 0.081174316894371
923 => 0.082020062198827
924 => 0.086680201978222
925 => 0.089180217454683
926 => 0.085784860640775
927 => 0.076417205853007
928 => 0.067779800322437
929 => 0.070070829216584
930 => 0.069811097638891
1001 => 0.074817836467575
1002 => 0.069001689873081
1003 => 0.069099618865393
1004 => 0.074209891750824
1005 => 0.072846558557248
1006 => 0.070638133386177
1007 => 0.067795924270175
1008 => 0.062541837846723
1009 => 0.057888146980432
1010 => 0.067015106450228
1011 => 0.066621535361592
1012 => 0.066051586101279
1013 => 0.067319946505154
1014 => 0.073478744595992
1015 => 0.073336764365914
1016 => 0.072433558581109
1017 => 0.073118632208393
1018 => 0.070518036667032
1019 => 0.0711882693525
1020 => 0.067778432113271
1021 => 0.069319820952785
1022 => 0.070633395097614
1023 => 0.070897114554986
1024 => 0.071491287958295
1025 => 0.066414141281889
1026 => 0.0686936310824
1027 => 0.07003261778089
1028 => 0.063983027164359
1029 => 0.069913036825318
1030 => 0.066325759453884
1031 => 0.065108183634922
1101 => 0.066747489071739
1102 => 0.066108650148734
1103 => 0.065559413956615
1104 => 0.065252930724337
1105 => 0.066456655713597
1106 => 0.066400500504085
1107 => 0.064430972788704
1108 => 0.06186180417221
1109 => 0.06272410148999
1110 => 0.06241082079036
1111 => 0.061275451120886
1112 => 0.062040553193055
1113 => 0.05867143087652
1114 => 0.052875031042662
1115 => 0.056704310321437
1116 => 0.056556887234659
1117 => 0.0564825498292
1118 => 0.059360147373694
1119 => 0.059083532767262
1120 => 0.05858147454797
1121 => 0.06126623042797
1122 => 0.060286258416707
1123 => 0.063306301244974
1124 => 0.065295496775794
1125 => 0.064790972445444
1126 => 0.066661820456796
1127 => 0.062743967078596
1128 => 0.064045320813839
1129 => 0.064313528015075
1130 => 0.061233100957154
1201 => 0.059128790337825
1202 => 0.058988456810413
1203 => 0.055339872188362
1204 => 0.057288916643116
1205 => 0.059003995106359
1206 => 0.058182605617931
1207 => 0.057922578244207
1208 => 0.059251001703504
1209 => 0.059354231583469
1210 => 0.057000579380458
1211 => 0.057489978203935
1212 => 0.059530852653622
1213 => 0.057438553404148
1214 => 0.05337355773756
1215 => 0.052365382609284
1216 => 0.052230873462818
1217 => 0.049496622555556
1218 => 0.052432753692133
1219 => 0.051151053767595
1220 => 0.055199928472087
1221 => 0.052887232955432
1222 => 0.052787537274034
1223 => 0.052636832629426
1224 => 0.050283349923063
1225 => 0.050798613064128
1226 => 0.05251142622182
1227 => 0.053122577252705
1228 => 0.053058829193171
1229 => 0.052503032502925
1230 => 0.05275747338158
1231 => 0.051937830658353
]
'min_raw' => 0.028678387069563
'max_raw' => 0.089180217454683
'avg_raw' => 0.058929302262123
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.028678'
'max' => '$0.08918'
'avg' => '$0.058929'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016337133102523
'max_diff' => 0.055699584673979
'year' => 2033
]
8 => [
'items' => [
101 => 0.051648397753394
102 => 0.050734867890549
103 => 0.049392231361234
104 => 0.049578933205503
105 => 0.046918818920971
106 => 0.045469447475807
107 => 0.045068280562194
108 => 0.044531823399391
109 => 0.04512887482619
110 => 0.046911283151428
111 => 0.044761320552171
112 => 0.041075360478084
113 => 0.041296892959107
114 => 0.041794610670382
115 => 0.040867117008154
116 => 0.039989322095498
117 => 0.0407524935543
118 => 0.039190703679757
119 => 0.041983345515181
120 => 0.041907812379821
121 => 0.042948736560255
122 => 0.043599647812195
123 => 0.042099508111494
124 => 0.041722227033577
125 => 0.041937143482027
126 => 0.038385053321445
127 => 0.042658455012572
128 => 0.042695411567854
129 => 0.042378967104556
130 => 0.044654421578607
131 => 0.049456340250902
201 => 0.047649665289653
202 => 0.046950066137618
203 => 0.045620127638195
204 => 0.047392191724742
205 => 0.047256124851401
206 => 0.046640778848325
207 => 0.046268615665668
208 => 0.04695433774086
209 => 0.046183647112002
210 => 0.046045209897897
211 => 0.045206431001595
212 => 0.044907025097624
213 => 0.044685356886016
214 => 0.044441321965704
215 => 0.044979602190199
216 => 0.043759788384832
217 => 0.042288812515383
218 => 0.042166516788017
219 => 0.042504186043623
220 => 0.042354792534537
221 => 0.042165801549372
222 => 0.041804966290059
223 => 0.041697914176646
224 => 0.042045781610935
225 => 0.041653059559554
226 => 0.042232542339044
227 => 0.042074955087268
228 => 0.04119468550905
301 => 0.040097543697052
302 => 0.040087776833592
303 => 0.03985139942987
304 => 0.03955033726665
305 => 0.039466588660211
306 => 0.040688221382698
307 => 0.043216964557855
308 => 0.042720511764876
309 => 0.043079249786332
310 => 0.044843885795825
311 => 0.045404810518787
312 => 0.045006679436659
313 => 0.044461693055786
314 => 0.044485669690692
315 => 0.04634805313273
316 => 0.046464207703564
317 => 0.046757692831177
318 => 0.047134904159046
319 => 0.045070920156903
320 => 0.044388456229802
321 => 0.044065066959484
322 => 0.043069153174304
323 => 0.044143160808426
324 => 0.043517382553616
325 => 0.043601821419819
326 => 0.043546830497431
327 => 0.043576859259525
328 => 0.041982564914874
329 => 0.042563441980421
330 => 0.041597621195989
331 => 0.040304495584107
401 => 0.040300160573627
402 => 0.040616651235166
403 => 0.040428390205402
404 => 0.039921784614941
405 => 0.039993745547955
406 => 0.0393632920539
407 => 0.040070294016862
408 => 0.040090568303385
409 => 0.039818334036988
410 => 0.040907568108401
411 => 0.04135382819619
412 => 0.041174637770224
413 => 0.041341255718219
414 => 0.042741141619774
415 => 0.042969384103031
416 => 0.043070754337242
417 => 0.042934931652382
418 => 0.041366843062693
419 => 0.041436394459673
420 => 0.040926072456708
421 => 0.040494904140611
422 => 0.040512148612075
423 => 0.040733825174507
424 => 0.041701899723804
425 => 0.043739155541688
426 => 0.043816467910762
427 => 0.043910172757441
428 => 0.043529028053716
429 => 0.043414071164009
430 => 0.043565728974423
501 => 0.044330815145798
502 => 0.046298824497445
503 => 0.045603198553648
504 => 0.045037643833278
505 => 0.0455337877955
506 => 0.045457410321421
507 => 0.044812707576619
508 => 0.044794612917822
509 => 0.043557222226612
510 => 0.043099787062095
511 => 0.042717520000196
512 => 0.042300094347936
513 => 0.042052630429042
514 => 0.042432847478803
515 => 0.042519807616679
516 => 0.04168845639232
517 => 0.041575146292388
518 => 0.042254045648162
519 => 0.041955287353605
520 => 0.042262567668407
521 => 0.042333859337242
522 => 0.042322379736573
523 => 0.042010441764884
524 => 0.042209261725914
525 => 0.041738993246994
526 => 0.04122764690821
527 => 0.040901439802068
528 => 0.040616780836866
529 => 0.040774726175236
530 => 0.040211679883625
531 => 0.040031550043055
601 => 0.042141905996708
602 => 0.043700848629821
603 => 0.043678180986526
604 => 0.043540197537616
605 => 0.043335182121455
606 => 0.044315816991144
607 => 0.043974183410957
608 => 0.044222750384984
609 => 0.044286021112197
610 => 0.044477522547546
611 => 0.044545967850579
612 => 0.044339078606494
613 => 0.043644733033953
614 => 0.041914489883577
615 => 0.041109057026374
616 => 0.040843250767952
617 => 0.040852912320608
618 => 0.040586403567294
619 => 0.040664902339229
620 => 0.040559104897928
621 => 0.040358750139253
622 => 0.040762354833473
623 => 0.040808866514644
624 => 0.040714660356296
625 => 0.040736849316899
626 => 0.039956862561755
627 => 0.040016163260707
628 => 0.039685969433377
629 => 0.039624062071298
630 => 0.038789360829074
701 => 0.037310566586593
702 => 0.038129962146958
703 => 0.037140247534489
704 => 0.036765427614123
705 => 0.038539766820677
706 => 0.038361672376848
707 => 0.038056852104806
708 => 0.037605959392345
709 => 0.037438718899291
710 => 0.036422618605401
711 => 0.036362581979354
712 => 0.036866188722022
713 => 0.036633791538331
714 => 0.036307417876732
715 => 0.03512532555839
716 => 0.033796262415257
717 => 0.033836378477355
718 => 0.034259128735087
719 => 0.035488332125081
720 => 0.035008061095176
721 => 0.034659618952504
722 => 0.034594366213314
723 => 0.03541114086014
724 => 0.036567048104978
725 => 0.037109373922288
726 => 0.036571945508013
727 => 0.035954576682895
728 => 0.035992153062668
729 => 0.036242131882785
730 => 0.036268401122269
731 => 0.035866557483658
801 => 0.035979674114114
802 => 0.035807839608849
803 => 0.03475329156722
804 => 0.034734218137155
805 => 0.034475415040855
806 => 0.034467578585954
807 => 0.034027289957689
808 => 0.033965690535023
809 => 0.033091470739995
810 => 0.033666884856464
811 => 0.033280927277733
812 => 0.032699198168398
813 => 0.032598907850681
814 => 0.032595893002627
815 => 0.033193198725666
816 => 0.033659904991322
817 => 0.033287641175058
818 => 0.033202883920126
819 => 0.034107869659742
820 => 0.033992701975248
821 => 0.033892967503228
822 => 0.036463549289304
823 => 0.034428733220626
824 => 0.033541437271442
825 => 0.032443240041396
826 => 0.03280081859709
827 => 0.032876165652697
828 => 0.030235199279365
829 => 0.029163759550616
830 => 0.028796081812064
831 => 0.028584478075327
901 => 0.02868090855531
902 => 0.02771648713209
903 => 0.028364594278552
904 => 0.027529486846557
905 => 0.027389478367909
906 => 0.028882753906275
907 => 0.029090534473849
908 => 0.028204078020214
909 => 0.028773326567712
910 => 0.028566909131242
911 => 0.027543802366575
912 => 0.027504727213629
913 => 0.026991368203061
914 => 0.026188060757414
915 => 0.025820927699136
916 => 0.02562972161479
917 => 0.025708616971724
918 => 0.025668725065021
919 => 0.025408403389856
920 => 0.025683646398719
921 => 0.024980514249337
922 => 0.024700521361932
923 => 0.024574055070477
924 => 0.023949984817123
925 => 0.02494315811551
926 => 0.02513882576696
927 => 0.025334878944128
928 => 0.027041388000185
929 => 0.026956135630289
930 => 0.027726775534562
1001 => 0.027696829884998
1002 => 0.02747703090076
1003 => 0.026549735141441
1004 => 0.026919338703648
1005 => 0.025781756388321
1006 => 0.026634110407043
1007 => 0.026245131628053
1008 => 0.026502596290589
1009 => 0.026039651612697
1010 => 0.026295864311959
1011 => 0.02518522582591
1012 => 0.024148127234742
1013 => 0.024565485982623
1014 => 0.025019202672332
1015 => 0.026002976060484
1016 => 0.025417048746455
1017 => 0.025627770364944
1018 => 0.024921888217378
1019 => 0.02346545172168
1020 => 0.023473694994077
1021 => 0.023249653969408
1022 => 0.023056049813568
1023 => 0.025484349546828
1024 => 0.025182352089259
1025 => 0.024701158665073
1026 => 0.025345255185213
1027 => 0.025515564528324
1028 => 0.025520412995896
1029 => 0.025990329190452
1030 => 0.026241123547724
1031 => 0.026285327140198
1101 => 0.027024750425544
1102 => 0.027272595357563
1103 => 0.028293433556221
1104 => 0.026219845398712
1105 => 0.026177141215171
1106 => 0.025354318944128
1107 => 0.024832472051528
1108 => 0.025390050247324
1109 => 0.025883988411786
1110 => 0.025369666979745
1111 => 0.025436826500852
1112 => 0.024746391999942
1113 => 0.024993189846055
1114 => 0.025205765398387
1115 => 0.025088393673003
1116 => 0.024912682519246
1117 => 0.025843491115097
1118 => 0.02579097124625
1119 => 0.026657761609903
1120 => 0.027333486683144
1121 => 0.028544506814697
1122 => 0.027280744175514
1123 => 0.027234687641941
1124 => 0.027684897645321
1125 => 0.027272526432757
1126 => 0.027533130804527
1127 => 0.028502519421477
1128 => 0.02852300107541
1129 => 0.028179906982902
1130 => 0.028159029676193
1201 => 0.028224924649697
1202 => 0.028610873567704
1203 => 0.02847601115674
1204 => 0.028632077353006
1205 => 0.028827240521206
1206 => 0.029634518132354
1207 => 0.029829150031376
1208 => 0.029356295421822
1209 => 0.029398988898736
1210 => 0.029222128294613
1211 => 0.029051283167088
1212 => 0.029435318063838
1213 => 0.030137149385874
1214 => 0.030132783329644
1215 => 0.030295594554705
1216 => 0.030397024599117
1217 => 0.029961612597171
1218 => 0.029678175394447
1219 => 0.029786863253549
1220 => 0.029960657507167
1221 => 0.029730504119441
1222 => 0.028309890792977
1223 => 0.028740814127095
1224 => 0.028669087413224
1225 => 0.028566939850404
1226 => 0.029000236595091
1227 => 0.028958444067032
1228 => 0.027706595596443
1229 => 0.027786734873918
1230 => 0.027711469131336
1231 => 0.02795466814354
]
'min_raw' => 0.023056049813568
'max_raw' => 0.051648397753394
'avg_raw' => 0.037352223783481
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023056'
'max' => '$0.051648'
'avg' => '$0.037352'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056223372559943
'max_diff' => -0.03753181970129
'year' => 2034
]
9 => [
'items' => [
101 => 0.027259392887987
102 => 0.027473254873845
103 => 0.027607387106543
104 => 0.027686392022055
105 => 0.027971811951061
106 => 0.027938321216697
107 => 0.02796973011999
108 => 0.028392932526639
109 => 0.030533345073939
110 => 0.030649843006335
111 => 0.030076164580103
112 => 0.030305337796076
113 => 0.02986537533608
114 => 0.030160725082968
115 => 0.030362795878718
116 => 0.029449676808702
117 => 0.02939560782347
118 => 0.028953829481898
119 => 0.029191216139054
120 => 0.028813516898814
121 => 0.028906191081011
122 => 0.0286470659884
123 => 0.029113439563808
124 => 0.029634917688242
125 => 0.029766663656269
126 => 0.029420096734595
127 => 0.02916915944343
128 => 0.028728596224027
129 => 0.029461262676486
130 => 0.029675516674791
131 => 0.029460137291444
201 => 0.02941022918219
202 => 0.029315653405335
203 => 0.029430293880338
204 => 0.029674349801503
205 => 0.029559257536087
206 => 0.029635278005059
207 => 0.029345566369304
208 => 0.029961756736661
209 => 0.03094041533431
210 => 0.030943561881729
211 => 0.030828468995922
212 => 0.030781375466761
213 => 0.030899467752019
214 => 0.030963527972372
215 => 0.031345416768473
216 => 0.031755198661811
217 => 0.03366747195617
218 => 0.033130513267199
219 => 0.034827195895602
220 => 0.036169051568003
221 => 0.036571415411919
222 => 0.036201259608198
223 => 0.034934976599093
224 => 0.034872846713544
225 => 0.036765208140044
226 => 0.036230529361414
227 => 0.036166931022029
228 => 0.03549035214207
301 => 0.03589029405605
302 => 0.035802820892669
303 => 0.035664740224938
304 => 0.036427801536617
305 => 0.037856184193127
306 => 0.037633557360822
307 => 0.037467376757868
308 => 0.03673922173017
309 => 0.037177733696158
310 => 0.037021587984213
311 => 0.037692489055245
312 => 0.037295062123044
313 => 0.036226478643794
314 => 0.036396654084962
315 => 0.036370932409375
316 => 0.036900282670299
317 => 0.036741384861251
318 => 0.03633990506194
319 => 0.037851302136492
320 => 0.037753160417303
321 => 0.037892302936793
322 => 0.037953557776998
323 => 0.038873518542474
324 => 0.039250397032629
325 => 0.039335955048081
326 => 0.039693960464899
327 => 0.039327047547175
328 => 0.040794960822549
329 => 0.041771037495558
330 => 0.042904800779705
331 => 0.044561533664686
401 => 0.045184480555074
402 => 0.045071950775107
403 => 0.046328066740468
404 => 0.048585279208333
405 => 0.045528197951037
406 => 0.048747311938143
407 => 0.047728177616283
408 => 0.045311828472598
409 => 0.045156244074629
410 => 0.046792623769124
411 => 0.050421956435803
412 => 0.04951284976635
413 => 0.050423443408635
414 => 0.04936118755588
415 => 0.049308437599396
416 => 0.050371852012867
417 => 0.052856577753643
418 => 0.051676177692752
419 => 0.049983784759495
420 => 0.051233421364861
421 => 0.050150870488884
422 => 0.047711580378397
423 => 0.049512154589613
424 => 0.048308161891974
425 => 0.048659550968917
426 => 0.051190164538957
427 => 0.050885674419036
428 => 0.051279712829239
429 => 0.050584245349012
430 => 0.049934569057325
501 => 0.048721900013296
502 => 0.04836288849322
503 => 0.048462106361487
504 => 0.048362839325772
505 => 0.047684362140641
506 => 0.047537845057111
507 => 0.047293643498832
508 => 0.047369331772951
509 => 0.046910161399702
510 => 0.047776710763463
511 => 0.047937549961384
512 => 0.048568152324109
513 => 0.048633623553351
514 => 0.050389842157478
515 => 0.049422546462379
516 => 0.050071491926943
517 => 0.050013444136481
518 => 0.045364198085553
519 => 0.046004823170725
520 => 0.047001434764028
521 => 0.04655246259212
522 => 0.045917720984351
523 => 0.045405133103386
524 => 0.044628510048922
525 => 0.045721592084355
526 => 0.047158878724636
527 => 0.048670075514432
528 => 0.050485679439836
529 => 0.050080457779646
530 => 0.048636134061954
531 => 0.048700925368851
601 => 0.049101439733646
602 => 0.048582737240669
603 => 0.048429761749215
604 => 0.049080423250218
605 => 0.049084903998378
606 => 0.048488074092919
607 => 0.04782480687172
608 => 0.047822027757846
609 => 0.047704005762235
610 => 0.049382183406712
611 => 0.050305011428277
612 => 0.050410812173738
613 => 0.050297890195132
614 => 0.050341349382984
615 => 0.049804376090363
616 => 0.051031737802811
617 => 0.052158086283647
618 => 0.051856200829857
619 => 0.051403631619081
620 => 0.051043138444011
621 => 0.051771280094449
622 => 0.051738857092956
623 => 0.052148248612271
624 => 0.052129676248195
625 => 0.051992013278243
626 => 0.051856205746235
627 => 0.052394667259659
628 => 0.052239598991221
629 => 0.05208428985893
630 => 0.051772793617482
701 => 0.0518151311301
702 => 0.051362640061779
703 => 0.051153296988991
704 => 0.048005279458526
705 => 0.047164026309945
706 => 0.047428701675776
707 => 0.0475158396785
708 => 0.047149725230142
709 => 0.047674639302002
710 => 0.047592831999924
711 => 0.047911096356638
712 => 0.047712258603995
713 => 0.047720418974721
714 => 0.048305158408564
715 => 0.048474910753868
716 => 0.048388573340977
717 => 0.048449041105492
718 => 0.049842495216905
719 => 0.049644390602416
720 => 0.04953915147434
721 => 0.049568303432034
722 => 0.049924360833493
723 => 0.050024037465888
724 => 0.049601700570278
725 => 0.049800877091748
726 => 0.050648945440906
727 => 0.050945721366599
728 => 0.051892887660888
729 => 0.051490514584536
730 => 0.052229087780479
731 => 0.054499209986651
801 => 0.05631274068545
802 => 0.054644942907509
803 => 0.05797526108411
804 => 0.060568391490364
805 => 0.060468862826287
806 => 0.06001669055977
807 => 0.057064480534189
808 => 0.054347812853678
809 => 0.056620420724228
810 => 0.056626214069056
811 => 0.0564309950375
812 => 0.05521850639874
813 => 0.056388803061093
814 => 0.056481696960257
815 => 0.056429701079206
816 => 0.055500088882699
817 => 0.054080742879684
818 => 0.054358079691239
819 => 0.054812363046084
820 => 0.053952309881927
821 => 0.05367747078352
822 => 0.054188448957737
823 => 0.055834927101592
824 => 0.055523669945894
825 => 0.05551554176367
826 => 0.056847231869319
827 => 0.055894029150386
828 => 0.054361577796588
829 => 0.053974613619204
830 => 0.052601151479795
831 => 0.053549806671589
901 => 0.053583947083084
902 => 0.053064378329559
903 => 0.05440373793743
904 => 0.054391395502854
905 => 0.055662918113158
906 => 0.058093591781976
907 => 0.057374721971919
908 => 0.056538754595636
909 => 0.056629647428299
910 => 0.057626517459985
911 => 0.057023787082499
912 => 0.057240533128628
913 => 0.057626189388885
914 => 0.057858865386005
915 => 0.056596168932994
916 => 0.056301773988044
917 => 0.055699545249261
918 => 0.055542435012445
919 => 0.056032937754269
920 => 0.055903707611516
921 => 0.053581077713696
922 => 0.053338349966383
923 => 0.053345794079857
924 => 0.052735443618164
925 => 0.051804512663186
926 => 0.054250943629869
927 => 0.054054460985465
928 => 0.053837559352591
929 => 0.053864128564995
930 => 0.054926041330394
1001 => 0.054310078298582
1002 => 0.055947716973008
1003 => 0.055611067693471
1004 => 0.055265784630207
1005 => 0.055218055993285
1006 => 0.055085151472095
1007 => 0.054629372417341
1008 => 0.054078991820651
1009 => 0.053715582877565
1010 => 0.049549785809586
1011 => 0.050322933514076
1012 => 0.051212369473461
1013 => 0.05151939920245
1014 => 0.050994203605204
1015 => 0.054650110340625
1016 => 0.055318079730381
1017 => 0.053294756878247
1018 => 0.05291627578434
1019 => 0.054674923498132
1020 => 0.053614243940776
1021 => 0.054091867880507
1022 => 0.053059506169136
1023 => 0.055157185464816
1024 => 0.055141204663157
1025 => 0.054325160038901
1026 => 0.055014875367289
1027 => 0.054895020355921
1028 => 0.053973707984966
1029 => 0.05518639271029
1030 => 0.055186994186784
1031 => 0.054401568978279
1101 => 0.053484364286431
1102 => 0.053320389750936
1103 => 0.053196856965321
1104 => 0.054061486387943
1105 => 0.05483671042464
1106 => 0.056279210162596
1107 => 0.056641888869667
1108 => 0.058057448008252
1109 => 0.057214551463548
1110 => 0.057588196584478
1111 => 0.057993841218576
1112 => 0.05818832217325
1113 => 0.057871425894032
1114 => 0.060070371903642
1115 => 0.060256030320817
1116 => 0.060318279982158
1117 => 0.059576807759947
1118 => 0.060235408637004
1119 => 0.059927271097198
1120 => 0.0607289593727
1121 => 0.060854674330769
1122 => 0.060748198233724
1123 => 0.060788102145691
1124 => 0.058911689647147
1125 => 0.058814387760233
1126 => 0.057487669627934
1127 => 0.058028317073451
1128 => 0.057017602587963
1129 => 0.057338110562824
1130 => 0.057479387424231
1201 => 0.057405592409223
1202 => 0.05805888446884
1203 => 0.057503452759415
1204 => 0.056037577156817
1205 => 0.054571302177392
1206 => 0.054552894289427
1207 => 0.054166849969247
1208 => 0.053887810633301
1209 => 0.053941563508857
1210 => 0.054130995653412
1211 => 0.053876800492691
1212 => 0.053931045918253
1213 => 0.054831881417955
1214 => 0.055012537552955
1215 => 0.054398597419315
1216 => 0.051933539191612
1217 => 0.051328607719404
1218 => 0.051763420465315
1219 => 0.051555607978297
1220 => 0.04160939938871
1221 => 0.043946113562636
1222 => 0.042557717347805
1223 => 0.043197554200637
1224 => 0.041780361188752
1225 => 0.042456719975473
1226 => 0.042331821204234
1227 => 0.046089188447508
1228 => 0.046030522326094
1229 => 0.046058602693872
1230 => 0.044718253576779
1231 => 0.046853466114753
]
'min_raw' => 0.027259392887987
'max_raw' => 0.060854674330769
'avg_raw' => 0.044057033609378
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027259'
'max' => '$0.060854'
'avg' => '$0.044057'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042033430744185
'max_diff' => 0.0092062765773751
'year' => 2035
]
10 => [
'items' => [
101 => 0.047905348590719
102 => 0.047710673139363
103 => 0.047759668756352
104 => 0.046917761726248
105 => 0.046066754194241
106 => 0.045122855872126
107 => 0.046876502285258
108 => 0.04668152673986
109 => 0.047128730491015
110 => 0.048266095543166
111 => 0.048433576867525
112 => 0.048658673465891
113 => 0.048577992358843
114 => 0.050500143654263
115 => 0.050267358449625
116 => 0.050828303815929
117 => 0.049674396638415
118 => 0.048368641137184
119 => 0.048616822569605
120 => 0.048592920701914
121 => 0.048288622492919
122 => 0.048013915675931
123 => 0.047556606223811
124 => 0.049003600999382
125 => 0.048944855654017
126 => 0.049895874511489
127 => 0.049727772690727
128 => 0.048605147590181
129 => 0.048645242365269
130 => 0.04891489899663
131 => 0.049848183676654
201 => 0.050125246112552
202 => 0.049996899753215
203 => 0.050300686065796
204 => 0.050540786380895
205 => 0.050330838968723
206 => 0.053303251585164
207 => 0.052068898630933
208 => 0.052670513672253
209 => 0.052813995314686
210 => 0.052446470104687
211 => 0.052526173162645
212 => 0.052646901577667
213 => 0.053379940872636
214 => 0.055303648089263
215 => 0.056155644920389
216 => 0.058718919423616
217 => 0.056084898443933
218 => 0.055928606539661
219 => 0.056390329681166
220 => 0.057895243164722
221 => 0.059114834193808
222 => 0.059519442898051
223 => 0.059572918617678
224 => 0.060331991444715
225 => 0.060767077833302
226 => 0.060239820037915
227 => 0.059793024262517
228 => 0.058192657253374
229 => 0.058377904092337
301 => 0.059654071112341
302 => 0.061456732193958
303 => 0.063003602936905
304 => 0.062461942716613
305 => 0.066594427844918
306 => 0.067004146865701
307 => 0.066947536944831
308 => 0.067880937848541
309 => 0.066028327138465
310 => 0.065236300167266
311 => 0.059889626580505
312 => 0.061391823770404
313 => 0.063575355606868
314 => 0.063286356980488
315 => 0.061700617794874
316 => 0.063002400011536
317 => 0.062571990100214
318 => 0.062232507945431
319 => 0.063787741508348
320 => 0.062077698320447
321 => 0.063558296617954
322 => 0.061659413986573
323 => 0.062464416974874
324 => 0.062007458345101
325 => 0.062303166581307
326 => 0.060574462274756
327 => 0.061507229156646
328 => 0.060535656105817
329 => 0.060535195453688
330 => 0.060513747924742
331 => 0.061656799310428
401 => 0.061694074175078
402 => 0.060849357474001
403 => 0.060727620600421
404 => 0.061177745626925
405 => 0.06065076710882
406 => 0.060897337040678
407 => 0.060658235460872
408 => 0.060604408659007
409 => 0.060175507543877
410 => 0.059990725150597
411 => 0.060063183088258
412 => 0.059815846792395
413 => 0.059666817727593
414 => 0.060484102292745
415 => 0.06004746011875
416 => 0.06041718061725
417 => 0.059995837446762
418 => 0.058535278447369
419 => 0.057695295521686
420 => 0.054936434965723
421 => 0.055718844397039
422 => 0.056237582659462
423 => 0.056066139666825
424 => 0.056434465554639
425 => 0.056457077772732
426 => 0.056337331271966
427 => 0.056198680164555
428 => 0.056131192473355
429 => 0.056634190431933
430 => 0.056926197677021
501 => 0.056289644983919
502 => 0.056140509594243
503 => 0.056784099512007
504 => 0.057176688990054
505 => 0.060075349118975
506 => 0.059860607014076
507 => 0.060399567556364
508 => 0.060338888870326
509 => 0.060903805381791
510 => 0.061827205126506
511 => 0.059949675258871
512 => 0.060275549523795
513 => 0.060195652679571
514 => 0.061067945474725
515 => 0.061070668677617
516 => 0.060547685572666
517 => 0.060831203198292
518 => 0.060672951437567
519 => 0.060958933758205
520 => 0.059857739002343
521 => 0.061198875348355
522 => 0.061959213235627
523 => 0.061969770527929
524 => 0.062330164652081
525 => 0.06269634595484
526 => 0.063399199077815
527 => 0.062676743762715
528 => 0.061377116980456
529 => 0.061470945836366
530 => 0.060708975129442
531 => 0.060721783994687
601 => 0.060653409268162
602 => 0.060858606969472
603 => 0.059902768358513
604 => 0.060127101770002
605 => 0.059813033680222
606 => 0.060274866801104
607 => 0.059778010706785
608 => 0.060195614150894
609 => 0.060375837953598
610 => 0.061040867665516
611 => 0.059679785277616
612 => 0.056904446151511
613 => 0.057487856083553
614 => 0.056624946968202
615 => 0.056704812492154
616 => 0.056866153561042
617 => 0.056343194369264
618 => 0.056442958502717
619 => 0.056439394225841
620 => 0.056408679213299
621 => 0.056272637329875
622 => 0.056075349683844
623 => 0.056861282943695
624 => 0.056994828319459
625 => 0.057291683147009
626 => 0.058174921755245
627 => 0.058086665390082
628 => 0.058230615183385
629 => 0.057916373592848
630 => 0.056719389258273
701 => 0.056784391266505
702 => 0.055973815182256
703 => 0.057270954894111
704 => 0.056963775088936
705 => 0.056765734270217
706 => 0.056711696997994
707 => 0.057597124983903
708 => 0.05786205891467
709 => 0.05769696986807
710 => 0.057358367417078
711 => 0.058008584221812
712 => 0.058182554808313
713 => 0.058221500406843
714 => 0.059373559918124
715 => 0.058285887735739
716 => 0.058547701240571
717 => 0.060590295467307
718 => 0.058737944362393
719 => 0.059719176055025
720 => 0.059671149869754
721 => 0.060173114800635
722 => 0.059629974094163
723 => 0.059636706974168
724 => 0.06008241782674
725 => 0.059456497318679
726 => 0.059301510598543
727 => 0.059087397554711
728 => 0.059554905552749
729 => 0.059835155454005
730 => 0.062093763837255
731 => 0.06355292785789
801 => 0.063489581699483
802 => 0.064068447008285
803 => 0.063807662884871
804 => 0.062965522158993
805 => 0.064402953689946
806 => 0.063948090208863
807 => 0.063985588601584
808 => 0.063984192909534
809 => 0.064286637359599
810 => 0.064072327748101
811 => 0.063649901505409
812 => 0.063930327759116
813 => 0.064763093478403
814 => 0.067348023823445
815 => 0.068794585090302
816 => 0.067260939018824
817 => 0.068318827542591
818 => 0.067684471392553
819 => 0.067569190009631
820 => 0.068233622179904
821 => 0.068899217350735
822 => 0.0688568218158
823 => 0.068373633900467
824 => 0.068100693307535
825 => 0.070167490919024
826 => 0.07169027219219
827 => 0.071586428718215
828 => 0.072044760040633
829 => 0.073390434978906
830 => 0.073513466630714
831 => 0.073497967470436
901 => 0.073193020684404
902 => 0.074518012419106
903 => 0.075623343835205
904 => 0.073122434314197
905 => 0.074074747920488
906 => 0.074502272179979
907 => 0.075130004633645
908 => 0.076189094503155
909 => 0.077339547011156
910 => 0.077502233609857
911 => 0.077386799682808
912 => 0.076628045327958
913 => 0.077886884189966
914 => 0.078624282471926
915 => 0.079063386273774
916 => 0.080176880455354
917 => 0.074504912424259
918 => 0.070490011536749
919 => 0.069863026787292
920 => 0.071138024930269
921 => 0.071474231772653
922 => 0.071338707216056
923 => 0.066819571248343
924 => 0.069839234471679
925 => 0.073088138199493
926 => 0.073212941823255
927 => 0.074839410960772
928 => 0.07536905598317
929 => 0.076678576825054
930 => 0.07659666593985
1001 => 0.076915513425822
1002 => 0.076842215910466
1003 => 0.07926782751791
1004 => 0.081943637327731
1005 => 0.081850982542571
1006 => 0.081466303223664
1007 => 0.082037617609811
1008 => 0.084799340090752
1009 => 0.084545084940408
1010 => 0.084792072161565
1011 => 0.088048298610453
1012 => 0.092281856186818
1013 => 0.090314943650365
1014 => 0.094582577890632
1015 => 0.097268827427309
1016 => 0.10191441823761
1017 => 0.10133276738814
1018 => 0.10314126179967
1019 => 0.1002914909734
1020 => 0.093747841122579
1021 => 0.092712283485601
1022 => 0.094785496099327
1023 => 0.099882287009042
1024 => 0.094624980015641
1025 => 0.095688526373275
1026 => 0.095382224950728
1027 => 0.095365903449617
1028 => 0.095988828762655
1029 => 0.095085243106494
1030 => 0.091403872591341
1031 => 0.093091023003983
1101 => 0.092439533206045
1102 => 0.093162409708639
1103 => 0.097063476056195
1104 => 0.095338721634134
1105 => 0.093521832958164
1106 => 0.095800614557704
1107 => 0.098702286608232
1108 => 0.098520705186116
1109 => 0.098168361332064
1110 => 0.10015450518923
1111 => 0.10343503295572
1112 => 0.10432174642877
1113 => 0.10497630018652
1114 => 0.10506655209093
1115 => 0.10599620279768
1116 => 0.10099723664537
1117 => 0.10893072431164
1118 => 0.11030061847342
1119 => 0.1100431351473
1120 => 0.11156571485417
1121 => 0.11111773328029
1122 => 0.1104686782659
1123 => 0.11288229096328
1124 => 0.11011527877423
1125 => 0.10618785332903
1126 => 0.10403319005412
1127 => 0.10687062446625
1128 => 0.10860334664892
1129 => 0.10974856578983
1130 => 0.11009510840991
1201 => 0.10138529215755
1202 => 0.096691184266075
1203 => 0.099700053606452
1204 => 0.10337108186278
1205 => 0.10097684389806
1206 => 0.10107069349338
1207 => 0.097657139350353
1208 => 0.10367310566038
1209 => 0.10279662997125
1210 => 0.10734378739692
1211 => 0.10625857178406
1212 => 0.10996660214506
1213 => 0.10899015348138
1214 => 0.11304333729181
1215 => 0.11466026204936
1216 => 0.11737533037153
1217 => 0.11937254568163
1218 => 0.12054534871237
1219 => 0.12047493801748
1220 => 0.1251221679134
1221 => 0.12238185880562
1222 => 0.11893938472498
1223 => 0.11887712122973
1224 => 0.12066002733633
1225 => 0.12439650941935
1226 => 0.12536532485988
1227 => 0.1259067605229
1228 => 0.12507753295747
1229 => 0.1221031238207
1230 => 0.12081878903604
1231 => 0.12191307948333
]
'min_raw' => 0.045122855872126
'max_raw' => 0.1259067605229
'avg_raw' => 0.085514808197511
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045122'
'max' => '$0.1259067'
'avg' => '$0.085514'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017863462984139
'max_diff' => 0.065052086192128
'year' => 2036
]
11 => [
'items' => [
101 => 0.12057485629974
102 => 0.12288500495372
103 => 0.12605733247677
104 => 0.125402259388
105 => 0.1275920705097
106 => 0.12985829464581
107 => 0.13309909694294
108 => 0.13394636266997
109 => 0.13534686069812
110 => 0.13678843320873
111 => 0.13725142744766
112 => 0.13813542710847
113 => 0.13813076799391
114 => 0.14079476047179
115 => 0.14373322667188
116 => 0.14484242963676
117 => 0.1473929806927
118 => 0.14302525139137
119 => 0.14633822423929
120 => 0.1493266086772
121 => 0.14576373355369
122 => 0.15067432686801
123 => 0.15086499407876
124 => 0.15374384259056
125 => 0.15082557810321
126 => 0.14909272196605
127 => 0.15409541270476
128 => 0.15651605716994
129 => 0.15578693935717
130 => 0.150238316801
131 => 0.14700878048169
201 => 0.13855646100303
202 => 0.14856859853854
203 => 0.15344521867402
204 => 0.15022568753296
205 => 0.15184943177157
206 => 0.16070805383659
207 => 0.16408084356565
208 => 0.16337932687959
209 => 0.16349787165159
210 => 0.16531776776892
211 => 0.17338818938829
212 => 0.16855220568306
213 => 0.17224913402486
214 => 0.17420997148708
215 => 0.17603130660065
216 => 0.17155868320059
217 => 0.165739865873
218 => 0.16389680216802
219 => 0.149905568611
220 => 0.14917726414351
221 => 0.14876844477602
222 => 0.14619089649267
223 => 0.14416564959185
224 => 0.14255509806372
225 => 0.1383285299025
226 => 0.1397548725847
227 => 0.13301860508906
228 => 0.13732823031411
301 => 0.12657698473821
302 => 0.13553094152881
303 => 0.13065770993414
304 => 0.13392995388482
305 => 0.13391853733394
306 => 0.12789329875486
307 => 0.12441806688596
308 => 0.12663261989087
309 => 0.12900679650357
310 => 0.12939199867129
311 => 0.132470180622
312 => 0.13332923503914
313 => 0.13072626004978
314 => 0.12635418907057
315 => 0.12736972144272
316 => 0.12439748715485
317 => 0.11918876089071
318 => 0.12292975902925
319 => 0.12420710027383
320 => 0.12477124693596
321 => 0.11964906288143
322 => 0.11803956144347
323 => 0.11718267638292
324 => 0.12569297943077
325 => 0.12615919304265
326 => 0.12377397828829
327 => 0.13455537515333
328 => 0.13211521299435
329 => 0.13484147198018
330 => 0.12727757252425
331 => 0.12756652366961
401 => 0.12398565245031
402 => 0.12599070105922
403 => 0.12457359732818
404 => 0.1258287129459
405 => 0.12658102407212
406 => 0.13016130770569
407 => 0.13557182261682
408 => 0.12962653272277
409 => 0.12703608477782
410 => 0.12864318411364
411 => 0.13292310142599
412 => 0.13940739523914
413 => 0.13556856279318
414 => 0.1372721714451
415 => 0.13764433414727
416 => 0.13481372122292
417 => 0.13951176397521
418 => 0.14202948325299
419 => 0.14461214226341
420 => 0.14685459271768
421 => 0.14358057146076
422 => 0.14708424351818
423 => 0.14426090232127
424 => 0.141728073396
425 => 0.14173191465197
426 => 0.14014303406842
427 => 0.13706437772596
428 => 0.13649662626135
429 => 0.13945014107937
430 => 0.14181858026453
501 => 0.14201365625988
502 => 0.14332494588758
503 => 0.1441009535819
504 => 0.15170688391752
505 => 0.15476605201806
506 => 0.15850674486431
507 => 0.15996395554183
508 => 0.1643496372422
509 => 0.1608078430815
510 => 0.1600415536359
511 => 0.14940332437635
512 => 0.15114533382163
513 => 0.15393445902245
514 => 0.14944931602361
515 => 0.15229410691876
516 => 0.15285572890238
517 => 0.14929691258077
518 => 0.15119783014552
519 => 0.14614955667633
520 => 0.1356818611831
521 => 0.13952341751264
522 => 0.14235209602506
523 => 0.13831522301429
524 => 0.14555116163754
525 => 0.14132407567393
526 => 0.13998429235938
527 => 0.13475731998207
528 => 0.13722424973954
529 => 0.14056080755955
530 => 0.13849920274327
531 => 0.14277734228859
601 => 0.1488363288229
602 => 0.15315432344614
603 => 0.15348580545656
604 => 0.15070962419699
605 => 0.1551584723828
606 => 0.15519087738492
607 => 0.15017255845724
608 => 0.14709886605616
609 => 0.14640051667552
610 => 0.1481451303478
611 => 0.1502634134194
612 => 0.15360335542453
613 => 0.15562161242802
614 => 0.16088415629232
615 => 0.16230804977304
616 => 0.16387247701082
617 => 0.16596303425199
618 => 0.1684732842279
619 => 0.16298100018923
620 => 0.16319921887299
621 => 0.15808488002203
622 => 0.15261947548941
623 => 0.15676703625738
624 => 0.16218942023461
625 => 0.16094551935903
626 => 0.16080555509994
627 => 0.16104093616089
628 => 0.1601030755227
629 => 0.15586116661494
630 => 0.15373090651722
701 => 0.15647948553059
702 => 0.15794023295103
703 => 0.16020572480955
704 => 0.15992645511926
705 => 0.16576211885075
706 => 0.1680296813155
707 => 0.16744954180255
708 => 0.16755630143477
709 => 0.1716616149643
710 => 0.17622756793125
711 => 0.18050418541537
712 => 0.18485454440521
713 => 0.17961001684556
714 => 0.17694716918826
715 => 0.17969454825802
716 => 0.17823675025144
717 => 0.1866136900082
718 => 0.18719369114177
719 => 0.19557002515043
720 => 0.20352016355996
721 => 0.19852682406646
722 => 0.20323531830388
723 => 0.20832793871081
724 => 0.21815242972367
725 => 0.2148438867803
726 => 0.21230959473716
727 => 0.209914701002
728 => 0.21489809468619
729 => 0.22130915104925
730 => 0.22269003118552
731 => 0.22492758454309
801 => 0.22257507078262
802 => 0.22540841448622
803 => 0.23541136279424
804 => 0.23270847786294
805 => 0.22886994675007
806 => 0.23676631374589
807 => 0.23962397826532
808 => 0.25968056443325
809 => 0.28500283296651
810 => 0.27451924751876
811 => 0.26801174772816
812 => 0.26954116453891
813 => 0.27878799979437
814 => 0.28175778979854
815 => 0.2736848768192
816 => 0.27653636616122
817 => 0.29224835278802
818 => 0.30067732951242
819 => 0.28922964695808
820 => 0.25764594481235
821 => 0.22852432902163
822 => 0.23624869289278
823 => 0.23537298974471
824 => 0.25225355926496
825 => 0.23264401495124
826 => 0.232974189386
827 => 0.25020383120709
828 => 0.24560725816006
829 => 0.23816139850848
830 => 0.22857869203717
831 => 0.2108641728319
901 => 0.19517392916588
902 => 0.22594611024226
903 => 0.22461915783867
904 => 0.22269753411494
905 => 0.2269738997707
906 => 0.24773871752751
907 => 0.24726002126906
908 => 0.24421479990578
909 => 0.24652457347048
910 => 0.23775648403499
911 => 0.2400162203282
912 => 0.22851971600891
913 => 0.23371661609766
914 => 0.23814542303777
915 => 0.2390345716006
916 => 0.24103786871372
917 => 0.22391991421916
918 => 0.23160537323048
919 => 0.2361198603695
920 => 0.21572324323694
921 => 0.23571668482892
922 => 0.22362192871542
923 => 0.21951678683336
924 => 0.22504381956624
925 => 0.22288992953502
926 => 0.22103814136684
927 => 0.22000481175124
928 => 0.22406325459393
929 => 0.22387392338443
930 => 0.21723352318398
1001 => 0.20857139181985
1002 => 0.21147868743042
1003 => 0.21042243967906
1004 => 0.20659446156945
1005 => 0.20917405662349
1006 => 0.19781482550868
1007 => 0.17827185877711
1008 => 0.19118254121725
1009 => 0.19068549398742
1010 => 0.19043486023485
1011 => 0.20013688126355
1012 => 0.19920425580535
1013 => 0.19751153146642
1014 => 0.20656337335951
1015 => 0.20325932930408
1016 => 0.21344161455224
1017 => 0.22014832616559
1018 => 0.21844728716105
1019 => 0.22475498184977
1020 => 0.21154566564938
1021 => 0.21593327062537
1022 => 0.21683754992996
1023 => 0.20645167503563
1024 => 0.19935684486429
1025 => 0.19888370057884
1026 => 0.18658224278955
1027 => 0.1931535822467
1028 => 0.19893608902848
1029 => 0.19616671702066
1030 => 0.19529001657562
1031 => 0.1997688890162
1101 => 0.20011693576378
1102 => 0.19218143303458
1103 => 0.19383147533667
1104 => 0.20071242603309
1105 => 0.19365809303382
1106 => 0.17995267633499
1107 => 0.17655354350146
1108 => 0.17610003652302
1109 => 0.16688131868989
1110 => 0.17678068981099
1111 => 0.17245934902998
1112 => 0.18611041277958
1113 => 0.17831299837793
1114 => 0.17797686742757
1115 => 0.17746875619641
1116 => 0.16953382493699
1117 => 0.17127107059161
1118 => 0.17704593973757
1119 => 0.1791064781074
1120 => 0.17889154707393
1121 => 0.17701763972828
1122 => 0.17787550491516
1123 => 0.17511202224818
1124 => 0.17413617900155
1125 => 0.17105614928835
1126 => 0.16652935648987
1127 => 0.16715883479293
1128 => 0.15819007375938
1129 => 0.15330341674013
1130 => 0.1519508544823
1201 => 0.15014215170367
1202 => 0.15215515227392
1203 => 0.15816466638624
1204 => 0.15091591737725
1205 => 0.13848844564195
1206 => 0.13923535786862
1207 => 0.14091344788173
1208 => 0.13778633824399
1209 => 0.13482679141028
1210 => 0.13739987726656
1211 => 0.13213419366385
1212 => 0.14154978058801
1213 => 0.14129511534859
1214 => 0.14480466389793
1215 => 0.14699925662902
1216 => 0.1419414308917
1217 => 0.14066940139657
1218 => 0.14139400720751
1219 => 0.12941788723209
1220 => 0.14382595939311
1221 => 0.14395056099946
1222 => 0.14288364639801
1223 => 0.15055550002443
1224 => 0.16674550408733
1225 => 0.16065417331746
1226 => 0.15829542593192
1227 => 0.15381144542778
1228 => 0.15978608321713
1229 => 0.15932732425378
1230 => 0.15725264224232
1231 => 0.15599786808839
]
'min_raw' => 0.11718267638292
'max_raw' => 0.30067732951242
'avg_raw' => 0.20893000294767
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.117182'
'max' => '$0.300677'
'avg' => '$0.20893'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.072059820510798
'max_diff' => 0.17477056898952
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0036782303100149
]
1 => [
'year' => 2028
'avg' => 0.0063129110098742
]
2 => [
'year' => 2029
'avg' => 0.017245735087468
]
3 => [
'year' => 2030
'avg' => 0.013305058936862
]
4 => [
'year' => 2031
'avg' => 0.0130672167538
]
5 => [
'year' => 2032
'avg' => 0.022910943373872
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0036782303100149
'min' => '$0.003678'
'max_raw' => 0.022910943373872
'max' => '$0.02291'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.022910943373872
]
1 => [
'year' => 2033
'avg' => 0.058929302262123
]
2 => [
'year' => 2034
'avg' => 0.037352223783481
]
3 => [
'year' => 2035
'avg' => 0.044057033609378
]
4 => [
'year' => 2036
'avg' => 0.085514808197511
]
5 => [
'year' => 2037
'avg' => 0.20893000294767
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.022910943373872
'min' => '$0.02291'
'max_raw' => 0.20893000294767
'max' => '$0.20893'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.20893000294767
]
]
]
]
'prediction_2025_max_price' => '$0.006289'
'last_price' => 0.00609808
'sma_50day_nextmonth' => '$0.005716'
'sma_200day_nextmonth' => '$0.018592'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005992'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005912'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005875'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005885'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00697'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.014331'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.02236'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006011'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005958'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005917'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006119'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.008436'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.013266'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.020543'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.018456'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.026881'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.052025'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.078978'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006098'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.006685'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.009679'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.015978'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.02851'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.051793'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.12371'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '43.02'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 118.02
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005876'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006015'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 193.9
'cci_20_action' => 'SELL'
'adx_14' => 31.62
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000182'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 56.04
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.008152'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 15
'sell_pct' => 55.88
'buy_pct' => 44.12
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767680638
'last_updated_date' => '6. Januar 2026'
]
Flamingo Finance Preisprognose für 2026
Die Preisprognose für Flamingo Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.0021068 am unteren Ende und $0.006289 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Flamingo Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn FLM das prognostizierte Preisziel erreicht.
Flamingo Finance Preisprognose 2027-2032
Die Preisprognose für FLM für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.003678 am unteren Ende und $0.02291 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Flamingo Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Flamingo Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.002028 | $0.003678 | $0.005328 |
| 2028 | $0.00366 | $0.006312 | $0.008965 |
| 2029 | $0.00804 | $0.017245 | $0.02645 |
| 2030 | $0.006838 | $0.013305 | $0.019771 |
| 2031 | $0.008085 | $0.013067 | $0.018049 |
| 2032 | $0.012341 | $0.02291 | $0.03348 |
Flamingo Finance Preisprognose 2032-2037
Die Preisprognose für Flamingo Finance für die Jahre 2032-2037 wird derzeit zwischen $0.02291 am unteren Ende und $0.20893 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Flamingo Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Flamingo Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.012341 | $0.02291 | $0.03348 |
| 2033 | $0.028678 | $0.058929 | $0.08918 |
| 2034 | $0.023056 | $0.037352 | $0.051648 |
| 2035 | $0.027259 | $0.044057 | $0.060854 |
| 2036 | $0.045122 | $0.085514 | $0.1259067 |
| 2037 | $0.117182 | $0.20893 | $0.300677 |
Flamingo Finance Potenzielles Preishistogramm
Flamingo Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Flamingo Finance Bärisch, mit 15 technischen Indikatoren, die bullische Signale zeigen, und 19 anzeigen bärische Signale. Die Preisprognose für FLM wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Flamingo Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Flamingo Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.018592 erreichen. Der kurzfristige 50-Tage-SMA für Flamingo Finance wird voraussichtlich bis zum 04.02.2026 $0.005716 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 43.02, was darauf hindeutet, dass sich der FLM-Markt in einem NEUTRAL Zustand befindet.
Beliebte FLM Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005992 | BUY |
| SMA 5 | $0.005912 | BUY |
| SMA 10 | $0.005875 | BUY |
| SMA 21 | $0.005885 | BUY |
| SMA 50 | $0.00697 | SELL |
| SMA 100 | $0.014331 | SELL |
| SMA 200 | $0.02236 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.006011 | BUY |
| EMA 5 | $0.005958 | BUY |
| EMA 10 | $0.005917 | BUY |
| EMA 21 | $0.006119 | SELL |
| EMA 50 | $0.008436 | SELL |
| EMA 100 | $0.013266 | SELL |
| EMA 200 | $0.020543 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.018456 | SELL |
| SMA 50 | $0.026881 | SELL |
| SMA 100 | $0.052025 | SELL |
| SMA 200 | $0.078978 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.015978 | SELL |
| EMA 50 | $0.02851 | SELL |
| EMA 100 | $0.051793 | SELL |
| EMA 200 | $0.12371 | SELL |
Flamingo Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 43.02 | NEUTRAL |
| Stoch RSI (14) | 118.02 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 193.9 | SELL |
| Average Directional Index (14) | 31.62 | SELL |
| Awesome Oscillator (5, 34) | -0.000182 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 56.04 | NEUTRAL |
| VWMA (10) | 0.005876 | BUY |
| Hull Moving Average (9) | 0.006015 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.008152 | SELL |
Auf weltweiten Geldflüssen basierende Flamingo Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Flamingo Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Flamingo Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.008568 | $0.01204 | $0.016919 | $0.023774 | $0.0334066 | $0.046941 |
| Amazon.com aktie | $0.012724 | $0.026549 | $0.055396 | $0.115588 | $0.241183 | $0.503242 |
| Apple aktie | $0.008649 | $0.012268 | $0.0174024 | $0.024684 | $0.035012 | $0.049662 |
| Netflix aktie | $0.009621 | $0.015181 | $0.023954 | $0.037796 | $0.059636 | $0.094097 |
| Google aktie | $0.007896 | $0.010226 | $0.013243 | $0.01715 | $0.0222092 | $0.02876 |
| Tesla aktie | $0.013823 | $0.031337 | $0.07104 | $0.161042 | $0.365071 | $0.82759 |
| Kodak aktie | $0.004572 | $0.003429 | $0.002571 | $0.001928 | $0.001446 | $0.001084 |
| Nokia aktie | $0.004039 | $0.002676 | $0.001772 | $0.001174 | $0.000778 | $0.000515 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Flamingo Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Flamingo Finance investieren?", "Sollte ich heute FLM kaufen?", "Wird Flamingo Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Flamingo Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Flamingo Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Flamingo Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Flamingo Finance-Preis entspricht heute $0.006098 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Flamingo Finance-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Flamingo Finance-Prognose
basierend auf dem Preisverlauf des letzten Monats
Flamingo Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Flamingo Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006256 | $0.006419 | $0.006586 | $0.006757 |
| Wenn die Wachstumsrate von Flamingo Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006415 | $0.006748 | $0.007099 | $0.007468 |
| Wenn die Wachstumsrate von Flamingo Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.00689 | $0.007786 | $0.008798 | $0.009941 |
| Wenn die Wachstumsrate von Flamingo Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.007683 | $0.00968 | $0.012196 | $0.015366 |
| Wenn die Wachstumsrate von Flamingo Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009268 | $0.014086 | $0.0214095 | $0.032539 |
| Wenn die Wachstumsrate von Flamingo Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.014023 | $0.032249 | $0.074162 | $0.170548 |
| Wenn die Wachstumsrate von Flamingo Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.021948 | $0.0790013 | $0.284351 | $1.02 |
Fragefeld
Ist FLM eine gute Investition?
Die Entscheidung, Flamingo Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Flamingo Finance in den letzten 2026 Stunden um 1.7158% gestiegen, und Flamingo Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Flamingo Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Flamingo Finance steigen?
Es scheint, dass der Durchschnittswert von Flamingo Finance bis zum Ende dieses Jahres potenziell auf $0.006289 steigen könnte. Betrachtet man die Aussichten von Flamingo Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.019771 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Flamingo Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Flamingo Finance-Prognose wird der Preis von Flamingo Finance in der nächsten Woche um 0.86% steigen und $0.00615 erreichen bis zum 13. Januar 2026.
Wie viel wird Flamingo Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Flamingo Finance-Prognose wird der Preis von Flamingo Finance im nächsten Monat um -11.62% fallen und $0.005389 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Flamingo Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Flamingo Finance im Jahr 2026 wird erwartet, dass FLM innerhalb der Spanne von $0.0021068 bis $0.006289 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Flamingo Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Flamingo Finance in 5 Jahren sein?
Die Zukunft von Flamingo Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.019771 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Flamingo Finance-Prognose für 2030 könnte der Wert von Flamingo Finance seinen höchsten Gipfel von ungefähr $0.019771 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.006838 liegen wird.
Wie viel wird Flamingo Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Flamingo Finance-Preisprognosesimulation wird der Wert von FLM im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.006289 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.006289 und $0.0021068 während des Jahres 2026 liegen.
Wie viel wird Flamingo Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Flamingo Finance könnte der Wert von FLM um -12.62% fallen und bis zu $0.005328 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.005328 und $0.002028 im Laufe des Jahres schwanken.
Wie viel wird Flamingo Finance im Jahr 2028 kosten?
Unser neues experimentelles Flamingo Finance-Preisprognosemodell deutet darauf hin, dass der Wert von FLM im Jahr 2028 um 47.02% steigen, und im besten Fall $0.008965 erreichen wird. Der Preis wird voraussichtlich zwischen $0.008965 und $0.00366 im Laufe des Jahres liegen.
Wie viel wird Flamingo Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Flamingo Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.02645 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.02645 und $0.00804.
Wie viel wird Flamingo Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Flamingo Finance-Preisprognosen wird der Wert von FLM im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.019771 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.019771 und $0.006838 während des Jahres 2030 liegen.
Wie viel wird Flamingo Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Flamingo Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.018049 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.018049 und $0.008085 während des Jahres schwanken.
Wie viel wird Flamingo Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Flamingo Finance-Preisprognose könnte FLM eine 449.04% Steigerung im Wert erfahren und $0.03348 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.03348 und $0.012341 liegen.
Wie viel wird Flamingo Finance im Jahr 2033 kosten?
Laut unserer experimentellen Flamingo Finance-Preisprognose wird der Wert von FLM voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.08918 beträgt. Im Laufe des Jahres könnte der Preis von FLM zwischen $0.08918 und $0.028678 liegen.
Wie viel wird Flamingo Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Flamingo Finance-Preisprognosesimulation deuten darauf hin, dass FLM im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.051648 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.051648 und $0.023056.
Wie viel wird Flamingo Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Flamingo Finance könnte FLM um 897.93% steigen, wobei der Wert im Jahr 2035 $0.060854 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.060854 und $0.027259.
Wie viel wird Flamingo Finance im Jahr 2036 kosten?
Unsere jüngste Flamingo Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von FLM im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.1259067 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.1259067 und $0.045122.
Wie viel wird Flamingo Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Flamingo Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.300677 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.300677 und $0.117182 liegen.
Verwandte Prognosen
Swarm Markets-Preisprognose
Redacted-Preisprognose
Merit Circle-Preisprognose
FunFair-Preisprognose
Clore.ai-Preisprognose
SaucerSwap-Preisprognose
Overnight.fi USD+-Preisprognose
LimeWire-Preisprognose
Marcopolo-Preisprognose
Stargaze-Preisprognose
Beta Finance-Preisprognose
Iagon-Preisprognose
Hermez Network Token-Preisprognose
Quanta-Preisprognose
Orion Protocol-Preisprognose
Verasity-Preisprognose
Aergo-Preisprognose
higher-Preisprognose
SportX-Preisprognose
Reef-Preisprognose
ankrETH-Preisprognose
Wanchain-Preisprognose
VitaDAO-Preisprognose
PlayDapp-Preisprognose
Zero1 Labs-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Flamingo Finance?
Flamingo Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Flamingo Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Flamingo Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von FLM über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von FLM über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von FLM einzuschätzen.
Wie liest man Flamingo Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Flamingo Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von FLM innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Flamingo Finance?
Die Preisentwicklung von Flamingo Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von FLM. Die Marktkapitalisierung von Flamingo Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von FLM-„Walen“, großen Inhabern von Flamingo Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Flamingo Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


