Flamingo Finance Preisvorhersage bis zu $0.006286 im Jahr 2026
| Jahr | Min. Preis | Max. Preis |
|---|---|---|
| 2026 | $0.0021059 | $0.006286 |
| 2027 | $0.002027 | $0.005325 |
| 2028 | $0.003658 | $0.008961 |
| 2029 | $0.008037 | $0.026438 |
| 2030 | $0.006835 | $0.019762 |
| 2031 | $0.008081 | $0.018041 |
| 2032 | $0.012335 | $0.033465 |
| 2033 | $0.028665 | $0.089139 |
| 2034 | $0.023045 | $0.051624 |
| 2035 | $0.027246 | $0.060826 |
Investitionsgewinnrechner
Wenn Sie heute einen Short über $10,000.00 in Flamingo Finance eröffnen und ihn am Apr 06, 2026 schließen, zeigt unsere Prognose, dass Sie etwa $3,955.98 Gewinn erzielen könnten, was einer Rendite von 39.56% in den nächsten 90 Tagen entspricht.
Langfristige Flamingo Finance Preisprognose für 2027, 2028, 2029, 2030, 2031, 2032 und 2037
[
'name' => 'Flamingo Finance'
'name_with_ticker' => 'Flamingo Finance <small>FLM</small>'
'name_lang' => 'Flamingo Finance'
'name_lang_with_ticker' => 'Flamingo Finance <small>FLM</small>'
'name_with_lang' => 'Flamingo Finance'
'name_with_lang_with_ticker' => 'Flamingo Finance <small>FLM</small>'
'image' => '/uploads/coins/flamingo-finance.jpg?1717210501'
'price_for_sd' => 0.006095
'ticker' => 'FLM'
'marketcap' => '$3.45M'
'low24h' => '$0.005914'
'high24h' => '$0.006151'
'volume24h' => '$114.74K'
'current_supply' => '565.33M'
'max_supply' => '565.33M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006095'
'change_24h_pct' => '1.1346%'
'ath_price' => '$1.59'
'ath_days' => 1926
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28.09.2020'
'ath_pct' => '-99.62%'
'fdv' => '$3.45M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.300539'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006147'
'next_week_prediction_price_date' => '13. Januar 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005387'
'next_month_prediction_price_date' => '5. Februar 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0021059'
'current_year_max_price_prediction' => '$0.006286'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006835'
'grand_prediction_max_price' => '$0.019762'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062107823498827
107 => 0.0062339711566632
108 => 0.0062862167223894
109 => 0.0058397840835221
110 => 0.0060402192317999
111 => 0.0061579561031794
112 => 0.0056260166349825
113 => 0.006147441370209
114 => 0.0058320126845024
115 => 0.0057249514509937
116 => 0.0058690952976682
117 => 0.0058129223004346
118 => 0.0057646280560023
119 => 0.0057376790378086
120 => 0.0058435223702305
121 => 0.0058385846522629
122 => 0.0056654044171151
123 => 0.0054394978600942
124 => 0.0055153195157604
125 => 0.0054877727974251
126 => 0.0053879399365804
127 => 0.0054552152309241
128 => 0.0051589688818818
129 => 0.0046492924358999
130 => 0.0049860003079273
131 => 0.004973037421122
201 => 0.0049665009457746
202 => 0.0052195276056811
203 => 0.0051952049306494
204 => 0.0051510590372984
205 => 0.0053871291626294
206 => 0.0053009603912923
207 => 0.0055665122406373
208 => 0.0057414218634327
209 => 0.0056970591253583
210 => 0.0058615624710089
211 => 0.0055170662935687
212 => 0.0056314941049267
213 => 0.0056550775182575
214 => 0.0053842160939271
215 => 0.0051991844210882
216 => 0.0051868449180253
217 => 0.0048660254962578
218 => 0.0050374046418021
219 => 0.0051882111977302
220 => 0.0051159865605021
221 => 0.0050931223980054
222 => 0.0052099304455694
223 => 0.0052190074312584
224 => 0.0050120511956135
225 => 0.0050550839504557
226 => 0.005234537691748
227 => 0.005050562176606
228 => 0.0046931278029149
301 => 0.0046044791363226
302 => 0.0045926517700801
303 => 0.0043522295554676
304 => 0.0046104030641144
305 => 0.0044977034089702
306 => 0.0048537202692216
307 => 0.0046503653480027
308 => 0.0046415991237893
309 => 0.0046283476901652
310 => 0.0044214063583316
311 => 0.0044667133581954
312 => 0.0046173207261938
313 => 0.004671059131809
314 => 0.0046654537758376
315 => 0.004616582667927
316 => 0.0046389556108679
317 => 0.0045668845664052
318 => 0.0045414347805764
319 => 0.0044611082559855
320 => 0.0043430504556057
321 => 0.0043594671168391
322 => 0.0041255637227829
323 => 0.0039981207395084
324 => 0.0039628462014095
325 => 0.0039156756148393
326 => 0.0039681742446787
327 => 0.004124901103856
328 => 0.0039358552602302
329 => 0.003611749421358
330 => 0.0036312287345237
331 => 0.003674992967747
401 => 0.0035934386086647
402 => 0.0035162542521318
403 => 0.0035833597879724
404 => 0.0034460318714304
405 => 0.0036915883903692
406 => 0.0036849467746961
407 => 0.0037764750598433
408 => 0.0038337095748952
409 => 0.0037018025475947
410 => 0.0036686282869431
411 => 0.0036875258534964
412 => 0.0033751911732215
413 => 0.0037509506530049
414 => 0.0037542002365898
415 => 0.0037263753290564
416 => 0.0039264556517686
417 => 0.0043486875393092
418 => 0.0041898269189781
419 => 0.0041283112851982
420 => 0.0040113700204151
421 => 0.0041671873124534
422 => 0.0041552229755533
423 => 0.0041011157067508
424 => 0.0040683914617542
425 => 0.0041286868865406
426 => 0.0040609201913632
427 => 0.0040487474308051
428 => 0.003974993745917
429 => 0.0039486670359908
430 => 0.003929175788058
501 => 0.0039077178392544
502 => 0.0039550487273274
503 => 0.003847790708057
504 => 0.0037184480514503
505 => 0.0037076946090603
506 => 0.0037373858089512
507 => 0.0037242496632494
508 => 0.0037076317182486
509 => 0.003675903535614
510 => 0.0036664904615917
511 => 0.0036970783855899
512 => 0.0036625464027827
513 => 0.0037135002244692
514 => 0.003699643604374
515 => 0.0036222416509216
516 => 0.0035257701590464
517 => 0.0035249113604129
518 => 0.0035041267357333
519 => 0.0034776543912147
520 => 0.0034702903905748
521 => 0.0035777083469164
522 => 0.0038000603017948
523 => 0.0037564072926208
524 => 0.0037879510654893
525 => 0.0039431152079829
526 => 0.0039924372229331
527 => 0.0039574296249774
528 => 0.0039095090657211
529 => 0.0039116173271274
530 => 0.004075376384646
531 => 0.0040855898361925
601 => 0.0041113959332662
602 => 0.0041445640608079
603 => 0.0039630783005208
604 => 0.0039030693641386
605 => 0.0038746338009117
606 => 0.0037870632721207
607 => 0.0038815005796921
608 => 0.0038264760047789
609 => 0.0038339006998419
610 => 0.0038290653574419
611 => 0.0038317057813567
612 => 0.0036915197523177
613 => 0.0037425961733388
614 => 0.0036576717169565
615 => 0.0035439674030783
616 => 0.0035435862263483
617 => 0.0035714151960852
618 => 0.003554861435938
619 => 0.003510315693018
620 => 0.0035166432055498
621 => 0.0034612075376495
622 => 0.0035233740993281
623 => 0.0035251568138744
624 => 0.0035012193013926
625 => 0.0035969954669907
626 => 0.0036362350401822
627 => 0.0036204788566755
628 => 0.0036351295443446
629 => 0.0037582212722335
630 => 0.003778290594748
701 => 0.003787204062104
702 => 0.0037752611966552
703 => 0.0036373794351677
704 => 0.0036434950776082
705 => 0.0035986225511724
706 => 0.0035607099948845
707 => 0.0035622262983109
708 => 0.0035817182805302
709 => 0.0036668409100716
710 => 0.0038459764656884
711 => 0.0038527745290776
712 => 0.0038610139802189
713 => 0.0038274999916109
714 => 0.0038173918519611
715 => 0.0038307270972914
716 => 0.003898000993481
717 => 0.0040710477191653
718 => 0.0040098814489063
719 => 0.003960152319076
720 => 0.0040037781728143
721 => 0.003997062314582
722 => 0.0039403737125008
723 => 0.0039387826522477
724 => 0.0038299791004114
725 => 0.0037897569046346
726 => 0.0037561442272643
727 => 0.003719440061057
728 => 0.0036976806009946
729 => 0.0037311130211482
730 => 0.0037387594111981
731 => 0.0036656588402335
801 => 0.0036556955025269
802 => 0.0037153910067621
803 => 0.0036891212410209
804 => 0.0037161403465445
805 => 0.0037224090107916
806 => 0.0037213996114682
807 => 0.0036939709589711
808 => 0.0037114531641386
809 => 0.0036701025372213
810 => 0.003625139941112
811 => 0.003596456606063
812 => 0.0035714265919405
813 => 0.0035853146985287
814 => 0.00353580613441
815 => 0.003519967348338
816 => 0.0037055305863899
817 => 0.0038426081454799
818 => 0.003840614983482
819 => 0.0038284821224198
820 => 0.0038104551519424
821 => 0.0038966822083076
822 => 0.0038666424260343
823 => 0.0038884988775459
824 => 0.003894062261768
825 => 0.0039109009502241
826 => 0.0039169193340129
827 => 0.0038987275981667
828 => 0.0038376739107331
829 => 0.0036855339264592
830 => 0.0036147123530857
831 => 0.0035913400542458
901 => 0.0035921895929183
902 => 0.0035687555238228
903 => 0.0035756579074127
904 => 0.0035663551564945
905 => 0.0035487379968327
906 => 0.0035842268885634
907 => 0.0035883166527335
908 => 0.0035800331213428
909 => 0.0035819841928535
910 => 0.0035134000908817
911 => 0.0035186143911978
912 => 0.0034895805044366
913 => 0.0034841370006776
914 => 0.0034107418632151
915 => 0.003280711738405
916 => 0.0033527610498794
917 => 0.0032657356132846
918 => 0.0032327777617956
919 => 0.003388795104747
920 => 0.0033731352907622
921 => 0.0033463324963776
922 => 0.0033066855772911
923 => 0.0032919801493415
924 => 0.0032026346242923
925 => 0.0031973556140326
926 => 0.003241637668779
927 => 0.003221203024166
928 => 0.0031925050439242
929 => 0.003088563868556
930 => 0.0029716995737017
1001 => 0.0029752269721805
1002 => 0.0030123993300362
1003 => 0.003120482973877
1004 => 0.0030782528243624
1005 => 0.0030476143663544
1006 => 0.0030418767041582
1007 => 0.0031136955591534
1008 => 0.003215334285487
1009 => 0.0032630209018444
1010 => 0.0032157649132983
1011 => 0.0031614797780996
1012 => 0.0031647838627461
1013 => 0.0031867644576429
1014 => 0.0031890743073777
1015 => 0.0031537402649654
1016 => 0.0031636865909341
1017 => 0.0031485772122765
1018 => 0.0030558509833447
1019 => 0.0030541738599014
1020 => 0.0030314173479091
1021 => 0.0030307282897699
1022 => 0.0029920137859931
1023 => 0.002986597359294
1024 => 0.0029097273622426
1025 => 0.0029603234270856
1026 => 0.0029263862432016
1027 => 0.0028752349021159
1028 => 0.0028664163916326
1029 => 0.0028661512965588
1030 => 0.0029186722866232
1031 => 0.0029597096887375
1101 => 0.002926976595045
1102 => 0.0029195239041156
1103 => 0.0029990991454124
1104 => 0.0029889724706129
1105 => 0.0029802028355466
1106 => 0.0032062336523271
1107 => 0.0030273126234408
1108 => 0.0029492928423911
1109 => 0.0028527285477874
1110 => 0.0028841703690298
1111 => 0.002890795622742
1112 => 0.0026585759012427
1113 => 0.0025643643891515
1114 => 0.0025320345484878
1115 => 0.0025134282681089
1116 => 0.0025219073837205
1117 => 0.0024371059729303
1118 => 0.0024940939234672
1119 => 0.0024206630698077
1120 => 0.002408352148227
1121 => 0.0025396556109074
1122 => 0.0025579257206757
1123 => 0.002479979756326
1124 => 0.0025300336837439
1125 => 0.0025118834338606
1126 => 0.0024219218310343
1127 => 0.0024184859595191
1128 => 0.0023733463895242
1129 => 0.0023027117032251
1130 => 0.0022704297562048
1201 => 0.0022536170379119
1202 => 0.0022605542931529
1203 => 0.0022570466046196
1204 => 0.0022341565642474
1205 => 0.0022583586349396
1206 => 0.0021965323453072
1207 => 0.0021719126186074
1208 => 0.0021607924592304
1209 => 0.0021059180685932
1210 => 0.0021932476268492
1211 => 0.0022104526499744
1212 => 0.0022276915723101
1213 => 0.00237774462173
1214 => 0.0023702483954265
1215 => 0.0024380106303999
1216 => 0.0024353775145556
1217 => 0.0024160506274657
1218 => 0.0023345136699523
1219 => 0.0023670128479607
1220 => 0.0022669854295446
1221 => 0.0023419327726252
1222 => 0.0023077299351191
1223 => 0.0023303687588594
1224 => 0.0022896621125139
1225 => 0.0023121908513378
1226 => 0.0022145325992217
1227 => 0.0021233406974844
1228 => 0.002160038980801
1229 => 0.002199934211724
1230 => 0.0022864372374808
1231 => 0.0022349167489745
]
'min_raw' => 0.0021059180685932
'max_raw' => 0.0062862167223894
'avg_raw' => 0.0041960673954913
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0021059'
'max' => '$0.006286'
'avg' => '$0.004196'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0039893619314068
'max_diff' => 0.00019093672238941
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022534454648467
102 => 0.0021913773683444
103 => 0.0020633131563848
104 => 0.0020640379859168
105 => 0.0020443380969373
106 => 0.0020273145166282
107 => 0.0022408344968403
108 => 0.0022142799120495
109 => 0.0021719686565636
110 => 0.002228603953414
111 => 0.0022435792248242
112 => 0.0022440055497485
113 => 0.002285325200362
114 => 0.0023073775053013
115 => 0.002311264319627
116 => 0.0023762816826374
117 => 0.0023980746451188
118 => 0.0024878367733239
119 => 0.0023055065212981
120 => 0.0023017515497434
121 => 0.0022294009281852
122 => 0.0021835150201748
123 => 0.0022325427755637
124 => 0.0022759746738823
125 => 0.0022307504783319
126 => 0.0022366558035359
127 => 0.002175946015962
128 => 0.0021976469083586
129 => 0.0022163386403165
130 => 0.0022060181645786
131 => 0.0021905679128823
201 => 0.002272413753511
202 => 0.0022677956904263
203 => 0.0023440124188475
204 => 0.0024034288089623
205 => 0.0025099136019984
206 => 0.0023987911692875
207 => 0.0023947414261678
208 => 0.0024343283147616
209 => 0.0023980685845724
210 => 0.0024209834824086
211 => 0.002506221657694
212 => 0.0025080226060212
213 => 0.0024778544011494
214 => 0.0024760186631413
215 => 0.0024818127968909
216 => 0.002515749219239
217 => 0.0025038907905096
218 => 0.0025176136644539
219 => 0.0025347743284533
220 => 0.0026057581107257
221 => 0.0026228720603171
222 => 0.0025812940353755
223 => 0.0025850480654983
224 => 0.0025694967428279
225 => 0.0025544743599857
226 => 0.0025882424827721
227 => 0.0026499543908783
228 => 0.0026495704843008
301 => 0.0026638864474734
302 => 0.00267280517393
303 => 0.0026345194710712
304 => 0.0026095968863145
305 => 0.0026191537911755
306 => 0.0026344354901706
307 => 0.002614198142153
308 => 0.002489283855337
309 => 0.0025271748704014
310 => 0.0025208679527187
311 => 0.0025118861349911
312 => 0.002549985843641
313 => 0.0025463110337969
314 => 0.0024362362118927
315 => 0.0024432828448541
316 => 0.0024366647409822
317 => 0.0024580491885289
318 => 0.0023969137542271
319 => 0.0024157186020649
320 => 0.0024275128263442
321 => 0.0024344597150523
322 => 0.0024595566405919
323 => 0.0024566118060475
324 => 0.0024593735855419
325 => 0.0024965857007745
326 => 0.0026847918099651
327 => 0.002695035453235
328 => 0.0026445920073376
329 => 0.0026647431690206
330 => 0.0026260573451639
331 => 0.0026520273978914
401 => 0.0026697954483998
402 => 0.0025895050447521
403 => 0.0025847507681285
404 => 0.0025459052741153
405 => 0.0025667786422768
406 => 0.0025335676126837
407 => 0.0025417164376733
408 => 0.0025189316126005
409 => 0.0025599397613182
410 => 0.0026057932436066
411 => 0.0026173776440416
412 => 0.0025869040738952
413 => 0.0025648392008031
414 => 0.0025261005522743
415 => 0.0025905237881247
416 => 0.0026093631055499
417 => 0.0025904248332104
418 => 0.0025860364216999
419 => 0.0025777203898172
420 => 0.0025878007071762
421 => 0.0026092605025812
422 => 0.0025991404593684
423 => 0.0026058249262027
424 => 0.0025803506316228
425 => 0.0026345321452319
426 => 0.0027205854283347
427 => 0.002720862103711
428 => 0.0027107420059474
429 => 0.0027066010799831
430 => 0.0027169849144274
501 => 0.0027226177186463
502 => 0.0027561971351697
503 => 0.0027922291869622
504 => 0.0029603750506623
505 => 0.0029131603649819
506 => 0.0030623493782988
507 => 0.0031803385180637
508 => 0.0032157183020394
509 => 0.0031831705655292
510 => 0.0030718265171221
511 => 0.0030663634469124
512 => 0.0032327584634773
513 => 0.0031857442499232
514 => 0.0031801520588189
515 => 0.0031206605936253
516 => 0.003155827417716
517 => 0.0031481359174212
518 => 0.0031359945079248
519 => 0.0032030903585476
520 => 0.0033286878012257
521 => 0.003309112261939
522 => 0.0032945000299446
523 => 0.0032304734829018
524 => 0.0032690317650686
525 => 0.0032553018993242
526 => 0.00331429411575
527 => 0.003279348433577
528 => 0.0031853880710157
529 => 0.003200351568451
530 => 0.003198089865916
531 => 0.0032446355438196
601 => 0.0032306636866477
602 => 0.0031953616365629
603 => 0.0033282585228208
604 => 0.0033196289382386
605 => 0.0033318637161785
606 => 0.0033372498438008
607 => 0.0034181418365602
608 => 0.0034512806977386
609 => 0.0034588037994035
610 => 0.0034902831544716
611 => 0.0034580205643724
612 => 0.0035870939276059
613 => 0.0036729201825167
614 => 0.0037726117941742
615 => 0.003918288033385
616 => 0.0039730636469088
617 => 0.0039631689226032
618 => 0.0040736189845928
619 => 0.0042720952908213
620 => 0.0040032866587467
621 => 0.0042863428010396
622 => 0.00419673049443
623 => 0.0039842613275152
624 => 0.0039705808180128
625 => 0.0041144674046653
626 => 0.0044335940052897
627 => 0.0043536564113372
628 => 0.0044337247545565
629 => 0.0043403207791107
630 => 0.0043356824844593
701 => 0.0044291883319507
702 => 0.0046476698413527
703 => 0.0045438774658927
704 => 0.0043950656447363
705 => 0.0045049459777098
706 => 0.0044097574643434
707 => 0.0041952711021415
708 => 0.0043535952845656
709 => 0.0042477284125917
710 => 0.0042786259940262
711 => 0.0045011424124066
712 => 0.0044743686482417
713 => 0.0045090163782549
714 => 0.0044478640416705
715 => 0.0043907381164623
716 => 0.0042841083348342
717 => 0.0042525405132789
718 => 0.0042612647234655
719 => 0.0042525361899936
720 => 0.0041928778071509
721 => 0.0041799945850562
722 => 0.0041585219838047
723 => 0.0041651772408024
724 => 0.0041248024684186
725 => 0.0042009980057605
726 => 0.0042151405689239
727 => 0.0042705893268209
728 => 0.00427634620081
729 => 0.0044307702022893
730 => 0.0043457160572644
731 => 0.0044027777209687
801 => 0.0043976735886818
802 => 0.0039888661786251
803 => 0.0040451962327926
804 => 0.0041328281197324
805 => 0.0040933500734482
806 => 0.0040375373524425
807 => 0.0039924655877417
808 => 0.0039241772553953
809 => 0.0040202917718116
810 => 0.0041466721402596
811 => 0.0042795514155132
812 => 0.0044391971581353
813 => 0.0044035660868633
814 => 0.0042765669494021
815 => 0.0042822640379357
816 => 0.0043174811975286
817 => 0.0042718717760394
818 => 0.0042584206672406
819 => 0.0043156332217354
820 => 0.0043160272131548
821 => 0.0042635480616488
822 => 0.0042052270883332
823 => 0.0042049827213256
824 => 0.0041946050674378
825 => 0.0043421669406833
826 => 0.0044233110507801
827 => 0.0044326140922324
828 => 0.0044226848819676
829 => 0.0044265062409223
830 => 0.0043792902711454
831 => 0.0044872119765945
901 => 0.004586251605865
902 => 0.0045597068695475
903 => 0.0045199125362508
904 => 0.0044882144330252
905 => 0.0045522398038077
906 => 0.0045493888548321
907 => 0.0045853865811036
908 => 0.004583753516307
909 => 0.0045716488349049
910 => 0.0045597073018438
911 => 0.0046070541306213
912 => 0.0045934190043002
913 => 0.0045797626988618
914 => 0.0045523728876292
915 => 0.0045560956178723
916 => 0.0045163081556284
917 => 0.0044979006550439
918 => 0.0042210960120232
919 => 0.0041471247665555
920 => 0.0041703976262032
921 => 0.0041780596558787
922 => 0.0041458672750544
923 => 0.0041920228796124
924 => 0.0041848295775329
925 => 0.0042128145079832
926 => 0.0041953307384023
927 => 0.0041960482784045
928 => 0.0042474643168091
929 => 0.0042623906114975
930 => 0.004254798977549
1001 => 0.0042601158977405
1002 => 0.0043826420794223
1003 => 0.0043652227745539
1004 => 0.0043559691160222
1005 => 0.0043585324426761
1006 => 0.0043898405090868
1007 => 0.0043986050583247
1008 => 0.0043614690473296
1009 => 0.0043789826047956
1010 => 0.0044535531096845
1011 => 0.0044796485660705
1012 => 0.0045629327363251
1013 => 0.0045275521405429
1014 => 0.0045924947553375
1015 => 0.0047921062126473
1016 => 0.0049515696568085
1017 => 0.0048049204834523
1018 => 0.0050977547911073
1019 => 0.0053257683042033
1020 => 0.0053170167657942
1021 => 0.0052772573357384
1022 => 0.0050176700131315
1023 => 0.0047787938886397
1024 => 0.0049786239099931
1025 => 0.004979133317813
1026 => 0.0049619677417582
1027 => 0.0048553538231346
1028 => 0.0049582578084892
1029 => 0.0049664259531543
1030 => 0.0049618539642268
1031 => 0.0048801133227876
1101 => 0.0047553104715058
1102 => 0.0047796966499104
1103 => 0.0048196417076018
1104 => 0.00474401737998
1105 => 0.0047198508250653
1106 => 0.004764781048527
1107 => 0.0049095555901045
1108 => 0.0048821868016411
1109 => 0.0048814720919684
1110 => 0.0049985673751874
1111 => 0.0049147524231463
1112 => 0.0047800042377155
1113 => 0.004745978543784
1114 => 0.004625210252781
1115 => 0.0047086253415387
1116 => 0.004711627302082
1117 => 0.004665941710451
1118 => 0.0047837113716887
1119 => 0.0047826261035274
1120 => 0.0048944308691717
1121 => 0.0051081595891314
1122 => 0.0050449494896878
1123 => 0.0049714430212741
1124 => 0.0049794352125039
1125 => 0.0050670898238867
1126 => 0.0050140918448845
1127 => 0.0050331502876487
1128 => 0.005067060976651
1129 => 0.005087520137281
1130 => 0.0049764914541379
1201 => 0.0049506053569814
1202 => 0.0048976514869847
1203 => 0.0048838368107334
1204 => 0.0049269666329269
1205 => 0.004915603448578
1206 => 0.0047113749989225
1207 => 0.0046900319896172
1208 => 0.0046906865492418
1209 => 0.0046370185375386
1210 => 0.0045551619378927
1211 => 0.0047702761943586
1212 => 0.0047529995090423
1213 => 0.0047339273855623
1214 => 0.0047362636118646
1215 => 0.0048296374196978
1216 => 0.0047754758956642
1217 => 0.0049194731842068
1218 => 0.0048898716706371
1219 => 0.0048595109899412
1220 => 0.00485531421906
1221 => 0.0048436279472436
1222 => 0.004803551372915
1223 => 0.0047551565011845
1224 => 0.0047232020149759
1225 => 0.0043569041913014
1226 => 0.004424886936719
1227 => 0.0045030948884997
1228 => 0.0045300919600557
1229 => 0.0044839116010187
1230 => 0.0048053748549624
1231 => 0.0048641092891549
]
'min_raw' => 0.0020273145166282
'max_raw' => 0.0053257683042033
'avg_raw' => 0.0036765414104157
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002027'
'max' => '$0.005325'
'avg' => '$0.003676'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.8603551965037E-5
'max_diff' => -0.00096044841818616
'year' => 2027
]
2 => [
'items' => [
101 => 0.0046861988568335
102 => 0.0046529190789812
103 => 0.0048075566716579
104 => 0.004714291299597
105 => 0.0047562886909253
106 => 0.0046655133022183
107 => 0.0048499618839029
108 => 0.0048485566947464
109 => 0.0047768020305109
110 => 0.004837448581368
111 => 0.0048269097507183
112 => 0.0047458989115204
113 => 0.0048525300720019
114 => 0.0048525829597272
115 => 0.0047835206554815
116 => 0.0047028710038049
117 => 0.0046884527509449
118 => 0.0046775905342346
119 => 0.0047536172514806
120 => 0.004821782568434
121 => 0.004948621323669
122 => 0.0049805116003496
123 => 0.0051049814732899
124 => 0.0050308657242821
125 => 0.0050637202758576
126 => 0.0050993885391529
127 => 0.0051164892162337
128 => 0.0050886245806035
129 => 0.0052819775271234
130 => 0.0052983024399909
131 => 0.0053037760420654
201 => 0.005238578516387
202 => 0.0052964891788604
203 => 0.0052693946976886
204 => 0.0053398870106338
205 => 0.0053509411053946
206 => 0.005341578680393
207 => 0.0053450874245471
208 => 0.0051800947944895
209 => 0.0051715390562155
210 => 0.0050548809577627
211 => 0.0051024199951754
212 => 0.0050135480433378
213 => 0.005041730254748
214 => 0.0050541527050077
215 => 0.0050476639219599
216 => 0.0051051077810237
217 => 0.0050562687658144
218 => 0.0049273745747995
219 => 0.0047984452666485
220 => 0.0047968266642082
221 => 0.0047628818531634
222 => 0.0047383459720802
223 => 0.004743072453234
224 => 0.0047597291893045
225 => 0.0047373778522995
226 => 0.0047421476432911
227 => 0.0048213579547021
228 => 0.0048372430177534
229 => 0.0047832593668101
301 => 0.0045665072184687
302 => 0.0045133156975842
303 => 0.0045515487079623
304 => 0.0045332757915228
305 => 0.0036587073714279
306 => 0.0038641742490725
307 => 0.003742092807372
308 => 0.0037983535524046
309 => 0.0036737400132645
310 => 0.0037332121256973
311 => 0.0037222297981048
312 => 0.0040526144571503
313 => 0.0040474559551285
314 => 0.0040499250570645
315 => 0.0039320683884502
316 => 0.0041198172617101
317 => 0.004212309107909
318 => 0.0041951913287684
319 => 0.00419949950499
320 => 0.0041254707638317
321 => 0.0040506418170977
322 => 0.0039676449990773
323 => 0.0041218428282425
324 => 0.004104698661884
325 => 0.0041440212112339
326 => 0.004244029525736
327 => 0.004258756129941
328 => 0.0042785488353351
329 => 0.004271454559392
330 => 0.0044404689940359
331 => 0.0044200002308074
401 => 0.004469324060923
402 => 0.0043678612001671
403 => 0.0042530463422787
404 => 0.0042748688931828
405 => 0.0042727672060449
406 => 0.0042460103165748
407 => 0.0042218553931425
408 => 0.0041816442512353
409 => 0.004308878254359
410 => 0.0043037127861888
411 => 0.0043873357116652
412 => 0.0043725545473175
413 => 0.0042738423142389
414 => 0.0042773678409547
415 => 0.0043010787024285
416 => 0.0043831422647152
417 => 0.0044075043173152
418 => 0.004396218843891
419 => 0.004422930722397
420 => 0.0044440427020371
421 => 0.004425582061994
422 => 0.0046869457949598
423 => 0.0045784093508165
424 => 0.0046313092585002
425 => 0.0046439255747784
426 => 0.0046116091459243
427 => 0.0046186174221782
428 => 0.0046292330510619
429 => 0.0046936890708903
430 => 0.0048628403174198
501 => 0.0049377562530562
502 => 0.0051631445417056
503 => 0.0049315355274818
504 => 0.0049177928070711
505 => 0.0049583920439311
506 => 0.0050907188291416
507 => 0.0051979572597318
508 => 0.0052335344338921
509 => 0.0052382365447725
510 => 0.0053049816886229
511 => 0.0053432387603547
512 => 0.0052968770725879
513 => 0.0052575903964766
514 => 0.0051168703990875
515 => 0.0051331591219531
516 => 0.0052453722697479
517 => 0.0054038799503296
518 => 0.005539896030182
519 => 0.0054922679396567
520 => 0.0058556366501732
521 => 0.0058916631735929
522 => 0.0058866854729332
523 => 0.0059687592547487
524 => 0.00580585951188
525 => 0.0057362167157698
526 => 0.0052660846217745
527 => 0.0053981725637483
528 => 0.00559017014466
529 => 0.0055647585448723
530 => 0.0054253247695042
531 => 0.0055397902571601
601 => 0.0055019443872743
602 => 0.0054720937794688
603 => 0.0056088452006508
604 => 0.0054584813956225
605 => 0.0055886701506825
606 => 0.0054217017256878
607 => 0.0054924855007623
608 => 0.005452305206604
609 => 0.0054783067812361
610 => 0.0053263021072366
611 => 0.0054083201396218
612 => 0.0053228898874391
613 => 0.0053228493823762
614 => 0.0053209635048243
615 => 0.0054214718176616
616 => 0.0054247493901348
617 => 0.0053504735950884
618 => 0.0053397692926163
619 => 0.0053793487092079
620 => 0.0053330115782447
621 => 0.00535469243018
622 => 0.0053336682691632
623 => 0.0053289352876817
624 => 0.0052912220859871
625 => 0.005274974201751
626 => 0.0052813454158163
627 => 0.0052595971776252
628 => 0.0052464930774469
629 => 0.0053183567694734
630 => 0.0052799628977967
701 => 0.0053124723579933
702 => 0.0052754237250783
703 => 0.0051469970220739
704 => 0.0050731374670883
705 => 0.0048305513302747
706 => 0.0048993484577479
707 => 0.0049449610244384
708 => 0.0049298860714192
709 => 0.0049622729037367
710 => 0.004964261192206
711 => 0.0049537319028749
712 => 0.0049415403347151
713 => 0.0049356061535708
714 => 0.0049798346780365
715 => 0.0050055108251525
716 => 0.0049495388557232
717 => 0.0049364254064169
718 => 0.0049930161578071
719 => 0.0050275364834637
720 => 0.0052824151728165
721 => 0.0052635329362619
722 => 0.0053109236445621
723 => 0.0053055881780772
724 => 0.0053552611903077
725 => 0.0054364555719232
726 => 0.0052713646917926
727 => 0.0053000187601702
728 => 0.0052929934443231
729 => 0.005369694000605
730 => 0.0053699334513696
731 => 0.0053239476364016
801 => 0.0053488772927304
802 => 0.005334962242477
803 => 0.0053601086190167
804 => 0.0052632807524807
805 => 0.0053812066419993
806 => 0.0054480630223798
807 => 0.0054489913232862
808 => 0.0054806807169815
809 => 0.0055128789763019
810 => 0.00557468073119
811 => 0.005511155358901
812 => 0.0053968793982236
813 => 0.0054051297534754
814 => 0.0053381297995422
815 => 0.0053392560808723
816 => 0.0053332439028637
817 => 0.0053512869016431
818 => 0.005267240176067
819 => 0.0052869657745695
820 => 0.005259349821153
821 => 0.0052999587284807
822 => 0.005256270257089
823 => 0.0052929900565031
824 => 0.0053088371046495
825 => 0.0053673130534726
826 => 0.0052476333119025
827 => 0.0050035982172347
828 => 0.0050548973527734
829 => 0.0049790219018515
830 => 0.0049860444637126
831 => 0.0050002311563043
901 => 0.0049542474440176
902 => 0.0049630196872086
903 => 0.0049627062809525
904 => 0.0049600055151531
905 => 0.0049480433756121
906 => 0.0049306959066404
907 => 0.0049998028837541
908 => 0.0050115455058035
909 => 0.0050376479000163
910 => 0.0051153109197705
911 => 0.0051075505526769
912 => 0.005120208033381
913 => 0.0050925768240726
914 => 0.0049873261962642
915 => 0.0049930418117302
916 => 0.0049217679952821
917 => 0.0050358252682843
918 => 0.005008815000555
919 => 0.0049914013052377
920 => 0.0049866498171336
921 => 0.005064505348492
922 => 0.0050878009437103
923 => 0.0050732846920795
924 => 0.0050435114364779
925 => 0.0051006848889058
926 => 0.0051159820928212
927 => 0.0051194065726387
928 => 0.0052207069684187
929 => 0.0051250681394558
930 => 0.0051480893561554
1001 => 0.0053276943171495
1002 => 0.0051648174013182
1003 => 0.0052510969362227
1004 => 0.0052468740019662
1005 => 0.005291011692483
1006 => 0.0052432534230611
1007 => 0.0052438454440484
1008 => 0.0052830367230812
1009 => 0.005227999639864
1010 => 0.0052143716840712
1011 => 0.0051955447607487
1012 => 0.0052366526590542
1013 => 0.005261294984938
1014 => 0.0054598940337676
1015 => 0.0055881980765284
1016 => 0.0055826280596543
1017 => 0.0056335275872488
1018 => 0.0056105968838812
1019 => 0.0055365475938935
1020 => 0.0056629407025537
1021 => 0.0056229446344613
1022 => 0.0056262418617196
1023 => 0.0056261191387564
1024 => 0.0056527130275208
1025 => 0.0056338688200371
1026 => 0.0055967249527685
1027 => 0.0056213827852931
1028 => 0.0056946077325548
1029 => 0.005921900215671
1030 => 0.0060490961004477
1031 => 0.0059142428636956
1101 => 0.0060072628206504
1102 => 0.0059514839928771
1103 => 0.0059413473205943
1104 => 0.0059997707276828
1105 => 0.0060582963972113
1106 => 0.0060545685650758
1107 => 0.0060120819343244
1108 => 0.0059880823146713
1109 => 0.006169815475147
1110 => 0.0063037133720418
1111 => 0.0062945824331365
1112 => 0.0063348834279242
1113 => 0.0064532083950839
1114 => 0.0064640265471842
1115 => 0.006462663708672
1116 => 0.0064358497899339
1117 => 0.0065523560865413
1118 => 0.0066495476889043
1119 => 0.0064296431424747
1120 => 0.0065133799149932
1121 => 0.0065509720500071
1122 => 0.0066061684572913
1123 => 0.0066992940483718
1124 => 0.0068004531406284
1125 => 0.0068147581454264
1126 => 0.0068046080599647
1127 => 0.0067378909193192
1128 => 0.0068485804051452
1129 => 0.0069134197099543
1130 => 0.006952030032147
1201 => 0.0070499393850826
1202 => 0.006551204206235
1203 => 0.0061981746579
1204 => 0.006143043996119
1205 => 0.0062551543647568
1206 => 0.0062847169749032
1207 => 0.0062728003238216
1208 => 0.0058754334711282
1209 => 0.0061409519418765
1210 => 0.0064266274909746
1211 => 0.0064376014522658
1212 => 0.0065806166053383
1213 => 0.006627188201568
1214 => 0.006742334145216
1215 => 0.0067351317350899
1216 => 0.0067631679399961
1217 => 0.0067567229020076
1218 => 0.0069700065157765
1219 => 0.0072052900146867
1220 => 0.0071971428952752
1221 => 0.0071633181085588
1222 => 0.0072135536848158
1223 => 0.0074563914702032
1224 => 0.007434034858321
1225 => 0.0074557524024329
1226 => 0.0077420718371426
1227 => 0.0081143278307298
1228 => 0.0079413775478178
1229 => 0.0083166298966335
1230 => 0.0085528313589407
1231 => 0.0089613173643139
]
'min_raw' => 0.0036587073714279
'max_raw' => 0.0089613173643139
'avg_raw' => 0.0063100123678709
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003658'
'max' => '$0.008961'
'avg' => '$0.00631'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016313928547998
'max_diff' => 0.0036355490601106
'year' => 2028
]
3 => [
'items' => [
101 => 0.0089101729046052
102 => 0.0090691935088882
103 => 0.0088186136475557
104 => 0.008243231635391
105 => 0.0081521752294921
106 => 0.0083344724600172
107 => 0.0087826324129595
108 => 0.0083203583082332
109 => 0.0084138757575522
110 => 0.0083869427258571
111 => 0.008385507579056
112 => 0.0084402812952871
113 => 0.0083608291630891
114 => 0.0080371268833488
115 => 0.0081854777305642
116 => 0.0081281923440615
117 => 0.0081917547512948
118 => 0.0085347748480016
119 => 0.0083831174866697
120 => 0.0082233587761502
121 => 0.0084237316524376
122 => 0.0086788751795421
123 => 0.0086629087561529
124 => 0.0086319272213306
125 => 0.0088065685109834
126 => 0.0090950247563931
127 => 0.0091729933204162
128 => 0.009230548120381
129 => 0.0092384839548999
130 => 0.0093202279825375
131 => 0.0088806697437826
201 => 0.0095782599573428
202 => 0.0096987145166839
203 => 0.0096760740518577
204 => 0.0098099542250626
205 => 0.0097705632818936
206 => 0.0097134919854912
207 => 0.0099257205371505
208 => 0.0096824176286341
209 => 0.0093370797809796
210 => 0.0091476206077482
211 => 0.0093971157302949
212 => 0.0095494736954543
213 => 0.0096501726186381
214 => 0.0096806440519496
215 => 0.0089147913985953
216 => 0.0085020392945728
217 => 0.0087666086610388
218 => 0.0090894015477295
219 => 0.0088788766129988
220 => 0.0088871287918639
221 => 0.0085869755599175
222 => 0.0091159584485948
223 => 0.0090388900911609
224 => 0.0094387208658594
225 => 0.0093432980426352
226 => 0.0096693445180606
227 => 0.0095834855540738
228 => 0.009939881313273
301 => 0.010082057230648
302 => 0.010320792723834
303 => 0.01049640752445
304 => 0.010599531894348
305 => 0.010593340693989
306 => 0.011001970823881
307 => 0.010761015912733
308 => 0.010458319755619
309 => 0.010452844937131
310 => 0.010609615566138
311 => 0.010938163796615
312 => 0.011023351572595
313 => 0.011070959917838
314 => 0.01099804607984
315 => 0.010736506793183
316 => 0.010623575455239
317 => 0.010719796227104
318 => 0.010602126491459
319 => 0.010805257467478
320 => 0.011084199683988
321 => 0.011026599219336
322 => 0.011219148936724
323 => 0.0114184176374
324 => 0.011703380829084
325 => 0.011777880759546
326 => 0.011901026311622
327 => 0.012027783535915
328 => 0.012068494540155
329 => 0.012146224479132
330 => 0.012145814803985
331 => 0.012380059206919
401 => 0.012638438037301
402 => 0.012735970064286
403 => 0.012960239582392
404 => 0.012576185891977
405 => 0.012867495027848
406 => 0.013130263160343
407 => 0.012816980160123
408 => 0.013248767790349
409 => 0.013265533125579
410 => 0.013518669782827
411 => 0.013262067285591
412 => 0.013109697541836
413 => 0.013549583282837
414 => 0.013762430136636
415 => 0.013698318932066
416 => 0.013210429499732
417 => 0.012926456923551
418 => 0.012183245917467
419 => 0.0130636114585
420 => 0.013492411832922
421 => 0.013209319010353
422 => 0.013352094563531
423 => 0.014131031686541
424 => 0.014427600510539
425 => 0.01436591626832
426 => 0.014376339889846
427 => 0.01453636304417
428 => 0.015245993836806
429 => 0.014820766616746
430 => 0.015145836893522
501 => 0.015318252996196
502 => 0.015478402681214
503 => 0.015085125670639
504 => 0.014573478058267
505 => 0.014411417781923
506 => 0.013181171008298
507 => 0.01311713132104
508 => 0.013081183903981
509 => 0.012854540524286
510 => 0.012676460910693
511 => 0.012534845390291
512 => 0.012163203974783
513 => 0.012288622042869
514 => 0.01169630319414
515 => 0.012075247803065
516 => 0.011129892618456
517 => 0.01191721250758
518 => 0.011488710086972
519 => 0.011776437937875
520 => 0.011775434082508
521 => 0.011245635884799
522 => 0.010940059340967
523 => 0.011134784607914
524 => 0.011343545551392
525 => 0.011377416312115
526 => 0.011648080324553
527 => 0.01172361683252
528 => 0.011494737686916
529 => 0.011110302233508
530 => 0.011199597821295
531 => 0.010938249768731
601 => 0.010480247359219
602 => 0.010809192685685
603 => 0.010921509082846
604 => 0.010971114402356
605 => 0.010520721634533
606 => 0.01037919844838
607 => 0.010303852691567
608 => 0.011052162182972
609 => 0.011093156266124
610 => 0.010883424740738
611 => 0.011831431123044
612 => 0.011616868081767
613 => 0.011856587568095
614 => 0.011191495182656
615 => 0.011216902607445
616 => 0.0109020372136
617 => 0.01107834079484
618 => 0.010953735106149
619 => 0.011064097207742
620 => 0.011130247796396
621 => 0.011445061523929
622 => 0.011920807174656
623 => 0.011398038851148
624 => 0.011170261206415
625 => 0.011311573176137
626 => 0.011687905573381
627 => 0.012258068419306
628 => 0.011920520538922
629 => 0.012070318556301
630 => 0.012103042759049
701 => 0.011854147448755
702 => 0.012267245544417
703 => 0.012488628169885
704 => 0.012715720934935
705 => 0.012912899219834
706 => 0.012625015090697
707 => 0.012933092375442
708 => 0.012684836466899
709 => 0.012462125252712
710 => 0.012462463013693
711 => 0.012322753015742
712 => 0.012052047290118
713 => 0.012002125000942
714 => 0.012261827053725
715 => 0.012470083506182
716 => 0.012487236505087
717 => 0.01260253797777
718 => 0.012670772201604
719 => 0.013339560355105
720 => 0.01360855248295
721 => 0.013937470965117
722 => 0.014065603250751
723 => 0.014451235492543
724 => 0.014139806137777
725 => 0.014072426437891
726 => 0.013137008758648
727 => 0.013290183351221
728 => 0.01353543065308
729 => 0.013141052796326
730 => 0.013391194773167
731 => 0.013440578098127
801 => 0.013127651987664
802 => 0.013294799344001
803 => 0.012850905521306
804 => 0.011930482846969
805 => 0.01226827023797
806 => 0.012516995455753
807 => 0.012162033902378
808 => 0.012798288747894
809 => 0.01242660180211
810 => 0.012308794884416
811 => 0.011849188097294
812 => 0.012066104808928
813 => 0.012359487767361
814 => 0.012178211208479
815 => 0.012554387286971
816 => 0.013087152936612
817 => 0.013466833465289
818 => 0.013495980621769
819 => 0.013251871478449
820 => 0.013643057938502
821 => 0.013645907304796
822 => 0.013204647379812
823 => 0.012934378132706
824 => 0.012872972391112
825 => 0.013026375972918
826 => 0.013212636241095
827 => 0.013506316770347
828 => 0.013683781763463
829 => 0.014146516345352
830 => 0.014271719055571
831 => 0.014409278875011
901 => 0.014593101215661
902 => 0.014813827066692
903 => 0.014330891470566
904 => 0.014350079402105
905 => 0.013900376461691
906 => 0.013419804375933
907 => 0.013784498684867
908 => 0.014261287980547
909 => 0.014151911989313
910 => 0.01413960495595
911 => 0.01416030197238
912 => 0.014077836046875
913 => 0.013704845722147
914 => 0.013517532316111
915 => 0.013759214398643
916 => 0.013887657669477
917 => 0.01408686198111
918 => 0.014062305845009
919 => 0.014575434758794
920 => 0.014774821138479
921 => 0.014723809570331
922 => 0.014733196926532
923 => 0.015094176443016
924 => 0.015495659906445
925 => 0.015871702150356
926 => 0.016254228472252
927 => 0.01579307806095
928 => 0.015558934321894
929 => 0.015800510893589
930 => 0.015672326964211
1001 => 0.016408909844241
1002 => 0.016459909244713
1003 => 0.017196438861417
1004 => 0.017895493171984
1005 => 0.017456429684376
1006 => 0.017870446777337
1007 => 0.018318240018683
1008 => 0.019182105833075
1009 => 0.018891186217954
1010 => 0.018668346352062
1011 => 0.018457763755549
1012 => 0.018895952709847
1013 => 0.019459675799311
1014 => 0.019581096353509
1015 => 0.019777844037532
1016 => 0.019570987904945
1017 => 0.01982012333219
1018 => 0.020699680866023
1019 => 0.020462016656312
1020 => 0.020124495272095
1021 => 0.020818821471452
1022 => 0.021070095423874
1023 => 0.022833667615166
1024 => 0.025060250356206
1025 => 0.024138430480885
1026 => 0.023566227137332
1027 => 0.023700708495911
1028 => 0.024513781138357
1029 => 0.024774914265474
1030 => 0.024065064407982
1031 => 0.02431579537811
1101 => 0.025697347674846
1102 => 0.02643850615654
1103 => 0.025431913387535
1104 => 0.022654763859899
1105 => 0.020094105164348
1106 => 0.020773307158372
1107 => 0.020696306730341
1108 => 0.022180612321024
1109 => 0.020456348443511
1110 => 0.020485380625087
1111 => 0.022000380083479
1112 => 0.021596204201646
1113 => 0.020941491036013
1114 => 0.020098885295006
1115 => 0.018541250651156
1116 => 0.017161610209243
1117 => 0.019867402828053
1118 => 0.019750724130165
1119 => 0.01958175608481
1120 => 0.019957776185496
1121 => 0.021783623059263
1122 => 0.021741531379133
1123 => 0.021473765585511
1124 => 0.021676863579994
1125 => 0.020905886975616
1126 => 0.021104585201375
1127 => 0.020093699542927
1128 => 0.02055066207886
1129 => 0.020940086315606
1130 => 0.021018268996657
1201 => 0.021194418569172
1202 => 0.019689239758299
1203 => 0.020365020854653
1204 => 0.020761978936635
1205 => 0.018968507880781
1206 => 0.02072652778031
1207 => 0.019663037943923
1208 => 0.019302073520371
1209 => 0.019788064563236
1210 => 0.01959867338119
1211 => 0.01943584596429
1212 => 0.01934498546793
1213 => 0.019701843652936
1214 => 0.019685195792068
1215 => 0.019101306538209
1216 => 0.018339646808921
1217 => 0.018595284814698
1218 => 0.01850240913058
1219 => 0.018165815670135
1220 => 0.018392639022026
1221 => 0.01739382377297
1222 => 0.015675414050869
1223 => 0.016810648149602
1224 => 0.016766942871698
1225 => 0.016744904688702
1226 => 0.017598001738334
1227 => 0.01751599614131
1228 => 0.017367155179709
1229 => 0.018163082089152
1230 => 0.017872558060478
1231 => 0.018767884660783
]
'min_raw' => 0.0080371268833488
'max_raw' => 0.02643850615654
'avg_raw' => 0.017237816519944
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008037'
'max' => '$0.026438'
'avg' => '$0.017237'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0043784195119208
'max_diff' => 0.017477188792226
'year' => 2029
]
4 => [
'items' => [
101 => 0.019357604665837
102 => 0.019208032597112
103 => 0.01976266711223
104 => 0.018601174198035
105 => 0.018986975553123
106 => 0.019066488677709
107 => 0.018153260474638
108 => 0.017529413271163
109 => 0.01748780977507
110 => 0.016406144695684
111 => 0.016983961450197
112 => 0.017492416282486
113 => 0.017248905875508
114 => 0.017171817755326
115 => 0.017565644242965
116 => 0.017596247933951
117 => 0.016898480536251
118 => 0.017043568473652
119 => 0.017648609291479
120 => 0.017028322997418
121 => 0.015823208051247
122 => 0.015524322882579
123 => 0.015484446091532
124 => 0.014673845809223
125 => 0.015544295818725
126 => 0.015164321062967
127 => 0.016364656763608
128 => 0.015679031448932
129 => 0.015649475511958
130 => 0.015604797378309
131 => 0.014907080229849
201 => 0.015059835943124
202 => 0.015567619199401
203 => 0.015748801985828
204 => 0.015729903136817
205 => 0.015565130784425
206 => 0.015640562723579
207 => 0.015397570165334
208 => 0.015311764435564
209 => 0.015040937949687
210 => 0.014642897833175
211 => 0.014698247752698
212 => 0.013909626129024
213 => 0.013479943213129
214 => 0.013361012645139
215 => 0.013201973719172
216 => 0.013378976515013
217 => 0.013907392063049
218 => 0.013270010802505
219 => 0.0121772653384
220 => 0.012242941202741
221 => 0.012390495370575
222 => 0.012115529154985
223 => 0.011855296708095
224 => 0.01208154770734
225 => 0.01161853704879
226 => 0.012446447996601
227 => 0.012424055325656
228 => 0.01273264932933
301 => 0.012925619492814
302 => 0.012480885740816
303 => 0.012369036404876
304 => 0.012432750869897
305 => 0.011379692688839
306 => 0.012646592009618
307 => 0.012657548207553
308 => 0.012563734589131
309 => 0.013238319366317
310 => 0.014661903654449
311 => 0.014126293981709
312 => 0.013918889727536
313 => 0.013524614088741
314 => 0.014049962967664
315 => 0.014009624370482
316 => 0.013827197936065
317 => 0.013716865859325
318 => 0.013920156093685
319 => 0.013691675949575
320 => 0.013650634637478
321 => 0.01340196893956
322 => 0.013313206598972
323 => 0.013247490495731
324 => 0.013175143523193
325 => 0.013334722916869
326 => 0.012973095016383
327 => 0.012537007219217
328 => 0.012500751237418
329 => 0.012600857190824
330 => 0.012556567758453
331 => 0.012500539196655
401 => 0.012393565413712
402 => 0.012361828577446
403 => 0.012464957898786
404 => 0.012348530907806
405 => 0.012520325275104
406 => 0.012473606713015
407 => 0.012212640622918
408 => 0.011887380252637
409 => 0.011884484753084
410 => 0.011814407939841
411 => 0.011725154582056
412 => 0.011700326339761
413 => 0.012062493479249
414 => 0.012812168619239
415 => 0.012664989451053
416 => 0.012771341483595
417 => 0.013294488223227
418 => 0.013460780840184
419 => 0.013342750279524
420 => 0.013181182768285
421 => 0.013188290918811
422 => 0.013740416014527
423 => 0.013774851379496
424 => 0.013861858437504
425 => 0.013973687095236
426 => 0.013361795183497
427 => 0.013159470864794
428 => 0.013063598378067
429 => 0.012768348226269
430 => 0.013086750202148
501 => 0.012901231006136
502 => 0.012926263883916
503 => 0.012909961189422
504 => 0.012918863562999
505 => 0.012446216578618
506 => 0.012618424298132
507 => 0.012332095564203
508 => 0.011948733531381
509 => 0.011947448367423
510 => 0.012041275681848
511 => 0.011985463523765
512 => 0.011835274441425
513 => 0.011856608091699
514 => 0.011669702866979
515 => 0.011879301770009
516 => 0.011885312316567
517 => 0.011804605321971
518 => 0.012127521351163
519 => 0.012259820311798
520 => 0.012206697239043
521 => 0.012256093055398
522 => 0.012671105409965
523 => 0.012738770532019
524 => 0.012768822909527
525 => 0.012728556704843
526 => 0.012263678719391
527 => 0.012284298034859
528 => 0.012133007179081
529 => 0.012005182348586
530 => 0.012010294671453
531 => 0.012076013250392
601 => 0.012363010138963
602 => 0.01296697817157
603 => 0.012989898316913
604 => 0.013017678201696
605 => 0.012904683449232
606 => 0.012870603150675
607 => 0.012915563861343
608 => 0.01314238249926
609 => 0.013725821616641
610 => 0.01351959526597
611 => 0.01335193003277
612 => 0.013499017644509
613 => 0.013476374659593
614 => 0.013285245079804
615 => 0.013279880709076
616 => 0.012913041937639
617 => 0.012777429996353
618 => 0.012664102507837
619 => 0.012540351848866
620 => 0.012466988310069
621 => 0.012579708048794
622 => 0.012605488386701
623 => 0.012359024707975
624 => 0.012325432619279
625 => 0.012526700179615
626 => 0.012438129830322
627 => 0.012529226631009
628 => 0.012550361870182
629 => 0.012546958609889
630 => 0.012454480992987
701 => 0.012513423468278
702 => 0.012374006942618
703 => 0.012222412410647
704 => 0.012125704543923
705 => 0.012041314103769
706 => 0.012088138824768
707 => 0.011921217244264
708 => 0.011867815671194
709 => 0.012493455083897
710 => 0.012955621644819
711 => 0.012948901559985
712 => 0.012907994771824
713 => 0.012847215582257
714 => 0.013137936122973
715 => 0.013036654899728
716 => 0.013110345451968
717 => 0.013129102790296
718 => 0.013185875604065
719 => 0.0132061670052
720 => 0.013144832297687
721 => 0.012938985527873
722 => 0.012426034948819
723 => 0.012187255069586
724 => 0.012108453732245
725 => 0.012111318011193
726 => 0.012032308411122
727 => 0.012055580279305
728 => 0.012024215405087
729 => 0.011964817921296
730 => 0.012084471197522
731 => 0.012098260122959
801 => 0.012070331618538
802 => 0.012076909792356
803 => 0.011845673704169
804 => 0.011863254081735
805 => 0.011765364305439
806 => 0.011747011152462
807 => 0.011499554322222
808 => 0.011061148678011
809 => 0.01130406796197
810 => 0.011010655626568
811 => 0.010899535929229
812 => 0.011425559293773
813 => 0.01137276113759
814 => 0.011282393645011
815 => 0.011148721289252
816 => 0.011099140912219
817 => 0.010797906236611
818 => 0.010780107684951
819 => 0.010929407724203
820 => 0.010860510893189
821 => 0.010763753649175
822 => 0.01041330871948
823 => 0.010019292590174
824 => 0.010031185460421
825 => 0.010156514660222
826 => 0.01052092621159
827 => 0.010378544314087
828 => 0.010275244613804
829 => 0.010255899685119
830 => 0.010498041968968
831 => 0.01084072403099
901 => 0.011001502787413
902 => 0.010842175922722
903 => 0.010659149799332
904 => 0.010670289751402
905 => 0.010744398861732
906 => 0.010752186681382
907 => 0.010633055490445
908 => 0.010666590222879
909 => 0.010615647897831
910 => 0.010303014943049
911 => 0.010297360404267
912 => 0.010220635235276
913 => 0.010218312027651
914 => 0.010087783375207
915 => 0.010069521514429
916 => 0.009810348952478
917 => 0.0099809371176006
918 => 0.009866515532717
919 => 0.0096940552149742
920 => 0.0096643229911911
921 => 0.0096634292046415
922 => 0.0098405073895419
923 => 0.0099788678559101
924 => 0.0098685059451742
925 => 0.0098433786773754
926 => 0.010111672159173
927 => 0.010077529368065
928 => 0.010047961931163
929 => 0.010810040610906
930 => 0.010206795870148
1001 => 0.0099437467311721
1002 => 0.0096181734700122
1003 => 0.0097241817655287
1004 => 0.00974651927098
1005 => 0.0089635742668817
1006 => 0.0086459335762286
1007 => 0.0085369312612334
1008 => 0.0084741988878871
1009 => 0.0085027868181646
1010 => 0.0082168729410398
1011 => 0.0084090117950467
1012 => 0.0081614345451551
1013 => 0.0081199274135247
1014 => 0.0085626262052669
1015 => 0.008624225155929
1016 => 0.0083614248951106
1017 => 0.0085301852060536
1018 => 0.0084689903713618
1019 => 0.0081656785465147
1020 => 0.0081540942658163
1021 => 0.0080019030540341
1022 => 0.0077637532776207
1023 => 0.0076549124393881
1024 => 0.0075982271858371
1025 => 0.0076216166262258
1026 => 0.0076097902094366
1027 => 0.0075326148401904
1028 => 0.0076142138112636
1029 => 0.0074057621591944
1030 => 0.0073227550317314
1031 => 0.0072852626380071
1101 => 0.0071002497987663
1102 => 0.0073946875015815
1103 => 0.0074526954382645
1104 => 0.0075108176685023
1105 => 0.0080167320009909
1106 => 0.0079914579506388
1107 => 0.0082199230568598
1108 => 0.0082110453229524
1109 => 0.0081458833737688
1110 => 0.0078709758287838
1111 => 0.007980549076459
1112 => 0.0076432996515781
1113 => 0.0078959898514307
1114 => 0.007780672596813
1115 => 0.0078570009716457
1116 => 0.0077197556714444
1117 => 0.0077957128872954
1118 => 0.0074664512720046
1119 => 0.007158991408482
1120 => 0.0072827222328765
1121 => 0.0074172317893293
1122 => 0.0077088827801166
1123 => 0.0075351778560721
1124 => 0.0075976487152689
1125 => 0.0073883817944552
1126 => 0.0069566043626758
1127 => 0.0069590481760488
1128 => 0.0068926286249522
1129 => 0.0068352324353915
1130 => 0.0075551299561655
1201 => 0.0074655993195616
1202 => 0.0073229439676133
1203 => 0.0075138938250945
1204 => 0.0075643839981942
1205 => 0.0075658213824416
1206 => 0.0077051334693307
1207 => 0.0077794843550764
1208 => 0.0077925890209443
1209 => 0.0080117995997012
1210 => 0.008085276094243
1211 => 0.0083879153764782
1212 => 0.0077731762018816
1213 => 0.0077605160531212
1214 => 0.0075165808811785
1215 => 0.00736187333867
1216 => 0.0075271738389721
1217 => 0.0076736075164714
1218 => 0.0075211309837207
1219 => 0.0075410411999426
1220 => 0.0073363539125153
1221 => 0.0074095199863385
1222 => 0.0074725404656496
1223 => 0.0074377442611466
1224 => 0.0073856526588502
1225 => 0.0076616016248241
1226 => 0.0076460315027111
1227 => 0.0079030015238653
1228 => 0.0081033280314574
1229 => 0.0084623489457092
1230 => 0.0080876919055039
1231 => 0.008074037913832
]
'min_raw' => 0.0068352324353915
'max_raw' => 0.01976266711223
'avg_raw' => 0.013298949773811
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006835'
'max' => '$0.019762'
'avg' => '$0.013298'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012018944479573
'max_diff' => -0.0066758390443103
'year' => 2030
]
5 => [
'items' => [
101 => 0.0082075078725944
102 => 0.0080852556606877
103 => 0.0081625148386098
104 => 0.0084499012977237
105 => 0.0084559733207472
106 => 0.008354259111745
107 => 0.0083480697928834
108 => 0.0083676051193538
109 => 0.0084820241366657
110 => 0.0084420426162756
111 => 0.0084883102438793
112 => 0.0085461686206726
113 => 0.0087854953985334
114 => 0.0088431962744386
115 => 0.008703013060463
116 => 0.0087156700351201
117 => 0.008663237664978
118 => 0.0086125886523963
119 => 0.0087264402359856
120 => 0.0089345062427535
121 => 0.008933211874924
122 => 0.0089814791442689
123 => 0.0090115492532032
124 => 0.0088824663329924
125 => 0.0087984380984456
126 => 0.0088306598704263
127 => 0.0088821831855224
128 => 0.0088139515537546
129 => 0.0083927943145174
130 => 0.0085205465172733
131 => 0.0084992823039712
201 => 0.0084689994784122
202 => 0.0085974553061619
203 => 0.0085850654282054
204 => 0.0082139404809767
205 => 0.0082376986959863
206 => 0.0082153852967211
207 => 0.0082874844546391
208 => 0.0080813620695509
209 => 0.0081447639269486
210 => 0.0081845289775529
211 => 0.0082079508978484
212 => 0.0082925669345166
213 => 0.0082826382192483
214 => 0.008291949751635
215 => 0.0084174129962086
216 => 0.0090519630334756
217 => 0.0090865001919483
218 => 0.0089164265922565
219 => 0.0089843676407799
220 => 0.0088539356846889
221 => 0.008941495530631
222 => 0.0090014017534456
223 => 0.0087306970518505
224 => 0.008714667676281
225 => 0.0085836973811099
226 => 0.0086540733991981
227 => 0.008542100094205
228 => 0.0085695744265903
301 => 0.0084927537980716
302 => 0.0086310156345708
303 => 0.0087856138514943
304 => 0.0088246714663577
305 => 0.0087219276970124
306 => 0.0086475344368621
307 => 0.0085169243787014
308 => 0.0087341318162576
309 => 0.0087976498902757
310 => 0.0087337981828552
311 => 0.0087190023470585
312 => 0.0086909642649593
313 => 0.0087249507587205
314 => 0.0087973039572034
315 => 0.0087631835249527
316 => 0.0087857206715789
317 => 0.0086998323088442
318 => 0.0088825090648101
319 => 0.0091726437168393
320 => 0.0091735765471874
321 => 0.0091394559310148
322 => 0.0091254945100159
323 => 0.0091605043328211
324 => 0.0091794957255148
325 => 0.0092927110727635
326 => 0.0094141956510597
327 => 0.0099811111700939
328 => 0.0098219235608982
329 => 0.01032492473534
330 => 0.010722733357796
331 => 0.010842018769608
401 => 0.010732281803554
402 => 0.010356877570556
403 => 0.010338458447924
404 => 0.010899470863602
405 => 0.010740959160177
406 => 0.010722104697434
407 => 0.010521525068973
408 => 0.010640092471664
409 => 0.010614160041416
410 => 0.010573224431613
411 => 0.010799442776471
412 => 0.011222903323393
413 => 0.011156903025968
414 => 0.011107636865605
415 => 0.01089176689206
416 => 0.011021768832438
417 => 0.010975477631492
418 => 0.011174374007877
419 => 0.011056552200601
420 => 0.010739758278123
421 => 0.010790208754444
422 => 0.01078258326644
423 => 0.010939515269208
424 => 0.010892408177269
425 => 0.010773384850697
426 => 0.01122145598128
427 => 0.011192360734363
428 => 0.011233611142392
429 => 0.011251770847718
430 => 0.011524503849005
501 => 0.011636233833149
502 => 0.011661598495659
503 => 0.011767733339089
504 => 0.011658957764068
505 => 0.012094137619824
506 => 0.012383506830453
507 => 0.012719624059403
508 => 0.013210781670692
509 => 0.013395461475999
510 => 0.013362100722175
511 => 0.01373449081755
512 => 0.014403667541172
513 => 0.013497360470514
514 => 0.014451704016603
515 => 0.014149569868337
516 => 0.01343321523796
517 => 0.01338709044503
518 => 0.01387221411777
519 => 0.014948171732483
520 => 0.014678656553407
521 => 0.014948612562764
522 => 0.014633694538292
523 => 0.014618056204039
524 => 0.014933317697226
525 => 0.015669943360067
526 => 0.015320000119651
527 => 0.014818270674913
528 => 0.015188739889133
529 => 0.014867805170468
530 => 0.014144649425345
531 => 0.014678450460229
601 => 0.01432151290998
602 => 0.014425686262987
603 => 0.015175915903157
604 => 0.01508564628799
605 => 0.015202463528757
606 => 0.014996284156443
607 => 0.014803680111199
608 => 0.014444170357786
609 => 0.014337737243417
610 => 0.014367151527166
611 => 0.014337722667159
612 => 0.01413658026419
613 => 0.014093143581419
614 => 0.014020747207131
615 => 0.014043185870754
616 => 0.013907059506785
617 => 0.014163958080736
618 => 0.014211640719844
619 => 0.014398590078402
620 => 0.014417999780988
621 => 0.014938651083515
622 => 0.014651885095273
623 => 0.01484427247837
624 => 0.014827063540006
625 => 0.013448740814978
626 => 0.013638661525442
627 => 0.013934118550523
628 => 0.013801015561207
629 => 0.013612839075616
630 => 0.013460876474117
701 => 0.013230637593872
702 => 0.013554694396471
703 => 0.013980794632289
704 => 0.014428806386141
705 => 0.014967063153501
706 => 0.014846930509026
707 => 0.014418744050279
708 => 0.014437952182028
709 => 0.014556689294379
710 => 0.01440291394548
711 => 0.014357562593038
712 => 0.014550458714971
713 => 0.014551787084549
714 => 0.014374849961269
715 => 0.014178216727895
716 => 0.014177392827468
717 => 0.01414240384284
718 => 0.014639919000928
719 => 0.014913502033421
720 => 0.014944867887195
721 => 0.014911390861552
722 => 0.014924274840066
723 => 0.01476508290145
724 => 0.015128948466224
725 => 0.015462867491036
726 => 0.015373370059247
727 => 0.015239200686186
728 => 0.01513232831807
729 => 0.015348194325771
730 => 0.015338582152253
731 => 0.015459950999659
801 => 0.01545444500768
802 => 0.015413633229211
803 => 0.015373371516764
804 => 0.015533004655638
805 => 0.015487032875272
806 => 0.015440989688033
807 => 0.015348643027167
808 => 0.015361194472095
809 => 0.015227048265267
810 => 0.015164986091876
811 => 0.014231719912049
812 => 0.013982320693447
813 => 0.014060786764608
814 => 0.014086619832605
815 => 0.013978080973056
816 => 0.014133697816304
817 => 0.014109445096123
818 => 0.014203798242982
819 => 0.014144850493162
820 => 0.014147269729376
821 => 0.014320622492611
822 => 0.014370947537273
823 => 0.014345351813385
824 => 0.014363278181026
825 => 0.014776383757071
826 => 0.01471765335453
827 => 0.014686453998721
828 => 0.0146950964335
829 => 0.014800653765263
830 => 0.01483020405494
831 => 0.014704997401117
901 => 0.014764045582871
902 => 0.01501546524645
903 => 0.015103447899582
904 => 0.015384246294311
905 => 0.015264958145436
906 => 0.015483916705365
907 => 0.016156920670112
908 => 0.016694562805484
909 => 0.016200124878795
910 => 0.017187436192092
911 => 0.01795619967089
912 => 0.017926693248131
913 => 0.017792641553783
914 => 0.016917424771806
915 => 0.016112037240284
916 => 0.016785778108963
917 => 0.016787495612993
918 => 0.016729620674863
919 => 0.016370164404677
920 => 0.016717112375827
921 => 0.016744651845847
922 => 0.016729237065972
923 => 0.01645364278641
924 => 0.016032861259857
925 => 0.016115080962937
926 => 0.016249758513818
927 => 0.015994785813319
928 => 0.015913306586169
929 => 0.016064791971498
930 => 0.016552909446263
1001 => 0.01646063366513
1002 => 0.016458223971569
1003 => 0.016853018894274
1004 => 0.016570430931694
1005 => 0.016116118016696
1006 => 0.016001398014008
1007 => 0.015594219289119
1008 => 0.015875459084721
1009 => 0.015885580404283
1010 => 0.015731548242433
1011 => 0.016128616877711
1012 => 0.016124957820334
1013 => 0.016501915393664
1014 => 0.01722251669507
1015 => 0.017009399431608
1016 => 0.016761567241293
1017 => 0.016788513472022
1018 => 0.017084047114148
1019 => 0.016905360727742
1020 => 0.016969617598139
1021 => 0.017083949853679
1022 => 0.017152929342156
1023 => 0.016778588385164
1024 => 0.016691311601291
1025 => 0.016512773931476
1026 => 0.016466196785985
1027 => 0.016611611992739
1028 => 0.016573300223354
1029 => 0.015884729746565
1030 => 0.015812770300571
1031 => 0.015814977194045
1101 => 0.015634031745607
1102 => 0.015358046504856
1103 => 0.016083319239328
1104 => 0.016025069688565
1105 => 0.015960766692679
1106 => 0.015968643442767
1107 => 0.016283459755028
1108 => 0.016100850395312
1109 => 0.016586347307203
1110 => 0.016486543737491
1111 => 0.016384180582809
1112 => 0.016370030876775
1113 => 0.016330629795436
1114 => 0.01619550882703
1115 => 0.016032342138169
1116 => 0.015924605356926
1117 => 0.01468960667031
1118 => 0.014918815242889
1119 => 0.015182498812622
1120 => 0.015273521324248
1121 => 0.015117821019545
1122 => 0.016201656824064
1123 => 0.016399684069652
1124 => 0.01579984662577
1125 => 0.015687641531221
1126 => 0.016209012971383
1127 => 0.015894562257899
1128 => 0.016036159394927
1129 => 0.015730103834166
1130 => 0.016351985105104
1201 => 0.016347247411756
1202 => 0.016105321551535
1203 => 0.016309795631957
1204 => 0.016274263228624
1205 => 0.016001129528272
1206 => 0.016360643930585
1207 => 0.016360822245243
1208 => 0.016127973864703
1209 => 0.015856057933296
1210 => 0.015807445787129
1211 => 0.015770823065114
1212 => 0.016027152450325
1213 => 0.016256976575584
1214 => 0.016684622294458
1215 => 0.016792142588794
1216 => 0.017211801455622
1217 => 0.016961915033245
1218 => 0.017072686447714
1219 => 0.017192944487693
1220 => 0.017250600614401
1221 => 0.017156653049928
1222 => 0.017808556008591
1223 => 0.017863596592093
1224 => 0.017882051223642
1225 => 0.017662233213871
1226 => 0.017857483055593
1227 => 0.017766132120647
1228 => 0.018003801875357
1229 => 0.018041071527616
1230 => 0.018009505458059
1231 => 0.018021335433947
]
'min_raw' => 0.0080813620695509
'max_raw' => 0.018041071527616
'avg_raw' => 0.013061216798583
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008081'
'max' => '$0.018041'
'avg' => '$0.013061'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012461296341594
'max_diff' => -0.001721595584614
'year' => 2031
]
6 => [
'items' => [
101 => 0.017465051262291
102 => 0.017436204993357
103 => 0.017042884069615
104 => 0.017203165253322
105 => 0.01690352726286
106 => 0.016998545556249
107 => 0.017040428714607
108 => 0.017018551329529
109 => 0.017212227310965
110 => 0.017047563161355
111 => 0.016612987397244
112 => 0.016178293233256
113 => 0.016172836002121
114 => 0.016058388701732
115 => 0.01597566426562
116 => 0.015991599926822
117 => 0.01604775927542
118 => 0.015972400182187
119 => 0.015988481865531
120 => 0.016255544960741
121 => 0.016309102559878
122 => 0.016127092911705
123 => 0.01539629791042
124 => 0.015216958984044
125 => 0.015345864247878
126 => 0.015284255834328
127 => 0.012335587345561
128 => 0.013028333268779
129 => 0.012616727164631
130 => 0.012806414194509
131 => 0.012386270947058
201 => 0.012586785326336
202 => 0.012549757642096
203 => 0.013663672586788
204 => 0.013646280337067
205 => 0.013654605086631
206 => 0.013257243099908
207 => 0.013890251534311
208 => 0.014202094251346
209 => 0.014144380463848
210 => 0.014158905780766
211 => 0.01390931271143
212 => 0.013657021693126
213 => 0.013377192126517
214 => 0.013897080873296
215 => 0.013839278119451
216 => 0.013971856839997
217 => 0.014309041854698
218 => 0.014358693628954
219 => 0.014425426117073
220 => 0.014401507270424
221 => 0.014971351237037
222 => 0.014902339372729
223 => 0.015068638109643
224 => 0.014726548990694
225 => 0.014339442681206
226 => 0.014413018935181
227 => 0.01440593295026
228 => 0.014315720229306
229 => 0.014234280218511
301 => 0.014098705546118
302 => 0.014527683870844
303 => 0.014510268134267
304 => 0.014792208665877
305 => 0.014742372938291
306 => 0.014409557752598
307 => 0.014421444312065
308 => 0.014501387136963
309 => 0.014778070166708
310 => 0.014860208527953
311 => 0.014822158766376
312 => 0.014912219729723
313 => 0.014983400243071
314 => 0.014921158906285
315 => 0.015802364979812
316 => 0.015436426780611
317 => 0.01561478251272
318 => 0.015657319303895
319 => 0.015548362207753
320 => 0.015571991100445
321 => 0.015607782434386
322 => 0.015825100405413
323 => 0.01639540564285
324 => 0.016647989950312
325 => 0.017407902301601
326 => 0.01662701633972
327 => 0.01658068179837
328 => 0.016717564959991
329 => 0.01716371395509
330 => 0.017525275810973
331 => 0.017645226737573
401 => 0.017661080232697
402 => 0.017886116145186
403 => 0.018015102533553
404 => 0.017858790866378
405 => 0.01772633309496
406 => 0.017251885799006
407 => 0.01730680436539
408 => 0.017685138827652
409 => 0.018219558539386
410 => 0.018678146248948
411 => 0.018517564816455
412 => 0.019742687793555
413 => 0.019864153732555
414 => 0.019847371067249
415 => 0.020124088552849
416 => 0.01957486069647
417 => 0.01934005514708
418 => 0.0177549719686
419 => 0.01820031568705
420 => 0.018847648935937
421 => 0.018761971953072
422 => 0.018291861244463
423 => 0.01867778962782
424 => 0.018550189635186
425 => 0.018449546226867
426 => 0.018910613191061
427 => 0.018403651124342
428 => 0.018842591601516
429 => 0.018279645899283
430 => 0.018518298338912
501 => 0.018382827671859
502 => 0.018470493796103
503 => 0.017957999425086
504 => 0.018234528947589
505 => 0.017946494887805
506 => 0.017946358322158
507 => 0.017939999954324
508 => 0.018278870748321
509 => 0.018289921312747
510 => 0.018039495283978
511 => 0.018003404980842
512 => 0.018136849747228
513 => 0.01798062087503
514 => 0.018053719381039
515 => 0.017982834954311
516 => 0.0179668773768
517 => 0.017839724684234
518 => 0.017784943808141
519 => 0.017806424801187
520 => 0.017733099097712
521 => 0.017688917709062
522 => 0.017931211164092
523 => 0.017801763545159
524 => 0.01791137145995
525 => 0.017786459407424
526 => 0.017353459811779
527 => 0.017104437165435
528 => 0.016286541068345
529 => 0.016518495386883
530 => 0.016672281340048
531 => 0.016621455083444
601 => 0.016730649549779
602 => 0.016737353203171
603 => 0.01670185296906
604 => 0.016660748245821
605 => 0.016640740739782
606 => 0.016789860297954
607 => 0.016876429220607
608 => 0.016687715817838
609 => 0.016643502907951
610 => 0.016834302577303
611 => 0.016950690265386
612 => 0.017810031561601
613 => 0.017746368782741
614 => 0.017906149864489
615 => 0.017888160966725
616 => 0.018055636995519
617 => 0.018329389521946
618 => 0.017772774093309
619 => 0.017869383285407
620 => 0.017845696942537
621 => 0.018104298223103
622 => 0.018105105548074
623 => 0.017950061162282
624 => 0.018034113239128
625 => 0.01798719767568
626 => 0.018071980439848
627 => 0.017745518527516
628 => 0.018143113897351
629 => 0.018368524851567
630 => 0.018371654682885
701 => 0.018478497686212
702 => 0.018587056365521
703 => 0.018795425296987
704 => 0.018581245069115
705 => 0.018195955689198
706 => 0.018223772337951
707 => 0.017997877315477
708 => 0.018001674651616
709 => 0.017981404173704
710 => 0.01804223740381
711 => 0.017758868000575
712 => 0.017825374233124
713 => 0.017732265118096
714 => 0.017869180884375
715 => 0.017721882152846
716 => 0.017845685520265
717 => 0.017899114949496
718 => 0.018096270693614
719 => 0.017692762089137
720 => 0.016869980729479
721 => 0.017042939346539
722 => 0.016787119966301
723 => 0.016810797023915
724 => 0.016858628448471
725 => 0.016703591152016
726 => 0.016733167382393
727 => 0.016732110711319
728 => 0.016723004890865
729 => 0.016682673702233
730 => 0.016624185499433
731 => 0.016857184497667
801 => 0.01689677556775
802 => 0.01698478161225
803 => 0.01724662790561
804 => 0.017220463286142
805 => 0.017263138866053
806 => 0.017169978314721
807 => 0.0168151184747
808 => 0.016834389071296
809 => 0.016594084422962
810 => 0.016978636482113
811 => 0.016887569478667
812 => 0.016828857989119
813 => 0.016812838015238
814 => 0.017075333374913
815 => 0.017153876100638
816 => 0.017104933544772
817 => 0.017004550934809
818 => 0.017197315221393
819 => 0.01724889081241
820 => 0.017260436685204
821 => 0.017601978042145
822 => 0.017279525053006
823 => 0.017357142692399
824 => 0.017962693358008
825 => 0.01741354246458
826 => 0.017704439940355
827 => 0.017690202022674
828 => 0.017839015327846
829 => 0.017677994988115
830 => 0.017679991028207
831 => 0.017812127161714
901 => 0.01762656579308
902 => 0.017580618188651
903 => 0.017517141902216
904 => 0.017655740051414
905 => 0.017738823373604
906 => 0.018408413932476
907 => 0.018840999970546
908 => 0.018822220269769
909 => 0.018993831580745
910 => 0.018916519113371
911 => 0.018666856762221
912 => 0.019092999952554
913 => 0.018958150416544
914 => 0.01896926724845
915 => 0.018968853479412
916 => 0.019058516632107
917 => 0.018994982070915
918 => 0.018869748929117
919 => 0.018952884533029
920 => 0.019199767555124
921 => 0.019966100031005
922 => 0.020394949837062
923 => 0.0199402827342
924 => 0.020253906013519
925 => 0.020065843801328
926 => 0.020031667303007
927 => 0.020228645898998
928 => 0.020425969279945
929 => 0.020413400633631
930 => 0.020270153991731
1001 => 0.020189237598471
1002 => 0.020801963637219
1003 => 0.021253409745052
1004 => 0.021222624147031
1005 => 0.021358501764684
1006 => 0.021757442652648
1007 => 0.021793916807753
1008 => 0.021789321902559
1009 => 0.021698916903445
1010 => 0.022091726016667
1011 => 0.022419414289735
1012 => 0.021677990758202
1013 => 0.021960315133063
1014 => 0.022087059640862
1015 => 0.022273158181711
1016 => 0.02258713761386
1017 => 0.022928202556105
1018 => 0.022976432878525
1019 => 0.022942211156734
1020 => 0.022717269659006
1021 => 0.023090466988562
1022 => 0.023309077231661
1023 => 0.02343925462862
1024 => 0.023769362847856
1025 => 0.022087842371793
1026 => 0.020897578601845
1027 => 0.020711701726551
1028 => 0.021089689661709
1029 => 0.021189362065813
1030 => 0.021149184244697
1031 => 0.019809434157574
1101 => 0.02070464821961
1102 => 0.021667823278624
1103 => 0.021704822755295
1104 => 0.022187008328878
1105 => 0.022344027717091
1106 => 0.022732250305333
1107 => 0.022707966876737
1108 => 0.022802492899004
1109 => 0.022780763003447
1110 => 0.023499863598255
1111 => 0.024293138341801
1112 => 0.024265669759891
1113 => 0.024151627129905
1114 => 0.024320999882592
1115 => 0.025139744430418
1116 => 0.025064367552568
1117 => 0.025137589768812
1118 => 0.026102935733121
1119 => 0.027358022805583
1120 => 0.026774908851743
1121 => 0.028040098345057
1122 => 0.028836468066285
1123 => 0.030213707152983
1124 => 0.030041270036283
1125 => 0.030577419106087
1126 => 0.029732571608677
1127 => 0.027792630982775
1128 => 0.027485627952931
1129 => 0.028100255793233
1130 => 0.029611258364107
1201 => 0.028052668945075
1202 => 0.028367969554634
1203 => 0.028277162957869
1204 => 0.028272324260231
1205 => 0.028456997668682
1206 => 0.028189119257806
1207 => 0.02709773442149
1208 => 0.027597909660403
1209 => 0.027404767980271
1210 => 0.027619073074043
1211 => 0.028775589278989
1212 => 0.028264265896879
1213 => 0.027725628250366
1214 => 0.028401199392356
1215 => 0.029261433607541
1216 => 0.029207601696345
1217 => 0.029103145288629
1218 => 0.029691960589759
1219 => 0.03066451096053
1220 => 0.030927387417725
1221 => 0.031121437444154
1222 => 0.031148193664297
1223 => 0.031423799360663
1224 => 0.029941798069725
1225 => 0.032293772178936
1226 => 0.032699893135623
1227 => 0.032623559227755
1228 => 0.033074945578931
1229 => 0.032942136263848
1230 => 0.032749716403437
1231 => 0.033465259782681
]
'min_raw' => 0.012335587345561
'max_raw' => 0.033465259782681
'avg_raw' => 0.022900423564121
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012335'
'max' => '$0.033465'
'avg' => '$0.02290042'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042542252760098
'max_diff' => 0.015424188255065
'year' => 2032
]
7 => [
'items' => [
101 => 0.032644947039751
102 => 0.031480616375665
103 => 0.030841841545499
104 => 0.031683031770358
105 => 0.032196717287186
106 => 0.032536230737275
107 => 0.032638967302132
108 => 0.030056841611224
109 => 0.02866521907508
110 => 0.029557233165763
111 => 0.030645551919921
112 => 0.029935752404095
113 => 0.029963575201287
114 => 0.028951587623751
115 => 0.030735090365332
116 => 0.030475249017502
117 => 0.031823306389692
118 => 0.031501581678982
119 => 0.032600870134717
120 => 0.032311390643154
121 => 0.033513003828052
122 => 0.033992359859886
123 => 0.034797273243144
124 => 0.035389370804455
125 => 0.035737061817479
126 => 0.035716187753213
127 => 0.037093912765788
128 => 0.036281516459918
129 => 0.035260955232638
130 => 0.035242496499866
131 => 0.035771059620939
201 => 0.036878782918497
202 => 0.037165999452835
203 => 0.03732651431273
204 => 0.037080680217238
205 => 0.036198882252185
206 => 0.035818126361692
207 => 0.036142541411952
208 => 0.035745809682787
209 => 0.036430679950589
210 => 0.037371153108676
211 => 0.037176949120565
212 => 0.037826143936131
213 => 0.038497992272956
214 => 0.039458765569212
215 => 0.039709947286186
216 => 0.040125141112758
217 => 0.040552511944368
218 => 0.040689771937514
219 => 0.040951843853705
220 => 0.040950462605344
221 => 0.041740233964259
222 => 0.042611376230325
223 => 0.042940212268775
224 => 0.043696352607067
225 => 0.042401488776061
226 => 0.043383657866202
227 => 0.044269598970797
228 => 0.043213343462835
301 => 0.044669145604591
302 => 0.044725671102837
303 => 0.045579139016186
304 => 0.044713985781339
305 => 0.044200260552153
306 => 0.045683366039779
307 => 0.046400994067856
308 => 0.046184838665548
309 => 0.044539885381081
310 => 0.043582452014155
311 => 0.041076664217807
312 => 0.044044878104559
313 => 0.045490608504809
314 => 0.044536141288607
315 => 0.045017519034417
316 => 0.047643759928298
317 => 0.048643662424183
318 => 0.048435689694885
319 => 0.048470833662613
320 => 0.049010362899879
321 => 0.051402932662091
322 => 0.04996924940124
323 => 0.051065246535073
324 => 0.051646559462947
325 => 0.052186515307277
326 => 0.050860554408399
327 => 0.049135498761193
328 => 0.048589101224813
329 => 0.044441238334448
330 => 0.044225324057749
331 => 0.044104124831366
401 => 0.04333998085299
402 => 0.042739573002638
403 => 0.042262106388324
404 => 0.041009091408763
405 => 0.041431947181724
406 => 0.039434902828855
407 => 0.040712541034914
408 => 0.037525210027413
409 => 0.040179714002513
410 => 0.038734988174351
411 => 0.039705082712185
412 => 0.039701698143731
413 => 0.037915446530826
414 => 0.036885173878622
415 => 0.037541703711418
416 => 0.038245555807578
417 => 0.038359753442137
418 => 0.039272316057228
419 => 0.039526992667632
420 => 0.038755310648393
421 => 0.037459159676802
422 => 0.037760225985447
423 => 0.036879072779487
424 => 0.03533488567911
425 => 0.036443947813521
426 => 0.036822630388228
427 => 0.03698987818629
428 => 0.035471347524156
429 => 0.034994192221209
430 => 0.034740158741641
501 => 0.037263136437212
502 => 0.037401350850676
503 => 0.036694226369848
504 => 0.039890496075485
505 => 0.039167081801507
506 => 0.039975312786341
507 => 0.037732907373565
508 => 0.037818570280132
509 => 0.036756979621583
510 => 0.037351399454857
511 => 0.036931282675745
512 => 0.0373033762065
513 => 0.037526407534636
514 => 0.038587823996604
515 => 0.040191833673531
516 => 0.038429283772305
517 => 0.037661315540162
518 => 0.038137758712166
519 => 0.039406589664162
520 => 0.041328933506696
521 => 0.040190867261141
522 => 0.0406959217353
523 => 0.040806253669594
524 => 0.039967085753624
525 => 0.041359874824735
526 => 0.042106281802941
527 => 0.04287194091542
528 => 0.043536741269504
529 => 0.042566119828691
530 => 0.043604823903479
531 => 0.042767811775152
601 => 0.042016925367319
602 => 0.042018064152047
603 => 0.041547022139714
604 => 0.040634318885705
605 => 0.040466002402285
606 => 0.041341606005062
607 => 0.042043757174519
608 => 0.042101589707913
609 => 0.042490336673154
610 => 0.042720393122772
611 => 0.044975259075601
612 => 0.045882184815058
613 => 0.046991156442041
614 => 0.047423163388967
615 => 0.048723349416152
616 => 0.047673343603254
617 => 0.047446168240787
618 => 0.044292342226444
619 => 0.044808781059612
620 => 0.04563564946045
621 => 0.044305976981819
622 => 0.045149348121095
623 => 0.045315847449031
624 => 0.044260795219801
625 => 0.044824344201549
626 => 0.043327725186656
627 => 0.040224455878268
628 => 0.041363329650592
629 => 0.042201924087788
630 => 0.04100514642796
701 => 0.04315032406151
702 => 0.041897155573445
703 => 0.041499961325424
704 => 0.039950364953922
705 => 0.040681714791837
706 => 0.041670875919538
707 => 0.041059689344942
708 => 0.042327993257354
709 => 0.044124249841627
710 => 0.045404369252509
711 => 0.04550264092557
712 => 0.044679609905713
713 => 0.045998522367548
714 => 0.046008129204943
715 => 0.044520390560077
716 => 0.04360915892386
717 => 0.043402125178864
718 => 0.043919336065221
719 => 0.044547325563656
720 => 0.045537489972148
721 => 0.046135825586651
722 => 0.047695967536584
723 => 0.048118097215461
724 => 0.048581889750825
725 => 0.049201659606392
726 => 0.04994585222373
727 => 0.048317601143905
728 => 0.048382294594746
729 => 0.046866089733883
730 => 0.04524580739428
731 => 0.046475399718994
801 => 0.048082928117745
802 => 0.047714159326911
803 => 0.047672665304679
804 => 0.047742446740591
805 => 0.047464407115164
806 => 0.04620684419399
807 => 0.045575303967736
808 => 0.046390151982698
809 => 0.046823207437938
810 => 0.04749483868261
811 => 0.047412045955288
812 => 0.049142095913634
813 => 0.049814341013451
814 => 0.049642351949928
815 => 0.049674002076765
816 => 0.050891069719374
817 => 0.052244699247006
818 => 0.053512551926782
819 => 0.05480226612819
820 => 0.053247465319991
821 => 0.05245803335637
822 => 0.053272525634179
823 => 0.052840344566764
824 => 0.05532378517336
825 => 0.055495733212716
826 => 0.057978994238289
827 => 0.06033590465278
828 => 0.058855571449874
829 => 0.060251458984542
830 => 0.061761225161667
831 => 0.064673809068074
901 => 0.063692953274333
902 => 0.062941633108298
903 => 0.062231639181747
904 => 0.063709023834537
905 => 0.065609655588556
906 => 0.066019033464347
907 => 0.066682382017514
908 => 0.065984952124261
909 => 0.066824929611301
910 => 0.069790419245362
911 => 0.068989117769138
912 => 0.067851140857259
913 => 0.070192110114698
914 => 0.071039297788678
915 => 0.076985304560297
916 => 0.084492383726754
917 => 0.081384403657701
918 => 0.07945518013495
919 => 0.07990859342459
920 => 0.082649924605514
921 => 0.083530353175324
922 => 0.081137044820652
923 => 0.081982401791919
924 => 0.086640401817264
925 => 0.089139269384328
926 => 0.085745471585565
927 => 0.076382118058752
928 => 0.067748678487219
929 => 0.07003865543044
930 => 0.069779043111337
1001 => 0.074783483041232
1002 => 0.068970006993938
1003 => 0.069067891021084
1004 => 0.074175817468935
1005 => 0.072813110264677
1006 => 0.070605699116131
1007 => 0.067764795031471
1008 => 0.062513121079155
1009 => 0.057861567005826
1010 => 0.06698433573255
1011 => 0.066590945356375
1012 => 0.066021257794486
1013 => 0.067289035816837
1014 => 0.073445006028301
1015 => 0.073303090989995
1016 => 0.072400299921986
1017 => 0.073085058990236
1018 => 0.070485657540705
1019 => 0.07115558248152
1020 => 0.067747310906282
1021 => 0.069287992000284
1022 => 0.070600963003205
1023 => 0.07086456137091
1024 => 0.071458461953014
1025 => 0.066383646503928
1026 => 0.068662089651814
1027 => 0.070000461539945
1028 => 0.063953648658983
1029 => 0.069880935491274
1030 => 0.066295305257404
1031 => 0.065078288501671
1101 => 0.066716841233501
1102 => 0.066078295640362
1103 => 0.065529311636036
1104 => 0.06522296912888
1105 => 0.06642614141467
1106 => 0.066370011989436
1107 => 0.064401388604206
1108 => 0.061833399649527
1109 => 0.062695301034081
1110 => 0.062382164180704
1111 => 0.061247315828607
1112 => 0.062012066595808
1113 => 0.058644491248563
1114 => 0.052850752894963
1115 => 0.056678273918356
1116 => 0.056530918522498
1117 => 0.05645661524987
1118 => 0.059332891514039
1119 => 0.059056403918223
1120 => 0.058554576224442
1121 => 0.061238099369473
1122 => 0.060258577323057
1123 => 0.063277233465692
1124 => 0.065265515635669
1125 => 0.064761222963173
1126 => 0.066631211954238
1127 => 0.062715157501185
1128 => 0.064015913705655
1129 => 0.064283997756626
1130 => 0.061204985110416
1201 => 0.059101640708278
1202 => 0.058961371616538
1203 => 0.055314462281944
1204 => 0.05726261181166
1205 => 0.058976902777905
1206 => 0.058155890439427
1207 => 0.057895982460111
1208 => 0.059223795959275
1209 => 0.059326978440113
1210 => 0.056974406942204
1211 => 0.05746358105287
1212 => 0.059503518412775
1213 => 0.05741217986534
1214 => 0.053349050685887
1215 => 0.052341338472227
1216 => 0.052206891087104
1217 => 0.049473895640994
1218 => 0.052408678620907
1219 => 0.051127567202881
1220 => 0.055174582822355
1221 => 0.052862949205091
1222 => 0.052763299300055
1223 => 0.052612663853129
1224 => 0.050260261774042
1225 => 0.050775288326411
1226 => 0.052487315027243
1227 => 0.053098185441462
1228 => 0.053034466652545
1229 => 0.052478925162417
1230 => 0.052733249211765
1231 => 0.051913982836442
]
'min_raw' => 0.02866521907508
'max_raw' => 0.089139269384328
'avg_raw' => 0.058902244229704
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.028665'
'max' => '$0.089139'
'avg' => '$0.0589022'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016329631729519
'max_diff' => 0.055674009601647
'year' => 2033
]
8 => [
'items' => [
101 => 0.05162468282776
102 => 0.050711572422124
103 => 0.049369552379028
104 => 0.049556168497107
105 => 0.046897275633087
106 => 0.045448569682644
107 => 0.045047586969198
108 => 0.044511376126558
109 => 0.045108153410677
110 => 0.046889743323675
111 => 0.044740767903215
112 => 0.041056500277933
113 => 0.041277931039899
114 => 0.041775420218653
115 => 0.040848352425265
116 => 0.039970960561725
117 => 0.040733781602021
118 => 0.039172708840348
119 => 0.041964068403788
120 => 0.041888569950292
121 => 0.042929016179025
122 => 0.043579628557958
123 => 0.042080177662777
124 => 0.041703069817585
125 => 0.041917887584802
126 => 0.038367428405192
127 => 0.042638867917284
128 => 0.04267580750356
129 => 0.042359508339192
130 => 0.044633918013481
131 => 0.049433631832399
201 => 0.047627786425681
202 => 0.046928508502234
203 => 0.045599180658591
204 => 0.047370431082568
205 => 0.047234426685817
206 => 0.046619363225576
207 => 0.046247370925707
208 => 0.046932778144122
209 => 0.04616244138628
210 => 0.046024067737133
211 => 0.045185673975318
212 => 0.044886405546835
213 => 0.044664839116606
214 => 0.044420916247592
215 => 0.044958949314846
216 => 0.043739695600304
217 => 0.042269395145482
218 => 0.042147155571535
219 => 0.042484669782616
220 => 0.042335344869191
221 => 0.042146440661299
222 => 0.041785771083434
223 => 0.041678768124168
224 => 0.042026475831328
225 => 0.041633934102563
226 => 0.04221315080621
227 => 0.04205563591234
228 => 0.041175770519508
301 => 0.04007913247215
302 => 0.040069370093252
303 => 0.039833101224795
304 => 0.039532177297554
305 => 0.039448467145202
306 => 0.040669538941688
307 => 0.043197121016812
308 => 0.042700896175552
309 => 0.04305946947853
310 => 0.044823295236136
311 => 0.045383962404388
312 => 0.044986014128493
313 => 0.044441277984066
314 => 0.044465243609838
315 => 0.046326771918189
316 => 0.046442873155384
317 => 0.046736223526096
318 => 0.047113261653267
319 => 0.045050225351909
320 => 0.04436807478557
321 => 0.044044834002966
322 => 0.043049377502472
323 => 0.044122891994264
324 => 0.043497401072371
325 => 0.043581801167547
326 => 0.043526835494842
327 => 0.043556850468901
328 => 0.041963288161902
329 => 0.042543898511404
330 => 0.041578521194128
331 => 0.040285989334986
401 => 0.040281656314975
402 => 0.040598001656371
403 => 0.040409827068714
404 => 0.03990345409174
405 => 0.039975381983106
406 => 0.039345217968655
407 => 0.040051895303948
408 => 0.040072160281311
409 => 0.039800051014249
410 => 0.040888784951948
411 => 0.041334840134546
412 => 0.04115573198582
413 => 0.041322273429366
414 => 0.042721516558027
415 => 0.042949654241257
416 => 0.043050977930218
417 => 0.042915217609827
418 => 0.041347849025131
419 => 0.041417368486828
420 => 0.040907280803782
421 => 0.040476310463324
422 => 0.0404935470168
423 => 0.040715121794019
424 => 0.041682751841319
425 => 0.043719072230955
426 => 0.043796349101211
427 => 0.043890010922286
428 => 0.043509041225313
429 => 0.043394137119316
430 => 0.043545725294392
501 => 0.044310460168099
502 => 0.046277565886768
503 => 0.045582259347217
504 => 0.045016964307471
505 => 0.045512880459777
506 => 0.045436538055249
507 => 0.04479213133275
508 => 0.044774044982313
509 => 0.043537222452547
510 => 0.043079997324379
511 => 0.042697905784574
512 => 0.042280671797859
513 => 0.042033321504725
514 => 0.042413363973677
515 => 0.042500284182856
516 => 0.041669314682487
517 => 0.041556056610124
518 => 0.042234644241849
519 => 0.041936023125424
520 => 0.042243162349114
521 => 0.042314421283602
522 => 0.042302946953917
523 => 0.041991152211952
524 => 0.042189880882627
525 => 0.041719828332613
526 => 0.041208716784082
527 => 0.040882659459494
528 => 0.040598131198563
529 => 0.040756004014607
530 => 0.040193216251847
531 => 0.04001316911986
601 => 0.042122556080539
602 => 0.043680782908125
603 => 0.043658125672926
604 => 0.043520205580622
605 => 0.043315284299527
606 => 0.044295468900011
607 => 0.043953992184612
608 => 0.044202445026399
609 => 0.044265686702167
610 => 0.044457100207542
611 => 0.044525514083167
612 => 0.044318719834537
613 => 0.043624693078345
614 => 0.041895244387999
615 => 0.041090181354085
616 => 0.040824497143508
617 => 0.040834154259957
618 => 0.040567767877046
619 => 0.040646230605413
620 => 0.040540481742162
621 => 0.040340218978561
622 => 0.04074363835328
623 => 0.040790128678105
624 => 0.040695965775543
625 => 0.040718144547843
626 => 0.039938515932132
627 => 0.03999778940252
628 => 0.039667747187291
629 => 0.039605868250653
630 => 0.038771550270616
701 => 0.037293435032655
702 => 0.038112454358603
703 => 0.037123194184402
704 => 0.036748546366694
705 => 0.038522070866033
706 => 0.038344058196211
707 => 0.038039377885725
708 => 0.037588692205575
709 => 0.037421528502819
710 => 0.036405894762471
711 => 0.036345885702896
712 => 0.036849261209031
713 => 0.036616970733043
714 => 0.036290746929474
715 => 0.035109197381724
716 => 0.033780744492441
717 => 0.033820842134811
718 => 0.034243398282148
719 => 0.035472037269988
720 => 0.034991986761768
721 => 0.03464370461011
722 => 0.034578481832428
723 => 0.035394881448258
724 => 0.036550257945666
725 => 0.037092334748158
726 => 0.036555153100006
727 => 0.035938067746523
728 => 0.035975626872691
729 => 0.036225490912304
730 => 0.03625174808998
731 => 0.035850088962262
801 => 0.035963153653983
802 => 0.035791398048407
803 => 0.034737334214022
804 => 0.034718269541731
805 => 0.034459585277697
806 => 0.03445175242099
807 => 0.034011665956056
808 => 0.033950094817437
809 => 0.033076276429971
810 => 0.033651426338767
811 => 0.033265645976672
812 => 0.032684183974607
813 => 0.032583939706285
814 => 0.03258092624253
815 => 0.033177957706127
816 => 0.033644449678506
817 => 0.033272356791237
818 => 0.033187638453524
819 => 0.034092208659059
820 => 0.033977093855064
821 => 0.033877405177215
822 => 0.036446806652604
823 => 0.034412924891936
824 => 0.033526036354373
825 => 0.032428343373574
826 => 0.03278575774317
827 => 0.032861070202354
828 => 0.030221316457562
829 => 0.02915036869206
830 => 0.028782859776755
831 => 0.028571353200184
901 => 0.02866773940306
902 => 0.027703760804464
903 => 0.028351570365455
904 => 0.027516846382154
905 => 0.027376902189927
906 => 0.028869492074528
907 => 0.029077177237387
908 => 0.028191127809909
909 => 0.028760114980722
910 => 0.028553792323072
911 => 0.027531155329044
912 => 0.027492098117881
913 => 0.026978974821706
914 => 0.026176036223442
915 => 0.025809071738316
916 => 0.025617953448331
917 => 0.0256968125796
918 => 0.025656938989701
919 => 0.025396736844076
920 => 0.025671853472107
921 => 0.024969044173526
922 => 0.024689179847912
923 => 0.024562771624835
924 => 0.023938987920151
925 => 0.024931705192176
926 => 0.025127283000688
927 => 0.025323246157899
928 => 0.027028971651695
929 => 0.026943758426355
930 => 0.027714044482904
1001 => 0.027684112583211
1002 => 0.027464414522077
1003 => 0.026537544540728
1004 => 0.026906978395425
1005 => 0.025769918413436
1006 => 0.026621881064505
1007 => 0.026233080889368
1008 => 0.026490427334194
1009 => 0.026027695222404
1010 => 0.026283790278809
1011 => 0.025173661754544
1012 => 0.024137039358516
1013 => 0.024554206471572
1014 => 0.02500771483231
1015 => 0.025991036510171
1016 => 0.025405378231065
1017 => 0.025616003094423
1018 => 0.02491044506035
1019 => 0.023454677303368
1020 => 0.023462916790776
1021 => 0.023238978636989
1022 => 0.023045463376611
1023 => 0.025472648129541
1024 => 0.025170789337401
1025 => 0.024689816858429
1026 => 0.02533361763462
1027 => 0.025503848778337
1028 => 0.025508695019682
1029 => 0.025978395447088
1030 => 0.026229074649393
1031 => 0.026273257945305
1101 => 0.027012341716378
1102 => 0.027260072847691
1103 => 0.028280442317346
1104 => 0.026207806270476
1105 => 0.026165121695026
1106 => 0.025342677231812
1107 => 0.024821069950909
1108 => 0.02537839212859
1109 => 0.025872103495951
1110 => 0.025358018220211
1111 => 0.02542514690429
1112 => 0.024735029423919
1113 => 0.024981713950106
1114 => 0.025194191896053
1115 => 0.025076874063177
1116 => 0.024901243589115
1117 => 0.025831624794038
1118 => 0.025779129040263
1119 => 0.026645521407658
1120 => 0.027320936214355
1121 => 0.028531400292795
1122 => 0.027268217924023
1123 => 0.02722218253781
1124 => 0.027672185822352
1125 => 0.027260003954532
1126 => 0.02752048866696
1127 => 0.028489432178545
1128 => 0.028509904428103
1129 => 0.028166967870993
1130 => 0.028146100150327
1201 => 0.028211964867435
1202 => 0.028597736572782
1203 => 0.028462936085367
1204 => 0.028618930622135
1205 => 0.028814004179037
1206 => 0.029620911119856
1207 => 0.029815453651517
1208 => 0.029342816158319
1209 => 0.029385490032057
1210 => 0.029208710635412
1211 => 0.029037943953292
1212 => 0.029421802516227
1213 => 0.030123311584749
1214 => 0.030118947533242
1215 => 0.030281684001752
1216 => 0.030383067473452
1217 => 0.029947855395679
1218 => 0.029664548336241
1219 => 0.029773186290126
1220 => 0.029946900744215
1221 => 0.02971685303393
1222 => 0.028296891997582
1223 => 0.028727617468548
1224 => 0.02865592368878
1225 => 0.028553823028128
1226 => 0.028986920819886
1227 => 0.028945147481322
1228 => 0.027693873810624
1229 => 0.027773976291274
1230 => 0.02769874510778
1231 => 0.027941832452503
]
'min_raw' => 0.023045463376611
'max_raw' => 0.05162468282776
'avg_raw' => 0.037335073102186
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023045'
'max' => '$0.051624'
'avg' => '$0.037335'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056197556984686
'max_diff' => -0.037514586556568
'year' => 2034
]
9 => [
'items' => [
101 => 0.027246876440173
102 => 0.027460640228965
103 => 0.027594710873385
104 => 0.027673679512927
105 => 0.027958968388257
106 => 0.027925493031529
107 => 0.027956887513082
108 => 0.028379895601726
109 => 0.03051932535524
110 => 0.030635769796338
111 => 0.030062354780818
112 => 0.030291422769407
113 => 0.029851662322978
114 => 0.030146876456805
115 => 0.030348854469543
116 => 0.029436154668116
117 => 0.029382110509249
118 => 0.028940535015025
119 => 0.029177812673506
120 => 0.028800286857995
121 => 0.028892918487829
122 => 0.028633912375333
123 => 0.029100071810224
124 => 0.029621310492284
125 => 0.029752995967712
126 => 0.029406588176023
127 => 0.029155766105455
128 => 0.028715405175463
129 => 0.029447735216123
130 => 0.029661890837365
131 => 0.029446610347813
201 => 0.029396725154412
202 => 0.029302192803058
203 => 0.029416780639635
204 => 0.02966072449986
205 => 0.029545685080314
206 => 0.029621670643657
207 => 0.029332092032163
208 => 0.029947999468986
209 => 0.030926208704857
210 => 0.030929353807504
211 => 0.030814313767852
212 => 0.030767241862199
213 => 0.030885279924095
214 => 0.030949310730499
215 => 0.03133102417819
216 => 0.031740617915698
217 => 0.0336520131689
218 => 0.033115301030373
219 => 0.034811204608425
220 => 0.036152444153146
221 => 0.036554623247311
222 => 0.036184637404668
223 => 0.034918935823229
224 => 0.034856834465296
225 => 0.036748326993389
226 => 0.036213893718357
227 => 0.036150324580844
228 => 0.035474056359464
301 => 0.035873814635748
302 => 0.035786381636625
303 => 0.035648364370139
304 => 0.036411075313888
305 => 0.037838802112908
306 => 0.037616277502144
307 => 0.037450173202828
308 => 0.036722352515459
309 => 0.037160663133891
310 => 0.037004589117954
311 => 0.037675182137436
312 => 0.037277937688149
313 => 0.036209844860669
314 => 0.036379942163925
315 => 0.036354232298726
316 => 0.036883339502699
317 => 0.036724514653314
318 => 0.036323219197836
319 => 0.037833922297923
320 => 0.037735825641576
321 => 0.037874904272259
322 => 0.037936130986635
323 => 0.038855669342083
324 => 0.039232374784365
325 => 0.03931789351492
326 => 0.039675734549643
327 => 0.039308990103991
328 => 0.04077622937096
329 => 0.04175185786771
330 => 0.042885100572069
331 => 0.04454107275006
401 => 0.045163733607584
402 => 0.045051255496893
403 => 0.046306794702897
404 => 0.048562970747017
405 => 0.045507293181952
406 => 0.04872492907773
407 => 0.047706262702519
408 => 0.04529102305192
409 => 0.045135510092227
410 => 0.046771138425121
411 => 0.050398804644088
412 => 0.049490115400886
413 => 0.050400290934161
414 => 0.049338522827776
415 => 0.04928579709201
416 => 0.050348723227145
417 => 0.052832308078973
418 => 0.051652450011656
419 => 0.049960834159088
420 => 0.051209896980166
421 => 0.050127843169242
422 => 0.047689673085436
423 => 0.049489420543348
424 => 0.048285980672099
425 => 0.048637208404912
426 => 0.051166660016105
427 => 0.050862309706148
428 => 0.051256167189313
429 => 0.050561019040571
430 => 0.049911641054845
501 => 0.048699528821045
502 => 0.048340682145028
503 => 0.048439854456328
504 => 0.048340633000156
505 => 0.047662467345231
506 => 0.047516017536619
507 => 0.047271928106152
508 => 0.047347581627174
509 => 0.046888622087014
510 => 0.047754773565175
511 => 0.047915538912022
512 => 0.048545851726789
513 => 0.048611292894201
514 => 0.050366705111384
515 => 0.049399853560663
516 => 0.050048501054834
517 => 0.049990479917648
518 => 0.045343368618796
519 => 0.045983699553968
520 => 0.046979853542178
521 => 0.046531087520744
522 => 0.045896637361513
523 => 0.045384284840869
524 => 0.044608018381358
525 => 0.045700598516243
526 => 0.047137225210673
527 => 0.048647728117966
528 => 0.050462498389009
529 => 0.050057462790767
530 => 0.048613802250077
531 => 0.048678563807338
601 => 0.04907889427159
602 => 0.048560429946525
603 => 0.048407524695438
604 => 0.04905788743811
605 => 0.049062366128886
606 => 0.048465810264393
607 => 0.047802847589579
608 => 0.047800069751765
609 => 0.047682101947241
610 => 0.049359509038134
611 => 0.050281913333139
612 => 0.050387665499033
613 => 0.050274795369786
614 => 0.050318234602878
615 => 0.049781507867406
616 => 0.051008306023325
617 => 0.05213413732896
618 => 0.051832390489172
619 => 0.05138002908049
620 => 0.051019701429796
621 => 0.051747508746046
622 => 0.051715100631929
623 => 0.052124304174659
624 => 0.052105740338287
625 => 0.05196814057779
626 => 0.051832395403293
627 => 0.052370609676235
628 => 0.052215612609085
629 => 0.052060374788677
630 => 0.05174902157413
701 => 0.051791339647016
702 => 0.051339056344908
703 => 0.051129809394277
704 => 0.047983237310426
705 => 0.047142370432412
706 => 0.047406924269659
707 => 0.047494022262018
708 => 0.047128075919106
709 => 0.047652748970939
710 => 0.047570979231577
711 => 0.047889097453737
712 => 0.047690350999619
713 => 0.047698507623422
714 => 0.048282978567771
715 => 0.048452652969432
716 => 0.048366355199307
717 => 0.048426795199388
718 => 0.049819609491134
719 => 0.049621595838542
720 => 0.04951640503216
721 => 0.049545543604415
722 => 0.049901437518231
723 => 0.050001068383012
724 => 0.049578925407998
725 => 0.049778010475394
726 => 0.050625689424711
727 => 0.050922329082499
728 => 0.051869060475044
729 => 0.051466872152682
730 => 0.05220510622468
731 => 0.05447418607946
801 => 0.056286884075841
802 => 0.054619852085456
803 => 0.057948641110113
804 => 0.060540580852233
805 => 0.060441097887829
806 => 0.059989133241144
807 => 0.057038278755023
808 => 0.054322858462133
809 => 0.056594422839972
810 => 0.056600213524722
811 => 0.056405084130115
812 => 0.055193152218749
813 => 0.056362911526614
814 => 0.056455762772531
815 => 0.056403790765957
816 => 0.055474605411037
817 => 0.054055911116233
818 => 0.054333120585564
819 => 0.054787195351247
820 => 0.053927537089889
821 => 0.053652824186855
822 => 0.054163567739864
823 => 0.055809289885306
824 => 0.05549817564673
825 => 0.055490051196649
826 => 0.056821129842249
827 => 0.05586836479675
828 => 0.05433661708472
829 => 0.053949830586162
830 => 0.052576999086887
831 => 0.053525218693294
901 => 0.053559343428846
902 => 0.053040013240986
903 => 0.054378757867273
904 => 0.05436642109986
905 => 0.055637359876677
906 => 0.058066917475146
907 => 0.05734837774201
908 => 0.056512794209274
909 => 0.056603645307501
910 => 0.05760005761543
911 => 0.056997603988175
912 => 0.057214250512992
913 => 0.057599729694967
914 => 0.057832298856363
915 => 0.056570182184212
916 => 0.056275922413915
917 => 0.055673970195032
918 => 0.055516932097095
919 => 0.056007209619231
920 => 0.055878038813908
921 => 0.05355647537696
922 => 0.053313859080742
923 => 0.053321299776171
924 => 0.052711229563555
925 => 0.051780726055687
926 => 0.054226033716886
927 => 0.054029641289633
928 => 0.053812839249512
929 => 0.053839396262372
930 => 0.054900821438932
1001 => 0.054285141233271
1002 => 0.055922027968022
1003 => 0.055585533264677
1004 => 0.055240408741901
1005 => 0.055192702020103
1006 => 0.055059858523475
1007 => 0.054604288744649
1008 => 0.054054160861218
1009 => 0.053690918781315
1010 => 0.049527034484535
1011 => 0.050299827189817
1012 => 0.051188854754972
1013 => 0.051495743507909
1014 => 0.050970789059955
1015 => 0.05462501714589
1016 => 0.055292679830208
1017 => 0.053270286008849
1018 => 0.052891978698668
1019 => 0.054649818910164
1020 => 0.053589626375406
1021 => 0.054067031008891
1022 => 0.053035143317669
1023 => 0.055131859441001
1024 => 0.055115885977102
1025 => 0.054300216048644
1026 => 0.05498961468671
1027 => 0.054869814708079
1028 => 0.053948925367756
1029 => 0.05516105327565
1030 => 0.05516165447597
1031 => 0.054376589904023
1101 => 0.053459806356722
1102 => 0.053295907111925
1103 => 0.053172431047736
1104 => 0.054036663466321
1105 => 0.054811531550439
1106 => 0.056253368948894
1107 => 0.056615881128077
1108 => 0.058030790297231
1109 => 0.057188280777677
1110 => 0.05756175433537
1111 => 0.057967212713307
1112 => 0.058161604369928
1113 => 0.057844853597095
1114 => 0.060042789936641
1115 => 0.060228363106727
1116 => 0.060290584185456
1117 => 0.059549452418311
1118 => 0.060207750891586
1119 => 0.059899754836494
1120 => 0.060701075008074
1121 => 0.060826732242747
1122 => 0.060720305035364
1123 => 0.060760190625014
1124 => 0.058884639701752
1125 => 0.058787382492062
1126 => 0.057461273536876
1127 => 0.058001672738217
1128 => 0.056991422333318
1129 => 0.057311783143444
1130 => 0.057452995136037
1201 => 0.057379234004816
1202 => 0.058032226098252
1203 => 0.057477049421361
1204 => 0.056011846891547
1205 => 0.054546245168285
1206 => 0.054527845732502
1207 => 0.054141978668786
1208 => 0.053863067456798
1209 => 0.053916795651134
1210 => 0.054106140815852
1211 => 0.053852062371614
1212 => 0.053906282889796
1213 => 0.054806704761045
1214 => 0.054987277945809
1215 => 0.054373619709483
1216 => 0.051909693340175
1217 => 0.051305039628855
1218 => 0.051739652725747
1219 => 0.051531935658101
1220 => 0.041590293978763
1221 => 0.043925935224868
1222 => 0.042538176507315
1223 => 0.043177719572072
1224 => 0.041761177279828
1225 => 0.042437225509029
1226 => 0.042312384086424
1227 => 0.046068026093512
1228 => 0.046009386909288
1229 => 0.04603745438366
1230 => 0.044697720702495
1231 => 0.046831952834324
]
'min_raw' => 0.027246876440173
'max_raw' => 0.060826732242747
'avg_raw' => 0.04403680434146
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027246'
'max' => '$0.060826'
'avg' => '$0.044036'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042014130635613
'max_diff' => 0.0092020494149868
'year' => 2035
]
10 => [
'items' => [
101 => 0.047883352326968
102 => 0.047688766262971
103 => 0.047737739383087
104 => 0.046896218923787
105 => 0.046045602141178
106 => 0.045102137220281
107 => 0.046854978427519
108 => 0.046660092407272
109 => 0.047107090819943
110 => 0.048243933638514
111 => 0.048411338061994
112 => 0.0486363313048
113 => 0.048555687243364
114 => 0.050476955962034
115 => 0.050244277643264
116 => 0.050804965445379
117 => 0.049651588096942
118 => 0.048346432147603
119 => 0.04859449962481
120 => 0.048570608731922
121 => 0.048266450244772
122 => 0.047991869562418
123 => 0.047534770088925
124 => 0.048981100461049
125 => 0.04892238208925
126 => 0.049872964276033
127 => 0.049704939641057
128 => 0.04858283000608
129 => 0.048622906371215
130 => 0.04889243918679
131 => 0.049825295338965
201 => 0.050102230558621
202 => 0.049973943130916
203 => 0.050277589956696
204 => 0.050517580027114
205 => 0.050307729014588
206 => 0.053278776815328
207 => 0.052044990627731
208 => 0.052646329430937
209 => 0.052789745192208
210 => 0.052422388735421
211 => 0.05250205519685
212 => 0.052622728178103
213 => 0.053355430890077
214 => 0.055278254815536
215 => 0.056129860443017
216 => 0.058691957990774
217 => 0.056059146450577
218 => 0.055902926309439
219 => 0.056364437445723
220 => 0.057868659931826
221 => 0.059087690972378
222 => 0.059492113896117
223 => 0.059545565061783
224 => 0.060304289352245
225 => 0.060739175966168
226 => 0.060212160266953
227 => 0.059765569642713
228 => 0.058165937459552
229 => 0.058351099240407
301 => 0.059626680294392
302 => 0.061428513664496
303 => 0.062974674144856
304 => 0.062433262633767
305 => 0.066563850286413
306 => 0.066973381180236
307 => 0.066916797252428
308 => 0.067849769574924
309 => 0.06599800951128
310 => 0.06520634620791
311 => 0.059862127604693
312 => 0.061363635044353
313 => 0.063546164288339
314 => 0.063257298358832
315 => 0.061672287282676
316 => 0.062973471771823
317 => 0.06254325948791
318 => 0.062203933210064
319 => 0.063758452670513
320 => 0.062049194667609
321 => 0.063529113132245
322 => 0.061631102393553
323 => 0.062435735755944
324 => 0.061978986943714
325 => 0.062274559402256
326 => 0.060546648849159
327 => 0.061478987440952
328 => 0.060507860498495
329 => 0.06050740005788
330 => 0.0604859623768
331 => 0.061628488917965
401 => 0.061665746667455
402 => 0.060821417827272
403 => 0.060699736850506
404 => 0.061149655197191
405 => 0.060622918647025
406 => 0.060869375363607
407 => 0.060630383569901
408 => 0.0605765814832
409 => 0.060147877302699
410 => 0.059963179754272
411 => 0.06003560442208
412 => 0.059788381693377
413 => 0.059639421056897
414 => 0.06045633035692
415 => 0.060019888671945
416 => 0.060389439409242
417 => 0.05996828970307
418 => 0.058508401335285
419 => 0.057668804096933
420 => 0.054911210301911
421 => 0.055693260481394
422 => 0.056211760559482
423 => 0.056040396286767
424 => 0.056408553053728
425 => 0.056431154889175
426 => 0.056311463371321
427 => 0.05617287592708
428 => 0.05610541922359
429 => 0.056608186225165
430 => 0.056900059391939
501 => 0.056263798978954
502 => 0.056114732066421
503 => 0.056758026472848
504 => 0.05715043568915
505 => 0.060047764866632
506 => 0.059833121362914
507 => 0.060371834435585
508 => 0.060311183610828
509 => 0.06087584073471
510 => 0.061798816490352
511 => 0.059922148711052
512 => 0.060247873347249
513 => 0.060168013188534
514 => 0.061039905460929
515 => 0.061042627413433
516 => 0.060519884441883
517 => 0.060803271887297
518 => 0.060645092789595
519 => 0.060930943798329
520 => 0.05983025466806
521 => 0.061170775216678
522 => 0.061930763986509
523 => 0.061941316431316
524 => 0.062301545076571
525 => 0.062667558243188
526 => 0.063370088643479
527 => 0.062647965051623
528 => 0.061348935007188
529 => 0.061442720780554
530 => 0.060681099940799
531 => 0.060693902924713
601 => 0.06062555959319
602 => 0.060830663075736
603 => 0.059875263348509
604 => 0.060099493754863
605 => 0.059785569872876
606 => 0.060247190938038
607 => 0.059750562980619
608 => 0.060167974677548
609 => 0.060348115728525
610 => 0.061012840084791
611 => 0.059652382652728
612 => 0.056878317853879
613 => 0.057461459906882
614 => 0.056598947005671
615 => 0.056678775858496
616 => 0.056840042845871
617 => 0.056317323776515
618 => 0.056417042102177
619 => 0.056413479461877
620 => 0.056382778552468
621 => 0.05624679913416
622 => 0.056049602074906
623 => 0.056835174464921
624 => 0.056968658521868
625 => 0.057265377045283
626 => 0.058148210104871
627 => 0.058059994263581
628 => 0.058203877960765
629 => 0.057889780657685
630 => 0.056693345931533
701 => 0.056758318093384
702 => 0.055948114193992
703 => 0.057244658309989
704 => 0.056937619549775
705 => 0.056739669663659
706 => 0.05668565720324
707 => 0.057570678635223
708 => 0.057835490918684
709 => 0.057670477674523
710 => 0.057332030696542
711 => 0.057981948947131
712 => 0.058155839653139
713 => 0.058194767369372
714 => 0.059346297899952
715 => 0.058259125134123
716 => 0.058520818424426
717 => 0.060562474771726
718 => 0.058710974194042
719 => 0.059691755343432
720 => 0.059643751209908
721 => 0.060145485658111
722 => 0.059602594340624
723 => 0.059609324129153
724 => 0.060054830328722
725 => 0.059429197218894
726 => 0.059274281662603
727 => 0.059060266931112
728 => 0.05952756026775
729 => 0.059807681489204
730 => 0.06206525280776
731 => 0.063523746837307
801 => 0.06346042976498
802 => 0.064039029281455
803 => 0.063778364899919
804 => 0.062936610852148
805 => 0.064373382370722
806 => 0.063918727745172
807 => 0.063956208920097
808 => 0.063954813868894
809 => 0.064257119448288
810 => 0.064042908239388
811 => 0.063620675958316
812 => 0.063900973451247
813 => 0.064733356797064
814 => 0.06731710024312
815 => 0.068762997305581
816 => 0.067230055424438
817 => 0.068287458207141
818 => 0.067653393328655
819 => 0.067538164878438
820 => 0.068202291967427
821 => 0.068867581522969
822 => 0.068825205454407
823 => 0.06834223940008
824 => 0.0680694241308
825 => 0.070135272749604
826 => 0.071657354821126
827 => 0.071553559028016
828 => 0.072011679902604
829 => 0.073356736959539
830 => 0.073479712120021
831 => 0.073464220076352
901 => 0.073159413309965
902 => 0.074483796660248
903 => 0.075588620551362
904 => 0.073088859350261
905 => 0.074040735691363
906 => 0.074468063648425
907 => 0.075095507871882
908 => 0.076154111448716
909 => 0.07730403571389
910 => 0.077466647613263
911 => 0.077351266688962
912 => 0.076592860724457
913 => 0.077851121576859
914 => 0.078588181274349
915 => 0.079027083456892
916 => 0.080140066365464
917 => 0.074470702680407
918 => 0.070457645278467
919 => 0.069830948415902
920 => 0.071105361129564
921 => 0.071441413598906
922 => 0.071305951269888
923 => 0.066788890312787
924 => 0.06980716702479
925 => 0.073054578982992
926 => 0.073179325301808
927 => 0.074805047628266
928 => 0.07533444945837
929 => 0.076643369019465
930 => 0.076561495744538
1001 => 0.076880196828205
1002 => 0.076806932968203
1003 => 0.0792314308296
1004 => 0.081906012012137
1005 => 0.081813399770433
1006 => 0.081428897081235
1007 => 0.081999949142145
1008 => 0.084760403548061
1009 => 0.084506265141744
1010 => 0.084753138956023
1011 => 0.088007870272991
1012 => 0.09223948396518
1013 => 0.09027347455809
1014 => 0.094539149267509
1015 => 0.097224165383387
1016 => 0.10186762311995
1017 => 0.10128623934182
1018 => 0.1030939033634
1019 => 0.10024544104051
1020 => 0.093704795777955
1021 => 0.092669713628571
1022 => 0.094741974304093
1023 => 0.099836424966625
1024 => 0.094581531923119
1025 => 0.095644589941833
1026 => 0.095338429160928
1027 => 0.095322115154013
1028 => 0.095944754444093
1029 => 0.09504158367915
1030 => 0.091361903505455
1031 => 0.093048279244568
1101 => 0.092397088585282
1102 => 0.09311963317124
1103 => 0.097018908301597
1104 => 0.095294945819357
1105 => 0.093478891387656
1106 => 0.095756626659749
1107 => 0.09865696637588
1108 => 0.098475468328856
1109 => 0.098123286257331
1110 => 0.10010851815486
1111 => 0.10338753963121
1112 => 0.1042738459601
1113 => 0.10492809917234
1114 => 0.10501830963661
1115 => 0.10594753348408
1116 => 0.10095086266166
1117 => 0.10888070758046
1118 => 0.11024997274039
1119 => 0.10999260764055
1120 => 0.11151448823832
1121 => 0.11106671236007
1122 => 0.11041795536637
1123 => 0.11283045982713
1124 => 0.11006471814194
1125 => 0.106139096017
1126 => 0.10398542207926
1127 => 0.1068215536524
1128 => 0.10855348023677
1129 => 0.10969817353781
1130 => 0.11004455703906
1201 => 0.10133873999391
1202 => 0.096646787453317
1203 => 0.099654275238491
1204 => 0.10332361790212
1205 => 0.10093047927789
1206 => 0.10102428578115
1207 => 0.097612299008773
1208 => 0.1036255030222
1209 => 0.10274942977645
1210 => 0.10729449932515
1211 => 0.10620978200089
1212 => 0.10991610977927
1213 => 0.10894010946265
1214 => 0.11299143220948
1215 => 0.11460761453838
1216 => 0.11732143620729
1217 => 0.11931773447419
1218 => 0.12048999899961
1219 => 0.12041962063456
1220 => 0.12506471670414
1221 => 0.1223256658392
1222 => 0.11888477240812
1223 => 0.11882253750183
1224 => 0.12060462496762
1225 => 0.12433939140411
1226 => 0.12530776200245
1227 => 0.12584894905938
1228 => 0.12502010224284
1229 => 0.12204705883849
1230 => 0.12076331377017
1231 => 0.12185710176206
]
'min_raw' => 0.045102137220281
'max_raw' => 0.12584894905938
'avg_raw' => 0.085475543139829
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0451021'
'max' => '$0.125848'
'avg' => '$0.085475'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017855260780109
'max_diff' => 0.06502221681663
'year' => 2036
]
11 => [
'items' => [
101 => 0.12051949303825
102 => 0.12282858096226
103 => 0.12599945187649
104 => 0.12534467957168
105 => 0.1275334852177
106 => 0.12979866879226
107 => 0.13303798303964
108 => 0.13388485973536
109 => 0.13528471470955
110 => 0.13672562530641
111 => 0.13718840695648
112 => 0.1380720007192
113 => 0.13806734374391
114 => 0.14073011302057
115 => 0.14366722999183
116 => 0.14477592365406
117 => 0.14732530359664
118 => 0.1429595797859
119 => 0.14627103144617
120 => 0.14925804373474
121 => 0.14569680454424
122 => 0.15060514310603
123 => 0.15079572276985
124 => 0.15367324942694
125 => 0.15075632489258
126 => 0.14902426441523
127 => 0.15402465811388
128 => 0.15644419111373
129 => 0.15571540808336
130 => 0.15016933323781
131 => 0.14694127979535
201 => 0.13849284129145
202 => 0.14850038164471
203 => 0.15337476262683
204 => 0.15015670976863
205 => 0.15177970844735
206 => 0.16063426297935
207 => 0.16400550405519
208 => 0.16330430947817
209 => 0.16342279981904
210 => 0.16524186031121
211 => 0.17330857630839
212 => 0.16847481309787
213 => 0.17217004395466
214 => 0.17412998107696
215 => 0.17595047990463
216 => 0.17147991015843
217 => 0.16566376460433
218 => 0.16382154716217
219 => 0.14983673783277
220 => 0.14910876777422
221 => 0.14870013612061
222 => 0.14612377134669
223 => 0.14409945436009
224 => 0.14248964233428
225 => 0.13826501484797
226 => 0.13969070260936
227 => 0.13295752814448
228 => 0.13726517455806
301 => 0.12651886553392
302 => 0.13546871101752
303 => 0.13059771702034
304 => 0.13386845848448
305 => 0.13385704717564
306 => 0.12783457515062
307 => 0.12436093897238
308 => 0.1265744751411
309 => 0.12894756162468
310 => 0.12933258692262
311 => 0.13240935549249
312 => 0.13326801546542
313 => 0.13066623566044
314 => 0.12629617216535
315 => 0.12731123824472
316 => 0.12434036869068
317 => 0.11913403407006
318 => 0.12287331448847
319 => 0.12415006922787
320 => 0.1247139568559
321 => 0.11959412470809
322 => 0.11798536229029
323 => 0.11712887067787
324 => 0.12563526612717
325 => 0.12610126567198
326 => 0.12371714611501
327 => 0.134493592584
328 => 0.13205455085211
329 => 0.13477955804636
330 => 0.12721913163744
331 => 0.12750795010772
401 => 0.12392872308453
402 => 0.12593285105348
403 => 0.12451639800109
404 => 0.12577093731877
405 => 0.12652290301313
406 => 0.13010154272039
407 => 0.13550957333453
408 => 0.12956701328524
409 => 0.12697775477274
410 => 0.12858411619135
411 => 0.13286206833295
412 => 0.13934338481182
413 => 0.13550631500768
414 => 0.13720914142909
415 => 0.13758113324869
416 => 0.13475182003116
417 => 0.13944770562584
418 => 0.14196426886533
419 => 0.14454574201967
420 => 0.14678716282834
421 => 0.14351464487401
422 => 0.14701670818216
423 => 0.14419466335319
424 => 0.14166299740397
425 => 0.14166683689618
426 => 0.1400786858645
427 => 0.1370014431207
428 => 0.13643395234537
429 => 0.13938611102482
430 => 0.14175346271528
501 => 0.14194844913935
502 => 0.14325913667411
503 => 0.14403478805602
504 => 0.1516372260457
505 => 0.15469498949582
506 => 0.15843396476211
507 => 0.15989050634544
508 => 0.16427417431218
509 => 0.16073400640493
510 => 0.1599680688095
511 => 0.14933472420904
512 => 0.15107593379167
513 => 0.1538637783352
514 => 0.14938069473873
515 => 0.15222417941709
516 => 0.15278554352584
517 => 0.1492283612736
518 => 0.15112840601129
519 => 0.14608245051198
520 => 0.13561956137541
521 => 0.13945935381242
522 => 0.14228673350623
523 => 0.13825171406977
524 => 0.1454843302328
525 => 0.14125918518186
526 => 0.13992001704344
527 => 0.13469544468756
528 => 0.1371612417273
529 => 0.14049626753037
530 => 0.13843560932244
531 => 0.14271178451328
601 => 0.14876798899779
602 => 0.15308400096666
603 => 0.1534153307735
604 => 0.15064042422786
605 => 0.15508722967646
606 => 0.15511961979947
607 => 0.15010360508771
608 => 0.14703132400604
609 => 0.14633329528015
610 => 0.14807710789402
611 => 0.15019441833282
612 => 0.15353282676712
613 => 0.15555015706587
614 => 0.16081028457571
615 => 0.16223352426019
616 => 0.16379723317413
617 => 0.16588683051313
618 => 0.16839592788035
619 => 0.16290616568386
620 => 0.16312428417012
621 => 0.15801229362368
622 => 0.15254939859121
623 => 0.15669505496138
624 => 0.16211494919182
625 => 0.1608716194669
626 => 0.16073171947393
627 => 0.16096699245709
628 => 0.16002956244786
629 => 0.15578960125888
630 => 0.15366031929333
701 => 0.15640763626665
702 => 0.15786771296895
703 => 0.16013216460216
704 => 0.15985302314159
705 => 0.16568600736439
706 => 0.16795252865308
707 => 0.16737265551752
708 => 0.16747936612989
709 => 0.17158279465989
710 => 0.1761466511197
711 => 0.18042130494821
712 => 0.18476966642323
713 => 0.17952754694566
714 => 0.17686592196393
715 => 0.1796120395446
716 => 0.17815491090189
717 => 0.18652800429532
718 => 0.18710773911503
719 => 0.1954802270385
720 => 0.20342671505519
721 => 0.19843566830803
722 => 0.20314200058892
723 => 0.2082322826636
724 => 0.21805226265417
725 => 0.2147452388644
726 => 0.21221211046912
727 => 0.20981831637556
728 => 0.21479942188014
729 => 0.22120753453669
730 => 0.22258778062677
731 => 0.22482430658729
801 => 0.22247287300919
802 => 0.2253049157521
803 => 0.23530327109721
804 => 0.23260162722504
805 => 0.22876485861562
806 => 0.23665759990834
807 => 0.23951395229991
808 => 0.25956132926736
809 => 0.2848719708046
810 => 0.27439319900955
811 => 0.26788868720851
812 => 0.26941740177084
813 => 0.27865999124095
814 => 0.28162841763363
815 => 0.2735592114204
816 => 0.27640939146996
817 => 0.29211416376659
818 => 0.30053927023431
819 => 0.28909684400838
820 => 0.25752764386427
821 => 0.22841939958134
822 => 0.2361402167265
823 => 0.23526491566709
824 => 0.25213773428957
825 => 0.23253719391218
826 => 0.23286721674374
827 => 0.25008894738671
828 => 0.24549448490638
829 => 0.23805204410253
830 => 0.22847373763551
831 => 0.21076735224511
901 => 0.19508431292574
902 => 0.22584236461927
903 => 0.22451602150035
904 => 0.22259528011113
905 => 0.22686968222692
906 => 0.24762496559099
907 => 0.24714648913115
908 => 0.2441026660145
909 => 0.24641137902145
910 => 0.23764731554995
911 => 0.23990601426057
912 => 0.22841478868673
913 => 0.23360930256208
914 => 0.23803607596713
915 => 0.2389248162677
916 => 0.24092719354508
917 => 0.22381709894619
918 => 0.2314990290951
919 => 0.23601144335808
920 => 0.21562419155492
921 => 0.23560845293994
922 => 0.22351925026574
923 => 0.21941599330439
924 => 0.22494048823985
925 => 0.22278758719076
926 => 0.22093664929133
927 => 0.2199037941403
928 => 0.22396037350465
929 => 0.22377112922865
930 => 0.21713377804044
1001 => 0.20847562398848
1002 => 0.21138158468254
1003 => 0.21032582191886
1004 => 0.20649960146719
1005 => 0.209078012072
1006 => 0.19772399667216
1007 => 0.1781900033071
1008 => 0.19109475766646
1009 => 0.19059793866129
1010 => 0.19034741998994
1011 => 0.20004498622978
1012 => 0.19911278899674
1013 => 0.19742084189067
1014 => 0.20646852753174
1015 => 0.20316600056421
1016 => 0.21334361050494
1017 => 0.22004724265845
1018 => 0.21834698470453
1019 => 0.22465178314637
1020 => 0.21144853214771
1021 => 0.21583412250698
1022 => 0.21673798660186
1023 => 0.20635688049537
1024 => 0.19926530799274
1025 => 0.19879238095666
1026 => 0.186496571516
1027 => 0.1930648936709
1028 => 0.19884474535157
1029 => 0.19607664493114
1030 => 0.19520034703268
1031 => 0.19967716295009
1101 => 0.2000250498882
1102 => 0.19209319083171
1103 => 0.19374247549886
1104 => 0.20062026673166
1105 => 0.19356917280639
1106 => 0.17987004909924
1107 => 0.17647247701467
1108 => 0.17601917826891
1109 => 0.1668046933107
1110 => 0.17669951902748
1111 => 0.17238016243726
1112 => 0.18602495815193
1113 => 0.17823112401822
1114 => 0.17789514740605
1115 => 0.17738726947971
1116 => 0.1694559816306
1117 => 0.17119242960992
1118 => 0.17696464716166
1119 => 0.17902423941281
1120 => 0.17880940706727
1121 => 0.17693636014664
1122 => 0.17779383143535
1123 => 0.1750316176516
1124 => 0.17405622247405
1125 => 0.17097760699011
1126 => 0.16645289271797
1127 => 0.16708208198919
1128 => 0.15811743906018
1129 => 0.15323302580284
1130 => 0.15188108458874
1201 => 0.15007321229573
1202 => 0.1520852885748
1203 => 0.15809204335311
1204 => 0.15084662268635
1205 => 0.13842485716036
1206 => 0.13917142643413
1207 => 0.14084874593389
1208 => 0.13772307214267
1209 => 0.13476488421721
1210 => 0.13733678861303
1211 => 0.13207352280643
1212 => 0.14148478646107
1213 => 0.14123023815397
1214 => 0.14473817525578
1215 => 0.14693176031566
1216 => 0.14187625693424
1217 => 0.14060481150534
1218 => 0.14132908460561
1219 => 0.12935846359641
1220 => 0.14375992013382
1221 => 0.14388446452798
1222 => 0.14281803981202
1223 => 0.15048637082309
1224 => 0.16666894106889
1225 => 0.16058040720004
1226 => 0.15822274285911
1227 => 0.15374082122357
1228 => 0.15971271569276
1229 => 0.15925416737359
1230 => 0.15718043797503
1231 => 0.15592623996435
]
'min_raw' => 0.11712887067787
'max_raw' => 0.30053927023431
'avg_raw' => 0.20883407045609
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.117128'
'max' => '$0.300539'
'avg' => '$0.208834'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.072026733457589
'max_diff' => 0.17469032117493
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0036765414104157
]
1 => [
'year' => 2028
'avg' => 0.0063100123678709
]
2 => [
'year' => 2029
'avg' => 0.017237816519944
]
3 => [
'year' => 2030
'avg' => 0.013298949773811
]
4 => [
'year' => 2031
'avg' => 0.013061216798583
]
5 => [
'year' => 2032
'avg' => 0.022900423564121
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0036765414104157
'min' => '$0.003676'
'max_raw' => 0.022900423564121
'max' => '$0.02290042'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.022900423564121
]
1 => [
'year' => 2033
'avg' => 0.058902244229704
]
2 => [
'year' => 2034
'avg' => 0.037335073102186
]
3 => [
'year' => 2035
'avg' => 0.04403680434146
]
4 => [
'year' => 2036
'avg' => 0.085475543139829
]
5 => [
'year' => 2037
'avg' => 0.20883407045609
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.022900423564121
'min' => '$0.02290042'
'max_raw' => 0.20883407045609
'max' => '$0.208834'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.20883407045609
]
]
]
]
'prediction_2025_max_price' => '$0.006286'
'last_price' => 0.00609528
'sma_50day_nextmonth' => '$0.005715'
'sma_200day_nextmonth' => '$0.018592'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'steigen'
'sma_200day_date_nextmonth' => '04.02.2026'
'sma_50day_date_nextmonth' => '04.02.2026'
'daily_sma3' => '$0.005991'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005911'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005875'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005884'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00697'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.014331'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.02236'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00601'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005957'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005916'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006118'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.008436'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.013266'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.020543'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.018456'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.026881'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.052025'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.078978'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006096'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.006684'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.009678'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.015978'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.02851'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.051792'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.12371'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '42.95'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 117.79
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005872'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006015'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 191.92
'cci_20_action' => 'SELL'
'adx_14' => 31.63
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000182'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 55.92
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.008152'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 15
'sell_pct' => 55.88
'buy_pct' => 44.12
'overall_action' => 'bearish'
'overall_action_label' => 'Bärisch'
'overall_action_dir' => -1
'last_updated' => 1767675814
'last_updated_date' => '6. Januar 2026'
]
Flamingo Finance Preisprognose für 2026
Die Preisprognose für Flamingo Finance im Jahr 2026 legt nahe, dass der Durchschnittspreis zwischen $0.0021059 am unteren Ende und $0.006286 am oberen Ende liegen könnte. Auf dem Kryptomarkt könnte Flamingo Finance im Vergleich zum heutigen Durchschnittspreis potenziell um 3.13% steigen bis 2026, wenn FLM das prognostizierte Preisziel erreicht.
Flamingo Finance Preisprognose 2027-2032
Die Preisprognose für FLM für die Jahre 2027-2032 liegt derzeit in einer Preisspanne von $0.003676 am unteren Ende und $0.02290042 am oberen Ende. Angesichts der Preisvolatilität auf dem Markt könnte Flamingo Finance, wenn es das obere Preisziel erreicht, bis 2032 im Vergleich zum heutigen Preis um 275.71% steigen.
| Flamingo Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2027 | $0.002027 | $0.003676 | $0.005325 |
| 2028 | $0.003658 | $0.00631 | $0.008961 |
| 2029 | $0.008037 | $0.017237 | $0.026438 |
| 2030 | $0.006835 | $0.013298 | $0.019762 |
| 2031 | $0.008081 | $0.013061 | $0.018041 |
| 2032 | $0.012335 | $0.02290042 | $0.033465 |
Flamingo Finance Preisprognose 2032-2037
Die Preisprognose für Flamingo Finance für die Jahre 2032-2037 wird derzeit zwischen $0.02290042 am unteren Ende und $0.208834 am oberen Ende geschätzt. Im Vergleich zum aktuellen Preis könnte Flamingo Finance bis 2037 potenziell um 3326.16% steigen, wenn es das obere Preisziel erreicht. Bitte beachten Sie, dass diese Informationen nur für allgemeine Zwecke bestimmt sind und nicht als langfristige Anlageberatung gelten sollten.
| Flamingo Finance Preisprognose | Potenzial nach unten ($) | Durchschnittspreis ($) | Potenzial nach oben ($) |
|---|---|---|---|
| 2032 | $0.012335 | $0.02290042 | $0.033465 |
| 2033 | $0.028665 | $0.0589022 | $0.089139 |
| 2034 | $0.023045 | $0.037335 | $0.051624 |
| 2035 | $0.027246 | $0.044036 | $0.060826 |
| 2036 | $0.0451021 | $0.085475 | $0.125848 |
| 2037 | $0.117128 | $0.208834 | $0.300539 |
Flamingo Finance Potenzielles Preishistogramm
Flamingo Finance Preisprognose basierend auf technischer Analyse
Ab dem 6. Januar 2026 ist die allgemeine Preisprognose-Stimmung für Flamingo Finance Bärisch, mit 15 technischen Indikatoren, die bullische Signale zeigen, und 19 anzeigen bärische Signale. Die Preisprognose für FLM wurde zuletzt am 6. Januar 2026 aktualisiert.
50-Tage- und 200-Tage-Einfacher Gleitender Durchschnitt (SMA) und 14-Tage-Relative-Stärke-Index - RSI (14) von Flamingo Finance
Laut unseren technischen Indikatoren wird der 200-Tage-SMA von Flamingo Finance im nächsten Monat steigen, und bis zum 04.02.2026 $0.018592 erreichen. Der kurzfristige 50-Tage-SMA für Flamingo Finance wird voraussichtlich bis zum 04.02.2026 $0.005715 erreichen.
Der Relative-Stärke-Index (RSI) Momentum-Oszillator ist ein häufig verwendetes Tool, um festzustellen, ob eine Kryptowährung überverkauft (unter 30) oder überkauft (über 70) ist. Derzeit steht der RSI bei 42.95, was darauf hindeutet, dass sich der FLM-Markt in einem NEUTRAL Zustand befindet.
Beliebte FLM Gleitende Durchschnitte und Oszillatoren für Sa., 19. Okt. 2024
Gleitende Durchschnitte (MA) sind weit verbreitete Indikatoren auf den Finanzmärkten, die dazu entwickelt wurden, Preisschwankungen über einen festgelegten Zeitraum zu glätten. Als nachlaufende Indikatoren basieren sie auf historischen Preisdaten. Die folgende Tabelle hebt zwei Arten hervor: den einfachen gleitenden Durchschnitt (SMA) und den exponentiellen gleitenden Durchschnitt (EMA).
Täglicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 3 | $0.005991 | BUY |
| SMA 5 | $0.005911 | BUY |
| SMA 10 | $0.005875 | BUY |
| SMA 21 | $0.005884 | BUY |
| SMA 50 | $0.00697 | SELL |
| SMA 100 | $0.014331 | SELL |
| SMA 200 | $0.02236 | SELL |
Täglicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 3 | $0.00601 | BUY |
| EMA 5 | $0.005957 | BUY |
| EMA 10 | $0.005916 | BUY |
| EMA 21 | $0.006118 | SELL |
| EMA 50 | $0.008436 | SELL |
| EMA 100 | $0.013266 | SELL |
| EMA 200 | $0.020543 | SELL |
Wöchentlicher Einfacher Gleitender Durchschnitt (SMA)
| Periode | Wert | Aktion |
|---|---|---|
| SMA 21 | $0.018456 | SELL |
| SMA 50 | $0.026881 | SELL |
| SMA 100 | $0.052025 | SELL |
| SMA 200 | $0.078978 | SELL |
Wöchentlicher Exponentieller Gleitender Durchschnitt (EMA)
| Periode | Wert | Aktion |
|---|---|---|
| EMA 21 | $0.015978 | SELL |
| EMA 50 | $0.02851 | SELL |
| EMA 100 | $0.051792 | SELL |
| EMA 200 | $0.12371 | SELL |
Flamingo Finance Oszillatoren
Ein Oszillator ist ein technisches Analysewerkzeug, das hohe und niedrige Grenzen zwischen zwei Extremen festlegt und einen Trendindikator schafft, der innerhalb dieser Grenzen schwankt. Händler verwenden diesen Indikator, um kurzfristige überkaufte oder überverkaufte Bedingungen zu identifizieren.
| Periode | Wert | Aktion |
|---|---|---|
| RSI (14) | 42.95 | NEUTRAL |
| Stoch RSI (14) | 117.79 | SELL |
| Stochastic Fast (14) | 100 | SELL |
| Commodity Channel Index (20) | 191.92 | SELL |
| Average Directional Index (14) | 31.63 | SELL |
| Awesome Oscillator (5, 34) | -0.000182 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Prozentbereich (14) | -0 | SELL |
| Ultimate Oscillator (7, 14, 28) | 55.92 | NEUTRAL |
| VWMA (10) | 0.005872 | BUY |
| Hull Moving Average (9) | 0.006015 | BUY |
| Ichimoku Wolke B/L (9, 26, 52, 26) | -0.008152 | SELL |
Auf weltweiten Geldflüssen basierende Flamingo Finance-Preisprognose
Definition weltweiter Geldflüsse, die für Flamingo Finance-Preisprognosen genutzt werden
M0: Die Summe aller physischen Währungen, sowie Geld aus Konten der Zentralbank, das in physische Währung umgetauscht werden kann.
M1: Beträge von M0 sowie solche in Einlagenkonten, einschließlich "Girokonten" bzw. "Kontokorrentkonten".
M2: Beträge von M1 sowie aus den meisten Sparkonten, Geldmarktkonten und Einlagenzertifikaten (CD) unter einem Betrag von 100.000 $.
Flamingo Finance-Preisprognosen basierend auf Erfahrungen mit der Kapitalisierung von Internetunternehmen oder bestimmten Technologiebereichen
| Vergleich | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook aktie | $0.008564 | $0.012035 | $0.016911 | $0.023763 | $0.033391 | $0.04692 |
| Amazon.com aktie | $0.012718 | $0.026537 | $0.055371 | $0.115535 | $0.241072 | $0.503011 |
| Apple aktie | $0.008645 | $0.012263 | $0.017394 | $0.024672 | $0.034996 | $0.049639 |
| Netflix aktie | $0.009617 | $0.015174 | $0.023943 | $0.037778 | $0.0596091 | $0.094053 |
| Google aktie | $0.007893 | $0.010221 | $0.013237 | $0.017142 | $0.022199 | $0.028747 |
| Tesla aktie | $0.013817 | $0.031323 | $0.0710075 | $0.160968 | $0.3649041 | $0.82721 |
| Kodak aktie | $0.00457 | $0.003427 | $0.00257 | $0.001927 | $0.001445 | $0.001083 |
| Nokia aktie | $0.004037 | $0.002674 | $0.001772 | $0.001173 | $0.000777 | $0.000515 |
Diese Berechnung zeigt, wie viel eine Kryptowährung wert sein könnte, wenn wir davon ausgehen, dass ihre Kapitalisierung wie die Kapitalisierung einiger Internetunternehmen oder bestimmter Technologiebereiche abläuft. Wenn Sie die Daten hochrechnen, können Sie sich ein Bild des möglichen zukünftigen Preises für 2024, 2025, 2026, 2027, 2028, 2029 und 2030 machen.
Flamingo Finance Prognose und Prognoseübersicht
Sie stellen sich sicher Fragen wie: "Sollte ich jetzt in Flamingo Finance investieren?", "Sollte ich heute FLM kaufen?", "Wird Flamingo Finance auf kurze bzw. lange Sicht eine gute oder schlechte Investition sein?".
Wir passen unsere Flamingo Finance-Prognose regelmäßig an die aktuelle Wertentwicklung an. Schauen Sie sich unsere ähnliche Prognosen an. Wir erstellen mithilfe technischer Analysemethoden eine Preisprognose einer Vielzahl von digitalen Coins wie Flamingo Finance.
Wenn Sie auf der Suche nach einer Kryptowährung sind, die eine gute Rendite bietet, sollten Sie das Maximum an verfügbaren Informationsquellen bezüglich Flamingo Finance zu Rate ziehen. Nur so können Sie eine verantwortungsvolle Entscheidung bezüglich Ihrer Anlage treffen.
Der Flamingo Finance-Preis entspricht heute $0.006095 USD, der Preis kann sich jedoch sowohl nach oben als auch nach unten bewegen und das von Ihnen investierte Geld kann komplett verloren gehen, da es sich bei Kryptowährungen um hochrisikoreiche Anlagewerte handelt
kurzfristige Flamingo Finance-Prognose
basierend auf dem Preisverlauf der letzten 4 Stunden
langfristige Flamingo Finance-Prognose
basierend auf dem Preisverlauf des letzten Monats
Flamingo Finance-Preisprognose basierend auf Bitcoins Wachstumsmuster
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Wenn die Wachstumsrate von Flamingo Finance 1 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006253 | $0.006416 | $0.006583 | $0.006754 |
| Wenn die Wachstumsrate von Flamingo Finance 2 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006412 | $0.006745 | $0.007096 | $0.007465 |
| Wenn die Wachstumsrate von Flamingo Finance 5 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.006887 | $0.007782 | $0.008794 | $0.009936 |
| Wenn die Wachstumsrate von Flamingo Finance 10 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.007679 | $0.009675 | $0.01219 | $0.015359 |
| Wenn die Wachstumsrate von Flamingo Finance 20 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.009263 | $0.01408 | $0.021399 | $0.032524 |
| Wenn die Wachstumsrate von Flamingo Finance 50 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.014017 | $0.032234 | $0.074128 | $0.17047 |
| Wenn die Wachstumsrate von Flamingo Finance 100 % der letztjährigen Wachstumsrate von Bitcoin erreicht | $0.021938 | $0.078965 | $0.28422 | $1.02 |
Fragefeld
Ist FLM eine gute Investition?
Die Entscheidung, Flamingo Finance zu erwerben, hängt vollständig von Ihrer individuellen Risikotoleranz ab. Wie Sie vielleicht feststellen, hat der Wert von Flamingo Finance in den letzten 2026 Stunden um 1.1346% gestiegen, und Flamingo Finance hat in den letzten 30 Tagen ein Rückgang von erfahren. Daher hängt die Entscheidung, ob Sie in Flamingo Finance investieren sollten, davon ab, ob eine solche Investition mit Ihren Handelszielen übereinstimmt.
Kann Flamingo Finance steigen?
Es scheint, dass der Durchschnittswert von Flamingo Finance bis zum Ende dieses Jahres potenziell auf $0.006286 steigen könnte. Betrachtet man die Aussichten von Flamingo Finance in einem längeren Fünf-Jahres-Zeitraum, könnte die digitale Währung potenziell bis zu $0.019762 wachsen. Angesichts der Unvorhersehbarkeit des Marktes ist es jedoch wichtig, gründliche Recherchen durchzuführen, bevor Sie Gelder in ein bestimmtes Projekt, Netzwerk oder Asset investieren.
Wie viel wird Flamingo Finance nächste Woche kosten?
Basierend auf unserer neuen experimentellen Flamingo Finance-Prognose wird der Preis von Flamingo Finance in der nächsten Woche um 0.86% steigen und $0.006147 erreichen bis zum 13. Januar 2026.
Wie viel wird Flamingo Finance nächsten Monat kosten?
Basierend auf unserer neuen experimentellen Flamingo Finance-Prognose wird der Preis von Flamingo Finance im nächsten Monat um -11.62% fallen und $0.005387 erreichen bis zum 5. Februar 2026.
Wie hoch kann der Preis von Flamingo Finance in diesem Jahr 2026 steigen?
Gemäß unserer neuesten Prognose für den Wert von Flamingo Finance im Jahr 2026 wird erwartet, dass FLM innerhalb der Spanne von $0.0021059 bis $0.006286 schwankt. Es ist jedoch entscheidend zu beachten, dass der Kryptowährungsmarkt äußerst volatil ist und diese prognostizierte Flamingo Finance-Preisvorhersage plötzliche und extreme Preisschwankungen nicht berücksichtigt.
Wo wird Flamingo Finance in 5 Jahren sein?
Die Zukunft von Flamingo Finance scheint auf einem Aufwärtstrend, mit einem maximalen Preis von $0.019762 nach einem Zeitraum von fünf Jahren zu sein. Basierend auf der Flamingo Finance-Prognose für 2030 könnte der Wert von Flamingo Finance seinen höchsten Gipfel von ungefähr $0.019762 erreichen, während sein niedrigster Gipfel voraussichtlich bei etwa $0.006835 liegen wird.
Wie viel wird Flamingo Finance im Jahr 2026 kosten?
Basierend auf unserer neuen experimentellen Flamingo Finance-Preisprognosesimulation wird der Wert von FLM im Jahr 2026 voraussichtlich um 3.13% steigen und bis zu $0.006286 erreichen, wenn das Beste eintritt. Der Preis wird zwischen $0.006286 und $0.0021059 während des Jahres 2026 liegen.
Wie viel wird Flamingo Finance im Jahr 2027 kosten?
Laut unserer neuesten experimentellen Simulation für die Preisprognose von Flamingo Finance könnte der Wert von FLM um -12.62% fallen und bis zu $0.005325 im Jahr 2027 steigen, vorausgesetzt, die Bedingungen sind am günstigsten. Der Preis wird voraussichtlich zwischen $0.005325 und $0.002027 im Laufe des Jahres schwanken.
Wie viel wird Flamingo Finance im Jahr 2028 kosten?
Unser neues experimentelles Flamingo Finance-Preisprognosemodell deutet darauf hin, dass der Wert von FLM im Jahr 2028 um 47.02% steigen, und im besten Fall $0.008961 erreichen wird. Der Preis wird voraussichtlich zwischen $0.008961 und $0.003658 im Laufe des Jahres liegen.
Wie viel wird Flamingo Finance im Jahr 2029 kosten?
Basierend auf unserem experimentellen Prognosemodell könnte der Wert von Flamingo Finance im Jahr 2029 333.75% Wachstum erfahren und unter optimalen Bedingungen $0.026438 erreichen. Die vorhergesagte Preisspanne für das Jahr 2029 liegt zwischen $0.026438 und $0.008037.
Wie viel wird Flamingo Finance im Jahr 2030 kosten?
Unter Verwendung unserer neuen experimentellen Simulation für Flamingo Finance-Preisprognosen wird der Wert von FLM im Jahr 2030 voraussichtlich um 224.23% steigen, und $0.019762 im besten Fall erreichen. Der Preis wird voraussichtlich zwischen $0.019762 und $0.006835 während des Jahres 2030 liegen.
Wie viel wird Flamingo Finance im Jahr 2031 kosten?
Unsere experimentelle Simulation zeigt, dass der Preis von Flamingo Finance im Jahr 2031 um 195.98% steigen könnte, und unter idealen Bedingungen $0.018041 erreichen könnte. Der Preis wird voraussichtlich zwischen $0.018041 und $0.008081 während des Jahres schwanken.
Wie viel wird Flamingo Finance im Jahr 2032 kosten?
Basierend auf den Ergebnissen unserer neuesten experimentellen Flamingo Finance-Preisprognose könnte FLM eine 449.04% Steigerung im Wert erfahren und $0.033465 erreichen, wenn das positivste Szenario im Jahr 2032 eintritt. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.033465 und $0.012335 liegen.
Wie viel wird Flamingo Finance im Jahr 2033 kosten?
Laut unserer experimentellen Flamingo Finance-Preisprognose wird der Wert von FLM voraussichtlich um 1362.43% steigen im Jahr 2033, wobei der höchste mögliche Preis $0.089139 beträgt. Im Laufe des Jahres könnte der Preis von FLM zwischen $0.089139 und $0.028665 liegen.
Wie viel wird Flamingo Finance im Jahr 2034 kosten?
Die Ergebnisse unserer neuen Flamingo Finance-Preisprognosesimulation deuten darauf hin, dass FLM im Jahr 2034 um 746.96% steigen könnte und unter den besten Umständen $0.051624 erreichen könnte. Die vorhergesagte Preisspanne für das Jahr liegt zwischen $0.051624 und $0.023045.
Wie viel wird Flamingo Finance im Jahr 2035 kosten?
Basierend auf unserer experimentellen Prognose für den Preis von Flamingo Finance könnte FLM um 897.93% steigen, wobei der Wert im Jahr 2035 $0.060826 erreichen könnte. Die erwartete Preisspanne für das Jahr liegt zwischen $0.060826 und $0.027246.
Wie viel wird Flamingo Finance im Jahr 2036 kosten?
Unsere jüngste Flamingo Finance-Preisprognosesimulation deutet darauf hin, dass der Wert von FLM im Jahr 2036 möglicherweise um 1964.7% steigen könnte und unter optimalen Bedingungen $0.125848 erreichen könnte. Die erwartete Preisspanne für das Jahr 2036 liegt zwischen $0.125848 und $0.0451021.
Wie viel wird Flamingo Finance im Jahr 2037 kosten?
Laut der experimentellen Simulation könnte der Wert von Flamingo Finance um 4830.69% steigen im Jahr 2037, wobei ein Höchstwert von $0.300539 unter günstigen Bedingungen erwartet wird. Der Preis wird voraussichtlich im Laufe des Jahres zwischen $0.300539 und $0.117128 liegen.
Verwandte Prognosen
Swarm Markets-Preisprognose
Redacted-Preisprognose
Merit Circle-Preisprognose
FunFair-Preisprognose
Clore.ai-Preisprognose
SaucerSwap-Preisprognose
Overnight.fi USD+-Preisprognose
LimeWire-Preisprognose
Marcopolo-Preisprognose
Stargaze-Preisprognose
Beta Finance-Preisprognose
Iagon-Preisprognose
Hermez Network Token-Preisprognose
Quanta-Preisprognose
Orion Protocol-Preisprognose
Verasity-Preisprognose
Aergo-Preisprognose
higher-Preisprognose
SportX-Preisprognose
Reef-Preisprognose
ankrETH-Preisprognose
Wanchain-Preisprognose
VitaDAO-Preisprognose
PlayDapp-Preisprognose
Zero1 Labs-Preisprognose
Wie liest und prognostiziert man die Kursbewegungen von Flamingo Finance?
Flamingo Finance-Händler verwenden Indikatoren und Chartmuster, um die Marktrichtung vorherzusagen. Sie identifizieren auch wichtige Unterstützungs- und Widerstandsniveaus, um abzuschätzen, wann ein Abwärtstrend sich verlangsamen oder ein Aufwärtstrend ins Stocken geraten könnte.
Flamingo Finance Preisprognose-Indikatoren
Gleitende Durchschnitte sind beliebte Tools für die Preisprognose von Flamingo Finance. Ein einfacher gleitender Durchschnitt (SMA) berechnet den durchschnittlichen Schlusskurs von FLM über einen bestimmten Zeitraum, z. B. einen 12-Tage-SMA. Ein exponentieller gleitender Durchschnitt (EMA) gibt neueren Preisen mehr Gewicht und reagiert schneller auf Preisänderungen.
Häufig verwendete gleitende Durchschnitte auf dem Kryptomarkt sind die 50-Tage-, 100-Tage- und 200-Tage-Durchschnitte, die helfen, wichtige Widerstands- und Unterstützungsniveaus zu identifizieren. Eine Kursbewegung von FLM über diesen Durchschnitten wird als bullisch angesehen, während ein Fall darunter auf Schwäche hindeutet.
Händler verwenden auch RSI und Fibonacci-Retracement-Level, um die zukünftige Richtung von FLM einzuschätzen.
Wie liest man Flamingo Finance-Charts und prognostiziert Kursbewegungen?
Die meisten Händler bevorzugen Kerzencharts gegenüber einfachen Liniendiagrammen, da sie detailliertere Informationen liefern. Kerzen können die Preisbewegung von Flamingo Finance in verschiedenen Zeitrahmen darstellen, wie z. B. 5-Minuten für kurzfristige und wöchentliche für langfristige Trends. Beliebte Optionen sind 1-Stunden-, 4-Stunden- und 1-Tages-Charts.
Ein 1-Stunden-Kerzenchart zeigt beispielsweise die Eröffnungs-, Schluss-, Höchst- und Tiefstpreise von FLM innerhalb jeder Stunde. Die Farbe der Kerze ist entscheidend: Grün zeigt an, dass der Preis höher schloss als er eröffnete, während Rot das Gegenteil bedeutet. Einige Charts verwenden hohle und gefüllte Kerzen, um die gleiche Information zu vermitteln.
Was beeinflusst den Preis von Flamingo Finance?
Die Preisentwicklung von Flamingo Finance wird durch Angebot und Nachfrage bestimmt und von Faktoren wie Blockbelohnungs-Halbierungen, Hard Forks und Protokoll-Updates beeinflusst. Ereignisse in der realen Welt, wie Vorschriften, Akzeptanz durch Unternehmen und Regierungen und Hacks von Kryptowährungsbörsen, beeinflussen ebenfalls den Preis von FLM. Die Marktkapitalisierung von Flamingo Finance kann sich schnell ändern.
Händler überwachen oft die Aktivitäten von FLM-„Walen“, großen Inhabern von Flamingo Finance, da ihre Aktionen die Kursbewegungen auf dem relativ kleinen Flamingo Finance-Markt erheblich beeinflussen können.
Bullische und bärische Kursprognosemuster
Händler identifizieren oft Kerzenmuster, um sich einen Vorteil bei Kryptowährungspreisprognosen zu verschaffen. Bestimmte Formationen deuten auf bullische Trends hin, während andere auf bärische Bewegungen hindeuten.
Häufig verfolgte bullische Kerzenmuster:
- Hammer
- Bullish Engulfing
- Piercing Line
- Morning Star
- Drei weiße Soldaten
Häufige bärische Kerzenmuster:
- Bearish Harami
- Dark Cloud Cover
- Evening Star
- Shooting Star
- Hanging Man


